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Abstract

A decision maker is averse to not knowing a prior over a set of restricted structured models (ambigu-
ity) and suspects that each structured model is misspecified. The decision maker evaluates intertemporal 
plans under all of the structured models and, to recognize possible misspecifications, under unstructured
alternatives that are statistically close to them. Likelihood ratio processes are used to represent unstructured 
alternative models, while relative entropy restricts a set of unstructured models. A set of structured models 
might be finite or indexed by a finite-dimensional vector of unknown parameters that could vary in un-
known ways over time. We model such a decision maker with a dynamic version of variational preferences 
and revisit topics including dynamic consistency and admissibility.
© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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In what circumstances is a minimax solution reasonable? I suggest that it is reasonable if and 
only if the least favorable initial distribution is reasonable according to your body of beliefs.

[Irving J. Good (1952)]
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Now it would be very remarkable if any system existing in the real world could be exactly 
represented by any simple model. However, cunningly chosen parsimonious models often do 
provide remarkably useful approximations.

[George Box (1979)]

1. Introduction

We describe a decision maker who embraces George Box’s idea that models are approxima-
tions by constructing a set of probabilities in two steps, first by specifying a set of more or less 
tightly parameterized structured models having either fixed or time-varying parameters, then by 
adding statistically nearby unstructured models. Unstructured models are described flexibly in 
the sense that they are required only to reside within a statistical neighborhood of the set of 
structured models, as measured by relative entropy.1 In this way, we create a set of probability 
distributions for a cautious decision maker of a type described initially by Wald (1950), later 
extended to include robust Bayesian approaches. By starting with mixtures of structured models, 
Gilboa and Schmeidler (1989) and Maccheroni et al. (2006a) axiomatized this type of decision 
theory. Alternative mixture weights are different Bayesian priors that the decision maker thinks 
are possible. We distinguish ambiguity about weights to assign to the structured models from 
concerns about misspecification of the structured models that a decision maker manages by eval-
uating plans under statistically nearby unstructured alternatives. We adopt language that Hansen 
(2014, p. 947) used to distinguish among three uncertainties: (i) risk conditioned on a statisti-
cal model; (ii) ambiguity about which of a set of alternative statistical models is best, and (iii) 
suspicions that every member of that set of alternative models is misspecified.

1.1. What we do

We use the dynamic variational extension of max-min preferences created by Maccheroni 
et al. (2006b) to express aversions to two distinct components of ignorance – ambiguity about a 
prior over a set of structured statistical models and fears that each of those models is misspecified. 
We choose to call models “structured” because they are parsimoniously parameterized based 
on a priori considerations. The decision maker expresses doubts about each structured model 
by exploring implications of alternative probability specifications that are required only to be 
statistically close to the structured model as measured by a discounted version of an intertemporal 
relative entropy quantity. We restrict the range of such “unstructured” probability models that the 
decision maker explores by imposing a penalty that is proportional to discounted relative entropy.

We want preferences that have a recursive representation and are dynamically consistent. 
Accomplishing this when we use relative entropy, as we do, presents challenges that we confront 
in this paper. Epstein and Schneider (2003) construct dynamically consistent preferences within a 

1 By “structured” we don’t mean what econometricians in the Cowles commission and rational expectations traditions 
call “structural” to distinguish them from “atheoretical” models. Itzhak Gilboa suggested to us that there is a connection 
between our distinction between structured and unstructured models and the contrast that Gilboa and Schmeidler (2001)
draw between rule-based and case-based reasoning. We find that possible connection intriguing but defer formalizing it to 
subsequent research. We suspect that our structured models could express Gilboa and Schmeidler’s notion of rule-based 
reasoning, while our unstructured models resemble their case-based reasoning. But our approach here differs from theirs 
because we proceed by modifying an approach from robust control theory that seeks to acknowledge misspecifications 
of structured models while avoiding the flexible estimation methods that would be required to construct better statistical 
approximations that might be provided by unstructured models.
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Gilboa and Schmeidler (1989) max-min expected utility framework by expanding a set of models 
that originally concerns a decision maker to create a larger “rectangular” set of models. When we 
include concerns for model misspecification in our setting, the Epstein and Schneider procedure 
can lead to a degenerate decision problem. Still, we can and do use an Epstein and Schneider
procedure to help construct a set of interesting structured models about which the decision maker 
is ambiguous. We then use our version of dynamic variational preferences to express the decision 
maker’s concerns that all of the structured models are misspecified. Proceeding in this way allows 
us to deploy the statistical decision theoretic concept called admissibility and to implement the 
suggestion of Good (1952) cited above in which he called for the decision maker to check the 
plausibility of his/her worst-case prior, a practice that has become a standard component of a 
robust Bayesian analysis.

1.2. Relation to previous work

In distinguishing concerns about ambiguity from fears of misspecification, we are extending 
and altering some of our earlier work. Thus, sometimes as in Hansen et al. (1999) Hansen and 
Sargent (2001), Anderson et al. (2003), Hansen et al. (2006), and Barillas et al. (2009), we 
imposed a single baseline model and used discounted relative entropy divergence to limit the 
set of alternative models whose consequences a decision maker explored. In that work, we did 
not allow the decision maker explicitly to consider other tightly specified models. Instead, we 
simply lumped such models together with the extensive collection of models that are nearby as 
measured by discounted relative entropy. Wanting dynamically consistent preferences led us to 
exploit a recursive construction of likelihoods that we attained by penalizing models that differ 
from the baseline probability model. The resulting preferences are special cases of the dynamic 
variational preferences axiomatized by Maccheroni et al. (2006b). We use a related approach in 
this paper but with an important difference. We now replace a single baseline model with a set of 
what we call structured models.

Having a family of structured models gives our decision maker an option to do “model se-
lection” or “model-averaging”. To confront ambiguity over the structured models in a dynamic 
setting, we draw on two approaches from the decision theory literature.2 One is the “recursive 
smooth ambiguity preferences” proposed by Klibanoff et al. (2009) and the other is the “recursive 
multiple priors preferences” suggested by Epstein and Schneider (2003). In Hansen and Sargent 
(2007), we extended our initial approach with its single baseline model and single relative en-
tropy penalty by including two penalties: one that explores the potential misspecification of each 
member of a parameterized family of models and another that investigates robust adjustments to a 
prior or posterior over this family.3 The penalty adjustment gives rise to a recursive specification 
of smooth ambiguity that carries an explicit connection to a prior robustness analysis.4 However, 
in Hansen and Sargent (2007) we did not study admissibility; nor did we formally deploy Good’s 

2 Building on the control theory developed in Petersen et al. (2000), Hansen et al. (2020) describe another way to 
endow a decision maker with multiple structured baseline models by twisting a relative entropy constraint to ensure that 
a particular family of models is included within a much larger set of models. Szőke (2020) applies that framework to study 
discrepancies between a best-fitting econometric model and experts’ forecasts of the term structure of US interest rates. 
The Hansen et al. (2020) preference specification is dynamically inconsistent, in contrast to the approach we explore 
here.

3 In a dynamic setting, yesterday’s posterior is today’s prior.
4 Hansen and Miao (2018) extend this approach to a continuous-time setting with a Browning information structure. 

Hansen and Sargent (2007) also describe a second recursive formulation that also includes two penalties. In this second 
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proposal. In this paper, we pursue both of these issues after extending the recursive multiple prior 
preferences to include concerns for misspecifications of all of the structured models as well as of 
mixtures formed by weighted averages of the primitive set of structured models.

We turn next to the statistical decision theoretic concepts of admissibility, dynamic consis-
tency, and rectangularity and their roles in our analysis.

2. Decision theory components

Our model strikes a balance among three attractive but potentially incompatible preference 
properties, namely, (i) dynamic consistency, (ii) a statistical decision-theoretic concept called 
admissibility, and (iii) a way to express concerns that models are misspecified. Since we are 
interested in intertemporal decision problems, we like recursive preferences that automatically 
exhibit dynamic consistency. But our decision maker also wants admissibility and statistically 
plausible worst-case probabilities. Within the confines of the max-min utility formulation of 
Gilboa and Schmeidler (1989), we describe (a) some situations in which dynamic consistency 
and admissibility can coexist5; and (b) other situations in which admissibility prevails but in 
which a decision maker’s preferences are not dynamically consistent except in degenerate and 
uninteresting special cases. Type (b) situations include ones in which the decision maker is con-
cerned about misspecifications that he describes in terms of relative entropy. Because we want 
to include type (b) situations, we use a version of the variational preferences of Maccheroni 
et al. (2006a,b) that can reconcile dynamic consistency with admissibility. We now explain the 
reasoning that led us to adopt our version of variational preferences.

2.1. Dynamic consistency and admissibility can coexist

Let F = {Ft : t � 0} be a filtration that describes information available at each t � 0. A deci-
sion maker evaluates plans or decision processes that are restricted to be progressively measur-
able with respect to F. A “structured” model indexed by parameters θ ∈ � assigns probabilities 
to F, as do mixtures of structured models. Alternative mixing distributions can be interpreted as 
different possible priors over structured models. An admissible decision rule is one that cannot 
be weakly dominated by another decision rule for all θ ∈ � while it is strictly dominated by that 
other decision rule for some θ ∈ �.

A Bayesian decision maker completes a probability specification by choosing a unique prior 
over a set of structured models.

Condition 2.1. Suppose that for each possible probability specification over F implied by a prior 
over the set of structured models, a decision problem has the following two properties:

(i.) a unique plan solves a time 0 maximization problem, and
(ii.) for each t > 0, the time t continuation of that plan is the unique solution of a time t contin-

uation maximization problem.

formulation, however, the current period decision maker plays a dynamic game against future versions of this decision 
maker as a way to confront an intertemporal inconsistency in the decision makers’ objectives. Hansen and Sargent (2010)
and Hansen (2007) apply this approach to problems with a hidden macro economic growth state and ambiguity in the 
model of growth.

5 These are also situations in which a decision maker has no concerns about model misspecification.
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A plan with properties (i) and (ii) is said to be dynamically consistent. The plan typically depends 
on the prior over structured models.

A “robust Bayesian” evaluates plans under a nontrivial set of priors. By verifying applicability 
of the Minimax Theorem that justifies exchanging the order of maximization and minimization, 
a max-min expected utility plan that emerges from applying the max-min expected utility theory 
axiomatized by Gilboa and Schmeidler (1989) can be interpreted as an expected utility maxi-
mizing plan under a unique Bayesian prior, namely, the worst-case prior; this plan is therefore 
admissible.6 Thus, after exchanging orders of extremization, the outcome of the outer mini-
mization is a worst-case prior for which the max-min plan is “optimal” in a Bayesian sense. 
Computing and assessing the plausibility of a worst-case prior are important parts of a robust 
Bayesian analysis like the one that Good (1952) referred to in the above quote. Admissibility and 
dynamic consistency under this worst-case prior follow because the assumptions of condition 2.1
hold.

2.2. Dynamic consistency and admissibility can conflict

Dynamic consistency under a worst-case prior does not imply that max-min expected utility 
preferences are dynamically consistent, for it can happen that if we replace “maximization prob-
lem” with “max-min problem” in item (i) in condition 2.1, then a counterpart of assertion (ii) 
can fail to hold. In this case, the extremizing time 0 plan is dynamically inconsistent. For many 
ways of specifying sets of probabilities, max-min expected utility preferences are dynamically 
inconsistent, an undesirable feature of preferences that Sarin and Wakker (1998) and Epstein and 
Schneider (2003) noted. Sarin and Wakker offered an enlightening example of restrictions on 
probabilities that restore dynamic consistency for max-min expected utility. Epstein and Schnei-
der analyzed the problem in more generality and described a “rectangularity” restriction on a set 
of probabilities that suffices to assure dynamic consistency.

To describe the rectangularity property, it is convenient temporarily to consider a discrete-time 
setting in which ε = 1

2j is the time increment. We will drive j → +∞ in our study of continuous-
time approximations. Let pt be a conditional probability measure for date t + ε events in Ft

conditioned on the date t sigma algebra Ft . By the product rule for joint distributions, date zero 
probabilities for events in Ft+ε can be represented by a “product” of conditional probabilities 
p0, pε, ...pt . For a family of probabilities to be rectangular, it must have the following represen-
tation. For each t , let Pt be a pre-specified family of probability distributions pt conditioned on 
Ft over events in Ft+ε . The rectangular set of probabilities P consists all of those that can be 
expressed as products p0, pε, p2ε, ... where pt ∈ Pt for each t = 0, ε, 2ε, .... Such a family of 
probabilities is called rectangular because the restrictions are expressed in terms of the building 
block sets Pt , t = 0, ε, 2ε, . . . of conditional probabilities.

A pre-specified family of probabilities Po need not have a rectangular representation. For 
a simple example, suppose that there is a restricted family of date zero priors over a finite set 
of models where each model gives a distribution over future events in Ft for all t = ε, 2ε, .... 
Although for each prior we can construct a factorization via the product rule, we cannot expect 
to build the corresponding sets Pt that comprise a rectangular representation. The restrictions 
on the date zero prior do not, in general, translate into separate restrictions on Pt for each t . If, 

6 See Fan (1952).
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however, we allow all priors over models with probabilities that sum to one (a very large set), 
then this same restriction carries over to the implied family of posteriors and the resulting family 
of probabilities models will be rectangular.

2.3. Engineering dynamic consistency through set expansion

Since an initial subjectively specified family Po of probabilities need not be rectangular, Ep-
stein and Schneider (2003) show how to extend an original family of probabilities to a larger one 
that is rectangular. This delivers what they call a recursive multiple priors framework that satisfies 
a set of axioms that includes dynamic consistency. Next we briefly describe their construction.

For each member of the family of probabilities Po, construct the factorization p0, pε, .... Let 
Pt be the set of all of the pt ’s that appear in these factorizations. Use this family of Pt ’s as the 
building blocks for an augmented family of probabilities that is rectangular. The idea is to make 
sure that each member of the rectangular set of augmented probabilities can be constructed as a 
product of pt that belong to the set of conditionals for each date t associated with some member 
of the original set of probabilities Po, not necessarily the same member for all t . A rectangu-
lar set of probabilities constructed in this way can contain probability measures that are not in 
the original set Po. Epstein and Schneider’s (2003) axioms lead them to use this larger set of 
probabilities to represent their recursive multiple prior preferences. In recommending that this 
expanded set of probabilities be used with a max-min decision theory, Epstein and Schneider
distinguish between an original subjectively specified original set Prob of probabilities that we 
call Po and the expanded rectangular set of probabilities P . They make

. . . an important conceptual distinction between the set of probability laws that the decision 
maker views as possible, such as Prob, and the set of priors P that is part of the representation 
of preference.

Thus, Epstein and Schneider augment a decision maker’s set of “possible” probabilities (i.e., 
their Prob) with enough additional probabilities to create an enlarged set P that is rectangular 
regardless of whether probabilities in the set are subjectively or statistically plausible. In this 
way, their recursive probability augmentation procedure constructs dynamically consistent pref-
erences. But it does so by adding possibly implausible probabilities. That means that a max-min 
expected utility plan can be inadmissible with respect to the decision maker’s original set of 
possible probabilities Po. Applying the Minimax Theorem to a rectangular embedding P of an 
original subjectively interesting set of probabilities Po can yield a worst-case probability that the 
decision maker regards as implausible because it is not within his original set of probabilities.

These issues affect the enterprise in this paper in the following ways. If (a) a family of prob-
abilities constructed from structured models is rectangular; or (b) it turns out that max-min 
decision rules under that set and an augmented rectangular set of probabilities are identical, 
then Good’s plausibility criterion is available. Section 5 provides examples of such situations in 
which a max-min expected utility framework could work, but these exclude the concerns about 
misspecification that are a major focus for us in this paper. In settings that include concerns about 
misspecifications measured by relative entropy, worst-case probability will typically be in the ex-
panded set P and not in the set of probabilities Po that the decision maker thinks are possible, 
rendering Good’s plausibility criterion violated and presenting us with an irreconcilable rivalry 
between dynamic consistency and admissibility. A variational preference framework provides us 
with a more attractive approach for confronting potential model misspecifications.
6
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Our paper studies two classes of economic models that illustrate these issues. In one class, a 
rectangular specification is justified on subjective grounds by how it represents structured mod-
els that exhibit time variation in parameters. We do this in a continuous time setting that can be 
viewed as a limit of a discrete-time model attained by driving a time interval ε to zero. We draw 
on a representation provided by Chen and Epstein (2002) to verify rectangularity. In this class of 
models, admissibility and dynamic consistency coexist; but concerns about model misspecifica-
tions are excluded.

Our other class of models mainly interest us in this paper because they allow for concerns 
about model misspecification that are expressed in terms of relative entropy; here rectangular 
embeddings lead to implausibly large sets of probabilities. We show that a procedure that ac-
knowledges concerns about model misspecifications by expanding a set of probabilities implied 
by a family of structured models to include relative entropy neighborhoods and then to construct 
a rectangular set of probabilities adds a multitude of models that need to satisfy only very weak 
absolute continuity restrictions over finite intervals of time. The vastness of that set of models 
generates max-min expected utility decision rules that are implausibly cautious. Because this 
point is so important, in subsection 8.1 we provide a simple discrete-time two-period demonstra-
tion of this “anything goes under rectangularity” proposition, while in subsection 8.2 we establish 
an appropriate counterpart in the continuous-time diffusion setting that is our main focus in this 
paper.

The remainder of this paper is organized as follows. In section 3, we describe how we use 
positive martingales to represent a decision maker’s set of probability specifications. Working 
in continuous time with Brownian motion information structures provides a convenient way to 
represent positive martingales. In section 4, we describe how we use relative entropy to measure 
statistical discrepancies between probability distributions. We use relative entropy measures of 
statistical neighborhoods in different ways to construct families of structured models in section 5
and sets of unstructured models in section 6. In section 5, we describe a refinement, i.e., a further 
restriction, of a relative entropy constraint that we use to construct a set of structured parametric 
models that expresses ambiguity. This set of structured models is rectangular, so it could be used 
within a Gilboa and Schmeidler (1989) framework while reconciling dynamic consistency and 
admissibility. But because we want to include a decision maker’s fears that the structured models 
are all misspecified, in section 6 we use another relative entropy restriction to describe a set of 
unstructured models that the decision maker also wants to consider, this one being an “unrefined” 
relative entropy constraint that produces a set of unstructured models that is not rectangular. To 
express both the decision maker’s ambiguity concerns about the set of structured models and 
his misspecification concerns about the set of unstructured models, in section 7 we describe a 
recursive representation of preferences that is an instance of dynamic variational preferences 
and that reconciles dynamic consistency with admissibility as we want. Section 8 indicates in 
detail why a set of models that satisfies the section 6 (unrefined) relative entropy constraint that 
we use to circumscribe our set of unstructured models can’t be expanded to be rectangular in a 
way that coexists with a plausibility check of the kind recommended by Good (1952). Section 9
concludes.

3. Model perturbations

This section describes nonnegative martingales that we use to perturb a baseline probability 
model. Section 4 then describes how we use a family of parametric alternatives to a baseline 
7
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model to form a convex set of martingales that represent unstructured models that we shall use 
to pose robust decision problems.

3.1. Mathematical framework

To fix ideas, we use a specific baseline model and in section 4 an associated family of al-
ternatives that we call structured models. A decision maker cares about a stochastic process 
X

.= {Xt : t � 0} that she approximates with a baseline model7

dXt = μ̂(Xt )dt + σ(Xt )dWt , (1)

where W is a multivariate Brownian motion.8 A plan is a C = {Ct : t � 0} process that is pro-
gressively measurable with respect to the filtration F = {Ft : t � 0} associated with the Brownian 
motion W augmented by information available at date zero. Progressively measurable means that 
the date t component Ct is measurable with respect to Ft . A decision maker cares about plans.

Because he does not fully trust baseline model (1), the decision maker explores utility conse-
quences of other probability models that he obtains by multiplying probabilities associated with 
(1) by appropriate likelihood ratios. Following Hansen et al. (2006), we represent a likelihood 
ratio process by a positive martingale MU with respect to the probability distribution induced by 
the baseline model (1). The martingale MU satisfies9

dMU
t = MU

t Ut · dWt (2)

or

d logMU
t = Ut · dWt − 1

2
|Ut |2dt, (3)

where U is progressively measurable with respect to the filtration F. We adopt the convention 
that MU

t is zero when 
∫ t

0 |Uτ |2dτ is infinite. In the event that

t∫
0

|Uτ |2dτ < ∞ (4)

with probability one, the stochastic integral 
∫ t

0 Uτ ·dWτ is formally defined as a probability limit. 
Imposing the initial condition MU

0 = 1, we express the solution of stochastic differential equation 
(2) as the stochastic exponential10

MU
t = exp

⎛⎝ t∫
0

Uτ · dWτ − 1

2

t∫
0

|Uτ |2dτ

⎞⎠ . (5)

7 We let X denote a stochastic process, Xt the process at time t , and x a realized value of the process.
8 Although applications typically use one, a Markov formulation is not essential. It could be generalized to allow other 

stochastic processes that can be constructed as functions of a Brownian motion information structure.
9 James (1992), Chen and Epstein (2002), and Hansen et al. (2006) used this representation.

10 MU
t specified as in (5) is a local martingale, but not necessarily a martingale. It is not convenient here to impose 

sufficient conditions for the stochastic exponential to be a martingale like Kazamaki’s or Novikov’s. Instead, we will 
verify that an extremum of a pertinent optimization problem does indeed result in a martingale.
8
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Definition 3.1. M denotes the set of all martingales MU that can be constructed as stochastic 
exponentials via representation (5) with a U that satisfies (4) and are progressively measurable 
with respect to F.

Associated with U are probabilities defined by

EU [Bt |F0] = E
[
MU

t Bt |F0

]
for any t � 0 and any bounded Ft -measurable random variable Bt ; thus, the positive random 
variable MU

t acts as a Radon-Nikodym derivative for the date t conditional expectation opera-
tor EU [ · |X0]. The martingale property of the process MU ensures that successive conditional 
expectations operators EU satisfy the Law of Iterated Expectations.

Under baseline model (1), W is a standard Brownian motion, but under the alternative U
model, it has increments

dWt = Utdt + dWU
t , (6)

where WU is now a standard Brownian motion. Furthermore, under the MU probability measure, ∫ t

0 |Uτ |2dτ is finite with probability one for each t . While (3) expresses the evolution of logMU

in terms of increment dW , its evolution in terms of dWU is:

d logMU
t = Ut · dWU

t + 1

2
|Ut |2dt. (7)

In light of (7), we write model (1) as:

dXt = μ̂(Xt )dt + σ(Xt ) · Utdt + σ(Xt )dWU
t .

4. Measuring statistical discrepancies

We use entropy relative to a baseline probability to restrict martingales that represent al-
ternative probabilities.11 We start with the likelihood ratio process MU and from it construct 
ingredients of a notion of relative entropy for the process MU . To begin, we note that the process 
MU logMU evolves as an Ito process with date t drift 1

2MU
t |Ut |2 (also called a local mean). 

Write the conditional mean of MU logMU in terms of a history of local means as12

E
[
MU

t logMU
t |F0

]
= 1

2
E

⎛⎝ t∫
0

MU
τ |Uτ |2dτ |F0

⎞⎠ . (8)

Also, let MS be a martingale defined by a drift distortion process S that is measurable with 
respect to F. To construct entropy relative to a probability distribution affiliated with MS instead 
of martingale MU , we use a log likelihood ratio logMU

t − logMS
t with respect to the MS

t model 
to arrive at:

11 Entropy is widely used in the statistical and machine learning literatures to measure discrepancies between models. 
For example, see Amari (2016) and Nielsen (2014).
12 A variety of sufficient conditions justifies equality (8). When we choose a probability distortion to minimize expected 
utility, we will use representation (8) without imposing that MU is a martingale and then verify that the solution is indeed 
a martingale. Hansen et al. (2006) justify this approach. See their Claims 6.1 and 6.2.
9
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E
[
MU

t

(
logMU

t − logMS
t

)
|F0

]
= 1

2
E

⎛⎝ t∫
0

MU
τ |Uτ − Sτ |2dτ

∣∣∣F0

⎞⎠ .

A notion of relative entropy appropriate for stochastic processes is

lim
t→∞

1

t
E
[
MU

t

(
logMU

t − logMS
t

) ∣∣∣F0

]
= lim

t→∞
1

2t
E

⎛⎝ t∫
0

MU
τ |Uτ − Sτ |2dτ

∣∣∣F0

⎞⎠
= lim

δ↓0

δ

2
E

⎛⎝ ∞∫
0

exp(−δτ)MU
τ |Uτ − Sτ |2dτ

∣∣∣F0

⎞⎠ ,

provided that these limits exist. The second line is the limit of Abel integral averages, where 
scaling by δ makes the weights δ exp(−δτ) integrate to one. Rather than using undiscounted 
relative entropy, we find it convenient sometimes to use Abel averages with a discount rate equal 
to the subjective rate that discounts an expected utility flow. With that in mind, we define a 
discrepancy between two martingales MU and MS as:

�
(
MU ;MS |F0

)
= δ

2

∞∫
0

exp(−δt)E
(
MU

t | Ut − St |2
∣∣∣F0

)
dt.

Hansen and Sargent (2001) and Hansen et al. (2006) set St ≡ 0 to construct discounted relative 
entropy neighborhoods of a baseline model:

�(MU ;1|F0) = δ

2

∞∫
0

exp(−δt)E
(
MU

t |Ut |2
∣∣∣F0

)
dt � 0, (9)

where baseline probabilities are represented here by the degenerate St ≡ 0 drift distortion that is 
affiliated with a martingale that is identically one. Formula (9) quantifies how a martingale MU

distorts baseline model probabilities.

5. Families of structured models

We use a formulation of Chen and Epstein (2002) to construct a family of structured prob-
abilities by forming a convex set Mo of martingales MS with respect to a baseline probability 
associated with model (1). Formally,

Mo =
{
MS ∈ M such that St ∈ 	t for all t � 0

}
(10)

where 	 = {	t } is a process of convex sets adapted to the filtration F.13 We impose convexity to 
facilitate our subsequent application of the min-max theorem for the recursive problem.14

13 Anderson et al. (1998) also explored consequences of a constraint like (10), but without state dependence in 	. 
Allowing for state dependence is important in the applications featured in this paper.
14 We have multiple models, so we create a convex set of priors over models. Restriction (10) imposes convexity 
conditioned on current period information, which follows from ex ante convexity of date 0 priors and a rectangular 
embedding. Section 5.1 elaborates within the context of some examples.
10
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Hansen and Sargent (2001) and Hansen et al. (2006) started from a unique baseline model 
and then surrounded it with a relative entropy ball of unstructured models. In this paper, we 
instead start from a convex set Mo such that MS ∈ Mo is a set of martingales with respect 
to a conveniently chosen baseline model. At this juncture, the baseline model is used simply 
as a way to represent alternative structured models. Its role differs depending on the particular 
application. The set Mo represents a set of structured models that in section 6 we shall surround 
with an entropy ball of unstructured models. This section contains several examples of sets of 
structured models formed according to particular versions of (10). Subsection 5.1 starts with 
a finite number of structured models; subsection 5.2 then adds time-varying parameters, while 
subsection 5.3 uses relative entropy to construct a set of structured models.

5.1. Finite number of underlying models

We present two examples that feature a finite number n of structured models of interest, with 
model j being represented by an Sj

t process that is a time-invariant function of the Markov state 
Xt for j = 1, . . . , n. The examples differ in the processes of convex sets {	t } that define the set 
of martingales Mo in (10). In these examples, the baseline could be any of the finite models or 
it could be a conveniently chosen alternative.

5.1.1. Time-invariant models
Each Sj process represents a probability assignment for all t � 0. Let 
0 denote a convex 

set of probability vectors that reside in a subset of the probability simplex in Rn. Alternative 
π0 ∈ 
0’s are potential initial period priors across models.

To update under a prior π0 ∈ 
0, we apply Bayes’ rule to a finite collection of models charac-
terized by Sj where MSj

is in Mo for j = 1, . . . , n. Let prior π0 ∈ 
o assign probability πj
0 � 0

to model Sj , where 
∑n

j=1 π
j

0 = 1. A martingale

M =
n∑

j=1

π
j
0 MSj

characterizes a mixture of Sj models. The mathematical expectation of Mt conditioned on date 
zero information equals unity for all t � 0. Martingale M evolves as

dMt =
n∑

j=1

π
j
0 dMSj

t

=
n∑

j=1

π
j
0 MSj

t S
j
t · dWt

=Mt

n∑
j=1

(
π

j
t S

j
t

)
· dWt

where the date t posterior πj
t probability assigned to model Sj is

π
j
t = π

j
0 MSj

t

Mt

11
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and the associated drift distortion of martingale M is

St =
n∑

j=1

π
j
t S

j
t .

It is helpful to frame the potential conflict between admissibility and dynamic consistency in 
terms of a standard robust Bayesian formulation of a time 0 decision problem. A positive mar-
tingale generated by a process S implies a change in probability measure. Consider probability 
measures generated by the set

	 =
⎧⎨⎩S = {St : t � 0} : St =

n∑
j=1

π
j
t S

j
t , π

j
t = π

j

0 MSj

t∑n
�=1 π�

0MS�

t

, π0 ∈ 
0

⎫⎬⎭ .

This family of probabilities indexed by an initial prior will in general not be rectangular so 
that max-min preferences with this set of probabilities violate the Epstein and Schneider (2003)
dynamic consistency axiom. Nevertheless, think of a max-min utility decision maker who solves 
a date zero choice problem by minimizing over initial priors π0 ∈ 
0. Standard arguments that 
invoke the Minimax theorem to justify exchanging the order of maximization and minimization 
imply that the max-min utility worst-case model can be admissible and thus allow us to apply 
Good’s plausibility test.

We can create a rectangular set of probabilities by adding other probabilities to the family of 
probabilities associated with the set of martingales 	. To represent this rectangular set, let 
t

denote the associated set of date t posteriors and form the set:

	t =
⎧⎨⎩St =

n∑
j=1

π
j
t S

j
t , πt ∈ 
t

⎫⎬⎭ .

Think of constructing alternative processes S by selecting alternative St ∈ 	t . Notice that here 
we index conditional probabilities by a process of potential posteriors πt that no longer need 
be tied to a single prior π0 ∈ 
0. This means that more probabilities are entertained than were 
under the preceding robust Bayesian formulation that was based on a single worst-case time 0
prior π0 ∈ 
0. Now admissibility relative to the initial set of models does not necessarily follow 
because we have expanded the set of models to obtain rectangularity.

Thus, alternative sets of potential S processes generated by the set 	, on one hand, and the 
sets 	t , on the other hand, illustrate the tension between admissibility and dynamic consistency 
within the Gilboa and Schmeidler (1989) max-min utility framework.

5.1.2. Pools of models
Geweke and Amisano (2011) propose a procedure that averages predictions from a finite pool 

of models. Their suspicion that all models within the pool are misspecified motivates Geweke and 
Amisano to choose weights over models in the pool that improve forecasting performance. These 
weights are not posterior probabilities over models in the pool and may not converge to limits 
that “select” a single model from the pool, in contrast to what often happens when weights over 
models are Bayesian posterior probabilities. Waggoner and Zha (2012) extend this approach by 
explicitly modeling time variation in the weights according to a well behaved stochastic process.

In contrast to this approach, our decision maker expresses his specification concerns formally 
in terms of a set of structured models. An agnostic expression of the decision maker’s weighting 
over models can be represented in terms of the set
12
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	t =
⎧⎨⎩St =

n∑
j=1

π
j
t S

j
t , πt ∈ 


⎫⎬⎭ ,

where 
 is a time invariant set of possible model weights that can be taken to be the set of all 
potential nonnegative weights across models that sum to one. A decision problem can be posed 
that determines weights that vary over time in ways designed to manage concerns about model 
misspecification. To employ Good’s 1952 criterion, the decision maker must view a weighted 
average of models as a plausible specification.15

In the next subsection, we shall consider other ways to construct a set Mo of martingales that 
determine structured models that allow time variation in parameters.

5.2. Time-varying parameter models

Suppose that Sj
t is a time invariant function of the Markov state Xt for each j = 1, . . . , n. 

Linear combinations of Sj
t ’s generate the following set of time-invariant parameter models:⎧⎨⎩MS ∈ M : St =
n∑

j=1

θjS
j
t , θ ∈ � for all t � 0

⎫⎬⎭ . (11)

Here the unknown parameter vector is θ = [
θ1 θ2 ... θn

]′ ∈ �, a closed convex subset of 
Rn. We can include time-varying parameter models by changing (11) to:⎧⎨⎩MS ∈ M : St =

n∑
j=1

θ
j
t S

j
t , θt ∈ � for all t � 0

⎫⎬⎭ , (12)

where the time-varying parameter vector θt = [
θ1
t θ2

t ... θn
t

]′
has realizations confined to 

�, the same convex subset of Rn that appears in (11). The decision maker has an incentive to 
compute the mathematical expectation of θt conditional on date t information, which we denote 
θ̄t . Since the realizations of θt are restricted to be in �, conditional expectations θ̄t of θt also 
belong to �, so what now plays the role of 	 in (10) becomes

	t =
⎧⎨⎩St =

n∑
j=1

θ̄
j
t S

j
t , θ̄t ∈ �, θ̄t is Ft measurable

⎫⎬⎭ . (13)

5.3. Structured models restricted by relative entropy

We can construct a set of martingales Mo by imposing a constraint on entropy relative to a 
baseline model that restricts drift distortions as functions of the Markov state. This method has 
proved useful in applications.

Section 4 defined discounted relative entropy for a stochastic process generated by martingale 
MS as

15 For some of the examples of Waggoner and Zha that take the form of mixtures of rational expectations models, this 
requirement could be problematic because mixtures of rational expectations models are not rational expectations models.
13
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�(MS;1, δ|F0) = δ

2

∞∫
0

exp(−δt)E
(
MS

t |St |2
∣∣∣F0

)
dt � 0

where we have now explicitly noted the dependence of � on δ. We begin by studying a dis-
counted relative entropy measure for a martingale generated by St = η(Xt ).

We want the decision maker’s set of structured models to be rectangular in the sense that 
it satisfies an instant-by-instant constraint St ∈ 	t for all t � 0 in (10) for a collection of Ft -
measurable convex sets {	t : t � 0}. To construct such a rectangular set we can’t simply specify 
an upper bound on discounted relative entropy, �(MS; 1, δ | F0), or on its undiscounted coun-
terpart, and then find all drift distortion S processes for which relative entropy is less than or 
equal to this upper bound. Doing that would produce a family of probabilities that fails to sat-
isfy an instant-by-instant rectangularity constraint of the form (10) that we want. Furthermore, 
enlarging such a set to make it rectangular as Epstein and Schneider recommend would yield a 
set of probabilities that is much too large for max-min preferences, as we describe in detail in 
section 8.2. Therefore, we impose a more stringent restriction cast in terms of a refinement of 
relative entropy. It is a refinement in the sense that it excludes many of those other section 8.2
models that also satisfy the relative entropy constraint. We refine the constraint by also restricting 
the time derivative of the conditional expectation of relative entropy.16 We accomplish this by 
restricting the drift (i.e., the local mean) of relative entropy via a Feynman-Kac relation, as we 
now explain.

To explain how we refine the relative entropy constraint, we start by providing a functional 
equation for discounted relative entropy ρ as a function of the Markov state that involves an 
instantaneous counterpart A to a discrete-time one-period transition distribution for a Markov 
process in the form of an infinitesimal generator that describes how conditional expectations of 
the Markov state evolve locally. A generator A can be derived informally by differentiating a 
family of conditional expectation operators with respect to the gap of elapsed time. A stationary 
distribution Q for a continuous-time Markov process with generator A satisfies∫

AρdQ = 0. (14)

Restriction (14) follows from an application of the Law of Iterated Expectations to a small time 
increment.

For a diffusion like baseline model (1), the infinitesimal generator of transitions under the MS

probability associated with S = η(X) is the second-order differential operator Aη defined by

Aηρ = ∂ρ

∂x
· (μ̂ + ση) + 1

2
trace

(
σ ′ ∂2ρ

∂x∂x′ σ
)

, (15)

where the test function ρ resides in an appropriately defined domain of the generator Aη. Relative 
entropy is then δρ, where ρ solves a Feynman-Kac equation:

η · η
2

− δρ +Aηρ = 0 (16)

where the first term captures the instantaneous contribution to relative entropy and the second 
term captures discounting. It follows from (16) that

16 Restricting a derivative of a function at every instant is in general substantially more constraining than restricting the 
magnitude of a function itself.
14
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1

2

∫
η · ηdQη = δ

∫
ρdQη. (17)

Later we shall discuss a version of (16) as δ → 0.
Imposing an upper bound ρ on the function ρ would not produce a rectangular set of proba-

bilities. So instead we proceed by constraining ρ locally and, inspired by Feynman-Kac equation 
(16) to impose

η · η
2

� δρ −Aηρ (18)

for a prespecified function ρ that might be designed to represent alternative Markov models. By 
constraining the local evolution of relative entropy in this way we construct a rectangular set of 
alternative probability models. The “local” inequality (18) implies that

ρ(x) � ρ(x) for all x,

but the converse is not necessarily true, so (18) strengthens a constraint on relative entropy itself 
by bounding time derivatives of conditional expectations under alternative models.

Notice that (18) is quadratic in the function η and thus determines a sphere for each value of 

x. The state-dependent center of this sphere is −σ ′ ∂ρ
∂x

and the radius is δρ −A0ρ +
∣∣∣σ ′ ∂ρ

∂x

∣∣∣2. To 
construct the convex set for restricting St of interest to the decision maker, we fill this sphere:

	t =
{
s : |s|2

2
+ s ·

[
σ(Xt )

′ ∂ρ

∂x
(Xt )

]
� δρ(Xt ) −A0ρ(Xt )

}
. (19)

By using a candidate η that delivers relative entropy ρ, we can ensure that the set 	t is not empty.
To implement instant-by-instant constraint (19), we restrain what is essentially a time deriva-

tive of relative entropy.17 By bounding the time derivative of relative entropy, we strengthen the 
constraint on the set of structured models enough to make it rectangular.

5.3.1. Small discount rate limit
It is enlightening to study the subsection 5.3 way of creating a rectangular set of alternative 

models as δ → 0. We do this for two reasons. First, it helps us to assess statistical implications 
of our specification of ρ when δ is small. Second, it provides an alternative way to construct 	t

when δ = 0 that is of interest in its own right.
A small δ limiting version quantifies relative entropy as:

ε(MS) = lim
δ↓0

�(MS;1, δ | F0)

= lim
t→∞

1

2t

t∫
0

E
(
MS

τ |Sτ |2
∣∣∣F0

)
dτ, (20)

which equates the limit of an exponentially weighted average to the limit of an unweighted 
average. Evidently ε(MS) is the limit as t → +∞ of a process of mathematical expectations of 
time series averages

1

2t

t∫
0

|Sτ |2dτ

17 The logic here is very similar to that employed in deriving Feynman-Kac equations.
15
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under the probability measure implied by martingale MS .
Suppose again that MS is defined by drift distortion S = η(X) process, where X is an ergodic 

Markov process with transition probabilities that converge to a well-defined and unique stationary 
distribution Qη under the MS probability. In this case, we can compute relative entropy from

ε(MS) = 1

2

∫
|η|2dQη. (21)

In what follows, we parameterize relative entropy by q2

2 , where q measures the magnitude of the 
drift distortion using a mean-square norm.

To motivate an HJB equation, we start with a low frequency refinement of relative entropy. 
For St = η(Xt ), consider the log-likelihood-ratio process

Lt =
t∫

0

η(Xτ ) · dWτ − 1

2

t∫
0

η(Xτ ) · η(Xτ )dτ

=
t∫

0

η(Xτ ) · dWS
τ + 1

2

t∫
0

|η(Xτ )|2dτ. (22)

From (20), relative entropy is the long-horizon limiting average of the expectation of Lt under 
MS probability. To refine a characterization of its limiting behavior, we note that a log-likelihood 
process has an additive structure that admits the decomposition

Lt = q2

2
t + Dt + λ(X0) − λ(Xt ) (23)

where D is a martingale under the MS probability measure, so that

E

[(
MS

t+τ

MS
t

)
(Dt+τ − Dt) | Xt

]
= 0 for all t, τ � 0.

Decomposition (23) asserts that the log-likehood ratio process L has three components: a time 
trend, a martingale, and a third component described by a function ρ. See Hansen (2012, Sec. 3). 

The coefficient q2

2 on the trend term in decomposition (23) is relative entropy, an outcome that 
could be anticipated from the definition of relative entropy as a long-run average. Subtracting the 
time trend and taking date zero conditional expectations under the probability measure induced 
by MS gives

lim
t→∞

[
E
(
MS

t Lt |X0 = x
)

− q2

2
t

]
= lim

t→∞E
(
MS

t [Dt − λ(Xt)] | X0 = x
)

+ λ(x)

=λ(x) −
∫

λdQη,

a valid limit because X is stochastically stable under the S implied probability. Thus, λ −∫
λdQη

provides a long-horizon first-order refinement of relative entropy.
Using the two representations (22) and (23) of the log-likelihood ratio process L, we can 

equate corresponding derivatives of conditional expectations under the MS probability measure 
to get
16
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q2

2
−Aηλ = 1

2
η · η.

Rearranging this equation, gives:

1

2
η · η − q2

2
+Aηλ = 0, (24)

which can be recognized as a limiting version of Fynman-Kac equation (16), where

q2

2
= lim

δ↓0
δρ(x),

and the function ρ depends implicitly on δ. The need to scale ρ by δ is no surprise in light of 
formula (17). Evidently, state dependence of δρ vanishes in a small δ limit. Netting out this “level 
term” gives

λ −
∫

λdQη = lim
δ↓0

(
ρ −

∫
ρdQη

)
.

In fact, the limiting Feynman-Kac equation (24) determines λ only up to a translation because the 
Feynman-Kac equation depends only on first and second derivatives of λ. Thus, we can use this 
equation to solve for a pair (λ, q) in which λ is determined only up to translation by a constant. 

By integrating (24) with respect to Qη and substituting from equation (14), we can verify that q2

2
is relative entropy.18

Proceeding much as we did when we were discounting, we can use (λ,q) to restrict η by 
constructing the sequence of Ft -measurable convex sets

	t =
{

s : |s|2
2

+ s ·
[
σ(Xt )

′ ∂λ

∂x
(Xt )

]
� q2

2
−A0λ(Xt )

}
.

Remark 5.1. We could instead have imposed the restriction

|St |2
2

� q2

2
that would also impose a quadratic refinement of relative entropy that is tractable to implement. 
However, for some interesting examples that are motivated by unknown coefficients, St ’s are not 
bounded independently of the Markov state.

Remark 5.2. As another alternative, we could impose a state-dependent restriction

|St |2
2

� |η(Xt )|2
2

where η(Xt ) is constructed with a particular model in mind, perhaps motivated by uncertain 
parameters. While this approach would be tractable and could have interesting applications, its 
connection to relative entropy is less evident. For instance, even if this restriction is satisfied, 
the relative entropy of the S model could exceed that of the {η(Xt) : t � 0} model because the 
appropriate relative entropies are computed by taking expectations under different probability 
specifications.

18 This approach to computing relative entropy has direct extensions to Markov jump processes and mixed jump diffu-
sion processes.
17
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In summary, we have shown how to use a refinement of relative entropy to construct a family 
of structured models. By constraining the local evolution of an entropy-bounding function ρ, 
when the decision maker wants to discount the future, or a small discount rate limit captured 
by the pair (λ, q2/2), we restrict a set of structured models to be rectangular. If we had instead 
specified only ρ and relative entropy q2/2 and not the function implied evolution ρ or λ too, the 
set of models would cease to be rectangular, as we discuss in detail in subsections 8.1 and 8.2.

If we were modeling a decision maker who is interested only in a set of models defined by 
(10), we could stop here and use a dynamic version of the max-min preferences of Gilboa and 
Schmeidler (1989). That way of proceeding is worth pursuing in its own right and could lead to 
interesting applications. But because he distrusts all of those models, the decision maker who is 
the subject of this paper also wants to investigate the utility consequences of models not in the set 
defined by (10). This will lead us to an approach in section 6 that uses a continuous-time version 
of the variational preferences that extend max-min preferences. Before doing that, we describe 
an example of a set of structured models that naturally occur in an application of interest to us.

5.4. Illustration

In this subsection, we offer an example of a set Mo for structured models that can be con-
structed by the approach of subsection 5.3. We start with a baseline parametric model for a 
representative investor’s consumption process Y , then form a family of parametric structured 
probability models. We deduce the pertinent version of the second-order differential equation 
(16) to be solved for ρ. The baseline model for consumption is

dYt = .01
(̂
αy + β̂yZt

)
dt + .01σy · dWt

dZt = (̂
αz − β̂zZt

)
dt + σz · dWt . (25)

We scale by .01 because we want to work with growth rates and Y is typically expressed in 
logarithms. The mean of Z in the implied stationary distribution is z̄ = α̂z/β̂z.

Let

X =
[
Y

Z

]
.

The decision maker focuses on the following collection of alternative structured parametric mod-
els:

dYt = .01
(
αy + βyZt

)
dt + .01σy · dWS

t

dZt = (αz − βzZt ) dt + σz · dWS
t , (26)

where WS is a Brownian motion and (6) continues to describe the relationship between the 
processes W and WS . Collection (26) nests the baseline model (25). Here (αy, βy, αz, βz) are 
parameters that distinguish structured models (26) from the baseline model, and (σy, σz) are 
parameters common to models (25) and (26).

We represent members of the parametric class defined by (26) in terms of our section 3.1
structure with drift distortions S of the form

St = η(Xt ) = ηo(Zt ) ≡ η0 + η1(Zt − z̄),

then use (1), (6), and (26) to deduce the following restrictions on η1:
18
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ση1 =
[
βy − β̂y

β̂z − βz

]
(27)

where

σ =
[
(σy)

′
(σz)

′
]

.

Given an η that satisfies these restrictions, we compute a function ρ that is quadratic and 

depend only on z so that ρ(x) = ρo(z). Relative entropy q2

2 emerges as part of the solution to the 
following relevant instance of differential equation (16):

|ηo(z)|2
2

+ dρo

dz
(z)[β̂z(z̄ − z) + σz · η(z)] + |σz|2

2

d2ρo

dz2 (z) − q2

2
= 0.

Under parametric alternatives (26), the solution for ρ is quadratic in z − z̄. Write:

ρo(z) = ρ1(z − z̄) + 1

2
ρ2(z − z̄)2.

As described in Appendix A, we compute ρ1 and ρ2 by matching coefficients on terms (z − z̄)

and (z − z̄)2, respectively. Matching constant terms then pins down q2

2 . To restrict the structured 
models, we impose:

|St |2
2

+ [ρ1 + ρ2(Zt − z̄)]σz · St � |σz|2
2

ρ2 − q2

2
− [ρ1 + ρ2(Zt − z̄)] β̂z(z̄ − Zt)

Fig. 1 portrays an example in which ρ1 = 0 and ρ2 satisfies:

ρ2 = q2

|σz|2 .

When St = η(Zt ) is restricted to be η1(Zt − z̄), a given value of q imposes a restriction on η1
and, through equation (27), implicitly on (βy, βz). Fig. 1 plots the q = .05 iso-entropy contour as 
the boundary of a convex set for (βy, βz).19

While Fig. 1 displays contours of time-invariant parameters with the same relative entropies 
as the boundary of convex region, our restriction allows parameters (βy, βz) to vary over time 
provided that they remain within the plotted region. Indeed, we use (10) as a convenient way to 
build a set of structured models. While we motivated this construction as one with time varying 
parameters that lack probabilistic descriptions of how parameters vary, we may alternatively 
view the set of structured models as inclusive of a restricted set of nonlinear specifications of the 
conditional mean dynamics.

If we were to stop here and endow a max-min decision maker with the set of probabilities 
determined by the set of martingales Mo, we could study max-min preferences associated with 

19 This figure was constructed using the parameter values:

α̂y = .484 β̂y = 1
α̂z = 0 β̂z = .014

(σy)′ = [
.477 0

]
(σz)

′ = [
.011 .025

]
taken from Hansen and Sargent (2020).
19
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Fig. 1. Parameter contours for (βy , βz) holding relative entropy and σz fixed. The outer curve depicts q = .1 and the 
inner curve q = .05. The small diamond depicts the baseline model.

this set of probabilities. Restriction (10) on the set of Mo martingales guarantees that the set of 
probabilities is rectangular and that therefore these preferences satisfy the dynamic consistency 
axiom of Epstein and Schneider (2003) that justifies dynamic programming. However, as we em-
phasize in section 6, our decision maker expands the set of models because he wants to evaluate 
outcomes under probability models inside relative entropy neighborhoods of structured models. 
This expanded set is not rectangular and for reasons stated formally in subsection 8.2 can’t be 
made rectangular by following Epstein and Schneider’s expansion procedure and still yield a set 
of models that will interest a decision maker who like ours wants to apply Good’s plausibility 
criterion. But our decision maker wants decisions that are robust to misspecifications that reside 
within a vast collection of unstructured models that fit nearly as well as the structured models 
in Mo. That motivates us to include unstructured models while using a penalty to limit their 
entropies relative to the family of structured models in Mo. Before describing how we do this in 
section 6, we briefly describe approaches suggested by other authors.

5.5. Other approaches

In our example so far, we have assumed that the structured model probabilities can be repre-
sented as martingales with respect to a baseline model. A different approach, invented by Peng 
(2004), uses a theory of backward stochastic differential equations under a notion of ambiguity 
that is rich enough to allow for uncertainty about conditional volatilities of Brownian incre-
ments.20 Because alternative probability specifications fail to be absolutely continuous (over 
finite time intervals), standard likelihood ratio analysis does not apply. This approach would 
push us outside the Chen and Epstein (2002) formulation but would still let us construct a rectan-

20 See Chen et al. (2005) for a further discussion of Peng’s characterizations of a class of nonlinear expectations to 
Choquet integration used in decision theory in both economics and statistics.
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gular embedding that we could use to construct structured models. Epstein and Ji (2014) applied 
the Peng approach to asset pricing.

6. Including unstructured alternatives

In section 5.1, we described how the decision maker forms a set Mo of structured models that 
are parametric alternatives to the baseline model. To represent the unstructured models that also 
concern the decision maker, we proceed as follows. After constructing Mo, for scalar ξ > 0, we 
define a scaled discrepancy of martingale MU from a set of martingales Mo as

�(MU |F0) = ξ inf
MS∈Mo

�
(
MU ;MS |F0

)
= ξδ

2

∞∫
0

exp(−δt)E
[
MU

t γt (Ut )

∣∣∣F0

]
dt, (28)

where

γt (Ut ) = inf
St∈	t

|Ut − St |2. (29)

Scaled discrepancy �(MU |F0) equals zero for MU in Mo and is positive for MU not in Mo. 
We use discrepancy �(MU |F0) to define a set of unstructured models near Mo whose utility 
consequences a decision maker wants to know. When we pose a max-min decision problem, 
we use the scaling parameter ξ to measure how the expected utility minimizer is penalized for 
choosing unstructured models that are statistically farther from the structured models in Mo.

The decision maker doesn’t stop with the set of structured models generated by martingales 
in Mo because he wants to evaluate the utility consequences not just of the structured models in 
Mo but also of unstructured models that statistically are difficult to distinguish from them. For 
that purpose, he employs the scaled statistical discrepancy measure �(MU |F0) defined in (28).21

7. Recursive representation of preferences

The decision maker uses relative entropy implied by the scaling parameter ξ to restrain statis-
tical discrepancies between unstructured models and the set of structured models. In particular, 
the decision maker solves a minimization problem in which ξ serves as a penalty parameter that 
effectively excludes unstructured probabilities that are statistically too far from the set Mo of 
structured models. That minimization problem induces a special case of the dynamic variational 
preference ordering that Maccheroni et al. (2006b) showed is dynamically consistent.

7.1. Continuation values

The decision maker ranks alternative consumption plans with a scalar continuation value 
stochastic process. Date t continuation values reveal a decision maker’s date t ranking. Continua-
tion value processes have a recursive structure that makes preferences be dynamically consistent. 
Thus, for Markovian plans, a Hamilton-Jacobi-Bellman (HJB) equation restricts the evolution 

21 Watson and Holmes (2016) and Hansen and Marinacci (2016) discuss misspecification challenges confronted by 
statisticians and economists.
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of continuation values. In particular, for a consumption plan {Ct}, a continuation value process 
{Vt }∞t=0 is defined by

Vt = min{Uτ :t�τ<∞}E

⎛⎝ ∞∫
0

exp(−δτ)

(
MU

t+τ

MU
t

)[
ψ(Ct+τ ) +

(
ξδ

2

)
γt+τ (Ut+τ )

]
dτ | Ft

⎞⎠
(30)

where ψ is an instantaneous utility function. We can use (30) to derive an inequality that de-
scribes a sense in which a minimizing process {Uτ : t � τ < ∞} isolates a statistical model that 
is robust. After deriving and discussing this inequality and the associated robustness bound, we 
shall use (30) to provide a recursive representation of preferences.

Turning to the derived bound, we proceed by applying an inequality familiar from optimiza-
tion problems subject to penalties. Let Uo be the minimizer for problem (30) and let So = S(Uo)

be the minimizing S implied by equation (29). The process affiliated with the pair (Uo, So) gives 
a lower bound on discounted expected utility that can be represented in the following way.

Bound 7.1. If (U, S) satisfies:

δ

2
E

⎛⎝ ∞∫
0

exp(−δτ)

(
MU

t+τ

MU
t

)
|St+τ − Ut+τ |2dτ | Ft

⎞⎠
� δ

2
E

⎛⎝ ∞∫
0

exp(−δτ)

(
MUo

t+τ

MUo

t

)
|So

t+τ − Uo
t+τ |2dτ | Ft

⎞⎠ (31)

then

E

⎛⎝ ∞∫
0

exp(−δτ)

(
MU

t+τ

MU
t

)
ψ(Ct+τ )dτ | Ft

⎞⎠
� E

⎛⎝ ∞∫
0

exp(−δτ)

(
MUo

t+τ

MUo

t

)
ψ(Ct+τ )dτ | Ft

⎞⎠ (32)

for all t � 0.

Inequality (32) is a direct implication of minimization problem (30). It gives probability spec-
ifications that have date t discounted expected utilities that are at least as large as the one 
parameterized by Uo. The structured models all satisfy this bound; so do unstructured mod-
els that are statistically close to them as measured by the date t conditional counterpart to our 
discrepancy measure.

Turning next to a recursive representation of preferences, note that equation (30) implies that

Vt = min{Uτ :t�τ<t+ε}

⎧⎨⎩E

⎡⎣ ε∫
0

exp(−δτ)

(
MU

t+τ

MU
t

)[
ψ(Ct+τ ) +

(
ξδ

2

)
γt+τ (Ut+τ )

]
dτ | Ft

⎤⎦
+ exp(−δε)E

[(
MU

t+ε

MU
t

)
Vt+ε | Ft

]}
(33)
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for ε > 0. Heuristically, we can “differentiate” the right-hand side of (33) with respect to ε
to obtain an instantaneous counterpart to a Bellman equation. Viewing the continuation value 
process {Vt } as an Ito process, write:

dVt = νtdt + ςt · dWt .

A local counterpart to (33) is then

0 = min
Ut

[
ψ(Ct) − ξδ

2
γt (Ut ) − δVt + Ut · ςt + νt

]
= min

St∈	t

min
Ut

[
ψ(Ct) + ξδ

2
|Ut − St |2 − δVt + Ut · ςt + νt

]
= min

St∈	t

[
ψ(Ct) − 1

2ξδ
ςt · ςt − δVt + St · ςt + νt

]
(34)

where the minimizing Ut expressed as a function of St satisfies

Ut = St − 1

δξ
ςt

The term Ut · ςt on the right side of (34) comes from an Ito adjustment to the local covariance 

between dMU
t

MU
t

and dVt . Equivalently, Ut ·ςt is an adjustment to the drift νt of dVt that is induced 

by using martingale MU to change the probability measure. For a continuous-time Markov de-
cision problem, (34) gives rise to an HJB equation for a corresponding value function expressed 
as a function of a Markov state.

Remark 7.2. With preferences described by (34), we can still discuss admissibility relative to 
a set of structured models using the representation on the third line of (34). Recall that the S
process parameterizes a structured model. For a given decision process C, solve

0 = ψ(Ct) − 1

2ξδ
ς̃t · ς̃t − δṼt + St · ς̃t + ν̃t

where

dṼ = ν̃t dt + ς̃t · dWt .

Solving this equation backwards for alternative C processes gives a ranking of them for a given 
S probability. By posing a Markov decision problem, we can study admissibility by applying 
a Minimax theorem along with a Bellman-Isaacs condition for a dynamic two-person game. 
See, for instance, Fleming and Souganidis (1989). If we can exchange orders of maximization 
and minimization, then the implied worst-case structured model process S∗ can be used in the 
fashion recommended by Good (1952) in the quote with which we began this paper.

By extending Bound 7.1, the implied adjustment U∗ for misspecification of the structured 
models is also enlightening. Specifically, we can use (U∗, S∗) in place of (Uo, So) in inequality 
(31) and conclude that a counterpart to inequality (32) holds in which we maximize both the right 
and left sides by choice of a C plan subject to the constraints imposed on the decision problem. 
Thus, the entropy of U∗ relative to S∗ tells us over what probabilities we can bound discounted 
expected utilities.
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Remark 7.3. It is useful to compare roles of the baseline model here and in the robust deci-
sion model based on the multiplier preferences of Hansen and Sargent (2001) and Hansen et al. 
(2006), another continuous time version of variational preferences.22 Their baseline model is a 
unique structured model, distrust of which motivates a decision maker to compute a worst-case 
unstructured model to guide evaluations and decisions. In the present paper, the baseline model 
is just one of a set of structured models that the decision maker maintains. The baseline model 
here merely anchors specifications of other members of the set of structured models. The de-
cision maker in this paper distrusts all models in the set of structured models associated with 
martingales in Mo.

8. Relative entropy versus rectangularity

This section is dedicated to showing how using relative entropy (without our refinement) to 
constrain a set of alternative models can result in an extremely large rectangular embedding that 
contains very implausible models. Subsection 8.1 uses a simple two-period model to display the 
basic idea while section 8.2 employs the continuous-time Brownian information structure that 
we use throughout the rest of this paper.

8.1. Anything goes: take 1

In this subsection, time takes values 0, 1, 2. At time t = 2, one of J states can be realized that 
we denote j = 1, ..., J . We represent information available at date t = 1 by a size I � J partition 
�i, i = 1, 2, ..., I of the collection of the J states. Every state j is contained in exactly one �i .

Let π̂i > 0 denote the baseline probability of �i , and let π̂i P̂i,j > 0 denote the baseline prob-
ability assigned to j in �i . Thus, P̂i,j is the baseline conditional probability of state j given 
partition i. Similarly, we use πiPi,j to represent alternative probabilities assigned to �i . From 
the point of view of time 0, the entropy of an alternative probability relative to the baseline 
probability is

ε0
.=

I∑
i=1

∑
j∈�i

πiPi,j

(
logPi,j + logπi − log P̂i,j − log π̂i

)

=
I∑

i=1

πi

(
ε1,i + logπi − log π̂i

)
, (35)

where

ε1,i =
∑
j∈�i

Pi,j

(
logPi,j − log P̂i,j

)
.

22 Our way of formulating preferences differs from how equation (17) of Maccheroni et al. (2006b) describes Hansen 
and Sargent (2001) and Hansen et al. (2006)’s “multiplier preferences”. The disparity reflects what we regard as a minor 
blemish in Maccheroni et al. (2006b). The term ξδ

2 γt in our analysis is γt in Maccheroni et al. (2006b) and our equation 
(34) is a continuous time counterpart to equation (12) in their paper. In Hansen and Sargent (2001) and Hansen et al. 
(2006), γt = |Ut |2 as we define γt . We point out this minor error here only because the analysis in the present paper 
generalizes our earlier work by now measuring discrepancy from a non-singleton set Mo of structured models rather 
than from a single structured model.
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Expression (35) represents joint entropy ε0 in terms of a sum of an expected value of “con-
tinuation conditional relative entropies” ε1,i of the time t = 2 possible outcomes and the uncon-
ditional relative entropy 

∑I
i=1 πi(logπi − log π̂i ) of the marginal distribution of the time t = 1. 

This is an example of what is sometimes called a “chain rule of relative entropy.”
To relate this structure to positive martingales with mathematical expectations equal to 1 that 

are used throughout this paper, let M2 denote a random variable that is equal to the probability 
ratio πiPij

π̂i P̂ij
in state j and let M1 equal the probability ratio πi

π̂i
when j ∈ �i . It can be verified 

under the baseline probability that the expectation M2 equals M1 conditional on information at 
t = 1 and that the unconditional mathematical expectation of M1 equals 1. Written in terms of 
M2 and M1, time 0 entropy is

ε0 = E
[
M2 (logM2 − logM1)

]+ E (M1 logM1)

= E
[
M1 (ε1 + logM1)

]
(36)

where

ε1 = E

[(
M2

M1

)
(logM2 − logM1) | F1

]
and F1 denotes the date one sigma algebra constructed from the partition. Versions of formula 
(36) that are cast in terms of a mean 1 positive martingale {Mt } extend to more general probability 
specifications and to more time periods. In later sections of this paper, we use a continuous-time 
limiting version of formula (36) that we modify to incorporate discounting the future at a fixed 
discount rate.

We now show that a rectangular embedding of the baseline model imposes extremely weak 
restrictions on the continuation entropies ε1,i . Represent relative entropy ε0 as

ε0 = H(π, ε1) =
I∑

i=1

πi

(
ε1,i + logπi − log π̂i

)
. (37)

We use the H notation to make explicit the dependence of ε0 on the vector π of probabilities 
and the vector ε1 date t = 1 continuation entropies. We impose the following restriction on date 
0 entropy

H(π, ε1) � ε̄ (38)

where ε̄ > 0. Inequality (38) is an ex ante constraint that jointly restricts (π, ε1) as determinants 
of time 0 relative entropy.

We want a set of probabilities surrounding the baseline probability that is rectangular in 
the sense of Epstein and Schneider (2003), i.e., we want a “rectangular embedding of a set of 
probabilities that is not rectangular.” To construct a rectangular embedding, we shall seek the 
weakest restriction that (37) and (38) impose on ε1,� for a given � as we search over alternative 
vectors π of probabilities and vectors ε1 of continuation entropies.

We prove the following result in Appendix B

Claim 8.1. The rectangular embedding is described by:

ε1,� � sup
0<π��1

ε̄ − (1 − π�)
[
log(1 − π�) − log(1 − π̂�)

]− π�

(
logπ� − log π̂�

)
π�

, (39)

for � = 1, 2, ...I .
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Fig. 2. Entropy bounds implied by a rectangular embedding as described by the right-hand side of inequality (39) as 
a function of π� for two cases. The maxima equal the induced bounds on continuation entropies. When η = 0.05, the 
threshold is π̃ = 0.049. The left panel imposes π̂� = 0.1, and the right panel assumes π̂� = 0.025. Vertical lines depict 
π� = π̂�.

Sometimes the right-hand side of (39) can be made arbitrarily large by letting π� decrease to 
zero. To discover when, note that

lim
π�↓0

π�(logπ� − log π̂�) = 0

lim
π�↓0

(1 − π�)
[
log (1 − π�) − log

(
1 − π̂�

)]= − log
(
1 − π̂�

)
Therefore, as π� → 0 the numerator of the right-hand side of inequality (39) approaches

ε̄ + log
(
1 − π̂�

)
It is convenient to construct the threshold

π̃
.= 1 − exp (−ε̄)

that satisfies

ε̄ + log (1 − π̃) = 0.

If π̂� < π̃ , the numerator of the right side of inequality (39) remains strictly positive as π� con-
verges to zero. But the denominator of the right side of inequality (39) converges to zero as π�

converges to zero, implying that the ratio diverges to plus infinity.

Corollary 8.2. If π̂� < π̃ , then the rectangular embedding does not restrict ε�. Furthermore, if 
π̂� < π̃ for all �, the rectangular embedding does not restrict any ε1,�.

Fig. 2 plots the right-hand side of inequality (39) as a function of π� for two cases, one in 
which π̂� > π̃ and a second in which π̂� < π̃ . In the first large π̂� case, an interior maximum 
occurs to the left of π̂ . In the second small π̂� case, the function is unbounded as π� tends 
to zero. In the second low-baseline-probability case, by adopting a rectangular embedding, we 
relax – indeed we completely eliminate – an upper bound on each continuation entropy ε1,�.

Although we do not prove it here, Corollary 8.2 suggests an analogue for a continuous baseline 
probability distribution for which a counterpart to the π̂� < π̃ would automatically be satisfied.
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8.2. Anything goes: take 2

In this subsection, we show that if a decision maker starts with a set of unstructured models 
constrained by relative entropy to be close to the set of structured models, enlarging that set to 
make it rectangular results in the set of all unstructured models that are absolutely continuous to 
a structured model over finite intervals. Most of those are statistically very implausible and not 
ones that the decision maker is concerned about.

Our decision maker starts with a set of structured probability models that we have constructed 
to be rectangular in the sense of Epstein and Schneider. But our decision maker’s suspicion that 
all of these structured models are misspecified motivates him to explore the utility consequences 
of a larger set that includes unstructured probability models. This larger set is not rectangular, 
even though as measured by relative entropy, all of the unstructured models are statistically close 
to models in the rectangular set formed by the structured models.

An alternative to formulating the decision maker’s problems with the dynamic variational 
preferences of Maccheroni et al. (2006b) would have been first to construct a set that includes 
relative entropy neighborhoods of all martingales in Mo. For instance, for ε > 0, � given by 
(28), and ξ = 1, we could have started with a set

M =
{
MU ∈ M : �(MU |F0) < ε

}
. (40)

The set of implied probabilities is not rectangular. At this point, why not follow Epstein and 
Schneider’s (2003) recommendation and add just enough martingales to attain a rectangular set 
of probability measures? A compelling practical reason not to do so is that doing so would 
include all martingales in M defined in Definition 3.1 – implying a set much too large for an 
interesting max-min decision analysis.

To show this, it suffices to look at relative entropy neighborhoods of the baseline model.23 To 
construct a rectangular set of models that includes the baseline model, for a fixed date τ , consider 
a random vector Uτ that is observable at τ and that satisfies

E
(
|Uτ |2 | F0

)
< ∞.

Form a stochastic process

Uh
t =

⎧⎨⎩
0, 0 � t < τ

Uτ , τ � t < τ + h

0, t � τ + h.

The martingale MUh
associated with Uh equals one both before time τ , and MUh

t /MUh

h+τ equals 
one after time h + τ . Compute relative entropy:

�(MUh |F0) =
(

1

2

) τ+h∫
τ

exp(−δt)E
[
MUh

t |Uτ |2dt

∣∣∣F0

]
dt

=
[

1 − exp(−δh)

2δ

]
exp(−δτ)E

(
|Uτ |2 | F0

)
.

23 Including additional structured models would only make the set of martingales larger.
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Evidently, relative entropy �(MUh |F0) can be made arbitrarily small by shrinking h to zero. 
This means that any rectangular set that contains M must allow for a drift distortion Uτ at date 
τ . This argument implies the following proposition:

Proposition 8.3. Any rectangular set of probabilities that contains the probabilities induced by 
martingales in M must also contain the probabilities induced by any martingale in M.

This rectangular set of martingales allows too much freedom in setting date τ and random 
vector Uτ : all martingales in the set M isolated in Definition 3.1 are included in the smallest 
rectangular set that embeds the set described by (40). That set is too big to pose a max-min 
problem for a decision maker who wants to apply the plausibility check recommended by Good 
(1952).

9. Conclusion

While important aspects of our analysis apply in more general settings, we have added 
inessential auxiliary assumptions that we find enlightening and that set the stage for concrete 
applications. Extensions of the framework presented here would relax the Brownian informa-
tion structure and would not use relative entropy to constrain a family of structured models. Our 
continuous-time formulation (34) exploits mathematically convenient properties of a Brownian 
information structure. A discrete-time version starts from a baseline model cast in terms of a non-
linear stochastic difference equation. Counterparts to structured and unstructured models play the 
same roles that they do in the continuous time formulation described in this paper. In the discrete 
time formulation, preference orderings defined in terms of recursions on continuation values are 
dynamically consistent.

In both continuous time and discrete time settings, there are compelling reasons for a decision 
maker to think that a rectangular set of structured probability models does not describe the set 
of probabilities that concerns him. The set of structured models is too small because it excludes 
interesting statistically nearby unstructured models. But a rectangular embedding of unstructured 
probabilities of concern to the decision maker models is too large because it includes models that 
are statistically very implausible in the sense of Good (1952). Therefore, the decision maker uses 
the framework of the present paper to include concerns about unstructured models that satisfy 
a penalty on entropy relative to the set of structured models, the same type of statistical neigh-
borhood routinely applied to construct probability approximations in computational information 
geometry.24

A purpose of this paper is to provide a framework for analyzing the consequences of long-
term variations in macroeconomic growth coming from rates of technological progress, climate 
change, and demographics that concern private and public decision makers in situations that 
naturally involve both ambiguity and misspecification fears as we have formalized those concepts 
here.

While we do not explore the issue here, we suspect that the tension between admissibility and 
dynamic consistency described in this paper is also present in other approaches to ambiguity and 
misspecification, including ones proposed by Hansen and Sargent (2007) and Hansen and Miao 
(2018).

24 See Amari (2016) and Nielsen (2014).
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Appendix A. Computing relative entropy

We show how to compute relative entropies for parametric models of the form (26). Recall 

that relative entropy q2

2 emerges as part of the solution to the second-order differential equation 
(16) appropriately specialized to become:

|ηo(z)|2
2

+ dρo

dz
(z)[−β̂z(z − z̄) + σz · η(z)] + |σz|2

2

d2ρ0

dz2 (z) − q2

2
= 0,

where z̄ = α̂z

β̂z
and

ηo(z) = η0 + η1(z − z̄).

Under our parametric alternatives, the solution for ρo is quadratic in z − z̄:

ρo(z) = ρ1(z − z̄) + 1

2
ρ2(z − z̄)2.

Compute ρ2 by targeting only terms that involve (z − z̄)2:

η1 · η1

2
+ ρ2

[−β̂z + σz · η1
]= 0.

Thus,

ρ2 = η1 · η1

2
(
β̂z − σz · η1

) .
Given ρ2, compute ρ1 by targeting only the terms in (z − z̄):

η0 · η1 + ρ2 (σz · η0) + ρ1
(−β̂z + σz · η1

)= 0.

Thus,

ρ1 = η0 · η1

β̂z − σz · η1
+ (η1 · η1) (σz · η0)

2
(
β̂z − σz · η1

)2 .

Finally, calculate q by targeting the remaining constant terms:

η0 · η0

2
+ ρ1 (σz · η0) + ρ2

|σz|2
2

− q2

2
= 0.

Thus,25

q2

2
= η0 · η0

2
+ η0 · η1 (σz · η0)

β̂z − σz · η1
+ η1 · η1 (σz · η0)

2

2
(
β̂z − σz · η1

)2 + η1 · η1|σz|2
4
(
β̂z − σz · η1

) .
25 We could also have derived this same formula by computing the expectation of |̃η(Zt )|2

2 under the perturbed distribu-
tion.
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Appendix B. Proof of Claim 8.1

Proof. We begin by deducing a bound under the restriction π = π̂ , so that there are no distortions 
of time t = 1 probabilities. To obtain the weakest bound under this restriction, we set ε1,i = 0 for 
all i except for state �. Then

H(π̂ , ε1) = π̂�ε1,�

and constraint (38) implies that

ε1,� � ε̄

π̂�

. (B.1)

Repeating this calculation for each � = 1, ..., I gives us a restricted set of continuation entropies 
ε1 and is an example of a “rectangular restriction” on the date t = 2 conditional probabilities 
expressed in terms continuation entropies. Suppose that we now set each of these continuation 
entropies at its upper bound. Then entropy ε0 is

I∑
�=1

π̂�ε1,� = ε̄I,

verifying that we have substantially expanded the set of admissible continuation entropies. For 
a fixed ε̄, constraint (B.1) for each � becomes weaker and weaker as we reduce probability π�

assigned to partition component ��.
We can loosen restriction (B.1) further by allowing πi 	= π̂i and in particular by setting 

π� < π̂�. It is convenient to proceed in two steps. First, for a given (ε1,�, π�), minimize H(π, ε1)

by choosing (ε1,i , πi) for i 	= �. Evidently, the minimizers are ε1,i = 0 for i 	= �. It is straightfor-
ward to show that the minimizing πi’s are proportional to the corresponding π̂i’s and hence that 
for i 	= �,

πi = (1 − π�)π̂i

1 − π̂�

.

Notice that the proportionality coefficients 1−π�

1−π̂�
guarantee that the altered probabilities sum to 1:

I∑
i=1

πi = π� + (1 − π�) = 1.

Imposing these minimizing choices gives

H∗(π, ε1,�) =
I∑

i=1

πi

(
ε1,i + logπi − log π̂i

)
= π�(ε1,� + logπ� − log π̂�) +

(
1 − π�

1 − π̂�

)[
log(1 − π�) − log(1 − π̂�)

]∑
i 	=�

π̂i

= π�(ε1,� + logπ� − log π̂�) + (1 − π�)
[
log(1 − π�) − log(1 − π̂�)

]
At these minimizing choices, entropy constraint (36) becomes

π�ε1,� + π�(logπ� − log π̂�) + (1 − π�)
[
log(1 − π�) − log(1 − π̂�)

]
� ε̄. �
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Hansen, Lars Peter, Szőke, Bálint, Han, Lloyd S., Sargent, Thomas J., 2020. Twisted probabilities, uncertainty, and prices. 

J. Econom. 216, 151–174.
James, Matthew R., 1992. Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games. Math. 

Control Signals Syst. 5 (4), 401–417.
Klibanoff, Peter, Marinacci, Massimo, Mukerji, Sujoy, 2009. Recursive smooth ambiguity preferences. J. Econ. The-

ory 144 (3), 930–976.
Maccheroni, Fabio, Marinacci, Massimo, Rustichini, Aldo, 2006a. Ambiguity aversion, robustness, and the variational 

representation of preferences. Econometrica 74 (6), 1447–1498.
Maccheroni, Fabio, Marinacci, Massimo, Rustichini, Aldo, 2006b. Dynamic variational preferences. J. Econ. Theory 128 

(1), 4–44.
Nielsen, Frank, 2014. Geometric Theory of Information. Springer, Heidelberg and New York.
31

http://refhub.elsevier.com/S0022-0531(20)30158-7/bibC2E0DB767AACF3D9B05C7EB84EF1953Fs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibF7C9696BD5D5D9D0E697ABA6D704DA28s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibF7C9696BD5D5D9D0E697ABA6D704DA28s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib66E2E316BD40A8166291DB1481F39FA8s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib66E2E316BD40A8166291DB1481F39FA8s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib0F7B7266023D23DA700229204058820As1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib0F7B7266023D23DA700229204058820As1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib687BA9B80F1D248C4A37F86269AC7E65s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib687BA9B80F1D248C4A37F86269AC7E65s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib3601AB1FB0CD727B09B7F3C6C8A415E3s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib3601AB1FB0CD727B09B7F3C6C8A415E3s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib0B99A07418EDD7C981621C947770588Cs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib0B99A07418EDD7C981621C947770588Cs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib23B745026F6BA829B558C7C269881574s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib50BD8C21BFAFA6E4E962F6A948B1EF92s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib50BD8C21BFAFA6E4E962F6A948B1EF92s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibA2AA044E6A02EC1546FBB88A1AA1CAF9s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibA2AA044E6A02EC1546FBB88A1AA1CAF9s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib50271BF2D45279CD58FA4021B2F0879Fs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib8375B0FC8562E183F161E3DAC718B53Es1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibACE930D56158927693FC6C3F7A6E4CFDs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib283177A9E431146335D346620E6FA961s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib15BB682176D9413A532FA3C03F29AE41s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib3D8F9EFF1792A94F8FB41719CF777C03s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibEF38EB3AD1ACB9379EF98A1072536518s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibEF38EB3AD1ACB9379EF98A1072536518s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibA50A005DFB399504B0E43AD4672A68F2s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibA50A005DFB399504B0E43AD4672A68F2s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib8260EC8ECD9878CE09D3029325DB3DD8s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib8260EC8ECD9878CE09D3029325DB3DD8s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib43DB946877C62D305E157740EA0C473Cs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib43DB946877C62D305E157740EA0C473Cs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibD7556DB85A600375DF3332C96ABDD25Ds1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib6CA6D0E953071E7B71D60C6459CFC63Bs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib6CA6D0E953071E7B71D60C6459CFC63Bs1
https://doi.org/10.1016/j.jeconom.2019.11.010
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibABB87A75FED1E4862EEF7DC8450029EBs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibABB87A75FED1E4862EEF7DC8450029EBs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibFFC0CAFE39E08664A4FB4272471C59D5s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibFFC0CAFE39E08664A4FB4272471C59D5s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibCB366E08DC0545B451216FCDA95F5D32s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibCB366E08DC0545B451216FCDA95F5D32s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib9D0C3A6D5906A2B31D2D8237FA55FCB5s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bib9D0C3A6D5906A2B31D2D8237FA55FCB5s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibA68886248448E69773708E92C5EE8BC9s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibA68886248448E69773708E92C5EE8BC9s1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibD05182B72078D367AACB97E7AA00A64Cs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibD05182B72078D367AACB97E7AA00A64Cs1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibB752F902BAEEFD22ED19CA2D69A8C37As1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibB752F902BAEEFD22ED19CA2D69A8C37As1
http://refhub.elsevier.com/S0022-0531(20)30158-7/bibBFF505DB874EEC80A0E5FCB5A1360DC4s1


L.P. Hansen and T.J. Sargent Journal of Economic Theory 199 (2022) 105165
Peng, Shige, 2004. Nonlinear expectations, nonlinear evaluations and risk measures. In: Stochastic Methods in Finance: 
Lectures Given at the C.I.M.E.-E.M.S. Summer School Held in Bressanone/Brixen, Italy, July 6–12, 2003. Springer 
Berlin Heidelberg, Berlin, Heidelberg.

Petersen, Ian R., James, Matthew R., Dupuis, Paul, 2000. Minimax optimal control of stochastic uncertain systems with 
relative entropy constraints. IEEE Trans. Autom. Control 45 (3), 398–412.

Sarin, Rakesh, Wakker, Peter P., 1998. Dynamic choice and nonexpected utility. J. Risk Uncertain. 17 (2), 87–120.
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