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Abstract
Orthogonal arrays are a powerful class of experimental designs that has been widely 
used to determine efficient arrangements of treatment factors in randomized con-
trolled trials. Despite its popularity, the method is seldom used in social sciences. 
Social experiments must cope with randomization compromises such as noncom-
pliance that often prevent the use of elaborate designs. We present a novel applica-
tion of orthogonal designs that addresses the particular challenges arising in social 
experiments. We characterize the identification of counterfactual variables as a finite 
mixture problem in which choice incentives, rather than treatment factors, are ran-
domly assigned. We show that the causal inference generated by an orthogonal array 
of incentives greatly outperforms a traditional design.

Keywords  Strata · Discrete mixtures · Causal models · Experiments

Introduction

This paper investigates the problem of making causal inferences in social experi-
ments under noncompliance. We develop two themes motivated by C.R. Rao’s 
fundamental contributions to the characterization of distributions and the study 
of experiments. We use instrumental variables to characterize the identification 
of causal parameters as the solution to a mixing distribution problem. We then 
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explore orthogonal array designs to correct for the selection bias generated by 
noncompliance.

Statisticians widely use Rao’s research on orthogonal arrays to design efficient 
arrangements of treatment factors in randomized controlled trials (RCTs). See, 
e.g., Stinson (2004). Despite its popularity, Rao’s research has not been broadly 
applied to evaluate treatment effects in social sciences. Social experiments are 
commonly plagued by randomization compromises, such as noncompliance, that 
often prevent the use of elaborate designs. This paper uses recently developed 
econometric tools to repurpose Rao’s original ideas into a novel framework where 
orthogonal arrays of incentives play a central role in solving compliance prob-
lems in social experiments.

In his M.A. thesis at Calcutta University, C. R. Rao (1943) introduced a pow-
erful class of experimental designs called orthogonal arrays. This design employs 
combinatorial arrangements of factors (or treatments) for each randomization 
arm. Rao developed the theory of orthogonal arrays in a series of seminal papers 
(C. R. Rao 1946a, b, 1947, 1949).

The following matrix is an example of an orthogonal array:

Matrix A is a 2-1evel orthogonal array because it only uses two elements, 0 and 1. 
Any two columns of the matrix display all the possible combinations of zeros and 
ones, that is, (0, 0), (0, 1), (1, 0), and (1, 1). The matrix has four “runs” (rows) cor-
responding to treatment conditions and three “factors” (columns) corresponding to 
treatments. The matrix is classified as OA (4, 3, 2, 2), where the first number 2 is 
the level and the second number 2 is the strength, which is the number of columns 
where we are guaranteed to see all the possible combinations of zeros and ones.

Orthogonal arrays such as OA (4,  3,  2,  2) are widely used to design experi-
ments that determine the optimum mix of factors (or treatments) that maximize 
production yield. In these experiments, the researcher can choose the combina-
tion of inputs in each randomization arm.

A fundamental difference between RCTs in the natural and social sciences is 
that social scientists often cannot force compliance with intended treatments. 
In a natural experiment, the experimenter can determine the treatment of each 
randomization unit. In a social experiment, the randomization units consist of 
economic agents. The experimenter can attempt to persuade agents but can sel-
dom impose an intended treatment status on them. The final treatment status 
depends on the agent’s decision to comply or not comply with the initial treat-
ment assignment.

Noncompliance violates the principle of randomization that secures the iden-
tification of causal effects in perfectly implemented RCTs. Agents that choose 
to deviate from their assigned treatment may differ from those who do not. 
The compliance decision introduces the danger of an unobserved confounding 

(1)A =

⎡
⎢⎢⎢⎣

0 0 0

1 1 0

1 0 1

0 1 1

⎤⎥⎥⎥⎦
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variable that may cause both the treatment choice and the outcomes of interest. 
Noncompliance prevents the use of sophisticated designs, making it especially 
difficult to reap the benefits of Rao’s orthogonal array design.

We present a novel approach to Rao’s orthogonal array design to aid the non-
parametric identification of causal effects in RCTs with noncompliance. We draw 
on research by Heckman and Pinto (2018) and Pinto, R. (2021a)1 and use a choice-
theoretic instrumental variable (IV) model. The identification of causal parameters 
hinges on methods that control for unobserved characteristics of agents. We use dis-
crete instruments to generate a finite partition of unobserved variables. This par-
tition enables us to characterize the identification of causal parameters as a prob-
lem of identifying a mixture of unobserved distributions. The partition induced 
by the instruments enables us to determine the necessary and sufficient conditions 
for identifying counterfactual outcomes. We use this framework to investigate how 
the orthogonal design of choice incentives outperforms the traditional approach to 
social experiments.

Section Causal Model with Choice and Compliance presents a choice-theoretic 
causal model using instrumental variables. Section Using IV to Control for Unob-
served Variables explains how to nonparametrically control for an agent’s unobserv-
able characteristics using discrete instruments. Section  Identification as a Mixture 
Problem describes the identification of causal effects as a problem of identifying a 
finite mixture of unobserved distributions. Section Using Rao’s Orthogonal Design 
to Address Identification Problems Arising from Noncompliance in Social Experi-
ments explains how to use Rao’s orthogonal design to identify and estimate causal 
parameters. Section Conclusion concludes.

Causal Model with Choice and Compliance

In social experiments, the treatment status is typically determined by agents’ deci-
sions to comply with the treatment choice. This generates the problem of selection 
bias, which makes it difficult to identify causal effects. Economists have long used 
instrumental variables to solve the problem of selection bias and to identify causal 
effects in choice models. This paper examines the case of multivalued-choice mod-
els with categorical instrumental variables and heterogeneous agents.

Decision‑Theoretic Foundation

The economic literature offers several theoretical foundations to model an economic 
agent � ’s treatment choice t among the available treatments in a choice set T .

The classical microeconomic theory assumes a rational agent that maximizes the 
utility among available choices. Agents, however, do not need to be rational to gen-
erate predictable choice behavior (Thaler 2016). As noted by Becker (1962), the key 

1  Pinto, R. (2021a). Beyond intention to treat: Using the incentives in moving to opportunity to identify 
neighborhood effects (unpublished manuscript). Department of Economics, University of California, Los 
Angeles. https://​www.​rodri​gopin​to.​net/_​files/​ugd/​95d94d_​90f49​1ec1a​fa45c​f8ef1​e9a77​346c9​a8.​pdf.

https://www.rodrigopinto.net/_files/ugd/95d94d_90f491ec1afa45cf8ef1e9a77346c9a8.pdf
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features of choice theory are a notion of preferences based on the agent’s informa-
tion set and some choice constraints, such as a budget set, that shape the agent’s 
behavior—however rational or not.

We do not assume the full rationality of agents, but we allow for purposive 
actions under different information and constraint sets. We adopt a flexible choice 
equation consistent with a broad array of decision mechanisms. We denote the pref-
erences of an agent � over the choice set T  by an unobserved random vector V� of 
arbitrary but finite dimension. Choice constraints are indexed by the elements z in a 
finite set Z . We keep the information sets of agents implicitly so that the treatment 
choice of agent � given a restriction z ∈ Z is expressed as T�(z) = fT (z,V�).

We map the choice behavior onto a standard IV model where treatment values 
t ∈ T  and restriction indexes z ∈ Z become potential values in the support of the 
random variables T and Z, respectively. We use X for the random vector of base-
line variables that occur prior to treatment choice. All variables are defined on the 
probability space (Ω,F,P) , and Z�, T�,V�,X� denote the realized values of random 
variables Z, T ,V,X for an agent � ∈ Ω.

The Instrumental Variable Model

The IV model has been a standard analytical framework in economics since Reiersöl 
(1945). In the economic context, the IV model consists of four observed variables: 
(1) an instrument Z taking NZ discrete values in the support supp (Z) = {z1,… , zNZ

} ; 
(2) a treatment choice T taking NT discrete values in supp (T) = {t1,… , tNT

} ; (3) 
a real-valued outcome2 Y in ℝ ; and (4) a pre-treatment random vector X of finite 
dimension taking values in ℝ|X| . Notationally, we use Dt = �[T = t], t ∈ supp (T) , 
and Dz = �[Z = z], z ∈ supp (Z) , as indicators of treatment and instrument values, 
respectively.3

Observed variables are related according to two policy-invariant equations that 
determine causal relationships among the variables:4

where �Y is an unobserved error term5 in ℝ . As mentioned, the choice Eq. (2) is gen-
eral and might be motivated by several choice mechanisms, including utility maxi-
mization (see, e.g., McFadden 1981). The unobserved random vector V subsumes 

(2)Choice Equation: T = fT (Z,V,X),

(3)Outcome Equation: Y = fY (T ,V,X, �Y ),

2  Our analysis holds if outcome Y represents a vector-valued variable denoting multiple outcomes.
3  The indicator function �[A] equals one if event A occurs and zero otherwise.
4  By policy-invariant, we mean functions whose maps remain invariant under manipulation of the argu-
ments. This is the notation of autonomy developed by Frisch (1938) and Haavelmo (1944). For a recent 
discussion of these conditions, see Heckman and Pinto (2015) and Pinto and Heckman (2021).
5  Such error terms are often called “shocks” in structural equation models. fT is a deterministic function 
that can be interpreted as a random function if we introduced shock �T of arbitrary dimension as one of 
its arguments.
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not only the agent’s preferences but all the unobserved (by the analyst) variables 
that affect both the choice T and outcome Y. Vector V is a confounder, and it is 
the source of selection bias. Choice probability P(T = t ∣ Z = z,X) is the propensity 
score of choosing t given z and X.

The two main assumptions of the IV model are:

Independence condition (4) states that the instrument Z is statistically independ-
ent of the confounder V and error term � conditioned on baseline variables X . Given 
that V is arbitrary, we can, without loss of generality, assume that V and � are statis-
tically independent; that is, V ⟂⟂ � ∣ X . The independence condition implies that the 
instrument affects the outcome only through its impact on the treatment T.

IV relevance  (5) guarantees that there exists agents who will choose t for any 
instrumental value z. The condition rules out the possibility that equivalent instru-
mental values have an identical impact on the treatment. We also assume as a 
regularity condition that the outcome expectation exists E(Y2) < ∞ . To simplify 
notation, we henceforth suppress the background variables X . Our analysis can be 
interpreted as conditioned on such variables.

Counterfactuals

Counterfactual choice is defined by fixing Z in the choice Eq.  (2) to a value 
z ∈ supp (Z) ; that is, T(z) = fT (z,V) . The counterfactual outcome is defined by fix-
ing T in (3) to a value t ∈ supp (T) ; that is, Y(t) = fY (t,V, �Y ).6 The observed choice 
T and outcome Y can be described as switching regressions (Quandt 1958, 1972) by 
the following equations:

Equation (6) describes choice T as the counterfactual choice T(z) multiplied by the 
indicator Dz that takes value one if Z = z and zero otherwise. Equation (7) describes 
the outcome Y in terms of the counterfactual outcomes Y(t) multiplied by the choice 
indicator Dt.

(4)Independence: Z ⟂⟂ (V, �Y ) ∣ X are statistically independent,

(5)
IV Relevance: P(T = t ∣ Z = z,X) is a positive and non-degenerate

function of z, for all (t, z) ∈ supp (T) × supp (Z).

(6)T =
∑

z∈ supp (Z)

T(z) ⋅ Dz ≡ T(Z),

(7)Y =
∑

t∈ supp (T)

Y(t) ⋅ Dt ≡ Y(T).

6  Fixing is a causal operation that captures the notion of external (ceteris paribus) manipulation. It is 
a central concept in the study of causality and dates back to Haavelmo (1943). See Heckman and Pinto 
(2015) for a recent discussion of fixing and causality.
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The independence condition  (4) generates two useful relations regarding 
counterfactuals:

The exogeneity condition (8) is commonly used to describe IV models. It states that 
the instrument Z is independent of the counterfactuals. The matching property (9) 
states that controlling for the confounder V renders the outcome counterfactuals Y(t) 
statistically independent of the treatment choice T.

Causal Inference

Causal analysis seeks to make inferences about counterfactual outcomes Y(t). 
The causal effect of switching the treatment from t to t′ for agent � is given by 
Y�(t

�) − Y�(t) . A fundamental problem in causal inference is that, in any cross-section, 
we only observe a single outcome for each agent � . Causal inference copes with this 
problem by focusing on the evaluation of average causal effects, specifically, the causal 
effect over a sub-population Ω� ⊆ Ω of the agents:

If Ω� = Ω in (10), we obtain the average treatment effect of t′ versus t on the out-
come ATE = E(Y(t�) − Y(t)).

Controlling for Unobservables

The identification of causal effects hinges on our ability to control for the confounder 
V . By conditioning on V , we are able to relate counterfactual outcome E(Y(t) ∣ V) and 
conditional outcome E(Y ∣ T = t,V):

where the first equality is due to matching property  (9) and the second equality 
is due to  (7). If V were observed, we would be able to identify the counterfactual 
expectation E(Y(t) ∣ T = t,V) by the conditional expectation E(Y ∣ T = t,V) . In 
addition, if V were observed, we would be able to identify its probability distribu-
tion. The counterfactual mean E(Y(t)) could be evaluated by integrating the condi-
tional expectation E(Y ∣ T = t,V) over the unconditional distribution of V:

(8)Exogeneity: Z ⟂⟂ (T(z),Y(t)) for all (z, t) ∈ supp (Z) × supp (T),

(9)Matching: Y(t) ⟂⟂ T ∣ V for all t ∈ supp (T).

(10)E
(
Y(t�) − Y(t) ∣ � ∈ Ω�

)
=

∫
�∈Ω�

[
Y�(t

�) − Y�(t)
]
dP

P(� ∈ Ω�)
.

(11)

E
(
Y(t) ∣ V

)
= E

(
Y(t) ∣ T = t,V

)

= E

( ∑
t∈ supp (T)

Y(t) ⋅ Dt ∣ Dt = 1,V

)
= E

(
Y ∣ T = t,V

)
,
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where the second equality is due to (9), and dFV(v) denotes the probability density 
of the confounder V at point v.

The Identification Problem

Unfortunately, when V is not observed, the conditional expectation of the outcome 
E(Y ∣ T = t) does not identify the counterfactual mean E(Y(t)):

Equation (13) clarifies how the outcome expectation E(Y ∣ T = t) differs from the 
counterfactual mean E(Y(t)). Outcome expectation E(Y ∣ T = t) is the weighted aver-
age of the counterfactual outcome E(Y(t) ∣ V = v) over the conditional probability 
of V given T = t . On the other hand, the counterfactual mean E(Y(t)) is the weighted 
average of the counterfactual outcome E(Y(t) ∣ V = v) over the unconditional prob-
ability distribution of V . This mismatch prevents the identification of causal effects 
and can promote misleading conclusions. For instance, the difference-in-means esti-
mator for the binary outcome T ∈ {0, 1} evaluates the following parameter:

An identification problem arises because agent self-selection induces a correla-
tion between choice T and the unobserved variables in V . Large values of the differ-
ence in means in (14) could arise from the difference between the distribution of V 
conditioned on the treatment choices instead of the impact of the treatment on the 
outcome.

RCTs are supposed to solve the problem of selection bias by randomly assign-
ing the treatments. The randomization secures statistical independence between the 
treatment T and the unobserved characteristics of the agents, namely, the confounder 
V . The independence relationship V ⟂⟂ T  implies that the distribution of V condi-
tional on T is equal to the unconditional distribution of V , and therefore, the out-
come difference-in-means identified the average treatment effect.

Noncompliance in RCTs potentially compromises the independence relation-
ship between agents’ unobserved variables V and their final treatment assignment 
T. Effectively, noncompliance transforms the intended RCT experiment into an IV 
model where the randomization arms determine the instrumental variable.

(12)
E(Y(t)) = ∫v

E(Y(t) ∣ V = v)dFV(v)

= ∫v

E(Y ∣ T = t,V = v)dFV(v),

(13)
E
(
Y ∣ T = t

)
= ∫v

E
(
Y ∣ T = t,V = v

)
dFV∣T=t(v)

= ∫v

E
(
Y(t) ∣ V = v

)
dFV∣T=t(v).

(14)
E
(
Y ∣ T = 1

)
− E

(
Y ∣ T = 0

)

= ∫v

E
(
Y(1) ∣ V = v

)
dFV∣T=1(v) − ∫v

E
(
Y(0) ∣ V = v

)
dFV∣T=0(v).
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Using IV to Control for Unobserved Variables

Identification strategies in IV models use instruments Z to control for the unobserved 
confounder V (Heckman and Pinto 2015). One approach assumes parametric models 
that impose functional restrictions on the choice Eq. (2) and the outcome Eq. (3). An 
example of this approach is Two-Stage Least Squares (Theil 1958, 1971).

Heckman and Pinto (2018) propose a nonparametric approach that explores the 
choice behavior induced by the instrument Z. They use counterfactual choices to 
determine a partition of the support of supp (V) that renders T statistically independ-
ent of the counterfactual outcomes Y(t). This independence property enables them to 
characterize the observed data as a mixture of unobserved counterfactuals over the 
partition set of supp (V) . We use this characterization to determine the necessary and 
sufficient conditions to point-identify counterfactual outcomes. Additional notation 
is necessary to introduce their results.

The Response Vector

We control for the unobservables V using a partition of it generated by the choice 
variation induced by the instrument. A central concept in our analysis is the 
response vector. This is the NZ-dimensional random vector of counterfactual choices 
T(z) across all the instrumental values z1, ..., zNZ

:

The support of the response vector is given by supp (S) = {s1,… , sNS
} , and each 

element s ∈ supp (S) is called a response-type. The response vector for an agent � 
is given by S� = [T�(z1) , … , T�(zNZ

)]� . It lists the treatment choices that agent � 
would take if it were to face each instrumental value.7

Response vector S has been used by several authors in distinct fields, starting with 
Robins and Greenland (1992) and Balke and Pearl (1993), who studied bounds for 
causal effects for the binary choice model. Angrist et al. (1996) use response-types 
to study the identification of a binary choice model.

Response vectors are called “principal strata” by Frangakis and Rubin (2002) and 
can be understood as the control functions of Heckman and Robb (1985) and Powell 
(1994). Our approach differs from these interpretations. We use the response vector 
S as a criterion to control for the unobserved confounding variable V.

Equation (16) expresses the response vector S as a function of V , while Eq. (17) 
expresses choice T as a function of the response vector S and the instrument Z. 
Figure 1 displays these causal relationships graphically as directed acyclic graphs 
(DAGs).

(15)S =
[
T(z1) , … , T

(
zNZ

)]�
.

7  The response-types can be viewed as “types” in the sense of Keane and Wolpin (1997).
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Equation (18) lists three useful properties of the response vector S:

Property (i) states that the response vector is independent of the IV. This independ-
ence relationship stems from V ⟂⟂ Z in (4) and from the fact that S is a function of V . 
Property (ii) states a matching condition where S plays the role of a balancing score 
for V.8 The relationship stems from (Y(t),V) ⟂⟂ Z and from the fact that S is a func-
tion of V , while T is a function of Z and V.9 Indeed, conditioned on S , T depends 
only on Z, which is independent of Y(t). The last property (iii) is due to the fact that 
T is deterministic given T and S.

The properties of the response vector in (18) enable us to describe a coarse parti-
tion of supp (V) that renders the treatment statistically independent of counterfac-
tual outcomes. According to  (16), each v ∈ supp (V) corresponds to one and only 
one response-type s ∈ supp (S) such that h(v) = s . Thus, for each response-type 
sn ∈ supp (S) , we can define a subset Vn ⊂ supp (V) as:

Sets V1,… ,VNS
 constitute a disjoint partition of supp (V) and their union spans the 

full set; that is,

(16)S =
[
fT
(
z1,V

)
,… , fT (zNZ

,V)
]�

= h(V),

(17)T =
[
Dz1

,… ,DzNZ

]
⋅ S = g(Z, S).

(18)(i) S ⟂⟂ Z, (ii) Y(t) ⟂⟂ T ∣ S, (iii) Y ⟂⟂ T ∣ (S, Z).

(19)Vn =
{
v ∈ supp (V) such that

[
fT (z1, v),… , fT (zNZ

, v)
]�
= sn

}
.

V

YTZ

VS

YTZ

Fig. 1   IV Models with and without the Response Vector S . These two diagrams depict equivalent IV 
models as DAGs. Arrows represent direct causal relations. Circles represent unobserved variables. 
Squares represent observed variables. The error term � is kept implicit. The left-hand side diagram shows 
the standard IV model without the response vector S , while the right-hand side diagram includes the 
response vector S.

8  A balancing score for V constitutes a function of V that preserves the matching condition in 
Y(t) ⟂⟂ T ∣ V (9). See Rosenbaum and Rubin (1983).
9  Formally, (Y(t),V) ⟂⟂ Z ⇒ (Y(t), h(V)) ⟂⟂ Z ⇒ (Y(t),S) ⟂⟂ Z ⇒ Y(t) ⟂⟂ Z ∣ S ⇒ Y(t) ⟂⟂ g(Z,S) ∣ S ⇒ 
Y(t) ⟂⟂ T ∣ S.
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Note that the events S = sn and V ∈ Vn are equivalent. The matching property (ii) 
in (18) states that Y(t) ⟂⟂ T ∣ (S = sn) , so

Equations (19)–(21) imply that the treatment T can be understood as being randomly 
assigned when we condition on the subset of agents � that share the same response-type 
s . If response-types were observed, we could use (ii) in (18) to identify the expected 
value of counterfactual outcomes by taking the expected values of the observed out-
come conditioned on the treatment choice and the response-types.

A significant challenge is that the response-types that determine the partition of the 
support of V are not observed. Nevertheless, the partition substantially simplifies the 
identification problem. It reframes the identification of counterfactuals as a problem of 
identifying a finite mixture of unobserved distributions.

Identification as a Mixture Problem

We gain a deeper understanding by reframing the identification problem as a particular 
case of the identification of unobserved mixture distributions (B. L. S. P. Rao 1992). 
The general mixture model is given by:

where F(Y) stands for the cumulative distribution function (cdf) of an observed out-
come Y, (F�(Y))�∈Θ is a collection of cdf’s indexed by a random variable � ∈ Θ that 
takes a value in the (possibly infinite) set Θ , and G denotes the cdf of � . F(Y) is a 
mixture distribution, the cdf’s (F�(Y))�∈Θ are component distributions, G is the mix-
ing distribution, and � is the unobserved latent (or mixing) variable. B. L. S. P. Rao 
(1992) notes that if the mixing distribution G is finite, then a necessary and suffi-
cient condition for its identification is that the family of cdf’s (F�(Y))�∈Θ be linearly 
independent as functions on Y. We use the mixture model (22) as a starting point.

As mentioned, the identification of causal parameters hinges on controlling for 
unobserved variables V . A natural candidate for the values of � in  (22) are the ele-
ments v ∈ supp (V) . We replace the cdf’s in  (22) by the expectation of �(Y) , where 
� ∶ supp (Y) → ℝ is an arbitrary real-valued function.

(20)supp (S) =

NS⋃
n=1

Vn such that Vn

⋂
Vn� = ∅.

(21)T ⟂⟂ Y(t) ∣ (V ∈ Vn) for each n ∈ {1,… ,NS}.

(22)F(Y) = ∫ F�(Y)dG(�),

(23)E(�(Y)) = ∫v

E(�(Y) ∣ V = v)dFV(v)
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Equation  (23) describes the expected outcome using the mixture model in  (22), 
where � stands for the elements v ∈ supp (V) . Equation  (24) uses the partition of 
supp (V) in  (19) to generate a discrete mixing distribution across the partition sets 
of the support of V . Condition (21) in Section Using IV to Control for Unobserved 
Variables enables us to express the conditional expectation E(�(Y) ∣ T = t) in terms 
of the conditional counterfactuals E(�(Y(t)) ∣ V):

Equation  (25) relates a single conditional outcome expectation with several 
outcome counterfactuals for each choice value t ∈ supp (T) . The equation does 
not assess sufficient information on observed data to secure the identification of 
the counterfactual outcomes. The instrumental variable Z generates additional 
variation of observed quantities (left-hand side of  (25)) without increasing the 
number of unobserved counterfactuals (right-hand side of (25)):

Equation (26) rewrites (25) conditioning on instrument Z. Equation (27) uses 
the fact that Z ⟂⟂ S and that V ∈ Vn and S = sn are equivalent events. Equation (28) 
uses Bayes rule to rewrite the conditional expectation P(S = sn ∣ T = t, Z = z) . 
Equation  (29) employs Z ⟂⟂ S again and invokes the fact that T is determin-
istic when conditioned on S and Z. The response vector S enables us to con-
nect observed data with a mixture of counterfactual outcomes conditioned on 
response-types. This produces our main equation:

(24)=

NS∑
n=1

E(�(Y) ∣ V ∈ Vn)P(V ∈ Vn).

(25)E
(
�(Y) ∣ T = t

)
=

NS∑
n=1

E
(
�
(
Y(t)

)
∣ V ∈ Vn

)
P
(
V ∈ Vn ∣ T = t

)
.

(26)

E
(
�(Y) ∣ T = t, Z = z

)

=

NS∑
n=1

E

(
�
(
Y(t)

)
∣ Z = z,V ∈ Vn

)
P
(
V ∈ Vn ∣ T = t, Z = z

)

(27)=

NS∑
n=1

E(�(Y(t)) ∣ Z = z,S = sn)P(S = sn ∣ T = t, Z = z)

(28)=

NS∑
n=1

E
(
�
(
Y(t)

)
∣ S = sn

)P(T= t ∣ Z=z,S=sn
)
P
(
S=sn ∣ Z=z

)

P
(
T = t ∣ Z = z

)

(29)=

NS∑
n=1

�
[
T = t ∣ Z = z,S = sn

]
E
(
�
(
Y(t)

)
∣ S = sn

) P(S = sn)

P
(
T = t ∣ Z = z

) .
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If �(Y) = Y , (30) generates an equality relating the expected values of observed 
outcomes with expected counterfactual outcomes. Setting �(Y) = �[Y ≤ y] gener-
ates the cdf of the observed outcome with the unobserved cdf of counterfactual out-
comes. Setting �(Y) to 1 in (30) generates the propensity score equality:

Replacing �(Y) by any variable X such that X ⟂⟂ T ∣ S generates an equation that 
relates baseline variables with response-types:

Identification Criteria

We now investigate the necessary and sufficient conditions for identifying counter-
factual outcomes and response-type probabilities. To do so, we express our main 
Eq. (30) as a system of linear equations.

Observed parameters are stacked in vectors PZ(t) and QZ(t) below:

where PZ(t) is the vector of observed propensity scores, and QZ(t) is the vector of 
outcome expectations. The unobserved parameters are stacked in the vectors PS and 
QS(t) below:

where PS is the vector of response-type probabilities, and QS(t) is the vector of coun-
terfactual outcomes conditioned on response-types.

Response matrix R stacks the response-types in supp (S) as columns:

(30)

E
(
�(Y) ∣ T = t, Z = z

)
P
(
T = t ∣ Z = z

)

=

NS∑
n=1

�
[
T = t ∣ Z = z,S = sn

]
E
(
�(Y(t)) ∣ S = sn

)
P(S = sn).

(31)P
(
T = t ∣ Z = z

)
=

NS∑
n=1

�
[
T = t ∣ S = sn, Z = z

]
P(S = sn).

(32)

E
(
X ∣ T = t, Z

)
P
(
T = t ∣ Z

)

=

NS∑
n=1

�
[
T = t ∣ S = sn, Z

]
E
(
X ∣ S = sn

)
P(S = sn).

(33)PZ(t) =
[
P(T = t ∣ Z = z1),… ,P(T = t ∣ Z = zNZ

)
]�
,

(34)QZ(t) =
[
E
(
�(Y) ∣ T = t, Z = z1

)
,… ,E

(
�(Y) ∣ T = t, Z = zNZ

)]�
,

(35)PS =
[
P(S = s1),… ,P(S = sNS

)
]�
,

(36)QS(t) =
[
E
(
�
(
Y(t)

)
∣ S = s1

)
,… ,E

(
�
(
Y(t)

)
∣ S = sNS

)]�
,
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Matrix R has dimension NZ × NS . The entry in the ith row and nth column of R 
is denoted by R[i, n] = (T ∣ Z = zi, S = sn), i ∈ {1,… ,NZ}, n ∈ {1,… ,NS} . We 
use R[i, ⋅] to denote the ith row of R and R[⋅, n] to denote the nth column of R . 
IV relevance condition (5) prevents identical rows in R.

We use Bt = �[R = t] to denote a binary matrix of the same dimension of R that 
takes value 1 if the respective element in R is equal to t and zero otherwise. An entry 
of Bt is given by Bt[i, n] = 1[T = t ∣ Z = zi, S = sn] . Let BT be a binary matrix of 
dimension (NZ ⋅ NT ) × NS generated by stacking Bt as t ranges over 
supp (T) ∶ BT = [B�

t1
,… ,B�

tNT
]� and let PZ be the (NZ ⋅ NT ) × 1 vector that stacks the 

propensity scores PZ(t) across the treatment values: PZ = [P(t1)
�,… ,P(tNT

)�]� . In 
this notation, Eqs.  (30) and  (31) can be written in matrix form by the following 
equations:

where ⊙ denotes the Hadamard (element-wise) multiplication.
The response matrix R and the binary matrices Bt , t ∈ supp (T) , are determinis-

tic, as T is known given Z and S . If Bt and BT were invertible, QS(t) and  PS would 
be identified. However, such inverses do not always exist. In their place, we can use 
generalized inverses. Let B+

T
 and B+

t
 be the Moore-Penrose pseudo-inverses10 of BT 

and Bt, t ∈ supp (T) . Under this notation, we can state the following result:

Theorem T‑1  The general solution for the system of linear equations in (38) and (39):

and

such that

where INS
 denotes an identity matrix of dimension NS , and � and 𝝀̃ are arbitrary 

NS-dimensional vectors (with the same dimension as PS).

Proof  See Appendix A.1. 	�  ◻

(37)R = [s1,… , sNS
].

(38)PZ = BTPS,

(39)QZ(t)⊙ PZ = BtQS(t)⊙ PS,

(40)PS = B+
T
PZ + KT�

(41)QS(t)⊙ PS = B+
t
QZ(t) + Kt𝝀̃

(42)KT = INS
− B+

T
BT and Kt = INS

− B+
t
Bt, t ∈ supp (T),

10  The Moore-Penrose inverse of a matrix A is denoted by A+ and is defined by the following four prop-
erties: (1) AA+

A = A; (2) A+
AA

+ = A
+
; (3) A+

A is symmetric; (4) AA+ is symmetric. The Moore-Pen-
rose matrix A+ of a real matrix A is unique and always exists (Magnus and Neudecker 1999).
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Matrices KT and Kt are orthogonal projection matrices that depend only on matri-
ces BT and Bt, t ∈ supp (T) . Theorem T-1 is useful to provide the general conditions 
for identification of response probabilities and counterfactual means:

Corollary C‑1  In the IV model (4)–(5), if there exists a real-valued NS-dimensional 
vector � such that ��KT = 0 , then �′PS is identified. In addition, if there exists a real-
valued NS-dimensional vector 𝝀̃ such that 𝝀̃

�
Kt = 0 , then 𝝀̃

�
QS(t) is identified.

Proof  See Heckman and Pinto (2018) or Appendix A.2. 	�  ◻

Corollary  C-1 shows that the nonparametric identification of counterfactuals 
depends only on properties of the response matrix R . If BT had full column-rank, 
then B+

T
BT = INS

 and KT = 0 . In this case, each response-type probability is identi-
fied. Indeed, �′PS is identified for any real vector � of dimension NS including those 
that indicate each of the response-type probabilities.11

Binary matrix BT contains each Bt, t ∈ supp (T) . Thus, the conditions for iden-
tifying response-type probabilities are weaker than those for identifying coun-
terfactual outcomes. In particular, a full-rank BT does not imply that matrices Bt , 
t ∈ supp (T) , are full-rank. Therefore, the identification of the response-type prob-
abilities does not automatically identify corresponding mean counterfactual out-
comes. Corollary C-2 formalizes this discussion.

Corollary C‑2  The following relationships hold for the IV model (4)–(5):

Also, if  (44) holds, then E(�(Y(t))) is identified by ��B+
t
QZ(t) , where � is an 

NS-dimensional vector of ones.

Proof  See Heckman and Pinto (2018) or Appendix A.3. 	�  ◻

Versions of Corollary C-2 are found in the literature on the identifiability of finite 
mixtures (see, e.g., Yakowitz and Spragins 1968 and B. L. S. P. Rao 1992). Given 
binary matrices BT and Bt , t ∈ {1,… ,NT} , the problem of identifying PS and QS(t) 
is equivalent to the problem of identifying finite mixtures of distributions where 
BT and Bt play the roles of kernels of mixtures. Mixture components are the cor-
responding counterfactual outcomes conditional on the response-types, and mixture 
probabilities are the response-type probabilities.

(43)Vector PS is point-identified ⇔ rank (BT ) = NS,

(44)Vector QS(t) is point-identified ⇔ rank (Bt) = NS.

11  See Section A.4 of the Appendix for bounds on the response-type probabilities and counterfactual 
outcomes.
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Understanding the Identification Challenge

Identification criteria (43) and (44) show that the identification of causal parameters 
depends solely on the properties of the response matrix R . In particular, the identi-
fication of the counterfactual outcomes in QS(t) depends on the column-rank of the 
binary matrix Bt . If the column-rank of Bt is NS (full column-rank), then B+

t
Bt = INS

 
and Kt = 0 . In this case ��QS(t) and �′PS are identified for any real vector � of 
dimension NS , including all unit vectors with a value of 1 in the nth entry and 0 else-
where. In summary, all counterfactual outcomes in QS(t) would be identified.

Identification criteria (43) and (44) pose a major identification problem. The col-
umn rank of any binary matrix Bt is less than or equal to its row-dimension NZ . 
On the other hand, the dimension of QS(t) is the number of response-types NS that 
usually far exceeds the number of IV-values NZ . For instance, under no restrictions, 
the total number of potential response-types is NNZ

T
 . Thus, a requirement for generat-

ing any identification result on counterfactual outcomes is to reduce the number of 
response-types that the choice model admits.

A common approach to decreasing the number of response-types is to impose 
functional restrictions on the choice equation. Heckman and Pinto (2018) and Pinto 
(2021a)12 adopt a different approach that relies on economic choice theory. They 
combine choice incentives with revealed preference analysis to generate choice 
restrictions that systematically eliminate potential response-types.

Using Rao’s Orthogonal Design to Address Identification Problems 
Arising from Noncompliance in Social Experiments

We propose a novel application of Rao’s orthogonal design (C. R. Rao 1946a, b, 
1947, 1949). Rao’s methodology is traditionally applied to investigate the effects of 
combinations of treatment factors. The method determines randomization groups 
exposed to an orthogonal arrangement of treatment factors.

Similar to Rao’s work, ours uses an RCT setting. Our method differs from Rao’s 
original methodology in two ways: (1) we consider the possibility of noncompli-
ance; and (2) the orthogonal array design is not used to combine treatment factors 
but to determine choice incentives across a finite number of treatment alternatives.

We use revealed preference analysis to translate choice incentives into choice 
restrictions that eliminate response-types. This elimination process generates the 
response matrix R , which contains all the necessary information to examine the non-
parametric identification of causal parameters.

12  Pinto, R. (2021a). Beyond intention to treat: Using the incentives in moving to opportunity to iden-
tify neighborhood effects [Unpublished manuscript]. Department of Economics, University of California, 
Los Angeles. https://​www.​rodri​gopin​to.​net/_​files/​ugd/​95d94d_​90f49​1ec1a​fa45c​f8ef1​e9a77​346c9​a8.​pdf.

https://www.rodrigopinto.net/_files/ugd/95d94d_90f491ec1afa45cf8ef1e9a77346c9a8.pdf
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Examining Choice Incentives Determined by an Orthogonal Array

Noncompliance in social experiments effectively transforms the original RCT into 
an IV model where each instrumental value represents a randomization arm. It 
implicitly adds a choice probability, which we explicitly model in the IV model. The 
experimenter cannot impose a treatment status upon participants but rather incentiv-
izes them toward a treatment choice. In this setup, orthogonal arrays play the role of 
the incentive matrix of Pinto (2021a).13 Each factor stands for a treatment choice and 
each run stands for a randomization arm that incentivizes one or several treatment 
alternatives.

We illustrate the method using the orthogonal array OA (4, 3, 2, 2) discussed in 
Section Introduction. This design can be understood as an RCT with four randomi-
zation arms Z ∈ {z1, z2, z3, z4} and three treatment statuses T ∈ {t1, t2, t3} , where z1 
denotes the control group that offers no incentive toward any choice, z2 incentivizes 
participants toward choices t1 and t2 , z3 incentivizes them toward choices t1 and t3 , 
and z4 incentivizes them toward choices t2 and t3 . This incentive pattern is described 
by an ordinal incentive matrix:

Each column displays which choices are incentivized across all values of 
the instruments. The incentive matrix L in  (45) is an orthogonal array of type 
OA (4, 3, 2, 2). The factors refer to treatment choices; the runs, to instrumental values.

Choice Restrictions

Classical revealed preference analysis can be used to translate choice incentives into 
choice restrictions. Pinto (2021a)14 shows that the Weak Axiom of Revealed Prefer-
ences (WARP) and Normal Choice generate the choice rule described below:

Choice rule (46) is intuitive. It states that if an agent � chooses choice t under z, and 
the change from z to z′ induces greater incentives toward t than toward t′ , then the 
same agent � does not choose t′ under z′.

(45)

t
1
t
2
t
3

Incentive Matrix L =

⎡⎢⎢⎢⎣

0 0 0

1 1 0

1 0 1

0 1 1

⎤⎥⎥⎥⎦

z
1

z
2

z
3

z
4

(46)If T�(z) = t and L[z�, t�] − L[z, t�] ≤ L[z�, t] − L[z, t], then T�(z
�) ≠ t�.

13  Pinto, R. (2021a). Beyond intention to treat: Using the incentives in moving to opportunity to iden-
tify neighborhood effects [Unpublished manuscript]. Department of Economics, University of California, 
Los Angeles. https://​www.​rodri​gopin​to.​net/_​files/​ugd/​95d94d_​90f49​1ec1a​fa45c​f8ef1​e9a77​346c9​a8.​pdf.
14  Pinto, R. (2021a). Beyond intention to treat: Using the incentives in moving to opportunity to iden-
tify neighborhood effects [Unpublished manuscript]. Department of Economics, University of California, 
Los Angeles. https://​www.​rodri​gopin​to.​net/_​files/​ugd/​95d94d_​90f49​1ec1a​fa45c​f8ef1​e9a77​346c9​a8.​pdf.

https://www.rodrigopinto.net/_files/ugd/95d94d_90f491ec1afa45cf8ef1e9a77346c9a8.pdf
https://www.rodrigopinto.net/_files/ugd/95d94d_90f491ec1afa45cf8ef1e9a77346c9a8.pdf
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Choice rules like (46) restrict R . They enable analysts to translate any incentive 
matrix into a set of choice restrictions and generate a response matrix. A simple 
algorithm efficiently implements the task of moving from an incentive matrix to a 
response matrix. We now clarify this process.

Consider an agent � that chooses t1 if it were assigned to z1 ; that is, T�(z1) = t1 . 
We seek to examine whether the agent would choose t2 if it were assigned to z2 , z3 , 
or z4.

The first row of Table  1 compares the incentive gains for choosing t1 and t2 if 
the instrument were to change from z1 to z2 . The incentives to choose either t1 or t2 
increase, which satisfies the incentive requirement of choice rule  (46). Therefore, 
we can state that an agent that chooses t1 under z1 does not choose t2 under z2 . This 
choice restriction is summarized as T�(z1) = t1 ⇒ T�(z2) ≠ t2.

Table 1   Applying Choice Rule (46) to T�(z1) = t1

This table presents all the choice restrictions generated by applying the choice rule (46) to each of the 
combination of choices (t, t�) ∈ {t1, t2, t3} and instrumental values (z, z�) ∈ {z1, z2, z3, z4} of the incentive 
matrix (45)

Counterfactual choice Incentive  condition Choice restriction

T(z1) = t1 L[z2, t2] − L[z1, t2] = 1 ≤ 1 = L[z2, t1] − L[z1, t1] ⇒ T(z2) ≠ t2

T(z1) = t1 L[z2, t3] − L[z1, t3] = 0 ≤ 1 = L[z2, t1] − L[z1, t1] ⇒ T(z2) ≠ t3

T(z1) = t1 L[z3, t2] − L[z1, t2] = 0 ≤ 1 = L[z3, t1] − L[z1, t1] ⇒ T(z3) ≠ t2

T(z1) = t1 L[z3, t3] − L[z1, t3] = 0 ≤ 1 = L[z3, t1] − L[z1, t1] ⇒ T(z3) ≠ t3

T(z1) = t1 L[z4, t2] − L[z1, t2] = 1 ≰ 0 = L[z4, t1] − L[z1, t1] ⇒ No Restriction
T(z1) = t1 L[z4, t3] − L[z1, t3] = 1 ≰ 0 = L[z4, t1] − L[z1, t1] ⇒ No Restriction

Table 2   Choice Restrictions Generated by Incentive Matrix (45)

This table presents all the choice restrictions generated by applying the choice rule (46) to each of the 
combination of choices (t, t�) ∈ {t1, t2, t3} and instrumental values (z, z�) ∈ {z1, z2, z3, z4} of the incentive 
matrix (45)

1 T�(z1) = t1 ⇒ T�(z2) ∉ {t2, t3} and T�(z3) ∉ {t2, t3}

2 T�(z2) = t1 ⇒ T�(z1) ≠ t2 and T�(z3) ≠ t2

3 T�(z3) = t1 ⇒ T�(z1) ≠ t3 and T�(z2) ≠ t3

4 T�(z4) = t1 ⇒ T�(z1) ∉ {t2, t3} and T�(z2) ∉ {t2, t3} and T�(z3) ∉ {t2, t3}

5 T�(z1) = t2 ⇒ T�(z2) ∉ {t1, t3} and T�(z4) ∉ {t1, t3}

6 T�(z2) = t2 ⇒ T�(z1) ≠ t1 and T�(z4) ≠ t1

7 T�(z3) = t2 ⇒ T�(z1) ∉ {t1, t3} and T�(z2) ∉ {t1, t3} and T�(z4) ∉ {t1, t3}

8 T�(z4) = t2 ⇒ T�(z1) ≠ t3 and T�(z2) ≠ t3

9 T�(z1) = t3 ⇒ T�(z3) ∉ {t1, t2} and T�(z4) ∉ {t1, t2}

10 T�(z2) = t3 ⇒ T�(z1) ∉ {t1, t2} and T�(z3) ∉ {t1, t2} and T�(z4) ∉ {t1, t2}

11 T�(z3) = t3 ⇒ T�(z1) ≠ t1 and T�(z4) ≠ t1

12 T�(z4) = t3 ⇒ T�(z1) ≠ t2 and T�(z3) ≠ t2



S24	 Journal of Quantitative Economics (2022) 20 (Suppl 1):S7–S30

1 3

The second row compares the incentives to choose t3 for the same instrumental 
change ( z1 to z2 ). The incentive to choose t1 increases, while the incentive to chose 
t3 does not. Choice rule  (46) applies and the agent does not switch to t3 ; that is, 
T�(z1) = t1 ⇒ T�(z2) ≠ t3.

The third and fourth rows of Table 1 compare the incentives for choosing t1 ver-
sus t2 (third row) and t1 versus t3 (fourth row) when the instrument changes from z1 
to z3 . The incentive to choose t1 increases, while the incentives to choose either t2 
or t3 do not. Choice rule (46) holds and the agent does not choose t2 or t3 ; namely, 
T�(z1) = t1 ⇒ T�(z3) ∉ {t2, t3}.

The last two rows investigate the instrumental change from z1 to z4 . The incen-
tives to choose t2 or t3 increase, while the incentive to choose t1 does not. The incen-
tive requirement of choice rule (46) is not satisfied, and therefore, no choice restric-
tion is generated.

Table 2 presents all the choice restrictions generated by applying choice rule (46) 
to each combination of treatment pairs (t, t�) ∈ {t1, t2, t3}

2 and to each pair of instru-
mental values (z, z�) ∈ {z1, z2, z3, z4}

2.

Generating the Response Matrix

The choice restrictions of Table 2 can be used to determine the set of admissible 
response-types that the response-vector S = [T(z1), T(z2), T(z3), T(z4)]

� can take. 
The first panel of Table 2 examines the case where T(z) = t1 for z ∈ {z1, z2, z3, z4} . 
The first restriction states that if T(z1) = t1 , then T(z2) = T(z3) = t1 . Given T(z1) = t1 , 
there are only three possible response-types that comply with this choice restric-
tion: s1 = [t1, t1, t1, t1]

� , s2 = [t1, t1, t1, t2]
� , and s3 = [t1, t1, t1, t3]

� . The second and 
third choice restrictions of Table 2 are subsumed by the first restriction. The fourth 
choice restriction implies that the only admissible response-type for which T(z4) = t1 
is s1 = [t1, t1, t1, t1]

�.
The second panel of Table  2 examines the case where T(z) = t2 for 

z ∈ {z1, z2, z3, z4} . The third panel examines the case where T(z) = t3 for 
z ∈ {z1, z2, z3, z4} . We apply the elimination analysis of the first panel to the second 
and third panels. There are only nine admissible response-types that comply with 
each of the 12 choice restrictions of Table 2. Those are displayed in the response 
matrix below:15

(47)

s1 s2 s3 s4 s5 s6 s7 s8 s9

Respose Matrix R =

⎡⎢⎢⎢⎣

t1 t1 t1 t2 t2 t2 t3 t3 t3
t1 t1 t1 t2 t2 t2 t1 t2 t3
t1 t1 t1 t1 t2 t3 t3 t3 t3
t1 t2 t3 t2 t2 t2 t3 t3 t3

⎤⎥⎥⎥⎦

z1
z2
z3
z4

15  Under no choice restrictions, each of the four counterfactual choices ( T(z1) , T(z2) , T(z3) , and T(z4) ) 
can take any of the three treatment values ( t1 , t2 , or t3 ). Thus, the total number of potential response-types 
is 81. The choice restrictions in Table 2 are able to eliminate 72 out of the 81 possible response-types. 
The nine response-types that survive this elimination process are displayed in (47).
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Identification and Estimation

Theorem T-2 uses the identification criteria in C-1 to recover all causal parameters that 
are identified.

Theorem T‑2  The response matrix  (47) enables the identification of the following 
causal parameters: 

1	 All response-type probabilities P(S = sj) ; j = 1,… , 9.
2	 The expectation (and distribution) of the following counterfactual outcomes:

Response-Types Treatment Choices

t1 t2 t3

Always-Takers E(Y(t1) ∣ S = s1) E(Y(t2) ∣ S = s5) E(Y(t3) ∣ S = s9)

Switchers E(Y(t1) ∣ S = s4) E(Y(t2) ∣ S = s2) E(Y(t3) ∣ S = s3)

E(Y(t1) ∣ S = s7) E(Y(t2) ∣ S = s8) E(Y(t3) ∣ S = s6)

Partially Identified E(Y(t1) ∣ S ∈ {s2, s3}) E(Y(t2) ∣ S ∈ {s4, s6}) E(Y(t3) ∣ S ∈ {s7, s8})

Proof  See Appendix A.5. 	�  ◻

The response matrix  (47) enables the researcher to use well-known econometric 
methods to evaluate causal effects. For instance, the first row ( z1 ) and the last row ( z4 ) 
of the response matrix  (47) differ for two response-types: s2 and s3 take the value t1 
for z1 and the values t2 and t3 for z4 , respectively. It is easy to show that the 2SLS esti-
mator that uses the t1-indicator Dtt

= �[T = t1] as the treatment and employs only the 
IV-values z1 and z4 evaluates the causal effect of choosing t1 versus not choosing t1 for 
response-types s2 and s3:

where Y(t̄1) stands for the counterfactual outcome of not choosing t1:

We can make the same analogy for the 2SLS that uses the indicator Dt3
 for treat-

ment and employs data from z1 and z2 . The 2SLS estimator evaluates the causal 
effect of choosing t3 versus not choosing t3 for response-types s

7
 and s

8
 ; that is, 

(48)

E
(
Y ∣ Z = z1

)
− E

(
Y ∣ Z = z4

)

P
(
T = t1 ∣ Z = z1

)
− P

(
T = t1 ∣ Z = z1

) = E
(
Y(t1) − Y(t̄1) ∣ S ∈ {s2, s3}

)
,

(49)

E(Y(t̄1) ∣ S ∈ {s2, s3})

=
E
(
Y(t2) ∣ S = s2

)
P(S = s2) + E

(
Y(t3) ∣ S = s3

)
P(S = s3)

P(S = s2) + P(S = s3)
.
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E(Y(t3) − Y(t̄3) ∣ S ∈ {s7, s8}) . Finally, the 2SLS that uses the treatment indicator Dt3
 

and IV-values z3 and z4 evaluates the causal effect of choosing t2 versus not choosing 
t2 for response-types s4 and s6 ; namely, E(Y(t2) − Y(t̄2) ∣ S ∈ {s4, s6}).

Benefits of Orthogonal Designs

The benefits of orthogonal designs become more apparent when we compare their 
results to those of more traditional designs. The plethora of identification results 
generated by orthogonal designs stand in sharp contrast to the paucity of identifica-
tion results of standard designs. For instance, consider a conventional experimen-
tal design consisting of a control group with no incentives and three randomization 
groups dedicated solely to each treatment alternative. Specifically, we would have 
that z1 incentivizes participants toward t1 , z2 incentivizes participants toward t2 , z3 
incentivizes participants toward t3 , and z4 does not incentivize participants toward 
any choice. This incentive pattern is described by the incentive matrix L in (50).

 
We apply the same approach used to examine the orthogonal design of incen-

tive matrix  (45) to the traditional design of incentive matrix  (50). Table  3 pre-
sents all the choice restrictions generated by applying the choice rule (46) to each 

(50)

t1 t2 t3

Traditional Design L =

⎡⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

0 0 0

⎤⎥⎥⎥⎦

z1
z2
z3
z4

Table 3   Choice Restrictions Generated by the Traditional Incentive Matrix (50)

This table presents all the choice restrictions generated by applying the choice rule (46) to each com-
bination of choices (t, t�) ∈ {t1, t2, t3} and instrumental values (z, z�) ∈ {z1, z2, z3, z4} of the incentive 
matrix (50)

1 T�(z1) = t1 ⇒ No Restriction
2 T�(z2) = t1 ⇒ T�(z1) ∉ {t2, t3} and T�(z3) ≠ t2 and T�(z4) ∉ {t2, t3}

3 T�(z3) = t1 ⇒ T�(z1) ∉ {t2, t3} and T�(z2) ≠ t3 and T�(z4) ∉ {t2, t3}

4 T�(z4) = t1 ⇒ T�(z1) ∉ {t2, t3} and T�(z2) ≠ t3 and T�(z3) ≠ t2

5 T�(z1) = t2 ⇒ T�(z2) ∉ {t1, t3} and T�(z3) ≠ t1 and T�(z4) ∉ {t1, t3}

6 T�(z2) = t2 ⇒ No Restriction
7 T�(z3) = t2 ⇒ T�(z1) ≠ t3 and T�(z2) ∉ {t1, t3} and T�(z4) ∉ {t1, t3}

8 T�(z4) = t2 ⇒ T�(z1) ≠ t3 and T�(z2) ∉ {t1, t3} and T�(z3) ≠ t1

9 T�(z1) = t3 ⇒ T�(z2) ≠ t1 and T�(z3) ∉ {t1, t2} and T�(z4) ∉ {t1, t2}

10 T�(z2) = t3 ⇒ T�(z1) ≠ t2 and T�(z3) ∉ {t1, t2} and T�(z4) ∉ {t1, t2}

11 T�(z3) = t3 ⇒ No Restriction
12 T�(z4) = t3 ⇒ T�(z1) ≠ t2 and T�(z2) ≠ t1 and T�(z3) ∉ {t1, t2}
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combination of treatment pairs (t, t�) ∈ {t1, t2, t3}
2 and to each pair of instrumental 

values (z, z�) ∈ {z1, z2, z3, z4}
2 of incentive matrix (50).

The choice restrictions of Table 3 eliminate 69 out of the 81 possible response-
types. The 12 admissible response-types that comply with all the choice restrictions 
in Table 3 are presented in the response matrix below: 

Table 4 presents all the response-type probabilities and counterfactual outcomes 
that are identified by the response matrix (51). Response matrix (51) does not gener-
ate a single point-identified response-type probability. The matrix does not gener-
ate any point-identified counterfactual outcomes either. By choosing an orthogonal 
design for the incentive matrix, we secure the identification of causal parameters. 
Using a traditional design, we do not.

Appendix B applies our analysis to the study of Latin squares. We refer to Pinto 
and Navjeevan (2022)16 for further discussion on how economic incentives shape 
choice restrictions in the IV model with multiple choices and heterogeneous agents.

(51)

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

R =

⎡⎢⎢⎢⎣

t1 t1 t1 t1 t1 t1 t1 t1 t2 t2 t3 t3
t1 t1 t1 t2 t2 t2 t2 t3 t2 t2 t2 t3
t1 t3 t2 t2 t3 t3 t3 t3 t2 t3 t3 t3
t1 t1 t1 t2 t1 t2 t3 t3 t2 t2 t3 t3

⎤⎥⎥⎥⎦

z1
z2
z3
z4

Table 4   Causal Parameters Identified by Response Matrix (51)

This table presents all the causal parameters that are identified by response matrix (51)

1. The identified response-type probabilities are:

P(S ∈ {s1, s2}) P(S ∈ {s1, s3}) P(S ∈ {s2, s5}) P(S ∈ {s3, s5})

P(S ∈ {s4, s6}) P(S ∈ {s4, s9}) P(S ∈ {s6, s10}) P(S ∈ {s7, s8})

P(S ∈ {s7, s11}) P(S ∈ {s8, s12}) P(S ∈ {s9, s10}) P(S ∈ {s11, s12})

2. The expectation (and distribution) of the following counterfactual outcomes are identified:

t1 t2 t3

E (Y(t1) ∣ S ∈ {s1, s2}) E (Y(t2) ∣ S ∈ {s4, s6}) E (Y(t3) ∣ S ∈ {s7, s8})

E (Y(t1) ∣ S ∈ {s1, s3}) E (Y(t2) ∣ S ∈ {s4, s9}) E (Y(t3) ∣ S ∈ {s7, s11})

E (Y(t1) ∣ S ∈ {s2, s5}) E (Y(t2) ∣ S ∈ {s6, s10}) E (Y(t3) ∣ S ∈ {s8, s12})

E (Y(t1) ∣ S ∈ {s3, s5}) E (Y(t2) ∣ S ∈ {s9, s10}) E (Y(t3) ∣ S ∈ {s11, s12})

E (Y(t1) ∣ S ∈ {s4, s6, s7, s8}) E (Y(t2) ∣ S ∈ {s3, s5, s7, s11}) E (Y(t3) ∣ S ∈ {s2, s5, s6, s10})

16  Pinto, R., and Navjeevan, M. (2022). Ordered, unordered and minimal monotonicity criteria [Unpub-
lished manuscript]. Department of Economics, University of California, Los Angeles. https://​www.​rodri​
gopin​to.​net/_​files/​ugd/​95d94d_​1405f​5376a​e449a​9b07f​3bd3f​37db1​61.​pdf.

https://www.rodrigopinto.net/_files/ugd/95d94d_1405f5376ae449a9b07f3bd3f37db161.pdf
https://www.rodrigopinto.net/_files/ugd/95d94d_1405f5376ae449a9b07f3bd3f37db161.pdf
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Conclusion

This paper provides a novel application of Rao’s fundamental work on the design of 
experiments using orthogonal arrays. Rao’s seminal ideas are widely used to deter-
mine efficient arrangements of treatment factors in RCTs. His method is well suited 
for experiments where the analyst can reliably assign treatment factors to randomi-
zation units. Unfortunately, social scientists can seldom impose treatment statuses. 
Most social experiments are consequently plagued by noncompliance, which under-
mines the random assignment of treatment statuses.

We repurpose Rao’s original ideas to address the common challenges that non-
compliance generates. We use a novel framework whereby orthogonal arrays denote 
a pattern of choice incentives. We combine the IV framework of Heckman and 
Pinto (2018) with the recently developed econometric tools in Pinto (2021a, b),17 
and Pinto and Navjeevan (2022)18 to translate choice incentives into choice restric-
tions. These restrictions determine the set of economically justifiable counterfactual 
choices, which, in turn, enable the identification of causal parameters. We then show 
the benefits of using orthogonal arrays (rather than traditional approaches) for iden-
tifying causal parameters.

Our method broadly applies to IV models with multiple treatments, categorical 
instruments, and heterogeneous agents. We establish a tight link between the prob-
lem of the unobserved mixture of distributions and the identification of counter-
factuals. We explore the notion of a response matrix. The matrix contains all the 
necessary information to examine the nonparametric identification of model coun-
terfactuals. We apply mixture model methods to matrices to prove the identification 
of causal parameters.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s40953-​022-​00307-w.

Acknowledgements  This research was supported by a MERIT award from the Eunice Kennedy Shriver 
National Institutes of Child Health and Human Development under award number R37HD06572 and a 
grant from a private donor. A web appendix (https://​cehd.​uchic​ago.​edu/​causal-​models-​choice-​treat-​appx) 
contains proofs of propositions.

Funding   All funding sources are disclosed in the acknowledgments.

Declaration 

Conflict of interest  The authors declare that they have no competing interests that influenced the research 
or writing of this manuscript.

17  Pinto, R. (2021a). Beyond intention to treat: Using the incentives in moving to opportunity to iden-
tify neighborhood effects [Unpublished manuscript]. Department of Economics, University of California, 
Los Angeles. https://​www.​rodri​gopin​to.​net/_​files/​ugd/​95d94d_​90f49​1ec1a​fa45c​f8ef1​e9a77​346c9​a8.​pdf. 
Pinto, R. (2021b). Economics of monotonicity conditions [Unpublished manuscript]. Departmentof Eco-
nomics, University of California, Los Angeles.
18  Pinto, R., and Navjeevan, M. (2022). Ordered, unordered and minimal monotonicity criteria [Unpub-
lished manuscript]. Department of Economics, University of California, Los Angeles.  https://​www.​rodri​
gopin​to.​net/_​files/​ugd/​95d94d_​1405f​5376a​e449a​9b07f​3bd3f​37db1​61.​pdf.

https://doi.org/10.1007/s40953-022-00307-w
https://doi.org/10.1007/s40953-022-00307-w
https://cehd.uchicago.edu/causal-models-choice-treat-appx
https://www.rodrigopinto.net/_files/ugd/95d94d_90f491ec1afa45cf8ef1e9a77346c9a8.pdf
https://www.rodrigopinto.net/_files/ugd/95d94d_1405f5376ae449a9b07f3bd3f37db161.pdf
https://www.rodrigopinto.net/_files/ugd/95d94d_1405f5376ae449a9b07f3bd3f37db161.pdf


S29

1 3

Journal of Quantitative Economics (2022) 20 (Suppl 1):S7–S30	

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

Angrist, J.D., G.W. Imbens, and D. Rubin. 1996. Identification of causal effects using instrumental vari-
ables. Journal of the American Statistical Association 91 (434): 444–455.

Balke, A.A., and J. Pearl. 1993. Nonparametric bounds on causal effects from partial compliance data 
(Tech. Rep. No. R-199). University of California, Los Angeles.

Becker, G.S. 1962. Irrational behavior and economic theory. Journal of Political Economy 70: 1–13.
Frangakis, C.E., and D. Rubin. 2002. Principal stratification in causal inference. Biometrics 58 (1): 21–29.
Frisch, R. 1938. Autonomy of economic relations: Statistical versus theoretical relations in economic 

macrodynamics. Paper given at League of Nations. Reprinted in D.F. Hendry and M.S. Morgan 
(1995), The Foundations of Econometric Analysis, Cambridge University Press.

Haavelmo, T. 1943. The statistical implications of a system of simultaneous equations. Econometrica 11 
(1): 1–12.

Haavelmo, T. 1944. The probability approach in econometrics. Econometrica 12 (Supplement), iii–iv and 
1–115.

Heckman, J.J., and R.  Pinto. 2015. Causal analysis after Haavelmo. Econometric Theory 31 (1): 115–151.
Heckman, J.J., and R. Pinto. 2018. Unordered monotonicity. Econometrica 86 (1): 1–35.
Heckman, J.J., and R. Robb. 1985. Alternative methods for evaluating the impact of interventions: An 

overview. Journal of Econometrics 30 (1–2): 239–267.
Keane, M.P., and K.I. Wolpin. 1997. The career decisions of young men. Journal of Political Economy 

105 (3): 473–522.
Magnus, J., and H. Neudecker. 1999. Matrix differential calculus with applications in statistics and 

econometrics, 2nd ed. New York: Wiley.
McFadden, D. 1981. Econometric models of probabilistic choice. In Structural analysis of discrete data 

with econometric applications, ed. C. Manski and D. McFadden, 198–272. Cambridge, MA: MIT 
Press.

Pinto, R., and J.J. Heckman. 2021. The econometric model for causal policy analysis (Forthcoming, 
Annual Review of Economics).

Powell, J.L. 1994. Estimation of semiparametric models. In Handbook of econometrics, vol. 4, ed. R. 
Engle and D. McFadden, 2443–2521. Amsterdam: Elsevier.

Quandt, R.E. 1958. The estimation of the parameters of a linear regression system obeying two separate 
regimes. Journal of the American Statistical Association 53 (284): 873–880.

Quandt, R.E. 1972. A new approach to estimating switching regressions. Journal of the American Statis-
tical Association 67 (338): 306–310.

Rao, C.R. 1943. Researches in the theory of the design of experiments and distribution problems con-
nected with bivariate and multivariate populations. Thesis submitted to Calcutta University in lieu 
of 7th and 8th practical papers of the master’s examination in statistics.

Rao, C.R. 1946a. Difference sets and combinatorial arrangements derivable from finite geometries. Pro-
ceedings of the Indian National Science Academy 12 (3): 123–135.

Rao, C.R. 1946b. Hypercubes of strength ‘d’ leading to confounded designs in factorial experiments. Bul-
letin of the Calcutta Mathematical Society 38: 67–78. Retrieved from https://​ci.​nii.​ac.​jp/​naid/​10010​
345773/​en/.

Rao, C.R. 1947. Factorial experiments derivable from combinatorial arrangements of arrays. Supplement 
to the Journal of the Royal Statistical Society 9 (1): 128–139. https://​doi.​org/​10.​2307/​29835​76.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
ci.nii.ac.jp/naid/10010345773/en/
ci.nii.ac.jp/naid/10010345773/en/
https://doi.org/10.2307/2983576


S30	 Journal of Quantitative Economics (2022) 20 (Suppl 1):S7–S30

1 3

Rao, C.R. 1949. On a class of arrangements. Proceedings of the Edinburgh Mathematical Society 8 (3): 
119–125. https://​doi.​org/​10.​1017/​S0013​09150​00026​50.

Rao, B.L.S.P. 1992. Identifiability for mixtures of distributions. Identifiability in stochastic models: Char-
acterization of probability distributions, 183–228. Boston, MA: Academic Press.

Reiersöl, O. 1945. Confluence analysis by means of instrumental sets of variables. Arkiv för Matematik, 
Astronomi och Fysik 32A (4): 1–119.

Robins, J.M., and S. Greenland. 1992. Identifiability and exchangeability for direct and indirect effects. 
Epidemiology 3 (2): 143–155.

Rosenbaum, P.R., and D.B. Rubin. 1983. The central role of the propensity score in observational studies 
for causal effects. Biometrika 70 (1): 41–55.

Stinson, D. 2004. Combinatorial designs: constructions and analysis. Berlin: Springer.
Thaler, R.H. 2016. Misbehaving: the making of behavioral economics. New York: W. W. Norton & 

Company.
Theil, H. 1958. Economic forecasts and policy (No. 15). Amsterdam: North Holland Publishing 

Company.
Theil, H. 1971. Principles of econometrics. New York: Wiley.
Yakowitz, S.J., and J.D. Spragins. 1968. On the identifiability of finite mixtures. Annals of Mathematical 

Statistics 39 (1): 209–214.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

https://doi.org/10.1017/S0013091500002650

	Causal Inference of Social Experiments Using Orthogonal Designs
	Abstract
	Introduction
	Causal Model with Choice and Compliance
	Decision-Theoretic Foundation
	The Instrumental Variable Model
	Counterfactuals
	Causal Inference
	Controlling for Unobservables
	The Identification Problem

	Using IV to Control for Unobserved Variables
	The Response Vector

	Identification as a Mixture Problem
	Identification Criteria
	Understanding the Identification Challenge

	Using Rao’s Orthogonal Design to Address Identification Problems Arising from Noncompliance in Social Experiments
	Examining Choice Incentives Determined by an Orthogonal Array
	Choice Restrictions
	Generating the Response Matrix
	Identification and Estimation

	Benefits of Orthogonal Designs

	Conclusion
	Acknowledgements 
	References




