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1. Introduction 

Machine learning methods have proved useful in fore-

casting problems with huge numbers of predictor vari-

ables. High-dimensional prediction problems of this kind

are faced not only by data scientists studying data as

outside observers, but also by economic decision-makers
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in the marketplace. Many forward-looking economic de- 

cisions require predictions for which large numbers of 

variables could potentially be relevant, but the exact re- 

lationship between predictors and forecast target is un- 

known and must be learned from observed data. In this 

paper, we argue that to understand market outcomes 

in such settings, it is important to take into account 

the high-dimensional nature of decision-makers’ prediction 

problem. 

We demonstrate this in an asset-pricing setting. We 

show that properties of asset prices are strongly affected 

by the dimensionality of investors’ prediction problem. 

Conventional notions of how to test market efficiency and 

how to interpret pricing anomalies break down in the 

high-dimensional case. 

To price risky assets such as stocks, investors must fore- 

cast the future cash flows generated by these assets. In 

our model, cash-flow growth rates of a cross-section of N

firms are a linear function of J firm characteristics that are 

fixed over time. Investors are Bayesian, homogeneous, and 

risk neutral; they price stocks based on the predictive dis- 
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tribution of cash flows. Realized asset returns in this set-

ting are simply equal to investors’ forecast errors. If in-

vestors knew the coefficients of the predictive model, they

could form expectations of cash-flow growth, and hence

price assets, in such a way that returns would not be pre-

dictable in the cross-section. This is the conventional ra-

tional expectations (RE) equilibrium that is the founda-

tion for typical market efficiency tests. Similarly, if J is

small relative to N, investors could estimate the parameters

of their cash-flow forecasting model with great precision,

leading to asset prices that are close to those in the RE

equilibrium. 

In reality, however, investors face a myriad of poten-

tial predictor variables that could be relevant in construct-

ing such forecasts. In other words, J is not small rela-

tive to N. As technology has improved, the set of available

and potentially valuation-relevant predictor variables has

expanded enormously over time. Textual analysis, satel-

lite imagery, social media data, and many other new data

sources yield a wealth of information. But in order to use

these sources of information in a forecasting model, in-

vestors must estimate the relation between these signals

and future cash flows. This is a high-dimensional learning

problem. The number of potential predictor variables could

easily surpass the number of assets whose cash flow data

is available to estimate this relation. 

Machine learning methods handle this issue by im-

posing some regularization on the estimation, for exam-

ple by shrinking parameter estimates towards a fixed tar-

get or by searching for a sparse model representation that

includes only a small subset of variables from a much

larger set of potential predictors. With the goal of optimiz-

ing out-of-sample forecasting performance, regularization

lets the learner trade off the costs of downweighting cer-

tain pieces of information against the benefit of reduced

parameter-estimation error. In a Bayesian interpretation,

shrinkage reflects informative prior beliefs: when forecast-

ers know, based on economic plausibility considerations,

that forecasting model parameters cannot have arbitrar-

ily large magnitudes, their posterior beliefs are shrunk to-

wards the prior mean. 

Shrinkage ameliorates, but does not eliminate, the ef-

fects of parameter uncertainty on asset prices in the

high-dimensional case. Relative to the RE equilibrium, as-

set prices are distorted by two components. First, noise

in the past cash-flow growth observations that investors

learn from will have, by chance, some correlation with

the J predictor variables. This induces error in investors’

parameter estimates, and hence an asset price distor-

tion, that is correlated with the J predictor variables.

Shrinkage downweights this estimation error component,

but it also gives rise to a second distortion compo-

nent because shrinkage implies underweighting the pre-

dictive information in the J predictors. Naturally, this sec-

ond component, too, is correlated with the J predictor

variables. 

To stack the deck against return predictability, we en-

dow investors with prior beliefs that are objectively cor-

rect in the sense that the coefficients of the cash flow–

generating model are drawn from this prior distribution.

Investors also know that this model is linear. With this ob-
155 
jective prior, the optimal amount of shrinkage exactly bal- 

ances the two components in such a way that investors’ 

forecast errors, and hence also asset returns, are unpre- 

dictable out-of-sample. 

The fact that returns are not predictable out-of-sample, 

however, does not imply that there is no in-sample pre- 

dictability. An econometrician conducting an in-sample 

predictability test uses data that had not been available 

to investors in real time when they priced assets. In an 

RE setting, this would not matter, because investors would 

already have perfect knowledge of model parameters. Ap- 

proximately, the same would be true in a low-dimensional 

setting with small J and large N, where investors would be 

able to estimate forecasting-model parameters with high 

precision. But in a high-dimensional setting, the econome- 

trician’s ability to see data realized ex post, after investors’ 

pricing decisions are made, gives her a substantial advan- 

tage. 

To show this, we consider an econometrician who col- 

lects asset price data from our model economy ex post and 

runs in-sample regressions to test whether the J firm char- 

acteristics cross-sectionally predict returns. When J is van- 

ishing in size relative to N, there is almost no predictabil- 

ity: with N → ∞ and J fixed, the predictability test would 

reject the null with test size close to the chosen signif- 

icance level (e.g., 0.05). In contrast, in high-dimensional 

asymptotics, where N, J → ∞ jointly, with their ratio J/N

converging to a fixed number, the econometrician would 

reject the no-predictability null hypothesis, in the limit, 

with probability one. In simulations, we show that these 

high-dimensional asymptotic results are a good approx- 

imation for the case of finite N with J comparable in 

size to N. We obtain rejection probabilities close to one 

in these simulations, too. Importantly, the high rejection 

rates in-sample tests are not caused by distortions in the 

sampling properties of the econometrician’s test statis- 

tics. Instead, the high rejection rates correctly reflect the 

fact that equilibrium asset prices contain in-sample pre- 

dictable components that are large in a high-dimensional 

setting. 

The situation is different for out-of-sample tests. In 

our model economy, a portfolio formed based on the 

econometrician’s predictive regression estimates up to pe- 

riod t , with positive weights for stocks with positive pre- 

dicted returns and negative weights for stocks with neg- 

ative expected returns, has an average return of zero 

in the subsequent period t + 1 . In other words, returns 

are not predictable out-of-sample. This is true, too, in 

the high-dimensional asymptotic case. Intuitively, since 

Bayesian investors optimally use information available to 

them and price assets such that returns are not pre- 

dictable under their predictive distribution, an econome- 

trician who is restricted to constructing return forecasts 

using only data that had been available to investors in 

real time is not able to predict returns out-of-sample 

either. 

These results illustrate forcefully that the economic 

content of the (semi-strong) market efficiency notion that 

prices “fully reflect” all public information ( Fama, 1970 ) is 

not clear in this high-dimensional setting, even though we 

abstract from the joint hypothesis problem by assuming 
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that investors are risk-neutral. 1 Does “fully reflect” mean

that investors know the parameters of the cash flow–

prediction model? Or does “fully reflect” mean that in-

vestors employ Bayesian updating when they learn from

data about these parameters? The null hypothesis in a

vast empirical literature in asset pricing, including return

predictability regressions, event studies, and asset-pricing

model estimation based on orthogonality conditions, is the

former version of the market efficiency hypothesis. Our re-

sults show that testing and rejecting this version has little

economic content in a high-dimensional setting. An appar-

ent rejection of market efficiency might simply represent

the unsurprising consequence of investors not having pre-

cise knowledge of the parameters of a data-generating pro-

cess that involves thousands of predictor variables. 

Empirical discoveries of new cross-sectional return pre-

dictors that are statistically significant according to con-

ventional in-sample tests are therefore less interesting in

a high-dimensional world. From the perspective of our

model, it is not surprising that the technology-driven ex-

plosion in the number of predictor variables available to

investors has coincided with an explosion in the number of

return predictors that are found significant in asset-pricing

studies ( Cochrane, 2011; Harvey et al., 2016 ). Even with-

out p-hacking, multiple testing, or data mining ( Lo and

MacKinlay, 1990; Harvey et al., 2016; Chordia et al., 2019 ),

evidence of cross-sectional return predictability from in-

sample regressions does not tell us much about the ex-

pected returns that investors perceived ex ante at the time

they priced assets. Thus, out-of-sample tests (such as those

in McLean and Pontiff, 2016 ) gain additional importance in

the age of Big Data. 

Researchers are often skeptical of out-of-sample tests.

In the case where a fixed underlying process is generating

returns (as would be the case in many RE models), in- and

out-of-sample methods test the same hypothesis, and in-

sample tests are more powerful because they use the avail-

able data to the fullest extent. As a consequence, it is not

clear why one would want to focus on out-of-sample tests

( Inoue and Kilian, 2005; Campbell and Thompson, 2008;

Cochrane, 2008; Hansen and Timmermann, 2015 ). In con-

trast, if investors face a high-dimensional learning prob-

lem, substantial in-sample predictability can coexist with

absence of out-of-sample predictability. In-sample and out-

of-sample tests examine fundamentally different hypothe-

ses in this case. This provides a clear motivation for out-

of-sample testing. 

We show that out-of-sample portfolio returns can iso-

late predictable components of returns that reflect risk

premia or behavioral biases. Unlike in-sample estimates,

the out-of-sample estimates are not distorted by investors’

learning-induced forecast errors. We also show that if the

econometrician applies shrinkage similar to ridge regres-

sion in the in-sample return prediction regression, with

the penalty hyperparameter estimated via cross-validation,

then the portfolio return based on these shrinkage es-
1 The joint hypothesis problem ( Fama, 1970 ) refers to the problem that 

the econometrician studying asset prices does not know the model that 

determines risk premia required by risk-averse investors. 

156 
timates can be equivalent to an out-of-sample portfo- 

lio return. Within our Bayesian learning setting, this re- 

sult therefore provides an economic interpretation of ap- 

proaches that use cross-validation ( Kozak et al., 2020 ) or 

closely related methods ( Chinco et al., 2021 ) to estimate 

prior beliefs for cross-sectional return prediction. 

We illustrate the different perspectives provided by in- 

and out-of-sample tests with an empirical example. In 

the cross-section of U.S. stocks, we consider each stock’s 

history of monthly simple and squared returns over the 

previous 120 months as a set of return predictors. Run- 

ning a ridge regression over a full five decade sample, the 

in-sample coefficient estimates pick up the most promi- 

nent past return-based anomalies in the literature, includ- 

ing momentum ( Jegadeesh and Titman, 1993; Novy-Marx, 

2012 ), long-term reversals ( DeBondt and Thaler, 1985 ), 

and momentum seasonality ( Heston and Sadka, 2008 ). In 

other words, there is substantial in-sample predictability. 

In terms of out-of-sample predictability, the picture looks 

very different. Using rolling regressions over 20-year win- 

dows to estimate prediction model coefficients and then 

using those to predict returns in subsequent periods, we 

find that predictability is generally much weaker out-of- 

sample than in-sample. Moreover, there is substantial de- 

cay over time. While some out-of-sample predictability ex- 

ists in the early decades of the sample, it is basically nil in 

recent years. This suggests that there may be little reason 

to seek risk-based or behavioral explanations of the cross- 

sectional predictability that shows up in the in-sample 

analysis. 

One potential explanation for the out-of-sample pre- 

dictability in the earlier parts of the sample may be that 

investors several decades ago were not able to process the 

information in each stock’s price history as effectively as 

investors today. One can think of this as bounded ratio- 

nality that induces excessive shrinkage or sparsity of in- 

vestors’ forecasting models, along the lines of Sims (2003) , 

Gabaix (2014) , and Molavi et al. (2020) . We show in our 

simulations that sparsity or shrinkage beyond the level 

called for by objectively correct Bayesian priors leads to 

positive out-of-sample return predictability. 

Overall, our results suggest that in-sample cross- 

sectional return predictability tests are ill-suited for un- 

covering return premia that require explanations based on 

priced risk exposures or behavioral biases. This is not to 

say that all of the documented patterns in the literature 

are explainable with learning and will not persist out-of- 

sample. But it is important to obtain other supporting evi- 

dence beyond in-sample predictability tests. If predictabil- 

ity associated with a predictor variable persists out-of- 

sample, if there is a compelling theoretical motivation, or 

if other types of data point to a risk or behavioral bias ex- 

planation (e.g., economic risk exposures, data on investor 

expectations), the case for a risk premium or a persistent 

behavioral bias is much stronger. 

The insight in our analysis that learning can induce 

in-sample return predictability relates to an earlier litera- 

ture that studies learning-induced return predictability in 

low-dimensional time-series settings with few return pre- 

dictors (e.g., Timmermann, 1993; Lewellen and Shanken, 

2002; Collin-Dufresne et al., 2016 ). These earlier time- 
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series analyses do not address the question of how learn-

ing affects asset prices and the properties of in- and out-

of-sample return predictability tests in a high-dimensional

cross-sectional setting. This is the focus of our paper. 

Our approach has antecedents elsewhere in the liter-

ature. Aragones et al. (2005) and Al-Najjar (2009) treat

decision-makers as statisticians who have to learn from

observed data in a non-Bayesian high-dimensional setting.

Their focus is on conditions under which disagreement be-

tween agents can persist in the long run. Klein (2019) and

Calvano et al. (2018) focus on strategic interaction of ma-

chine learning pricing algorithms in product markets. In-

vestors in our setting face a simpler learning problem

within a Bayesian linear framework and without strategic

interactions. Even in this simple setting, important pricing

implications emerge. 

All proofs are in the appendix. 

2. Bayesian pricing in a high-dimensional setting 

Consider an economy in discrete time, t ∈ { 1 , 2 , . . . } ,
with N assets. Each asset is associated with a vector of J

firm characteristics observable to investors that we collect

in the N × J matrix X . The assets pay dividends, collected

in the vector y t , whose growth �y t = y t − y t−1 is partly

predictable based on X : 

Assumption 1 . 

�y t = X g + e t , e t ∼ N(0 , �e ) , 

rank ( X ) = J, 
1 

NJ 
tr X 

′ X = 1 . (1)

The set of characteristics is potentially very large, but

for simplicity we assume J < N. It would be relatively

straightforward to extend the framework to allow for J ≥ N,

but the main points can be seen more clearly in the sim-

pler J < N setting. The set of characteristics in X exhausts

the set of variables that investors can condition on. Due to

technological change, this set could change as previously

unavailable predictors become available, so we will be con-

cerned with the behavior of prices for various values of J. 

The assumption that 1 
NJ tr X 

′ X = 1 is a normalization

that defines a natural scale for the characteristics. For ex-

ample, it holds if characteristics are scaled to have unit

norm (i.e., if 1 
N 

∑ N 
n =1 x 

2 
n j 

= 1 for every characteristic j), as

then 

1 

NJ 
tr X 

′ X = 

1 

J 

J ∑ 

j=1 

1 

N 

N ∑ 

n =1 

x 2 n j = 1 . 

We assume that the characteristics associated with a

firm are constant over time for simplicity. In reality, firms’

characteristics change. But as long as investors know the

firm’s characteristics at every point in time, one can ac-

commodate this in our setting by thinking of y t as a vector

of payoffs for hypothetical characteristics-constant firms.

We would have to reshuffle firms each period so that each

element of y t is always associated with the same charac-

teristics. 

We further make the following assumption: 
157 
Assumption 2 . Investors are risk-neutral and the interest 

rate is zero. 

By abstracting from risk premia, we intentionally make 

it easy for an econometrician to test market efficiency in 

our setting. With risk-neutral investors, there is no joint 

hypothesis problem due to unknown risk–pricing models. 

Yet, as we will show, interpretation of standard market ef- 

ficiency tests is still tricky. 

We focus on the pricing of one-period dividend strips 

so that p t represents the vector of prices, at time t , of 

claims to dividends paid at time t + 1 . We think of one 

period in this model as a long time span, say a decade, 

so that the errors in e t are actually the averages of the er- 

rors one would find by sampling at higher frequencies over 

many shorter subperiods. With this interpretation in mind, 

we can then think of the dividend strip payoff as a long- 

lived stock’s cash flows compressed into a single cash flow 

at the typical duration of a stock (e.g., perhaps a decade). 

The price vector is then equal to the vector of next- 

period expected dividends, 

p t = ̃

 E t y t+1 = y t + ̃

 E t �y t+1 = y t + ̃

 E t ( X g + e t+1 ) . 

This formulation encompasses a range of possible assump- 

tions about the process by which investors’ expectations ˜ E t [ ·] are formed. 

In a rational expectations model, for example, investors 

know g , so ˜ E t ( X g + e t+1 ) = X g . The dividend strip price is 

therefore p t = y t + X g , and realized price changes r t+1 = 

y t+1 − p t = �y t+1 − X g = e t+1 are unpredictable with X . 

This is the usual null hypothesis that underlies tests based 

on orthogonality conditions and Euler equations. 

However, we focus on the realistic case where investors 

do not know g . They therefore face a learning problem in 

pricing assets. They can learn about g by observing the re- 

alizations of { �y s } t 1 and the characteristics X . (We assume 

that investors know �e .) We then have ˜ E t ( X g + e t+1 ) = 

X ̃

 g t , where ˜ g t represents investors’ posterior mean of g at 

time t , after learning from historical data. 

If J is close to (or perhaps even larger than) N, run- 

ning an ordinary least squares (OLS) regression to estimate 

g would not give investors useful forecasts. For example, 

with J = N, a cross-sectional regression of �y t on X ex- 

actly fits �y t in sample. Then ̃

 E t ( X g + e t+1 ) = �y t so that 

p t = y t + �y t and r t+1 = �y t+1 − �y t . The forecast mean 

squared error (MSE) is then var ( e t+1 − e t ) , i.e., twice the 

variance of the truly unpredictable e t+1 . 

For comparison, the naive “random walk” forecast that 

sets E t �y t+1 = 0 would result in p t = y t and hence r t+1 = 

�y t+1 . In this case, the forecast MSE is var ( X g + e t+1 ) . If 

a relatively small component of cash-flow growth is pre- 

dictable, that is, if var ( X g ) 	 var e t+1 , then the random 

walk forecast MSE may be substantially lower than the OLS 

forecast MSE. 

2.1. Priors and posteriors 

The problem with least-squares regression forecasts is 

that the prior implicit in the least-squares estimator is 

economically unreasonable. The posterior mean equals the 

generalized least squares (GLS) estimator if investors’ prior 
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for g is diffuse. But a diffuse prior for g is not a plausible

assumption. Economic reasoning should lead investors to

realize that the amount of predictable variation in �y t+1

must be limited. It does not make economic sense for in-

vestors to believe that arbitrarily large values for g are just

as likely as values that give rise to moderate predictable

variation in �y t+1 . While they might not have very pre-

cise prior knowledge of g , it reasonable to assume that the

distribution representing investors’ prior beliefs about g is

concentrated around moderate values of g . 

We therefore make the following specification of prior

beliefs. 

Assumption 3 . Before seeing data, investors hold prior be-

liefs 

g ∼ N(0 , �g ) . 

That prior beliefs are centered around zero means that

investors a priori do not know which characteristics pre-

dict cash-flow growth and by how much. But they know

that magnitudes of g elements cannot be too big. Economic

restrictions on �g that restrict the likely magnitudes of g

elements will play an important role later on in our analy-

sis. 

Proposition 1 . After investors have observed dividend growth

in a single period, �y 1 , their posterior distribution of g is

g | �y 1 , X ∼ N( ̃ g 1 , D 1 ) , where 

˜ g 1 = D 1 d 1 , 

D 

−1 
1 = �−1 

g + X 

′ �−1 
e X , 

d 1 = X 

′ �−1 
e �y 1 . 

After observing data for t periods, the posterior mean is

˜ g t = D t d t and 

D 

−1 
t = �−1 

g + t X 

′ �−1 
e X , 

d t = t X 

′ �−1 
e �y t , 

where �y t = 

1 
t 

∑ t 
s =1 �y s . Therefore 

˜ g t = 

[ 
1 

t 
�−1 

g + X 

′ �−1 
e X 

] −1 

X 

′ �−1 
e �y t . (2)

The posterior mean 

˜ g 1 takes the form of a Tikhonov-

regularized (i.e., ridge) regression estimator, where the in-

verse of D 1 is “stabilized” by adding �−1 
g to X 

′ �−1 
e X . Thus

our Bayesian framework connects to a large literature in

machine learning in which Tikhonov regularization is used

to deal with high-dimensional prediction problems. For ex-

ample, see Shalev-Shwartz and Ben-David (2014) . 2 

We first simplify the setup by making 
2 To interpret the posterior mean in terms of standard regression esti- 

mators, we can use the Woodbury identity to write 

˜ g 1 = �g 

{ 
�g + 

(
X ′ �−1 

e X 
)−1 

} −1 

˜ g GLS, 1 

˜ g GLS, 1 = 

(
X ′ �−1 

e X 
)−1 

X ′ �−1 
e �y 1 . 

This shows that the posterior mean is a weighted average of the prior 

mean (zero) and the GLS regression estimator ˜ g GLS, 1 . 
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Assumption 4 . 

�e = I , 

�g = 

θ

J 
I , θ > 0 . 

Our results go through for a general (nonsingular) co- 

variance matrix �e , i.e., with a factor structure in residu- 

als, though at the cost of some extra notational complexity. 

By assuming �e = I , we are making the learning problem 

easy for investors. With uncorrelated residuals, investors 

achieve a given posterior precision with a smaller J than 

if residuals were correlated. 

By assuming that �g is proportional to the identity, we 

put all the predictor variables on an equal footing from the 

prior perspective; and it is essential that the variance of 

the elements of g should decline with J in order to con- 

sider sensible asymptotic limits. To see this, note that the 

covariance matrix of X g is X �g X 

′ , so the cross-sectional 

average prior variance of the predictable component of 

cash-flow growth satisfies 

1 

N 

N ∑ 

i =1 

(
X �g X 

′ )
ii 

( A 4) = 

θ

JN 

N ∑ 

i =1 

J ∑ 

j=1 

x 2 i j 

( A 1) = θ, (3) 

using Assumptions 1 and 4 . 

To understand (2) , it will be convenient to think in 

terms of the principal components of the data matrix X . 

Specifically, we form the eigendecomposition 

1 

N 

X 

′ X = Q �Q 

′ 
. (4) 

Here � is a diagonal matrix with the eigenvalues λ j > 0 

of 1 
N X 

′ X along its diagonal, and Q is an orthogonal ma- 

trix whose columns are the corresponding eigenvectors of 
1 
N X 

′ X . These columns are the principal components of X . 

(It is possible to eigendecompose X in this way because 
1 
N X 

′ X is symmetric and positive definite.) Lastly, the nor- 

malization tr X 

′ X = N J ( Assumption 1 ) implies that the av- 

erage eigenvalue equals one: 

1 

J 

J ∑ 

i =1 

λi = 

1 

J 
tr 

1 

N 

X 

′ X = 1 , (5) 

using the fact that the sum of the eigenvalues of a matrix 

equals its trace. 

Combining Assumption 4 with Eq. (2) , we obtain 

˜ g t = 

[ 
J 

θt 
I + X 

′ X 

] −1 

X 

′ �y t = �t ( X 

′ X ) −1 X 

′ �y t , (6) 

where 

�t = Q 

(
I + 

J 

Nθt 
�−1 

)−1 

Q 

′ (7) 

is a symmetric matrix. The posterior mean 

˜ g t shrinks the 

naive OLS estimate (from a regression of �y t onto the 

columns of X ) along the principal components. Shrink- 

age is a consequence of the informative prior for g . The 

prior’s influence on the posterior is stronger if the ob- 

served data is less informative relative to the prior. To see 

explicitly what the degree of shrinkage depends on, note 
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3 See, for example, Anatolyev (2012) and Dobriban and Wa- 

ger (2018) for recent examples from the econometrics and statistics 

literature on high-dimensional regression that use this type of asymptotic 

analysis. This literature focuses on the asymptotic properties of esti- 

mators and statistical tests given an underlying data-generating model 

that stays fixed as N and J change. In contrast, in our case the nature of 

investors’ learning problem changes as N and J change, and hence the 

properties of the data that the econometrician analyzes change as well. 
4 Given our assumption that �e = I , OLS and GLS coincide. The econo- 

metrician could also use shrinkage methods like ridge regression, effec- 

tively imposing a prior that the coefficients in the return predictability 

regression cannot be too big. To the extent that the implied prior distri- 

bution of the coefficients is roughly in line with the true distribution of 

the coefficients, using such methods would strengthen the in-sample re- 

turn predictability. We do not show formal results for this case, but we 

have explored the issue in simulations. 
that 

(
I + 

J 
Nθt 

�−1 
)−1 

is diagonal with elements 

λ j 

λ j + 

J 
Nθt 

along its diagonal. Thus, shrinkage is strong if t or θ are

small, or J/N is large, or along principal components with

small eigenvalues. 

We are now in a position to characterize the behavior

of realized returns in equilibrium. 

Proposition 2 . With assets priced based on ˜ g t , realized returns

are 

r t+1 = y t+1 − p t = X ( I − �t ) g − X �t ( X 

′ X ) −1 X 

′ ē t + e t+1 , 

(8)

where ē t = 

1 
t 

∑ t 
s =1 e s . Hence expected returns satisfy E r t+1 =

0 , and the covariance matrix satisfies 

E r t+1 r 
′ 
t+1 = 

θ

J 
X ( I − �t ) X 

′ + I . 

Realized returns thus have three components. The first

term on the right-hand side of (8) reflects the effect of

“underreaction,” due to shrinkage, to the fundamental in-

formation in X . If investors had an uninformative prior

( θ → ∞ and hence �t → I ) as in many conventional low-

dimensional Bayesian learning models, this term would not

be present. But as we have argued, such an uninformative

prior would imply that investors entertain an unreasonable

amount of predictable variation in dividend growth. Under

investors’ informed prior beliefs, this part is still zero in

expectation because the prior mean of g is zero; but for a

given draw of g that generates the data an econometrician

would study, it is not zero. 

The second term represents the effect of noise on in-

vestors’ posterior mean. To the extent that the unpre-

dictable shocks in ē t in a given sample line up, by chance,

with columns of X , this induces estimation error that tilts

investors’ cash flow–growth forecast away from X g . Shrink-

age via �t reduces this component, at the cost of generat-

ing the first term. Under Bayesian learning, �t optimally

trades off the pricing error arising from these two compo-

nents. 

The third term is the unpredictable shock e t+1 . In the

rational expectations case where g is known to investors,

the realized return would simply be equal to e t+1 and the

first two terms would not exist. 

In the Bayesian learning case, however, the first two

terms are not zero, and, as a consequence, returns con-

tain highly persistent components correlated with the

columns of X . Even though E r t+1 = 0 when we integrate

over the distribution of g under investors’ prior beliefs in

Proposition 2 , the expected returns are not zero condi-

tional on a given draw of g and ē t . Unconditionally, returns

are therefore more volatile, in the sense that E r t+1 r 
′ 
t+1 − I

is positive definite (so that every asset and every portfo-

lio of assets have higher volatility than they would in the

rational expectations case in which, by Assumption 4 , the

covariance matrix equals I ). As we now show, the presence

of these components may induce certain forms of return

predictability. 
159 
3. Asymptotic analysis 

We now analyze the properties of asset prices in high- 

dimensional asymptotic analysis when N, J → ∞ , where 

J/N → ψ > 0 , where ψ is a fixed number. 3 This differs 

from the usual low-dimensional large N , fixed J (or large T , 

fixed N, and fixed J) asymptotics that underlie most econo- 

metric methods in asset pricing. The high-dimensional 

asymptotics are intended to provide a tractable approxima- 

tion for the case where J and N are finite and J is not small 

relative to N (just as conventional large N –fixed J asymp- 

totics provide an approximation for the small J/N case). 

3.1. In-sample predictability 

We consider an econometrician who studies these re- 

alized returns with the usual tools of frequentist statistics. 

The econometrician looks for return predictability by re- 

gressing r t+1 on the variables in X using OLS. 4 By allowing 

the econometrician to see all the predictor variables used 

by investors, we make things as easy as possible for the 

econometrician. In the Online Appendix, we modify our 

main results to allow the econometrician to see only a sub- 

set of the investors’ predictors, and show that this modifi- 

cation does not affect our main results in any substantive 

way. 

As the number of predictor variables increases, J → ∞ , 

we are potentially in the realm of Big Data. But the mere 

fact that empiricists have access to a lot of data is not 

enough, as some of the data could be (asymptotically) re- 

dundant. Our next assumption can therefore be thought of 

as formalizing the notion of a Big Data environment. 

Assumption 5 (Big Data). The eigenvalues λ j of 1 
N X 

′ X sat- 

isfy λ j > ε for all j, where ε > 0 is a uniform constant as 

N → ∞ . 

To understand this assumption, note that if X 

′ X has 

eigenvalues that are very close to zero, then the columns 

of X are roughly collinear. To find a linear combination 

v ∈ R 

J of columns of X with the property that X v is small 

(where v is a unit vector, v ′ v = 1 ), we can choose v to be 

a unit eigenvector of X 

′ X with minimal eigenvalue λmin 

so that ( X v ) ′ ( X v ) = λmin ≈ 0 . Thus if there are eigenvalues 

close to zero, then some characteristics are approximately 

spanned by other characteristics. 
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We emphasize, however, that even if a small number of

principal components capture much of the variation in the

data, it does not necessarily follow that the Big Data as-

sumption is violated. In Section 3.2 , we will exhibit a nat-

ural benchmark case (namely, the case in which the char-

acteristics in X are drawn in an IID random way) in which

the assumption holds even though there are indeed a few

principal components that capture much of the variation

(and many more that contribute relatively little variation).

It is ultimately an empirical question whether we live in a

Big Data world in the sense of Assumption 5 . As we will

now show, the qualitative properties of standard econo-

metric tests are starkly different depending on whether or

not the assumption holds. 

The econometrician regresses r t+1 on X , obtaining a

vector of cross-sectional regression coefficients 

h t+1 = 

(
X 

′ X 

)−1 
X 

′ r t+1 . (9)

In our baseline asymptotic analysis, we focus on the case

in which the econometrician uses all characteristics jointly

as return predictors. The online appendix shows that we

obtain similar results in the case where the econometrician

only observes a subset of the firm characteristics known

to investors. Our simulations in Section 4 below also con-

sider the case where many econometricians analyze single-

predictor regressions. 

Following the logic of rational expectations economet-

rics, which assumes that investors price assets under

knowledge of g , the econometrician entertains r t+1 = e t+1

as the no-predictability null hypothesis. Given that the el-

ements of e t+1 are distributed N(0 , 1) , it would follow, un-

der this null, that 5 

√ 

N h t+1 ∼ N 

(
0 , N( X 

′ X ) −1 
)
. (10)

Hence, under the econometrician’s rational expectations

null hypothesis, we would have 

h 

′ 
t+1 ( X 

′ X ) h t+1 ∼ χ2 
J . (11)

As we want to characterize the properties of the econo-

metrician’s test under asymptotics where N, J → ∞ and

J/N → ψ > 0 , it is more convenient to let the econometri-

cian consider a scaled version of this test statistic: 

T re ≡
h 

′ 
t+1 X 

′ X h t+1 − J √ 

2 J 
. (12)

Under the econometrician’s rational expectations null, we

would have, asymptotically, 

T re 
d −→ N ( 0 , 1 ) as N, J → ∞ , J/N → ψ > 0 . (13)

But the actual asymptotic distribution of T re is influ-

enced by the components of returns involving ē t and g

in (8) . These components alter the asymptotic distribution
5 Recall that we assume �e = I ( Assumption 4 ). More generally, if the 

econometrician has to estimate �e , this can be done based on the re- 

gression residual ξt+1 = r t+1 − X h t+1 = 

[
I − X ( X ′ X ) −1 X ′ 

]
e t+1 , used to es- 

timate the variance as ( X ′ X ) −1 1 
N−J 

ξ
′ 
t+1 ξt+1 , which would estimate the 

variance consistently under conventional large- N , fixed- J . However, if the 

econometrician does not impose the null hypothesis h t+1 = 0 in this vari- 

ance estimation, the estimated variance is an additional source of test size 

distortions; see Anatolyev (2012) for more details. 

160 
and may lead the rejection probabilities of a test using 

N(0 , 1) critical values based on (13) , or χ2 critical values 

based on (11) , to differ from the nominal size of the test. 

Our first result characterizes the properties of this test 

statistic under the true model, according to which returns 

follow Eq. (8) . In this analysis, we assume that g is drawn 

from the prior distribution. This assumption is conservative 

in the sense that investors’ prior beliefs about the distribu- 

tion of g are objectively correct. If investors’ priors were 

to deviate from this distribution, this would be another 

source of return predictability. 

To assess the performance of the rational expectations 

econometrician’s test statistic in our setting, it is helpful to 

write 

�re = 

(
X 

′ X 

)−1 
and �b = E 

(
h t+1 h 

′ 
t+1 

)
for the covariance matrices of the predictive coefficient es- 

timates under the (incorrect) rational expectations null hy- 

pothesis and the true model, respectively. When returns 

are generated under the true model (8) , the rational expec- 

tations econometrician will use inappropriately small stan- 

dard errors, in the sense that �b �
−1 
re − I is positive defi- 

nite. 6 

The first two moments of the eigenvalues of �b �
−1 
re 

control the asymptotic behavior of T re . These eigenvalues 

( ζi,t ) can be written explicitly in terms of the eigenvalues 

( λ j ) of 1 
N X 

′ X as 

ζi,t = 1 + 

1 

t + 

J 
Nθλi 

. (14) 

We write the limiting mean and variance of the eigenval- 

ues as 

μ = lim 

J→∞ 

1 

J 

J ∑ 

i =1 

ζi,t and σ 2 = lim 

J→∞ 

1 

J 

J ∑ 

i =1 

ζ 2 
i,t − μ2 . 

By the “Big Data” Assumption 5 , we have 1 < μ < 2 and 

1 < 

√ 

μ2 + σ 2 < 2 for all t ≥ 1 . (Without the assumption, 

we would have μ = 1 and σ = 0 if λi → 0 and hence ζi,t → 

1 .) 

Proposition 3 . If returns are generated according to (8) , then 

in the large N, J limit 

h 

′ 
t+1 X 

′ X h t+1 −
∑ J 

i =1 
ζi,t √ 

2 

∑ J 
i =1 

ζ 2 
i,t 

d −→ N(0 , 1) . 

It follows that the test statistic T re satisfies 

T re √ 

μ2 + σ 2 
− μ − 1 √ 

2 

(
μ2 + σ 2 

)√ 

J 
d −→ N(0 , 1) 

where 1 < μ < 2 and 1 < 

√ 

μ2 + σ 2 < 2 . 

We can therefore think of T re as a multiple of a standard 

Normal random variable plus a term of order 
√ 

J : 

T re ≈
√ 

μ2 + σ 2 N(0 , 1) + 

μ − 1 √ 

2 

√ 

J . (15) 
6 As the proof of Proposition 3 shows, �b �
−1 
re − I = 

Nθ
J 

Q 
(
I + 

Nθt 
J 

�
)−1 

�Q ′ , where Q is orthogonal and � is diagonal with 

positive entries. It is therefore a symmetric matrix with positive eigen- 

values, and so is positive definite. 
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7 Then Assumption 1 holds asymptotically, as 1 
NJ 

tr X ′ X = 

1 
NJ 

∑ 

n, j x 
2 
n, j 

→ 

1 as N, J → ∞ by the strong law of large numbers. 
(For comparison, the rational expectations econometri-

cian thinks T re is asymptotically standard Normal, as in

Eq. (13) .) Thus the rejection probability tends rapidly to

one as N and J tend to infinity. 

These results apply as J tends to infinity with t held

finite. If we also allow t to tend to infinity, then agents

learn the model and μ shrinks toward 1; in this case,

Eq. (15) shows that the key question is whether μ tends

to 1 faster than J tends to infinity. Under the Big Data

Assumption 5 , we have μ − 1 > 

1 

t+ J 
Nθε 

, so the final term

in (15) will create problems for the econometrician if 
√ 

J

grows faster than t . Since one period in our analysis should

correspond to the time length of the return sample that

an econometrician might use in an asset-pricing test, the

length of one period should be at least a decade. There-

fore, t will typically be much smaller than 

√ 

J in cross-

sectional asset-pricing settings. An asymptotic analysis in

which 

√ 

J grows faster than t then likely provides a bet-

ter approximation for typical finite-sample properties than

one in which t grows faster. For this reason, we continue

to focus on the fixed- t case. 

Proposition 4 . In a test of return predictability based on the

rational expectations null (13) , we would have, for any critical

value c α and at any time t, 

P ( T re > c α) → 1 as N, J → ∞ , J/N → ψ. 

More precisely, for any fixed t > 0 , the probability that the

test fails to reject declines exponentially fast as N and J in-

crease, at a rate that is determined by μ, σ , and ψ : 

lim 

N→∞ 

− 1 

N 

log P ( T re < c α) = 

(μ − 1) 2 ψ 

4 

(
μ2 + σ 2 

) , (16)

for any critical value c α . 

Thus, when J is not small relative to N, in-sample

predictability tests lose their economic meaning, in the

sense that the usual interpretation of in-sample return pre-

dictability evidence is not warranted. The typical conclu-

sion from rejections of the no-predictability null in studies

of the cross-section of stock returns is that models of risk

premia or mispricing due to imperfectly rational investors

are needed to explain the evidence. Our model points to a

third possibility: investors are Bayesian, but in-sample re-

turn predictability arises even for large t because investors’

forecasting problem is high-dimensional. 

Instead of testing for predictability by studying the size

of coefficients in predictive regressions via h 

′ 
t+1 X 

′ X h t+1 ,

as above, we might imagine trying to construct a trading

strategy with weights proportional to in-sample predicted

returns, 

w IS,t = 

1 

N 

X h t+1 . 

As the predictive coefficients satisfy h t+1 = 

(
X 

′ X 

)−1 
X 

′ r t+1 ,

the return on the strategy is 

r ′ t+1 w IS,t = 

1 

N 

r ′ t+1 X h t+1 

= 

1 

N 

h 

′ 
t+1 X 

′ X h t+1 . 

Thus the two approaches are equivalent. 
161 
3.2. A benchmark example: X a random matrix 

With some additional assumptions on the matrix of 

firm characteristics X , we can explicitly calculate the limit 

moments that appear in our propositions. We can then see, 

for example, how these limit moments depend on ψ , the 

limiting ratio of the number of predictors, J, to the number 

of observations, N. 

Suppose that characteristics are determined at random, 

so that X has IID entries x i j with mean zero, unit vari- 

ance, and finite fourth moment. 7 Nature generates this ma- 

trix once before investors start learning, and it stays fixed 

thereafter. As before, investors know X , and it stays fixed 

when we imagine an econometrician repeatedly sampling 

data by rerunning the economy. 

We can use results from random matrix theory to 

characterize the distribution of the eigenvalues λi . In 

particular, the eigenvalue distribution converges to the 

Marchenko-Pastur distribution as N, J → ∞ with J/N = ψ . 

For ψ close to one, this distribution features substan- 

tial probability mass on eigenvalues close to zero, indi- 

cating that many of the columns of X are close to being 

collinear. Nonetheless, the results of Yin et al. (1988) and 

Bai and Yin (1993) ensure that all the eigenvalues lie in 

a bounded interval that does not contain the origin: λ j ∈ [(
1 −

√ 

ψ 

)2 

, 

(
1 + 

√ 

ψ 

)2 
]

for all j. Thus Assumption 5 is 

satisfied. 

Figure 1 shows histograms of the eigenvalue distribu- 

tions in examples with X drawn randomly with N(0 , 1) en- 

tries, setting N = 10 0 0 and J = 10 , 10 0, 50 0, and 90 0. Solid

red lines in the figures illustrate the limiting Marchenko- 

Pastur distribution for the eigenvalues λ j in each case; we 

also calculate the corresponding asymptotic distribution of 

the eigenvalues ζ j,t by change of variable, using Eq. (A.6) in 

the appendix. When ψ = J/N is close to one, there is con- 

siderable mass near zero, implying that there are many ap- 

proximately collinear relations between the columns of X . 

This is a realistic property that one would also find in ac- 

tual empirical data if one assembled a huge matrix of firm 

characteristics. 

Our next result characterizes the limiting cross- 

sectional mean, μ, and variance, σ 2 , of the distribution of 

the eigenvalues ζ j,t . 

Proposition 5 . The cross-sectional moments of ζ j,t satisfy 

μ = 1 + 

ψ + θt(ψ + 1) −
√ 

[ ψ + θt(ψ + 1) ] 
2 − 4 θ2 t 2 ψ 

2 θt 2 ψ 

(17) 

and 

σ 2 = 

θ2 t 2 ψ − ( θt + ψ ) 
2 

2 θ2 t 4 ψ 

2 

+ 

θtψ 

(
θ2 t 2 ( ψ − 2 ) − θtψ + ψ 

2 
)

+ ( θt + ψ ) 
3 

2 θ2 t 4 ψ 

2 
√ 

[ ψ + θt ( ψ + 1 ) ] 
2 − 4 θ2 t 2 ψ 

. (18) 



I.W.R. Martin and S. Nagel Journal of Financial Economics 145 (2022) 154–177 

Fig. 1. Histograms of eigenvalue distributions in examples with θ = 1 , t = 1 , N = 10 0 0 and J = 50 , 50 0 , 90 0 . The asymptotic distribution is shown as a solid 

line in each panel. 

 

 

 

 

 

 

 

 

 

 

 

This result allows explicit calculation of the limit mo-

ments that appear in Propositions 3 and 4 . For example,

Proposition 4 shows that the probability of rejecting the

null of no predictability declines exponentially fast as N

increases, and derives the rate of the exponential decay.

Proposition 5 can be used to derive an exact analytical ex-

pression for the rate in terms of the model primitives θ ,

ψ , and t . 

Figure 2 shows how the rate function (16) depends on

ψ for θ = 1 and t = 1 . For ψ > 0 . 4 , the rate is higher than

0.015, indicating that the probability of not rejecting the

null is on the order of exp (−0 . 015 N) , which is a tiny num-

ber even for relatively small cross-sections of, say, N ≥ 300 .
162 
3.3. (Absence of) out-of-sample return predictability 

The situation looks very different with regard to out-of- 

sample predictability. We now consider a trading strategy 

that holds stocks in period t + 1 with weights proportional 

to predicted returns based on regression coefficients h s +1 , 

r OOS,t+1 = w 

′ 
OOS,s +1 r t+1 , w OOS,s +1 = 

1 

N 

X h s +1 (19) 

where s  = t such that the trading strategy is out-of-sample 

in the sense that the returns used to obtain the coefficient 

estimates h s +1 do not overlap with the returns r t+1 used 

in the evaluation of this strategy. 
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Fig. 2. The rate function given in equation (16) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the forward out-of-sample case s < t , r OOS,t+1 is the

return on a trading strategy that would be implementable

at the end of period s + 1 based on the econometrician’s

regression coefficients at that time. We also analyze the

backward out-of-sample case where s > t . In this case,

r OOS,t+1 does not represent the return on a tradable strat-

egy, but it is still interesting for econometric evaluation

of cross-sectional return predictability where researchers

sometimes do go back in time and evaluate trading strate-

gies on new, previously unavailable historical data from

earlier time periods. 

We obtain the following result for the asymptotic dis-

tribution of r OOS,t+1 : 

Proposition 6 . If returns are generated according to (8) and

r OOS,t+1 is calculated as in (19) with s  = t, then 

E r OOS,t+1 = 0 , 

and, in the large N, J limit, 

r OOS,t+1 √ ∑ J 
i =1 

ζi,s ζi,t 

d −→ N(0 , 1) . 

In the forward prediction case t > s , using last period’s

estimated coefficients to form the portfolio, this is a nat-

ural result. Investors are Bayesian, so the econometrician

cannot “beat” investors in predicting returns as long as the

econometrician is put on the same footing as investors in

terms of the data that are available at the time of mak-

ing the prediction. Hence, the expected value of r OOS ,t+1 is

zero. 

That the result also applies backwards in time, with t <

s , is more surprising. The result suggests that the econo-

metrician could conduct backwards out-of-sample tests.

The fact that many cross-sectional asset-pricing anoma-

lies do not hold up in backwards out-of-sample tests

( Linnainmaa and Roberts, 2018 ) could therefore be a con-

sequence of investor learning, even without data-snooping

on the part of researchers who published the original

anomaly studies. 

While the forward result is likely a general property of

Bayesian learning (with objectively correct prior), the back-

wards result might be somewhat specific to the environ-

ment we have set up here (e.g., the assumption that cash-

flow growth is IID over time). To what extent one can gen-

eralize the backwards result is an interesting question for

future research. 

The absence of backwards out-of-sample predictability

is also interesting because it suggests that the common
163 
practice of using cross-validation for evaluating prediction 

models is justified in an environment like ours where in- 

vestors face a learning problem. Many recent papers in 

the emerging machine learning literature in empirical asset 

pricing use cross-validation (e.g., Feng et al., 2020; Kozak 

et al., 2020; Bryzgalova et al., 2019 ). In cross-validation, 

the data is partitioned repeatedly into estimation and val- 

idation samples. For example, several blocks of calendar 

years are used for model estimation, and other blocks are 

held for out-of-sample model validation. Then the blocks 

are switched and the procedure is repeated multiple times. 

The time ordering of blocks does not matter in this pro- 

cedure. Some validation blocks can therefore temporally 

precede some of the estimation blocks. This brings up 

the concern that cross-validation could pick up learning- 

induced in-sample predictability. Our backwards result in 

Proposition 6 suggests that this is not the case. Backwards 

prediction, forward prediction, and combinations of the 

two (as in cross-validation) are equivalent. Further below, 

we explore whether cross-validation approaches could also 

be useful in assessing the magnitude of out-of-sample pre- 

dictable cross-sectional variation in returns. 

While the result in Proposition 6 that out-of-sample 

trading strategies with weights based on return fore- 

casts have zero expected returns is straightforward, em- 

pirical testing of this prediction is not. The econome- 

trician could try to empirically approximate the asymp- 

totic standard deviation in the denominator of the ratio in 

Proposition 6 from the time-series standard deviation of 

the r OOS observations. As we suggested earlier, one could 

think of one period in this model as roughly a decade and 

could imagine the econometrician observing intra-period 

r OOS realizations that are sampled at higher frequency. 

Would a simple t-test that compares the estimated mean 

of intraperiod returns to the standard error calculated from 

intraperiod returns provide a valid test of the E r OOS,t+1 = 0 

hypothesis? 

Unfortunately, the answer is no. The reason is that the 

expectation in E r OOS,t+1 = 0 is unconditional in the sense 

that it integrates over the distribution of g . However, the 

econometrician only observes one sample for a given draw 

of g . Nature draws g before any data are generated, and 

the econometrician cannot rerun history for a different 

value of g . Moreover, if the econometrician starts sampling 

the out-of-sample strategy returns at the beginning of pe- 

riod t + 1 , the sample is also conditioned on the path of 

e 1 , . . . , e t . 

In this one sample available to the econometrician, the 

distribution of r OOS,t+1 has mean E 

[
r OOS,t+1 | g , e 1 , . . . , e t 

]
, 

which is generally not zero. In the same way, a sam- 

ple variance of r OOS,t+1 in this one sample would esti- 

mate var (r OOS,t+1 | g , e 1 , . . . , e t ) , not the unconditional vari- 

ance under the square root in the denominator of the ex- 

pression in Proposition 6 . As a consequence, a t-statistic 

based on this sample mean and variance would not yield 

a correctly sized test of the Bayesian learning null hypoth- 

esis. 

Heuristically, at least, there is a relatively simple solu- 

tion. Since E r OOS,t+1 = 0 , we have var (r OOS,t+1 ) = E r 2 
OOS,t+1 

. 

Moreover, E r 2 OOS,t+1 = EE [ r 2 OOS,t+1 | g , e 1 , . . . , e t ] and so 
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var (r OOS,t+1 ) = EE [ r 2 OOS,t+1 | g , e 1 , . . . , e t ] . Therefore, if the

econometrician uses the mean of squared intraperiod

returns rather than the sample variance of returns as

an estimate of var (r OOS,t+1 ) , this estimate is on average,

across samples with different g and e 1 , . . . , e t , equal to

the unconditional variance. The reason is that the mean

of squared returns captures the deviations of r OOS,t+1 from

zero due to E 

[
r OOS,t+1 | g , e 1 , . . . , e t 

]
 = 0 , while in a sam-

ple variance calculation these components are removed

through demeaning. 

3.4. Out-of-sample moment conditions for risk premia 

estimation 

In our model so far, we have abstracted from risk pre-

mia or the possibility that investors’ subjective beliefs may

deviate from the prescriptions of Bayesian updating with

objectively correct priors. Risk premia or belief distortions

would induce additional predictable components in asset

returns beyond those that we have (8) . And an empiricist

may want to estimate to what extent characteristics X are

associated with risk premia or belief distortions, while al-

lowing, at the same time, for the possibility that investors

may be learning about the predictive role of X for asset

cash flows. 

Suppose the characteristics are associated with a pre-

dictable component X γ for some vector γ that represents

risk premia (for brevity, we use the label “risk premia”

from now on, but with the understanding that nonzero el-

ements in γ could arise from belief distortions or frictions,

too). In this case, adding this component to the returns in

(8) , we get 

r t+1 = X γ + X ( I − �t ) g − X �t ( X 

′ X ) −1 X 

′ ē t + e t+1 . (20)

How can the econometrician estimate the risk premium

component X γ? Under RE, with the second and third term

on the right-hand side of (20) absent, the econometrician

could just regress r t+1 on X in an in-sample regression

and estimate X γ with the fitted value from this regres-

sion. But when investors are learning about g , this does

not work because the second and third terms are not zero

and are correlated with X . An OLS regression of r t+1 on X 

would be distorted by the presence of these terms. Along

the same lines as in tests of the no-predictability null that

we analyzed earlier, in-sample tests of hypotheses about

γ would be distorted by the presence of the learning-

induced components in returns. 

We can solve this problem by focusing on the out-of-

sample return r OOS,t+1 . Given the returns (20) and using

the results from Proposition 6 , it is straightforward to show

that 

1 

N 

γ ′ X 

′ X γ = E r OOS,t+1 . (21)

Therefore, the econometrician could estimate 1 
N γ

′ X 

′ X γ by

the sample analog of the expectation on the right-hand

side. This does not identify the risk premia associated with

individual characteristics, but it allows the econometrician

to estimate the overall contribution of risk premia to re-

turn predictability. 

Of course, statistical inference in this case runs into

the same problem that we discussed for the out-of-sample
164 
test in the previous subsection. Analogous to our earlier 

discussion, the econometrician could use squared intrape- 

riod realizations of r OOS,t+1 to estimate var (r OOS,t+1 ) . In this 

case, with risk premia components in returns, the squared 

returns would also incorporate the squared risk premia. 

As a consequence, E r 2 
OOS,t+1 

> var (r OOS,t+1 ) . Standard errors 

based on these estimates of var (r OOS,t+1 ) may therefore be 

somewhat conservative in the sense that they overstate the 

sampling variation on average. 

3.5. Comparison with cross-validated penalized regression 

Since the above estimation procedure amounts to look- 

ing for return components that are predictable out-of- 

sample, one may wonder whether penalized regression 

with penalty choice based on cross-validation could be an 

alternative route towards a suitable estimator of quantities 

like 1 
N γ

′ X 

′ X γ that provide an assessment of the magnitude 

of risk premia. As we show now, there is indeed a close 

connection between the estimator based on a sample ana- 

log of (21) and penalized regression with penalty choice 

based on cross-validation. 

Consider the penalized criterion for an in-sample re- 

gression in period t , 

b t = arg min 

b t 

[
( r t − X b t ) 

′ ( r t − X b t ) + ξb 

′ 
t X 

′ X b t 

]
(22) 

for a given penalty parameter ξ . This second term in this 

criterion penalizes parameter estimates b t that imply a 

large in-sample predictable component of returns, b ′ t X 

′ X b t , 

or, equivalently, a high return of the in-sample portfo- 

lio that invests with weights proportional to X b t . This 

penalty specification is closely related to the approach in 

Kozak et al. (2020) that estimates stochastic discount fac- 

tors with a maximum squared Sharpe ratio penalty. It is 

also similar to ridge regression, but with the difference 

that standard ridge regression would penalize simply the 

sum of squared coefficients b ′ t b t . 
The solution to the problem (22) is 

b t = 

1 

1 + ξ
h t , (23) 

or, in other words, simply the OLS regression coefficients 

shrunk towards zero by a scalar factor that depends on 

the penalty parameter ξ . Cross-validation then seeks the ξ
that minimizes the out-of-sample residual sum of squares, 

namely, 

ξ ∗ = arg min 

ξ

E 

[{ 

r t+1 − 1 

1 + ξ
X h s +1 

} ′ 

{ 

r t+1 − 1 

1 + ξ
X h s +1 

} ] 
. (24) 

Given the optimal ξ , we can then calculate a cross- 

validated portfolio return with weights based on the 

shrunk coefficients 1 
1+ ξ ∗ h s +1 : 

r CV,s +1 = w 

′ 
CV,s +1 r s +1 , w CV,s +1 = 

1 

1 + ξ ∗ X h s +1 . (25) 

This is an in-sample portfolio return where period s + 1 

returns are weighted based on regression coefficients es- 

timated from the same returns, but with shrinkage toward 

zero induced by 1 
1+ ξ ∗ . 
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8 For this analysis, they do not report percentiles at sufficient detail to 

calculate the interdecile spread, but they report means for quintile bins, 

and the spread between top and bottom quintile bin mean should corre- 

spond approximately to the interdecile range. 
Taking the first-order condition of problem (24) , and

comparing with the definition of r CV in (25) and r OOS in

(19) , one can see that it implies 

E r CV,s +1 = E r OOS,s +1 . (26)

Hence, even though r CV,s +1 is an in-sample portfolio re-

turn, the cross-validated ξ exerts the right amount of

shrinkage to remove the learning-induced in-sample pre-

dictable variation in returns and isolate γ ′ X 

′ X γ , just as

the out-of-sample portfolio return r OOS,t+1 does according

to (21) . 

Since penalization can be interpreted as shrinkage in-

duced by informative prior beliefs, we can interpret this

result as showing that the econometrician can use cross-

validation to empirically back out prior beliefs that remove

the tendency of in-sample regressions to overstate how

much return predictability there really is out-of-sample.

Within our Bayesian learning setting, this result therefore

provides an economic interpretation of approaches that

use cross-validation ( Kozak et al., 2020 ) or related meth-

ods ( Chinco et al., 2021 ) to estimate prior beliefs for cross-

sectional return prediction. 

In our empirical application below, we compare r OOS

with a slightly simplified version of r CV that is based on

a standard ridge regression, i.e., with penalty proportional

to b ′ t b t instead of b ′ t X 

′ X b t . 

4. Finite-sample analysis: simulations 

In this section, we report the results of finite-sample

simulations. These simulations provide some insight on the

extent to which the asymptotic results provide a good ap-

proximation in a setting with realistic J and N. We set

N = 10 0 0 and let J vary from 1 to close to 10 0 0. We draw

the elements of X from a standard Normal distribution. 

For the purpose of this numerical analysis, we also need

to set the parameter θ that pins down the share of pre-

dictable variation in cash-flow growth through �g = 

θ
J I .

What matters here is not the total level of cash-flow vari-

ance but rather the share that is predictable. For this rea-

son, we normalize, as before, �e = I . We then look for a

value of θ that yields a plausible amount of predictable

variation in cash-flow growth relative to this normalized

residual variance. 

Based on our data-generating process for cash-flow

growth in (1) , annualized growth rates over a horizon of

T periods are 

1 

T 

T ∑ 

t=1 

�y t = X g + 

1 

T 

T ∑ 

t=1 

e t . 

We now evaluate the share that is predictable, given

knowledge of g . This is an upper bound on the share that

investors learning about g may be able to predict. The an-

nualized variance of the predictable component (first term

on the right-hand side) is constant with respect to T , while

the variance of the residual component (second term on

the right-hand side) shrinks at the rate 1 /T . As we indi-

cated earlier, we think of one period in the model as rep-

resenting roughly one decade. In this case, at a horizon

of one decade, i.e., T = 1 , the variance of the forecastable
165 
component is 

1 

N 

E 

[
g ′ X 

′ X g 
]

= 

1 

N 

tr 
(
X 

′ X 

)θ

J 
≈ θ

so the ratio of forecastable to residual variance also equals 

θ . 

We can do a back-of-the-envelope calculation to com- 

pare this to the growth rate evidence for various revenue 

and profit measures in Chan et al. (2003) . When stocks are 

sorted based on IBES analysts’ forecasts (their Table IX), 

Chan et al. find an interdecile spread of slightly around ten 

percentage points (pp) for annualized growth rates over 

the next one, three, and five years. Extrapolating to ten 

years, we would have ten pp also at a ten-year horizon. 8 

When they sort stocks instead based on their ex post real- 

ized annualized growth rates over a one-year horizon, they 

find an interdecile range of around 50 pp. Assuming nor- 

mal distributions, these estimates imply a ratio of about 

0.04 of forecastable to residual variance at a one-year hori- 

zon. An IID data-generating process for cash flows, as in 

our model, would imply that the residual variance shrinks 

at rate 1 /T and hence the ratio of forecastable to residual 

variance at a ten-year horizon is 0.4. This share of fore- 

castable variance represents a lower bound, as analysts can 

predict only a less than full share of the total potentially 

predictable variance. For this reason, it seems reasonable 

to set the ratio of maximally predictable to residual vari- 

ance somewhat higher than 0.4 in our simulations. Accord- 

ingly, we set θ = 1 . 

4.1. Return prediction with many predictors 

We now simulate cash flows and, based on investors’ 

Bayesian updating and pricing, the returns on the N = 

10 0 0 assets. We then consider an econometrician who 

samples these returns ex post and runs regressions of r T +1 

on X after investors have learned about g for T peri- 

ods. Figure 3 a presents the (in-sample) adjusted R 2 from 

these regressions. As J increases towards N, the adjusted 

R 2 also increases; hence, returns become more predictable 

in-sample. If investors have learned for more periods, re- 

turn predicability gets weaker. 

Figure 3 b looks at the properties of a standard 

Wald test of the no-predictability null hypothesis, testing 

whether the coefficients on the J predictor variables are 

jointly equal to zero. The plot shows the rejection prob- 

abilities (actual size) from a χ2 –test based on the null 

distribution in (10) . The dotted line shows the nominal 

size of 5% that the test would have, asymptotically, if in- 

vestors priced assets under rational expectations with per- 

fect knowledge of g . The figure shows that the actual re- 

jection probabilities can be far higher than 5% . The rejec- 

tion probabilities go to one as J grows towards N. The in- 
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Fig. 3. In-sample return predictability tests. Based on cross-sectional regressions with N = 10 0 0 assets and J predictor variables, predicting the last return 

in a sample of size T + 1 and where investors have learned about g from a sample of size T . The test in panel (b) is a joint χ 2 –test using all J predictors. 

It has an asymptotic 5% rejection probability under the rational expectations null hypothesis (where investors know g ). The solid lines show the actual 

rejection probabilities when this test is applied in a setting where Bayesian investors with an objectively correct informative prior estimate g . 

 

 

 

 

 

crease is slower if investors have learned for more peri-

ods, but even with T = 4 , the rejection probability exceeds

90% when J > N/ 2 . Thus, the simulations confirm that the

asymptotic result of rejection probabilities going to one is,

indeed, a good approximation for the large J/N case with

finite N and J. 
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4.2. Return prediction with single predictors and multiple 

testing 

In our analysis so far, we assumed that the econome- 

trician runs a kitchen-sink regression using all variables in 

X as predictors. This may seem unrealistic, as individual 
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Fig. 4. In-sample return predictability tests with single predictors and correction for multiple testing. Based on J cross-sectional regression with N = 10 0 0 

assets and one out of J predictor variables in each regression, predicting the last return in a sample of size T + 1 , and where investors have learned about 

g from a sample of size T = 4 . Critical values are adjusted so that the probability that k of the J hypotheses are rejected would be 5% in the rational 

expectations case (where investors know g ). The solid lines show the actual rejection probabilities when this test is applied in a setting where Bayesian 

investors with an objectively correct informative prior estimate g . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

empirical studies often use individual predictors or small

subsets of the universe of predictors observable to the

econometrician. Researchers collectively examined a large

number of predictors, but not necessarily a large number

jointly in individual studies. However, as we show now, the

finding of excessive rejection of the no-predictability null

is not exclusive to the kitchen-sink setup. Similar conclu-

sions emerge if we consider the possibility that a collection

of individual researchers each examine single predictors. 

We now imagine that J econometricians, indexed by

j = 1 , 2 , . . . , J, run regressions of r t+1 on a single charac-

teristic x j (i.e., column j of X ) and each of them tests the

hypothesis H j that x j does not predict returns. How many

of them will reject the no-predictability null? Does high

dimensionality of investors’ learning problem lead to more

rejections? 

To obtain an interpretable benchmark, we apply a mul-

tiple testing adjustment in which we adjust critical values

using the approach of Guo and Romano (2007) such that

we control the k -familywise error rate ( k -FWER). Specifi-

cally, we adjust critical values such that the probability of

rejection of at least k of these J hypotheses would be equal

to 5%, i.e., 

k -FWER = P ( reject at least k hypotheses H j ) = 0 . 05 

if asset prices were generated under rational expectations.

We then look at actual probability of rejection of at least k

hypotheses when asset prices are generated under investor

learning. 

Figure 4 presents the results for several different val-

ues of k and T = 4 . As in the kitchen-sink regression case,

we see a general increase in rejection probabilities rela-
167 
tive to the RE benchmark value of 5% when J gets big- 

ger relative to N. For example, with k = 20 and J/N = 0 . 05 , 

the actual rejection probability is 25%, compared with a 

k -FWER–controlled rejection probability of 5% under RE. 

With J/N close to unity, the actual rejection probability 

rises to 80%, while it is still 5% under RE. Therefore, simi- 

lar to the kitchen-sink regression case, high dimensionality 

leads to likely rejections of the no-predictability null, even 

if econometricians correctly use a multiple-testing adjust- 

ment to evaluate their joint evidence from the J individual 

tests. 

5. Sparsity 

So far we have assumed a setting in which shrinkage of 

coefficients towards zero is the optimal way for investors 

to deal with the large number of cash-flow predictors. But 

investors do not impose sparsity (i.e., some coefficients 

of exactly zero) on the forecasting model. The absence of 

sparsity was a consequence of the normal prior distribu- 

tion of g . If, instead, investors’ prior is that the elements of 

g are drawn from a Laplace distribution and investors price 

assets based on the mode rather than the mean of the 

posterior distribution (i.e., a maximum-a-posteriori estima- 

tor), then asset prices reflect sparse cash flow forecasts in 

which some columns of X are multiplied with coefficients 

of zero. Their forecasts can then be represented as the fit- 

ted values from a Lasso regression ( Tibshirani, 1996 ). 

That investors use the posterior mode in pricing is a de- 

viation from the fully Bayesian framework. Our simulations 

will shed light on how much of a deviation this is in terms 
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9 Note that this would not mean that investors were irrational. Rational 

Bayesian reasoning does not require that prior beliefs be consistent with 

the true distribution of g , which would be unknown to investors. Exis- 

tence of out-of-sample return predictability evidence would be consistent 

not only with the bounded rationality explanation of excess shrinkage or 

sparsity, but also with a tight-prior explanation. Changes over time in 

out-of-sample predictability might allow us to disentangle the two. 
of how much additional return predictability results from

it. 

With a Laplace prior, elements g j are IID with the dis-

tribution 

f (g j ) = 

1 

2 b 
exp 

(
−| g j | 

b 

)
. 

The variance is 2 b 2 . To keep the variance the same as in

the normal prior case, we set 2 b 2 = 

θ
J . This Laplace dis-

tribution not only represents investors’ prior, but we now

also draw the elements of g in our simulations from this

distribution. So the prior is again objectively correct, as in

the normal prior case we considered earlier. 

Figure 5 shows that the results in the Laplace prior

case are extremely similar to those in Fig. 3 for the nor-

mal prior case. In terms of how in-sample predictability

strengthens with increasing J/N, it does not make much

difference whether investors shrink prediction model co-

efficients with or without sparsity. For the sake of brevity,

most of our results in the paper therefore focus on the nor-

mal prior case. 

6. Excess shrinkage or sparsity 

In our analysis up to this point, shrinkage or sparsity

was purely due to prior knowledge reflected in investors’

prior beliefs. Aside from such statistical optimality con-

siderations, there could be other reasons for investors to

shrink coefficients and impose sparsity on their forecast-

ing models. For example, if variables are costly to observe,

investors might prefer to discard a variable if it only of-

fers a weak signal about cash flows. Relative to the fric-

tionless Bayesian benchmark with objectively correct prior,

such a model would be excessively sparse, but the reduc-

tion in forecast performance may be justified by the cost

savings from model sparsity. Relatedly, Sims (2003) and

Gabaix (2014) show that shrinkage or sparsity can be used

to represent boundedly rational decision-making if atten-

tion to a variable generates an actual or psychological cost

(that shrinkage or sparsity helps avoid). 

Such variants of the model with excessive shrinkage

can still be mapped into a Bayesian updating scheme, but

the prior beliefs are concentrated more tightly around zero

than in the case with objectively correct prior (where the

prior distribution agrees with distribution that we draw

g from in generating the data). For this reason, we label

the benchmark case with objectively correct prior as DGP-

consistent shrinkage or sparsity. 

Figure 6 shows the consequences of excessive shrink-

age or sparsity for out-of-sample return predictability. In

all cases shown in the figure, the cash-flow data are gen-

erated, as before, with θ = 1 . However, investors’ prior be-

liefs are now based on a different value of θ . In the ex-

cessive shrinkage and sparsity cases, we let investors form

beliefs based on θ = 0 . 5 , which means that they have a

prior distribution for the elements of g that is more tightly

concentrated around zero than the actual distribution of g

that generates the data. For comparison, we also consider a

case where shrinkage is insufficient. In this case, investors

assume θ = 2 . This can be interpreted as investors having
168 
a lack of confidence, and, hence, excessively wide disper- 

sion, in their prior beliefs about g . In all cases, we show 

results for T = 4 , which means that investors have learned 

for four periods up to the beginning of the period in which 

we measure the return on the out-of-sample portfolio. 

The figure shows the out-of-sample return of a portfolio 

that weights assets by their predicted expected return as in 

(19) . Panel (a) shows the results in the normal prior/ridge 

regression case. As expected from Proposition 6 , the av- 

erage out-of-sample return in the DGP-consistent case is 

zero. In contrast, when shrinkage is excessive, investors 

end up downweighting too strongly the information in X 

that predicts cash flows. As a result, an econometrician 

sampling returns from this economy is able to forecast 

returns out-of-sample. And the effect gets stronger with 

higher J. Forming a portfolio that weights assets based on 

their estimated expected returns from predictive regres- 

sions on data up to time T earns a predictably positive re- 

turn in period T + 1 . 

Insufficient shrinkage also results in an out-of-sample 

average return that differs from zero, but the sign is neg- 

ative. This means that assets that would be predicted to 

have positive expected returns, based on the econome- 

trician’s predictive regression estimates from data up to 

time T , actually end up having negative returns in T + 1 

and vice versa. With insufficient shrinkage, the component 

−X �t 

(
X 

′ X 

)−1 
X 

′ ē t in the expression for r t+1 in (8) plays a 

bigger role than under DGP-consistent shrinkage. As a con- 

sequence, its negative covariance with the estimation error 

component X 

(
X 

′ X 

)−1 
X 

′ e t of the fitted value X h t from the 

predictive regression in (9) dominates, which means the 

forecasts based on X h t tend to have the wrong sign out- 

of-sample. 

As panel (b) shows, the results in the Laplace 

prior/lasso regression case are similar. One difference 

is that the average out-of-sample return in the DGP- 

consistent case is somewhat negative instead of zero. This 

is a consequence of the assumption that investors in this 

case use the mode of the posterior distribution of g (which 

induces sparsity) to price assets rather than the posterior 

mean (which would imply a forecasting model that is not 

sparse). 

The takeaway from all this is that out-of-sample return 

predictability evidence can help shed light on whether in- 

vestors apply excessive shrinkage or sparsity in their cash 

flow–forecasting models. For example, if actual or psycho- 

logical costs of complex models induce additional sparsity, 

this should show up in the data as out-of-sample pre- 

dictable returns. Similarly, if investors’ prior distribution of 

g assumed a distribution of coefficients that was too tightly 

concentrated around zero compared with the true distribu- 

tion that generated the data, this would show up as out-of- 

sample predictability. 9 
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Fig. 5. Lasso: in-sample return predictability tests. Based on cross-sectional regressions with N = 10 0 0 assets and J predictor variables, predicting the last 

return in a sample of size T + 1 and where investors have learned about g from a sample of size T . The test in panel (b) is a joint χ 2 –test using all J

predictors. It has an asymptotic 5% rejection probability under the rational expectations null hypothesis (where investors know g ). The solid lines show the 

actual rejection probabilities when this test is applied in a setting where investors estimate g (which is drawn from a Laplace distribution) with Lasso. 

 

 

 

 

 

 

This analysis also provides a perspective on the likely

effects of technological progress in data construction and

data analysis on the return predictability that is observed

in empirical analyses. Many studies of the cross-section of

stock returns use data that go back to time periods when

data availability and analysis were much more constrained
169 
than they are today. A researcher today can construct many 

variables (say, through automated textual analysis of cor- 

porate filings) that were inaccessible to investors until not 

very long ago. In this sense, the forecasting models that in- 

vestors used when they priced stocks several decades ago 

may have been excessively sparse relative to the model 
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Fig. 6. Out-of-sample portfolio returns when investors apply excess shrinkage or sparsity. Based on cross-sectional regressions with N = 10 0 0 assets and J

predictor variables, predicting the last return in a sample of size T + 1 , and where investors have learned about g from sample of size T = 4 . Cash-flow data 

are always generated with θ = 1 . In the DGP-consistent prior case, investors’ prior is based on θ = 1 . In the excess shrinkage (or sparsity) case, investors’ 

prior is based on θ = 0 . 5 . In the insufficient shrinkage (or sparsity) case, investors’ prior is based on θ = 2 . The DGP in all cases always features θ = 1 . 

 

 

 

 

 

 

 

that an empirical researcher could work with today. It is

to be expected, therefore, that a researcher today can con-

struct variables, or use combinations of large numbers of

variables, that predict returns in the earlier years of stock

return data sets, even in (pseudo-) out-of-sample tests in

which the researcher reconstructs investors’ learning pro-

cess, without taking into account the additional model

complexity constraints that investors faced in real time. 
170 
7. Empirical application: predicting stock returns with 

past returns 

To illustrate how our model provides an interpreta- 

tion of discrepancies between in-sample and out-of-sample 

stock return predictability, we look at an empirical applica- 

tion. The key prediction is that investor learning in a high- 

dimensional setting should lead to a substantial wedge 
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10 We compute the estimates using all but one year of the sample, we 

calculate the implied predicted returns in the year left out of the estima- 

tion, and we record the resulting R 2 in the left-out year. We then repeat 

with a different left-out year, again record the R 2 in the left-out years, and 

repeat until each year of the sample has been left out once. At the end, 

we average the R 2 across all left-out years, and we search for a penalty 

value that maximizes this cross-validated R 2 . 
between in-sample and out-of-sample predictability. The

contribution of risk premia, or mispricing induced by be-

havioral biases or frictions, to cross-sectional variation in

expected returns is revealed by out-of-sample portfolio re-

turns, not in-sample estimates. 

For this exercise, we seek a large set of predictor vari-

ables that were, at least in principle, consistently available

to investors over a long period of time. Many predictors

that are based on accounting variables do not satisfy this

criterion because they became available in Compustat data

only in later decades. Furthermore, to stay close to our

setting in the model where the econometrician studies a

given set of predictor variables only once, without speci-

fication searching and multiple testing, we do not want a

set of predictors that may already be the product of data

mining efforts by earlier researchers. For example, the set

of published predictors in the academic literature likely in-

cludes some that have been data mined ex post. To ad-

dress both concerns, we use each stock’s full price history

to generate our predictor variables. More precisely, we use

the monthly returns and monthly squared returns in the

past 120 months as predictors for the next month’s stock

return. Including squared returns allows the relation be-

tween past returns and future returns to be nonlinear. 

This price history was, at least in principle, available to

investors even in the early parts of the sample. This elim-

inates the possibility that return predictability could show

up ex post simply because a variable that we can construct

today was not available to investors in real time when they

priced stocks. Of course, the fact that the price history was

available in principle does not necessarily mean that in-

vestors throughout the sample always had the ability to

integrate all of these variables into their forecasting mod-

els. If they could not, we might find out-of-sample return

predictability in parts of the sample where technological

constraints may have prevented investors from doing so,

which would be consistent with our excess shrinkage re-

sults in the previous section. 

Focusing on price history–based predictors, without

preselecting particular subsets of them based on earlier

evidence of predictability, allows us to sidestep, for the

most part, the influence of earlier researchers’ data mining.

The only potential remaining problem is that our choice

of considering price history–based predictors as a class

could be influenced by existing evidence that subsets of

these seem to have predictive power (e.g., momentum,

long-run reversal). On the other hand, the class of price

history–based predictors would surely be a natural candi-

date even in absence of any existing evidence, given that

weak-form efficiency is the most basic market efficiency

notion ( Fama, 1970 ). 

A drawback of price history–based predictors is that

they do not perfectly map into our model. In our theo-

retical analysis, we worked with an exogenous cash-flow

predictor matrix X . In contrast, past returns are an equi-

librium outcome. One could, however, imagine an exten-

sion of the model in which cash flow–growth shocks could

have persistent components at various lags. In this case, in-

vestors’ set of potential cash-flow predictors would include

the history of past cash flow–growth shocks and lagged re-

turns would be correlated with these. In this sense, the
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distance from our model is not that big. In any case, the 

purpose of the empirical analysis is not to provide a for- 

mal test of the model but rather to illustrate, in a simple 

setting with a large number of predictors, the wedge be- 

tween in-sample and out-of-sample predictability. 

We use all U.S. stocks in the CRSP database except 

small stocks that have market capitalization below the 

20th NYSE percentile or a price lower than one dollar at 

the end of month t − 1 . To avoid picking up microstruc- 

ture related issues, we skip the most recent month in our 

construction of the set of predictor variables. Thus, we 

use simple and squared returns in months t − 2 to t − 120 

(i.e., a total of 238 predictor variables) to predict returns 

in month t in a panel regression. We demean the de- 

pendent variable and all explanatory variables month by 

month to focus purely on cross-sectional variation. In ad- 

dition, we cross-sectionally standardize all predictor vari- 

ables to unit standard deviation each month. We weight 

the observations each month such that the panel regres- 

sion gives equal weight to each month in the sample. 

As a first step, to demonstrate that a regression with 

shrinkage delivers meaningful estimates with such a large 

number of predictor variables, we examine an in-sample 

panel ridge regression to predict monthly returns from the 

beginning of 1971 until end of June 2019. We show that 

the ridge regression automatically recovers many promi- 

nent predictability patterns that have been documented in 

the existing literature for roughly this sample period or 

parts of it. We pick the penalty hyperparameter that de- 

termines the strength of shrinkage through leave-one-year- 

out cross-validation. 10 

Panel (a) in Fig. 7 presents the regression coefficients 

for each of the 119 simple return explanatory variables. It 

shows that a single ridge regression recovers several ma- 

jor anomalies related to past returns: the positive coeffi- 

cients up to lags of 12 months capture momentum as in 

Jegadeesh and Titman (1993) ; the plot also shows that con- 

tinuation of recent returns is concentrated in lags seven 

to 12, as pointed out in Novy-Marx (2012) ; the mostly 

negative coefficients for lags beyond 12 months reflect 

long-term reversals as in DeBondt and Thaler (1985) ; the 

positive coefficients at lags equal to multiples of 12 re- 

flect the momentum seasonality reported by Heston and 

Sadka (2008) . Panel (b) reports the regression coefficients 

for the 119 lagged squared returns. At shorter lags, there 

is no clear pattern. But at longer lags beyond lag 50, the 

coefficients are predominantly positive, indicating a posi- 

tive association of long-run lagged individual stock return 

volatility and future returns. 

Figure 8 presents three series of monthly portfolio 

returns based on different versions of these regressions 

within 20-year rolling windows. The in-sample portfolio 

return, r IS , is based on a single OLS regression within a 
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Fig. 7. Ridge regression coefficient estimates. 

 

 

 

 

 

 

 

 

 

given window. The portfolio weights are proportional to

the predicted returns based on the OLS estimates as in

(3.1). Note that the portfolio weights are not normalized

to a certain dollar amount long or short. To interpret the

magnitude without this normalization, recall that r IS is

equal to the in-sample explained return variation of the

OLS regression. So, as shown in the figure, r IS of around

0.006%, compared with a monthly cross-sectional return

variance of around 0.6%, means that the OLS R 2 is around
1%. 
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To illustrate the empirical gap between r IS and an out- 

of-sample portfolio return, the figure also plots r OOS . To 

construct out-of-sample portfolio returns, we run rolling 

OLS regressions in 20-year estimation windows. We use 

the OLS estimates h t of the window ending in month t to 

forecast returns in month t + 1 . Given the 20-year estima- 

tion window and the up to 10-year lag of the predictors, 

the first month in which we have a prediction is January 

1956, 30 years after the start of the CRSP database. We 

use the estimates h t to calculate the out-of-sample port- 



I.W.R. Martin and S. Nagel Journal of Financial Economics 145 (2022) 154–177 

Fig. 8. Rolling estimates of the risk premium/mispricing component of returns. The risk premium component γ ′ X ′ X γ is estimated by the out-of-sample 

portfolio return r OOS,t+1 = r ′ t+1 X h t . We obtain the OLS estimates h t from regressions of individual stock returns on lagged returns and lagged squared returns 

in backwards 20-year moving windows up to month t and use them to construct weights applied to month t + 1 returns. Stocks with market capitalization 

below the 20th NYSE percentile and lagged price lower than one dollar are excluded. The blue line in the figure shows r OOS,t+1 averaged in 10-year moving 

windows. The shared area indicates two–standard error bands. For comparison, the figure also shows the in-sample return based on cross-validated ridge 

regression estimates, r CV , and OLS estimates, r IS . (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

folio return in month t + 1 with weights proportional to

predicted returns as in (19) . The figure shows this out-of-

sample portfolio return averaged over 10-year moving win-

dows. 

As the figure shows, r IS is very stable across time and

reliably above zero. In contrast, the moving average of the

out-of-sample return r OOS is much lower and frequently

close to zero or below. The shaded area of the figure

shows two–standard error bands obtained from the mean

of squared monthly portfolio returns within the 10-year

moving windows, in line with our discussion following

Proposition 6 on estimation of var (r OOS,t+1 ) . Towards the

end of the sample, in the 10-year windows ending be-

tween 2014 and 2019, the out-of-sample portfolio return

has been less than two standard errors above zero. As we

noted in Section 3.4 , the average r OOS can be interpreted

as an estimate of γ ′ X 

′ X γ , the contribution of risk pre-

mia (or return premia induced by behavioral biases or fric-

tions) to cross-sectional variation in expected returns. The

big wedge between r IS and r OOS shown in this figure under-

scores the message from our model that in-sample cross-

sectional return predictability evidence is not a good mo-

tivation for seeking risk-based or behavioral economic ex-

planations. Much of the in-sample predictability here does

not carry over into out-of-sample predictability and hence

does not reflect risk premia demanded by investors ex ante

or persistent belief distortions. 

The figure also plots r CV , the in-sample return on a

portfolio with weights proportional to predicted returns

from rolling cross-validated ridge regression estimates. Re-

call that our result in (26) suggested E r = E r . This re-
OOS CV 
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sult was based on cross-validated shrinkage with a penalty 

b ′ t X 

′ X b t in (22) , while here we use standard ridge regres- 

sion shrinkage with a penalty on b ′ t b t . Nevertheless, as the 

figure shows, this equality approximately holds in the em- 

pirical data even with a somewhat different penalty spec- 

ification. Therefore, applying cross-validated ridge regres- 

sion shrinkage to the portfolio weights is a useful alterna- 

tive route to obtaining an estimate of γ ′ X 

′ X γ . 

There are a number of concerns one might have about 

this analysis. First, would it not be possible to pick, ex 

post, a much smaller number of lags of simple and/or 

squared returns that happen to do better, in-sample and in 

the (pseudo-) out-of-sample tests from the rolling regres- 

sions? This may well be true. But what would be the ex 

ante justification to pick those specific lags? Why not oth- 

ers? Pursuing this avenue would inevitably introduce data 

snooping and multiple testing concerns that cloud the in- 

terpretation of the evidence. As an example, consider that 

the literature on momentum has shifted from emphasizing 

the returns in months t − 2 to t − 12 , as in Jegadeesh and 

Titman (1993) , to highlighting returns in months t − 7 to 

t − 12 (Novy-Marx, 2012 ). It is not clear that one should 

seek deep economic reasons for in-sample predictability 

results that reflect such ex post data-driven specification 

changes. Simply including all lags up to a certain point and 

and letting the shrinkage take care of preventing overfit- 

ting minimizes this data-snooping problem. 

Second, out-of-sample tests may have low power to de- 

tect return predictability. This point has been made by 

Inoue and Kilian (2005) , Campbell and Thompson (2008) , 

and Hansen and Timmermann (2015) in a time-series set- 
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ting. However, their arguments are based on a rational ex-

pectations framework in which investors know the param-

eters of the data-generating process and only the econo-

metrician faces the problem of recovering its parameters

from observed data. In their case, in-sample and out-of-

sample methods test the same economic hypothesis. But

if investors are learning about parameters, especially in

settings where the number of potentially relevant predic-

tor variables is huge, the situation is fundamentally dif-

ferent. There is no fixed-parameter model that generates

each period’s returns. Instead, the properties of the data

evolve over time as investors learn. As a consequence,

in-sample and out-of-sample methods test different eco-

nomic hypotheses. In-sample predictability tests basically

lose the economic meaning they have in a rational ex-

pectations setting because they cannot discriminate be-

tween predictability induced by learning and predictabil-

ity induced by risk premia or behavioral biases. Only out-

of-sample tests can do so. For this reason, even if out-of-

sample tests have low power, in-sample tests are simply

not a viable alternative method, because they test a differ-

ent hypothesis without clear economic interpretation. 

8. Conclusion 

Our analysis provides a new perspective on markets

in which decision-makers face high-dimensional predic-

tion problems. Learning how to translate observed predic-

tor variables into forecasts is hard when the number of

predictors is comparable in size to the number of obser-

vations. To an econometrician studying these forecasts ex

post or the equilibrium prices that reflect these forecasts

the forecast errors look predictable. However, they are not

predictable to the decision-maker in real time. We devel-

oped this analysis in a cross-sectional asset-pricing appli-

cation, but the issue may be relevant more broadly in set-

tings in which large numbers of variables are potentially

relevant for forecasting. 

In the cross-sectional asset-pricing setting, in-sample

tests of return predictability lose their economic meaning

when investors are faced with many possible predictors of

asset cash flows. The usual economic interpretation that

in-sample predictable returns represent priced risks or the

effects of investors’ behavioral biases does not apply in this

case. This is not a statistical problem with the sampling

properties of the econometrician’s predictability tests. In-

stead, it is a problem with the null hypothesis in these

tests. As investors’ learning problem becomes harder with

increasing dimensionality of the set of potential predictors,

the true properties of equilibrium prices change. Even in

the absence of risk premia and behavioral biases, the usual

null hypothesis that returns are unpredictable need not ap-

ply. Investors’ learning of the cash flow–forecasting model

parameters leaves in-sample predictable components in re-

turns that reflect investors’ real-time estimation error and

the shrinkage they optimally apply to reduce it in a high-

dimensional setting. This is true even though we kept in-

vestors’ learning problem very simple: the potentially pre-

dictable component of future cash-flow growth is linear in

predictors, and investors know this linear functional form.

If investors also had to entertain that the functional form
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could be nonlinear, this would further magnify the dimen- 

sionality of the prediction problem they face. 

In contrast to in-sample tests, out-of-sample tests re- 

tain their economic meaning in the high-dimensional case. 

Our argument in favor of out-of-sample tests is differ- 

ent from those usually discussed in the econometrics 

literature. The usual case for out-of-sample tests moti- 

vates them as remedies against distortions of the sam- 

pling properties of in-sample tests or against data min- 

ing. As Inoue and Kilian (2005) , Campbell and Thomp- 

son (2008) , Cochrane (2008) , and Hansen and Timmer- 

mann (2015) have pointed out, the arguments in favor of 

out-of-sample testing are questionable in settings where 

the null hypothesis is a population model with truly un- 

predictable returns. Our point is that when investors face 

a high-dimensional forecasting problem, this is not an 

economically interesting null hypothesis. Absence of risk 

premia and behavioral biases implies absence of out-of- 

sample predictability but not of in-sample predictability. 

As investors arguably face a high-dimensional prediction 

problem in the real world, researchers should give more 

emphasis to out-of-sample testing. 

Our results offer a novel interpretation of the fact 

that in-sample return predictability tests in the literature 

have produced hundreds of variables that appear to pre- 

dict returns in the cross-section. As the number of pre- 

dictor variables that are available to researchers and in- 

vestors has grown enormously, it is to be expected, even 

with fully rational Bayesian investors, that returns should 

be predictable in hindsight from the perspective of an 

econometrician running in-sample regressions. Our results 

show that many such variables do indeed show up as in- 

sample statistically significant cross-sectional return pre- 

dictors. But it is not clear, in the absence of a clear the- 

oretical motivation for a predictor variable, or collection of 

variables, that one should look for risk-based explanations 

or behavioral explanations for their in-sample predictive 

power. 

A number of extensions of our work could be interest- 

ing. Our setting is a purely cross-sectional one with firm 

characteristics that are constant over time. But a similar 

learning problem also exists in the time dimension, e.g., at 

the aggregate stock market level. A huge number of macro 

variables could, jointly, be relevant for predicting aggre- 

gate stock market fundamentals. Furthermore, to keep the 

model simple and transparent, we have focused on learn- 

ing about exogenous fundamentals with homogeneous in- 

vestors. It would be interesting to extend this to a set- 

ting with heterogeneous investors. Balasubramanian and 

Yang (2020) make some progress in this direction by con- 

sidering privately informed investors who are uncertain 

about each others’ priors in a high-dimensional environ- 

ment. More generally, investor heterogeneity can generate 

a role for endogenous price-based signals from which in- 

vestors can extract information about not only asset fun- 

damentals but also the trading behavior of other investors. 

Appendix A. Proofs 

We first recall some notation and some basic facts that 

we will exploit throughout this appendix. We will use the 
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1 
eigendecomposition 

1 

N 

X 

′ X = Q �Q 

′ 
, (A.1)

and the definition 

�t = Q 

(
I + 

J 

Nθt 
�−1 

)−1 

Q 

′ 
. (A.2)

It will be convenient for future use to note that (A.1) and

(A.2) imply that 

I − �t = Q 

(
I + 

Nθt 

J 
�

)−1 

Q 

′ (A.3)

and 

θt 

J 
( I − �t ) X 

′ X = �t . (A.4)

We will repeatedly exploit the fact that Q is orthogo-

nal (that is, Q Q 

′ = Q 

′ Q = I ) and � is diagonal. Note further

that diagonal matrices commute. Lastly, Assumption 4 im-

plies that (i) �g = (θ/J) I , (ii) E ̄e t e 
′ 
t = E e t ̄e 

′ 
t = E ̄e t ̄e 

′ 
t = 

1 
t I ,

(iii) E e t e 
′ 
t = I ; and, for s < t , (iv) E ̄e t e 

′ 
s +1 = (1 /t) I , (v)

E e t+1 ̄e 
′ 
s = 0 , and (vi), E ̄e t ̄e 

′ 
s = (1 /t) I . 

Proof of Proposition 1 . The result follows on making

Assumptions 1 and 3 in the Bayesian linear model of

Lindley and Smith (1972) . �

Proof of Proposition 2 . The realized return is 

r t+1 = y t+1 −p t = y t+1 −
[
y t + ̃

 E t ( X g + e t+1 ) 
]
=�y t+1 −X ̃

 g t . 

From Assumption 1 and Eq. (6) , this becomes 

r t+1 = X g + e t+1 − X �t ( X 

′ X ) −1 X 

′ �y t 

= X g + e t+1 − X �t ( X 

′ X ) −1 X 

′ 
[ X g + e t ] 

= X ( I − �t ) g − X �t ( X 

′ X ) −1 X 

′ e t + e t+1 . 

It follows that E r t+1 = 0 and 

E r t+1 r 
′ 
t+1 = 

θ

J 
X ( I − �t ) 

2 
X 

′ + 

1 

t 
X �t 

(
X 

′ X 

)−1 
�t X 

′ + I 

(A. 4) = 

θ

J 
X ( I − �t ) 

2 
X 

′ + 

θ

J 
X ( I − �t ) �t X 

′ + I 

= 

θ

J 
X ( I − �t ) X 

′ + I , 

using (A.4) in the second line. �

Proof of Proposition 3 . We form h t+1 = 

(
X 

′ X 

)−1 
X 

′ r t+1 and

then look at the in-sample return r ′ 
t+1 

X 

(
X 

′ X 

)−1 
X 

′ r t+1 =
h 

′ 
t+1 X 

′ X h t+1 . To think about the distribution of this quan-

tity, we first need to understand h t+1 itself. It is a

zero mean Normal random vector, and as E r t+1 r 
′ 
t+1 

=
θ
J X ( I − �t ) X 

′ + I by Proposition 2 , we have 

E h t+1 h 

′ 
t+1 = 

(
X 

′ X 

)−1 
X 

′ 
E r t+1 r 

′ 
t+1 X 

(
X 

′ X 

)−1 

= 

θ

J 

(
X 

′ X 

)−1 
X 

′ X ( I − �t ) X 

′ X 

(
X 

′ X 

)−1 + 

(
X 

′ X 

)−

= 

θ

J 
( I − �t ) + 

(
X 

′ X 

)−1 
. 
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Using Eqs. (A.1) and (A.3) , this can be rewritten as 

N E h t+1 h 

′ 
t+1 = Q 

[(
J 

N θ
I + t �

)−1 

+ �−1 

]
︸ ︷︷ ︸ 

�t 

Q 

′ 
. 

If we define u t+1 = 

√ 

N �−1 / 2 
t Q 

′ h t+1 , then 

√ 

N h t+1 = 

Q �1 / 2 
t u t+1 and u t+1 is standard Normal: E u t+1 u 

′ 
t+1 

= 

N �−1 / 2 
t Q 

′ 1 
N Q �t Q 

′ Q �−1 / 2 
t = I (using orthogonality of Q ). 

We can then write 

h 

′ 
t+1 X 

′ X h t+1 = u 

′ 
t+1 �

1 / 2 
t Q 

′ ︸ ︷︷ ︸ √ 

N h 
′ 
t+1 

Q �Q 

′ ︸ ︷︷ ︸ 
1 
N X 

′ X 

Q �1 / 2 
t u t+1 ︸ ︷︷ ︸ √ 

N h t+1 

= u 

′ 
t+1 �

1 / 2 
t ��1 / 2 

t u t+1 

= u 

′ 
t+1 �t �u t+1 . 

The last line exploits the fact that �1 / 2 
and � commute, 

as they are diagonal. 

It follows that 

h 

′ 
t+1 X 

′ X h t+1 = 

J ∑ 

i =1 

ζi,t u 

2 
i , (A.5) 

where ζi,t are the diagonal entries of the diagonal matrix 

�t � and u i are independent N(0 , 1) random variables (the 

entries of u t+1 ). Explicitly, 

ζi,t = ω i,t λi = 

λi 

tλi + 

J 
θN 

+ 1 . (A.6) 

As λi > 0 by positive definiteness of X 

′ X , it follows that 

for t ≥ 1 , ζi,t ∈ (1 , 2) . Moreover, as lim J,N→∞ 

J 
N = ψ > 0 and 

(by Assumption 5 ) λi > ε, ζi,t is uniformly bounded away 

from 1 and 2. It follows that μ ∈ (1 , 2) and 

√ 

μ2 + σ 2 ∈ 

(1 , 2) . 

We will apply Lyapunov’s version of the central limit 

theorem to 
∑ J 

i =1 
ζi,t u 

2 
i 
, which here requires that for some 

δ > 0 , 

lim 

N,J→∞ 

1 

s 2+ δ
J 

J ∑ 

i =1 

ζ 2+ δ
i,t 

E 

[ ∣∣u 

2 
i − 1 

∣∣2+ δ] = 0 where 

s 2 J = 2 

J ∑ 

i =1 

ζ 2 
i,t . 

It is enough to show that this holds for δ = 2 . But as 

E 

[
(u 2 

i 
− 1) 4 

]
= 60 and ζi,t ∈ (1 , 2) , 

1 

s 4 
J 

J ∑ 

i =1 

ζ 4 
i,t E 

[ ∣∣u 

2 
i − 1 

∣∣4 
] 

= 

60 

∑ J 
i =1 

ζ 4 
i,t (

2 

∑ J 
i =1 

ζ 2 
i,t 

)2 
≤ 960 J 

4 J 2 
→ 0 

as J → ∞ , 

as required. Therefore the central limit theorem applies 

for h 

′ 
t+1 X 

′ X h t+1 = 

∑ J 
i =1 

ζi,t u 
2 
i 

after appropriate standard- 

ization by mean and variance, which (as the u i are IID 

standard Normal) are 
∑ J 

i =1 
ζi,t and 2 

∑ J 
i =1 

ζ 2 
i,t 

, respectively. 

Thus we have 

T b ≡
h 

′ 
t+1 X 

′ X h t+1 −
∑ J 

i =1 
ζi,t √ 

2 

∑ J 
i =1 

ζ 2 
i,t 

d −→ N(0 , 1) . 
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The remaining results follow immediately. �

Proof of Proposition 4 . The first statement follows from the

second. To prove the second, note that Proposition 3 im-

plies that 

P ( T re < c α) = P 

⎛ ⎝ 

T re √ 

μ2 + σ 2 
− μ − 1 √ 

2 

(
μ2 + σ 2 

)√ 

J 

< 

c α√ 

μ2 + σ 2 
− μ − 1 √ 

2 

(
μ2 + σ 2 

)√ 

J 

⎞ ⎠ 

→ �

⎛ ⎝ 

c α√ 

μ2 + σ 2 
− μ − 1 √ 

2 

(
μ2 + σ 2 

)√ 

J 

⎞ ⎠ , 

where �(·) denotes the standard Normal cumulative dis-

tribution function. The result follows from the well-known

inequalities e −x 2 / 2 ∣∣x + 1 x 

∣∣√ 

2 π
< �(x ) < 

e −x 2 / 2 

| x | √ 

2 π
, which hold for x <

0 . �

Proof of Proposition 5 . When t > 0 , the cross-sectional mo-

ments of ζ j,t can be computed using Eq. (14) and the fact

that the eigenvalues λ j follow (in the asymptotic limit) the

Marchenko-Pastur distribution, whose probability density

function f λ(x ) takes the form 

f λ(x ) = 

1 

2 π

√ [(
1 + 

√ 

ψ 

)2 

− x 

][
x −

(
1 −

√ 

ψ 

)2 
]

ψx 

if 

(
1 −

√ 

ψ 

)2 

≤ x ≤
(

1 + 

√ 

ψ 

)2 

, and f λ(x ) = 0 elsewhere.

The relevant integrals can be calculated explicitly, giving

Eqs. (17) and (18) ; and we can calculate the probability

density function of ζ j,t in the asymptotic limit by change

of variable using the relation between ζ j,t and λ j given in

Eq. (A.6) . �

Proof of Proposition 6 . We first show that E r OOS,t+1 = 0 . As

h s +1 = 

(
X 

′ X 

)−1 
X 

′ r s +1 , we have 

E 

[
r t+1 ( X h s +1 ) 

′ ] = E 

[
r t+1 r 

′ 
s +1 

]
X 

(
X 

′ X 

)−1 
X 

′ 
. 

We will show that E 

[
r t+1 r 

′ 
s +1 

]
= 0 when s  = t; in other

words, all non-contemporaneous autocorrelations and

cross-correlations are zero. Henceforth we assume that s <

t without loss of generality. From Eq. (8) , 

E 

[
r t+1 r 

′ 
s +1 

]
= 

θ

J 
X ( I − �t )( I −�s ) X 

′ + 

1 

t 
X �t ( X 

′ X ) −1 �s X 

′ 

−1 

t 
X �t ( X 

′ X ) −1 X 

′ 
. 

This expression can be rearranged as 

E 

[
r t+1 r 

′ 
s +1 

]
= 

1 

t 
X 

[
θt 

J 
( I −�t ) X 

′ X − �t 

]
( X 

′ X ) −1 ( I − �s ) X 

′

As θt 
J ( I − �t ) X 

′ X = �t by Eq. (A.4) , the term in square

brackets on the right-hand side vanishes, and the result

follows. 
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We now turn to the asymptotic distribution. As 

r ′ t+1 X h s +1 = h 

′ 
t+1 X 

′ X h s +1 , we want to understand the 

behavior of h t+1 X 

′ X h s +1 where s < t . Defining u t+1 = √ 

N �−1 / 2 
t Q 

′ h t+1 , as in the proof of Proposition 3 , we have √ 

N h t+1 = Q �1 / 2 
t u t+1 and E u t+1 u 

′ 
t+1 = I . We also have 

E u s +1 u 

′ 
t+1 

= 0 whenever s  = t (because, as shown above, 

E r s +1 r 
′ 
t+1 

= 0 and hence E h s +1 h 

′ 
t+1 = 0 ). Thus u t+1 and 

u s +1 are independent standard Normal random vectors. We 

have 

h 

′ 
t+1 X 

′ X h s +1 = u 

′ 
t+1 �

1 / 2 
t Q 

′ Q �Q 

′ Q �1 / 2 
s u s +1 

= u 

′ 
t+1 �

1 / 2 
t ��1 / 2 

s u s +1 . 

As �1 / 2 
t ��1 / 2 

s is a J × J diagonal matrix with i th diagonal 

entry 
√ 

ζi,t ζi,s , we can write 

h 

′ 
t+1 X 

′ X h s +1 = 

J ∑ 

i =1 

√ 

ζi,t ζi,s w i , 

where w i denotes the product of the i th entries of u t+1 and 

u s +1 . The w i are independent of each other, and each is the 

product of two independent standard Normal random vari- 

ables. Therefore each w i has zero mean and unit variance. 

We wish to apply Lyapunov’s version of the central 

limit theorem to 
∑ J 

i =1 

√ 

ζi,t ζi,s w i , which here requires that 

for some δ > 0 , 

lim 

N,J→∞ 

1 

s 2+ δ
J 

J ∑ 

i =1 

E 

[∣∣∣√ 

ζi,t ζi,s w i 

∣∣∣2+ δ]
= 0 

where s 2 J = 

J ∑ 

i =1 

ζi,t ζi,s . 

It is enough to show that this holds when δ = 2 . In this 

case, as the fourth moment of a standard Normal random 

variable equals 3, we have E 

[
w 

4 
i 

]
= 9 , and so indeed 

1 

s 4 
J 

J ∑ 

i =1 

E 

[∣∣∣√ 

ζi,t ζi,s w i 

∣∣∣4 
]

= 

9 

∑ J 
i =1 

ζ 2 
i,t 
ζ 2 

i,s (∑ J 
i =1 

ζi,s ζi,t 

)2 
≤ 144 J 

J 2 
→ 0 

as J → ∞ . 

(The inequality follows because ζi,t ∈ (1 , 2) for all i 

and t ≥ 1 .) Hence the central limit theorem applies for ∑ J 
i =1 

√ 

ζi,t ζi,s w i after appropriate standardization by mean 

and variance, which are 0 and 

∑ J 
i =1 

ζi,t ζi,s , respectively. 

Thus 

h 

′ 
t+1 X 

′ X h s +1 √ ∑ J 
i =1 

ζi,t ζi,s 

d −→ N(0 , 1) . 

�

Supplementary material 

Supplementary material associated with this article can 

be found, in the online version, at doi: 10.1016/j.jfineco. 

2021.10.006 . 
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