Online Appendix for Market efficiency in the age of big data

Ian W. R. Martin[∗] London School of Economics and CEPR

Stefan Nagel† University of Chicago, NBER, CEPR, and CESIfo

In this online appendix, we consider the case where an econometrician observes only a subset of the firm characteristics that are observable to investors. Specifically, we now assume that the econometrician's predictors are collected in the $N \times P$ matrix C, where $P \leq J$ and rank $(C) = P$.

Assumption OA.1. $X = (C \mid M)$ where M is an $N \times (J-P)$ matrix and $C'M = 0$. Furthermore, the variables in C have been scaled such that $tr(C'C) = NP$. (As $\mathrm{tr}\,\boldsymbol{X}'\boldsymbol{X} = \mathrm{tr}\,\boldsymbol{C}'\boldsymbol{C} + \mathrm{tr}\,\boldsymbol{M}'\boldsymbol{M},\;$ it follows that $\mathrm{tr}(\boldsymbol{M}'\boldsymbol{M}) = N(J-P)$.)

We view the econometrician's predictive variables C as fixed prior to observing the data. The assumption that $C'M = 0$ is without loss of generality, as we can think of the investors using the predictor variables observed by the econometrician, C , together with extra unobserved variables M that are residualized with respect to C .

The econometrician regresses r_{t+1} on C, obtaining a vector of cross-sectional regression coefficients

$$
\boldsymbol{b}_{t+1} = \left(\boldsymbol{C}'\boldsymbol{C}\right)^{-1}\boldsymbol{C}'\boldsymbol{r}_{t+1}.
$$
\n(OA.1)

Under the rational expectations null,

$$
\sqrt{N} \mathbf{b}_{t+1} \sim N\left(0, N(\mathbf{C}^{\prime}\mathbf{C})^{-1}\right),\tag{OA.2}
$$

and

$$
\boldsymbol{b}'_{t+1}(\boldsymbol{C}'\boldsymbol{C})\boldsymbol{b}_{t+1} \sim \chi_P^2.
$$
\n(OA.3)

[∗]London School of Economics; i.w.martin@lse.ac.uk.

[†]University of Chicago, Booth School of Business; stefan.nagel@chicagobooth.edu.

As we want to characterize the properties of the econometrician's test under asymptotics where $N, P \to \infty$ and $P/N \to \phi > 0$, it is more convenient if we let the econometrician consider a scaled version of this test statistic:

$$
T_{re} \equiv \frac{\mathbf{b}'_{t+1}\mathbf{C}'\mathbf{C}\mathbf{b}_{t+1} - P}{\sqrt{2P}}.
$$
 (OA.4)

Under the econometrician's rational expectations null, we would have, asymptotically,

$$
T_{re} \xrightarrow{d} N(0,1) \quad \text{as } N, P \to \infty, \ P/N \to \phi > 0. \tag{OA.5}
$$

But the actual asymptotic distribution of T_{re} is influenced by the components of returns involving $\bar{\mathbf{e}}_t$ and \mathbf{g} in (8) in the main text.

These alter the asymptotic distribution and may lead the rejection probabilities of a test using $N(0, 1)$ critical values based on $(OA.5)$, or χ^2 critical values based on (OA.3), to differ from the nominal size of the test. As in our main analysis, we assume that g is drawn from the prior distribution. Here, we define

$$
\boldsymbol{\Sigma}_{re}=\left(\boldsymbol{C}^{\prime}\boldsymbol{C}\right)^{-1}\quad\text{and}\quad\boldsymbol{\Sigma}_{b}=\mathbb{E}\left(\boldsymbol{b}_{t+1}\boldsymbol{b}_{t+1}^{\prime}\right),
$$

and

$$
\zeta_{i,t} = 1 + \frac{1}{t + \frac{J}{N\theta\lambda_i}}
$$
\n(OA.6)

are the eigenvalues of $\Sigma_b \Sigma_{re}^{-1}$ that control the asymptotic behavior of T_{re} with limiting mean and variance of

$$
\mu = \lim_{P \to \infty} \frac{1}{P} \sum_{i=1}^{P} \zeta_{i,t}
$$
 and $\sigma^2 = \lim_{P \to \infty} \frac{1}{P} \sum_{i=1}^{P} \zeta_{i,t}^2 - \mu^2$.

 $\sqrt{\mu^2 + \sigma^2}$ < 2 for all $t \geq 1$. By the "Big Data" Assumption 5 in the main text, we have $1 < \mu < 2$ and $1 <$

Proposition OA.1. If returns are generated according to (8) in the main text, then in the large N, P limit

$$
\frac{\boldsymbol{b}'_{t+1}\boldsymbol{C}'\boldsymbol{C}\boldsymbol{b}_{t+1}-\sum_{i=1}^P \zeta_{i,t}}{\sqrt{2\sum_{i=1}^P \zeta_{i,t}^2}} \stackrel{d}{\longrightarrow} N(0,1).
$$

It follows that the test statistic T_{re} satisfies

$$
\frac{T_{re}}{\sqrt{\mu^2 + \sigma^2}} - \frac{\mu - 1}{\sqrt{2(\mu^2 + \sigma^2)}} \sqrt{P} \stackrel{d}{\longrightarrow} N(0, 1)
$$

where $1 < \mu < 2$ and $1 < \sqrt{\mu^2 + \sigma^2} < 2$.

We can therefore think of T_{re} as a multiple of a standard Normal random variable we can therefore thin
plus a term of order \sqrt{P} :

$$
T_{re} \approx \sqrt{\mu^2 + \sigma^2} N(0, 1) + \frac{\mu - 1}{\sqrt{2}} \sqrt{P}.
$$
 (OA.7)

This result is similar to the corresponding result in our main analysis, but with \sqrt{P} This result is similar to
taking the place of \sqrt{J} .

Proposition OA.2. In a test of return predictability based on the rational expectations null (OA.5), we would have, for any critical value c_{α} and at any time t,

$$
\mathbb{P}(T_{re} > c_{\alpha}) \to 1 \text{ as } N, P \to \infty, P/N \to \phi.
$$

More precisely, for any fixed $t > 0$, the probability that the test fails to reject declines exponentially fast as N and P increase, at a rate that is determined by μ , σ , and ϕ :

$$
\lim_{N \to \infty} -\frac{1}{N} \log \mathbb{P} (T_{re} < c_{\alpha}) = \frac{(\mu - 1)^2 \phi}{4 \left(\mu^2 + \sigma^2\right)},\tag{OA.8}
$$

for any critical value c_{α} .

Thus, as in our main analysis, in-sample predictability tests lose their economic meaning when P is not small relative to N , in the sense that rejection of the nopredictability can be likely even without risk premia or mispricing.

For out-of-sample tests, we obtain the following result.

Proposition OA.3. If returns are generated according to (8) in the main text and $r_{OOS,t+1}=\frac{1}{N}$ $\frac{1}{N}$ \mathbf{r}'_{t+1} $\mathbf{C}\mathbf{b}_{s+1}$ with $s \neq t$, then

$$
\mathbb{E}\,r_{OOS,t+1}=0
$$

and, in the large N, J, P limit,

$$
\frac{r_{OOS,t+1}}{\sqrt{\sum_{j=1}^{P} \zeta_{j,s} \zeta_{i,t}}} \xrightarrow{d} N(0,1).
$$

Now suppose the characteristics are associated with a predictable component $X\gamma_x$ for some vector γ_x that represents risk premia. In this case, adding this component to the returns in (8) in the main text, we get

$$
\boldsymbol{r}_{t+1} = \boldsymbol{X} \boldsymbol{\gamma}_x + \boldsymbol{X} (\boldsymbol{I} - \boldsymbol{\Gamma}_t) \boldsymbol{g} - \boldsymbol{X} \boldsymbol{\Gamma}_t (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}' \bar{\boldsymbol{e}}_t + \boldsymbol{e}_{t+1},
$$
(OA.9)

The econometrician wants to estimate to what extent the characteristics she observes (i.e., C) are associated with risk premia. Projecting X on C we can decompose $X = CB + E$, where $E'C = 0$ and rewrite returns as

$$
\boldsymbol{r}_{t+1} = \boldsymbol{C}\boldsymbol{\gamma} + \boldsymbol{E}\boldsymbol{\gamma}_x + \boldsymbol{X}(\boldsymbol{I} - \boldsymbol{\Gamma}_t)\boldsymbol{g} - \boldsymbol{X}\boldsymbol{\Gamma}_t(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\bar{\boldsymbol{e}}_t + \boldsymbol{e}_{t+1}
$$
(OA.10)

where we have defined $\boldsymbol{\gamma} = \boldsymbol{B} \boldsymbol{\gamma}_x$.

Given the returns (OA.10). and using results from Proposition OA.3, it is straightforward to show that

$$
\frac{1}{N}\gamma'C'C\gamma = \mathbb{E}\,r_{OOS,t+1}.\tag{OA.11}
$$

A Proofs

We first recall some notation and some basic facts that we will exploit throughout this appendix. We will use the eigendecomposition

$$
\frac{1}{N}\mathbf{X}'\mathbf{X} = \mathbf{Q}\Lambda\mathbf{Q}'
$$
 (OA.12)

and the definition

$$
\Gamma_t = Q \left(\boldsymbol{I} + \frac{J}{N\theta t} \boldsymbol{\Lambda}^{-1} \right)^{-1} Q'.
$$
 (OA.13)

It will be convenient for future use to note that (OA.12) and (OA.13) imply that

$$
\boldsymbol{I} - \boldsymbol{\Gamma}_t = \boldsymbol{Q} \left(\boldsymbol{I} + \frac{N\theta t}{J} \boldsymbol{\Lambda} \right)^{-1} \boldsymbol{Q}' \tag{OA.14}
$$

and

$$
\frac{\theta t}{J} (\boldsymbol{I} - \boldsymbol{\Gamma}_t) \boldsymbol{X}' \boldsymbol{X} = \boldsymbol{\Gamma}_t. \tag{OA.15}
$$

We will repeatedly exploit the fact that Q is orthogonal (that is, $QQ' = Q'Q = I$) and Λ is diagonal. It follows that Γ_t is also diagonal. Note further that diagonal matrices commute.

Assumption OA.1 implies that

$$
\frac{1}{N}\boldsymbol{X}'\boldsymbol{X} = \begin{pmatrix} \frac{1}{N}\boldsymbol{C}'\boldsymbol{C} & 0 \\ 0 & \frac{1}{N}\boldsymbol{M}'\boldsymbol{M} \end{pmatrix}
$$

is block-diagonal (where zeros indicate conformable matrices of zeros). Eigendecomposing $\frac{1}{N}C'C = \mathbf{Q}_C \Lambda_C \mathbf{Q}'_C$ and $\frac{1}{N}M'M = \mathbf{Q}_M \Lambda_M \mathbf{Q}'_M$ where $\mathbf{Q}'_i \mathbf{Q}_i = \mathbf{I}$ for $i = C, M$, we have

$$
\frac{1}{N} \boldsymbol{X}' \boldsymbol{X} = \underbrace{\begin{pmatrix} \boldsymbol{Q}_C & 0 \\ 0 & \boldsymbol{Q}_M \end{pmatrix}}_{\boldsymbol{Q}} \underbrace{\begin{pmatrix} \boldsymbol{\Lambda}_C & 0 \\ 0 & \boldsymbol{\Lambda}_M \end{pmatrix}}_{\boldsymbol{\Lambda}} \underbrace{\begin{pmatrix} \boldsymbol{Q}'_C & 0 \\ 0 & \boldsymbol{Q}'_M \end{pmatrix}}_{\boldsymbol{Q}'}.
$$

It follows that $\Gamma_t =$ $\begin{pmatrix} \Gamma_{C,t} & 0 \\ 0 & \Gamma_{M,t} \end{pmatrix}$ is block-diagonal, with $\Gamma_{i,t} = \mathbf{Q}_i \left(\mathbf{I} + \frac{J}{N\theta t} \mathbf{\Lambda}_i^{-1} \right)$ $\left(\begin{smallmatrix} -1\i \end{smallmatrix} \right)^{-1} \boldsymbol{Q}'_i$ and $\bm{I} - \bm{\Gamma}_{i,t} = \bm{Q}_i (\bm{I} + \frac{N\theta t}{J} \bm{\Lambda}_i)^{-1} \bm{Q}'_i$, where \bm{Q}_i is orthogonal and $\bm{\Lambda}_i$ is diagonal for $i = C, M$.

Lastly, Assumption 4 in the main text implies that (i) $\Sigma_g = (\theta/J)\mathbf{I}$, (ii) $\mathbb{E} \bar{\mathbf{e}}_t \mathbf{e}'_t =$ $\mathbb{E}\, \boldsymbol{e}_t \bar{\boldsymbol{e}}_t' \,=\, \mathbb{E}\, \bar{\boldsymbol{e}}_t \bar{\boldsymbol{e}}_t' \,=\, \frac{1}{t}$ $\frac{1}{t}$ **I**, (iii) $\mathbb{E} e_t e'_t = I$; and, for $s < t$, (iv) $\mathbb{E} \overline{e}_t e'_{s+1} = (1/t)I$, (v) $\mathbb{E} \boldsymbol{e}_{t+1} \bar{\boldsymbol{e}}_s' = 0$, and (vi), $\mathbb{E} \bar{\boldsymbol{e}}_t \bar{\boldsymbol{e}}_s' = (1/t)\boldsymbol{I}$.

Proof of Proposition OA.1. We form $\mathbf{b}_{t+1} = (\mathbf{C}'\mathbf{C})^{-1} \mathbf{C}' \mathbf{r}_{t+1}$ and then look at the insample return $r'_{t+1}C(C'C)^{-1}C'r_{t+1} = b'_{t+1}C'Cb_{t+1}$. To think about the distribution of this quantity, we first need to understand \mathbf{b}_{t+1} itself. It is a zero mean Normal random vector, and as $\mathbb{E} r_{t+1} r'_{t+1} = \frac{\theta}{J} X (I - \Gamma_t) X' + I$ by Proposition 2 in the main text we have

$$
\mathbb{E} \, b_{t+1} b'_{t+1} \;\; = \;\; \left(C'C \right)^{-1} C' \, \mathbb{E} \, \boldsymbol{r}_{t+1} \boldsymbol{r}'_{t+1} C \left(C'C \right)^{-1} \\ \;\; = \;\; \frac{\theta}{J} \left(C'C \right)^{-1} C' \boldsymbol{X} \left(\boldsymbol{I} - \boldsymbol{\Gamma}_t \right) \boldsymbol{X}' C \left(C'C \right)^{-1} + \left(C'C \right)^{-1} \\ \;\; = \;\; \frac{\theta}{J} \left(\boldsymbol{I} - \boldsymbol{\Gamma}_{C,t} \right) + \left(C'C \right)^{-1} \;,
$$

where we use the fact that $C'X = (C'C \ 0)$ in the last line. In terms of the eigendecomposition,

$$
N \mathbb{E} \mathbf{b}_{t+1} \mathbf{b}'_{t+1} = \mathbf{Q}_C \underbrace{\left[\left(\frac{J}{N \theta} \mathbf{I} + t \mathbf{\Lambda}_C \right)^{-1} + \mathbf{\Lambda}_C^{-1} \right] \mathbf{Q}'_C}_{\mathbf{\Omega}_{C,t}}.
$$

If we define $u_{t+1} =$ √ $\overline{N}\Omega_C^{-1/2}Q'_C\boldsymbol{b}_{t+1}$, then $\sqrt{N}\boldsymbol{b}_{t+1} = Q_C\Omega_C^{1/2}\boldsymbol{u}_{t+1}$ and \boldsymbol{u}_{t+1} is standard Normal: $\mathbb{E} \textbf{u}_{t+1} \textbf{u}'_{t+1} = N \Omega_C^{-1/2} \textbf{Q}'_C \frac{1}{N} \textbf{Q}_C \Omega_C \textbf{Q}'_C \textbf{Q}_C \Omega_C^{-1/2} = \textbf{I}$. We can then write

$$
\begin{aligned} \boldsymbol{b}'_{t+1}C'C\boldsymbol{b}_{t+1} &= \underbrace{\boldsymbol{u}'_{t+1}\Omega_{C}^{1/2}\boldsymbol{Q}'_{C}}_{\sqrt{N}\boldsymbol{b}'_{t+1}}\underbrace{\boldsymbol{Q}_{C}\Lambda_{C}\boldsymbol{Q}'_{C}}_{\frac{1}{N}C'C}\underbrace{\boldsymbol{Q}_{C}\Omega_{C}^{1/2}\boldsymbol{u}_{t+1}}_{\sqrt{N}\boldsymbol{b}_{t+1}} \\ &= \boldsymbol{u}'_{t+1}\Omega_{C}^{1/2}\Lambda_{C}\Omega_{C}^{1/2}\boldsymbol{u}_{t+1} \\ &= \boldsymbol{u}'_{t+1}\Omega_{C}\Lambda_{C}\boldsymbol{u}_{t+1}. \end{aligned}
$$

The last line exploits the fact that $\Omega_C^{1/2}$ $C^{1/2}$ and Λ_C commute, as they are diagonal.

It follows that

$$
\mathbf{b}'_{t+1}\mathbf{C}'\mathbf{C}\mathbf{b}_{t+1} = \sum_{i=1}^{P} \zeta_{i,t} u_i^2, \qquad (OA.16)
$$

where $\zeta_{i,t}$ are the diagonal entries of the diagonal matrix $\mathbf{\Omega}_C \mathbf{\Lambda}_C$ and u_i are independent $N(0, 1)$ random variables (the entries of u_{t+1}). Explicitly,

$$
\zeta_{i,t} = \omega_{i,t}\lambda_i = \frac{\lambda_i}{t\lambda_i + \frac{J}{\theta N}} + 1.
$$
\n(OA.17)

As $\lambda_i > 0$ by positive definiteness of $\mathbf{X}'\mathbf{X}$, it follows that for $t \geq 1$, $\zeta_{i,t} \in (1, 2)$. Moreover, as $\lim_{N \to \infty} \frac{J}{N} = \psi > 0$ and (by Assumption (5) in the main text) $\lambda_i > \varepsilon$, $\zeta_{i,t}$ is uniformly bounded away from 1 and 2. It follows that $\mu \in (1,2)$ and $\sqrt{\mu^2 + \sigma^2} \in$ $(1, 2).$

We will apply Lyapunov's version of the central limit theorem to $\sum_{i=1}^{P} \zeta_{i,t} u_i^2$, which here requires that for some $\delta > 0$

$$
\lim_{N,J \to \infty} \frac{1}{s_P^{2+\delta}} \sum_{i=1}^P \zeta_{i,t}^{2+\delta} \mathbb{E}\left[\left| u_i^2 - 1 \right|^{2+\delta} \right] = 0 \quad \text{where} \quad s_P^2 = 2 \sum_{i=1}^P \zeta_{i,t}^2.
$$

It is enough to show that this holds for $\delta = 2$. But as $\mathbb{E}[(u_i^2 - 1)^4] = 60$ and $\zeta_{i,t} \in (1, 2)$,

$$
\frac{1}{s_P^4} \sum_{i=1}^P \zeta_{i,t}^4 \mathbb{E} \left[\left| u_i^2 - 1 \right|^4 \right] = \frac{60 \sum_{i=1}^P \zeta_{i,t}^4}{\left(2 \sum_{i=1}^P \zeta_{i,t}^2 \right)^2} \le \frac{960P}{4P^2} \to 0 \quad \text{as } P \to \infty,
$$

as required. Therefore the central limit theorem applies for $b'_{t+1}C'Cb_{t+1} = \sum_{i=1}^{P} \zeta_{i,t}u_i^2$ after appropriate standardization by mean and variance, which (as the u_i are IID standard Normal) are $\sum_{i=1}^{P} \zeta_{i,t}$ and $2\sum_{i=1}^{P} \zeta_{i,t}^2$, respectively. Thus we have

$$
T_b \equiv \frac{\boldsymbol{b}'_{t+1} \boldsymbol{C}' \boldsymbol{C} \boldsymbol{b}_{t+1} - \sum_{i=1}^P \zeta_{i,t}}{\sqrt{2 \sum_{i=1}^P \zeta_{i,t}^2}} \stackrel{d}{\longrightarrow} N(0, 1) .
$$

The remaining results follow immediately.

Proof of Proposition OA.2. The first statement follows from the second. To prove the

 \Box

second, note that Proposition OA.1 implies that

$$
\mathbb{P}\left(T_{re} < c_{\alpha}\right) = \mathbb{P}\left(\frac{T_{re}}{\sqrt{\mu^{2} + \sigma^{2}}} - \frac{\mu - 1}{\sqrt{2(\mu^{2} + \sigma^{2})}}\sqrt{P} < \frac{c_{\alpha}}{\sqrt{\mu^{2} + \sigma^{2}}} - \frac{\mu - 1}{\sqrt{2(\mu^{2} + \sigma^{2})}}\sqrt{P}\right)
$$
\n
$$
\rightarrow \Phi\left(\frac{c_{\alpha}}{\sqrt{\mu^{2} + \sigma^{2}}} - \frac{\mu - 1}{\sqrt{2(\mu^{2} + \sigma^{2})}}\sqrt{P}\right),
$$

where $\Phi(\cdot)$ denotes the standard Normal cumulative distribution function. The result follows from the well-known inequalities $\frac{e^{-x^2/2}}{1-x^2}$ $\frac{e^{-x^2/2}}{|x + \frac{1}{x}|\sqrt{2\pi}} < \Phi(x) < \frac{e^{-x^2/2}}{|x|\sqrt{2\pi}}$ $\frac{e^{-x^2/2}}{|x|\sqrt{2\pi}}$, which hold for $x < 0$. \Box

Proof of Proposition OA.3. We first show that $\mathbb{E} r_{OOS,t+1} = 0$. As $\mathbf{b}_{s+1} = (\mathbf{C}'\mathbf{C})^{-1} \mathbf{C}' \mathbf{r}_{s+1}$, we have

$$
\mathbb{E}\left[\pmb{r}_{t+1}\left(\pmb{C}\pmb{b}_{s+1}\right)'\right] = \mathbb{E}\left[\pmb{r}_{t+1}\pmb{r}_{s+1}'\right] \pmb{C}\left(\pmb{C}'\pmb{C}\right)^{-1}\pmb{C}'\,.
$$

We will show that $\mathbb{E}\left[r_{t+1}r_{s+1}'\right]=0$ when $s\neq t$; in other words, all non-contemporaneous autocorrelations and cross-correlations are zero. Henceforth we assume that $s < t$ without loss of generality. From equation (8) in the main text,

$$
\mathbb{E}\left[\boldsymbol{r}_{t+1}\boldsymbol{r}_{s+1}'\right] = \frac{\theta}{J}\boldsymbol{X}(\boldsymbol{I}-\boldsymbol{\Gamma}_t)(\boldsymbol{I}-\boldsymbol{\Gamma}_s)\boldsymbol{X}'+\frac{1}{t}\boldsymbol{X}\boldsymbol{\Gamma}_t(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{\Gamma}_s\boldsymbol{X}'-\frac{1}{t}\boldsymbol{X}\boldsymbol{\Gamma}_t(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\,.
$$

This expression can be rearranged as

$$
\mathbb{E}\left[\boldsymbol{r}_{t+1}\boldsymbol{r}_{s+1}'\right] = \frac{1}{t}\boldsymbol{X}\left[\frac{\theta t}{J}(\boldsymbol{I}-\boldsymbol{\Gamma}_t)\boldsymbol{X}'\boldsymbol{X} - \boldsymbol{\Gamma}_t\right](\boldsymbol{X}'\boldsymbol{X})^{-1}(\boldsymbol{I}-\boldsymbol{\Gamma}_s)\boldsymbol{X}'.
$$

As $\frac{\theta t}{J}(\mathbf{I}-\mathbf{\Gamma}_t)\mathbf{X}'\mathbf{X}=\mathbf{\Gamma}_t$ by equation (30) in the main text, the term in square brackets on the right-hand side vanishes, and the result follows.

We now turn to the asymptotic distribution. As $r'_{t+1}Cb_{s+1} = b'_{t+1}C'Cb_{s+1}$, we want to understand the behavior of $\mathbf{b}_{t+1} C^{\prime} C \mathbf{b}_{s+1}$ where $s < t$. Defining $\mathbf{v}_{t+1} = \sqrt{a^2 - 1/2}$ $\overline{N}\Omega_{C,t}^{-1/2}Q_C'b_{t+1}$, as in the proof of Proposition OA.1, we have $\sqrt{N}b_{t+1} = Q_C\Omega_{C,t}^{1/2}v_{t+1}$ and $\mathbb{E} \mathbf{v}_{t+1} \mathbf{v}'_{t+1} = I$. We also have $\mathbb{E} \mathbf{v}_{s+1} \mathbf{v}'_{t+1} = 0$ whenever $s \neq t$ (because, as shown above, $\mathbb{E} \mathbf{r}_{s+1} \mathbf{r}'_{t+1} = 0$ and hence $\mathbb{E} \mathbf{b}_{s+1} \mathbf{b}'_{t+1} = 0$. Thus \mathbf{v}_{t+1} and \mathbf{v}_{s+1} are independent standard Normal random vectors. We have

$$
\bm{b}'_{t+1}\bm{C}'\bm{C}\bm{b}_{s+1}=\bm{v}'_{t+1}\bm{\Omega}^{1/2}_{C,t}\bm{Q}'_C\bm{Q}_C\bm{\Lambda}_C\bm{Q}'_C\bm{Q}_C\bm{\Omega}^{1/2}_{C,s}\bm{v}_{s+1}=\bm{v}'_{t+1}\bm{\Omega}^{1/2}_{C,t}\bm{\Lambda}_C\bm{\Omega}^{1/2}_{C,s}\bm{v}_{s+1}\,.
$$

As $\Omega_{C,t}^{1/2} \Lambda_C \Omega_{C,s}^{1/2}$ is a $P \times P$ diagonal matrix with *i*th diagonal entry $\sqrt{\zeta_{i,t} \zeta_{i,s}}$, we can write

$$
\boldsymbol{b}'_{t+1}\boldsymbol{C}'\boldsymbol{C}\boldsymbol{b}_{s+1}=\sum_{i=1}^P\sqrt{\zeta_{i,t}\zeta_{i,s}}w_i\,,
$$

where w_i denotes the product of the *i*th entries of v_{t+1} and v_{s+1} . The w_i are independent of each other, and each is the product of two independent standard Normal random variables. Therefore each w_i has zero mean and unit variance.

We wish to apply Lyapunov's version of the central limit theorem to $\sum_{i=1}^{P} \sqrt{\zeta_{i,t}\zeta_{i,s}}w_i$, which here requires that for some $\delta>0$

$$
\lim_{N,J,P\to\infty} \frac{1}{s_P^{2+\delta}} \sum_{p=1}^P \mathbb{E}\left[\left|\sqrt{\zeta_{i,t}\zeta_{i,s}} w_i\right|^{2+\delta}\right] = 0 \quad \text{where} \quad s_P^2 = \sum_{p=1}^P \zeta_{i,t}\zeta_{i,s}.
$$

It is enough to show that this holds when $\delta = 2$. In this case, as the fourth moment of a standard Normal random variable equals 3, we have $\mathbb{E}[w_i^4] = 9$, and so indeed

$$
\frac{1}{s_P^4} \sum_{p=1}^P \mathbb{E} \left[\left| \sqrt{\zeta_{i,t} \zeta_{i,s}} w_i \right|^4 \right] = \frac{9 \sum_{p=1}^P \zeta_{i,t}^2 \zeta_{i,s}^2}{\left(\sum_{p=1}^P \zeta_{i,s} \zeta_{i,t} \right)^2} \le \frac{144P}{P^2} \to 0 \quad \text{as } P \to \infty.
$$

(The inequality follows because $\zeta_{i,t} \in (1,2)$ for all i and $t \geq 1$.) Hence the central limit theorem applies for $\sum_{i=1}^{P} \sqrt{\zeta_{i,t} \zeta_{i,s}} w_i$ after appropriate standardization by mean and variance, which are 0 and $\sum_{i=1}^{P} \zeta_{i,t} \zeta_{i,s}$, respectively. Thus

$$
\frac{\boldsymbol{b}'_{t+1}\mathbf{C}'\mathbf{C}\boldsymbol{b}_{s+1}}{\sqrt{\sum_{i=1}^{P}\zeta_{i,t}\zeta_{i,s}}} \xrightarrow{d} N(0,1).
$$