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In this online appendix, we consider the case where an econometrician observes
only a subset of the firm characteristics that are observable to investors. Specifically,
we now assume that the econometrician’s predictors are collected in the N ×P matrix
C, where P ≤ J and rank(C) = P .

Assumption OA.1. X =
(
C M

)
where M is an N×(J−P ) matrix and C ′M = 0.

Furthermore, the variables in C have been scaled such that tr(C ′C) = NP . (As
trX ′X = trC ′C + trM ′M , it follows that tr(M ′M ) = N(J − P ).)

We view the econometrician’s predictive variables C as fixed prior to observing the
data. The assumption that C ′M = 0 is without loss of generality, as we can think of
the investors using the predictor variables observed by the econometrician, C, together
with extra unobserved variables M that are residualized with respect to C.

The econometrician regresses rt+1 on C, obtaining a vector of cross-sectional re-
gression coefficients

bt+1 = (C ′C)
−1
C ′rt+1 . (OA.1)

Under the rational expectations null,

√
Nbt+1 ∼ N

(
0, N(C ′C)−1

)
, (OA.2)

and
b′t+1(C

′C)bt+1 ∼ χ2
P . (OA.3)
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As we want to characterize the properties of the econometrician’s test under asymp-
totics where N,P → ∞ and P/N → φ > 0, it is more convenient if we let the econo-
metrician consider a scaled version of this test statistic:

Tre ≡
b′t+1C

′Cbt+1 − P√
2P

. (OA.4)

Under the econometrician’s rational expectations null, we would have, asymptotically,

Tre
d−→ N (0, 1) as N,P →∞, P/N → φ > 0. (OA.5)

But the actual asymptotic distribution of Tre is influenced by the components of
returns involving ēt and g in (8) in the main text.

These alter the asymptotic distribution and may lead the rejection probabilities
of a test using N(0, 1) critical values based on (OA.5), or χ2 critical values based on
(OA.3), to differ from the nominal size of the test. As in our main analysis, we assume
that g is drawn from the prior distribution. Here, we define

Σre = (C ′C)
−1

and Σb = E
(
bt+1b

′
t+1

)
,

and

ζi,t = 1 +
1

t+ J
Nθλi

(OA.6)

are the eigenvalues of ΣbΣ
−1
re that control the asymptotic behavior of Tre with limiting

mean and variance of

µ = lim
P→∞

1

P

P∑
i=1

ζi,t and σ2 = lim
P→∞

1

P

P∑
i=1

ζ2i,t − µ2 .

By the “Big Data” Assumption 5 in the main text, we have 1 < µ < 2 and 1 <√
µ2 + σ2 < 2 for all t ≥ 1.

Proposition OA.1. If returns are generated according to (8) in the main text, then
in the large N,P limit

b′t+1C
′Cbt+1 −

∑P
i=1 ζi,t√

2
∑P

i=1 ζ
2
i,t

d−→ N(0, 1) .

It follows that the test statistic Tre satisfies

Tre√
µ2 + σ2

− µ− 1√
2 (µ2 + σ2)

√
P

d−→ N(0, 1)
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where 1 < µ < 2 and 1 <
√
µ2 + σ2 < 2.

We can therefore think of Tre as a multiple of a standard Normal random variable
plus a term of order

√
P :

Tre ≈
√
µ2 + σ2N(0, 1) +

µ− 1√
2

√
P . (OA.7)

This result is similar to the corresponding result in our main analysis, but with
√
P

taking the place of
√
J .

Proposition OA.2. In a test of return predictability based on the rational expectations
null (OA.5), we would have, for any critical value cα and at any time t,

P (Tre > cα)→ 1 as N,P →∞, P/N → φ .

More precisely, for any fixed t > 0, the probability that the test fails to reject declines
exponentially fast as N and P increase, at a rate that is determined by µ, σ, and φ:

lim
N→∞

− 1

N
logP (Tre < cα) =

(µ− 1)2φ

4 (µ2 + σ2)
, (OA.8)

for any critical value cα.

Thus, as in our main analysis, in-sample predictability tests lose their economic
meaning when P is not small relative to N , in the sense that rejection of the no-
predictability can be likely even without risk premia or mispricing.

For out-of-sample tests, we obtain the following result.

Proposition OA.3. If returns are generated according to (8) in the main text and
rOOS,t+1 = 1

N
r′t+1Cbs+1 with s 6= t, then

E rOOS,t+1 = 0

and, in the large N, J, P limit,

rOOS,t+1√∑P
j=1 ζj,sζi,t

d−→ N(0, 1) .

Now suppose the characteristics are associated with a predictable component Xγx
for some vector γx that represents risk premia. In this case, adding this component to
the returns in (8) in the main text, we get

rt+1 = Xγx +X(I − Γt)g −XΓt(X
′X)−1X ′ēt + et+1, (OA.9)
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The econometrician wants to estimate to what extent the characteristics she observes
(i.e., C) are associated with risk premia. Projecting X on C we can decompose
X = CB +E, where E′C = 0 and rewrite returns as

rt+1 = Cγ +Eγx +X(I − Γt)g −XΓt(X
′X)−1X ′ēt + et+1 (OA.10)

where we have defined γ = Bγx.
Given the returns (OA.10). and using results from Proposition OA.3, it is straight-

forward to show that
1

N
γ ′C ′Cγ = E rOOS,t+1. (OA.11)

A Proofs

We first recall some notation and some basic facts that we will exploit throughout
this appendix. We will use the eigendecomposition

1

N
X ′X = QΛQ′ (OA.12)

and the definition

Γt = Q

(
I +

J

Nθt
Λ−1

)−1
Q′ . (OA.13)

It will be convenient for future use to note that (OA.12) and (OA.13) imply that

I − Γt = Q

(
I +

Nθt

J
Λ

)−1
Q′ (OA.14)

and
θt

J
(I − Γt)X

′X = Γt . (OA.15)

We will repeatedly exploit the fact that Q is orthogonal (that is, QQ′ = Q′Q = I)
and Λ is diagonal. It follows that Γt is also diagonal. Note further that diagonal
matrices commute.

Assumption OA.1 implies that

1

N
X ′X =

(
1
N
C ′C 0
0 1

N
M ′M

)
is block-diagonal (where zeros indicate conformable matrices of zeros). Eigendecom-
posing 1

N
C ′C = QCΛCQ

′
C and 1

N
M ′M = QMΛMQ

′
M where Q′iQi = I for i = C,M ,
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we have
1

N
X ′X =

(
QC 0
0 QM

)
︸ ︷︷ ︸

Q

(
ΛC 0
0 ΛM

)
︸ ︷︷ ︸

Λ

(
Q′C 0
0 Q′M

)
︸ ︷︷ ︸

Q′

.

It follows that Γt =

(
ΓC,t 0

0 ΓM,t

)
is block-diagonal, with Γi,t = Qi

(
I + J

Nθt
Λ−1i

)−1
Q′i

and I − Γi,t = Qi

(
I + Nθt

J
Λi

)−1
Q′i, where Qi is orthogonal and Λi is diagonal for

i = C,M .
Lastly, Assumption 4 in the main text implies that (i) Σg = (θ/J)I, (ii) E ēte′t =

E etē′t = E ētē′t = 1
t
I, (iii) E ete′t = I; and, for s < t, (iv) E ēte′s+1 = (1/t)I, (v)

E et+1ē
′
s = 0, and (vi), E ētē′s = (1/t)I.

Proof of Proposition OA.1. We form bt+1 = (C ′C)
−1
C ′rt+1 and then look at the in-

sample return r′t+1C (C ′C)
−1
C ′rt+1 = b′t+1C

′Cbt+1. To think about the distribution
of this quantity, we first need to understand bt+1 itself. It is a zero mean Normal
random vector, and as E rt+1r

′
t+1 = θ

J
X (I − Γt)X

′ + I by Proposition 2 in the main
text we have

E bt+1b
′
t+1 = (C ′C)

−1
C ′ E rt+1r

′
t+1C (C ′C)

−1

=
θ

J
(C ′C)

−1
C ′X (I − Γt)X

′C (C ′C)
−1

+ (C ′C)
−1

=
θ

J
(I − ΓC,t) + (C ′C)

−1
,

where we use the fact that C ′X =
(
C ′C 0

)
in the last line. In terms of the eigende-

composition,

N E bt+1b
′
t+1 = QC

[(
J

Nθ
I + tΛC

)−1
+ Λ−1C

]
︸ ︷︷ ︸

ΩC,t

Q′C .

If we define ut+1 =
√
NΩ

−1/2
C Q′Cbt+1, then

√
Nbt+1 = QCΩ

1/2
C ut+1 and ut+1 is

standard Normal: Eut+1u
′
t+1 = NΩ

−1/2
C Q′C

1
N
QCΩCQ

′
CQCΩ

−1/2
C = I. We can then

write

b′t+1C
′Cbt+1 = u′t+1Ω

1/2
C Q′C︸ ︷︷ ︸

√
Nb′t+1

QCΛCQ
′
C︸ ︷︷ ︸

1
N
C′C

QCΩ
1/2
C ut+1︸ ︷︷ ︸

√
Nbt+1

= u′t+1Ω
1/2
C ΛCΩ

1/2
C ut+1

= u′t+1ΩCΛCut+1.
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The last line exploits the fact that Ω
1/2
C and ΛC commute, as they are diagonal.

It follows that

b′t+1C
′Cbt+1 =

P∑
i=1

ζi,tu
2
i , (OA.16)

where ζi,t are the diagonal entries of the diagonal matrix ΩCΛC and ui are independent
N(0, 1) random variables (the entries of ut+1). Explicitly,

ζi,t = ωi,tλi =
λi

tλi + J
θN

+ 1. (OA.17)

As λi > 0 by positive definiteness of X ′X, it follows that for t ≥ 1, ζi,t ∈ (1, 2).
Moreover, as limJ,N→∞

J
N

= ψ > 0 and (by Assumption (5) in the main text) λi > ε,

ζi,t is uniformly bounded away from 1 and 2. It follows that µ ∈ (1, 2) and
√
µ2 + σ2 ∈

(1, 2).
We will apply Lyapunov’s version of the central limit theorem to

∑P
i=1 ζi,tu

2
i , which

here requires that for some δ > 0

lim
N,J→∞

1

s2+δP

P∑
i=1

ζ2+δi,t E
[∣∣u2i − 1

∣∣2+δ] = 0 where s2P = 2
P∑
i=1

ζ2i,t.

It is enough to show that this holds for δ = 2. But as E [(u2i − 1)4] = 60 and ζi,t ∈ (1, 2),

1

s4P

P∑
i=1

ζ4i,t E
[∣∣u2i − 1

∣∣4] =
60
∑P

i=1 ζ
4
i,t(

2
∑P

i=1 ζ
2
i,t

)2 ≤ 960P

4P 2
→ 0 as P →∞ ,

as required. Therefore the central limit theorem applies for b′t+1C
′Cbt+1 =

∑P
i=1 ζi,tu

2
i

after appropriate standardization by mean and variance, which (as the ui are IID
standard Normal) are

∑P
i=1 ζi,t and 2

∑P
i=1 ζ

2
i,t, respectively. Thus we have

Tb ≡
b′t+1C

′Cbt+1 −
∑P

i=1 ζi,t√
2
∑P

i=1 ζ
2
i,t

d−→ N(0, 1) .

The remaining results follow immediately.

Proof of Proposition OA.2. The first statement follows from the second. To prove the
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second, note that Proposition OA.1 implies that

P (Tre < cα) = P

(
Tre√
µ2 + σ2

− µ− 1√
2 (µ2 + σ2)

√
P <

cα√
µ2 + σ2

− µ− 1√
2 (µ2 + σ2)

√
P

)

→ Φ

(
cα√
µ2 + σ2

− µ− 1√
2 (µ2 + σ2)

√
P

)
,

where Φ(·) denotes the standard Normal cumulative distribution function. The result

follows from the well-known inequalities e−x2/2

|x+ 1
x |
√
2π

< Φ(x) < e−x2/2

|x|
√
2π

, which hold for

x < 0.

Proof of Proposition OA.3. We first show that E rOOS,t+1 = 0. As bs+1 = (C ′C)
−1
C ′rs+1,

we have
E
[
rt+1 (Cbs+1)

′] = E
[
rt+1r

′
s+1

]
C (C ′C)

−1
C ′ .

We will show that E
[
rt+1r

′
s+1

]
= 0 when s 6= t; in other words, all non-contemporaneous

autocorrelations and cross-correlations are zero. Henceforth we assume that s < t with-
out loss of generality. From equation (8) in the main text,

E
[
rt+1r

′
s+1

]
=
θ

J
X(I − Γt)(I − Γs)X

′ +
1

t
XΓt(X

′X)−1ΓsX
′ − 1

t
XΓt(X

′X)−1X ′ .

This expression can be rearranged as

E
[
rt+1r

′
s+1

]
=

1

t
X

[
θt

J
(I − Γt)X

′X − Γt

]
(X ′X)−1(I − Γs)X

′ .

As θt
J

(I−Γt)X
′X = Γt by equation (30) in the main text, the term in square brackets

on the right-hand side vanishes, and the result follows.
We now turn to the asymptotic distribution. As r′t+1Cbs+1 = b′t+1C

′Cbs+1, we
want to understand the behavior of bt+1C

′Cbs+1 where s < t. Defining vt+1 =√
NΩ

−1/2
C,t Q

′
Cbt+1, as in the proof of Proposition OA.1, we have

√
Nbt+1 = QCΩ

1/2
C,tvt+1

and Evt+1v
′
t+1 = I. We also have Evs+1v

′
t+1 = 0 whenever s 6= t (because, as shown

above, E rs+1r
′
t+1 = 0 and hence E bs+1b

′
t+1 = 0). Thus vt+1 and vs+1 are independent

standard Normal random vectors. We have

b′t+1C
′Cbs+1 = v′t+1Ω

1/2
C,tQ

′
CQCΛCQ

′
CQCΩ

1/2
C,svs+1 = v′t+1Ω

1/2
C,tΛCΩ

1/2
C,svs+1 .

As Ω
1/2
C,tΛCΩ

1/2
C,s is a P × P diagonal matrix with ith diagonal entry

√
ζi,tζi,s, we can

write

b′t+1C
′Cbs+1 =

P∑
i=1

√
ζi,tζi,swi ,
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where wi denotes the product of the ith entries of vt+1 and vs+1. The wi are inde-
pendent of each other, and each is the product of two independent standard Normal
random variables. Therefore each wi has zero mean and unit variance.

We wish to apply Lyapunov’s version of the central limit theorem to
∑P

i=1

√
ζi,tζi,swi,

which here requires that for some δ > 0

lim
N,J,P→∞

1

s2+δP

P∑
p=1

E
[∣∣∣√ζi,tζi,swi

∣∣∣2+δ] = 0 where s2P =
P∑
p=1

ζi,tζi,s.

It is enough to show that this holds when δ = 2. In this case, as the fourth moment of
a standard Normal random variable equals 3, we have E [w4

i ] = 9, and so indeed

1

s4P

P∑
p=1

E
[∣∣∣√ζi,tζi,swi

∣∣∣4] =
9
∑P

p=1 ζ
2
i,tζ

2
i,s(∑P

p=1 ζi,sζi,t

)2 ≤ 144P

P 2
→ 0 as P →∞.

(The inequality follows because ζi,t ∈ (1, 2) for all i and t ≥ 1.) Hence the central

limit theorem applies for
∑P

i=1

√
ζi,tζi,swi after appropriate standardization by mean

and variance, which are 0 and
∑P

i=1 ζi,tζi,s, respectively. Thus

b′t+1C
′Cbs+1√∑P

i=1 ζi,tζi,s

d−→ N(0, 1) .
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