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In this online appendix, we consider the case where an econometrician observes
only a subset of the firm characteristics that are observable to investors. Specifically,

we now assume that the econometrician’s predictors are collected in the N x P matrix
C, where P < J and rank(C) = P.

Assumption OA.1. X = (C M) where M is an N x (J—P) matriz and C'M = 0.
Furthermore, the variables in C have been scaled such that tr(C'C) = NP. (As
tr X'X =tr C'C + tr M' M, it follows that tr(M'M) = N(J — P).)

We view the econometrician’s predictive variables C' as fixed prior to observing the
data. The assumption that C'M = 0 is without loss of generality, as we can think of
the investors using the predictor variables observed by the econometrician, C', together
with extra unobserved variables M that are residualized with respect to C.

The econometrician regresses r;.; on C, obtaining a vector of cross-sectional re-
gression coefficients

b= (C'C) ' Clryyy . (OA.1)
Under the rational expectations null,
VNbyy, ~ N (0, N(C'C)™), (OA.2)
and
b1 (C'C)byyr ~ Xp- (OA.3)
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As we want to characterize the properties of the econometrician’s test under asymp-
totics where N, P — oo and P/N — ¢ > 0, it is more convenient if we let the econo-
metrician consider a scaled version of this test statistic:

b,,,C'Cb,, — P
V2P '

Under the econometrician’s rational expectations null, we would have, asymptotically,

T, =

(OA.4)

T,. -2 N (0,1) as N,P — 00, P/N — ¢ > 0. (OA.5)

But the actual asymptotic distribution of T} is influenced by the components of
returns involving e; and g in (8) in the main text.

These alter the asymptotic distribution and may lead the rejection probabilities
of a test using N (0, 1) critical values based on (OA.5), or x? critical values based on
(OA.3), to differ from the nominal size of the test. As in our main analysis, we assume
that g is drawn from the prior distribution. Here, we define

3., = (C’C’)_1 and ¥, =E (bt+1b;+1) :

and

1
=14 — OA.6
i t NgAi ( )

are the eigenvalues of ;3! that control the asymptotic behavior of T, with limiting
mean and variance of

P P
1 1
pw= lim — E ¢i¢ and o= lim 2 E Czt —u?.
i=1 i=1

P—oo P 4 P—oo

By the “Big Data” Assumption 5 in the main text, we have 1 < p < 2 and 1 <

V2 +o2<2forallt>1.

Proposition OA.1. If returns are generated according to (8) in the main text, then
in the large N, P limit

P
;+1C/Cbt+1 - Zi:1 Ci,t d

= — N(0,1).
\/221‘:1 i2,t

It follows that the test statistic T, satisfies

Tre /J“_l

ViEto? 202+ %)

VP %5 N(0,1)



where 1 < <2 and 1 < \/p?+ 02 < 2.

We can therefore think of 7). as a multiple of a standard Normal random variable
plus a term of order v/P:

w—1
To ~ /112 +02N(0,1)+ —V/P. OA.7
p? + 0% N(0,1) 7 ( )

This result is similar to the corresponding result in our main analysis, but with v/P
taking the place of v/J.

Proposition OA.2. In a test of return predictability based on the rational expectations
null (OA.5), we would have, for any critical value ¢, and at any time t,

P(Tye > co) > 1 as NP — oo, P/IN — ¢.
More precisely, for any fizedt > 0, the probability that the test fails to reject declines

exponentially fast as N and P increase, at a rate that is determined by u, o, and ¢:

. 1  (w=1)?9
i —yloe P (Tre <o) =y oy (0A-8)
for any critical value c,.

Thus, as in our main analysis, in-sample predictability tests lose their economic
meaning when P is not small relative to N, in the sense that rejection of the no-
predictability can be likely even without risk premia or mispricing.

For out-of-sample tests, we obtain the following result.

Proposition OA.3. If returns are generated according to (8) in the main text and
TOOS.t+1 = %rgﬂCbsH with s # t, then

Eroosit1 =0

and, in the large N, J, P limat,

—TOF?S’” L 4 N0, 1).
\/ Zj:l Cj,sCi,t

Now suppose the characteristics are associated with a predictable component Xy,
for some vector 7y, that represents risk premia. In this case, adding this component to
the returns in (8) in the main text, we get

i =Xy, + XTI -Ty)g — Xrt(X’X)_lX/ét + €, (OA.9)



The econometrician wants to estimate to what extent the characteristics she observes
(i.e., C) are associated with risk premia. Projecting X on C we can decompose
X = CB + E, where E'C = 0 and rewrite returns as

Tir1 = 0'7 + E7x + X(I — Ft)g — XI‘t(X/X)_lX/ét + €411 (OA]_O)

where we have defined v = B~,.
Given the returns (OA.10). and using results from Proposition OA.3, it is straight-
forward to show that

1 /
N’)’ C/C")/ = ETOOS,t-i-l- (OAll)

A Proofs

We first recall some notation and some basic facts that we will exploit throughout
this appendix. We will use the eigendecomposition

1

NX/X = QAQ’ (OA.12)
and the definition .
7 _
=Q(I+—;A" . OA.13
(1 yat) @ (0A.13)
It will be convenient for future use to note that (OA.12) and (OA.13) imply that
N -1
I-T,=Q (I + #A) Q' (OA.14)
and ot

We will repeatedly exploit the fact that @ is orthogonal (that is, QQ' = Q'Q = I)
and A is diagonal. It follows that I'; is also diagonal. Note further that diagonal
matrices commute.

Assumption OA.1 implies that

1., [(LfCC 0
NXX_( 0 +M'M

is block-diagonal (where zeros indicate conformable matrices of zeros). Eigendecom-

posing +C'C = QAcQ and +M'M = Q ;A\ Q' where Q.Q; = I for i = C, M,



we have

AN AN

Q A Q'

1 / _ Q 0 AC’ 0 Q/ 0
(@ g) (5 2 8)

I'c, O
0 Tt
and I - T, = Q, (I + NT(%A@')A Q., where Q, is orthogonal and A; is diagonal for
i=C,M.
Lastly, Assumption 4 in the main text implies that (i) X, = (8/J)1I, (ii) Ee.e; =
Eee, = Eee, = 11, (iii) Eee;, = I; and, for s < t, (iv) Eeel,,, = (1/)1, (v)

Ee; 1€, =0, and (vi), Eee, = (1/t)1.

is block-diagonal, with Ty, = Q; (I + +%=A;") ™ @,

(2

It follows that I'; = (

Proof of Proposition OA.1. We form by, = (C'C’)_l C'r;,1 and then look at the in-
sample return 7, ,C (C'C) ™ C'ryy, = b, ,C'Cb,,. To think about the distribution
of this quantity, we first need to understand b;,; itself. It is a zero mean Normal
random vector, and as Ery 17 = %X (I —Ty) X'+ I by Proposition 2 in the main
text we have

Eb,.,b,,, = (C'C) 'C'Er. ., ,C(CC)"

_ % (c'cy X (I-T,)Xx'c(cc) +(cc)’
0 o
= j(I—FC,t)JF(CC) .

where we use the fact that C'X = (C’C’ 0) in the last line. In terms of the eigende-
composition,

!
NO Qc-

N /

J -1
NEb;1b, = Q- [(—I - tAC> +AG

vV
Qe

If we define w1 = VNQZ?Qubiss, then VNby = QoY uyy and wyyy is
standard Normal: Ewu),, = NQG2Qr1Qo020QrQ 0" = I. We can then
write

b;+1 C'Cby = P;HQ}J/QQ/QQCACQIqQCQgQUHL

VNb, | ~c'c VNbi 1
oy 1/2 1/2
= Uy Qe Al Uy
!/
= ut+1QcAcut+1.



The last line exploits the fact that 910/2 and Ao commute, as they are diagonal.
It follows that

P
b, ,C'Cb,, = Z Q,tU?, (OA.16)

where (;; are the diagonal entries of the diagonal matrix 2cA¢ and u; are independent
N(0,1) random variables (the entries of u.1). Explicitly,
¢ NN (OA.17)
it = WitA; = 7 : :
tA; + N
As A\; > 0 by positive deﬁniteness of X'X, it follows that for ¢ > 1, ¢;; € (1,2).
Moreover, as limj n_o0 % N =1 > 0 and (by Assumptlon (5) in the main text) \; > e,
(it is uniformly bounded away from 1 and 2. It follows that u € (1,2) and \/u? + 02 €
(1,2).
We will apply Lyapunov’s version of the central limit theorem to Zil Giqu?, which
here requires that for some § > 0

P
lim —5 Z 2+6E [ 1{%6} — (0 where 3% = QZ Cft
i=1

NJ%oos

It is enough to show that this holds for 6 = 2. But as E [(u? — 1)*] = 60 and (;; € (1,2),

P P 4

1 60) ., C 960P
— E C~4t]E[‘u2—1}4] = 2oimt Gut < —0 as P — o0,
s b ! P9 \? 4P?

Pi=1 (2 > it i,t)

as required. Therefore the central limit theorem applies for b, +1C”C’ b = Zil Giyu?
after appropriate standardization by mean and variance, which (as the wu; are IID
standard Normal) are Zf; Gt and 2 Zf:l (i, respectively. Thus we have

b2+1C/Cbt+1 Zz 1 C’L t

T, = — N(0,1).
\/ 2 Zz‘:1 it
The remaining results follow immediately. O

Proof of Proposition OA.2. The first statement follows from the second. To prove the



second, note that Proposition OA.1 implies that

Tre —1 « —1
a VP < S a VP
\/M2+U2 \/2(M2+02) \/M2+02 \/2(M2+<72)

]P’(Tre<ca):IP>( -

Ca B w—1 NGz
%(1)(\/#”02 V2 (12 + 0?) P) ’

where ®(-) denotes the standard Normal cumulative distribution function. The result
. - 6712/2 6712/2 .

follows from the well-known inequalities e I[Va < P(z) < N which hold for

x < 0. [

Proof of Proposition OA.3. We first show that Erppsiy1 = 0. Asbgyq = (C’C’)_1 C'ry,

we have

E [Tt+1 (Cbs+1)/} =E [Tt+1T;+1} C (C’C')f1 C'.

We will show that £ [rtHr; +1} = 0 when s # t; in other words, all non-contemporaneous
autocorrelations and cross-correlations are zero. Henceforth we assume that s < t with-
out loss of generality. From equation (8) in the main text,

E[rinri,] = X (I —T)(I —T) X'+ - XTy(X'X) T, X' - -XT,(X'X) " X,

This expression can be rearranged as

1 [ot
E [riar, ] = ;X 7(I ~-T)X'X -T,| ( X'X)" (I -T\)X'.

As %(I-Ty)X'X =T by equation (30) in the main text, the term in square brackets
on the right-hand side vanishes, and the result follows.

We now turn to the asymptotic distribution. As r,, ,Cbsy; = b}, ,C'Cbyq, we
want to understand the behavior of b, ;C'Cb,,; where s < t. Defining v, =
vV Nﬂalt/zQ/Cth, as in the proof of Proposition OA.1, we have vV Nb; 11 = QCQé{f'le
and Ev,1v;,, = I. We also have Ev,1v;,, = 0 whenever s # ¢ (because, as shown

above, Er, 17, ; = 0 and hence E bsﬂb;+1 = 0). Thus vy and vg, are independent
standard Normal random vectors. We have

/ / o 1/2 ~r / 1/2 o 1/2 1/2

As Qg?ACQgi is a P x P diagonal matrix with ¢th diagonal entry /¢ :(; s, we can
write

P
b:f_g_lC/Cbs-i-l = Z \V Ci,tCi,swi y
=1
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where w; denotes the product of the ith entries of v,,; and vs; ;. The w; are inde-
pendent of each other, and each is the product of two independent standard Normal
random variables. Therefore each w; has zero mean and unit variance.

We wish to apply Lyapunov’s version of the central limit theorem to Zfil /GG swi,
which here requires that for some § > 0

P

i 1

B 2B [Nz
p:

245 ) P
=0 where sp= g GitGis-
p=1

It is enough to show that this holds when ¢ = 2. In this case, as the fourth moment of
a standard Normal random variable equals 3, we have E [w}] = 9, and so indeed

4 DN Ne,
}: > 1 GitGils <1442P%0 as P — oo.

(25:1 Ci,s(i,t)z - F

(The inequality follows because (;; € (1,2) for all ¢ and t > 1.) Hence the central
limit theorem applies for Eﬁil GitGisw; after appropriate standardization by mean
and variance, which are 0 and Zil GitGi,s, Tespectively. Thus

1 P
5_4 Z K U V Cz‘,tCz‘,swi
P s

b,,,C'Cb,, 4

\/Pi — N(0,1). O
Zi:l gi,tCi,s



