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Abstract

We study asset pricing implications of a revealing and tractable formulation of smooth
ambiguity investor preferences in a continuous-time environment. Investors do not
observe a hidden Markov state and instead make inferences about this state using
past data. We show that ambiguity about this hidden state distribution alters investor
decisions and equilibrium asset prices. Our continuous-time formulation allows us to
apply recursive filtering and Hamilton—Jacobi—-Bellman methods to solve the modified
decision problem. Using such methods, we show how characterizations of port-
folio allocations and local uncertainty-return tradeoffs change when investors are
ambiguity-averse.
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Continuous time

JEL Classification D81 - G11 - G12

1 Introduction

We consider control and pricing problems with a continuous-time specification when
decision makers have preferences that include what is referred to as smooth ambi-
guity. We introduce hidden Markov states that are the source of the intertemporal
ambiguity concerns on the part of the decision-maker. We show how these concerns
alter portfolio allocations of investors and equilibrium asset prices. While there are
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several applications of the smooth ambiguity approach to decision-making in dis-
crete time, to implement this approach in continuous-time requires rethinking how
the ambiguity aversion responds to the more frequent arrival of information. We pro-
duce a tractable formulation with a well-posed continuous-time limiting representation
extending the discrete-time recursive formulation of Klibanoff et al. (2009), Hayashi
and Miao (2011), and Ju and Miao (2012). This extension opens the door to our inves-
tigation of the impact of ambiguity aversion on continuous-time portfolio choice and
asset pricing.

This paper is a companion to Hansen and Miao (2018). Our previous paper showed
how to construct decision-maker preferences that are recursive and express ambiguity
aversion and/or misspecification concerns for continuous-time Brownian motion infor-
mation structures with hidden states or parameters. That paper showed a novel way to
embed ambiguity aversion in a discrete-time limit. The focus was on the conceptual
framework with little discussion about implementations for economic applications.
The aim of this paper is to show how so-called smooth ambiguity preferences, poten-
tially motivated by robustness concerns, alter portfolio construction and equilibrium
asset prices.

Our continuous-time formulation of ambiguity aversion has an equivalent formu-
lation as a robust prior/posterior adjustment to the conditional distribution over the
hidden Markov state. This extends an insight from discrete-time given in Hansen
and Sargent (2007) to continuous-time hidden Markov dynamics. The outcome of
the robustness adjustment is an altered probability distribution over the hidden state
conditioned on current information that shifts weights towards states that are more
concern to the decision-maker. As we discuss and illustrate, this equivalence has three
valuable implications: (i) it offers a tractable way to solve dynamic decision problems
formulated as max—min problems associated with Hamilton—Jacobi—Bellman (HJB)
equations; (ii) it opens the door to assessing or calibrating ambiguity aversion param-
eters in different ways; and (iii) the altered probability distribution helps to reveal the
consequences of the ambiguity aversion in decision and provides a revealing char-
acterization of the equilibrium valuation consequences. While these observations are
also central to the Barnett et al. (2020) analysis of the climate change uncertainty for
economic dynamics, their paper abstracts from learning.

In this paper we apply the continuous-time ambiguity aversion model of Hansen
and Miao (2018) to:

e characterize the ambiguity-averse contribution to the local market price of uncer-
tainty in addition to the familiar risk aversion component;

e show how increases in ambiguity aversion alter the forward-looking hedging
demand as well as the static demand for a portfolio of risky and risk-less securities,
potentially in opposite directions.

Our paper has been influenced by some important prior contributions of Larry
Epstein. First, we use the recursive preferences derived by Epstein and Zin (1989) in
discrete time and by Duffie and Epstein (1992) in continuous time designed to include
separate preference contributions for risk aversion and intertemporal substitution. Our
inclusion of ambiguity aversion can be viewed as a “smooth” counterpart to the (Chen
and Epstein 2002) recursive version max—min utility theory in continuous time.
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This paper is organized as follows. In Sect. 2, we provide the underlying probabilis-
tic structure assumed in this paper along with two special cases that have been used
extensively in applications: Kalman—Bucy filtering and Wonham filtering. We present
and discuss our continuous-time representation of the utility recursion in Sect. 3. In
Sects. 4 and 5, we combine results from these two initial sections to study equilibrium
pricing and a portfolio allocation. In both cases, we identify an explicit impact of
ambiguity aversion. Section 6 introduces jump risk into the smooth ambiguity utility
model in continuous time. Finally, we provide some concluding remarks in Sect. 7.

2 Stochastic setting

Let (2, 2, P) be a probability space and time is continuous on [0, c0). Let (Y, Z) =
{(Y:, Z;) : t > 0} be a multi-dimensional partially observed stochastic process,
where Z is an unobservable component and Y is an observable component. Let
§ = {S; : t = 0} be the filtration generated by (Y, Z) and & = {&, : t > 0} the
filtration generated by Y alone. The problem of filtering is to construct and update
expectations conditioned on &; for ¢ > 0.

Suppose that Y satisfies

t t
Yz=yo+/ W (Ys,zx)ds+/ oY (¥,) dW,,
0 0

where W = {W, : r > 0} is a multi-dimensional standard Brownian motion defined
on (€2, §, P) and yy is an initial condition. The process {o; (¥;) : t > 0} is adapted to
the coarser @ filtration. For simplicity, assume that the diffusion matrix o} (o,')" is
nonsingular for all # almost surely.

We follow chapter 8 of Liptser and Shiryaev (2001a) by presenting a general filtering
result in continuous time. Let /1}7 =E [M,Y Yy, Zy) |Q§t]. Liptser and Shiryaev show
that under certain technical conditions, the process, W = {W, > 0}, defined by

-172
AW, = [olY (atY )} (dYt e dt)
- [atY (U}V)/}_l/2 () = al)dr+ofaw], )

is a standard Brownian motion relative to the observation information filtration &. The
Brownian motion W, called an innovation process, plays a key role in filtering theory
because it generates ® and has the same dimension as Y.

We consider two examples of filters in the next two subsections.
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2.1 Kalman-Bucy filter
Suppose that the partially observed system is given by

dY; = (Ayo+ Ay Y, + Ay Zy) dt + BydW;,
dZy = (Ao + AyYy + A Zy) dt + B.dW,. 2

Suppose that all matrices in the above equations are constant and appropriately
conformable. Moreover, suppose that By B/, is nonsingular and that Zy is normally
distributed with mean zg and variance X. We treat the case in which By B, = 0. Oth-
erwise, we can transform the state to remove the conditional correlation by studying
the filtering problem:

~ 1
7, =7 — B.B/ (ByB;) ;.

The state Z has the same conditional covariance matrix as Z; and a conditional mean
that is translated by

1
A..B.B, (B},B;) Y.

As noted by section 10.3 of Liptser and Shiryaev (2001a), under the limited infor-
mation filtration &, Z, = E (Z; | &,) is a Gaussian process with mean satisfying the
Kalman—Bucy filter:

_ 12
dY; = (Ayo + ApYi + Ay Z) di + (ByBy) W,

_ _ —-1/2 __
dZ, = (Aw + A Y + A Z)) di + S A), (ByB;) dw,, 3)

where conditional covariance matrix X; solves:

¥ / ’ ’ A
= AuTi+ AL + BB, - DA, (ByBy) Ay, (4)
and the innovation increment is given by
— A2 -
W, = (ByB)) " [Aye (20 = Zi)di + ByaWi]. )

The Brownian increment d W, under the & filtration has two contributions: the predic-
tion error, Z, — Z, and the Brownian increment, d W;, under the original § filtration.
While (2) gives the Markov state dynamics for the § filtration, (3) and (4) give an
alternative first-order Markov state dynamics pertinent for the & filtration where the
date 7 state vector is taken to be (Y;, Z;, ;).

@ Springer



Asset pricing under smooth ambiguity... 339

Example 2.1 (Parameter estimation) Suppose Ao = 0, A;, = 0, and A;; = 0 and
B, = 0. With these restrictions the Kalman—Bucy filtering model specializes to one
with parameter estimation with Z; being time invariant and A, Z, being an unknown
parameter vector for the evolution of Y. In this special case, the posterior mean evolves
as

_ -1/2 __
dZ; = T4y, (ByB)) AW,

which is a martingale under the & filtration, and the posterior covariance matrix evolves
as:

ds,

—1
— =—2,A;Z<By3;) Ay 3.

2.2 Wonham filter

Suppose that the decision-maker observes information generated by a multi-
dimensional regime-switching process Y, that evolves as:

dYt = Ayledt —i—AyZZ,dt +BydWl, (6)
where W is a Brownian motion with respect to the filtration § and B, B; is nonsingular.
The process Z evolves as an n-state Markov chain with a discrete state space given

by the coordinate vector of R”. The intensity matrix for the hidden state process Z is

A = [Aij] where A;j > 0 for j # i and Aj; = =2 Aij!

Notice that Z, = E(Z, | &,) is the vector of predicted state probabilities. By
Wonham (1965) or chapter 9 of Liptser and Shiryaev (2001a), we have that

— 172

dY, = Ay Yidt + Ay Zodi + (BB dW,,
where

— N\ 12 —

dW, = (ByB)) " [Ay (Z0 — Zi)di + BydW,]. 7
The dynamics for the predicted state are modified to be:
- 2 . = 5/ / N2 —
dZ; = N'Z.di + |diag (Z) - Z.Z,| Ay, (B,B))  dW,,

where diag (Z) is a diagonal matrix with the entries of Z; on the diagonal.

Example 2.2 (Parameter estimation) When the intensity matrix is identically zero, the
hidden state is invariant. This limiting case is of particular interest and can be viewed

' While we could replace By by aty (Yr), we suppress such dependence for notational simplicity.
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as parameter estimation with Ay Z; as being the unknown parameter vector. The
posterior distribution evolves as a martingale

_ ) __, —-1/2
dZ, = [dlag (Z) - ztz,] Al (ByB;) AW,
under the & filtration. Since Z; is one of the coordinate vectors, the columns of A yz
give the n possible realizations of the parameter vector.
3 Smooth ambiguity preferences
We represent intertemporal preferences through the use of continuation values. Denote
the decision-maker’s continuation utility process V = {V; : t > 0} for a &-adapted
consumption process C = {C; : t > 0}. The process V solves a backward stochastic
differential equation (BSDE) implied by the preferences. Such a differential equation
has a terminal condition imposed at some date 7. In our characterization, we will

effectively take limits as 7' tends to infinity to sidestep horizon dependence in the
solution.

3.1 Restricting the local evolution of V
Write the evolution in terms of the & filtration as
th - Vt,tltvdt + V,&tvdW,,

where both i/ and G, are adapted to the & filtration. Then we may also use (1) to
write an § filtration counterpart as

dV, = Vi) dt + Via) dw,,

where
A-1/2
u =it =a) [of (o) | () ®
A-1/2
otv = 6IV I:GIY (O’tY ) :| O’IY. &)

While otV given by (9) is &, measurable, MIV given by (8) is only restricted to be
$§: measurable. Taking expectations on the two sides of (8) conditioned on &;, we
have i} = E (,u,v | @,). Importantly, armed with a solution to the filtering problem,
(), 5) determines (1), o,") . In order to produce a formula for 2, the local
evolution will come into play as d W, contributes “risk” and u; — 1) contributes
ambiguity induced by the hidden state.

@ Springer



Asset pricing under smooth ambiguity... 341

The smooth ambiguity preferences in continuous time impose a restriction on
(), 5, expressed in terms of the pair (1), o,). Hansen and Miao (2018) derived
this equation by taking limits of a discrete-time model related to Hansen and Sargent
(2007), Hansen and Sargent (2011), Klibanoff et al. (2009), Hayashi and Miao (2011),
and Ju and Miao (2012):

1
Vi = [[1 = exp(=86)] (€)'~ + exp(=8e) (A)' =] 7, (10)

where 6 > 0 is the subjective discount rate, % > 0 is an intertemporal elasticity
of substitution, and € > 0 denotes a time increment. The two conditional certainty
equivalent operators are defined as

1L
1—

R = E[ie' 7 & ]} 7y =0 (a1

€

A = {E[(R,)—%‘ |@5,]}7 a0, (12)

where the parameters y and « capture risk aversion and ambiguity aversion, respec-
tively. The contribution of the certainty equivalent R, is familiar from the work of
Kreps and Porteus (1978) and Epstein and Zin (1989). The certainty equivalent adjust-
ment A; is familiar from the work of Klibanoff et al. (2009) except for the impact
of €. The € contribution for ambiguity aversion is motivated explicitly in Hansen and
Sargent (2011) and Hansen and Miao (2018).> Conveniently, the composite aggregator
(10) is homogeneous in degree one in (Cy, V;1¢). Hansen and Miao (2018) take limits
of this composite aggregator and derive a continuous-time counterpart that we use in
this paper.

Initially, replace the ambiguity certainty equivalent given in (12) by assuming that

=Ry = (B[00 7 1]

Consider a solution in terms of BSDE expressed in terms of the filtration §. Consistent
with Duffie and Epstein (1992), it follows that by taking an € |, 0 limit

) C; 1=r v VY
0=—21[(=) -1 _r
1—p[<w> T

Notice that this equation entails both the drift contribution ,utv and the diffusion con-
|2

2
\%
oy

13)

tribution |atV . The latter is scaled by the risk aversion parameter y. An important
special case is when intertemporal elasticity of substitution is unity (p = 1), in which
case the limiting utility recursion is

2 Skiadas (2013) adopts a different scaling using « in place of % and shows that smooth ambiguity
adjustment vanishes in the limit. See Hansen and Sargent (2011) and Hansen and Miao (2018) for further
discussion.
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y 2

O:S(logC,—logV,)—}-,u,V—E v

0y

Under the partial information filtration &, the BSDE for V still satisfies (13) but with
) replaced by i) .3

Consider next the change when induced by the smooth adjustment for ambiguity.
Then the drift contribution 1) in (13) is replaced by the ambiguity adjustment derived
in equation [11] of Hansen and Miao (2018):

- élogE [exp (—auf) | Qﬁ,] <E (M,V | @) =i/, (14)

which gives the ambiguity-adjusted modification to equation (13):

1—
o= | () e gt
—é logE (exp [—06 (M;V - lltv>] | th) . (15)
The p = 1 limiting recursion is now
0=25(ogC; —log V) + i) — g o |
—é logE (exp [—a (,u,v - lltv)] | Qﬁ,) . (16)

Notice from formula (9) that the risk adjustment can be expressed as

2 _ % 5 [th (th)/]—l/z o <0ty)/ [th (UIY)/} (@V)/ %

and from formula (8), the ambiguity adjustment can be expressed as

~12
\%
Oy

4
2

—é logE [exp (—Ol/,L[V) | Qﬁt]

=i - élog]E (eXp [—a (utv - ﬁtv)] &)

—a) - élogE <exp |:—<x (@V |:0tY <o,Y)/}_l/2 (! - ,zf))} | ®t> .

Thus, we may rewrite formula (15) as

) C; = -y Y
0=——1|(=) -1 _r
1—p[<vt) T

2
3 As we will see in the argument that follows, ‘atv‘ = }"z
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—élogE (exp [—a (6,V [of (G’Y)Tl/z (M,Y - ﬂf))} | 05,) - an

Equation (17) restricts the local evolution (/_le , 5,‘/) of the continuation value given
the current level, V; along with date ¢t consumption and the local dynamics of the
solution to the filtering problem. This equation will give us a direct input our solutions
for equilibrium prices and portfolio allocations. Notice that the adjustment in the
second line of the equation is recognizable as a “smooth” adjustment for aversion to
ambiguity in the drift of the continuation value, in contrast to the max—min recursive
utility specification of Chen and Epstein (2002).

3.2 Arobustness interpretation

To obtain a more direct generalization of the max—min recursive utility formulation,
we follow Hansen and Sargent (2011) and Hansen and Miao (2018) by motivating this
adjustment as an outcome of a relative-entropy minimization problem:

—£logE |:exp [—M} | ®t:|

_ E|M, (n)/ -7V E (M; log M, 18
= M0 BBl [ ’(“’ M’)|®’]+E (MelogM: | ) (18)

subject to E (M, | &;) = 1 where £ > 0. It suffices to search over random variables
that are §; measurable given that the drift /,Ltv satisfies this restriction. The random
variable M, is used as a robustness adjustment for probabilities of §; measurable events
conditioned on &;. The parameter £ is a penalty parameter and [E (M, log M; | &;) is
a measure of entropy relative to a baseline probability distribution.

The minimizing M;" is given by familiar exponential tilting formula:

o[ ] ()

Mt*z =

E (exp I:__(“tvg/_‘tv)} | th) E [exp (‘lé—tv) | 6t] ’

where probabilities are tilted towards adverse outcomes as quantified by the surprise
movement in the drift 1) — i} The left side of (18) is equivalent to the smooth
ambiguity adjustment where & = é Thus an alternative way to express (17) is

5 c\'"
0=—|(= —1 -z
1_:0|:<Vt> :|+ 2

[ ( _M,)wﬁ,] §E (M;log M; | &;)

t

+ min
M =20,E(M;|8)=1
for (u} — 1)) given by (8).
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The minimized objective gives the equivalent smooth ambiguity adjustment where
& = é A large ambiguity aversion parameter « acts as a small penalization param-
eter when making robust adjustments to learning or filtering problems. Reducing &
(increasing «) reduces the objective to be minimized and consequently makes the
robustness/ambiguity adjustment more pronounced. This formulation can be viewed
as a continuous-time counterpart to the recursive formulation of variational prefer-
ences in Maccheroni et al. (2006).* This robustness interpretation (i) alters how we
think of plausible settings for the ambiguity aversion parameter, (ii) provides addi-
tional interpretative insights into applications of smooth ambiguity preferences, and
(iii) offers alternative tractable ways for computing numerical solutions to decision
problems. In terms of (i) and (ii) the robustness interpretation opens the door to assess
the plausibility of alternative choices of « following the robust Bayesian perspective of
Good (1952) and the statistical detection methods featured by Anderson et al. (2003).
In terms of (iii) see Barnett et al. (2020) for a computation approach that implements
ambiguity aversion through minimization over probabilities.

3.3 Examples
We now revisit the two filtering examples that introduced in Sect. 2

Example 3.1 (Kalman—Bucy filtering) For Kalman-Bucy filtering, u” — i} is con-
ditionally normally distributed with mean zero and nonstochastic covariance matrix
Ay 5 A and o) = B,. As a consequence,

2 —-1/2 —-12 /
_ a” _ _
logE (exp [—a (,utv - MJ/)] | 051) = TUIV (ByB;> AyzEtA/yZ (BnyV) <gtV) ,

since the left side variable is distributed as a log normal with mean zero and variance
V|2 expressed in logarithms. Thus the smooth ambiguity adjustment is

oy

1 _

——logE (exp [ —a () — ') | 16)
-1/2 12 /

- _%5," (BvBy) " Aveziay (ByBy) T (5))

Combining the risk and smooth ambiguity contributions in (17) gives
1_ —-1/2 -1/2 Y.
_Eatv |:01 (ByB;) AyZElA/yZ (ByB;) + y[i| (atv) ’

where the first term in [-] is a covariance matrix adjustment for state estimation and
the second term is a Brownian risk adjustment, each weighted by distinct aversion

4 Variational preferences are a generalization of max—min utility, which allows for penalization. Strictly
speaking, Maccheroni et al. (2006) presume a form of time separability, which is true in our setting when
pP=Y.
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parameters. The distorted state distribution is normal with a conditional mean given
by

7 —aS, A (B B’)*l/2 (0‘/)/
t 12yz \ Py Py t

and an undistorted conditional covariance matrix ;.

In the special case of a scalar observation process Y, the ambiguity adjustment is
equivalent to an enhanced risk aversion parameter that could be time varying and given
by

Ay %y (AyZ)/

o
|By|?

+y.

Equivalently, a robust adjustment to the state distribution imitates risk aversion in
preference.

Example 3.2 (Wonham filtering) For Wonham filtering, the state distribution for Z;
conditioned on &, is not normally distributed since the realizations of Z; are coordinate
vectors. While the log—exp ambiguity adjustment may be computed numerically, the
resulting ambiguity adjustment cannot be captured by a simple covariance correction
and takes a different form than that for the risk correction.

4 Pricing uncertainty

In this section, we show how to incorporate smooth ambiguity into the local prices
of uncertainty expressed as expected returns compensations. Let S = {S; : t > 0}
be the stochastic discount factor process used to represent the shadow price process
implied by a consumer’s optimization problem. Write the continuous-time evolution
for (logC,log V,log S) as

1 _

dlogC, = ('ELIC_§|6.ZC|2> dt+6'lCdWl, (19)
1 __

dl()g V, = <,EL[V _ E|6t\/|2> dt 'i‘o_'tVdVVt7 (20)
1 _

dlog$S, = <,1§ — E|af|2) dt +65dw,. 1)

Our aim is to produce formulas for (fi5,5) taking the consumption dynamics as
given, say as the outcome of a dynamic resource allocation problem. For the purposes
of the discussion in this section, we may think of the dynamics in (19) as derived from
applying a Sect. 2 recursive filtering solution to:

1
dlogC; = (M,C — E|a,C|2> dt +ofdw,. (22)
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4.1 Local risk-return tradeoff

Consider a positive cumulative return process Q:
dQ, = Qialdt + Q:52dW,. (23)

This process presumes all cash flows are reinvested, and thus the local return is 49
Frictionless asset pricing theory implies that Q.S is a martingale under the & filtration.
Applying Ito’s Lemma, the local martingale restriction implies that

0:S: (/‘Lt +Mt +Ut > =0.
Thus the instantaneous expected return satisfies
il =-pf-55.62. (24)

From this formula, we see that the instantaneous risk-free rate is — ,tl,S and the local
price vector expressed as expected return compensation for exposure to Brownian risk
is —O’t This computation is well known from continuous-time asset pricing theory.
The continuous-time filtering problem provides some extra structure to this pricing
formula. Recall that the Brownian increment of relevance to a decision maker is

dW, = [th (le)’}_l/z [(M[Y _ ,atY) dt + o, th]

Thus exposure to d W, is a bundle of the exposure to the Brownian increment d W; and
(o} (Mty -k ) dt. In what follows, we will deduce compensations for each of these
two exposures as part of our construction of .

4.2 Recursive risk and ambiguity adjustments

To set the stage for characterizing the contribution of ambiguity aversion to the local
(in time) asset prices, we first derive the stochastic discount factor for the discrete-
time approximation in the utility recursions (10), (11), and (12). We then take limits as
the time increment approaches zero. Our derivation will be admittedly heuristic, but
is designed to motivate the extension to ambiguity aversion.> This derivation can be
viewed as a way to construct an informed guess for the equilibrium asset prices, and
the formal verification will require more specificity about the underlying economic
environment.

We start by computing two marginal utilities of consumption at distinct but nearby
points in time as implied by the utility recursions. One is for the current consumption,

5 For a more rigorous derivation in continuous time that abstracts from ambiguity aversion see, for instance
(Skiadas 2007).
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and the other is future consumption from the perspective of the current period for a
discrete-time process interval of length €:

_ (ate)

Cee \ " (Viee NV (R € AN\ P
MCf,, = exp(=8€)[1 — exp(—3e)] (Vj ) (%) (I) (7) :
t+e t t t

i <Ct>_p
MCy =1 —exp(=d)]| — ]
Vi

where the risk adjustment is

Re = (B[00 15]) 7

and the ambiguity adjustment is

A= (E[R)7F | @])_‘% .

As in the discrete-time model of Ju and Miao (2012), the marginal utility calculations
use familiar formulas for CES functional forms and are computed by differentiating
through the three recursions, (10) , (11), and (12).

The marginal utility ratio evaluated at equilibrium outcomes gives the stochastic
discount factor increment:

Sive _ MCiy. _ (§+) (g >—i‘ 05)
Y Mc? S A ’

where

3 -p =y y=1 I=p
Stje = exp(—d¢€) (Ct+€) (Vt+€> (&) (é) , (26)
St C; Vi Vi Vi

o

Size and (%) ‘ to the stochastic discount factor in

S
Egq. (25) behave qualitatively different as € declines to zero. For instance, the small €

where the two components

Stte
S

Consider first the local evolution of the S process under the § filtration, which we
represent as:

limit of is one, while we will derive a nonzero limit of the second term.

d§[ == S;ﬁfdt + S:,Etdet
implying a logarithmic counterpart:

~S
oy

~ ~S 1 2 ~S
legS[: My _E dt+0t dW[
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From formula (26), the local exposure of d log S, todW, is

EIS = _patC + (- )’)U;V- (27)

y—1 1-p - .
since the terms (%’) and (%‘) only contribute to the drift Mf . In “Appendix

A”, we deduce the following local representation for this drift:

X | 2 )
iy =—8—pul + 5 [(02+p) IG,C‘ —2p(p =)ot o) +(p—y)p—1) ’o,V’ ]

+(p-1 (u,v + élogE[eXP (—tm,v> | 6:])- (28)

The contribution
(Rt)_‘ (R:/Vz>_€
A A/ Vi
to the stochastic discount factor requires special attention. This random variable is
§: measurable and has expectation conditioned on &, equal to one. Thus it acts as a

change in the probability measure for §; measurable events conditioned on &;. In the
appendix we characterize the limit as:

o ep[-e(w -]
E (exp[—a (1 — /)] 18:)

which induces the same probability adjustment as the robust interpretation given in
Sect. 3. We denote the corresponding conditional expectation as E (- | &;).
Consider a local return:

dQ:

t

=i2dt + 624w,

Given the ambiguity aversion we distinguish the risk exposure from the ambiguity
exposure by rewriting this local evolution as:

d B B 1-1/2 B B 1172
QQI =,u,th + G,Q |:th (O'IY) ] (Mty — ,u,tY) dt + otQ |:atY (G,Y> ] O’tYth.
'

For the pricing, we first take account of the local contribution of §, conditioned on the
finer sigma algebra §; :

E[d(50:) 18] = S0ald:+5 0 dr
—1/2

300 |of (o) (ur =l ) ar
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+ §, Q,&,Q |:0tY <th>/:|_

where &,S satisfies (27). Moreover, from (1) and (27),

172

[U,Y <o,Y)/]_ o! (&,5)/ = [0 + (o - y)&,V]’.

Next we use the change of probability measure that we derived for the ambigu-
ity adjustment represented as a conditional expectation E (- | &;) as input into the
martingale pricing restriction under the & filtration:

il =R (5 16)-52 -5,

where

&S = [—,oé,c 4o )/)@V] + [INE (M,Y | @,) —-E (,u,ty | 61)]/ [atY (UtY)/:|_1/2'

This verifies that the vector —E of uncertainty prices of exposure to the Brownian
increment d W, has two components, one that is familiar from recursive utility theory
and other that depends on the difference between the E and E expectations of /,Lt
conditioned on &;. This second contribution is novel and comes from the ambiguity
adjustment.

Claim 4.1 The risk-free rate is -E (ﬁf | Qﬁ,) where ﬁts is given by (28). Local prices
of uncertainty for dW; are the sum of the following two components:

1. (risk) pa & + (y — p)aY;
2. (ambiguity)

1/2

[E(ul 1) =B (] | @t)]'[af (atY)T ,

where the ambiguity-adjusted conditional expectation of §; events conditioned on
&, information has Radon—Nikodym derivative

€Xp [ (H“t - )]

E (exp [—or (" — )] 1 &)

4.3 Long-run uncertainty

We illustrate with the use of these formulas with a hidden state counterpart to the model
of Hansen et al. (2008). The hidden state captures long-run risk as in the Bansal and
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Yaron (2004).° In addition to a hidden state that evolves as a first-order autoregression,
we include a second hidden state that is invariant over time and reflects uncertainty
about mean return. The presence of both components adds to the long-term uncertainty.
In contrast to the extensive “long-run risk” literature our decision maker confronts
hidden state ambiguity because of a lack of confidence in the subjective specification of
growth-rate dynamics. While our long-run uncertainty states are disguised to investors,
we allow for multiple macroeconomic indicators of these states.’
Suppose that

aY; = Ay (Y =Wz} ) di +udZz} + Byyd W,

dZ[ = AZZtht + BZthv
where Z; = (le, 72, Zf)/ and uy is a column vector of ones with the same number
of coordinates as Y. Assume that the eigenvalues of A, all have strictly negative real
parts. The hidden process Z! captures a common stochastic trend for the macroecon-

omy, and the process ¥ — uj Z! is asymptotically stationary. The process Z! has the
familiar Bansal and Yaron dynamics. In particular,

0 1 1 B
Ay,=|0 —n O, B, =|Bn]|,
0O 0 O 0

where 7 is a positive scalar. The hidden state process Z? is recognizable as an Ornstein—
Uhlenbeck process, a continuous-time version of scalar autoregression, and the process
73 is invariant over time and contributes an unknown time trend of the macroeconomy.

To match our previous specification of the Kalman—-Bucy dynamics, we rewrite the
first equation as

dYt = Ayledt + Ayzthl + Byth,

where

Ay = Dy Az — Ayy Dy,
By = Byy + Dy B,
Dy, = [Ul 0 O] .

As a precursor to computing a value function, it is straightforward to show that
E (Yitr | Y1, Z0) = exp (Ayyt) (Y, — Dy Z0) + Wi Z,

1
+; [1 — exp(—n‘r)] u1Z,2 + tu1Z,3.

6 In contrast to the specification in this example, Bansal and Yaron (2004) treat their long-run risk process
as observable to investors. By making long-run risk hidden to the investor, we open the door to an additional
ambiguity adjustment asset values. While Bansal and Yaron (2004) allow for a stochastic volatility state,
we abstract from such a state in this example.

7 For a related approach, see Hansen et al. (2008), who use such indicators in their quantitative analysis
of macroeconomic uncertainty. In contrast to their formulation, we include hidden growth rate states.
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The expected exponentially weighted expectation conditioned on (Y;, Z;) is

o0
s [E/ exp(—87)Yi4rdt | Y, z,}
0

- 1
=38(81 — Ayy) I(Y,—DyZZt)+ulZ,1+< )ulz,2+—ulzf.

n+46 8

The first term on the right side is contribution from the transient macro dynamics and
the second one from the long-run risk contribution. By the Law of Iterated Expecta-
tions,

00
) |:E/ exp(—=81)Y;4.dr | Yt,Z]
0
-1 = 2
:S(SI_Ayy) (Yt_DyZZf)+u1 [1 ]’)_j>8 %jl Zt'

Since the matrix Ay is nonsingular, when § declines to zero, § (—81 + Ayy)71 con-

verges to zero. Thus for small values of 8, the remaining terms dominate.® These are
terms that feature growth rate uncertainty.
For preferences, we presume that p = 1 and that consumption satisfies

log C; =u.Y;,

where u, is a row vector of zeros with a one in the first position. Guess a value function
of the form

log V; = Vo(2) +vyY; + V. Z,,
where vyY; + Vv.Z, is the exponentially weighted average of future expected log
consumption given current information

vy =ou. (81— A,,) ",

—1
Ve = —8ue (81 = Ay) " Dyt [1 k5 5]

See “Appendix A” for details. Armed with these computations, the vector of risk prices
is

~-C -V N2 ’ N2
P65+ = 05" =[puc+ v — o] (BuB) "+ (v — pv. T A, (B B) )
Consider next the ambiguity prices. Observe that
—1 .
W -l = [vy +v.ZAL (ByB)) } Ay (Z-Z), (29)

8 This is of relevance because much of the empirical asset pricing literature that studies long-run risk
imposes a very small value of §.
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where Ay, (Z ;= Z) is distributed as a multivariate normal with conditional mean zero
and conditional covariance matrix Ay, Z,A’yz. In light of formula (29), the ambiguity
adjusted probability maintains the normal distribution and the covariance matrix ¥,
but the conditional mean is now

17
—aA,, B A, [vy+vZE,A;Z (8,8) ] .

This can be verified by a straightforward “complete-the-squares” argument. The cor-
responding contribution to the vector of uncertainty prices is

(et 1) ~E (e 10)] |o (o7)]

_1 “12
= o [vy +v. 5,4l (ByB) ] Ay Al (ByBy)

—1/2

Notice that the altered mean in the normal distribution for the ambiguity adjust-
ment to the Kalman—Bucy filtering depends only on X; and not on either Y; or Z;. This
result, however, is very special. The linearity of log V; in (Y7, 7z) exploits both the
presumed linear state dynamics and the presumption of a unitary elasticity of intertem-
poral substitution, p = 1. More generally, the value functions will not be linear in
the stochastically varying state vector. Even in the Wonham filtering, the ambiguity
adjustment will depend on the predicted state vector and the distributional adjustment
for the hidden state will cease to be normal both under the original baseline distribution
and the ambiguity adjusted distribution.

Collin-Dufresne et al. (2016) studied parameter learning in a model with learning
about parameters governing long-run risk. In their framework, investors learn about
parameters over time while committing to a unique prior. Here we show how to go
further and incorporate ambiguity aversion about the subjective probabilities in a
continuous-time environment.’

5 Portfolio choice
In this section we apply our utility model to a portfolio choice problem over an infinite

horizon. We consider an environment where an investor can only invest in a risk-less
asset with constant return r, and a risky stock with stochastic returns.

5.1 Uncertain return

The scalar Z is the instantaneous mean return on a risky asset, but this mean is not
directly observed by the investor. Instead the investor uses past data to infer what this

9 Ai (2010) explored long-run risk in a production economy with incomplete information. The methods
described here open the door to extensions with investor ambiguity aversion.
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mean is using observations on ¥ .! From the standpoint of Kalman—Bucy filtering, this

is a special case of parameter estimation as described in Example 2.1 with A,, =1

and By a row vector with the same number of entries as the Brownian motion W.
Formally, let the scalar cumulative return process Y evolve as

dY[ = Zdt + BydW[

= Zdt + (Z — Z,) dt + BydW,
= Z,dt + |B,|dW,,

where
_ ¥ _ b _
dZ, = = (dY, — Z,dt) = ——[(Z — Z;) dt + BydW,].
|By| | By
) 2
az =~y
|By]

The solution to the second equation is
_ |By |220
r— —2
30 + | By |

As to be expected, for g > 0, ¥, declines to zero as ¢ gets large. In other words,
Z, converges in mean square to the time invariant Z. Moreover,

dY, — Z,dt = (Z — Z,) dt + BydW,,
which isolates two component pertinent to investor preferences:
(Z — Z;)dt,BydW,.
—_—
ambiguity risk

The wealth of the investor is an endogenous state variable and evolves according
to

dXt = \l/tXtdYt + (1 - \Pt)Xtrdt - Ctdt
= X,rdt — C,dt + W, X, [Zdt — rdt + BydW,],

where W, is the portfolio weight on the risky security and r is a riskless return, which
is assumed to be constant. Applying Ito’s Lemma,

Cr Wwo? 5
dlog X; = rdt — X dr — 5 |By|“dt + V; (Zdt — rdt + Byd W)
t

10" This extends the analysis in Feldman (1992) who featured the case in which p =y = 1 and @ = 0.
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= rdt — (%) dz—(w’) |By|2dt+W; (Z; —r)dt +V; [(Z—Z;) dt + BydW;].
t

We suppose that there are two control variables at each date: (¥, X’ ).Setp =1
and consider three contributions to the HIB equation from the continuous-time utility
recursion using (16 ):

1. §(logC; —logV;) + /leV _ %|Gtv|2;
— 2
2. & %y) CASIE
~ L 1ogE (exp [ o (u) — })] 1 8).

If we were to only consider the first contribution, the resulting HIB equation would
be that for the discounted expected logarithmic utility. The additional contributions
reflect the adjustments for risk aversion that exceeds that of the discounted log utility
benchmark and for ambiguity aversion.

We now construct the above contributions in turn. We use guess and verify for
constructing the value function. In so doing, suppose

1 2
log V; =log Xi + Jo (£) + 5.2 (%)) (Z,—r)

for functions (Jo, J2). Let (x,z,s) denote the potential realizations of the state
(X¢, Zs, Zy) and (¥, ¢) denote the potential realizations for the controls (W;, %).

e Using our value function guess, rewrite contribution 1) as

1
Hi(p.clx.z,5)=38 [logc = Jo(s) = 5 2(9) @ = r)z]

2
tr—e— B0 4y -
1 2
Jz(S)|B 2
d 1 52
- [JO(S) +5 b= r)z} B

e Next consider the adjustment for risk given by contribution 2). Notice that

4 - Y,
o) =W By + Jr(s)Z (Z —r) WBy.
y

This leads to depict the second contribution as:
11—y s \? 5
HW|xz,59)=—— |V +L6)@-—r—o75) B
2 | By|
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e Finally, consider the adjustment for ambiguity given by contribution 3). Notice
that

— > -
w - = [% + () (Zi =) |B—’|2] (z: = 71).
y

Thus the random variable on the left side is normally distributed conditioned &;

with mean zero. Compute the adjustment for ambiguity by using the formula for
the mean of a log-normally distributed random variable

2
Hy({y | x,z,8) = —% |:1ﬂ + J(s)(z—r) ﬁ} s.

Combining these contributions, extending an argument in Duffie and Epstein (1992)
implies that the HIB equation of interest is:

0= rgale(w, clx,z,s) + Ho(Y | x,2,8) + H3(Y | x, 2, 9).
,C
The first-order condition for v is
N
0=z—r—|B v+ [¢+J2 $) =) W} (1= 1By - as].
)7

Therefore, the maximizing choice is

L DL S s ()’—1)|By|2+asj| -
v _|:V|By|2+“5] JZ(S)|By|2|: YIBy? +as @=r. (0

The portfolio choice has a structure very much analogous to that found in Merton
(1971) and extended by Gennotte (1986) and Brennan (1998) to include learning. The
first term in the square brackets on the right side of (30) captures the myopic mean-
variance component and the second term reflects a hedging component. The formulas
differ because Merton, Gennotte and Brennan presume that p = y and abstract from
ambiguity aversion. Since we are interested in the case in which y > 1, the directional
impact of the second term depends on the sign of J> (s) (z — ). We will explore this
impact in the numerical computations that follow.

Notice that what matters in these formulas is the composite uncertainty adjustment
v|By > + as and not the relative importance of the risk and ambiguity adjustments.
Substituting ¥; for s and factoring, we write:

2 P
vIBy[ +aZi=|y+a|l—73]||B
|By|

where we plugged in X, for s. The right side of (31) suggests that the ambiguity
aversion can imitate enhanced risk aversion, albeit in a manner that is time dependent.

Specifically, notice that o multiplies the variance ratio: | th|2 .
y

2 31)
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In terms of a robust Bayesian interpretation: the ambiguity aversion adjustment is
the outcome of a minimization problem implying a distorted conditional mean return
given by

— — b))
Z — oy |:1//* (Zi =7, Z) + 1 (Z) (Z— 1) ﬁ] (32)
y

This opens the door to assess the plausibility of alternative choices of « following the
robust Bayesian perspective of Good (1952).

Since we impose a unitary elasticity of intertemporal substitution, (p = 1), the
optimized consumption—wealth ratio is constant:

log C; —log X; = logé.

To obtain formulas for (Jo, Jo) we substitute the optimal decision rules in the HIB
equation and obtain two equations to be solved. While there are typically multiple
solutions, only one will be of interest and interpreted as the limit of finite-horizon
solutions.

5.2 A quantitative illustration

To illustrate the impact of ambiguity aversion, we solve some numerical examples. We
set parameter values as follows: y =5, 0 =1,6 = 0.01,r =0.02, B, =0.18, Xy =
1%. The computations we report impose a terminal condition log Vr — logCr = 0
for T = 25, which introduces additional time dependence into the continuation value
process relative to the formulas in this section. See the “Appendix B” for details about
how we solve the problem. By extending the decision horizon, value function and
decision eventually converges to an infinite horizon portfolio problem with ¥; = 0,
rendering ambiguity aversion irrelevant. In “Appendix B”, we also show results for
the infinite-horizon problem.

Figure 1 presents the hedging, myopic, and total demand for the stock as functions
of the expected excess returns (Z — r) at date zero for three values of ambiguity
aversion @ = 0, 3, 6 and X9 = 1%. The case of o = 0 corresponds to the ambiguity-
neutral utility model of Duffie and Epstein (1992), adjusted to include learning. For
simplicity, we focus on the case of positive expected excess returns because the case
of negative expected excess returns is the mirror image. In the former case, the myopic
demand is always positive.

Figure 1 shows that ambiguity aversion lowers the myopic demand as ambiguity
aversion has the comparable effect of raising risk aversion. The hedging demand
is negative for positive expected excess returns. Intuitively, bad news about stock
returns following a negative shock is even worse as it also implies that expected
future returns are low due to learning. Given this impact of news, the demand for the
risky stock is diminished relative to the myopic (long) position. Increasing investor
ambiguity aversion reduces the (short) hedging position compared with the Duffie
and Epstein. While a more ambiguity averse investor has a more muted hedging
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Hedging demand Myopic demand Total demand

01 01
expected excess return expected excess return

01
expected excess return

Fig.1 The impact of ambiguity aversion at time zero on the demand for the risky asset for Xy = 1%. The
three panels depict the myopic, hedging and total demands, respectively

response, the total demand declines for the larger value of «. To understand better, the
numerical magnitudes of the two values of «, consider the implications of formula
(32) for the robust-adjusted probabilities. As reported in “Appendix B”, the worst-case
probabilities reduce the expected excess return by about 20% for @ = 3 and by a little
over 30% for o = 6.

Figure 2 presents the impact of prior uncertainty X for the Duffie and Epstein
model (¢ = 0) and for the smooth ambiguity model with « = 3. For the « = 0
model, increasing ¥ enhances the negative contribution of the hedging demand.
The myopic demand does not depend on Xy. Thus the total demand declines as prior
uncertainty is increased, but it remains positive for the values of ¥ that we consider. By
contrast, for an ambiguity averse investor, the hedging demand is not monotonic with
the prior uncertainty. Intuitively there are two opposite effects: higher prior uncertainty
generates a larger short hedging position, but it also makes the impact of ambiguity
aversion larger and hence lowers this short position. The latter effect is represented
by the term (01‘3%;’2 and can dominate the first effect depending on parameter values.
Because an increase in X raises the impact of ambiguity aversion and hence effective
risk aversion, it also reduces the myopic demand. As a result, the total demand for an
ambiguity averse investor declines with ¥y and becomes negative for the largest of
the three values of X that we consider.

5.3 Modifications and extensions

We briefly describe some alternative economic environments and discuss the conse-
quences of these extensions.

Remark 5.1 When p # 1, we consider continuation values of the more general form:
log Vl‘ = log Xt +J (21,7[)

While log V; is no longer quadratic conditioned on Z,, the formula for the optimal

portfolio has a direct extension involving the corresponding partial derivatives of J.

The consumption wealth ratio will no longer be constant, but the decision rule will
satisfy: For this more general specifications of p,
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Hedging demand: DE Hedging demand: ambiguity

0.0

—0.24

-0.4

-0.6 4

-0.84

0.0 0.1 0.2 0.0 0.1 0.2
Myopic demand: DE Myopic demand: ambiguity

1.24 1.2

1.0 1.0
0.81 0.8
0.6 4 0.6
0.4 1 0.4
0.24 0.2
0.0 0.0
0.0 0.1 0.2 0.0 0.1 0.2
o6 Total demand: DE o6 Total demand: ambiguity

0.4

0.2

0.0

-0.24

0.0 0.1 0.2 0.0 0.1 0.2
expected excess return expected excess return

Fig.2 The impact of prior uncertainty as captured by three alternative choices of X(. The results depicted
in the first column are for the model of Duffie and Epstein (1992) implemented by setting @ = 0. The
results depicted in the second column presume that @ = 3. The rows give the alternative contributions to
the demand for the risky asset

log § —1
logC; —log X; = g + (p_) (logV; —log X;)
P p

Because the continuation value is forward looking, the sign of p — 1 determines
qualitatively how beliefs about the future, as captured by log V;, vary with the
consumption—wealth ratio. This is true at least locally in p — 1.

Remark 5.2 As an alternative specifications of the learning problem with p = 1, we
replace the Kalman—Bucy filtering dynamics with the Wonham counterpart. Recall
that these dynamics are:
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dZ; = NZudi + |diag (Z) = Z,Z, | A\ | By| " dW,
= NZ,dt + [ding (Z)) — ZZ,) Al | By| 7 [Aye (2 — Z0)dt + ByaW]
where the return evolution is:
dY, = Ay, Z,dt + BydW; = Ay Z,dt + Ay, (Z, — Z;) dt + BydW,.
The corresponding wealth dynamics are:

C
dlog X; = rdt — (-’) dr —
X

t

()’
2
|By12dt +  [Ay. Zidt — rdt + Ay, (Z, — Z;) dt + BydW,].

We again suppose that the continuation value is additively separable, and write:
Vt == X t + J (7[) .

The construction of the HIB equation is analogous to the Kalman—Bucy filtering
specification with modifications in the state evolution for Z. It is straightforward to
show that

aJ — .1 — =, _ —
n/ —E (M;V | Q5t> = |:1ﬁt + |:87z (Zt):| [diag (Z:) - ZtZz] Ay, |By| 2:| Ay (Zi = Z1),

which conditionally linear in Z;, — Z;. The random vector, Z; — Z, is discrete in
contrast to the Kalman—Bucy filtering dynamics. While the ambiguity computation:

" tog (exp [ (4w — 1})] 1 6,)

is straightforward, the resulting adjustment cannot be captured by a simple variance
correction in contrast to the Kalman—Bucy filtering model.

Remark 5.3 The p = 1 model computation has a direct extension to the environment
like that in Sect. 4.3 with long-run uncertainty and Kalman—Bucy filtering. Instead of
positing a process for log consumption, we suppose that the logarithm of a valuation
process formed by reinvesting any dividends back into the risk security has a long-
term uncertainty component with hidden states. The implied instantaneous return
replaces rdt + Byd W, in the wealth dynamics. This extension allows for there to be
predictability in the return process as has been documented in the empirical literature.
The hidden state variable is now three dimensional. To accommodate the additional
hidden states, the continuation value now takes the form:

— 1 — —
logV; =log X; + Jo (Z)) + 1 (20) Z: + 5 (Zz)/ Do (24) Zy,
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where Jj is a row vector and J, is a symmetric matrix.

Remark 5.4 While the example takes the return process as exogenously specified, we
could instead introduce production as part of social planner’s problem, and explore
capital accumulation and the implied equilibrium asset prices.!! For instance, see
Barnett et al. (2020), who study a climate change problem in presence of ambiguity
aversion. It can be convenient for such a model to construct a max—min version of
the HIB equation in which the minimization is represented as implied by (18).!? The
resulting HIB equation can then be formulated as a zero-sum, two-player differential
game along the lines of Fleming and Souganidis (1989) and others.

6 Unknown jump processes

While our paper focuses on the case of Brownian information structure, we comment
briefly on how to extend this analysis to accommodate jumps. Suppose that Y evolves
according to one of n possible jump processes. We allow for a jump to take place at
any 7, and we use the notation 7- to denote pre-jump values. That is, we follow the
usual convention that processes are CADLAG (right continuous with left limits). For
instance, if there is a jump at 7, V; is the post-jump continuation value and V;_ is the
pre-jump continuation value. We represent the local evolution for process j with an
intensity, Z;_, implying that the approximate probability of a jump over a small interval
€ is €. We represent the jump distribution conditioned on a jump happening using

an expectation operator T/ for j = 1, 2, ..., n. Conditioning on §; at any date includes
knowledge of which of the n possible stochastic process specifications governs the
actual data evolution. This knowledge is not included in &;. Instead the decision maker
uses historical data to make inferences about the plausibility each of the j’s.

We start by deducing a local representation of the recursive utility risk adjustment
for each of the jump processes. That is, we use the § filtration. Again our derivation
will be heuristic providing candidate formulas to be formally justified with a more
complete specification of the decision problem. Let V;, be the continuation value at
date 7 +e. Then the approximate conditional expectation of (V;4.¢)' =" over an interval
€ for jump process j is

E[(Vie) ™ 18- |~ (1= €T ) (Vi)' 7 + ez T]_[(Vir0' 7]

The small € limit of interest is

1—y _ I—y . .
i LY IS T (g [y r] = iy,

€l0 €

1 For instance, we could extend the results of Detemple (1986) who analyzed a production economy with
learning in the case in which p = y = l and @ = 0.

12" In contrast to this paper, Barnett et al. (2020) abstract from learning.
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By the “chain rule,” two certainty equivalent counterpart approximations are

1

E[Vi" 1§D =V T .
: — -v|_ I—y Y
lim ; T (T [ ] v ) ey
and

o T B[V 18] logVie 1l [Tl v

€40 € -y | (vl

Using this computation, if the consumer/investor conditions on model j, the coun-
terpart to (13) in the local construction of investor preferences with jump risk is

_ o [eNT ], e [
S l-p |\ Vie l—y | (Vi)

The ambiguity neutral counterpart averages over the different possible jump processes
conditioned on date ¢ information:

5 ct>‘f’ A N PN A Lt
=—| (= — |+ —) 7T | 1], (33
1—p (vt_ 1—yj;’ T Wiy

where 7/ is the probability of model j conditioned on &,_. Because I,j_ is in the

conditioning information set of T/_, the expectations implied by 7z;_ and T/_ can be
collapsed to one as in Bayesian analysis.'3

By (12), our discrete-time approximation for the logarithm of the smooth ambiguity
aversion adjustment is:'4

—glogi‘n,’_ [(E (Vs 7 | eﬁ,_])“ly} 6
j=1

e/ [T/ (vl
l—y | (Vio)l=r

n
€ ; o
~——1 E Jexp| == [logV,_ + -1
o 0og T, €Xp c g Vi

j=1

13 For instance, we can rewrite (33) in terms of an average intensity Z?:] ”L]Itj— and corresponding
average expectation conditioned on a jump as

J o7
En (ﬂ’—l—t—) T{ )
T 7 -
S\ Yz T

14 Analogous to the Brownian motion specification, Skiadas (2013) used « in place of % in the formula that
follows when considering smooth ambiguity with jumps. As he shows, the smooth ambiguity adjustment
vanishes in the limit, resulting in (33) in continuous time.
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n J J 1-
. € j ol | T _(Vy)' ™7
=logV;— — 5 log jEZl Ti_ exp (—1 - |: Vi —11]).

As a consequence, our continuous-time smooth ambiguity adjustment alters the local
representation of preferences to be:

S C,_ 1—p n ) I] T] vV 1—-y
0= min  —— (L) D = = ’1) -1
720,51 Ai=1 1—p Vi_ et 11—y Vi)' —v

n
+£& Zﬁj (log 7/ —log rr,ﬁ)

j=1
5 C-\'"" 1 &K [Tyl
- (;) -1 ——loantJ_exp _ Xk i t]) -11]).
1—p |\ Vi @ " l—y | (Vio)i77

where, as before, « = é In particular, the robust prior interpretation carries over to
the inclusion of jumps.

This specification of preferences implies counterparts to HIB equations. As in the
diffusion case, such equations take as inputs information state variables that capture
the learning dynamics along with other state variables pertinent to the analysis. The
formulation has direct extensions to more general filtering problems and to problems
that include Brownian shocks along with jumps. A more full analysis of such problems
is beyond the scope of this paper.

7 Conclusion

In this paper, we investigate dynamic decision problems that feature both ambiguity
aversion and risk aversion posed in a continuous-time environment. These prefer-
ences extend specifications proposed by Duffie and Epstein (1992) by including a
continuous-time counterpart to the recursive smooth ambiguity model of Klibanoff
et al. (2009). The smooth ambiguity adjustment has a robust Bayesian interpretation
whereby the decision-maker is unsure about the current period posterior distribution
over hidden states or parameters. As in the robust Bayesian literature, we use this
interpretation to produce a probabilistic adjustment to the posterior that captures the
decision-maker’s ambiguity. We show how both ambiguity and risk aversion reflect
this probabilistic adjustment.
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A Pricing derivation

In this appendix, we provide some derivations that support the analysis in Sect. 4. By
(25), we have

~ ~ R
dlog S; ~ log S;4¢ —log Sy = log Sy —log S, — ¢ log (j) .
€

t
Thus, to compute the drift and diffusion terms of log S;, we only need to compute the
. . ~ R
local mean and local Brownian motion exposure for d log S; and ¥ log (7&)
We compute the local mean ,ZZf and local Brownian exposure 5,5 with respect to
the § filtration where

~ 1
dlog$; = (,1,5 - z|5~,S|2> dt +G5aw,.
Write the logarithm:

log Syse —log S, = [—8€ — p (log Cre —10g C) + (0 — ¥) (log Vige — log V1)]
+[(y = 1) (ogR; —log V)] + [(1 — p) (og A; —log V))].

We consider separately the local contributions of the three terms in [-]. We use the
following intuitive approximation of (22)

2
C
0y

1
dlog C; ~ log Cryc — log C; = (uf -3

)e +0fdw,,

where d W; is Gaussian with mean zero and covariance matrix €/ conditioned on ;.
Similar approximations apply to other variables.
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The first [-] term has local evolution:

C
[—6—puf+(p—y)u,v+p“’2f| = M ’}dmasdwt,

where
5’ =—po +(p—y)a.
Werite the second [-] term as

(y — 1) (logR; —logV;) = —logE (exp [(1 — y)(og Vi4¢ — log V,)] | S,) .

The local (in time) approximation is

2
(y—1) (MY —g oV )d:.
Write the third [-] term as
el —p) o
(1—p)dogA; —logV;) = —u log []E (exp [—— (logR; — log V,)] | Q5t>] .
o €

The local in time approximation is

(p—1 v_(Y\],v
5 logE |:exp <—a [,ut — (5) o,

= (’0; D) logE [exp (—auY) | (’51] dt +

Pre)e

(p —21)3/ )O’tv‘zdl‘

Finally, to make the transformation back to levels we add the local variance adjustment

2 1 5 V2
_2[p }

o
Combining the local volatility adjustments gives

1
2

2
S UtC

0y

—2p(p =)ot o) +(p—y)?

1

§|:<,02+,0)‘ ‘—Zp(p yof o) [(p Y2 ==+ (- J/))’” ‘2]

= % [(,;2 +p) \U,C] ~20(p =)o’ o) + (o= 1)1 \a,Vﬂ .

Combining all of the dt terms gives
i =—38—put
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+(o—1 |:M,V + élog]E [eXp (—cwlv) | ®t]]

+%[<p2+p)

To produce a limiting representation of the probability adjustment, write

|4
0y

2
of| =200 —y)o ) +(p—y)p—1)

:

"R

(2 L

)

n|R

Note that

o

—— (log Ry — log V;)
€
o 1

=~ |75 e Eexp (= plogVise) | 8 —log Vi

~ Vv 14 \% 2

= e (w5 ]T)
Thus

R\ € y )
(8) <ol

and

Ay _%_ R < N v VY
() () o] el oo

S 2
Since /i and |, |” are &, measurable, we have

(myF o eolele k)
S S I
_ epl-a (! — )]

E (exp [~ (w/ — &))] 1 81)

We use the right side random variable as a change of measure for a continuous-time
limit.

Consider next the Kalman—-Bucy example. We construct an Hamilton—Jacobi—
Bellman (HJB) equation based on the recursive preference representation:

y 2

_ 1 _
0:8(10gC,—10gV,)~|—;L,V—alog]E<exp[—a<MY—,utv)]|®,)—§ v

0y
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We use lower case variables (y, z, s) to denote potential realizations of (Y7, Z:, ).
The HJB equation inclusive of ambiguity aversion is

0 =68 (Ucy — Vo(s) — Vyy — v;z)
+Vy (Ayo + Ayyy + Ayez) + Ve (Ao + Ay y + Arez)
! v

_% [vy v:] [(SA,W N BZB;) (ByB;)fl } AyzsAl [1 (ByB;>_1 (Ayes + B},Bg)] [V

1

SHN)

I /
14 , _1 v
=5 [vo v ] { (s + B:B;) (B B;)_l } BB, [1 (BBy)  (Ayes + B),B;)] [Vz ]
Vo (s) .
avec(s)/vec Azzs + SA;Z + BZBé - SA;Z (B)' B(}) Ay |,

where vec(-) forms a column vector by stacking the non-redundant rows of the sym-
metric matrix argument. The HJB equation implies that the coefficient vectors v, and
v satisfy the linear equation:

-0l + Ay, A
[vy v.] [ A, ¥ s —yFZAZZ} = —[Su. 0].

The solution to this equation is also the solution to the exponentially weighted integral:

00
Suc |:E/ exp(—=80)Yiqpedt | Yy =y, Z; = Z]
0

studied in Sect. 3. Finally, the remaining contributions isolate a differential equation
for vg. This function also solves the forward integral equation:

s [ 1
W= [, el ] [(Ew; +B.B)) (ByB;)_l}

@Ay S Ay, + v By By
-1 V/,
I (ByB;) (Ayzz,ﬂ + B(,BZ) 7 |dx.
. - z

B Portfolio solution

For the results in Sect. 5, we solved the HIB equation numerically. While we posed
the HIB equation in Sect. 5 using ¥, as a state variable, our computations start from
a single initialization. Given the initial ¥, X, is strictly decreasing in ¢. Thus, for
computational purposes, we express the value function in terms ¢ instead of X;, and
solve the corresponding PDE. We derive this transformed PDE in the remainder of
this appendix.
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Write the value function guess as:
1 2
K(x,z,1) :x+K0(t)+§K2(t)(z—r) .
Then Hi, Hy, and H3 are replaced by

7 1
Hi(Y.clx.z.1)=8 [logc ~ Ko() = 5Ka(0)(z — r)2:|

2
+r—c—ﬂ|B 2+ ¥z —

(Z)?
+ K2(1)|:|By| i|

d K 1K 2
+E|: 0(t)+§ z(f)(Z—r)i|,

~ 1—y 2\, 2
Hz(‘ﬁ|X7Z,l)=—|:’#+K2(f)(Z—r)( 2)} |Byl~,
2 | By

and

~ a 2 \7T?
H3(‘(/f|xvzat):__ 1/f+K2(t)(Z—V) 2 Et'
2 | Byl
The HJB equation of interest is:
0=max Hi(y,c | ¥, 2,0 + Ho(y | .20 + Hy(W | x.2.0).
c,
The first-order conditions for ¢ imply that
¢t =8.
The first-order conditions for optimal portfolio choice is:

(V1B +as )y @ =z—r— KO =1 <|B |2> [ = DIB P +az].

Given these conditions, the combined linear and quadratic terms in the optimal port-
folio weight are:

2
[i-r—KwG=n(F5) [0 = DIB,P +az]]
V1B, +aX; |

N =
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Thus, we may rewrite the optimized objective as:

0=25logs — &+ —i—lK(t) (Z0)°
=4dlogd — r+ —
g 2 2 |By|2

+i|:K0(t)+ 2”( - )}—8[ Kzz(t)z r2:|

dt

1 2
—§|:K2(f)(2 )(|B |2):| [(V_1)|By| +0lzt]

[Z—r—Kz(t)(Z )(IB ‘z)[(y—lﬂBylz—i—aZt]]z

+
YIBy? + a%;

N =

Terms involving (z — r)? give rise to the following differential equation:

d 1
0="Ky(t) + —r——
a: K20 yIB 2+ax,
|By|2 [(V 1)|By|2+0121]
—5K(t) — Ko (1)
Y |By |2 + OlE[
2
mr v =DIBP +an]
- — Ko (1)~.
B, +a% 20)
VIDy t
Table 1 Slopes in Fig. 1 Terminal condition 1 Terminal condition 2

Hedging demand
a=0 —5.52 —5.06
a=3 —-5.13 —4.68
a=06 —4.78 —4.34
Myopic demand
a=0 6.17 6.17
a=3 5.21 5.21
a=6 4.50 4.50
Total demand
a=0 0.65 1.11
a=3 0.08 0.53
a=06 —0.28 0.17

Terminal condition 1: 7 = 100,000 and limiting value as terminal
condition
Terminal condition 2: 7 = 25 and 0 as terminal condition
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Table 2 Slopes for Fig. 2

Terminal condition 1

Terminal condition 2

(a) DE (¢ = 0)
Hedging demand
o = 0.052 — 458 — 345
o = 0.102 —552 —5.06
o = 0.252 —6.01 —592
Mpyopic demand
o = 0.052 6.17 6.17
o = 0.102 6.17 6.17
o = 0.252 6.17 6.17
Total demand
o = 0.052 1.60 2.73
o = 0.102 0.65 1.11
o = 0.252 0.17 0.25
(b) Ambiguity (o« = 3))
Hedging demand
o = 0.052 —4.49 —336
o = 0.102 —5.13 —4.68
o = 0.252 —4.14 —4.06
Mpyopic demand
o = 0.052 5.90 5.90
o = 0.102 521 5.21
o = 0.252 2.86 2.86
Total demand
o = 0.052 1.41 254
o = 0.102 0.08 0.53
o = 0.252 —1.28 —1.20
The remaining terms imply the following differential equation:
d 1 ()?
0=—Ko(t) —8Ko(t) +8logd — 8 +r + =
dt |By |2

We solve the two differential equations in sequence, plugging the solution to the
first one into the second. When computing solutions, we use terminal conditions at
date T'. For the results reported in Figs. 1 and 2, we imposed that K»(25) = 0. Here we
also report results for the infinite-horizon counterpart by set 7' very large and impose

K> (T) implied be X7 = 0.

~ yIBy?

— 8Ko(T).
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Table 3 Proportional reduction

. Terminal condition 1 Terminal condition 2
in the expected excess return
under the worst-case model o =3 0.19 0.18

a=06 0.32 0.31

This terminal conditions coincides with the solution to an infinite horizon, recursive
utility portfolio problem without learning and exposure to ambiguity. The correspond-
ing terminal condition for Ko (7) solves:

0=46logéd —8§+r—38Ko(T).

Tables 1 and 2a give the slopes of the portfolio rules depicted in Figs. 1 and 2,
respectively, in comparison to the slopes implied by the infinite-horizon problem. The
total demand slopes are lower for the infinite-horizon problem with the « = 6 slope
actually negative. See Table 1. The hedging demand remains non-monotone under
ambiguity aversion as we vary X for the infinite-horizon problem. See Table 2a for
o =3.

Table 3 applies formula (32) to computes the proportional reduction in the expected
excess return shows under the implied worst-case probabilities. The Table reports the
implied slope (as a function of Z; — r) the worst-case increment:

— )
a% [w* (Zi—r,S) + () (Zi - 7) B ﬂ.
y

This adjustment lowers the expected excess return by about 20% for « = 3 and by a
little over 30% for @ = 6 when Xy = .01. As can be seen by the numbers reported in
table, this conclusion is not very sensitive to whether we limit the decision horizon to
be 25 years or allow it to be infinite.

While the appendix computes continuation values by replacing s = X; by ¢, the

functions Jy and J> can be inferred from the infinite-horizon solution described here

by noting that J2(0) = K2(o0), Jo(0) = Ko(00), and using the formula for %.
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