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1 Model derivation1

As described in the Main Text, we begin with the system2


dxi
dt = xi

(∑
j αij qj

)
, i = 1, . . . n

dyi
dt = yi (βi pi)

(S1)

governing the time-evolution of plant abundances xi and soil components yi, where pi =3

xi/
∑

j xj , qi = yi/
∑

j yj , and Greek letters denote nonnegative parameters. These equations4

capture the assumptions outlined by Bever et al. (1997) for two species and extend them5

straightforwardly to any n species. Following the approach of Bever et al. for two species6

(and consistent with other generalizations of this model, e.g., Kulmatiski et al. 2008; Eppinga7

et al. 2018), we derive dynamics for frequencies by applying the chain rule:8
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dpi
dt

=
d

dt

xi∑
xj

=
1∑
j xj

dxi
dt
− xi

(
∑

j xj)
2

∑
j

dxj
dt

=
xi∑
j xj

∑
j

αij qj

− xi∑
j xj

∑
j

xj∑
k xk

∑
l

αjl ql


= pi

∑
j

αij qj −
∑
j,k

αjkpjqk

 .

(S2)

This last expression is identical to the first line of Eq. 5 in the Main Text. The dynamics for9

qi can be derived in exactly the same way (using the definitions βii = βi and βij = 0). The10

two terms of each per capita growth rate in Eq. 5 have natural interpretations in the language11

and notation of linear algebra:
∑

j αij qj is the ith component of the matrix-vector product12

Aq and
∑

j,k αjkpjqk is the bilinear form pTAq. Here, A (and B) is an n × n matrix and p13

and q are vectors of length n, as described in the Main Text. We can re-write Eq. 5 as14

dpi
dt

= pi
(
(Aq)i − pTAq

)
dqi
dt

= qi
(
(Bp)i − qTBp

) (S3)

or even more compactly as


dp
dt = D(p)

(
Aq − (pTAq)1

)
dq
dt = D(q)

(
Bp− (qTBp)1

) (S4)

which is Eq. 6 in the Main Text.15

An alternative derivation of these dynamics (Eqs. 5 and 6) takes the model introduced by16

Bever (2003) as a starting point. Using our notation, this model can be written as17
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dxi
dt = xi

(
ri +

∑
j αij qj −

∑
j cijxj

)
, i = 1, . . . n

dyi
dt = yi (βi pi)

(S5)

where all variables have the same meaning as before. In this model, plants experience com-18

petitive Lotka-Volterra dynamics alongside frequency-dependent soil effects. The parameters19

ri are intrinsic growth rates for plants, and the cij quantify the competitive effect of plant j20

on plant i, as in the usual Lotka-Volterra model. We note that in this context, the soil effects21

on plants, αij may be positive or negative, as they modify the baseline plant growth rates,22

set by ri. The dynamics of soil communities are exactly as before.23

One can write the dynamics for plant frequencies under this model as:24

dpi
dt

= pi

ri +
∑
j

αij qj −
∑
j

cijxj −
∑
j

pj

[
rj +

∑
k

αjk qk −
∑
k

cjkxk

] , i = 1, . . . n

(S6)

following a calculation similar to Eq. S2. As other researchers have noted (Bever 2003; Eppinga25

et al. 2018), if ri = r and cij = c for all i and j, indicating a situation where all plants are26

demographically and competitively equal, then Eq. S6 reduces to27

dpi
dt

= pi

∑
j

αij qj −
∑
j

pj
∑
k

αjk qk

 , i = 1, . . . n (S7)

which is identical to the dynamics for plant frequencies shown in Eq. 5 of the Main Text.28

Thus, under the simplifying assumption of “mean-field” plant interactions, the two models29

yield equivalent dynamics for plant and soil frequencies. We will show at the end of this30

section that the potential difference in signs (i.e. αij must be nonnegative in the first model31

formulation, but may take any sign here) has no effect on the dynamics.32

The system described by Eq. S4, however obtained, is identical to standard bimatrix33

replicator dynamics (Hofbauer 1996; Hofbauer & Sigmund 1998). Bimatrix games have two34
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strategy sets (here, the pi and qi), and interactions take place only between strategies from35

opposite sets. The growth rate terms we considered above now have interpretations as payoffs36

or fitnesses:
∑

j αij qj = (Aq)i is the payoff for strategy i (an average of payoffs playing37

against each strategy of the other “player”, weighted by the frequency of each strategy, qj)38

and
∑

j,k αjkpjqk = pTAq is the average payoff across the population of strategies. A general39

bimatrix game may have any B; our model assumptions lead to the special case where B is40

diagonal. We note that one could easily and plausibly consider an extension of the Bever41

model where each plant species has some effect on (up to) all n of the soil components. Then,42

our PSF model would be map exactly onto the full space of bimatrix game dynamics (rather43

than just a subset). However, all of the results we consider hold for arbitrary bimatrix games,44

meaning the same conclusions about the dynamics of Eqs. 5-6 would apply to this extended45

model, as well.46

We note two useful properties of Eqs. 5-6, as they will be important for the analysis that47

follows. First, we have the constraint
∑

i pi =
∑

i qi = 1 at every point in time. Second, the48

dynamics are completely unchanged by adding a constant to any column of the parameter49

matrices A or B. The first fact is a direct consequence of our definition for pi and qi; the50

second can easily be shown. Suppose we have added a constant w to each element in the lth51

column of A. Then52

dpi
dt

= pi

∑
j

αij qj + w ql −
∑
j,k

αjk pj qk −
∑
j

w pj ql


= pi

∑
j

αij qj + w ql −
∑
j,k

αjk pj qk − w ql


= pi

∑
j

αij qj −
∑
j,k

αjk pj qk


(S8)

which is precisely the differential equation we obtained prior to adding w. Clearly the tra-53

jectories of both systems (with and without the column shift) must be identical. The same54

considerations apply for the matrix B. Intuitively, this property reflects the fact that we55

are always subtracting the average payoff, and so any change to the payoffs that benefits (or56
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harms) each species equally is “invisible” to the dynamics.57

In the remaining sections, we outline the main behaviors of Eqs. 5-6, especially with58

regard to coexistence. We closely follow the treatment by Hofbauer & Sigmund (1998), and59

urge interested readers to consult this excellent introduction (see especially chapters 10 and60

11). Here, we reproduce or sketch the essential details needed to justify the results in the61

Main Text.62

2 Coexistence equilibrium63

Written in matrix form, it is easy to see that the model admits a unique fixed point where64

all species are present at non-zero frequency. This fixed point, (p?, q?), must take the form65

(kpB
−11, kqA

−11) for some undetermined constants kp and kq. Substituting this ansatz into66

the growth rates in Eq. 6 and equating them to zero, we have67

Aq? − ((p?)TAq?)1 = kqAA
−11− (kpkq1

T (B−1)TAA−11)1 = kq(1− kp1T (B−1)T1)1 = 0

Bp? − ((q?)TBp?)1 = kpBB
−11− (kpkq1

T (A−1)TBB−11)1 = kp(1− kq1T (A−1)T1)1 = 0

(S9)

From the final two equations, it is clear that kp = 1
1T (B−1)T 1

= 1
1TB−11

and kq = 1
1T (A−1)T 1

=68

1
1TA−11

.69

These rescaling factors make intuitive sense, as they ensure that
∑

i p
?
i =

∑
i q
?
i = 1,70

consistent with their definition as frequencies.71

Describing these equilibrium frequencies in terms of the parameters is a difficult prob-72

lem that has received significant attention elsewhere (Eppinga et al. 2018; Mack et al. 2019;73

Saavedra et al. 2017; Serván et al. 2018; Pettersson et al. 2020; Saavedra & AlAdwani 2021).74

In particular, one is usually interested in identifying whether all of the frequencies are non-75

negative (such a fixed point is said to be feasible). The existence of a feasible fixed point is a76

requirement for the model to exhibit permanence, meaning that no species go extinct or grow77

to infinity. Throughout our analysis, we assume the existence of a feasible fixed point; con-78

sidering the question of feasibility simultaneously would only make coexistence less likely in79

each case. We present some additional details regarding feasibility in the section Equilibrium80
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feasibility, below.81

3 Local stability analysis82

Perturbations around the coexistence equilibrium are constrained to respect the conditions83 ∑
i pi =

∑
i qi = 1. For this reason, it is convenient to remove these constraints before84

performing a local stability analysis. As in the two species case (Bever et al. 1997), this can85

be done by eliminating the nth species and soil component, which leaves us with a 2n − 286

dimensional system with no special constraints.87

We use pn = 1−
∑n−1

i=1 pi ≡ f(p) and qn = 1−
∑n−1

i=1 qi ≡ g(q) and write these frequencies88

as functions of the others. The reduced dynamics are given by89


dpi
dt = pi

(∑n−1
j αij qj + αing(q)−

∑n−1
j,k αjk pj qk − f(p)

∑n−1
j αnjqj − g(q)

∑n−1
j αjnpj − αnnf(p)g(q)

)
dqi
dt = qi

(
βi pi −

∑n−1
j βj pj qj − βnf(p)g(q)

)
, i = 1, . . . n− 1

(S10)

Although these equations appear more complex, it is now straightforward to analyze the local90

stability of the coexistence equilibrium.91

The elements of the community matrix (the Jacobian evaluated at the coexistence equilib-92

rium) are easily computed from Eq. S10. First we consider the plant dynamics differentiated93

with respect to the plant frequencies. In these calculations, all frequencies are evaluated at94

their equilibrium values.95

∂

∂pj

dpi
dt

= pi

(
−
n−1∑
k

αjk qk +
n−1∑
k

αnkqk − αjng(q) + αnng(q)

)

= pi

(
−

n∑
k

αjk qk +

n∑
k

αnkqk

)

= 0

(S11)

Here, we have used the fact that Aq? ∝ 1. Notice that, because the factors in parentheses in96

Eq. S10 are zero at equilibrium, these community matrix calculations are valid even for i = j.97
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The other elements are computed similarly:98

∂

∂qj

dqi
dt

= qi (−βiqi + βnf(p))

= 0

(S12)

∂

∂qj

dpi
dt

= pi

(
αij − αin −

n−1∑
k

αkj pk − αnj f(p) +
n−1∑
k

αknpk + αnnf(p)

)

= pi(αij − αin)

(S13)

∂

∂pj

dqi
dt

=


qi βi , i = j

0 , i 6= j

(S14)

From these calculations, it is apparent that the trace of the community matrix, given by99 ∑n−1
i

∂
∂pi

dpi
dt +

∑n−1
j

∂
∂qj

dqj
dt , is zero. The trace of a square matrix is equal to the sum of its100

eigenvalues (Horn & Johnson 2012), so the eigenvalues of the community matrix must include101

either (i) a mix of positive and negative real parts or (ii) only purely imaginary values. In the102

first case, the coexistence equilibrium is locally unstable, because at least one eigenvalue has103

positive real part. In the second case, the coexistence equilibrium is neutrally or marginally104

stable. These two possibilities exclude asymptotically stable equilibria. In this respect, the105

behavior of the two-species model is the generic behavior of the generalized n-species model.106

4 Zero divergence implies no attractors107

We can extend this picture beyond a local neighborhood of the coexistence equilibrium by108

considering the divergence of the vector field associated with Eqs. 5-6. The divergence, defined109

by
∑

i
∂
∂pi

dpi
dt +

∑
i
∂
∂qi

dqi
dt , measures the outgoing flux around a given point. It can be shown110

(see Eshel et al. 1983; Hofbauer & Sigmund 1998) that up to a change in velocity (i.e., rescaling111

time by a positive factor), the vector field corresponding to any bimatrix game dynamics has112

zero divergence everywhere in the interior of the positive orthant (i.e., where pi, qi > 0 for all113
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i).114

The divergence theorem (Arfken 1985) equates the integral of the divergence of a vector115

field over some n-dimensional region to the net flux over the boundary of the region. For a116

vector field with zero divergence, this implies that every closed surface has zero net flux. As a117

consequence, such divergence-free vector fields cannot have attractors, or subsets of the phase118

space toward which trajectories of the corresponding dynamical system tend to evolve. If an119

attractor existed, one could define a surface enclosing it sufficiently tightly, and the net flux120

over this surface would be negative (as trajectories enter, but do not exit, this region). But121

this would present a contradiction, and so we conclude that there can be no attractors, such122

as limit cycles, for the dynamics.123

For our model, these facts mean that attractors can only exist on the boundary of the124

phase space. Because each boundary face for the n-dimensional system is another bimatrix125

replicator system on n−2 dimensions, the same logic applies, and the only possible attractors126

are points where a single species (and corresponding soil component) is present (Hofbauer127

& Sigmund 1998). States with multiple species present are never attractive. This leaves128

neutrally-stable oscillations as the only potential form of species coexistence.129

5 Rescaled zero-sum games are neutrally stable130

In the context of bimatrix games, a zero-sum game is one where A = −BT . A rescaled zero-131

sum game is one where there exist constants γi, δj , and c > 0 such that aij − δj = −cbji + γi132

for all i and j (here, we understand A = (aij), B = (bij)) (Hofbauer & Sigmund 1998). Any133

rescaled zero-sum game can be turned into a zero-sum game by adding constants (in particular,134

δj and −γj) to each column of A and B, and then multiplying B by a positive constant 1/c.135

As such, the dynamics of a rescaled zero-sum game and its corresponding zero-sum game are136

the same up to a rescaling of time.137

If a rescaled zero-sum game has a feasible coexistence equilibrium, this equilibrium is138

neutrally stable. We can see this by considering the associated community matrix. First, we139

assume without loss of generality that A = −cBT (otherwise, we shift columns to obtain this140

form, without altering the dynamics in the process) Now we add the column-constant matrix141

1
cbn1

T to A and can1
T to B, where an (bn) denotes the nth column of A (B). Again, the142
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dynamics, including both equilibrium values and stability properties, are unchanged by this143

operation. From Eqs. S11-S14, we see that the community matrix, J , of the resulting system144

is given by145

 0 D(p?)(Ā+ 1
cbn1

T − 1aTn )

D(q?)(B̄ + can1
T − 1bTn ) 0

 (S15)

where Ā (B̄) denotes the (n− 1)× (n− 1) submatrix of A (B) obtained by dropping the nth146

row and column. Finally, we consider the similarity transform P−1JP , defined by the change147

of basis matrix148

P =

√cD(p?)1/2 0

0 D(q?)1/2

 . (S16)

The resulting matrix, J ′, which shares the same eigenvalues as J (Horn & Johnson 2012), is149

given by150

 0
√
cD(p?)1/2(Ā+ 1

cbn1
T − 1aTn )D(q?)1/2

√
cD(q?)1/2(−ĀT + an1

T − 1
c1b

T
n )D(p?)1/2 0


(S17)

which is a skew-symmetric matrix. Every eigenvalue of a skew-symmetric matrix must have151

zero real part (Horn & Johnson 2012). Thus, the eigenvalues of J , the community matrix,152

have zero real part, and the coexistence equilibrium of our original system is neutrally stable.153

Here, we have outlined a proof that applies to all rescaled zero-sum games. When B is a154

diagonal matrix, as in our model of PSFs, the condition for A and B to constitute a rescaled155

zero-sum game reduces to the condition given in the Main Text.156

Rescaled zero-sum games are the only bimatrix games known to produce neutrally stable157

oscillations. It is a long-standing conjecture that no other bimatrix games have this property158

(Hofbauer 1996; Hofbauer & Sigmund 1998; Hofbauer 2011).159
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6 Two-species bimatrix games160

For n > 2, the rescaled zero-sum game condition is very stringent – it places exacting equality161

constraints on the elements of A and B. However, for n = 2, every bimatrix game satisfies162

aij−δj = −cbji+γi for some c potentially positive (in which case we have a rescaled zero-sum163

game) or negative (in which case the game is called a partnership game, and the coexistence164

equilibrium is unstable) (Hofbauer & Sigmund 1998). Thus, neutral oscillations arise whenever165

c > 0.166

To see that this is true, we first suppose that A and B have the form167

A =

 0 a1

a2 0

 B =

 0 b1

b2 0

 . (S18)

If this is not the case, we can use constant column shifts to arrive at this form (e.g., in168

general, a1 = a12 − a22). Now consider the constants c = −a1+a2
b1+b2

and γ1 = −δ1 = a1 + cb2169

and γ2 = δ2 = 0. Examining the equation aij − δj − γi = −cbji for each i and j, one verifies170

0− γ1 − δ1 = 0

a1 − γ1 − δ2 = −cb2

a2 − γ2 − δ1 = −c(b1 + b2 − b2) = −cb1

0 = 0

(S19)

and so the parameters A and B always constitute a rescaled zero-sum or partnership game. In171

the particular case of our model, a1+a2 = −α11+α21+α12−α22 = −Is and b1+b2 = −β1−β2.172

c is positive (as needed for cycles) when these signs disagree; since b1+b2 = −β1−β2 is always173

negative, a1 + a2 must be positive, meaning Is < 0, as found by Bever et al. (1997).174

7 Constants of motion175

When A and B satisfy the rescaled zero-sum game condition, the function176
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H(p, q) =
∑
i

p?i log pi + c
∑
j

q?j log qj (S20)

is a constant of motion for the dynamics (Hofbauer & Sigmund 1998). As above, we suppose177

that A = −cBT , and shift the columns of each matrix as needed if this is not the case. Then178

consider the time derivative179

dH

dt
=
∑
i

p?i
1

pi

dpi
dt

+ c
∑
j

q?j
1

qi

dqi
dt

=
∑
i

p?i

∑
j

αij qj −
∑
j,k

αjk pj qk

+ c
∑
j

q?j

βi pi −∑
j

βj pj qj


=
∑
i,j

αij p
?
i qj −

∑
j,k

αjk pj qk + c
∑
i

βi q
?
i pi − c

∑
j

βj pj qj

=
∑
i,j

αij (p?i − pi) qj + c
∑
i

βi (q?i − qi) pi

Now, because A = −cBT , we have

= c
∑
i

βi (−(p?i − pi) qi + (q?i − qi) pi)

= c
∑
i

βi (−p?i qi + q?i pi)

and because q?i = p?i = Z
βi

, with Z the normalizing constant,

= cZ
∑
i

(−qi + pi)

= 0

(S21)

In the last line, we use the fact that both sets of frequencies always sum to one.180

Each orbit remains in the level set defined by the initial conditions, (p0, q0):181
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H(p0, q0) =
∑
i

p?i log pi + c
∑
j

q?j log qj (S22)

For the two-species model studied by Bever et al. (1997), these level sets precisely define the182

trajectories in the (p, q) phase plane.183

8 Equilibrium feasibility184

Throughout this study, we focus primarily on the stability properties of the generalized Bever185

model. However, as mentioned above, coexistence also requires the existence of a feasible186

equilibrium – that is, an equilibrium where all frequencies are nonnegative. In the context187

of this model, feasibility is determined solely by the matrix A. If all elements of A−11 share188

the same sign, the coexistence equilibrium is feasible. For even moderately large n, feasibility189

of the coexistence equilibrium is very unlikely if the parameters αij are iid random variables.190

However, the probability of feasibility has little bearing on the prospects for coexistence in this191

model. Even assuming the existence of a feasible equilibrium, our results show that robust192

coexistence of more than two species is impossible. To confirm that this is the case, we repeat193

the simulations shown in Fig. 2 (Main Text), but now rejecting parameter combinations that194

do not yield a feasible coexistence equilibrium. The results are show in Fig. S1. Conditioning195

on feasibility increases the probability that randomly parameterized two-species communities196

oscillate neutrally from 1
4 to 1

2 , but has little effect on the results observed for n > 3. In197

particular, coexistence of more than two species is never observed, regardless of feasibility.198

It is interesting to note that the rescaled zero-sum game condition, which ensures neutral199

stability of a fixed point, also ensures feasibility. This is easy to verify using the transformation200

explained in the section Rescaled zero-sum games are neutrally stable, above. Using column201

shifts applied to A and B, one obtains a new system where both matrices are diagonal with202

constant signs. In other words, one finds a system of form A = −cBT with the same dynamics203

(and so the same equilibria) as the original. Because B is a diagonal matrix, and we assume204

βi > 0 for all i, both p? and q? will be feasible. However, we note that this property does not205

alter any of the conclusions of the Main Text. While the rescaled zero-sum game condition206

guarantees a weak form of coexistence (i.e. the existince of neutral oscillations), this behavior207
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Figure 1: Final community sizes with varying initial richness, conditioned on feasible coex-
istence equilibrium. As in Fig. 2 (Main Text), except that parameter combinations yielding
unfeasible equilibria were discarded. We continued sampling until 5000 feasible parameter
sets were obtained for each level of initial richness. Conditioning on feasibility increases the
probability that an initial community of two species coexists in a neutral cycle, but has negli-
gible effect on the results for richer communities. In particular, coexistence of more than two
species is never observed.
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is extremely fragile; small changes in the model parameters will cause all but two species to208

go extinct.209

9 Varying relative timescales210

To clearly demonstrate that varying the relative timescales of plant and soil dynamics does211

not affect the qualitative character of the dynamics, we include two representative simulations212

below.213

Figure 2: See text for simulation details. Time is shown on the x-axis, and frequencies are
shown on the y-axis. Here, n = 3 (species identities are unlabeled). As ε varies across two
orders of magnitude, the qualitative outcome of the dynamics is unchanged: One species
excludes the other two. Only the rate of exclusion changes.
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Figure 3: See text for simulation details. Time is shown on the x-axis, and frequencies are
shown on the y-axis. Here, n = 3 (species identities are unlabeled). As ε varies across two
orders of magnitude, the qualitative outcome of the dynamics is unchanged: One species is
excluded the two surviving species oscillate neutrally. The frequency and amplitude of the
oscillations change with ε, but we note that these properties will also depend on rate at which
the third species is excluded.

In each case, we sampled model parameters uniformly at random and then simulated the214

dynamics starting with identical initial conditions but with soil parameters given by εβ for215

different values of ε. As ε becomes large, the dynamics of soil components become rapid216

relative to the dynamics of plants. We show that varying these timescales across two orders217

of magnitude has no qualitative effect on the dynamics – an unstable equilibrium remains218

unstable (first figure) and a neutrally stable equilibrium remains neutrally stable (second219

figure).220
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10 Adding frequency dependence221

To illustrate the robustness of our main findings, we consider an extension of the Bever model222

to include direct intraspecific plant competition. Building on Eq. S1, we add a negative223

frequency-dependent term for each plant species:224

dxi
dt

= xi

∑
j

αijqj − cipi

 (S23)

Here, ci specifies the strength of intraspecific competition. Soil dynamics remain exactly as225

in Eq. S1.226

This model is conceptually close to the combined plant competition-feedback model in-227

troduced by Bever (2003). Unlike Bever, we consider only intraspecific plant interactions for228

simplicity. Additionally, while Bever took plant-plant interactions to be density-dependent,229

as in the Lotka-Volterra competition model, we assume frequency-dependent effects. As ex-230

plained in the Main Text, this choice is motivated by consistency with the frequency-dependent231

nature of PSFs in this model.232

The frequency dynamics associated with this model are given by233


dpi
dt = pi

(∑
j αij qj − ci pi −

∑
j pj(

∑
k αjk qk − cj pj)

)
, i = 1, . . . n

dqi
dt = qi

(
βi pi −

∑
j βj pj qj

)
.

(S24)

To consider small deviations from the canonical Bever model, we focus on the case where234

the negative frequency-dependence is weak relative to PSFs (i.e. ci parameters are much235

smaller than αij parameters). At the opposite extreme (ci � αij), it is easy to see that all236

plant species will coexist, with no meaningful role for PSFs. We also assume that frequency-237

dependence is equal for all plant species (i.e. ci = c), for simplicity.238

Now we study the stability properties of equilibria in this extended model. After some239

algebraic manipulations to remove the zero-sum constraints (as in the section Local stability240

analysis), we find that the community matrix for the coexistence equilibrium takes the form241
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J ′ =

−cI M1

M2 0

 (S25)

where242

J =

 0 M1

M2 0

 (S26)

is the community matrix for the corresponding Bever model (i.e. the model with c = 0). We243

have already shown that the eigenvalues of J must be of mixed signs or all purely imaginary.244

Let us denote those eigenvalues by λi. The eigenvalues of our extended matrix, which we call245

λ′i, can be related to the λi in a straightforward way. We first notice that the eigenvectors of246

J ′ are closely related to the eigenvectors of J , which we write as (ui,vi)
T . The eigenvector247

equations for J ′ take the form248

−cI M1

M2 0

 ui

kivi

 = λ′i

 ui

kivi

 (S27)

with ki an undetermined constant. This system implies the relations ki λ
′
i = λi and

λ′i+c
ki

= λi.249

Solving these equations for λ′i gives250

λ′i =
−c±

√
c2 + 4λ2i

2
(S28)

and finally, for small c, the approximation251

λ′i ≈ λi −
c

2
. (S29)

This analysis shows that there is a tight relationship between the stability properties of252

the Bever model and the extension with weak frequency-dependent self-regulation. If the253

underlying Bever model has an unstable coexistence equilibrium, where the eigenvalues λi254

have mixed signs, then the extended model will have an unstable equilibrium as well. The255

slight shift by c
2 is not enough to push the positive real parts of these eigenvalues across zero, by256

assumption. The correspondence when all of the λi are purely imaginary is more interesting.257

In this case, the eigenvalues of the extended model, λ′i, will all have a small negative real part.258
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Figure 4: Representative dynamics for the extended Bever model with negative plant
frequency-dependence. When the Bever model (left column) possess an unstable coexistence
equilibrium, so will the extended model (right) with weak self-regulation (top row). On the
other hand, when the Bever model possesses a neutrally stable equilibrium, the extended
model will have a corresponding stable equilibrium, with the same number of species. We
show an example where one of three species goes extinct and the other two cycle in Bever
model, or stably coexist in the extended model (middle row). We also see that when the
Bever model possess an n-species cycle (here n = 3), the extended model will have a stable
equilibrium with all n species. Such cases are only possible when the matrices A and B satisfy
the rescaled zero-sum game condition, described in the Main Text and above.

This shift induces a qualitative change in the model dynamics: a neutrally stable equilibrium259

in the underlying Bever model becomes an asymptotically stable equilibrium in the model260

with frequency-dependence. Each of these cases is illustrated in Fig. S2.261

Very weak frequency-dependence can only produce such a qualitative change when the262

underlying model is structurally unstable – i.e. when the real parts of the λi are exactly263

zero. We have shown that this is only the case when the Bever model parameters meet264

the rescaled zero-sum game condition. Thus, even though the extended model can support265

stable coexistence, this outcome is subject to the same stringent conditions as are n-species266

oscillations in the Bever model. In particular, these parameterizations are never realized at267

random, and are not robust to small perturbations of the parameters.268
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This simple example demonstrates that the lack of robust n-species coexistence in the269

Bever model can be disentangled from the biologically unrealistic prediction of neutral os-270

cillations. The generic behavior of the Bever model with more than two plant species is271

instability, and other ecological processes must be sufficiently strong to overcome this insta-272

bility; very small modifications of the dynamics will not do.273

11 Numerical Simulations274

To complement our analytical findings, we investigated the dynamics of many randomly pa-275

rameterized communities using numerical simulations. In particular, we integrated Eq. S4276

with 2, 3, 5, or 6 initial plant species and corresponding soil components. For each case, we277

sampled 5000 parameter sets at random and integrated the dynamics in Python using SciPy’s278

(version 1.7.1) solve ivp function with the “BDF” method. We sampled non-singular payoff279

matrices A and B with each non-zero element drawn independently from the uniform distri-280

bution U(0, 1). For every choice of parameters, we integrated the system until a subset with281

≤ 2 species was reached (which occurred in all cases). Code for reproducing all numerical282

simulations is available at https://github.com/pablolich/plant_soil_feedback.283
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