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Abstract

We show that for each ¢, € [1,25), there is a unique
metric associated with Liouville quantum gravity (LQG)
with matter central charge cy;. An earlier series of
works by Ding-Dubédat-Dunlap-Falconet, Gwynne-
Miller, and others showed that such a metric exists and
is unique in the subcritical case ¢y € (—o0,1), which
corresponds to coupling constant y € (0, 2). The critical
case ¢y = 1 corresponds to y =2 and the supercriti-
cal case ¢y € (1,25) corresponds to y € C with |y| = 2.
Our metric is constructed as the limit of an approxima-
tion procedure called Liouville first passage percolation,
which was previously shown to be tight for ¢; € [1,25)
by Ding and Gwynne (2020). In this paper, we show
that the subsequential limit is uniquely characterized
by a natural list of axioms. This extends the charac-
terization of the LQG metric proven by Gwynne and
Miller (2019) for ¢y € (—o0,1) to the full parameter
range cy; € (—o0,25). Our argument is substantially dif-
ferent from the proof of the characterization of the LQG
metric for ¢y; € (—o0, 1). In particular, the core part of
the argument is simpler and does not use confluence
of geodesics.
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1 | INTRODUCTION
1.1 | Overview
Liouville quantum gravity (LQG) is a one-parameter family of random fractal surfaces which

originated in the physics literature in the 1980s [7, 16, 37] as a class of canonical models of ran-
dom geometry in two dimensions. One possible choice of parameter is the matter central charge
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 3
LFPP LFPP Coupling |Matter cen- | Topology
Phase parameter | exponent constant |tral charge
iti Bi-Holder w.r.t.
Subcritical € € (0, Eerit) @>2 7€ (0,2) om € (=00, 1) Euclidean
o . Q=2 v =2 e =1 Euclidean topol-
Critical &= Lot M ogy, not Holder

Supercritical &> o Q€(0,2) ‘q/,/}l c_or;plox, cu € (1,25) |3 singular points

FIGURE 1 Comparison of the different phases of LQG This paper proves that the LQG metric is unique in
the critical and supercritical phases. The bi-Holder continuity with respect to to the Euclidean metric in the
subcritical phase is proven in [17]. The statement that the critical LQG metric induces the Euclidean topology, but
is not Holder continuous, is proven in [13].

¢y € (—o0, 25). Heuristically speaking, for an open domain U C C, an LQG surface with matter
central charge ¢, is a sample from ‘the uniform measure on Riemannian metric tensors g on U,
weighted by (det A g)_CM/ 2 where A , denotes the Laplace-Beltrami operator. This definition is
far from rigorous, for example, because the space of Riemannian metric tensors on U is infinite-
dimensional, so there is not an obvious notion of a uniform measure on this space. However, there
are various ways of defining LQG surface rigorously, as we discuss just below.

Definition 1.1. We refer to LQG with ¢y; € (—0, 1), ¢y = 1, and ¢y, € (1, 25) as the subcritical,
critical, and supercritical phases, respectively.

See Figure 1 for a summary of the three phases. One way to define LQG rigorously in the sub-
critical and critical phases is via the David-Distler—-Kawai (DDK) ansatz. The DDK ansatz states
that for ¢y, € (—o0, 1], the Riemannian metric tensor associated with an LQG surface takes the
form

2
g = e’ (dx?* + dy?), where y € (0,2] satisfies ¢y =25— 6<% + g) . (1.1

Here, dx? + dy? denotes the Euclidean metric tensor on U and h is a variant of the Gaussian free
field (GFF) on U, the most natural random generalized function on U. We refer to [5, 41, 43] for
more background on the GFF.

The Riemannian metric tensor in (1.1) is still not well-defined since the GFF is not a function,
so e’ does not make literal sense. Nevertheless, it is possible to rigorously define various objects
associated with (1.1) using regularization procedures. To do this, one considers a family of con-
tinuous functions {A,},. , which approximate h, then takes an appropriate limit of objects defined
using h, in place of h. Objects which have been constructed in this manner include the LQG area
and length measures [18, 31, 39], Liouville Brownian motion [4, 19], the correlation functions for
the random ‘fields’ e*" for « € R [32], and the distance function (metric) associated with (1.1), at
least for ¢y < 1[8, 27].

LQG in the subcritical and critical phases is expected, and in some cases proven, to describe
the scaling limit of various types of random planar maps. For example, in keeping with the above
heuristic definition, LQG with c); € (—o0, 1] should describe the scaling limit of random planar
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4 | DING AND GWYNNE

maps sampled with probability proportional to (det A)~v/2, where A is the discrete Laplacian.
We refer to [5, 20, 23] for expository articles on subcritical and critical LQG.

The supercritical phase ¢y; € (1,25) is much more mysterious than the subcritical and criti-
cal phases, even from the physics perspective. In this case, the DDK ansatz does not apply. In
fact, the parameter y from (1.1) is complex with |y| = 2, so attempting to directly analytically con-
tinue formulae from the subcritical case to the supercritical case often gives nonsensical complex
answers. It is expected that supercritical LQG still corresponds in some sense to a random geome-
try related to the GFF. However, until very recently there have been few mathematically rigorous
results for supercritical LQG. See [22] for an extensive discussion of the physics literature and
various conjectures concerning LQG with ¢y, € (1, 25).

The purpose of this paper is to show that in the critical and supercritical phases, that is, when
¢y € [1,25), there is a canonical metric (distance function) associated with LQG. This was pre-
viously established in the subcritical phase c); € (—o0, 1) in the series of papers [8, 17, 24, 25, 27].
Our results resolve [27, Problems 7.17 and 7.18], which ask for a metric associated with LQG for
cy € [1,25).

This paper builds on [11], which proved the tightness of an approximation procedure for the
metric when ¢y, € [1, 25) (using [15] and some estimates from [8] which also work for the criti-
cal/supercritical cases), and [36], which proved various properties of the subsequential limits. The
analogs of these works in the subcritical case are [8] and [17], respectively. We will also use one
preliminary lemma which was proven in [12] (Lemma 2.12), but we will not need the main result
of [12], that is, the confluence of geodesics property.

Our results are analogous to those of [27], which proved uniqueness of the subcritical LQG
metric. We will prove that the subsequential limiting metrics in the critical and supercritical cases
are uniquely characterized by a natural list of axioms. However, our proof is very different from
the argument of [27], for two main reasons.

* A key input in [27] is confluence of geodesics, which says that two LQG geodesics with the same
starting point and different target points typically coincide for a non-trivial initial interval of
time [24]. We replace the core part of the argument in [27], which corresponds to [27, section
4], by a simpler argument which does not use confluence of geodesics (Section 4). Instead, our
argument is based on counting the number of events of a certain type which occur. Confluence
of geodesics was proven for the critical and supercritical LQG metrics in [12], but it is not needed
in this paper.

* There are many additional difficulties in our proof, especially in Section 5, arising from the fact
that the metrics we work with are not continuous with respect to the Euclidean metric, or even
finite-valued.

The first point reduces the complexity of this paper as compared to [27], whereas the second point
increases it. The net effect is that our argument is overall longer than [27], but conceptually sim-
pler and requires less external input. We note that all of our arguments apply in the subcritical
phase as well as the critical and supercritical phases, so this paper also gives a new proof of the
results of [27].

1.2 | Convergence of Liouville first passage percolation

For concreteness, throughout this paper we will restrict attention to the whole-plane case. We
let h be the whole-plane GFF with the additive constant chosen so that its average over the unit
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS | 5

circle is zero. Once the LQG metric for h is constructed, it is straightforward to construct met-
rics associated with variants of the GFF on other domains via restriction and/or local absolute
continuity; see [27, Remark 1.5]. As in the subcritical case, the construction of our metric uses
an approximation procedure called Liouville first passage percolation (LFPP). To define LFPP, we
first introduce a family of continuous functions which approximate h. For s > 0 and z € C, let

ps(2) = ﬁ exp(—%) be the heat kernel. For ¢ > 0, we define a mollified version of the GFF by

hi(z) :=(h* Pe2pp)(z) = /@ h(w)pz »(z —w)dw, VzeC, 1.2)

where the integral is interpreted in the sense of distributional pairing. We use p,: , instead of p,
so that the variance of h¥(z) is loge™" + O,(1).

We now consider a parameter £ > 0, which will shortly be chosen to depend on the matter
central charge ¢y (see (1.6)). LFPP with parameter § is the family of random metrics {D; }..
defined by

1
D;(z,w) := P'i;lfw/ e PON P! (| dt, Vz,w e C, (1.3)
Z—> 0

where the infimum is over all piecewise continuously differentiable paths P : [0,1] — C from
z to w. To extract a non-trivial limit of the metrics DZ, we need to re-normalize. We (somewhat
arbitrarily) define our normalizing factor by

ag

1
:= median of inf{/ esme PO P!(1)| dt : P is a left-right crossing of [0, 1] }, (1.4)
0

where a left-right crossing of [0, 1]? is a piecewise continuously differentiable path P : [0,1] —
[0,1]? joining the left and right boundaries of [0, 1]2. We do not know the value of a, explicitly.
The best currently available estimates are given in [14, Theorem 1.11].

More generally, the definition (1.3) of LFPP also makes sense when h is a whole-plane GFF
plus a bounded continuous function, that is, a random distribution of the form h+ f, where hisa
whole-plane GFF and f is a (possibly random and h-dependent) bounded continuous function.

In terms of LFPP, the main result of this paper gives the convergence of the metrics a;lD; for
each £ > 0. For values of £ corresponding to the supercritical case ¢y; € (1, 25), the limiting metric
is not continuous with respect to the Euclidean metric. Hence, we cannot expect convergence with
respect to the uniform topology. Instead, as in [11], we will work with the topology of the following
definition.

Definition 1.2. Let X ¢ C. A function f : X XX — R U {—o0, +o0} is lower semicontinuous if
whenever (z,, w,) € X X X with (z,,w,) = (z,w), we have f(z,w) < liminf,_, f(z,,w,). The
topology on lower semicontinuous functions is the topology whereby a sequence of such functions
{fninen converges to another such function f if and only if

(i) whenever(z,,w,) € X X X with (z,,w,,) - (z,w),wehave f(z,w) < liminf,_,  f,(z,,w,);
(ii) for each (z,w) € X X X, there exists a sequence (z,,w,) — (z,w) such that f,(z,,w,) —

f(z,w).
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6 | DING AND GWYNNE

It follows from [3, Lemma 1.5] that the topology of Definition 1.2 is meterizable (see [11, section
1.2]). Furthermore, [3, Theorem 1(a)] shows that the metric inducing this topology can be taken
to be separable.

Theorem 1.3. Let h be a whole-plane GFF, or more generally a whole-plane GFF plus a bounded
continuous function. For each £ > 0, the re-scaled LFPP metrics as‘lD; converge in probability with
respect to the topology on lower semicontinuous functions on C X C (Definition 1.2). The limit D), is
a random metric on C, except that it is allowed to take on infinite values.

To make the connection between Theorem 1.3 and the LQG metric, we need to discuss the
LFPP distance exponent Q. It was shown in [11, Proposition 1.1] that for each & > 0, there exists
Q = Q(&) > O such that

a, = (M a5 ¢ 0. (1.5)

The existence of Q is proven via a subadditivity argument, so the exact relationship between Q
and ¢ is not known. However, it is known that Q € (0, 00) for all £ > 0 and Q is a continuous,
non-increasing function of £ [11, 15]. See also [1, 28] for bounds for Q in terms of &.

As we will discuss in more detail below, LFPP with parameter & is related to LQG with matter
central charge

ey = ey(§) =25 - 6Q(8)”. (1.6)

The function £ — Q(£) is continuous and Q(§) — coas & — 0and Q(§) — 0as & — oo [11, Propo-
sition 1.1]. So, the formula (1.6) shows that there is a value of £ corresponding to each ¢y, €
(=0, 25). Furthermore, & — Q(§) is strictly decreasing on (0,0.7), so the function & +— cy(§) is
injective on this interval. We expect that it is in fact injective on all of (0, o), which would mean
that there is a one-to-one correspondence between ¢ and ¢;."

The relation between & and cy; in (1.6) is not explicit since the dependence of Q on & is not
known explicitly. The only exact relation between c,; and & which we know is that ¢y; = 0 cor-
responds to £ =1/ \/g This is equivalent to the fact that the Hausdorff dimension of LQG with
y = 1/8/3is 4. See [10] for details.

From (1.6), we see that Q(§) = 2 corresponds to the critical value c); = 1, which motivates us
to define

et = 1nf{€ >0 : Q(§) =2} 1.7)

It follows from [11, Proposition 1.1] that £, is the unique value of & for which Q(§) = 2 and from
[28, Theorem 2.3] that &_;, € [0.4135,0.4189]. We have Q > 2 for § < &5, and Q € (0,2) for & >

gcrit .

T One way to prove the injectivity of £ ~ ¢y(£) would be to show that if & and ¢y are related as in (1.6), then ¢ is the
distance exponent for the dyadic subdivision model in [22] with parameter cy,: indeed, this would give an inverse to the
function & — ¢y (). We expect that this can be proven using similar arguments to the ones used to related LFPP and
Liouville graph distance in [10], see also the discussion of LFPP in [22, section 2.3].
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS | 7

Definition 1.4. We refer to LFPP with & < & i, & = &4, and & > &, as the subcritical, critical,
and supercritical phases, respectively.

By (1.6), the three phases of LFPP correspond exactly to the three phases of LQG in
Definition 1.1.

Theorem 1.3 has already been proven in the subcritical phase & < &, (but this paper simpli-
fies part of the proof). Indeed, it was shown by Ding, Dubédat, Dunlap, and Falconet [8] that
in this case the re-scaled LFPP metrics a;lDZ are tight with respect to the topology of uniform
convergence on compact subsets of C x C, which is a stronger topology than the one in Defini-
tion 1.2. Subsequently, it was shown by Gwynne and Miller [27], building on [17, 24, 25], that the
subsequential limit is unique. This was done by establishing an axiomatic characterization of the
limiting metric.

The limiting metric in the subcritical phase induces the same topology on C as the Euclidean
metric, but has very different geometric properties. This metric can be thought of as the Rieman-
nian distance function associated with the Riemannian metric tensor (1.1), where ¢y; € (—o0,1)
and £ are related as in (1.6). The relation between ¢, and & can equivalently be expressed as
y = £d(§), where y € (0,2) is as in (1.1) and d(§) > 2 is the Hausdorff dimension of the limiting
metric [10, 29]. See [9] for a survey of results about the subcritical LQG metric (and some previous
results in the critical and supercritical cases).

In the critical and supercritical cases, Theorem 1.3 is new. We previously showed in [11] that for
all £ > 0, the metrics {a;lD;}DO are tight with respect to the topology on lower semicontinuous
functions. The contribution of the present paper is to show that the subsequential limit is unique.
We will do this by proving that the limiting metric is uniquely characterized by a list of axioms
analogous to the one in [27] (see Theorems 1.8 and 1.13).

In the critical case £ = £, the limiting metric D;, induces the same topology as the Euclidean
metric [13], and can be thought of as the Riemannian distance function associated with critical
(¥ = 2) LQG. We refer to [38] for a survey of results concerning the critical LQG measure.

In the supercritical case & > £, the limiting metric in Theorem 1.3 does not induce the
Euclidean topology on C. Rather, almost surely there exists an uncountable, Euclidean-dense
set of singular points z € C such that

Dy(z,w) =00, Ywe C\{z}. (1.8)

However, for each fixed z € C, almost surely z is not a singular point, so the set of singular points
has zero Lebesgue measure. Moreover, any two non-singular points lie at finite D,-distance from
each other [11]. One can think of singular points as infinite ‘spikes’ which D -rectifiable paths
must avoid.

Ifwe let {h,},., be the circle average process for the GFF [18, section 3.1], then the set of singular
points is (almost) the same as the set of points z € C which have thickness greater than Q, in the
sense that

: h(z)
lim sup
¢—0 loge™1

> Q. (1.9)

See [36, Proposition 1.11] for a precise statement. It is shown in [30] that almost surely

limsup h.(z)/loge™! € [-2,2], VzeC,
e—0
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8 | DING AND GWYNNE

which explains why &_,;; (which corresponds to Q = 2) is the critical threshold for singular points
to exist.

Remark 1.5 (Conjectured random planar map connection). In the subcritical case, the LQG metric
is conjectured to describe the scaling limit of various types of random planar maps, equipped with
their graph distance, with respect to the Gromov-Hausdorff topology (see [27, section 1.3]). This
conjecture naturally extends to the critical case. In particular, the critical LQG metric should be the
Gromov-Hausdorff scaling limit of random planar maps sampled with probability proportional
to the partition function of, for example, the discrete GFF, the O(2) loop model, the critical 4-state
Potts model, or the critical Fortuin—Kasteleyn model with parameter g = 4 [2, 23, 42]. A naive
guess in the supercritical case is that the LQG metric for c); € (1, 25) should describe the scaling
limit of random planar maps sampled with probability proportional to (det A)~°M/2, where A is
the discrete Laplacian. This guess appears to be false, however, since numerical simulations and
heuristics suggest that such planar maps converge in the scaling limit to trees (see [22, section
2.2] and the references therein). Rather, in order to get supercritical LQG in the limit, one should
consider planar maps sampled with probability proportional to (det A)~/2 which are in some
sense ‘allowed to have infinitely many vertices’. We do not know how to make sense of such maps
rigorously. However, [22] defines a random planar map which should be in the same universality
class: it is the adjacency graph of a dyadic tiling of C by squares which all have the same ‘cy;-LQG
size’ with respect to an instance of the GFF. See [22] for further discussion.

1.3 | Characterization of the LQG metric

Since we already know that LFPP is tight for all £ > 0 [11], in order to prove Theorem 1.3 we need
to show that the subsequential limit is unique. To accomplish this, we will prove that for each
& > 0, there isa unique (up to multiplication by a deterministic positive constant) metric satisfying
certain axioms. That is, we will extend the characterization result of [27] to the supercritical case.
To state our axioms, we first need some preliminary definitions.

Definition 1.6. Let (X, d) be a metric space, with d allowed to take on infinite values.

* A curve (also known as a path) in (X, d) is a continuous function P : [a,b] - X for some
interval [a, b].
* Foracurve P : [a,b] - X, the d-length of P is defined by

4T
len(P;d) := sup Z d(P(t;), P(t;_1)),

i=1

where the supremum is over all partitions T : a = t; < --- < tyr = b of [a, b]. Note that the d-
length of a curve may be infinite. In particular, the d-length of P is infinite if there are times
s,t € [a, b] such that d(P(s), P(t)) = co.

» We say that (X, d) is a length space if for each x,y € X and each € > 0, there exists a curve of
d-length at most d(x, y) + € from x to y. If d(x, y) < o0, a curve from x to y of d-length exactly
d(x,y) is called a geodesic.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 9

* ForY C X, the internal metric of d on Y is defined by

d(x,y;Y) := }l)l‘clfl; len(P;d), Vx,y€Y, (1.10)

where the infimum is over all curves P in Y from x to y. Note that d(-,-;Y) is a metricon Y,
except that it is allowed to take infinite values.

» If X c C, we say that d is a lower semicontinuous metric if the function (x, y) — d(x,y) is lower
semicontinuous with respect to the Euclidean topology. We equip the set of lower semicon-
tinuous metrics on X with the topology on lower semicontinuous functions on X X X, as in
Definition 1.2, and the associated Borel o-algebra.

The axioms which characterize our metric are given in the following definition.

Definition 1.7 (LQG metric). Let D’ be the space of distributions (generalized functions) on C,
equipped with the usual weak topology. For £ > 0, a (strong) LQG metric with parameter £ is a
measurable function i — D, from D’ to the space of lower semicontinuous metrics on C with
the following properties.” Let h be a GFF plus a continuous function on C: that is, h is a random
distribution on € which can be coupled with a random continuous function f in such a way that
h — f has the law of the whole-plane GFF. Then the associated metric D), satisfies the following
axioms.

I. Length space. Almost surely, (C, D,,) is a length space.
II. Locality. Let U C C be a deterministic open set. The Dj-internal metric D, (-, -; U) is almost
surely given by a measurable function of h|;.
ITII. Weyl scaling. For a continuous function f : C — R, define

len(P;Dy,)
(¥ -Dy)(z,w) := inf / TP gy vz w e C, (1.11)
P:z—w 0

where the infimum is over all D) -rectifiable paths from z to w in C parameterized by D,,-
length (we use the convention that inf # = c0). Then almost surely e/ - D, = D, 1 for every
continuous function f : C — R.

IV. Scale and translation covariance. Let Q be as in (1.5). For each fixed deterministic r > 0
and z € C, almost surely

Dy(ru+z,rv + 2) = Dy y ) 4010g (U V), Vu,v € C. (112)
V. Finiteness. Let U C C be a deterministic, open, connected set and let K;,K, C U be
disjoint, deterministic, compact, connected sets which are not singletons. Almost surely,

D, (K}, Ky U) < oo.

Definition 1.7 is nearly identical to the analogous definition in the subcritical case [27, section
1.2], except we only require the metric to be lower semicontinuous, rather than requiring it to

TWe do not care how D is defined on any subset of D’ which has probability zero for the distribution of any whole-plane
GFF plus a continuous function.
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10 | DING AND GWYNNE

induce the Euclidean topology. Because we allow D,, to take infinite values, we need to include
a finiteness condition (Axiom V) to rule out metrics which assign infinite distance to too many
pairs of points. For example, if we defined D, for every distribution h by D;,(z, w) = 0ifz = wand
Dy (z,w) = o if z # w, then h — D), would satisfy all of the conditions of Definition 1.7 except
for Axiom V.

Axioms I, II, and III are natural from the heuristic that the LQG metric should be given by
‘integrating e*” along paths, then taking an infimum over paths’. We remark that if  is a GFF
plus a continuous function and D, is a weak LQG metric, then almost surely the Euclidean metric
is continuous with respect to Dj, [36, Proposition 1.10] (but D,, is not continuous with respect to
the Euclidean metric if § > &_;,). Consequently, almost surely every path of finite D), -length is
Euclidean continuous.

Axiom IV is the metric analog of the LQG coordinate change formula from [18, section 2],
but restricted to translation and scaling. Following [18], we can think of the pairs (C, D) and
(C, h(r - +2z) + Qlogr) as representing two different parameterizations of the same LQG surface.
Axiom IV implies that the metric is an intrinsic function of the LQG surface, that is, it is invariant
under changing coordinates to a different parameterization. We do not assume that the metric is
covariant with respect to rotations in Definition 1.7: this turns out to be a consequence of the other
axioms (see Proposition 1.9).

The following theorem extends [27, Theorem 1.2] to the critical and supercritical phases.

Theorem 1.8. For each & > 0, there is an LQG metric D with parameter £ such that the limiting
metric of Theorem 1.3 is almost surely equal to D, whenever h is a whole-plane GFF plus a bounded
continuous function. Furthermore, this LQG metric is unique in the following sense. If D and D are
two LQG metrics with parameter £, then there is a deterministic constant C > 0 such that almost
surely D), = CD,, whenever h is a whole-plane GFF plus a continuous function.

Theorem 1.8 tells us that for every ¢y, € (—o0, 25), there is an essentially unique+ metric asso-
ciated with LQG with matter central charge c), (recall the non-explicit relation between & and ¢y,
from (1.6)). The deterministic positive constant C from Theorem 1.8 can be fixed in various ways.
For example, we can require that the median of the D,,-distance between the left and right sides
of the unit square is 1 in the case when h is a whole-plane GFF normalized so that its average over
the unit circle is 0. Due to (1.4), the limit of LFPP has this normalization.

Theorem 1.8 implies that the LQG metric is covariant with respect to rotation, not just scaling
and translation. See [27, Remark 1.6] for a heuristic discussion of why we do not need to assume
rotational invariance in Definition 1.7.

Proposition 1.9. Let £ > 0 and let D be an LQG metric with parameter £. Let h be a whole-plane
GFF plus a continuous function and let w € C with |w| = 1. Almost surely,

Dy (u,v) = Dh(w_)(cu_lu, o 'v), Vu,veC. (1.13)

T Strictly speaking, we only show that there is a unique LQG metric with parameter ¢ for each & € (0, ). To deduce
that the metric with central charge ¢y is unique we would need to know that § — ¢ (&) is injective. We expect that this
injectivity is not hard to prove, but a proof of has so far only been written down for & € (0, 0.7). See the discussion just
after (1.6).
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS | 11

Proof. Define D;la’)(u, V) i= Dh(w,)(w”u, w~'v). It is easily verified that D@) satisfies the condi-
tions of Definition 1.7, so Theorem 1.8 implies that there is a deterministic constant C > 0 such
that almost surely D;lw) = CD;, whenever h is a whole-plane GFF plus a continuous function. To
check that C = 1, consider the case when h is a whole-plane GFF h normalized so that its aver-
age over the unit circle is 0. Then the law of A is rotationally invariant, so IP[D,(0,0D) > R] =

lP[DEl‘”)(O, dD) > R] for every R > 0. Therefore, C = 1. O

Proposition 1.9 implies that D), is covariant with respect to complex affine maps. It is natural to
expect that D, is also covariant with respect to general conformal maps, in the following sense.
Let U,U c C be open and let ¢ : U — U be a conformal map. Then it should be the case that
almost surely

Dy, (¢(w), $(0); U) = Dpogpiqiog ¢ (- 0:U),  Vu,v € U. (114)

In the subcritical case, the coordinate change relation (1.14) was proven in [26]. We expect that
the proof there can be adapted to treat the critical and supercritical cases as well.

Various properties of the LQG metric D, for cy; € [1,25) have already been established in
the literature. For example, for cy; € (1,25) almost surely each D,-metric ball B centered at a
non-singular point is not D, -compact [29, Proposition 1.14], but the boundaries of the connected
components of C \ B are D;-compact and are Jordan curves [12, Theorem 1.4]. Furthermore, one
has a confluence property for LQG geodesics [12, Theorem 1.6] and a version of the Knizhnik-
Polyakov-Zamolodchikov (KPZ) formula, which relates Hausdorff dimensions with respect to D,
and the Euclidean metric [36, Theorem 1.15]. Simulations of supercritical LQG metric balls and
geodesics can be found in [9, 11, 12].

There are many open problems related to the LQG metric for ¢); € [1, 25). A list of open prob-
lems concerning LQG with ¢, € (1,25) can be found in [22, section 6]. Moreover, most of the
open problems for the LQG metric with ¢); € (—o0, 1) from [27, section 7] are also interesting for
cy € [1,25). Here, we mention one open problem which has not been discussed elsewhere.

Problem1.10. Let Df) denote the LQG metric with parameter £. Does Df), appropriately re-scaled,
converge in some topology as § — oo (equivalently, cy; — 25)? Even if one does not have conver-
gence of the whole metric, can anything be said about the limits of Df)—metric balls, geodesics,
and so on?

1.4 | Weak LQG metrics

In this subsection, we will introduce a notion of weak LQG metric for general £ > 0 (Defini-
tion 1.12), which is similar to Definition 1.7 but with Axiom IV replaced by a weaker condition.
Our notion of a weak LQG metric first appeared in [36]. We will then state a uniqueness theorem
for weak LQG metrics (Theorem 1.13) and explain why our other main theorems (Theorems 1.3
and 1.8) follow from this theorem. A similar notion of weak LQG metrics was used in the proof of
uniqueness of the subcritical LQG metric [17, 27].

To motivate the definition of weak LQG metrics, we first observe that every possible subsequen-
tial limit of the re-scaled LFPP metrics a;lDz satisfies Axioms I, II, and III in Definition 1.7. This
is intuitively clear from the definition, and not too hard to check rigorously (see [36, section 2]). It
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12 | DING AND GWYNNE

is also easy to see that every possible subsequential limit of LFPP satisfies Axiom V for r = 1 (that
is, it satisfies the coordinate change formula for translations). However, it is far from obvious that
the subsequential limits satisfy Axiom V when r # 1. The reason is that re-scaling space changes
the value of ¢ in (1.3): for €, > 0, one has [17, Lemma 2.6]

€ _ efr
Dy (rz,rw) = rDh(r_)(z, w), Vz,weC.

So, since we only have subsequential limits of a;lD;, we cannot directly deduce that the
subsequential limit satisfies an exact spatial scaling property.

Because of the above issue, we do not know how to check Axiom IV for subsequential limits of
LFPP directly. Instead, we will prove a stronger uniqueness statement than the one in Theorem 1.8,
under a weaker list of axioms which can be checked for subsequential limits of LFPP. We will then
deduce from this stronger uniqueness statement that the weaker list of axioms implies the axioms
in Definition 1.7 (Lemma 1.15).

An annular region is a bounded open set A C C such that A is homeomorphic to an open,
closed, or half-open Euclidean annulus. If A is an annular region, then 0A has two connected
components, one of which disconnects the other from co. We call these components the outer

and inner boundaries of A, respectively.

Definition 1.11 (Distance across and around annuli). Let d be a length metric on C. For an
annular region A C C, we define d(across A) to be the d-distance between the inner and outer
boundaries of A. We define d(around A) to be the infimum of the d-lengths of paths in A which
disconnect the inner and outer boundaries of A.

Note that both d(across A) and d(around A) are determined by the internal metric of d on A.
Distances around and across Euclidean annuli play a similar role to ‘hard crossings’ and ‘easy
crossings’ of 2 X 1 rectangles in percolation theory. One can get a lower bound for the d-length of
a path in terms of the d-distances across the annuli that it crosses. On the other hand, one can
‘string together’ paths around Euclidean annuli to get upper bounds for d-distances. The following
is (almost) a re-statement of [36, Definition 1.6].

Definition 1.12 (Weak LQG metric). Let D’ be as in Definition 1.12. For £ > 0, a weak LQG metric
with parameter & is a measurable function h + D, from D’ to the space of lower semicontinuous
metrics on C which satisfies properties I (length metric), II (locality), and III (Weyl scaling) from
Definition 1.7 plus the following two additional properties.

IV'. Translation invariance. For each deterministic point z € C, almost surely Dy, =
Dy(- + z,- + 2).

V’. Tightness across scales. Suppose that / is a whole-plane GFF and let {h,(2)},. ,c¢ be its
circle average process. Let A C C be a deterministic Euclidean annulus. In the notation of
Definition 1.11, the random variables

r=¢Qe=$mOp, (acrossrA) and r—*Qe "D, (around rA)

and the reciprocals of these random variables for r > 0 are tight.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS | 13

We think of Axiom V’as a substitute for Axiom IV of Definition 1.7. Indeed, Axiom V’does not
give an exact spatial scaling property, but it still allows us to get estimates for D, which are uniform
across different Euclidean scales.

It was shown in [36, Theorem 1.7] that every subsequential limit of the re-scaled LFPP metrics
a;lD; is a weak LQG metric in the sense of Definition 1.12. Actually, [36] allows for a general
family of scaling constants {c,},., in Axiom V’in place of r*?, but it was shown in [14, Theorem
1.9] that one can always take ¢, = r$Q. So, our definition is equivalent to the one in [36].

From the preceding paragraph and the tightness of ag_lD; [11], we know that there exists a weak
LQG metric for each £ > 0. Most of this paper is devoted to the proof of the uniqueness of the weak
LQG metric.

Theorem 1.13. For each & > 0, the weak LQG metric is unique in the following sense. If D and D
are two weak LQG metrics with parameter £, then there is a deterministic constant C > 0 such that
almost surely D), = CD,, whenever h is a whole-plane GFF plus a continuous function.

Let us now explain why Theorem 1.13 is sufficient to establish our main results, Theorems 1.3
and 1.8. We first observe that every strong LQG metric is a weak LQG metric.

Lemma 1.14. For each £ > 0, each strong LQG metric (Definition 1.7) is a weak LQG metric
(Definition 1.12).

Proof. Let D be a strong LQG metric. It is immediate from Axiom V of Definition 1.7 withr =1
that D satisfies translation invariance (Axiom IV’). We need to check Axiom V’. To this end, let
h be a whole-plane GFF normalized so that /,(0) = 0. Weyl scaling (Axiom III) together with
conformal covariance (Axiom IV) gives

e d
r8Qe= 0D, (1, ) = Dyiry—p 0)( ) = Do), (1.15)

where the equality in law is due to the scale invariance of the law of 4, modulo additive constant.

To get tightness across scales, it therefore suffices to show that for each fixed Euclidean annulus
A, almost surely D) (across A) and Dy (around A) are finite and positive. Our finiteness condi-
tion Axiom V easily implies that these two quantities are almost surely finite. To see that they
are almost surely positive, it suffices to show that for any two deterministic, disjoint, Euclidean-
compact sets K;,K, c C, almost surely D,(K;,K,) > 0. Indeed, on the event {D,,(K;,K,) = 0}
we can find sequences of points z, € K; and w,, € K, such that D,(z,,w,) — 0. After possi-
bly passing to a subsequence, we can arrange that z, — z € K; and w,, - w € K,. By the lower
semicontinuity of D, we get D, (z, w) = 0. Since z and w are distinct and D, is a metric (not a
pseudometric) this implies that IP[D,,(K;,K,) = 0] = 0. O

Theorem 1.13 implies that one also has the converse to Lemma 1.14.

Lemma 1.15. For each & > 0, every weak LQG metric is a strong LQG metric in the sense of
Definition 1.7.

Proof of Lemma 1.15 assuming Theorem 1.13. Let D be a weak LQG metric. It is clear that z satisfies
Axioms I, I1, ITI, and V of Definition 1.7. To show that D is a strong LQG metric, we need to check
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14 | DING AND GWYNNE

Axiom IV of Definition 1.7 in the case when z = 0 (note that we already have translation invariance
from Definition 1.12). To this end, for b > 0 let

D"(,+) 1= Dy y1010g5(/bs /D). (116)

If h is a whole-plane GFF with h;(0) = 0 then by the scale invariance of the law of &, modulo

d
additive constant, we have h(b-) — h;,(0) = h. Consequently, if & is a whole-plane GFF plus a
continuous function, then h(b-) + Qlogb is also a whole-plane GFF plus a continuous function.
) g
Hence, Dh is well-defined.
We need to show that almost surely Dglb) = D;. We will prove this using Theorem 1.13. We

first claim that D;b) is a weak LQG metric. It is easy to check that D®) gatisfies Axioms I, II,
I11, and IV’in Definition 1.12. To check Axiom V’, we use Weyl scaling (Axiom III) to get that

r=8Qe e OpB . r.) = ¢St OO oEm©) s (1 /by EQ~ S OD, 1 o (/D). (r/b)).

In the case when h is a whole-plane GFF, the random variables h,(0) — h, /b(O) and hy(0) are
each centered Gaussian with variance log max{b, 1/b} [18, section 3.1]. Tightness across scales

(Axiom V') for D applied with h(b-) — h;(0) 4 h in place of h and r/b in place of r therefore
implies tightness across scales for D(®).

Hence, we can apply Theorem 1.13 with D = D®) to get that for each b > 0, there is a deter-
ministic constant £, > 0 such that whenever h is a whole-plane GFF plus a continuous function,
almost surely

b
D/(’l) = fth.

It remains to show that £, = 1.
For by,b, >0, we have D®102) = (D(®1))®2) wwhich implies that almost surely D

(by)
szDh V= fbl szDh' Therefore,

(byby) _
. =

fblbz = fbl sz. (117)

It is also easy to see that f; is a Lebesgue measurable function of b. Indeed, by Weyl scaling
d
(Axiom III) and since h(b-) — h,(0) = h,

£,e 5 Op, (b, b)) = e_ghb(O)D}(/lb)(b.’b.) = ngDh(b-)—hb(O)(" D 4 b42D, (-, ). (1.18)

The function b — b~$Qe~"() is continuous and D), is lower semicontinuous. Hence, the met-
rics b=$Qe=¢m(D, (b-,b-) depend continuously on b with respect to the topology on lower
semicontinuous functions. Therefore, the law of fngh depends continuously on b with respect
to the topology on lower semicontinuous functions. It follows that ¥, is continuous, hence
Lebesgue measurable.

The relation (1.17) and the measurability of b — £, imply that £, = b* for some o € R. By (1.18),

we have b*<Qe=¢m()D, (b, b-) 4 Dy,(-,-)foreach b > 0. In particular, Axiom V’, holds for D with
£Q — a in place of £Q. Hence, a = 0. O
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS | 15

Proof of Theorem 1.3, assuming Theorem 1.13. By [11, Theorem 1.2], if h is a whole-plane GFF plus
a bounded continuous function, then for each £ > 0, the re-scaled LFPP metrics a;lDz are tight
with respect to the topology of Definition 1.2. In fact, by [36, Theorem 1.7], for any sequence of
positive ¢ values tending to zero there is a weak LQG metric D and a subsequence ¢, — 0 such
that whenever / is a whole-plane GFF plus a continuous functions, the metrics ag‘nlD;" converge
in probability to D, with respect to this topology. By Theorem 1.13, if D and D are two weak LQG
metrics arising as subsequential limits in this way, then there is a deterministic C > 0 such that
almost surely D, = CD,, whenever h is a whole-plane GFF plus a continuous function.

If h is a whole-plane GFF normalized so that h;(0) = 0, then by the definition of a, in (1.4), the
median a;lD;-distance between the left and right sides of [0, 1]? is 1. By passing this through to
the limit, we get that the constant C above must be equal to 1. Therefore, almost surely D, = D,
whenever h is a whole-plane GFF plus a continuous function, so the subsequential limit of aE‘lDf1
is unique. O

Proof of Theorem 1.8, assuming Theorem 1.13. The uniqueness of the strong LQG metric fol-
lows from Theorem 1.13 and Lemma 1.15. The existence follows from the existence of the limit
in Theorem 1.3, [36, Theorem 1.7] (which says that the limit is a weak LQG metric), and
Lemma 1.15. |

1.5 | Outline

As explained in section 1.4, to establish our main results we only need to prove Theorem 1.13. To
this end, let h be a whole-plane GFF and let D, and D), be two weak LQG metrics as in Defini-
tion 1.12. We need to show that there is a deterministic constant C > 0 such that almost surely
D, = CD,,. In this subsection, we will give an outline of the proof of this statement. Throughout
this outline and the rest of the paper, we will frequently use without comment the following fact,
which is [36, Proposition 1.12].

Lemma 1.16 [36]. Almost surely, the metric D, is complete and finite-valued on C\
{singular points}. Moreover, every pair of points in C \ {singular points} can be joined by a
D, -geodesic (Definition 1.6).

1.5.1 | Optimal bi-Lipschitz constants

By [14, Theorem 1.10], the metrics D;, and D, are almost surely bi-Lipschitz equivalent, so in par-

ticular almost surely they have the same set of singular points. We define the optimal upper and
lower bi-Lipschitz constants

5 >
¢, = inf{ M : u,v € C\ {singular points}, u # U} and

Dh(u1 U) .
5 >
G, := sup{ Dh(u ) : u,v € C\ {singular points}, u # v}. (1.19)
h(u7 )

Lemma 1.17. Each of ¢, and €, is almost surely equal to a deterministic, positive, finite constant.

95U8017 SUOLULLIOD AN 3|01 jdde 8Ly Aq peuseob e Sapo1e O '8N J0 SN 1o} Aleiq 1T 8UIUO A8 L (SUORIPUOD-PUE-SLLBIALIOD" A8 |IW ARe1q U U0//Sd1IL) SUORIPUOD P SW | 8Y188S *[2202/TT/0T] Lo ARiqiauliuo A8|im ‘Ateiqi 0Bealyd JO AiSAIUN Ad Z6v2T SWId/ZTTT OT/I0p/Lod AB|im Aleiqjput|uo'acsyeLupuo|//sdiy Woly papeojumod ‘0 ‘Xiz09rT



16 | DING AND GWYNNE

Proof. By the bi-Lipschitz equivalence of D, and D,, almost surely ¢, and G, are posi-
tive and finite. We know from [36, Lemma 3.12] that almost surely for each z € C, we have
limg_, ., D;,(z,0Bg(z)) = co. With this fact in hand, the lemma follows from exactly the same
elementary tail triviality argument as in the subcritical case [27, Lemma 3.1]. O

We henceforth replace ¢, and €, by their almost sure values in Lemma 1.17, so that each of ¢,
and G, is a deterministic constant depending only on the laws of D), and D;, and almost surely

¢,D,(u,v) < D,(u,v) < €. Dy(u,v), Yu,v € C. (1.20)

1.5.2 | Main idea of the proof

To prove Theorem 1.13, it suffices to show that ¢, = €. In the rest of this subsection, we will give
an outline of the proof of this fact. There are many subtleties in our proof which we will gloss over
in this outline in order to focus on the key ideas. So, the statements in the rest of this subsection
should not be taken as mathematically precise.

At a very broad level, the basic strategy of our proof is similar to the proof of the uniqueness
of the subcritical LQG metric in [27]. However, the details in Sections 3 and 5 are substantially
different from the analogous parts of [27], and the argument in Section 4 is completely different
from anything in [27].

We now give a very rough explanation of the main idea of our proof. Assume by way of con-
tradiction that ¢, < €. We will show that for any ¢’ € (c,,€,), there are many ‘good’ pairs of
distinct non-singular points u, v € C such that ﬁh(u, v) < ¢/Dy,(u,v) (Section 3). In fact, we will
show that the set of such points is large enough that every D, -geodesic P has to get D,-close to
each of u and v for many ‘good’ pairs of points u, v (Sections 4 and 5). For each of these good pairs
of points, we replace a segment of P by the concatenation of a D),-geodesic from a point of P to u,
a Dj,-geodesic from u to v, and a D,,-geodesic from v to a point of P. This gives a new path with
the same endpoints as P.

By our choice of good pairs of points u, v, the D),-length of each of the replacement segments
is at most a constant slightly larger than ¢’ times its Dj,-length. Furthermore, by the definition of
@, the D,,-length of each segment of P which was not replaced is at most €, times its Dj,-length.
Morally, we would like to say that this implies that there exists ¢/’ € (¢/, €,) such that almost
surely

Dy(z,w) < 'Dy(z,w), Vz,w € C. 1.21)

The bound (1.21) contradicts the fact that €, is the optimal upper bi-Lipschitz constant
(recall (1.19)). In actuality, what we will prove is a bit more subtle: assuming that ¢, < €,, we
will establish for ‘many’ small values of ¥ > 0 and each § > 0 an upper bound for

P [ﬁh(z, w) < (€, —d)Dy(z,w), Vz,w € E,(O) satisfying certain conditions]. (1.22)

See Proposition 1.21 for a somewhat more precise statement. This upper bound will be incom-
patible with a lower bound for the same probability (Proposition 1.18), which will lead to our
desired contradiction.

In the rest of this subsection, we give a more detailed, section-by-section outline of the proof.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 17

1.5.3 | Section 2: Preliminary estimates

We will fix some notation, then record several basic estimates for the LQG metric which are
straightforward consequences of results in the existing literature (mostly [36]).

1.5.4 | Section 3: Quantitative estimates for optimal bi-Lipschitz constants

Let G’ € (c,,€,). By the definition (1.19) of ¢, and €, it holds with positive probability that there
exists non-singular points u, v € C such that ﬁh(u, v) > €'Dj,(u, v). The purpose of Section 3 is to
prove a quantitative version of this statement. The argument of Section 3 is similar to the argument
of [27, section 3], but many of the details are different due to the fact that our metrics do not induce
the Euclidean topology.

The following is a simplified version of the main result of Section 3 (see Proposition 3.5 for a
precise statement).

Proposition 1.18. There exists p € (0, 1), depending only on the laws of D, and D,, such that for
each G’ € (0,C,) and each sufficiently small € > 0 (depending on €’ and the laws of D), and D),
there are at least 3 logg e 7! values of r € [€2,€] N {8 ¥} cn Such that

P [EI a ‘regular’ pair of points u,v € l_3r(0) such that D, (u,v) > 6'Dy,(u, v)] > p. (1.23)

The statement that u and v are ‘regular’ in (1.23) means that these points satisfy several regu-
larity conditions which are stated precisely in Definition 3.2. These conditions include an upper
bound on Dy,(u,v) (so in particular u and v are non-singular) and a lower bound on |u —v| in
terms of r. We emphasize that the parameter p in Proposition 1.18 does not depend on ¢’. This
will be crucial for our purposes, see the discussion just after Proposition 1.21.

‘We will prove Proposition 1.18 by contradiction. In particular, we will assume that there are arbi-
trarily small values of ¢ > 0 for which there are at least }‘ logg e 7! values of r € [e2,€] N {8 i en
such that

P|D,(u,v) < C'Dy,(u,v), V ‘regular’ pairs of points u, v € B.(0)| >1—p. (1.24)

If p is small enough (depending only on the laws of D, and D,), then we can use the assump-
tion (1.24) together with the near-independence of the restrictions of the GFF to disjoint
concentric annuli (Lemma 2.1) and a union bound to get the following. For any bounded open
set U c C, it holds with high probability that U can be covered by balls B,(z) for z € U and
r € [e2,€] N {8 ¥}, such that the event in (1.24) occurs.

‘We will then work on the high-probability event that we have such a covering of U. Consider
points z, w € U such that there exists a D;,-geodesic P from z to w which is contained in U. We
will replace several segments of P between pairs of ‘regular’ points u, v as in (1.24) by D;,-geodesics
from u to v. The Dj,-length of each of these geodesics is at most €’ D), (u, v). Furthermore, by (1.19),
the Dj,-length of each segment of P which we did not replace is at most €, times its D) -length.
We thus obtain a path from z to w with D,,-length at most €"'D;,(u, v), where " € (¢/,€,) is a
constant depending only on €’ and the laws of D), and D,,. With high probability, this works for
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18 | DING AND GWYNNE

any D, -geodesic contained in U. So, by taking U to be arbitrarily large, we contradict the definition
of €, . This yields Proposition 1.18.

By the symmetry in our hypotheses for D, and D,, we also get the following analog of
Proposition 1.18 with the roles of D), and D), interchanged.

Proposition 1.19. There exists p € (0, 1), depending only on the laws of D, and Dy, such that for
each ¢ > ¢, and each sufficiently small ¢ > 0 (depending on ¢’ and the laws of D, and D,,), there are
at least ;31 logg £~ values of r € [€%,€] N {8} o for which

P [EI a ‘regular’ pair of points u,v € Er(O) such that ﬁh(u, v) < ¢'Dy(u,v)| = p. (1.25)

1.5.5 | Section 4: The core argument

The idea of the rest of the proof of Theorem 1.13 is to show that if ¢, < €,, then Proposition 1.19
implies a contradiction to Proposition 1.18.

The core part of the proof is given in Section 4, where we will prove Theorem 1.13 conditional
on the existence of events and bump functions satisfying certain specified properties. The needed
events and bump functions will be constructed in Section 5. Section 4 plays a role analogous to
[27, sections 4 and 6], but the proof is completely different.

We will consider a set of admissible radii R C (0, 1), which will eventually be taken to be equal
to p~'R,, where p is a constant and R, is the set of r € {8 ¥}, ., for which (1.25) holds. We also
fix a constant p € (0, 1), which will eventually be chosen to be close to 1, in a manner depending
only on the laws of D, and Dj,, and we set

¢, +C
¢ = > =, sothat ¢ €(c,,€C,) if ¢, <GC,.

We will assume that for each r € R and each z € C, we have defined an event E,, and a
deterministic function f, . satisfying the following properties.

* E,, isdetermined by hlp, (,)\ 5, (), Viewed modulo additive constant, and P[E, ] > p.

¢ f,, is smooth, non-negative, and supported on the annulus B;,(z) \ B,(2).

* Assume that E,, occurs and P’ is a Dj,_¢ -geodesic between two points of C \ B,,(z) which
spends ‘enough’ time in the support of ler. Then there are times s < ¢ such that P'([s, t]) C
B,,(z) and

Dy (P'(s), P'(1)) < 't — ). (1.26)

The precise list of properties that we need is stated in Subsection 4.1.

Roughly speaking, the support of f, . will be a long narrow tube contained in a small neighbor-
hood of 3B,,(0). On the event E, ., there will be many ‘good’ pairs of non-singular points u, v in
the support of f, . such that D,(u, v) < ¢yDp(u,v) and the Dj,-geodesic from u to v is contained
in the support of f, ., where c6 € (c,, ") is fixed. See Figure 2 for an illustration. We will show
that E, . occurs with high probability for r € R using Proposition 1.19 (with c{) instead of ¢’) and
a long-range independence statement for the GFF (Lemma 2.3).
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 19

FIGURE 2 Illustration of three ‘good’ balls (that is, ones for which E, , occurs) and one ‘very good’ ball (that
is, one for which E, ,(h + f, ) occurs) which are hit by the D,-geodesic P. Each of the ‘good’ balls contains several
pairs of non-singular points u, v in the support of f, . (light blue) for which D (u,v) < ¢, Dy, (u, v). These points
and the D,-geodesics joining them are shown in red. For the ‘very good’ ball (the labeled ball in the figure), P gets
Dy,_¢ -close to each of u and v for one of the aforementioned pairs of points u, v. To prove Proposition 1.20, we
will show that there are lots of ‘very good’ balls for which P spends a lot of time in the support of f, ,..

The function f,, will be very large on most of its support. So, by Weyl scaling (Axiom III), a
Dh_f -geodesic which enters the support of f,, will tend to spend a long time in the support
of f,,  This will force the Dy,_¢_ -geodesic to get Dy,_¢_-close to each of u and v for one of the
aforementloned ‘good’ pairs of pomts u,v. The estimate (1 26) will follow from this and the triangle
inequality. Most of Section 4 is devoted to proving an estimate (Proposition 4.3) which roughly
speaking says the following.

Proposition 1.20. Assumethat ¢, < €, and we have defined eventsE, . and functions f, . satisfying
the above properties. As § — 0, it holds umformly overall z,w € C that

IP[Dy(z, w) > (€, — 8)Dy,(z, w), regularity conditions| = O5(6*), Vu > 0. 1.27)

We think of a ball B,.(z) as ‘good’ if the event E,, occurs and ‘very good’ if the event
E,,(h +f,,), which is defined in the same manner as E,, but with h + f, . instead of h, occurs.
By definition, if B,,(z) is‘good’ for h, then B,,.(z) is ‘very good’ for h —f,,.

Let P be the Dj,-geodesic from z to w (which is almost surely unique, see Lemma 2.7). Recall that
IP[E,,] > p, which is close to 1, and E , is determined by h|g, (;)\5,(z), Viewed modulo additive
constant. From this, it is easy to show using the near-independence of the restrictions of h to
disjoint concentric annuli (Lemma 2.1) that P has to hit B,(z) for lots of ‘good’ balls B,,.(z).

To prove Proposition 1.20, it suffices to show that with high probability, there are many ‘very
good’ balls B,,.(z) such that the D;,-geodesic P from z to w spends ‘enough’ time in the support of
the bump function f,,. Indeed, the condition (1.26) (with & + f,, instead of h) will then give us
lots of pairs of p01nts s, t such that D,,(P(s), P(t)) < ¢/ (t — s), Wthh in turn will show that D, (z, w)
is bounded away from €, D, (z, w) (see Proposition 4.6).

In [27], it was shown that P hits many ‘very good’ balls by using confluence of geodesics (which
was proven in [24]) to get an approximate Markov property for P. In this paper, we will instead
show this using a simpler argument based on counting the number of events of a certain type
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20 | DING AND GWYNNE

which occur. More precisely, for » € R and a finite collection of points Z such that the balls B,,.(z)
for z € Z are disjoint, we will let F . be (roughly speaking) the event that the following is true.

* Each ball B,,(z) for z € Z is ‘good’.

* The D;-geodesic P from z to w hits B,(z) for each z € Z.

* Withf,, :=3 ., f, ., the Dh_fzvr-geodesic from z to w spends ‘enough’ time in the support of
f,,foreachz € Z.

We also let F7), ! . be defined in the same manner as F . but with h + f; . in place of h, that is, F, !
is the event that the following is true.

* Each B,,(z) for z € Z is ‘very good’.
* The Dy, -geodesic from z to w hits B,(z) for each z € Z.
* The D,,- geodesrc P from z to w spends ‘enough’ time in the support of f, . for each z € Z.

Using a basic Radon-Nikodym derivative for the GFF, one can show that there is a constant
C > 0 depending only on the laws of D,, and D), such that

C™*P[F,,] < P[F},] <C*P[F,,], whenever #Z <k (1.28)

(see Lemma 4.4). We will eventually take k to be a large constant, independent of 7, z, w, depend-
ing on the number u in (1.27). So, the relation (1.28) suggests that the number of sets Z such that
< k and F, occurs should be comparable to the number of such sets for which F’, occurs.

Furthermore one can show that if ¢ is small enough, then for each r € [¢?,¢], the number of
sets Z with #Z < k such that F, occurs grows like a positive power of ¢~* (Proposition 4.5).
Indeed, as explained above, there are many sets Z, such that for each z € Z,,, the ball B,,(z) is
good and the ball B,(z) is hit by P. We need to produce many sets Z for which these properties
hold and also that D;,_¢ -geodesic spends enough time in the support of f, . for each z € Z. To
do this, we start with a set Z, as above and iteratively remove the ‘bad’ pomts z € Z; such that
the Dh_fzo’r geodesic from z to w does not spend very much time in the support of f, .. By doing
so, we obtain a set Z C Z; such that F, . occurs and #Z is not too much smaller than #Z,. See
Subsection 4.3 for details.

By combining the preceding two paragraphs with an elementary calculation (see the end of
Subsection 4.2), we infer that with high probability there are lots of sets Z with #Z < k such that
F’, ~occurs. In particular, there must be lots of ‘very good’ balls B,,(z) for which P spends a lot of
tlme in the support of f, . As explained above, this gives Proposition 1.20.

Once Proposition 1.20 is established, one can take a union bound over many pairs of points
z,w € B,(0) to get, roughly speaking, the following (see Lemma 4.20 for a precise statement).

Proposition 1.21. Assume that ¢, < €. For each sufficiently small € > 0 (depending only on the
laws of D, and Dy,), there are at least % logg e~ values of r € [2,€] N {S_k}keN for which

lim IP[3 a ‘regular’ pair 2, w € B,(0) such that By(z, w) > (6, - &)Dy(z, w)] -0, (129

uniformly over the choices of € and r.

Proposition 1.21 is incompatible with Proposition 1.18 since the parameter p in Proposition 1.18
does not depend on G’. We thus obtain a contradiction to the assumption that ¢, < €, so we
conclude that ¢, = €, and hence Theorem 1.13 holds.
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1.5.6 | Section 5: Constructing events and bump functions

In Section 5, we will construct the events E, . and the bump functions f,, described just before
Proposition 1.20. This part of the argument has some similarity to [27, sectlon 5], which gives a
roughly similar construction in the subcritical case. But, the details are very different. The main
reason for this is as follows.

Recall that we want to force a D, ¢ -geodesic P’ to get Dy,_¢ -close to each of u and v, where
u, v are non-singular points in the support of f, . such that Dj,(u,v) < ¢oDp(u, v). We will do this
in two steps: first we force P’ to get Euclidean-close to each of u and v, then we force P’ to get
Dy,_¢_ -close to each of u and v. In the subcritical phase, the metric D), is Euclidean-continuous,
SO the second step is straightforward. However, this is not the case in the supercritical phase, so a
substantial amount of work is needed to force P’ to get Dj,_ ¢, -close to each of u and v. Because
of this, we will define the events E, , in a significantly different way as compared to [27]. We refer
to Subsection 5.1 for a more detailed outline.

2 | PRELIMINARIES

In this subsection, we first establish some standard notational conventions (Subsection 2.1). We
then record several lemmas about a weak LQG metric D, which are either proven elsewhere (that
is, in [12, 36]) or are straightforward consequences of statements which are proven elsewhere. The
reader may wish to skim this section on a first read and refer back to the various lemmas as needed.

2.1 | Notational conventions

We write N = {1,2,3,...}and N, = N U {0}.

For a < b, we define the discrete interval [a, b]; := [a,b] N Z.

If f:(0,00) > R and g : (0,0) — (0, ), we say that f(e) = O,(g(¢)) (respectively, f(e) =
0.(g(¢))) ase — 0if f(€)/g(e) remains bounded (respectively, tends to zero) as ¢ — 0. We similarly
define O(-) and o(-) errors as a parameter goes to infinity.

Let {E},., be a one-parameter family of events. We say that E° occurs with

* polynomially high probability as ¢ — 0 if there is a u > 0 (independent from ¢ and possibly from
other parameters of interest) such that P[E®] > 1 — O,(¢*);
* superpolynomially high probability as e — 0 if P[E*] > 1 — O,(¢*) for every u > 0.

For z € C and r > 0, we write B,(z) for the open Euclidean ball of radius r centered at z. More
generally, for X ¢ C we write B,(X) = |,y B,(2). We also define the open annulus

A, ,(z) :=B,(2)\ B, (2), YO<r, <r,<oco. (21)

Topological concepts such as ‘open’, ‘closed’, ‘boundary’, and so on, are always defined with respect
to the Euclidean topology unless otherwise stated. For X ¢ C, we write X for its Euclidean closure
and 0X for its Euclidean boundary.

We will typically use the symbols r and r for Euclidean radii. Many of our estimates for weak
LQG metrics are required to be uniform over different values of r (or r). The reason why we
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22 | DING AND GWYNNE

need to include this condition is that we only have tightness across scales (Axiom V’) instead
of exact scale invariance (Axiom IV), so estimates are not automatically uniform across different
Euclidean scales.

2.2 | Some remarks on internal metrics

Throughout the rest of this section, we let & be a whole-plane GFF and D,, be a weak LQG metric
as in Definition 1.12.

Let X C C (not necessarily open or closed) and recall from Definition 1.6 that Dj,(-, -; X) is the
Dy -internal metric on X, which is a metric on X except that it is allowed to take on infinite values.
It is easy to check (see, for example, [6, Proposition 2.3.12]) that the D, (-, -; X)-length of any Dj,-
rectifiable path contained in X (and hence also every Dy, (-, -; X)-rectifiable path) is the same as its
Dy -length.

The notion of a Dy,(:, -; X)-geodesic between points of X is well-defined by Definition 1.6: it
is simply a path in X whose Dj,-length is the same as the D, (-, -; X)-distance between its end-
points, provided this distance is finite. Such a geodesic may not exist for every pair of points in
X. However, such geodesics exist for some pairs of points: for example, if z, w € X and there is a
D,,-geodesic P from z to w which is contained in X, then P is a D,(-, -; X)-geodesic.

We will most often consider internal metrics on open sets (which appear in the locality assump-
tion Axiom II for D). But, we will sometimes also have occasion to consider internal metrics on
the closures of open sets. Recall that for an open set U C C, h| is the random distribution on U
obtained by restricting the distributional pairing f — (h, f) to functions which are supported on
U. Following, for example, [40, section 3.3], for a closed set K C C, we define

o(hl) = o (s ) (22)

e>0

where B,(K) is the Euclidean e-neighborhood of K.

We say that a random variable is almost surely determined by h| if it is almost surely equal
to a random variable which is measurable with respect to o(h|y). Similarly, we say that a ran-
dom variable is almost surely determined by k|, viewed modulo additive constant, if it is almost
surely equal to a random variable which is measurable with respect to o((h + ¢)| ) for any possibly
random c € R.

The metric D, (-, -; K) is equal to the internal metric of Dy, (-, -; B,(K)) on K for any ¢ > 0. So, by
locality (Axiom II) and (2.2), the metric D, (-, -; K) is measurable with respect to a(h|g).

2.3 | Independence for the GFF
The following lemma is a consequence of the fact that the restrictions of the GFF to disjoint con-
centric annuli, viewed modulo additive constant, are nearly independent. See [25, Lemma 3.1] for

a slightly more general statement.

Lemma 2.1 [25]. Fix 0 <s; <8, < 1. Let {ri }yen be a decreasing sequence of positive num-
bers such that riy,/r; <s, for each k € N and let {E, };cn be events such that E, €
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o((h - hrk (0))|As1rk szrk(o))for each k € N. For K € N, let N(K) be the number of k € [1,K],, for
which E,, occurs.

(1) For each a>0 and each be(0,1), there exists p=p(a,b,s,s,) €(0,1) and
¢ =c(a,b,sy,s,) > 0 (independent of the particular choice of {r;.} and {E, }) such that if

IP[E,k] >p, VkeN, (23)
then
P[N(K) < bK] < ce @K, VK e N. (2.4)

(2) For each pe(0,1), there exists a=a(p,s;,s,) >0 b=>b(p,s,s,) € (0,1), and
¢ =c(p,s;,s,) > 0 (independent of the particular choice of {r;} and {Erk}) such that if (2.3)
holds, then (2.4) holds.

Lemma 2.1 still applies if we require that E, € o((h — hrk (0))|Ks1rk,szrk (0)) (that is, we consider a
closed annulus rather than an open annulus). This is an immediate consequence of the definition
of the o-algebra generated by the restriction of & to a closed set (2.2). We will use this fact without
comment several times in what follows.

For the proof of Lemma 4.18, we will need a minor variant of Lemma 2.1 where we do not require
that the annuli are concentric.

Lemma2.2. Fix0 < §; <5, < lands, € (0,min{s;, 1 — s,}). Let {r; };cn be a decreasing sequence
of positive real numbers and let {z; }; < be a sequence of points in C such that

Feg1/Te <81 =S¢ and |z | < sofy, Vk €N (2.5)

Let{E, (z;)}en be events such that for each k € N, the event E,, (z;) is almost surely determined by
hlx Gy viewed modulo additive constant. For K € N, let N(K) be the number of k € [1,K],
$17kS27k
for which E, (z)) occurs.
(1) For each a>0 and each be(0,1), there exists p = p(a,b,sy, s;,5,) €(0,1) and
¢ =c(a,b,sy,8,8,) > 0 (independent of the particular choice of {r,}, {z;}, and {E,k(zk)})
such that if

IP[E,k(zk)] >p, VkeN, (2.6)

then
P[N(K) < bK] < ce %K, VK e N. (2.7)

(2) For each p € (0,1), there exists a = a(p, Sy, S1,5,) >0, b = b(p, sy, 1,5,) € (0,1), and ¢ =
c(p, Sy, 81, 8,) > 0 (independent of the particular choice of {r,}, {z;}, and {Erk (zi)}) such that
if (2.6) holds, then (2.7) holds.
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Proof. Since |z;| < spry,
Aslrk SoFk (Zk) C A(sl—so)rk,(sz+so)rk (0).

Hence, E,, (zy) is almost surely determined by hlﬁ( s (O viewed modulo additive con-
51—30 rk, 52+SO rk
stant. Since 0 < 5; — 55 < 8, + 5y < 1 and by (2.5), we can apply Lemma 2.1 with s; — s, in place

of s; and s, + s, in place of 5, to obtain the lemma statement. O

We will also need an estimate which comes from the fact that the restrictions of the GFF to
small disjoint Euclidean balls are nearly independent. See [27, Lemma 2.7] for a proof.

Lemma 2.3 [27]. Let h be a whole-plane GFF and fix s > 0. Let n € N and let Z be a collection of
#Z = n points in C such that |z — w| > 2(1 + s) for each distinct z,w € Z. Forz € Z, let E, be an
event which is determined by (h — h1+s(z))|31(z)- Foreach p,q € (0, 1), thereexistsn, = n.(s, p,q) €
N such that if P[E,] > p for each z € Z, then

IP[UEZ] >q, Vnx=n,.

zeZ

2.4 | Basic facts about weak LQG metrics

In this subsection, we will record some facts about our weak LQG metric D, which are mostly
proven elsewhere and which will be used frequently in what follows. Similar results are proven
in the subcritical case in [17, 33].

Remark 2.4. Many of the estimates in [12, 36] involve ‘scaling constants’ ¢, for r > 0. It was shown
in [14, Theorem 1.9] that one can take ¢, = r5Q. We will use this fact without comment whenever
we cite results from [12, 36].

It was shown in [36, Lemma 3.1] that one has the following stronger version of Axiom V’.
Lemma 2.5 [36]. Let U C C be open and let K, K, C U be two disjoint, deterministic compact sets
(allowed to be singletons). The re-scaled internal distances r—'e~¢" D, (rK,,rK,;rU) and their

reciprocals as r varies are tight (recall the notation from Definition 1.6).

The following proposition, which is [36, Proposition 1.8], is a more quantitative version of
Lemma 2.5 in the case when K, K, are connected and are not singletons.

Lemma 2.6 [36]. Let U C C be an open set (possibly all of C) and let K;,K, C U be two dis-
joint, deterministic, connected, compact sets which are not singletons. For each r > 0, it holds with
superpolynomially high probability as R — oo, at a rate which is uniform in the choice of r, that

RO < P, (rKy, 1K ;3 rU) < RréQes (),

Suppose that A C C is a deterministic bounded open set which has the topology of a Euclidean
annulus and whose inner and outer boundaries are not singletons. Recall the notation for
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D, -distance across and around Euclidean annuli from Definition 1.11. It is easy to see from
Lemma 2.6 that with superpolynomially high probability as R — oo, uniformly in the choice of r,

R175QeEM(0) < Dy(around A) < Rrngghr(O),

and the same is true for D) (across A).

Recall from Lemma 1.16 that almost surely any two non-singular points z, w for D), can be joined
by a Dj,-geodesic, that is, a path of D) -length D, (z, w). In the subcritical case, it was shown in [33,
Theorem 1.2] that for a fixed choice of z and w, almost surely this geodesic is unique (see also [9,
Lemma 4.2] for a simplified proof). The same proof also works in the critical and supercritical
cases. We will need a slightly more general statement than the uniqueness of geodesics between
fixed points. For two sets K;,K, C C, a D,-geodesic from K; to K, is a path from a point of K, to
a point of K, such that

len(P; D)) = Di(K,K,) := Z inf  D,(z,w). (2.8)

€K,,wek,

Lemma 2.7. Let K,,K, C C be deterministic disjoint Euclidean-compact sets. Almost surely, there
is a unique Dy,-geodesic from K to K.

Proof. For existence, choose sequences of points u, € K; and v, €K, such that
lim,_, . D;(u,,v,) = D;(K;,K,). Since K, and K, are Euclidean-compact, after possibly passing
to a subsequence we can find u € K; and v € K, such that |u, —u| - 0and |v, —v| — 0. By the
lower semicontinuity of Dy,

Dy (u,v) < liminf D, (u,,v,) = D,(K;,K)).
n—oo

Hence, D), (u,v) = D (K;,K,) and a D) -geodesic from u to v (which exists by Lemma 1.16) is also
a Dy -geodesic from K to K.

The uniqueness of the D;,-geodesic from K; to K, follows from the same argument as in the
case when K; and K, are singletons, see [33, section 3] or [9, Lemma 4.2]. O

2.5 | Estimates for distances in disks and annuli

In this subsection, we will prove some basic estimates for D, which are straightforward con-
sequences of the concentration bounds for LQG distances established in [36]. We begin with a
uniform comparison of distances around and across Euclidean annuli with different center points
and radii.

Lemma 2.8. Fix ¢ > 0. Let U C C be a bounded open set and let b > a > 0 and d > ¢ > 0. For
each r > 0, it holds with superpolynomially high probability as &, — 0 (at a rate which depends on
¢,U,a,b,c,d and the law of Dy, but is uniform in r) that

Dy, (around A s, s5.(2)) < 675Dy (across As, 4s.(2)), Vz €U, V3 € (0,8]. (2.9)

Proof. Basically, this follows from Lemma 2.6 and a union bound. A little care is needed to
discretize things so that we only have to take a union bound over polynomially many events.
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Fix a;,a,,b;,b, > 0and ¢y, ¢,,d;, d, > 0 such that

a<a,<a; <by<by,<b and c<c,<c;<d;<d,<d.

By Lemma 2.6, for each z € C it holds with superpolynomially high probability as § — 0 (at arate
depending only on ¢, a;, by, ¢1, d;, and the law of D) that

Dy, (around Aal&r,bl&r(z)) < 85Q78/215Qehax(2)  and

D, (across Acl&.,dlar(z)> > §5Q+/2p8Qp8hs:(2), (2.10)

Let s > 0 be much smaller than min{a, — a,, b, — by, ¢; — ¢4, d, — d;}. By a union bound, it holds
with superpolynomially high probability as § — 0 that the bound (2.10) holds for all z € (sérZ?) N
B.(zU).
For each z € rU, there exists z’ € (sérZ?) N B, (rU) such that
Aal&r,bl&r(z,) C Aazrflr,bz&r(z) and Acl&r,dl&r(zl) C Aczﬁr,dz&r(z)'
For this choice of Z/,
Dy, (around Aazar’bzar(z)> <Dy, <around Aalar’blar(z’)> and
Dy, <across /ACzar,dz&r(z)) > D, <across Aclar’dl&(z')).

By (2.10) with 2z’ in place of z, we infer that with superpolynomially high probability as § — 0,
D, (around Aaz&r,bzaﬂ.(z)> <57°D, (across /Aczaﬂ.,czgn,(z)) Vz erU. (211)
To upgrade to an estimate which holds for all § € (0, §,] simultaneously, let
g € (1, (minfay/a,b/by,cy/c,d/dy}) /™).
By a union bound over integer powers of g, we infer that with superpolynomially high probability

as 8, — 0, the estimate (2.11) holds for all § € (0,8,] N{g~* : k € N}. By our choice of g, for each
8 € (0,8, there exists k € N such that q_k € (0,6,] and foreach z € C,

Aazq*er,bzq*krr(z) c Aaﬁr,b&r(z) and Aczq*kw,dzq*kr(z) c Acﬁnr,dﬁnr(z)'
Hence (2.11) for & follows from (2.11) with g~ in place of 8. O

Our next estimate gives a moment bound for the LQG distance from the center point of a closed
disk to a point on its boundary, along paths which are contained in the disk.

Lemma 2.9. Foreach p € (0,2Q/§&), there exists C, > 0, depending only on p and the law of Dy,
such that

]E[(r_ng_gh'(o)Dh<w, o;Er(0)>)p] <C, Vw e dB,0). (2.12)

SUOIIPUOD PUe SLwe | 84} 88S *[2202/TT/0T] uo Arigiauniuo A|im ‘Areiqi 0Beolyd JO AusieAin Ag 26b2T Swid/ZTTT OT/I0p/W00 A8 1M AReIq 1 jBUl U0 I0SLIRWPUO|//SANY WO PBpeojumoq ‘0 ‘XvZ09vT

100" A8 1M Areq 1 U U0/ /Sd

-pue-

35UB017 SUOLULLIOD AAIES.ID) 3|qedljdde ayy Aq pausench ae sapiLe YO ‘8sh Jo Sajni 1o} Aeiqi auljuQ AS[IA UO (suo!



UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS | 27

Proof. Fixw € dB,(0). All of our estimates are required to be uniform in the choice of w. The idea
of the proof is to string together countably many D,,-rectifiable loops centered at points on the
segment [0, w], with geometric Euclidean sizes.
For ¢ € (0,r), define
w, := (1 — E)w and A, 1= A (W)
, .

and note that A, C B,(0).
By Lemma 2.6, for each g > 0,

q
]E[(E_ng_ghE(wE)Dh(around A5)> ] <1, Ve>o, (213)

with the implicit constant depending only on g and the law of D,,. By Holder’s inequality, for each
p>0andeachg > 1,

E [(r_EQe_ghr(o)Dh(around Ag))p]

£Qp e
< (%) E [(E—EQe—Ehg(wg)Dh(around AE)) l_q]
X E [eqpam(wa—hr(o»] Ya
S (E ) ng]E [equ(hs(ws)_hr(o))] 1/q, (214)
;

where in the last line we used (2.13). The random variable h (w,) — h,(0) is centered Gaussian
with variance at most log(r/¢) plus a universal constant. We therefore infer from (2.14) that for
each p > 0and each g > 1,

E[(r- £ 0D, around 4,))] = (£)° 5

(2.15)
with the implicit constant depending only on p, q.
Let

r._E r . ’
W, 1= W and A; 1= A, (wp),

which is contained in B,(0) for € € (0, r/2]. Via a similar argument to the one leading to (2.15), we
also have that for each p > 0 and each q > 1,

£Qp—qp*£?/2
) . (2.16)

E [(r‘goe_fhr(O)Dh (around A!) )p] < <§

Fork € N, lete;, := 27¥r. Suppose that 7, is a path in A, which disconnects the inner and outer
boundaries and 711’{ isapathin Aék which disconnects the inner and outer boundaries of Aék. Then

the union of the paths 7 and nl’{ for k € N is connected and contained in B,(0) and its closure
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contains both 0 and w. From this, we see that the union of these paths and {0, w} contains a path
from O to w which is contained in B,(0). Hence,

D, <w, 0; l_Br(O)> < Z D, (around A, > + Z D, <around A;k ) (2.17)
k=0 k=0

Assume now that p € (0, min{1,2Q/&}). Since the function x — xP is concave, hence sub-
additive, we can take pth moments of both sides of (2.17), then apply (2.15) and (2.16), to
get

E [(r_er_Eh'(o)Dh (w, 0; Er(0)> )p]

< 3 B[ (520, (around 4, ) )

+ ;E [(r‘ng‘ghr(O)Dh (around Aék ) >p]

- i<s—k>§op—qp2§2/2
- r

[So]
< Z 2—k(§Qp—qp*£?/2). (2.18)
k=0

Since p < 2Q/¢&, if ¢ > 1 is sufficiently close to 1, we have £Qp — gp?£?/2 > 0. Hence, this last
sum is finite. This gives (2.12) for p < 1. For p > 1, we obtain (2.12) via the same argument, but
with the triangle inequality for the LP norm used in place of the subadditivity of p — xP. [

Using Lemma 2.9 and Markov’s inequality, we obtain the following estimate, which says that
with high probability ‘most’ points on a circle are not too LQG-far from the center point. Note
that (unlike for subcritical LQG) we cannot say that this is the case for all points on the circle, for
example, because there could be singular points on the circle.

Lemma 2.10. ForeachR > 1,

IEH{w € 6B,(0) Dh<w,0;]§r(0)> > erQefhr(O)} ] < R™2Q/&+0r (D (2.19)
where | - | denotes one-dimensional Lebesgue measure and the rate of convergence of the og(1)
depends only on the law of D,,.

Proof. This follows from Lemma 2.9 and Markov’s inequality. O

We will also need a lemma to ensure that all of the D),-geodesics between points in a specified
Euclidean-compact set are contained in a larger compact set.
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Lemma 2.11. There exists 4 > 0, depending only on the law of Dy, such that the following is true.
Let K C C be compact. For each v > 0, it holds with probability 1 — Ox(R™) as R — oo (at a rate
depending only on K and the law of D;,) that each D),-geodesic between two points of vK is contained
in Bg,(0).

Proof. Fixr > 0 and for s > 0, let
E; 1= {Dj(around Ay, ,.(0)) < Dy, (across A, 3,,.(0))}.

Using tightness across scales (Axiom V) and a basic absolute continuity argument (see, for exam-
ple, the proof of [21, Lemma 6.1]), we can find a p € (0, 1), depending only on the law of D;,, such
that P[E;] > p forall s,r > 0.

Let p > 0 be chosen so that K C B,(0). By assertion 2 of Lemma 2.1 (applied to logarithmi-
cally many radii r;, € [por, Rr/3]), we can find u > 0 as in the lemma statement such that for with
probability 1 — Ox(R™#), there exists s € [p, R/3] such that E; occurs.

On the other hand, it is easily seen that if E occurs, then no Dj,-geodesic P between two points
of B, (0) can exit Bs,,(0). Indeed, otherwise we could replace a segment of P by a segment of a
path in A, 5 (0) which disconnects the inner and outer boundaries to get a path with the same
endpoints as P but strictly shorter D, -length than P. O

2.6 | Regularity of geodesics

The following lemma is (almost) a re-statement of [12, Corollary 3.7]. Roughly speaking, the
lemma states that every point in an LQG geodesic is surrounded by a loop of small Euclidean
diameter whose D) -length is much shorter than the Dj,-length of the geodesic. A similar lemma
also appears in [36, section 2.4].

Lemma 2.12. For each y € (0,1), there exists © > 0, depending only on y and the law of D), such
that for each Euclidean-bounded open set U C C and each r > 0, it holds with polynomially high
probability as €, — 0, uniformly over the choice of r, that the following is true for each ¢ € (0, ;).
Suppose z € vU, x,y € C\ B, (2), and s > 0 such that there is a Dj,-geodesic P from x to y with
P(s) € B,,(2). Then

Dy, (around A, .;,(2)) < é%s. (2.20)

Proof. [12, Corollary 3.7] shows that with polynomially high probability as ¢, — 0, the condition in
the lemma statement holds for ¢ = ¢,,. The statement for all € € (0, ¢,] follows from the statement
for ¢ = ¢, (applied with y replaced by y’ slightly larger than y) together with a union bound over
dyadic values of €. O

Asexplained in [12, 36], Lemma 2.12 functions as a substitute for the fact that in the supercritical
case, D, is not locally Holder continuous with respect to the Euclidean metric. It says that the D,,-
distance around a small Euclidean annulus centered at a point on a Dj,-geodesic is small. A path of
near-minimal length around this annulus can be linked up with various other paths to get upper
bounds for D),-distances in terms of Euclidean distances.

We will need the following generalization of Lemma 2.12, which follows from exactly the same
proof. The lemma statement differs from Lemma 2.12 in that we considera D, _ f(-, - lrU)—geodesic,
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Aer,exr (Z)
Py (s)

FIGURE 3 Illustration of the statement of Lemma 2.13 in the case where s = inf{t > 0 : P(t) € V} (which
is the main case that we will use). The path P, is a D;,_;(:, -;vU)-geodesic and the set V" is the support of f. The
lemma gives us an upper bound for Dy, (around A, ,,(2)).

for a possibly random non-negative bump function f, instead of a D;,-geodesic (recall the discus-
sion of geodesics for internal metrics from Subsection 2.2). See Figure 3 for an illustration of the
lemma statement.

Lemma 2.13. Foreach y € (0, 1), there exists 6 > 0 depending only on y and the law of Dy, such
that for each Euclidean-bounded open set U C C and each r > 0, it holds with polynomially high
probability as €, — 0, uniformly over the choice of r, that the following is true for each ¢ € (0, ;).
LetV crU andlet f : C — [0, o) be a non-negative continuous function which is identically zero
outside of V. Let z € r[U \ Bx(dU)], x,y € @U)\ (VU B.»,(2)), and s > 0 such that there is a
D,_ f(-, -; rﬁ)—geodesic Py from x to y with P f(s) € B,,(z). Assume that

s<inf{t >0 : Pe(t) € Vi (2.21)
Then
Dy, (around A, .,.(2)) < . (2.22)

The statement of Lemma 2.13 holds with polynomially high probability for all possible choices
ofV,f,x,y,z,s,P Iz In particular, these objects are allowed to be random and/or e-dependent. We
also emphasize that the time s in (2.21) is allowed to be equal to inf{¢t > 0 : Pf(t) € V}, in which
case P(s) € dV. In fact, this is the main setting in which we will apply Lemma 2.13.

In the setting of Lemma 2.13, since f is non-negative, we have D),_ f(u, v; Jrﬁ) < Dy, (u,v; Jrﬁ)
for all u,v € rU. Furthermore, the condition (2.21) implies that the D;,_,-length of P |, is the
same as its Dy -length. These two facts allow us to apply the proof of Lemma 2.12 (as given in [12,
section 3.2]) essentially verbatim to obtain Lemma 2.13.

Out next lemma tells us that an LQG geodesic cannot trace a deterministic curve. Just like in
Lemma 2.13, we will consider not just a Dj,-geodesic but a Dj,_ (-, - rU)-geodesic for a possible
random continuous function f.

Lemma 2.14. For each M > 0, there exists v > 0, depending only on M and the law of Dy, such
that the following is true. Let U C C be a deterministic open set and lety) : [0,T] — U \ B.1,2(dU)
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be a deterministic parameterized curve. For each r > 0, it holds with probability 1 — O.(¢") as € —
0 (the implicit constant depends only on M and the law of D) that the following is true. Let f :
C — [—M, M] be a continuous function and let PpbeaD),_ f(-, “ rﬁ)—geodesic between two points
of r[U \ B,12(1)]. Then

l{t €[0,T] : Py nB..(xn(0)) # B} <&'T, (2.23)
where | - | denotes one-dimensional Lebesgue measure.

We emphasize that, as in Lemma 2.13, the function f and the geodesic Py in Lemma 2.14 are
allowed to be random and e-dependent (but 7 is fixed).

Proof of Lemma 2.14. The idea of the proof is that (by Lemma 2.1) for a ‘typical’ time ¢t € [0, T],
there is a loop in AEM] /2, (xn(t)) which disconnects the inner and outer boundaries and whose
Dy, -length is much shorter than the D, -distance from the loop to B,,.(r7(t)). The existence of such
a loop prevents a Dj,_ s-geodesic from hitting B, (v7(t)).

Fork € N, let
T o= 4ker,
For t € [0, T], define the event
E () := {Dh(around Py 3r, (]l“?’)(t))) < %e‘ngDh(across A, o, (Jrn(t))) } (2.24)

By locality and Weyl scaling (Axioms II and V'), the event E,(¢) is almost surely determined
by h| Ay, G700 viewed modulo additive constant. By adding a bump function to 4 and using

absolute continuity together with tightness across scales (see, for example, the proof of [21,
Lemma 6.1]), we see that there exists p > 0 (depending only on M and the law of D;,) such that
P[E,(¢)] > p for each k € N and ¢ € [0, T]. Consequently, assertion 2 of Lemma 2.1 implies that
there exists v > 0 depending only on M and the law of D), such that

IP[3k € [1,log, 7/ = 1], such that E;(¢) occurs| > 1 — 0,(e*), (2.25)
with the implicit constant in the O,(-) depending only on M and the law of D,,.
Say that ¢ € [0,T] is good if E;(t) occurs for some k € [1,log, e1/2 — 1]y, and that ¢ is bad
otherwise. By (2.25),
E[|{t € [0,T] : t is bad}|] < O.(*)T.
By Markov’s inequality, it holds with probability 1 — O,(¢”) that
|{t € [0,T] : tisbad}| < &"T. (2.26)
To prove (2.23), it remains to show that if ¢ is good and f is as in the lemma statement, then no

Dp_ (-, rﬁ)-geodesic between two points of r[U \ B.i,2(n)] can hit B, (rn(t)). To see this, let
P be such a geodesic and choose k € [1,log, ¢~1/2 — 1], such that E,(t) occurs. By (2.24), there
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isapath 7 in A
such that

2r,.3r, (@ (1)) which disconnects the inner and outer boundaries of this annulus

len(r; Dy,) < e %MD, (across A, o, (rm(t))).

By Weyl scaling (Axiom III) and since f takes values in [-M, M],
len(7; Dy_p) < Dy_ f<across /Ark,yk(rn(t))) (2.27)

Since er < 1y, < %51/ 2r and the endpoints of P are at Euclidean distance at least ¢'/?r from r7, we

see that if P hits B, (x7(¢)) then the following is true. There are times 0 < 7 < ¢ < len(P; D),_s)
such that P(7), P(c) € 7 and P crosses between the inner and outer boundaries of Ark,Zrk (rn(t))
between times 7 and o. Since y C U \ B,12(8U), we have 7 C rU. By (2.27), we can obtain a
path in rU with the same endpoints as P ¢ which is D,_¢-shorter than P by replacing P|(. ;|

by a segment of the path 7. This contradicts the fact that Py is a D,_;(-, - rU)-geodesic, so we
conclude that P ¢ cannot hit B..(rn(t)), as required. O

3 | QUANTIFYING THE OPTIMALITY OF THE OPTIMAL
BI-LIPSCHITZ CONSTANTS

3.1 | Events for the optimal bi-Lipschitz constants

Let h be a whole-plane GFF and let D, and D, be two weak LQG metrics. We define the optimal
upper and lower bi-Lipschitz constants ¢, and €, as in Subsection 1.5.1, so that ¢, and €, are
deterministic and almost surely (1.20) holds. Recall from Subsection 1.5 that we aim to prove by
contradiction that ¢, = €. For this purpose, we will need several estimates which have non-trivial
content only ife¢, < €.

From the optimality of ¢, and €, we know that for every ¢’ < €,

IP[3 non-singular u, v € C such that Dj,(u,v) > €'Dj,(u,v)| > 0. (3.1)

A similar statement holds for every ¢/ > ¢,.. The goal of this section is to prove various quantitative
versions of (3.1), which include regularity conditions on u and v and which are required to hold
uniformly over different Euclidean scales.

Our results will be stated in terms of two events, which are defined in Definitions 3.1 and 3.2.
In this subsection, we will prove some basic facts about these events and state the main estimates
we need for them (Propositions 3.3 and 3.10). Then, in Subsection 3.2, we will prove our main
estimates.

Definition 3.1. Forr > 0, 8 > 0, and €’ > 0, we let G,(3, €") be the event that there exist z,w €
B,(0) such that

5]’1 (Bﬁr(Z), Bﬁr(U))) = G'Dh(z, U))
The event G,(B8,€’) is a slightly stronger version of the event in (3.1). Our other event has a

more complicated definition, and includes several regularity conditions on u and v. See Figure 4
for an illustration.
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FIGURE 4 [Illustration of the event H,(c, €’) of Definition 3.2. The last condition (iv) says that for each
8 > 0, there exist purple paths as in the figure whose Dj,-lengths are at most §° D, (u, v). The figure is not shown
to scale — in actuality we will take « to be close to 1, so the light blue annulus will be quite narrow.

Definition 3.2. Forr > 0,a € (3/4,1), and €’ > 0, we let H,(a, €') be the event that there exist
non-singular points u € dB,,(0) and v € 0B,(0) such that

Dy, (u,v) > €'Dy(u,v) (3.2)

and a Dj,-geodesic P from u to v such that the following is true.

(i) PC A, (0).
(ii) The Euclidean diameter of P is at most r /100.
(iii) Dj,(u,v) < (1 — a) 1réQesh (),
(iv) Let® > 0 be as in Lemma 2.13 with y = 1/2. For each § € (0, (1 — a)?],

max { Dy, (u, dBs,(u)), Dy, (around Ag, 512, (u)) } < §°Dy,(u,v) (3.3)
and the same is true with the roles of u and v interchanged.

The main result of this section, which will be proven in Subsection 3.2, tells us that (for appro-
priate values of 8,C", a, ") if P[G,(B8,€")] > B, then there are lots of ‘scales’ r < r for which
P[H,(cat, €")] is bounded below by a constant which does not depend on r or ¢'.

Proposition 3.3. There exist « € (3/4,1) and p € (0, 1), depending only on the laws of D, and D,
such that for each €’ € (0,€,), there exists " = C""(€") € (€', C,) such that for each 8 € (0,1),
there exists g, = £,(8, ") > 0 with the following property. If v > 0 and P[G,(8,C"")] > B, then the
following is true for each € € (0, &;].

(A) There are at least %loggzs‘1 values of r € [e*r,er] N{8*r : k € N} for which
P[H,(«,6")] > p.

We emphasize that in Proposition 3.3, the parameters a and p do not depend in ¢’. This will be
crucial for our argument in Subsection 4.5.
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In the remainder of this subsection, we will prove some basic lemmas about the events of Defini-
tions 3.1 and 3.2, some of which are consequences of Proposition 3.3. In order for Proposition 3.3 to
have non-trivial content, one needs a lower bound for P|G,(5, €')]. It is straightforward to check
that one has such a lower bound if r = 1 and § is small enough.

Lemma 3.4. Foreach €' < G, there exists 8 > 0, depending on €' and the laws of D), and Dy, such
that P[G,(B,C")] > 0.

Proof. We will prove the contrapositive. Let €’ > 0 and assume that
P[G,(8.€)] =0, VB>o0. (3.4)
We will show that ¢’ > €. The assumption (3.4) implies that almost surely

Dy, (Bg(2), Bg(w)) < €'Dy(z,w), Vz,w € B(0), VB > 0. (3.5)
By lower semicontinuity, for each z, w € B;(0),

D < liminf D, (Bs(2), B ,
(z, w) imin 1 (Bs(2), Bg(w))

so (3.5) implies that almost surely

Dy (z,w) < €'Dy(z,w), Vz,w € B(0). (3.6)

By the translation invariance property of D, (Axiom IV’) and the translation invariance of the law
of h, viewed modulo additive constant, (3.6) implies that almost surely

Dy(z,w) < ¢'Dy(z,w), Vz,w € C such that |z —w| < 1. (3.7

For a general pair of non-singular points z, w € C, we can apply (3.7) to finitely pairs of points
along a Dj,-geodesic from z to w to get that almost surely D,(z, w) < 6'D,(z, w) for all z,w € C.
By the minimality of €, this shows that ¢’ > €, as required. 1

By combining Proposition 3.3 and Lemma 3.4, we get the following.

Proposition 3.5. Thereexist « € (3/4,1) and p € (0, 1), depending only on the laws of D, and D,
such that for each €' € (0, €,) and each sufficiently small ¢ > 0 (depending on €' and the laws of
Dy, and Dy,), there are at least % logg e~ values of r € [€2,€] N {8 ¥} en for which P[H,(a, €")] > p.

Proof. Let a € (3/4,1) and p € (0,1) (depending only on the laws of D, and D,) and ¢” €
(6¢’,6,) (depending only on ¢’ and the laws of D), and D,,) be as in Proposition 3.3. By Lemma 3.4
(applied with " instead of €’), there exists 8 > 0, depending only on ¢’ and the laws of D,
and Dy, such that P[G,(B,G")] > . By Proposition 3.3 applied with r = 1, we now obtain the
proposition statement. O

We will also need an analog of Proposition 3.5 with the events G,(8, €’) in place of the events
H,.(a,C"), which strengthens Lemma 3.4.
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Proposition 3.6. Foreach G’ € (0,C,), there exists 8 > 0, depending on €' and the laws of D, and
Dy, such that for each small enough ¢ > 0 (depending on G’ and the laws of D,, and Dy,), there are
at least % logg e 7! values of r € [€2,€] N {8 ¥} e for which P[G,(8,C")] > B.

We will deduce Proposition 3.6 from Proposition 3.5 and the following elementary relation
between the events H,(-,-) and G, (-, -).

Lemma3.7. Ifa € (3/4,1) and ¢ € (0, 1), there exists § > 0, depending only on «, ¢, and the laws
of D, and ﬁh, such that the following is true. For each r > 0 and each €' > 0, if H.(«, €") occurs,
then G,(8,C" — ¢) occurs.

Proof. Assume that H,.(at, ") occurs and let u and v be as in Definition 3.2 of H,.(a, €"). By
Definition 3.1 of G,(3, €’ — ¢), it suffices to find 8 > 0 as in the lemma statement such that

Dy, (Bg,(u), B, (v)) = (€' = {)Djy(u, v). (3.8)

To this end, let § > 0 and suppose that P is a path from B, (u) to By, (v); PS and P? are paths
from u and v to dBg/2,(u) and dB/2,(v), respectively; and ni and ng are paths in A, 5172, (1)
and Ag, s51/2,(u), respectively, which disconnect the inner and outer boundaries. Then the union
P°uPS U P’ Un® UnS contains a path from u to v. From this observation followed by (3.3) of
Definition 3.2 and the definition (1.19) of €, we get that if § € (0, (1 — a)*] then

Dj,(u,v) < Dy(B5,(w), B5;(0) + ). Dy (w,8B52,(w))

we{u,v}

+ Z ﬁh(aroundA&jl/zr(w))

we{u,v}

< 5h(Bﬁr(u)’Bc?r(v)) + (5:* Z Dh(w, aB51/2r(LU))

wefu,v}

+G, 2 Dy, (around Ag, 51/2,(w))

wefu,v}
< D,,(Bs, (), B, (0)) + 26, (59/2 + 59>Dh(u, V). (3.9)
By (3.2) and (3.9), we obtain
D, (Bs, (1), Bs,(0)) > [(s' - 26, (672 + 56>]Dh(u, v). (3.10)

We now obtain (3.8) by choosing § € (0, (1 — a)*] to be sufficiently small, depending on ¢ and €,
and setting 8 = 8. Ll

Proof of Proposition 3.6. Let a € (3/4,1) and p € (0, 1) (depending only on the laws of D), and
Dy,) be as in Proposition 3.5. Also let 6" := (€’ + €,)/2 € (¢, €,,). By Proposition 3.5 (applied
with G” instead of €’), for each small enough ¢ > 0, there are at least 3 logg ¢! values of r €
[e2,€] N {8 "} e for which P[H,(«, €”")] > p. By Lemma 3.7, applied with € in place of €’ and
¢ = 6" — G/, we see that there exists § > 0, depending only on G’ and the laws of D), and D;,, such
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that if H,(a, €"") occurs, then G,(8, €) occurs. Combining the preceding two sentences gives the
proposition statement with p A 8 in place of 5. 1

Since our assumptions on the metrics D, and D, are the same, all of the results above also hold
with the roles of D, and D), interchanged. For ease of reference, we will record some of these
results here.

Definition 3.8. Forr > 0,8 > 0,and ¢/ > 0, we let 5,(5, ¢) be the event that the event G, (3,1/¢’)
of Definition 3.1 occurs with the roles of D, and D, interchanged. That is, G,(8, ¢) is the event
that there exists z, w € B,(0) such that

Dy,(z,w) < ¢'Dy,(Bg,(2), Bg,(w)).

Definition 3.9. Forr > 0, « € (3/4,1), and ¢/ > 0, we let ﬁr(oc, ¢/) be the event that the event
H,(a,1/c") of Definition 3.2 occurs with the roles of D, and D, interchanged. That is, H,(«, ¢) is
the event that there exist non-singular points u € dB,,(0) and v € dB,(0) such that

Dj,(u,v) < ¢'Dy(u,v) (3.11)

and a Dj,-geodesic P from u to v such that the following is true.

(i) Pc A, (0). N
(ii) The Euclidean diameter of P is at most r/100.
(iii) Dp,(u,v) < (1 — a) 1réQesh (),
(iv) Let® > 0 be as in Lemma 2.13 with y = 1/2. For each § € (0, (1 — a)?],

max{Dj,(u, B;,(u)), D, (around Ag, 5172,W)) } < §°Dy,(u,v) (3.12)
and the same is true with the roles of u and v interchanged.
We have the following analog of Proposition 3.3.

Proposition 3.10. There exist a € (3/4,1) and p € (0,1), depending only on the laws of D;, and
Dy, such that for each ¢’ > c,, there exists ¢’ = ¢"'(¢') € (c,, ¢') such that for each § € (0,1), there
exists €, = £,(3, ¢') > O with the following property. Ifr > 0 and P[G,(8, ¢'")] > f. then the following
is true for each € € (0, &;].

(A’) There are at least %log8 ¢! values of re€l[e’r,er]n{8Fr: ke N} for which

P, (c, )] > p.
We will also need the following analog of Proposition 3.6.
Proposition 3.11. Foreach ¢’ > c,, there exists g >0, depending on ¢’ and the laws of D), and Dy,

such that for each small enough ¢ > 0 (depending on ¢’ and the laws of Dy, and Dy,), there are at least
= log8 e values of r € [e2,e] N {8~ k}keN for which ]P[G (6 N> ,8
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3.2 | Proof of Proposition 3.3
To prove Proposition 3.3, we will prove the contrapositive, as stated in the following proposition.

Proposition 3.12. There exists « € (3/4,1) and p € (0, 1), depending only on the laws of D;, and
Dy, such that for each ¢’ € (0,G,), there exists € = €""(€") € (6',C,) such that for each 8 €
(0, 1), there exists g, = £,(8, €") > 0 with the following property. If v > 0 and there exists € € (0, ]
satisfying the condition (B) just below, then P[G_(8,€")] < B.

(B) There are at least %log8 ¢! values of re€l[e’r,er]n{8Kr: ke N} for which
P[H,(a,C")] < p.

Note that the second-to-last last sentence of Proposition 3.12 (that is, the one just before con-
dition (B)) is the contrapositive of the second-to-last sentence of Proposition 3.3 (that is, the one
just before condition (A)). The proof of Proposition 3.12 is similar to the argument in [27, section
3.2], but the definitions of the events involved are necessarily different due to the existence of
singular points.

The basic idea of the proof is as follows. If we assume that (B) holds for a small enough
(universal) choice of p € (0,1), then we can use Lemma 2.1 (independence across concen-
tric annuli) and a union bound to cover space by Euclidean balls of the form B, ,(z) for
r € [e’r, er] with the following property. For each u € 3B,,(z) and each v € dB,(z) which are
joined by a geodesic P satisfying the numbered conditions in Definition 3.2, we have Dj,(u,v)
< €¢'Dy(u,v).

By considering the times when a Dj,-geodesic between two fixed points z, w € C crosses the
annulus A, .(z) for such a z and r, we will be able to show that ﬁh(Bﬁ(Z), BIg(W)) < C"Dy(z, w)
for a suitable constant €” € (€’, €,). Applying this to an appropriate 8-dependent collection of
pairs of points (z, w) will show that P[G.(8,€"")] < B. The reason why we need to make « close
to 1 is to ensure that the events we consider depend on & in a sufficiently ‘local’ manner (see the
proof of Lemma 3.13).

Let us now define the events to which we will apply Lemma 2.1. See Figure 5 for an illustration
of the definition. We will discuss the purpose of each condition in the event just below.

For z € C, r > 0, and parameters §, € (0,1/100), « € (1 —§,,1), and A > 1, let E.(z) =
E,.(z;8,,a, A, C") be the event that the following is true.

(1) (Regularity along geodesics) For each D,(, -;K, /272,(2))-ge0desic P between two points of
0A, 5,-(2), each § € (0,6,], and each x € A, 4 3, /,(2) such that P N Bs,(x) # @,

Dy, (around A, 51/2,(x)) < 6°Dj, (across A, 512,(x)), (3.13)

where (as in Definition 3.2) 6 is as in Lemma 2.13 with y = 1/2.
(2) (Distance around A, /2’2,(z)) We have

Dy (around A3r/2,2r(z))

. f— c* p—
< mln{(l — o)1 Qe (@), an Dy (Asy3/2(2), A, 13 5,(2)) } (3.14)
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0Ba,(2)

FIGURE 5 Illustration of the definition of E,(z). We have shown the annuli involved in the definition and
an example of a D (-, -; A, ), »,(2))-geodesic P between two points of A, ), ,.(z), which appears in several of the
conditions. Condition 1 allows us to compare distances around and across small annuli surrounding points of
As/43r2(2) which are hit by P. Condition 2 provides an upper bound for the D,,-distance around the outer
annulus A;, /, ,.(z). Condition 3 gives an upper bound for the Euclidean diameters of segments of P which are
contained in the pink annulus A, ,(z), such as the red segment in the figure. Condition 4 gives an upper bound
for the D,,-distance around A, ,(z). Finally, condition 5 will allow us to show that the D),-length of a red segment
like P|}, is at most €' (¢ — s).

ar,r

(3) (Euclidean length of geodesic segments in A, .(z)) For each Dy(., -;KV /2’2r(z)-geodesic p

between two points of 0 A, /2,2r(z) and any two times ¢t > s > 0 such that P([s, t]) C Kdr’r(z),
we have

|P(t) — P(s)| < ,yr- (3.15)
(4) (Distance around A, ,(z)) We have
Dy, (around A, ,(z)) < ADj,(across A, .(2)). (3.16)

(5) (Converse of H.(ct,€")) Let u € 8B,,(z) and v € 8B,(z) such that |u — v| < §,r and

c*
D, (around Ay, 501/2r(v)> < 35 Di(Bsrasr/a(2). 08, 125,(2)). (3.17)

95U8017 SUOLULLIOD AN 3|01 jdde 8Ly Aq peuseob e Sapo1e O '8N J0 SN 1o} Aleiq 1T 8UIUO A8 L (SUORIPUOD-PUE-SLLBIALIOD" A8 |IW ARe1q U U0//Sd1IL) SUORIPUOD P SW | 8Y188S *[2202/TT/0T] Lo ARiqiauliuo A8|im ‘Ateiqi 0Bealyd JO AiSAIUN Ad Z6v2T SWId/ZTTT OT/I0p/Lod AB|im Aleiqjput|uo'acsyeLupuo|//sdiy Woly papeojumod ‘0 ‘Xiz09rT



UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS | 39

Assume that there is a Dj,-geodesic P’ from u to v such that the numbered conditions in
Definition _3.2 of H,(a, €") occur but with z in place of 0, that is,
@ P’ Cc A, (2);
(ii) the Euclidean diameter of P’ is at most r/100;
(iii) Dj,(u,v) < (1 — a)~1rsQefn (@),
(iv) foreach 6 € (0, (1 — a)?],

max{Dj,(u,8Bs,(u)), Dy (around Ay, 512, (w)) } < 8°Dy(u, v) (3.18)

and the same is true with the roles of u and v interchanged.
Then Dj,(u,v) < €'Dy,(u,v).

The most important condition in the definition of E,(z) is condition 5. By Definition 3.2 and
the translation invariance of the law of 4, modulo additive constant, if P[H,(«, €)] is small, then
the probability of condition 5 is large. The extra condition (3.17) on u and v is included in order
to prevent D;,-geodesics or Dj,-geodesics between u and v from exiting A, /2,2r(2). This is needed
to ensure that E,(z) is determined by h| Arpn(@) which in turn is needed to apply Lemma 2.1. See
Lemma 3.13.

We will eventually consider a Dj,-geodesic P which enters B, /,(z) and apply condition 5 to the
Dy,-geodesic P = P, from u = P(s) to v = P(t), where s and t are suitably chosen times such
that P(s) € dB,,(z) and P(t) € dB,(z). The first three conditions in the definition of E,(z) will
allow us to do so (see Lemma 3.16). In particular, condition 1 will allow us to check (3.18) for
u = P(s) and v = P(t). Condition 2 will be used in conjunction with condition 1 to check (3.17).
Condition 3 will be used to upper-bound the Euclidean diameter of P|[ .

Condition 4 will be used to show that the intervals [s, ¢] as above for varying choices of r and z
such that E,(z) occurs and P enters B, /z(Z) cover a uniformly positive fraction of the time interval
on which P is defined. See Lemma 3.18.

Let us now explain why we can apply Lemma 2.1 to the events E,(z). For the statement, recall
the definition of the restriction of the GFF to a closed set from (2.2).

Lemma 3.13. The event E.(z) is almost surely determined by h|K/22 @y viewed modulo
additive constant. Y

Proof. 1t isimmediate from Weyl scaling (Axiom IIT) that adding a constant to h does not affect the
occurrence of E,(z). Therefore, E,(z) is almost surely determined by & viewed modulo additive
constant. We need to show that E,(z) is almost surely determined by hlﬂ/2 )

Each of conditions 1, 2, 3, and 4 in the definition of E,(z) depends only on D,,(, -;Kr /2,r(Z))'
By locality (Axiom II; see also Subsection 2.2), we get that each of these four conditions is almost
surely determined by hl—r/2 L)

We still need to treat condition 5. To this end, we claim that if u € B, (z) and v € 0B,(z)
such that |u — v| < §,r and (3.17) holds (as in condition 5), then every Dy, -geodesic and every ﬁh-
geodesic from u to v is contained in A, , ,(z). The claim implies that the set of D, (-, -; A, /2’2,(22)—
geodesics from u to v is the same as the set of D, -geodesics from u to v, and similarly with D,
in place of D,,. This, in turn, implies that condition 5 is equivalent to the analogous condition
where we require that P’ is a Dy, (-, ; A, 5 ,,(2))-geodesic instead of a Dj,-geodesic and we replace
Dy,(u,v) and Dy,(u, v) by Dy, (u, v; A, /5 5,(2)) and Dy, (u, v; A, /5 ,,(2)), respectively. It then follows
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40 | DING AND GWYNNE

from locality (Axiom II) that E,(z) is almost surely determined by h|; p viewed modulo

2(2)
additive constant.

It remains to prove the claim in the preceding paragraph. Let u and v be as above and let P be
path from u to v which exits A,/ ,,(z). We need to show that P is neither a Dj,-geodesic nor a

ﬁh-geodesic. By (3.17), there is a path # C A (v) such that

Eor,dol/zr
c*
len(n'; Dh) < (_,T*Dh (A3r/4’3r/2(2), 6/1\,/2’2,(2)) . (319)

By the bi-Lipschitz equivalence of D, and D, this implies that also

len(ﬂ; ﬁh) < ﬁh (A3r/4’3r/2(z), aAr/Z’Zr(Z)). (3.20)

Since u,v € Bs (), the path P must hit 7z before the first time it crosses from As, /5, /(2) to
0A,55r(z) and after the last time that it does so. Therefore, (3.19) implies that we can replace a
segment of P with a segment of 7z to get a path with the same endpoints and shorter D) -length.
Hence, P is not a Dj,-geodesic. Similarly, (3.20) implies that P is not a D,,-geodesic. O

We now check that E.(z) occurs with high probability if the parameters are chosen
appropriately.

Lemma 3.14. Foreach p € (0, 1), there exist parameters &, € (0,1/100), « € (1 — 8,,1), and A >
1, depending only on p and the laws of D;, and Dy, such that the following is true. Let €' € (0,C,)
andr > 0and assume that (B) holds for our given choice of o« and p. Then there are at least 4—11 logge!

values of r € [e’r,er] N {8‘"},{6]N such that P[E,(z)] > 1 — 2p foreach z € C.

Proof. By the translation invariance of the law of h, viewed modulo additive constant, and
Axiom IV, it suffices to prove the lemma in the case when z = 0.

By Lemma 2.13 (applied with f = 0), we can find §, € (0,1/100) depending only on p and the
laws of D), and D), such that for each r > 0, the probability of condition 1 in the definition of E,(0)
is at least 1 — p/4. By tightness across scales (Axiom V'), after possibly shrinking &,, we can find
a € (1 —§,,1) depending only on the laws of D, and D, such that the probability of condition 2
is also atleast 1 — p/4.

By Lemma 2.14 (applied with f = 0 and # the unit-speed parameterization of 6B;(0)), after
possibly shrinking «, in a manner depending on J,,, we can arrange that for each r > 0, it holds
with probability at least 1 — p/4 that the following is true. For each D, (-, -; K, /2,2+(0))-geodesic P
from a point of 0B, /2(0) to a point of 0B,(0), the one-dimensional Lebesgue measure of the set

{x €3B,(0) : PN Bygo_q)(x) # 0} (3.21)

isatmost §yr. If t > s > 0 such that P([s, t]) C Ka,,,(o), then the one-dimensional Lebesgue mea-
sure of the set (3.21) is at least the Euclidean diameter of P([s, t]). This shows that condition 3 in
the definition of E,(0) occurs with probability at least 1 — p/4.

By tightness across scales (Axiom V), we can find A > 1 (depending on «) such that for each
r > 0, condition 4 in the definition of E,(0) occurs with probability at least 1 — p/4. By (B) and
the Definition 3.2 of H,(, €"), there are at least 71; logg e ! values of r € [¢?r, er] N {87}, < such
that condition 5 in the definition of E,(0) occurs with probability at least 1 — p. We note that
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the requirement (3.17) does not show up in (B), but including the requirement (3.17) makes the
condition weaker, so makes the probability of the condition larger.

Taking a union bound over the five conditions in the definition of E,(0) now concludes the
proof. O

With Lemmas 3.13 and 3.14 in hand, we can now apply Lemma 2.1 to obtain the following.

Lemma 3.15. There exist parameters p, € (0,1), 5, € (0,1/100), @« € (1 —6,,1), and A > 1,
depending only on the laws of D), and Dy, such that the following is true. Let €' € (0,6,) and r > 0
and assume that (B) holds for our given choice of « and with p = p,. For each fixed bounded open
set U C C, it holds with probability tending to 1 as € — 0 (at a rate depending only on U) that for
each z € rU, there exists r € [e*r,er] and w € Br/z(z) such that E,(w) occurs.

Proof. By Lemma 2.1, there exists a universal constant p,. € (0, 1) such that the following is true.
Letr >0, lete €(0,1), let K > ilogg ¢!, and let rq,...,rg € [e2r,er] N {87 %}, o be distinct. If

zeCand F e (z) for k =1,...,K is an event which is almost surely determined by h|§ e
Tj/2.2r]

viewed modulo additive constant, and has probability at least 1 — 2p,, then
IP|3k € [1,K]y such that F,, occurs] >1-0,(c'"),

with the implicit constant in the O,(-) universal.

We now choose &, «, A as in Lemma 3.14 with p = p,. For ¢’ € (0,€,) and r > 0, we apply
the above statement to the radii r € [¢?r, er] N {87%}, ) from Lemma 3.14, which are chosen so
that P[E,.(w)] > 1 — 2p, for allw € C. By Lemma 3.14, if (B) holds with p = p,, then there are at
least % logg ¢! such radii. Hence, if (B) holds, then

IP[3r € [e’r, er] such that E,(w) occurs] > 1 — 0,(e'®), Vz e C, (3.22)
with the implicit constant in the O,(-) universal.
The lemma statement now follows by applying (3.22) to each of the O,(¢72) points w €

B.(xrU)N (%Zz), then taking a union bound. O

Henceforth, fix p,., 8y, a, and A as in Lemma 3.15. Also fix
" e (6 + A 6, -, c.), (3.23)
A+1 7 *

and note that we can choose ¢” in a manner depending only on €’ and the laws of D), and D,
(since A depends only on the laws of D), and D),).

We will show that for each 8 > 0, there exists ¢, = (8, €’) > 0 such that if r > 0, € € (0, &],
and (B) holds for the above values of r, ¢, p,., &, then with probability greater than 1 — 3,

Dy,(Bg,(2), Bg,(w)) < 6" Dy(z,w) Vz,w € B,(0). (3.24)

By Definition 3.1, the bound (3.24) implies that P[G.(3,€")°] > 1 — 8, which is what we aim to
show in Proposition 3.12.
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42 DING AND GWYNNE

FIGURE 6 Illustration of the definition of the times s; and ¢; and the balls B,.j (w;)

By Lemma 2.11, there is some large bounded open set U C C (depending only on § and the law
of D;,) such that for each r > 0, it holds with probability at least 1 — /2 that each D;-geodesic
between two points of EY(O) is contained in rU. For ¢ > 0, let ¢ be the event that this is the
case and for each z € rU, there exists r € [e’r,er] and w € B, /2(2) such that E,(w) occurs. By
Lemma 3.15, if (B) holds then

PIFE] > 1- /2 0,(1), (3.25)

where the rate of convergence of the o,(1) depends only on U, hence only on § and the law of D,,.
We henceforth assume that ¢ occurs. We will show that if € is small enough, then (3.24) holds.
Let z,w € B,(0) and let P : [0, D, (z, w)] — C be a D;,-geodesic from z to w. We assume that

£ < %5 and |z —w| > Br. (3.26)

The reason why we can make these assumptions is that ¢, is allowed to depend on § and (3.24)
holds vacuously if |z — w| < fr. We will inductively define a sequence of times

0=t,<s$; <t] <8<t < <85 <t;<Dy(zw).

See Figure 6 for an illustration.

Lett, = 0.Inductively, assume that j € Nand ¢;_, has been defined. By the definition of F;, we
have P(tj_l) € rU and thereexistsr; € [€%r, er] and w; € B,j/Z(P(tj_l)) such that E,j (wj) occurs.
Fix (in some arbitrary manner) a particular choice of r; and w; with these properties.

Let t; be the first time ¢ > ¢;_; for which P(¢) ¢ B,j(wj), or let t; = Dy,(z, w) if no such time
exists. If ¢ i< Dy (z, w), we also let s ; be the last time before ¢ j at which P hits aBa,j (w j), so that
sj € [tj_y,t;]and P([s;, ¢;]) C Aa,j’,j(wj).

Finally, define

1~

:=max{j €N : |z—P(t;_;)| <2er} and

~I

;=min{j € N : |w - P(t;;,)| < 2er}. (3.27)
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 43

The reason for the definitions of J and J is that z, w ¢ B,j(wj) for j € [J,J], (since rj <er

andP(tj) € B,j (w;)). Whenever |w — P(tj_l)l > er,wehavet; < Dy (z,w)and [P(tj_) — P(t))| <
2¢er. Therefore,
P(tl) € By, (z) and P(t7) € By, (w). (3.28)

The most important estimate that we need for the times s; and ¢; is the following lemma.

Lemma 3.16. Foreach j € [J,J],,
Dy,(P(sj),P(t)) <C'(t; —s;) and Dy (P(t;_)),P(s))) < C.(s; —t;_y). (3.29)
The second inequality in (3.29) is immediate from the definition (1.19) of €. We will prove the
first inequality in (3.29) by applying condition 5 in the definition of E,j(w ;) with u = P(s;) and

v = P(t;). The following lemma will be used in conjunction with condition 1 in the definition of
E,j(w j) to check the requirement (3.17) from condition 5.

Lemma 3.17. Foreach j € [[,7]2, we have

ti—s;j<(1- oc)_lrf.Qegh’f(wj) (3.30)
and
A “ 5D, (A A
Dy, (across 50,1.,501/2,](1’(%))) < 26*5 Dh< 3r;/4,3r,/2(2), 0 rj/2,2rj(z))' (3.31)

Proof. See Figure 7 for an illustration. Let s;. be the first time that P enters By, /,(w;) and let t;.
be the last time that P exits By, s2(w;). Then s;. <s;<t;< t;.. The definitions (3.27) of J and J
show that the endpoints z, w of P are not in BZ,j(w ), S0 P must cross between the inner and
outer boundaries of the annulus ZA3,J_ /2.2 (w;) before time sj. and after time ¢’. By considering

the segment of P between two consecutive times when it hits a path around ./A3rj /2’2,7_(w ;) of
near-minimal length and using the fact that P is a D) -geodesic, we see that '

ti—s; <Dy <around ORs; /20, (z)). (3.32)

By (3.32), followed by condition 2 in the definition of E,j(w j), we obtain

- §hy (w))
tj—s;<t;—s; <Dy (around a/A3,j/2’2,j(z)> <1-a) 1r§Qe P
which is (3.30).
The path P must cross between the inner and outer boundaries of the annulus
A . 501/2r_(P(t 1)) between times t;. and s;.. By (3.32) followed by condition 2 in the definition
i

. J
of E, (w)),
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44 DING AND GWYNNE

FIGURE 7 Illustration of the proof of Lemma 3.17. We upper-bound ¢ =S and Dy (across A ERIERT (P(t j)))
in terms of t;. — s, upper-bound t;. — ¢/ in terms of the Dj,-length of the orange loop, and upper-bound the
Dy,-length of the orange loop using condition 2 in the definition of E, (w;). Note that the picture is not to scale.
For example, in actuality the inner radius of A 8or 8011, (P(t;)) is much smaller than its outer radius.

/ !
Dh<across Aéorj,%mrj (P(tj))> <t =8

<Dy, (around 6/A3rj /2,21 (z))

c*
<
26,

67D, (A3rj/4,3rj/2(z)’ OA /20r; (Z)>-
This gives (3.31). O

Proof of Lemma 3.16. The second inequality in (3.29) is immediate from the definition (1.19) of €.,.
To get the first inequality, we want to apply condition 5 in the definition of Erj(w ;) to the points
u=P(s j) € 6ij(w j) and v = P(t j) IS 6Brj(w j). To do this, we need to check the hypotheses of
condition 5 in the definition of Erj (w j).

To this end, let o; be the last time before s; at which P enters [Arj /Z’Z,j(w ;) and let 7; be the
first time after ¢; at which P exits ZA,j /Z,Z,j(w ;)- Then Pl[aj’rj] is a Dy (-, -;K,j /Z’Z,j(w j))-geodesic
between two points of BArj J2.2r; (wj)ando; <s; <t; <7;.Bythedefinitions of s; and ¢;, we have
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Pl[sj,tj] C Kocrj,rj(wj)' (3.33)

By (3.33) and condition 3 in the definition of E,)_ (w)),

(Buclidean diameter of P([s;, ;1)) < 8or; < 00" (3.34)

By condition 1 in the definition of Erj (w;),

D (around Ay, 12, (P(t))) < 8D (across Ay, sy (P ),
V& € (0,6,]; (3.35)
and the same is true with P(s;) in place of P(¢;). By definition, |P(¢;) — P(s;)| > (1 — a)r; so for

each & € (0,(1 — a)?], the path Pl[sj,tj] crosses between the inner and outer boundaries of the
annuli /A5rj’51 ar, (P(s ;) and /Aarj,al 1y, (P(t j)). Since 1 — a < &, (3.35) implies that

Dh<around Aarj’al/zrj(P(tj))> <8(t; — 57) = 62Dy (P(s)), P(t,)),
V8 € (0,(1 —a)?]; (3.36)

and the same is true with P(s j) in place of P(¢ j) on the left side.
By (3.36), for each ¢ > 0 and each & € (0, (1 — «)?] we can find a path 75 in Aarj s1/2, (P(£))
’ J
which disconnects the inner and outer boundaries and has Dj,-length at most (6° + ¢)(t 8 If
we let as (respectively, bs) be the first (respectively, last) time that P hits 775, then a; < t; < bs and
since P is a Dj,-geodesic we must have bs — a5 < len(rrs; Dj,). Furthermore, the segment P| [£;.b5]

hits 8B, (P(t,)), so for each & € (0,(1 — @)?],
Dy (P(t)), 085, (P(:)))) < bs —1; < b — a5 < len(ms; D) < (80 + O)t; —s).  (3.37)
Sending ¢ — 0 and recalling that P is a Dj,-geodesic gives
Dy, (P(t)),8B5,(P(t))) < 8°D,(P(s)). P(t))), V8 € (0,(1 —a)*]. (3.38)

We similarly obtain (3.38) with the roles of P(s;) and P(¢;) interchanged.
Finally, by Lemma 3.17 and (3.35) (with § = §,),

c*
Dh<around T ST G j))) < KD’*(A”J Jazr, 122, 0A, /Z,Z,J,(z)). (3.39)

We are now ready to explain why we can apply condition 5 with u = P(s;) and v = P(t;). The
hypothesis (5i) follows from (3.33). The condition (3.17) and the hypothesis (5ii) for the Euclidean
diameter of Pl[sj,tj] follow from (3.34). The needed upper bound (5iii) for D, (P(s j), P(t j)) follows
from (3.30) The hypothesis (5iv) follows from (3.36) and (3.38). The hypothesis (3.18) follows
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from (3.39). Hence, we can apply condition 5 in the definition of E,j(wj) to P|[Sj’[j] to get
Dy,(P(s), P(t;)) < €'(t; —s;), as required. O

The last lemma we need for the proof of Proposition 3.12 tells us that the time intervals [s;, ¢;]
occupy a positive fraction of the total Dj,-length of the path P.

Lemma 3.18. Foreach j € [J, J 12

it < Aiﬂ(tj —t;_y). (3.40)
Proof. By the definition of r; and the definitions of J and J in (3.27), for j € [J, 7]Z we have
rj < erand |P(tj) —z| A |P(tj) — w| > 2er. Since P(tj_l) IS Brj/z(wj) and P(sj) € aij(wj), we
infer that the D;,-geodesic P must cross between the inner and outer boundaries of the annulus
/Amm (w;) at least once before time ¢;_; and at least once after time s;. By condition 4 in the def-
inition of Erj (w)), there is a path in Aa,j’rj(w ;) disconnecting the inner and outer boundaries of
this annulus with Dj,-length arbitrarily close to ADh(dij(w j), 5B,j(w j)). The geodesic P must
hit this path at least once before time ¢;_; and at least once after time s;. Since P is a Dj,-geodesic
and P(sj) € 5ij(wj), P(tj) € 6Brj(wj), it follows that

;= tj-1 < ADy (9B (w)), 3B, (w))) < A(t; —5)).

Adding A(s; — t;_) to both sides of this inequality, then dividing by A + 1, gives (3.40). 1

Proof of Proposition 3.12. Our above estimates show that if the event F¢ of (3.25) occurs, then we
have the following string of inequalities:

Bh(B4gn~(Z)’ B45r(w))

Dy (P(t;_1), P(s))) + Dy, (P(sp), P(t)))] (by(3.28))

7
)
=J+
7
< Z [€.(s; — ;1) +C'(t; —s;)] (by Lemma 3.16)
=J+
7
D16 =)+ (C =6 — 1)
=£+

7
A
<6+ ——(€¢,-C") (t;—t;_,) (byLemma 3.18)
( A+1 >j=21;r1 I
< ((SI’ + i((S. — G’))D (z,w) (since P is a D,-geodesic)
A+l ¥ N h
< C€"Dy(z,w) (by3.23)). (3.41)
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 47

FIGURE 8 Illustration of the objects defined in Subsection 4.1. The bump function f,, is supported on V,,
and identically equal to M on U, .. The figure shows a D,_ -geodesic P’ (blue) and a (B,,(2),V,,,)-excursion
(t',7,0,0") for P’. On the event E, ., there are many ‘good’ pairs of points u,v € U, such that

Dy,(u,v) < /Dy (u,v) and there is a D, -geodesic from u to v which is contained in U, (several such geodesics are
shown in red). We obtain hypothesis C for E,, by forcing P’ to get close to u and v for one such ‘good’ pair of
points.

By (3.25), we have P[F¢] > 1 — /2 — 0.(1), with the rate of convergence of the o.(1) uniform in
the choice of r. Hence, we can choose ¢, = £,(8, €’) > 0 small enough so that4¢, < fand P[F ‘1>
1 — B for each ¢ € (0, ¢,]. By (3.41) and Definition 3.1 of G,(8, €""), we see that for ¢ € (0, ¢,], the
condition (B) implies that P[G,(8,C")] < 8, as required. O

4 | THE CORE ARGUMENT
4.1 | Properties of events and bump functions

In this section, we will assume the existence of events and smooth bump functions which sat-
isfy certain conditions. We will then use these objects to prove Theorem 1.13. The objects will be
constructed in Section 5 and are illustrated in Figure 8.

To state the conditions which our events and bump functions need to satisfy, we define the
optimal upper and lower bi-Lipschitz constants €, and ¢, as in Section 3 and we set

. +C
d = T* 4.

which belongs to (¢c,,C,)if ¢, < €.
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48 | DING AND GWYNNE

We will consider a set of admissible radii R C (0, 1) which is required to satisfy
r'/r>8, Vr,r’eR suchthat ' >r. (4.2)

The reason for restricting attention to a set of radii as in (4.2) is that in Section 5, we will need to
use Proposition 3.10 in order to construct our events.

We also fix a number p € (0, 1), which we will choose later in a manner depending only on D),
and Dy, (the parameter p is chosen in Lemma 4.18).

Finally, we fix numbers M, a, A, K, b, c,L > 0, which we require to satisfy the relations

A>a and a—4de ML > %b. (4.3)

We henceforth refer to these numbers as the parameters. Most constants in our proofs will be
allowed to depend on the parameters. The parameters will be chosen in Section 5, in a manner
depending only on p and the laws of D,, and D, (see also Proposition 4.2).

Throughout this section, we will assume that for each r € R and each z € C, we have defined
the following objects.

(2 viewed modulo
additive constant (recall (2.2)), P[E, ] > p, and E,, satisfies the three hypotheses listed just
below.

* Deterministic open sets U,,,V,, C A, ;.(z), each of which has the topology of an open
Euclidean annulus and disconnects the inner and outer boundaries of A, ;.(z), such that
U, CV,,andV,, C A, ;.(2).

* A deterministic smooth function f,, : € — [0,M] such that f,, =M on U,, and f,, =0 on
C\ Vg,

* AneventE,, = E_,(h)such that E_, is almost surely determined by h|

To state the needed hypotheses for the event E, ., we make the following definition.

Definition 4.1. Let P : [0,T] — Cbeapathandlet O,V c C beopen setswithV c 0.A (0, V)-
excursion of P is a 4-tuple of times (7/, 7, g, o’) such that

P("),P(c’) e 30, P((r',d")) co,
7 is the first time after 7/ that P enters V, and o is the last time before o’ at which P exits V.

An (O, V) excursion is illustrated in Figure 8. We assume that on the event E,, ., the following
is true.

(A) We have
Dh(VZ,rs aAr,_gr(Z)) > arngghr(Z),
Dy (around Aj, 4,.(2)) < AréQefm @) - and

Dp(around U, ) < LréQeéh(2).
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(B) The Radon-Nikodym derivative of the law of h + f, . with respect to the law of h, with both
distributions viewed modulo additive constant, is bounded above by K and below by 1/K.

(C) LetP’' : [0,T] » CbeaD,_ ,-geodesic between two points which are not in B,,.(z), param-
eterized by its Dj,_ ) _-length. Assume that (in the terminology of Definition 4.1), there is a
(B4 (2),V,,)- excursion (7, 7,0, 0") for P’ such that

Dy, (P'(z),P'(0); By (2)) = bréQesh @), (4.4)
Then there are times 7 < s < t < o such that

t—s>crfQ@ and Dj,_¢ (P'(s),P'(1);By(2)) < ¢t — ). (4.5)

Constructing objects which satisfy the above conditions (especially hypothesis C) will require
a lot of work. The proof of the following proposition will occupy all of Section 5.

Proposition 4.2. Assumethatc, < €. Foreachp € (0, 1), thereexist ¢’ € (c,, ¢') and a set of radii
R as in (4.2), depending only on p and the laws of D), and D,,, with the following properties.

* There s a choice of parameters depending only on p and the laws of D;, and Dy, such that for each
r € R and each z € C, there exist an event E, ., open sets U, .,V ., and a function f, . satisfying
the above hypotheses.

» For each E > 0, there exists g, > 0, depending only on p, E and the laws of D;, and ﬁh, such
that the following holds for each ¢ € (0,¢,]. If r > 0 and that the event of Definition 3.8 satisfies
P[G.(B,¢")] > B, then the cardinality of R N [¢2r, er] is at least g logg e~ L.

The proof of Proposition 4.2 in Section 5 will be via an intricate explicit construction. To give the
reader some intuition, we will now explain roughly what is involved in this construction, without
any quantitative estimates. The reader may want to look at Figure 8 while reading the explanation.

The set U, , where f,, attains its maximal possible value will be a long narrow ‘tube’ which
disconnects the inner and outer boundaries of A, 3.(z) and is contained in a small Euclidean
neighborhood of 8B,,(z). The set V,, where f,, is supported will be a slightly larger tube con-
taining U, . The event E, . corresponds, roughly speaking, to the event that there are many ‘good’
pairs of non-singular points u, v € U, , with the following properties (plus a long list of regularity
conditions).

« D,(u,v) < ¢oDp(u, v), where ¢ € (c,, ¢’) is fixed.
* |u — v| is bounded below by a constant times r.
* There is a Dj,-geodesic from u to v which is contained in U,

Hypotheses A and B for E, , will be immediate consequences of the regularity conditions in the
definition of E, ,. Hypothesis C will be obtained as follows. Suppose that P" is a D), f ,-geodesic
as in hypothesis C. Since the bump function f, , is very large on U, ,, we infer that if x y € VZ r
then the D;,_¢ -length of any path between x and y which spends a lot of time outside of U, , i
much greater ‘than the D,_ ) ,-length of a path between x and y which spends most of its time in

U, By applying this with x = P'() and y = P'(0), we find that P’ |jz,+] has to spend most of its
timein U, ,

This will allow us to find a ‘good’ pair of points u,v € U, as above such that P’ ljr,] gets very

Dh_f”-close to each of u and v. Since the D), -geodesic between u and v is contained in U, , and f, ,
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50 | DING AND GWYNNE

attains its maximal possible value on U, ., subtracting f, . from h reduces D,(u,v) by at least as
much as Dj,(u, v). Consequently, one has ﬁh_fzr(u, V) c(’)Dh_f“(u, v). We will then obtain (4.5)
by choosing s and ¢ such that P’(s) and P'(t) are close to u and v, respectively, and applying the
triangle inequality.

To produce lots of ‘good’ pairs of points u,v € U, ., we will apply Proposition 3.10 together
with a local independence argument based on Lemma 2.3 (to upgrade from a single pair of points
with positive probability to many pairs of points with high probability). This application of Propo-
sition 3.10 is the reason why we need to assume that P[@r(ﬁ, N = E in the second part of
Proposition 4.2; and why we need to restrict to a set of admissible radii R, instead of defining
our events for every r > 0.

4.2 | Estimate for ratios of D, and D,, distances

We now state the main estimate which we will prove using the events E, .. In particular, we will
show that the probability of a certain ‘bad’ event, which we now define, is small. For r > 0, € > 0,
and disjoint compact sets K;, K, C B,,(0), let ¢ = G¢(K;,K;) be the event that the following is
true.

(1) DKy, K,) > 6, Dy(K, K,) — 5eX(@piQetha0),
(2) For each z € B;,(0) and each r € [¢?r,er] N R, we have

#EQpth:(2) ¢ [52§(Q+3)T§Qe§hr(0)’ E§(Q—3)E§Qe§h]r(0)].

(3) For each z € B,,(0), there exists r € R N [e’r,er] and w € (ﬁZZ) N B, /»s5(2) such that E,, .
occurs.

The most important condition in the definition of Q; is condition 1. We want to show that if ¢, <
€., then this condition is extremely unlikely. The motivation for this is that it will eventually be
used in Subsection 4.5 to derive a contradiction to Proposition 3.5. Indeed, Proposition 3.5 gives
a lower bound for the probability that there exist points u, v € B,(0) satisfying certain conditions
such that 5h(u, v) is ‘close’ to €, Dy, (u,v). We will show that this lower bound is incompatible
with our upper bound for the probability of condition 1 in the definition of G¢.

Conditions 2 and 3 in the definition of ¢ are global regularity conditions. We will show in
Lemma 4.18 that Proposition 4.2 implies that these two conditions occur with high probability.
This, in turn, means that an upper bound for IP[¢f | implies an upper bound for the probability of
condition 1. The next three subsections are devoted to the proof of the following proposition.

Proposition 4.3. Assume that ¢, < €, and we have constructed a set of admissible radii R as
in(4.2) and eventsE, ,, sets U, , and V., and bump functionsf, . forz € C andr € R which satisfy
the conditions of Subsection 4.1. Let ) € (0,1) and r > 0. Also let K, K, C B,,.(0) be disjoint compact
sets such that dist(K,, K,) > nr and dist(K,, 0B, (0)) > nr, where dist denotes Euclidean distance.”

 The reason why we require that dist(K; , dB,(0)) > 7rin Proposition 4.3 is as follows. Our events involve the circle average
h,(0). We only want to add to or subtract from & functions of the form f,, whose supports are disjoint from 0B,.(0), so
that adding or subtracting f,, does not change h,.(0). The condition that dist(K;,0B,.(0)) > nr ensures that there is a
segment of the Dj,-geodesic from K to K, of Euclidean length at least nr which is disjoint from dB,.(0). We will eventually
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Then
P[G (K1, K,)| =0 ("), VYu>0 (4.6)
with the implicit constant in the O,(-) depending only on u, 7, and the parameters (notonr,K;,K,).

It is crucial for our purposes that the implicit constant in the O,(:) in (4.6) does not depend on
r, K, K,. This is because we will eventually take K, and K, to be Euclidean balls whose radii are a
power of ¢ times r (see Lemma 4.19). Proposition 4.2 is not needed for the proof of Proposition 4.3.
Rather, all we need is the statement thatE, ,,U, ,,V, ., and f, , exist and satisfy the required prop-
erties for each r € R (we do not care how large R is). Proposition 4.2 is just needed to check that
the auxiliary condition 3 in the definition G¢ occurs with high probability.

We will now explain how to prove Proposition 4.3 conditional on two propositions (Propo-
sitions 4.5 and 4.6) whose proofs will occupy most of this section. The proof will be based on
counting the number of events of a certain type which occur. Let us now define these events.

Assume that ¢, < €,. Also fix r > 0 and disjoint compact sets K;,K, C B, (0). For r € R
(which we will eventually take to be much smaller than r), let Z, = Z7(K},K,) be the set of
non-empty subsets Z C 7> such that*

By (z2)NB,(z)=@ and B,.(z)n(K; UK, UdB.(0)) =4,

V distinct z,z' € Z. 4.7)

Foraset Z € Z,, we define

fZ,r = Z fz,r'

zeZ

By Lemma 2.7, almost surely there is a unique Dj,-geodesic from K; to K,. Since the laws of
h and h — f , are mutually absolutely continuous [34, Proposition 3.4], for each r € R and each
Z € Z,, almost surely there is a unique D;,_¢ -geodesic from K, to K,. Hence, the following

(h;K{,K,) to be the event

definition makes sense. For Z € Z, and q > 0 we define F1" = F~

I
that the following is true.
(D) Dy(Ky,Ky) > €,Dy(Ky,Kyp) — qréQesh=(0),
(2) The eventE, ,.(h) occurs for each z € Z.
(3) We have
rEQeth (@) [qmsoeéhrm), zqrsoegmo)], Vz ez

(4) For each z € Z, the D)-geodesic from K to K, hits B,(z).

choose to subtract functions f, , whose supports are close to such a segment, see the proof of Proposition 4.5 at the end of
Subsection 4.3.

#The reason why we require that B,,(z) N 8B,.(0) = @ in (4.7) is to ensure that adding or subtracting the function f,, for
z € Z (which is supported on B,,.(z)) does not change the circle average h,.(0) (cf. Footnote ). This fact is used in the proof
of Lemma 4.15.
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52 DING AND GWYNNE

FIGURE 9 Illustration of the definition of Fg],r Here, we have shown K, as a non-singleton set and K, as a
point, but K; and K, can be any disjoint compact sets. The set Z consists of the four center points of the annuli in
the figure. For each of these points, we have shown the set V,, (that is, the support of f, ) in light blue and the
annulus A, ,,(2) in gray. On F,, the D,,-geodesic from K, to K, (blue) hits each of the balls B,(z) for z € Z.
Moreover, the D, _¢, -geodesic from K, to K, (red) has a ‘large’ (B,,(2), V, ,)-excursion for each z € Z.

(5) For each z € Z, the Dj_, -geodesic P, from K, to K, has a (By.(2),V,,)-excursion
(},7,,0,,0%) such that

D, (P4(t,),P,(5,); B, (2)) > bréQeth®,

See Figure 9 for an illustration of the definition. Condition 1 for Fg]; is closely related to the main
condition 1 in the definition of G¢. The purpose of conditions 2 and 4 is to allow us to apply our
hypotheses for E, , to study D,-distances on the event Fgr; Condition 3 provides up-to-constants
comparisons of the ‘LQG sizes’ of different balls B,(z) for z € Z. Finally, condition 5 will enable
us to apply hypothesis C for E, , to each z € Z.

Proposition 4.3 will turn out to be a straightforward consequence of three estimates for the
events F' gf , which we now state. Our first estimate follows from a standard formula for the Radon-

Nikodym derivative between the laws of h and h + f ..

Lemma 4.4. Forr€R, Z€ Z,, and ¢ > 0, let Fg’f(h +f,,) be the event Fg’r;(h) defined with
h + f; . in place of h. Foreach Z C Z,,

K*P[FEi ()| < P[FEI(h+ 1,0 <K¥ZP|FEim)|. (4.8)
Proof. By Weyl scaling (Axiom III) and the fact that E, ,(h) is almost surely determined by h,
viewed modulo additive constant, we get that the event Fg’r;(h) is almost surely determined by
h, viewed modulo additive constant. By a standard calculation for the GFF (see, for example, the

proof of [34, Proposition 3.4]), the Radon-Nikodym derivative of the law of h + f, . with respect
to the law of h, with both distributions viewed modulo additive constant, is equal to

1
exp((h, frv — E(fz,r’ fZ,r)V>!
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where (f, g)y = fc Vf(z) - Vg(z) d*z denotes the Dirichlet inner product. Recall that each fr
for z € Z is supported on the annulus A, 4.(z). Since Z € Z,, the definition (4.7) shows that the
balls B,,(z) for z € Z are disjoint. Hence, the random variables (h,f, )y are independent, so the
above Radon-Nikodym derivative factors as the product

[T exp((hte )y = 3ty ) (49)

zeZ

By condition 2 in the definition of Fg’];(h), on this event E, . (h) occurs for each z € Z. Conse-

quently, hypothesis B for E, ,.(h) shows that on Fl '+ (h), each of the factors in the product (4.9) is
bounded above by K and below by K=!. This imphes (4.8). O

Our next estimate tells us that on Qi , there are many choices of Z for which Fg’i(h) occurs.

Proposition 4.5. There exists ¢c; > 0, depending only on the parameters and 7, such that for each
k € N, there exists €, > 0, depending only on k, the parameters, and 1, such that the following is
true foreachr > 0 and each ¢ € (0, ¢, ). Assume that dist(K;, K,) > nr and dist(K;,dB_(0)) > nr. If
G (K1, K,) occurs, then there exists a random r € [e*r,er] and a random q € [%525(0”), Q3] n

{2713, such that
#{Z €Z,:#Z <kand Fg";(h) occurs} > gk, (4.10)

Proposition 4.5 will be proven in Subsection 4.3. Our final estimate gives an unconditional
upper bound for the number of Z for which F, 7 Ir(h + f;,) occurs.

Proposition 4.6. There is a constant C, > 0, depending only on the parameters, such that the
following is true. For each v € R, each q > 0, and each k € N, almost surely

#{Z €2, #Z<kand FY(h+1,) occurs} <ck, (4.11)

We will give the proof of Proposition 4.6 in Subsection 4.4. The proofs of Propositions 4.5
and 4.6 are both via elementary deterministic arguments based on the hypotheses for E, , and
the definition of Fq " . See the beginnings of Subsections 4.3 and 4.4 for overviews of the proofs

Let us now explaln how to deduce Proposition 4.3 from the above three estimates.

Proof of Proposition 4.3. Throughout the proof, all implicit constants are required to depend
only on ¢ and the parameters. Fix r > 0 and disjoint compact sets K;,K, C B,,(0) such that
dist(K;, K,) > nr and dist(K;, 0B,.(0)) > nr. For € > 0, let

R, :=RN[e’r,er] and Q, := [%szE(Q+3),E§(Q_3)] N2 }ex

€

The cardinality of R, X Q, is at most a £-dependent constant times (loge~1)?. By interchanging
the order of summation and expectation, then applying Proposition 4.6 and Lemma 4.4, we get
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that for each k € N,

Lpa(nety,)

(loge™)? > 2 Z Z E -
ER. je0. Fer. | HZ € Z, 1 #Z' <Kk, Fq, (h+f,) occurs}
#7<k

> Cyk z Z Z [Fq “(h+f, r)] (Proposition 4.6)
reR. qeQ; ZeZ,
#z<k

> ckkk Z Z z [Fq Ir(h)] (Lemma 4.4)

reR, qeqQ, Zez,
#Z<k

= Cz_kK_kIElz Z #{Z €Z,: #Z Lk, Fql(h) occurs}] (4.12)

reR; geQ,

By Proposition 4.5, for each small enough ¢ > 0 (how small depends on k) on the event Gt (K}, K;)
the double sum inside the expectation in the last line of (4.12) is at least ¢~k Hence, for each
small enough ¢ > 0 (depending on k),

(loge™")? > C;F K * ek P [¢F (K, K,). (4.13)

Re-arranging this inequality and choosing k to be slightly larger than u/c; yields (4.6). [l

4.3 | Proof of Proposition 4.5

Fix r > 0 and compact sets K;, K, C B,(0) such that dist(K;, K,) > nr and dist(K,,0B,(0)) > nr
It is straightforward to show from the definition of er that if g; occurs, then there are many 3-
tuples (Z,r,q) with r € R 0 [er, 1], q € [¢2Q+3) /2,656Q=3I] n {271}, and Z € Z, for which
all of the conditions in the definition of Fq occur except possibly condition 5, that is, the event
of the following definition occurs.

Definition4.7. Forr € R,Z € Z,,and q > 0, we define fg’i(h) = Fg’j(h; K,,K,) to be the event
that all of the conditions in the definition of Fg’f(h) occur except possibly condition 5, that is,

f;’]i(h) is the event that the following is true.

(1) Dy(K;,Ky) > 6.Dy(Ky, K;) — qreQesh=©).
(2) The eventE,, occurs for each z € Z.
(3) We have
1EQpéh(2) ¢ [qrgoesmo),2q]r§oe§hr<o>]’ Vz e Z.

(4) Foreach z € Z, the D) -geodesic from K to K, hits B,(z).
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS | 55

Recall that condition 5 asserts that for each z € Z, the D, _¢, -geodesic P, from K, to K, has a
(B,(2),V,,)-excursion (t/,7,,0,,0") such that D;(P,(z,), P;(0,); B4,(2)) > bréQe™(?. The dif-
ficulty with checking condition 5is that the D;,_¢ _-geodesic from K to K, could potentially spend
a very small amount of time in V,, for some of the points z € Z, or p0551bly even avoid some of
the sets V. altogether. To deal w1th this, we will show thatif Z € Z, and FZ,r occurs, then there
isa subset Z' C Z such that #Z’ is at least a constant times #Z and Fg’,rr occurs (Lemma 4.13).

The idea for constructing Z’ is as follows. In Lemma 4.8 we show that Dy, (K, K,) is smaller
than D, (K, K,) minus a constant times qréQes=©#Z. Intuitively, subtracting f; , substantially
reduces the distance from K; to K,. Since f;, is supported on | J,., V, ., this implies that the
Dy,_¢, -geodesic P, from K, to K, has to spend at least a constant times qréQesh=(0#7 units of
time in U.ez V2, (otherwise, its length would have to be larger than D;,_¢, (K;,K;)). We then
iteratively remove the ‘bad’ points z € Z for which there does not exist a (B4r(z) V., )-excursion
(tl,1,,0,,0) for P, such that

Dh.(PZ(Tz)s PZ(UZ)) > brngghr(z).

For each of the above ‘bad’ points z € Z, the intersection of P, with V, , is in some sense small.
Since the function f, , is supported on V, ., removing the ‘bad” points from Z does not increase
Dh_fZ’V(Kl, K,) by very much. Consequently, at each stage of the iterative procedure it will still be
the case that Dy, (K;,K,) is substantially smaller than D;(K;,K,). As above, this implies that
P, spends a substantial amount of time in | J,., V, ,. We show in Lemma 4.12 that the amount of
time that P, spends in each V,, is at most a constant times qréQe¢"=(?). This allows us to show
that the iterative procedure has to terminate before we have removed too many points from Z.

To begin the proof, we establish an upper bound for Dy, ¢, (K;,K,) in terms of Dy, (K;, K,) on
the event ?g’f;(h). The reason why this bound holds is that the D, -geodesic from K to K, has to
cross the regions U, , for z € Z. Since f,, is very large on U, , and by hypothesis A for E, ., the
Dy,_;, -distances around the regions U, ,. for z € Z is small. ThlS allows us to find #Z ‘shortcuts’
along the Dy-geodesic with small D, ¢, -length.

Lemma 4.8. There is a constant C; > 2Ab/a, depending only on the parameters, such that the
following is true. Letr € R, Z C Z,, and q > 0 and assume that fg’nr(h) occurs. Then

D¢, (K1.K,) < Dy(Ky.Ky) — CaqriQes=O4z. (4.14)

Proof. See Figure 10 for an illustration. By condition 2 in the definition of F?;(h), the eventE, ,.(h)

occurs for each z € Z. So, by hypothesis A for E, , and condition 3 in the definition of 1??;(}1), we
can find for each z € Z a path 7, in U, , which disconnects the inner and outer boundaries of U, ,.
such that

len(7,; D) < 2Dy, (around U, ) < 4Lqu¢Qesh=(), (4.15)

By condition 4 in the definition of fg’;(h), the D;-geodesic P from K; to K, hits B,(z) for each
z € Z. Furthermore, B,,(z) N (K; UK,) = @ for each z € Z (recall (4.7)) and 7, disconnects the
inner and outer boundaries of A, 4,.(z) for each z € Z. It follows that for each z € Z, we can find
times s, < t, such that P(s,), P(t,) € m,, the path P|[,, 1,1 hits B,(z),and P((s,, t,;)) lies in the open
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56 DING AND GWYNNE

FIGURE 10 Illustration of the proof of Lemma 4.8. Since f,, is very large on U, ., the D;,_¢ -length of the
purple path 7, is very short. By replacing the segment P|, , ; by a segment of 7, for each z € Z, we obtain a new
path from K, to K, whose D;,_ -length is substantially smaller than D;,(K;, K,).

zZr?

region which is disconnected from oo by 7,. Since the balls B,,.(z) for z € Z are disjoint (again
by (4.7)), the time intervals [s,, t,] for z € Z are disjoint.
The path P must cross from V,, . to 0B,(z) between times s, and t,, so by hypothesis A for E, ,

and condition 3 in the definition of Fg’i(h),
t,—s, > D,(V,,,0B,(2)) > agr¢ Q=) (4.16)

Let P/ be the path obtained from P by excising each segment P| [s,.i,] and replacing it by a segment
of r, with the same endpoints. Since f , is non-negative, Weyl scaling (Axiom III) shows that

len<P’\ U ﬂZ;Dh_er> < 1en<P’\ U 77.'Z;Dh>

zeZ zeZ

= len(P; Dy,) — Z(tz - Sz)
z€Z

< DKy, K,) — aqreQes= Oz (by 4.16)). (4.17)

Furthermore, since f, , is identically equal to M on each of the sets U, ,. for z € Z (which contains
7,) we get from (4.15) that

len<7rZ;Dh_fZ ’_) < 4~ MLgréQeth: (@), (4.18)
Combining (4.17) and (4.18) shows that
Dyg, (K1, Ky) < len<P’;Dh_er) < DKy, K,) — <a - 4e—5ML)qn~erfhr(0)#Z.

This gives (4.14) with C; = a — 4e~SML. We note that C; > 2Ab/a due to (4.3). O
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FIGURE 11 [Illustration of the proof of Lemma 4.9. The set Z consists of the four center points of the annuli
in the figure. For each z € Z, we have indicated each of the points P,(z’), P,(t), P,(o), P,(c") for the
(B,,(2),V,,)-excursions (7/,7,0,0") € T, ,(P,) with a black dot. The proof proceeds by replacing each of the
segments P||. ;) by a Dj,-geodesic with the same endpoints (shown in blue).

‘We next establish an inequality in the opposite direction from the one in Lemma 4.8, that is, an
upper bound for D;,(K;,K,) in terms of D, ¢ (K, K,). This latter estimate holds unconditionally
(that is, we do not need to truncate on any event).

Lemma 4.9. Letr € R and Z € Z,. Let Py be the D),_¢, -geodesic from K, to K,. For z € Z, let
T, (Py) be the set of (By,(2), V, ,)-excursions of P, (Definition 4.1). Then

Dy(Ky, Ky) < Dy, (K1, Kp) + ) D D, (P,(7), P7(0)). (4.19)

2€Z (',1,0,0")€T, ,(Pz)

Proof. See Figure 11 for an illustration. By the definition (4.7) of Z,, we have B,,.(z) N (K; UK,) = @
for each z € Z. From this and Definition 4.1, we see that for each z € Z, the set P;(Vz,,) is
contained in the union of the excursion intervals [z, o] for (7', 7,0,0") € U, 7, ,(P,). Further-
more, since the balls B,.(z) for z € Z are disjoint, it follows that the excursion intervals [z, o]
for (7/,7,0,0") € U, T,,(P7) are disjoint. Since Py is continuous, there are only finitely many
such intervals.

Let P/, be the path from K; to K, obtained from P, by replacing each of the segments P, .|
for (7/,7,0,0") € U,e, 7,,(P2) by a Dj-geodesic from P,(7) to P,(o). The function f, is sup-
ported on J,., V,, and the path P, does not hit [ J,., V,, except during the above excursion
intervals [0, 7]. Hence, the Dj,-length of each of the segments of P, which are not replaced when
we construct P’, is the same as its Dj,_¢, -length. From this, we see that the D,-length of P/, is at
most len(Py; Dj,_, ) plus the sum of the D), -lengths of the replacement segments. In other words,
len(P),; D)) is at most the right side of (4.19). O

If we assume that (1),., E,, occurs, then we can replace the second sum on the right side
of (4.19) by a maximum.

Lemma 4.10. Letr € R and Z € Z,. Assume that (), E,, occurs and let P, be the Dj,_, -
geodesic from K, to K,. For z € Z, let T, ,(P) be as in Lemma 4.9. Then

A
Dy(Ky,K3) < Dy, (K1, K5) + 3 Z
zeZ

max D,(P,(t),P,(0)). 4.20
(v 71,0,0)ET, . (Pz) n(Pz(1), P2(0)) ( )
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58 | DING AND GWYNNE

For the proof of Lemma 4.10, we will need an upper bound for the amount of time that P,
can spend in V. This upper bound is a straightforward consequence of the upper bound for
Dy(around A;, 4,.(2)) from hypothesis A for E_,..

Lemma 4.11. Letr € R, let Z C Z,, and assume that (., E,, occurs. Let P, be the Dy_s, -
geodesic from K to K,. For z € Z such that P, NV, # @, let S, (respectively, T,) be the first time
that P, enters Vz’r (respectively, the last time that P exits V, ,.). Then

T, —S, < ArtQetm(@), (4.21)

Proof. By hypothesis A for E, ,, for each { > 0 there is a path 7, in A;, 4,(z) which disconnects
the inner and outer boundaries of A, ,,(z) such that

len(7,; D)) < (A + $)réQehr (@), (4.22)

Since f; , is non-negative, the D;,_¢_-length of 7 is at most its Dj,-length.

Since B, (z) N (K; UK,) =@ (recall (4.7)), the path P, must hit 7z, before time S, and again after
time T,. Since P, is a Dj,_¢, -geodesic, the D, ¢ _-length of the segment of P, between any two
times when it hits 7, is at most the Dy,_¢, —length of 7, (otherwise, concatenating two segments
of P, with a segment of 7, would produce a path with the same endpoints as P, which is D, fr,"
shorter than P,). Therefore, (4.22) gives

T,—S, < len(nZ;Dh_er> <len(m,; D) < (A + Qe (@), (4.23)

zZ
Sending { — 0 now concludes the proof. 1

Proof of Lemma 4.10. In light of Lemma 4.9, it suffices to show that for each z € Z, the number
of (By,(2), V,,,)-excursions satisfies

#7,,(Pz) < (4.24)

<A
a
To obtain (4.24), we first note that for each (/,7,0,0") € 7, ,(P,), the path P, crosses between
0B3,(z) and V, . during each of the time intervals [/, 7] and [o, o’]. Since f, , vanishes in B;,(z) \
V.., and by hypothesis A for E ,,

min{t — 7,0’ — 0} > Dy_¢, (8B;,(2),Vy,) > Dy(8B3,(2), V) > ar* et (). (4.25)

Let S, and T, be the first time that P, enters V,, and the last time that P, exits V,,, as in
Lemma 4.11. If (z{, 79, 09, 07) € T, ,(P7) and (7}, 71,01,0]) € T, ,(P) are the first and last excur-
sions in chronological order, then S, = 7, and T, = ;. Hence, for each excursion (7/,7,0,0") €
T, ,(Pz) which is not the first (respectively, last) excursion in chronological order, the time interval
[7/, 7] (respectively, [0, ¢’]) is contained in [S,, T,]. Furthermore, these time intervals for different
excursions are disjoint. By summing the estimate (4.25) over all elements of 7, .(P,), we get that
it #7,,(P;) > 2, then

T, —S, > ar*Qes@uT, (P)). (4.26)
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Combining (4.26) and (4.21) gives (4.24) in the case when #T,,.(P;) > 2. If #7,,(P,) <1,
then (4.24) holds vacuously since A/a > 1. O

For the proof of Proposition 4.5, we will need a slightly different upper bound for the amount
of time that the D, _¢ -geodesic can spend in V, , as compared to the one in Lemma 4.11.

Lemma 4.12. Thereis a constant C, > 0, depending only on the parameters, such that the following
istrue. Letr € R, Z C Z,, and q > 0 and assume that ?g’j(h) occurs. Let P, be the Dy,_¢, -geodesic
from K, toK,. Foreachz € Z,

u,VEPZNV,

max{ sup  Dy(u,v),len(P, N VZJ;Dh)} < CuqreQesh @), (4.27)

Proof. By condition 2 in the definition of I?g’r;(h), the event (,., E,, occurs. The bound (4.27)
holds vacuously if P, NV, = @, so assume that P, NV, # @. For z € Z, let S, (respectively, T,)

be the first time that P, enters Vz’, (respectively, the last time that P, exits Vz,r), asin Lemma 4.11.
By Lemma 4.11 followed by condition 3 in the definition of Fz,r(h),

T, — S, < ArtQe @ < 2AqréQeth=(0

Furthermore, P,'(V;,) C [S,,T,], so

max{ sup Dh_fZ!r(u, v), 1en<PZ N VZ,,;Dh_fZ,r> } <T,-S,

u,VEPZNV, .

< 2AqE§Qe§hr(0).

Since f;, < M, the bound (4.14) combined with Weyl scaling (Axiom III) gives (4.27) with C; =
2esMA., O

The following lemma is the main input in the proof of Proposition 4.5. It allows us to produce
configurations Z for which Fg’f(h), instead of just F;’I;(h), occurs.

Lemma 4.13. Thereis a constant c; > 0, depending only on the parameters, such that the following
istrue. Letr € R, Z € Z,, and q > 0 and assume that fg’i(h) occurs. There exists Z' C Z such that
F2 (h) occurs and #Z' > cs#Z.

Proof. Step I: Iteratively removing ‘bad’ points. It is immediate from Definition 4.7 that if Fg’j(h)
occurs and Z' C Z is non-empty, then Z’ € Z, and Fg’,i(h) occurs. So, we need to produce a set
Z' C Z such that #Z' is at least a constant times #Z and condition 5 in the definition of Fg’,rfr(h)
occurs. Since Dy, (u, v; By, (2)) > Dy, (u,v) for all u, v € C, it suffices to find Z’ C Z such that if P,
is the Dh_fz,,r—geodesic from K; to K, and 7, ,(P/) denotes the set of (B,,(2), V. )-excursions for
P, then

max Dy(P,(1),Py(0)) 2 bréQesh (@), (4.28)
(t/,1,0,0")ET, (Pyr)
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60 | DING AND GWYNNE

We will construct Z’ by iteratively removing the ‘bad’ points z € Z’ such that the condition
of (4.28) does not hold. To this end, let Z, := Z. Inductively, suppose that m € N, and Z,, C Z
has been defined. Let P, betheD)_¢, -geodesicfromK, toK,andletZ,,, bethesetofz € Z,,
such that

max D <P 7),P, (o ) > bréQeéh (@), 429
(T,’T’U’U,)E,’—z,r(PZm) h Zm( ) Zm( ) ( )

IfZ,,,, = Z,,then(4.28) holdswith Z’ = Z,,, so the event Fg’]r .(h) occurs. So, to prove the lemma
it suffices to show that the above procedure stabilizes before #Z,, gets too much smaller than #Z.
More precisely, we will show that there exists ¢; > 0 as in the lemma statement such that

#Z,, > cs#Z, YmeN. (4.30)

Since Z,,,; C Z,, for each m € IN; and Z,, is finite, it follows that there must be some m € N
such that Z,, =Z,,,,. We know that Fg’r’r(h) occurs for any such m, so (4.30) implies the
lemma statement. !

It remains to prove (4.30). The idea of the proof is as follows. At each step of our iterative proce-
dure, we only remove points z € Z,, for which P, NV, is small, in a certain sense. Using this,
we can show that Dh_fZMHJ (K;,K,) is not too much bigger than Dh_fzm’r(Kl, K,) (see (4.32)). Iter-
ating this leads to an upper bound for Dh_fzm,r (K;,K,) in terms of Dy, (K, K,) (see (4.33)). We
then use the fact that D¢, (K;,K,) has to be substantially smaller than D, (K, K,) (Lemma 4.8)
together with our upper bound for the amount of time that P, spends in each of the V,,’s
(Lemma 4.12) to obtain (4.30).

Step 2: Comparison of Dh_fzm”_ (K;,K,) and D;,(K;, K,). Let us now proceed with the details. Let

m € N,. By the definition (4.29) of Z,,,; and condition 3 in the definition of Fg’t(h),

max D, <PZ (t), P, (a)) < 2bqriQefh O vz ez, \Z,.,.  (431)
(4 ,r,a,a’)eTz’r(PZm) m m

We have Z,\ Z,,,, € Z,andh—f, . =h-f,  —f,., . Sincewe areassuming that

fg’;(h) occurs and Z,, \ Z,,,; C Z, condition 2 of Definition 4.7 implies that mzeZm\ZmH E,,

occurs. Since E, . depends only on h|x () and the support of f; . is disjoint from K,Ar(z)

forzeZ,\Z,,.,, we get that ﬂzezm\zm+1 E,,alsooccurswith h —f; . in place of h. We may
therefore apply Lemma 4.10 with h — fz o i placeofhand Z,, \ Z,,,, in place of Z to get that

Dy, (Ki,K3)

< Dh_fzm,r (K1, K5)

A
+— max D, (P O.P, (o )
? ZEZmZ\ZmH (¢',1,0,0")€T, (Pz,,) "1 r Zm( ) Zm( )

(by Lemma 4.10)

<Dy, (Ky,K)
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A
+ — max D <P (1), P (0))
) o, (P2, (D Pz,

! !
a 2€Zm N\ (¢ 7,0,0)ET,,

(since me+1J >0)
<Dyy, (K1.Ky) 4+ 240 q Qe gz, —#2,.) (by(4.31). (4.32)
Iterating the inequality (4.32) m times, then applying Lemma 4.8 to Z = Z, € Z, gives
Dy, (K1,Ky) <Dyg, (K1, Kp) + %bqlrngghr(o)(#Z —#Z,,)
<Dy (K1 Ky) - (€5 = 222 )quieft Oz
_ Z;qurﬁ@eghr@)#zm
< DKy, K,) — <c3 _ @)q £Qpth: O 7. (4.33)

Note that in the last line, we simply dropped a negative term.
Step 3: Conclusion. By Lemma 4.10 (with Z,,, in place of Z), followed by (4.33),

A
A max D(P o), P 0'>>D K,.K,)=D, . (K.K
aZGZZ: (700  (P7) 2n (00 P2,(9) ) > DKy K) = Divory (K5, K2)

<C3 - @>qr§‘?e5hr<0>#2. (4.34)

As explained above, since Z,, C Z we know that fg’r .(z) occurs. Hence, we can apply Lemma 4.12
(with Z,, in place of Z), then sum over all z € Z,,, to get

3 max )Dh<PZ (©),P, (o)) < CqrfetOpz  vzez . (4.35)
, PZ m m

22, (t',7,0,0")ET,,
Combining (4.34) and (4.35) yields
#Z, > c#Z with g = i(q - @) (4.36)

That is, (4.30) holds with this choice of c5. Note that c; > 0 since C; > 2Ab/a (Lemma 4.8). []

Proof of Proposition 4.5. Fix r > 0 and compact sets K;,K, € B, (0) with dist(K;,K,) > nr
Assume that ¢° = ¢ (K, K,) occurs and let P be the Dj,-geodesic from K; to K2 We first produce
anr € R N [e’r,er],aq > 0, and a large collection of sets Z € Z, for which F (h) occurs.

To this end, let T be the first exit time of P from B;,.(0), or T = Dh(Kl,Kz) 1f P C B;,(0) (the
reason why we consider T is that conditions 2 and 3 in the definition of ¢ are only required to
hold on B;,(0)). By condition 3 in the definition of G¢, for each point w € P([0, T]) there exists

reRN[e*r,er]and z € (MZZ) N B;,(0) such that E, . occurs and w € B,/ZS(Z).

SUOIIPUOD PUe SLwe | 84} 88S *[2202/TT/0T] uo Arigiauniuo A|im ‘Areiqi 0Beolyd JO AusieAin Ag 26b2T Swid/ZTTT OT/I0p/W00 A8 1M AReIq 1 jBUl U0 I0SLIRWPUO|//SANY WO PBpeojumoq ‘0 ‘XvZ09vT

100" A8 1M Areq 1 U U0/ /Sd

-pue-

35UB017 SUOLULLIOD AAIES.ID) 3|qedljdde ayy Aq pausench ae sapiLe YO ‘8sh Jo Sajni 1o} Aeiqi auljuQ AS[IA UO (suo!
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Since dist(K;, K,) > nr and dist(K;, 0B;,(0)) > r, it follows that P([0,T]) is a connected set of
Euclidean diameter at least nr. Furthermore, since dist(K;, dB,.(0)) > nr, there must be a segment
of P|jory of Euclidean diameter at least nr which is disjoint from 9B,.(0).

Hence, we can find a constant x > 0, depending only on 7, with the following property. There
are atleast | x/¢| pairs (zy,#y), ..., (Z Lx/e)> ¥ lx/e) ), each consisting of a radius ri€ERN [€%r, er] and
apointz; € (ﬁZz) N B;,(0), such that the following is true.

(i) The balls B4,j (zj)for j =1,..., |x/e] are disjoint and none of these balls intersects K; UK, U
0B,(0).
(ii) Ezj,rj occurs for each j =1, ..., | x/e].
(iii) The path P hits Brj/ZS(Zj) foreach j =1,...,|x/¢].

By condition 2 in the definition of G°, for each je€[1,|x/e]]; there exists q €

[€25Q+3) /2,66Q=3] n {271}, such that rf.Qegh’J‘ @) e [qrsQeth=(0) 2qréQesh:(0)], The cardinality
of the set

(R n [EZE, Ell”]) % ([%2’525(0-‘—3), Ef(Q—3)] n {z_l}le]N>

is at most a constant (depending only on &) times (loge~1)?. So, there must be some r € R N
[e?r,er] and g € [e2@+3) /2,¢5Q=3] 1 {2713, such that

> ;, where
g(loge—1)2

J = {j €1, xet]]y, : ri=r, er i) g [qré’QeEhﬂ'(O),querefhr(O)] } (4.37)

with the implicit constant depending only on x (hence only on 7). Henceforth, fix such an r and
g and let J be as in (4.37). Also define

S:={z;:jeJ}, sothat #szm. (4.38)
If Z C S, then property (iii) above implies that Z € Z,, where Z, is defined as in (4.7). Fur-
thermore, since g > ¢2(@+3 /2, condition 1 in the definition of G¢ implies that D), (dist(K;, K,)) >
C€.D,(dist(K;, K,)) — qrrg Qeéh: (), From this together with properties (ii) and (iii) above and our
choice of J in (4.37), we see that the event l?g’;(h) of Definition 4.7 occurs.
By Lemma 4.13, for each Z C S there exists Z' C Z such that F ,Y (h) occurs and #Z' > c #Z.
Fix (in some arbitrary manner) a choice of Z’ for each Z, so that Z — Z’ is a function from subsets
of S to subsets of S for which Fq, (h) occurs. We will now lower-bound the cardinality of the set

{7/ #Z =k}. (4.39)

To this end, consider a set Z c S for which F & r(h) occurs and #Z € [csk, k] (that is, Z is a

possible choice of the set Z’ when #Z = k). Slnce Z !¢ Z for each Z C S, the number of Z C S
such that #Z = k and Z’ = Z is at most the number of possibilities for the set Z \ Z (subject to
#Z =k and Z’ = Z), which is at most

(#s ><< #S >
k—#Z) = \|(Q—csk] /)"
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On the other hand, for each k € IN, the number of sets Z C S such that #Z = k is (#ks).

The cardinality of the set (4.39) is least the number of Z C S with #Z = k, divided by the max-
imal cardinality of the pre-image of a set Z under Z — Z’. Hence, by combining the two counting
formulae from the previous paragraph, we get that the cardinality of the set in (4.39), and hence
the number of sets Z C S for which ngi(h) occurs and #Z € [csk, k], is at least

#S #S -1 csk —C5k -1 _2051{
< k ><L(1—cs)kj> > (#S)5" = e (loge™)

with the implicit constant depending only on the parameters and k (in the last inequality we
used (4.38)). This gives (4.10) for c; slightly smaller than c-. O

4.4 | Proof of Proposition 4.6

The proof of Proposition 4.6 is based on counting the number of points z € ﬁZZ which could

possibly be an element of some Z € Z, for which Fg’r;(h + f;,) occurs. To this end, we make the
following definition.

Definition 4.14. For r € R and q > 0, we say that z € -7 is r,q-good if the following
conditions are satisfied.

(i) TheeventE,, (h +f,,) occurs.
(11) rgoeghr(z) (= [qrngghr(O)’ZqH-ngghr(O)]_
(iif) Let P be the D),-geodesic from K| to K,. There is a (B,,(2), V, ,)-excursion (7, 7,,0,,07) for
P such that

Dyyyr. (P(1,), P(0,); By (2)) > bréQeh(@), (4.40)

Lemma 4.15. Letr e Rand ¢ > 0.IfZ € Z, and Fg”;(h + f; ) occurs, then every z € Z isr,q-
good.

Proof. Letz € Z and assume that F(h + f ) occurs. By condition 2 in the definition of F;', (h +
f;.),theeventE, .(h +f; ) occurs. Slnce E,,(h+f,,)dependsonlyon (h +f, )| Ay (@) and fZ,r
f,» = 0 outside of B,,(2), it follows that E, .(h +f;,) = E, ,(h + f, ). This gives condition (i) in
Definition 4.14.

Condition (ii) in Definition 4.14 follows from condition 3 in the definition of F/,, iy rf(h +f;,) and
the fact that the support of f . is disjoint from 0B, (0) and from 8B,.(z) for each z € Z (recall (4.7)).
By condition 5 in the definition of Fq yr(h + f; ), we get that z satisfies cond1t10n (iii) of Defini-
tion 4.14 but with Dy, ¢ instead of Dh +f,, in (4.40). Since the support of f; . — f, . is disjoint from
B,,(z), the internal distances of Dy, and Dy ¢, on By,(z) are identical. Hence, condition (iii)

holds. O

In light of Lemma 4.15, we seek to upper-bound the number of r, g-good points z € —ZZ
When doing so, we can assume without loss of generality that Fgorr(h +f, ) occurs for some
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Z, € Z, with #Z; < k (otherwise, the proposition statement is vacuous). The main input in the
proof of Proposition 4.6 is the following lemma.

Lemma 4.16. Thereis a constant Cg > 0, depending only on the parameters and the laws of D;, and
Dy, such that the following is true. Let r € R and let Z,,Z, € Z,. Assume that the event Fg(’)r L(h+

fz,.r) occurs, each z € Z, isr, g-good, and each ball B,,(z) for z € Z, is disjoint from Uz/ezo B,.(z')
(equivalently, Z, U Z, € Z,). Then

#Zl < CG#ZO‘

We now explain the idea of the proof of Lemma 4.16. By condition 1 in the definition of Fg:rr(h +
fz,,r), on this event,

Dyt (K1.Ky) > €. Dy, (Ky Kp) = qréQeths(©) (4.41)

We will show that if #Z; is too much larger than #Z,), then (4.41) cannot hold. The reason for this
is as follows. Let P be the D,-geodesic from K; to K,. By condition (iii) in Definition 4.14, each
z € Z, satisfies the condition of hypothesis C for the event E, .(h + f, ). Hypothesis C therefore
gives us a pair of times s, t, € P~1(B,,(z)) such that t, — s, > cqréQe"+(®) and

5l’l(P(Sz)aP(tz);B4r(z)) < c,(tz - Sz) = C,Dh(P(Sz)’P(tz))- (442)

Since f; , vanishes on B,,(z) for each z € Z; and f;_, is non-negative, the relation (4.42) implies
that also

Dyssy, , (P(,). P(,): B4y(2)) < ¢ Dy, (P(s,), P(L,)).

In other words, we have at least #Z, ‘shortcuts’ along P where the D, +f, -distance is at most d
0>
times the Dy ¢, -distance. By following P and taking these shortcuts, we obtain a path from K,
0>

to K, whose ﬁh +, -length is at most €, times the D, +, -length of P minus a positive constant
0F 0-F
times qréQes (O #7, (see (4.49)). We then use Lemma 4.17 to upper-bound the D,, +f, -lengthof P
0

in terms of #Z,. This leads to an upper bound for D,, +f, (K1, Ky) which is inconsistent with (4.41)
04"

unless #Z, is bounded above by a constant times #Z,.
We need the following lemma for the proof of Lemma 4.16.

Lemma 4.17. Let C, > 0 be as in Lemma 4.12. Letr € R, Z € Z,, and q > 0 and assume that
Fg’“”(h + f; ) occurs. Then the Dy,-geodesic P from K; to K, satisfies

,r
len(P;Dther) < Dy(K},Ky) + CyqreQet =047, (4.43)

Proof. The function f,, is supported on | J,., V, .. By Weyl scaling (Axiom III),

1en<P\ U VZ’V;DthfZJ) = len<P\ U vZ’,;Dh> < Dy(K,,K,). (4.44)

zeZ zeZ
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By Lemma 4.12, applied with h + f . in place of h,
len<P NV, Dpyt, r) < Cuqrilet=© vz ez (4.45)

Combining (4.44) and (4.45) yields (4.43). O

Proof of Lemma 4.16. Let P be the D),-geodesic from K to K,. By conditions (i) and (iii) in Defi-
nition 4.14 together with hypothesis C for the event E, .(h + f, ), for each z € Z;, there are times
0 < s, <t, <Dy(K;,K,)such that P([s,,t,]) C B,.(2),

t,—S, 2 créQeh(@) > cqrngghr(O), and l~)h(P(sz),P(tz);B4,(z)) <d(t, —s,). (4.46)

Note that to get réQeéh(2) > qxrngghr(o), we used condition (ii) from Definition 4.14 and to get that
P([s,,t,]) C B,.(2), we used Definition 4.1.

Ifz € Z,, then by hypothesis B,,(z) is disjoint from {1z, B4(2"). Hence, B,,(2) and P([s;, £, ])
are disjoint from the support of f, .. We can therefore deduce from (4.46) and Weyl scaling
(Axiom III) that for each z € Z;,

1en<P|[Sz,tz];Dh+fZ0,r> =t,—s,> cqlr§Qe§h,r(0) and
D, +t5,,(P(52), P(1,); B4y (2)) < d(t,—s,) <Dy, 415, (P(52), P(1,))- (4.47)
Let N = #Z, and let z,, ..., zy be the elements of Z,, ordered so that

S; <ty <8, <t <. <s, <t

Z

Such an ordering is possible since P([s,,t,]) C B4.(2), so these path increments are disjoint.
For notational simplicity, we also define £, =0 and s, = Dj,(K},K), so that P(t, ) € K; and
P(t,,,,) €K,.

By the bi-Lipschitz equivalence of D, and D;, (1.20) and Weyl scaling,

5h+fZ0,r(P(th )’ P(Szn+1 )) < G>1<Dh+f20,r(P(tzn)7 P(Szn+1 ))7 Vn € [O’ N]Z (448)
We now have the following estimate:

5h+fzo,,. (K1.K>)

N N
< Y Dupry, (Pls ). P(t; )+ . Dpyr, (P2 )P, )
n=1 n=0

(triangle inequality)

N N
< Zth+fz0.r (P(s, ). P(t, ) + G, ZODMZO, (P(1, ), P(s,, )
n= n=

(by (4.47) and (4.48))
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N N
=G, [Z Dys,, , (P(s;,). P(1;))) + 2 Dyt (P(t;,). (s, )
n=1 n=0

N
= (€. =) Y Dpa,, (Ps;). P(2;))
n=1

<G, len(P;Dthon’r) — (6, — )eqriQefn-Opz,  (by (4.47))

< 6,.D(K,Ky) + 6,C,qré et Oz, — (6, — ¢ )eqrietm sz,
(by Lemma 4.17)
<6, Dypyr, (K1 Ky) + €,.Caqni 012, — (€, — Neqrt =4z,

(since fZO’, > 0). (4.49)
By combining (4.41) and (4.49), we obtain

(G, — ¢)eq#Z, — C,CuqriQet-Ogz, < qréQesh=(0) ¢ qlrngghTf(O)#Zo

which implies #Z;, < Cc#Z where Cy : 1+—(SC4

(€, — )’ m
Proof of Proposition 4.6. We can assume that there exists some Z, € Z, with #Z, < k such that
Fgolfr(h + fZO’,) occurs (otherwise, (4.11) holds vacuously). Let Z; € Z, be a set such that each
z € Z, isr, g-good (Definition 4.14) and each B,,(z) for z € Z, is disjoint from (/¢ B4 (z'). We
assume that #7; is maximal among all subsets of Z, with this property. By Lemma 4.16, we have
#Z, < Cgk.

Now let Z € Z, such that F z Ir(h + f; ) occurs. We claim that for each z € Z, the ball By,(z)
intersects B,,(z’) for some z’ e ZO U Z,. Indeed, by Lemma 4.15, each z € Z is r, g-good. So, if
there is a z € Z such that B,.(z) is disjoint from B,,.(z") for each z’ € Z, U Z,, then Z, U {z}
satisfies the conditions in the definition of Z;. This contradicts the maximality of #Z;.

Each z € Z belongs to HrOZz. Hence, for each z’ € Z, U Z;, the number of z € Z for which
B,.(z) N B,,.(2') # {is at most some universal constant R. By the preceding paragraph,any Z € Z,
such that Fg’jf(h + f, ) occurs can be obtained by the following procedure. For each z’ € Z, U Z;,
we either choose a point z € ﬁZz such that B,,(z) N B,,(2") # @; or we choose no point (so we
have at most R + 1 choices for each z’ € Z, U Z,). Then, we take Z to be the set of points that we
have chosen. Therefore,

#{Z ez : < kand Fq I[(h +f7,) occurs} < (R + 1)#4ot#2
< (R + 1) CotDk, (4.50)

This gives (4.11) with C, = (R + 1)Cs+1, 0
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4.5 | Proof of uniqueness assuming Proposition 4.2

In this subsection, we will prove Theorem 1.13, which asserts the uniqueness of weak LQG metrics,
assuming Proposition 4.2. As explained in Subsection 1.5.1, it suffices to show that the optimal bi-
Lipschitz constants satisfy ¢, = €. To accomplish this, we will assume by way of contradiction
that ¢, < €,. We also assume the conclusion of Proposition 4.2 (whose proof has been postponed).
Throughout this subsection, we fix p € (0,1) (which will be chosen in Lemma 4.18) and we let
¢ € (c,,€,)and R C (0,1) be as in Proposition 4.2 for this choice of p. We also assume that the
parameters of Subsection 4.1 have been chosen as in Proposition 4.2 for our given choice of p.

We first check that the auxiliary conditions in the definition of the event ¢ (K, K,) of Subsec-
tion 4.2 occur with high probability when ¢ is small, which together with Proposition 4.3 leads to
an upper bound for the probability of the main condition

Dy(K;,K,) > €, Dy(Ky,K,) — —52§<Q+3> §Qth:(0),
We note that the auxiliary conditions do not depend on K; and K.

Lemma 4.18. There is a universal choice of the parameter p € (0, 1) such that the following is true.
Let B > 0 and let v > 0 such that P[G,(B, ¢")] > B. It holds with probability tending to 1 as € — 0
(at a rate depending only on [5’ and the laws of D), and Dy, not on r) that conditions 2 and 3 in the
definition of Q‘; occur, that is,

(2) foreach z € B,,(0) and each r € [e*r,er] N R, we have

rEQeth(2) ¢ [gzg(ms)rgoefhr(o)’ £5Q-3)14Qp¢m.0)].

(3) for each z € B (0), there exist r € R N [e*r,er] and w € (EZZ) nBr/ZS(z) such that E,, ,
OCCUTS.

Proof. By a standard estimate for the circle average process of the GFF (see, for example, [35
Proposition 2.4]), it holds with polynomially high probability as r — 0 that |h,(z)| < 3logr~! for
all z € B;(0). By the scale invariance of the law of h, modulo additive constant, we get that with
polynomially high probability as r — 0 (at a universal rate) we have |h,.(z) — h,.(0)| < 3log(zr/r)
for all z € B;,(0). By a union bound over logarithmically many values of r € R N [¢’r, er], we get
that with probability tending tolase — 0,

|h.(z) — h,(0)| < 3log(r/r) € [3loge2,3loge™!],
Vr € RN [e’r,er], Vz € B, (0). (4.51)
The bound (4.51) immediately implies condition 2 in the lemma statement.

We now turn our attention to condition 3. By the properties of the events E, ., we know that
E,, is almost surely determined by h|; (2 viewed modulo additive constant, and P[E, ] > p
. rdr .

for each z € € and r € R. Furthermore, by Proposition 4.2 our hypothesis that P[G.(B, )] =B

implies that for each small enough ¢ > 0 (how small depends only on § and the laws of D, and
5 h)a
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#(Rn[e’r,er]) > glog8 el

We may therefore apply Lemma 2.2 with the radii r, € R N [¢°r,er], the points z, € %Zz
chosen so that |z — z; | < r; /50, and the events E, (z;) =E,, , . From Lemma 2.2, we obtain that
if p is chosen to be sufficiently close to 1, in a universal manner, then for each z € C, it holds
with probability at least 1 — O,(¢°) (at a rate depending only on the laws of D, and D},) that there
existr € R N [e’r,er] and w € (ﬁZz) N B, 50(2) such that E,, , occurs.

By a union bound, it holds with probability tending to 1 as € — 0 (at a rate depending only
on E and the laws of D, and l~)h) that for each z € (%Zz) N B, (0), there exist r € R N [e’r, er]

and w € (ﬁZz) N B, 50(z) such that E, . occurs. Henceforth, assume that this is the case. For

a general choice of z € B;,(0), we choose z’ € (%Zz) N B,,(0) such that |z — z/| < e?r/50, then
we choose r € R N [e?r,er] and w € (ﬁZz) N B, 50(z') such that E,, . occurs. Then |w — 2’| <
(e’r +r)/50 < r/25. Hence, condition 3 in the lemma statement holds with probability tending

tolase — 0. O

We henceforth assume that the parameter p is chosen as in Lemma 4.18. By combining
Proposition 4.3 with Lemma 4.18, we obtain the following.

Lemma 4.19. Let § > 0and letr > 0 such that P[G,(3,¢")] > E.Alsoietv > 0and f > 0.1t holds
with probability tending to 1 as § — 0 (at a rate depending only on v, 3, 8 and the laws of D), and
Dy,) that

ﬁh(B5V1r(Z)’B5V1r(w)) < G*Dh(B5vr(z)’B5vr(w)) - 5H~§Qe§hn«(0),

é'r

Vz,we | —
100

Z2> NB_(0) suchthat |z—w|>fr
and dist(z,0B,(0)) > fr. (4.52)

Proof. Fix v’ > 0 to be chosen later, in a manner depending only on v and £. By Proposition 4.3
(applied with n = 8/2) and a union bound, it holds with superpolynomially high probability as
!

¢ — 0 that the event G° (1_32,,; (2), Egv/r(w)) does not occur for any pair of points z, w € (%ZZ) N

B,(0) with |z — w| > Br and dist(z, 0B,.(0)) > Br. By combining this with Lemma 4.18 and recall-
ing the definition of G (in particular, condition 1), we get that with probability tending to 1 as
e— 0,
By (B. (2). By ) < 6, (B, (2), By (w)) — (@),
EV,]I' 2
Vz,w € ﬁZ NB,.(0) suchthat |z—w|>pr

and dist(z,0B,(0)) > fr. (4.53)

We now conclude the proof by applying the above estimate with € = €(§) > 0 chosen so that
¢28@+3) = § and with v/ = v/(2£(Q + 3)). O
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Recall the definition of the event H (¢, €") from Definition 3.2, which says that there is a point
u € 0B,,(0) and a point v € 3B, (0) satisfying certain conditions such that D, (u, v) < €'D;,(u, v).
From Lemma 4.19 and a geometric argument, we obtain the following, which will eventually be
used to get a contradiction to Proposition 3.5.

Lemma 4.20. Let 8 > 0 and let v > 0 such that P[G.(B, ¢’)] > B. For each a € (3/4,1), we have

lim P[H,(a, €, - §)] = 0

at a rate depending only on a, B, and the laws of D, and D,,.

Proof. Let v > 0 to be chosen later, in a manner depending only on the laws of D, and D,. By
Lemma 4.19 applied with 8 = (1 — «)/2, it holds with probability tending to 1 as § — 0 that

Dy(Bs»+(2), Bs», (W) < €,Dy(Byy,(2), By, (w)) — 6155,

l1-«a
2

r

Vz,w € <f0gZ )nBr(O) such that |z—w| >

1—«a

and dist(z,dB,(0)) > r. (4.54)

Henceforth, assume that that (4.54) holds.
Recalling Definition 3.2, we consider points u € 0B,,(0) and v € dB,.(0) such that

* D,(u,v) < (1 — ) 1réQef ) and
+ foreach § € (0,(1 — a)?], we have

max { Dy, (u, 3B5,(w)), Dy, (around Ag, 512, (W)} < 6°Dy,(u, v) (4.55)

and the same is true with the roles of u and v interchanged.

We will show that if v is chosen to be large enough (dependlng only on the laws of Dj, and D,),
then for each small enough § > 0 (depending only on a, 3, and the laws of D, and D},), we have

Dy,(u,v) < ( s )Dh(u, v), Vu,v satisfying the above conditions. (4.56)

By Definition 3.2, the relation (4.56) implies that H_(«, €., — ITT“S) does not occur. Since § can be
made arbitrarily small, this implies the lemma statement.

See Figure 12 for an illustration of the proof of (4.56). Let z € ( 100 Zz) NBsv (1) and w €

(100 7Z*) N Bgy,(v). If & is small enough, then |z — w| > (1 — a)r/2 and dist(z,dB,(0)) > (1 —
a)r/2. By (4.54), there is a path P® from Bgv,(z) to Bsy,.(w) such that
len(Pa;ﬁh) €.Dy(Bsv,(2), Bsv, (W) — nggh ©

< C.Dy(u,v)— = 5Q $h=(©)  (since u € By, (z) and v € By, (w))
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B(gur(w)

A25”r,\/26”r(v)

B(;ur(z)

AZ(S”r,\/Q(SVr (u)
FIGURE 12 Illustration of the five paths used to get an upper bound for Dj,(u, v) in the proof of

Lemma 4.20. The D, -length of P? is bounded above using (4.54) and the D, -lengths of the other four paths are
bounded above using (4.55).

1;“®Dﬂmw (since Dy (u, ) < (1 — ) 'réQeh ) (4.57)

<(G*—

By (4.55) (applied with /26" in place of §), if § is small enough (depending on «) then there

are paths PZ and Pg from u and v to 6B \/ﬁr(u) and 0B mr(v), respectively, such that

max{len(Pg;Dh), len(Pf; Dh)} < 26/25”9/2Dh(u, V). (4.58)

Furthermore, by (4.55) applied with 28" in place of 8, there are paths 773 and 71'3 in AZ sr \/ﬁﬂ‘(u)
and A - \/ﬁr(u), respectively, which disconnect the inner and outer boundaries and satisfy

max{len(n’i;Dh), len(n'g; D)} < 296"°D,, (u, v). (4.59)

Since max{|z — u|, |w — v|} < 8”r, the union P° U Pi U Pf U 71'2 U 71'5 contains a path from u to
v. Therefore, combining (4.57), (4.58), and (4.59), then using the bi-Lipschitz equivalence of D),
and D;, (1.20) gives

Dy,(u,v) < ((S?* _1= aé)Dh(u, v) + 2 (len(P%; Dy,) + len(z®; D))
x€{u,v}
< <@* 1 ; As 4 201241 §78/2 4 29+1(S*5”6)Dh(u, V).
Ifv > 2/6 and § is small enough, then this implies (4.56). O

Proof of Theorem 1.13. By Proposition 3.5, there exist a € (3/4,1) and p € (0, 1), depending only
on the laws of D, and Dy, such that for each § > 0 and each small enough ¢ > 0 (depending only
on § and the laws of D, and D),), there are at least % logg ¢! values of r € [e%,¢] N {S_k}kelN such
that

P[H,(a,C, - 8)] > p. (4.60)
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Let ¢”’ be as in Proposition 4.2, so that ¢’ depends only on the laws of D, and D,. By Propo-
sition 3.11 (applied with ¢’ in place of ¢), there exist § > 0 and ¢, > 0 (depending only on
the laws of D, and D) such that for each ¢ € (0,¢,], there are at least %log8 ¢! values of
r € [e2,e] N {8}, for which P[G,(B,¢")] > . By combining this with Lemma 4.20, we get
that if « and p are as in (4.60), then there exists § > 0, depending only on «, p, and the laws of D,
and Dy, such that for each ¢ € (0, ¢,], there are at least % logg e ! values of r € [¢2,€] N {8 e
for which

P[H,(a,C, —8)] < =. (4.61)

N |

The total number of radii r € [e2,€] N {S‘k}keN is at most logg €71, so there cannot be at least
i logg ¢! values of r € [€2,e] N {8*};.cn for which (4.60) holds and at least % logg ¢! values of
r € [2,€] N {8 K}, for which (4.61) holds. We thus have a contradiction, so we conclude that

¢, =GC,. O
5 | CONSTRUCTING EVENTS AND BUMP FUNCTIONS

5.1 | Setup and outline

The goal of this section is to prove Proposition 4.2. Extending (4.1), we define

¢, +C ¢, +¢
J = *2 = and ¢ = ‘2 , (5.1)

so thatifc, < €, thene, < ¢ <¢' <G,.

Throughout this section, we fix p € (0,1) as in Proposition 4.2. Note that p is allowed to be
arbitrarily close to 1. We seek to construct a set of radii R € (0,1) and, foreachz € Candr € R,
opensetsU,, CV,, C A, 4 (2),asmooth bump function f, . supported on V,,, and an event E .
with IP[E, .| > p which satisfy the conditions in Subsection 4.1.

For simplicity, for most of this section we will take z = 0 and remove z from the notation, so we
will call our objects U,, V,, f,, E,. At the very end of the proof, we will define objects for a general
choice of z by translating space.

Leta € (3/4,1) and p, = p € (0, 1) be as in Proposition 3.10, so that « and p, depend only on
the laws of D,, and D,,. We define our initial set of ‘good’ radii

Ry = {r € {8 }en : PIH, (&, ()] > po}- (52)
By Proposition 3.10, there exists ¢’/ > 0, depending only on the laws of D), and D, such that if r > 0

and 8 > Osuch that P [Gr(ﬁ , N> E , then for each small enough £ > 0 (how small is independent
of r),

#(Ro N[’ er]) > ‘—3;log8 el

We will eventually establish Proposition 4.2 with the set of admissible radii given by R = p~ 'R,
where p € (0,1) is a constant depending only on p and the laws of D, and D,,.
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FIGURE 13 Illustration of the objects involved in Lemma 5.2

Recall the basic idea of the construction as explained just after Proposition 4.2. We will take
U, to be a narrow ‘tube’ with the topology of a Euclidean annulus which is contained in a small
neighborhood of 6B,,(0), and V, to be a small Euclidean neighborhood of U,.. We will then take E,
to be the event that there are many ‘good’ pairs of points u, v € U, such that ﬁh (u,v) < céDh(u, ),
plus a long list of regularity conditions. The idea for checking hypothesis C for E, is that by Weyl
scaling (Axiom III), the Dj,_¢ -lengths of paths contained in U, tend to be much shorter than the
Dy,_¢ -lengths of paths outside of V,. We will use this fact to force a D),_; -geodesic P, to get Dy, _¢ -
close to each of u and v for one of our good pairs of points u, v. We will then apply the triangle
inequality to find times s, t such that ﬁh_fr (P,(s),P,.(t)) < ¢(t — 5). Note that the application of
the triangle inequality here is the reason why we need to require that D), (u,v) < ¢oDp(u, v) for
¢ <.

The broad ideas of this section are similar to those of [27, section 5], which performs a similar
construction in the subcritical case. However, the details are quite different from [27, section 5],
for three reasons. First, the conditions which we need our event to satisfy are slightly different
from the ones needed in [27] since our argument in Section 4 is completely different from the
argument of [27, section 4]. Second, we make some minor simplifications to various steps of the
construction as compared to [27]. Third, and most importantly, we want to treat the supercritical
case so there are a number of additional difficulties arising from the fact that the metric does not
induce the Euclidean topology. These difficulties necessitate additional conditions on the events
and additional arguments as compared to the subcritical case. Especially, many of the conditions
in the definition of E, and all of arguments of Subsection 5.10 can be avoided in the subcritical
case. We will now give a more detailed outline of our construction.

In Subsection 5.2, we will consider an event for a single ‘good’ pair of points u,v and show
that for r € R, the probability of this event is bounded below by a constant p depending only on
the laws of D), and D,,. See Lemma 5.2 for a precise statement and Figure 13 for an illustration of
the event.

The event we consider is closely related to the event H,(«, c(’)) of Definition 3.9. We require
that there is a point u € dB,,(0) and a point v € dB,(0) such that 1~)h(u, V) < chh(u, v)and a l~)h-
geodesic P from u to v which is contained in a specified deterministic half-annulusH, C A, ,(0).
We also impose two additional constraints on u and v which will be important later.

(i) We require that u is contained in a certain small deterministic ball Bsr(u,) centered at a
point u, C dB,,(0) and v is contained in a small deterministic ball B; (v,) centered at a point
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v, € 0B,(0), where s, is deterministic number which is comparable to a small constant times
r. The reason for this condition is that we will eventually define our set U, so that it has
a ‘bottleneck’ at several translated and scaled copies of the balls B (u,) and B, (v,) (that
is, removing these balls disconnects U,; see Figure 15), and we need U, to be determin-
istic. We will show that this condition happens with positive probability by considering
finitely many possible choices for the balls B (u,) and B, (v,) and using a pigeonhole
argument.

(ii) We require that the internal distance D, (u, x; Esr(u,)) is small for ‘most’ points x € aBsr(u,),
and we impose a similar condition for v. The purpose of this condition is to upper-bound the
Dy,_; -distance from a Dj,_¢ -geodesic to u, once we have forced it to get Euclidean-close to u.
The condition will be shown to occur with high probability using Lemma 2.10.

In Subsection 5.3, we will define F,, for z € C and r € R, to be the event of Subsection 5.2, but
translated so that we are working with annuli centered at z rather than 0. We will then show that
F, is locally determined by h (Lemma 5.7).

In Subsection 5.4, we will introduce several parameters to be chosen later, including the param-
eter p € (0,1) mentioned above. We will then define the open sets U, and V, and the bump
function f, for r € p~'R, in terms of these parameters. More precisely,

* the set U, will be the union of a large finite number of disjoint sets of the form H,, U Bspr(u or) U
Bsp’_ (Vo) + z for z € 0B,,(0) (that is, the sets appearing in the definition of F, ), together with
long narrow ‘tubes’ linking these sets together into an annular region. See Figure 15 for an
illustration;

* the set V, will be a small Euclidean neighborhood of U, ;

+ the function f, will attain its maximal value at each point of U, and will be supported on V,.

The reason for our definition of U, is as follows. Since r € p~'R,, for each of the sets H or Y
Bspr(up,) UB, (V) + z in the definition of U,, there is a positive chance that the event F, . of
Subsection 5.3 occurs. Hence, by the long-range independence properties of the GFF (Lemma 2.3),
itis very likely that F, ., occurs for many of the points z. This gives us the desired large collection
of ‘good’ pairs of points u, v € U,. See Lemma 5.13.

In Subsection 5.5, we will define the event E,. The event E, includes the condition that F, .
occurs for many of the points z € 0B,,(0) involved in the definition of U, (condition 4), plus a
large number of additional high-probability regularity conditions. Then, in Subsection 5.6, we
will show that we can choose the parameters of Subsection 5.4 in such a way that E, occurs with
probability at least p (Proposition 5.9). We will also show that E, satisfies hypotheses A and B of
Subsection 4.1 (Proposition 5.17). In Subsection 5.7, we will explain how to conclude the proof of
Proposition 4.2 assuming that our objects also satisfy hypothesis C of Subsection 4.1.

The rest of the section is then devoted to checking that our objects satisfy hypothesis C of Sub-
section 4.1 (Proposition 5.18). Recalling the statement of hypothesis C, we will assume that E,
occurs and consider a Dj,_ -geodesic P, between two points of C \ B,,(0). We will further assume
that P, has a (B,,(0),V,)-excursion (z/,7,0,0") such that D,(P,(t), P,(c); B4(0)) is bounded
below by an appropriate constant times r$Qeé"(%) (recall Definition 4.1). We aim to find times
s < t for P, such that t — s is not too small and ﬁh_fz . (P(5), P.(£); B4, (0) < ¢/(t —5).

In Subsection 5.8, we will show that the Euclidean distance between the points P,.(7),P,(0) €
9V, is bounded below by a constant times r (Lemma 5.20) and that P, |, ;) is contained in a small
Euclidean neighborhood of V, (Lemma 5.22). These statements are proven using the regularity
conditions in the definition of E,.. In particular, the lower bound for |P,(7) — P,(0)| comes from the
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regularity of Dj,-distances along a geodesic (Lemma 2.13). The statement that P, |, ;) is contained
in a small Euclidean neighborhood of V, is proven as follows. Since f, is very large on U,, we know
that Dj,_¢ -distances inside U, are very small, which leads to a very small upper bound foro — 7 =
Dy,_¢ (P.(7),P,(0)) (Lemma 5.21). Since f, is supported on V,, the D;,_; -length of any segment
of P, which is disjoint from V, is the same as its D, -length, which will be larger than our upper
bound for o — 7 unless the Euclidean diameter of the segment is very small.

In Subsection 5.9, we will use the results of Subsection 5.8 and the definition of U, to show
that the following is true. There is a point z € dB,,(0) as in the definition of U, such that F
occurs and P, gets Euclidean-close to each of the ‘good’ points u and v in the definition of F, ,,
(Lemma 5.23). The reason why this is true is that, by the results of Subsection 5.8, P.([7,c]) is
contained in a small neighborhood of U, and has Euclidean diameter of order r, and the defini-
tion of U, implies that removing small neighborhoods of the points u and v disconnects U, (see
Figure 15).

Showing that P, gets Euclidean-close to u and v is not enough for our purposes since D;,_¢
is not Euclidean-continuous, so it is possible for two points to be Euclidean-close but not Dj,_ -
close. Therefore, further arguments are needed to show that P, gets D), _ -close to each of u and v.
We remark that this is one of the main reasons why the argument in this section is more difficult
than the analogous argument in the subcritical case [27, section 5].

In Subsection 5.10, we will show that there are times s and ¢ for P, such that D, _¢ (P,(t),u) and
Dy_s, (P,(s),v) are each much smaller than Dy_s, (u, v) (Lemma 5.26). The key tool which allows us

z,0r

to do this is the condition in the definition of F, ,, which says that Dj,(u, x; Espr(u or) +2) is small
for ‘most’ points of 6B$pr(upr) + z (recall point (ii) in the summary of Subsection 5.2). However,
this condition is not sufficient for our purposes since it is possible that the ‘Euclidean size’ of
P.n (Bspr(u or) +2) is small, and hence P, manages not to hit a geodesic from u to x for any of the
‘good’ points x € 5Bspr(u or) + 2z such that Dy (u, x; Bspr(u or) +2) is small. To avoid this difficulty,
we will need to carry out a careful analysis of, roughly speaking, the ‘excursions’ that P, makes in
and out of the ball Bspr(up,) +z.

In Subsection 5.11, we will conclude the proof that E, satisfies hypothesis C using the result of
Subsection 5.10 and the triangle inequality.

5.2 | Existence of a shortcut with positive probability
Throughout the rest of this section, we let
2 € (0,107 min{c,,1/C,,(c./C,)*}) (5.3)

be a small constant to be chosen later, in a manner depending only on the laws of D}, and D}, (not
on p). We will frequently use 4 in the definitions of events and other objects when we need a small
constant whose particular value is unimportant.

In this subsection, we will prove that for each r € R, it holds with positive probability
(uniformly in r € R,) that there is a ‘good’ pair of non-singular points u,v € B,(0) such that
ﬁh(u, V) < chh(u, v) and certain regularity conditions hold. In later subsections, we will use
the long-range independence of the GFF to say that with high probability, there are many
such pairs of points contained in our open set U,. To state our result, we need the following
definition.
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Definition 5.1. Letz € Cand b > a > 0. A horizontal or vertical half-annulus H C A, ,(z) is the
intersection of A, ,(z) with one of the four half-planes

fweC:Rew>Rez}, {weC:Rew<Rez}

fweC :Imw>Imz}, or {weC:Imw<Imz}

Lemma 5.2. Let a and R be as in (5.2). There exists t € (0,A(1 — a)?], S>3, and p € (0,1)
(depending only on A and the laws of D;, and D,,) such that for each r € R, there exists a deter-
ministic horizontal or vertical half-annulus H, C A, ,(0), a deterministic radius s, € [tr, t'/2r]1 N
{47k} cn» and deterministic points

u, € OH, N {are™™ : k e [1,2747 't "], } and

v, € 0H, N {re™* : k e [1,2747 't} (5.4)

such that with probability at least p, the following is true. There exist non-singular points u €
0B,,(0) N B /»(u,) and v € 8B,(0) N B, _/,(v,) with the following properties.

(1) D,(u,v) < ¢oDn(u, v).
(2) Thereis a Dy,-geodesic P from u to v which is contained in H,.
(3) The one-dimensional Lebesgue measure of the set

{x € 0B, (u,) : Dh<x,u;l_3$r(u,)> > AD),(u, v)}

is at most (4/2)s,. Moreover, the same is true with v and v, in place of u and u,.
(4) There existst € [3r, Sr] such that

Dy, (around A, ,,(0)) < ADy, (across A, 3,(0)).

See Figure 13 for an illustration of the statement of Lemma 5.2. Most of this subsection is devoted
to the proof of Lemma 5.2. Before discussing the proof, we will first discuss the motivation for the
various conditions in the lemma statement.

In Subsection 5.4, we will consider a small but fixed constant p € (0, 1). To build the set U, =
Uo, appearing in Section 4, we will use long narrow tubes to ‘link up’ several sets of the form
Hor U Bspr(upr) U Bspr(vp,) + z, for varying choices of z € 0B,,(0). We need U, to be deterministic,
which is why we need to make a deterministic choice of the half-annulus H,, the radius s,, and the
points u, and v, in Lemma 5.2. Furthermore, we want there to be only finitely many possibilities
for the set r~'U,, which allows us to get certain estimates for U, trivially by taking a maximum
over the possibilities. This is why we require that H, is a vertical or horizontal half-annulus and
why we require that the points u, and v, belong to the finite sets in (5.4).

Our set U, will have ‘bottlenecks’ at the balls Bspr(up,) + z and Bspr(vpr) + z, so that any path
which travels more than a constant-order Euclidean distance inside the set U, will have to enter
many of these balls. The requirement that u € B, , 2(uy) and v € B, , /2(V,,) is needed to force

a path which spends a lot of time in U, to get close to u and v. The requirement that P C H,
in condition 2 is needed to ensure that subtracting from h a large bump function which attains
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its maximal value at each point of U, decreases D, (u,v) by at least as much as D, (u, v), so the
condition Dy, (u,v) < chh(u, v) is preserved.

Condition 3 in Lemma 5.2 is needed to upper-bound the LQG distance from a path to each of
u and v, once we know that it gets Euclidean-close to u and v (this is done in Subsection 5.10).
The reason why our distance bound is in terms of D,(u, v) is that we eventually want to show that
the ﬁh_fr—distance from a D),_; -geodesic to each of u and v is at most a small constant times
ﬁh_fr(u, v). We will then use condition 1 in Lemma 5.2 and the triangle inequality to deduce
hypothesis C. Note that condition 3 includes a bound on D,,-distances, but this immediately
implies a bound for D,-distances due to the bi-Lipschitz equivalence of D), and D), (1.20).

The only purpose of condition 4 is to ensure that the event in the lemma statement depends
locally on & (see Lemma 5.7). This local dependence is not automatically true since a D) -geodesic
from u to v could get very Euclidean-far away from u and v.

We now turn our attention to the proof of Lemma 5.2. To this end, let us first record what we
get from the Definition 3.9 of H,(«, cg) and the Definition (5.2) of R,,.

Lemma 5.3. For each r € R, there is a deterministic horizontal or vertical half-annulus H, C
A, (0) such that with probability at least p, /4, there exist non-singular points u € 0B,,(0) and
U € 0B,.(0) with the following properties.

1) Dy (u,v) < ¢, Dy(u, ).
(2) There is a Dy,-geodesic P from u to v which is contained in H,.
(3) With 6 = 6(1/2) as in Lemma 2.13, for each § € (0,(1 — a)?],

max{Dy,(u, 0B;,(u)), D), (v,0Bs,(v))} < 6Dy (u, v).

Proof. By Definition 3.9 of H,(«, ¢;) and the definition (5.2) of Ry, for each r € R, it holds with
probability at least p, that there exist u € dB,,(0) and v € dB,(0) such that conditions 1 and 3 in
the lemma statement hold and there is a D),-geodesic P from u to v which is contained in KOW(O)
and has Euclidean diameter at most r/100. Since P C Kw(o) and P has Euclidean diameter at
most r /100, trivial geometric considerations show that P must be contained in the closure of one
of the four horizontal or vertical half-annuli of A, ,(0). Hence, we can choose one such half-
annulus H, in a deterministic manner such that with probability at least p, /4, conditions 1 and 3
in the lemma statement hold and P C ﬁ,, that is, condition 2 holds. O

Lemma 5.3 gives us a pair of points u, v satisfying conditions 1 and 2 in Lemma 5.2. We still
need to check conditions 3 and 4. Condition 3 will require the most work. To get this condition,
we want to apply Lemma 2.10. However, the points u and v are random, so we cannot just apply the
lemma directly. Instead, we will apply Lemma 2.10 in conjunction with Lemma 2.1 (independence
across concentric annuli) and a union bound to cover space by balls where an event occurs which
is closely related to the one in Lemma 2.10. Then, we will use a geometric argument based on
condition 3 of Lemma 5.3 to transfer from an estimate for balls containing u and v to an estimate
for u and v themselves.

Let us now define the event to which we will apply Lemma 2.1. Forz € C, s > 0,and R > 0, let
G,(z; R) be the event that the following is true.
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(1) The one-dimensional Lebesgue measure of the set of x € dBy(z) for which

5h<x’ aBS/Z(Z);KS/Z’S(Z)> > RsiQeths(@

is at most (1/2)s.
(2) Dy(around A, (2)) < Rs* Qe
(3) Dy(across A, ((2)) > (1/R)s* QM)
Since the event G,(z;R) involves only internal distances in Ks /2,5(2), the locality property
(Axiom II; see also Subsection 2.2) implies that Gy(z; R) is almost surely determined by hlﬁs/z,s @
Furthermore, by Weyl scaling (Axioms III), the occurrence of Gy(z; R) is unaffected by adding a

constant to h. Therefore,

C(zR) € o((h—hyu(@Dl5, () ) (55)
We can also arrange that the probability of G(z; R) is close to 1 by making R large.

Lemma 5.4. Foreach p € (0, 1), there exists R > 0, depending only on p, A and the law off)h, such
that for each z € C and each s > 0, we have P[G(z;R)] > p.

Proof. By Lemma 2.10 (and the fact that a path from x € dB,(z) ti) z must hit 0B, /z(z)), if R is cho-
sen to be sufficiently large, depending only on p and the law of D;,, then the first condition in the
definition of G4(z; R) has probability at least 1 — p/3. By tightness across scales (Axiom V'), after
possibly increasing R we can arrange that the other two conditions in the definition of G(z; R)
also have probability at least p. O

Let us now apply Lemma 2.1 to get the following.
Lemma 5.5. There exists R > 0, depending only on A and the law of Dy, such that for each r > 0, it
holds with polynomially high probability as € — 0 (at a rate depending only on A and the law of D)
such that the following is true. For each point
z € {aré®* : ke [1,2747 e, } U {re™ ke [1,2n47 e, ), (5.6)
we have

#{k € B log, 7', log, 5_1] : G4, (Z;R) occurs} > Zlog, e . (5.7)
z

ool w

Proof. By (5.5) and Lemma 5.4 (applied with p sufficiently close to 1), we can apply Lemma 2.1
(independence across concentric annuli) to get the following. There exists R > 0 as in the lemma
statement such that for each z € C and each r > 0,

IP[#{k € [% log, ¢!, log, &'_1] : G4, (z;R) occurs} > glog4 s_l] >1-0,(%).
VA
The lemma follows from this and a union bound over the O.(¢~!) points in the set (5.6). O

The following lemma is the main step in the proof of Lemma 5.2.
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Lemma 5.6. There exist t € (0,A(1 — a)?] and p € (0,1) (depending only on A and the laws
of D, and Dy,) such that for each r € Ry, there exist a deterministic vertical or horizontal half-
annulusH, C A, ,(0), a deterministic radius s, € [tr, t1/2r] N {4 %1}, n, and deterministic points
U,,V, € 0H, asin (5.4) such that with probability at least 2p, the following is true. There exist non-
singular pointsu € 0B,,(0) N Bsr(u,) andv € 6B,.(0) N B, (v,) such that conditions 1, 2, and 3 from
Lemma 5.2 hold.

Proof. Step 1: Setup. Let a and p,, be as in the definition of R, from (5.2). Let the half-annulus H,
forr € Ry beasin Lemma 5.3 and let R > 0 be as in Lemma 5.5. Also let t > 0 be small enough so
that the event of Lemma 5.5 with t in place of € occurs with probability at least 1 — p, /8. We can
arrange that t is small enough so that

t<A(1—a)* and (2R*+1)(2t)° < 12, (5.8)

where 0 is as in Lemma 5.3. Then with probability at least p,/8, the event of Lemma 5.3 and the
event of Lemma 5.5 with € = t both occur. Henceforth, assume that these two events occur.

Let P be the D;,-geodesic from u to v which is contained in H,, as in Lemma 5.3. By the conditions
in Lemma 5.3, the conditions 1 and 2 in the statement of Lemma 5.2 hold for this choice of u, v,
and P. It remains to deal with condition 3.

Step 2: Reducing to a statement for a random radius and pair of points. We can choose random
points

z, €0H, N {ocrei’ltk ‘ke [1,271'/1_1t_1]Z} and

z, €0H, n {re™* : k e [1,22727 7]}

such that
|lu—z| <tr/50 and |v-—z,| <tr/50. (5.9)

The event of Lemma 5.5 (with ¢ = t) implies that for each i € {1, 2}, there are at least % log, t™*
values of k € [% log, t™1,log, t‘l]Z such that G,—«,.(z;; R) occurs. Since the number of choices

for k is at most %log4 t~1, there must be some (random) k, € [% log, t™1,log, t‘l]Z such that
G4k, (213 R) N G4k, ,(25; R) occurs. We pick one such value of k., in a measurable manner and set

s:=4%r, sothat se [tr,t"?r]n {4 rhen. (5.10)

We claim that condition 3 in Lemma 5.2 holds with s in place of s, and z,, z, in place of u,, v,.
Once the claim has been proven, we have that with probability at least p, /8, the conditions in the
lemma statement hold with the random variables s, z,, z, in place of the deterministic parameters
s, U,,V,. The number of possible choices for s is at most % log, t=! and the number of possible
choices for each of z;, z, is at most a constant (depending only on 4 and the laws of D, and D;,)
times t=!. Therefore, our claim implies that there is some constant p > 0 (which depends only on
Do and t, hence only on the laws of D, and D;,) and a deterministic choice of parameters s,, u,, and
v, such that with probability at least 2p, the conditions of the lemma statement hold for s,, u,, and

v,.
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Step 3: Estimates for distances in B,(z,) and By(z,). It remains to prove the claim in the preceding
paragraph. By our choices of z;, z, (5.9) and s (5.10),

ue Bs/Z(Zl) C By(z1) CByup, () and v e BS/Z(ZZ) C B(2,) C Byu/2, (V). (5.11)
From this, condition 3 from Lemma 5.3 (with § = 2tl/ 2), and the definition of G,(z;; R), we obtain

(2t"/%)° Dy (u, v) > max{Dy, (u, 8Byy1/2, (W), Dpy (v, 8By1/2,(v)) } - (by Lemma 5.3)
> max{Dj,(, 0B(2)), Dy(v,0B(2,))}  (by (5.11))

> max D, (across A Z:
iel1.2) h( s/z,s( 1))

(since u € By/,(z;) and v € By ,(z,))

> 1 max s°Qeshs(z) (by condition 3 for G,(z;; R)). (5.12)
R ie{1,2}

We now apply (5.12) to upper-bound the quantities s¢Qe¢”s(@) appearing in conditions 1 and 2 in
the definition of G,(z;; R). Upon doing so, we obtain the following observations for i = 1, 2.

(i) The one-dimensional Lebesgue measure of the set of x € dBy(z;) for which
D, (x, aBs/z(zi);Es(zi)> > R2(2tl/2)95h(u, V)

is at most (1/2)s.
(ii) We have

Dy, (around A, (z))) < R*(2t"/%)°D),(u, v). (5.13)

Step 4: Checking condition 3. If x € dB(z,), then the union of any path from x to 9B /,(z;),
any path in A/, ((z;) which disconnects the inner and outer boundaries of A/, (z;), and any
path from u to dB(z,) must contain a path from u to x (see Figure 14). By (5.13) and the second
inequality in (5.12), we therefore have

5h<x, u;ES(zl)> <D, (x, aBs/z(zl);Es(zl)> + Dy, (around Ay, (z,)) + Dy (u,9B(z;))
<D, (x, 3B, /2(21);§s(zl)) + (R +1)2t"/2)° D, (u, v). (5.14)

By combining (5.14) with observation (i) above, we get that for all x € dBy(z;) except on a set
of one-dimensional Lebesgue measure at most (1/2)s,

D, (x, u;Es(zl)> < @R + 1)(2t°D,, (u, v). (5.15)

By (5.15) and our choice of t in (5.8), we get that for all x € 0B(z;) except on a set of
one-dimensional Lebesgue measure at most (1/2)s,

5h<x, u;ES(zl)> < 2D, (u,v). (5.16)
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Bs/2 (Z1)

Bs(Zl)

FIGURE 14 Illustration of the proof of condition 3 in Lemma 5.2 with (s, z;) in place of (s, u,). The
concatenation of the purple, orange, and green paths in the figure contains a path from u to x. The D,,-length of
the purple path can be bounded above in terms of D,(u, v) by condition 3 from Lemma 5.3. The D, -length of the
orange path can be bounded above in terms of D,,(u, v) using (5.13), which in turn is proven using conditions 2
and 3 in the definition of G,(z,; R). For most points x € dB(z,), the D,-length of the green path can be bounded
above in terms of D, (u, v) by condition 1 in the definition of G,(z,; R).

Since 1 < ¢,, the estimate (5.16) together with the bi-Lipschitz equivalence of D, and D,, implies
that

Dy, (x, u; Es(zl)> < ADy,(u, v). (5.17)

This gives condition 3 in Lemma 5.2 with z; in place of u, and s in place of s,. The analogous
bound with z, in place of v, and s in place of s, is proven similarly. O

Proof of Lemma 5.2. Let p be as in Lemma 5.6. In light of Lemma 5.6, it suffices to find S > 3 such
that with probability at least 1 — p, condition 4 in the lemma statement holds, that is, there exists
t € [3r,Sr] such that

Dy, (around A, ,,(0)) < ADj, (across A, 5,(0)). (5.18)

One can easily check using a ‘subtracting a bump function’ argument and Weyl scaling (Axiom IIT)
that there exists g € (0, 1) (depending only on A and the law of D, ) such that for each fixed ¢t > 0,
the probability of the event in (5.18) is at least q. See [21, Lemma 6.1] for similar argument. We can
then apply assertion 2 of Lemma 2.1 to a collection of logarithmically many evenly spaced radii
t, € [3r,Sr] to find that the probability that there does not exist ¢t € [3r, Sr] such that (5.18) holds
decays like a negative power of S as S — o0, at a rate which depends only on the laws of D), and
D),. We can therefore choose S large enough so that this probability is at most p, as required. []

5.3 | Building block event

We will use Lemma 5.2 to define an event which will be the ‘building block’ for the event E, = E,, ,..
Let the parameters S, p > 0, the half-annulus H, C A, .(0), theradiuss, € [tr, t'/?r] N {47 %r} o,
and the points

u, € OH, N {are™™ : k e [1,2747't""],} and
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v, € 0H, n {re™™ : k € [1, 2227t}

be as in Lemma 5.2.
Forz € C, let

T
I

H.+zCA, (2),
u,, :=u.+z€09H,, NdB,(z), and
Vyr i=V,+z €0H,, NIB,(2).
We also let F,, be the event of Lemma 5.2 with the translated field h(- — z) in place of h. That

is, F, , is the event that there exist non-singular points u € 6B,,(z) N B /,(u,,) and v € 3B,(z) N
By /5(v,,) with the following properties.

(1) D,(u,v) < coDn(u, v).
(2) There is a D,-geodesic P from u to v which is contained in H, -
(3) The one-dimensional Lebesgue measure of the set

{x € aBSr(uz,,) : Dh<x,u;§sr(u2’,)> > /11~)h(u, v)}

is at most (1/2)s, and the same is true with v and v, , in place of u and u, ..
(4) There exists t € [3r,Sr] such that

Dy, (around A, ,,(2)) < ADy, (across A, 3,(z)).

By Lemma 5.2, the translation invariance of the law of h, viewed modulo additive constant, and
the translation invariance of D), and D, (Axiom IV’), we have

P[F,,1>p, VzeC, VreR,. (5.19)
The other property of F, . which we need is that it depends locally on h.

Lemma 5.7. The event F,, is almost surely determined by the restriction of h to Bsg,(z), viewed
modulo additive constant.

Proof. 1t is clear from Weyl scaling (Axiom III) that adding a constant to & does not affect the
occurrence of F, ., so F, . is almost surely determined by h, viewed modulo additive constant. It
therefore suffices to show that F, , is almost surely determined by h|p ;).

To this end, we first observe that by locality (Axiom II), the condition 4 in the definition of F,,
is almost surely determined by h|p._ ;). We claim that if this condition holds, then

Dy(x,y) = Dp(x,y; B3s,(2)),  Vx,y € B3,(2); (5.20)

and the same is true with D, in place of Dj,.

Indeed, it is clear that (5.20) holds if x = y or if either x or y is a singular point. Hence, we can
assume that x # y and that x and y are not singular points. To prove (5.20), it suffices to show
that each Dj,-geodesic from x to y is contained in B;g,(z). To see this, let P be a path from x to
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y which exits Bsg,(2). Let ¢ € [3r,Sr] be as in condition 4 in the definition of F,,. We can find a
path 7 C A, ,,(z) which disconnects the inner and outer boundaries of A, ,,(z) such that

len(r; D)) < Dy, (across Ay, 5,(2)).

Since x,y € B;,(z) and P exists B;;(z), the path P must hit 7, then cross between the inner
and outer boundaries of A, ;,(z), then subsequently hit 77 again. This means that there are
two points of P N7 such that Dj-length of the segment of P between the two points is at
least Dy (across A, 3,(z)). The D)-distance between these two points is at most the Dj-length
of 7r, which by our choice of 7 is strictly less than Dj,(across A,, ;,(z)). Hence, P cannot be a
D, -geodesic. We therefore obtain (5.20) for D,,.

To prove (5.20) with D, in place of D,, we observe that if ¢ is as in condition 4 in the definition
of F, ., then

Z,r
Dy, (around A, ,,(2)) < €,Dj,(around A, 5,(z)) < A6, Dy, (across A,, 3,(2))

< A(C, /c,)Dy, (across A, 5,(2)).

We have A(C, /c,) < 1, so we can now prove (5.20) with D, in place of Dj, via exactly the same
argument given above.

Due to (5.20), the definition of F, , is unaffected if we require that Pisa 1~)h(-, -; B35, (2))-geodesic
instead of a Dj,-geodesic and we replace Dj,-distances and D,-distances by Dj(-,; Bss,(2))-
distances and 5h(-, -; B3, (2))-distances throughout. It then follows from locality (Axiom II) that
F,, is almost surely determined by h|p__ (,), as required. O

5.4 | DefinitionsofU,,V,,andf,

The definitions of E,, U,, V,, and f, will depend on parameters

1 1 1 1
1>a;>—>a3;>a,>a;>a3;,> — > — >a> —, (5.21)
A2 A7 AS AlO

which will be chosen in Subsection 5.5 in a manner depending only on p, 4, and the laws of D;, and
D),. The parameters are listed in (5.21) in the order in which they will be chosen. Each parameter
will be allowed to depend on the earlier parameters as well as the number A from (5.3) (which is
allowed to depend only on the laws of D;, and Dy, not on p). Each parameter will also be allowed
to depend on the numbers a,t, S, p appearing in Lemma 5.2 (which have already been fixed, in a
manner depending only on A and the laws of D), and D,,).

Also let p € (0,1) be a small parameter which will also be chosen in Subsection 5.5 in a manner
depending only on A and the laws of D,, and D,,. We will have

ay > p > as, (5.22)
and p will be allowed to depend on 4, a;, A,, a3, a, and the numbers appearing in Lemma 5.2.

In the rest of this subsection, we will give the definition of the open sets U, and V, and the
bump function f, in terms of p and the parameters from (5.21). See Figure 15 for an illustration.
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FIGURE 15 The figure shows the setsH, ., Bsm(uzvp,), B (v pr)sand L, for z € Z,. We define U, to be
the union of H Bsm(uz,p,), By (Vzor) and By, (L, ,,) for z € Z,. We define V, := B, ,(U,). The bump function

z,0r?

f, is supported on V, and attains its maximal value Aq at every point of U,.

Forr € p~ 1R, let

K, = [%] (5.23)

where S is as in Lemma 5.2. We define the set of ‘test points’
Z,=2,(p) := {2r exp(27ik/K,) : k € [1, KP]Z} C 9B,,(0). (5.24)

The event E, will include the condition that the event F
the points z € Z,..

Recall the half-annuli H, ;. and the balls Bspr(uz,pr) and Bspr(vz,p,) from the definition of
F.or- We emphasize that by Lemma 5.2, the number of possible choices for the half-annulus
(pr)™'[H,,, — 2] and the balls (pr)_l[BSpr(uz,pr) —z] and (pr)_l[BSpr(vz’p,) —z] is at most a

2,or Of Subsection 5.3 occurs for ‘many’ of

constant depending only on A and the laws of D, and D,,.

We will now construct a ‘tube’ which links up the setsH, ,, U Bspr(uz, or) U Bspr (Vo) forz € Z,.
Fork € [1,K,], let z; 1= 2rexp(27ik/K,) be the kth element of Z,. We also set Zx 41 1= 2 We
choose for each k € [1,K,], a smooth simple path L, . from the point of B, , (Vz, or) Which is
furthest from H, ., to the point of Bspr(uzk+lspr) which is furthest from H We can arrange
that these paths have the following properties.

Zie4 1,07

(i) Each L, or is contained in the 10pr-neighborhood of 0B,,(0).

(ii) Thj Euclidean distance from L, ., to each of the half-annuliH, . and H,  , is at least
Sor/2.
or

(iii) The Euclidean distance from L to each of the following sets is at least (1 — ot)pr/4:

Zje,Pr
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* thesetsH, ., forw € Z, \ {zy, z; 11 };
* thesetsL, ., forw € Z, \ {z; };
* the sets B, (Vo) forw € Z, \ {z};
* the sets Bspr(uw’pr) forwe Z, \ {z;,;}.
(iv) The number of possibilities for the path (or)~(L
only on p, 4, and the laws of D), and D,.

2or — Zk) is at most a constant depending

With t as in Lemma 5.2, we define

U =0 = J [sz UB, (U, ) UB (V,0) UBy (L, o) (5.25)
2€Z,(p)

and

V, = V,(U,. ) := B, (U,). (5.26)

We emphasize that V, is determined by U, and ag and (once a4 is fixed) the number of possible
choices for the set r~1U, is at most a finite constant depending only on p, 4, and the laws of D),
and Dj,. We cannot take r~'U, to be independent from r since the radius sor and the half-annulus
H,, from Lemma 5.2 are allowed to depend on pr. This is a consequence of the fact that we only
have tightness across scales, not exact scale invariance. However, a constant upper bound for the
number of possibilities for r~*U, will be enough for our purposes.

Let

f. 1 C - [0,Ag] (5.27)
be a smooth bump function which is identically equal to Ag on U, and which is supported on V,.
We can choose f, in such a way that f.(r-) depends only on r~'U,, which means that the number
of possible choices for f.(r-) is at most a finite constant depending only on t, p, 4, and the laws of
Dh and 5/’1'
5.5 | Definition of E,
We will now define the event E, = E;, appearing in Subsection 4.1. Recall the parameters

from (5.21) and (5.22). For r € p~'R,, let E, be the event that the following is true. We will discuss
the purpose of each condition just after the definition.

(1) (Bound for distance across) We have
min{D,, (across A, ; 5,(0)), Dy (across A, s, 5,(0)) } > a;r¢ s/,
(2) (Bound for distance around) We have
Dy, (around As, 4,(0)) < AréQesh©),

(3) (Regularity along geodesics) The event of Lemma 2.13 occurs with U = A, 4(0), y =1/2,
and ¢, = a;. That is, for each ¢ € (0,a;], the following is true. Let V C A, ,,.(0) and let
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f : € — [0, 00) be a non-negative continuous function which is identically zero outside of
V.Letz € A, /24 a200), X,y € KM,(O) \ (V UB_/2,(2)), and s > 0 such that there is a
Dh_f(-, -;K,Ar(o))-geodesic Py from x to y with Pf(s) € B,,(z). Assume that s < inf{t > 0 :
Pf(t) € V}. Then with 6 = 6(1/2) > 0 as in Lemma 2.13,

Dy, (around A, ,1/2,(2)) < %s. (5.28)

(4) (Existence of shortcuts) Let Z, be the set of test points as in (5.24). For each connected circular
arcl C 0B,,(0)with Euclidean length atleasta,r /2, there exists z € I N Z, such that the event
F, or Of Subsection 5.3 occurs.

(5) (Comparison of distances in small annuli) For each z € A, 5, 3,(0) and each § € (0, as],

Dy (around As, /4 5,/5(2)) < 87/*Dy (across A, 35,(2)). (5.29)

(6) (Reverse Holder continuity) For each z,w € A, 5, 3,(0) with |z — w| < A "asr,

1z — w| §(Q+3)
Dy (z,w; A, 4,(0) > <T> 7£QoEh (0).
(7) (Internal distance in U,) We have
D, (around U,) < A,r*Qesh (), (5.30)

More strongly, there is a path IT C U, which disconnects the inner and outer boundaries of U,
and has Dj,-length at most A,r¢Qe¢"+© such that each point of the outer boundary’ of U, lies
at Euclidean distance at most agr from II.

(8) (Intersections of geodesics with a small neighborhood of the boundary) Let f : C — [0, Ag]
be a continuous function and let Py be a Dj,_;(:, -;K,A,(O))—geodesic between two points
of 0B,,(0). The one-dimensional Lebesgue measure of the set of x € dU, such that Py n
By, (x) # ¢ is at most Ator. Moreover, the same is true with U, replaced by each of the
circles 6Bspr(uz,pr) and 5Bsp, (Vo) forz e z,.

(9) (Radon-Nikodym derivative bound) The Dirichlet inner product of & with f, satisfies

|(h7 fr)vl < Al()- (531)

We will eventually show that E, satisfies the hypotheses for E , listed in Subsection 4.1. Before
beginning the proof of this fact, we discuss the various conditions in the definition of E,.

Conditions 1 and 2 occur with high probability due to tightness across scales (Axiom V’). These
conditions are needed to ensure that hypothesis A from Subsection 4.1 is satisfied. Condition 2 is
also useful for upper-bounding the amount of time thata D), -geodesic or a Dj,_¢ -geodesic between
points outside of B,,(0) can spend in V,. Indeed, if 7 is a path in A;, ,,.(0) which disconnects
the inner and outer boundaries of near-minimal D,-length (equivalently, near-minimal Dy, -
length since V, N A;, 4.(0) = @), then any such geodesic must hit 77 both before and after hitting

"The set U, has the topology of a Euclidean annulus, so its boundary has two connected components, one of which
disconnects the other from oco. The outer boundary is the outer of these two components.
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V,. The length of the geodesic segment between these hitting times is at most the length of 7. See
Lemma 5.12 for an application of this argument.

Condition 3 holds with high probability due to Lemma 2.13. This condition will eventually be
applied with V =V, and f = f,. We allow a general choice of I and f in the condition statement
since we will choose the parameter a; in condition 3 before we choose the parameters p, Ag, aq
involved in the definitions of V, and f,. The condition will be used in two places: to lower-bound
the Euclidean distance between two points on a Dj,_¢ -geodesic in terms of their D, -distance
(Lemma 5.11); and to link up a point on a D,_; -geodesic which is close to dU, with a path in
U, (Lemma 5.21).

Condition 4 is in some sense the most important condition in the definition of E,. Due to the
definition of F, . from Subsection 5.3, this condition provides a large collection of ‘good’ pairs of

Z,pr
points u,v € Urpsuch that D, (u,v) < ¢oDp(u, v). The fact that we consider the event F, . in this
condition is the reason why we need to require that r € p~!R,. We will need to make p small
in order to make the set of test points z € Z, of (5.24) large, so that we can apply a long-range
independence result for the GFF (Lemma 2.3) to say that condition 4 occurs with high probability.
See Lemma 5.13.

Condition 5 has high probability due to Lemma 2.8, and will be used in Subsection 5.10. More
precisely, we will consider a segment of a D),_; -geodesic which is contained in a small Euclidean
neighborhood of the ball Bspr(uz, or) in the definition of F, .. We will use the paths around annuli
provided by condition 5 to ‘link up’ this geodesic segment to a short path from u to the boundary
of this ball, as provided by condition 3 in the definition of F, . (see Lemma 5.34).

Condition 6 has high probability due to the local reverse Holder continuity of D, with respect to
the Euclidean metric [36, Proposition 3.8]. This condition will be used in several places, for exam-
ple, to force a Dj,_; -geodesic between two points of 9V, to stay in a small Euclidean neighborhood
of V, (Lemma 5.22). See also the summary of Subsection 5.8 in Subsection 5.1. The requirement that
|z — w| < A7 asr is needed to make the condition occur with high probability (cf. [36, Proposition
3.8)]).

Condition 7 has high probability due to a straightforward argument based on tightness across
scales and the fact that there are only finitely many possibilities for r~1U, (see Lemma 5.15). This
condition will be used to check the condition on D (around U, ) in hypothesis A for E,. The reason
why we need to require that each point of the outer boundary of U, is close to the path II is as
follows. In the proof of Lemma 5.21, we will consider a D;,_¢ -geodesic P, and times 7 < ¢ at which
ithits 9V,. We will upper-bound o — 7 = D;,_¢ (P,(7), P,(0)) by concatenating a segment of IT with
segments of small loops surrounding P,(7) and P,(o) which are provided by condition 3. The
condition on IT is needed to ensure that these small loops actually intersect I1.

Recall thatf, : C — [0, Ag]. Condition 8 has high probability due to Lemma 2.14. We will even-
tually apply this condition with f = f. in order to say that a Dy,_ -geodesic cannot spend much
time in the region V, \ U, where f, takes values strictly between 0 and Ag (see Lemmas 5.28
and 5.32). The reason why we allow a general choice of f in the condition statement is that
V, = B,,,(U,), and hence also f,, depends on the parameter ag, which needs to be made small
enough to make the probability of condition 8 close to 1.

The purpose of condition 9 is to check the Radon-Nikodym derivative hypothesis B from Sub-
section 4.1, see Proposition 5.17. This condition occurs with high probability due to the scale
invariance of the law of i, modulo additive constant, and the fact that there are only finitely many
possibilities for f,(r-) (Lemma 5.16).

95U8017 SUOLULLIOD AN 3|01 jdde 8Ly Aq peuseob e Sapo1e O '8N J0 SN 1o} Aleiq 1T 8UIUO A8 L (SUORIPUOD-PUE-SLLBIALIOD" A8 |IW ARe1q U U0//Sd1IL) SUORIPUOD P SW | 8Y188S *[2202/TT/0T] Lo ARiqiauliuo A8|im ‘Ateiqi 0Bealyd JO AiSAIUN Ad Z6v2T SWId/ZTTT OT/I0p/Lod AB|im Aleiqjput|uo'acsyeLupuo|//sdiy Woly papeojumod ‘0 ‘Xiz09rT



UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 87

5.6 | Properties of E,
We first check that E, satisfies an appropriate measurability condition.

Lemma 5.8. The event E, is almost surely determined by h| (0 viewed modulo additive constant.

Proof. By Weyl scaling (Axiom III) that the occurrence of E, is unaffected by adding a constant
to h, so E, is almost surely determined by h viewed modulo additive constant. It is immediate
from locality (Axiom II; see also Subsection 2.2) that each condition in the definition of E, except
possibly condition 4 is almost surely determined by h|EW 0)° Lemma 5.7 implies that condition 4

is almost surely determined by h|; (0 38 well. O

Most of the rest of this subsection is devoted to proving the following.

Proposition 5.9. For each p € (0, 1), we can choose the parameters in (5.21) and (5.22) in such a
way that

P[E,] >p, Vre€p 'R, (5.32)

To prove Proposition 5.9, we will treat the conditions in the definition of E, in order. For each
condition, we will choose the parameters involved in the condition, in a manner depending only
on p, 4, and the laws of D;, and 5;1» in such a way that the condition occurs with high probability.
For some of the conditions, we will impose extra constraints on the parameters beyond just the
numerical ordering in (5.21) and (5.22). These constraints will be stated and referenced as needed
in the later part of the proof.

Lemma 5.10. There exists a; > 1/A, > a; > 0 depending only on p, 4, and the laws of D), and D,
such that for each r > 0, the probability of each of conditions 1, 2, and 3 in the definition of E, is at
least 1 — (1 — p)/10.

Proof. By tightness across scales (Axiom V'), we can choose a;, A, > 0 such that the probabilities
of conditions 1 and 2 are each at least 1 — (1 — p)/10. By Lemma 2.13, we can choose a; > 0 such
that the probability of condition 3 is at least 1 — (1 — p)/10. O

We henceforth fix a;, A,, a; as in Lemma 5.10. Our next task is to make an appropriate choice
of the parameter a, appearing in condition 4.

Lemma 5.11. Let r > 0 and assume that conditions 1, 2, and 3 in the definition of E, occur. Let
V C A, 5 (0)andlet f . C — [0, 0o) be a non-negative continuous function which is identically zero

outside of V. Also let Py be a Dj,_(-, K,A,,(O))-geodesic between two points of 0B, (0) and define
the times

T :=inf{t >0 : Pf(t) €V} and o :=sup{t>0: Pf(t) eVl (5.33)

There exists a, > 0 depending only on p, A, and the laws of D), and D, such that the following is
true. If

SUOIIPUOD PUe SLwe | 84} 88S *[2202/TT/0T] uo Arigiauniuo A|im ‘Areiqi 0Beolyd JO AusieAin Ag 26b2T Swid/ZTTT OT/I0p/W00 A8 1M AReIq 1 jBUl U0 I0SLIRWPUO|//SANY WO PBpeojumoq ‘0 ‘XvZ09vT

100" A8 1M Areq 1 U U0/ /Sd

-pue-

35UB017 SUOLULLIOD AAIES.ID) 3|qedljdde ayy Aq pausench ae sapiLe YO ‘8sh Jo Sajni 1o} Aeiqi auljuQ AS[IA UO (suo!



88 DING AND GWYNNE
3’ ,h,0)
Dy (P4(v), P1(9); B4y (0)) 2 p=r=Ce ), (5.34)
2
then
|Ps(t) — Pp(o)| > ayr. (5.35)

The motivation for our choice of a, comes from hypothesis C for E, from Subsection 4.1. We
will eventually apply Lemma 5.11 with V' = V,, f = f,, and P equal to a (B,,(0), V,)-excursion of
a Dy,_; -geodesic between two points of C \ B,,(0) (recall Definition 4.1). The assumption (5.34)
is closely related to the condition (4.4) from hypothesis C. The lower bound for |Pf(r) —-P f(o)l
from (5.35) will eventually be combined with condition 4 in the definition of E, to ensure that
thereisa z € Z, such that F, . occurs and our D;,_¢ -geodesic gets Euclidean-close to each of the
points u, v appearing in the definition of F, . (see Subsection 5.9).

For the proof of Lemma 5.11, we need the following lemma.

Lemma 5.12. Assume we are in the setting of Lemma 5.11 and let V, f,P;, 7, and o be as in that
lemma. For each ¢ € (0, a;], one has

max { Dy, (around A, .1/, (Pf(7))), Dy, (around A, .1/, (P(0))) }

< 2A2£er§Qe§hf(0). (5.36)

Proof. Let 7, (respectively, o)) be the last time before 7 (respectively, the first time after o) at which
P hits 9B5,.(0). By condition 2 in the definition of E,, there is a path IT C As, 4,(0) with D,-length
at most 2A,r5Qe¢/© which disconnects the inner and outer boundaries of A, 4,(0). Since f is
supported on A, 5,.(0), the Dj,_-length of IT is the same as its Dj,-length. The path P; must hit IT

before time 7, and after time ¢,. Since Py isa D),_¢(:, -;K,A,(O))-geodesic, we infer that
0o — 7o < len(I; D,_s) < 2A,r5QSH (), (5.37)

Indeed, otherwise we could replace a segment of P, by a segment of IT to get a path in KM,(O)
with the same endpoints as P, but shorter Dj,_ ¢-length.

By condition 3 in the definition of E, applied to the Dj,_ (-, -;Kr,4,(0))—geodesic Ptliz, 0,1 and
with z = Pf(T) and s = 7 — 7, for each € € (0, a5],

Dy (around A, 12, (P (1)) < €%(t — 79) < (0 — 1) < 26°A,r¥ QeSO (5.38)

where the last inequality is by (5.37). The analogous bound with o in place of 7 follows from the
same argument applied with P, replaced by its time reversal. O

Proof of Lemma 5.11. See Figure 16 for an illustration. By Lemma 5.12, for each € € (0, a;] there is
apathzm, C A, .12,(Ps(7)) such that

len(rr,; D) < 4e° A,réQes ), (5.39)
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Pf(aa4)

FIGURE 16 Illustration of the proof of Lemma 5.11. If [P;(7) — P;(0)| < a,r, then the union of the orange
loop 7, and the segments Py|;. . and Py, | contains a path from P(z) to P;(0) of D),_,-length less than
a0 s

2
:LArngg h©), This yields the contrapositive of the lemma statement.
2

Let a, € (0,a;] be chosen so that

2
a
42,00, < ——. 5.40
* 727 16A, (5.40)
By (5.39) and since f is non-negative,
len( 7, :D <len(r, :D, ) < 2’ r$Qebhr(0) (5.41)
€ 7Ta4, h—f | S e 7T84’ h 16A e . .

2

We will prove the contrapositive of the lemma statement with this choice of a,, that is, we will
show that if |[P;(7) — P(0)| < ayr, then D, (P(7), P;(0); B4.(0)) < %r’SQQEhr(O)_

If |Pf(r) — Pf(o)l < aur, then Pf(cr) S Ba4,(Pf(r)). Since the endpoints of P; lie in 0B,,(0),
which is disjoint from B, /2,(P (7)), it follows that P hits m,, before time 7 and after time o.
Lett,, (respectively, 084) be the last time before time 7 (respectively, the first time after time o) at
which P hits 7z, . Since Py is a Dy_¢(-, -; A, 4,(0))-geodesic,

2
a
Oa, — Ta, < len<ﬂa4;Dh_f> < M;Arngghr(O)'

2

a
By the definitions (5.33) of 7 and o, the path segments Pfl[,a4’f] and Pfl[o’%] are disjoint

from the support of f. So, the D;,_ s-lengths of these segments are the same as their Dj,-lengths.
Consequently,

len<Pf|[.[a4’T];Dh) + len(Pf|[g’Ua4];Dh> < len(Pf|[Ta4’ga4];Dh_f>

2
4 h
=0, — T, < ToA, réQeth (), (5.42)

The union of Pf([Ta4, 7)), Ps([o, aa4]), and 7, contains a path from P((7) to P¢(o). Since V C
B;,(0), this path is contained in B,,.(0). We therefore infer from (5.41) and (5.42) that
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3a,2 a2
6;\ p§Q8h(0) o Z1 L2Q,Eh,(0)

Dy, (P4(1), P(0); By, (0)) <

as required. O

Henceforth, fix a, as in Lemma 5.11. We will now choose p so that condition 4 in the definition
of E, occurs with high probability.

Lemma 5.13. There exists p € (0, Aa,), depending only on p, A, and the laws of D}, and D, such
that

P°A, < A3, (5.43)

and the following is true. For each r € p~'R,, it holds with probability at least 1 — (1 — p)/10 that
condition 4 in the definition of E, occurs.

Proof. By the definition of K, in (5.23) and the definition of Z,(p) in (5.24), there is a constant
¢ > 0 depending onlyon S, a,, and A (hence only on p, 4, and the laws of D), and ﬁh) such that for
each p € (0,4/S) and each r € p~'R,,, the set Z, = Z,(p) satisfies the following properties.

(i) We have |z —w| > 50Spr for each distinct z,w € Z,(p) (note that 4 is much smaller than
1/50, see (5.3)).

(ii) Each connected circular arcJ C 0B,,(0) with Euclidean length at least a,r /4 contains at least
lcp~! | points of Z,(p).

Furthermore, there is a constant C > 0 depending only on a, and a deterministic collection .J
of arcs J C 8B,,(0) such that #J < C, each J € J has Euclidean length a,r/4, and each arc I C
0B,,(0) with Euclidean length at least a,r /2 contains some J € 7.

By (5.19), for each r € p~'R,, and each z € Z,(p), we have P[F, ;-] > p. By Lemma 5.7, each
F, or is almost surely determined by h| Bapy(2)> viewed modulo additive constant. Therefore, we can
apply Lemma 2.3 with & replaced by the re-scaled field a(r-), which agrees in law with A modulo
additive constant, and Z = r~1(J n Z,) to get the following. If p is chosen to be sufficiently small

(depending on p and C, hence only on p, 4, and the laws of D, and 5h), then

P

1_
U Fz,pr]m— P wey.

A~
zeZ.nJ 1

By a union bound over all J € J, we get that with probability at least 1 — (1 — p)/10, eachJ € J
contains a point z € Z,(p) such that F, ;. occurs. By the defining property of 7, this concludes
the proof. O

We next deal with conditions 5 and 6 in the definition of E,, which amounts to citing some
already-proven lemmas.

Lemma 5.14. Thereexistsas € (0, A(1 — a)tp] (wheretis asin Lemma 5.2), depending only on p, A,
and the laws of D;, and Dy, such that for each r > 0, the probability of each of conditions 5 and 6 in
the definition of E, is at least 1 — (1 — p)/10.
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Proof. The existence of a5 € (0, Atp] such that condition 5 in the definition of E, each occur with
probability atleast 1 — (1 — p)/10 follows from Lemma 2.8. By the local reverse Holder continuity
of D;, with respect to the Euclidean metric [36, Proposition 3.8], after possibly shrinking a; we can
arrange that condition 6 also occurs with probability at least 1 — (1 — p)/10. O

We henceforth fix a5 as in Lemma 5.14. We also let a5 € (0, min{4a;, as}) be chosen (in a manner
depending only on p4, and the laws of D, and D},) so that

(2a5)°A, < Aa5@+), (5.44)
The particular choice of a4 from (5.44) will be important in the proof of Lemma 5.21.

Lemma 5.15. There exists A; > 1/a,, depending only on p, A, and the laws of D), and ﬁh, such that
foreachr € p~'R,, the probability of condition 7 in the definition of E, is at least 1 — (1 — p)/10.

Proof. The set U, has the topology of a Euclidean annulus and its boundary consists of two piece-
wise smooth Jordan loops. Write 8°“'U, for the outer boundary of U,, that is, the outer of the two
loops. If r € p~' R, is fixed, then as ¢ — 0 the Euclidean Hausdorff distance between the follow-
ing two sets tends to zero: 3°"'U, and 8B,,(6°"'U,) N U, (that is, the intersection with U, of the
boundary of the Euclidean e-neighborhood of §°%tU,.).

Since we have already chosen p in a manner depending only on p, 4, and the laws of D;, and
Dy, the number of possible choices for ~'U, is at most a constant depending only on p, 4, and the
laws of D), and D;,. By combining this with the preceding paragraph, we find that there exists ¢ > 0,
depending only on p, 4, and the laws of D, and ﬁh, such that for each r € p‘lRO, the Euclidean
Hausdorff distance between °U'U,. and 0B,,.(6°"'U,) N U, is at most a,r.

By tightness across scales (in the form of Lemma 2.5) and the fact that there are only finitely
many possibilities for r~'U,, there exists A, > 0 such that for each r € p~'R,,, it holds with proba-
bility at least 1 — (1 — p)/10 that the following is true. There is a path IT C B,,.(6°"'U,) N U, which
disconnects 8°"tU, from 3B,,(3°"'U,) N U, and has D, -length at most A,réQes/©),

The path IT disconnects the inner and outer boundaries of U,, so the existence of IT immediately
implies (5.30). Furthermore, by our choice of ¢, each point x € §°U'U, lies at Euclidean distance at
most agr from a point of 6B,,.(6°"'U,) N U,. Since IT disconnects 6°"'U,. from 8B,,(3°"'U,) N U, the
line segment from x to this point of 8B,,.(8°"'U,) N U, intersects I1. Consequently, the Euclidean
distance from x to IT is at most a4r. O

We henceforth fix A; as in Lemma 5.15 and define

A
7 7
Nagé@Q+3) »log Aa } (545)

Ag i= 1 max{log
§
Recall from (5.27) that Ag is the maximal value attained by f,. We now treat the remaining two
conditions in the definition of f,.

Lemma 5.16. There exists ag € (0,4/Ag) and A,y > 1/a,, depending only on p, A, and the laws
of Dy, and Dy, such that for each r € p~' R, the probability of each of conditions 8 and 9 in the
definition of E, is at least 1 — (1 — p)/10.
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Proof. Since we have already chosen p in a manner depending only on p, 4, and the laws of D,
and D,,, the number of possible choices for r~1U, is at most a constant depending only on p, 4,
and the laws of D, and D,,. The set U, has the topology of a Euclidean annulus and its boundary
consists of two piecewise smooth Jordan loops. By the preceding sentence, the Euclidean length
of each of the two boundary loops of U, is at most a constant (depending only on p, 4, and the laws
of D, and Dj,) times r. We can therefore apply Lemma 2.14 with M = Ag and the curve 7 given
by each of the two boundary loops of U,, parameterized by its Euclidean length. This shows that
there exists a, € (0,1/Ag) depending only on p, 4, and the laws of D), and D, such that the event
of condition 8 in the definition of E, for the set U, occurs with probability atleast 1 — (1 — p)/20.

By a union bound over at most a universal constant times (1tp)~! points z € Z,, after possibly
decreasing a, we can also arrange that with probability at least 1 — (1 — p)/20, the event of con-
dition 8 occurs for each of the circles aBspr(uZ, or) and 5Bspr (v; or) for z € Z,. Combining this with
the preceding paragraph shows that condition 8 has probability at least 1 — (1 — p)/10.

The number of possible choices for the function f,.(r-) is at most a constant depending only on
D, 4, and the laws of D,, and D,,. By the conformal invariance of the Dirichlet inner product and
the scale invariance of the law of h, viewed modulo additive constant,

(v = (). )y = (F )y

Therefore, we can find A,, > 1/a, depending only on p, 4, and the laws of D,, and D, such that
the probability of condition 9 is at least 1 — (1 — p)/10. O

Proof of Proposition 5.9. Combine Lemmas 5.10, 5.13, 5.14, 5.15, and 5.16. O
We can also easily check the first two of the three hypotheses for E, from Subsection 4.1.

Proposition 5.17. Let r € p~'R,,. On the event E,, hypotheses A and B in Subsection 4.1 hold for
Eo, = E, with

a=a, A=A, L=A, (5.46)
and an appropriate choice of K > 0 depending only on the parameters from (5.21) and (5.22) (hence
only on p, A, and the laws of D), and l~)h). That is, on E,, the following is true.

(A) We have
Dh(vr’ aA;',3r(0)) Z alrngghr(O)’
Dy,(around A, 4,.(0)) < Ayr¥2em O and
D, (around U,) < A7V§Qe§hr(0).
(B) There is a constant K > 0, depending only on the parameters from (5.21) and (5.22), such that

the Radon-Nikodym derivative of the law of h + f, with respect to the law of h, with both
distributions viewed modulo additive constant, is bounded above by K and below by K™1.

Proof. We haveV, C A, s, , 5,(0), so hypothesis A follows immediately from conditions 1, 2, and 7
in the definition of E,. By a standard calculation for the GFF (see, for example, the proof of [34,
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Proposition 3.4]), the Radon-Nikodym derivative of the law of h + f, with respect to the law of h,
with both distributions viewed modulo additive constant, is equal to

exp((h,F)y = 5(6f )y ),

where (-, -)y is the Dirichlet inner product. Since the number of possibilities for f.(r-) is at most a
constant depending only on p, 1, and the laws of D, and D;,, we infer that (f,, f,)y is bounded above
by a constant C depending only on p, A, and the laws of D,, and D, (cf. the proof of Lemma 5.16).
By combining this with condition 9 in the definition of E,, we get that on E,, we have the Radon-
Nikodym derivative bounds

1 1
exp(—Aw = € ) <exp((£)y = (1 Ty ) < exp(Aso)
This gives hypothesis B with K = exp(A;, + C/2). O

Most of the rest of this section is devoted to checking hypothesis C of Subsection 4.1 for the
events E,.

Proposition 5.18. Fix ¢’ > cg. If 1 is chosen to be small enough (in a manner depending only on
the laws of D), and D;,) and the parameters from (5.21) and (5.22) are chosen appropriately, subject
to the constraints stated in the discussion around (5.21) and (5.22), then hypothesis C holds for the
events E, with

2

a
b:=—1 and c:=af@Pe s, (5.47)

Thatis, letr € p~'R and assume thatE, occurs. LetP, bea Dy,_ -geodesic between two points of C\
B,,(0), parameterized by its Dh_fr-length. Assume that there is a (B,,(0), V,)-excursion (7', 7,0,0")
for P, (Definition 4.1) such that

Dy(P,(t), P,(0); B4, (0)) > briQetr(©), (5.48)
There exist times T < s < t < o such that

t—s32crtQe©®  gnd ﬁh_fr (P.(5), P.(£); A, 4,(0)) < ¢/ (t —9). (5.49)

The proof of Proposition 5.18 will occupy Subsections 5.8 through 5.11.

5.7 | Proof of Proposition 4.2 assuming Proposition 5.18

In this subsection, we will assume Proposition 5.18 and deduce Proposition 4.2. As explained in
Section 4, this gives us a proof of our main results modulo Proposition 5.18.

Assume that the parameters from (5.21) and (5.22) are chosen so that the conclusions of Propo-
sitions 5.9 and 5.18 are satisfied. Let R, be as in (5.2) and let R := p~'R,. Since R C {8 } e
we have r’ /r > 8 whenever r,r’ € R with ¥’ > r, so (4.2) holds.
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The event E, is defined for each r € R. By Lemma 5.8, the event E, is almost surely determined
by h'K,A,(o)’ viewed modulo additive constant. By Proposition 5.9, IP[E,] > p for each r € R. By
the definitions in Subsection 5.4, the sets U, and V, and the functions f, satisfy the requirements
for Uy ., V »» and f;, . from Subsection 4.1, with the maximal value of f, given by M = Aq. By Propo-
sitions 5.17 and 5.18, the event E, satisfies hypotheses A, B, and C from Subsection 4.1 for z = 0,
with the parameters a, A, L, K, b, c depending on the parameters from (5.21) and (5.22).

To check the needed parameter relation (4.3), we observe that Proposition 5.17 gives a = a,
A = A,,and L = A,. By (5.21), we immediately get A > a. Furthermore, by (5.47),

2A, a2 a
%b: Ve S (5.50)
a a; 4A, 2

Moreover, by (5.45),
a
a—4e~ ML =a, —4e A, > a, —4la, > 31 (5.51)

Combining (5.50) and (5.51) gives the second inequality in (4.3).
Forr € Rand z € C, we define E, , to be the event E, of Subsection 5.5 with the translated field

h(- —z) — hy(-2) g hin place of h. We also define U, , :=U, +z,V,, :=V, +z,andf,,(-) :=
f.(- — z). By the translation invariance property of weak LQG metrics (Axiom IV’), the objects
E,;» UV, and f, , satisfy the hypotheses of Subsection 4.1.

It remains to prove the asserted lower bound for #(R N [¢’r, er]) under the assumption that
IP[G,(8,¢")] = B. By Proposition 3.10 (applied with ¢, instead of ¢’), the definition (5.2), of R,
and our choice of « and p, immediately preceding (5.2), there exists ¢/’ € (c,, €, ) depending only
on ¢/ and the laws of D), and D), such that the following is true. For each § > 0 there exists &, > 0,
depending only on p, E and the laws of D), and 1~)h, such that for each ¢ € (0,¢;] and each r > 0
such that P[G.(8, ¢’)] > B, the cardinality of R, N [¢2r, er] is at least % logg L. This implies that
ife € (0,¢],

#(R n [e’r,er]) (Ro N [pe’r, per]) (since R = p~1Ry)

= #
> #(R N [(pe)’r, per]) — #(Rg N [(0e)’r, pe’r])
> #

(Ro N [(pe)’r, per]) —logg p™"  (since Ry C {8 }en)

> 3 logge™! —loggp™'  (since pe < ¢)

> g logg e™! (for small enough € > 0, depending on p).
Thus, Proposition 4.2 has been proven. [
5.8 | Initial estimates for a geodesic excursion

To prove our main results, it remains to prove Proposition 5.18. In the rest of this section, we
will assume that we are in the setting of Proposition 5.18, that is, we assume that E, occurs, P,
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isa Dh_fr-geodesic between two points of C \ B,,(0), and (7, 7,0, 0¢") is a (B,,(0), V,)-excursion
satisfying (5.48). It follows from Definition 4.1 that

P.(t"),P,(¢") € 6B,,(0), P,(2).P,(0) €3V, P,((t'.0"))C By (0),

and P,((r/,7))UP,((0,0")) C B, (0)\V,. (5.52)

We will prove (5.49) via a purely deterministic argument. We first check the following lemma,
which will enable us to apply conditions 3 and 8 in the definition of E, to P, [[,/ ;).

Lemma 5.19. The path P,|[. ;) is contained in K,A,(O) and is a Dy_¢ (-, -;K,A,(O))-geodesic
between two points of 0B,,(0).

Proof. We have P,|s ;) C B4,(0) and P,(¢"), P,(c”) € 3B,,(0) by (5.52). We claim that P, does

not enter B,(0). Assume the claim for the moment. Then P, |, ;) C K,A,(O). Since P, isa Dy,_¢ -
geodesic, the Dj,_ -length of P, ||+ ;s is the same as the D;,_; -distance between its endpoints. We

conclude that P, |,/ ;) is a path in K,A,(O) whose Dj,_; -length is the same as the Dj,_; -distance
between its endpoints, which is at most the Dj,_¢ (-, -;ErA,(O))-distance between its endpoints.
Hence, P, |7 o1 isa Dy (-, K,’M(O))-geodesic.

It remains to show that P, does not enter B,(0). Assume by way of contradiction that P, N

B,(0) # @. By condition 7 (internal distance in U,) in the definition of E,, there is a path II in
U, which disconnects the inner and outer boundaries of U, such that

len(IT; D)) < 2A,r5Qes @),

Let 7, (respectively, o) be the first (respectively, last) time that P, hits II.
Since P, is a Dj,_; -geodesic and f, = Agon U,,

0y — 7o = Dp_ (P.(70), P, (0p)) < len<H;Dh_fr> < 26" SMs A rEQet (O (5.53)
On the other hand, since U, C A, 5, , 5,(0) and we are assuming that P, hits B,(0), it follows that
P, must cross between the inner and outer boundaries of the annulus A, ; 5,(0) between time 7,

and time o,,. Since f, = 0 on A, ; 5.(0) and by condition 1 (lower bound for distance across) in the
definition of E,,

Oy —Tp = 1en<Pr|[TO,%];Dh_fr> > Dy, (across A, ; 5,(0)) > a,r*Qetm©, (5.54)

By our choice of Ag in (5.45), the right side of (5.53) is smaller than the right side of (5.54), which
supplies the desired contradiction. O

From Lemma 5.11, we now obtain the following.
Lemma 5.20. We have

|P.(0) — P.(T)| = a,r.
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FIGURE 17 Illustration of the proof of Lemma 5.21. We obtain a path from a point of P,.([7’, 7]) to a point of
P.([o,0']) whose D,,_; -length is at most the right side of (5.55) by concatenating segments of 7., I, and 7,,. This
implies an upper bound for ¢ — 7 since P, is a D;,_;-geodesic.

Proof. Due to Lemma 5.19 and (5.48), this follows from Lemma 5.11 applied with V =V,, f =f,,
and P; equal to the D,_¢ -geodesic P, |/ ;). O

By (5.52), we have P 1(Vr) C [z, o]. We will now establish an upper bound for the length of this
time interval.

Lemma 5.21. We have

. %asg(Q+3)r§Qe§hr(0)_ (5.55)

Proof. See Figure 17 for an illustration. Let a5 € (0, 1a;] be as in (5.44). By Lemma 5.19, we can
apply Lemma 5.12 (with ¢ = 2a¢) to the D, (-, -;Krm(o))-geodesic P, |1 o1 to get that there are
paths 77, C A,, ;. 5,01/2,(Pr(7)) and 7, C Ay, . 5, y1/2,(P,(0)) which disconnect the inner and
outer boundaries of their respective annuli such that

max{len(r,; D)), len(7r,; D))} < (2a5)° A,r$Qetr(© ¢ 12 5Q+3),£Q80 ) (5.56)

where the last inequality is by (5.44). Let 7, be the last time before t that P, hits 7z, and let o, be
the first time after o that P, hits 7. Then 7, € [7/,7] and g, € [0,0”].

By condition 7 (internal distance in U,) in the definition of E,, there is a path IT C U, which
disconnects the inner and outer boundaries of U,, has D,-length at most A,r5Qe¢"© and such
that each point of the outer boundary of U, lies at Euclidean distance at most agr from IT. We
have P.(t) € 0V, = 6B39,(U,) and P([7/,7]) is contained in the unbounded connected component
of C\ U,. Hence, P,(7) lies at Euclidean distance at most ayr from the outer boundary of U,.
Therefore, the Euclidean distance from P,(7) to IT is at most (ag + ag)r < 2agr, where we use that
ag < a4 by definition.

Since 7, C Az‘aﬁr’(zaﬁ)l/zr(})r(f)) and 7, disconnects the inner and outer boundaries of

AZaﬁr,(zaﬁ)l /2,(P,(1)), it follows from the preceding paragraph that 7 intersects II. Similarly, 7,
intersects II. Hence, the union of the loops I1, 7z, and 7, contains a path from P,(z,) to P,.(o).
Therefore,

0 —T <0y~ Ty =Dy (Pr(10), P (0))

< 1en<ﬂT;Dh_fr) + len<7rg;Dh_fr) + len(H;Dh_fr) (5.57)
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Let us now bound the right side of (5.57). Since f, is non-negative, the D;,_; -length of each of
7. and 77, is at most the right side of (5.56). Since f, = Agon U,,

len(H;Dh_fr) = e s len(I; D)) < e "8 A, rf Qe (0) ¢ lasg(Q”)rngghr(o), (5.58)

where the last inequality uses the definition (5.45) of Ag. Plugging these estimates into (5.57) gives
oc—T< 3/1a5§(Q+3)r5Qe§hr(0), (5.59)
which is stronger than (5.55). O

Combining Lemma 5.21 with condition 6 (reverse Holder continuity) in the definition of E,
allows us to show that any segment of P, ||, ;; which is disjoint from V, must have small Euclidean
diameter.

Lemma 5.22. Each segment of P,|[, ;) which is disjoint from V, has Euclidean diameter at most
asr. In particular,

P.([r,0]) C Basr(V,).

Proof. Suppose by way of contradiction that there isa segment P, |, ; for times 7 < ¢ < s < o which
is disjoint from V, and has Euclidean diameter larger than asr. By (5.52), P,([z, o) intersects V,.
Hence, by possibly replacing P, |, ; by a segment of P, which travels from 8V, to 9B,_.(V,), we can
assume without loss of generality that P,.([¢, s]) is contained in B,, +(V,), which in turn is contained
in A, 5, 3,(0) by the definition of V, (Subsection 5.4). By the reverse Holder continuity condition 6
in the definition of E,, the Dj,-length of P, ||, ; is at least a5 (@*3r&Qesh-(©) Since f, is supported on
V,, the D, _¢ -length of P, ||, ;| is equal to its Dj,-length, so is also at least a5*(@+3)rfQes(©) Since
P,|(¢0) is a Dj,_¢ -geodesic, we therefore have

G—T2s5—1>ags@)pEQetn0), (5.60)

This contradicts Lemma 5.21. [l

5.9 | Forcing a geodesic to enter balls centered atu, , and v, ,

Recall the balls Bspr(uz’ o) and Bspr(vz, or) appearing in the definition of the ‘building block’ event
F, o from Subsection 5.3. On F, ., there are points u € Bspr(uz,pr) andv € Bspr (V,or) Which sat-
isfy 5h(u, V) c(’)Dh(u, v), plus several other conditions. To prove Proposition 5.18, we want to
force P, to get D,_; -close to each of u and v for one of these pairs of points u, v, then apply the
triangle inequality. To do this, the first step is to force P, to get close to the balls Bspr(uz’p,) and
vE Bsp, (v;,or) forsome z € Z, such thatF, . occurs. We will carry out this step in this subsection.
Our goal is to prove the following lemma.

Lemma 5.23. Let Z, C 0B,,(0) be as in (5.24). There exists z € Z, such that F
following is true. Let s and v

2,or OCCUrs and the

ors Uz ors 2or be the radius and points as in the definition of F, .. There
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4

ale,,.+a9r(Vz,p7‘) — Q

%
P,(a)—

L 0B, a0 (02 )

V,—

I
aBSpr+(ag+as)'r' (uz,pr')

FIGURE 18 Illustration of the statement of Lemma 5.23. Left: The set V, (light blue) and the path segment
P, |; - For simplicity, we have not drawn the details of V, except in the agr-neighborhood of the set
H,or UBs, (ug ) U B (v, or)- The set U, is not shown. Right: The left panel zoomed in on the purple box. We

have shown a subset of U, (light blue) and a subset of V, \ U, (lighter blue). By (5.62), the path segment P, |, ;, is
required to stay region outlined in orange.

exist times T < a < b < o which satisfy the following conditions:

P.(a),P.(b) € aBsergr(uz,p,), |P.(b) — P.(a)| > spr/8, and (5.61)

Po([0,5D) € By y(ayragr(Uz o)\ (Ve \ B, agr(Uzr))- (5.62)

Moreover, the same is true with v, . in place of u, .

See Figure 18 for an illustration of the statement of Lemma 5.23. Before discussing the proof,
we make some comments on the statement. The ball Bsp, +a,r-(Uz o) appearing in Lemma 5.23 is
significant because, by the definition of V,,, in (5.26), this is the largest Euclidean ball centered at
u, o whichis contained in V. The significance of the ball B 1y +ay)r(Uz o) appearing in (5.62) is
thatby Lemma 5.22, the path P, ||, ;) cannot exit the asr-neighborhood of V. We note that s, > tor
(Lemma 5.2), which is much larger than asr (Lemma 5.14), which in turn is much larger than agr
(recall the discussion surrounding (5.21)). So, the balls in (5.61) and (5.62) are only slightly larger
than Bspr(uz’ or)-

Lemma 5.23 will be a consequence of Lemmas 5.20 and 5.22 (which give a lower bound for
|P,.(t) — P,(0)| and an upper bound for the Euclidean diameter of any segment of P, which is dis-
joint from V,.), condition 4 in the definition of E, (which gives lots of points z € Z, for which F, ,,
occurs), and some basic geometric arguments based on the definition of U, from Subsection 5.4.

We encourage the reader to look at Figure 19 while reading the proof. Let us start by explain-
ing why we can apply condition 4 in the definition of E,. We have P,(t), P,(c) € dV, by (5.52)
and |P,(0) — P,(7)| > a,r by Lemma 5.20. Moreover, by the definition of V, in Subsection 5.4,
the Euclidean distance from each point of V, to dB,,(0) is at most 100pr, which by our choice

95U8017 SUOLULLIOD AN 3|01 jdde 8Ly Aq peuseob e Sapo1e O '8N J0 SN 1o} Aleiq 1T 8UIUO A8 L (SUORIPUOD-PUE-SLLBIALIOD" A8 |IW ARe1q U U0//Sd1IL) SUORIPUOD P SW | 8Y188S *[2202/TT/0T] Lo ARiqiauliuo A8|im ‘Ateiqi 0Bealyd JO AiSAIUN Ad Z6v2T SWId/ZTTT OT/I0p/Lod AB|im Aleiqjput|uo'acsyeLupuo|//sdiy Woly papeojumod ‘0 ‘Xiz09rT



UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 99

FIGURE 19 Left: The connected components V?,V?,0,0’ of V, \ [B(u) U B(v) U B(v') U B(u")] and the
point P,(d,) where P, first enters V7. For simplicity we have drawn V* and V° as ‘blobs’ rather than showing the
details of how V, is defined in Subsection 5.4 (cf. Figure 15). Right: A zoomed-in view in the purple box from the
left figure. Here b, is the first time that P, hits O, q, is the last time before b, at which P, exits V7, a is the first
time after a, at which P, hits 0B(u), and b is the last time before b, at which P, exits B(u). In the figure, we have
a # a, and b = b,, but any combination of a = a, or a # a, and/or b = b, or b # b, is possible.

of p in Lemma 5.13 is at most 1004a,r < a,r/100. Therefore, the set dB,,.(0) \ [§100pr(Pr(T)) U
§100pr(Pr(C’))] consists of two disjoint connected arcs of dB,.(0) which each have Euclidean
length at least a,r/2. Let J (respectively, J') be the one of these two arcs which goes in the
counterclockwise (respectively, clockwise) direction from Eloop,(Pr(r)) to §100pr(Pr(U))-

By condition 4 in the definition of E,, there exist z € J N Z, and z’ € J' N Z, such that F,orand
F.s or both occur. To lighten notation, we write

. - ! . _ /.
UI=Ugo, VISV, U ISUy,, V ISVy,

and
B(w) := Bspr+agr(w), Yw € {u,v,u’, v} (5.63)

The set V, \ [B(u) U B(v) U B(v") U B(u')] consists of exactly four connected components which
each lie at Euclidean distance at least s, /4 from each other. We call these connected components
V,V?,0,0'". We can choose the labeling so that with H, ., and H,/ ,, the half-annuli as in the
definitions of F, ., and F, .,

P(t) €9V", P.(0)€dV?, OCB,,(H,,) and O CB,,(H, ) (5.64)

We note that the boundary of each of these connected components intersects exactly two of the
boundaries of the balls B(w) for w € {u, v, u’,v'}. See Figure 19, left, for an illustration.

Let d,, be the first time that P, ||, ;) hits V' (this time is well-defined since we know that P.(c) €
dV?). By Lemma 5.22, each segment of P, |, 5 which is disjoint from V, has Euclidean diameter
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100 DING AND GWYNNE

at most asr, which is much smaller than s, /4. It follows that either P,(d,) € B,_.(B(v)) n vV or
P.(d,) € BaS,(B(u’ NN V. For simplicity, we henceforth assume that

P,(dy) € B, ,(BW) NV’ (5.65)

the other case can be treated in an identical manner.

Most of the rest of the proof will focus on what happens near B(u). See Figure 19, right, for an
illustration. We first define a time b, such that P,(b,) will be Euclidean-close to the point P,(b)
from Lemma 5.23.

Lemma 5.24. Let b, be the smallest t > 7 for which P,(b,) € O. Then b, < d, and P,(b,) € 0 N
B, ,(B(u)).

Proof. The path P, ||, 4 ) travels from 6V to B,_.(B(v)) N V" and does not enter V°. The set vV, \
(V7 U O) has two connected components which lie at Euclidean distance at least (1 — a)pr/2 >
asr (recall our choice of a5 from Lemma 5.14) from each other, one of which contains B(v) and
the other of which contains V*. By Lemma 5.22, P, ||, 4| cannot travel Euclidean distance more

than asr without hitting V,.. Hence, P, 4| must hit O before it hits V" Therefore, b, < d, and
P,(by) € 0. Furthermore, since B(v) and V7 are contained in different connected components
of V, \ (V° U O) and by the definitions of b, and d,,, we have P.([z,by]) n (V° U O U B(v)) = 0.

We need to show that P,(b,) € Basr(B(u)). Indeed, since Py |¢,p,) cannot hit V7 U O U B(v) and
cannot travel Euclidean distance more than asr outside of V,, it must be the case that

P.(by) € BaS,(VT U0’ UB(u) U B(u) U B(V)).

The sets V7, O/, B(u), and B(V') each lie at Euclidean distance larger than asr from O, so since
P.(by) € 0 we must have P,(b,) € Basr(B(u)). O

Next, we define a time a, such that P,(a;) will be Euclidean-close to the point P,(a) from
Lemma 5.23.

Lemma 5.25. Let a, be the last time t before b, for which P,.(t) € V'. Then

|P.(by) — P.(ap)| >s,,/4 and P.(lag, by]) C B, (B(w) \ (V, \ B(u)). (5.66)
Proof. Since P,(b,) € 00 and the Euclidean distance from V7 to O is atleast s, /4, we immediately
obtain that |P,(b,) — P,(ay)| > Sor /4. It remains to prove the inclusion in (5.66).

By definition, the set P,([ay, by]) is disjoint from V* U O. Furthermore, by Lemma 5.22, each
segment of P, ||, , | Which is not contained in V, has Euclidean diameter at most asr. Therefore,

P,([ag, b)) € B, ,(V° UO" UB(u) UB(V) UB(V) UB(U)). (5.67)

The set on the right side of (5.67) has two connected components, one of which is equal to
Basr(B(u)) and the other of which contains the other five sets in the union. Since P,(b,) €
BaS,(B(u)) (Lemma 5.24), we get that P,([a,, by]) C Basr(B(u)) and P,([a,, by]) is disjoint from
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VU O’ uB(v) UB(V)uUB(U). Since we already know that P,([q,, by]) is disjoint from V7 U O,
we obtain the inclusion in (5.66). O

Proof of Lemma 5.23. Let a be the first time ¢ > a, such that P,(t) € B(u) and let b be the last time
t < bysuchthatP.(t) € B(u). Note that we might have a = a, and/or b = b, (see Figure 19, right).
By (5.66), P4, b, cannot hit V, \ B(u). By this and Lemma 5.22, P, |4, 5, cannot travel Euclidean
distance more than asr without entering B(u). Consequently, the times a and b are well-defined
and

max{|P,(a) - P,(ag)l, IP,(b) — P,(by)I} < asr. (5.68)
By (5.66) and (5.68) and the triangle inequality,
|P.(b) —P.(a)| = spr/4 — 2asr, (5.69)

which is atleasts,, /8 since s, > tor > Aas (by our choice of s, in Lemma 5.2 and our choice of as
in Lemma 5.14). By the definitions of a and b, we have P,(a), P,(b) € dB(u). Since a,b € [a,, by]
and by Lemma 5.25, we also have the inclusion (5.62).

This gives the lemma statement for u = u, ,,. The statement with v = v, . in place of u follows
by repeating Lemma 5.25 and the argument above with d, used in place of b,. 1

5.10 | Forcing a geodesic to get close to u and v

We henceforth fix z € Z, and times a,b € [r,0] as in Lemma 5.23. We also let u and v be as in
the definition of F_ ,,, so thatu € B_/5(u; ), 0 € By /5(V, ), and Dy,(u,v) < ¢, Dy(u,v). Recall
that we are trying to force the path P, to get Dj,_; -close to each of u and v.

Lemma 5.23 tells us that P, gets Euclidean-close to each of u and v, but this is not sufficient for
our purposes since in the supercritical case D), is not continuous with respect to the Euclidean met-
ric. To ensure that P, gets Dj,_; -close to each of u and v, we will need a careful argument involving
several of the conditions in the definitions of F, . and E,. The main result of this subsection is
the following lemma.

z,0r

Lemma 5.26. Thereisa constant C > 0, depending only on &, such that the following is true. Almost
surely, there exists t € [t, o] such that

P.(t) € Bsp,.+(3a5+ag)r(uz,pr) and (5.70)
Dy (P (1), u; A\, 4,(0)) < CAe™*"s D, (u, v). (5.71)

Moreover, the same is true with v and v, ,,, in place of u and u, .

We will eventually choose 1 to be much smaller than 1/C, so that the right side of (5.71) is much
smaller than e‘gASEh(u, v). We will only prove Lemma 5.26 for u; the statement with v in place
of u is proven in an identical manner.
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102 DING AND GWYNNE

FIGURE 20 [Illustration of several of the objects involved in Subsection 5.10. The arc IV C dBY is the union
of the red set X, . consisting of points which are accessible from I°" in Bout \ (BY U P,([a’, b’]) and the green set
IV \ X,... Note that a connected component of IV \ X, can contain points of P,([a’, b']) in its interior (relative to
V).

acc

510.1 | Setup

Before proceeding with the proof of Lemma 5.26, we introduce some notation. See Figure 20 for
an illustration. We define the Euclidean balls

U . V. .
B = Bspr(uz,pr)’ B' := Bspr+a9r(uz,pr)’ and BOUt = Bsp,+(335+ag)r(uz,pr)- (5-72)

The reason why we care about BY and BY is that by the definitions of U, and V,, the ball B
(respectively, BY) is the largest Euclidean ball centered at u, o which is contained in U, (respec-
tively, V,.). The reason why we care about B°"! is that by Lemma 5.23, P, | [a,b] CanNoOL exit the ball
Bs_ 1 t+ag)r(Uz0r) C B". We need B°"" to have a slightly larger radius than s, + (a5 + ag)r for
the purposes of Lemma 5.34.

We also define

a :=sup{t <a:P.(t)€dB®™} and b :=inf{t >b : P.(t) € IB°"}. (5.73)

Then a’ < a < b < b’. Furthermore, Lemma 5.23 implies that P,([a, b]) C B, so the definitions
of a’ and b’ show that P,([a’,b']) C Bt and P,((d’,b")) C BO™.

Recall that the point u appearing in Lemma 5.26 is contained in BY. Lemma 5.26 holds
vacuously if u € P,.([a’, b']), so we can assume without loss of generality that

ugP.(a,b]). (5.74)

The set B\ {P,(a’), P,(b)} consists of two disjoint arcs. Since P,|[, ; is a simple curve in

Bout which intersects dB°" only at its endpoints, it follows that exactly one of these two arcs is
disconnected from u by P, |, ;|- We assume without loss of generality that the clockwise arc of
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- - - -

8Bout

FIGURE 21 Illustration of the proof of Lemma 5.27. The path P, ||, ,; must intersect L UL’ U L”. By our
choices of L and L”, it must in fact intersect L'.

dB°" from P,(a’) to P,(b") is disconnected from u. Let

I°" := {open clockwise arc of dB°"! from P,(a’) to P,(b")}

1V := {open clockwise arc of dBY from P,(a) to P,(b)}. (5.75)

Note that P,([a’, b’]) disconnects I°" from u in B°"!, but does not necessarily disconnect IV from
u in B°"". By Lemma 5.23, we have |P,(b) — P,(a)| > s,, /8, so the Euclidean length of IV satisfies

1| >s,,./8. (5.76)

We say that x € IV is accessible from I°" in Bout \ (BV U P,([a’,b'])) if there is a path in Bout \
(BYUP,([d’,b'])) from x to a point of I°Ut, Let

Xooo i= {x eIV : x s accessible from I°" in Bout \(BYuUP.(d, b’]))}. (5.77)

See Figure 20 for an illustration. One of the main reasons why we are interested in the set X, is
the following elementary topological fact.

Lemma 5.27. If x € X, ., then every path in B°U from u to x hits P,.([a’, b']).

Proof. See Figure 21 for an illustration. Recall that I°"* and dB°" \W are the open clockwise
and counterclockwise arcs of dB°U from P,(a’) to P,(b’), respectively. By the assumption made
just before (5.76), P, || ) disconnects I°"* but not GB"" \ I°out from u in BOU,

By the definition (5.77) of X, ., there is a path L from x to a point of I°! in Bout which is disjoint
from BY U P,([d’, b']). Furthermore, since P, | ;) does not disconnect dB°"* \ I°ut from u in But,
there is a path from u to a point of B! \ Tout in Bout which is disjoint from P,([@’, b’]).
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104 | DING AND GWYNNE

Now consider a path L in Bo" from u to x. The union L U L’ U L” contains a path in B!t joining
the two arcs of 9B°"" \ {P,(a’), P,(b")}. Since P, |,/ | is a path in B4, topological considerations
show that P, |, ;) must hit L UL’ UL". Since P,y ;) cannot hit L or L” by definition, we get
that Prl[a’,b’] must hit L/. D

For x € IV, we define

S
/. Pr u
X i=—(x—u +u € 0B", 5.78
Spr T agr( z,pr) z,0r ( )

so that x’ is the unique point of 9BY which lies on the line segment from the center point u, o to
x. We also let

Xgit = {x er : Dh<x’,u;ﬁ) < ADy(u, v)}. (5.79)

By condition 3 in the definition of F, ., the set {x’ € dBY : x & X4} has one-dimensional
Lebesgue measure at most (1/2)s,,. By scaling, we therefore have

|Xdist| 2 |IV| - Aspr' (580)

5.10.2 | Proof of Lemma 5.26 assuming that the accessible set is not too small

The following lemma tells us that the conclusion of Lemma 5.26 is satisfied provided X, is not
too small relative to s,,..

Lemma 5.28. If the one-dimensional Lebesgue measure of X, satisfies |X,..| > 31s,,, then there
isatimet € [a’,b'] C [1,0] such that
Dyg, (P,(t), u;@) <22e~%D, (u, v). (5.81)

We note that Lemma 5.28 implies that if |X,..| > 34s,,, then the conclusion of Lemma 5.26

holds with C = 2. This is because P,([a’,b’]) c B°"t and BU C A, 4,(0).

The idea of the proof of Lemma 5.28 is that if |X,..| > 34s,,, then by (5.80) there must be a
point x € X, .. N X4~ By Lemma 5.27, every path in B°" from u to x must hit P.([a’,b’]). We
then want to use the definition (5.79) of X, to upper-bound the D),_ -distance from u to the
intersection point. There is a minor technicality arising from the fact that (5.79) only gives a bound
for the distance from u to x’ € dBY, rather than from u to x. To deal with this technicality, we will
use condition 8 (intersections of geodesics with a small neighborhood of the boundary) in the
definition of E, to say that there are not very many points x € IV for which P, hits the segment
[x,x'].

Proof of Lemma 5.28. Define x’ € dBY for x € IV as in (5.78). Let
Y 1= {x €X,. : P([d,b' ) n[x,x] #6}. (5.82)

If x € Y, then x’ lies at Euclidean distance at most agr from P,.([a’, b’]). By condition 8 in the
definition of E, (in particular, we use the last sentence of the condition), the one-dimensional
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Lebesgue measure of the set {x’ € dBY : x € Y}is at most Ator < As,,,. By scaling, we get that the
one-dimensional Lebesgue measure of Y is at most 21s,,,..

Hence, if [X;cc| > 31s,,, then | X, \ Y| > As,,,. By (5.80), this implies that the one-dimensional
Lebesgue measure of X N (X, \ Y) is positive, so there exists x € Xy N KXo \ Y).

Since x € Xy, the definition (5.79) implies that there is a path L in BY from u to x’ such that

len(L; D) < 2AD;,(u, v).

The union of L and [x, x] gives a path in B from u to x. Since x € X, ace» Lemma 5.27 implies that
the path P,| [, ,»; must hit L U [x, x']. Since x ¢ Y, the path P, |, /| does not hit [x, x'].

Therefore, P,|[, ;) must hit L. Since L C BY is a path started from u of Dy -length at most
21D, (u, v), we get that

D, <Pr(t),u;@> < 24D, (u,v), (5.83)

where t € [@/, b'] is chosen so that P,(t) € L.

Since f, attains its maximum value Aq at each point of U, D BY, we infer from Weyl scaling
(Axiom III) that

Dy, (P(0),u; BY) = e~ (P, (1), 1,87 ).

Combining this with (5.83) gives (5.81). O

5103 | Thesetofarcs of IV \ X,

In light of Lemma 5.28, for the rest of the proof of Lemma 5.26 we can assume that
1 Xacel < 32s,,. (5.84)

Intuitively, we do not expect (5.84) to be the typical situation since it implies that P,([a’, b']) dis-
connects ‘most’ points of IV from I°" (recall (5.77)). This, in turn, means that a large portion of
P.([d/,b']) is outside of V,. This is unexpected since P, is a Dj,_¢ -geodesic and f, is non-negative
and supported on V,, s0 P,|[, ;] should want to spend most of its time in V,. However, we are not
able to easily rule out (5.84). We note that Lemma 5.22 does not rule out (5.84) since it could be
that P, ||, ;) has many small excursions outside of V,, each of Euclidean diameter at most asr.

Hence, we need to prove Lemma 5.26 under the assumption (5.84). This will require a finer
analysis of the structure of the set X..

The set IV \ X, is a countable union of disjoint open arcs of IV. Let T be the set of all such
arcs and for I € T, write |I| for its Euclidean length (equivalently, its one-dimensional Lebesgue
measure). The elements of T are the green arcs in Figure 20.

We now give an outline of the proof of Lemma 5.26 subject to the assumption (5.84). As a con-
sequence of (5.84), we get that ‘most’ points of IV are contained in IV \ X, ., s0 3, ez | is close
to |IV| (Lemma 5.29). From this and (5.80), we see that ‘most’ of the arcs I € T intersect X
(Lemma 5.33). From condition 5 (comparison of distances in small annuli) in the definition of E,.
(applied with § = |I|/r) and a geometric argument, we get the following. If I € T and y; is one
of the endpoints of I, then there is a loop in A, 5;/(;) which disconnects the inner and outer
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boundaries and whose Dj,-length (hence also its D;,_; -length) is bounded above by (|I|/ r)y-1/4
times (roughly speaking) the D;,-length of the segment of P, joining the endpoints of I. By con-
catenating this loop with a path in BY from u to x/, for a point x’ € I N X4, We obtain an upper
bound for Dy,_¢ (u, P.([a’,b'])) in terms of |I| and the Dj,-length of the segment of P, joining the
endpoints of I (Lemma 5.34). We will then use a pigeonhole argument to say that there existsI € T
for which this last quantity is much smaller than e*§A85h(u, v).

Let us now give the details. We start with a lower bound for the sum of the Lebesgue measures
of the arcsin 7.

Lemma 5.29. The total one-dimensional Lebesgue measure of the arcs in T satisfies

D=1\ Kol > 1] = 32s,,. (5.85)
Iel

Proof. Wefirst claim that each point of X, \ X, belongsto P,([a’,b']) N 1V. Indeed, suppose x €
X, and x & P,([a’,b']). We need to show that x € X,.. Since P,([a’,b']) is a Euclidean-closed
set, x lies at positive Euclidean distance from P,([a’,b']). Since x € X, there exists y € X,
such that the arc of IV between x and y is disjoint from P,([a’, b']). By the definition of X, (5.77),
there is a path from a point of I°" to y which is contained in Bout \ (BY U P,([a’,b'])). The union
of this path and the arc of IV between x and y gives a path from I°" to x which is contained in
Bout\ (B U P,([a’,b'])).

By, for example, Lemma 2.14 (applied to the unit-speed parameterization of the circle BY),
almost surely the set P.([a’,b']) N IV has zero one-dimensional Lebesgue measure. By this, the

previous paragraph, and our assumption (5.84),

Z |1l = |IV \)_(accl = IIV \ Xacel > IIvl - 3/15pr' O
Iel

‘We will also need the following elementary topological fact.

Lemma 5.30. ForeachI € 1, there is a segment of P, ||, ) joining the two endpoints of I which is
contained in B°"* \ BY.

Proof. See Figure 22 for an illustration. Let R C BOUt \ BY be the open region bounded by I°%, 1Y,
and the segments P,([a’, a]) and P,([b, b’]). Then R has the topology of the open unit disk and
I C 3R. By the definition (5.77) of X, and since I € I" \ X,., there is no path in R from I to I°Ut
which is disjoint from P,([a’, b']). Hence, P,([@’, b']) disconnects I from I°" in R.

Since P,([@/,a]) UP,([b,b']) C R and P,([a, b]) n B°" = @, the set P,([a’,b’]) N R consists
of countably many disjoint segments of P, |, ,; with endpoints in IY. Since P, is continuous, these
segments accumulate only at points of IV. Since I is connected and P,([a’, b’]) disconnects I from
I°U in R, there are times c,d € [a, b] with ¢ < d such that P,(c),P,(d) € IV, P,((c,d)) C R, and
P.([¢c,d]) disconnects I from I°“ in R.

Let T be the set of points of IV which are disconnected from I°" in R by P,([c, d]) (not including
the endpoints of P,([c, d])). Equivalently, Tis the segment of IV between P,(c) and P,(d). Then T
is a connected open arc of IV which contains I. Moreover, every path from T to I°" in Bout \ BY
either hits P,.([c,d]) or exits R (in which case it must intersect either P,([a’, a]) or P.([b, b’])).
Hence, no such path can be disjoint from P,.([a’, b’]). So, by the definition (5.77) of X,.., we have
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 107

FIGURE 22 Illustration of the proof of Lemma 5.30. The region R is shown in pink and the desired segment
P, |jcqy Of P is shown in purple.

Tc 1V \ X, Since T is an open arc of IV, also T € IV \ X,,.. Since I is a connected component of
1V \ X,.., it follows that T = I. O

5.10.4 | Regularity ofarcsin 7

We will next record some bounds for the sizes of the individual arcs in Z, starting with an upper
bound.

Lemma 5.31. ForeachI € I, we have |I| < asr.

Proof. By Lemma 5.30, for each I € T there is a segment of P,|[, ) joining the endpoints of I
which is contained in B \ BY. By Lemma 5.23, P, ||, ; does not hit V, \ BY, so this segment of
P, {4, Is disjoint from V,.. The Euclidean diameter of this segment is at least |I|. By Lemma 5.22,
the Euclidean diameter of the segment is at most asr, so we get |I| < asr, as required. [l

We do not have a uniform lower bound for the sizes of the arcs in 7. But, using condition 8
(intersections of geodesics with a small neighborhood of the boundary) in the definition of E,, we
can say that the small arcs make a negligible contribution to the total one-dimensional Lebesgue
measure of 7.

Lemma 5.32. Define the set of small arcs
Typan :={{ €1 : |I| Sagr} (5.86)

Then
D < 22s,,. (5.87)

I EISmall
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108 | DING AND GWYNNE

Proof. By Lemma 5.30, for each I € T the endpoints of I are hit by P, |, ;/;. Hence, the Euclidean
distance from each point of I to P,([a’,b’]) is at most |I|. In particular, if I € Ty, then the
Euclidean distance from each point of I to P.([a’,b’]) is at most agr. This implies that the
Euclidean distance from P,([a’,b’]) to each point of the arc I’ :={x’ : x € I} C dBY is at most
2ayr, where here we use the notation (5.78).

The arcs I’ for I € T, are disjoint and we have |I’| > |I|/2. Therefore, the one-dimensional
Lebesgue measure of the set of points x’ € dBY which lie at Euclidean distance at most 2ayr from
P,([a’,b']) is at least

> X

Ie lsmall

By condition 8 in the definition of E, (in particular, we use the last sentence of the condition), the
one-dimensional Lebesgue measure of the set of x’ € dBY which lie at Euclidean distance at most
2ayr from P,.([a’, b’]) is at most Atpr, so

LS i <ator < sy, (5.88)
I€ljpa
where the last inequality comes from the definition of s, (recall Lemma 5.2). O

We will now consider a certain ‘good’ subset of 7, and show that the arcs in this subset cover
most of IV. Let

I* :={Iel: |I| >agrand I N Xy # B} (5.89)

Lemma 5.33. The total one-dimensional Lebesgue measure of the arcs in T* satisfies

Z 1] > 11Y] = 61s,,,. (5.90)
I1eT*

Proof. Let I, be as in (5.86). We can write I" as the disjoint union of X,., the arcs in 7,
and the arcs in 7 with |I| > agr. By the definition (5.89) of 7%,

small»
Xgs C XU | TUY T (5.91)
Ielsm.du I1eT*
We therefore have the following string of inequalities:
1] = As, < [Xaiel  (by (5.80))

<WXeel + ), 11+ D111 (by (5.91)

T€Tgnan Ier*

<3As,, +24s,, + ) |I|  (by Lemmas 5.29 and 5.32). (5.92)
Iel*

Re-arranging gives (5.90). L]
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} \<<\ 9By112(yr)
-7 dB1yalyr) .-~

-
-
-

FIGURE 23 Illustration of the proof of Lemma 5.34. The orange loop 7 has D;,-length at most
2(/I|/r)"'/*D, (across A\p/,11/2(1)), and is provided by condition 5 (comparison of distance in small annuli) in
the definition of E,. The point x belongs to I N X . The purple path L goes from u (not pictured) to x’, has
D),-length at most 21D, (u, v), and is provided by the definition (5.79) of X 4. The bound (5.94) is obtained by
concatenating a segment of 77 with a segment of L, then bounding Dy, (across A, /4 ,/2(¥)) in terms of ¢; — s;.

5.10.5 | Building a path from a point of P, to u
The following lemma is the main quantitative estimate needed for the proof of Lemma 5.26.

Lemma 5.34. LetI € T* and let y; be the initial endpoint of I. There are times a’ < s; < t; <b’
such that

11\ SQr /4
_) Qe ©  gnd (5.93)

P ([s; t;D) € By (vp)s tr—sp 2 <4r

Dj,_¢, (P.(t), u; A, 4,(0)) < 22e=52 Dy (u, v) + 20|11 /)4t — sp). (5.94)

We will eventually deduce Lemma 5.26 from Lemma 5.34 by showing that there existsanI € I7*
for which 2|I|~1/4(t; — s;) is much smaller than e=As D, (u, v).

Proof of Lemma 5.34. See Figure 23 for an illustration. Throughout the proof we fix I € T*.

Step 1: Definition of s; and t;. By Lemma 5.31, we have |I| < asr. Hence, we can apply condition 5
(comparison of distances in small annuli) in the definition of E, with § = |I|/r to get that there is
apath 7 C Ay 51(y) such that

len(7; D)) < 2(|I|/r)‘1/4Dh(across A yagn20m)- (5.95)

We have y; € dBY and P,(b") € dB°". The Euclidean distance from dB°" to dBY is 3asr > 3|I|.
Therefore, the path P, must hit both 0By, /4(y1) and 7 between the (unique) time when it hits
y; and the time b’. Let s; (respectively, ;) be the first time that P, hits 0B,1/4(yy) (respectively,
) after the time when it hits y;. Then a’ < s; < t; < b’ and (since P, cannot travel from y; to
0Bs;(y;) without hitting 7),

P.([sg, t;]) € By (vp)-
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110 | DING AND GWYNNE

We will check the other conditions in the lemma statement for this choice of {; and s;.

Step 2: Upper-bound for Dy,_¢ (P,.(t;),u; A, 4.(0)) in terms of Dy(across Ay /4 11/2(y1))- By the
definition (5.89) of T*, there exists x € I N X By the definition (5.79) of X 4, if we let x” € 9BV
be the point corresponding to x as in (5.78), then there is a path L from u to x’ in BY such that

len(L; D) < 2ADy,(u, v).
Since L is contained in BY, which is contained in U,,andf, = Agon U,,
len(L;Dh_fr) < 226758 D, (u, v). (5.96)
The definition (5.89) of I* gives |I| > agr, so
|x" =yl < |+ |x = x| = |I| + agr < 2|1].

Since 7 C Ay 51(p), it follows that 7z intersects L and (since 3|I| < 3asr) also 7 C B°™. Since
P.(t;) € m, the path 7 UL contains a path from u to P,(t;). We have 7 UL C B C A, ,,(0).
By (5.95) (and the fact that f, is non-negative) and (5.96),

Dh—f, (Pr(tl)’ u; Ar,4r(0))
< len<L;Dh_fr> + len(n;Dh_fF)
< 22e~%Dy,(u,v) + 21| /r)"/*Dj, (across Ajgyagn20m)- (5.97)
Step 3: Comparing t; — s;. to Dy, (across A|I|/4,|I|/2(y1)). We claim that

tr—sr 2 Dh(across /A|”/4 |I|/2(yl)) (5.98)

Once (5.98) is established, the bound (5.97) immediately gives (5.94). Furthermore, the lower
bound for t; — s; in (5.93) also follows from (5.98) and the reverse Holder continuity condition 6
in the definition of E, (applied with z € 0By}, /4(y;) and w € 8B, /,(y;)), which gives

I £(Q+2)+1/4
) 1EQpEh,0)

Dy, (across /A|I|/4,|I|/z(yI)) z (E

Hence, it remains to prove (5.98). Let s; be the first time after s; at which P, exits By, ().
Then P, | [sp.5!] is a path between the inner and outer boundaries of A ;| 4 1 /2(v). We claim that

P.([s;,s;hnV, =46. (5.99)
Since f, vanishes outside of V,, (5.99) implies that
=S 28 —s = len(P lisp.s713 Dns, ) len<P lisp.1 Dh>
> Dy, (across Ay /41112007) (5.100)
which is (5.98).

To prove (5.99), we first note that by Lemma 5.30, the path P, does not enter B between the
time when it hits y; and the time when it hits the other endpoint of I. Since the Euclidean distance
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between the endpoints of I is at least |I|/2, s} must be smaller than the time when P, hits the other
endpoint of I. Hence, P,.([s;, s}]) NBY = @. In particular, Lemma 5.30 implies that [s;, s;] C [a,b].
By Lemma 5.21, P,|[,  does not hit V,. \ BY. Therefore, (5.99) holds. O

5.10.6 | Pigeonhole arguments

In light of Lemma 5.34, we seek an arc I € I* for which t; —s; is much smaller than
(r/m 45h(u, v). To find such an arc, we will partition the set 7* based on the Euclidean sizes
of the arcs. Let

K :=|log,(1/as)] and K := [log,(1/ay)] — 1. (5.101)
For k € [IS,I?]Z, let
I :={Ie1" : Il e[27""r,27"n)}. (5.102)

By Lemma 5.31 and the definition (5.89) of 7*, we have ayr < |I| < asr foreach I € I*. Hence, I*
is the disjoint union of I;; fork € [K, I?]Z.

The proof that there exists an arc I € I* for which ¢; — s; is small is based on a pigeonhole
argument. Lemma 5.33 implies that the total Euclidean length of the arcs in Z* is close to |T1Y|.
Hence, there must be some k € [K, K], for which #1 . is larger than a constant times ro12k/2)1V):
otherwise, the sum of the lengths of the arcs in 7* would be too small (Lemma 5.35). In the proof
of Lemma 5.26, we will then use an argument based on Lemma 5.34 and Markov’s inequality to
show that there must be an I € I} for which ¢; — s; is sufficiently small.

Let us start with the pigeonhole argument for the Euclidean lengths of the arcs in 7%.

Lemma 5.35. Let t > 0 be the constant appearing in Lemma 5.2, so that the radius of BV satisfies
Sor € [tor, t1/2pr]. Almost surely, there exist a random k € [K, K|, and a collection of arcs I,"CcI;
such that #1,7* > 2K/2tp, with a deterministic universal implicit constant, and the balls By (vp) for
I € 1" are disjoint (here y; is the first endpoint of I hit by P,, as in Lemma 5.34).

Proof. We have

I1V]/2 < |1Y] = 62s,, (since |IV| > s,,/8 by (5.76))

< Z [I| (by Lemma 5.33)
Ter*

K _
< Z Z [I| (since I* = Uf:K I;
“ ‘ K
=S5

KIer*

I
<r Y 27MHIY (by (5102)). (5.103)
k=K
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112 | DING AND GWYNNE

We claim that there exists k € [K, I?]Z such that #IZ > 2k/2p=1|1V|. Indeed, if this is not the case
then (5.103) gives

K
_ 1 _
V]2 < |1V 27k 5 120 ——  27K2
1|/ ||k§ 2<%

which is not true since 27%/2 < 2a;'/2, which is much smaller than (1 — 271/2)/2.

Henceforth, fix k € [K, K], such that #I > 2k/2p=111V|. The arcs in I} are disjoint and have
lengths in [Z‘k‘lr, 27k r). Hence, foreach I € II’:, the number of arcs in I; which are contained in
By (yp) is at most some universal constant. It follows that we can find a subcollection I;* C I}/
such that #7;* > 2K/2p=11V| and the balls By (yp) forI € 1" are disjoint. We conclude by noting
that by (5.76) and our choice of Sor in Lemma 5.2,

r Y| = r_lspr > to.
Ol

Proof of Lemma 5.26. Throughout the proof, all implicit constants are required to be deterministic
and depend only on £.

Let k € [Ig,I?]Z and I;{‘* C I;; be as in Lemma 5.35, so that #I;* > 2k/2tp. ForI € I;;*, let
a’ <s; < t; < b'beasin Lemma 5.34. Lemma 5.34 tells us that P,([s;, t;]) C By (y;). Lemma 5.35
implies that the balls By ;(y;) are disjoint for different choices of I € 7;*. Hence, the intervals
[s;, ;] for I € 1;7* are disjoint.

In light of Lemma 5.34, we seek I € I;* for which ¢; — s; is much smaller than (|I]/ /4. To
find such an I, we will first choose a sub-collection of II’:* which is not too much smaller than
1;, such that the increments ¢; — s; for I € I, are all comparable (step 1). We will then use
Lemma 5.34 to upper bound the sum of the increments ¢; — s; over all arcs I in this collection
(step 2). Finally, we will use a pigeonhole argument to find an I for which ¢; — s; is small (step 3).

Step 1: Finding a sub-collection on which t; — s; is controlled. We seek a collection of dis-
tinct arcs Iy,...,Iy € I;* such that N is not too much smaller than #I;* and the geodesic
time increments tr, =5y, for j =1,...,N are all comparable. We will find such a collection via
a pigeonhole argument.

The bound (5.93) of Lemma 5.34 followed by the definition (5.102) of T ;{" shows that for I € I:*,

|I| £(Q+3)

t—s; > <E> r§Q&h(0) > 9~ (k+2)§(Q+3),£Q £ R, (0) (5.104)

By combining this with the crude bound ¢; — s; < 0 — 7 and Lemma 5.21, we get that for I € I;*
t;—s; € [2—(k+2)§(Q+3),,EQefh,-(O), aSE(Q+3)r§Qe§hr(0)]

C [27k+2)5(Q+3),£Q R, (0) £QER(0)], (5.105)

The number of intervals of the form [gq,2q] for ¢g>0 needed to cover
[27(k+2)5(Q+3),EQpER(0) 1EQeER ()] s at most a constant (depending only on &) times k.
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Consequently, we can find a random g > 0, an integer
N = k™I = k125 %, (5.106)

and intervals I, ..., Iy € I, such that tr, =51, € [q,2q] for each j € [1,N]y,.

Since the intervals [st, th] for j € [1,N],, are disjoint, we can choose our numbering so that
SII < tIl < SIZ < tIz < A < SIN < tIN' (5107)
Step 2: Bounding q. We will now use the estimate (5.94) from Lemma 5.34 to show that the
number q from the preceding paragraph must be small relative to D, (u, v). For each j € [1,N],
we have |I;| € [27k=1r,27%r] and th -5, € [g,2q]. By plugging these bounds into (5.94), we get

Dy, (Po(t7), 3 B,4(0) ) < 2e™58B, (u,v) + 24, Vj € [1,N], (5.108)

with a universal implicit constant.
By (5.108) (with j = 1 and j = N) and the triangle inequality for the points P(tll), u,P(tIN),

try = t, = Dpy, (Pr(th),Pr(trN); Ar,4r(0)) < Ae™¥%Dy(u,v) + 254, (5.109)

On the other hand, (5.107) and our choices of N and g around (5.106) shows that

™M=

ty =t 2 Dt —51) > (N =1)g > k=12K/2tpq. (5.110)

Jj=2

Combining (5.109) and (5.110) gives
k1252tpq < Ae=$As Dy (u, v) + 2¢/*q (5.111)

which re-arranges to give

A

—EAG T
g=< RPN —Rzk/4e 8Dy, (u,v) (5.112)

for a constant R > 0 which depends only on &.

Step 3: Conclusion. We have 2k > 2K > /(2as), which can be taken to be as large as we
would like as compared to 1/(tp) (recall from the discussion surrounding (5.22) that a5 is chosen
after p and the parameters from Lemma 5.2). Hence, we can arrange that k—12%/2tpq > 2R2K/4.
Therefore, (5.112) gives

k27k/2

e=*"sD, (u, v). (5.113)
to

q =

Plugging (5.113) into (5.108) shows that for each j € [1,N],,

k2 k/4 nwe
Dp_s. (Pr(tzj),u;/ArAr(O)) <(1+ o )e 8D, (u, ). (5.114)
Since k > K > log,(1/as) — 1, the coefficient on the right side of (5.114) can be made to be
smaller than 21 provided the parameters are chosen appropriately. This yields (5.71) for an
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aBSpr (UZ-,PT )\L

y —

8Bs,,r,-Jr(ag +3as5)r (Uz,pr

P, aBS’”’(uz’pr) aBspT+(ag+3a5)r(uz,pr)

FIGURE 24 Illustration of the proof of Proposition 5.18. We consider a z € Z, for which F, ,, occurs as in

Lemma 5.23. We look at the corresponding pair of points u, v such that D, (u, v) < ¢, D, (u,v) and there is a

z,0r

D,-geodesic P from u to v which is contained in ﬁz,pr C U,. Lemma 5.26 tells us that there are times s, ¢ for P,

such that D,,(P,(t), u) and D, (P,(s), v) are each much smaller than e~54s D, (u, v) = ﬁh_fr (u, v). We then use the
triangle inequality to show that D,(P,(t), P,(s)) < ¢’|s — t|.

appropriate choice of C. The inclusion (5.70) holds since ¢, € [a/,b'] and P,([@/,b']) C B by
definition (5.73). O
511 | Proof of Proposition 5.18

Step 1: Choice of s and t. See Figure 24 for an illustration. Let z € Z, and u,v € dH
Subsection 5.10, so that F, _. occurs and u, v are as in the definition of F

2,pr DE AS In

In particular,

z,pr z,pr

Dy,(u,v) < ¢fDy(u, ). (5.115)
By Lemma 5.26, almost surely there exists ¢t C [z, o] such that
Po(t) € By 4(agragy(Uzpr) and  Dy_¢ (P(6),us A, 4,(0)) < CAe™*"sD,(u,v).  (5.116)

By the definition of F, ., we have u € Bspr /2(U ). By this, (5.116), and the triangle inequality,

s
P.(t)—u| <s,, +(Bas +ag)r + = < 2tY%pr, (5.117)
r or 5 9 D) o

where the second inequality comes from the fact that s, < t1/2pr (Lemma 5.2) and the fact that
each of a5 and ag can be chosen to be much smaller than t.

By Lemma 5.26 with v, _, and v in place of u, ,,. and u, there exists s € [7, o] such that

z,0r z,0r

Dh—f, (Pr(S), v, Ar,4r(0)> < Cle'§A8l~)h(u, U) and |Pr(s) — Ul < 2t1/2pr_ (5.118)

We will check the conditions of (5.49) for this choice of s and ¢ (possibly with the order of s and ¢
interchanged).

Step 2: Lower bound for |s — t|. Recall that the points u and v lie on the inner and outer bound-
aries, respectively, of the annulus /Aapr’p,(z). From this, the inequalities for Euclidean distances
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in (5.117) and (5.118), and the triangle inequality, we get

|P,(t) — P,(s)| > (1 —a)pr — 4t %pr > 1-«

or, (5.119)

where in the last inequality we use that t'/2 is much smaller than 1 — o (Lemma 5.2).
This right side of (5.119) is at least as7, so the reverse Holder continuity condition 6 in the
definition of E, gives

Dy (P (), Po(5); Ay 4, (0)) > as>@+DpeQeshr(0), (5.120)

By Lemma 5.19, P, |[7 o1 is @ Dp,_¢ (-, -;K,Ar(o))-geodesic. In fact, since P,([s,t]) C A, 4,.(0), we
have that P, |(;; isa Dy,_¢ (-, ; A, 4,(0))-geodesic. Since f, < Ag, we get from (5.120) that

|S - tl = Dh—fr (Pr(t),Pr(S), Ar,4r(0))
> e=ADy, (P,(1), Po(5); A, 4,(0))

> a £(0+3)=EAs 1EQ 1, (0) (5.121)

which gives the first inequality in (5.49).

Step 3: upper bound for 5h_fr (P.(8),P,(s); A, 4,(0)). We now prove the second inequality
in (5.49). From the bi-Lipschitz equivalence of D, and D, and Weyl scaling (Axiom III), we get
that D,,_¢ and f)h_fr are also bi-Lipschitz equivalent, with the same lower and upper bi-Lipschitz
constants ¢, and €. Therefore, (5.116) and (5.118) imply that

max{ B, (P(1),1; B,.4:(0)). By (Po(9), 03 A, 4,(0) } < 6,.C2 A uv). (5122)

Let P be the D), -geodesic from u to v which is contained in H, ., as in condition 2 in the definition
of F

2or- Since P is a Dy-geodesic, P C U,, and f, attains its maximal value Ag everywhere on U,,

Dy (u,0; A, 4, (0)) = e Dy (u,v). (5.123)

By (5.122), (5.123), and the triangle inequality, followed by (5.115),

Dyt (P(6),P(s): A, 4(0)) < (1 +26,CA)e "D, (u, v)
< (1+26,C)cje "Dy, (u, v). (5.124)
On the other hand, since f, < Ag, Weyl scaling gives
Dy_¢ (u,0) > e~*"sD,(u, v). (5.125)
Hence,
s —t] = Dh_fr(Pr(t),Pr(s)) (since P, isa Dh_fr-geodesic)
> Dy,_¢ (u,v) = Dp,_¢ (P(t),u) — Dp,_¢ (P,(s),v) (triangle inequality)

> e "Dy (u,v) — 2Ce™*sDy,(u,v)  (by (5.116), (5.118), and (5.125))
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> e‘gASDh(u, v) — 2CAe~5hs €.D,(u,v) (bi-Lipschitz equivalence)
= (1-26,CA)e "D, (u,v). (5.126)
Combining (5.124) and (5.126) gives

1+2G6,CA s — 1] (5.127)
—)C,|S —[]. .
1-26,c1°

ﬁh—f, (Pr(t)’ Pr(S); Ar,4r(0)) <
Since ¢;, < ¢’ and ¢, ¢’ depend on the laws of D), and Dy, (recall (5.1)), we can choose A to be small
enough, in a manner depending only on laws of D, and D,,, so that

1+26.C2, _,

— ¢, < 128
1-26,cA 0S¢ (5128)

Then (5.127) gives the second inequality in (5.49). O
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