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Abstract
We show that for each 𝐜M ∈ [1, 25), there is a unique
metric associated with Liouville quantum gravity (LQG)
with matter central charge 𝐜M. An earlier series of
works by Ding–Dubédat–Dunlap–Falconet, Gwynne–
Miller, and others showed that such a metric exists and
is unique in the subcritical case 𝐜M ∈ (−∞, 1), which
corresponds to coupling constant 𝛾 ∈ (0, 2). The critical
case 𝐜M = 1 corresponds to 𝛾 = 2 and the supercriti-
cal case 𝐜M ∈ (1, 25) corresponds to 𝛾 ∈ ℂ with |𝛾| = 2.
Our metric is constructed as the limit of an approxima-
tion procedure called Liouville first passage percolation,
which was previously shown to be tight for 𝐜M ∈ [1, 25)

by Ding and Gwynne (2020). In this paper, we show
that the subsequential limit is uniquely characterized
by a natural list of axioms. This extends the charac-
terization of the LQG metric proven by Gwynne and
Miller (2019) for 𝐜M ∈ (−∞, 1) to the full parameter
range 𝐜M ∈ (−∞, 25). Our argument is substantially dif-
ferent from the proof of the characterization of the LQG
metric for 𝐜M ∈ (−∞, 1). In particular, the core part of
the argument is simpler and does not use confluence
of geodesics.

MSC 2020
60D05, 60G60 (primary)

© 2022 The Authors. Proceedings of the London Mathematical Society is copyright © London Mathematical Society. This is an open access
article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

Proc. London Math. Soc. (3) 2022;1–118. wileyonlinelibrary.com/journal/plms 1

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12492 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [10/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mailto:ewain@uchicago.edu
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/plms
http://crossmark.crossref.org/dialog/?doi=10.1112%2Fplms.12492&domain=pdf&date_stamp=2022-11-10


2 DING and GWYNNE

Contents
1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Convergence of Liouville first passage percolation . . . . . . . . . . . . . . . . . . 4
1.3. Characterization of the LQG metric . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4. Weak LQG metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1. Notational conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2. Some remarks on internal metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3. Independence for the GFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4. Basic facts about weak LQG metrics . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5. Estimates for distances in disks and annuli. . . . . . . . . . . . . . . . . . . . . . 25
2.6. Regularity of geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3. QUANTIFYING THE OPTIMALITY OF THE OPTIMAL BI-LIPSCHITZ CONSTANTS . 32
3.1. Events for the optimal bi-Lipschitz constants. . . . . . . . . . . . . . . . . . . . . 32
3.2. Proof of Proposition 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. THE CORE ARGUMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1. Properties of events and bump functions . . . . . . . . . . . . . . . . . . . . . . . 47
4.2. Estimate for ratios of 𝐷ℎ and 𝐷̃ℎ distances . . . . . . . . . . . . . . . . . . . . . . 50
4.3. Proof of Proposition 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4. Proof of Proposition 4.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5. Proof of uniqueness assuming Proposition 4.2 . . . . . . . . . . . . . . . . . . . . 67

5. CONSTRUCTING EVENTS AND BUMP FUNCTIONS . . . . . . . . . . . . . . . . . . 71
5.1. Setup and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2. Existence of a shortcut with positive probability . . . . . . . . . . . . . . . . . . . 74
5.3. Building block event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4. Definitions of 𝖴𝑟, 𝖵𝑟, and 𝖿𝑟 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.5. Definition of 𝖤𝑟 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6. Properties of 𝖤𝑟 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7. Proof of Proposition 4.2 assuming Proposition 5.18 . . . . . . . . . . . . . . . . . . 93
5.8. Initial estimates for a geodesic excursion . . . . . . . . . . . . . . . . . . . . . . . 94
5.9. Forcing a geodesic to enter balls centered at 𝗎𝑧,𝜌𝑟 and 𝗏𝑧,𝜌𝑟 . . . . . . . . . . . . . . 97
5.10. Forcing a geodesic to get close to 𝑢 and 𝑣 . . . . . . . . . . . . . . . . . . . . . . 101
5.11. Proof of Proposition 5.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

1 INTRODUCTION

1.1 Overview

Liouville quantum gravity (LQG) is a one-parameter family of random fractal surfaces which
originated in the physics literature in the 1980s [7, 16, 37] as a class of canonical models of ran-
dom geometry in two dimensions. One possible choice of parameter is the matter central charge
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 3

F IGURE 1 Comparison of the different phases of LQG This paper proves that the LQG metric is unique in
the critical and supercritical phases. The bi-Hölder continuity with respect to to the Euclidean metric in the
subcritical phase is proven in [17]. The statement that the critical LQG metric induces the Euclidean topology, but
is not Hölder continuous, is proven in [13].

𝐜M ∈ (−∞, 25). Heuristically speaking, for an open domain 𝑈 ⊂ C, an LQG surface with matter
central charge 𝐜M is a sample from ‘the uniform measure on Riemannian metric tensors g on 𝑈,
weighted by (det Δg )

−𝐜M∕2’, where Δg denotes the Laplace–Beltrami operator. This definition is
far from rigorous, for example, because the space of Riemannian metric tensors on 𝑈 is infinite-
dimensional, so there is not an obvious notion of a uniformmeasure on this space. However, there
are various ways of defining LQG surface rigorously, as we discuss just below.

Definition 1.1. We refer to LQG with 𝐜M ∈ (−∞, 1), 𝐜M = 1, and 𝐜M ∈ (1, 25) as the subcritical,
critical, and supercritical phases, respectively.

See Figure 1 for a summary of the three phases. One way to define LQG rigorously in the sub-
critical and critical phases is via the David–Distler–Kawai (DDK) ansatz. The DDK ansatz states
that for 𝐜M ∈ (−∞, 1], the Riemannian metric tensor associated with an LQG surface takes the
form

g = 𝑒𝛾ℎ (𝑑𝑥2 + 𝑑𝑦2), where 𝛾 ∈ (0, 2] satisfies 𝐜M = 25 − 6

(
2

𝛾
+

𝛾

2

)2

. (1.1)

Here, 𝑑𝑥2 + 𝑑𝑦2 denotes the Euclidean metric tensor on𝑈 and ℎ is a variant of the Gaussian free
field (GFF) on 𝑈, the most natural random generalized function on 𝑈. We refer to [5, 41, 43] for
more background on the GFF.
The Riemannian metric tensor in (1.1) is still not well-defined since the GFF is not a function,

so 𝑒𝛾ℎ does not make literal sense. Nevertheless, it is possible to rigorously define various objects
associated with (1.1) using regularization procedures. To do this, one considers a family of con-
tinuous functions {ℎ𝜀}𝜀>0 which approximate ℎ, then takes an appropriate limit of objects defined
using ℎ𝜀 in place of ℎ. Objects which have been constructed in this manner include the LQG area
and length measures [18, 31, 39], Liouville Brownian motion [4, 19], the correlation functions for
the random ‘fields’ 𝑒𝛼ℎ for 𝛼 ∈ R [32], and the distance function (metric) associated with (1.1), at
least for 𝐜M < 1 [8, 27].
LQG in the subcritical and critical phases is expected, and in some cases proven, to describe

the scaling limit of various types of random planar maps. For example, in keeping with the above
heuristic definition, LQG with 𝐜M ∈ (−∞, 1] should describe the scaling limit of random planar
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4 DING and GWYNNE

maps sampled with probability proportional to (det Δ)−𝐜M∕2, where Δ is the discrete Laplacian.
We refer to [5, 20, 23] for expository articles on subcritical and critical LQG.
The supercritical phase 𝐜M ∈ (1, 25) is much more mysterious than the subcritical and criti-

cal phases, even from the physics perspective. In this case, the DDK ansatz does not apply. In
fact, the parameter 𝛾 from (1.1) is complex with |𝛾| = 2, so attempting to directly analytically con-
tinue formulae from the subcritical case to the supercritical case often gives nonsensical complex
answers. It is expected that supercritical LQG still corresponds in some sense to a random geome-
try related to the GFF. However, until very recently there have been few mathematically rigorous
results for supercritical LQG. See [22] for an extensive discussion of the physics literature and
various conjectures concerning LQG with 𝐜M ∈ (1, 25).
The purpose of this paper is to show that in the critical and supercritical phases, that is, when

𝐜M ∈ [1, 25), there is a canonical metric (distance function) associated with LQG. This was pre-
viously established in the subcritical phase 𝐜M ∈ (−∞, 1) in the series of papers [8, 17, 24, 25, 27].
Our results resolve [27, Problems 7.17 and 7.18], which ask for a metric associated with LQG for
𝐜M ∈ [1, 25).
This paper builds on [11], which proved the tightness of an approximation procedure for the

metric when 𝐜M ∈ [1, 25) (using [15] and some estimates from [8] which also work for the criti-
cal/supercritical cases), and [36], which proved various properties of the subsequential limits. The
analogs of these works in the subcritical case are [8] and [17], respectively. We will also use one
preliminary lemma which was proven in [12] (Lemma 2.12), but we will not need the main result
of [12], that is, the confluence of geodesics property.
Our results are analogous to those of [27], which proved uniqueness of the subcritical LQG

metric. Wewill prove that the subsequential limitingmetrics in the critical and supercritical cases
are uniquely characterized by a natural list of axioms. However, our proof is very different from
the argument of [27], for two main reasons.

∙ A key input in [27] is confluence of geodesics, which says that two LQG geodesics with the same
starting point and different target points typically coincide for a non-trivial initial interval of
time [24]. We replace the core part of the argument in [27], which corresponds to [27, section
4], by a simpler argument which does not use confluence of geodesics (Section 4). Instead, our
argument is based on counting the number of events of a certain type which occur. Confluence
of geodesicswas proven for the critical and supercritical LQGmetrics in [12], but it is not needed
in this paper.

∙ There are many additional difficulties in our proof, especially in Section 5, arising from the fact
that the metrics we work with are not continuous with respect to the Euclidean metric, or even
finite-valued.

The first point reduces the complexity of this paper as compared to [27], whereas the second point
increases it. The net effect is that our argument is overall longer than [27], but conceptually sim-
pler and requires less external input. We note that all of our arguments apply in the subcritical
phase as well as the critical and supercritical phases, so this paper also gives a new proof of the
results of [27].

1.2 Convergence of Liouville first passage percolation

For concreteness, throughout this paper we will restrict attention to the whole-plane case. We
let ℎ be the whole-plane GFF with the additive constant chosen so that its average over the unit
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 5

circle is zero. Once the LQG metric for ℎ is constructed, it is straightforward to construct met-
rics associated with variants of the GFF on other domains via restriction and/or local absolute
continuity; see [27, Remark 1.5]. As in the subcritical case, the construction of our metric uses
an approximation procedure called Liouville first passage percolation (LFPP). To define LFPP, we
first introduce a family of continuous functions which approximate ℎ. For 𝑠 > 0 and 𝑧 ∈ C, let
𝑝𝑠(𝑧) =

1

2𝜋𝑠
exp(− |𝑧|2

2𝑠
) be the heat kernel. For 𝜀 > 0, we define a mollified version of the GFF by

ℎ∗
𝜀 (𝑧) ∶= (ℎ ∗ 𝑝𝜀2∕2)(𝑧) = ∫C

ℎ(𝑤)𝑝𝜀2∕2(𝑧 − 𝑤) 𝑑𝑤, ∀𝑧 ∈ C, (1.2)

where the integral is interpreted in the sense of distributional pairing. We use 𝑝𝜀2∕2 instead of 𝑝𝜀

so that the variance of ℎ∗
𝜀 (𝑧) is log 𝜀

−1 + 𝑂𝜀(1).
We now consider a parameter 𝜉 > 0, which will shortly be chosen to depend on the matter

central charge 𝐜M (see (1.6)). LFPP with parameter 𝜉 is the family of random metrics {𝐷𝜀
ℎ
}𝜀>0

defined by

𝐷𝜀
ℎ
(𝑧, 𝑤) ∶= inf

𝑃∶𝑧→𝑤 ∫
1

0
𝑒𝜉ℎ

∗
𝜀 (𝑃(𝑡))|𝑃′(𝑡)|𝑑𝑡, ∀𝑧, 𝑤 ∈ C, (1.3)

where the infimum is over all piecewise continuously differentiable paths 𝑃 ∶ [0, 1] → C from
𝑧 to 𝑤. To extract a non-trivial limit of the metrics 𝐷𝜀

ℎ
, we need to re-normalize. We (somewhat

arbitrarily) define our normalizing factor by

𝔞𝜀 ∶= median of inf
{
∫

1

0
𝑒𝜉ℎ

∗
𝜀 (𝑃(𝑡))|𝑃′(𝑡)|𝑑𝑡 ∶ 𝑃 is a left–right crossing of [0, 1]2

}
, (1.4)

where a left–right crossing of [0, 1]2 is a piecewise continuously differentiable path 𝑃 ∶ [0, 1] →

[0, 1]2 joining the left and right boundaries of [0, 1]2. We do not know the value of 𝔞𝜀 explicitly.
The best currently available estimates are given in [14, Theorem 1.11].
More generally, the definition (1.3) of LFPP also makes sense when ℎ is a whole-plane GFF

plus a bounded continuous function, that is, a random distribution of the form ℎ̃ + 𝑓, where ℎ̃ is a
whole-plane GFF and 𝑓 is a (possibly random and ℎ̃-dependent) bounded continuous function.
In terms of LFPP, the main result of this paper gives the convergence of the metrics 𝔞−1

𝜀 𝐷𝜀
ℎ
for

each 𝜉 > 0. For values of 𝜉 corresponding to the supercritical case 𝐜M ∈ (1, 25), the limitingmetric
is not continuouswith respect to the Euclideanmetric. Hence,we cannot expect convergencewith
respect to the uniform topology. Instead, as in [11], we will workwith the topology of the following
definition.

Definition 1.2. Let 𝑋 ⊂ C. A function 𝑓 ∶ 𝑋 × 𝑋 → R ∪ {−∞,+∞} is lower semicontinuous if
whenever (𝑧𝑛, 𝑤𝑛) ∈ 𝑋 × 𝑋 with (𝑧𝑛, 𝑤𝑛) → (𝑧, 𝑤), we have 𝑓(𝑧, 𝑤) ⩽ lim inf𝑛→∞ 𝑓(𝑧𝑛, 𝑤𝑛). The
topology on lower semicontinuous functions is the topology whereby a sequence of such functions
{𝑓𝑛}𝑛∈N converges to another such function 𝑓 if and only if

(i) whenever (𝑧𝑛, 𝑤𝑛) ∈ 𝑋 × 𝑋with (𝑧𝑛, 𝑤𝑛) → (𝑧, 𝑤), we have𝑓(𝑧, 𝑤) ⩽ lim inf𝑛→∞ 𝑓𝑛(𝑧𝑛, 𝑤𝑛);
(ii) for each (𝑧, 𝑤) ∈ 𝑋 × 𝑋, there exists a sequence (𝑧𝑛, 𝑤𝑛) → (𝑧, 𝑤) such that 𝑓𝑛(𝑧𝑛, 𝑤𝑛) →

𝑓(𝑧, 𝑤).
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6 DING and GWYNNE

It follows from [3, Lemma 1.5] that the topology of Definition 1.2 is meterizable (see [11, section
1.2]). Furthermore, [3, Theorem 1(a)] shows that the metric inducing this topology can be taken
to be separable.

Theorem 1.3. Let ℎ be a whole-plane GFF, or more generally a whole-plane GFF plus a bounded
continuous function. For each 𝜉 > 0, the re-scaled LFPP metrics 𝔞−1

𝜀 𝐷𝜀
ℎ
converge in probability with

respect to the topology on lower semicontinuous functions on C × C (Definition 1.2). The limit 𝐷ℎ is
a random metric on C, except that it is allowed to take on infinite values.

To make the connection between Theorem 1.3 and the LQG metric, we need to discuss the
LFPP distance exponent 𝑄. It was shown in [11, Proposition 1.1] that for each 𝜉 > 0, there exists
𝑄 = 𝑄(𝜉) > 0 such that

𝔞𝜀 = 𝜀1−𝜉𝑄+𝑜𝜀(1), as 𝜀 → 0. (1.5)

The existence of 𝑄 is proven via a subadditivity argument, so the exact relationship between 𝑄

and 𝜉 is not known. However, it is known that 𝑄 ∈ (0,∞) for all 𝜉 > 0 and 𝑄 is a continuous,
non-increasing function of 𝜉 [11, 15]. See also [1, 28] for bounds for 𝑄 in terms of 𝜉.
As we will discuss in more detail below, LFPP with parameter 𝜉 is related to LQG with matter

central charge

𝐜M = 𝐜M(𝜉) = 25 − 6𝑄(𝜉)2. (1.6)

The function 𝜉 ↦ 𝑄(𝜉) is continuous and𝑄(𝜉) → ∞ as 𝜉 → 0 and𝑄(𝜉) → 0 as 𝜉 → ∞ [11, Propo-
sition 1.1]. So, the formula (1.6) shows that there is a value of 𝜉 corresponding to each 𝐜M ∈

(−∞, 25). Furthermore, 𝜉 ↦ 𝑄(𝜉) is strictly decreasing on (0,0.7), so the function 𝜉 ↦ 𝐜M(𝜉) is
injective on this interval. We expect that it is in fact injective on all of (0,∞), which would mean
that there is a one-to-one correspondence between 𝜉 and 𝐜M.†
The relation between 𝜉 and 𝐜M in (1.6) is not explicit since the dependence of 𝑄 on 𝜉 is not

known explicitly. The only exact relation between 𝐜M and 𝜉 which we know is that 𝐜M = 0 cor-
responds to 𝜉 = 1∕

√
6. This is equivalent to the fact that the Hausdorff dimension of LQG with

𝛾 =
√

8∕3 is 4. See [10] for details.
From (1.6), we see that 𝑄(𝜉) = 2 corresponds to the critical value 𝐜M = 1, which motivates us

to define

𝜉crit ∶= inf {𝜉 > 0 ∶ 𝑄(𝜉) = 2}. (1.7)

It follows from [11, Proposition 1.1] that 𝜉crit is the unique value of 𝜉 for which 𝑄(𝜉) = 2 and from
[28, Theorem 2.3] that 𝜉crit ∈ [0.4135, 0.4189]. We have 𝑄 > 2 for 𝜉 < 𝜉crit and 𝑄 ∈ (0, 2) for 𝜉 >

𝜉crit.

†One way to prove the injectivity of 𝜉 ↦ 𝐜M(𝜉) would be to show that if 𝜉 and 𝐜M are related as in (1.6), then 𝜉 is the
distance exponent for the dyadic subdivision model in [22] with parameter 𝐜M: indeed, this would give an inverse to the
function 𝜉 ↦ 𝐜M(𝜉). We expect that this can be proven using similar arguments to the ones used to related LFPP and
Liouville graph distance in [10], see also the discussion of LFPP in [22, section 2.3].
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 7

Definition 1.4. We refer to LFPP with 𝜉 < 𝜉crit, 𝜉 = 𝜉crit, and 𝜉 > 𝜉crit as the subcritical, critical,
and supercritical phases, respectively.

By (1.6), the three phases of LFPP correspond exactly to the three phases of LQG in
Definition 1.1.
Theorem 1.3 has already been proven in the subcritical phase 𝜉 < 𝜉crit (but this paper simpli-

fies part of the proof). Indeed, it was shown by Ding, Dubédat, Dunlap, and Falconet [8] that
in this case the re-scaled LFPP metrics 𝔞−1

𝜀 𝐷𝜀
ℎ
are tight with respect to the topology of uniform

convergence on compact subsets of C × C, which is a stronger topology than the one in Defini-
tion 1.2. Subsequently, it was shown by Gwynne and Miller [27], building on [17, 24, 25], that the
subsequential limit is unique. This was done by establishing an axiomatic characterization of the
limiting metric.
The limiting metric in the subcritical phase induces the same topology on C as the Euclidean

metric, but has very different geometric properties. This metric can be thought of as the Rieman-
nian distance function associated with the Riemannian metric tensor (1.1), where 𝐜M ∈ (−∞, 1)

and 𝜉 are related as in (1.6). The relation between 𝐜M and 𝜉 can equivalently be expressed as
𝛾 = 𝜉𝑑(𝜉), where 𝛾 ∈ (0, 2) is as in (1.1) and 𝑑(𝜉) > 2 is the Hausdorff dimension of the limiting
metric [10, 29]. See [9] for a survey of results about the subcritical LQGmetric (and some previous
results in the critical and supercritical cases).
In the critical and supercritical cases, Theorem 1.3 is new.We previously showed in [11] that for

all 𝜉 > 0, the metrics {𝔞−1
𝜀 𝐷𝜀

ℎ
}𝜀>0 are tight with respect to the topology on lower semicontinuous

functions. The contribution of the present paper is to show that the subsequential limit is unique.
We will do this by proving that the limiting metric is uniquely characterized by a list of axioms
analogous to the one in [27] (see Theorems 1.8 and 1.13).
In the critical case 𝜉 = 𝜉crit, the limiting metric 𝐷ℎ induces the same topology as the Euclidean

metric [13], and can be thought of as the Riemannian distance function associated with critical
(𝛾 = 2) LQG. We refer to [38] for a survey of results concerning the critical LQGmeasure.
In the supercritical case 𝜉 > 𝜉crit, the limiting metric in Theorem 1.3 does not induce the

Euclidean topology on C. Rather, almost surely there exists an uncountable, Euclidean-dense
set of singular points 𝑧 ∈ C such that

𝐷ℎ(𝑧, 𝑤) = ∞, ∀𝑤 ∈ C ⧵ {𝑧}. (1.8)

However, for each fixed 𝑧 ∈ C, almost surely 𝑧 is not a singular point, so the set of singular points
has zero Lebesgue measure. Moreover, any two non-singular points lie at finite 𝐷ℎ-distance from
each other [11]. One can think of singular points as infinite ‘spikes’ which 𝐷ℎ-rectifiable paths
must avoid.
If we let {ℎ𝜀}𝜀>0 be the circle average process for the GFF [18, section 3.1], then the set of singular

points is (almost) the same as the set of points 𝑧 ∈ C which have thickness greater than 𝑄, in the
sense that

lim sup
𝜀→0

ℎ𝜀(𝑧)

log 𝜀−1
> 𝑄. (1.9)

See [36, Proposition 1.11] for a precise statement. It is shown in [30] that almost surely

lim sup
𝜀→0

ℎ𝜀(𝑧)∕ log 𝜀−1 ∈ [−2, 2], ∀𝑧 ∈ C,
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8 DING and GWYNNE

which explains why 𝜉crit (which corresponds to 𝑄 = 2) is the critical threshold for singular points
to exist.

Remark 1.5 (Conjectured random planar map connection). In the subcritical case, the LQGmetric
is conjectured to describe the scaling limit of various types of random planarmaps, equipped with
their graph distance, with respect to the Gromov–Hausdorff topology (see [27, section 1.3]). This
conjecture naturally extends to the critical case. In particular, the critical LQGmetric should be the
Gromov–Hausdorff scaling limit of random planar maps sampled with probability proportional
to the partition function of, for example, the discrete GFF, the O(2) loopmodel, the critical 4-state
Potts model, or the critical Fortuin–Kasteleyn model with parameter 𝑞 = 4 [2, 23, 42]. A naive
guess in the supercritical case is that the LQG metric for 𝐜M ∈ (1, 25) should describe the scaling
limit of random planar maps sampled with probability proportional to (det Δ)−𝐜M∕2, where Δ is
the discrete Laplacian. This guess appears to be false, however, since numerical simulations and
heuristics suggest that such planar maps converge in the scaling limit to trees (see [22, section
2.2] and the references therein). Rather, in order to get supercritical LQG in the limit, one should
consider planar maps sampled with probability proportional to (det Δ)−𝐜M∕2 which are in some
sense ‘allowed to have infinitely many vertices’. We do not know how to make sense of such maps
rigorously. However, [22] defines a random planar map which should be in the same universality
class: it is the adjacency graph of a dyadic tiling ofC by squares which all have the same ‘𝐜M-LQG
size’ with respect to an instance of the GFF. See [22] for further discussion.

1.3 Characterization of the LQGmetric

Since we already know that LFPP is tight for all 𝜉 > 0 [11], in order to prove Theorem 1.3 we need
to show that the subsequential limit is unique. To accomplish this, we will prove that for each
𝜉 > 0, there is a unique (up tomultiplication by a deterministic positive constant)metric satisfying
certain axioms. That is, we will extend the characterization result of [27] to the supercritical case.
To state our axioms, we first need some preliminary definitions.

Definition 1.6. Let (𝑋, 𝑑) be a metric space, with 𝑑 allowed to take on infinite values.

∙ A curve (also known as a path) in (𝑋, 𝑑) is a continuous function 𝑃 ∶ [𝑎, 𝑏] → 𝑋 for some
interval [𝑎, 𝑏].

∙ For a curve 𝑃 ∶ [𝑎, 𝑏] → 𝑋, the 𝑑-length of 𝑃 is defined by

len(𝑃; 𝑑) ∶= sup
𝑇

#𝑇∑
𝑖=1

𝑑(𝑃(𝑡𝑖), 𝑃(𝑡𝑖−1)),

where the supremum is over all partitions 𝑇 ∶ 𝑎 = 𝑡0 < ⋯ < 𝑡#𝑇 = 𝑏 of [𝑎, 𝑏]. Note that the 𝑑-
length of a curve may be infinite. In particular, the 𝑑-length of 𝑃 is infinite if there are times
𝑠, 𝑡 ∈ [𝑎, 𝑏] such that 𝑑(𝑃(𝑠), 𝑃(𝑡)) = ∞.

∙ We say that (𝑋, 𝑑) is a length space if for each 𝑥, 𝑦 ∈ 𝑋 and each 𝜀 > 0, there exists a curve of
𝑑-length at most 𝑑(𝑥, 𝑦) + 𝜀 from 𝑥 to 𝑦. If 𝑑(𝑥, 𝑦) < ∞, a curve from 𝑥 to 𝑦 of 𝑑-length exactly
𝑑(𝑥, 𝑦) is called a geodesic.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 9

∙ For 𝑌 ⊂ 𝑋, the internal metric of 𝑑 on 𝑌 is defined by

𝑑(𝑥, 𝑦; 𝑌) ∶= inf
𝑃⊂𝑌

len(𝑃; 𝑑), ∀𝑥, 𝑦 ∈ 𝑌, (1.10)

where the infimum is over all curves 𝑃 in 𝑌 from 𝑥 to 𝑦. Note that 𝑑(⋅, ⋅; 𝑌) is a metric on 𝑌,
except that it is allowed to take infinite values.

∙ If𝑋 ⊂ C, we say that 𝑑 is a lower semicontinuous metric if the function (𝑥, 𝑦) → 𝑑(𝑥, 𝑦) is lower
semicontinuous with respect to the Euclidean topology. We equip the set of lower semicon-
tinuous metrics on 𝑋 with the topology on lower semicontinuous functions on 𝑋 × 𝑋, as in
Definition 1.2, and the associated Borel 𝜎-algebra.

The axioms which characterize our metric are given in the following definition.

Definition 1.7 (LQG metric). Let ′ be the space of distributions (generalized functions) on C,
equipped with the usual weak topology. For 𝜉 > 0, a (strong) LQG metric with parameter 𝜉 is a
measurable function ℎ ↦ 𝐷ℎ from ′ to the space of lower semicontinuous metrics on C with
the following properties.† Let ℎ be a GFF plus a continuous function on C: that is, ℎ is a random
distribution on C which can be coupled with a random continuous function 𝑓 in such a way that
ℎ − 𝑓 has the law of the whole-plane GFF. Then the associated metric 𝐷ℎ satisfies the following
axioms.

I. Length space. Almost surely, (C, 𝐷ℎ) is a length space.
II. Locality. Let𝑈 ⊂ C be a deterministic open set. The 𝐷ℎ-internal metric 𝐷ℎ(⋅, ⋅; 𝑈) is almost

surely given by a measurable function of ℎ|𝑈 .
III. Weyl scaling. For a continuous function 𝑓 ∶ C → R, define

(𝑒𝜉𝑓 ⋅ 𝐷ℎ)(𝑧, 𝑤) ∶= inf
𝑃∶𝑧→𝑤 ∫

len(𝑃;𝐷ℎ)

0
𝑒𝜉𝑓(𝑃(𝑡)) 𝑑𝑡, ∀𝑧, 𝑤 ∈ C, (1.11)

where the infimum is over all 𝐷ℎ-rectifiable paths from 𝑧 to 𝑤 in C parameterized by 𝐷ℎ-
length (we use the convention that inf ∅ = ∞). Then almost surely 𝑒𝜉𝑓 ⋅ 𝐷ℎ = 𝐷ℎ+𝑓 for every
continuous function 𝑓 ∶ C → R.

IV. Scale and translation covariance. Let 𝑄 be as in (1.5). For each fixed deterministic 𝑟 > 0

and 𝑧 ∈ C, almost surely

𝐷ℎ(𝑟𝑢 + 𝑧, 𝑟𝑣 + 𝑧) = 𝐷ℎ(𝑟⋅+𝑧)+𝑄 log 𝑟(𝑢, 𝑣), ∀𝑢, 𝑣 ∈ C. (1.12)

V. Finiteness. Let 𝑈 ⊂ C be a deterministic, open, connected set and let 𝐾1, 𝐾2 ⊂ 𝑈 be
disjoint, deterministic, compact, connected sets which are not singletons. Almost surely,
𝐷ℎ(𝐾1, 𝐾2;𝑈) < ∞.

Definition 1.7 is nearly identical to the analogous definition in the subcritical case [27, section
1.2], except we only require the metric to be lower semicontinuous, rather than requiring it to

†We do not care how 𝐷 is defined on any subset of′ which has probability zero for the distribution of any whole-plane
GFF plus a continuous function.
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10 DING and GWYNNE

induce the Euclidean topology. Because we allow 𝐷ℎ to take infinite values, we need to include
a finiteness condition (Axiom V) to rule out metrics which assign infinite distance to too many
pairs of points. For example, if we defined𝐷ℎ for every distribution ℎ by𝐷ℎ(𝑧, 𝑤) = 0 if 𝑧 = 𝑤 and
𝐷ℎ(𝑧, 𝑤) = ∞ if 𝑧 ≠ 𝑤, then ℎ ↦ 𝐷ℎ would satisfy all of the conditions of Definition 1.7 except
for Axiom V.
Axioms I, II, and III are natural from the heuristic that the LQG metric should be given by

‘integrating 𝑒𝜉ℎ along paths, then taking an infimum over paths’. We remark that if ℎ is a GFF
plus a continuous function and𝐷ℎ is a weak LQGmetric, then almost surely the Euclideanmetric
is continuous with respect to 𝐷ℎ [36, Proposition 1.10] (but 𝐷ℎ is not continuous with respect to
the Euclidean metric if 𝜉 > 𝜉crit). Consequently, almost surely every path of finite 𝐷ℎ-length is
Euclidean continuous.
Axiom IV is the metric analog of the LQG coordinate change formula from [18, section 2],

but restricted to translation and scaling. Following [18], we can think of the pairs (C, 𝐷ℎ) and
(C, ℎ(𝑟 ⋅ +𝑧) + 𝑄 log 𝑟) as representing two different parameterizations of the same LQG surface.
Axiom IV implies that the metric is an intrinsic function of the LQG surface, that is, it is invariant
under changing coordinates to a different parameterization. We do not assume that the metric is
covariant with respect to rotations in Definition 1.7: this turns out to be a consequence of the other
axioms (see Proposition 1.9).
The following theorem extends [27, Theorem 1.2] to the critical and supercritical phases.

Theorem 1.8. For each 𝜉 > 0, there is an LQG metric 𝐷 with parameter 𝜉 such that the limiting
metric of Theorem 1.3 is almost surely equal to 𝐷ℎ whenever ℎ is a whole-plane GFF plus a bounded
continuous function. Furthermore, this LQG metric is unique in the following sense. If 𝐷 and 𝐷̃ are
two LQG metrics with parameter 𝜉, then there is a deterministic constant 𝐶 > 0 such that almost
surely 𝐷̃ℎ = 𝐶𝐷ℎ whenever ℎ is a whole-plane GFF plus a continuous function.

Theorem 1.8 tells us that for every 𝐜M ∈ (−∞, 25), there is an essentially unique† metric asso-
ciated with LQGwith matter central charge 𝐜M (recall the non-explicit relation between 𝜉 and 𝐜M
from (1.6)). The deterministic positive constant 𝐶 from Theorem 1.8 can be fixed in various ways.
For example, we can require that the median of the 𝐷ℎ-distance between the left and right sides
of the unit square is 1 in the case when ℎ is a whole-plane GFF normalized so that its average over
the unit circle is 0. Due to (1.4), the limit of LFPP has this normalization.
Theorem 1.8 implies that the LQG metric is covariant with respect to rotation, not just scaling

and translation. See [27, Remark 1.6] for a heuristic discussion of why we do not need to assume
rotational invariance in Definition 1.7.

Proposition 1.9. Let 𝜉 > 0 and let 𝐷 be an LQG metric with parameter 𝜉. Let ℎ be a whole-plane
GFF plus a continuous function and let 𝜔 ∈ C with |𝜔| = 1. Almost surely,

𝐷ℎ(𝑢, 𝑣) = 𝐷ℎ(𝜔⋅)(𝜔
−1𝑢, 𝜔−1𝑣), ∀𝑢, 𝑣 ∈ C. (1.13)

† Strictly speaking, we only show that there is a unique LQG metric with parameter 𝜉 for each 𝜉 ∈ (0,∞). To deduce
that the metric with central charge 𝐜M is unique we would need to know that 𝜉 ↦ 𝐜M(𝜉) is injective. We expect that this
injectivity is not hard to prove, but a proof of has so far only been written down for 𝜉 ∈ (0, 0.7). See the discussion just
after (1.6).
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 11

Proof. Define 𝐷(𝜔)
ℎ

(𝑢, 𝑣) ∶= 𝐷ℎ(𝜔⋅)(𝜔
−1𝑢, 𝜔−1𝑣). It is easily verified that 𝐷(𝜔) satisfies the condi-

tions of Definition 1.7, so Theorem 1.8 implies that there is a deterministic constant 𝐶 > 0 such
that almost surely 𝐷(𝜔)

ℎ
= 𝐶𝐷ℎ whenever ℎ is a whole-plane GFF plus a continuous function. To

check that 𝐶 = 1, consider the case when ℎ is a whole-plane GFF ℎ normalized so that its aver-
age over the unit circle is 0. Then the law of ℎ is rotationally invariant, so P[𝐷ℎ(0, 𝜕D) > 𝑅] =

P[𝐷(𝜔)
ℎ

(0, 𝜕D) > 𝑅] for every 𝑅 > 0. Therefore, 𝐶 = 1. □

Proposition 1.9 implies that 𝐷ℎ is covariant with respect to complex affine maps. It is natural to
expect that 𝐷ℎ is also covariant with respect to general conformal maps, in the following sense.
Let 𝑈,𝑈 ⊂ C be open and let 𝜙 ∶ 𝑈 → 𝑈 be a conformal map. Then it should be the case that
almost surely

𝐷ℎ(𝜙(𝑢), 𝜙(𝑣); 𝑈) = 𝐷ℎ◦𝜙+𝑄 log |𝜙′|(𝑢, 𝑣;𝑈), ∀𝑢, 𝑣 ∈ 𝑈. (1.14)

In the subcritical case, the coordinate change relation (1.14) was proven in [26]. We expect that
the proof there can be adapted to treat the critical and supercritical cases as well.
Various properties of the LQG metric 𝐷ℎ for 𝐜M ∈ [1, 25) have already been established in

the literature. For example, for 𝐜M ∈ (1, 25) almost surely each 𝐷ℎ-metric ball  centered at a
non-singular point is not 𝐷ℎ-compact [29, Proposition 1.14], but the boundaries of the connected
components ofC ⧵  are 𝐷ℎ-compact and are Jordan curves [12, Theorem 1.4]. Furthermore, one
has a confluence property for LQG geodesics [12, Theorem 1.6] and a version of the Knizhnik–
Polyakov–Zamolodchikov (KPZ) formula, which relates Hausdorff dimensions with respect to𝐷ℎ

and the Euclidean metric [36, Theorem 1.15]. Simulations of supercritical LQG metric balls and
geodesics can be found in [9, 11, 12].
There are many open problems related to the LQG metric for 𝐜M ∈ [1, 25). A list of open prob-

lems concerning LQG with 𝐜M ∈ (1, 25) can be found in [22, section 6]. Moreover, most of the
open problems for the LQGmetric with 𝐜M ∈ (−∞, 1) from [27, section 7] are also interesting for
𝐜M ∈ [1, 25). Here, we mention one open problem which has not been discussed elsewhere.

Problem 1.10. Let𝐷(𝜉)

ℎ
denote the LQGmetricwith parameter 𝜉. Does𝐷(𝜉)

ℎ
, appropriately re-scaled,

converge in some topology as 𝜉 → ∞ (equivalently, 𝐜M → 25)? Even if one does not have conver-
gence of the whole metric, can anything be said about the limits of 𝐷(𝜉)

ℎ
-metric balls, geodesics,

and so on?

1.4 Weak LQGmetrics

In this subsection, we will introduce a notion of weak LQG metric for general 𝜉 > 0 (Defini-
tion 1.12), which is similar to Definition 1.7 but with Axiom IV replaced by a weaker condition.
Our notion of a weak LQGmetric first appeared in [36]. We will then state a uniqueness theorem
for weak LQG metrics (Theorem 1.13) and explain why our other main theorems (Theorems 1.3
and 1.8) follow from this theorem. A similar notion of weak LQGmetrics was used in the proof of
uniqueness of the subcritical LQG metric [17, 27].
Tomotivate the definition of weak LQGmetrics, we first observe that every possible subsequen-

tial limit of the re-scaled LFPP metrics 𝔞−1
𝜀 𝐷𝜀

ℎ
satisfies Axioms I, II, and III in Definition 1.7. This

is intuitively clear from the definition, and not too hard to check rigorously (see [36, section 2]). It
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12 DING and GWYNNE

is also easy to see that every possible subsequential limit of LFPP satisfies Axiom V for 𝑟 = 1 (that
is, it satisfies the coordinate change formula for translations). However, it is far from obvious that
the subsequential limits satisfy Axiom V when 𝑟 ≠ 1. The reason is that re-scaling space changes
the value of 𝜀 in (1.3): for 𝜀, 𝑟 > 0, one has [17, Lemma 2.6]

𝐷𝜀
ℎ
(𝑟𝑧, 𝑟𝑤) = 𝑟𝐷

𝜀∕𝑟

ℎ(𝑟⋅)
(𝑧, 𝑤), ∀𝑧, 𝑤 ∈ C.

So, since we only have subsequential limits of 𝔞−1
𝜀 𝐷𝜀

ℎ
, we cannot directly deduce that the

subsequential limit satisfies an exact spatial scaling property.
Because of the above issue, we do not know how to check Axiom IV for subsequential limits of

LFPPdirectly. Instead,wewill prove a stronger uniqueness statement than the one inTheorem 1.8,
under a weaker list of axiomswhich can be checked for subsequential limits of LFPP.Wewill then
deduce from this stronger uniqueness statement that the weaker list of axioms implies the axioms
in Definition 1.7 (Lemma 1.15).
An annular region is a bounded open set 𝐴 ⊂ C such that 𝐴 is homeomorphic to an open,

closed, or half-open Euclidean annulus. If 𝐴 is an annular region, then 𝜕𝐴 has two connected
components, one of which disconnects the other from ∞. We call these components the outer
and inner boundaries of 𝐴, respectively.

Definition 1.11 (Distance across and around annuli). Let 𝑑 be a length metric on C. For an
annular region 𝐴 ⊂ C, we define 𝑑(across 𝐴) to be the 𝑑-distance between the inner and outer
boundaries of 𝐴. We define 𝑑(around 𝐴) to be the infimum of the 𝑑-lengths of paths in 𝐴 which
disconnect the inner and outer boundaries of 𝐴.

Note that both 𝑑(across 𝐴) and 𝑑(around 𝐴) are determined by the internal metric of 𝑑 on 𝐴.
Distances around and across Euclidean annuli play a similar role to ‘hard crossings’ and ‘easy
crossings’ of 2 × 1 rectangles in percolation theory. One can get a lower bound for the 𝑑-length of
a path in terms of the 𝑑-distances across the annuli that it crosses. On the other hand, one can
‘string together’ paths aroundEuclidean annuli to get upper bounds for𝑑-distances. The following
is (almost) a re-statement of [36, Definition 1.6].

Definition 1.12 (Weak LQGmetric). Let′ be as in Definition 1.12. For 𝜉 > 0, aweak LQGmetric
with parameter 𝜉 is a measurable function ℎ ↦ 𝐷ℎ from′ to the space of lower semicontinuous
metrics on C which satisfies properties I (length metric), II (locality), and III (Weyl scaling) from
Definition 1.7 plus the following two additional properties.

IV′. Translation invariance. For each deterministic point 𝑧 ∈ C, almost surely 𝐷ℎ(⋅+𝑧) =

𝐷ℎ(⋅ + 𝑧, ⋅ + 𝑧).
V′. Tightness across scales. Suppose that ℎ is a whole-plane GFF and let {ℎ𝑟(𝑧)}𝑟>0,𝑧∈C be its

circle average process. Let 𝐴 ⊂ C be a deterministic Euclidean annulus. In the notation of
Definition 1.11, the random variables

𝑟−𝜉𝑄𝑒−𝜉ℎ𝑟(0)𝐷ℎ(across 𝑟𝐴) and 𝑟−𝜉𝑄𝑒−𝜉ℎ𝑟(0)𝐷ℎ(around 𝑟𝐴)

and the reciprocals of these random variables for 𝑟 > 0 are tight.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 13

We think of Axiom V′as a substitute for Axiom IV of Definition 1.7. Indeed, Axiom V′does not
give an exact spatial scaling property, but it still allows us to get estimates for𝐷ℎ which are uniform
across different Euclidean scales.
It was shown in [36, Theorem 1.7] that every subsequential limit of the re-scaled LFPP metrics

𝔞−1
𝜀 𝐷𝜀

ℎ
is a weak LQG metric in the sense of Definition 1.12. Actually, [36] allows for a general

family of scaling constants {𝔠𝑟}𝑟>0 in Axiom V′in place of 𝑟𝜉𝑄, but it was shown in [14, Theorem
1.9] that one can always take 𝔠𝑟 = 𝑟𝜉𝑄. So, our definition is equivalent to the one in [36].
From the preceding paragraph and the tightness of 𝔞−1

𝜀 𝐷𝜀
ℎ
[11], we know that there exists a weak

LQGmetric for each 𝜉 > 0. Most of this paper is devoted to the proof of the uniqueness of theweak
LQG metric.

Theorem 1.13. For each 𝜉 > 0, the weak LQG metric is unique in the following sense. If 𝐷 and 𝐷̃

are two weak LQG metrics with parameter 𝜉, then there is a deterministic constant 𝐶 > 0 such that
almost surely 𝐷ℎ = 𝐶𝐷̃ℎ whenever ℎ is a whole-plane GFF plus a continuous function.

Let us now explain why Theorem 1.13 is sufficient to establish our main results, Theorems 1.3
and 1.8. We first observe that every strong LQG metric is a weak LQG metric.

Lemma 1.14. For each 𝜉 > 0, each strong LQG metric (Definition 1.7) is a weak LQG metric
(Definition 1.12).

Proof. Let 𝐷 be a strong LQG metric. It is immediate from Axiom V of Definition 1.7 with 𝑟 = 1

that 𝐷 satisfies translation invariance (Axiom IV′). We need to check Axiom V′. To this end, let
ℎ be a whole-plane GFF normalized so that ℎ1(0) = 0. Weyl scaling (Axiom III) together with
conformal covariance (Axiom IV) gives

𝑟−𝜉𝑄𝑒−𝜉ℎ𝑟(0)𝐷ℎ(𝑟⋅, 𝑟⋅) = 𝐷ℎ(𝑟⋅)−ℎ𝑟(0)
(⋅, ⋅)

𝑑
= 𝐷ℎ(⋅, ⋅), (1.15)

where the equality in law is due to the scale invariance of the law of ℎ, modulo additive constant.
To get tightness across scales, it therefore suffices to show that for each fixed Euclidean annulus

𝐴, almost surely 𝐷ℎ(across 𝐴) and 𝐷ℎ(around 𝐴) are finite and positive. Our finiteness condi-
tion Axiom V easily implies that these two quantities are almost surely finite. To see that they
are almost surely positive, it suffices to show that for any two deterministic, disjoint, Euclidean-
compact sets 𝐾1, 𝐾2 ⊂ C, almost surely 𝐷ℎ(𝐾1, 𝐾2) > 0. Indeed, on the event {𝐷ℎ(𝐾1, 𝐾2) = 0}

we can find sequences of points 𝑧𝑛 ∈ 𝐾1 and 𝑤𝑛 ∈ 𝐾2 such that 𝐷ℎ(𝑧𝑛, 𝑤𝑛) → 0. After possi-
bly passing to a subsequence, we can arrange that 𝑧𝑛 → 𝑧 ∈ 𝐾1 and 𝑤𝑛 → 𝑤 ∈ 𝐾2. By the lower
semicontinuity of 𝐷ℎ, we get 𝐷ℎ(𝑧, 𝑤) = 0. Since 𝑧 and 𝑤 are distinct and 𝐷ℎ is a metric (not a
pseudometric) this implies that P[𝐷ℎ(𝐾1, 𝐾2) = 0] = 0. □

Theorem 1.13 implies that one also has the converse to Lemma 1.14.

Lemma 1.15. For each 𝜉 > 0, every weak LQG metric is a strong LQG metric in the sense of
Definition 1.7.

Proof of Lemma 1.15 assuming Theorem 1.13. Let𝐷 be a weak LQGmetric. It is clear that 𝑧 satisfies
Axioms I, II, III, and V of Definition 1.7. To show that 𝐷 is a strong LQGmetric, we need to check
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14 DING and GWYNNE

Axiom IVofDefinition 1.7 in the casewhen 𝑧 = 0 (note thatwe already have translation invariance
from Definition 1.12). To this end, for 𝑏 > 0 let

𝐷(𝑏)
ℎ

(⋅, ⋅) ∶= 𝐷ℎ(𝑏⋅)+𝑄 log 𝑏(⋅∕𝑏, ⋅∕𝑏). (1.16)

If ℎ is a whole-plane GFF with ℎ1(0) = 0 then by the scale invariance of the law of ℎ, modulo

additive constant, we have ℎ(𝑏⋅) − ℎ𝑏(0)
𝑑
= ℎ. Consequently, if ℎ is a whole-plane GFF plus a

continuous function, then ℎ(𝑏⋅) + 𝑄 log 𝑏 is also a whole-plane GFF plus a continuous function.
Hence, 𝐷(𝑏)

ℎ
is well-defined.

We need to show that almost surely 𝐷(𝑏)
ℎ

= 𝐷ℎ. We will prove this using Theorem 1.13. We
first claim that 𝐷(𝑏)

ℎ
is a weak LQG metric. It is easy to check that 𝐷(𝑏) satisfies Axioms I, II,

III, and IV′in Definition 1.12. To check Axiom V′, we use Weyl scaling (Axiom III) to get that

𝑟−𝜉𝑄𝑒−𝜉ℎ𝑟(0)𝐷(𝑏)
ℎ

(𝑟⋅, 𝑟⋅) = 𝑒−𝜉(ℎ𝑟(0)−ℎ𝑟∕𝑏(0))𝑒𝜉ℎ𝑏(0) × (𝑟∕𝑏)−𝜉𝑄𝑒−𝜉ℎ𝑟∕𝑏(0)𝐷ℎ(𝑏⋅)−ℎ𝑏(0)
((𝑟∕𝑏)⋅, (𝑟∕𝑏)⋅).

In the case when ℎ is a whole-plane GFF, the random variables ℎ𝑟(0) − ℎ𝑟∕𝑏(0) and ℎ𝑏(0) are
each centered Gaussian with variance logmax{𝑏, 1∕𝑏} [18, section 3.1]. Tightness across scales
(Axiom V′) for 𝐷 applied with ℎ(𝑏⋅) − ℎ𝑏(0)

𝑑
= ℎ in place of ℎ and 𝑟∕𝑏 in place of 𝑟 therefore

implies tightness across scales for 𝐷(𝑏).
Hence, we can apply Theorem 1.13 with 𝐷̃ = 𝐷(𝑏) to get that for each 𝑏 > 0, there is a deter-

ministic constant 𝔨𝑏 > 0 such that whenever ℎ is a whole-plane GFF plus a continuous function,
almost surely

𝐷(𝑏)
ℎ

= 𝔨𝑏𝐷ℎ.

It remains to show that 𝔨𝑏 = 1.
For 𝑏1, 𝑏2 > 0, we have 𝐷(𝑏1𝑏2) = (𝐷(𝑏1))(𝑏2), which implies that almost surely 𝐷

(𝑏1𝑏2)

ℎ
=

𝔨𝑏2𝐷
(𝑏1)

ℎ
= 𝔨𝑏1𝔨𝑏2𝐷ℎ. Therefore,

𝔨𝑏1𝑏2 = 𝔨𝑏1𝔨𝑏2 . (1.17)

It is also easy to see that 𝔨𝑏 is a Lebesgue measurable function of 𝑏. Indeed, by Weyl scaling

(Axiom III) and since ℎ(𝑏⋅) − ℎ𝑏(0)
𝑑
= ℎ,

𝔨𝑏𝑒
−𝜉ℎ𝑏(0)𝐷ℎ(𝑏⋅, 𝑏⋅) = 𝑒−𝜉ℎ𝑏(0)𝐷(𝑏)

ℎ
(𝑏⋅, 𝑏⋅) = 𝑏𝜉𝑄𝐷ℎ(𝑏⋅)−ℎ𝑏(0)

(⋅, ⋅)
𝑑
= 𝑏𝜉𝑄𝐷ℎ(⋅, ⋅). (1.18)

The function 𝑏 ↦ 𝑏−𝜉𝑄𝑒−𝜉ℎ𝑏(0) is continuous and 𝐷ℎ is lower semicontinuous. Hence, the met-
rics 𝑏−𝜉𝑄𝑒−𝜉ℎ𝑏(0)𝐷ℎ(𝑏⋅, 𝑏⋅) depend continuously on 𝑏 with respect to the topology on lower
semicontinuous functions. Therefore, the law of 𝔨−1

𝑏
𝐷ℎ depends continuously on 𝑏 with respect

to the topology on lower semicontinuous functions. It follows that 𝔨𝑏 is continuous, hence
Lebesgue measurable.
The relation (1.17) and themeasurability of 𝑏 ↦ 𝔨𝑏 imply that 𝔨𝑏 = 𝑏𝛼 for some 𝛼 ∈ R. By (1.18),

wehave 𝑏𝛼−𝜉𝑄𝑒−𝜉ℎ𝑏(0)𝐷ℎ(𝑏⋅, 𝑏⋅)
𝑑
= 𝐷ℎ(⋅, ⋅) for each 𝑏 > 0. In particular, AxiomV′, holds for𝐷with

𝜉𝑄 − 𝛼 in place of 𝜉𝑄. Hence, 𝛼 = 0. □
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 15

Proof of Theorem 1.3, assuming Theorem 1.13. By [11, Theorem 1.2], if ℎ is a whole-plane GFF plus
a bounded continuous function, then for each 𝜉 > 0, the re-scaled LFPP metrics 𝔞−1

𝜀 𝐷𝜀
ℎ
are tight

with respect to the topology of Definition 1.2. In fact, by [36, Theorem 1.7], for any sequence of
positive 𝜀 values tending to zero there is a weak LQG metric 𝐷 and a subsequence 𝜀𝑛 → 0 such
that whenever ℎ is a whole-plane GFF plus a continuous functions, the metrics 𝔞−1

𝜀𝑛
𝐷

𝜀𝑛
ℎ
converge

in probability to 𝐷ℎ with respect to this topology. By Theorem 1.13, if 𝐷 and 𝐷̃ are two weak LQG
metrics arising as subsequential limits in this way, then there is a deterministic 𝐶 > 0 such that
almost surely 𝐷̃ℎ = 𝐶𝐷ℎ whenever ℎ is a whole-plane GFF plus a continuous function.
If ℎ is a whole-plane GFF normalized so that ℎ1(0) = 0, then by the definition of 𝔞𝜀 in (1.4), the

median 𝔞−1
𝜀 𝐷𝜀

ℎ
-distance between the left and right sides of [0, 1]2 is 1. By passing this through to

the limit, we get that the constant 𝐶 above must be equal to 1. Therefore, almost surely 𝐷ℎ = 𝐷̃ℎ

whenever ℎ is a whole-plane GFF plus a continuous function, so the subsequential limit of 𝔞−1
𝜀 𝐷𝜀

ℎ
is unique. □

Proof of Theorem 1.8, assuming Theorem 1.13. The uniqueness of the strong LQG metric fol-
lows from Theorem 1.13 and Lemma 1.15. The existence follows from the existence of the limit
in Theorem 1.3, [36, Theorem 1.7] (which says that the limit is a weak LQG metric), and
Lemma 1.15. □

1.5 Outline

As explained in section 1.4, to establish our main results we only need to prove Theorem 1.13. To
this end, let ℎ be a whole-plane GFF and let 𝐷ℎ and 𝐷̃ℎ be two weak LQG metrics as in Defini-
tion 1.12. We need to show that there is a deterministic constant 𝐶 > 0 such that almost surely
𝐷̃ℎ = 𝐶𝐷ℎ. In this subsection, we will give an outline of the proof of this statement. Throughout
this outline and the rest of the paper, we will frequently use without comment the following fact,
which is [36, Proposition 1.12].

Lemma 1.16 [36]. Almost surely, the metric 𝐷ℎ is complete and finite-valued on C ⧵

{singular points}. Moreover, every pair of points in C ⧵ {singular points} can be joined by a
𝐷ℎ-geodesic (Definition 1.6).

1.5.1 Optimal bi-Lipschitz constants

By [14, Theorem 1.10], the metrics 𝐷ℎ and 𝐷̃ℎ are almost surely bi-Lipschitz equivalent, so in par-
ticular almost surely they have the same set of singular points. We define the optimal upper and
lower bi-Lipschitz constants

𝔠∗ ∶= inf

{
𝐷̃ℎ(𝑢, 𝑣)

𝐷ℎ(𝑢, 𝑣)
∶ 𝑢, 𝑣 ∈ C ⧵ {singular points}, 𝑢 ≠ 𝑣

}
and

ℭ∗ ∶= sup

{
𝐷̃ℎ(𝑢, 𝑣)

𝐷ℎ(𝑢, 𝑣)
∶ 𝑢, 𝑣 ∈ C ⧵ {singular points}, 𝑢 ≠ 𝑣

}
. (1.19)

Lemma 1.17. Each of 𝔠∗ and ℭ∗ is almost surely equal to a deterministic, positive, finite constant.
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16 DING and GWYNNE

Proof. By the bi-Lipschitz equivalence of 𝐷ℎ and 𝐷̃ℎ, almost surely 𝔠∗ and ℭ∗ are posi-
tive and finite. We know from [36, Lemma 3.12] that almost surely for each 𝑧 ∈ C, we have
lim𝑅→∞ 𝐷ℎ(𝑧, 𝜕𝐵𝑅(𝑧)) = ∞. With this fact in hand, the lemma follows from exactly the same
elementary tail triviality argument as in the subcritical case [27, Lemma 3.1]. □

We henceforth replace 𝔠∗ and ℭ∗ by their almost sure values in Lemma 1.17, so that each of 𝔠∗
and ℭ∗ is a deterministic constant depending only on the laws of 𝐷ℎ and 𝐷̃ℎ and almost surely

𝔠∗𝐷ℎ(𝑢, 𝑣) ⩽ 𝐷̃ℎ(𝑢, 𝑣) ⩽ ℭ∗𝐷ℎ(𝑢, 𝑣), ∀𝑢, 𝑣 ∈ C. (1.20)

1.5.2 Main idea of the proof

To prove Theorem 1.13, it suffices to show that 𝔠∗ = ℭ∗. In the rest of this subsection, we will give
an outline of the proof of this fact. There are many subtleties in our proof which we will gloss over
in this outline in order to focus on the key ideas. So, the statements in the rest of this subsection
should not be taken as mathematically precise.
At a very broad level, the basic strategy of our proof is similar to the proof of the uniqueness

of the subcritical LQG metric in [27]. However, the details in Sections 3 and 5 are substantially
different from the analogous parts of [27], and the argument in Section 4 is completely different
from anything in [27].
We now give a very rough explanation of the main idea of our proof. Assume by way of con-

tradiction that 𝔠∗ < ℭ∗. We will show that for any 𝔠′ ∈ (𝔠∗, ℭ∗), there are many ‘good’ pairs of
distinct non-singular points 𝑢, 𝑣 ∈ C such that 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′𝐷ℎ(𝑢, 𝑣) (Section 3). In fact, we will
show that the set of such points is large enough that every 𝐷ℎ-geodesic 𝑃 has to get 𝐷̃ℎ-close to
each of 𝑢 and 𝑣 for many ‘good’ pairs of points 𝑢, 𝑣 (Sections 4 and 5). For each of these good pairs
of points, we replace a segment of 𝑃 by the concatenation of a 𝐷̃ℎ-geodesic from a point of 𝑃 to 𝑢,
a 𝐷̃ℎ-geodesic from 𝑢 to 𝑣, and a 𝐷̃ℎ-geodesic from 𝑣 to a point of 𝑃. This gives a new path with
the same endpoints as 𝑃.
By our choice of good pairs of points 𝑢, 𝑣, the 𝐷̃ℎ-length of each of the replacement segments

is at most a constant slightly larger than 𝔠′ times its 𝐷ℎ-length. Furthermore, by the definition of
ℭ∗ the 𝐷̃ℎ-length of each segment of 𝑃 which was not replaced is at most ℭ∗ times its 𝐷ℎ-length.
Morally, we would like to say that this implies that there exists 𝔠′′ ∈ (𝔠′, ℭ∗) such that almost
surely

𝐷̃ℎ(𝑧, 𝑤) ⩽ 𝔠′′𝐷ℎ(𝑧, 𝑤), ∀𝑧, 𝑤 ∈ C. (1.21)

The bound (1.21) contradicts the fact that ℭ∗ is the optimal upper bi-Lipschitz constant
(recall (1.19)). In actuality, what we will prove is a bit more subtle: assuming that 𝔠∗ < ℭ∗, we
will establish for ‘many’ small values of 𝑟 > 0 and each 𝛿 > 0 an upper bound for

P
[
𝐷̃ℎ(𝑧, 𝑤) ⩽ (ℭ∗ − 𝛿)𝐷ℎ(𝑧, 𝑤), ∀𝑧, 𝑤 ∈ 𝐵𝑟(0) satisfying certain conditions

]
. (1.22)

See Proposition 1.21 for a somewhat more precise statement. This upper bound will be incom-
patible with a lower bound for the same probability (Proposition 1.18), which will lead to our
desired contradiction.
In the rest of this subsection, we give a more detailed, section-by-section outline of the proof.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 17

1.5.3 Section 2: Preliminary estimates

We will fix some notation, then record several basic estimates for the LQG metric which are
straightforward consequences of results in the existing literature (mostly [36]).

1.5.4 Section 3: Quantitative estimates for optimal bi-Lipschitz constants

Letℭ′ ∈ (𝔠∗, ℭ∗). By the definition (1.19) of 𝔠∗ andℭ∗, it holds with positive probability that there
exists non-singular points 𝑢, 𝑣 ∈ C such that 𝐷̃ℎ(𝑢, 𝑣) ⩾ ℭ′𝐷ℎ(𝑢, 𝑣). The purpose of Section 3 is to
prove a quantitative version of this statement. The argument of Section 3 is similar to the argument
of [27, section 3], butmany of the details are different due to the fact that ourmetrics do not induce
the Euclidean topology.
The following is a simplified version of the main result of Section 3 (see Proposition 3.5 for a

precise statement).

Proposition 1.18. There exists 𝑝 ∈ (0, 1), depending only on the laws of 𝐷ℎ and 𝐷̃ℎ, such that for
each ℭ′ ∈ (0, ℭ∗) and each sufficiently small 𝜀 > 0 (depending on ℭ′ and the laws of 𝐷ℎ and 𝐷̃ℎ),
there are at least 3

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N such that

P
[
∃ a ‘regular’ pair of points 𝑢, 𝑣 ∈ 𝐵𝑟(0) such that 𝐷̃ℎ(𝑢, 𝑣) ⩾ ℭ′𝐷ℎ(𝑢, 𝑣)

]
⩾ 𝑝. (1.23)

The statement that 𝑢 and 𝑣 are ‘regular’ in (1.23) means that these points satisfy several regu-
larity conditions which are stated precisely in Definition 3.2. These conditions include an upper
bound on 𝐷ℎ(𝑢, 𝑣) (so in particular 𝑢 and 𝑣 are non-singular) and a lower bound on |𝑢 − 𝑣| in
terms of 𝑟. We emphasize that the parameter 𝑝 in Proposition 1.18 does not depend on ℭ′. This
will be crucial for our purposes, see the discussion just after Proposition 1.21.
Wewill prove Proposition 1.18 by contradiction. In particular, wewill assume that there are arbi-

trarily small values of 𝜀 > 0 for which there are at least 1

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N

such that

P
[
𝐷̃ℎ(𝑢, 𝑣) < ℭ′𝐷ℎ(𝑢, 𝑣), ∀ ‘regular’ pairs of points 𝑢, 𝑣 ∈ 𝐵𝑟(0)

]
⩾ 1 − 𝑝. (1.24)

If 𝑝 is small enough (depending only on the laws of 𝐷ℎ and 𝐷̃ℎ), then we can use the assump-
tion (1.24) together with the near-independence of the restrictions of the GFF to disjoint
concentric annuli (Lemma 2.1) and a union bound to get the following. For any bounded open
set 𝑈 ⊂ C, it holds with high probability that 𝑈 can be covered by balls 𝐵𝑟(𝑧) for 𝑧 ∈ 𝑈 and
𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N such that the event in (1.24) occurs.
We will then work on the high-probability event that we have such a covering of 𝑈. Consider

points z,w ∈ 𝑈 such that there exists a 𝐷ℎ-geodesic 𝑃 from z to w which is contained in 𝑈. We
will replace several segments of 𝑃 between pairs of ‘regular’ points 𝑢, 𝑣 as in (1.24) by 𝐷̃ℎ-geodesics
from 𝑢 to 𝑣. The 𝐷̃ℎ-length of each of these geodesics is at mostℭ′𝐷ℎ(𝑢, 𝑣). Furthermore, by (1.19),
the 𝐷ℎ-length of each segment of 𝑃 which we did not replace is at most ℭ∗ times its 𝐷ℎ-length.
We thus obtain a path from z to w with 𝐷̃ℎ-length at most ℭ′′𝐷ℎ(𝑢, 𝑣), where ℭ′′ ∈ (ℭ′, ℭ∗) is a
constant depending only on ℭ′ and the laws of 𝐷ℎ and 𝐷̃ℎ. With high probability, this works for
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18 DING and GWYNNE

any𝐷ℎ-geodesic contained in𝑈. So, by taking𝑈 to be arbitrarily large,we contradict the definition
of ℭ∗. This yields Proposition 1.18.
By the symmetry in our hypotheses for 𝐷ℎ and 𝐷̃ℎ, we also get the following analog of

Proposition 1.18 with the roles of 𝐷ℎ and 𝐷̃ℎ interchanged.

Proposition 1.19. There exists 𝑝 ∈ (0, 1), depending only on the laws of 𝐷ℎ and 𝐷̃ℎ, such that for
each 𝔠′ > 𝔠∗ and each sufficiently small 𝜀 > 0 (depending on 𝔠′ and the laws of𝐷ℎ and 𝐷̃ℎ), there are
at least 3

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N for which

P
[
∃ a ‘regular’ pair of points 𝑢, 𝑣 ∈ 𝐵𝑟(0) such that 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′𝐷ℎ(𝑢, 𝑣)

]
⩾ 𝑝. (1.25)

1.5.5 Section 4: The core argument

The idea of the rest of the proof of Theorem 1.13 is to show that if 𝔠∗ < ℭ∗, then Proposition 1.19
implies a contradiction to Proposition 1.18.
The core part of the proof is given in Section 4, where we will prove Theorem 1.13 conditional

on the existence of events and bump functions satisfying certain specified properties. The needed
events and bump functions will be constructed in Section 5. Section 4 plays a role analogous to
[27, sections 4 and 6], but the proof is completely different.
We will consider a set of admissible radii ⊂ (0, 1), which will eventually be taken to be equal

to 𝜌−10, where 𝜌 is a constant and0 is the set of 𝑟 ∈ {8−𝑘}𝑘∈N for which (1.25) holds. We also
fix a constant p ∈ (0, 1), which will eventually be chosen to be close to 1, in a manner depending
only on the laws of 𝐷ℎ and 𝐷̃ℎ, and we set

𝔠′ ∶=
𝔠∗ + ℭ∗

2
, so that 𝔠′ ∈ (𝔠∗, ℭ∗) if 𝔠∗ < ℭ∗.

We will assume that for each 𝑟 ∈  and each 𝑧 ∈ C, we have defined an event 𝖤𝑧,𝑟 and a
deterministic function 𝖿𝑧,𝑟 satisfying the following properties.

∙ 𝖤𝑧,𝑟 is determined by ℎ|𝐵4𝑟(𝑧)⧵𝐵𝑟(𝑧)
, viewed modulo additive constant, and P[𝖤𝑧,𝑟] ⩾ p.

∙ 𝖿𝑧,𝑟 is smooth, non-negative, and supported on the annulus 𝐵3𝑟(𝑧) ⧵ 𝐵𝑟(𝑧).
∙ Assume that 𝖤𝑧,𝑟 occurs and 𝑃′ is a 𝐷ℎ−𝖿𝑧,𝑟

-geodesic between two points of C ⧵ 𝐵4𝑟(𝑧) which
spends ‘enough’ time in the support of 𝖿𝑧,𝑟. Then there are times 𝑠 < 𝑡 such that 𝑃′([𝑠, 𝑡]) ⊂

𝐵4𝑟(𝑧) and

𝐷̃ℎ−𝖿𝑧,𝑟
(𝑃′(𝑠), 𝑃′(𝑡)) ⩽ 𝔠′(𝑡 − 𝑠). (1.26)

The precise list of properties that we need is stated in Subsection 4.1.
Roughly speaking, the support of 𝖿𝑧,𝑟 will be a long narrow tube contained in a small neighbor-

hood of 𝜕𝐵2𝑟(0). On the event 𝖤𝑧,𝑟, there will be many ‘good’ pairs of non-singular points 𝑢, 𝑣 in
the support of 𝖿𝑧,𝑟 such that 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′

0
𝐷ℎ(𝑢, 𝑣) and the 𝐷̃ℎ-geodesic from 𝑢 to 𝑣 is contained

in the support of 𝖿𝑧,𝑟, where 𝔠′
0
∈ (𝔠∗, 𝔠

′) is fixed. See Figure 2 for an illustration. We will show
that 𝖤𝑧,𝑟 occurs with high probability for 𝑟 ∈  using Proposition 1.19 (with 𝔠′

0
instead of 𝔠′) and

a long-range independence statement for the GFF (Lemma 2.3).
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 19

F IGURE 2 Illustration of three ‘good’ balls (that is, ones for which 𝖤𝑧,𝑟 occurs) and one ‘very good’ ball (that
is, one for which 𝖤𝑧,𝑟(ℎ + 𝖿𝑧,𝑟) occurs) which are hit by the 𝐷ℎ-geodesic 𝑃. Each of the ‘good’ balls contains several
pairs of non-singular points 𝑢, 𝑣 in the support of 𝖿𝑧,𝑟 (light blue) for which 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′

0
𝐷ℎ(𝑢, 𝑣). These points

and the 𝐷̃ℎ-geodesics joining them are shown in red. For the ‘very good’ ball (the labeled ball in the figure), 𝑃 gets
𝐷ℎ−𝖿𝑧,𝑟

-close to each of 𝑢 and 𝑣 for one of the aforementioned pairs of points 𝑢, 𝑣. To prove Proposition 1.20, we
will show that there are lots of ‘very good’ balls for which 𝑃 spends a lot of time in the support of 𝖿𝑧,𝑟 .

The function 𝖿𝑧,𝑟 will be very large on most of its support. So, by Weyl scaling (Axiom III), a
𝐷ℎ−𝖿𝑧,𝑟

-geodesic which enters the support of 𝖿𝑧,𝑟 will tend to spend a long time in the support
of 𝖿𝑧,𝑟. This will force the 𝐷ℎ−𝖿𝑧,𝑟

-geodesic to get 𝐷ℎ−𝖿𝑧,𝑟
-close to each of 𝑢 and 𝑣 for one of the

aforementioned ‘good’ pairs of points𝑢, 𝑣. The estimate (1.26)will follow from this and the triangle
inequality. Most of Section 4 is devoted to proving an estimate (Proposition 4.3) which roughly
speaking says the following.

Proposition 1.20. Assume that 𝔠∗ < ℭ∗ andwe have defined events𝖤𝑧,𝑟 and functions 𝖿𝑧,𝑟 satisfying
the above properties. As 𝛿 → 0, it holds uniformly over all z,w ∈ C that

P
[
𝐷̃ℎ(z,w) > (ℭ∗ − 𝛿)𝐷ℎ(z,w), regularity conditions

]
= 𝑂𝛿(𝛿

𝜇), ∀𝜇 > 0. (1.27)

We think of a ball 𝐵4𝑟(𝑧) as ‘good’ if the event 𝖤𝑧,𝑟 occurs and ‘very good’ if the event
𝖤𝑧,𝑟(ℎ + 𝖿𝑧,𝑟), which is defined in the same manner as 𝖤𝑧,𝑟 but with ℎ + 𝖿𝑧,𝑟 instead of ℎ, occurs.
By definition, if 𝐵4𝑟(𝑧) is‘good’ for ℎ, then 𝐵4𝑟(𝑧) is ‘very good’ for ℎ − 𝖿𝑧,𝑟.
Let𝑃 be the𝐷ℎ-geodesic fromz tow (which is almost surely unique, see Lemma2.7). Recall that

P[𝖤𝑧,𝑟] ⩾ p, which is close to 1, and 𝖤𝑧,𝑟 is determined by ℎ|𝐵4𝑟(𝑧)⧵𝐵𝑟(𝑧)
, viewed modulo additive

constant. From this, it is easy to show using the near-independence of the restrictions of ℎ to
disjoint concentric annuli (Lemma 2.1) that 𝑃 has to hit 𝐵𝑟(𝑧) for lots of ‘good’ balls 𝐵4𝑟(𝑧).
To prove Proposition 1.20, it suffices to show that with high probability, there are many ‘very

good’ balls 𝐵4𝑟(𝑧) such that the 𝐷ℎ-geodesic 𝑃 from z to w spends ‘enough’ time in the support of
the bump function 𝖿𝑧,𝑟. Indeed, the condition (1.26) (with ℎ + 𝖿𝑧,𝑟 instead of ℎ) will then give us
lots of pairs of points 𝑠, 𝑡 such that 𝐷̃ℎ(𝑃(𝑠), 𝑃(𝑡)) ⩽ 𝔠′(𝑡 − 𝑠), which in turnwill show that 𝐷̃ℎ(z,w)

is bounded away from ℭ∗𝐷ℎ(z,w) (see Proposition 4.6).
In [27], it was shown that 𝑃 hits many ‘very good’ balls by using confluence of geodesics (which

was proven in [24]) to get an approximate Markov property for 𝑃. In this paper, we will instead
show this using a simpler argument based on counting the number of events of a certain type

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12492 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [10/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



20 DING and GWYNNE

which occur. More precisely, for 𝑟 ∈  and a finite collection of points 𝑍 such that the balls 𝐵4𝑟(𝑧)

for 𝑧 ∈ 𝑍 are disjoint, we will let 𝐹𝑍,𝑟 be (roughly speaking) the event that the following is true.

∙ Each ball 𝐵4𝑟(𝑧) for 𝑧 ∈ 𝑍 is ‘good’.
∙ The 𝐷ℎ-geodesic 𝑃 from z to w hits 𝐵𝑟(𝑧) for each 𝑧 ∈ 𝑍.
∙ With 𝖿𝑍,𝑟 ∶=

∑
𝑧∈𝑍 𝖿𝑧,𝑟, the 𝐷ℎ−𝖿𝑍,𝑟

-geodesic from z to w spends ‘enough’ time in the support of
𝖿𝑧,𝑟 for each 𝑧 ∈ 𝑍.

We also let 𝐹′
𝑍,𝑟

be defined in the same manner as 𝐹𝑍,𝑟 but with ℎ + 𝖿𝑍,𝑟 in place of ℎ, that is, 𝐹′
𝑍,𝑟

is the event that the following is true.

∙ Each 𝐵4𝑟(𝑧) for 𝑧 ∈ 𝑍 is ‘very good’.
∙ The 𝐷ℎ+𝖿𝑍,𝑟

-geodesic from z to w hits 𝐵𝑟(𝑧) for each 𝑧 ∈ 𝑍.
∙ The 𝐷ℎ-geodesic 𝑃 from z to w spends ‘enough’ time in the support of 𝖿𝑧,𝑟 for each 𝑧 ∈ 𝑍.

Using a basic Radon–Nikodym derivative for the GFF, one can show that there is a constant
𝐶 > 0 depending only on the laws of 𝐷ℎ and 𝐷̃ℎ such that

𝐶−𝑘P[𝐹𝑍,𝑟] ⩽ P[𝐹′
𝑍,𝑟] ⩽ 𝐶𝑘P[𝐹𝑍,𝑟], whenever #𝑍 ⩽ 𝑘 (1.28)

(see Lemma 4.4). We will eventually take 𝑘 to be a large constant, independent of 𝑟, z,w, depend-
ing on the number 𝜇 in (1.27). So, the relation (1.28) suggests that the number of sets 𝑍 such that
#𝑍 ⩽ 𝑘 and 𝐹𝑍,𝑟 occurs should be comparable to the number of such sets for which 𝐹′

𝑍,𝑟
occurs.

Furthermore, one can show that if 𝜀 is small enough, then for each 𝑟 ∈ [𝜀2, 𝜀], the number of
sets 𝑍 with #𝑍 ⩽ 𝑘 such that 𝐹𝑍,𝑟 occurs grows like a positive power of 𝜀−𝑘 (Proposition 4.5).
Indeed, as explained above, there are many sets 𝑍0 such that for each 𝑧 ∈ 𝑍0, the ball 𝐵4𝑟(𝑧) is
good and the ball 𝐵𝑟(𝑧) is hit by 𝑃. We need to produce many sets 𝑍 for which these properties
hold and also that 𝐷ℎ−𝖿𝑍,𝑟

-geodesic spends enough time in the support of 𝖿𝑧,𝑟 for each 𝑧 ∈ 𝑍. To
do this, we start with a set 𝑍0 as above and iteratively remove the ‘bad’ points 𝑧 ∈ 𝑍0 such that
the 𝐷ℎ−𝖿𝑍0,𝑟

-geodesic from z to w does not spend very much time in the support of 𝖿𝑧,𝑟. By doing
so, we obtain a set 𝑍 ⊂ 𝑍0 such that 𝐹𝑍,𝑟 occurs and #𝑍 is not too much smaller than #𝑍0. See
Subsection 4.3 for details.
By combining the preceding two paragraphs with an elementary calculation (see the end of

Subsection 4.2), we infer that with high probability there are lots of sets 𝑍 with #𝑍 ⩽ 𝑘 such that
𝐹′
𝑍,𝑟

occurs. In particular, there must be lots of ‘very good’ balls 𝐵4𝑟(𝑧) for which 𝑃 spends a lot of
time in the support of 𝖿𝑧,𝑟. As explained above, this gives Proposition 1.20.
Once Proposition 1.20 is established, one can take a union bound over many pairs of points

z,w ∈ 𝐵𝑟(0) to get, roughly speaking, the following (see Lemma 4.20 for a precise statement).

Proposition 1.21. Assume that 𝔠∗ < ℭ∗. For each sufficiently small 𝜀 > 0 (depending only on the
laws of 𝐷ℎ and 𝐷̃ℎ), there are at least

3

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N for which

lim
𝛿→0

P
[
∃ a ‘regular’ pair z,w ∈ 𝐵𝑟(0) such that 𝐷̃ℎ(z,w) ⩾ (ℭ∗ − 𝛿)𝐷ℎ(z,w)

]
= 0, (1.29)

uniformly over the choices of 𝜀 and 𝑟.

Proposition 1.21 is incompatible with Proposition 1.18 since the parameter 𝑝 in Proposition 1.18
does not depend on ℭ′. We thus obtain a contradiction to the assumption that 𝔠∗ < ℭ∗, so we
conclude that 𝔠∗ = ℭ∗ and hence Theorem 1.13 holds.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 21

1.5.6 Section 5: Constructing events and bump functions

In Section 5, we will construct the events 𝖤𝑧,𝑟 and the bump functions 𝖿𝑧,𝑟 described just before
Proposition 1.20. This part of the argument has some similarity to [27, section 5], which gives a
roughly similar construction in the subcritical case. But, the details are very different. The main
reason for this is as follows.
Recall that we want to force a 𝐷ℎ−𝖿𝑧,𝑟

-geodesic 𝑃′ to get 𝐷ℎ−𝖿𝑧,𝑟
-close to each of 𝑢 and 𝑣, where

𝑢, 𝑣 are non-singular points in the support of 𝖿𝑧,𝑟 such that 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′
0
𝐷ℎ(𝑢, 𝑣). We will do this

in two steps: first we force 𝑃′ to get Euclidean-close to each of 𝑢 and 𝑣, then we force 𝑃′ to get
𝐷ℎ−𝖿𝑧,𝑟

-close to each of 𝑢 and 𝑣. In the subcritical phase, the metric 𝐷ℎ is Euclidean-continuous,
so the second step is straightforward. However, this is not the case in the supercritical phase, so a
substantial amount of work is needed to force 𝑃′ to get 𝐷ℎ−𝖿𝑧,𝑟

-close to each of 𝑢 and 𝑣. Because
of this, we will define the events 𝖤𝑧,𝑟 in a significantly different way as compared to [27]. We refer
to Subsection 5.1 for a more detailed outline.

2 PRELIMINARIES

In this subsection, we first establish some standard notational conventions (Subsection 2.1). We
then record several lemmas about a weak LQGmetric𝐷ℎ which are either proven elsewhere (that
is, in [12, 36]) or are straightforward consequences of statements which are proven elsewhere. The
readermaywish to skim this section on a first read and refer back to the various lemmas as needed.

2.1 Notational conventions

We write N = {1, 2, 3, … } and N0 = N ∪ {0}.
For 𝑎 < 𝑏, we define the discrete interval [𝑎, 𝑏]Z ∶= [𝑎, 𝑏] ∩ Z.
If 𝑓 ∶ (0,∞) → R and g ∶ (0,∞) → (0,∞), we say that 𝑓(𝜀) = 𝑂𝜀(g(𝜀)) (respectively, 𝑓(𝜀) =

𝑜𝜀(g(𝜀))) as 𝜀 → 0 if 𝑓(𝜀)∕g(𝜀) remains bounded (respectively, tends to zero) as 𝜀 → 0. We similarly
define 𝑂(⋅) and 𝑜(⋅) errors as a parameter goes to infinity.
Let {𝐸𝜀}𝜀>0 be a one-parameter family of events. We say that 𝐸𝜀 occurs with

∙ polynomially high probability as 𝜀 → 0 if there is a 𝜇 > 0 (independent from 𝜀 and possibly from
other parameters of interest) such that P[𝐸𝜀] ⩾ 1 − 𝑂𝜀(𝜀

𝜇);
∙ superpolynomially high probability as 𝜀 → 0 if P[𝐸𝜀] ⩾ 1 − 𝑂𝜀(𝜀

𝜇) for every 𝜇 > 0.

For 𝑧 ∈ C and 𝑟 > 0, we write 𝐵𝑟(𝑧) for the open Euclidean ball of radius 𝑟 centered at 𝑧. More
generally, for 𝑋 ⊂ C we write 𝐵𝑟(𝑋) =

⋃
𝑧∈𝑋 𝐵𝑟(𝑧). We also define the open annulus

A𝑟1,𝑟2
(𝑧) ∶= 𝐵𝑟2

(𝑧) ⧵ 𝐵𝑟1
(𝑧), ∀0 < 𝑟𝑟 < 𝑟2 < ∞. (2.1)

Topological concepts such as ‘open’, ‘closed’, ‘boundary’, and so on, are always definedwith respect
to the Euclidean topology unless otherwise stated. For𝑋 ⊂ C, wewrite𝑋 for its Euclidean closure
and 𝜕𝑋 for its Euclidean boundary.
We will typically use the symbols 𝑟 and r for Euclidean radii. Many of our estimates for weak
LQG metrics are required to be uniform over different values of 𝑟 (or r). The reason why we
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22 DING and GWYNNE

need to include this condition is that we only have tightness across scales (Axiom V′) instead
of exact scale invariance (Axiom IV), so estimates are not automatically uniform across different
Euclidean scales.

2.2 Some remarks on internal metrics

Throughout the rest of this section, we let ℎ be a whole-plane GFF and 𝐷ℎ be a weak LQGmetric
as in Definition 1.12.
Let 𝑋 ⊂ C (not necessarily open or closed) and recall from Definition 1.6 that 𝐷ℎ(⋅, ⋅; 𝑋) is the

𝐷ℎ-internal metric on𝑋, which is a metric on𝑋 except that it is allowed to take on infinite values.
It is easy to check (see, for example, [6, Proposition 2.3.12]) that the 𝐷ℎ(⋅, ⋅; 𝑋)-length of any 𝐷ℎ-
rectifiable path contained in 𝑋 (and hence also every 𝐷ℎ(⋅, ⋅; 𝑋)-rectifiable path) is the same as its
𝐷ℎ-length.
The notion of a 𝐷ℎ(⋅, ⋅; 𝑋)-geodesic between points of 𝑋 is well-defined by Definition 1.6: it

is simply a path in 𝑋 whose 𝐷ℎ-length is the same as the 𝐷ℎ(⋅, ⋅; 𝑋)-distance between its end-
points, provided this distance is finite. Such a geodesic may not exist for every pair of points in
𝑋. However, such geodesics exist for some pairs of points: for example, if 𝑧, 𝑤 ∈ 𝑋 and there is a
𝐷ℎ-geodesic 𝑃 from 𝑧 to 𝑤 which is contained in 𝑋, then 𝑃 is a 𝐷ℎ(⋅, ⋅; 𝑋)-geodesic.
Wewill most often consider internalmetrics on open sets (which appear in the locality assump-

tion Axiom II for 𝐷ℎ). But, we will sometimes also have occasion to consider internal metrics on
the closures of open sets. Recall that for an open set 𝑈 ⊂ C, ℎ|𝑈 is the random distribution on 𝑈

obtained by restricting the distributional pairing 𝑓 ↦ (ℎ, 𝑓) to functions which are supported on
𝑈. Following, for example, [40, section 3.3], for a closed set 𝐾 ⊂ C, we define

𝜎(ℎ|𝐾) ∶=⋂
𝜀>0

𝜎
(
ℎ|𝐵𝜀(𝐾)

)
, (2.2)

where 𝐵𝜀(𝐾) is the Euclidean 𝜀-neighborhood of 𝐾.
We say that a random variable is almost surely determined by ℎ|𝐾 if it is almost surely equal

to a random variable which is measurable with respect to 𝜎(ℎ|𝐾). Similarly, we say that a ran-
dom variable is almost surely determined by ℎ|𝐾 , viewed modulo additive constant, if it is almost
surely equal to a randomvariablewhich ismeasurablewith respect to𝜎((ℎ + 𝑐)|𝐾) for any possibly
random 𝑐 ∈ R.
The metric 𝐷ℎ(⋅, ⋅; 𝐾) is equal to the internal metric of 𝐷ℎ(⋅, ⋅; 𝐵𝜀(𝐾)) on 𝐾 for any 𝜀 > 0. So, by

locality (Axiom II) and (2.2), the metric 𝐷ℎ(⋅, ⋅; 𝐾) is measurable with respect to 𝜎(ℎ|𝐾).
2.3 Independence for the GFF

The following lemma is a consequence of the fact that the restrictions of the GFF to disjoint con-
centric annuli, viewed modulo additive constant, are nearly independent. See [25, Lemma 3.1] for
a slightly more general statement.

Lemma 2.1 [25]. Fix 0 < 𝑠1 < 𝑠2 < 1. Let {𝑟𝑘}𝑘∈N be a decreasing sequence of positive num-
bers such that 𝑟𝑘+1∕𝑟𝑘 ⩽ 𝑠1 for each 𝑘 ∈ N and let {𝐸𝑟𝑘

}𝑘∈N be events such that 𝐸𝑟𝑘
∈
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 23

𝜎((ℎ − ℎ𝑟𝑘
(0))|A𝑠1𝑟𝑘 ,𝑠2𝑟𝑘

(0)) for each 𝑘 ∈ N. For 𝐾 ∈ N, let 𝑁(𝐾) be the number of 𝑘 ∈ [1, 𝐾]Z for
which 𝐸𝑟𝑘

occurs.

(1) For each 𝑎 > 0 and each 𝑏 ∈ (0, 1), there exists 𝑝 = 𝑝(𝑎, 𝑏, 𝑠1, 𝑠2) ∈ (0, 1) and
𝑐 = 𝑐(𝑎, 𝑏, 𝑠1, 𝑠2) > 0 (independent of the particular choice of {𝑟𝑘} and {𝐸𝑟𝑘

}) such that if

P
[
𝐸𝑟𝑘

]
⩾ 𝑝, ∀𝑘 ∈ N, (2.3)

then

P[𝑁(𝐾) < 𝑏𝐾] ⩽ 𝑐𝑒−𝑎𝐾, ∀𝐾 ∈ N. (2.4)

(2) For each 𝑝 ∈ (0, 1), there exists 𝑎 = 𝑎(𝑝, 𝑠1, 𝑠2) > 0, 𝑏 = 𝑏(𝑝, 𝑠1, 𝑠2) ∈ (0, 1), and
𝑐 = 𝑐(𝑝, 𝑠1, 𝑠2) > 0 (independent of the particular choice of {𝑟𝑘} and {𝐸𝑟𝑘

}) such that if (2.3)
holds, then (2.4) holds.

Lemma 2.1 still applies if we require that𝐸𝑟𝑘
∈ 𝜎((ℎ − ℎ𝑟𝑘

(0))|
A𝑠1𝑟𝑘 ,𝑠2𝑟𝑘

(0)) (that is, we consider a
closed annulus rather than an open annulus). This is an immediate consequence of the definition
of the 𝜎-algebra generated by the restriction of ℎ to a closed set (2.2). We will use this fact without
comment several times in what follows.
For the proof of Lemma4.18, wewill need aminor variant of Lemma 2.1wherewe donot require

that the annuli are concentric.

Lemma 2.2. Fix 0 < 𝑠1 < 𝑠2 < 1 and 𝑠0 ∈ (0,min{𝑠1, 1 − 𝑠2}). Let {𝑟𝑘}𝑘∈N be a decreasing sequence
of positive real numbers and let {𝑧𝑘}𝑘∈N be a sequence of points in C such that

𝑟𝑘+1∕𝑟𝑘 ⩽ 𝑠1 − 𝑠0 and |𝑧𝑘| ⩽ 𝑠0𝑟𝑘, ∀𝑘 ∈ N. (2.5)

Let {𝐸𝑟𝑘
(𝑧𝑘)}𝑘∈N be events such that for each 𝑘 ∈ N, the event 𝐸𝑟𝑘

(𝑧𝑘) is almost surely determined by
ℎ|

A𝑠1𝑟𝑘 ,𝑠2𝑟𝑘
(𝑧𝑘)

, viewed modulo additive constant. For 𝐾 ∈ N, let 𝑁(𝐾) be the number of 𝑘 ∈ [1, 𝐾]Z

for which 𝐸𝑟𝑘
(𝑧𝑘) occurs.

(1) For each 𝑎 > 0 and each 𝑏 ∈ (0, 1), there exists 𝑝 = 𝑝(𝑎, 𝑏, 𝑠0, 𝑠1, 𝑠2) ∈ (0, 1) and
𝑐 = 𝑐(𝑎, 𝑏, 𝑠0, 𝑠1, 𝑠2) > 0 (independent of the particular choice of {𝑟𝑘}, {𝑧𝑘}, and {𝐸𝑟𝑘

(𝑧𝑘)})
such that if

P
[
𝐸𝑟𝑘

(𝑧𝑘)
]
⩾ 𝑝, ∀𝑘 ∈ N, (2.6)

then
P[𝑁(𝐾) < 𝑏𝐾] ⩽ 𝑐𝑒−𝑎𝐾, ∀𝐾 ∈ N. (2.7)

(2) For each 𝑝 ∈ (0, 1), there exists 𝑎 = 𝑎(𝑝, 𝑠0, 𝑠1, 𝑠2) > 0, 𝑏 = 𝑏(𝑝, 𝑠0, 𝑠1, 𝑠2) ∈ (0, 1), and 𝑐 =

𝑐(𝑝, 𝑠0, 𝑠1, 𝑠2) > 0 (independent of the particular choice of {𝑟𝑘}, {𝑧𝑘}, and {𝐸𝑟𝑘
(𝑧𝑘)}) such that

if (2.6) holds, then (2.7) holds.
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24 DING and GWYNNE

Proof. Since |𝑧𝑘| ⩽ 𝑠0𝑟𝑘,

A𝑠1𝑟𝑘,𝑠2𝑟𝑘
(𝑧𝑘) ⊂ A(𝑠1−𝑠0)𝑟𝑘,(𝑠2+𝑠0)𝑟𝑘

(0).

Hence, 𝐸𝑟𝑘
(𝑧𝑘) is almost surely determined by ℎ|

A(𝑠1−𝑠0)𝑟𝑘 ,(𝑠2+𝑠0)𝑟𝑘
(0), viewed modulo additive con-

stant. Since 0 < 𝑠1 − 𝑠0 < 𝑠2 + 𝑠0 < 1 and by (2.5), we can apply Lemma 2.1 with 𝑠1 − 𝑠0 in place
of 𝑠1 and 𝑠2 + 𝑠0 in place of 𝑠2 to obtain the lemma statement. □

We will also need an estimate which comes from the fact that the restrictions of the GFF to
small disjoint Euclidean balls are nearly independent. See [27, Lemma 2.7] for a proof.

Lemma 2.3 [27]. Let ℎ be a whole-plane GFF and fix 𝑠 > 0. Let 𝑛 ∈ N and let  be a collection of
# = 𝑛 points in C such that |𝑧 − 𝑤| ⩾ 2(1 + 𝑠) for each distinct 𝑧, 𝑤 ∈ . For 𝑧 ∈ , let 𝐸𝑧 be an
eventwhich is determined by (ℎ − ℎ1+𝑠(𝑧))|𝐵1(𝑧)

. For each𝑝, 𝑞 ∈ (0, 1), there exists𝑛∗ = 𝑛∗(𝑠, 𝑝, 𝑞) ∈

N such that if P[𝐸𝑧] ⩾ 𝑝 for each 𝑧 ∈ , then
P

[⋃
𝑧∈

𝐸𝑧

]
⩾ 𝑞, ∀𝑛 ⩾ 𝑛∗.

2.4 Basic facts about weak LQGmetrics

In this subsection, we will record some facts about our weak LQG metric 𝐷ℎ which are mostly
proven elsewhere and which will be used frequently in what follows. Similar results are proven
in the subcritical case in [17, 33].

Remark 2.4. Many of the estimates in [12, 36] involve ‘scaling constants’ 𝔠𝑟 for 𝑟 > 0. It was shown
in [14, Theorem 1.9] that one can take 𝔠𝑟 = 𝑟𝜉𝑄. We will use this fact without comment whenever
we cite results from [12, 36].

It was shown in [36, Lemma 3.1] that one has the following stronger version of Axiom V′.

Lemma 2.5 [36]. Let𝑈 ⊂ C be open and let 𝐾1, 𝐾2 ⊂ 𝑈 be two disjoint, deterministic compact sets
(allowed to be singletons). The re-scaled internal distances 𝑟−1𝑒−𝜉ℎ𝑟(0)𝐷ℎ(𝑟𝐾1, 𝑟𝐾2; 𝑟𝑈) and their
reciprocals as 𝑟 varies are tight (recall the notation from Definition 1.6).

The following proposition, which is [36, Proposition 1.8], is a more quantitative version of
Lemma 2.5 in the case when 𝐾1, 𝐾2 are connected and are not singletons.

Lemma 2.6 [36]. Let 𝑈 ⊂ C be an open set (possibly all of C) and let 𝐾1, 𝐾2 ⊂ 𝑈 be two dis-
joint, deterministic, connected, compact sets which are not singletons. For each 𝑟 > 0, it holds with
superpolynomially high probability as 𝑅 → ∞, at a rate which is uniform in the choice of 𝑟, that

𝑅−1𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0) ⩽ 𝐷ℎ(𝑟𝐾1, 𝑟𝐾2; 𝑟𝑈) ⩽ 𝑅𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0).

Suppose that𝐴 ⊂ C is a deterministic bounded open set which has the topology of a Euclidean
annulus and whose inner and outer boundaries are not singletons. Recall the notation for
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 25

𝐷ℎ-distance across and around Euclidean annuli from Definition 1.11. It is easy to see from
Lemma 2.6 that with superpolynomially high probability as 𝑅 → ∞, uniformly in the choice of 𝑟,

𝑅−1𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0) ⩽ 𝐷ℎ(around 𝐴) ⩽ 𝑅𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0),

and the same is true for 𝐷ℎ(across 𝐴).
Recall fromLemma 1.16 that almost surely any twonon-singular points 𝑧, 𝑤 for𝐷ℎ can be joined

by a𝐷ℎ-geodesic, that is, a path of𝐷ℎ-length𝐷ℎ(𝑧, 𝑤). In the subcritical case, it was shown in [33,
Theorem 1.2] that for a fixed choice of 𝑧 and 𝑤, almost surely this geodesic is unique (see also [9,
Lemma 4.2] for a simplified proof). The same proof also works in the critical and supercritical
cases. We will need a slightly more general statement than the uniqueness of geodesics between
fixed points. For two sets 𝐾1, 𝐾2 ⊂ C, a 𝐷ℎ-geodesic from 𝐾1 to 𝐾2 is a path from a point of 𝐾1 to
a point of 𝐾2 such that

len(𝑃; 𝐷ℎ) = 𝐷ℎ(𝐾1, 𝐾2) ∶= inf
𝑧∈𝐾1,𝑤∈𝐾2

𝐷ℎ(𝑧, 𝑤). (2.8)

Lemma 2.7. Let 𝐾1, 𝐾2 ⊂ C be deterministic disjoint Euclidean-compact sets. Almost surely, there
is a unique 𝐷ℎ-geodesic from 𝐾1 to 𝐾2.

Proof. For existence, choose sequences of points 𝑢𝑛 ∈ 𝐾1 and 𝑣𝑛 ∈ 𝐾2 such that
lim𝑛→∞ 𝐷ℎ(𝑢𝑛, 𝑣𝑛) = 𝐷ℎ(𝐾1, 𝐾2). Since 𝐾1 and 𝐾2 are Euclidean-compact, after possibly passing
to a subsequence we can find 𝑢 ∈ 𝐾1 and 𝑣 ∈ 𝐾2 such that |𝑢𝑛 − 𝑢|→ 0 and |𝑣𝑛 − 𝑣|→ 0. By the
lower semicontinuity of 𝐷ℎ,

𝐷ℎ(𝑢, 𝑣) ⩽ lim inf
𝑛→∞

𝐷ℎ(𝑢𝑛, 𝑣𝑛) = 𝐷ℎ(𝐾1, 𝐾2).

Hence, 𝐷ℎ(𝑢, 𝑣) = 𝐷ℎ(𝐾1, 𝐾2) and a 𝐷ℎ-geodesic from 𝑢 to 𝑣 (which exists by Lemma 1.16) is also
a 𝐷ℎ-geodesic from 𝐾1 to 𝐾2.
The uniqueness of the 𝐷ℎ-geodesic from 𝐾1 to 𝐾2 follows from the same argument as in the

case when 𝐾1 and 𝐾2 are singletons, see [33, section 3] or [9, Lemma 4.2]. □

2.5 Estimates for distances in disks and annuli

In this subsection, we will prove some basic estimates for 𝐷ℎ which are straightforward con-
sequences of the concentration bounds for LQG distances established in [36]. We begin with a
uniform comparison of distances around and across Euclidean annuli with different center points
and radii.

Lemma 2.8. Fix 𝜁 > 0. Let 𝑈 ⊂ C be a bounded open set and let 𝑏 > 𝑎 > 0 and 𝑑 > 𝑐 > 0. For
each r > 0, it holds with superpolynomially high probability as 𝛿0 → 0 (at a rate which depends on
𝜁,𝑈, 𝑎, 𝑏, 𝑐, 𝑑 and the law of 𝐷ℎ, but is uniform in r) that

𝐷ℎ

(
around A𝑎𝛿r,𝑏𝛿r(𝑧)

)
⩽ 𝛿−𝜁𝐷ℎ

(
across A𝑐𝛿r,𝑑𝛿r(𝑧)

)
, ∀𝑧 ∈ r𝑈, ∀𝛿 ∈ (0, 𝛿0]. (2.9)

Proof. Basically, this follows from Lemma 2.6 and a union bound. A little care is needed to
discretize things so that we only have to take a union bound over polynomially many events.
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26 DING and GWYNNE

Fix 𝑎1, 𝑎2, 𝑏1, 𝑏2 > 0 and 𝑐1, 𝑐2, 𝑑1, 𝑑2 > 0 such that

𝑎 < 𝑎2 < 𝑎1 < 𝑏1 < 𝑏2 < 𝑏 and 𝑐 < 𝑐2 < 𝑐1 < 𝑑1 < 𝑑2 < 𝑑.

By Lemma 2.6, for each 𝑧 ∈ C it holds with superpolynomially high probability as 𝛿 → 0 (at a rate
depending only on 𝜁, 𝑎1, 𝑏1, 𝑐1, 𝑑1, and the law of 𝐷ℎ) that

𝐷ℎ

(
around A𝑎1𝛿r,𝑏1𝛿r(𝑧)

)
⩽ 𝛿𝜉𝑄−𝜁∕2r𝜉𝑄𝑒𝜉ℎ𝛿r(𝑧) and

𝐷ℎ

(
across A𝑐1𝛿r,𝑑1𝛿r(𝑧)

)
⩾ 𝛿𝜉𝑄+𝜁∕2r𝜉𝑄𝑒𝜉ℎ𝛿r(𝑧). (2.10)

Let 𝑠 > 0 be much smaller thanmin{𝑎1 − 𝑎2, 𝑏2 − 𝑏1, 𝑐1 − 𝑐𝑑, 𝑑2 − 𝑑1}. By a union bound, it holds
with superpolynomially high probability as 𝛿 → 0 that the bound (2.10) holds for all 𝑧 ∈ (𝑠𝛿rZ2) ∩

𝐵r(r𝑈).
For each 𝑧 ∈ r𝑈, there exists 𝑧′ ∈ (𝑠𝛿rZ2) ∩ 𝐵r(r𝑈) such that

A𝑎1𝛿r,𝑏1𝛿r(𝑧
′) ⊂ A𝑎2𝛿r,𝑏2𝛿r(𝑧) and A𝑐1𝛿r,𝑑1𝛿r(𝑧

′) ⊂ A𝑐2𝛿r,𝑑2𝛿r(𝑧).

For this choice of 𝑧′,

𝐷ℎ

(
around A𝑎2𝛿r,𝑏2𝛿r(𝑧)

)
⩽ 𝐷ℎ

(
around A𝑎1𝛿r,𝑏1𝛿r(𝑧

′)
)

and

𝐷ℎ

(
across A𝑐2𝛿r,𝑑2𝛿r(𝑧)

)
⩾ 𝐷ℎ

(
across A𝑐1𝛿r,𝑑1𝛿r(𝑧

′)
)
.

By (2.10) with 𝑧′ in place of 𝑧, we infer that with superpolynomially high probability as 𝛿 → 0,

𝐷ℎ

(
around A𝑎2𝛿r,𝑏2𝛿r(𝑧)

)
⩽ 𝛿−𝜁𝐷ℎ

(
across A𝑐2𝛿r,𝑐2𝛿r(𝑧)

)
, ∀𝑧 ∈ r𝑈. (2.11)

To upgrade to an estimate which holds for all 𝛿 ∈ (0, 𝛿0] simultaneously, let

𝑞 ∈
(
1, (min{𝑎2∕𝑎, 𝑏∕𝑏2, 𝑐2∕𝑐, 𝑑∕𝑑2})

1∕100
)
.

By a union bound over integer powers of 𝑞, we infer that with superpolynomially high probability
as 𝛿0 → 0, the estimate (2.11) holds for all 𝛿 ∈ (0, 𝛿0] ∩ {𝑞−𝑘 ∶ 𝑘 ∈ N}. By our choice of 𝑞, for each
𝛿 ∈ (0, 𝛿0], there exists 𝑘 ∈ N such that 𝑞−𝑘 ∈ (0, 𝛿0] and for each 𝑧 ∈ C,

A𝑎2𝑞
−𝑘r,𝑏2𝑞

−𝑘r(𝑧) ⊂ A𝑎𝛿r,𝑏𝛿r(𝑧) and A𝑐2𝑞
−𝑘r,𝑑2𝑞

−𝑘r(𝑧) ⊂ A𝑐𝛿r,𝑑𝛿r(𝑧).

Hence (2.11) for 𝛿 follows from (2.11) with 𝑞−𝑘 in place of 𝛿. □

Our next estimate gives amoment bound for the LQG distance from the center point of a closed
disk to a point on its boundary, along paths which are contained in the disk.

Lemma 2.9. For each 𝑝 ∈ (0, 2𝑄∕𝜉), there exists 𝐶𝑝 > 0, depending only on 𝑝 and the law of 𝐷ℎ,
such that

E
[(

𝑟−𝜉𝑄𝑒−𝜉ℎ𝑟(0)𝐷ℎ

(
𝑤, 0; 𝐵𝑟(0)

))𝑝]
⩽ 𝐶𝑝, ∀𝑤 ∈ 𝜕𝐵𝑟(0). (2.12)
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 27

Proof. Fix𝑤 ∈ 𝜕𝐵𝑟(0). All of our estimates are required to be uniform in the choice of𝑤. The idea
of the proof is to string together countably many 𝐷ℎ-rectifiable loops centered at points on the
segment [0, 𝑤], with geometric Euclidean sizes.
For 𝜀 ∈ (0, 𝑟), define

𝑤𝜀 ∶=
(
1 −

𝜀

𝑟

)
𝑤 and 𝐴𝜀 ∶= A𝜀∕2,𝜀(𝑤𝜀)

and note that 𝐴𝜀 ⊂ 𝐵𝑟(0).
By Lemma 2.6, for each 𝑞 > 0,

E
[(

𝜀−𝜉𝑄𝑒−𝜉ℎ𝜀(𝑤𝜀)𝐷ℎ(around 𝐴𝜀)
)𝑞]

⪯ 1, ∀𝜀 > 0, (2.13)

with the implicit constant depending only on 𝑞 and the law of𝐷ℎ. By Hölder’s inequality, for each
𝑝 > 0 and each 𝑞 > 1,

E
[(

𝑟−𝜉𝑄𝑒−𝜉ℎ𝑟(0)𝐷ℎ(around 𝐴𝜀)
)𝑝]

⩽
(
𝜀

𝑟

)𝜉𝑄𝑝
E

[(
𝜀−𝜉𝑄𝑒−𝜉ℎ𝜀(𝑤𝜀)𝐷ℎ(around 𝐴𝜀)

) 𝑞𝑝

1−𝑞

]1−1∕𝑞

× E
[
𝑒𝑞𝑝𝜉(ℎ𝜀(𝑤𝜀)−ℎ𝑟(0))

]1∕𝑞
⪯
(
𝜀

𝑟

)𝜉𝑄𝑝
E
[
𝑒𝑞𝑝𝜉(ℎ𝜀(𝑤𝜀)−ℎ𝑟(0))

]1∕𝑞
, (2.14)

where in the last line we used (2.13). The random variable ℎ𝜀(𝑤𝜀) − ℎ𝑟(0) is centered Gaussian
with variance at most log(𝑟∕𝜀) plus a universal constant. We therefore infer from (2.14) that for
each 𝑝 > 0 and each 𝑞 > 1,

E
[(

𝑟−𝜉𝑄𝑒−𝜉ℎ𝑟(0)𝐷ℎ(around 𝐴𝜀)
)𝑝]

⪯
(
𝜀

𝑟

)𝜉𝑄𝑝−𝑞𝑝2𝜉2∕2
(2.15)

with the implicit constant depending only on 𝑝, 𝑞.
Let

𝑤′
𝜀 ∶=

𝜀

𝑟
𝑤 and 𝐴′

𝜀 ∶= A𝜀∕2,𝜀(𝑤
′
𝜀),

which is contained in 𝐵𝑟(0) for 𝜀 ∈ (0, 𝑟∕2]. Via a similar argument to the one leading to (2.15), we
also have that for each 𝑝 > 0 and each 𝑞 > 1,

E
[(

𝑟−𝜉𝑄𝑒−𝜉ℎ𝑟(0)𝐷ℎ

(
around 𝐴′

𝜀

))𝑝]
⪯
(
𝜀

𝑟

)𝜉𝑄𝑝−𝑞𝑝2𝜉2∕2
. (2.16)

For 𝑘 ∈ N, let 𝜀𝑘 ∶= 2−𝑘𝑟. Suppose that 𝜋𝑘 is a path in𝐴𝜀𝑘
which disconnects the inner and outer

boundaries and𝜋′
𝑘
is a path in𝐴′

𝜀𝑘
which disconnects the inner and outer boundaries of𝐴′

𝜀𝑘
. Then

the union of the paths 𝜋𝑘 and 𝜋′
𝑘
for 𝑘 ∈ N is connected and contained in 𝐵𝑟(0) and its closure
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28 DING and GWYNNE

contains both 0 and 𝑤. From this, we see that the union of these paths and {0, 𝑤} contains a path
from 0 to 𝑤 which is contained in 𝐵𝑟(0). Hence,

𝐷ℎ

(
𝑤, 0; 𝐵𝑟(0)

)
⩽

∞∑
𝑘=0

𝐷ℎ

(
around 𝐴𝜀𝑘

)
+

∞∑
𝑘=0

𝐷ℎ

(
around 𝐴′

𝜀𝑘

)
. (2.17)

Assume now that 𝑝 ∈ (0,min{1, 2𝑄∕𝜉}). Since the function 𝑥 ↦ 𝑥𝑝 is concave, hence sub-
additive, we can take 𝑝th moments of both sides of (2.17), then apply (2.15) and (2.16), to
get

E
[(

𝑟−𝜉𝑄𝑒−𝜉ℎ𝑟(0)𝐷ℎ

(
𝑤, 0; 𝐵𝑟(0)

))𝑝]
⩽

∞∑
𝑘=0

E
[(

𝑟−𝜉𝑄𝑒−𝜉ℎ𝑟(0)𝐷ℎ

(
around 𝐴𝜀𝑘

))𝑝]

+

∞∑
𝑘=0

E
[(

𝑟−𝜉𝑄𝑒−𝜉ℎ𝑟(0)𝐷ℎ

(
around 𝐴′

𝜀𝑘

))𝑝]

⪯

∞∑
𝑘=0

( 𝜀𝑘
𝑟

)𝜉𝑄𝑝−𝑞𝑝2𝜉2∕2

⪯

∞∑
𝑘=0

2−𝑘(𝜉𝑄𝑝−𝑞𝑝2𝜉2∕2). (2.18)

Since 𝑝 < 2𝑄∕𝜉, if 𝑞 > 1 is sufficiently close to 1, we have 𝜉𝑄𝑝 − 𝑞𝑝2𝜉2∕2 > 0. Hence, this last
sum is finite. This gives (2.12) for 𝑝 < 1. For 𝑝 ⩾ 1, we obtain (2.12) via the same argument, but
with the triangle inequality for the 𝐿𝑝 norm used in place of the subadditivity of 𝑝 ↦ 𝑥𝑝. □

Using Lemma 2.9 and Markov’s inequality, we obtain the following estimate, which says that
with high probability ‘most’ points on a circle are not too LQG-far from the center point. Note
that (unlike for subcritical LQG) we cannot say that this is the case for all points on the circle, for
example, because there could be singular points on the circle.

Lemma 2.10. For each 𝑅 > 1,

E

[||||
{
𝑤 ∈ 𝜕𝐵𝑟(0) ∶ 𝐷ℎ

(
𝑤, 0; 𝐵𝑟(0)

)
> 𝑅𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0)

}||||
]
⩽ 𝑅−2𝑄∕𝜉+𝑜𝑅(1)𝑟, (2.19)

where | ⋅ | denotes one-dimensional Lebesgue measure and the rate of convergence of the 𝑜𝑅(1)

depends only on the law of 𝐷ℎ.

Proof. This follows from Lemma 2.9 and Markov’s inequality. □

We will also need a lemma to ensure that all of the 𝐷ℎ-geodesics between points in a specified
Euclidean-compact set are contained in a larger compact set.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 29

Lemma 2.11. There exists 𝜇 > 0, depending only on the law of 𝐷ℎ, such that the following is true.
Let 𝐾 ⊂ C be compact. For each r > 0, it holds with probability 1 − 𝑂𝑅(𝑅

−𝜇) as 𝑅 → ∞ (at a rate
depending only on𝐾 and the law of𝐷ℎ) that each𝐷ℎ-geodesic between two points of r𝐾 is contained
in 𝐵𝑅r(0).

Proof. Fix r > 0 and for 𝑠 > 0, let

𝐸𝑠 ∶=
{
𝐷ℎ

(
around A𝑠r,2𝑠r(0)

)
< 𝐷ℎ

(
across A2𝑠r,3𝑠r(0)

)}
.

Using tightness across scales (AxiomV′) and a basic absolute continuity argument (see, for exam-
ple, the proof of [21, Lemma 6.1]), we can find a 𝑝 ∈ (0, 1), depending only on the law of 𝐷ℎ, such
that P[𝐸𝑠] ⩾ 𝑝 for all 𝑠, r > 0.
Let 𝜌 > 0 be chosen so that 𝐾 ⊂ 𝐵𝜌(0). By assertion 2 of Lemma 2.1 (applied to logarithmi-

cally many radii 𝑟𝑘 ∈ [𝜌r, 𝑅r∕3]), we can find 𝜇 > 0 as in the lemma statement such that for with
probability 1 − 𝑂𝑅(𝑅

−𝜇), there exists 𝑠 ∈ [𝜌, 𝑅∕3] such that 𝐸𝑠 occurs.
On the other hand, it is easily seen that if 𝐸𝑠 occurs, then no 𝐷ℎ-geodesic 𝑃 between two points

of 𝐵𝑠r(0) can exit 𝐵3𝑠r(0). Indeed, otherwise we could replace a segment of 𝑃 by a segment of a
path in A𝑠r,2𝑠r(0) which disconnects the inner and outer boundaries to get a path with the same
endpoints as 𝑃 but strictly shorter 𝐷ℎ-length than 𝑃. □

2.6 Regularity of geodesics

The following lemma is (almost) a re-statement of [12, Corollary 3.7]. Roughly speaking, the
lemma states that every point in an LQG geodesic is surrounded by a loop of small Euclidean
diameter whose 𝐷ℎ-length is much shorter than the 𝐷ℎ-length of the geodesic. A similar lemma
also appears in [36, section 2.4].

Lemma 2.12. For each 𝜒 ∈ (0, 1), there exists 𝜃 > 0, depending only on 𝜒 and the law of 𝐷ℎ, such
that for each Euclidean-bounded open set 𝑈 ⊂ C and each r > 0, it holds with polynomially high
probability as 𝜀0 → 0, uniformly over the choice of r, that the following is true for each 𝜀 ∈ (0, 𝜀0].
Suppose 𝑧 ∈ r𝑈, 𝑥, 𝑦 ∈ C ⧵ 𝐵𝜀𝜒r(𝑧), and 𝑠 > 0 such that there is a 𝐷ℎ-geodesic 𝑃 from 𝑥 to 𝑦 with
𝑃(𝑠) ∈ 𝐵𝜀r(𝑧). Then

𝐷ℎ

(
around A𝜀r,𝜀𝜒r(𝑧)

)
⩽ 𝜀𝜃𝑠. (2.20)

Proof. [12, Corollary 3.7] shows that with polynomially high probability as 𝜀0 → 0, the condition in
the lemma statement holds for 𝜀 = 𝜀0. The statement for all 𝜀 ∈ (0, 𝜀0] follows from the statement
for 𝜀 = 𝜀0 (applied with 𝜒 replaced by 𝜒′ slightly larger than 𝜒) together with a union bound over
dyadic values of 𝜀. □

As explained in [12, 36], Lemma 2.12 functions as a substitute for the fact that in the supercritical
case,𝐷ℎ is not locally Hölder continuous with respect to the Euclideanmetric. It says that the𝐷ℎ-
distance around a small Euclidean annulus centered at a point on a𝐷ℎ-geodesic is small. A path of
near-minimal length around this annulus can be linked up with various other paths to get upper
bounds for 𝐷ℎ-distances in terms of Euclidean distances.
We will need the following generalization of Lemma 2.12, which follows from exactly the same

proof. The lemma statement differs fromLemma2.12 in thatwe consider a𝐷ℎ−𝑓(⋅, ⋅; r𝑈)-geodesic,
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30 DING and GWYNNE

F IGURE 3 Illustration of the statement of Lemma 2.13 in the case where 𝑠 = inf {𝑡 > 0 ∶ 𝑃𝑓(𝑡) ∈ 𝑉} (which
is the main case that we will use). The path 𝑃𝑓 is a 𝐷ℎ−𝑓(⋅, ⋅; r𝑈)-geodesic and the set 𝑉 is the support of 𝑓. The
lemma gives us an upper bound for 𝐷ℎ(around A𝜀r,𝜀𝜒r(𝑧)).

for a possibly random non-negative bump function 𝑓, instead of a 𝐷ℎ-geodesic (recall the discus-
sion of geodesics for internal metrics from Subsection 2.2). See Figure 3 for an illustration of the
lemma statement.

Lemma 2.13. For each 𝜒 ∈ (0, 1), there exists 𝜃 > 0 depending only on 𝜒 and the law of 𝐷ℎ, such
that for each Euclidean-bounded open set 𝑈 ⊂ C and each r > 0, it holds with polynomially high
probability as 𝜀0 → 0, uniformly over the choice of r, that the following is true for each 𝜀 ∈ (0, 𝜀0].
Let 𝑉 ⊂ r𝑈 and let 𝑓 ∶ C → [0,∞) be a non-negative continuous function which is identically zero
outside of 𝑉. Let 𝑧 ∈ r[𝑈 ⧵ 𝐵𝜀𝜒 (𝜕𝑈)], 𝑥, 𝑦 ∈ (r𝑈) ⧵ (𝑉 ∪ 𝐵𝜀𝜒r(𝑧)), and 𝑠 > 0 such that there is a
𝐷ℎ−𝑓(⋅, ⋅; r𝑈)-geodesic 𝑃𝑓 from 𝑥 to 𝑦 with 𝑃𝑓(𝑠) ∈ 𝐵𝜀r(𝑧). Assume that

𝑠 ⩽ inf {𝑡 > 0 ∶ 𝑃𝑓(𝑡) ∈ 𝑉}. (2.21)

Then

𝐷ℎ

(
around A𝜀r,𝜀𝜒r(𝑧)

)
⩽ 𝜀𝜃𝑠. (2.22)

The statement of Lemma 2.13 holds with polynomially high probability for all possible choices
of𝑉, 𝑓, 𝑥, 𝑦, 𝑧, 𝑠, 𝑃𝑓 . In particular, these objects are allowed to be random and/or 𝜀-dependent. We
also emphasize that the time 𝑠 in (2.21) is allowed to be equal to inf {𝑡 > 0 ∶ 𝑃𝑓(𝑡) ∈ 𝑉}, in which
case 𝑃𝑓(𝑠) ∈ 𝜕𝑉. In fact, this is the main setting in which we will apply Lemma 2.13.
In the setting of Lemma 2.13, since 𝑓 is non-negative, we have 𝐷ℎ−𝑓(𝑢, 𝑣; r𝑈) ⩽ 𝐷ℎ(𝑢, 𝑣; r𝑈)

for all 𝑢, 𝑣 ∈ r𝑈. Furthermore, the condition (2.21) implies that the 𝐷ℎ−𝑓-length of 𝑃𝑓|[0,𝑠] is the
same as its 𝐷ℎ-length. These two facts allow us to apply the proof of Lemma 2.12 (as given in [12,
section 3.2]) essentially verbatim to obtain Lemma 2.13.
Out next lemma tells us that an LQG geodesic cannot trace a deterministic curve. Just like in

Lemma 2.13, we will consider not just a 𝐷ℎ-geodesic but a 𝐷ℎ−𝑓(⋅, ⋅; r𝑈)-geodesic for a possible
random continuous function 𝑓.

Lemma 2.14. For each 𝑀 > 0, there exists 𝜈 > 0, depending only on 𝑀 and the law of 𝐷ℎ, such
that the following is true. Let 𝑈 ⊂ C be a deterministic open set and let 𝜂 ∶ [0, 𝑇] → 𝑈 ⧵ 𝐵𝜀1∕2(𝜕𝑈)
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 31

be a deterministic parameterized curve. For each r > 0, it holds with probability 1 − 𝑂𝜀(𝜀
𝜈) as 𝜀 →

0 (the implicit constant depends only on 𝑀 and the law of 𝐷ℎ) that the following is true. Let 𝑓 ∶

C → [−𝑀,𝑀] be a continuous function and let 𝑃𝑓 be a 𝐷ℎ−𝑓(⋅, ⋅; r𝑈)-geodesic between two points
of r[𝑈 ⧵ 𝐵𝜀1∕2(𝜂)]. Then

|{𝑡 ∈ [0, 𝑇] ∶ 𝑃𝑓 ∩ 𝐵𝜀r(r𝜂(𝑡)) ≠ ∅}| ⩽ 𝜀𝜈𝑇, (2.23)

where | ⋅ | denotes one-dimensional Lebesgue measure.
We emphasize that, as in Lemma 2.13, the function 𝑓 and the geodesic 𝑃𝑓 in Lemma 2.14 are

allowed to be random and 𝜀-dependent (but 𝜂 is fixed).

Proof of Lemma 2.14. The idea of the proof is that (by Lemma 2.1) for a ‘typical’ time 𝑡 ∈ [0, 𝑇],
there is a loop in A𝜀r,𝜀1∕2r(r𝜂(𝑡)) which disconnects the inner and outer boundaries and whose
𝐷ℎ-length is much shorter than the𝐷ℎ-distance from the loop to 𝐵𝜀r(r𝜂(𝑡)). The existence of such
a loop prevents a 𝐷ℎ−𝑓-geodesic from hitting 𝐵𝜀r(r𝜂(𝑡)).
For 𝑘 ∈ N, let

𝑟𝑘 ∶= 4𝑘𝜀r.

For 𝑡 ∈ [0, 𝑇], define the event

𝐸𝑘(𝑡) ∶=
{
𝐷ℎ

(
around A2𝑟𝑘,3𝑟𝑘

(r𝜂(𝑡))
)

⩽
1

2
𝑒−2𝜉𝑀𝐷ℎ

(
across A𝑟𝑘,2𝑟𝑘

(r𝜂(𝑡))
)}

. (2.24)

By locality and Weyl scaling (Axioms II and V′), the event 𝐸𝑘(𝑡) is almost surely determined
by ℎ|A𝑟𝑘 ,3𝑟𝑘

(r𝜂(𝑡)), viewed modulo additive constant. By adding a bump function to ℎ and using
absolute continuity together with tightness across scales (see, for example, the proof of [21,
Lemma 6.1]), we see that there exists 𝑝 > 0 (depending only on 𝑀 and the law of 𝐷ℎ) such that
P[𝐸𝑘(𝑡)] ⩾ 𝑝 for each 𝑘 ∈ N and 𝑡 ∈ [0, 𝑇]. Consequently, assertion 2 of Lemma 2.1 implies that
there exists 𝜈 > 0 depending only on𝑀 and the law of 𝐷ℎ such that

P
[
∃𝑘 ∈ [1, log4 𝜀

−1∕2 − 1]Z such that 𝐸𝑘(𝑡) occurs
]
⩾ 1 − 𝑂𝜀(𝜀

2𝜈), (2.25)

with the implicit constant in the 𝑂𝜀(⋅) depending only on𝑀 and the law of 𝐷ℎ.
Say that 𝑡 ∈ [0, 𝑇] is good if 𝐸𝑘(𝑡) occurs for some 𝑘 ∈ [1, log4 𝜀

−1∕2 − 1]Z, and that 𝑡 is bad
otherwise. By (2.25),

E[|{𝑡 ∈ [0, 𝑇] ∶ 𝑡 is bad}|] ⩽ 𝑂𝜀(𝜀
2𝜈)𝑇.

By Markov’s inequality, it holds with probability 1 − 𝑂𝜀(𝜀
𝜈) that

|{𝑡 ∈ [0, 𝑇] ∶ 𝑡 is bad}| ⩽ 𝜀𝜈𝑇. (2.26)

To prove (2.23), it remains to show that if 𝑡 is good and 𝑓 is as in the lemma statement, then no
𝐷ℎ−𝑓(⋅, ⋅; r𝑈)-geodesic between two points of r[𝑈 ⧵ 𝐵𝜀1∕2(𝜂)] can hit 𝐵𝜀r(r𝜂(𝑡)). To see this, let
𝑃𝑓 be such a geodesic and choose 𝑘 ∈ [1, log4 𝜀

−1∕2 − 1]Z such that 𝐸𝑘(𝑡) occurs. By (2.24), there
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32 DING and GWYNNE

is a path 𝜋 in A2𝑟𝑘,3𝑟𝑘
(r𝜂(𝑡)) which disconnects the inner and outer boundaries of this annulus

such that
len(𝜋; 𝐷ℎ) < 𝑒−2𝜉𝑀𝐷ℎ

(
across A𝑟𝑘,2𝑟𝑘

(r𝜂(𝑡))
)
.

By Weyl scaling (Axiom III) and since 𝑓 takes values in [−𝑀,𝑀],

len
(
𝜋;𝐷ℎ−𝑓

)
< 𝐷ℎ−𝑓

(
across A𝑟𝑘,2𝑟𝑘

(r𝜂(𝑡))
)
. (2.27)

Since 𝜀r ⩽ 𝑟𝑘 ⩽
1

2
𝜀1∕2r and the endpoints of 𝑃 are at Euclidean distance at least 𝜀1∕2r from r𝜂, we

see that if 𝑃𝑓 hits 𝐵𝜀r(r𝜂(𝑡)) then the following is true. There are times 0 < 𝜏 < 𝜎 < len(𝑃; 𝐷ℎ−𝑓)

such that 𝑃(𝜏), 𝑃(𝜎) ∈ 𝜋 and 𝑃 crosses between the inner and outer boundaries of A𝑟𝑘,2𝑟𝑘
(r𝜂(𝑡))

between times 𝜏 and 𝜎. Since 𝜂 ⊂ 𝑈 ⧵ 𝐵𝜀1∕2(𝜕𝑈), we have 𝜋 ⊂ r𝑈. By (2.27), we can obtain a
path in r𝑈 with the same endpoints as 𝑃𝑓 which is 𝐷ℎ−𝑓-shorter than 𝑃𝑓 by replacing 𝑃𝑓|[𝜏,𝜎]
by a segment of the path 𝜋. This contradicts the fact that 𝑃𝑓 is a 𝐷ℎ−𝑓(⋅, ⋅; r𝑈)-geodesic, so we
conclude that 𝑃𝑓 cannot hit 𝐵𝜀r(r𝜂(𝑡)), as required. □

3 QUANTIFYING THE OPTIMALITY OF THE OPTIMAL
BI-LIPSCHITZ CONSTANTS

3.1 Events for the optimal bi-Lipschitz constants

Let ℎ be a whole-plane GFF and let 𝐷ℎ and 𝐷̃ℎ be two weak LQG metrics. We define the optimal
upper and lower bi-Lipschitz constants 𝔠∗ and ℭ∗ as in Subsection 1.5.1, so that 𝔠∗ and ℭ∗ are
deterministic and almost surely (1.20) holds. Recall from Subsection 1.5 that we aim to prove by
contradiction that 𝔠∗ = ℭ∗. For this purpose,wewill need several estimateswhich have non-trivial
content only if 𝔠∗ < ℭ∗.
From the optimality of 𝔠∗ and ℭ∗, we know that for every ℭ′ < ℭ∗,

P
[
∃ non-singular 𝑢, 𝑣 ∈ C such that 𝐷̃ℎ(𝑢, 𝑣) ⩾ ℭ′𝐷ℎ(𝑢, 𝑣)

]
> 0. (3.1)

A similar statement holds for every 𝔠′ > 𝔠∗. The goal of this section is to prove various quantitative
versions of (3.1), which include regularity conditions on 𝑢 and 𝑣 and which are required to hold
uniformly over different Euclidean scales.
Our results will be stated in terms of two events, which are defined in Definitions 3.1 and 3.2.

In this subsection, we will prove some basic facts about these events and state the main estimates
we need for them (Propositions 3.3 and 3.10). Then, in Subsection 3.2, we will prove our main
estimates.

Definition 3.1. For 𝑟 > 0, 𝛽 > 0, and ℭ′ > 0, we let 𝐺𝑟(𝛽, ℭ
′) be the event that there exist 𝑧, 𝑤 ∈

𝐵𝑟(0) such that

𝐷̃ℎ

(
𝐵𝛽𝑟(𝑧), 𝐵𝛽𝑟(𝑤)

)
⩾ ℭ′𝐷ℎ(𝑧, 𝑤).

The event 𝐺𝑟(𝛽, ℭ
′) is a slightly stronger version of the event in (3.1). Our other event has a

more complicated definition, and includes several regularity conditions on 𝑢 and 𝑣. See Figure 4
for an illustration.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 33

F IGURE 4 Illustration of the event𝐻𝑟(𝛼,ℭ
′) of Definition 3.2. The last condition (iv) says that for each

𝛿 > 0, there exist purple paths as in the figure whose 𝐷ℎ-lengths are at most 𝛿𝜃𝐷ℎ(𝑢, 𝑣). The figure is not shown
to scale — in actuality we will take 𝛼 to be close to 1, so the light blue annulus will be quite narrow.

Definition 3.2. For 𝑟 > 0, 𝛼 ∈ (3∕4, 1), and ℭ′ > 0, we let𝐻𝑟(𝛼,ℭ
′) be the event that there exist

non-singular points 𝑢 ∈ 𝜕𝐵𝛼𝑟(0) and 𝑣 ∈ 𝜕𝐵𝑟(0) such that

𝐷̃ℎ(𝑢, 𝑣) ⩾ ℭ′𝐷ℎ(𝑢, 𝑣) (3.2)

and a 𝐷ℎ-geodesic 𝑃 from 𝑢 to 𝑣 such that the following is true.

(i) 𝑃 ⊂ A𝛼𝑟,𝑟(0).
(ii) The Euclidean diameter of 𝑃 is at most 𝑟∕100.
(iii) 𝐷ℎ(𝑢, 𝑣) ⩽ (1 − 𝛼)−1𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0).
(iv) Let 𝜃 > 0 be as in Lemma 2.13 with 𝜒 = 1∕2. For each 𝛿 ∈ (0, (1 − 𝛼)2],

max
{
𝐷ℎ(𝑢, 𝜕𝐵𝛿𝑟(𝑢)), 𝐷ℎ

(
around A𝛿𝑟,𝛿1∕2𝑟(𝑢)

)}
⩽ 𝛿𝜃𝐷ℎ(𝑢, 𝑣) (3.3)

and the same is true with the roles of 𝑢 and 𝑣 interchanged.

The main result of this section, which will be proven in Subsection 3.2, tells us that (for appro-
priate values of 𝛽,ℭ′′, 𝛼, ℭ′) if P[𝐺r(𝛽, ℭ

′′)] ⩾ 𝛽, then there are lots of ‘scales’ 𝑟 < r for which
P[𝐻𝑟(𝛼, ℭ

′)] is bounded below by a constant which does not depend on 𝑟 or ℭ′.

Proposition 3.3. There exist 𝛼 ∈ (3∕4, 1) and 𝑝 ∈ (0, 1), depending only on the laws of𝐷ℎ and 𝐷̃ℎ,
such that for each ℭ′ ∈ (0, ℭ∗), there exists ℭ′′ = ℭ′′(ℭ′) ∈ (ℭ′, ℭ∗) such that for each 𝛽 ∈ (0, 1),
there exists 𝜀0 = 𝜀0(𝛽, ℭ

′) > 0 with the following property. If r > 0 and P[𝐺r(𝛽, ℭ
′′)] ⩾ 𝛽, then the

following is true for each 𝜀 ∈ (0, 𝜀0].

(A) There are at least 3

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2r, 𝜀r] ∩ {8−𝑘r ∶ 𝑘 ∈ N} for which
P[𝐻𝑟(𝛼, ℭ

′)] ⩾ 𝑝.

We emphasize that in Proposition 3.3, the parameters 𝛼 and 𝑝 do not depend inℭ′. This will be
crucial for our argument in Subsection 4.5.
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34 DING and GWYNNE

In the remainder of this subsection,wewill prove somebasic lemmas about the events ofDefini-
tions 3.1 and 3.2, some of which are consequences of Proposition 3.3. In order for Proposition 3.3 to
have non-trivial content, one needs a lower bound for P[𝐺r(𝛽, ℭ

′)]. It is straightforward to check
that one has such a lower bound if r = 1 and 𝛽 is small enough.

Lemma 3.4. For eachℭ′ < ℭ∗, there exists 𝛽 > 0, depending onℭ′ and the laws of𝐷ℎ and 𝐷̃ℎ, such
that P[𝐺1(𝛽, ℭ

′)] > 0.

Proof. We will prove the contrapositive. Let ℭ′ > 0 and assume that

P
[
𝐺1(𝛽, ℭ

′)
]
= 0, ∀𝛽 > 0. (3.4)

We will show that ℭ′ ⩾ ℭ∗. The assumption (3.4) implies that almost surely

𝐷̃ℎ

(
𝐵𝛽(𝑧), 𝐵𝛽(𝑤)

)
< ℭ′𝐷ℎ(𝑧, 𝑤), ∀𝑧, 𝑤 ∈ 𝐵1(0), ∀𝛽 > 0. (3.5)

By lower semicontinuity, for each 𝑧, 𝑤 ∈ 𝐵1(0),

𝐷̃ℎ(𝑧, 𝑤) ⩽ lim inf
𝛽→0

𝐷̃ℎ

(
𝐵𝛽(𝑧), 𝐵𝛽(𝑤)

)
,

so (3.5) implies that almost surely

𝐷̃ℎ(𝑧, 𝑤) ⩽ ℭ′𝐷ℎ(𝑧, 𝑤), ∀𝑧, 𝑤 ∈ 𝐵1(0). (3.6)

By the translation invariance property of𝐷ℎ (Axiom IV′) and the translation invariance of the law
of ℎ, viewed modulo additive constant, (3.6) implies that almost surely

𝐷̃ℎ(𝑧, 𝑤) ⩽ ℭ′𝐷ℎ(𝑧, 𝑤), ∀𝑧, 𝑤 ∈ C such that |𝑧 − 𝑤| ⩽ 1. (3.7)

For a general pair of non-singular points 𝑧, 𝑤 ∈ C, we can apply (3.7) to finitely pairs of points
along a 𝐷ℎ-geodesic from 𝑧 to 𝑤 to get that almost surely 𝐷̃ℎ(𝑧, 𝑤) ⩽ ℭ′𝐷ℎ(𝑧, 𝑤) for all 𝑧, 𝑤 ∈ C.
By the minimality of ℭ∗, this shows that ℭ′ ⩾ ℭ∗, as required. □

By combining Proposition 3.3 and Lemma 3.4, we get the following.

Proposition 3.5. There exist 𝛼 ∈ (3∕4, 1) and 𝑝 ∈ (0, 1), depending only on the laws of𝐷ℎ and 𝐷̃ℎ,
such that for each ℭ′ ∈ (0, ℭ∗) and each sufficiently small 𝜀 > 0 (depending on ℭ′ and the laws of
𝐷ℎ and 𝐷̃ℎ), there are at least

3

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N for whichP[𝐻𝑟(𝛼, ℭ
′)] ⩾ 𝑝.

Proof. Let 𝛼 ∈ (3∕4, 1) and 𝑝 ∈ (0, 1) (depending only on the laws of 𝐷ℎ and 𝐷̃ℎ) and ℭ′′ ∈

(ℭ′, ℭ∗) (depending only onℭ′ and the laws of𝐷ℎ and 𝐷̃ℎ) be as in Proposition 3.3. By Lemma 3.4
(applied with ℭ′′ instead of ℭ′), there exists 𝛽 > 0, depending only on ℭ′ and the laws of 𝐷ℎ

and 𝐷̃ℎ, such that P[𝐺1(𝛽, ℭ
′′)] ⩾ 𝛽. By Proposition 3.3 applied with r = 1, we now obtain the

proposition statement. □

We will also need an analog of Proposition 3.5 with the events 𝐺𝑟(𝛽, ℭ
′) in place of the events

𝐻𝑟(𝛼,ℭ
′), which strengthens Lemma 3.4.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 35

Proposition 3.6. For eachℭ′ ∈ (0, ℭ∗), there exists 𝛽 > 0, depending onℭ′ and the laws of𝐷ℎ and
𝐷̃ℎ, such that for each small enough 𝜀 > 0 (depending on ℭ′ and the laws of 𝐷ℎ and 𝐷̃ℎ), there are
at least 3

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N for which P[𝐺𝑟(𝛽, ℭ
′)] ⩾ 𝛽.

We will deduce Proposition 3.6 from Proposition 3.5 and the following elementary relation
between the events𝐻𝑟(⋅, ⋅) and 𝐺𝑟(⋅, ⋅).

Lemma 3.7. If 𝛼 ∈ (3∕4, 1) and 𝜁 ∈ (0, 1), there exists 𝛽 > 0, depending only on 𝛼, 𝜁, and the laws
of 𝐷ℎ and 𝐷̃ℎ, such that the following is true. For each 𝑟 > 0 and each ℭ′ > 0, if 𝐻𝑟(𝛼,ℭ

′) occurs,
then 𝐺𝑟(𝛽, ℭ

′ − 𝜁) occurs.

Proof. Assume that 𝐻𝑟(𝛼,ℭ
′) occurs and let 𝑢 and 𝑣 be as in Definition 3.2 of 𝐻𝑟(𝛼,ℭ

′). By
Definition 3.1 of 𝐺𝑟(𝛽, ℭ

′ − 𝜁), it suffices to find 𝛽 > 0 as in the lemma statement such that

𝐷̃ℎ

(
𝐵𝛽𝑟(𝑢), 𝐵𝛽𝑟(𝑣)

)
⩾ (ℭ′ − 𝜁)𝐷ℎ(𝑢, 𝑣). (3.8)

To this end, let 𝛿 > 0 and suppose that 𝑃𝛿 is a path from 𝐵𝛿𝑟(𝑢) to 𝐵𝛿𝑟(𝑣); 𝑃𝛿
𝑢 and 𝑃𝛿

𝑣 are paths
from 𝑢 and 𝑣 to 𝜕𝐵𝛿1∕2𝑟(𝑢) and 𝜕𝐵𝛿1∕2𝑟(𝑣), respectively; and 𝜋𝛿

𝑢 and 𝜋𝛿
𝑣 are paths in A𝛿𝑟,𝛿1∕2𝑟(𝑢)

and A𝛿𝑟,𝛿1∕2𝑟(𝑢), respectively, which disconnect the inner and outer boundaries. Then the union
𝑃𝛿 ∪ 𝑃𝛿

𝑢 ∪ 𝑃𝛿
𝑣 ∪ 𝜋𝛿

𝑢 ∪ 𝜋𝛿
𝑣 contains a path from 𝑢 to 𝑣. From this observation followed by (3.3) of

Definition 3.2 and the definition (1.19) of ℭ∗, we get that if 𝛿 ∈ (0, (1 − 𝛼)4] then

𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝐷̃ℎ(𝐵𝛿𝑟(𝑢), 𝐵𝛿𝑟(𝑣)) +
∑

𝑤∈{𝑢,𝑣}

𝐷̃ℎ

(
𝑤, 𝜕𝐵𝛿1∕2𝑟(𝑤)

)
+
∑

𝑤∈{𝑢,𝑣}

𝐷̃ℎ

(
around A𝛿𝑟,𝛿1∕2𝑟(𝑤)

)
⩽ 𝐷̃ℎ(𝐵𝛿𝑟(𝑢), 𝐵𝛿𝑟(𝑣)) + ℭ∗

∑
𝑤∈{𝑢,𝑣}

𝐷ℎ

(
𝑤, 𝜕𝐵𝛿1∕2𝑟(𝑤)

)
+ ℭ∗

∑
𝑤∈{𝑢,𝑣}

𝐷ℎ

(
around A𝛿𝑟,𝛿1∕2𝑟(𝑤)

)
⩽ 𝐷̃ℎ(𝐵𝛿𝑟(𝑢), 𝐵𝛿𝑟(𝑣)) + 2ℭ∗

(
𝛿𝜃∕2 + 𝛿𝜃

)
𝐷ℎ(𝑢, 𝑣). (3.9)

By (3.2) and (3.9), we obtain

𝐷̃ℎ(𝐵𝛿𝑟(𝑢), 𝐵𝛿𝑟(𝑣)) ⩾
[
ℭ′ − 2ℭ∗

(
𝛿𝜃∕2 + 𝛿𝜃

)]
𝐷ℎ(𝑢, 𝑣). (3.10)

We now obtain (3.8) by choosing 𝛿 ∈ (0, (1 − 𝛼)4] to be sufficiently small, depending on 𝜁 andℭ∗,
and setting 𝛽 = 𝛿. □

Proof of Proposition 3.6. Let 𝛼 ∈ (3∕4, 1) and 𝑝 ∈ (0, 1) (depending only on the laws of 𝐷ℎ and
𝐷̃ℎ) be as in Proposition 3.5. Also let ℭ′′ ∶= (ℭ′ + ℭ∗)∕2 ∈ (ℭ′, ℭ∗). By Proposition 3.5 (applied
with ℭ′′ instead of ℭ′), for each small enough 𝜀 > 0, there are at least 3

4
log8 𝜀

−1 values of 𝑟 ∈

[𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N for which P[𝐻𝑟(𝛼, ℭ
′′)] ⩾ 𝑝. By Lemma 3.7, applied withℭ′′ in place ofℭ′ and

𝜁 = ℭ′′ − ℭ′, we see that there exists 𝛽 > 0, depending only onℭ′ and the laws of𝐷ℎ and 𝐷̃ℎ, such
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36 DING and GWYNNE

that if𝐻𝑟(𝛼,ℭ
′′) occurs, then 𝐺𝑟(𝛽, ℭ

′) occurs. Combining the preceding two sentences gives the
proposition statement with 𝑝 ∧ 𝛽 in place of 𝛽. □

Since our assumptions on the metrics𝐷ℎ and 𝐷̃ℎ are the same, all of the results above also hold
with the roles of 𝐷ℎ and 𝐷̃ℎ interchanged. For ease of reference, we will record some of these
results here.

Definition 3.8. For 𝑟 > 0, 𝛽 > 0, and 𝔠′ > 0, we let𝐺𝑟(𝛽, 𝔠
′) be the event that the event𝐺𝑟(𝛽, 1∕𝔠

′)

of Definition 3.1 occurs with the roles of 𝐷ℎ and 𝐷̃ℎ interchanged. That is, 𝐺𝑟(𝛽, 𝔠
′) is the event

that there exists 𝑧, 𝑤 ∈ 𝐵𝑟(0) such that

𝐷̃ℎ(𝑧, 𝑤) ⩽ 𝔠′𝐷ℎ

(
𝐵𝛽𝑟(𝑧), 𝐵𝛽𝑟(𝑤)

)
.

Definition 3.9. For 𝑟 > 0, 𝛼 ∈ (3∕4, 1), and 𝔠′ > 0, we let 𝐻̃𝑟(𝛼, 𝔠
′) be the event that the event

𝐻𝑟(𝛼, 1∕𝔠
′) of Definition 3.2 occurs with the roles of 𝐷ℎ and 𝐷̃ℎ interchanged. That is, 𝐻̃𝑟(𝛼, 𝔠

′) is
the event that there exist non-singular points 𝑢 ∈ 𝜕𝐵𝛼𝑟(0) and 𝑣 ∈ 𝜕𝐵𝑟(0) such that

𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′𝐷ℎ(𝑢, 𝑣) (3.11)

and a 𝐷̃ℎ-geodesic 𝑃 from 𝑢 to 𝑣 such that the following is true.

(i) 𝑃 ⊂ A𝛼𝑟,𝑟(0).
(ii) The Euclidean diameter of 𝑃 is at most 𝑟∕100.
(iii) 𝐷̃ℎ(𝑢, 𝑣) ⩽ (1 − 𝛼)−1𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0).
(iv) Let 𝜃 > 0 be as in Lemma 2.13 with 𝜒 = 1∕2. For each 𝛿 ∈ (0, (1 − 𝛼)2],

max
{
𝐷̃ℎ(𝑢, 𝜕𝐵𝛿𝑟(𝑢)), 𝐷̃ℎ

(
around A𝛿𝑟,𝛿1∕2𝑟(𝑢)

)}
⩽ 𝛿𝜃𝐷̃ℎ(𝑢, 𝑣) (3.12)

and the same is true with the roles of 𝑢 and 𝑣 interchanged.

We have the following analog of Proposition 3.3.

Proposition 3.10. There exist 𝛼 ∈ (3∕4, 1) and 𝑝 ∈ (0, 1), depending only on the laws of 𝐷ℎ and
𝐷̃ℎ, such that for each 𝔠′ > 𝔠∗, there exists 𝔠′′ = 𝔠′′(𝔠′) ∈ (𝔠∗, 𝔠

′) such that for each 𝛽 ∈ (0, 1), there
exists 𝜀0 = 𝜀0(𝛽, 𝔠

′) > 0with the following property. If r > 0 andP[𝐺r(𝛽, 𝔠
′′)] ⩾ 𝛽, then the following

is true for each 𝜀 ∈ (0, 𝜀0].

(A’) There are at least 3

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2r, 𝜀r] ∩ {8−𝑘r ∶ 𝑘 ∈ N} for which
P[𝐻̃𝑟(𝛼, 𝔠

′)] ⩾ 𝑝.

We will also need the following analog of Proposition 3.6.

Proposition 3.11. For each 𝔠′ > 𝔠∗, there exists 𝛽 > 0, depending on 𝔠′ and the laws of 𝐷ℎ and 𝐷̃ℎ,
such that for each small enough 𝜀 > 0 (depending on 𝔠′ and the laws of𝐷ℎ and 𝐷̃ℎ), there are at least
3

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N for which P[𝐺𝑟(𝛽, 𝔠
′)] ⩾ 𝛽.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 37

3.2 Proof of Proposition 3.3

To prove Proposition 3.3, we will prove the contrapositive, as stated in the following proposition.

Proposition 3.12. There exists 𝛼 ∈ (3∕4, 1) and 𝑝 ∈ (0, 1), depending only on the laws of 𝐷ℎ and
𝐷̃ℎ, such that for each ℭ′ ∈ (0, ℭ∗), there exists ℭ′′ = ℭ′′(ℭ′) ∈ (ℭ′, ℭ∗) such that for each 𝛽 ∈

(0, 1), there exists 𝜀0 = 𝜀0(𝛽, ℭ
′) > 0 with the following property. If r > 0 and there exists 𝜀 ∈ (0, 𝜀0]

satisfying the condition (B) just below, then P[𝐺r(𝛽, ℭ
′′)] < 𝛽.

(B) There are at least 1

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2r, 𝜀r] ∩ {8−𝑘r ∶ 𝑘 ∈ N} for which
P[𝐻𝑟(𝛼, ℭ

′)] <𝑝.

Note that the second-to-last last sentence of Proposition 3.12 (that is, the one just before con-
dition (B)) is the contrapositive of the second-to-last sentence of Proposition 3.3 (that is, the one
just before condition (A)). The proof of Proposition 3.12 is similar to the argument in [27, section
3.2], but the definitions of the events involved are necessarily different due to the existence of
singular points.
The basic idea of the proof is as follows. If we assume that (B) holds for a small enough

(universal) choice of 𝑝 ∈ (0, 1), then we can use Lemma 2.1 (independence across concen-
tric annuli) and a union bound to cover space by Euclidean balls of the form 𝐵𝑟∕2(𝑧) for
𝑟 ∈ [𝜀2r, 𝜀r] with the following property. For each 𝑢 ∈ 𝜕𝐵𝛼𝑟(𝑧) and each 𝑣 ∈ 𝜕𝐵𝑟(𝑧) which are
joined by a geodesic 𝑃 satisfying the numbered conditions in Definition 3.2, we have 𝐷̃ℎ(𝑢, 𝑣)

⩽ ℭ′𝐷ℎ(𝑢, 𝑣).
By considering the times when a 𝐷ℎ-geodesic between two fixed points z,w ∈ C crosses the

annulus A𝛼𝑟,𝑟(𝑧) for such a 𝑧 and 𝑟, we will be able to show that 𝐷̃ℎ(𝐵𝛽(z), 𝐵𝛽(w)) ⩽ ℭ′′𝐷ℎ(z,w)

for a suitable constant ℭ′′ ∈ (ℭ′, ℭ∗). Applying this to an appropriate 𝛽-dependent collection of
pairs of points (z,w) will show that P[𝐺r(𝛽, ℭ

′′)] < 𝛽. The reason why we need to make 𝛼 close
to 1 is to ensure that the events we consider depend on ℎ in a sufficiently ‘local’ manner (see the
proof of Lemma 3.13).
Let us now define the events to which we will apply Lemma 2.1. See Figure 5 for an illustration

of the definition. We will discuss the purpose of each condition in the event just below.
For 𝑧 ∈ C, 𝑟 > 0, and parameters 𝛿0 ∈ (0, 1∕100), 𝛼 ∈ (1 − 𝛿0, 1), and 𝐴 > 1, let 𝐸𝑟(𝑧) =

𝐸𝑟(𝑧; 𝛿0, 𝛼, 𝐴,ℭ′) be the event that the following is true.

(1) (Regularity along geodesics) For each 𝐷ℎ(⋅, ⋅;A𝑟∕2,2𝑟(𝑧))-geodesic 𝑃 between two points of
𝜕A𝑟∕2,2𝑟(𝑧), each 𝛿 ∈ (0, 𝛿0], and each 𝑥 ∈ A3𝑟∕4,3𝑟∕2(𝑧) such that 𝑃 ∩ 𝐵𝛿𝑟(𝑥) ≠ ∅,

𝐷ℎ

(
around A𝛿𝑟,𝛿1∕2𝑟(𝑥)

)
⩽ 𝛿𝜃𝐷ℎ

(
across A𝛿𝑟,𝛿1∕2𝑟(𝑥)

)
, (3.13)

where (as in Definition 3.2) 𝜃 is as in Lemma 2.13 with 𝜒 = 1∕2.
(2) (Distance around A3𝑟∕2,2𝑟(𝑧)) We have

𝐷ℎ

(
around A3𝑟∕2,2𝑟(𝑧)

)
⩽ min

{
(1 − 𝛼)−1𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧),

𝔠∗
2ℭ∗

𝛿0
−𝜃𝐷ℎ

(
A3𝑟∕4,3𝑟∕2(𝑧), 𝜕A𝑟∕2,2𝑟(𝑧)

)}
. (3.14)
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38 DING and GWYNNE

F IGURE 5 Illustration of the definition of 𝐸𝑟(𝑧). We have shown the annuli involved in the definition and
an example of a 𝐷ℎ(⋅, ⋅;A𝑟∕2,2𝑟(𝑧))-geodesic 𝑃 between two points of 𝜕A𝑟∕2,2𝑟(𝑧), which appears in several of the
conditions. Condition 1 allows us to compare distances around and across small annuli surrounding points of
A3𝑟∕4,3𝑟∕2(𝑧) which are hit by 𝑃. Condition 2 provides an upper bound for the 𝐷ℎ-distance around the outer
annulus A3𝑟∕2,2𝑟(𝑧). Condition 3 gives an upper bound for the Euclidean diameters of segments of 𝑃 which are
contained in the pink annulus A𝛼𝑟,𝑟(𝑧), such as the red segment in the figure. Condition 4 gives an upper bound
for the 𝐷ℎ-distance around A𝛼𝑟,𝑟(𝑧). Finally, condition 5 will allow us to show that the 𝐷̃ℎ-length of a red segment
like 𝑃|[𝑠,𝑡] is at most ℭ′(𝑡 − 𝑠).

(3) (Euclidean length of geodesic segments in A𝛼𝑟,𝑟(𝑧)) For each 𝐷ℎ(⋅, ⋅;A𝑟∕2,2𝑟(𝑧)-geodesic 𝑃

between two points of 𝜕A𝑟∕2,2𝑟(𝑧) and any two times 𝑡 > 𝑠 > 0 such that 𝑃([𝑠, 𝑡]) ⊂ A𝛼𝑟,𝑟(𝑧),
we have

|𝑃(𝑡) − 𝑃(𝑠)| ⩽ 𝛿0𝑟. (3.15)

(4) (Distance around A𝛼𝑟,𝑟(𝑧)) We have

𝐷ℎ

(
around A𝛼𝑟,𝑟(𝑧)

)
⩽ 𝐴𝐷ℎ

(
across A𝛼𝑟,𝑟(𝑧)

)
. (3.16)

(5) (Converse of𝐻𝑟(𝛼,ℭ
′)) Let 𝑢 ∈ 𝜕𝐵𝛼𝑟(𝑧) and 𝑣 ∈ 𝜕𝐵𝑟(𝑧) such that |𝑢 − 𝑣| ⩽ 𝛿0𝑟 and

𝐷ℎ

(
around A

𝛿0𝑟,𝛿0
1∕2𝑟

(𝑣)
)

⩽
𝔠∗
2ℭ∗

𝐷ℎ

(
A3𝑟∕4,3𝑟∕2(𝑧), 𝜕A𝑟∕2,2𝑟(𝑧)

)
. (3.17)
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 39

Assume that there is a 𝐷ℎ-geodesic 𝑃′ from 𝑢 to 𝑣 such that the numbered conditions in
Definition 3.2 of𝐻𝑟(𝛼,ℭ

′) occur but with 𝑧 in place of 0, that is,
(i) 𝑃′ ⊂ A𝛼𝑟,𝑟(𝑧);
(ii) the Euclidean diameter of 𝑃′ is at most 𝑟∕100;
(iii) 𝐷ℎ(𝑢, 𝑣) ⩽ (1 − 𝛼)−1𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧);
(iv) for each 𝛿 ∈ (0, (1 − 𝛼)2],

max
{
𝐷ℎ(𝑢, 𝜕𝐵𝛿𝑟(𝑢)), 𝐷ℎ

(
around A𝛿𝑟,𝛿1∕2𝑟(𝑢)

)}
⩽ 𝛿𝜃𝐷ℎ(𝑢, 𝑣) (3.18)

and the same is true with the roles of 𝑢 and 𝑣 interchanged.
Then 𝐷̃ℎ(𝑢, 𝑣) ⩽ ℭ′𝐷ℎ(𝑢, 𝑣).

The most important condition in the definition of 𝐸𝑟(𝑧) is condition 5. By Definition 3.2 and
the translation invariance of the law of ℎ, modulo additive constant, ifP[𝐻𝑟(𝛼, ℭ

′)] is small, then
the probability of condition 5 is large. The extra condition (3.17) on 𝑢 and 𝑣 is included in order
to prevent 𝐷ℎ-geodesics or 𝐷̃ℎ-geodesics between 𝑢 and 𝑣 from exiting A𝑟∕2,2𝑟(𝑧). This is needed
to ensure that 𝐸𝑟(𝑧) is determined by ℎ|A𝑟∕2,2𝑟(𝑧)

, which in turn is needed to apply Lemma 2.1. See
Lemma 3.13.
We will eventually consider a 𝐷ℎ-geodesic 𝑃 which enters 𝐵𝑟∕2(𝑧) and apply condition 5 to the

𝐷ℎ-geodesic 𝑃′ = 𝑃|[𝑠,𝑡] from 𝑢 = 𝑃(𝑠) to 𝑣 = 𝑃(𝑡), where 𝑠 and 𝑡 are suitably chosen times such
that 𝑃(𝑠) ∈ 𝜕𝐵𝛼𝑟(𝑧) and 𝑃(𝑡) ∈ 𝜕𝐵𝑟(𝑧). The first three conditions in the definition of 𝐸𝑟(𝑧) will
allow us to do so (see Lemma 3.16). In particular, condition 1 will allow us to check (3.18) for
𝑢 = 𝑃(𝑠) and 𝑣 = 𝑃(𝑡). Condition 2 will be used in conjunction with condition 1 to check (3.17).
Condition 3 will be used to upper-bound the Euclidean diameter of 𝑃|[𝑠,𝑡].
Condition 4 will be used to show that the intervals [𝑠, 𝑡] as above for varying choices of 𝑟 and 𝑧

such that 𝐸𝑟(𝑧) occurs and 𝑃 enters 𝐵𝑟∕2(𝑧) cover a uniformly positive fraction of the time interval
on which 𝑃 is defined. See Lemma 3.18.
Let us now explain why we can apply Lemma 2.1 to the events 𝐸𝑟(𝑧). For the statement, recall

the definition of the restriction of the GFF to a closed set from (2.2).

Lemma 3.13. The event 𝐸𝑟(𝑧) is almost surely determined by ℎ|
A𝑟∕2,2𝑟(𝑧)

, viewed modulo
additive constant.

Proof. It is immediate fromWeyl scaling (Axiom III) that adding a constant to ℎ does not affect the
occurrence of 𝐸𝑟(𝑧). Therefore, 𝐸𝑟(𝑧) is almost surely determined by ℎ viewed modulo additive
constant. We need to show that 𝐸𝑟(𝑧) is almost surely determined by ℎ|A𝑟∕2,𝑟(𝑧)

.

Each of conditions 1, 2, 3, and 4 in the definition of 𝐸𝑟(𝑧) depends only on 𝐷ℎ(⋅, ⋅;A𝑟∕2,𝑟(𝑧)).
By locality (Axiom II; see also Subsection 2.2), we get that each of these four conditions is almost
surely determined by ℎ|

A𝑟∕2,2𝑟(𝑧)
.

We still need to treat condition 5. To this end, we claim that if 𝑢 ∈ 𝜕𝐵𝛼𝑟(𝑧) and 𝑣 ∈ 𝜕𝐵𝑟(𝑧)

such that |𝑢 − 𝑣| ⩽ 𝛿0𝑟 and (3.17) holds (as in condition 5), then every 𝐷ℎ-geodesic and every 𝐷̃ℎ-
geodesic from 𝑢 to 𝑣 is contained inA𝑟∕2,2𝑟(𝑧). The claim implies that the set of𝐷ℎ(⋅, ⋅;A𝑟∕2,2𝑟(𝑧))-
geodesics from 𝑢 to 𝑣 is the same as the set of 𝐷ℎ-geodesics from 𝑢 to 𝑣, and similarly with 𝐷̃ℎ

in place of 𝐷ℎ. This, in turn, implies that condition 5 is equivalent to the analogous condition
where we require that 𝑃′ is a 𝐷ℎ(⋅, ⋅;A𝑟∕2,2𝑟(𝑧))-geodesic instead of a 𝐷ℎ-geodesic and we replace
𝐷ℎ(𝑢, 𝑣) and 𝐷̃ℎ(𝑢, 𝑣) by 𝐷ℎ(𝑢, 𝑣;A𝑟∕2,2𝑟(𝑧)) and 𝐷̃ℎ(𝑢, 𝑣;A𝑟∕2,2𝑟(𝑧)), respectively. It then follows
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40 DING and GWYNNE

from locality (Axiom II) that 𝐸𝑟(𝑧) is almost surely determined by ℎ|
A𝑟∕2,2𝑟(𝑧)

, viewed modulo
additive constant.
It remains to prove the claim in the preceding paragraph. Let 𝑢 and 𝑣 be as above and let 𝑃 be

path from 𝑢 to 𝑣 which exits A𝑟∕2,2𝑟(𝑧). We need to show that 𝑃 is neither a 𝐷ℎ-geodesic nor a
𝐷̃ℎ-geodesic. By (3.17), there is a path 𝜋 ⊂ A

𝛿0𝑟,𝛿0
1∕2𝑟

(𝑣) such that

len(𝜋; 𝐷ℎ) <
𝔠∗
ℭ∗

𝐷ℎ

(
A3𝑟∕4,3𝑟∕2(𝑧), 𝜕A𝑟∕2,2𝑟(𝑧)

)
. (3.19)

By the bi-Lipschitz equivalence of 𝐷ℎ and 𝐷̃ℎ, this implies that also

len
(
𝜋; 𝐷̃ℎ

)
< 𝐷̃ℎ

(
A3𝑟∕4,3𝑟∕2(𝑧), 𝜕A𝑟∕2,2𝑟(𝑧)

)
. (3.20)

Since 𝑢, 𝑣 ∈ 𝐵𝛿0𝑟
(𝑣), the path 𝑃 must hit 𝜋 before the first time it crosses from A3𝑟∕4,3𝑟∕2(𝑧) to

𝜕A𝑟∕2,2𝑟(𝑧) and after the last time that it does so. Therefore, (3.19) implies that we can replace a
segment of 𝑃 with a segment of 𝜋 to get a path with the same endpoints and shorter 𝐷ℎ-length.
Hence, 𝑃 is not a 𝐷ℎ-geodesic. Similarly, (3.20) implies that 𝑃 is not a 𝐷̃ℎ-geodesic. □

We now check that 𝐸𝑟(𝑧) occurs with high probability if the parameters are chosen
appropriately.

Lemma 3.14. For each 𝑝 ∈ (0, 1), there exist parameters 𝛿0 ∈ (0, 1∕100), 𝛼 ∈ (1 − 𝛿0, 1), and𝐴 >

1, depending only on 𝑝 and the laws of 𝐷ℎ and 𝐷̃ℎ, such that the following is true. Let ℭ′ ∈ (0, ℭ∗)

and r > 0 and assume that (B) holds for our given choice of𝛼 and𝑝. Then there are at least 1

4
log8 𝜀

−1

values of 𝑟 ∈ [𝜀2r, 𝜀r] ∩ {8−𝑘}𝑘∈N such that P[𝐸𝑟(𝑧)] ⩾ 1 − 2𝑝 for each 𝑧 ∈ C.

Proof. By the translation invariance of the law of ℎ, viewed modulo additive constant, and
Axiom IV′, it suffices to prove the lemma in the case when 𝑧 = 0.
By Lemma 2.13 (applied with 𝑓 ≡ 0), we can find 𝛿0 ∈ (0, 1∕100) depending only on 𝑝 and the

laws of𝐷ℎ and 𝐷̃ℎ such that for each 𝑟 > 0, the probability of condition 1 in the definition of 𝐸𝑟(0)

is at least 1 − 𝑝∕4. By tightness across scales (Axiom V′), after possibly shrinking 𝛿0, we can find
𝛼 ∈ (1 − 𝛿0, 1) depending only on the laws of 𝐷ℎ and 𝐷̃ℎ such that the probability of condition 2
is also at least 1 − 𝑝∕4.
By Lemma 2.14 (applied with 𝑓 ≡ 0 and 𝜂 the unit-speed parameterization of 𝜕𝐵1(0)), after

possibly shrinking 𝛼, in a manner depending on 𝛿0, we can arrange that for each 𝑟 > 0, it holds
with probability at least 1 − 𝑝∕4 that the following is true. For each 𝐷ℎ(⋅, ⋅;A𝑟∕2,2𝑟(0))-geodesic 𝑃
from a point of 𝜕𝐵𝑟∕2(0) to a point of 𝜕𝐵𝑟(0), the one-dimensional Lebesgue measure of the set{

𝑥 ∈ 𝜕𝐵𝑟(0) ∶ 𝑃 ∩ 𝐵100(1−𝛼)𝑟(𝑥) ≠ ∅
}

(3.21)

is at most 𝛿0𝑟. If 𝑡 > 𝑠 > 0 such that 𝑃([𝑠, 𝑡]) ⊂ A𝛼𝑟,𝑟(0), then the one-dimensional Lebesguemea-
sure of the set (3.21) is at least the Euclidean diameter of 𝑃([𝑠, 𝑡]). This shows that condition 3 in
the definition of 𝐸𝑟(0) occurs with probability at least 1 − 𝑝∕4.
By tightness across scales (Axiom V′), we can find 𝐴 > 1 (depending on 𝛼) such that for each

𝑟 > 0, condition 4 in the definition of 𝐸𝑟(0) occurs with probability at least 1 − 𝑝∕4. By (B) and
the Definition 3.2 of𝐻𝑟(𝛼,ℭ

′), there are at least 1

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2r, 𝜀r] ∩ {8−𝑘}𝑘∈N such
that condition 5 in the definition of 𝐸𝑟(0) occurs with probability at least 1 − 𝑝. We note that
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 41

the requirement (3.17) does not show up in (B), but including the requirement (3.17) makes the
condition weaker, so makes the probability of the condition larger.
Taking a union bound over the five conditions in the definition of 𝐸𝑟(0) now concludes the

proof. □

With Lemmas 3.13 and 3.14 in hand, we can now apply Lemma 2.1 to obtain the following.

Lemma 3.15. There exist parameters 𝑝∗ ∈ (0, 1), 𝛿0 ∈ (0, 1∕100), 𝛼 ∈ (1 − 𝛿0, 1), and 𝐴 > 1,
depending only on the laws of 𝐷ℎ and 𝐷̃ℎ, such that the following is true. Letℭ′ ∈ (0, ℭ∗) and r > 0

and assume that (B) holds for our given choice of 𝛼 and with 𝑝 = 𝑝∗. For each fixed bounded open
set 𝑈 ⊂ C, it holds with probability tending to 1 as 𝜀 → 0 (at a rate depending only on 𝑈) that for
each 𝑧 ∈ r𝑈, there exists 𝑟 ∈ [𝜀2r, 𝜀r] and 𝑤 ∈ 𝐵𝑟∕2(𝑧) such that 𝐸𝑟(𝑤) occurs.

Proof. By Lemma 2.1, there exists a universal constant 𝑝∗ ∈ (0, 1) such that the following is true.
Let r > 0, let 𝜀 ∈ (0, 1), let 𝐾 ⩾

1

4
log8 𝜀

−1, and let 𝑟1, … , 𝑟𝐾 ∈ [𝜀2r, 𝜀r] ∩ {8−𝑘}𝑘∈N be distinct. If
𝑧 ∈ C and 𝐹𝑟𝑘

(𝑧) for 𝑘 = 1,… , 𝐾 is an event which is almost surely determined by ℎ|
A𝑟𝑗∕2,2𝑟𝑗

(𝑧),

viewed modulo additive constant, and has probability at least 1 − 2𝑝∗, then

P
[
∃𝑘 ∈ [1, 𝐾]Z such that 𝐹𝑟𝑘

occurs
]
⩾ 1 − 𝑂𝜀(𝜀

100),

with the implicit constant in the 𝑂𝜀(⋅) universal.
We now choose 𝛿0, 𝛼, 𝐴 as in Lemma 3.14 with 𝑝 = 𝑝∗. For ℭ′ ∈ (0, ℭ∗) and r > 0, we apply

the above statement to the radii 𝑟 ∈ [𝜀2r, 𝜀r] ∩ {8−𝑘}𝑘∈N from Lemma 3.14, which are chosen so
that P[𝐸𝑟(𝑤)] ⩾ 1 − 2𝑝∗ for all𝑤 ∈ C. By Lemma 3.14, if (B) holds with 𝑝 = 𝑝∗, then there are at
least 1

4
log8 𝜀

−1 such radii. Hence, if (B) holds, then

P
[
∃𝑟 ∈ [𝜀2r, 𝜀r] such that 𝐸𝑟(𝑤) occurs

]
⩾ 1 − 𝑂𝜀(𝜀

100), ∀𝑧 ∈ C, (3.22)

with the implicit constant in the 𝑂𝜀(⋅) universal.
The lemma statement now follows by applying (3.22) to each of the 𝑂𝜀(𝜀

−2) points 𝑤 ∈

𝐵r(r𝑈) ∩ ( 𝜀r

100
Z2), then taking a union bound. □

Henceforth, fix 𝑝∗, 𝛿0, 𝛼, and 𝐴 as in Lemma 3.15. Also fix

ℭ′′ ∈
(
ℭ′ +

𝐴

𝐴 + 1
(ℭ∗ − ℭ′), ℭ∗

)
, (3.23)

and note that we can choose ℭ′′ in a manner depending only on ℭ′ and the laws of 𝐷ℎ and 𝐷̃ℎ

(since 𝐴 depends only on the laws of 𝐷ℎ and 𝐷̃ℎ).
We will show that for each 𝛽 > 0, there exists 𝜀0 = 𝜀0(𝛽, ℭ

′) > 0 such that if r > 0, 𝜀 ∈ (0, 𝜀0],
and (B) holds for the above values of r, 𝜀, 𝑝∗, 𝛼, then with probability greater than 1 − 𝛽,

𝐷̃ℎ

(
𝐵𝛽r(z), 𝐵𝛽r(w)

)
⩽ ℭ′′𝐷ℎ(z,w) ∀z,w ∈ 𝐵r(0). (3.24)

By Definition 3.1, the bound (3.24) implies that P[𝐺r(𝛽, ℭ
′′)𝑐] > 1 − 𝛽, which is what we aim to

show in Proposition 3.12.
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42 DING and GWYNNE

F IGURE 6 Illustration of the definition of the times 𝑠𝑗 and 𝑡𝑗 and the balls 𝐵𝑟𝑗
(𝑤𝑗)

By Lemma 2.11, there is some large bounded open set𝑈 ⊂ C (depending only on 𝛽 and the law
of 𝐷ℎ) such that for each r > 0, it holds with probability at least 1 − 𝛽∕2 that each 𝐷ℎ-geodesic
between two points of 𝐵r(0) is contained in r𝑈. For 𝜀 > 0, let 𝐹𝜀

r be the event that this is the
case and for each 𝑧 ∈ r𝑈, there exists 𝑟 ∈ [𝜀2r, 𝜀r] and 𝑤 ∈ 𝐵𝑟∕2(𝑧) such that 𝐸𝑟(𝑤) occurs. By
Lemma 3.15, if (B) holds then

P[𝐹𝜀
r] ⩾ 1 − 𝛽∕2 − 𝑜𝜀(1), (3.25)

where the rate of convergence of the 𝑜𝜀(1) depends only on𝑈, hence only on 𝛽 and the law of 𝐷ℎ.
We henceforth assume that 𝐹𝜀

r occurs. We will show that if 𝜀 is small enough, then (3.24) holds.
Let z,w ∈ 𝐵r(0) and let 𝑃 ∶ [0, 𝐷ℎ(z,w)] → C be a 𝐷ℎ-geodesic from z to w. We assume that

𝜀 ⩽
1

4
𝛽 and |z − w| ⩾ 𝛽r. (3.26)

The reason why we can make these assumptions is that 𝜀0 is allowed to depend on 𝛽 and (3.24)
holds vacuously if |z − w| ⩽ 𝛽r. We will inductively define a sequence of times

0 = 𝑡0 < 𝑠1 < 𝑡1 < 𝑠2 < 𝑡2 < ⋯ < 𝑠𝐽 < 𝑡𝐽 ⩽ 𝐷ℎ(z,w).

See Figure 6 for an illustration.
Let 𝑡0 = 0. Inductively, assume that 𝑗 ∈ N and 𝑡𝑗−1 has been defined. By the definition of𝐹𝜀

r, we
have 𝑃(𝑡𝑗−1) ∈ r𝑈 and there exists 𝑟𝑗 ∈ [𝜀2r, 𝜀r] and𝑤𝑗 ∈ 𝐵𝑟𝑗∕2

(𝑃(𝑡𝑗−1)) such that𝐸𝑟𝑗
(𝑤𝑗) occurs.

Fix (in some arbitrary manner) a particular choice of 𝑟𝑗 and 𝑤𝑗 with these properties.
Let 𝑡𝑗 be the first time 𝑡 ⩾ 𝑡𝑗−1 for which 𝑃(𝑡) ∉ 𝐵𝑟𝑗

(𝑤𝑗), or let 𝑡𝑗 = 𝐷ℎ(z,w) if no such time
exists. If 𝑡𝑗 < 𝐷ℎ(z,w), we also let 𝑠𝑗 be the last time before 𝑡𝑗 at which 𝑃 hits 𝜕𝐵𝛼𝑟𝑗

(𝑤𝑗), so that

𝑠𝑗 ∈ [𝑡𝑗−1, 𝑡𝑗] and 𝑃([𝑠𝑗, 𝑡𝑗]) ⊂ A𝛼𝑟𝑗,𝑟𝑗
(𝑤𝑗).

Finally, define

𝐽 ∶= max
{
𝑗 ∈ N ∶ |z − 𝑃(𝑡𝑗−1)| < 2𝜀r

}
and

𝐽 ∶= min
{
𝑗 ∈ N ∶ |w − 𝑃(𝑡𝑗+1)| < 2𝜀r

}
. (3.27)
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 43

The reason for the definitions of 𝐽 and 𝐽 is that z,w ∉ 𝐵𝑟𝑗
(𝑤𝑗) for 𝑗 ∈ [𝐽, 𝐽]Z (since 𝑟𝑗 ⩽ 𝜀r

and𝑃(𝑡𝑗) ∈ 𝐵𝑟𝑗
(𝑤𝑗)).Whenever |w − 𝑃(𝑡𝑗−1)| ⩾ 𝜀r, we have 𝑡𝑗 < 𝐷ℎ(z,w) and |𝑃(𝑡𝑗−1) − 𝑃(𝑡𝑗)| ⩽

2𝜀r. Therefore,

𝑃(𝑡𝐽) ∈ 𝐵4𝜀r(z) and 𝑃(𝑡𝐽) ∈ 𝐵4𝜀r(w). (3.28)

The most important estimate that we need for the times 𝑠𝑗 and 𝑡𝑗 is the following lemma.

Lemma 3.16. For each 𝑗 ∈ [𝐽, 𝐽]Z,

𝐷̃ℎ

(
𝑃(𝑠𝑗), 𝑃(𝑡𝑗)

)
⩽ ℭ′(𝑡𝑗 − 𝑠𝑗) and 𝐷̃ℎ

(
𝑃(𝑡𝑗−1), 𝑃(𝑠𝑗)

)
⩽ ℭ∗(𝑠𝑗 − 𝑡𝑗−1). (3.29)

The second inequality in (3.29) is immediate from the definition (1.19) of ℭ∗. We will prove the
first inequality in (3.29) by applying condition 5 in the definition of 𝐸𝑟𝑗

(𝑤𝑗) with 𝑢 = 𝑃(𝑠𝑗) and
𝑣 = 𝑃(𝑡𝑗). The following lemma will be used in conjunction with condition 1 in the definition of
𝐸𝑟𝑗

(𝑤𝑗) to check the requirement (3.17) from condition 5.

Lemma 3.17. For each 𝑗 ∈ [𝐽, 𝐽]Z, we have

𝑡𝑗 − 𝑠𝑗 ⩽ (1 − 𝛼)−1𝑟
𝜉𝑄
𝑗

𝑒
𝜉ℎ𝑟𝑗 (𝑤𝑗) (3.30)

and

𝐷ℎ

(
across A

𝛿0𝑟𝑗,𝛿0
1∕2𝑟𝑗

(𝑃(𝑡𝑗))
)

⩽
𝔠∗
2ℭ∗

𝛿−𝜃𝐷ℎ

(
A3𝑟𝑗∕4,3𝑟𝑗∕2

(𝑧), 𝜕A𝑟𝑗∕2,2𝑟𝑗
(𝑧)
)
. (3.31)

Proof. See Figure 7 for an illustration. Let 𝑠′
𝑗
be the first time that 𝑃 enters 𝐵3𝑟𝑗∕2

(𝑤𝑗) and let 𝑡′𝑗
be the last time that 𝑃 exits 𝐵3𝑟𝑗∕2

(𝑤𝑗). Then 𝑠′
𝑗
< 𝑠𝑗 < 𝑡𝑗 < 𝑡′

𝑗
. The definitions (3.27) of 𝐽 and 𝐽

show that the endpoints z,w of 𝑃 are not in 𝐵2𝑟𝑗
(𝑤𝑗), so 𝑃 must cross between the inner and

outer boundaries of the annulus A3𝑟𝑗∕2,2𝑟𝑗
(𝑤𝑗) before time 𝑠′

𝑗
and after time 𝑡′

𝑗
. By considering

the segment of 𝑃 between two consecutive times when it hits a path around A3𝑟𝑗∕2,2𝑟𝑗
(𝑤𝑗) of

near-minimal length and using the fact that 𝑃 is a 𝐷ℎ-geodesic, we see that

𝑡′𝑗 − 𝑠′𝑗 ⩽ 𝐷ℎ

(
around 𝜕A3𝑟𝑗∕2,2𝑟𝑗

(𝑧)
)
. (3.32)

By (3.32), followed by condition 2 in the definition of 𝐸𝑟𝑗
(𝑤𝑗), we obtain

𝑡𝑗 − 𝑠𝑗 ⩽ 𝑡′𝑗 − 𝑠′𝑗 ⩽ 𝐷ℎ

(
around 𝜕A3𝑟𝑗∕2,2𝑟𝑗

(𝑧)
)

⩽ (1 − 𝛼)−1𝑟
𝜉𝑄
𝑗

𝑒
𝜉ℎ𝑟𝑗 (𝑤𝑗),

which is (3.30).
The path 𝑃 must cross between the inner and outer boundaries of the annulus

A
𝛿0𝑟𝑗,𝛿0

1∕2𝑟𝑗
(𝑃(𝑡𝑗)) between times 𝑡′

𝑗
and 𝑠′

𝑗
. By (3.32) followed by condition 2 in the definition

of 𝐸𝑟𝑗
(𝑤𝑗),
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44 DING and GWYNNE

F IGURE 7 Illustration of the proof of Lemma 3.17. We upper-bound 𝑡𝑗 − 𝑠𝑗 and 𝐷ℎ(across A𝛿0𝑟𝑗 ,𝛿0
1∕2𝑟𝑗

(𝑃(𝑡𝑗)))

in terms of 𝑡′
𝑗
− 𝑠′

𝑗
, upper-bound 𝑡′

𝑗
− 𝑠′

𝑗
in terms of the 𝐷ℎ-length of the orange loop, and upper-bound the

𝐷ℎ-length of the orange loop using condition 2 in the definition of 𝐸𝑟𝑗
(𝑤𝑗). Note that the picture is not to scale.

For example, in actuality the inner radius of A𝛿0𝑟𝑗 ,𝛿0
1∕2𝑟𝑗

(𝑃(𝑡𝑗)) is much smaller than its outer radius.

𝐷ℎ

(
across A

𝛿0𝑟𝑗,𝛿0
1∕2𝑟𝑗

(𝑃(𝑡𝑗))
)

⩽ 𝑡′𝑗 − 𝑠′𝑗

⩽ 𝐷ℎ

(
around 𝜕A3𝑟𝑗∕2,2𝑟𝑗

(𝑧)
)

⩽
𝔠∗
2ℭ∗

𝛿−𝜃𝐷ℎ

(
A3𝑟𝑗∕4,3𝑟𝑗∕2

(𝑧), 𝜕A𝑟𝑗∕2,2𝑟𝑗
(𝑧)
)
.

This gives (3.31). □

Proof of Lemma 3.16. The second inequality in (3.29) is immediate from the definition (1.19) ofℭ∗.
To get the first inequality, we want to apply condition 5 in the definition of 𝐸𝑟𝑗

(𝑤𝑗) to the points
𝑢 = 𝑃(𝑠𝑗) ∈ 𝜕𝐵𝛼𝑟𝑗

(𝑤𝑗) and 𝑣 = 𝑃(𝑡𝑗) ∈ 𝜕𝐵𝑟𝑗
(𝑤𝑗). To do this, we need to check the hypotheses of

condition 5 in the definition of 𝐸𝑟𝑗
(𝑤𝑗).

To this end, let 𝜎𝑗 be the last time before 𝑠𝑗 at which 𝑃 enters A𝑟𝑗∕2,2𝑟𝑗
(𝑤𝑗) and let 𝜏𝑗 be the

first time after 𝑡𝑗 at which 𝑃 exits A𝑟𝑗∕2,2𝑟𝑗
(𝑤𝑗). Then 𝑃|[𝜎𝑗,𝜏𝑗] is a 𝐷ℎ(⋅, ⋅;A𝑟𝑗∕2,2𝑟𝑗

(𝑤𝑗))-geodesic
between two points of 𝜕A𝑟𝑗∕2,2𝑟𝑗

(𝑤𝑗) and 𝜎𝑗 < 𝑠𝑗 < 𝑡𝑗 < 𝜏𝑗 . By the definitions of 𝑠𝑗 and 𝑡𝑗 , we have

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12492 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [10/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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𝑃|[𝑠𝑗 ,𝑡𝑗] ⊂ A𝛼𝑟𝑗,𝑟𝑗
(𝑤𝑗). (3.33)

By (3.33) and condition 3 in the definition of 𝐸𝑟𝑗
(𝑤𝑗),

(
Euclidean diameter of 𝑃([𝑠𝑗, 𝑡𝑗])

)
⩽ 𝛿0𝑟𝑗 ⩽

𝑟𝑗

100
. (3.34)

By condition 1 in the definition of 𝐸𝑟𝑗
(𝑤𝑗),

𝐷ℎ

(
around A𝛿𝑟𝑗,𝛿

1∕2𝑟𝑗
(𝑃(𝑡𝑗))

)
⩽ 𝛿𝜃𝐷ℎ

(
across A𝛿𝑟𝑗,𝛿

1∕2𝑟𝑗
(𝑃(𝑡𝑗))

)
,

∀𝛿 ∈ (0, 𝛿0]; (3.35)

and the same is true with 𝑃(𝑠𝑗) in place of 𝑃(𝑡𝑗). By definition, |𝑃(𝑡𝑗) − 𝑃(𝑠𝑗)| ⩾ (1 − 𝛼)𝑟𝑗 so for
each 𝛿 ∈ (0, (1 − 𝛼)2], the path 𝑃|[𝑠𝑗 ,𝑡𝑗] crosses between the inner and outer boundaries of the
annuli A𝛿𝑟𝑗,𝛿

1∕2𝑟𝑗
(𝑃(𝑠𝑗)) and A𝛿𝑟𝑗,𝛿

1∕2𝑟𝑗
(𝑃(𝑡𝑗)). Since 1 − 𝛼 < 𝛿0, (3.35) implies that

𝐷ℎ

(
around A𝛿𝑟𝑗,𝛿

1∕2𝑟𝑗
(𝑃(𝑡𝑗))

)
⩽ 𝛿𝜃(𝑡𝑗 − 𝑠𝑗) = 𝛿𝜃𝐷ℎ(𝑃(𝑠𝑗), 𝑃(𝑡𝑗)),

∀𝛿 ∈ (0, (1 − 𝛼)2]; (3.36)

and the same is true with 𝑃(𝑠𝑗) in place of 𝑃(𝑡𝑗) on the left side.
By (3.36), for each 𝜁 > 0 and each 𝛿 ∈ (0, (1 − 𝛼)2] we can find a path 𝜋𝛿 in A𝛿𝑟𝑗,𝛿

1∕2𝑟𝑗
(𝑃(𝑡𝑗))

which disconnects the inner and outer boundaries and has 𝐷ℎ-length at most (𝛿𝜃 + 𝜁)(𝑡𝑗 − 𝑠𝑗). If
we let 𝑎𝛿 (respectively, 𝑏𝛿) be the first (respectively, last) time that 𝑃 hits 𝜋𝛿, then 𝑎𝛿 ⩽ 𝑡𝑗 ⩽ 𝑏𝛿 and
since 𝑃 is a 𝐷ℎ-geodesic we must have 𝑏𝛿 − 𝑎𝛿 ⩽ len(𝜋𝛿; 𝐷ℎ). Furthermore, the segment 𝑃|[𝑡𝑗 ,𝑏𝛿]
hits 𝜕𝐵𝛿r(𝑃(𝑡𝑗)), so for each 𝛿 ∈ (0, (1 − 𝛼)2],

𝐷ℎ

(
𝑃(𝑡𝑗), 𝜕𝐵𝛿r(𝑃(𝑡𝑗))

)
⩽ 𝑏𝛿 − 𝑡𝑗 ⩽ 𝑏𝛿 − 𝑎𝛿 ⩽ len(𝜋𝛿; 𝐷ℎ) ⩽ (𝛿𝜃 + 𝜁)(𝑡𝑗 − 𝑠𝑗). (3.37)

Sending 𝜁 → 0 and recalling that 𝑃 is a 𝐷ℎ-geodesic gives

𝐷ℎ

(
𝑃(𝑡𝑗), 𝜕𝐵𝛿r(𝑃(𝑡𝑗))

)
⩽ 𝛿𝜃𝐷ℎ

(
𝑃(𝑠𝑗), 𝑃(𝑡𝑗)

)
, ∀𝛿 ∈ (0, (1 − 𝛼)2]. (3.38)

We similarly obtain (3.38) with the roles of 𝑃(𝑠𝑗) and 𝑃(𝑡𝑗) interchanged.
Finally, by Lemma 3.17 and (3.35) (with 𝛿 = 𝛿0),

𝐷ℎ

(
around A

𝛿0𝑟𝑗,𝛿0
1∕2𝑟𝑗

(𝑃(𝑡𝑗))
)

⩽
𝔠∗
2ℭ∗

𝐷ℎ

(
A3𝑟𝑗∕4,3𝑟𝑗∕2

(𝑧), 𝜕A𝑟𝑗∕2,2𝑟𝑗
(𝑧)
)
. (3.39)

We are now ready to explain why we can apply condition 5 with 𝑢 = 𝑃(𝑠𝑗) and 𝑣 = 𝑃(𝑡𝑗). The
hypothesis (5i) follows from (3.33). The condition (3.17) and the hypothesis (5ii) for the Euclidean
diameter of 𝑃|[𝑠𝑗 ,𝑡𝑗] follow from (3.34). The needed upper bound (5iii) for 𝐷ℎ(𝑃(𝑠𝑗), 𝑃(𝑡𝑗)) follows
from (3.30) The hypothesis (5iv) follows from (3.36) and (3.38). The hypothesis (3.18) follows
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46 DING and GWYNNE

from (3.39). Hence, we can apply condition 5 in the definition of 𝐸𝑟𝑗
(𝑤𝑗) to 𝑃|[𝑠𝑗 ,𝑡𝑗] to get

𝐷̃ℎ(𝑃(𝑠𝑗), 𝑃(𝑡𝑗)) ⩽ ℭ′(𝑡𝑗 − 𝑠𝑗), as required. □

The last lemma we need for the proof of Proposition 3.12 tells us that the time intervals [𝑠𝑗, 𝑡𝑗]
occupy a positive fraction of the total 𝐷ℎ-length of the path 𝑃.

Lemma 3.18. For each 𝑗 ∈ [𝐽, 𝐽]Z,

𝑠𝑗 − 𝑡𝑗−1 ⩽
𝐴

𝐴 + 1
(𝑡𝑗 − 𝑡𝑗−1). (3.40)

Proof. By the definition of 𝑟𝑗 and the definitions of 𝐽 and 𝐽 in (3.27), for 𝑗 ∈ [𝐽, 𝐽]Z we have
𝑟𝑗 ⩽ 𝜀r and |𝑃(𝑡𝑗) − z| ∧ |𝑃(𝑡𝑗) − w| ⩾ 2𝜀r. Since 𝑃(𝑡𝑗−1) ∈ 𝐵𝑟𝑗∕2

(𝑤𝑗) and 𝑃(𝑠𝑗) ∈ 𝜕𝐵𝛼𝑟𝑗
(𝑤𝑗), we

infer that the 𝐷ℎ-geodesic 𝑃 must cross between the inner and outer boundaries of the annulus
A𝛼𝑟𝑗,𝑟𝑗

(𝑤𝑗) at least once before time 𝑡𝑗−1 and at least once after time 𝑠𝑗 . By condition 4 in the def-
inition of 𝐸𝑟𝑗

(𝑤𝑗), there is a path in A𝛼𝑟𝑗,𝑟𝑗
(𝑤𝑗) disconnecting the inner and outer boundaries of

this annulus with 𝐷ℎ-length arbitrarily close to 𝐴𝐷ℎ(𝜕𝐵𝛼𝑟𝑗
(𝑤𝑗), 𝜕𝐵𝑟𝑗

(𝑤𝑗)). The geodesic 𝑃 must
hit this path at least once before time 𝑡𝑗−1 and at least once after time 𝑠𝑗 . Since 𝑃 is a 𝐷ℎ-geodesic
and 𝑃(𝑠𝑗) ∈ 𝜕𝐵𝛼𝑟𝑗

(𝑤𝑗), 𝑃(𝑡𝑗) ∈ 𝜕𝐵𝑟𝑗
(𝑤𝑗), it follows that

𝑠𝑗 − 𝑡𝑗−1 ⩽ 𝐴𝐷ℎ

(
𝜕𝐵𝛼𝑟𝑗

(𝑤𝑗), 𝜕𝐵𝑟𝑗
(𝑤𝑗)

)
⩽ 𝐴(𝑡𝑗 − 𝑠𝑗).

Adding 𝐴(𝑠𝑗 − 𝑡𝑗−1) to both sides of this inequality, then dividing by 𝐴 + 1, gives (3.40). □

Proof of Proposition 3.12. Our above estimates show that if the event 𝐹𝜀
r of (3.25) occurs, then we

have the following string of inequalities:

𝐷̃ℎ(𝐵4𝜀r(z), 𝐵4𝜀r(w))

⩽

𝐽∑
𝑗=𝐽+1

[
𝐷̃ℎ

(
𝑃(𝑡𝑗−1), 𝑃(𝑠𝑗)

)
+ 𝐷̃ℎ

(
𝑃(𝑠𝑗), 𝑃(𝑡𝑗)

)]
(by (3.28))

⩽

𝐽∑
𝑗=𝐽+1

[
ℭ∗(𝑠𝑗 − 𝑡𝑗−1) + ℭ′(𝑡𝑗 − 𝑠𝑗)

]
(by Lemma 3.16)

=

𝐽∑
𝑗=𝐽+1

[
ℭ′(𝑡𝑗 − 𝑡𝑗−1) + (ℭ∗ − ℭ′)(𝑠𝑗 − 𝑡𝑗−1)

]

⩽
(
ℭ′ +

𝐴

𝐴 + 1
(ℭ∗ − ℭ′)

) 𝐽∑
𝑗=𝐽+1

(𝑡𝑗 − 𝑡𝑗−1) (by Lemma 3.18)

⩽
(
ℭ′ +

𝐴

𝐴 + 1
(ℭ∗ − ℭ′)

)
𝐷ℎ(z,w) (since 𝑃 is a 𝐷ℎ-geodesic)

⩽ ℭ′′𝐷ℎ(z,w) (by 3.23)). (3.41)
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 47

F IGURE 8 Illustration of the objects defined in Subsection 4.1. The bump function 𝖿𝑧,𝑟 is supported on 𝖵𝑧,𝑟

and identically equal to𝖬 on 𝖴𝑧,𝑟 . The figure shows a 𝐷ℎ−𝖿𝑧,𝑟
-geodesic 𝑃′ (blue) and a (𝐵4𝑟(𝑧), 𝖵𝑧,𝑟)-excursion

(𝜏′, 𝜏, 𝜎, 𝜎′) for 𝑃′. On the event 𝖤𝑧,𝑟 , there are many ‘good’ pairs of points 𝑢, 𝑣 ∈ 𝖴𝑧,𝑟 such that
𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′𝐷ℎ(𝑢, 𝑣) and there is a 𝐷̃ℎ-geodesic from 𝑢 to 𝑣 which is contained in 𝖴𝑧,𝑟 (several such geodesics are
shown in red). We obtain hypothesis C for 𝖤𝑧,𝑟 by forcing 𝑃′ to get close to 𝑢 and 𝑣 for one such ‘good’ pair of
points.

By (3.25), we have P[𝐹𝜀
r] ⩾ 1 − 𝛽∕2 − 𝑜𝜀(1), with the rate of convergence of the 𝑜𝜀(1) uniform in

the choice of r. Hence, we can choose 𝜀0 = 𝜀0(𝛽, ℭ
′) > 0 small enough so that 4𝜀0 ⩽ 𝛽 andP[𝐹𝜀

r] >

1 − 𝛽 for each 𝜀 ∈ (0, 𝜀0]. By (3.41) and Definition 3.1 of 𝐺r(𝛽, ℭ
′′), we see that for 𝜀 ∈ (0, 𝜀0], the

condition (B) implies that P[𝐺r(𝛽, ℭ
′′)] < 𝛽, as required. □

4 THE CORE ARGUMENT

4.1 Properties of events and bump functions

In this section, we will assume the existence of events and smooth bump functions which sat-
isfy certain conditions. We will then use these objects to prove Theorem 1.13. The objects will be
constructed in Section 5 and are illustrated in Figure 8.
To state the conditions which our events and bump functions need to satisfy, we define the

optimal upper and lower bi-Lipschitz constants ℭ∗ and 𝔠∗ as in Section 3 and we set

𝔠′ ∶=
𝔠∗ + ℭ∗

2
, (4.1)

which belongs to (𝔠∗, ℭ∗) if 𝔠∗ < ℭ∗.

 1460244x, 0, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12492 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [10/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



48 DING and GWYNNE

We will consider a set of admissible radii ⊂ (0, 1) which is required to satisfy

𝑟′∕𝑟 ⩾ 8, ∀𝑟, 𝑟′ ∈  such that 𝑟′ > 𝑟. (4.2)

The reason for restricting attention to a set of radii as in (4.2) is that in Section 5, we will need to
use Proposition 3.10 in order to construct our events.
We also fix a number p ∈ (0, 1), which we will choose later in a manner depending only on 𝐷ℎ

and 𝐷̃ℎ (the parameter p is chosen in Lemma 4.18).
Finally, we fix numbers𝖬, 𝖺, 𝖠, 𝖪, 𝖻, 𝖼, 𝖫 > 0, which we require to satisfy the relations

𝖠 > 𝖺 and 𝖺 − 4𝑒−𝜉𝖬𝖫 >
2𝖠

𝖺
𝖻. (4.3)

We henceforth refer to these numbers as the parameters. Most constants in our proofs will be
allowed to depend on the parameters. The parameters will be chosen in Section 5, in a manner
depending only on p and the laws of 𝐷ℎ and 𝐷̃ℎ (see also Proposition 4.2).
Throughout this section, we will assume that for each 𝑟 ∈  and each 𝑧 ∈ C, we have defined

the following objects.

∙ An event 𝖤𝑧,𝑟 = 𝖤𝑧,𝑟(ℎ) such that 𝖤𝑧,𝑟 is almost surely determined by ℎ|A𝑟,4𝑟(𝑧)
, viewed modulo

additive constant (recall (2.2)), P[𝖤𝑧,𝑟] ⩾ p, and 𝖤𝑧,𝑟 satisfies the three hypotheses listed just
below.

∙ Deterministic open sets 𝖴𝑧,𝑟, 𝖵𝑧,𝑟 ⊂ A𝑟,3𝑟(𝑧), each of which has the topology of an open
Euclidean annulus and disconnects the inner and outer boundaries of A𝑟,3𝑟(𝑧), such that
𝖴𝑧,𝑟 ⊂ 𝖵𝑧,𝑟 and 𝖵𝑧,𝑟 ⊂ A𝑟,3𝑟(𝑧).

∙ A deterministic smooth function 𝖿𝑧,𝑟 ∶ C → [0,𝖬] such that 𝖿𝑧,𝑟 ≡ 𝖬 on 𝖴𝑧,𝑟 and 𝖿𝑧,𝑟 ≡ 0 on
C ⧵ 𝖵𝑧,𝑟.

To state the needed hypotheses for the event 𝖤𝑧,𝑟, we make the following definition.

Definition 4.1. Let 𝑃 ∶ [0, 𝑇] → C be a path and let𝑂,𝑉 ⊂ C be open sets with𝑉 ⊂ 𝑂. A (𝑂, 𝑉)-
excursion of 𝑃 is a 4-tuple of times (𝜏′, 𝜏, 𝜎, 𝜎′) such that

𝑃(𝜏′), 𝑃(𝜎′) ∈ 𝜕𝑂, 𝑃((𝜏′, 𝜎′)) ⊂ 𝑂,

𝜏 is the first time after 𝜏′ that 𝑃 enters 𝑉, and 𝜎 is the last time before 𝜎′ at which 𝑃 exits 𝑉.

An (𝑂, 𝑉) excursion is illustrated in Figure 8. We assume that on the event 𝖤𝑧,𝑟, the following
is true.

(A) We have

𝐷ℎ(𝖵𝑧,𝑟, 𝜕A𝑟,3𝑟(𝑧)) ⩾ 𝖺𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧),

𝐷ℎ(around A3𝑟,4𝑟(𝑧)) ⩽ 𝖠𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧), and

𝐷ℎ(around 𝖴𝑧,𝑟) ⩽ 𝖫𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧).
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 49

(B) The Radon–Nikodym derivative of the law of ℎ + 𝖿𝑧,𝑟 with respect to the law of ℎ, with both
distributions viewed modulo additive constant, is bounded above by 𝖪 and below by 1∕𝖪.

(C) Let 𝑃′ ∶ [0, 𝑇] → C be a𝐷ℎ−𝖿𝑧,𝑟
-geodesic between two points which are not in 𝐵4𝑟(𝑧), param-

eterized by its 𝐷ℎ−𝖿𝑧,𝑟
-length. Assume that (in the terminology of Definition 4.1), there is a

(𝐵4𝑟(𝑧), 𝖵𝑧,𝑟)-excursion (𝜏′, 𝜏, 𝜎, 𝜎′) for 𝑃′ such that

𝐷ℎ

(
𝑃′(𝜏), 𝑃′(𝜎); 𝐵4𝑟(𝑧)

)
⩾ 𝖻𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧). (4.4)

Then there are times 𝜏 ⩽ 𝑠 < 𝑡 ⩽ 𝜎 such that

𝑡 − 𝑠 ⩾ 𝖼𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧) and 𝐷̃ℎ−𝖿𝑧,𝑟

(
𝑃′(𝑠), 𝑃′(𝑡); 𝐵4𝑟(𝑧)

)
⩽ 𝔠′(𝑡 − 𝑠). (4.5)

Constructing objects which satisfy the above conditions (especially hypothesis C) will require
a lot of work. The proof of the following proposition will occupy all of Section 5.

Proposition 4.2. Assume that 𝔠∗ < ℭ∗. For eachp ∈ (0, 1), there exist 𝔠′′ ∈ (𝔠∗, 𝔠
′) and a set of radii

 as in (4.2), depending only on p and the laws of 𝐷ℎ and 𝐷̃ℎ, with the following properties.

∙ There is a choice of parameters depending only onp and the laws of𝐷ℎ and 𝐷̃ℎ, such that for each
𝑟 ∈  and each 𝑧 ∈ C, there exist an event 𝖤𝑧,𝑟, open sets 𝖴𝑧,𝑟, 𝖵𝑧,𝑟, and a function 𝖿𝑧,𝑟 satisfying
the above hypotheses.

∙ For each 𝛽 > 0, there exists 𝜀0 > 0, depending only on p, 𝛽, and the laws of 𝐷ℎ and 𝐷̃ℎ, such
that the following holds for each 𝜀 ∈ (0, 𝜀0]. If r > 0 and that the event of Definition 3.8 satisfies
P[𝐺r(𝛽, 𝔠

′′)] ⩾ 𝛽, then the cardinality of ∩ [𝜀2r, 𝜀r] is at least 5

8
log8 𝜀

−1.

The proof of Proposition 4.2 in Section 5will be via an intricate explicit construction. To give the
reader some intuition, we will now explain roughly what is involved in this construction, without
any quantitative estimates. The readermaywant to look at Figure 8while reading the explanation.
The set 𝖴𝑧,𝑟 where 𝖿𝑧,𝑟 attains its maximal possible value will be a long narrow ‘tube’ which

disconnects the inner and outer boundaries of A𝑟,3𝑟(𝑧) and is contained in a small Euclidean
neighborhood of 𝜕𝐵2𝑟(𝑧). The set 𝖵𝑧,𝑟 where 𝖿𝑧,𝑟 is supported will be a slightly larger tube con-
taining 𝖴𝑧,𝑟. The event 𝖤𝑧,𝑟 corresponds, roughly speaking, to the event that there are many ‘good’
pairs of non-singular points 𝑢, 𝑣 ∈ 𝖴𝑧,𝑟 with the following properties (plus a long list of regularity
conditions).

∙ 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′
0
𝐷ℎ(𝑢, 𝑣), where 𝔠′0 ∈ (𝔠∗, 𝔠

′) is fixed.
∙ |𝑢 − 𝑣| is bounded below by a constant times 𝑟.
∙ There is a 𝐷̃ℎ-geodesic from 𝑢 to 𝑣 which is contained in 𝖴𝑧,𝑟.

Hypotheses A and B for 𝖤𝑧,𝑟 will be immediate consequences of the regularity conditions in the
definition of 𝖤𝑧,𝑟. Hypothesis C will be obtained as follows. Suppose that 𝑃′ is a 𝐷ℎ−𝖿𝑧,𝑟

-geodesic
as in hypothesis C. Since the bump function 𝖿𝑧,𝑟 is very large on 𝖴𝑧,𝑟, we infer that if 𝑥, 𝑦 ∈ 𝖵𝑧,𝑟,
then the 𝐷ℎ−𝖿𝑧,𝑟

-length of any path between 𝑥 and 𝑦 which spends a lot of time outside of 𝖴𝑧,𝑟 is
much greater than the 𝐷ℎ−𝖿𝑧,𝑟

-length of a path between 𝑥 and 𝑦 which spends most of its time in
𝖴𝑧,𝑟. By applying this with 𝑥 = 𝑃′(𝜏) and 𝑦 = 𝑃′(𝜎), we find that 𝑃′|[𝜏,𝜎] has to spend most of its
time in 𝖴𝑧,𝑟.
This will allow us to find a ‘good’ pair of points 𝑢, 𝑣 ∈ 𝖴𝑧,𝑟 as above such that 𝑃′|[𝜏,𝜎] gets very

𝐷ℎ−𝖿𝑧,𝑟
-close to each of 𝑢 and 𝑣. Since the 𝐷̃ℎ-geodesic between 𝑢 and 𝑣 is contained in𝖴𝑧,𝑟 and 𝖿𝑧,𝑟
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50 DING and GWYNNE

attains its maximal possible value on 𝖴𝑧,𝑟, subtracting 𝖿𝑧,𝑟 from ℎ reduces 𝐷̃ℎ(𝑢, 𝑣) by at least as
much as 𝐷ℎ(𝑢, 𝑣). Consequently, one has 𝐷̃ℎ−𝖿𝑧,𝑟

(𝑢, 𝑣) ⩽ 𝔠′
0
𝐷ℎ−𝖿𝑧,𝑟

(𝑢, 𝑣). We will then obtain (4.5)
by choosing 𝑠 and 𝑡 such that 𝑃′(𝑠) and 𝑃′(𝑡) are close to 𝑢 and 𝑣, respectively, and applying the
triangle inequality.
To produce lots of ‘good’ pairs of points 𝑢, 𝑣 ∈ 𝖴𝑧,𝑟, we will apply Proposition 3.10 together

with a local independence argument based on Lemma 2.3 (to upgrade from a single pair of points
with positive probability to many pairs of points with high probability). This application of Propo-
sition 3.10 is the reason why we need to assume that P[𝐺r(𝛽, 𝔠

′′)] ⩾ 𝛽 in the second part of
Proposition 4.2; and why we need to restrict to a set of admissible radii , instead of defining
our events for every 𝑟 > 0.

4.2 Estimate for ratios of 𝑫𝒉 and 𝑫̃𝒉 distances

We now state the main estimate which we will prove using the events 𝖤𝑧,𝑟. In particular, we will
show that the probability of a certain ‘bad’ event, which we now define, is small. For r > 0, 𝜀 > 0,
and disjoint compact sets 𝐾1, 𝐾2 ⊂ 𝐵2r(0), let 𝜀

r = 𝜀
r(𝐾1, 𝐾2) be the event that the following is

true.

(1) 𝐷̃ℎ(𝐾1, 𝐾2) ⩾ ℭ∗𝐷ℎ(𝐾1, 𝐾2) −
1

2
𝜀2𝜉(𝑄+3)r𝜉𝑄𝑒𝜉ℎr(0).

(2) For each 𝑧 ∈ 𝐵3r(0) and each 𝑟 ∈ [𝜀2r, 𝜀r] ∩, we have
𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧) ∈

[
𝜀2𝜉(𝑄+3)r𝜉𝑄𝑒𝜉ℎr(0), 𝜀𝜉(𝑄−3)r𝜉𝑄𝑒𝜉ℎr(0)

]
.

(3) For each 𝑧 ∈ 𝐵3r(0), there exists 𝑟 ∈  ∩ [𝜀2r, 𝜀r] and 𝑤 ∈ ( 𝑟

100
Z2) ∩ 𝐵𝑟∕25(𝑧) such that 𝖤𝑤,𝑟

occurs.

The most important condition in the definition of 𝜀
r is condition 1. We want to show that if 𝔠∗ <

ℭ∗, then this condition is extremely unlikely. The motivation for this is that it will eventually be
used in Subsection 4.5 to derive a contradiction to Proposition 3.5. Indeed, Proposition 3.5 gives
a lower bound for the probability that there exist points 𝑢, 𝑣 ∈ 𝐵r(0) satisfying certain conditions
such that 𝐷̃ℎ(𝑢, 𝑣) is ‘close’ to ℭ∗𝐷ℎ(𝑢, 𝑣). We will show that this lower bound is incompatible
with our upper bound for the probability of condition 1 in the definition of 𝜀

r.
Conditions 2 and 3 in the definition of 𝜀

r are global regularity conditions. We will show in
Lemma 4.18 that Proposition 4.2 implies that these two conditions occur with high probability.
This, in turn, means that an upper bound for P[𝜀

r] implies an upper bound for the probability of
condition 1. The next three subsections are devoted to the proof of the following proposition.

Proposition 4.3. Assume that 𝔠∗ < ℭ∗ and we have constructed a set of admissible radii  as
in (4.2) and events 𝖤𝑧,𝑟, sets𝖴𝑧,𝑟 and 𝖵𝑧,𝑟, and bump functions 𝖿𝑧,𝑟 for 𝑧 ∈ C and 𝑟 ∈ which satisfy
the conditions of Subsection 4.1. Let 𝜂 ∈ (0, 1) and r > 0. Also let𝐾1, 𝐾2 ⊂ 𝐵2r(0) be disjoint compact
sets such that dist(𝐾1, 𝐾2) ⩾ 𝜂r and dist(𝐾1, 𝜕𝐵r(0)) ⩾ 𝜂r, where dist denotes Euclidean distance.†

† The reasonwhywe require that dist(𝐾1, 𝜕𝐵r(0)) ⩾ 𝜂r in Proposition 4.3 is as follows.Our events involve the circle average
ℎr(0). We only want to add to or subtract from ℎ functions of the form 𝖿𝑧,𝑟 whose supports are disjoint from 𝜕𝐵r(0), so
that adding or subtracting 𝖿𝑧,𝑟 does not change ℎr(0). The condition that dist(𝐾1, 𝜕𝐵r(0)) ⩾ 𝜂r ensures that there is a
segment of the𝐷ℎ-geodesic from𝐾1 to𝐾2 of Euclidean length at least 𝜂rwhich is disjoint from 𝜕𝐵r(0). We will eventually
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 51

Then

P
[𝜀

r(𝐾1, 𝐾2)
]
= 𝑂𝜀(𝜀

𝜇), ∀𝜇 > 0 (4.6)

with the implicit constant in the𝑂𝜀(⋅) depending only on 𝜇, 𝜂, and the parameters (not on r, 𝐾1, 𝐾2).

It is crucial for our purposes that the implicit constant in the 𝑂𝜀(⋅) in (4.6) does not depend on
r, 𝐾1, 𝐾2. This is because we will eventually take𝐾1 and𝐾2 to be Euclidean balls whose radii are a
power of 𝜀 times r (see Lemma 4.19). Proposition 4.2 is not needed for the proof of Proposition 4.3.
Rather, all we need is the statement that 𝖤𝑧,𝑟, 𝖴𝑧,𝑟, 𝖵𝑧,𝑟, and 𝖿𝑧,𝑟 exist and satisfy the required prop-
erties for each 𝑟 ∈  (we do not care how large is). Proposition 4.2 is just needed to check that
the auxiliary condition 3 in the definition 𝜀

r occurs with high probability.
We will now explain how to prove Proposition 4.3 conditional on two propositions (Propo-

sitions 4.5 and 4.6) whose proofs will occupy most of this section. The proof will be based on
counting the number of events of a certain type which occur. Let us now define these events.
Assume that 𝔠∗ < ℭ∗. Also fix r > 0 and disjoint compact sets 𝐾1, 𝐾2 ⊂ 𝐵2r(0). For 𝑟 ∈ 

(which we will eventually take to be much smaller than r), let 𝑟 = r
𝑟 (𝐾1, 𝐾2) be the set of

non-empty subsets 𝑍 ⊂ 𝑟

100
Z2 such that‡

𝐵4𝑟(𝑧) ∩ 𝐵4𝑟(𝑧
′) = ∅ and 𝐵4𝑟(𝑧) ∩ (𝐾1 ∪ 𝐾2 ∪ 𝜕𝐵r(0)) = ∅,

∀ distinct 𝑧, 𝑧′ ∈ 𝑍. (4.7)

For a set 𝑍 ∈ 𝑟, we define

𝖿𝑍,𝑟 =
∑
𝑧∈𝑍

𝖿𝑧,𝑟.

By Lemma 2.7, almost surely there is a unique 𝐷ℎ-geodesic from 𝐾1 to 𝐾2. Since the laws of
ℎ and ℎ − 𝖿𝑍,𝑟 are mutually absolutely continuous [34, Proposition 3.4], for each 𝑟 ∈  and each
𝑍 ∈ 𝑟, almost surely there is a unique 𝐷ℎ−𝖿𝑍,𝑟

-geodesic from 𝐾1 to 𝐾2. Hence, the following
definition makes sense. For 𝑍 ∈ 𝑟 and 𝑞 > 0 we define 𝐹

𝑞,r
𝑍,𝑟

= 𝐹
𝑞,r
𝑍,𝑟

(ℎ; 𝐾1, 𝐾2) to be the event
that the following is true.

(1) 𝐷̃ℎ(𝐾1, 𝐾2) ⩾ ℭ∗𝐷ℎ(𝐾1, 𝐾2) − 𝑞r𝜉𝑄𝑒𝜉ℎr(0).
(2) The event 𝖤𝑧,𝑟(ℎ) occurs for each 𝑧 ∈ 𝑍.
(3) We have

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧) ∈
[
𝑞r𝜉𝑄𝑒𝜉ℎr(0), 2𝑞r𝜉𝑄𝑒𝜉ℎr(0)

]
, ∀𝑧 ∈ 𝑍.

(4) For each 𝑧 ∈ 𝑍, the 𝐷ℎ-geodesic from 𝐾1 to 𝐾2 hits 𝐵𝑟(𝑧).

choose to subtract functions 𝖿𝑧,𝑟 whose supports are close to such a segment, see the proof of Proposition 4.5 at the end of
Subsection 4.3.
‡ The reason why we require that 𝐵4𝑟(𝑧) ∩ 𝜕𝐵r(0) = ∅ in (4.7) is to ensure that adding or subtracting the function 𝖿𝑧,𝑟 for
𝑧 ∈ 𝑍 (which is supported on 𝐵4𝑟(𝑧)) does not change the circle average ℎr(0) (cf. Footnote ). This fact is used in the proof
of Lemma 4.15.
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52 DING and GWYNNE

F IGURE 9 Illustration of the definition of 𝐹𝑞,r
𝑍,𝑟
. Here, we have shown 𝐾1 as a non-singleton set and 𝐾2 as a

point, but 𝐾1 and 𝐾2 can be any disjoint compact sets. The set 𝑍 consists of the four center points of the annuli in
the figure. For each of these points, we have shown the set 𝖵𝑧,𝑟 (that is, the support of 𝖿𝑧,𝑟) in light blue and the
annulus A𝑟,4𝑟(𝑧) in gray. On 𝐹

𝑞,r
𝑍,𝑟
, the 𝐷ℎ-geodesic from 𝐾1 to 𝐾2 (blue) hits each of the balls 𝐵𝑟(𝑧) for 𝑧 ∈ 𝑍.

Moreover, the 𝐷ℎ−𝖿𝑍,𝑟
-geodesic from 𝐾1 to 𝐾2 (red) has a ‘large’ (𝐵4𝑟(𝑧), 𝖵𝑧,𝑟)-excursion for each 𝑧 ∈ 𝑍.

(5) For each 𝑧 ∈ 𝑍, the 𝐷ℎ−𝖿𝑍,𝑟
-geodesic 𝑃𝑍 from 𝐾1 to 𝐾2 has a (𝐵4𝑟(𝑧), 𝖵𝑧,𝑟)-excursion

(𝜏′𝑧, 𝜏𝑧, 𝜎𝑧, 𝜎
′
𝑧) such that

𝐷ℎ(𝑃𝑍(𝜏𝑧), 𝑃𝑍(𝜎𝑧); 𝐵4𝑟(𝑧)) ⩾ 𝖻𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧).

See Figure 9 for an illustration of the definition. Condition 1 for 𝐹𝑞,r
𝑍,𝑟

is closely related to the main
condition 1 in the definition of 𝜀

r. The purpose of conditions 2 and 4 is to allow us to apply our
hypotheses for 𝖤𝑧,𝑟 to study 𝐷ℎ-distances on the event 𝐹

𝑞,r
𝑍,𝑟
. Condition 3 provides up-to-constants

comparisons of the ‘LQG sizes’ of different balls 𝐵𝑟(𝑧) for 𝑧 ∈ 𝑍. Finally, condition 5 will enable
us to apply hypothesis C for 𝖤𝑧,𝑟 to each 𝑧 ∈ 𝑍.
Proposition 4.3 will turn out to be a straightforward consequence of three estimates for the

events𝐹𝑞,r
𝑧,𝑟 , whichwenow state.Our first estimate follows froma standard formula for theRadon–

Nikodym derivative between the laws of ℎ and ℎ + 𝖿𝑍,𝑟.

Lemma 4.4. For 𝑟 ∈ , 𝑍 ∈ 𝑟, and 𝑞 > 0, let 𝐹𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟) be the event 𝐹
𝑞,r
𝑍,𝑟

(ℎ) defined with
ℎ + 𝖿𝑍,𝑟 in place of ℎ. For each 𝑍 ⊂ 𝑟,

𝖪−#𝑍P
[
𝐹
𝑞,r
𝑍,𝑟

(ℎ)
]
⩽ P

[
𝐹
𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟)
]
⩽ 𝖪#𝑍P

[
𝐹
𝑞,r
𝑍,𝑟

(ℎ)
]
. (4.8)

Proof. By Weyl scaling (Axiom III) and the fact that 𝖤𝑧,𝑟(ℎ) is almost surely determined by ℎ,
viewed modulo additive constant, we get that the event 𝐹𝑞,r

𝑍,𝑟
(ℎ) is almost surely determined by

ℎ, viewed modulo additive constant. By a standard calculation for the GFF (see, for example, the
proof of [34, Proposition 3.4]), the Radon–Nikodym derivative of the law of ℎ + 𝖿𝑍,𝑟 with respect
to the law of ℎ, with both distributions viewed modulo additive constant, is equal to

exp
(
(ℎ, 𝖿𝑍,𝑟)∇ −

1

2
(𝖿𝑍,𝑟, 𝖿𝑍,𝑟)∇

)
,
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 53

where (𝑓, g)∇ = ∫
C
∇𝑓(𝑧) ⋅∇g(𝑧) 𝑑2𝑧 denotes the Dirichlet inner product. Recall that each 𝖿𝑧,𝑟

for 𝑧 ∈ 𝑍 is supported on the annulus A𝑟,4𝑟(𝑧). Since 𝑍 ∈ 𝑟, the definition (4.7) shows that the
balls 𝐵4𝑟(𝑧) for 𝑧 ∈ 𝑍 are disjoint. Hence, the random variables (ℎ, 𝖿𝑍,𝑟)∇ are independent, so the
above Radon–Nikodym derivative factors as the product

∏
𝑧∈𝑍

exp
(
(ℎ, 𝖿𝑧,𝑟)∇ −

1

2
(𝖿𝑧,𝑟, 𝖿𝑧,𝑟)∇

)
. (4.9)

By condition 2 in the definition of 𝐹𝑞,r
𝑍,𝑟

(ℎ), on this event 𝖤𝑧,𝑟(ℎ) occurs for each 𝑧 ∈ 𝑍. Conse-
quently, hypothesis B for 𝖤𝑧,𝑟(ℎ) shows that on 𝐹

𝑞,r
𝑧,𝑟 (ℎ), each of the factors in the product (4.9) is

bounded above by 𝖪 and below by 𝖪−1. This implies (4.8). □

Our next estimate tells us that on 𝜀
r, there are many choices of 𝑍 for which 𝐹

𝑞,r
𝑍,𝑟

(ℎ) occurs.

Proposition 4.5. There exists 𝑐1 > 0, depending only on the parameters and 𝜂, such that for each
𝑘 ∈ N, there exists 𝜀∗ > 0, depending only on 𝑘, the parameters, and 𝜂, such that the following is
true for each r > 0 and each 𝜀 ∈ (0, 𝜀∗]. Assume that dist(𝐾1, 𝐾2) ⩾ 𝜂r and dist(𝐾1, 𝜕𝐵r(0)) ⩾ 𝜂r. If
𝜀

r(𝐾1, 𝐾2) occurs, then there exists a random 𝑟 ∈ [𝜀2r, 𝜀r] and a random 𝑞 ∈ [1
2
𝜀2𝜉(𝑄+3), 𝜀𝜉(𝑄−3)] ∩

{2−𝑙}𝑙∈N such that

#
{
𝑍 ∈ 𝑟 ∶ #𝑍 ⩽ 𝑘 and 𝐹

𝑞,r
𝑍,𝑟

(ℎ) occurs
}

⩾ 𝜀−𝑐1𝑘. (4.10)

Proposition 4.5 will be proven in Subsection 4.3. Our final estimate gives an unconditional
upper bound for the number of 𝑍 for which 𝐹

𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟) occurs.

Proposition 4.6. There is a constant 𝐶2 > 0, depending only on the parameters, such that the
following is true. For each 𝑟 ∈ , each 𝑞 > 0, and each 𝑘 ∈ N, almost surely

#
{
𝑍 ∈ 𝑟 ∶ #𝑍 ⩽ 𝑘 and 𝐹

𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟) occurs
}

⩽ 𝐶𝑘
2 . (4.11)

We will give the proof of Proposition 4.6 in Subsection 4.4. The proofs of Propositions 4.5
and 4.6 are both via elementary deterministic arguments based on the hypotheses for 𝖤𝑧,𝑟 and
the definition of 𝖥𝑞,r

𝑍,𝑟
. See the beginnings of Subsections 4.3 and 4.4 for overviews of the proofs.

Let us now explain how to deduce Proposition 4.3 from the above three estimates.

Proof of Proposition 4.3. Throughout the proof, all implicit constants are required to depend
only on 𝜉 and the parameters. Fix r > 0 and disjoint compact sets 𝐾1, 𝐾2 ⊂ 𝐵2r(0) such that
dist(𝐾1, 𝐾2) ⩾ 𝜂r and dist(𝐾1, 𝜕𝐵r(0)) ⩾ 𝜂r. For 𝜀 > 0, let

𝐑𝜀 ∶=  ∩ [𝜀2r, 𝜀r] and 𝐐𝜀 ∶=
[
1

2
𝜀2𝜉(𝑄+3), 𝜀𝜉(𝑄−3)

]
∩ {2−𝑙}𝑙∈N.

The cardinality of 𝐑𝜀 × 𝐐𝜀 is at most a 𝜉-dependent constant times (log 𝜀−1)2. By interchanging
the order of summation and expectation, then applying Proposition 4.6 and Lemma 4.4, we get
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54 DING and GWYNNE

that for each 𝑘 ∈ N,

(log 𝜀−1)2 ⪰
∑
𝑟∈𝐑𝜀

∑
𝑞∈𝐐𝜀

∑
𝑍∈𝑟
#𝑍⩽𝑘

E

[
1𝐹

𝑞,r
𝑍,𝑟

(ℎ+𝖿𝑍,𝑟)

#{𝑍′ ∈ 𝑟 ∶ #𝑍′ ⩽ 𝑘, 𝐹
𝑞,r

𝑍′,𝑟
(ℎ + 𝖿𝑍′,𝑟) occurs}

]

⪰ 𝐶−𝑘
2

∑
𝑟∈𝖱𝜀

∑
𝑞∈𝖰𝜀

∑
𝑍∈𝑟
#𝑍⩽𝑘

P
[
𝐹
𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟)
]

(Proposition 4.6)

⪰ 𝐶−𝑘
2 𝖪−𝑘

∑
𝑟∈𝖱𝜀

∑
𝑞∈𝖰𝜀

∑
𝑍∈𝑟
#𝑍⩽𝑘

P
[
𝐹
𝑞,r
𝑍,𝑟

(ℎ)
]

(Lemma 4.4)

= 𝐶−𝑘
2 𝖪−𝑘E

[∑
𝑟∈𝖱𝜀

∑
𝑞∈𝖰𝜀

#
{
𝑍 ∈ 𝑟 ∶ #𝑍 ⩽ 𝑘, 𝐹

𝑞,r
𝑍,𝑟

(ℎ) occurs
}]

. (4.12)

By Proposition 4.5, for each small enough 𝜀 > 0 (how small depends on 𝑘) on the event 𝜀
r(𝐾1, 𝐾2)

the double sum inside the expectation in the last line of (4.12) is at least 𝜀−𝑐1𝑘. Hence, for each
small enough 𝜀 > 0 (depending on 𝑘),

(log 𝜀−1)2 ⪰ 𝐶−𝑘
2 𝖪−𝑘𝜀−𝑐1𝑘P

[𝜀
r(𝐾1, 𝐾2)

]
. (4.13)

Re-arranging this inequality and choosing 𝑘 to be slightly larger than 𝜇∕𝑐1 yields (4.6). □

4.3 Proof of Proposition 4.5

Fix r > 0 and compact sets 𝐾1, 𝐾2 ⊂ 𝐵r(0) such that dist(𝐾1, 𝐾2) ⩾ 𝜂r and dist(𝐾1, 𝜕𝐵r(0)) ⩾ 𝜂r.
It is straightforward to show from the definition of 𝜀

r that if 𝜀
r occurs, then there are many 3-

tuples (𝑍, 𝑟, 𝑞) with 𝑟 ∈  ∩ [𝜀r, 𝜀2r], 𝑞 ∈ [𝜀2𝜉(𝑄+3)∕2, 𝜀𝜉(𝑄−3)] ∩ {2−𝑙}𝑙∈N, and 𝑍 ∈ 𝑟 for which
all of the conditions in the definition of 𝐹𝑞,r

𝑍,𝑟
occur except possibly condition 5, that is, the event

of the following definition occurs.

Definition 4.7. For 𝑟 ∈ , 𝑍 ∈ 𝑟, and 𝑞 > 0, we define 𝐹
𝑞,r

𝑍,𝑟(ℎ) = 𝐹
𝑞,r

𝑍,𝑟(ℎ; 𝐾1, 𝐾2) to be the event
that all of the conditions in the definition of 𝐹𝑞,r

𝑍,𝑟
(ℎ) occur except possibly condition 5, that is,

𝐹
𝑞,r

𝑍,𝑟(ℎ) is the event that the following is true.

(1) 𝐷̃ℎ(𝐾1, 𝐾2) ⩾ ℭ∗𝐷ℎ(𝐾1, 𝐾2) − 𝑞r𝜉𝑄𝑒𝜉ℎr(0).
(2) The event 𝖤𝑧,𝑟 occurs for each 𝑧 ∈ 𝑍.
(3) We have

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧) ∈
[
𝑞r𝜉𝑄𝑒𝜉ℎr(0), 2𝑞r𝜉𝑄𝑒𝜉ℎr(0)

]
, ∀𝑧 ∈ 𝑍.

(4) For each 𝑧 ∈ 𝑍, the 𝐷ℎ-geodesic from 𝐾1 to 𝐾2 hits 𝐵𝑟(𝑧).
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 55

Recall that condition 5 asserts that for each 𝑧 ∈ 𝑍, the 𝐷ℎ−𝖿𝑍,𝑟
-geodesic 𝑃𝑍 from 𝐾1 to 𝐾2 has a

(𝐵4𝑟(𝑧), 𝖵𝑧,𝑟)-excursion (𝜏′𝑧, 𝜏𝑧, 𝜎𝑧, 𝜎
′
𝑧) such that 𝐷ℎ(𝑃𝑍(𝜏𝑧), 𝑃𝑍(𝜎𝑧); 𝐵4𝑟(𝑧)) ⩾ 𝖻𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧). The dif-

ficultywith checking condition 5 is that the𝐷ℎ−𝖿𝑍,𝑟
-geodesic from𝐾1 to𝐾2 could potentially spend

a very small amount of time in 𝖵𝑧,𝑟 for some of the points 𝑧 ∈ 𝑍, or possibly even avoid some of
the sets 𝖵𝑧,𝑟 altogether. To deal with this, we will show that if 𝑍 ∈ 𝑟 and 𝐹

𝑞,r

𝑍,𝑟 occurs, then there
is a subset 𝑍′ ⊂ 𝑍 such that #𝑍′ is at least a constant times #𝑍 and 𝐹

𝑞,r

𝑍′,𝑟
occurs (Lemma 4.13).

The idea for constructing 𝑍′ is as follows. In Lemma 4.8 we show that𝐷ℎ−𝖿𝑍,𝑟
(𝐾1, 𝐾2) is smaller

than 𝐷ℎ(𝐾1, 𝐾2) minus a constant times 𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍. Intuitively, subtracting 𝖿𝑍,𝑟 substantially
reduces the distance from 𝐾1 to 𝐾2. Since 𝖿𝑍,𝑟 is supported on

⋃
𝑧∈𝑍 𝖵𝑧,𝑟, this implies that the

𝐷ℎ−𝖿𝑍,𝑟
-geodesic 𝑃𝑍 from 𝐾1 to 𝐾2 has to spend at least a constant times 𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍 units of

time in
⋃

𝑧∈𝑍 𝖵𝑧,𝑟 (otherwise, its length would have to be larger than 𝐷ℎ−𝖿𝑍,𝑟
(𝐾1, 𝐾2)). We then

iteratively remove the ‘bad’ points 𝑧 ∈ 𝑍 for which there does not exist a (𝐵4𝑟(𝑧), 𝖵𝑧,𝑟)-excursion
(𝜏′𝑧, 𝜏𝑧, 𝜎𝑧, 𝜎

′
𝑧) for 𝑃𝑍 such that

𝐷ℎ(𝑃𝑍(𝜏𝑧), 𝑃𝑍(𝜎𝑧)) ⩾ 𝖻𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧).

For each of the above ‘bad’ points 𝑧 ∈ 𝑍, the intersection of 𝑃𝑍 with 𝖵𝑧,𝑟 is in some sense small.
Since the function 𝖿𝑧,𝑟 is supported on 𝑉𝑧,𝑟, removing the ‘bad’ points from 𝑍 does not increase
𝐷ℎ−𝖿𝑍,𝑟

(𝐾1, 𝐾2) by very much. Consequently, at each stage of the iterative procedure it will still be
the case that 𝐷ℎ−𝖿𝑍,𝑟

(𝐾1, 𝐾2) is substantially smaller than 𝐷ℎ(𝐾1, 𝐾2). As above, this implies that
𝑃𝑍 spends a substantial amount of time in

⋃
𝑧∈𝑍 𝖵𝑧,𝑟. We show in Lemma 4.12 that the amount of

time that 𝑃𝑍 spends in each 𝖵𝑧,𝑟 is at most a constant times 𝑞r𝜉𝑄𝑒𝜉ℎr(0). This allows us to show
that the iterative procedure has to terminate before we have removed too many points from 𝑍.
To begin the proof, we establish an upper bound for 𝐷ℎ−𝖿𝑍,𝑟

(𝐾1, 𝐾2) in terms of 𝐷ℎ(𝐾1, 𝐾2) on

the event 𝐹
𝑞,r

𝑍,𝑟(ℎ). The reason why this bound holds is that the 𝐷ℎ-geodesic from 𝐾1 to 𝐾2 has to
cross the regions 𝖴𝑧,𝑟 for 𝑧 ∈ 𝑍. Since 𝖿𝑍,𝑟 is very large on 𝖴𝑧,𝑟 and by hypothesis A for 𝖤𝑧,𝑟, the
𝐷ℎ−𝖿𝑍,𝑟

-distances around the regions 𝖴𝑧,𝑟 for 𝑧 ∈ 𝑍 is small. This allows us to find #𝑍 ‘shortcuts’
along the 𝐷ℎ-geodesic with small 𝐷ℎ−𝖿𝑍,𝑟

-length.

Lemma 4.8. There is a constant 𝐶3 > 2𝖠𝖻∕𝖺, depending only on the parameters, such that the
following is true. Let 𝑟 ∈ , 𝑍 ⊂ 𝑟, and 𝑞 > 0 and assume that 𝐹

𝑞,r

𝑍,𝑟(ℎ) occurs. Then

𝐷ℎ−𝖿𝑍,𝑟
(𝐾1, 𝐾2) ⩽ 𝐷ℎ(𝐾1, 𝐾2) − 𝐶3𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍. (4.14)

Proof. See Figure 10 for an illustration. By condition 2 in the definition of𝐹
𝑞,r

𝑍,𝑟(ℎ), the event 𝖤𝑧,𝑟(ℎ)

occurs for each 𝑧 ∈ 𝑍. So, by hypothesis A for 𝖤𝑧,𝑟 and condition 3 in the definition of 𝐹
𝑞,r

𝑍,𝑟(ℎ), we
can find for each 𝑧 ∈ 𝑍 a path 𝜋𝑧 in 𝖴𝑧,𝑟 which disconnects the inner and outer boundaries of 𝖴𝑧,𝑟

such that

len(𝜋𝑧; 𝐷ℎ) ⩽ 2𝐷ℎ

(
around 𝖴𝑧,𝑟

)
⩽ 4𝖫𝑞r𝜉𝑄𝑒𝜉ℎr(0). (4.15)

By condition 4 in the definition of 𝐹
𝑞,r

𝑍,𝑟(ℎ), the 𝐷ℎ-geodesic 𝑃 from 𝐾1 to 𝐾2 hits 𝐵𝑟(𝑧) for each
𝑧 ∈ 𝑍. Furthermore, 𝐵4𝑟(𝑧) ∩ (𝐾1 ∪ 𝐾2) = ∅ for each 𝑧 ∈ 𝑍 (recall (4.7)) and 𝜋𝑧 disconnects the
inner and outer boundaries of A𝑟,4𝑟(𝑧) for each 𝑧 ∈ 𝑍. It follows that for each 𝑧 ∈ 𝑍, we can find
times 𝑠𝑧 < 𝑡𝑧 such that 𝑃(𝑠𝑧), 𝑃(𝑡𝑧) ∈ 𝜋𝑧, the path 𝑃|[𝑠𝑧,𝑡𝑧] hits 𝐵𝑟(𝑧), and 𝑃((𝑠𝑧, 𝑡𝑧)) lies in the open
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56 DING and GWYNNE

F IGURE 10 Illustration of the proof of Lemma 4.8. Since 𝖿𝑧,𝑟 is very large on 𝖴𝑧,𝑟 , the 𝐷ℎ−𝖿𝑍,𝑟
-length of the

purple path 𝜋𝑧 is very short. By replacing the segment 𝑃|[𝑠𝑧 ,𝑡𝑧] by a segment of 𝜋𝑧 for each 𝑧 ∈ 𝑍, we obtain a new
path from 𝐾1 to 𝐾2 whose 𝐷ℎ−𝖿𝑍,𝑟

-length is substantially smaller than 𝐷ℎ(𝐾1, 𝐾2).

region which is disconnected from ∞ by 𝜋𝑧. Since the balls 𝐵4𝑟(𝑧) for 𝑧 ∈ 𝑍 are disjoint (again
by (4.7)), the time intervals [𝑠𝑧, 𝑡𝑧] for 𝑧 ∈ 𝑍 are disjoint.
The path 𝑃 must cross from 𝖵𝑧,𝑟 to 𝜕𝐵𝑟(𝑧) between times 𝑠𝑧 and 𝑡𝑧, so by hypothesis A for 𝖤𝑧,𝑟

and condition 3 in the definition of 𝐹
𝑞,r

𝑍,𝑟(ℎ),

𝑡𝑧 − 𝑠𝑧 ⩾ 𝐷ℎ

(
𝖵𝑧,𝑟, 𝜕𝐵𝑟(𝑧)

)
⩾ 𝖺𝑞r𝜉𝑄𝑒𝜉ℎr(0). (4.16)

Let 𝑃′ be the path obtained from 𝑃 by excising each segment 𝑃|[𝑠𝑧,𝑡𝑧] and replacing it by a segment
of 𝜋𝑧 with the same endpoints. Since 𝖿𝑍,𝑟 is non-negative, Weyl scaling (Axiom III) shows that

len

(
𝑃′ ⧵

⋃
𝑧∈𝑍

𝜋𝑧; 𝐷ℎ−𝖿𝑍,𝑟

)
⩽ len

(
𝑃′ ⧵

⋃
𝑧∈𝑍

𝜋𝑧; 𝐷ℎ

)

= len(𝑃; 𝐷ℎ) −
∑
𝑧∈𝑍

(𝑡𝑧 − 𝑠𝑧)

⩽ 𝐷ℎ(𝐾1, 𝐾2) − 𝖺𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍 (by 4.16)). (4.17)

Furthermore, since 𝖿𝑍,𝑟 is identically equal to𝖬 on each of the sets 𝖴𝑧,𝑟 for 𝑧 ∈ 𝑍 (which contains
𝜋𝑧) we get from (4.15) that

len
(
𝜋𝑧; 𝐷ℎ−𝖿𝑍,𝑟

)
⩽ 4𝑒−𝜉𝖬𝖫𝑞r𝜉𝑄𝑒𝜉ℎr(0). (4.18)

Combining (4.17) and (4.18) shows that

𝐷ℎ−𝖿𝑍,𝑟
(𝐾1, 𝐾2) ⩽ len

(
𝑃′; 𝐷ℎ−𝖿𝑍,𝑟

)
⩽ 𝐷ℎ(𝐾1, 𝐾2) −

(
𝖺 − 4𝑒−𝜉𝖬𝖫

)
𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍.

This gives (4.14) with 𝐶3 = 𝖺 − 4𝑒−𝜉𝖬𝖫. We note that 𝐶3 > 2𝖠𝖻∕𝖺 due to (4.3). □
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 57

F IGURE 11 Illustration of the proof of Lemma 4.9. The set 𝑍 consists of the four center points of the annuli
in the figure. For each 𝑧 ∈ 𝑍, we have indicated each of the points 𝑃𝑍(𝜏

′), 𝑃𝑍(𝜏), 𝑃𝑍(𝜎), 𝑃𝑍(𝜎
′) for the

(𝐵4𝑟(𝑧), 𝖵𝑧,𝑟)-excursions (𝜏′, 𝜏, 𝜎, 𝜎′) ∈ 𝑧,𝑟(𝑃𝑍) with a black dot. The proof proceeds by replacing each of the
segments 𝑃𝑍|[𝜏,𝜎] by a 𝐷ℎ-geodesic with the same endpoints (shown in blue).

We next establish an inequality in the opposite direction from the one in Lemma 4.8, that is, an
upper bound for𝐷ℎ(𝐾1, 𝐾2) in terms of𝐷ℎ−𝖿𝑍,𝑟

(𝐾1, 𝐾2). This latter estimate holds unconditionally
(that is, we do not need to truncate on any event).

Lemma 4.9. Let 𝑟 ∈  and 𝑍 ∈ 𝑟 . Let 𝑃𝑍 be the 𝐷ℎ−𝖿𝑍,𝑟
-geodesic from 𝐾1 to 𝐾2. For 𝑧 ∈ 𝑍, let

𝑧,𝑟(𝑃𝑍) be the set of (𝐵4𝑟(𝑧), 𝖵𝑧,𝑟)-excursions of 𝑃𝑍 (Definition 4.1). Then

𝐷ℎ(𝐾1, 𝐾2) ⩽ 𝐷ℎ−𝖿𝑍,𝑟
(𝐾1, 𝐾2) +

∑
𝑧∈𝑍

∑
(𝜏′,𝜏,𝜎,𝜎′)∈𝑧,𝑟(𝑃𝑍)

𝐷ℎ(𝑃𝑍(𝜏), 𝑃𝑍(𝜎)). (4.19)

Proof. See Figure 11 for an illustration. By the definition (4.7) of𝑟, we have𝐵4𝑟(𝑧) ∩ (𝐾1 ∪ 𝐾2) = ∅

for each 𝑧 ∈ 𝑍. From this and Definition 4.1, we see that for each 𝑧 ∈ 𝑍, the set 𝑃−1
𝑍

(𝖵𝑧,𝑟) is
contained in the union of the excursion intervals [𝜏, 𝜎] for (𝜏′, 𝜏, 𝜎, 𝜎′) ∈

⋃
𝑧∈𝑍 𝑧,𝑟(𝑃𝑍). Further-

more, since the balls 𝐵4𝑟(𝑧) for 𝑧 ∈ 𝑍 are disjoint, it follows that the excursion intervals [𝜏, 𝜎]

for (𝜏′, 𝜏, 𝜎, 𝜎′) ∈
⋃

𝑧∈𝑍 𝑧,𝑟(𝑃𝑍) are disjoint. Since 𝑃𝑍 is continuous, there are only finitely many
such intervals.
Let 𝑃′

𝑍
be the path from 𝐾1 to 𝐾2 obtained from 𝑃𝑍 by replacing each of the segments 𝑃𝑍|[𝜎,𝜏]

for (𝜏′, 𝜏, 𝜎, 𝜎′) ∈
⋃

𝑧∈𝑍 𝑧,𝑟(𝑃𝑍) by a 𝐷ℎ-geodesic from 𝑃𝑍(𝜏) to 𝑃𝑍(𝜎). The function 𝖿𝑍,𝑟 is sup-
ported on

⋃
𝑧∈𝑍 𝖵𝑧,𝑟 and the path 𝑃𝑍 does not hit

⋃
𝑧∈𝑍 𝖵𝑧,𝑟 except during the above excursion

intervals [𝜎, 𝜏]. Hence, the 𝐷ℎ-length of each of the segments of 𝑃𝑍 which are not replaced when
we construct 𝑃′

𝑍
is the same as its 𝐷ℎ−𝖿𝑍,𝑟

-length. From this, we see that the 𝐷ℎ-length of 𝑃′
𝑍
is at

most len(𝑃𝑍; 𝐷ℎ−𝖿𝑍,𝑟
) plus the sum of the𝐷ℎ-lengths of the replacement segments. In other words,

len(𝑃′
𝑍
; 𝐷ℎ) is at most the right side of (4.19). □

If we assume that
⋂

𝑧∈𝑍 𝖤𝑧,𝑟 occurs, then we can replace the second sum on the right side
of (4.19) by a maximum.

Lemma 4.10. Let 𝑟 ∈  and 𝑍 ∈ 𝑟 . Assume that
⋂

𝑧∈𝑍 𝖤𝑧,𝑟 occurs and let 𝑃𝑍 be the 𝐷ℎ−𝖿𝑍,𝑟
-

geodesic from 𝐾1 to 𝐾2. For 𝑧 ∈ 𝑍, let 𝑧,𝑟(𝑃𝑍) be as in Lemma 4.9. Then

𝐷ℎ(𝐾1, 𝐾2) ⩽ 𝐷ℎ−𝖿𝑍,𝑟
(𝐾1, 𝐾2) +

𝖠

𝖺

∑
𝑧∈𝑍

max
(𝜏′,𝜏,𝜎,𝜎′)∈𝑧,𝑟(𝑃𝑍)

𝐷ℎ(𝑃𝑍(𝜏), 𝑃𝑍(𝜎)). (4.20)
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58 DING and GWYNNE

For the proof of Lemma 4.10, we will need an upper bound for the amount of time that 𝑃𝑍

can spend in 𝖵𝑍,𝑟. This upper bound is a straightforward consequence of the upper bound for
𝐷ℎ(around A3𝑟,4𝑟(𝑧)) from hypothesis A for 𝖤𝑧,𝑟.

Lemma 4.11. Let 𝑟 ∈ , let 𝑍 ⊂ 𝑟, and assume that
⋂

𝑧∈𝑍 𝖤𝑧,𝑟 occurs. Let 𝑃𝑍 be the 𝐷ℎ−𝖿𝑍,𝑟
-

geodesic from 𝐾1 to 𝐾2. For 𝑧 ∈ 𝑍 such that 𝑃𝑍 ∩ 𝑉𝑧,𝑟 ≠ ∅, let 𝑆𝑧 (respectively, 𝑇𝑧) be the first time
that 𝑃𝑍 enters 𝖵𝑧,𝑟 (respectively, the last time that 𝑃𝑍 exits 𝖵𝑧,𝑟). Then

𝑇𝑧 − 𝑆𝑧 ⩽ 𝖠𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧). (4.21)

Proof. By hypothesis A for 𝖤𝑧,𝑟, for each 𝜁 > 0 there is a path 𝜋𝑧 in A3𝑟,4𝑟(𝑧) which disconnects
the inner and outer boundaries of A3𝑟,4𝑟(𝑧) such that

len(𝜋𝑧; 𝐷ℎ) ⩽ (𝖠 + 𝜁)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧). (4.22)

Since 𝖿𝑍,𝑟 is non-negative, the 𝐷ℎ−𝖿𝑍,𝑟
-length of 𝜋𝑧 is at most its 𝐷ℎ-length.

Since𝐵4𝑟(𝑧) ∩ (𝐾1 ∪ 𝐾2) = ∅ (recall (4.7)), the path𝑃𝑍 must hit𝜋𝑧 before time 𝑆𝑧 and again after
time 𝑇𝑧. Since 𝑃𝑍 is a 𝐷ℎ−𝖿𝑍,𝑟

-geodesic, the 𝐷ℎ−𝖿𝑍,𝑟
-length of the segment of 𝑃𝑍 between any two

times when it hits 𝜋𝑧 is at most the 𝐷ℎ−𝖿𝑍,𝑟
-length of 𝜋𝑧 (otherwise, concatenating two segments

of 𝑃𝑍 with a segment of 𝜋𝑧 would produce a path with the same endpoints as 𝑃𝑍 which is 𝐷ℎ−𝖿𝑍,𝑟
-

shorter than 𝑃𝑍). Therefore, (4.22) gives

𝑇𝑧 − 𝑆𝑧 ⩽ len
(
𝜋𝑧; 𝐷ℎ−𝖿𝑍,𝑟

)
⩽ len(𝜋𝑧; 𝐷ℎ) ⩽ (𝖠 + 𝜁)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧). (4.23)

Sending 𝜁 → 0 now concludes the proof. □

Proof of Lemma 4.10. In light of Lemma 4.9, it suffices to show that for each 𝑧 ∈ 𝑍, the number
of (𝐵4𝑟(𝑧), 𝖵𝑧,𝑟)-excursions satisfies

#𝑧,𝑟(𝑃𝑍) ⩽
𝖠

𝖺
. (4.24)

To obtain (4.24), we first note that for each (𝜏′, 𝜏, 𝜎, 𝜎′) ∈ 𝑧,𝑟(𝑃𝑍), the path 𝑃𝑍 crosses between
𝜕𝐵3𝑟(𝑧) and 𝖵𝑧,𝑟 during each of the time intervals [𝜏′, 𝜏] and [𝜎, 𝜎′]. Since 𝖿𝑍,𝑟 vanishes in 𝐵3𝑟(𝑧) ⧵

𝖵𝑧,𝑟 and by hypothesis A for 𝖤𝑧,𝑟,

min{𝜏 − 𝜏′, 𝜎′ − 𝜎} ⩾ 𝐷ℎ−𝖿𝑍,𝑟
(𝜕𝐵3𝑟(𝑧), 𝖵𝑧,𝑟) ⩾ 𝐷ℎ(𝜕𝐵3𝑟(𝑧), 𝖵𝑧,𝑟) ⩾ 𝖺𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧). (4.25)

Let 𝑆𝑧 and 𝑇𝑧 be the first time that 𝑃𝑍 enters 𝑉𝑧,𝑟 and the last time that 𝑃𝑍 exits 𝑉𝑧,𝑟, as in
Lemma 4.11. If (𝜏′

0
, 𝜏0, 𝜎0, 𝜎

′
0
) ∈ 𝑧,𝑟(𝑃𝑍) and (𝜏′

1
, 𝜏1, 𝜎1, 𝜎

′
1
) ∈ 𝑧,𝑟(𝑃𝑍) are the first and last excur-

sions in chronological order, then 𝑆𝑧 = 𝜏0 and 𝑇𝑧 = 𝜎1. Hence, for each excursion (𝜏′, 𝜏, 𝜎, 𝜎′) ∈

𝑧,𝑟(𝑃𝑍)which is not the first (respectively, last) excursion in chronological order, the time interval
[𝜏′, 𝜏] (respectively, [𝜎, 𝜎′]) is contained in [𝑆𝑧, 𝑇𝑧]. Furthermore, these time intervals for different
excursions are disjoint. By summing the estimate (4.25) over all elements of 𝑧,𝑟(𝑃𝑍), we get that
if #𝑧,𝑟(𝑃𝑍) ⩾ 2, then

𝑇𝑧 − 𝑆𝑧 ⩾ 𝖺𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧)#𝑧,𝑟(𝑃𝑍). (4.26)
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Combining (4.26) and (4.21) gives (4.24) in the case when #𝑧,𝑟(𝑃𝑍) ⩾ 2. If #𝑧,𝑟(𝑃𝑍) ⩽ 1,
then (4.24) holds vacuously since 𝖠∕𝖺 ⩾ 1. □

For the proof of Proposition 4.5, we will need a slightly different upper bound for the amount
of time that the 𝐷ℎ−𝖿𝑍,𝑟

-geodesic can spend in 𝖵𝑧,𝑟 as compared to the one in Lemma 4.11.

Lemma 4.12. There is a constant𝐶4 > 0, depending only on the parameters, such that the following
is true. Let 𝑟 ∈ , 𝑍 ⊂ 𝑟, and 𝑞 > 0 and assume that 𝐹

𝑞,r

𝑍,𝑟(ℎ) occurs. Let 𝑃𝑍 be the 𝐷ℎ−𝖿𝑍,𝑟
-geodesic

from 𝐾1 to 𝐾2. For each 𝑧 ∈ 𝑍,

max

{
sup

𝑢,𝑣∈𝑃𝑍∩𝖵𝑧,𝑟

𝐷ℎ(𝑢, 𝑣), len
(
𝑃𝑍 ∩ 𝖵𝑧,𝑟; 𝐷ℎ

)}
⩽ 𝐶4𝑞r𝜉𝑄𝑒𝜉ℎr(0). (4.27)

Proof. By condition 2 in the definition of 𝐹
𝑞,r

𝑍,𝑟(ℎ), the event
⋂

𝑧∈𝑍 𝖤𝑧,𝑟 occurs. The bound (4.27)
holds vacuously if 𝑃𝑍 ∩ 𝖵𝑧,𝑟 = ∅, so assume that 𝑃𝑍 ∩ 𝖵𝑧,𝑟 ≠ ∅. For 𝑧 ∈ 𝑍, let 𝑆𝑧 (respectively, 𝑇𝑧)
be the first time that 𝑃𝑍 enters 𝖵𝑧,𝑟 (respectively, the last time that 𝑃𝑍 exits 𝖵𝑧,𝑟), as in Lemma 4.11.
By Lemma 4.11 followed by condition 3 in the definition of 𝐹𝑍,𝑟(ℎ),

𝑇𝑧 − 𝑆𝑧 ⩽ 𝖠𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧) ⩽ 2𝖠𝑞r𝜉𝑄𝑒𝜉ℎr(0)

Furthermore, 𝑃−1
𝑍

(𝖵𝑍,𝑟) ⊂ [𝑆𝑧, 𝑇𝑧], so

max

{
sup

𝑢,𝑣∈𝑃𝑍∩𝖵𝑧,𝑟

𝐷ℎ−𝖿𝑍,𝑟
(𝑢, 𝑣), len

(
𝑃𝑍 ∩ 𝖵𝑧,𝑟; 𝐷ℎ−𝖿𝑍,𝑟

)}
⩽ 𝑇𝑧 − 𝑆𝑧

⩽ 2𝖠𝑞r𝜉𝑄𝑒𝜉ℎr(0).

Since 𝖿𝑍,𝑟 ⩽ 𝖬, the bound (4.14) combined with Weyl scaling (Axiom III) gives (4.27) with 𝐶4 =

2𝑒𝜉𝖬𝖠. □

The following lemma is the main input in the proof of Proposition 4.5. It allows us to produce
configurations 𝑍 for which 𝐹

𝑞,r
𝑍,𝑟

(ℎ), instead of just 𝐹
𝑞,r

𝑍,𝑟(ℎ), occurs.

Lemma 4.13. There is a constant 𝑐5 > 0, depending only on the parameters, such that the following
is true. Let 𝑟 ∈ , 𝑍 ∈ 𝑟, and 𝑞 > 0 and assume that 𝐹

𝑞,r

𝑍,𝑟(ℎ) occurs. There exists 𝑍
′ ⊂ 𝑍 such that

𝐹
𝑞,r

𝑍′,𝑟
(ℎ) occurs and #𝑍′ ⩾ 𝑐5#𝑍.

Proof. Step 1: Iteratively removing ‘bad’ points. It is immediate from Definition 4.7 that if 𝐹
𝑞,r

𝑍,𝑟(ℎ)

occurs and 𝑍′ ⊂ 𝑍 is non-empty, then 𝑍′ ∈ 𝑟 and 𝐹
𝑞,r

𝑍′,𝑟(ℎ) occurs. So, we need to produce a set
𝑍′ ⊂ 𝑍 such that #𝑍′ is at least a constant times #𝑍 and condition 5 in the definition of 𝐹𝑞,r

𝑍′,𝑟
(ℎ)

occurs. Since 𝐷ℎ(𝑢, 𝑣; 𝐵4𝑟(𝑧)) ⩾ 𝐷ℎ(𝑢, 𝑣) for all 𝑢, 𝑣 ∈ C, it suffices to find 𝑍′ ⊂ 𝑍 such that if 𝑃𝑍′

is the 𝐷ℎ−𝖿𝑍′,𝑟
-geodesic from 𝐾1 to 𝐾2 and 𝑧,𝑟(𝑃𝑍′) denotes the set of (𝐵4𝑟(𝑧), 𝖵𝑧,𝑟)-excursions for

𝑃𝑍′ , then

max
(𝜏′,𝜏,𝜎,𝜎′)∈𝑧,𝑟(𝑃𝑍′ )

𝐷ℎ(𝑃𝑍′(𝜏), 𝑃𝑍′(𝜎)) ⩾ 𝖻𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧). (4.28)
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60 DING and GWYNNE

We will construct 𝑍′ by iteratively removing the ‘bad’ points 𝑧 ∈ 𝑍′ such that the condition
of (4.28) does not hold. To this end, let 𝑍0 ∶= 𝑍. Inductively, suppose that 𝑚 ∈ N0 and 𝑍𝑚 ⊂ 𝑍

has been defined. Let 𝑃𝑍𝑚
be the𝐷ℎ−𝖿𝑍𝑚,𝑟

-geodesic from𝐾1 to𝐾2 and let 𝑍𝑚+1 be the set of 𝑧 ∈ 𝑍𝑚

such that

max
(𝜏′,𝜏,𝜎,𝜎′)∈𝑧,𝑟(𝑃𝑍𝑚

)
𝐷ℎ

(
𝑃𝑍𝑚

(𝜏), 𝑃𝑍𝑚
(𝜎)
)

⩾ 𝖻𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧). (4.29)

If𝑍𝑚+1 = 𝑍𝑚, then (4.28) holdswith𝑍′ = 𝑍𝑚, so the event𝐹
𝑞,r
𝑍𝑚,𝑟

(ℎ) occurs. So, to prove the lemma
it suffices to show that the above procedure stabilizes before#𝑍𝑚 gets too much smaller than#𝑍.
More precisely, we will show that there exists 𝑐5 > 0 as in the lemma statement such that

#𝑍𝑚 ⩾ 𝑐5#𝑍, ∀𝑚 ∈ N. (4.30)

Since 𝑍𝑚+1 ⊂ 𝑍𝑚 for each 𝑚 ∈ N0 and 𝑍0 is finite, it follows that there must be some 𝑚 ∈ N

such that 𝑍𝑚 = 𝑍𝑚+1. We know that 𝐹
𝑞,r
𝑍𝑚,𝑟

(ℎ) occurs for any such 𝑚, so (4.30) implies the
lemma statement.
It remains to prove (4.30). The idea of the proof is as follows. At each step of our iterative proce-

dure, we only remove points 𝑧 ∈ 𝑍𝑚 for which 𝑃𝑍𝑚
∩ 𝖵𝑧,𝑟 is small, in a certain sense. Using this,

we can show that𝐷ℎ−𝖿𝑍𝑚+1,𝑟
(𝐾1, 𝐾2) is not too much bigger than𝐷ℎ−𝖿𝑍𝑚,𝑟

(𝐾1, 𝐾2) (see (4.32)). Iter-
ating this leads to an upper bound for 𝐷ℎ−𝖿𝑍𝑚,𝑟

(𝐾1, 𝐾2) in terms of 𝐷ℎ−𝖿𝑍,𝑟
(𝐾1, 𝐾2) (see (4.33)). We

then use the fact that 𝐷ℎ−𝖿𝑍,𝑟
(𝐾1, 𝐾2) has to be substantially smaller than𝐷ℎ(𝐾1, 𝐾2) (Lemma 4.8)

together with our upper bound for the amount of time that 𝑃𝑍𝑚
spends in each of the 𝖵𝑧,𝑟’s

(Lemma 4.12) to obtain (4.30).
Step 2: Comparison of𝐷ℎ−𝖿𝑍𝑚,𝑟

(𝐾1, 𝐾2) and𝐷ℎ(𝐾1, 𝐾2). Let us now proceed with the details. Let

𝑚 ∈ N0. By the definition (4.29) of 𝑍𝑚+1 and condition 3 in the definition of 𝐹
𝑞,r

𝑍,𝑟(ℎ),

max
(𝜏′,𝜏,𝜎,𝜎′)∈𝑧,𝑟(𝑃𝑍𝑚

)
𝐷ℎ

(
𝑃𝑍𝑚

(𝜏), 𝑃𝑍𝑚
(𝜎)
)

⩽ 2𝖻𝑞r𝜉𝑄𝑒𝜉ℎr(0), ∀𝑧 ∈ 𝑍𝑚 ⧵ 𝑍𝑚+1. (4.31)

We have 𝑍𝑚 ⧵ 𝑍𝑚+1 ∈ 𝑟 and ℎ − 𝖿𝑍𝑚,𝑟 = ℎ − 𝖿𝑍𝑚+1,𝑟
− 𝖿𝑍𝑚⧵𝑍𝑚+1,𝑟

. Since we are assuming that
𝐹
𝑞,r

𝑍,𝑟(ℎ) occurs and 𝑍𝑚 ⧵ 𝑍𝑚+1 ⊂ 𝑍, condition 2 of Definition 4.7 implies that
⋂

𝑧∈𝑍𝑚⧵𝑍𝑚+1
𝖤𝑧,𝑟

occurs. Since 𝖤𝑧,𝑟 depends only on ℎ|
A𝑟,4𝑟(𝑧)

and the support of 𝖿𝑍𝑚+1,𝑟
is disjoint from A𝑟,4𝑟(𝑧)

for 𝑧 ∈ 𝑍𝑚 ⧵ 𝑍𝑚+1, we get that
⋂

𝑧∈𝑍𝑚⧵𝑍𝑚+1
𝖤𝑧,𝑟 also occurs with ℎ − 𝖿𝑍𝑚+1,𝑟

in place of ℎ. We may
therefore apply Lemma 4.10 with ℎ − 𝖿𝑍𝑚+1,𝑟

in place of ℎ and 𝑍𝑚 ⧵ 𝑍𝑚+1 in place of 𝑍 to get that

𝐷ℎ−𝖿𝑍𝑚+1,𝑟
(𝐾1, 𝐾2)

⩽ 𝐷ℎ−𝖿𝑍𝑚,𝑟
(𝐾1, 𝐾2)

+
𝖠

𝖺

∑
𝑧∈𝑍𝑚⧵𝑍𝑚+1

max
(𝜏′,𝜏,𝜎,𝜎′)∈𝑧,𝑟(𝑃𝑍𝑚

)
𝐷ℎ−𝖿𝑍𝑚+1,𝑟

(
𝑃𝑍𝑚

(𝜏), 𝑃𝑍𝑚
(𝜎)
)

(by Lemma 4.10)

⩽ 𝐷ℎ−𝖿𝑍𝑚,𝑟
(𝐾1, 𝐾2)
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+
𝖠

𝖺

∑
𝑧∈𝑍𝑚⧵𝑍𝑚+1

max
(𝜏′,𝜏,𝜎,𝜎′)∈𝑧,𝑟(𝑃𝑍𝑚

)
𝐷ℎ

(
𝑃𝑍𝑚

(𝜏), 𝑃𝑍𝑚
(𝜎)
)

(since 𝖿𝑍𝑚+1,𝑟
⩾ 0)

⩽ 𝐷ℎ−𝖿𝑍𝑚,𝑟
(𝐾1, 𝐾2) +

2𝖠𝖻

𝖺
𝑞r𝜉𝑄𝑒𝜉ℎr(0)(#𝑍𝑚 − #𝑍𝑚+1) (by (4.31)). (4.32)

Iterating the inequality (4.32)𝑚 times, then applying Lemma 4.8 to 𝑍 = 𝑍0 ∈ 𝑟 gives

𝐷ℎ−𝖿𝑍𝑚,𝑟
(𝐾1, 𝐾2) ⩽ 𝐷ℎ−𝖿𝑍,𝑟

(𝐾1, 𝐾2) +
2𝖠𝖻

𝖺
𝑞r𝜉𝑄𝑒𝜉ℎr(0)(#𝑍 − #𝑍𝑚)

⩽ 𝐷ℎ(𝐾1, 𝐾2) −
(
𝐶3 −

2𝖠𝖻

𝖺

)
𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍

−
2𝖠𝖻

𝖺
𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍𝑚

⩽ 𝐷ℎ(𝐾1, 𝐾2) −
(
𝐶3 −

2𝖠𝖻

𝖺

)
𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍. (4.33)

Note that in the last line, we simply dropped a negative term.
Step 3: Conclusion. By Lemma 4.10 (with 𝑍𝑚 in place of 𝑍), followed by (4.33),

𝖠

𝖺

∑
𝑧∈𝑍𝑚

max
(𝜏′,𝜏,𝜎,𝜎′)∈𝑧,𝑟(𝑃𝑍𝑚

)
𝐷ℎ

(
𝑃𝑍𝑚

(𝜏), 𝑃𝑍𝑚
(𝜎)
)

⩾ 𝐷ℎ(𝐾1, 𝐾2) − 𝐷ℎ−𝖿𝑍𝑚,𝑟
(𝐾1, 𝐾2)

⩾
(
𝐶3 −

2𝖠𝖻

𝖺

)
𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍. (4.34)

As explained above, since𝑍𝑚 ⊂ 𝑍we know that𝐹
𝑞,r

𝑍𝑚,𝑟(𝑧) occurs. Hence, we can apply Lemma 4.12
(with 𝑍𝑚 in place of 𝑍), then sum over all 𝑧 ∈ 𝑍𝑚, to get∑

𝑧∈𝑍𝑚

max
(𝜏′,𝜏,𝜎,𝜎′)∈𝑧,𝑟(𝑃𝑍𝑚

)
𝐷ℎ

(
𝑃𝑍𝑚

(𝜏), 𝑃𝑍𝑚
(𝜎)
)

⩽ 𝐶4𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍𝑚, ∀𝑧 ∈ 𝑍𝑚. (4.35)

Combining (4.34) and (4.35) yields

#𝑍𝑚 ⩾ 𝑐5#𝑍 with 𝑐5 =
𝖺

𝖠𝐶4

(
𝐶3 −

2𝖠𝖻

𝖺

)
. (4.36)

That is, (4.30) holds with this choice of 𝑐5. Note that 𝑐5 > 0 since 𝐶3 > 2𝖠𝖻∕𝖺 (Lemma 4.8). □

Proof of Proposition 4.5. Fix r > 0 and compact sets 𝐾1, 𝐾2 ∈ 𝐵2r(0) with dist(𝐾1, 𝐾2) ⩾ 𝜂r.
Assume that 𝜀

r = 𝜀
r(𝐾1, 𝐾2) occurs and let 𝑃 be the 𝐷ℎ-geodesic from 𝐾1 to 𝐾2. We first produce

an 𝑟 ∈  ∩ [𝜀2r, 𝜀r], a 𝑞 > 0, and a large collection of sets 𝑍 ∈ 𝑟 for which 𝐹
𝑞,r

𝑍,𝑟(ℎ) occurs.
To this end, let 𝑇 be the first exit time of 𝑃 from 𝐵3r(0), or 𝑇 = 𝐷ℎ(𝐾1, 𝐾2) if 𝑃 ⊂ 𝐵3r(0) (the

reason why we consider 𝑇 is that conditions 2 and 3 in the definition of 𝜀
r are only required to

hold on 𝐵3r(0)). By condition 3 in the definition of 𝜀
r, for each point 𝑤 ∈ 𝑃([0, 𝑇]) there exists

𝑟 ∈  ∩ [𝜀2r, 𝜀r] and 𝑧 ∈ ( 𝑟

100
Z2) ∩ 𝐵3r(0) such that 𝖤𝑧,𝑟 occurs and 𝑤 ∈ 𝐵𝑟∕25(𝑧).
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62 DING and GWYNNE

Since dist(𝐾1, 𝐾2) ⩾ 𝜂r and dist(𝐾1, 𝜕𝐵3r(0)) ⩾ r, it follows that 𝑃([0, 𝑇]) is a connected set of
Euclidean diameter at least 𝜂r. Furthermore, since dist(𝐾1, 𝜕𝐵r(0)) ⩾ 𝜂r, theremust be a segment
of 𝑃|[0,𝑇] of Euclidean diameter at least 𝜂r which is disjoint from 𝜕𝐵r(0).
Hence, we can find a constant 𝑥 > 0, depending only on 𝜂, with the following property. There

are at least ⌊𝑥∕𝜀⌋ pairs (𝑧1, 𝑟1), … , (𝑧⌊𝑥∕𝜀⌋, 𝑟⌊𝑥∕𝜀⌋), each consisting of a radius 𝑟𝑗 ∈  ∩ [𝜀2r, 𝜀r] and
a point 𝑧𝑗 ∈ ( 𝑟

100
Z2) ∩ 𝐵3r(0), such that the following is true.

(i) The balls 𝐵4𝑟𝑗
(𝑧𝑗) for 𝑗 = 1,… , ⌊𝑥∕𝜀⌋ are disjoint and none of these balls intersects𝐾1 ∪ 𝐾2 ∪

𝜕𝐵r(0).
(ii) 𝖤𝑧𝑗,𝑟𝑗

occurs for each 𝑗 = 1,… , ⌊𝑥∕𝜀⌋.
(iii) The path 𝑃 hits 𝐵𝑟𝑗∕25

(𝑧𝑗) for each 𝑗 = 1,… , ⌊𝑥∕𝜀⌋.
By condition 2 in the definition of 𝜀

r, for each 𝑗 ∈ [1, ⌊𝑥∕𝜀⌋]Z there exists 𝑞 ∈

[𝜀2𝜉(𝑄+3)∕2, 𝜀𝜉(𝑄−3)] ∩ {2−𝑙}𝑙∈N such that 𝑟𝜉𝑄
𝑗

𝑒
𝜉ℎ𝑟𝑗 (𝑧𝑗) ∈ [𝑞r𝜉𝑄𝑒𝜉ℎr(0), 2𝑞r𝜉𝑄𝑒𝜉ℎr(0)]. The cardinality

of the set ( ∩ [𝜀2r, 𝜀r]
)
×
([

1

2
𝜀2𝜉(𝑄+3), 𝜀𝜉(𝑄−3)

]
∩ {2−𝑙}𝑙∈N

)
is at most a constant (depending only on 𝜉) times (log 𝜀−1)2. So, there must be some 𝑟 ∈  ∩

[𝜀2r, 𝜀r] and 𝑞 ∈ [𝜀2𝜉(𝑄+3)∕2, 𝜀𝜉(𝑄−3)] ∩ {2−𝑙}𝑙∈N such that

# ⪰
1

𝜀(log 𝜀−1)2
, where

 ∶=
{
𝑗 ∈ [1, ⌊𝑥𝜀−1⌋]Z ∶ 𝑟𝑗 = 𝑟, 𝑟

𝜉𝑄
𝑗

𝑒
𝜉ℎ𝑟𝑗 (𝑧𝑗) ∈

[
𝑞r𝜉𝑄𝑒𝜉ℎr(0), 2𝑞r𝜉𝑄𝑒𝜉ℎr(0)

]}
(4.37)

with the implicit constant depending only on 𝑥 (hence only on 𝜂). Henceforth, fix such an 𝑟 and
𝑞 and let  be as in (4.37). Also define

 ∶=
{
𝑧𝑗 ∶ 𝑗 ∈  }, so that # ⪰

1

𝜀(log 𝜀−1)2
. (4.38)

If 𝑍 ⊂  , then property (iii) above implies that 𝑍 ∈ 𝑟, where 𝑟 is defined as in (4.7). Fur-
thermore, since 𝑞 ⩾ 𝜀2𝜉(𝑄+3)∕2, condition 1 in the definition of 𝜀

r implies that 𝐷̃ℎ(dist(𝐾1, 𝐾2)) ⩾

ℭ∗𝐷ℎ(dist(𝐾1, 𝐾2)) − 𝑞r𝜉𝑄𝑒𝜉ℎr(0). From this together with properties (ii) and (iii) above and our
choice of  in (4.37), we see that the event 𝐹

𝑞,r

𝑍,𝑟(ℎ) of Definition 4.7 occurs.
By Lemma 4.13, for each 𝑍 ⊂  there exists 𝑍′ ⊂ 𝑍 such that 𝐹𝑞,r

𝑍′,𝑟
(ℎ) occurs and #𝑍′ ⩾ 𝑐5#𝑍.

Fix (in some arbitrary manner) a choice of 𝑍′ for each 𝑍, so that 𝑍 ↦ 𝑍′ is a function from subsets
of  to subsets of  for which 𝐹

𝑞,r

𝑍′,𝑟
(ℎ) occurs.Wewill now lower-bound the cardinality of the set{

𝑍′ ∶ #𝑍 = 𝑘
}
. (4.39)

To this end, consider a set 𝑍 ⊂  for which 𝐹
𝑞,r

𝑍,𝑟
(ℎ) occurs and #𝑍 ∈ [𝑐5𝑘, 𝑘] (that is, 𝑍 is a

possible choice of the set 𝑍′ when #𝑍 = 𝑘). Since 𝑍′ ⊂ 𝑍 for each 𝑍 ⊂  , the number of 𝑍 ⊂ 
such that #𝑍 = 𝑘 and 𝑍′ = 𝑍 is at most the number of possibilities for the set 𝑍 ⧵ 𝑍 (subject to
#𝑍 = 𝑘 and 𝑍′ = 𝑍), which is at most(

#
𝑘 − #𝑍

)
⩽

(
#⌊(1 − 𝑐5)𝑘⌋

)
.
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On the other hand, for each 𝑘 ∈ N, the number of sets 𝑍 ⊂  such that #𝑍 = 𝑘 is
(#

𝑘

)
.

The cardinality of the set (4.39) is least the number of 𝑍 ⊂  with #𝑍 = 𝑘, divided by the max-
imal cardinality of the pre-image of a set 𝑍 under 𝑍 ↦ 𝑍′. Hence, by combining the two counting
formulae from the previous paragraph, we get that the cardinality of the set in (4.39), and hence
the number of sets 𝑍 ⊂  for which 𝐹

𝑞,r

𝑍,𝑟
(ℎ) occurs and #𝑍 ∈ [𝑐5𝑘, 𝑘], is at least

(
#
𝑘

)(
#⌊(1 − 𝑐5)𝑘⌋

)−1

⪰ (#)𝑐5𝑘 ⪰ 𝜀−𝑐5𝑘(log 𝜀−1)−2𝑐5𝑘

with the implicit constant depending only on the parameters and 𝑘 (in the last inequality we
used (4.38)). This gives (4.10) for 𝑐1 slightly smaller than 𝑐5. □

4.4 Proof of Proposition 4.6

The proof of Proposition 4.6 is based on counting the number of points 𝑧 ∈ 𝑟

100
Z2 which could

possibly be an element of some 𝑍 ∈ 𝑟 for which 𝐹
𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟) occurs. To this end, we make the
following definition.

Definition 4.14. For 𝑟 ∈  and 𝑞 > 0, we say that 𝑧 ∈ 𝑟

100
Z2 is 𝑟, 𝑞-good if the following

conditions are satisfied.

(i) The event 𝖤𝑧,𝑟(ℎ + 𝖿𝑧,𝑟) occurs.
(ii) 𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧) ∈ [𝑞r𝜉𝑄𝑒𝜉ℎr(0), 2𝑞r𝜉𝑄𝑒𝜉ℎr(0)].
(iii) Let 𝑃 be the 𝐷ℎ-geodesic from 𝐾1 to 𝐾2. There is a (𝐵4𝑟(𝑧), 𝖵𝑧,𝑟)-excursion (𝜏′𝑧, 𝜏𝑧, 𝜎𝑧, 𝜎

′
𝑧) for

𝑃 such that

𝐷ℎ+𝖿𝑧,𝑟
(𝑃(𝜏𝑧), 𝑃(𝜎𝑧); 𝐵4𝑟(𝑧)) ⩾ 𝖻𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧). (4.40)

Lemma 4.15. Let 𝑟 ∈  and 𝑞 > 0. If 𝑍 ∈ 𝑟 and 𝐹
𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟) occurs, then every 𝑧 ∈ 𝑍 is 𝑟, 𝑞-
good.

Proof. Let 𝑧 ∈ 𝑍 and assume that𝐹𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟) occurs. By condition 2 in the definition of𝐹
𝑞,r
𝑍,𝑟

(ℎ +

𝖿𝑍,𝑟), the event𝖤𝑧,𝑟(ℎ + 𝖿𝑍,𝑟) occurs. Since𝖤𝑧,𝑟(ℎ + 𝖿𝑧,𝑟) depends only on (ℎ + 𝖿𝑧,𝑟)|A𝑟,4𝑟(𝑧)
and 𝖿𝑍,𝑟 −

𝖿𝑧,𝑟 ≡ 0 outside of 𝐵4𝑟(𝑧), it follows that 𝖤𝑧,𝑟(ℎ + 𝖿𝑍,𝑟) = 𝖤𝑧,𝑟(ℎ + 𝖿𝑧,𝑟). This gives condition (i) in
Definition 4.14.
Condition (ii) in Definition 4.14 follows from condition 3 in the definition of 𝐹𝑞,r

𝑍,𝑟
(ℎ + 𝖿𝑍,𝑟) and

the fact that the support of 𝖿𝑍,𝑟 is disjoint from 𝜕𝐵r(0) and from 𝜕𝐵𝑟(𝑧) for each 𝑧 ∈ 𝑍 (recall (4.7)).
By condition 5 in the definition of 𝐹𝑞,r

𝑍,𝑟
(ℎ + 𝖿𝑍,𝑟), we get that 𝑧 satisfies condition (iii) of Defini-

tion 4.14 but with𝐷ℎ+𝖿𝑍,𝑟
instead of𝐷ℎ+𝖿𝑧,𝑟

in (4.40). Since the support of 𝖿𝑍,𝑟 − 𝖿𝑧,𝑟 is disjoint from
𝐵4𝑟(𝑧), the internal distances of 𝐷ℎ+𝖿𝑍,𝑟

and 𝐷ℎ+𝖿𝑧,𝑟
on 𝐵4𝑟(𝑧) are identical. Hence, condition (iii)

holds. □

In light of Lemma 4.15, we seek to upper-bound the number of 𝑟, 𝑞-good points 𝑧 ∈ 𝑟

100
Z2.

When doing so, we can assume without loss of generality that 𝐹𝑞,r
𝑍0,𝑟

(ℎ + 𝖿𝑍0,𝑟
) occurs for some
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64 DING and GWYNNE

𝑍0 ∈ 𝑟 with #𝑍0 ⩽ 𝑘 (otherwise, the proposition statement is vacuous). The main input in the
proof of Proposition 4.6 is the following lemma.

Lemma 4.16. There is a constant𝐶6 > 0, depending only on the parameters and the laws of𝐷ℎ and
𝐷̃ℎ, such that the following is true. Let 𝑟 ∈  and let 𝑍0, 𝑍1 ∈ 𝑟 . Assume that the event 𝐹

𝑞,r
𝑍0,𝑟

(ℎ +

𝖿𝑍0,𝑟
) occurs, each 𝑧 ∈ 𝑍1 is 𝑟, 𝑞-good, and each ball 𝐵4𝑟(𝑧) for 𝑧 ∈ 𝑍1 is disjoint from

⋃
𝑧′∈𝑍0

𝐵4𝑟(𝑧
′)

(equivalently, 𝑍0 ∪ 𝑍1 ∈ 𝑟). Then

#𝑍1 ⩽ 𝐶6#𝑍0.

Wenow explain the idea of the proof of Lemma 4.16. By condition 1 in the definition of𝐹𝑞,r
𝑍0,𝑟

(ℎ +

𝖿𝑍0,𝑟
), on this event,

𝐷̃ℎ+𝖿𝑍0,𝑟
(𝐾1, 𝐾2) ⩾ ℭ∗𝐷ℎ+𝖿𝑍0,𝑟

(𝐾1, 𝐾2) − 𝑞r𝜉𝑄𝑒𝜉ℎr(0). (4.41)

We will show that if#𝑍1 is too much larger than#𝑍0, then (4.41) cannot hold. The reason for this
is as follows. Let 𝑃 be the 𝐷ℎ-geodesic from 𝐾1 to 𝐾2. By condition (iii) in Definition 4.14, each
𝑧 ∈ 𝑍1 satisfies the condition of hypothesis C for the event 𝖤𝑧,𝑟(ℎ + 𝖿𝑧,𝑟). Hypothesis C therefore
gives us a pair of times 𝑠𝑧, 𝑡𝑧 ∈ 𝑃−1(𝐵4𝑟(𝑧)) such that 𝑡𝑧 − 𝑠𝑧 ⩾ 𝖼𝑞r𝜉𝑄𝑒𝜉ℎr(0) and

𝐷̃ℎ(𝑃(𝑠𝑧), 𝑃(𝑡𝑧); 𝐵4𝑟(𝑧)) ⩽ 𝔠′(𝑡𝑧 − 𝑠𝑧) = 𝔠′𝐷ℎ(𝑃(𝑠𝑧), 𝑃(𝑡𝑧)). (4.42)

Since 𝖿𝑍0,𝑟
vanishes on 𝐵4𝑟(𝑧) for each 𝑧 ∈ 𝑍1 and 𝖿𝑍0,𝑟

is non-negative, the relation (4.42) implies
that also

𝐷̃ℎ+𝖿𝑍0,𝑟
(𝑃(𝑠𝑧), 𝑃(𝑡𝑧); 𝐵4𝑟(𝑧)) ⩽ 𝔠′𝐷ℎ+𝖿𝑍0,𝑟

(𝑃(𝑠𝑧), 𝑃(𝑡𝑧)).

In other words, we have at least #𝑍1 ‘shortcuts’ along 𝑃 where the 𝐷̃ℎ+𝖿𝑍0,𝑟
-distance is at most 𝔠′

times the 𝐷ℎ+𝖿𝑍0,𝑟
-distance. By following 𝑃 and taking these shortcuts, we obtain a path from 𝐾1

to 𝐾2 whose 𝐷̃ℎ+𝖿𝑍0,𝑟
-length is at most ℭ∗ times the 𝐷ℎ+𝖿𝑍0,𝑟

-length of 𝑃minus a positive constant
times 𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍1 (see (4.49)).We then use Lemma4.17 to upper-bound the𝐷ℎ+𝖿𝑍0,𝑟

-length of𝑃
in terms of#𝑍0. This leads to an upper bound for 𝐷̃ℎ+𝖿𝑍0,𝑟

(𝐾1, 𝐾2)which is inconsistent with (4.41)
unless #𝑍1 is bounded above by a constant times #𝑍0.
We need the following lemma for the proof of Lemma 4.16.

Lemma 4.17. Let 𝐶4 > 0 be as in Lemma 4.12. Let 𝑟 ∈ , 𝑍 ∈ 𝑟, and 𝑞 > 0 and assume that
𝐹
𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟) occurs. Then the 𝐷ℎ-geodesic 𝑃 from 𝐾1 to 𝐾2 satisfies

len
(
𝑃;𝐷ℎ+𝖿𝑍,𝑟

)
⩽ 𝐷ℎ(𝐾1, 𝐾2) + 𝐶4𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍. (4.43)

Proof. The function 𝖿𝑍,𝑟 is supported on
⋃

𝑧∈𝑍 𝖵𝑧,𝑟. By Weyl scaling (Axiom III),

len

(
𝑃 ⧵

⋃
𝑧∈𝑍

𝖵𝑧,𝑟; 𝐷ℎ+𝖿𝑍,𝑟

)
= len

(
𝑃 ⧵

⋃
𝑧∈𝑍

𝖵𝑧,𝑟; 𝐷ℎ

)
⩽ 𝐷ℎ(𝐾1, 𝐾2). (4.44)
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 65

By Lemma 4.12, applied with ℎ + 𝖿𝑍,𝑟 in place of ℎ,

len
(
𝑃 ∩ 𝖵𝑧,𝑟; 𝐷ℎ+𝖿𝑍,𝑟

)
⩽ 𝐶4𝑞r𝜉𝑄𝑒𝜉ℎr(0), ∀𝑧 ∈ 𝑍. (4.45)

Combining (4.44) and (4.45) yields (4.43). □

Proof of Lemma 4.16. Let 𝑃 be the 𝐷ℎ-geodesic from 𝐾1 to 𝐾2. By conditions (i) and (iii) in Defi-
nition 4.14 together with hypothesis C for the event 𝖤𝑧,𝑟(ℎ + 𝖿𝑧,𝑟), for each 𝑧 ∈ 𝑍1, there are times
0 < 𝑠𝑧 < 𝑡𝑧 < 𝐷ℎ(𝐾1, 𝐾2) such that 𝑃([𝑠𝑧, 𝑡𝑧]) ⊂ 𝐵4𝑟(𝑧),

𝑡𝑧 − 𝑠𝑧 ⩾ 𝖼𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧) ⩾ 𝖼𝑞r𝜉𝑄𝑒𝜉ℎr(0), and 𝐷̃ℎ(𝑃(𝑠𝑧), 𝑃(𝑡𝑧); 𝐵4𝑟(𝑧)) ⩽ 𝔠′(𝑡𝑧 − 𝑠𝑧). (4.46)

Note that to get 𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧) ⩾ 𝑞r𝜉𝑄𝑒𝜉ℎr(0), we used condition (ii) fromDefinition 4.14 and to get that
𝑃([𝑠𝑧, 𝑡𝑧]) ⊂ 𝐵4𝑟(𝑧), we used Definition 4.1.
If 𝑧 ∈ 𝑍1, then by hypothesis𝐵4𝑟(𝑧) is disjoint from

⋃
𝑧′∈𝑍0

𝐵4𝑟(𝑧
′). Hence,𝐵4𝑟(𝑧) and 𝑃([𝑠𝑧, 𝑡𝑧])

are disjoint from the support of 𝖿𝑍0,𝑟
. We can therefore deduce from (4.46) and Weyl scaling

(Axiom III) that for each 𝑧 ∈ 𝑍1,

len
(
𝑃|[𝑠𝑧,𝑡𝑧]; 𝐷ℎ+𝖿𝑍0,𝑟

)
= 𝑡𝑧 − 𝑠𝑧 ⩾ 𝖼𝑞r𝜉𝑄𝑒𝜉ℎr(0) and

𝐷̃ℎ+𝖿𝑍0,𝑟
(𝑃(𝑠𝑧), 𝑃(𝑡𝑧); 𝐵4𝑟(𝑧)) ⩽ 𝔠′(𝑡𝑧 − 𝑠𝑧) ⩽ 𝔠′𝐷ℎ+𝖿𝑍0,𝑟

(𝑃(𝑠𝑧), 𝑃(𝑡𝑧)). (4.47)

Let 𝑁 = #𝑍1 and let 𝑧1, … , 𝑧𝑁 be the elements of 𝑍1, ordered so that

𝑠𝑧1 < 𝑡𝑧1 < 𝑠𝑧2 < 𝑡𝑧2 < ⋯ < 𝑠𝑧𝑁 < 𝑡𝑧𝑁 .

Such an ordering is possible since 𝑃([𝑠𝑧, 𝑡𝑧]) ⊂ 𝐵4𝑟(𝑧), so these path increments are disjoint.
For notational simplicity, we also define 𝑡𝑧0 = 0 and 𝑠𝑧𝑁+1

= 𝐷ℎ(𝐾1, 𝐾2), so that 𝑃(𝑡𝑧0) ∈ 𝐾1 and
𝑃(𝑡𝑧𝑁+1

) ∈ 𝐾2.
By the bi-Lipschitz equivalence of 𝐷ℎ and 𝐷̃ℎ (1.20) and Weyl scaling,

𝐷̃ℎ+𝖿𝑍0,𝑟
(𝑃(𝑡𝑧𝑛 ), 𝑃(𝑠𝑧𝑛+1

)) ⩽ ℭ∗𝐷ℎ+𝖿𝑍0,𝑟
(𝑃(𝑡𝑧𝑛 ), 𝑃(𝑠𝑧𝑛+1

)), ∀𝑛 ∈ [0,𝑁]Z. (4.48)

We now have the following estimate:

𝐷̃ℎ+𝖿𝑍0,𝑟
(𝐾1, 𝐾2)

⩽

𝑁∑
𝑛=1

𝐷̃ℎ+𝖿𝑍0,𝑟
(𝑃(𝑠𝑧𝑛 ), 𝑃(𝑡𝑧𝑛 )) +

𝑁∑
𝑛=0

𝐷̃ℎ+𝖿𝑍0,𝑟
(𝑃(𝑡𝑧𝑛 ), 𝑃(𝑠𝑧𝑛+1

))

(triangle inequality)

⩽ 𝔠′
𝑁∑

𝑛=1

𝐷ℎ+𝖿𝑍0,𝑟
(𝑃(𝑠𝑧𝑛 ), 𝑃(𝑡𝑧𝑛 )) + ℭ∗

𝑁∑
𝑛=0

𝐷ℎ+𝖿𝑍0,𝑟
(𝑃(𝑡𝑧𝑛 ), 𝑃(𝑠𝑧𝑛+1

))

(by (4.47) and (4.48))
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66 DING and GWYNNE

= ℭ∗

[
𝑁∑

𝑛=1

𝐷ℎ+𝖿𝑍0,𝑟
(𝑃(𝑠𝑧𝑛 ), 𝑃(𝑡𝑧𝑛 )) +

𝑁∑
𝑛=0

𝐷ℎ+𝖿𝑍0,𝑟
(𝑃(𝑡𝑧𝑛 ), 𝑃(𝑠𝑧𝑛+1

))

]

− (ℭ∗ − 𝔠′)

𝑁∑
𝑛=1

𝐷ℎ+𝖿𝑍0,𝑟
(𝑃(𝑠𝑧𝑛 ), 𝑃(𝑡𝑧𝑛 ))

⩽ ℭ∗ len
(
𝑃;𝐷ℎ+𝖿𝑍0,𝑟

)
− (ℭ∗ − 𝔠′)𝖼𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍1 (by (4.47))

⩽ ℭ∗𝐷ℎ(𝐾1, 𝐾2) + ℭ∗𝐶4𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍0 − (ℭ∗ − 𝔠′)𝖼𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍1

(by Lemma 4.17)

⩽ ℭ∗𝐷ℎ+𝖿𝑍0,𝑟
(𝐾1, 𝐾2) + ℭ∗𝐶4𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍0 − (ℭ∗ − 𝔠′)𝖼𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍1

(since 𝖿𝑍0,𝑟
⩾ 0). (4.49)

By combining (4.41) and (4.49), we obtain

(ℭ∗ − 𝔠′)𝖼𝑞#𝑍1 − ℭ∗𝐶4𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍0 ⩽ 𝑞r𝜉𝑄𝑒𝜉ℎr(0) ⩽ 𝑞r𝜉𝑄𝑒𝜉ℎr(0)#𝑍0

which implies #𝑍1 ⩽ 𝐶6#𝑍 where 𝐶6 ∶=
1 + ℭ∗𝐶4

(ℭ∗ − 𝔠′)𝖼
.

□

Proof of Proposition 4.6. We can assume that there exists some 𝑍0 ∈ 𝑟 with #𝑍0 ⩽ 𝑘 such that
𝐹
𝑞,r
𝑍0,𝑟

(ℎ + 𝖿𝑍0,𝑟
) occurs (otherwise, (4.11) holds vacuously). Let 𝑍1 ∈ 𝑟 be a set such that each

𝑧 ∈ 𝑍1 is 𝑟, 𝑞-good (Definition 4.14) and each 𝐵4𝑟(𝑧) for 𝑧 ∈ 𝑍1 is disjoint from
⋃

𝑧′∈𝑍0
𝐵4𝑟(𝑧

′). We
assume that #𝑍1 is maximal among all subsets of 𝑟 with this property. By Lemma 4.16, we have
#𝑍1 ⩽ 𝐶6𝑘.
Now let 𝑍 ∈ 𝑟 such that 𝐹

𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟) occurs. We claim that for each 𝑧 ∈ 𝑍, the ball 𝐵4𝑟(𝑧)

intersects 𝐵4𝑟(𝑧
′) for some 𝑧′ ∈ 𝑍0 ∪ 𝑍1. Indeed, by Lemma 4.15, each 𝑧 ∈ 𝑍 is 𝑟, 𝑞-good. So, if

there is a 𝑧 ∈ 𝑍 such that 𝐵4𝑟(𝑧) is disjoint from 𝐵4𝑟(𝑧
′) for each 𝑧′ ∈ 𝑍0 ∪ 𝑍1, then 𝑍1 ∪ {𝑧}

satisfies the conditions in the definition of 𝑍1. This contradicts the maximality of #𝑍1.
Each 𝑧 ∈ 𝑍 belongs to 𝑟

100
Z2. Hence, for each 𝑧′ ∈ 𝑍0 ∪ 𝑍1, the number of 𝑧 ∈ 𝑍 for which

𝐵4𝑟(𝑧) ∩ 𝐵4𝑟(𝑧
′) ≠ ∅ is atmost some universal constant𝑅. By the preceding paragraph, any𝑍 ∈ 𝑟

such that 𝐹𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟) occurs can be obtained by the following procedure. For each 𝑧′ ∈ 𝑍0 ∪ 𝑍1,
we either choose a point 𝑧 ∈ 𝑟

100
Z2 such that 𝐵4𝑟(𝑧) ∩ 𝐵4𝑟(𝑧

′) ≠ ∅; or we choose no point (so we
have at most 𝑅 + 1 choices for each 𝑧′ ∈ 𝑍0 ∪ 𝑍1). Then, we take 𝑍 to be the set of points that we
have chosen. Therefore,

#
{
𝑍 ∈ 𝑟 ∶ #𝑍 ⩽ 𝑘 and 𝐹

𝑞,r
𝑍,𝑟

(ℎ + 𝖿𝑍,𝑟) occurs
}

⩽ (𝑅 + 1)#𝑍0+#𝑍1

⩽ (𝑅 + 1)(𝐶6+1)𝑘. (4.50)

This gives (4.11) with 𝐶2 = (𝑅 + 1)𝐶6+1. □
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 67

4.5 Proof of uniqueness assuming Proposition 4.2

In this subsection,wewill prove Theorem 1.13,which asserts the uniqueness ofweakLQGmetrics,
assuming Proposition 4.2. As explained in Subsection 1.5.1, it suffices to show that the optimal bi-
Lipschitz constants satisfy 𝔠∗ = ℭ∗. To accomplish this, we will assume by way of contradiction
that 𝔠∗ < ℭ∗. We also assume the conclusion of Proposition 4.2 (whose proof has been postponed).
Throughout this subsection, we fix p ∈ (0, 1) (which will be chosen in Lemma 4.18) and we let
𝔠′′ ∈ (𝔠∗, ℭ∗) and ⊂ (0, 1) be as in Proposition 4.2 for this choice of p. We also assume that the
parameters of Subsection 4.1 have been chosen as in Proposition 4.2 for our given choice of p.
We first check that the auxiliary conditions in the definition of the event 𝜀

r(𝐾1, 𝐾2) of Subsec-
tion 4.2 occur with high probability when 𝜀 is small, which together with Proposition 4.3 leads to
an upper bound for the probability of the main condition

𝐷̃ℎ(𝐾1, 𝐾2) ⩾ ℭ∗𝐷ℎ(𝐾1, 𝐾2) −
1

2
𝜀2𝜉(𝑄+3)r𝜉𝑄𝑒𝜉ℎr(0).

We note that the auxiliary conditions do not depend on 𝐾1 and 𝐾2.

Lemma 4.18. There is a universal choice of the parameter p ∈ (0, 1) such that the following is true.
Let 𝛽 > 0 and let r > 0 such that P[𝐺r(𝛽, 𝔠

′′)] ⩾ 𝛽. It holds with probability tending to 1 as 𝜀 → 0

(at a rate depending only on 𝛽 and the laws of 𝐷ℎ and 𝐷̃ℎ, not on r) that conditions 2 and 3 in the
definition of 𝜀

r occur, that is,

(2) for each 𝑧 ∈ 𝐵3r(0) and each 𝑟 ∈ [𝜀2r, 𝜀r] ∩, we have
𝑟𝜉𝑄𝑒𝜉ℎ𝑟(𝑧) ∈

[
𝜀2𝜉(𝑄+3)r𝜉𝑄𝑒𝜉ℎr(0), 𝜀𝜉(𝑄−3)r𝜉𝑄𝑒𝜉ℎr(0)

]
;

(3) for each 𝑧 ∈ 𝐵3r(0), there exist 𝑟 ∈  ∩ [𝜀2r, 𝜀r] and 𝑤 ∈ ( 𝑟

100
Z2) ∩ 𝐵𝑟∕25(𝑧) such that 𝖤𝑤,𝑟

occurs.

Proof. By a standard estimate for the circle average process of the GFF (see, for example, [35,
Proposition 2.4]), it holds with polynomially high probability as 𝑟 → 0 that |ℎ𝑟(𝑧)| ⩽ 3 log 𝑟−1 for
all 𝑧 ∈ 𝐵3(0). By the scale invariance of the law of ℎ, modulo additive constant, we get that with
polynomially high probability as 𝑟 → 0 (at a universal rate) we have |ℎ𝑟(𝑧) − ℎr(0)| ⩽ 3 log(r∕𝑟)

for all 𝑧 ∈ 𝐵3r(0). By a union bound over logarithmically many values of 𝑟 ∈  ∩ [𝜀2r, 𝜀r], we get
that with probability tending to 1 as 𝜀 → 0,

|ℎ𝑟(𝑧) − ℎr(0)| ⩽ 3 log(r∕𝑟) ∈ [3 log 𝜀−2, 3 log 𝜀−1],

∀𝑟 ∈  ∩ [𝜀2r, 𝜀r], ∀𝑧 ∈ 𝐵3r(0). (4.51)

The bound (4.51) immediately implies condition 2 in the lemma statement.
We now turn our attention to condition 3. By the properties of the events 𝖤𝑧,𝑟, we know that

𝖤𝑧,𝑟 is almost surely determined by ℎ|
A𝑟,4𝑟(𝑧)

, viewed modulo additive constant, and P[𝖤𝑧,𝑟] ⩾ p

for each 𝑧 ∈ C and 𝑟 ∈ . Furthermore, by Proposition 4.2 our hypothesis that P[𝐺r(𝛽, 𝔠
′′)] ⩾ 𝛽

implies that for each small enough 𝜀 > 0 (how small depends only on 𝛽 and the laws of 𝐷ℎ and
𝐷̃ℎ),
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68 DING and GWYNNE

#
( ∩ [𝜀2r, 𝜀r]

)
⩾

5

8
log8 𝜀

−1.

We may therefore apply Lemma 2.2 with the radii 𝑟𝑘 ∈  ∩ [𝜀2r, 𝜀r], the points 𝑧𝑘 ∈
𝑟𝑘
100

Z2

chosen so that |𝑧 − 𝑧𝑘| ⩽ 𝑟𝑘∕50, and the events 𝐸𝑟𝑘
(𝑧𝑘) = 𝖤𝑧𝑘,𝑟𝑘

. From Lemma 2.2, we obtain that
if p is chosen to be sufficiently close to 1, in a universal manner, then for each 𝑧 ∈ C, it holds
with probability at least 1 − 𝑂𝜀(𝜀

5) (at a rate depending only on the laws of 𝐷ℎ and 𝐷̃ℎ) that there
exist 𝑟 ∈  ∩ [𝜀2r, 𝜀r] and 𝑤 ∈ ( 𝑟

100
Z2) ∩ 𝐵𝑟∕50(𝑧) such that 𝖤𝑤,𝑟 occurs.

By a union bound, it holds with probability tending to 1 as 𝜀 → 0 (at a rate depending only
on 𝛽 and the laws of 𝐷ℎ and 𝐷̃ℎ) that for each 𝑧 ∈ ( 𝜀

2r

100
Z2) ∩ 𝐵3r(0), there exist 𝑟 ∈  ∩ [𝜀2r, 𝜀r]

and 𝑤 ∈ ( 𝑟

100
Z2) ∩ 𝐵𝑟∕50(𝑧) such that 𝖤𝑤,𝑟 occurs. Henceforth, assume that this is the case. For

a general choice of 𝑧 ∈ 𝐵3r(0), we choose 𝑧′ ∈ ( 𝜀
2r

100
Z2) ∩ 𝐵3r(0) such that |𝑧 − 𝑧′| ⩽ 𝜀2r∕50, then

we choose 𝑟 ∈  ∩ [𝜀2r, 𝜀r] and 𝑤 ∈ ( 𝑟

100
Z2) ∩ 𝐵𝑟∕50(𝑧

′) such that 𝖤𝑤,𝑟 occurs. Then |𝑤 − 𝑧′| ⩽
(𝜀2r + 𝑟)∕50 ⩽ 𝑟∕25. Hence, condition 3 in the lemma statement holds with probability tending
to 1 as 𝜀 → 0. □

We henceforth assume that the parameter p is chosen as in Lemma 4.18. By combining
Proposition 4.3 with Lemma 4.18, we obtain the following.

Lemma 4.19. Let 𝛽 > 0 and let r > 0 such thatP[𝐺r(𝛽, 𝔠
′′)] ⩾ 𝛽. Also let 𝜈 > 0 and 𝛽 > 0. It holds

with probability tending to 1 as 𝛿 → 0 (at a rate depending only on 𝜈, 𝛽, 𝛽 and the laws of 𝐷ℎ and
𝐷̃ℎ) that

𝐷̃ℎ(𝐵𝛿𝜈r(𝑧), 𝐵𝛿𝜈r(𝑤)) ⩽ ℭ∗𝐷ℎ(𝐵𝛿𝜈r(𝑧), 𝐵𝛿𝜈r(𝑤)) − 𝛿r𝜉𝑄𝑒𝜉ℎr(0),

∀𝑧, 𝑤 ∈

(
𝛿𝜈r

100
Z2

)
∩ 𝐵r(0) such that |𝑧 − 𝑤| ⩾ 𝛽r

and dist(𝑧, 𝜕𝐵r(0)) ⩾ 𝛽r. (4.52)

Proof. Fix 𝜈′ > 0 to be chosen later, in a manner depending only on 𝜈 and 𝜉. By Proposition 4.3
(applied with 𝜂 = 𝛽∕2) and a union bound, it holds with superpolynomially high probability as
𝜀 → 0 that the event 𝜀

r(𝐵𝜀𝜈′r(𝑧), 𝐵𝜀𝜈′r(𝑤)) does not occur for any pair of points 𝑧, 𝑤 ∈ ( 𝜀
𝜈′r

100
Z2) ∩

𝐵r(0)with |𝑧 − 𝑤| ⩾ 𝛽r and dist(𝑧, 𝜕𝐵r(0)) ⩾ 𝛽r. By combining this with Lemma 4.18 and recall-
ing the definition of 𝜀

r (in particular, condition 1), we get that with probability tending to 1 as
𝜀 → 0,

𝐷̃ℎ

(
𝐵𝜀𝜈′r

(𝑧), 𝐵𝜀𝜈′r
(𝑤)
)
⩽ ℭ∗𝐷ℎ

(
𝐵𝜀𝜈′r

(𝑧), 𝐵𝜀𝜈′r
(𝑤)
)
− 𝜀2𝜉(𝑄+3)r𝜉𝑄𝑒𝜉ℎr(0),

∀𝑧, 𝑤 ∈

(
𝜀𝜈

′
r

100
Z2

)
∩ 𝐵r(0) such that |𝑧 − 𝑤| ⩾ 𝛽r

and dist(𝑧, 𝜕𝐵r(0)) ⩾ 𝛽r. (4.53)

We now conclude the proof by applying the above estimate with 𝜀 = 𝜀(𝛿) > 0 chosen so that
𝜀2𝜉(𝑄+3) = 𝛿 and with 𝜈′ = 𝜈∕(2𝜉(𝑄 + 3)). □
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 69

Recall the definition of the event𝐻r(𝛼, ℭ
′) from Definition 3.2, which says that there is a point

𝑢 ∈ 𝜕𝐵𝛼r(0) and a point 𝑣 ∈ 𝜕𝐵r(0) satisfying certain conditions such that 𝐷̃ℎ(𝑢, 𝑣) ⩽ ℭ′𝐷ℎ(𝑢, 𝑣).
From Lemma 4.19 and a geometric argument, we obtain the following, which will eventually be
used to get a contradiction to Proposition 3.5.

Lemma 4.20. Let 𝛽 > 0 and let r > 0 such that P[𝐺r(𝛽, 𝔠
′′)] ⩾ 𝛽. For each 𝛼 ∈ (3∕4, 1), we have

lim
𝛿→0

P[𝐻r(𝛼, ℭ∗ − 𝛿)] = 0

at a rate depending only on 𝛼, 𝛽, and the laws of 𝐷ℎ and 𝐷̃ℎ.

Proof. Let 𝜈 > 0 to be chosen later, in a manner depending only on the laws of 𝐷ℎ and 𝐷̃ℎ. By
Lemma 4.19 applied with 𝛽 = (1 − 𝛼)∕2, it holds with probability tending to 1 as 𝛿 → 0 that

𝐷̃ℎ(𝐵𝛿𝜈r(𝑧), 𝐵𝛿𝜈r(𝑤)) ⩽ ℭ∗𝐷ℎ(𝐵𝛿𝜈r(𝑧), 𝐵𝛿𝜈r(𝑤)) − 𝛿r𝜉𝑄𝑒𝜉ℎr(0),

∀𝑧, 𝑤 ∈

(
𝛿𝜈r

100
Z2

)
∩ 𝐵r(0) such that |𝑧 − 𝑤| ⩾ 1 − 𝛼

2
r

and dist(𝑧, 𝜕𝐵r(0)) ⩾
1 − 𝛼

2
r. (4.54)

Henceforth, assume that that (4.54) holds.
Recalling Definition 3.2, we consider points 𝑢 ∈ 𝜕𝐵𝛼r(0) and 𝑣 ∈ 𝜕𝐵r(0) such that

∙ 𝐷ℎ(𝑢, 𝑣) ⩽ (1 − 𝛼)−1r𝜉𝑄𝑒𝜉ℎr(0); and
∙ for each 𝛿 ∈ (0, (1 − 𝛼)2], we have

max
{
𝐷ℎ(𝑢, 𝜕𝐵𝛿r(𝑢)), 𝐷ℎ

(
around A𝛿r,𝛿1∕2r(𝑢)

)}
⩽ 𝛿𝜃𝐷ℎ(𝑢, 𝑣) (4.55)

and the same is true with the roles of 𝑢 and 𝑣 interchanged.

We will show that if 𝜈 is chosen to be large enough (depending only on the laws of 𝐷ℎ and 𝐷̃ℎ),
then for each small enough 𝛿 > 0 (depending only on 𝛼, 𝛽, and the laws of 𝐷ℎ and 𝐷̃ℎ), we have

𝐷̃ℎ(𝑢, 𝑣) ⩽
(
ℭ∗ −

1 − 𝛼

4
𝛿
)
𝐷ℎ(𝑢, 𝑣), ∀𝑢, 𝑣 satisfying the above conditions. (4.56)

By Definition 3.2, the relation (4.56) implies that𝐻r(𝛼, ℭ∗ − 1−𝛼

4
𝛿) does not occur. Since 𝛿 can be

made arbitrarily small, this implies the lemma statement.
See Figure 12 for an illustration of the proof of (4.56). Let 𝑧 ∈ (𝛿

𝜈r

100
Z2) ∩ 𝐵𝛿𝜈r(𝑢) and 𝑤 ∈

(𝛿
𝜈r

100
Z2) ∩ 𝐵𝛿𝜈r(𝑣). If 𝛿 is small enough, then |𝑧 − 𝑤| ⩾ (1 − 𝛼)r∕2 and dist(𝑧, 𝜕𝐵r(0)) ⩾ (1 −

𝛼)r∕2. By (4.54), there is a path 𝑃𝛿 from 𝐵𝛿𝜈r(𝑧) to 𝐵𝛿𝜈r(𝑤) such that

len
(
𝑃𝛿; 𝐷̃ℎ

)
⩽ ℭ∗𝐷ℎ(𝐵𝛿𝜈r(𝑧), 𝐵𝛿𝜈r(𝑤)) −

𝛿

2
r𝜉𝑄𝑒𝜉ℎr(0)

⩽ ℭ∗𝐷ℎ(𝑢, 𝑣) −
𝛿

2
r𝜉𝑄𝑒𝜉ℎr(0) (since 𝑢 ∈ 𝐵𝛿𝜈r(𝑧) and 𝑣 ∈ 𝐵𝛿𝜈r(𝑤))
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70 DING and GWYNNE

F IGURE 1 2 Illustration of the five paths used to get an upper bound for 𝐷̃ℎ(𝑢, 𝑣) in the proof of
Lemma 4.20. The 𝐷̃ℎ-length of 𝑃𝛿 is bounded above using (4.54) and the 𝐷̃ℎ-lengths of the other four paths are
bounded above using (4.55).

⩽
(
ℭ∗ −

1 − 𝛼

2
𝛿
)
𝐷ℎ(𝑢, 𝑣) (since 𝐷ℎ(𝑢, 𝑣) ⩽ (1 − 𝛼)−1r𝜉𝑄𝑒𝜉ℎr(0)). (4.57)

By (4.55) (applied with
√

2𝛿𝜈 in place of 𝛿), if 𝛿 is small enough (depending on 𝛼) then there
are paths 𝑃𝛿

𝑢 and 𝑃𝛿
𝑣 from 𝑢 and 𝑣 to 𝜕𝐵√

2𝛿𝜈r
(𝑢) and 𝜕𝐵√

2𝛿𝜈r
(𝑣), respectively, such that

max
{
len(𝑃𝛿

𝑢; 𝐷ℎ), len(𝑃
𝛿
𝑣 ; 𝐷ℎ)

}
⩽ 2𝜃∕2𝛿𝜈𝜃∕2𝐷ℎ(𝑢, 𝑣). (4.58)

Furthermore, by (4.55) applied with 2𝛿𝜈 in place of 𝛿, there are paths 𝜋𝛿
𝑢 and 𝜋𝛿

𝑣 inA
2𝛿𝜈r,

√
2𝛿𝜈r

(𝑢)

and A
2𝛿𝜈r,

√
2𝛿𝜈r

(𝑢), respectively, which disconnect the inner and outer boundaries and satisfy

max
{
len(𝜋𝛿

𝑢; 𝐷ℎ), len(𝜋
𝛿
𝑣 ; 𝐷ℎ)

}
⩽ 2𝜃𝛿𝜈𝜃𝐷ℎ(𝑢, 𝑣). (4.59)

Sincemax{|𝑧 − 𝑢|, |𝑤 − 𝑣|} ⩽ 𝛿𝜈r, the union 𝑃𝛿 ∪ 𝑃𝛿
𝑢 ∪ 𝑃𝛿

𝑣 ∪ 𝜋𝛿
𝑢 ∪ 𝜋𝛿

𝑣 contains a path from 𝑢 to
𝑣. Therefore, combining (4.57), (4.58), and (4.59), then using the bi-Lipschitz equivalence of 𝐷ℎ

and 𝐷̃ℎ (1.20) gives

𝐷̃ℎ(𝑢, 𝑣) ⩽
(
ℭ∗ −

1 − 𝛼

2
𝛿
)
𝐷ℎ(𝑢, 𝑣) +

∑
𝑥∈{𝑢,𝑣}

(
len(𝑃𝛿

𝑥; 𝐷̃ℎ) + len(𝜋𝛿
𝑥; 𝐷̃ℎ)

)
⩽
(
ℭ∗ −

1 − 𝛼

2
𝛿 + 2𝜃∕2+1ℭ∗𝛿

𝜈𝜃∕2 + 2𝜃+1ℭ∗𝛿
𝜈𝜃
)
𝐷ℎ(𝑢, 𝑣).

If 𝜈 > 2∕𝜃 and 𝛿 is small enough, then this implies (4.56). □

Proof of Theorem 1.13. By Proposition 3.5, there exist 𝛼 ∈ (3∕4, 1) and 𝑝 ∈ (0, 1), depending only
on the laws of 𝐷ℎ and 𝐷̃ℎ, such that for each 𝛿 > 0 and each small enough 𝜀 > 0 (depending only
on 𝛿 and the laws of 𝐷ℎ and 𝐷̃ℎ), there are at least

3

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N such
that

P[𝐻𝑟(𝛼, ℭ∗ − 𝛿)] ⩾ 𝑝. (4.60)
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 71

Let 𝔠′′ be as in Proposition 4.2, so that 𝔠′′ depends only on the laws of 𝐷ℎ and 𝐷̃ℎ. By Propo-
sition 3.11 (applied with 𝔠′′ in place of 𝔠′), there exist 𝛽 > 0 and 𝜀0 > 0 (depending only on
the laws of 𝐷ℎ and 𝐷̃ℎ) such that for each 𝜀 ∈ (0, 𝜀0], there are at least

3

4
log8 𝜀

−1 values of
𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N for which P[𝐺𝑟(𝛽, 𝔠

′′)] ⩾ 𝛽. By combining this with Lemma 4.20, we get
that if 𝛼 and 𝑝 are as in (4.60), then there exists 𝛿 > 0, depending only on 𝛼, 𝑝, and the laws of 𝐷ℎ

and 𝐷̃ℎ, such that for each 𝜀 ∈ (0, 𝜀0], there are at least
3

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N

for which

P[𝐻𝑟(𝛼, ℭ∗ − 𝛿)] ⩽
𝑝

2
. (4.61)

The total number of radii 𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N is at most log8 𝜀−1, so there cannot be at least
3

4
log8 𝜀

−1 values of 𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N for which (4.60) holds and at least 3

4
log8 𝜀

−1 values of
𝑟 ∈ [𝜀2, 𝜀] ∩ {8−𝑘}𝑘∈N for which (4.61) holds. We thus have a contradiction, so we conclude that
𝔠∗ = ℭ∗. □

5 CONSTRUCTING EVENTS AND BUMP FUNCTIONS

5.1 Setup and outline

The goal of this section is to prove Proposition 4.2. Extending (4.1), we define

𝔠′ ∶=
𝔠∗ + ℭ∗

2
and 𝔠′0 ∶=

𝔠∗ + 𝔠′

2
, (5.1)

so that if 𝔠∗ < ℭ∗, then 𝔠∗ < 𝔠′
0
< 𝔠′ < ℭ∗.

Throughout this section, we fix p ∈ (0, 1) as in Proposition 4.2. Note that p is allowed to be
arbitrarily close to 1. We seek to construct a set of radii ⊂ (0, 1) and, for each 𝑧 ∈ C and 𝑟 ∈ ,
open sets 𝖴𝑧,𝑟 ⊂ 𝖵𝑧,𝑟 ⊂ A𝑟,4𝑟(𝑧), a smooth bump function 𝖿𝑧,𝑟 supported on 𝖵𝑧,𝑟, and an event 𝖤𝑧,𝑟

with P[𝖤𝑧,𝑟] ⩾ p which satisfy the conditions in Subsection 4.1.
For simplicity, for most of this section we will take 𝑧 = 0 and remove 𝑧 from the notation, so we

will call our objects 𝖴𝑟, 𝖵𝑟, 𝖿𝑟, 𝖤𝑟. At the very end of the proof, we will define objects for a general
choice of 𝑧 by translating space.
Let 𝛼 ∈ (3∕4, 1) and 𝑝0 = 𝑝 ∈ (0, 1) be as in Proposition 3.10, so that 𝛼 and 𝑝0 depend only on

the laws of 𝐷ℎ and 𝐷̃ℎ. We define our initial set of ‘good’ radii

0 ∶=
{
𝑟 ∈ {8−𝑘}𝑘∈N ∶ P[𝐻̃𝑟(𝛼, 𝔠

′
0)] ⩾ 𝑝0

}
. (5.2)

By Proposition 3.10, there exists 𝔠′′ > 0, depending only on the laws of𝐷ℎ and 𝐷̃ℎ, such that if r > 0

and 𝛽 > 0 such thatP[𝐺r(𝛽, 𝔠
′′)] ⩾ 𝛽, then for each small enough 𝜀 > 0 (how small is independent

of r),

#
(0 ∩ [𝜀2r, 𝜀r]

)
⩾

3

4
log8 𝜀

−1.

We will eventually establish Proposition 4.2 with the set of admissible radii given by = 𝜌−10,
where 𝜌 ∈ (0, 1) is a constant depending only on p and the laws of 𝐷ℎ and 𝐷̃ℎ.
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72 DING and GWYNNE

F IGURE 13 Illustration of the objects involved in Lemma 5.2

Recall the basic idea of the construction as explained just after Proposition 4.2. We will take
𝖴𝑟 to be a narrow ‘tube’ with the topology of a Euclidean annulus which is contained in a small
neighborhood of 𝜕𝐵2𝑟(0), and 𝖵𝑟 to be a small Euclidean neighborhood of 𝖴𝑟. We will then take 𝖤𝑟

to be the event that there aremany ‘good’ pairs of points 𝑢, 𝑣 ∈ 𝖴𝑟 such that 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′
0
𝐷ℎ(𝑢, 𝑣),

plus a long list of regularity conditions. The idea for checking hypothesis C for 𝖤𝑟 is that by Weyl
scaling (Axiom III), the 𝐷ℎ−𝖿𝑟

-lengths of paths contained in 𝖴𝑟 tend to be much shorter than the
𝐷ℎ−𝖿𝑟

-lengths of paths outside of 𝖵𝑟. We will use this fact to force a 𝐷ℎ−𝖿𝑟
-geodesic 𝑃𝑟 to get 𝐷ℎ−𝖿𝑟

-
close to each of 𝑢 and 𝑣 for one of our good pairs of points 𝑢, 𝑣. We will then apply the triangle
inequality to find times 𝑠, 𝑡 such that 𝐷̃ℎ−𝖿𝑟

(𝑃𝑟(𝑠), 𝑃𝑟(𝑡)) ⩽ 𝔠′(𝑡 − 𝑠). Note that the application of
the triangle inequality here is the reason why we need to require that 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′

0
𝐷ℎ(𝑢, 𝑣) for

𝔠′
0
< 𝔠′.
The broad ideas of this section are similar to those of [27, section 5], which performs a similar

construction in the subcritical case. However, the details are quite different from [27, section 5],
for three reasons. First, the conditions which we need our event to satisfy are slightly different
from the ones needed in [27] since our argument in Section 4 is completely different from the
argument of [27, section 4]. Second, we make some minor simplifications to various steps of the
construction as compared to [27]. Third, and most importantly, we want to treat the supercritical
case so there are a number of additional difficulties arising from the fact that the metric does not
induce the Euclidean topology. These difficulties necessitate additional conditions on the events
and additional arguments as compared to the subcritical case. Especially, many of the conditions
in the definition of 𝖤𝑟 and all of arguments of Subsection 5.10 can be avoided in the subcritical
case. We will now give a more detailed outline of our construction.
In Subsection 5.2, we will consider an event for a single ‘good’ pair of points 𝑢, 𝑣 and show

that for 𝑟 ∈ 0, the probability of this event is bounded below by a constant 𝗉 depending only on
the laws of 𝐷ℎ and 𝐷̃ℎ. See Lemma 5.2 for a precise statement and Figure 13 for an illustration of
the event.
The event we consider is closely related to the event 𝐻̃𝑟(𝛼, 𝔠

′
0
) of Definition 3.9. We require

that there is a point 𝑢 ∈ 𝜕𝐵𝛼𝑟(0) and a point 𝑣 ∈ 𝜕𝐵𝑟(0) such that 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′
0
𝐷ℎ(𝑢, 𝑣) and a 𝐷̃ℎ-

geodesic 𝑃 from 𝑢 to 𝑣 which is contained in a specified deterministic half-annulus 𝖧𝑟 ⊂ A𝛼𝑟,𝑟(0).
We also impose two additional constraints on 𝑢 and 𝑣 which will be important later.

(i) We require that 𝑢 is contained in a certain small deterministic ball 𝐵𝗌𝑟
(𝗎𝑟) centered at a

point 𝗎𝑟 ⊂ 𝜕𝐵𝛼𝑟(0) and 𝑣 is contained in a small deterministic ball 𝐵𝗌𝑟
(𝗏𝑟) centered at a point
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 73

𝗏𝑟 ∈ 𝜕𝐵𝑟(0), where 𝗌𝑟 is deterministic number which is comparable to a small constant times
𝑟. The reason for this condition is that we will eventually define our set 𝖴𝑟 so that it has
a ‘bottleneck’ at several translated and scaled copies of the balls 𝐵𝗌𝑟

(𝗎𝑟) and 𝐵𝗌𝑟
(𝗏𝑟) (that

is, removing these balls disconnects 𝖴𝑟; see Figure 15), and we need 𝖴𝑟 to be determin-
istic. We will show that this condition happens with positive probability by considering
finitely many possible choices for the balls 𝐵𝗌𝑟

(𝗎𝑟) and 𝐵𝗌𝑟
(𝗏𝑟) and using a pigeonhole

argument.
(ii) We require that the internal distance 𝐷ℎ(𝑢, 𝑥; 𝐵𝗌𝑟

(𝗎𝑟)) is small for ‘most’ points 𝑥 ∈ 𝜕𝐵𝗌𝑟
(𝗎𝑟),

and we impose a similar condition for 𝑣. The purpose of this condition is to upper-bound the
𝐷ℎ−𝖿𝑟

-distance from a 𝐷ℎ−𝖿𝑟
-geodesic to 𝑢, once we have forced it to get Euclidean-close to 𝑢.

The condition will be shown to occur with high probability using Lemma 2.10.

In Subsection 5.3, we will define 𝖥𝑧,𝑟 for 𝑧 ∈ C and 𝑟 ∈ 0 to be the event of Subsection 5.2, but
translated so that we are working with annuli centered at 𝑧 rather than 0. We will then show that
𝖥𝑧,𝑟 is locally determined by ℎ (Lemma 5.7).
In Subsection 5.4, we will introduce several parameters to be chosen later, including the param-

eter 𝜌 ∈ (0, 1) mentioned above. We will then define the open sets 𝖴𝑟 and 𝖵𝑟 and the bump
function 𝖿𝑟 for 𝑟 ∈ 𝜌−10 in terms of these parameters. More precisely,

∙ the set 𝖴𝑟 will be the union of a large finite number of disjoint sets of the form 𝖧𝜌𝑟 ∪ 𝐵𝗌𝜌𝑟
(𝗎𝜌𝑟) ∪

𝐵𝗌𝜌𝑟
(𝗏𝜌𝑟) + 𝑧 for 𝑧 ∈ 𝜕𝐵2𝑟(0) (that is, the sets appearing in the definition of 𝖥𝑧,𝜌𝑟), together with

long narrow ‘tubes’ linking these sets together into an annular region. See Figure 15 for an
illustration;

∙ the set 𝖵𝑟 will be a small Euclidean neighborhood of 𝖴𝑟;
∙ the function 𝖿𝑟 will attain its maximal value at each point of 𝖴𝑟 and will be supported on 𝖵𝑟.

The reason for our definition of 𝖴𝑟 is as follows. Since 𝑟 ∈ 𝜌−10, for each of the sets 𝖧𝜌𝑟 ∪

𝐵𝗌𝜌𝑟
(𝗎𝜌𝑟) ∪ 𝐵𝗌𝜌𝑟

(𝗏𝜌𝑟) + 𝑧 in the definition of 𝖴𝑟, there is a positive chance that the event 𝖥𝑧,𝜌𝑟 of
Subsection 5.3 occurs. Hence, by the long-range independence properties of theGFF (Lemma 2.3),
it is very likely that 𝖥𝑧,𝜌𝑟 occurs for many of the points 𝑧. This gives us the desired large collection
of ‘good’ pairs of points 𝑢, 𝑣 ∈ 𝖴𝑟. See Lemma 5.13.
In Subsection 5.5, we will define the event 𝖤𝑟. The event 𝖤𝑟 includes the condition that 𝖥𝑧,𝜌𝑟

occurs for many of the points 𝑧 ∈ 𝜕𝐵2𝑟(0) involved in the definition of 𝖴𝑟 (condition 4), plus a
large number of additional high-probability regularity conditions. Then, in Subsection 5.6, we
will show that we can choose the parameters of Subsection 5.4 in such a way that 𝖤𝑟 occurs with
probability at least p (Proposition 5.9). We will also show that 𝖤𝑟 satisfies hypotheses A and B of
Subsection 4.1 (Proposition 5.17). In Subsection 5.7, we will explain how to conclude the proof of
Proposition 4.2 assuming that our objects also satisfy hypothesis C of Subsection 4.1.
The rest of the section is then devoted to checking that our objects satisfy hypothesis C of Sub-

section 4.1 (Proposition 5.18). Recalling the statement of hypothesis C, we will assume that 𝖤𝑟

occurs and consider a𝐷ℎ−𝖿𝑟
-geodesic 𝑃𝑟 between two points ofC ⧵ 𝐵4𝑟(0). Wewill further assume

that 𝑃𝑟 has a (𝐵4𝑟(0), 𝖵𝑟)-excursion (𝜏′, 𝜏, 𝜎, 𝜎′) such that 𝐷ℎ(𝑃𝑟(𝜏), 𝑃𝑟(𝜎); 𝐵4𝑟(0)) is bounded
below by an appropriate constant times 𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0) (recall Definition 4.1). We aim to find times
𝑠 < 𝑡 for 𝑃𝑟 such that 𝑡 − 𝑠 is not too small and 𝐷̃ℎ−𝖿𝑧,𝑟

(𝑃𝑟(𝑠), 𝑃𝑟(𝑡); 𝐵4𝑟(0)) ⩽ 𝔠′(𝑡 − 𝑠).
In Subsection 5.8, we will show that the Euclidean distance between the points 𝑃𝑟(𝜏), 𝑃𝑟(𝜎) ∈

𝜕𝖵𝑟 is bounded below by a constant times 𝑟 (Lemma 5.20) and that 𝑃𝑟|[𝜏,𝜎] is contained in a small
Euclidean neighborhood of 𝖵𝑟 (Lemma 5.22). These statements are proven using the regularity
conditions in the definition of𝖤𝑟. In particular, the lower bound for |𝑃𝑟(𝜏) − 𝑃𝑟(𝜎)| comes from the
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74 DING and GWYNNE

regularity of 𝐷ℎ-distances along a geodesic (Lemma 2.13). The statement that 𝑃𝑟|[𝜏,𝜎] is contained
in a small Euclidean neighborhood of 𝖵𝑟 is proven as follows. Since 𝖿𝑟 is very large on𝖴𝑟, we know
that𝐷ℎ−𝖿𝑟

-distances inside 𝖴𝑟 are very small, which leads to a very small upper bound for 𝜎 − 𝜏 =

𝐷ℎ−𝖿𝑟
(𝑃𝑟(𝜏), 𝑃𝑟(𝜎)) (Lemma 5.21). Since 𝖿𝑟 is supported on 𝖵𝑟, the 𝐷ℎ−𝖿𝑟

-length of any segment
of 𝑃𝑟 which is disjoint from 𝖵𝑟 is the same as its 𝐷ℎ-length, which will be larger than our upper
bound for 𝜎 − 𝜏 unless the Euclidean diameter of the segment is very small.
In Subsection 5.9, we will use the results of Subsection 5.8 and the definition of 𝖴𝑟 to show

that the following is true. There is a point 𝑧 ∈ 𝜕𝐵2𝑟(0) as in the definition of 𝖴𝑟 such that 𝖥𝑧,𝜌𝑟
occurs and 𝑃𝑟 gets Euclidean-close to each of the ‘good’ points 𝑢 and 𝑣 in the definition of 𝖥𝑧,𝜌𝑟
(Lemma 5.23). The reason why this is true is that, by the results of Subsection 5.8, 𝑃𝑟([𝜏, 𝜎]) is
contained in a small neighborhood of 𝖴𝑟 and has Euclidean diameter of order 𝑟, and the defini-
tion of 𝖴𝑟 implies that removing small neighborhoods of the points 𝑢 and 𝑣 disconnects 𝖴𝑟 (see
Figure 15).
Showing that 𝑃𝑟 gets Euclidean-close to 𝑢 and 𝑣 is not enough for our purposes since 𝐷ℎ−𝖿𝑟

is not Euclidean-continuous, so it is possible for two points to be Euclidean-close but not 𝐷ℎ−𝖿𝑟
-

close. Therefore, further arguments are needed to show that 𝑃𝑟 gets𝐷ℎ−𝖿𝑟
-close to each of 𝑢 and 𝑣.

We remark that this is one of the main reasons why the argument in this section is more difficult
than the analogous argument in the subcritical case [27, section 5].
In Subsection 5.10, we will show that there are times 𝑠 and 𝑡 for 𝑃𝑟 such that𝐷ℎ−𝖿𝑟

(𝑃𝑟(𝑡), 𝑢) and
𝐷ℎ−𝖿𝑟

(𝑃𝑟(𝑠), 𝑣) are eachmuch smaller than𝐷ℎ−𝖿𝑟
(𝑢, 𝑣) (Lemma 5.26). The key toolwhich allows us

to do this is the condition in the definition of 𝖥𝑧,𝜌𝑟 which says that 𝐷ℎ(𝑢, 𝑥; 𝐵𝗌𝜌𝑟
(𝗎𝜌𝑟) + 𝑧) is small

for ‘most’ points of 𝜕𝐵𝗌𝜌𝑟
(𝗎𝜌𝑟) + 𝑧 (recall point (ii) in the summary of Subsection 5.2). However,

this condition is not sufficient for our purposes since it is possible that the ‘Euclidean size’ of
𝑃𝑟 ∩ (𝐵𝗌𝜌𝑟

(𝗎𝜌𝑟) + 𝑧) is small, and hence 𝑃𝑟 manages not to hit a geodesic from 𝑢 to 𝑥 for any of the
‘good’ points 𝑥 ∈ 𝜕𝐵𝗌𝜌𝑟

(𝗎𝜌𝑟) + 𝑧 such that 𝐷ℎ(𝑢, 𝑥; 𝐵𝗌𝜌𝑟
(𝗎𝜌𝑟) + 𝑧) is small. To avoid this difficulty,

we will need to carry out a careful analysis of, roughly speaking, the ‘excursions’ that 𝑃𝑟 makes in
and out of the ball 𝐵𝗌𝜌𝑟

(𝗎𝜌𝑟) + 𝑧.
In Subsection 5.11, we will conclude the proof that 𝖤𝑟 satisfies hypothesis C using the result of

Subsection 5.10 and the triangle inequality.

5.2 Existence of a shortcut with positive probability

Throughout the rest of this section, we let

𝜆 ∈
(
0, 10−100 min

{
𝔠∗, 1∕ℭ∗, (𝔠∗∕ℭ∗)

2
})

(5.3)

be a small constant to be chosen later, in a manner depending only on the laws of 𝐷ℎ and 𝐷̃ℎ (not
onp).Wewill frequently use 𝜆 in the definitions of events and other objects whenwe need a small
constant whose particular value is unimportant.
In this subsection, we will prove that for each 𝑟 ∈ 0, it holds with positive probability

(uniformly in 𝑟 ∈ 0) that there is a ‘good’ pair of non-singular points 𝑢, 𝑣 ∈ 𝐵𝑟(0) such that
𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′

0
𝐷ℎ(𝑢, 𝑣) and certain regularity conditions hold. In later subsections, we will use

the long-range independence of the GFF to say that with high probability, there are many
such pairs of points contained in our open set 𝖴𝑟. To state our result, we need the following
definition.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 75

Definition 5.1. Let 𝑧 ∈ C and 𝑏 > 𝑎 > 0. A horizontal or vertical half-annulus𝐻 ⊂ A𝑎,𝑏(𝑧) is the
intersection of A𝑎,𝑏(𝑧) with one of the four half-planes

{𝑤 ∈ C ∶ Re𝑤 > Re 𝑧}, {𝑤 ∈ C ∶ Re𝑤 < Re 𝑧},

{𝑤 ∈ C ∶ Im𝑤 > Im𝑧}, or {𝑤 ∈ C ∶ Im𝑤 < Im𝑧}.

Lemma 5.2. Let 𝛼 and 0 be as in (5.2). There exists 𝗍 ∈ (0, 𝜆(1 − 𝛼)2], 𝖲 > 3, and 𝗉 ∈ (0, 1)

(depending only on 𝜆 and the laws of 𝐷ℎ and 𝐷̃ℎ) such that for each 𝑟 ∈ 0, there exists a deter-
ministic horizontal or vertical half-annulus 𝖧𝑟 ⊂ A𝛼𝑟,𝑟(0), a deterministic radius 𝗌𝑟 ∈ [𝗍𝑟, 𝗍1∕2𝑟] ∩

{4−𝑘𝑟}𝑘∈N, and deterministic points

𝗎𝑟 ∈ 𝜕𝖧𝑟 ∩
{
𝛼𝑟𝑒𝑖𝜆𝗍𝑘 ∶ 𝑘 ∈ [1, 2𝜋𝜆−1𝗍−1]Z

}
and

𝗏𝑟 ∈ 𝜕𝖧𝑟 ∩
{
𝑟𝑒𝑖𝜆𝗍𝑘 ∶ 𝑘 ∈ [1, 2𝜋𝜆−1𝗍−1]Z

}
(5.4)

such that with probability at least 𝗉, the following is true. There exist non-singular points 𝑢 ∈

𝜕𝐵𝛼𝑟(0) ∩ 𝐵𝗌𝑟∕2
(𝗎𝑟) and 𝑣 ∈ 𝜕𝐵𝑟(0) ∩ 𝐵𝗌𝑟∕2

(𝗏𝑟) with the following properties.

(1) 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′
0
𝐷ℎ(𝑢, 𝑣).

(2) There is a 𝐷̃ℎ-geodesic 𝑃 from 𝑢 to 𝑣 which is contained in 𝖧𝑟.
(3) The one-dimensional Lebesgue measure of the set{

𝑥 ∈ 𝜕𝐵𝗌𝑟
(𝗎𝑟) ∶ 𝐷ℎ

(
𝑥, 𝑢; 𝐵𝗌𝑟

(𝗎𝑟)
)
> 𝜆𝐷̃ℎ(𝑢, 𝑣)

}
is at most (𝜆∕2)𝗌𝑟 . Moreover, the same is true with 𝑣 and 𝗏𝑟 in place of 𝑢 and 𝗎𝑟.

(4) There exists 𝑡 ∈ [3𝑟, 𝖲𝑟] such that

𝐷ℎ

(
around A𝑡,2𝑡(0)

)
⩽ 𝜆𝐷ℎ

(
across A2𝑡,3𝑡(0)

)
.

See Figure 13 for an illustration of the statement of Lemma 5.2.Most of this subsection is devoted
to the proof of Lemma 5.2. Before discussing the proof, we will first discuss the motivation for the
various conditions in the lemma statement.
In Subsection 5.4, we will consider a small but fixed constant 𝜌 ∈ (0, 1). To build the set 𝖴𝑟 =

𝖴0,𝑟 appearing in Section 4, we will use long narrow tubes to ‘link up’ several sets of the form
𝖧𝜌𝑟 ∪ 𝐵𝗌𝜌𝑟

(𝗎𝜌𝑟) ∪ 𝐵𝗌𝜌𝑟
(𝗏𝜌𝑟) + 𝑧, for varying choices of 𝑧 ∈ 𝜕𝐵2𝑟(0). We need 𝖴𝑟 to be deterministic,

which is whywe need tomake a deterministic choice of the half-annulus𝖧𝑟, the radius 𝗌𝑟, and the
points 𝗎𝑟 and 𝗏𝑟 in Lemma 5.2. Furthermore, we want there to be only finitely many possibilities
for the set 𝑟−1𝖴𝑟, which allows us to get certain estimates for 𝖴𝑟 trivially by taking a maximum
over the possibilities. This is why we require that 𝖧𝑟 is a vertical or horizontal half-annulus and
why we require that the points 𝗎𝑟 and 𝗏𝑟 belong to the finite sets in (5.4).
Our set 𝖴𝑟 will have ‘bottlenecks’ at the balls 𝐵𝗌𝜌𝑟

(𝗎𝜌𝑟) + 𝑧 and 𝐵𝗌𝜌𝑟
(𝗏𝜌𝑟) + 𝑧, so that any path

which travels more than a constant-order Euclidean distance inside the set 𝖴𝑟 will have to enter
many of these balls. The requirement that 𝑢 ∈ 𝐵𝗌𝜌𝑟∕2

(𝗎𝜌𝑟) and 𝑣 ∈ 𝐵𝗌𝜌𝑟∕2
(𝗏𝜌𝑟) is needed to force

a path which spends a lot of time in 𝖴𝑟 to get close to 𝑢 and 𝑣. The requirement that 𝑃 ⊂ 𝖧𝑟

in condition 2 is needed to ensure that subtracting from ℎ a large bump function which attains
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76 DING and GWYNNE

its maximal value at each point of 𝖴𝑟 decreases 𝐷̃ℎ(𝑢, 𝑣) by at least as much as 𝐷ℎ(𝑢, 𝑣), so the
condition 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′

0
𝐷ℎ(𝑢, 𝑣) is preserved.

Condition 3 in Lemma 5.2 is needed to upper-bound the LQG distance from a path to each of
𝑢 and 𝑣, once we know that it gets Euclidean-close to 𝑢 and 𝑣 (this is done in Subsection 5.10).
The reason why our distance bound is in terms of 𝐷̃ℎ(𝑢, 𝑣) is that we eventually want to show that
the 𝐷̃ℎ−𝖿𝑟

-distance from a 𝐷ℎ−𝖿𝑟
-geodesic to each of 𝑢 and 𝑣 is at most a small constant times

𝐷̃ℎ−𝖿𝑟
(𝑢, 𝑣). We will then use condition 1 in Lemma 5.2 and the triangle inequality to deduce

hypothesis C. Note that condition 3 includes a bound on 𝐷ℎ-distances, but this immediately
implies a bound for 𝐷̃ℎ-distances due to the bi-Lipschitz equivalence of 𝐷ℎ and 𝐷̃ℎ (1.20).
The only purpose of condition 4 is to ensure that the event in the lemma statement depends

locally on ℎ (see Lemma 5.7). This local dependence is not automatically true since a 𝐷ℎ-geodesic
from 𝑢 to 𝑣 could get very Euclidean-far away from 𝑢 and 𝑣.
We now turn our attention to the proof of Lemma 5.2. To this end, let us first record what we

get from the Definition 3.9 of 𝐻̃𝑟(𝛼, 𝔠
′
0
) and the Definition (5.2) of0.

Lemma 5.3. For each 𝑟 ∈ 0, there is a deterministic horizontal or vertical half-annulus 𝖧𝑟 ⊂

A𝛼𝑟,𝑟(0) such that with probability at least 𝑝0∕4, there exist non-singular points 𝑢 ∈ 𝜕𝐵𝛼𝑟(0) and
𝑣 ∈ 𝜕𝐵𝑟(0) with the following properties.

(1) 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′
0
𝐷ℎ(𝑢, 𝑣).

(2) There is a 𝐷̃ℎ-geodesic 𝑃 from 𝑢 to 𝑣 which is contained in 𝖧𝑟.
(3) With 𝜃 = 𝜃(1∕2) as in Lemma 2.13, for each 𝛿 ∈ (0, (1 − 𝛼)2],

max
{
𝐷̃ℎ(𝑢, 𝜕𝐵𝛿𝑟(𝑢)), 𝐷̃ℎ(𝑣, 𝜕𝐵𝛿𝑟(𝑣))

}
⩽ 𝛿𝜃𝐷̃ℎ(𝑢, 𝑣).

Proof. By Definition 3.9 of 𝐻̃𝑟(𝛼, 𝔠
′
0
) and the definition (5.2) of 0, for each 𝑟 ∈ 0 it holds with

probability at least 𝑝0 that there exist 𝑢 ∈ 𝜕𝐵𝛼𝑟(0) and 𝑣 ∈ 𝜕𝐵𝑟(0) such that conditions 1 and 3 in
the lemma statement hold and there is a 𝐷̃ℎ-geodesic 𝑃 from 𝑢 to 𝑣 which is contained inA𝛼𝑟,𝑟(0)

and has Euclidean diameter at most 𝑟∕100. Since 𝑃 ⊂ A𝛼𝑟,𝑟(0) and 𝑃 has Euclidean diameter at
most 𝑟∕100, trivial geometric considerations show that 𝑃must be contained in the closure of one
of the four horizontal or vertical half-annuli of A𝛼𝑟,𝑟(0). Hence, we can choose one such half-
annulus 𝖧𝑟 in a deterministic manner such that with probability at least 𝑝0∕4, conditions 1 and 3
in the lemma statement hold and 𝑃 ⊂ 𝖧𝑟, that is, condition 2 holds. □

Lemma 5.3 gives us a pair of points 𝑢, 𝑣 satisfying conditions 1 and 2 in Lemma 5.2. We still
need to check conditions 3 and 4. Condition 3 will require the most work. To get this condition,
wewant to apply Lemma 2.10.However, the points𝑢 and 𝑣 are random, sowe cannot just apply the
lemma directly. Instead, wewill apply Lemma 2.10 in conjunctionwith Lemma 2.1 (independence
across concentric annuli) and a union bound to cover space by balls where an event occurs which
is closely related to the one in Lemma 2.10. Then, we will use a geometric argument based on
condition 3 of Lemma 5.3 to transfer from an estimate for balls containing 𝑢 and 𝑣 to an estimate
for 𝑢 and 𝑣 themselves.
Let us now define the event to which we will apply Lemma 2.1. For 𝑧 ∈ C, 𝑠 > 0, and 𝑅 > 0, let

𝐺𝑠(𝑧; 𝑅) be the event that the following is true.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 77

(1) The one-dimensional Lebesgue measure of the set of 𝑥 ∈ 𝜕𝐵𝑠(𝑧) for which

𝐷̃ℎ

(
𝑥, 𝜕𝐵𝑠∕2(𝑧);A𝑠∕2,𝑠(𝑧)

)
> 𝑅𝑠𝜉𝑄𝑒𝜉ℎ𝑠(𝑧)

is at most (𝜆∕2)𝑠.
(2) 𝐷̃ℎ(around A𝑠∕2,𝑠(𝑧)) ⩽ 𝑅𝑠𝜉𝑄𝑒𝜉ℎ𝑠(𝑧).
(3) 𝐷̃ℎ(across A𝑠∕2,𝑠(𝑧)) ⩾ (1∕𝑅)𝑠𝜉𝑄𝑒𝜉ℎ𝑠(𝑧).

Since the event 𝐺𝑠(𝑧; 𝑅) involves only internal distances in A𝑠∕2,𝑠(𝑧), the locality property
(Axiom II; see also Subsection 2.2) implies that 𝐺𝑠(𝑧; 𝑅) is almost surely determined by ℎ|A𝑠∕2,𝑠(𝑧)

.
Furthermore, by Weyl scaling (Axioms III), the occurrence of 𝐺𝑠(𝑧; 𝑅) is unaffected by adding a
constant to ℎ. Therefore,

𝐺𝑠(𝑧; 𝑅) ∈ 𝜎
(
(ℎ − ℎ2𝑠(𝑧))|A𝑠∕2,𝑠(𝑧)

)
. (5.5)

We can also arrange that the probability of 𝐺𝑠(𝑧; 𝑅) is close to 1 by making 𝑅 large.

Lemma 5.4. For each 𝑝 ∈ (0, 1), there exists 𝑅 > 0, depending only on 𝑝, 𝜆 and the law of 𝐷̃ℎ, such
that for each 𝑧 ∈ C and each 𝑠 > 0, we have P[𝐺𝑠(𝑧; 𝑅)] ⩾ 𝑝.

Proof. By Lemma 2.10 (and the fact that a path from 𝑥 ∈ 𝜕𝐵𝑠(𝑧) to 𝑧must hit 𝜕𝐵𝑠∕2(𝑧)), if 𝑅 is cho-
sen to be sufficiently large, depending only on 𝑝 and the law of 𝐷̃ℎ, then the first condition in the
definition of 𝐺𝑠(𝑧; 𝑅) has probability at least 1 − 𝑝∕3. By tightness across scales (Axiom V′), after
possibly increasing 𝑅 we can arrange that the other two conditions in the definition of 𝐺𝑠(𝑧; 𝑅)

also have probability at least 𝑝. □

Let us now apply Lemma 2.1 to get the following.

Lemma 5.5. There exists 𝑅 > 0, depending only on 𝜆 and the law of 𝐷̃ℎ, such that for each 𝑟 > 0, it
holds with polynomially high probability as 𝜀 → 0 (at a rate depending only on 𝜆 and the law of 𝐷̃ℎ)
such that the following is true. For each point

𝑧 ∈
{
𝛼𝑟𝑒𝑖𝜆𝜀𝑘 ∶ 𝑘 ∈ [1, 2𝜋𝜆−1𝜀−1]Z

}
∪
{
𝑟𝑒𝑖𝜆𝜀𝑘 ∶ 𝑘 ∈ [1, 2𝜋𝜆−1𝜀−1]Z

}
, (5.6)

we have

#
{
𝑘 ∈

[
1

2
log4 𝜀

−1, log4 𝜀
−1
]

Z
∶ 𝐺4−𝑘𝑟(𝑧; 𝑅) occurs

}
⩾

3

8
log4 𝜀

−1. (5.7)

Proof. By (5.5) and Lemma 5.4 (applied with 𝑝 sufficiently close to 1), we can apply Lemma 2.1
(independence across concentric annuli) to get the following. There exists 𝑅 > 0 as in the lemma
statement such that for each 𝑧 ∈ C and each 𝑟 > 0,

P
[
#
{
𝑘 ∈

[
1

2
log4 𝜀

−1, log4 𝜀
−1
]

Z
∶ 𝐺4−𝑘𝑟(𝑧; 𝑅) occurs

}
⩾

3

8
log4 𝜀

−1
]
⩾ 1 − 𝑂𝜀(𝜀

2).

The lemma follows from this and a union bound over the 𝑂𝜀(𝜀
−1) points in the set (5.6). □

The following lemma is the main step in the proof of Lemma 5.2.
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78 DING and GWYNNE

Lemma 5.6. There exist 𝗍 ∈ (0, 𝜆(1 − 𝛼)2] and 𝗉 ∈ (0, 1) (depending only on 𝜆 and the laws
of 𝐷ℎ and 𝐷̃ℎ) such that for each 𝑟 ∈ 0, there exist a deterministic vertical or horizontal half-
annulus 𝖧𝑟 ⊂ A𝛼𝑟,𝑟(0), a deterministic radius 𝗌𝑟 ∈ [𝗍𝑟, 𝗍1∕2𝑟] ∩ {4−𝑘𝑟}𝑘∈N, and deterministic points
𝗎𝑟, 𝗏𝑟 ∈ 𝜕𝖧𝑟 as in (5.4) such that with probability at least 2𝗉, the following is true. There exist non-
singular points 𝑢 ∈ 𝜕𝐵𝛼𝑟(0) ∩ 𝐵𝗌𝑟

(𝗎𝑟) and 𝑣 ∈ 𝜕𝐵𝑟(0) ∩ 𝐵𝗌𝑟
(𝗏𝑟) such that conditions 1, 2, and 3 from

Lemma 5.2 hold.

Proof. Step 1: Setup. Let 𝛼 and 𝑝0 be as in the definition of0 from (5.2). Let the half-annulus 𝖧𝑟

for 𝑟 ∈ 0 be as in Lemma 5.3 and let 𝑅 > 0 be as in Lemma 5.5. Also let 𝗍 > 0 be small enough so
that the event of Lemma 5.5 with 𝗍 in place of 𝜀 occurs with probability at least 1 − 𝑝0∕8. We can
arrange that 𝗍 is small enough so that

𝗍 ⩽ 𝜆(1 − 𝛼)2 and (2𝑅2 + 1)(2𝗍)𝜃 ⩽ 𝜆2, (5.8)

where 𝜃 is as in Lemma 5.3. Then with probability at least 𝑝0∕8, the event of Lemma 5.3 and the
event of Lemma 5.5 with 𝜀 = 𝗍 both occur. Henceforth, assume that these two events occur.
Let𝑃 be the 𝐷̃ℎ-geodesic from𝑢 to 𝑣which is contained in𝖧𝑟, as in Lemma5.3. By the conditions

in Lemma 5.3, the conditions 1 and 2 in the statement of Lemma 5.2 hold for this choice of 𝑢, 𝑣,
and 𝑃. It remains to deal with condition 3.
Step 2: Reducing to a statement for a random radius and pair of points.We can choose random

points

𝑧1 ∈ 𝜕𝖧𝑟 ∩
{
𝛼𝑟𝑒𝑖𝜆𝗍𝑘 ∶ 𝑘 ∈ [1, 2𝜋𝜆−1𝗍−1]Z

}
and

𝑧2 ∈ 𝜕𝖧𝑟 ∩
{
𝑟𝑒𝑖𝜆𝗍𝑘 ∶ 𝑘 ∈ [1, 2𝜋𝜆−1𝗍−1]Z

}
such that |𝑢 − 𝑧1| ⩽ 𝗍𝑟∕50 and |𝑣 − 𝑧2| ⩽ 𝗍𝑟∕50. (5.9)

The event of Lemma 5.5 (with 𝜀 = 𝗍) implies that for each 𝑖 ∈ {1, 2}, there are at least 3

8
log4 𝗍

−1

values of 𝑘 ∈ [1
2
log4 𝗍

−1, log4 𝗍
−1]

Z
such that 𝐺4−𝑘𝑟(𝑧𝑖; 𝑅) occurs. Since the number of choices

for 𝑘 is at most 1

2
log4 𝗍

−1, there must be some (random) 𝑘∗ ∈ [1
2
log4 𝗍

−1, log4 𝗍
−1]

Z
such that

𝐺4−𝑘∗𝑟(𝑧1; 𝑅) ∩ 𝐺4−𝑘∗ 𝑟(𝑧2; 𝑅) occurs.We pick one such value of 𝑘∗ in ameasurablemanner and set

𝑠 ∶= 4−𝑘∗𝑟, so that 𝑠 ∈ [𝗍𝑟, 𝗍1∕2𝑟] ∩ {4−𝑘𝑟}𝑘∈N. (5.10)

We claim that condition 3 in Lemma 5.2 holds with 𝑠 in place of 𝗌𝑟 and 𝑧1, 𝑧2 in place of 𝗎𝑟, 𝗏𝑟.
Once the claim has been proven, we have that with probability at least 𝑝0∕8, the conditions in the
lemma statement hold with the random variables 𝑠, 𝑧1, 𝑧2 in place of the deterministic parameters
𝗌𝑟, 𝗎𝑟, 𝗏𝑟. The number of possible choices for 𝑠 is at most

1

2
log4 𝗍

−1 and the number of possible
choices for each of 𝑧1, 𝑧2 is at most a constant (depending only on 𝜆 and the laws of 𝐷ℎ and 𝐷̃ℎ)
times 𝗍−1. Therefore, our claim implies that there is some constant 𝗉 > 0 (which depends only on
𝑝0 and 𝗍, hence only on the laws of𝐷ℎ and 𝐷̃ℎ) and a deterministic choice of parameters 𝗌𝑟, 𝗎𝑟, and
𝗏𝑟 such that with probability at least 2𝗉, the conditions of the lemma statement hold for 𝗌𝑟, 𝗎𝑟, and
𝗏𝑟.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 79

Step 3: Estimates for distances in𝐵𝑠(𝑧1) and𝐵𝑠(𝑧2). It remains to prove the claim in the preceding
paragraph. By our choices of 𝑧1, 𝑧2 (5.9) and 𝑠 (5.10),

𝑢 ∈ 𝐵𝑠∕2(𝑧1) ⊂ 𝐵𝑠(𝑧1) ⊂ 𝐵2𝗍1∕2𝑟(𝑢) and 𝑣 ∈ 𝐵𝑠∕2(𝑧2) ⊂ 𝐵𝑠(𝑧2) ⊂ 𝐵2𝗍1∕2𝑟(𝑣). (5.11)

From this, condition 3 fromLemma 5.3 (with 𝛿 = 2𝗍1∕2), and the definition of𝐺𝑠(𝑧𝑖; 𝑅), we obtain

(2𝗍1∕2)𝜃𝐷̃ℎ(𝑢, 𝑣) ⩾ max
{
𝐷̃ℎ

(
𝑢, 𝜕𝐵2𝗍1∕2𝑟(𝑢)

)
, 𝐷̃ℎ

(
𝑣, 𝜕𝐵2𝗍1∕2𝑟(𝑣)

)}
(by Lemma 5.3)

⩾ max
{
𝐷̃ℎ(𝑢, 𝜕𝐵𝑠(𝑧1)), 𝐷̃ℎ(𝑣, 𝜕𝐵𝑠(𝑧2))

}
(by (5.11))

⩾ max
𝑖∈{1,2}

𝐷̃ℎ

(
across A𝑠∕2,𝑠(𝑧𝑖)

)
(since 𝑢 ∈ 𝐵𝑠∕2(𝑧1) and 𝑣 ∈ 𝐵𝑠∕2(𝑧2))

⩾
1

𝑅
max
𝑖∈{1,2}

𝑠𝜉𝑄𝑒𝜉ℎ𝑠(𝑧𝑖) (by condition 3 for 𝐺𝑠(𝑧𝑖; 𝑅)). (5.12)

We now apply (5.12) to upper-bound the quantities 𝑠𝜉𝑄𝑒𝜉ℎ𝑠(𝑧𝑖) appearing in conditions 1 and 2 in
the definition of 𝐺𝑠(𝑧𝑖; 𝑅). Upon doing so, we obtain the following observations for 𝑖 = 1, 2.

(i) The one-dimensional Lebesgue measure of the set of 𝑥 ∈ 𝜕𝐵𝑠(𝑧𝑖) for which

𝐷̃ℎ

(
𝑥, 𝜕𝐵𝑠∕2(𝑧𝑖); 𝐵𝑠(𝑧𝑖)

)
> 𝑅2(2𝗍1∕2)𝜃𝐷̃ℎ(𝑢, 𝑣)

is at most (𝜆∕2)𝑠.
(ii) We have

𝐷̃ℎ

(
around A𝑠∕2,𝑠(𝑧𝑖)

)
⩽ 𝑅2(2𝗍1∕2)𝜃𝐷̃ℎ(𝑢, 𝑣). (5.13)

Step 4: Checking condition 3. If 𝑥 ∈ 𝜕𝐵𝑠(𝑧1), then the union of any path from 𝑥 to 𝜕𝐵𝑠∕2(𝑧1),
any path in A𝑠∕2,𝑠(𝑧1) which disconnects the inner and outer boundaries of A𝑠∕2,𝑠(𝑧𝑖), and any
path from 𝑢 to 𝜕𝐵𝑠(𝑧1) must contain a path from 𝑢 to 𝑥 (see Figure 14). By (5.13) and the second
inequality in (5.12), we therefore have

𝐷̃ℎ

(
𝑥, 𝑢; 𝐵𝑠(𝑧1)

)
⩽ 𝐷̃ℎ

(
𝑥, 𝜕𝐵𝑠∕2(𝑧1); 𝐵𝑠(𝑧1)

)
+ 𝐷̃ℎ

(
around A𝑠∕2,𝑠(𝑧1)

)
+ 𝐷̃ℎ(𝑢, 𝜕𝐵𝑠(𝑧1))

⩽ 𝐷̃ℎ

(
𝑥, 𝜕𝐵𝑠∕2(𝑧1); 𝐵𝑠(𝑧1)

)
+
(
𝑅2 + 1

)
(2𝗍1∕2)𝜃𝐷̃ℎ(𝑢, 𝑣). (5.14)

By combining (5.14) with observation (i) above, we get that for all 𝑥 ∈ 𝜕𝐵𝑠(𝑧1) except on a set
of one-dimensional Lebesgue measure at most (𝜆∕2)𝑠,

𝐷̃ℎ

(
𝑥, 𝑢; 𝐵𝑠(𝑧1)

)
⩽ (2𝑅2 + 1)(2𝗍)𝜃𝐷̃ℎ(𝑢, 𝑣). (5.15)

By (5.15) and our choice of 𝗍 in (5.8), we get that for all 𝑥 ∈ 𝜕𝐵𝑠(𝑧1) except on a set of
one-dimensional Lebesgue measure at most (𝜆∕2)𝑠,

𝐷̃ℎ

(
𝑥, 𝑢; 𝐵𝑠(𝑧1)

)
⩽ 𝜆2𝐷̃ℎ(𝑢, 𝑣). (5.16)
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80 DING and GWYNNE

F IGURE 14 Illustration of the proof of condition 3 in Lemma 5.2 with (𝑠, 𝑧1) in place of (𝗌𝑟, 𝗎𝑟). The
concatenation of the purple, orange, and green paths in the figure contains a path from 𝑢 to 𝑥. The 𝐷̃ℎ-length of
the purple path can be bounded above in terms of 𝐷̃ℎ(𝑢, 𝑣) by condition 3 from Lemma 5.3. The 𝐷̃ℎ-length of the
orange path can be bounded above in terms of 𝐷̃ℎ(𝑢, 𝑣) using (5.13), which in turn is proven using conditions 2
and 3 in the definition of 𝐺𝑠(𝑧1; 𝑅). For most points 𝑥 ∈ 𝜕𝐵𝑠(𝑧1), the 𝐷̃ℎ-length of the green path can be bounded
above in terms of 𝐷̃ℎ(𝑢, 𝑣) by condition 1 in the definition of 𝐺𝑠(𝑧1; 𝑅).

Since 𝜆 < 𝔠∗, the estimate (5.16) together with the bi-Lipschitz equivalence of 𝐷ℎ and 𝐷̃ℎ implies
that

𝐷ℎ

(
𝑥, 𝑢; 𝐵𝑠(𝑧1)

)
⩽ 𝜆𝐷̃ℎ(𝑢, 𝑣). (5.17)

This gives condition 3 in Lemma 5.2 with 𝑧1 in place of 𝗎𝑟 and 𝑠 in place of 𝗌𝑟. The analogous
bound with 𝑧2 in place of 𝗏𝑟 and 𝑠 in place of 𝗌𝑟 is proven similarly. □

Proof of Lemma 5.2. Let 𝗉 be as in Lemma 5.6. In light of Lemma 5.6, it suffices to find 𝖲 > 3 such
that with probability at least 1 − 𝗉, condition 4 in the lemma statement holds, that is, there exists
𝑡 ∈ [3𝑟, 𝖲𝑟] such that

𝐷ℎ

(
around A𝑡,2𝑡(0)

)
⩽ 𝜆𝐷ℎ

(
across A2𝑡,3𝑡(0)

)
. (5.18)

One can easily check using a ‘subtracting a bump function’ argument andWeyl scaling (Axiom III)
that there exists 𝑞 ∈ (0, 1) (depending only on 𝜆 and the law of 𝐷ℎ) such that for each fixed 𝑡 > 0,
the probability of the event in (5.18) is at least 𝑞. See [21, Lemma 6.1] for similar argument. We can
then apply assertion 2 of Lemma 2.1 to a collection of logarithmically many evenly spaced radii
𝑡𝑘 ∈ [3𝑟, 𝖲𝑟] to find that the probability that there does not exist 𝑡 ∈ [3𝑟, 𝖲𝑟] such that (5.18) holds
decays like a negative power of 𝖲 as 𝖲 → ∞, at a rate which depends only on the laws of 𝐷ℎ and
𝐷̃ℎ. We can therefore choose 𝖲 large enough so that this probability is at most 𝗉, as required. □

5.3 Building block event

Wewill use Lemma 5.2 to define an event whichwill be the ‘building block’ for the event 𝖤𝑟 = 𝖤0,𝑟.
Let the parameters 𝖲, 𝗉 > 0, the half-annulus𝖧𝑟 ⊂ A𝛼𝑟,𝑟(0), the radius 𝗌𝑟 ∈ [𝗍𝑟, 𝗍1∕2𝑟] ∩ {4−𝑘𝑟}𝑘∈N,
and the points

𝗎𝑟 ∈ 𝜕𝖧𝑟 ∩
{
𝛼𝑟𝑒𝑖𝜆𝗍𝑘 ∶ 𝑘 ∈ [1, 2𝜋𝜆−1𝗍−1]Z

}
and
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 81

𝗏𝑟 ∈ 𝜕𝖧𝑟 ∩
{
𝑟𝑒𝑖𝜆𝗍𝑘 ∶ 𝑘 ∈ [1, 2𝜋𝜆−1𝗍−1]Z

}
be as in Lemma 5.2.
For 𝑧 ∈ C, let

𝖧𝑧,𝑟 ∶= 𝖧𝑟 + 𝑧 ⊂ A𝛼𝑟,𝑟(𝑧),

𝗎𝑧,𝑟 ∶= 𝗎𝑟 + 𝑧 ∈ 𝜕𝖧𝑧,𝑟 ∩ 𝜕𝐵𝛼𝑟(𝑧), and

𝗏𝑧,𝑟 ∶= 𝗏𝑟 + 𝑧 ∈ 𝜕𝖧𝑧,𝑟 ∩ 𝜕𝐵𝑟(𝑧).

We also let 𝖥𝑧,𝑟 be the event of Lemma 5.2 with the translated field ℎ(⋅ − 𝑧) in place of ℎ. That
is, 𝖥𝑧,𝑟 is the event that there exist non-singular points 𝑢 ∈ 𝜕𝐵𝛼𝑟(𝑧) ∩ 𝐵𝗌𝑟∕2

(𝗎𝑧,𝑟) and 𝑣 ∈ 𝜕𝐵𝑟(𝑧) ∩

𝐵𝗌𝑟∕2
(𝗏𝑧,𝑟) with the following properties.

(1) 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′
0
𝐷ℎ(𝑢, 𝑣).

(2) There is a 𝐷̃ℎ-geodesic 𝑃 from 𝑢 to 𝑣 which is contained in 𝖧𝑧,𝑟.
(3) The one-dimensional Lebesgue measure of the set{

𝑥 ∈ 𝜕𝐵𝗌𝑟
(𝗎𝑧,𝑟) ∶ 𝐷ℎ

(
𝑥, 𝑢; 𝐵𝗌𝑟

(𝗎𝑧,𝑟)
)
> 𝜆𝐷̃ℎ(𝑢, 𝑣)

}
is at most (𝜆∕2)𝗌𝑟 and the same is true with 𝑣 and 𝗏𝑧,𝑟 in place of 𝑢 and 𝗎𝑧,𝑟.

(4) There exists 𝑡 ∈ [3𝑟, 𝖲𝑟] such that

𝐷ℎ

(
around A𝑡,2𝑡(𝑧)

)
⩽ 𝜆𝐷ℎ

(
across A2𝑡,3𝑡(𝑧)

)
.

By Lemma 5.2, the translation invariance of the law of ℎ, viewedmodulo additive constant, and
the translation invariance of 𝐷ℎ and 𝐷̃ℎ (Axiom IV′), we have

P[𝖥𝑧,𝑟] ⩾ 𝗉, ∀𝑧 ∈ C, ∀𝑟 ∈ 0. (5.19)

The other property of 𝖥𝑧,𝑟 which we need is that it depends locally on ℎ.

Lemma 5.7. The event 𝖥𝑧,𝑟 is almost surely determined by the restriction of ℎ to 𝐵3𝖲𝑟(𝑧), viewed
modulo additive constant.

Proof. It is clear from Weyl scaling (Axiom III) that adding a constant to ℎ does not affect the
occurrence of 𝖥𝑧,𝑟, so 𝖥𝑧,𝑟 is almost surely determined by ℎ, viewed modulo additive constant. It
therefore suffices to show that 𝖥𝑧,𝑟 is almost surely determined by ℎ|𝐵3𝖲𝑟(𝑧)

.
To this end, we first observe that by locality (Axiom II), the condition 4 in the definition of 𝖥𝑧,𝑟

is almost surely determined by ℎ|𝐵3𝖲𝑟(𝑧)
. We claim that if this condition holds, then

𝐷ℎ(𝑥, 𝑦) = 𝐷ℎ(𝑥, 𝑦; 𝐵3𝖲𝑟(𝑧)), ∀𝑥, 𝑦 ∈ 𝐵3𝑟(𝑧); (5.20)

and the same is true with 𝐷̃ℎ in place of 𝐷ℎ.
Indeed, it is clear that (5.20) holds if 𝑥 = 𝑦 or if either 𝑥 or 𝑦 is a singular point. Hence, we can

assume that 𝑥 ≠ 𝑦 and that 𝑥 and 𝑦 are not singular points. To prove (5.20), it suffices to show
that each 𝐷ℎ-geodesic from 𝑥 to 𝑦 is contained in 𝐵3𝖲𝑟(𝑧). To see this, let 𝑃 be a path from 𝑥 to
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82 DING and GWYNNE

𝑦 which exits 𝐵3𝖲𝑟(𝑧). Let 𝑡 ∈ [3𝑟, 𝖲𝑟] be as in condition 4 in the definition of 𝖥𝑧,𝑟. We can find a
path 𝜋 ⊂ A𝑡,2𝑡(𝑧) which disconnects the inner and outer boundaries of A𝑡,2𝑡(𝑧) such that

len(𝜋; 𝐷ℎ) < 𝐷ℎ

(
across A2𝑡,3𝑡(𝑧)

)
.

Since 𝑥, 𝑦 ∈ 𝐵3𝑟(𝑧) and 𝑃 exists 𝐵3𝑡(𝑧), the path 𝑃 must hit 𝜋, then cross between the inner
and outer boundaries of A2𝑡,3𝑡(𝑧), then subsequently hit 𝜋 again. This means that there are
two points of 𝑃 ∩ 𝜋 such that 𝐷ℎ-length of the segment of 𝑃 between the two points is at
least 𝐷ℎ(across A2𝑡,3𝑡(𝑧)). The 𝐷ℎ-distance between these two points is at most the 𝐷ℎ-length
of 𝜋, which by our choice of 𝜋 is strictly less than 𝐷ℎ(across A2𝑡,3𝑡(𝑧)). Hence, 𝑃 cannot be a
𝐷ℎ-geodesic. We therefore obtain (5.20) for 𝐷ℎ.
To prove (5.20) with 𝐷̃ℎ in place of 𝐷ℎ, we observe that if 𝑡 is as in condition 4 in the definition

of 𝖥𝑧,𝑟, then

𝐷̃ℎ

(
around A𝑡,2𝑡(𝑧)

)
⩽ ℭ∗𝐷ℎ

(
around A𝑡,2𝑡(𝑧)

)
⩽ 𝜆ℭ∗𝐷ℎ

(
across A2𝑡,3𝑡(𝑧)

)
⩽ 𝜆(ℭ∗∕𝔠∗)𝐷̃ℎ

(
across A2𝑡,3𝑡(𝑧)

)
.

We have 𝜆(ℭ∗∕𝔠∗) < 1, so we can now prove (5.20) with 𝐷̃ℎ in place of 𝐷ℎ via exactly the same
argument given above.
Due to (5.20), the definition of 𝖥𝑧,𝑟 is unaffected if we require that𝑃 is a 𝐷̃ℎ(⋅, ⋅; 𝐵3𝖲𝑟(𝑧))-geodesic

instead of a 𝐷̃ℎ-geodesic and we replace 𝐷ℎ-distances and 𝐷̃ℎ-distances by 𝐷ℎ(⋅, ⋅; 𝐵3𝖲𝑟(𝑧))-
distances and 𝐷̃ℎ(⋅, ⋅; 𝐵3𝖲𝑟(𝑧))-distances throughout. It then follows from locality (Axiom II) that
𝖥𝑧,𝑟 is almost surely determined by ℎ|𝐵3𝖲𝑟(𝑧)

, as required. □

5.4 Definitions of 𝗨𝒓, 𝗩𝒓, and 𝗳𝒓

The definitions of 𝖤𝑟, 𝖴𝑟, 𝖵𝑟, and 𝖿𝑟 will depend on parameters

1 > 𝖺1 >
1

𝖠2

> 𝖺3 > 𝖺4 > 𝖺5 > 𝖺6 >
1

𝖠7

>
1

𝖠8

> 𝖺9 >
1

𝖠10

, (5.21)

whichwill be chosen in Subsection 5.5 in amanner depending only onp, 𝜆, and the laws of𝐷ℎ and
𝐷̃ℎ. The parameters are listed in (5.21) in the order in which they will be chosen. Each parameter
will be allowed to depend on the earlier parameters as well as the number 𝜆 from (5.3) (which is
allowed to depend only on the laws of 𝐷ℎ and 𝐷̃ℎ, not on p). Each parameter will also be allowed
to depend on the numbers 𝛼, 𝗍, 𝖲, 𝗉 appearing in Lemma 5.2 (which have already been fixed, in a
manner depending only on 𝜆 and the laws of 𝐷ℎ and 𝐷̃ℎ).
Also let 𝜌 ∈ (0, 1) be a small parameter which will also be chosen in Subsection 5.5 in amanner

depending only on 𝜆 and the laws of 𝐷ℎ and 𝐷̃ℎ. We will have

𝖺4 > 𝜌 > 𝖺5, (5.22)

and 𝜌 will be allowed to depend on 𝜆, 𝖺1, 𝖠2, 𝖺3, 𝖺4 and the numbers appearing in Lemma 5.2.
In the rest of this subsection, we will give the definition of the open sets 𝖴𝑟 and 𝖵𝑟 and the

bump function 𝖿𝑟 in terms of 𝜌 and the parameters from (5.21). See Figure 15 for an illustration.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 83

F IGURE 15 The figure shows the sets 𝖧𝑧,𝜌𝑟 , 𝐵𝗌𝜌𝑟
(𝗎𝑧,𝜌𝑟), 𝐵𝗌𝜌𝑟

(𝗏𝑧,𝜌𝑟), and 𝖫𝑧,𝜌𝑟 for 𝑧 ∈ 𝖹𝑟 . We define 𝖴𝑟 to be
the union of 𝖧𝑧,𝜌𝑟 , 𝐵𝗌𝜌𝑟

(𝗎𝑧,𝜌𝑟), 𝐵𝗌𝜌𝑟
(𝗏𝑧,𝜌𝑟) and 𝐵𝜆𝗍𝜌𝑟(𝖫𝑧,𝜌𝑟) for 𝑧 ∈ 𝖹𝑟 . We define 𝖵𝑟 ∶= 𝐵𝖺9𝑟

(𝖴𝑟). The bump function
𝖿𝑟 is supported on 𝖵𝑟 and attains its maximal value 𝖠8 at every point of 𝖴𝑟 .

For 𝑟 ∈ 𝜌−10, let

𝖪𝜌 ∶=

⌈
𝜆

𝖲𝜌

⌉
, (5.23)

where 𝖲 is as in Lemma 5.2. We define the set of ‘test points’

𝖹𝑟 = 𝖹𝑟(𝜌) ∶=
{
2𝑟 exp

(
2𝜋𝑖𝑘∕𝖪𝜌

)
∶ 𝑘 ∈

[
1, 𝖪𝜌

]
Z

}
⊂ 𝜕𝐵2𝑟(0). (5.24)

The event 𝖤𝑟 will include the condition that the event 𝖥𝑧,𝜌𝑟 of Subsection 5.3 occurs for ‘many’ of
the points 𝑧 ∈ 𝖹𝑟.
Recall the half-annuli 𝖧𝑧,𝜌𝑟 and the balls 𝐵𝗌𝜌𝑟

(𝗎𝑧,𝜌𝑟) and 𝐵𝗌𝜌𝑟
(𝗏𝑧,𝜌𝑟) from the definition of

𝖥𝑧,𝜌𝑟. We emphasize that by Lemma 5.2, the number of possible choices for the half-annulus
(𝜌𝑟)−1[𝖧𝑧,𝜌𝑟 − 𝑧] and the balls (𝜌𝑟)−1[𝐵𝗌𝜌𝑟

(𝗎𝑧,𝜌𝑟) − 𝑧] and (𝜌𝑟)−1[𝐵𝗌𝜌𝑟
(𝗏𝑧,𝜌𝑟) − 𝑧] is at most a

constant depending only on 𝜆 and the laws of 𝐷ℎ and 𝐷̃ℎ.
Wewill now construct a ‘tube’ which links up the sets𝖧𝑧,𝜌𝑟 ∪ 𝐵𝗌𝜌𝑟

(𝗎𝑧,𝜌𝑟) ∪ 𝐵𝗌𝜌𝑟
(𝗏𝑧,𝜌𝑟) for 𝑧 ∈ 𝖹𝑟.

For 𝑘 ∈ [1, 𝖪𝜌]Z, let 𝑧𝑘 ∶= 2𝑟 exp(2𝜋𝑖𝑘∕𝖪𝑟) be the 𝑘th element of 𝖹𝑟. We also set 𝑧𝖪𝜌+1 ∶= 𝑧1. We
choose for each 𝑘 ∈ [1, 𝖪𝜌]Z a smooth simple path 𝖫𝑧𝑘,𝜌𝑟

from the point of 𝐵𝗌𝜌𝑟
(𝗏𝑧𝑘,𝜌𝑟) which is

furthest from 𝖧𝑧𝑘,𝜌𝑟
to the point of 𝐵𝗌𝜌𝑟

(𝗎𝑧𝑘+1,𝜌𝑟
) which is furthest from 𝖧𝑧𝑘+1,𝜌𝑟

. We can arrange
that these paths have the following properties.

(i) Each 𝖫𝑧𝑘,𝜌𝑟
is contained in the 10𝜌𝑟-neighborhood of 𝜕𝐵2𝑟(0).

(ii) The Euclidean distance from 𝖫𝑧𝑘,𝜌𝑟
to each of the half-annuli 𝖧𝑧𝑘,𝜌𝑟

and 𝖧𝑧𝑘+1,𝜌𝑟
is at least

𝗌𝜌𝑟∕2.
(iii) The Euclidean distance from 𝖫𝑧𝑘,𝜌𝑟

to each of the following sets is at least (1 − 𝛼)𝜌𝑟∕4:
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84 DING and GWYNNE

∙ the sets 𝖧𝑤,𝜌𝑟 for 𝑤 ∈ 𝖹𝑟 ⧵ {𝑧𝑘, 𝑧𝑘+1};
∙ the sets 𝖫𝑤,𝜌𝑟 for 𝑤 ∈ 𝖹𝑟 ⧵ {𝑧𝑘};
∙ the sets 𝐵𝗌𝜌𝑟

(𝗏𝑤,𝜌𝑟) for 𝑤 ∈ 𝖹𝑟 ⧵ {𝑧𝑘};
∙ the sets 𝐵𝗌𝜌𝑟

(𝗎𝑤,𝜌𝑟) for 𝑤 ∈ 𝖹𝑟 ⧵ {𝑧𝑘+1}.
(iv) The number of possibilities for the path (𝜌𝑟)−1(𝖫𝑧𝑘,𝜌𝑟

− 𝑧𝑘) is at most a constant depending
only on 𝜌, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ.

With 𝗍 as in Lemma 5.2, we define

𝖴𝑟 = 𝖴𝑟(𝜌) ∶=
⋃

𝑧∈𝖹𝑟(𝜌)

[
𝖧𝑧,𝜌𝑟 ∪ 𝐵𝗌𝜌𝑟

(𝗎𝑧,𝜌𝑟) ∪ 𝐵𝗌𝜌𝑟
(𝗏𝑧,𝜌𝑟) ∪ 𝐵𝜆𝗍𝜌𝑟(𝖫𝑧,𝜌𝑟)

]
(5.25)

and

𝖵𝑟 = 𝖵𝑟(𝖴𝑟, 𝖺9) ∶= 𝐵𝖺9𝑟
(𝖴𝑟). (5.26)

We emphasize that 𝖵𝑟 is determined by 𝖴𝑟 and 𝖺9 and (once 𝖺9 is fixed) the number of possible
choices for the set 𝑟−1𝖴𝑟 is at most a finite constant depending only on 𝜌, 𝜆, and the laws of 𝐷ℎ

and 𝐷̃ℎ. We cannot take 𝑟−1𝖴𝑟 to be independent from 𝑟 since the radius 𝗌𝜌𝑟 and the half-annulus
𝖧𝜌𝑟 from Lemma 5.2 are allowed to depend on 𝜌𝑟. This is a consequence of the fact that we only
have tightness across scales, not exact scale invariance. However, a constant upper bound for the
number of possibilities for 𝑟−1𝖴𝑟 will be enough for our purposes.
Let

𝖿𝑟 ∶ C → [0, 𝖠8] (5.27)

be a smooth bump function which is identically equal to 𝖠8 on 𝖴𝑟 and which is supported on 𝖵𝑟.
We can choose 𝖿𝑟 in such a way that 𝖿𝑟(𝑟⋅) depends only on 𝑟−1𝖴𝑟, which means that the number
of possible choices for 𝖿𝑟(𝑟⋅) is at most a finite constant depending only on 𝗍, 𝜌, 𝜆, and the laws of
𝐷ℎ and 𝐷̃ℎ.

5.5 Definition of 𝗘𝒓

We will now define the event 𝖤𝑟 = 𝖤0,𝑟 appearing in Subsection 4.1. Recall the parameters
from (5.21) and (5.22). For 𝑟 ∈ 𝜌−10, let 𝖤𝑟 be the event that the following is true. We will discuss
the purpose of each condition just after the definition.

(1) (Bound for distance across)We have

min
{
𝐷ℎ

(
across A𝑟,1.5𝑟(0)

)
, 𝐷ℎ

(
across A2.5𝑟,3𝑟(0)

)}
⩾ 𝖺1𝑟

𝜉𝑄𝑒𝜉ℎ𝑟(0).

(2) (Bound for distance around)We have

𝐷ℎ

(
around A3𝑟,4𝑟(0)

)
⩽ 𝖠2𝑟

𝜉𝑄𝑒𝜉ℎ𝑟(0).

(3) (Regularity along geodesics) The event of Lemma 2.13 occurs with 𝑈 = A1,4(0), 𝜒 = 1∕2,
and 𝜀0 = 𝖺3. That is, for each 𝜀 ∈ (0, 𝖺3], the following is true. Let 𝑉 ⊂ A𝑟,4𝑟(0) and let
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 85

𝑓 ∶ C → [0,∞) be a non-negative continuous function which is identically zero outside of
𝑉. Let 𝑧 ∈ A𝑟+𝜀1∕2,4𝑟−𝜀1∕2(0), 𝑥, 𝑦 ∈ A𝑟,4𝑟(0) ⧵ (𝑉 ∪ 𝐵𝜀1∕2𝑟(𝑧)), and 𝑠 > 0 such that there is a
𝐷ℎ−𝑓(⋅, ⋅;A𝑟,4𝑟(0))-geodesic 𝑃𝑓 from 𝑥 to 𝑦 with 𝑃𝑓(𝑠) ∈ 𝐵𝜀𝑟(𝑧). Assume that 𝑠 ⩽ inf {𝑡 > 0 ∶

𝑃𝑓(𝑡) ∈ 𝑉}. Then with 𝜃 = 𝜃(1∕2) > 0 as in Lemma 2.13,

𝐷ℎ

(
around A𝜀𝑟,𝜀1∕2𝑟(𝑧)

)
⩽ 𝜀𝜃𝑠. (5.28)

(4) (Existence of shortcuts) Let 𝖹𝑟 be the set of test points as in (5.24). For each connected circular
arc 𝐼 ⊂ 𝜕𝐵2𝑟(0)with Euclidean length at least 𝖺4𝑟∕2, there exists 𝑧 ∈ 𝐼 ∩ 𝖹𝑟 such that the event
𝖥𝑧,𝜌𝑟 of Subsection 5.3 occurs.

(5) (Comparison of distances in small annuli) For each 𝑧 ∈ A1.5𝑟,3𝑟(0) and each 𝛿 ∈ (0, 𝖺5],

𝐷ℎ

(
around A𝛿𝑟∕4,𝛿𝑟∕2(𝑧)

)
⩽ 𝛿−1∕4𝐷ℎ

(
across A2𝛿𝑟,3𝛿𝑟(𝑧)

)
. (5.29)

(6) (Reverse Hölder continuity) For each 𝑧, 𝑤 ∈ A1.5𝑟,3𝑟(0) with |𝑧 − 𝑤| ⩽ 𝜆−1𝖺5𝑟,

𝐷ℎ

(
𝑧, 𝑤;A𝑟,4𝑟(0)

)
⩾

(|𝑧 − 𝑤|
𝑟

)𝜉(𝑄+3)

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0).

(7) (Internal distance in 𝖴𝑟) We have

𝐷ℎ(around 𝖴𝑟) ⩽ 𝖠7𝑟
𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.30)

More strongly, there is a pathΠ ⊂ 𝖴𝑟 which disconnects the inner and outer boundaries of 𝖴𝑟

and has 𝐷ℎ-length at most 𝖠7𝑟
𝜉𝑄𝑒𝜉ℎ𝑟(0) such that each point of the outer boundary† of 𝖴𝑟 lies

at Euclidean distance at most 𝖺6𝑟 from Π.
(8) (Intersections of geodesics with a small neighborhood of the boundary) Let 𝑓 ∶ C → [0, 𝖠8]

be a continuous function and let 𝑃𝑓 be a 𝐷ℎ−𝑓(⋅, ⋅;A𝑟,4𝑟(0))-geodesic between two points
of 𝜕𝐵4𝑟(0). The one-dimensional Lebesgue measure of the set of 𝑥 ∈ 𝜕𝖴𝑟 such that 𝑃𝑓 ∩

𝐵2𝖺9𝑟
(𝑥) ≠ ∅ is at most 𝜆𝗍𝜌𝑟. Moreover, the same is true with 𝜕𝖴𝑟 replaced by each of the

circles 𝜕𝐵𝗌𝜌𝑟
(𝗎𝑧,𝜌𝑟) and 𝜕𝐵𝗌𝜌𝑟

(𝗏𝑧,𝜌𝑟) for 𝑧 ∈ 𝖹𝑟.
(9) (Radon–Nikodym derivative bound) The Dirichlet inner product of ℎ with 𝖿𝑟 satisfies

|(ℎ, 𝖿𝑟)∇| ⩽ 𝖠10. (5.31)

We will eventually show that 𝖤𝑟 satisfies the hypotheses for 𝖤0,𝑟 listed in Subsection 4.1. Before
beginning the proof of this fact, we discuss the various conditions in the definition of 𝖤𝑟.
Conditions 1 and 2 occur with high probability due to tightness across scales (Axiom V′). These

conditions are needed to ensure that hypothesis A from Subsection 4.1 is satisfied. Condition 2 is
also useful for upper-bounding the amount of time that a𝐷ℎ-geodesic or a𝐷ℎ−𝖿𝑟

-geodesic between
points outside of 𝐵4𝑟(0) can spend in 𝖵𝑟. Indeed, if 𝜋 is a path in A3𝑟,4𝑟(0) which disconnects
the inner and outer boundaries of near-minimal 𝐷ℎ-length (equivalently, near-minimal 𝐷ℎ−𝖿𝑟

-
length since 𝖵𝑟 ∩ A3𝑟,4𝑟(0) = ∅), then any such geodesic must hit 𝜋 both before and after hitting

† The set 𝖴𝑟 has the topology of a Euclidean annulus, so its boundary has two connected components, one of which
disconnects the other from∞. The outer boundary is the outer of these two components.
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86 DING and GWYNNE

𝖵𝑟. The length of the geodesic segment between these hitting times is at most the length of 𝜋. See
Lemma 5.12 for an application of this argument.
Condition 3 holds with high probability due to Lemma 2.13. This condition will eventually be

applied with 𝑉 = 𝖵𝑟 and 𝑓 = 𝖿𝑟. We allow a general choice of 𝑉 and 𝑓 in the condition statement
since we will choose the parameter 𝖺3 in condition 3 before we choose the parameters 𝜌, 𝖠8, 𝖺9
involved in the definitions of 𝖵𝑟 and 𝖿𝑟. The condition will be used in two places: to lower-bound
the Euclidean distance between two points on a 𝐷ℎ−𝖿𝑟

-geodesic in terms of their 𝐷ℎ-distance
(Lemma 5.11); and to link up a point on a 𝐷ℎ−𝖿𝑟

-geodesic which is close to 𝜕𝖴𝑟 with a path in
𝖴𝑟 (Lemma 5.21).
Condition 4 is in some sense the most important condition in the definition of 𝖤𝑟. Due to the

definition of 𝖥𝑧,𝜌𝑟 from Subsection 5.3, this condition provides a large collection of ‘good’ pairs of
points 𝑢, 𝑣 ∈ 𝖴𝑟 such that 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′

0
𝐷ℎ(𝑢, 𝑣). The fact that we consider the event 𝖥𝑧,𝜌𝑟 in this

condition is the reason why we need to require that 𝑟 ∈ 𝜌−10. We will need to make 𝜌 small
in order to make the set of test points 𝑧 ∈ 𝖹𝑟 of (5.24) large, so that we can apply a long-range
independence result for the GFF (Lemma 2.3) to say that condition 4 occurs with high probability.
See Lemma 5.13.
Condition 5 has high probability due to Lemma 2.8, and will be used in Subsection 5.10. More

precisely, we will consider a segment of a 𝐷ℎ−𝖿𝑟
-geodesic which is contained in a small Euclidean

neighborhood of the ball 𝐵𝗌𝜌𝑟
(𝗎𝑧,𝜌𝑟) in the definition of 𝖥𝑧,𝜌𝑟. We will use the paths around annuli

provided by condition 5 to ‘link up’ this geodesic segment to a short path from 𝑢 to the boundary
of this ball, as provided by condition 3 in the definition of 𝖥𝑧,𝜌𝑟 (see Lemma 5.34).
Condition 6 has high probability due to the local reverseHölder continuity of𝐷ℎ with respect to

the Euclidean metric [36, Proposition 3.8]. This condition will be used in several places, for exam-
ple, to force a𝐷ℎ−𝖿𝑟

-geodesic between two points of 𝜕𝖵𝑟 to stay in a small Euclidean neighborhood
of𝖵𝑟 (Lemma 5.22). See also the summary of Subsection 5.8 in Subsection 5.1. The requirement that|𝑧 − 𝑤| ⩽ 𝜆−1𝖺5𝑟 is needed to make the condition occur with high probability (cf. [36, Proposition
3.8]).
Condition 7 has high probability due to a straightforward argument based on tightness across

scales and the fact that there are only finitely many possibilities for 𝑟−1𝖴𝑟 (see Lemma 5.15). This
conditionwill be used to check the condition on𝐷ℎ(around 𝖴𝑟) in hypothesis A for 𝖤𝑟. The reason
why we need to require that each point of the outer boundary of 𝖴𝑟 is close to the path Π is as
follows. In the proof of Lemma 5.21, wewill consider a𝐷ℎ−𝖿𝑟

-geodesic 𝑃𝑟 and times 𝜏 < 𝜎 at which
it hits 𝜕𝖵𝑟.Wewill upper-bound 𝜎 − 𝜏 = 𝐷ℎ−𝖿𝑟

(𝑃𝑟(𝜏), 𝑃𝑟(𝜎)) by concatenating a segment ofΠwith
segments of small loops surrounding 𝑃𝑟(𝜏) and 𝑃𝑟(𝜎) which are provided by condition 3. The
condition on Π is needed to ensure that these small loops actually intersect Π.
Recall that 𝖿𝑟 ∶ C → [0, 𝖠8]. Condition 8 has high probability due to Lemma 2.14. We will even-

tually apply this condition with 𝑓 = 𝖿𝑟 in order to say that a 𝐷ℎ−𝖿𝑟
-geodesic cannot spend much

time in the region 𝖵𝑟 ⧵ 𝖴𝑟 where 𝖿𝑟 takes values strictly between 0 and 𝖠8 (see Lemmas 5.28
and 5.32). The reason why we allow a general choice of 𝑓 in the condition statement is that
𝖵𝑟 = 𝐵𝖺9𝑟

(𝖴𝑟), and hence also 𝖿𝑟, depends on the parameter 𝖺9, which needs to be made small
enough to make the probability of condition 8 close to 1.
The purpose of condition 9 is to check the Radon–Nikodym derivative hypothesis B from Sub-

section 4.1, see Proposition 5.17. This condition occurs with high probability due to the scale
invariance of the law of ℎ, modulo additive constant, and the fact that there are only finitely many
possibilities for 𝖿𝑟(𝑟⋅) (Lemma 5.16).
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 87

5.6 Properties of 𝗘𝒓

We first check that 𝖤𝑟 satisfies an appropriate measurability condition.

Lemma5.8. The event𝖤𝑟 is almost surely determined byℎ|A𝑟,4𝑟(0)
, viewedmodulo additive constant.

Proof. By Weyl scaling (Axiom III) that the occurrence of 𝖤𝑟 is unaffected by adding a constant
to ℎ, so 𝖤𝑟 is almost surely determined by ℎ viewed modulo additive constant. It is immediate
from locality (Axiom II; see also Subsection 2.2) that each condition in the definition of 𝖤𝑟 except
possibly condition 4 is almost surely determined by ℎ|

A𝑟,4𝑟(0)
. Lemma 5.7 implies that condition 4

is almost surely determined by ℎ|
A𝑟,4𝑟(0)

as well. □

Most of the rest of this subsection is devoted to proving the following.

Proposition 5.9. For each p ∈ (0, 1), we can choose the parameters in (5.21) and (5.22) in such a
way that

P[𝖤𝑟] ⩾ p, ∀𝑟 ∈ 𝜌−10. (5.32)

To prove Proposition 5.9, we will treat the conditions in the definition of 𝖤𝑟 in order. For each
condition, we will choose the parameters involved in the condition, in a manner depending only
on p, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ, in such a way that the condition occurs with high probability.
For some of the conditions, we will impose extra constraints on the parameters beyond just the
numerical ordering in (5.21) and (5.22). These constraints will be stated and referenced as needed
in the later part of the proof.

Lemma 5.10. There exists 𝖺1 > 1∕𝖠2 > 𝖺3 > 0 depending only on p, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ

such that for each 𝑟 > 0, the probability of each of conditions 1, 2, and 3 in the definition of 𝖤𝑟 is at
least 1 − (1 − p)∕10.

Proof. By tightness across scales (Axiom V′), we can choose 𝖺1, 𝖠2 > 0 such that the probabilities
of conditions 1 and 2 are each at least 1 − (1 − p)∕10. By Lemma 2.13, we can choose 𝖺3 > 0 such
that the probability of condition 3 is at least 1 − (1 − p)∕10. □

We henceforth fix 𝖺1, 𝖠2, 𝖺3 as in Lemma 5.10. Our next task is to make an appropriate choice
of the parameter 𝖺4 appearing in condition 4.

Lemma 5.11. Let 𝑟 > 0 and assume that conditions 1, 2, and 3 in the definition of 𝖤𝑟 occur. Let
𝑉 ⊂ A𝑟,3𝑟(0) and let𝑓 ∶ C → [0,∞) be a non-negative continuous functionwhich is identically zero
outside of 𝑉. Also let 𝑃𝑓 be a 𝐷ℎ−𝑓(⋅, ⋅;A𝑟,4𝑟(0))-geodesic between two points of 𝜕𝐵4𝑟(0) and define
the times

𝜏 ∶= inf {𝑡 > 0 ∶ 𝑃𝑓(𝑡) ∈ 𝑉} and 𝜎 ∶= sup{𝑡 > 0 ∶ 𝑃𝑓(𝑡) ∈ 𝑉}. (5.33)

There exists 𝖺4 > 0 depending only on p, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ such that the following is
true. If
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88 DING and GWYNNE

𝐷ℎ

(
𝑃𝑓(𝜏), 𝑃𝑓(𝜎); 𝐵4𝑟(0)

)
⩾

𝖺1
2

4𝖠2

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0), (5.34)

then |𝑃𝑓(𝜏) − 𝑃𝑓(𝜎)| ⩾ 𝖺4𝑟. (5.35)

The motivation for our choice of 𝖺4 comes from hypothesis C for 𝖤𝑟 from Subsection 4.1. We
will eventually apply Lemma 5.11 with 𝑉 = 𝖵𝑟, 𝑓 = 𝖿𝑟, and 𝑃𝑓 equal to a (𝐵4𝑟(0), 𝖵𝑟)-excursion of
a 𝐷ℎ−𝖿𝑟

-geodesic between two points of C ⧵ 𝐵4𝑟(0) (recall Definition 4.1). The assumption (5.34)
is closely related to the condition (4.4) from hypothesis C. The lower bound for |𝑃𝑓(𝜏) − 𝑃𝑓(𝜎)|
from (5.35) will eventually be combined with condition 4 in the definition of 𝖤𝑟 to ensure that
there is a 𝑧 ∈ 𝖹𝑟 such that 𝖥𝑧,𝑟 occurs and our 𝐷ℎ−𝖿𝑟

-geodesic gets Euclidean-close to each of the
points 𝑢, 𝑣 appearing in the definition of 𝖥𝑧,𝑟 (see Subsection 5.9).
For the proof of Lemma 5.11, we need the following lemma.

Lemma 5.12. Assume we are in the setting of Lemma 5.11 and let 𝑉, 𝑓, 𝑃𝑓, 𝜏, and 𝜎 be as in that
lemma. For each 𝜀 ∈ (0, 𝖺3], one has

max
{
𝐷ℎ

(
around A𝜀𝑟,𝜀1∕2𝑟(𝑃𝑓(𝜏))

)
, 𝐷ℎ

(
around A𝜀𝑟,𝜀1∕2𝑟(𝑃𝑓(𝜎))

)}
⩽ 2𝖠2𝜀

𝜃𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.36)

Proof. Let 𝜏0 (respectively, 𝜎0) be the last time before 𝜏 (respectively, the first time after 𝜎) at which
𝑃𝑓 hits 𝜕𝐵3𝑟(0). By condition 2 in the definition of 𝖤𝑟, there is a pathΠ ⊂ A3𝑟,4𝑟(0)with𝐷ℎ-length
at most 2𝖠2𝑟

𝜉𝑄𝑒𝜉ℎ𝑟(0) which disconnects the inner and outer boundaries of A3𝑟,4𝑟(0). Since 𝑓 is
supported on A𝑟,3𝑟(0), the 𝐷ℎ−𝑓-length of Π is the same as its 𝐷ℎ-length. The path 𝑃𝑓 must hit Π
before time 𝜏0 and after time 𝜎0. Since 𝑃𝑓 is a 𝐷ℎ−𝑓(⋅, ⋅;A𝑟,4𝑟(0))-geodesic, we infer that

𝜎0 − 𝜏0 ⩽ len
(
Π;𝐷ℎ−𝑓

)
⩽ 2𝖠2𝑟

𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.37)

Indeed, otherwise we could replace a segment of 𝑃𝑓 by a segment of Π to get a path in A𝑟,4𝑟(0)

with the same endpoints as 𝑃𝑓 but shorter 𝐷ℎ−𝑓-length.
By condition 3 in the definition of 𝖤𝑟 applied to the 𝐷ℎ−𝑓(⋅, ⋅;A𝑟,4𝑟(0))-geodesic 𝑃𝑓|[𝜏0,𝜎0] and

with 𝑧 = 𝑃𝑓(𝜏) and 𝑠 = 𝜏 − 𝜏0, for each 𝜀 ∈ (0, 𝖺3],

𝐷ℎ

(
around A𝜀𝑟,𝜀1∕2𝑟(𝑃𝑓(𝜏))

)
⩽ 𝜀𝜃(𝜏 − 𝜏0) ⩽ 𝜀𝜃(𝜎0 − 𝜏0) ⩽ 2𝜀𝜃𝖠2𝑟

𝜉𝑄𝑒𝜉ℎ𝑟(0), (5.38)

where the last inequality is by (5.37). The analogous bound with 𝜎 in place of 𝜏 follows from the
same argument applied with 𝑃𝑓 replaced by its time reversal. □

Proof of Lemma 5.11. See Figure 16 for an illustration. By Lemma 5.12, for each 𝜀 ∈ (0, 𝖺3] there is
a path 𝜋𝜀 ⊂ A𝜀𝑟,𝜀1∕2𝑟(𝑃𝑓(𝜏)) such that

len(𝜋𝜀; 𝐷ℎ) ⩽ 4𝜀𝜃𝖠2𝑟
𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.39)
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 89

F IGURE 16 Illustration of the proof of Lemma 5.11. If |𝑃𝑓(𝜏) − 𝑃𝑓(𝜎)| < 𝖺4𝑟, then the union of the orange
loop 𝜋𝖺4

and the segments 𝑃𝑓|[𝜏𝖺4 ,𝜏] and 𝑃𝑓|[𝜎,𝜎𝖺4
] contains a path from 𝑃𝑓(𝜏) to 𝑃𝑓(𝜎) of 𝐷ℎ−𝑓-length less than

𝖺1
2

4𝖠2

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0). This yields the contrapositive of the lemma statement.

Let 𝖺4 ∈ (0, 𝖺3] be chosen so that

4𝖺4
𝜃𝖠2 <

𝖺1
2

16𝖠2

. (5.40)

By (5.39) and since 𝑓 is non-negative,

len
(
𝜋𝖺4

; 𝐷ℎ−𝑓

)
⩽ len

(
𝜋𝖺4

; 𝐷ℎ

)
<

𝖺1
2

16𝖠2

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.41)

We will prove the contrapositive of the lemma statement with this choice of 𝖺4, that is, we will
show that if |𝑃𝑓(𝜏) − 𝑃𝑓(𝜎)| < 𝖺4𝑟, then 𝐷ℎ(𝑃𝑓(𝜏), 𝑃𝑓(𝜎); 𝐵4𝑟(0)) <

𝖺1
2

4𝖠2
𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0).

If |𝑃𝑓(𝜏) − 𝑃𝑓(𝜎)| < 𝖺4𝑟, then 𝑃𝑓(𝜎) ∈ 𝐵𝖺4𝑟
(𝑃𝑓(𝜏)). Since the endpoints of 𝑃𝑓 lie in 𝜕𝐵4𝑟(0),

which is disjoint from 𝐵𝖺4
1∕2𝑟(𝑃𝑓(𝜏)), it follows that 𝑃𝑓 hits 𝜋𝖺4

before time 𝜏 and after time 𝜎.
Let 𝜏𝖺4 (respectively, 𝜎𝖺4

) be the last time before time 𝜏 (respectively, the first time after time 𝜎) at
which 𝑃𝑓 hits 𝜋𝖺4

. Since 𝑃𝑓 is a 𝐷ℎ−𝑓(⋅, ⋅;A𝑟,4𝑟(0))-geodesic,

𝜎𝖺4
− 𝜏𝖺4 ⩽ len

(
𝜋𝖺4

; 𝐷ℎ−𝑓

)
<

𝖺1
2

16𝖠2

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0).

By the definitions (5.33) of 𝜏 and 𝜎, the path segments 𝑃𝑓|[𝜏𝖺4 ,𝜏] and 𝑃𝑓|[𝜎,𝜎𝖺4 ] are disjoint
from the support of 𝑓. So, the 𝐷ℎ−𝑓-lengths of these segments are the same as their 𝐷ℎ-lengths.
Consequently,

len
(
𝑃𝑓|[𝜏𝖺4 ,𝜏]; 𝐷ℎ

)
+ len

(
𝑃𝑓|[𝜎,𝜎𝖺4 ]; 𝐷ℎ

)
⩽ len

(
𝑃𝑓|[𝜏𝖺4 ,𝜎𝖺4 ]; 𝐷ℎ−𝑓

)
= 𝜎𝖺4

− 𝜏𝖺4 <
𝖺1

2

16𝖠2

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.42)

The union of 𝑃𝑓([𝜏𝖺4 , 𝜏]), 𝑃𝑓([𝜎, 𝜎𝖺4
]), and 𝜋𝖺4

contains a path from 𝑃𝑓(𝜏) to 𝑃𝑓(𝜎). Since 𝑉 ⊂

𝐵3𝑟(0), this path is contained in 𝐵4𝑟(0). We therefore infer from (5.41) and (5.42) that
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90 DING and GWYNNE

𝐷ℎ

(
𝑃𝑓(𝜏), 𝑃𝑓(𝜎); 𝐵4𝑟(0)

)
⩽

3𝖺1
2

16𝖠2

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0) <
𝖺1

2

4𝖠2

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0)

as required. □

Henceforth, fix 𝖺4 as in Lemma 5.11. We will now choose 𝜌 so that condition 4 in the definition
of 𝖤𝑟 occurs with high probability.

Lemma 5.13. There exists 𝜌 ∈ (0, 𝜆𝖺4), depending only on p, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ, such
that

𝜌𝜃𝖠2 ⩽ 𝜆𝖺1 (5.43)

and the following is true. For each 𝑟 ∈ 𝜌−10, it holds with probability at least 1 − (1 − p)∕10 that
condition 4 in the definition of 𝖤𝑟 occurs.

Proof. By the definition of 𝖪𝜌 in (5.23) and the definition of 𝖹𝑟(𝜌) in (5.24), there is a constant
𝑐 > 0 depending only on 𝖲, 𝖺4, and 𝜆 (hence only on p, 𝜆, and the laws of𝐷ℎ and 𝐷̃ℎ) such that for
each 𝜌 ∈ (0, 𝜆∕𝖲) and each 𝑟 ∈ 𝜌−10, the set 𝖹𝑟 = 𝖹𝑟(𝜌) satisfies the following properties.

(i) We have |𝑧 − 𝑤| ⩾ 50𝖲𝜌𝑟 for each distinct 𝑧, 𝑤 ∈ 𝖹𝑟(𝜌) (note that 𝜆 is much smaller than
1∕50, see (5.3)).

(ii) Each connected circular arc 𝐽 ⊂ 𝜕𝐵2𝑟(0)with Euclidean length at least 𝖺4𝑟∕4 contains at least⌊𝑐𝜌−1⌋ points of 𝖹𝑟(𝜌).

Furthermore, there is a constant 𝐶 > 0 depending only on 𝖺4 and a deterministic collection 
of arcs 𝐽 ⊂ 𝜕𝐵2𝑟(0) such that # ⩽ 𝐶, each 𝐽 ∈  has Euclidean length 𝖺4𝑟∕4, and each arc 𝐼 ⊂

𝜕𝐵2𝑟(0) with Euclidean length at least 𝖺4𝑟∕2 contains some 𝐽 ∈  .
By (5.19), for each 𝑟 ∈ 𝜌−10 and each 𝑧 ∈ 𝖹𝑟(𝜌), we have P[𝖥𝑧,𝜌𝑟] ⩾ 𝗉. By Lemma 5.7, each

𝖥𝑧,𝜌𝑟 is almost surely determined by ℎ|𝐵3𝜌𝑟(𝑧)
, viewedmodulo additive constant. Therefore, we can

apply Lemma 2.3 with ℎ replaced by the re-scaled field ℎ(𝑟⋅), which agrees in law with ℎmodulo
additive constant, and  = 𝑟−1(𝐽 ∩ 𝖹𝑟) to get the following. If 𝜌 is chosen to be sufficiently small
(depending on 𝗉 and 𝐶, hence only on p, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ), then

P

[ ⋃
𝑧∈𝖹𝑟∩𝐽

𝖥𝑧,𝜌𝑟

]
⩾ 1 −

1 − p

10𝐶
, ∀𝐽 ∈  .

By a union bound over all 𝐽 ∈  , we get that with probability at least 1 − (1 − p)∕10, each 𝐽 ∈ 
contains a point 𝑧 ∈ 𝖹𝑟(𝜌) such that 𝖥𝑧,𝜌𝑟 occurs. By the defining property of  , this concludes
the proof. □

We next deal with conditions 5 and 6 in the definition of 𝖤𝑟, which amounts to citing some
already-proven lemmas.

Lemma 5.14. There exists 𝖺5 ∈ (0, 𝜆(1 − 𝛼)𝗍𝜌] (where 𝗍 is as in Lemma 5.2), depending only onp, 𝜆,
and the laws of 𝐷ℎ and 𝐷̃ℎ, such that for each 𝑟 > 0, the probability of each of conditions 5 and 6 in
the definition of 𝖤𝑟 is at least 1 − (1 − p)∕10.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 91

Proof. The existence of 𝖺5 ∈ (0, 𝜆𝗍𝜌] such that condition 5 in the definition of 𝖤𝑟 each occur with
probability at least 1 − (1 − p)∕10 follows from Lemma 2.8. By the local reverse Hölder continuity
of𝐷ℎ with respect to the Euclideanmetric [36, Proposition 3.8], after possibly shrinking 𝖺5 we can
arrange that condition 6 also occurs with probability at least 1 − (1 − p)∕10. □

Wehenceforth fix 𝖺5 as in Lemma 5.14.We also let 𝖺6 ∈ (0,min{𝜆𝖺3, 𝖺5}) be chosen (in amanner
depending only on p𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ) so that

(2𝖺6)
𝜃𝖠2 ⩽ 𝜆𝖺5

𝜉(𝑄+3). (5.44)

The particular choice of 𝖺6 from (5.44) will be important in the proof of Lemma 5.21.

Lemma 5.15. There exists 𝖠7 > 1∕𝖺6, depending only on p, 𝜆, and the laws of𝐷ℎ and 𝐷̃ℎ, such that
for each 𝑟 ∈ 𝜌−10, the probability of condition 7 in the definition of 𝖤𝑟 is at least 1 − (1 − p)∕10.

Proof. The set 𝖴𝑟 has the topology of a Euclidean annulus and its boundary consists of two piece-
wise smooth Jordan loops. Write 𝜕out𝖴𝑟 for the outer boundary of 𝖴𝑟, that is, the outer of the two
loops. If 𝑟 ∈ 𝜌−10 is fixed, then as 𝜀 → 0 the Euclidean Hausdorff distance between the follow-
ing two sets tends to zero: 𝜕out𝖴𝑟 and 𝜕𝐵𝜀𝑟(𝜕

out𝖴𝑟) ∩ 𝖴𝑟 (that is, the intersection with 𝖴𝑟 of the
boundary of the Euclidean 𝜀-neighborhood of 𝜕out𝖴𝑟).
Since we have already chosen 𝜌 in a manner depending only on p, 𝜆, and the laws of 𝐷ℎ and

𝐷̃ℎ, the number of possible choices for 𝑟−1𝖴𝑟 is at most a constant depending only onp, 𝜆, and the
laws of𝐷ℎ and 𝐷̃ℎ. By combining thiswith the preceding paragraph,we find that there exists 𝜀 > 0,
depending only on p, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ, such that for each 𝑟 ∈ 𝜌−10, the Euclidean
Hausdorff distance between 𝜕out𝖴𝑟 and 𝜕𝐵𝜀𝑟(𝜕

out𝖴𝑟) ∩ 𝖴𝑟 is at most 𝖺6𝑟.
By tightness across scales (in the form of Lemma 2.5) and the fact that there are only finitely

many possibilities for 𝑟−1𝖴𝑟, there exists𝖠7 > 0 such that for each 𝑟 ∈ 𝜌−10, it holds with proba-
bility at least 1 − (1 − p)∕10 that the following is true. There is a pathΠ ⊂ 𝐵𝜀𝑟(𝜕

out𝖴𝑟) ∩ 𝖴𝑟 which
disconnects 𝜕out𝖴𝑟 from 𝜕𝐵𝜀𝑟(𝜕

out𝖴𝑟) ∩ 𝖴𝑟 and has 𝐷ℎ-length at most 𝖠7𝑟
𝜉𝑄𝑒𝜉ℎ𝑟(0).

The pathΠ disconnects the inner and outer boundaries of𝖴𝑟, so the existence ofΠ immediately
implies (5.30). Furthermore, by our choice of 𝜀, each point 𝑥 ∈ 𝜕out𝖴𝑟 lies at Euclidean distance at
most 𝖺6𝑟 from a point of 𝜕𝐵𝜀𝑟(𝜕

out𝖴𝑟) ∩ 𝖴𝑟. SinceΠ disconnects 𝜕out𝖴𝑟 from 𝜕𝐵𝜀𝑟(𝜕
out𝖴𝑟) ∩ 𝖴𝑟, the

line segment from 𝑥 to this point of 𝜕𝐵𝜀𝑟(𝜕
out𝖴𝑟) ∩ 𝖴𝑟 intersects Π. Consequently, the Euclidean

distance from 𝑥 to Π is at most 𝖺6𝑟. □

We henceforth fix 𝖠7 as in Lemma 5.15 and define

𝖠8 ∶=
1

𝜉
max

{
log

𝖠7

𝜆𝖺5
𝜉(𝑄+3)

, log
𝖠7

𝜆𝖺1

}
. (5.45)

Recall from (5.27) that 𝖠8 is the maximal value attained by 𝖿𝑟. We now treat the remaining two
conditions in the definition of 𝖿𝑟.

Lemma 5.16. There exists 𝖺9 ∈ (0, 𝜆∕𝖠8) and 𝖠10 > 1∕𝖺9, depending only on p, 𝜆, and the laws
of 𝐷ℎ and 𝐷̃ℎ, such that for each 𝑟 ∈ 𝜌−10, the probability of each of conditions 8 and 9 in the
definition of 𝖤𝑟 is at least 1 − (1 − p)∕10.
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92 DING and GWYNNE

Proof. Since we have already chosen 𝜌 in a manner depending only on p, 𝜆, and the laws of 𝐷ℎ

and 𝐷̃ℎ, the number of possible choices for 𝑟−1𝖴𝑟 is at most a constant depending only on p, 𝜆,
and the laws of 𝐷ℎ and 𝐷̃ℎ. The set 𝖴𝑟 has the topology of a Euclidean annulus and its boundary
consists of two piecewise smooth Jordan loops. By the preceding sentence, the Euclidean length
of each of the two boundary loops of𝖴𝑟 is at most a constant (depending only onp, 𝜆, and the laws
of 𝐷ℎ and 𝐷̃ℎ) times 𝑟. We can therefore apply Lemma 2.14 with 𝑀 = 𝖠8 and the curve 𝜂 given
by each of the two boundary loops of 𝖴𝑟, parameterized by its Euclidean length. This shows that
there exists 𝖺9 ∈ (0, 𝜆∕𝖠8) depending only on p, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ such that the event
of condition 8 in the definition of 𝖤𝑟 for the set 𝜕𝖴𝑟 occurs with probability at least 1 − (1 − p)∕20.
By a union bound over at most a universal constant times (𝜆𝗍𝜌)−1 points 𝑧 ∈ 𝖹𝑟, after possibly

decreasing 𝖺9 we can also arrange that with probability at least 1 − (1 − p)∕20, the event of con-
dition 8 occurs for each of the circles 𝜕𝐵𝗌𝜌𝑟

(𝗎𝑧,𝜌𝑟) and 𝜕𝐵𝗌𝜌𝑟
(𝗏𝑧,𝜌𝑟) for 𝑧 ∈ 𝖹𝑟. Combining this with

the preceding paragraph shows that condition 8 has probability at least 1 − (1 − p)∕10.
The number of possible choices for the function 𝖿𝑟(𝑟⋅) is at most a constant depending only on

p, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ. By the conformal invariance of the Dirichlet inner product and
the scale invariance of the law of ℎ, viewed modulo additive constant,

(ℎ, 𝖿𝑟)∇ = (ℎ(𝑟⋅), 𝖿𝑟(𝑟⋅))∇
𝑑
= (ℎ, 𝖿𝑟(𝑟⋅))∇.

Therefore, we can find 𝖠10 > 1∕𝖺9 depending only on p, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ such that
the probability of condition 9 is at least 1 − (1 − p)∕10. □

Proof of Proposition 5.9. Combine Lemmas 5.10, 5.13, 5.14, 5.15, and 5.16. □

We can also easily check the first two of the three hypotheses for 𝖤𝑟 from Subsection 4.1.

Proposition 5.17. Let 𝑟 ∈ 𝜌−10. On the event 𝖤𝑟, hypotheses A and B in Subsection 4.1 hold for
𝖤0,𝑟 = 𝖤𝑟 with

𝖺 = 𝖺1, 𝖠 = 𝖠2, 𝖫 = 𝖠7, (5.46)

and an appropriate choice of 𝖪 > 0 depending only on the parameters from (5.21) and (5.22) (hence
only on p, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ). That is, on 𝖤𝑟, the following is true.

(A) We have

𝐷ℎ(𝖵𝑟, 𝜕A𝑟,3𝑟(0)) ⩾ 𝖺1𝑟
𝜉𝑄𝑒𝜉ℎ𝑟(0),

𝐷ℎ(around A3𝑟,4𝑟(0)) ⩽ 𝖠2𝑟
𝜉𝑄𝑒𝜉ℎ𝑟(0), and

𝐷ℎ(around 𝖴𝑟) ⩽ 𝖠7𝑟
𝜉𝑄𝑒𝜉ℎ𝑟(0).

(B) There is a constant 𝖪 > 0, depending only on the parameters from (5.21) and (5.22), such that
the Radon–Nikodym derivative of the law of ℎ + 𝖿𝑟 with respect to the law of ℎ, with both
distributions viewed modulo additive constant, is bounded above by 𝖪 and below by 𝖪−1.

Proof. We have 𝖵𝑟 ⊂ A1.5𝑟,2.5𝑟(0), so hypothesis A follows immediately from conditions 1, 2, and 7
in the definition of 𝖤𝑟. By a standard calculation for the GFF (see, for example, the proof of [34,
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 93

Proposition 3.4]), the Radon–Nikodym derivative of the law of ℎ + 𝖿𝑟 with respect to the law of ℎ,
with both distributions viewed modulo additive constant, is equal to

exp
(
(ℎ, 𝖿𝑟)∇ −

1

2
(𝖿𝑟, 𝖿𝑟)∇

)
,

where (⋅, ⋅)∇ is the Dirichlet inner product. Since the number of possibilities for 𝖿𝑟(𝑟⋅) is at most a
constant depending only onp, 𝜆, and the laws of𝐷ℎ and 𝐷̃ℎ, we infer that (𝖿𝑟, 𝖿𝑟)∇ is bounded above
by a constant 𝐶 depending only on p, 𝜆, and the laws of 𝐷ℎ and 𝐷̃ℎ (cf. the proof of Lemma 5.16).
By combining this with condition 9 in the definition of 𝖤𝑟, we get that on 𝖤𝑟, we have the Radon–
Nikodym derivative bounds

exp
(
−𝖠10 −

1

2
𝐶
)

⩽ exp
(
(ℎ, 𝖿𝑟)∇ −

1

2
(𝖿𝑟, 𝖿𝑟)∇

)
⩽ exp(𝖠10).

This gives hypothesis B with 𝖪 = exp(𝖠10 + 𝐶∕2). □

Most of the rest of this section is devoted to checking hypothesis C of Subsection 4.1 for the
events 𝖤𝑟.

Proposition 5.18. Fix 𝔠′ > 𝔠′
0
. If 𝜆 is chosen to be small enough (in a manner depending only on

the laws of 𝐷ℎ and 𝐷̃ℎ) and the parameters from (5.21) and (5.22) are chosen appropriately, subject
to the constraints stated in the discussion around (5.21) and (5.22), then hypothesis C holds for the
events 𝖤𝑟 with

𝖻 ∶=
𝖺1

2

4𝖠2

and 𝖼 ∶= 𝖺5
𝜉(𝑄+3)𝑒−𝜉𝖠8 . (5.47)

That is, let 𝑟 ∈ 𝜌−10 andassume that𝖤𝑟 occurs. Let𝑃𝑟 be a𝐷ℎ−𝖿𝑟
-geodesic between twopoints ofC ⧵

𝐵4𝑟(0), parameterized by its 𝐷ℎ−𝖿𝑟
-length. Assume that there is a (𝐵4𝑟(0), 𝖵𝑟)-excursion (𝜏′, 𝜏, 𝜎, 𝜎′)

for 𝑃𝑟 (Definition 4.1) such that

𝐷ℎ(𝑃𝑟(𝜏), 𝑃𝑟(𝜎); 𝐵4𝑟(0)) ⩾ 𝖻𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.48)

There exist times 𝜏 ⩽ 𝑠 < 𝑡 ⩽ 𝜎 such that

𝑡 − 𝑠 ⩾ 𝖼𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0) and 𝐷̃ℎ−𝖿𝑟

(
𝑃𝑟(𝑠), 𝑃𝑟(𝑡);A𝑟,4𝑟(0)

)
⩽ 𝔠′(𝑡 − 𝑠). (5.49)

The proof of Proposition 5.18 will occupy Subsections 5.8 through 5.11.

5.7 Proof of Proposition 4.2 assuming Proposition 5.18

In this subsection, we will assume Proposition 5.18 and deduce Proposition 4.2. As explained in
Section 4, this gives us a proof of our main results modulo Proposition 5.18.
Assume that the parameters from (5.21) and (5.22) are chosen so that the conclusions of Propo-

sitions 5.9 and 5.18 are satisfied. Let0 be as in (5.2) and let ∶= 𝜌−10. Since0 ⊂ {8−𝑘}𝑘∈N,
we have 𝑟′∕𝑟 ⩾ 8 whenever 𝑟, 𝑟′ ∈  with 𝑟′ > 𝑟, so (4.2) holds.
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94 DING and GWYNNE

The event 𝖤𝑟 is defined for each 𝑟 ∈ . By Lemma 5.8, the event 𝖤𝑟 is almost surely determined
by ℎ|

A𝑟,4𝑟(0)
, viewed modulo additive constant. By Proposition 5.9, P[𝖤𝑟] ⩾ p for each 𝑟 ∈ . By

the definitions in Subsection 5.4, the sets 𝖴𝑟 and 𝖵𝑟 and the functions 𝖿𝑟 satisfy the requirements
for𝖴0,𝑟, 𝖵0,𝑟, and 𝖿0,𝑟 from Subsection 4.1, with themaximal value of 𝖿𝑟 given by𝖬 = 𝖠8. By Propo-
sitions 5.17 and 5.18, the event 𝖤𝑟 satisfies hypotheses A, B, and C from Subsection 4.1 for 𝑧 = 0,
with the parameters 𝖺, 𝖠, 𝖫, 𝖪, 𝖻, 𝖼 depending on the parameters from (5.21) and (5.22).
To check the needed parameter relation (4.3), we observe that Proposition 5.17 gives 𝖺 = 𝖺1,

𝖠 = 𝖠2, and 𝖫 = 𝖠7. By (5.21), we immediately get 𝖠 ⩾ 𝖺. Furthermore, by (5.47),

2𝖠

𝖺
𝖻 =

2𝖠2

𝖺1
×

𝖺1
2

4𝖠2

=
𝖺1
2
. (5.50)

Moreover, by (5.45),

𝖺 − 4𝑒−𝜉𝖬𝖫 = 𝖺1 − 4𝑒−𝜉𝖠8𝖠7 ⩾ 𝖺1 − 4𝜆𝖺1 >
𝖺1
2
. (5.51)

Combining (5.50) and (5.51) gives the second inequality in (4.3).
For 𝑟 ∈  and 𝑧 ∈ C, we define 𝖤𝑧,𝑟 to be the event 𝖤𝑟 of Subsection 5.5 with the translated field

ℎ(⋅ − 𝑧) − ℎ1(−𝑧)
𝑑
= ℎ in place of ℎ. We also define 𝖴𝑧,𝑟 ∶= 𝖴𝑟 + 𝑧, 𝖵𝑧,𝑟 ∶= 𝖵𝑟 + 𝑧, and 𝖿𝑧,𝑟(⋅) ∶=

𝖿𝑟(⋅ − 𝑧). By the translation invariance property of weak LQG metrics (Axiom IV′), the objects
𝖤𝑧,𝑟, 𝖴𝑧,𝑟, 𝖵𝑧,𝑟, and 𝖿𝑧,𝑟 satisfy the hypotheses of Subsection 4.1.
It remains to prove the asserted lower bound for #( ∩ [𝜀2r, 𝜀r]) under the assumption that

P[𝐺r(𝛽, 𝔠
′′)] ⩾ 𝛽. By Proposition 3.10 (applied with 𝔠′

0
instead of 𝔠′), the definition (5.2), of 0,

and our choice of 𝛼 and 𝑝0 immediately preceding (5.2), there exists 𝔠′′ ∈ (𝔠∗, ℭ∗) depending only
on 𝔠′

0
and the laws of 𝐷ℎ and 𝐷̃ℎ such that the following is true. For each 𝛽 > 0 there exists 𝜀1 > 0,

depending only on p, 𝛽, and the laws of 𝐷ℎ and 𝐷̃ℎ, such that for each 𝜀 ∈ (0, 𝜀1] and each r > 0

such that P[𝐺r(𝛽, 𝔠
′′)] ⩾ 𝛽, the cardinality of0 ∩ [𝜀2r, 𝜀r] is at least 3

4
log8 𝜀

−1. This implies that
if 𝜀 ∈ (0, 𝜀1],

#
( ∩ [𝜀2r, 𝜀r]

)
= #

(0 ∩ [𝜌𝜀2r, 𝜌𝜀r]
)

(since = 𝜌−10)

⩾ #
(0 ∩ [(𝜌𝜀)2r, 𝜌𝜀r]

)
− #

(0 ∩ [(𝜌𝜀)2r, 𝜌𝜀2r]
)

⩾ #
(0 ∩ [(𝜌𝜀)2r, 𝜌𝜀r]

)
− log8 𝜌

−1 (since0 ⊂ {8−𝑘}𝑘∈N)

⩾
3

4
log8 𝜀

−1 − log8 𝜌
−1 (since 𝜌𝜀 ⩽ 𝜀1)

⩾
5

8
log8 𝜀

−1 (for small enough 𝜀 > 0, depending on 𝜌).

Thus, Proposition 4.2 has been proven. □

5.8 Initial estimates for a geodesic excursion

To prove our main results, it remains to prove Proposition 5.18. In the rest of this section, we
will assume that we are in the setting of Proposition 5.18, that is, we assume that 𝖤𝑟 occurs, 𝑃𝑟
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 95

is a 𝐷ℎ−𝖿𝑟
-geodesic between two points of C ⧵ 𝐵4𝑟(0), and (𝜏′, 𝜏, 𝜎, 𝜎′) is a (𝐵4𝑟(0), 𝖵𝑟)-excursion

satisfying (5.48). It follows from Definition 4.1 that

𝑃𝑟(𝜏
′), 𝑃𝑟(𝜎

′) ∈ 𝜕𝐵4𝑟(0), 𝑃𝑟(𝜏), 𝑃𝑟(𝜎) ∈ 𝜕𝖵𝑟, 𝑃𝑟((𝜏
′, 𝜎′)) ⊂ 𝐵4𝑟(0),

and 𝑃𝑟((𝜏
′, 𝜏)) ∪ 𝑃𝑟((𝜎, 𝜎

′)) ⊂ 𝐵4𝑟(0) ⧵ 𝖵𝑟. (5.52)

We will prove (5.49) via a purely deterministic argument. We first check the following lemma,
which will enable us to apply conditions 3 and 8 in the definition of 𝖤𝑟 to 𝑃𝑟|[𝜏′,𝜎′].

Lemma 5.19. The path 𝑃𝑟|[𝜏′,𝜎′] is contained in A𝑟,4𝑟(0) and is a 𝐷ℎ−𝖿𝑟
(⋅, ⋅;A𝑟,4𝑟(0))-geodesic

between two points of 𝜕𝐵4𝑟(0).

Proof. We have 𝑃𝑟|(𝜏′,𝜎′) ⊂ 𝐵4𝑟(0) and 𝑃𝑟(𝜏
′), 𝑃𝑟(𝜎

′) ∈ 𝜕𝐵4𝑟(0) by (5.52). We claim that 𝑃𝑟 does
not enter 𝐵𝑟(0). Assume the claim for the moment. Then 𝑃𝑟|(𝜏′,𝜎′) ⊂ A𝑟,4𝑟(0). Since 𝑃𝑟 is a 𝐷ℎ−𝖿𝑟

-
geodesic, the𝐷ℎ−𝖿𝑟

-length of 𝑃𝑟|[𝜏′,𝜎′] is the same as the𝐷ℎ−𝖿𝑟
-distance between its endpoints. We

conclude that 𝑃𝑟|(𝜏′,𝜎′) is a path in A𝑟,4𝑟(0) whose 𝐷ℎ−𝖿𝑟
-length is the same as the 𝐷ℎ−𝖿𝑟

-distance
between its endpoints, which is at most the 𝐷ℎ−𝖿𝑟

(⋅, ⋅;A𝑟,4𝑟(0))-distance between its endpoints.
Hence, 𝑃𝑟|[𝜏′,𝜎′] is a 𝐷ℎ−𝖿𝑟

(⋅, ⋅;A𝑟,4𝑟(0))-geodesic.
It remains to show that 𝑃𝑟 does not enter 𝐵𝑟(0). Assume by way of contradiction that 𝑃𝑟 ∩

𝐵𝑟(0) ≠ ∅. By condition 7 (internal distance in 𝖴𝑟) in the definition of 𝖤𝑟, there is a path Π in
𝖴𝑟 which disconnects the inner and outer boundaries of 𝖴𝑟 such that

len(Π;𝐷ℎ) ⩽ 2𝖠7𝑟
𝜉𝑄𝑒𝜉ℎ𝑟(0).

Let 𝜏0 (respectively, 𝜎0) be the first (respectively, last) time that 𝑃𝑟 hits Π.
Since 𝑃𝑟 is a 𝐷ℎ−𝖿𝑟

-geodesic and 𝖿𝑟 ≡ 𝖠8 on 𝖴𝑟,

𝜎0 − 𝜏0 = 𝐷ℎ−𝖿𝑟
(𝑃𝑟(𝜏0), 𝑃𝑟(𝜎0)) ⩽ len

(
Π;𝐷ℎ−𝖿𝑟

)
⩽ 2𝑒−𝜉𝖠8𝖠7𝑟

𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.53)

On the other hand, since 𝖴𝑟 ⊂ A1.5𝑟,2.5𝑟(0) and we are assuming that 𝑃𝑟 hits 𝐵𝑟(0), it follows that
𝑃𝑟 must cross between the inner and outer boundaries of the annulus A𝑟,1.5𝑟(0) between time 𝜏0
and time 𝜎0. Since 𝖿𝑟 ≡ 0 on A𝑟,1.5𝑟(0) and by condition 1 (lower bound for distance across) in the
definition of 𝖤𝑟,

𝜎0 − 𝜏0 = len
(
𝑃𝑟|[𝜏0,𝜎0]; 𝐷ℎ−𝖿𝑟

)
⩾ 𝐷ℎ

(
across A𝑟,1.5𝑟(0)

)
⩾ 𝖺1𝑟

𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.54)

By our choice of 𝖠8 in (5.45), the right side of (5.53) is smaller than the right side of (5.54), which
supplies the desired contradiction. □

From Lemma 5.11, we now obtain the following.

Lemma 5.20. We have

|𝑃𝑟(𝜎) − 𝑃𝑟(𝜏)| ⩾ 𝖺4𝑟.
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96 DING and GWYNNE

F IGURE 17 Illustration of the proof of Lemma 5.21. We obtain a path from a point of 𝑃𝑟([𝜏
′, 𝜏]) to a point of

𝑃𝑟([𝜎, 𝜎
′]) whose 𝐷ℎ−𝖿𝑟

-length is at most the right side of (5.55) by concatenating segments of 𝜋𝜏,Π, and 𝜋𝜎 . This
implies an upper bound for 𝜎 − 𝜏 since 𝑃𝑟 is a 𝐷ℎ−𝖿 -geodesic.

Proof. Due to Lemma 5.19 and (5.48), this follows from Lemma 5.11 applied with 𝑉 = 𝖵𝑟, 𝑓 = 𝖿𝑟,
and 𝑃𝑓 equal to the 𝐷ℎ−𝖿𝑟

-geodesic 𝑃𝑟|[𝜏′,𝜎′]. □

By (5.52), we have 𝑃−1
𝑟 (𝖵𝑟) ⊂ [𝜏, 𝜎]. We will now establish an upper bound for the length of this

time interval.

Lemma 5.21. We have

𝜎 − 𝜏 ⩽
1

2
𝖺5

𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.55)

Proof. See Figure 17 for an illustration. Let 𝖺6 ∈ (0, 𝜆𝖺3] be as in (5.44). By Lemma 5.19, we can
apply Lemma 5.12 (with 𝜀 = 2𝖺6) to the 𝐷ℎ(⋅, ⋅;A𝑟,4𝑟(0))-geodesic 𝑃𝑟|[𝜏′,𝜎′] to get that there are
paths 𝜋𝜏 ⊂ A2𝖺6𝑟,(2𝖺6)

1∕2𝑟(𝑃𝑟(𝜏)) and 𝜋𝜎 ⊂ A2𝖺6𝑟,(2𝖺6)
1∕2𝑟(𝑃𝑟(𝜎)) which disconnect the inner and

outer boundaries of their respective annuli such that

max{len(𝜋𝜏; 𝐷ℎ), len(𝜋𝜎; 𝐷ℎ)} ⩽ (2𝖺6)
𝜃𝖠2𝑟

𝜉𝑄𝑒𝜉ℎ𝑟(0) ⩽ 𝜆𝖺5
𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0), (5.56)

where the last inequality is by (5.44). Let 𝜏0 be the last time before 𝜏 that 𝑃𝑟 hits 𝜋𝜏 and let 𝜎0 be
the first time after 𝜎 that 𝑃𝑟 hits 𝜋𝜎. Then 𝜏0 ∈ [𝜏′, 𝜏] and 𝜎0 ∈ [𝜎, 𝜎′].
By condition 7 (internal distance in 𝖴𝑟) in the definition of 𝖤𝑟, there is a path Π ⊂ 𝖴𝑟 which

disconnects the inner and outer boundaries of 𝖴𝑟, has 𝐷ℎ-length at most 𝖠7𝑟
𝜉𝑄𝑒𝜉ℎ𝑟(0), and such

that each point of the outer boundary of 𝖴𝑟 lies at Euclidean distance at most 𝖺6𝑟 from Π. We
have 𝑃𝑟(𝜏) ∈ 𝜕𝖵𝑟 = 𝜕𝐵𝖺9𝑟

(𝖴𝑟) and 𝑃([𝜏′, 𝜏]) is contained in the unbounded connected component
of C ⧵ 𝖴𝑟. Hence, 𝑃𝑟(𝜏) lies at Euclidean distance at most 𝖺9𝑟 from the outer boundary of 𝖴𝑟.
Therefore, the Euclidean distance from 𝑃𝑟(𝜏) to Π is at most (𝖺9 + 𝖺6)𝑟 ⩽ 2𝖺6𝑟, where we use that
𝖺9 ⩽ 𝖺6 by definition.
Since 𝜋𝜏 ⊂ A2𝖺6𝑟,(2𝖺6)

1∕2𝑟(𝑃𝑟(𝜏)) and 𝜋𝜏 disconnects the inner and outer boundaries of
A2𝖺6𝑟,(2𝖺6)

1∕2𝑟(𝑃𝑟(𝜏)), it follows from the preceding paragraph that 𝜋𝜏 intersectsΠ. Similarly, 𝜋𝜎

intersects Π. Hence, the union of the loops Π, 𝜋𝜏, and 𝜋𝜎 contains a path from 𝑃𝑟(𝜏0) to 𝑃𝑟(𝜎0).
Therefore,

𝜎 − 𝜏 ⩽ 𝜎0 − 𝜏0 = 𝐷ℎ−𝖿𝑟
(𝑃𝑟(𝜏0), 𝑃𝑟(𝜎0))

⩽ len
(
𝜋𝜏; 𝐷ℎ−𝖿𝑟

)
+ len

(
𝜋𝜎; 𝐷ℎ−𝖿𝑟

)
+ len

(
Π;𝐷ℎ−𝖿𝑟

)
(5.57)
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 97

Let us now bound the right side of (5.57). Since 𝖿𝑟 is non-negative, the 𝐷ℎ−𝖿𝑟
-length of each of

𝜋𝜏 and 𝜋𝜎 is at most the right side of (5.56). Since 𝖿𝑟 ≡ 𝖠8 on 𝖴𝑟,

len
(
Π;𝐷ℎ−𝖿𝑟

)
= 𝑒−𝜉𝖠8 len(Π;𝐷ℎ) ⩽ 𝑒−𝜉𝖠8𝖠7𝑟

𝜉𝑄𝑒𝜉ℎ𝑟(0) ⩽ 𝜆𝖺5
𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0), (5.58)

where the last inequality uses the definition (5.45) of𝖠8. Plugging these estimates into (5.57) gives

𝜎 − 𝜏 ⩽ 3𝜆𝖺5
𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0), (5.59)

which is stronger than (5.55). □

Combining Lemma 5.21 with condition 6 (reverse Hölder continuity) in the definition of 𝖤𝑟

allows us to show that any segment of 𝑃𝑟|[𝜏,𝜎] which is disjoint from 𝖵𝑟 must have small Euclidean
diameter.

Lemma 5.22. Each segment of 𝑃𝑟|[𝜏,𝜎] which is disjoint from 𝖵𝑟 has Euclidean diameter at most
𝖺5𝑟. In particular,

𝑃𝑟([𝜏, 𝜎]) ⊂ 𝐵𝖺5𝑟
(𝖵𝑟).

Proof. Suppose byway of contradiction that there is a segment𝑃𝑟|[𝑡,𝑠] for times 𝜏 ⩽ 𝑡 < 𝑠 ⩽ 𝜎which
is disjoint from 𝖵𝑟 and has Euclidean diameter larger than 𝖺5𝑟. By (5.52), 𝑃𝑟([𝜏, 𝜎]) intersects 𝖵𝑟.
Hence, by possibly replacing 𝑃𝑟|[𝑡,𝑠] by a segment of 𝑃𝑟 which travels from 𝜕𝖵𝑟 to 𝜕𝐵𝖺5𝑟

(𝖵𝑟), we can
assumewithout loss of generality that𝑃𝑟([𝑡, 𝑠]) is contained in𝐵𝖺5𝑟

(𝖵𝑟), which in turn is contained
inA1.5𝑟,3𝑟(0) by the definition of 𝖵𝑟 (Subsection 5.4). By the reverse Hölder continuity condition 6
in the definition of 𝖤𝑟, the𝐷ℎ-length of 𝑃𝑟|[𝑡,𝑠] is at least 𝖺5𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0). Since 𝖿𝑟 is supported on
𝖵𝑟, the 𝐷ℎ−𝖿𝑟

-length of 𝑃𝑟|[𝑡,𝑠] is equal to its 𝐷ℎ-length, so is also at least 𝖺5𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0). Since
𝑃𝑟|[𝜏,𝜎] is a 𝐷ℎ−𝖿𝑟

-geodesic, we therefore have

𝜎 − 𝜏 ⩾ 𝑠 − 𝑡 ⩾ 𝖺5
𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.60)

This contradicts Lemma 5.21. □

5.9 Forcing a geodesic to enter balls centered at 𝘂𝒛,𝝆𝒓 and 𝘃𝒛,𝝆𝒓

Recall the balls 𝐵𝗌𝜌𝑟
(𝗎𝑧,𝜌𝑟) and 𝐵𝗌𝜌𝑟

(𝗏𝑧,𝜌𝑟) appearing in the definition of the ‘building block’ event
𝖥𝑧,𝜌𝑟 from Subsection 5.3. On 𝖥𝑧,𝜌𝑟, there are points 𝑢 ∈ 𝐵𝗌𝜌𝑟

(𝗎𝑧,𝜌𝑟) and 𝑣 ∈ 𝐵𝗌𝜌𝑟
(𝗏𝑧,𝜌𝑟) which sat-

isfy 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′
0
𝐷ℎ(𝑢, 𝑣), plus several other conditions. To prove Proposition 5.18, we want to

force 𝑃𝑟 to get 𝐷ℎ−𝖿𝑟
-close to each of 𝑢 and 𝑣 for one of these pairs of points 𝑢, 𝑣, then apply the

triangle inequality. To do this, the first step is to force 𝑃𝑟 to get close to the balls 𝐵𝗌𝜌𝑟
(𝗎𝑧,𝜌𝑟) and

𝑣 ∈ 𝐵𝗌𝜌𝑟
(𝗏𝑧,𝜌𝑟) for some 𝑧 ∈ 𝖹𝑟 such that 𝖥𝑧,𝜌𝑟 occurs.Wewill carry out this step in this subsection.

Our goal is to prove the following lemma.

Lemma 5.23. Let 𝖹𝑟 ⊂ 𝜕𝐵2𝑟(0) be as in (5.24). There exists 𝑧 ∈ 𝖹𝑟 such that 𝖥𝑧,𝜌𝑟 occurs and the
following is true. Let 𝗌𝜌𝑟, 𝗎𝑧,𝜌𝑟, and 𝗏𝑧,𝜌𝑟 be the radius and points as in the definition of 𝖥𝑧,𝜌𝑟. There
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98 DING and GWYNNE

F IGURE 18 Illustration of the statement of Lemma 5.23. Left: The set 𝖵𝑟 (light blue) and the path segment
𝑃𝑟|[𝜏,𝜎]. For simplicity, we have not drawn the details of 𝖵𝑟 except in the 𝖺9𝑟-neighborhood of the set
𝖧𝑧,𝜌𝑟 ∪ 𝐵𝗌𝜌𝑟

(𝗎𝑧,𝜌𝑟) ∪ 𝐵𝗌𝜌𝑟
(𝗏𝑧,𝜌𝑟). The set 𝖴𝑟 is not shown. Right: The left panel zoomed in on the purple box. We

have shown a subset of 𝖴𝑟 (light blue) and a subset of 𝖵𝑟 ⧵ 𝖴𝑟 (lighter blue). By (5.62), the path segment 𝑃𝑟|[𝑎,𝑏] is
required to stay region outlined in orange.

exist times 𝜏 ⩽ 𝑎 < 𝑏 ⩽ 𝜎 which satisfy the following conditions:

𝑃𝑟(𝑎), 𝑃𝑟(𝑏) ∈ 𝜕𝐵𝗌𝜌𝑟+𝖺9𝑟
(𝗎𝑧,𝜌𝑟), |𝑃𝑟(𝑏) − 𝑃𝑟(𝑎)| ⩾ 𝗌𝜌𝑟∕8, and (5.61)

𝑃𝑟([𝑎, 𝑏]) ⊂ 𝐵𝗌𝜌𝑟+(𝖺9+𝖺5)𝑟
(𝗎𝑧,𝜌𝑟) ⧵

(
𝖵𝑟 ⧵ 𝐵𝗌𝜌𝑟+𝖺9𝑟

(𝗎𝑧,𝜌𝑟)
)
. (5.62)

Moreover, the same is true with 𝗏𝑧,𝜌𝑟 in place of 𝗎𝑧,𝜌𝑟 .

See Figure 18 for an illustration of the statement of Lemma 5.23. Before discussing the proof,
we make some comments on the statement. The ball 𝐵𝗌𝜌𝑟+𝖺9𝑟

(𝗎𝑧,𝜌𝑟) appearing in Lemma 5.23 is
significant because, by the definition of 𝖵𝜌𝑟 in (5.26), this is the largest Euclidean ball centered at
𝗎𝑧,𝜌𝑟 which is contained in𝖵𝜌𝑟. The significance of the ball𝐵𝗌𝜌𝑟+(𝖺9+𝖺5)𝑟

(𝗎𝑧,𝜌𝑟) appearing in (5.62) is
that by Lemma 5.22, the path𝑃𝑟|[𝜏,𝜎] cannot exit the 𝖺5𝑟-neighborhood of𝖵𝑟.Wenote that 𝗌𝜌𝑟 ⩾ 𝗍𝜌𝑟

(Lemma 5.2), which is much larger than 𝖺5𝑟 (Lemma 5.14), which in turn is much larger than 𝖺9𝑟

(recall the discussion surrounding (5.21)). So, the balls in (5.61) and (5.62) are only slightly larger
than 𝐵𝗌𝜌𝑟

(𝗎𝑧,𝜌𝑟).
Lemma 5.23 will be a consequence of Lemmas 5.20 and 5.22 (which give a lower bound for|𝑃𝑟(𝜏) − 𝑃𝑟(𝜎)| and an upper bound for the Euclidean diameter of any segment of 𝑃𝑟 which is dis-

joint from 𝖵𝑟), condition 4 in the definition of 𝖤𝑟 (which gives lots of points 𝑧 ∈ 𝖹𝑟 for which 𝖥𝑧,𝜌𝑟
occurs), and some basic geometric arguments based on the definition of 𝖴𝑟 from Subsection 5.4.
We encourage the reader to look at Figure 19 while reading the proof. Let us start by explain-

ing why we can apply condition 4 in the definition of 𝖤𝑟. We have 𝑃𝑟(𝜏), 𝑃𝑟(𝜎) ∈ 𝜕𝖵𝑟 by (5.52)
and |𝑃𝑟(𝜎) − 𝑃𝑟(𝜏)| ⩾ 𝖺4𝑟 by Lemma 5.20. Moreover, by the definition of 𝖵𝑟 in Subsection 5.4,
the Euclidean distance from each point of 𝖵𝑟 to 𝜕𝐵2𝑟(0) is at most 100𝜌𝑟, which by our choice
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 99

F IGURE 19 Left: The connected components 𝑉𝜏, 𝑉𝜎, 𝑂, 𝑂′ of 𝖵𝑟 ⧵ [𝐁(𝗎) ∪ 𝐁(𝗏) ∪ 𝐁(𝗏′) ∪ 𝐁(𝗎′)] and the
point 𝑃𝑟(𝑑0) where 𝑃𝑟 first enters 𝑉𝜎 . For simplicity we have drawn 𝑉𝜏 and 𝑉𝜎 as ‘blobs’ rather than showing the
details of how 𝖵𝑟 is defined in Subsection 5.4 (cf. Figure 15). Right: A zoomed-in view in the purple box from the
left figure. Here 𝑏0 is the first time that 𝑃𝑟 hits 𝑂, 𝑎0 is the last time before 𝑏0 at which 𝑃𝑟 exits 𝑉𝜏 , 𝑎 is the first
time after 𝑎0 at which 𝑃𝑟 hits 𝜕𝐁(𝗎), and 𝑏 is the last time before 𝑏0 at which 𝑃𝑟 exits 𝐁(𝗎). In the figure, we have
𝑎 ≠ 𝑎0 and 𝑏 = 𝑏0, but any combination of 𝑎 = 𝑎0 or 𝑎 ≠ 𝑎0 and/or 𝑏 = 𝑏0 or 𝑏 ≠ 𝑏0 is possible.

of 𝜌 in Lemma 5.13 is at most 100𝜆𝖺4𝑟 ⩽ 𝖺4𝑟∕100. Therefore, the set 𝜕𝐵2𝑟(0) ⧵ [𝐵100𝜌𝑟(𝑃𝑟(𝜏)) ∪

𝐵100𝜌𝑟(𝑃𝑟(𝜎))] consists of two disjoint connected arcs of 𝜕𝐵2𝑟(0) which each have Euclidean
length at least 𝖺4𝑟∕2. Let 𝐽 (respectively, 𝐽′) be the one of these two arcs which goes in the
counterclockwise (respectively, clockwise) direction from 𝐵100𝜌𝑟(𝑃𝑟(𝜏)) to 𝐵100𝜌𝑟(𝑃𝑟(𝜎)).
By condition 4 in the definition of 𝖤𝑟, there exist 𝑧 ∈ 𝐽 ∩ 𝖹𝑟 and 𝑧′ ∈ 𝐽′ ∩ 𝖹𝑟 such that 𝖥𝑧,𝜌𝑟 and

𝖥𝑧′,𝜌𝑟 both occur. To lighten notation, we write

𝗎 ∶= 𝗎𝑧,𝜌𝑟, 𝗏 ∶= 𝗏𝑧,𝜌𝑟, 𝗎′ ∶= 𝗎𝑧′,𝜌𝑟, 𝗏′ ∶= 𝗏𝑧′,𝜌𝑟

and

𝐁(𝑤) ∶= 𝐵𝗌𝜌𝑟+𝖺9𝑟
(𝑤), ∀𝑤 ∈ {𝗎, 𝗏, 𝗎′, 𝗏′}. (5.63)

The set 𝖵𝑟 ⧵ [𝐁(𝗎) ∪ 𝐁(𝗏) ∪ 𝐁(𝗏′) ∪ 𝐁(𝗎′)] consists of exactly four connected components which
each lie at Euclidean distance at least 𝗌𝜌𝑟∕4 from each other. We call these connected components
𝑉𝜏, 𝑉𝜎, 𝑂, 𝑂′. We can choose the labeling so that with 𝖧𝑧,𝜌𝑟 and 𝖧𝑧′,𝜌𝑟 the half-annuli as in the
definitions of 𝖥𝑧,𝜌𝑟 and 𝖥𝑧′,𝜌𝑟,

𝑃𝑟(𝜏) ∈ 𝜕𝑉𝜏, 𝑃𝑟(𝜎) ∈ 𝜕𝑉𝜎, 𝑂 ⊂ 𝐵𝖺9𝑟
(𝖧𝑧,𝜌𝑟) and 𝑂′ ⊂ 𝐵𝖺9𝑟

(𝖧𝑧′,𝜌𝑟). (5.64)

We note that the boundary of each of these connected components intersects exactly two of the
boundaries of the balls 𝐁(𝑤) for 𝑤 ∈ {𝗎, 𝗏, 𝗎′, 𝗏′}. See Figure 19, left, for an illustration.
Let 𝑑0 be the first time that 𝑃𝑟|[𝜏,𝜎] hits𝑉𝜎

(this time is well-defined since we know that 𝑃𝑟(𝜎) ∈

𝜕𝑉𝜎). By Lemma 5.22, each segment of 𝑃𝑟|[𝜏,𝜎] which is disjoint from 𝖵𝑟 has Euclidean diameter
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100 DING and GWYNNE

at most 𝖺5𝑟, which is much smaller than 𝗌𝜌𝑟∕4. It follows that either 𝑃𝑟(𝑑0) ∈ 𝐵𝖺5𝑟
(𝐁(𝗏)) ∩ 𝑉

𝜎
or

𝑃𝑟(𝑑0) ∈ 𝐵𝖺5𝑟
(𝐁(𝗎′)) ∩ 𝑉

𝜎
. For simplicity, we henceforth assume that

𝑃𝑟(𝑑0) ∈ 𝐵𝖺5𝑟
(𝐁(𝗏)) ∩ 𝑉

𝜎
; (5.65)

the other case can be treated in an identical manner.
Most of the rest of the proof will focus on what happens near 𝐁(𝗎). See Figure 19, right, for an

illustration. We first define a time 𝑏0 such that 𝑃𝑟(𝑏0) will be Euclidean-close to the point 𝑃𝑟(𝑏)

from Lemma 5.23.

Lemma 5.24. Let 𝑏0 be the smallest 𝑡 ⩾ 𝜏 for which 𝑃𝑟(𝑏0) ∈ 𝑂. Then 𝑏0 < 𝑑0 and 𝑃𝑟(𝑏0) ∈ 𝜕𝑂 ∩

𝐵𝖺5𝑟
(𝐁(𝗎)).

Proof. The path 𝑃𝑟|[𝜏,𝑑0] travels from 𝜕𝑉𝜏 to 𝐵𝖺5𝑟
(𝐁(𝗏)) ∩ 𝑉

𝜎
and does not enter 𝑉𝜎. The set 𝖵𝑟 ⧵

(𝑉𝜎 ∪ 𝑂) has two connected components which lie at Euclidean distance at least (1 − 𝛼)𝜌𝑟∕2 ⩾

𝖺5𝑟 (recall our choice of 𝖺5 from Lemma 5.14) from each other, one of which contains 𝐁(𝗏) and
the other of which contains 𝑉𝜏. By Lemma 5.22, 𝑃𝑟|[𝜏,𝑑0] cannot travel Euclidean distance more
than 𝖺5𝑟 without hitting 𝖵𝑟. Hence, 𝑃𝑟|[𝜏,𝑑0] must hit 𝑂 before it hits 𝑉

𝜎
. Therefore, 𝑏0 < 𝑑0 and

𝑃𝑟(𝑏0) ∈ 𝜕𝑂. Furthermore, since 𝐁(𝗏) and 𝑉𝜏 are contained in different connected components
of 𝖵𝑟 ⧵ (𝑉𝜎 ∪ 𝑂) and by the definitions of 𝑏0 and 𝑑0, we have 𝑃𝑟([𝜏, 𝑏0]) ∩ (𝑉𝜎 ∪ 𝑂 ∪ 𝐁(𝗏)) = ∅.
We need to show that 𝑃𝑟(𝑏0) ∈ 𝐵𝖺5𝑟

(𝐁(𝗎)). Indeed, since 𝑃𝑟|[𝜏,𝑏0] cannot hit 𝑉𝜎 ∪ 𝑂 ∪ 𝐁(𝗏) and
cannot travel Euclidean distance more than 𝖺5𝑟 outside of 𝖵𝑟, it must be the case that

𝑃𝑟(𝑏0) ∈ 𝐵𝖺5𝑟

(
𝑉𝜏 ∪ 𝑂′ ∪ 𝐁(𝗎) ∪ 𝐁(𝗎′) ∪ 𝐁(𝗏′)

)
.

The sets 𝑉𝜏, 𝑂′, 𝐁(𝗎′), and 𝐁(𝗏′) each lie at Euclidean distance larger than 𝖺5𝑟 from 𝑂, so since
𝑃𝑟(𝑏0) ∈ 𝜕𝑂 we must have 𝑃𝑟(𝑏0) ∈ 𝐵𝖺5𝑟

(𝐁(𝗎)). □

Next, we define a time 𝑎0 such that 𝑃𝑟(𝑎0) will be Euclidean-close to the point 𝑃𝑟(𝑎) from
Lemma 5.23.

Lemma 5.25. Let 𝑎0 be the last time 𝑡 before 𝑏0 for which 𝑃𝑟(𝑡) ∈ 𝑉
𝜏
. Then

|𝑃𝑟(𝑏0) − 𝑃𝑟(𝑎0)| ⩾ 𝗌𝜌𝑟∕4 and 𝑃𝑟([𝑎0, 𝑏0]) ⊂ 𝐵𝖺5𝑟
(𝐁(𝗎)) ⧵ (𝖵𝑟 ⧵ 𝐁(𝗎)). (5.66)

Proof. Since𝑃𝑟(𝑏0) ∈ 𝜕𝑂 and the Euclidean distance from𝑉𝜏 to𝑂 is at least 𝗌𝜌𝑟∕4, we immediately
obtain that |𝑃𝑟(𝑏0) − 𝑃𝑟(𝑎0)| ⩾ 𝗌𝜌𝑟∕4. It remains to prove the inclusion in (5.66).
By definition, the set 𝑃𝑟([𝑎0, 𝑏0]) is disjoint from 𝑉𝜏 ∪ 𝑂. Furthermore, by Lemma 5.22, each

segment of 𝑃𝑟|[𝑎0,𝑏0] which is not contained in 𝖵𝑟 has Euclidean diameter at most 𝖺5𝑟. Therefore,

𝑃𝑟([𝑎0, 𝑏0]) ⊂ 𝐵𝖺5𝑟

(
𝑉𝜎 ∪ 𝑂′ ∪ 𝐁(𝗎) ∪ 𝐁(𝗏) ∪ 𝐁(𝗏′) ∪ 𝐁(𝗎′)

)
. (5.67)

The set on the right side of (5.67) has two connected components, one of which is equal to
𝐵𝖺5𝑟

(𝐁(𝗎)) and the other of which contains the other five sets in the union. Since 𝑃𝑟(𝑏0) ∈

𝐵𝖺5𝑟
(𝐁(𝗎)) (Lemma 5.24), we get that 𝑃𝑟([𝑎0, 𝑏0]) ⊂ 𝐵𝖺5𝑟

(𝐁(𝗎)) and 𝑃𝑟([𝑎0, 𝑏0]) is disjoint from
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 101

𝑉𝜎 ∪ 𝑂′ ∪ 𝐁(𝗏) ∪ 𝐁(𝗏′) ∪ 𝐁(𝗎′). Since we already know that 𝑃𝑟([𝑎0, 𝑏0]) is disjoint from 𝑉𝜏 ∪ 𝑂,
we obtain the inclusion in (5.66). □

Proof of Lemma 5.23. Let 𝑎 be the first time 𝑡 ⩾ 𝑎0 such that 𝑃𝑟(𝑡) ∈ 𝐁(𝗎) and let 𝑏 be the last time
𝑡 ⩽ 𝑏0 such that 𝑃𝑟(𝑡) ∈ 𝐁(𝗎). Note that wemight have 𝑎 = 𝑎0 and/or 𝑏 = 𝑏0 (see Figure 19, right).
By (5.66), 𝑃𝑟|[𝑎0,𝑏0] cannot hit 𝖵𝑟 ⧵ 𝐁(𝗎). By this and Lemma 5.22, 𝑃𝑟|[𝑎0,𝑏0] cannot travel Euclidean
distance more than 𝖺5𝑟 without entering 𝐁(𝗎). Consequently, the times 𝑎 and 𝑏 are well-defined
and

max{|𝑃𝑟(𝑎) − 𝑃𝑟(𝑎0)|, |𝑃𝑟(𝑏) − 𝑃𝑟(𝑏0)|} ⩽ 𝖺5𝑟. (5.68)

By (5.66) and (5.68) and the triangle inequality,

|𝑃𝑟(𝑏) − 𝑃𝑟(𝑎)| ⩾ 𝗌𝜌𝑟∕4 − 2𝖺5𝑟, (5.69)

which is at least 𝗌𝜌𝑟∕8 since 𝗌𝜌𝑟 ⩾ 𝗍𝜌𝑟 ⩾ 𝜆𝖺5 (by our choice of 𝗌𝜌𝑟 in Lemma 5.2 and our choice of 𝖺5
in Lemma 5.14). By the definitions of 𝑎 and 𝑏, we have 𝑃𝑟(𝑎), 𝑃𝑟(𝑏) ∈ 𝜕𝐁(𝗎). Since 𝑎, 𝑏 ∈ [𝑎0, 𝑏0]

and by Lemma 5.25, we also have the inclusion (5.62).
This gives the lemma statement for 𝗎 = 𝗎𝑧,𝜌𝑟. The statement with 𝗏 = 𝗏𝑧,𝜌𝑟 in place of 𝗎 follows

by repeating Lemma 5.25 and the argument above with 𝑑0 used in place of 𝑏0. □

5.10 Forcing a geodesic to get close to 𝒖 and 𝒗

We henceforth fix 𝑧 ∈ 𝖹𝑟 and times 𝑎, 𝑏 ∈ [𝜏, 𝜎] as in Lemma 5.23. We also let 𝑢 and 𝑣 be as in
the definition of 𝖥𝑧,𝜌𝑟, so that 𝑢 ∈ 𝐵𝗌𝜌𝑟∕2

(𝗎𝑧,𝜌𝑟), 𝑣 ∈ 𝐵𝗌𝜌𝑟∕2
(𝗏𝑧,𝜌𝑟), and 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′

0
𝐷ℎ(𝑢, 𝑣). Recall

that we are trying to force the path 𝑃𝑟 to get 𝐷ℎ−𝖿𝑟
-close to each of 𝑢 and 𝑣.

Lemma 5.23 tells us that 𝑃𝑟 gets Euclidean-close to each of 𝑢 and 𝑣, but this is not sufficient for
our purposes since in the supercritical case𝐷ℎ is not continuouswith respect to theEuclideanmet-
ric. To ensure that 𝑃𝑟 gets𝐷ℎ−𝖿𝑟

-close to each of 𝑢 and 𝑣, wewill need a careful argument involving
several of the conditions in the definitions of 𝖥𝑧,𝜌𝑟 and 𝖤𝑟. The main result of this subsection is
the following lemma.

Lemma 5.26. There is a constant𝐶 > 0, depending only on 𝜉, such that the following is true. Almost
surely, there exists 𝑡 ∈ [𝜏, 𝜎] such that

𝑃𝑟(𝑡) ∈ 𝐵𝗌𝜌𝑟+(3𝖺5+𝖺9)𝑟
(𝗎𝑧,𝜌𝑟) and (5.70)

𝐷ℎ−𝖿𝑟

(
𝑃𝑟(𝑡), 𝑢;A𝑟,4𝑟(0)

)
⩽ 𝐶𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣). (5.71)

Moreover, the same is true with 𝑣 and 𝗏𝑧,𝜌𝑟 in place of 𝑢 and 𝗎𝑧,𝜌𝑟.

Wewill eventually choose 𝜆 to bemuch smaller than 1∕𝐶, so that the right side of (5.71) is much
smaller than 𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣). We will only prove Lemma 5.26 for 𝑢; the statement with 𝑣 in place
of 𝑢 is proven in an identical manner.
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102 DING and GWYNNE

F IGURE 20 Illustration of several of the objects involved in Subsection 5.10. The arc 𝐈𝖵 ⊂ 𝜕𝐁𝖵 is the union
of the red set 𝑋acc consisting of points which are accessible from 𝐈out in 𝐁out ⧵ (𝐁𝖵 ∪ 𝑃𝑟([𝑎

′, 𝑏′]) and the green set
𝐈𝖵 ⧵ 𝑋acc. Note that a connected component of 𝐈𝖵 ⧵ 𝑋acc can contain points of 𝑃𝑟([𝑎

′, 𝑏′]) in its interior (relative to
𝐈𝖵).

5.10.1 Setup

Before proceeding with the proof of Lemma 5.26, we introduce some notation. See Figure 20 for
an illustration. We define the Euclidean balls

𝐁𝖴 ∶= 𝐵𝗌𝜌𝑟
(𝗎𝑧,𝜌𝑟), 𝐁𝖵 ∶= 𝐵𝗌𝜌𝑟+𝖺9𝑟

(𝗎𝑧,𝜌𝑟), and 𝐁out ∶= 𝐵𝗌𝜌𝑟+(3𝖺5+𝖺9)𝑟
(𝗎𝑧,𝜌𝑟). (5.72)

The reason why we care about 𝐁𝖴 and 𝐁𝖵 is that by the definitions of 𝖴𝑟 and 𝖵𝑟, the ball 𝐁𝖴

(respectively, 𝐁𝖵) is the largest Euclidean ball centered at 𝗎𝑧,𝜌𝑟 which is contained in 𝖴𝑟 (respec-
tively, 𝖵𝑟). The reason why we care about 𝐁out is that by Lemma 5.23, 𝑃𝑟|[𝑎,𝑏] cannot exit the ball
𝐵𝗌𝜌𝑟+(𝖺5+𝖺9)𝑟

(𝗎𝑧,𝜌𝑟) ⊂ 𝐁out. We need 𝐁out to have a slightly larger radius than 𝗌𝜌𝑟 + (𝖺5 + 𝖺9)𝑟 for
the purposes of Lemma 5.34.
We also define

𝑎′ ∶= sup{𝑡 ⩽ 𝑎 ∶ 𝑃𝑟(𝑡) ∈ 𝜕𝐁out} and 𝑏′ ∶= inf {𝑡 ⩾ 𝑏 ∶ 𝑃𝑟(𝑡) ∈ 𝜕𝐁out}. (5.73)

Then 𝑎′ < 𝑎 < 𝑏 < 𝑏′. Furthermore, Lemma 5.23 implies that 𝑃𝑟([𝑎, 𝑏]) ⊂ 𝐁out, so the definitions
of 𝑎′ and 𝑏′ show that 𝑃𝑟([𝑎

′, 𝑏′]) ⊂ 𝐁out and 𝑃𝑟((𝑎
′, 𝑏′)) ⊂ 𝐁out.

Recall that the point 𝑢 appearing in Lemma 5.26 is contained in 𝐁𝖴. Lemma 5.26 holds
vacuously if 𝑢 ∈ 𝑃𝑟([𝑎

′, 𝑏′]), so we can assume without loss of generality that

𝑢 ∉ 𝑃𝑟([𝑎
′, 𝑏′]). (5.74)

The set 𝜕𝐁out ⧵ {𝑃𝑟(𝑎
′), 𝑃𝑟(𝑏

′)} consists of two disjoint arcs. Since 𝑃𝑟|[𝑎′,𝑏′] is a simple curve in
𝐁out which intersects 𝜕𝐁out only at its endpoints, it follows that exactly one of these two arcs is
disconnected from 𝑢 by 𝑃𝑟|[𝑎′,𝑏′]. We assume without loss of generality that the clockwise arc of
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 103

F IGURE 2 1 Illustration of the proof of Lemma 5.27. The path 𝑃𝑟|[𝑎′,𝑏′] must intersect 𝐿 ∪ 𝐿′ ∪ 𝐿′′. By our
choices of 𝐿 and 𝐿′′, it must in fact intersect 𝐿′.

𝜕𝐁out from 𝑃𝑟(𝑎
′) to 𝑃𝑟(𝑏

′) is disconnected from 𝑢. Let

𝐈out ∶=
{
open clockwise arc of 𝜕𝐁out from 𝑃𝑟(𝑎

′) to 𝑃𝑟(𝑏
′)
}

𝐈𝖵 ∶=
{
open clockwise arc of 𝜕𝐁𝖵 from 𝑃𝑟(𝑎) to 𝑃𝑟(𝑏)

}
. (5.75)

Note that 𝑃𝑟([𝑎
′, 𝑏′]) disconnects 𝐈out from 𝑢 in 𝐁out, but does not necessarily disconnect 𝐈𝖵 from

𝑢 in𝐁out. By Lemma 5.23, we have |𝑃𝑟(𝑏) − 𝑃𝑟(𝑎)| ⩾ 𝗌𝜌𝑟∕8, so the Euclidean length of 𝐈𝖵 satisfies

|𝐈𝖵| ⩾ 𝗌𝜌𝑟∕8. (5.76)

We say that 𝑥 ∈ 𝐈𝖵 is accessible from 𝐈out in 𝐁out ⧵ (𝐁𝖵 ∪ 𝑃𝑟([𝑎
′, 𝑏′])) if there is a path in 𝐁out ⧵

(𝐁𝖵 ∪ 𝑃𝑟([𝑎
′, 𝑏′])) from 𝑥 to a point of 𝐈out. Let

𝑋acc ∶=
{
𝑥 ∈ 𝐈𝖵 ∶ 𝑥 is accessible from 𝐈out in 𝐁out ⧵ (𝐁𝖵 ∪ 𝑃𝑟([𝑎

′, 𝑏′]))
}
. (5.77)

See Figure 20 for an illustration. One of the main reasons why we are interested in the set 𝑋acc is
the following elementary topological fact.

Lemma 5.27. If 𝑥 ∈ 𝑋acc, then every path in 𝐁out from 𝑢 to 𝑥 hits 𝑃𝑟([𝑎
′, 𝑏′]).

Proof. See Figure 21 for an illustration. Recall that 𝐈out and 𝜕𝐁out ⧵ 𝐈out are the open clockwise
and counterclockwise arcs of 𝜕𝐁out from 𝑃𝑟(𝑎

′) to 𝑃𝑟(𝑏
′), respectively. By the assumption made

just before (5.76), 𝑃𝑟|[𝑎′,𝑏′] disconnects 𝐈out but not 𝜕𝐁out ⧵ 𝐈out from 𝑢 in 𝐁out.
By the definition (5.77) of𝑋acc, there is a path 𝐿 from 𝑥 to a point of 𝐈out in𝐁out which is disjoint

from𝐁𝖵 ∪ 𝑃𝑟([𝑎
′, 𝑏′]). Furthermore, since𝑃𝑟|[𝑎′,𝑏′] does not disconnect 𝜕𝐁out ⧵ 𝐈out from𝑢 in𝐁out,

there is a path from 𝑢 to a point of 𝜕𝐁out ⧵ 𝐈out in 𝐁out which is disjoint from 𝑃𝑟([𝑎
′, 𝑏′]).
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104 DING and GWYNNE

Now consider a path𝐿′ in𝐁out from𝑢 to𝑥. The union𝐿 ∪ 𝐿′ ∪ 𝐿′′ contains a path in𝐁out joining
the two arcs of 𝜕𝐁out ⧵ {𝑃𝑟(𝑎

′), 𝑃𝑟(𝑏
′)}. Since 𝑃𝑟|[𝑎′,𝑏′] is a path in 𝐁out, topological considerations

show that 𝑃𝑟|[𝑎′,𝑏′] must hit 𝐿 ∪ 𝐿′ ∪ 𝐿′′. Since 𝑃𝑟|[𝑎′,𝑏′] cannot hit 𝐿 or 𝐿′′ by definition, we get
that 𝑃𝑟|[𝑎′,𝑏′] must hit 𝐿′. □

For 𝑥 ∈ 𝐈𝖵, we define

𝑥′ ∶=
𝗌𝜌𝑟

𝗌𝜌𝑟 + 𝖺9𝑟
(𝑥 − 𝗎𝑧,𝜌𝑟) + 𝗎𝑧,𝜌𝑟 ∈ 𝜕𝐁𝖴, (5.78)

so that 𝑥′ is the unique point of 𝜕𝐁𝖴 which lies on the line segment from the center point 𝗎𝑧,𝜌𝑟 to
𝑥. We also let

𝑋dist ∶=
{
𝑥 ∈ 𝐈𝖵 ∶ 𝐷ℎ

(
𝑥′, 𝑢; 𝐁𝖴

)
⩽ 𝜆𝐷̃ℎ(𝑢, 𝑣)

}
. (5.79)

By condition 3 in the definition of 𝖥𝑧,𝜌𝑟, the set {𝑥′ ∈ 𝜕𝐁𝖴 ∶ 𝑥 ∉ 𝑋dist} has one-dimensional
Lebesgue measure at most (𝜆∕2)𝗌𝜌𝑟. By scaling, we therefore have

|𝑋dist| ⩾ |𝐈𝖵| − 𝜆𝗌𝜌𝑟. (5.80)

5.10.2 Proof of Lemma 5.26 assuming that the accessible set is not too small

The following lemma tells us that the conclusion of Lemma 5.26 is satisfied provided 𝑋acc is not
too small relative to 𝗌𝜌𝑟.

Lemma 5.28. If the one-dimensional Lebesgue measure of 𝑋acc satisfies |𝑋acc| > 3𝜆𝗌𝜌𝑟 , then there
is a time 𝑡 ∈ [𝑎′, 𝑏′] ⊂ [𝜏, 𝜎] such that

𝐷ℎ−𝖿𝑟

(
𝑃𝑟(𝑡), 𝑢; 𝐁

𝖴
)

⩽ 2𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣). (5.81)

We note that Lemma 5.28 implies that if |𝑋acc| > 3𝜆𝗌𝜌𝑟, then the conclusion of Lemma 5.26
holds with 𝐶 = 2. This is because 𝑃𝑟([𝑎

′, 𝑏′]) ⊂ 𝐁out and 𝐁𝖴 ⊂ A𝑟,4𝑟(0).
The idea of the proof of Lemma 5.28 is that if |𝑋acc| > 3𝜆𝗌𝜌𝑟, then by (5.80) there must be a

point 𝑥 ∈ 𝑋acc ∩ 𝑋dist. By Lemma 5.27, every path in 𝐁out from 𝑢 to 𝑥 must hit 𝑃𝑟([𝑎
′, 𝑏′]). We

then want to use the definition (5.79) of 𝑋dist to upper-bound the 𝐷ℎ−𝖿𝑟
-distance from 𝑢 to the

intersection point. There is aminor technicality arising from the fact that (5.79) only gives a bound
for the distance from 𝑢 to 𝑥′ ∈ 𝜕𝐁𝖴, rather than from 𝑢 to 𝑥. To deal with this technicality, we will
use condition 8 (intersections of geodesics with a small neighborhood of the boundary) in the
definition of 𝖤𝑟 to say that there are not very many points 𝑥 ∈ 𝐈𝖵 for which 𝑃𝑟 hits the segment
[𝑥, 𝑥′].

Proof of Lemma 5.28. Define 𝑥′ ∈ 𝜕𝐁𝖴 for 𝑥 ∈ 𝐈𝖵 as in (5.78). Let

𝑌 ∶=
{
𝑥 ∈ 𝑋acc ∶ 𝑃𝑟([𝑎

′, 𝑏′]) ∩ [𝑥, 𝑥′] ≠ ∅
}
. (5.82)

If 𝑥 ∈ 𝑌, then 𝑥′ lies at Euclidean distance at most 𝖺9𝑟 from 𝑃𝑟([𝑎
′, 𝑏′]). By condition 8 in the

definition of 𝖤𝑟 (in particular, we use the last sentence of the condition), the one-dimensional
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 105

Lebesguemeasure of the set {𝑥′ ∈ 𝜕𝐁𝖴 ∶ 𝑥 ∈ 𝑌} is at most 𝜆𝗍𝜌𝑟 ⩽ 𝜆𝗌𝜌𝑟. By scaling, we get that the
one-dimensional Lebesgue measure of 𝑌 is at most 2𝜆𝗌𝜌𝑟.
Hence, if |𝑋acc| > 3𝜆𝗌𝜌𝑟, then |𝑋acc ⧵ 𝑌| > 𝜆𝗌𝜌𝑟. By (5.80), this implies that the one-dimensional

Lebesgue measure of 𝑋dist ∩ (𝑋acc ⧵ 𝑌) is positive, so there exists 𝑥 ∈ 𝑋dist ∩ (𝑋acc ⧵ 𝑌).
Since 𝑥 ∈ 𝑋dist, the definition (5.79) implies that there is a path 𝐿 in 𝐁𝖴 from 𝑢 to 𝑥′ such that

len(𝐿; 𝐷ℎ) ⩽ 2𝜆𝐷̃ℎ(𝑢, 𝑣).

The union of 𝐿 and [𝑥, 𝑥′] gives a path in 𝐁𝖵 from 𝑢 to 𝑥. Since 𝑥 ∈ 𝑋acc, Lemma 5.27 implies that
the path 𝑃𝑟|[𝑎′,𝑏′] must hit 𝐿 ∪ [𝑥, 𝑥′]. Since 𝑥 ∉ 𝑌, the path 𝑃𝑟|[𝑎′,𝑏′] does not hit [𝑥, 𝑥′].
Therefore, 𝑃𝑟|[𝑎′,𝑏′] must hit 𝐿. Since 𝐿 ⊂ 𝐁𝖴 is a path started from 𝑢 of 𝐷ℎ-length at most

2𝜆𝐷̃ℎ(𝑢, 𝑣), we get that

𝐷ℎ

(
𝑃𝑟(𝑡), 𝑢; 𝐁

𝖴
)

⩽ 2𝜆𝐷̃ℎ(𝑢, 𝑣), (5.83)

where 𝑡 ∈ [𝑎′, 𝑏′] is chosen so that 𝑃𝑟(𝑡) ∈ 𝐿.
Since 𝖿𝑟 attains its maximum value 𝖠8 at each point of 𝖴𝑟 ⊃ 𝐁𝖴, we infer from Weyl scaling

(Axiom III) that

𝐷ℎ−𝖿𝑟
(𝑃𝑟(𝑡), 𝑢; 𝐁

𝖴) = 𝑒−𝜉𝖠8𝐷ℎ

(
𝑃𝑟(𝑡), 𝑢; 𝐁

𝖴
)
.

Combining this with (5.83) gives (5.81). □

5.10.3 The set of arcs of 𝐈𝖵 ⧵ 𝑋acc

In light of Lemma 5.28, for the rest of the proof of Lemma 5.26 we can assume that

|𝑋acc| ⩽ 3𝜆𝗌𝜌𝑟. (5.84)

Intuitively, we do not expect (5.84) to be the typical situation since it implies that 𝑃𝑟([𝑎
′, 𝑏′]) dis-

connects ‘most’ points of 𝐈𝖵 from 𝐈out (recall (5.77)). This, in turn, means that a large portion of
𝑃𝑟([𝑎

′, 𝑏′]) is outside of 𝖵𝑟. This is unexpected since 𝑃𝑟 is a 𝐷ℎ−𝖿𝑟
-geodesic and 𝖿𝑟 is non-negative

and supported on 𝖵𝑟, so 𝑃𝑟|[𝑎′,𝑏′] should want to spendmost of its time in 𝖵𝑟. However, we are not
able to easily rule out (5.84). We note that Lemma 5.22 does not rule out (5.84) since it could be
that 𝑃𝑟|[𝑎′,𝑏′] has many small excursions outside of 𝖵𝑟, each of Euclidean diameter at most 𝖺5𝑟.
Hence, we need to prove Lemma 5.26 under the assumption (5.84). This will require a finer

analysis of the structure of the set 𝑋acc.
The set 𝐈𝖵 ⧵ 𝑋acc is a countable union of disjoint open arcs of 𝐈𝖵. Let  be the set of all such

arcs and for 𝐼 ∈ , write |𝐼| for its Euclidean length (equivalently, its one-dimensional Lebesgue
measure). The elements of  are the green arcs in Figure 20.
We now give an outline of the proof of Lemma 5.26 subject to the assumption (5.84). As a con-

sequence of (5.84), we get that ‘most’ points of 𝐈𝖵 are contained in 𝐈𝖵 ⧵ 𝑋acc, so
∑

𝐼∈ |𝐼| is close
to |𝐈𝖵| (Lemma 5.29). From this and (5.80), we see that ‘most’ of the arcs 𝐼 ∈  intersect 𝑋dist

(Lemma 5.33). From condition 5 (comparison of distances in small annuli) in the definition of 𝖤𝑟

(applied with 𝛿 = |𝐼|∕𝑟) and a geometric argument, we get the following. If 𝐼 ∈  and 𝑦𝐼 is one
of the endpoints of 𝐼, then there is a loop in A2|𝐼|,3|𝐼|(𝑦𝐼) which disconnects the inner and outer
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106 DING and GWYNNE

boundaries and whose 𝐷ℎ-length (hence also its 𝐷ℎ−𝖿𝑟
-length) is bounded above by (|𝐼|∕𝑟)−1∕4

times (roughly speaking) the 𝐷ℎ-length of the segment of 𝑃𝑟 joining the endpoints of 𝐼. By con-
catenating this loop with a path in 𝐁𝖴 from 𝑢 to 𝑥′, for a point 𝑥′ ∈ 𝐼 ∩ 𝑋dist, we obtain an upper
bound for 𝐷ℎ−𝖿𝑟

(𝑢, 𝑃𝑟([𝑎
′, 𝑏′])) in terms of |𝐼| and the 𝐷ℎ-length of the segment of 𝑃𝑟 joining the

endpoints of 𝐼 (Lemma 5.34).Wewill then use a pigeonhole argument to say that there exists 𝐼 ∈ 
for which this last quantity is much smaller than 𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣).
Let us now give the details. We start with a lower bound for the sum of the Lebesgue measures

of the arcs in .
Lemma 5.29. The total one-dimensional Lebesgue measure of the arcs in  satisfies

∑
𝐼∈
|𝐼| = |𝐈𝖵 ⧵ 𝑋acc| ⩾ |𝐈𝖵| − 3𝜆𝗌𝜌𝑟. (5.85)

Proof. We first claim that each point of𝑋acc ⧵ 𝑋acc belongs to𝑃𝑟([𝑎
′, 𝑏′]) ∩ 𝐈𝖵. Indeed, suppose𝑥 ∈

𝑋acc and 𝑥 ∉ 𝑃𝑟([𝑎
′, 𝑏′]). We need to show that 𝑥 ∈ 𝑋acc. Since 𝑃𝑟([𝑎

′, 𝑏′]) is a Euclidean-closed
set, 𝑥 lies at positive Euclidean distance from 𝑃𝑟([𝑎

′, 𝑏′]). Since 𝑥 ∈ 𝑋acc, there exists 𝑦 ∈ 𝑋acc

such that the arc of 𝐈𝖵 between 𝑥 and 𝑦 is disjoint from 𝑃𝑟([𝑎
′, 𝑏′]). By the definition of𝑋acc (5.77),

there is a path from a point of 𝐈out to 𝑦 which is contained in 𝐁out ⧵ (𝐁𝖵 ∪ 𝑃𝑟([𝑎
′, 𝑏′])). The union

of this path and the arc of 𝐈𝖵 between 𝑥 and 𝑦 gives a path from 𝐈out to 𝑥 which is contained in
𝐁out ⧵ (𝐁𝖵 ∪ 𝑃𝑟([𝑎

′, 𝑏′])).
By, for example, Lemma 2.14 (applied to the unit-speed parameterization of the circle 𝜕𝐁𝖵),

almost surely the set 𝑃𝑟([𝑎
′, 𝑏′]) ∩ 𝐈𝖵 has zero one-dimensional Lebesgue measure. By this, the

previous paragraph, and our assumption (5.84),

∑
𝐼∈
|𝐼| = |𝐈𝖵 ⧵ 𝑋acc| = |𝐈𝖵 ⧵ 𝑋acc| ⩾ |𝐈𝖵| − 3𝜆𝗌𝜌𝑟. □

We will also need the following elementary topological fact.

Lemma 5.30. For each 𝐼 ∈ , there is a segment of 𝑃𝑟|[𝑎,𝑏] joining the two endpoints of 𝐼 which is
contained in 𝐁out ⧵ 𝐁𝖵.

Proof. See Figure 22 for an illustration. Let 𝑅 ⊂ 𝐁out ⧵ 𝐁𝖵 be the open region bounded by 𝐈out, 𝐈𝖵,
and the segments 𝑃𝑟([𝑎

′, 𝑎]) and 𝑃𝑟([𝑏, 𝑏
′]). Then 𝑅 has the topology of the open unit disk and

𝐼 ⊂ 𝜕𝑅. By the definition (5.77) of 𝑋acc and since 𝐼 ⊂ 𝐈𝖵 ⧵ 𝑋acc, there is no path in 𝑅 from 𝐼 to 𝐈out

which is disjoint from 𝑃𝑟([𝑎
′, 𝑏′]). Hence, 𝑃𝑟([𝑎

′, 𝑏′]) disconnects 𝐼 from 𝐈out in 𝑅.
Since 𝑃𝑟([𝑎

′, 𝑎]) ∪ 𝑃𝑟([𝑏, 𝑏
′]) ⊂ 𝜕𝑅 and 𝑃𝑟([𝑎, 𝑏]) ∩ 𝜕𝐁out = ∅, the set 𝑃𝑟([𝑎

′, 𝑏′]) ∩ 𝑅 consists
of countably many disjoint segments of 𝑃𝑟|[𝑎,𝑏] with endpoints in 𝐈𝖵. Since 𝑃𝑟 is continuous, these
segments accumulate only at points of 𝐈𝖵. Since 𝐼 is connected and 𝑃𝑟([𝑎

′, 𝑏′]) disconnects 𝐼 from
𝐈out in 𝑅, there are times 𝑐, 𝑑 ∈ [𝑎, 𝑏] with 𝑐 < 𝑑 such that 𝑃𝑟(𝑐), 𝑃𝑟(𝑑) ∈ 𝐈𝖵, 𝑃𝑟((𝑐, 𝑑)) ⊂ 𝑅, and
𝑃𝑟([𝑐, 𝑑]) disconnects 𝐼 from 𝐈out in 𝑅.
Let 𝐼̂ be the set of points of 𝐈𝖵 which are disconnected from 𝐈out in 𝑅 by 𝑃𝑟([𝑐, 𝑑]) (not including

the endpoints of 𝑃𝑟([𝑐, 𝑑])). Equivalently, 𝐼̂ is the segment of 𝐈𝖵 between 𝑃𝑟(𝑐) and 𝑃𝑟(𝑑). Then 𝐼̂

is a connected open arc of 𝐈𝖵 which contains 𝐼. Moreover, every path from 𝐼̂ to 𝐈out in 𝐁out ⧵ 𝐁𝖵

either hits 𝑃𝑟([𝑐, 𝑑]) or exits 𝑅 (in which case it must intersect either 𝑃𝑟([𝑎
′, 𝑎]) or 𝑃𝑟([𝑏, 𝑏

′])).
Hence, no such path can be disjoint from 𝑃𝑟([𝑎

′, 𝑏′]). So, by the definition (5.77) of 𝑋acc, we have
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 107

F IGURE 22 Illustration of the proof of Lemma 5.30. The region 𝑅 is shown in pink and the desired segment
𝑃𝑟|[𝑐,𝑑] of 𝑃 is shown in purple.
𝐼̂ ⊂ 𝐈𝖵 ⧵ 𝑋acc. Since 𝐼̂ is an open arc of 𝐈𝖵, also 𝐼̂ ⊂ 𝐈𝖵 ⧵ 𝑋acc. Since 𝐼 is a connected component of
𝐈𝖵 ⧵ 𝑋acc, it follows that 𝐼̂ = 𝐼. □

5.10.4 Regularity of arcs in 
We will next record some bounds for the sizes of the individual arcs in , starting with an upper
bound.

Lemma 5.31. For each 𝐼 ∈ , we have |𝐼| ⩽ 𝖺5𝑟.

Proof. By Lemma 5.30, for each 𝐼 ∈  there is a segment of 𝑃𝑟|[𝑎,𝑏] joining the endpoints of 𝐼
which is contained in 𝐁out ⧵ 𝐁𝖵. By Lemma 5.23, 𝑃𝑟|[𝑎,𝑏] does not hit 𝖵𝑟 ⧵ 𝐁𝖵, so this segment of
𝑃𝑟|[𝑎,𝑏] is disjoint from 𝖵𝑟. The Euclidean diameter of this segment is at least |𝐼|. By Lemma 5.22,
the Euclidean diameter of the segment is at most 𝖺5𝑟, so we get |𝐼| ⩽ 𝖺5𝑟, as required. □

We do not have a uniform lower bound for the sizes of the arcs in . But, using condition 8
(intersections of geodesics with a small neighborhood of the boundary) in the definition of 𝖤𝑟, we
can say that the small arcs make a negligible contribution to the total one-dimensional Lebesgue
measure of .
Lemma 5.32. Define the set of small arcs

small ∶= {𝐼 ∈  ∶ |𝐼| ⩽ 𝖺9𝑟}. (5.86)

Then ∑
𝐼∈small

|𝐼| ⩽ 2𝜆𝗌𝜌𝑟. (5.87)
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108 DING and GWYNNE

Proof. By Lemma 5.30, for each 𝐼 ∈  the endpoints of 𝐼 are hit by 𝑃𝑟|[𝑎′,𝑏′]. Hence, the Euclidean
distance from each point of 𝐼 to 𝑃𝑟([𝑎

′, 𝑏′]) is at most |𝐼|. In particular, if 𝐼 ∈ small, then the
Euclidean distance from each point of 𝐼 to 𝑃𝑟([𝑎

′, 𝑏′]) is at most 𝖺9𝑟. This implies that the
Euclidean distance from 𝑃𝑟([𝑎

′, 𝑏′]) to each point of the arc 𝐼′ ∶= {𝑥′ ∶ 𝑥 ∈ 𝐼} ⊂ 𝜕𝐁𝖴 is at most
2𝖺9𝑟, where here we use the notation (5.78).
The arcs 𝐼′ for 𝐼 ∈ small are disjoint and we have |𝐼′| ⩾ |𝐼|∕2. Therefore, the one-dimensional

Lebesgue measure of the set of points 𝑥′ ∈ 𝜕𝐁𝖴 which lie at Euclidean distance at most 2𝖺9𝑟 from
𝑃𝑟([𝑎

′, 𝑏′]) is at least

1

2

∑
𝐼∈small

|𝐼|.
By condition 8 in the definition of 𝖤𝑟 (in particular, we use the last sentence of the condition), the
one-dimensional Lebesguemeasure of the set of 𝑥′ ∈ 𝜕𝐁𝖴 which lie at Euclidean distance at most
2𝖺9𝑟 from 𝑃𝑟([𝑎

′, 𝑏′]) is at most 𝜆𝗍𝜌𝑟, so

1

2

∑
𝐼∈small

|𝐼| ⩽ 𝜆𝗍𝜌𝑟 ⩽ 𝜆𝗌𝜌𝑟, (5.88)

where the last inequality comes from the definition of 𝗌𝜌𝑟 (recall Lemma 5.2). □

We will now consider a certain ‘good’ subset of , and show that the arcs in this subset cover
most of 𝐈𝖵. Let

∗ ∶= {𝐼 ∈  ∶ |𝐼| ⩾ 𝖺9𝑟 and 𝐼 ∩ 𝑋dist ≠ ∅}. (5.89)

Lemma 5.33. The total one-dimensional Lebesgue measure of the arcs in ∗ satisfies∑
𝐼∈∗

|𝐼| ⩾ |𝐈𝖵| − 6𝜆𝗌𝜌𝑟. (5.90)

Proof. Let small be as in (5.86). We can write 𝐈𝖵 as the disjoint union of 𝑋acc, the arcs in small,
and the arcs in  with |𝐼| ⩾ 𝖺9𝑟. By the definition (5.89) of ∗,

𝑋dist ⊂ 𝑋acc ∪
⋃

𝐼∈small

𝐼 ∪
⋃
𝐼∈∗

𝐼. (5.91)

We therefore have the following string of inequalities:

|𝐈𝖵| − 𝜆𝗌𝜌𝑟 ⩽ |𝑋dist| (by (5.80))

⩽ |𝑋acc| + ∑
𝐼∈small

|𝐼| + ∑
𝐼∈∗

|𝐼| (by (5.91))

⩽ 3𝜆𝗌𝜌𝑟 + 2𝜆𝗌𝜌𝑟 +
∑
𝐼∈∗

|𝐼| (by Lemmas 5.29 and 5.32). (5.92)

Re-arranging gives (5.90). □
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 109

F IGURE 2 3 Illustration of the proof of Lemma 5.34. The orange loop 𝜋 has 𝐷ℎ-length at most
2(|𝐼|∕𝑟)−1∕4𝐷ℎ(across A|𝐼|∕4,|𝐼|∕2(𝑦𝐼)), and is provided by condition 5 (comparison of distance in small annuli) in
the definition of 𝖤𝑟 . The point 𝑥 belongs to 𝐼 ∩ 𝑋dist. The purple path 𝐿 goes from 𝑢 (not pictured) to 𝑥′, has
𝐷ℎ-length at most 2𝜆𝐷̃ℎ(𝑢, 𝑣), and is provided by the definition (5.79) of 𝑋dist. The bound (5.94) is obtained by
concatenating a segment of 𝜋 with a segment of 𝐿, then bounding 𝐷ℎ(across A|𝐼|∕4,|𝐼|∕2(𝑦𝐼)) in terms of 𝑡𝐼 − 𝑠𝐼 .

5.10.5 Building a path from a point of 𝑃𝑟 to 𝑢

The following lemma is the main quantitative estimate needed for the proof of Lemma 5.26.

Lemma 5.34. Let 𝐼 ∈ ∗ and let 𝑦𝐼 be the initial endpoint of 𝐼. There are times 𝑎′ < 𝑠𝐼 < 𝑡𝐼 < 𝑏′

such that

𝑃𝑟([𝑠𝐼, 𝑡𝐼]) ⊂ 𝐵3|𝐼|(𝑦𝐼), 𝑡𝐼 − 𝑠𝐼 ⩾

(|𝐼|
4𝑟

)𝜉(𝑄+2)+1∕4

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0), and (5.93)

𝐷ℎ−𝖿𝑟

(
𝑃𝑟(𝑡𝐼), 𝑢;A𝑟,4𝑟(0)

)
⩽ 2𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣) + 2(|𝐼|∕𝑟)−1∕4(𝑡𝐼 − 𝑠𝐼). (5.94)

Wewill eventually deduce Lemma 5.26 fromLemma 5.34 by showing that there exists an 𝐼 ∈ ∗

for which 2|𝐼|−1∕4(𝑡𝐼 − 𝑠𝐼) is much smaller than 𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣).

Proof of Lemma 5.34. See Figure 23 for an illustration. Throughout the proof we fix 𝐼 ∈ ∗.
Step 1: Definition of 𝑠𝐼 and 𝑡𝐼 . By Lemma 5.31, we have |𝐼| ⩽ 𝖺5𝑟. Hence, we can apply condition 5

(comparison of distances in small annuli) in the definition of 𝖤𝑟 with 𝛿 = |𝐼|∕𝑟 to get that there is
a path 𝜋 ⊂ A2|𝐼|,3|𝐼|(𝑦𝐼) such that

len(𝜋; 𝐷ℎ) ⩽ 2(|𝐼|∕𝑟)−1∕4𝐷ℎ

(
across A|𝐼|∕4,|𝐼|∕2(𝑦𝐼)). (5.95)

We have 𝑦𝐼 ∈ 𝜕𝐁𝖵 and 𝑃𝑟(𝑏
′) ∈ 𝜕𝐁out. The Euclidean distance from 𝜕𝐁out to 𝜕𝐁𝖵 is 3𝖺5𝑟 ⩾ 3|𝐼|.

Therefore, the path 𝑃𝑟 must hit both 𝜕𝐵|𝐼|∕4(𝑦𝐼) and 𝜋 between the (unique) time when it hits
𝑦𝐼 and the time 𝑏′. Let 𝑠𝐼 (respectively, 𝑡𝐼) be the first time that 𝑃𝑟 hits 𝜕𝐵|𝐼|∕4(𝑦𝐼) (respectively,
𝜋) after the time when it hits 𝑦𝐼 . Then 𝑎′ < 𝑠𝐼 < 𝑡𝐼 < 𝑏′ and (since 𝑃𝑟 cannot travel from 𝑦𝐼 to
𝜕𝐵3|𝐼|(𝑦𝐼) without hitting 𝜋),

𝑃𝑟([𝑠𝐼, 𝑡𝐼]) ⊂ 𝐵3|𝐼|(𝑦𝐼).
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110 DING and GWYNNE

We will check the other conditions in the lemma statement for this choice of 𝑡𝐼 and 𝑠𝐼 .
Step 2: Upper-bound for 𝐷ℎ−𝖿𝑟

(𝑃𝑟(𝑡𝐼), 𝑢;A𝑟,4𝑟(0)) in terms of 𝐷ℎ(across A|𝐼|∕4,|𝐼|∕2(𝑦𝐼)). By the
definition (5.89) of ∗, there exists 𝑥 ∈ 𝐼 ∩ 𝑋dist. By the definition (5.79) of𝑋dist, if we let 𝑥′ ∈ 𝜕𝐁𝖴

be the point corresponding to 𝑥 as in (5.78), then there is a path 𝐿 from 𝑢 to 𝑥′ in 𝐁𝖴 such that

len(𝐿; 𝐷ℎ) ⩽ 2𝜆𝐷̃ℎ(𝑢, 𝑣).

Since 𝐿 is contained in 𝐁𝖴, which is contained in 𝖴𝑟, and 𝖿𝑟 ≡ 𝖠8 on 𝖴𝑟,

len
(
𝐿; 𝐷ℎ−𝖿𝑟

)
⩽ 2𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣). (5.96)

The definition (5.89) of ∗ gives |𝐼| ⩾ 𝖺9𝑟, so

|𝑥′ − 𝑦𝐼| ⩽ |𝐼| + |𝑥 − 𝑥′| = |𝐼| + 𝖺9𝑟 ⩽ 2|𝐼|.
Since 𝜋 ⊂ A2|𝐼|,3|𝐼|(𝑦𝐼), it follows that 𝜋 intersects 𝐿 and (since 3|𝐼| ⩽ 3𝖺5𝑟) also 𝜋 ⊂ 𝐁out. Since
𝑃𝑟(𝑡𝐼) ∈ 𝜋, the path 𝜋 ∪ 𝐿 contains a path from 𝑢 to 𝑃𝑟(𝑡𝐼). We have 𝜋 ∪ 𝐿 ⊂ 𝐁out ⊂ A𝑟,4𝑟(0).
By (5.95) (and the fact that 𝖿𝑟 is non-negative) and (5.96),

𝐷ℎ−𝖿𝑟

(
𝑃𝑟(𝑡𝐼), 𝑢;A𝑟,4𝑟(0)

)
⩽ len

(
𝐿; 𝐷ℎ−𝖿𝑟

)
+ len

(
𝜋;𝐷ℎ−𝖿𝑟

)
⩽ 2𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣) + 2(|𝐼|∕𝑟)−1∕4𝐷ℎ

(
across A|𝐼|∕4,|𝐼|∕2(𝑦𝐼)). (5.97)

Step 3: Comparing 𝑡𝐼 − 𝑠𝐼 . to 𝐷ℎ(across A|𝐼|∕4,|𝐼|∕2(𝑦𝐼)). We claim that

𝑡𝐼 − 𝑠𝐼 ⩾ 𝐷ℎ

(
across A|𝐼|∕4,|𝐼|∕2(𝑦𝐼)). (5.98)

Once (5.98) is established, the bound (5.97) immediately gives (5.94). Furthermore, the lower
bound for 𝑡𝐼 − 𝑠𝐼 in (5.93) also follows from (5.98) and the reverse Hölder continuity condition 6
in the definition of 𝖤𝑟 (applied with 𝑧 ∈ 𝜕𝐵|𝐼|∕4(𝑦𝐼) and 𝑤 ∈ 𝜕𝐵|𝐼|∕2(𝑦𝐼)), which gives

𝐷ℎ

(
across A|𝐼|∕4,|𝐼|∕2(𝑦𝐼)) ⩾

(|𝐼|
4𝑟

)𝜉(𝑄+2)+1∕4

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0).

Hence, it remains to prove (5.98). Let 𝑠′
𝐼
be the first time after 𝑠𝐼 at which 𝑃𝑟 exits 𝐵|𝐼|∕2(𝑦𝐼).

Then 𝑃𝑟|[𝑠𝐼 ,𝑠′𝐼 ] is a path between the inner and outer boundaries of A|𝐼|∕4,|𝐼|∕2(𝑦𝐼). We claim that

𝑃𝑟([𝑠𝐼, 𝑠
′
𝐼]) ∩ 𝖵𝑟 = ∅. (5.99)

Since 𝖿𝑟 vanishes outside of 𝖵𝑟, (5.99) implies that

𝑡𝐼 − 𝑠𝐼 ⩾ 𝑠′𝐼 − 𝑠𝐼 = len
(
𝑃𝑟|[𝑠𝐼 ,𝑠′𝐼 ]; 𝐷ℎ−𝖿𝑟

)
= len

(
𝑃𝑟|[𝑠𝐼 ,𝑠′𝐼 ]; 𝐷ℎ

)
⩾ 𝐷ℎ

(
across A|𝐼|∕4,|𝐼|∕2(𝑦𝐼)), (5.100)

which is (5.98).
To prove (5.99), we first note that by Lemma 5.30, the path 𝑃𝑟 does not enter 𝐁𝖵 between the

timewhen it hits 𝑦𝐼 and the timewhen it hits the other endpoint of 𝐼. Since the Euclidean distance
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 111

between the endpoints of 𝐼 is at least |𝐼|∕2, 𝑠′
𝐼
must be smaller than the timewhen 𝑃𝑟 hits the other

endpoint of 𝐼. Hence, 𝑃𝑟([𝑠𝐼, 𝑠
′
𝐼
]) ∩ 𝐁𝖵 = ∅. In particular, Lemma 5.30 implies that [𝑠𝐼, 𝑠′𝐼] ⊂ [𝑎, 𝑏].

By Lemma 5.21, 𝑃𝑟|[𝑎,𝑏] does not hit 𝖵𝑟 ⧵ 𝐁𝖵. Therefore, (5.99) holds. □

5.10.6 Pigeonhole arguments

In light of Lemma 5.34, we seek an arc 𝐼 ∈ ∗ for which 𝑡𝐼 − 𝑠𝐼 is much smaller than
(|𝐼|∕𝑟)1∕4𝐷̃ℎ(𝑢, 𝑣). To find such an arc, we will partition the set ∗ based on the Euclidean sizes
of the arcs. Let

𝐾 ∶= ⌊log2(1∕𝖺5)⌋ and 𝐾 ∶= ⌈log2(1∕𝖺9)⌉ − 1. (5.101)

For 𝑘 ∈ [𝐾,𝐾]Z, let

∗
𝑘
∶=
{
𝐼 ∈ ∗ ∶ |𝐼| ∈ [2−𝑘−1𝑟, 2−𝑘𝑟)

}
. (5.102)

By Lemma 5.31 and the definition (5.89) of ∗, we have 𝖺9𝑟 ⩽ |𝐼| ⩽ 𝖺5𝑟 for each 𝐼 ∈ ∗. Hence, ∗

is the disjoint union of ∗
𝑘
for 𝑘 ∈ [𝐾,𝐾]Z.

The proof that there exists an arc 𝐼 ∈ ∗ for which 𝑡𝐼 − 𝑠𝐼 is small is based on a pigeonhole
argument. Lemma 5.33 implies that the total Euclidean length of the arcs in ∗ is close to |𝐈𝖵|.
Hence, theremust be some 𝑘 ∈ [𝐾,𝐾]Z for which#∗

𝑘
is larger than a constant times 𝑟−12𝑘∕2|𝐈𝖵|:

otherwise, the sum of the lengths of the arcs in ∗ would be too small (Lemma 5.35). In the proof
of Lemma 5.26, we will then use an argument based on Lemma 5.34 and Markov’s inequality to
show that there must be an 𝐼 ∈ ∗

𝑘
for which 𝑡𝐼 − 𝑠𝐼 is sufficiently small.

Let us start with the pigeonhole argument for the Euclidean lengths of the arcs in ∗.

Lemma 5.35. Let 𝗍 > 0 be the constant appearing in Lemma 5.2, so that the radius of 𝐁𝖴 satisfies
𝗌𝜌𝑟 ∈ [𝗍𝜌𝑟, 𝗍1∕2𝜌𝑟]. Almost surely, there exist a random 𝑘 ∈ [𝐾,𝐾]Z and a collection of arcs ∗∗

𝑘
⊂ ∗

𝑘

such that #∗∗
𝑘

⪰ 2𝑘∕2𝗍𝜌, with a deterministic universal implicit constant, and the balls 𝐵3|𝐼|(𝑦𝐼) for
𝐼 ∈ ∗∗

𝑘
are disjoint (here 𝑦𝐼 is the first endpoint of 𝐼 hit by 𝑃𝑟, as in Lemma 5.34).

Proof. We have

|𝐈𝖵|∕2 ⩽ |𝐈𝖵| − 6𝜆𝗌𝜌𝑟 (since |𝐈𝖵| ⩾ 𝗌𝜌𝑟∕8 by (5.76))

⩽
∑
𝐼∈∗

|𝐼| (by Lemma 5.33)

⩽

𝐾∑
𝑘=𝐾

∑
𝐼∈∗

𝑘

|𝐼| (since ∗ =
⋃𝐾

𝑘=𝐾 ∗
𝑘
)

⩽ 𝑟

𝐾∑
𝑘=𝐾

2−𝑘#∗
𝑘

(by (5.102)). (5.103)
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112 DING and GWYNNE

We claim that there exists 𝑘 ∈ [𝐾,𝐾]Z such that #∗
𝑘
⩾ 2𝑘∕2𝑟−1|𝐈𝖵|. Indeed, if this is not the case

then (5.103) gives

|𝐈𝖵|∕2 ⩽ |𝐈𝖵| 𝐾∑
𝑘=𝐾

2−𝑘∕2 ⇒ 1∕2 ⩽
1

1 − 2−1∕2
2−𝐾∕2

which is not true since 2−𝐾∕2 ⩽ 2𝖺5
1∕2, which is much smaller than (1 − 2−1∕2)∕2.

Henceforth, fix 𝑘 ∈ [𝐾,𝐾]Z such that #∗
𝑘
⩾ 2𝑘∕2𝑟−1|𝐈𝖵|. The arcs in ∗

𝑘
are disjoint and have

lengths in [2−𝑘−1𝑟, 2−𝑘𝑟). Hence, for each 𝐼 ∈ ∗
𝑘
, the number of arcs in ∗

𝑘
which are contained in

𝐵3|𝐼|(𝑦𝐼) is at most some universal constant. It follows that we can find a subcollection ∗∗
𝑘

⊂ ∗
𝑘

such that#∗∗
𝑘

⪰ 2𝑘∕2𝑟−1|𝐈𝖵| and the balls𝐵3|𝐼|(𝑦𝐼) for 𝐼 ∈ ∗∗
𝑘
are disjoint.We conclude by noting

that by (5.76) and our choice of 𝗌𝜌𝑟 in Lemma 5.2,

𝑟−1|𝐈𝖵| ⪰ 𝑟−1𝗌𝜌𝑟 ⩾ 𝗍𝜌.

□

Proof of Lemma 5.26. Throughout the proof, all implicit constants are required to be deterministic
and depend only on 𝜉.
Let 𝑘 ∈ [𝐾,𝐾]Z and ∗∗

𝑘
⊂ ∗

𝑘
be as in Lemma 5.35, so that #∗∗

𝑘
⪰ 2𝑘∕2𝗍𝜌. For 𝐼 ∈ ∗∗

𝑘
, let

𝑎′ < 𝑠𝐼 < 𝑡𝐼 < 𝑏′ be as in Lemma 5.34. Lemma 5.34 tells us that 𝑃𝑟([𝑠𝐼, 𝑡𝐼]) ⊂ 𝐵3|𝐼|(𝑦𝐼). Lemma 5.35
implies that the balls 𝐵3|𝐼|(𝑦𝐼) are disjoint for different choices of 𝐼 ∈ ∗∗

𝑘
. Hence, the intervals

[𝑠𝐼, 𝑡𝐼] for 𝐼 ∈ ∗∗
𝑘
are disjoint.

In light of Lemma 5.34, we seek 𝐼 ∈ ∗∗
𝑘
for which 𝑡𝐼 − 𝑠𝐼 is much smaller than (|𝐼|∕𝑟)1∕4. To

find such an 𝐼, we will first choose a sub-collection of ∗∗
𝑘
, which is not too much smaller than

∗∗
𝑘
, such that the increments 𝑡𝐼 − 𝑠𝐼 for 𝐼 ∈ ∗∗

𝑘
are all comparable (step 1). We will then use

Lemma 5.34 to upper bound the sum of the increments 𝑡𝐼 − 𝑠𝐼 over all arcs 𝐼 in this collection
(step 2). Finally, we will use a pigeonhole argument to find an 𝐼 for which 𝑡𝐼 − 𝑠𝐼 is small (step 3).
Step 1: Finding a sub-collection on which 𝑡𝐼 − 𝑠𝐼 is controlled. We seek a collection of dis-

tinct arcs 𝐼1, … , 𝐼𝑁 ∈ ∗∗
𝑘

such that 𝑁 is not too much smaller than #∗∗
𝑘

and the geodesic
time increments 𝑡𝐼𝑗 − 𝑠𝐼𝑗 for 𝑗 = 1,… ,𝑁 are all comparable. We will find such a collection via
a pigeonhole argument.
The bound (5.93) of Lemma 5.34 followed by the definition (5.102) of ∗

𝑘
shows that for 𝐼 ∈ ∗∗

𝑘
,

𝑡𝐼 − 𝑠𝐼 ⩾

(|𝐼|
4𝑟

)𝜉(𝑄+3)

𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0) ⩾ 2−(𝑘+2)𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.104)

By combining this with the crude bound 𝑡𝐼 − 𝑠𝐼 ⩽ 𝜎 − 𝜏 and Lemma 5.21, we get that for 𝐼 ∈ ∗∗
𝑘
,

𝑡𝐼 − 𝑠𝐼 ∈ [2−(𝑘+2)𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0), 𝖺5
𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0)]

⊂ [2−(𝑘+2)𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0), 𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0)]. (5.105)

The number of intervals of the form [𝑞, 2𝑞] for 𝑞 > 0 needed to cover
[2−(𝑘+2)𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0), 𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0)] is at most a constant (depending only on 𝜉) times 𝑘.
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UNIQUENESS OF THE CRITICAL AND SUPERCRITICAL LIOUVILLE QUANTUM GRAVITY METRICS 113

Consequently, we can find a random 𝑞 > 0, an integer

𝑁 ⪰ 𝑘−1#∗∗
𝑘

⪰ 𝑘−12𝑘∕2𝗍𝜌, (5.106)

and intervals 𝐼1, … , 𝐼𝑁 ∈ ∗∗
𝑘
such that 𝑡𝐼𝑗 − 𝑠𝐼𝑗 ∈ [𝑞, 2𝑞] for each 𝑗 ∈ [1,𝑁]Z.

Since the intervals [𝑠𝐼𝑗 , 𝑡𝐼𝑗 ] for 𝑗 ∈ [1,𝑁]Z are disjoint, we can choose our numbering so that

𝑠𝐼1 < 𝑡𝐼1 < 𝑠𝐼2 < 𝑡𝐼2 < ⋯ < 𝑠𝐼𝑁 < 𝑡𝐼𝑁 . (5.107)

Step 2: Bounding 𝑞. We will now use the estimate (5.94) from Lemma 5.34 to show that the
number 𝑞 from the preceding paragraph must be small relative to 𝐷̃ℎ(𝑢, 𝑣). For each 𝑗 ∈ [1,𝑁]Z,
we have |𝐼𝑗| ∈ [2−𝑘−1𝑟, 2−𝑘𝑟] and 𝑡𝐼𝑗 − 𝑠𝐼𝑗 ∈ [𝑞, 2𝑞]. By plugging these bounds into (5.94), we get

𝐷ℎ−𝖿𝑟

(
𝑃𝑟(𝑡𝐼𝑗 ), 𝑢;A𝑟,4𝑟(0)

)
⪯ 𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣) + 2𝑘∕4𝑞, ∀𝑗 ∈ [1,𝑁]Z (5.108)

with a universal implicit constant.
By (5.108) (with 𝑗 = 1 and 𝑗 = 𝑁) and the triangle inequality for the points 𝑃(𝑡𝐼1), 𝑢, 𝑃(𝑡𝐼𝑁 ),

𝑡𝐼𝑁 − 𝑡𝐼1 = 𝐷ℎ−𝖿𝑟

(
𝑃𝑟(𝑡𝐼1 ), 𝑃𝑟(𝑡𝐼𝑁 );A𝑟,4𝑟(0)

)
⪯ 𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣) + 2𝑘∕4𝑞. (5.109)

On the other hand, (5.107) and our choices of 𝑁 and 𝑞 around (5.106) shows that

𝑡𝐼𝑁 − 𝑡𝐼1 ⩾

𝑁∑
𝑗=2

(𝑡𝐼𝑗 − 𝑠𝐼𝑗 ) ⩾ (𝑁 − 1)𝑞 ⪰ 𝑘−12𝑘∕2𝗍𝜌𝑞. (5.110)

Combining (5.109) and (5.110) gives

𝑘−12𝑘∕2𝗍𝜌𝑞 ⪯ 𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣) + 2𝑘∕4𝑞 (5.111)

which re-arranges to give

𝑞 ⪯
𝜆

𝑘−12𝑘∕2𝗍𝜌 − 𝑅2𝑘∕4
𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣) (5.112)

for a constant 𝑅 > 0 which depends only on 𝜉.
Step 3: Conclusion. We have 2𝑘 ⩾ 2𝐾 ⩾ 1∕(2𝖺5), which can be taken to be as large as we

would like as compared to 1∕(𝗍𝜌) (recall from the discussion surrounding (5.22) that 𝖺5 is chosen
after 𝜌 and the parameters from Lemma 5.2). Hence, we can arrange that 𝑘−12𝑘∕2𝗍𝜌𝑞 ⩾ 2𝑅2𝑘∕4.
Therefore, (5.112) gives

𝑞 ⪯
𝑘2−𝑘∕2

𝗍𝜌
𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣). (5.113)

Plugging (5.113) into (5.108) shows that for each 𝑗 ∈ [1,𝑁]Z,

𝐷ℎ−𝖿𝑟

(
𝑃𝑟(𝑡𝐼𝑗 ), 𝑢;A𝑟,4𝑟(0)

)
⪯

(
𝜆 +

𝑘2−𝑘∕4

𝗍𝜌

)
𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣). (5.114)

Since 𝑘 ⩾ 𝐾 ⩾ log2(1∕𝖺5) − 1, the coefficient on the right side of (5.114) can be made to be
smaller than 2𝜆 provided the parameters are chosen appropriately. This yields (5.71) for an
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114 DING and GWYNNE

F IGURE 24 Illustration of the proof of Proposition 5.18. We consider a 𝑧 ∈ 𝖹𝑟 for which 𝖥𝑧,𝜌𝑟 occurs as in
Lemma 5.23. We look at the corresponding pair of points 𝑢, 𝑣 such that 𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′

0
𝐷ℎ(𝑢, 𝑣) and there is a

𝐷̃ℎ-geodesic 𝑃 from 𝑢 to 𝑣 which is contained in 𝖧𝑧,𝜌𝑟 ⊂ 𝖴𝑟 . Lemma 5.26 tells us that there are times 𝑠, 𝑡 for 𝑃𝑟

such that 𝐷ℎ(𝑃𝑟(𝑡), 𝑢) and 𝐷ℎ(𝑃𝑟(𝑠), 𝑣) are each much smaller than 𝑒−𝜉𝖠8 𝐷̃ℎ(𝑢, 𝑣) = 𝐷̃ℎ−𝖿𝑟
(𝑢, 𝑣). We then use the

triangle inequality to show that 𝐷̃ℎ(𝑃𝑟(𝑡), 𝑃𝑟(𝑠)) ⩽ 𝔠′|𝑠 − 𝑡|.
appropriate choice of 𝐶. The inclusion (5.70) holds since 𝑡𝐼 ∈ [𝑎′, 𝑏′] and 𝑃𝑟([𝑎

′, 𝑏′]) ⊂ 𝐁out by
definition (5.73). □

5.11 Proof of Proposition 5.18

Step 1: Choice of 𝑠 and 𝑡. See Figure 24 for an illustration. Let 𝑧 ∈ 𝖹𝑟 and 𝑢, 𝑣 ∈ 𝜕𝖧𝑧,𝜌𝑟 be as in
Subsection 5.10, so that 𝖥𝑧,𝜌𝑟 occurs and 𝑢, 𝑣 are as in the definition of 𝖥𝑧,𝜌𝑟. In particular,

𝐷̃ℎ(𝑢, 𝑣) ⩽ 𝔠′0𝐷ℎ(𝑢, 𝑣). (5.115)

By Lemma 5.26, almost surely there exists 𝑡 ⊂ [𝜏, 𝜎] such that

𝑃𝑟(𝑡) ∈ 𝐵𝗌𝜌𝑟+(3𝖺5+𝖺9)𝑟
(𝗎𝑧,𝜌𝑟) and 𝐷ℎ−𝖿𝑟

(
𝑃𝑟(𝑡), 𝑢;A𝑟,4𝑟(0)

)
⩽ 𝐶𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣). (5.116)

By the definition of 𝖥𝑧,𝜌𝑟, we have 𝑢 ∈ 𝐵𝗌𝜌𝑟∕2
(𝗎𝑧,𝜌𝑟). By this, (5.116), and the triangle inequality,

|𝑃𝑟(𝑡) − 𝑢| ⩽ 𝗌𝜌𝑟 + (3𝖺5 + 𝖺9)𝑟 +
𝗌𝜌𝑟

2
⩽ 2𝗍1∕2𝜌𝑟, (5.117)

where the second inequality comes from the fact that 𝗌𝜌𝑟 ⩽ 𝗍1∕2𝜌𝑟 (Lemma 5.2) and the fact that
each of 𝖺5 and 𝖺9 can be chosen to be much smaller than 𝗍.
By Lemma 5.26 with 𝗏𝑧,𝜌𝑟 and 𝑣 in place of 𝗎𝑧,𝜌𝑟 and 𝑢, there exists 𝑠 ∈ [𝜏, 𝜎] such that

𝐷ℎ−𝖿𝑟

(
𝑃𝑟(𝑠), 𝑣;A𝑟,4𝑟(0)

)
⩽ 𝐶𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣) and |𝑃𝑟(𝑠) − 𝑣| ⩽ 2𝗍1∕2𝜌𝑟. (5.118)

We will check the conditions of (5.49) for this choice of 𝑠 and 𝑡 (possibly with the order of 𝑠 and 𝑡

interchanged).
Step 2: Lower bound for |𝑠 − 𝑡|. Recall that the points 𝑢 and 𝑣 lie on the inner and outer bound-

aries, respectively, of the annulus A𝛼𝜌𝑟,𝜌𝑟(𝑧). From this, the inequalities for Euclidean distances
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in (5.117) and (5.118), and the triangle inequality, we get

|𝑃𝑟(𝑡) − 𝑃𝑟(𝑠)| ⩾ (1 − 𝛼)𝜌𝑟 − 4𝗍1∕2𝜌𝑟 ⩾
1 − 𝛼

2
𝜌𝑟, (5.119)

where in the last inequality we use that 𝗍1∕2 is much smaller than 1 − 𝛼 (Lemma 5.2).
This right side of (5.119) is at least 𝖺5𝑟, so the reverse Hölder continuity condition 6 in the

definition of 𝖤𝑟 gives

𝐷ℎ

(
𝑃𝑟(𝑡), 𝑃𝑟(𝑠);A𝑟,4𝑟(0)

)
⩾ 𝖺5

𝜉(𝑄+3)𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0). (5.120)

By Lemma 5.19, 𝑃𝑟|[𝜏′,𝜎′] is a 𝐷ℎ−𝖿𝑟
(⋅, ⋅;A𝑟,4𝑟(0))-geodesic. In fact, since 𝑃𝑟([𝑠, 𝑡]) ⊂ A𝑟,4𝑟(0), we

have that 𝑃𝑟|[𝑠,𝑡] is a 𝐷ℎ−𝖿𝑟
(⋅, ⋅;A𝑟,4𝑟(0))-geodesic. Since 𝖿𝑟 ⩽ 𝖠8, we get from (5.120) that

|𝑠 − 𝑡| = 𝐷ℎ−𝖿𝑟

(
𝑃𝑟(𝑡), 𝑃𝑟(𝑠);A𝑟,4𝑟(0)

)
⩾ 𝑒−𝜉𝖠8𝐷ℎ

(
𝑃𝑟(𝑡), 𝑃𝑟(𝑠);A𝑟,4𝑟(0)

)
⩾ 𝖺5

𝜉(𝑄+3)𝑒−𝜉𝖠8𝑟𝜉𝑄𝑒𝜉ℎ𝑟(0) (5.121)

which gives the first inequality in (5.49).
Step 3: upper bound for 𝐷̃ℎ−𝖿𝑟

(𝑃𝑟(𝑡), 𝑃𝑟(𝑠);A𝑟,4𝑟(0)). We now prove the second inequality
in (5.49). From the bi-Lipschitz equivalence of 𝐷ℎ and 𝐷̃ℎ and Weyl scaling (Axiom III), we get
that 𝐷ℎ−𝖿𝑟

and 𝐷̃ℎ−𝖿𝑟
are also bi-Lipschitz equivalent, with the same lower and upper bi-Lipschitz

constants 𝔠∗ and ℭ∗. Therefore, (5.116) and (5.118) imply that

max
{
𝐷̃ℎ−𝖿𝑟

(
𝑃𝑟(𝑡), 𝑢;A𝑟,4𝑟(0)

)
, 𝐷̃ℎ−𝖿𝑟

(
𝑃𝑟(𝑠), 𝑣;A𝑟,4𝑟(0)

)}
⩽ ℭ∗𝐶𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣). (5.122)

Let 𝑃 be the 𝐷̃ℎ-geodesic from 𝑢 to 𝑣which is contained in𝖧𝑧,𝜌𝑟, as in condition 2 in the definition
of 𝖥𝑧,𝜌𝑟. Since 𝑃 is a 𝐷̃ℎ-geodesic, 𝑃 ⊂ 𝖴𝑟, and 𝖿𝑟 attains its maximal value 𝖠8 everywhere on 𝖴𝑟,

𝐷̃ℎ−𝖿𝑟

(
𝑢, 𝑣;A𝑟,4𝑟(0)

)
= 𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣). (5.123)

By (5.122), (5.123), and the triangle inequality, followed by (5.115),

𝐷̃ℎ−𝖿𝑟

(
𝑃𝑟(𝑡), 𝑃𝑟(𝑠);A𝑟,4𝑟(0)

)
⩽ (1 + 2ℭ∗𝐶𝜆)𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣)

⩽ (1 + 2ℭ∗𝐶𝜆)𝔠′0𝑒
−𝜉𝖠8𝐷ℎ(𝑢, 𝑣). (5.124)

On the other hand, since 𝖿𝑟 ⩽ 𝖠8, Weyl scaling gives

𝐷ℎ−𝖿𝑟
(𝑢, 𝑣) ⩾ 𝑒−𝜉𝖠8𝐷ℎ(𝑢, 𝑣). (5.125)

Hence,

|𝑠 − 𝑡| = 𝐷ℎ−𝖿𝑟
(𝑃𝑟(𝑡), 𝑃𝑟(𝑠)) (since 𝑃𝑟 is a 𝐷ℎ−𝖿𝑟

-geodesic)

⩾ 𝐷ℎ−𝖿𝑟
(𝑢, 𝑣) − 𝐷ℎ−𝖿𝑟

(𝑃𝑟(𝑡), 𝑢) − 𝐷ℎ−𝖿𝑟
(𝑃𝑟(𝑠), 𝑣) (triangle inequality)

⩾ 𝑒−𝜉𝖠8𝐷ℎ(𝑢, 𝑣) − 2𝐶𝜆𝑒−𝜉𝖠8𝐷̃ℎ(𝑢, 𝑣) (by (5.116), (5.118), and (5.125))
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116 DING and GWYNNE

⩾ 𝑒−𝜉𝖠8𝐷ℎ(𝑢, 𝑣) − 2𝐶𝜆𝑒−𝜉𝖠8ℭ∗𝐷ℎ(𝑢, 𝑣) (bi-Lipschitz equivalence)

= (1 − 2ℭ∗𝐶𝜆)𝑒−𝜉𝖠8𝐷ℎ(𝑢, 𝑣). (5.126)

Combining (5.124) and (5.126) gives

𝐷̃ℎ−𝖿𝑟

(
𝑃𝑟(𝑡), 𝑃𝑟(𝑠);A𝑟,4𝑟(0)

)
⩽

1 + 2ℭ∗𝐶𝜆

1 − 2ℭ∗𝐶𝜆
𝔠′0|𝑠 − 𝑡|. (5.127)

Since 𝔠′
0
< 𝔠′ and 𝔠′

0
, 𝔠′ depend on the laws of 𝐷ℎ and 𝐷̃ℎ (recall (5.1)), we can choose 𝜆 to be small

enough, in a manner depending only on laws of 𝐷ℎ and 𝐷̃ℎ, so that

1 + 2ℭ∗𝐶𝜆

1 − 2ℭ∗𝐶𝜆
𝔠′0 ⩽ 𝔠′. (5.128)

Then (5.127) gives the second inequality in (5.49). □
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