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1 | INTRODUCTION

Graphical models are powerful tools for expressing statistical relationships between variables. Examples of practical uses are
ubiquitous and include models that characterize the causal relationships between the neurological activity of brain regions,
genetic expression across genes, and a variety of other physiological measurements. A variety of applications have illustrated
the value of graphical models for analyzing scientific phenomena (Chan et al., 2017; Dondelinger et al, 2013;
Felsenstein, 1981; Friedman et al., 2000; Schifer & Strimmer, 2005). Specifically, graphical models have proven useful for elu-
cidating the mechanisms of brain function (Colclough et al., 2018; Foti & Fox, 2019; Greenewald et al., 2017; Manning
et al., 2018; Qiu et al., 2016; Schwab et al., 2018; Skripnikov & Michailidis, 2019). This manuscript outlines joint graphical
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models, an extension to standard graphical models that are useful for jointly analyzing data from multiple sources, for exam-
ple, neurological data measured at multiple timescales, or joint neurological, genetic and phenotypic data. Specifically, this
manuscript lays out the representation of joint graphical models (see Figure 1) and some of their properties, then outlines the
best practices for estimating joint graphical models. This manuscript provides examples of data generation processes where
the joint approach can significantly improve estimates compared with separate estimation.

A graph G = (V,E) consists of a set of p nodes, also known as vertices V= {1, ..., p} and a set of edges EC V x V. In
a probabilistic graphical model (Lauritzen, 1996), the set of nodes V is associated with coordinates of a random vector
X= (xl, ...,xp) " and the edge set E captures dependency relationships between the components of the vector. In partic-
ular, in an undirected probabilistic graphical model, the absence of an edge between nodes a and b indicates that x,
and x; are conditionally independent given all other variables x_y, 5 = {x|c € V\{a,b}}. In the case when a is a subset
of nodes {1, ..., p} rather than a single node, we will denote x, € R!% as the vector whose entries correspond to x; for
i € ac{l, .., p}. In a neuroscience application, the random vector x could represent, for example, measurements of
brain activity in different regions—so the set of edges corresponds to functional brain connectivity. Given
n measurements of the vector x, inferring the graph structure corresponds to identifying pairs of coordinates that are
conditionally independent given all other variables (Drton & Maathuis, 2017). Inferring the graph structure based on
conditional associations is more challenging than inferring the correlation structure between the measurements. How-
ever, the conditional independence graphs are generally considered more scientifically meaningful (Dobra et al., 2004).

2 | BACKGROUND: GAUSSIAN GRAPHICAL MODELS

The most widely used examples of probabilistic graphical models are Gaussian graphical models, where x ~ N (y,Q’l)
is assumed to be distributed as a multivariate Gaussian vector with the mean vector 4 and the precision matrix  whose

6 5
Group 3 Group 4

FIGURE 1 Joint graphical model estimation studies a group of graphs that have partially shared edge structures, presented in black,
and individually owned edge structures, presented in green. Jointly estimating the shared structures enhances the estimation power while
preserving individual structures as well
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entries correspond to the partial correlation between the associated variables. In this setting, any two coordinates x,
and x, are conditionally independent given X (.4, if and only if the (a,b) entry of the precision matrix Q is zero
(Lauritzen, 1996), and the graph structure can be inferred based on nonzero entries of ¥ 1:=Q, also known as the
inverse covariance matrix. Throughout the manuscript, we use the terms inverse covariance matrix and precision
matrix interchangeably. In practice, the covariance matrix is not known and the graph structure needs to be estimated
using samples drawn from an underlying distribution. For example, in a low-dimensional setting, we can first obtain an
estimator of the precision matrix by maximizing the log-likelihood

~

Q=argmax n %log{det(Q)} - %tr (f‘.ﬂ)] , (1)

where det(-) is the determinant, tr(-) is the trace, x=n"') ;. ;x; is the empirical mean and
= nIS" (%, —X)(x;—X) | is the empirical covariance matrix. Next, the graph structure is estimated by thresholding
small (in absolute value) elements of Q or testing whether they are zero (Drton & Maathuis, 2017; Drton &
Perlman, 2004), that is, the graph structure corresponds to the nonzero entries of the resulting thresholded precision
matrix.

In a high-dimensional setting, where the number of parameters to estimate, p, is much larger than the number
of data points observed, n, maximizing the log-likelihood (1) results in poor quality estimates. In the particular
case of Gaussian data, the resulting estimate, that is, the inverse of the covariance matrix, does not exist when
n < p. Unfortunately, the high-dimensional setting is prevalent in various applications. For example, functional
imaging of brain measurements using (standard) 2 mm? voxels will result in approximately p = 0(10°) voxels with
n = 0(10%) measurements (Hsieh et al., 2013; Poldrack et al., 2011). There are two common problems that neuro-
scientists are interested in studying: (i) a static graph representing conditional independence between time series
(Foti & Fox, 2019) and (ii) time-varying graphs within individuals (Calhoun et al., 2014; Lurie et al., 2020). In the
first problem, we estimate a single graph by treating each time point as an i.i.d. sample (Varoquaux et al., 2010),
effectively ignoring the temporal dependence. In the second problem, we estimate graphs for different time points
or graphs within a time window. We will cover associated methodologies for both problems in Sections 3-4 and
Section 6, respectively. We note that in addition to the small sample sizes, applications to fMRI are affected by
temporal correlations in the observed data, which can reduce the effective sample size (Qiu et al., 2016). While
p is large as compared with n, most entries in Q, denoted as w;j, ij = 1, ..., p, are zero, that is, the inverse covariance
matrix is sparse. Hence, a typical strategy to estimate Q in a high-dimensional setting is to add a regularization func-
tion, such as the #;-norm of the parameters, to the log-likelihood function (1), which encourages the graph to be sparse
or have other desirable structural biases (Biithlmann & van de Geer, 2011; Yuan & Lin, 2007). Specifically, we estimate
Q using the following optimization program

~

1 1 /-~
Q=argmax n zlog{det(ﬂ)}—ztr(f&)} —An;|ww|. (2)

Note that regularization is not added to the diagonal terms, w;;, i = 1, ..., p, because Q is positive definite and adding
penalty on the diagonal entries would introduce additional bias. In this manuscript, we focus on the simultaneous esti-
mation of multiple graphs that are structurally similar. We will illustrate in the following sections that exploiting the
common structures will improve the estimation results on every individual graph.

2.1 | Joint Gaussian graphical models

We continue to use the example of brain measurements to demonstrate the idea of joint graphical model estimation.
Consider the case of n fMRI scans collected from each of the K subjects. Suppose that we seek to estimate the functional
connectivity (in this case, a graphical model) between the p voxels of each subject k, where p is much greater than
n (p > n). Each functional connectivity network shares similarities with other networks, but are not identical. To better
estimate the network of the subject k from n MRI scans, we may borrow information from other networks given that
they are expected to share similar patterns. One simple approach is to construct a regularization function that
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FIGURE 2
nodes do not have edges connecting to them, while blue nodes have at least on edge connecting to them. (Top row): Ground truth graphs.
(Second row): Jointly estimated graphs using fused lasso. (Third row): Jointly estimated graphs using the group graphical lasso. (Fourth

row): Graphs estimated separately using the graphical lasso. Details of all methods are provided in the text. From the figure, it is clear that

Comparison of joint and separate graph estimation procedures with p = 20 variables and sample size of n = 5000. Pink

joint estimation significantly outperforms separate estimation

encourages similarities between graphs, an approach known as joint estimation. Figure 2 shows a promising result
when one pools the data across subjects, the resulting estimates better recover the ground truth graphs compared with
separate estimations. It has also been shown that joint estimation can increase sensitivity and detect edges that are
missing in separate estimation (Chiquet et al., 2011; Peterson et al., 2015). Thus, ignoring the information of other
groups may lead to suboptimal solutions (Danaher et al., 2014; Lee & Liu, 2015). Moreover, joint estimation of graphical
models has been applied successfully in a number of problems, including metabolite experiments (Tan et al., 2017), can-
cer networks (Hao et al., 2018; Lee & Liu, 2015; Mohan et al., 2012; Peterson et al., 2015; Saegusa & Shojaie, 2016), bio-
medical data (Kling et al., 2015; Pierson et al., 2015; Yajima et al., 2014), gene expression (Chun et al., 2015; Lin
et al., 2017), text processing (Guo et al., 2011), climate data (Ma & Michailidis, 2016), and fMRI (Colclough et al., 2018;
Lukemire et al., 2021; Qiu et al., 2016; Skripnikov & Michailidis, 2019). In all of these problems, data are heterogeneous,
but the graphs share similarities.

To rigorously describe the example discussed above, we consider the problem of estimating graph structures
G® = (V,.E (k)), k=1, .., K, from K related groups of data. The data for each group are p-variate and share the same set
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of nodes V, but the underlying connection patterns E® may be different due to the heterogeneity between groups. The data

-
for the kth group can be represented as an n; x p matrix xk = (xgk),...,xgi)) , Where the rows ng) = (xEﬁ),...,fo;j),

i =1, .., ng are p-dimensional vectors of observations. Assuming that the data in each group are distributed according
~ -1
to a p-variate Gaussian distribution, xgk)J\/ (,u(k>, {Q(k)} > i=1, .., n, where 4 € R? is the mean, which we assume

without loss of generality to be 0, and Q%) € RP*P is the precision matrix. Given observations X = {X(l),...,X(K)}, we

can estimate Q = {9(1), ...,Q(K>} by maximizing the penalized joint log-likelihood for K groups:

@)= 3 ni[log{der(2)} - (£ )], 3)

k=1

Q= argmax 7(Q) — P(Q)

where fl(k> =m ! (X <k>) x ), k =1, ..., K, are the sample covariance matrices. Directly solving (3) without the penalty
P(Q) gives the maximum log-likelihood estimate of Q. However, the solution is equivalent to solving the maximum
log-likelihood estimate of each group individually and fails to utilize the shared “information” across different groups.
We hence explore different approaches that use the penalty function P() to incorporate the group structure and focus
on the structural assumptions behind the penalties. The comparison of different methods introduced in the text can be
found in Table 1. Specifically, we consider coarse-grained vs. fine-grained structural assumptions. For coarse-grained
structures, all pairs of edge strengths are penalized/regularized in the same way, i.e., invariant to the group identity. In
contrast, fine-grained structure uses regularization/priors between edge strengths that vary across groups, for example,
using prespecified weights for pairs of groups.

The rest of the manuscript is organized as follows. In Section 3, we introduce methods that employ coarse-grained
structural constraints. Methods that employ fine-grained structural constraints are discussed in Section 4. Sections 5
and 6 illustrate two practical examples. Section 5 covers differential graphs, which are special cases of the joint estima-
tion paradigm with two groups. Joint estimation of time-series data is discussed in Section 6. Finally, we close the
review with open problems in Section 7.

3 | JOINT GRAPHICAL MODELS USING COARSE-GRAINED STRUCTURE

We outline a variety of approaches for joint graphical model estimation that use prior knowledge of coarse-grained
structures across groups. As noted, for coarse-grained structures, all pairs of edge strengths are penalized/regularized in
the same way, that is, invariant to the group identity. The illustration of coarse-grained structure is shown in Figure 3.
In contrast, fine-grained structure uses regularization/priors between edge strengths that vary across groups, for exam-
ple, using prespecified weights for pairs of groups. For comparison, the illustration of fine-grained structure is shown in
Figure 4. The performance of the coarse-grained estimation procedure is improved using regularization that captures
the common structure across the K groups—enabling the use of shared information across groups. We will discuss two
directions in detail: hierarchical regularizers and analogous Bayesian priors.

3.1 | Joint graphical models with hierarchical structure

Guo et al. (2011) studied joint estimation of related precision matrices, where the precision matrices are assumed to be
related through a hierarchical structure. Specifically, each entry in the precision matrix is the multiplication of a com-
mon component across K groups and an individual component: a)(k) 0; Jyl ! ) for i # j and a)” =7i l>, where 0;; is the
shared component and yl j ) is the group-specific component. Thus, thls approach enforces a common background struc-
ture. To encourage sparsity, an #;-norm penalty term is also included as a regularizer, resulting in the following objec-
tive termed Joint Graphical Lasso (JGL):

@, {f<k) }I::i =argmax £(Q ﬂlzew — Z Z ‘7’1,1

i#j k=1i#]j

E)
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FIGURE 3 Graphical models with shared coarse-grained structure across groups. (a) The black lines denote the common edges, while
green lines denote individual edges. Each graph has four unique individual edges that are not present in other graphs and four edges that are
present in all graphs. (b) The corresponding adjacency matrices for each graph shown in (a)
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FIGURE 4 Graphical models with shared fine-grained structure across groups. (a) The black lines denote the common edges. Green colored
lines represent the common structure of Group 1 and Group 4, yellow lines of Group 1 and Group 3, red lines of Group 2 and Group 3, and blue lines
of Group 2 and Group 4. (b) The corresponding adjacency matrices for each graph shown in (a), using the same colors for groups of shared edges

where 1; and 4, are hyperparameters that control the scale of the penalty. Note that even when the common compo-

nent #;; is nonzero, an individual entry wf? can still be set to zero by the #; penalty, which denotes a missing edge in
the associated graph. It is worth pointing out that this method is non-convex and hence only convergence to local
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minima is guaranteed. Danaher et al. (2014) introduced a similar method where the associated penalty functions are
convex, which we discuss in Section 3.2.

Shan et al. (2020) proposed a Joint tWo-Level Graphical Lasso (JWLGL), which is a more expressive model that con-
structs two-level structures on both the set of common components and individual components. The algorithm further
clusters the set of nodes V into M classes and imposes class specific structure: let m and m’ be the classes to which nodes
i and j belong, respectively. If m % m’, we have:

oK) gl mmn(), o)

(k)
1,1 m,m’{ i,j ’ m,m’ = ®m,m’ ﬂ

If m = m’, we have Gﬁfm =1and

ij m myl,/ ’ }/i,/'

k . .
o gk mm(0). mm(k) _ lemp:;m( )i
1, i=j.

Without loss of generality, we assume a;,, ,y > 0 and zm >0 for i -75 jand m # m'. Here, a,,, ,y and zm ™ denote the com-
mon components shared across K groups, while ﬁm o and p;" j % denote the individual components that vary across
groups.

Lee and Liu (2015) proposed a Joint Estimator of Multiple Precision matrices (JEMP) under an assumption that pre-
cision matrices decompose into the sum of two components: a)(k) =0y +yf J> In contrast to the maximum likelihood,
the estimation procedure of JEMP is motivated by the CLIME estlmator (Cai et al., 2011), which estimates a single pre-
cision matrix by solving the following optimization problem:

~(k alk
o — argmin|| Q"] subject to ’E( ‘oW 1 ’ <¢, (4)

1

~(k k) Ak
where ¢ is a tuning parameter. The CLIME estimator finds a sparse Q< ) while ensuring that Z< )Q( ) is close to an iden-
tity matrix. JEMP can be seen as a generalization of CLIME to a multi-group setting as it solves the following optimiza-
tion problem:

~

0 {f’<k)}K =argmin||@||; + XK:HF(")
’ k=1 & ' vk:l

1SN (ak ~(k
subject to EZ{Z< >(®+I’(k)) —I} <A, ’E( )(®+F<k)) —I‘ <A, ZF =
k=1 ©
where © denotes the common structure i.e., the mean of the precision matrices K'Y 5, Q%), and T'®¥) denotes the
individual residual components Q%) — @. In the above optimization problem, the first constraint regularlzes the average

difference and the second constraint regularizes the individual difference. Thus, the first constraint imposes a common
structure across groups. The prespecified weight v controls the degree of uniqueness of each group, while 4, and 1, are
hyperparameters that measure group average and individual estimation quality, respectively.

3.2 | Regularization approaches for modeling joint structure
Regularization-based approaches (Bilgrau et al., 2020; Danaher et al., 2014; Hao et al., 2018; Shan & Kim, 2018) do not
assume the form of the common structure and individual structure, but instead impose similarity constraints across

groups. For example, the Fused Graphical Lasso (FGL) and the Group Graphical Lasso (GGL) (Danaher et al., 2014)
add convex penalty terms to the log-likelihood function to learn a common structure:

Q = argmax £(Q)—P(Q);
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K
k k k
Pran(@) =4 Y > ol 14223 |0 — o[ (5)

k=1iZj k<k ij

k=1i7j i#j k=1

The first penalty term in both Prg, and Pggr encourages model sparsity. The second term in Pggy, encourages groups to
have shared edge values, while the P penalty tends to be less restrictive and only encourages a shared sparsity pat-
tern. In addition, an R-package “JGL” is provided that implements both FGL and GGL (Danaher et al., 2014).

Hao et al. (2018) proposed simultaneous clustering and estimation (SCAN) procedure that addresses the case when
the heterogeneous data are missing group labels, for example, when the groups are latent or unknown. SCAN partitions
the unlabeled data into K clusters and simultaneously imposes a homogeneous structure across groups using the GGL

penalty. Given n unlabeled observations x;, i=1,...,n, with the density function I(x,u,Q)= Zleﬂklk (x;,u(k),ﬂ(k)),
where 7z, is the probability that x; belongs to the kth group and [ (x;pt<k),ﬂ<k)) =

log{det (Q(")) } — tr{ (x— 0 (x — a0y To® } SCAN solves the following optimization problem:

~ ~a 1
{Fichio Q@ =argmax- > _ log(l(xi,u, Q) — Pscan (1, Q);
i=1

X N »
> () } OMITL
= k=1 i=1

k=1

K
Pscan(#,Q) =4 Z Z |‘"$> | +,122{

k=1i#j iAj

Note that the first two terms of Pscan(u, Q) correspond to the GGL penalty function and the third term is the #;-norm
penalty, used for encouraging the sparsity of the mean vectors. Such regularization is common in the context of high-
dimensional data, where many variables contain limited information about the clustering structure. Hence, placing a
sparse penalty function realizes selection of informative variables (Pan & Shen, 2007; Sun et al., 2012).

There are several other methods that use the regularization approach to estimate the joint structure. Shan and
Kim (2018) proposed the Joint Adaptive Graphical Lasso (JAGL) procedure that introduces a weighted ¢; penalty term
to tackle problems with unbalanced data. Bilgrau et al. (2020) proposed Targeted Fused Ridge Estimator (TFRE) that
uses an additional £, penalty term that incorporates target matrices as prior information to stabilize the estimation pro-
cess. In addition, an R-package “rags2ridges” provides an implementation of TFRE (Bilgrau et al., 2020).

3.3 | Bayesian methods for joint Gaussian graphical model estimation

We briefly overview Bayesian methods for joint Gaussian graphical model estimation. Bayesian formulations of
graphical models use priors to encourage desired properties for model selection. For example, the spike-and-slab
prior is commonly used in practice to encourage sparsity in precision matrices. In general, the probabilistic
counterpart to the penalty function follows the relation p(Q) cxexp(—P(R2)), where p() is the prior distribution of
the precision matrix and P(Q) denotes the penalty function. By the Bayes' rule, the posterior distribution is proportional
to the product of the likelihood and prior distribution. Therefore, finding a maximum a posteriori probability (MAP)
estimate is equivalent to obtaining the estimate by maximizing the log-likelihood (MLE) with an additional penalty
function. Several works (Li et al., 2019; Lin et al., 2017; Mitra et al., 2016; Peterson et al., 2015; Tan et al., 2017;
Yajima et al., 2014) have addressed Bayesian graphical model estimation by designing priors that incorporate struc-
tural information. In the Gaussian graphical model case, a Wishart prior (Atay-Kayis & Massam, 2005; Lenkoski &
Dobra, 2011; Mohammadi & Wit, 2015; Roverato, 2002) is often placed on the precision matrix. This prior is a con-
jugate prior for the Gaussian likelihood, that is, for a Gaussian likelihood, the posterior distribution remains
Wishart. Furthermore, the normalizing constant of the posterior distribution has an explicit form when the graph
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G is decomposable, that is, when the index set V of a graph can be partitioned into three disjoint nonempty sets
V=AUSUBand (i) S is a clique, (ii) S separates A and B, (iii) A U S and S U B form decomposable subgraphs.

Li et al. (2019) proposed the joint spike-and-slab graphical lasso prior, designed to encourage global sparse structure.
In a related work, Tan et al. (2017) placed a multiplicative prior on the adjacency matrices, where the distribution of
each edge depends on the multiplication of the values of two end nodes. This prior not only encourages sparsity, but
also allows users to specify the degree of connections. We discuss local common structure methods (Lin et al., 2017;
Peterson et al., 2015) in Section 4.3 and the differential graph methods (Mitra et al., 2016; Yajima et al., 2014) in
Section 5.2. We will not go into details about the Bayesian formulation of graphical models, but instead give a high-level
overview of various approaches.

Consider a single group setting with Q = {Q<l> } From a Bayesian perspective, the lasso regularizer can be viewed
as a Laplace prior (Marlin & Murphy, 2009; Wang, 2012) and is formulated as:

p(R[4) ocH exp /1|le ﬁ{ exp( ,i> 1(("i,i>0>}1(9>0)’ (7)

z;tj i=1

where 1(Q > 0) restricts the precision matrix to be positive definite. The term 1, o) ensures that the diagonal entries
are non-negative and hence preserves the positive definiteness of Q. When taking the logarithm logp(€|4), the first
product is equal to the lasso regularizer. Therefore, when computing the MAP estimate, the logarithm of the Laplace
prior along with the log-likelihood is the penalized MLE estimator with lasso penalty function. In the multiple group
case, to promote the group similarity between the precision matrices, Li et al. (2019) converted the GGL and FGL penal-
ties to structural priors.

In Bayesian inference, other than computing the MAP estimator, we are also interested in the posterior mean,
mode, and samples. In this case, the shrinkage priors are not enough to produce sparse posterior samples (or mean and
mode) because the posterior does not concentrate on sparse parameters. Therefore, additional thresholding is required
to obtain sparsity. As an alternative, one may use the spike-and-slab prior (Mitchell & Beauchamp, 1988) to promote
the sparsity pattern in the posterior. Consider a single group Q = {Q“) }, the spike-and-slab prior is a hierarchical mix-
ture prior formulated as:

p(zl4) = ] [ Ber(zi14); (8)
i#j

p(Qz) = [ [ (1 -zy)8(wry) + 2N (@

i#j

I 2)’

where () denotes the delta function. If z;; = 0, we restrict the variable to be zero. One may also replace the delta func-
tion with a normal distribution with small variance, which approximates the delta function. In the multiple group case,
a set of latent indicators following the spike-and-slab distribution adaptively control the value of the FGL (resp., GGL)
penalty (Li et al., 2019), namely the Doubly Spike-and-Slab Joint Graphical Lasso (DSS-JGL). Consider two constants
V1 > vy > 0 and z;, w;; are binary variables for i # j. We assume that each z;; and w;; are drawn independently from a
Bernoulli distribution with a specific parameter. The DSS-JGL prior is represented as:

K P ’
—logp(Q | z,w) o 1y ZZ| ”|+/bzz Aszz wg;)\, (9)
k=1 i=1

=iz Ve k<kiZj wt,zt,)

where the third term can also be replaced by the group lasso penalty function, similar to (6). We can choose v, to be
small, so that when z;; = 0 for i # j, the second term in (9) will be large, forcing the posterior to be zero. Similar behav-
ior also follows for the joint regularization term in (9) when either z;; or w;; is zero. Additionally, an R-package
“SSJGL” provides an implementation of DSS-JGL (Li et al., 2019).

Although the Bayesian approaches introduced above provide expressive structures for joint estimation of multiple
graphical models, theoretical guarantees that characterize convergence rates are lacking in general. Gan et al. (2019)
provided guarantees on the structure recovery and the convergence rate in ¢, norm. Specifically, they proposed
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Bayesian Joint Estimation of Multiple Graphical Models (BJEMGM) that extends the spike-and-slab prior to multiple
graphs, but in a different setting compared with Li et al. (2019). Let z;; be i.i.d. samples drawn from Ber(1) with
0<A<1. The prior on @;; = wl%), wa )} is defined as

K

LS
_logp(mw |zl~J,/11,/12) x —log{HziJEIexp<—/11|wi ) + H 1 Zij —exp( /12|wg]f)|) } (10)
k=1 k

=1

The prior on the diagonal entries wl(]f), i=1,..,p, k=1, .. K, is the same as the second term of (7) with parameter A

replaced by 1;. Marginalizing over z, the log of the prior distribution is expressed as

—lng(Q | /1 /11,12,/13 =

p
i=1

2/13@” +Elog (Hziexp( \/11) +H—exp —|wl§§)|\/12)>.

k=1 i<j k=1

From the modeling perspective, the prior in (9) additionally enforces the similarity of inverse covariance values (u ) for
k=1,..,K and i # j, while (10) only constructed a shared latent Bernoulli variable z;; across K groups that controls the
sparsHy of a) ) for k = 1, .., K

4 | JOINT GRAPHICAL MODELS USING FINE-GRAINED STRUCTURE

When estimating coarse-grained joint graphical models, all pairs of edge strengths are penalized equally; the relation-
ship between wf’;) and w§§'> and the relationship between wl(f;) and @ k" ,k# k', k' # k" are assumed to be equal. How-
ever, in many real world settings, some subsets of groups share a local structure that does not appear across all groups.
Figure 4 visualizes the adjacency matrices related to edge sets EX,k = 1, ..., 4, of graphical models that are not globally
similar, but with subsets of groups that share a local structure. The most common approach in modeling such graphical
models is to incorporate this prior knowledge of the relation between subgroups into the estimators (Ma &
Michailidis, 2016; Saegusa & Shojaie, 2016). We briefly outline some approaches for joint graphical model estimation

with fine-grained shared structure.

4.1 | Entry-wise structural information

Given the relation information G = U, <;<j<pGij, Where G;; is a set that encodes the group relations of node i and node
Jj» Figure 4a illustrates an example of entry-wise structural information. Consider the pair of nodes (i,j) = (3,4) in
Figure 4a: both graphs of Group 1 and Group 2 have edges (yellow lines) connecting these two nodes, while Group
3 and Group 4 do not have an edge in between. Then the corresponding relation information Gz 4 =G, is {{1,3},{2,4}}.
Similarly, for the pair of nodes (i,j) = (2,8), the graphs of Group 1 and Group 4 have an edge (green line) connecting
(2,8), while graphs of Group 2 and Group 3 do not have edge between node (2,8). Then, the corresponding relation
information G,s=Gs> is {{1,4},{2,3}}. The relation information of graphs in Figure 4 is G;; ={{1,3},{2,4}} for (i)
€l3.4.(43).4.5.6H.1D.2D.26E Gy={{1.4}.{2.3}} for () €{(2:8).(82)(3.8).(83).(L8)L(8.1.(6:8).(8.6))
and G;; ={{1,2,3,4}} for the rest of the node pairs. X

Ma and Michailidis (2016) proposed a joint structural estimation method (JSEM) to estimate edge sets {E (k)} by
modifying the neighborhood selection algorithm (Meinshausen & Biihlmann, 2006) to incorporate structural informa-
tion. Once the edge sets are estimated, ea}{chkpremswn matrix is estimated by maximizing the group specific likelihood
constrained to have zeros indexed by {E . We will briefly introduce the neighborhood selection method and then
show how JSEM extends it to multiple grap ficAl models.

The neighborhood selection algorithm estimates the conditional independence structure, which is encoded in the
pattern of zeros of the precision matrix under a Gaussian model, by solving a collection of regression problems. See
chapter 12 in Maathuis et al. (2018) and references therein. Suppose the p-dimensional random variable x follows a nor-
mal distribution N ( ,(Q)_l) with an associated graph G = (V,E). In this case, we can express x;, i € V, as a linear func-
tion of other nodes:
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Xi = Z Qijxj + &,
jev\{i}

where ¢; is independent of x;, j € V\{i}, if and only if 6; = —w;;/w;;. Therefore, the optimal prediction of x; given the
remaining variables can be formulated as the following optimization problem:

2

{51-‘,}‘ _=argmin E | x; — Z 0ijx; | . (11)
Jenity €M

Since the distribution of x is not known, the expectation term in (11) cannot be computed. Let X be a n x p matrix that
collects n i.i.d. observations of x. The #; penalized empirical optimization objective is given as:

~ 1
O, = argmin__{|X; — XO|; + |||, (12)

i+ Vii=

where 0; is a p-dimensional vector @; = (01-,1,...,91-,1,) T , 0;; =0, and X; is the i-th column of the matrix X. To estimate
multiple models, JSEM extends the neighborhood selection approach in (12) by solving the following optimization
problem:

K

~ 1 2 K

0= argmin Z — HXEk) —x% @)§"> H + 2PisEm <{®§k> } ) ; (13)
0% 0% =0, k=1,...K k=1 2 k=1

i

6‘%} ‘ 2

Pysem <{®§k) }fl) = Z Z /15]

JFige Gy

where @ = @<1>,...,@<K>}, the penalty term incorporates the relation information G, and /11[‘5.] is the group-specific tun-
ing parameter. The penalty function Pjsgy resembles the GGL penalty in (6), except that the norm is now placed on a
subset of groups provided by the relation information G. Minimizing (13) results in the following estimated edge sets

~ ~(k ~(k
BY ={(i))1<i<j<pdly #00rdy #0}, k=1,..K

Given E(k), we define S¥,) ={Q:Q>0, »;; =0, V(i,j) ¢ E"<k> andi # j ;. The precision matrix set Q is finally estimated
by maximizing the log-lfkelihood with constraints that enforce the sparsity pattern:

§<k> = s;l({)zgerrg); log{det (Q(k)) } —tr (i(k)ﬂ(k)), k=1,...K. (14)
B

Note that we can apply JSEM only when element-wise structural relation information is given. However, when not all
element-wise structural relation information is provided, one can still use the GGL penalty on subsets of groups for
which prior information is available.

4.2 | Group-wise structural information

As obtaining entry-wise structural information is sometimes challenging, another approach is to use the relation-
ship between groups, described by weights, in estimation. For example, suppose that K = 3 and we have the
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following relationships between groups: Group 1 and Group 2 share similarity, Group 1 and Group 3 also share
similarity, but Group 2 and Group 3 are unlikely to be similar. To this end, Saegusa and Shojaie (2016) proposed
LAplacian Shrinkage for Inverse Covariance matrices from Heterogeneous populations (LASICH), that uses a
weighted graph G, = (I',E,W) to record the relations between groups. The node set I" denotes K groups, the edge set
E captures the relations between groups, and the weight set W: E — R represents the similarities between groups.
Then, a Laplacian penalty function is placed on the objective function to impose group similarity. The optimization
problem is formulated as follows:

Q- argmax £(Q) — PLASICH( )s

subJecttoQ (Q ) bes>0, k=1,..,K;
K ,) 2
Prscn(@ =4 |wl,,+zwzz{2vvw(w o)},
k=1i#]j i#j\kkr

where the first penalty term in Ppasicu () promotes the sparsity pattern and the second term encourages the similari-
ties within subsets of groups. In the case where the weight set is not available, Saegusa and Shojaie (2016) further pro-
posed a two-stage algorithm, called Hierarchical Clustering LAISCH (HC-LAISCH), that first uses hierarchical
clustering to learn relations between groups and then applies LAISCH. Furthermore, under that Gaussian
assumption, the estimates from HC-LAISCH and LAISCH share the same consistency properties. Although the
approaches in Ma and Michailidis (2016), and Saegusa and Shojaie (2016) require prior information on the group
relations, or the prior information is obtained by another algorithm, they provide a more flexible structure than
the global structure methodologies, such as GGL (Danaher et al., 2014; Guo et al., 2011). In particular, the global
structure approach can be viewed as a special case of a local structure approach with homogeneous structural
information.

While the work introduced earlier required prior information about the group relations, which may not be available
for most cases, Graphical Elastic Net Iterative Shrinkage Thresholding Algorithm (GEN-ISTA) (Price et al., 2021) jointly
estimates graphs and group membership via k-means clustering. That is, GEN-ISTA further clusters groups k = 1, ...,
K into Q classes. Let Dy, ¢ = 1, ..., Q, be the sets that contain group memberships. The objective function for GEN-ISTA
is

argminf(ﬂ) —Peenasta(2,D); (15)
Q,D

> e et

qlkk’eD

Pgen-ista (€, D) AIZZVUU |+AZZ|D

k=1i#]j

It is easy to see that when we fix © and optimize D, then (15) becomes a k-means clustering objective. In contrast, when
we fix D and optimize Q alone, the problem (15) reduces to a joint graphical model with a variant of FGL (Danaher
et al., 2014). A linear rate of convergence can be shown for the algorithm that minimizes (15) by alternating minimiza-
tion over D and Q (Price et al., 2021).

4.3 | Bayesian approach

We introduce two Bayesian methods that construct priors to constrain the similarities within subsets of groups. Both
approaches do not require prior information to build group relations. This property is particularly desirable because, in
most cases, we may not have the structural information for K groups of data.

Peterson et al. (2015) proposed the Markov Random Field (MRF) prior for the graphs GP=WVE®k=1,.,Kto
encourage the selection of edge indices in related graphs. In addition, the selection of edge indices is controlled by two
variables: a random matrix ® € RK*K whose k,k’th entry measures the degree of similarity between group k and k' and
an edge-specific coefficient vector v reflecting the probability of the corresponding edge being selected. Let e;; € RX,
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1<i<j<p, be a binary vector indicating the existence of an edge between node i and j among K groups. The prior for
e;; is expressed as

p(eij| v, © )ocexp(vwl e;j+e @ew) 1<i<j<p,

where v;; controls the probability that an edge between the ith and jth nodes is selected. Specifically, v controls the spar-
sity of graphs. The joint prior for the graphs G = {G",..G%)} is

G|v.0)=]]p(ei|v0)

i<j

The Beta prior is placed on the elements of v. Specifically, we have that v;; ~ Beta(1,4), which results in a sparse graph.
Meanwhile, the spike-and-slab prior is placed on the group similarity matrix ®, conditioned on the latent random vari-
ables z= (zl- J)i<j’ to allow discrimination between zero similarity and positive similarity, where z;;, 1<i<j<K, is a
binary random variable denoting the relation between groups i and j. If z;; = 1, the two groups are related, otherwise
they are not. Then, the prior on @ is defined as

®|Z HP 1,}|Z1,}

i<j

p(gi,j \Zi,j) = (1 —Zi,j)5+Zi,j%9(ifleXP(—ﬂ9iJ),

where T'(-) is the Gamma function and a,f are hyperparameters. Noting that the distribution of z determines the relat-
edness between groups, Peterson et al. (2015) constructed a Bernoulli prior on z:

Z|W Hp ZLJIW
p(zij [ w) =w™ (1 —w)'"%,

where w € [0,1] is a hyperparameter. Shaddox et al. (2020) recently proposed an alternative prior on z in the setting
where data types are different. Finally, we apply the G-Wishart prior distribution to the inverse covariance matrices
conditional on the graph structures G® = (VE®) k=1, .., K:

K
p(Q|G,b,D) x H |Q(k) |(b—2)\26Xp{_271tr (Q(k)D) }’ ok ¢ Py,
k=1

where D is a preselected positive definite matrix and b > 2 is a constant. The set P, contains all positive definite
matrices that have the edge structure E®. Shaddox et al. (2018) proposed a similar framework as Peterson et al. (2015),
but adopted a continuous shrinkage prior, instead of the G-Wishart prior used in Peterson et al. (2015), resulting in a
computationally more efficient procedure.

Lin et al. (2017) applied the MRF prior to jointly estimate multiple graphical models but in slightly different
setting—they adopted a Bayesian version of the neighborhood regression (Meinshausen & Biihlmann, 2006), see (11),

and proposed a hierarchical prior on the set of regression coefficients @ = {G)(l),...,(D(K)}. To encourage the sparsity
pattern, a spike—and—slab prior, see (8), is placed on ® conditioning on binary latent factors z= {zi J} with

7= (zf J>, ,Zl J ) e{o, 1} i<j. Lin et al. (2017) studied the setting where the group index is a tuple (s,f) with s€e SCN

being the location and t € N'CN being the time. Intuitively, groups with the same time index ¢ should have similar
graph structures, while groups with the same location s and small pairwise time difference, that is, |t — ¢| = 1 should
have similar graph structures. Let A; = {(s,t,8',t'): s Z s',t = ¢'} and B, = {(s,t,s',t'): s = &',|t — | = 1}. Let A ={4;,42,43} be
a set of hyperparameters. The indicator function 1,(x) outputs 1 when x = a, and 0 otherwise. An MRF prior is placed
on g to represent the pairwise interactions between groups:
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p(zij|4) oxexp {/11 Z 1, <z§j;t)> + AZZ {10 (zEj;O) 1o (zgj/’f/)) +1 <z§j,-f)> 1, <z§;”f/)> }+isz {10 (ZEj’”) 1o <z§;””)> +1 (zgj’”) 1 (Zg’”)> }}
B:

seSteT Ay

Under this prior distribution, for any tuple (s,,5/,t') in A, or B;, 750 (st

ij and z;;~" have a higher probability to have the same
sign. In addition, by varying the values of 4,,4,,4; one can weigh the importance of individual components, spatially
similar components, and temporally similar components, respectively. Lin et al. (2017) provided a MATLAB implemen-
tation of the joint temporal and spatial estimation.

Another example of describing the non-uniform relationships between groups is to build a hierarchical diagram,
such as a tree graph. In the Bayesian formulation, we can implement this by constructing a hierarchical prior in the fac-
tor form. Oates and Mukherjee (2014) proposed a structure learning trees (SLTs) prior that encodes the hierarchical
information among groups. Although the SLTs prior is not originally designed for estimating Gaussian graphical

models, the prior can be applied to regularize the structure of the inverse covariance matrices.

5 | ESTIMATING DIFFERENTIAL GRAPHICAL MODELS

In contrast to joint estimation, several applications in biomedical research, such as analyzing the gene expression differ-
ences in normal cells and cancer cells or differences between the test group and control group, consider the case where
K = 2. Different from the methods in Sections 3 and 4, we will be focusing on finding the “differences” rather than find-
ing the “similarities.” In the high dimensional setting, we assume that the difference of two graphs is sparse. Although
the differences between two graphs can be naively estimated by using a joint estimation method first and then finding
the difference, procedures that directly estimate the difference are statistically more efficient (Shojaie, 2021).

In this section, we briefly overview two approaches that estimate graph differences, the direct estimation method
and the regularization based approach. For a detailed introduction, see Shojaie (2021) for a recent review.

5.1 | Direct estimation

The direct approach estimates the difference A = QY — Q@ without explicitly estimating individual precision matrices
QW and Q). This approach potentially fits a broader class of precision matrices as the individual precision matrices,
QM and Q?, need not be sparse, but only the difference A is assumed sparse. In addition, jointly estimating QY and
Q@ can be challenging when the sparse assumption is violated. Zhao et al. (2014) directly estimated the difference A
by solving a constrained minimization problem, noting that, by definition, we have =MAx® 30 1 32 — 0. Conse-
quently, estimating the differential graph A = QY — Q@ can be achieved by minimizing the following objective:

) @

_3 ()‘

~ . . O S
A =argmin||A||,, subJectto‘E AX +X <A,

oo}

which is an extension of the CLIME (Cai et al., 2011) method. Xu and Gu (2016); Yuan et al. (2017) utilized the symme-
try property EVAX®? =@ Ax® and hence 2‘1(E<1>A2(2) +2(2)A2<1>) — 3 1+ 32 0. They defined the objective
function as

~

A =argminZ(A) + A ||Al (16)
Sy 1 <) @ <1 <@
7a)=5u(azVaz”) —ufa(z¥ -2},

where the Hessian of the objective with respect to A is f‘.(l) ®§(2) —1—2(2) ®§(l)>\2, which is positive semi-definite.
Therefore, 7(A) + 4 ||A]]; is a convex function with respect to A, hence a unique minimizer exists.

Direct estimation of differential graphs can be extended to other applications as well. Wang et al. (2021) proposed a
procedure to estimate the differences of two autoregressive models by leveraging the connection between A and the dif-
ference of a pair transition matrices. Wang et al. (2021) developed an efficient two-stage estimation procedure by first
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optimizing (16) and then using A to solve a regularized least-squared problem in the second stage. Other recent work
extends the direct estimation approach to more expressive structured differential graphs. Na et al. (2021) constructed a
latent structure estimator where the underlying difference can be formulated as the sum of a low-rank and sparse
matrix—a framework first discussed by Chandrasekaran et al. (2012). Zhao et al. (2019) extended the direct estimation
approach to estimating the differential graph of functional data.

5.2 | Regularization based approach

The node-based learning framework (Mohan et al., 2012, 2014) assumes that most parts of the graph are shared, and the
difference is generated by a node perturbation. When a node is perturbed, the edges connecting this node to others change
across K groups. In addition to maximizing the degree of the overlapping structure between groups, the task is to detect
perturbed nodes. An intuitive way to look for the perturbed node is to look at the difference of two graphs Q) —Q®.
When the jth node is being perturbed, the corresponding jth row and jth column of QY — @ will have non-zeros, con-
structing a unique symmetric row-column group. Given that there are several nodes being perturbed, QY — Q) will be
the union of the row-column groups, each stemming from a perturbed node. Using this concept, the row-column overlap
norm (RCON) (Mohan et al., 2012, 2014) is designed to encourage sparsity in the union of the row-column groups:

2
Preon(@) =4 Y Y o) | +22G, (2" -@);

k=1 ij

P
G,(A)= min V), f(V)= vill ,
o(8) = min FV). 1)= 3w,

where v; is the jth column of V. It is easy to see that when g = 1, the RCON penalty is equivalent to the FGL penalty in
(5). This penalty function simultaneously imposes sparse structure on both the individuals, Q) and Q, and the differ-
ence Q) — Q@ As mentioned earlier, this method may not work well under the setting that Q) and Q® are not
sparse. Additionally, Mohan et al. (2014) provided code for estimating differential graphs.

To infer the relative differences between two graphs in a Bayesian formulation, it is intuitive to place a prior on the
differences of two graphs 6;; :E;}) —EE;), for every i<j. Since the difference 6;; is binary, either 0 (no difference) or
1 (difference), (Mitra et al., 2016) placed a Bernoulli prior distribution Ber(z) on 8;;, i <j where z follows a Beta distri-

bution, specifying the tendency of being different on two graphs.

ijs

6 | JOINT ESTIMATION FROM TIME SERIES DATA

Time-varying graphical models (Kolar et al., 2010; Zhou et al., 2010b; Zhu & Koyejo, 2018) can be seen as extensions of
joint graphical models with groups organized along the time index. The samples are assumed to be generated as

-1
xlm ~N (u@, <Q<’)) >, i=1,.., n, where t =1, ..., T is the time index. Under such a model, the estimation of time-

varying precision matrices and corresponding dynamic networks is challenging as data scarcity is a serious issue: in many
problems, we only observe a single sample at each time point. Therefore, to make the estimation possible, structural
assumptions are imposed on how the underlying precision matrices and dynamic networks change over time. Such
assumptions control the model complexity and allow for the development of estimation procedures. Examples of struc-
tural assumptions on temporal dynamics include piecewise constant and smoothly changing precision matrices, as well as
combinations of both. Piece-wise constant structure captures a discrete temporal evolution from one stage to another. For
example, the gene regulatory network in a fruit fly can undergo structural changes as the fruit fly develops from an
embryo to an adult state. Smooth temporal structure can be used to model the dynamic functional connectivity of brain
networks that exhibit smooth temporal evolution from one brain state to another (Shine et al., 2016). The temporal
dynamics of crime rates are often modeled as a combination of smooth dynamics and sudden jumps, where the jumps
capture sudden serious crime events. In this section, we will discuss how to apply the FGL penalty and its variants to build
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a piecewise constant structure. We also introduce a joint estimation framework of multiple autoregressive models to
model smooth temporal data.

6.1 | Regularized estimation

The FGL penalty has been widely used in time-varying graphical models to model piecewise constant dynamics (Hallac
et al., 2017; Kolar et al., 2010; Kolar & Xing, 2012; Monti et al., 2014). For instance, Smooth Incremental Graphical
Lasso Estimation (SINGLE) (Monti et al., 2014) applies the FGL framework to enforce the similarity between consecu-
tive precision matrices:

PsinGLe(Q /1122|0)l,,|+1222| lJ— ZJ . (17)

t=1i#j =2 i#j

The first term encourages the sparsity of each graph and the second term regularizes the “jumps” across time. On the
other hand, Group-Fused Graphical Lasso (GFGL) (Gibberd & Nelson, 2017) introduces the Frobenius norm as an alter-
native to encourage neighboring similarity:

ProL(Q /hzz |CU1J |‘*‘/1222HQ Q' ’F

t=1i#j

where SL” denotes the precision matrix Q" with the diagonal part removed. One may wonder what are the differences
in the structure assumptions between the Frobenius norm and the #;-norm in (17). The #;-norm regularizes individual
changes, while the Frobenius norm assumes global changes, implying that several edges within a graph will change
simultaneously.

While the methods introduced in the last paragraph encourage the similarity of two neighboring graphs, the graph
that is one-step ahead and that of one-step behind, another idea is to enforce the similarities within multiple steps
ahead and behind. This can be done by creating a moving window index set (Yang & Peng, 2020) A/, (¢) for each time
point t = 1, ..., T. Consider a window of length 2w. At every time point ¢, we look at data w-steps ahead and w-steps
behind and hence the index set is N, () ={i=1,...,T:|t —i| <2w}. Note that the index set \/,,(¢) also includes ¢ itself.
Then, we apply the GGL penalty to the components in the index set.

6.2 | Kernel smoothing graphical models
Another way to construct smoothly varying graphs is by using an autoregressive structure. This model assumes that
each data point is a linear combination of previous data points with additional independent noise. Consider the lag-1
case, where x!) is a linear transform of x*~? with independent noise £/ \V (0, G“)):
x0=AxV 4 O =1, T,

where A € RP*P is the transition matrix. Consequently, the covariance matrix is smoothly varying along t if G%) is a
smooth function of t:

20 =ATYAT 4 GY, t=1,..,T. (18)

Motivated by this structure, Zhou et al. (2010) proposed a kernel based methlod to eTstlmate a smooth time-varying
covariance structure. First, a weighted sum of the sample covariance matrices £ ,...,X " is computed as
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S(8)
S0 _ w0z ’
Zsl::lw(slst) ’

where the weights are constructed by a symmetric nonnegative kernel function K(|s — ¢|/h). This ensures that the esti-
mated covariance is smoothly varying over time. Subsequently, the precision matrix is estimated using the following
objective:

o — argmax n Blog{det(9<’)> } —%tr(g(t)ﬂm)] —/1,12 | a)gfi) |, t=1,..,T.

i#j

The kernel smoothing method can also be extended to model two-way continuous changes. For instance, the ages
of subjects from the fMRI dataset vary across an interval, and one can parametrize the transition matrices as A(u) with
u taking values in a closed subset of the real line. This model is smooth in two aspects: across the temporal domain and
labels (groups). Hence, we have the following autoregressive model:

Xit :A(ui)xi,t,l +eiyp, i=1,.,n, t=2,..,T.

Tu) =AWEwAwm) " +4I.

The Kernel-Smoothing Estimator (KSE) (Qiu et al., 2016) first uses a kernel based estimator for the covariance matrix
and then uses the CLIME (Cai et al., 2011) method introduced in Section 3.1 to recover precision matrices. Consider a
set of n data Y = {y,,...,y,}, where y; = {y;1,...y;r } € RP*T and with label u; € [0,1]. The estimated covariance model of
the label uy € [0,1] is formulated as follows:

n
S(up) = Zwi(uo,h)zi;
i=1

wi(uig, h) = C(MO)K(ui - uo>;

nh h
21, ug €0, 1}
c(uo) = {
11, ug € (0, 1)
~ 1<
z:i ?Zyztyzt ’

t=1

where w; is the kernel-based weight with a predefined scale h, K(-) is the kernel, c(u) determines the boundary value,
and Z; is the sampled covariance of the time-series data. After obtaining S(uo) the precision matrix Q(uo) is obtained
using CLIME in (4):

Q) = argmin|[Q(uo)|,
subject to|S(uo)Q(uo) —I| < 4i.

Under this framework, the kernel trick is used to capture the assumption that the covariance matrices are
smoothly varying across labels. In addition, the Euclidean distance of two labels reflects the similarity of the
two groups, capturing the dependence structure. The kernel-based method can be applied to general joint esti-
mation, where the sampled covariance of time-series data is replaced by the sample covariance of data with the
same labels.
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7 | OPEN PROBLEMS

Existing and emerging biological data and applications will require novel approaches to joint graphical models. We dis-
cuss some of these emerging applications briefly. Joint estimation of functional connectivity networks across multiple
subjects allows scaling of the effective sample size and computation of estimates that are more robust to outliers. The
joint estimators of brain connectivity networks could be applied to task-based fMRI scans to study group dynamic func-
tional connectivity patterns (Andersen et al., 2018; Calhoun et al., 2014; Gonzalez-Castillo & Bandettini, 2018). While
this manuscript is focused on joint estimation with the same set of nodes, one potential direction is to extend it to multi-
ple sources, that is, multimodal data. Recent technologies (Abreu et al., 2018; Huster et al., 2012) have demonstrated
the availability of conducting concurrent measurements of EEG and fMRI signals, allowing the estimation of multiple
sources possible in the future. While EEG has a higher temporal resolution and fMRI features a higher spatial resolu-
tion, we believe that joint estimation with multiple sources could compensate for the limits of the measurement tech-
niques and provide better estimation results. Some recent work (Li & Li, 2021; Lock et al., 2013) has developed
methodologies to integrate data from different modalities, however, joint estimation of graphical models from multi-
modal data is still an open problem.

Approaches for the estimation of the joint graphical models presented in this survey largely rely on penalized esti-
mation, where the penalty biases the estimates toward the assumed structure. Quantifying statistical uncertainty about
the model parameters, that is, performing hypothesis tests and constructing confidence intervals, is challenging when
penalized estimators are used due to the induced bias and model selection that is implicitly performed. There has been
recent work on statistical inference for low-dimensional parameters in graphical models (Barber & Kolar, 2018;
Jankova & van de Geer, 2015; Jankova & van de Geer, 2017; Ren et al., 2015; Wang & Kolar, 2016; Yu et al., 2016; Yu
et al., 2020) based on the #,-penalized estimator in the first stage. However, these approaches were developed only in
the setting where parameters of one graph are being inferred. In contrast, work on statistical inference for joint graphi-
cal models is much more sparse. Xia et al. (2015); Belilovsky et al. (2016); Liu (2017); Kim et al. (2021) developed tech-
niques for statistical inference in differential graphical models, while Wang and Kolar (2014); Lu et al. (2018); Wang
et al. (2020) focused on graphical models for time series data. Wang and Shojaie (2021) developed a hierarchical testing
procedure for joint inferences of multiple graphs on Hawkes processes, albeit in non-Gaussian settings. Developing the
corresponding inferential techniques for estimators obtained using coarse-grained and fine-grained penalties is an inter-
esting area open for future research.

8 | CONCLUSION

This manuscript has introduced joint Gaussian graphical model estimation methods for joint data with shared structure
across multiple groups. In particular, we have considered several examples of extending classical statistical inference
methods to joint estimation settings, including the MLE based estimator, neighborhood regression, and the CLIME esti-
mator. We have discussed several methods that exploit coarse-grained structures using a global regularization method
that encourages a shared coarse-grained structure across all groups. In contrast, the fine-grained structural regulariza-
tion methods further partition the groups into subgroups per node, encouraging local shared regularity. With two
groups, differential graphs are often a highly effective approach. We have also discussed the applications of joint estima-
tion techniques to the estimation of graphical models from time-series data.

8.1 | Further reading

Recent developments of joint statistical inference are primarily focused on Gaussian graphical models. Other types of
graphical models, including discrete graphical models (Drton, 2009; Drton & Richardson, 2008), semiparametric/
nonparametric graphical models (Liu et al., 2012; Sun et al., 2015), and latent graphical models (Chandrasekaran
et al., 2012), have been well studied for single graph estimation. While such models have broad applications, joint esti-
mation in these models is less studied.
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