
| www.folio.org1

Architectural Beeprints
WOLFcon 2022

Hamburg, Germany
Tod Olson & Vince Bareau

| www.folio.org2

Overview

A discussion around new strategic capabilities for Folio. Some in
the near future and some further away.
In this forum we will foster a conversation around some of these.
A small number of strategic architectural enablers will be
introduced to seed the conversation.
The goal is to solicit feedback around these topics and gather
new or alternative ideas.

| www.folio.org3

First draft architectural blueprint for Folio: Feb 2016 .

Where it Started

Presenter
Presentation Notes
This is still very close to what we have today.

Note - Color coding shows early separation of concerns:
Black boxes indicate FOLIO OSS project components
Orange boxes indicate hosting-provided components

| www.folio.org4

Where to Next?

There are certain known areas of expansion for Folio now on the
near horizon.

• Some market capabilities have been deferred so far:
Consortial Support; App Marketplace; …

• The growth of Folio which has introduced challenges of
scale: data integrity; dependencies management; …

• The adoption of Folio has placed demands on: release;
distribution; deployments; upgrade; maintenance; …

| www.folio.org5

Some Desired Capabilities

Capability Description Urgency

Consortial Support Enable shared management of resources Soon

App Marketplace Publish and distribute add-on FOLIO
functionality

Later

Release Simplification Reduce overhead of release process Soon

Dependency
Reduction

Simplify complex interdependencies and
improve their operational management

Soon

Data Integrity Ensure valid cross-app data references Now

Hosting Efficiency Reduce computing and staff loads Soon

Ease of Development Ease of onboarding, creating dev environments Soon

Inventory Flexibility Rigid areas include hierarchical data model,
item statuses, metadata standards

Mixed

Presenter
Presentation Notes
This list of desired capabilities is not meant to be exclusive, but does represent some needs sites are feeling.

None of these capabilities can be enabled with one single action, there are underlying pieces needed to enable them. If this is, in part, our desired state, then this forum is meant to address a few things we think the project needs to help us get there.

| www.folio.org6

Enablers

To provide desired capabilities it will be necessary to create some
architectural enablers. In this forum we will introduce four such
enablers for discussion
● Microservice Boundaries
● Release Packaging
● Platform Minimal
● Cross-app Data Sync

| www.folio.org7

Enabler: Microservice Boundaries
Where we are

● Folio embraces microservices (sorta)
● Each backend module is considered a µservice.
● Each µservice is responsible for their own data layer.
● Only the backend module responsible for data storage is

allowed to directly access it
● All other data access must be through the µservice API

interfaces.
● Some older applications have implemented a separation

between “business logic” and “storage” modules.

Ideas for Discussion

● Folio continues to embrace µservices (more so)
● The Bounded Context is considered a µservice
● A Bounded Context may consist of several backend

modules
● All modules in the Bounded Context may directly access

the shared data storage
● The “storage” vs. “business logic” pattern is eliminated

Benefits

● Dependency Reduction: reduces the number of modules
● Ease of Development
● Reduces latency (reduces http traffic)
● Contributes to Data Integrity
● Allows for extension modules

μSvc

BE
module

Data

µSvc

BE
module

Data

μSvc

BE
module

Data

BE
module

| www.folio.org8

Enabler: Release Packaging
Where we are

● Folio is a monolith: a large bag of modules
● Flower releases are on a 4 month cadence
● Each Flower release is typically followed by multiple “Hot

Fix” releases
● Large Testing Overhead

Ideas for Discussion

● Introduce the formalized concept of an Application
● Folio releases are comprised of a smaller number of

Applications - which contain the modules
● Dependency management is moved to the Application

boundary - fewer permutations

Benefits

• Tighter coupling between frontend and backend modules
• Provides for Hosting Efficiency
• Enabler for independent application lifecycles
• Enabler for Folio Marketplace or App Store

Folio

Module

Module

Module

Application

Module

Module

Application

Folio

Module

Module

Module

| www.folio.org9

Enabler: Platform Minimal
Where we are

● The term “Platform” is not consistently used in Folio
● Concept: a minimal distribution of modules that allows a

user to log into a UI, but provides no other functionality; a
platform upon which to build functionality.

● Current work: identifying and packaging the set of modules
to permit this bare-bones minimal deployment

● See FOLIO-3253, FOLIO-3548, etc.

Ideas for Discussion

● Defines an infrastructure layer, functionality goes on top
● This has been desired for several years
● To what degree can testing of this layer be automated?
● Can larger Platforms (e.g. Folio LSP) be composed of

smaller Platforms (e.g. Platform Minimal)?

Benefits

● Provides a coherent base for functional platform
distributions, i.e. FOLIO LSP distributions

● Provides a baseline for addressing bootstrapping and
administrative pain points.

● Provides platform other projects can use, offers possible
close integration

● Release Simplification. Reduces the size of Folio Flower
releases when coupled with Release Packaging changes

● Provides for Hosting Efficiency

Platform Minimal

Folio LSP Apps

Folio Extended
Apps

Folio LSP Platform
(Flower Release)

Presenter
Presentation Notes
subtopics: people are using Platform in different ways
FOLIO as platform, a running system that we plug things into, bare-bones
Packaging concept: defines a specific set of modules that implement the above system

https://issues.folio.org/browse/FOLIO-3253
https://issues.folio.org/browse/FOLIO-3548

| www.folio.org10

Enabler: Cross-App Data Sync
Where we are

• Folio consists of many domains, each with many modules
• Modules provide a specific service in each domain
• Coordination between domains is implemented

synchronously through APIs.
− Designated “source of truth”
− Requires deep knowledge of other modules and

domains APIs and data model
− Fragile
− Example: Circulation State is tracked in Inventory

Item; Acquisition Orders create stub Inventory
Instance records.

• Existing active proposal: FOLIO Cross-Application Data
Sync Solution

− Eventual Consistency
− Domain Event Pattern
− Single Source of Truth

Ideas for Discussion

● Is Cross-App Data Sync suitable for all domains?
● What are acceptable latencies and how best to set the

user’s expectations?
● Can Cross-App Data Sync be extended to Cross-Tenant

Data sync?
● Can Cross-App Data Sync be extended to Cross-Folio

Data Sync?

Benefits

● Enables Consortial Support
● Contributes to Data Integrity
● Dependency Reduction: loose coupling between apps as

only each app concerns with modifying its own data based
on event messages

https://wiki.folio.org/display/DD/FOLIO+Cross-Application+Data+Sync+Solution

| www.folio.org11

Wrap up
and

Thank you

| www.folio.org12

Appendix

| www.folio.org13

Other Architectural Topics Not Discussed

• Cross Tenant Data
• Storage approach

− JSONB usage
− Centralized Storage Service
− Localized Storage

• Elasticsearch vs Opensearch
• Roles and Permissions
• Data Privacy and Security
• Inter-Folio Integration

	Architectural Beeprints
	Overview
	Slide Number 3
	Where to Next?
	Some Desired Capabilities
	Enablers
	Enabler: Microservice Boundaries
	Enabler: Release Packaging
	Enabler: Platform Minimal
	Enabler: Cross-App Data Sync
	Wrap up
and
Thank you
	Appendix
	Other Architectural Topics Not Discussed

