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ABSTRACT

In this thesis we explore the topology of a space Tn parameterizing Tschirnhaus transfor-

mations. We begin with an exposition of Tschirnhaus transformations in modern language,

and a demonstration of their use in solving the depressed cubic equation. We then construct

Tn and show that it has the structure of a PConfn(C) bundle over UConfn(C). We see that

rational maps from a variety Y into Tn correspond to primitive elements in degree n field

extensions of the function field K(Y ). We give a formula for the rational cohomology of Tn,

see that it is homologically stable as n →∞, and explicitly compute the dimensions of the

stable cohomology groups in low degree, along the way computing character polynomials for

H i(Pn;Q) as an Sn representation for i ≤ 5. Finally, we give a brief historical overview of

progress in solving low degree polynomials, leading into the active research fields of essential

dimension, resolvent degree and the algebraic form of Hilbert’s 13th problem, topics to which

we hope this parameter space and our results on it might apply and prove useful.
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1 INTRODUCTION

Introduced by Ehrenfried Walter von Tschirnhaus in 1683 [23], the Tschirnhaus transforma-

tion is a powerful tool for reducing the number of parameters in polynomial expressions. We

begin by illustrating the technique, as Tschirnhaus himself did, to solve the depressed cubic

p(x) = x3 + a2x+ a3 = 0.

The idea is to perform a sort of indirect substitution, replacing x with a new variable

y = s(x) = x2 + b2x+ b3.

(In general s(x) may also have a leading coefficient b1, but it is not necessary for this

computation.) Then y also satisfies a monic cubic polynomial,

q(y) = y3 + c1y
2 + c2y + c3 = 0.

Any of the resulting polynomial q(y), the substitution polynomial s(x), or the entire process

may be described as a Tschirnhaus transformation of p(x). The goal is to choose b2 and b3

cleverly so that q(y) = 0 may be solved for y by simpler means; here we will try to eliminate

the two parameters c1 = c2 = 0.

The ci can be computed in terms of the ai and bi in either of two ways:

1. Using Vieta’s formulas: Let x1, x2, x3 be the roots of p(x), and yi = s(xi) be the

individually transformed roots. Then

ai = (−1)iσi(x1, x2, x3) and ci = (−1)iσi(y1, y2, y3) = (−1)iσi(s(x1), s(x2), s(x3))

where σi are the elementary symmetric polynomials. We can then expand the ci as

polynomials in the bi and xi, which are symmetric in the xi, so by the fundamental
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theorem of symmetric polynomials we can write them as polynomials the ai and bi

(readily done by hand or with a computer algebra system).

2. Using linear algebra: Making liberal use of the relation p(x) = 0, rewrite y2 = s(x)2

and y3 = s(x)3 as quadratic polynomials in x, with coefficients in terms of the ai

and bi. Combining those with the definitional y = s(x) and trivial 1 = 1, the four

equations constitute a linear map from the space of cubic polynomials in y to the

space of quadratics in x. Computing the kernel gives a relation between 1, y, y2, and

y3, precisely the desired q(y) = 0.

By either method, we arrive at

q(y) = y3 + (2a2 − 3b3)y
2 + (a22 + 3a3b2 − 4a2b3 + a2b

2
2 + 3b23)y

+ (−a23 + a2a3b2 − a22b3 − 3a3b2b3 + 2a2b
2
3 + a3b

3
2 − a2b22b3 − b33) = 0.

Next we set the first two coefficients equal to 0 and solve for b2 and b3 in terms of the original

coefficients a2, a3:

b2 =
−3a3 − 6

√
a23
4

+
a32
27

2a2
, b3 =

2

3
a2

Then we plug those expressions back into q(y) and solve for y solely in terms of a2 and a3:

y = 3
√
−c3 =

6

a2

√
a23
4

+
a32
27

3

√
−a3

2
+

√
a23
4

+
a32
27

Finally, we reverse the substitution, solving for x in terms of y. In this low degree case,

the quadratic y = s(x) can easily be solved for x directly (though one of the two solutions

is parasitic), but in general we can use linear algebra to avoid the issue: Following method

(2) above (but leaving out y3), we have a linear isomorphism from the space of quadratic

polynomials in y to the quadratics in x, which we can invert to get x in terms of y. After
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simplification, we arrive at

x = −
a3
2

+

√
a23
4

+
a32
27

4
(
a23
4

+
a32
27

) y2 +
a2

6

√
a23
4

+
a32
27

y

=
3

√
−a3

2
+

√
a23
4

+
a32
27
− a2

3
3

√
−a3

2
+

√
a23
4

+
a32
27

(with the two cube roots equal to each other), which one may recognize as Cardano’s formula.

In the centuries following his original paper, Tschirnhaus transformations have been

used extensively as both a computational and theoretical tool for solving polynomials. In

particular, they are central to Hilbert’s 13th problem, which asks if a general degree 7

polynomial can be solved by means of algebraic functions of only two variables. We give a

restatement of the problem in modern language and a brief summary of the relevant history

in section 4.

A variant of Hilbert’s 13th problem using continuous functions, rather than algebraic

ones, was solved in 1957 by Arnold [3] [4] based on work of Kolmogorov [19]. More than a

decade later, Arnold continued working on the algebraic version. In a pair of papers ([6],

[7]), he explored the topology of algebraic functions, meaning the roots of polynomials over

function fields, thought of as a function of the coefficients. Using the equivalence between the

category of finitely generated field extensions of a base field k and the category of varieties

over k and dominant rational maps, every algebraic function corresponds to a branched cover

of varieties, up to rational equivalence. The universal degree n algebraic function

pn(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an

3



corresponds to the cover:

Ãn
pn {(p(x), r) ∈ An

poly × A1
∣∣ p(r) = 0}

An {p(x) ∈ k[x] monic, degree n}

πpn

It is universal in the sense that every degree n cover is pulled back from this one via a

canonical classifying map; given a variety Y with function field K = K(Y ) and a degree

n separable algebraic function p(x) ∈ K[x], evaluating the coefficient functions at a point

y ∈ Y (after removing their indeterminacy loci) gives a pullback square:

Ỹp Ãn
pn

Y An

y p(y, x)

πp
y

πpn

fp

∈ ∈

Removing the branch locus from An leaves Polyn(k), the space of square-free monic degree

n polynomials over k. When k = C, identifying a polynomial with its set of roots gives an

isomorphism of Polyn(C) to UConfn(C), the space of unordered configurations of n distinct

points in the plane, which is a K(π, 1) space for the braid group Bn. The space of ordered

configurations of n points in the plane, PConfn(C), is a K(π, 1) space for the pure braid group

Pn. The natural map PConfn(C) → UConfn(C) forgetting the order on the configuration

can be identified with the Galois closure of the cover πpn .

By universality, the cohomology of the braid group defines characteristic classes for al-

gebraic functions, pulled back from Polyn(C) along the classifying maps. Arnold used these

characteristic classes to obstruct the reduction of parameters in certain polynomials, though

under conditions that are somewhat artificial to Hilbert’s problem. In [7] he uses regular

functions rather than rational functions throughout, and he finds an obstruction to solving

pn(x) = 0 only if you disallow parasitic solutions. His theorem in that paper would suggest
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that the quartic p4(x) is unsolvable, since the solution in radicals includes parasitic solutions.

Still, the idea of searching for obstructions in the cohomology of relevant universal spaces is

a promising one.

Our inspiration for this paper comes from another paper of Arnold, [5], in which he

defines the Tschirnhaus transformation geometrically as a map

T : An
a × An

b → An
c ,

with the three affine spaces parameterizing the polynomials p(x), s(x), and q(y) described in

the example above. Just as the topologically interesting universal space Polyn(k) is obtained

by cutting out the discriminant locus Σ from An, we define

Tn = An
a × An

b \ T−1(Σ),

a universal parameter space for Tschirnhaus transformations. Our results describe Tn topo-

logically, determine a universal property, and compute its cohomology.

Theorem 2.1. For k = C, Tn has the structure of a fiber bundle:

PConfn(C) Tn

UConfn(C)

The monodromy action of π1(UConfn(C)) = Bn factors through Sn, acting on the fiber

PConfn(C) by permuting the points.

Theorem 2.2. Let Y be a variety, K = K(Y ) its function field, p(x) ∈ K[x] a degree

n separable polynomial with classifying map fp : Y 99K Polyn, defining the field extension

5



L = K[x]/p(x). Then rational maps σ : Y 99K Tn such that the triangle

Tn

Y Polyn

πσ

fp

commutes are in bijection with primitive elements of L/K.

Theorem 3.3. Over k = C,

H`(Tn;Q) ∼=
⊕̀
i=0

H i(Pn;Q)⊗Q[Sn] H
`−i(Pn;Q).

The summands H i(Pn;Q)⊗Q[Sn]H
j(Pn;Q) stabilize for sufficiently large n. Computed values

for i, j ≤ 5 are shown in the following table:

j

5 0 Q11 Q156 Q1345 Q8119 Q37324

4 0 Q8 Q87 Q541 Q2363 Q8119

3 0 Q5 Q44 Q184 Q541 Q1345

2 0 Q4 Q18 Q44 Q87 Q156

1 Q Q3 Q4 Q5 Q8 Q11

0 Q Q 0 0 0 0

0 1 2 3 4 5 i
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2 CONSTRUCTION

From here on, fix the base field k = C. As in the introduction, consider three general

polynomials,

p(x) = xn + a1x
n−1 + · · ·+ an−1x+ an,

s(x) = b1x
n−1 + · · ·+ bn−1x+ bn,

q(y) = yn + c1y
n−1 + · · ·+ cn−1y + cn,

with corresponding affine spaces An
a , An

b , and An
c parameterizing values for the coefficients in

C. Let x1, ..., xn and y1, ..., yn denote the roots of p(x) and q(y) respectively, parameterized

by yet more affine spaces An
x and An

y , with canonical maps down to An
a and An

c respectively

sending a set of roots to the monic polynomial with those roots.

The Tschirnhaus transformation is a map T : An
a × An

b → An
c fitting into the following

commutative square:

((x1, ..., xn), s(x)) (s(x1), ..., s(xn))

An
x × An

b An
y

An
a × An

b An
c ,

(p(x), s(x)) q(y) =
∏n

i=1(y − s(xi))

∈ ∈

T̃

T

∈

∈

The coefficients of q(y) are polynomials in the bi and xi, symmetric in the xi, so can be

rewritten as polynomials in the bi and the elementary symmetric functions

σi(x1, ..., xn) = (−1)iai,

which are the coefficients of p(x). Thus T is a well-defined regular map.
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Our parameter space consists of those pairs (p(x), s(x)) such that the resulting q(y) has

n distinct roots. That is,

Tn := T−1(Polyn(C)).

Theorem 2.1. Tn has the structure of a fiber bundle:

PConfn(C) Tn

UConfn(C)

π

The monodromy action of π1(UConfn(C)) = Bn factors through Sn, acting on the fiber

PConfn(C) by permuting the points.

Proof. Using the notation from above, the roots s(xi) of q(y) = T (p(x), s(x)) can be distinct

only if the original roots xi of p(x) were distinct. Thus the projection π : Tn → An
a onto the

first factor has image contained in Polyn(C) ∼= UConfn(C). Given any p(x) ∈ Polyn(C), the

pair (p(x), x) is in Tn, since s(x) = x is the identity Tschirnhaus transformation,

T (p(x), x) = p(x).

Thus π in fact surjects onto Polyn(C).

To determine the fiber, fix a polynomial p(x) ∈ Polyn(C) ⊂ An
a . Choose an arbitrary

ordering of its roots ~xp = (x1, ..., xn), and consider the restriction T̃~xp of T̃ to {~xp} × An
b :

T̃~xp : An
b → An

y

T̃ (s(x)) = (s(x1), ..., s(xn)).

The transformation T (p(x), s(x)) lies in Polyn(C) precisely when the transformed roots s(xi)

are distinct, that is when s(x) ∈ T̃−1~xp
(PConfn(C)).

8



T̃~xp is a linear map in the coefficients bi of s(x). Its matrix is the Vandermonde matrix


xn−11 · · · 1

...
. . .

...

xn−1n · · · 1

 ,

whose determinant is well known to be a square root of the discriminant of p(x), which is

nonzero since p(x) ∈ Polyn(C). Therefore T̃~xp is an isomorphism, and we conclude that

π−1(p(x)) = ({p(x)} × An
b ) ∩ T−1(Polyn(C)) ∼= T̃−1~xp

(PConfn(C)) ∼= PConfn(C).

That Tn is in fact a fiber bundle follows immediately from the fact that

PConfn(C)→ UConfn(C) ∼= Polyn(C)

is a covering map. On an evenly covered neighborhood U ⊂ UConfn(C) we can choose a

locally consistent ordering of the roots xi, as well defined continuous functions on U . This

allows a continuous local assignment p 7→ T̃~xp ∈ GLn(C), and a local trivialization of the

bundle

π−1(U)→ U × PConfn(C)

(p(x), s(x)) 7→ (p(x), T̃~xp(s(x))).

The monodromy action of Bn in the usual cover PConfn(C)→ Polyn(C) factors through the

natural map Bn → Sn, permuting the roots xi of p(x). This subsequently permutes the rows

of the matrix for T̃~xp , and thus the coordinates of the fiber π−1(p(x)) which T̃~xp identifies

with PConfn(C).
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Theorem 2.2. Let Y be a variety, K = K(Y ) its function field, p(x) ∈ K[x] a degree

n separable polynomial with classifying map fp : Y 99K An
a , defining the field extension

L = K[x]/p(x). Then rational maps σ : Y 99K Tn such that the triangle

Tn

Y Polyn(C)

πσ

fp

commutes are in bijection with primitive elements of L/K.

Proof. Recall from the construction that, as a bundle, Tn sits inside of the trivial bundle

Polyn(C) × An
b , where the second factor parameterizes polynomials s(x) of degree at most

n − 1. Abusing notation slightly, the data of a rational map s : Y 99K An
b is precisely a

polynomial s(x) of degree at most n − 1 with coefficients in K. Let α be the residue of x

in L = K[x]/p(x). We then use s(x) as a Tschirnhaus transformation, producing s(α) ∈ L.

This gives a bijection between such maps s and elements of L, since the powers of the

primitive element α form a basis for L as a vector space over K. The content of the theorem

is then that s(α) is a primitive element for L/K if and only if the image of the section

σ = (fp, s) (restricted to an appropriate Zariski open set in Y ) lands in Tn.

Let

Ỹ = {(y, r) ∈ Y × C
∣∣ p(y, r) = 0}

be the degree n branched cover of Y with K(Ỹ ) = L. Up to Galois conjugation, α is the

projection onto the second factor

Ỹ Y × C C.π2

The fact that α is primitive for L/K is equivalent to Ỹ being an n-sheeted, connected

branched cover of Y .
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The polynomial s(x) defines a different map on Ỹ ,

Ỹ Y × C

(y, r) (y, s(y, r))

ŝ

so that

s(α) = π2 ◦ ŝ.

The transformed s(α) is primitive for L/K if and only if the branched cover ŝ(Ỹ )→ Y is still

degree n. Over a suitable Zariski open U ⊂ Y , both Ỹ and ŝ(Ỹ ) are true covering spaces,

and ŝ is a map of covers. ŝ(Ỹ ) is degree n if and only if the fiberwise functions s(y, x) send

the n roots of p(y, x) to distinct values, i.e. if σ(y) = (p(y, x), s(y, x)) ∈ Tn.

3 COHOMOLOGY COMPUTATION

To compute the cohomology of Tn, we must first briefly review the cohomology of PConfn(C)

(equivalently the cohomology of the pure braid group Pn, since PConfn(C) is a K(Pn, 1)

space). The basic case is n = 2, where we have an algebraic deformation retract

ht : PConf2(C)→ PConf2(C)

(z1, z2) 7→ ((1− t)z1, z2 − tz1)

onto the subspace {0} × C∗ by simply translating the first point to the origin. Thus

H∗(P2) ∼= H∗(C∗), with one generator ω ∈ H1(P2;Z) which counts the winding number of

the second strand in a braid around the first.

Lemma 3.1. The mixed Hodge structure (see [12]) on H1(P2;Z) ∼= H1(C∗;Z) is pure of

weight 2.
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Proof. Punctured curves are well-known, standard examples of mixed Hodge structures (see

e.g. [13]), which can be computed using the Gysin sequence. Explicitly, the long exact

sequence of the pair (P1,C∗) contains the segment

0 H1(C∗;Q) H2(P1,C∗;Q).

Let ν ∼= C × {0,∞} denote a tubular neighborhood of {0,∞} in P1. By excision and the

Thom isomorphism,

H2(P1,C∗;Q) ∼= H2(ν, ν \ {0,∞};Q) ∼= H0({0,∞};Q) ∼= Q2.

The Thom isomorphism is given by the cup product with the Thom class

u ∈ H2(ν, ν \{0,∞};Q). By definition, the restriction of u to either fiber gives a generator of

H2(C,C∗;Q) ∼= H2(P1;Q) which has a pure Hodge structure of weight 2, thus u has weight

2. In the category of mixed Hodge structures, then, we have

H1(C∗;Q) H2(P1,C∗;Q) Q2(−1),∼=

where the (−1) denotes a Tate twist raising the weight by 2. We conclude that H1(C∗;Q)

is pure of weight 2.

Lemma 3.2. The canonical mixed Hodge structure on Hk(Pn;Z) is pure of weight 2k.

Proof. There are forgetful maps uij : PConfn(C) → PConf2(C) for each pair of indices

1 ≤ i, j ≤ n, picking out only the i-th and j-th points of the configuration. Let

ωij = u∗ij(ω) ∈ H1(Pn;Z),

representing the winding number of the j-th strand around the i-th strand. By Lemma 3.1,

12



each ωij has weight 2.

Arnold showed in [2] that the classes ωij in fact generate H∗(Pn;Z) as a ring, subject

only to the relations

ωji = ωij

ωijω`m = −ω`mωij

ωijωj` + ωj`ω`i + ω`iωij = 0

for all choices of indices i, j, `, and m. All classes in Hk(Pn;Z) are then degree k polynomials

in the ωij, therefore have weight 2k.

Now we can proceed with the main computation.

Theorem 3.3. Over k = C,

H`(Tn;Q) ∼=
⊕̀
i=0

H i(Pn;Q)⊗Q[Sn] H
`−i(Pn;Q).

The summands H i(Pn;Q)⊗Q[Sn]H
j(Pn;Q) stabilize for sufficiently large n. Computed values

for i, j ≤ 5 are shown in the following table:

j

5 0 Q11 Q156 Q1345 Q8119 Q37324

4 0 Q8 Q87 Q541 Q2363 Q8119

3 0 Q5 Q44 Q184 Q541 Q1345

2 0 Q4 Q18 Q44 Q87 Q156

1 Q Q3 Q4 Q5 Q8 Q11

0 Q Q 0 0 0 0

0 1 2 3 4 5 i
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Proof. We apply the Serre spectral sequence to the fiber bundle

PConfn(C)→ Tn → UConfn(C),

giving E2 page

E2
i,j = H i(UConfn(C);Hj(PConfn(C);Q))

∼= H i(Bn;Hj(Pn;Q)).

The coefficients above are a local system, with Bn acting on Hj(Pn;Q) by permuting the

indices of the generating classes ωij, as by Theorem 2.1 the monodromy of the bundle acts on

PConfn(C) by permuting the points of the configuration. The pullback of this local system

along the covering map PConfn(C)→ UConfn(C) is the constant sheaf on PConfn(C) with

stalk Hj(PConfn(C);Q). By transfer,

E2
i,j = H i(Bn;Hj(Pn;Q)) ∼= H i(Pn;Hj(Pn;Q))Sn

= (H i(Pn;Q)⊗Hj(Pn;Q))Sn

∼= H i(Pn;Q)⊗Q[Sn] H
j(Pn;Q)

That last isomorphism, between invariants and coinvariants, holds for all semisimple repre-

sentations.

By lemma 3.2, the Hodge structure on E2
i,j is then pure of weight 2(i+j). The differentials

in the spectral sequence all go up to a higher diagonal, but they must preserve weights [1], so

it follows that all the differentials vanish and E2
i,j = E∞i,j . The `-th diagonal on the E∞ page

gives the associated graded group of H`(Tn;Q), but since every term is a Q-vector space

there are no extension problems. H`(Tn;Q) is simply the direct sum of all the groups on the

diagonal, giving the desired result.
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Sn representations are all self dual, so we may alternatively write

H i(Pn;Q)⊗Q[Sn] H
j(Pn;Q) = HomSn(H i(Pn;Q), Hj(Pn;Q)).

For each partition λ ` n, let mi,λ be the multiplicity of the irreducible representation Vλ in

H i(Pn;Q). Then by Schur’s lemma, the dimension of H i(Pn;Q)⊗Q[Sn] H
j(Pn;Q) is

∑
λ`n

mi,λmj,λ.

The cohomology groups H i(Pn;Q) are representation stable [11]; that is, by padding the

largest segment of the partition we can treat λ as a partition of any N ≥ n, and the

multiplicities mi,λ become constant for sufficiently large N . Thus the dimensions of

H i(Pn;Q)⊗Q[Sn] H
j(Pn;Q) also stabilize.

To compute those stable dimensions, we use two different descriptions of H∗(Pn;Q) as an

Sn-representation. First, Chen [10] gives a generating function for the twisted cohomology

of the braid group Bn with coefficients in an arbitrary virtual Sn-representation, but a bit

of background is required to state it. For j = 1, ..., n, define class functions Xj : Sn → Z,

where Xj(g) is the number of j-cycles in the cycle decomposition of g. All class functions of

Sn can be written as polynomials in Q[X1, ..., Xn], known as character polynomials. Given

a tuple of nonnegative integers λ = (λ1, ..., λ`), define the monomial

(
X

λ

)
=

(
X1

λ1

)(
X2

λ2

)
· · ·
(
X`

λ`

)
.

Such monomials form a basis for character polynomials over Q, and thus for all class func-

tions. Also, let µ be the Mobius function, and let

Mk(z
−1) =

1

k

∑
j|k

µ

(
k

j

)
z−j.
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Then from Chen [10], the twisted cohomology of Pn with coefficients in the virtual represen-

tation with character
(
X
λ

)
is given by the generating function

∞∑
n=0

∞∑
i=0

dimH i(Pn;

(
X

λ

)
)(−z)itn =

1− zt2

1− t
∏̀
k=1

(
Mk(z

−1)

λk

)(
(tz)k

1 + (tz)k

)λk
.

This generating function is perfect for computing our terms H i(Bn;Hj(Pn;Q)), except

that we first need to know the character polynomial for Hj(Pn;Q), which is not so easy to

read off from the generating function. Instead, we use a second description of H∗(Pn;Q),

due to Lehrer and Solomon [21]:

H i(Pn;Q) ∼=
⊕
λ`n

IndSnZλ(ξλ), (1)

where λ now ranges over partitions of n into exactly n− i segments, Zλ is the centralizer of

an element of Sn with cycle type given by the partition λ, and ξλ is a particular character

of Zλ which we now describe.

Suppose the partition λ consists of segments

λ1 ≥ λ2 ≥ · · · ≥ λk > 0,
k∑
i=1

λi = n.

For each 1 ≤ i ≤ k, let gi be the λi-cycle

gi = ((λ1 + · · ·+ λi−1 + 1) · · · (λ1 + · · ·+ λi)),

let

cλ =
k∏
i=1

gi

be an element with cycle type λ, and let nj be the number of cycles in cλ of length j. One
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may verify that the centralizer of cλ is the product of wreath products

Zλ =
n∏
j=1

(Z/j) o Snj

=
n∏
j=1

(Z/j)nj o Snj

where the Z/j factors are the cyclic subgroups generated by the cycles gi, and the Snj act

by permuting cycles of equal length. The character ξλ is defined on the cyclic factors by

ξλ(gi) = (−1)λi+1e2πi/λi

and on the Snj factors by ξλ = εj+1 where ε is the sign character. Note in particular that ξλ

is trivial on any Z/2 factors, but nontrivial on all longer cycles.

The induced characters are given by

Ind(ξλ)(g) =
1

|Zλ|
∑

h∈Sn, h−1gh∈Zλ

ξλ(h
−1gh).

With care, we can translate that into a character polynomial. For example, let cλ = (12) ∈ Sn

be a single transposition, the unique conjugacy class with exactly n−1 cycles. Its centralizer

is Zλ = Z/2 × Sn−2, which contains two types of elements, (12)(· · · ) and (1)(2)(· · · ). A

permutation g can be conjugated onto something of the form (12)(· · · ) by sending a 2-cycle

(ab) in g onto (12), which can be done in either order. The remaining n − 2 elements can

be permuted arbitrarily, so there are 2X2(g)(n − 2)! ways to do this. Similarly g can be

conjugated onto (1)(2)(· · · ) by choosing two 1-cycles in g and sending them to 1 and 2 in

either order, with 2
(
X1(g)

2

)
(n − 2)! ways of doing that. Conveniently in this simple case,
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ξλ = 1, so the character for H1(Pn;Q) is:

χH1(Pn;Q) = Ind(ξ(2,1,...,1))

=
1

2 · (n− 2)!

(
2X2(n− 2)! + 2

(
X1

2

)
(n− 2)!

)
= X2 +

(
X1

2

)

We derive further character polynomials by the same process, with some effort:

χH2(Pn;Q) = Ind(ξ(3,1,...,1)) + Ind(ξ(2,2,1,...,1))

= 2

(
X1

3

)
−X3 + 3

(
X1

4

)
+

(
X1

2

)
X2 −

(
X2

2

)
−X4

χH3(Pn;Q) = Ind(ξ(4,1,...,1)) + Ind(ξ(3,2,1,...,1)) + Ind(ξ(2,2,2,1,...,1))

= 6

(
X1

4

)
− 2

(
X2

2

)
+ 20

(
X1

5

)
+ 2

(
X1

3

)
X2 −

(
X1

2

)
X3 −X2X3

χH4(Pn;Q) = Ind(ξ(5,1,...,1)) + Ind(ξ(4,2,1,...,1)) + Ind(ξ(3,3,1,...,1))

+ Ind(ξ(3,2,2,1,...,1)) + Ind(ξ(2,2,2,2,1,...,1))

= 24

(
X1

5

)
−X5 + 130

(
X1

6

)
+ 6

(
X1

4

)
X2 − 2

(
X1

2

)(
X2

2

)
+ 2

(
X2

3

)
− 2

(
X1

3

)
X3

+

(
X3

2

)
−X6 + 210

(
X1

7

)
+ 20

(
X1

5

)
X2 − 2

(
X1

3

)(
X2

2

)
− 3

(
X1

4

)
X3

−
(
X1

2

)
X2X3 +

(
X2

2

)
X3 − 2

(
X1

3

)
X4 +X3X4 + 105

(
X1

8

)
+ 15

(
X1

6

)
X2

− 3

(
X1

4

)(
X2

2

)
− 5

(
X1

2

)(
X2

3

)
+

(
X2

4

)
+ 3

(
X1

2

)(
X3

2

)
+ 3X2

(
X3

2

)
− 3

(
X1

4

)
X4 −

(
X1

2

)
X2X4 +

(
X2

2

)
X4 − 3

(
X4

2

)
+

(
X1

2

)
X6 +X2X6 −X8
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χH5(Pn;Q) = Ind(ξ(6,1,...,1)) + Ind(ξ(5,2,1,...,1)) + Ind(ξ(4,3,1,...,1)) + Ind(ξ(4,2,2,1,...,1))

+ Ind(ξ(3,3,2,1,...,1)) + Ind(ξ(3,2,2,2,1,...,1)) + Ind(ξ(2,2,2,2,2,1,...,1))

= 130

(
X1

6

)
X2 − 15

(
X1

6

)
X3 + 120

(
X1

6

)
+ 210

(
X1

7

)
X2 + 924

(
X1

7

)
+ 2380

(
X1

8

)
+ 2520

(
X1

9

)
+ 24

(
X1

5

)
X2 +−20

(
X1

5

)(
X2

2

)
− 20

(
X1

5

)
X3

− 20

(
X1

5

)
X4 − 2

(
X1

3

)
X2X3 − 2

(
X1

3

)
X2X4 − 3

(
X1

4

)
X2X3 +X2X3X4

+X2

(
X3

2

)
−X2X5 −X2X6 − 4

(
X1

3

)(
X2

2

)
− 10

(
X1

3

)(
X2

3

)
+ 6

(
X1

3

)(
X3

2

)
+ 2

(
X1

3

)
X6 − 12

(
X1

4

)(
X2

2

)
+

(
X1

2

)(
X2

2

)
X3 + 2

(
X2

2

)
X3 + 2

(
X2

2

)
X4

− 6

(
X1

4

)
X3 − 6

(
X1

4

)
X4 + 2

(
X1

2

)(
X2

3

)
+ 5

(
X2

3

)
X3 + 8

(
X2

3

)
+

(
X1

2

)
X3X4

+

(
X1

2

)(
X3

2

)
−
(
X1

2

)
X5 −

(
X1

2

)
X6 + 44

(
X2

4

)
−X3X6 − 3

(
X3

2

)
− 9

(
X3

3

)
−X6 + 945

(
X1

10

)
+ 105

(
X1

8

)
X2 − 15

(
X1

6

)(
X2

2

)
− 15

(
X1

4

)(
X2

3

)
+

(
X1

2

)(
X2

4

)
+ 41

(
X2

5

)
+ 9

(
X1

4

)(
X3

2

)
+ 3

(
X1

2

)
X2

(
X3

2

)
− 3

(
X2

2

)(
X3

2

)
− 15

(
X1

6

)
X4 − 3

(
X1

4

)
X2X4 +

(
X1

2

)(
X2

2

)
X4 + 5

(
X2

3

)
X4 − 3

(
X3

2

)
X4

− 3

(
X1

2

)(
X4

2

)
− 3X2

(
X4

2

)
+ 5

(
X5

2

)
+ 3

(
X1

4

)
X6 +

(
X1

2

)
X2X6 −

(
X2

2

)
X6

−X4X6 −
(
X1

2

)
X8 −X2X8 +X10

With those character polynomials in hand, Chen gives us the generating functions for

H i(Pn;Hj(Pn;Q)). A computer algebra system can easily produce the series expansions, and

we can simply read off the desired coefficients to produce the table in the theorem statement.

As one may see in the alternate computational method below, these values are stable for

n > 2(i+ j) (in fact well before that, but this is an easy upper bound).

We include here another method of computing the stable groups
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H i(Pn;Q) ⊗Q[Sn] H
j(Pn;Q) which is less computationally efficient, but recasts the question

as an interesting combinatorial problem. From Lehrer-Solomon we have

H i(Pn;Q)⊗Q[Sn] H
j(Pn;Q) = HomSn

(⊕
λ`n

IndSnZλ(ξλ),
⊕
µ`n

IndSnZµ(ξµ)

)

=
⊕
λ,µ`n

HomSn

(
IndSnZλ(ξλ), IndSnZµ(ξµ)

)
,

where λ and µ range over partitions of n with n − i and n − j segments, respectively. By

Frobenius reciprocity and Theorem XVIII.7.6 in [20],

H i(Pn;Q)⊗Q[Sn] H
j(Pn;Q) =

⊕
λ,µ`n

HomSn

(
ξλ, ResSnZλIndSnZµ(ξµ)

)
=
⊕
λ,µ`n
ZλγZµ

HomSn

(
ξλ, IndZλZλ∩γZµγ−1Res

γZµγ−1

Zλ∩γZµγ−1(ξµ)
)

=
⊕
λ,µ`n
ZλγZµ

HomSn

(
IndZλZλ∩γZµγ−1Res

γZµγ−1

Zλ∩γZµγ−1(ξµ), ξλ

)

=
⊕
λ,µ`n
ZλγZµ

HomSn

(
Res

γZµγ−1

Zλ∩γZµγ−1(ξµ), ResZλZλ∩γZµγ−1(ξλ)
)

where γ ranges over representatives for the double cosets ZλγZµ. Each term in the sum is

the Hom space between two characters, so is either 0 or Q. We need to count how many

summands give a nonzero contribution.

Lemma 3.4. Let Ai ⊂ Sn be the set of elements with exactly n − i cycles. The set T of

ordered triples (λ, µ, ZλγZµ) as above is in bijection with the set O of orbits of the diagonal

action of Sn on Ai × Aj by conjugation.

Proof. As above, let cλ and cµ be chosen representatives of the conjugacy classes in Sn with
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cycle types λ and µ, respectively. Define a function f : T → O by

f(λ, µ, ZλγZµ) = Sn · (cλ, γcµγ−1).

To see this is well defined, let δ = z−1λ γzµ be another representative of the same double coset,

with zλ ∈ Zλ and zµ ∈ Zµ.

zλ · (cλ, δcµδ−1) = (zλcλz
−1
λ , γzµcµz

−1
µ γ−1)

= (cλ, γcµγ
−1)

The second equality above used the fact that zλ ∈ Zλ and zµ ∈ Zµ by definition commute

with cλ and cµ respectively. Thus both representatives γ and δ produce the same orbit in O.

In the other direction, let (ai, aj) ∈ Ai × Aj be an arbitrary pair, with cycle types

λ and µ. It’s orbit contains at least one element of the form (cλ, b) where cλ is the chosen

representative of its conjugacy class, and b = γcµγ
−1 for some γ. Define a function g : O → T

by g(ai, aj) = (λ, µ, ZλγZµ). Clearly f and g are inverses. To see that g is well defined,

suppose another element in the same orbit has the desired form; for some h and δ ∈ Sn,

h · (cλ, γcµγ−1) = (cλ, δcµδ
−1).

In the first coordinate, this tells us

hcλh
−1 = cλ,

i.e. h ∈ Zλ. In the second coordinate we have

hγcµγ
−1h−1 = δcµδ

−1

(δ−1hγ)cµ(γ−1h−1δ) = cµ,
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so δ−1hγ ∈ Zµ. Then

γ = h−1δ(δ−1hγ) ∈ ZλδZµ,

so γ and δ represent the same double coset.

The lemma gives us an effective if tedious way to list out the terms in the sum; they

correspond to all of the combinatorially distinct ways that two permutations cλ and bµ with

n − i and n − j cycles respectively can sit relative to each other in Sn, up to conjugation.

A summand is nonzero (equals Q) if and only if the characters ξλ and ξµ agree on the

intersection of centralizers Z(cλ) ∩ Z(bµ). The total count will be stable for n sufficiently

large that all contributing pairs cλ, bµ can be conjugated such that their nontrivial cycles

only involve numbers up to n.

Now we turn to computations for specific i and/or j.

• i = 0.

cλ must have n cycles, so is the identity. The centralizer is Z(cλ) = Sn, and ξλ = 1.

Each term in the sum is nonzero if and only if ξµ is trivial.

– For j = 0, the only term is bµ = 1, for which ξµ = 1, so

H0(Pn;Q)⊗Q[Sn] H
0(Pn;Q) = Q, for all n.

– For j = 1, there is only bµ = (12), for which ξµ = 1, so

H0(Pn;Q)⊗Q[Sn] H
1(Pn;Q) = Q, for all n ≥ 2.

– For j ≥ 2, every permutation bµ with n − j cycles must either have a cycle of

length at least 3 or two 2-cycles. In either case ξµ is nontrivial, so every summand

is 0. Thus H0(Pn;Q)⊗Q[Sn] H
j(Pn;Q) = 0 for j ≥ 2.

• i = 1.

λ has n − 1 segments, which is to say cλ is a transposition. Then ξλ = 1, so for a

summand to contribute positively ξµ must be trivial on Z(cλ) ∩ Z(bµ). In particular,
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the 2-cycle in cλ must overlap with any cycle in bµ of length 3 or longer, else that cycle

would provide an element commuting with both cλ and bµ on which ξµ 6= 1. For the

same reason the 2-cycle in cλ cannot be disjoint from two 2-cycles in bµ. That leaves

the following options:

– bµ = (1 · · · (j + 1)).

For j ≥ 2 we may assume without loss of generality that cλ = (1t). All choices of

t ≥ j + 2 are equivalent up to conjugation, so we need only consider t = j + 2.

The corresponding summand is Q, as Z(cλ) ∩ Z(bµ) = {1}.

If t ≤ j + 1, then up to conjugation the pair (cλ, bµ) is determined by how far

apart 1 and t are in the (j + 1)-cycle. The order is irrelevant, as 1 and t are

indistinguishable up to symmetry. The options are then

2 ≤ t ≤ 1 +

⌊
j + 1

2

⌋
.

The centralizers have trivial intersection in almost all cases, with one exception:

If j is odd and t = j+3
2

, then 1 and t will be precisely opposite each other in the

(j + 1)-cycle, and (1t) will commute with b
(j+1)/2
µ . Since ξλ = 1, this term will

contribute if and only if

ξµ(b(j+1)/2
µ ) = (−e2πi/(j+1))(j+1)/2 = 1,

that is if j ≡ 1 mod 4.
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All together, bµ of this form contribute

1 +



j/2 if j ≡ 0 mod 4,

(j + 1)/2 if j ≡ 1 mod 4,

j/2 if j ≡ 2 mod 4,

(j − 1)/2 if j ≡ 3 mod 4.

If j = 1, there is one additional contribution from cλ = (34).

– bµ = (1 · · · j)((j + 1)(j + 2)) (requires j ≥ 2).

First we treat the case j ≥ 3. Again cλ must overlap the j-cycle because that is

where ξµ is nontrivial, so without loss of generality cλ = (1t). We get contributing

terms for t = j + 1 and t = j + 3. The t ≤ j case mirrors the previous bullet

point. All told this contributes

2 +



j/2− 1 if j ≡ 0 mod 4,

(j − 1)/2 if j ≡ 1 mod 4,

j/2 if j ≡ 2 mod 4,

(j − 1)/2 if j ≡ 3 mod 4.

If j = 2, the above holds except that cλ = (13) does not contribute because the

characters do not agree on (13)(24).

– bµ has only two nontrivial cycles, both of length at least 3 (requires j ≥ 4).

Here cλ must overlap both cycles, so without loss of generality cλ = (1j) The

different combinations here come from the different lengths that the cycles can

have, totalling j + 2. The length of the shorter cycle ranges from 3 to 1 +
⌊
j
2

⌋
.
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Every such term contributes except if the two cycles have equal, even length,

occurring only when j ≡ 2 mod 4. Contribution:



j/2− 1 if j ≡ 0 mod 4,

(j − 1)/2− 1 if j ≡ 1 mod 4,

j/2− 2 if j ≡ 2 mod 4,

(j − 1)/2− 1 if j ≡ 3 mod 4.

– Finally, bµ may have three nontrivial cycles (requires j ≥ 3), at least one of which

must be of length 2, without loss of generality ((j + 2)(j + 3)) (if all three were

longer, cλ couldn’t overlap them all).

As in the previous case we may take cλ = (1j), overlapping the two longest

cycles, again the combinations come from the different lengths of the first two

cycles, totalling j + 1, and again every term contributes positively except one

where the first two cycles have equal even length, occurring when j ≡ 3 mod 4.

Contribution: 

j/2− 1 if j ≡ 0 mod 4,

(j + 1)/2− 1 if j ≡ 1 mod 4,

j/2− 1 if j ≡ 2 mod 4,

(j + 1)/2− 2 if j ≡ 3 mod 4.
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Totalling everything, for j ≥ 1,

dimH1(Pn;Q)⊗Q[Sn] H
j(Pn;Q) =



2j if j ≡ 0 mod 4,

2j + 1 if j ≡ 1 mod 4,

2j if j ≡ 2 mod 4,

2j − 1 if j ≡ 3 mod 4.

Some parts of the derivation did not apply to j = 1, 2, or 3, but if you trace back it so

happens that the extra terms all cancel out in those cases, so the formula still holds.

These values are stable for n ≥ j + 3, as that is the largest number which appeared in

a nontrivial cycle of cλ or bµ in any contributing term.

• Systematic analysis like that for i = 1 is more challenging for i, j ≥ 2, but further

groups may be computed by exhaustively listing all possible ways that cλ and bµ could

overlap, and determining in each case whether ξλ and ξµ agreed on the intersection of

the centralizers. As an example, here is the full list of the 18 contributing terms for

i = j = 2:

cλ bµ

(123) (123)

(124)

(142)

(145)

(12)(34)

(12)(45)

(14)(25)

(14)(56)

cλ bµ

(12)(34) (123)

(125)

(135)

(156)

(12)(34)

(12)(35)

(12)(56)

(13)(25)

(15)(36)

(15)(67)
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Problem 3.5. Find a simplified expression for dimH i(Pn;Q)⊗Q[Sn] H
j(Pn;Q) or

dimHk(Tn;Q), in the stable range n� 0.

An approach using generating functions may be more tractable here, but as shown above

there is combinatorial subtlety in writing out the character polynomials for H i(Pn;Q), or,

as in the alternate method, in determining whether ξλ and ξµ agree on the intersection of

the centralizers.

4 HISTORICAL CONTEXT

In his paper introducing the method, Tschirnhaus asserted that it could be used “for deter-

mining analytically the roots of all equations of any degree” [23], which to him would have

meant solving for the roots in radicals. Of course Galois, nearly 150 years later, showed

that task to be impossible; indeed eliminating many terms from a high degree polynomial by

Tschirnhaus transformation requires you to solve a system of equations for the bi which can

be as or more difficult than solving the original equation. Though Tschirnhaus himself was

unable to make progress beyond Cardano’s and Ferrari’s solutions of the cubic and quartic

respectively, others would push forward essentially using his method.

The next leap came from Bring [15] and Jerrard [18], who independently demonstrated

that the general quintic polynomial, though not solvable in radicals, can by an appropriate

Tschirnhaus transformation (with the bi solvable in radicals) be reduced to the Bring radical,

a root of

x5 + x+ a = 0,

an algebraic function in the single free parameter a. By the same method one may eliminate

four parameters from any polynomial of degree n ≤ 5.

This was the state of the art when Hilbert posed the 13th of his famous problems [16].

Though it was originally phrased as a question about nomography, a good statement in
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modern language requires a detour to introduce the notions of essential dimension (see, e.g.,

[9]) and resolvent degree [14]:

Fix a base field k and consider field extensions E/F/k, with E/F algebraic of degree n.

We say that E/F is defined over a subfield F0 ⊂ F if there exists an extension E0/F0 of

degree n inside of E, such that E = E0F . Equivalently, in the case that E/F is separable,

E/F is defined over F0 if there exists a primitive element whose minimal polynomial is in

F0[x]. The essential dimension of E/F is then

edk(E/F ) = min{trdegk(F0)
∣∣ E/F is defined over F0}.

Classically, if p(x) ∈ F [x] and E = F [x]/p(x), we think of p(x) = 0 as expressing a root x as

a multivariate function of m = trdegk(F ) variables, a transcendence basis for F/k. Applying

a rational substitution or Tschirnhaus transformation to p(x) to reduce the number of free

parameters is then “solving” for x, constructing the field extension E/F , as a function of

fewer variables. ed(E/F ) is the minimum number of variables one can reduce down to.

To illustrate, once again consider the universal degree n polynomial

pn(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an,

and the fields Kn = k(a1, ..., an) and Ln = Kn[x]/pn(x).

The quadratic equation is a demonstration that p2(x) = 0, thought of as a 2-variable

function x(a1, a2), can be reduced to the 1-variable square root function y(c2) =
√
c2, the

root of the simpler polynomial

y2 − c2 = 0.

This shows that edk(L2/K2) = 1.

Cardano’s formula is a bit more complicated; it shows that we can “solve” the 3-variable

cubic p3(x) = 0 using 1-variable radicals, but it requires both a cube root and a square root.
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Indeed it is impossible to solve a general cubic using only a cube root, as the Galois group

for the general cubic is S3 while that of y3− c3 is only Z/3. Thus Cardano’s formula is not a

direct demonstration that edC(L3/K3) = 1 (though that is true; p3(x) can be reduced to the

simpler y3 + cy + c = 0.) Rather, Cardano’s formula represents a two step process, a tower

of field extensions, forming a diagram:

F2

L3 F1

K3

C

3
√

√

Note also that the radicals overshoot the mark, generating the larger field F2 which contains

but is not generated by the desired solution to p3(x) = 0. This motivates the definition of

the resolvent degree of a field extension, RDk(E/F ), as the minimal d such that there exists

a tower Fm/ · · · /F1/F0 = F with E ⊂ Fm and edk(Fi/Fi−1) ≤ d for all i. Intuitively, if

E = F [x]/p(x), it is the minimal d such that p(x) = 0 may be “solved” in terms of other

algebraic functions of d or fewer variables, along with field operations.

To abbreviate, write RD(n) := RDC(Ln/Kn). From the quadratic formula and the work

of Cardano, Ferrari, Bring and Jerrard, we know that

RD(n) = 1 for n ≤ 5.

In this language, Hilbert’s sextic conjecture is that

RD(6) = 2,
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and Hilbert’s 13th problem is the conjecture

RD(7) = 3.

These conjectures remain wide open. Some progress has been made in lowering the upper

bounds for RD(n), by Hilbert himself [17], Segre [22], Brauer [8], and recently Wolfson [24].

No nontrivial lower bounds have been proven; the current state of the art leaves open the

possibility that RD(n) = 1 for all n.

Given the centrality of Tschirnhaus transformations to Hilbert’s problem, we hope that

the cohomology of Tn may be useful in meaningfully obstructing the reduction of parame-

ters. More work is warranted to explore the potential of this space, and more broadly to

build a bridge, as Arnold began to do, to bring more topological tools to bear on these hard

algebraic problems.
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