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PREFACE

When I started my research in cosmology, the ΛCDM model was the standard paradigm

of cosmology. Now as I am writing this thesis, despite it still being the only standard

one, the ΛCDM model is challenged by the ever more precise modern observations. One

of the most significant challenges is called the Hubble tension, the discrepancy between

the locally measured Hubble constant H0 and its value inferred from the early universe

Cosmic Microwave Background (CMB) measurements assuming the ΛCDM model. During

my Ph.D., Hubble tension increased from∼ 3σ to∼ 5σ thanks to the increasing measurement

precision. The possible new physics behind this tension is attractive, making it one of the

focuses of modern cosmology.

In this thesis I provide some thoughts and examples as the possible solutions for the

Hubble tension based on my work with collaborators during my Ph.D. Unfortunately, so far

we are still not sure if this tension is real or is due to systematic measurement errors, neither

do we have the perfect physical solutions. I hope this work will at least provide some useful

intuitions towards the true solutions for the Hubble tension if it is real.

Chapter 1 is provided as an overview of this thesis.

In Chapter 2 [3], I propose the Acoustic Dark Energy (ADE) model as a possible solution

for the Hubble tension. As an extension to ΛCDM, ADE model introduces an additional

simple scalar field whose energy density is only important near matter radiation equality.

It can simultaneously reduce the Hubble tension and fit the CMB data better than ΛCDM.

Planck 2015 CMB data are used in the analysis.

In Chapter 3 [4], I test the ADE model with the latest CMB data from Planck 2018 and

the Atacama Cosmology Telescope. ADE passes the test to retain the ability to reduce the

Hubble tension.

In Chapter 4 [5], I consider the interaction between Early Dark Energy and dark matter.

It is naively expected that this interaction could suppress the matter density growth and
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reduce the S8 tension that is generically worsened in Early Dark Energy-like models including

ADE. However, I find the dark energy - dark matter interaction induces a matter-philic fifth-

force, hence limiting its ability to reduce the S8 tension.

In Chapter 5 [6], I study the phenomenological imprints of modified gravity before re-

combination with a parameterized approach. I explore its impacts on various cosmological

observables including the CMB, weak lensing and matter power spectrum. As an applica-

tion, I found this early time modified gravity can also help to reduce the Hubble tension in

the perturbation level.

I conclude and talk about possible future directions to solving the Hubble tension in

Chapter 6.

Meng-Xiang Lin

Chicago, Illinois

July 2022
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CHAPTER 1

INTRODUCTION

1.1 The Hubble Tension

As the standard paradigm of cosmology, the ΛCDM model has achieved a remarkable success

in fitting different cosmological observations with only six free physical parameters. Despite

its success, ΛCDM seems to fail in reconciling distance-redshift measurements when anchored

at high redshift by CMB anisotropies to the same measurements anchored at low redshift by

the local distance ladder. This discrepancy is commonly quantified as tension between the

inferred value for the Hubble constant H0, and its statistical significance has been steadily

increased with the increasing experimental precision. The latest local measurements from

SH0ES team places H0 = 73.30±1.04 km s−1Mpc−1[7], showing a 5σ tension with the value

inferred by the Planck 2018 CMB data assuming ΛCDM H0 = 67.4± 0.5 km s−1Mpc−1[8].

1.2 Why it is a hard problem?

The difficulty of solving Hubble tension mainly comes from the powerful constraints of mod-

ern cosmological observations, especially the precise CMB measurements. Here I briefly

introduce some unsuccessful ideas in the literature to illustrate the physical reasons for this

difficulty.

Based on when the new physics is introduced, we can divide the Hubble tension solutions

into late time solutions and early time solutions. The late time solutions only change the

expansion history after recombination while the early time solutions change the physics

before recombination.

The late time solutions are usually introduced by changing the equation of state of dark

energy, e.g., some dynamical dark energy models. Although it is easy to increase the H0

value itself, it is generically very hard for the late time solutions to fit the whole Hubble flow
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constructed from the local distance ladder, Baryon Acoustic Oscillations (BAO) and CMB

measurements [9, 10].

As for early time solutions, a naive thought is to add more radiation-like energy compo-

nents before recombination so that the sound horizon at recombination rs is reduced. Given

the precise measurements of CMB peaks that reflect angular size of the sound horizon, we

will infer a higher H0 solution from CMB. This kind of models is well studied in the litera-

ture. It is equivalent to changing the effective number of neutrino species Neff , and can be

realized by various physical models such as sterile neutrinos. However, adding radiation-like

components all the time will change the ratio of sound horizon to CMB damping scale, as

the damping scale λD ∝ r
1/2
s . Since CMB observations measure both sound horizon and

damping scale precisely, this kind of models will fail to fit the CMB observational data.

Hence, we need more complex new physics before recombination.

For more details, I would like to kindly refer the reader to reviews about the Hubble

tension solutions [11, 12].

1.3 Early Dark Energy-like models

In 2019, Early Dark Energy (EDE) model was proposed [13] to solve the Hubble tension.

In this model, EDE is a new component additional to ΛCDM that is only important near

matter radiation equality, and redshifts away faster than radiation after the peak. The ratio

of its energy density to the total is ∼ 10% near the peak. As a result, it can reduce the sound

horizon to infer a higher H0 value, and keep the ratio of sound horizon to CMB damping

scale unchanged so as to still fit CMB observational data well.

A class of Hubble tension solutions was proposed later sharing the same feature that

contains a new energy component only important near matter radiation equality, including

Acoustic Dark Energy model below, see 2. I call this class of models EDE-like models.

Although EDE-like models can solve Hubble tension, they worsen another minor tension
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within ΛCDM, the S8 tension. S8 tension quantified the discrepancy between the clustering

amplitude S8 inferred from CMB observation and its value measured from current Large

Scale Structure surveys. Specifically, the latest Dark Energy Survey Year-3 results [14]

indicate a 2.6σ tension with the Planck CMB prediction assuming ΛCDM. EDE-like models

usually require a higher matter density to compensate the impact of the new radiation-like

component to the amplitudes of CMB power spectra. As a consequence, they generically

enhance the S8 value which makes S8 tension worse. In this sense, EDE-like models are not

perfect solutions for Hubble tension, but they are the best we know so far.

1.3.1 Acoustic Dark Energy

Inspired by the EDE model, I proposed the Acoustic Dark Energy (ADE) model[3]. I

point out that in order to realize the EDE-like feature with a scalar field, one needs to

convert its potential energy to kinetic energy quickly enough near matter radiation equality.

ADE realizes this in a simpler and more efficient way with a canonical scalar field. Besides

indicating its ability to resolve Hubble tension with observational data (CMB data are from

the Planck 2015 release), I also reveal the generic requirement between background and

perturbation for fitting the data within EDE-like models. See more details in chapter 2.

I also test ADE with the latest Planck 2018 and Atacama Cosmology Telescope (ACT)

CMB data[4]. I show that ADE passes new consistency tests in the CMB damping tail

provided by the ACT data, and can still relieve the Hubble tension. Its ability to raise H0 is

now mainly constrained by the improved Planck acoustic polarization data, which also plays

a crucial role in distinguishing ADE from other EDE-like models. Improved constrains on

intermediate scale polarization approaching the cosmic variance limit in the future will be

an incisive test of the acoustic dynamics of EDE-like models. See more details in chapter 3
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1.3.2 Interaction of Early Dark Energy and Dark Matter

As predicted by the Swampland Distance Conjecture (SDC), it is natural for the dark

matter mass to be exponentially coupled to the near-Planckian excursion of EDE field,

m ∝ e−c|∆ϕ|/MPl with the coupling constant c ∼ O(1). One would naively expect that this

interaction between EDE and dark matter might be able to suppress the matter density

growth and hence resolve the S8 tension within EDE-like models. Together with my collab-

orators, I introduce the Early Dark Sector (EDS) model to consider such an interaction[5].

I find that this interaction induces an EDE-mediated dark matter self-interaction which

manifests as an enhanced gravitational constant on small scales. This dark matter-philic

fifth-force enhances the dark matter density growth in the late universe, and hence limits

the ability of the model to suppress S8. I also provide the tightest observational constraints

to date on a swampland parameter with the latest Planck and ACT data, suggesting that

an EDE description of cosmological data is in tension with the SDC. See more details in

chapter 4

1.4 Early Time Modified Gravity

Testing gravity theories on cosmological scales is always an interesting topic in modern

physics. Most of the tests have targeted the late times during the epoch of cosmic accel-

eration. I explore modified gravity using a parameterized approach with a specific focus

on the time of recombination and study its phenomenological impacts on the cosmological

observables [6]. I find the early modified gravity provides another mechanism to relieve the

Hubble tension in perturbation level, as it changes the physics of photon-baryon acoustic

oscillations and hence opens new degrees of freedom to fit the CMB data. With a certain

parameter choice, it can raise H0 and decease S8 at the same time which shows the potential

to resolve the Hubble tension and S8 tension simultaneously.

But notice that in this preliminary work I only study the perturbation effects of modified

4



gravity and leave the background unchanged to ΛCDM. As a consequence, the model con-

sidered in this work fails to reconcile BAO measurements. A more complete study of early

modified gravity is left for the future. See more details in Chapter 5.
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CHAPTER 2

ACOUSTIC DARK ENERGY: POTENTIAL CONVERSION OF

THE HUBBLE TENSION

2.1 Introduction

The ΛCDM model of cosmology has been tested by an extensive number of independent

probes, showing its general robustness and remarkable ability to explain a wide range of

observational data with only six parameters. Despite its indubitable success, ΛCDM seems

to fail in reconciling distance-redshift measurements when anchored at high redshift by cos-

mic microwave background (CMB) anisotropies to the same measurements anchored at low

redshift by the local distance ladder.

This discrepancy is commonly quantified as tension between the inferences for the Hubble

constant (H0), and its statistical significance has been steadily increasing with increasing ex-

perimental precision. The most recent local estimate of the Hubble constant places its value

at H0 = 74.03± 1.42 km s−1Mpc−1 [15], showing a 4.4σ tension with the value inferred by

the Planck 2018 CMB data, H0 = 67.4±0.5 km s−1Mpc−1, assuming the ΛCDM model [8].

This tension is mainly a discrepancy between the anchors for the absolute distance scale

rather than an indicator of missing physics between the anchors. Once anchored at one end,

the same ladder of intermediate redshift measurements from baryon acoustic oscillations

(BAOs) to supernovae Type IA (SN) predict the anchor at the other end, leaving little

room for missing cosmological physics in between (for a recent assessment and discussion,

see Refs. [16, 17] and references therein). On the high redshift side, the anchor is the CMB

sound horizon rs. Under ΛCDM, the shapes of the CMB acoustic peaks calibrate the sound

speed and all of the energy densities of species relevant around recombination and thus

determine the physical scale of rs. Measurements of its angular scale in the CMB then

6



fix the remaining parameter, the cosmological constant or equivalently H0. Even beyond

ΛCDM, this measurement determines the distance to recombination and anchors the inverse

distance ladder from which H0 can again be inferred so that even the most general dark

energy or modified gravity model can only moderately alter its value [18, 6, 9, 19].

Altering the high redshift anchor requires modifying cosmological physics at recombina-

tion. Adding extra energy density raises the expansion rate before recombination and lowers

the sound horizon rs. For example, an extra sterile neutrino or other dark radiation has long

been considered as a possible solution [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. However

such a component would also change the driving of the acoustic oscillations and damping

scale [32], which is now disfavored by increasingly precise CMB data, leaving little ability to

raise H0 (see Refs. [33, 8] for recent assessments).

The problem with the damping scale arises because these additions affect the background

expansion like radiation. As pointed out in Ref. [13], this problem can be avoided by making

the dark component only important transiently near the epoch of recombination. Specifically,

Ref. [13] introduces a component of so-called “early dark energy” (EDE) where a scalar field

oscillates anharmonically around the minimum of a periodic potential and finds that the

Hubble tension can be efficiently relieved. On the other hand, Ref. [34] finds that for a

monomial EDE model, which coincides with the periodic potential [13] at the minimum, the

Hubble tension is only partially relieved. Due to the behavior of its perturbations, these EDE

scenarios change the amplitudes and phases of the CMB acoustic peaks in complex ways,

leading to questions as to the robustness of this method for relieving the Hubble tension.

To build a more robust method to relieve the Hubble tension, we study the general

phenomenology of perturbations in a dark fluid which similarly becomes transiently impor-

tant, here around matter-radiation equality. Since its impact on the CMB comes through

the gravitational effects of its own acoustic oscillations, we call this species acoustic dark

energy (ADE) and in particular uncover the critical role its sound speed plays in relieving
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the Hubble tension. We find that the sound speed must vary with the equation of state in

the background in a manner consistent with the conversion of potential to kinetic energy

for a minimally coupled scalar with a general kinetic term [35]. Unlike the oscillatory EDE

models, once released from Hubble drag, the scalar remains kinetic energy dominated until it

redshifts away. Indeed for a simple canonical kinetic term, this allows for H0 = 70.60± 0.85

with a better fit than ΛCDM even for the CMB alone and a better total χ2 by 12.7 for 2

extra parameters. This method is also robust and can be exactly realized in a wide class of

potentials. We provide both the required conditions on the potential and explicit examples.

This paper is organized as follows. In §2.2, we introduce the ADE fluid model, its param-

eters, and the data sets that we use in the analysis. In §2.3, we discuss the phenomenological

impacts of ADE, especially its sound speed, on acoustic driving and CMB polarization. In

§2.4, we show that ADE models that can relieve the Hubble tension correspond to scalars

that convert potential to kinetic energy suddenly upon Hubble drag release and construct a

canonical scalar model as proof of principle. In §2.5, we discuss the relation to the previous

work and we conclude in §2.6.

2.2 Methodology

Acoustic dark energy is defined to be a perfect dark fluid and is specified by its background

equation of state wADE = pADE/ρADE and rest frame sound speed c2s [36]. The latter is

only equivalent to the adiabatic sound speed ṗADE/ρ̇ADE for a barotropic fluid so that in

the general case the acoustic phenomenology of linear ADE sound waves, which we shall see

is crucial for relieving the Hubble tension, is defined independently of the background.

In order to have a transiently important ADE contribution, we model the ADE equation

of state as

1 + wADE(a) =
1 + wf

[1 + (ac/a)3(1+wf)/p]p
. (2.1)
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The ADE component therefore changes its equation of state around a scale factor a = ac

from wADE = −1 to wf . Additionally, p controls the rapidity of this transition, with small

values corresponding to sharper transitions. Since this parameter does not qualitatively

change our results, we use p = 1/2 unless otherwise specified. We shall see in §2.4 that this

corresponds to a simple quadratic potential for scalar field ADE. This is a generalization

of the background of the EDE model [13], discussed in §2.5, where p = 1 and the fluid

description is approximate.

The ADE background energy density is fully specified once its normalization is fixed, since

wADE determines its evolution. Defining the ADE fractional energy density contribution

fADE(a) =
ρADE(a)

ρtot(a)
, (2.2)

we choose fc = fADE(ac) as the normalization parameter.

The behavior of ADE perturbations is determined by their rest frame sound speed c2s(a, k)

which is, for an effective fluid, a function of both time and scale [36]. In the context of a

perfect fluid with a linear dispersion relation, it is scale independent. In particular this holds

for K-essence scalar field models [35], when treated exactly instead of in a time-averaged

approximation. We shall return to this point in §2.5.

The equations of motion for ADE acoustic oscillations depend only on the value of c2s,

not its time derivative. Since the impact of ADE on cosmological observables is extremely

localized in time due to the parametrization of wADE, we fix c
2
s to be a constant, effectively

its value at ac. In §2.4, we construct K-essence models where c2s is strictly constant as a

proof of principle, but our analysis holds more generally if we interpret the constant c2s as

matching a suitably averaged evolving one.

In our most general case, the ADE model is therefore characterized by four parameters

{wf , ac, fc, c
2
s} once p is fixed. When varying these parameters we impose flat, range bound

priors: −4.5 ≤ log10ac ≤ −3.0, 0 ≤ fc ≤ 0.2, 0 ≤ wf ≤ 3.6 and 0 ≤ c2s ≤ 1.5. We shall later
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see that the Hubble tension can be relieved by varying just two of these four parameters,

fixing c2s = wf = 1, corresponding to models where the ADE is a canonical scalar that

converts its energy density from potential to kinetic around matter radiation equality (see

§2.4.2). We refer to this particular ADE model as cADE.

The full cosmological model also includes the six ΛCDM parameters: the cold dark mat-

ter density is characterized by Ωch
2, baryon density by Ωbh

2, the angular size of the sound

horizon by θs, the optical depth to reionization by τ , and the initial curvature spectrum by

its normalization at k = 0.05 (wavenumbers throughout are in units of Mpc−1, which we

drop when no confusion should arise), As and tilt ns. These have the usual non-informative

priors. We fix the sum of neutrino masses to the minimal value (e.g., Ref. [37]). We modify

the CAMB [38] and CosmoMC [39] codes to include all the models that we discuss, fol-

lowing Ref. [36]. We sample the posterior parameter distribution until the Gelman-Rubin

convergence statistic [40] satisfies R− 1 < 0.02 or better unless otherwise stated.

For the principal cosmological data sets, we use the publicly available Planck 2015 mea-

surements of the CMB temperature and polarization power spectra at large and small angular

scales and the CMB lensing potential power spectrum in the multipole range 40 ≤ ℓ ≤ 400

[41, 42, 43]. To expose the Hubble tension, we combine this with the latest measurement of

the Hubble constant, H0 = 74.03±1.42 (in units of km s−1Mpc−1 here and throughout) [15].

To these data sets we add the Pantheon Supernovae sample [44] and BAO measurements

from BOSS DR12 [45], SDSS Main Galaxy Sample [46], and 6dFGS [47]. These datasets pre-

vent resolving the Hubble tension by modifying the dark sector only between recombination

and the very low redshift universe [17].

Our baseline configuration thus contains: CMB temperature, polarization and lensing,

BAO, SN and H0 measurements. Unless otherwise specified all of our results will be for

this combined data set. We include all the recommended parameters and priors describing

systematic effects for these data sets.
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As we shall see, the CMB polarization data provide an important limitation on the ability

to raise H0 and future polarization data can provide a definitive test of the ADE models that

alleviate the Hubble tension. We therefore also consider the joint data set without CMB

polarization data. We refer to this data set as -POL.

Model ΛCDM cADE ADE

100θMC 1.04115 (1.04110±0.00028) 1.04062 (1.04064±0.00031) 1.04072 (1.04081±0.00035)

Ωbh
2 0.02246 (0.02241±0.00014) 0.02267 (0.02271±0.00022) 0.02270 (0.02263±0.00022)

Ωch
2 0.1170 (0.1174±0.0009) 0.1268 (0.1268±0.0032) 0.1274 (0.1242±0.0032)

τ 0.082 (0.075±0.012) 0.064 (0.064±0.012) 0.064 (0.067±0.013)

log(1010As) 3.092 (3.079±0.022) 3.078 (3.078±0.023) 3.080 (3.081±0.023)
ns 0.9726 (0.9701±0.0039) 0.9833 (0.9833±0.0065) 0.9873 (0.9832±0.0071)
fc - 0.082 (0.082±0.025) 0.086 (0.079±0.033)

log10ac - -3.45 (-3.46±0.06) -3.52 (-3.50±0.15)
wf - 1 (fixed) 0.87 (1.89±0.86)

c2s - 1 (fixed) 0.86 (1.07±0.25)
H0 68.58 (68.35±0.42) 70.57 (70.60±0.85) 70.81 (70.20±0.88)

∆χ2tot 0 -12.7 -14.1

Table 2.1: Maximum likelihood (ML) parameters and constraints for the ΛCDM model,
the canonical Acoustic Dark Energy (cADE) model, and the general ADE model. ∆χ2tot =
−2∆logL reflects the ratio between the maximum likelihood value and that of ΛCDM for
the joint data.

2.3 ADE Phenomenology

In this section we discuss the phenomenology and observational implications of ADE and

their dependence on its parameters.

At the background level, the addition of ADE increases the total energy density before

recombination that changes the expansion history lowering the sound horizon rs. This

changes the calibration of distance measures not only for the CMB but also the whole inverse

distance ladder through BAO to SN. Given the precise angular measurements of the sound

horizon θs, the inverse distance ladder scale is reduced and hence the inferred H0 rises.

The prototypical example of this method for relieving the Hubble tension is an extra

sterile neutrino that is at least mildly relativistic at recombination. Neutrinos, however, do
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not provide a good global solution (e.g., Ref. [33]) since they behave as free-streaming radi-

ation before recombination and therefore change the phase of the CMB acoustic oscillations

as well as the CMB damping scale, the distance a photon random walks through the ionized

plasma before recombination, approximately as λD ∝ r
1/2
s [32]. A more general dark fluid,

on the other hand, can reduce the fraction of the dark component vs. normal radiation before

matter radiation equality, allowing the two scales to change in a proportional way [13].

Beyond these background effects, ADE and other dark sector candidates for relieving

the Hubble tension, gravitationally drive photon-baryon acoustic oscillations changing the

amplitudes and phases of the CMB peaks (e.g., Ref. [33, 6]). ADE perturbations undergo

their own acoustic oscillations under its sound horizon, leading to novel CMB driving phe-

nomenology. As detailed in Table 2.1, this modified phenomenology leads to a maximum

likelihood (ML) solution with wf ≈ c2s and H0 = 70.81 which improves ∆χ2tot = −14.1 over

ML ΛCDM, and more generally a finite ADE fraction fc is detected at 2.4σ. In the next sec-

tion, we focus on the details of these physical effects. We then address the impact of Planck

polarization data and the ability of future polarization data to test the ADE solutions to the

Hubble tension.

Finally, note that although we do not consider measurements of the amplitude of lo-

cal structure here, the ML and constraints for ADE are σ8Ω
1/2
m =0.4623 (0.4573±0.0073),

whereas for ΛCDM with CMB TT only has nearly the same ML but larger errors 0.466

(0.466±0.013). For our combined data set, ΛCDM gives the value 0.4488 (0.4486±0.0056),

where the ML is lower since raising H0 in ΛCDM lowers σ8Ω
1/2
m unlike in ADE. If the tension

with weak lensing measurements of the amplitude increases in ΛCDM in the future, it will

disfavor not only ΛCDM but these ADE models as well.
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2.3.1 Acoustic Driving

Under the sound horizon or Jeans scale of the ADE, its density perturbations acoustically

oscillate rather than grow, leading to changes in the decay of the Weyl potential (Ψ+Φ)/2.

This decay drives CMB acoustic oscillations, and the ADE impact is especially important for

modes that enter the CMB sound horizon near ac, roughly k = 0.04 in the ML ADE model

from Table 2.1. The excess decay is countered by raising the cold dark matter through Ωch
2

since it remains gravitationally unstable on the relevant scales.

For ADE, at the parameter level, this effect is controlled by the sound speed cs in con-

junction with the equation of state wADE(a) through wf . These two parameters are hence

strongly correlated, as shown in Fig. 2.1, reflecting degenerate effects on the CMB when they

are raised or lowered together. Near the ML solution, this requires wf ≈ c2s.

We explore this degeneracy in Fig. 2.2 by showing the evolution of the Weyl potential for

this mode in the ML model (red) from Table 2.1 relative to the same model with no ADE

(ML, fc = 0) as a baseline (black). The Weyl potential is relatively suppressed at a < ac,

enhanced at a ∼ ac and suppressed again at a ≫ ac due to ADE. The enhancement and

subsequent suppression correspond to the first acoustic compression extremum in the ADE

density perturbation and the subsequent Jeans stabilization of the perturbations. The net

impact is a reduction in the Weyl potential. This reduction is compensated by raising Ωch
2.

For comparison we also show the difference in reverting the value of Ωch
2 in the baseline

model to the ML ΛCDM value (cyan dashed). Since ac ∼ aeq, ADE becomes important

around the same epoch when radiation driving has the maximal impact on the shape of the

CMB acoustic peaks. Along with other adjustments in ΛCDM parameters, in particular ns

and Ωbh
2, these effects compensate for each other.

This compensation leaves the CMB acoustic peaks nearly unchanged despite raising H0

from 68.58 to 70.81. In Fig. 2.3, we show the data and model residuals relative to the ΛCDM

ML in Table 2.1. As we can see, this effect does not exacerbate the oscillatory residuals in
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Figure 2.1: The joint marginalized distribution of the ADE parameters c2s and wf , obtained
using our combined datasets. The darker and lighter shades correspond respectively to the
68% C.L. and the 95% C.L. The markers indicate the maximum likelihood values for ADE
(solid circle) from Tab. 2.1 and the intersection between canonical models c2s = 1 (solid line)
and models which convert potential to kinetic energy at the transition c2s = wf (dashed
line), i.e. c2s = wf = 1 (open circle) as in cADE.

the data, where the acoustic peaks (vertical lines) are suppressed relative to troughs, which

would occur if H0 were raised in ΛCDM. Note that the residuals are scaled to the cosmic

variance per ℓ-mode for the ML ΛCDM model as:

σCV =



√
2

2ℓ+1C
TT
ℓ , TT ;√

1
2ℓ+1

√
CTT
ℓ CEE

ℓ + (CTE
ℓ )2, TE ;√

2
2ℓ+1C

EE
ℓ , EE .

(2.3)

We can better understand the origin of the ADE effects and their impact on the CMB

by varying wf and c2s independently. Fig 2.2 (upper) also shows a +0.4 variation in each
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Figure 2.2: The Weyl potential evolution of the ML ADE model from Table 2.1 for two
modes: k = 0.01 and 0.04 Mpc−1. Lower subpanels show differences with respect to the
baseline value of Weyl potential for the ΛCDM parameters of ML ADE but with no ADE
(fc = 0), as displayed in the upper subpanels. Shown are ML ADE (red solid) and parameter
variations around it: c2s+ (orange dashed) and wf+ (dark blue dashed) mean +0.4 variations,

while Ωch
2− (cyan dashed) means lowering it to the ML ΛCDM value in Table 2.1. Relevant

temporal scales (matter-radiation equality aeq, ADE transition ac and recombination a∗) are
shown with vertical lines.
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with other parameters held fixed. Increasing c2s makes the ADE acoustic oscillations and

Jeans stability occur earlier and as a consequence also cuts into the enhancement. Raising

wf has two effects. Before the first compression peak and above the CMB sound horizon,

the comoving ADE density perturbation grows adiabatically so that its amplitude grows

relative to the photons approximately as δADE ∝ (1 + wADE)δγ . For wf > 1/3 this first

causes a dip at a ≲ ac and then an enhancement in the Weyl potential for a ≳ ac, especially

approaching the first compression. A larger wf then suppresses f(a > ac) which also causes

a relative enhancement at a > ac. Combined, these effects imply that for a fixed amount of

driving of acoustic oscillations through the decay of the Weyl potential, raising c2s should be

compensated by raising wf . This is the leading order degeneracy that we see in Fig. 2.1.

In terms of the residuals, shown in Fig. 2.3, a positive variation in c2s, when not compen-

sated by wf , leads to a sharp TT feature around ℓ ∼ 500 near the second TT peak whereas

along the degeneracy line the ML model TT residuals remain small. The modes responsible

for higher multipoles are not sensitive to ADE perturbation parameters since the Weyl decay

that drives them occurred before the ADE became important a≪ ac.

The degeneracy is truncated at low wf in Fig. 2.1. If wf < 1/3, the ADE redshifts slower

than the radiation and thus has a large impact on the driving of CMB acoustic oscillations

between ac and recombination which cannot be balanced by the same variations in c2s.

2.3.2 CMB Polarization

Even for the ML ADE model, the compensation between Ωch
2, c2s, and wf is imperfect for

modes that enter the CMB sound horizon between ac and recombination. These modifica-

tions leave distinct imprints on the polarization spectra that already limit the ability of ADE

to raise H0 using the Planck data and, in the future, can definitively test this scenario. Po-

larization provides the cleanest signatures of driving on these scales given that it isolates the

acoustic oscillations at recombination from the early integrated Sachs-Wolfe that smooths
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TE residuals respectively and vertical lines denote their peaks in the ML ΛCDM model.

out its signatures in the TT spectrum.

In Fig. 2.2 (lower), we show the Weyl potential evolution for such a mode, k = 0.01 in
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the ML model. While the qualitative behavior is similar to the higher k mode, the balance

between wf , c
2
s and Ωch

2 changes. First, the impact of the change in Ωch
2 is relatively higher

since the ADE redshifts faster than radiation. Second, the impact of wf is also somewhat

higher relative to c2s. These changes lead to uncompensated sharp features in the polarization

residuals.

For the Planck data, where measurements of the EE spectrum are still noisy, this makes

the TE spectrum the most informative for these features (see Fig. 2.3). In the ΛCDM model,

this sensitivity provides an important constraint on Ωch
2 and hence supporting evidence for

a low H0 from multipoles ℓ < 1000. The region around ℓ ∼ 165 (between the first EE and

TT peaks) is particularly important due to the 2σ low point compared to the best fit ΛCDM

model shown in Fig. 2.3 [48]. Note that in ΛCDM raising H0 requires lowering Ωch
2 which

raises TE there, making the fit even worse.

In the ADE ML model, the impact of raising Ωch
2 lowers TE in this region providing a

better fit to the data. Even without direct H0 data, the CMB data favor the ADE model

(see Table 2.2). However raising H0 further than the ADE ML would make TE too low at

ℓ ≲ 500 for the data. Indeed for the -POL dataset, the ML model allows for a larger Hubble

constant H0 = 72.27 compared with 70.81 for our joint dataset.

Raising c2s has the impact of making the ADE more important for Weyl decay and

counters the effect of raising Ωch
2. As we can see from Fig. 2.3, this has the effect of raising

TE in this region and degrading the fit. Thus the TE data are also important for disfavoring

a canonical scalar field with c2s = 1 if wf is too low. We shall see in §2.5 that this explains

why previously considered models where a canonical scalar field oscillates in its potential

must have its initial conditions set to avoid this region.

Finally, given the sharp features in the EE model residuals with up to ∼ 0.3 − 0.4

amplitudes relative to cosmic variance per multipole, all of these cases where H0 is raised by

dark components that also change the driving of the acoustic peaks can be tested to high
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significance once EE measurements approach the precision of TT measurements today.

2.4 Potential-Kinetic Conversion

The ADE phenomenology favored by the Hubble tension can be concretely and exactly

realized in the K-essence class of dark energy models, where the dark component is a perfect

fluid represented by a minimally coupled scalar field ϕ with a general kinetic term [35]. More

specifically, the class of constant sound speed cs models introduced in §2.2 is given by the

Lagrangian density [49]

P (X,ϕ) =

(
X

A

)1−c2s
2c2s X − V (ϕ), (2.4)

where the kinetic term involves X = −∇µϕ∇µϕ/2 and A is a constant density scale. For a

scalar with a canonical kinetic term c2s = 1, and more generally wADE → c2s if the kinetic term

dominates, whereas wADE → −1 if the potential V (ϕ) dominates. The fluid correspondence

holds when ∇µϕ remains always timelike; then c2s = δp/δρ in constant field gauge or rest

frame, where the momentum density of the field vanishes and the potential energy is spatially

constant.

The correlation shown in Fig. 2.1 implies that around the ML ADE model from Table 2.1,

setting wf = c2s provides a good fit to the combined data. Since wADE → −1 for a ≪ ac

and wADE → wf for a ≫ ac, this suggests that the best fitting P (X,ϕ) models are those

that suddenly convert nearly all of their energy density from potential to kinetic at ac. If

we focus on a model that has such a potential to kinetic energy conversion feature, we have

c2s = wf and the number of parameters of ADE reduces to three. The ML of this model gives

c2s = 0.84 , H0 = 70.84 and ∆χ2tot = −14.1 which is nearly identical to ML ADE with one

fewer free parameter.

Indeed the preferred region includes wf = c2s = 1 which corresponds to the case of

a canonical field, cADE. From Table 2.1, we see that the ML cADE model has only a
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marginally smaller H0 = 70.57 for a ∆χ2tot = −12.7 and more generally a higher significance

to the detection of a finite ADE fraction fc of 3.3σ given the smaller set of parameters. We

shall now consider how to construct a corresponding potential V (ϕ).

2.4.1 Canonical Conditions

A canonical scalar which converts its potential to kinetic energy around ac provides a simple,

concrete example of ADE that alleviates the Hubble tension. To explicitly construct such a

model that matches requirements on the two remaining quantities ac and fc we can determine

the equivalent requirements for the potential V (ϕ).

At a≪ ac, the ϕ field is stuck on its potential due to Hubble friction and rolls according

to

dϕ

dN
∼ − V ′

H2
, (2.5)

where N = loga denotes e-folds. For the purposes of this qualitative discussion we drop

factors of order unity. After ac, we want the field to be released from Hubble drag and

convert its potential energy to kinetic energy on the e-fold timescale ∆N ∼ 1. Defining

ϕc = ϕ(ac) and linearizing the change

V (ϕ) ≈ V (ϕc) + V ′(ϕc)∆ϕ. (2.6)

Therefore, around ϕc, we want (
V ′

H

)2

≳ V, (2.7)

or in terms of fc ∼ V/ρtot,

ϵV fc ≳ 1, ϵV ≡ M2
Pl

2

(
V ′

V

)2

. (2.8)

This is the main condition for the potential to kinetic conversion.
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For the linearization in Eq. (2.6) to be valid in the sense of the second order term

1
2(∆ϕ)

2V ′′ not preventing the conversion, we also want

V ′′(ϕc) < −V
′(ϕc)
∆ϕ

(2.9)

so

V ′′ ≲ H2. (2.10)

Putting these two criteria together,

ηV ≲ 2ϵV , ηV ≡M2
pl
V ′′

V
, (2.11)

where we have restored a factor of 2 so as to match the well-known condition for no tracking

solution to exist [50]. Tracking potentials do not work since the scalar field follows an

equation of state that is determined by the dominant component of the total energy density

rather than the kinetic energy dominated limit. A similar derivation applies to the c2s ̸= 1

case with a modification to the Hubble drag evolution (2.5) [49].

Finally we want the field to maintain kinetic energy domination until its energy density

has largely redshifted away. This excludes models where the field oscillates around a mini-

mum and so is different from those in Refs. [13, 34] as we shall discuss in the next section.

Furthermore, the fluid description is exact for our models whereas it is only approximate for

oscillatory models.

Thus our requirements on the potential are fairly generic and correspond to setting the

amplitude and slope of the potential at the desired point of Hubble drag release, along with

the condition that the field remains kinetic energy dominated until most of the energy density

has redshifted away. A wide class of potentials can satisfy these requirements and we shall

give concrete examples next.
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2.4.2 Canonical Solution

To make these considerations concrete, consider the class of potentials:

V (ϕ) =


Aϕm, ϕ > 0 ,

0, ϕ ≤ 0 .

(2.12)

Then for ϕ > 0

2ϵV =

(
m

ϕ

)2

, ηV =
m(m− 1)

ϕ2
, (2.13)

and any m > 0 satisfies ηV < 2ϵV . The flat potential at ϕ ≤ 0 prevents the kinetic energy

from converting back to potential energy. We choose A and ϕinitial to give the desired fc

and ac.

In Fig. 2.4 (upper), we show a worked example of this matching. We fix cosmological

parameters to the ML ADE model in Table 2.1 and take a quadratic potential with m = 2.

We find a good match to the form of Eq. (3.1) with p = 1/2. This motivates our fixed

fiducial choice in §2.2.

To showcase the robustness of the potential to kinetic conversion mechanism for relieving

the Hubble tension, we also consider a quartic potential m = 4 (Fig. 2.4, lower). The

change in fADE(a) is itself small and, once a shift in ac is absorbed, corresponds to a slight

broadening of the transition. Even this small change can be matched to the general ADE

form of Eq. (3.1) by adopting p = 1. For the linear m = 1 case, p ≈ 0.1 corresponding

to a sharper transition. We have also tested that various values of p in this range provide

comparable ML solutions to our fiducial p = 1/2 case. Finally we have tested that the

correspondence between p and m holds for non-canonical values of c2s with the Lagrangian

(2.4).

These simple canonical or cADE models still provide good fits to the data as illustrated in

Fig. 2.5 for the ML cADE model of Table 2.1. The main difference compared with ML ADE is
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Figure 2.5: Canonical scalar field model and data residuals of ML cADE (orange solid) and
ML EDE (dark blue solid) models with respect to the ML ΛCDM model as in Fig. 2.3. The
model with ∆Θi = −0.5 from ML EDE (green dashed) is also shown.

the slight lowering of H0 from 70.81 to 70.57. The total improvement over ΛCDM for 2 extra

parameters is ∆χ2tot = −12.7 with −3.6 actually coming from the improved fit to the CMB

as shown in Table 2.2. More concretely, ML cADE makes CMB lensing a little bit worse by
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∆χ2lens = +1.1 but fits the TT and polarization spectrum better by ∆(χ2plik + χ2lowTEB) =

−4.7. If compared to ML ΛCDM fit to CMB only, the ML cADE fits CMB lensing as well

and fits the TT and polarization spectrum better by ∆(χ2plik + χ2lowTEB) = −1.6. 1

Fig. 2.6 shows the parameter covariances and posteriors in the cADE model. The centered

values for the ML parameters is indicative of the nearly Gaussian posteriors and reflects the

fact that the parameters are constrained mainly by the data rather than the priors. The

one exception is ac since if ac → 0 any fc is equivalent to ΛCDM so that the prior volume

begins to matter. Even in this case, ΛCDM is sufficiently disfavored so that constraints on

ac are data not prior driven. Correspondingly the ADE fraction is significantly detected

with fc = 0.082± 0.025.

This model also illustrates the main compensation between raising the ADE fraction

fc and raising the CDM density Ωch
2 as well as adjusting Ωbh

2 and ns slightly higher to

minimize the data residuals (see Fig. 2.6). The change in θ∗ to lower values is also notable.

The modifications in driving make a small change in the phasing of the CMB acoustic peaks

relative to its sound horizon. Note that in ΛCDM, θ∗ drifts lower once the high multipoles

ℓ > 800 are included [51].

Finally under the -POL data set, the ADE canonical model allows a higher H0 = 71.55±

1.05 and ML value of 71.93. This is because of the limitations the TE spectrum around

ℓ ≲ 500 places on these solutions as discussed in §2.3.2.

1. We have also explicitly checked that a direct solution for the scalar field Klein Gordon
equation is nearly indistinguishable from a cADE model with the best matching parameters,
e.g. ∆χ2 = 1.4 for a cosmic variance limited TT, TE, EE measurement to ℓ ≤ 2000. This
holds for these gravitationally sourced, or adiabatic, field perturbations whereas modeling
isocurvature fluctuations from initial field perturbations from inflation would require match-
ing the radiation dominated evolution in the equation of state (1 + w) ∝ a4 implied by
Hubble friction through Eq. (2.5) [49], which Eq. (3.1) does not do.
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2.5 Relation to Prior Work

In Ref. [13], a canonical scalar field component, referred to as early dark energy, with a

potential

V (ϕ) ∝ [1− cos(ϕ/f)]n, (2.14)

plays a similar role as our ADE. Unlike ADE, EDE oscillates after being released from Hubble

drag and Ref. [1] finds that the time averaged background equation of state can be modeled

by Eq. (3.1) with p = 1 and

wf =
n− 1

n+ 1
. (2.15)

As we have discussed in the previous sections, wf is a relevant parameter for the resolution

of Hubble tension, so its adjustment should be considered a parameter variation in the EDE

model in spite of n taking discrete integer values.

The time-averaged behavior of perturbations is described by a fluid approximation with

a rest frame sound speed [1]:

c2s(a, k) =


1, a ≤ ac,

2a2(n− 1)ϖ2 + k2

2a2(n+ 1)ϖ2 + k2
, a > ac .

(2.16)

Unlike in our case, this fluid description is approximate, especially at ac. The time depen-

dence of ϖ is fixed by the parameters ac, wf and the initial field position Θi = ϕi/f [1]:

ϖ(a) =
G
P

√
6P + 2

8n

Θi

sinΘi
H(ac)a

−3wf . (2.17)

Here P = H(ac)t and we approximate it as:

P(x = ac/aeq) =
2

3

x2 − x+ 2
√
1 + x− 2

x2
, (2.18)
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while

G(ac, n) =

√
πΓ(n+1

2n )

Γ(1 + 1
2n)

2−
n2+1
2n 3

1
2 (

1
n−1)a

3− 6
n+1

c

×
[
a

6n
n+1
c + 1

]1
2 (

1
n−1)

. (2.19)

Note that for wf > 0, ϖ decreases with a, and so the sound speed evolves from 1 at a ≤ ac

back to 1 at late times, with higher k exhibiting smaller amplitude deviations, and a k-

dependent minimum c2s(ac, k).

The EDE model therefore has four parameters ac, fc,Θi and n. Following Ref. [1], we

choose the best value n = 3, which corresponds to wf = 1/2, and conduct an MCMC

likelihood analysis on the remaining parameters. We treat ac and fc as in the ADE model

and impose a flat prior on 0 ≤ Θi/π ≤ 1. Because of the large parameter volume of

degenerate models around ΛCDM, we only sample the posterior until R − 1 < 0.05 which

should give an adequate, but not perfect, estimate of parameter constraints out to 95% C.L.

The results are compared with our ADE model in Table 2.2. The EDE ML model allows a

slightly higher H0 = 71.92 and hence a better fit to the data ∆χ2tot = −2.5 for one extra

parameter over ML ADE with c2s = wf or ∆χ
2
tot = −3.9 for two extra parameters compared

with the cADE ML. Note that with the -POL dataset, the EDE and ADE models have

comparable performances.

The main phenomenological difference between the ADE and EDEmodels is the parametriza-

tion of the sound speed. The sound speed was indeed also varied in Ref. [1] but its impact

was not discussed. As we have seen in our ADE model a low wf generally requires a low

c2s. In the EDE model, this translates into specific requirements for the initial phase Θi. In

Fig. 2.7, we show the relationship between constraints on Θi, H0 and the minimum sound

speed at k = 0.01, 0.04. As we can see, achieving a higher value of H0 requires a large initial

phase and its ML value is Θi/π = 0.90. The 68% confidence region is 0.72 ≤ Θi/π ≤ 0.94
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likelihood values for EDE.
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and Θi/π < 1/2 is excluded at 93% C.L. Note that the upper range exceeds the value

required for the validity of the fluid mapping approximation, Θ/π ∼ 0.96 [1].

The reason for this preference is that Θi controls the minimum sound speed. Following

the degeneracy line in Fig. 2.1 to wn = 1/2, we would expect that for a constant sound speed

c2s ≈ 0.77. Given the effective EDE sound speed of Eq. (2.16), this represents an average

over the relevant timescales and wavemodes. For the ML EDE model c2s(ac, 0.01) = 0.51

and c2s(ac, 0.04) = 0.63 as the minimum value for each k-mode.

The scale dependence of the sound speed also explains the slightly better fit to CMB

data, specifically the TE data. In Fig. 2.5, we compare the EDE and cADE residuals for

their respective ML models. Notice that the TT residuals are very similar. However, in

TE, by allowing the sound speed to decrease in the k range associated with ℓ < 500, the

EDE model exposes more of the driving reduction at ℓ ∼ 200 from raising Ωch
2 as discussed

above but now without adverse consequences elsewhere. This in turn better fits the low

TE residuals and allows H0 to increase further relative to the ADE model. We also show

the impact of reducing Θi in the ML EDE model, making the sound speed closer to one at

all times. The most significant effect is localized to ℓ < 500 and in particular destroys the

pattern of lower TE at ℓ ∼ 200 vs ℓ ∼ 400 compared with cADE.

We conclude that the small improvement of the EDE over ADE fit requires a specific

range in the initial phase that lowers the sound speed in a scale-dependent way. Comparing

to the canonical ADE mode, this improvement gives ∆χ2tot = −3.9 for two extra parameters

wn,Θi and is therefore marginal. In the future, polarization measurements that approach

the cosmic variance limit can distinguish between the EDE and ADE classes. For example,

we forecast that with cosmic variance TT,TE,EE measurements to ℓ ≤ 2000, the current best

fit EDE model differs from the closest ADE model by ∆χ2 = 22.4. Furthermore the ADE

model provides a general class of exact solutions where the potential energy is converted

quickly to kinetic, whereas the EDE model requires a specific set of initial conditions to
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achieve a similar phenomenology with an approximation to an oscillating field.

Relatedly, Ref. [34] considers a model where the scalar field oscillates in a monomial

potential

V (ϕ) ∝ ϕ2n , (2.20)

with parameters adjusted to reproduce the EDE phenomenology. This coincides with Eq. (2.14)

only near the bottom of the potential, Θi ≪ π/2 where the potential is convex rather than

concave. As pointed out in Ref. [34] the model has significantly worse performances than

the EDE model. We identify here that this is related to the initial field being in the concave

rather than the convex part of the potential which raises the sound speed.

Finally, while this work was nearing completion, Ref. [52] proposed that a fast-roll or

kinetic energy dominated period in a two-field model might relieve the Hubble tension.

Model (Data) ∆N H0 ∆χ2tot ∆χ2CMB ∆χ2H0

cADE 2 70.57(70.60±0.85) -12.7 -3.6 -8.8
ADE 3∗,4 70.81(70.20±0.88) -14.1 -3.7 -9.6
EDE 4 71.92(71.40±1.09) -16.6 -3.7 -12.5
cADE(-POL) 2 71.93(71.55±1.05) -12.8 -0.4 -11.2
ADE(-POL) 3∗,4 72.27(71.30±1.03) -15.1 -2.4 -11.8
EDE(-POL) 4 72.40(72.35±1.25) -15.9 -2.9 -12.1

Table 2.2: H0 results for the ML cADE, ADE and EDE models and posterior constraints
with the joint data set and with CMB polarization data removed (-POL). ∆N is the number
of additional parameters in addition to the ΛCDM ones. ∗Note that ML ADE in the potential
conversion case where c2s = wf , is essentially the same as the general case but with ∆N = 3.
The total ∆χ2tot relative to the ΛCDM model is broken down into contributions from the
Planck CMB data sets and the local H0 measurement.

2.6 Discussion

Acoustic dark energy, appearing around the epoch of matter radiation equality, can substan-

tially relieve the tension between CMB inference of H0 and local measurements, exhibited

in the ΛCDM model. The presence of extra energy density lowers the CMB sound horizon

31



that anchors the inverse distance ladder for BAO and SN, while its disappearance before

and after equality allows for a good fit to CMB data in the damping tail. Furthermore by

introducing ADE at equality, the gravitational effects of raising the cold dark matter density

can be balanced by the acoustic oscillations in the ADE itself.

Our main findings regarding the Hubble tension are summarized in Table 2.2 and Fig. 2.8.

In all cases relieving the Hubble tension requires ADE to be a ∼ 8% contribution to the

total energy density around matter radiation equality, leading to at least a two parameter

extension to ΛCDM.

In the general ADE class of models, the acoustic phenomenology is controlled by two

additional parameters, the asymptotic equation of state wf at late times, and the sound

speed c2s. The sound speed plays a crucial role in the gravitational driving of CMB acoustic

oscillations through its impact on the Weyl potential, leading to a strong correlation between

the two, consistent with wf = c2s ≈ 1 around the maximum likelihood model.

Fixing these two parameters to the canonical model, cADE, leads to only a minor degra-

dation in the ability of ADE to relax the Hubble tension in the ML model, H0 = 70.57

vs. H0 = 70.81. In fact, the two parameter model has the advantage of providing a

more significant detection of the ADE fraction fc = 0.082 ± 0.025 and thus allows less

parameter volume around the ΛCDM limit, producing a posterior centered around the ML:

H0 = 70.60± 0.85 in cADE vs. the lower H0 = 70.20± 0.88 shift in ADE.

Note that the fit to the CMB data themselves improves and combined with the higher

H0 provided for an improvement of ∆χ2tot = −14.1 for 3 parameters (wf = c2s) and ∆χ2tot =

−12.8 for 2 parameters (wf = c2s = 1) respectively.

This class of wf = c2s ∼ 1 ADE models corresponds to scalar fields which convert their

potential to kinetic energy efficiently around their release from Hubble drag. By setting this

epoch to be around matter radiation equality, we obtain a robust mechanism for relieving

the Hubble tension in a wide class of potentials.
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For canonical scalar fields, we explicitly determine the requirements on the potential: that

its slope allows for Hubble drag release around equality where its amplitude is set to the∼ 8%

fraction required by the data. Any potential that obeys this property and efficiently converts

potential to kinetic energy until the latter redshifts away will satisfy these requirements. As a

proof of principle, we explicitly construct an example where the potential is locally quadratic

around its release. In this model, the timing of the release to equality is not explained but

the identification of this coincidence may lead to more sophisticated models where it is.

The robustness and generality of this potential-kinetic conversion mechanism for relieving

the Hubble tension separates it from similar models in the literature. In Refs. [13, 34], the

EDE scalar field oscillates after Hubble drag release leading to an effective fluid described by

time-averaged values of wf and c
2
s. Converting our requirements on the relationship between

the two, we find that in Ref. [13], where the potential is periodic, the initial field must be on

the concave part of the potential, and near the maximum to best relieve the Hubble tension.

This also explains the poorer fits in Ref. [34], where the potential is convex and matches the

periodic potential only near the minimum.

The periodic EDE model [13, 34] allows for a slightly higher H0 = 71.40±1.09 and better

∆χ2tot = −16.6 for four parameters as compared with ADE. Most of this improvement comes

from the fit to the Planck polarization data. As shown in Fig. 2.8, without these data, EDE

and ADE perform similarly at ML with H0 = 72.27 vs 72.40 respectively. The reason is that

between equality and recombination, changes in acoustic driving between raising the CDM

density and adding the dark component no longer cancel. This is in fact a beneficial feature

of both models since the Planck TE data show low residuals with respect to the ML ΛCDM

model around ℓ ∼ 200. By allowing the effective sound speed to depend on wavenumber, the

EDE model fits this region better without violating constraints elsewhere. However, when

compared with our cADE model this extra improvement of ∆χ2tot ≈ 3.9 comes at the cost

of two extra parameters and a less robust mechanism for relieving Hubble tension.
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considered in Table 2.2 for two different datasets: our combined data set (upper panel) and
the same with CMB polarization data removed, -POL (lower panel). The dashed vertical
lines indicate the ML values for different models.

Finally, in all cases, the predicted deviations in the EE power spectrum, while not at a

level testable by Planck data, are highly significant compared with cosmic variance. Future

polarization data can provide key tests for these and other dark component explanations of

the Hubble tension.
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CHAPTER 3

TESTING H0 IN ACOUSTIC DARK ENERGY MODELS WITH

PLANCK AND ACT POLARIZATION

3.1 Introduction

While the ΛCDM model of cosmology is remarkably successful at explaining a wide range of

cosmological observations, it currently fails to reconcile distance-redshift measurements when

anchored at low redshift through the distance ladder and high redshift by cosmic microwave

background (CMB) anisotropies. Specifically under ΛCDM, the Planck 2018 measurement

of H0 = 67.4± 0.5 (in units of km s−1 Mpc−1 from here on) [8] is in 4.4σ tension with the

latest SH0ES estimate H0 = 74.03± 1.42 [15].

The significance of this discrepancy makes it unlikely to be a statistical fluctuation and

hence requires an explanation. A resolution of this tension may lie in unknown systematic

effects in the local distance ladder and an array of alternative measurement methods are

being pursued to address this possibility. For example, calibrations based on the tip of the

red giant branch [53, 54], Mira variables [55], megamasers [56], lensing time delays [57, 58]

all give broadly consistent results but differ in the significance of the discrepancy.

On the other hand, different CMB measurements from Planck [8], the South Pole Tele-

scope (SPT) [59] and the Atacama Cosmology Telescope (ACT) [60, 61] give compatible

distance calibrations under ΛCDM. While Planck and previous measurements weight the

calibration to mainly the sound horizon, recent ground based experiments such as SPT and

ACT provide precise measurements of the damping scale as well [60].

Cosmological solutions now generally require a consistent change in the calibration of

both the CMB sound horizon and damping scale as standard rulers which anchor the high

redshift end of the distance scale, preventing high redshift solutions that substantially change

their ratio [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 62]. Once anchored there, the rungs
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on the distance ladder through baryon acoustic oscillations (BAOs) to supernovae Type IA

(SN) leave little room for missing cosmological physics in between (see e.g. [16, 17, 9, 11, 10,

18, 6, 19, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]).

For this reason a class of models which posit a new form of energy density whose relative

contribution peaks near matter radiation equality [13, 3] have received much interest [34,

52, 76, 77, 78, 79, 80, 81, 82, 83]. In these models, adding extra energy density changes the

expansion rate before recombination and so the sound horizon while simultaneously tuning

the timing of these contributions adjusts the damping scale as well. These models can

therefore successfully raise H0 by changing the distance ladder calibration and are limited

mainly by the compensating changes to parameters in order to offset the driving of the

acoustic oscillations from the Jeans-stable additional component.

These changes cause testable effects on CMB polarization, for modes that cross the

horizon near matter-radiation equality [3], and on the clustering of cosmological structure,

changing the amplitude and shape of the power spectrum [84, 2, 85, 86]. Differences between

models in this class can also be distinguished by these effects.

Given the recent improvements in their measurement, we focus on the CMB polarization

effects here and their implications for the canonical acoustic dark energy (cADE) model [3],

where a scalar field with a canonical kinetic term suddenly converts its potential energy to

kinetic energy by being released from Hubble drag on a sufficiently steep potential. With

only two additional parameters, this model provides the most efficient and generic realization

of the extra energy density scenarios.

This paper is organized as follows. In § 3.2 we briefly review the cADE model and its

relationship to other models in the literature. In § 3.3 we introduce the data sets that we

use to obtain the constraints presented in § 3.4. We highlight the role of ACT in § 3.4.2,

Planck polarization in § 3.4.3, SH0ES in § 3.4.4 and discuss differences with other models

where extra dark energy alleviates the Hubble tension in § 3.4.5. We conclude in § 3.5.
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3.2 Acoustic Dark Energy

In this section we review the model parameterization of acoustic dark energy (ADE) and

its relationship to early dark energy (EDE) [1] following Ref. [3]. For the purposes of this

work, acoustic dark energy can be viewed either as a dark fluid component described by

an equation of state wADE and rest frame sound speed c2s [36] that becomes transiently

important around matter radiation equality or as a scalar field that suddenly converts its

potential energy to kinetic energy by being released from Hubble drag at that time. Adopting

the former description, we model the ADE equation of state as

1 + wADE(a) =
1 + wf

[1 + (ac/a)3(1+wf)/p]p
, (3.1)

which defines its energy density

ρADE(a) = ρADE(a = ac)e
−3
∫ a
ac
[1+wADE(ã)]dlogã (3.2)

once normalized to its fractional energy density contribution at ac

fc =
ρADE(ac)

ρtot(ac)
. (3.3)

The ADE component therefore has a transition in its equation of state around a scale factor

a = ac from wADE = −1 to wf which causes its fractional energy density to peak near ac.

The rapidity of the transition is determined by p, which we set p = 1/2 throughout as its

specific value does not affect our qualitative results [3]. The connection to the scalar field

picture comes from these asymptotic behaviors. Given a constant sound speed, wf = c2s for

a potential to kinetic conversion. We call the case of a canonical scalar field where c2s = 1

“cADE”. In §3.4.5, we widen the description to allow wf and c
2
s to be free parameters and call

this superset “ADE”. In summary, cADE is described by two parameters {ac, fc} whereas

37



ADE is described by four parameters {wf , ac, fc, c
2
s}. When varying these parameters we

impose flat, range bound priors: −4.5 ≤ log10ac ≤ −3.0, 0 ≤ fc ≤ 0.2, 0 ≤ wf ≤ 3.6 and

0 ≤ c2s ≤ 1.5.

These ADE models can be contrasted with the EDE model in its fluid description [1].

In the EDE case, the fluid behavior is modeled on a scalar field that oscillates around the

minimum of its potential whose equation of state can likewise be parameterized by Eq. (3.1).

In this case, p = 1 and wf = (n − 1)/(n + 1) is a free parameter associated with raising an

axion or cosine like potential to the nth power, where wf ≈ 1/2 was found to best relieve the

Hubble tension [13]. An additional parameter Θi models the initial position of the field in

the potential and controls an effective, scale-dependent, sound speed (see [1, 3]). The EDE

model is therefore parameterized by {wf , ac, fc,Θi}. When varying these parameters we use

the same priors as ADE for {ac, fc} but fix wf = 1/2 and impose a flat prior on Θi in its

range 0 ≤ Θi ≤ π.

In addition to these parameters, the full cosmological model that we fit to data also

includes the six ΛCDM parameters: the angular size of the CMB sound horizon θs, the cold

dark matter density Ωch
2, baryon density Ωbh

2, the optical depth to reionization τ , the

initial curvature spectrum normalization at k = 0.05 Mpc−1, As and its tilt ns. All these

parameters have the usual non-informative priors [87]. We fix the sum of neutrino masses to

the minimal value (e.g. [37]). We use the EDE and ADE implementation in CAMB [38] and

CosmoMC [39] codes, following [3]. We sample the posterior parameter distribution until

the Gelman-Rubin convergence statistic [40] satisfies R−1 < 0.01 or better unless otherwise

stated.

3.3 Datasets

In this paper, we combine several data sets relevant to the Hubble tension. We use the

publicly available Planck 2018 likelihoods for the CMB temperature and polarization power
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spectra at small (Planck 18 TTTEEE) and large angular scales (lowl+lowE) and the CMB

lensing potential power spectrum in the multipole range 40 ≤ ℓ ≤ 400 [8, 87, 88]. We then

compare the results to the 2015 version of the same data set [41, 42, 43] and examine the

impact of the improved high-ℓ polarization data, which we sometimes refer to as “acoustic

polarization” to distinguish it from the low-ℓ reionization signature.

We combine Planck data with ACT data which measures CMB temperature and polar-

ization spectra out to higher multipoles [60]. We exclude the lowest temperature multipoles

for ACT that would otherwise be correlated with Planck, following [60].

To expose the Hubble tension, we consider the SH0ES measurement of the Hubble con-

stant, H0 = 74.03 ± 1.42 (in units of km s−1Mpc−1 here and throughout) [15]. To these

data sets we add BAO measurements from BOSS DR12 [45], SDSS Main Galaxy Sample [46]

and 6dFGS [47] and the Pantheon Supernovae (SN) sample [44]. These data sets prevent

resolving the Hubble tension by modifying the dark sector only between recombination and

the very low redshift universe [17].

Our baseline configuration which we call “All” contains: CMB temperature, polarization

and lensing, BAO, SN and H0 measurements. We then proceed to examine the impact of

key pieces of this combination by removing or replacing various data sets. Specifically we

consider the following cases:

• All = Planck+ACT+SH0ES+BAO+Pantheon

• -ACT = All−ACT

• -P18Pol = All, but Planck 18 TTTEEE → Planck 18 TT

• -H0 = All−SH0ES

• P18→15,-ACT = -ACT, but Planck 2018→2015. This is the default combination used

in [3].
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cADE All -ACT -P18Pol -H0 P18 → 15,-ACT

fc 0.072(0.068+0.025
−0.022) 0.081(0.070+0.027

−0.024) 0.105(0.110±0.030) 0.050(0.027+0.008
−0.027) 0.086(0.082+0.026

−0.023)

log10ac -3.42(-3.43+0.05
−0.07) -3.50(-3.50+0.07

−0.06) -3.41(-3.39+0.03
−0.10) -3.42(-3.47+0.24

−0.11) -3.45(-3.46+0.05
−0.06)

H0 70.25(70.14±0.82) 70.60(70.19±0.86) 71.38(71.54±1.07) 69.19(68.50+0.55
−0.93) 70.57(70.60±0.85)

S8 0.841(0.839±0.013) 0.841(0.839±0.013) 0.846(0.845+0.018
−0.015) 0.842(0.833+0.011

−0.012) 0.843(0.842±0.013)

∆χ2P -0.2 -1.5 -4.3 -1.7 -4.7

∆χ2ACT -1.8 – -4.3 -1.0 –

∆χ2tot -11.5 -10.7 -19.4 -1.6 -12.7

HΛCDM
0 68.23(68.17±0.38) 68.29(68.22±0.40) 68.30(68.32±0.42) 67.80(67.73±0.39) 68.58(68.35±0.42)

SΛCDM
8 0.815(0.818±0.010) 0.812(0.814±0.010) 0.814(0.813±0.011) 0.826(0.827±0.010) 0.819(0.819±0.010)

Table 3.1: Maximum likelihood (ML) parameters and constraints (mean and the 68% C.L.
lower and upper limits) for the cADE model with different data sets. ∆χ2 values for ML
cADE model are quoted relative to the ML ΛCDM model for the same data set. ∆χ2P reflects
the contribution of the Planck CMB datasets involved in each case: for the -P18Pol case this
includes the TT, lowl, and lowE likelihoods while for P18 → 15 this employs the Planck 15
versions of all likelihoods (see 3.3). For comparison, the H0 and S8 ≡ σ8(Ωm/0.3)

1/2 values
for ΛCDM model are also presented.

When highlighting the impact of a specific data component i below, we quote ∆χ2i ≡

−2∆logLi, relative to the appropriate maximum total likelihood (L) model under ΛCDM.

For example ∆χ2P denotes the contribution from Planck CMB power spectra and includes

Planck TTTEEE+lowl+lowE, except for the -P18Pol configuration where it includes Planck

TT+lowl+lowE. Since the prior on the additional ADE parameters is not physically moti-

vated we do not consider evidence based comparison of model performances.

3.4 Results

In this section we discuss all results. In § 3.4.1, we present results for cADE and the All data

combination. In § 3.4.2 and § 3.4.3 we explore the impact of the ACT and 2018 improvements

to the Planck data, highlighting the crucial role of polarization. In § 3.4.4, we show that

the ability to raise H0 in cADE is not exclusively driven by the SH0ES measurement. We

discuss how polarization measurements distinguish between cADE and the wider class of

ADE and EDE models in § 3.4.5.
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3.4.1 All data

We begin with results for the All data combination and the cADE model. In Fig. 3.1, we

show the constraints on the additional cADE parameters fc and ac as well as their impact

on H0. The mean value for fc is 2.8 standard deviations from zero, which we will refer to

as a 2.8σ detection, and its distribution is strongly correlated with that of H0. In Tab. 3.1

we also show the maximum likelihood (ML) parameters, notably H0 = 70.25 in cADE

vs. 68.23 in ΛCDM, as well as the improvement of fit over ΛCDM, a total of ∆χ2tot = −11.5

for 2 additional parameters. The portion that comes from Planck CMB power spectra,

∆χ2P = −0.2 and from ACT ∆χ2ACT = −1.8, reflects a slightly better fit to CMB power

spectra than ΛCDM. Note that the ML value for ac is near matter-radiation equality. Since

the ML of a class of models depends on the dataset it is optimized to, from this point forward

we refer to such models as e.g. ML cADE:All and ML ΛCDM:All.

In Fig. 3.2, we show the model and data residuals, both for Planck and ACT, of the ML

cADE:All model relative to the ML ΛCDM:All model. The residuals are shown in units of

σCV, the cosmic variance error per multipole moment for the ML ΛCDM:All model

σCV =



√
2

2ℓ+1C
TT
ℓ , TT ;√

1
2ℓ+1

√
CTT
ℓ CEE

ℓ + (CTE
ℓ )2, TE ;√

2
2ℓ+1C

EE
ℓ , EE .

(3.4)

In spite of the higher H0, the ML cADE:All model closely matches the ML ΛCDM:All model

for all spectra and relevant multipoles. Along the fc −H0 degeneracy, fc adjusts the CMB

sound horizon scale to match the acoustic peak positions while ac near matter-radiation

equality allows the damping tail of the CMB to match as well. Note that the ACT data

provide a new test, that has been successfully passed, for this class of solution by providing

more sensitive polarization constraints than Planck in the damping tail ℓ ≳ 103 as we shall
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discuss in the next section. Since adding an extra Jeans-stable energy density component

drives CMB acoustic oscillations and changes the heights of the peaks, small variations in

Ωch
2,Ωbh

2, ns are required as well, and these correlated changes remain mainly the same as

those shown in Ref. [3]. We shall see below that a crucial test that distinguishes cADE and

related explanations of the Hubble tension is the imperfect compensation in the polarization,

especially at intermediate multipoles that correspond to modes that cross the horizon near

ac [3]. Relatedly, as shown in Tab. 3.1, the higher Ωch
2 and H0 values exacerbate the high

S8 = σ8(Ωm/0.3)
1/2 values of ΛCDM so that accurate measurements of local structure test

these scenarios as well [84, 2, 85, 86].

3.4.2 ACT impact

The ACT data provide better constraints than Planck on the CMB EE polarization spectrum

at ℓ ≳ 103 as well as competitive TE and corroborating TT constraints in this range. The

former provides new tests of the cADE model as shown in Fig. 3.2. On the data side, it is

notable that for TT the Planck data residuals compared with ΛCDM that oscillate with the

acoustic peaks (gray lines) at ℓ ≳ 103 are echoed in ACT data, albeit at a lower significance.

We shall see below that were it not for Planck polarization constraints at lower multipole,

the cADE fit to these oscillatory TT residuals would drive H0 even higher. The additional

constraining power of ACT polarization at high ℓ reduces the model freedom there and

slightly shifts the compensation in acoustic driving toward higher ac and lower Ωbh
2. This

change in ac can be seen in Fig. 3.1 where we also show the impact of removing ACT data.

On the other hand the ability to raise H0 is nearly unchanged.

Interestingly, the ACT TE data is not in good agreement with the Planck data as noted in

[60] and attributed to ∼ 5% calibration difference leading to ΛCDM parameter discrepancies

at the 2.7σ level. In Fig. 3.2, we see that the Planck TE data have residuals that oscillate

with the acoustic frequency when compared with ΛCDM, whereas the ACT TE data do not.
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Figure 3.3: Planck CMB data residuals and the ML cADE, ADE and EDE models relative
to the ML ΛCDM model, all optimized to All data. The gray vertical lines indicate the
positions of the acoustic peaks in the ML ΛCDM:All model.
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The ML cADE:All model attempts to compensate but must then compromise on the fit to

the high-ℓ power spectra. This tradeoff has important implications for the comparison of

cADE and ΛCDM as well as cADE and alternate models that add extra energy density near

matter-radiation equality. This data discrepancy also motivates the study of the impact of

Planck polarization data below.

3.4.3 Planck impact

Planck 2015 vs. 2018 data

We start with the impact of the Planck 2018 data relative to the older 2015 release studied in

[3] by reverting the data and removing ACT data in P18→15,-ACT. The main difference in

the updated Planck data is the better polarization data and control over systematics, which

makes both the TE and EE data important tests of the cADE model.
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In Fig. 3.1 and Tab. 3.1, we see that the main impact on cADE is a slight reduction of

its ability to raise H0 and a shift to lower ac that is countered by the ACT data in the All

combination. This mild tension reflects the competition between fitting the high multipole

spectra of both Planck and ACT and the intermediate multipole (ℓ ∼ 500) range of the

Planck TEEE data. The latter is a critical test of the cADE scenario since the perturbation

scales associated with them cross the horizon near matter-radiation equality and are highly

sensitive to changes in the manner the acoustic oscillations are driven. Polarization data

represent a cleaner test than temperature data since they lack the smoothing effects of the

Doppler and integrated Sachs-Wolfe contributions. On the other hand, as we have seen

Planck and ACT disagree somewhat on the TE spectrum in this range.

In Fig. 3.3 we highlight the Planck 2018 data residuals and ML cADE:All model residuals,

both relative to ML ΛCDM:All model. Notice again the oscillatory residuals in TE and the

features in cADE that respond to these residuals as well as the features in EE at ℓ ≲ 600.

Furthermore, because of the ability to adjust Planck foregrounds, the overall amplitude

of the TT data residuals, which have foregrounds fixed to the best fit to Planck 18 alone for

visualization in Fig. 3.3, are low compared with the models. To better isolate the regions of

the data that impact the models the most, we also show the cumulative ∆χ2P contributed by

the Planck TT+lowl+lowE data in Fig. 3.4 for the ML cADE:All relative to ML ΛCDM:All

model. While the ML cADE:All model successfully minimizes differences with ΛCDM, there

are notable regions where the ∆χ2P changes rapidly: ℓ ∼ 500, 800, 1400. Note that the latter

two regions are near the 3rd and 5th TT acoustic peaks and are related to the oscillatory TT

residuals. We shall next see that these areas reflect the trade-off between fitting the high ℓ

power spectra of Planck and ACT and the intermediate scale polarization spectra of Planck.
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Planck polarization impact

The crucial role of intermediate scale TE and EE data in distinguishing models and the

discrepancy between the TE calibrations of Planck and ACT motivate a more direct exam-

ination of the impact of Planck polarization data. In Fig. 3.5 and Tab. 3.1, we show the

cADE parameters and H0 constraints without the Planck 2018 acoustic polarization data

but including acoustic polarization data from ACT as -P18Pol. Notice that the ability to

raise H0 increases to H0 = 71.38 for the ML cADE:-P18Pol model and total ∆χ2tot improve-

ment over ΛCDM rises to −19.4. Correspondingly, a finite fc is preferred at ∼ 3.7σ and its

ML value increases to fc = 0.105. The fit to both the remaining Planck CMB power spectra

data and ACT temperature and polarization data correspondingly also improve by −4.3 and

−4.3 respectively. The transition scale ac can also further increase in value, especially at

lower fc.

In Fig. 3.6, we show how the ML cADE:-P18Pol model fits residuals in the Planck TT

data relative to the ML ΛCDM:-P18Pol model. Notice that the cADE model now responds

to the oscillatory TT residuals. In Fig. 3.4, we see that the main cumulative TT improvement

comes from ℓ ≳ 1400.

On the other hand, Planck polarization data at intermediate scales (ℓ ∼ 500) strongly

disfavor this solution. In Fig. 3.7, we compare the cumulative Planck TTTEEE ∆χ2 for the

ML cADE:All model vs the ML cADE:-P18Pol model, both relative to their respective ML

ΛCDM models.1 While the former remains flat, reflecting an equally good fit for the cADE,

the latter encounters a sharp degradation in the fit just below ℓ ∼ 500 and a more gradual

degradation between 500 − 1000. The first degradation is associated with features in the

EE spectrum and the second receives contributions from the uniformly low TE spectrum in

Fig. 3.6. Since the Planck polarization data are far from cosmic variance limited even just

1. The value of the cumulative ∆χ2P(data) at the highest ℓ matches the values in Tab. 3.1
only for the cases where the optimization matches the data, i.e. ML cADE:-P18Pol in Fig. 3.4
and ML cADE:All in Fig. 3.7.
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statistically, future data in this region can provide a sharp test of cADE and distinguish it

from alternatives.

3.4.4 SH0ES impact

Given the highly significant H0 tension in ΛCDM, it is interesting to ask whether preference

for a higher H0 in cADE simply reflects the SH0ES H0 data. In Fig. 3.5 and Tab. 3.1, we

show the impact of removing this data. Notice that although the ML value of H0 drops

to 69.19, the cADE constraints still allow a non-Gaussian tail to the higher H0 values that

are compatible with the All data. The ML cADE:-H0 model remains a better fit to both

Planck and ACT temperature and polarization data than the ML ΛCDM:-H0 model which

has a lower H0 = 67.8. In this case, finite values for the cADE parameter fc are no longer

significantly preferred. Since all cADE models become indistinguishable from ΛCDM in the
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∆χ2tot H0 fc log10ac wf c2s or Θi/π

ADE (ALL) -14.0 70.25(69.67+0.93
−0.97) 0.061(0.055+0.028

−0.030) -3.60(-3.57+0.20
−0.12) 0.55(1.37+0.37

−1.09) 0.70(0.87±0.29)

EDE (ALL) -16.6 71.03(71.14+0.98
−0.99) 0.056(0.061+0.018

−0.017) -3.71(-3.68+0.09
−0.07) 0.5(fixed) 0.94(>0.84)

ADE (-ACT) -11.9 70.55 0.074 -3.61 0.68 0.80
EDE (-ACT) -13.7 71.61 0.068 -3.80 0.5(fixed) 0.92
ADE (-P18Pol) -23.7 72.11 0.103 -3.51 0.57 0.85
EDE (-P18Pol) -26.1 73.07 0.100 -3.65 0.5(fixed) 0.90
ADE (-H0) -3.9 69.18 0.049 -3.58 0.81 0.71
EDE (-H0) -4.0 70.11 0.044 -3.69 0.5(fixed) 0.94

ADE (P18→15,-ACT) -14.1 70.81(70.20+0.87
−0.88) 0.086(0.079±0.033) -3.52(-3.50+0.14

−0.08) 0.87(1.89+0.85
−1.07) 0.86(1.07+0.30

−0.20)

EDE (P18→15,-ACT) -16.6 71.92(71.40+1.07
−1.05) 0.074(0.064+0.020

−0.018) -3.72(-3.72+0.10
−0.07) 0.5(fixed) 0.90(>0.82)

Table 3.2: ML parameters and constraints (mean and the 68% C.L. lower and upper limits)
for of cADE, ADE, EDE models with different data sets. ∆χ2tot values are quoted relative

to the ML ΛCDM model for the same data set. The column labeled “c2s or Θi/π” indicates
c2s for ADE and Θi/π for EDE. Since the boundary Θi/π = 1 is consistent with the data,
we have quoted the 1-sided 68% CL lower interval from this boundary. Both ADE and EDE
have four parameters in addition to ΛCDM, but the wf value of EDE is crudely optimized
by setting it to the value of best solving the H0 tension following [1].

limit fc → 0, there is a large prior parameter volume associated with the poorly constrained

ac that favors ΛCDM, pulling the posterior probability of H0 to lower values and skewing

the distribution.

3.4.5 Distinguishing model alternatives

As we have seen in the previous sections, intermediate scale polarization data is crucial for

limiting the ability of the cADE model to raise H0 as well as distinguishing it from ΛCDM.

This is because differences in acoustic driving are most manifest for modes that cross the

horizon while the additional energy density is important and the signatures in polarization

vs. temperature spectra are clearer, due to the lack of other contaminating effects.

Intermediate scale polarization is equally important for distinguishing cADE from the

wider class of ADE models or EDE models. In Tab. 3.2 we show results for these wider

classes and the joint posterior of the common parameters along withH0 are shown in Fig. 3.8.

The ADE chains are converged at the R − 1 < 0.04 level, reflecting degeneracies in poorly

constrained parameters. Note that both models possess 4 additional parameters, but for

EDE we have followed [1] in crudely optimizing wf by setting it to wf = 0.5. In the ADE
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case the ML H0 value remains at H0 = 70.25 in cADE while in EDE case it rises to 71.03.

The total ∆χ2tot for the All dataset also improves from −11.5 to −14.0 and −16.6 respectively

for 2 additional parameters. The All dataset therefore does not strongly favor either increase

in model complexity. Note that because of the large parameter volume in ADE near fc → 0,

the posterior of H0 in that case is strongly pulled by the prior to lower values than the ML

value. For EDE notice that in the scalar field interpretation Θi/π = 1 is a field whose initial

value is at the top of the potential and the data require a moderate tuning to this boundary

value [3].

Tab. 3.2 also displays the ML models for the various other data combinations discussed

above. The trends are similar to those discussed for cADE. In addition, for ADE, the All

data favors a lower value for wf due mainly to the ACT data as compared with the P15-based

previous results from Ref. [3].

More interestingly for the future, Figs. 3.2 and 3.6 show that the current compromises

between fitting the high ℓ power spectra of Planck and ACT vs. the intermediate scale Planck

polarization data are model dependent, especially in the polarization spectra around ℓ ≲ 500.

Since the Planck data are far from cosmic variance limited in TEEE, better measurements in

this regime can distinguish between the various alternatives for adding extra energy density

around matter radiation equality to alleviate the Hubble tension.

3.5 Discussion

The acoustic dark energy model, which is based on a canonical kinetic term for a scalar

field which rapidly converts potential to kinetic energy around matter radiation equality,

alleviates the Hubble tension in ΛCDM and successfully passes new consistency tests in the

CMB damping tail provided by the ACT data, while being increasingly constrained and

distinguished from alternate mechanisms by the better intermediate scale polarization data

from Planck. The best fit cADE model has H0 = 70.25 compared with 68.23 in ΛCDM
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and a finite cADE component is preferred at the 2.8σ level. While this preference is driven

by the SH0ES measurement of H0 itself, even without this data the cADE model prefers a

higher H0 than in ΛCDM.

Intermediate scale (ℓ ∼ 500) polarization data plays a critical role in testing these and

other scenarios where an extra component of energy density alters the sound horizon and

damping scale of the CMB. Such components also drive CMB acoustic oscillations leaving

particularly clear imprints on the polarization of modes that cross the horizon around matter

radiation equality. Were it not for the Planck 2018 polarization data, the ML cADE model

would have H0 = 71.38 and more fully resolve the Hubble tension. Intriguingly the ACT TE

data do not agree with Planck TE data in their normalization [60] and in cADE the two data

sets drive moderately different preferences in parameters, especially the epoch ac at which

its relative energy density peaks. In the wider class of non-canonical acoustic dark energy

(ADE) or early dark energy (EDE), which differ in the manner that acoustic oscillations are

driven, polarization data at these scales is critical for distinguishing models, with the current

freedom allowing an even larger H0 ∼ 70− 71 and 71− 73 at ML with and without Planck

polarization, albeit with two additional parameters.

Given the current statistical and systematic errors in measurements, future intermediate

scale polarization data can provide even more incisive tests of the cADE model and its

alternatives to resolving the Hubble tension.
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CHAPTER 4

THE EARLY DARK SECTOR, THE HUBBLE TENSION, AND

THE SWAMPLAND

4.1 Introduction

The Early Dark Energy (EDE) model [13] is a prominent candidate to resolve the Hubble

tension [89]. However, this model faces challenges both from data, in the form of exacerbated

tensions with large-scale structure observations [2, 84, 85], and from theory, namely whether

the model can be self-consistently described as a low-energy limit of a high-energy theory

including gravity. To understand the interplay of these challenges, in this work we take

guidance from the Swampland Distance Conjecture [90] (and its extension to axions [91, 92,

93, 94]), and extend EDE to an Early Dark Sector.

The Hubble tension, namely, the discrepancy in the value of the Hubble constant H0

measured locally via the cosmic distance ladder using Type Ia supernovae (SNIa) [15, 95]

and the value inferred from the cosmic microwave background (CMB) [8], from large-scale

structure (LSS) [96, 97, 98, 99, 100, 101], and from other probes [89], presents a challenge to

the standard ΛCDM cosmological model. In particular, the disagreement between Planck

2018 CMB observations and the SH0ES 2020 cosmic distance ladder measurement stands at

5.0σ statistical significance [7], with the two values given by H0 = 67.37 ± 0.54 km/s/Mpc

[8] and H0 = 73.04± 1.04 km/s/Mpc [7], respectively. While some local measurements have

yielded H0 values that are not in statistical disagreement with the ΛCDM-predicted value

from CMB and LSS data (e.g., [53, 58]), it is generally true that local H0 probes have yielded

higher values than expected in ΛCDM.

A plethora of cosmological models have been proposed to bring these data sets into

concordance, and resolve the Hubble tension. For a recent review see, e.g., [102]. These

range from modifications to the early (pre-recombination) universe, to the late universe, and
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to the theory of gravity in the local universe. However, all approaches face severe challenges:

For example, late universe models that leave the sound horizon at the drag epoch unchanged

are heavily constrained by the inverse cosmic distance ladder and generally cannot explain

the SH0ES measurement [103]. Early universe models that reduce the the sound horizon

at recombination can successfully raise the Hubble constant while maintaining consistency

with CMB observations, but are often in tension with LSS observations, namely the galaxy

clustering and cosmic shear auto- and cross-correlation two-point functions from the Dark

Energy Survey Year 1 [2] and BOSS full-shape anisotropic galaxy clustering [84]; see also

[104] and [105]. Nonetheless, the relative success of early universe models at raising the

inferred H0 motivates the search for an embedding into a more complete and yet still well

motivated model that is consistent with all data sets. Several recent models have been

proposed along these lines, e.g., [106, 107, 108].

An interesting case study is Early Dark Energy [13]. In this class of models, the expan-

sion rate is increased near matter-radiation equality, so as to reduce the sound horizon at

recombination, and thereby raise the H0 value inferred from the angular scale of the sound

horizon. The model can accommodate larger values of H0 than ΛCDM whilst not degrading

the fit to the CMB, and is thereby compatible with both SH0ES and Planck. However, the

larger H0 is accompanied by shifts in other ΛCDM parameters, such as the dark matter den-

sity Ωch
2, the scalar spectral index ns, and the amplitude of density perturbations σ8. This

brings the model into tension with LSS data [2, 84, 85]. Accordingly, when additional LSS

data are included in the analysis, e.g., from the Dark Energy Survey, the Kilo-Degree Survey

(KiDS) [109, 110], and the Subaru Hyper Suprime-Cam (HSC) survey [111], or from BOSS

[84], the evidence for an EDE component is significantly diminished [2, 84, 85] (see [112] for

an alternative viewpoint).

The minimal EDE model is comprised of a scalar field ϕ with a potential V (ϕ) =

V0 [1− cos(ϕ/f)]n. This potential, first proposed in [113], is a generalization of the usual
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axion potential (see [114] for a review). In this model, the relative energy density in ϕ

is peaked at a critical redshift zc, at which point the scalar field constitutes a fraction

fEDE ≡ ρϕ(zc)/ρtot(zc) of the energy density of the universe. The parameters of the model

follow from simple considerations: n ≥ 2 so as to have the EDE field’s energy density rapidly

redshift away following zc, V
1/4
0 ∼ eV so as to constitute ≈ 10% of the universe at zeq, and

f ≲Mpl so as to endow the scalar with a mass m ∼ H(zeq) and thereby set zc ∼ zeq.

This model is, at best, a phenomenological description of a more complicated theory. The

conventional origin of periodic axion potentials is instantons. A complete model would need

to explain why a tower of instantons V (ϕ) ∼ ∑
n cne

−Sncos(nϕ/f), with Sn the instanton

action, conspires to take the required form, despite the Planckian decay constant f ∼ Mpl,

which would conventionally be associated with a total breakdown of the instanton expansion

(see, e.g., [115, 116, 117]). One might presuppose that the model exists as a low-energy limit

of a UV-complete theory, e.g., that EDE is in the landscape of string theory [118, 119], and

that the low-energy parameter fine-tunings are sensible from the UV perspective. However,

it might equally well be the case that the EDE model is in the swampland [120, 90]. So-

called “swampland conjectures” (for a review, see [121, 122, 123]) attempt to delineate the

boundaries of the landscape, and identify those properties that low-energy theories inherit

from the high-energy theory. In particular, the Swampland Distance Conjecture [90] holds

that any Planckian field excursion |∆ϕ| ∼Mpl, such as that in EDE, causes an exponential

suppression of the mass of other fields in the theory, m ∝ e−c|∆ϕ|/Mpl , with c > 0 a number

of O(1).

In this work we study the interplay of the swampland and the EDE model. We consider

the impact of the Swampland Distance Conjecture (SDC) [90] (and its extension to axions

[91, 92, 93, 94]) on the EDE inference of H0 and on the tension of EDE and LSS data

[2, 84, 85]. To this end, we promote EDE to an Early Dark Sector (EDS). We consider an
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EDE-dependence of the mass of dark matter, given by,

mDM(ϕ) = m0e
cϕ/Mpl , (4.1)

where ϕ is initially ϕi ∈ [0, πf ], and is zero in the present universe. We assume for simplicity

that the above applies to all of the dark matter (as also considered in, e.g., the “Fading

Dark Matter” model [124, 125]). The SDC prediction is that c is positive and order-1, such

that the dark matter is exponentially lightened when ϕ rolls from ϕi ∼ Mpl to ϕ ∼ 0. We

perform data analysis allowing c to vary, and allow the data to decide both the magnitude

and sign of c.

We find that positive c (c > 0), which is the sign of c predicted by the SDC, raises S8

and exacerbates the tension with LSS data in this model. On the other hand, we find that

a small but negative c can lower S8 without decreasing H0, while simultaneously improving

the fit to the CMB. This occurs due to an interplay of imprints on the cosmic microwave

background, both at high-ℓ and on scales that enter the horizon around zc, and imprints on

the growth of structure, caused by a relative shift in the redshift of matter-radiation equality

and by an induced attractive dark matter self-interaction (a dark-matter-philic “fifth-force”)

1.

We perform a Markov Chain Monte Carlo (MCMC) analysis of a (‘baseline’) combined

data set comprised of Planck 2018 primary CMB and CMB lensing data [127, 8, 128]; BAO

distances from the SDSS DR7 main galaxy sample [46], the 6dF galaxy survey [129], and

SDSS BOSS DR12 [45]; the Pantheon supernovae data set [44]; and the SH0ES H0 measure-

ment. We find a modest overall preference for c < 0, with the best-fit value c = −5× 10−3.

We find that the EDS model is able to accommodate a lower S8 than in EDE, and

thereby lessen the tension with LSS data. To substantiate this, we supplement our baseline

1. This is related but distinct from the “cosmic axion force” [126]; in that work an ultra-
light scalar mediates an interaction with the Standard Model, whereas in the in the EDS
model the interaction is confined to the dark sector.
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data set with Dark Energy Survey Year-3 data (DES-Y3) [14], approximated as a prior on

S8 ≡ σ8(Ωm/0.3)
0.5, and we repeat the MCMC analysis. We find that the best-fit EDS is

better able to accommodate the DES-Y3 measurement than is EDE, with a relative reduction

in χ2DES−Y3 of 1.1. However, like previous analyses [2, 84, 85], we find that the combined

data set including DES-Y3 is statistically consistent with fEDE = 0, indicating that there is

little Bayesian justification for this 4-parameter extension of ΛCDM.

Finally, we study the impact of recent CMB temperature and polarization data from the

Atacama Cosmology Telescope (ACT) [130, 131]. The ACT DR4 data significantly improve

upon the precision of Planck on small angular scales. The ACT collaboration analysis of

the EDE model [132] found a moderate preference for fEDE > 0, in contrast to results

from Planck. We perform an MCMC analysis of the EDS model fit to the baseline data

set supplemented with ACT DR4 temperature and polarization spectra. Analogous to the

EDE analysis of [132], we find that the inclusion of ACT data increases the preference for

fEDE > 0, and significantly constrains the timing zc. We find a factor of two improvement

on the constraint on c relative to the baseline data set.

Turning these analyses on their head, we may ask what the data, when analyzed in the

context of the EDE model, have to say about the Swampland Distance Conjecture. We find

a 95% CL upper limit on c given by c < 0.068 for the baseline data set, and c < 0.035 and

c < 0.042 at 95% CL when DES-Y3 or ACT are included, respectively. We interpret this as

a modest tension between the Swampland Distance Conjecture and the EDE model, at the

level of a 4− 7% fine-tuning.

The structure of this paper is as follows. In Sec. 4.2 we introduce the Early Dark Sector

model, the dynamics, and the physics behind it. In Sec. 4.3 we detail the imprint on the

cosmic microwave background and on large-scale structure. In Sec. 4.4 we discuss the data

sets that will be used in our analyses, and perform MCMC analyses of the model fit to

varying data set combinations. We detail the implications of this for the Swampland Distance
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Conjecture in Sec. 4.4.4, and conclude in Sec. 4.5.

We work in natural units, where the speed of light is unity. The parameter c refers

exclusively to the coupling parameter of the EDS model, and not the speed of light. We

denote the reduced Planck mass Mpl(= 2.435× 1018 GeV). Unless otherwise stated, values

for H0 are given in units of km/s/Mpc.

4.2 From Early Dark Energy to The Early Dark Sector

The idea underlying the EDE model [13] is to shrink the comoving sound horizon at last

scattering, rs, defined by

rs(z∗) =
∫ ∞

z∗

dz

H(z)
cs(z), (4.2)

with z∗ the redshift of last scattering and cs the sound speed of the photon-baryon plasma,

through the inclusion of an additional source of energy density, namely the EDE. The reduced

sound horizon allows an increased H0 while remaining consistent with CMB observations of

the angular scale of the sound horizon, θs, defined by,

θs =
rs(z∗)
DA(z∗)

, (4.3)

where DA is the angular diameter distance to last scattering. By adjusting the redshift

dependence of the EDE component, the CMB damping scale can simultaneously be adjusted

to match observations, albeit at the expense of introducing a tuning or coincidence into the

EDE model.

The baseline EDE model [13] is described by a canonical scalar field, with potential

energy given by

V (ϕ) = m2f2
[
1− cos

ϕ

f

]3
. (4.4)

This potential, of the form first proposed in [113], is a generalization of the usual axion
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potential, corresponding to a careful fine-tuning of an instanton expansion or of other non-

perturbative effects (see, e.g., the discussion in [2]). Alternative realizations and variations

on the EDE model abound, see, e.g., [13, 76, 34, 52, 3, 79, 78, 82, 133, 77].

The common feature of these models is that the energy density transitions between

redshifting slower than ordinary matter to redshifting faster across a critical redshift. In

the baseline EDE model this is achieved as follows. At early times the scalar is frozen in

place by Hubble friction, and effectively behaves as dark energy. The scalar is released from

Hubble friction when H ≃ m, for a typical value of the initial field ϕi = O(f). Around this

time, the scalar field makes its maximal contribution to the energy density of the universe,

i.e., the ratio of energy densities

fEDE(z) ≡
ρEDE(z)

ρtot(z)
, (4.5)

where ρtot is the total energy density, is maximal when z = zc. As a shorthand, we will

denote fEDE ≡ fEDE(zc), and will explicitly specify fEDE(z) when referring to the above. At

times after zc, i.e., at lower redshifts, the field rolls down the potential V (ϕ) and undergoes

damped oscillations. The energy density of the scalar rapidly redshifts away, naively leaving

no trace in the post-recombination universe.

One can easily estimate the model parameters necessary to resolve the Hubble tension.

The sound horizon and damping scale are most sensitive to dynamics that occur in the

decade of redshift preceding last scattering [11]. This effectively imposes zc ∼ zeq, which in

turn determines the mass parameter m as

m ∼ 10−27eV. (4.6)

Meanwhile, the discrepancy in the Hubble constant H0 is roughly 10%, which, combined

62



with ϕi = O(f) by standard arguments (see, e.g., [114]), implies that

V (z ∼ zc) ∼ 0.1H2
eqM

2
pl, (4.7)

and hence,

f ∼Mpl. (4.8)

Thus we see the EDE scalar field, insofar as it is relevant to the Hubble tension, naturally

undergoes a field excursion |∆ϕ| ∼ f ∼Mpl.

Little is known about field theories near the Planck scale. At these scales one can

reasonably expect quantum gravity effects, e.g., from string theory, to become relevant.

When assessing models, in lieu of a concrete string theory construction, one approach is to

take guidance from known calculable string theory examples, distilled into a simple set of

conjectures – so-called “Swampland” conjectures [120] (for a review, see [121, 122, 123]).

The Swampland conjectures collectively aim to delineate the boundary between effective

field theories that are inconsistent once gravity is quantized (or more precisely, EFTs that

do not admit a UV completion into quantum gravity [121]), and those that are consistent

with quantum gravity (and hence do admit UV completion).

Of particular relevance to EDE is the SDC [90]. The SDC holds that any low-energy

effective field theory is only valid in a region of field space bounded by the Planck scale, and

the breakdown of effective field theory that occurs at Planckian field excursions is encoded in

an exponential sensitivity of the mass spectrum of the effective theory. This can be expressed

as, for the mass of at least one such field in the spectrum,

M ∼M0e
−α|∆|/Mpl , (4.9)

where ∆ is the distance traversed in field space, and α is an order-1 parameter. There are

numerous concrete examples that support the SDC. For example, consider a universe with
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an extra dimension that is a circle of radius R. Dimensional reduction on the circle yields a

tower of massive Kaluza-Klein excitations, with masses given by

m2
n ≃ n2M2

ple
−2φ/Mpl , (4.10)

where φ ≡ Mpllog(MplR) is the canonically normalized radius of the circle. At large field

values φ ≳ Mpl, the Kaluza-Klein fields become exponentially light and a priori cannot be

neglected. For other examples of the scaling in Eq. (4.9), see, e.g., the review in [123].

The EDE scenario is precisely the sort of model that the SDC is designed to address,

namely a model with Planckian field excursions. While this is not unique to EDE, and is

exhibited also in late-universe dark energy models, such as quintessence [134], the EDE model

is unique in that this exponential sensitivity is activated in the high-redshift universe. Thus

one might hope that cosmological observables such as the CMB and LSS may be powerful

probes of the couplings predicted by the SDC, e.g., of the form in Eq. (4.9), in the EDE

model.

With all this in mind, in this work we consider a simple model that implements these

ideas. We extend the EDE model to the Early Dark Sector (EDS), and consider a coupling

of the EDE field to dark matter of the form predicted by the SDC. While fields that exhibit

the mass scaling in Eq. (4.9) could in principle be an arbitrary fraction of the total dark

matter, for simplicity we assume ϕ couples to all dark matter. As a concrete model, we

consider the following Lagrangian:

L =
1

2
(∂ϕ)2 + iψ̄ /Dψ − V (ϕ)−mDM(ϕ)ψ̄ψ, (4.11)

where ϕ is the EDE scalar with potential V (ϕ) and ψ is a fermionic cold dark matter

candidate with ϕ-dependent mass mDM(ϕ). We consider the specific form of the potential
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V (ϕ) given by Eq. (4.4), and a field-dependent mass mDM(ϕ) given by

mDM(ϕ) = m0e
cϕ/Mpl , (4.12)

as motivated by the SDC, and in particular the extension of the SDC to axions [91, 92, 93, 94].

In our work we fix the convention that ϕ decreases over the course of cosmic evolution, i.e.,

ϕ evolves from ϕi > 0 in the early universe to ϕf ∼ 0 in the present universe. The SDC then

predicts that c defined by Eq. (4.12) is positive (c > 0), such that the dark matter mass is

decreased by a Planckian field excursion of ϕ. In what follows, we refer to the system defined

by Eqs. (4.11), (4.12), and (4.4), as the EDS model.

The background cosmology of the EDS model Eq. (4.11) is specified by the Friedmann

equations, along with the scalar field equation of motion,

ϕ̈+ 2aHϕ̇+ a2
dV

dϕ
= −a2 c

Mpl
ρDM, (4.13)

where dot denotes a derivative with respect to conformal time and H = (1/a)da/dt where t

is cosmic time, and the conservation equation for the joint stress-energy of the dark matter

and scalar field. The latter leads to the modified continuity equation for the dark matter

density,

ρ̇DM + 3aHρDM =
c

Mpl
ϕ̇ρDM. (4.14)

A full derivation of the equations of motion at the background and linear-perturbation

level is given in App. A.1. We may understand the background cosmology in a relatively

straightforward way. On the dark matter side, Eq. (4.14) may be solved exactly, to give the

evolution of the dark matter density at all times. We find

ρDM(a) =
3M2

plH
2
0ΩDM

a3
mDM(ϕ)

mDM(ϕ0)
, (4.15)
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with mDM(ϕ0) the present-day dark matter mass. This is consistent with the conservation

of the comoving DM number density, a3nDM(a) = 3M2
plH

2
0ΩDM/mDM(ϕ0). Meanwhile, the

scalar field may be understood as evolving in a time-dependent effective potential, which

can be read off from Eq. (A.6) as

Veff(ϕ, a) ≡ V (ϕ) + ρDM(a), (4.16)

where ρDM(a) is given by Eq. (4.15).

As a fiducial numerical example, we consider the best-fit model in the fit to primary

CMB, CMB lensing, BAO, SNIa, and SH0ES data, to be presented later in this work (see

Tab. 4.1). We will refer to this example throughout; the parameters (to be varied in Sec. 4.3

and sampled in our MCMC analysis) are given by, for the EDS parameters,

fEDE = 0.142, log10(zc) = 3.58, (4.17)

θi ≡
ϕi
f

= 2.72, cθ ≡ c · f

Mpl
= −0.0010,

where we have defined cθ as c in units of f , analogous to the rescaling of ϕ into θ, and

100θs = 1.04114, Ωbh
2 = 0.02284, (4.18)

Ωch
2 = 0.13043, log(1010As) = 3.079,

ns = 0.9931, τ = 0.0600,

for the ΛCDM parameters. The corresponding particle physics parameters are given by

c = −0.0049, ϕi = 0.55Mpl,

f = 0.20Mpl, m = 5.4× 10−28 eV, (4.19)
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Figure 4.1: Fiducial example background evolution of the scalar field, the energy density
fraction fEDE, and the dark matter mass mDM(ϕ). The vertical lines indicate the location
of zc. The scalar field indeed undergoes a Planckian field excursion (up to an order-1 factor),
leading to a ≈ 0.3% change to mDM around zc. See Eq. (4.17) for parameters.

implying a change in the dark matter mass,

∆mDM

mDM
≡ m(ϕi)−m0

m0
= −0.003. (4.20)

The tension-related derived cosmological parameters are given by

H0 = 72.52 , S8 = 0.848, (4.21)

σ8 = 0.848, Ωm = 0.3000,

which can be compared with the SH0ES 2020 measurement H0 = 73.2 ± 1.3 [95], and the

DES-Y3 measurements [14] S8 = 0.776 ± 0.017, Ωm = 0.339+0.032
−0.031, and σ8 = 0.733+0.039

−0.049.

Note that SH0ES has been included in the data sets that are used in this fit, while DES-Y3

has not. We will discuss in detail the tension with and interplay between these data sets in

Sec. 4.4.

The cosmological evolution of the EDE scalar field, the fractional energy density fEDE(z),

and the dark matter mass mDM(ϕ), for the above parameters, are shown in Fig. 4.1. The

scalar field undergoes an O(Mpl) excursion, and near z = zc = 3801 comprises 14% of the

energy density of the universe. This energy density is rapidly dissipated as the field rolls
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down the potential and begins to oscillate, and at z = 103 its contribution is less than 2%

of the energy density of the universe. The dark matter mass undergoes a fractional change

corresponding to a mass that is 0.3% lighter in the early universe than in the late universe.

The equations of motion for linear perturbations of the scalar field and dark matter may

be derived following the same procedure as for the background evolution, namely, from the

variation of the action with respect to the scalar field perturbations and the conservation of

the perturbed joint stress-energy tensor (see App. A.1). In the synchronous gauge, we find

for the scalar field perturbation,

δ̈ϕ+ 2aH ˙δϕ+

(
k2 + a2

d2V

dϕ2

)
δϕ+

ḣ

2
ϕ̇ = −a2 cρDM

Mpl
δc, (4.22)

and for the dark matter,

δ̇c + θ +
ḣ

2
=

1

Mpl
c ˙δϕ, (4.23)

θ̇ + aHθ =
1

Mpl
ck2δϕ− 1

Mpl
cϕ̇θ, (4.24)

where θ ≡ ∂iv
i and h is the trace of the spatial metric perturbation. These results are specific

to the choice of SDC-inspired dark matter mass dependence in Eq. (4.12); the equations of

motion for a general ϕ-dependent dark matter mass m(ϕ) are given in App. A.1. The

phenomenology of perturbations will be discussed in detail in Sec. 4.3.

Finally, we note the model we consider here is similar to, but distinct from, the modified

gravity implementation of coupled EDE in [108]. While both setups include a field-dependent

dark matter mass, here we consider an axion-like sinusoidal V (ϕ), Eq. (4.4), whereas [108]

considered a monomial V (ϕ) = λϕ4. These two choices for V (ϕ) are known to exhibit

different phenomenology; see, e.g., the discussion in [34, 76].
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4.3 Phenomenology: The CMB and the Growth of Structure

Here we investigate the novel EDS impact of the coupling between the scalar field and dark

matter on the CMB and large-scale structure of the Universe.

4.3.1 CMB

In Fig. 4.2, we show the impact of varying c with the other parameters fixed to their values

in Eqs. (4.17) and (4.18) compared with the Planck TT , EE, TE data. The various models

are plotted as differences with respect to the best-fit model to baseline data set in units of

the cosmic variance per multipole,

σCV =



√
2

2ℓ+1C
TT
ℓ , TT ;√

1
2ℓ+1

√
CTT
ℓ CEE

ℓ + (CTE
ℓ )2, TE ;√

2
2ℓ+1C

EE
ℓ , EE,

(4.25)

of the best-fit model. From the ∆c = ±0.02 parameter variations around the best-fit c =

−0.005, which is comparable to the scale of its observational errors, we can see that the

main effects on the TT power spectrum of decreasing c is a localized decrease in power near

ℓ ∼ 500 and an increase in power at high multipole moments ℓ ≳ 700.

These effects are induced by the gravitational effects of the change of dark matter mass

on the CMB acoustic oscillations. These gravitational effects come through the Newtonian

gauge Weyl potential Ψ + Φ; see, e.g., [6]. The change in the Weyl potential drives acous-

tic oscillations, especially around the epoch that the oscillations reach their first extrema

krs(z) = π where rs is the comoving sound horizon. In Fig. 4.3, we show the time evolution

of the Weyl potential and dark matter mass for the ∆c = −0.02 model with respect to the

best-fit EDS model. The Weyl potential is shown in blue and orange curves for k = 0.038

and 0.0857Mpc−1, which correspond to ℓ ∼ 500 and 1100, respectively. The dashed ver-
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Figure 4.2: Planck 2018 data residuals relative to the EDS best-fit model to the baseline
data set. Models with ∆c = ±0.02 around the best-fit −0.005 with all other parameters
fixed to their values in Eqs. (4.17) and (4.18) are shown for comparison. The blue vertical
lines indicate the positions of the acoustic peaks in the best-fit EDS model.

tical lines indicate locations where krs(z) = π for each k mode with the same color, and

the shaded area indicates the epoch between zc and recombination. We see that the Weyl
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Figure 4.3: Time evolution of Weyl potential, in units of the initial comoving curvature
pertubation, and the dark matter mass for ∆c = −0.02 with respect to the best-fit EDS
model. All the other parameters are fixed to their values in Eq. (4.17) and (4.18). The
dashed vertical lines indicate locations of krs(a) = π for each k mode with the same color
where rs is the comoving sound horizon. The shaded area indicates the epoch between zc
and recombination.

potential change follows the dark matter mass change, which oscillates with time. For a neg-

ative c, the dark matter mass is smaller before zc and larger during an epoch between zc and

recombination. For modes that cross krs = π well before zc, the decrease in the dark matter

mass at that time causes a larger relative decay in the Weyl potential and a corresponding

increase in the amplitude of the acoustic peaks at the corresponding multipoles ℓ ≳ 700. On

the other hand, for modes that cross right around zc, the change in the Weyl potential flips

sign at the critical phase for driving the acoustic mode, leading to a local decrement in the

power around ℓ ∼ 500.

As we can see from Fig. 4.2, these effects for variations of ∆c = ±0.02 with other pa-

rameters fixed are too large to be accommodated by the data and must be compensated

by other parameters. This can be done largely within the EDS sector itself, without sub-
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Figure 4.4: Comparison between the Planck TT data and both the global best-fit EDS
model where c = −0.005 (black line) and the best model for the baseline data set with
c = −0.025 fixed (c− optimized, orange line). The other curves show the effect of varying
the EDS parameters c, θi, and zc from the former to the latter in the direction indicated by
the + and − with the remaining parameters fixed to the global best-fit model.

stantially modifying the other ΛCDM parameters of Eq. (4.18), especially Ωch
2. We study

these compensating effects in Fig. 4.4, where we show TT power spectra for both the global

best-fit EDS model where c = −0.005 (black line) and the best model with c = −0.025

fixed (orange line). We then iteratively perform the parameter shifts from the former to the

latter so as to understand the compensations and hence the expected parameter degeneracies

in the fit to data. One may appreciate from Fig. 4.4 that lowering c from c = −0.005 to

c = −0.025 generates a significant dip in CTT
ℓ around ℓ ∼ 500. This can be compensated

by lowering the initial phase θi, however this comes at the expense of significant residuals

at somewhat higher multipoles. Next, tuning zc changes the damping scale, and hence the

high-ℓ amplitude. Therefore, we expect a c − θi − zc degeneracy in the fit to data. This

expectation is confirmed by MCMC analyses, e.g., Fig. 4.9, to be presented in Sec. 4.4.

In particular these compensations do not involve the present cold dark matter density

Ωch
2, leaving a range of allowed c at fixed Ωch

2. Indeed in the best-fit model with c =

−0.005, Ωch
2 remains very close to its best-fit value for EDE (i.e. c = 0) but the change in
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the dark matter mass makes the cold dark matter density at early times smaller. We shall

see next that this delays the onset of the matter-dominated growth of density fluctuations

and hence allows a smaller amplitude of structure today.

4.3.2 Growth of Structure

As we have seen, the CMB allows c < 0 with a present dark matter density Ωch
2 nearly

fixed. In this context, there are two distinct effects of c on the growth of structure and hence

S8 as can be seen in Fig. 4.5. The first is that for c < 0 the dark matter mass is lighter at

z > zc and the dark matter density smaller. Therefore the start of the matter-dominated

growth of density fluctuations is delayed, which leads to a smaller amplitude of fluctuations

today for c < 0, all else equal. This can be seen in Fig. 4.5 as the negative change in density

fluctuation right after zc. Note that the behavior before zc is due to the Weyl potential

change induced by the change of the dark matter mass, as we see in Fig. 4.3. This pre-zc

effect will be suppressed for larger k modes where horizon crossing occurs much earlier. The

second effect is that the ϕ field mediates an enhanced gravitational force for the dark matter,

which increases the growth of structure for large values of |c|.

To understand this second effect, in App. A.2 we derive the equation of the dark matter

density perturbation growth at second order in c, under a quasistatic approximation for the

sourced scalar field perturbations, namely, the assumption that spatial gradients dominate

over temporal derivatives for δϕ. This is a good approximation deep inside the horizon. In

this limit, the impact of δρDM on δϕ takes the form of a non-oscillatory offset δϕ(0) ∝ cδc

(see Eq. A.20). Substituting this back into the equation for δc, the resulting effect is an

O(c2) self-interaction. We find

δ̈c +Hδ̇c = 4πGa2ρcδc

(
1 +

2c2k2

k2 + a2d2V/dϕ2

)
, (4.26)
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Figure 4.5: Density growth of EDS best-fit model as c varied, with fixed H0 and all other
parameters (except θs) fixed to their values in Eqs. (4.17) and (4.18). The vertical line
indicates the location of zc. Here k = 0.2hMpc−1 .
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Figure 4.6: S8 value as function of c, with fixed H0 and all other parameters (except θs)
fixed to their values in Eqs. (4.17) and (4.18). The red dot indicates the best-fit model.

where H is the Hubble parameter defined with respect to conformal time. From this one
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Figure 4.7: Matter power spectra of EDS best-fit model as c varied, with fixed H0 and all
other parameters (except θs) fixed to their values in Eqs. (4.17) and (4.18). The results are
compared to the best-fit ΛCDM model.

may read off an effective gravitational constant,

Geff = GN

(
1 +

2c2k2

k2 + a2d2V/dϕ2

)
, (4.27)

which is independent of the sign of c. This expression simplifies in the high-k limit, namely,

for physical wavenumbers greater than the mass of the EDE scalar field, which satisfy,

k

a
≫ mϕ ≡

√
d2V/dϕ2. (4.28)

In this limit, we have,

Geff = GN (1 + 2c2), (4.29)

which is independent of k and the scalar field potential. This enhanced gravitational constant

can understood as a dark matter-philic scalar-mediated force.

The range of k-modes which satisfy Eq. (4.28) changes throughout cosmic history, as the
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EDE scalar evolves. Before zc, for the parameters in Eq. (4.17), the field mass is |mϕ| ≃

3.9 × 10−14 eV ≃ 18h/Mpc. After zc, the field is released from Hubble friction and begins

to oscillate, and the mass rapidly decreases. After this, modes come to satisfy Eq. (4.28).

The modes predominantly responsible for setting S8, k ≈ 0.2h/Mpc, satisfy Eq. (4.28)

shortly after zc, while longer-wavelength modes begin to satisfy Eq. (4.28) at later times

tk as a(tk) ∼ k2. The mass eventually settles to its value at the minimum of the effective

potential and quasistatically evolves with ρDM. We derive in App. A.2 the scaling of this

quasistatic mass with parameters and show that it remains negligible, even with the enhanced

local ρDM of virialized structures. Consequently, even on nonlinear scales today, the scalar

mediates an enhanced force on the dark matter.

A direct consequence of the enhanced gravitational constant in Eq. (4.29) is that both

positive and negative c will increase the late-time growth of δc. This may be appreciated

from Fig. 4.6, where we show S8 as c is varied (with H0 held fixed). While S8 may be

slightly decreased by a small negative c, making c further negative leads to a net increase

in S8. This may be understood analytically as follows. In the matter-dominated limit,

the enhanced gravitational force on the dark matter, below the Compton scale k ≫ amϕ,

changes the growth rate to limc≪1 δc ∝ a1+6c2/5 ≃ a(1 + log(a)6c2/5). This determines

the fractional change in σ8 as ∆σ8/σ8 ≃ ∆δc(z = 0)/δc ≃ −log(aeq)6c
2/5 ≃ 9.6c2. This

simple estimate captures the qualitative behavior of S8 in Fig. 4.6; more quantitatively we

find S8 = 0.8488(1 + 0.22c+ 7.93c2).

These effects are encoded in the matter power spectrum by a c-dependent enhancement

on small scales. The linear matter power spectrum for varying c is shown in Fig. 4.7, where

one may appreciate a net enhancement for both positive and negative c. The enhancement

is lessened in the negative c case, since the fifth force effect is mitigated by the delayed onset

growth effect, while the opposite occurs for c > 0.

The imprint on the matter power spectrum is most significant on small scales. This is
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true for both the imprint of the shift in matter-radiation equality (from the dark matter

mass variation), and of the enhanced gravitational interaction. The latter effectively ‘turns

on’ as modes come into the quasistatic approximation, and small-scale modes have had the

greatest period of time spent under its influence. In our EDS model, these two competing

effects leave only a small ability to lower S8 with c. Interestingly though, these two effects

are determined by different regions of the scalar field potential: the shift in zeq is determined

by the release from Hubble friction of the axion from the hilltop of the cosine potential, while

the enhanced gravitational interaction is determined by the scalar field mass in the minimum

of the potential. This opens the possibility of modifying the potential in such a way as to

reduce the second effect and lower S8 to below its ΛCDM value, e.g., if ϕ becomes heavy in

the late universe. We leave the exploration of this possibility to future work.

4.4 Constraints from Data

In this work we take as our baseline data set the following combination:

1. CMB: Planck 2018 [127, 8, 128] low-ℓ and high-ℓ [Plik] temperature and polarization

power spectra (TT/TE/EE), and reconstructed CMB lensing power spectrum.

2. BAO: distance measurements from the SDSS DR7 main galaxy sample [46], the 6dF

galaxy survey [129], and SDSS BOSS DR12 [45], namely, the optimally combined

LOWZ and CMASS galaxy samples.

3. Supernovae: The Pantheon supernovae data set [44], comprised of relative luminosity

distances of 1048 SNe Ia in the redshift range 0.01 < z < 2.3 .

4. H0: The 2019 SH0ES cosmic distance ladder measurementH0 = 74.03±1.42 km/s/Mpc

[15].2

2. We use the SH0ES 2019 measurement to facilitate comparison with previous work, but
note that a more recent SH0ES measurement has recently appeared, with a smaller error
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We supplement the above baseline data set with additional LSS data from the Dark Energy

Survey Year-3 (DES-Y3) analysis [14]:

5. DES-Y3: Dark Energy Survey Year-3 [14] weak lensing and galaxy clustering data,

namely, galaxy-galaxy, shear-shear, and galaxy-shear two-point correlation functions,

implemented as a Gaussian constraint on S8 ≡ σ8(Ωm/0.3)
0.5 corresponding to the

DES-Y3 measurement S8 = 0.776± 0.017.

The approximation of DES data with an S8 prior procedure was validated with DES-Y1 data

in the context of EDE [2]. In this work, in light of the significant computational expense

of evaluating the full DES 3×2pt likelihood, we assume that an S8 prior continues to be a

good approximation in the EDS model with DES-Y3 data. As we will see, the baseline data

set combination restricts the EDS model to be a small departure from EDE, and thus one

expects the validation test of [2] to apply, at least at the level of marginalized 1d and 2d

posterior probability distributions.

Finally, we also supplement our baseline data set with CMB data from the Atacama

Cosmology Telescope (ACT):

6. ACT: The ACT DR4 [130, 131] temperature and polarization power spectra. When

combining these data with the Planck CMB likelihood, we apply the multipole cut de-

termined in [130] to the ACT data to avoid double-counting information, in particular

setting ℓmin,TT = 1800.

The ACT collaboration analyzed the EDE model in [132] and found that ACT data combined

with low-ℓ Planck TT data (ℓ < 650, similar to WMAP) mildly prefer a non-zero fEDE at

≈ 3σ significance (see also [135] and [4]). When combining ACT with the full Planck data

set, this preference is no longer seen, due to the dominant statistical weight of Planck (which

does not prefer EDE on its own). In our work we consider ACT in combination with the

bar and slightly lower value (H0 = 73.04± 1.04 km/s/Mpc) [7].
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baseline data set, including Planck 2018. We take care in combining ACT and Planck,

and in particular we apply a multipole cut ℓmin,TT = 1800 to ACT data to avoid double

counting information (following [130]). We additionally use increased precision settings in

the theoretical computation of CMB power spectra when ACT is included in the joint data

set, as emphasized in [130, 136].

We perform MCMC analyses of the EDS scenario using a modified version of CLASS

([137, 138])3 and posterior sampling with Cobaya [139]. We impose broad uniform priors on

the ΛCDM parameters. Following past work on Early Dark Energy (e.g., [2]), we impose

uniform priors on the EDE parameters fEDE = [0.001, 0.5] and log10(zc) = [3.1, 4.3], and

a uniform prior on the initial field displacement in units of the decay constant f , as θi =

[0.1, 3.1]. The choice and impact of EDE priors is discussed in detail in [2]. Given that

the EDE physics is sensitive primarily to θi (and not ϕi per se), and given that θi is itself

relatively well-constrained by data [76, 2], we express mDM(ϕ) as mDM(θ) = m0e
cθθ, with

cθ ≡ cf/Mpl. We impose a uniform prior cθ = [−0.08, 0.08]. Since θi is fairly well constrained

for cases that alleviate the Hubble tension, this allows cθ to function as a proxy for mDM.

We follow the Planck convention for the neutrino masses, namely, we hold the sum of

the neutrino masses fixed to 0.06eV with a single massive neutrino eigenstate. We analyze

the MCMC chains using GetDist [140]4, and consider chains to be converged when the

Gelman-Rubin statistic [141] satisfies R − 1 < 0.05. To determine maximum-likelihood

parameter values we use the “BOBYQA” likelihood maximization method implemented in

Cobaya [142, 143, 144]. When handling ACT data, we use increased CLASS precision settings

as discussed in [130], and a slightly relaxed convergence criterion R − 1 < 0.07 due to

the computational expense of these calculations. In all EDS runs, we use increased CLASS

precision setting perturb sampling stepsize = 0.02.

3. http://class-code.net

4. https://github.com/cmbant/getdist
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Constraints on the EDS scenario from Planck, BAO, SNIa, and SH0ES.
Model ΛCDM EDS EDE

100θs 1.04218 (1.04205± 0.00027) 1.04114 (1.04136± 0.00040) 1.04091 (1.04141± 0.00036)

Ωbh
2 0.02249 (0.02252± 0.00013) 0.02284 (0.02291± 0.00024) 0.02286 (0.02280+0.00020

−0.00022)

Ωch
2 0.11840 (0.11821± 0.00085) 0.1343 (0.1288+0.0056

−0.0046) 0.1344 (0.1296± 0.0039)

τ 0.0594 (0.0595+0.0068
−0.0078) 0.0600 (0.0570± 0.0075) 0.0600 (0.0578± 0.0072)

log(1010As) 3.052 (3.052± 0.015) 3.079 (3.062± 0.017) 3.079 (3.067± 0.015)
ns 0.9686 (0.9691± 0.0035) 0.9931 (0.9847± 0.0073) 0.9930 (0.9865± 0.0071)

cθ −0.0010 (−0.0024+0.0091
−0.015 )

fEDE 0.142 (0.099+0.056
−0.041) 0.142 (0.104+0.034

−0.030)

log10zc 3.58 (3.602+0.071
−0.19 ) 3.58 (3.606+0.037

−0.11 )

θi 2.72 (< 3.14) 2.73 (2.60+0.31
+0.022)

c −0.005 (−0.011+0.029
−0.047)

ϕi [Mpl] 0.547 (0.53+0.10
−0.15) 0.549 (0.48± 0.11)

log10(f/eV) 26.69 (26.857+0.058
−0.37 ) 26.69 (26.652+0.080

−0.14 )

log10(m/eV) −27.27 (−27.04+0.30
−0.55) −27.28 (−27.195+0.031

−0.23 )

∆mDM/mDM −0.003 (−0.007± 0.021)

σ8 0.8093 (0.8087± 0.0060) 0.8481 (0.838+0.011
−0.013) 0.8490 (0.815± 0.011)

Ωm 0.3047 (0.3039± 0.0050) 0.3000 (0.3012± 0.0056) 0.3003 (0.3017± 0.0051)
S8 0.8156 (0.8140± 0.0098) 0.8481 (0.840± 0.014) 0.8495 (0.838± 0.013)
H0 68.16 (68.21± 0.39) 72.52 (71.1± 1.2) 72.50 (71.2± 1.1)

∆χ2tot 0 −18.1 −16.2

Table 4.1: Maximum-likelihood (ML) parameters and 68% CL marginalized constraints for
the ΛCDM, EDS, and EDE models, in the fit to a combined data set comprised of Planck
2018 CMB, CMB lensing, BAO, SNIa, and SH0ES. Parameters in bold are sampled in the
MCMC analyses.

4.4.1 EDS vs EDE: The Interplay of H0 and S8

We first perform a direct comparison of the EDE and EDS models fit to the baseline data set,

namely, Planck 2018 primary CMB anisotropies, Planck 2018 CMB lensing, BAO, Pantheon,

and SH0ES. The posteriors are shown in Figs. 4.8 and 4.9, the best-fit parameters and

parameter constraints are given in Tab. 4.1, and the χ2 statistics of the best-fit models are

given in Tab. 4.2.

The best-fit EDS and EDE models (Tab. 4.1) have near-identical cosmological parame-

ters. They are distinguished primarily by the parameter c, which is c = −5× 10−3 in EDS,

while c = 0 in EDE by definition. The models have near identical best-fit H0 and S8, with

H0 = 72.50 km/s/Mpc and 72.52 km/s/Mpc, and S8 = 0.8481 and 0.8495, for EDS and

EDE respectively. Both models are a significant χ2 reduction in comparison to the best-fit
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Figure 4.8: Interplay of the H0 and S8 tensions in the EDS, EDE, and ΛCDM models (as
labeled). The plot shows posterior distributions for the fit to the baseline data set (CMB,
CMB lensing, BAO, SNIa, and SH0ES). Shaded grey and pink bands denote the SH0ES
measurement and the DES-Y3 S8 constraint, respectively.
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Figure 4.9: Enlarged set of posterior distributions for the fit to the baseline data set (CMB,
CMB lensing, BAO, SNIa, and SH0ES) for ΛCDM, EDE, and EDS.
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EDS χ2 statistics
from the fit to Planck 2018, BAO, SNIa, SH0ES

Datasets ΛCDM EDS EDE

Primary CMB:
Planck 2018 low-ℓ TT 22.9 20.9 20.9
Planck 2018 low-ℓ EE 397.2 397.2 397.2
Planck 2018 high-ℓ

TT+TE+EE
2346.5 2345.1 2346.9

LSS:
Planck CMB lensing 8.9 10.0 10.0
BAO (6dF) 0.00005 0.008 0.005
BAO (DR7 MGS) 1.7 2.0 2.0
BAO (DR12 BOSS) 3.4 3.4 3.5

SNIa (Pantheon) 1034.8 1034.7 1034.7
SH0ES 17.2 1.2 1.2
Planck prior 1.9 2.2 2.2

∆χ2PrimaryCMB 0 −3.4 −1.6

∆χ2LSS 0 +1.4 +1.5

∆χ2SH0ES 0 −16.0 −16.0

∆χ2tot 0 −18.1 −16.2

Table 4.2: χ2 statistics for the ML ΛCDM, EDS, and EDE models in the fit to the baseline
data set (CMB, CMB lensing, BAO, SNIa, and SH0ES).

ΛCDM, while the EDS model, with c = −5× 10−3, is a slightly better fit to the data than

EDE, with a relative χ2 reduction of ∆χ2EDS−EDE = −1.9. This is driven by the high-ℓ

CMB data, which in turn drives the mild preference for c < 0, as discussed in Sec. 4.3.

The marginalized posterior distributions, shown in Fig. 4.8, shed more light on the differ-

ences between the models. From the H0−S8 panel of Fig. 4.8, one may appreciate that the

tight H0 − S8 correlation in EDE is softened in EDS, evidenced by an overall flattening of

the 1σ posterior, and a slight anti-correlation of H0 and S8 in the 95% contour. Focusing on

the SH0ES 1σ region, indicated by the dark grey band, we see that the EDS model allows a

notable reduction in S8 relative to EDE. This suggests that, in the high-H0 context, the EDS

model may allow greater compatibility with current LSS data, e.g., from the Dark Energy

Survey, than the EDE model. We return to this point in Sec. 4.4.2.
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The ability to raise H0 and simultaneously lower S8 in EDS relative to EDE is obscured

in the 1d marginalized posteriors and the marginalized parameter constraints. This occurs

due to the low-H0 region of parameter space, H0 ≲ 70 km/s/Mpc, where the 95% CL

contour in EDS extends to significantly larger S8 values than in EDE. The net effect, i.e.,

after marginalizing, is for the 1d S8 posterior in EDS to be near-identical to that in EDE,

differing only in the high-S8 tail.

EDS χ2 statistics
from the fit to Planck 2018, BAO, SNIa, SH0ES, and S8 from DES-Y3

Datasets ΛCDM EDS EDE

Primary CMB:
Planck 2018 low-ℓ TT 22.4 21.0 20.9
Planck 2018 low-ℓ EE 396.1 396.7 396.6
Planck 2018 high-ℓ

TT+TE+EE
2349.6 2344.7 2345.5

LSS:
Planck CMB lensing 9.9 9.9 9.9
BAO (6dF) 0.011 0.085 0.078
BAO (DR7 MGS) 2.1 2.7 2.6
BAO (DR12 BOSS) 3.4 4.0 4.0
S8 (DES-Y3) 2.5 6.5 7.6

SNIa (Pantheon) 1034.7 1034.8 1034.8
SH0ES 15.4 2.2 2.0
Planck prior 1.9 1.6 2.0

∆χ2PrimaryCMB 0 -5.7 -5.1

∆χ2LSS 0 +5.3 +6.3

∆χ2SH0ES 0 -13.2 -13.3

∆χ2tot 0 -13.9 -11.9

Table 4.3: χ2 values for the ML ΛCDM, EDS, and EDE models in the fit to Planck primary
CMB and CMB lensing, BAO, SNIa, SH0ES, and S8 from DES-Y3.

These two corners of parameter space, i.e., high-H0-low-S8 and low-H0-high-S8, correlate

with the EDS parameter c. This can be appreciated from the c −H0 and c − S8 panels in

Fig. 4.8, where one may see that high-H0-low-S8 correlates with c < 0, while low-H0-high-S8

correlates with c > 0. This suggests that additional S8 data would prefer c < 0; we return to

this in Sec. 4.4.2. There is an additional effect at c < 0, which amplifies the overall preference
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Constraints on the EDS scenario from Planck 2018, BAO, SNIa, SH0ES, and S8 from
DES-Y3.

Model ΛCDM EDS EDE

100θs 1.04202 (1.04208± 0.00027) 1.04143 (1.04151± 0.00039) 1.04138

Ωbh
2 0.02258 (0.02258± 0.00013) 0.02273 (0.02287± 0.00022) 0.02281

Ωch
2 0.11760 (0.11754± 0.00078) 0.1284 (0.1247+0.0042

−0.0047) 0.1287

τ 0.0535 (0.0577± 0.0071) 0.0583 (0.0557± 0.0074) 0.0581

log(1010As) 3.041 (3.046± 0.014) 3.063 (3.051± 0.015) 3.065
ns 0.9706 (0.9704± 0.0035) 0.9884 (0.9812± 0.0072) 0.9895

cθ −0.0034 (−0.0044+0.0076
−0.0097)

fEDE 0.112 (< 0.140) 0.109
log10zc 3.57 (> 3.39) 3.56

θi 2.69 ( < 2.84) 2.77

c −0.020 (−0.020+0.025
−0.032)

ϕi [Mpl] 0.461 (0.46± 0.12) 0.463

log10(f/eV) 26.62 (26.835+0.057
−0.43 ) 26.61

log10(m/eV) −27.29 (−26.90+0.21
−0.63) −27.31

∆mDM/mDM −0.0009 (−0.0095± 0.014)
σ8 0.8024 (0.8044± 0.0054) 0.8287 (0.8206± 0.0096) 0.8320
Ωm 0.3004 (0.2999± 0.0046) 0.2931 (0.2961± 0.0052) 0.2934
S8 0.8028 (0.8043± 0.0084) 0.8192 (0.815± 0.010) 0.8228
H0 68.47 (68.51± 0.36) 71.96 (70.7± 1.2) 72.02

∆χ2tot 0 −13.9 −11.9

Table 4.4: ML parameters and marginalized parameter constraints for ΛCDM and EDS in
the fit to a combined data set comprised of Planck 2018 primary CMB and CMB lensing,
BAO, SNIa, SH0ES, and S8 data from DES-Y3. Parameters in bold are sampled in the
MCMC analyses. For EDE we present the ML parameters, but not marginalized parameter
constraints, as we do not repeat the MCMC for EDE (see [2] for analysis of a similar data
set combination in EDE). Upper and lower bounds are quoted at 95% CL.

of the baseline data set for c < 0: the negative c region includes a weak multimodality in

log10(zc), and in particular at log10(zc) ≃ 3.8 the 1σ contour is contained completely within

c < 0. These effects combine to give an overall mild asymmetry in the posterior, weighted

toward c < 0, and we find c = −0.011+0.029
−0.047.
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4.4.2 Impact of Dark Energy Survey data

We now supplement the baseline data set with DES-Y3 data [14], approximated by a

Gaussian constraint on S8 ≡ σ8(Ωm/0.3)
0.5 corresponding to the DES-Y3 measurement

S8 = 0.776±0.017. To contextualize these results, we perform the same analysis for ΛCDM.

We do not repeat the baseline+DES-Y3 analysis for EDE, in light of computational expense

and given that the role of S8 data in EDE was studied in detail in [2].

The best-fit parameters and parameter constraints are given in Tab. 4.4 and the χ2

statistics are given in Tab. 4.3. Consistent with expectations from the fit to the baseline

data set, Sec. 4.4.1, we find that when DES-Y3 is included the best-fit EDS has a lower S8

than EDE, whilst having a near-identical value of H0. We find S8 = 0.8192 and S8 = 0.8228

in EDS and EDE respectively, corresponding to a ∆χ2DES−Y3 = −1.1 between the two

models. Meanwhile the H0 values are respectively 71.96 km/s/Mpc and 72.02 km/s/Mpc

for the two models, corresponding to ∆χ2SH0ES = +0.1. Comparing the total χ2, Tab. 4.3,

we find that the best-fit EDS is an improvement over EDE of ∆χ2EDS−EDE = −2.0.

The marginalized posterior distributions are shown in Figs. 4.10 and A.2. The preference

for fEDE > 0 is significantly diminished when DES-Y3 is included (as expected based on

previous work for EDE [2, 84, 85]), and in place of a detection we find only an upper bound.

We find a 95% CL upper bound fEDE < 0.14, which, while consistent with the H0-resolving

regime of parameter space, is also consistent with fEDE = 0, similar to results in the non-

interacting EDE scenario [2] when DES-Y1, HSC, and KV-450, are included. However, one

may appreciate from the H0−S8 panel that EDS exhibits a substantial overlap between the

95% CL contours of both the SH0ES measurement (grey bands) and DES-Y3 measurement

(pink bands). This indicates that the EDS model fit to baseline+DES-Y3 data is statistically

consistent with both SH0ES and DES-Y3, at 95% CL. This is encoded in the marginalized

parameter constraints by a broadening of the error bars in EDS relative to EDE: comparing to

Tab. VIII of [2], we see that the error bar on H0 in the EDE fit to a comparable combination
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Figure 4.10: The impact of S8 data. The plot shows posterior distributions for the fit to the
baseline data set (CMB, CMB lensing, BAO, SNIa, and SH0ES) supplemented with DES-Y3
data, approximated by a prior on S8, for ΛCDM, EDE, and EDS. Shaded grey and pink
bands denote the 2019 SH0ES measurement and the DES-Y3 S8 constraint, respectively.

of data sets is ≈ ±1.1, whereas in our analysis we find an error bar ±1.2.

The weighting of the posterior to c < 0 is slightly strengthened by the inclusion of

DES-Y3 data, as the additional S8 data disfavors the low-H0-high-S8 region discussed in

Sec. 4.4.1. We find c = −0.020+0.025
−0.032 and highlight the 1d c posterior in Fig. 4.10, where

the support for the c > 0 tail of the distribution present in the fit to the baseline data set

has been significantly reduced. Looking at the the c− log10(zc) panel, we again see a weak

multimodality, now accompanied by a tail out to large zc.

4.4.3 Constraints from ACT Data

Finally, we consider the impact of high-precision small-scale CMB data, namely, the latest

measurements from the Atacama Cosmology Telescope fourth data release (DR4) [131, 130].

The ACT collaboration analysis of EDE [132], in a fit to the combination of ACT, large-scale
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Planck TT , Planck CMB lensing, and BAO data, has found a moderate ≈ 3σ preference for a

non-zero EDE component, finding fEDE = 0.091+0.020
−0.036. As a first look at ACT and the EDS

model, we supplement our baseline data set with ACT TT , TE, and EE data. We include

the full Planck likelihood, including the high-ℓ temperature and polarization power spectra,

and impose the multipole cut determined in [130] to the ACT data to avoid double-counting

information, in particular setting ℓmin,TT,ACT = 1800.

When using the ACT data we use enhanced precision settings in our modified version of

the Boltzmann code CLASS. The need for this increased precision is documented in [130] (see

their Appendix A). This increased precision comes at the cost of additional computational

expense in the MCMC analyses. In light of this, and in light of the existing ACT collaboration

analyses of ΛCDM [130] and EDE [132], in this work we perform an MCMC analysis of only

the EDS model (and not EDE or ΛCDM), and we present maximum-likelihood parameters

for only EDS and ΛCDM (and not EDE). Future optimization of the precision parameters

needed for these calculations, and/or the development of emulators with which to accelerate

the Boltzmann code (e.g., as in [145]), will be useful.

The best-fit parameters and parameter constraints for the analysis including ACT are

given in Tab. 4.5, and χ2 statistics are given in Tab. 4.6. The marginalized posterior distri-

butions are shown in Fig. 4.11.

Inclusion of the ACT data provides a factor of two improvement on the error on c. We

find c = −0.002+0.015
−0.024 in comparison with c = −0.011+0.029

−0.047 from the fit to the baseline

data set. This dramatic reduction is largely driven by the ability of ACT to constrain the

timing of the EDE component, zc. Indeed, from the posterior distribution of log10(zc) in

Fig. 4.11, one may appreciate that the inclusion of ACT data in the EDS analysis almost

completely removes the multimodality exhibited in the fit of EDS to the baseline data set,

as ACT removes the high-zc tail (as discussed in [132]). The reduced multimodality in zc

propagates to the marginalized constraint on c, leading to an overall reduction in the error
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bar.

Meanwhile, the preference for a non-zero EDE component is strengthened (as found

in [132, 135, 146]): we find the marginalized constraint fEDE = 0.108+0.053
−0.023 when ACT is

included, compared to fEDE = 0.099+0.056
−0.041 without ACT data. However, the fEDE posterior

distribution in Fig. 4.11 is significantly broader than a Gaussian, exhibiting ample support

on the boundary of the prior at fEDE ≈ 0. Indeed we find the 95% CL constraint fEDE =

0.108+0.063
−0.095, which nearly reaches fEDE = 0. This is reflected also in the 2d posteriors, e.g.,

fEDE − H0 and fEDE − S8, which are consistent with fEDE = 0 at the 95% confidence

level. The marginalized constraints on H0 and S8 are consistent with those from the fit

to the baseline data set, while the best-fit values of both are lower when ACT is included,

with H0 = 71.79 and H0 = 72.52 with and without ACT respectively, and S8 = 0.8385 and

S8 = 0.8481 with and without ACT, respectively.

Turning to the χ2 values, Tab. 4.6, we find that the best-fit EDS model is an improvement

over the best-fit ΛCDM model by ∆χ2 = −19.0. This is slightly enhanced relative to

that in the fit to the baseline data set (∆χ2tot,baseline = −18, Tab. 4.2), driven in part

by ∆χ2ACT = −1.9, consistent with the mild preference of ACT data for a non-zero EDE

component.

4.4.4 The Swampland

As discussed in Sec. 4.2, the SDC states that a Planckian field excursion leads to an ex-

ponential suppression of the mass of other fields. The simple setup studied here, with the

scalar field coupled to all of the dark matter, provides a minimal context within which to

test the SDC. A similar idea has been explored previously in the context of quintessence,

where it was dubbed Fading Dark Matter [124].

The 95% bounds on the parameter c are given in Tab. 4.7. The posterior distributions for

swampland-related quantities (the field excursion, the axion decay constant, and the coupling
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Figure 4.11: Constraints including ACT data. The plot shows posterior distributions for the
fit of the EDS model to the baseline data set (CMB, CMB lensing BAO, SNIa, and SH0ES)
with and without the addition of ACT primary CMB data. Shaded grey and pink bands
denote the SH0ES measurement and the DES-Y3 S8 constraint, respectively.
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Maximum Likelihood and Marginalized Parameter Constraints from the combination of the
baseline data set and ACT data.

Parameter ΛCDM EDS

100θs 1.04219 1.04150 (1.04151+0.00034
−0.00039)

Ωbh
2 0.02248 0.02257 (0.02258± 0.00017)

Ωch
2 0.1181 0.1311 (0.1302+0.0055

−0.0034)

τ 0.0599 0.0565 (0.0546± 0.0071)

log(1010As) 3.059 3.071 (3.068± 0.015)

ns 0.9725 0.9876 (0.9865+0.0077
−0.0065)

cθ −0.0008 (0.0013+0.0013
−0.0065)

fEDE 0.119 (0.108+0.053
−0.023)

log10zc 3.545 (3.521+0.071
−0.032 )

θi 2.79 (2.44+0.46
+0.16)

c −0.005 (−0.002+0.015
−0.024)

ϕi [Mpl] 0.474 (0.490± 0.093)

log10(f/eV) 26.61 (26.726+0.011
−0.19 )

log10(m/eV) −27.32 (−27.270+0.033
−0.16 )

∆mDM/mDM −0.0009 (−0.0011+0.0078
−0.011 )

σ8 0.8128 0.8393 (0.840+0.010
−0.0094)

Ωm 0.3003 0.2995 (0.3003± 0.0052)
S8 0.8172 0.8385 (0.841± 0.012)

H0 68.23 71.79 (71.5+1.4
−1.1)

∆χ2tot 0 −19.0

Table 4.5: Maximum likelihood (ML) parameters and marginalized parameter constraints
for EDS and ΛCDM in the fit including ACT data. Parameters in bold are sampled in MCMC
analyses. For ΛCDM we give only ML parameters, due to the significant computational
expense of MCMC analyses at the high precision settings required to analyse ACT data.

c), along with their correlations with the Hubble parameter H0, are shown in Fig. 4.12. The

SH0ES measurement is shown in grey bands. From this one may appreciate that the EDE

resolution of the Hubble tension scenario, namely, the ability for the EDE model to be 1−2σ

consistent with SH0ES, indeed rests upon a Planckian field excursion |∆ϕ|/Mpl ≃ 1/2, and

a Planckian axion decay constant f ∼ Mpl/5. Thus one naturally expects the parameter c

to play a role in this model.

However, turning to Tab. 4.7, we see that the SDC parameter c is constrained to be

c < 0.068 from the baseline data set, at 95% CL, and c < 0.035 and c < 0.042 at 95% CL
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χ2 statistics
from the fit to Planck 2018, BAO, SNIa, SH0ES, and ACT

Datasets ΛCDM EDS

Primary CMB:
Planck 2018 low-ℓ TT 22.2 21.3
Planck 2018 low-ℓ EE 397.2 396.4
Planck 2018 high-ℓ

TT+TE+EE
2346.3 2345.9

ACT 243.2 241.2
LSS:

Planck CMB lensing 8.4 9.8
BAO (6dF) 0.0008 0.015
BAO (DR7 MGS) 1.8 2.1
BAO (DR12 BOSS) 3.4 3.4

SNIa (Pantheon) 1034.7 1034.7
SH0ES 16.7 2.5
Planck prior 4.1 2.0

∆χ2Planck primaryCMB 0 −2.1

∆χ2ACT 0 −1.9

∆χ2LSS 0 +1.2

∆χ2SH0ES 0 −14.2

∆χ2tot 0 −19.1

Table 4.6: χ2 statistics for the ML ΛCDM and EDS models in the fit to the baseline data
set (CMB, BAO, SNIa, and SH0ES) supplemented with ACT data.

when DES-Y3 or ACT are included, respectively. From this we infer a mild tension of the

data, in the context of the EDE model, with the SDC at the level of a 4− 7% fine-tuning.

While the degree of fine tuning may not be severe, it is interesting to note that these

constraints are an order of magnitude stronger than constraints on other would-be O(1)

swampland parameters. In particular, the de Sitter (dS) Swampland Conjecture [147] states

that scalar field potentials cannot be arbitrarily flat, and are bounded by V ′/V ≥ O(1) in

Planck units. The would-be O(1) parameter of the dS conjecture is constrained by data

to be V ′/V ≲ 0.51 (2σ) [148] or V ′/V ≲ 1.35 (3σ) [149] (see also [150]). Compared to

the constraints on SDC order-1 parameter presented in this work (c < 0.035, c < 0.042,

and c < 0.068 at 95% CL), one may appreciate the latter are considerably stronger than
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constraints on the swampland found in previous works.

Finally, we note that a more complete analysis, which we will not pursue here, would be

to allow variation in the fraction of dark matter fDM to which the scalar field couples. This

would introduce one new parameter to the already four-parameter EDS extension to ΛCDM.

We expect the ≈ 5% fine-tuning of c in our fixed-fDM analysis to translate to slightly lesser

fine-tunings of c and fDM once fDM is allowed to vary.

Constraints on the Swampland Distance Conjecture

Datasets 95% upper limit on c

baseline c < 0.068
baseline + S8 from DES-Y3 c < 0.035
baseline + ACT c < 0.042

Table 4.7: Constraints on the Swampland Distance Conjecture parameter c, defined by the

early dark energy dependence of the dark matter mass mDM = ecϕ/Mpl . Upper and lower
bounds are 95% CL.

4.5 Discussion

In this work have extended Early Dark Energy to an Early Dark Sector (EDS). Motivated

by the Swampland Distance Conjecture [90] (SDC), the EDS is comprised of the EDE scalar

field along with a dark matter candidate whose mass is exponentially sensitive to Planckian

field excursions of the EDE scalar. The aims of this model are two-fold: (1) to understand

the interplay of the H0 and S8 tensions, and determine whether the competition between

these can be softened by embedding EDE into a larger model, and (2) to determine the

extent to which EDE (namely the H0-tension-resolving region of EDE parameter space) is

in conflict with the SDC, and thereby determine whether the EDE resolution of the Hubble

tension lies in the landscape or the swampland.

Concretely, the EDS model is a one-parameter extension of EDE, parameterized by an

additional parameter c corresponding to the exponent in the dark matter mass, mDM(ϕ) =

m0e
cϕ/Mpl , where ϕ is the EDE scalar. In our sign convention, where ϕ is initially > 0 and
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Figure 4.12: Early Dark Energy and the swampland conjectures. We show the posterior
distributions of the field excursion, axion decay constant, and dark matter mass dependence,
along with their correlation with H0, in the fit to varying data sets. The swampland distance
conjecture would suggest that c = O(1) > 0, while the data constrain c < 0.068, 0.035, and
0.042 at 95% confidence, for the baseline data set, the baseline + DES-Y3, and baseline +
ACT, respectively, and slightly prefer c < 0.
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decreases over cosmic evolution, the SDC predicts that c > 0 and c = O(1). The parameter

c has important impacts on both the CMB and on the growth of structure. In the CMB

the imprint of c contains a localized feature around ℓ ≃ 500, corresponding to modes that

enter the horizon near zc and a sign reversal in its effect at much higher multipoles. This

can be understood in terms of the impact of the dark matter mass on the radiation driving

of acoustic oscillations, as described in Sec. 4.3.

Meanwhile, c > 0 (at fixed Ωch
2) leads to an enhanced growth of structure, due to the

relative shift in matter radiation equality to earlier times. The growth of structure is also

subject to a second effect: an effective dark matter self-interaction (a dark “fifth force”)

that is attractive, and in the limit of high k has strength c2GN . This leads to enhanced

structure formation on small scales for both positive and negative c. The combination of

the two growth effects allows a small but negative c to decrease S8. Incidentally, this small

negative c also improves the fit to the CMB.

Armed with the theory motivation and understanding of the phenomenology, we have

performed MCMC analyses of the EDS model fit to a baseline data set combination of

Planck 2018 primary CMB and CMB lensing [127, 8, 128]; BAO from the SDSS DR7 main

galaxy sample [46], the 6dF galaxy survey [129], and SDSS BOSS DR12 [45]; the Pantheon

supernovae data set [44], and the 2019 SH0ES H0 measurement [15]. We have performed

additional MCMC analyses of the baseline data set supplemented with Dark Energy Survey

Year-3 data [14] and supplemented with data from ACT [130, 131].

From the analysis of the baseline data set we find that EDS can accommodate lower S8

values than EDE without compromising on H0. The low-S8-high-H0 region of parameter

space is correlated with small but negative c, and we find a mild overall preference for c < 0

in the fit to the baseline data set. When the data set is supplemented with DES-Y3, we find

that S8 decreases while leaving H0 nearly unchanged, while maintaining the preference for

c < 0. Compared to EDE, we find EDS is better able to accommodate the DES-Y3 data by
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∆χ2DES−Y3,EDS−EDE = −1.1. This demonstrates the ability of the EDS model to at least

partially resolve the tension of EDE with large scale structure data.

When ACT data are included we find a significant improvement on the constraint on c,

driven largely by the improved constraint on zc. Finally, all of these analyses constrain c to

be significantly less than 1: we find c < 0.068 from the baseline data set, at 95% CL, and

c < 0.035 and c < 0.042 at 95% CL when DES-Y3 or ACT are included, respectively. Taken

at face value, this indicates a tension between the EDE resolution of the Hubble tension and

the SDC.

Finally, we evaluate the overall preference of the data for the EDE model vs. EDS. To

compare the EDS and EDE models we calculate the Akaike Information Criterion [151],

which for the baseline data set yields ∆AIC ≃ 0, suggesting no preference for one model

over the other. A more detailed model comparison could be done by computing the Bayesian

evidence for each model; we leave this for future work.

We close this analysis with the following summary comments:

1. The EDS extension of EDE, namely EDE with the EDE-dependent dark matter mass

mDM(ϕ) = m0e
cϕ/Mpl , can partially ameliorate the tension between the EDE resolu-

tion of the Hubble tension and LSS data. However, the data are statistically consistent

with c = 0.

2. ACT data significantly constrain both the timing zc of the EDE component and the

EDS coupling parameter c. We find that supplementing the baseline data set with

ACT data improves the constraint on c by a factor of two, and nearly eliminates the

preference for c < 0.

3. Order-1 values of c in H0-resolving EDE are ruled out by the data. While the SDC

does not make any prediction for the fraction of dark matter to which the EDE scalar is

coupled, this nonetheless suggests a mild tension between the SDC and EDE resolution

of the H0 tension.
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There remain many directions for future work. Our analysis is motivated by the SDC, but

the latter makes no prediction for fraction of dark matter to which the scalar field couples.

Therefore a natural model extension is allow this fraction to vary in the fit to cosmological

data sets. Other variations of our analysis would be to consider different choices of V (ϕ),

such as monomial ϕn or hyperbolic tanh(ϕ/f)n potentials, and different choices of the dark

matter coupling, such as mDM = m0(1 + cϕ2/M2
pl). A final possibility is to examine the

role of EDE-dark matter interactions in resolving the coincidence problem inherent in early

universe resolutions to the Hubble tension, namely, why the new physics becomes transiently

relevant around matter-radiation equality, and not in the many decades of redshift before

this epoch. We leave these interesting possibilities to future work.
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CHAPTER 5

PHENOMENOLOGY OF MODIFIED GRAVITY AT

RECOMBINATION

5.1 Introduction

Since the discovery of cosmic acceleration [152, 153], understanding its physical origin has

become one of the primary goals of experimental efforts to measure the cosmic microwave

background (CMB) and the large scale structure (LSS) of the Universe. In parallel it has

been realized that the same measurements can be used to study gravity on cosmological

scales including the possibility that modified gravity (MG) could explain cosmic acceleration

(for reviews, see Refs. [154, 155, 156]).

Both CMB measurements and LSS data, probing the universe mainly at early and late

times respectively, have proven to be extremely powerful in pursuing this program. Current

surveys already provide precision constraints [23, 157, 8, 45] and future surveys, such as

CMB-S4 [158], Euclid [159] and LSST [160], are expected to greatly exceed their performance

[161, 162, 163, 164] and test General Relativity (GR) to unprecedented precision.

Most of the phenomenological effort in testing gravity on cosmological scales has been

focused on constraining parameterized modifications to the Einstein equations relating the

matter density contrast to the lensing and the Newtonian potentials [165, 166, 167, 168, 169,

170] and has targeted the late times, during the epoch of cosmic acceleration [171, 18, 172,

173, 174].

In this paper we discuss thoroughly for the first time the phenomenology and observa-

tional imprints of such modifications to gravity at early times and especially at the time of

recombination. By enforcing the conservation of comoving curvature on superhorizon scales,

we determine the initial conditions and evolution of perturbations in the radiation dominated

epoch, relating their amplitude to inflationary perturbations. We implement this approach
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in the Einstein-Boltzmann solver CAMB [175] extending the range of applicability of the

MGCAMB code [161, 176] to early times.

Considering a parametrization for deviations from GR that decouples early and late

times, we discuss both analytically and numerically the behavior of linear perturbations

at all epochs of the universe and their impact on cosmological observables. In particular

we focus on the MG imprint left on the acoustic peaks of the CMB power spectrum and

baryon acoustic oscillations (BAO). We complete this analysis with a discussion of the MG

effects on the clustering of LSS and on the lensing of the CMB and galaxies. As a result

we significantly enlarge the pool of measurements that can be used to test gravity, notably,

with the inclusion of the full constraining power of CMB observations.

These extensions allow us to investigate whether MG effects at early times could explain

existing discrepancies between cosmological datasets [177] and in particular tensions between

CMB measurements and low redshift probes (see also [178] and references therein for related

work on early dark energy). We show that a different value for the effective gravitational

constant at early times can partially relax tensions internal to the CMB dataset and between

the CMB and local measurements of the Hubble constant and weak lensing of galaxies. This

is achieved by changing the CMB temperature, polarization and lensing predictions in a

compatible manner due to the combined effect that MG has on the acoustic oscillations and

on lensing and results in a preference for a larger gravitational constant at early times at

greater than 98% C.L. We comment on why such a resolution is not possible with only late

time modifications to gravity.

This paper is organized as follows. In Sec. 5.2 we review the parametrized framework to

modified gravity that we use and present initial conditions for superhorizon perturbations. In

Sec. 5.3 we discuss analytically and numerically the behavior of cosmological perturbations

at different epochs. In Sec. 5.4 we present the effect of such modifications on the acoustic

peaks of the CMB and other cosmological observables. In Sec. 5.5 we review the tools that
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we use in practical tests of MG at early and late times. In Sec. 5.6 we present the data

constraints and discuss parameter degeneracies and the coordination of different physical

effects to alleviate tensions. We conclude in Sec. 5.7.

5.2 Parametrized deviations from ΛCDM

In Sec. 5.2.1 we review the general parameterized approach to modifications of gravity for

linear perturbations employed in Ref. [176], which assumes a metric theory of gravity with

minimally coupled ordinary matter. To extend this parametrization to early times, we

derive the superhorizon solutions to the perturbation equations in Sec. 5.2.2 and relate the

amplitude of perturbations above the horizon to the amplitude of curvature perturbations set

by inflation. We assume a given, but possibly modified, background Hubble expansion rate

with a constant effective equation of state parameter. These general relations are applied to

specific cases that isolate the various aspects of the modifications in the following sections.

5.2.1 Modified Gravity Equations

In conformal Newtonian gauge, metric perturbations are specified by two gravitational po-

tentials, the Newtonian potential Ψ and the intrinsic spatial curvature potential Φ, giving

the line element in a spatially flat background:

ds2 = a2(τ)[−(1 + 2Ψ)dτ2 + (1− 2Φ)δijdx
idxj ] , (5.1)
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where a(τ) is the scale factor as a function of conformal time τ . In addition the stress-energy

tensor for the matter species that we consider is given at first order in perturbations by:

T 0
0 = − ρ− δρ ,

T 0
j =(ρ+ P )vj ,

T i
j =(P + δP )δij + πij , (5.2)

where ρ and δρ are the average energy density and its perturbation, P and δP are the average

pressure and its perturbation, vj is the fluid velocity and πij denotes the traceless (πii = 0)

component of the stress-energy tensor perturbations. In Fourier space, the scalar component

of the velocity can be expressed as its divergence θ ≡ ikjvj and the anisotropic stress by

(ρ+ P )σ ≡ −(k̂ik̂
j − δ

j
i /3)π

i
j . We assume that matter is still covariantly conserved in the

metric so that its equations of motion follow

δρ′ + 3(δρ+ δP ) = −(ρ+ P )

(
θ

H − 3Φ′
)
, (5.3)

[(ρ+ P )θ]′ + 4(ρ+ P )θ =
k2

H
[
δP − (ρ+ P )σ

+ (ρ+ P )Ψ
]
, (5.4)

where ′ = d/dloga here and throughout. The evolution of anisotropic stress σ is given by

the radiation Boltzmann equations and is also unmodified in form. Here H ≡ ȧ/a = aH is

the conformal Hubble rate where dot denotes d/dτ here and throughout.

In GR, the Einstein equations determine the metric given the matter fields as:

k2Φ = − 4πGa2∆ρ , (5.5)

k2[Φ−Ψ] =12πGa2(ρ+ P )σ , (5.6)
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where ∆ρ ≡ δρ + 3H
k2
(ρ + P )θ is the comoving-gauge density perturbation. Following

Ref. [176], we modify these two Einstein equations with the addition of two free functions of

time and scale, µ(a, k) and γ(a, k), to phenomenologically parametrize deviations from GR

in the two metric variables:

k2Ψ = −4πµGa2[∆ρ+ 3(ρ+ P )σ] , (5.7)

k2[Φ− γΨ] = 12πµGa2(ρ+ P )σ , (5.8)

where µ parameterizes the effective gravitational constant as µG while γ encodes the ratio

of the two potentials. When both µ and γ are equal to unity, the model reduces to GR and

more generally we will refer to this parameterization as MG .

Notice that we parameterize the Poisson equation (5.7) with the lapse Ψ rather than the

curvature potential Φ. This convention highlights the fact that Ψ enters directly into the

dynamics of non-relativistic matter and makes it easier to implement the condition that its

evolution given the background expansion depends only on Φ/Ψ above the horizon if the

comoving curvature is conserved [167]. In this sense, µ scales the overall gravitational effect of

all matter while γ encodes the difference between the gravitational effects on non-relativistic

and relativistic matter.

Also note that µ and γ can in principle be arbitrary functions of time and scale allowing

us to encompass the scalar sector of any metric theory of gravity where all matter species

are minimally coupled to the metric (see, for example, Ref. [179] for a recent review).

5.2.2 Superhorizon Solutions and Initial Conditions

To utilize the MG parametrization described by Eqs. (5.7, 5.8) at early times, we have to

derive initial conditions for perturbations when they are above the horizon. We present the

main results in this section and further details on the specific case we consider in the next
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section can be found in Appendix B.2.

In the standard cosmological scenario, initial conditions for the perturbations are set by

inflation. Using the fact that comoving gauge curvature is still conserved as k/H → 0 (see

Appendix B.1) we can compute the initial conditions at the time when inflation ends and

set them for perturbations later on, before the given mode re-enters the horizon.

We can thus derive the superhorizon solutions and initial conditions for perturbations

in any gauge assuming some background Friedmann-Robertson-Walker expansion. If R is

constant, Ref. [180] shows, using a separate universe argument, that in any metric theory of

gravity 1 with a spatially flat background

R ≈ −Φ +
H

H ′ (Ψ + Φ′). (5.9)

This equation has the formal solution

Φ = −
(
1− H

g

∫
dloga

g′

H

)
R+ C

H

g
, (5.10)

where the integrating factor g = e
∫
(Ψ/Φ)dloga and C is an integration constant for what is

generally a decaying mode.

Assuming that the background expansion has a Hubble rate H ∝ a−3(1+w)/2, we can

solve this equation for Ψ and Φ. If the Friedmann equation itself is modified, w simply

parameterizes the expansion history and is not necessarily the equation of state parameter

of the matter. For the case where Φ/Ψ does not vary on the Hubble time scale or faster, which

is true for most models during an epoch when w =const., the growing mode of Eq. (5.10) is

solved by constant Φ and Ψ. Assuming that the anisotropic stress of the matter is dominated

by neutrinos, we can integrate their equation of motion to find these constants. Since this

1. In comoving gauge of the metric as defined in Ref. [180], Eq. (5.9) is exact and coincides
with comoving gauge as defined by the matter velocity as k/H → 0 (see Eq. B.2).
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equation is not modified in form, the result is the same as in GR

σν =
8

45

1

1 + 4w + 3w2

(
k

H

)2

Ψ, (5.11)

so that

Φ− γΨ =
16

15

µRν

1 + 4w + 3w2
Ψ, (5.12)

where Rν = 8πGρν/3H
2. Combining this with Eq. (5.9), we obtain

Ψ = − 15(1 + 4w + 3w2)

10 + 16µRν + 30w + 15γ(1 + 4w + 3w2)
R,

Φ = − 16µRν + 15γ(1 + 4w + 3w2)

10 + 16µRν + 30w + 15γ(1 + 4w + 3w2)
R. (5.13)

Our starting assumption that Φ/Ψ ≈ const. implicitly requires constant γ and µRν , but

does not place other restrictions on whether the Friedmann equation is itself modified. This

suffices for our purposes since Rν is constant for a radiation dominated expansion with

w = 1/3 and the neutrino anisotropic stress becomes negligible in other limits. For the more

general case, one can solve for the evolution of Φ and Ψ given the evolution of γ and µRν

by supplementing Eqs. (5.8) and (5.9) with their time derivatives.

5.3 Perturbation Evolution

From this point forward, we focus on an illustrative, but scale independent, parameterization

of the parameters µ(a) and γ(a), which isolates either early time or late time modifications

to gravity, with the former being new to this work. This is achieved by using a smoothed step

functional form for these functions, as discussed in Sec. 5.3.1. Furthermore, we assume an

unmodified ΛCDM background to isolate the effect of the modifications to linear perturbation

theory. We present analytic results for perturbation evolution in Sec. 5.3.2 and numerical

results in Sec. 5.3.3. Most of the analytic results can be easily extended to the scale dependent
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case since each k-mode evolves independently in linear theory.

5.3.1 Step Parameterization

In order to separate early time and late time effects on perturbations, we shall consider

a phenomenological parametrization that models a transition between these two regimes.

Furthermore, to isolate the effects of the modified perturbation equations from the influence

of the background expansion, we assume an unmodified ΛCDM expansion history from this

point forward.

In particular we parameterize µ and γ as step-functions in e-folds N ≡ loga with the

following smooth step-like form:

f(x) =
f0 + f∞

2
− f0 − f∞

2

x√
1 + x2

, (5.14)

where x = (N −NT )/∆T and f ∈ {µ, γ}. Here we have four parameters: f0 and f∞ are the

values of the quantity today and at early times respectively, NT ≡ logaT denotes the e-folds

of transition between the two regimes, and ∆T is the e-fold width of the transition. In this

paper, we set NT = −3.4, corresponding to z ∼ 30 as it is approximately the median of the

∼ 6 e-folds between recombination and today. As such, the transition happens at a time that

is well after recombination, before the late time accelerated expansion and beyond the reach

of the next generation of large scale structure surveys. We further choose ∆T = 1 to avoid

a sharp transition which would introduce spurious effects on the CMB power spectrum.

We test the stability of our results to the choice of transition width in Appendix B.3.

The results depend only weakly on ∆T if it is around 1, and become sensitive to ∆T when

it is much larger since the transition would affect physical processes around recombination.

When ∆T is very small the results converge to a unique answer, but produce spurious effects

on the CMB power spectrum which would not be present if the transition occurred on the
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Hubble time scale or greater.

Thus, in addition to ΛCDM parameters, we have four additional free parameters: µ0,

µ∞, γ0, γ∞. Note that for more realistic gravity models we usually expect the two functions

µ and γ to be scale dependent.

5.3.2 Analytic Results

In this section we show some analytic results that help interpret the novel features of per-

turbation evolution in MG at early times. We discuss the limiting cases of superhorizon and

subhorizon evolution in the various epochs of a ΛCDM background expansion. Using the

step parameterization, we isolate the impact of a nearly constant µ and γ at early and late

times.

Superhorizon Solutions

On superhorizon scales, our general derivation in the previous section applies before and

after the step. In particular, given our assumption that the background expansion history is

unmodified, we have in the radiation dominated epoch

Ψ = − 10

10γ + 5 + 4µRν
R ,

Ψ+ Φ = −
(
1 +

5

10γ + 5 + 4µRν

)
R . (5.15)

where (Ψ+Φ)/2 is the Weyl potential that enters into gravitational lensing and the integrated

Sachs-Wolfe effect in the CMB. While both γ and µ larger than one would result in a

smaller amplitude of the initial gravitational and Weyl potentials, their quantitative effect is

different. In particular, changing µ results in a smaller change in the gravitational potentials,

with respect to γ, since it is multiplied by the neutrino fractional energy density Rν . This

is a consequence of the fact that, given the background expansion, superhorizon potentials
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depend only on Φ/Ψ which itself is determined by γ alone in the absence of anisotropic

stress. This behavior of the Weyl potential plays an important role in understanding the

modified CMB power spectrum that we shall discuss in Sec. 5.4.1.

For modes that remain outside the horizon after radiation domination, when Rν ≪ 1,

the solutions well before or after the step reduce to

Ψ = − 3(1 + w)

2 + 3γ(1 + w)
R , (5.16)

Ψ + Φ = − 3(1 + w)

2 + 3γ(1 + w)
(1 + γ)R , (5.17)

and in particular in the matter dominated limit w = 0 and these relations further simplify.

Notice that after radiation domination the superhorizon solution does not depend on µ but

only γ. During the recent acceleration epoch, well after the step, w is not constant and so

these solutions do not strictly apply but since Φ/Ψ = γ, Eq. (5.10) implies

Ψ = −
(
1− H

γa1/γ

∫
dloga

a1/γ

H

)
R
γ
,

Ψ+ Φ = (1 + γ)Ψ. (5.18)

This integral relation can be expressed in terms of the hypergeometric function for the ΛCDM

expansion history which shows that Eq. (5.16,5.17) qualitatively describe the transition to

Λ domination but predicts it to be more rapid. A larger γ also causes a slower decay of the

potential during the acceleration epoch.

Subhorizon Solutions

In the subhorizon regime, the evolution of the matter perturbations determines the evolution

of the potentials and vice versa. Since the equations of motion of matter given the metric

are not affected by MG, we first examine its behavior given the metric.
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Deep in the radiation dominated epoch, the baryon density is negligible and the photon

density, or monopole perturbation Θ0 = 1
4δγ , can be formally expressed as (see Eq. D-6 in

Ref. [181]2):

[Θ0 − Φ](τ) = [Θ0 − Φ](0)cos(kcsτ) (5.19)

− k√
3

∫ τ

0
dτ ′[Φ + Ψ](τ ′)sin[kcs(τ − τ ′)] ,

where cs = 1/
√
3. Since the radiation density fluctuation dominates the source of the Poisson

equation, once the photons enter into acoustic oscillations around sound horizon crossing, the

Weyl potential decays to zero. This decay also provides a source to the acoustic oscillations

through the integral term in Eq. (5.19) which we refer to as the radiation driving effect. This

extra source can carry a phase shift if the timing of the decay is modified. This same effect

causes the well-known phase shift due to freestreaming neutrinos (e.g. [182]).

As we shall see, the phenomenology of acoustic oscillations is then determined by two

pieces: the initial superhorizon conditions for Θ0−Φ, the Weyl potential and the modification

of the timing of the decay of the latter. Since Θ0(0) = −Ψ(0)/2, MG does not change the

initial value of [Θ0−Φ](0) = R, so the change of this solution comes from the integral of the

Weyl potential. Since the Weyl potential always decays to zero after horizon crossing in the

radiation dominated epoch, the amplitude of the driving effect depends on its initial value.

We see from Eq. (5.15) that a larger γ gives a lower value of |Φ+Ψ|(0), which decreases the

driving effect. The impact of µ on the amplitude is smaller but it does influence the timing

of the decay. A larger µ provides a larger source to the Weyl potential and delays the decay.

This then produces a phase shift in the acoustic oscillations as we shall see in Sec. 5.4.1.

Cold dark matter density perturbations δc evolve according to:

δ̈c +
ȧ

a
δ̇c = −k2Ψ− 3Φ̈ . (5.20)

2. Note that Φ in Ref. [181] is −Φ in this paper and V = θ/k, pΠ = 3(ρ+ P )σ/2.
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In the radiation dominated epoch, we can treat the right hand side as an external driving

force S(k, τ) = −k2Ψ−3Φ̈. Given that the potentials decay at horizon crossing, as discussed

above, well after horizon crossing δc settles into a logarithmic growing mode [183]:

δc(k, τ) = −AΨ(k, 0)log(Bkτ) , (5.21)

where A and B are constants that can be determined from

A = − 1

Ψ(k, 0)

∫ ∞

0
dτS(k, τ)τ , (5.22)

AlogB =
3

2
+

1

Ψ(k, 0)

∫ ∞

0
dτS(k, τ)τ log(kτ) .

The MG effect therefore again comes from the initial conditions and the timing of the decay.

Recall also that τ ∝ a in the radiation dominated epoch. Even though A and B themselves

have no k-dependence deep in the radiation dominated regime, a change in B alters the

transition in k between the constant and log(kτ) terms in δc. A change in B occurs when

the epoch of potential decay is shifted. This is especially pronounced for µ whereas γ mainly

changes the overall amplitude A.

After the Universe becomes matter dominated, the self gravity of matter causes its density

fluctuation to grow due to k2Ψ whereas Φ̈ remains negligible. After recombination, the

baryon density fluctuation also obeys Eq. (5.20) and so the combined baryon and cold dark

matter component is

δ′′m +

(
2 +

H ′

H

)
δ′m +

k2

H2
Ψ = 0, (5.23)

as usual. The MG influence comes from the Poisson equation (5.7) for Ψ and involves µ

whereas γ drops out of the equations. A larger µ increases the amplitudes of the potentials

due to the larger effective gravitational constant and therefore enhances the growth. During

the matter dominated epoch, neglecting the effect of massive neutrinos for simplicity, we
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have

δ′′m +
1

2
δ′m − 3

2
µδm = 0 (5.24)

and therefore for the growing mode

δm ∝ a

√
24µ+1−1

4 . (5.25)

When µ = 1, it reduces to the standard δm ∝ a solution. When µ deviates from unity, the

matter perturbation increases as µ increases. Massive neutrinos slow the growth rate in the

same way below their freestreaming scale by acting in the opposite sense as a component

that modifies the background expansion but does not contribute to the perturbations.

In the acceleration epoch, to good approximation δm ∝ D

√
24µ+1−1

4 where D is the GR

linear growth function of ΛCDM [184].

5.3.3 Numerical Results

In this section we complement our analytical analysis with results from numerical integration

using the modified Einstein-Boltzmann code described in Appendix B.2.

In Fig. 5.1, we show the numerical solution for the Weyl potential at different scales while

in Fig. 5.2 we show the relative comparison of the transfer functions of the Weyl potential and

synchronous gauge matter density perturbations at redshift zero. We choose four example

models defined by µ∞ = 1.2, γ∞ = 1.2, µ0 = 1.2, γ0 = 1.2 while keeping fixed all other

cosmological parameters. We refer to the scale factors at matter-radiation equality, MG

parameter transition, and matter-dark energy equality as, respectively, aeq, aT, and aDE.

The wavenumbers of the modes that enter the horizon at the corresponding times, which are

determined by ki = H(ai), are referred to as keq, kT, and kDE.

As we can see from Fig. 5.1, before horizon crossing, as expected from the analytic

results, µ has a very limited impact on the evolution of the Weyl potential, while a larger
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Figure 5.1: The comparison of the Weyl potential evolution between our MG example
models and GR. The four panels represent models with µ∞ = 1.2, γ∞ = 1.2, µ0 = 1.2 and
γ0 = 1.2 respectively. The three vertical dashed lines indicate, from left to right respectively,
matter-radiation equality, the transition of the MG parameters (here z = 30, see definition
in Sec. 5.3.1), and Λ-matter equality. The positions where the Weyl potentials drop indicate
horizon crossing for different k-modes. When crossing the horizon during radiation epoch, a
larger µ delays the potential decay significantly while the same change in γ leads to a small
effect. For details of the early and late time behaviors and the effect of the transition, see
the discussion in Sec. 5.3.3.

111



10−5 10−4 10−3 10−2 10−1 1 10

k [ h Mpc−1 ]

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
∆

(Φ
+

Ψ
)/

(Φ
+

Ψ
)

keqkTkDE

a) Weyl potential comparison

10−5 10−4 10−3 10−2 10−1 1 10

k [ h Mpc−1 ]

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

∆
δ(s

y
n
)

m
/δ

(s
y
n
)

m

keqkTkDE

b) Matter density comparison

µ∞ = 1.2 γ∞ = 1.2 µ0 = 1.2 γ0 = 1.2

Figure 5.2: The fractional change in transfer functions relative to their GR values at
redshift z = 0 due to MG of (a) the Weyl potential and (b) the synchronous gauge matter
density perturbations. Different colors represent different example models as in Fig. 5.1,
as shown in legend. The vertical lines show the scales, (kDE, kT, keq), corresponding to
the modes crossing the horizon at Λ-matter equality, transition in the MG functions, and
matter-radiation equality respectively.

γ decreases its amplitude in both radiation dominated and matter dominated epochs and

slows the potential decay in the acceleration epoch.

At horizon crossing, for modes that cross during radiation domination, an increase in µ

delays the decay of the Weyl potential while the same change in γ leads to a much smaller

effect. As we see in Eq. (5.19), this implies that µ being different from its GR value through

recombination changes the phase of acoustic oscillations in the CMB. Modes that enter

the horizon before matter-radiation equality (i.e. k > keq) still grow logarithmically but if

µ∞ ̸= 1, the change in the decay epoch also changes the constant vs. logarithmic coefficients

that results in an enhancement that grows with k, as shown in Fig. 5.1a. γ mainly changes

the overall amplitude of the decay and therefore leads to much less scale dependence.

After horizon crossing, during the matter and acceleration epochs, a larger µ increases

the growth rate of perturbations due to a larger effective gravitational constant µG. The

relative change in growth is scale independent during the matter and acceleration epochs,

112



since we assumed a scale independent parametrization for µ.

We now comment on the behavior of perturbations when crossing the transition of the

MG functions at z = 30. For subhorizon modes, the time derivative term Φ′ in the continuity

equation (5.4) becomes negligible, so that the density perturbations remain continuous even

when γ or µ change rapidly. From the Poisson equation (5.7) we know that Ψ ∝ µ, and from

Eq. (5.8) we have Φ = γΨ ∝ µγ and hence (Ψ + Φ) ∝ µ(1 + γ). Therefore, a transition

in µ(1 + γ) results in a transition in the Weyl potential that can be clearly seen for γ on

subhorizon scales in Fig. 5.1. This feature is present but hidden in the µ case due to the

change in the growth of density perturbations that overcomes this effect.

For superhorizon modes in the matter dominated limit, µ is irrelevant for the two poten-

tials and remains so during the transition, we thus see zero impact in the µ∞ and µ0 example

models. For γ, on the other hand, the potentials settle on the predictions from Eq. (5.17)

before and after the transitions since the conservation of comoving curvature ensures that

there is no memory of the transition once it is complete.

Combined these changes in growth lead to features in the transfer functions at z = 0

displayed in Fig. 5.2. At scales that are superhorizon at kDE, only γ0 shows a relative

deviation from GR, in the Weyl potential. For a transition from an unmodified to a modified

gravity model, µ = 1 → 1.2, the scale independent change in growth appears as a scale

independent increase in the transfer function at k ≫ kT. On the other hand with a transition

from a modified to an unmodified gravity model µ = 1.2 → 1, this matter dominated growth

only happens between horizon crossing and aT so that its full effect occurs for k ≫ keq. In

addition there is also a scale-dependent component due to the modified logarithmic growth

during radiation domination.

For both γ0 and γ∞, the transition produces a step in the Weyl potential for modes

k > kT and hence a step in the Weyl transfer function. For γ∞ there is an additional change

in the logarithmic growth during radiation domination that partially compensates for this
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step.

This discussion is tightly connected with the behavior of matter density perturbations

whose scale dependence at z = 0 can be seen in Fig. 5.2. There we show the relative

comparison of the synchronous gauge matter density perturbations with respect to their GR

behavior.

For both γ∞ and µ∞ the behavior is very close to that of the Weyl potential (for more

detail, see above discussion). For the late time models, µ0 and γ0, some differences appear.

In the µ0 model, the amplitude on superhorizon scales decreases because µ does not affect the

evolution of Ψ at such scales, thus δc ∝ 1/µ. In the γ0 model, the amplitude on superhorizon

scales decreases because its impact on Ψ and hence δc differs from Φ + Ψ, see Eq. (5.16).

For the modes that enter the horizon well before z = 30, the amplitude remains unchanged

because γ does not affect the subhorizon matter perturbation evolution.

5.4 Impact on Observables

In this section we study the impact of MG on cosmological observables, including the CMB

power spectrum, the BAO scale, gravitational lensing and the matter power spectrum.

5.4.1 CMB temperature power spectrum

As we have seen in the previous sections, early time MG affects both initial conditions and

the evolution of perturbations. Therefore we expect a change in the physics of photon-baryon

acoustic oscillations that will have a significant impact on the CMB power spectra. Since the

Boltzmann equations remain unchanged in form, if we treat the gravitational potential as

an external driving force for the photon-baryon fluid, the impact of MG can be understood

from these changes in the potential evolution in the same way as in GR [181].

To aid our interpretation of these effects, we start with the impact on the sources of

CMB anisotropy in k-space in Fig. 5.3. There we show Θ0 +Ψ, the monopole corrected for
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Figure 5.3: The CMB anisotropy source functions in k-space in units of amplitude of
primordial comoving curvature perturbation in two MG example models with µ∞ = 1.2 and
γ∞ = 1.2 and GR. Different lines correspond to different physical effects and models, as
shown in figure and legend. The vertical dashed line shows mode that crosses the horizon
at recombination (z∗).
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Figure 5.4: The fractional change in the unlensed CMB temperature spectrum in two MG
example models with µ∞ = 1.2 and γ∞ = 1.2 relative to the GR spectrum. The vertical
solid lines indicate the angular position of the GR peaks of the unlensed CMB spectrum.
Notice that the variations are mainly out of phase with the peaks.

the ordinary Sachs-Wolfe effect, and the dipole Θ1 at the redshift of recombination z∗. We

also show the difference in Weyl potential between recombination and today (Φ+Ψ)|z=0
z∗ as
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a proxy for the integrated Sachs-Wolfe (ISW) effect, including its early time contribution.

Fig. 5.3 shows these three quantities in GR and in two example models with µ∞ = 1.2

and γ∞ = 1.2 respectively. In addition we can see in Fig. 5.4 the un-lensed scalar part of

the CMB temperature spectrum for the two example models compared to the GR scalar

spectrum in the harmonic domain.

As we can see µ∞ induces a significant phase shift of both the temperature monopole

and dipole. This phase shift comes from the shift in the epoch that the Weyl potential drives

the oscillations as discussed in the previous section, see Eq. (5.19), and shown in the top left

panel of Fig. 5.1. This is the leading effect that we see, with respect to GR, in Fig. 5.4(a).

In the angular power spectra, this phase shift corresponds to a shift of the scale of the

acoustic peaks to higher multipole with µ∞ = 1.2 vs. 0 of ∆ℓ ≃ 18, where the exact number

is calibrated on the third peak. In Fig. 5.4 this is visible as oscillatory fractional changes

to the spectrum that are out of phase with the peaks themselves (vertical lines). This

should be contrasted with a change in the fundamental angular scale of the acoustic peaks

θs which causes a shift ∆ℓ ≃ −ℓ∆θs/θs. As we shall see, the two parameters µ∞ and θs

are consequently partially degenerate, with the degeneracy broken by the measurement of

multiple acoustic peaks.

A smaller effect induced by a change in µ∞ is a difference in baryon modulation. As we

can see in Fig. 5.3 there is an amplitude change for modes that reach the oscillation minimum,

as opposed to maximum, at recombination. This is caused by the fact that increasing µ∞

increases the gravitational potential and hence the baryon modulation effect. At about the

same relevance we can also see the effect of the change in the epoch of Weyl potential decay

on the efficiency of radiation driving. The latter two effects are difficult to see in Fig. 5.4 as

they are sub-leading with respect to the phase shift. They can be uncovered by cancelling

the shifts due to µ∞ and θs at a fiducial multipole, e.g. the third acoustic peak.

A larger γ∞, on the other hand, shows three effects on the CMB power spectrum: a
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decrease in the amplitude of the acoustic peaks, a further decrease at scales larger than the

first acoustic peak, 10 ≲ ℓ ≲ 100, and a phase shift. First of all, the overall amplitude

change comes from the driving effect. As we see in Eq. (5.19), a larger γ∞ gives a lower

initial value of |Φ + Ψ|, which decreases the value of Θ0 + Ψ, hence the overall amplitude

of CMB temperature fluctuation. Notice that the integral part in Eq. (5.19) has opposite

sign and approximately twice the amplitude of the initial part in GR, so the fractional

difference of CTT
l is approximately 4 times as the fractional difference of the initial Weyl

potential Eq. (5.15) and another factor of 2 comes from the square in the calculation of

power spectrum.

On intermediate scales just larger than the first acoustic peak, the reduction in the

amplitude of the Sachs-Wolfe and Doppler effects further suppresses power in Fig. 5.4. Above

the horizon in the matter dominated epoch Θ0+Ψ = Ψ/3 and so Eq. (5.15) and the photon

conservation equations predicts the rough amplitude with some reduction in the effect due to

the ISW effect. At large scales where fluctuations are above the horizon at the transition, the

SW and ISW effects from the transition add coherently and since µ = 1 after the transition,

they cancel leaving temperature power spectrum differences that vanish as ℓ→ 0.

Finally a deviation of γ∞ from unity also induces a small phase shift. Calibrated to the

third peak, the shift for γ∞ = 1.2 is ∆ℓ ≃ 3 and remains nearly constant throughout the

acoustic peaks. We shall see that this phase shift causes a partial degeneracy between µ∞

and γ∞.

MG at late time, conversely, does not affect acoustic oscillations but rather changes the

spectrum of un-lensed CMB temperature fluctuations through the ISW effect. At the tran-

sition, the time derivative of the Weyl potential causes an enhancement of the temperature

power spectrum that is dependent on the width of the transition. As we show in Appendix

B.3, if the transition is much sharper than ∆T ∼ 1 efold, the ISW effect makes the CMB
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Figure 5.5: The CMB lensing potential power spectrum in the harmonic domain. Different
colors correspond to different models as shown in legend.

highly sensitive to the difference between µ and γ at early and late times.3 Since such a tran-

sition is unrealistic for a model whose deviations from GR evolve on the Hubble timescale,

we fix ∆T = 1.

Both early times MG models modify the Weyl potential, as shown in Fig. 5.2a, and thus

change the lensing potential of the CMB accordingly in Fig. 5.5. Raising either µ∞ or µ0

raises the amplitude of the lensing potential whereas µ∞ also causes a notable change in

its shape as a result of the scale dependent enhancement of modes that entered the horizon

during radiation domination as shown in Fig. 5.2a. Raising γ∞ or γ0 decreases and increases

the lensing potential respectively with little change in the shape. These changes to the lensing

potential produce observable effects in the smoothing of the acoustic peaks and CMB lens

reconstruction.

3. Furthermore as discussed in Appendix B.3, MGCAMB implements the switch between
GR at early times and potential deviations at late times instantaneously and produces in-
consistent, not merely overly sensitive, results if the parametrization is not designed to go
smoothly to zero on the low redshift side of the transition (cf. [23] Planck 2015 paper).
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5.4.2 Weak Lensing

Measurements of the galaxy weak lensing (WL) shear correlation function provide a powerful

way of studying MG models. In this section we discuss the impact of MG on weak lensing

observables through the Weyl potential.

As we discussed in the previous sections, in GR, anisotropic stress is negligible at late

times so the Weyl potential power spectrum is just a re-scaling of the matter power spec-

trum, but this is not generally true in MG. The difference between the two can be clearly

seen comparing the two panels of Fig. 5.2. For this reason it is important to build lensing

observables starting from the Weyl potential power spectrum.

The amplitude of the WL power spectrum is usually parametrized in terms of σ8, the

rms amplitude of linear matter density fluctuations ∆m convolved with a spherical tophat

of radius 8h−1Mpc at z = 0, and the matter density parameter Ωm, in their combination

S8 ≡ σ8Ω
0.5
m . When considering MG models we need to take into account the difference

between the Weyl potential and matter density perturbations. For this reason we replace

the matter density fluctuations ∆m with ∆WL where

∆WL ≡ −k
2(Φ + Ψ)

8πGa2ρm
, (5.26)

and define σWL
8 using this field. Eq. (5.26) is normalized such that, in GR and in absence

of matter anisotropic stresses σWL
8 → σ8. In MG it is easy to see that, in absence of matter

anisotropic stresses:

σWL
8 =

1 + γ

2
µσ8 (5.27)

so that its general definition extends the definition in [8] and reduces to it when matter

anisotropic stresses are negligible.

We show in Fig. 5.6 the fractional change in σWL
8 as a function of the four MG parameters
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Figure 5.6: The fractional change in σWL
8 from its the GR value. Different colors correspond

to different models as shown in legend.

around the GR value with all other parameters fixed. As we can see this closely resembles the

amplitude change of the Weyl potential at small scales, shown in Fig. 5.2. Raising µ∞, µ0,

or γ0 all raise the lensing observable, whereas raising γ∞ lowers it. Furthermore, for the

γ0 case, the amplitude of the matter power spectrum on sub-horizon scales does not change

while the amplitude of the Weyl potential tracks the change in γ0 and illustrates why it is

important to use Eq. (5.26) as the parameter controlling WL. Notice that the definition of

σWL
8 only addresses one aspect of the difference between GR and MG by incorporating the

dependence on MG of the redshift zero calibration. The amplitude of the lensing signal at

a given redshift depends on the growth of perturbations and scale of the measurements. In

GR these are addressed by considering the combination σ8Ω
0.5
m while in MG there would

be a residual dependence on µ and γ due to the scale and redshift dependent sub horizon

growth. For compatibility with this convention we use σWL
8 Ω0.5

m as a simple proxy for the

WL observable in MG but test its fidelity in the µ0 − γ0 space directly (see Fig. 5.10).
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5.4.3 Matter power spectrum

The clustering of galaxies provides another powerful and complementary probe of MG. The

modifications induced on the underlying CDM power spectrum that it traces follow closely

what we discussed for the transfer functions in Sec. 5.3.3. Galaxies are biased tracers of

the CDM and as shown in [185, 186], bias in the linear regime is expected to be scale

dependent if the linear growth is also scale dependent as it is in MG. Precise modeling

within parametrized approaches requires cosmological simulations but one would expect that

it qualitatively follows the response of the local growth to the linear density perturbation

treated as a local background density [186].

An observable that is more robust to these complications is the location of the BAO peak

in the galaxy correlation function. However, in case of early modified gravity, we have to take

into account the fact that an acoustic phase shift induced by the decay of the gravitational

potential would also shift the position of the BAO peak.
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In Fig. 5.7 we can clearly see this effect. We compare the CDM spatial linear correlation

function in GR to the two early MG models that we consider, keeping all other cosmological

parameters fixed. The phase shift induced by µ∞ shows as a shift in the BAO peak of

the correlation function. In our test case of µ∞ = 1.2 we have that ∆rpeak = 1.9Mpc

corresponding to ∆rpeak/r
GR
peak = 1.2%.

Since γ∞ also induces a phase shift we can observe a corresponding shift in the BAO

peak also in the case of γ∞ = 1.2, with ∆rpeak = 0.35Mpc and ∆rpeak/r
GR
peak = 0.2%. The

relative sizes of the γ∞ and µ∞ shift in the BAO peak is the same as that of the phase shift

in the CMB peaks.

Notice that the shape of the correlation function is also modified in these two cases,

especially in the µ∞ case where the there is a substantial enhancement of high-k power in

Fig. 5.2. This would provide a powerful way of testing these models once bias is understood.

We warn the reader that the measured peak position in the galaxy correlation function

is usually compared to the acoustic-scale distance ratio DV (z)/rdrag, as measured by a LSS

survey with effective redshift z. While this holds in GR, it is not strictly true in early MG

models so that one has to check whether the difference is within the experimental error bars.

5.5 Analysis Methods

In this section we discuss cosmological constraints and parameter dependencies by performing

MCMC parameter estimation with different datasets using a modified version of the Einstein-

Boltzmann solver CAMB described in the Appendix B.2. All of the cosmology models we

test have the six standard ΛCDM parameters plus the MG parameters which vary in different

tests. The six ΛCDM parameters have standard priors and we fix the sum of neutrino masses

to the minimal value [37].

Since the MG parameters are introduced as phenomenological triggers for new physics

in the datasets, our strategy for dataset and parameter choices is to look for datasets that
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are in tension with the well-measured CMB temperature power spectrum under the ΛCDM

model and to investigate the simplest MG case that might relax that tension.

Since the leading tensions under ΛCDM involve H0 and galaxy Weak Lensing (WL), we

highlight these in the studies below. If MG parameters can relax these tensions, we proceed

to add other cosmological datasets to see if they can provide a consistent solution. We also

consider joint variation of MG parameters to see if together they can resolve tensions better

than individually.

This procedure employs several datasets. We begin with the measurements of the high

multipole CMB temperature power spectrum from the Planck satellite [41, 42] supplemented

by the low multipole TEB data which mainly constrains the optical depth τ . We refer to

this baseline dataset as CMBTT. To this we add the high multipole EE and TE Planck

data which we call CMBpol. We further employ the Planck 2015 full-sky lensing potential

power spectrum [43] in the multipole range 40 ≤ ℓ ≤ 400. At smaller angular scales CMB

lensing is strongly influenced by the non-linear evolution of dark matter perturbations, we

thus exclude multipoles above ℓ = 400. We refer to this dataset as CMBlens. We indicate

the dataset joining all Planck CMB datasets as CMBall = CMBTT+CMBpol+CMBlens .

The H0 tension is realized by the dataset consisting of local measurements of the Hubble

constant derived by the “Supernovae, H0, for the Equation of State of dark energy” (SH0ES)

team [187] and their best estimation is H0 = 73.24 ± 1.74 (in units of km s−1Mpc−1 here

and throughout). We refer to this dataset as H0.

On the other hand the WL tension leverages on the measurements of the galaxy weak

lensing shear correlation function as provided by the Canada-France-Hawaii Telescope Lens-

ing Survey (CFHTLenS) [188, 189]. This dataset is referred to as WL. We applied ultra-

conservative cuts, that make CFHTLenS data insensitive to the modelling of non-linear

evolution. We call the combination of CMBall+H0+WL = CMBtension.

Finally we include: BAO and RSD measurements of BOSS DR12 [45], SDSS Main Galaxy
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Sample [46] and 6dFGS [47]; the “Joint Light-curve Analysis” (JLA) Supernovae sam-

ple [190]. We call the combination of CMBtension + BAO + SN = All.

5.6 Results

We begin with the discussion of late times modifications to gravity, parametrized with µ0

and γ0, and review why the preference for non-GR values appears for the CMB temperature

spectrum but disappears once CMB lensing reconstruction is included. This case has been

previously considered in the literature but we correct for a problem in some of the previous

implementations. We then consider the early times modifications to gravity, as parametrized

by µ∞ and γ∞, which constitute the truly new aspect of this work. We show that µ∞ in

particular can relax the tension with H0 and WL by changing all CMB theoretical predic-

tions in a compatible manner due to its combined effect near recombination and on lensing.

However in our implementation where the background expansion is unmodified with respect

to ΛCDM, BAO data in particular do not favor such a resolution. Finally we consider com-

binations of early and late time MG parameters to test whether non-trivial degeneracies

appear and find that none of these combinations help to further reduce tensions.

5.6.1 Late time modified gravity

We first consider the joint effects of µ0 and γ0 since their individual effects are quite similar

resulting in a strong degeneracy between the two parameters shown in Fig. 5.8. Our con-

straints on late time MG parameters are weaker than some of the results in the literature,

especially in the degenerate direction, due to our more realistic and consistent treatment of

the transition from GR at early times to these MG parameters, as discussed in Appendix

B.3.

When the CMBTT dataset is considered alone, the late time parameters can also broaden

its constraints on H0 and σ
WL
8 Ω0.5

m as shown in Fig. 5.8. In fact a deviation from µ0 = γ0 = 1
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combination of datasets, as shown in legend. The darker and lighter shades correspond
respectively to the 68% C.L. and the 95% C.L. Dashed lines indicate the GR limit of the
MG parameters.
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Figure 5.9: The Planck TT residuals for the best fit late time modified gravity model,
relative to the best fit ΛCDM CMBTT model. The foreground parameters are fixed to the
ΛCDM best fit values for compatibility with the foreground model removed from the data.
Different colors correspond to different combination of datasets, as shown in legend. The
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is preferred at the 95% C.L., as can be seen in Fig. 5.8.

These results are related to coherent features in the data residuals with respect to the

ΛCDM best fit model to the CMBTT dataset (see Fig. 5.9). Here and below, we scale

residuals to the cosmic variance per multipole

σTTCV =

√
2

2ℓ+ 1
CTT
ℓ , (5.28)

σTECV =

√
1

2ℓ+ 1

[
CTT
ℓ CEE

ℓ + (CTE
ℓ )2

]
, (5.29)

with CTT
ℓ , CEE

ℓ and CTE
ℓ fixed to the best fit ΛCDM CMBTT model. The data ex-

hibit residuals that are nearly in phase with the acoustic peaks at ℓ ≳ 1000 which indicate

smoother acoustic peaks in the data [191, 51, 192]. This smoothness is also what is respon-

sible for changing the inferences for a higher H0 at ℓ < 1000 and a lower H0 beyond, and

conversely for σWL
8 Ω0.5

m given that in ΛCDM, the acoustic peak positions fix Ωch
3 approx-
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imately. Furthermore the ℓ < 1000 residuals are dominated by the low power glitch in the

CMBTT data at ℓ ≲ 30, shown in Fig. 5.9, which explains their preference for a lower Ωch
2

to enhance driving and a higher H0. This preference was also seen in the WMAP dataset

which was comparably limited by instrumental resolution [191].

It is well known that these oscillatory residuals can be better fit with a higher CMB

lensing amplitude than ΛCDM implies [41] and this explains the preference for MG at about

the same statistical significance. In Fig. 5.9, we can see that the best fit MG parameters

better accommodate the oscillatory residuals while not decreasing the agreement of the model

with data below ℓ ≲ 1000. Here and below, when showing the Planck CMB best fit MG

models we fix foreground parameters to their best fit ΛCDM values for compatibility with

the data points that have that model subtracted. On the other hand, all constraints on MG

parameters have the standard foreground parameters marginalized over.

Because of these oscillatory residuals, MG allows for a lower Ωch
2, which also fits better

the low power glitch at ℓ ≲ 30, to be compatible with CMBTT and hence accommodates a

higher H0 and higher σWL
8 Ω0.5

m , where the latter reflects the fact that raising CMB lensing

tends to raise WL as well.

However it is also well known that CMBlens data do not favor raising the lensing am-

plitude to explain the oscillatory residuals in CMBTT [41] and in fact no changes in the

amplitude or shape of the lens power spectrum C
ϕϕ
ℓ can reconcile them [193, 194]. Conse-

quently, once the CMBlens data are added the constraints on µ0 and γ0 become compatible

with the GR values and the ability to raise H0 is diminished (see Fig. 5.8). Likewise the

ability to fit the oscillatory residuals in Fig. 5.9 also goes away.

Furthermore, the WL dataset also favor lowering not raising lensing and so would also

counter the ability of MG to fit the CMBTT oscillatory residuals. We can see this more

directly in Fig. 5.10 where we consider the constraints from the CMBlens and WL datasets

alone but fix the ΛCDM parameters to their best fit CMBTT values for ΛCDM. Note that
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the CMBlens and WL constrain nearly the same combination of µ0 and γ0 with WL favoring

somewhat lower values and hence somewhat less lensing. The CMBlens data are fully con-

sistent with the GR values whereas the WL data prefer lower values, reflecting the tension

between the CMBTT and WL datasets. Therefore the tensions between CMBTT, CMBlens

and WL data sets cannot be resolved by raising lensing with late time MG parameters alone.

Notice also that contours of σWL
8 Ω0.5

m track the degenerate direction of the WL constraints

and justify its use as a proxy for the WL lensing observable.

5.6.2 Early time modified gravity

The oscillatory residuals in the CMBTT data vs. a high H0 solution cannot be explained by

introducing new physics through MG to change the smoothing of the peaks by gravitational

lensing since the CMBlens dataset forbids it. This leaves the possibility that the early time

MG can change the intrinsic shape of the peaks and resolve these tensions. Furthermore

since the study of the early time parameters µ∞ and γ∞ is new to this work, we conduct a

more thorough examination of their individual effects than in the previous section on late

time parameters.

We start with µ∞ alone and the CMBTT dataset in Fig. 5.11. Here µ∞ is strongly

correlated with θ∗. This is because µ∞ leads to a phase shift in the acoustic peaks and

its effect on the well-measured peak locations is partially degenerate with a change in the

angular scale of the sound horizon (see Sec. 5.4.1). Since the CMBTT dataset measures

multiple peaks, the degeneracy is not perfect and indeed the measurement of the peak

locations provides the strongest constraint on µ∞. Note also that within ΛCDM the best

fit value of θ∗ shifts between ℓ ≲ 1000 and the full dataset to lower values by ∼ 1σ [51]. In

the µ∞ model, this shift in peak locations can be accommodated by a change in both the

angular scale and phase of the acoustic peaks.

A larger value for µ∞ also allows a larger value of H0. In GR with the ΛCDM H0 =
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model. Results of ΛCDM model are also added for comparison. The darker and lighter
shades correspond respectively to the 68% C.L. and the 95% C.L. Dashed lines indicate the
GR limit of the MG parameters.
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67.26± 0.99. Within the bounds on µ∞ allowed by the phase shift, H0 = 67.80± 1.27. This

comes about since µ∞ allows another way of changing the amount of low to high ℓ TT power,

especially around the first few acoustic peaks, and so is partially degenerate with radiation

driving effects from Ωch
2 and also another way of compensating the reduction in lensing

due to a lower Ωch
2. Notice that the the correlation of the latter with H0 remains largely

unchanged since the background expansion remains identical to ΛCDM and θs remains well

constrained. This has implications for BAO and SN as we shall see, since raising H0 requires

the same reduction in Ωm as in ΛCDM. Note that as in ΛCDM a higher H0 solution also

gives a lower σ8Ω
0.5
m which is favored by WL data.

We can see these effects in Fig. 5.12. Here we show how µ∞ compensates for changes in

the cosmological parameters of a high H0 = 69.9 best fit solution to the CMBTT+H0+WL

datasets. Notice that with the same cosmological parameters but reverting µ∞ = 1, the
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model exacerbates the oscillatory residuals in the data at ℓ ≳ 1000, the well-known problem

with raising H0 under ΛCDM.

While this broadening and raising of H0 values allowed by CMBTT with µ∞ is small but

significant in that it places H0 = 70 well within the CMBTT 2σ bound, the main benefit of

µ∞ over the late time parameters is that CMBlens and CMBpol data somewhat favor rather

than disfavor such a deviation from GR. In Fig. 5.13, we show the result of the CMBall

combination. Notice that the errors on µ∞ shrink but the central value remains the same.

After adding H0 and WL datasets, we end at H0 = 69.35±0.80. and a preference for µ∞ > 1

at the 98.2% C.L. This preference comes about since the effect of raising µ∞ and lowering

Ωch
2 nearly compensate each other in their effect on the CMB lens power spectrum as shown

in Fig. 5.14 for the same model as in Fig. 5.12. For the polarization, in ΛCDM a low H0 value

is preferred in large part due to the low TE datapoint around the first minimum (ℓ ∼ 165)

[192]. This too is compensated with µ∞ and together with changes at higher multipole in

fact brings about a better fit than ΛCDM in Fig. 5.15.

On the other hand since in our parameterization the background expansion remains

ΛCDM, the lower Ωm implied by a higher H0 causes tension with the BAO dataset. After

adding BAO dataset, H0 = 68.57 ± 0.50, disfavoring high values, and the preference for

µ∞ > 1 is reduced to 95.7% C.L. (see Fig. 5.16). In a physically motivated MG theory, we

would typically expect both the background and the perturbations to be modified and so in

principle this problem with BAO could be ameliorated by changing the expansion rate in a

manner similar to adding extra relativistic degrees of freedom under GR.

Next, we discuss the results with γ∞ as the only MG parameter. With the CMBTT

dataset, similar to µ∞, γ∞ also causes a phase shift, so it is also constrained by the locations

of acoustic peaks. However, γ∞ only shows a very weak correlation with H0 in Fig. 5.17

and cannot move H0 much higher than in ΛCDM. Its effects at recombination share some

similarity to µ∞ in that raising it alters the power between low and high multipoles and
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accommodates a lower Ωch
2 and higher H0. However raising γ∞ also lowers the CMB lens

power spectrum as shown in Fig. 5.5 and exacerbates the oscillatory residual problem at

ℓ ≳ 1000.

Finally, with both µ∞ and γ∞ as MG parameters, a strong correlation between µ∞

and γ∞ shows up when CMBTT data is considered. This also come from the phase shift

effect. Since both µ∞ and γ∞ shift the phase in the same direction and µ∞ to compensate

each other, they show a negative correlation with a direction consistent with the amplitudes

of their phase shifts discussed above. Because of this anti-correlation their joint ability to

ameliorate H0, CMBlens and WL tensions is not significantly greater than that of µ∞ alone.

5.6.3 Combined early and late times MG

At last we consider combinations of MG parameters together to check whether non-trivial

degeneracies appear.

When we use both µ∞ and µ0 as MG parameters, the H0 tension can be further reduced

when CMBTT data is considered. But for the same reasons that we discussed in Sec. 5.6.1,

this resolution is also disfavored by CMBlens because of the enhancement of the lensing

potential, see Fig. 5.18.

On the other hand, when we use both γ∞ and γ0 as the MG parameters, we find that there

is no correlation between them, see Fig. 5.19. Both parameters affect the CMB temperature

spectrum in independent ways and both parameters are then not favored by the data as we

discussed in the previous sections.

5.7 Discussion

We study the impacts of MG on cosmological perturbation evolution and CMB power spec-

trum under a phenomenological parameterization of the Poisson equations (5.7, 5.8). We

implement this parameterization into the Einstein-Boltzmann code CAMB.
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New aspects of this work include the treatment of initial conditions in the radiation dom-

inated epoch and the effect of MG on the CMB and matter evolution prior to recombination.

In particular, we illustrate the MG effects using step functions of time for the two MG per-

turbation parameters with an unmodified ΛCDM background to isolate their effects at early

and late times.

This study is partially motivated by the existence of tensions between CMB and low

redshift observables in ΛCDM. For the late time MG parameters µ0 and γ0, the non-GR

values are favored by CMBTT data because the MG parameters raise the lensing potential

and smooth the acoustic peaks while also raising the Hubble constant H0. However, this

preference disappears once CMBlens data is included because the lensing reconstruction does

not favor such an enhancement. We conclude that late time modifications alone are unlikely

to resolve tensions with ΛCDM.

Parameter tensions in ΛCDM rely heavily on the interpretation of acoustic observables in

the CMB and BAO at recombination. By changing the evolution of gravitational potentials,

MG parameters at early times can in principle be more effective. While changing γ∞ can not

help to reduce tensions, changing µ∞ can relax tensions internal to the CMB datasets and

between CMBTT and H0 and weak lensing. This is achieved by changing CMB temperature,

polarization and lensing predictions in a compatible manner due to its combined effect on

the acoustic oscillations and on lensing and results in a preference for µ∞ > 1 at greater than

98% C.L. and H0 = 69.35 ± 0.80 when combined with Hubble constant and weak lensing

datasets. BAO data however do not favor such a resolution since the background expansion

remains unchanged compared to ΛCDM in our implementation and therefore requires a lower

Ωm for a higher H0. Combinations with other MG parameters do not further help resolve

tensions.

In a physically motivated modification of gravity, we would generally expect changes to

both the background and the perturbations, leaving open the possibility that once combined
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this tension with BAO can be ameliorated as well. Moreover, our simple parameterization

of MG in the perturbations with a step function in time is itself only meant to be illustrative

and not a prediction based on a fundamental theory. Instead this study serves as a guide to

the construction of physically motivated models that might resolve tensions in ΛCDM. We

leave such studies to a future work.
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CHAPTER 6

CONCLUSION

As the Hubble tension has increased steadily with the increasing experimental precision, it

has become one of the biggest mysteries in modern cosmology. This thesis provides some

thoughts of the physical solutions for the Hubble tension including EDE-like models and

early modified gravity, although we have not found the perfect solution so far.

I hope the examples presented in this thesis could at least give the reader some useful

hints for the paths towards the correct solution (if Hubble tension is real). In the future,

if an EDE-like background expansion history (which is not necessarily realized by a scalar

field, could also by e.g. certain modified gravity theories) still looks promising resolve the

Hubble tension, there are still some degrees of freedom to adjust in the perturbation level by

introducing dark interaction or dark force. The upcoming CMB polarization measurements

in the near future would provide more sensitive information for this problem.
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APPENDIX A

THE EARLY DARK SECTOR, THE HUBBLE TENSION, AND

THE SWAMPLAND

A.1 Equations of Motion

We consider cold dark matter interacting with the EDE scalar field ϕ. We model dark matter

as a population of non-relativistic Dirac fermions. We consider a model with action given

by,

S =

∫
d4x

√−g
[

1

3M2
pl

R− 1

2
∂µϕ∂µϕ− iψ̄ /Dψ − V (ϕ)−mDM(ϕ)ψ̄ψ + h.c.

]
. (A.1)

where ψ is a Dirac fermion, which plays the role of cold dark matter. As such, we take the

non-relativistic limit of ψ, in which case ⟨ψ̄ψ⟩ → n(t), where n(t) is the number density,

namely, the total number of particles and anti-particles, not to be confused with ⟨ψ̄γ0ψ⟩,

which is the difference between the number of particles and antiparticles. In this limit, the

dark matter component is described by a stress tensor,

T (DM)µ
ν = nDMmDM(ϕ)uµuν (A.2)

with uµ = (−1, vi). This comprises only a part of the stress tensor of the full interacting

system, which is given by

Tµν = T
(DM)
µν + T

(ϕ)
µν , (A.3)

where T
(ϕ)
µν is the ϕ contribution given by

T (ϕ)µ
ν = ∂µϕ∂νϕ− 1

2
δµ ν∂

αϕ∂αϕ− δµ νV (ϕ). (A.4)
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The combined stress tensor is covariantly conserved,

∇µT
µ
ν = 0, (A.5)

which follows from the contracted Bianchi identities of General Relativity. The equations of

motion of the interacting system are dictated by the conservation equation Eq. (A.5) along

with the equations of motion for the scalar field that follow from the variation of the action.

The equations of motion for the scalar field background and perturbations are given by

the variation of the action expanded to linear and quadratic order in δϕ respectively. At the

background level, where quantities depend only on time, the variation with respect to the

scalar field gives,

ϕ̈+ 2aHϕ̇+ a2
dV

dϕ
+ a2n

dmDM

dϕ
= 0, (A.6)

where dot denotes a derivative with respect to conformal time τ , while H is defined with

respect to time t. This can be expressed in terms of the dark matter energy density as,

ϕ̈+ 2aHϕ̇+ a2
dV

dϕ
+ a2

dlogmDM

dϕ
ρDM = 0. (A.7)

The equation of motion for the dark matter density is given by

ρ̇DM + 3aHρDM = ϕ̇
dlogmDM

dϕ
ρDM. (A.8)

We repeat this procedure for the perturbations, working in the synchronous gauge. The

metric in synchronous gauge is given in general by

ds2 = a2(τ)
(
−dτ2 + (δij + hij)dx

idxj
)
. (A.9)

The perturbation hij may be decomposed into two scalar degrees of freedom, h and η, defined
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by the decomposition,

hij(x⃗, τ) =

∫
d3keik⃗·x⃗

[
k̂ik̂jh(k⃗, τ) + (k̂ik̂j −

1

3
δij) 6η(k⃗, τ)

]
(A.10)

where k⃗ = kk̂. See, e.g., [195], for more details.

The interaction of the scalar field with dark matter generates new terms in the quadratic

action for perturbations, which are given by,

δS2 = −
∫
dτd3x a4(τ)

[
d2mDM

dϕ2
δϕ2n+

dmDM

dϕ
δϕδn

]
, (A.11)

where δn is the perturbation to the dark matter number density. The resulting equation of

motion is,

δ̈ϕ+ 2aH ˙δϕ+

(
k2 + a2

d2V

dϕ2

)
δϕ+

1

2
ḣϕ̇ = −a2

[
dlogm

dϕ
ρDMδc +

d2logm

dϕ2
δϕρDM

]
,(A.12)

where we define the fractional dark matter density perturbation δc ≡ (δρDM)/ρDM.

To derive the equations of motion for the dark matter component, we now explicitly

evaluate Eq. A.5, and apply the scalar field equations of motion. From the ν = 0 component,

we find the equation of motion for δc, given by

δ̇c + θ +
ḣ

2
=
dlogm

dϕ
˙δϕ+

d2logm

dϕ2
ϕ̇δϕ, (A.13)

while from the ν = i component we find the equation of motion for the velocity perturbations,

θ̇ + aHθ = +
dlogm

dϕ
k2δϕ− dlogm

dϕ
ϕ̇θ. (A.14)

where θ ≡ ∂iv
i.
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A.2 Scalar-Mediated Force on Dark Matter
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Figure A.1: Scalar field ϕ evolution for c = −0.025 with fixed H0 and all other parame-
ters (except θs) fixed to their values in Eqs. (4.17) and (4.18). The quasistatic estimation
Eq. (A.24) is also shown for comparison.

To assess the combined gravitational and scalar mediated forces on the dark matter we

start with the time-time and trace of the space-space pieces of the Einstein equation with

the synchronous metric of Eq. (A.9)

H ḣ

2
= k2η +

1

2M2
pl

a2δρ, (A.15)

ḧ

2
+Hḣ− k2η = − 3

2M2
pl

a2δP (A.16)

and combine them to eliminate η:

ḧ

2
+H ḣ

2
= − 1

2M2
pl

a2(δρ+ 3δP ). (A.17)

Taking the derivative of the dark matter continuity equation, Eq. (A.13), and plugging in ḧ
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from above and θ̇ from the Euler equation (A.14), we arrive at,

δ̈c −H(
ḣ

2
+ θc) =

1

2M2
pl

a2(δρ+ 3δP )− 1

Mpl
ck2δϕ+

1

Mpl
cϕ̇θc +

1

Mpl
cδ̈ϕ. (A.18)

To gain physical intuition, we consider a quasistatic limit in which the last term in the above

can be neglected. For small c the second last term is in higher order of c. Note that there is

a non-zero offset value for δϕ at late times. From the equation of motion

δ̈ϕ+ 2aH ˙δϕ+ (k2 + a2
d2V

dϕ2
)δϕ+

1

2
ḣϕ̇ = −a2 1

Mpl
cδρDM, (A.19)

we can estimate δϕ in the quasistatic limit as

δϕ(0) ≈ −a2
cδρDM/Mpl

k2 + a2d2V/dϕ2
, (A.20)

We then plug it into Eq. (A.18) and, assuming δρ + δP is dominated by dark matter, we

have,

δ̈c +Hδ̇c = 4πGa2ρcδc(1 +
2c2k2

k2 + a2d2V/dϕ2
). (A.21)

From this one may read off an effective gravitational constant,

Geff = GN

(
1 +

2c2k2

k2 + a2d2V/dϕ2

)
, (A.22)

which is independent of the sign of c.

Notice that the modification to Geff appears on scales below the Compton wavelength of

the scalar k/a > d2V/dϕ2 which itself depends on the dark matter density. The scalar field

oscillates around the minimum of the effective potential which evolves quasistatically as

dV

dϕ
= − c

Mpl
ρDM (A.23)
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to be

ϕ = −sgn(c)
22/5c1/5f4/5ρ

1/5
DM

31/5m2/5M
1/5
pl

. (A.24)

At the minimum the scalar mass is

mϕ =

(
d2V

dϕ2

)1/2

=
31/1051/2c2/5m1/5ρ

2/5
DM

21/5f2/5M
2/5
pl

. (A.25)

In Fig. A.1 we show the late time evolution of the scalar field for model with c = −0.025

with fixed H0 and all other parameters (except θs) fixed to their values in Eqs. (4.17) and

(4.18). We see that the quasistatic estimation agrees well with the DC offset of the scalar

field. The corresponding Compton wavelength at the minimum at z = 0 is ∼ 1Gpc so that

for scales relevant to large-scale structure, Geff ≈ GN (1 + 2c2). Notice also that the scaling

of the range of the modified force is a fairly mild ρ
−2/5
DM . Although EDS admits chameleon

screening of the force in a high density environment, even in a virialized halo where the local

density is ∼ 200 times the background, the range remains large compared with both the

scale of the halo and the large-scale structure relevant to S8.

A.3 Implementation In CLASS

We implement the EDS model into the publicly available Boltzmann code CLASS [137, 138],1

by modifying the publicly-available CLASS EDE [2].2

We use the synchronous gauge functionality of CLASS to solve the Einstein equations,

Eq. (21) of [195], given the energy density, pressure, and velocity of the matter content.

From the stress tensor Eq. (A.4), the energy density and pressure of the scalar field are given

1. http://class-code.net

2. https://github.com/mwt5345/class_ede
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by,

ρϕ =
1

2a2
ϕ̇2 + V (ϕ), (A.26)

pϕ =
1

2a2
ϕ̇2 − V (ϕ).

The perturbations to the above, along with the scalar field velocity perturbation, are given

by,

δρϕ =
1

a2
ϕ̇ ˙δϕ+ V ′(ϕ)δϕ. (A.27)

δpϕ =
1

a2
ϕ̇ ˙δϕ− V ′(ϕ)δϕ.

(ρϕ + pϕ)vϕ =
1

a2
kϕ̇δϕ.

We note that CLASS works in units wherein the energy density and pressure are rescaled by

1/3M2
pl, i.e., the stress-energy tensor is rescaled as,

T
(CLASS)
µν =

1

3M2
pl

Tµν . (A.28)

The scalar field retains units of Mpl. The above rescaling manifests in CLASS as a factor of

(1/3) in the CLASS definition of ρϕ, pϕ, etc. , relative to Eqs. (A.26) and (A.27).

The scalar field background equation of motion becomes,

ϕ̈+ 2aHϕ̇+ a2
dV

dϕ
+ 3a2

dlogmDM

dϕ
ρ
(CLASS)
DM = 0 (A.29)

where ρ
(CLASS)
DM is in CLASS units. The perturbed Klein-Gordon equation becomes,

δ̈ϕ+ 2aH ˙δϕ+

(
k2 + a2

d2V

dϕ2

)
δϕ+

1

2
ḣϕ̇ =

−3a2
[
dlogm

dϕ
ρ
(CLASS)
DM δ +

d2logm

dϕ2
δϕρ

(CLASS)
DM

]
. (A.30)
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The covariant conservation of stress-energy may be expressed as

∇µ
(
T
(DM,CLASS)
µν + T

(ϕ,CLASS)
µν

)
= 0. (A.31)

Propagating through the factors of 3 from the conversion to CLASS units, we find that

the equations of motion of dark matter perturbations in CLASS units are unchanged from

Eqs. (A.13) and (A.14).

The CLASS EDE code [2] absorbs the cosmological constant Λ into the scalar field potential,

as

V (ϕ) = 3M2
plΛ +m2f2

[
1− cos

ϕ

f

]3
(A.32)

where Λ is a constant. This rewriting utilizes the built-in functionality of CLASS to tune

a parameter in V (ϕ) in order to satisfy the energy budget equation
∑

Ωi = 1 for arbi-

trary initial conditions for the scalar field. We impose slow-roll initial conditions on ϕ(t)

and adiabatic initial conditions on δϕ, as discussed in [2]. Finally, in order to sample the

EDE parameters fEDE and log10(zc), we a shooting method to iteratively determine the

corresponding model parameters f and m.

In this work we add to CLASS EDE [2] a new cold (pressureless) dark matter component

that is coupled to the EDE scalar as discussed above. We retain the CLASS cold dark matter

component, with a fixed Ωcdm = 10−5, in order to self-consistently define the synchronous

gauge.

In order to simultaneously sample the present-day dark matter density and the scalar

field initial conditions, we implement a shooting method to determine the initial dark matter

density. We impose adiabatic initial conditions for the coupled dark matter component.
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Figure A.2: Enlarged set of posterior distributions for the fit to the baseline data set (CMB,
CMB lensing, BAO, SNIa, and SH0ES) supplemented with DES-Y3 data, approximated by
a prior on S8 for ΛCDM and EDS.

A.4 Additional Posterior Plots

The enlarged set of posterior distributions for the analysis with DES-Y3 data and with ACT

data are given in Fig. A.2 and A.3, respectively.
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S8 constraint, respectively.
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APPENDIX B

PHENOMENOLOGY OF MODIFIED GRAVITY AT

RECOMBINATION

B.1 Comoving Curvature Conservation

In order to take the initial comoving curvature perturbation R from inflation as initial

conditions for the radiation dominated universe as usual, we need to show that it is conserved

outside the horizon

lim
k/H→0

R′

R = 0 (B.1)

for any type of matter or modified gravity parameters µ and γ. In this Appendix we derive

the conditions under which this is true.

Starting from the definition of the comoving curvature in terms of Newtonian gauge

variables in a spatially flat universe

R = −Φ− H
k2
θ, (B.2)

we use the modified gravity equations (5.7,5.8) to obtain

R =
4πGa2µ

k2
[γ∆ρ+ 3(γ − 1)(ρ+ P )σ]− H

k2
θ. (B.3)

Taking the derivative of this equation and using the matter conservation equations (5.4), we
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obtain

R′ = R′
GR +

4πGa2µ

k2 + 12πGa2γµ(ρ+ P )

×
{
C1∆ρ+ C2(ρ+ p)

θ

H + C3(ρ+ P )σ

+ C4[(ρ+ P )σ]′
}

(B.4)

where

C1 = 1− γ + γ′ + γ
µ′

µ
,

C2 = −γ − HH ′

4πGµ(ρ+ P )
,

C3 = 3(γ − 1)

(
1 +

µ′

µ

)
+ 3γ′,

C4 = 3(γ − 1), (B.5)

Under GR all of the Ci coefficients vanish leading to

R′
GR = −δP − (H/k2)P ′θ − (ρ+ P )σ

ρ+ P
. (B.6)

Note that the numerator of Eq. (B.6) is the total stress fluctuation in comoving gauge so

that under GR, R is generally conserved if stress fluctuations are negligible, i.e. above the

sound horizon.

Assuming µ, γ, µ′, γ′ = O(1) and the background only has small fluctuations from GR

as well, the Ci = O(1) and the main difference in MG is that even without matter stress

fluctuations the comoving curvature can evolve. However, the extra terms in R′/R are still

suppressed by (k/H)2 above the horizon as long as there are no strong cancellations in the

contributions to R. Note that even if the MG parameters evolve on a time scale much more

rapid than the expansion time, they just act as a superluminal sound speed with R′/R
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suppressed by (ceffk/H)2 with c2eff = O(µ′/µ, γ′/γ). As k/H → 0, even these cases conserve

comoving curvature. This generalizes the proof in Ref. [161] for arbitrary forms of matter

and makes explicit the connection with the horizon scale.

B.2 Boltzmann Code

The calculations in this paper employ a modified version of the Einstein-Boltzmann solver

CAMB. Unlike the treatment in the main text, CAMB uses synchronous gauge to represent

perturbations. In this Appendix we detail our modifications to CAMB that mostly extend

the MGCAMB implementation to early times and recombination.

B.2.1 Synchronous Gauge

The synchronous gauge of the cold dark matter, in the notation of Ref. [196], has two spatial

metric potentials, the curvature η and the perturbation the trace of the spatial metric h.

These are related to the Newtonian potentials by the gauge transformation

Ψ = H(α′ + α),

Φ = η −Hα , (B.7)

where α = H(h′ + 6η′)/2k2. Hence, the modified Einstein equations in synchronous gauge

are

α′ + α = −4πGa2µ

k2H [∆ρ+ 3(ρ+ P )σ], (B.8)

η − γHα′ − (γ + 1)Hα =
12πGa2µ

k2
(ρ+ P )σ. (B.9)
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The combination of these two equations gives the first equation we use to modify CAMB

Hα = η +
4πGa2µ

k2
[γ∆ρ+ 3(γ − 1)(ρ+ P )σ], (B.10)

to replace the Einstein equation for h′. Constructed out of matter density fluctuations in

synchronous gauge ∆ρ = δρ+3H(ρ+P )θ/k2 and retains the same form as when constructed

out of Newtonian gauge fluctuations while σ is gauge invariant. From this point forward in

this Appendix, all matter perturbation variables are in synchronous gauge. The synchronous

matter fluctuations obey the usual conservation laws

δρ′ + 3(δρ+ δP ) = −(ρ+ P )

(
θ

H +
h′

2

)
,

[(ρ+ P )θ]′ + 4(ρ+ P )θ =
k2

H
[
δP − (ρ+ P )σ

]
. (B.11)

These equations also apply to individual matter species in the absence of interactions. We

refer the reader to e.g. Ref. [196] for the equations for baryons and photons separately in

presence of Thomson scattering. Note that the joint photon-baryon system obeys Eq. (B.11)

which is all we require below.

For the second equation, CAMB uses the time-space Einstein equation. Its modification

can be derived from the derivative of Eq. (B.10) using Eq. (B.8,B.11)

η′ =
4πGa2µ

k2 + 12πGa2γµ(ρ+ P )

×
{(

1− 3
a2HH ′

k2

)
γ(ρ+ P )

θ

H − C1∆ρ

−C2(ρ+ P )
k2

Hα− C3(ρ+ P )σ

−C4[(ρ+ P )σ]′
}
, (B.12)

where the Ci coefficients are defined in eq. (B.5). Notice that in GR only the θ source remains
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and that this source converts Eq. (B.10) to a direct relation between h′ and δρ removing the

velocity dependence in ∆ρ.

Eq. (B.12) corrects an error in [176]. The correction term is proportional to (γ − 1)σ, so

it affects the results when both γ ̸= 1 and σ is important. At the late times the anisotropic

stress σ is very small, so the impact of this correction is limited. However, at the early times

the anisotropic stress is non-negligible, this correction has considerable influence. We also

generalize the result for time-varying equations of state which is necessary for the treatment

of massive neutrinos.

We also find some bugs in the publicly available Feb 2016 version of MGCAMB code.

The bugs will affect the massive neutrino effects and the calculation of the derivatives of

anisotropic stresses. Care should be used when employing MGCAMB in regimes where

massive neutrinos or anisotropic stresses become important. These bugs are in the process

of being fixed in the public version of the MGCAMB code [197]. On the other hand, in the

regime where MGCAMB was mostly employed in literature, for modifications of gravity at

late times, we find that such bugs have close to no effect on cosmological results.

B.2.2 Initial Conditions

Here we derive the initial conditions for cosmological perturbations in synchronous gauge

when the perturbations in each k-mode are well outside the horizon. In this section we

assume that µ and γ are constant near the initial conditions. We also assume that the

background expansion is radiation dominated with an unmodified Friedmann equation.

Since CAMB solves equations in conformal time τ in this section we switch from loga to

τ as the time variable. Under the background assumption, the relationship between the two

at the initial epoch is

τ =
2

ω

(√
1 +

Ωm

Ωr
a− 1

)
, (B.13)
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Figure B.1: The comparison of the unlensed large scale CMB temperature spectrum in
several MG example models with different transition widths relative to the GR spectrum.
Left: early time MG example models (µ∞ = 1.2). Right: late time MG example models
along the degeneracy direction (µ0 = 0.9, γ0 = 1.7). Here we also show the erroneously
large effect predicted from the inconsistent implementation of an instantaneous transition
employed in MGCAMB.

where

ω ≡ H0Ωm√
Ωr

(B.14)

with ρb + ρc = Ωmρcrit/a
3 as the sum of the baryon and cold dark matter densities and

ργ + ρν = Ωrρcrit/a
4 in units of the present critical density ρcrit = 3H2

0/8πG. Note that ω

scales τ to its value around matter radiation equality so that both kτ ≪ 1 and ωτ ≪ 1 at

the initial conditions.

Using Eq. (B.11) individually for the separately conserved photon-baryon, neutrino,

and cold dark matter fluids as well as the unmodified neutrino Boltzmann equation for

its anisotropic stress

σ̇ν =
4

15
θν +

2

15
ḣ+

4

5
η̇. (B.15)

and the modified Einstein equations, we can now solve for the initial conditions in a series
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expansion in kτ and ωτ . In general we keep the terms that are sufficient to determine the

next to leading order correction in η and ḣ following the CAMB conventions. Because ḣ is

derived from the modified equation (B.10) which involves θ we need to keep an extra ωτ

order in its initial condition relative to the GR result.

For adiabatic initial conditions

δγ = δν =
4

3
δc =

4

3
δb, (B.16)

we obtain

η

R = −1 +
15− 10µ+ 4µRν

12µ(10γ + 5 + 4µRν)
(kτ)2 + A1(ωk

2τ3),

δγ
R =

15 + 4µRν

3µ(10γ + 5 + 4µRν)
(kτ)2 + A2(ωk

2τ3),

θγ
R =

15 + 4µRν

36µ(10γ + 5 + 4µRν)
(k4τ3) + A3(ωk

4τ4),

θν
R =

15 + 4(2 +Rν)µ

36µ(10γ + 5 + 4µRν)
(k4τ3) + A4(ωk

4τ4),

σν
R = − 2

3(10γ + 5 + 4µRν)
(kτ)2 + A5(ωk

2τ3) (B.17)

with

A1 =
1

4
A2 +

5

4
A5,

A2 = −30(γ + 1) + 4(13γ − 7)µRν +
32
15(µRν)

2

µ(45γ + 15 + 8µRν)(10γ + 5 + 4µRν)
,

A3 =
1

16
A2 −

Rb(15 + 4µRν)

48µ(1−Rν)(10γ + 5 + 4µRν)
,

A4 =
1

16
A2 −

1

4
A5,

A5 =
5(γ + 1)− 8µRν

3(45γ + 15 + 8µRν)(10γ + 5 + 4µRν)
, (B.18)

where Rb = ρb/ρm and Rν = ρν/ρr given our assumption of an unmodified expansion
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Figure B.2: The CMBTT constraints on late time MG parameters with different transition
treatments from GR to MG. The darker and lighter shades correspond respectively to the 68%
C.L. and the 95% C.L. The dashed lines indicate the values of MG parameters in GR limit.
With a sharp transition the ISW effect shown in Fig. B.1 breaks the degeneracy between
parameters leading to unrealistically strong constraints. The inconsistent instantaneous
transition gives even stronger, but incorrect, constraints.

history. Together with ḣ = −2δ̇c, these also define the initial conditions for α. Note that by

definition θc = 0 and by virtue of the tight coupling between photons and baryons, θb = θγ

and σγ = 0.

The initial comoving curvature R from inflation coincides with η since synchronous gauge

and comoving gauge approximately coincide outside the horizon where the density pertur-

bations are negligible. Note that we have kept an ωk2τ3 correction to η for clarity and

completeness even though this correction does not contribute dynamically at the desired

order in either metric fluctuation and may be omitted from the code.

161



B.3 Impact of The Transition Width

In this appendix we comment on the impact of the transition width on the CMB temperature

spectrum and hence all results involving the CMBTT dataset. For the analysis in the main

text we use ∆T = 1 which we will now show leads to robust results.

In Fig. B.1, we show the result of varying this width. Around ∆T = 1, there is little

impact from varying it by factors of a few up or down. When the transition width is much

larger, ∆T > 3, the transition will start affecting the physics of recombination and the

results become highly dependent on this parameter. When the width is very small the

results are stable, but a sharp transition will introduce a relatively large effect on the CMB

power spectrum through the ISW effect, see for example the lines with ∆T = 0.05, 0.005 in

Fig. B.1. Since a transition that is much sharper than an efold would not be expected in a

model where modifications evolve on the Hubble time, this effect would cause the CMBTT

dataset to be unrealistically sensitive to the MG parameters.

Furthermore results in the literature often use MGCAMB which implements an instan-

taneous transition at the start of the MG epoch. If a MG parametrization is built to have

deviations from GR right after the transition time, MGCAMB will return inconsistent and

possibly incorrect results. The ISW effect depends on the time derivative of the Weyl poten-

tial and simply joining the GR and MG equations of motion at the transition neglects the

part of its source which is the derivative of a step, i.e. a delta function source. In Fig. B.1b,

we show the impact of this inconsistency on the CMB temperature power spectrum. Note

that unlike in Fig. B.1a, the inconsistent instantaneous solution is not the limiting case of

∆T → 0 but rather has a spuriously large ISW effect. To use MGCAMB consistently, one

must ensure that the MG functions would go back to their GR value smoothly before the

transition.

For example, in [23], the authors used MGCAMB to implement MG without demanding

that the MG parameters smoothly relax to the GR values. This leads to overly tight con-
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straints on the MG parameters. On the other hand, the parametrization used in [8] smoothly

approaches the GR limit and by the time of the transition and leads to negligible deviations

from GR so that the MGCAMB switching strategy produces consistent results.

In Fig. B.2, we show the impact on a µ0-γ0 MG model. Note that the inconsistent

treatment provides much tighter constraints, especially on γ0, than the limit of a sharp

transition. Furthermore a consistently implemented sharp transition also provides tighter

constraints than a smooth transition. For these reasons, we implement the smooth ∆T = 1

transition for the analysis in the main text.
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