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ABSTRACT

Condensed matter physics rests its foundation on the notion of universal phases of matter.

As it is not possible to understand the detailed motions of large collections of particles by

tracking them individually, we must rely on the fact that, much of the time, these details

are irrelevant to a comprehensive understanding of a macroscopic system. Rather, we must

understand the collective behavior of materials via a small set of quantities which summarize

this information. For topological phases of matter, we can understand their most basic

properties from information called “topological data.” This topological data describes the

phase of matter of these systems and carries with it a broad array of information about their

behavior. Previously, the nature of this data was broadly understood, but in most cases was

lacking a concrete interpretation in terms of the microscopic details of these systems.

The goal of this thesis is to resolve this issue by giving concrete definitions of the topo-

logical data in terms of a small number of microscopic properties of these systems. These

definitions serve not only as a tool to analyze these theories, but also bridge a conceptual

gap between the abstract mathematical understanding of these phases of matter with the

concrete physical models that physicists study. This thesis achieves this goal for two types of

(2+1)D topological phases of matter: intrinsic topological phases and symmetry protected

topological phases (SPTs).

Intrinsically topologically ordered phases, exemplified by the fractional quantum Hall

states, are characterized by long range entanglement. These systems have particle-like ex-

citations known as anyons and their properties are summed up by information called the

anyon data. The anyon data is the topological data associated with these theories, with the

two most subtle pieces of data being called the F and R-symbols. In the first part of the

thesis, I present microscopic definitions of all of the anyon data and then proceed to calculate

the F and R-symbols in a variety of exactly solvable models. Furthermore, I show that these

definitions are consistent with the known mathematical structure of the anyon data.

xv



Symmetry protected topological phases, exemplified by topological insulators, do not

have long range entanglement, but are non-trivial because of their symmetries. These phases

are characterized by robust modes which propagate along their boundary. The fact that the

bulk ensures this non-trivial property of the boundary is a consequence of the bulk-boundary

correspondence. In the second part of this thesis, I show how to make this correspondence

precise by defining the bulk topological data using microscopic boundary theories. I do this

for both bosonic and fermionic SPTs in 2+1 dimensions. I show how to implement these

definitions in a variety of examples and, in particular, show that these definitions reproduce

the known data for the (2+1)D topological insulator.
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CHAPTER 1

INTRODUCTION

1.1 What is this?

“What is this?” This question has been one of the guiding motivations of science since its

foundation.

Implicitly, this question has two parts. There is the question itself and another question

which precedes it invisibly: “What is the framework in which an answer can be given?”

For example, it would not make much sense to tell an ancient Greek philosopher that the

recently hypothesized atom was made of quantum fields since they didn’t have a framework

for quantum field theory. In order to describe the evolutionary tree of a frog, we would need

to first have a notion of evolution. Once we have a framework for the study of a thing,

we may ask our original question, “What is this?” and have a hope of the answer being

satisfactory.

One of the primary achievements of the last century and a half of physics has been

to answer this question with increasing detail for the materials we see around us in terms

of atoms and their interactions. For example, although we tend to take it for granted,

everything1 we interact with on a day-to-day basis is made of a large collection of atoms.

Technologically, it has been extremely important to understand the collective behavior of

these atoms, especially as it relates to the motion of their electrons. Understanding materials

at the quantum level has been the basis of the field of hard condensed matter physics.

One class of exotic materials are the so-called “topological phases” of matter. Condensed

matter physicists and mathematicians have created an extensive framework to classify these

phases over the past few decades and to understand their properties. So we are now aptly

able to answer the “What is this?” question when given a physical system in a topological

1. By “everything” I mean all of the matter. I am excluding photons.
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phase of matter. The answer to this question is the subject of this thesis.

However, before we discuss topological phases of matter, we need to understand some of

the background of condensed matter physics. When we look out at the world, we see a lot

of stuff. It is then natural to ask the titular question “What is this?” when we see all this

stuff around us. One of the major scientific philosophies that we use to answer this question

is reductionism. This mode of thinking helps us to break things apart to understand what

constitutes all this “stuff.” This led to the discoveries of elements, the atom, subatomic

particles, and much more. Condensed matter physics answers this question another way

and takes the philosophy of emergence. Given the properties of many small objects which

constitute some “stuff” (or simply given that the stuff is made up of many small objects),

can we understand what this stuff is and how it behaves?

Condensed matter physics is primarily concerned with understanding physical systems

which are composed of many particles, such as a material. One of the crowning achievements

of condensed matter physics is the understanding of different phases of matter like solids,

liquids, and gases and understanding the phase transitions between them.

In condensed matter physics, we understand a phase more generally as a collection of

systems which exhibit similar behaviors. For example, even though there are differences

between oil and water, they are both liquids. On the other hand, when one changes the

conditions under which a substance exists, such as by increasing the temperature, its behavior

can change wildly. This substance is now described by a different phase of matter and has

undergone a phase transition.

1.2 The Landau Paradigm

The Landau paradigm of phases and phase transitions is based on symmetry. As an example,

we will consider the ferromagnetic phase transition. To do so, we will consider a toy model

of a ferromagnet. We can imagine a ferromagnet as being made up of many smaller magnets
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called domains.2 Since magnets like to align with one another, the entire system will have

a tendency to have all of the domains align in the same direction. However, if we heat up

the system enough, the domains will orient themselves randomly because the system will

become highly entropic.

To describe the ferromagnetic phase transition, let’s consider what happens when we

cool down the system. To begin with, the domains have orientations in random directions.

However, as we cool, the domains will start to align in larger and larger patches. At this

point, there will still be many patches pointed in random directions, with no preferred

direction on average. Once the system is cool enough, it undergoes the ferromagnetic phase

transition and almost all of the domains will be aligned in the same direction.

At this point, we must recognize an oddity. Originally, the heated system had no pre-

ferred orientation. This system has “full rotational symmetry.” However, by the end of the

cooling process, the system picked a particular direction as special. Even though the rules of

the universe did not ordain a particular direction and the rules are still fully rotationally sym-

metric, the state of the system still picks one direction. This is what is called “spontaneous

symmetry breaking.”

Spontaneous symmetry breaking is the corner stone of the Landau paradigm of phase

transitions. That is, we start with a system with some symmetry where the state of the

system obeys that symmetry. We then change the parameters of the system, often temper-

ature, so that while keeping the same symmetric constituent rules of the system, the state

itself breaks the symmetry. This story dominated the field of condensed matter physics for

decades. It was hugely successful and gave us a seemingly complete description of phase

transitions. However, systems eventually arose which could not be explained by Landau’s

paradigm.

2. It is important to note that these “smaller” magnets are not the spins of the particles in the system.
Magnetism is induced by the motion of electrons caused by the exchange interactions between the electrons
which are a consequence of the Pauli exclusion principle.
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1.3 Beyond Landau’s Paradigm

The discovery of fractional quantum hall states marked a dramatic change in the way we

think about phases of matter. In 1982, Tsui, Störmer, and Gossard published a letter

reporting their recent experiments on 2D sheets of GaAs − GaxAl1−x heterojunctions in

low temperatures in the presence of high magnetic fields [136]. This experiment marked the

beginning of the study of the Fractional Quantum Hall Effect.

In this experiment, there was a strong magnetic field oriented in the direction perpen-

dicular to the sample. A voltage difference was then applied to two ends of this sheet. The

(non-quantum) Hall Effect was a known, century old phenomenon at the time which says

that, in such a system, there will be a current due to the magnetic field which flows in a

direction perpendicular to the voltage difference in addition to the normal current which

flows in the direction of the voltage difference. This perpendicular, or transverse, current is

proportional to the difference in the voltage across the sample with the Hall resistivity ρxy

being the ratio between these quantities. The standard Hall Effect prediction is that ρxy is

proportional to the magnetic field. However, Tsui, Störmer, and Gossard found that their

results were in stark contrast with this prediction once the magnetic field was strong enough

such that there were three quantized magnetic fluxes per electron. It was found that the plot

of Hall resistivity ρxy vs. the magnetic field B leveled out at this point, which is referred to

as the ν = 1/3 filling fraction. This value of ρxy seemed to be robust to small changes in the

magnetic field strength. This is the kind of robustness that was normally associated with a

phase of matter. However, there was no apparent symmetry being broken when perturbing

away from this plateau, and thus, Landau’s paradigm of phase transitions didn’t seem to

play a role.

Two years later, in 1983, an explanation was offered by Robert Laughlin in another letter

for the so-called “1/3” effect [82]. Laughlin wrote down his famous wavefunction which

described the state of the electrons in that mysterious experiment. This state represented
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a totally new phase of matter. In fact, if instead of having a filling fraction of ν = 1/3,

we had ν = 1/m for any odd integer m, we would have yet a different phase of matter.

The transitions between these phases of matter did not seem to have anything to do with

symmetry. Rather, the phases were distinguished by the Hall conductance (σxy = 1/ρxy)

which was quantized and took on the specific value 1
me

2/h, where e is the charge of an electron

and h is Plank’s constant. Unlike the Landau paradigm where the phases were marked by

order parameters, these phases were now marked by some special discrete number 1/m.

In addition to explaining this phenomenon, this paper also showed that this system could

have emergent localized excitations with a fractional charge of 1/m. Although it was not

realized at the time, these quasiparticles also had fractional statistics making these particles

a generalization of the classification of all particles into bosons and fermions. Eventally, these

quasiparticles would be called anyons [158] which had actually been previously imagined by

Jon Magne Leinaas and Jan Myrheim in 1977 as a purely theoretical exercise [83].

The standard description of states with multiple identical particles, which persists to the

present day, relies on labeling the various particles in the system with indices and insisting

that the observable characteristics of the wavefunction are invariant to the permutation of

the particle indices. However, interchanging these particle labels has no physical meaning

and so this invariance “at most reflects the redundancy in the notation” [83]. Disturbed

by this, Leinaas and Myrheim set out to put the foundations of several-body quantum

mechanics on a more firm foundation. At the heart of their solution was the realization

that a system of two identical particles in n dimensional Euclidean space could be described

by the “relative space” r(n, 2) whose coordinates were the center of mass and displacement

vector x between the two particles. They then considered swapping the two particles via

a process of parallel transport. From this, they were able to recover the classic result that

in three spatial dimensions and greater, the result of swapping two particles results in the

wave function picking up a phase of ±1, corresponding to two identical bosons or fermions,
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respectively. However, in one and two spatial dimensions, they found that more possibilities

were allowed because the space r(n, 2) minus the point x = 0, where the particles’ positions

are coincident, is no longer simply connected. In these cases, swapping the particles could

result in the wavefunction changing by some other complex phase eiϕ which gives these

particle a character that interpolates between bosons and fermions. In 1982, Frank Wilczek

would dub these particles “anyons” due to the fact that their exchange statistics could be of

any phase eiϕ [158]3. Although the Leinaas-Myrheim view that the statistics of these anyons

could be seen via parallel transport was revolutionary, it wouldn’t be until 2003 that there

was a precise, microscopic definition of these statistics in physical systems [86]. Furthermore,

the statistics from braiding two distinct anyons around one another was not precisely defined

in general condensed matter systems until 2020 in the paper corresponding to Chapter 3 of

this thesis. In this chapter, we discuss the precise definitions of all of the data which describe

systems with anyons.

Although Laughlin did not cite Leinaas and Myrheim or Wilczek, Laughlin’s quasipar-

ticles that he found in describing the wavefunction of the Tsui, Störmer, and Gossard ob-

servation were actually an example of the anyons that Leinaas and Myrheim had imagined.

Additionally, Wilczek’s idea that these anyons could be constructed as “flux-tube-particle

composites” would later turn out to be the phenomenon that gives rise to anyons in the

ν = 1/3 FQH system [159, 158, 4].

1.4 Topological Quantum Field Theory

With the discovery of the Fractional Quantum Hall states in the early 80’s, the field was

in need of a framework with which to understand these results. In 1989 and 1990, there

3. Wilczek intended for this to be a joke since, technically, every particle is an anyon. Some anyons
just happen to be bosons or fermions. We will see that there is actually a meaningful distinction between
“trivial” bosons and fermions and those that are topologically interesting and are usually labeled as (non-
trivial) anyons.
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was a series of influential theoretical works which helped find that framework. In September

of 1989, Edward Witten published his famous paper on the relationship between the Jones

polynomials of knot theory and quantum field theory [161]. One of the implications of

this paper for physics was the invention of Topological Quantum Field Theories (TQFTs).

These theories enjoyed general covariance, but unlike other theories with this property, these

theories did not depend on the metric. Therefore, the partition function of these theories

depended on topology rather than geometry. These topological field theories would later be

connected with the theory of the Fractional Quantum Hall Effect.

One short month after the publication of Edward Witten’s paper on Jones polynomials, in

October 1989, Xiao-Gang Wen submitted his paper, which would be published in 1990 [148],

and helped to establish the foundations of the modern notion of intrinsically topologically

ordered phases [15, 23]. In this paper, Xiao-GangWen considered the role of topology in what

he called “rigid states.” Rigid states have no gapless excitations. One of the characteristics

of these theories is that their ground state denereracy on various closed manifolds helps us

to probe the theory. In particular, the ground state degeneracy of these theories seemed

to be highly robust to perturbations and could be used to distinguish between different

phases of matter which he called “topological orders.” However, Wen realized that this

was only the beginning of the story. He considered the space of theories of rigid states

where one varies the parameters of these theories. This is an example of a moduli space.

Wen’s insight was that studying the non-abelian gauge structure on these moduli spaces

revealed a significant amount of information about these rigid states. This included the

braiding statistics of the quasiparticles found in the Laughlin state. Wen would later consider

other pieces of topological data found on the edge states of these systems arising from the

“collective dancing” of the two dimensional interior of a material [150]. Furthermore, it was

seen that these theories could be generated on the lattice from the topological data [88]. In

this thesis I will reverse this task and show how to define this topological data in terms of
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microscopic models.

The topological data that describes intrinsic topological phases is usually called an “anyon

theory” which is a type of mathematical object from category theory (see Sec. 2.2 for a brief

review). I will not describe this object in full, but I will take the time here to review some of

references that introduced this category theoretic language into topological physics. In 1988

and 1989, Gregory Moore and Nathan Seiberg published a pair of papers which introduced

some of the categorical structures we see in anyon theories [103, 104]. In Appendix E of his

2006 paper [74], Alexei Kitaev gave an exposition of the mathematical structure of anyon

theories in terms of category theory and cited a variety of more mathematical resources

which helped develop the formalism of anyon theories [116, 41, 141, 138]. Chapter 9 of John

Preskill’s lecture notes are a resource for the structure of anyon theories in a more physical

language [112]. Xiao-Gang Wen’s review in Ref. [157] gives an overview of the terminology

used to label various phases and helps to disambiguate the terms used in the literature.

1.5 Symmetry after Landau

Although I have just presented a story about how phases of matter can be described without

invoking symmetry, there is a parallel story to be told about how symmetry takes on a new

character in light of topology. Rather than invoking symmetry for the purposes of symmetry

breaking, we may invoke it in the context of topological phases of matter by asking, “What

phases exist if we have symmetry, but insist on not breaking it?” This is the fundamental

question to which symmetry protected topological phases are the modern answer. The

history of these phases of matter starts in roughly the same period as the intrinsic topological

phases of matter. However, unlike topological order, the history of symmetry protected

topological phases starts with theoretical discoveries, namely, topological insulators [66, 43]

and the AKLT [2, 3] analysis of the Haldane phase [50, 51].

Although there were many other theoretical developments along the way [114, 53], we
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will now turn our attention to the work of Chales Kane and Eugene Mele from 2005 [66]

and Liang Fu, Chales Kane, and Eugene Mele from 2007 [43] where they constructed the

first topological insulators and the invariants which could distinguish topological insulators

from trivial (atomic) insulators. Importantly, these theories are time reversal invariant which

distinguished them from the previously known Chern insulators. Fu, Kane, and Mele came up

with invariants that could distinguish between the two possible phases with this symmetry

in both (2+1)D and (3+1)D4. In the (2+1)D case, they studied graphene and defined a

quantity akin to the Chern number which is an integer used to classify Chern insulators via

band theory. Due to the time reversal symmetry which is inherent to topological insulators,

however, this integer only had meaning modulo 2 in this context. This allowed them to

distinguish the trivial insulator from the topological insulator. This work helped us to

understand the classification of non-interacting theories where band theory approaches were

applicable. The interacting generalization of this story would be discovered years later.

An example of an SPT which predates the topological insulator is the AKLT (Affleck-

Lieb-Kennedy-Tasaki) chain which was inspired by work from F. Duncan Haldane from 1982.

In this work, Haldane realized that the continuum limit of an antiferromagnetic 1D chain of

integer (as opposed to half-integer) spins could be mapped to a non-linear sigma model with

O(3) symmetry [51]. This, he argued, showed that there was a finite energy gap between

the ground state and the elementary excitations of the theory. Additionally, this implies

that correlations in the ground state decayed exponentially. This was highly surprising since

Hans Bethe had famously shown that in the spin-1/2 case [11], there was no gap and there

was power-law decay of correlations in the ground state. At first glance, one might guess

that a state with these properties is just an atomic insulator, which was well-understood at

that point. However, it would later be realized that this is the first example of a symmetry

protected topological state.

4. In the (3+1)D case, Ref. [43] discusses four phases. However, as they mention, there are only two
phases of “strong” topological insulators which don’t require translation symmetry.
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After this work by Haldane, Ian Affleck, Elliott H. Lieb, Tom Kennedy, and Hal Tasaki

(AKLT) published an exactly solvable model which offered an explanation for Haldane’s

observation [2, 3]. Although they analyzed 1D spin chains of arbitrary spin s, their insight

into Haldane’s result can be summarized in terms of their analysis of their model of the spin

1 chain which would later be called the AKLT model. They were able to rigorously prove

that this system was gapped and that the correlation between spins decayed exponentially

with distance.

AKLT conjectured that the ground state of their model served as a good variational

ground state for the spin 1 antiferromagnetic 1D chain which was studied by Haldane.

Furthermore, they generalized the model into a 1 parameter famly of models and constructed

a phase diagram which exhibited a phase transition without symmetry breaking. These

models all had SO(3) symmetry and it was suggested that almost all of these models were

gapped. However, AKLT knew that there was a gapless model in this phase diagram which

had been solved using the Bethe Ansatz. This singular point represented the gapless critical

point separating two gapped phases with the AKLT side of this transition representing the

topologically non-trivial phase. This would later be recognized as an example of a bosonic

SPT.

In 2010, multiple concurrent papers generalized the AKLT phase diagram and the clas-

sification of topological insulators by inventing, at least in (1+1)D, the notation of SPTs,

which often stands for Symmetry Protected Topological phases [23, 40, 110]. However, in

many of Xiao-Gang Wen’s papers, he refers to these as Symmetry Protected Trivial phases

and the reason for this is very informative. If we think back to the analysis by Haldane and

AKLT, the correlations in the system decayed exponentially. This is also the case in the

topological insulator. So, in the sense of intrinsic topological order, these phases are trivial.

That is, these states can be adiabatically deformed into the product (atomic insulator) state

without closing the energy gap. However, these systems were non-trivial in that they could
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not be connected in this way to the product state without breaking the symmetry or closing

the gap. For instance, in the AKLT phase diagram, the two gapped phases were separated

by a gapless model. The invention of SPT order now had generalized the idea that there were

phase transitions with symmetry which did not require symmetry breaking. Rather, between

two distinct phases, the closing of the energy gap while preserving the symmetry represented

the critical point. In Refs. [26, 120, 28], it was proposed that these phases, at least in the case

of bosonic phases of matter, such as the AKLT model, could be classified in any dimension

by a mathematical formalism called group cohomology. In particular, each phase in d+1

dimensions with a symmetry group G is identified with a function ω : Gd+1 → U(1), up to

some equivalence relations and with some restrictions, called a cocycle. They showed that

a lattice model could be constructed from each distinct cocycle. In their 2011 paper, it was

shown how to extract the cocycle from the microscopic models they generated in (2+1)D.

Additonally, in 2014, Dominic Else and Chetan Nayak showed how to calculate the cocycle

in (2+1)D in a large class of models and in higher dimensions for a more limited class of

models [39]. In Chapter 4, we show how to calculate this cocycle from the boundary theory

of (2+1)D bosonic SPTs in any phase. We also generalize this story to fermionic SPTs in

(2+1)D in Chapter 5.

1.6 Purpose of this thesis

The developments over the past four decades have left us with a very good understanding

of the classification of topological phases of matter in (2+1)D. For each type of topologi-

cal phase (anyon theories, symmetry protected topological phases, and symmetry enriched

topological phases), we have a complete (or nearly complete) set of topological invariants

which distinguish the various associated phases of matter. However, while many of these

invariants are associated with physical processes, such as the braiding of anyons, there had

been relatively little work on the precise definitions of these data in physical systems. In
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particular, there was no set definition of the anyon data in which could be applied to a given

microscopic model, say on the lattice. The goal of this thesis is the following: When given a

microscopic model of a topological phase of matter how can we answer the question “What

is this?” We answer this question for two types of (2+1)D topological phases: (i) intrinsic

topological phases with anyon excitations and (ii) symmetry protected topological phases.

Intrinsic topological phases in (2+1)D are characterized by:

1. Anyon Types M = {a, b, c, ...}

2. Fusion Rules a× b =
∑

c∈M
Nab
c

3. R-Symbol

4. F -Symbol

The anyon types are the various equivalence classes of excitations which cannot be related

to one another by using local operators. When two anyons are near each other, we can ask

what anyon type is represented by the sum total of the pair of anyons. We can think of

this as two anyons being fused together and the result is described by the fusion rules. The

R-symbol describes the non-trivial statistics associated with braiding anyons around one

another. Finally, the F -symbol describes how to relate the various states with three anyons,

say with types a, b, c, to one another. In Chapter 3, we will show how to identify these four

pieces of data in any given microscopic model. A definition of the R and F -symbols are the

main focus of this chapter. The text in this chapter is taken directly from Ref. [69]

The next chapter is focused on (2+1)D bosonic SPT phases. This chapter is taken from

the paper Ref. [70]. Bosonic SPT phases are classified by group cohomology. I review this

classification in Sec. 2.3.1. To summarize, if the symmetry group of the theory is G, then

there is a function called a cocycle ω : G×G×G → U(1) that characterizes each phase of

matter [28]. In Ref. [26], the authors showed how to extract this datum in the context of

tensor network theories. Later, Ref. [39] showed how to extract this data on the boundary of
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certain SPTs by considering the action of the symmetry on the boundary. However, neither

of these works defined this cocycle in the case of general anti-unitary symmetries. In Chapter

4, we show how to use the F -symbol formalism from Chapter 3 to define the cocycle ω. In

particular, we consider the G-valued domain walls on the boundary which fuse according

to the group law and compute their F -symbol. This method works not just in the case of

unitary symmetries, but also for anti-unitary symmetries. Additionally, we show that any

time the procedure in Ref. [39] can be used, our method can also compute ω and our result

matches with theirs.

In the final substantive chapter, Chapter 5, we show how to define the data in (2+1)D

fermionic SPT phases5. This chapter is from a portion of my upcoming work with Michael

Levin Ref. [71]. The data that describes fermionic SPT phases is reviewed in Sec. 2.3.2.

By providing a precise and careful definition of the topological data in microscopic models,

we have established a program of research which seeks to bring the physical and mathematical

views of topological phases of matter into closer connection. This is the aim of this thesis.

5. We exclude the case where there are Majorana degrees of freedom on the boundary in this thesis. We
will explore this case in our upcoming work [71].
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CHAPTER 2

REVIEW OF TOPOLOGICAL PHASES OF MATTER

2.1 Entanglement

Entanglement is a way of describing shared information between different parts of a quantum

system. The most basic example of entanglement is a pair of spin-1/2 particles in a state

called an Einstein-Podolsky-Rosen (EPR) pair. This state is of the form

|EPR⟩ = 1√
2
(| ↑⟩| ↓⟩ − | ↓⟩| ↑⟩) . (2.1)

In this state, if we measure the first spin to be up, then the second spin will be down. Like-

wise, if we measure the first spin to be down, the second will be up. These two possibilities

occur with probability 1
2 , but the probability of the spins being in opposite spin states is 1.

So, even with the randomness inherent in quantum systems, there can be extremely strong

correlations in entangled systems.

Topological systems use entanglement to create large scale effects by imposing local rules

via a local Hamiltonian. In particular, topological systems have a variety of interesting

phenomena such as robust edge modes, fractionalized charge, and bulk excitations which

cannot be destroyed locally.

2.2 Intrinsic Topological Order

We say that a system is intrinsically topologically ordered if it is (i) gapped and (ii) long range

entangled. I will now describe these two conditions. Gapped systems are quantum systems

in which there are a finite number of ground states and there is a “gap” in the spectrum

between the ground state energy and the energy of the first excited state. Importantly, we

require that both of these statements are true even in the limit as the system size grows to
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infinity.

Secondly, long range entangled systems are systems whose ground state is entangled and

there is no way to continuously deform the Hamiltonian such that the ground state becomes

a product state without closing the gap.

Formally, we define the long range entangled property of a topological system by first

defining what we mean by short range entanglement (SRE). Let H be a local gapped Hamil-

tonian on the Hilbert space H. We can extend this system by adding ancillary qubits. This

gives us a Hilbert space Htot = H ⊗ Hanc where we impose that the qubits which make

up Hanc are associated with positions in space for the purpose of locality. We also have a

Hamiltonian Htot = H ⊗ Ianc where Ianc is the identity operator on on the ancillary Hilbert

space. Define an interpolating Hamiltonian

G : [0, 1] → Ham (2.2)

where Ham is the space1 of all gapped Hamiltonians on Htot and G is continuous. We say

that the original system with Hamiltonian H is short range entangled if we can define an

ancillary Hilbert space Hanc and interpolating Hamiltonian G such that that G(0) = Htot

and G(1) = Hprod where Hprod is a Hamiltonian whose ground state is a product state2.

Thus, a long range entangled system is one for which such an interpolation to a product

state doesn’t exist. We call these systems intrinsically topologically ordered.

1. By calling Ham a space and invoking a notation of continuity, I am implying that it has a topology.
In lattice models with a finite dimensional Hilbert space on each site, I am taking it to be a topology such
that, when projected onto the operator space on any finite region of the lattice, it reproduces the standard
topology. Any further discussion of functional analysis would take us beyond the scope of this thesis.

2. The usual notion of product states for bosonic systems can be suitably generalized for fermionic systems.
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2.2.1 Abelian Anyon Theories

The definition of long range entanglement naturally lends itself to a definition of equivalence

classes of distinct topological phases. In particular, we say that two gapped systems are in

the same topological phase if we can interpolate between the two systems without closing

the gap using ancillary qubits and an interpolating Hamiltonian. It has been one of the

major achievements of condensed matter theory to create a classification for a large class of

the intrinsic topological phases in (2+1)D. This classification is achieved by distinguishing

theories by the properties of their anyons. The collection of these properties is called an

anyon theory [74, 112].

Anyons are excitations in intrinsically topologically ordered systems. They can be thought

of as a generalization of the notion of bosons and fermions. For instance, if we consider two

identical bosonic excitations, we can swap them by moving them in space such that their

locations are exchanged. The defining property of bosons is that the wave function should

remain invariant under this change. On the other hand, if we swap two fermions, the wave

function should change by ψ → −ψ. Swapping anyons, in general, can result in any phase

change ψ → eiθψ. This phase is called the “self-statistics” and are a characteristic property

of each type of anyon. We will see that anyons actually have many interesting properties that

distinguish them from bosons and fermions. In fact, in perhaps the most famous example of

a solvable topological model, the toric code, the anyons actually have self-statistics that look

like bosons and fermions. However, if we treated the particles that look like bosons in this

point of view as bosons, then we would find that two of these “bosons” could fuse together

to look like a fermion. This is a tell-tale sign that anyons are far more exotic than bosons

and fermions, even when their statistics match those of bosons and fermions.

The classification of anyon theories says that for any two theories in the same intrinsic

topological phase, these theories have anyons which are equivalent. The converse is still a

conjecture, although it is widely believed to be true.
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At this point, I will introduce the rough notion of an “abelian anyon theory.” Anyon

theories are comprised of four pieces of data which I will explain shortly:

1. Anyon Types M = {a, b, c, ...}

2. Fusion Rules a× b = c

3. R-Symbol R : M×M → U(1)

4. F-Symbol F : M×M×M → U(1)

The anyon types are the excitations of the system which cannot be destroyed by a local

operator. Additionally, an anyon of type “a” cannot be transmuted into another anyon type

“b” by any local operator. For example, in a ν = 1/3 Fractional Quantum Hall (FQH)

system, there are two non-trivial anyons [82]. The first non-trivial anyon of type t has

a charge of 1/3. Since the total charge of the system is an integer, there is no way to

annihilate one third of a charge or turn it into a 2/3 charge which we will call t2; we can

only move it around. There is also an anyon with a charge of 2/3 which can be thought of

as two of the first type of anyon. There is also the trivial anyon which is included in M , but

can be thought of as the absence of an anyon. Its meaning will become more clear in the

following paragraph where I describe the fusion rules.

The fusion rules tell us how to combine two nearby anyons into one anyon. That is,

if we consider a state with two nearby anyons, we can use local operators to bring these

two anyons together and we can assign an anyon type to the resulting composite excitation.

We denote the fusion of anyons of type a and b into an anyon of type c by a × b = c. In

the ν = 1/3 Fractional Quantum Hall example, we have the fusion rule t × t = t2. This

corresponds to fusion two anyons of charge 1/3 into one of charge 2/3. The fusion rules also

give meaning to the “trivial” anyon in M. The trivial anyon, which we will call 1, has the

fusion rules 1× a = a× 1 = a for any anyon a.
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The R-symbol describes the most well-known property of anyons. This property is that

exchanging two identical anyons can result in a change to the wave function which is not

just a multiplication by ±1. Instead, the process of exchanging two a anyons results in a

complex phase of R(a, a) being applied to the original wave function. However, we will see

that this interpretation of the R-symbol is actually too naive to be used as is. For instance,

the t anyon in the ν = 1/3 FQH state, is expected to have R(t, t) = ei2π/3. However, in

the presence of an additional magnetic field, we would also accrue an Aharanov-Bohm phase

related to the flux enclosed by the area encircled by the two t anyons. This is an indication

that we must be more careful with the definition of the R-symbol. We will present the

solution to this problem in Chapter 3, which was first discovered in Ref. [86]. So far, we

have only described R(a, a) which describes the exchange statistics of a. However, there is

an interpretation of R(a, b) as a half braid where as R(a, b)R(b, a) can be seen as the phase

accumulated by braiding b completely around a. To be more specific, consider one process

where we take an anyon of type ab and split (the opposite of fusion) it into anyons of type a

and b at positions x and y, respectively. We can compare that to a state where we split ab

into b and a at x and y and then exchange the two anyon positions so that we again have

a and b at x and y, respectively. R(a, b) is the phase difference between these two states.

Again, we will examine the details of this problem in Chapter 3. Unlike the self-statistics,

however, the microscopic definition of this datum was previously unknown.

Lastly, we have the F -symbol, the most subtle piece of anyon data. Like the R-symbol,

it is a complex phase represented by a physical process. The fusion of anyons is associative.

This means that (a× b)× c = a× (b× c). If we consider fusion as a physical process, we can

fuse a and b using a local operator, and then fuse the resulting anyon with c using another

local operator. We can also consider a state where we fuse b and c and then fuse the result

with a. Comparing these states, we find that they are the same, up to a complex phase.

This phase is called the F -symbol. However, just like the R-symbol, we must take care to
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define the F -symbol in a way that is not ambiguous. This is described in Chapter 3.

These four pieces of data describe an abelian anyon theory. As I mentioned previously,

if we consider two physical systems with different anyon data, then we know that they must

be in different topological phases of matter. The main theme of Chapter 3 will be to show

how to extract this data from a given physical model in a well-defined way.

2.2.2 Non-Abelian Anyon Theories

In the previous subsection, I described the data in abelian anyon theories. These are called

abelian theories because they often arise from abelian gauge theories. However, there are

also non-ablian anyon theories which often come from non-abelian gauge theories. I will now

describe the four pieces of data for non-abelian anyon theories. There is no change to the

notion of anyon types, so we will proceed right to the description of the fusion rules.

In non-abelian anyon theories, the fusion of anyons a and b no longer has a unique

outcome. To describe this precisely, let’s compare two states in a given theory, each with

an anyon a at the point x and an anyon b at the point y which is many correlation lengths

away from x. We will enforce that the local density matrices of these two states are identical

in any simply connected region containing at most one of these two anyons. Naively, we

would expect that these two states are the same. However, in non-abelian anyon theories,

it is possible for these two states to be different. It is possible that in these two seemingly

identical states, the fusion of the two anyons yield different results. We can measure this by

braiding another anyon around these two anyons in each state and comparing the braiding

statistics (which are still well-defined in non-abelian anyon theories, as we will see).

In addition to the fusion of anyons not having a unique outcome, there is additional

non-local data being stored in states with two anyons. Consider the same set up as before,

where we have two states which are locally distinguishable, each with anyons a and b which

are well-separated at positions x and y, respectively. This time, however, we will impose
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that in both states, these anyons fuse into some anyon c. Even in this case, our two states

might not be identical. There is additional non-local information being stored between our

two anyons. In particular, there is a subspace spanned by all such states with dimension

Nab
c . Let’s call this space V ab

c . We then denote the fusion rules by

a× b =
∑
c∈M

Nab
c c (2.3)

where Nab
c = 0 if a and b cannot fuse into an anyon of type c. Although these anyons are

called “non-abelian,” we still have

a× b = b× a

Nab
c = Nba

c (2.4)

In the following paragraphs, we will see how Nab
c > 1 changes the R and F -symbols.

In the case where a× b = c, the R-symbol R(a, b) has the same definition as the abelian

case. However, it may be that there are multiple possible results for the fusion of a and

b or it may be that Nab
c > 1 for some c. In this case, we will label the R-symbol as Rab

c .

However, now, Rab
c is not just a complex phase; it will be a unitary matrix of dimension Nab

c .

Let’s consider the following scenario to motivate why this might be. If we have a state with

anyons of type a and b, then even when a and b fuse to a particular anyon c, there are still

Nab
c different states distinguished by non-local information. If we braid the b anyon around

the a anyon, it is possible that we end up in a different state in V ab
c than we started in.

Ensuring that this transformation preserves the magnitude of the state, this process must be

described by an Nab
c ×Nab

c unitary matrix. This is the matrix Rba
c R

ab
c . This is not a proof,

but it does lend credence to the idea that Rab
c should be a unitary matrix of dimension Nab

c .

Now, let’s consider two processes where we split an anyon of type c into anyons of type a

and b: (i) split c into a and b at positions x and y, respectively; (ii) split c into a and b at
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positions y and x, respectively, and then swap their locations so that a is at x and b is at y,

just as in (i). In the first process, we are considering a state in the subspace V ab
c . Let’s take

this to be the νth basis state of this space. The second process starts by splitting c into the

anyons b and a so that we are in the subspace V ba
c . Let’s take this state to be in the µth

basis state of this space. The anyons b and a are then exchanged so that a and b are in the

same position as in the first process. The inner product between these two states gives the

complex number
(
Rab
c

)µ
ν
.

Similarly to the R-symbol, the F -symbol will also be promoted to a matrix. In particular,

we will consider the following two processes where we start with anyon an anyon of type f

and split it into anyons of type a, b, c: (i) split anyon f into d and c and anyon d into anyons

a and b; (ii) split anyon f into a and e and anyon e into anyons b and c. We will use these two

processes to define the F -symbol F abc
def . As a matter of accounting, we now need to consider

the number of states with anyons a, b, c at fixed points in space. By considering all ways to

perform the two processes described, consistency requires that

∑
d∈M

Nab
d Ndc

f =
∑
e∈M

Nbc
e N

ae
f (2.5)

Physically, when we split f into a, b, c, in the first process, we have to choose an intermediate

state in V dc
f and then a final state which puts the a and b anyons in V ab

d . We will choose

the νth basis state of V dc
f and the µth basis state of V ab

d . In the second process, we must

choose an intermediate state in V ae
f and then a final state which puts the b and c anyons

in V bc
e . We will choose the λth basis state of Vae and the κth basis state of V bc

e . The inner

product of the final state in these two processes is the complex number
(
F abc
def

)κλ
µν

.

In Chapter 3, Section 3.6, we will show that a microscopic definition of this non-abelian

anyon data is actually just as simple as defining the anyon data microscopically in the abelian

case.
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2.3 Symmetry Protected Topological Phases

Symmetry protected topological phases of matter are gapped theories which are trivial in

the sense of intrinsic topological order, but are symmetry protected. In this chapter, I will

describe what I mean by this statement as well as provide some basic background for these

theories and their status as non-trivial topological phases.

In the definition of intrinsic topological phases, we defined long range entangled systems

as those which cannot be continuously connected to the trivial system without closing the

gap. Short range entangled systems are those which are not long range entangled. Sym-

metry protected topological phases are a case of short range entangled systems which are

interesting. In particular, we define a symmetry protected topological phase as one that is

short range entangled, but cannot be continuously connected trivial state without breaking

the symmetry. Hence, these systems are “symmetry protected” from being totally trivial.

One famous example of a symmetry protected phase is the topological insulator. This is

a short range entangled system which is protected by time reversal and charge conservation

symmetries. In (2+1)D, we can detect the non-trivial nature of this system by counting

the number of edge modes in this system. It turns out that trivial insulators with these

symmetries have 0 mod 4 edge modes, but topological insulators have 2 mod 4 edge modes.

This is a band theory approach to detecting and classifying non-trivial SPTs, which means

that such types of analysis can only work in non-interacting fermion theories. I will now

introduce the classification of these theories in the case of interacting bosonic and fermionic

SPTs.

2.3.1 Classification of Bosonic SPTs

In a bosonic SPT, we constrain our local degrees of freedom to be bosonic. As a consequence

of this notion of locality, the operators which we define to be local are fermion parity even.

In the case of fermionic SPTs, this constraint will be lifted and will give rise to a different
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and rich classification of SPTs. For now though, we will stick with the bosonic case.

Although there is a rich literature of all kinds of bosonic SPTs for many types of sym-

metries [28, 128, 97, 134], we will be primarily concerned with “on-site” symmetries. These

are symmetries which act in the bulk of an SPT as the product of operators in the neighbor-

hood of each bulk lattice site. The spin flip symmetry of the paramagnet is an example of

an on-site symmetry. I am explicitly barring symmetries such as translation symmetry and

point group symmetries as these cannot be written as a product of local operators.

It is known that bosonic SPTs with on-site symmetries are classified by a mathematical

structure called group cohomology [28].

I will present an introduction to a particular form of group cohomology here. Let’s

work with discrete symmetry groups G for now. First, recall that an abelian group M is

a G−module if it has a linear group action under the elements of G. That is, g(a + b) =

(ga) + (gb) for elements g ∈ G and a, b ∈ M . We will define group cohomology for the

G-module M . In the case of bosonic SPTs, we will always take M to be U(1), but we keep

the discussion general here as it will be useful in the fermionic case. We will work with

additive notation for now, although we will switch to multiplicative notation when applying

this to bosonic SPTs since the elements of U(1) will be represented by complex phases.

Given a discrete group G and a G−module M , we will call functions

f : Gn →M (2.6)

cochains. The collection of all such cochains is Cn(G,M). There is an operation on cochains

called the coboundary

dn+1 : Cn(G,M) → Cn+1(G,M) (2.7)
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It has the action

(dn+1f)(g1, ..., gn+1) =g1f(g2, ..., gn+1 +
n∑

k=1

(−1)kf(g1, ..., gk−1, gkgk+1, gk+2, ..., gn+1)

+ (−1)n+1f(g1, ..., gn) (2.8)

where we are using + to denote the group multiplication of M .

n-Cocycles are n-cochains f for which dn+1f(g1, ..., gn+1) = 0 where 0 is the identity

element of M . We label the group of cocycles as

Zn(G,M) = ker(dn+1) (2.9)

n-Coboundaries are n-cochains f such that there exists an n−1-cochain g with dng = f .

We label the group of coboundaries as

Bn(G,M) = Im(dn) (2.10)

The group cohomology of the group G is a collection of groups Hd(G,M) where

Hd(G,M) ≡ Zd(G,M)

Bd(G,M)
(2.11)

That is, elements of Hd(G,M) are equivalence classes of cocycles where the equivalence class

equates two cocycles if they differ by a coboundary.

Bosonic symmetry protected topological phases with symmetry group G in d spatial di-

mensions with on-site symmetry are classified by Hd+1(G,U(1)). In particular, each distinct

symmetry protected topological phase of matter of this type can be identified by a cocycle

in Hd+1(G,U(1)). In Chapter 4, I will show how this cocycle can be computed from the

boundary theory of such a bosonic SPT in 2+1D. This shows that the bulk phase of an SPT
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can be computed from its microscopic boundary theory. Moreover, to compute this cocycle

in practice, we will only need to know how the symmetry acts on a small number of local

operators on the boundary.

To be more precise, in the context of bosonic SPTs, we are choosing U(1) to be the

trivial G-module (the group elements act as the identity function) if the symmetry group

is unitary. If there are anti-unitary symmetry group elements, such as time reversal, then

these anti-unitary symmetry group elements act as complex conjugation on elements of U(1)

interpreted as complex units. Additionally, although the above discussion was for discrete

symmetry groups, this formalism can be generalized to continuous groups by requiring that

every cochain is Borel measurable.

2.3.2 Classification of Fermionic SPTs

I will now review the classification of fermionic SPTs in (2+1)D [47, 68, 35, 146, 147]. These

theories have local fermionic degrees of freedom. Additionally, fermion parity symmetry is

a normal subgroup of the full symmetry group G. This is represented by a Z2 extension

Z2 → G→ G0 = G/ZF
2 (2.12)

generated by the cocycle λ ∈ H2(G0,Z2). In particular, the elements of G can be represented

by a pair (g, s) where g ∈ G0 and s ∈ ZF
2 = {0, 1} with the group multiplication law

[g, s] · [h, t] = [gh, s+ t+ λ(g, h)] (2.13)

With this structure in mind, I will now describe the supercohomological classification

of fermionic SPTs [47]. I will follow up this discussion with a beyond supercohomology

generalization. Within supercohomology, the fermionic SPTs are labeled by a pair of data
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(ρ, ν) where ρ ∈ Z2(G0,Z2) and ν ∈ C3(G0, UT (1)). ν is subject to the constraint

dν(g, h, k, l) = e(ρ(g,h)+λ(g,h))ρ(k,l) (2.14)

Furthermore, (ρ, ν) is equivalent to (ρ′, ν′) if

ρ(g, h)− ρ′(g, h) = µ(g) + µ(h) + µ(gh) + sλ(g, h) (2.15)

and

ν(g, h, k)

ν′(g, h, k)
=

eiα(g,h)eiα(gh,k)

(geiα(h,k))eiα(g,hk)

· (−1)(ρ(g,h)+λ(g,h))µ(k)+µ(g)(ρ(h,k)+(dµ)(h,k))

· (−1)s(ρ(gh,k)λ(g,h)+ρ(g,hk)λ(h,k)) (2.16)

for some cochain µ : G0 → Z2 = {0, 1}, for some cochain α : G0 × G0 → U(1), for some

number s ∈ {0, 1}, and where g acts as complex conjugation if (g, 0) ∈ G is anti-unitary.

Each equivalence class of these pairs of data specifies a different fermionic SPT.

There is also a classification of fermionic SPTs that goes beyond supercohomology. In

this case the data is now represented by a triple (η, ρ, ν). Although I will not analyze this

case in the thesis, it will be addresseed in an upcoming work with Michael Levin [71]. The

only beyond supercohomology case we will consider in that work is the one where G is unitary

and is of the form G0 × ZF
2 . In this case, ρ and ν are are constrained exactly as before and

η : G0 → Z2 is a homomorphism. In this case, we say that (η, ρ, ν) is equivalent to (η′, ρ′, ν′)

if

η(g) = η′(g) (2.17)
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and

(ρ, ν) ∼ (ρ′, ν′) (2.18)

in the sense of supercohomology. This completes our review of the topological phases of

matter discussed in this thesis.
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CHAPTER 3

MICROSCOPIC DEFINITIONS OF ANYON DATA

This chapter is reprinted with permission from:

Kyle Kawagoe and Michael Levin. Microscopic definitions of anyon data. Phys. Rev. B,

101:115113, Mar 2020.

© 2020 American Physical Society

Abstract

We present microscopic definitions of both the F -symbol and R-symbol – two pieces

of algebraic data that characterize anyon excitations in (2+1)-dimensional systems. An

important feature of our definitions is that they are operational; that is, they provide concrete

procedures for computing these quantities from microscopic models. In fact, our definitions,

together with known results, provide a way to extract a complete set of anyon data from

a microscopic model, at least in principle. We illustrate our definitions by computing the

F -symbol and R-symbol in several exactly solvable lattice models and edge theories. We also

show that our definitions of the F -symbol and R-symbol satisfy the pentagon and hexagon

equations, thereby providing a microscopic derivation of these fundamental constraints.

3.1 Introduction

It is generally believed that every (2+1)-dimensional many-body system with local interac-

tions and an energy gap can be associated with a corresponding anyon theory (also known

as a unitary braided fusion category). This anyon theory consists of a collection of algebraic

data characterizing the anyon excitations of the many-body system. More specifically, an

anyon theory consists of three pieces of data: (i) a set of anyon types {a, b, c, ...}; (ii) a

collection of “fusion rules” describing the outcomes of fusing pairs of anyons a, b; and (iii) an
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“F -symbol” and an “R-symbol”, which can be thought of as collections of complex numbers

that describe fusion and braiding properties of anyons [74, 112, 42, 5].

The mapping between gapped many-body systems and anyon theories has proven to

be a powerful tool in the theory of topological phases of matter and it has been applied

successfully in many different contexts [4, 151, 73, 102, 61]. Nevertheless, this mapping is

still missing an important ingredient, namely a systematic procedure for extracting anyon

data from a microscopic model. Another way to say this is that we are lacking microscopic

definitions of the anyon data, i.e. definitions that express each piece of data in terms of the

underlying quantum many-body system. The goal of this paper is to find such definitions.

Our main results are microscopic definitions of both the F -symbol and the R-symbol.

These definitions, together with the known definitions of anyon types and fusion rules1,

provide a way to extract a complete anyon theory from a microscopic model, at least in

principle. To illustrate our definitions, we compute the F -symbol and R-symbol for several

exactly solvable lattice models and edge theories. We also show that our definitions of the

F -symbol and R-symbol have all the expected properties. In particular, we show that these

quantities obey the pentagon and hexagon equations – algebraic relations that hold in any

consistent anyon theory.

To get a sense of the problem that we address, consider one of the simplest pieces of

anyon data: the exchange statistics of an Abelian anyon, a. Naively, one might try to define

the exchange statistics, which we denote by R(a, a), by considering an adiabatic process

in which two identical a particles are exchanged with one another in the counterclockwise

direction. One could then define R(a, a) as the Berry phase accumulated during this exchange

process. The problem with this definition is that the Berry phase for such a process will

generally include a geometric phase, which depends on the details of the paths that the

particles traverse, in addition to the statistical phase of interest. For example, if the anyon

1. See Secs. 3.2 and 3.6.1.
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Figure 3.1: Two processes involving two identical Abelian anyons moving along three paths
1, 2, 3. In the first process (M1M2M3), the anyon on the left travels to point A and the
anyon on the right travels to point B, and vice-versa in the second process (M3M2M1). The
final states of the two processes differ by R(a, a), the exchange statistics of the anyons.

a is charged and there is an external magnetic field, then the Berry phase will contain a

contribution coming from the Aharonov-Bohm effect.

To deal with this problem, Ref. [86] proposed a more careful definition which ensures that

all geometric phases cancel. The idea is to start with an initial state, |i⟩, with two identical

a particles, and then apply three “movement operators” M1,M2,M3 that move the anyons

along the three paths, labeled 1, 2, 3 in Fig. 3.1. By applying these operators to |i⟩ in two

different orders, namely M1M2M3 vs. M3M2M1, one obtains two final states that differ

from one another by an exchange. The relative phase betweenM1M2M3|i⟩ andM3M2M1|i⟩

defines the exchange statistics R(a, a):

M1M2M3|i⟩ = R(a, a) ·M3M2M1|i⟩ (3.1)

Note that this definition is manifestly independent of the phases of the three movement

operators since each operator appears on both the left and right hand side of (3.1). Thus, this

definition succeeds in isolating the exchange statistics, R(a, a), from extraneous geometric
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phases. In this paper, we present microscopic definitions of F and R that are similar in spirit

to the above example.

Previous work on the problem of defining anyon data can be divided into two categories

depending on whether the authors considered Abelian or non-Abelian anyons. In the Abelian

case, most work has focused on computing the exchange statistics and mutual statistics

of anyon excitations – i.e., the statistical phases associated with exchanging two identical

anyons or braiding one anyon around another. This line of work has been very successful:

exchange statistics and mutual statistics have been computed for many microscopic models

(see e.g. Refs. [4, 73]), and a general procedure for computing/defining these quantities was

presented in Ref. [86]. Moreover, all other anyon data is determined by the exchange and

mutual statistics (Proposition 2.5.1 of Ref. [115]) so one could argue that the problem of

computing Abelian anyon data has already been solved. This case is further supported by

Refs. [107, 19], which showed how to rigorously define and compute a complete set of Abelian

anyon data.

The situation for non-Abelian anyons is different, however. In the non-Abelian case, most

work has focused on the “topological S-matrix” and the “topological T -matrix”[74] – two

pieces of data that reduce to the mutual statistics and exchange statistics in the Abelian

case. Several methods have been proposed that allow one to extract S or T directly from

ground state wave functions [148, 169, 170, 106, 167, 137, 49]. The problem is that S and

T carry some, but not all, of the physical information in the F and R symbols. Therefore,

these methods do not provide a way to compute the complete set of anyon data. This paper

fills in this gap in the literature by showing how to compute the F and R symbols (and

hence all other data) in the general, non-Abelian case.

Although the generality of our approach is one of its most important features, we will

first present our definition of F and R in the context of Abelian anyons and only later discuss

non-Abelian anyons. The reason that we organize the paper in this way is that the main
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subtlety in defining F and R has to do with the U(1) phases of these quantities, and this

subtlety is the same in the Abelian and non-Abelian cases. Indeed, we will see that the

generalization from the Abelian to the non-Abelian case is straightforward.

This paper is organized as follows. In Sec. 3.2, we review the basic data in Abelian

anyon theories. Section 5.3 presents our microscopic definition of the F -symbol in the case

of Abelian anyons. In Sec. 3.4, we illustrate our definition by computing the F -symbol in

several lattice models and edge theories. This leads into Sec. 3.5, where we present our

microscopic definition of the R-symbol in the case of Abelian anyons. We extend both

definitions to the non-Abelian case in Sec. 3.6. We present our conclusions in Sec. 3.7.

Technical details are contained in the appendices.

3.2 Review: Abelian anyon data

We begin by reviewing some basic aspects of Abelian anyon theories [74, 112]. These theories

consist of four pieces of data:

1. Set of anyon types: a finite set of anyon types,

A = {a, b, c, ...}.

2. Fusion product: an associative and commutative multiplication law on A, denoted

a× b or ab.

3. F -symbol: a function F : A×A×A → U(1), denoted F (a, b, c).

4. R-symbol: a function R : A×A → U(1), denoted R(a, b).

We now explain the physical meaning of this data in the context of two-dimensional many-

body systems with local interactions and an energy gap.

We begin with the idea of “anyon types.” At an intuitive level, the set of anyon types A

is simply the set of topologically distinct particle-like excitations of the many-body system.
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More precisely, to define the anyon types associated with some many-body Hamiltonian H,

consider all Hamiltonians of the form H+V that have a unique gapped ground state, where

H is defined on an infinite plane geometry and V is supported on a finite region of the plane.

(We can think of V as a trapping potential for particle-like excitations.) Denote the set of

all ground states generated in this way as {|Ψ⟩}. We define an equivalence relation on the

set {|Ψ⟩} as follows: |Ψ′⟩ ∼ |Ψ⟩ if there exists a unitary operator, U , supported in a finite

region of the plane with |Ψ′⟩ = U |Ψ⟩. Under this equivalence relation, the collection of

states {|Ψ⟩} breaks up into equivalence classes. These equivalence classes define the set of

anyon types A = {a, b, c, ...}. The infinitely many states contained within each equivalence

class describe the infinitely many ways to realize an anyon excitation of type a, type b, type

c, etc.

This discussion leads naturally to the idea of the “fusion product.” Let a, b be any pair

of (Abelian) anyons. We say that a × b = c if a pair of anyons a, b can be converted into c

and vice-versa, by applying a unitary operator supported in a finite region around a, b. It

is clear from this definition that the fusion product is both associative and commutative,

as mentioned above. (For an alternative definition of anyon types and fusion rules, see

Refs. [126, 125].)

To complete the picture, we need to explain the physical meaning of the F and R symbols.

This is the main subject of this paper, so we will say much more about this below. For now,

we only mention that the F -symbol describes U(1) phases associated with fusing three anyons

in different orders, while the R-symbol describes U(1) phases associated with braiding or

exchanging two anyons. In particular, the quantity R(a, a) can be interpreted as the exchange

statistics of anyon a, while R(a, b)R(b, a) is the mutual statistics of a and b – that is, the

phase associated with braiding anyon a around anyon b.
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Figure 3.2: Spacetime diagrams for two processes in which an anyon abc splits into anyons
a, b, c. The horizontal and vertical axes denote the space and time directions while the lines
denote anyon worldlines. The final states produced by these processes, |1⟩, |2⟩, are equal up
to the U(1) phase F (a, b, c).

3.3 Defining F for Abelian anyons

3.3.1 Abstract definition of F

Before explaining our microscopic definition of the F -symbol, we first review the abstract

definition [74, 112]. We say that this definition is “abstract” because it captures the math-

ematical properties of the F -symbol but it is not obvious, a priori, how to make sense of it

in a microscopic lattice model.

The basic idea is to consider two different physical processes in which an anyon of type

abc splits into three anyons of types a, b, c (Fig. 3.2). In one process, abc splits into ab and

c, and then ab splits into a and b; in the other process, abc splits into a and bc and then

bc splits into b and c. By construction, the final states |1⟩, |2⟩ produced by these processes

contain the same anyons a, b, c, at the same three positions. Therefore, the two final states

|1⟩, |2⟩ must be the same up to a phase. The F -symbol F (a, b, c) is defined to be the phase
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difference between the two states:

|1⟩ = F (a, b, c)|2⟩. (3.2)

The abstract definition of the F -symbol has two important implications. First, the F -

symbol has an inherent ambiguity: it is only well-defined up to transformations of the form

F (a, b, c) → F (a, b, c)
eiν(ab,c)eiν(a,b)

eiν(a,bc)eiν(b,c)
(3.3)

where ν(a, b) ∈ R. To understand where this ambiguity comes from, it is helpful to think

about the physical processes in Fig. 3.2 as being implemented by a sequence of two “splitting

operators” applied to an initial state, |abc⟩. The key point is that the phases of these

splitting operators are arbitrary. If we multiply each of the four splitting operators by a

corresponding phase, namely, eiν(ab,c), eiν(a,b) for the two splitting operators in the first

process and eiν(a,bc), eiν(b,c) in the second, F changes by exactly the above transformation

(5.20). We will call the transformations in (5.20) “gauge transformations.”

The second implication of the above definition is that F must satisfy a non-trivial con-

straint known as the “pentagon identity”:

F (a, b, c)F (a, bc, d)F (b, c, d) = F (ab, c, d)F (a, b, cd) (3.4)

To derive this identity, consider the 5 processes shown in Fig. 3.3. The first step is to note

that the final states produced by these processes, namely {|1⟩, ..., |5⟩}, are all the same up to

a phase. Next, we compute the phase difference between states |1⟩ and |5⟩ in two different

ways. In the first way, we compute the relative phases between (|1⟩, |2⟩), (|2⟩, |3⟩), and

(|3⟩, |5⟩) using (5.15); in the second way, we compute the relative phases between (|1⟩, |4⟩) and

(|4⟩, |5⟩). Demanding consistency between the two calculations gives the pentagon identity
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Figure 3.3: The pentagon identity: consistency requires that the product of the three F -
symbols on the upper path is equal to the product of the two F -symbols on the lower path.

(5.17). Below, we will show that our microscopic definition of F also obeys the pentagon

equation.

3.3.2 Microscopic definition of F

The main problem with applying the above definition to a microscopic lattice model is that

some of the anyon splittings in Fig. 3.2 occur at different points in space. This means

that the corresponding splitting operators are distinct operators which can be multiplied

by independent phases. For example, the two splitting operators in the first process in

Fig. 3.2 can be multiplied by two independent phases eiν1(ab,c), eiν2(a,b). This leads to a

larger ambiguity in F (a, b, c) than (5.20). To solve this problem, we need to perform all

anyon splittings using the same set of splitting operators, defined at the same location in

space. However, this introduces another problem: to do this, we need to move anyons in

addition to splitting them. The operators that move anyons have arbitrary phases, just like
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the splitting operators; so, unless we are careful, the arbitrary choice of these phases will

introduce additional ambiguities into F , beyond the ones in Eq. (5.20). In this section, we

overcome this problem by constructing two microscopic processes in which these extraneous

phases cancel out.

To begin, we introduce some notation for labeling anyon states. The first step is to fix a

line in the 2D plane, say the x-axis. We will only consider states with anyons living along

this line. Next, for each anyon type a and for each point x on the line, we let |ax⟩ denote a

state containing a single2 anyon a located at point x.3 Similarly, we let

|ax1 , bx2 , cx3 , ...⟩

be the (normalized) multi-anyon state with the anyon a at point x1, the anyon b at point x2,

and so on. Here we assume that the points are ordered left to right as x1 < x2 < · · · . We

also assume that x1, x2, ... are well-separated : every pair of neighboring anyons is separated

by a distance that is much larger than the correlation length ξ of the ground state. Given

this assumption, we will neglect finite size corrections that are exponentially small in the

distance between the anyons.

For reasons that will become clear below, it is useful to have a precise definition of multi-

anyon states in terms of the single anyon states. To this end, we define |ax1 , bx2 , cx3 , ...⟩

to be the unique4 state that has the same expectation values as the ground state for local

operators supported away from all the anyons, the same expectation values as |ax1⟩ for

operators supported near x1, the same expectation values as |bx2⟩ for operators supported

2. Although anyons can only be created in pairs, it is possible to have a state containing a single anyon
where the partner is located far away (i.e. “at infinity”); this is the setup envisioned here.

3. This step involves an arbitrary choice since there are infinitely many states that contain an anyon a
at point x, differing in their microscopic details; we will check that our definition of F does not depend on
these choices.

4. In this discussion, multi-anyon states are unique because the anyons are assumed to be Abelian. In
the non-Abelian case, multi-anyon states come in multiplets, as discussed in Sec. 3.6.
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near x2, and so on. In other words, multi-anyon states are characterized by the fact that

⟨..., ax, ...|O|..., ax, ...⟩ = ⟨ax|O|ax⟩ (3.5)

for every operator O supported in the neighborhood of a single anyon ax.

Having fixed our definitions of anyon states, the next step is to define movement op-

erators. For any anyon, a, and any pair of points, x, x′, we say that Ma
x′x is a movement

operator if it satisfies two conditions: (i) Ma
x′x obeys

Ma
x′x|ax⟩ ∝ |ax′⟩ (3.6)

where the proportionality constant is a U(1) phase; (ii) Ma
x′x is local in the sense that it is

supported in the neighborhood of the interval containing x, x′.

The locality condition on Ma
x′x is important because it guarantees that Ma

x′x acts the

same way on any multi-anyon state of the form |..., ax, ...⟩: that is,

Ma
x′x|..., ax, ...⟩ ∝ |..., ax′ , ...⟩ (3.7)

as long as the other anyons in |..., ax, ...⟩ are well-separated from the interval containing x

and x′.

Indeed, to derive Eq. 5.38 from Eq. 5.35, consider the expectation value of any operator,

O, supported in the neighborhood of ax′ , in the two states |..., ax′ , ...⟩ and Ma
x′x|..., ax, ...⟩.

Using (3.5) and (5.35), we can see that O has the same expectation value in the two states:

⟨..., ax′ , ...|O|..., ax′ , ...⟩ = ⟨ax′ |O|ax′⟩

= ⟨ax|(Ma
x′x)

†OMa
x′x|ax⟩

= ⟨..., ax, ...|(Ma
x′x)

†OMa
x′x|..., ax, ...⟩ (3.8)
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This is also true for operators supported near any other anyon, sinceMa
x′x is supported away

from those anyons. It follows that these two states must be the same, up to a phase.

In addition to the movement operators, we also define splitting operators for our anyons.

Fix two well-separated points on the line, which we will call ‘1’ and ‘2’. For any pair of

anyons a, b, we say that S(a, b) is a splitting operator if it satisfies two conditions: (i) S(a, b)

satisfies

S(a, b)|ab1⟩ ∝ |a1, b2⟩ (3.9)

where the proportionality constant is a U(1) phase; (ii) S(a, b) is supported in the neigh-

borhood of the interval [1, 2]. Again, the second condition guarantees that the splitting

operators can be applied to any multi-anyon state of the form |..., ab1, ...⟩ provided that the

other anyons are located far from the interval [1, 2]:

S(a, b)|..., ab1, ...⟩ ∝ |..., a1, b2, ...⟩ (3.10)

where the proportionality constant is a U(1) phase. Note that, unlike the movement opera-

tors, we only define splitting operators that act at a single location ‘1’ on the x-axis.

With this setup, we are now ready to define the F -symbol. The first step is to fix some

choice of anyon states |ax⟩ and some choice of movement and splitting operatorsMa
x′x, S(a, b).

Next, consider the initial state |abc1⟩, i.e. the state with a single anyon abc at position 1. We

then apply two different sequences of movement and splitting operators to |abc1⟩, denoting

the final states by |1⟩ and |2⟩:

|1⟩ =Mb
12M

a
01S(a, b)M

c
32S(ab, c)|abc1⟩

|2⟩ =Mc
32S(b, c)M

bc
12M

a
01S(a, bc)|abc1⟩ (3.11)

These two processes are shown in Figure 3.4. By construction, the final states |1⟩, |2⟩ pro-
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Figure 3.4: The two processes that are compared in the microscopic definition of the F -
symbol.

duced by these processes both contain anyons a, b, c at positions 0, 1, 3, respectively. In

particular, this means that |1⟩, |2⟩ are the same up to a phase. We define the F -symbol

F (a, b, c) to be this phase difference:

F (a, b, c) = ⟨2|1⟩ (3.12)

3.3.3 Checking the microscopic definition

To show that our microscopic definition is sensible, we need to establish two properties of

F : (i) F is well-defined in the sense that different choices of anyon states and movement and

splitting operators give the same F up to a gauge transformation (5.20); and (ii) F obeys

the pentagon identity (5.17). We prove property (ii) in Appendix 7.1; the goal of this section

is to prove property (i).
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As a warm-up, let us see how F transforms if we change the phase of the movement and

splitting operators. That is, suppose we replace

Ma
x′x → eiθx′x(a)Ma

x′x, S(a, b) → eiϕ(a,b)S(a, b) (3.13)

for some real-valued θ, ϕ. Substituting these transformations into (3.11-3.12) gives

F (a, b, c) → F (a, b, c)
eiϕ(ab,c)eiϕ(a,b)eiθ12(b)

eiϕ(a,bc)eiϕ(b,c)eiθ12(bc)
(3.14)

Crucially, this transformation is identical to a gauge transformation (5.20) with

ν(a, b) = ϕ(a, b) + θ12(b) (3.15)

This is exactly what we want: different phase choices lead to the same F , up to a gauge

transformation. Although the above calculation is very simple, we would like to emphasize

that this is actually a non-trivial test of our definition of F . In fact, the two processes in

(3.11) were designed specifically to pass this test.

With this warm-up, we are now ready to consider the general case where we change the

movement and splitting operators in an arbitrary way (for a fixed choice of anyon states

|ax⟩). Denoting the new movement and splitting operators by

Ma
x′x → M̃a

x′x, S(a, b) → S̃(a, b), (3.16)

it follows from properties (5.38), (5.41) that

M̃a
x′x|..., ax, ...⟩ = ω1 ·Ma

x′x|..., ax, ...⟩ (3.17)

S̃(a, b)|..., ab1, ...⟩ = ω2 · S(a, b)|..., ab1, ...⟩ (3.18)
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where ω1, ω2 are U(1) phases. These U(1) phases are highly constrained: taking the inner

product of the two sides of (5.70) with Ma
x′x|..., ax, ...⟩ and using property (3.5), we can see

that ω1 can only depend on a, x, x′. By the same reasoning, ω2 can only depend on a, b.

Hence, we must have

M̃a
x′x|..., ax, ...⟩ = eiθx′x(a)Ma

x′x|..., ax, ...⟩

S̃(a, b)|..., ab1, ...⟩ = eiϕ(a,b)S(a, b)|..., ab1, ...⟩ (3.19)

for some real-valued θ, ϕ. Substituting these relations into (3.11), we again see that F changes

by a gauge transformation with ν given by (5.66).

At this point, we have shown that different choices of movement and splitting operators

lead to the same F , up to a gauge transformation. To complete the proof of property (i),

we need to check that different choices of representative anyon states |ax⟩ also lead to the

same F , up to a gauge transformation. In order to investigate this issue, we make a physical

assumption which is inspired by the definition of anyon types given in Sec. 3.2: we assume

that different choices of anyon states are related to one another by a local unitary trans-

formation, U . (By a ‘local unitary transformation’, we mean a unitary operator generated

by the finite time evolution of a local Hamiltonian that is supported near the x-axis [23]).

Given this assumption, our task is to understand how F changes if we replace

|ax1 , bx2 , cx3 , ...⟩ → |ax1 , bx2 , cx3 , ...⟩
′ (3.20)

where

|ax1 , bx2 , cx3 , ...⟩
′ = U |ax1 , bx2 , cx3 , ...⟩ (3.21)

for some local unitary transformation U . To understand the effect on F , observe that we
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can choose movement and splitting operators for the states {|ax1 , bx2 , cx3 , ...⟩′} however we

like, changing F by at most a gauge transformation. The simplest choice is

(Ma
x′x)

′ = UMa
x′xU

†, S′(a, b) = US(a, b)U† (3.22)

where Ma
x′x and S(a, b) are movement and splitting operators for {|ax1 , bx2 , cx3 , ...⟩}. With

this choice, it is clear that |1′⟩ = U |1⟩, and |2′⟩ = U |2⟩. It follows that F ′ = ⟨2′|1′⟩ =

⟨2|1⟩ = F . Thus, we conclude that F is invariant under a replacement of the anyon states,

|ax1 , bx2 , cx3 , ...⟩ → |ax1 , bx2 , cx3 , ...⟩′. This completes the proof of property (i) above.

3.4 Examples of F -symbol calculations

In this section, we illustrate our definition by computing the F -symbol for several lattice

models and edge theories.

3.4.1 Toric code model

Hamiltonian

The toric code model is an exactly solvable spin-1/2 model where the spins live on the links

of the square lattice [73]. The Hamiltonian is

H = −
∑
v

Av −
∑
p

Bp (3.23)

where the two sums run over the vertices, v, and plaquettes, p, of the square lattice. The

two operators Av, Bp are defined by

Av =
∏
ℓ∈v

σxℓ , Bp =
∏
ℓ∈∂p

σzℓ (3.24)
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Figure 3.5: The two operators Av and Bp in the toric code Hamiltonian.

where the first product runs over the four links, ℓ, that are adjacent to the vertex v, and the

second product runs over the four links, ℓ, that belong to the boundary of the plaquette p

(Fig. 3.5).

To find the ground state of this model in an infinite plane geometry, notice that the

Av, Bp operators commute with one another and have eigenvalues ±1. From this, one can

deduce that the state |Av = Bp = 1⟩ is the ground state since this state minimizes the

energies of all the terms in the Hamiltonian.

As for excitations, the toric code model supports four different (anyon) types, which

we denote by {1, e,m, em}. All four anyon types have simple realizations on the lattice:

the ‘e’ anyon corresponds to an excitation where Av = −1 for a single vertex v; the ‘m’

anyon corresponds to an excitation where Bp = −1 for a single plaquette p; the ‘em’ anyon

corresponds to an excitation where Av = −1 and Bp = −1 for both a vertex v and nearby

plaquette p; finally the ‘1’ anyon (also known as the “trivial” anyon) corresponds to having

no excitation at all. The fusion rules for these anyons are

e× e = m×m = 1, e×m = em (3.25)
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F -symbol calculation

We now illustrate our definition of F by computing F (e, e, e). First, we define some notation

for labeling anyon states. Following the procedure outlined in Sec. 3.3.2, we focus on anyon

states where the anyons live along a line, specifically the x-axis. We then label the vertices

along the x-axis by integers, n = 0,±1,±2, ... (Fig. 3.6), and we define |en⟩ to be the state

with Av=n = −1, and all other Av’s and Bp’s equal to +1.

Next, we need to construct movement and splitting operators for the e anyons. We define

the movement operator between neighboring vertices n and n+ 1 by

Me
(n+1)n = σzn,n+1 (3.26)

Here σzn,n+1 denotes the σz operator on the link ℓ = ⟨n(n+1)⟩ (Fig. 3.6). It is easy to check

that this movement operator obeys the required property, Me
(n+1)n

|en⟩ ∝ |en+1⟩ using the

fact that σzn,n+1 anticommutes with the Av operators on vertex n and vertex n+ 1.

We define the reverse movement operator in the same way:

Me
n(n+1) = σzn,n+1 (3.27)

Also, we define the splitting operator for the e anyon to be (Fig. 3.6)

S(e, e) = σz1,2 (3.28)

Again, one can check that S(e, e) has the required property, S(e, e)|11⟩ ∝ |e1, e2⟩, using the

fact that σz1,2 anticommutes with Av on vertex 1 and vertex 2.

We will also need the splitting operator S(1, e), which we define as

S(1, e) = σz1,2 (3.29)
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Figure 3.6: Movement and splitting operators for e anyons. The splitting operator for e is
S(e, e) = σz1,2. The movement operator that moves e from vertex 3 to 4 is Me

4,3 = σz3,4.

Finally, we will need the movement operator M1
n′n and the splitting operator S(e, 1), which

we take to be the identity operator:

M1
n′n = S(e, 1) = 1 (3.30)

(The reason why we can take S(e, 1) = 1 is that S(e, 1) is defined by the condition S(e, 1)|e1⟩ ∝

|e1, 12⟩, which is satisfied by the identity operator S(e, 1) = 1.)

With these definitions, we are now equipped to calculate F (e, e, e). Following Eq. (3.11),

we have

|1⟩ =Me
12M

e
01S(e, e)M

e
32S(1, e)|e1⟩

= σz1,2σ
z
0,1σ

z
1,2σ

z
2,3σ

z
1,2|e1⟩ (3.31)

Similarly,

|2⟩ =Me
32S(e, e)M

1
12M

e
01S(e, 1)|e1⟩

= σz2,3σ
z
1,2σ

z
0,1|e1⟩ (3.32)
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Figure 3.7: The two operators Qv and Bp in the doubled semion Hamiltonian: Qv is a
product of σx operators acting on the three blue links adjacent to the vertex v, while Bp

involves a product of σz operators on the six red links adjacent to the plaquette p and a
product of i(1−σx)/2 on the six pink “legs” of the plaquette p.

Comparing the two expressions, we see that |1⟩ = |2⟩, so that

F (e, e, e) = ⟨2|1⟩ = 1 (3.33)

More generally, one can check that all the F -symbols are 1 for this model, i.e.

F (a, b, c) = 1 (3.34)

for all a, b, c ∈ {1, e,m, em} for an appropriate choice of movement and splitting operators.
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3.4.2 Doubled semion model

Hamiltonian

The doubled semion model is an exactly solvable spin-1/2 model where the spins live on the

links of the honeycomb lattice [88]. The Hamiltonian is

H = −
∑
v

Qv −
∑
p

Bp (3.35)

where the two sums run over the vertices, v, and plaquettes, p, of the honeycomb lattice.

The operator Qv is defined by

Qv =
1

2

1 +
∏
ℓ∈v

σxℓ

 (3.36)

Likewise, Bp is defined by

Bp =
1

2

1−
∏
ℓ∈∂p

σzℓ

∏
ℓ∈legs of p

i
1−σx

ℓ
2

Pp (3.37)

where the second product runs over the six links, ℓ, that form the “legs” of the plaquette p

(Fig. 3.7) and Pp is the projector

Pp =
∏
v∈∂p

Qv (3.38)

Like the toric code model, the Qv, Bp operators commute with one another. Also, one can

check that Qv and Bp have eigenvalues 0 and 1 so that the ground state in an infinite plane

geometry is the state |Qv = Bp = 1⟩.

As for excitations, it is known that the doubled semion model supports four types of
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Figure 3.8: (a) Definition of semion creation operator a
†
n: the operator a

†
n acts on all (m,U),

(m,L) and (m,R) links with m < n. (b) Movement and splitting operators for semions: the
splitting operator S(s, s) acts on the blue links near 1 and 2 according to Eq. 3.44, while the
movement operator Ms

43 acts on the blue links near 3 and 4 according to Eq. 3.42.

anyons, which we denote by {1, s, s̄, ss̄}. The fusion rules for these anyons are

s× s = s̄× s̄ = 1, s× s̄ = ss̄ (3.39)

Similarly to the toric code model, these anyon excitations correspond to defects whereQv = 0

or Bp = 0 for some collection of vertices and plaquettes. However, unlike the toric code

model, the excitations are not completely characterized by their Qv and Bp eigenvalues due

to degeneracies in the simultaneous eigenspaces of {Qv, Bp}. Therefore, we cannot define

these excitations unambiguously in terms of their Qv and Bp eigenvalues; instead, we will

define/construct them by writing down explicit (string-like) creation operators.

F -symbol calculation

To illustrate our definition, we now compute the F -symbol F (s, s, s). As before, we focus on

anyon states where the s anyons live along the x-axis. More specifically, we focus on states

where the s anyons live at vertices of type ‘⊥’ along the x-axis (Fig. 3.8b). We label these
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vertices by integers n = 0,±1,±2, · · · . We then define |sn⟩ to be a particular state with an

s anyon at vertex n. More specifically, we define

|sn⟩ = a
†
n|0⟩ (3.40)

where |0⟩ ≡ |Qv = Bp = 1⟩ denotes the ground state, and where a
†
n is the following string-like

creation operator for s anyons:

a
†
n =

∏
m<n

σzm,Lσ
z
m,R ·

∏
m<n

(−1)
1
4 (1+σxm,L)(1−σxm,R)

·
∏
m<n

i
1−σx

m,U
2 (3.41)

Here, we have introduced some notation: we denote the three links near vertex m by the

labels (m,U), (m,L), (m,R) (see Fig. 3.8a). The justification for this string operator comes

from Ref. [88], where it was argued that string operators of the form (3.41) create semion

excitations at their endpoints.

Next we need to construct movement and splitting operators for s. We define the move-

ment operator between vertices n and n+ 1 as (see Fig. 3.8b):

Ms
(n+1)n = σzn,Lσ

z
n,R(−1)

1
4 (1+σxn,L)(1−σxn,R)i

1−σx
n,U
2 (3.42)

It is clear thatMs
(n+1)n

obeys the required propertyMs
(n+1)n

|sn⟩ ∝ |sn+1⟩ sinceMs
(n+1)n

a
†
n ∝

a
†
n+1. Likewise, we define the reverse movement operator by

Ms
n(n+1) = (Ms

(n+1)n)
−1 (3.43)

50



As for the splitting operator, we define

S(s, s) = σx0,Rσ
z
1,Lσ

z
1,R(−1)

1
4 (1+σx1,L)(1−σx1,R)i

1−σx
1,U
2 (3.44)

(see Fig. 3.8b). Notice that

S(s, s) =Ms
21σ

x
0,R (3.45)

The extra factor of σx0,R is necessary to make sure that the two excitations created by S are

the same as those created by a
†
n, i.e.

S(s, s)|0⟩ ∝ a
†
1a

†
2|0⟩ (3.46)

(see Appendix 7.3 for a derivation). Equation (3.46) guarantees that S(s, s) has the required

property for a splitting operator: S(s, s)|11⟩ ∝ |s1, s2⟩.

We will also need the splitting operator S(1, s), which we define as

S(1, s) =Ms
21 (3.47)

Finally, we will need the movement operator M1
n′n and the splitting operator S(s, 1), which

we define as

M1
n′n = S(s, 1) = 1 (3.48)

We are now ready to compute the F -symbol F (s, s, s). Using Eq. (3.11), we have:

|1⟩ =Ms
12M

s
01S(s, s)M

s
32M

s
21|s1⟩

|2⟩ =Ms
32S(s, s)M

s
01|s1⟩ (3.49)
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To proceed further, we note that all movement operators commute with one another since

they act on non-overlapping spins. We also note that the splitting operator S(s, s) anticom-

mutes with Ms
01 and Ms

10 but commutes with every other movement operator, as one can

see from (3.45). Using these facts, we can simplify |1⟩ to

|1⟩ = −Ms
32S(s, s)M

s
01|s1⟩ (3.50)

Hence, |1⟩ = −|2⟩ so

F (s, s, s) = ⟨2|1⟩ = −1 (3.51)

In fact, using the same movement and splitting operators, one can show that all the other

F -symbols involving 1 and s are trivial:

F (1, 1, 1) = F (1, 1, s) = F (1, s, 1) = F (1, s, s) = 1

F (s, 1, 1) = F (s, 1, s) = F (s, s, 1) = 1

In particular, this means that

F (s, s, s)F (s, 1, s) = −1 (3.52)

The latter result is significant because one can check that F (s, s, s)F (s, 1, s) is invariant

under the gauge transformation (5.20). Therefore we have shown that the F -symbol for the

doubled semion model is not gauge equivalent to F (a, b, c) = 1. A corollary of this result

is that the toric code model and the doubled semion model must belong to different phases

since they have different F -symbols.
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3.4.3 Semion edge theory

We now show how to compute the F -symbol using an edge theory of a topological phase.

Specifically, we consider the simplest non-trivial topological phase, namely the Laughlin

ν = 1/2 bosonic fractional quantum Hall state. This topological phase supports two types

of anyon excitations, which we denote by {1, s}. Here, s can be thought of as the charge 1/2

quasihole (which happens to be a semion), while 1 denotes the trivial anyon. The anyons

obey the following fusion rule: s× s = 1.

Our goal is to compute the F -symbol for this topological phase using its edge theory.

The edge theory consists of a single chiral boson field ϕ obeying commutation relations [151]

[ϕ(x), ∂yϕ(y)] = πiδ(x− y) (3.53)

The Hamiltonian for the edge theory is

H =

∫
dx

v

4π
(∂xϕ)

2 (3.54)

where v describes the velocity of the chiral boson edge mode.

To fully define the edge theory, it is important to specify the set of local operators. For

the above edge theory, the fundamental local operators are e±i2ϕ, which can be thought of

as the creation/annihilation operators for the (charge 1) boson on the edge, respectively. All

other local operators can be constructed by taking derivatives and products of e±i2ϕ.

We now compute the F -symbol F (s, s, s). The first step is to define the anyon states

that we will manipulate. Following the standard edge theory formalism [151], we define the

anyon state |sx⟩ by

|sx⟩ = a
†
x|0⟩ (3.55)
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where |0⟩ denotes the ground state of the edge theory, and a
†
x is defined by

a
†
x = ei

∫ x
−∞ ∂yϕ(y)dy (3.56)

Here, ax can be thought of as a (string-like) creation operator for s at position x along the

edge.

Next we define movement and splitting operators for s. We define the movement operator

by

Ms
x′x = ei

∫ x′
x ∂yϕ(y)dy (3.57)

Notice thatMs
x′xa

†
x ∝ a

†
x′ which guarantees thatMs

x′x obeys the required propertyMs
x′x|sx⟩ ∝

|sx′⟩.

Likewise, we define the splitting operator for s by

S(s, s) =Ms
21e

i2ϕ(1)

= ei
∫ 2
1 ∂xϕ(x)dxei2ϕ(1) (3.58)

Here the extra factor of e2iϕ(1) is necessary to ensure that

S(s, s)|0⟩ ∝ a
†
1a

†
2|0⟩ (3.59)

The other splitting and movement operators that we need are S(1, s), which we define

by

S(1, s) =Ms
21 (3.60)
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and M1
x′x and S(s, 1) which we define as

M1
x′x = S(s, 1) = 1 (3.61)

We are now ready to compute the F -symbol F (s, s, s). Following the definition (3.11),

we have

|1⟩ =Ms
12M

s
01M

s
21e

i2ϕ(1)Ms
32M

s
21|s1⟩

|2⟩ =Ms
32M

s
21e

i2ϕ(1)Ms
01|s1⟩ (3.62)

To compare these two expressions we need to rearrange the order of these operators. We

can do this with the help of the following relations, which can be derived from the Baker-

Campbell-Hausdorff formula:

Ms
x′′x′M

s
x′x = eiπ/2Ms

x′xM
s
x′′x′ , x < x′ < x′′

ei2ϕ(1)Ms
1x = −Ms

1xe
i2ϕ(1), x ̸= 1 (3.63)

With these formulas and the identity Ms
xx′ = (Ms

x′x)
−1, we can rewrite |1⟩ as:

|1⟩ = −Ms
32M

s
21e

i2ϕ(1)Ms
01|s1⟩ (3.64)

Hence,

F (s, s, s) = ⟨2|1⟩ = −1 (3.65)

In exactly the same way, one can show that F (a, b, c) = 1 for every other choice of a, b, c ∈

{1, s}.

Before concluding, we need to address a question that may worry some readers: our
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microscopic definition of the F -symbol assumes a finite correlation length ξ, so what is the

justification for applying it to a gapless edge theory? Our answer is that, in some edge

theories, the anyon states in the bulk can be transformed into anyon states at the edge by

a local unitary transformation. If this is the case, an edge calculation is guaranteed to give

the same answer as a bulk calculation where our definition is on firmer ground. We believe

that the edge theory analyzed above (and in the next section) has this property.

3.4.4 General chiral boson edge theory

We now extend the calculation of the previous section to a general bosonic Abelian topolog-

ical phase. According to the K-matrix formalism, every bosonic Abelian topological phase

can be described by a multi-component U(1) Chern-Simons theory of the form [151]

L =
∑
ijµν

Kij

4π
ϵλµνaλi∂µaνj (3.66)

where Kij is a non-degenerate N ×N integer symmetric matrix with even elements on the

diagonal. Our goal will be to compute the F -symbol corresponding to any given Kij . (The

example in the previous section corresponds to the case K = 2).

A word about notation: in the standard K-matrix formalism, anyon excitations are

parameterized by equivalence classes of N -component integer vectors, where the equivalence

relation is defined by l ∼ m if l − m = KΛ for some integer vector Λ. Here, we use a

slightly different notation: instead of working with equivalence classes of integer vectors,

we choose a single representative from each equivalence class, and we label each anyon by

the corresponding representative l. In this notation, the set of anyons is given by a finite

collection of integer vectors {l,m, n, ...}. The fusion rules are given by

l ×m = [l +m] (3.67)
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where [l +m] denotes the unique representative that belongs to the same equivalence class

as l +m.

As in the previous section, we will compute the F -symbol using an edge theory. In

particular, we will use the standard chiral boson edge theory consisting of N chiral boson

fields, Φ1, ...,ΦN , obeying the commutation relations [151]

[Φi(x),Φj(y)] = πiK−1
ij sgn(y − x) + πi(K−1XK−1)ij (3.68)

with an edge Hamiltonian of the form

H =

∫
dx
∑
ij

Vij
4π

∂xΦi∂xΦj

In the above commutation relation, X is (any) skew-symmetric integer matrix with X ≡ K

(mod 2). The K−1XK−1 term in (3.68) is not included in standard treatments of chiral

boson edge theories [151] but it plays the same role as the more well-known Klein factors[130]:

it guarantees that non-overlapping local operators commute with one another (see Eq. 3.69

below).

To complete the edge theory, we need to specify the set of local operators. In this case,

the fundamental local operators are those of the form

exp(iΛTKΦ) ≡ exp

i∑
ij

ΛiKijΦj

 (3.69)

where Λ is an N component integer column vector. All other local operators can be con-

structed by taking derivatives and products of eiΛ
TKΦ. Physically, exp(iΛTKΦ) can be

thought of as a product of boson creation/annihilation operators acting on the different edge

modes.

We now compute the F -symbol F (l,m, n). The first step is to define the anyon states
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that we will manipulate. For each anyon type, l, we define a state with anyon l at position

x, by

|lx⟩ = (alx)
†|0⟩ (3.70)

where |0⟩ denotes the ground state of the edge theory and

(alx)
† = eil

T
∫ x
−∞ ∂yΦ(y)dy (3.71)

As in the previous example, (alx)
† can be thought of as the string-like creation operator for

anyon l at position x.

Next we define movement and splitting operators. We define the movement operator for

l by

M l
x′x = eil

T
∫ x′
x ∂yΦ(y)dy (3.72)

Likewise, we define the splitting operator by

S(l,m) =Mm
21 · C(l,m) (3.73)

where C(l,m) denotes the operator C(l,m) = ei(l+m−[l+m])TΦ(1). As in the previous exam-

ple, the extra factor of ei(l+m−[l+m])TΦ(1) is necessary to ensure that

S(l,m)|[l +m]1⟩ ∝ (al1)
†(am2 )†|GS⟩ (3.74)

We are now ready to compute the F -symbol F (l,m, n). From the definition (3.11) we
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have:

|1⟩ =Mm
12M

l
01M

m
21C(l,m)Mn

32M
n
21

· C([l +m], n)|[l +m+ n]1⟩

|2⟩ =Mn
32M

n
21C(m,n)M

[m+n]
12 M l

01M
[m+n]
21

· C(l, [m+ n])|[l +m+ n]1⟩ (3.75)

To simplify these expressions we use the following commutation relations:

M l
x′′x′M

m
x′x = eiα(l,m) ·Mm

x′xM
l
x′′x′ , x < x′ < x′′

M l
x1e

iΛTKΦ(1) = eiα(l,KΛ) · eiΛ
TKΦ(1)M l

x1 x ̸= 1 (3.76)

where

α(l,m) = πlTK−1m. (3.77)

We also use the relation

eiΛ
TKΦ(1)eiΞ

TKΦ(1) = e−iβ(KΛ,KΞ) · ei(Λ+Ξ)TKΦ(1) (3.78)

where

β(Λ,Ξ) =
π

2
ΛT (K−1XK−1)Ξ. (3.79)

All of these relations follow from Eq. 3.68, together with the Baker-Campbell-Hausdorff

formula.

Using the above relations, together with the identity M l
xx′ = (M l

x′x)
−1, we simplify
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|1⟩, |2⟩ to:

|1⟩ = eiα1M l
01M

n
32M

n
21e

i(l+m+n−[l+m+n])TΦ(1)

· |[l +m+ n]1⟩

|2⟩ = eiα2M l
01M

n
32M

n
21e

i(l+m+n−[l+m+n])TΦ(1)

· |[l +m+ n]1⟩ (3.80)

where

α1 = α(l,m) + α(n, l +m− [l +m])

− β(l +m− [l +m], [l +m] + n− [l +m+ n])

α2 = α(l,m)

− β(m+ n− [m+ n], l + [m+ n]− [l +m+ n]) (3.81)

We conclude that

F (l,m, n) = ⟨2|1⟩ = exp[i(α1 − α2)] (3.82)

To complete the calculation, we simplify the expression for F by making a gauge transfor-

mation (5.20) with

ν(l,m) = β(l +m− [l +m], [l +m]) + β(m, l) + α(m, l) (3.83)

After this gauge transformation, we obtain

F (l,m, n) = exp[iπlTK−1(K −X)K−1(m+ n− [m+ n])] (3.84)
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Figure 3.9: Spacetime diagrams for two processes in which an anyon ab splits into anyons
a, b. The final states |1⟩, |2⟩ are equal up to a U(1) phase, R(a, b).

3.5 Defining the R-Symbol for Abelian anyons

3.5.1 Abstract definition of R

We begin by reviewing the abstract definition of the R-symbol in the case of Abelian

anyons [74, 112]. According to this definition, R is defined by comparing two different

physical processes (Fig. 3.9). In one process, an anyon of type ab splits into two anyons of

type a, b, with a on the left and b on the right, and then a, b are exchanged in the coun-

terclockwise direction; the other process, ab splits into a, b with b on the left and a on the

right, without any subsequent exchange. By construction, the final states |1⟩, |2⟩ produced

by these processes contain the same anyons a, b in the same positions. Therefore, |1⟩, |2⟩ are

the same up to a phase. The R-symbol R(a, b) is defined to be the phase difference between

the two states:

|1⟩ = R(a, b)|2⟩ (3.85)

Two properties of the R-symbol follow from this definition. First, R has an inherent
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ambiguity: it is only well-defined up to gauge transformations of the form

R(a, b) → R(a, b)
eiν(a,b)

eiν(b,a)
(3.86)

where ν(a, b) ∈ R. As with F , this ambiguity comes about because the phases of splitting

operators can be varied arbitrarily. In particular, if we multiply the two splitting operators in

Fig. 3.9 by two phases, eiν(a,b), eiν(b,a), this changes R by exactly the above transformation

(3.86). An important point is that the ν(a, b) in (3.86) is the same as the ν(a, b) that

appears in the gauge transformation (5.20): that is, R and F transform under the same

gauge transformation ν.

The second property of the R-symbol is that it obeys two constraints, known as the

hexagon equations:

R(a, b)F (b, a, c)R(a, c) = F (a, b, c)R(a, bc)F (b, c, a)

R(b, a)−1F (b, a, c)R(c, a)−1 = F (a, b, c)R(bc, a)−1

· F (b, c, a) (3.87)

To derive the second equation, consider the 6 processes shown in Fig. 3.10. Denote the final

states produced by these processes by {|1⟩, ..., |6⟩}. We can compute the phase difference

between states |1⟩ and |6⟩ using either the upper or lower path of Fig. 3.10. Demanding con-

sistency between the two calculations gives the second hexagon equation. The first hexagon

equation follows in the same way by considering the 6 processes shown in Fig. 7.8. In Ap-

pendix 7.2, we will show that our microscopic definitions of F and R also obey the hexagon

equations.
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Figure 3.10: The second hexagon equation (3.87). Consistency requires that the product of
the U(1) phases along the upper path is equal to the product along the lower path.

3.5.2 Microscopic definition of R

As with the F -symbol, the first step in the microscopic definition of the R-symbol is to

choose a representative anyon state, |ax⟩, for each anyon type a and each point x. The only

new element here is that we need to consider a larger set of positions for x: specifically,

in addition to the anyon states {|ax⟩}, where the position x is located on the x-axis, we

also include the anyon states |aY ⟩ for some point, labeled Y , that is not on the x-axis. For

concreteness, we will use a convention where the y-coordinate of Y is negative and larger in

magnitude than the correlation length of the ground state, ξ, while the x-coordinate of Y

lies between the two points ‘1’ and ‘2’ where our splitting operators are defined (Fig. 3.11a).
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Moving on to multi -anyon states, we use the same notation as in our definition of F : we

label these states as |ax1 , bx2 , cx3 , ...⟩, where a, b, c, ... are the different anyons in the state

and x1, x2, x3... are their positions. Like before, we assume that x1, x2, x3, ... are ordered

according to their x-coordinate and that every pair of xi’s is separated by a distance of at

least ξ.

Likewise, we use the same movement and splitting operators as before, but with one

addition: we include two additional movement operators Ma
Y 1 and Ma

1Y which move an

anyon, a, from point 1 to point Y and vice-versa. Formally, these operators are defined by

the condition

Ma
Y 1|a1⟩ ∝ |aY ⟩, Ma

1Y |aY ⟩ ∝ |a1⟩ (3.88)

where both proportionality constants are U(1) phases. Note that we do not include any

movement operators between Y and any other point on the x-axis: all anyon movements

occur within the T -junction geometry shown in Fig. 3.11a.

With this setup we are now ready to give our definition of R. Consider the initial state

|ab1⟩, i.e. the state with a single anyon of type ab at position 1. Starting with this state, we

apply two different sequences of movement and splitting operators, denoting the final states

by |1⟩ and |2⟩:

|1⟩ =Mb
01M

b
12M

a
Y 1S(a, b)|ab1⟩

|2⟩ =Ma
Y 1M

a
12M

b
01S(b, a)|ab1⟩ (3.89)

These two processes are shown in Figure 3.11b. By construction, the final states |1⟩, |2⟩

produced by these processes both contain anyons a, b at positions Y, 0, respectively. In

particular, this means that |1⟩, |2⟩ are the same up to a phase. We define R(a, b) to be this

64



Figure 3.11: (a) To define R, we include an additional set of anyon states {|aY ⟩} located
at a point Y that is not on x-axis. We assume that Y has a negative y-coordinate and an
x-coordinate between 1 and 2. (b) The two processes that are compared in the microscopic
definition of the R-symbol.

phase difference:

R(a, b) = ⟨2|1⟩ (3.90)

At this point, one can check that our definition of R(a, a) matches the definition from Ref. [86]

reviewed in the introduction.

3.5.3 Checking the microscopic definition

To show that the microscopic definition is sensible, we need to establish two properties of

R: (i) R is well-defined in the sense that different choices of anyon states and movement

and splitting operators give the same R up to a gauge transformation; and (ii) R obeys the

hexagon equations (3.87). We prove property (ii) in Appendix 7.2; the goal of this section

is to prove property (i).
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To start, we analyze how R transforms if we change the phase of the movement and

splitting operators:

Ma
x′x → eiθx′x(a)Ma

x′x, S(a, b) → eiϕ(a,b)S(a, b) (3.91)

Substituting these transformations into (3.89-3.90) gives

R(a, b) → R(a, b)
eiϕ(a,b)eiθ12(b)

eiϕ(b,a)eiθ12(a)
(3.92)

We conclude that R changes by a gauge transformation (3.86) with

ν(a, b) = ϕ(a, b) + θ12(b) (3.93)

Notice that the above expression for ν is the same as in Eq. (5.66). In other words, when we

change the phases of the movement and splitting operators, the F and R-symbols undergo

gauge transformations generated by the same ν(a, b). This is exactly what we want from

our microscopic definition, as explained in Sec. 3.5.1.

Next, consider the more general situation where the movement and splitting operators

are changed in an arbitrary way (for fixed choice of anyon states |ax⟩). Denoting the new

movement and splitting operators by

Ma
x′x → M̃a

x′x, S(a, b) → S̃(a, b), (3.94)

it follows from the same arguments as in Sec. 5.3.5, that

M̃a
x′x|..., ax, ...⟩ = eiθx′x(a)Ma

x′x|..., ax, ...⟩

S̃(a, b)|..., ab1, ...⟩ = eiϕ(a,b)S(a, b)|..., ab1, ...⟩ (3.95)
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for some real-valued θ, ϕ. Substituting these relations into (3.89-3.90), we again see that

R(a, b) changes by a gauge transformation (3.86) with ν given by (3.93).

To complete the proof of property (i), we need to check how R transforms if we choose

different representative anyon states |ax⟩. As in Sec. 5.3.5, we will assume that different

choices of anyon states are related to one another by a local unitary transformation, U .

Given this assumption, our task is to understand how R changes if we replace

|ax1 , bx2 , cx3 , ...⟩ → |ax1 , bx2 , cx3 , ...⟩
′ (3.96)

where

|ax1 , bx2 , cx3 , ...⟩
′ = U |ax1 , bx2 , cx3 , ...⟩ (3.97)

for some local unitary transformation U . To answer this question, notice that we can choose

movement and splitting operators for the states |ax1 , bx2 , cx3 , ...⟩′ however we like since we

have already checked that this choice does not affect R, except by a gauge transformation.

The simplest choice is

(Ma
x′x)

′ = UMa
x′xU

†, S′(a, b) = US(a, b)U† (3.98)

whereMa
x′x and S(a, b) are movement and splitting operators for the states |ax1 , bx2 , cx3 , ...⟩.

With this choice, it is clear that |1′⟩ = U |1⟩, and |2′⟩ = U |2⟩. It follows that R′ = ⟨2′|1′⟩ =

⟨2|1⟩ = R. Thus, we conclude that R is invariant under a replacement of the anyon states,

|ax1 , bx2 , cx3 , ...⟩ → |ax1 , bx2 , cx3 , ...⟩′.
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Figure 3.12: R-symbol calculation for the toric code model. Vertices and plaquettes are
labeled by n and n̂ respectively. The σz operators applied for Me or S(e,m) are colored in
red. The σz operators applied for Mm, S(m, e) are colored in blue.

3.5.4 Examples

We now illustrate our microscopic definition by computing the R-symbol of several different

systems.

Toric code

We begin by computing the R-symbol R(m, e) for the toric code. The first step is to label the

anyon states that we will manipulate. For our calculation, we need the states corresponding

to the e, m, and em anyons. In the case of the e anyons, we use the same notation as in

Sec. 3.4.1: we label the vertices along the x-axis by integers n = 0,±1,±2, ... and we define

|en⟩ to be the state with Av=n = −1. Similarly, for the m anyons, we label the plaquettes

that lie just above the x-axis by n̂ = 0̂,±1̂,±2̂, ... and we define |mn̂⟩ to be the state with

Bp=n̂ = −1 (Fig. 3.12). Likewise, for the em anyons, we define |emn⟩ to be the state with

Av=n = Bp=n̂ = −1. Lastly, we will need two more anyon states, which we denote by |eY ⟩

and |m
Ŷ
⟩. Here, Y denotes a vertex, and Ŷ denotes an adjacent plaquette, both of which

are just below the x-axis (Fig. 3.12).

Next, we need to choose the movement operators for the two types of anyons. For the e
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anyons, we use the same movement operators as in Sec. 3.4.1: we defineMe
n′n =Me

nn′ = σzn,n′

where σzn,n′ denotes the σ
z operator on the link between adjacent vertices n and n′. Likewise,

for the m anyons, we define

Mm
n̂n̂′ =Mm

n̂′n̂ = σxn̂,n̂′ (3.99)

where σxn̂,n̂′ denotes the σ
x operator on the link between adjacent plaquettes n̂ and n̂′.

Finally we need the splitting operators S(e,m) and S(m, e), which we define by

S(e,m) = σx
1̂,2̂

S(m, e) = σz1,2 (3.100)

With this setup, we are now ready to compute R(m, e). Using the definition (3.89), we

have

|1⟩ =Me
01M

e
12M

m
Y 1S(m, e)|em1⟩

= σz0,1σ
z
1,2σ

x
1̂,Ŷ

σz1,2|em1⟩

= σz0,1σ
x
1̂,Ŷ

|em1⟩ (3.101)

and

|2⟩ =Mm
Y 1M

m
12M

e
01S(e,m)|em1⟩

= σx
1̂,Ŷ

σx
1̂,2̂
σz0,1σ

x
1̂,2̂

|em1⟩

= σx
1̂,Ŷ

σz0,1|em1⟩ (3.102)

To compare the two states, we note that the operators σz0,1 and σx
1̂,Ŷ

act on the same link
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Figure 3.13: To compute R from a chiral boson edge theory, we choose Y to be the point 3
located on the edge of the topological phase. This choice is acceptable because we can think
of the movement operatorMY 1 as being supported along an arc which only touches the edge
at points 1 and 3.

and therefore anticommute with one another. We conclude that |1⟩ = −|2⟩; so

R(m, e) = −1 (3.103)

Repeating the calculation for R(e,m), one finds that R(e,m) = +1 due to the absence

of anticommuting operators. More generally, with a suitable choice of conventions, it is easy

to check that R(a, b) = 1 for all a, b ∈ {1, e,m, em} except for

R(m, e) = R(em, e) = R(m, em) = R(em, em) = −1

Chiral boson edge theory

Next, we compute the R-symbol for a general bosonic Abelian topological phase described

by an N ×N K-matrix, Kij . As in Sec. 3.4.4, our calculation is based on the chiral boson

edge theory (3.68).

The first step is to specify our conventions for anyon states and movement and splitting

operators. For this step, we use exactly the same definitions as in Sec. 3.4.4. The only new

element of this calculation is that we need to define an additional set of anyon states in which

the anyons are located at the special point Y shown in Fig. 3.11a. There is some subtlety

in choosing the point Y : it is tempting to choose Y to be in the bulk, as suggested by the

geometry in Fig. 3.11a, but such a choice is not convenient since our calculation is based on
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an edge theory. Instead, we take Y to be the point 3 on the edge5 shown in Fig. 3.13. With

this choice the movement operatorM l
Y 1 is simply the operatorM l

31 defined in Eq. 3.72. This

movement operator can be thought of as being supported along an arc in the bulk which

meets the edge only at points 1 and 3 (Fig. 3.13).

Having fixed our conventions, we are now ready to compute R(l,m). Using the definition

(3.89) together with the expression for the splitting operator (3.73), we obtain:

|1⟩ =Mm
01M

m
12M

l
31M

m
21C(l,m)|[l +m]1⟩

|2⟩ =M l
31M

l
12M

m
01M

l
21C(m, l)|[l +m]1⟩ (3.104)

To find the phase difference between these two states, we first rearrange the order of the move-

ment operators using the commutation relations (3.76) and M l
31M

m
21 = eiα(l,m) ·Mm

21M
l
31:

|1⟩ =M l
31M

m
01C(l,m)|[l +m]1⟩e2iα(l,m)

|2⟩ =M l
31M

m
01C(m, l)|[l +m]1⟩eiα(l,m) (3.105)

where α(l,m) is given by definition (3.77). Then using the fact that C(l,m) = C(m, l) we

obtain |1⟩ = eiα(l,m)|2⟩ so that

R(l,m) = eiα(l,m) (3.106)

Making the gauge transformation (3.86) with ν given as in equation (3.83), we obtain

R(l,m) = exp[iπlTK−1(K −X)K−1m] (3.107)

5. The point Y = 3 should not be confused with the point ‘3’ that appears in the definition of the F -
symbol: in that context it should be thought of as the point ‘1000’ – i.e. far from the region where anyons
are manipulated.

71



Together with the F -symbol in Eq. (3.84), this gives the complete anyon data for the bosonic

Abelian topological phase with K-matrix Kij .

We can check these results in two ways. First, it is easy to verify that F and R obey the

pentagon identity (5.17) and hexagon equations (3.87). Second, we can compute the two

gauge invariant quantities

R(l, l) = exp[iπlTK−1l]

R(l,m)R(m, l) = exp[2πilTK−1m] (3.108)

which describe the exchange statistics and mutual statistics of the anyons. These expressions

agree with standard K-matrix theory [151].

3.6 Non-Abelian anyons

In this section, we explain how our microscopic definitions of F and R generalize to non-

Abelian anyons.

3.6.1 Review: non-Abelian anyon data

We begin by reviewing some basic aspects of non-Abelian anyon theories [74, 112]. These

theories consist of four pieces of data:

1. Set of anyon types: a finite set of anyon types,

A = {a, b, c, ...}.

2. Fusion product: an associative and commutative multiplication law on A of the form

a× b =
∑
c

Nab
c c (3.109)

where Nab
c are non-negative integers called “fusion multiplicities.”

72



3. F -symbol: a complex tensor, (F abc
def )

κλ
µν , where a, b, .., f ∈ A, while µ runs over the set

{1, ..., Nab
e } with κ, λ, ν indexed similarly (see Fig. 3.14).

4. R-symbol: a complex tensor, (Rab
c )

µ
ν , where a, b, c ∈ A, while µ, ν run over the set

{1, ..., Nab
c } (see Fig. 3.16).

The definition of “anyon types” is the same as in the Abelian case, so we begin by

explaining the non-Abelian fusion product. Given any pair of anyons a, b, we say that an

anyon of type c is a “fusion product” of a and b if c can be converted into a pair of anyons

a, b by applying a unitary operator supported in a finite region around c. We then define

the “fusion multiplicity” of c, denoted Nab
c , as follows: Nab

c = 0 if c is not a fusion product

of a and b. Otherwise, Nab
c = m where m is the largest integer such that there exist m

orthonormal states, |a, b; c; 1⟩, ..., |a, b; c;m⟩, consisting of two anyons a, b, and satisfying the

following properties. First, each state |a, b; c;µ⟩ can be obtained from a single anyon of type

c by applying a unitary operator supported in a finite region around c. Second, the |a, b; c;µ⟩

states are “locally indistinguishable”: that is, they obey

⟨a, b; c;µ′|O|a, b; c;µ⟩ = (const.) · δµµ′ (3.110)

for any local operator, O. Having defined Nab
c , we define the fusion product of a and b by a×

b =
∑

cN
ab
c c. (For an alternative definition of non-Abelian fusion rules, see Refs. [126, 125].)

All that remains is to explain the meaning of the F and R symbols. We will discuss

this in detail below, but the rough picture is as follows: the F -symbol can be interpreted

as a collection of (unitary) change of basis matrices relating multi-anyon states obtained

by splitting anyons in different orders. Likewise, the R-symbol is a collection of (unitary)

matrices that describe the non-Abelian Berry phases associated with braiding or exchanging

anyons. For example, (Raa
c )

µ
ν can be interpreted as the unitary matrix associated with

exchanging two a particles in the fusion channel c.
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Figure 3.14: Two processes in which an anyon d splits into anyons a, b, c. The inner product
of the final states |1, e, µ, ν⟩, |2, f, κ, λ⟩ defines the non-Abelian F -symbol.

3.6.2 Abstract definition of F

We now review the abstract definition of the F -symbol in the non-Abelian case [74, 112].

The basic idea is to consider two different physical processes in which an anyon, d, splits into

three anyons, a, b, c (Fig. 3.14). In one process, d splits into anyons e and c and then e splits

into a and b; in the other process, d splits into a and f and then f splits into b and c. In

general, there will be more than one way to split the anyons if the fusion multiplicities are

larger than 1. That is, there are multiple “locally indistinguishable” final states which can

be obtained by each splitting. Therefore, we label the four splittings by additional indices

µ, ν, κ, λ where µ = 1, ..., Nab
e and the others are indexed similarly. We then denote the

final states of these processes by |1, e, µ, ν⟩ and |2, f, κ, λ⟩. By construction, the set of states

{|1, e, µ, ν⟩} and {|2, f, κ, λ⟩} are both orthonormal bases for the same subspace — namely

the subspace of states consisting of three anyons a, b, c fusing to d. It follows that these

states must be related by a unitary matrix. The F -symbol (F abc
def )

κλ
µν is defined to be this
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unitary matrix:

|1, e, µ, ν⟩ =
∑
f,κ,λ

(F abc
def )

κλ
µν · |2, f, κ, λ⟩ (3.111)

As in the Abelian case, the above definition implies two properties of the F -symbol. The

first property is that the F -symbol is only well-defined up to gauge transformations. These

transformations take the form

(F abc
def )

κλ
µν →

∑
κ′λ′µ′ν′

(F abc
def )

κ′λ′
µ′ν′

· (αecd )ν
′

ν (αabe )
µ′
µ (αdaf )

λ
λ′(α

f
bc)

κ
κ′ (3.112)

where (αabc )
µ′
µ is a family of unitary matrices of dimension Nab

c × Nab
c , parameterized by

triplets of anyons, a, b, c, and αcab ≡ (αabc )−1 is the inverse matrix. To understand where

these gauge transformations come from, it is useful to think of each splitting, c → a, b, as

being implemented by a collection of splitting operators, Sabc,µ , where µ = 1, ..., Nab
c . We

are free to mix different splitting operators with one another by multiplying by a unitary

matrix, (αabc )
µ′
µ :

Sabc,µ →
∑
µ′

(αabc )
µ′
µ S

ab
c,µ′ (3.113)

If we make this replacement for each of the four splittings, then F changes by exactly the

above gauge transformation (3.112).

The second property of the F -symbol is that it obeys the pentagon identity. In the
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Figure 3.15: The two microscopic processes that define the non-Abelian F -symbol.

non-Abelian case, this identity takes the form

∑
hλ′µ′ρ

(F abc
gfh)

λ′µ′

λµ (F ahd
egk )

ρσ
µ′ν(F

bcd
khl )

τρ′

λ′ρ =

∑
κ

(F
fcd
egl )

τκ
µν(F

abl
efk)

ρ′σ
λκ (3.114)

This identity follows from the same reasoning as in the Abelian case.

3.6.3 Microscopic definition of F

The microscopic definition of F follows the same basic steps as is in the Abelian case. As

before, we fix a line in the 2D plane and we only consider states with anyons living along

this line. For each anyon a and each position x, we let |ax⟩ denote a state that contains

a single anyon a located at point x. Likewise, for any finite set of well-separated points
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x1 < x2 < x3 < ... we let

|ax1 , bx2 , cx3 , ...; t;µ⟩, µ = 1, ..., Nabc...
t (3.115)

denote an orthonormal basis of “locally indistinguishable” multi-anyon states that contain

an anyon a at point x1, anyon b at point x2, etc., and that can be obtained from a single

anyon t by applying a unitary operator supported in a finite region around t. Here, Nabc...
t

denotes the fusion multiplicity of t in the fusion product a × b × c · · · . Also, when we say

that these states are “locally indistinguishable” we mean that they satisfy

⟨µ′|O|µ⟩ = (const.) · δµµ′ (3.116)

where O is any local operator, and where we are using the abbreviation

|µ⟩ ≡ |ax1 , bx2 , cx3 , ...; t;µ⟩ (3.117)

As in the Abelian case, it is useful to give a precise definition of the multi-anyon states in

terms of the single anyon states: we define the multi-anyon states to be the set of all states

that have the same expectation values as the ground state for local operators supported

away from all the anyons, and the same expectation values as |ax1⟩ for local operators near

x1, the same expectation values as |bx2⟩ for local operators near x2, and so on. That is, the

multi-anyon states are characterized by the fact that

⟨..., ax, ...; t;µ|O|..., ax, ...; t;µ⟩ = ⟨ax|O|ax⟩ (3.118)

for every operator O supported in the neighborhood of a single anyon ax.

With this setup, we are now ready to define movement operators. For any anyon a and

any pair of points x, x′, we say thatMa
x′x is a “movement operator” if it obeys two conditions:

77



first,

Ma
x′x|ax⟩ ∝ |ax′⟩ (3.119)

where the proportionality constant is a U(1) phase; second, Ma
x′x is supported in a neigh-

borhood of the interval containing x and x′. As in the Abelian case, the second condition,

together with (3.118), guarantees that Ma
x′x has a similar effect on any multi-anyon state of

the form |..., ax, ...⟩ that does not contain any other anyons between x and x′:

Ma
x′x|..., ax, ...; t;µ⟩ =

∑
µ′
V
µ′
µ |..., ax′ , ...; t;µ′⟩ (3.120)

where V
µ′
µ is a unitary matrix.

We now move on to define splitting operators. First, we fix two (well-separated) points

on the line, ‘1’ and ‘2.’ Let a, b be any pair of anyons and let c be any anyon that appears in

the product a × b with multiplicity Nab
c ≥ 1. We say that a collection of operators {Sabc,µ},

where µ = 1, ..., Nab
c , are “splitting operators” if Sabc,µ satisfies two conditions: first,

Sabc,µ|c1⟩ =
∑
µ′
Q
µ′
µ |a1, b2; c;µ′⟩, (3.121)

where Q
µ′
µ is a unitary matrix; second, Sabc,µ is supported in the neighborhood of the interval

[1, 2]. As in the Abelian case, the second condition guarantees that the splitting operators

have a similar effect when applied to any multi-anyon state of the form |..., c1, ...⟩, as long

as the other anyons are located far from [1, 2]: that is,

Sabc,µ|..., c1, ...; t; ν⟩ =
∑
λ

Wλ
µν |..., a1, b2, ...; t;λ⟩ (3.122)

for some complex coefficients, Wλ
µν . These coefficients are guaranteed to have the orthonor-
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mality property

∑
λ

(Wλ
µν)

∗Wλ
µ′ν′ = δµµ′δνν′ (3.123)

An equivalent way to say this is that the states Sabc,µ|..., c1, ...; t; ν⟩ are orthonormal.

For any choice of movement and splitting operators, we define a corresponding F -symbol

as follows. First, starting with a single anyon d at position 1, we apply two different sequences

of movement and splitting operations:

|1, e, µ, ν⟩ =Mb
12M

a
01S

ab
e,µM

c
32S

ec
d,ν |d1⟩

|2, f, κ, λ⟩ =Mc
32S

bc
f,κM

f
12M

a
01S

af
d,λ|d1⟩ (3.124)

These two processes are shown in Figure 3.15. Next, we consider the collection of states

{|1, e, µ, ν⟩}. By construction, all of these states contain anyons a, b, c at positions 0, 1, 3.

In fact, the collection of states {|1, e, µ, ν⟩} forms an orthonormal basis for the topologically

degenerate subspace spanned by {|a0, b1, c3; d;σ⟩ : σ = 1, ..., Nabc
d }. The same is true for

the second collection of states, {|2, f, κ, λ⟩}. It follows that the overlaps between these two

collections of states form a unitary matrix. The F -symbol is defined to be this unitary

matrix:

(F abc
def )

κλ
µν = ⟨2, f, κ, λ|1, e, µ, ν⟩ (3.125)

3.6.4 Checking the definition of F

As in the Abelian case, we need to check two properties of F to establish that our definition

is sensible: (i) different choices of anyon states and movement and splitting operators give

the same F up to a gauge transformation; and (ii) F obeys the pentagon identity (3.114).

In this section, we prove property (i). As for property (ii), this follows from arguments that
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are almost identical to those in the Abelian case, discussed in Appendix 7.1.

To prove property (i), we first consider how F transforms if we change the splitting and

movement operators by a transformation of the form

Ma
x′x → eiθ

a
x′xMa

x′x

Sabc,µ →
∑
µ′

(βabc )
µ′
µ S

ab
c,µ′ (3.126)

where (βabc )
µ′
µ is an Nab

c × Nab
c unitary matrix and θax′x ∈ R. Substituting (3.126) into the

definition of F (3.125), it is easy to see that F changes by a gauge transformation with

(αabc )
µ′
µ = (βabc )

µ′
µ · eiθ

b
12 (3.127)

Next, consider the more general situation whereM and S are changed in an arbitrary way

(for a fixed choice of single6 anyon states |ax⟩). Denoting the new movement and splitting

operators by

Ma
x′x → M̃a

x′x, Sabc,µ → S̃abc,µ, (3.128)

it follows from the definition that

M̃a
x′x|..., ax, ...; t;µ⟩ =

∑
µ′
T
µ′
µ ·Ma

x′x|..., ax, ...; t;µ
′⟩

S̃abc,µ|..., c1, ...; t; ν⟩ =
∑
µ′ν′

U
µ′ν′
µν Sabc,µ′|..., c1, ...; t; ν

′⟩

where T
µ′
µ and U

µ′ν′
µν are unitary matrices. These matrices are highly constrained: first,

6. Fixing the single anyon states guarantees that the subspace of locally indistinguishable multi-anyon
states is also fixed.
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the topological degeneracy property (3.116) implies that T
µ′
µ = Tδ

µ′
µ for some phase factor

T , and likewise, U
µ′ν′
µν = U

µ′
µ δ

ν′
ν for some unitary matrix U

µ′
µ . Next, since both movement

operators are supported in a neighborhood of the interval containing x and x′, it follows

from property (3.118) that T can only depend on a, x, x′. Likewise, Uµ′
µ can only depend on

a, b, c. Putting this all together, we conclude that

M̃a
x′x|..., ax, ...; t;µ⟩ = eiθx′x(a)Ma

x′x|..., ax, ...; t;µ⟩

S̃abc,µ|..., c1, ...; t; ν⟩ =
∑
µ′

(βabc )
µ′
µ S

ab
c,µ′|..., c1, ...; t; ν⟩

for some real-valued θxx′(a) and some unitary matrix (βabc)
µ′
µ . Substituting these relations

into (3.125), we again see that F changes by a gauge transformation (3.112) with α given

by (3.127).

To complete our proof of property (i), we need to check that F changes at most by a

gauge transformation if we choose different anyon states |ax⟩. This can established using

nearly identical arguments to the Abelian case (see Sec. 5.3.5).

3.6.5 Abstract definition of R

We now explain the abstract definition of R in the case of non-Abelian anyons [74, 112].

As always, the basic idea is to compare two different physical processes (Fig. 3.16). In one

process, an anyon, c, splits into two anyons a, b, with a on the left and b on the right, and

then a, b are exchanged in the counterclockwise direction; the other process, c is splits into

a, b with b on the left and a on the right, without any subsequent exchange. If the fusion

multiplicity Nab
c is larger than 1, then are multiple ways to split c into a, b. Therefore, we

label the two splittings by additional indices µ, ν, which run from 1 to Nab
c . Denoting the

two final states by |1, ν⟩ and |2, µ⟩, it is clear, by the same logic as in Sec. 3.6.2, that these

two sets of states are related by a unitary matrix. The R-symbol (Rab
c )

µ
ν is defined to be
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Figure 3.16: Two processes in which an anyon c splits into anyons a, b. The inner product
of the final states |1, ν⟩, |2, µ⟩, defines the non-Abelian R-symbol.

this unitary matrix:

|1, ν⟩ =
∑
µ

(Rab
c )

µ
ν |2, µ⟩ (3.129)

Similarly to the Abelian case, two properties of the R-symbol follow from this definition.

First, R is only well-defined up to gauge transformations of the form

(Rab
c )

µ
ν →

∑
µ′ν′

(Rab
c )

µ′

ν′ (α
ab
c )ν

′
ν (αcba)

µ
µ′ (3.130)

where (αabc )
µ′
µ is the same family of unitary matrices of dimension Nab

c ×Nab
c that appears

in the gauge transformation for F (3.112). (As before, we use the notation αcab ≡ (αabc )−1

to denote the inverse matrix).

The second property of the R-symbol is that it obeys the hexagon equations. In the
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non-Abelian case, these take the form

∑
µ′κ

(Rab
e )

µ′
µ (F bac

def )
κλ
µ′λ′(R

ac
f )κ

′
κ =

∑
gσττ ′

(F abc
deg )

στ
µλ′(R

ag
d )τ

′
τ (F bca

dgf )
κ′λ
στ ′

∑
µ′κ

(Re
ba)

µ′
µ (F bac

def )
κλ
µ′λ′(R

f
ca)

κ′
κ =

∑
gσττ ′

(F abc
deg )

στ
µλ′(R

d
ga)

τ ′
τ (F bca

dgf )
κ′λ
στ ′ (3.131)

where we use the notation Ra
bc ≡ (Rbc

a )−1 to denote the inverse matrix. These equations

follow from the same reasoning as in the Abelian case.

3.6.6 Microscopic definition of R

The microscopic definition of the R-symbol for non-Abelian anyon theories is similar to the

one in the Abelian case. The first step is to choose a representative anyon state |ax⟩ for each

anyon a and each point x. As in the Abelian case, we include both the usual anyon states

|ax⟩, where the position x is located on the x-axis, as well as an additional collection of

anyon states {|aY ⟩} for some specific point Y that has a negative y-coordinate (Fig. 3.11a).

We then use the same notation for multi-anyon states as in Sec. 3.5.2: we label them as

|ax1 , bx2 , cx3 , ...; t;µ⟩ where a, b, c, ... are the different anyons in the state and x1, x2, x3, ...

are their well-separated positions, ordered according to their x-coordinate. Also, as in the

Abelian case, we introduce two additional movement operators Ma
Y 1 and Ma

1Y which move

an anyon a from point 1 to point Y and vice-versa.

To define R, consider the initial state |c1⟩, i.e. the state with a single anyon c at position

1. Starting with this state, we apply two different sequences of movement and splitting
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Figure 3.17: The two processes that are compared in the microscopic definition of the non-
Abelian R-symbol.

operators, denoting the final states by |1, ν⟩ and |2, µ⟩:

|1, ν⟩ =Mb
01M

b
12M

a
Y 1S

ab
c,ν |c1⟩

|2, µ⟩ =Ma
Y 1M

a
12M

b
01S

ba
c,µ|c1⟩ (3.132)

These two processes are shown in Figure 3.17. By construction, the final states, |1, ν⟩, |2, µ⟩,

produced by these processes both contain anyons a, b at positions Y, 0, and form an orthonor-

mal basis for the subspace of two anyon states at these positions. It follows that |1, ν⟩ and

|2, µ⟩ are related by a unitary matrix. We define (Rab
c )

µ
ν to be this unitary matrix:

(Rab
c )

µ
ν = ⟨2, µ|1, ν⟩ (3.133)
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3.6.7 Checking the definition of R

We need to check two properties of R to show that our definition is sensible: (i) different

choices of anyon states and movement and splitting operators give the same R up to a gauge

transformation (3.130); and (ii) R obeys the hexagon equations (3.131). In this section, we

prove property (i). As for property (ii), this follows from arguments that are almost identical

to those in the Abelian case discussed in Appendix 7.2.

The first step in proving property (i) is to consider how R transforms if we replace the

movement and splitting operators by

Ma
x′x → eiθ

a
x′xMa

x′x

Sabc,µ →
∑
µ′

(βabc )
µ′
µ S

ab
c,µ′ (3.134)

where (βabc )
µ′
µ is an Nab

c ×Nab
c unitary matrix and θax′x ∈ R. Substituting this into (3.132-

3.133) we conclude that R changes by a gauge transformation (3.130) with

(αabc )
µ′
µ = (βabc )

µ′
µ · eiθ

b
12 (3.135)

Importantly, the above expression for α is the same as in Eq. (3.127): thus, the F and

R-symbols undergo gauge transformations generated by the same α, as desired.

Next, consider the more general situation where the movement and splitting operators are

changed in an arbitrary way (again for a fixed choice of single anyon states |ax⟩). Denoting

the new movement and splitting operators by

Ma
x′x → M̃a

x′x, Sabc,µ → S̃abc,µ, (3.136)
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the same arguments as in the previous section imply that

M̃a
x′x|..., ax, ...; t;µ⟩ = eiθx′x(a)Ma

x′x|..., ax, ...; t;µ⟩

S̃abc,µ|..., c1, ...; t; ν⟩ =
∑
µ′

(βabc )
µ′
µ S

ab
c,µ′|..., c1, ...; t; ν⟩

for some real-valued θxx′(a) and some unitary matrix (βabc)
µ′
µ . Substituting these relations

into (3.132-3.133), we again see that R changes by a gauge transformation with α given by

(3.127).

At this point we have almost proved property (i): all that remains is show that different

representative anyon states |ax⟩ lead to the same R, up to a gauge transformation. This

result follows from the same argument as in the Abelian case (Sec. 3.5.3).

3.7 Conclusion

In this paper, we have proposed microscopic definitions of both the F -symbol and the R-

symbol. These definitions are quite general: they apply to arbitrary bosonic or fermionic

many-body systems with local interactions and an energy gap. We have also shown that

our definitions obey the pentagon and hexagon equations, thereby providing a microscopic

derivation of these fundamental constraints.

Throughout this paper, we have emphasized that our definitions provide concrete proce-

dures for computing anyon data from microscopic models. It is natural to wonder: can we

go a step further and turn these procedures into experimental protocols? In other words, do

our definitions provide a way to measure F and R?

The answer to this question is ‘yes,’ at least in principle. For example, consider the

Abelian F -symbol F (a, b, c). To measure this quantity, one could first prepare an initial state

of the form 1√
2
|(abc)1⟩⊗ (| ↑⟩+ | ↓⟩), where |(abc)1⟩ denotes an anyon state, and | ↑⟩, | ↓⟩ are

(orthogonal) states of an ancilla qubit. Next, one could perform the sequence of movement
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and splitting operations in process ‘1’ (3.11), with each operation conditioned on the ancilla

qubit being in the state | ↑⟩, followed by the operations in process ‘2,’ each conditioned on

the ancilla qubit being in the state | ↓⟩.7 This sequence of operations produces the final

state 1√
2
(|1⟩ ⊗ | ↑⟩+ |2⟩ ⊗ | ↓⟩). Finally, by measuring the expectation values ⟨σx⟩ and ⟨σy⟩

for the ancilla qubit, one could extract the real and imaginary parts of ⟨2|1⟩ = F (a, b, c). A

similar scheme could be used to measure R; thus, in principle one can measure the complete

set of anyon data. These schemes also generalize easily to the non-Abelian case.

That said, these schemes, both theoretical and experimental, suffer from a serious limita-

tion: they assume a detailed microscopic understanding of anyon excitations. An important

problem is to find other methods of extracting a complete set of anyon data that do not

require as much information about the underlying many-body system. For example, several

authors have proposed methods for computing various pieces of anyon data from a ground

state wave function alone[148, 87, 75, 169, 170, 106, 167, 137, 49]; it would be interesting if

one could develop methods of this kind for the F -symbol or R-symbol.

Another interesting direction would be to consider many-body systems with symmetries.

These systems are characterized by a richer set of data that describes both the topological

properties of anyon excitations as well as how they transform under the symmetries [7, 133,

132, 80]. A natural extension of this work would be to find microscopic definitions and

measurement schemes for this “symmetry-enriched” data.

7. Here, we assume that the movement and splitting operators are chosen so that they are unitary.
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Abstract

We describe a systematic procedure for determining the identity of a 2D bosonic sym-

metry protected topological (SPT) phase from the properties of its edge excitations. Our

approach applies to general bosonic SPT phases with either unitary or antiunitary sym-

metries, and with either continuous or discrete symmetry groups, with the only restriction

being that the symmetries must be on-site. Concretely, our procedure takes a bosonic SPT

edge theory as input, and produces an element ω of the cohomology group H3(G,UT (1)).

This element ω ∈ H3(G,UT (1)) can be interpreted as either a label for the bulk 2D SPT

phase or a label for the anomaly carried by the SPT edge theory. The basic idea behind our

approach is to compute the F -symbol associated with domain walls in a symmetry broken

edge theory; this domain wall F -symbol is precisely the anomaly we wish to compute. We

demonstrate our approach with several SPT edge theories including both lattice models and

continuum field theories.

4.1 Introduction

A gapped quantum many-body system belongs to a nontrivial “symmetry-protected topo-

logical” (SPT) phase if it has two properties: (i) the ground state is unique and short-range
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entangled1; and (ii) it is not possible to adiabatically connect the system to another system

with a trivial (product-state) ground state without breaking one or more global symme-

tries [110, 40, 24, 120, 25, 28]. Famous examples of SPT phases include the 2D and 3D

topological insulators [53, 114] and the 1D Haldane spin-1 chain [50].

The most important physical property of nontrivial SPT phases is that these systems

support robust gapless boundary modes. These boundary modes are “protected” in the sense

that they cannot be gapped out without breaking one or more global symmetries [66, 164,

162, 26, 84, 39] or, in the case of 3D or higher dimensional systems, introducing topological

order on the boundary [139, 100, 30, 144, 14].

A basic question is how to determine the identity of an SPT phase from the properties

of its boundary modes. This “bulk-boundary correspondence” is largely understood for

non-interacting fermionic SPTs. For example, in the case of 2D time-reversal symmetric

insulators, one can determine whether the bulk phase is a trivial insulator or a topological

insulator based on whether there are an even or odd number of Kramers pairs of edge modes.

Similar formulas expressing bulk invariants in terms of boundary modes are known for other

non-interacting fermion SPTs [53, 114]. The interacting case, however, is less understood,

especially in two and higher dimensions. This paper seeks to address the interacting problem

in the case of 2D bosonic SPT phases with on-site (i.e. non-spatial) symmetries. We ask:

how can one determine the identity of a 2D bosonic SPT phase from its (1D) edge modes?

To make this question more concrete, let us recall the conjectured cohomology classifi-

cation of 2D bosonic SPT phases [28]. According to this classification, there is a one-to-one

correspondence between 2D bosonic SPT phases with on-site symmetry group G and ele-

ments of the cohomology group H3(G,UT (1)). Our problem is thus to compute an element

ω ∈ H3(G,UT (1)) from a bosonic SPT edge theory. This element ω ∈ H3(G,UT (1)) can be

interpreted as describing the anomaly carried by the edge theory.

1. A state |Ψ⟩ is “short-range entangled” if it can be transformed into a product state by local unitary

transformation, i.e. a unitary of the form U = T exp(−i
∫ T

0
H(t)dt) where H is a local Hermitian operator.
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Significant progress on this problem has been made in previous work. In a pioneering

paper, Chen, Liu, and Wen [26] showed how to compute the anomaly ω ∈ H3(G,U(1)) for

any bosonic SPT edge theory whose symmetries are represented by matrix product unitary

operators. Later, in another important advance, Else and Nayak [39] introduced a method

for computing anomalies based on the idea of spatially restricting symmetry operators. This

symmetry restriction method applies to any SPT edge theory whose symmetries are local

unitary transformations, i.e. of the form U = T exp(−i
∫ T
0 H(t)dt) for some local Hermitian

operator H. In another line of research, several authors have presented approaches for

determining anomalies in SPT edge theories with conformal symmetry, using orbifold [129,

18, 135, 91] or orientifold constructions [57], though it is not obvious how to extend the latter

approaches to general symmetry groups.

One limitation of the approaches introduced in Ref. [26], [39] is that they do not apply

to SPT edge theories with antiunitary symmetries except in special cases [39]. Another

limitation is that they require that the symmetries take a particular form – either a matrix

product operator or a local unitary transformation. A priori there could be edge theories

where the symmetries cannot be written in these forms, or it may be difficult to write

explicitly.

In this paper, we present an alternative approach for computing anomalies in bosonic

SPT edge theories, which addresses these issues. Unlike previous work, our approach applies

to general bosonic SPT edge theories with both unitary and antiunitary symmetries. Our

only restriction is that the underlying 2D symmetry must be on-site.

The basic idea behind our approach is simple. First, we choose an edge Hamiltonian that

spontaneously2 breaks all the symmetries on the edge and opens up an energy gap. Such

a Hamiltonian has a collection of degenerate ordered ground states related to one another

by symmetry transformations. The elementary excitations are domain walls between the

2. Alternatively, we can break the symmetry explicitly rather than spontaneously. See Sec. 4.7 for details.
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different ground states. These domain walls can be fused together to form new domain

walls, much like anyon excitations in 2D topological systems. This allows one to define

an “F -symbol” that describes the phase difference associated with fusing domain walls in

different orders. This domain wall F -symbol is precisely the anomaly we wish to compute:

we show that F is naturally an element of H3(G,UT (1)), and that F depends only on the

edge theory and not on other details. Some care is required to compute F , but we describe

a concrete procedure for performing this computation using the formalism of Ref. [69]. We

note that the connection between domain wall F -symbols and anomalies was also alluded to

in Ref. [117] in the context of a Z2 SPT edge theory.

This paper is organized as follows. In Sec. 5.2 we explain the basic setup for our problem.

Then, in Sec. 4.3, we present our anomaly computation procedure in the simplest case:

SPT edge theories with discrete unitary symmetry groups. We illustrate our procedure with

several (discrete unitary) examples in Sec. 5.4. In Sec. 4.5, we discuss the connection between

our procedure and the symmetry restriction approach of Ref. [39], and we prove that the two

approaches agree with one another in cases where both are applicable. In Sec. 5.5 we consider

the general case of SPT edge theories with both unitary and antiunitary symmetries, and

we show that the same procedure works in this case. Sec. 4.7 discusses how to extend our

approach to the case of continuous symmetries. Finally, we give our conclusions in Sec. 5.6.

Technical details are discussed in the Appendix.

4.2 Setup

We begin by defining what we mean by an “edge theory”, or more precisely, a bosonic SPT

edge theory. At an intuitive level, a bosonic SPT edge theory is a collection of data that

describes the low energy edge excitations of an SPT phase. More specifically, a bosonic SPT

edge theory consists of three pieces of data:

1. A Hilbert space H.
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2. A complete list of “local operators” {O} acting in H.

3. A collection of (unitary or anti-unitary) symmetry transformations {Ug : g ∈ G} acting

on H.

Each of these pieces of data has a simple physical interpretation: the Hilbert space H

describes the subspace of low energy edge excitations; the list {O} describes the low energy

projection of local operators in the original 2D system; and the {Ug} operators describe how

the edge excitations transform under the symmetry.

In order to qualify as a valid bosonic SPT edge theory, we require that the above data

is physically realizable as the edge of some 2D SPT Hamiltonian with on-site symmetries.

That is, we require the existence of a 2D Hamiltonian H2D that belongs to an SPT phase

with (on-site) symmetry group G and that has the following properties:

1. The Hilbert space H is isomorphic to the subspace of low energy edge excitations of

H2D.

2. The operators {O} correspond to local operators of the 2D system, projected into this

low energy subspace.

3. The {Ug} transformations describe how the low energy subspace transforms under the

symmetries in G.

See Secs. 5.4, 4.6.4, 4.7.2 for examples of bosonic SPT edge theories. In general, bosonic SPT

edge theories can be described using either continuum fields or lattice degrees of freedom

and our results apply equally well to both cases.

With this background, we can now state our main result, (summarized in Fig. 4.1): we

describe a systematic procedure that takes a bosonic SPT edge theory as input, and that

outputs an element ω of the cohomology group H3(G,UT (1)) (see Sec. 5.5.1 for a definition).

As explained in the introduction, the element ω ∈ H3(G,UT (1)) can be interpreted in two
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Figure 4.1: Schematic picture for our main result: we describe a procedure that takes a 1D
bosonic SPT edge theory as input, and produces as output an element ω ∈ H3(G,UT (1)).
This element ω can be interpreted as either a label for the bulk 2D SPT phase or the anomaly
carried by the edge theory.

equivalent ways: ω can be thought of as either a label for the bulk 2D SPT phase or a label

for the anomaly carried by the SPT edge theory. Thus, depending on one’s point of view,

our procedure provides a systematic method for computing either the bulk 2D SPT phase

or the anomaly associated with a given edge theory.

4.3 Discrete unitary symmetries

4.3.1 Outline of procedure

In this section, we outline our procedure in the case where the symmetry group G is discrete

and unitary.

We start by reviewing the definition of the cohomology group H3(G,U(1)), since this

is the group that describes the output of our procedure in the case of discrete unitary

symmetries. The cohomology group H3(G,U(1)) consists of equivalence classes of functions

ω : G×G×G→ U(1) obeying the condition

ω(g, h, k)ω(g, hk, l)ω(h, k, l)

ω(gh, k, l)ω(g, h, kl)
= 1. (4.1)

Any function ω obeying (5.7) is called a “cocycle.” The equivalence relation between different
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coycles is defined as follows: ω ≡ ω′ if ω′/ω is a “coboundary,” i.e.

ω′(g, h, k)
ω(g, h, k)

=
ν(gh, k)ν(g, h)

ν(g, hk)ν(h, k)
(4.2)

for some function ν : G × G → U(1). We will see that the output of our procedure is a

cocycle ω, which is uniquely defined up to multiplication by a coboundary (4.2); in this way,

our procedure produces an element of H3(G,U(1)).

With this background, we now move on to explain our procedure. The first step in our

procedure is to choose an (edge) Hamiltonian H that acts within the Hilbert space H. The

Hamiltonian H can be arbitrary as long as it has three properties: (i) H is local, i.e. H is

built out of the local operators {O} from Sec. 5.2; (ii) H has an energy gap; and (iii) H

breaks the G-symmetry spontaneously and completely.3

An important aspect of the Hamiltonian H is that it has multiple degenerate ground

states due to the spontaneously broken symmetry. More specifically, H has |G| degenerate,

short-range correlated ground states, which are permuted amongst themselves by the sym-

metry transformations. These ground states can be naturally labeled by group elements,

g ∈ G. To do this, we pick one of the degenerate ground states and denote it by |Ω; 1⟩. We

then label the other states by {|Ω; g⟩} where |Ω; g⟩ is defined by

|Ω; g⟩ = Ug|Ω; 1⟩ (4.3)

By construction, Ug|Ω;h⟩ = |Ω; gh⟩.

Having found the ground states of H, the next step in our procedure is to construct

domain wall excitations. We give a precise definition of domain wall excitations in Sec. 4.3.2,

but roughly speaking a domain wall excitation is a state in H that “looks like” one ground

3. Actually, such a Hamiltonian is not strictly necessary for our procedure: all that we really need is a
single (edge) state |Ψ⟩ that explicitly breaks all symmetries. See Sec. 4.7 for more details.

95



Figure 4.2: A domain wall excitation: a state that shares the same local expectation values
as one ground state |Ω; g⟩ to the left of some point x, and another ground state |Ω;h⟩ to the
right of x. We label such a domain wall by the group element g−1h.

state |Ω; g⟩ to the left of some point x, and like another ground state |Ω;h⟩ to the right of x,

and that interpolates between the two ground states in some arbitrary way in the vicinity of

x (Fig. 5.1). Like the ground states, these domain wall excitations can be naturally labeled

by group elements: in particular, we will label a domain wall with the above structure with

the group element g−1h. An important property of this labeling is that it is invariant under

any global symmetry transformation Uk: under such a transformation, |Ω; g⟩ → |Ω; kg⟩ and

|Ω;h⟩ → |Ω; kh⟩ so g−1h→ (kg)−1(kh) = g−1h.

Like other topological defects, domain walls cannot be created or annihilated individually.

Instead, the most basic process that one can perform on domain walls is to combine them

together in a process called “fusion”: if one has a g type domain wall located nearby and

to the left of an h type domain wall, then one can convert this pair of domain walls into a

single gh type domain wall by applying a local operator acting on both domain walls. This

process is shown in Fig. 5.2. Alternatively, one can perform the reverse (“splitting”) process

and apply a local operator that turns a gh type domain wall into a g type domain wall to

the left of an h type domain wall.

This ability to fuse or split domain walls allows us to define an “F -symbol” for these

excitations. The F -symbol is usually discussed in the context of 2D anyon theories [74, 112],
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Figure 4.3: Spacetime diagram of fusion of a g and h domain wall into a gh domain wall.
The initial state consists of three different ground states |Ω; 1⟩, |Ω; g⟩, |Ω; gh⟩ in three dif-
ferent regions, separated by domain walls g, h. During the fusion process, the |Ω; g⟩ region
disappears and we are left only with the |Ω; 1⟩, |Ω; gh⟩ regions separated by a gh domain
wall. Reversing the arrow of time corresponds to a “splitting” operation.

but it is a more general concept that can be defined for any point-like mobile defects. In

particular, we can sensibly define an F -symbol for domain walls in 1D edge theories. The

basic idea is to consider two different physical processes in which a domain wall of type ghk

splits into three domain walls of types g, h, k (Fig. 4.4). In one process, ghk splits into

gh and k, and then gh splits into g and h; in the other process, ghk splits into g and hk

and then hk splits into h and k. By construction, the final states |1⟩, |2⟩ produced by these

processes contain the same domain walls, g, h, k, at the same three positions. Therefore, the

two final states |1⟩, |2⟩ must be the same up to a phase. The F -symbol, F (g, h, k), is the

phase difference between the two states:

|1⟩ = F (g, h, k)|2⟩. (4.4)
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The final step in our procedure is to compute this F -symbol for domain wall excitations.

This F -symbol defines our cocycle ω ∈ H3(G,U(1)):

ω(g, h, k) ≡ F (g, h, k) (4.5)

To justify Eq. 5.16, we need to explain why F (g, h, k) is an element of H3(G,U(1)). This

follows from two important properties of F which we prove in Sec. 4.3.3. The first property

is that F satisfies a non-trivial constraint, known as the “pentagon identity”:

F (g, h, k)F (g, hk, l)F (h, k, l) = F (gh, k, l)F (g, h, kl) (4.6)

To understand the origin of this identity, consider the 5 processes shown in Fig. 4.5. Notice

that the final states produced by these processes, namely {|1⟩, ..., |5⟩}, are all the same up

to a phase. We can compute the phase difference between states |1⟩ and |5⟩ in two different

ways. In the first way, we compute the relative phases between (|1⟩, |2⟩), (|2⟩, |3⟩), and

(|3⟩, |5⟩) using (5.15); in the second way, we compute the relative phases between (|1⟩, |4⟩) and

(|4⟩, |5⟩). Demanding consistency between the two calculations gives the pentagon identity

(5.17).

The second property of F is that is has an inherent ambiguity: it is only well-defined up

to transformations of the form

F (g, h, k) → F (g, h, k)
ν(gh, k)ν(g, h)

ν(g, hk)ν(h, k)
(4.7)

where ν(g, h) ∈ U(1). To understand where this ambiguity comes from, it is helpful to

think about the physical processes in Fig. 4.4 as being implemented by a sequence of two

“splitting operators” applied to an initial state |ghk1⟩. The key point is that the phases of

these splitting operators are arbitrary. If we multiply the four splitting operators by four
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Figure 4.4: Spacetime diagrams for two processes in which a domain wall ghk splits into
domain walls g, h, k. The final states, |1⟩, |2⟩, are equal up to the U(1) phase, F (g, h, k).

phases, ν(gh, k), ν(g, h), ν(g, hk), ν(h, k), this changes F by exactly the above transformation

(5.20). We will call the transformations in (5.20) “gauge transformations.”

Comparing the above properties of F to the definition of H3(G,U(1)), we can see that

the pentagon identity (5.17) is identical to the cocycle condition (5.7), while the ambiguity

(5.20) is equivalent to the equivalence relation (4.2) on cocycles. Hence, F naturally an

element of H3(G,U(1)), as we claimed earlier.

4.3.2 Microscopic definition of F -symbol for domain walls

In this section, we give precise, operational definitions of domain wall states and their asso-

ciated F -symbols. These definitions are essential for making our procedure a useful calcula-

tional tool; they are also important for putting our procedure on a firm foundation. We note

that these definitions closely parallel the microscopic definition of the anyonic F -symbol that

was given in Ref. [69] in the context of anyon theories.

To begin, let ℓ be a distance that is much greater than the correlation length ξ of the

system. The length scale ℓ will play an important role in the following discussion. In
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Figure 4.5: The pentagon identity: consistency requires that the product of the three F -
symbols on the upper path is equal to the product of the two F -symbols on the lower path.

particular, we will only consider states in which domain wall excitations are separated by

distances of at least ℓ, and we will neglect finite size effects of order e−ℓ/ξ.

We define domain wall states as follows. For each point x on the edge, we choose a state

that has the same expectation values as |Ω; 1⟩ for local operators {O} supported to the left

of x − ℓ and the same expectation values as |Ω; g⟩ for local operators {O} to the right of

x+ ℓ. We denote this state by |gx⟩. In our language, the state |gx⟩ describes a single domain

wall of “type g” at position x. Note that the definition of |gx⟩ involves an arbitrary choice

of a state: we will show that our results do not depend on this choice.

Next, for each domain wall state |gx⟩, we define a collection of symmetry partner states

|gx;h⟩, with h ∈ G, by

|gx;h⟩ = Uh|gx⟩ (4.8)

By construction, |gx;h⟩ has the same expectation values as |Ω;h⟩ for local operators sup-
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ported to the left of x− ℓ and the same expectation values as |Ω;hg⟩ for local operators to

the right of x+ ℓ.

We now introduce multi -domain wall states. Let x1 < x2 < ... < xn be well-separated

(i.e. having a spacing of at least ℓ) and pick group elements g(1), g(2), ..., g(n) ∈ G. We

will use the notation |g(1)x1 , g
(2)
x2 , ...⟩ to denote the multi-domain wall state that has a domain

wall of type g(i) at each location xi and that has the same expectation values as |Ω; 1⟩

for local operators supported to the left of all the domain walls. More precisely, we define

|g(1)x1 , g
(2)
x2 , ...⟩ to be the unique state with the following two properties: first, for any local

operator O supported near one domain wall xi,

⟨g(1)x1 , g
(2)
x2 , ...|O|g(1)x1 , g

(2)
x2 , ...⟩ = ⟨g(i)xi ; gL|O|g(i)xi ; gL⟩ (4.9)

where gL is the product of all domain wall types to the left of O:

gL = g(1) · · · g(i−1) (4.10)

Second, for any operator O supported away from the domain walls,

⟨g(1)x1 , g
(2)
x2 , ...|O|g(1)x1 , g

(2)
x2 , ...⟩ = ⟨Ω; gL|O|Ω; gL⟩ (4.11)

where gL is again the product of domain wall types to the left of O. These two properties

imply that multidomain wall states have a structure like that in Fig. 4.6.

An important corollary of Eq. 4.9, which we will need below, is that for any operator O

that is supported near a domain wall g at point x and is invariant under all the symmetries

(i.e. UhO(Uh)−1 = O), the following identity holds:

⟨..., gx, ...|O|..., gx, ...⟩ = ⟨gx|O|gx⟩ (4.12)
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Figure 4.6: A multi-domain wall state |gx, hx′ , kx′′⟩ consisting of a g-type, h-type, and k-type
domain wall at positions x, x′, x′′. The domain walls separate four regions which share the
same local expectation values as the four ground states |Ω; 1⟩, |Ω; g⟩, |Ω; gh⟩, |Ω; ghk⟩.

Now that we have fixed our definitions of domain wall states, the next step is to define

movement operators for these domain walls. Given any group element g ∈ G, and any pair

of points, x, x′, we say that M
g
x′x is a movement operator if it satisfies three conditions: (i)

M
g
x′x obeys

M
g
x′x|gx⟩ ∝ |gx′⟩ (4.13)

where the proportionality constant is a U(1) phase; (ii) M
g
x′x is invariant under all the

symmetries, i.e.

UhM
g
x′x(U

h)−1 =M
g
x′x (4.14)

and (iii) M
g
x′x is local in the sense that it is supported in the neighborhood of the interval

containing x, x′.

Here, the symmetry condition (5.36) is important because it guarantees that the analog

of Eq. 5.35 holds for any (single) domain wall state |gx;h⟩:

M
g
x′x|gx;h⟩ ∝ |gx′ ;h⟩ (4.15)

Likewise, the locality condition is important because it guarantees that the analog of Eq. 5.35
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holds for any multi-domain wall state of the form |..., gx, ...⟩: that is,

M
g
x′x|..., gx, ...⟩ ∝ |..., gx′ , ...⟩ (4.16)

as long as the other domain walls in |..., gx, ...⟩ are well-separated from the interval containing

x and x′. Again the constant of proportionality is a U(1) phase.

To derive Eq. 5.38 from Eq. 5.35, consider the expectation value of any local operator,

O, supported in the neighborhood of [x, x′] (or [x′, x] if x′ < x), in the two states |..., gx′ , ...⟩

and M
g
x′x|..., gx, ...⟩. Using (4.9) and (5.37), we can see that O has the same expectation

value in the two states, |..., gx′ , ...⟩ and M
g
x′x|..., gx, ...⟩:

⟨..., gx′ , ...|O|..., gx′ , ...⟩ = ⟨gx′ ; gL|O|gx′ ; gL⟩

= ⟨gx; gL|(M
g
x′x)

†OMg
x′x|gx; gL⟩

= ⟨..., gx, ...|(Mg
x′x)

†OMg
x′x|..., gx, ...⟩ (4.17)

The two states, |..., gx′ , ...⟩ and M
g
x′x|..., gx, ...⟩ also share the same expectation values for

local operators supported away from the interval [x, x′] (or [x′, x]) by virtue of the short

ranged correlations of these states. Therefore, by the uniqueness property of our domain

wall states, we obtain Eq. 5.38.

In addition to the movement operators, we also define splitting operators for our domain

walls. Fix two well-separated points on the line, which we will call ‘1’ and ‘2’. For any pair

of domain walls g, h, we say that S(g, h) is a splitting operator if it satisfies three conditions:

(i) S(g, h) satisfies

S(g, h)|gh1⟩ ∝ |g1, h2⟩ (4.18)

where the proportionality constant is a U(1) phase; (ii) S(g, h) is invariant under all the

symmetries Uk; (iii) S(g, h) is supported in the neighborhood of the interval [1, 2].
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Figure 4.7: The two processes that are compared in the microscopic definition of the domain
wall F -symbol. Starting from an initial state |ghk1⟩, movement and splitting operators are
applied sequentially to obtain final states |1⟩ and |2⟩ on the left and right, respectively.
States |1⟩, |2⟩ are both proportional to |g0, h1, k3⟩. The x-axis is the position on the edge
and the t-axis shows operator ordering.

Just as before, it can be shown that these conditions guarantee that the splitting operators

can be applied to any multi-domain wall state of the form |..., gh1, ...⟩ provided that the other

domain walls are located far from the interval [1, 2]:

S(g, h)|..., gh1, ...⟩ ∝ |..., g1, h2, ...⟩ (4.19)

where the proportionality constant is a U(1) phase. Note that, unlike the movement opera-

tors, we only define splitting operators that act on a single interval [1, 2] on the x-axis.

With this setup, we are now ready to define the F -symbol. The first step is to fix some

choice of domain wall states, |gx⟩, and some choice of movement and splitting operators,

M
g
x′x, S(g, h). Next, consider the initial state |ghk1⟩, i.e. the state with a single domain
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wall ghk at position 1. We then apply two different sequences of movement and splitting

operators to |ghk1⟩, denoting the final states by |1⟩ and |2⟩:

|1⟩ =Mh
12M

g
01S(g, h)M

k
32S(gh, k)|ghk1⟩

|2⟩ =Mk
32S(h, k)M

hk
12M

g
01S(g, hk)|ghk1⟩ (4.20)

These two processes are shown in Fig. 4.7. By construction, the final states |1⟩, |2⟩ produced

by these processes both contain domain walls g, h, k at positions 0, 1, 3, respectively. In

particular, this means that |1⟩, |2⟩ are the same up to a phase. We define the F -symbol,

F (g, h, k), to be this phase difference:

F (g, h, k) = ⟨2|1⟩ (4.21)

4.3.3 Checking the microscopic definition

To show that our microscopic definition is correct, we need to establish two properties of F :

(i) F is well-defined in the sense that different choices of domain wall states and movement

and splitting operators give the same F up to a gauge transformation (5.20); and (ii) F

obeys the pentagon equation (5.17). We prove property (ii) in Appendix 7.1; the goal of this

section is to prove property (i).

As a warm-up, let us see how F transforms if we only change the phase of the movement

and splitting operators. That is, suppose we replace

M
g
x′x → eiθx′x(g)M

g
x′x, S(g, h) → eiϕ(g,h)S(g, h) (4.22)
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for some real-valued θ, ϕ. Substituting these transformations into (4.20-4.21) gives

F (g, h, k) → F (g, h, k)
eiϕ(gh,k)eiϕ(g,h)eiθ12(h)

eiϕ(g,hk)eiϕ(h,k)eiθ12(hk)
(4.23)

Crucially, this transformation is identical to a coboundary transformation (5.20) with

ν(g, h) = ei[ϕ(g,h)+θ12(h)] (4.24)

This is exactly what we want: different phase choices lead to the same F , up to a coboundary,

or gauge transformation.

With this warm-up, we are now ready to consider the general case where we change the

movement and splitting operators in an arbitrary way:

M
g
x′x →M

′g
x′x, S(g, h) → S′(g, h) (4.25)

To analyze this case, we note that the definition of movement and splitting operators implies

that

M
′g
x′x|gx⟩ = eiθx′x(g)M

g
x′x|gx⟩

S′(g, h)|gh1⟩ = eiϕ(g,h)S(g, h)|gh1⟩ (4.26)

for some real valued θx′x(g) and ϕ(g, h). Likewise, for multi -domain wall states,

M
′g
x′x|..., gx, ...⟩ = ω1 ·M

g
x′x|..., gx, ...⟩ (4.27)

S′(g, h)|..., gh1, ...⟩ = ω2 · S(g, h)|..., gh1, ...⟩ (4.28)

for some U(1) phases ω1, ω2.

To proceed further, we need to find the relationship between the multi-domain wall phases
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ω1, ω2 and the single domain wall phases eiθx and eiϕ(g,h). To do this, we multiply the two

sides of (5.70) by ⟨..., gx, ...|(Mg
x′x)

† and then use property (5.34) to derive

ω1 = ⟨..., gx, ...|(Mg
x′x)

†M ′g
x′x|..., gx, ...⟩

= ⟨gx|(Mg
x′x)

†M ′g
x′x|gx⟩

= eiθx′x(g) (4.29)

By the same reasoning, ω2 = eiϕ(g,h). We conclude that

M
′g
x′x|..., gx, ...⟩ = eiθx′x(g)M

g
x′x|..., gx, ...⟩

S′(g, h)|..., gh1, ...⟩ = eiϕ(g,h)S(g, h)|..., gh1, ...⟩ (4.30)

We are now finished: substituting the above relations (5.73) into (4.20), we again see that

F changes by a gauge transformation with ν given by (5.66).

So far, we have shown that different choices of movement and splitting operators lead to

the same F , up to a gauge transformation. Next, we need to check that different choices

of edge Hamiltonians and domain wall states also lead to the same F , up to a gauge trans-

formation. To investigate this issue, consider two choices of edge Hamiltonians, H and H ′,

with ground states {|Ω; g⟩} and {|Ω; g⟩′} respectively. It seems reasonable to assume that

H and H ′ can be adiabatically connected, i.e. there exists an interpolating Hamiltonian Hs,

with 0 ≤ s ≤ 1 with H0 = H and H1 = H ′ such that Hs is local, gapped, and breaks the

G-symmetry spontaneously and completely. Assuming the existence of such an interpola-

tion, it then follows from the quasi-adiabatic continuation construction [54] that there exists

a G-invariant, “locality preserving” unitary transformation W that connects the two sets of

ground states: that is,

{|Ω; g⟩′} = {W |Ω; g⟩} (4.31)
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Here, when we say W is “locality preserving”, we mean that it has the following property:

for any local operator O, the operator WOW−1 is also local and is supported near O.

Comparing Eq. 5.98 with our labeling scheme (5.11), we deduce that the two sets of

ground states are related by

|Ω; g⟩′ = WUk|Ω; g⟩ (4.32)

for some k ∈ G.

Next, consider the implications of Eq. (5.99) for domain wall states. Applying WUk to a

multi-domain wall state |g(1)x1 , g
(2)
x2 , g

(3)
x3 , ...⟩ forH, we see that the stateWUk|g(1)x1 , g

(2)
x2 , g

(3)
x3 , ...⟩

is a valid multi-domain wall state for H ′. Let us compare this state to the “primed” domain

wall state, which we denote by |g(1)x1 , g
(2)
x2 , g

(3)
x3 , ...⟩′. There is no reason that the two states

must agree microscopically, but it is reasonable to assume that they can be transformed into

one another by a G-invariant locality preserving unitary. Assuming this is the case, it follows

that there exists a G-invariant locality preserving unitary V such that

|g(1)x1 , g
(2)
x2 , g

(3)
x3 , ...⟩

′ = V Uk|g(1)x1 , g
(2)
x2 , g

(3)
x3 , ...⟩ (4.33)

With Eq. (5.100), we are now in a position to compare the F -symbols for the two choices

of domain wall states. First, we observe that we are free to choose the movement and splitting

operators for the states |g(1)x1 , g
(2)
x2 , g

(3)
x3 , ...⟩′ however we like, changing F by, at most, a gauge

transformation. The simplest choice that is consistent with (5.100) is

M
′g
x′x = VM

g
x′xV

−1, S′(g, h) = V S(g, h)V −1 (4.34)

With this choice, it is clear that |1′⟩ = V Uk|1⟩, and |2′⟩ = V Uk|2⟩. It follows that F ′ =

⟨2′|1′⟩ = ⟨2|1⟩ = F . Thus, we conclude that F doesn’t depend on the choice of the edge
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Hamiltonian or the choice of domain wall states. This completes the proof of property (i)

above.

4.4 Examples with discrete unitary symmetries

In this section, we present several examples illustrating our method of calculating anomalies

in bosonic SPT edge theories.

4.4.1 Lattice edge theory for Z2 SPT phase

We start with one of the simplest non-trivial examples: a lattice edge theory for the bosonic

SPT phase with symmetry group G = Z2. This edge theory was introduced in Refs. [26, 84].

Edge theory

We begin by reviewing the structure of the edge theory. As explained in Sec 5.2, an edge

theory consists of three pieces of data: (1) a Hilbert space H; (2) a set of local operators

{O} that act in H; and (3) a collection of symmetry transformations {Ug : g ∈ G} acting

within H.

The Hilbert space H for the Z2 SPT edge theory couldn’t be simpler: the Hilbert space

is equivalent to a one-dimensional spin-1/2 chain, with spins living on integer lattice sites

n ∈ Z. A complete orthonomal basis for this Hilbert space can be obtained by considering

σz eigenstates of the form

|..., α−1, α0, α1, ...⟩, αn ∈ {+,−} (4.35)

where

σzn|..., α−1, α0, α1, ...⟩ = αn|..., α−1, α0, α1, ...⟩ (4.36)
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The local operators {O} in the Z2 SPT edge theory are the usual local operators in a spin-

1/2 chain, namely products of Pauli spin operators {σxn, σ
y
n, σ

z
n} acting on a collection of

nearby lattice sites.

We now move on to the symmetry transformations Ug. Denoting the symmetry group

by Z2 = {1, s}, we only need to discuss the symmetry operator Us, since U1 = 1. Denoting

Us ≡ U for brevity, we can describe the symmetry operator U by how it acts on the Pauli

spin operators [84]:

Uσxj U
−1 = −σzj−1σ

x
j σ

z
j+1

Uσ
y
jU

−1 = σzj−1σ
y
j σ

z
j+1

UσzjU
−1 = −σzj (4.37)

We can also write down an explicit formula for U [84]:

U = −
∏
j

i
1−σzj σ

z
j+1

2
∏
j

σxj (4.38)

Note that we will not need the above formula (4.38) to compute the anomaly: our approach

only requires knowing the transformation laws for local operators (4.37).

Calculating the anomaly

We now proceed to compute the anomaly associated with the edge theory described above.

As we explained in Sec. 4.3.1, the first step in calculating the anomaly is to choose a gapped

(edge) Hamiltonian that breaks the Z2 symmetry spontaneously and completely. We use an

Ising Hamiltonian

H = −J
∑
i

σzi σ
z
i+1 (4.39)
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with J > 0.

To see that this Hamiltonian spontaneously breaks the symmetry note that σz is odd

under the symmetry (4.38) and has a non-zero expectation value in the two degenerate

ground states |+,+, ...,+⟩ and |−,−, ...,−⟩. Following the notation in Sec. 4.3.1. we denote

these ground states by

|Ω; 1⟩ = |+,+, ...,+⟩

|Ω; s⟩ = |−,−, ...,−⟩ (4.40)

The next step is to define domain wall states. Since the symmetry group is Z2, there

is only one non-trivial domain wall state that we need to construct. Denoting this state by

|sn⟩ where n is the location of the domain wall, we define

|sn⟩ = |...,+,+, (+)n,−,−,−, ...⟩ (4.41)

Here we use the notation (+)n to indicate that the corresponding ‘+’ is the state of the nth

spin, so that the ‘-’ that follows is the state of the (n+1)st spin. Notice that (5.110) implies

a particular convention for labeling domain wall locations: a domain wall is at “position n”

if the nth and (n+1)st spins are anti-aligned. (This will also hold for the multi-domain wall

states.) Likewise, we define the trivial or “no-domain” wall state |1n⟩ in the obvious way:

|1n⟩ = |...,+, (+)n,+, ...⟩ (4.42)

Next we construct movement and splitting operators for these domain walls. We will

start by constructing the movement operators. We define the movement operator between
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n and n+ 1 by

Ms
(n+1)n = σ+n+1 + Uσ+n+1U

−1

= σ+n+1 − σznσ
−
n+1σ

z
n+2 (4.43)

where the second equality follows from (4.37). Let us check that Ms
(n+1)n

obeys all the re-

quired conditions, i.e. Ms
(n+1)n

is local, Z2 symmetric, and has the correct action on domain

walls. Locality and Z2 symmetry are obvious since Ms
(n+1)n

is explicitly symmetrized. As

for the action on domain walls, this is easy to verify:

Ms
(n+1)n|sn⟩ = σ+n+1|...,+,+, (+)n,−,−,−, ...⟩

= |...,+,+, (+)n,+,−,−, ...⟩

= |sn+1⟩ (4.44)

We define the reverse movement operator in a similar fashion:

Ms
n(n+1) =

(
Ms

(n+1)n

)†
= σ−n+1 − σznσ

+
n+1σ

z
n+2 (4.45)

As for the splitting operators, we define S(s, s) as

S(s, s) = σ−2 + Uσ−2 U
−1

= σ−2 − σz1σ
+
2 σ

z
3 (4.46)

Again let us check that S(s, s) is a valid splitting opreator. Clearly S(s, s) is local and Z2
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symmetric. To see that it has the correct action on domain walls note that

S(s, s)|11⟩ = σ−2 |..., (+)1,+,+, ...⟩

= |..., (+)1,−,+, ...⟩

∝ |s1, s2⟩ (4.47)

where |s1, s2⟩ denotes the state with two domain walls at positons 1 and 2.

Moving on to the other splitting operators, we define S(1, s) as

S(1, s) =Ms
21 = σ+2 − σz1σ

−
2 σ

z
3 (4.48)

Also, we define the movement operator M1
n′n and the splitting operators S(s, 1), S(1, 1) as

M1
n′n = S(s, 1) = S(1, 1) = 1 (4.49)

(The reason we can set these operators equal to the identity is that none of these operators

are supposed to change the location of any nontrivial domain walls, e.g. S(s, 1) is defined

by the condition S(s, 1)|s1⟩ = |s1, 12⟩, and similarly for the other operators).

With these operator definitions in place, we are now ready to calculate F (s, s, s). Using

Eq. 4.20, we have

|1⟩ =Ms
12M

s
01S(s, s)M

s
32S(1, s)|s1⟩ (4.50)

We now simplify this expression, working from right to left. First, we note that

S(1, s)|s1⟩ = (σ+2 − σz1σ
−
2 σ

z
3)|s1⟩

= σ+2 |s1⟩
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since σz1σ
−
2 σ

z
3 |s1⟩ = 0. Likewise,

Ms
32σ

+
2 |s1⟩ = σ+3 σ

+
2 |s1⟩

since the second term in Ms
32, i.e. (−σz2σ

−
3 σ

z
4), annihilates σ

+
2 |s1⟩. Proceeding in this way,

we can drop either the first or second term in each of the movement and splitting operators.

The final result is:

|1⟩ = (−σz1σ
+
2 σ

z
3)σ

−
1 σ

−
2 σ

+
3 σ

+
2 |s1⟩

= |...,+, (−)1,+,+,−, ...⟩ (4.51)

where the second equality follows from |s1⟩ = |...,+, (+)1,−,−,−, ...⟩. Following the same

logic, we obtain

|2⟩ =Ms
32S(s, s)M

1
12M

s
01S(s, 1)|s1⟩

= σ+3 (−σ
z
1σ

+
2 σ

z
3)σ

−
1 |s1⟩

= −|...,+, (−)1,+,+,−, ...⟩ (4.52)

Comparing these two expressions, we see that |1⟩ = −|2⟩, so that

F (s, s, s) = ⟨2|1⟩ = −1 (4.53)

More generally, one can check that all other values of F are 1 for this model, i.e. F (g, h, k) = 1

for all other choices of g, h, k ∈ {1, s}.

Having computed F , the next question is to determine whether F corresponds to a trivial

or non-trivial cocycle, i.e. a trivial or non-trivial element of H3(G,U(1)) = Z2. To answer
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this question, we compute the following gauge invariant quantity:

F (s, s, s)F (s, 1, s) = −1 (4.54)

Since this quantity is different from 1, it follows that F is a nontrivial cocycle. We conclude

that our edge theory describes the boundary of the non-trivial bosonic SPT phase with Z2

symmetry. This conclusion is consistent with the original microscopic derivation of this edge

theory [26, 84].

4.4.2 Chiral boson edge theory for Z2 SPT phase

We now present an example involving a continuum edge theory for the Z2 bosonic SPT

phase (the same SPT phase as in the previous example). This edge theory was introduced

in Ref. [84].

Edge theory

We begin by reviewing the continuum Z2 SPT edge theory. This edge theory is a chiral

boson edge theory consisting of two conjugate fields θ, ϕ obeying the commutation relations

[θ(x), ∂yϕ(y)] = 2πiδ(x− y) (4.55)

with all other commutators vanishing.

Again, to define the edge theory, we need to specify three pieces of data: (1) a Hilbert

space H; (2) a set of local operators {O} that act in H; and (3) a collection of symmetry

transformations {Ug : g ∈ G} acting within H. The Hilbert space H is the usual infinite

dimensional representation of the above algebra (4.55). The local operators {O} in this edge

theory consist of arbitrary derivatives and/or products of the operators {e±iθ, e±iϕ}.

To complete the edge theory, we need to specify the Z2 symmetry transformation, U ≡
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Us, where Z2 = {1, s}. This transformation acts as [84]

UθU−1 = θ − π

UϕU−1 = ϕ− π (4.56)

We can see that this is a Z2 symmetry since the fields θ, ϕ are only defined modulo 2π.

We can also write out an explicit formula for U , though we will not need it for our

computation below [84]:

U = e−
i
2

∫∞
−∞ dy[∂yθ(y)+∂yϕ(y)] (4.57)

Calculating the anomaly

We now proceed to calculate the anomaly in the above edge theory. The first step is to

choose a gapped Hamiltonian that breaks the Z2 symmetry spontaneously and completely.

We will use the Hamiltonian

H = H0 −
∫
dxV cos(2θ) (4.58)

where H0 is the usual free boson Hamiltonian:

H0 =

∫
dx

1

4π
[vθ(∂xθ)

2 + vϕ(∂xϕ)
2]

for some velocities vθ, vϕ > 0.

When V is sufficiently large, the above Hamiltonian H has all the required properties.

In that regime, the cosine term locks θ to one of two values: θ = 0 and θ = π, spontaneously

breaking the Z2 symmetry (5.131) and opening up an energy gap.

For simplicity, we will consider the limit V → ∞ in what follows. In this limit, the two
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ground states of H are eigenstates of eiθ(x). Following our standard labeling scheme, we

denote these ground states by |Ω; 1⟩ and |Ω; s⟩, where

eiθ(x)|Ω; 1⟩ = |Ω; 1⟩

eiθ(x)|Ω; s⟩ = −|Ω; s⟩ (4.59)

for all x.

The next step is to construct domain wall states |sx⟩, that interpolate spatially between

the two ground states, |Ω; 1⟩ and |Ω; s⟩. We define |sx⟩ by

|sx⟩ = a
†
x|Ω; 1⟩ (4.60)

where

a
†
x = e−

i
2

∫∞
x dy ∂yϕ(y) (4.61)

Here a
†
x is a (non-local) creation operator for a domain wall at postion x. To see that |sx⟩

is a valid domain wall state, note that |sx⟩ obeys

eiθ(x
′)|sx⟩ = sgn(x− x′)|sx⟩ (4.62)

(This follows from the fact that a
†
x anticommutes with eiθ(x

′) for x′ > x). Likewise, we define

the no-domain wall state |1x⟩ to be |1x⟩ = |Ω; 1⟩.

Now that we have defined domain wall states, the next step is to construct movement

and splitting operators for these domain walls. First, we define the movement operatorMs
x′x
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by

Ms
x′x = e

i
2

∫ x′
x dy ∂yϕ(y) (4.63)

This is a valid movement operator because it is local and Z2 symmetric and it obeys

Ms
x′x|sx⟩ ∝ |sx′⟩ since Ms

x′xa
†
x ∝ a

†
x′ .

Next, we define the splitting operator S(s, s) by

S(s, s) =Ms
21e

i[ϕ(1)−θ(1−)]

= e
i
2

∫ 2
1 dy ∂yϕ(y)ei[ϕ(1)−θ(1−)] (4.64)

Here, θ(1−) is shorthand for θ(1− ϵ) where ϵ is a small positive number.

To see that this is a valid splitting operator, note that S(s, s) is local, it is Z2 symmetric,

and furthermore

S(s, s)|11⟩ = e
i
2

∫ 2
1 dy ∂yϕ(y)ei[ϕ(1)−θ(1−)]|Ω; 1⟩

∝ e
i
2

∫ 2
1 dy ∂yϕ(y)eiϕ(1))|Ω; 1⟩

∝ a
†
2a

†
1|Ω; 1⟩

∝ |s1, s2⟩ (4.65)

Here, the second equality follows from e−iθ(1−)|Ω; 1⟩ = |Ω; 1⟩, while the third equality follows

from the definition of a
†
x (5.136). Readers may wonder why we include the factor of e−iθ(1−)

in the definition S(s, s) given that e−iθ(1−) acts trivially on |Ω; 1⟩: the reason for including

this factor of e−iθ(1−) is that, without it, S(s, s) would be odd, not even, under the Z2

symmetry. Furthermore, the reason that we use e−iθ(1−) rather than say, e−iθ(1) is that this

choice will regularize some of the commutators that we calculate below. (We could equally

well choose e−iθ(1+) and we would arrive at the same result.)
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Moving on to the other splitting operators, we define

S(1, s) =Ms
21 (4.66)

Also we define

M1
x′x = S(s, 1) = S(1, 1) = 1 (4.67)

With these operators in hand, we are now ready to compute F (s, s, s). Using (4.20), we

have

|1⟩ =Ms
12M

s
01M

s
21e

i[ϕ(1)−θ(1−)]Ms
32M

s
21|s1⟩

|2⟩ =Ms
32M

s
21e

i[ϕ(1)−θ(1−)]Ms
01|s1⟩ (4.68)

In order to compare these expressions, we need to reorder the operators within them.

We do this using the following commutation relations, which can be derived from the Baker-

Campbell-Hausdorff formula:

ei[ϕ(1)−θ(1−)]Ms
x1 = (−1)Θ(1−x)Ms

x1e
i[ϕ(1)−θ(1−)]

[Ms
x′x,M

s
y′y] = 0 (4.69)

where Θ(x) denotes the Heaviside step function. With these formulas and the identity

Ms
xx′ = (Ms

x′x)
−1, we can rewrite |1⟩ as:

|1⟩ = −Ms
32M

s
21e

i[ϕ(1)−θ(1−)]Ms
01|s1⟩ (4.70)
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Therefore, |1⟩ = −|2⟩ and hence

F (s, s, s) = ⟨2|1⟩ = −1 (4.71)

In the same way, one can check that all other values of F are 1 for this model, i.e. F (g, h, k) =

1, for all other choices of g, h, k ∈ {1, s}.

Comparing with the previous example, we see that the two F ’s are identical. Therefore,

just as in that example, we conclude that F is a non-trivial cocycle, and the corresponding

edge theory describes the boundary of the non-trivial Z2 SPT phase. This result is consistent

with the original derivation of this edge theory [84].

4.4.3 SPT lattice edge theory with symmetry group G

We now generalize the example in Sec. 4.4.1 to a large class of lattice edge theories with a

finite unitary symmetry group G. A similar class of edge theories was studied in Ref. [39]

and we will mostly follow their notation here.

Edge theory

As before, to define the edge theory, we need to specify three pieces of data: (1) a Hilbert

space H; (2) a set of local operators {O} that act in H; and (3) a collection of symmetry

transformations {Ug : g ∈ G} acting within H.

We begin by describing the Hilbert space H. This Hilbert space is equivalent to a one-

dimensional spin chain where each spin can be in |G| different states. We label these states

by group elements, |g⟩, g ∈ G. In this notation, the basis states for the Hilbert space are of

the form

|..., α−1, α0, α1, ...⟩, αn ∈ G (4.72)
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The local operators {O} in this edge theory are the usual local operators in a spin chain –

i.e. products of single site operators acting on a collection of neighboring sites. In particular,

there are two basic types of single site operators, from which all other operators can be built.

The first operator, P
g
n , is a projection operator that projects onto states with αn = g, i.e.

P
g
n |..., αn−1, αn, αn+1, ...⟩ = δαn,g|..., αn−1, g, αn+1, ...⟩ (4.73)

The second operator, R
g
n is a unitary operator that performs right multiplication by g on

the nth spin:

R
g
n|..., αn−1, αn, αn+1, ...⟩ = |..., αn−1, αng, αn+1, ...⟩ (4.74)

To complete the edge theory, we need to describe the symmetry transformations Ug. We

start by writing down an explicit formula for Ug. This formula is a product of two terms:

Ug = NgXg (4.75)

where Xg acts by left multiplication by g on every site,

Xg|..., α−1, α0, α1, ...⟩ = |..., gα−1, gα0, gα1, ...⟩, (4.76)

while Ng is a phase factor that is diagonal in the |α⟩ basis:

Ng|α⟩ = eiN
(1)(g)[α]|α⟩ (4.77)

Here we are using the abbreviation |α⟩ ≡ |..., α−1, α0, α1, ...⟩. The term in the exponent,
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N (1)(g), is a functional of the configuration α of the form

N (1)(g)[α] =
∑
n

Φ
g
n(αn−1, αn, αn+1) (4.78)

for some real valued Φ
g
n that depends on triplets of neighboring spins. We note that the

above functional form is not essential for our method – we could equally well consider gen-

eralizations of Φ
g
n that act on any finite number of nearby spins.

An alternative, and more local, way to describe the symmetry transformations Ug is to

specify how these transformations act on local operators – specifically Ph
n and Rh

n. In this

description, the symmetry transformation is defined by

UgPh
n (U

g)−1 = P
gh
n

UgRh
n(U

g)−1 = Rh
nW

g,h
n (4.79)

where W
g,h
n is an unitary operator of the form

W
g,h
n =

∑
a,b,c∈G

Θ
g,h
n (a, b, c)P a

n−1P
b
nP

c
n+1 (4.80)

and where Θ
g,h
n (a, b, c) is a U(1) phase. (Again, our method does not require this particular

functional form of Θ
g,h
n and we could consider generalizations that act on any finite number of

nearby spins). In the calculation that follows, we only use the latter, more local, description

of the symmetry transformation given in Eqs. 4.79-4.80.
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Calculating the anomaly

The first step is to choose an edge Hamiltonian that breaks the G-symmetry spontaneously

and completely. We choose

H = −J
∑
n

∑
g

P
g
nP

g
n+1 (4.81)

Note that H has a “ferromagnetic” interaction that favors states in which neighboring spins

are in the same state |g⟩. As a result, it is easy to see that this Hamiltonian has |G| degenerate

ground states of the form |..., g, g, g, ...⟩ where g ∈ G. We will label these states by

|Ω; g⟩ = |..., g, g, g, ...⟩ (4.82)

We now turn to the definition of the domain wall state |gn⟩. We define |gn⟩ by

|gn⟩ = |..., 1, 1, (1)n, g, g, g, ...⟩ (4.83)

Here the notation (1)n signifies that this ‘1’ is the state of the nth spin, so that the ‘g’ that

follows is the state of the (n+ 1)st spin and so on. Similarly to Sec. 4.4.1, the domain wall

at location n sits between sites n and n+ 1.

Having defined the domain wall states, the next step is to construct movement and

splitting operators. We define the movement operator between n and n+ 1 by

M
g
n+1,n =

∑
k∈G

UkR
g−1

n+1P
g
n+1(U

k)−1 (4.84)

To see that M
g
n+1,n is a valid movement operator notice that it is local and G-symmetric by
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construction. Furthermore, it has the correct action on domain wall states:

M
g
(n+1)n

|gn⟩ =
∑
k∈G

UkR
g−1

n+1P
g
n+1(U

k)−1|..., (1)n, g, g, ...⟩

= R
g−1

n+1|..., (1)n, g, g, ...⟩

= |..., (1)n, 1, g, ...⟩

= |gn+1⟩ (4.85)

Here the second equality follows from noting that all the terms in the sum vanish except for

k = 1. Similarly, we define the reverse movement operator by

M
g
n(n+1)

=
(
M

g
(n+1)n

)†
(4.86)

Following a similar calculation to before, one can check that this is a valid movement oper-

ator.

Moving on to splitting operators, we define S(g, h) by

S(g, h) =
∑
k∈G

UkRh−1

2 P
gh
2 (Uk)−1 (4.87)

Again, S(g, h) is local and G-symmetric by construction. We now show that it has the

correct action on domain wall states:

S(g, h)|gh1⟩ =
∑
k∈G

UkRh−1

2 P
gh
2 (Uk)−1|..., (1)1, gh, gh, ...⟩

= Rh−1

2 |..., (1)1, gh, gh, ...⟩

= |..., (1)1, g, gh, ...⟩

= |g1, h2⟩ (4.88)
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Again, the second equality follows from noting that all the terms in the sum vanish except

for k = 1.

We are now ready to calculate F (g, h, k). Using (4.20), we have

|1⟩ =Mh
12M

g
01S(g, h)M

k
32S(gh, k)|ghk1⟩

=(UgRh
2 [U

g]−1) ·Rg
1 ·R

h−1

2

· (UghRk−1

3 [Ugh]−1) ·Rk−1

2 |ghk1⟩ (4.89)

Here, to derive the second equality, notice that whenever a movement or splitting operator

acts on a domain wall state, only one value of k gives a nonzero contribution; Eq. 4.89 follows

by keeping this one nonvanishing term for each movement and splitting operator.

To proceed further, we use the transformation law for Rh
n in Eqs. 4.79-4.80 to derive

|1⟩ =(Rh
2W

g,h
2 ) ·Rg

1 ·R
h−1

2 · (Rk−1

3 W
gh,k−1

3 ) ·Rk−1

2 |ghk1⟩

=Θ
g,h
2 (g, g, gh) ·Θgh,k−1

3 (gh, ghk, ghk)

· |..., 1, (g)1, gh, gh, ghk, ...⟩ (4.90)

where the second equality follows from |ghk1⟩ = |..., 1, (1)1, ghk, ghk, ghk, ...⟩. By the same

reasoning, we have

|2⟩ =Mk
32S(h, k)M

hk
12M

g
01S(g, hk)|ghk1⟩

=(UghRk−1

3 [Ugh]−1) · (UgRk−1

2 [Ug]−1)

· (UgRhk
2 [Ug]−1) ·Rg

1 ·R
(hk)−1

2 |ghk1⟩

=(Rk−1

3 W
gh,k−1

3 ) · (Rh
2W

g,h
2 ) ·Rg

1 ·R
(hk)−1

2 |ghk1⟩

=Θ
gh,k−1

3 (gh, ghk, ghk) ·Θg,h
2 (g, g, ghk)

· |..., 1, (g)1, gh, gh, ghk, ...⟩ (4.91)
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Taking the inner product between |1⟩ and |2⟩, we see that the Θ
gh,k−1

3 (gh, ghk, ghk)

factors cancel out, leaving

F (g, h, k) = ⟨2|1⟩ =
Θ
g,h
2 (g, g, gh)

Θ
g,h
2 (g, g, ghk)

(4.92)

where we are using the fact that Θ
g,h
n is a U(1) phase.

4.5 Connection with symmetry restriction method for

computing anomalies

As we mentioned earlier, in Ref. [39], Else and Nayak showed how to compute anomalies

in a large class of SPT edge theories using restricted symmetry operators. It is natural to

wonder how our F -symbol based approach is related to this symmetry restriction approach.

In this section we derive a connection between the two approaches by explicitly showing that

the two approaches give identical results in cases where both methods are applicable.

4.5.1 Review of symmetry restriction method

We begin by reviewing the symmetry restriction method [39]. This method applies to SPT

edge theories with a discrete unitary symmetry group G and with the property that the

symmetry operators {Ug, g ∈ G} are local unitary transformations.4 Here, by a “local

unitary transformation”, we mean that Ug can be generated by the time evolution of a local

Hermitian operator over a finite period of time T : Ug = T exp[−i
∫ T
0 dtH(t)].

The symmetry restriction method proceeds as follows. Consider an edge theory of the

above kind, with symmetry operators Ug. To compute the anomaly associated with this edge

theory, the first step is to choose a large interval I = [a, b], and then choose a “restriction”

4. This method also applies to continuous symmetries and some antiunitary symmetries; we focus on
discrete unitary symmetries for simplicity.
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of Ug to I, which we will denote by U
g
I . Here, when we say that U

g
I is a restriction of Ug to

I, we mean U
g
I has two properties: (i) U

g
I is a local unitary transformation supported in a

neighborhood of I, and (ii) for any operator O that is supported in I,

U
g
IO(U

g
I )

−1 = UgO(Ug)−1 (4.93)

Note that the existence of such a U
g
I is guaranteed by the fact that Ug is a local unitary

transformation, but U
g
I is not unique.

Next, define an operator ΩI(g, h) by

ΩI(g, h) = U
g
I U

h
I (U

gh
I )−1 (4.94)

By construction ΩI(g, h) is a local unitary transformation that is supported near a, b – the

endpoints of I. It follows that we can factor ΩI(g, h) as a product

ΩI(g, h) = Ωa(g, h)Ωb(g, h) (4.95)

where Ωa(g, h) and Ωb(g, h) are unitary operators supported near a and b, respectively.5

The operator Ωa(g, h) (or equivalently Ωb(g, h)) is the key to computing the anomaly. In

particular, Ref. [39] showed that Ωa and Ωb obey the following operator identities:

Ωa(g, h)Ωa(gh, k) = ω(g, h, k)U
g
IΩa(h, k)(U

g
I )

−1Ωa(g, hk)

Ωb(g, h)Ωb(gh, k) =

ω−1(g,h, k)U
g
IΩb(h, k)(U

g
I )

−1Ωb(g, hk) (4.96)

5. Readers may notice that there is a phase ambiguity in Ωa(g, h), Ωb(g, h), i.e. we can replace Ωa(g, h) →
Ωa(g, h)ν(g, h), and Ωb(g, h) → Ωb(G, h)ν−1(g, h) where ν(g, h) is a U(1) phase. This ambiguity is related
to the fact that the quantity ω(g, h, k) is only well-defined up to a coboundary.
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where ω(g, h, k) ∈ H3(G,U(1)) is the anomaly carried by the SPT edge theory. Thus, if

we know Ωa(g, h) (or equivalently Ωb(g, h)), we can immediately compute the anomaly by

comparing the left and right hand sides of Eq. 4.96.

Putting this all together, the symmetry restriction method involves the following steps:

one first computes the restricted symmetry operator U
g
I , and then the associated operators

ΩI(g, h) and Ωa(g, h). One then computes the anomaly ω(g, h, k) using Eq. 4.96 above.

4.5.2 F -symbol computation

We now show how to compute the F -symbol for the above class of edge theories, i.e. edge

theories with a finite unitary symmetry group G and with the property that the symmetry

operators {Ug, g ∈ G} are local unitary transformations. Our goal will be to show that

F (g, h, k) = ω(g, h, k).

Consider any edge theory of the above type. To compute the F -symbol for such an

edge theory, the first step is to choose an edge Hamiltonian that breaks the symmetry

spontaneously and completely and opens up a gap. We then label the |G| degenerate ground

states by {|Ω; g⟩} where

|Ω; g⟩ = Ug|Ω; 1⟩ (4.97)

The next step is to define domain wall states. We will do this using restricted symmetry

operators, in order to facilitate a comparison with Ref. [39]. To begin, we choose a point Y

that is far to the right of the region where we will be manipulating domain walls. This point

Y can be thought of as playing a similar role to +∞, but it will be important for our purposes

that Y is finite. Next, for every point x < Y , we choose a unitary operator U
g
x that is a

restriction of Ug to the interval [x, Y ], where this restriction is defined as in Eq. 4.93 above.

In addition, we require that the U
g
x are chosen so that they obey the following matching
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Figure 4.8: Regions of support for the operators U
g
x′x and U

g
x : the operator U

g
x is supported

in the interval [x, Y ] shown in blue, while U
g
x′x is supported in the interval [x, x′] shown in

red.

condition: for any two points x < x′ the operators U
g
x and U

g
x′ have the same action except

in the neighborhood of the interval [x, x′]. Equivalently, we will require that the operator

U
g
x′x ≡ U

g
x′(U

g
x)

−1 (4.98)

is supported in a neighborhood of the interval [x, x′] (see Fig. 4.8). One can show that it

is always possible to choose U
g
x in this way, given our assumption that Ug are local unitary

transformations.

Having defined U
g
x , we now define (single) domain wall states |gx⟩ by

|gx⟩ = U
g
x |Ω; 1⟩ (4.99)

By construction U
g
x |Ω; 1⟩ contains a type g domain wall at x and a type g−1 domain wall at

Y , so one could view U
g
x |Ω; 1⟩ as a two domain wall state. However, we will view U

g
x |Ω; 1⟩

as a single domain wall state. We can do this because (i) the point Y is far away from the

region of interest, and (ii) the g−1 domain wall at Y takes the same form independent of
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x: for any x, x′ the two states U
g
x |Ω; 1⟩ and Ug

x′|Ω; 1⟩ have the same local expectation values

near Y , due to our assumption (4.98). Actually, the above definition of |gx⟩ is no different

than the one given in e.g. Eq. 4.60 where we set Y = +∞, except that we are now calling

attention to the point Y because it will be useful for proving that our formalism matches

that of Else and Nayak.

Now that we have defined domain wall states, the next step is to construct splitting and

movement operators. To this end, notice that the operator U
g
x′x defined in Eq. (4.98) obeys

U
g
x′x|gx⟩ = |gx′⟩ (4.100)

Given this observation, we can construct a movement operator M
g
x′x by appropriately sym-

metrizing U
g
x′x:

M
g
x′x =

∑
k∈G

UkU
g
x′xP

g
x′(U

k)−1, x′ > x (4.101)

Here P
g
x′ is a projection operator that projects onto states that share the same local ex-

pectation values as |Ω; g⟩ in the neighborhood of x′. More precisely, P
g
x′ is a Hermi-

tian operator that is supported in the neighborhood of x′ and that has the property that

P
g
x′|Ω;h⟩ = δgh|Ω; g⟩. For the models discussed in Sec. 4.4.3, P

g
x′ can be defined is the same

way as the operator P
g
n (4.73). In more general systems, it may be necessary to take the

neighborhood around x′ to be of order ξ to construct a projector P
g
x′ of this kind. In any

case, we will take the existence of this projection operator as an assumption.

To see that M
g
x′x is a valid movement operator, note that it is local and G-symmetric by

construction. Furthermore, it has the correct action on domain walls:

M
g
x′x|gx⟩ = U

g
x′x|gx⟩ = |gx′⟩ (4.102)
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Similarly, we define the reverse movement operator by

M
g
xx′ = (M

g
x′x)

†, x′ > x (4.103)

In order to construct splitting operators, we first define a unitary operator Ω(g, h) by

Ω(g, h) = U
g
1U

h
1 (U

gh
1 )−1 (4.104)

By construction Ω(g, h) is a local unitary operator that is supported near 1 and Y , so we

can factor Ω(g, h) as

Ω(g, h) = Ω1(g, h)ΩY (g, h) (4.105)

where Ω1(g, h) and ΩY (g, h) are unitary operators supported near 1 and Y , respectively.

(Note that Eqs. 4.104-4.105 are essentially the same as Eqs. 4.94-4.95, with I = [1, Y ]).

With this notation, we define the splitting operator S(g, h) by

S(g, h) =
∑
k∈G

UkU
g
1U

h
21(U

g
1 )

−1Ω1(g, h)P
gh
2 (Uk)−1. (4.106)

Again, it is easy to see that S(g, h) is G-symmetric and supported in a neighborhood around

[1, 2]. To see that it has the correct action on domain wall states, note that

S(g, h)|gh1⟩ = U
g
1U

h
21(U

g
1 )

−1Ω1(g, h)|gh1⟩

= ΩY (g, h)
−1U

g
1U

h
21(U

g
1 )

−1Ω(g, h)|gh1⟩

= ΩY (g, h)
−1U

g
1U

h
2 |Ω; 1⟩

∝ |g1, h2⟩. (4.107)

Here, the last equality follows from observing that the state ΩY (g, h)
−1U

g
1U

h
2 |Ω; 1⟩ has the
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Figure 4.9: The points that are relevant to the calculation of F (g, h, k) and ω(g, h, k): the
operators that are used to calculate F (g, h, k) are supported in a neighborhood of [0, 3],
whereas the operators used to calculate ω(g, h, k) are supported in a small neighborhood
around the point Y , far to the right of 3. We connect the two calculations using the identity
Ω1(g, h) = Ω−1

Y (g, h)Ω(g, h).

same local expectation values as |g1⟩ near x = 1 and the same local expectation values as

Ug|h2⟩ near x = 2, and the same local expectation values as Ug|Ω; 1⟩ in the region between

x = 1 and x = 2. (We don’t have to worry about the expectaton values away from [1, 2]

since the locality of S(g, h) guarantees that S(g, h)|gh1⟩ has the correct expectation values

away from [1, 2]).

Now that we have defined movement and splitting operators, we can compute the F -

symbol using Eqs. 4.20-4.21, i.e.

F (g, h, k) = ⟨2|1⟩, (4.108)

where

|1⟩ =Mh
12M

g
01S(g, h)M

k
32S(gh, k)|ghk1⟩

|2⟩ =Mk
32S(h, k)M

hk
12M

g
01S(g, hk)|ghk1⟩ (4.109)

4.5.3 Comparing results with Else and Nayak

We now show F (g, h, k) = ω(g, h, k) where F (g, h, k) is defined in Eq. 4.108 and ω(g, h, k)

is defined in Eq. 4.96.

To prove this equality, we use the fact that Ω1(g, h) = Ω−1
Y (g, h)Ω(g, h). Substituting

132



this identity into the definition of S(g, h) and simplifying gives

S(g, h) =
∑
k∈G

UkΩ−1
Y (g, h)U

g
1U

h
2 (U

gh
1 )−1P

gh
2 (Uk)−1 (4.110)

The basic idea of the proof is to substitute (4.110) into (4.109) and then simplify the resulting

expressions for |1⟩, |2⟩. After this substitution, we will then separate out all the ΩY factors.

These ΩY factors will naturally form combinations like those in Eq. 4.96, which will allow

us to derive a direct connection between the F-symbol F (g, h, k) and the cocycle ω(g, h, k)

(see Fig. 4.9).

Following this plan, we first simplify |1⟩ as follows:

|1⟩ =Mh
12M

g
01S(g, h)M

k
32S(gh, k)|ghk1⟩

=Mh
12M

g
01S(g, h)M

k
32Ω

−1
Y (gh, k)U

gh
1 Uk

2 (U
ghk
1 )−1|ghk1⟩

= Ω−1
Y (gh, k)Mh

12M
g
01S(g, h)M

k
32U

gh
1 Uk

2 |Ω; 1⟩

= Ω−1
Y (gh, k)Mh

12M
g
01S(g, h)U

gh
1 Uk

3 |Ω; 1⟩

= [Ω−1
Y (gh, k)Ω−1

Y (g, h)]Mh
12M

g
01U

g
1U

h
2 U

k
3 |Ω; 1⟩

= [Ω−1
Y (gh, k)Ω−1

Y (g, h)]U
g
0U

h
1 U

k
3 |Ω; 1⟩ (4.111)

Here, the second and fifth equalities follow from substituting (4.110), while the third equality

follows from the fact that ΩY (gh, k) is supported near Y and therefore commutes with all

the movement and splitting operators. Likewise, the fourth and sixth equalities follow from

the fact that [M
g
x′x, U

h
y ] = 0 as long as y /∈ [x, x′], which in turn follows from the fact that

the movement operators are G-symmetric.
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We can simplify |2⟩ in a similar manner:

|2⟩ =Mk
32S(h, k)M

hk
12M

g
01S(g, hk)|ghk1⟩

= Ω−1
Y (g, hk)Mk

32S(h, k)M
hk
12M

g
01U

g
1U

hk
2 |Ω; 1⟩

= Ω−1
Y (g, hk)Mk

32S(h, k)U
g
0U

hk
1 |Ω; 1⟩

= Ω−1
Y (g, hk)Mk

32U
g
0S(h, k)U

hk
1 |Ω; 1⟩

= [Ω−1
Y (g, hk)U

g
0Ω

−1
Y (h, k)(U

g
0 )

−1]Mk
32U

g
0U

h
1 U

k
2 |Ω; 1⟩

= [Ω−1
Y (g, hk)U

g
0Ω

−1
Y (h, k)(U

g
0 )

−1]U
g
0U

h
1 U

k
3 |Ω; 1⟩

= [Ω−1
Y (g, hk)U

g
1Ω

−1
Y (h, k)(U

g
1 )

−1]U
g
0U

h
1 U

k
3 |Ω; 1⟩ (4.112)

where the last line is obtained the fact that Ω−1
Y (h, k) is supported near Y . To make contact

with (4.96), notice that the inverse of the second equation in (4.96) with I = [1, Y ] gives the

following operator identity:

Ω−1
Y (gh, k)Ω−1

Y (g, h) =

ω(g, h, k)Ω−1
Y (g, hk)U

g
1Ω

−1
Y (h, k)(U

g
1 )

−1 (4.113)

Comparing this identity with the bracketed expressions in Eqs. 4.111 and 4.112, we conclude

that

|1⟩ = ω(g, h, k)|2⟩ (4.114)

Hence,

F (g, h, k) = ⟨2|1⟩ = ω(g, h, k), (4.115)

as we wished to show.

134



4.6 Discrete antiunitary symmetries

So far we have focused on the case where the symmetry group G is unitary. In this section,

we consider the more general case where G contains both unitary and antiunitary symmetry

transformations.

4.6.1 Cohomology group

We start by reviewing the cohomology groupH3(G,UT (1)). This group is important because

it describes the output of our procedure in the general antiunitary case.

First, we explain the meaning of “UT (1).” This symbol denotes the group U(1) with a

particularG-module structure, which is defined as follows: for any g ∈ G and ω = eiθ ∈ U(1),

the action of g on ω is given by

gω =


ω∗ g antiunitary

ω g unitary

(4.116)

In other words, antiunitary symmetries act on U(1) by complex conjugation, while unitary

symmetries act trivially.

Just like the unitary case, the cohomology group H3(G,UT (1)) consists of equivalence

classes of functions ω : G × G × G → U(1) obeying a “cocycle” condition. However, the

cocycle condition takes a modified form, namely

ω(g, h, k)ω(g, hk, l)[gω(h, k, l)]

ω(gh, k, l)ω(g, h, kl)
= 1 (4.117)

where gω denotes the group action (4.116). The equivalence relation/coboundary transfor-
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mation is also modified: we say that ω ∼ ω′ if

ω′(g, h, k)
ω(g, h, k)

=
ν(gh, k)ν(g, h)

ν(g, hk)[gν(h, k)]
(4.118)

where ν(g, h) ∈ U(1) and, again, gν denotes the group action (4.116).

4.6.2 Outline of procedure

The procedure for computing anomalies in the general case is exactly the same as the unitary

case. As before, the first step is to choose an (edge) Hamiltonian H that breaks the G-

symmetry spontaneously and completely. This Hamiltonian H has |G| ground states which

we label by |Ω; g⟩. The next step is to define domain wall states |gx⟩, and corresponding

domain wall movement and splitting operators, M
g
x′x and S(g, h). Again, we use exactly the

same definitions as in Sec. 4.3.2.

The last step is to compute the F -symbol for the domain walls, F (g, h, k). Again, we use

the same definition as before, namely F (g, h, k) = ⟨2|1⟩ where states |1⟩ and |2⟩ are defined

as in Eq. 4.20.

The only new element in the antiunitary case involves the structure of the F -symbol.

In particular, in the general antiunitary case, one can show that F obeys the modified

cocycle condition (4.117), and is well-defined up to the modified coboundary transformation

(5.155). As a result, F is naturally an element of the cohomology group H3(G,UT (1)). For

a derivation of the modified cocycle condition, see Appendix 7.1; we discuss the modified

coboundary transformation in the next subsection.

4.6.3 Checking the microscopic definition

In this section, we show that different choices of domain wall states or movement and splitting

operators give the same F up to the coboundary transformation (5.155). This result, together
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with the derivation of the cocycle condition discussed in Appendix 7.4, guarantees that our

procedure produces a well-defined element of H3(G,UT (1)).

A key result which we will need in our derivation is the following identity, which gen-

eralizes Eq. 5.34. Let O be any operator that is invariant under all the symmetries and is

supported near a domain wall g at point x. We claim that

⟨..., gx, ...|O|..., gx, ...⟩ = gL⟨gx|O|gx⟩ (4.119)

where gL is the product of all domain walls to the left of x, and where the expression on the

right hand side is defined by the group action (4.116). To derive this identity, note that

⟨..., gx, ...|O|..., gx, ...⟩ = ⟨gx; gL|O|gx; gL⟩

= ⟨UgLgx|O|UgLgx⟩

= gL⟨gx|O|gx⟩ (4.120)

Here, the first equality follows from (4.9), while the second equality follows from the def-

inition, |gx; gL⟩ = UgL |gx⟩. The third equality follows from the fact that O commutes

with UgL together with the defining property of unitary/anti-unitary operators, namely

⟨Ugv|Ugw⟩ = g⟨v|w⟩.

With Eq. (4.119) in hand, we are now ready to show that F is well-defined up to the

coboundary transformation (5.155). To start, let us see how F transforms if we change the

movement and splitting operators:

M
g
x′x →M

′g
x′x, S(g, h) → S′(g, h) (4.121)
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Similarly to the unitary case, the definition of movement and splitting operators implies that

M
′g
x′x|gx⟩ = eiθx′x(g)M

g
x′x|gx⟩

S′(g, h)|gh1⟩ = eiϕ(g,h)S(g, h)|gh1⟩ (4.122)

for some real valued θx′x(g) and ϕ(g, h). Likewise, for the multi-domain wall states,

M
′g
x′x|..., gx, ...⟩ = ω1 ·M

g
x′x|..., gx, ...⟩ (4.123)

S′(g, h)|..., gh1, ...⟩ = ω2 · S(g, h)|..., gh1, ...⟩ (4.124)

for some U(1) phases, ω1, ω2. To find the relation between ω1, ω2 and eiθx′x(g), eiϕ(g,h), we

multiply both sides of Eq. (5.162) by ⟨..., gx, ...|(Mg
x′x)

†, and then we apply (4.119) to derive

ω1 = ⟨..., gx, ...|(Mg
x′x)

†M ′g
x′x|..., gx, ...⟩

= gL,x⟨gx|(M
g
x′x)

†M ′g
x′x|gx⟩

= gL,xe
iθx′x(g) (4.125)

where gL,x is the product of all domain walls to the left of x. By the same reasoning,

ω2 = gL,1e
iϕ(g,h) (4.126)

where gL,1 is the product of all domain walls to the left of the point 1.

Substituting (5.164) and (5.165) into (5.162-5.163), we derive

M
′g
x′x|..., gx, ...⟩ = (gL,xe

iθx′x(g))M
g
x′x|..., gx, ...⟩

S′(g, h)|..., gh1, ...⟩ = (gL,1e
iϕ(g,h))S(g, h)|..., gh1, ...⟩ (4.127)
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Next, plugging (5.166) into the definition of F (4.20-4.21), we obtain

F ′(g, h, k) = F (g, h, k)
eiϕ(g,h)eiϕ(gh,k)

(
geiθ12(g)

)
(
geiϕ(h,k)

)
eiϕ(g,hk)

(
geiθ12(hk)

) (4.128)

Crucially, this transformation matches the modified coboundary transformation (5.155) with

ν(g, h) = eiϕ(g,h)
(
geiθ12(h)

)
(4.129)

This is exactly what we want: different choices of movement and splitting operators lead to

the same F , up to a modified coboundary transformation.

To complete the argument we also need to check that different choices of edge Hamilto-

nians and domain wall states lead to the same F , up to a coboundary transformation. Both

properties follow by exactly the same reasoning as in the unitary case so we will not repeat

it here.

4.6.4 Example: chiral boson edge theory for Z2 × ZT
2 SPT phase

We now illustrate our general antiunitary procedure in an example. The example we consider

is a continuum edge theory for a Z2 × ZT
2 bosonic SPT phase, discussed in Ref. [94]. Here

Z2 denotes a unitary symmetry and ZT
2 denotes an antiunitary symmetry.

Edge theory

Similarly to the example discussed in Sec. 4.4.2, the edge theory is a chiral boson theory

with two fields θ, ϕ obeying the commutation relations

[θ(x), ∂yϕ(y)] = 2πiδ(x− y)
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with all other commutators vanishing. As in Sec. 4.4.2, the Hilbert space H is the usual infi-

nite dimensional representation of the above algebra and the local operators in the edge the-

ory are given by arbitrary derivatives and products of the elementary operators {e±iθ, e±iϕ}.

In order to define the symmetry transformations, we first introduce some notation: we

denote the elements of G by {1, s, t, st}, where s is the (unitary) generator of Z2 and t is the

(antiunitary) generator of ZT
2 . Likewise, we denote the Z2 × ZT

2 symmetry transformations

by {U1, Us, U t, Ust}. It suffices to specify the action of the two generators Us, U t. These

generators act on θ, ϕ as follows:

Usθ(Us)−1 = θ

Usϕ(Us)−1 = ϕ− π (4.130)

and

U tθ(U t)−1 = θ − π

U tϕ(U t)−1 = −ϕ (4.131)

(Here, Us is unitary while U t is antiunitary).

Calculating the anomaly

To calculate the anomaly we need to choose an edge Hamiltonian that breaks the symmetry

completely. We will do this in a slightly roundabout way: we will first introduce some

auxiliary degrees of freedom into our edge theory. We will then break the symmetry of this

enlarged edge theory. This approach will simplify our calculation.

To begin, consider the following chiral boson theory described by two fields θ̄, ϕ̄ obeying
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commutation relations

[θ̄(x), ∂yϕ̄(y)] = 2πiδ(x− y)

with all other commutators vanishing. We assume that the symmetry acts on θ̄, ϕ̄ in the

following way:

Usθ̄(Us)−1 = θ̄

Usϕ̄(Us)−1 = ϕ̄− π

U tθ̄(U t)−1 = θ̄

U tϕ̄(U t)−1 = −ϕ̄ (4.132)

A crucial aspect of the θ̄, ϕ̄ chiral boson theory is that it is not anomalous – that is, it

can be realized by a one dimensional lattice boson system with on-site Z2 × ZT
2 symmetry.

One way to see this is to note that the above chiral boson theory is the standard low

energy description of the 1D XXZ spin chain model where the ZT
2 symmetry U t is complex

conjugation in the σz basis, and the Z2 symmetry Us is the Z2 subgroup of the U(1)

symmetry of the XXZ model. Another way to see that the θ̄, ϕ̄ theory is not anomalous

is to note that it can be gapped without breaking any the symmetries, for example by the

Hamiltonian H = Haux −
∫
dx V cos(θ̄), where Haux is defined below.

Now, since the θ̄, ϕ̄ theory is not anomalous, we can add it to our edge theory without

changing anything. (Physically, this corresponds to attaching a strictly 1D wire onto the edge

of the SPT phase of interest). After enlarging our edge theory in this way, we then choose

an edge Hamiltonian that breaks the Z2×ZT
2 symmetry spontaneously and completely and
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opens up a gap. A Hamiltonian that does the job is

H = H0 +Haux −
∫
dx V [cos(2θ) + cos(2ϕ̄)] (4.133)

where H0, Haux are the usual free boson Hamiltonians,

H0 =

∫
dx

1

4π
[vθ(∂xθ)

2 + vϕ(∂xϕ)
2]

Haux =

∫
dx

1

4π
[vθ̄(∂xθ̄)

2 + vϕ̄(∂xϕ̄)
2]

for some velocities vθ, vϕ, vθ̄, vϕ̄ > 0.

For V large and positive, the two cosine terms lock θ and ϕ̄ to one of two values 0, π,

spontaneously breaking the Z2×ZT
2 symmetry (4.130-4.132) and opening up an energy gap.

We can now see the advantage of introducing the auxiliary fields θ̄, ϕ̄: these fields allow

us to break the symmetry completely in a simple way. If we dropped these fields, along

with the corresponding cosine term, cos(2ϕ̄(x)), then the first term V cos(2θ(x)) would only

break the ZT
2 symmetry and would leave the Z2 symmetry intact. Of course, we could also

break the symmetry completely without introducing θ̄, ϕ̄, e.g. with a Hamiltonian of the

form H = H0 +
∫
dxV cos(4ϕ), but this leads to a more complicated calculation.

Turning back to the calculation, we now discuss the ground states of H. As in the

example in Sec. 4.4.2, we will take the limit V → ∞ for simplicity. In this limit, the four

ground states of H are eigenstates of eiθ(x) and eiϕ̄(x) with eigenvalues ±1. We define |Ω; 1⟩

to be the state with eigenvalues +1:

eiθ(x)|Ω; 1⟩ = |Ω; 1⟩

eiϕ̄(x)|Ω; 1⟩ = |Ω; 1⟩ (4.134)

We then define the other ground states by |Ω; g⟩ = Ug|Ω; 1⟩, which corresponds to the
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following eigenvalue assignments (given Eqs. 4.130-4.132):

eiθ(x)|Ω; g⟩ = ei2πλ(g)|Ω; g⟩

eiϕ̄(x)|Ω; g⟩ = ei2πµ(g)|Ω; g⟩ (4.135)

where

λ(g) =


0 g = 1, s

1/2 g = t, st

(4.136)

and

µ(g) =


0 g = 1, t

1/2 g = s, st

(4.137)

Next we define domain wall states |gx⟩ by:

|gx⟩ = (a
g
x)

†|Ω; 1⟩ (4.138)

where the operators (a
g
x)

† are defined as

(a
g
x)

† = e−i
∫∞
x dy (λ(g)∂yϕ(y)+µ(g)∂y θ̄(y)) (4.139)

To see that |gx⟩ is a valid domain wall state, note that

eiθ(x
′)|gx⟩ =


|gx⟩ x′ < x

ei2πλ(g) |gx⟩ x′ > x
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and

eiϕ̄(x
′)|gx⟩ =


|gx⟩ x′ < x

ei2πµ(g) |gx⟩ x′ > x

by the commutation relations between θ, ϕ and θ̄, ϕ̄.

The next step is to define movement and splitting operators. We define the movement

operator M
g
x′x, for x

′ > x, by

M
g
x′x =

∑
k∈G

UkX
g
x′xP

g
x′(U

k)−1, x′ > x (4.140)

where

X
g
x′x = ei

∫ x′
x dy (λ(g)∂yϕ(y)+µ(g)∂y θ̄(y)) (4.141)

and

P
g
x′ =

(1 + eiθ(x
′)e−i2πλ(g))(1 + eiϕ̄(x

′)e−i2πµ(g))

4
(4.142)

Here P
g
x′ should be thought of as a local ground state projection operator, supported near

x′. The defining property of this operator is that it leaves invariant the state |Ω; g⟩ and

annihilates the other ground states: that is, P
g
x′|Ω;h⟩ = δgh|Ω; g⟩.

To see thatM
g
x′x is a valid movement operator, note that it is local and Z2×ZT

2 symmetric

by construction. We can also see that it has the correct action on domain wall states:

M
g
x′x|gx⟩ = X

g
x′x|gx⟩ = |gx′⟩ (4.143)

Here, the first equality follows from the observation that only the k = 1 term in (4.140) gives
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a nonzero result when acting on |gx⟩, while the second equality follows from the fact that

X
g
x′x(a

g
x)

† = (a
g
x′)

†.

Likewise, we define the reverse movement operator by

M
g
xx′ = (M

g
x′x)

†, x′ > x (4.144)

Moving on to splitting operators, we define S(g, h) by

S(g, h) =
∑
k∈G

UkUgXh
21(U

g)−1C(g, h)P
gh
2 (Uk)−1 (4.145)

where

C(g, h) = ei[p(g,h)ϕ(1)+q(g,h)θ̄(1)] (4.146)

and

p(g, h) = λ(g) + λ(h)− λ(gh)

q(g, h) = µ(g) + σ(g)µ(h)− µ(gh) (4.147)

Here σ(g) = ±1 depending on whether g is unitary or antiunitary, i.e. σ(g) = 1− 4λ(g).

To see that S(g, h) is a valid splitting operator, notice that it is local and Z2 × ZT
2

symmetric by construction. We can also check that S(g, h) has the correct action on domain

walls:

S(g, h)|gh1⟩ = UgXh
21(U

g)−1C(g, h)|gh1⟩

∝ Ug(ah2)
†(Ug)−1(a

g
1)

†|Ω; 1⟩

∝ |g1, h2⟩ (4.148)
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Here, the first equality follows from the fact that only the k = 1 term in (4.145) gives a

nonzero result when acting on |gh1⟩, while the second equality follows from the definition

of (a
g
x)

†. The third equality follows by noting that Ug(ah2)
†(Ug)−1(a

g
1)

†|Ω; 1⟩ has the same

local expectation values as |g1⟩ near x = 1, and the same local expectation values as Ug|h2⟩

near x = 2, and the same local expectation values as Ug|Ω; 1⟩ between x = 1 and x = 2.

With these operators defined, we are ready to compute F (g, h, k). From equation 4.20,

|1⟩ = [UgXh
12(U

g)−1] ·Xg
01 · [U

gXh
21(U

g)−1]

· C(g, h) · [UghXk
32X

k
21(U

gh)−1] · C(gh, k)|ghk1⟩

|2⟩ = [UghXk
32X

k
21(U

gh)−1] · [UgC(h, k)(Ug)−1]

· [UgXhk
12 (U

g)−1] ·Xg
01 · [U

gXhk
21 (U

g)−1]

· C(g, hk)|ghk1⟩ (4.149)

In order to compare these two states, we note that all the operators in the above products

commute with one another. Using this commutativity together with the identity Xα
xx′ =

(Xα
x′x)

−1, we can rewrite our states as:

|1⟩ = X
g
01U

ghXk
32X

k
21(U

gh)−1

· C(g, h)C(gh, k)|ghk1⟩

|2⟩ = X
g
01U

ghXk
32X

k
21(U

gh)−1

· UgC(h, k)(Ug)−1C(g, hk)|ghk1⟩ (4.150)

Next, using the definition (4.146) and the symmetry action, one can check that

C(g, h)C(gh, k)|ghk1⟩ =

ei2πµ(g)p(h,k)UgC(h, k)(Ug)−1C(g, hk)|ghk1⟩ (4.151)
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We conclude that |1⟩ = ei2πµ(g)p(h,k)|2⟩ so that

F (g, h, k) = ⟨2|1⟩ = ei2πµ(g)p(h,k) (4.152)

Having computed F , the next question is to determine whether F is a trivial or nontrivial

cocycle, i.e. a trivial or non-trivial element of H3(G,UT (1)). To answer this question, we

compute the following two gauge invariant combinations of F :

F (s, s, s)F (s, 1, s) = 1

χs(t, t)χs(1, t) = −1 (4.153)

where

χg(h, k) =
F (g, h, k)F (h, k, g)

F (h, g, k)
(4.154)

Given that the second quantity is different from 1, it follows that F is a nontrivial cocycle.

(Both quantities are 1 for a trivial cocycle). We conclude that our edge theory describes the

boundary of one of the three nontrivial SPT phases within the H(Z2×ZT
2 , U(1)T ) = Z2×Z2

classification [28], which is consistent with the original analysis of Ref. [94].

4.7 Continuous symmetries

4.7.1 Outline of procedure

So far we have presented a procedure for computing anomalies for SPT edge theories with

a discrete symmetry group G. We now discuss how to generalize this procedure to edge

theories with continuous symmetries.

The main obstruction to applying our procedure in the continuous case has to do with the
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definition of domain wall states. Recall that in the discrete case we construct domain walls as

follows: first, we choose an (edge) Hamiltonian that breaks the symmetry spontaneously and

completely and opens up an energy gap at the edge. Such a Hamiltonian has a collection of

degenerate ground states, which we label by |Ω; g⟩. We then define domain wall excitations

to be states that have the same local expectation values as one ground state, |Ω; g⟩, in some

large interval, and the same local expectation values as another ground state |Ω;h⟩ in a

neighboring large interval. The problem with applying this scheme to continuous symmetries

is that it is impossible to both break a continuous symmetry and open up an energy gap:

spontaneously breaking a continuous symmetry always leads to gapless Goldstone modes.

The key to overcoming this problem is to recognize that we don’t actually need a Hamil-

tonian with spontaneous symmetry breaking and an energy gap: this symmetry-breaking

Hamiltonian provides a nice physical context for thinking about domain wall states – our

main objects of interest – but it isn’t strictly necessary for our procedure. From an op-

erational point of view, all that we need is a single (edge) state |Ψ⟩ with two properties:

(i) |Ψ⟩ breaks the symmetry explicitly and completely – i.e. is not invariant under any of

the symmetry transformations; and (ii) |Ψ⟩ is the unique ground state of a gapped, local

Hamiltonian. (The latter condition is important to guarantee that |Ψ⟩ has various local-

ity properties like short-range correlations). Once we have such a state, we denote it by

|Ψ⟩ ≡ |Ω; 1⟩ and then define |Ω; g⟩ by

|Ω; g⟩ = Ug|Ω; 1⟩ (4.155)

Having defined the |Ω; g⟩ states, we then define our domain wall states and calculate F (g, h, k)

exactly as before. This modified procedure works equally well for either continuous or dis-

crete symmetry groups.

One subtlety that appears in the continuous symmetry case is that SPT phases with

continuous symmetry groups are conjectured to be classified by the Borel cohomology group
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H3
B(G,UT (1)) [28]. This means that if we want to interpret F (g, h, k) as a label for a bulk

SPT phase, we need to show that F (g, h, k) ∈ H3
B(G,UT (1)). This amounts to showing

that (i) F (g, h, k) is a Borel measurable 3-cocycle, and (ii) F (g, h, k) is well-defined up to

multiplication by the coboundary of a Borel measurable 2-cocycle. Neither of these properties

are obvious from our definition of F . Indeed, if we do not impose any additional constraints

on the splitting operators S(g, h) and the movement operators M
g
x′x, then we can only show

weaker versions of (i) and (ii) that do not include the Borel measurability constraints. In

this paper, we will not attempt to fill in this gap, but we expect that both properties (i)

and (ii) follow naturally if the splitting operators S(g, h) and movement operators M
g
x′x are

chosen so that their dependence on g, h ∈ G is not too discontinuous; for example, it may

be enough to require that the matrix elements of S(g, h) and M
g
x′x are piecewise continuous

as a function of g and h. We will see evidence for this conjecture in the next example: there

we will see that a reasonable choice of splitting and movement operators leads to a Borel

measurable F (g, h, k).

4.7.2 Example: chiral boson edge theory for bosonic IQH phase

We now demonstrate our approach with an example: an edge theory for the bosonic integer

quantum Hall state – a nontrivial bosonic SPT phase with U(1) symmetry. This edge theory

was introduced in Ref. [94].

Edge theory

Like the examples discussed in Sec. 4.4.2 and Sec. 4.6.4, the edge theory we consider is a

chiral boson edge theory with two fields θ, ϕ obeying the commutation relations

[θ(x), ∂yϕ(y)] = 2πiδ(x− y)
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with all other commutators vanishing. As in the previous examples, the local operators in

the edge theory are given by arbitrary products and derivatives of the elementary operators

{e±iθ, e±iϕ} and the Hilbert space H is the usual infinite dimensional representation of the

above algebra.

To complete the edge theory, we need to specify the U(1) symmetry transformation.

Denoting these transformations by Uα, where α ∈ [0, 2π), the symmetry action is given by:

Uαθ(Uα)−1 = θ − α

Uαϕ(Uα)−1 = ϕ− α (4.156)

We note that this edge theory reduces to the one discussed in Sec. 4.4.2 if we restrict to the

Z2 subgroup of U(1).

Calculating the anomaly

The first step in calculating the anomaly is to choose a state |Ψ⟩ ≡ |Ω; 0⟩6 that (i) breaks the

U(1) symmetry completely and (ii) is the unique ground state of a gapped local Hamiltonian.

To this end, we define |Ω; 0⟩ to be the (unique) simultaneous eigenstate of the operators eiθ(x)

with eigenvalue 1:

eiθ(x)|Ω; 0⟩ = |Ω; 0⟩ (4.157)

for all x. To see that |Ω; 0⟩ has the required properties, note that it breaks the U(1) symmetry

defined in (4.156), and furthermore it is the unique ground state of the (gapped) Hamiltonian

H0 −
∫
dx V cos(θ) in the limit V → ∞, where H0 =

∫
dx 1

4π [vθ(∂xθ)
2 + vϕ(∂xϕ)

2].

After choosing |Ω; 0⟩, we then define the remaining vacuum states |Ω;α⟩ to be symmetry

6. We denote the identity element by 0 since we are using additive notation.
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partners of |Ω; 0⟩.

|Ω;α⟩ = Uα|Ω; 0⟩ (4.158)

By construction |Ω;α⟩ is a simultaneous eigenstate of eiθ(x) with eigenvalue eiα:

eiθ(x)|Ω;α⟩ = eiα|Ω;α⟩ (4.159)

The next step is to define domain wall states |αx⟩ that spatially interpolate between the

two states, |Ω; 0⟩ and |Ω;α⟩. We define

|αx⟩ = (aαx)
†|Ω; 1⟩ (4.160)

where (aαx)
† is defined by

(aαx)
† = e−i α

2π

∫∞
x dy ∂yϕ(y) (4.161)

We can see that |αx⟩ is a valid domain wall state since

eiθ(x
′)|αx⟩ =


|αx⟩ x′ < x

eiα |αx⟩ x′ > x

by the commutation relations between θ and ϕ.

Next, we define movement and splitting operators for the above domain walls. We define

the movement operator by

Mα
x′x = ei

α
2π

∫ x′
x dy ∂yϕ(y) (4.162)
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To see that this is a valid movement operator, note that Mα
x′x is local and U(1) symmetric

by construction. Also, Mα
x′x has the correct action on domain walls: Mα

x′x|αx⟩ ∝ |αx′⟩ since

Mα
x′x(a

α
x)

† ∝ (aαx′)
†.

Moving on to splitting operators, we define S(α, β) by

S(α, β) =M
β
21C(α, β)

= ei
β
2π

∫ 2
1 dy ∂yϕ(y)C(α, β) (4.163)

where C(α, β) denotes the operator

C(α, β) = e
i
2π (α+β−[α+β])(ϕ(1)−θ(1−)) (4.164)

Here we use the symbol [x] to denote the unique number in [0, 2π) that is equal to x modulo

2π. Also, the notation θ(1−) is shorthand for θ(1− ϵ) where ϵ is a small positive number. (It

is important to carefully distinguish between θ(1−) and θ(1+) because we will be applying

this operator to a domain wall state with a θ domain wall at x = 1.)

To see that S(α, β) is a valid splitting operator, notice that it is local and U(1) symmetric

by construction. We can also see that S(α, β) has the correct action on domain walls:

S(α, β)|[α + β]1⟩ =M
β
21C(α, β)|[α + β]1⟩

=M
β
21e

i
2π (α+β−[α+β])ϕ(1)|[α + β]1⟩

∝ (a
β
2 )

†(aα1 )
†|Ω; 1⟩

∝ |α1, β2⟩ (4.165)

Here, the second equality follows from the fact that eiθ(1
−)|[α + β]1⟩ = |[α + β]1⟩, while

the third equality follows from the definition of (aαx)
†. The last equality follows from the

fact that the state (a
β
2 )

†(aα1 )
†|Ω; 1⟩ has the same expectation values for local operators as
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|α1, β2⟩.

With these operators defined, we are ready to compute F (α, β, γ). From equation 4.20,

|1⟩ =Mβ
12M

α
01M

β
21C(α, β)M

γ
32M

γ
21

· C([α + β], γ)|[α + β + γ]1⟩

|2⟩ =Mγ
32M

γ
21C(β, γ)M

[β+γ]
12 Mα

01M
[β+γ]
21

· C(α, [β + γ])|[α + β + γ]1⟩ (4.166)

In order to compare these two states, we will reorder the operators with the following

identities derived using the Baker-Campbell-Hausdorff formula:

Mα
x′xM

β
y′y =M

β
y′yM

α
x′x (4.167)

C(β, γ)Mα
x1 = e−

iα
2π (β+γ−[β+γ])Θ(1−x)Mα

x1C(β, γ)

where Θ(x) denotes the Heaviside step function. With these formulas and the identity

Mα
xx′ = (Mα

x′x)
−1, we can rewrite our states as:

|1⟩ =Mα
01M

γ
32M

γ
21C(α, β)C([α + β], γ)|[α + β + γ]1⟩

|2⟩ = eiΓMα
01M

γ
32M

γ
21C(β, γ)C(α, [β + γ])|[α + β + γ]1⟩ (4.168)

where Γ = − α
2π (β + γ − [β + γ]).

Next, using the definition (4.164), it is easy to check that

C(α, β)C([α + β], γ) = C(β, γ)C(α, [β + γ]) (4.169)

Substituting this identity into the above expression for |1⟩, |2⟩, we see that |2⟩ = eiΓ|1⟩. We
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conclude that

F (α, β, γ) = ⟨2|1⟩ = e
iα
2π (β+γ−[β+γ]) (4.170)

Note that F is a piecewise continuous function of α, β, γ and is therefore Borel measurable.

This is consistent with our conjecture that F will always be Borel measurable for piecewise

continuous movement and splitting operators.

Having computed F , the next question is to determine whether F is a trivial or non-trivial

cocycle. To answer this question, we compute the following gauge invariant quantity:

F (π, π, π)F (π, 0, π) = −1 (4.171)

Since this quantity is different from 1, it follows that F is a non-trivial cocycle. We conclude

that our edge theory describes the boundary of a nontrivial bosonic SPT phase with U(1)

symmetry. This is consistent with previous work [94].

4.8 Conclusion

In this paper, we have presented a general procedure for calculating anomalies in (1D)

bosonic SPT edge theories. Our procedure takes as input a bosonic SPT edge theory and

produces as output an element ω ∈ H3(G,UT (1)) describing the anomaly carried by the

edge theory. An important feature of our procedure is that, unlike previous approaches, it

applies to general bosonic SPT edge theories with both unitary and antiunitary symmetries,

with the only restriction being that the underlying 2D symmetry must be on-site.

One class of SPT edge theories that we cannot analyze with our current approach are

those with spatial symmetries such as translation or reflection symmetries [128, 134]. The

problem is that, for these types of edge theories, it is impossible to construct movement

and splitting operators with the two requirements that they are are local in space and also
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invariant under all the symmetries. A potential hint for how to overcome this problem, at

least in some cases, is the observation [128] that SPT phases with point group symmetries

are closely connected to SPT phases with on-site symmetries in fewer spatial dimensions.

This suggests that our method might be suitable for studying boundary theories of higher

dimensional (e.g. 3D) SPT phases with point group symmetries.

Our anomaly calculation always starts by choosing an edge Hamiltonian that opens up a

gap and breaks the symmetry on the edge completely. However, in some edge theories, it is

possible to open up a gap by only breaking some of the symmetries. (A famous example is

the 2D topological insulator: in this case the edge can be gapped by breaking time-reversal

symmetry while preserving U(1) charge conservation symmetry). It would be interesting to

develop methods for computing anomalies in this partial symmetry-breaking scenario. In

this case, domain walls have more structure: they can carry quantum numbers under the

symmetry, in addition to their fusion properties. We expect that the anomaly is encoded in

this more complicated set of data. This problem may be related to the decorated domain

wall construction of Ref. [31].

Another interesting direction for future work would be to generalize our approach to (1D)

fermionic SPT edge theories. The fermionic case is especially intriguing given that there are

2D fermionic SPT phases that are beyond [35] the supercohomology classification scheme [47].

Despite the complexity of 2D fermionic SPT phases, we expect that our basic approach is

still applicable: that is, given any fermionic SPT edge theory, we can determine the identity

of the corresponding 2D SPT phase by breaking the symmetry and then extracting the fusion

rules and F -symbol of the domain walls at the edge.
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CHAPTER 5

MICROSCOPIC DEFINITIONS OF FERMIONIC SPT DATA

FROM BOUNDARY THEORIES

Kawagoe, K., Levin, M. (2022). “Microscopic definitions of fermionic SPT data from bound-

ary theories.” Manuscript to be submitted for publication.

Abstract

We describe a systematic procedure for determining the identity of a 2D fermionic sym-

metry protected topological (SPT) phase from the properties of its microscopic boundary

theory. This will follow from the fact that fermionic SPTs are classified by supercohomology

and each fermionic SPT can be identified by its supercohomology data. We will show that

this data can be concretely defined on the boundary of fermionic SPTs. The basic idea

behind our approach is to determine the fusion rules and F -symbol of the domain walls in a

symmetry broken boundary theory; this information can then be mapped on to the super-

cohomology data. We demonstrate our approach with several fermionic SPT edge theories

including a field theory for the topological insulator.

5.1 Introduction

Topological insulators are gapped quantum many-body systems which have short-range en-

tangled ground states. Despite this short-range entanglement, they have long lived low

energy edge modes which are protected by charge conservation and time reversal symme-

tries. These symmetry protected edge modes actually encode topological information about

the bulk theory via the so-called “bulk-boundary correspondence.” In particular, one can

determine whether the bulk phase is a trivial insulator or a topological insulator based on

whether there are an even or odd number of Kramers pairs of edge modes, respectively.
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Symmetry protected topological phases (SPT phases) of matter are a natural generaliza-

tion of topological insulators. A gapped quantum many-body system belongs to a nontrivial

SPT phase if it has two properties: (i) the ground state is unique and short-range en-

tangled1; and (ii) it is not possible to adiabatically connect the system to another system

with a trivial (product-state) ground state without breaking one or more global symme-

tries [110, 40, 24, 120, 25, 28]. Instead of insisting on charge conservation and time reversal

symmetries, SPTs generalize the topological insulators by allowing for a generic symmetry

group. These theories also admit low energy edge modes which are protected under the

symmetry. Therefore, it natural to ask if we can extend the bulk boundary correspondence

seen in topological insulators to SPTs.

Just as the number of Kramers pairs of edge modes diagnose the topological properties

of the bulk of topological insulators, similar formulas expressing bulk invariants in terms of

boundary modes are known for other non-interacting fermionic SPTs [53, 114]. Additionally,

recent work on bosonic SPTs have also generated formulas for deriving the bulk invariants

from their boundary theories [26, 39, 70]. The interacting fermionic case, however, is less

understood, especially in two and higher dimensions. By extending our previous work on

bosonic SPTs, this paper seeks to address the interacting problem in the case of 2D fermionic

SPT phases with on-site (i.e. non-spatial) symmetries. Concisely, we ask: how can one

determine the identity of a 2D fermionic SPT phase from the 1D theory of its edge modes?

We can make this question more concrete by recalling the recent work on the conjec-

tured classification of fermionic SPTs in (2+1)D [68, 35, 47, 32, 8, 1]. According to this

classification, is a one-to-one correspondence between certain fermionic SPTs and the “su-

percohomology data” which is a pair of functions (ρ, ν)2 which we will describe in the main

1. A state |Ψ⟩ is “short-range entangled” if it can be transformed into a fermionic product state by local

unitary transformation, i.e. a unitary of the form U = T exp(−i
∫ T

0
H(t)dt) where H is a local Hermitian

operator.

2. Some authors call this pair (n2, ν3).
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text. The pair (ρ, ν) has the interpretation of describing the anomaly on the boundary the-

ory of a fermionic SPT. In this paper, we will use the general idea that F -symbols of domain

walls on the boundary contain bulk topological information to calculate the bulk data in

fermionic SPTs.

In the case of bosonic SPTs, this task has been thoroughly addressed [129, 18, 135, 57,

91, 26, 39, 70]. Despite this work on bosonic SPTs and the vast literature on the bulk bound-

ary correspondence in non-interacting fermionic SPTs, there is very little work showing how

to extract bulk topological information from the boundary theories of interacting fermionic

SPTs. In a paper by Else and Nayak [39], the authors showed how to extract the super-

cohomology data in the case of fermionic SPTs in (2+1)D with unitary symmetries which

can be restricted to a patch on the boundary. This symmetry restriction method applies to

any SPT edge theory whose symmetries are local unitary transformations, i.e. of the form

U = T exp(−i
∫ T
0 H(t)dt) for some local Hermitian operator H. However, a priori there

could be edge theories where the symmetries cannot be restricted, or it may be difficult to

write them explicitly. Additionally, there is no published work describing how to extract this

data from boundary theories when there are antiunitary symmetries.

In this paper, we present an approach for computing anomalies in fermionic SPT edge

theories. Unlike previous work, our approach applies to general fermionc SPT edge theories

with both unitary and antiunitary symmetries. Our only restriction is that the underlying

2D symmetry must be on-site.

The basic idea behind our approach is simple. First, we choose an edge Hamiltonian

that spontaneously3 breaks all the symmetries, except for fermion parity symmetry, on

the edge and opens up an energy gap. Such a Hamiltonian has a collection of degenerate

ordered ground states related to one another by symmetry transformations. The elementary

excitations are domain walls between the different ground states. These domain walls can

3. Alternatively, we can break the symmetry explicitly rather than spontaneously for continuous symme-
tries.
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be fused together to form new domain walls, much like anyon excitations in 2D topological

systems. One interesting feature of fermionic SPTs, as opposed to bosonic SPTs, is that

the fusion rules of the domain walls, in general, differ from the group law of the symmetry

group. We will use this group law to define ρ. The fusion rules also allow one to define an “F -

symbol” that describes the phase difference associated with fusing domain walls in different

orders. This domain wall F -symbol is related to the quantity ν. Some care is required to

compute F , but we describe a concrete procedure for performing this computation using the

formalism of Refs. [69, 70] and then introduce some further restrictions to relate it to ν. In

this way, we provide rigorous and practical definitions for the pair (ρ, ν) in the edge theory,

thereby identifying the bulk fermionic SPT from its boundary theory.

This paper is organized as follows. In Sec. 5.2 we explain the basic setup of our problem.

Then, in Sec. 5.3, we present our anomaly computation procedure in the simplest case:

SPT edge theories with discrete unitary symmetry groups. We illustrate our procedure with

several (discrete unitary) examples in Sec. 5.4. In Sec. 5.5 we consider the general case

of SPT edge theories with both unitary and antiunitary symmetries, and we show that the

same procedure works in this case. We apply the formalism in that section to the topological

insulator. Finally, we give our conclusions in Sec. 5.6. Technical details are discussed in the

Appendix.

5.2 Setup

We begin by defining what we mean by an “edge theory”, or more precisely, a fermionic SPT

edge theory. At an intuitive level, a fermionic SPT edge theory is a collection of data that

describes the low energy edge excitations of an SPT phase. More specifically, a fermionic

SPT edge theory consists of three pieces of data:

1. A Hilbert space H.
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2. A complete list of “local operators” {O} acting in H, including fermion parity odd

operators.

3. A collection of (unitary or anti-unitary) symmetry transformations {Ug : g ∈ G0}

acting on H. Here G0 denotes the quotient group, G0 = G/ZF
2 .

Each of these pieces of data has a simple physical interpretation: the Hilbert space H

describes the subspace of low energy edge excitations; the list {O} describes the low energy

projection of local operators in the original 2D system; and the {Ug} operators describe how

the edge excitations transform under the symmetry.

In order to qualify as a valid fermionic SPT edge theory, we require that the above data

is physically realizable as the edge of some 2D SPT Hamiltonian with on-site symmetries.

That is, we require the existence of a 2D Hamiltonian H2D that belongs to an SPT phase

with (on-site) symmetry group G and that has the following properties:

1. The Hilbert space H is isomorphic to the subspace of low energy edge excitations of

H2D.

2. The operators {O} correspond to local operators of the 2D system, projected into this

low energy subspace.

3. The {Ug} transformations describe how the low energy subspace transforms under the

symmetries in G.

See Secs. 5.4,5.5.4 for examples of fermionic SPT edge theories. In general, fermionic SPT

edge theories can be described using either continuum fields or lattice degrees of freedom

and our results apply equally well to both cases.

With this background, we can now state our main result: We describe a systematic

procedure that takes a fermionic SPT edge theory as input, and that outputs two pieces of

data, ρ, ν (see Sec. for details). As explained in the introduction, the pair (ρ, ν) can be
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interpreted as either a label for the bulk 2D SPT phase or a label for the anomaly carried

by the SPT edge theory. Thus, depending on one’s point of view, our procedure provides a

systematic method for computing either the bulk 2D SPT phase or the anomaly associated

with a given edge theory.

5.3 Discrete unitary symmetries

5.3.1 Outline of procedure

In this section, we outline our procedure in the case where the symmetry group G is discrete

and unitary and where none of the domain walls carry Majorana modes.

Review of fermionic symmetry groups

We begin by reviewing the structure of the symmetry group G. This structure can be

understood most easily by thinking about the quotient group G0 = G/ZF
2 , where Z

F
2 denotes

the fermion parity subgroup. Intuitively, G0 describes all the symmetries except for fermion

parity.

A key point is that the elements of G can be parameterized as ordered pairs [g, s] where

g ∈ G0 and s ∈ Z2 = {0, 1}. Here g ∈ G0 labels the cosets of ZF
2 within G, while s = 0, 1

labels the two elements within each coset. Note that there is some arbitrariness in this

labeling scheme: for each coset gZF
2 , we have the freedom to pick either element of the coset

and label it by [g, 0].

Suppose we choose a labeling scheme of this kind. Then the group multiplication on G

takes the form

[g, 0] · [h, 0] = [gh, λ(g, h)] (5.1)
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for some function λ : G0 × G0 → Z2 = {0, 1}. Associativity of multiplication guarantees

that λ obeys the condition

λ(g, h) + λ(gh, k) = λ(h, k) + λ(g, hk) (5.2)

Thus, λ is a “2-cocycle.”

So far we have shown that the symmetry group G defines a quotient group G0 = G/ZF
2

and a 2-cocycle λ : G0×G0 → Z2. The reverse is also true: the quotient group G0, together

with a 2-cocycle λ, completely determines the full symmetry group G. In this construction,

the group multiplication law in G given by [g, s][h, t] = [gh, λ(g, h) + s + t]; the group G is

said to be the “Z2 extension of G0 determined by λ.

In this paper we will use the latter point of view in describing symmetry groups: we

will describe the symmetry group G by specifying the quotient group G0 = G/ZF
2 and the

2-cocycle λ. Likewise, we will describe the symmetry transformations on the edge theory by

focusing on the subset of transformations corresponding to group elements of the form [g, 0]

(where g ∈ G0). We will use the abbreviation

Ug ≡ U [g,0], g ∈ G0 (5.3)

Note every symmetry transformation can be constructed out of the Ug’s and F , where F

denotes the fermion parity operator. Note also that the Ug’s obey the algebra

UgUh = UghFλ(g,h) (5.4)

in view of (5.1).

A comment about our labeling conventions: we will find it convenient to fix a labeling
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convention in which [1, 0] corresponds to the identity element in G, and therefore

U1 ≡ U [1,0] = I (5.5)

and

λ(1, g) = 0 (5.6)

Review of supercohomology data

Next we review the definitions of the super cohomology data since this will describe the

output of our procedure in the case of discrete unitary symmetries in the absence of Majorana

degrees of freedom. The super cohomology data consists of a pair of functions ρ : G0×G0 →

Z2 = {0, 1} and ν : G0 × G0 × G0 → U(1). This pair of functions (ρ, ν) obeys certain

constraints and is well-defined up to a certain equivalence relation. The constraints are

ρ(g, h) + ρ(gh, k) = ρ(h, k) + ρ(g, hk) (5.7)

and

ν(g, h, k)ν(g, hk, l)ν(h, k, l)

ν(gh, k, l)ν(g, h, kl)
= (−1)(ρ(g,h)+λ(g,h))ρ(k,l). (5.8)

The equivalence relation is defined as follows: (ρ, ν) ∼ (ρ′, ν′) if

ρ′(g, h)− ρ(g, h) = µ(g) + µ(h)− µ(gh) + sλ(g, h) (5.9)
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and

ν′(g, h, k)
ν(g, h, k)

=
α(gh, k)α(g, h)

α(g, hk)α(h, k)

· (−1)(ρ(g,h)+λ(g,h))µ(k)+µ(g)(ρ(h,k)+(dµ)(h,k))

· (−1)s(ρ(gh,k)λ(g,h)+ρ(g,hk)λ(h,k)) (5.10)

for some function µ : G0 → Z2 and α : G0 × G0 → U(1), and s ∈ Z2. Here, (dµ)(h, k) =

µ(h) + µ(k)− µ(hk).

We will see that the output of our procedure is a pair of functions (ρ, ν), which obeys

the constraints (5.7-5.8) and is uniquely defined up to the transformations (5.9-5.10); in this

way our procedure naturally produces the supercohomology data.

Our procedure

With this background, we now move on to explain our procedure. The first step in our

procedure is to choose an (edge) Hamiltonian H that acts within the Hilbert space H. The

Hamiltonian H can be arbitrary as long as it has three properties: (i) H is built out of the

local (fermion parity even) operators {O} from Sec. 5.2; (ii) H has an energy gap; and (iii)

H breaks the G0-symmetry spontaneously and completely.4

An important aspect of the Hamiltonian H is that it has multiple degenerate ground

states due to the spontaneously broken symmetry. More specifically, H has |G0| degenerate,

short-range correlated ground states, which are permuted amongst themselves by the sym-

metry transformations. These ground states can be naturally labeled by group elements,

g ∈ G0. To do this, we pick one of the degenerate ground states and denote it by |Ω; 1⟩. We

4. Actually, such a Hamiltonian is not strictly necessary for our procedure: all that we really need is a
single (edge) state |Ψ⟩ that explicitly breaks all symmetries in G0. See Sec. 5.5.4 for more details.
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Figure 5.1: A domain wall excitation: a state that shares the same local expectation values
as one ground state |Ω; g⟩ to the left of some point x, and another ground state |Ω;h⟩ to the
right of x. We say that such a domain wall is g−1h-type. This domain wall may be bare or
decorated and denoted as (g−1h, 0) or (g−1h, 1), respectively.

then label the other states by {|Ω; g⟩} with g ∈ G0 where |Ω; g⟩ is defined by

|Ω; g⟩ = Ug|Ω; 1⟩ (5.11)

By construction, Ug|Ω;h⟩ ∝ |Ω; gh⟩ (since the ground states have a definite fermion parity).

Having found the ground states of H, the next step in our procedure is to construct

domain wall excitations. We give a precise definition of domain wall excitations in Sec.

5.3.2, but roughly speaking a domain wall excitation is a state in H that “looks like” one

ground state |Ω; g⟩ to the left of some point x, and like another ground state |Ω;h⟩ to the

right of x, and that interpolates between the two ground states in some arbitrary way in

the vicinity of x (Fig. 5.1). Like the ground states, these domain wall excitations can be

labeled by elements of G0: in particular, we will label the above domain wall with the

group element g−1h. An important property of this labeling is that it is invariant under

any global symmetry transformation Uk: under such a transformation, |Ω; g⟩ → |Ω; kg⟩ and

|Ω;h⟩ → |Ω; kh⟩ so g−1h→ (kg)−1(kh) = g−1h.

We now come to an important feature of fermionic SPT edge theories (in the absence of

Majorana modes): for each group element g ∈ G0 there are two topologically distinct species
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Figure 5.2: Spacetime diagram of fusion of a (g, 0) and (h, 0) domain wall into a (gh, ρ(g, h))
domain wall. The initial state consists of three different ground states |Ω; 1⟩, |Ω; g⟩, |Ω; gh⟩
in three different regions, separated by domain walls (g, 0), (h, 0). During the fusion process,
the |Ω; g⟩ region disappears and we are left only with the |Ω; 1⟩, |Ω; gh⟩ regions separated
by a (gh, ρ(g, h)) domain wall. Reversing the arrow of time corresponds to a “splitting”
operation.

of domain walls. These two domain wall species differ from one another by a local fermion –

i.e. a local operator that carries odd fermion parity. We will label them by (g, 0) and (g, 1).

Note that there is some arbitrariness in this labeling scheme: for each group element g, we

are free to label either of the two domain walls by (g, 0) and the other by (g, 1). We denote

the collection of domain walls by D = {(g, s)}.

At this point, we introduce an abbreviated notation which will be useful below: we use

bold symbols like a to denote ordered pairs of the form a = (g, s), where g ∈ G0 and

s ∈ Z2 = {0, 1}. With this notation, we can talk about domain walls a, b ∈ D, rather than

(g, s), (h, t), etc.

An important aspect of domain walls is that they can be combined them together in a
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process called “fusion”: if one has an a domain wall located nearby and to the left of a b

domain wall, then one can convert this pair of domain walls into a single c domain wall by

applying a local (fermion parity even) operator acting on both domain walls. We will denote

these fusion rules by

a× b = c or ab = c. (5.12)

These fusion rules have a G0-graded structure: if a, b are of type g, h then c is of type gh

(Fig. 5.2). In particular, this means that the fusion rules take the form

(g, 0)× (h, 0) = (gh, ρ(g, h)) (5.13)

for some function ρ : G0 ×G0 → Z2 = {0, 1}. More generally, the fusion rules are given by

(g, s)× (h, t) = (gh, ρ(g, h) + s+ t) (5.14)

These fusion rules endow the set of domain walls D with a group structure. More specifically,

the domain wall group D is a Z2 extension of G0 – just like the symmetry group G.5 The

function ρ, defined in (5.13), is the first piece of super cohomology data. Thus, from an

operational point of view, we can extract the first piece of super cohomology data by studying

the fusion rules of the domain wall excitations.

To extract the second piece of cohomology data, ν, we need to consider the “F -symbol”

for these excitations. The basic idea is to consider two different physical processes in which

a domain wall of type abc ∈ D splits into three domain walls a, b, c ∈ D (Fig. 5.3). (Here,

splitting is the opposite of fusion). In one process, abc splits into ab and c, and then ab

splits into a and b; in the other process, abc splits into a and bc and then bc splits into

5. Though both groups are Z2 extensions, D ̸= G in general since ρ ̸= λ.
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b and c. By construction, the final states |1⟩, |2⟩ produced by these processes contain the

same domain walls, a, b, c, at the same three positions. Therefore, the two final states |1⟩, |2⟩

must be the same up to a phase. The F -symbol, F (a, b, c), is the phase difference between

the two states:

|1⟩ = F (a, b, c)|2⟩. (5.15)

This F -symbol defines the second piece of super cohomology data:

ν(g, h, k) ≡ F ((g, 0), (h, 0), (k, 0)) (5.16)

To complete this discussion, we need to explain why (ρ, ν) obey the constraints (5.7-5.8)

and are well-defined up to the transformation (5.9-5.10). is a supercocycle. We begin with

the constraint on ρ (5.7): this constraint follows immediately from the fact that the fusion

product is associative. Next, consider the constraint on ν (5.8). This constraint comes from

the fact that the F -symbol obeys the “pentagon identity”:

F (a, b, c)F (a, bc,d)F (b, c,d) = F (ab, c,d)F (a, b, cd) (5.17)

In addition, one can show that different F -symbols are related to one another via:

F ((g, s), (h, t), (k, r)) = F ((g, 0), (h, 0), (k, 0))

· (−1)(ρ(g,h)+λ(g,h))r (5.18)

Combining (5.17) and (5.18) together with the fusion rules (5.14), it follows immediately

that ν obeys the constraint (5.8).

Although understanding (5.18) will take more work, we can get an intuitive understanding

of the pentagon identity immediately. Consider the 5 processes shown in Fig. 7.1. Notice
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Figure 5.3: Spacetime diagrams for two processes in which a domain wall abc splits into
domain walls a, b, c. The final states, |1⟩, |2⟩, are equal up to the U(1) phase, F (a, b, c).

that the final states produced by these processes, namely {|1⟩, ..., |5⟩}, are all the same up

to a phase. We can compute the phase difference between states |1⟩ and |5⟩ in two different

ways. In the first way, we compute the relative phases between (|1⟩, |2⟩), (|2⟩, |3⟩), and

(|3⟩, |5⟩) using (5.15); in the second way, we compute the relative phases between (|1⟩, |4⟩) and

(|4⟩, |5⟩). Demanding consistency between the two calculations gives the pentagon identity

(5.17).

We now want to understand the ambiguity in ρ and ν. We begin with ρ. Recall that

we made an arbitrary choice as to which domain wall to call (g, 0) and (g, 1). Suppose we

rename the domain walls according to (g, s) → (g, s+ µ(g)) where µ : G0 → Z2. Then

ρ(g, h) → ρ(g, h) + µ(g) + µ(h)− µ(gh) (5.19)

This explains the first term in (5.9). The second term in (5.9) takes more work but the basic

picture is that it comes from stacking a 1D Kitaev chain onto the edge theory.

We now discuss the ambiguity in ν. To do so, we first consider the ambiguity in F .
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Naively, one might expect that F has an ambiguity of the form

F (a, b, c) → F (a, b, c)
α(ab, c)α(a, b)

α(a, bc)α(b, c)
(5.20)

where α : D ×D → U(1). To understand where this ambiguity comes from, it is helpful to

think about the physical processes in Fig. 5.3 as being implemented by a sequence of two

“splitting operators” applied to an initial state with a abc domain wall. The key point is

that the phases of these splitting operators are arbitrary. If we multiply the four splitting

operators by four phases, ν(ab, c), ν(a, b), ν(a, bc), ν(b, c), this changes F by exactly the

above transformation (5.20).

However, the ambiguity in F is not as severe as (5.20). The reason is that the (g, 0)

and (g, 1) domain walls are related to one another by a local fermion operator; therefore we

can also relate the splitting operators associated with (g, 0) and (g, 1) using local fermion

operators. Consequently, we can choose splitting operators so that the phases of related

splitting operators are locked together. This results in restricting the α transformation so

that α((g, s), (h, t)) depends only on g, h and is independent of s, t. Hence we can write

α((g, s), (h, t)) ≡ α(g, h). These “restricted gauge transformations” lead to an ambiguity in

F of the form

F ((g, s), (h, t), (k, r)) → F ((g, s), (h, t), (k, r))

· α(gh, k)α(g, h)
α(g, hk)α(h, k)

(5.21)

In particular, if we specialize to the case s = t = r = 0, then the ambiguity is of the form

F ((g, 0), (h, 0), (k, 0)) → F ((g, 0), (h, 0), (k, 0))

· α(gh, k)α(g, h)
α(g, hk)α(h, k)

(5.22)

171



This ambiguity explains the first term in (5.10). To understand the second term, we need

to consider the effect of relabeling domain walls, (g, s) → (g, s+ µ(g)). Under this transfor-

mation, one can show that F changes as

F ((g, 0), (h, 0), (k, 0)) → F ((g, 0), (h, 0), (k, 0))

· (−1)(ρ(g,h)+λ(g,h))µ(k)+µ(g)(ρ(h,k)+(dµ)(h,k)) (5.23)

This explains the second term in (5.10).

5.3.2 Microscopic definition of domain walls

In this section, we give precise, operational definitions of domain wall states. We note that

these definitions closely parallel the microscopic definition of the domain walls that was given

in Ref. [70] in the context of bosonic SPTs.

To begin, let ℓ be a distance that is much greater than the correlation length ξ of the

system. The length scale ℓ will play an important role in the following discussion. In

particular, we will only consider states in which domain wall excitations are separated by

distances of at least ℓ, and we will neglect finite size effects of order e−ℓ/ξ.

We define domain wall states as follows. For each point x on the edge, we choose a

state that has the same expectation values as |Ω; 1⟩ for local operators {O} supported to

the left of x − ℓ and the same expectation values as |Ω; g⟩ for g ∈ G0 for local operators

{O} to the right of x + ℓ. We denote this state by |(g, 0)x⟩. In our language, the state

|(g, 0)x⟩ describes a single domain wall of “type (g, 0)” at position x. We require that these

domain wall states are constructed so that |(g, 0)x⟩ has the same fermion parity for every

position x. More precisely, we require that for every x and x′, there exists a fermion parity

even operator supported in the neighborhood of the interval containing x and x′ such that

|(g, 0)x⟩ = O|(g, 0)x′⟩. Note that the definition of |(g, 0)x⟩ involves an arbitrary choice of a
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state: we will show that our results do not depend on this choice.

So far we have defined the (g, 0) domain wall states. We now define the (g, 1) states. To

this end, we choose, for each position x, a local unitary operator γx that is supported near

the point x and has odd fermion parity. We then define the domain wall state |(g, 1)x⟩ by

|(g, 1)x⟩ = γx|(g, 0)x⟩ (5.24)

Next, for each domain wall state |ax⟩ with a = (g, s), we define a collection of symmetry

partner states |ax;h⟩, with h ∈ G0, by

|ax;h⟩ ∝ Uh|ax⟩ (5.25)

By construction, |ax;h⟩ has the same expectation values as |Ω;h⟩ for local operators sup-

ported to the left of x− ℓ and the same expectation values as |Ω;hg⟩ for local operators to

the right of x+ ℓ.

We now introduce multi -domain wall states. Let x1 < x2 < ... < xn be well-separated

(i.e. having a spacing of at least ℓ) and pick group elements g(1), g(2), ..., g(n) ∈ G0. We will

use the notation |(g(1), 0)x1 , (g(2), 0)x2 , ...⟩ to denote the multi-domain wall state that has a

domain wall of type (g(i), 0) at each location xi and that has the same expectation values

as |Ω; 1⟩ for local operators supported to the left of all the domain walls. More precisely,

we define |(g(1), 0)x1 , (g(2), 0)x2 , ...⟩ to be the unique state with the following two properties:

first, for any local operator O supported near one domain wall xi,

⟨(g(1), 0)x1 , (g
(2), 0)x2 , ...|O|(g(1), 0)x1 , (g

(2), 0)x2 , ...⟩

= ⟨(g(i), 0)xi ; gL|O|(g(i), 0)xi ; gL⟩ (5.26)
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Figure 5.4: A multi-domain wall state consisting of a g-type, h-type, and k-type domain
wall. The domain walls separate four regions which share the same local expectation values
as the four ground states |Ω; 1⟩, |Ω; g⟩, |Ω; gh⟩, |Ω; ghk⟩.

where gL is the product

gL = g(1) · · · g(i−1) (5.27)

Second, for any operator O supported away from the domain walls,

⟨(g(1), 0)x1 , (g
(2), 0)x2 , ...|O|(g(1), 0)x1 , (g

(2), 0)x2 , ...⟩

= ⟨Ω; gL|O|Ω; gL⟩ (5.28)

where gL is again the product of the g(j)’s to the left of O. These two properties imply that

multi-domain wall states have a structure like that in Fig. 5.4.

We now define general multi-domain wall states (as opposed to the “bare” multi-domain

wall states defined above) as follows: Again, let x1 < x2 < ... < xn be well-separated

points and pick group elements g(1), g(2), ..., g(n) ∈ G0. This time, we will also choose

s(1), s(2), ..., s(n) ∈ {0, 1}. We define the general multi-domain wall state |(g(1), s(1))x1 , (g(2), s(2))x2 , ...⟩
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by

|(g(1), s(1))x1 ,(g
(2), s(2))x2 , ...⟩ =∏
i

(
g
(i)
L γxi

)s(i)

|(g(1), 0)x1 , (g
(2), 0)x2 , ...⟩ (5.29)

where

hγx = Uhγx

(
Uh
)−1

, (5.30)

and

g
(i)
L = g(1) · · · g(i−1). (5.31)

Importantly, the above definition ensures that the general multi-domain wall states have

the same structure as the bare multi-domain wall states. Let a(i) = (g(i), s(i)). Then

|a(1)x1 ,a
(2)
x2 , ...⟩ is the unique state with the following two properties: first, for any local

operator O supported near one domain wall xi,

⟨a(1)x1 ,a
(2)
x2 , ...|O|a(1)x1 ,a

(2)
x2 , ...⟩ = ⟨a(i)xi ; gL|O|a(i)xi ; gL⟩ (5.32)

where gL is the product of the G0 component of all domain walls to the left of O (5.27).

Second, for any operator O supported away from the domain walls,

⟨a(1)x1 ,a
(2)
x2 , ...|O|a(1)x1 ,a

(2)
x2 , ...⟩ = ⟨Ω; gL|O|Ω; gL⟩ (5.33)

where gL is again the product of the G0 component of domain wall types to the left of O.

We prove this statement in Appendix 7.6.

An important corollary of Eq. 5.32, which we will need below, is that for any operator O
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that is supported near a domain wall a at point x and is invariant under all the symmetries

(i.e. UhO(Uh)−1 = O), the following identity holds:

⟨...,ax, ...|O|...,ax, ...⟩ = ⟨ax|O|ax⟩ (5.34)

5.3.3 Microscopic definition of domain wall F -symbol

In this section, we give a precise definition of the F -symbol for domain walls. The first step

is to define movement operators for domain walls. Given any domain wall type a ∈ D,

and any pair of points, x, x′, we say that Ma
x′x is a movement operator if it satisfies three

conditions: (i) Ma
x′x obeys

Ma
x′x|ax⟩ ∝ |ax′⟩ (5.35)

where the proportionality constant is a U(1) phase; (ii) Ma
x′x is invariant under all the

symmetries, i.e.

UhMa
x′x(U

h)−1 =Ma
x′x (5.36)

and (iii) Ma
x′x is local in the sense that it is supported in the neighborhood of the interval

containing x, x′ and has even fermion parity.

Here, the symmetry condition (5.36) is important because it guarantees that the analog

of Eq. 5.35 holds for any (single) domain wall state |ax;h⟩:

Ma
x′x|ax;h⟩ ∝ |ax′ ;h⟩ (5.37)

Likewise, the locality condition is important because it guarantees that the analog of Eq. 5.35

holds for any multi-domain wall state of the form |...,ax, ...⟩: that is,

Ma
x′x|...,ax, ...⟩ ∝ |...,ax′ , ...⟩ (5.38)
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as long as the other domain walls in |...,ax, ...⟩ are well-separated from the interval containing

x and x′. Again the constant of proportionality is a U(1) phase.

To derive Eq. 5.38 from Eq. 5.35, consider the expectation value of any local operator,

O, supported in the neighborhood of [x, x′] (or [x′, x] if x′ < x), in the two states |...,ax′ , ...⟩

and Ma
x′x|...,ax, ...⟩. Using (5.32) and (5.37), we can see that O has the same expectation

value in the two states, |...,ax′ , ...⟩ and Ma
x′x|...,ax, ...⟩:

⟨...,ax′ , ...|O|...,ax′ , ...⟩ = ⟨ax′ ; gL|O|ax′ ; gL⟩

= ⟨ax; gL|(Ma
x′x)

†OMa
x′x|ax; gL⟩

= ⟨...,ax, ...|(Ma
x′x)

†OMa
x′x|...,ax, ...⟩ (5.39)

The two states, |...,ax′ , ...⟩ and Ma
x′x|...,ax, ...⟩ also share the same expectation values for

local operators supported away from the interval [x, x′] (or [x′, x]) by virtue of the short

ranged correlations of these states. Therefore, by the uniqueness property of our domain

wall states, we obtain Eq. 5.38.

In addition to the movement operators, we also define splitting operators for our domain

walls. Fix two well-separated points on the line, which we will call ‘1’ and ‘2’. For any

pair of domain walls a, b ∈ D, we say that S(a, b) is a splitting operator if it satisfies three

conditions: (i) S(a, b) satisfies

S(a, b)|ab1⟩ ∝ |a1, b2⟩ (5.40)

where the proportionality constant is a U(1) phase; (ii) S(a, b) is invariant under all the

symmetries Ug; (iii) S(a, b) is supported in the neighborhood of the interval [1, 2] and has

even fermion parity.

Just as before, it can be shown that these conditions guarantee that the splitting operators

can be applied to any multi-domain wall state of the form |...,ab1, ...⟩ provided that the other
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domain walls are located far from the interval [1, 2]:

S(a, b)|...,ab1, ...⟩ ∝ |...,a1, b2, ...⟩ (5.41)

where the proportionality constant is a U(1) phase. Note that, unlike the movement opera-

tors, we only define splitting operators that act on a single interval [1, 2] on the x-axis.

The last step is to restrict the phases of the movement and splitting operators in a

canonical way. Let a be a type-g domain wall (i.e. a = (g, s) for some s). First, notice that

it follows immediately from our definitions that

Ma
x′x|ax⟩ ∝ γ

σ(a)
x′ M̃

g
x′xγ

−σ(a)
x |ax⟩ (5.42)

where

M̃
g
x′x =M

(g,0)
x′x (5.43)

and where we define σ : D → Z2 = {0, 1} by

σ(a) = s for a = (g, s) (5.44)

Since we are free to adjust the phase of the movement operator, we require that this pro-

portionality is an equality. That is, we require that

Ma
x′x|ax⟩ = γ

σ(a)
x′ M̃

g
x′xγ

−σ(a)
x |ax⟩ (5.45)

We may impose a similar constraint on the splitting operators. Let a, b be type-g and

178



type-h domain walls respectively. We know that

S(a, b)|ab1⟩ ∝ γ
σ(a)
1 (gγ2)

σ(b)S̃(g, h)γ
−σ(ab)
1 |ab1⟩ (5.46)

where

S̃(g, h) = S((g, 0), (h, 0))γ
ρ(g,h)
1 (5.47)

and where gγx is defined as in (5.30). Again, by adjusting the phase of the splitting operators,

we can require this proportionality to be an equality:

S(a, b)|ab1⟩ = γ
σ(a)
1 (gγ2)

σ(b)S̃(g, h)γ
−σ(ab)
1 |ab1⟩ (5.48)

We will refer to M̃
g
x′x and S̃(g, h) as “bare” movement and splitting operators. We

use this terminology because we can construct the usual movement and splitting operators

Ma
x′x, S(a, b) by multiplying (or “dressing”) the bare operators M̃

g
x′x, S̃(g, h) by appropriate

fermion operators γx (see Eqs. 5.45, 5.48 above).

With this setup, we are now ready to define the F -symbol. The first step is to fix some

choice of domain wall states, |ax⟩, and some choice of movement and splitting operators,

Ma
x′x, S(a, b). Next, consider the initial state |abc1⟩, i.e. the state with a single domain

wall abc at position 1. We then apply two different sequences of movement and splitting

operators to |abc1⟩, denoting the final states by |1⟩ and |2⟩:

|1⟩ =Mb
12M

a
01S(a, b)M

c
32S(ab, c)|abc1⟩

|2⟩ =Mc
32S(b, c)M

bc
12M

a
01S(a, bc)|abc1⟩ (5.49)

These two processes are shown in Fig. 5.5. By construction, the final states |1⟩, |2⟩ produced

by these processes both contain domain walls a, b, c at positions 0, 1, 3, respectively. In
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Figure 5.5: The two processes that are compared in the microscopic definition of the domain
wall F -symbol. Starting from an initial state |abc1⟩, movement and splitting operators are
applied sequentially to obtain final states |1⟩ and |2⟩ on the left and right, respectively.
States |1⟩, |2⟩ are both proportional to |a0, b1, c3⟩. The x-axis is the position on the edge
and the t-axis shows operator ordering.

particular, this means that |1⟩, |2⟩ are the same up to a phase. We define the F -symbol,

F (a, b, c), to be this phase difference:

F (a, b, c) = ⟨2|1⟩ (5.50)

5.3.4 The bare F -symbol and its relation to the usual F -symbol

In this section, we define a function F̃ : G0 × G0 × G0 → U(1) which we call the “bare”

F -symbol. We show that F̃ is closely related to the standard F -symbol F , and that it is a

useful tool for computing ν efficiently.
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Let g, h, k ∈ G0. To define F̃ (g, h, k), consider the domain wall state |(ghk, 0)1⟩ – that

is, the state with a single domain wall (ghk, 0) at position 1. Starting from this initial state,

we construct two states |1̃⟩, |2̃⟩ by applying two different sequences of bare movement and

splitting operators, similarly to (5.49):

|1̃⟩ = M̃h
12M̃

g
01S̃(g, h)M̃

k
32S̃(gh, k)|(ghk, 0)1⟩

|2̃⟩ = M̃k
32[

gS̃(h, k)]M̃hk
12 M̃

g
01S̃(g, hk)|(ghk, 0)1⟩ (5.51)

Here gS̃(h, k) is defined by

gS̃(h, k) = UgS̃(g, h)(Ug)−1 (5.52)

We then define

F̃ (g, h, k) = ⟨2̃|1̃⟩ (5.53)

Our main result is that F is related to F̃ via

F ((g, s), (h, t), (k, r)) = (−1)(ρ(g,h)+λ(g,h))rF̃ (g, h, k) (5.54)

To understand the implications of this equation, note that in the special case where s = t =

r = 0 it reduces to

F ((g, 0), (h, 0), (k, 0)) = F̃ (g, h, k) (5.55)

It follows that we can compute ν directly from F̃ :

ν(g, h, k) = F̃ (g, h, k) (5.56)
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This method for computing ν is more efficient than computing F ((g, 0), (h, 0), (k, 0)) since

the definition of F̃ involves fewer movement and splitting operators. We will use this method

in all of the examples in Sec. 5.4.

Another important consequence of (5.54) is that

F ((g, s), (h, t), (k, r)) = (−1)(ρ(g,h)+λ(g,h))r

· F ((g, 0), (h, 0), (k, 0))

This is the identity (5.18) that we claimed earlier, and that we used to derive the constraint

on ν Eq. 5.8.

Our goal now is to relate F to F̃ and derive (5.54). The first step is to better understand

the relationship between the usual splitting operator S and the bare splitting operator S̃.

We know how S and S̃ are related when acting on single domain wall states of the form

|ab1⟩ (5.48). However, there is a slightly different relation when acting on the symmetry

partner states |ab1; k⟩. To see this, let a, b be type g, h domain walls. Using the symmetry

of S(a, b), we have

S(a, b)|ab1; k⟩ =S(a, b)Uk|ab1⟩

=UkS(a, b)|ab1⟩

=Ukγ
σ(a)
1 (gγ2)

σ(b)S̃(g, h)γ
−σ(ab)
1 |ab1⟩

=[Ukγ
σ(a)
1 (Uk)−1] · [Uk(gγ2)

σ(b)(Uk)−1] · [UkS̃(g, h)(Uk)−1]

· [Ukγ
−σ(ab)
1 (Uk)−1] · Uk|ab1⟩

=(−1)λ(k,g)σ(b) · (kγ1)σ(a) · (kgγ2)σ(b) · [kS̃(g, h)] · (kγ1)−σ(ab) · Uk|ab1⟩

=(−1)λ(k,g)σ(b)(kγ1)
σ(a)(kgγ2)

σ(b)[kS̃(g, h)](kγ1)
−σ(ab)|ab1; k⟩ (5.57)
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Here the third equality follows from (5.48); in the fifth equality, we used the identity

Uk(gγ2)(U
k)−1 = (−1)λ(k,g) · (kgγ2) (5.58)

which follows from the fact that UkUg = UkgFλ(k,g). From (5.57), we can now deduce the

relationship between between S and S̃ when acting on multi -domain wall states. Consider a

state |...,ab1, ...⟩, where a, b are type g, h domain walls, and the product of all the domain

wall types to the left of a is gL as in Eqs. 5.26 and 5.27. Then:

S(a, b)|...,ab1, ...⟩ = (−1)λ(gL,g)σ(b)(gLγ1)
σ(a)(gLgγ2)

σ(b)[gLS̃(g, h)](gLγ1)
−σ(ab)|...,ab1, ...⟩

(5.59)

One way to derive (5.59) from (5.57) is to consider the inner product between the left and

right hand sides of (5.59). This inner product is 1 by (5.32) and (5.57).

Next we derive the relationship between M and M̃ when acting on multi-domain wall

states, thereby generalizing (5.45). Following the same logic as above, it is straightforward

to show that

Ma
x′x|...,ax, ...⟩ = (gLγx′)

σ(a)M̃
g
x′x(

gLγx)
−σ(a)|...,ax, ...⟩ (5.60)

where a is a type g domain wall and gL is the product of all the domain wall types to the

left of a.

We are now ready to relate F to F̃ . To do this, we relate the two states |1⟩, |2⟩ to |1̃⟩, |2̃⟩.
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First, we note that

|1⟩ =Mb
12M

a
01S(a, b)M

c
32S(ab, c)|abc1⟩

= γ
σ(a)
0 (gγ1)

σ(b)M̃h
12M̃

g
01S̃(g, h)(

ghγ3)
σ(c)M̃k

32S̃(gh, k)|(ghk, 0)1⟩

= (−1)ρ(g,h)σ(c)γ
σ(a)
0 (gγ1)

σ(b)(ghγ3)
σ(c)M̃h

12M̃
g
01S̃(g, h)M̃

k
32S̃(gh, k)|(ghk, 0)1⟩

= (−1)ρ(g,h)σ(c)γ
σ(a)
0 (gγ1)

σ(b)(ghγ3)
σ(c)|1̃⟩ (5.61)

Here the factor of (−1)ρ(g,h)σ(c) in the third equality comes from commuting (ghγ3)
σ(c) past

S̃(g, h), whose fermion parity is ρ(g, h). We have also used the fact that 1S̃(g, h) = S̃(g, h)

since U1 = I, and that λ(1, g) = 1 (5.6).

Similarly, we have

|2⟩ =Mc
32S(b, c)M

bc
12M

a
01S(a, bc)|abc1⟩

= (−1)λ(g,h)σ(c)γ
σ(a)
0 (gγ1)

σ(b)(ghγ3)
σ(c)M̃k

32[
gS̃(h, k)]M̃hk

12 M̃
g
01S̃(g, hk)|(ghk, 0)1⟩

= (−1)λ(g,h)σ(c)γ
σ(a)
0 (gγ1)

σ(b)(ghγ3)
σ(c)|2̃⟩ (5.62)

Therefore,

⟨2|1⟩ = (−1)(ρ(g,h)+λ(g,h))r⟨2̃|1̃⟩ (5.63)

The desired identity (5.54) now follows immediately from the definition of F and F̃ .

5.3.5 Checking the microscopic definition

To show that our microscopic definition of F is correct, we need to establish two properties of

F : (i) F is well-defined in the sense that different choices of domain wall states and movement

and splitting operators give the same F up to the two transformations (5.21,5.23); and (ii)

F obeys the pentagon identity (5.17). We prove property (ii) in Appendix 7.7; the goal of
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this section is to prove property (i).

Choice of movement and splitting operators

As a warm-up, let us see how F transforms if we only change the phase of the movement

and splitting operators. That is, suppose we replace

M
(g,s)
x′x → eiθx′x(g)M

(g,s)
x′x ,

S((g, s), (h, t)) → eiϕ(g,h)S((g, s), (h, t)) (5.64)

for some real-valued θ, ϕ. Note that the above phases θx′x(g), ϕ(g, h) only depend on the G0

component of the domain wall types so as to stay consistent with our phase conventions in

Eqs. (5.45) and (5.48).

Substituting these transformations into (5.49-5.50) gives

F ((g, s), (h, t), (k, r)) → F ((g, s), (h, t), (k, r))

· e
iϕ(gh,k)eiϕ(g,h)eiθ12(h)

eiϕ(g,hk)eiϕ(h,k)eiθ12(hk)
(5.65)

Crucially, this transformation is identical to the restricted gauge transformation (5.21) with

α(g, h) = ϕ(g, h) + θ12(h) (5.66)

This is exactly what we want: different phase choices lead to the same F , up to a restricted

gauge transformation (5.21).

With this warm-up, we are now ready to consider the general case where we change the

movement and splitting operators in an arbitrary way:

Ma
x′x →M ′a

x′x, S(a, b) → S′(a, b) (5.67)
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To analyze this case, we note that the definition of movement and splitting operators implies

that

M ′a
x′x|ax⟩ = eiθx′x(a)Ma

x′x|ax⟩

S′(a, b)|ab1⟩ = eiϕ(a,b)S(a, b)|ab1⟩ (5.68)

for some real valued θx′x(a) and ϕ(a, b). In fact, using the constraint (5.45) we can see that

θx′x(a) only depends on the G0 component of a: in other words θx′x(a) only depends on

the group element g if a is of type g, so that θx′x(a) ≡ θx′x(g). Likewise, using (5.48), we

can see that ϕ(a, b) ≡ ϕ(g, h) only depends on g, h where a, b are of type g, h. Hence,

M ′a
x′x|ax⟩ = eiθx′x(g)Ma

x′x|ax⟩

S′(a, b)|ab1⟩ = eiϕ(g,h)S(a, b)|ab1⟩ (5.69)

Now consider multi -domain wall states. In that case,

M ′a
x′x|...,ax, ...⟩ = ω1 ·Ma

x′x|...,ax, ...⟩ (5.70)

S′(a, b)|...,ab1, ...⟩ = ω2 · S(a, b)|...,ab1, ...⟩ (5.71)

for some U(1) phases ω1, ω2.

Let us try to find the relationship between the multi-domain wall phases ω1, ω2 and the

single domain wall phases eiθx′x(g) and eiϕ(g,h). To do this, we multiply the two sides of

(5.70) by ⟨...,ax, ...|(Ma
x′x)

† and then use property (5.34) to derive

ω1 = ⟨...,ax, ...|(Ma
x′x)

†M ′a
x′x|...,ax, ...⟩

= ⟨ax|(Ma
x′x)

†M ′a
x′x|ax⟩

= eiθx′x(g) (5.72)
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By the same reasoning, ω2 = eiϕ(g,h). We conclude that

M ′a
x′x|...,ax, ...⟩ = eiθx′x(g)Ma

x′x|...,ax, ...⟩

S′(a, b)|...,ab1, ...⟩ = eiϕ(g,h)S(a, b)|...,ab1, ...⟩ (5.73)

Substituting these relations into (5.49) and using the same logic as before, we see that F

again changes by a restricted gauge transformation (5.21) with α given by (5.66).

for some real-valued θ, ϕ. Substituting these relations into (5.49) and using the same

logic as before, we see that F̃ , and therefore ν, changes by a gauge transformation with α

given by (5.66).

Choice of fermion operators

In this section, we analyze how a change in the fermion operators γx affects F . More

specifically, we consider the special case where we replace γx → γ′x but we do not change

the domain wall states (up to a phase). That is, we assume

γ′x|(g, 0)x⟩ = eiθx(g)γx|(g, 0)x⟩ (5.74)

for some real valued θx(g). In Sec. 5.3.5 we consider the more general case where the domain

wall can change by more than just a phase.

To understand how the F -symbol changes under such a replacement, note that we are free

to choose the movement and splitting operatorsM ′, S′ however we like, since different choices

only change F by at most a gauge transformation according to Sec. 5.3.5. A particularly
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convenient choice is

M
′(g,0)
x′x =M

(g,0)
x′x

S′((g, 0), (h, 0)) = e−iρ(g,h)θ1(gh)S((g, 0), (h, 0)) (5.75)

Here, the reason we include the phase factor in the definition of S′ is that it leads to a

particularly simple relation between S̃′ and S̃, namely

S̃′(g, h)|(gh, 0)1⟩ = S′((g, 0), (h, 0))γ′ρ(g,h)1 |(gh, 0)1⟩

= S((g, 0), (h, 0))γ
ρ(g,h)
1 |(gh, 0)1⟩

= S̃(g, h)|(gh, 0)1⟩ (5.76)

Note that the crucial step is the second equality where the phase factor in S′((g, 0), (h, 0))

cancels the phase factor coming from γ′1.

As usual, the above relation between S̃′ and S̃ also extends to multi-domain wall states:

S̃′(g, h)|..., (gh, 0)1, ...⟩ = S̃(g, h)|..., (gh, 0)1, ...⟩ (5.77)

To derive (5.77) from (5.76), we take the inner product of both sides of (5.77) and then use

(5.34).

So far we have shown that the splitting operators S̃′ and S̃ have the same action on

domain wall states. Likewise, for the movement operators, we have

M̃
′g
x′x = M̃

g
x′x (5.78)
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Given (5.77) and (5.78), it then follows from the definition of F̃ that

F̃ ′(g, h, k) = F̃ (g, h, k) (5.79)

and hence

F ′((g, 0), (h, 0), (k, 0)) = F ((g, 0), (h, 0), (k, 0)) (5.80)

Thus, replacing γx → γ′x has no effect on F .

Choice of bare and decorated domain walls

In this section, we work out how F transforms if we change our labeling convention for

domain walls. More precisely, consider a new set of “primed” domain wall states |ax⟩′,

defined by

|ax⟩′ = |π(a)x⟩ (5.81)

where π is a mapping of the form

π(g, s) = (g, s+ µ(g)) (5.82)

for some µ : G0 → Z2. Our goal is to understand the relationship between the F -symbols

for the “primed” states and “unprimed” states.

The first step is to choose fermion operators and movement and splitting operators for

the “primed” domain walls. For the fermion operators, the simplest choice is

γ′x|(g, 0)x⟩′ = |(g, 1)x⟩′ (5.83)
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Next, we need to choose movement and splitting operators,M ′ and S′. We begin by defining

the movement operator M ′. To do this, we first define

M
′(g,0)
yx =M

π(g,0)
yx (5.84)

With this definition, we can then work out the relationship between M̃ ′ and M̃ when acting

on a single domain wall state:

M̃
′g
yx|(g, 0)x⟩′ =M

′(g,0)
yx |(g, 0)x⟩′

=M
π(g,0)
yx |(g, 0)x⟩′

= γ
µ(g)
y M̃

g
yxγ

−µ(g)
x |(g, 0)x⟩′ (5.85)

Next, we can relate M ′ and M when acting on a single domain wall state:

M ′a
yx|ax⟩′ = γ

′σ(a)
y M̃

′g
yxγ

′−σ(a)
x |ax⟩′

= γ
′σ(a)
y γ

µ(g)
y M̃

g
yxγ

−µ(g)
x γ

′−σ(a)
x |ax⟩′ (5.86)

Now it is easy to check that

γ
−µ(g)
x γ

′−σ(a)
x |ax⟩′ = γ

−σ(π(a))
x |ax⟩′ (5.87)

Substituting this into the right hand side of (5.86) gives

M ′a
yx|ax⟩′ = γ

σ(π(a))
x M̃

g
yxγ

−σ(π(a))
x |ax⟩′

=M
π(a)
yx |ax⟩′ (5.88)

Next consider the splitting operator S′. LikeM ′, we first define S′((g, 0), (h, 0)) and then
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work out its implications for more general splitting operators. Specifically, we define

S′((g, 0), (h, 0)) = S(π(g, 0), π(h, 0)) (5.89)

We can then relate S̃′ and S̃:

S̃′(g, h)|(gh, 0)1⟩′ = S′((g, 0), (h, 0))|(gh, ρ′(g, h))1⟩′

= S(π(g, 0), π(h, 0))|(gh, ρ′(g, h))1⟩′

= γ
µ(g)
1 (γ

g
2)

µ(h)S̃(g, h)γ
−µ(gh)
1 |(gh, 0)1⟩′ (5.90)

Likewise, we can relate S′ to S:

S′(a, b)|ab1⟩′ = γ
′σ(a)
1 (gγ′2)

σ(b)S̃′(g, h)γ′−σ(ab)
1 |ab1⟩′

= γ
′σ(a)
1 (gγ′2)

σ(b)γ
µ(g)
1 (gγ2)

µ(h)S̃(g, h)γ
−µ(gh)
1 γ

′−σ(ab)
1 |ab1⟩′

= (−1)σ(b)µ(g)γ
′σ(a)
1 γ

µ(g)
1 (gγ′2)

σ(b)(gγ2)
µ(h)S̃(g, h)γ

−µ(gh)
1 γ

′−σ(ab)
1 |ab1⟩′

(5.91)

Here the factor of (−1)σ(b)µ(g) in the third line comes from commuting γ
µ(g)
1 past (gγ′2)

σ(b).

To proceed further, we substitute (5.87) into the right hand side of (5.91) to obtain

S′(a, b)|ab1⟩′ = (−1)σ(b)µ(g)S(π(a), π(b))|ab1⟩′ (5.92)

As usual, the relationship between M ′, S′ and M,S generalizes to multi-domain wall
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states, i.e.

M ′a
yx|...,ax, ...⟩′ =M

π(a)
yx |...,ax, ...⟩′ (5.93)

S′(a, b)|...,ab1, ...⟩′ = (−1)σ(b)µ(g)S(π(a), π(b))|...,ab1, ...⟩′ (5.94)

Substituting (5.94) into the definition of F , we deduce that

F ′(a, b, c) = (−1)σ(bc)µ(g)+σ(c)µ(h)+σ(c)µ(gh)+σ(b)µ(g)F (π(a), π(b), π(c)) (5.95)

where the four phase factors come from the four splitting operators that appear in the inner

product ⟨2|1⟩. We can simplify further if we specialize to the case a = (g, 0), b = (h, 0), and

c = (k, 0). In that case,

σ(b) = σ(c) = 0, σ(bc) = ρ(h, k) + dµ(h, k) (5.96)

where dµ(h, k) = µ(h) + µ(k)− µ(hk). Hence,

F ′((g, 0), (h, 0), (k, 0)) = (−1)(ρ(h,k)+dµ(h,k))µ(g)F ((g, µ(g)), (h, µ(h)), (k, µ(k))

= (−1)(ρ(h,k)+dµ(h,k))µ(g)+(ρ(g,h)+λ(g,h))µ(k)F ((g, 0), (h, 0), (k, 0))

(5.97)

This is exactly what we want: when we relabel domain walls F changes by the transfor-

mation (5.23).

Choice of domain wall states

So far, we have shown that different choices of movement and splitting operators lead to the

same ν, up to a gauge transformation. Next, we need to check that different choices of edge

Hamiltonians and domain wall states also lead to the same ν, up to a gauge transforma-
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tion. To investigate this issue, consider two choices of edge Hamiltonians, H and H ′, with

ground states {|Ω; g⟩} and {|Ω; g⟩′} respectively. For now, assume that H and H ′ can be

adiabatically connected, i.e. there exists an interpolating Hamiltonian Hs, with 0 ≤ s ≤ 1

with H0 = H and H1 = H ′ such that Hs is local, gapped, and breaks the G-symmetry

spontaneously and completely. Assuming the existence of such an interpolation, it then fol-

lows from the quasi-adiabatic continuation construction [54] that there exists a G-invariant,

“locality preserving” unitary transformation W that connects the two sets of ground states:

that is,

{|Ω; g⟩′} = {W |Ω; g⟩} (5.98)

Here, when we say W is “locality preserving”, we mean that it has the following property:

for any local operator O, the operator WOW−1 is also local and is supported near O.

Comparing Eq. 5.98 with our labeling scheme (5.11), we deduce that the two sets of

ground states are related by

|Ω; g⟩′ = WUk|Ω; g⟩ (5.99)

for some k ∈ G.

To proceed with our analysis, we will make the additional assumption that Eq. (5.99) can

be extended from ground states to (multi-)domain wall states. That is, we assume that, for

any two choices of domain wall states, there exists a G-invariant, locality preserving unitary

transformation W such that

|g(1)x1 , g
(2)
x2 , g

(3)
x3 , ...⟩

′ = WUk|g(1)x1 , g
(2)
x2 , g

(3)
x3 , ...⟩ (5.100)

This assumption is reasonable as long as the domain wall positions x1, x2, ... are well-
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separated.

With Eq. (5.100), we are now in a position to compare the F -symbols for the two choices

of domain wall states. First, we observe that we are free to choose the movement and splitting

operators for the states |g(1)x1 , g
(2)
x2 , g

(3)
x3 , ...⟩′ however we like, changing F by, at most, a gauge

transformation. The simplest choice that is consistent with (5.100) is

M
′g
x′x = WM

g
x′xW

−1, S′(g, h) = WS(g, h)W−1 (5.101)

With this choice, it is clear that |1′⟩ = WUk|1⟩, and |2′⟩ = WUk|2⟩. It follows that

F ′ = ⟨2′|1′⟩ = ⟨2|1⟩ = F . Thus, we conclude that F doesn’t depend on the choice of the

edge Hamiltonian or the choice of domain wall states. This completes the proof of property

(i) above.

Previously, we assumed that we may adiabatically interpolate between our two edge

Hamiltonians. However, there is one more case to consider. It may be the case that before

this interpolation may take place, we must stack a 1D Kitaev chain with symmetry G on

the boundary. In Appendix 7.8, we will show that this results in a change

ρ(g, h) → ρ(g, h) + λ(g, h)

ν(g, h, k) → ν(g, h, k). (5.102)

5.4 Examples

5.4.1 ν = 2 lattice edge theory

In these notes we calculate the F -symbols for a ν = 2 lattice model. We begin by defining

our model along with the essential operators. This model should be thought of as the edge

of an SPT.
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Edge theory

We begin by describing the edge theory. As explained in Sec. 5.2, an edge theory consists of

three pieces of data: (1) a Hilbert space H; (2) a set of local operators {O} that act in H;

and (3) a collection of symmetry transformations {Ug : g ∈ G} acting within H.

The Hilbert space H for the ν = 2 edge theory is described by a one-dimensional lat-

tice with one spin-1/2 site and one fermion site in each unit cell. More specifically, we

take the spin-1/2’s to live on integer lattice sites i ∈ Z, and we denote the corresponding

Pauli operators by σzi , σ
y
i , σ

z
i . Likewise, we take the the fermions to live on half-integer

sites i + 1/2, i ∈ Z, and we denote the corresponding creation/annihilation operators by

c
†
i+1/2

, ci+1/2. A complete orthonormal basis for this Hilbert space can be obtained by

considering simultaneous eigenstates of the Pauli σzi operators, and the fermion occupation

numbers Ni+1/2 = c
†
i+1/2

ci+1/2. We denote these eigenstates by

|..., α−1, n−1/2, α0, n1/2, ...⟩, (5.103)

where αi ∈ {+,−} denotes the eigenvalue of σzi , and ni+1/2 ∈ {0, 1} denotes the eigenvalue

of Ni+1/2. The local operators {O} in the ν = 2 lattice edge theory are the usual local

operators, namely products of Pauli spin operators and/or fermion operators acting on a

collection of nearby lattice sites.

We now move on to the symmetry transformations. We denote the symmetry group G0

by G0 = Z2 = {1, s}. In this notation, it suffices to specify the action of the Z2 symmetry

transformation U ≡ Us, as well as the fermion parity operator F . These operators act as
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follows:

Uσxi U
−1 = −iγai−1/2γ

a
i+1/2σ

x
i f(σ

z
i−1, σ

z
i , σ

z
i+1)

Uσ
y
i U

−1 = iγai−1/2γ
a
i+1/2σ

y
i f(σ

z
i−1, σ

z
i , σ

z
i+1)

Uσzi U
−1 = −σzi

Uγai+1/2U
−1 = −σzi σ

z
i+1γ

a
i+1/2

Uγbi+1/2U
−1 = −γbi+1/2

(5.104)

where

f(σzi−1, σ
z
i , σ

z
i+1) =

1

2
(1 + σzi−1σ

z
i+1 + iσzi−1σ

z
i − iσzi σ

z
i+1) (5.105)

and

γai+1/2 = ci+1/2 + c
†
i+1/2

γbi+1/2 = i(ci+1/2 − c
†
i+1/2

) (5.106)

In particular,

UNi+1/2U
−1 = Ni+1/2σ

z
i σ

z
i+1 +

1

2
(1− σzi σ

z
i+1) (5.107)

Calculation of the anomaly

We now proceed to compute the anomaly associated with the edge theory described above.

As we explained in Sec. 5.3.1 the first step in calculating the anomaly is to choose a gapped

(edge) Hamiltonian that breaks the Z2 symmetry spontaneously and completely. We use the

Hamiltonian

H = −J
∑
i

σzi σ
z
i+1 +K

∑
i

Ni+1/2(1 + σzi σ
z
i+1) (5.108)

with J,K > 0.

To see that this Hamiltonian spontaneously breaks the Z2 symmetry note that σzi is odd
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under the symmetry (Eq. 5.104) and has a non-zero expectation value in the two degenerate

ground states |+, 0,+, 0...,+, 0⟩ and |−, 0,−, 0, ...,−, 0⟩. Following the notation in Sec. 5.3.2.

we denote these ground states by

|Ω; 1⟩ = |+, 0,+, 0, ...,+, 0⟩

|Ω; s⟩ = |−, 0,−, 0, ...,−, 0⟩ (5.109)

The next step is to define domain wall states. Since the symmetry group is G0 = Z2,

there is only one non-trivial domain wall state that we need to construct. Denoting this

state by |si⟩ where i is the location of the domain wall, we define

|si⟩ = |...,+, 0, (+)i, 0,−, 0,−, ...⟩ (5.110)

Here we use the notation (+)i to indicate that the corresponding ‘+’ is the state of the ith

spin, so that the ‘-’ that follows is the state of the (i+1)st spin. Notice that (5.110) implies

a particular convention for labeling domain wall locations: a domain wall is at “position i”

if the ith and (i+ 1)st spins are anti-aligned. (This will also hold for the multi-domain wall

states.) Likewise, we define the trivial or “no-domain” wall state |1i⟩ in the obvious way:

|1i⟩ = |...,+, 0, (+)i, 0,+, 0,+, ...⟩ (5.111)

For future reference, we note that the symmetry partners of the domain wall state |si⟩

U |si⟩ ∝ |...,−, 0, (−)i, 1,+, 0,+, ...⟩ (5.112)

Here, to see why the symmetry changes the occupation number 0 → 1 at the position of the

domain wall, note that this follows from Eq. 5.107 above.
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To proceed further, we need to define fermion operators γx. We define:

γi = γbi+3/2, (5.113)

(Here, the reason we define γi using γ
b
i+3/2

instead of the more “natural” choice γb
i+1/2

is

that this will simplify our calculation below). We then define the other two types of domain

wall states, |ψi⟩ and |(ψs)i⟩ as in Eq. 5.24:

|ψi⟩ ≡ γi|1i⟩, |(ψs)i⟩ ≡ γi|si⟩ (5.114)

At this point we have defined all four types of domain wall states. The next step is to

find their fusion rules. The most interesting fusion rule is s × s. To compute this fusion

product, note that the two domain wall state |s1, s2⟩ is proportional to

|s1, s2⟩ ∝ |..., (+)1, 0,−, 1,+, 0,+, ...⟩ (5.115)

in view of (5.110) and (5.112). Comparing this state with

|ψ1⟩ ∝ |..., (+)1, 0,+, 1,+, 0,+, ...⟩ (5.116)

we can see that |s1, s2⟩ ∝ σ−2 |ψ1⟩. In particular, since σ−2 is a local, fermion parity even

operator, we conclude that s × s = ψ. As for the other fusion rules, e.g. s × 1, and 1 × 2,

etc., it is easy to see that these are all trivial. We conclude that

ρ(s, s) = 1 (5.117)

with ρ(g, h) = 0 for all other choices of g, h ∈ G0.

Next we construct movement and splitting operators for these domain walls. First, we
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define the movement operators Ms
(i+1)i

by

Ms
(i+1)i = σ+i+1 + Uσ+i+1U

−1 (5.118)

To see that this is a valid movement operator, note that Ms
(i+1)i

is local, Z2 and fermion

parity symmetric, and it has the correct action on domain wall states:

Ms
(i+1)i|si⟩ = σ+i+1|...,+, 0, (+)i, 0,−, 0,−, ...⟩

= |...,+, 0, (+)i, 0,+, 0,−, ...⟩

= |si+1⟩ (5.119)

Likewise, we define the reverse movement operator by

Ms
i(i+1) = (Ms

(i+1)i)
†

= σ−i+1 + Uσ−i+1U
−1 (5.120)

Moving on to the splitting operators, we define

S(s, s) = σ−2 + Uσ−2 U
−1 (5.121)

Again let us check that S(s, s) is a valid splitting operator. Clearly S(s, s) is local and Z2

symmetric. To see that it has the correct action on domain walls note that

S(s, s)|ψ1⟩ ∝ σ−2 |..., (+)1, 0,+, 1,+, 0,+, ...⟩

∝ |..., (+)1, 0,−, 1,+, 0,+, ...⟩

∝ |s1, s2⟩ (5.122)
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As for the other splitting operators, we define

S(1, s) =Ms
21 = σ+2 + Uσ+2 U

−1 (5.123)

Also, we define

M1
i′i = S(s, 1) = S(1, 1) = 1 (5.124)

(Here we can set these operators equal to the identity because none of these operators are

supposed to change the position of any nontrivial domain walls. For example, S(s, 1) is

defined by the condition S(s, 1)|s1⟩ = |s1, 12⟩ and similarly for the other operators).

We are now ready to compute the bare movement and splitting operators:

S̃(s, s) = (σ−2 + Uσ−2 U
−1)γb5/2

S̃(1, s) = σ+2 + Uσ+2 U
−1

S̃(s, 1) = S̃(1, 1) = 1

M̃s
x′x = σ−i+1 + Uσ−i+1U

−1

M̃1
x′x = 1 (5.125)

We are now ready to calculate F̃ (g, h, k). We start with F̃ (s, s, s). Using (5.51), we have

|1̃⟩ = M̃s
12M̃

s
01S̃(s, s)M̃

s
32S̃(1, s)|s1⟩ (5.126)

We now simplify this expression, working from right to left. First, we note that

S̃(1, s)|s1⟩ = (σ+2 + Uσ+2 U
−1)|s1⟩

= σ+2 |s1⟩
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since Uσ+2 U
−1|s1⟩ = 0. Likewise,

M̃s
32σ

+
2 |s1⟩ = σ+3 σ

+
2 |s1⟩

since the second term in Ms
32, i.e. Uσ

−
3 U

−1, annihilates σ+2 |s1⟩. Proceeding in this way, we

can drop either the first or second term in each of the movement and splitting operators.

The final result is:

|1̃⟩ = (Uσ−2 U
−1)σ−1 (σ

−
2 γ

b
5/2)σ

+
3 σ

+
2 |s1⟩

= γa3/2γ
a
5/2γ

b
5/2|...,+, 0, (−)1, 0,+, 0,+, 0,−, ...⟩ (5.127)

where the second equality follows from |s1⟩ = |...,+, 0, (+)1, 0,−, 0,−, 0,−, ...⟩.

By the same logic,

|2̃⟩ = M̃s
32(US̃(s, s)U

−1)M̃1
12M̃

s
01S̃(s, 1)|s1⟩

= σ+3 (Uσ
−
2 γ

b
5/2U

−1)σ−1 |s1⟩

= iγa3/2γ
a
5/2γ

b
5/2|...,+, 0, (−)1, 0,+, 0,+, 0,−, ...⟩ (5.128)

Comparing these two expressions, we conclude that |1̃⟩ = −i|2̃⟩ so that

F̃ (s, s, s) = ⟨2̃|1̃⟩ = −i (5.129)

In the same way, one can check that F̃ (g, h, k) = 1 for all other choices of g, h, k ∈ {1, s}.

5.4.2 ν = 2 chiral boson edge theory

We now present an example involving a continuum edge theory for the ν = 2 Z2 fermionic

SPT phase (the same SPT phase as in the previous example).
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Edge theory

We begin by reviewing the continuum edge theory for the ν = 2 SPT phase. This edge theory

consists of two counterpropagating chiral boson modes described by fields ϕ1, ϕ2 obeying the

commutation relations

[ϕ1(x), ∂yϕ1(y)] = −2πiδ(x− y)

[ϕ2(x), ∂yϕ2(y)] = 2πiδ(x− y) (5.130)

with all other commutators vanishing. Here we are using a normalization convention where

e±iϕ1 and e±iϕ2 are the fermion creation and annihilation operators on each mode.

As before, to define the edge theory, we need to specify three pieces of data: (1) a Hilbert

space H; (2) a set of local operators {O} that act in H; and (3) a collection of symmetry

transformations {Ug : g ∈ G} acting within H. The Hilbert space H is the usual infinite

dimensional representation of the above algebra (5.130). The local operators {O} in this edge

theory consist of arbitrary derivatives and/or products of the fermion creation/annihilation

operators {e±iϕ1 , e±iϕ2}.

To complete the edge theory, we need to specify the symmetry transformations. Let us

denote the symmetry group G0 by G0 = Z2 = {1, s}. In this notation, it suffices to specify

the action of the Z2 symmetry transformation U ≡ Us:

Uϕ1U
−1 = ϕ1 − π

Uϕ2U
−1 = ϕ2 (5.131)

We can also write out an explicit formula for U , though we will not need it for our
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computation below:

U = e
i
2

∫∞
−∞ dy∂yϕ1(y) (5.132)

Calculating the anomaly

We now go ahead and calculate the anomaly in this edge theory. The first step is to choose

a Hamiltonian that breaks the Z2 symmetry spontaneously and completely. We will use the

Hamiltonian

H = H0 −
∫
dxV cos(2(ϕ1 + ϕ2)) (5.133)

where

H0 =

∫
dx

1

4π
[v1(∂xϕ1)

2 + v2(∂xϕ2)
2]

for some velocities v1, v2 > 0.

For V sufficiently large and positive, the cosine term locks ϕ1 + ϕ2 to one of two values:

ϕ1+ϕ2 = 0 and ϕ1+ϕ2 = π, spontaneously breaking the Z2 symmetry (5.131) and opening

up an energy gap.

For simplicity, we will consider the limit V → ∞ in what follows. In this limit, the

two ground states of H are eigenstates of ei(ϕ1(x)+ϕ2(x)). Following our standard labeling

scheme, we denote these ground states by |Ω; 1⟩ and |Ω; s⟩, where

ei(ϕ1(x)+ϕ2(x))|Ω; 1⟩ = |Ω; 1⟩

ei(ϕ1(x)+ϕ2(x))|Ω; s⟩ = −|Ω; s⟩ (5.134)

for all x.

The next step is to construct domain wall states |sx⟩, which interpolate spatially between
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the two ground states, |Ω; 1⟩ and |Ω; s⟩. We define |sx⟩ by

|sx⟩ = a
†
x|Ω; 1⟩ (5.135)

where

a
†
x = e−

i
2

∫∞
x dy ∂yϕ1(y) (5.136)

Here a
†
x is a (non-local) creation operator for a domain wall at position x. To see that |sx⟩

is a valid domain wall state, note that |sx⟩ obeys

ei(ϕ1(x
′)+ϕ2(x

′))|sx⟩ = sgn(x− x′)|sx⟩ (5.137)

(This follows from the fact that a
†
x anticommutes with eiϕ1(x

′) for x′ > x). Likewise, we

define the no-domain wall state |1x⟩ to be |1x⟩ = |Ω; 1⟩.

To proceed further, we need to define fermion operators γx. We define:

γx = e−iϕ2(x). (5.138)

We then define the other two types of domain wall states, |ψx⟩, and |(ψs)x⟩ as in Eq. 5.24:

|ψx⟩ ≡ γx|1x⟩, |(ψs)x⟩ ≡ γx|sx⟩ (5.139)

Now that we have defined domain wall states, the next step is to find their fusion rules.

In this case, the only non-trivial fusion rule is s × s, which one can check gives s × s = ψ.

We conclude that

ρ(s, s) = 1 (5.140)

Likewise, ρ(g, h) = 0 for all other choices of g, h ∈ G0.
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Next, we construct movement and splitting operators for these domain walls. First, we

define the movement operator Ms
x′x by

Ms
x′x = e

i
2

∫ x′
x dy ∂yϕ1(y) (5.141)

This is a valid movement operator because it is local and Z2 × ZF
2 symmetric and it obeys

Ms
x′x|sx⟩ ∝ |sx′⟩ since Ms

x′xa
†
x ∝ a

†
x′ .

We must also define splitting operators. First, we define the splitting operator S(s, s) by

S(s, s) =Ms
21

= e
i
2

∫ 2
1 dy ∂yϕ1(y) (5.142)

To see that this is a valid splitting operator, note that S(s, s) is local, Z2×ZF
2 symmetric

and furthermore

S(s, s)|ψ1⟩ = e
i
2

∫ 2
1 dy ∂yϕ1(y)e−iϕ2(1)|Ω; 1⟩

∝ e
i
2

∫ 2
1 dy ∂yϕ1(y)eiϕ1(1)|Ω; 1⟩

∝ a
†
2a

†
1|Ω; 1⟩

∝ |s1, s2⟩ (5.143)

Here, the second equality follows from ei(ϕ1(1)+ϕ2(1))|Ω; 1⟩ = |Ω; 1⟩, while the third equality

follows from the definition of a
†
x (5.136).

Moving on to the other splitting operators, we define

S(1, s) =Ms
21 (5.144)
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Also we define

M1
x′x = S(s, 1) = S(1, 1) = 1 (5.145)

This gives us the bare movement and splitting operators

S̃(s, s) =Ms
21e

−iϕ2(1)

S̃(1, s) =Ms
21

S̃(s, 1) = S̃(1, 1) = 1

M̃s
x′x =Ms

21

M̃1
x′x = 1 (5.146)

With these operators in hand, we are now ready to compute F̃ (s, s, s). Using (5.51), we

have

|1̃⟩ =Ms
12M

s
01M

s
21e

−iϕ2(1)Ms
32M

s
21|s1⟩

|2̃⟩ =Ms
32(UM

s
21e

−iϕ2(1)U−1)Ms
01|s1⟩ (5.147)

In order to compare these expressions, we need to reorder the operators within them.

We do this using the following commutation relations, which can be derived from the Baker-

Campbell-Hausdorff formula:

Ms
01M

s
21 = eiπ/4Ms

21M
s
01

[Ms
x′x, e

−iϕ2(1)] = 0 (5.148)
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With these formulas, along with the identity Ms
xx′ = (Ms

x′x)
−1, we can rewrite |1̃⟩ as:

|1̃⟩ = eiπ/2Ms
32M

s
21e

−iϕ2(1)Ms
01|s1⟩ (5.149)

Likewise, we can simplify |2̃⟩ as:

|2̃⟩ = −Ms
32M

s
21e

−iϕ2(1)Ms
01|s1⟩ (5.150)

Therefore, |1̃⟩ = −i|2̃⟩ and hence

F̃ (s, s, s) = ⟨2̃|1̃⟩ = −i (5.151)

In the same way, one can check that all other values of F̃ are 1 for this model, i.e. F̃ (g, h, k) =

1, for all other choices of g, h, k ∈ {1, s}.

5.5 Antiunitary symmetries

So far we have focused on the case where the symmetry group G is unitary. In this section,

we consider the more general case where G contains both unitary and antiunitary symmetry

transformations. When we introduce this formalism, we will assume that the group is dis-

crete, but we will have to make a slight modification for our example which has a continuous

symmetry group.

5.5.1 Supercohomology data

We start by reviewing the structure of the symmetry group and the supercohomology data

for systems with antiunitary symmetries.

As in the unitary case, we think of the symmetry group G as a Z2 extension of G0 =

G/ZF
2 . We label the elements of ofG as ordered pairs [g, s] where g ∈ G0 and s ∈ Z2 = {0, 1}.
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The group multiplication law is again described by a 2-cocycle λ : G0 ×G0 → Z2 and is of

the form given in (Eq. 5.1). As before we focus on symmetry transformations corresponding

to group elements of the form [g, 0] (g ∈ G0) and we use the abbreviation Ug ≡ U [g,0]. These

transformations obey the same same algebra (Eq. 5.4) as in the unitary case. We again use

a labeling convention where U1 ≡ I, and where λ(1, g) = 0.

One new element in the general case is that some elements of G correspond to an-

tiunitary symmetries while others correspond to unitary symmetries. This notion of uni-

tary/antiunitary group elements can be naturally extended to elements of the quotient group

G0 = G/ZF
2 (since fermion parity is a unitary symmetry).

Relatedly, in the general case, it is useful to define a group action of G0 on U(1) as

follows: for any g ∈ G0 and ω = eiθ ∈ U(1), the action of g on ω is given by

gω =


ω∗ g antiunitary

ω g unitary

(5.152)

In other words, antiunitary elements ofG0 act on U(1) by complex conjugation, while unitary

elements of G0 act trivially.

Just like the unitary case, the supercohomology data consists of a pair of functions

ρ : G0 × G0 → Z2 and ν : G0 × G0 × G0 → U(1). As before, this pair of functions (ρ, ν)

obeys certain constraints and is well-defined up to a certain equivalence relation. However,

these constraints take a modified form, namely

ρ(g, h) + ρ(gh, k) = ρ(h, k) + ρ(g, hk)

ν(g, h, k)ν(g, hk, l)[gν(h, k, l)]

ω(gh, k, l)ν(g, h, kl)
= (−1)(ρ(g,h)+λ(g,h))ρ(k,l) (5.153)

where gν denotes the group action (5.152). The equivalence relation is also modified: we

208



say that (ρ, ν) ∼ (ρ′, ν′) if

ρ′(g, h)− ρ(g, h) = µ(g) + µ(h)− µ(gh) + sλ(g, h) (5.154)

and

ν′(g, h, k)
ν(g, h, k)

=
α(gh, k)α(g, h)

α(g, hk)[gα(h, k)]

· (−1)(ρ(g,h)+λ(g,h))µ(k)+µ(g)(ρ(h,k)+(dµ)(h,k)) (5.155)

for some function µ : G0 → Z2 and α : G0 × G0 → U(1), and s ∈ Z2. As before,

(dµ)(h, k) = µ(h) + µ(k)− µ(hk), and gα denotes the group action (5.152).

5.5.2 Outline of procedure

The procedure for computing anomalies in the general case is exactly the same as the unitary

case. As before, the first step is to choose an (edge) Hamiltonian H that breaks the G0-

symmetry spontaneously and completely. This Hamiltonian H has |G0| ground states which

we label by |Ω; g⟩ with g ∈ G0. The next step is to define domain wall states, fermion

operators γx, and domain wall movement and splitting operators, Ma
x′x and S(a, b). Again,

we use exactly the same definitions as in Sec. 5.3.3.

The last step is to compute the F -symbol for the domain walls. We use the same definition

as before, namely F (a, b, c) = ⟨2|1⟩ where states |1⟩ and |2⟩ are defined as in Eq. 5.49. We

then compute ν(g, h, k) from F just as before, namely using ν(g, h, k) = F ((g, 0), (h, 0), (k, 0)

or ν(g, h, k) = F̃ (g, h, k) where F̃ is defined as in Sec. 5.3.4.

The only new element in the antiunitary case involves the properties of the F -symbol. In

particular, in the general antiunitary case, one can show that F obeys a modified pentagon
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identity

F (a, b, c)F (a, bc,d)[gF (b, c,d)] = F (ab, c,d)F (a, b, cd) (5.156)

where a, b, c,d are type g, h, k, l domain walls respectively. The ambiguity in F is also

modified in the antiunitary case: while the relabeling transformation (Eq. 5.97) remains

the same as before, the gauge transformations associated with the movement and splitting

operators are now of the form

F ((g, s), (h, t), (k, r)) → F ((g, s), (h, t), (k, r))

· α(gh, k)α(g, h)

α(g, hk)[gα(h, k)]
(5.157)

As in the unitary case, the modified pentagon identity and gauge transformations for F

imply the modified constraints and ambiguities in ν (Eqs. 5.153 and 5.155).

For a derivation of the modified pentagon identity, see Appendix 7.7; we discuss the

modified gauge transformation in the next subsection.

5.5.3 Checking the microscopic definition

In this section, we show that different choices of movement and splitting operators give the

same F up to the modified gauge transformation (5.157). These results, together with the

derivation of the twisted pentagon identity discussed in Appendix 7.7, guarantee that our

procedure produces well-defined supercohomology data.

A key result which we will need in our derivation is the following identity, which gen-

eralizes Eq. 5.34. Let O be any operator that is invariant under all the symmetries and is

supported near a domain wall a at point x. We claim that

⟨...,ax, ...|O|...,ax, ...⟩ = gL⟨ax|O|ax⟩ (5.158)
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where gL is the product of all G0 components of domain walls to the left of x, and where

the expression on the right hand side is defined by the group action (5.152). To derive this

identity, note that

⟨...,ax, ...|O|...,ax, ...⟩ = ⟨ax; gL|O|ax; gL⟩

= ⟨UgLax|O|UgLax⟩

= gL⟨ax|O|ax⟩ (5.159)

Here, the first equality follows from Eq. 5.29, while the second equality follows from the

definition, |ax; gL⟩ = UgL|ax⟩. The third equality follows from the fact that O commutes

with UgL together with the defining property of unitary/anti-unitary operators, namely

⟨Ugv|Ugw⟩ = g⟨v|w⟩.

With Eq. (5.158) in hand, we are now ready to show that different choices of movement

and splitting operators lead to the same F up to the transformation (5.157). Suppose we

change the movement and splitting operators in an arbitrary way:

Ma
x′x →M ′a

x′x, S(a, b) → S′(a, b) (5.160)

Similarly to the unitary case, the definition of movement and splitting operators implies that

M ′a
x′x|ax⟩ = eiθx′x(g)Ma

x′x|ax⟩

S′(a, b)|ab1⟩ = eiϕ(g,h)S(a, b)|ab1⟩ (5.161)

where θx′x(g) and ϕ(g, h) are real valued functions. Notice that these functions are functions

of elements of G0, not D due to our phase fixing conventions Eqns. 5.45,5.48. Likewise, for
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the multi-domain wall states,

M ′a
x′x|...,ax, ...⟩ = ω1 ·Ma

x′x|...,ax, ...⟩ (5.162)

S′(a, b)|...,ab1, ...⟩ = ω2 · S(a, b)|...,ab1, ...⟩ (5.163)

for some U(1) phases, ω1, ω2. To find the relation between ω1, ω2 and eiθx′x(g), eiϕ(g,h), we

multiply both sides of Eq. (5.162) by ⟨...,ax, ...|(Ma
x′x)

†, and then we apply (5.158) to derive

ω1 = ⟨...,ax, ...|(Ma
x′x)

†M ′a
x′x|...,ax, ...⟩

= gL,x⟨ax|(Ma
x′x)

†M ′a
x′x|ax⟩

= gL,xe
iθx′x(g) (5.164)

where gL,x is the product of all of the G0 components of domain walls to the left of x. By

the same reasoning,

ω2 = gL,1e
iϕ(g,h) (5.165)

where gL,1 is the product of all G0 parts of domain walls to the left of the point 1.

Substituting (5.164) and (5.165) into (5.162-5.163), we derive

M ′a
x′x|...,ax, ...⟩ = (gL,xe

iθ(g)x′x)Ma
x′x|...,ax, ...⟩

S′(a, b)|...,ab1, ...⟩ = (gL,1e
iϕ(g,h))S(a, b)|...,ab1, ...⟩ (5.166)
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Next, plugging (5.166) into the definition of F (5.49-5.50), we obtain

F ′((g, s), (h, t), (k, r)) = F ((g, s), (h, t), (k, r))

·
eiϕ(g,h)eiϕ(gh,k)

(
geiθ

h
12

)
(
geiϕ(h,k)

)
eiϕ(g,hk)

(
geiθ

hk
12

) (5.167)

This transformation matches the restricted gauge transformation (5.157) with

α(g, h) = eiϕ(g,h)
(
geiθ

h
12

)
(5.168)

This is exactly what we want: different choices of movement and splitting operators lead to

the same F up to the transformation (5.157).

5.5.4 Topological Insulator

Edge theory

Like the example from Sec. 5.4.2, the edge theory is a chiral boson edge theory with two

counterpropagating chiral boson modes. These modes are described by two fields ϕ↑, ϕ↓

obeying the commutation relations

[ϕ↑(x), ∂yϕ↑(y)] = 2πiδ(x− y)

[ϕ↓(x), ∂yϕ↓(y)] = −2πiδ(x− y) (5.169)

with all other commutators of this form vanishing. As in Sec. 5.4.2, we are using a normaliza-

tion convention where e±iϕ↑ and e±iϕ↓ are the fermion creation and annihilation operators

on each mode. Also, as in Sec. 5.4.2, the local operators O in this edge theory consist of

arbitrary derivatives and/or products of the fermion operators {e±iϕ↑ , e±iϕ↓}.

To complete the edge theory, we need to specify the symmetry transformations. Before
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doing that, we first review the structure of the symmetry group G and and the quotient

G0 = G/ZF
2 . We start with G0, and then define G as an appropriate Z2 extension of G0.

The group G0 is generated by two types of group elements: {rα, t} where the index α runs

over the real numbers. Here, rα can be thought of as the U(1) symmetry transformation

eiαQ, while t corresponds to the antiunitary time reversal transformation T . These group

elements obey the following relations:

rα · rβ = rα+β , t · rα = r−α · t,

rπ = t2 = 1, (5.170)

(Here, the reason why the third equation is correct is that we are discussing the group

G0 = G/ZF
2 so we effectively have eiπQ = T 2 = 1).

A useful way to parameterize the elements of G0 is to write each element g ∈ G0 as a

product g = rαt
k where 0 ≤ α < π and k ∈ {0, 1}. One can check that this parameterization

is one-to-one. This allows us to define three real valued functions on G0 which will be useful

below:

σ(g) = (−1)k, τ(g) =
k

2
, µ(g) =

α

π
, (5.171)

Note that σ(g) = ±1, depending on whether g is unitary or antiunitary.

With this notation, the symmetry group G is given by the Z2 extension of G0 defined by

λ(g, h) = p(g, h) + q(g, h) (5.172)
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where

p(g, h) = τ(g) + τ(h)− τ(gh)

q(g, h) = µ(g) + σ(g)µ(h)− µ(gh) (5.173)

While these formulas may look complicated, they follow straightforwardly from the fact that,

in the symmetry group G, the fermion parity operator is identified with t2 and rπ.

Having defined the relevant symmetry groups, we are now ready to describe the symmetry

transformations Ug. For this purpose, it suffices to describe the action of the generators Urα

and U t on the basic fields ϕ↑, ϕ↓. Denoting these operators by Uα ≡ Urα and T ≡ U t for

brevity, we have

Uαϕ↑(U
α)−1 = ϕ↑ + α

Uαϕ↓(U
α)−1 = ϕ↓ − α

Tϕ↑T
−1 = ϕ↓

Tϕ↓T
−1 = ϕ↑ − π (5.174)

Calculation of anomalies

The first step to calculating the anomaly is to choose an edge Hamiltonian that breaks

the symmetry. However, since this is a continuous symmetry, we will break the symmetry

explicitly rather than spontaneously in accordance with Ref. [70]. We will then identify the

ground state with |Ω; 1⟩ and define the remaining |Ω; g⟩ by applying symmetry operators to

|Ω; 1⟩. The rest of the formalism will be applied just as in the discrete case.

To find a symmetry broken state, we find it convenient to first introduce some auxiliary

degrees of freedom into our edge theory. We will then break the symmetry of this enlarged

edge theory.
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To begin, consider the following chiral boson theory described by two fields θ, φ obeying

commutation relations

[θ(x), ∂yφ(y)] = 2πiδ(x− y)

We assume that the symmetry acts on θ, φ in the following way:

Uαθ(Uα)−1 = θ − 2α

Uαφ(Uα)−1 = φ

TθT−1 = −θ

TφT−1 = φ (5.175)

Importantly, the θ, φ chiral boson theory is not anomalous – that is, it can be realized

by a one dimensional lattice boson system with on-site symmetry. One way to see this is

to note that the above chiral boson theory is the standard low energy description of the

1D XXZ spin chain model where T is complex conjugation in the σz basis, and Uα is the

U(1) symmetry of the XXZ model. Alternatively, we can see that the θ, φ theory is not

anomalous since it can be gapped without breaking any the symmetries, for example by the

Hamiltonian H = Haux −
∫
dx V cos(φ), where Haux is defined below.

Now, since the θ, φ theory is not anomalous, we can add it to our edge theory without the

anomaly. After enlarging our edge theory in this way, we then choose an edge Hamiltonian

that breaks the symmetry spontaneously and completely and opens up a gap. A Hamiltonian

that does the job is

H = H0 +Haux −
∫
dx(V1 cos(ϕ↑ + ϕ↓) + V2 cos(θ)) (5.176)
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where H0, Haux are the usual free boson Hamiltonians,

H0 =

∫
dx

v

4π
[(∂xϕ↑)

2 + (∂xϕ↓)
2]

Haux =

∫
dx

1

4π
[vθ(∂xθ)

2 + vφ(∂xφ)
2]

for some velocities v, vθ, vφ > 0.

For V1 sufficiently large and positive, the first cosine term locks ϕ↑ + ϕ↓ = 0 , explicitly

breaking the ZT
2 symmetry. For large enough V2 > 0, the second cosine term locks θ = 0

and explicitly breaks the U(1)/ZF
2 symmetry. These terms open up an energy gap.

For simplicity, we will consider the limit V1,2 → ∞ in what follows. In this limit, the

ground state of H is an eigenstate of the operators ei(ϕ↑(x)+ϕ↓(x)), eiθ(x). Following our

standard labeling scheme, we denote this ground state by |Ω; 1⟩ where

ei(ϕ↑(x)+ϕ↓(x))|Ω; 1⟩ = |Ω; 1⟩

eiθ(x)|Ω; 1⟩ = |Ω; 1⟩ (5.177)

Having defined |Ω; 1⟩, we then define the other “vacuum states” |Ω; g⟩ to be symmetry

partners of |Ω; 1⟩:

|Ω; g⟩ = Ug|Ω; 1⟩. (5.178)

By construction, |Ω; g⟩ is a simultaneous eigenstate of ei(ϕ↑(x)+ϕ↓(x)) and eiθ(x):

ei(ϕ↑(x)+ϕ↓(x))|Ω; g⟩ = ei2πτ(g)|Ω; g⟩

eiθ(x)|Ω; g⟩ = ei2πµ(g)|Ω; g⟩ (5.179)
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From this, we may define the single domain wall states:

|gx⟩ = (a
g
x)

†|Ω; 1⟩ (5.180)

where

(a
g
x)

† = e−i
∫∞
x dy [12τ(g)∂y(ϕ↑−ϕ↓)+µ(g)∂yφ] (5.181)

To see that |gx⟩ is a valid domain wall state, note that

ei(ϕ↑(x
′)+ϕ↓(x

′)|gx⟩ =


|gx⟩ x′ < x

ei2πτ(g) |gx⟩ x′ > x

and

eiθ(x
′)|gx⟩ =


|gx⟩ x′ < x

ei2πµ(g) |gx⟩ x′ > x

by the commutation relations between ϕ↑, ϕ↓ and θ, φ.

To proceed further, we need to define the fermion operators γx. We define:

γx = eiϕ↑(x) (5.182)

We then define the other types of domain wall states, |(ψg)x⟩ as in Eq. 5.24

|(ψg)x⟩ = γx|gx⟩ (5.183)

Having defined domain wall states, the next step is to find their fusion rules. To this
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end, note that the two domain wall state takes the form

|g1, h2⟩ ∝ Ug(ah2)
†(Ug)−1(a

g
1)

†|Ω; 1⟩

(5.184)

Expanding out these operators more explicitly gives

|g1, h2⟩ = e−i
∫∞
2 dy [12τ(h)∂y(ϕ↑−ϕ↓)+σ(g)µ(h)∂yφ]

· e−i
∫∞
1 dy [12τ(g)∂y(ϕ↑−ϕ↓)+µ(g)∂yφ]|Ω; 1⟩

∝ e−i
∫∞
2 dy [τ(h)∂yϕ↑+σ(g)µ(h)∂yφ]

· e−i
∫∞
1 dy [τ(g)∂yϕ↑+µ(g)∂yφ]|Ω; 1⟩ (5.185)

Here the second line follows from the fact that ∂y(ϕ↑ + ϕ↓)|Ω; 1⟩ = 0. At the same time, we

have

|(gh)1⟩ ∝ (a
gh
1 )†|Ω; 1⟩

= e−i
∫∞
1 dy [12τ(gh)∂y(ϕ↑−ϕ↓)+µ(gh)∂yφ]|Ω; 1⟩

∝ e−i
∫∞
1 dy[τ(gh)∂yϕ↑+µ(gh)∂yφ]|Ω; 1⟩ (5.186)

Comparing |g1, h2⟩ with |(gh)1⟩, we can see that

|g1, h2⟩ ∝ O21e
ip(g,h)ϕ↑(1)+q(g,h)φ(1)|(gh)2⟩ (5.187)

where

O21 = ei
∫ 2
1 dy [τ(h)∂yϕ↑+σ(g)µ(h)∂yφ] (5.188)
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Since O21 and e
iφ(1) have even fermion parity while eiϕ↑(1) has odd fermion parity, we deduce

that the two states have the same/opposite fermion parity depending on the parity of q(g, h).

Therefore, we conclude that

ρ(g, h) = p(g, h) (5.189)

We now move on to construct movement and splitting operators. For notational conve-

nience, we define the operator

X
g
x′x = ei

∫ x′
x dy [12τ(g)∂y(ϕ↑−ϕ↓)+µ(g)∂yφ] (5.190)

From this, we define the movement operators M
g
x′x for g ∈ B and x′ > x as

M
g
x′x =

1∑
k=0

T kX
g
x′xP

g
x′T

−k, x′ > x (5.191)

where we define the projection operator

P
g
x′ =

1 + ei(ϕ↑(x
′)+ϕ↓(x

′))e−i2πτ(g)

2
(5.192)

To see that M
g
x′x is a valid movement operator, note that it is local and symmetric by

construction. Furthermore, it has the correct action on single domain wall states:

M
g
x′x|gx⟩ = X

g
x′x|gx⟩ = |gx′⟩ (5.193)

where the first equality follows from the fact that only the k = 0 term in (5.191) gives

a nonzero result when acting on |gx⟩ and the second equality follows from the fact that

X
g
x′x(a

g
x)

† = (a
g
x′)

†.
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Likewise, we define the reverse movement operator by

M
g
x′x = (M

g
xx′)

†, x′ < x (5.194)

We now turn our attention to the splitting operators. For g, h ∈ B, define

S(g, h) =
1∑

k=0

T kUgXh
21(U

g)−1C(g, h)P
gh
2 T−k (5.195)

where

C(g, h) = eiq(g,h)φ(1) (5.196)

We can see that S(g, h) is symmetric in much the same way as the movement operator.

We know that Xh
21 and C(g, h) are symmetric under Uα, S(g, h) is fermion parity even, and

that we have symmetrized over ZT
2 . All that remains is to check that this splitting operator

has the correct action on single domain wall states. To see this, note that

S(g, h)eip(g,h)ϕ↑(1)|gh1⟩ = UgXh
21(U

g)−1C(g, h)eip(g,h)ϕ↑(1)|gh1⟩

∝ Ug(ah2)
†(Ug)−1(a

g
1)

†|Ω; 1⟩

∝ |g1, h2⟩ (5.197)

Here, the first equality follows from the fact that only the k = 1 term in (5.195) gives a

nonzero result when acting on |gh1⟩, while the second equality follows from the definition

of (a
g
x)

†. The third equality follows by noting that Ug(ah2)
†(Ug)−1(a

g
1)

†|Ω; 1⟩ has the same

local expectation values as |g1⟩ near x = 1, and the same local expectation values as Ug|h2⟩

near x = 2, and the same local expectation values as Ug|Ω; 1⟩ between x = 1 and x = 2.

All that remains to do before computing F̃ (g, h, k) is to define M̃
g
x′x, S̃(g, h). These are
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defined as

M̃
g
x′x =M

g
x′x

S̃(g, h) = S(g, h)eip(g,h)ϕ↑(1) (5.198)

for g, h ∈ B.

We are now ready to compute F̃ (g, h, k). Using Eq. 5.51, we have

|1̃⟩ = [UgXh
12(U

g)−1] ·Xg
01 · [U

gXh
21(U

g)−1]

· C̃(g, h) · [UghXk
32X

k
21(U

gh)−1] · C̃(g, hk)|(ghk)1⟩

|2̃⟩ = [UghXk
32(U

gh)−1] · [UgUhXk
21(U

h)−1C̃(h, k)(Ug)−1]

· [UgXhk
12 (U

g)−1] ·Xg
01 · [U

gXhk
21 (U

g)−1]

· C̃(g, hk)|(ghk)1⟩ (5.199)

where C̃(g, h) is defined by

C̃(g, h) = C(g, h)eip(g,h)ϕ↑(1)

= eiq(g,h)φ(1)+ip(g,h)ϕ↑(1) (5.200)

We can simplify |2̃⟩ using the following identity which follows from the fact that UgUh differs

from Ugh by at most a fermion parity transformation, and that Xk
21 has even fermion parity:

UgUhXk
21(U

h)−1(Ug)−1 = UghXk
21(U

gh)−1 (5.201)
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Using this identity, we can rewrite |2̃⟩ as

|2̃⟩ = [UghXk
32X

k
21(U

gh)−1] · [UgC̃(h, k)(Ug)−1]

· [UgXhk
12 (U

g)−1] ·Xg
01 · [U

gXhk
21 (U

g)−1]

· C̃(g, hk)|(ghk)1⟩ (5.202)

Next we use the fact that the X
g
xx′ operators commute with each other and their sym-

metry partners, together with identity (Xα
xx′)

−1 = Xα
x′x to simplify these two states to:

|1̃⟩ = X
g
01 · C̃(g, h) · [U

ghXk
32X

k
21(U

gh)−1]

· C̃(gh, k)|(ghk)1⟩

|2̃⟩ = [UghXk
32X

k
21(U

gh)−1] · [UgC̃(h, k)(Ug)−1]

·Xg
01 · C̃(g, hk)|(ghk)1⟩ (5.203)

In order to compare the two states, it is useful to reorder the operators so that all the X’s

are on the left. To do this, we use the following commutation relation, which follows from

the Baker-Campbell-Hausdorff formula:

einϕ↑(1)X
g
x1 = e−iπnτ(g)sgn(x−1)/2X

g
x1e

inϕ↑(1) (5.204)

Using this relation, we can rewrite these two states as

|1̃⟩ = eiαX
g
01U

ghXk
32X

k
21(U

gh)−1

· C̃(g, h)C̃(g, hk)|(ghk)1⟩

|2̃⟩ = eiβX
g
01U

ghXk
32X

k
21(U

gh)−1

· UgC̃(h, k)(Ug)−1C̃(g, hk)|(ghk)1⟩ (5.205)
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where

α = −π
2
τ(k)p(g, h), β =

π

2
τ(g)p(h, k) (5.206)

Next, using the definition (5.200), one can check that

C̃(g, h)C̃(g, hk)|(ghk)1⟩ =

eiδUgC̃(h, k)(Ug)−1C̃(g, hk)|(ghk)1⟩ (5.207)

where

δ = π[τ(g)p(h, k) + µ(g)p(h, k)] (5.208)

We conclude that |1̃⟩ = eiδ+iα−iβ |2̃⟩ so that

F̃ (g, h, k) = ⟨2̃|1̃⟩

= eiδ+iα−iβ

= eiπp(h,k)µ(g) (5.209)

Therefore, the data which describes the (2+1)D topological insulator is

ρ(g, h) = p(g, h) = τ(g) + τ(h)− τ(gh)

ν(g, h, k) = eiπp(h,k)µ(g) (5.210)

This completes the application of our formalism to a field theory of (2+1)D topological

insulators.
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5.6 Conclusion

In this paper, we have presented a general procedure for calculating anomalies in (1D)

fermionic SPT edge theories which can be classified by supercohomology. Our procedure

takes as input a fermionic SPT edge theory and produces as output a pair (ρ, ν) which speci-

fies the anomaly carried by the edge theory. This data is enough to specify the bulk fermionic

SPT on which this boundary theory can exist. An important feature of our procedure is that,

unlike previous approaches[39], it applies to general fermionic SPT edge theories with both

unitary and antiunitary symmetries. Although we have not presented it here, this can also

be generalized to theories which go beyond the supercohomological classification[71]. One

future direction is to show that this formalism can be applied to all beyond supercohomology

phases of fermionic SPTs studied in Refs. [146, 147, 8, 1].

Another interesting direction for future work would be to generalize our approach to

(1D) edge theories of general invertible phases [8, 1]. Since these theories, in general, have a

non-zero central charge, our treatment of domain walls as gapped excitations would need to

be modified. However, since the data associated with these phases are similar to the theories

studied in this paper, we have hope that we could still define fusion rules and an F -symbol

for some kind of domain walls on the boundary theory.

Furthermore, these invertible fermionic phases have been shown to be classified by their

bosonic shadows [8]. These bosonic shadows are interesting to study in their own right

because the bosonic shadows correspond to relatively simple SETs. In particular, they are

Z2 topological orders which are enriched by G0 symmetry. Understanding the microscopic

definitions of the fermionic SPT data in this context could lead to microscopic definitions of

all of the SET data. Progress on this problem has been made in Ref. [34].

Finally, spatial symmetries are beyond the reach of our current formalism. It is known

that there are four, rather than two, SPTs with the symmetries of the topological insulator

if one includes translation symmetry [66]. These extra phases include the weak topological
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insulator. It would be interesting to see if our approach can be extended in some way to

calculate the data required to identify fermionic SPTs with spatial symmetries [128, 134]

from their boundary theories.
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CHAPTER 6

CONCLUSION

The connection between topological phases of matter and the “topological data” which

describe and classify them is a prominent theme in modern condensed matter physics. In

this dissertation, I have shown how we can understand the physical interpretation of this

data by constructing their precise definitions in microscopic models of topological phases

of matter. I have done this for intrinsic topological order as well as (2+1)D Symmetry

Protected topological phases.

In the case of intrinsic topological order, I have shown how to extract the anyon data,

particularly the F and R-symbols from a microscopic model. This allows us to give a physical

interpretation of this data in any microscopic model, at least in principle.

In the case of SPT phases, I have shown how to calculate the topological data which

classifies the bulk theory from a microscopic boundary theory. Since bosonic and fermionic

SPTs have different classification schemes, I have shown how to do this in each case. In the

bosonic case, this amounts to calculating the cocycle as the F -symbol of domain walls on

the boundary. In the fermionic case, the fusion rules of boundary domain walls, and the F -

symbol of those domain walls determine the data. This method is applicable for both unitary

and antiunitary symmetries and for discrete symmetries as well as continuous symmetries.

In an upcoming work [71], Michael Levin and I will extend this method to fermionic SPTs

beyond supercohomology as well.

In the coming decade, we have a massive and exciting challenge ahead. We have a very

good understanding of the classification of topological phases of matter in (2+1)D. We know

how to write models of these phases of matter [88] and we know how to describe these phases

of matter in the robust mathematical frameworks of category theory and cohomology [74,

75, 28]. Although there are a few remaining theoretical mysteries in the theory of (2+1)D

topological phases, the majority of the work still do be done involves experimentation and
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applications to quantum computation. However, in (3+1)D, we are faced with a grand array

of new problems. In this case, it is unclear how to formulate all possible data associated

with intrinsic topological phases. For example, we do not have a full classification of the

braided fusion 2-categories which may be required to understand intrinsic topological order

in (3+1)D [64, 77, 76].

Furthermore, the classification of fractonic phases of matter is wide open. Although we

understand some specific constructions of fractons [113], and we know some of field theoretic

principles that will be required to describe them [121, 122, 123], we lack a comprehensive

understanding of the essential fractonic phases of matter that can exist. In a similar mode of

thought as Ref. [104], we need to understand what type of math is most natural to complete

the analogy of “symmetry breaking is to group theory as topological phases are to category

theory as fractons are to . . . .”

I believe that there is also more work to be done along the lines of this thesis. That

is, there is a general line of research to be performed which asks how to interpret pieces

of topological data in terms of microscopic models, such as models of Symmetry Enriched

Topological phases [80, 7, 132, 34], SPTs with spatial symmetries [128, 134, 97], or higher

dimensional SPTs [28]. We can then use these microscopic definitions to better understand

these theories. Fortunately, in these theories, there are proposals for how the topological data

is structured. However, as I mentioned, there are many topological theories for which we

still need a general framework. As these frameworks become known and better understood,

we will progressively be able to ask more and more systems the question:

“What is this?”
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CHAPTER 7

APPENDIX

7.1 Pentagon identity

In this appendix, we show that the Abelian F -symbol, defined in Eq. 3.12, satisfies the

pentagon identity. Here, the main reason we focus on Abelian anyons is to simplify the

presentation: the generalization to the non-Abelian case is straightforward.

The first step in the proof is to pick a nice phase convention for the movement operators

Ma
x′x. Specifically, we choose the phases of the movement operators so that

Ma
xx′M

a
x′x|ax⟩ = |ax⟩

Ma
x′′x′M

a
x′x|ax⟩ =Ma

x′′x|ax⟩ (7.1)

With this phase convention, our space-time diagrams satisfy the following “topological in-

variance” property: consider any process, P , composed out of a sequence of movement and

splitting operators acting on an initial state

|i⟩ = |..., ax, bx′ , cx′′ , ...⟩. (7.2)

For any such process, we can draw a corresponding space-time diagram. Next, consider a

second process, P ′, that acts on the same initial state, |i⟩, and that leads to the same final

configuration of anyons. Again, we can draw a corresponding space-time diagram. The topo-

logical invariance property says that if these two space-time diagrams can be continuously

deformed into one another while fixing the endpoints, then the two processes produce the

same final states with the same phases. That is,

P |i⟩ = P ′|i⟩ (7.3)
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Figure 7.1: Five microscopic processes used to derive the pentagon identity.

We prove this result at the end of this section.

Using the above topological invariance property (7.33), it is easy to show that the F -

symbol defined in (3.12) satisfies the pentagon identity. The proof follows the same line of

reasoning as the argument in Sec. 3.3.1. Consider the five processes shown in Fig. 7.1. Let

us denote the final states of these processes by |1⟩, |2⟩, |3⟩, |4⟩, |5⟩. Notice that these states

are the same up to a phase since they contain the same four anyons, a, b, c, d, at the same

four points. The idea of the proof is to compute the relative phase between states |1⟩ and

|5⟩ in two different ways. In the first calculation, we note that

|1⟩ = F (a, b, c)|2⟩

|2⟩ = F (a, bc, d)|3⟩

|3⟩ = F (b, c, d)|5⟩ (7.4)

Here, the first relation follows by noting that the diagrams corresponding to |1⟩ and |2⟩

differ by a microscopic F -move (see Fig. 7.2). Likewise, the second relation follows in two

steps (see Fig. 7.3): in the first step, we use topological invariance to redraw the space-time
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Figure 7.2: Graphical proof of |1⟩ = F (a, b, c)|2⟩: the two processes are related by a micro-
scopic F -move.

diagram corresponding to |2⟩, while in the second step we related the modified diagram to

|3⟩ using an F -move. The third relation follows in a similar way (Fig. 7.4).

For the second calculation of the relative phase between |1⟩, |5⟩, we observe that

|1⟩ = F (ab, c, d)|4⟩

|4⟩ = F (a, b, cd)|5⟩ (7.5)

Similarly to (7.4), both of these relations follow from the topological invariance property

(7.33) together with the definition of F (3.12). (See Figs. 7.5-7.6 for graphical proofs).

Combining (7.4) and (7.5), gives the desired pentagon identity:

F (a, b, c)F (a, bc, d)F (b, c, d) = F (ab, c, d)F (a, b, cd)
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Figure 7.3: Graphical proof of |2⟩ = F (a, bc, d)|3⟩. The first equality follows from topological
invariance, while the second equality follows from a microscopic F -move.

To complete the argument, we now prove the topological invariance property (7.33). We

begin by considering some special cases. First, we consider processes that (i) are composed

only out of movement operators and (ii) return all anyons to their initial positions. We claim

that any process, P , of this kind is equivalent to the identity operator in the sense that

P |i⟩ = |i⟩ (7.6)

This claim follows from two properties of the movement operators. The first property is that

movement operators commute when acting on non-overlapping intervals:

[Mx1x2 ,Mx3x4 ] = 0 (7.7)

The second property is a multi-anyon generalization of (7.31) which follows from the locality
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Figure 7.4: Graphical proof of |3⟩ = F (b, c, d)|5⟩. The first equality follows from topological
invariance, while the second follows from a microscopic F -move.

of the movement operators:

Ma
xx′M

a
x′x|..., ax, ...⟩ = |..., ax, ...⟩ (7.8)

Ma
x′′x′M

a
x′x|..., ax, ...⟩ =Ma

x′′x|..., ax, ...⟩ (7.9)

Here |..., ax, ...⟩ is any multi-anyon state that does not have any additional anyons in the

interval containing x, x′ or x′, x′′.

To establish (7.6), it suffices to show that for any nontrivial process P , we can find a

simpler process P ′ — i.e. a process with strictly fewer movement operators — such that

P |i⟩ = P ′|i⟩. Once we establish the existence of P ′, Eq. (7.6) follows immediately since

we can then simplify P repeatedly until we reduce it to the identity. To construct P ′, it is

convenient to make two simplifying assumptions about P : (i) the positions x of the anyons

are always integer-valued and (ii) all movements are of the formMa
x′x, where x

′ = x±1. (The
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Figure 7.5: Graphical proof of |1⟩ = F (b, c, d)|4⟩. The first equality follows from topological
invariance, while the second follows from a microscopic F -move.

second assumption can be made without loss of generality given Eq. 7.9). Next, consider

the leftmost anyon, a, with the property that, at some point during the process, a performs

a movement to the right, i.e. Ma
x′x with x′ > x, followed later by a reverse movement

Ma
xx′ with no movements of this anyon a in between. Since a is the leftmost anyon with

this property, it is easy to see that there cannot be any movement operators that appear

between Ma
x′x and Ma

xx′ whose region of support overlaps the interval [x, x′]. Therefore, we

can use (7.7) to reorder the movement operators so thatMa
x′x andMa

xx′ appear one after the

other. The two movement operators can then be removed from P using the identity (7.8).

This gives the desired process P ′. If there are no anyons with the above property, then we

follow the same reasoning as above but we consider the rightmost anyon a that performs a

movement to the left, i.e. Ma
x′x with x′ < x, followed later by a reverse movement Ma

xx′

with no movements of this anyon, a, in between. Again, this allows us to construct a simpler

process P ′.

Having established (7.6), the next step in the proof is to consider a slightly more general
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Figure 7.6: Graphical proof of |4⟩ = F (b, c, d)|5⟩. The first and third equalities follow from
topological invariance, while the second follows from a microscopic F -move.

set of processes: namely, processes that are composed out of movement operators but do not

necessarily return the anyons to their initial positions. We claim that P |i⟩ = P ′|i⟩ for any

two “movement-only” processes P, P ′ with the same initial state and same final configuration

of anyons. To see this, consider the process P invP ′, where P inv is the inverse process to

P — that is, the process obtained by reversing the order of the movement operators and

replacingMa
x′x →Ma

xx′ . By construction, P invP ′ has the property that it returns all anyons

to their original positions so we can use (7.6) to deduce that P invP ′|i⟩ = |i⟩. It then follows

that P |i⟩ = P ′|i⟩, proving the claim.

We are now ready to consider general processes with both splitting and movement op-

erators. We claim that P |i⟩ = P ′|i⟩ for any two processes P, P ′ whose spacetime diagrams

can be continuously deformed into one another while fixing endpoints and preserving the

time-ordered sequence of splittings. To prove this claim, it is useful to decompose P into a
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product

P = P1S1P2S2 · · · (7.10)

where S1, S2, ... are splitting operators and P1, P2, ... are movement-only processes. We de-

compose P ′ in a similar fashion, denoting the splitting operators by S′1, S
′
2, ... and movement-

only processes by P ′
1, P

′
2, · · · . By assumption, Sj = S′j for every j. On the other hand

Pj ̸= P ′
j in general. Consider the special case where Pj and P ′

j share the same initial anyon

configuration and the same final anyon configuration for each j. In this case, it follows

immediately that P |i⟩ = P ′|i⟩ using the above property of movement-only processes. Next,

observe that the general case – where Pj and P ′
j do not share the same initial and final

anyon configurations – can always be reduced to this special case: given any P, P ′ obeying

our assumption, it is not hard to construct modified processes, P̃ and P̃ ′ with P |i⟩ = P̃ |i⟩

and P ′|i⟩ = P̃ ′|i⟩ such that the corresponding movement-only processes, P̃j and P̃
′
j , do share

the same initial and final anyon configuration for each j. These modified processes P̃ and P̃ ′

can be obtained by inserting appropriate movement operators Ma
xx′ just before each split-

ting operator, along with their reverse movementsMa
x′x just after the splitting operator, and

using the fact that movement operators commute with splitting operators when acting on

non-overlapping intervals.

At this point, we have almost proved the general topological invariance property (7.33),

but we need one more result: we need to show that the order of splitting operators does not

matter, i.e

SLSR|i⟩ = SRSL|i⟩ (7.11)

where SL and SR are the two splitting processes shown in Fig. 7.7a. The identity (7.11),
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Figure 7.7: (a) Graphical representation of the identity (7.11). (b) Schematic representation
of the two unitary operators UL, UR which are supported in the regions x ≤ 0 and x ≥ 3,
respectively, and satisfy UL|i⟩ = SL|i⟩ and UR|i⟩ = SR|i⟩.

together with the claim in the previous paragraph implies topological invariance.1

To prove the identity (7.11), we note that neither |i⟩ nor SL|i⟩ contain any anyons in

the region x > −1, which means in particular that |i⟩ and SL|i⟩ share the same expectation

values for any operator supported in x > 0. It then follows from the properties of the Schmidt

decomposition that there exists a unitary operator, UL, supported in the complementary

1. Strictly speaking, to establish general topological invariance, one needs to prove a slight generalization
of (7.11) in which SL, SR contain additional “spectator” anyon worldlines that do not participate in the
splittings; however, this generalization of (7.11) can be proved using the same arguments as the special case
(7.11).
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region x ≤ 0 such that

UL|i⟩ = SL|i⟩ (7.12)

By the same reasoning, there exists a unitary operator, UR, supported in the region x ≥ 3

such that

UR|i⟩ = SR|i⟩ (7.13)

Next, we observe that

[UL, UR] = [SL, UR] = [UL, SR] = 0 (7.14)

since each pair of operators is supported on non-overlapping regions. Combining these

identities, we derive

SLSR|i⟩ = SLUR|i⟩ = URSL|i⟩ = URUL|i⟩ = ULUR|i⟩

SRSL|i⟩ = SRUL|i⟩ = ULSR|i⟩ = ULUR|i⟩ (7.15)

This proves the reordering identity (7.11) and completes our proof of the topological invari-

ance property (7.33).

7.2 Hexagon equations

In this appendix, we show that our definitions of the Abelian F and R symbols obey the

hexagon equations (3.87). Our proof closely follows the derivation of the pentagon identity

given in Appendix 7.1 and like that derivation it is straightforward to generalize it to non-

Abelian anyons.
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Figure 7.8: Graphical derivation of the first hexagon equation (3.87).

We will focus on the first hexagon equation since it is slightly easier to prove with our

conventions. The first step of the proof is to construct microscopic processes that have the

same structure as the six abstract processes shown in Fig. 7.8. This step is analogous to the

first step of the proof in Appendix 7.1, in which we constructed the microscopic processes

shown in Fig. 7.1. Just as in Fig. 7.1, we draw out explicit diagrams for these microscopic

processes in Fig. 7.9. These processes are constructed so that they satisfy the following

properties: (i) all six processes start in the same initial state and end with the same final

particle positions; (ii) all anyon movements occur between either nearest neighbor integer

points n and n ± 1 or between 1 and Y ; and (iii) each crossing in Fig. 7.8 is implemented,

microscopically in Fig. 7.9, by a particle sitting at Y and another particle moving between

2 and 1.
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Let us denote the final states produced by these six microscopic processes by |1⟩, ..., |6⟩.

By construction, |1⟩, ..., |6⟩ have the same anyons in the same positions, so they only differ

by a phase. The main idea of the proof is to compute the phase difference between |1⟩ and

|6⟩ in two different ways. The first calculation proceeds along the top path of Figure 7.8: we

claim that

|1⟩ = R(a, b)|2⟩

|2⟩ = F (b, a, c)|3⟩

|3⟩ = R(a, c)|6⟩ (7.16)

Each of these three equalities follow from a property that we call “weak topological invari-

ance.” To state this property, let P, P ′ be any two processes composed out of movement and

splitting operators, and suppose that P, P ′ start in the same initial state, |i⟩, and end in the

same anyon configuration. The weak topological invariance property states that P |i⟩ = P ′|i⟩

as long as the spacetime diagrams corresponding to P, P ′ – which we regard as decorated

planar graphs – can be continuously deformed into one another while fixing the endpoints

and preserving the time-ordered sequence of splittings and crossings.

Assuming weak topological invariance, which we will prove below, it is easy to derive

the first equality in (7.16). The argument is similar to that in Fig. 7.6: one starts with

the two microscopic processes P1, P2 that produce states |1⟩, |2⟩. One then constructs two

modified processes P ′
1, P

′
2 whose spacetime diagrams are equivalent to P1, P2 according to

weak topological invariance, and which are related to one another by a microscopic R-move.

By weak topological invariance, we know that P ′
1, P

′
2 must produce the same final states

as P1, P2. At the same time, since the P ′
1, P

′
2 are related to one another by a microscopic

R-move, we know that their final states differ by R(a, b); hence we deduce |1⟩ = R(a, b)|2⟩.

The other two equalities in (7.16) are derived similarly.
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Figure 7.9: Six microscopic processes used to derive the first hexagon equation.

Next, we calculate the phase difference between |1⟩ and |6⟩ by going along the bottom

path of figure 7.8. We claim that

|1⟩ = F (a, b, c)|4⟩

|4⟩ = R(a, bc)|5⟩

|5⟩ = F (b, c, a)|6⟩ (7.17)

As in the previous calculation, the first and third equalities in (7.17) follow immediately

from weak topological invariance. The second equality however requires an additional iden-

tity beyond weak topological invariance, namely the identity shown schematically in Fig-

ure 7.10. This identity, together with weak topological invariance, is sufficient to show

|4⟩ = R(a, bc)|5⟩.

Combining (7.16) and (7.17) gives the desired hexagon equation:

R(a, b)F (b, a, c)R(a, c) = F (a, b, c)R(a, bc)F (b, c, a)
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Figure 7.10: Graphical representation of the identity that is needed to relate states |4⟩ and
|5⟩ in Fig. 7.8.

To complete the argument we need to establish two properties that we used above: (1)

weak topological invariance and (2) the identity in Fig. 7.10. We begin by proving weak

topological invariance.

As in Appendix 7.1, the first step of the proof is to consider the special class of processes

that (i) are composed only out of movement operators; (ii) have spacetime diagrams that

do not contain any crossings; and (iii) return all anyons to their initial positions. We claim

that any process, P , of this kind obeys P |i⟩ = |i⟩. The proof is virtually identical to the

corresponding claim in Appendix 7.1, so we will not repeat it here.

The next step is to consider a slightly more general set of processes, namely processes that

are composed out of movement operators and have spacetime diagrams without crossings,

but do not necessarily return the anyons to their initial positions. We claim that P |i⟩ = P ′|i⟩

for any two processes of this kind. Again, the proof is the same as the corresponding claim

in Appendix 7.1.

We are now ready to prove weak topological invariance. Suppose that P, P ′ are two

processes that can be deformed into one another while fixing the endpoints and preserving the

time-ordered sequence of splittings and crossings. We wish to show P |i⟩ = P ′|i⟩. Similarly
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to Appendix 7.1, we decompose P into a product

P = P1V1P2V2 · · · (7.18)

where P1, P2, ... are movement-only processes without any crossings and where V1, V2, ... are

‘vertex operators’ consisting of either a splitting operator S(a, b) or a crossing operator (i.e. a

movement operatorMa
12 orM

a
21 in the presence of a particle at position Y ). We decompose P ′

in a similar fashion, denoting the movement-only processes by P ′
1, P

′
2, ... and vertex operators

by V ′
1, V

′
2, · · · . By assumption, Vj = V ′

j for every j, but Pj and P
′
j may be different. Consider

the special case where Pj and P ′
j share the same initial anyon configuration and the same

final anyon configuration for each j. In this case, it follows immediately that P |i⟩ = P ′|i⟩

using the above property of movement-only processes. Next note that the general case –

where Pj and P ′
j do not share the same initial and final anyon configurations – can always

be reduced to this special case: given any P, P ′ it is not hard to construct modified processes,

P̃ and P̃ ′, with P |i⟩ = P̃ |i⟩ and P ′|i⟩ = P̃ ′|i⟩ such that the corresponding movement-only

processes P̃j and P̃
′
j do share the same initial and final anyon configuration for each j. These

modified processes P̃ , P̃ ′ can be obtained in the same way as in Appendix 7.1, i.e. by inserting

appropriate movement operators Ma
xx′ just before each splitting operator, along with their

reverse movements Ma
x′x just after the splitting operator, and using the fact that movement

operators commute with splitting operators when acting on non-overlapping intervals.

All that remains is to prove the identity shown in Fig. 7.10. We will do this in two steps.

First we will show that |Ψ⟩ = |Ψ′⟩ where |Ψ⟩, |Ψ⟩′ are the two final states produced by the

processes shown in Fig. 7.11a. Next we will show that |Ψ′⟩ = |Ψ′′⟩ where |Ψ′′⟩ is the final

state produced by the second process in Fig. 7.12a. Taken together, these two equalities

imply that |Ψ⟩ = |Ψ′′⟩. This last result is the microscopic analog of the identity in Fig. 7.10.
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Figure 7.11: (a) The relation |Ψ⟩ = |Ψ′⟩ is the first step in our proof of the identity in

Fig. 7.10. (b) Regions of support of the operators Ua
1 , U

b,c
1 used in proof of |Ψ⟩ = |Ψ′⟩.

To prove |Ψ⟩ = |Ψ′⟩, we note that

|Ψ⟩ = P a
2 P

b,c
2 P a

1 P
b,c
1 |i⟩

|Ψ′⟩ = P a
2 P

b,c
2 P

b,c
1 P a

1 |i⟩ (7.19)

where |i⟩ is the initial state and P
b,c
1 , P a

1 , P
b,c
2 , P a

2 are the processes shown in Fig. 7.11a.

Given these two expressions, our problem reduces to showing that P a
1 P

b,c
1 |i⟩ = P

b,c
1 P a

1 |i⟩.

We prove this in the same way that we proved the identity (7.11) in Appendix 7.1. The first
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step is to note that there exists a (unitary) operator, Ua
1 , with a region of support, shown

in Fig. 7.11b, such that Ua
1 |i⟩ = P a

1 |i⟩. Likewise, there exists a (unitary) operator, U
b,c
1 ,

with a region of support shown in Fig. 7.11b, such that U
b,c
1 |i⟩ = P

b,c
1 |i⟩. Given that these

operators have non-overlapping regions of support we know that:

[Ua
1 , U

b,c
1 ] = [P a

1 , U
b,c
1 ] = [Ua

1 , P
b,c
1 ] = 0 (7.20)

Combining these identities, the claim follows easily:

P a
1 P

b,c
1 |i⟩ = P a

1 U
b,c
1 |i⟩ = U

b,c
1 P a

1 |i⟩ = U
b,c
1 Ua

1 |i⟩

= Ua
1U

b,c
1 |i⟩ = Ua

1P
b,c
1 |i⟩ = P

b,c
1 Ua

1 |i⟩ = P
b,c
1 P a

1 |i⟩,

To prove that |Ψ′⟩ = |Ψ′′⟩, we use similar reasoning. First we note that

|Ψ′⟩ = P a
2 P

b,c
3 (Mbc

01M
bc
12P

a
1 )|i⟩

|Ψ′′⟩ = P
b,c
3 P a

2 (M
bc
01M

bc
12P

a
1 )|i⟩ (7.21)

as one can see in Fig. 7.12a. Given these expressions, our problem is equivalent to showing

that P a
2 , P

b,c
3 commute with each other when acting on the state |m⟩ = Mbc

01M
bc
12P

a
1 |i⟩. To

show this commutation relation, we note that there exists a unitary operator, U
b,c
3 , with a

region of support shown in Fig. 7.12b, such that U
b,c
3 |m⟩ = P

b,c
3 |m⟩. Likewise, there exists a

unitary operator, Ua
2 , with a region of support shown in Fig. 7.12b such that Ua

2 |m⟩ = P a
2 |m⟩.

Using the same manipulations as above, the claim follows immediately:

P a
2 P

b,c
3 |m⟩ = P a

2 U
b,c
3 |m⟩ = U

b,c
1 P a

2 |m⟩ = U
b,c
3 Ua

2 |m⟩

= Ua
2U

b,c
3 |m⟩ = Ua

2P
b,c
3 |m⟩ = P

b,c
3 Ua

2 |m⟩ = P
b,c
3 P a

2 |m⟩,
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Figure 7.12: (a) The relation |Ψ′⟩ = |Ψ′′⟩ is the second step in our proof of the identity in

Fig. 7.10. (b) Regions of support of the operators Ua
2 , U

b,c
3 used in proof of |Ψ′⟩ = |Ψ′′⟩.

This completes the proof of the first hexagon equation.

7.3 Derivation of Eq. 3.46

In this appendix, we derive the identity (3.46) that we used in our analysis of the doubled

semion model, that is:

S(s, s)|0⟩ ∝ a
†
1a

†
2|0⟩ (7.22)
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where S(s, s) is the splitting operator in the doubled semion model and a
†
n is the semion

creation operator.

The derivation follows from straightforward algebra. First we write the semion creation

operator a
†
n as a product

a
†
n = WnTnUn (7.23)

where

Wn =
∏
m<n

σzm,Lσ
z
m,R,

Tn =
∏
m<n

(−1)
1
4 (1+σxm,L)(1−σxm,R)

Un =
∏
m<n

i
1−σx

m,U
2 (7.24)

It follows that

a
†
1a

†
2 = (W1T1U1)(W2T2U2)

= (W1T1W2T2)(U1U2)

= (W1W2)(W2T1W2T2)(U1U2) (7.25)

where the second equality follows from the fact that the Ui operators commute with Wj , Tj .

Next, we note that

W1W2 = σz1,Lσ
z
1,R

U1U2 = i
1−σx

1,U
2

∏
m<1

σxm,U (7.26)
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Also,

W2T1W2 =
∏
m<1

(−1)
1
4 (1−σxm,L)(1+σxm,R)

so

W2T1W2T2 = (−1)
1
4 (1+σx1,L)(1−σx1,R)

∏
m<1

σxm,Lσ
x
m,R (7.27)

Substituting (7.26) and (7.27) into (7.25) gives

a
†
1a

†
2 = σx0,Rσ

z
1,Lσ

z
1,R(−1)

1
4 (1+σx1,L)(1−σx1,R)i

1−σx
1,U
2

∏
m<1

Qm (7.28)

where

Qm ≡ σxm,Lσ
x
m,Uσ

x
m−1,R. (7.29)

denotes the Qv operator on vertex m.

Acting both sides of (7.28) on the ground state |0⟩ and using the fact that Qm|0⟩ = |0⟩,

we obtain

a
†
1a

†
2|0⟩ = S(a, a)|0⟩ (7.30)

as we wished to show.

7.4 Cocycle condition

In this appendix, we show that the domain wall F -symbol defined in (4.20-4.21) is a cocy-

cle. More specifically, we show that F obeys Eq. 4.117 – the general cocycle condition for
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Figure 7.13: The five microscopic states used to prove the cocycle condition.

symmetry groups containing both unitary and antiunitary symmetries.

Our proof closely follows the derivation of the pentagon identity for anyonic F -symbols,

presented in Appendix A of Ref. [69]. As in Ref. [69], the first step is to pick a nice phase

convention for the movement operators M
g
x′x. Specifically, we choose the phases of the

movement operators so that

M
g
xx′M

g
x′x|gx⟩ = |gx⟩

M
g
x′′x′M

g
x′x|gx⟩ =M

g
x′′x|gx⟩ (7.31)

With this phase convention, it is possible to show that our space-time diagrams satisfy

the following topological invariance property: consider any process, P , composed out of a

sequence of movement and splitting operators acting on an initial state

|i⟩ = |..., gx, hx′ , kx′′ , ...⟩. (7.32)

For any such process, we can draw a corresponding space-time diagram. Next, consider a

250



second process, P ′, that acts on the same initial state, |i⟩, and that leads to the same final

state. Again, we can draw a corresponding space-time diagram. The topological invariance

property says that if these two space-time diagrams can be continuously deformed into one

another while fixing the endpoints, then the two processes produce the same final states with

the same phases. That is,

P |i⟩ = P ′|i⟩ (7.33)

The proof of the topological invariance property (7.33) is identical to the one given in Ap-

pendix A of Ref. [69].

With the help of the topological invariance property (7.33), we will now show that

the F -symbol defined in (4.20-4.21) satisfies the cocycle condition (4.117). Consider the

five processes shown in Fig. 7.13. Let us denote the final states of these processes by

|1⟩, |2⟩, |3⟩, |4⟩, |5⟩. Notice that these states are the same up to a phase since they describe

the same four domain walls in the same four positions. The idea of the proof is to compute

the phase difference between state |1⟩ and state |5⟩ in two difference ways. More specifically,

using the topological invariance property (7.33) we will show that

|1⟩ = F (g, h, k)|2⟩

|2⟩ = F (g, hk, l)|3⟩

|3⟩ = g(F (h, k, l))|5⟩ (7.34)

and

|1⟩ = F (gh, k, l)|4⟩

|4⟩ = F (g, h, kl)|5⟩ (7.35)

251



where the g action is defined as in Eq. 4.116. Putting this all together gives us the desired

cocycle condition:

F (g, h, k)F (g, hk, l)[gF (h, k, l)]

F (gh, k, l)F (g, h, kl)
= 1 (7.36)

We now derive each of the above equations. To aid in the discussion, we define the

operators

O1(g, h, k) =Mh
12M

g
01S(g, h)M

k
32S(gh, k)

O2(g, h, k) =Mk
32S(h, k)M

hk
12M

g
01S(g, hk) (7.37)

To derive the first equation, |1⟩ = F (g, h, k)|2⟩, notice that processes 1 and 2 start in

the same state |ghkl1⟩, and they also contain the same sequence of movement and splitting

operators starting from the beginning of the process, leading up to the (intermediate) state

|ghk1, l4⟩. It is at that point that the two processes diverge: in process 1, the operator

O1(g, h, k) is applied while in process 2, the operator O2(g, h, k) is applied. After that, the

two processes again coincide. It follows that the phase difference between |1⟩ and |2⟩ comes

entirely from the difference between O1 and O2. That is,

⟨2|1⟩ = ⟨ghk1, l4|O2(g, h, k)
†O1(g, h, k)|ghk1, l4⟩

= ⟨ghk1|O2(g, h, k)
†O1(g, h, k)|ghk1⟩

= F (g, h, k) (7.38)

where the second equality follows from (4.119) – one of the fundamental properties of multi-

domain wall states.

The second equation, |2⟩ = F (g, hk, l)|3⟩, follows from similar logic. In this case, we

use the topological invariance property (7.33) to redraw process 2 so that it is identical to
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process 3 except for an F -move at the very beginning of the process (see Fig. 20 of Ref. [69]).

After this modification, the only difference between the two processes is that in process 2 the

operator O1(g, hk, l) is applied at the beginning, while in process 3, the operator O2(g, hk, l)

is applied. It then follows that

⟨3|2⟩ = ⟨ghkl1|O2(g, hk, l)
†O1(g, hk, l)|ghkl1⟩

= F (g, hk, l) (7.39)

The third equation, |3⟩ = g(F (h, k, l))|5⟩ is the trickiest one, and the one that distinguishes

the unitary and antiunitary cases. Again, we use the topological invariance property to

redraw process 3 so that it differs from process 5 by a replacement O1(h, k, l) → O2(h, k, l)

(see Fig. 21 of Ref. [69]). Hence

⟨5|3⟩ = ⟨g−1, hkl1|O2(h, k, l)
†O1(h, k, l)|g−1, hkl1⟩

= g⟨hkl1|O2(h, k, l)
†O1(h, k, l)|hkl1⟩

= gF (g, h, k) (7.40)

where the second equation follows from (4.119). Note that the key difference between this

equation and the others is that the F -move takes place to the right of the g domain wall;

this is the origin of the g action.

The other two equations, |1⟩ = F (gh, k, l)|4⟩ and |4⟩ = F (g, h, kl)|5⟩, follow from similar

reasoning. In both cases, the relevant processes can be related by topological invariance

together with an appropriate F -move (see Figs. 22 and 23 of Ref. [69]). We then derive the
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equations as before:

⟨4|1⟩ = ⟨ghkl1|O2(gh, k, l)
†O1(gh, k, l)|ghkl1⟩

= F (gh, k, l)

⟨5|4⟩ = ⟨ghkl1|O2(g, h, kl)
†O1(g, h, kl)|ghkl1⟩

= F (g, h, kl) (7.41)

This completes our derivation of the cocycle condition (4.117).

7.5 Connection to Tantivasadakarn-Vishwanath Model

We start by defining the Hilbert space and then define the low energy operators on the

edge. Consider a triangle lattice. On each vertex, place a spin. On each triangle place a

fermion with Majorana operators γ, γ̃. On every edge on the boundary of the system place

one Majorana degree of freedom η. On each vertex on the boundary, place three Majorana

degrees of freedom λ, ξ, ζ. We can think of the pairs η, λ and ξ, ζ as forming two fermions

per site on the edge.

Define the operator on the ith edge site

Xi =XiZiCS
†
i−1,jCS

†
j,kCS

†
k,i+1CZi,jCZi,k

η
gi−1

i−1/2
γ
gi−1+gj+1

(i−1,j,i)
λiξiζiγ

gj+gk+1
j,i,k γ

gk+gi+1+1
i,k,i+1 η

gi+1

i+1/2

(7.42)

Also define

ηi+1/2 = CZi,i+1ηi+1/2 λi+1/2 = Zi+1λi+1 (7.43)

(Note, this may be inconsistent with the usual overline notation since we haven’t at-
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tempted to conjugate anything.)

The two new Majorana operators obey the usual relations and they commute with the

Xi operator. Therefore, we will take these three to be our low energy operators. Lastly, we

may constrain iξζ = 1 at this point since it commutes with the previous operators and with

the symmetry.

If we rename

X → X η → γa λ→ γb (7.44)

then we recover the commutation relations described at the beginning of this document.

7.6 Uniqueness of decorated multi-domain wall states

In this Appendix, we prove that the decorated multi-domain wall states obey a uniqueness

property to the bare multi-domain wall states. Pick group elements g(1), g(2), ..., g(n) ∈ G0

and s(1), s(2), ..., s(n) ∈ Z2 and consider the state |(g(1), s(1))x1 , (g(2), s(2))x2 , ...⟩ defined as

|(g(1), s(1))x1 , (g
(2), s(2))x2 , ...⟩

=
∏
i

(
g
(i)
L γxi

)s(i)

|(g(1), 0)x1 , (g
(2), 0)x2 , ...⟩ (7.45)

where gγx = U (g,0)γx

(
U (g,0)

)−1
, the left most operator in the product is the left most

operator in the physical space, and

g
(i)
L = g(1) · · · g(i−1). (7.46)

For ease of notation, we will write gL = g
(i)
L when we are referring to a particular domain

wall i outside of a product.

255



We will prove that these are the unique states with the following two properties: first,

for any local operator O supported near one domain wall xi,

⟨(g(1), s(1))x1 ,(g
(2), s(2))x2 , ...|O|(g(1), s(1))x1 , (g

(2), s(2))x2 , ...⟩

= ⟨(g(i), s(i))xi ; gL|O|(g(i), s(i))xi ; gL⟩ (7.47)

where gL is the product of the G0 component of all domain walls to the left of O, as before.

Second, for any operator O supported away from the domain walls,

⟨(g(1), s(1))x1 , (g
(2), s(2))x2 , ...|O|(g(1), s(1))x1 , (g

(2), s(2))x2 , ...⟩

= ⟨Ω; gL|O|Ω; gL⟩ (7.48)

where gL is again the product of the G0 component of domain wall types to the left of O.

First we will show that these two properties are met for the decorated multi-domain wall

states, and then we will prove that these are the unique states with these two properties.

Let O be a local operators near the point xi. Using Eqn. 5.26 and commuting fermion

operators away from xi past O, we obtain

⟨O⟩ = ⟨(g(1), 0)x1 , (g
(2), 0)x2 , ...|

(
γ
gL
xi

)−s(i) O
(
γ
gL
xi

)s(i) |(g(1), 0)x1 , (g(2), 0)x2 , ...⟩
= ⟨(g(i), 0)xi ; gL|

(
γ
gL
xi

)−s(i) O
(
γ
gL
xi

)s(i) |(g(i), 0)xi ; gL⟩
= ⟨(g(i), s(i))xi ; gL|O|(g(i), s(i))xi ; gL⟩ (7.49)

where the second equality is obtained from the relationship between bare and decorated

single domain wall states. Similar reasoning can be used to show that the second property,

where O is between domain walls, is also satisfied.

We now prove uniqueness. Let’s say that we have some state |ψ⟩ with the same expecta-

tion values of local operators as the decorated multidomain wall state |(g(1), s(1))x1 , (g(2), s(2))x2 , ...⟩.
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We will show that these states are the same by showing that

|(g(1), 0)x1 , (g
(2), 0)x2 , ...⟩ ∝∏

i

(
g
(i)
L γxi

)−s(i)

|ψ⟩ (7.50)

Observe that for any local operator O near a particular xi (recalling that we call gL = g
(i)
L

when referring to a particular i), we have

⟨ψ|
∏
j

(
g
(j)
L γxj

)s(j)

O
∏
j

(
g
(j)
L γxj

)−s(j)

|ψ⟩

= ⟨ψ| (gLγxi)
s(i) O (gLγxi)

−s(i) |ψ⟩

= ⟨(g(i), s(i))xi ; gL| (
gLγxi)

s(i) O (gLγxi)
−s(i) |(g(i), s(i))xi ; gL⟩

= ⟨(g(i), 0)xi ; gL|O|(g(i), 0)xi ; gL⟩

(7.51)

Similarly for local operators O between domain walls, one can show that

⟨ψ|
∏
j

(
g
(j)
L γxj

)s(j)

O
∏
j

(
g
(j)
L γxj

)−s(j)

|ψ⟩

= ⟨Ω; gL|O|Ω; gL⟩ (7.52)

Therefore, by the uniqueness of the bare multi-domain wall states, we know that

|(g(1), 0)x1 , (g
(2), 0)x2 , ...⟩ ∝

∏
i

(
γ
g
(i)
L

xi (g(i))

)−s(i)

|ψ⟩ (7.53)
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and therefore |ψ⟩

|ψ⟩ ∝ |(g(1), s(1))x1 , (g
(2), s(2))x2 , ...⟩ (7.54)

This completes our proof that the multi-domain wall states are the unique states with ex-

pectation values for local operators as in Eqns. 7.47 and 7.48.

7.7 Cocycle condition for complex fermions

This Appendix is dedicated to proving the cocycle condition for the case of complex fermions.

That is, we want to show that

ν(g, h, k)ν(g, hk, l)ν(h, k, l)

ν(gh, k, l)ν(g, h, kl)
= (−1)(ρ(g,h)+λ(g,h))ρ(g,h) (7.55)

First, we start with the fact that the F -symbol must obey the standard cocycle condition

from group cohomology:

F (a, b, c)F (a, bc,d)F (b, c,d)

F (ab, c,d)F (a, b, cd)
= 1 (7.56)

Setting a = (g, 0), b = (h, 0), c = (k, 0),d = (l, 0), and recalling that ν(g, h, k) = F̃ (g, h, k)

and F ((g, s), (h, t), (k, r) = (−1)(λ(g,h)+ρ(g,h))rF̃ (g, h, k) we see that

1 =
F (a, b, c)F (a, bc,d)F (b, c,d)

F (ab, c,d)F (a, b, cd)

=
F (a, b, (k, 0))F (a, bc, (l, 0))F (b, c, (l, 0))

F (ab, c, (l, 0))F (a, b, (kl, ρ(k, l)))

=
ν(g, h, k)ν(g, hk, l)ν(h, k, l)

ν(gh, k, l)ν(g, h, kl)
(−1)(λ(g,h)+ρ(g,h))β(k,l) (7.57)
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Therefore,

ν(g, h, k)ν(g, hk, l)ν(h, k, l)

ν(gh, k, l)ν(g, h, kl)
= (−1)(ρ(g,h)+λ(g,h))ρ(g,h) (7.58)

7.8 Kitaev chain stacking

In this Appendix, we examine how ρ and ν change when the boundary theory is stacked

with a Kitaev chain.

7.8.1 Generalized Kitaev Chain

We begin by describing a model of a 1D generalized Kitaev chain. The Hilbert space on each

site is the group algebra C[G]. That is, on each site i, there is a basis element |g⟩i for each

g ∈ G. We may define an operator X
g
i which acts on site i as

X
g
i |h⟩i = |gh⟩i (7.59)

and acts as the identity on all other sites. Written in the notation of ordered pairs (g, s)

with g ∈ G0, we write

X(g,0)|(h, 0)⟩ = |(gh, λ(g, h))⟩ (7.60)

In particular, notice that if we define the states

|(g,±)⟩i =
1

2
(|(g, 0)⟩i ± |(g, 1)⟩i) (7.61)

then we have

X
(1,1)
i |(g,±)⟩i = ±|(g,±)⟩i. (7.62)
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Although we have not yet defined fermion parity symmetry in this system, states will even-

tually represent fermion parity definite states. We now define the operators γLi, γRi with

the actions

γLi|(1,±)⟩i = |(1,∓)⟩i

γRi|(1,±)⟩i = ±i|(1,∓)⟩i (7.63)

This leads to the relation

−iγLiγRi|(1,±)⟩i = ±|(1,±)⟩i. (7.64)

We will only need to consider the actions of these operators on the states |(g,±)⟩i when

g = 1.

Collectively, these basis states on each site describe the full Hilbert space. It is important

to note that this is a fermionic system, so the construction of the full Hilbert space is not

obtained through the tensor product of all sites.

We now describe the the symmetry operators. These are defined as

Ug = Kτ(g)
∏
j

X
(g,0)
j (7.65)

where g ∈ G0, K is complex conjugation using the basis states generated by |(g, s)⟩i, and

τ(g) = 1 if Ug is antiunitary and τ(g) = 0 otherwise. We also define

F =
∏
j

X
(1,1)
j . (7.66)

Notice that all operators of the form X
(g,s)
j are fermion parity even.

Now that we have defined the symmetry operators, we will follow our usual procedure
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and break the symmetry spontaneously and completely using a Hamiltonian. We will choose

a Hamiltonian corresponding to the topological superconducting phase,

H =− J
∑
g∈G0

∑
i

UgZiZi+1U
g†

−K
∑
g∈G0

∑
i

Ug(−iγRiγLi+1)ZiZi+1U
g†. (7.67)

where J,K > 0 and

Zi|(g, s)⟩ = δg,1|(g, s)⟩. (7.68)

This Hamiltonian has a ground state |Ω; 1⟩ with the properties

Zi|Ω; 1⟩ = |Ω; 1⟩

−iγRiγLi+1|Ω; 1⟩ = |Ω; 1⟩ (7.69)

As usual, we define the other ground states by

|Ω; g⟩ = Ug|Ω; 1⟩. (7.70)

We are now equipped to define the domain wall states. The domain wall that lives between

sites j − 1 and j will be referred to as being at the location j. Define

|(g, 0)x⟩ = a
†
x(g)|Ω; 1⟩ (7.71)

where

a
†
x(g) =

∏
j≤x≤Y

X
(g,0)
j (7.72)
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where Y is some point that is far to the right.

To define the decorated single domain wall states, we will use the notation for the fermion

operators

γi =
∑

g ∈ G0U
gγLiZiU

g† (7.73)

This defines the decorated states

|(g, 1)x⟩ = γx|(g, 0)x⟩. (7.74)

The multidomain wall states are defined using these creation operators and fermion opera-

tors. In particular,

|(g, 0)1, (h, 0)2⟩ = a
†
1(g)a

†
2(g)(−iγRY )

λ(g,h)|Ω; 1⟩ (7.75)

7.8.2 Calculation of data

The fusion rules for this theory are

(g, 0)× (h, 0) = (gh, λ(g, h)) (7.76)

which gives ρ(g, h) = λ(g, h). To prove this, we will construct the splitting operators

S((g, 0), (h, 0)). In particular,

S((g, 0), (h, 0)) =
∑
k∈G0

UkX
g
2X

h−1

2 X
g−1

2 P
gh
2 Uk† (7.77)

where P
gh
2 projects on to the states |(gh, 0)⟩2, |(gh, 1)⟩2 at site 2. This is a symmetric

operator. We now show that it has the correct action on single domain wall states.

262



S((g, 0), (h, 0))|(gh, λ(g, h))1⟩

= X
g
2X

h−1

2 X
g−1

2 γ
λ(g,h)
1 a

†
1(gh)|Ω; 1⟩

= X
g
2X

h−1

2 X
g−1

2 γ
λ(g,h)
1 a

†
1(g)a

†
1(h)

 ∏
2≤i≤Y

(−iγLiγRi)

λ(g,h)

|Ω; 1⟩

= γ
λ(g,h)
1 a

†
1(g)a

†
2(h)

γL2(−i)γRY

∏
i≥2

(−iγRiγLi+1)

λ(g,h)

|Ω; 1⟩

= γ
λ(g,h)
1 a

†
1(g)a

†
2(h)(γL2(−i)γR2)

λ(g,h)|Ω; 1⟩

= a
†
1(g)a

†
2(h)(−iγR2)

λ(g,h)|Ω; 1⟩

= |(g, 0)1, (h, 0)2⟩ (7.78)

This proves that ρ(g, h) = λ(g, h). The domain wall creation operators are all fermion

parity indefinite, so one might worry that the above calculation is not well defined. However,

it is possible to truncate these operators at some finite point far to the right and generate

these states with fermion parity definite operators.

We now write down the movement operators for bare domain walls.

M
(g,0)
(n+1)n

=
∑
h∈G0

Uh(X
g)
n+1)

−1P
g
n+1U

h†

M
(g,0)
n(n+1)

=
∑
h∈G0

UhX
g)
n+1P

g
n+1U

h† (7.79)

These operators are symmetric. We now show that M
(g,0)
(n+1)n

has the correct action on single
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domain wall states

M
(g,0)
(n+1)n

|(g, 0)n⟩ = (X
g
n+1)

†a†n|Ω; 1⟩

= a
†
n+1|Ω; 1⟩

= |(g, 0)1⟩ (7.80)

Using these splitting and movement operators, we will choose

S̃(g, h) =
∑
k∈G0

UkX
g
2X

h−1

2 X
g−1

2 P
gh
2 Uk†γλ(g,h)1

M̃
g
(n+1)n

=
∑
h∈G0

Uh(X
g)
n+1)

−1P
g
n+1U

h†

M̃g =
∑
h∈G0

UhX
g)
n+1P

g
n+1U

h† (7.81)

Using Eqs. 7.75,7.78,7.81, we see that

S̃(g, h)|(gh, 0)1⟩ = a
†
1(g)a

†
2(h)(−iγRY )

λ(g,h)|Ω; 1⟩ (7.82)

Using Eq. 5.51, we can now compute ν(g, h, k) by defining the states

|1̃⟩ = M̃h
12M̃

g
01S̃(g, k)M̃

k
32S̃(gh, k)|(ghk, 0)1⟩

|2̃⟩ = M̃k
32

gS̃(h, k)M̃hk
12 M̃

g
01S̃(g, hk)|(ghk, 0)1⟩ (7.83)

We now simplify these states.
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|1̃⟩ = M̃h
12M̃

g
01S̃(g, h)M̃

k
32S̃(gh, k)|(ghk, 0)1⟩

= M̃h
12M̃

g
01S̃(g, k)M̃

k
32a

†
1(gh)a

†
2(k)(−iγRY )

λ(gh,k)|Ω; 1⟩

= M̃h
12M̃

g
01S̃(g, h)U

gh(Xk
3 )

−1Ugh†a†1(gh)a
†
2(k)(−iγRY )

λ(gh,k)|Ω; 1⟩

= M̃h
12M̃

g
01S̃(g, h)a

†
1(gh)a

†
3(k)(−iγRY )

λ(gh,k)|Ω; 1⟩

= M̃h
12M̃

g
01X

g
2 (X

h
2 )

−1(X
g
2 )

−1γ
λ(g,h)
1 a

†
1(gh)a

†
3(k)(−iγRY )

λ(gh,k)|Ω; 1⟩

= M̃h
12M̃

g
01X

g
2 (X

h
2 )

−1(X
g
2 )

−1γ
λ(g,h)
1 a

†
1(g)a

†
1(h)

F1a
†
3(k)(−iγRY )

λ(gh,k)|Ω; 1⟩

= M̃h
12M̃

g
01a

†
1(g)a

†
2(h)a

†
3(k)

γ
λ(g,h)
1 F1(−iγRY )

λ(gh,k)|Ω; 1⟩

= M̃h
12a

†
0(g)a

†
2(h)a

†
3(k)

(−iγRY )
λ(gh,k)+λ(g,h)|Ω; 1⟩

= a
†
0(g)a

†
1(h)a

†
3(k)

(−iγRY )
λ(gh,k)+λ(g,h)|Ω; 1⟩ (7.84)

We now simplify state |2̃⟩.
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|2̃⟩ = M̃k
32

gS̃(h, k)M̃hk
12 M̃

g
01S̃(g, hk)|(ghk, 0)1⟩

= M̃k
32

gS̃(h, k)M̃hk
12 M̃

g
01a

†
1(g)a

†
2(hk)(−iγRY )

λ(g,hk)|Ω; 1⟩

= M̃k
32S̃(h, k)M̃

hk
12 a

†
0(g)a

†
2(hk)(−iγRY )

λ(g,hk)|Ω; 1⟩

= M̃k
32

gS̃(h, k)a
†
0(g)a

†
1(hk)(−iγRY )

λ(g,hk)|Ω; 1⟩

= M̃k
32S((h, 0), (k, 0))

gγ
λ(h,k)
1 a

†
0(g)a

†
1(hk)(−iγRY )

λ(g,hk)|Ω; 1⟩

= M̃k
32a

†
0(g)S((h, 0), (k, 0))γ

λ(h,k)
1 a

†
1(hk)(−iγRY )

λ(g,hk)|Ω; 1⟩

= M̃k
32a

†
0(g)S((h, 0), (k, 0))γ

λ(h,k)
1 a

†
1(h)a

†
1(k)F1(−iγRY )

λ(g,hk)|Ω; 1⟩

= M̃k
32a

†
0(g)X

g
2 (X

h
2 )

−1X
g
2 )

−1a
†
1(h)a

†
1(k)(−iγRY )

λ(g,hk)+λ(h,k)|Ω; 1⟩

= M̃k
32a

†
0(g)a

†
1(h)a

†
2(k)(−iγRY )

λ(g,hk)+λ(h,k)|Ω; 1⟩

= a
†
0(g)a

†
1(h)a

†
3(k)(−iγRY )

λ(g,hk)+λ(h,k)|Ω; 1⟩

= a
†
0(g)a

†
1(h)a

†
3(k)(−iγRY )

λ(gh,k)+λ(g,h)|Ω; 1⟩

= |1̃⟩ (7.85)

Therefore,

ν(g, h, k) = 1. (7.86)

7.8.3 Stacking rules

We will now prove the stacking rule for two fermionic SPTs in (2+1)D with no Majorana

degrees of freedom. This will allow us to see how a theory transforms when stacked with the

Kitaev chain. Note that in the main text when η ̸= 0, we treated the case of λ = 0. In this

case, the Kitaev chain is trivial.
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The stacking rule for the super cohomological data is

ρ(g, h) =ρA(g, h) + ρB(g, h)

ν(g, h, k) =νA(g, h, k)νB(g, h, k)

(−1)ρA(gh,k)ρB(g,h)+ρA(g,hk)ρB(h,k) (7.87)

It can be shown that these data still meet the constraints

dρ = 0

dν = 1 (7.88)

In the stacked theory, we will use the fermion operators

γx = γAx (7.89)

where γAx , γ
B
x are the fermion operators in the A and B models, respectively.

The vacuum states take the form

|Ω; g⟩ = |Ω; g⟩A ⊗F |Ω; g⟩B (7.90)

where ⊗F is the stacking operation for fermionic theories and |Ω; g⟩A,B⟩ are the vacuum

states for A and B, respectively. The domain walls take the form

|(g, 0)x⟩ = |(g, 0)x⟩ ⊗F |(g, 0)x⟩

|(g, 1)x⟩ = γx|(g, 0)x⟩ (7.91)
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We will use the movement operators

M
(g,0)
x′x =M

(g,0)
A,x′xM

(g,0)
B,x′x (7.92)

This we can see that this is a valid movement operator as it is symmetric and

M
(g,0)
x′x |(g, 0)x⟩ =M

(g,0)
A,x′xM

(g,0)
B,x′x|(g, 0)x⟩ ⊗F |(g, 0)x⟩ (7.93)

=M
(g,0)
A,x′x|(g, 0)x⟩ ⊗F M

(g,0)
B,x′x|(g, 0)x⟩

∝ |(g, 0)x′⟩ ⊗F |(g, 0)x′⟩

∝ |(g, 0)x′⟩ (7.94)

If we have a valid splitting operator, then we know it must obey the following property

S((g, 0), (h, 0))|(gh, ρ(g, h))1⟩

∝ S̃A(g, h)S̃B(g, h)γ
ρ(g,h)
1 |(gh, ρ(g, h))1⟩ (7.95)

We will promote this proportionality to an equality by choosing the phase of the splitting

operator.

S((g, 0), (h, 0))|(gh, ρ(g, h))1⟩

= S̃A(g, h)S̃B(g, h)γ
ρ(g,h)
1 |(gh, ρ(g, h))1⟩ (7.96)

Recalling that S̃(g, h) ≡ S((g, 0), (h, 0))γ
ρ(g,h)
1 , one can show that

S̃(g, h)|(gh, 0)1⟩ ∝ S̃A(g, h)S̃B(g, h)|(gh, 0)1⟩ (7.97)

We now want to investigate the action of the operator gS̃(h, k) when acting on multi-domain
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wall states. We know that

gS̃(h, k)|(g, 0)0, (hk, 0)1, (l, 0)3⟩

∝ gS̃A(g, h)gS̃B(g, h)|(g, 0)0, (hk, 0)1, (l, 0)3⟩ (7.98)

We will now show that this proportionality is actually an equality by taking the inner product

of the left and right hand sides of the equation.

⟨(g, 0)0, (hk, 0)1, (l, 0)3|gS̃B(g, h)†

gS̃A(g, h)†gS̃(h, k)|(g, 0)0, (hk, 0)1, (l, 0)3⟩

= ⟨(hk, 0)1|(Ug)−1gS̃B(g, h)†gS̃A(g, h)†gS̃(h, k)Ug|(hk, 0)1⟩

= ⟨(hk, 0)1|S̃B(g, h)†S̃A(g, h)†S̃(h, k)|(hk, 0)1⟩

= ⟨(hk, ρ(h, k))1|γ
−ρ(h,k)
1 S̃B(g, h)†S̃A(g, h)†S(h, k)|(hk, ρ(h, k))1⟩

= 1 (7.99)

Where the last line follows from Eq. 7.96. Using the states in Eq. 5.51, we may therefore

write
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|1̃⟩ =M̃h
A,12M̃

h
B,12M̃

g
A,01M̃

g
B,01S̃

A(g, h)S̃B(g, h)M̃k
A,32M̃

k
B,32

· S̃A(gh, k)S̃B(gh, k)|(ghk)0⟩A ⊗F |(ghk)0⟩B

=(−1)ρA(gh,k)ρB(g,h)M̃h
A,12M̃

g
A,01S̃

A(g, h)M̃k
A,32

· S̃A(gh, k)M̃h
B,12M̃

g
B,01S̃

B(g, h)M̃k
B,32S̃

B(gh, k)|(ghk)0⟩A ⊗F |(ghk)0⟩B

|2̃⟩ =M̃k
A,32M̃

k
B,32

gS̃A(h, k)gS̃B(h, k)M̃hk
A,12M̃

hk
B,12M̃

g
A,01M̃

g
B,01

· S̃A(g, hk)S̃B(g, hk)|(ghk)0⟩A ⊗F |(ghk)0⟩B

=(−1)ρA(g,hk)ρB(h,k)M̃k
A,32

gS̃A(h, k)M̃hk
A,12M̃

g
A,01S̃

A(g, hk)M̃k
B,32

gS̃B(h, k)M̃hk
B,12M̃

g
B,01

· S̃B(g, hk)|(ghk)0⟩A ⊗F |(ghk)0⟩B

(7.100)

Taking the inner product between these two states, we obtain

ν(g, h, k) =⟨1̃|2̃⟩

=(−1)ρA(gh,k)ρB(g,h)+ρA(g,hk)ρB(h,k)

· ⟨(ghk, 0)1|A ⊗F ⟨(ghk, 0)1|BOAOB |(ghk, 0)1⟩A ⊗F |(ghk, 0)1⟩B (7.101)

where

OA = S̃A(g, hk)†(M̃g
A,01)

†(M̃hk
A,12)

†gS̃A(h, k)†(M̃k
A,32)

†M̃h
A,12M̃

g
A,01S̃

A(g, h)M̃k
A,32S̃

A(gh, k)

OB = S̃B(g, hk)†(M̃g
B,01)

†(M̃hk
B,12)

†gS̃B(h, k)†(M̃k
B,32)

†M̃h
B,12M̃

g
B,01S̃

B(g, h)M̃k
B,32S̃

B(gh, k)

(7.102)
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This allows us to simplify our expression for ν(g, h, k) to

ν(g, h, k) =(−1)ρA(gh,k)ρB(g,h)+ρA(g,hk)ρB(h,k)

· ⟨(ghk, 0)1|AOA|(ghk, 0)1⟩A⟨(ghk, 0)1|BOB |(ghk, 0)1⟩B

=(−1)ρA(gh,k)ρB(g,h)+ρA(g,hk)ρB(h,k)νA(g, h, k)νB(g, h, k) (7.103)

In particular, if we were to say that B is a Kitaev chain and A were some other system

with the same symmetry, this stacking would have the effect

ρA(g, h) → ρA(g, h) + λ(g, h)

νA(g, h, k) → (−1)ρA(gh,k)λ(g,h)+ρA(g,hk)λ(h,k)νA(g, h, k) (7.104)
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