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ABSTRACT

Fix a prime p ≥ 5. In this thesis we study the modularity problem of the Galois representa-

tion ρ̄ = 1⊕χ̄, where χ̄ is a cyclotomic character mod p and 1 is the trivial one. Assuming N

is a product of four distinct primes and p - N , we give a sufficient condition on N such that

there exists weight 2 level N newforms whose associated mod p representation is isomorphic

to ρ̄.

Our method is based on level-rising techniques using the geometry of Jacobian varieties of

Shimura curves (see e.g. [17]) and pseudodeformation theory (see e.g. [14]).
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CHAPTER 1

INTRODUCTION

1.1 background

Fix a prime p ≥ 5 and f a weight 2 level Γ0(M) newform with (p,M) = 1, it is well

known that a p−adic representation can be associated to f , denoted as ρf,p. The mod p

representation ρ̄f,p is unique after semisimplification. If ρ̄f,p is reducible, ρ̄f,p
∼= 1⊕χ̄, where

1 is the trivial character and χ̄ is the cyclotomic character mod p [3, Proposition 3.1]. ρ̄f,p

being reducible is equivalent to f being congruent to an Eisenstein series mod p.

If M is a single prime, in [9], Mazur proved that ρ̄f,p is reducible if and only if p|(M − 1).

Later, many cases for squarefree levels were studied. Ribet used level-rising methods [11, 10]

to prove some necessary and sufficient conditions. Yoo gave more sufficient conditions in

[17]. Wake and Wang-Erickson developed the deformation theory for pseudorepresentations

satisfying stable conditions in [12], and used this theory to study the analogue of Mazur’s

Eisenstein ideal with certain squarefree level in [13] and [14].

If the level M is a product of distinct primes, the eigenvalue of the Hecke operator Ur of

f is either −1 or 1 for each prime r with r|M . After arranging the order of prime factors,

M = r1 · · · rt. And fix d such that 1 ≤ d ≤ t, we are interested in the existence of a weight

2 newform of level M such that

• there is some prime ideal p above p inside the coefficient field Kf of f , and the reduction

of f at p is Eisenstein.

I.e as(f) mod p ≡ s+ 1 for all s -M

• Urif = f for all 1 ≤ i ≤ d and Urjf = −f for all d+ 1 ≤ j ≤ t

Definition 1.1. A t-tuple (r1, · · · , rt) of distinct primes is called admissible for d if such a

newform exists.
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The following theorem is the necessary condition due to Ribet [14, Theorem 1.2].

Theorem 1.1. (Necessary condition)

p ≥ 5 is a fixed prime, assume (r1, · · · , rt) is admissible for d, then

1. d ≥ 1

2. p divides
t∏
i=1

(ri − 1) if t = d

3. rj ≡ −1 mod p for d+ 1 ≤ j ≤ t

Many sufficient conditions are known, see e.g. [17, Theorem 1.3]. In this thesis, we study

particularly some sufficient condition for the case t = d = 4.

We assume M = lr1r2q with l ≡ 1 mod p to meet the necessary condition of (l, r1, r2, q)

being admissible.

Let D be r1r2, N be Dl, and TD(l)new be the Zp Hecke algebra generated by Ts with

s - N and Ur with r|N acting on the new part of the Jacobian JD(l) of the Shimura curve

XD(l). Let I := (Ur − 1 : r|N, Ts − (s+ 1) : s - N) ⊂ TD(l)new, and m := (I, p)

Theorem 1.2. [17, Theorem 6.4] Assume p ≥ 5 and l ≡ 1mod p, if Tq − q − 1 is not a

generator of Im in TD(l)
new
m , then {r1, r2, l, q} is admissible for t = d = 4.

As in Wake and Wang-Erickson’s paper [14], we can study the generators of Eisenstein

ideal using pseudodeformation theory.

1.1.1 pseudorepresentation and R = T

Recall N = Dl, there is a unique weight 2 level Γ0(N) Eisenstein series (up to scalar) such

that it is an eigenform for every Ts with s - N and Ur acts by 1 for every r|N , denoted by

E. And E ∈M2(Γ0(N),Qp).

The space M := QpE ⊕ S2(Γ0(N),Qp)new.

T is the Zp Hecke algebra generated by {Ts, Ur} acting on M localized at m = (Ts − s− 1 :
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s - N,Ur − 1 : r|N, p).

I := (Ts − s − 1, Ur − 1) ⊂ T is the Eisenstein ideal. The cuspidal part of T is denoted

by T ◦ which is the localized Hecke algebra acting on S2(Γ0(N),Qp)new, while the ideal

I◦ := (Ts − s− 1, Ur − 1) ⊂ T ◦ is the image of I.

And from Jacquet-Langlands, T ◦ is isomorphic to TD(l)new
m mentioned above. I◦ ⊂ T ◦

corresponds to Im ⊂ TD(l)new
m .

The question becomes whether Tq − (q + 1) generates the Eisenstein ideal I◦.

On the other hand, we consider the pseudodeformation functor. We define a functor

PsDefD̄,N which sends A to the set of pseudorepresentations D : GQ,S → A which lifts

D̄ := det(1⊕ χ̄) and is finite-flat at p and Steinberg at r|N . This functor is represented by

RN . For detailed definition, check 2.5.

1.2 results

Theorem 1.3. Assume l ≡ 1 mod p, r1, r2 6≡ 1 mod p and r1 is not a p-th power mod l,

1. There is an isomorphism RN
∼→ T .

2. The localized Eisenstein ideal I◦ ⊂ T ◦ is principally generated. Thus T ◦ is monogenic.

3. Furthermore, we assume q ≡ 1 mod p and R := ra1r2 for some 0 ≤ a ≤ p− 1 such that

R is a p-th power mod l, if R is also a p-th power mod q then Tq − (q + 1) does not

generate I◦. Thus the 4−tuple (l, r1, r2, q) is admissible for d = 4.

Idea of proof:

RN → Zp is the map giving rise to the pseudorepresentation induced from the Galois

representation associated with the Eisenstein series E. Jmin is the kernel of the map.
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We compute the sizes

#(
Jmin

(Jmin)2
) ≤ #(

Zp
(l − 1)Zp

) = #(
Zp

AnnT (I)
)

and apply Wiles’ criterion to show RN
∼→ T .

Then we study in details the tangent space of RN , which is a 1-dimensional Fp-vector space.

We explicitly construct a GMA representation which is finite-flat at p and Steinberg at r

with r|N .

Then Tq− (q+ 1) generates I◦ is equivalent to tr(Frobq)− (q+ 1) generates Jmin, the latter

can be computed through the explicitly constructed GMA representation.

Example 1.1. Let (l, r1, r2) = (11, 2, 3), N = 66 and p = 5.

R is r2
1r2 = 12 in this case, q = 211, 271, 431 with q < 500 are all the primes such that R is

a 5-th power mod q.

There is a unique normalized newform f in S2(Γ0(66),Q5)new congruent to E. The coefficient

field for f is Q.

The localized Hecke algebra T ◦ ∼= Z5, and localized Eisenstein ideal I◦ ∼= 5Z5. For this toy

example, ηq does not generate I◦ if and only if aq(f) ≡ (q + 1) mod p2.

The latter condition holds for q = 211, 271, 431.

Example 1.2. Assume (l, r1, r2) = (101, 2, 3), p = 5, then N = 606.

In this case, T ◦ ∼= Z5 ×F5
Z5[
√

6]. The latter ring is

{(a, b) ∈ Z5 × Z5[
√

6]|a mod 5 ≡ b mod (5, α− 1)}

here α is one root of x2 − 6 = 0.

From part 3 of above theorem R = 6. Let q = 31, then R is p-th power mod q, and

T31 − (31 + 1) does not generate T ◦.

For details of the example, check example 5.2.
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CHAPTER 2

DEFORMATION THEORY FOR

PSEUDOREPRESENTATIONS

This chapter covers definitions and basic properties of pseudorepresentations. The main

references are [6],[2], [15].

2.1 Pseudorepresentation

In the deformation theory of usual Galois representations, if the residue representation is

decomposable, its functor of deformations is not representable. It is natural to replace

representations by pseudorepresentations.

Definition 2.1. Let R be a commutative ring, E an R−algebra, and G a group.

1. A pseudorepresentation, denoted D : E → R is a multiplicative polynomial law of

degree d, for some d ≥ 1. To be more precise,

For each commutative R-algebra B, there is a map PB

PB : E ⊗R B → B

such that

• PB(1E⊗RB) = 1B

• PB is multiplicative.

PB(xy) = PB(x)PB(y)for all x, y ∈ E ⊗R B

• All {PB}B are compatible, i.e for any R algebra map B → B′, the diagram below
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commutes:

E ⊗R B B

E ⊗R B′ B′

PB

PB′

• homogeneous of degree d

For all b ∈ B and x ∈ E ⊗R B

PB(bx) = bdPB(x)

2. Fix a pseudorepresentation (E,D), for every B and every a ∈ E⊗B, the corresponding

characteristic polynomial χB(a, t) ∈ B[t] is given by

χB(a, t) := PB[t](t− a) : E ⊗B[t]→ B[t]

Notation: use χB(a) to denote χB(a, a) ∈ B.

3. Specially if E = R[G], the R- group algebra , then (D,R) defined as above is also

called a pseudorepresentation of G.

Example 2.1. Consider the R algebra map det(ρ) : R[G] → R induced from the determi-

nant map of a degree d group representation ρ : G→ GLd(R). It is a pseudorepresentation

of degree d. And the characteristic polynomial for each element is the characteristic poly-

nomial for the representation. The induced pseudorepresentation will be the same after

semi-simplification of ρ.

Example 2.2. Pseudorepresentations of small degrees:

• degree 0

For any B and any x in E ⊗R B, PB(0) = PB(0 · x) = PB(x) because of homogeneity.

PB(0) = PR(0). Because of multiplicity, PR(0) = PR(0)2.
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Fix E and R, there is a bijection between the set of pseudorepresentation of degree 0

and the set of idempotents elements in R induced by D → P (0).

In this case, the characteristic polynomial is

χB(a, t) = P (0)

• degree 1

Being homogeneous of degree 1 implies PB(u+ v) = PB(u) + PB(v) 1. Together with

multiplicity, we can conclude PB is an B-algebra homomorphism. There is a bijection

between the set of pseudorepresentation of degree 1 from E to R and the set of R-

algebra homomorphism from E to R given by D → PR.

The characteristic polynomial is χB(a, t) = t− PB(a).

• degree 2:

Similarly as before, PB is uniquely determined by PR, which is given as

PB(u+ v) = PB(u) + PB(v) + fB(u, v) PB(bu) = b2PB(u)

Here fB(u, v) is a B-module homomorphisms : Sym2
B(E ⊗B)→ B, and it is uniquely

determined by fR.

The characteristic polynomial χB(a, t) = t2 − fB(a, 1)t + PB(a). The proof idea is

similar to degree 1 case. 2

1. Consider B′ = B[X,Y ] and fixed u, v ∈ E ⊗ B, PB(uX + uY ) as a polynomial Q(X,Y ) satisfying
Q(λX, λY ) = λQ(X,Y ) for all λ ∈ B, thus Q(X,Y ) = a(u, v)X + b(u, v)Y . Set (X,Y ) = (1, 1), (1, 0), (0, 1),
we have PB(u+ v) = PB(u) + PB(v)

2. Interested in PB(u+ v). We can consider B′ = B[X,Y, Z], for any fixed u, v, s PB′(uX + vY + sZ) as
a polynomial in B′ is homogeneous of degree 2. By symmetries,

PB′(uX + vY + sZ) = PB(u)X2 + PB(v)Y 2 + PB(s)Z2 + f(u, v)XY + f(v, s)Y Z + f(s, u)ZX

Setting (X,Y, Z) to be (1, 1, 0) and other special values, we can derive f(u, v) is symmetric and B−bilinear.
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Lemma 2.1. [6, example 1.8,lemma 1.9]

• The set of degree 2 pseudorepresentations from E to R is bijective to P : E → R and

an R−module homomorphism f : Sym2
RE → R satisfying:

1. P (1E) = 1R

2. P is multiplicative and P (au) = a2P (u) for a ∈ R and u ∈ E

3. P (u+ v) = P (u) + P (v) + f(u, v)

4. f(1, 1) = 2

5. f(ru, rv) = P (r)f(u, v) and f(ur, vr) = f(u, v)P (r) for all r, u, v ∈ E

6. f(u, u′)f(v, v′) = f(uv, u′v′) + f(uv′, u′v) for all u, v, u′v′ ∈ E

• Especially when E := R[G], set T (g) := f(g, 1) and D(g) := P (g) for g ∈ G. The

bijective set consists of maps (T,D) from G to R satisfying:

1. D : G→ R× is a group homomorphism

2. T : G→ R is a map with T (1) = 2, and for all g, h ∈ G:

(a) T (gh) = T (hg)

(b) D(g)T (g−1h)− T (g)T (h) + T (gh) = 0

• Furthermore, if 2 is invertible in R, we can recover D from T as

D(g) =
T (g)2 − T (g2)

2

. In this case, the bijection becomes an R−linear map T : E → R satisfying

1. T (1) = 2

2. T (gh) = T (hg)

3. T (x)T (y)T (z)− T (xy)T (z)− T (xz)T (y)− T (yz)T (x) + T (xyz) + T (xzy) = 0

8



Proof. For the details, check [6, example 1.8,lemma 1.9].

The second part of the proof. f(g, h) = T (h)T (g) − T (hg) by setting u′, v′ as 1. Also

f(g, h) = D(g)T (g−1h)

Remark 2.1. 1. The last equivalence is the definitions of pseudocharacters in many lit-

eratures.

2. For usual 2-dimensional group representations, T is the trace map.

2.1.1 Cayley-Hamilton algebra

Definition 2.2. (E,D) is a pseudorepresentation over R, we call (E,D) a Cayley-Hamilton

R-algebra if E is a finitely generated R algebra and for every commutative R−algebra B and

every u ∈ E ⊗R B, u satisfies the characteristic polynomial χB(u, t) ∈ B[t], i.e χB(u) = 0.

Example 2.3. If (E,D) is (Matd(R), det), then it is Cayley-Hamilton algebra because of

Cayley-Hamilton Theorem.

More general pseudorepresentations are not necessarily Cayley-Hamilton, but there is a

canonical Cayley-Hamilton quotient.

(E,D) is a pseudorepresentation over R of degree d. We use CH(D) ⊂ R to denote the

two-sided ideal of R generated by the coefficients

χ(t1r1 + · · ·+ tnrn) ∈ E[t1, ..., tn]

with any r1, ..., rn ∈ E and any n ≥ 1.

We can claim (E,D) is Cayley-Hamilton if and only if CH(D) = 0. In degree 2 case, it

suffices to show that CH(D) is also the ideal generated by χR(u) for all u ∈ E. To see this,

we introduce some facts.
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Facts 2.1. • [15, definition 1.1.8.4]

The characteristic polynomial χ(u) for (E,D) over R χ(u) is a homogeneous degree d

R polynomial law.

• [15, definition 1.1.2.14, proposition 1.1.2.16]

χ(t1r1 + · · ·+ tnrn) is a homogeneous degree 2 polynomials in t1 . . . tn.

For one direction, let n = 1 and t1 = 1 we have χR(u) ∈ CH(D). For other direction,

we can plug in special values like(t1, t2 . . . tn) = (1, 1, 0 . . . 0).

Definition 2.3. The kernel of a pseudorepresentation (E,D), denoted by ker(D), is the set

ker(D) = {r ∈ E|for any B and any r′ ∈ E ⊗R B any b ∈ B,DB(r ⊗ b+ r′) = DB(r′)}

Theorem 2.1. 1. ker(D) is an ideal of E and CH(D) ⊂ ker(D)

2. D : E → R factors through ker(D), and E/ker(D) → R is faithful. E/CH(D) is

Cayley-Hamilton.

Proof. For the detailed proofs check [6, section 1.17]. Here we only give proofs in d = 2 and

2, 3 are invertible in R.

In this case, DB is uniquely determined by DR, as DR ⊗B. For the equation of the kernel,

it suffice to only require B = R.

r ∈ ker(D) ⇐⇒ D(r + r′) = D(r′) ⇐⇒ D(r) + T (r)T (r′)− T (rr′) = 0 for all r′

r′ = 1 implies D(r) = −T (r), r′ = r implies 3D(r) = 0, thus r ∈ ker(D) implies T (r) = 0

furthermore T (rr′) = 0 for all r′.

In summary, ker(D) ∼= {r ∈ E|T (rr′) = 0 for all r′}.

Other claims follows.
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Next, we will discuss a special example of Cayley-Hamilton algebra.

Definition 2.4. A generalized matrix algebra over R (or R−GMA) is the data of

1. An R-algebra E that is finitely generated as an R-module

2. A set of orthogonal idempotents e1, ..., er ∈ E such that
∑
i ei = 1

3. A set of isomorphisms of R-algebra φi : eiEei
∼→Mdi(R) for i = 1, ..., r

E := ({ei}, {φi}) is called the GMA structure of E. And we call (d1, ..., dr) the type of

(E,E).

For example, the matrix algebra Mn(R) can be viewed as a R−GMA of type (d1, ..., dr)

as long as
∑
di = d.

Example 2.4. [12, Lemma 3.1.5 Example 3.1.7] There is a bijection between R−GMA

(E,E) of type (1, 1) and triples (B,C,m) where B,C are finitely generated R−modules and

m : B ⊗R C → R is an R−module homomorphism such that

B ⊗R C ⊗R B B ⊗R R

R⊗R B B

id⊗(m◦ι)

m⊗id

C ⊗R B ⊗R C C ⊗R R

R⊗R C C

id⊗m

(m◦ι)⊗id

commute.

Here ι : C ⊗R B → B ⊗R B is the isomorphism given by b⊗ c→ c⊗ b.

The R-GMA associated to a triple (B,C,m) is

E =

R B

C R



The idempotents in E is e1 =

1 0

0 0

 and e2 =

0 0

0 1

.
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The algebra structure of E is given by the matrix multiplication with m : B ⊗C → R. The

commutative diagram guarantees the associativity of the multiplication of E.

For the other direction of the bijection, for an R−GMA (E,E), let B := e1Ee2 and C :=

e2Ee1, and m : B ⊗ C → R is given by the multiplication in E as m(e1xe2, e2ye1) =

φ1(e1xye1) ∈ R.

Example 2.5. a nontrivial-GMA structure

R = Zp, B = Zp and C = Zp ⊕ Z/pZ and m : B ⊗ C → Zp defined as m(b⊗ (c, c′)) = pbc.

For a given R-GMA structure (E,E), there is a canonical CH pseudorepresentation

DE : E → R such that

TrDE
(x) = TrE(x) :=

r∑
i

tr(φi(eixei))

2.2 Representations of (E,D)

(E,D) is a d-dim pseudorepresentation over R, A is a commutative R-algebra.

Definition 2.5. A compatible representation of (E,D) over A is a pair (VA, ρA), with VA

a projective A-module of rank d and ρA : E⊗RA→ EndA(VA) a A-algebra homomorphism

such that D⊗A = det ◦ ρA.

Definition 2.6. A Cayley-Hamilton representation (or CH-representation for short) (resp.

GMA representation) of (E,D) over A is a pair ((E′, D′), ρA), with (E′, D′) a A-CH algebra

(resp. A-GMA algebra) and ρA : E ⊗ A → E′ a A-algebra homomorphism such that

D ⊗R A = D′ ◦ ρA.

In particular, for a group G, a Cayley-Hamilton representation (or CH-representation for

short) of dimension d over A is a ((E,D), ρ with (R,D) a CH d− dim pseudorepresentation

and ρ : G→ E∗ is a group homomorphism. Similarly we can define GMA representation for

a group G.
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2.2.1 deformation problems

Notations:

k is a finite field, and W (k) is the ring of Witt vectors.

AlgW (k) is the category of commutative W (k) algebra

ĈW (k) ⊂ AlgW (k) be the category of complete Noetherian local W (k) algebras (A,mA) with

residue field k.

Next, we introduce various deformation functors of pseudorepresentations.

PsRdG is a functor from AlgW (k) to Sets defined as for any algebra A, PsRG(A) is the set of

all dimension dpseudorepresentations of G over A.

To save notation, we may also use PsRdG to denote the category with objects being (A, (A[G], D))

with A a commutative W (k)-algebra, and D : A[G] → A a dim−d pseudorepresentation;

with arrows (A, (A[G], D))→ (A′, (A′[G], D′)) f : A→ A′ compatible with pseudorepresen-

tations, f ◦D = D′.

The category RepdG is the usual category of dim-d representation of G.

The category CHd
G has objects being d-dim CH-representations of G over A, a commuta-

tive W (k)− algebra, and arrows (A1, (E1, D1), ρ1) → (A2, (E2, D2), ρ2) pairs (f, g) with a

W (k)−algebra homomorphism f : A1 → A2, g : E1 → E2 ring homomorphism compatible

with A1 and A2 algebra structure, ρ2 = g ◦ ρ1 and f ◦D1 = D2 ◦ g.

Definition 2.7. Fix a pseudorepresentation D̄ : G → k. Its deformation functor PsDefD̄ :

ĈW (k) → Sets is

A→ {D : A[G]→ A such that D ⊗A k ∼= D̄}

and elements of PsDefD̄(A) are called pseudodeformation.

PsDefD̄ is a subfunctor of PsRdG above. Similarly, CHd
G,D̄

is a subcategory of CHd
G

having objects (A, (E,D)) satisfying D ⊗ k ∼= D̄. Below is a summary of representability of
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functors defined above:

Theorem 2.2. 1. [6, Proposition 1.6]

PsRdG is represented by a W (k)-algebra, denoted by W (k)(G, d). And the universal

pseudorepresentation is Du : W (k)(G, d)[G]→ W (k)(G, d).

2. [6, Proposition 1.23]

(W (k)(G, d), (Eu, Du), ρu) is the initial object of CHd
G. Here Eu := W (k)(G, d)[G]/CH(Du).

3. Above two statements also holds for PsRd
G,D̄

and CHd
G,D̄

.

[6, Theorem 2.12] claims that for a d− dim pseudorepresentation D : E → k̄ with k̄ an al-

gebraically closed field, there exists a unique, up to isomorphism, semi-simple representation

ρss : E →Md(k̄) such that D = det ◦ ρ and kerρss = ker(D).

Definition 2.8. Fix a field k, a pseudorepresentation D̄ : E → k is multiplicity-free if

ρss
D̄⊗k̄, defined as above, has pairwise non-isomorphism simple factors and each of the factors

is defined over k.

Theorem 2.3. [15, Theorem 3.2.2] Let D̄ : G → k be multiplicity-free, and (d1, · · · , dr)

be the dimensions of the simple factors of ρss
D̄

. Let R be a Noetherian Henselian local ring

with residue field k, and let (E,D, ρ) CH representation over R lifting D̄, then there is an

R-GMA structure E of type (d1, · · · , dr) on E such that D = DE.

Remark 2.2. The ”multiplicity-free” condition is necessary. Check one counter example

below.

Some reasons why CH-representations are introduced:

• ψ : CHd
G → PsRdG extends the functor det : RepdG → PsRdG.
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• The functor ψ defined above is essentially surjective, i.e fix a pseudorepresentation

(E,D) over R, it always has a CH representation given by (E/CH(D), D), while det

is not essentially surjective. One example is given below.

• Restricted to the subcategory of residually multiplicity-free pseudorepresentation over

a local Henselian UFD, the functor det above is essentially surjective. For details,

check [2, Proposition 1.6.1]. One counter example (not satisfying UFD condition) is

given below.

2.2.2 Example

Example 2.6. (a CH representation but not a GMA representation)

The representation ρ̄ of G = Z/3Z over F3 comes from the standard representation of S3,

and with chosen basis, ρ̄(1) =

1 1

0 1

.

The pseudorepresentation (E,D) = (F3[Z/3Z], det) induced from this representation is char-

acterized by the trace map T : F3[Z/3Z]→ F3 with T ([0]) = T ([1]) = T ([−1]) = 2. Here we

use [i] to denote the element in Z/3Z.

This pseudorepresentation is not faithful. Because

ker(D̄) = F3([0]− [1]) + F3([0]− [−1])

E → E/ker(D̄)
∼→̄
D

F3 is the map a[0] + b[1] + c[−1]→ a+ b+ c→ (a+ b+ c)2. The unique

ρss giving rise to D̄ is

ρss : Z/3Z→ GL2(F3) mapping [1]→ id
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Thus (E, D̄) is not multiplicity-free. And it is not CH.

CH(D̄) = F3([0] + [1] + [−1]) ⊂ ker(D̄)

It maximal CH quotient (E/CH(D̄), D̄) has no GMA-structure.

E/CH(D̄) ∼= F3 ⊕ F3 as F3-module. Only possible GMA-structure is of type (1, 1). The

algebra homomorphism F3[ρ] : E → M2(F3) factors as E → E/CH(D̄) ↪→ M2(F3). The

only nontrivial idempotents in M2(F3) are

1 0

0 0

 and

0 0

0 1

 which are not in the image

of F3[ρ]. Thus no GMA-structure on E/CH(D̄).

Example 2.7. (Toy example of a universal pseudodeformation ring) Consider the pseudorep-

resentation (D̄ : F3[Z/3Z]→ F3) defined in above example. We will compute PsR2
Z/3Z,D̄

.

Any dim 2 pseudorepresentation of Z/3Z over A is uniquely determined by the trace map

T , more specifically determined by T ([1]) and T ([−1]) (T (0) automatically is 2).

Thus we can first construct a universal ring Ru representing functor PsR2
Z/3Z, and Ru =

Z3[X, Y ]/J , where ideal J is generated by X3 − 3XY + 4, Y 3 − 3XY + 4, X2Y − Y 2 −

2X,XY 2 −X2 − 2Y . Here X, Y correspond to T ([1]), T ([−1]).

Let D = (X2−Y )/2, using Grbner basis Ru ∼= Z3[X,D]/(X2−D2X−2D,D3−1). Here D

corresponds to determinant of [1]. The trace map Tu of the universal pseudorepresentation

(Ru[Z/3Z], Du) is the Ru-linear map determined by Tu([1]) = X and Tu([−1]) = X2− 2D.

Ru is not a UFD, because X2 −D2X − 2D = X2 −D2X − 2D4 = (X − 2D2)(X +D2).

CH(Du) is the ideal generated by [−1]−X[1] +D[0]. And ker(Du) = CH(Du) in this case.

The detailed computations are below:

CH(Du) is the ideal generated by χ(r) = r2 − T (r)r +D(r)[0] for every r ∈ Eu. From the
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equality of pseudorepresentation D(a+ b) = D(a) +D(b) + T (a)T (b)− T (ab), we have

χ(a+ b) = χ(a) + χ(b) + 2ab− T (a)b− T (b)a+ T (a)T (b)− T (ab)

By writing general r as linear combinations of [0], [1], [−1], we can show CH(Du) is generated

by χ([1]).

ker(Du) is all r = a[0] + b[1] + c[−1] such that T (rr′) = 0 for all r′. It suffices to show for

r′ ∈ Z/3Z. In the middle of computations, it uses

(DX − 2)r = 0 ⇐⇒ r ∈ ideal (DX + 1) ⊂ Ru

Next, we compute Ru
D̄

.

The residue pseudorepresentation D̄ corresponds to the maximal ideal m := (3, X+1, D−1).

PsDefD̄ is represented by R̂um, the completion of Ru at the maximal ideal. The universal

pseudorepresentation is (Êu := R̂um[Z/3Z], D̂u), and ker(D̂u) = CH(D̂u) is the ideal gener-

ated by [−1]−X[1] +D[0].

In this case, there is no GMA-structure on Êu/CH(D̂u) (as a R̂um module, it is free of rank

2). If GMA structure exists, there is an idempotent e corresponding to

1 0

0 0

 whose trace

is 1. No such element exists.

In this case, there is no adapted representation for (Êu, D̂u) over R̂u. If there is one, con-

sider the pseudorepresentation over (F3[ε]/(ε2)) induced by the map f : R̂um → F[ε]/(ε2)

with f [X] = ε − 1, f [D] = 2ε + 1. This induced pseudorepresentation will have adapted

representation ρ : F3[ε]/(ε2)[Z/3Z] → M2(F3[ε]/(ε2)). Assume ρ([1]) = A + εB, there is no

solution for A and B.

Example 2.8. (Toy example where the universal CH algebra has a GMA-structure)

Consider the standard representation of S3 over F3. Fix two generators σ = (1, 2, 3) and
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τ = (1, 2) of S3, and basis of F3 vector space {e1, e2} with gei = eg(i), this representation

(ρ, V ) has an exact sequence

0→ Id→ V → χ̄→ 0

with nontrivial ¯χ : S3 → Z/2Z→ F3.

Its induced pseudorepresentation is multiplicity free.

• Compute PsR2
G,D̄

:

Any pseudo representation of S3 over R is uniquely determined by R−linear trace

function T , because of T being central, T (g) = T (g′) if g and g′ are in the same con-

jugate class of S3. Thus T is uniquely determined by T (σ) and T (τ). Similarly as

above example, PsR2
G is represented by Z3[x, y]/I with ideal I = ((x−2)(x+ 1), y(x−

2), y(y − 2)(y + 2)). The maximal ideal corresponding to D̄ is m = (3, x+ 1, y). Thus

PsR2
G,D̄

is represented by Ru := Z3[[x]]/(x− 2)(x+ 1).

• Construct the GMA−structure:

Du : Ru[S3]→ Ru is not CH, its CH(Du) is generated by a single element σ+σ2−x.

And CH(Du) = Ker(Du). Thus as a Z3-module, Eu/CH(Du) ∼= Z3[S3].

According to the general theorem, there is a GMA−structure. For explicit construc-

tions, we need to find idempotents. Consider Eu/Ker(D̄) ∼= F3⊕F3, then from general

theorem the idempotents in Eu/Ker(D̄) can always be lifted to Eu/CH(D). Ker(D̄)

viewed as an ideal in Eu/CH(D) is generated by 3, 1 − σ. Thus Eu/Ker(D̄) as a F3

vector space has 1, τ as basis. Its idempotents are 1
2(1 + τ) and 1

2(1 + τ), which can

be lifted to Eu/CH(D) (they are already in).

In this case, B = e1E
u/CH(D)e2 = Z3(σ2 − σ)(1 + τ) which is a Ru-module with x

acting by σ + σ2. And C = e2E
u/CH(D)e1 = Z3(σ2 − σ)(τ − 1). m : B ⊗ C → Ru is
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determined by m(b⊗ c) = Trace(bc) = 4(2− x).

2.3 reducible locus of PsR2
G,D̄

In this section we only consider the case where R is in ĈW (k), (E,D) is a 2−dim residually

multiplicity free pseudorepresentation. Its residual pseudorepresentation is D̄ ∼= det(χ̄1⊕χ̄2).

Furthermore assume (E,D) has a GMA−structure of type (1, 1), denoted as E ∼=

R B

C R

.

Definition 2.9. (E,D) is reducible if there are two R−algebra morphism

χi : E → R i = 1, 2 lifting χ̄i such that

D ∼= det(χ1 ⊕ χ2)

Remark 2.3. If (E,D) is has GMA-structure of type (1, 1), then the trace map restricted

to eiEei (i.e. T|eiEei) is a R−algebra homomorphism.

Furthermore, if we assume (E,D) is reducible with D̄ ∼= det(χ̄1 ⊕ χ̄2), then {e1, e2} can be

chosen such that χ1(x) = χ1(e1xe1) = T (e1xe1) for all x ∈ E. The reasons are below:

For the first part, because of D(eiEei) = 0,

0 = D(ei(x+ y)ei)−D(eixei)−D(eiyei) = T (eixei)T (eiyei)− T (eixeiyei)

For the second part, consider (Ē, D̄), {ē1, ē2} are idempotents coming from E. We can label

ei such that χ̄i(ei) = 1 because only idempotents in a field are 0 and 1.

χ1(x) = χ1(e1xe1) + χ1(e2xe2) + χ1(e1xe2) + χ1(e2xe1) for any x ∈ E
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The later two are 0 because e1e2 = 0. After mod maximal ideal m, χ1(e2xe2) ∈ m.

1 = T (e2) = χ1(e2) + χ2(e2)

Thus χ2(e2) is a unit in R, and χ2(e2)(χ2(e2) − 1) = 0, thus χ2(e2) = 1,. Similarly,

χ1(e1) = 1. Thus T (e1xe1) = χ1(e1xe1) + χ2(e1xe1) = χ1(e1xe1).

Lemma 2.2. There exists an ideal I of R such that for any ideal J of R, I ⊂ J if and only

if (E,D)⊗R/J is reducible. Moreover,

I = image ideal of m : B ⊗R C → R

I does not depend on choices of the GMA−structure.

Proof. For detailed proof, check [2, Proposition 1.5.1]

Fix a ideal J containing I, then there is χi : E/J → R/J (unique up to isomorphism).

Theorem 2.4. Fix a GMA−structure on E, there is a natural bijective map of R/J−

modules

ιB : HomR(B,R/J)
∼=−→ Ext1E/JE(χ2, χ1)

ιC : HomR(C,R/J)
∼=−→ Ext1E/JE(χ1, χ2)

Proof. For each f ∈ HomR(B,R/J), define ρf : E/JE →M2(R/J) as

a b

c d

→
a f(b)

0 d


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We can check that ρf is an algebra homomorphism. The construction is injective.

To check the subjectiveness, consider a E/J-module V in the extension class, ρ : E/J →

M2(R/J) written as

χ1 f

0 χ2

 with f : E/J → R/J .

We claim that ρ can be chosen such that f(x) = f(e1xe2), thus can be viewed as a R/J-

module map B/J → R/J .

To see above claim:

f(x) = f(e1xe1 + e2xe2 + e1xe2 + e2xe1)

Because of the cocycle property of f and χi(ei) = 1, we have f(e2xe1) = 0 and f(eixei) =

χi(x)f(ei).

f(x) = χ1(x)f(e1) + χ2(x)f(e2) + f(e1xe2)

By changing new basis, we can choose f such that f(e1) = 0, which implies f(e2) = 0 =

f(id)− f(e1).

For the universal pseudodeformation (Ru[G], Du) over Ru lifting a multiplicity-free D̄ =

det(χ̄1 ⊕ χ̄2) of a group G, Rred := Ru/I with I the reducible ideal defined above.

Eu is the initial CH representation. Ered := Eu ⊗Ru Rred =

Rred Bred

Cred Rred

.

Remark 2.4. As a R-module homomorphism m : Bred ⊗R Cred → I/I2. This is not

contradicting with the fact that mred, the Rred-module homomorphism map appearing in

the GMA-structure of Ered, is 0. Here mred : Bred⊗Rred Cred → Rred can be viewed as the

above m tensoring with Rred over R, which is 0.

Theorem 2.5. 1. Rred is the universal deformation ring for the functor sending A to the

set of reducible pseudo deformations of G over A.

There is a canonical isomorphism Rred ∼= Rχ̄1⊗̂Rχ̄2 with Rχ̄i the universal deformation

ring of χ̄i.
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2. Ered is initial among all the reducible GMA-representation. To be more precise, if

ρ : G → (E,D) is a GMA−representation of G over R lifting D̄, then the resulting

GMA map (Eu, Du)→ (E,D) factors through (Ered, Dred) if and only if ρ is reducible.

3. Furthermore, A ∈ C and M is a finitely generated A−module, and χi,A : G→ A× is a

character lifting χ̄i. There is a natural isomorphism

HomA(Bred ⊗Rred A,M)
∼→ Ext1G(χ2,A, χ1,A ⊗M)

Similar isomorphism is true for Cred.

2.4 tangent space of the pseudodeformation functor

In this section, we only consider the dimension 2 case and the residue pseudodeformation is

induced by two characters. For more general discussion on tangent space, check [1].

Fix k[ε] with ε2 = 0, and D̄ = det(χ̄1 ⊗ χ̄2), χi distinct characters of group G.

The set of pseudorepresentations of G over k[ε] (HomW (k)−alg(R
u, k[ε])), denoted by T is

naturally k-vector space.

The k-vector space structure is induced by the algebra homomorphism α : k[ε]→ k[ε] sending

ε to αε with α ∈ k.

There is a filtration of T, 0 ⊂ T0 ⊂ T. Here T0 is the set of reducible pseudorepresentations

of G over k[ε], i.e. Hom(Rred, k[ε]).

Theorem 2.6. There is an exact sequence

0→ T0 → T
f→ Ext1G(χ̄2, χ̄1)⊗ Ext1G(χ̄1, χ̄2)

h→ Ext2G(χ̄1, χ̄1)⊕ Ext2G(χ̄2, χ̄2)

and T0
∼= Ext1G(χ̄1, χ̄1)⊕ Ext1G(χ̄2, χ̄2)
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Remark 2.5. • Recall the basic fact about Ext and cohomology.

ExtiG(χ, χρ) ∼= ExtiG(1, ρ) ∼= Hi(G, ρ)

The explicit definition for Exti:

Z1
G(χ̄1, χ̄2) := {a : G→ k|a(gg′) = χ̄2(g)a(g′) + a(g)χ̄1(g′)∀g, g′ ∈ G}

B1
G(χ̄1, χ̄2) := {a : G→ k|a(g) = χ̄2(g)A− Aχ̄1(g) ∃A ∈ k∀g ∈ G}

Z2
G(χ̄1, χ̄2) := {b : G×G→ k|χ̄2(g)b(g′, g′′)−b(gg′, g′′)+b(g, g′g′′)−b(g, g′)χ̄1(g′′) = 0∀g, g′, g′′ ∈ G}

B2
G(χ̄1, χ̄2) := {b : G×G→ k|∃ a : G→ ks.t. b(g, g′) = a(gg′)−χ̄2(g)a(g′)−a(g)χ̄1(g′)}

ExtiG(χ̄1, χ̄2) is defined as ZiG(χ̄1, χ̄2)/BiG(χ̄1, χ̄2)

• h appearing in above theorem is the natural map given by h(a1 ⊗ a2) = (b1, b2)

with b1(g, g′) = a1(g)a2(g′) and b2(g, g′) = a2(g)a1(g′), here a1 ∈ Ext1
G(χ̄2, χ̄1) and

a2 ∈ Ext1
G(χ̄1, χ̄2).

The map h corresponds to cup products of cohomology groups.

Proof. Let D : k[ε][G] → k[ε] be a pseudodeformation in T, and E be a CH quotient of

k[ε][G] having a GMA-structure

k[ε] B

C k[ε]

. ρ : G→ E is

ρ1 ρB

ρC ρ2


First we construct the map f .

m : B ⊗k[ε] C → k[ε]

The image ideal of m is denoted as I, then I contained in (ε). I can only be either 0 or (ε),

and is also independent of the choice of E.
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m factors through B/εB ⊗k C/εC.

We write m = φε then

φ ∈ Homk(B/εB⊗kC/εC, k) ∼= Homk(B/εB, k)⊗Homk(C/εC, k) ↪→ Ext1G(χ̄2, χ̄1)⊗Ext1G(χ̄1, χ̄2)

The last map comes from Theorem 2.4.

f is defined sending (E,D) to φ and the kernel f ⇐⇒ I = 0 corresponding to reducible

pseudodeformations. Ker(f) ∼= T0.

Next, we can show h ◦ f = 0.

Unwinding the definitions, h(f(φ))(g, g′)ε = (m(ρB(g), ρC(g′)),m(ρC(g), ρB(g′))).

Because ρ : G→ E× is a group homomorphism. Thus

m(ρB(g), ρC(g′)) = ρ1(gg′)− ρ1(g)ρ1(g′)

ρ1 = χ̄1 + aε, thus

m(ρB(g), ρC(g′)) = a(gg′)− χ̄1(g)a(g′)− χ̄1(g′)a(g)

Similarly, ρ2 = χ̄2 + dε, and h ◦ f = 0.

Next we will show ker(h) = img(f).

We have the following observation:

k[ε][G]/ker(D) has a GMA-structure S :=

 k[ε] Ext1
G(χ̄2, χ̄1)∗

Ext1
G(χ̄1, χ̄2)∗ k[ε]

.

(·)∗ means Homk(·, k) and ε acts on Ext1
G(χ̄i, χ̄j)

∗ as 0.

The reasoning: For any CH-representation (ED, D) of G giving rise to D. (ED, D) has

kernel

 0 εBD

εCD 0

 .
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Specially, we pickED := Eu⊗Ruk[ε]. And ED/ker(D) has GMA-structure as

 k[ε] Bu ⊗ k

Cu ⊗ k k[ε]


, the above observation follows from Theorem 2.5 part 3.

For any φ ∈ Ext1
G(χ̄2, χ̄1) ⊗ Ext1G(χ̄1, χ̄2), m := φε gives a GMA-structure on S. a group

homomorphism ρ : G → S. Fix a k-vector space embedding Ext1
G(χ̄i, χ̄j) ↪→ Z1

G(χ̄i, χ̄j)

with (i, j) ∈ {(1, 2), (2, 1)}, we can define ρB : G→ Ext1
G(χ̄2, χ̄1) as ρB(g)(b) = b(g). Simi-

larly we can define ρC :.

If φ is in the kernel of h, there are (δ(a), δ(d)) ∈ B2
G(χ̄1, χ̄1) ⊕ B2

G(χ̄2, χ̄2) such that

h(φ) = (δ(a), δ(d)). Thus

δ(a)(g, g′)ε = m(ρB(g), ρC(g′)) δ(d)(g, g′)ε = m(ρC(g), ρB(g′))

We define ρ : G →× as

χ̄1 + aε ρB

ρC χ̄2 + dε

. We can check ρ is a group homomorphism

and has residual pseudorepresentation D̄.

There are multiple choices of (a, d). We will show these choices correspond to the kernel of

f which is T0.

If (a′, b′) is another choice. Then a− a′ ∈ Z1
G(χ̄1, χ̄1) = Ext1

G(χ̄1, χ̄1).

2.5 pseudodeformations with conditions

The main reference for this section is [12].

Notations:

Q̃ is the maximal field extension of Q unramified outside S = {N, p,∞}, its Galois group

over Q is denoted by GQ,S .

χ : GQ,S → Z×p is the cyclotomic character.

ρ̄ : GQ,S → GL2(Fp), ρ̄ := χ̄⊕ I. Its induced pseudo-representation is denoted as D̄.

C is the category complete commutative noetherian local Zp algebra (A,mA) with residue
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field A/mA = Fp. I.e ĈW (Fp) defined before.

The deformation functor PsR2
D̄

is represented by (RD̄,mD̄), all pseudodeformations of GQ,S

lifting D̄.

And (ED̄, ρ
u : GQ,S → E×

D̄
, Du

ED̄
: ED̄ → RD̄) is the initial object in category of CH algebra.

Because of being residually multiplicity free, there is a GMA−structure on ED̄.

2.5.1 finite-flat at p condition

Gp := Gal(Q̄p/Qp) is the local Galois group.

Let Modfin
Zp[Gp]

be the category of finite Zp[Gp]-module, an object V is finite-flat if there is

a finite flat group scheme G over Zp such that V ∼= G(Q̄p) as a Zp[Gp]-module.

(A,mA) is an object in C, then a finite generated A[Gp] module M is finite-flat if M/miAM

is finite-flat as a finite module.

Definition 2.10. Let (E, ρ,D) be a CH representation of Gp over A, it is finite-flat if E is

finite-flat as a A[Gp]-module.

For more details, check [12, section 5.2]

2.5.2 Steinberg at l condition

Definition 2.11. Let (E, ρ,D) be a CH representation of Gl over A, it is called ε-Steinberg

if

Vρ(σ, τ) := (ρ(σ)− λ(−ε)χ(σ))(ρ(τ)− λ(−ε)) ∈ E

is 0 for every pair (σ, τ) in Gl.

Here χ : Gl → Z×p is the cyclotomic character and λ is an unramified character sending

Frobenius to −ε.
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Notice that the order matters. The reason to define this equation:

Assume E is a matrix algebra, ρ : Gl → Gl2(A) with A ∈ C, and ρ̄ ∼= χ̄ ⊕ Id, then being

Steinberg implies ρ ∼=

λ(−ε)χ ∗

0 λ(−ε)

.

To see above claim, consider the basis v1, v2 of V such that ρ(τ)v1 ≡ λ(−ε)χ(τ)v1 mod m

and ρ(τ)v2 ≡ λ(−ε)v2 mod m. Pick τ0 6∈ the inertial group, then v′1 := (ρ(τ0) − λ(−ε))v1

together with v2 is a new basis of V . And (ρ(σ) − λ(−ε)χ(σ))v′1 = 0 for all σ because of

Vρ(σ, τ) = 0.

Assume ρ(τ)v2 = f(τ)v′1 + g(τ)v2, then Vρ(σ, τ)(v2) = 0 implies (g(τ) − λ(−ε))(g(σ) −

λ(−ε)χ(σ)) = 0 for all σ, τ . Because g(σ) ≡ λ(−ε) mod m, g(τ)− λ(−ε) for all τ .

Under this basis v′1, v2, ρ is of the upper triangular shape.

Remark 2.6. Comparing with the definition unramified or εl-Steinberg [14, Definition

3.4.1].

We modify the condition to consider only Steinberg because we only consider Galois repre-

sentations associated with newforms.

In the following discussion, we will only consider the case where ε = −1. To save notation,

we will just use Steinberg to refer this special case.

2.5.3 Global condition

We define a sub category, denoted as CH
2,N
GQ,S ,D̄

of CH2
GQ,S ,D̄

having objects as (E, ρ :

GQ,S → E×, D : E → R) such that it is finite flat viewed as a CH representation of Gp and

is Steinberg viewed as a CH representation of Gl for every l dividing N , and arrows are the

same.

we can define the functor PsDefN
GQ,S ,D̄

to be the sub-functor of PsDefGQ,S ,D̄
such that

PsDefN
GQ,S ,D̄

(A) is the set of all pseudorepresentation D : A[GQ,S ]→ A lifting D̄ and it has

a CH representation being an object of above subcategory CH
2,N
GQ,S ,D̄

.
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Similarly, we can define functor PsDefflat
GQ,S ,D̄

sending A to the set of all finite-flat at p

pseudorepresentations.

The finite-flat condition at p on CH algebras is ”stable” condition discussed in [12], and

the Steinberg condition is a condition that certain elements vanish. From the discussion

from [14, section 3.1.5, section 3.1.6], we have the functor PsDefN
GQ,S ,D̄

is represented by

RN , respectively PsDefflat
GQ,S ,D̄

by Rflat. Furthermore there is a universal CH representation

(ED̄,N , ρ
u : GQ,S → ED̄,N , D

u
N : ED̄,N → RN ).

The previous description still holds for reducible locus of the pseudodeformation ring

satisfying ”stable” conditions. Theorem 2.5 holds for universal pseudodeformation ring sat-

isfying ”stable” conditions. Below is the precise statement.

Theorem 2.7. There is an isomorphism Rred
∗,D̄ → R∗,χ̄1⊗̂R∗,χ̄2.

Here ∗ can a stable condition, and D̄ = det(χ̄1 ⊕ χ̄2).

Furthermore, A ∈ C and M is a finitely generated A−module, and χi,A : G → A× is a

character lifting χ̄i satisfying the stable condition ∗. There is a natural isomorphism

HomA(Bred
∗ ⊗Rred∗

A,M)
∼→ Ext1G,∗(χ2,A, χ1,A ⊗M)

Similar isomorphism is true for Cred
∗ .

Proof. Check [12, Proposition 4.3.4, Theorem 4.3.5]

Example 2.9. Let D̄ = det(χ̄⊕ Id) with χ : GQ,S → Z×p cyclotomic character.

Then Rflat,Id
∼= Zp[Gal(Q(ξN )/Q)p−part].

As we have seen the degree 1 pseudorepresentation is the same as the usual character. And

being finite-flat at p implies the character is unramified at p.

Rflat,Id
∼= Rflat,χ̄

∼= Zp[
∏
r|N

Zp/(r − 1)Zp].

The universal character lifting id, denoted by< − >: GQ,S → Rflat,Id
∼= Zp[Gal(Q(ξN )/Q)p−part],

is given by the natural quotient. And the universal character lifting χ̄ is χ < − >.
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Rred
flat
∼= Rflat,χ̄⊗̂Rflat,Id is the universal reducible finite-flat pseudodeformation ring. Let

χu1 : GQ,S → Rred
flat be χ < − > ⊗Id, and χu2 := Id⊗ < − >, then the universal reducible

finite-flat pseudodeformation is det(χu1 ⊕ χ
u
2).

Lemma 2.3. Let (E,D) be a pseudorepresentation of GQ,S lifting D̄ = det(χ̄⊕ Id) over A

and is finite-flat at p and Steinberg for l|N , then D(τ) = χ(τ) for τ ∈ GQ,S .

Proof. D restricted to GQ,S is a character, it is the determinant map. It suffices to show

Dχ−1 : GQ,S → A is unramified at every place.

At place p, check [14, Corollary 3.7.6].

For place r|N , it follows from [14, Lemma 3.4.4]. Here we replicate the proof because the

proof uses many basic properties of pseudorepresentations.

It suffices to show D(γ) = 1 for any γ ∈ Ir. From Steinberg condition at r, we have

V (γ, γ) = (ρ(γ)− 1)2 = 0

Thus D(ρ(γ) − 1) = 0. D(g) =
Tr(g)2−Tr(g2)

2 implies Tr(ρ(γ) − 1) = 0, thus Tr(γ) =

Tr(1) = 2.

D(γ − 1) = D(γ) + 1 + Tr(γ) ∗ Tr(−1)− Tr(−γ) = 0, thus D(γ) = 1.

Remark 2.7. Above lemma corresponds to the claim that the p-adic Galois representations

associated to weight 2 level Γ0(N) newforms have determinant χ.

Lemma 2.4. Assume the universal reducible finite-flat pseudodeformation is det(χu1 ⊕ χ
u
2)

with χui : GQ,S → Rred
flat. Then there is an ideal I in Rred

flat such that every finite-flat reducible

D : R[GQ,S ]→ R, D is Steinberg if and only if Rred
flat → R factors through I.

Ideal I is generated by (χu1(τ) − χ(τ))(χu1(σ) − Id), (χu2(τ) − χ(τ))(χu2(σ) − Id) for τ, σ in

Gr with r|N .
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Proof. (Eu, ρu, Rred
flat) is the universal GMA structure. D is a finite-flat reducible pseudorep-

resentation, it induces φ : Rred
flat → R.

If D is Steinberg, there is a CH representation D : E → R and ρ : Eu =

χu1 ∗

∗ χu2

 → E

satisfying ρ(Vρu(τ, σ)) = 0 for any τ, σ ∈ Gr with r|N .

In particularly, the trace of ρ(Vρu(τ, σ)

1 0

0 0

) is φ((χu1(τ)− χ(τ))(χu1(σ)− Id)) is 0 in R,

similarly φ((χu2(τ)− χ(τ))(χu2(σ)− Id)) = 0. Thus φ factors through I.

For the other direction, given a map φ : Rred
flat → Rred

flat /I → R, we can construct (φ ◦ χ1 ⊕

φ ◦ χ2) that is a Steinberg CH representation inducing D.

Example 2.10. Compute Rred
N :

From lemma2.3, the ideal generated by {D(τ)−χ(τ)} is contained in the ideal from 2.4. To

compute Rred
N , we first quotient the former ideal. Here D(τ) = χ(τ) < τ > ⊗ < τ >.

Rflat,Id ↪→
Rflat,χ̄ ⊗Rflat,Id

ideal generated by{< τ > ⊗ < τ > −1}

The above map is given as x→ 1⊗ x. It turns out to be an isomorphism.

The universal pseudodeformation is given by det(χ < − >−1 ⊕ < − >).

From lemma2.4, Rred
N
∼= Rflat,Id /I with I being generated by (< τ > −χ(τ))(< σ > −1)

for every σ, τ in Gr with r|N .

Notations: for a prime r with r|N , fix a decomposition group Gr ⊂ GQ,S , Ir is the inertia

subgroup. The maximal pro-p quotient of Ir is denoted by I
pro−p
r , which is isomorphic to

Zp. Pick γr ∈ Gr which is a topological generator of I
pro−p
r and σr ∈ Gr which lifts the

Frobenius element.

Lemma 2.5. N = r1r2l with l ≡ 1 mod p and r1, r2 6≡ 1 mod p, furthermore assume r1 is

not a p-th power mod l, then Rred
N
∼= Zp.
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Proof. Rflat,Id
∼= Zp[Zp/(l−1)Zp] ∼= Zp[yl]/(y

pvl
l −1), use yl to denote the image of γl under

〈 〉 and vl = orderp(l − 1).

< γri >= 1 and assume 〈σri〉 = yαil , I is generated by (yl−1)2, (yl−1)(l−1), (yαil −ri)(y
αi
l −1)

with i = 1, 2.

Let Yl := yl − 1, then RredN is the ring

Zp[Yl]/(Y
2
l , (l − 1)Yl, (1− r1)α1Yl, (1− r2)α2Yl)

When one of αi satisfying (αi, p) = 1, then the above ring is Zp. Thus RredN
∼= Zp. The

condition (αi, p) = 1 is equivalent to the inert degree fi of ri inside the field extension

Q(ξl)/Q has the same p-order as l − 1. It is equivalent to r1 is not a p-th power mod l.
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CHAPTER 3

HECKE ALGEBRA

3.1 congruence module

The main reference for congruence module is [8].

K is a finite field extension of Qp. M is K-subspace of M2(Γ0(N), K) (space of weight 2,

level Γ0(N) modular forms) stable under all Hecke action Tn for all n. Use M(OK) to denote

the intersection of M2(Γ0(N), K) and M(K). Assume M = X⊕Y with X, Y K−sub space

stable under all Tn, and

rank(X ∩M(OK)) + rank(Y ∩M(OK)) = rank(M(OK))

Similarly, we can define X(OK) and Y (OK).

Congruence module CX,Y is defined to capture the congruences of modular forms be-

tween X and Y . Below is the detailed definition.

CX,Y :=
M(OK)

X(OK)⊕ Y (OK)

is called congruence module.

From the definition, CX,Y 6= 0 if and only if there exists a nontrivial element annihilated by

π if and only if there exists f ∈ X(OK) and g ∈ Y (OK) such that

f ≡ g mod π andf 6≡ 0 mod π

MX := ProjX(M(OK)) is the projection of M(OK) to X. MY is similarly defined.

Then M(OK) ↪→MX ⊕MY . There is a similar OK−module C ′X,Y

C ′X,Y := MX ⊕MY

/
M(OK)
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Lemma 3.1. C ′X,Y 6= 0 if and only if CX,Y 6= 0

Proof. The proof comes from unwinding the definition.

C ′X,Y 6= 0 if and only if there is a nontrivial element annihilated by π, which is equivalent

to that there exists u, v, w ∈M(OK) such that (wX , wY ) = π(uX , vY ) and w
π = uX + vY 6∈

M(OK).

Assume C ′X,Y 6= 0, then consider w − πu,w − πv ∈ M(OK). (w − pu)X = 0 implies

w− pu ∈ Y (OK), similarly w− pv ∈ X(OK). Furthermore, w− pu ≡ w− pvand w 6≡ 0 mod

π. Thus one direction is clear.

For the other direction, we assume f−g = πh with h ∈M(OK), f ∈ X(OK) and g ∈ Y (OK).

(hX = f
π −

g
π )X = f

π ∈ MX , thus (hX , 0) ∈ C ′X,Y is an element in C ′X,Y annihilated by π.

It is non-trivial because f 6≡ 0 mod π.

We can also describe congruence module using Hecke operators, which follows from the

perfect pairing between modular forms and Hecke algebra.

Notations:

T is the OK algebra generated by all Tn inside End(M).

TX is the OK algebra generated by all Tn inside End(X). TY is defined similarly. Then

T � TX T � TY T ↪→ TX ⊕ TY

Consider the finite T−module TX ⊕ TY /T , the following theorem claims

Theorem 3.1.

M(OK)

X(OK)⊕ Y (OK)
× TX ⊕ TY

T
→ K

/
OK

induces an OK− module isomorphism

CX,Y → HomOK
(TX ⊕ TY /T ,K

/
OK )
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M(OK) ↪→ M = X ⊕ Y , the pairing from the theorem is induced from the classical

pairing in the following lemmas.

We introduce two classical results before stating the proof of the theorem.

Lemma 3.2. The pairing of K−module

M × T (K) −→ K

(f, T ) −→ a1(Tf)

is perfect.

Lemma 3.3. The pairing of OK−module

M(OK)× T −→ OK

(f, T ) −→ a1(Tf)

is perfect.

The key point of the proofs is a1(Tnf) = an(f) for all n.

Proof. proof of the theorem:

notation: T̂ := HomOK
(T,OK), T̃ := TX ⊕ TY and T (K) := T ⊗OK

K

There is a commutative diagram:

0 X(OK)⊕ Y (OK) M(OK) CX,Y 0

0 T̂X ⊕ T̂Y T̂ HomOK
(T̃ /T ,K

/
OK ) 0

∼ ∼ φX,Y

α β

The first two vertical maps are induced from the perfect pairings in above propositions.
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β is defined as following: T (K) ∼= TX(K)⊕ TY (K) ∼= T̃ (K), then

HomOK
(T,OK) ↪→ HomK(T (K), K) ∼= HomK(T̃ (K), K) ∼= HomOK

(T̃ , K)

The definition for β follows and it is surjective and ker(β) = img(α).

The maps in the second square commute, thus the theorem is proved.

There are several equivalent statements that TX ⊕ TY /T (to save notation, denoted as

T̃ /T ) is nontrivial.

• We denote the kernel of T � TX as IX . Similarly, IY is defined. Then as a T - module

T̃ /T ∼= TX

/
(IX + IY

/
IX ) ∼= T

/
IX + IY

thus T̃ /T is nontrivial if ans only if there is a maximal ideal m of T such that

IX + IY ⊂ m.

Furthermore, assume m ⊂ T is a maximal ideal, then (T̃ /T )m = 0 if and only if

IX + IY ⊂ m. Furthermore, if IX + IY ⊂ m, then T̃ /T � (T̃ /T )m.

To see above claim, IX + IY 6⊂ m implies (T
/
IX + IY )m = 0. For the other di-

rection, if IX + IY ⊂ m, thus m can be viewed as a maximal ideal of T
/
IX + IY .

(T
/
IX + IY )m is a local ring whose quotient is T /m . Thus (T

/
IX + IY )m 6= 0.

Furthermore T
/
IX + IY → (T

/
IX + IY )m is surjective. This is true for general

finite ring R and its maximal ideal m, because for any s 6∈ m, there is some α ∈ R and

m ∈ m such that αs+m = 1, thus αs is a unit (because of R being finite), thus for any

a
s ∈ Rm there is b := αa(αs)−1 ∈ R such that b

1 = a
s . In our case R = T

/
IX + IY .

Naturally, T̃ /T 6= 0 if and only if there is a nontrivial T -module V such that V can be

viewed both as TX and TY module. I.e the annihilator of V , AnnT (V ), is a nontrivial

ideal containing IX + IY .
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• Consider the special element e : M
ProjX→ X ↪→ M in EndK(M), we have e|X = id

and e|Y = 0. Thus e ∈ TX ⊕ TY = T̃ . T̃ /T nontrivial if and only if e 6∈ T . The claim

follows from TX = T · e as a T -module and TY = T · (1− e).

• From the perfect pairing, we have seen T (K) is a finite commutative K−algebra. From

the structure theorem,

T (K) ∼=
∏
m

T (K) /mn the product is over all maximal ideals of T (K)

Furthermore we assume T (K) is reduced, then T (K) ∼=
∏
i
Ki with Ki be a finite field

over K.

Example 3.1. 1. If M = S2(Γ0(N), K)new, the full Hecke algebra is reduced. This

claim follows from the strong multiplicity one result.

In this case, M ⊗ K̄ ∼=
∏

newform
K̄.

2. The Hecke algebra T red generated by Tn with (n,N) = 1 on M = S2(Γ0(N), K)

is reduced. And T red ⊗ K̄ ∼=
∏

newform
K̄.

3. The full Hecke algebra acting on S2(Γ0(N), K) is not necessarily reduced, because

of the existence of cuspforms of level M which is non-ordinary at prime q with

Mq = N .

But if we consider the Hecke algebra Tw generated by Tn, (n,N) = 1 and wr, r|N ,

then Tw is reduced. For details, check [14, Lemma 2.3.1].

The maximal ideals of T (K) are in bijection with the minimal prime ideals of T .

Because T is finite flat over OK and T (K) is flat over T , the going-down property
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holds.

Extend to K̄ (or a large enough field L), a maximal ideal of T (K̄) corresponds to an

algebra homomorphism T (K̄)→ K̄, equivalent to a normalized eigenform of T .

If we assume T is reduced and T ⊗ K̄ ∼=
∏
f
K̄ with f ′s normalized eigenvectors of T .

Lemma 3.4. T̃ /T is nontrivial if and only if there is an eigenform f in X ⊗ L and

an eigenform g in Y ⊗ L such that f ≡ g mod π′, here L is a large field.

Proof. It suffices to prove the lemma in the case when T is over OL for a large finite

extension over K.

T̃ /T is nontrivial if and only if there is a maximal ideal m containing IX + IY whose

residue field is p.

OL → TX is a finite flat extension, m pulls back to (π), thus there is a prime ideal pf

pulling back to (0). pf is a minimal prime ideal of T . Similarly, there is a minimal

prime ideal pg of T containing IY . And pf and pg corresponds to maximal ideals of

T (L), thus eigenforms. Also they are congruent to each other.

We use C∗X,Y to denote HomOK
(CX,Y , K

/
OK ) ∼= TX ⊕ TY /T , then T has the following

structure.

Lemma 3.5.

T ∼= TX ×C∗X,Y
TY

Proof. The proof is totally algebraic.

First the map TX → C∗X,Y is defined as follows:

TX → TX

/
IX + IY

/
IX

∼→ TX ⊕ TY /T ∼= C∗X,Y

Consider the map α : T → TX × TY sending t ∈ T to (tX ,−tY ), here tX is the image of

t under the usual quotient T → TX . In TX ⊕ TY /T , tX → (tX , 0) mod T while −tY →
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(0,−tY ) mod T . The difference is 0 in C∗X,Y . Thus α has image in TX ×C∗X,Y
TY .

Last, we show α is surjective to TX ×C∗X,Y
TY . For any (fX , gY ) ∈ TX ×C∗X,Y

TY , we have

(fX ,−gY ) = 0 in TX ⊕ TY /T . So α induces an isomorphism T ∼= TX ×C∗X,Y
TY .

Lemma 3.6.

C∗X,Y
∼= TY

/
AnnT (IY )

Here, we quotient the image of AnnT (IY ) in TY .

Proof. We have the claim AnnT (IY ) = ker(T → TX) = IX , and the lemma follows.

To see the claim, we use the structure lemma above.

T ∼= TX ×C TY → TY , thus IY ⊂ T is identified as IY + IX
/
IX × 0. Since T

/
IX + IY is

finite, thus IY + IX
/
IX is a faithful TX -module. Thus AnnT (IY ) = 0 × IY + IX

/
IY , is

exactly ker(T → TX) = IX .

Remark 3.1. Assume m ⊂ T is a maximal ideal containing IX + IY , then above two

lemmas work for the localized Hecke algebra. Because Tm is flat over T , pull-back and

quotient commute with localization.

3.2 special case

Let N = r1 · · · rd be an square free integer, then the dimension of Eisenstein subspace of

M2(Γ0(N)) is 2d − 1.

Let E2 be the power series

E2 = −B2

4
+
∑
n≥1

σ(n)qn

Here B2 = 1
6 and σ(n) =

∑
d|n d.

Lemma 3.7. There is a unique normalized Eisenstein series E in M2(Γ0(N)) such that it

is an eigenform with Ur acts as 1 for all r|N .
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Proof. E
(1)
2 := E2(τ)− r1E2(r1τ) then E

(1)
2 is of level Γ0(r1) with Ur1 acting as 1.

E
(2)
2 := E

(1)
2 (τ)− r2E

(1)
2 (r2τ) then E

(2)
2 is of level Γ0(r1r2) with Ur1 and Ur2acting as 1.

We keep lifting the level, then E =
∏
i

(Id − riVri)E2 is the desired Eisenstein series. Here

Vri is the operator sending modular form f(τ) to f(riτ).

a1(E) = 1, thus E is normalized.

The space M := QpE ⊕ S2(Γ0(N),Qp)new. S := S2(Γ0(N),Qp)new.

T̃ (resp. T̃ ◦) is the Zp Hecke algebra on M (resp. S).

The Eisenstein ideal I = (Ts − s− 1 : s - N,Ur − 1 : r|N) inside T̃ is also the kernel of the

map T̃ � Zp sending Tn to a1(Tn(E)).

m := (I, p) ⊂ T̃ is a maximal ideal. And T denotes the localization of T̃ at m.

Similarly, T ◦ := T̃ ◦m.

The upper ◦ means the cuspidal part, and upper ∼ means the algebra before localization.

To save notation, we always use I to denote the ideal generated by Ts and Ur inside a given

ring.

From previous section, the congruence module between S and QpE is denoted as

C :=
M(Zp)

S(Zp)⊕ ZpE

3.2.1 the size of C

a0 : M → Qp is the map sending a modular form to the constant term of its q-expansion.

Then C =
M(Zp)

S(Zp)⊕ZpE
=

a0(M(Zp))
a0(E)Zp

is a subgroup of
Zp

a0(E)Zp
.

From lemma 3.5 above, a0(E) = − 1
24

∏
r|N (1− r).

Thus the size of C is ≤ | Zp∏
r|N (r−1)Zp

|.

Next, we want give a lower bound of the size of C, before that we introduce some
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background knowledge on Shimura curve

Because of the perfect pairing in Theorem 3.1,

T̃ ◦

I
=
T̃ ◦ ⊕ Zp

T̃
∼= C∗

with C∗ the Pontryagin dual of C.

And we have C∗m ∼= T ◦ /I .

3.3 Shimura curve

Assume N = Dl with l ≡ 1 mod p and D being r1 · · · rd, a product of even number of

primes.

Consider XD
0 (l)/Q, the Shimura curve attached to the unique quaternion algebra over Q

with discriminant D. OD is a fixed maximal order.

Define a moduli problem over Z which associates to any scheme S over Z the set of iso-

morphism classes of structure (A, ι,Ql), where A/S is an abelian surface over S, ι : OD →

EndS(A), Ql ⊂ A[l] is a rank l2 subgroup scheme which is, fppf locally on S, cyclic as an

OD-module.

There is a canonical model XD
0 (l)Zl

and its special fiber XD
0 (l)/Fl

has two irreducible com-

ponents, each isomorphic to the smooth curve XD
0 (1)/Fl

. And the two components intersect

transitively at supersingular points on XD
0 (1)Fl

, and the collection of these supersingular

points are denoted by S. For details, check [4, Theorem 4.7] or [7] theorem 4 and theorem

12.

There are natural Hecke correspondence on XD
0 (l)Zl

and J := Pic0(XD(l)Q) given in terms

of the moduli interpretation:

for s 6 |D,Ts(A,Ql) =
∑
Qs

(A/Qs, Ql/Qs)
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here Qs is an order s2, O stable subgroup of A[s] which intersects with Ql trivially.

And for s = l, use Ul to denote Tl:

Ul(A,Ql) = (A/Ql, Q
′
l)

There is the Weil pairing on A[l], and Q̃′l is a O stable subgroup of order l2 such that its

pairing with Ql has full image µl, Q
′
l is the reduction of Q̃′l mod Ql. For r|D, Ur is defined

as wr:

wr(A,Ql) = (A/A[Ir], Ql/A[Ir])

here Ir is the unique prime ideal of norm r in OD.

Let TD(l)new be the algebra generated by {Ts : s - Dl, Ur : r|Dl} acting on the new part of

the Jacobian J of the Shimura curve XD(Γ0(l)).

S is the collection of these supersingular points in XD(Γ0(1)). Let X be the Z module

formally generated by elements in S, and X◦ be the degree 0 part. And X◦ is isomorphic

to the character group of the torus part of J/Fl. There are naturally Hecke actions on X

induced from the moduli description.

There is a pairing given by

X ×X < , >−−−−→ Z < Ai, Aj >=
#Aut(Ai)

2

Here Ai is one isomorphism class of supersingular points in S.

Above pairing induces a map ι : X◦ → (X◦)∗. Let Φl(J
D
0 (l)) be the component group of

JD0 (l)/Fl
, then

Theorem 3.2. X is a TD(l)new-module.

Φl(J
D
0 (l)) ∼= (X◦)∗

/
ι(X◦) , thus also a TD(l)new-module. And Ts − (s + 1) annihilates

Φl(J
D
0 (l)) for s - Dl.
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Proof. Check section 4 of [10].

The lemma below is well-known, cf. [11, Proposition 3.8].

Lemma 3.8. The action of Ul on the character group X◦ is induced by the Frobenius

automorphism on the set supersingular points S.

Lemma 3.9. [17, proposition A.2, A.3]

There is cyclic subgroup Φ ⊂ Φl(J
D
0 (l)) ⊗ Zp and the ideal I◦ = (Ts − s − 1, Ur − 1) with

r|N annihilates Φ. The order of Φ is #(
Zp∏

r|N (r−1)Zp
).

Proof. For the proof details, check Yoo’s paper[17].

The lemma above implies #( T̃
◦
I◦ ) ≥ #(Zp/

∏
r|N (r − 1)Zp).

Thus #C = #(Zp/
∏
r|N (r − 1)Zp).

Lemma 3.10. Assume l ≡ 1 mod p, and r1, r2 6≡ 1 mod p, then

#C = #(Zp/(l − 1)Zp)
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CHAPTER 4

FLAT GALOIS COHOMOLOGY

4.1 local flat cohomology

Notation: H1
p,flat(V ) := Ext1

Gp,f lat
(Z/pnZ, V ) with V a Z/pnZ[Gp]−module.

Qur
p denotes the maximal unramified extension of Q̄p/Qp

Lemma 4.1. [13, Lemma 6.2.1] For any n > 0,

1. H1
p,flat(Z/p

nZ) = ker(H1
p (Z/pnZ)→ H1(Qurp ,Z/p

nZ)

2. H1
p,flat(Z/p

nZ(−1)) = 0

3. Under the identification H1
p (Z/pnZ(1)) ∼= Q×p /(Q

×
p )p

n
, H1

p,flat corresponds to the sub-

group Z×p /(Z
×
p )p

n
.

4.2 global flat cohomology

For details, check the finite flat cohomology computations in [13, Section 6.3].

H1
flat(GQ,S , V ) := ker(H1(GQ,S , V )→ H1

p (V )/H1
p,flat(V )) with V a GQ,S−module.

Lemma 4.2. For n > 0,

1.

H1
flat(GQ,S ,Z/p

nZ) = Z/NZ⊗ Z/pnZ, H1
flat(GQ,S ,Zp) = 0

2.

H1
flat(GQ,S ,Z/p

nZ(1)) ∼= (Z[1/N ])× ⊗ Z/pnZ

3.

H1
flat(GQ,S ,Z/p

nZ(−1)) ∼=
∏
l|N Zp

/
(pn, l2 − 1)Zp
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Proof. 1. H1(GQ,S ,Z/p
nZ) = Hom(GQ,S ,Z/p

nZ) = Hom(
∏
l|Np

Z×l /{±1},Z/pnZ) from

class field theory. From lemma above, H1
flat(GQ,S ,Z/p

nZ) ∼= Hom(Z/NZ,Z/pnZ) ∼=

Z/NZ⊗ Z/pnZ.

2. The result comes from Kummer theory.

H1(Gal(Q̄)/Q,Z/pnZ(1)) ∼= Q×/(Q×)p
n
. When restricted to local cohomology at s

outside Np, the desired unramified cohomological class corresponds to unramified ex-

tension over Qs and are in the subspace Z×s ⊗Z/pnZ ⊂ Q×s ⊗Z/pnZ ∼= H1
s (Z/pnZ(1)).

Being flat at p implies the local cohomology class is also in Z×p ⊗ Z/pnZ.

Thus H1(GQ,S ,Z/p
nZ(1)) ∼= Z[ 1

N ]× ⊗ Z/pnZ.

3. For detailed proofs, check [13, lemma 6.3.6].

In this paragraph we recast the proof following [5, lemma 3.9], which will be later

used.

Kn is the field Q(ξpn), the field extension of Q adding pn−th root of unity.

K̃ is the maximal Galois extension over Kn, unramified outside pN .

GQ,S
∼= Gal(K̃/Q), H := Gal(K̃/Kn), ∆ := Gal(Kn/Q) ∼= (Z/pnZ)×.

Since H1
p,flat(Z/p

nZ(−1)) = 0, we have that

H1
flat(GQ,S ,Z/p

nZ(−1)) = ker(H1(GQ,S ,Z/p
nZ(−1))→ H1

p (Z/pnZ(−1)).

From the inflation-restriction sequence of HEGQ,S , we have the following commutative

diagram, where V stands for Z/pnZ(−1).

0 H1(∆, V H) H1(GQ,S , V ) H1(H, V )
∆

H2(GQ,S , V
H)

0 H1(Dp/p, V
H) H1(Dp, V ) H1(Dp, V )

Dp/p H2(Dp/p, V
H)

Resp Resp
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BecauseKn/Q is totally ramified at p and p is the unique prime over p, thenDp/p
∼−→ ∆.

So the first and the last vertical maps are isomorphism, and

H1
flat(GQ,S , Z/pnZ(−1)) = ker(Resp) ∼= ker(Resp)

Z/pnZ(−1) is a trivial H module, thus

H1(H, Z/pnZ(−1))∆ = Hom(H∆=χ−1
, Z/pnZ) = Hom(

(
Hab/{pn}

)χ−1
, Z/pnZ)

Notation: for a group G, {pn} ⊂ G is the subgroup generated by gp
n

for all g.

Let the number field Ln be the maximal abelian extension of Kn being unramified

outside N , splitting completely at places over p, whose Galois group over Kn is of

exponent dividing pn with ∆ acting by χ−1. Thus

ker(Resp) ∼= Hom(
(
Hab/(Dp, {pn})

)χ−1
, Z/pnZ) ∼= Hom(Gal(Ln/Kn), Z/pnZ)

From class field theory of field Kn, here U denotes the global units of Kn and RClN :=

K×�A×f�∏v-N O×v , we have

U

∖∏
r|N O×r → RClN → ClK → 0

We will quotient {pn} and take ∆ = χ−1 subspace.

From Herbrand’s criterion, ClK
/
{pn}

χ−1

= {0} when p ≥ 5, thus

(∏
r|N

O×r
/
{pn}

)χ−1 (∏
r|N

O×r
/

(U, {pn})
)χ−1 (

RClN
/
{pn}

)χ−1

Gal(Ln/Kn)

∼

q

((*))

45



Here, the action of ∆ on the ideles is induced from the action on K. The map q is

quotient by the subgroup generated by 1 − ξpr ∈ Kn,π ↪→ RClN with π the unique

place over p and 1− ξpr a uniformizer.

First, we will study
(∏
r|N

O×r
/
{pn}

)χ−1

.

For each r|N , rOKn
= r1 · · · rs and for each prime ideal ri, O/ri ∼= Frf , the degree f

extension of Fr with f the smallest integer such that pn|rf − 1. And Dr ⊂ ∆ is the

subgroup stabilizing r1, with Dr
∼= Z/fZ generated by Frobr. Then as a ∆−module,

O×r
/
{pn} ∼= Ind∆

Dr
(O
/
r1 )×

/
{pn} and

(
O×r
/
{pn}

)χ−1

∼=
(

(O
/
r1 )×

/
{pn}

)Dr=χ
−1

We compute the latter space now, x0 is a generator in O
/
r1 , then

Frobr(x
a
0) = xar0 = χ−1(Frobr)x

a
0 = xar

−1

0

x
a(r2−1)
0 = 1 in (O

/
r1 )×

/
{pn} if and only if pn|a(r2 − 1). Thus the latter space

∼= Zp/(pn, r2 − 1)Zp.

Next, we need to consider the quotient map q, corresponding to the requirement that Ln

splits completely at places over p. The diagonal embedding of 1−ξpn of
∏
r|N

O×r
/
{pn}

gives ((1− ξpn)−1)π in RClN
/
{pn} . We will show that this element when projected

to χ−1 quotient is 0, thus the quotient map q has trivial kernel.

X :=
∏
a∈∆

χ(a)a(1− ξpn) =
∏

a∈(Z/pnZ)×
(1− ξapn)a ∈

(∏
r|N

O×r
/
{pn}

)χ−1

It suffices to show X2 = 0, because 2 does not divide the order of χ−1 space.

X2 =
∏

a∈(Z/pnZ)×
(1− ξapn)a

∏
a∈(X:=Z/pnZ)×

(1− ξ−apn )−a = ξ

∑
a∈(Z/pnZ)×

a2

pn
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From elementary computation
∑

a∈(Z/pnZ)×
a2 ≡ 0 mod pn, thus X = 0.

Next we need to show that U∆=χ−1
is trivial. Use U+ to denote the real units, i.e all

the units such that c(u) = u here c ∈ ∆ is the complex conjugate. Thus U+ has trivial

∆ = χ−1 subspace. So is the the torsion-free part of U+, denoted as U+
tf . There is the

exact sequence

0→ µ2pn → U → U+
tf → 0

Taking the ∆ = χ−1 invariant space, we have U∆=χ−1
is trivial.
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CHAPTER 5

MAIN PROOF

5.1 R = T

Recall RN is the universal pseudodeformation ring of finite-flat at p and Steinberg at r|N

pseudorepresentations lifting D̄.

The definition for T , we can refer section3.2. Consider the minimal primes of T , (i.e the

minimal primes of T̃ contained in m). The set of these prime ideals is bijection with Galois

conjugacy classes of normalized eigenforms in M = QpE ⊕ S2(Γ0(N),Qp)new.

Σ := {f ∈ S2(Γ0(N),Qp)
new normalized eigenforms |f mod p ≡ E mod p}/ ∼

The equivalence relation ∼ is Galois conjugation. And there is natural injection

v : T ↪→ Zp ×
∏
f∈Σ

Of defined as: t→ (a1(tE), (a1(tf))f )

Furthermore, we have

Lemma 5.1. The local algebra T is complete with respect to its unique maximal ideal m.

Proof. T is complete with respect to ideal (p), because T is a finite free Zp-module. To show

this lemma, it suffices to show the topology induced by powers of m and ideal (p) ⊂ T are

the same. We have (p) ⊂ m.

For other direction, the push forward of mn along the map T ↪→ Zp ×
∏
f∈Σ

Of is the ideal

pn× (p
nf
f )f with nf ≥ 1, thus if n is larger enough, then the push-forward ideal is contained

in (p)ns , thus mn ⊂ (p)ns after pulling-back to T .
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Lemma 5.2. There is a surjection ι : RN → T of augmented Zp algebra. And ι maps

tr(ρ(Frobq)) to Tq for q 6 |Np.

Proof. check [14, proposition 4.1.1]

For each f ∈ Σ, there is a GQ,S representation ρf : GQ,S → GL2(Of ) such that

• for s - Np, the characteristic polynomial of ρf (Frobs) is X2 − as(f)X + s.

• ρf |Gp
is finite-flat.

• for r|N , there is an isomorphism

ρf |Gr
∼=

χcyc ∗

0 Id


From the universality of RN , for each f ∈ Σ, there is an algebra homomorphism RN → Of ,

together with E. We have a map ι : RN → Z×
∏
f∈Σ

Of . RN is a quotient of Zp[GQ,S ], thus ι

sends Tr(Frobs) to (s+ 1, (as(f))f ) for all s - Np. Here Tr is the trace map of the universal

pseudorepresentation. Because of Chebotarev’s density theorem, the map is well-defined.

Combined with v defined above, ι factor through T by sending Tr(Frobs) to Ts for all s - Np.

Next, we need to show ι is surjective. It suffices to show T is generated by all Ts with s - Np

over Zp.

For r|N , Ur ∈ T acting by 1 on E and f ∈ Σ, thus Ur = 1 in T .

We then consider Tp. The argument is the same as [14, proposition 4.1.1].

There is a canonical map RN → Zp corresponding to the pseudorep χp⊕ 1, which is the

Galois rep attached to the Eisenstein series E. The kernel of the map is denoted by Jmin.

The argumentation ideal for T is the Eisenstein ideal I.

We can use the strengthening of Wiles’ numerical criterion [16, Appendix]. The detailed

statement can be found as [13, Theorem 7.1.1]. In our case, it suffices to show length of
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(Jmin/Jmin
2
) ≤ length (Zp/AnnT (I)).

And both of these two Zp module, which is of the form of
∏
s Zp/psZp. Then its length is

logp(its size). Thus it suffices to show the size of (Jmin/Jmin
2
) ≤ the size of (Zp/AnnT (I))

to prove ι is an isomorphism.

5.1.1 size of Jmin/Jmin
2

From this section, we add assumptions in Lemma 2.5. i.e

N = r1r2l with l ≡ 1 mod p, r1, r2 6≡ 1 mod p and r1 is not a p-th power mod l.

Recall RredN is reducible locus of RN . There is the canonical map RN → RredN → Zp.

Jred is defined to be the kernel of RN → RredN . Then Jred ⊂ Jmin.

Under the assumptions in Lemma 2.5, RredN
∼= Zp. Then Jred = Jmin.

We will compute Jred/JminJred instead of computing the size of Jmin/Jmin
2
.

Also from lemma 3.6, the size of (Zp/AnnT (I)) is size of Zp
/

(l − 1)Zp .

Now the question boils down to proving the size of Jred/JminJred ≤ the size of Zp
/

(l − 1)Zp .

5.1.2 size of Jred/JminJred

Recall the notations:

Rredflat is the universal ring whose space parametrize all the pseudorepresentation lifting D̄,

being finite flat at p and reducible. And RredN is a quotient of Rredflat.

(RN , EN , ρN : GQ,S → EN , DN : EN → RN ) is the universal pseudodef ring and its

universal Caley-Hamilton algebra satisfying being finite flat at p and Steinberg condition at

r|N .

EN =

RN BN

CN RN

 ρN (τ) =

aN,τ bN,τ

cN,τ dN,τ

 for τ ∈ GQ,S

If the lower index N is changed to flat, it represents the universal pseudodef ring and

its universal Cayley-Hamilton algebra satisfying only being finite flat at p.
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The lower index may be dropped to save notations if there is no confusion.

BminN denotesBN/J
minBN , and CminN is similarly defined. BminN ⊗CminN → Jred/JminJred

is surjective because Jred is the image of the map BN ⊗ CN → RN .

Lemma 5.3. [14, Lemma 3.9.4] There are isomorphisms

⊕r|NZp ∼= Bminflat ⊕r|N Zp/(r
2 − 1)Zp ∼= Cminflat

The generators of Bminflat are given by bγr1 , bγr2 , bγl . Here bγr1 is the image of γr1 under the

map GQ,S → Bminflat . Similarly the generators of Cminflat are given by cγr with r satisfying

p|r2 − 1.

Proof. Theorem 2.5 (3) claims that for any finitely generated Zp-module M ,

HomZp
(Bminflat ,M) ∼= H1

flat(M(1))

From the structure of finitely generated Zp- module and the flat cohomology computations,

Bminflat
∼=
∏
r|N

Zp.

From Nakayama’s lemma, the generators of Bminflat are the elements which are nonzero under

the basis of HomZp
(Bminflat ,Fp)

∼= H1
flat(GQ,S ,Fp(1)). Kummer theory implies the Fp basis

of H1
flat(GQ,S , ) have representatives as fr : GQ,S → F(1) with fr(σ) =

σ( p√r)
p√r for each

r|N . The field cutting out by fr is Q(ξp, p
√
r) that only ramifies at r and p, and fr(γr) 6= 0.

Unwinding the proofs of Theorem 2.5, fr can be chosen satisfying bγr(fs) = fs(γr), and it

is nonzero if and only if r 6= s. Thus bγr with r|N is a set of generators of Bminflat .

Similarly, we can have Cminflat
∼= ⊕r|NZp/(r2 − 1)Zp. To check the generators, we analyze

H1
flat(Fp(−1)) in details.
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From the argument of lemma 4.2 (3) in flat cohomology computations,

H1
flat(Fp(−1)) ∼= Hom(Gal(L/Q(ξp)),Fp)

If p|r2 − 1, then there is a unique subfield Kr of L, degree p over Q(ξp) which is ramified

only at places above r. Then the representative fr : GQ,S → Fp(−1) of cohomology class,

whose restriction to GalQ(ξp) factor through Kr, is a set of basis for H1
flat(Fp(−1)). Then

fr(γs) nonzero if and only if s 6= r. Similar reasoning applies for the generators of Cminflat .

Lemma 5.4. There are surjections

⊕r|NZp → BminN Zp/(l − 1)Zp → CminN

And the generators of BminN are given by bγr1 , bγr2 , bγl , and the generators of CminN are given

by cγl .

Proof. There is a surjective map Emin
flat =

 Zp Bmin
flat

Cmin
flat Zp

�
 Zp Bmin

N

Cmin
N Zp

.

The V (σ, τ) for σ and τ in Gr for r|N are 0 in the image. This condition is equivalent to

(χ(τr)− 1)c(σr) + (χ(σr)− 1)c(τr) for any σr, τr ∈ Gr, which implies (r − 1)c(γr) = 0 with

γr the generator of pro−p part of inertial subgroup Ir.

Under the assumption that r1, r2 6≡ 1 mod p, the generator for CminN can only be cγl .

Remark 5.1. To save notations, later we will use bγr to denote both the generator of Bminflat or

its image in BminN or the generator in H1
flat(Fp(1)) that corresponding to the field Q(ξp, p

√
r)

in above proof. Similarly, cγr to denote multiple roles when no confusion is caused.

Lemma 5.5. bγlcγl ∈ J
min2

Proof. We use

aγl bγl

cγl dγl

 to denote the image of γl under GQ,S → EN . Then aγl ≡ χ(γl)

mod Jmin
N , thus aγl − 1 ∈ Jmin

N .
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V (γl, γl) = (ρ(γl)− 1)2 = 0 implies (aγl − 1)2 + bγlcγl = 0, thus bγlcγl ∈ J
min
N

2
.

Lemma 5.6. If r1 is not a p− th power mod l, then bσl , bγl , bγr2 are basis of Bminflat .

Proof. It suffices to show that the cohomology class’s image in H1(Gl,Fp(−1)) is nonzero. It

suffices to require the decomposition groupDl is nontrivial for the field extension Q(ξp, p
√
r1)/Q(ξp),

and it is true if and only if r1 is not a p− th power mod l.

Lemma 5.7.

bσlcγl ∈ (Jmin)2

Proof. This follows from V (σl, γl) = 0, V (γl, σl) = 0.

In more details, V (σl, γl) = 0 gives

(aσl − 1)(aγl − 1) + bσlcγl = 0

and V (γl, σl) = 0 gives

(dσl − 1)(dγl − 1) + bσlcγl = 0

dγl − 1 and aγl − 1 are both in Jmin. And at least one of aσl − 1 and dσl − 1 is in Jmin.

Thus bσlcγl ∈ J
min2

.

In summary,

Theorem 5.1. Under the following assumptions

• r1, r2 6≡ 1 mod p and l ≡ 1 mod p .

• r1 is not a p-th power mod l.

BminN ⊗ CminN � Jred/JredJmin ∼= Jmin/(Jmin)2 is generated by bγr2 ⊗ cγl . Then the size

of Jmin/(Jmin)2 is less than |Zp/(l − 1)Zp|.

Furthermore, ι : RN → T is an isomorphism.
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5.2 generators of I

Notation: From this section, we will use cl to denote cγl to save notations.

We are interested in when Tq − (q + 1) generates I. Because of RN
∼→ T , we can study the

generators of Jmin.

(RN ,m) is a local ring, Jmin is an RN module and m = (Jmin, p). It suffices to find out the

generators of Jmin/mJmin.

The surjection Jmin/(Jmin)2 → Jmin/mJmin implies dimFp
(Jmin/mJmin) ≤ 1. Actually,

its dimension is 1. It can been seen as below:

Assume dimFp
(Jmin/mJmin) = 0, then from Nakayama’s lemma, Jmin = 0, thus RN

∼= Zp.

But [17, Theorem 1.2, 1.3] claims that there is some new cuspform of level N = r1r2l

which is congruent to E mod p, which implies RN 6∼= Zp. This leads contradiction, thus

dimFp
(Jmin/mJmin) = 1, and Jmin is a principally generated ideal.

HomFp
(Jmin/mJmin,Fp) ∼= HomFp

(m/(m2, p),Fp) ∼= Hom(RN ,Fp[ε])

The first isomorphism is because Jmin ∩ (p) = pJmin as ideals in RN
∼= T , thus

Jmin ∩ (m2, p) = Jmin ∩ (p,mJmin) = mJmin

This implies Jmin/mJmin
∼
↪−→ m/(m2, p). Thus the tangent space of the pseudo deformation

space, denoted by TN is of dimensional 1.

We would like to explicitly construct a GMA structure giving rise to the nontrivial pseudo-

deformation in the tangent space.
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5.2.1 tangent space of RN

There is no explicit description of TN . But we have

0→ Tflat → Ext1
flat(Fp(1),Fp)⊗ Ext1

flat(Fp,Fp(1))→ Ext2(Fp,Fp)⊕ Ext2(Fp(1),Fp(1)))

And TN ↪→ Tflat.

Following the proof of Theorem 2.6, for a pseudorepresentationD in TN , E =

Fp[ε] B

C Fp[ε]


is one GMA−structure satisfying finite flat at p and Steinberg at r|N with m : B ⊗ C →

B /εB ⊗ C /εC → Fpε.

There are surjections BminN → B /εB and CminN → C /εC , thus m ∈ Hom(BminN ⊗CminN ,Fp),

and the latter space is a subspace of H1
flat(Fp(1))⊗ Fp{cl}.

Also, m is in the kernel of the cup product maps.

Lemma 5.8. Assume r 6≡ 1 mod p, then the image of cl under the restriction map

H1
flat(GQ,S ,Fp(−1))→ H1

flat(Gr,Fp(−1))

is trivial.

Proof. The set-up for the proof is the same as . There is a diagram

(∏
r|N (O /rO)×

/
{p}

)∆=χ−1 (
Q(ξp)

×�A×f�∏v-N O×v
)/
{p}

∆=χ−1

Fp ∼=
(
(O /lO)×

/
{p}

)∆=χ−1
Gal(L/Q(ξp))

∼

Kc is the unique subfield of L only ramifying at places above l over Q(ξp), its degree over

Q(ξp) is p and it corresponds to the Fp quotient above. And cl is a nontrivial homomorphism
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Gal(Kc/Q(ξp))→ Fp.

This lemma is equivalent to Kc over Q(ξp) splits completely over places above r, if r 6≡ 1

mod p.

Places above r in Q(ξp) are denoted by r1, · · · rg with fg = p − 1 and f being the inertia

degree. r 6≡ 1modp implies f > 1. Use πr1 to denote a uniformizer for place r1.

From class field theory, ri splits completely inKc over Q(ξ) is equivalent to (1, · · · , πri , · · · , 1)

(the only non 1 place is ri) under the projection to the Fp quotient is trivial.

(1, · · · , πri , · · · , 1) projected to ∆ = χ−1 subspace:

∑
g∈∆

χ(g)g.(1, · · · , πri , · · · , 1) =
∑

g∈∆/Dr

χ(g)g.
∑
h∈Dr

χ(h)h.(1, · · · , πri , · · · , 1)

here Dr is the decomposition group for place ri.

Pick one generator h0 of Dr and χ(h0) = a, and a 6= 1 then

∑
h∈Dr

χ(h)h.(1, · · · , πri , · · · , 1) = (1, · · · , π
1−af
1−a
ri , · · · , 1) up to units in Ori

Because af = 1 in Z/pZ, then the above element is in
∏g
i=1 O

×
ri which has trivial image

under the projection to the Fp quotient.

Example 5.1. Assume (l, r1, r2) = (101, 2, 3), p = 5. Then Kc is the unique degree p field

over Q(ξp) only ramified at l = 101, and Gal(Kc/Q) sits inside the exact sequence below

0→ Gal(Kc/Q(ξp)) = Z/pZ→ Gal(Kc/Q)→ Z/pZ× → 0

with Z/pZ× acting on the sub by χ−1 and places above p splits completely for the field

extension Kc/Q(ξp).
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More information about this field, checkLMFDB

Lemma 5.9. H ⊂ H1
flat(GQ,S ,Fp(1)) is defined to the subset

{b|b ∪ cl = 0 ∈ H2(GQ,S ,Fp) and b|Il = 0 ∈ H1(Il,Fp(1))}

then under the assumption above (at the end of last section), H is of dimension 1.

And b ∈ H satisfies its restriction to Gl in trivial. i.e b|Gl
= 0.

Proof. H1
flat(GQ,S ,Fp(1)) is generated by Kummer classes br1 , br2 and bl as a vector space.

The restriction to inertia group Il being trivial implies b = a1br1 + a2br2 , the field cutting

out by b is Q
(
ξp,

p
√
ra1
1 ra2

2

)
.

Check Appendix B in [14]. We apply lemma B 1.2 and lemma B 1.3. H2(GQ,S ,Fp)
∼→

H2
l (Fp). In H2

l (Fp), the cup product of a nontrivial cohomology class unramified at l with

cl does not vanish. Because br1 restricted to Dl is nontrivial, this follows from r1 is not a

p-th power mod l and Q(ξp, p
√
r1) is inert at l over Q(ξp), thus

br1 ∪ cl 6= 0.

The global Euler characteristic formula impliesH2(GQ,S ,FP ) is of dimension 1 (sinceH1(GQ,S ,Fp)

is of dimension 2), thus br1 ∪ cl is a Fp space generator.

b ∪ cl = (a1br1 + a2br2) ∪ cl = 0 =⇒ a1 = −a2
br2 ∪ cl
br1 ∪ cl

Thus H is of dimension 1.

5.2.2 Explicit constructions of GMA-structure

Next, we will explicitly construct a generalized matrix algebra structure satisfying being

finite flat at p and Steinberg at r|N .

The ideal follows from the proof of Theorem 2.6.

We can a lift c̃l ∈ Z1(GQ,S ,Fp(−1)) of cl in H1(GQ,S ,Fp(−1)) such that c̃l|Gp
= 0. The
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existence of such lifting is guaranteed from cl|Gp
= 0 ∈ H1(Gp,Fp(−1)).

In details, c̃l is a map Gal(Kc/Q)→ Fp satisfying cocycle condition, where Kc is the degree

p extension over Q(ξp) that ramifies only at l, splits completely over places above p and ∆

acts Gal(Kc/Q(ξp)) by χ−1.

Furthermore, because of lemma 5.3 cl restricted to Gri is trivial, we can choose places

R1,R2,P of Kc above r1, r2, p respectively such that c̃l restricted to DR1/r1
, DR2/r2

, DP/p

respectively is 0.

To see this, there is an exact sequence for Gal(Kc/Q),

0→ Z/pZ→ Gal(Kc/Q)→
(
Z/pZ

)× → 0

The subgroup is Gal(Kc/Q(ξp)), and
(
Z/pZ

)×
acts on Z/pZ by χ−1.

Thus there are p many order p− 1 cyclic subgroup inside Gal(Kc/Q) and they are conjugate

to each other by elements in Z/pZ. There are p many places in Kc above p, these decomposi-

tion groups are also of order p−1 and conjugate to each other by elements in Gal(Kc/Q(ξp)).

Thus those order p− 1 subgroups are decomposition groups for places above p.

For place R1 of Kc above r1, DR1/r1
is a cyclic group of order f1 and is contained in some

order p− 1 subgroup. Similar claims are true for any place R2 of Kc above r2. Thus we can

choose R1 and R2 such that the decomposition groups are in the same order p−1 subgroup,

which corresponds to some place P above p.

b ∈ H is a nonzero element, and b|Gl
∈ H1(Gl,Fp(1)) = 0. Thus we can pick a lift

b̃ ∈ Z1(GQ,S ,Fp(1)) of b such that b̃|Gl
= 0. Similarly, we use Kb to denote the smallest

field such that b̃|GalKb
= 0.

• Construction of E
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Both B and C are one dimension Fp vector space and as an Fp[ε]− module, ε acts by 0.

Precise definition of B and C:

b̃ ∈ Z1(GQ,S ,Fp(1)) generates a one-dimensional subspace, denoted by B∗, then B is

defined, as a Fp[GQ,S ] module, to be Hom(B∗,Fp(1)). And B can be identified with

Fp(1) via f → f(b̃).

Similarly, C∗ is the Fp vector subspace generated by c̃l, and C := Hom(C∗,Fp(−1)).

B ⊗ C → Fp → Fp[ε] is defined to be

f ⊗ g → f(b̃)g(c̃l) ∈ Fp → f(b̃)g(c̃l)ε ∈ Fp[ε]

• Galois action on E

Next we need to define the homomorphism ρ : GQ,S → E×.

Write ρ(g) =

ρA(g) ρB(g)

ρC(g) ρD(g)

.

Define ρB ∈ Z1(GQ,S , B) ∼= Z1(GQ,S ,Fp(1)) given by b̃.

Define ρC(g) = χ(g)c̃l(g) with c̃l ∈ Z1(GQ,S ,Fp(−1)) ∼= Z1(GQ,S , C) with χ being the

mod p cyclotomic character.

Because b ∪ cl = 0 ∈ H2(GQ,S ,Fp), thus there is some A : GQ,S → Fp satisfying

b̃ ∪ c̃l = dA i.e b̃ ∪ c̃l(g1, g2) = A(g1g2)− A(g1)− A(g2)

The choice of A is not unique, different choices differ by elements in Z1(GQ,S ,Fp) =

Hom(GQ,S ,Fp). Actually we can pick A such that A|Ip = 0 and A|Gr1
= 0 (Actually

here Ip need to be chosen such that the prime over Kb above p with respect to Ip is

P, similarly Gr1 is nicely chosen. )

Why? Because c̃l|Ip = 0 and c̃Gr1
= 0, then A is a homomorphism on Ip and on Gr1 .
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From class field theory,

H1(GQ,S ,Fp) = Hom(GQ,S ,Fp) ∼= Hom((Z/lZ)× × (1 + pZp),Fp)

and H1(Ip,Fp) ∼= Hom(Z×p ,Fp). For i = 1, 2, H1(Gri ,Fp) is a one dimensional space

(because of the assumption that p 6 |ri−1), and is given by the unique unramified degree

p extension of Qri . There is a surjection Z1(GQ,S ,Fp) = H1(GQ,S ,Fp)→ H1(Gr1 ,Fp).

Because r1 is not a p-th power mod l.

Once A is fixed, define ρA(g) = χ(g)(1 + A(g)ε).

To make sure the determinant of ρ : GQ,S → E× is χ, ρD(g) is defined to be 1 +D(g)ε

with D(g) = b̃(g)c̃l(g)− A(g).

It is easy to check that ρ defined above is indeed a group homomorphism.

• Check finite-flat at p and Steinberg condition

Next we will adjust A such that The ρ is

– finite flat at p

– Steinberg at l

– Steinberg at r1 and r2

1. Check being finite flat at p, similar to lemma 7.1.9 in [14]. The key point is

c̃l|Gp
= 0 and A|Ip = 0.

2. Check it is Steinberg at l, similar to lemma 7.1.9 in [14], the key point is b̃|Dl
= 0

and l ≡ 1 mod p.

3. Check it is Steinberg at r1 and r2.

We have seen that c̃l|Gr1
= c̃l|Gr2

= 0 for some choice of decomposition group
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Gr1 and Gr2 . Thus

ρ|Gri
=

χ(1 + Aε) b̃

0 1 +Dε


We want ρ to satisfy Steinberg condition at ri, which is

Vρ(σ, τ) = (ρ(σ)− χ(σ))(ρ(τ)− 1) = 0 for every σ, τ in Gri

which is equivalent to


(χ(τ)− 1)χ(σ)A(σ) = 0

(1− χ(σ))A(τ) = 0

for all σ and τ in Gri

The above condition is equivalent to A(σ) = 0 for all σ ∈ Gri .

Consider the map

H1(GQ,S ,Fp)→ H1(Gr1 ,Fp)×H
1(Gr2 ,Fp)

Thus we need to when A is chosen to satisfying A|Ip = 0 = A|Gr1
, A restricted

to A|Gr2
is also trivial.

A|Gr1
= 0

We first recall the set-up and notations.

b̃ ∈ Z1
flat(GQ,S ,Fp(1)) satisfying b̃|Gl

= 0 and lifting b is unique. Similarly c̃l ∈ Z1
flat(GQ,S ,Fp(−1))

satisfying c̃l|Gp
= 0 (then c̃l|Gr1

= c̃l|Gr2
= 0) and lifting cl is unique.

b̃ ∪ c̃l(g1, g2) = A(g1g2)− A(g1)− A(g2)
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A : GQ,S → Fp satisfies A|Ip = 0 and A|Gr1
= 0. Such A is also unique. Then we want to

show

A|Gr2
= 0

Kb is the field cutting out by b. To be more precise, any cocycle lifting b is a homomorphism

when restricted to Gal(Q̃/Q(ξp)), Kb is the field corresponding to the kernel. Kb is of the

form Q(ξp,
p
√
ra1
1 ra2

2 ), and places above l split completely over Q(ξp).

Similarly, Kc is defined as before, the field cutting out by cl. And places over p, r1, r2 in Kc

split completely over Q(ξp) and places over l are totally ramified.

properties of A

Notation:

• For i = 1, 2, rij with j = 1, · · · , gi to denote places in Q(ξp) over ri.

ri1 is the place such that c̃l|D
Ri/ri1

is 0 for some place of Kc over ri1.

• l splits completely in Kb over Q, and l1, · · · , lp(p−1) are primes over l in Kb.

A is a homomorphism on Gal(Q̃/Kb), it follows from b̃|
Gal(Q̃/Kb)

= 0. Also A|Gr2
is a ho-

momorphism because c̃i|Gr2
= 0. When r2 6≡ 1modp, Hom(Gr2 ,Fp) is given by the unique

degree p unramified extension. Thus A|Ir2 = 0.

Furthermore, we assume AIp = 0 and AGr1
= 0. Thus A is in Hom(Gal(H/Kb),Fp), where

H is the maximal abelian extension over Kb unramified outside places above l, r1, r2, and

Gal(H/Kb) is of exponent p. H is Galois over Q.

Let K denote the composition of Kb and Kc inside Q̃, because places over p, r1, r2 split

completely in Kc over Q(ξp), so do these places over K/Kb. Thus K is a subfield of H.
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H

K

Kb Kc

Q(ξp) Hc

Q

A can be viewed as a function on Gal(H/Q) satisfying the property

b̃(g1)χ−1(g1)c̃l(g2) = A(g1g2)− A(g1)− A(g2) for all g1 and g2 in Gal(H/Q) ((*))

Also A|Ir2 = A|Ip = 0 for some Ir2 , Ip.

There is α ∈ Ir2 ⊂ Gal(H/Q(ξp)) such that its projection to Gal(Kb/Q(ξp)) is a generator

of Gal(Kb/Q(ξp)) and there is β ∈ Ip ⊂ Gal(H/Q) whose projection to Gal(Q(ξp)/Q) is a

generator of Gal(Q(ξp)/Q).

Consider the subgroup generated by α and β inside Gal(H/Q), denoted by < α, β >. Then

< α, β > mod Gal(H/Kb) is isomorphic to Gal(Kb/Q).

Gal(H/Q) = ∪γ∈<α,β>Gal(H/Kb)γ

And A(γ) = 0 for any γ in < α, β >. This follows from

A(g1g2) = A(g1) + A(g2) for any g2 ∈ Ip ∪ Ir2 and A|Ir2 = A|Ip = 0

Every element in Gal(H/Q) can be written as σγ with σ ∈ Gal(H/Kb) and γ ∈< α, β >,
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then

A(σγ) = A(σ) (property ♥)

Condition (∗) above now is that for every σ, σ′ ∈ Gal(H/Kb) and for every γ, γ′ ∈< α, β >

b̃(σγ)χ−1(σγ)c̃l(σ
′γ′) = A(σγσ′γ′)− A(σγ)− A(σ′γ′) = A(σγσ′γ−1γγ′)− A(σ)− A(σ′)

= A(σγσ′γ−1)− A(σ)− A(σ′) = A(σ) + A(γσ′γ−1)− A(σ)− A(σ′)

= A(γσ′γ−1)− A(σ′)

The left hand side is

b̃(σγ)χ−1(σγ)c̃l(σ
′γ′) = (b̃(σ) + b̃(γ))χ−1(σ)χ−1(γ)c̃l(σ

′γ′) = b̃(γ)χ−1(γ)c̃l(σ
′)

Thus

b̃(γ)χ−1(γ)c̃l(σ
′) = A(γσ′γ−1)− A(σ′)

The above equality is true for special case σ′ ∈ Gal(H/K), and c̃|Gal(H/K) = 0, thus for

every σ ∈ Gal(H/K)

A(γσγ−1) = A(σ) (5.1)

proof of A|Gr2
= 0

To show A|Gr2
= 0, by property♥, it suffices to show A|Gr2∩Gal(H/Kb)

= 0.

There are two cases for Kb:

• If r2 is some p-th power mod l, then Kb = Q(ξp)( p
√
r2).

For the field extension Kb/Q(ξp), r
(1)
j splits completely, and r

(2)
j is totally ramified.

(check the beginning of 5.4.2 for notations) Use π
r
(2)
j

to denote the unique prime in Kb

above r
(2)
j .
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• If r2 is not pth power mod l, then Kb = Q(ξp)(
p
√
ra1
1 ra2

2 ) for some a1 and a2 nonzero.

In this case, for Kb/Q(ξp), r
(1)
j and r

(2)
j , as places in Q(ξp), are totally ramified. Use

π
r
(i)
j

with i = 1, 2 to denote the unique prime in Kb above r
(i)
j .

Class field theory give some description of Gal(H/Kb):

(
K×b�

A×Kb,f�∏v-lr1r2 O
×
Kb,v

)/
{p}

∼−→ Gal(H/Kb) (5.2)

⊕v|lr1r2
(
OKb

/
πv
)×

global units

/
{p} → Gal(H/Kb)→ ClKb

/
({p} → 0

Lemma 5.10.

A|Gr2
= 0

Proof. It suffice to show that A([1, · · · , π
r
(2)
1

, · · · , 1]) = 0, because AIr2
= 0.

[1, · · · , π
r
(2)
1

, · · · , 1] ∈ A×Kb,f
has only nontrivial entry appearing at place π

r
(2)
1

.

For each π
r
(2)
j

, there is some γ2,j such that γ2,jπr(2)
1

= π
r
(2)
j

.

Because places over r2 forK overKb split completely, element [1, · · · , π
r
(2)
j

, · · · , 1] in Gal(H/Kb)

is actually in the subgroup Gal(H/K), thus we have

A([1, · · · , π
r
(2)
j

, · · · , 1]) = A(γ2,j .[1, · · · , πr(2)
1

, · · · , 1]) = A([1, · · · , π
r
(2)
1

, · · · , 1])

The last equality above follows from the property (5.1) of A and the above isomorphism

(5.2) is equivariant under the action Gal(Kb/Q).

• When Kb = Q(ξp, p
√
r2), Because A is a homomorphism restricted to Gal(H/Kb),

∑
j

A([1, · · · , π
r
(2)
j

, · · · , 1]) = A(
∏
j

[1, · · · , π
r
(2)
j

, · · · , 1])

65



As ideals in Kb,

( p
√
r2) = π

r
(2)
1

π
r
(2)
2

· · · π
r
(2)
g2

,

Thus

∏
j

[1, · · · , π
r
(2)
j

, · · · , 1] ∈
(
K×b�

A×Kb,f�∏v-lr1r2 O
×
Kb,v

)
→ ClKb

has trivial image.

Actually

∏
j

[1, · · · , π
r
(2)
j

, · · · , 1] =
1

p
√
r2

∏
j

[1, · · · , π
r
(2)
j

, · · · , 1] = [yv]v ∈ K×b
∖

A×Kb,f

/ ∏
v-lr1r2

O×v,Kb

here for v - lr1r2 yv = 1; for v|lr1 yv = 1
p
√
r2

; for v = π
r
(2)
j

, yv = 1
p
√
r2
π
r
(2)
j

.

Break [yv]v into three parts: places over l, over r1, and over r2, and we will show for

each piece ∗, A(∗) = 0.

– places over r1:

Places over r1 splits completely for Kb over Q(ξp):

Use [1, · · · , p
√
r2, · · · 1]

r
(1)
j ,k

to denote the idele with only nontrivial element at

k-th place above r
(1)
j with j = 1, · · · , g1 and k = 1, · · · , p.

A([1, · · · , p
√
r2, · · · 1]

r
(1)
j ,k

) = A(γj,k.[1, · · · , γ−1
j,k

p
√
r2, · · · 1]

r
(1)
1 ,1

)

here γj,k ranges over the order pf1 subgroup G1 of Gal(Kb/Q).

Here [1, · · · , γ−1
j,k

p
√
r2, · · · 1]

r
(1)
1 ,1

viewed as an element in Gal(H/Kb) is actually in

the subgroup Gal(H/K). Thus

A([1, · · · , p
√
r2, · · · 1]

r
(1)
j ,k

) = A([1, · · · , γ−1
j,k

p
√
r2, · · · 1]

r
(1)
1 ,1

) = 0

66



The first equality follows from the property (5.1) and the second equality is be-

cause A|Ir1 = 0.

– places over r2:

It is almost the same as above: [1, · · · , p
√
r2
−1πr2j

, · · · , 1] can be viewed as an

element in Gal(H/K), because of property (5.1) and AIr2
= 0, thus

A([1, · · · , · · · , p
√
r2
−1πr21

, · · · , · · · , p
√
r2
−1πr2g2

, · · · , 1]) = 0

– places over l: Want to show the statement below

A([1, · · · , p
√
r2, · · · , p

√
r2, · · · , 1]) = 0

here [1, · · · , p
√
r2, · · · p

√
r2, · · · , 1] has only nontrivial element at places over l.

There are p(p − 1) places over l, denoted by lj with j = 1, · · · , p(p − 1), and

Gal(Kb/Q) acts transitively on these places. Assume lj = γj l1, then

A([1, · · · , p
√
r2, · · · , 1]l,j) = A(γj .[1, · · · , γ−1

j
p
√
r2, · · · , 1]l,1)

Notice that [1, · · · , γ−1
j

p
√
r2, · · · , 1]l,1 is not necessarily in Gal(H/K), property

(5.1) does not apply. We need to use the assumption AGr1
= 0, i.e

A([1, · · · , π
r
(1)
1 ,1

, · · · , 1]) = 0

here π
r
(1)
1 ,k

is a uniformizer of place r
(1)
1 , 1, because of the property (5.1), for every

j and k

A([1, · · · , πr
j(1),k

, · · · , 1]) = 0

Similar as above, we can consider the products of above ideles, then conclude
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A([zv]v) = 0 here zv = 1 if v - lr1r2; zv = r−1
1 if v|lr2; and z

r
(1)
j ,k

= r−1
1 πr

j(1) ,k
.

Similarly, we break [zv]v into three parts, places over l, r1, r2, for places over r1

and r2, we can show A([zv]v|r1r2) = 0. Thus A([zv]v|l) = 0, i.e

A([1, · · · , r1, · · · , r1, · · · 1]l) = 0 lower index l means r′1s are only at places over l

Because r1 is not a pth power mod l, then r1 is a generator of
(
Z/lZ

)×/
{p} ,

thus either [1, · · · , p
√
r2, · · · , p

√
r2, · · · 1] is trivial in

(
OKb,v/lOKb,v

)×/
{p}

or [1, · · · , p
√
r2, · · · , p

√
r2, · · · 1]l generates the same subgroup as [1, · · · , r1, · · · , r1, · · · 1]l

inside
(
OKb,v/lOKb,v

)×/
{p} , in both cases,

A([1, · · · , p
√
r2, · · · , p

√
r2, · · · 1]) = 0

• When Kb = Q(ξp,
p
√
ra1r

b
2), the proof is similar, instead we take the sum

∑
j

A([1, · · · , π
r
(1)
j

]) +
∑
k

A([1, · · · , π
r
(2)
k

, · · · , 1]) = g2A([1, · · · , π
r
(2)
k

, · · · , 1])

The second equality follows from the assumption A|Gr1
= 0.

We have instead as ideals
∏
j πr(1)

j

∏
k πr(2)

k

= ( p
√
ra1
1 ra2

2 ). The rest arguments are

basically the same.

5.3 admissible (l, r1, r2, q)

From last section, given b̃ and c̃ fixed, then there is a unique choice of A such that the

GMA structure over Fp[ε] defined above satisfies the desired properties. This GMA struc-

ture induces a nontrivial homomorphism φ0 : RN → F[ε]. And φ0 is a Fp generator for

Hom(J/mJ,Fp) ∼= Hom(RN ,Fp[ε]).
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As we have seen before, because of the Galois reps attached to modular forms, there is a

natural isomorphism ι : RN → T . And the map ι is uniquely determined by mapping

tr(ρ(Frobq)) to Tq.

Thus Tq−(q+1) does not generate I if and only if tr(ρ(Frobq))−(q+1) does not generate J ,

if and only if for the homomorphism φ0 in Hom(J/mJ,Fp), φ0
(
tr(ρ(Frobq))− (q + 1)

)
= 0.

Lemma 5.11. DR : R[G] → R is a pseudorepresentation of dimension d, f : R → A is an

algebra homomorphism. DA is the pseudorepresentation given by DR⊗fA. For every g ∈ G,

trDR
(g) ∈ R is the trace of DR and trDA

(g) is the trace of DA, then trDA
(g) = f(trDR

(g)).

From the lemma above, it suffices to show tr(ρFp[ε](Frobq)) = q + 1.

tr(ρFp[ε](Frobq))−(q+1) = ρA(σq)+ρD(σq)−(q+1) = [(χ(σq)−1)A(σq)+ b̃(σq)c̃(σq)]ε = 0

here σq is a Frobenius element over q.

Lemma 5.12. Tq − (q + 1) generates I if and only if Tq − (q + 1) generates I◦.

Proof. One direction is easy, it suffices to prove that if Tq− (q+ 1) generates I◦, then it also

generates I.

Projection to cuspidal part T � T ◦ induces Fp space isomorphism

I/mI
∼−→ I◦/m◦I◦

From Nakayama’s lemma, Tq − (q+ 1) generates I if Tq − (q+ 1)→ I/mI is surjective. The

assumption is saying Tq − (q + 1) maps onto I◦/m◦I◦.

Thus this proves the lemma.

In summary, Tq − (q + 1) does not generate I◦ if and only if

(χ(σq)− 1)A(σq) + b̃(σq)c̃(σq) = 0
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Depending on whether χ(σq) = 0, there are two cases:

1. If q splits completely in Q(ξp), i.e q ≡ 1modp. Then χ(σq) = 1, in this case, Tq−(q+1)

does not generate I if and only if b̃(σq)c̃(σq) = 0.

Kb = Q(ξp,
p
√
R), with R = r2 or R = ra1r

b
2 depending on whether r2 is a p− th power

mod l. Then b̃(σq) = 0 if and only if R is a p− th power mod q.

2. If q does not split completely in Q(ξp). As we have seen before, any place above q

splits completely in Kc/Q(ξp). Thus c̃(σq) = 0. Thus in this case, Tq − (q + 1) does

not generate I if and only if A(σq) = 0.

Case 1 gives the following theorem:

Theorem 5.2. Assume l ≡ 1 mod p, r1, r2 6≡ 1 mod p and r1 is not a p-th power mod l.

Furthermore, we assume q ≡ 1 mod p and R := ra1r2 for some 0 ≤ a ≤ p− 1 such that R is

a p − th power mod l, if R is also a p-th power mod q then Tq − (q + 1) does not generate

I◦. Thus the 4−tuple (l, r1, r2, q) is admissible for d = 4.

Example 5.2. This example is from case 1 above.

Let (l, r1, r2) = (101, 2, 3), N = 606 and p = 5. There are two newform classes f1 and f2 in

S2(Γ0(606), Q̄)new that are congruent to E.

The coefficient ring for f1 (respectively f2) is Z(resp. Z[
√

6] ∼= Z[α]/(α2 − 6)).

In this case, R = 6, and it is a p-th power mod 31, the argument above implies T31− 31− 1

does not generate the Eisenstein ideal. While T11 − 11 − 1 does, and this claim is from

explicitly computing Kc.

Next, we will verify the above claims. Let ηs := Ts−(s+1), Rs(y) is the minimal polynomial

of ηs.

Z5[ηs] ∼= Z5[y]/Rs(y) ↪→ T ◦ ↪→ Z5 ×F5
Z5[
√

6]

Z5 ×F5
Z5[
√

6] := {(a, b) ∈ Z5 × Z5[α]/(α2 − 6)|a mod 5 ≡ b mod (5, α− 1)}
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T11f1 = 2f1 T31f1 = 7f1

T11f2 = (−α− 2)f2 T31f2 = (−2− α)f2

Thus Rs(y) for η11 (respectively, η31) is

R11(y) = (y + 10)((y + 14)2 − 6) resp. R31(t) = (y + 25)((y + 34)2 − 6)

We can show Z5[η11] is isomorphic to Zp ×F5
Zp[
√

6]. Thus T ◦ ∼= Z5[y]/R11(y), which is

monogenic.

But Z5[η31] is strictly smaller than T ◦. The key part is that y+10 and (y+14)2−6 generate

the maximal ideal (y, 5), while when q = 31, the ideal generated by y+ 25 and (y+ 34)2− 6

is (y, 25).
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