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ABSTRACT

In his study of the unitary dual of a real semisimple Lie group GR, Vogan and his co-

workers introduced a hermitian form (·, ·)uR on a Harish-Chandra module I that is invariant

under the action of the maximal compact of the complexification G of GR. Understanding

the signature of this form is related to the problem of determining if the Harish-Chandra

module I is unitary or not.

In their paper [SV12], Vilonen and Schmid use the Beilinson-Bernstein localization the-

orem along with a twisted version of Saito’s theory of mixed Hodge modules to extend the

definition of this invariant form to a set of irreducible modules that are not necessarily in

the Harish-Chandra category anymore. This set consists of modules that are “geometrically

constructible”, meaning they are induced from locally closed subvarieties of the flag variety

using the Grothendieck functors for D-modules. The corresponding form turns out to be the

integral of the polarization.

From Saito’s theory, these modules are endowed with natural Hodge filtrations. Schmid

and Vilonen posted a conjecture that aims to study the signature of this form on the graded

pieces of the Hodge filtration.

In this thesis we explain all the constructions of Schmid and Vilonen with particular

emphasis in the case when the modules are induced from closed subvarities of the flag variety.

We also provide geometric proofs of the conjecture in the cases when I is a Verma module

of antidominant highest weight or a discrete series representation.
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CHAPTER 1

INTRODUCTION

Let GR be a real semisimple Lie group with Lie algebra gR and maximal compact KR.

We denote by G, g, and K their complexifications. Let UR be a maximal compact subgroup

inside G so that UR ∩ GR = KR, and denote its Lie algebra by uR. A Harish-Chandra

module is a (g, K)-module so that the K and g-actions are compatible and the K-action is

locally finite.

Let H be the universal Cartan subgroup of G and denote by h its Lie algebra. Let Λ ⊂ h∗

be the weight lattice. For any λ ∈ Λ ⊂ h∗, we denote by Ugλ-mod the category of modules

over the enveloping algebra Ug with infinitesimal character χλ. Here χλ denotes the character

of the center Zg induced from λ via the Harish-Chandra isomorphism Zg
∼→ C[h∗]W . We

denote the category of Harish-Chandra modules with infinitesimal character χλ by HCλ.

For any representation V of the group GR, we can construct a Harish-Chandra module Ṽ

by taking the smooth, K-finite vectors in V . As it turns out, this process yields a bijection

between unitary irreducible representations of GR and irreducible Harish-Chandra modules

with a positive definite gR-invariant hermitian form. The former of these sets is known as

the unitary dual of GR, and it has been a long lasting problem to understand its nature.

Assuming λ is a real weight, meaning λ ∈ h∗R := R⊗ZΛ, Vogan constructs, using algebraic

techniques, for any irreducible object I ∈ HCλ, a hermitian UR-invariant form (·, ·)uR which

is unique up to scaling. When the module I also admits a gR-invariant form, one can replace

it by a scalar multiple and there exists a K-equivariant involution T : I → I so that

(u, v)gR = (Tu, v)uR

for any elements u, v ∈ I (see [SV12], section 2). Since T is an involution, the space I splits

as the direct sum of the ±1-eigenspaces and each of those eigenspaces will be stable under the

K-action. The form (·, ·)uR has to be definite when restricted to the K-isotypic components.
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Therefore the problem of understanding whether (u, v)gR is positive definite translates to

understanding the signature of the form (·, ·)uR on different K-isotypic components and the

nature of the transformation T .

In their paper [SV12], Schmid and Vilonen use geometric techniques to construct a large

class of irreducible Ug-modules, which are not necessarilly in the Harish-Chandra category

anymore, and endow them with a UR-invariant hermitian form (again, assuming the weight

λ is real). Let us briefly explain this construction. For any complex algebraic variety Y ,

we denote by DY its ring of differential operators, and by DY -mod the category of DY -

modules. Let X be the flag variety of G. Let Dλ
X be the corresponding ring of twisted

differential operators associated to the weight λ. It turns out that for any objectM∈ Dλ
X ,

its global sections M = Γ(X,M) is an object in Ugλ-mod. If λ is dominant and regular, the

Beilinson-Bernstein localization theorem [BB81], gives an equivalence of categories:

Ugλ-mod Dλ
X -mod

∆
∼
Γ

Let Q
j
↪→ X be a locally closed subset of X. For any irreducible vector bundle with a flat

connection S on Q, we can consider a twisted version of the minimal extension functor to

produce an irreducible Dλ
X -module jλ!∗S. This extension can be defined only for certain

weights λ. Whenever it can be defined, the localization theorem ensures that I = Γ(X, jλ!∗S)

is an irreducible object in Ugλ. In addition, endowing S with the trivial Hodge and weight

filtrations makes it an irreducible Hodge Module. By (a twisted version of) Saito’s theory,

the module I is also a Hodge module equipped with a canonical Hodge filtration {FP I}.

If moreover the character λ is real, then the Hodge module is polarized. We will explain

in more detail how the polarization is constructed in the next section. For now we point out

it is a pairing P : I × I → C−∞(XR), where C−∞(XR) denotes the space of distributions

on the real manifold XR that underlies X. From here Schmid and Vilonen give a geometric
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description of the UR-invariant hermitian form. This is

(u, v)uR =

∫
X
P (u, v) dm, (1.1)

where dm is the UR-invariant Haar measure on the flag variety. About the signature of this

form, Schmid and Vilonen conjectured

Conjecture 1.1. Let c be the minimum degree where the Hodge filtration is not trivial.

Assume v ∈ FpI ∩ (Fp−1I)⊥. Then

(−1)p−c(v, v) > 0.

The class of modules I constructed using the process we described includes the irreducible

objects in category O (for some arbitrary choice of a Borel), and the irreducible Harish-

Chandra modules. They appear respectively as minimal extensions of irreducible vector

bundles on the Bruhat cells, and as minimal extensions of K-equivariant irreducible vector

bundles on K-orbits on the flag variety. In this paper we focus to prove conjecture 1.1 in

the most simple cases in each of those settings. Those are precisely when Q is the zero-

dimensional Bruhat cell or when Q is a closed K-orbit, and K has the same rank as G.

In both of those cases, since Q is closed, the minimal extension coincides with the usual

pushforward.

When Q is a single point in the flag variety, the corresponding modules coincide with the

Verma module of antidominant highest weight, whereas if Q is a closed K-orbit, the module

is the (infinitesimal) discrete series representations. The main result in this paper is

Theorem 1.2. Conjecture 1.1 holds true when I is either an irreducible Verma module of

antidominant highest weight, or a discrete series representation.

It turns out these results can be proven from purely algebraic considerations. Indeed,

in the first case, the form (·, ·)uR coincides with the Shapovalov form and it was studied by
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Wallach [Wal84]. Schmid actually verified the conjecture holds true in that case by using the

results of Wallach. On the other hand, it can be shown that the conjecture in the second case

is equivalent to the well known fact that discrete series are unitary, and in particular it has to

hold true. Even so, the nature of the conjecture (1.1) is geometric, in fact, both the filtration

FpI and the form (·, ·)uR are constructed from purely geometric data. Therefore we were

motivated by trying to provide geometric proofs of these “simple” cases. In particular, we do

not use that the infinitesimal discrete series come from a unitary representation. Our proof

of the conjecture for that case can be considered to be a geometric proof of the unitarity of

the discrete series representations.

The strategy we follow in this paper is to study locally the integral in (1.1). It turns

out that both the differential form dm and the polarization P (·, ·) admit explicit formulas

on an open set isomorphic to a maximal unipotent subgroup N ⊂ B, for some Borel B of

G. These formulas are given in terms of the function aw0(n) which is defined to be the A-

component in the Iwasawa decomposition G = URAN of the term w−10 nw0, where w0 ∈ UR

is a representative of the maximal element in the Weyl group. The study of the integral in

(1.1) is closely related to behavior of the function aλw0
(n).

Lu introduced in [Lu99] a set of local coordinates for the flag variety that realizes the

function aλw0
(n) in a very explicit form. The advantage of these coordinates is they allow

us to give explicit formulas for the polarization. These formulas generalize the ones given in

[SV15] when G is SL(2). However, since these coordinates are not holomorphic, it is difficult

to describe polarization on the module I in those terms. This is the main obstacle we need

to overcome in order to prove theorem 1.2.

This thesis is structured as follows. In section 2, we present the construction of Schmid

and Vilonen, and explain how to come up with the right polarizations. In section 3 we show

how the conjecture 1.1 is related to the unitarizability of irreducible (g, K)-modules. Section

4 is devoted to introduce Lu’s coordinates, and sections 5 and 6 deal with the geometric

proof of theorem 1.2 in the two settings we have presented.

4



CHAPTER 2

PRELIMINARIES

2.1 Pushforward of D-modules

Let f : Z → Y be a morphism of smooth algebraic varieties. Given a DZ -module M , our

goal is to construct a DY -module in a functorial way. We follow the expositions in [HT07]

and [Gin98] in this section.

First, define the connector bimodule DZ→Y by

DZ→Y := f∗DY = OY ⊗f−1OZ
f−1DZ .

This has the structure of a f−1DZ on the right, and of a DQ-module on the left as can be

seen from the derivative map TZ → f∗TY , where TZ and TY denote the tangent sheaves of

Z and Y respectively and j∗ is the restriction functor for O-modules.

Let X be a smooth complex variety X and let ΩX be the sheaf of top-degree differential

forms on X. By means of the Lie derivative, this sheaf has the structure of a right DX -

module. Let M be a left DX -module. One can see that for a vector field θ ∈ TX , the

formula

θ(ω ⊗m) = ω · θ ⊗m− ω ⊗ θ ·m.

defines a structure of a right DX -module on ΩX ⊗OX
M . Since the sheaf ΩX is invertible,

we obtain an equivalence of categories

DX -mod↔ Dop
X -mod.

We call the corresponding functors side changing functors.

Define

DY←Z := ΩZ ⊗OZ
f−1Ω−1Y ⊗OZ

DZ→Y .
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By the previous argument, we see DY←Z is a (f−1DY ,DZ)-module.

Definition 2.1. Given aDZ -moduleM , we define the functor f∗ : Db(DZ -mod)→ Db(DY -mod)

at the level of derived categories by

f∗M := Rf·(DY←Z ⊗L
DZ

M).

Now assume the morphism i : Z → Y is a closed embedding. Then one can check DY←Z

is locally free over DY and the functor Ri· is exact. In particular i∗ restricts to an exact

functor i∗ : DZ -mod→ DY -mod.

Let JZ be the defining sheaf of Z. Denote by N(JZDY ) the normalizer of JZ in DY .

That is

N(JZDY ) := {ψ ∈ DY : ψJZ ⊂ JZDY }.

The vector fields on Y that are tangent to Z are contained in N(JZDY ). Indeed, as a sheaf

of algebras, N(JZDY ) is generated by these vector fields and the functions on Y . There is

a canonical identification

N(JZDY )/JZDY = i·(DQ).

If we define N(DY JZ) in the analogous way, it turns out

Proposition 2.2. The normalizers N(JZDY ) = N(DY JZ) coincide. Moreover, there is a

canonical identification

N(DY JZ)/DY JZ = i·(NZ ⊗DZ ⊗N ∗Z)

where NZ and N ∗Z are the top exterior powers of the normal and conormal bundles of Z in

Y respectively.

From this proposition, we get the following description of the pushforward functor of

D-modules for closed embeddings

6



Proposition 2.3. Let M be a DZ-module. There is an isomorphism of DY -modules:

i∗M = DY ⊗JZDY
i·(NZ ⊗OZ

M).

Where the DY -module structure on the right hand side comes from left multiplication on DY .

We remark that sections of NZ can be thought of as distributions on Q, as such they can

be differentiated with respect to vector fields on Q. In this sense, the module i∗M can be

regarded as the extension of M by adding the formal derivatives in the normal directions of

the corresponding “delta functions”.

Let DZ
Y -mod denote the category of DY -modules that are supported on Z. For any

N ∈ DY -mod, there is an action of N(DY JZ)/DY JZ on ker(JZ , N), the sheaf of sections

of N that are anihilated under the action of the ideal JZ . Therefore we can define a functor

i! : DZ
Y -mod→ DZ -mod by

N ∈ DZ
Y -mod 7→ i!N := N ∗Z ⊗OZ

i−1ker(JZ , N).

The functor i! is exact. The following result will be important later. See [Gin98], theorem

3.3.13.1 for details.

Theorem 2.4. (Kashiwara equivalence theorem) Let i : Z ↪→ Y be a closed embedding.

The pushforward functor i∗ : DZ-mod → DZ
Y -mod from the category of DZ-modules to the

category of DY -modules supported on Z is an equivalence of categories. Its quasi-inverse is

given by the functor i!.

2.2 Construction of irreducible modules

Let us define explicitly what are the class of objects Schmid and Vilonen consider in their

paper. Let X be the flag variety of G. For any weight λ ∈ Λ, there is a unique G-equivariant

line bundle Oλ on X characterized by the property that the Borel B that stabilizes a given

7



point x acts on the geometric fiber via the character eλ. We define the ring of twisted

differential operators Dλ
X to be

Dλ
X = Oλ−ρ ⊗OX

DX ⊗OX
Oρ−λ,

where ρ is half the sum of the positive roots. One can make sense of Dλ
X even when λ ∈ h∗

is not an element in the weight lattice, in such case the line bundle Oλ−ρ can not be defined

on X, but it can still be defined as a line bundle equipped with a g-action on different open

sets of X. In this case, if B is the stabilizer of the point x ∈ X, we require b to act on the

fiber of Oλ−ρ via the character λ− ρ.

Denote by Jλ ⊂ C[h∗] the mazimal ideal of functions that vanish at λ. We denote by Iλ

the pullback of this ideal to Zg. Beilinson and Bernstein [BB81] prove the following

Theorem 2.5. The global section of Dλ
X are given by

Γ(X,Dλ
X) = Ug/(Ug)Iλ

Therefore we have functors

Γ : Dλ
X -mod→ Ugλ-mod

∆ : Ugλ-mod→ Dλ
X -mod

where Γ is the global sections functor and ∆ is the localization functor given by M 7→

Dλ
X ⊗Ug M . The functor ∆ is left adjoint to Γ. Beilinson ans Bernstein also prove

Theorem 2.6. If the weight λ is dominant, then

1. The functor Γ is exact.

2. The natural transformation Id→ Γ ◦∆ is an isomorphism.

8



This implies (see [BG99], lemma 2.4 for example), whenever λ is dominant, there is an

equivalence of categories

Ugλ-mod↔
Dλ
X -mod

ker(Γ)
. (2.1)

If λ is in addition regular, then the kernel of the functor Γ only contains the zero object.

Indeed, in such case any Dλ
X -module is generated by its global sections. This implies the

version of the BB-correspondence we stated in the introduction. Notice formula (2.1) implies

the space of global sections of an irreducible Dλ
X module is an irreducible object in Ugλ-mod

even if λ is not regular. We are interested in constructing irreducible Ug-modules, hence we

can and will drop from now on the assumption that λ is regular.

Let f : Q ↪→ X be a locally closed smooth algebraic set. Factor f as the composition

Q
i
↪→ Xo j

↪→ X.

Where Xo := X\∂Q. Notice i is a closed embedding and j is an open embedding. Motivated

by the construction in the previous section, we write JQ for the defining ideal of Q, and we

define a ring of twisted differential operators on Q by

Dλ
Q := i−1

(
N(JQDλ

Xo)/JQDλ
Xo

)
.

Proposition 2.2 carries over to this situation and we have

N(Dλ
XoJQ)/Dλ

XoJQ = i·
(
NQ ⊗Dλ

Q ⊗N
∗
Q

)

Hence we define the twisted pushforward iλ∗ : Dλ
Q-mod→ Dλ

Xo-mod by

iλ∗M := Dλ
Xo ⊗N(JQDλ

Xo)
i·(NQ ⊗M).

9



This functor turns out to be exact. For M ′ in the category of Dλ
Xo-modules, we define

jλ∗ : Db(Dλ
Xo-mod)→ Db(Dλ

X -mod) simply by j∗M ′ = Rj·M ′, which has to be defined as a

derived functor. Finally we set fλ∗ = jλ∗ ◦ iλ∗ . In the case when the inclusion f is an affine

morphism, the functor fλ∗ has no cohomology, and so if M ∈ Dλ
Q-mod, then fλ∗M is an

underived Dλ
X -module.

Just like in the untwisted case, we can also define a functor fλ! : Db(Dλ
Q-mod) →

Db(Dλ
X -mod) in the derived categories (see for example [HT07], chapter 2 for the untwisted

case). It turns out that for any M ∈ Db(Dλ
Q-mod), we have a morphism fλ! M → fλ∗M .

Denote by fλ!∗ its image. This functor is called the minimal extension. This name is justified

since, for M irreducible, then fλ!∗M is the unique irreducible subobject of fλ∗M .

Let S be an irreducible vector bundle on Q with a flat connection (hence, a DQ-module).

For any λ so that Oλ−ρ can be defined in a neighborhood of Q, the sheaf Oλ−ρ|Q ⊗OQ
S is

a Dλ
Q module. We denote

M(Q, λ,S) = R0fλ∗ (Oλ−ρ|Q ⊗OQ
S)

I(Q, λ,S) = fλ!∗(Oλ−ρ|Q ⊗OQ
S)

Even though in general both functors fλ∗ and fλ! are derived, the image of fλ! → fλ∗ is

non-trivial only in degree zero, therefore I(Q, λ,S) is still the unique irreducible subobject

ofM(Q, λ,S).

For the close embedding i : Q ↪→ Xo, one has iλ∗ = iλ! = iλ!∗. Assume U ⊂ Xo is the

open set containing Q where the bundle Oλ−ρ can be defined. The category Dλ,Q
Xo -mod

of Dλ
Xo-modules supported on Q is equivalent to the category Dλ,Q

U -mod of Dλ
U -modules

supported on Q by Kashiwara equivalence, where Dλ
U is the restriction of Dλ

X to U . So we
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have functors

DQ-mod
i∗ //

Oλ−ρ|Q⊗·
��

DQ
X -mod

Oλ−ρ⊗·
��

Dλ
Q-mod

iλ∗ // Dλ,Q
X -mod

This diagram is commutative, from where we conclude

I(Q, λ,S) = jλ!∗(Oλ−ρ ⊗OU
i∗S)) (2.2)

This is the description we will use in sections 5 and 6.

It is possible to use the localization theorem to give an explicit geometric characterization

of the irreducible objects in HCλ and the irreducible objects in category O. Let now Q be

a K-orbit in X, in particular Q is affinely embedded in X. Assume λ ∈ hR is a weight so

that Oλ−ρ makes sense in a neighborhood of Q. Let S be a K-equivariant line bundle on

Q with a flat connection. It turns out (see [BB81]) that both M(Q, λ,S) and I(Q, λ,S)

have locally finite K-actions which are compatible with the g-action. Therefore their global

sections are Harish-Chandra modules. Conversely, any irreducible Harish-Chandra module

is of the form Γ(X, I(Q, λ,S)), for some Q, S and λ. The latter statement is true even if λ

is not regular.

For the case of category O, it turns out that choosing Q to be a Bruhat cell (which

are also affinely embedded) allows us to realize the dual Verma modules as pushforwards of

trivial vector bundles. Then the irreducible objects all appear as the minimal extensions of

such vector bundles (see [BG99], proposition 4.4 for example). Notice again we do not need

to use that λ is regular

Schmid and Vilonen use a twisted version of Saito’s theory of Mixed Hodge Modules

[Sai90] to endow bothM(Q, λ,S) and I(Q, λ,S) with canonical weight and Hodge filtrations

which come from thinking of S as a Hodge module by endowing it with the trivial Hodge and
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weight filtrations. We won’t define these filtrations in general, but we can give description

of what the Hodge filtration looks like when i : Z ↪→ Y is a closed embedding of smooth

algebraic varieties. Let M be a Hodge module on Z with Hodge filtration F·M . Let U be

an open subset of Y which admits affine coordinates x1, . . . , xn so that U ∩ Z is cut out by

the equations x1 = · · · = xk = 0. In this case, we have

(i∗M)(U) =M(U ∩ Z)⊗ C[∂x1 , ∂x2 , . . . , ∂xk ](δZ),

meaning we adjoint formal derivatives in the normal directions of the delta function to

M(U ∩ Z), which we think of as a flat section of NZ(U). Locally we have

Fp(i∗M)(U) =
∑

|α|+q+k≤p
FqM(U ∩ Z)∂α1

x1 . . . ∂
αk
xk (δZ). (2.3)

Schmid and Vilonen explain that these filtrations still make sense in the twisted setting

as long as λ ∈ h∗R. IF Q is a closed set, from (2.2), we can describe this filtration. It is:

Fp(Oλ−ρ ⊗ i∗S) = Oλ−ρ ⊗ Fpi∗S.

2.3 Polarization

For a smooth complex variety Y , denote by YR the underlying smooth real manifold. We

denote by Y the same variety equipped with the conjugate complex structure. The map Y →

Y given by y 7→ y is a diffeomorphism of real manifolds, and interchanges the holomorphic

structure on Y with the antiholomorphic structure on Y . The sheaf of differential operators

DY is defined in the natural way. For a DY -moduleM , we defineM to be the corresponding

conjugate module with action given by ψ ·m = ψ ·m, for any ψ ∈ DY . A polarization on a

Hodge Module M is a DY ×DY -bilinear pairing

12



M ×M → C−∞(YR).

Where C−∞(YR) is the space of distributions on YR. Let Y be an algebraic complex

variety and Z a locally closed subset of Y , and f : Z ↪→ Y the inclusion. We will give a

description of the polarization. Use the factorization

Z
i
↪→ Y o j

↪→ Y

where Y o stands for Y \∂Z. Use the same coordinates given in (2.3) for the embedding i. Let

M be an irreducible variation of Hodge structure (hence, a Hodge module) on Z endowed

with a polarization (·, ·)1 : M ×M → C∞(ZR), where the target is the space of smooth

functions on ZR. Then the Hodge module i∗M is pure and admits a polarization. This

polarization is locally given by

P (uα(δZ), vβ(δZ)) = (u, v)1(αβ)(δZR). (2.4)

Where u, v ∈ M , α, β ∈ C[∂k+1, . . . , ∂n], and δZR is the delta function of ZR, which we

think as the section δZ ⊗ δZ of the line bundle NZ ⊗CNZ . It is characterized by zi · δZR =

zi · δZR = 0, for any 1 ≤ i ≤ k, and ∂i · δZR = ∂i · δZR = 0 for any k + 1 ≤ i ≤ n.

The extension to Y is defined in the natural way. From the construction we see that

P (u, v) ∈OY o
R
⊗OY ×OY

(f∗(OZ)⊗ f∗(OZ))

= OY o
R
⊗OY ⊗OY

(DY ⊗N(JZDY ) f·(NZ))⊗ (DY ⊗N(JZDY ) f·(NZ))

= DY o
R
⊗N(JZRDY o

R
) f·(NZR) =: ∆Z

R.

Here the real subindices denote the smooth counterparts of the corresponding holo-

morphic objects. Just like in section 2.1, ∆Z
R can be regarded as the adjunction of the
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formal derivatives in the normal directions to the delta distributions (sections of the normal

bundle) on ZR. We have a pairing

⟨·, ·⟩ : f−1ΩYR ⊗DYR
∆Z
R → ΩZR ,

defined by ω ⊗ ϕ⊗ α 7→ ⟨ω · ϕ, α⟩, where ⟨·, ·⟩ : ΩYR ×NZR → ΩZR is the contraction map.

In particular it makes sense to define

∫
Y
δω :=

∫
Z
⟨ω, δ⟩ (2.5)

for δ ∈ ∆Z
R and ω ∈ ΩYR . The following is an immediate consequence of this formula

Proposition 2.7. Assume Z is a closed set of Y . For any smooth measure ω, and any

δ ∈ ∆R, the integral
∫
Y δω is absolutely convergent.

Now we consider the case when Y = X is the flag variety and Z = Q is a locally closed set.

Because we want to work in the twisted setting, we need an equivalent definition of polariza-

tion. DenoteM =M(Q, λ,S). Use the notation of (2.2) to write,M = j∗(Oλ−ρ⊗OU
i∗S).

We consider a pairing P :M×M→ C−∞(XR) which can be described as follows:

1. Endow S with a flat hermitian metric (·, ·).

2. Extend to a polarization P1(·, ·) on i∗(S) by means of the formula (2.4).

3. This induces a pairing P (·, ·) on Oλ−ρ ⊗ i∗(S) by using the trivial metric on Lλ−ρ.

Explicitely, this is given by

P (σ ⊗ u, τ ⊗ v) = σ(τ)P1(u, v).

This formula makes sense because, since λ is a real weight then Oλ−ρ = Oρ−λ.

4. Extend toM in the natural way.
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From the definition, it is clear that P (u, v) ∈ ∆
Q
R for any u, v ∈M and therefore can be

integrated against measures on X. The main property of this construction is the following

Proposition 2.8. The polarization P is uR-equivariant. This means

ψ · P (u, v) = P (ψ · u, v) + P (u, ψ · v)

for any u, v ∈M(Q, λ,S) and ψ ∈ uR.

Proof. Assume the line bundle Oλ−ρ can be defined on an open set U ⊂ X that contains Q.

Then we have an identification Oλ−ρ = Oρ−λ that comes from identifying X with X. For

any u ∈ UR close enough to the identity, and x ∈ U , we have u · x = u · x. Therefore the

pairing

Oλ−ρ ×Oλ−ρ → C∞(U)

is uR-equivariant.

By Saito’s theory, the pairing P1 on i∗(S) is DX × DX -bilinear, and in particular it is

uR-equivariant. It follows that the pairing P onM is also uR-equivariant.

As we defined in the introduction, let dm be the UR-invariant Haar measure on X.

Schmid and Vilonen construct a hermitian form on I by

(u, v)uR :=

∫
X
P (u, v) dm.

In principle, it is not clear this integral will be convergent unless Q is a closed set. We

will not discuss here exactly how to deal with the case when Q is not closed as our main

interest is in the close embedding situation. Let us just say that it is possible to verify the

integral
∫
X P (u, v)ω absolutely convergent whenever u, v ∈ F0I and ω is a smooth measure

on X. Since the sheaf I is irreducible, one can also check that for any u, v ∈ I, there exist

u0, v0 ∈ F0I and ϕ ∈ DXR so that P (u, v) = ϕ · P (u0, v0). This is clear in the untwisted
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setting but is not obvious for twisted sheaves. The way to extend this integral then is by

∫
X
P (u, v) dm :=

∫
X
P (u0, v0)( dm · ϕ)

The following is a result of Schmid and Vilonen (See [SV12], proposition 5.10

Theorem 2.9. Let dm denote the UR-invariant measure on X. For any u, v ∈ Γ(X, I), the

hermitian form (u, v)uR defined by

(u, v)uR :=

∫
X
P (u, v) dm.

is uR-invariant.

Proof. (Borrowed from [SV12]) Let ψ ∈ uR. We have

(ψ · u, v)uR + (u, ψ · v)uR =

∫
X
P (ψ · u, v) + P (u, ψ · v) dm

=

∫
X
P (ψ · u, v) + P (u, ψ · v) dm

=

∫
X
ψ · P (u, v) dm

=

∫
X
P (u, v)(dm · ψ)

= 0.

Where in the first line we used ψ = ψ since ψ ∈ UR and in the last line we used that

dm · ψ = 0 because dm is UR-invariant.

16



CHAPTER 3

THE PROBLEM OF UNITARIZABILITY

In this section we explain how the Schmid-Vilonen conjecture can be used to prove unitariz-

ability. Assume K is the group of fixed points of an involution θ : G→ G and Q is K-orbit

on the flag variety. Let g = k⊕ p be the Cartan decomposition that corresponds to the split

of g in the 1 and −1 eigenspaces with respect to the involution θ. One has that k is the Lie

algebra of K.

Let x ∈ Q, and let B ⊂ G be the Borel that fixes x. Then we have Q = K/K∩B. Denote

BK := K∩B. The group BK is solvable and satisfies BK/[BK , BK ] =: H ′ is a commutative

subgroup of K. The inclusion bK ↪→ b induces an inclusion h′ ↪→ h on the corresponding

Lie algebras. The condition that the bundle Oλ−ρ can be defined on a neighborhood of Q

is equivalent to the condition that the pullback of λ− ρ to h′ is an integer weight, meaning

it can be exponentiated to a character of the group H ′ (see [HMSW87]). Choose λ so that

this condition is satisfied. Just like before, denote by f the inclusion f : Q ↪→ X. Let

I = I(Q, λ,S), and I = Γ(X, I).

3.1 Generation by lowest piece of Hodge filtration

The Hodge filtration on I is said to be generated by its lowest piece if one has Upg·F0I = FpI.

Assume I admits a gR-invariant form (·, ·)gR . As we said in the introduction (see [SV12],

section 2), there exists a K-equivariant involution T : V → V so that

(u, v)gR = (Tu, v)uR .

It produces a decomposition I = I+ ⊕ I−, associated with the 1 and −1 eigenspaces of T

on I. Both spaces I+ and I− are K-stable and orthogonal to each other with respect to the
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form (·, ·)uR . Indeed, if u ∈ I
+ and v ∈ I−, then

(u, v)uR = (Tu, v)uR = (u, v)gR = (v, u)gR = (Tv, u)uR = −(v, u)uR = −(u, v)uR .

We also have

p · I+ ⊂ I−, p · I− ⊂ I+.

For the rest of this section, we reindex the Hodge filtration so that F0I is the lowest

non-trivial piece. From the local description (2.3), we see that F0I is FcI in the previous

indexing, where c is the codimension of Q in X.

Proposition 3.1. The form (·, ·)uR is positive definite on F0I

Proof. It is possible to verify that F0I ⊂ Oλ−ρ ⊗ f·(NQ ⊗ S). Let U ′ be an affine open set

of X that intersects Q. Since Q is affinely embedded in X, then U = Q ∩ U ′ is an open

affine subset of Q. Let δQ be a section of NQ in that neighborhood that is flat in U . The

bundle Oλ−ρ|Q ⊗NQ ⊗ S is trivializable on U , let σ ⊗ δQ ⊗ s be a section. The canonical

polarization on Oλ−ρ is a hermitian UR-invariant metric, then one has from formula (2.5)

∫
U ′
P (σ ⊗ δQ ⊗ s, σ ⊗ δQ ⊗ s) dm =

∫
U
∥σ∥2∥s∥2 dµ

where dµ is the restriction to U of a k-invariant measure on Q. For a global section u ∈ F0I,

the integral
∫
X P (u, u) dm is absolutely convergent and has positive integrand. Therefore

(u, u)uR > 0.

The elements of k form vector fields tangent to Q and therefore they do not increase the

Hodge filtration. That is, for any p ∈ N:

k · FpI ⊂ FpI.

A consequence of this fact is the following
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Theorem 3.2. Assume the Hodge filtration on I is generated by the lowest piece. Then for

any natural number p, FpI ∩ (Fp−1I)⊥ ⊂ Iε, where ε = sgn(−1)p.

Proof. Since Upg · F0I = FpI, we have

FpI =

p∑
i=0

giF0I

=

p∑
i=0

(k+ p)iF0I

=

p∑
i=0

piF0I.

By proposition 3.1, F0I ⊂ I+, hence piF0I ⊂ I+ if i is even, and piF0I ⊂ I− if i is odd.

Therefore

FpI ∩ I+ =
∑

i≤p, i even
piF0I, and FpI ∩ I− =

∑
i≤p, i odd

piF0I, (3.1)

and these spaces are orthogonal to each other. Assume without loss of generality that p is

even (the other case is proven in an analogous way). From (3.1), FpI ∩ I− ⊂ Fp−1I. We

conclude

FpI ∩ (Fp−1I)
⊥ ⊂ FpI ∩ (FpI ∩ I−)⊥ = FpI ∩ I+ ⊂ I+.

Therefore we obtain

Corollary 3.3. The Schmid-Vilonen conjecture is true if and only if the form (·, ·)gR is

positive definite.

Proof. Indeed, from proposition 3.2, it is clear that the Schmid-Vilonen conjecture in this

case is true if and only if (·, ·)uR is positive definite on I+ and negative definite on I−. This

is equivalent to (·, ·)gR being positive definite.
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The conclusion of this section is the following

Theorem 3.4. If I = Γ(X, I(Q, λ,S)) is an irreducible (g, K)-module that admits a gR-

invariant form (·, ·)gR and is generated by the lowest piece of the Hodge filtration, then (·, ·)gR
is positive definite (in other words, I comes from a unitary representation) if and only if the

Schmid-Vilonen conjecture holds true for I.

Conversely, Davis and Vilonen [DV22a] used the well known fact that tempered modules

(which include the case of Q a closed K-orbit that we study in the next section) come from

unitary representations to prove that the Hodge filtration is generated by the lowest piece

in all those cases. The motivation of our work is in a sense, the converse result. We would

like to prove the Schmid-Vilonen conjecture from a geometric perspective and then be able

to determine if the corresponding module comes from a unitary representation or not. In

section 6 we do this for discrete series representations, which occur when Q is a closed K-

orbit and the rank of K coincides with the rank of G. In that case, proposition 3.6 in the

next section ensures the Hodge filtration is generated by the lowest piece, and theorem 3.4

implies that discrete series representations are unitary.

3.2 Closed K-orbits

In this section we explain further how the theory works for closed embeddings. For the rest

of this section, we assume Q is closed. Then BK is solvable, but also parabolic, and so it is

a Borel of K. In particular Q = K/BK is isomorphic to the flag variety of K.

Keeping in mind formula (2.2), the twisted Hodge filtration in this setting is given by

FpI = Oλ−ρ ⊗ Fp(i∗S). (3.2)

where the Hodge filtration on i∗S is the canonical one. The proof of theorem 3.1 is quite

transparent in this case. Indeed, in this case we have F0I = Oλ−ρ ⊗ i·(NQ ⊗ S). Also,
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theorem 2.7 implies the integral defining (u, v)uR is always absolutely convergent, not only

for u, v ∈ F0I.

Our goal is to prove that the modules I that are induced from Q satisfy their Hodge

filtration is generated by their lowest piece.

Proposition 3.5. For any p > q ∈ N, and any k > 0, we have

Hk(X,FpI) = Hk(X,FpI/FqI) = 0.

Proof. Since the sheaves FpI are supported in Q, it is clear that

Hk(X,FpI) = Hk(Q, i−1FpI), and Hk(X,FpI/FqI) = Hk(Q, i−1FpI/FqI)

The sheaves i−1FpI and i−1FpI/FqI on Q are K-equivariant vector bundles, therefore they

split as the direct sum ⊕O(µ), for some weights µ in the weight lattice of K.

It is easy to see that in local coordinates, the vectors that span the normal bundle to Q

are given by p+, on which the Cartan of K acts by positive roots. Since the Cartan also acts

by positive roots on Oλ−ρ, we deduce the associated µ that appear in the decomposition are

all positive. Therefore the result follows from the Borel-Weil-Bott theorem.

From the local description (2.3), it is clear that in the close embedding case we have

Fp+1I = TX · FpI.

= g · FpI

= (k+ p) · FpI

= FpI + p · FpI.
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That is, we have a commutative diagram

p · FpI

0 FpI Fp+1I 0

The following proposition provides a recursive description of the Hodge filtration on I

Proposition 3.6. We have Fp+1I = FpI + p · FpI.

Proof. Proposition 3.5 implies that Γ(X,FpI/FqI) = FpI/FqI for any p > q. Now, for the

same argument of proposition 3.5, the kernel of the map p ·FpI → Fp+1I/FpI has no higher

cohomology, and therefore the map Γ(X, p · FpI)→ Fp+1I/FpI is surjective.

Now we prove that Γ(X, p · FpI) = p · FpI. Both Γ(X, p · FpI) = Γ(Q, i−1p · FpI) and

p ·FpI are finite-dimensional K-modules. By theorem 2.6 part 2, we only need to check their

localizations on Q are isomorphic. Indeed, since k normalizes p, we have

DQ ⊗Uk p · FpI = p · (DQ ⊗Uk FpI)

= p · i−1FpI

We conclude that p · FpI is a K-submodule of Fp+1I that surjects onto Fp+1I/Fp+1I.

Therefore Fp+1I = FpI + p · FpI.
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We obtain as a corollary

Corollary 3.7. The Hodge filtration in I is generated by its lowest piece.

Proof. We proceed by induction. The base case is clear. Assume the statement holds true

for p, then we have

Up+1g · F0I = g · (Upg · F0I)

= g · FpI

= (k+ p) · FpI

= FpI + p · FpI

= Fp+1I.

where in the last line we used proposition 3.6.

23



CHAPTER 4

LU’S COORDINATES.

In this section we explain some results from [Lu99]. Precisely, we describe a set of

coordinates introduced by Lu for Bruhat cells in the flag variety and some applications.

Let G be a complex semisimple Lie group, with maximal Cartan H and associated Weyl

group W = NG(H)/H. As usual, we denote by g and h the Lie algebras of G and H

respectively. Fix a Borel B containing H and let Φ be the associated root system where B

determines a choice of positive roots. For each root α ∈ Φ, denote by nα the eigenspace of

g associated to α. Let N be the unipotent radical of B and n = span{nα : α ∈ Φ+} its Lie

algebra. Let B− be the opposite Borel to B and define n−, N− in a similar way. For any

w ∈ W , let Nw denote the unipotent subgroup of G given by

Nw = N ∩ wN−w−1.

in other words, Nw is the group with Lie algebra

nw = {nα : α ∈ Φ+
w}

where Φ+
w = {α ∈ Φ+ : w−1α < 0}.

Fix a minimal length decomposition w = wγ1 . . . wγl , where the γi’s are simple positive

roots and wγi are the corresponding reflections. For each γi, let γ̇i be a representative of wγi

in UR (which, as in the previous section, is a compact real form of G), and set ẇ = γ̇1 . . . γ̇l.

We abuse notation and denote Nsγi
by Nγi .

Let G = URAN be the Iwasawa decomposition of G. Here A is an abelian subgroup of

G with Lie algebra a such that h = a⊕ t, is the Cartan decomposition of h, with t = h∩ uR.

There is an action of G on UR given by g · u = u′, where u′ is the UR-component in the

Iwasawa decomposition of gu. This action can be understood as a lift to UR of the G-action
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on G/B ∼= UR/T , where T = UR ∩B is the maximal Torus in UR with Lie algebra t.

We have the following result due to Lu:

Theorem 4.1. There exists a diffeormorphism

Gw : Nγ1 × · · · ×Nγl → Nw

that is characterized by the condition

Gw(n1, . . . , nl) · ẇ = (n1 · γ̇1) . . . (nl · γ̇l).

Identify the flag variety X of G with G/B. Let Σw = BwB/B be the Bruhat cell

associated to w. Denote by Cγi = Nγi · γ̇i. For any w ∈ W , the stabilizer of ẇ under the

Nw-action is trivial, hence the action map gives a diffeomorphism from Nw to Cw. We have

the diagram

Nγ1 × · · · ×Nγl
Gw //

a
��

Nw

a
��

Cγ1 × · · · × Cγl
m // Cw

p // Σw

(4.1)

where m is the multiplication map, p is the projection from G to X, given by

g 7→ gẇB = (g · ẇ)B,

and the maps a are the action maps. The content of theorem 4.1 is that m is a diffeomorph-

ism, and Gw is the unique diffeomorphism making this diagram commute. Notice Gw and

m are only diffeomorphisms of real manifolds, not biholomorphisms of complex varieties.

Lu uses theorem 4.1 to give coordinates for Nw. Let ⟨·, ·⟩ be the Killing form on g and let

γ ∈ Φ be any root. Choose vectors eγ and fγ in nγ , n−γ respectively such that ⟨eγ , fγ⟩ = 1.
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Set hγ = [eγ , fγ ]. Let Ψγ : sl2 → g be the injection of Lie algebras defined by

 1 0

0 −1

 7→ hγ ,

 0 0

1 0

 7→ fγ

 0 1

0 0

 7→ eγ .

This homomorphism can be lifted to an injection of Lie groups Ψγ : SL(2,C)→ G.

In the case when γ = γi, the map

Fγi : C→ Nγi , z 7→ Ψi

 1 z

0 1


gives coordinates to Nγi . From here, we obtain coordinates for Nw simply by composition

with Gw. Denote by Fw : Cl → Nw the corresponding diffeomorphism. From now on we

will refer to it as Lu’s coordinates. Notice Fγi = Fwγi
by definition.

The main importance for us of these coordinates is they provide explicit formulas for the

uR-invariant differential forms on the Bruhat cells. Let dn be a Nw-invariant Haar measure

on Nw. This measure is uniquely defined up to multiplication by scalars. Let aw : Nw → A

be the A-component of the Iwasawa decomposition of w−1nw. That is w−1nw = uaw(n)n1,

where u ∈ UR, aw(n) ∈ A and n1 ∈ N . The following is a theorem of Kostant (See [Kos63],

or [Lu99]: Theorem 4.1). We add its proof because we will essentially repeat the same

argument in the proof of Lemma 5.2

Theorem 4.2. The differential form

aw(n)
−2(ρ−w−1ρ) dn

is the pullback to Nw of the restriction to Σw of a UR-invariant differential l-form on X.

Proof. Let x = wB ∈ X. Let ΩNw
and ΩΣw

be the sheaves of top holomorphic differential

forms on Nw and Σw. As we mentioned, the projection map p : Nw → Σw given by n 7→ n ·x
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is an isomorphism and we use this isomorphism to identify ΩNw
and ΩΣw

. We have

TxΣw = nw = ⊕α∈Φ+
w
nα.

Using the Killing form, we get

T ∗xΣw = (nw)
∗ ∼= ⊕α∈Φ+

w
n−α.

Hence V = ∧lT ∗xΣw = ∧α∈Φ+
w
n−α is the geometric fiber of ΩΣw

at x. Set v := ∧γ∈Φ+
w
fγ ∈ V .

Let Ωw be the conjugate sheaf of antiholomorphic top differential forms. Let s be the

unique Nw-invariant global form in Γ(Σw,ΩΣw
) such that s|x = v and let s ∈ Γ(Σw,ΩΣw

)

be its conjugate. Then we have

s ∧ s = dn∗

where dn∗ is the pushforward of a Haar measure on Nw.

Notice V has a natural H-action coming from the H-action on Nw. This is given by

h · v = h−θv

where θ =
∑

γ∈Φ+
w
γ. In fact, since Φ+

w = Φ+ ∩ w(Φ−), one has θ = ρ− wρ. By restricting

this H-action to T , we can define Ωw to be the UR-equivariant vector bundle on X with

geometric fiber V at x. Clearly Ωw|Σw
= ΩΣw

.

Let n ∈ Nw and let y = nx. Let ẇ−1nẇ = uaw(n)m be the Iwasawa decomposition. We

have n = u′(ẇaw(n)ẇ−1)m′, where m′ = ẇmẇ−1 is a unipotent element that fixes x and

u′ = ẇuẇ−1 is an element in UR. Let µ be the restriction to Σw of the UR-invariant global
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section of Ωw ∧ Ωw that satisfies µ|x = v ∧ v =: v′. We have

dn∗|y = n∗(v′)

= u′∗(ẇaw(n)ẇ
−1)∗m′∗(v

′)

= u′∗(ẇaw(n)ẇ
−1)∗(u)

= u′∗((ẇaw(n)ẇ
−1)−2(ρ−wρ)v′)

= u′∗(aw(n)
−2w−1(ρ−wρ)v′)

= aw(n)
2(ρ−w−1ρ)u′∗(v

′)

= aw(n)
2(ρ−w−1ρ)µ|y

From where we conclude

µ = aw(n)
−2(ρ−w−1ρ) dn∗.

This implies the theorem.

For any weight α ∈ h∗, denote by Hα the coweight in h associated to α. Let

αi := wγ1 . . . wγi−1(γi).

The set {α1, . . . , αl} coincides with Φ+
w . Let βi = −w−1(αi). Lu proves in [Lu99]:

Theorem 4.3. In terms of Lu’s coordinates we have

aw(n) =
l∏

i=1

exp

(
log(1 + |zi|2)

Hβi

⟨βi, βi⟩

)
.

In addition

dn =
l∏

i=1

(1 + |zi|2)
2

⟨ρ,βi⟩
⟨βi,βi⟩

−1
dzidz̄i

defines a bi-invariant Haar measure on Nw.

As a collorary of theorems 4.3 and 4.2, we get
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Theorem 4.4. In terms of Lu’s coordinates the differential form

ω = (1 + |z1|2)
−2 ⟨ρ,α1⟩

⟨α1,α1⟩
−1

. . . (1 + |zl|2)
−2 ⟨ρ,αl⟩

⟨αl,αl⟩
−1
dz1dz̄1 . . . dzldz̄l

is the pullback to Nw of the restriction to the Bruhat cell Σw of a UR-invariant 2l-form on

the flag variety.

29



CHAPTER 5

VERMA MODULES OF ANTIDOMINANT HIGHEST

WEIGHT.

In this section we prove

Theorem 5.1. Conjecture 1.1 holds true if I = Γ(X, I(Q, λ,Cx), where Q = {x} is a single

point in the flag variety, Cx is the trivial bundle, and λ ∈ h∗R is any dominant weight.

Since Q is closed, we have I = I(Q, λ,S) = M(Q, λ,S). Then, I = Γ(X, I) is an

irreducible Ugλ-module. We remark if B is the Borel subgroup of G associated to x, then I

coincides with the Verma module of highest weight w0(λ) in the block Oλ of the category O

associated to B (see [BG99], section 4), where w0 is the longest element in the Weyl group.

This Verma module is irreducible because w0(λ) is an antidominant weight.

Fix a Borel B and without loss of generality assume x = Bop = w0B. Then x ∈ Σw0

(the open Bruhat cell centered at x) and the morphism N → Σw0 given by n 7→ n · x

is an isomorphism of complex algebraic varieties. For any λ, We can make sense of the

g-equivariant bundle Oλ−ρ on Σw0 and it will be moreover N -equivariant. Let σ be an

N -invariant section on Σw0 (this is unique up to scaling). Let ⟨·, ·⟩ be the hermitian form

on Oλ−ρ that is uR-invariant and satisfies ⟨σ, σ⟩(x) = 1.

Lemma 5.2. We have a formula for ∥σ∥2 = ⟨σ, σ⟩:

∥σ∥2(n · x) = a
2w0(λ−ρ)
w0 (n).

Notice the right hand side on this formula is a real number precisely because λ ∈ hR.

Proof. Let w−10 nw0 = uaw(n)n1 be the Iwasawa decomposition of w−10 nw0. Then

n = (w0uw
−1
0 )(w0aw0(n)w

−1
0 )(w0n1w

−1
0 )

= u′(w0aw0(n)w
−1
0 )n′.
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Where u′ ∈ UR and n′ ∈ Nop. Write Lλ−ρ for the corresponding geometric line bundle

associated to Oλ−ρ. Let σ(x) = v ∈ (Lλ−ρ)x, we have

⟨σ, σ⟩(n · x) = ⟨n∗v, n∗v⟩

= ⟨(u′)−1∗ n∗v, (u′)−1∗ n∗v⟩

= ⟨((w0aw0(n)w
−1
0 )n′)∗v, ((w0aw0(n)w

−1
0 )n′)∗v⟩

= ⟨(w0aw0(n)w
−1
0 )∗v, (w0aw0(n)w

−1
0 )∗v⟩

= ⟨aw
−1
0 (λ−ρ)

w0 (n)v, a
w−1
0 (λ−ρ)

w0 (n)v⟩

= a
2w−1

0 (λ−ρ)
w0 (n)

Where we used that the action of n′ on v is the identity because n− acts trivially on the

fiber of Lλ−ρ at x. Now the result follows from the fact that w0 = w−10 .

From (2.2) we can describe the twisted module I in terms of its untwisted version:

I =Γ(X, I)

= Γ(N, I)

= Γ(N,Oλ−ρ)⊗Γ(N,i−1ON
)Γ(N, i∗C0)

= σΓ(N, i∗C0)

Denote by I0 := Γ(N, i∗C0). For elements u ∈ I, we write u = σu0, with u0 ∈ I0. The

section σ can be understood as the twist that gives rise to the Dλ
N -action. Let P0 be the

polarization on I0. From section 2.3, if u, v ∈ I then the corresponding polarization P on I

is given by

P (u, v) = ∥σ∥2P0(u0, v0).
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From 4.2 and 5.2, we have

(u, v)uR =

∫
X
P (u, v) dm

=

∫
Σw

P (u, v) dm

=

∫
N
∥σ∥2P0(u0, v0)a

−4ρ
w0 (n) dn

=

∫
N
P0(u0, v0)a

2w0λ−2ρ
w0 (n) dn. (5.1)

5.1 Pushforward of differential operators

Our goal now is to use Lu’s coordinates on N to rewrite the integral in (5.1). In order to do

so, we need to understand how holomorphic differential operators pushforward under Lu’s

diffeomorphism. Before we go into the specific example of Lu’s diffeomorphism, let’s discuss

a more general setting.

Let {z} i
↪→ Y and {z′} i′

↪→ Y ′ be smooth complex varieties. Assume there is a map

f : Y → Y ′ that is a diffeomorphism at the level of smooth manifolds so that f(z) = z′.

Remember that for a complex manifold Y , its complexification is given by Y × Y , and Y

embeds on it via ∆Y : Y ↪→ Y × Y , given by ∆Y (y) = (y, y). If Y and Y ′ are replaced by

small enough neighborhoods of {z} and {z′} respectively, we can assume the map f extends

to a biholomorphism

fC : Y × Y → W ⊂ Y ′ × Y ′

so that gC(z, z) = (z′, z′).

We have DY×Y = DY ⊗DY and there is an isomorphism fC∗ : gC· (DY ⊗DY )→ DW =

OW ⊗OY ′⊗O
Y
′ DY ′ ⊗D

Y
′ given by pushforward of differential operators. Denote by Cz and

Cz′ the trivial sheaves on z and z′ respectively. Since i∗Cz ⊗ i∗Cz and i′∗Cz′ ⊗ i′∗Cz′ are
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supported on {z} × {z} and {z′} × {z′} respectively, we also have an isomorphism

fC∗ : fC· (i∗Cz ⊗ i∗Cz)→ i′∗Cz′ ⊗ i′∗Cz′

that exchanges the fC· (DY ⊗DY )-structure on the left with the DW -structure on the right.

Let P be the polarization on i∗Cz, which can be thought of as a function P : i∗Cz⊗ i∗Cz →

∆Z
R (see the discussion leading to (2.5)). Let P ′ be the polarization on i′∗Cz′ . Then fC∗

interchanges these polarizations, and in particular

∫
Y
P (δ)ω =

∫
Y ′
P ′(fC∗ δ)(f

C
∗ ω).

Denote by i1 : Y → Y × Y the inclusion “in the first coordinate”, meaning i1(y) = (y, z).

Define similarly i2, i
′
1, and i

′
2.

Lemma 5.3. Let fC1 = fC ◦ i1 and fC2 = fC ◦ i2 be the restrictions of fC of the first and

second coordinates respectively. Assume the morphism fC satisfies fC1 (Y ) ⊂ Y ′. Then it

also satisfies fC2 (Y ) ⊂ Y
′
. Moreover the natural isomorphisms

fC1∗ : f
C
1·(i∗Cz)→ i′∗Cz′

fC2∗ : f
C
2·(i∗Cz)→ i′∗Cz′

satisfy fC∗ = fC1∗ ⊗ f
C
2∗.

Proof. From the construction of fC, we have fC(y1, y2) = fC(y2, y1), where (y′1, y
′
2) :=

(y′2, y
′
1). Indeed, this identity is satisfied at all the real points (y, y) because fC extends f .

Since fC(Y × {z}) ⊂ Y ′ × {z′}, then also

fC({z} × Y ) = fC(Y × {z}) ⊂ Y ′ × {z′} = {z} × Y ′.

Let JY the structure sheaf of Y ×{z} in Y ×Y . We define similarly JY ′ . Then fC∗ restricts
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to an isomorphism

fC∗ : fC· (ker(JY , i∗Cz ⊗ i∗Cz))
∼→ ker(JY ′ , i′∗Cz′ ⊗ i′∗Cz′)

The normal bundle of Y in Y × Y coincides with OY ⊗TY . Hence it is globally trivializable

and its top exterior power is the trivial bundle on Y . This means we have a canonical identi-

fication i!1(i∗Cz ⊗ i∗Cz) = ker(JY , i∗Cz ⊗ i∗Cz) (see section 2.1). We also have i1∗(i∗Cz) =

i∗Cz ⊗ i∗Cz. By the equivalence of Kashiwara, this implies i!1(i∗Cz ⊗ i∗Cz) = i∗Cz. We

have similar results substituting Y by Y ′, hence there is a commutative diagram

i∗Cz i′∗Cz′

i∗Cz ⊗ i∗Cz i′∗Cz′ ⊗ i′∗Cz′

∼

∼

substituting Y by Y yields a similar result, and we conclude fC∗ = fC1∗ ⊗ f
C
2∗.

5.2 The case of Lu’s diffeomorphism

Now we prove Lu’s diffeomorphism fits into the assumptions of lemma 5.3. Let G = URAN

be the Iwasawa decomposition. For any real group H, denote by HC its complexification.

If we regard G as a real group, then GC = G × G. The group G is embedded in G × G

as a real form via g 7→ (g, gζ), where g 7→ gζ is the involution of G whose fixed points are

UR. The groups UC
R , AC and NC are naturally subgroups of G × G, and they’re given by

UC
R = {(g, g), g ∈ G}, AC = {(h, h−1), h ∈ H}, and NC = N ×Nop.

There exists a dense open set Λ ⊂ G × G containing the identity element (see [SW02])

that can be decomposed as Λ = UC
RA

CNC. This decomposition extends the Iwasawa

decomposition of G. Hence the G-action on UR can be extended to a holomorphic map

(g, u) 7→ g · u ∈ UC
R , which is defined for g ∈ GC, u ∈ UC

R , and gu ∈ Λ.
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Lemma 5.4. Let g1, g2 be elements in GC, and u ∈ UC
R so that g2u ∈ Λ and g1g2u ∈ Λ,

then g1(g2 · u) ∈ Λ and g1 · (g2 · u) = (g1g2) · u.

Proof. By assumption

g1(g2u) = g1(g2 · u)a1n1, a1 ∈ AC, n1 ∈ NC

g1g2u = ((g1g2) · u)a2n2, a2 ∈ AC, n2 ∈ NC

Therefore

g1(g2 · u) = ((g1g2) · u)a2n2n−11 a−11

= ((g1g2) · u)a2a−11 a1n2n
−1
1 a−11

= ((g1g2) · u)a3n3

where a3 = a2a
−1
1 ∈ AC, and n3 = a1n2n

−1
1 a−11 is contained in NC.

Let w ∈ W be an element in the Weyl group of length l so that w = wγ1 . . . wγl is its

decomposition into simple reflections. Let Fw : Nγ1×· · ·×Nγl → Nw be Lu’s diffeomorphism.

This map is not holomorphic, but it is a real-analytic diffeomorphism. It can be complexified

and there exist open sets e ∈ Ui ⊂ Nγi so that there is an open embedding holomorphism

FC
w : (U1 × U

op
1 )× · · · × (Ul × U

op
l )→ Nw ×Nop

w ,

(x1, y1, . . . , xn, yn) = (x, y) 7→ FC
w (x, y)

that extends Fw. The open sets Ui can be taken small enough to ensure for each element

ui ∈ Ui × U
op
i , ui(γ̇i, γ̇i) ∈ Λ, and that for each element u in the image of FC

w , the element

u(ẇ, ẇ) also lands in Λ. Then the map FC
w is characterized by the property

((x1, y1) · (γ̇1, γ̇1)) . . . ((xl, yl) · (γ̇l, γ̇l)) = FC
w (x, y) · (ẇ, ẇ).
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Theorem 5.5. We have FC
w ((U1 × {e})× · · · × (Ul × {e})) ⊂ Nw × {e}.

Proof. Let n ∈ Nw, and let u ∈ UR be an element such that u−1nu ∈ Nop
w . We have

(n, e)(u, u) = (nu, nu)(e, e)(e, u−1n−1u).

which implies (n, e) · (u, u) = (nu, nu).

Notice that, ẇ′−1nẇ′ ∈ N
op
w′ for any w′ ∈ W and n ∈ Nw′ . Let z = (x1, e, . . . , xl, e).

Then

FC
w (z) · (ẇ, ẇ) = ((x1, e) · (γ̇1, γ̇1)) . . . ((xl, e) · (γ̇l, γ̇l))

= (x1γ̇1, x1γ̇1) . . . (xlγ̇l, xlγ̇l)

= (x1γ̇1 . . . xlγ̇l, x1γ̇1 . . . xlγ̇l)

= (nẇ, nẇ)

= (n, e) · (ẇ, ẇ)

where we used that x1γ̇1 . . . xlγ̇l = nẇ for some n ∈ Nw.

We claim that FC
w (z) = (n, e). In order to prove that we just need to check the map

U ′ ⊂ (Nw ×Nop
w )→ UC

R given by (n,m) 7→ (n,m) · (ẇ, ẇ) is injective. Here U ′ denotes the

domain where the action is well defined.

Assume (n,m) · (ẇ, ẇ) = (n′,m′) · (ẇ, ẇ). Then, from lemma 5.4

((n′)−1n, (m′)−1m) · (ẇ, ẇ) = (ẇ, ẇ)

⇒ ((n′)−1n, (m′)−1m)(ẇ, ẇ) = (ẇhn′′, ẇh−1m′′), h ∈ H,n′′ ∈ Nw,m
′′ ∈ Nop

w

⇒ ẇ−1(n′)−1nẇ ∈ HNw, and ẇ−1(m′)−1mẇ ∈ HNop
w .

Since we have ẇ−1(n′)−1nẇ ∈ N
op
w , and ẇ−1(m′)−1mẇ ∈ Nw, we conclude (n′)−1n =
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(m′)−1m = e which implies injectivity. We conclude FC
w (z) = (n, e) ∈ Nw × {e}.

Write Y = (U1 × {e})× · · · × (Ul × {e}) and Y ′ = Nw × {0}. Then Y = ({e} × Uop
1 )×

· · · × ({e} × Uop
l ) and Y

′
= {0} ×Nop

w . Endow the set Y with coordinates as in Chapter 3

and denote by i : {0} ↪→ Y and i′ : {e} ↪→ Nw. The element 0 is taking the role of z in the

previous section and e the one of z′. Theorem 5.5 and lemma 5.3 imply that there exists an

isomorphism

FC
w1∗ : F

C
w1·(i∗C0)

∼→ (i′∗Ce)

that interchanges the polarizations on both sides. We write Γ(Y, i∗C0) = C[∂z1 , . . . , ∂zl ].

Taking global sections we obtain

Theorem 5.6. Pushforward of differential operators under Lu’s diffeomorphism induces an

isomorphism of filtered vector spaces

Fw∗ : C[∂z1 , . . . , ∂zl ]→ I0w := Γ(Nw, i
′
∗Ce).

that respects the polarization on both sides. Meaning, if P1 and P2 are the polarizations on

the space on the left and right respectively, then

P1(α, β) = P2(Fw∗α, Fw∗β).
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5.3 Proof of theorem 5.1

We now let w = w0 be the longest element in the Weyl group, so that N = Nw. Let n be

the dimension of N . Using Lu’s coordinates, and theorem 4.3, we obtain

a
2w0λ−2ρ
w0 (n) dn =

n∏
i=1

(1 + |zi|2)
2
⟨w0λ−ρ+ρ,βi⟩

⟨βi,βi⟩
−1

dzi dzi

=
n∏

i=1

(1 + |zi|2)
−2 ⟨λ,−w0βi⟩

⟨−w0βi,−w0βi⟩
−1

dzi dzi

=
n∏

i=1

(1 + |zi|2)
−2 ⟨λ,αi⟩

⟨αi,αi⟩
−1

dzi dzi (5.2)

Write (5.2) by f(z, z) dzdz. Let α, β ∈ C[∂z1 , . . . , ∂zn ]. Let P1 and P2 be the polarizations

on i∗C0 and i′∗Ce respectively. We conclude from (5.1) and theorem 5.6:

(σFw∗α, σFw∗β)uR =

∫
N
P2(Fw∗α, Fw∗β)a

2w0λ−2ρ
w0 (n) dn

=

∫
Cn

P1(α, β)f(z, z) dzdz

= (αβ)t(f)|z=z=0 =: Bλ(α, β). (5.3)

Here (αβ)t denotes the adjoint of αβ. At the level of monomials this adjoint is given by the

formula

(∂α)t = (−1)deg(α)∂α.

From (5.2) we see that if α = ∂d1z1 . . . ∂
dn
zn , β = ∂c1z1 . . . ∂

cn
zn , then Bλ(α, β) = 0 whenever

(d1, . . . , dn) ̸= (c1, . . . , cn). Hence, the monomials in C[∂z1 , . . . , ∂zn ] provide an orthogonal

basis with respect to the form Bλ. Since Fw∗ respects filtrations, theorem 5.6 ensures that in

order to prove theorem 5.1, it is enough to prove Bλ has signature (−1)p on the homogeneous

monomials of degree p. That is, we only to prove the following lemma
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Lemma 5.7. Let α = ∂d1z1 . . . ∂
dn
zn with d1 + · · ·+ dn = p. Then (−1)pBλ(α, α) > 0.

Proof. We have

Bλ(α, α) =
n∏

i=1

∂dizi ∂
di
zi

(
(1 + |zi|2)

−2 ⟨λ,αi⟩
⟨αi,αi⟩

−1
)
|zi=0

Because λ is a dominant weight, ⟨λ, αi⟩/⟨αi, αi⟩ is a non-negative number. It is easy to

check from the Taylor expansion that ∂dz∂
d
z

(
(1 + |z|2)−t

)
|z=0 has the same sign as (−1)d

whenever t is a positive number. The lemma follows.

Remark 5.8. Notice from formula (5.1), the uR-invariant form on I is encoded on the Taylor

coefficients around the identity of the form a
2(w0(λ)−ρ)
w0 (n) dn. The main importance of Lu’s

coordinates in this section is that it allowed us to provide an explicit orthogonal basis for I.

5.4 Example

Let’s take G = SL(3,C), and choose B to be the Borel of upper triangular matrices. Sim-

ilarly, UR = SU(3) is the set of hermitian matrices. In this case, N is endowed with

holomorphic coordinates by

(a, b, c) 7→


1 a c

0 1 b

0 0 1

 .

We choose as simple roots γ̇1 = γ̇3 =


0 i 0

i 0 0

0 0 1

 and γ̇2 =


1 0 0

0 0 i

0 i 0

. Then we have

Nγ1 =




1 z1 0

0 1 0

0 0 1


 , Nγ2 =




1 0 0

0 1 z2

0 0 1


 , Nγ3 =




1 z3 0

0 1 0

0 0 1


 .
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Lu’s change of coordinates is given in this case by (see [Lu99], example 2.9):

a = z1, b =

√
1+|z2|2z3−iz1z2√

1+|z1|2
, c =

√
1+|z2|2z1z3+iz2√

1+|z1|2

Endow the complexifications with coordinates by

NC =






1 a1 c1

0 1 b1

0 0 1

 ,


1 0 0

−a2 1 0

a2b2 − c2 −b2 1



 ,

NC
γ1 =






1 x1 0

0 1 0

0 0 1

 ,


1 0 0

−y1 1 0

0 0 1



 ,

NC
γ2 =






1 0 0

0 1 x2

0 0 1

 ,


1 0 0

0 1 0

0 −y2 1



 ,

NC
γ3 =






1 x3 0

0 1 0

0 0 1

 ,


1 0 0

−y3 1 0

0 0 1



 .

The conjugation map N → N
op

is given by n 7→ n−T . Here, the second set of coordinates for

NC, was chosen to ensure that this map is given in coordinates by (a1, b1, c1) 7→ (a2, b2, c2).

Therefore, using these coordinates, the complexification of Lu’s diffeomorphism is given by

a1 = x1, b1 =
√
1+x2y2x3−iy1x2√

1+x1y1
, c1 =

√
1+x2y2x1x3+ix2√

1+x1y1

a2 = y1, b2 =
√
1+x2y2y3+ix1y2√

1+x1y1
, c2 =

√
1+x2y2y1y3−iy2√

1+x1y1

40



This morphism is defined only in a neighborhood of the real embedding of Nγ1 ×Nγ2 ×Nγ3

in its complexification. That is the set

S := {y1 = x1, y2 = x2, y3 = x3}.

This is the morphism we denoted by fC in section 5.1., where in this case f = Fw. Notice

it induces the isomorphism FC
w∗

C[∂x1 , ∂x2 , ∂x3 , ∂y1 , ∂y2 , ∂y3 ]→ C[∂a1 , ∂b1 , ∂c1 , ∂a2 , ∂b2 , ∂c2 ]

that interchanges the Dx,y-action on the left with the Da,b,c-action on the right, where Dx,y

and Da,b,c denote the corresponding rings of differential operators.

The statement of theorem 5.5 is that, when y1 = y2 = y3 = 0, we obtain a2 = b2 = c2 = 0.

When we restrict to the subvarieties cut out by those equations, we obtain an isomorphism

FC
w1 : Nγ1 ×Nγ2 ×Nγ3 → N

(x1, x2, x3) 7→ (a1, b1, c1) = (x1, x3, ix2 + x1x3)

which is the morphism we denoted by fC1 in section 5.1. This implies there exists an iso-

morphism of filtered vector spaces

FC
w1∗ : C[∂x1 , ∂x2 , ∂x3 ]

∼→ C[∂a1 , ∂b1 , ∂c1 ]

that exchanges the C⟨x1, x2, x3, ∂x1 , ∂x2 , ∂x3⟩-action on the left with the C⟨a1, b1, c1, ∂a1 , ∂b1 , ∂c1⟩-

action on the right that comes from pushforward of differential operators. Let’s describe this

map in lower degree terms. The pushforward of differential operators gives:

∂x1 = ∂a1 + b∂c1 ∂x2 = i∂c1 ∂x3 = ∂b1 + a∂c1
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From where the map FC
w1∗ has the following form in degrees lower than 3:

∂x1 7→ ∂a1 ∂x2 7→ i∂c1 ∂x3 7→ ∂b1

∂2x1 7→ ∂2a1 ∂2x2 7→ −∂
2
c1 ∂2x1 7→ ∂2b1

∂x1∂x2 7→ i∂a1∂c1 ∂x1∂x3 7→ ∂a1∂b1 − ∂c1 ∂x2∂x3 7→ i∂b1∂c1

The elements on the left are orthogonal with respect to the form Bλ, and so are the elements

on the right. The commutative diagram in the proof of lemma 5.3 corresponds to the

commutative diagram

C[∂x1 , ∂x2 , ∂x3 ]
FC
w1∗ //

� _

��

C[∂a1 , ∂b1 , ∂c1 ]� _

��
C[∂x1 , ∂x2 , ∂x3 , ∂y1 , ∂y2 , ∂y3 ]

FC
w∗ // C[∂a1 , ∂b1 , ∂c1 , ∂a2 , ∂b2 , ∂c2 ]

From where we see, as explained in section 5.3, that this provides an algorithm to find

an orthogonal basis of I = σC[∂a, ∂b, ∂c] with respect to the form (·, ·)uR .
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CHAPTER 6

DISCRETE SERIES REPRESENTATIONS

In this chapter we use the notation from chapter 3. Assume from now on that Q is a closed

K-orbit in X and that K has the same rank as G. In this case there is a discrete lattice of

weights λ ∈ h∗ so that the line bundle Oλ−ρ can be defined around Q (see the discussion

at the beginning of chapter 3). Since Q is the flag variety for K, it is simply connected and

hence its only irreducible vector bundle with a flat connection is the trivial one OQ. The

goal of this section is to provide a geometric proof of

Theorem 6.1. Conjecture 1.1 holds true if I = Γ(X, I(Q, λ,OQ)), where Q is a closed

K-orbit embedded in the flag variety, and λ ∈ h∗R is a dominant weight so that Oλ−ρ makes

sense in an open set of X containing Q.

When K is the complexification of a maximal compact KR ⊂ GR, the correponding

modules I = Γ(X, I(Q, λ,OQ)) are the so-called (infinitesimal) discrete series representaions

of GR.

6.1 Restricted Lu’s coordinates

Let x ∈ Q be any point. Unlike section 3, we assume here Bop is the Borel that fixes x.

As we explained in section 3.2, we have B
op
K is a Borel subgroup of K. Therefore we have

a natural isomorphism between the universal Cartan for G and the universal Cartan for K

which yields a natural embedding of the roots for k into the roots for g. We call the roots

associated to k compact, and the other non-compact. Denote by ΛΦ ⊂ h∗ the root lattice

of G. Let Λc
Φ ⊂ ΛΦ be the elements in the root lattice for K, and Λnc

Φ = ΛΦ\Λc
Φ. We call

these the lattices of compact and non-compact roots respectively. It turns out that the sum

of two compact or two non-compact elements is compact, whereas the sum of a compact and

a non-compact element is non-compact.

43



The Borel B fixes a choice of simple roots. Let w be the longest element in the Weyl

group with respect to this choice, and assume w = wγ1 . . . wγn , where the γi are simple roots

and n = dimN+. Just like in section 4, write αi = wγ1 . . . wγi−1(γi) and βi = −w−1(αi).

Both sets {αi, 1 ≤ i ≤ n} and {βi, 1 ≤ i ≤ n} coincide with the set of all positive roots.

If dimQ = m, there are indexes i1, . . . , im so that {βij , 1 ≤ j ≤ m} is the set of positive

compact roots.

The goal of this section is to prove Lu’s coordinates can be restricted to an open set of

Q. By identifying N with Σw, we can think of Q′ = Q∩Σw as a closed subset of N . Define

KR := K ∩ UR.

This is a compact real form for K. We have the following

Lemma 6.2. For any z ∈ N , we have z ∈ Q′ if and only if (z · ẇ)ẇ−1 ∈ KR.

Proof. For any z ∈ N , we have the Iwasawa decomposition

zẇ = (z · ẇ)an, n ∈ N

⇒ z = (z · ẇ)ẇ−1ẇanẇ−1

⇒ z = (z · ẇ)ẇ−1a′n′, a′ ∈ A, n′ ∈ Nop. (6.1)

From this we conclude that if (z · ẇ)ẇ−1 ∈ KR, then zB
op ∈ KRB

opx = Q, which means

z ∈ Q′. Conversely, if zBop ∈ Q, then (6.1) implies (z · ẇ)ẇ−1 ∈ KRB
op. Since (z · ẇ)ẇ−1 ∈

UR, and UR ∩Bop ⊂ KR, this implies (z · ẇ)ẇ−1 ∈ KR.
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Now we prove that Lu’s coordinates restrict to local coordinates for Q′

Theorem 6.3. Let F : Nγ1 × · · · × Nγn → Nw be the diffeomorphism from 4.1. Then F

maps Nγi1
× · · · ×Nγim diffeomorphically to Q′.

Proof. Write Z = Nγi1
×· · ·×Nγim . We first prove the image of Z is contained in Q′. From

lemma 6.2, all we need to prove is (F (z) · ẇ)ẇ−1 ∈ KR for any z ∈ Z. Write ẇi = γ̇1 . . . γ̇i.

From theorem 4.1, we know that for some ni ∈ Nγi

(F (z) · ẇ)ẇ−1 = γ̇1 . . . (ni1 · γ̇i1) . . . (nim · γ̇im)γ̇im+1 . . . γ̇nẇ
−1

= γ̇1 . . . (ni1 · γ̇i1) . . . (nim · γ̇im)γ̇−1im
ẇ−1im−1

= . . .

= (ẇi1−1(ni1 · γ̇i1)γ̇
−1
i1
ẇ−1i1−1) . . . (ẇim−1(nim · γ̇im)γ̇−1im

ẇ−1im−1)

Hence, it is enough to prove that ẇil−1(nil · γ̇il)γ̇
−1
il
ẇ−1il−1 ∈ KR for every 1 ≤ l ≤ m.

Let Gα be the copy of SL(2,C) inside of G which arises from the morphism Ψα from

section 2. Let Uα = Gα ∩ U . From construction (nil · γ̇il)γ̇
−1
il
∈ Uγil

. Conjugation by

wil−1 gives an isomorphism from Gγil
to Gβil

that sends Uγil
to Uβil

⊂ KR. Therefore

ẇil−1(nil · γ̇il)γ̇
−1
il
ẇ−1il−1 ∈ KR.

Now we prove that F (Z) = Q′. Since Q is a K-orbit, it is affinely embedded, and since

Σw is an open affine subset of X, then Q′ = Q ∩ Σw is an affine open subset of Q, in

particular it is connected. The sets Z and Q′ have the same dimension and the morphism

F is a diffeomorphism from theorem 4.1, so F (Z) must be an open set of Q′. Since Z is a

closed subset of Nγ1 × · · · ×Nγn , F (Z) is closed in N , in particular it is a closed subset of

Q′. Since Q′ is connected, we conclude Q′ = F (Z).
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6.2 Description of the polarized module

Recall we write I = I(Q, λ,OQ) and I = Γ(X, I). The fact that Oλ−ρ implies the weight

λ− ρ is a compact element in the root lattice. From (2.2) we have

I = Oλ−ρ ⊗ i∗OQ.

Like in section 5, denote by σ an N -invariant section of Oλ−ρ(N). Then there is an inclusion

I ↪→ σ(i∗OQ)(N).

Denote by S the set of indexes i such that αi is a non-compact root. Endow N with Lu’s

coordinates. Theorem 6.3 implies Q′ = N ∩Q is cut out by the equations

Q′ = {zi = zi = 0, i ∈ S}.

Denote by X(Q′R) the algebra of complex-valued smooth functions on Q′. Also write

M := X(Q′)[∂zi , ∂z̄i ], where i ∈ S. From theorems 4.1 and 6.3, we obtain an inclusion

(i∗OQ)(N) ↪→M . Therefore there is an injection

ι : I ↪→ σM.

The space on the right is naturally filtered by degree of differential operators in the normal

directions, and ι respects the filtrations on both sides. Moreover, M admits a polarization

P ′ according to the construction of section 2.3. Let u0, v0 ∈M and u = σu0, v = σv0. Then

P (u, v) = ∥σ∥2P ′(u0, v0)

The group H acts on N by conjugation (equivalently, on Σw). We have
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Proposition 6.4. The action of H on N is given in Lu’s coordinates by

t · (z1, z̄1 . . . , zn, z̄n) = (eα1(t)z1, e
−α1(t)z1, . . . , e

αn(t)zn, e
−αn(t)zn).

Proof. This is proposition 2.11 in [Lu99].

In particular H acts on Mσ in a semisimple way, and ι is H-equivariant. Theorem 6.4

implies the eigenvalues of the H-action on X(Q′) belong to Λc, and it acts on each ∂zi , ∂zi

via weights in Λnc. Denote by M i the subspace of M of homogeneous elements in degree i,

and define

M+ :=
⊕
i even

M i, M− :=
⊕
i odd

M i. (6.2)

Then M+ and M− are the eigenspaces where H acts by compact and non-compact weights

in the root lattice respectively. We define similarly I+ := M+σ ∩ I and I− = M−σ ∩ I.

Since λ − ρ is a compact weight, I+ and I− are respectively the spaces where H acts by

compact and non-compact weights. We have I = I+ ⊕ I−.

In chapter 3 we proved that the spaces I+ and I− were orthogonal to each other assuming

there existed also a gR-invariant form. This is true in general:

Lemma 6.5. Under the bilinear form (·, ·)uR, the spaces I+ and I− are orthogonal.

Proof. Let u, v ∈ I be two elements so that H acts on them with different elements in the

root lattice. That is h · u = hαu and h · v = hβv, for all h ∈ H and α ̸= β. The form (·, ·)uR
is K-invariant (because it is uR-invariant, in particular kR-invariant, and since the K-action

is admissible, it is K-invariant), in particular H-invariant, therefore

(u, v)uR = (h · u, h · v)uR = (hαu, hβv)uR = hα−β(u, v)uR .

From where (u, v)uR = 0. All of the possible H-eigenspaces on I+ and I− have different
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weights, and this proves the lemma.

Each space FpI is fixed under the H-action. Therefore FpI = FpI
+⊕⊥ FpI−. Moreover,

from (6.2) we see that FpI
+ = Fp−1I+ if p is odd, and FpI

− = Fp−1I− if p is even.

Therefore

F pI ∩ (F p−1I)⊥ ⊂ I+, if p is even,

F pI ∩ (F p−1I)⊥ ⊂ I−, if p is odd.

We conclude

Theorem 6.6. Theorem 6.1 is true if and only if the bilinear form (·, ·)uR is positive definite

when restricted to I+, and negative definite when restricted to I−.

6.3 Proof of theorem 6.1

Just, like in section 4, we have in Lu’s coordinates

∥σ∥2 dm = ∥σ∥2a−4ρw0 (n) dn = a
2w0λ−2ρ
w0 (n) dn =

n∏
i=1

(1 + |zi|2)
−2 ⟨λ,αi⟩

⟨αi,αi⟩
−1

dzi dzi.

Write

hi = (1 + |zi|2)
−2 ⟨λ,αi⟩

⟨αi,αi⟩
−1
,
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and hc =
∏

i̸∈S hi, hnc =
∏

i∈S hi. Let u = σ(
∑

i fi∂
εi), be an element of I with fi ∈ X(Q′)

and ∂εii ∈ C[∂i, i ∈ S]. Then

(u, u)uR =

∫
X
P (u, u) dm

=

∫
N
P (u, u)a

−4ρ
w0 (n) dn

=

∫
Cn

∑
i,j

fif j∂
εi∂

εj (δ)

hchnc dz dz

=

∫
Cn

δhc
∑
i,j

fif j(∂
εi∂

εj )t(hnc) dz dz

=

∫
Cm

hc
∑
i,j

fif j

(
(∂εi∂

εj )t(hnc)|0
)
dz dz (6.3)

This last integral is absolutely convergent from 2.7. Therefore its value will be positive (or

negative) if the integrand is a positive (respectively, negative) function everywhere on Cm.

Let A = C[∂i, ∂i, i ∈ S]. On A we define a hermitian form by B(α, β) = (aβ)t(hnc)|0.

We know that hc is always positive, hence in order to prove that (·, ·)uR is positive definite

on I+ and negative definite on I−, it is enough to prove

Proposition 6.7. The form B(·, ·) is positive definite on A+ and negative definite on A−,

where A+ and A− are the subspaces of A consisting of elements of purely even degree and

purely odd degree respetively.

The goal of the rest of this section is to prove this proposition. For a vector space V with a

hermitian form BV , we say V admits an orthogonal signature decomposition if V = V +⊕V −

with V + and V − orthogonal with respect to BV , and BV is positive definite on V + and

negative definite on V −. We reduce the proof of proposition 6.7 to a “one-dimensional

version” via the following lemma
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Lemma 6.8. Let (U,BU ) and (V,BV ) be two vector spaces with hermitian forms so that

U = U+ ⊕⊥ U−, V = V + ⊕⊥ V −

are orthogonal signature decompositions with respect to the corresponding forms. Then the

space U ⊗ V endowed with the hermitian form B defined by

B(u1 ⊗ v1, u2 ⊗ v2) = BU (u1, u2)BV (v1, v2).

admits a perpendicular signature decomposition

U ⊗ V = (U+ ⊗ V + ⊕ U− ⊗ V −)⊕⊥ (U+ ⊗ V − ⊕ U− ⊗ V +).

Because λ ∈ hR is a dominant weight, the number −2 ⟨λ,αi⟩
⟨αi,αi⟩

−1 is strictly negative. From

the previous lemma, we just need to prove

Proposition 6.9. Let k be a positive number and let D = C[∂z, ∂z]. Equip this space with

the hermitian form

B(α, β) = (αβ)t
(

1

(1 + |z|2)k

)
|z=0.

Then D admits an orthogonal signature decomposition D = D+ ⊕⊥ D−, where D is the

subspace of elements with pure even degree and D− is the space of elements with pure odd

degree.

Proof. The space D is graded by assigning the element ∂z degree 1, and the element ∂z

degree −1. Denote by Di the subspace of elements with pure degree i. Note that

Di = C[∆]∂iz, for i ≥ 0, and Di = C[∆]∂iz, for i ≤ 0.

Here ∆ represents the operator ∂z∂z. It is clear that the spaces Di are orthogonal to each

other and therefore we just need to check B is positive definite on the pieces of even degree
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and negative definite on the pieces of odd degree.

Assume i ≥ 0 (the other case is analogous), and choose the basis {∂iz,∆∂iz,∆2∂iz, . . . } for

the vector space Di. Write f = 1
(1+|z|2)k . This function is positive definite. In particular,

by Bochner’s theorem, we have

f(z) =

∫
C
g(ξ)e−2πiξ·z dξ,

where g is a function that is positive everywhere on C. Fix an arbitrary integer N and let

A be the matrix given by Akl = B(∆k∂iz,∆
l∂iz), where 1 ≤ k, l ≤ N . Then we have

A = [∆k+l+i(f)(0)]

= [

∫
C
(−4π2|ξ|2)k+l+ig(ξ) dξ]

=

∫
C
[(−(2π2|ξ|)2)k+l+i]g(ξ) dξ

For any value of ξ, the matrix [(−(2π|ξ|)2)k+l+i] is positive semidefinite if i is even, and

negative semidefinite if i is odd. Indeed, let A(ξ) = [(−r)k+l+i], 1 ≤ k, l ≤ N , where

r = 2π|ξ| is a positive number, and let u = (x1, . . . , xN ). We see that

utA(ξ)u = (−r)i(x1 − rx2 + r2x3 − · · ·+ (−r)NxN )2,

which is non-negative if i is even, and non-positive if i is odd. Clearly there is no vector u

that makes utA(ξ)u = 0 for every value of ξ, hence A is a non-degenerate matrix which is

the integral with respect to a positive measure of positive semidefinite matrices when i is

even, and negative semidefinite matrices when i is odd. The conclusion is that A is positive

definite in the first case, and negative definite in the latter situation.

Remark 6.10. Just like in section 3, the signature of the form is encoded in properties of

the function aw(n). In this case, the fact that this is a positive definite function. Lu’s
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coordinates work particularly well to compute the signs of the integrands involved in the

process.
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