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of 29 Å, and we choose this rcut value as the bound state cutoff to minimize any
statistical fluctuations in our trajectory analyses. . . . . . . . . . . . . . . . . . 20

2.5 Free energy profiles of the raw trajectories, MSM, and TRAM. The free energy
profiles obtained from a raw MD trajectory of 25 µs aggregate simulation time
(blue), the PMF of a US simulation of 200 ns per window (orange), a one-
dimensional traditional MSM from COM distance feature and and 25 µs aggregate
simulation time (green), and TRAM-1D (red) show near identical agreement,
proving the robustness of the MSM methodology even when using only one feature. 23

2.6 Representative structures of the MSM-6D microstates. The centroids from k-
means clustering are colored by the COM distance of the complex and plotted on
top of the free energy landscape along the two slowest modes of TICA. Represen-
tative structures are taken from each of the centroids to give a better idea of the
microstate assignment. Starting from the the top right and going counterclock-
wise, we have clusters representing the bound state, an intermediate state where
one LJ pair is separated, an intermediate state where two LJ pairs are separated,
and three dissociated states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



2.7 Timescales of MSM-6D with 550 microstates. There are two timescales lasting
longer than 15 ns and one lasting around 10 ns, indicating that there should be
three or more long-lived, or metastable, states. . . . . . . . . . . . . . . . . . . . 26

2.8 Four metastable states of MSM-6D determined by PCCA. Metastable state 1
consists of primarily bound states. Metastable state 2 consists of intermediate or
loosely bound states. Metastable states 3 and 4 consist of completely dissociated
complexes. PCCA assignments use fuzzy clustering, while a crisp assignment is
employed to visualize how the 550 microstates map to each of the metastable
states. The gray shading is the same free energy landscape shown in Fig. 2.6. . . 27

2.9 Efficiency of TRAM. The MSM from short MD trajectories of only 5 µs of sim-
ulation time (blue square) does not recover as agreeable of a free energy profile
as the TRAM models constructed from a) 5 µs of MD simulation and 2.5 ns per
window US simulation (orange dot), b) 3 ns per window US simulation (green
diamond), and c) 200 ns per window US simulation (red triangle, TRAM-1D in
Table 2.3). With the addition of only 3 ns of US simulation, TRAM is within
near agreement to the reference MSM estimated from a long MD simulation time
of 25 µs (black). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.10 PCCA metastable states of MSM-1D and TRAM-1D. The bound (blue) and un-
bound (red) states are able to be clearly distinguished when using COM distances
as the only feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.11 PCCA metastable sets generated from MSM and TRAM using 1/COM2 as the
feature. The bound (blue) and unbound (red) states are still able to be clearly
distinguished when using this indirect feature. . . . . . . . . . . . . . . . . . . . 30

2.12 The π global sensitivity as a function of the average COM of each MSM mi-
crostate. Higher π sensitivities correspond to the microstates with shorter aver-
aged COM distances that belong to the bound or intermediate states. . . . . . . 32

2.13 Local sensitivity matrices computed for a few selected elements of the stationary
distribution. Elements 2, 28, 59, 67, 82, and 88 show the highest sensitivities,
while the other elements have relatively low sensitivities. . . . . . . . . . . . . . 34

2.14 Global sensitivity analysis of the stationary distribution. . . . . . . . . . . . . . 35
2.15 Comparison of MSM and TRAM in 6 dimensions. (a) Binding free energy ∆Gb

from MSM and TRAM as a function of the MD simulation time. Blocks of trajec-
tories used in the estimation are taken from the 25 µs aggregate MD simulations.
For TRAM, the input also included the US trajectories of 200 ns per window with
14 windows biased along a COM distance of 13 Å−26 Å. These 14 US windows
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2.1 Gō-like contact pairs chosen from key amino acid residue pairs on barnase and
barstar with minimum distances Rmin. . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 MSMs constructed from different featurization and simulation methods. . . . . . 14
2.3 Equilibrium binding constants and kinetic rates obtained from the five different

MSMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Relaxation times calculated for different bound cutoff distances. . . . . . . . . . 39

3.1 Comparison of the association and dissociation rates computed from MSM and
the committor-consistent string method . . . . . . . . . . . . . . . . . . . . . . 82

xi



ACKNOWLEDGMENTS

This dissertation would not have been possible without the guidance and support from many

people in my life. Firstly, I would like to thank my advisor, Professor Benôıt Roux, for his
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ABSTRACT

Understanding the kinetic behavior of complex systems is crucial for the study of physi-

cal, chemical, and biological phenomena. While conventional methods such as molecular

dynamics or enhanced sampling have been successful in characterizing the dynamics for a

variety of systems, the computational cost to explore the configuration space is prohibitive

and becomes infeasible for more complex systems with transition events that happen on

longer timescales. Here, I will explore two powerful computational methodologies built upon

statistical analysis and statistical mechanical frameworks to efficiently and accurately ex-

tract the kinetics, as well as other important observables for thermodynamics or transition

pathways. First, I will construct Markov state models to study the binding and unbinding

of a protein-protein complex. I will demonstrate the robustness of this methodology under

various parameters and simulation conditions, and then I will propose an improved approach

using a sensitivity analysis on the observables for the addition of biased simulations. Next,

I will present a novel string method algorithm that allows for finding an optimal transition

pathway on the free energy surface by taking into account the reactive probability. Drawing

upon concepts from transition path sampling, the present framework aims to variationally

minimize the steady state flux by way of the committor probability and notably can predict

slow kinetic pathways for anisotropic systems, which are ubiquitous in biology and chemistry.

Both of these proposed approaches allow the estimation of dynamic observables in a more

efficient and more accurate manner.
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CHAPTER 1

INTRODUCTION

The dynamics of complex molecular systems with long-lived states is a central area of study in

computational chemistry and biophysics. Rare transitions between these so-called metastable

states govern biological processes such as conformational changes [1], protein folding [2, 3],

and ligand binding [4]. At the very essence of the problem, we can consider a two-state

kinetic model,

A
kAB

−−−−⇀↽−−−−
kBA

B (1.1)

with reactant state A and product B. Of particular interest is the ability to accurately

estimate the transitions rates kAB and kBA, the global relaxation time τ = (kAB +kBA)−1,

and equilibrium probabilities pA = kBA/(kAB + kBA) and pB = kAB/(kAB + kBA).

Traditional molecular dynamics simulations extracts dynamical information using an ob-

servational approach in which the state of a system is observed at some time t, then observed

again at time t + 1, and so on. This purely brute-force approach has seen limited success

in probing the kinetics and thermodynamics of relatively small molecules [5–7]. However,

as we delve into more complex systems, we are presented with one of the major obstacles

plaguing computational studies: the sampling problem. As the length and timescales of

transition events increase with system complexity, on the order of milliseconds or longer for

biological processes [8], the computational ability to adequately sample the full configura-

tional space decreases. While enhanced sampling methods such as umbrella sampling [9],

replica exchange molecular dynamics [10], and adaptive biasing force method [11, 12], allow

improved sampling of the state space by biasing simulations along a desired set of degrees

of freedom, or collective variables (CV), the dynamical information becomes unreliable as a

result of biasing the system away from equilibrium. This dissertation proposes theoretical

frameworks and computational strategies to help extract kinetic information more accurately

1



and effectively.

There are two fundamental directions we may take to characterize the dynamics of slow

molecular processes. The first direction considers the global timescales, which consists of

forward and backward transitions that represent the natural kinetics of a system. This

approach involves performing spectral decomposition analysis of a dynamical propagator,

e.g., Markov state models. Alternatively, we may consider the net forward reactive flux JAB

that ascribes a unidirectional transition from state A to B in order to focus on the specific

transition region of interest. The current Introduction chapter presents an overview of the

existing theories and concepts crucial for the later chapters of the dissertation: Markov

state models (MSMs), reactive flux, committor probability, and the string method. Chapter

2 describes the robustness of the MSM methodology under various input parameters and

proposes a strategy to improve the accuracy and efficiency of MSMs when incorporating

biased simulations. Chapter 3 presents a novel string method where the transition pathway is

variationally optimized by minimizing a committor-correlation function. Chapter 4 concludes

this dissertation and discusses future outlooks in these lines of works.

1.1 Markov State Models

An MSM can describe the full dynamics of a system of interest by constructing a network

model that maps a system’s state (e.g., a molecule’s structure) to its free energy landscape,

where these mappings can be used to predict transitions between states to provide an over-

all picture of the kinetics and thermodynamics [13–16]. MSMs have gained popularity in

recent years since, compared to conventional molecular dynamics simulations, this powerful

technique is less sensitive to undersampling by estimating long-time kinetic information from

shorter simulations and allows a direct comparison of observables and statistical uncertainties

with experimental results.
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1.1.1 Continuous Space

Consider a state space Ω that consists of all possible dynamical conformations of a molecular

system in equilibrium. We can denote z(t) ∈ Ω as the state of the system at time t for a

Markov process and assume ergodicity and detailed balance, i.e., is reversible. The proba-

bility density of the system at time t belonging to state z can be expressed as ρt(z). We can

then propagate the continuous Markovian dynamics from state z at time t to state z′ at a

later time t+ τ as follows:

ρt+τ (z′) =

∫
Ω
dz Pτ (z, z′) ρt(z), (1.2)

where the propagator Pτ satisfies the Chapman-Kolmogorov equation

ρt+nτ (z) = (Pτ )n ρt(z). (1.3)

In other words, taking n number of steps of length τ (the lag time) with a Markov process

is equivalent to a Markov process with a lag time of nτ .

Spectral decomposition of the dynamical propagator is necessary for analyzing the dy-

namics of a Markovian system [17]. Pτ consists of eigenfunctions ψLi (z) and ψRi (z), and the

corresponding eigenvalues λi:

λiψ
L
i (z′) =

∫
dz ψLi (z) Pτ (z, z′) (1.4)

λiψ
R
i (z) =

∫
dz′ Pτ (z, z′) ψRi (z′). (1.5)

In the discrete state space (Section 1.1.2), ψLi and ψRi are approximated by the left and right

eigenvectors, respectively, of the reversible transition probability matrix. λi is ordered from

the slowest to fastest processes with λ1 = 1 > λ2 ≥ λ3 ≥ ... ≥ λk for k degrees of freedom

chosen with the CV space. λ1 = 1 corresponds to the first left eigenvector ψL1 , which is the
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invariant equilibrium distribution π(z). The first few eigenvectors associated with the slowest

degrees of freedom determine the metastable states of the system, where we can observe

states with negative eigenvector components transition to states with positive eigenvector

components, and the magnitude of the components is proportional to population of the

state. In addition, the left and right eigenvectors are related by a factor of the equilibrium

distribution:

ψLi (z) = πiψ
R
i (z). (1.6)

Finally, the relaxation times ti can be computed as a function of the eigenvalues:

ti =
τ

lnλi
. (1.7)

To ensure Markovian behavior, an appropriate lag time τ must be chosen to satisfy the

Chapman-Kolmogorov relation in Eq. 1.3.

1.1.2 Discrete Space

While we can formally describe the propagation of dynamics in a fully continuous space, in

practice, the space space must be discretized from finite simulation data in order to make

the construction and estimation of a Markov model computationally feasible. Discretization

involves dividing the state space into sections, typically based on some geometric criteria

such as the CVs [17]. For n discrete states of the partitioned space S = {S1, ..., Sn}, we

can define the MSM as a row-stochastic transition probability matrix T(τ) ∈ Rn×n that

describes the probability of transitioning from one state Si at time t to another state Sj at

a later time t + τ . Fig. 1.1 illustrates a Markov process involving three discrete states and

the transition probabilities between each pair of states.

In practice, T(τ) is estimated from a maximum likelihood estimate of the number of

4



1

3

𝑝!"

𝑝"!

𝑝#!

𝑝!#

𝑝"#
𝑝#"

𝑝!!

𝑝## 𝑝""

1

𝑝!"

𝑝"!

𝑝#!

𝑝!#

𝑝"#
𝑝#"

𝑝!!

𝑝## 𝑝""

A B

2

Figure 1.1: Schematic diagram of a Markov process. (A) MSM with three discrete states
and their transition probabilities. (B) When applied to real systems of interest such as
proteins, the discrete states become the different possible conformations a protein might
adopt throughout a simulation.

counts on a transition count matrix between each pair of states i and j:

Tij(τ) = arg max
n∏

i,j=1

p
cij
ij , (1.8)

where cij is number of transition counts from between states i and j, and pij is the transition

probability.

1.2 Steady State Reactive Flux and Committor Probability

For higher dimensional systems that exhibit multiple long-lived states, one may wish to

focus on specific transition regions of interest by analyzing dynamics from the perspective

of a net steady-state reactive flux. This approach involves defining boundary states, for

example reactant A and product B for a two-state system, and then investigating the A
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Figure 1.2: The committor gives the probability of reaching state A or B when starting from
the state z. We can define a forward committor q+ as the probability of reaching B before
A, or a backward committor q− as the probability of reaching A before B.

to B transition. This idea lies at the heart of transition path sampling (TPS) [18–22] and

transition path theory (TPT) [23, 24] and has the advantage in circumventing issues from

spectral decomposition, where some slow degrees of freedom are not directly correlated with

the transition of interest.

In the TPT framework, the committor probability, first proposed by Onsager [25], is a

critical element in estimating the reactive flux and drawing a reactive current path between

metastable states A and B. In particular, we can think of the forward committor q+(z)

as the probability of reaching state B before reaching state A when starting from z in the

configuration space (Fig. 1.2)

q+(z) =


0, z ∈ A

f(z), z /∈ A ∪B

1, z ∈ B

, (1.9)

where we define q+(z) to be 0 if z happens to be in state A, 1 if z is in state B, and a value

between 0 and 1 given by f(z) in an intermediate region not belonging to A or B. Without

loss of generality, for the rest of this dissertation, we will study the forward committor and

denote it simply as q(z). In practice, f(z) can be computed by choosing z to be a set of CVs
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along a 1-dimensional reaction coordinate space and defining well-guessed functions to best

represent the system of study, for example by fitting an error function-like equation along z

or assuming a linear combination of selected basis functions in the CV space [26–31]. For

cases where we can project high-dimensional spaces onto 1-dimensional reaction coordinates,

the committor probability then becomes

q(z) =

∫ z
a e

βW (z′)dz′∫ b
a e

βW (z′)dz′
, (1.10)

where β = 1/kBT , kB is Boltzmann’s constant, T is the temperature, W (z) is the free energy

profile along z, and a and b are the boundary cutoffs for states A and B, respectively.

Under steady-state conditions, the reactive flux can be expressed in terms of the com-

mittor [32]

JAB(z) =
1

τ

∫
z∈A

dz

∫
z′∈B

dz′ (q(z) − q(z′)) Pτ (z, z′)ρeq(z), (1.11)

and the rates can be estimated as

kAB = JAB/pA, (1.12)

kBA = JAB/pB , (1.13)

for populations pA and pB in states A and B, respectively.

1.3 The String Method

A natural consequence of analyzing the lines of reactive probability flux is to be able to

find an optimal path that follows the dominant current between states A and B. The string

method [33–35] attempts to find a reactive tube that contains the highest probability current

connecting the two metastable states. In practice, the string method is performed in the
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State B

State A

Figure 1.3: Illustration of the string method with swarms of trajectories. Many independent
simulations (red curves) are launched from discrete positions, or images, along the string
between states A and B. The image positions are updated following the mean drift vector
(black arrow).

subspace of a set of CVs [36] and produces a curvilinear free energy pathway along the

reaction coordinate z composed of the CVs.

The string method with swarms of trajectories was proposed by Roux and coworkers [37]

as a computationally efficient approach for optimizing a reactive pathway. Fig. 1.3 illustrates

this approach, where many short, unbiased trajectories are launched at various positions, or

images, along an initial path. The PMF and string shown are adapted from Ref. [38]. The

string is then iteratively evolved by updating the position of each image by the average drift

of its trajectory swarm until converged. Given M discrete images {z1, z2, ..., zM} along the

string, we can compute the mean drifts as an average over noise for each of the ensemble

swarm of trajectories

∆z = z(τ) − z(0) = τβDF + τ∇D, (1.14)
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where D is the diffusion tensor evaluated at z(0), and F = −∇W (z(0)) is the mean force.

Then, the steady state flux can be related to the diffusive system [39] as follows

JAB(z) =

∫
dz ∇q(z) D ρeq(z) ∇q(z). (1.15)

From this expression, we observe that the direction of the flux depends on both ∇q and

D. In Chapter 3 of the dissertation, we will compare the string method with swarms of

trajectories and a novel formulation of the string method that benefits from following the

direction of ∇q.
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CHAPTER 2

MARKOV STATE MODEL TREATMENTS OF

PROTEIN–PROTEIN ASSOCIATION USING

COARSE-GRAINED SIMULATIONS

The material from this chapter is reproduced from Z. He, F. Paul, B. Roux, A critical

perspective on Markov state model treatments of protein-protein association using coarse-

grained simulations. J. Chem. Phys., 154, 084101 (2021), with the permission of AIP

Publishing.

2.1 Introduction

One of the most important questions in biology is how living cells communicate and respond

to the flow of information at the molecule level. To decipher the molecular basis of cellular

communication, one must explain the specific interactions governing protein-protein recog-

nition in terms of structure and dynamics [40–42]. While the protein-protein equilibrium

binding affinity and specificity are certainly important, a characterization of the kinetic as-

pects of association and dissociation is perhaps of even greater significance to understand the

time-course of biological processes [43]. In principle, atomic-level information is essential to

study protein complexes in terms of structure and dynamics. However, the long timescales

and high dimensionality present outstanding computational challenges in computer simula-

tions of rare events [44].

Markov state models (MSMs) provide a powerful framework for characterizing the kinetics

of complex molecular systems [14, 15, 17, 45–47]. MSMs are discrete state and discrete time

stochastic master equation models. Building an MSM involves defining a set of discrete

microstates within a subspace of collective variables (features), and then estimating the

hopping transition probabilities between such states at a fixed lag-time interval from the
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information generated by detailed dynamical simulations [48]. Assuming that the resulting

MSM thus constructed is indeed representative of the system of interest, the framework can

then be used as a generator to predict any equilibrium or long-time kinetic properties at low

computational cost.

The overall accuracy and usefulness of MSM analysis is typically burdened by two op-

posing problems. The first problem arise from the need to achieve Markovian dynamics.

An MSM must satisfy ergodicity, but often important transitions are not sampled due to

computational limits and are missing in the MSM. Also, the evolution of the system mon-

itored at a given lag-time interval exhibits non-Markovian correlated dynamics when the

trajectories are mapped onto a set of coarsely defined microstates. Immediate remedies to

reduce such non-Markovian effects are to choose a longer lag-time or refine the definition of

the microstates by using a featurization space of higher dimensionality with more collective

variables. However, as the lag-time and the number of microstates are increased, the finite

amount of information from the detailed simulations becomes rapidly insufficient to deter-

mine the larger number of transition probabilities accurately. Thus, as we try to address the

first problem–achieving Markovian dynamics, the statistical accuracy of the MSM breaks

down, causing the second problem.

Different strategies have been devised to mitigate these two contradictory problems by

trying to efficiently identify the smallest number of most relevant features expected to display

the least amount of non-Markovian dynamics. One such method is the time-lagged indepen-

dent component analysis (TICA) [49, 50] which was proposed to process high-dimensional

data without the loss of kinetically relevant information. Unfortunately, the optimal selection

of input features and the process of discretization to define the microstates are often unclear,

and there are various different ways one can construct an MSM for the same system [15,17].

Furthermore, the accuracy of the MSM relies quite heavily on having a well-sampled config-

urational space. Despite the recent advances in computational modeling and achievements
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in MSMs applied to large biomolecular systems [51,52], the construction of robust and well

converged MSM from full atomistic simulations still remains a highly demanding feat. By

itself, the MSM framework does not directly help improve the exploration of rare events and

(high free energy) configurations. Sampling issues must be tackled indirectly through sen-

sitivity analysis and adaptive strategies. Different methodological aspects may be brought

to bear on the problem to ensure an optimal outcome, including featurization, enhanced

sampling techniques [52,53], and sensitivity analysis [54–57].

Our principal goal is to test the robustness and reliability of the methodology, by exploring

different strategies for the efficient construction of MSMs. To maintain complete control over

the convergence of the present analysis and circumvent the statistical uncertainties caused

by sampling issues, a simplified coarse-grained (CG) model of the barnase-barstar protein

complex was used for all the simulations. Several MSMs were built from different sets of

features as well as combinations of biased and unbiased simulations to understand how these

inputs may affect the resultant thermodynamic and kinetic observables. We then re-examine

the transition-based reweighting analysis method (TRAM) [53]. Using an approach similar

to the eigenvalue-based sampling [58–60], we propose a sensitivity analysis [54–57] that

can identify regions of undersampling and efficiently add in biased simulations only where

necessary.

2.2 Methods

2.2.1 Coarse-Grained System

The barnase-barstar system is taken from the crystal structure 1BRS Protein Data Base

ID [61]. Chain B is selected for barnase and chain D for barstar. The CG representation

is constructed by mapping each amino acid residue as a single bead with its mass and

position corresponding to the Cα. We designed our CG potential as a Gō-like model [62,63],
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Asp 37 – Glu 46

Hist 102 – Ala 36
Hist 102 – Gly 31

Arg 59 – Asp 35

Figure 2.1: The barnase-barstar protein complex with one coarse-grained (CG) particle per
residue. In order to model the interactions in the simplified protein complex, four Lennard-
Jones potentials between key non-bonded particles, corresponding to the important residues
involved in binding, were chosen to simulate association in the correct native bound state.
The key pairwise residues are depicted as CG beads.

using attractive potentials to represent the pairwise contacts of the native complex. Four

Lennard-Jones 6-12 potentials with a well depth of 3.0 kcal/mol were introduced between the

non-bonded beads of barnase and barstar (Fig. 2.1) to accurately simulate the association

in the native bound state. The four Gō-like contact pairs, listed in Table 2.1, were selected

due to their importance for binding as reported in literature [64–66].

Table 2.1: Gō-like contact pairs chosen from key amino acid residue pairs on barnase and
barstar with minimum distances Rmin.

Barnase Barstar Rmin (Å)
Asp 37 Glu 46 4.96
Arg 59 Asp 35 5.65
Hist 102 Gly 31 4.82
Hist 102 Ala 36 5.83

In addition, root-mean-square deviation (RMSD) restraints were applied to each protein

to maintain their folded conformation. The complex was enclosed in a finite spherical volume

with a radius of 73.46 Å using a flat-bottom potential, yielding an effective concentration of
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Table 2.2: MSMs constructed from different featurization and simulation methods.
Model Name Features Simulation Microstates
MSM-6D 4 TICA components from long-lived pairwise

contacts, RMSD with respect to the native
bound state, COM distances

MD 550

TRAM-6D 4 TICA components from long-lived pairwise
contacts, RMSD with respect to the native
bound state, COM distances

MD + US 100

TRAM-1D COM distances MD + US 100
TRAM-1D-inv Squared inverse COM distance MD + US 100

Models were estimated at a lag time of 12 ns.

1 µM. The barnase was restrained at the origin in position and orientation, while barstar was

allowed to freely diffuse in the cavity. Because the protein complex is invariant by translation

and rotation, this does not affect the equilibrium features of the system. 25 independent,

unbiased Langevin molecular dynamic (MD) simulations were performed at 300 K with a

damping constant of 1 ps−1 and time step of 1 fs, for a total aggregate simulation time of 25

µs. Umbrella sampling (US) simulations were carried out using harmonic biasing potentials

chosen along the distance between the center-of-mass (COM) of barnase and the COM of

barstar, with spring constants of 1 kcal/mol. 70 windows were assigned along the reaction

coordinate from 4 to 73 Å at 1 Å intervals, yielding 200 ns of simulation time per window

at a 5 fs time step. All simulations were performed using the NAMD program [67] with

the CHARMM [68] force field parameter file to choose non-bonded pairs for implementing

Gō contacts. The visualization program VMD [69] was used to render the barnase-barstar

complex.

2.2.2 Markov State Model Construction

We construct four MSMs using different combinations of biased and unbiased trajectories

and different choices in featurization. These selections account for the limitations MSMs

often face due to (1) undersampling and (2) non-optimal selection of features due to the
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many possible reaction pathways that arise from the simulation of huge biomolecules. We

evaluate the performances of the MSMs by comparing them with the properties calculated

from the raw trajectories of the MD and US simulations. The MSMs and their construction

input parameters are summarized in Table 2.2. Detailed discussions of the models follow in

Sec. 2.3.

MSM-6D is a traditional MSM built from unbiased MD trajectories using 6 features

corresponding to the four slowest linear combinations of pairwise contacts computed from

TICA, the minimum RMSD of the complex with respect to the native bound state, and

the COM distances between the barnase protein and the barstar protein. We will treat

MSM-6D as the reference MSM, since it is a traditionally constructed MSM using only

unbiased simulations and has a relatively long aggregate simulation time of 25 µs with many

observed association and dissociation events. TRAM-6D was built using the same approach

as MSM-6D with the addition of biased US trajectories. TRAM-1D was generated using

only the COM protein distances from the MD and US trajectories. Lastly, TRAM-1D-

inv was build upon the squared inverse COM distances as features to consider an indirect

reaction coordinate. Clustering was performed using k-means [70, 71], and the number of

microstates was determined by the elbow method [72], which optimizes the minimization

of the intra-cluster variance. The models were constructed with lag times of 12 ns. The

MDTraj [73] software was used for trajectory analysis. The PyEMMA [74] software and a

few functionalities of the msmtools package were used to construct the MSMs and perform

several analyses. Figures were rendered using Matplotlib [75].

For MSM-6D and TRAM-6D, which rely on a larger set of features, a number of methods

were employed to make the MSM construction feasible despite the large volume of data.

Given the 110 residue beads on barnase and 89 on barstar, we would have to work with

110 × 89 = 9790 pairwise distances. In order to reduce the computational effort in such

a high dimension, we considered only the pairwise distances that were deemed kinetically
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relevant. Employing a similar strategy used by Plattner et al. with their hidden MSM built

upon the full atomistic simulations of the barnase-barstar complex [51], we obtained 817

long-lived pairwise contacts that were within a distance of 12 Å and bound for at least 1 ns.

TICA was utilized to further reduce dimensionality. TICA is a powerful dimensionality

reduction algorithm that extracts the most kinetically-relevant linear combinations of the

long-lived pairwise contact distances. Briefly, TICA first computes the time-lagged covari-

ance matrices C(τ) from a given set of mean-free input data r(t) (e.g., the long-lived pairwise

distances) at time t with elements

cij(τ) = ⟨ri(t)rj(t+ τ)⟩ (2.1)

=
1

N − τ− 1

N−τ∑
t=1

ri(t)rj(t+ τ), (2.2)

where τ is the lag time and N is the size of the data. Then, solving for the generalized

eigenvalue problem gives

C(τ)U = C(0)UΛ, (2.3)

where U is an eigenvector matrix consisting of time-lagged independent components (ICs)

as the columns, and Λ is a diagonal eigenvalue matrix. The data set r(t) is then projected

onto the TICA space that maximizes the autocorrelation of the transformed coordinates

z⊤(t) = r⊤(t)U. (2.4)

We reduced down to the desired number of dimensions by choosing a subspace of only the first

few columns of U. A more detailed discussion of TICA can be found in References [49,50].

For this study, we kept the four slowest ICs from TICA that had noticeably slower

timescales compared to the rest of the ICs, as demonstrated in Fig. 2.2. Then, the RMSD
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and COM distances were added as additional features to include physical observables that are

more intuitively understandable. Clustering was performed on this six-dimensional feature
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Figure 2.2: The timescales of TICA. Ther first four dimensions with noticeably slower
timescales were used as part of the set of features for MSM and TRAM construction.

space. This feature selection is similar to the hidden MSM of the all-atom barnase-barstar

reported by Plattner et al. [51]. Hence, we can avoid any uncertainty underlying the num-

ber of dimensions during the MSM construction by employing a similar feature selection

for the CG descriptions (MSM-6D and TRAM-6D) that is based on the atomistic MSM.

We note that selecting the six features and other MSM hyperparameters for MSM-6D and

TRAM-6D manually was straightforward for the present CG complex. However, for more

complicated systems, the Generalized Matrix Rayleigh Quotient (GMRQ) [76–79] and the

variational approach for Markov processes (VAMP) score [80,81] would provide useful tools

for systematically determining the optimal features and MSM hyperparameters.
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2.2.3 Determination of the Optimal Cutoff Distance

For the purpose of comparing the kinetic rates and binding constants of the MSMs with

those calculated from the raw analyses of the trajectories, we first have to choose a cutoff

distance that clearly delineates between the bound and unbound states in the simulations.

For rcut values that are much smaller or larger than an optimal rcut, there will be faster

fluctuations and numerous rapid recrossings on a short timescale. We want to determine the

rcut for which the influence of such rapid fluctuations is minimized. Here, for rcut in the

range of 25 to 35 Å along the COM distance, an indicator state function h(t) was assigned

to equal to 0 when unbound and 1 when bound

h(t) =


0, if unbound,

1, if bound.

(2.5)

Then, the time-correlation function, averaged from the aggregate trajectories, was calculated

for each rcut value

C = ⟨h(0)h(τ)⟩, (2.6)

where τ is the lag time. Normalizing the time-correlation function, we can rewrite Eq. (2.6)

as

C =

∑N−τ
i=1 (hi − h̃)(hi+τ − h̃)∑N

i=1(hi − h̃)2
, (2.7)

where N is the total simulation time length, and h̃ is the averaged data. In order to determine

the relaxation lag time, the correlations were fitted (Fig. 2.3), using biexponential decaying
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!" = 26

!& = 159

Figure 2.3: Autocorrelation of the bound state indicator (blue triangles) for rcut = 29 Å. A
biexponential decay curve was fitted (orange) to the autocorrelation using two exponential

functions A1e
−t/τ1 and A2e

−t/τ2 (red and green, respectively), where A1 = 0.715, τ1 = 26.1
ns, A2 = 0.211, and τ2 = 159.4 ns.

functions of the form

A(t) = A1e
−t/τ1 + A2e

−t/τ2 . (2.8)

Upon fitting, the rcut values were adjusted until the relaxation time in the correlation func-

tion was the longest (i.e. when the biexponential τ’s were the longest). As demonstrated in

Fig. 2.4, the optimal value of rcut yielding the largest relaxation times is 29 Å, although we

note that the results are fairly similar for a COM distance varying between 25 and 35 Å.

Appendix Table 2.4 lists the rcut values and the corresponding biexponential lag times, τ1
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Figure 2.4: Relaxation times as a function of rcut. The lag times τ1 and τ2 peak at an rcut
of 29 Å, and we choose this rcut value as the bound state cutoff to minimize any statistical
fluctuations in our trajectory analyses.

and τ2. Accordingly, we define the bound and unbound states as

state =


bound, if r ≤ rcut,

unbound, if r > rcut,

(2.9)

where a bound state is defined as having a COM distance between barnase and barstar that

is within 29 Å and an unbound state is defined as having a COM distance greater than 29 Å.

Since the complex has been reported to go through a loosely bound state before reaching the

final native bound state [51, 82], a τ1 of 26 ns can be thought of as the timescale to achieve

the loosely bound state while a τ2 of 159 ns can be taken as the average lifetime of the fully

bound state. This rcut value was employed for analysis of the MD and US trajectories in

Table 2.3 of Section 2.3.
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Table 2.3: Equilibrium binding constants and kinetic rates obtained from the five different
MSMs.

Model name KPMF
eq KPbound

eq kon koff

(×105Å
3
) (×105Å

3
) (×1013Å

3
s−1) (×107s−1)

MD 9.24 8.86 2.67 2.98
US 9.04 ... ... ...
MSM-6D ... 8.83 ± 0.17 2.31 ± 0.04 2.70 ± 0.03
TRAM-6D ... 8.72 ± 0.17 2.37 ± 0.04 2.75 ± 0.03
MSM-1D ... 8.72 ± 0.20 2.50 ± 0.03 2.86 ± 0.04
TRAM-1D ... 8.67 ± 0.16 2.44 ± 0.03 2.89 ± 0.04
TRAM-1D-inv ... 8.66 ± 0.20 2.43 ± 0.04 2.88 ± 0.04

2.2.4 Calculation of Thermodynamic and Kinetic Properties from MSMs

In order to understand protein-protein interactions by means of MSMs, we must be able

to calculate thermodynamic and kinetic quantities from them. The equilibrium binding

constant and the ∆Gb of binding, can be obtained from the stationary distribution, π,

which gives the equilibrium probability distribution by the first left eigenvector from the

MSM transition matrix, T, as follows:

π = πT. (2.10)

We can then calculate the binding constant from the ratio of the probabilities of the bound

to unbound states given by π,

KeqC =
Pbound
Punbound

, (2.11)

where C = V −1 is the concentration, and V is the volume corresponding to the “bulk”

region,

V =
4

3
π(r3cavity − r3cut). (2.12)
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An rcavity equal to 73.46 Å is the radius of the spherical cavity used to enclose the protein

complex during simulation, and rcut equal to 29 Å represents the cutoff distance used to

delineate between the bound and unbound states. The volume of the bulk region yields a

concentration of 1 µM. The binding free energy can be defined as

∆Gb := −kBT ln

(
Pbound
Punbound

)
. (2.13)

The binding constant can also be calculated by integrating over the radial potential of mean

force (PMF),

Keq =

∫ rcut

0
dr 4πr2 e−βW (r), (2.14)

where β = 1/kBT , kBT = 0.596 kcal/mol. Here, it is assumed that the PMF has been offset

to have limr→∞W (r) = 0.

Perron-cluster cluster analysis (PCCA) is a method that clusters eigenvectors in order

to define metastable, or long-lived, states in an MSM [83,84]. We performed the PCCA++

method implemented in PyEMMA to define two metastable states, the bound state and the

unbound state, in order to obtain the mean first passage times (MFPT) between these two

states. Kinetic rates of association and dissociation can be calculated accordingly,

kon =
1

MFPTonC
, (2.15)

koff =
1

MFPToff
. (2.16)

2.3 Results

In this section, we now discuss the results obtained from the four MSMs described in Table

2.2. Fig. 2.5 compares the free energy profiles of a one-dimensional MSM (25 µs MD simula-
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Figure 2.5: Free energy profiles of the raw trajectories, MSM, and TRAM. The free energy
profiles obtained from a raw MD trajectory of 25 µs aggregate simulation time (blue), the
PMF of a US simulation of 200 ns per window (orange), a one-dimensional traditional MSM
from COM distance feature and and 25 µs aggregate simulation time (green), and TRAM-1D
(red) show near identical agreement, proving the robustness of the MSM methodology even
when using only one feature.

tion) and TRAM-1D (25 µs MD simulation and 200 ns per window US simulation) with the

PMFs from the raw MD and US trajectories. The free energies, MFPTs, and resultant bind-

ing constants and rates are within agreement, indicating that using just the one-dimensional

COM distance can adequately capture the binding process of this protein complex. Table

2.3 summarizes the thermodynamic and kinetic properties calculated from the MSMs. The

kinetic rates and binding constants were calculated from the MSMs and demonstrate that

the MSM methodology is robust and consistent. Notably, even stripping the features down

to only one dimension seems to produce MSMs that can recapitulate the thermodynamics

and kinetics.

Calculations were also performed for the raw unbiased (MD) and biased (US) simulations
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for comparison with the MSMs. The binding constants obtained by integrating the free

energy profiles from 0 to rcut (Eq. (2.14)) are listed under KPMF
eq , and the binding constants

obtained by calculating the probability ratios of bound and unbound states (Eq. (2.11)) are

listed under KPbound
eq . The association and dissociation rate constants are listed under kon

and koff , respectively. We will describe each of the MSMs in more detail in Secs 2.3.1 and

2.3.2.

2.3.1 High-Dimensional Markov State Models

We start off by examining MSM-6D, which is a conventional MSM using a set of high-

dimensional features from unbiased trajectories. As illustrated in Fig. 2.6, MSM-6D can

clearly distinguish the bound and unbound configurations. The free energy landscape along

the two slowest TICA components, or independent components (IC) 1 and 2, reveal a free

energy well corresponding to the bound configurations and another well for completely dis-

sociated structures. The 550 centroids in Fig. 2.6 are colored based on the COM distance

between barnase and barstar.

The first IC corresponding to the slowest degree of freedom represents the binding path-

way along the COM distance, while the second, third, and fourth ICs can be interpreted

as the orientational changes during association and dissociation. Although the free energy

landscape along ICs 2, 3, and 4 do not change as drastically as that for IC 1, these slow

modes are still important for association. Since the rate-limiting step involves a partially

bonded conformation where some of the pairwise contacts are formed while others are not,

the orientation of the proteins may change even though the COM distance between them

remains the same. In other words, by including the four ICs from TICA, our six-dimensional

MSM effectively encodes both translational and orientational contributions in the course of

protein association. The full relationship among the four ICs is depicted in Fig. 2.17 of the

Appendix.
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Figure 2.6: Representative structures of the MSM-6D microstates. The centroids from k-
means clustering are colored by the COM distance of the complex and plotted on top of the
free energy landscape along the two slowest modes of TICA. Representative structures are
taken from each of the centroids to give a better idea of the microstate assignment. Starting
from the the top right and going counterclockwise, we have clusters representing the bound
state, an intermediate state where one LJ pair is separated, an intermediate state where two
LJ pairs are separated, and three dissociated states.

The MSM-6D timescales plotted in Fig. 2.7 indicate two much slower timescales at 17 ns

and 19 ns and another relatively slower timescale at 10 ns, suggesting that there should be at

least three or four important metastable states. Then, carrying out PCCA with four states,

as illustrated in Fig. 2.8, we generated one metastable state where the complex is primarily in

the bound state, a metastable state consisting of intermediate states and loosely bound states,

and two metastable states with where the complex is completely dissociated. The dissociated

conformations in metastable states 3 and 4 are distinguished by the orientational position of

barstar with respect to barnase. It should be noted that the PCCA metastable assignment

uses fuzzy clustering. For example, the metastable state 1 corresponding to the bound state
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Figure 2.7: Timescales of MSM-6D with 550 microstates. There are two timescales lasting
longer than 15 ns and one lasting around 10 ns, indicating that there should be three or
more long-lived, or metastable, states.

still contains a few structures that clearly correspond to dissociated states. We can perform

a crisper assignment by manually selecting the set of states, which is fairly straightforward,

but we choose PCCA here because it is more generally applicable for systems with reaction

coordinates that are not so readily straightforward. For the purpose of obtaining the MFPTs

of the bound and unbound states in order to calculate the kinetic rates listed in Table 2.3,

we generated a two-state PCCA.

2.3.2 Markov State Models from Biased Simulations

TRAM allows the estimation of MSMs by stitching together the different thermodynamic and

kinetic information from the biased and unbiased simulations [84]. As we ultimately want to

take advantage of both biased and unbiased data, in the following subsections, we examine
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Figure 2.8: Four metastable states of MSM-6D determined by PCCA. Metastable state 1
consists of primarily bound states. Metastable state 2 consists of intermediate or loosely
bound states. Metastable states 3 and 4 consist of completely dissociated complexes. PCCA
assignments use fuzzy clustering, while a crisp assignment is employed to visualize how the
550 microstates map to each of the metastable states. The gray shading is the same free
energy landscape shown in Fig. 2.6.

MSMs built from biased trajectories in addition to unbiased trajectories. In particular, we

show that incorporating a sensitivity analysis into the TRAM construction can efficiently

improve results.

1-Dimensional Biased Markov State Models

Given an undersampled and relatively short 5 µs MD trajectory, the MSM built from it

using a one dimensional feature space, in this case the COM, is quite inaccurate, as shown

by the MSM free energy profile in Fig. 2.9. However, adding minimal biased US data to an

MSM built from undersampled MD simulation can recapitulate the same free energy profiles

as an MSM from long simulations of 25 µs. The addition of only 3 ns (per window) of

US simulation drastically improves upon the MSM via reweighting of the thermodynamics
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Figure 2.9: Efficiency of TRAM. The MSM from short MD trajectories of only 5 µs of
simulation time (blue square) does not recover as agreeable of a free energy profile as the
TRAM models constructed from a) 5 µs of MD simulation and 2.5 ns per window US
simulation (orange dot), b) 3 ns per window US simulation (green diamond), and c) 200 ns
per window US simulation (red triangle, TRAM-1D in Table 2.3). With the addition of only
3 ns of US simulation, TRAM is within near agreement to the reference MSM estimated
from a long MD simulation time of 25 µs (black).

with TRAM. Compared to the MSM-6D from very long simulations, the MSM from short

simulations yields a binding constant and rates that are vastly different. The addition of

biased trajectories by way of TRAM recuperates the thermodynamics and kinetics seen from

MSM-6D. The TRAM-1D model in Table 2.3 corresponds to TRAM model with 200 µs of

biased simulations in Fig. 2.9. Fig. 2.10 demonstrates that PCCA assignment is able to

clearly distinguish between the bound and unbound states along this feature.

Even though the bound and unbound states can be straightforwardly distinguished by

the COM distances in the present model, large biomolecules often exhibit ambiguous bind-

ing pathways that involve various internal degrees of freedom and determining a correct

28



15 20 25 30 35 40 45
COM distance (Å)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Fr
ee

 e
ne

rg
y 

(k
ca

l/m
ol

)

MSM
TRAM

Figure 2.10: PCCA metastable states of MSM-1D and TRAM-1D. The bound (blue) and
unbound (red) states are able to be clearly distinguished when using COM distances as the
only feature.

reaction coordinate may be highly challenging. Still, a desired MSM model should be able

to extract important binding properties using indirect reaction coordinates. We choose the

squared inverse COM distances as features for TRAM-1D-inv to examine how well it can

still capture the binding process and whether this less direct feature may introduce any in-

stability near the short-range binding distance, compared with the direct COM distances.

Remarkably, Fig. 2.11 shows that the free energy profile of TRAM-1D-inv is in near identical

agreement with the unbiased MSM, and the thermodynamic and kinetic properties are also

well-reproduced. Even though it is not a direct reaction coordinate of the binding path-

way, this type of feature can resolve the bound and unbound states. Error estimation was

performed using bootstrapping by sampling blocks of trajectories, but the error bars of the

PMFs in Figs. 2.10 and 2.11 are three orders of magnitudes smaller and, thus, too small to
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Figure 2.11: PCCA metastable sets generated from MSM and TRAM using 1/COM2 as the
feature. The bound (blue) and unbound (red) states are still able to be clearly distinguished
when using this indirect feature.

be visualized.

It is interesting to note that these one-dimensional models are able to faithfully recapit-

ulate the thermodynamics and kinetics just as well as the more computationally expensive

models, MSM-6D and TRAM-6D. This can be understood from the timescales of TICA

shown in Fig. 2.2, where the first timescale is predominately larger than the other timescales

by an order of magnitude. This suggests that the COM distance is the most crucial collective

variable for understanding the current system, even though some orientation and internal

motions are also present and should be important in order to fully understand the over-

all processes. Therefore, from these one-dimensional models, we conclude that the binding

pathway may be accurately described using only a few well-chosen collective variables, which

could prove to be extremely useful for MSMs of large protein complexes in which the binding
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pathway is not completely unambiguous. Future work may involve examining such MSMs by

employing features such as the dihedral angles of residues that are not explicitly related to

the COM distances or any other inherently intuitive distance criteria for the binding process.

High-Dimensional Biased Markov State Models: Sensitivity Analysis to Op-

timize the Construction

Since a major challenge in MD studies is to obtain enough sampling, we often end up with

undersampled unbiased data that has high statistical uncertainty. Earlier work involving

eigenvalue-based sampling have attempted to the improve accuracy of MSMs by starting

simulations from the states that present the most uncertainties in their eigenvalues or ki-

netics. While a few error analysis methods have been proposed in literature for use with

adaptive sampling [58], here we apply a simple sensitivity analysis in order to pinpoint the

discretized microstates of an MSM that contribute the most error. Then, the problematic

microstates are mapped back to their corresponding subset of features (i.e., COM distance

between the proteins) in order to add biased simulations for TRAM only where the addi-

tional windows will provide the most benefit. In this section, we will demonstrate that this

idea is rather straightforward and easy to implement.

The relationship between the sensitivity and the complex configuration is depicted in

Fig. 2.12. The highly sensitive microstates correspond to the bound states and the loosely-

bound intermediate states, which is expected since these states are the key players in the

binding process. We note that while this may seem readily apparent here for our CG system,

it may not be as straightforward for larger and more complex biomolecular systems that

have multiple different binding pathways. For such highly complicated cases, the sensitivity

analysis can be even more advantageous for pinpointing regions of undersampling.

To employ this sensitivity analysis approach, we first construct a traditional MSM. A
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local sensitivity matrix can be computed for each element from the transition matrix,

Sij =

(
∂f(T)

∂Tij

)
, (2.17)

where f(T) is the observable of interest, and T is the MSM transition matrix [54, 55]. In

the present case, the observable of interest is the equilibrium distribution of the states πi(T)

defined by the transition matrix of the MSM.
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Figure 2.12: The π global sensitivity as a function of the average COM of each MSM
microstate. Higher π sensitivities correspond to the microstates with shorter averaged COM
distances that belong to the bound or intermediate states.

A variance-based sensitivity analysis, also known as the Sobol method [56,85], was used

to obtain the global sensitivities as follows:

Sglobal =
∑
ijkl

Sji cov[Tij , Tkl]Skl, (2.18)
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where Sji and Skl are the local sensitivity matrix elements defined from Eq. (2.17), and

cov[Tij , Tkl] is the covariance of Tij and Tkl.

The local sensitivity matrices for each of the 100 stationary distribution elements are

plotted in Fig. 2.13. We can immediately see a trend where the same few microstates con-

tribute toward the most error in all of the observables. Fig. 2.14 shows the global sensitivity

of the stationary distribution observable, illustrating how the same several microstates have

significantly higher sensitivity. To have a better picture of microstate sensitivity in relation

to local sensitivity, Fig. 2.18 in the Appendix shows the element values of the sensitivity

matrix for several other observables of a preliminary MSM built from short MD trajectories

of 1 µs simulation time.

Fig. 2.15 compares the binding free energy, ∆Gb, from a six-dimensional traditional

MSM and a six-dimensional traditional TRAM over a range of simulation time lengths. The

MSM was constructed using the 25 µs aggregate MD simulations. The sensitivity analysis

identified 14 US windows out of 70 total windows to be the most important for addition

into TRAM, allowing for a much more computationally efficient estimation. Therefore, the

following inputs were used to perform reweighting with TRAM: (1) the 25 µs aggregate MD

simulations and (2) the US simulations of 200 ns per window with 14 windows biased along

a COM distance of 13 Å−26 Å. Bootstrapping was performed to estimate the observable

errors and to obtain the error bars in Fig. 2.15. The ∆Gb of the MSM fluctuates wildly when

we have shorter trajectories and only stabilizes when we have 4 µs of aggregate simulation

time. In contrast, TRAM starts to generate much more consistent results after only 1 µs

of simulation time. While the error bars are relatively large for both the MSM and TRAM

estimated with shorter trajectory blocks, which is also observed in general for MSMs of

full atomistic simulations [51], it is encouraging to observe that the average ∆Gb converges

considerably faster to the reference value for TRAM than for the MSM, and TRAM also

generally shows lower error. As shown in Fig. 2.15(b), TRAM converges to the reference
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Figure 2.13: Local sensitivity matrices computed for a few selected elements of the stationary
distribution. Elements 2, 28, 59, 67, 82, and 88 show the highest sensitivities, while the other
elements have relatively low sensitivities.
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Figure 2.14: Global sensitivity analysis of the stationary distribution.

value after 3.75 µs with an error of 18.6% whereas the MSM still has not fully converged

with an error of 23.1%. It is interesting to note that when less than 3 µs of MD simulation

time was used to build the MSM/TRAM, we observe very high error. This can be explained

due to the presence of absorbing states, of which TRAM is also susceptible. When such

an absorbing state is reached, the state cannot be left within the timescale of the short

simulation. Fig. 2.16 highlights this absorbing state case: for very short trajectories, we may

see little to no transition events to build a reasonable MSM. The properties calculated for

TRAM-6D in Table 2.3 is taken from the TRAM model built upon the full 25 µs of MD

simulations and 200 ns per window of US simulations.

These results show that the presented protocol combining the adaptive TRAM scheme

with the sensitivity analysis can further facilitate the construction of more accurate models

while reducing the computational cost by potentially orders of magnitudes. By helping

to achieve accurate statistical sampling while keeping the magnitude of the computational
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Figure 2.15: Comparison of MSM and TRAM in 6 dimensions. (a) Binding free energy
∆Gb from MSM and TRAM as a function of the MD simulation time. Blocks of trajectories
used in the estimation are taken from the 25 µs aggregate MD simulations. For TRAM,
the input also included the US trajectories of 200 ns per window with 14 windows biased
along a COM distance of 13 Å−26 Å. These 14 US windows were identified by the sensitivity
analysis to be the most important windows out of 70 total windows for addition into TRAM.
(b) Convergence of ∆Gb compared to the reference value from MSM-6D built using the full
25 µs of simulation time. After 3.75 µs, TRAM has converged with an error of 18.6% while
MSM has not with a relatively larger error of 23.1%.

effort under control, this focused TRAM approach should be especially advantageous in the

construction of MSMs for large biomolecular systems.

2.4 Conclusion

To obtain accurate thermodynamics and kinetic properties of large systems such as biomolecules

and protein complexes, MSMs are generally constructed and then judged on the basis of on

dynamical criteria. However, the overall construction process may become inefficient and

even ambiguous when the wide range of possibilities for the numerous methodological as-

pects of MSMs (featurization, discretization, lag-time) are further compounded by sampling

limitations.

In this work, we seek to illustrate the conditions under which MSMs may be able to

perform consistently by exploring how models constructed from different features and sim-
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Figure 2.16: MSMs built upon shorter simulations have high errors due to absorbing states.
Once the MSM enters the state, it cannot then leave. For each long independent trajectory
(blue), if we choose sample block frames of 500 ns or shorter, then it is highly likely that
we will observe absorbing states (yellow) or too few transitions between states to make an
accurate MSM.

ulations at different thermodynamic states are able to capture the binding process and

produce observables in good agreement with each other. While simulation data from an all-

atom model would yield more accurate and realistic information, full atomistic simulations

of large biosystems are highly demanding. In this work, we constructed the MSMs based on

the CG representation of the barnase-barstar protein complex, where the simplified nature

of the model allows for efficiently constructing and evaluating many different MSMs under

different conditions.

Taking advantage of the sensitivity analysis, we showed that one can pinpoint precisely

where to add these biased simulations with the help of TRAM in order to improve sampling

and reduce computational effort. For large protein complexes requiring extensive compu-

tations, the ability to incorporate a small set of well-chosen biased simulations in MSMs is

expected to be of tremendous value. The next step will be to implement the MSM-based
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strategy proposed here to process and analyze the results of an all-atom simulation of the

barstar-barnase complex with explicit solvent. Using similar features such as the Cα’s to

create a bottom-up CG model, the strategy is expected to impart a more accurate MSM

estimation at lower computational costs. This work is underway.

We conclude by noting that the MSMs in this work are quite robust and seem to be

invariant to the complexity of input data, even when the number of features is highly re-

duced. From our CG protein complex, the MSMs are able to resolve the binding process

very well. Notably, the stripping the features down to one dimension, as discussed in Sec-

tion 2.3.2, does not seem to affect the MSM, and the observables remain in agreement to

those from higher dimensional MSMs. This could prove to be especially applicable for large

proteins, of which we could build CG designs and construct their MSMs from a minimal set

of features. Given the success of CG modeling for biomolecules [86–88], this work serves as

a stepping stone for introducing MSM analysis to more rigorously-designed reduced models

of interest in order to not only accurately but also efficiently reproduce dynamics. Future

work includes qualitatively recapitulating the thermodynamic and kinetic information from

the all-atomistic barnase-barstar complex, with a special focus on improving the description

of the dissociation process through TRAM. For other more complicated protein-protein in-

teractions, Hamiltonian replica exchange molecular dynamics (H-REMD) [89] may be useful

to circumvent sampling issues and aid in the efficiency of TRAM [90].

One end goal of computational biochemistry is to provide accurate free energies that

are comparable with the experimental observables, with errors in the order of kBT . While

results are certainly limited by force field accuracy, sampling remains problematic due to

the enormous computational costs. The strategies presented here can provide insight for

the design of more effective all-atom computations to help overcome sampling challenges,

progressively moving toward quantitatively reliable computational predictions.
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2.5 Appendix

This Appendix section contains supplementary information that are relevant to the results

and discussions presented Chapter 2.

Table 2.4: Relaxation times calculated for different bound cutoff distances.
rcut (Å) τ1 (ns) τ2
25 25.7 158.6
26 26.0 159.2
27 26.1 159.2
28 26.1 159.3
29 26.1 159.4
30 26.0 159.2
31 25.8 158.8
32 25.5 158.5
33 25.2 157.6
34 24.9 156.9
35 24.7 155.9
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Figure 2.17: The free energy histogram in the TICA space. The relationship between the
four slowest independent components (IC) are shown. IC 1 is the slowest degree of freedom
and corresponds to the COM distance between the two proteins in the complex. IC 2, 3,
and 4 represent the orientation angles between the proteins.
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Figure 2.18: Values of the local sensitivity matrix elements for the stationary distribution,
eigenvalue, MSM timescale, MFPToff , and MFPTon.
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CHAPTER 3

COMMITTOR-CONSISTENT VARIATIONAL STRING

METHOD

The material from this chapter is adapted from the following manuscript submitted for peer

review publication: Z. He, C. Chipot, B. Roux, Committor-Consistent Variational String

Method.

3.1 Introduction

One of the major challenges in computational studies of biomolecular systems is the char-

acterization of slow conformational transitions between metastable states. This is also

an important objective of high biological significance. To understand how these complex

“biomolecular machines” work, one must be able to visualize the manner in which they move

and change their shape atom-by-atom as a function of time during the biological process.

Although static structural information has been rapidly accumulating, in databases [91],

there is considerably less data about protein motions. Knowledge of a transition pathway

makes it possible to identify and test experimentally transient structures that play key roles

near transition states [92–94]. Ultimately, advancing our knowledge of any complex confor-

mational transition is likely to require a combination of both experimental data together

with virtual pathways generated via computational approaches.

A wide range of computational methods and strategies have been developed to treat slow

transitions in complex molecular systems [19,20,33,36,37,95–105] Considering a prototypical

system with two metastable states A and B, an important concept is the committor probabil-

ity that a trajectory initiated at some configuration will ultimately reach the state B before

ever reaching state A, which is thought to represent an optimal one-dimensional reaction

coordinate (RC) representing the progress of the slow A ↔ B transitions [24, 31, 106–109].
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Useful strategies to identify the slowest degrees of freedom and potentially discover the RC

from a set of user-defined collective variables z (CVs) are the time-lagged independent com-

ponent analysis (TICA) [49, 110, 111] of the spectral gap optimization of order parameters

(SGOOP) [110,111]. Increasingly, machine learning (ML) and neural networks (NN) method-

ologies provide a powerful route to enable the discovery of complex RCs that are nonlinear

functions of the CVs [112–115]. This progress notwithstanding, the lack of sampling can

undermine the ability of ML methodologies to correctly learn arbitrarily complex RCs from

high-dimensional MD data [116, 117]. Inspired by the string method, a powerful and yet

simple way to circumvent this issue and incorporate nonlinearity is to represent the RC as

a one-dimensional curve, or chain-of-states, embedded in the high-dimensional space of the

CVs [36, 37, 101]. According to transition path theory (TPT), the “reaction tube” defined

by the string is expected to support most of the reactive probability current governing the

long time relaxation from A to B, and this current is largely determined by the variations

in the committor [24]. However, present algorithms to determine the string either seek to

find the minimum free energy path (MFEP) [36] or a path following the local probability

current determined from local mean drifts [30, 37]. While useful in their own rights, these

constructs do not directly provide information about the committor probability, and hence,

the reactive probability current. Our goal here is to address this issue by introducing a novel

algorithm to variationally determine an optimal “committor-consistent” curvilinear string

transition pathway in the space of the CVs.

3.2 Theoretical Development

3.2.1 Effective Dynamical Propagator

To reduce the complexity of the problem, one typically seeks to determine the optimal path-

way within the subspace of reduced dimension spanned by a subset of collective variables
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(CVs), z̃(x) = (z̃1(x), . . . , z̃N (x)), i.e., a vector-valued function that maps every configu-

ration x of the system on a set of values z̃(x). In this context, the string represents the

pathway linking the states A and B as a discrete “chain of state”, i.e., a collection of M

images located at the positions {z1, . . . , zM} in the subspace of the CVs. To characterize

the string pathway, the long-time dynamics of the system within the subspace of the CVs is

critical. The probability density of the system at time t is expressed as ρ(z; t). The forward

propagation step (z → z′) for the probability density from the time t to the time t+ τ is,

ρ(z′; t+ τ) =

∫
dz Pτ (z′|z) ρ(z; t). (3.1)

where Pτ (z′|z) is the propagator (also called transfer operator). The dynamics within the

reduced subspace of the CVs is assumed to be Markovian with a finite lag-time τ , and that

Pτ obeys the Chapman-Kolmogorov equation, ρ(t + nτ) = Pnτ · ρ(t), with Pnτ = (Pτ )n.

The system is also assumed to be in equilibrium and that detailed balance is satisfied,

Pτ (z′|z) ρeq(z) = Pτ (z|z′) ρeq(z′). Under these conditions, the effective propagator Pτ (z′|z)

yields a self-consistent representation of the dynamics of the system within this subspace

(closure of the dynamical propagation).

3.2.2 Committor Probabilities for Two Metastable States

Assuming two metastable states A and B, the forward committor q(z) is the sum of the

probability over all paths starting at z that ultimately reach the state B before ever reaching

the state A. The probability of each of these paths is expressed as a product of discrete

propagation steps Pnτ · · ·Pnτ with lag-time τ , under the restriction that the intermediate

states resulting from all these steps are /∈ A,B. Summing over all possible paths, it follows

44



that q(z) can be written as,

q(z) =

∫
dz′ q(z′)Pτ (z′|z), (3.2)

with the constraints q(z) = 0 if z ∈ A, and q(z) = 1 if z ∈ B, see Eq. (3.18) for details. By

construction, 0 ≤ q(z) ≤ 1. While the equations for the committor probabilities involve only

the elementary propagator. Pτ (z′|z) for the lag-time τ , the fundamental validity of these

equations is predicated upon the necessity to satisfy Markovity of the dynamics as expressed

by the Chapman-Kolmogorov equation, Pnτ ≡ (Pτ )n.

3.2.3 Net Forward Flux from Reactive Pathways

One can express the net forward reactive flux from A to B as [24,26,30,32,107,118]

JAB = =
1

2τ

∫
dz

∫
dz′
(
q(z′) − q(z)

)2Pτ (z′|z) ρeq(z). (3.3)

See Eq. (3.28) for details. Equivalently, JAB can also be expressed as a time-correlation

function,

JAB =
1

2τ

〈(
q(τ) − q(0)

)2〉
=

1

τ

(〈
q(0)q(0)

〉
−
〈
q(τ)q(0)

〉)
. (3.4)

In the following sections, we refer to ⟨q(0)q(0)⟩ − ⟨q(τ)q(0)⟩ = C(τ) as the the commit-

tor time-correlation function. While q(z) is a probability, the committor time-correlation

function in Eq. (3.4) can be understood by recalling that the set of collective variables is a

vector-valued function that maps every microscopic configuration x(t) of the system onto a

set of values z̃[x(t)] along a dynamical trajectory. Assuming that the function q(z) is known,

we write q(z̃[x(t)]) as q(t) for the sake of simplicity.

45



3.2.4 Basis Set Expansion of the Committor

The quadratic expression for the reactive flux JAB from Eqs. (3.3), or equivalently Eq. (3.4),

can serve as a robust variational principle to optimize a trial committor q(z′). Minimizing

the quantity JAB with respect to a trial function q(z), δJAB/δq = 0 recovers Eq. (3.2) that

formally defines the committor probability. Minimization of the steady-state flux JAB de-

fined by Eq. (3.4) for a trial function q with the constraints q(z) = 0 if z ∈ A, and q(z) = 1

if z ∈ B yields the correct committor q(z), defined by Eq. (3.2). See Eq. (3.29) for futher

details. We seek to express the trial function q(z) in terms of a basis set expansion, which

has shown success in the estimation of committors in literature [28, 29]. However, the con-

struction of the trial function requires special care to handle the constraints imposed by the

boundary states. For our set of basis functions fi(z), we choose Voronoi cells supported by

a set of M centroids corresponding to the images of a string connecting boundary states A

and state B. We write the committor as

q(z̃(x)) = hA(z̃(x)) qA + hI(z̃(x))
( M∑
i=1

bi fi(z̃(x))
)

+hB(z̃(x)) qB , (3.5)

where qA = 0 and qB = 1, and hA, hB , and hI are indicator functions correspondingly equal

to 1 when the system is in the A, B, or the intermediate region, and zero otherwise. By

construction, hA + hI + hB = 1, and all cross products of indicator functions are identically

zero (hAhI = hAhB = hIhB = 0) because there is no overlap between the 3 different regions.

Using the trial function in Eq. (3.5) we can express the committor time-correlation function
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as,

⟨q(τ) q(0)⟩ =
〈(
hI(τ)

( M∑
i=1

bi fi(τ)
)

+ hB(τ)
)

(
hI(0)

( M∑
j=1

bj fj(0)
)

+ hB(0)
)
.
〉

(3.6)

The committor time-correlation function be expanded as,

C(τ) =
1

2
bt
(
D(0) −D(τ)

)
b +

(
g(0) − g(τ)

)
· b

+⟨hB(0)hB(0)⟩ + ⟨hB(τ)hB(0)⟩, (3.7)

where

Dij(τ) = ⟨hI(0)hI(τ) fi(0) fj(τ)⟩

+⟨hI(0)hI(τ) fj(0) fi(τ)⟩, (3.8)

and

gi(τ) = ⟨hI(τ)hB(0) fi(τ)⟩ + ⟨hI(0)hB(τ) fi(0)⟩. (3.9)

Then, taking the derivative with respect to the basis set coefficients yields the linear system

of equations, we obtain

(
D(0) −D(τ)

)
b +

(
g(0) − g(τ)

)
= 0 (3.10)

with the simple solution,

b = −
(
D(0) −D(τ)

)−1(
g(0) − g(τ)

)
. (3.11)
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Substituting the M coefficients {b1} determined from Eq. (3.11) into Eq. (3.7) yield the

optimized committor time-correlation function C(τ) for a given basis set. Because of the

indicator functions hI(0) and hI(τ) in D, the basis functions must be chosen such that

they either fully or at least partially reside in the intermediate region to avoid singularities

with the matrix inversion. Eq. (3.11) is a central result of this analysis and enables the

optimization of a committor-consistent string pathway.

3.2.5 Global Optimization of the Committor-Consistent String

Using the variational principle with the committor time-correlation function, C(τ) it is pos-

sible to optimize the position of the M images of a string in a committor-consistent man-

ner. Adopting a Voronoi basis set expansion, C(τ) depends on the M basis set coefficients

{b1, . . . , bM}, and depends also–in a non-linear fashion–on the position of the M centroids

{z1, . . . , zM}. Thus, we have the correlation function C(τ ; {b1, . . . , bM ; z1, . . . , zM}). To

optimize the string according to the variational principle, we must minimize the committor

time-correlation function with respect to the position of the M images. To this end, we

have adopted an iterative Monte Carlo procedure, by which we first determine the basis set

coefficient via Eq. (3.11), and then introduce random changes in the position of the images

that are accepted or rejected on the basis of C(τ ; {b1, . . . , bM ; z1, . . . , zM}). To achieve a

complete optimization of the pathway and obtain a committor-consistent string, these two

operations must be repeated iteratively until convergence, i.e., until one cannot further mini-

mize C(τ ; {b1, . . . , bM ; z1, . . . , zM}). The optimization process can be initiated with a string

constructed either from the mean force [36], or the mean drift calculated from swarms-of-

trajectories [37]. Further analysis indicates that the resulting pathway is a 1D line going

from A to B that follows the committor gradient ∇q(z) the space of the CVs z.
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3.2.6 Equilibrium Average and Enhanced Sampling

The time-correlation function C(τ) should be averaged over equilibrium initial conditions. In

practice, it is likely that enhanced sampling techniques would be necessary to have an accu-

rate result in the presence of large free energy barriers. An effective strategy to improve the

conformational sampling relevant to a slow A-B transition is to introduce a biasing potential

along a progress path collective variable (PCV) s̃[z] function, expressed as a differentiable

function of the CVs z [101, 119, 120]. Once this enhanced sampling along s is achieved, we

can generate unbiased trajectories initiated from specific regions at t = 0 according to the

value of s. The unbiased time-correlation function C(τ) can then be expressed as,

C(τ) =

∫ 1

0
ds ρeq(s) ⟨q(τ) q(0)⟩(s), (3.12)

where ⟨q(τ)q(0)⟩(s) is the time-correlation function calculated from an unbiased trajectory

initiated with s̃[z(t)] = s at t = 0, and ρeq is the equilibrium probability starting of starting

at s. See Eqs. (3.40) and (3.41) for details.

3.3 Results and Discussion

3.3.1 Illustration with One-Dimensional Double-Well Potential

We first illustrate the variational framework in the case of a simple one-dimensional double

well. A simple set of discrete one-hot indicator functions was used.

The widths of the one-hot indicators were automatically assumed by even spacing across

the intermediate region. The result in Figure 3.1 shows that the exact committor is essentially

reproduced by solving Eq. (3.11) for the basis functions. An example with Gaussian functions

is given in Supp Info (Figure 3.7) to illustrate how basis set and hyperparameter choices affect

committor probability.
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Figure 3.1: Illustration of a one-dimensional double well using using ten one-hot indicator
functions and the resulting committor probability. The boundaries near the well minima
where q = 0 or 1 were defined to be within 1 kBT of the well depth, or at x = −5.31 and
x = 5.31. The black dashed line is the exact committor calculated numerically from the
double well potential.

3.3.2 Illustration with Two-Dimensional Potential

We now illustrate the usefulness of the proposed framework in finding a string that follows

the dominant reaction pathway in a multi-dimensional space. As a prototypical two-state

system, we used the two-dimensional (2D) potential shown in Figure 3.2 that was previously

studied by Berezhkovskii and Szabo to examine the effect of anisotropic diffusion on the

reaction rate [106]. This 2D potential, which we will refer to as the 2D-BS potential, was

previously used by Tiwary and Berne to illustrate the SGOOP method [121] and by Roux

to illustrate the committor variational principle [30]. Here, the string is assumed to be a

straight line with one-hot indicator functions evenly spacing across the intermediate region.

The amplitude of the basis set coefficients is determined by solving Eq. (3.11).

To demonstrate the effect of anisotropic diffusion, we considered three conditions: δ = 0.1,

δ = 1, and δ = 10, where δ = Dy/Dx. In each case, a different optimal reaction direction

about the saddle region was discovered (depicted by the dashed lines in Figure 3.2, top left).

For analysis and computation of the committors, a lag time τ of 1 time step was selected.
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The boundary conditions for where q = 0 or 1 were defined by ellipses at the well minima

such that the trajectory spends approximately 50% of the time within the ellipses and the

other 50% of the time outside of the region

𝛿 = 0.1

𝛿 = 10

𝛿 = 1

C

A B

𝛿 = 0.1 𝛿 = 1 𝛿 = 10

Figure 3.2: Berezhkovskii-Szabo potential and correlation functions. (A) The 2D-BS po-
tential surface with dashed lines showing the angle of the optimal reaction pathway for the
diffusion cases obtained using a basis set of 9 Voronoi in the intermediate region: θ = 6◦ for
δ = 10, θ = 28◦ for δ = 1, and θ = 73◦ for δ = 0.1. (B) Voronoi tesselation of the straight
pathway for δ = 1. The Voronoi cells are colored by the value of the committor, sequentially
increasing from q = 0 (blue, bottom left) to q = 0 (white, middle region) to q = 1 (red,
top right). (C) Dependence of the time-correlation function on the angle θ for δ = 10 (left),
δ = 1 (middle), δ = 0.1 (right). The minimum of the correlation function of each diffusion
case is indicated by the blue dot and taken to be the angle of the optimal reaction pathway
at the saddle point.

For the sake of simplicity, we first consider a straight reaction pathway for the 2D-BS

potential, we optimize the angle of the path. As the angle is varied from 0 to 90◦ with respect

to the x-axis, the committor-correlation function is computed by Eq. (3.7). The minimum
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correlation function value is taken to be the best angle for the reaction pathway through the

saddle point. Assuming a Voronoi tesselation of the 2D space based on the straight pathway,

the estimated committor for δ = 1 is shown in Figure 3.2 (top right).

The optimized curvilinear strings for the 3 diffusion cases are shown in Figure 3.3. The

positions of the images of the string were optimized by variationally minimizing the com-

mittor correlation function using Monte Carlo sampling, solving Eq. (3.11) and evaluating

Eq. (3.7) at every iteration. Starting from the string shown by the black curve, a box of size

0.05 × 0.05 was used to sample around each image position. Here, we refer to one Monte

Carlo iteration cycle as moving and then computing the committor-correlation function for

every image on the string for up to 1000 moves. Once a move is accepted for a new image

position that results in a lower committor-correlation function value, then the Monte Carlo

sampling for that image stops and proceeds to the next image. If after 1000 moves none were

accepted, then that image in the iteration cycle is assumed to be converged and we proceed

to sample for the next image. For δ = 0.1, 1, and 10, the Monte Carlo procedure required

56, 25, and 42 iterations, respectively, to reach convergence. Notably, we observe that the

curvilinear string crosses the transition state region differently depending on the parameter

δ. The minimum free energy path (MFEP) is shown in black. This path is valid only in the

case of isotropic diffusion with δ = 1. In the other cases, the committor-consistent optimized

string departs from the MFEP.

The string method aims to determine a 1D curve in the subspace of the collective vari-

ables, z that links state A and B. However, what ought to be the most relevant curve that

one should seek to determine is not immediately clear. An analysis of the diffusional motion

in the 2D-BS potential is helpful to address this question. Formally, different string pathways

can be defined assuming that the local tangent of the curve follows a specific vector at z.

We consider four possibilities for the vector used to define the tangent of the string. First,

the tangent to the string may follow the mean force (the gradient of the PMF), −∇W (z).
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A B C

Figure 3.3: String obtained by variationally minimizing the correlation function with Monte
Carlo sampling and the resulting committor probability for three diffusion conditions: (A)
for δ = 0.1, (B) for δ = 1, and (C) for δ = 10. For all three cases, optimization was performed
by starting from the MFEP string shown by the black curve; a box of size 0.05 × 0.05 was
used to sample around each image position in the 2D plane. One Monte Carlo iteration cycle
comprises moving the image, and then computing the committor-correlation function. Once
a move is accepted for a new image position that results in a lower committor-correlation
function value, then the Monte Carlo sampling for that image stops and proceeds to the
next image. If after 1000 moves none were accepted, then that image in the iteration cycle
is assumed to be converged and we proceed to sample for the next image. For δ = 0.1, 1,
and 10, the Monte Carlo procedure required 56, 25, and 42 iterations, respectively, to reach
convergence.

This prescription generates the MFEP [36]. Alternatively, the tangent to the string may

follow the mean drift from swarms-of-trajectories, [37], In the string method with swarms-

of-trajectories the mean displacement is [30], ⟨∆z(τ)⟩z ≈ −D∇W (z), where the diffusion

tensor is, D = ⟨∆z(τ) : ∆z(0)⟩/2τ . A third prescription is if the tangent follows the reactive

flux density JAB(z) = D∇q(z) [39]. Finally, the tangent of the curve many simply follow

the gradient of the committor ∇q(z).

It is of interest to be able to relate these different directions to the possible eigenvectors

that can be defined at the saddle point of the 2D-BS potential. Let [H]ij ≡ Hij be the second-

derivative (Hessian) matrix at the saddle point. The two principal axis of the potential at

the saddle point are determined from the eigenvalue problem,

λv = Hv, (3.13)
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(a)
A B C

Figure 3.4: Comparison of selected eigenvectors computed from the diffusion matrix and
Hessian. (A) δ = 0.1. (B) δ = 1. (C) δ = 10. For each diffusion condition, we show the
directions of the principal component of the Hessian matrix V (green), the overall reactive
flux JAB (purple), the mean drift z (blue), and ∇q (red).

where λ is the eigenvalue. One can also define the tangent of a string that would be directed

along the mean drift of a swarms-of-trajectory. The drift ∆z = τ DFkBT where F is the

force. Assuming that the system is slightly displaced from the saddle point, by ∆z, then

we have F = −H∆z. It follows that, in the swarms-of-trajectory string, the tangent of the

path is defined by the eigenvalue problem,

µ∆z = DH∆z, (3.14)

where µ is the eigenvalue. Finally, the gradient of the committor is defined by the eigenvalue

problem,

η e = HDe, (3.15)

where η is the eigenvalue. In the case of anisotropic diffusion, we can see that the eigen-

vectors of the matrices H, DH, and HD will differ. Fig. 3.4 illustrates the eigenvectors

computed from D and H. The selected eigenvectors shown correspond to meaningful pro-
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cesses: v points in the overall direction of the slow process, ∇q points in the direction

of the committor-consistent optimized string, whereas ∆z and JAB both point along the

isocommittor surface. While different constructs can provide useful information about the

overall mechanism of a conformation transition pathway, they do not all provide a mean-

ingful reaction coordinates. For instance, Berezhkovskii and Szabo showed that in the case

of a multidimensional activated process controlled by diffusion, using a one-dimensional co-

ordinate parallel to the gradient of the committor at the saddle point, ∇q(z†), yields a

result that is consistent with the multidimensional Kramers-Langer theory [106]. Projection

onto any other one-dimensional coordinates yields an incorrect result. Furthermore, it was

shown recently that ∇q(z†) indeed represents the best choice to determine the direction

of an effective one-dimensional reaction coordinate [31]. Although such formal results are

informative, they cannot be trivially translated into a practical algorithm to determine a

transition pathway, as the committor is itself a complicated probability requiring in prin-

ciple one to compile the outcome of multiple shooting trajectories initiated from different

positions. Ultimately, optimizing a curvilinear path according to the committor variational

principle yields the most effective tool to represent the slow transition. See Chapter 3.5.8 of

the Appendix for further details.

3.3.3 Alanine Dipeptide and Enhanced Sampling

The simulation used for the study of the 2D-BS potential was sufficiently long to provide

an equilibrium sampling. However, this may not always be feasible due to the long-lived

timescales of many systems of interest and compounded by the large computational overhead

in order to simulate the rare events. Here we apply the committor-consistent string method to

the N–acetyl–N–methyl–L–alanylamide molecule, commonly known as the alanine dipeptide

(or dialanine), to study the conformational transition between C7eq and C7ax in vacuum at

room temperature.
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Figure 3.5: Variational string method implemented for the dialanine. The initial string
(black) consists of straight paths connecting the local minima while the final string (red)
is obtained by variationally minimizing the committor-correlation function. The committor
probability of this final string (red) increases from 0 to 1 with a steep curve at the transition
barrier. The position of the images was optimized by minimizing the committor time-
correlation function using the iterative Monte Carlo procedure with random moves over a
box 1.0◦×1.0◦. The Monte Carlo optimized string and q is compared with results from PCV
using a string following the mean force (blue) and string method with swarms of trajectories
(gray).
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To initiate the pathway optimization, enhanced sampling was performed with an adaptive

biasing force acting along an initial string, used to define the progress collective variable

(PCV) s [101]. Two different strings were considered to define the PCV in the ϕ − ψ

plane: the MFEP from a 5 µs unbiased trajectory and the mean drifts from swarms-of-

trajectories [37]. Nevertheless, these two strings are fairly similar qualitatively, and also

yield similar values of ∆G (2.3 kcal/mol for the black string and 1.9 kcal/mol for the red

string shown in Appendix Fig. 3.12). Then, defining the variable s between the strings

from the above two methods, a reaction tube of starting points was chosen from the biased

trajectories to run additional unbiased simulations for the computation of q (Appendix Fig.

3.13). The optimized string after 20 iterations is shown in Fig. 3.5.

Because of the isotropic nature of ϕ and ψ dihedral angles, the committor-consistent

string remained close to the initial MFEP string. The committor q(z) calculated along

the optimized string from Eqs. (3.7) and (3.11) is very similar to that calculated from the

potential of mean force along the PCV. In particular, the halfway crossing at q(z) = 0.5

agrees relatively well, although with a somewhat steeper slope. Compared to the PCV by

the string method with swarms-of-trajectories, the top of the free energy barrier is slightly

shifted, which is expected since the initial strings were different.

3.3.4 Coarse-Grained Model of Barstar-Barnase Binding

We have implemented the committor-consistent string method for the binding of the barstar-

barnase complex. The coarse-grained (CG) model is the same as in a previous study of the

time-dependent kinetic aspects of protein–protein association and dissociation based on the

framework of Markov state models (MSM) [122]. Briefly, the CG representation maps each

amino acid residue as a single bead with its mass and position corresponding to the Cα

carbon atom. Attractive Lennard-Jones 6-12 potentials are used to represent four pair-wise

contacts of the native complex to simulate the protein-protein association. Using a long
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Figure 3.6: Variational string method implemented for the barnase-barstar complex. Left:
The initial string (black) consists of straight paths connecting the local minima while the
final string (red) is obtained by variationally minimizing the committor-correlation function.
Right: The committor probability of the string increases from 0 to 1 relatively smoothly.

Langevin dynamics simulation generated previously [122], the string was optimized within a

subspace of two order parameters, namely, the center-of-mass distance and the root-mean-

square deviation (RMSD) of the contact residues. The optimization was initiated by starting

from a straight path is shown in Fig. 3.6. Monte Carlo with random moves over the two order

parameters (0.05 × 0.05) was carried out for a total of 80 iterations until convergence. Table

3.1 in the Appendix gives the rates of association and dissociation computed for different lag

time τ . The rate constants kon and koff estimated from the steady-state reactive flux with the

committor-consistent string at a lag time τ of 15 ns are 2.41×1013Å3s−1 and 3.47×107s−1,

respectively, which are close to the rates of 2.31 × 1013Å3s−1 and 2.70 × 107s−1 from the

MSM and Perron-cluster cluster analysis (PCCA) analysis with the six order parameters at

the optimal MSM lag time of 12 ns [122]. The kon and koff values here are also close the

MSM rates of 2.36× 1013Å3s−1 and 2.74× 107s−1, respectively, with two order parameters

at an optimal lag time of 12 ns.
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3.4 Conclusion

An extension of the string method that produces an optimal reaction pathway following

the gradient of the committor by variationally minimizing a committor time-correlation

function was proposed. By representing the RC as a 1D curvilinear path embedded in the

space of the CVs, the string provides a natural framework that simultaneously reduces the

high dimensionality of the problem while retaining nonlinearity. By virtue of the Voronoi

tessellation, the tangent of the optimized path from the committor-consistent string method

follows the gradient of the committor ∇q. The committor probability is broadly viewed

as an ‘ideal’ RC [123]. Furthermore, transition path analysis of two-state systems showed

that the ideal 1D RC in a reduced subspace of coordinates is directed along the gradient of

the committor ∇q [31], a choice that is also consistent with the multidimensional Kramers-

Langer theory [106, 124]. This illustrates the clear advantage of a committor-consistent

string over a more conventional MFEP-based string following the local mean force [36]. The

images of the committor-consistent curvilinear string can be optimized by a Monte Carlo

annealing method. In this algorithm, the string images are moved randomly in the CVs

space and accepted or rejected based on the difference in likelihood. The present framework

bears some similarities with previous methods [100, 125–129]. It is closest in spirit with

the nonlinear RC analysis proposed by Bolhuis and coworkers whereby a string pathway is

optimized via a maximum likelihood criterion to model the committor data obtained from

a path sampling simulation [105]. It might be possible to combine the two approaches in a

unifying framework to determine an optimal committor-based pathway.

A natural future direction would be to extend the approach to higher dimensional spaces.

In this context, recent developments in ML techniques could help in choosing the best set

of CVs and optimizing the string in their multidimensional space [130–133]. Another pos-

sible future work for this approach will be systems with more than two metastable states.

Investigations in this direction would address the question as to whether we can predict the
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correct order of states through which the string should pass, and whether we can discover

more than one important reaction pathway.
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3.5 Appendix: Theoretical Development

This Appendix section contains supplementary information and derivations that are relevant

to the theory development of the committor-consistent variational string method presented

in Chapter 3.

3.5.1 Effective Dynamical Propagator

To reduce the complexity of the problem, one typically seeks to determine the optimal path-

way within the subspace of reduced dimension spanned by a subset of collective variables

(CVs), z̃(x) = (z̃1(x), . . . , z̃N (x)), i.e. a vector-valued function that maps every configu-

ration x of the system on a set of values z̃(x). In this context, the string represents the

pathway linking the states A and B as a discrete “chain of state”, i.e., a collection of M

images located at the positions {z1, . . . , zM} in the subspace of the CVs. To characterize

the string pathway, the long-time dynamics of the system within the subspace of the CVs is

critical. The probability density of the system at time t is expressed as ρ(z; t). The forward

propagation step (z → z′) for the probability density from the time t to the time t+ τ is,

ρ(z′; t+ τ) =

∫
dz Pτ (z′|z) ρ(z; t) (3.16)

It is assumed that the dynamics within the reduced subspace of the CVs is Markovian

with a finite lag-time τ , and that the propagator obeys the Chapman-Kolmogorov equation,

ρ(t+ nτ) = Pnτ · ρ(t), with Pnτ = (Pτ )n. It is assumed that the system is in equilibrium

and that we have microscopic detailed balance, Pτ (z′|z) ρeq(z) = Pτ (z|z′) ρeq(z′). Under

these conditions, the effective propagator Pτ (z′|z) yields a self-consistent representation of

the dynamics of the system within this subspace (closure of the dynamical propagation).

61



3.5.2 Committor Probabilities for Two Metastable States

Assuming two metastable states A and B, the forward committor q(z) is the sum of the

probability over all paths starting at z that ultimately reach the state B before ever reaching

the state A. The probability of each of these paths is expressed as a product of discrete

propagation steps Pnτ · · ·Pnτ with lag-time τ , under the restriction that the intermediate

states resulting from all these steps are /∈ A,B. It follows that q(z) is written explicitly as,

q(z) =

∫
∈B

dz′Pτ (z′|z) +

∫
/∈A,B

dz′
∫
∈B

dz′′Pτ (z′′|z′)Pτ (z′|z)

+

∫
/∈A,B

dz′
∫
/∈A,B

dz′′
∫
∈B

dz′′′Pτ (z′′′|z′′)Pτ (z′′|z′)Pτ (z′|z) + . . .

=

∫
∈B

dz′Pτ (z′|z) +

∫
/∈A,B

dz′
{∫

∈B
dz′′Pτ (z′′|z′) (3.17)

+

∫
/∈A,B

dz′′
∫
∈B

dz′′′Pτ (z′′′|z′′)Pτ (z′′|z′) + . . .

}
Pτ (z′|z)

= 0 +

∫
∈B

dz′Pτ (z′|z) +

∫
/∈A,B

dz′
{
q(z′)

}
Pτ (z′|z)

=

∫
∈A

dz′
{

0
}

+

∫
∈B

dz′
{

1
}
Pτ (z′|z) +

∫
/∈A,B

dz′
{
q(z′)

}
Pτ (z′|z)

=

∫
∈A

dz′ q(z′) +

∫
∈B

dz′ q(z′)Pτ (z′|z) +

∫
/∈A,B

dz′ q(z′)Pτ (z′|z)

=

∫
dz′ q(z′)Pτ (z′|z) (3.18)

with the constraints q(z) = 0 if z ∈ A, and q(z) = 1 if z ∈ B. By construction, 0 ≤ q(z) ≤ 1.

While the equations for the committor probabilities involve only the elementary propagator

Pτ (z′|z) for the lag-time τ , the fundamental validity of these equations is predicated upon

the necessity to satisfy Markovity of the dynamics as expressed by the Chapman-Kolmogorov

equation, Pnτ ≡ (Pτ )n.
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3.5.3 Net Forward Flux from Reactive Pathways

We deliberately define the boundary states A and B, and we divide the subspace of CVs in

a region A′ that includes the state A and a region B′ that includes the state B. We can

express the net forward reactive flux the local transitions z → z′ by considering a trajectory

{z(t) of length T , [24, 26,30,32]

JAB = lim
T→∞

1

T

∫ T

0

∫
z∈A′

dz

∫
z′∈B′

dz′ 1z(t)∈R
δ(z′ − z(t+ τ)) δ(z− z(t))

τ

=

∫
z∈A′

dz

∫
z′∈B′

dz′
〈
jRAB(z′, z)

〉
(3.19)

where 1z(t)∈R = 1 if at time t, z(t) belongs to an AB reactive path, and 1z(t)∈R = 0

otherwise, and ⟨jRAB(z′, z)⟩ represent the mean net number of transition from z to z′ per

unit of time τ contributed by reactive trajectories. To construct ⟨jRAB(z′, z)⟩, we rely on

the committor probability defined in Eq. (3.18) that a trajectory started at z will go to B

before going to A, with the constraints q(z) = 0 when z ∈ A, and q(z) = 1 when z ∈ B.

The net reactive current ⟨jAB(z′, z)⟩ from z to z′ is obtained by summing over all reactive

trajectories that actually make a transition from A to B. To construct a reactive trajectory

that makes a transition from ‡ to ‡′, we have to consider the equilibrium probability to

be in state z, ρeq(z), the probability that the piece of trajectory reaching z came from A,

(1 − q(z)), and the probability that the piece of trajectory after leaving z′ will go on to to

B, q(z′). This yields q(z′)Pτ (z′|z) (1 − q(z)) ρeq(z). To obtain the net flux from z to z′, we

have to subtract the reverse reactive transition from z′ to z, by considering the equilibrium

probability to be in z′, ρeq(z′), the probability that the piece of trajectory reaching z′ came

from A, (1−q(z)), and the probability that the piece of trajectory after leaving z will lead to

B, q(z). This yields, q(z)Pτ (z|z′) (1 − q(z′)) ρeq(z′). The resulting net probability current
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of the reactive trajectories between z and z′ is thus,

〈
jRAB(z′, z)

〉
=

1

τ

[
q(z′)Pτ (z′|z)

(
1 − q(z)

)
ρeq(z) − q(z)Pτ (z|z′)

(
1 − q(z′)

)
ρeq(z′)

]

invoking microscopic detailed balance, we have,

〈
jRAB(z′, z)

〉
τ = q(z′)Pτ (z′|z)

(
1 − q(z)

)
ρeq(z) − q(z)Pτ (z′|z)

(
1 − q(z′)

)
ρeq(z)

= q(z′)Pτ (z′|z) ρeq(z) − q(z′)Pτ (z′|z) q(z) ρeq(z)

+q(z)Pτ (z′|z) q(z′) ρeq(z) − q(z)Pτ (z′|z) ρeq(z)

= q(z′)Pτ (z′|z) ρeq(z) − q(z′)Pτ (z′|z) q(z) ρeq(z)

+q(z′)Pτ (z′|z) q(z) ρeq(z) − Pτ (z′|z) q(z) ρeq(z)

= q(z′)Pτ (z′|z) ρeq(z) − Pτ (z′|z) q(z) ρeq(z)

=
(
q(z′) − q(z)

)
Pτ (z′|z), ρeq(z) (3.20)

Hence,

JAB =
1

τ

∫
z∈A′

dz

∫
z′∈B′

dz′
(
q(z′) − q(z)

)
Pτ (z′|z) ρeq(z) (3.21)

Equivalently, Eq. (3.21) can also be derived by considering the net unidirectional reactive

flux from A to B under non-equilibrium steady-state conditions, [32]

ρss(z
′) =

∫
dzPτ (z′|z) ρss(z) (3.22)

with ρss(z) = ρeq(z) if z ∈ A and ρss(z) = 0 if z ∈ B. It can be verified by direct substitution

in Eq. (3.22) that the steady-state density can be expressed as, ρss(z) = ρeq(z) (1 − q(z)),

where q(z) is the committor probability defined by Eq. (3.18) with the constraints q = 0 if
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z ∈ A, and q = 1 if z ∈ B,

ρeq(z′)
(
1 − q(z′)

)
=

∫
dzPτ (z′|z) ρeq(z)

(
1 − q(z)

)
ρeq(z′)

(
1 − q(z′)

)
= ρeq(z′) −

∫
dzPτ (z|z′) ρeq(z′) q(z)

q(z′) =

∫
dz q(z)Pτ (z|z′) (3.23)

where we used microscopic detailed balance.

3.5.4 Steady-State Flux Between the Two Metastable States

The steady-state flux from A to B can be expressed as the net transitions across a dividing

surface separating the two sides, recovering Eq. (3.21),

JAB =
1

τ

∫
z∈A′

dz

∫
z′∈B′

dz′
(
Pτ (z′|z) ρss(z) − Pτ (z|z′) ρss(z′)

)
=

1

τ

∫
z∈A′

dz

∫
z′∈B′

dz′
(
Pτ (z′|z) ρeq(z)

(
1 − q(z)

)
− Pτ (z|z′) ρeq(z′)

(
1 − q(z′)

))
=

1

τ

∫
z∈A′

dz

∫
z′∈B′

dz′
(
Pτ (z|z′) ρeq(z′) q(z′) − Pτ (z′|z) ρeq(z) q(z)

)
=

1

τ

∫
z∈A′

dz

∫
z′∈B′

dz′
(
q(z′) − q(z)

)
Pτ (z′|z) ρeq(z) (3.24)

which recovers Eq. (3.21). Because the steady-state flux JAB in Eq. (3.21) does not depend

on the position of the dividing surface defining the A′ and B′ regions, it is convenient to

choose a dividing surface corresponding to an isocommittor surface of q(z) at some arbitrary

value q∗. The flux from A to B can then be written as transitions from the point z with

committor q(z) < q∗, to the point z′ with committor q(z′) > q∗,

JAB(q∗) =
1

τ

∫
dz

∫
dz′ θ

(
q(z′) − q∗

)
θ
(
q∗ − q(z)

)
(
q(z′) − q(z)

)
Pτ (z′|z) ρeq(z) (3.25)
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However, one can also write,

JAB =

∫ 1

0
dq∗ JAB(q∗) (3.26)

because the steady-state flux JAB(q∗) does not actually depend on the specific value of q∗,

which can be demonstrated by showing that there is no accumulation of probability in the

region between the states A and B. [39] Carrying out the integration in the expression above

affects only the term,

∫ 1

0
dq∗ θ

(
q(z′) − q∗

)
θ
(
q∗ − q(z)

)
=

(
q(z′) − q(z)

)
θ
(
q(z′) − q(z)

)
(3.27)

yield the quadratic expression

JAB =
1

τ

∫
dz

∫
dz′ θ

(
q(z′) − q(z)

)(
q(z′) − q(z)

)2
Pτ (z′|z) ρeq(z)

=
1

2τ

∫
dz

∫
dz′
(
q(z′) − q(z)

)2
Pτ (z′|z) ρeq(z)

=
1

2τ

〈(
q(τ) − q(0)

)2〉
(3.28)

(the factor of 2 is needed when the restriction q(z′) > q(z) is removed). An integration

of the step-functions analogous to Eq. (3.27) was previously used by Krivov in a different

situation. [107] A similar steady-state flux expression, quadratic in the committor difference,

has also appeared in the context of discrete-state Markov models. [118]

3.5.5 Variational Principle and Committor

The quadratic expression for the reactive flux JAB from Eqs. (3.28) can serve as a robust

variational principle to optimize a trial committor q(z′). Minimizing the quantity JAB with

respect to the trial function q(z) yields,
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0 =
δJAB [q]

δq(z′′)

0 =
1

2τ

∫
dz

∫
dz′
(
q(z′) − q(z)

)
Pτ (z′|z) ρeq(z)

(
δ(z′ − z′′) − δ(z− z′′)

)
0 =

∫
dz
(
q(z′′) − q(z)

)
Pτ (z′′|z) ρeq(z) −

∫
dz′
(
q(z′) − q(z′′)

)
Pτ (z′|z′′) ρeq(z′′)

0 = 2 ρeq(z′′)
∫
dz
(
q(z′′) − q(z)

)
Pτ (z|z′′)

0 =

∫
dz
(
q(z′′) − q(z)

)
Pτ (z|z′′) (3.29)

which recovers by Eq. (3.18)

q(z′′) =

∫
dz q(z)Pτ (z|z′′) (3.30)

that formally defines the committor probability.

3.5.6 Committor Expressed in Terms of a Basis Set Expansion

Minimization of the steady-state flux JAB defined by Eq. (3.28) for a trial function q with

the constraints q(z) = 0 if z ∈ A, and q(z) = 1 if z ∈ B yields the correct committor

q(z), defined by Eq. (3.30). As with the spectral decomposition, we will seek to express

the trial function q(z) in terms of a basis set expansion. However, the construction of the

trial function requires special care to handle the constraints imposed by the boundary states.

Here, we write the committor as

q(z̃(x)) = hA(z̃(x)) qA + hI(z̃(x))
(∑

i

bi fi(z̃(x))
)

+ hB(z̃(x)) qB (3.31)

where qA = 0 and qB = 1, and hA, hB , and hI are indicator functions correspondingly equal

to 1 when the system in the boundary states A, and B or intermediate region, and zero
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otherwise. By construction, hA + hI + hB = 1, and all cross product of indicator functions

is identically zero (hAhI = hAhB = hIhB = 0) because there is no overlap between the 3

different regions. Using the trial function Eq. (3.31) with the time-correlation function,

⟨q(τ)q(0)⟩ =

〈(
hI(τ)

(∑
i

bi fi(τ)
)

+ hB(τ)

)(
hI(0)

(∑
j

bj fj(0)
)

+ hB(0)

)〉
=

∑
ij

bi bj ⟨hI(τ)hI(0) fi(τ) fj(0)⟩ +
∑
i

bi ⟨hI(τ)hB(0) fi(τ)⟩

+
∑
j

bj⟨hI(0)hB(τ) fj(0)⟩ + ⟨hB(τ)hB(0)⟩

⟨q(0)q(0)⟩ − ⟨q(τ)q(0)⟩ =
1

2
bt (D(0) −D(τ)) b +

(
g(0) − g(τ)

)
· b (3.32)

+
(
⟨hB(0)hB(0)⟩ − ⟨hB(0)hB(τ)⟩

)
(3.33)

where

Dij(τ) = ⟨hI(0)hI(τ) fi(0) fj(τ)⟩ + ⟨hI(0)hI(τ) fj(0) fi(τ)⟩ (3.34)

and

gi(τ) = ⟨hI(τ)hB(0) fi(τ)⟩ + ⟨hI(0)hB(τ) fi(0)⟩ (3.35)

Taking the derivative with respect to the basis set coefficients bi yields the linear system of

equations,

(
D(0) −D(τ)

)
b +

(
g(0) − g(τ)

)
= 0 (3.36)

with the simple solution,

b = −
(
D(0) −D(τ)

)−1(
g(0) − g(τ)

)
(3.37)
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3.5.7 Time-Correlation Functions and Enhanced Sampling

One possible effective strategy to improve the conformational sampling relevant to a slow A-

B transition is to introduce a biasing potential along a progress variable (PV) s, expressed as

a differentiable function of the CVs z. In principle, the one-dimensional free-energy profile,

or PMF, along s reflects the correct equilibrium propability of the configurations. It is

important to note that it is not necessary for the function s(z) to be a perfect reaction

coordinate to be useful in practice. As long as it reasonable links the two end-states and

passes through the kinetic bottleneck or saddle point along the transition pathway, the

function s(z) can serve as an effective progress variable to support an enhanced sampling

strategy based on biased simulations. In the context of the string method, one example

of such expressions has been suggested by Bran et al. [101] in terms of a weighted sum of

Gaussian functions centered on the M images along the string.

s̃[z] =

M∑
m=0

(m
M

)
e−λ(z−zm)2

M∑
m=0

e−λ(z−zm)2

(3.38)

and

ζ̃[z] = −1

λ
ln

M∑
m=0

e−λ(z−zm)2 (3.39)

Other forms have also been considered based on more complicated functional forms. [119,120]

If the images are ordered to meaningfully represent the progresss of the transition from A

to B, then the variable s(z;λ) will smoothly vary from 0 to 1. While the proposed PCV

provide a useful tool in simple cases of reduced dimensionality, an important limitation of

the functional form has been the fundamental reliance on the rank-ordering of the images

along the string, which needs to be known prior to calculating the progress variable s(z).

In all these methods, the images are ordered along the string, [0, 1, . . . ,m, . . . ,M ] in a suite
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that is meant to accurately represent the progress of the transition. However, if the images

are poorly ordered or scrambled, the PCVs is pathologically ill-defined. In practice, this

is exceedingly difficult to do for most complex cases. As a consequence, the naive image

ordering along the string is not likely to correctly represent the steady progress of the A to

B transition.

The numbering of images is a direct source of inaccuracies in the construction of the

PCV. [101] Essentially, the image index, m/M , is used as a surrogate indicator of the progress

of the transition along the string in Eq. (3.38). When the committor has been determined,

this issue is resolved by substituting (m/M) in Eq. (3.38) by q(zm), the actual value of the

committor in the mth Voronoy cell calculated from the basis set expansion. As the committor

progresses from with q = 0 to q = 1 along the transition, this procedure naturally order the

suite of images in their correct sequence. While s(z) represents the PCV, the ancillary

variable ζ(z) may be construed as the radius of a tube that embraces the string, [134] and

confines sampling in its vicinity. Both depend on λ, which serves as a smoothing parameter

that should be related to the inverse of the mean-square deviation between two consecutive

images. In principle, if M is very large and the density of centroid zm is very high, one may

want to carry out the enhanced sampling in the limit where λ is large, localizing the weighted

sum to the individual images and its committor q(zm). From this perspective, the function

s(z;λ) as defined by Eq. (3.38) is revealed as a simple interpolation scheme to construct

an approximation to the z=dependent committor function q(z) based on the discrete set

of values q(zm), with m = 0, . . . ,M . Other more sophisticated scheme may be considered,

although it is not necessary for the function s(z) to be a perfect reaction coordinate to

effectively support an enhanced sampling strategy based on biased simulations.

To use the enhanced sampling for calculating the correlation function, we use the config-

urations generated by the biased ABF simulation directly as initial conditions to initiated

an ensemble of unbiased trajectories. Because of the biasing ABF potential, those config-
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urations are uniformly distributed with respect to the order parameter s, so the unbiased

correlation function can be calculated as,

Cqq(τ) =

∫
dz

∫
dz′
(∫ 1

0
ds δ(s− s[z])

)
q(z′) q(z)Pτ (z′|z)ρeq(z)

=

∫ 1

0
ds

∫
dz

∫
dz′ δ(s− s[z]) q(z′) q(z)Pτ (z′|z)ρeq(z)

∫
dz δ(s− s[z]) ρeq(z)∫
dz δ(s− s[z])ρeq(z)

=

∫ 1

0
ds ρeq(s)

∫
dz
∫
dz′ δ(s− s[z]) q(z′) q(z)Pτ (z′|z)ρeq(z)∫

dz δ(s− s[z])ρeq(z)

=

∫ 1

0
ds ρeq(s) ⟨q(τ) q(0)⟩(s)

=
∑
k

(
e−w(sk)/kBT∑
k′ e−w(sk′)/kBT

)
⟨q(τ) q(0)⟩(sk) (3.40)

where the subscript sk means that the k-th unbiased trajectory is initiated with s̃[z(t)] = sk

at t = 0. In practice when computing Eq. (3.40), we only keep trajectory information at

time zero and time τ . In order to sufficiently cover the desired state space, this approach

would necessitate numerous unbiased trajectories, and, depending on the system studied,

may become impractical. To reduce computational effort and fully utilize all data from the

trajectories, we can compute an ensemble of time averages. Thus, the correlation function

would consist of the time average of each k-th unbiased trajectory at a time t and later time

t+ τ , while still taking into account the weight of the k-th starting condition

Cqq(τ) =
∑
k

(
e−w(sk)/kBT∑
k′ e−w(sk′)/kBT

)
⟨q(t+ τ) q(t)⟩(sk) (3.41)

3.5.8 Eigenvectors at saddle point

Following Berezhkovskii and Szabo [106], we represent the top of the barrier located at

z ≡ (x, y) = (0, 0) as a quadratic potential separating the states A and B, W/kBT = 1
2z

tHz,

where H is the Hessian (second-derivative matrix) at the saddle point. We are interested in
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determining the different possible principal axes originating from the top of the barrier that

are useful for monitoring the progress of the reaction. Those include: (1) the minimum free

energy path (MFEP) [36], (2) the gradient of the committor [31], (3) the reactive flux [24,106],

(4) and the mean drift from string method with swarms of trajectories [37].

The simplest case is the MFEP, which is independent of the diffusion matrix D and is

simply related to the unstable mode of the matrix H. To incorporate the effect of diffusive

dynamics, we define the set of right-eigenvectors fi as

λifi = (−DH) fi (3.42)

with λ1 > 0 for a single unstable mode growing in amplitude with time (all other λi are

negative and correspond to stable modes relaxing to zero with time). This eigenvector was

previously identified by Berezhkovskii and Szabo [106], as the unstable model f+ directed

along the reactive flux JAB . There is also the set of associated orthogonal left-eigenvectors

λie
t
i = eti (−DH) (3.43)

or equivalently λiei = (−HD)ei, as the matrices are symmetric with HtDt = HD. The

set of eigenvectors obeys the orthonormalization condition, δij = (eti · fj). The eigenvector

e1 was identified by by Berezhkovskii and Szabo [106], as the unstable model e+ directed

along the gradient of the committor ∇q(z). This result is confirmed by an independent

analysis based on a variational analysis of the committor time-correlation function [30]. If

may be further verified that JAB points in the direction of the vector f+ by considering

the reactive flux expressed as, JAB = D∇q(z) [24]. From this definition, we have that

JAB ∝ (De+) ∝ D(HDe+) ∝ (DH)De+ ∝ (DH)JAB . Because JAB ∝ (DH)JAB , JAB

is parallel to f+ as previously noted [106].

Finally, we consider the mean drift in the context of the string method with swarms of
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trajectories [37]. The Brownian Dynamics (BD) equation of motion is,

ż(t) = − 1

kBT
D∇W + ξ(t) (3.44)

where ξ(t) is a Gaussian random noise with time-correlation ⟨ξ(t) : ξ(0)⟩ = 2Dδ(t). Aver-

aging out the random noise from the equation of motion yields,

⟨ż(t)⟩ = (−DH) ⟨z(t)⟩ (3.45)

Assuming the initial condition z0, we can write the time-dependent solution ⟨z(t)⟩ as,

⟨z(t)⟩ =
∑
i

(eti · z0)eλitff i (3.46)

This provides the solution for the mean drift ⟨z(t)⟩ − z(0) = ⟨∆z(t)⟩ from a swarm of

stochastic BD trajectories [37]. In particular, once the stable modes have decayed after a

time t→ τ , the mean drift is dominated by the evolution of the unstable mode,

⟨∆z(τ)⟩ → (et+ · z0)eλ+τ f+ (3.47)

Thus, the mean drift from a swarm of trajectories in the neighborhood of the saddle point

follows the direction of the unstable mode f+, as does the reactive flux JAB .
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3.6 Appendix: Supplementary Figures

This Appendix section contains supplementary information relevant to the results presented

in Chapter 3.

Figure 3.7: Illustration of basis set choices and committors with a 1-dimensional double well. Right column
shows 10 one-hot indicator functions and the resulting committor. Left column shows 10 Gaussian functions
and the estimated the committor.
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To set up the committor-string method, we first define the boundary conditions for the

committor and Voronoi tessellation along the string.

Figure 3.8: Refinement from the initial string. (a) Initial string is obtained following the local mean force.
The purple shaded regions set the initial boundaries where q = 0 or 1. (b) Voronoi tessellation along the
initial string.
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A

B

Figure 3.9: String optimized by variationally minimizing the correlation function with Monte Carlo sam-
pling and the resulting committor probability for 3 diffusion conditions. (a) and (b) for δ = 0.1, (c) and
(d) for δ = 1, and (e) and (f) for δ = 10. For all cases, the initial string (black) follows the mean force of
the potential. The final optimized strings (red) were generated by following the gradient of the committor.
For comparison, also shown are the reaction coordinate paths (white dash) rotated at the best angle with
respect to the x-axis that minimizes the committor correlation function.
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A

B

Figure 3.10: Reactive probability current density and the gradient of the committor throughout the
potential. (a) ∇q(z) for δ = 0.1, 1, and 10 from left to right. (b) jAB(z) for δ = 0.1, 1, and 10.
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Figure 3.11: PMF of the alanine dipeptide in the ϕ, ϕ space from 5 microseconds of unbiased
Langevin simulation.
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Figure 3.12: The PCV free energy calculations from two different strings. 1) Minimizing
the local free energy of the ϕ − ψ PMF (black) and 2) the string method with swarms of
trajectories (red).
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Figure 3.13: Reaction tube of 4000 trajectories with starting points generated by adaptive
biasing force along the s. Blue dots are the starting positions of each trajectory, i.e., time
t = 0. Orange dots are the positions at a later t = 50 steps. The purple ellipsoids are the
boundary regions.
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A

B C

Figure 3.14: Fidelity check for the Boltzmann reweighting of the committor-correlation
function with a 1-dimensional double well. (A) Double well potential in 1D. Between x =
-11 and 11 at very small intervals of 0.005, many short unbiased trajectories were launched
from each of the starting points. (B) The committor-correlation function committor and (C)
the committor were computed by reweighting are shown in orange color. These results agree
with the results for 1d example from a single long unbiased trajectory plotted in black.
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Table 3.1: Comparison of the association and dissociation rates computed from MSM and
the committor-consistent string method

Model Lag time τ (ns) kon (×1013 Å3 s−1) koff (×107 s−1)
MSM-6D 12 2.31 2.73
MSM-2D 12 2.36 2.74
MSM-2D 15 2.20 2.53
String Method 0.1 12.63 18.24

0.2 10.7 15.46
0.3 9.75 14.08
0.4 9.14 13.2
0.5 8.66 12.51
1 7.31 10.56
2 6.07 8.77
5 4.38 6.32
7 3.73 5.39
7.5 3.6 5.2
9 3.27 4.72
10 3.09 4.46
12 2.77 4.0
15 2.41 3.47
20 1.97 2.85

1 The kon and koff from the MSM with Perron-cluster cluster analysis (PCCA) analysis
using a lag time τ of 12 ns with 6 order parameters were 2.31 × 1013Å3s−1 and
2.70 × 107s−1, respectively, as previously reported by He and Roux [122].
The kon and koff from the MSM/PCCA analysis with the same two order parameters
studied in this paper (RMSD and COM) are 2.36 × 1013Å3s−1 and 2.74 × 107s−1,
respectively, for a τ of 12 ns, and 2.20 × 1013Å3s−1 and 2.53 × 107s−1, respectively, for a τ
of 15 ns.
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CHAPTER 4

CONCLUDING REMARKS AND FUTURE OUTLOOK

Many of the critical transitions of interest in biomolecular systems take place on length-

scales and timescales that are far beyond what can be attained with simple brute-force MD

simulations. Consequently, in this dissertation, theoretical and computational strategies for

Markov state models (MSMs) and a committor-consistent variational string method were

developed and implemented to study dynamics more efficiently. In particular, a unifying

theme of this dissertation is in the unique concern of being able to fully take advantage of

biased simulations within these proposed frameworks.

In Chapter 2, MSMs were introduced as a powerful technique for the study of the natural

dynamics of complex systems exhibiting multiple metastable states. Especially, being able

to extract the kinetic and thermodynamic information from the MSMs and directly compare

with experimental data makes MSMs particularly advantageous. The robustness of this MSM

methodology was demonstrated by constructing and comparing various MSMs under different

input parameters and simulation methods. Then, a sensitivity analysis was introduced into

the MSM framework in order to pinpoint the microstates contributing the most error for the

strategic addition of biased simulations in key sampling regions. This strategy maximizes

the efficiency of constructing MSMs with biased simulations.

In Chapter 3, the main motivation of the study was the fact that, despite the vari-

ous methods currently available for finding the most probable reaction pathway to connect

metastable states, there still lacks a systematic approach stemmed fundamentally from the

perspective of the committor probability, which has shown to provide information about the

most kinetically optimal transition. Here, an extension of the string method was proposed

based on a variational principle applied to the gradient of the committor. This approach

allows the study of transitions between specific metastable states of interest and yields re-

action pathways that are fundamentally of kinetic significance. Notably, this novel string
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method is particularly useful for anisotropic systems, as demonstrated with the anisotropic

diffusive cases in the Berezhkovskii-Szabo potential. Furthermore, this proposed framework

was extended to allow the addition of biased simulations that are necessary in the study of

larger, more complex systems with molecular processes that happen on long timescales.

A natural future direction for the MSM project is to extend the sensitivity analysis

approach for biased MSMs to study all-atom proteins. For the case of the atomistic barstar-

barnase, this complex is extremely ”sticky” and spends a considerable amount of its lifetime

bound, with an association rate of 1 × 10−1 s−1 and a dissociation rate of 4.8 × 10−5

to 5.0 × 10−4 s−1 reported by experimental studies [64, 135]. A previous computational

study [51] of the all-atom barstar-barnase using brute-force MD and a hidden MSM analysis

reported a large statistical uncertainty in the dissociation rate of 3 × 10−6 to 1 × 10−1 s−1.

While the hidden MSM in Ref. [51] was constructed from a very long simulation time of 1.7

milliseconds, the unbiased trajectory still saw very few unbinding events, hence the large

uncertainty in the dissociation constant. Here, the sensitivity analysis in conjunction with

biased simulations can be useful for characterizing the dissociation rate constant and reducing

the computational overhead. As an illustrative example, Fig. 4.1 shows the sensitivity

analysis estimated for the stationary distribution of a preliminary MSM using 4182 relevant

contact pairwise distances. Relevant contacts were chosen based on degree of contact over

the course of the milliseconds simulation, similar to the procedure discussed in Chapter 2. Of

the 400 selected clusters plotted (out of 2000 total clusters), there are several clusters that

have noticeably higher sensitivities. Then, one can initiate additional biased simulations

at key regions that correspond to these highly sensitive clusters in order to improve the

accuracy of the MSM. Figure 4.2 looks into selected relevant contacts mapped to each cluster

and their computed sensitivities. We can see that the most sensitive clusters are the ones

that have shorter contact distances corresponding to the loosely-bound transition states.

The next steps would be to consider which collective variables (CVs) to bias along during
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Figure 4.1: Global sensitivity computed for the stationary distribution of a preliminary MSM
of the all-atom barnase-barstar complex using 4182 relevant contact pairwise distances. Of
the 400 clusters shown (from 2000 clusters overall), several show noticeably higher sensitiv-
ities and correspond to the key regions to initiate additional biased simulations.

Figure 4.2: Pairwise contact distances per cluster and their sensitivities. MSM discretization
distinguishes the clusters for the bound and unbound states (left), and the black dashed line
indicates clusters near the intermediate states. Sensitivity analysis shows that the most
sensitive microstates are have small contact distances and correspond to the loosely-bound
transition states (right), with black dashed lines partitioning the clusters based on their
sensitivities.
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enhanced sampling simulations. In Chapter 2, we biased the coarse-grained complex along

the center of mass distance between the proteins, but the all-atom system may require a

more sophisticated set of CVs, e.g., including pairwise distances between key residues or

minimum protein distances.

It is interesting to note that, while both MSMs and the committor-consistent variational

string method have shown to be useful frameworks that produce consistent kinetic rates,

one key advantage the proposed string method has over the MSM, excluding the fact of

also being able to produce an optimal pathway, is that it is less likely to be influenced by

undersampling and input parameters. Although MSMs can extract kinetic information from

shorter pieces of trajectories compared to brute-force MD, an accurate MSM still requires

fairly well-sampled simulations that may necessitate considerable computational overhead.

The proposed string method algorithm, on the other hand, can work with much shorter

pieces of trajectories for both unbiased and biased simulations to yield consistent results.

Furthermore, a major issue for MSMs of complex, high-dimensional systems is in choosing

an appropriate lag time that satisfies the Chapman-Kolmogorov equation [136], but the

proposed string method is advantageous in that it generally does not assume Markovian

dynamics.

Therefore, possible future direction for the committor-based string method is to extend

the algorithm to higher dimensions. This direction would provide the advantage of incor-

porating a larger set of CVs relevant to the kinetic processes. For example, this extension

would allow a more direct comparison of the barstar-barnase analyzed with two order param-

eters, discussed in Chapter 3, with the 6-dimensional MSM of barstar-barnase in Chapter

2. Here, machine learning techniques [130–133] have the potential to be especially useful

for parameter selections, including choosing the best set of CVs, setting up an initial path,

defining appropriate boundary regions, or even optimizing the multidimensional string itself.

Figure 4.3 demonstrates a possible procedure using clustering and regression to optimize the
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Figure 4.3: Machine learning techniques for the committor-consistent variational string
method applied to higher dimensions. k-means clustering and Voronoi tessellation can be
performed for a high-dimensional set of CVs, yielding a discrete committor probabilities
for every Voronoi cell (left). k-nearest neighbor regression results in a smoother committor
surface, from which a string path can be obtained by finite difference (right).

transition pathway. After choosing a set of CVs to study the transition, k-means cluster-

ing [70,71,137] can be performed to generate points on the CV space between the metastable

states. We can then partition the space by Voronoi tessellation using the k-means centroids

as the Voronoi centroids and compute discrete committor probabilities within each Voronoi

cell. Then a k-nearest neighbor regression [138,139] can be implemented to produce a more

continuous range of committor values. From there, a string pathway can be estimated by a

finite difference to follow the gradient of the committor across the potential surface.

Another future direction for the proposed string method is for systems that exhibit more

than two metastable states, as these cases are more representative of the properties of real

molecules and biomolecules. For example, Figure 4.4 shows the Müller-Brown potential [140],

which is a well-studied potential consisting of three long-lived states. If we start at the top

left basin, an optimal string would be one that passes through the middle basin and end in

the bottom right basin. Figure 4.5 shows the potential energy landscape of another three-
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well model, where the coefficients are the ones originally reported by Metzner et al. [141].

This toy model also consists of three transition barriers but is a particularly interesting case

for the proposed string method because the string would need to correctly predict which

barrier to cross first when starting from a designated basin. Altogether, the proposed future

directions are expected to greatly enhance the accuracy and range of systems that can be

studied for the characterization of slow molecular processes.
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Figure 4.4: Potential energy landscape of the Müller-Brown potential in the (x, y) subspace.
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Figure 4.5: Potential energy landscape of a three well model in the (x, y) subspace.
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Robert J Petrella, Benôıt Roux, Youngdo Won, Georgios Archontis, Christian Bartels,
Stefan Boresch, et al. CHARMM: the biomolecular simulation program. Journal of
Computational Chemistry, 30(10):1545–1614, 2009.

[69] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD: Visual molecular dy-
namics. Journal of Molecular Graphics, 14:33–38, 1996.

[70] Hugo Steinhaus. Sur la division des corp materiels en parties. Bulletin of the Polish
Academy of Sciences, 1(804):801, 1956.

[71] James MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[72] Robert L Thorndike. Who belongs in the family? Psychometrika, 18(4):267–276, 1953.

[73] Robert T McGibbon, Kyle A Beauchamp, Matthew P Harrigan, Christoph Klein, Ja-
son M Swails, Carlos X Hernández, Christian R Schwantes, Lee-Ping Wang, Thomas J
Lane, and Vijay S Pande. MDTraj: A modern open library for the analysis of molecular
dynamics trajectories. Biophysical Journal, 109(8):1528–1532, 2015.

95



[74] Martin K Scherer, Benjamin Trendelkamp-Schroer, Fabian Paul, Guillermo Pérez-
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[83] Susanna Röblitz and Marcus Weber. Fuzzy spectral clustering by PCCA+: Applica-
tion to Markov state models and data classification. Advances in Data Analysis and
Classification, 7(2):147–179, 2013.
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