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Abstract 

 

Epistatic interactions determine the phenotypic consequences of mutations and shape the 

course of evolution. However, little is known about the pattern of epistatic interactions among 

the possible mutations within a protein and the extent and temporal dynamics with which the 

effects of mutations change during evolution. By using a novel method to analyze experimental 

mutational datasets, I show that the architecture of epistatic interactions within a protein is 

surprisingly simple: Knowing only the context-independent effects and pairwise interactions of 

amino acids is sufficient to predict the phenotype with high accuracy. I then combine ancestral 

protein reconstruction with deep mutational scanning to experimentally reconstruct how the 

effect of every possible point mutation in a protein changed during long-term evolution. The 

effects of most mutations changed gradually and randomly at a rate characteristic to each 

mutation—a pattern I call epistatic drift. Epistatic drift randomized the effects of most mutations 

during evolution, making the outcome of evolution highly unpredictable. The statistical 

regularity of epistatic drift, however, means that this unpredictability can be quantified: A 

probability distribution for the future effect of a mutation—therefore the timescale at which 

evolution becomes unpredictable—can be calculated from the rate of epistatic drift. Overall, my 

work reveals a simple architecture and statistical regularity of epistasis and demonstrates the 

pervasive historical contingency of protein evolution. 
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Chapter 1 

Introduction 

 

1.1   Structuralism in molecular evolution 

Evolution proceeds through the origin of heritable variations in individuals due to 

mutations and the sorting of these variations through population genetic processes that lead to 

their eventual fixation or removal. While both the origin and sorting of variations contribute to 

the outcome of evolution, evolutionary biologists have focused on the sorting of variations as the 

primary cause of evolution since the development of population genetics in the early twentieth 

century (1). Organisms were regarded as black-boxes that somehow produce small heritable 

variations in all aspects of biology in a random manner; natural selection was considered the 

agent that channels these random variations into a coherent direction, culminating in adaptations 

that fulfill the functional needs of organisms in their environments. The neutral theory of 

molecular evolution, which challenged functionalists to appreciate the role of chance genetic 

drift in the shaping of molecular diversity, suggested that natural selection has blind spots and 

that mutations can have an autonomous role in sculpting molecular diversity (2). However, 

research programs for understanding what phenotypic variations can be produced by mutations 

and whether any bias or constraint in this process has shaped the outcome of evolution did not 

mature until the recent development of powerful molecular genetics tools. 

Structuralism recognizes that organisms have internal structures that make certain 

phenotypic variations more likely to arise than others (3). The accessibility of a particular 

phenotypic variation may depend on the internal configuration of the system and therefore 

historically contingent. The structural properties and evolutionary histories of biological systems, 
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structuralists argue, are fundamental causes that shape the pattern of biological diversity. The 

goal of a structuralist research program is then to characterize the possible ways in which a 

biological system can vary through mutations and reconstruct how the accessibility of particular 

variations at particular historical moments shaped the course of evolution. These tasks require 

systematically interrogating the effects of possible mutations and reconstructing evolutionary 

histories, which have only recently become possible. 

A paradigmatic example of structuralist reasoning is the explanation for the marginal 

stability of proteins (4). Most proteins are stable enough to be folded in their native environment 

but not more stable than that. Functionalists interpret marginal stability as a result of functional 

optimization. They argue that more stable proteins are less active and therefore disfavored by 

natural selection, resulting in an active protein with a minimal required stability. The validity of 

this argument rests on the proposed functional trade-off between stability and activity, which has 

not been well corroborated. An alternative explanation rests on the well documented fact that 

random mutations are much more likely to destabilize a protein than to stabilize it. This 

mutational pressure to reduce stability is counterbalanced by purifying selection for maintaining 

sufficient amount of folded proteins. Any extra stability is quickly eroded by mutations, which 

are invisible to selection as long as they do not affect the amount of folded proteins—resulting in 

marginal stability. The core of this argument is that phenotypic variations generated by random 

mutations are biased—more likely to result in unstable than stable proteins. This mutational bias, 

in turn, reflects the structural fact that folded proteins comprise a miniscule fraction of possible 

protein sequences. 

Structuralist explanations based on the distribution of random mutations’ effects have 

been put forward as alternatives to functional explanations for a number of other molecular 
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phenomena. The essentiality of a trait in present-day organisms is commonly cited as evidence 

for the adaptive origin of the trait. However, structuralist studies show that traits that arise 

nonadaptively can later become essential. This has been best demonstrated for protein-protein 

interactions (5, 6). Random nucleotide changes tend to create more hydrophobic amino acids 

than that can be tolerated on solvent-exposed protein surfaces. Once a surface is shielded in an 

interface, however, it can accommodate this mutational bias and acquire hydrophobic 

substitutions. Over time, removing the interface becomes deleterious because it exposes the 

accumulated hydrophobic residues. In this way, an interface that arose nonadaptively can 

become essential and maintained by purifying selection. The essentiality of a present-day 

interface, which seems to warrant a functionalist explanation for its origin, can therefore be 

explained as an expected outcome of a non-adaptive mutational process. 

 

1.2   Epistasis and historical contingency 

Natural selection is the chief causal factor in the functionalist explanation of evolution. In 

structuralism, the phenotypic effects of mutations assume that role: In the above examples of 

structuralist reasoning, patterns of molecular diversity were explained by the propensity of 

mutations to bring about certain phenotypic changes, often through interplay with selection. A 

critical structuralist agenda is therefore to understand why mutations have the phenotypic effects 

they do. 

A major determinant of the effect of a mutation in a protein is its interaction with other 

mutations in the same protein—called epistasis (7). A mutation that breaks the protein may be 

permitted in the background of another mutation that contributes favorable interactions or 

removes unfavorable interactions. Conversely, a mutation that is otherwise tolerable may 
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become restricted if preceded by incompatible epistatic partners. What epistatic partners are 

present in the genetic background at a particular point in time therefore determines the 

phenotypic effects of mutations at that time. 

Epistatic interactions, for this reason, can cause historical contingency. Mutations may be 

accessible in some historical intervals but not in others depending on the epistatic partners 

present. The outcome of evolution can thus be contingent on the historical starting point and the 

intervening sequence substitutions that modulate mutational opportunities. Depending on the 

prevalence and magnitude of epistasis, historical contingency due to epistasis can be strong, 

causing the evolution of even highly adaptive function to be contingent on chance genetic drift 

(8). For example, if a mutation necessary for an adaptive function must be permitted by a 

particular mutation, natural selection must wait for the permissive mutation to fix by genetic drift 

or as a by-product of selection for another function irrespective of how beneficial the eventual 

function may be. 

My thesis research addresses two key questions on epistasis: What is the pattern of 

epistatic interactions among the possible mutations within a protein? What is the extent and 

temporal dynamics with which the effects of mutations change during evolution due to epistatic 

interactions with sequence substitutions? These questions form pillars of structuralist approach to 

molecular evolution. However, despite numerous studies that examined epistatic interactions 

within proteins, they remain poorly addressed. Below I explain why this knowledge gap persists 

and lay out the novel approaches I developed to address these questions. 

 

1.3   Phylogenetic deep mutational scanning  
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Despite the recent avalanche of works examining epistatic interactions within proteins, 

the role of epistasis in protein evolution remains poorly characterized. This is because no study 

has systematically traced how the effects of mutations change during long-term evolution. Deep 

mutational scanning, which combines the generation of a large number of protein variants with a 

high-throughput sequencing-based functional assay to phenotype thousands to millions of protein 

variants in a single experiment, has enabled the interrogation of epistatic interactions among the 

many possible mutations within a protein (9–14). However, studies that apply deep mutational 

scanning to a single protein can only indirectly suggest a role for epistasis in evolution because 

what is relevant for evolution is not the genetic interactions among all possible mutations but the 

extent to which the particular sequence substitutions that fix during evolution alter the effects of 

other mutations. 

Comparing the effects of the same mutations among homologous proteins provided the 

first evidence that epistasis is relevant to protein evolution: Differences in the effects of 

mutations indicate that sequence substitutions that accrued during the divergence of the 

homologs have opened or closed mutational opportunities (15–22). However, because these 

studies only examine the effects of mutations on present-day homologs, they cannot reveal the 

temporal dynamics with which the effects of mutations change during evolution. 

A number of studies employed ancestral sequence reconstruction to trace how the effects 

of a few mutations changed during evolution (23–30). Ancestral sequence reconstruction is a 

statistical method for inferring the most likely sequences of ancestral proteins by analyzing the 

sequences of their present-day descendants (31). Several case studies employed ancestral 

sequence reconstruction to show that mutations required for the evolution of a new function were 

deleterious in an ancestral background and relied on permissive substitutions, indicating strong 
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historical contingency on chance epistatic interactions (8, 23, 25, 27). However, these studies 

examined only a small number of mutations and compared their effects between the beginning 

and end of a single phylogenetic interval; the overall extent of epistasis and temporal dynamics 

of epistasis remain unknown. 

I address this knowledge gap by combining deep mutational scanning and ancestral 

sequence reconstruction to comprehensively trace how the effect of every possible point 

mutation in a protein changed along a densely reconstructed evolutionary trajectory. 

 

1.4   Protein sequence space and genotype-phenotype map 

Analyzing the architecture of epistatic interactions and its impact on evolution is 

facilitated by the notion of sequence space (32). Sequence space is a graph where each possible 

sequence is a node and two sequences are connected if they are related by a single mutation. 

Evolution by point mutation can be conceptualized as a continuous walk on this graph. Mapping 

each genotype to its phenotype then allows us to ask how the distribution of phenotype in 

sequence space affects evolutionary trajectories. 

Central questions in protein biochemistry and evolution can be recast as understanding 

the genotype-phenotype map (33). For biochemistry, knowing the genotype-phenotype map 

means knowing the genetic architecture of a protein—how the individual amino acids and their 

interactions determine the phenotype. For evolutionary biology, knowing the genotype-

phenotype map means knowing all possible ways in which the phenotype can vary and the 

accessibility of a particular phenotypic value from any starting point. 

Genotype-phenotype maps are difficult to characterize because of their astronomical size. 

Even a 100-aa protein has 20100 possible genotypes, which is far greater than the number of 
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atoms in the universe and can never be exhaustively characterized. Analyzing the effects of 

mutations has the potential to describe a genotype-phenotype map using a much fewer number of 

parameters than there are genotypes. For example, if each of the 19 × 100 possible point 

mutations in a 100-aa protein act independently of each other, the phenotype of any genotype can 

be calculated as the sum of the contribution of each point mutation. This amounts to a dramatic 

reduction of information from what could be 20100 unique parameters to just 1,900. 

Epistasis complicates the analysis of mutational effects. Epistatic interactions can be 

classified into different orders. Pairwise interactions account for the difference between the 

observed effect of a pair of mutations from the sum of their individual effects. Three-way 

interactions account for the difference between the observed effect of a set of three mutations 

from the sum of their individual effects and pairwise interactions. In general, as the order of 

epistatic interaction increases, the number of possible combinations of that order rises 

exponentially. Therefore, a key question is the extent to which high-order epistasis shapes 

protein genotype-phenotype maps. If epistasis is of low orders, then a genotype-phenotype map 

can be encoded using a relatively small number of parameters. 

Recent application of deep mutational scanning has generated datasets in which a defined 

subset of sites within a protein has been comprehensively mutated and phenotyped. These 

datasets offer an opportunity to address the prevalence of epistasis and the complexity of 

experimental genotype-phenotype maps. Existing studies differ in their conclusion regarding 

epistasis because no study has comprehensively analyzed the available datasets using a common 

method. Furthermore, many studies have employed methods that are not designed to efficiently 

capture the global structures of genotype-phenotype maps, leading to overestimation of their 
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complexity. I develop a new method to analyze genotype-phenotype maps and apply them to 

available experimental datasets to address this knowledge gap. 

 

1.5   A cautionary tale in ancestral sequence reconstruction 

Ancestral sequence reconstruction is a methodological pillar of structuralism. By 

effectively allowing a time travel to the past, it allows us to trace the sequence changes that led 

ancestral proteins to evolve present-day molecular diversity and to uncover the genetic and 

biochemical mechanisms underlying the historical evolution of protein structures and functions. 

As with any powerful method of inference, ancestral reconstruction has the potential to mislead 

when not applied cautiously. I show that insufficient sampling of evolutionary information and 

failure to cross-compare with established phylogenetic relations led a group of researchers to 

wrongly infer the evolutionary loss of allostery as a de novo gain. I show that extensive sampling 

of available evolutionary information and rigorous analysis can lead to robust historical 

conclusions. 
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Chapter 2 

Simplicity of experimental protein genotype-phenotype maps 

 

2.1   Summary 

Learning the mapping from genotype to phenotype is a central goal in biology. Existing 

studies disagree on the complexity of protein genotype-phenotype maps: Some studies report 

widespread, high-order epistasis but others report epistasis limited in extent and order (12, 34–

38). These studies examine different genotype-phenotype maps using different methods, often 

using formalisms that are inadequate for learning the global structure of a map. We developed a 

simple implementation of a formalism that optimally captures the global structure of a genotype-

phenotype map and used it to analyze 15 empirical maps encompassing 3 to 16 sites in a diverse 

set of proteins. We found surprising simplicity in every dataset: Modeling only the context-

independent effects and pairwise interactions of mutations is sufficient to predict phenotype with 

high accuracy (R2 > 0.92 in cross-validation). The fraction of possible effects and interactions 

needed to be measured to achieve 90% prediction accuracy decreases with the size of genotype-

phenotype map, reaching as low as 1 in 10,000. Consistent with this sparsity, a sparse learning 

method can be used to estimate the important effects and interactions from a small sample of 

genotypes and predict the phenotype of unobserved genotypes. Overall, our analyses reveal the 

extraordinary simplicity of available protein genotype-phenotype maps and suggest that sparse 

experimental characterization and statistical learning may be sufficient to elucidate the genotype-

phenotype map of an entire protein. 

 

2.2   Introduction 
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Understanding the genetic architecture of a protein—how the individual residues and 

their epistatic interactions determine its structure and function—requires characterizing how 

genetic variation maps to phenotypic variation. The genotype-phenotype map also shapes the 

evolutionary accessibility of phenotypic variations from an initial genotype and is therefore a 

central object of study in evolutionary biology. 

For all but the shortest proteins, experimentally characterizing all possible genotypes is 

impossible because of their astronomical number. However, an exhaustive characterization may 

be not necessary to learn a genotype-phenotype map. For example, if all residues act 

independently of each other, the phenotype of any genotype can be predicted from the effect of 

each residue measured in a single genetic background. When the residues interact epistatically, 

more experiment is needed to learn their context-dependent effects. Whether it is feasible to 

experimentally learn a genotype-phenotype map depends chiefly on the order of epistatic 

interactions among residues. A complex map shaped by high-order epistasis is difficult to learn 

because identifying the important high-order interactions, even if they are few, requires 

searching a vast space of combinatorial possibilities. Therefore, a key unknown is the complexity 

of genotype-phenotype maps—the extent to which they are shaped by high-order epistasis. 

A growing body of studies report widespread and often high-order epistasis, suggesting 

that genotype-phenotype maps are too complex to be learned (9–14, 34, 35, 38–46). However, 

many of these studies could have overestimated the extent of epistasis because they used 

methods of analysis that are not designed to describe a genotype-phenotype map in the simplest 

possible way. 

First, many studies do not account for nonspecific epistasis and therefore infer more 

specific epistasis than is necessary to explain the data. The nonadditivity of measured phenotype 
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may be due to a simple nonlinear transformation of an underlying additive phenotype (7, 36, 47). 

For example, mutations that act additively on the free energy of folding will act nonadditively on 

the proportion of folded proteins because of the Boltzmann distribution relating the two 

quantities. It is inefficient and misleading to explain this nonadditivity as a result of specific 

epistatic interactions among mutations. Unlike the Boltzmann distribution, some forms of 

nonspecific epistasis cannot be determined a priori. The particular setup of an experimental 

assay, such as the bounds of measurement or the exact way a biological quantity of interest is 

converted into a measurable phenotype, can give rise to nonspecific epistasis, which means that 

nonspecific epistasis must be learned from data. A recent analysis of three empirical genotype-

phenotype maps shows that an effective model of nonspecific epistasis substantially reduces the 

extent of specific epistasis (47), necessitating a systematic re-examination of existing datasets. 

Furthermore, the most commonly used method of analysis cannot efficiently capture the 

global structure of a genotype-phenotype map. In this method, called reference-based analysis, 

the genotype-phenotype map is described from the point of view of a single wild-type genotype. 

It proceeds by measuring the effects of point mutations and using them to predict the phenotypes 

of double mutants; deviations are explained by pairwise epistasis. The phenotypes of triple 

mutants are then predicted using the measured effects and pairwise interactions of mutations, 

explaining the deviations by three-way epistasis. This procedure continues to higher-order 

mutants until no more data are available. The result is an approximation of genotype-phenotype 

map that is exact in the neighborhood of wild-type genotype but may or may not extrapolate well 

to unobserved higher-order mutants. 

Reference-based analysis interprets the local structure of a genotype-phenotype map 

observed in the neighborhood of wild-type genotype as a general structure of the map and 
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therefore can be misled by local idiosyncrasies (48). Suppose that two mutations interact 

epistatically only on the background of wild-type genotype. Reference-based analysis interprets 

this idiosyncratic interaction as ubiquitous, invoking it whenever the two mutations co-occur; as 

a result, higher-order epistasis must be invoked frequently to correct for it. This sensitivity to 

local idiosyncrasy can be more intuitively illustrated by the problem of approximating a curve by 

fitting a polynomial to a reference point: Even if the overall curve is well-approximated by a 

low-order polynomial, small deviations near the reference point can mislead the approach to a 

much higher order polynomial. What we need is a method that approximates the entire curve at 

once rather than prioritizing a particular region. 

Two methods—Fourier analysis (49–51) and background-averaged epistasis (48)—were 

developed as alternatives to reference-based analysis, but their application has been limited. 

Instead of analyzing the effects of mutations with respect to a single genotype, these methods 

examine the average effects of residues across many genetic backgrounds, which makes them 

robust to local idiosyncrasies. While Fourier analysis takes a simple form when applied to a 

genotype-phenotype map with just two states per site (51), current implementations for multi-

state maps rely on manipulating large Hadamard matrices (50) or constructing graph Fourier 

bases (49). The formal complexity and lack of an easy-to-use implementation for multi-state 

maps likely explain why the application of Fourier analysis has been limited to two-state maps, 

with only two studies reporting application to multi-state maps (39, 49). A recent study shows 

that background-averaged epistasis describes an empirical genotype-phenotype map using much 

fewer parameters than reference-based analysis, revealing the simple structure of the map 

invisible under reference-based analysis (37). However, although extendable, background-
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averaged epistasis has only been implemented for two-state maps, so its properties remain 

largely unexplored for multi-state maps. 

Here, we present a simple and intuitive implementation of Fourier analysis applicable to 

any number of states, which we call reference-free analysis. The tractability of our 

implementation allows us to prove a key advantage of Fourier analysis: Among all possible ways 

of defining the effects and interactions of residues—including the formalisms described above 

and the many more that are possible—none provide a simpler description of a genotype-

phenotype map than does Fourier analysis. Specifically, among all linear models that 

approximate the phenotype using epistatic interactions up to a given order, none are more 

accurate than Fourier analysis when gauged by the Pearson correlation between the predicted and 

observed phenotype. For example, among all possible additive models, including the first-order 

reference-based model under any choice of reference genotype and any scheme of averaging 

reference-based terms, none are more accurate than the first-order Fourier analysis. We combine 

reference-free formalism with a model of nonspecific epistasis to systematically characterize the 

complexity of empirical protein genotype-phenotype maps. 

 

2.3   Results 

2.3.1   Reference-free analysis of genotype-phenotype maps 

Our goal is to learn the structure of a genotype-phenotype (GP) map by decomposing the 

phenotype into the contribution of individual sequence states and their interactions. We begin by 

outlining reference-free analysis and its key properties that make it ideal for this goal. Let g = 

(g1, …, gL) denote a genotype with sequence state gi in site i = 1 to L. We denote the phenotype 
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of g as y(g) and the set of all possible genotypes as G. The reference-free intercept, e0, is defined 

as the average phenotype of all genotypes, written as 

 

𝑒" = ⟨𝑦|𝐺⟩. 

 

The first-order reference-free term associated with state s in site i, denoted by 𝑒*(𝑠), is defined as 

 

𝑒*(𝑠) = ⟨𝑦|𝐺*.⟩ − 𝑒", 

 

where 𝐺*.  is a subset of G comprising all genotypes with state s in site i. This term quantifies how 

the average phenotype of all genotypes containing state s in site i differs from that of all 

genotypes; it can thus be interpreted as the average context-independent effect of the state. 

The second-order reference-free term associated with state-pair (s1, s2) in site-pair (i1, i2), 

denoted by 𝑒*1,*2(𝑠3, 𝑠4), is defined as 

 

𝑒*1,*2(𝑠3, 𝑠4) = 5𝑦6𝐺*1,*2
.1,.27 − 𝑒" − 8𝑒*1(𝑠3) + 𝑒*2(𝑠4):, 

 

where 𝐺*1,*2
.1,.2 is a subset of G comprising all genotypes with states s1 and s2 in sites i1 and i2, 

respectively. This term quantifies how the average phenotype of all genotypes containing state-

pair (s1, s2) in site-pair (i1, i2) differs from that all of genotypes when accounted for the individual 

effects of the two states; it can be interpreted as the average epistatic effect of the state-pair. 

This definition and interpretation can be extended to higher-order terms, resulting in an 

increasingly accurate representation of the GP map. The intercept is the crudest representation, a 
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single average for the entire map. Each first-order term carries information about the average 

phenotype of a sub-map comprising all genotypes with a particular state in a particular site. Each 

second-order term carries information about the average phenotype of a smaller sub-map, 

comprising all genotypes with a particular state-pair in a particular site-pair. Higher-order terms 

offer an increasingly finer representation, with the highest-order terms carrying information 

about individual genotypes. 

The phenotype of a genotype is equal to the sum of all relevant reference-free terms: 

 

𝑦(𝒈) = 𝑒" +<𝑒*(𝑔*)
*∈?

+ < 𝑒*1,*2(𝑔*1, 𝑔*2)
*1@*2∈?

+ ⋯+ < 𝑒*1,…,*CD𝑔*1, … , 𝑔*CE
*1@⋯@*C∈?

+⋯

+ 𝑒*1,…,*F(𝑔3, … , 𝑔?).		[𝟏] 

 

Truncating Eq. 1 to a certain order results in an approximation of the GP map. A key question is 

what order of epistasis is required to accurately approximate experimental GP maps.  

A critical advantage of reference-free analysis is that it offers a maximally accurate linear 

approximation for the GP map. Let yk denote the phenotype predicted by a model of order k 

(truncation of Eq. 1 removing all higher-order terms). The accuracy of yk can be quantified by 

summing the squared prediction error: ∑ [𝑦(𝑔) − 𝑦L(𝑔)]4M∈N . We show that a reference-free 

model of a given order achieves the minimum total prediction error possible for any linear model 

of the same order (Method 2.5.6). In other words, the accuracy of a reference-free model is the 

maximum accuracy attainable using epistatic interactions of up to a given order; better prediction 

requires modeling higher-order epistasis. 

Each reference-free term is a function of the phenotype of every genotype; directly 

calculating any term requires experimentally characterizing the entire GP map. It is possible, 



 16 

however, to infer the terms from a random subset of genotypes: Eq. 1, truncated to a desired 

order, can be fit to data by minimizing the prediction error across the sampled genotypes. The 

resulting estimates are unbiased (expected to equal the true parameter values) if genotypes are 

randomly sampled (Method 2.5.8). 

Finally, we account for nonspecific epistasis by modeling the observed phenotype as a 

nonlinear function of a latent phenotype (φ) (Fig. 2.1B). We jointly infer the shape of the 

nonlinear function and the reference-free terms for the latent phenotype. By subjecting the latter 

to a lasso penalty, we identify the nonlinear function that minimizes the specific epistasis 

required in the latent space. Although nonspecific epistasis can in principle be complex, we find 

that a simple sigmoidal curve with just two parameters effectively captures the nonspecific 

epistasis in most experimental datasets: 𝑦 = 𝐿 + (PQ?)
3RSTU

, where L and U represent the lower and 

upper bound of observed phenotype, respectively. 

 

2.3.2   Simplicity of experimental protein genotype-phenotype maps 

We assessed the complexity of 15 experimentally determined protein genotype-

phenotype maps (Table 2.1). These datasets were chosen on the basis of two criteria. First, 

phenotype must be measured for a combinatorially complete set of genotypes, possibly missing 

for a random subset of genotypes. This criterion excludes datasets that are biased toward low-

order mutants of a particular genotype, such as those generated by error-prone PCR or saturation 

point mutagenesis. Systematically assessing the contribution of each order of epistasis is not 

possible in such biased datasets. Second, phenotype measurement must be precise because 

measurement noise is indistinguishable from high-order epistasis. Datasets in which the squared 

Pearson correlation between measurement replicates is less than 0.9 were excluded. Each chosen 
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dataset is designed to be combinatorially complete over a defined subset of sites in a protein (3 to 

16 sites, 42 to 100% coverage of possible genotypes). Some datasets sample all 20 amino acids, 

whereas others restrict the state space to two or more specific amino acids. The datasets range in 

size from 32 to 160,000 possible genotypes and include antibodies, enzymes, fluorescent protein, 

protein complex subunits, and transcription factors. 

 

Table 2.1. Experimental GP maps analyzed in this study. 
 
Number of 
genotypes Sampling Protein Phenotype Reference 

25 (= 32) 100% Methyl-parathion 
hydrolase 

Catalytic activity Anderson 
(40) 

25 (= 32) 100% Beta-lactamase Antibiotics resistance 
(MIC) 

Weinreich 
(45) 

3 × 24 (=48) 100% Dihydrofolate 
reductase 

Antibiotics resistance 
(IC75) 

Palmer (52) 

211 (= 2,048) 78.8% Antibody CR6261 Binding affinity (–
logKD) for antigen H1 

Phillips (53) 

211 (= 2,048) 57.7% Antibody CR6261 Binding affinity (–
logKD) for antigen H9 

Phillips (53) 

203 (= 8,000) 98.5% Antitoxin ParD3 Fitness (conferred by 
binding toxin ParE2) 

Lite (54) 

203 (= 8,000) 98.5% Antitoxin ParD3 Fitness (conferred by 
binding toxin ParE3) 

Lite (54) 

213 (= 8,192) 100% Fluorescent protein Fluorescence Poelwijk 
(37) 

13 × 12 × 10 × 
6 (= 9,360) 

99.6% Antitoxin ParD3 Fitness (conferred by 
binding toxin ParE2) 

Aarke (9) 

13 × 12 × 10 × 
6 (= 9,360) 

98.2% Antitoxin ParD3 Fitness (conferred by 
binding toxin ParE3) 

Aarke (9) 

216 (= 65,536) 99.7% Antibody CR9114 Binding affinity (–
logKD) for antigen fluB 

Phillips (53) 

216 (= 65,536) 90.8% Antibody CR9114 Binding affinity (–
logKD) for antigen H1 

Phillips (53) 

216 (= 65,536) 96.3% Antibody CR9114 Binding affinity (–
logKD) for antigen H3 

Phillips (53) 

204 (= 160,000) 42.2% Transcription factor 
ParB 

Fitness (conferred by 
binding TFBS parS) 

Jalal (41) 

204 (= 160,000) 68.6% Protein G B1 domain Binding for IgG-Fc 
(enrichment score) 

Wu (46) 
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To assess the complexity of each dataset, we sequentially fit reference-free models of increasing 

order, beginning with the first-order model including only the context-independent effects of 

amino acids that are subject to nonspecific epistasis. Each model was evaluated by cross-

validation—by fitting the model after excluding a random subset of data and testing how well the 

excluded data can be predicted by the inferred effects (quantified by squared Pearson correlation, 

R2CV). 

First-order reference-free models attain an R2CV greater than 0.90 for 10 of the 15 datasets 

(Fig. 2.1C). These 10 datasets include 16-site genotype-phenotype maps where up to 16th-order 

epistatic interactions are theoretically possible, and a 4-site, 20-amino acid map where first-order 

terms make up only 0.05% of all reference-free terms. 

Modeling pairwise epistasis raises R2CV to greater than 0.92 for every dataset. Modeling 

three-way epistasis, by contrast, offers only marginal or no improvement in fit (average increase 

in R2CV of 0.01). The residual of the second-order model (difference between the observed and 

predictive phenotype) closely follows a normal distribution, implying that they reflect 

measurement noise or that higher-order epistasis can be formally treated as noise. Overall, our 

analysis uncovers a surprising simplicity of experimental protein genotype-phenotype maps: 

Accurate prediction of phenotype is possible by learning just the context-independent effects and 

pairwise interactions of amino acids. 
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Figure 2.1. Reference-free analysis offers a simple description of experimental genotype-
phenotype maps. (A) Schematic illustrating the different approach of reference-based and 
reference-free analysis for the common problem of obtaining a simple approximation for an 
unknown function. In reference-based analysis, an increasingly complex local fit is made around 
a chosen reference point. The result depends on the particular reference chosen and can be 
misled by local idiosyncrasies. In reference-free analysis, a fit that minimizes the global 
deviation is obtained. (B) Model of nonspecific epistasis. The observed phenotype is modeled as 
a sigmoidal function of a latent phenotype. The sigmoidal function has just two parameters 
representing the lower and upper bound of phenotype (L and U, respectively). (C) Analysis of 15 
experimental genotype-phenotype maps. A reference-free fit of a given order was evaluated by 
cross-validation. 
 

2.3.3   Widespread nonspecific epistasis 

Modeling nonspecific epistasis is critical for the simple description of the genotype-

phenotype maps. Without modeling nonspecific epistasis, first-order reference-free models 

display a median R2CV of only 0.37 across the 15 datasets, a drastic reduction from 0.92 (Fig. 

2.2A). Second-order models also suffer a reduction in median R2CV from 0.96 to 0.85, leaving a 

fraction of phenotypic variance to be explained by higher-order epistasis. 

We sought to understand how a simple sigmoidal curve with just two parameters—

representing the upper and lower bound of measurement—so drastically improves the model fit. 
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The extent to which model fit depends on modeling nonspecific epistasis is proportional to the 

fraction of genotypes inside the inferred dynamic range of measurement (Fig. 2.2A). For 

example, in a dataset where only 0.12% of genotypes are inside the inferred dynamic range 

(Phillips CR9114 fluB), omission of the nonspecific epistasis model reduces the first-order R2CV 

from 0.98 to 0.01 (Fig. 2.2B). By contrast, in a dataset of the same size but containing 67% of 

genotypes inside the inferred dynamic range (Phillips CR9114 H1), first-order R2CV drops from 

0.77 to just 0.61. 

To explain this result, we focused on the Phillips CR9114 fluB dataset. This dataset 

consists of binding affinity measurement (–logKD) for variants of the antibody CR9114 against 

the influenza hemagglutinin subtype fluB. The vast majority of genotypes in this dataset have –

logKD close to the minimum observed value of 6, with only 0.12% having a value greater than 

6.1 (Fig. 2.2C). While observed –logKD ranges from 6.0 to 8.1 across the genotypes, the first-

order prediction without nonspecific epistasis ranges from just 5.99 to 6.02 (Fig. 2.2B). 

Limited dynamic range of measurement can cause systematic underestimation of 

mutational effects and spurious epistasis when not explicitly accounted for. For example, on the 

background of a genotype masked by the lower bound of measurement, all mutations with a 

negative phenotypic effect will appear neutral. Mutations with a positive effect will also appear 

neutral if the effect size is not sufficiently great. Given that 99.9% of genotypes in the fluB 

dataset are at the lower bound, mutations on average have no observable effect, resulting in 

systematic underestimation of reference-free effects and predicted phenotype. Only on the 

background of 0.12% of genotypes can a mutation show any observable effect—a strong 

background-dependence that must be explained by epistasis in the absence of a model for limited 
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dynamic range of measurement. Consistent with this explanation, most genotypes are predicted 

to have a latent phenotype that is well below the observable range (Fig. 2.2D). 

 

 

Figure 2.2. Modeling nonspecific epistasis critical for the simple description of the 
experimental genotype-phenotype maps. (A) Comparing the observed phenotype of the 
Phillips CR9114 fluB dataset to the prediction made by first-order reference-free model with 
(left) or without (right) modeling nonspecific epistasis. (B) Histogram of observed phenotype for 
the Phillips CR9114 fluB dataset. (C) Predicted latent phenotype and observed phenotype for the 
Phillips CR9114 fluB dataset based on a first-order reference-free model with nonspecific 
epistasis. The histogram on top shows the distribution of predicted latent phenotype across 
genotypes. (D) Comparing the cross-validation R2 (R2CV) obtained using reference-free models 
with or without the nonspecific epistasis model. Each circle represents an experimental dataset, 
colored by the fraction of genotypes inside the inferred dynamic range. 
 

2.3.4   Genetic and biophysical basis of phenotype 

A key goal in analyzing genotype-phenotype maps is to explain the genetic and 

biophysical basis of phenotypic variation. This requires quantifying the amount of phenotypic 

variation caused by genetic variation in individual sites and their interactions. We show that 

these contributions can be directly calculated from reference-free effects (Method 2.5.7). For 
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example, the amount of phenotypic variance due to genetic variation in a site is equal to the 

mean of the square of all first-order reference-free terms for that site. Similarly, the variance due 

to genetic interaction between two sites is equal to the mean of the square of all second-order 

reference-free terms for that pair of sites. 

We performed analysis of variance to identify the key sites and states that shape 

phenotypic variation in the experimental genotype-phenotype maps. In the Phillips CR6114 H1 

dataset, which consists of binding affinity measurements for 211 variants of the antibody CR6114 

against the influenza hemagglutinin subtype H1, 92% of phenotypic variance can be explained 

by a first-order reference-free mode. Within the first-order model, effects at just 3 of the 11 

mutated sites explain 94% of phenotypic variance (86% of total variance; Fig. 2.3A). These are 

the three mutated sites that directly contact H1 in the crystal structure of CR6114-H1 complex. 

All other sites, which contribute negligibly to phenotypic variation in this genotype-phenotype 

map, are distal to H1. Overall, context-independent effects of genetic variation at just three key 

sites explain this genotype-phenotype map. 

In the Poelwijk dataset, which measured fluorescence of 213 variants of a fluorescent 

protein, a second-order model is required to explain most of phenotypic variance. Within the 

second-order model, however, just 4 of the 13 mutated sites explain 86% of phenotypic variance 

(Fig. 2.3B). One site is a part of the chromophore and the others directly contact the 

chromophore; the rest of mutated sites are distal to the chromophore. This shows that the 

Poelwijk dataset can be explained by the context-independent effects and pairwise interactions of 

genetic variation at key sites surrounding the chromophore. 

 



 23 

 

Figure 2.3. Genetic and biophysical basis of experimental genotype-phenotype maps 
revealed by reference-free analysis. (A) The fraction of phenotypic variance explained by the 
first-order terms in each site for the Phillips CR6261 H1 dataset is shown on the left heatmap and 
in the proteins structure. (B) The fraction of phenotypic variance explained by the first-order 
terms in each site and the second-order terms in each site-pair for the Poelwijk dataset is shown 
on the left heatmap. Only the sites with nonnegligible contribution are marked and colored red in 
the structure. (C) The inferred effects of amino acids at three sites in the ParD3 interface with 
ParE3 or ParE2. Amino acids with effect on ParE3 and ParE2 binding different by more than 2 
latent phenotype unit are marked by black circles; these amino acids contribute to the specificity 
of the interface. 
 

2.3.5   Sparsity of genotype-phenotype maps 

To quantify the sparsity of each genotype-phenotype map, we first ordered the reference-

free effects by their contribution to the latent phenotype. Beginning with a model that includes 

just one term with the largest contribution, we constructed a series of models with an increasing 

number of terms. We then evaluated each model by cross-validation and determined the minimal 

model size (fraction of possible terms included) required for R2CV of 0.9 (denoted by F90; Fig. 

2.4A). 
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We found a scaling relation between sparsity and the size of genotype-phenotype map 

(Fig. 2.4B). Larger maps are sparser, with F90 almost inversely proportional to the number of 

possible genotypes (N): F90 ~ N–0.85. This relation holds across almost four orders of magnitude 

in N. This relation can partly be explained by the fact that context-independent effects and 

pairwise interactions are sufficient to attain R2CV of 0.9 in every dataset: The proportion of these 

terms out of all possible terms decreases in proportion to the size of genotype-phenotype map. 

However, this relation implies that a relatively constant proportion of first- and second-order 

terms shape the phenotype across the experimental datasets, which is surprising given their 

heterogeneity. An explanation for this scaling relation, to the extent that it generalizes, is yet to 

be found. 

 

 

Figure 2.4. Sparsity increases with GP map size. (A) Quantifying sparsity with the F90 
measure. F90 is defined as the minimum fraction of all possible reference-free effects that must 
be modeled to achieve a cross-validation R2 greater than 0.9. To estimate F90, we ordered the 
reference-free effects by their contribution to the latent phenotype and tested a series of models 
beginning with just one effect with the largest contribution and sequentially including more 
effects. The fraction of terms included that first achieves R2 of 0.9 is taken as an estimate of F90 
(shown by the vertical dashed line). Each dot represents a model, colored by the order of the last 
term included. (B) Sparsity as a function of genotype-phenotype map size. The inferred value of 
F90 is shown as a function of the total number of genotypes in each genotype-phenotype map 
(N). Each dot represents a genotype-phenotype map, colored by the number of states sampled for 
each mutated site. Dashed line represents linear regression. 
 

2.3.6   Learning the genotype-phenotype map by random sampling 
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Even if only a small fraction of reference-free terms is required to describe a genotype-

phenotype map, if identifying and estimating them requires experimentally characterizing a large 

number of genotypes, reference-free analysis will not be useful for learning a new genotype-

phenotype map. Sparse learning theory suggests that if a system with a large theoretically 

possible degrees of freedom is in fact determined by a relatively small number of parameters, 

sparse learning methods can be used to estimate them from a random sample of a size on the 

order of the number of important parameters. 

We quantified the fraction of genotypes that must be sampled to learn each experimental 

genotype-phenotype map. We randomly sampled a certain fraction of genotypes, used them to 

infer a reference-free model, and predicted the phenotype of the rest of genotypes. By repeating 

this analysis for a range of sample sizes, we determined the minimal fraction of genotypes 

required to achieve a prediction R2 of 0.9 (denoted by S90). 

S90 varies widely among GP maps of similar size (Fig. 2.5B). For example, the Lite 

ParE2 dataset (8,000 genotypes, F90 = 0.36%) can be accurately learned by sampling just 2.8% 

of all genotypes (Fig. 2.5A). However, the Aarke ParE3 dataset (9,360 genotypes, F90 = 0.27%) 

requires sampling 21% of genotypes for a comparable accuracy. This is likely caused by the 

different proportion of genotypes within dynamic range: Whereas 80% of genotypes are within 

the inferred dynamic range in the Lite ParE2 dataset, this fraction is only 14% in the Aarke 

ParE3 dataset. Little information about the effects and interactions of states can be obtained from 

genotypes masked at measurement bounds. From individual such genotypes, we can only learn 

that the phenotypes of certain combinations of states are too high or too low, but not their exact 

value. Likewise, comparison among genotypes all masked at one side of the range gives little 

information about the effects of mutations between them. Therefore, when the dynamic range is 
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limited, a larger overall fraction of genotypes must be sampled to learn the same amount of 

information. 

Our analysis points to an efficient experimental sampling strategy as the major 

requirement for learning protein GP maps. Random sampling is too inefficient for learning when 

most genotypes are nonfunctional. Reference-based sampling, in which sampling is limited to 

low-order mutants of a particular genotype, cannot be used to train a reference-free model that 

generalizes across the GP map. Therefore, a method to enrich for functional genotypes sampled 

from across the GP map is required. 

 

 

Figure 2.5. Whether a GP can be learned from a small random sample of genotypes 
depends critically on the dynamic range of measurement. (A) (Top) Calculating the fraction 
of genotypes that must be sampled to learn a reference-free model that achieves a prediction of 
R2 greater than 0.9 (S90, marked by the vertical dashed lines). For each training set size, 10 or 
more random samples of the size were obtained, used to trained a reference-free model, and R2 of 
prediction calculated for the rest of genotypes. Each dot and error bars represent the mean and 
standard deviation of prediction R2. (Bottom) Histogram of phenotype for each dataset, showing 
the percent of genotypes within the inferred dynamic range. (B) S90 as a function of GP map size 
(left) or F90 (right). Each dot represents a dataset, colored by the fraction of genotypes within the 
inferred dynamic range. 
 

2.4   Discussion 
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Characterizing the genotype-phenotype map of proteins is a fundamental goal in 

molecular and evolutionary biology that is hindered by the astronomical number of possible 

amino-acid sequences. Decomposing the phenotype of each sequence into the individual effects 

and interactions of amino acids has the potential to reveal structures in a genotype-phenotype 

map that allows us to describe it using a much smaller number of parameters than there are 

genotypes. Currently, there is no analytic framework that meets the following requirements: 1) A 

global approximation to the genotype-phenotype map, instead of a local approximation based on 

an arbitrarily chosen reference genotype, must be performed; 2) Nonspecific epistasis must be 

explicitly modeled, which can make a simple genotype-phenotype map appear complex; 3) The 

formalism should be applicable to any genotype-phenotype map with any number of states 

(potentially variable across sites) and allow quantifying the phenotypic contribution of any 

amino acid or set of amino acids; 4) The formalism should be applicable to a random sample of 

genotypes.  

Here, we present a formalism called reference-free analysis that meets these criteria. We 

show that this formalism is optimal—there is no other linear decomposition of a genotype-

phenotype map that achieves better prediction accuracy. It enables the analysis of variance 

(ANOVA) framework, quantifying the fraction of phenotypic variance due to each amino acid or 

set of amino acids. We applied this formalism to analyze experimental mutation datasets and 

found surprising simplicity: For every dataset, accurate prediction of phenotype is possible by 

learning just the context-independent effects and pairwise interactions of amino acids. This 

implies that currently available deep mutational scanning methods can characterize enough 

genotypes to reveal the genetic architecture of proteins. 
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Our model of nonspecific epistasis is formally equivalent to a Boltzmann distribution 

describing an equilibrium between two thermodynamic states. Two-state equilibrium is widely 

used as a model for protein structure and function. For example, protein folding is often 

describable as an equilibrium between the folded and unfolded state. The proportion of folded 

state is given by 1/(1 + 𝑒∆N), where ∆G is the Gibbs free energy of folding in appropriate units. 

The formal similarity between the two-state equilibrium and our model of nonspecific epistasis 

suggests that the protein phenotypes we analyzed can be described as an equilibrium between the 

functional and nonfunctional state. The latent phenotype corresponds to free energy in reverse 

sign, with a change of 1 in latent phenotype corresponding to 2.7-fold change in the relative 

occupancy of the functional and nonfunctional state. Modeled this way, the genetic basis of 

phenotype can be described in terms of the context-independent energetic contributions of 

individual sites and sparse epistatic interactions that are mainly between pairs of sites. 

 

2.5   Methods 

Here we present a detailed exposition of reference-free linear decomposition, including 

proofs for its key properties. We begin by formally defining reference-free linear decomposition 

and discussing three ways of interpreting its terms. We develop the notion of generalized linear 

decomposition—a unified formalism for representing any linear decomposition of a GP map—

and show that reference-free linear decomposition is the best linear decomposition for capturing 

the global structure of a GP map. We then show that the total genetic variance of a GP map can 

be decomposed into the contribution of each reference-free term, which enables the analysis of 

variance (ANOVA) framework for quantifying and comparing the importance of individual 

terms and measuring the complexity and sparsity of GP maps. We present a method to estimate 
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the terms of reference-free linear decomposition from randomly sampled genotypes and end by 

comparing reference-free linear decomposition to other linear methods for decomposing GP 

maps. 

 

2.5.2   Notations 

We consider a GP map consisting of every genotype with one of q states in each of n 

sites—total qn genotypes. Although for mathematical simplicity we only consider GP maps with 

the same number of states in every site, reference-free linear decomposition can be applied to 

any discrete-state GP map. The n-tuple g = (g1, …, gn) denotes a genotype with state gi in site i = 

1, …, n. The phenotype of g is written as y(g). The set of all genotypes is denoted by G and the 

set of all genotypes with states s1, …, sk in sites i1, …, ik by 𝐺*1,…,*C
.1,…,.C . Angled brackets indicate the 

mean of a quantity over a set; for example, ⟨𝑦|𝐺⟩ is the average phenotype of all genotypes. The 

set N = (1, …, n) is used to denote iteration over sites and site-combinations; for example, Σ*∈Z 

indicates summation over all sites and Σ*1@*2∈Z summation over all site-pairs. Likewise, Q = 

(1, …, q) is used to denote iteration over states and state-combinations. 

 

2.5.3   Definition 

We first present reference-free linear decomposition as a stepwise approximation of a GP 

map. Two alternative formulations are then presented. 

The intercept, e0, is defined as the average phenotype of all genotypes: 

 

𝑒" = ⟨𝑦|𝐺⟩. 
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It can be considered the best single-parameter approximation of a GP map. The first-order term 

for state s in site i, denoted by 𝑒*(𝑠), is defined as 

 

𝑒*(𝑠) = ⟨𝑦|𝐺*.⟩ − 𝑒". 

 

It can be considered the error associated with approximating ⟨𝑦|𝐺*.⟩ by the lower-order term e0. 

(It is convenient to consider ei as a function of a single variable taking q values.) 

The above expression extends naturally to higher-order terms. The second-order term for 

state-pair (s1, s2) in site-pair (i1, i2), denoted by 𝑒*1,*2(𝑠3, 𝑠4), is the error associated with 

approximating 5𝑦6𝐺*1,*2
.1,.27 using the lower-order terms: 

 

𝑒*1,*2(𝑠3, 𝑠4) = 5𝑦6𝐺*1,*2
.1,.27 − 8𝑒" + 𝑒*1(𝑠3) + 𝑒*2(𝑠4):. 

 

In general, the k-th-order term for state-combination (s1, …, sk) in site-combination (i1, …, ik), 

denoted by 𝑒*1,…,*C(𝑠3,… , 𝑠L), is defined as 

 

𝑒*1,…,*C(𝑠3,… , 𝑠L) = 5𝑦6𝐺*1,…,*C
.1,…,.C7 − 5𝑦6𝐺*1,…,*C

.1,…,.C7
(LQ3)

, (1) 

 

where the subscript (k – 1) indicates approximation by terms of order up to (k – 1): 
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5𝑦6𝐺*1,…,*C
.1,…,.C7

(LQ3)

= 𝑒" +< 𝑒*[(𝑠\)
\∈]

+ < 𝑒*[1,*[2(𝑠\1 , 𝑠\2)
\1@\2∈]

+ ⋯

+ < 𝑒*[1,…,*[CT1D𝑠\1, … , 𝑠\CT1E
\1@⋯@\CT1∈]

, 

 

where K denotes the set (1, …, k). 

This stepwise process builds an increasingly accurate approximation of a GP map. The 

intercept is the crudest approximation, a single average approximating the entire map. The first-

order terms can describe the average phenotype of nq sub-maps, each comprising all genotypes 

with a particular state in a particular site. The second-order terms can describe the average 

phenotype of D^4E𝑞
4 sub-maps, each comprising all genotypes with a particular state-pair in a 

particular site-pair. Higher-order terms offer finer descriptions, with the n-th-order terms 

describing the phenotype of qn sub-maps—of every genotype. 

We have so far presented the terms of reference-free linear decomposition as errors 

associated with lower-order approximations. They can also be interpreted as phenotypic effects. 

For example, the first-order term 𝑒*(𝑠) quantifies how the average phenotype of all genotypes 

containing state s in site i differs from that of all genotypes; it is the average phenotypic effect of 

state s in site i. Similarly, the second-order term 𝑒*1,*2(𝑠3, 𝑠4) quantifies how the average 

phenotype of all genotypes containing states s1 and s2 in sites i1 and i2 differs from that of all 

genotypes, after being accounted for the individual effects of the two states; it is the average 

epistatic effect of the state-pair (s1, s2) in site-pair (i1, i2). 
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Yet another formulation interprets terms of order k as measuring the context-dependence 

of terms of order k – 1. Let us re-think the definition of the first-order term 

 

𝑒*(𝑠) = ⟨𝑦|𝐺*.⟩ − 𝑒". 

 

⟨𝑦|𝐺*.⟩ can be considered the intercept of a GP map consisting only of genotypes with state s in 

site i. We denote this relation by ⟨𝑦|𝐺*.⟩ = 𝑒"|*.. Thus, 

 

𝑒*(𝑠) = 𝑒"|*. − 𝑒". 

 

In this expression, 𝑒*(𝑠) quantifies how different the intercept is when calculated for the 

complete map G versus the sub-map 𝐺*.—the context-dependence of the intercept. A parallel 

exists for second-order terms: 

 

𝑒*1,*2(𝑠3, 𝑠4) = 5𝑦6𝐺*1,*2
.1,.27 − 8𝑒" + 𝑒*1(𝑠3) + 𝑒*2(𝑠4):	

= 5𝑦6𝐺*1,*2
.1,.27 − 5𝑦6𝐺*1

.17 − 5𝑦6𝐺*2
.27 + ⟨𝑦|𝐺⟩	

= `5𝑦6𝐺*1,*2
.1,.27 − 5𝑦6𝐺*1

.17a − `5𝑦6𝐺*2
.27 − ⟨𝑦|𝐺⟩a	

= 𝑒*2(𝑠4)|*1
.1 − 𝑒*2(𝑠4), 

 

where 𝑒*2(𝑠4)|*1
.1 is the first-order term 𝑒*2(𝑠4) of the sub-map 𝐺*1

b1 . In general, 

 

𝑒*1,…,*C(𝑠3,… , 𝑠L) = 𝑒*2,…,*C(𝑠4,… , 𝑠L)|*1
.1 − 𝑒*2,…,*C(𝑠4, … , 𝑠L). 
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Here site i1 is chosen as the context, but any other site can be chosen. 

Finally, we express the phenotype of individual genotypes using the terms of reference-

free linear decomposition. Substituting n for k in Eq. (1) and noting that 5𝑦6𝐺*1,…,*c
M1,…,Mc7 is simply 

the phenotype of g = (g1, …, gn), the phenotype of g is the sum of every reference-free term 

corresponding to every possible combination of states in g: 

 

𝑦(𝒈) = 𝑒" +<𝑒*(𝑔*)
*∈Z

+ < 𝑒*1,*2(𝑔*1, 𝑔*2)
*1@*2∈Z

+ ⋯+ < 𝑒*1,…,*CD𝑔*1,… , 𝑔*CE
*1@⋯@*C∈Z

+⋯+ 𝑒*1,…,*c(𝑔3, … , 𝑔^). 

(2) 

 

2.5.4   The zero-mean property and the uniqueness of reference-free linear decomposition 

Consider the number of terms in Eq. (2). There are nq first-order terms, q for each site. 

There are D^4E𝑞
4 second-order terms, q2 for each site-pair. With D^LE𝑞

L terms of order k, the total 

number of terms equals (q + 1)n. There are more terms than genotypes! Does this mean that 

reference-free linear decomposition is underdetermined, that the same GP map can be 

decomposed in many different ways? The answer is no, there is a unique reference-free linear 

decomposition for each GP map. This is because the terms of reference-free linear 

decomposition satisfy certain constraints that keep their degrees of freedom at qn. We refer to 

this property as the zero-mean property. In addition to ensuring the uniqueness of reference-free 

linear decomposition, the zero-mean property forms the basis of all the desirable attributes of 

reference-free linear decomposition we describe below. In fact, the zero-mean property defines 
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reference-free linear decomposition in the sense described in the section Generalized linear 

decomposition. We simply state the property here, proving it in section 2.5.12.1. 

The zero-mean property of first-order terms is that the mean of all q terms for a site is 0: 

 

⟨𝑒*|𝑄⟩ =
1
𝑞<𝑒*(𝑠)
.∈e

= 0. 

 

Let • denote averaging of all terms for a site. For example, 𝑒*(⋅) is the average of the q first-order 

terms for site i, and 𝑒*1,*2(⋅, 𝑠4) is the average of the q second-order terms for site-pair (i1, i2) 

containing state s2 in site i2. The above equality can be restated as 𝑒*(⋅) = 0. In general, for any 

site-combination (i1, …, ik), the mean of any q terms that vary across a single site is zero: 

 

𝑒*1,…,*C(∙, 𝑠4,… , 𝑠L) = 𝑒*1,…,*C(𝑠3,⋅, 𝑠i,… , 𝑠L) … = 𝑒*1,…,*C(𝑠3,… , 𝑠LQ3,∙) = 0, 

 

for any state-combination (s1, …, sk). If the q2 second-order terms for a site-pair are arranged in a 

q × q matrix, rows corresponding to the states in the first site and columns to the states in the 

second site, the zero-mean property means that every row and column of the matrix sums to zero. 

Similarly, if the q3 third-order terms for a site-triple are arranged in a q × q × q array, every one-

dimensional section (and thus every two-dimensional section and the entire array) sums to zero. 

How does the zero-mean property ensure the uniqueness of reference-free linear 

decomposition? The q first-order terms for a site must always sum to zero, reducing their degrees 

of freedom to (q – 1). Every row and column of the q × q matrix of q2 second-order terms for a 
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site-pair must always sum to zero, reducing their degrees of freedom to (q – 1)2. In general, the 

degrees of freedom of all k-th-order terms are reduced to D^LE(𝑞 − 1)
L, which sum across k to qn. 

 

2.5.5   Generalized linear decomposition 

Consider Eq. (2) on its own without the reference-free definition of the terms. It is a 

general formula for linearly decomposing a GP map. Since there are more terms than genotypes, 

a given GP map can be linearly decomposed in infinitely many ways. Constraining the terms to 

exhibit the zero-mean property uniquely specifies a linear decomposition: the reference-free 

linear decomposition. This is the sense in which the zero-mean property defines reference-free 

linear decomposition. Alternative constraints yield alternative decompositions. For example, 

given any genotype r = (r1, …, rn), setting every term involving state ri in site i to zero yields the 

familiar reference-based linear decomposition with r as the reference genotype. 

 

We call Eq. (2) the generalized linear decomposition of a GP map. In section 2.5.12.2, we show 

that any linear decomposition of a GP map is a special case of Eq. (2) obtained by subjecting the 

terms to a set of constraints that reduce their degrees of freedom to qn. The notion of generalized 

linear decomposition allows us to ask the following question. 

 

2.5.6   Optimality 

Among the infinitely many ways of linearly decomposing a GP map, which is the most 

optimal? In other words, among all sets of constraints that can be imposed on the terms of 

generalized linear decomposition, which set yields the most optimal decomposition? 
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Answering this question requires defining optimality. Given a particular linear 

decomposition, let yk(g) denote the phenotype of g approximated by terms of order up to k—the 

truncation of Eq. (2) removing all higher-order terms. The accuracy of this approximation can be 

quantified by summing the squared error: 

 

𝜖[𝑦L] = <[𝑦(𝒈) − 𝑦L(𝒈)]4
𝒈∈N

. 

 

The optimal linear decomposition is that which minimizes ε. When k equals n, ε is zero and 

every decomposition is exact. When k is smaller than n, different decompositions may make 

different approximations. We show in section 2.5.12.3 that reference-free linear decomposition 

minimizes ε for any k: Reference-free linear decomposition provides the most optimal linear 

approximation to a GP map at every order of approximation. 

We note that reference-free linear decomposition is not uniquely optimal. It is possible to 

modify the terms of a given reference-free linear decomposition (violating the zero-mean 

property) without altering the predicted phenotypes. However, optimal linear decompositions 

thus obtained are uninterpretable. How the terms of a linear decomposition can be interpreted 

depends on what constraints they satisfy. For example, the first-order term 𝑒*(𝑠) takes a different 

meaning depending on whether it is used in reference-free or reference-based linear 

decomposition. A linear decomposition may be optimal but uninterpretable if the constraints 

defining its terms are unknown. Reference-free linear decomposition is unique in that it is both 

optimal and interpretable. 

 

2.5.7   Analysis of variance 
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The purpose of decomposing a GP map is to identify the major terms that define that 

map. The terms can be used in a simple approximation to the map and can be related to its 

physical basis to gain mechanistic insights. Both tasks require determining the relative 

importance of terms. Intuitively, larger magnitude implies greater importance. However, 

magnitude cannot be the sole criterion. A term of order k is involved in the phenotype of 1 in qk 

genotypes; given the same magnitude, a lower-order term is more important than a higher-order 

term because it influences more genotypes. We need a way to compare terms across sites and 

orders. 

We show that the analysis of variance (ANOVA) framework can be applied to reference-

free linear decomposition. This makes possible such statements as “this term explains 5% of total 

genetic variance” or “the first-order terms together explain 80% of total genetic variance.” The 

applicability of ANOVA is a unique feature of reference-free linear decomposition enabled by 

the zero-mean property. 

We first define the total genetic variance, 

 

𝑉 = 𝑉𝑎𝑟(𝑦|𝐺) =
1
𝑞^<

[𝑦(𝒈) − ⟨𝑦|𝐺⟩]4
𝒈∈N

, 

 

which quantifies the amount of phenotypic variation caused by genetic variation. We then 

quantify the contribution of each reference-free term to the total genetic variance. First, we 

define a quantity called effect-variance. The effect-variance of a site-combination is the variance 

of all terms in that site-combination: 
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𝑉𝑎𝑟D𝑒*1,…,*C|𝑄
LE =

1
𝑞L < 𝑒*1,…,*C(𝑠3, … , 𝑠L)

4

.1,…,.C∈e

. 

 

(This equality holds because the mean of all terms in a site-combination is zero.) Intuitively, a 

site-combination with larger effect-variance should contribute more to the total genetic variance. 

This is confirmed by the following variance partition formula, which states that the total genetic 

variance is the sum of the effect-variance of every site-combination (section 2.5.12.4): 

 

𝑉 =<𝑉𝑎𝑟(𝑒*|𝑄)
*∈Z

+ < 𝑉𝑎𝑟D𝑒*1,*2 n𝑄
4E

*1@*2∈Z

+⋯+ < 𝑉𝑎𝑟D𝑒*1,…,*Cn𝑄
LE

*1@⋯@*C∈Z

+⋯

+ 𝑉𝑎𝑟D𝑒3,…,^n𝑄^E. 

(3) 

 

The effect-variance of a site-combination is therefore its absolute contribution to the total genetic 

variance; its relative contribution is the effect-variance divided by the total genetic variance. 

Substituting the definition of effect-variance into Eq. (3) shows that the total genetic 

variance is the sum of every non-intercept term, squared and normalized for its order: 

 

𝑉 =<
𝑒4

𝑞o(S)
, 

 

where O(e) is the order of e and the summation involves all terms except for the intercept. This 

confirms our intuition that a lower-order term is more important (explains a larger fraction of 

total genetic variance) than a higher-order term of the same magnitude. Note that 1/qO(e) is the 

fraction of genotypes whose phenotype involves the term e. 
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Let Vk denote the sum of the effect-variance of every site-combination of order k. We call 

the sequence pq1
q
, q2
q
,… , qc

q
r the variance spectrum of a GP map. The variance spectrum 

quantifies the complexity of a GP map by showing what fraction of total genetic variance is due 

to each epistatic order. A GP map is simple if most of its genetic variance is due to low-order 

terms; it is complex if most of its genetic variance is due to high-order terms. 

 

2.5.8   Estimation by random sampling 

In reference-free linear decomposition, every term is a function of every genotype; exact 

calculation of any term requires measuring the phenotype of every genotype. However, it is 

possible to estimate the terms from a randomly sampled subset of genotypes. Recall that among 

all linear decompositions of a given order, reference-free linear decomposition minimizes the 

total prediction error. Given large sample size, a linear decomposition that minimizes the 

prediction error for sampled genotypes should be a good estimate for reference-free linear 

decomposition. We formalize this idea as follows. Let yk denote the generalized linear 

decomposition of order k: 

 

𝑦L(𝒈) = 𝑒" +<𝑒*(𝑔*)
*∈Z

+ < 𝑒*1,*2(𝑔*1, 𝑔*2)
*1@*2∈Z

+ ⋯+ < 𝑒*1,…,*CD𝑔*1,… , 𝑔*CE
*1@⋯@*C∈Z

. 

 

We find yk that minimizes the sample prediction error: 

 

𝑦sL = 𝑎𝑟𝑔𝑚𝑖𝑛 <[𝑦(𝒈) − 𝑦L(𝒈)]4
𝒈∈w

, (4) 
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where M is the set of sampled genotypes. Two questions arise: Is 𝑦sL  unique? Is 𝑦sL  an unbiased 

estimate of reference-free linear decomposition? The answer to the first question is no: Due to 

the degeneracy of generalized linear decomposition, there are many possible linear 

decompositions that minimize the prediction error for a given set of genotypes. However, we 

show in section 2.5.12.5 that any 𝑦sL  satisfying Eq. (4) can be normalized to simultaneously 

satisfy Eq. (4) and the zero-mean property—and there is exactly one such 𝑦sL . Furthermore, 𝑦sL  

thus obtained is an unbiased estimate of reference-free linear decomposition: The expected value 

of estimated terms equals the true value. 

If our goal is to use the estimated reference-free terms to accurately reconstruct the entire 

GP map, how many genotypes must we sample? The answer depends foremost on the simplicity 

of the GP map: Accurate reconstruction is possible only if the majority of genetic variance is due 

to terms of order low enough to be estimated from a practical sample size. A term of order k is 

involved in the phenotype of one in qk genotypes. If a term is not involved in the phenotype of 

any sampled genotype, there is no way to estimate its value from that sample. Therefore, 

estimating terms of order k by random sampling requires a sample size sufficiently greater than 

qk. If 50% of genetic variance is due to terms of order k or higher, reference-free terms estimated 

from qk or fewer samples cannot achieve prediction accuracy greater than 50%. By contrast, if 

90% of genetic variance is due to terms of order k or lower, a sample size on the order of qk may 

yield prediction accuracy near 90%. 

Another critical factor is the sparsity of the GP map. Consider a simple protein GP map 

in which most of the genetic variance is due to first- and second-order terms. For a 100-aa 

protein, there are still two million first- and second-order terms to estimate. If most of them have 

a non-negligible magnitude, accurate reconstruction of the GP map would require sampling 
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millions of genotypes. By contrast, if most of them are negligible and only a small fraction of 

them accounts for the majority of genetic variance, sparse learning methods can be used to 

identify and estimate the important terms from a much smaller number of genotypes. 

The key requirement for sparse learning is a sparse representation. One drawback of 

reference-free linear decomposition is that it is not maximally sparse. Consider the GP map of a 

single amino acid, in which the phenotype of alanine is 1 and that of every other amino acid is –

1. This is a sparse GP map in the sense that 19 out of 20 states are phenotypically equivalent. 

However, no term equals zero in the reference-free linear decomposition of this map: The term 

for alanine is 19/10 and that for every other amino acid is –1/10. In general, unless all terms for a 

site-combination are zero, the zero-mean property makes most of the terms non-zero; sparsity is 

sacrificed for interpretability. 

Among the infinitely many ways of linearly decomposing a GP map, how can we find 

one that is both sparse and optimal? We can learn that from data. Recall the above two-step 

estimation procedure: We find a linear decomposition that minimizes the sample prediction error 

without subjecting the terms to any constraint and then normalize the terms to enforce the zero-

mean property. We modify the first step by adding the lasso penalty: 

 

𝑦sL = argmin~<[𝑦(𝒈) − 𝑦L(𝒈)]4
𝒈∈w

+ 𝜆<|𝑒|�, 

 

where the second summation involves all non-intercept terms of yk. The lasso penalty selects the 

sparsest linear decomposition among those with equal model fit. The value of λ can be chosen by 

cross-validation to minimize the test-sample prediction error. Because this step searches among 
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all possible linear decompositions, the result is a balance of optimality and sparsity that leads to 

maximal prediction accuracy. The terms in the resulting 𝑦sL  cannot be interpreted, however, 

because we do not know what constraints they satisfy. The second step, by enforcing the zero-

mean property, provides the interpretability. 

Lastly, the dynamic range of measurement is also a critical factor determining the 

sampling depth required for reconstructing a GP map. If the phenotype of a sampled genotype is 

outside the dynamic range of measurement, we can only learn that the sum of a certain set of 

terms is greater or less than certain bounds. Therefore, limited dynamic range of measurement 

increases the sampling depth required for reconstructing a GP map. 

 

2.5.9   Robustness to measurement noise: Unstructured GP maps 

A GP map is unstructured if the phenotype of every genotype can be considered an 

independent sample from a random variable. An experimentally measured GP map is a 

superposition of a map of interest and an unstructured map generated by measurement error. 

Understanding how measurement error influences the estimation of reference-free linear 

decomposition from data requires understanding how reference-free linear decomposition treats 

unstructured maps. 

Consider an unstructured GP map generated by sampling each phenotype independently 

from a random variable ω. The result of linear decomposition will vary among such maps 

depending on the exact instantiation of the sampling process. We are interested in the expected 

result across all instantiations. Let Ω denote the set of all unstructured GP maps generated from 

ω. Recall that Vk is the fraction of total genetic variance due to all site-combinations of order k. 
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We show that the expected value of Vk is proportional to the degrees of freedom of k-th-order 

terms (sectopm 2.5.12.6): 

 

⟨𝑉L|Ω⟩ ∝ p
𝑛
𝑘r
(𝑞 − 1)L. 

 

In other words, each degree of freedom is expected to capture the same fraction of total genetic 

variance; the unstructured distribution of phenotype among genotypes is reflected in the 

unstructured distribution of genetic variance among the degrees of freedom. Since the majority 

of degrees of freedom belong to higher-order terms, an unstructured GP map is highly epistatic 

(but not maximally epistatic, as when all genetic variance is due to n-th-order terms). 

Let us now take ω as measurement error and consider the error expected in the 

calculation of individual reference-free terms from complete data. As shown in Appendix 6, the 

measurement variance of a term is given by 

 

𝑉𝑎𝑟(𝑒̂) =
(𝑞 − 1)o(S)

𝑞^ 𝑉𝑎𝑟(𝜔). 

 

This shows that the error involved in the measurement of individual terms is smaller than the 

error involved in the measurement of individual phenotypes (Var[ω]) and will in general be 

negligible for low-order terms. Reference-free linear decomposition is thus highly robust to 

measurement error; when reference-free terms are estimated from incomplete data, the dominant 

cause of error is sampling noise, not measurement error. 
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This is not true for every linear decomposition. For example, in reference-based linear 

decomposition, a term of order k is a sum or subtraction of 2k phenotypes. The error associated 

with its measurement is therefore 2k × Var(ω); this is always greater than Var(ω) and rises 

exponentially with order such that calculation from measurement is practically impossible for all 

but the first few orders. 

  

2.5.10   Modeling global nonlinearity 

A GP map may be a nonlinear transformation of a simple underlying GP map. It is 

inefficient to capture such global nonlinearity using linear decomposition, because even a simple 

global nonlinearity may require a large number of high-order terms; this would reduce the 

prediction accuracy and obscure the potentially simple structure of the GP map. Our regression-

based approach can be extended to account for global nonlinearity. We assume that the measured 

phenotype y is a nonlinear function ψ of a latent phenotype l: 

 

𝑦(𝒈) = 𝜓[𝑙(𝒈)]. 

 

ψ and a reference-free linear decomposition for l are jointly estimated by regression: 

 

𝜓�, 𝑙�L = argmin<{𝑦(𝒈) − 𝜓[𝑙L(𝒈)]}4
𝒈∈b

, 

 

with lasso penalty optionally added for sparse learning. This approach requires a parametric 

function to model ψ. In the absence of any prior knowledge about ψ, splines are the most flexible 
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option. However, as we showed in the main text, global nonlinearity in most experimental 

datasets can be effectively captured by a very simple function, the logistic curve: 

 

𝜓(𝑥) = 𝐿 +
𝑅

1 + 𝑒Q�. 

 

This function takes only two parameters: the lower bound L and the dynamic range R. (A general 

logistic function also has the midpoint and steepness parameters but they are redundant with the 

intercept and scale of the linear decomposition.) 

 

2.5.11   Relation to other formalisms 

We end by describing the relationship between reference-free linear decomposition and 

four other formalisms in use: reference-based and background-averaged linear decomposition, 

simplex encoding, and Fourier decomposition. 

In reference-based linear decomposition, each term represents the mutational effect of a 

state or state-combination with respect to a particular genotype. The formalism is useful for 

analyzing the local structure of a GP map around a particular genotype, but is not effective for 

learning the global structure of a GP map or predicting unobserved phenotypes. First, the 

formalism is not optimal; although it can be more accurate in the neighborhood of the reference 

genotype, its global accuracy is generally much lower than that of reference-free linear 

decomposition. Second, measurement of reference-based terms is highly sensitive to 

measurement error, as shown above. Third, reference-based terms cannot be accurately estimated 

by regression. For a regression estimate to be unbiased, the residual—the sum of unmodeled 

higher-order terms—must have an expected value of zero across sampled genotypes. This is true 
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for reference-free linear decomposition (Appendix 4), but is not guaranteed for reference-based 

linear decomposition; therefore, regression-based estimates of reference-based terms can be 

strongly biased by unmodeled higher-order terms. 

Simplex encoding captures the global structure of a GP map in the same way as does 

reference-free linear decomposition and is thus optimal. Simplex encoding is also economical, 

using the minimum number of terms necessary (total qn) in contrast to the extra number of terms 

in reference-free linear decomposition (total [q + 1]n). However, simplex encoding is difficult to 

intuit and complicated to implement; this is likely why it has only been applied to very small GP 

maps with only 2 or 4 states. In addition, simplex encoding is not maximally sparse; although 

this is also the case for reference-free linear decomposition, our sparse learning method based on 

generalized linear decomposition circumvents this problem. 

To illustrate the relationship between reference-free linear decomposition and simplex 

encoding, we consider a GP map of a single nucleotide. Reference-free linear decomposition of 

this map consists of five terms: the intercept e0 and the first-order terms e(A), e(C), e(G), and 

e(T). These terms are related to the phenotypes as 

 

𝑦(𝐴) = 𝑒" + 𝑒(𝐴),	

𝑦(𝐶) = 𝑒" + 𝑒(𝐶),	

𝑦(𝐺) = 𝑒" + 𝑒(𝐺),	

𝑦(𝑇) = 𝑒" + 𝑒(𝑇). 
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These equations and the zero-mean property uniquely determine the five terms. The simplex 

encoding of the same GP map consists of four terms: the intercept e0 and the first-order terms 

e(W), e(Y), and e(K). These terms are related to the phenotypes as 

 

𝑦(𝐴) = 𝑒" + 𝑒(𝑊) − 𝑒(𝑌) − 𝑒(𝐾),	

𝑦(𝐶) = 𝑒" − 𝑒(𝑊) + 𝑒(𝑌) − 𝑒(𝐾),	

𝑦(𝐺) = 𝑒" − 𝑒(𝑊) − 𝑒(𝑌) + 𝑒(𝐾),	

𝑦(𝑇) = 𝑒" + 𝑒(𝑊) + 𝑒(𝑌) + 𝑒(𝐾). 

 

These four equations uniquely determine the four terms. The relationship between reference-free 

linear decomposition and simplex encoding can be summarized as: 

 

�

𝑒(𝐴)
𝑒(𝐶)
𝑒(𝐺)
𝑒(𝑇)

� = �

1
−1
−1
1

		

−1
1
−1
1

		

−1
−1
1
1

� �
𝑒(𝑊)
𝑒(𝑌)
𝑒(𝐾)

�. 

 

Note that no matter what the values of e(W), e(Y), and e(K) are, e(A), e(C), e(G), and 

e(T) obtained by the above matrix multiplication satisfy the zero-mean property. Simplex 

encoding can be considered an efficient implementation of reference-free linear decomposition: 

The four linearly dependent first-order terms are encoded by three linearly independent terms in 

a way that guarantees the zero-mean property for the four terms. In general, the qk reference-free 

terms for a site-combination of order k can be encoded by (q – 1)k linearly independent terms in a 

way that guarantees the zero-mean property for the qk terms. The reduction in the number of 

terms can be substantial. For a GP map of all combinations of 2 states in 10 sites, reference-free 
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linear decomposition requires 310 = 59,049 terms, in contrast to the minimum necessary 1,024 

terms of simplex encoding. 

A drawback of simplex encoding (besides its formal complexity) is that it is not 

maximally sparse for multi-state GP maps. A GP map is sparse when some states and state-

combinations are phenotypically equivalent. In the example GP map, suppose A and C are 

phenotypically equivalent and that G and T are phenotypically distinct from A and C and from 

each other. This sparsity cannot be represented by setting the terms of simplex encoding to zero: 

To make e(A) = e(C) ≠ e(G) ≠ e(T), we must set e(W) = e(Y) ≠ 0. Conversely, sparsity in 

simplex encoding does not correspond to sparsity in the GP map: Setting e(W) = 0, for example, 

makes e(C) = –e(G) and e(A) = –e(T). Overall, unless all terms for a site-combination are zero, 

the economical encoding structure of simplex encoding makes most of the terms non-zero. 

Two-state GP maps are exceptions, for which sparsity in simplex encoding coincides 

with sparsity in GP map. In the simplex encoding of a two-state GP map, there is a single first-

order term for each site, which quantifies the phenotypic difference between the two states at that 

site. The phenotypic equivalence of the two states therefore corresponds to the term being zero. 

Similarly, the lack of epistatic interaction among a set of sites can be represented by setting the 

single term for that site-combination to zero. Simplex encoding offers the most optimal and 

sparse representation for two-state GP maps. We in fact used simplex encoding in our analysis of 

two-state experimental GP maps. 

Until recently, the formalism for the Fourier decomposition of a GP map has been 

available only for two-state GP maps. In that case, Fourier decomposition is identical to simplex 

encoding. Formalism for multi-state GP maps based on graph Fourier decomposition has 
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recently been developed; whether it retains its equivalence to simplex encoding remains to be 

shown. 

Lastly, background-averaged linear decomposition is a modification of reference-based 

linear decomposition: Each background-averaged term is the average of the corresponding 

reference-based term across all genetic backgrounds. For two-state GP maps, background-

averaged linear decomposition is optimal. Because the formalism has only been developed for 

two-state GP maps, whether it is optimal for multi-state GP maps is currently unknown. 

However, model sparsity for multi-state GP maps is expected to depend on the choice of 

reference states. In the example single-nucleotide GP map, model is sparse when A or C is 

chosen as the reference state, which makes the effect of A-to-C (or C-to-A) mutation zero, but 

alternative choices make none of the mutational effects zero. To use background-averaged linear 

decomposition for multi-state GP maps, a method for identifying the best set of reference states 

must be developed. 

 

2.5.12   Proofs for the key properties of reference-free linear decomposition 

2.5.12.1   Zero-mean property 

The zero-mean property of reference-free linear decomposition is that for any site-

combination (i1, …, ik), the mean of any q terms that vary across a single site is zero: 

 

𝑒*1,…,*C(∙, 𝑠4,… , 𝑠L) = 𝑒*1,…,*C(𝑠3,⋅, 𝑠i,… , 𝑠L) … = 𝑒*1,…,*C(𝑠3,… , 𝑠LQ3,∙) = 0, 
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for any state-combination (s1, …, sk). The zero-mean property is a defining feature of reference-

free linear decomposition, from which its useful properties proved in the next Appendices 

follow. We prove it by mathematical induction. 

Recall that 𝐺*.  is the set of all genotypes with state s in site i. 𝐺*3, 𝐺*4,… , 𝐺*
�  are 

nonoverlapping sets whose union is G. It follows that the summation Σ.∈eΣ𝒈∈N�� is equivalent to 

Σ𝒈∈N . Thus, 

 

𝑒*(⋅) =
1
𝑞<𝑒*(𝑠)
.∈e

	

=
1
𝑞<

[⟨𝑦|𝐺*.⟩ − ⟨𝑦|𝐺⟩]
.∈e

	

=
1
𝑞<

⟨𝑦|𝐺*.⟩
.∈e

− ⟨𝑦|𝐺⟩	

=
1
𝑞<

1
𝑞^Q3 < 𝑦(𝒈)

𝒈∈N�
�.∈e

− ⟨𝑦|𝐺⟩	

=
1
𝑞^<𝑦(𝒈)

𝒈∈N

− ⟨𝑦|𝐺⟩	

= 0. 

 

We now show that if the zero-mean property holds for terms of order k – 1, it also holds 

for terms of order k. Recall the definition 

 

𝑒*1,…,*C(𝑠3,… , 𝑠L) = 𝑒*2,…,*C(𝑠4,… , 𝑠L)|*1
.1 − 𝑒*2,…,*C(𝑠4, … , 𝑠L). 
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By the inductive hypothesis, the mean of the two (k – 1)-th-order terms on the right-hand side is 

0 across any site i2, …, ik. The mean of the k-th-order term is thus 0 across any site i2, …, ik. 

Conditioning on a site other than i1 shows that the mean of the k-th-order term is also 0 across i1. 

This completes the mathematical induction. 

 

2.5.12.2   Generalized linear decomposition. 

Let 𝑒*1,…,*C : 𝑄
L ⟼ ℝ be a function mapping k-tuples of states into real numbers. We refer 

to the following expression as the k-th-order generalized linear decomposition of a GP map: 

 

𝑦L(𝒈) = 𝑒" +<𝑒*(𝑔*)
*∈Z

+ < 𝑒*1,*2(𝑔*1, 𝑔*2)
*1@*2∈Z

+⋯+ < 𝑒*1,…,*CD𝑔*1,… , 𝑔*CE
*1@⋯@*C∈Z

. (A1) 

 

We showed that both reference-free and reference-based linear decomposition can be represented 

as above with suitable choices of e. We now argue that any linear decomposition of a GP map 

can be represented as above. The truth of this statement depends on what a linear decomposition 

of a GP map is. Below we define a linear decomposition of a GP map in the broadest possible 

sense and show that it can be represented as Eq. (A1). 

In the broadest sense, a linear decomposition of order 0 is any function that approximates 

the phenotype of every genotype by a constant. It can thus be represented as 

 

𝑦"(𝒈) = 𝑒". 

 

What is the broadest sense in which a function y1(g) is a first-order linear decomposition 

of a GP map? y1(g) should be able to use the information that g has the state gi in site i and 
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combine that information linearly across sites to determine the phenotype of g. It is not allowed, 

however, to use any information about what combination of states is found in what combination 

of sites. Any such function y1 can be written as 

 

𝑦3(𝒈) =<𝜆�(𝒈)
�

, 

 

where λj is a function defined as 

 

𝜆�(𝒈) =  
𝛼�,			𝒈 ∈ 𝐺*.

𝛽�,			𝒈 ∉ 𝐺*.
 

 

for some state s, some site i, and some real numbers αj and βj. In other words, y1 is a linear 

combination of an arbitrary number of functions, each of which can distinguish whether or not a 

genotype has a particular state in a particular site. 

For any such function y1, we can find a constant e0 and functions 𝑒*: 𝑄 ⟼ ℝ such that 

 

𝑦3(𝒈) = 𝑒" +<𝑒*(𝑔*)
*∈Z

. 

 

To prove this, we first sum all functions λ that distinguish whether or not 𝒈 ∈ 𝐺*. and write the 

sum as 

 

𝜆*.(𝒈) = ¤
𝛼*.,			𝒈 ∈ 𝐺*.

𝛽*.,			𝒈 ∉ 𝐺*.
. 
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y1 can be written as 

 

𝑦3(𝑔) =<𝜆�(𝒈)
�

	

=<<𝜆*.(𝒈)
.∈e*∈Z

	

=<<[𝜆*.(𝒈) − 𝛽*. + 𝛽*.]
.∈e*∈Z

	

=<<[𝜆*.(𝒈) − 𝛽*.]
.∈e*∈Z

+<<𝛽*.
.∈e*∈Z

. 

 

Note that 

 

𝜆*.(𝒈) − 𝛽*. = ¤
𝛼*. − 𝛽*.,			𝒈 ∈ 𝐺*.

0,			𝒈 ∉ 𝐺*.
 

 

and thus 

 

<[𝜆*.(𝒈) − 𝛽*.]
.∈e

= 𝛼*
M� − 𝛽*

M� . 

 

The following choice therefore completes the proof: 

 

𝑒" =<<𝛽*.
.∈e*∈Z

, 



 54 

𝑒*(𝑠) = 𝛼*. − 𝛽*.. 

 

Higher-order linear decompositions can be defined similarly. In the broadest sense, a 

second-order linear decomposition of a GP map can use the information that g has the state gi in 

site i and state-pair (𝑔*1, 𝑔*2) in site-pair (i1, i2), but cannot use any information about higher-

order combinations. Any such function y2 can be written as 

 

𝑦4(𝒈) =<𝜆�(𝒈)
�

+<𝜇L(𝒈)
L

, 

 

where λj is defined as above and µk is a function defined as 

 

𝜇L(𝒈) = ¦
𝛾L,			𝒈 ∈ 𝐺*1,*2

.1,.2

𝛿L,			𝒈 ∉ 𝐺*1,*2
.1,.2 

 

for some sites i1 and i2, some states s1 and s2, and some real numbers γk and δk. That is, y2 is a 

linear combination of an arbitrary number of functions, each of which can distinguish whether or 

not each genotype has a particular state or state-pair in a particular site or site-pair. For any such 

function y2, we can find a constant e0 and functions 𝑒*: 𝑄 ⟼ ℝ and 𝑒*1,*2: 𝑄
4 ⟼ ℝ such that 

 

𝑦4(𝒈) = 𝑒" +<𝑒*(𝑔*)
*∈Z

+ < 𝑒*1,*2(𝑔*1, 𝑔*2)
*1@*2∈Z

. 
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To prove this, we again sum all functions λ that distinguish whether or not 𝒈 ∈ 𝐺*. and 

write the sum as 

 

𝜆*.(𝒈) = ¤
𝛼*.,			𝒈 ∈ 𝐺*.

𝛽*.,			𝒈 ∉ 𝐺*.
, 

 

and similarly sum all functions µ that distinguish whether or not 𝒈 ∈ 𝐺*1,*2
.1,.2 and write the sum as 

 

𝜇*1,*2
.1,.2(𝒈) = ¦

𝛾*1,*2
.1,.2,			𝒈 ∈ 𝐺*1,*2

.1,.2

𝛿*1,*2
.1,.2,			𝒈 ∉ 𝐺*1,*2

.1,.2. 

 

Following a logic similar to above, we can choose 

 

𝑒" =<<𝛽*.
.∈e*∈Z

+ < < 𝛽*1,*2
.1,.2

.1,.2∈e*1@*2∈Z

, 

𝑒*(𝑠) = 𝛼*. − 𝛽*., 

𝑒*1,*2(𝑠3, 𝑠4) = 𝛾*1,*2
.1,.2 − 𝛿*1,*2

.1,.2. 

 

In general, a k-th-order linear decomposition of a GP map in the broadest sense is any function 

that can use information about the combination of states in any set of up to k sites and combine 

that information linearly across site-combinations to determine the phenotype. A logic similar to 

above can show that any such function can be written as Eq. (A1). 

 

2.5.12.3   Optimal linear decomposition. 
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Recall that any k-th-order linear decomposition of a GP map can be written as 

 

𝑦L(𝒈) = 𝑒" +<𝑒*(𝑔*)
*∈Z

+ < 𝑒*1,*2(𝑔*1, 𝑔*2)
*1@*2∈Z

+ ⋯+ < 𝑒*1,…,*CD𝑔*1,… , 𝑔*CE
*1@⋯@*C∈Z

. 

 

Here we show that reference-free linear decomposition minimizes the sum of squared 

error 

 

𝜖 = <[𝑦(𝒈) − 𝑦L(𝒈)]4
𝒈∈N

, 

 

for any order k. We prove this by showing that the partial derivative of ε with respect to each 

term is 0 when the terms are defined according to reference-free linear decomposition. Using e to 

denote any term, 

 

𝜕𝜖
𝜕𝑒 =

𝜕
𝜕𝑒<

[𝑦(𝒈) − 𝑦L(𝒈)]4
𝒈∈N

	

= <
𝜕
𝜕𝑒

𝒈∈N

[𝑦(𝒈) − 𝑦L(𝒈)]4	

= <−2[𝑦(𝒈) − 𝑦L(𝒈)]
𝜕
𝜕𝑒 𝑦L(𝒈)

𝒈∈N

. 
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The derivative of yk(g) with respect to e is 1 if yk(g) involves e and 0 otherwise. For example, for 

𝑒 = 𝑒*(𝑠), the derivative of yk(g) is 1 for all 𝒈 ∈ 𝐺*. and 0 for 𝒈 ∉ 𝐺*.. For 𝑒 = 𝑒*1,…,*C(𝑠3,… , 𝑠L), 

let Ge denote the set 𝐺*1,…,.C
.1,…,.C. Then, 

 

𝜕
𝜕𝑒 𝑦L

(𝒈) = ¤1,			𝒈 ∈ 𝐺S0,			𝒈 ∉ 𝐺S
. 

 

The partial derivative of ε is therefore 

 

𝜕𝜖
𝜕𝑒 = <−2[𝑦(𝒈) − 𝑦L(𝒈)]

𝜕
𝜕𝑒 𝑦L

(𝒈)
𝒈∈N

	

= −2 <[𝑦(𝒈) − 𝑦L(𝒈)]
𝒈∈N«

	

= −2𝑞^Qo(S)[⟨𝑦|𝐺S⟩ − ⟨𝑦L|𝐺S⟩], 

 

where O(e) is the order of e. The partial derivative is 0 when 

 

⟨𝑦|𝐺S⟩ = ⟨𝑦L|𝐺S⟩. 

 

In other words, an optimal linear decomposition of order k is that which accurately predicts the 

average phenotype of any sub-map defined by fixing up to k sites. We defined reference-free 

linear decomposition to achieve just that! To formally show this, we prove the following 

property of reference-free linear decomposition: 
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Lemma 1. Consider a site-combination (𝑗3, … , 𝑗­) and any combination of states therein, denoted 

by (𝑠�1, … , 𝑠�®). For any site-combination (𝑖3,… , 𝑖L), 

 

1
𝑞^Q­ < 𝑒*1,…,*C(𝑔*1, … , 𝑔*C)

𝒈∈N¯1,…,¯®
�¯1,…,�¯®

= ¤𝑒*1,…,*CD𝑠*1, … , 𝑠*CE,			(𝑖3, … , 𝑖L) ⊆ (𝑗3,… , 𝑗­)
0,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

 

That is, the summation is nonzero if and only if (i1, …, ik) is a subset of (j1, …, jl). This follows 

from the zero-mean property: If any site in (i1, …, ik) is outside the site-combination (j1, …, jl), 

the above summation involves summing across all q states in that site. 

Before proving Lemma 1, let us see how it helps us. Take any term 𝑒 =

𝑒�1,…,�®(𝑠�1, … , 𝑠�®), l ≤ k: 

 

⟨𝑦L|𝐺S⟩ =
1

𝑞^Q­ < 𝑦L(𝒈)

M∈N¯1,…,¯®
�¯1,…,�¯®

	

=
1

𝑞^Q­ < �𝑒" +<𝑒*(𝑔*)
*∈Z

+ < 𝑒*1,*2(𝑔*1, 𝑔*2)
*1@*2∈Z

+⋯

M∈N¯1,…,¯®
�¯1,…,�¯®

+ < 𝑒*1,…,*CD𝑔*1, … , 𝑔*CE
*1@⋯@*C∈Z

�. 

 

Due to Lemma 1, the sum for any site-combination (i1, …, im) that is not a subset of (j1, …, jl) is 

0. Therefore, using L to denote the set (1, 2, …, l), 
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⟨𝑦L|𝐺S⟩ = 𝑒" +<𝑒�[(𝑠�[)
\∈?

+ < 𝑒�[1,�[2(𝑠�[1, 𝑠�[2)
\1@\2∈?

+⋯

+ < 𝑒�[1,…,�[®T1 p𝑠�[1 ,… , 𝑠�[®T1r
\1@⋯@\®T1∈?

+ 𝑒�1,…,�®D𝑠�1, … , 𝑠�®E. 

 

This, by the definition of reference-free linear decomposition, equals 5𝑦6𝐺�1,…,�®
.¯1 ,…,.¯® 7 = ⟨𝑦|𝐺S⟩: 

 

5𝑦6𝐺�1,…,�®
.¯1,…,.¯® 7 = 5𝑦6𝐺�1,…,�®

.¯1,…,.¯® 7
(­Q3)

+ 𝑒�1,…,�®D𝑠�1, … , 𝑠�®E, 

 

5𝑦6𝐺�1,…,�®
.¯1 ,…,.¯® 7

(­Q3)

= 𝑒" +<𝑒�[(𝑠�[)
\∈?

+ < 𝑒�[1,�[2(𝑠�[1, 𝑠�[2)
\1@\2∈?

+ ⋯

+ < 𝑒�[1,…,�[®T1 p𝑠�[1,… , 𝑠�[®T1r
\1@⋯@\®T1∈?

. 

 

Proof of Lemma 1. 

Consider first the case when (𝑖3, … , 𝑖L) ⊆ (𝑗3,… , 𝑗­). Across the set 𝐺�1,…,�®
.¯1,…,.¯® , which 

consists only of genotypes with states 𝑠�1, … , 𝑠�®  in sites 𝑗3, … , 𝑗­, the term 𝑒*1,…,*C(𝑔*1, … , 𝑔*C) is a 

constant, 𝑒*1,…,*C(𝑠*1, … , 𝑠*C). This proves the first case of the lemma. 

Let us now assume that m sites in (𝑖3, … , 𝑖L) are outside (𝑗3, … , 𝑗­). We make our notation 

flexible so that the order of sites can be permuted: e.g., 𝑒*1,*2(𝑠3, 𝑠4) = 𝑒*2,*1(𝑠4, 𝑠3). We can then 

write 
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(𝑖3,… , 𝑖L) = (𝑥3,… , 𝑥LQµ, 𝑦3, … , 𝑦µ), 

 

where 𝑥3,… , 𝑥LQµ are inside (𝑗3,… , 𝑗­) and 𝑦3,… , 𝑦µ outside. 𝐺�1,…,�®
.¯1,…,.¯®  can be partitioned as 

 

𝐺�1,…,�®
.¯1,…,.¯® = ¶ 𝐺�1,…,�®,·1,…,·¸

.¯1,…,.¯®,¹1,…,¹¸

¹1,…,¹¸∈e

. 

 

Therefore, the summation Σ
𝒈∈N¯1,…,¯®

�¯1,…,�¯®  equals Σ¹1,…,¹¸∈eΣ𝒈∈N¯1,…,¯®,º1,…,º¸
�¯1,…,�¯®

,»1,…,»¸ . It follows then 

 

1
𝑞^Q­ < 𝑒*1,…,*CD𝑔*1, … , 𝑔*CE

𝒈∈N¯1,…,¯®
�¯1,…,�¯®

=
1

𝑞^Q­ < < 𝑒*1,…,*CD𝑔*1,… , 𝑔*CE

𝒈∈N¯1,…,¯®,º1,…,º¸
�¯1,…,�¯®

,»1,…,»¸¹1,…,¹¸∈e

	

=
1

𝑞^Q­ < < 𝑒�1,…,�CT¸,·1,…,·¸D𝑠�1, … , 𝑠�CT¸, 𝑡3,… , 𝑡µE

𝒈∈N¯1,…,¯®,º1,…,º¸
�¯1,…,�¯®

,»1,…,»¸¹1,…,¹¸∈e

	

=
𝑞­

𝑞^Q­ < 𝑒�1,…,�CT¸,·1,…,·¸D𝑠�1, … , 𝑠�CT¸, 𝑡3, … , 𝑡µE
¹1,…,¹¸∈e

	

= 0. 

 

The last equality follows from the zero-mean property. 

 

2.5.12.4   Variance partition 

Our goal is to show that the total genetic variance, 
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𝑉 = 𝑉𝑎𝑟(𝑦|𝐺) =
1
𝑞^<

[𝑦(𝒈) − ⟨𝑦|𝐺⟩]4
𝒈∈N

, 

 

can be decomposed into the effect-variance of each site-combination: 

 

𝑉 =<𝑉𝑎𝑟(𝑒*|𝑄)
*∈Z

+ < 𝑉𝑎𝑟D𝑒*1,*2n𝑄
4E

*1@*2∈Z

+⋯+ < 𝑉𝑎𝑟D𝑒*1,…,*Cn𝑄
LE

*1@⋯@*C∈Z

+ ⋯

+ 𝑉𝑎𝑟D𝑒3,…,^n𝑄^E. 

 

We write 𝒈 = (𝑔3, … , 𝑔^) and consider 𝑔* as a function that takes a value between 1 and q 

depending on the genotype 𝒈. For any genotype 𝒈 ∈ 𝐺, 

 

𝑦(𝒈) = 𝑒" +<𝑒*(𝑔*)
*∈Z

+⋯+ < 𝑒*1,…,*CD𝑔*1, … , 𝑔*CE
*1@⋯@*C∈Z

+⋯+ 𝑒*1,…,*c(𝑔3, … , 𝑔^). 

 

Substituting ⟨𝑦|𝐺⟩ = 𝑒" and decomposing y(g) as above, 

 

𝑉 =
1
𝑞^< �<𝑒*(𝑔*)

*∈Z

+⋯+ < 𝑒*1,…,*CD𝑔*1, … , 𝑔*CE
*1@⋯@*C∈Z

+ ⋯
𝒈∈N

+ 𝑒*1,*2,…,*c(𝑔3, 𝑔4, … , 𝑔^)�

4

. 

(A1) 

 

To simplify this equation, we prove the following lemma. 
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Lemma 2. For any two distinct site-combinations (𝑖3, … , 𝑖L) ≠ (𝑗3, … , 𝑗­), 

 

1
𝑞^< 𝑒*1,…,*CD𝑔*1,… , 𝑔*CE

𝒈∈N

𝑒�1,…,�®D𝑔�1, … , 𝑔�®E = 0. 

 

Before proving Lemma 2, let us check how it simplifies Eq. (A1). Recall that (∑ 𝑥** )4 = ∑ 𝑥*4* +

∑ 𝑥*𝑥�*,� . Therefore, under Lemma 2, Eq. (A1) simplifies to 

 

𝑉 =
1
𝑞^< �<𝑒*(𝑔*)4

*∈Z

+⋯+ < 𝑒*1,…,*CD𝑔*1, … , 𝑔*CE
4

*1@⋯@*C∈Z

+ ⋯+ 𝑒*1,*2,…,*c(𝑔3, 𝑔4, … , 𝑔^)
4�

𝒈∈N

. 

 

The set G can be expressed as the union 𝐺 = ⋃ 𝐺*1,…,*C
.1,…,.C

.1,…,.C∈e  for any state-combination (s1, …, 

sk) in any site-combination (i1, …, ik). Therefore, 

 

1
𝑞^< 𝑒*1,…,*CD𝑔*1,… , 𝑔*CE

4

𝒈∈N

=
1
𝑞^ < < 𝑒*1,…,*CD𝑔*1, … , 𝑔*CE

4

𝒈∈N�1,…,�C
�1,…,�C.1,…,.C∈e

	

=
1
𝑞^ < < 𝑒*1,…,*C(𝑠3,… , 𝑠L)

4

𝒈∈N�1,…,�C
�1,…,�C.1,…,.C∈e

	

=
1
𝑞^ < 𝑞^QL𝑒*1,…,*C(𝑠3, … , 𝑠L)

4

.1,…,.C∈e

	

=
1
𝑞L < 𝑒*1,…,*C(𝑠3,… , 𝑠L)

4

.1,…,.C∈e

	

= 𝑉𝑎𝑟D𝑒*1,…,*C|𝑄
LE. 
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This proves the variance partition formula. 

 

Proof of Lemma 2. 

We make our notation flexible so that the order of sites can be permuted: e.g., 

𝑒*1,*2(𝑠3, 𝑠4) = 𝑒*2,*1(𝑠4, 𝑠3). Assume m sites are shared between (𝑖3, … , 𝑖L) and (𝑗3, … , 𝑗­). We 

can write 

 

(𝑖3, … , 𝑖L) = (𝑎3, … , 𝑎µ, 𝑥3,… 𝑥LQµ), 

(𝑗3, … , 𝑗­) = (𝑎3,… , 𝑎µ, 𝑦3,… 𝑦­Qµ), 

 

where (𝑥3, …𝑥LQµ) ∩ (𝑦3, … 𝑦­Qµ) = ∅. We partition G as follows: 

 

𝐺 = ¶ ¶ ¶ 𝐺À1,…,À¸,�1,…,�CT¸,·1,…,·®T¸
.1,…,.¸,Á1,…,ÁCT¸,Â1,…,Â®T¸

Â1,…,Â®T¸∈eÁ1,…,ÁCT¸∈e.1,…,.¸∈e

. 

 

It then follows 

 

1
𝑞^< 𝑒*1,…,*CD𝑔*1,… , 𝑔*CE

𝒈∈N

𝑒�1,…,�®D𝑔�1, … , 𝑔�®E	

=
𝑞^Q(LR­Qµ)

𝑞^ < < < 𝑒*1…*C(𝑠3, … , 𝑠µ, 𝑢3,… , 𝑢LQµ)𝑒�1…�®(𝑠3, … , 𝑠µ, 𝑣3,… , 𝑣­Qµ)
Â1,…,Â®T¸∈eÁ1,…,ÁCT¸∈e.1,…,.¸∈e

	

=
1

𝑞LR­Qµ < < 𝑒*1…*C(𝑠3,… , 𝑠µ, 𝑢3, … , 𝑢LQµ) < 𝑒�1…�®(𝑠3,… , 𝑠µ, 𝑣3, … , 𝑣­Qµ)
Â1,…,Â®T¸∈eÁ1,…,ÁCT¸∈e.1,…,.¸∈e
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= 0. 

 

The last equality follows from the zero-mean property. A similar proof can be constructed for m 

= 0. 

 

2.5.12.5   Estimation by random sampling 

We estimate the terms of reference-free linear decomposition from a random sample of 

genotypes by a two-step procedure. First, we solve the following optimization problem: 

 

𝑦sL = 𝑎𝑟𝑔𝑚𝑖𝑛<[𝑦(𝒈) − 𝑦L(𝒈)]4
𝒈∈b

. (A3) 

 

For any solution 𝑦sL , we normalize the terms to simultaneously satisfy Eq. (A3) and the zero-

mean property. We show in Lemma 3 that this normalization is always possible. Given Lemma 

3, we show that normalized 𝑦sL  is an unbiased estimate of reference-free linear decomposition. 

To do so, we reformulate Eq. (A3) as a standard linear regression problem. Let y be a vector of 

sampled phenotypes and β a vector of linear decomposition terms, both arranged in any order. 

We write 

 

𝑦 = 𝑋𝛽 + 𝜖, (A4) 

 

where X is the design matrix specifying how the terms encode the phenotypes. The error ε is the 

sum of all unmodeled higher-order terms and measurement error. The solution to this linear 

regression is not unique because X is a singular matrix (due to the degeneracy of generalized 



 65 

linear decomposition). We make X non-singular by building in the zero-mean property. For 

example, we eliminate the column of X corresponding to 𝑒*(𝑞) by coding it as 

 

𝑒*(𝑞) = − < 𝑒*(𝑡)
¹∈e\�

. 

 

Similarly, we eliminate the column of X corresponding to 𝑒*1,*2(𝑠3, 𝑞) by coding it as 

 

𝑒*1,*2(𝑠3, 𝑞) = − < 𝑒*1,*2(𝑠3, 𝑡)
¹∈e\�

. 

 

In general, every term involving state q in any site can be eliminated by coding it as a 

linear combination of terms involving states 1 to q – 1 according to the zero-mean property. The 

design matrix thus obtained is non-singular and can be used to infer for all terms containing 

states 1 to q – 1. Estimates for terms containing state q can be calculated post-hoc using the zero-

mean property. The terms thus obtained are identical to the terms that would result from the two-

step procedure (due to Lemma 3). Given that least-squares estimates based on a non-singular 

design matrix is unique, this proves the uniqueness of normalized 𝑦sL . 

Finally, we show below that the expected value of the error ε in Eq. (A4) is zero across 

randomly sampled genotypes. Since the design matrix is non-singular and the errors are 

unbiased, by the Gauss-Markov theorem the regression estimates for terms containing states 1 to 

q – 1 are unbiased. The post-hoc estimates for terms containing state q are also unbiased because 

they are linear combinations of terms containing states 1 to q – 1. 

For a model of order k, the error for a genotype g is given by 
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𝜖(𝒈) = < 𝑒*1,…,*CÇ1D𝑔*1, … , 𝑔*CÇ1E
*1@⋯@*CÇ1∈Z

+⋯+ 𝑒3,…,^(𝑔3, … , 𝑔^). 

 

Since genotypes are randomly sampled, it suffices to show that the expected value of 𝜖 is zero 

across all genotypes: ⟨𝜖|𝐺⟩ = 0. We prove a stronger result: 

 

È𝑒*1,…,*Cn𝐺É =
1
𝑞^< 𝑒*1,…,*C(𝑔3, … , 𝑔L)

𝒈∈N

	

=
1
𝑞^ < < 𝑒*1,…,*C(𝑔3, … , 𝑔L)

𝒈∈N�1,…,�C
�1,…,�C.1,…,.C∈e

	

=
1
𝑞^ < < 𝑒*1,…,*C(𝑠3, … , 𝑠L)

𝒈∈N�1,…,�C
�1,…,�C.1,…,.C∈e

	

=
1
𝑞L < 𝑒*1,…,*C(𝑠3, … , 𝑠L)

.1,…,.C∈e

	

= 0. 

 

It follows that ⟨𝜖|𝐺⟩ = 0. 

 

Lemma 3. Post-hoc enforcement of zero-mean property. 

Consider enforcing the zero-mean property on a first-order linear decomposition without 

altering the predicted phenotypes (hereafter called “normalizing”). To normalize the terms for 

site i, we first subtract from each term the mean of all terms at site i: 
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𝛿*(𝑠) = 𝑒*(𝑠) − 𝑒*(⋅) ⟹ 𝛿*(⋅) = 0. 

 

Using 𝛿*(𝑠) in place of 𝑒*(𝑠) alters the predicted phenotype of every genotype by −𝑒*(⋅). This 

can be corrected by adding 𝑒*(⋅) to the intercept. Overall, the following modifications normalize 

any first-order linear decomposition: 

 

𝛿*(𝑠) = 𝑒*(𝑠) − 𝑒*(⋅),	

𝛿" = 𝑒" +<𝑒*(⋅)
*∈Z

. 

 

Similarly, the following modifications normalize any second-order linear decomposition: 

 

𝛿*1,*2(𝑠3, 𝑠4) = 𝑒*1,*2(𝑠3, 𝑠4) − 𝑒*1,*2(⋅, 𝑠4) − 𝑒*1,*2(𝑠3,⋅) + 𝑒*1,*2(⋅,⋅),	

𝛿*(𝑠) = [𝑒*(𝑠) − 𝑒*(⋅)] + < 8𝑒*,�(𝑠,⋅) − 𝑒*,�(⋅,⋅):
�∈Z\*

,	

𝛿" = 𝑒" +<𝑒*(⋅)
*∈Z

+ < 𝑒*1,*2(⋅,⋅)
*1@*2∈Z

. 

 

For any third-order linear decomposition: 

 

𝛿*1,*2,*Ë(𝑠3, 𝑠4, 𝑠i)

= 𝑒*1,*2,*Ë(𝑠3, 𝑠4, 𝑠i) − 8𝑒*1,*2,*Ë(⋅, 𝑠4, 𝑠i) + 𝑒*1,*2,*Ë(𝑠3,⋅, 𝑠i) + 𝑒*1,*2,*Ë(𝑠3, 𝑠4,⋅):

+ 8𝑒*1,*2,*Ë(⋅,⋅, 𝑠i) + 𝑒*1,*2,*Ë(⋅, 𝑠4,⋅) + 𝑒*1,*2,*Ë(𝑠3,⋅,⋅): − 𝑒*1,*2,*Ë(⋅,⋅,⋅), 
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𝛿*1.*2(𝑠3, 𝑠4) = 𝑒*1,*2(𝑠3, 𝑠4) − 8𝑒*1,*2(⋅, 𝑠4) + 𝑒*1,*2(𝑠3,⋅): + 𝑒*1,*2(⋅,⋅)

+ < 8𝑒*1,*2,*Ë(𝑠3, 𝑠4,⋅) − 𝑒*1,*2,*Ë(⋅, 𝑠4,⋅) − 𝑒*1,*2,*Ë(𝑠3,⋅,⋅) + 𝑒*1,*2,*Ë(⋅,⋅,⋅):
*Ë∈Z\*1,*2

, 

 

𝛿*(𝑠) = [𝑒*(𝑠) − 𝑒*(⋅)] + < 8𝑒*,�(𝑠,⋅) − 𝜖*�(⋅,⋅):
�∈Z\*

+ < 8𝑒*,�,L(𝑠,⋅,⋅) − 𝜖*,�,L(⋅,⋅,⋅):
�@L∈Z\*

, 

 

𝛿" = 𝜖" +<𝑒*(⋅)
*∈Z

+ < 𝑒*1,*2(⋅,⋅)
*1@*2∈Z

+ < 𝑒*1,*2,*Ë(⋅,⋅,⋅)
*1@*2@*Ë∈Z

. 

 

Normalization formulae for a higher-order linear decomposition can be found by a similar logic. 

Directly applying normalization formulae for higher-order linear decompositions can be 

cumbersome. We describe a simple alternative. We first normalize the highest-order terms (order 

k) without correcting for the altered phenotypes. This can be done by Eq. (A5) below. Then, let 

yk denote the phenotype predicted by the original linear decomposition and zk the phenotypic 

contribution of the normalized k-th-order terms. We must modify the lower-order terms so that 

their total phenotypic contribution is yk – zk. This can be done by using regression to find a linear 

model of order k – 1 whose predicted phenotype is yk – zk. Such a linear model exists because 

post-hoc enforcement of zero-mean constraint is always possible. Terms of order k – 1 can then 

be normalized, using regression to find a linear model of order k – 2 that corrects for the altered 

phenotypes. 

To show how terms of order k can be normalized, we introduce a 

notation:	𝑒*1,…,*C(𝑠3, … , 𝑠L)�1,…�®  denotes the mean of 𝑒*1,…,*C(𝑠3, … , 𝑠L) across sites j1, …, jl. For 

example, 
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𝑒*1,…,*C(𝑠3,… , 𝑠L)*1 = 𝑒*1,…,*C(⋅, 𝑠4,… , 𝑠L),	

𝑒*1,…,*C(𝑠3, … , 𝑠L)*1,*2 = 𝑒*1,…,*C(⋅,⋅, 𝑠i, … , 𝑠L). 

 

Normalization of second-order terms can be restated as 

 

𝛿*1,*2(𝑠3, 𝑠4) = 𝑒*1,*2(𝑠3, 𝑠4) − < 𝑒*1,*2(𝑠3, 𝑠4)*[
\∈(3,4)

+ < 𝑒*1,*2(𝑠3, 𝑠4)*[1,*[2
\1@\2∈(3,4)

. 

 

Denoting the set (1, …, k) by K, terms of order k can be normalized by 

 

𝛿*1,…,*C(𝑠3, … , 𝑠L) = 𝑒*1,…,*C(𝑠3, … , 𝑠L) +<(−1)­
­∈]

< 𝑒*1,…,*C(𝑠3,… , 𝑠L)*[1,…,*[®
\1@⋯@\®∈]

. (A5) 

 

2.5.12.6   Unstructured GP maps 

Recall that the contribution of a reference-free term e to the total genotypic variance is 

𝑒4 𝑞o(S)⁄ . Our goal is to calculate the expected value of e2 when the GP map is generated by 

sampling each phenotype independently from a random variable ω. We write the expected value 

as ⟨𝑒4|Ω⟩, where Ω is the set of all GP maps generated from ω. Below we show that 

  

⟨𝑒4|𝛺⟩ =
(𝑞 − 1)o(S)

𝑞^ 𝑉𝑎𝑟(𝜔). (A6) 

 

Since the genotypic variance due to all terms of order k is 
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𝑉L = < 𝑉𝑎𝑟(𝑒*1,…,*C
*1@⋯@*C∈Z

|𝑄L) = <
1
𝑞L < 𝑒*1,…,*C(𝑠3, … , 𝑠L)

4

.1,…,.C∈e*1@⋯@*C∈Z

, 

 

it follows from Eq. (A6) that   

 

⟨𝑉L|Ω⟩ = <
1
𝑞L <

(𝑞 − 1)L

𝑞^ 𝑉𝑎𝑟(𝜔)
.1,…,.C∈e*1@⋯@*C∈Z

= p
𝑛
𝑘r
(𝑞 − 1)L

𝑞^ 𝑉𝑎𝑟(𝜔) ∝ p
𝑛
𝑘r
(𝑞 − 1)L. 

 

We prove Eq. (A6) by mathematical induction. Without loss of generality, we assume the 

expected value of ω to be 0. The expected value of any average phenotype is then 0 and thus that 

of any reference-free term: ⟨𝑒|Ω⟩ = 0. We now calculate 𝑉𝑎𝑟(𝑒|Ω) = ⟨𝑒4|Ω⟩ − ⟨𝑒|Ω⟩4 =

⟨𝑒4|Ω⟩. 

We first consider the intercept: 

 

𝑉𝑎𝑟(𝑒"|Ω) = 𝑉𝑎𝑟 ` 1𝑞^ ∑ 𝑦(𝒈)𝒈∈N 6Ωa		

=
1
𝑞4^< 𝑉𝑎𝑟[𝑦(𝒈)|Ω]

𝒈∈N

	

=
𝑉𝑎𝑟(𝜔)
𝑞^ . 

 

This is Eq. (A6) for the case O(e) = 0. Let us now assume that Eq. (A6) holds for terms of order 

k – 1. First, recall the expression 
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𝑒*1,…,*C(𝑠3,… , 𝑠L) = 𝑒*2,…,*C(𝑠4,… , 𝑠L)|*1
.1 − 𝑒*2,…,*C(𝑠4, … , 𝑠L), 

 

which writes a term of order k as a function of terms of order k – 1. We prove that for any 𝑗 ≠

𝑖3, … , 𝑖L , 

 

𝑒*1,…,*C(𝑠3, … , 𝑠L) =
1
𝑞<𝑒*1,…,*C(𝑠3, … , 𝑠L)|�

¹

¹∈e

. (A7) 

 

That is, a term of order k for the complete map G is the average of the same term calculated for 

the sub-maps defined by conditioning on any site outside the k focal sites. Before proving Eq. 

(A7), let us see how it helps us: 

 

𝑒*1,…,*C(𝑠3,… , 𝑠L) = 𝑒*2,…,*C(𝑠4,… , 𝑠L)|*1
.1 − 𝑒*2,…,*C(𝑠4,… , 𝑠L)	

= 𝑒*2,…,*C(𝑠4,… , 𝑠L)|*1
.1 −

1
𝑞<𝑒*2,…,*C(𝑠4, … , 𝑠L)|*1

¹

¹∈e

	

=
𝑞 − 1
𝑞 𝑒*2,…,*C(𝑠4,… , 𝑠L)|*1

.1 −
1
𝑞 < 𝑒*2,…,*C(𝑠4, … , 𝑠L)|*1

¹

¹∈e\.1

. 

 

Note that the q terms 𝑒*2,…,*C(𝑠4, … , 𝑠L)|*1
¹ , t = 1, …, q, are probabilistically independent of each 

other because they involve genotypes from disjoint sub-maps. Furthermore, 

 

𝑉𝑎𝑟8𝑒*2,…,*C(𝑠4,… , 𝑠L)nΩ: = 𝑉𝑎𝑟 `1𝑞 ∑ 𝑒*2,…,*C(𝑠4,… , 𝑠L)|*1
¹

¹∈e 6𝐺a	

=
1
𝑞 𝑉𝑎𝑟

8𝑒*2,…,*C(𝑠4, … , 𝑠L)|*1
¹ nΩ:, 
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where t in the last term can be any one of the q states. This implies that for any such t, 

 

𝑉𝑎𝑟8𝑒*2,…,*C(𝑠4, … , 𝑠L)|*1
¹ nΩ: = 𝑞 × 𝑉𝑎𝑟8𝑒*2,…,*C(𝑠4, … , 𝑠L)nΩ: =

𝑞(𝑞 − 1)LQ3

𝑞^ 𝑉𝑎𝑟(𝜔). 

 

From the aforementioned probabilistic independence, it follows that 

 

𝑉𝑎𝑟8𝑒*1,…,*C(𝑠3, … , 𝑠L)nΩ: = ÏÐ
𝑞 − 1
𝑞 Ñ

4

+
𝑞 − 1
𝑞4

Ò ×
𝑞(𝑞 − 1)LQ3

𝑞^ 𝑉𝑎𝑟(𝜔)	

=
(𝑞 − 1)L

𝑞^ 𝑉𝑎𝑟(𝜔). 

 

We now turn to proving Eq. (A7). We can rewrite ei(s) purely in terms of averaged phenotypes: 

 

𝑒*(𝑠) = ⟨𝑦|𝐺*.⟩ − ⟨𝑦|𝐺⟩. 

 

Similarly, 

 

𝑒*1,*2(𝑠3, 𝑠4) = 5𝑦6𝐺*1,*2
.1,.27 − 5𝑦6𝐺*1

.17 − 5𝑦6𝐺*2
.27 + ⟨𝑦|𝐺⟩. 

 

In general, 
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𝑒*1,…,*C(𝑠3, … , 𝑠L)

= 5𝑦6𝐺*1,…,*C
.1,…,.C7 − < 5𝑦6𝐺*[1,…,*[CT®

.[1,…,.[CT®7
\1@⋯@\CT1∈]

+ < 5𝑦6𝐺*[1,…,*[CT2
.[1,…,.[CT27

\1@⋯@\CT2∈]

− ⋯. 

 

More compactly, 

 

𝑒*1,…,*C(𝑠3, … , 𝑠L) = < (−1)LQ­ < 5𝑦6𝐺*[1,…,*[®
.[1,…,.[®7

\1@⋯@\®∈]"Ó­ÓL

. 

 

What is important for us is that 𝑒*1,…,*C(𝑠3, … , 𝑠L) is a linear combination of the average 

phenotype of every possible sub-map of G defined by fixing the states at one or more of the k 

sites i1, …, ik. Any such average phenotype can be decomposed by fixing the state at another site 

𝑗 ≠ 𝑖3, … , 𝑖L . For example, 

 

5𝑦6𝐺*1
.17 =

1
𝑞<5𝑦6𝐺*1,�

.1,¹7.
¹∈e

 

 

Therefore, 

 

𝑒*1,…,*C(𝑠3,… , 𝑠L) =
1
𝑞< < (−1)LQ­ < 5𝑦6𝐺*[1,…,*[®,�

.[1,…,.[®,¹7
\1@⋯@\®∈]"Ó­ÓL¹∈e

	

=
1
𝑞<𝑒*1,…,*C(𝑠3,… , 𝑠L)|N¯»
¹∈e

. 
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Chapter 3 

Epistatic drift causes gradual decay of predictability in protein evolution 

This work was published as “Yeonwoo Park, Brian P. H. Metzger, and Joseph W. Thornton, 

Epistatic drift causes gradual decay of predictability in protein evolution. Science 376, 823-830 

(2022).” 

 

3.1   Summary 

Epistatic interactions can make the outcomes of evolution unpredictable, but no 

comprehensive data are available on the extent, direction, rate, and consequences of changes in 

the effects of mutations as protein sequences evolve. Here we characterize the temporal 

dynamics of epistatic change by using deep mutational scanning to measure the functional effect 

of every possible amino-acid mutation in a phylogenetic series of reconstructed ancestral and 

extant proteins, using the steroid receptor DNA-binding domain as a model. Across a 700-

million-year historical trajectory, the effects of most mutations became completely or partially 

decorrelated from their initial effects. Epistatic interactions caused windows of evolutionary 

accessibility for most mutations to open and close transiently, shaping the historical fate not only 

of the mutations that fixed during history but also the far greater number that never did. Most 

mutations’ effects evolved under Brownian motion: gradual change without directional bias, at a 

rate that was largely constant across time but varied dramatically among mutations, indicating a 

neutral process caused by many weak interactions. Protein sequences therefore drift inexorably 

into contingency and unpredictability, but that process itself is statistically predictable, given 

sufficient phylogenetic and experimental data. 
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3.2   Introduction 

A mutation’s evolutionary fate depends on its phenotypic effects. If the effects are stable 

over time, knowledge of them in the present can help predict the future course of evolution and 

explain the causes of evolutionary change in the past. Epistatic interactions, however, may cause 

a mutation’s effects to change over time and its evolutionary accessibility to become contingent 

on the particular sequence changes that preceded it during history (7, 55). 

Despite a recent tide of information about epistatic interactions within proteins, we lack a 

comprehensive understanding of changes in the effects of mutations (the set of all potential 

amino-acid changes) caused by interactions with substitutions (the subset of mutations that fix 

during evolution). What fraction of mutations change in their effects over evolutionary time, and 

how drastically? Do they change gradually or episodically, and at what rate? What are the 

consequences for evolutionary outcomes? Deep mutational scanning (DMS) experiments have 

detected epistasis among mutations within present-day proteins (11–13, 42–44, 46), but these 

studies do not address interactions with historical substitutions or reveal changes in mutations’ 

effects over evolutionary time. Some mutations have different effects when introduced into 

various present-day proteins, implying epistatic interactions with the substitutions that occurred 

as these proteins diverged from each other (16–18, 20, 21), but without polarizing and calibrating 

these differences with respect to time, it is not possible to illuminate the rate, direction, or 

regularity of the process by which mutations’ effects changed during evolution. Ancestral protein 

reconstruction studies have shown that the effects of particular mutations changed during 

particular phylogenetic intervals (23, 25–27, 29, 30, 56, 57), but these works have examined only 

the beginning and end of an interval and therefore cannot reveal the temporal dynamics of 

epistasis. 
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Here we address this knowledge gap by using DMS to comprehensively assess the effect of 

introducing every possible amino-acid mutation into a series of reconstructed ancestral and 

extant proteins along a densely sampled phylogenetic trajectory. We used as a model the DNA-

binding domain (DBD) of steroid hormone receptors, a family of essential transcription factors in 

bilaterian animals that mediate the actions of sex and adrenal steroids by binding to specific 

DNA sequences and regulating the expression of target genes (58–60). This approach allowed us 

to measure changes in the functional effect of every possible amino-acid mutation during a series 

of defined intervals across 700 million years of DBD evolution. To analyze these data, we 

developed a quantitative framework that treats each mutation’s effect as a trait that evolves 

probabilistically on a phylogeny, which we used to characterize the temporal dynamics, 

evolutionary consequences, and underlying genetic architecture of epistatic interactions. 

 

3.3   Results 

3.3.1   Phylogenetic deep mutational scanning 

We first inferred the phylogeny of steroid and related receptors (Fig. 3.1A and A1.1) and 

reconstructed the maximum a posteriori protein sequences of 7 ancestral DBDs: the ancient 

progenitor protein whose duplication and divergence gave rise to the first steroid receptor 

(AncNR3), the ancestor of all extant steroid receptors (AncSR, which existed in the ancestor of 

all bilaterians), and 5 descendants of AncSR along two lineages – one leading to human 

glucocorticoid receptor (GR) and the other to the steroid receptor of the annelid Capitella teleta, 

which are among the most diverged of all functionally characterized extant DBDs (Fig. 3.1B and 

A1.2). These 9 DBDs are separated by 8 phylogenetic intervals, each involving 3 to 42% 



 77 

sequence divergence. We constructed a yeast strain carrying a GFP reporter driven by a DNA 

response element for these DBDs and confirmed that all reconstructed ancestral DBDs bind to it, 

as expected based on prior studies (60). GFP fluorescence in this strain correlates well with 

binding affinity previously measured using fluorescence anisotropy (Fig. A1.4D). 

For each of the 7 ancestral and 2 extant DBDs, we generated a library of variants that 

contains all 19 possible amino-acid mutations at all 76 sites (Fig. A1.3). We used a bulk assay of 

fluorescence-activated cell sorting (FACS) coupled with deep sequencing to quantify the GFP 

fluorescence of each variant with very high repeatability (r2 = 0.99 across 3 replicates; Fig. 3.1C, 

A1.4, and A1.5). We calculated the effect of a mutation as the difference in the mean log10-GFP 

fluorescence (∆F) between variants that differ by a single amino acid; we applied this approach 

to all mutations from the wild-type amino acid in any of the 9 DBDs to all other 19 amino acids.  

Differences in the effect of a mutation between successive nodes on the phylogeny (∆∆F) 

indicate that the mutation interacts with historical substitutions that occurred during that interval 

(Fig. 3.1D). We normalized mutations’ effects to remove global background-dependence caused 

by different wild-type activity levels (Fig. A1.6); after this correction, differences in a mutation’s 

effect among the 9 DBDs are attributable to specific epistatic interactions with intervening 

substitutions on the phylogeny. 
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Figure 3.1. Phylogenetic deep mutational scanning. (A) Phylogeny of the DNA-binding 
domain (DBD) of steroid and related receptors. Circles, DBDs characterized here by deep 
mutational scanning. SRs, steroid receptors; ERs, estrogen receptors; kSRs, ketosteroid 
receptors—including glucocorticoid receptor (GR). Complete phylogeny in fig. S1. (B) 
Phylogenetic relations among the 9 characterized DBDs. Colors distinguish trajectories to C. 
teleta SR and human GR. Sequence divergence (percent) and number of sequence differences 
(parentheses) in each interval are shown. (C) Sort-seq assay for DBD activity. For each DBD, a 
library containing all possible single-amino acid mutations was generated using microarray-
based synthesis and cassette assembly (fig. S3) and cloned into yeast carrying a GFP reporter; 
ERE, estrogen response element. Activity of each mutant was measured by sorting the library of 
cells into fluorescence bins, inferring the distribution of each mutant among bins by sequencing, 
and calculating the mean log10-GFP fluorescence (F). Hypothetical distributions for 3 variants 
with high, medium, and low F are shown. (D) Tracing epistatic change in mutational effect 
across the phylogeny using example mutation S9P. The effect on each DBD’s activity (points) 
was quantified as the change in mean log10-GFP fluorescence (∆F). Horizontal axis, each DBD 
in order on the phylogeny, positioned by sequence divergence and colored by trajectory. ∆∆F, 
change in the mutations effect between a pair of DBDs, caused by epistatic interactions with 
intervening substitutions. Error bars, SEM (n = 3). Dashed lines, upper and lower measurement 
bounds. 
 

3.3.2   Pervasive random changes in the effects of mutations 

To analyze the evolutionary dynamics of epistasis over time, we adapted a classic 

quantitative framework for modeling trait evolution on phylogenies (61, 62), including the 

extent, direction, and rate of evolutionary change of the trait, the underlying genetic architecture, 

and the relative roles of selection and genetic drift. Our approach treats the phenotypic effect of 
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each mutation as a trait that changes probabilistically across phylogenetic intervals, allowing us 

to ask these questions about epistatic change during historical DBD evolution. 

Sixty percent of all mutations display significantly different effects among the 9 

backgrounds, and 22% differ in the direction of their effects (FDR ≤ 0.1; Fig. 3.2A). Most of the 

mutations that show no evidence of epistasis destroy protein function regardless of genetic 

background (∆F always at the lower bound of measurement, –1.3). Only 5% of mutations have a 

nondestructive effect that did not vary significantly across the phylogeny. 

Epistatic changes occurred during all 8 phylogenetic intervals (Fig. 3.2B and A1.7A). 

Even in the shortest interval – during which there were only two sequence substitutions – the 

effects of more than 200 mutations changed significantly. During the other intervals, even more 

mutations changed in effect. On average, each substitution is associated with significant changes 

in the effects of about 60 mutations (Fig. A1.7B). 

These epistatic changes were unbiased over time. Changes in the effects of mutations 

(∆∆F) are distributed almost symmetrically around 0 (mean = –0.01; Fig. 3.2C). The fraction of 

mutations that reduce activity was nearly constant among the 9 intervals, as was the fraction of 

mutations that destroy activity (Fig. 3.2D). No individual mutations had effects that changed 

with a significant bias in either direction over time (Fig. A1.7C). These data indicate that 

directional selection did not drive long-term epistatic changes in the effects of mutations, and 

mutational robustness did not change systematically over time. Further, the variance of the 

distribution of ∆∆F in each interval increased linearly with sequence divergence, rather than 

plateauing (Fig. 3.2, E and F), suggesting no role for stabilizing selection to maintain the effects 

of mutations within defined limits. 
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Figure 3.2. Pervasive random changes in the effects of mutations. (A) Maximum and 
minimum effect of each mutation (points) across the 9 DBDs, colored according to the stacked 
column at right, which shows the proportion of mutations in four categories: pink, significant 
effect of DBD background on ∆F and the sign of ∆F different between the maximum and 
minimum; red, significant effect of background but no sign difference; black, no significant 
effect of background and ∆F within measurement limits; blue, ∆F at the lower bound of 
measurement in all 9 DBDs. Significance was evaluated by Welch’s ANOVA, Benjamini-
Hochberg FDR ≤ 0.1. (B) Number of mutations in each phylogenetic interval that changed 
significantly in ∆F (t-test between parent and child node, FDR ≤ 0.1), plotted versus the number 
of amino acids that diverged in the interval. (C) Distribution of epistatic change in the effect of 
every mutation during every phylogenetic interval (∆∆F). Dark grey, ∆∆F significantly different 
from 0. Mutations always at the lower bound of measurement were excluded. (D) Fraction of 
mutations in each DBD with ∆F < 0 (circles) or ∆F at the lower bound of measurement 
(triangles). (E) Distribution of ∆∆F of all mutations for the protostome-annelid interval or the 
AncSR1-human GR interval. The variance of the distribution (Var) quantifies the total epistatic 
change in the effects of all mutations during an interval. d, sequence divergence. (F) Total 
epistatic change as a function of sequence divergence across the phylogeny. Red dots, each of 
the 8 independent phylogenetic intervals between characterized DBDs; black, all composite 
intervals. Dashed lines, best-fit power function for all (black) or the 8 independent intervals 
(red). 
 

3.3.3   The effects of most mutations drifted gradually 

To test whether epistatic change was gradual or episodic, we fit probabilistic models of 

trait evolution to the trajectory of changes in the effect of each mutation. Brownian motion 
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represents a simple model of gradual evolution at a constant rate without directional bias: 

changes in the trait value among phylogenetic intervals are normally distributed when 

normalized for the length of the interval, with a mean change of zero and constant variance per 

unit sequence divergence (which represents the rate of evolution). In the alternative model of 

episodic evolution, the normalized variance is a free parameter for each interval, which allows 

the rate to differ among intervals (Fig. 3.3A). We fit both models to the 8 ∆∆F values of each 

mutation and used a likelihood-ratio test to compare the fit of the two models. 

We found that the Brownian motion model was the best-fit model for 92% of mutations 

that changed epistatically (Fig. 3.3, B and C), irrespective of whether mutations’ effects changed 

rapidly or slowly (Fig. 3.3D). For the 8% of mutations best fit by the episodic model, effects 

were nearly constant in most intervals with dramatic changes during one or a few intervals. The 

functional effects of most mutations therefore evolved as a random variable that changes 

gradually along the phylogeny at a characteristic rate and without bias. We call this process 

epistatic drift. 

Phylogenetic cross-validation confirmed that the effects of most mutations evolved at a 

steady rate across the phylogeny (Fig. 3.3E). For each mutation, we predicted the epistatic 

change expected in each of the 8 intervals given the rate of epistatic change estimated from the 7 

other intervals and then compared these predictions to experimental observations, pooling 

mutations with similar estimated rates (Fig. 3.3F). Predicted and observed epistatic changes were 

strongly correlated (Spearman’s ρ ≥ 0.94 for every interval; Fig. 3.3G), indicating that mutations’ 

relative rates of epistatic change did not strongly vary along the phylogeny. The absolute rate of 

epistatic change, however, was systematically faster than predicted in some intervals and slower 

in others: the mean rate of epistatic change for all mutations in each interval ranges from 0.7 to 
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1.4 of the average across the phylogeny (Fig. 3.3H). Epistatic change in the effect of each 

mutation therefore varies stochastically across intervals (consistent with Brownian motion), but 

this variation is correlated among mutations; as a result, the total amount of epistatic change 

across all mutations is systematically greater in some intervals than others. This pattern is likely 

to arise because the total epistatic change depends on the particular substitutions that fixed 

during an interval, and some substitutions are more epistatic than others, interacting more 

strongly or with a larger number of mutations. The mean rate of epistatic change was not 

systematically different during intervals following gene duplications. 

These observations have two major implications for evolution and the genetic 

architecture of epistatic interactions (Fig. 3.3I). First, epistatic interactions within the DBD are 

dense: most mutations’ effects changed gradually because of weak interactions with many 

substitutions, and each substitution typically modified the effects of many mutations (Fig. 3.2B). 

If most epistatic changes were triggered by rare, large-effect modifiers, the distribution of ∆∆F 

would be enriched near zero and at extreme values, a pattern that we observed for only a small 

fraction of mutations. Most historical contingency is therefore the cumulative result of many 

small-effect epistatic modifications. Against this background of gradual epistatic drift, a few 

mutations occasionally undergo dramatic changes in their effects.  

Second, some mutations are more epistatically sensitive than others, with effects that 

diverged more rapidly as substitutions accumulated. Conversely, some substitutions are more 

epistatic than others, changing the effects of more target mutations or causing changes of greater 

magnitude. As a result, there are systematic differences among intervals in the average rate of 

epistatic change across all mutations. 
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Figure 3.3. Effects of most mutations changed gradually at characteristic rates. (A) Models 
of the tempo of epistatic change. Null model, the amount of change in a mutation’s effect per 
substitution in an interval (unit ∆∆F) is randomly drawn from a normal distribution centered at 0; 
the variance is the same among intervals, so the mutation’s effect changes gradually at a constant 
expected rate as substitutions accrue. Alternative model, the variance may differ among 
phylogenetic intervals (blue vs. red), leading to episodic changes in a mutation’s effect. (B) 
Distribution of the p-value of the likelihood-ratio test (LRT) comparing gradual and episodic 
models for each mutation. Darker grey, mutations for which the gradual model is rejected (FDR 
≤ 0.2). Mutations always at the lower bound of measurement were excluded from this analysis. 
(C) Distribution of the normalized amount of epistatic change in each interval, for all mutations 
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better fit by the gradual model (left) or the episodic model (right). Normalized ∆∆F, ∆∆F of a 
mutation in an interval divided by σd1/2, where σ is that mutation’s average rate of epistatic 
change and d is the length of the interval. Gray columns, observed data; red line, distribution 
expected under the null model. (D) Trajectory of changes in the effect of two example mutations 
that are better fit by the gradual model (left) or episodic model (right); in each category, one 
evolves rapidly and the other slowly. Each mutation’s p-value in the LRT is shown; gray box, 
normalized changes in the mutation’s effect across each of the 8 intervals. (E) Phylogenetic 
cross-validation. In the example shown, ∆∆F in interval 1 is predicted from the average rate of 
epistatic change measured across intervals 2-8 (grey box). (F) Distribution of observed ∆∆F 
during interval 1 (gray columns) and predicted by cross validation (red line). Mutations were 
grouped into deciles by their rate of epistatic change across intervals 2-8; predictions are shown 
for deciles with the slowest, median, or fastest rates. (G) Mutations’ relative rates of epistatic 
change are consistent across phylogenetic intervals. Points, deciles of mutations grouped by the 
predicted rate of epistatic change; observed epistatic change in an plotted against that predicted 
by cross-validation. r, Pearson’s correlation coefficient; ρ, Spearman’s rank correlation; dashed 
line, linear regression. (H) Among-interval differences in average rate of epistatic change. Each 
column shows the mean rate of epistatic change of all mutations in one phylogenetic interval, 
normalized so that the mean across all intervals equals 1. Error bars, estimated standard deviation 
obtained by bootstrap-resampling of mutations. Asterisks, intervals immediately following gene 
duplication. (I) Inferring the architecture of epistatic interactions between substitutions (black 
boxes) and a focal mutation (star) from phylogenetic DMS. Left, gradual changes in the 
mutation’s effect during evolution arise if many substitutions act as epistatic modifiers (arrows, 
with thickness showing the strength of interaction), yielding a normal distribution of ∆∆F per 
substitution. Right, episodic changes arise from interactions with only a few substitutions, 
yielding a distribution heavy at zero and the tails. In either case, strong vs. weak interactions 
cause rapid (top) vs. slow (bottom) epistatic change. The fraction of all mutations in each 
category in our experiments is shown. 
 

3.3.4   Mutations vary in memory length and the timescale of contingency 

Because the effect of each mutation drifts at random at a steady rate, there should be a 

characteristic time period after which the mutation’s effect can no longer be reliably predicted 

from its known effect at some other time. We call this period the mutation’s memory length, the 

measure of which is the memory half-life – the amount of sequence divergence over which the 

correlation of a mutation’s effect is reduced by half. To estimate the memory half-life, we 

partitioned mutations into deciles by their rate of epistatic change and calculated for each decile 

how correlated the effects of mutations are between each pair of DBDs (Fig. 3.4, A to D). We 

modeled the correlation coefficient as an exponentially decaying function of sequence 
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divergence. We then used this relationship to estimate the memory half-life of each mutation 

from its rate of epistatic change. 

Reflecting the wide variation in the rate of epistatic change among mutations, memory 

half-lives range from just 3% sequence divergence to virtually infinite (Fig. 3.4E). Mutations 

with the shortest half-lives therefore forget the effects they had in the past after just a few 

sequence substitutions at other sites: at any moment, their effect and likely fate depend primarily 

on the substitutions that occurred most recently during their history. 

Relative to the timescale of DBD evolution, about one fourth of all mutations have short 

memories (half-life < 50% sequence divergence); in this group, the effects in present-day human 

GR are almost completely independent of their initial effects in AncSR (r2 = 0.10, Fig. 3.4F). 

20% of mutations have medium memory (half-life 50 to 200%), with present-day effects that can 

be partially predicted from their initial effects (r2 = 0.68). The remaining 54% of mutations have 

long memories (>200% divergence) and interacted negligibly with historical substitutions, 

retaining their initial effects throughout DBD evolution (r2 = 0.98). 
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Figure 3.4. Memory length of mutations and the timescale of historical contingency. (A-D) 
Measuring the memory length of mutations. (A) Mutations were grouped into deciles by their 
rate of epistatic change (σ, expected standard deviation of ∆∆F per 1% sequence divergence). (B) 
The effects of mutations in each decile were compared between every pair of DBDs; shown are 
comparisons between AncSR and human GR (42% divergence). (C) The squared Pearson 
correlation coefficient (r2) for each DBD pair was plotted against the sequence divergence of that 
pair. Dotted line, best-fit exponential decay curve; memory half-life, sequence divergence at 
which r2 = 0.5. (D) Relationship between the rate of epistatic change and memory half-life 
inferred by fitting a power function (red) to the mean rate of epistatic change and memory half-
life of the deciles. This relationship was used to calculate the memory half-life of each mutation 
from its rate of epistatic change. E) Distribution of memory half-life among mutations. 
Mutations were classified into short-, medium-, and long-memory categories using cutoffs of 
50% and 200% divergence. (F) Comparing the effects of mutations between AncSR and human 
GR (42% divergence) for each memory category. Red dots, mutations with significant difference 
in ∆F (t-test, FDR ≤ 0.1); black, no significant difference. 
 

3.3.5   Contingency of historical sequence evolution 

We next focused on the subset of mutations that occurred during historical DBD 

evolution. We first assessed the functional effects of the 79 substitutions that occurred during the 
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phylogenetic intervals that we experimentally characterized (Fig. 3.5, A and B). When measured 

in the ancestral background in which they historically occurred, substitutions that reduce activity 

by ∆F < –0.2 were nearly absent; of the few exceptions, most fixed during intervals immediately 

after gene duplication (Fig. A1.8A). This represents a 29-fold depletion compared to the set of all 

mutations, the majority of which have ∆F < –0.2. These results imply that the DBD evolved 

primarily under purifying selection against mutations that strongly reduce activity, and they 

establish ∆F = –0.2 as a boundary that roughly defines the evolutionary accessibility of 

mutations under purifying selection. 

Epistasis shaped the fate of most historical substitutions, which occurred during limited 

windows when they were transiently accessible. Of all substitutions that fixed between AncSR 

and any extant steroid receptor on our phylogeny, 43% have short or medium memories (Fig. 

3.5C). Among the short-memory substitutions, the majority were inaccessible in AncSR (∆FAncSR 

< –0.2), implying that they became accessible in one or more descendant proteins because of 

permissive epistatic substitutions, which render otherwise deleterious mutations neutral or 

advantageous. The remaining short-memory substitutions were accessible in AncSR (∆FAncSR ≥ –

0.2), but almost all of these became subsequently inaccessible because of restrictive 

substitutions, which render previously neutral or advantageous substitutions deleterious (fig. 

S8B). By contrast, 95% of long-memory substitutions were accessible in AncSR and remained 

so across the entire phylogeny (Fig. A1.8B). Medium-memory substitutions displayed an 

intermediate pattern. The evolutionary fate of long-memory substitutions could therefore have 

been reliably predicted from their initial effects, but the accessibility of substitutions with short 

or medium memory depended on other substitutions that occurred during history. 
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Epistasis also shaped the fate of the many mutations that did not become substitutions. Of 

all short-memory mutations that were accessible in AncSR, 90% became inaccessible in one or 

more descendant proteins, indicating that evolutionary paths to them were closed by restrictive 

substitutions (Fig. 3.5D). Conversely, 55% of the short-memory mutations that were inaccessible 

in AncSR subsequently became accessible because of permissive substitutions. Overall, two-

thirds of short-memory mutations and one-third of medium-memory mutations changed in 

accessibility among the 9 DBDs we tested, with each category of mutations being accessible in 

2.4 and 4.9 of the 9 DBDs on average (Fig. 3.5E). 

These data indicate that epistatic interactions with the particular set of substitutions that 

occurred along the phylogeny contingently determined the evolutionary fate not only of the 

mutations that fixed historically because of permissive substitutions, but also of those that did 

not have the opportunity to fix because of restrictive substitutions. Studying only the sequence 

changes that occurred during evolution therefore underestimates the role of historical 

contingency: doing so cannot detect the many evolutionary roads that were closed off 

contingently, but which could have been taken if the trajectory of sequence changes at 

interacting sites had unfolded differently. 
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Figure 3.5. Impact on sequence evolution of memory length and initial functional effect. (A) 
The effect of a substitution at the time it fixed during history was calculated as the mean of ∆Fs 
measured by DMS in the nearest ancestral and descendant nodes. (B) Comparing the effects of 
the 79 substitutions that occurred along the phylogenetic trajectories we characterized to the 
effects of all possible mutations. Substitutions are 29-fold enriched for ∆F ≥ –0.2 compared to 
mutations, providing an estimate of the threshold of accessibility during DBD evolution. (C) 
Distribution of the initial effect (∆F on AncSR) of 275 substitutions that fixed between AncSR 
and any extant DBD in our phylogeny. Distributions are shown by memory half-life category. 
Enrichment of substitutions with ∆F ≥ –0.2 relative to mutations is shown. (D) Left, proportion 
of initially accessible mutations (∆FAncSR ≥ –0.2) that become inaccessible in at least one 
descendant DBD. Right, proportion of initially inaccessible mutations that become accessible in 
at least one descendant DBD. (E) Distribution of the number of characterized DBDs in which 
each mutation is accessible (∆F ≥ –0.2), classified by memory-length category. The percentage 
of mutations that were accessible in some but not all DBDs is shown. 
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3.3.6   Causes of variation in memory length  

Finally, we sought to identify the factors that determine a mutation’s memory length. 

Some variation in memory length is attributable to the sequence site at which a mutation occurs: 

the median memory half-life of mutations to any of the 19 mutant states at the same site varies 

among sites from 11% to >200% divergence (Fig. 3.6A). But this variation is not associated with 

any obvious structural or functional properties: the median memory half-life of a site is poorly 

correlated with relative solvent accessibility, rate of substitution, rate of substitution at physically 

adjacent sites, distance to the DNA-binding residues, and distance to the dimerization interface 

(r2 < 0.1 for every factor; Fig. A1.9). Further, memory length varies extensively within each site, 

with 59 of 76 sites in the DBD containing both short- and long-memory mutations. As a 

consequence, predicting a mutation’s memory half-life by the median of all mutations at that site 

achieves r2 of only 0.25 (Fig. 3.6B). 

Another possibility is that certain types of mutations (to and from the same pair of states) 

might be consistently associated with memory length, irrespective of the sites at which they 

occur. But predicting the memory length of individual mutations from the median memory 

length of all mutations of the same type at any site achieved r2 of only 0.13 (Fig. 3.6C). 

Explaining memory length variation therefore requires analysis of each particular mutation at 

each site in the protein.  

Estimating a mutation’s memory length requires experiments in multiple genetic 

backgrounds across a phylogenetic trajectory. But how many backgrounds are necessary? When 

the rate of epistatic change of mutations is estimated from 2 backgrounds randomly chosen from 

the 9 we assayed, the correlation with the rate measured using all 9 backgrounds is on average r2 
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= 0.40, and the rate of epistatic change is systematically underestimated (Fig. 3.6, D and E). The 

correlation improves as more backgrounds are sampled and reaches 0.8 when estimates are based 

on 5 backgrounds. A moderate number of experiments is therefore sufficient to provide a rough 

estimate of a mutation’s rate of epistatic change and hence its memory length.  

 

 

Figure 3.6. Variation of memory half-life of mutations among and within sites. (A) 
Distribution of memory half-life among sites. Each line shows the range of memory half-life of 
all mutations at one site in the DBD sequence. (B-C) Predicting the memory half-life of a 
mutation (points) by the median memory half-life of all possible mutations at the same site (B) or 
by the median of mutations of the same type (between the same wild type and mutant amino 
acid) at all sites (C). Dashed line, linear regression. (D-E) Effect of number of DBDs 
characterized by DMS on estimates of rate of epistatic change. The rate of epistatic change of 
every mutation was estimated using a subset of the 9 DMS experiments; the relationship between 
the estimated rate from each subset to that estimated from all 9 experiments was analyzed by 
linear regression. The graphs show the distribution of correlation coefficient (D) and best-fit 
regression slope (E) across every possible subset of a given size. 
 

3.3.7   Robustness to uncertainty in ancestral sequence reconstruction 
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Our conclusions are robust to uncertainties in the reconstruction of ancestral sequences. 

The ancestral DBDs were generally inferred with high confidence and contained zero to 10 sites 

at which more than one amino acid state is plausible. For each ancestral DBD, we generated an 

“Alt-All” reconstruction, which contains the alternative plausible amino acid at all ambiguously 

reconstructed sites (63); this sequence represents the least likely of all plausible reconstructions 

and allows a conservative estimate of robustness to sequence uncertainty. We then constructed a 

complete DMS library of each Alt-All protein and repeated all of our experiments and analyses. 

Although the effects of some mutations differ between the Alt-All and maximum-posterior-

probability reconstructions, all conclusions concerning the temporal dynamics of epistasis were 

unchanged (Fig. A1.10). 

 

3.4   Discussion  

Prior experimental studies have identified cases in which the functional effects of a few 

mutations changed dramatically during particular intervals of evolutionary history (8, 21, 23–27). 

Our observations show that such rare, large-effect epistatic modifications occur against a 

background of pervasive gradual drift in the effects of the majority of mutations (20, 29, 64–69). 

Most epistatic changes across DBD history were of small magnitude when they occurred, but 

across an evolutionary trajectory of moderate length (<50% sequence divergence), they were 

sufficient to completely or partially decorrelate the effects of the majority of mutations from their 

initial effects and dramatically alter the set of available opportunities for future sequence change. 

Because the fold and function of all proteins depend on interactions among many residues, we 

expect that epistatic drift will be a widespread feature of protein evolution, but the temporal 
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dynamics and distribution of memory lengths may depend on each protein’s structural 

architecture, function, and the selective regime under which it evolved.  

Our findings establish strong limits on the ability to predict future evolution and interpret 

evolutionary history, but they also provide a quantitative framework for understanding those 

limits. Classical evolutionary theories assume that the constraints imposed by purifying selection 

do not change as sequences diverge, so the effects and evolutionary fate of mutations can be 

predicted or retroactively inferred based on their effects measured in the present. Our results 

show that this assumption of constancy and independence is wrong for about half of DBD 

mutations, which have short or medium memories. Because epistatic modification occurs at a 

mostly constant rate for each mutation, however, an estimate of memory length from 

experimental data across phylogenetic time can quantify the extent to which any mutation’s 

effect can be predicted at any point in time, either future or past. Further, although point 

projections of the effects of short- and medium-memory mutations across long timescales are 

unreliable, a probability distribution of those effects can be generated if we know any mutation’s 

memory length and its effect at some other time. Ancestral protein reconstruction can replace 

predictions with experimental knowledge, but only for proteins in the past. 

A probabilistic description of contingency and uncertainty using memory length does not 

require detailed knowledge of the particular genetic interactions that cause epistatic change.  If 

we had microscopic knowledge of all the interactions that modify each mutation’s effect and a 

dense phylogenetic reconstruction of past trajectories of sequence change, we could reliably 

predict the effect of every possible mutation in any genetic background. But even complete 

knowledge like this would not be sufficient to predict future evolutionary trajectories: the 

accessibility of each future mutation depends on the chain of epistatic substitutions that occur 
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before it, many of which will occur by chance. We can use experimental and phylogenetic data 

to tame evolutionary uncertainty by recognizing and quantifying it, but the future will always 

surprise. 

 

3.5   Methods 

3.5.1   Phylogenetics and ancestral sequence reconstruction 

We focused on reconstructing the trajectories leading from AncNR3 to C. teleta SR and human 

GR because they are among the most diverged of functionally characterized extant SRs and can 

therefore let us trace epistatic changes over a large span of sequence divergence. We expanded a 

previously inferred phylogeny of steroid and related receptors (5, 70) by sampling additional 

sequences from protostomes to break the long branch leading to C. teleta SR. To sample from 

species without high-quality genome assemblies, we de novo assembled transcripts from 

transcriptome data available in the NCBI SRA database. To selectively assemble SR transcripts, 

we used TBLASTN to extract RNA-seq reads with similarity to C. teleta SR; reads were then 

assembled using Velvet/Oases (71, 72), and protein-coding regions were identified using 

TransDecoder (73). 

DBD amino-acid sequences were aligned using MUSCLE (74). DBD sequences are short 

and therefore contain limited signal of phylogenetic relationship, so we used a constrained 

maximum likelihood (ML) strategy. We imposed as a constraint the topology previously inferred 

from full-length receptor sequences (5, 70) and inferred the placement of the newly sampled 

sequences on this topology by ML using RAxML (v 8.2.11) (75). All branch lengths and 

substitution parameters were optimized using the best-fit model of sequence evolution under the 

Akaike information criterion, which was the LG substitution matrix with ML amino acid 
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frequencies and a four-category gamma-distributed among-site rate variation (LG+X+G). Two 

modifications were made to the resulting constrained ML phylogeny to reflect established 

taxonomic relationships: 1) Annelid and mollusk SRs were grouped together to the exclusion of 

priapulid SRs; 2) Magelona berkeleyi and M. pitelkai SRs were grouped together as the basal-

branching annelid SRs, in accordance with phylogenomic analyses (76). Branch lengths and 

model parameters were then reoptimized, and the resulting phylogeny (shown in Fig. A1.1) was 

used for ancestral sequence reconstruction. 

 The maximum a posteriori (MAP) ancestral sequences and the distribution of posterior 

probability over states at each site were inferred using PAML (v 4.8a) (77). The 7 ancestral 

nodes were well-reconstructed, with the posterior probability of the MAP state averaged across 

all sites ranging from 0.90 to 1.00 among the 7 nodes (Fig. A1.2). A site was considered 

ambiguously reconstructed if an alternative state has posterior probability (PP) greater than one-

fourth the PP of the MAP state. Of the 7 ancestral DBDs, one was ambiguously reconstructed at 

zero sites and one contained a single ambiguous site; the others contained 2 to 10 ambiguous 

sites. To test whether our findings are robust to statistical uncertainty in the reconstruction of 

ancestral proteins, we generated the “Alt-All” reconstruction for each of the 5 nodes with 

multiple ambiguous sites. The Alt-All sequence contains the MAP state at all unambiguously 

reconstructed sites and the alternative plausible amino acid at every ambiguous site; among the 

ensemble of plausible reconstructions, Alt-All is the most distant from the MAP sequence and 

therefore allows a conservative test of robustness of functional inference to statistical uncertainty 

about the ancestral sequence (63). 

We generated libraries containing every possible amino-acid mutation at every site in the 

DBD, using each of the reconstructed MAP and Alt-All proteins, C. teleta SR, and human GR as 
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genetic background. All of these proteins bind to an inverted palindrome of AGGTCA (estrogen 

response element, ERE) except for human GR, which binds to AGAACA (78). To investigate 

how historical substitutions during long-term DBD evolution changed the effect of every point 

mutation on a single function, we used a version of human GR that contains 3 mutations in its 

recognition helix that revert these sites to their ancestral states, yielding a protein (GR-3rh) that 

binds to ERE (60). 

 

3.5.2   Design of comprehensive point mutant libraries 

We developed a specific and cost-efficient method for generating all point mutants for 

multiple genetic backgrounds (Fig. A1.3). DBD is 76 amino acids in length, so the library for 

each background contains 76 × 19 = 1,444 mutants. To produce libraries containing all desired 

point mutants with low error rate, we divided the DBD coding sequence into four cassettes of 

approximately equal length. We then used array synthesis to produce an oligonucleotide pool 

containing all point mutants for each cassette for each protein. Each cassette pool was assembled 

together with a sequence-verified wild-type version of the three other cassettes for that protein. 

Compared to array-synthesizing full-length coding sequences, the cassette strategy reduces the 

error rate by a factor of four and increases the expected fraction of error-free sequences from 

approximately 10% to 60%. 

To reduce synthesis cost, we used degenerate oligonucleotides. At each site, all 19 

amino-acid mutants were encoded using the following 8 codons: NAG, NAT, NCG, NCT, NGG, 

NGT, NTG, and NTT. This set of codons is equivalent to NNK encoding. Compared to uniquely 

encoding each amino acid with a separate oligonucleotide, this strategy reduces the number of 
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oligonucleotides for synthesis by more than half and allows us to synthesize oligonucleotides 

required for all backgrounds in one standard 12,472-feature microarray (CustomArray). 

To assemble each mutant oligonucleotide with the appropriate wild-type sequence, each 

cassette in each DBD was synthesized with a unique pair of primer-binding sites. This allowed 

us to specifically amplify the variants of any desired cassette in any DBD background out of the 

total pool of synthesized oligonucleotides. Cassettes and wild-type sequences were then 

assembled using type IIS restriction-ligation: each fragment was synthesized to contain 

recognition sequences for particular type IIS restriction enzymes, which cut DNA outside the 

recognition site and thereby allow a seamless coding sequence to be recovered upon ligation. 

To reduce the probability that variants are misassigned because of post-assay sequencing 

errors, we added synonymous differences to differentiate similar variants from each other, using 

a strategy we developed to do so as parsimoniously as possible. This “color barcoding” strategy 

increases the Hamming distance h between all mutants to ≥2, which makes it impossible for a 

single sequencing error to cause misassignment. Our procedure first generates a graph in which 

each mutant is a node and two mutants are connected if their Hamming distance h = 1. Colors 

are then assigned to the nodes in the graph, using as few colors as possible so that no connected 

nodes share the same color; mutants of the same color are separated by h > 1 and need not be 

further differentiated. Synonymous differences are then introduced into all nodes that share the 

same color; this differentiates nodes of different colors from each other without adding distance 

between nodes that already have h > 1. To further prevent misassignment, we also redundantly 

synthesized every mutant by identifying two residues that contain a four-fold degenerate amino 

acid (A, G, L, P, R, S, T, or V) and encoding that mutant using all 16 synonymous codons at 

these sites. 
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After assembly, the libraries of mutant DBDs were cloned into the expression vectors 

described below and transformed into NEB 5-alpha Electrocompetent E. coli. We obtained >106 

unique transformants per DBD, equivalent to >600-fold coverage of the library. 

We used deep sequencing to evaluate the quality of the assembled libraries (Fig. A1.3, C 

to E). We found that every desired mutant was represented for every genetic background. The 

read counts of mutants were distributed tightly around the median (95% of mutants with a read 

count within 7-fold of the median). 53% of reads were free of error. As expected, errors occurred 

predominantly at the microarray-derived sites rather than within the wild-type cassettes.  

 

3.5.3   High-throughput functional characterization using sort-seq 

3.5.3.1   Improved fluorescence reporter assay for steroid receptor DBD activity 

We improved a previously developed fluorescence reporter assay (14), in which a 

galactose-inducible DBD expression vector is transformed into yeast cells carrying an ERE-

driven genomically integrated GFP (Fig. A1.4A). The first improvement was to increase the 

assay’s precision by boosting signal and reducing noise caused by variation in the DBD 

expression level. Constitutive expression of DBD is cytotoxic, necessitating conditional 

induction, but the original version of the assay used a yeast strain with a defective galactose 

induction pathway, resulting in slow, weak, and noisy expression of DBD. We engineered a new 

yeast strain from a recently isolated, minimally modified S. cerevisiae strain (YPS1000 MATa 

ho::KMX) (79), which displays a robust galactose response. We replaced the KMX gene in the 

HO locus with a cassette containing a yeast-enhanced GFP under control of a minimal CYC1 

promoter containing four repeats of ERE (AGGTCAcagTGACCT) and the hygromycin 
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resistance gene (HYG) for selection. Correct genomic integration was verified by Sanger 

sequencing. 

The second improvement was to account for the fact that yeast cells frequently lose the 

DBD expression vector. Although derived from the pRS413 plasmid containing a centromeric 

sequence, we found that even under antibiotic selection 30-50% of cells in a culture lack the 

expression vector. We therefore engineered an expression vector that allows us to isolate 

plasmid-carrying cells from those that lost it. Using pRS413 as backbone, we used the galactose-

inducible bidirectional promoter pGAL1/GAL10 to simultaneously express DBD and mCherry. 

The DBD and mCherry expression levels are tightly correlated (Fig. A1.4B), allowing the 

isolation of plasmid-carrying cells based on mCherry fluorescence. As in the original version of 

the assay, DBD is expressed as a C-terminal fusion to the SV40 nuclear localization peptide and 

Gal4 transcriptional activation domain. The expression vector is maintained under G418 

selection. The expression vector, named pDBD2, was assembled using Gibson assembly and 

verified by Sanger sequencing. 

To validate this new assay, we cloned 10 previously characterized DBD variants into 

pDBD2 and transformed each construct into the new reporter strain using the lithium 

acetate/single-stranded carrier DNA/polyethylene glycol method. Single transformant colonies 

were inoculated in 3 mL YPD supplemented with 200 µg/mL G418 (YPD+G418). After 

overnight growth at 30°C, 225 rpm, cells were back-diluted to 0.25 OD600 in 3 mL YPGal 

supplemented with 200 µg/mL G418 (YPGal+G418). After 6 hr of incubation at 30°C, 225 rpm, 

0.5 mL culture was pelleted, washed with PBS, and resuspended in 0.5 mL PBS. Flow cytometry 

was performed using BD LSR Fortessa 4-15. Singlet cells within a conservative size range were 

isolated by gating on FSC-A/SSC-A and FSC-H/FSC-A plots. mCherry-positive cells were 
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isolated under 488 nm excitation and 640 nm emission. GFP fluorescence of these cells was 

measured under 488 nm excitation and 561 nm emission, taking the mean log10-fluorescence of 

10,000 cells as readout. Segmented linear regression of mean fluorescence to ERE affinity 

previously measured by fluorescence anisotropy using purified DBD (39) shows a high 

correlation (Fig. A1.4D). 

 

3.5.3.2   Large-scale yeast transformation 

High-throughput functional characterization was performed for 20 DBD libraries, of 

which 14 are included in this study. The 20 libraries were pooled in equimolar ratio and 

transformed into the yeast reporter strain following a standard yeast electroporation protocol. A 

series of 7 transformations yielded 5.8 × 106 unique transformants, corresponding to >100-fold 

coverage of the libraries. 200 OD600·mL of transformed cells (~109 cells) were harvested in 1.5 

mL of 25% glycerol, flash-frozen in liquid N2, and stored at –80°C. 

Sort-seq requires each cell to express exactly one DBD variant. It was previously shown that the 

approximately dozen cell divisions between transformation and sorting are sufficient to resolve 

multiple transformants for a pRS413-based expression vector (14). 

 

3.5.3.3   Fluorescence-activated cell sorting 

The 200 OD600·mL glycerol stock of transformed cells was thawed on ice, inoculated in 

200 mL YPD supplemented with 25 µg/mL chloramphenicol (YPD+chlor), and recovered for 2 

hr at 30°C, 225 rpm. Serial dilution and plating of an aliquot showed that ~4 × 107 cells were 

alive after recovery, well-above the number of unique transformants (5.8 × 106). 200 µg/mL 

G418 was added after recovery and cells were further grown for 17 hr at 30°C, 225 rpm; 50 
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OD600·mL of cells were washed in PBS and transferred to 200 mL YPGal+G418+chlor and 

grown for 6 hr. All cells were then pelleted, washed with PBS, and resuspended in 20 mL PBS 

for sorting. 

We performed 3 replicate sort-seq experiments. For each experiment, two 200 OD600·mL 

glycerol stocks were prepared as above, 3 hr apart. Cells from the first stock were sorted for 3 hr 

and then cells from the second stock were sorted for 3 hr. Sorting was performed using BD 

FACSAria II. Singlet, mCherry-positive cells were isolated by gating as described above and 

sorted into equal-width bins spanning the range of log10-GFP fluorescence (488 nm excitation 

and 561 nm emission, divided by FSC-A to normalize for cell size). We used 12 bins for the first 

replicate but found that using 6 bins would have yielded essentially identical results; 8 bins were 

used for the second and third replicates. Table S2 lists the number of cells sorted in each sort-seq 

experiment. After 3 hr of sorting, cells were seeded in YPD+G418+chlor at 106 cells per 10 mL 

and grown overnight at room temperature, 225 rpm, until OD600 ~3. Keeping the cells at this 

density (logarithmic growth phase) ensures the relative proportion of mutants in the overnight 

culture to mirror those immediately after sorting, which is necessary for accurately inferring the 

mean fluorescence by deep sequencing. 5 OD600·mL of overnight culture per 106 seeded cells 

was pelleted; plasmids were extracted using the protocol of ref. (80), using one column for every 

10 OD600·mL of culture. Quantitative PCR showed that plasmid extraction was almost perfectly 

efficient, yielding ~108 copies per 10 OD600·mL culture. 

 

3.5.3.4   Deep sequencing 

We used Illumina NextSeq 2 × 150 nt paired-end sequencing for single coverage of the 

DBD coding sequence. A critical determinant of Illumina sequencing quality is nucleotide 
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diversity. When reads have very similar sequences, difficulties in cluster identification lead to 

suboptimal data-quality and low yield. To increase nucleotide diversity, we generated 8 types of 

amplicons. The sequenced portion of each amplicon begins with 3, 4, 5, or 6 degenerate 

nucleotides (N) and ends with 7, 6, 5, or 4 Ns (total 10 Ns per amplicon). This ensures that both 

the forward and reverse reads begin with maximal nucleotide diversity and the internal sites, due 

to frameshift, to also exhibit increased diversity. Furthermore, amplicons were oriented so that 

sequencing proceeds from the N- to C-terminus of the DBD for 4 amplicons types and the 

reverse direction for the other four. We also followed Illumina’s recommendation to spike in 

PhiX library at 25% final concentration. Overall, these strategies resulted in excellent sequencing 

quality: Over 95% of clusters passed the quality filter, yielding >450 million reads. 

We performed one NextSeq sequencing reaction for each sort-seq experiment. Sort bins 

were labeled using 6-nt barcodes. Amplicons were generated through two-step PCR, first 

appending the staggered Ns and sort-bin barcodes and next appending the adaptors required for 

Illumina sequencing. First-round PCR was conducted in 8 reactions per sort bin, corresponding 

to the 8 amplicon types described above. Each reaction was scaled to a volume of 10 µL per 106 

sorted cells; 2 µL of the extracted plasmids were used per 10 µL total volume. NEB Q5 High-

Fidelity DNA polymerase was used for 15 cycles of amplification at standard conditions (except 

for 60°C annealing temperature). The 8 PCR products for each bin were pooled and purified 

using Zymo Research DNA Clean & Concentrator. Second-round PCR was scaled to a volume 

of 25 µL per 106 sorted cells, using half the first-round PCR product as template; 15 cycles of 

amplification were performed at 68°C annealing temperature. After purification, amplicons for 

each bin were quantified using the Qubit Fluorometer (Invitrogen), pooled at concentrations 

proportional to the number of cells in each bin, and gel-purified using Qiagen MinElute Gel 
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Extraction kit. We followed Illumina’s standard protocol for preparing 1.8 pM library for the 

NextSeq 550 system, spiking-in PhiX Control v3 at 25% final concentration. 

 

3.5.3.5   Mapping sequence reads to mutants 

Sequence reads derive from known mutant sequences, possibly with errors. We 

developed an algorithm to accurately map sequence reads to mutants. First, reads of correct 

length were compared to every mutant in the library and mapped to the mutant with the least 

Hamming distance. Reads mapping equally to more than one mutant were discarded. Sequence 

differences between a read and the mapped mutant indicate errors. 

Reads with sequencing errors can be retained, but those with synthesis errors should be 

discarded or remapped. Sequencing errors occur independently for each read, whereas synthesis 

errors recur among all reads deriving from the same erroneously synthesized mutant. Because the 

number of reads we obtained (~108) exceeds the number of unique transformants in our library 

(~107), any synthesis error is expected to recur in multiple reads. We therefore considered errors 

that occur more than once among all reads mapped to the same mutant as synthesis errors. Reads 

containing nonsynonymous synthesis errors were discarded, as well as reads with more than 

three errors of any kind. 57% of amplicon reads were retained after this procedure, which is close 

to the expected fraction of error-free sequences given the per-nt error rate of the synthesis 

procedure. 

 

3.5.3.6   Estimating mean fluorescence from sequence reads 

To infer the mean fluorescence of cells containing each variant DBD, we used a simple and 

accurate nonparametric approach (fig. S4F). This strategy reflects the fact that the shape of the 
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distribution of cells across fluorescence bins varies widely among different variants (fig. S4C), 

making it difficult to find a family of parametric distributions that can be fit to all mutants. We 

first calculated cm,b, the number of cells expressing mutant m sorted into bin b. cm,b can be 

estimated from rm,b, the read count for mutant m in bin b: 

 

(1) 𝑐µ,Õ =
Ö¸,×

∑ Ö¸,×¸
× 𝑐Õ , 

 

where cb is the total number of cells sorted into bin b (recorded during sorting) and Σm denotes 

summation over all mutants. The mean log10-fluorescence of the mutant (Fm) is given by 

 

(2) 𝐹µ = ∑ Ù¸,××Ú¸,××
∑ Ù¸,××

, 

 

where Σb denotes summation over all bins, and φm,b is the mean log10-fluorescence of all mutant 

m cells sorted into bin b. φm,b cannot be directly measured by sort-seq, so we approximate φm,b by 

φb, the mean log10-fluorescence of all cells of any genotype sorted into bin b: 

 

(3) 𝐹µ ≈ ∑ Ù¸,××Ú××
∑ Ù¸,××

. 

 

Because our sort bins are sufficiently narrow, φm,b is close to φb for all mutants (Fig. A1.4G), 

making this approximation highly accurate. 

 

3.5.3.7   Data cleaning 
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Since our library is generated by an equivalent of NNK encoding, each amino acid 

mutant is represented by up to three synonymous codon mutants (Fig. A1.5A). In addition, each 

codon mutant is represented by 16 synonymous variants at two four-fold degenerate sites (called 

barcode variants). We averaged the mean log10-fluorescence (F) of barcode variants into one 

value for each codon mutant, and averaged the mean fluorescence of synonymous codon mutants 

into one value for each amino acid mutant. Before this averaging, we removed outliers among 

barcode variants. For each barcode variant, we calculated the difference between its F and the 

average F of the 15 other barcode variants for the same codon mutant (δ). Because the combined 

read count of 15 variants is generally much greater than that of a single variant, δ approximates 

the deviation of measured F from true F due to sampling noise. Our goal is to identify and 

remove outliers with unusually large sampling noise. We grouped δ by the read count of the 

corresponding barcode variant, obtaining a distribution of δ for each read count (fig. S5, B and 

C). Outliers were detected as extreme values in this distribution, defined using the interquartile 

range: Given Q1 and Q3 (first and third quartiles) and a constant k, values outside the interval [Q1 

− k(Q3 − Q1), Q3 + k(Q3 − Q1)] are considered outliers. We chose the value of k that minimizes 

the standard deviation of mean fluorescence among synonymous codon mutants (Fig. A1.5D). 

Mutants generally had higher fluorescence in the second and third sort-seq replicates than 

in the first (fig. S5E). This is due to variations in experimental conditions among replicates, such 

as subtle differences in cell growth and induction conditions. Because our goal is to compare the 

effects of mutations across different genetic backgrounds under the same experimental 

conditions, we removed these systematic differences before combining the replicates. We 

inferred a monotonic spline that relates the mean fluorescence between replicates, implemented 

as a nonnegative linear combination of I-splines using the R package splines2 (81). A 5-
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parameter cubic spline with external boundaries at the data minimum and maximum and a single 

internal boundary at the midpoint was sufficient to capture the systematic differences, with more 

complex splines resulting in essentially the same fit. The mean fluorescence of the second and 

third replicates was transformed by applying the inferred spline. 

 

3.5.4   Removing nonspecific epistasis 

When the effect of a mutation is compared across genetic backgrounds with different basal levels 

of GFP fluorescence, the mutation’s effect on GFP fluorescence can vary among the 

backgrounds even if its biochemical effects—such as effects on DNA affinity and protein 

stability—do not. This is because GFP fluorescence is a nonlinear function of the underlying 

biochemical parameters. This nonspecific form of epistasis arises whenever the genetic 

backgrounds vary in GFP fluorescence, regardless of the mutations involved (7, 47). 

Furthermore, it is conditioned by the particular experimental setups, such as the DBD expression 

level and the dynamic range of measurement imposed by the particular yeast strain, reporter 

gene, and instrument used. We modeled and removed this form of epistasis to isolate the specific 

epistatic interactions between mutations and historical substitutions as follows. 

In our yeast reporter assay, steroid receptor DBD drives GFP expression by binding to 

upstream EREs. Cellular GFP level increases with the fraction of upstream EREs bound by DBD 

(fB). Under a simple binding equilibrium, fB is related to the DBD-ERE binding constant (K) and 

cellular DBD concentration ([P]) as: 

 

(4) fB = K[P] / (1 + K[P]). 
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Our assay measures the mean log10-GFP fluorescence (F), which is related to fB by complex 

cellular and measurement processes. Eq. (4) implies that F is a function of the product K[P], not 

of K or [P] individually. We thus write F = g(K[P]), where g is an unknown, monotonically 

increasing function. The biochemical effect of a mutation can be quantified as fold-change in 

K[P]. The effect of a mutation on GFP fluorescence (∆F) can therefore be written: 

 

(5) ∆F = g(αK[P]) – g(K[P]), 

  

where α quantifies the mutation’s biochemical effect. Eq. (5) shows that even if α is independent 

of genetic background, ∆F can vary among DBDs with different basal activities (K[P]). Thus, 

not accounting for activity differences among wild-type DBDs can cause nonspecific epistasis 

that affects all mutations. 

We removed nonspecific epistasis in two ways. First, we minimized differences in 

reporter activity among the 14 wild-type DBDs by modulating their expression level using 

variant promoters, terminators, and ribosome-binding sites (Fig. A1.6, B and C; sequences of 

expression vectors provided in a supplementary Excel file). In this way, we normalized all wild-

type DBDs to activate approximately the same level of GFP (F1 = … = Fn, or K1[P1] = … = 

Kn[Pn]). 

Second, we developed an analytic method for removing nonspecific epistasis, because 

our experimental adjustments reduced but did not eliminate all activity differences among the 

wild-type DBDs; furthermore, some mutations occur at sites that were substituted between 

DBDs, and we need a method to account for the difference in starting sequence state between 

backgrounds. 
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We developed a method to measure and then account for differences in the effect of a 

mutation caused by differences in the activity of wild-type proteins (Fig. A1.6, D to F). Let W1 

and W2 denote the GFP fluorescence of two wild-type proteins and F1 and F2 the GFP 

fluorescence of two mutants created by introducing the same mutation into the two backgrounds. 

Given W1, F1, and W2, what is F2? As shown above, F can be written as g(K[P]), where g is an 

unknown, monotonically increasing function. We assumed the following formula for g: 

 

(6) F = FL + (FU – FL) × Kn[P]n / (1 + Kn[P]n), 

  

where FL and FU are the lower and upper bounds of measurement, respectively, and n is an 

unknown constant to be estimated from data. We can use Eq. (6) to derive a formula for F2 in 

terms of W1, F1, and W2. To simplify the formula, we define normalized fluorescence, F* = (F – 

FL) / (FU – FL), which ranges from 0 (when F = FL) to 1 (when F = FU). We then obtain: 

 

(7) F2* = βF1*n / (1 + [β – 1]F1*n), where β = (W2* / W1*n) × ([1 – W1*n] / [1 – W2*]). 

 

To validate Eq. (7), we generated two deep mutational scan datasets for a single DBD, one by 

expressing it using the weakest of the DBD expression vectors used for the 14 genetic 

backgrounds and the other by using the strongest. We fit Eq. (7) to the resulting dataset—1,444 

pairs of F1 and F2—using the observed values of W1 and W2 and the best-fit values of FL, FU, and 

n determined by orthogonal regression. With just 3 free parameters, Eq. (7) accurately describes 

the relationship between F1 and F2 across all mutants (Fig. A1.6E). We set W2 = –0.79 (the 

average fluorescence of the 14 genetic backgrounds analyzed in this study) and obtained F2 for 
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each mutation using the measured fluorescence as W1 and F1. In effect, every mutation was 

characterized at an expression level where the log10-GFP fluorescence of the wild-type DBD is –

0.79. 

 

3.5.5   Defining mutations and their effects 

There are 149 wild-type states (at the 76 DBD sites) in the 9 experimentally characterized 

DBDs. We estimated the effect of all possible amino acid mutations that could have occurred 

along the phylogenetic trajectory: this set of mutations consists of 149 × 19 = 2,831 mutations 

from each of the 149 wild-type states to each of the 19 other amino acids. We quantified the 

effect of a mutation as log10-fold change in GFP fluorescence (∆F). We did not analyze 

mutations for which the standard error of observed ∆F among the 3 sort-seq replicates is greater 

than 0.1 (Fig. A1.5F). 

 

3.5.6   Probabilistic models for the temporal dynamics of epistasis 

3.5.6.1   Likelihood-ratio test for the tempo of epistatic change 

We used probabilistic models to test whether epistatic change is gradual or episodic (Fig. 

3.3, A to D). Let ∆∆Fik denote the amount of change in the effect of mutation i across 

phylogenetic interval k. The null model posits that ∆∆Fik is a random sample from a normal 

distribution with a mean of 0 and a variance that is proportional to the amount of sequence 

divergence across the interval (dk): 

 

(8) ∆∆Fik ~ N(0, σi2dk) + εik, 
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where σi2 is a constant representing the mutation’s rate of epistatic change and εik stands for 

measurement noise. Under this model, the expected epistatic change (Var[∆∆Fik]) increases 

linearly with sequence divergence at a rate of σi2 that is constant across the phylogeny but can 

vary among mutations. This model corresponds to the Brownian motion model of trait evolution, 

which describes a trait evolving gradually at a constant rate and randomly without any bias or 

constraint. 

The alternative model we used allows the rate of epistatic change to vary not only among 

mutations but also among phylogenetic intervals: 

 

(9) ∆∆Fik ~ N(0, σik2dk) + εik, 

 

where σik2 represents the mutation’s rate of epistatic change in the particular phylogenetic 

interval. This model corresponds to a variable-rate model of trait evolution, describing a trait that 

evolves according to Brownian motion but with a rate that can change over time. Note that the 

null model is nested within the alternative model – it is a special case of the alternative model 

that constrains σik to be the same for all k. 

We performed a likelihood-ratio test to determine whether the null model (rate constancy) 

can be rejected in favor of the alternative model (rate variation) for a given mutation. We fit each 

model to the 8 ∆∆F values of a mutation. The maximum likelihood estimate for the rate of 

epistatic change under the null model is 

 

(10) 𝜎s*4 =
∑ (∆∆Ý�C)2C

^
, 
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where Σk denotes summation across all phylogenetic intervals and n is the number of intervals. 

The log-likelihood of the null model is 

 

(11) 𝑙*ZÁ­­ = −^
4
− ^

4
log	(𝜎s*4). 

 

The maximum likelihood estimate for the rate of epistatic change under the alternative model is 

 

(12) 𝜎s*L4 = (∆∆𝐹*L)4, 

 

and the log-likelihood of the alternative model is 

 

(13) 𝑙*à­¹ = − ^
4
− 3

4
∑ log	(𝜎s*L4 )L . 

 

We calculated the likelihood-ratio statistic 𝑆* = 2(𝑙*à­¹ − 𝑙*ZÁ­­). Statistical significance was 

determined using parametric bootstrap: The expected distribution of 𝑆* if the null hypothesis is 

true was determined by simulating 500 sets of n ∆∆F values under the best-fit null model and 

calculating Si for each bootstrap replicate (denoted Si*); the p-value of the observed Si is the 

fraction of boostrap replicates for which Si* ≥ Si. 

∆∆F values that equal 0 because they are masked by the lower bound of measurement were 

excluded. Mutations for which 3 or more of the 8 ∆∆F values are masked by the lower bound of 

measurement were not analyzed. Eqs. (10-13) are simplified formula valid only in the absence of 

measurement noise (εik = 0). We assumed that εik is normally distributed with a mean of 0 and the 

standard deviation that equals the standard error of ∆∆Fik based on the 3 sort-seq replicates. 
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Since the complete likelihood equation involving measurement noise cannot be algebraically 

solved, we used a numerical optimizer (the optim function in R) to obtain the maximum 

likelihood estimate of the rate of epistatic change and the log-likelihood of each model. 

 

3.5.6.2   Analysis of normalized ∆∆F 

The variance of ∆∆Fik depends on the mutation and phylogenetic interval, making it 

difficult to compare the shape of ∆∆F distribution across mutations and intervals. To address this 

problem, we defined normalized ∆∆F: 

 

(14) ∆∆𝐹*LZâÖµ = ∆∆Ý�C
ãä�åæC

, 

 

where 𝜎s* is the mutation’s rate of epistatic change inferred under the Brownian motion model 

(Eq. [10]). The variance of the normalized ∆∆F values of a mutation is 1. In particular, under the 

Brownian motion model, the expected distribution of normalized ∆∆F is close to the standard 

normal distribution. (It is exactly the standard normal distribution if 𝜎s*, the estimated rate of 

epistatic change, in the denominator of Eq. [14] is replaced by σi, the unknown true rate.) We 

obtained the distribution of normalized ∆∆F expected under the Brownian motion model (the red 

curve in Fig. 3.3C) by simulating data under the Brownian motion model parametrized by the 

observed rates of epistatic change. 

 

3.5.6.3   Phylogenetic cross-validation of the Brownian motion model 
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Phylogenetic cross-validation of the Brownian motion model (Fig. 3.3, E to G) was 

performed as follows. Let σi(–k) denote a mutation’s rate of epistatic change inferred after 

excluding interval k. We used σi(–k) to predict the distribution of ∆∆Fik: 

 

(15) ∆∆Fik ~ N(0, [σi(–k)]2dk) + εik. 

 

Mutations were ordered into 10 groups based on the value of σi(–k). The predicted epistatic 

change (average of [σi(–k)]2dk + εik across all mutations in the group) was compared to the 

observed epistatic change. 

 

3.5.6.4   Systematic among-interval variation in the rate of epistatic change 

In Fig. 3.3H, we asked whether the effects of mutations changed systematically more 

quickly or slowly in certain phylogenetic intervals. To detect such systematic rate variation, we 

modified the Brownian motion model: 

 

(16) ∆∆Fik ~ N(0, [λkσi]2dk) + εik, 

 

where λk, a constant specific to each phylogenetic interval, represents mutation-wide acceleration 

or deceleration in the rate of epistatic change. We jointly inferred the maximum-likelihood 

estimates of σi and λk, constraining the mean of λk across the 8 intervals to 1. 
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3.5.7   Measuring memory half-life 

If we could measure the effect of a mutation at the beginning and end of many independent 

phylogenetic intervals of length d, we could calculate the correlation between the initial and final 

effects—r2(d). Repeating this analysis for many values of d would reveal the rate at which the 

mutation’s effect is randomized by epistatic interactions with sequence substitutions; the 

correlation can be modeled as an exponentially decaying function of sequence divergence, 

 

(17) r2(d) = 2–d/m, 

 

where m is the mutation’s memory half-life.  

In fact, for each mutation, we have measurements of initial and final effects across only 8 

intervals, each with a different d. We reasoned that mutations with the same rate of epistatic 

change should have the same memory half-life; instead of analyzing r2(d) for each mutation 

across many intervals of same d, we therefore calculated it for many mutations (of similar rate of 

epistatic change) across one interval, and then modeled the decay of this correlation with d as 

described above. 

We ordered mutations into deciles based on the rate of epistatic change measured using 

the Brownian motion model (σi; Eqs. 8 and 10). Beginning with the 10% of mutations with the 

greatest rate, we calculated how correlated the effects of mutations are between every pair of 

ancestral and derived DBDs (squared Pearson correlation coefficient, corrected for attenuation 

due to measurement noise; Fig. 3.4, A to D). We then fit the exponential decay function in Eq. 

(17) to estimate the memory half-life of each group. We identified the quantitative relationship 
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between memory half-life and rate of epistatic change by fitting a power function, and used this 

relationship to convert the rate of epistatic change of a mutation into memory half-life. 

 

3.5.8   Analysis of historical sequence substitutions 

Because each of the 8 phylogenetic intervals we examined contains more than one 

substitution, we cannot ascertain the exact genetic background in which any of the 79 

substitutions in the trajectory occurred. We estimated the effect that a substitution had at the time 

of fixation by averaging two measured effects—one measured in the nearest ancestral DBD and 

the other in the nearest descendant DBD (Fig. 3.5A). We excluded the 19 substitutions for which 

the two ∆F values differ by more than 0.2.   

To analyze historical contingency (Fig. 3.5C), we reconstructed the sequences of all 

ancestral nodes between AncSR and the present-day DBDs in our phylogeny and identified 275 

sequence substitutions, the vast majority of which occurred outside the 8 experimentally 

characterized intervals. The memory half-life of these substitutions was determined by analyzing 

their effects along the experimentally characterized trajectories. 

 

Variation of memory half-life among and within sites 

Structural analyses were based on the crystal structure of human estrogen receptor 1 

(Protein Data Bank ID: 1HCQ) and of human GR (1GLU). Relative solvent accessibility of each 

site was calculated based on the two structures using the DSSP algorithm (82) and averaged. 

Relative rate of substitution at each site was inferred using PhyML (v 3.3) (83) as the posterior 

mean rate under the gamma-distributed among-site rate variation model. To determine the rate of 

substitution at physically adjacent sites (Radj), the distance between every pair of DBD 
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residues—defined as the distance between the geometric mean of the side chain atoms—was 

calculated based on the two structures and averaged. Sites within 5.9 Å of each other were 

considered physically adjacent, and Radj of a site was calculated by summing the relative rate of 

substitution of all adjacent sites. The 5.9 Å cutoff was chosen because it maximized the 

correlation between Radj and the median memory half-life of a site. The distance of a site to the 

recognition helix (19EGCKAFFKRSIQ30 in human ER1 and 19GSCKVFFKRAVE30 in human 

GR) was defined as the minimum distance to any residue in the recognition helix. Dimerization 

interface was defined as sites in a DBD monomer within 5.9 Å of any residue in the other 

monomer; the distance of a site to the interface was defined as the minimum distance to any 

residue in the interface.  
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Chapter 4 

Comment on “Ancient origins of allosteric activation in a Ser-Thr kinase” 

This work was published as “Yeonwoo Park, Jaeda E. J. Patton, Georg K. A. Hochberg, and 

Joseph W. Thornton, Comment on ‘Ancient origins of allosteric activation in a Ser-Thr kinase’, 

Science 370:6519, eabc8301 (2020).”  

 

4.1   Introduction 

Hadzipasic et al. used ancestral sequence reconstruction to identify historical sequence 

substitutions that putatively caused Aurora kinases to evolve allosteric regulation. We show that 

their results arise from using an implausible phylogeny and sparse sequence sampling. 

Addressing either problem reverses their inferences: allostery and the amino acids that confer it 

were not gained during the diversification of eukaryotes but were lost in a subgroup of Fungi.   

 

4.2   Results and discussion 

How allosteric regulation of proteins arose during evolution is a critical question in 

evolutionary biochemistry. Using ancestral sequence reconstruction (ASR) and biochemical 

experiments, Hadzipasic et al. (84) claim to have identified historical sequence substitutions that 

caused the acquisition of allostery from a non-allosteric ancestor during the evolution of Aurora 

kinase (AURK), a eukaryotic cell cycle regulator that is allosterically activated in animals by the 

TPX2 protein. Inferred ancestral sequences are conditional upon the set of extant sequences used 

and the phylogeny that describes their relationships, but Hadzipasic et al.’s sequence sampling 

was extremely sparse, and the phylogeny they used is implausible. We therefore investigated 

these shortcomings and their effects on the reconstruction of AURK evolution. 
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The phylogeny inferred by Hadzipasic et al. (Fig. 4.1A) is highly incongruent with the 

established phylogeny of eukaryotes (Fig. 4.1B). The Hadzipasic et al. phylogeny groups animals 

and plants together to the exclusion of fungi, but the monophyly of Opisthokonta (fungi, animals, 

and their unicellular relatives) has been extensively corroborated (85, 86). Hadzipasic et al. also 

place microsporidians as the most basally branching eukaryotic lineage, despite strong evidence 

for their inclusion within Fungi (87). These incongruences are crucial to the claims of Hadzipasic 

et al., because the nodes on their phylogeny between which allostery is claimed to have evolved 

represent ancestral species that in fact never existed: AurANC2 , the non-allosteric precursor, 

would be AURK in the last common ancestor of all eukaryotes except microsporidians, and 

AurANC3 , the first allosteric protein, would be AURK in the last common ancestor of animals 

and plants to the exclusion of fungi. 
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Figure 4.1. A plausible phylogeny reverses Hadzipasic et al.’s ancestral reconstructions. (A) 
The phylogeny of AURKs and their nearest outgroup (PLKs) used by Hadzipasic et al. 
Parentheses indicate the number of sequences in each clade. Circles mark the experimentally 
characterized ancestors, colored by presence/absence of the allosteric response to TPX2. Labels 
show inferred posterior probability of each clade. (B) The established phylogeny of the taxa in 
panel A. (C) Minimum number of gene duplications and losses required to reconcile panel A 
phylogeny with panel B. D) Minimum number of gene transfer and replacement events required 
to reconcile panel A phylogeny with panel B. Other scenarios with an equal or greater number of 
events are also possible. (E) AURK phylogeny when sequences in Hadzipasic et al. were 
reanalyzed given the constraint in B. Ancestral sequences reconstructed in panel G are labeled. 
F) Ancestral reconstruction on the phylogeny of Hadzipasic et al. (panel A). Inferred ancestral 
states are displayed for a group of 15 sites that experimentally confer allostery when the states 
from AurANC3 (green) replace those in AurANC2 (orange). Gray, other amino acid state.  Row 
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labels correspond to nodes in panel A. Site numbers based on human AURKA. G) Maximum a 
posteriori ancestral states reconstructed on the constrained AURK phylogeny in panel E. Sites, 
states, and colors are as in panel F. Shading shows the posterior probability of each state. 

 

Hadzipasic et al. suggest that their AURK gene tree might be incongruent with the 

accepted species phylogeny because of gene duplication and loss, but this scenario is 

implausible: it requires an elaborate history of three gene duplications before the most recent 

common ancestor (MRCA) of eukaryotes, followed by 14 gene losses distributed so precisely 

that only a single resulting paralog has been retained in every eukaryote that has been sequenced 

(Fig. 4.1C). Hadzipasic et al. also suggest horizontal gene transfer (HGT) as a possible cause, but 

this would require a complex scenario in which every single AURK sequence on the phylogeny 

except for one descends from an HGT event, with every transfer replacing the recipient’s 

original copy and leaving no trace of the event in any extant genome (Fig. 4.1D); this scenario is 

especially implausible because HGT between multicellular eukaryotes is rare (88). 

A more likely cause of the incongruence of Hadzipasic et al.’s tree with the species 

phylogeny is long branch attraction (LBA) (89). The branches leading to microsporidians and 

ascomycetes may have been moved from their established position near animals towards the 

root, where they attach to an extremely long branch leading to the nearest outgroup (PLKs). 

Microsporidians have previously been found to be subject to systematic LBA that moves them to 

an artifactual position as basal eukaryotes, especially when sampling in the Fungi is sparse (90). 

Strong support for misplaced branches is consistent with systematic bias caused by LBA (90).  

We therefore repeated ASR using Hadzipasic et al.’s sequence set of AURKs and PLKs, 

but we constrained the phylogeny to follow established species relationships (Fig. 4.1B, E). We 

focused on the 15 sequence states from AurANC3 that experimentally confer allostery when 

introduced into the non-allosteric AurANC2 (Fig. 4.1F). We found that the direction of these 
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substitutions is almost completely reversed compared to the trajectory proposed by Hadzipasic et 

al. (Fig. 4.1E-G). The deepest AURK ancestor (AncEukarya) now contains 14 of the 15 states 

associated with allostery and only one of the non-allosteric states; the other 14 non-allosteric 

states were all gained within the Fungi. Repairing the major topological errors in Hadzipasic et 

al.’s phylogeny is therefore sufficient to remove the evidence for their paper’s central claims. 

We next studied the effect of improved sequence sampling. AURKs are present across 

eukaryotes, but the sequence set analyzed by Hadzipasic et al. included only 19 AURKs; all but 

three of these were from animals and fungi, which account for only a small fraction of eukaryotic 

diversity. Within fungi, only ascomycetes and a single microsporidian were represented, and 

only a single species each of plant and amoeba were included. We therefore acquired and aligned 

324 AURK and 315 PLK protein sequences, broadly sampled from five major eukaryotic taxa 

(Fig. 4.2A): Fungi, Holozoa (animals and unicellular relatives), Archaeplastida (plants and green 

and red algae), Amoebozoa (amoebae), and SAR (stramenopiles, alveolates, and rhizarians). 

Within Fungi, we included 137 AURKs from numerous taxonomic groups to better resolve the 

phylogenetic position of Fungi and the amino acid states within it. 
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Figure 4.2. Improved sequence sampling reverses Hadzipasic et al.’s ancestral 
reconstructions. (A) The established phylogeny of the major eukaryotic groups. Polytomy, 
branching order not established. (B) Maximum likelihood phylogeny when AURK and PLK are 
densely sampled. Numbers in parentheses indicate the number of sequences in each group. Node 
labels, reconstructed ancestral sequences. Fungi and Holozoa are pink and cyan, respectively. 
Branch label with arrow, approximate likelihood ratio statistic for Fungi+Holozoa (p < 0.01). (C) 
ML phylogeny given the constraint in panel A. (D) ML phylogeny given the constraint in A, 
except Fungi are constrained to split first. (E) Most states that confer allostery in Hadzipasic et 
al. are not conserved in extant AURKs that are allosterically regulated by TPX2. Green and 
orange, allosteric and non-allosteric states from Hadzipasic et al.; gray, other states. Site numbers 
are in panel H. (F, G, H) Reconstructed sequences on the phylogenies in panels B, C, and D, 
respectively. The maximum a posteriori states at the 15 sites that experimentally confer 
allostery/nonallostery are shown, colored as in panel E and shaded by their posterior probability. 
Row labels correspond to ancestral nodes in panels B-D. 
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We used this alignment to reconstruct ancestral sequences on three phylogenies: 1) the 

unconstrained maximum likelihood (ML) phylogeny, which recovers almost all the established 

species relationships – including the sister relationship of Fungi and Holozoa –  except that 

Amoebozoa and some SAR sequences are pulled towards the root (Fig. 4.2B); 2) the “maximum 

congruence” (MC) phylogeny, which is constrained to reflect established species relationships 

among the major groups (Fig. 4.2A, C); and 3) a “Fungi-out” phylogeny, which has the same 

constraints, but with Fungi as the first-branching eukaryotic lineage (Fig. 4.2D). The likelihood 

difference between the ML and MC tree is not significant (p = 0.36, Shimodaira-Hasegawa test 

(91)), and the latter requires no auxiliary events like gene duplications/losses or horizontal 

transfers, so we consider the MC phylogeny to be the best supported. The Fungi-out phylogeny 

is implausible, but it allows us to isolate the effect of improving sampling on ASR by imposing 

the critical features of the Hadzipasic et al. phylogeny. 

On all three trees, AncEukarya again has predominantly allosteric states and only one or 

two of the 15 non-allosteric states that Hadzipasic et al. inferred as ancestral (Fig. 4.2F-H). All 

other non-allosteric residues are again derived within Fungi. This result arises because the 

allosteric states are found not only in animals and plants but also in non-ascomycete fungi and 

other eukaryotic groups, which Hadzipasic et al. did not include. Improved sequence sampling 

alone, even on the Fungi-out phylogeny, is therefore sufficient to reverse the direction of 

evolution of the experimentally important substitutions compared with that inferred by 

Hadzipasic et al. 

On the most plausible MC phylogeny, AncEukarya contains the allosteric state at 11 of 

15 sites. The four missing states are not universally required for allostery, because they are 
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absent in one or more extant allosteric AURKs (Fig. 2E) (92–94). The best-supported hypothesis 

is therefore that AURK of AncEukarya was allosteric, and this feature was lost along the lineage 

leading to ascomycetes; experiments will be necessary for a direct test. This scenario is 

consistent with the taxonomic distribution of AURK’s allosteric effector TPX2.  Hadzipasic et 

al. claim that TPX2 evolved after the origin of the AURK protein and before the emergence of 

allostery, but a reciprocal BLAST search identifies TPX2 orthologs in all major eukaryotic taxa, 

including all fungal groups except ascomycetes (Supplemental Data Table). The history of TPX2 

therefore tracks exactly with the best supported history of AURK allostery: presence in the 

eukaryotic ancestor, loss in ascomycetes. 

Finally, our analysis indicates that the basal placement of fungi in the phylogeny of 

Hadzipasic et al. is likely attributable to LBA. The first line of defense against LBA is improved 

sampling to break up long branches (95). When we analyzed more sequences with greater 

taxonomic diversity – including numerous fungal groups that branch off the established 

phylogeny between Microsporidiae and ascomycetes, as well as basally branching groups within 

the other high-level eukaryotic taxa – support for Hadzipasic et al.’s topology was eliminated, 

and the canonical position of Fungi was restored with strong support (Fig. 4.2B). One reason for 

the sparse sampling in Hadzipasic et al. may have been the use of software to co-estimate 

phylogeny and alignment, which is computationally demanding and therefore limited to very 

small datasets; although co-estimation is appealing in theory, the AURK sequences align with 

little ambiguity, and the compromised sampling necessitated by this approach led to severe 

phylogenetic error. 

This case illustrates the importance of sound phylogenetic practice when employing 

ASR. Comprehensive sequence sampling is essential, especially from taxa that attach to the 



 125 

phylogeny near the nodes of interest and that can break up long branches. Single-protein datasets 

may not have sufficient signal to resolve difficult phylogenetic problems or overcome LBA, so 

congruence with well-established relationships should be assessed, and the effect of imposing 

those relationships on the reconstruction should be explored. Confidence in the functional 

properties of reconstructed ancestral proteins should always be assessed by examining the 

distribution of functions among extant sequences across the phylogeny; if a very non-

parsimonious history is implied, extra scrutiny is warranted. In the current case, characterization 

of other extant AURKs, particularly in non-ascomycete fungi, Amoebozoa, and SAR is essential. 

These kinds of practices can provide multiple safety checks against erroneous inference by ASR. 

 

4.3   Methods 

4.3.1   Ancestral sequence reconstruction using Hadzipasic et al. sequences under congruence 

constraint (Fig. 4.1E, G) 

We acquired the AURK and PLK sequences analyzed by Hadzipasic et al. We aligned 

them using MUSCLE (v3.8.425) (74), removed sequence-specific insertions and ambiguously 

aligned sites, and trimmed the N- and C-termini, matching the sequence boundaries set by 

Hadzipasic et al. We used RAxML (v8.2.12) (75) to infer the constrained ML phylogeny, 

imposing the constraint shown in Fig. 1B, and used PAML (v4.8) (77) to perform ASR. For both 

phylogenetics and ASR, we used the same model of sequence evolution as used by Hadzipasic et 

al. (LG + G + X, four gamma rate categories). 

 

4.3.2   Phylogenetics and ASR with improved sequence sampling (Fig. 4.2) 
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To obtain a broad sample of eukaryotic AURK and PLK sequences, we used a reciprocal best-hit 

protein BLAST strategy using the NCBI protein database (96). Human AURKA and PLK4 were 

used as query sequences. Taxonomically restricted BLAST searches were conducted that 

together encompassed all species within the five major eukaryotic kingdoms/subkingdoms 

(Fungi, Holozoa, Amoebozoa, Archaeplastida, and SAR). BLAST hits of anomalous length 

(<250 or >600 amino acids for AURK, <250 or >1000 amino acids for PLK) were discarded.  

Redundant sequences were eliminated at similarity cutoff 0.85 using CD-HIT (v4.8.1) (97). Each 

remaining BLAST hit was then used as query in a reciprocal BLAST search against human 

proteins, and all sequences for which the best hit in humans was an AURK or PLK were 

retained. 

Sequence alignment of these hits was performed hierarchically using MUSCLE software. 

We first aligned sequences from within defined profile groups of species (each usually a 

superphylum or phylum). We trimmed the N- and C-termini, leaving sites corresponding to 

human AURKA sites 133 to 383, and then removed sites representing species-specific insertions 

and ambiguously aligned sites. We discarded sequences that were missing 10 or more 

consecutive amino acids present in the majority of other sequences. We then inferred the 

phylogeny of the profile group using FastTree (v2.1.11) (98). To minimize long branch 

attraction, we removed all sequences or groups of sequences subtended by branches of 

length >0.5. We also removed sequences/small groups that were assigned to entirely different 

phyla (e.g., annelid sequences placed inside the molluscs, or green algae sequences placed inside 

land plants), as well as taxon-specific paralogs with long branches that were pulled outside of the 

entire profile group being aligned. We then used profile-profile alignment in MUSCLE to 
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progressively align the group-specific alignments to each other, yielding a global AURK/PLK 

alignment.  

 We used RAxML to infer the ML AURK-PLK phylogeny from this global alignment, 

using the best-fit model of evolution (LG + G + X). For all RAxML analyses, we iterated 

topology search 50 times using different random number seeds, and chose the iteration with the 

highest likelihood. On the ML phylogeny, AURKs from a few lower-level groups of Ecdysozoa 

and Platyhelminthes subtended by long branches were placed in kingdoms other than the 

animals; drastic long-branch misplacements also moved a few small groups of AURKs from 

Fungi and Alveolates into other kingdoms/superphyla and affected some PLK sequences. These 

sequences were removed to yield the final alignment, and the analysis was repeated to infer the 

final ML phylogeny. Approximate likelihood ratio test was performed using PhyML (v3.3) (83). 

For the maximum congruence constraint analysis, we imposed the topological constraint shown 

in Fig. 2A and used RAxML to perform phylogenetic analysis to find the ML tree, branch 

lengths, and other parameters given this constraint. We used a similar approach to find the ML 

tree consistent with the Fungi-out constraint (the same constraint in Fig. 2A, except that Fungi 

are the most basally branching group). Ancestral sequences were inferred using the marginal 

reconstruction algorithm in PAML using LG + G and the amino acid frequencies inferred on the 

ML tree by RAxML.  

The Shimodaira-Hasegawa test was used to evaluate relative support for the ML vs. MC 

trees.  We used the R package phangorn to execute the SH test (99), comparing the ML tree 

found in the unconstrained ML search to the ML tree from the MC-constrained search (lnL -

121973.5 and -121992.0, respectively); this returned a nonsignificant result (p-value=0.36). The 

heuristic searches may not have identified the globally optimal tree in each case, so we also 
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compared the tree from the search iteration with the highest likelihood in the unconstrained ML 

analysis to the tree recovered from the iteration with the lowest likelihood in the MC-constrained 

analysis (lnL=-122032.7, p-value=0.21).   
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Chapter 5 

Conclusion 

 

Epistatic interactions among mutations were thought to be pervasive and complex, 

rendering any attempt to explain the genetic basis of protein function unsuccessful. The effects 

of mutations were thought to change idiosyncratically during evolution, without any regularity to 

enable prediction. These conclusions were based on methods of analysis inadequate for 

uncovering the global regularities of genotype-phenotype maps. Moreover, historical studies 

have been limited to measuring the effects of only a few mutations across single historical 

intervals, which can only generate highly idiosyncratic patterns of epistasis. 

By analyzing experimental mutational datasets using an optimal method, I showed that 

high-order interactions contribute negligibly to phenotype in these datasets and that context-

independent effects and pairwise interactions that contribute significantly to phenotype are 

sparse. Furthermore, by measuring the effect of every possible mutation across many historical 

intervals and analyzing this data under a statistical framework, I uncovered simple statistical 

regularities that underlie the apparent idiosyncratic epistatic changes. Overall, these findings 

show that protein genotype-phenotype maps may be simple enough to be learned and explained 

and the role of epistasis in historical contingency can be quantitatively modeled and studied. 
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Appendix 1 
 

Supplementary figures for chapter 3 
 

 

 
 
Fig. A1. Phylogeny of the DNA-binding domain of steroid and related receptors. Magenta and green, 
trajectories of reconstructed ancestral and extant sequences studied here. Parentheses, number of 
sequences in each clade. The phylogeny is rooted on hepatocyte nuclear receptor 4 proteins, the earliest-
diverging group of nuclear receptors. 
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Fig. A2. Statistical support for reconstructed ancestral sequences. Each histogram shows the 
distribution of the posterior probability of the inferred amino acid at the 76 sites of an ancestral DBD 
characterized in this study. Dotted line and italic, average posterior probability of the 76 sites of the 
corresponding DBD. 
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Fig. A3. Construction and validation of comprehensive point mutant libraries. (A) The 228-nt DBD 
coding sequence was divided into 4 regions (I to IV); variant oligonucleotides for each region were 
synthesized using a microarray and ligated to wild-type oligonucleotides for the 3 other regions, which 
were generated by PCR from a sequence-verified template. Because only ~25% of each full-length coding 
sequence derives from the microarray, both the synthesis cost and effective error rate are reduced by ~4-
fold. (B) Selective amplification and seamless ligation of oligonucleotides. Oligonucleotides for each 
region in each DBD were flanked by a specific pair of primer-binding sites (PBS) for selective 
amplification from the microarray-generated pool of all variant oligonucleotides. FDBD, forward PBS 
specifying the DBD; Rregion, reverse PBS specifying the region; Runiv, shared reverse PBS. Type IIS 
restriction enzymes (T2S) cut DNA outside their recognition site, allowing digested oligonucleotides to 
be assembled into uninterrupted full-length coding sequences. T2, conventional palindromic restriction 
enzyme. (C-E) Assembled libraries were sequenced using 2 × 300 nt Illumina MiSeq paired-end 
sequencing to determine the frequency of synthesis errors and the relative abundance of mutants. (C) 
Synthesis error profile. Percentages indicate the fraction of reads in each error category. (D) Rate of 
mismatch error at each site, shown separately for four types of coding sequences defined by the region 
deriving from the microarray. Dotted lines, region boundaries. (E) Distribution of the read count of every 
mutant. No mutant was missing, and 95% of mutants had a read count within 7-fold of the median (range 
= [3, 3042]; median = 252; 95% range = [38, 1072]). 
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Fig. A4. Functional characterization of DBD libraries using sort-seq. (A) Fluorescence reporter assay 
for DBD activity. The yeast reporter strain contains a genomically integrated GFP reporter driven by the 
estrogen response element (ERE, an inverted palindrome of AGGTCA). The DBD expression vector 
contains the DBD fused to the Gal4 transcriptional activation domain and the fluorescent protein 
mCherry, both driven by a galactose-inducible bidirectional promoter pGAL1/10. (B) By only analyzing 
mCherry-positive cells, cells that lose the expression vector during growth are excluded from 
measurement. Each dot shows the GFP and mCherry fluorescence of a single cell (among a population of 
cells transformed with the same expression vector) measured by flow cytometry. Bars, histogram of GFP 
(green) or mCherry (red) fluorescence. Dashed line distinguishes mCherry-positive cells (right) from 
mCherry-negative cells (left). (C) Fluorescence distribution of 3 isogenic cell populations, each 
expressing a DBD variant: black, no activation; blue, weak activation; red, strong activation. Dashed 
lines, the mean log10-GFP fluorescence of each population (F), the final readout of the assay. (D) 
Comparing the activities of 20 DBD variants to their DNA affinities previously measured in vitro (39). 
Ka, Mac, macroscopic binding constant. Dashed line, best-fit segmented linear regression. This result shows 
that the dynamic range of our reporter assay spans ~103-fold change in Ka, Mac. (E) Fluorescence 
distribution of the sorted cell population expressing the DBD libraries. Vertical lines, sort bin boundaries. 
(F) Nonparametric method for estimating the mean log10-GFP level of a mutant from the sort-seq 
measured distribution of cell number across bins. (G) φm,b (mean log10-GFP level of mutant m cells in bin 
b) of 64 randomly chosen DBD variants determined by flow cytometry of individual isogenic 
populations. Error bars, 95% range. Red line, φb (mean log10-GFP level of all cells in bin b). This result 
shows that φm,b is close to φb regardless of mutants, indicating that the approximation in (F) is highly 
accurate. 
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Fig. A5. Sort-seq data cleaning. (A) Degenerate encoding of variants in libraries. Each protein variant 
has one nonsynonymously mutated residue with a specified amino acid change (red) and two fourfold-
degenerate residues into which synonymous mutations are introduced for internal barcoding (black). The 
nonsynonymous residue is encoded by up to 3 codon mutants (columns), each of which is encoded by up 
to 16 synonymous barcode variants (rows). (B-D) Removing outlier barcode variants. (B) For each 
barcode variant, we calculated the difference between its F and the mean F of the 15 other barcode 
variants of the same mutant (δ). Shown is every barcode variant’s δ plotted against its read count. (C) To 
define outliers, we examined the distribution of δ among barcode variants with similar read counts; 
variants at the tails of this distribution were considered outliers. Specifically, given a constant k and the 
first and third quartiles of the distribution (Q1 and Q3), values outside the interval [Q1 − k(Q3 − Q1), Q3 + 
k(Q3 − Q1)] were defined as outliers and removed. Retained barcode variants were pooled, resulting in a 
single value of F for each codon mutant. (D) Determining the optimal value of k. We chose a value of k 
that 1) minimizes the standard deviation of F (σ) among synonymous codon mutants and 2) removes the 
least number of reads. Dashed lines, optimal value of k for each sort-seq replicate. (E) Correcting for 
systematic variation in fluorescence among sort-seq replicates. Each plot compares the fluorescence of 
every mutant between a pair of sort-seq replicates. Fluorescence is systematically higher in replicates 2 
and 3 compared to 1, reflecting differences in experimental conditions. We fit a spline function with 5 
parameters to capture this nonlinearity (red curve) and used it to normalized the fluorescence of replicates 
2 and 3. (F) Distribution of the standard error of F of every mutant. The 0.9% of mutants with the 
standard error >0.1 were excluded from analyses.  
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Fig. A6. Removing nonspecific epistasis. (A) Illustration of nonspecific epistasis. Curve shows a 
hypothetical relationship between the phenotype of the same set of mutants when measured in two 
different genetic backgrounds. Cross shows the activity of the wild-type protein, and dot shows that of a 
particular mutant; red horizontal and vertical arrows show the effect of the mutation in backgrounds 1 and 
2, respectively. LB and UB, lower and upper bound of measurement. (B) Different promoters, ribosome-
binding sites, and terminators were used to adjust the expression levels of the 14 wild-type DBDs so that 
they have similar levels of GFP activation in our assay. (C) Phenotype of the 14 wild-type DBDs after 
normalizing their expression level. Black, MAP reconstructions; red, Alt-All reconstructions (only for 
ambiguously reconstructed nodes). Error bars, 95% confidence interval. (D) Graphical depiction of model 
to remove nonspecific epistasis. Each curve shows the global shift in mutant phenotype predicted when 
measured in background 1 vs. 7 possible cases of background 2; red and blue, highest and lowest wild-
type activity, respectively. Each curve is defined by a single free parameter: the difference in the 
phenotype of the two wild-type proteins (cross). The curve can then be used to correct for the expected 
difference in activity between the two backgrounds for any mutation. (E) Experimental validation of the 
nonspecific epistasis model. Two complete single-replacement DMS datasets were generated for a single 
DBD (scolecid SR) by expressing it in low- vs. high-expression vectors. Each dot shows the phenotype of 
a mutant measured in the two conditions. Yellow curve, nonspecific epistasis model determined by the 
observed position of the wild-type activity (cross). (F) Removing nonspecific epistasis from dataset. Each 
plot compares the phenotype of every point mutant measured in annelid SR vs. sedentarian SR. Left, 
measured phenotypes before removing nonspecific epistasis; yellow curve, nonspecific epistasis model 
determined by the wild-type activity (cross). Right, corrected phenotypes; identity line is shown in 
yellow. 
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Fig. A7. Distribution of epistatic change for individual phylogenetic intervals. (A) Distribution of 
epistatic changes in the effect of every mutation (∆∆F) during each of the 8 experimentally characterized 
phylogenetic intervals. Dark grey, ∆∆F significantly different from 0 (t-test, FDR  ≤ 0.1). Mutations 
always at the lower bound of measurement were excluded. (B) Number of mutations with significant 
epistatic change in an interval divided by the number of substitutions in that interval (based on Fig. 2B). 
Each column represents one phylogenetic interval. (C) Wilcoxon signed-rank test was used to test 
whether the mean of the 8 ∆∆F values of each mutation is significantly different from 0. Significant 
directional bias was not observed for any mutation even at the false discovery rate of 0.5. 
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Fig. A8. Analysis of historical sequence substitutions. (A) Phylogenetic intervals during which 
historical substitutions with ∆F < –0.2 occurred. Of the 79 substitutions along the trajectories from 
AncNR3 to C. teleta SR and human GR, four have estimated ∆F < –0.2 at the time of fixation (Fig. 5, A 
and B). The interval in which each of the substitutions occurred is marked by red squares in the left 
phylogeny. Three of them (labeled 1, 3, and 4) occurred in intervals immediately following gene 
duplication, marked by yellow diamonds. The effect of each substitution on the 9 experimentally 
characterized DBDs is shown on the right, arranged along the horizontal axis and colored as in Fig. 1D. 
Arrow, interval in which the substitution occurred. (B) Among the 275 substitutions that occurred 
between AncSR and any extant DBD in our phylogeny, many were initially accessible (∆FAncSR ≥ –0.2). 
For each such substitution, we calculated the minimum effect it has on the experimentally characterized 
descendant DBDs (minimum ∆F) and plotted it against its initial effect, grouping the substitutions by 
memory category. Red, minimum ∆F < –0.2 (t-test, FDR ≤ 0.1). Percentages show the fraction of 
substitutions in each memory category with minimum ∆F < –0.2 (left) or ≥ –0.2 (right). 
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Fig. A9. Explaining variation of memory half-life among sites. (A) Median memory half-life of all 
mutations within each site shown on the crystal structure of human GR DBD bound to DNA (Protein 
Data Bank ID: 1GLU). Residues are colored according to the color gradient at right; yellow spheres, 
cysteine-coordinated Zn2+ ions. (B) Median memory half-life of each site. Secondary structure is shown 
above. (C) Median memory half-life of each site plotted against 5 structural/functional indices. Squared 
Pearson correlation coefficient and best-fit linear regression are shown. 
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Fig. A10. Robustness of functional inference to uncertainty in ancestral sequence reconstruction. 
(A) Phylogenetic relations among the 9 characterized DBDs, shown using the Alt-All sequences for the 5 
ambiguously reconstructed DBDs marked in red. (2A-5F) Analyses performed using MAP ancestral 
reconstructions shown in the paper’s main figures (labels) were repeated using the Alt-All ancestors. 
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