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ABSTRACT

Queue prioritization is a common practice that allocates limited resources to heterogeneous

customers to improve operational outcomes and customer satisfaction in service systems such

as call centers and emergency departments. Ideally, the decision-maker has perfect knowledge

of customer priority and allocates the resources to the customer with the highest priority.

In practice, the decision-maker makes an educated guess regarding customer priority based

on the available information and might make a suboptimal decision.

The first part of the dissertation studies a queue prioritization problem with two homoge-

neous customer segments. The service provider does not know the customer type, i.e., from

which segment the customer is, upon a customer’s arrival. Instead, they utilize a binary

classification model to estimate the probability of being a high-importance customer. The

customer is assigned to the high priority group if the likelihood is above a certain threshold.

The ROC curve shows the performance of the binary classification algorithm in terms of

sensitivity and specificity at various thresholds. Changing the threshold usually impacts

the classification algorithm’s sensitivity and specificity in opposite directions, i.e., there is

a trade-off between sensitivity and specificity. The traditional threshold selection method

tends to optimize a ROC curve-based metric and does not consider the operational exter-

nalities. This dissertation analyzes the optimal threshold policy in terms of the ROC curve,

i.e., sensitivity and specificity, by considering the operational nature of the service systems.

Chapter 2 studies a non-preemptive M/G/1 queueing system with two customer types

under imperfect information. If the customer is assigned to the high priority group, they are

provided with priority service faster and not too much more variable than non-priority ser-

vice. We model imperfect information by approximating the ROC curve with an increasing,

concave, piecewise linear function and show that the optimal threshold policy is unique. It

is optimal to trade off a loss in specificity for a higher gain in sensitivity.

The second part of the dissertation is an empirical study on queue prioritization where

customer priority depends on other customers’ characteristics and the system status, focus-

ing on application to emergency departments (EDs). We model the patient prioritization

problem using the discrete choice framework, particularly the conditional logit model (CLM).

Chapter 3 and Chapter 4 explore how the ED system attributes affect the patient pri-
ix



oritization rule by utilizing a tree-based segmentation algorithm that generates ED system

clusters where a similar patient prioritization rule is observed. We first test the performance

of this approach on an artificial dataset generated by simulating an ED that always uses

the optimal deterministic policy. Since the decisions in the simulated environment are de-

terministic, any plausible algorithm performs well in this artificial dataset. The tree-based

algorithm can predict the bed assignment decisions with almost perfect accuracy.

Chapter 4 applies the tree-based algorithm to a dataset that includes patient encounters

at the Emergency Department at the University of Chicago Medicine (UCM). According to

the algorithm, room type, waiting room census, and time of the day are the most important

system-level attributes; ESI score and waiting time are the most important patient-level

attributes for patient prioritization. High acuity patients are prioritized for the main service

area that includes most of the rooms, while low acuity patients are prioritized for the fast

track area in the ED. The First-Come-First-Served principle is generally followed within the

same urgency class. As the waiting room becomes more crowded and resource utilization

increases, the adherence to urgency-based prioritization increases.

The discrete choice framework assumes that the choice options come from a finite set.

However, the emergency department dataset, by its nature, does not have a finite set of choice

options because each patient is unique. In Chapter 5, we develop a tree-based algorithm that

segments patients into a finite number of clusters, leaf nodes, based on their attributes and

incorporates the leaf membership as alternative specific constants into the model to capture

the alternative’s inherent characteristics and interaction effects.

Finally, we summarize our results and discuss future directions in Chapter 6.
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CHAPTER 1

INTRODUCTION

Queue prioritization is common in many service systems where limited resources serve het-

erogeneous customers, such as call centers and emergency departments. Customer service

departments of many companies move the high-value customers in front of the line and as-

sign them to the most skilled agents. In emergency departments, patients are triaged upon

arrival to provide timely medical care to those who need urgent care. Queue prioritization

improves the operational outcomes and customer/patient satisfaction by directing limited

resources to the highest priority customers. Ideally, the service provider would perfectly

observe whether an arriving customer has a priority condition and would give preferential

treatment to them. In practice, the service provider has imperfect information on customers

and must deploy a queue prioritization based on the available information.

There is a vast literature on queue prioritization, particularly under the perfect infor-

mation, in operations. It has been proven that the optimal decision rule for a multiclass

queuing system is to serve the customer class with the highest cµ index. The implicit as-

sumption behind the analysis of such queuing systems is that customer priority is inherent,

i.e., information on other customers’ characteristics and resource limitations do not impact

the customer’s perceived importance. This definition of priority is reasonable for situations

where (i) customers can be segmented so that those within the same segment are similar

enough and (ii) changes in the system-level characteristics are irrelevant from an operational

perspective. Then, the queue prioritization problem boils down to predicting the inherent

customer type in these situations.

Many service systems frequently use classification algorithms to predict customer type.

In business applications, customer type may refer to the answer to a yes-no question. Is

this caller a target customer? Will this customer churn? Will this emergency department

patient be admitted to the inpatient stay? Will this patient be accepted to an intensive care

unit? A binary classification algorithm can determine the likelihood of a “yes” outcome. The

algorithm predicts a yes to the binary question if this likelihood exceeds a predetermined

threshold. The threshold selection is an integral part of the prediction. The common practice
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in the classification literature is to select a threshold that optimizes a non-operational metric

without acknowledging the operational externalities that customers have on each other. In

practice, resources are limited and shared across customers. A customer’s utilization of a

scarce resource creates operational externalities on others. Queuing theory provides a useful

framework for studying resource allocation problems with heterogeneous customers.

The queuing literature assumes that the service rate depends on the inherent customer

type rather than the classification. Thus, the classification algorithm impacts only the

customer scheduling, i.e., the order that customers are processed. In some service systems,

the service rate is also determined by the classification outcome. In call centers, “important

calls” are directed to the most skilled agents who resolve calls more efficiently than their

peers. In a pilot program conducted at the Emergency Department of the University of

Chicago Medicine (UCM), the treatment process is accelerated for patients predicted to be

admitted to an inpatient stay. In these systems, the classification algorithm impacts not only

customer scheduling but also service time. Therefore, it becomes more crucial for a binary

classification algorithm to acknowledge the operational externalities in the optimal threshold

selection. Chapter 2 incorporates the operational nature of the problem by modeling the

service system as an M/G/1 multiclass queuing system. We also diverge from a common

assumption in the queuing literature that service rates depend on the inherent customer type.

To our best knowledge, we are the first to study the optimal threshold selection problem

in a multiclass queuing system where service rates depend on the customer type prediction

rather than the true type.

So far, we have defined priority as an inherent characteristic of the customer. The inherent

priority definition is reasonable when the customers can be segmented into homogeneous

classes, and the decision environment is stable or irrelevant to the service provider. What if

the priority is relative rather than inherent, i.e., depends on other customers’ characteristics

and the system status? In the emergency department, patient prioritization is necessary

since the patients drastically differ from each other, and the emergency department resources,

specifically ED beds, are limited. Patients are “triaged," in which they are sorted into five

different urgency categories to help with patient prioritization. However, this categorization

is only a proxy for the perceived urgency of the patient. Other factors may go into patient
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prioritization, such as the available resources. For example, suppose a patient requires a

specific resource that is unavailable at the time. In that case, another patient with a less

urgent condition can be prioritized over the former patient.

Chapter 3 utilizes a machine learning algorithm that can be deployed to support patient

routing decisions for ED bed allocation and drive insights into emergency department opera-

tions. Given that the patient priority is relative to other patients and depends on the status

of the ED, we model the patient prioritization problem using the discrete choice framework,

in particular the conditional logit model (CLM). A decision epoch corresponds with the times

that a decision is made to allocate an ED bed to a patient, and the choice set is patients

waiting to be assigned to a bed. The CLM allows us to calculate choice probabilities for each

patient in the choice set. These probabilities reflect the relative priority of each patient in the

waiting room during decision-making. The status of the ED changes over the day and affects

the queue prioritization rule. For example, the fast-track at the Emergency Department of

UCM is usually used to treat low acuity patients and is not open between 6 am and 12 pm.

During this period, the waiting time becomes more important, and triage levels become less

important to determine the relative priority of patients for an ED bed compared to the rest

of the day.

To understand how the ED status, as given by the number of boarders, waiting room

census, number of available beds, etc., affects the patient prioritization rule, we utilize Mar-

keting Segmentation Trees (MST), a tree-based segmentation algorithm recommended by

Aouad et al. [2019]. The MST algorithm allows us to segment attributes that define an ED

status to clusters where a similar patient prioritization rule is observed. Once we segment the

ED status into clusters, we implement a CLM model at each cluster to predict the patient

prioritization decisions. We test the performance of this approach on an artificial dataset

before applying it to the UCM ED dataset. Chapter 3 also introduces a Markov Decision

Process framework to model emergency departments at a high level and numerically obtains

the optimal policy. Then we generate an artificial dataset by simulating an ED that always

makes decisions based on the optimal policy. Since the simulated environment decisions are

always deterministic, any plausible algorithm performs well in this artificial dataset. The

MST algorithm and conditional logit model with all pairwise interaction terms can predict

3



the bed assignment decisions with almost perfect accuracy.

Chapter 4 describes the UCM ED dataset and applies the MST algorithm to the dataset

to obtain insights on patient prioritization rule for a bed assignment in the ED. The algorithm

discovers that room type, waiting room census, and time of the day are the most important

factors impacting patient routing decisions. The prioritization rule at each cluster mainly

depends on the ESI score and the waiting time. For the urgency room, high-acuity patients

are prioritized, while low-acuity patients are prioritized for the non-urgency room. As the

waiting room becomes more crowded and resource utilization increases, it becomes more

likely that a patient with a higher level of urgency will be selected than a patient with a

lower level of urgency.

The standard CLM framework is usually applied when the decision-maker chooses from

a choice set that can change from decision epoch to decision epoch, but its elements always

come from a predefined set. For example, the CLM model is extensively used in marketing

and transportation literature. The mode options are usually limited to bicycle, automobile,

train, bus, walking, carpool, and two-wheeler in transportation choice. In assortment op-

timization, the choice set includes a finite number of brands. The convenience of a finite

choice set is that we can incorporate alternative specific constants in the utility model. The

alternative specific constant terms can improve the model performance by capturing the

alternative’s inherent characteristics and attribute interactions, which are not captured by

the other terms in the utility function.

In the emergency department, the choice set, by its nature, comprises patients who dras-

tically change from each other, i.e., there is no finite set that includes all possible alternatives

in the patient selection problem in the emergency departments. Even the same patient does

not appear as the same alternative during a decision horizon due to the time-sensitive na-

ture of health and, trivially, waiting time. We attempt to address this issue in Chapter 5 by

developing a tree-based algorithm that segments patients into finite number groups based on

their attributes and incorporates the group membership as alternative specific constants in

the utility function. The patient segmentation and model fit are simultaneously performed

rather than sequentially.
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CHAPTER 2

QUEUE PRIORITIZATION WITH CLASSIFICATION

DEPENDENT SERVICE RATES UNDER IMPERFECT

INFORMATION

2.1 Introduction

Customers differ in their delay sensitivity and financial contribution in many service systems.

Given the customer heterogeneity, serving customers in order of their arrival is not always

the best strategy. In practice, many service systems segment their customers into different

priority classes. Often, prioritized customers have a separate line that allows them to jump

over non-prioritized customers to receive faster service. Optimal prioritization policies for

multiclass queuing systems are extensively studied under perfect information where a job’s

true type can be immediately observed upon arrival. It has been proven that the “cµ-rule"

is the optimal policy for many such scenarios. However, the decision-maker does not always

observe the job’s true type.

With the growing popularity of artificial intelligence, many decision support models are

being developed to predict customer types. Often, these classification algorithms first predict

the likelihood of each class based on the available information and then use these estimated

likelihoods as the basis for classification. For binary classification tasks with two classes, one

class is referred to as the positive class, and the other class is referred to as the negative

class. For this paper, being positive refers to having a priority condition, such as being a

target customer or a patient likely to be admitted to the hospital; negative refers to not

having a priority condition. If a customer’s likelihood of having a priority condition is above

a predetermined threshold, the customer is assigned to the positive class; otherwise, they

are assigned to the negative class.

The performance of a binary classifier can be visualized by a confusion matrix that

formulates the four outcomes of the classification process: true positive, true negative, false

positive, and false negative. It is common to characterize the classification performance in

terms of sensitivity and specificity in practice. Sensitivity refers to the true positive rate,
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i.e., the percentage of correctly identified positives among all true positives. On the other

hand, specificity refers to the true negative rate, i.e., the percentage of correctly identified

negatives among all true negatives. Increasing the threshold value lets the classifier assign

more customers to the negative class, increasing the number of correctly identified negatives,

thereby increasing the specificity. However, assigning more customers to the negative class

can also increase the number of false negatives, i.e., decrease the number of true positives,

thus decreasing the sensitivity. A receiver operating characteristic (ROC) curve plotted based

on the training data evaluates the performance of the binary classifier at different thresholds.

On the ROC curve, the true positive rate (sensitivity) is displayed on the vertical axis, and

the false positive rate (1-specificity) is displayed on the horizontal axis (see James et al.

[2014] for details).

The threshold selection is an integral part of a binary classification algorithm. The

common practice in the classification literature is to select a threshold that optimizes a non-

operational metric derived from the confusion matrix, such as Youden’s index, i.e., sensitivity

+ specificity - 1. There are also cost-based approaches that determine the optimal threshold

value based on the cost analysis of the four possible outcomes of the classification process.

However, these approaches assume that costs are known and independent of the threshold

value and that a customer’s classification outcome does not have an externality on other

customers.

In many service systems, resources are limited. The utilization of shared resources by a

customer creates operational externalities for other customers. For example, the classification

of false priority customers can exhaust the resources allocated for true priority customers

and thus potentially increase their waiting time by creating additional congestion. Despite

the real-life prevalence of multiclass service systems with imperfect information, there is

scant literature on improving the job flow in such systems. Argon and Ziya (Argon and

Ziya [2009]) study an M/G/1 queuing system where customers can be one of two possible

types. They assume that service time and waiting cost depend on the true customer type.

The cµ-rule determines the prioritized type. Customer types are unknown upon arrival, but

each customer arrives with an imperfect signal corresponding to the probability of being the

prioritized type. They propose a threshold policy that prioritizes a customer if their signal
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exceeds a certain threshold. Their main interest is to optimize the threshold to minimize the

expected waiting cost.

In some service systems, the classification determines the service time rather than the

true customer type. For example, The Emergency Department at the University of Chicago

Medicine (UCM) designed the “Dr. Admit" program to identify patients likely to be admitted

to the hospital early upon their arrival. The program strives to reduce the time to admission

- defined as the time from arrival to the time that an admission order is made - by partnering

and coordinating with other service lines to prioritize “Dr. Admit" patients’ care needs. As

another example, in call centers, agents differ in their skill level and experience. The most

skilled agents can resolve calls more effectively and faster than the less skilled agents. Not all

calls can be assigned to highly skilled agents because there may not be a sufficient number of

highly skilled agents to answer all calls within a reasonable wait time. Moreover, call centers

may want to keep the workload fair between agents. Due to the limited number of highly

skilled agents, only calls deemed more critical can get routed to a highly skilled agent and

receive faster service than less critical calls.

We model a service system as a non-preemptive M/G/1 queue with two customer types:

type-A and type-B. Type-A customers have higher delay sensitivity than type-B customers

and thus should be labeled as a high priority. However, the decision-maker does not have

perfect customer information. Rather, they assign the customer to either high priority or low

priority class based on the available information upon their arrival. The service rate depends

on the customer classification outcome rather than their type. Thus, customers predicted as

high priority receive better service in terms of service time. This is the first study analyzing

service systems with classification-dependent service rates under imperfect information, to

the best of our knowledge. In other works, service rates depend on the true customer types;

thus, changing the classification affects the customer service processing order but does not

affect the system workload, i.e., the ratio of the arrival rate to the service rate. In contrast,

we assume that service rates depend on the classification outcome of the customer type; thus,

changing the classification affects both the customer service order and server utilization by

each customer type.

We first study service systems where customer types are perfectly observed and show
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that misclassification of some type-B customers into the priority class might decrease average

waiting costs by allowing these customers to receive faster service, thus decreasing the waiting

time of other type-B customers who have not been served yet. This might increase the waiting

time of true type-A customers. However, if the positive externality on the type-B customers

can compensate for the increase in the waiting time of true type-A customers, average waiting

costs decrease. It might even be possible that some misclassification of type-B customers can

decrease the true type-A customers’ waiting time. This result may seem surprising at first,

but it makes intuitive sense due to the non-preemptive nature of the queuing system. Non-

preemption implies that a priority customer cannot interrupt the service of a non-priority

customer and has to wait until their service is completed. This expected remaining service

time of the customer is called residual time. Intuitively, if more customers are assigned to a

priority class, it is more likely that a given customer in service is being served at the priority

speed. If the priority service time variability is not much higher than that in the non-priority

service time, the expected remaining time in service would be shorter, positively impacting

both type-B and type-A customers’ waiting times. Depending on the system parameters, this

positive impact on type-A customers’ waiting time can dominate the negative externality of

the additional congestion in the priority line.

A system with imperfect information calculates the likelihood of being type-A according

to a machine learning algorithm with an already established ROC curve. We aim to find

an optimal threshold policy, i.e., an optimal sensitivity and specificity trade-off, to minimize

patients’ waiting costs under imperfect information. We assume that waiting costs are linear

in time. By approximating the ROC curve as an increasing, concave, and piecewise linear

function, we show that the optimal threshold policy is unique and always trades off a lower

loss in specificity for a higher gain in sensitivity. In other words, moving right on the ROC

curve is optimal as long as the marginal gain in sensitivity is higher than the marginal loss

in specificity. Then we approximate the ROC curve using a simple piecewise linear function

with a single breakpoint to obtain analytic results on the expected value of the perfect

information (EVPI).

The rest of this chapter is organized as follows. Section 2.2 reviews common practices for

threshold selection in binary classification and the relevant literature in priority queues. In
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Section 2.3, we introduce notation and the queuing model. In Section 2.4, we solve the model

for the perfect information case and show that some misclassification of type-B customers

could decrease average waiting costs. Section 2.5 introduces the ROC curve approximation to

model the imperfect information case and shed light on the optimal sensitivity and specificity

trade-off. Section 2.6 lets the ROC curve take a more simplistic form and discusses how the

system parameters affect the EVPI. Section 2.7 compares our model to the M/G/1 queuing

system with type-dependent service rates (see Argon and Ziya [2009]) and emphasizes the

resulting differences in the optimal policy. Section 2.8 allows waiting costs to be nonlinear

in time and discusses how nonlinearity changes the results.

2.2 Literature Review

Binary Classification: Many methods for threshold selection focus on balancing the

trade-off between sensitivity and specificity. One of the earliest approaches in the threshold

selection is to maximize the Youden index (see Youden [1950]), which measures the difference

between the true positive rate and false positive rate, i.e., sensitivity + specificity - 1. This

approach is commonly used in the literature and practice, particularly in clinical works (see

Parikh and Philbrook [2011] and Martínez-Camblor and Pardo-Fernández [2019]). Another

approach is to choose the point on the ROC curve that minimizes the Euclidean distance to

the (0, 1) point. A third approach is to choose the point that maximizes the product of sen-

sitivity and specificity. The reader can refer to Unal [2017] for other methods to determine

the optimal threshold value. There are more elaborate models (see Habibzadeh et al. [2016],

Rücker and Schumacher [2010], and Li et al. [2018]) that take into account the misclassifi-

cation costs and prevalence of classes. These methods are suitable when the classification

outcome of an instance has no impact on other instances, allowing misclassification costs to

be calculated without considering any externalities.

Priority Queues: For multiclass priority queues in various settings, the optimal policy is

proved to be the cµ rule where the job with the highest ciµi should be first served, where

ci is the cost of holding job i in the system and µi is the service rate of job i. Refer to

Van Mieghem [1995] for a detailed review. The main assumption in these papers is that job
9



type is known. Our work assumes that the decision-maker does not know the job type but

can predict the type likelihoods upon arrival.

There has been work on priority queues with imperfect information; however, their num-

ber is relatively limited. The first related work to our knowledge is by Van der Zee and

Theil [1961]. This work analyzes a single server system with two customer types: type-1

and type-2. Type-1 customers require a shorter service time than type-2 customers. Cus-

tomer types are unknown upon arrival, but each customer arrives with a signal that indicates

the probability of being the prioritized type. The decision-maker can assign customers ei-

ther type-1 or type-2 based on their signal, but the classification is subject to error. The

decision-maker either serves customers in an FCFS manner ignoring the group signaling or

prioritizes one group over the other and then serves according to the FCFS principle. First,

they determine under what condition prioritization performs better than the FCFS policy to

reduce the expected waiting time. Secondly, they recommend a three-way classification pol-

icy where the customer is labeled as type-1 (type-2) if her signal is “sufficiently" high (low).

Otherwise, she is assigned to a mixed group prioritized over customers labeled as type-2 but

served after customers labeled as type-1. For the three-way classification, they determine the

optimal threshold values for prioritization. In the paper, the misclassification rates are fixed

regardless of the threshold values used for classification. In reality, misclassification rates,

the rate of falsely identified type-1 and type-2 customers depend on the threshold. Varying

the threshold will increase the misclassified customers for one group while decreasing the

misclassification for the other.

More recent work on priority assignment problems under imperfect information is by

Argon and Ziya [2009]. They model the misclassification rates explicitly as a function of the

classification process. They analyze an M/G/1 with two customer types where the customer

arrives with a signal that indicates their true type. They propose a threshold policy where

the customer is assigned to the high-priority class if their signal is above a certain threshold.

The paper’s main interest is to optimize the threshold to minimize the expected waiting cost.

Our paper differs from Argon and Ziya [2009] in two ways: (i) they assume that service rate

depends on the true customer type while we assume that the service rate depends on the

classification; (ii) their optimal threshold is based on a signal distribution while we directly
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work with the ROC curve, which can be built based on the signal distribution.

Dobson and Sainathan [2011] consider a service system with heterogeneous customers

whose types are unknown upon arrival. There are sorters that categorize the customers into

priority classes. The sorting process is not perfect and consumes both money and time.

The authors evaluate under what conditions the sorting and prioritization are beneficial for

reducing waiting and total costs.

Sun et al. [2018] study the dynamic triage and prioritization problem with two customer

types where triage consumes time and resources are highly restricted. They characterize the

optimal policy that decides when to triage and how to prioritize patients.

Alizamir et al. [2013] consider a service provider that identifies customer types by running

imperfect diagnostic tests. An additional test improves the diagnostic accuracy but also

increases congestion and causes delayed services for others. The authors study the problem

of dynamic balancing this accuracy and congestion trade-off.

Saghafian et al. [2012] study the performance of patient streaming, segregation of ED

beds, and care resources based on patient disposition predictions. They find that virtual

streaming, where resources are shared across streams rather than physically separated, is

more effective than the traditional pooling policy in situations where a high fraction of

patients are admitted to an inpatient stay in the hospital. Their analytical results assume

perfect prediction accuracy, but their numerical study takes the misclassification error into

account and finds that patient streaming is preferred to the pooling if the misclassification

rate is not high.

Saghafian et al. [2014] recommend a new triage system that takes patients’ urgency and

complexity information into account in patient routing decisions. A medical provider imper-

fectly classifies a patient’s urgency and complexity type in their setting. They assume that

misclassification rates are given and evaluate the performance of the complexity-augmented

triage.

Singh et al. [2020] propose digital triage in healthcare where medical images are classified

into priority queues (rather than clinical types such as diseases) based on their features.

The digital triage aims to minimize the average waiting costs by capturing the interactions

between the classification errors and queuing externalities.
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2.3 Model

We study a non-preemptive M/G/1 queue with two priority types: {A,B}. Type-A cus-

tomers represent a fraction α of the customer population and are more “important" than

type-B customers for the decision-maker; thus, they receive priority. However, upon arrival,

customer type is unknown; a binary classification algorithm, previously determined by the

decision-maker, predicts the customer type. The classification algorithm calculates t, the

likelihood of being type-A based on available information upon arrival. If the likelihood t is

above a certain threshold t̄, then the algorithm classifies the customer as type-A; otherwise,

as type-B. The classification is not perfect, and the performance of the classification algo-

rithm at various thresholds is illustrated by the ROC curve (x, g(x)), where x is the false

positive rate and g(x) is the true positive rate.

Once the threshold is chosen, the decision-maker categorizes customers into two classes:

priority and non-priority. We denote the priority class by 1 and non-priority class by 2.

Note that notation A,B represents the true customer type, and notation 1, 2 represents the

classification outcome. A priority, class-1 customer, can be a correctly classified type-A or a

misclassified type-B customer. Similarly, a non-priority, class-2 customer can be a correctly

classified type-B or misclassified type-A customer.

Customers incur waiting costs linear in time. We let γh (h) denote a type-A (a type-

B) customer’s waiting cost rate. Since a type-A customer is more important than a type-B

customer, their waiting cost rate is higher, i.e., γ > 1. We want to find the optimal threshold

to minimize the long-run average waiting cost. We can assume that h = 1 without loss of

generality.

We assume that service rate is classification dependent, and thus we use the notation 1, 2

to label the parameters related to the service time. The service time for priority customers

(non-priority customers ) has mean 1
βµ

(
1
µ

)
and second moment e1 (e2). Priority customers

are treated faster than non-priority customers, i.e., β > 1. Priority customers are also allowed

to jump over non-priority customers in the queue. We assume e1 ≤ e2, which implies that

the variability in priority service time is not “too much" higher than the variability in non-

priority service time. The variability in service distribution can be measured by the standard
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coefficient of variation (SCV), a metric given by the ratio of variance to mean squared. Then

we can express the second moment of any distribution in terms of the mean squared and the

SCV by substituting the variance with the SCV times mean squared:

e1 =
1 + SCV1

β2µ2
,

e2 =
1 + SCV2

µ2
.

(2.1)

By (2.1) and β > 1, it is clear that the inequality e1 ≤ e2 allows that variability of the

priority service time to be higher than that of the non-priority but not too much.

The customer interarrival time is exponentially distributed with mean λ−1. The customer

arrival rate is less than the non-priority service rate, i.e., λ < µ, so the system is stable even

if all customers are classified as non-priority. The customer’s treatment is not interrupted

by any customer arrival; i.e., preemption is not allowed.

The relationship between the threshold and the classification algorithm’s performance is

straightforward and illustrated by the ROC curve. Therefore, choosing the optimal thresh-

old is equivalent to deciding the optimal trade-off between sensitivity and specificity, i.e.,

selecting the optimal point (x∗, g(x∗)) on the ROC curve. In the remainder of the paper, we

will focus on the latter.

For a given threshold corresponding to the point (x, g(x)) on the ROC curve, the function

G(x) = (αg(x) + (1 − α)x) denotes the probability of classifying a random customer as

priority, and notations λ1(x) and λ2(x) denote the arrival rate to the priority class and the

non-priority class, respectively:
λ1(x) = λG(x),

λ2(x) = λ
(
1−G(x)

)
.

(2.2)

Let ρ1(x) and ρ2(x) denote the fraction of time allocated for customers classified as priority

and non-priority for a given x, respectively:

ρ1(x) =
λ1(x)

βµ
,

ρ2(x) =
λ2(x)

µ
.

(2.3)
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We let E[W1(x)] and E[W2(x)] denote the average waiting time of the priority and the

non-priority customer class, respectively. Using results on non-preemptive queues (Cobham

[1954]), we have

E[W1(x)] =
E[R(x)]

1− ρ1(x)
,

E[W2(x)] =
E[W1(x)]

(1− ρ1(x)− ρ2(x))
,

(2.4)

where E[R(x)] is the expected residual time:

E[R(x)] =
λ

2
(G(x)(e1 − e2) + e2) . (2.5)

Let W a(x) and W b(x) denote type-A and type-B customers’ average waiting time, respec-

tively. Note that a true type-A customer is assigned to the priority class with probability

g(x) and to non-priority class with probability (1− g(x)). On the other hand, a true type-

B customer is assigned to priority class with probability x and to non-priority class with

probability (1− x). Using equations given by (2.2-2.5), we have

W a(x) = g(x)E[W1(x)] + (1− g(x))E[W2(x)] (2.6a)

=
λ

2
(G(x)(e1 − e2) + e2)

βµ

βµ− λG(x)

(
g(x) +

βµ(1− g(x))

βµ− λβ + λ (β − 1)G(x)

)
; (2.6b)

W b(x) = xE[W1(x)] + (1− x)E[W2(x)] (2.6c)

=
λ

2
(G(x)(e1 − e2) + e2)

βµ

βµ− λG(x)

(
x+

βµ(1− x)

βµ− λβ + λ (β − 1)G(x)

)
. (2.6d)

We let W (x) denotes the average expected cost per customer when the threshold correspond-

ing to the point (x, g(x)) on the ROC curve is chosen:

W (x) = γαW a(x) + (1− α)W b(x). (2.7)

Plugging (2.6b, 2.6d) into (2.7), we have

W (x) =
λβµ

2

(G(x)(e1 − e2) + e2)

βµ− λG(x)

(
γαg(x) + (1− α)x+

βµ (γα(1− g(x)) + (1− α)(1− x))

βµ− λβ + λ (β − 1)G(x)

)
.

(2.8)

Our objective is minimize the average waiting cost function W (x) with respect to false posi-

tive rate x ∈ [0, 1]. We evaluate how W (x) looks for both perfect and imperfect information
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scenarios. The main difference between the models in these scenarios is the shape of the ROC

curve g(x). For the perfect information case g(x) is a horizontal line that takes a value of 1

for all x ∈ [0, 1]. For imperfect information case, the ROC curve g(x) can be approximated

by an increasing, concave, and piecewise linear function.

2.4 Service Rate Differentiation under Perfect Information

Under perfect information, all type-A customers must be assigned to the priority class be-

cause type-A customers have higher delay sensitivity than type-B customers, and priority

service is superior to the non-priority service. On the other hand, misclassification of some

type-B customers, i.e., assigning them to the priority class, may reduce average waiting costs

even if true customer types are known. In this section, we shed light on conditions under

which it is optimal to misclassify type-B customers so that the average waiting cost is less

than it would be if all customers were perfectly classified. All type-A customers are classified

as priority under perfect information, i.e., g(x) = 1 ∀x ∈ [0, 1]. By plugging this equality

into (2.6b), (2.6d) and (2.8) we can write W a(x), W b(x), and W (x) as follows

W a(x) =
λ

2
(G(x)(e1 − e2) + e2)

βµ

βµ− λG(x)
, (2.9a)

W b(x) =
λ

2
(G(x)(e1 − e2) + e2)

βµ

βµ− λG(x)

(
x+

βµ(1− x)

βµ− λβ + λ (β − 1)G(x)

)
, (2.9b)

W (x) =
λ

2
(G(x)(e1 − e2) + e2)

βµ

βµ− λG(x)

(
γα+ (1− α)x+

βµ(1− α)(1− x)

βµ− λβ + λ (β − 1)G(x)

)
.

(2.9c)

where G(x) = α+ (1− α)x ∀x ∈ [0, 1]. By setting z = G(x) , i.e., the fraction of customers

assigned to priority class, we can rewrite (2.9a-2.9c) as

W a(z) =
λ

2
(z(e1 − e2) + e2)

(
βµ

βµ− λz

)
, (2.10a)

W b(z) =
λβµ

2
(z(e1 − e2) + e2)

βµ

βµ− λz

(
z − α

1− α
+

1− z

1− α

βµ

βµ− λβ + λ (β − 1) z

)
, (2.10b)

W (z) =
λ

2
(z(e1 − e2) + e2)

βµ

βµ− λz

(
γα+ (z − α) +

βµ(1− z)

βµ− λβ + λ (β − 1) z

)
. (2.10c)

Under a non-preemptive policy, a customer’s service is not interrupted even when a priority

customer arrives. Therefore, the expected residual time, i.e., remaining time in service,
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impacts all customers’ waiting time. The expected residual time depends on the second

moments of priority and non-priority service time distributions:

E[R(z)] =
λ

2
(z(e1 − e2) + e2) .

Depending on other system parameters, the second moments can change how the average

waiting cost function behaves in the interval z ∈ [α, 1]. The second moments are related

to the spread of the distribution, i.e., variability. For a fixed value of the first moment, a

higher second moment implies higher variability. Proposition 1 shows that if the variability

in priority service time relative to the variability in non-priority service time is not too much

higher, i.e., e1
e2

is under a certain threshold determined by other systems parameters, then

the reduction in the expected residual time is significant enough that misclassification of

some misclassification of type-B customers can decrease type-A customers’ expected waiting

time.

Proposition 1. Function W b(z) is a decreasing function of z on interval [α, 1]. Suppose

that e1βµ ≤ e2 (βµ− λ). Function W a(z) is a nonincreasing function of z on interval [α, 1]

(if the inequality is strict, then W a(z) is decreasing).

When there is no misclassification, all type-A customers are assigned to the priority

queue, and all type-B customers are assigned to the non-priority queue. When there is some

level of misclassification, there is some representation of type-B customers in the priority

queue. Since the priority queue is served first and faster than the non-priority queue, it

makes sense that increasing misclassification, i.e., increasing the representation of type-B

customers in the priority queue, decreases type-B customers’ average waiting time. However,

it is not straightforward to see that misclassification of all type-B customers decreases the

waiting time of type-A customers under the assumption that e1βµ ≤ e2 (βµ− λ). To better

understand this occurrence, let us write this inequality as:

e1
e2
≤ 1− λ

βµ
=⇒ 1 + SCV1

1 + SCV2

1

β2
≤ 1− λ

βµ
=⇒ 1 + SCV1

1 + SCV2
≤ β2 − β

λ

µ
.

Assigning type-B customers in the priority queue has both positive externality and negative

externality on type-A customers’ average waiting time by decreasing the expected residual

16



time and simultaneously creating additional congestion in the priority queue. Suppose the

relative variability in the priority service compared to the non-priority service is small enough.

In that case, the expected residual time may decrease significantly when all customers are

assigned to the priority service. Suppose the priority service is significantly faster than the

non-priority service. In that case, type-B customers can be served so fast that the additional

congestion in the priority queue may be small enough not to significantly increase the waiting

time (excluding the expected residual time component) of type-A customers. The inequality

e1βµ ≤ e2 (βµ− λ) characterizes the set of system parameters where the positive externality

can compensate for the resulting negative externality on type-A customers’ waiting time at

all misclassification levels.

Proposition 2. Suppose that e1βµ ≥ e2 (βµ− λ) then W (z) is a strictly convex function of

z on interval [α, 1].

Proposition 2 shows that if the priority service is not superior enough in terms of speed

and variability, misclassification of all type-B customers might increase the expected waiting

time of type-A customers. In that case, some misclassification can still decrease the average

waiting costs up to a point. After that, the negative externality on type-A customers will

exceed the positive externality on type-B customers, and thus average waiting costs will

increase.

Next, we want to explore how the misclassification incentive depends on the system

parameters. LetMB denote the optimal misclassification rate among type-B customers for

a given set of system parameters:

MB =
z∗(α)− α
1− α

.

Proposition 3. As γ and α increases, MB stays the same or decreases.

Suppose the cost of holding a type-A customer is not significantly high. In that case,

it makes sense to misclassify some fraction of type-B customers since the reduction in their

expected waiting time costs can compensate for the possible increase in the type-A customers’

waiting costs. If type-B customers are the majority of the population, then mislabelling
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some fraction of those can decrease overall waiting time costs. Fewer type-A customers are

experiencing higher waiting times, while a larger number of type-B customers benefit from

lower waiting times.

We have shown that misclassification can help decrease the average waiting costs when

the service rate depends on the classification. This statement does not hold when the service

rate depends on the true type.

Proposition 4. Assume that the service rate and the holding cost is type-dependent and

priority is determined by the cµ rule, i.e., setting in Argon and Ziya [2009]. Then there is

no incentive to misclassify type-B customers as a priority class under perfect information.

In our setting, misclassification of type-B customers as a priority can decrease the average

waiting costs in two ways:(i) by decreasing the expected residual time and (ii) by provid-

ing faster service to more customers, i.e., decreasing the overall workload in the system.

When service time requirements are type-dependent, both the expected residual time and

overall workload in the system stay the same because type-dependent service rates are not

controllable to the decision-maker.

In the following sections, we assume that the population mix is always heterogeneous,

i.e., α ∈ (0, 1). Suppose that all customers are either type-A or type-B. Then the optimal

decision is to assign all customers to the priority class. In practice, the customer types are

not perfectly known and can be predicted with some classification error. The next section

will explore the optimal classification strategy under the imperfect information.

2.5 Service Rate Differentiation under Imperfect Information

Under imperfect information, customer types are not known immediately upon arrival. The

decision-maker assigns customers to priority classes using a machine learning algorithm with

an already established ROC curve. On the ROC curve, the vertical axis, g(x), represents

the sensitivity, and the horizontal axis, x, represents (1-specificity). It is not possible to

maximize sensitivity and specificity simultaneously. This section sheds light on the optimal

sensitivity-specificity trade-off that minimizes the average waiting costs. We approximate

the ROC curve by an increasing, concave, and piecewise linear function for mathematical
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tractability:

g(x) =



κ1x if x ∈ I1,

κ1x1 + κ2(x− x1) if x ∈ I2,

κ1x1 + κ2(x2 − x1) + κ3(x− x2) if x ∈ I3,

. . .∑n−1
i=1 κi(xi − xi−1) + κn(x− xn−1) if x ∈ In,

(2.11)

where
I1 = [0, x1] ,

In = (xn−1, xn] ∀n > 1.

Since the ROC curve is an increasing and concave function, we assume that κ1 > κ2 > · · · >
κn ≥ 0. On any interval In, ROC curve can be written in the form of g(x) = f + κx:

f =

(
n−1∑
i=1

κi(xi − xi−1)

)
− xn−1κn,

κ = κn

(2.12)

where x0 = 0. The slope parameter κn informs us about the trade-off between the sensitivity

and specificity on the interval In.

Proposition 5. Suppose that e1 ≤ e2 and the ROC curve is given by (2.11). W a(x) and

W (x) are decreasing functions of x on interval [0, xn̄], where n̄ = max{n : κn ≥ 1}.

Proposition 5 shows that it is optimal to trade off a lower loss in the specificity for a

higher gain in the sensitivity to minimize W (x) and W a(x).

To have a better understanding of why the average waiting cost of type-A customers

decreases on the interval [0, xn̄], consider the following example. Suppose that x = 0, i.e.,

all customers are classified as non-priority. Then there is a single queue that represents the

overall customer mix. Suppose that x = xn̄. Then there are both priority and non-priority

queues. Since the marginal increase in true positive rate is at least as much as the increase in

the false positive rate on the interval, [0, xn̄], true type-A customers are over-represented in

the priority queue and under-represented in the non-priority queue. Therefore, the average

waiting time of a type A customer is less than what it would be if the false positive rate
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were set to x = 0 since the priority line is served first and at a faster rate.

On the other hand, we cannot even determine if the average waiting cost of type-B

customers is monotone on the interval [0, xn̄]. Suppose that x = xn̄. Then we know there are

both priority and non-priority queues. We also know that true type-B customers are under-

represented in the priority queue and over-represented in the non-priority queue. Suppose

that priority and non-priority service time are drawn from the same distribution. The priority

line is served first, and the over-representation of type-B customers in the non-priority line

hurts their waiting time. The average waiting time of a type-B customer at x = xn̄ is more

than what it would be at x = 0. Now, retrieve our main assumption on the service time

distributions, i.e., the priority service time is shorter and not so much more variable than

non-priority service time. Then some representation of type-B customers in the priority

reduces the waiting time of other type-B customers. The sensitivity-specificity trade-off on

interval [0, xn̄] has both negative and positive impact on type-B customers’ waiting time.

Figure 2.1 shows as β increases; the positive impact tends to exceed the negative impact.

Higher β means shorter priority service and lower waiting time for patients in the non-priority

queue and thus higher positive impact.

Now, we can give an intuitive explanation why average waiting cost function decreases on

the interval [0, xn̄]. Suppose that type-B customers’ waiting costs decrease on some subset

of [0, xn̄]. Then it is not surprising that overall waiting costs go down. Suppose that type-B

customers waiting costs stays the same or increases on some subset of [0, xn̄]. We know that

type-B customers are negatively impacted because they are underrepresented in the priority

queue and got jumped by some type-A customers who would be served afterward at x = 0.

Since type-A customers have higher waiting costs, this negative impact on type-B customers

waiting costs is immediately canceled by the positive impact on type-A customers waiting

costs. Proposition 5 allows us to limit our search for the optimal x∗ to interval [xn̄, 1] where

the slope is less than 1, i.e. a higher gain of sensitivity is traded for a lower loss of specificity.

Theorem 1. Average waiting cost function W (x) is unimodular. There exists a unique

global minimum x∗ ∈ [xn̄, 1].

As x increases on the interval (xn̄, 1], true type-B customers’ representation in the priority
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(d) β = 1.2

Figure 2.1: An example of how β affects behavior of waiting cost functions on interval [xn̄, 1]
where α = 0.4, γ = 2, µ = 1, λ = 0.8, SCV1 = 1, SCV2 = 1
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queue also increases because the marginal increase in false positive rate is at least as much

as the increase in the true positive rate on the interval. On the other hand, the type-A

representation in the priority queue decreases on interval (xn̄, 1]. This representation change

would cause increases in average waiting costs if priority and non-priority service times were

drawn from the same distribution because type-A customers are more costly to hold in the

queue. However, priority service is faster and decreases the overall workload in the system

without increasing the variability too much. Therefore, assigning more customers to the

priority class can decrease both type-A and type-B customers’ waiting time. Theorem 1 tells

us that the residual time and system workload decrease induced by a higher priority service

utilization can compensate for the advantage loss of type-A customers in the service order

up to some degree, if not at all. Average waiting costs go down as x approaches x∗ and then

go up.

2.6 The Expected Value of Perfect Information

Throughout our analysis, we have assumed that the classification algorithm is fixed, and thus

the ROC curve is also fixed. The decision-maker can improve the classification algorithm

performance by investing resources and time. Depending on the application, performance

improvements might be too costly. In emergency departments, utilization of ED laboratory

tests can improve the classification accuracy at the expense of creating congestion for impor-

tant resources and delaying the classification process itself. Therefore, it might not be ideal

to order more tests to improve the classification accuracy. We would like to understand un-

der what settings the investment in classification accuracy can significantly decrease average

waiting costs to justify the investment cost. In other words, we want to analyze the EVPI.

To have analytical tractability and interpretability, we approximate the ROC curve by

g(x) =


κx if x ∈

[
0, 1

κ

]
,

1 if x ∈
(
1
κ , 1
]
.

(2.13)

where κ ≥ 1. The slope parameter κ measures the performance of the classification algorithm.

Higher κ is associated with higher accuracy. Suppose that κ is very large, then g(x) takes the value

of 1 very quickly, which resembles the perfect information case.

22



Corollary 1. Suppose that e1 ≤ e2 and ROC curve is given by (2.13). Then W a(x) and W (x) is

a decreasing function of x on interval
[
0, 1

κ

]
.

Corollary 1 immediately follows from Proposition 1. Using this result and analysis of the perfect

information case, we analyze the imperfect information case with a simple ROC curve (2.13). By

Corollary 1, W (x) is a decreasing function of x on interval
[
0, 1

κ

]
. Then the optimal false positive

rate x∗ ∈
[
1
κ , 1
]

on where g(x∗) = 1, i.e., it is optimal to misclassify at least 1
κ fraction of the

type-B customers. We restrict our search for optimal x∗ to the interval
[
1
κ , 1
]
. By the construction

of the ROC curve, g(x) = 1 for all x ∈
[
1
κ , 1
]
, i.e., any x ∈

[
1
κ , 1
]

allows all type-A customers to

be classified as priority. The optimal x∗ in on interval
[
1
κ , 1
]

and the waiting cost function on this

interval behaves similar to the waiting cost function under perfect information only differing in the

following. The optimal misclassification rate of type-A customers can take any value from 0 to 1

in the perfect information case, while we know that the optimal misclassification rate is at least 1
κ

under the imperfect information case with a simple ROC curve.

We define z = G(x) = α+ (1− α)x for any x ∈
[
1
κ , 1
]

and express the average cost function for

all z ∈
[
α+ 1−α

κ , 1
]

as follows:

W (z) =
λ

2
(z(e1 − e2) + e2)

βµ

βµ− λz

(
γα+ (z − α) +

βµ(1− z)

βµ− λβ + λ (β − 1) z

)
. (2.14)

Observe that the average cost function with a simple ROC curve (2.14) is identical to the average

cost function with perfect information (2.10c) on interval
[
α+ 1−α

κ , 1
]
.

Corollary 2. Suppose that the ROC is given by 2.13). If e1βµ ≤ e2 (βµ− λ), then W (z) is

decreasing function of z on interval
[
α+ 1−α

κ , 1
]
. If e1βµ ≥ e2 (βµ− λ), then W (z) is a strictly

convex function of z on interval
[
α+ 1−α

κ , 1
]

and there exists a unique z∗ ∈
[
α+ 1−α

κ , 1
]
.

By Proposition 1, W (z) is a decreasing function of z on interval [α, 1] under the assumption

that e1βµ ≤ e2 (βµ− λ). By Proposition 2, W (z) is a strictly convex function of z on interval [α, 1]

under the assumption e1βµ ≥ e2 (βµ− λ). The corollary immediately follows.

Recall that the optimal z∗, that minimizes function W (z) (e.q. 2.10c) under perfect information,

is unique and on interval [α, 1]. Then the perfect information problem is

Pp = {minW (z) s.t. z − 1 ≤ 0, α− z ≤ 0}.

The optimal solution z∗ that minimizes the average waiting cost function under imperfect
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information with a simple ROC curve is unique and on interval
[
α + 1−α

κ , 1
]
. On this

interval, the average waiting cost function is given by the same function as in the perfect

information case. Then we minimization problem under imperfect information is

Pi = {minW (z) s.t. z − 1 ≤ 0, α+
1− α

κ
− z ≤ 0}.

We define the EVPI as follows:

EVPI = W (z∗i )−W (z∗p). (2.15)

Note that both problems have the same objective, and the feasible region of Pi is a subset

of the feasible region of Pp. Let z∗p , z∗i be the optimal solution to Pp and Pi, respectively.

Suppose that z∗p is feasible to Pi, then z∗i = z∗p and the EVPI is zero. We examine the EVPI

in two different cases: (i) e1βµ ≤ e2 (βµ− λ) and (ii) e1βµ > e2 (βµ− λ).

Case I: Suppose that e1βµ ≤ e2 (βµ− λ). By Proposition 1, W (z) decreases as z increases

on interval [0, 1], and thus z∗p = 1 and z∗i = 1. Since both Pp and Pi have the same objective

function, W (z∗i ) = W (z∗p) and the EVPI zero.

Case II: Suppose that e1βµ > e2 (βµ− λ). There are two subcases: either z∗p is a feasible

solution to Pi or not. We separately examine both subcases.

• Suppose that z∗p is also a feasible solution to Pi, i.e., z∗ ≥ α + 1−α
κ . Then W (z∗i ) =

W (z∗p) and the EVPI is zero.

• Suppose that z∗p is not feasible to Pi, i.e., z∗p < α+ 1−α
κ . By Proposition 2, W (z), the

objective function of the minimization problem under perfect information, is strictly

convex. Therefore, W (z) increases for all z ≥ z∗p . Therefore, the optimal solution to

Pi is z∗i = α + 1−α
κ and

EVPI = W (z∗i )−W (z∗p) = W

(
α +

1− α
κ

)
−W (z∗p) =

∫ α+1−α
κ

z∗p
dW (z). (2.16)

Proposition 6. The EVPI is nondecreasing with α and γ.

As type-A customers’ waiting cost rate or prevalence increases, it becomes more important
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to classify patients correctly.

To understand how β affects the EVPI, consider the inequality e1βµ ≤ e2 (βµ− λ), i.e.,

e1
e2
− β2 + β

λ

µ
≤ 0,

holds, then the EVPI is zero. Note that this inequality holds if

1− β2 + β ≤ 0,

because λ
µ < 1 and e1

e2
≤ 1. Then it is optimal to assign all type-B customers to the priority

class and the EVPI is zero.

We ran numerical experiments to shed light on how the relative speed of the priority

service affects the EVPI where β < 1+
√
5

2 for various values of other system parameters. We

observe that as β increases, the EVPI tends to decrease for a wide range of system parameters

regardless of how we approximate the ROC curve. Figure 2.2a shows three different ROC

curve approximations with similar Area Under Curve (AUC): a smooth ROC curve based on

signal distribution Beta(2, 3), a piecewise linear ROC curve with multiple breakpoints, and

a simple ROC curve with a single breakpoint. Figure 2.2b shows an example of how average

waiting cost function behaves and optimal solution changes at different values of β. We

numerically calculate the average waiting cost function for three ROC curve scenarios shown

in Figure 2.2a and then calculate the EVPI. Figure 2.3 shows that an increase in β decreases

the absolute value of EVPI and the percentage value of EVPI, the ratio of the absolute

difference between the minimum average cost under perfect and imperfect information to

the minimum cost under imperfect information. This result is consistent with the fact that

EVPI is zero if e1βµ ≤ e2 (βµ− λ). Because the lowest value of the EVPI can get is zero and

the inequality is more likely to hold for higher values of β given that other system parameters

are fixed.
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Figure 2.2: An example of average waiting cost functions at different values of β under
perfect information where α = 0.4, γ = 2, µ = 1, λ = 0.8, SCV1 = 1, SCV2 = 1

2.7 Classification when the Service Rate is Type-dependent

This section discusses similarities and differences between our work and Argon and Ziya

[2009]. The authors consider an M/G/1 queuing model where each customer is either type-

A with probability pA or type-B with probability pB . Arrivals follow a Poisson process

with a rate λ. Service rates and delay sensitivities depend on the type. Service times of

type i ∈ {A,B} customers are i.i.d distributed with first and second moments ai, ei. The

system load is ρ = λ (pAaA + pBaB). The unit cost of keeping a type i ∈ {A,B} customer

is hi. In the standard M/G/1 queueing system with two priority classes, the priority is

given according to the cµ rule. Without loss of generality, hA/aA > hB/aB and type-A

customers should receive higher priority than type-B customers to minimize average waiting

costs. Delay sensitivity depends on the true customer type in our setting, while the service

rate depends on the classification. Type-A customers should receive priority in our setting

because they have higher delay sensitivity than type-B customers, i.e., hA > hB . Service

times of customers, who are classified as priority (non-priority), are i.i.d distributed with

first and second moments a1, e1 (a2, e2).

Argon and Ziya [2009] assume that customer type is unknown upon arrival, but each

customer provides a signal representing the probability of being type A. The signal is an
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Figure 2.3: An example of how β affects the EVPI where α = 0.4, γ = 2, µ = 1, λ = 0.8,
SCV1 = 1, SCV2 = 1
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i.i.d. random variable with p.d.f. b(·) and c.d.f. B(·). By definition,

pA =

∫ 1

0
xb(x)dx and pB =

∫ 1

0
(1− x)b(x)dx.

They study a single threshold policy that classifies those with signals t and above as class-1

and others as class-2. Their goal is find the optimal threshold policy that minimizes the

average waiting costs.

We let α be the fraction of priority customers in the population, i.e. the probability

of a customer being type A. We assume that patient mix (α, 1 − α) is given and capture

the misclassification error in classification via ROC curve {(x, g(x)) : x ∈ [0, 1]} instead of

directly working with the signal distribution. Recall that in the ROC plot, horizontal axis

represents the false positive rate and vertical axis represents the true positive rate. By using

the notation described in Argon and Ziya [2009], we have

TPR =
TP
P

=

∫ 1
t xb(x)d(x)∫ 1
0 xb(x)d(x)

=
E(t)

p1
, (2.17a)

FPR =
FP
N

=

∫ 1
t (1− x)b(x)d(x)∫ 1
0 (1− x)b(x)d(x)

=
Ē(t)

p2
. (2.17b)

To make a meaningful comparison between our work and Argon and Ziya [2009], we let

α = p1 and define the ROC curve as follows:

ROC =

{(
E(t)

p1
,
Ē(t)

p2

)
: t ∈ [0, 1]

}
. (2.18)

Figure 2.4 shows an example of the mapping given by equations (2.17-2.18).

We assume that the service time distribution of priority and non-priority classes in our

model would be identical to the service time distribution (of type-A and type-B customers in

the type-dependent service rate model, Argon and Ziya [2009], was used.) with the minimum

mean and maximum mean, respectively. This ensures that prioritizing type-A customers as

in Argon and Ziya [2009] does not violate the cµ rule.

We first show that the optimal threshold policy obtained for the model with class-

dependent service rates is different from that the optimal threshold policy for the model
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Figure 2.4: An example of a signal distribution and corresponding ROC curve.

with type-dependent service rates. We run a numerical example by setting α = 0.4, λ = 0.8,

hA = 2, hB = 1, β = 1.1, µ = 1
aB

= 1, SCV1 = SCVA = SCV2 = SCVB = 1. The

signal distribution and corresponding ROC curve are given by Figure 2.4. Type A is the

priority group in both settings. Average waiting costs at different thresholds are plotted in

Figure 2.5.
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Figure 2.5: Comparison of average waiting costs at different thresholds.

Argon and Ziya [2009] show that there exists a unique threshold value that minimizes the

waiting costs. This threshold depends on the signal distribution, system load and patient

mix (p1, p2). Higher moments of service time distribution do not affect the optimal threshold.

Note that higher moments of service time affect long-run average waiting costs by affecting

expected residual time. Since service time requirements depend on the type, classifying a
29



customer as type-A or type-B does not change the expected residual time. If a customer is

classified as a priority in our setting, their service time distribution has a lower mean and

second moment than if they are classified as non-priority. Thus, classification affects long-

run average waiting costs by changing the expected residual time, and the optimal threshold

depends on the higher moments of the service time.

Argon and Ziya [2009] proves that the optimal threshold decreases as the system load

increases; (ii) optimal threshold converges to p1 as the system load approaches 0; (iii) optimal

threshold converges to 0 as the system load approaches 1. Our numerical example shows

that this statement does not hold when the service rate depends on the classification rather

than the type. In Figure 2.6, average waiting costs are plotted by varying the arrival rate

and keeping other problem parameters the same. This is equivalent to varying the system

load. As shown in the figure, the threshold value at λ = 0.8, i.e., at a higher system load, the

optimal threshold is larger than it would at λ = 0.2, i.e., at a lower system load. We observe

that the threshold value at λ = 0.95, i.e., at a higher system load, the optimal threshold is

smaller than what it would be at λ = 0.8, i.e., at a lower system load. Based on these two

examples, we cannot argue that there is a monotonic change at optimal threshold values as

the arrival rate varies.
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Figure 2.6: A comparison of optimal threshold values at different values of λ in system
where the service rate is classification-dependent.
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2.8 Nonlinear Waiting Costs

We have assumed that waiting costs are linear in time, which might not be realistic for some

applications in practice. This section explores how our analysis changes if we relax the linear

waiting cost assumption. Theoretical analyse of queuing systems with nonlinear waiting costs

can be difficult. In the literature, increasing and convex functions such as quadratic functions

are popular functional forms to study the queuing systems with nonlinear waiting costs.

Suppose that the waiting cost function is given by the following quadratic function hz2

where h is a constant and z is the time spent in the queue. Using the results from Durr

[1969], we can express average waiting cost function W (x) in closed form:

W (x) = E
[
W 2

1 (x)
]
(γα + (1− α)x) + (1− x)E

[
W 2

2 (x)
]

(2.19)

E
[
W 2

1 (x)
]
=

(
EU

(1− ρ1(x))2
+

ERλ1(x)e1

(1− ρ1(x))3
)

)
(1− ρ1(x))

E
[
W 2

2 (x)
]
=

(
EU

(1− ρ1(x)) (1− ρ1(x)− ρ2(x))2
+

ERλ1(x)e1

(1− ρ1(x))2 (1− ρ1(x)− ρ2(x))2
+

ER (λ1(x)e1 + λ2(x)e2)

(1− ρ1(x)) (1− ρ1(x)− ρ2(x))3

)
1− ρ1(x)− ρ2(x)

1− ρ1(x)
,

(2.20)

where
λ1(x) = λG(x),

λ2(x) = λ (1−G(x)) ,

ρ1(x) =
λ1(x)

βµ
,

ρ2(x) =
λ2(x)

µ
,

ER =
λ

2
(G(x)(e1 − e2) + e2) ,

EU =
λ

3
(G(x)(u1 − u2) + e2) .

(2.21)

Notation u1 and u2 refer to the third moment of service time distribution for priority and

nonpriority classes, respectively.

We run three numerical examples with quadratic waiting costs. The first and second
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numerical examples are counterexamples for Proposition 2, and Proposition 5, respectively.

The third numerical example is a counterexample for a lemma used in the proof of Theorem 1.

In section 2.4 where we assumed perfect information and linear waiting costs, we have

proved Proposition 2, i.e., if the inequality e1βµ ≥ e2 (βµ− λ) holds, then W (x) is a strictly

convex function of x on interval [0, 1]. This proposition allowed us prove the uniqueness of

the optimal threshold and perform a theoretical analysis of the expected value of the perfect

information.

We run the first numerical example by setting α = 0.6, λ = 0.8, hA = 7, hB = 1, β = 1.2.

In the example, we assume that priority and nonpriority service time are random variables

drawn from Gamma(6,6) and Gamma(36,30), respectively where the first term is the shape

parameter and the second term is the rate parameters: µ = 1/1.2, β = 1.2, e1 ≈ 1.16,

u1 ≈ 1.55, e2 = 1.48, and u2 ≈ 1.87.

Figure 2.7 illustrates that the convexity property is no longer satisfied when the waiting

cost is quadratic in time.
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Figure 2.7: Comparison of average waiting cost function with linear and quadratic waiting
costs under perfect information

In section 2.5, we proved that there is a unique solution to minimize W (x). For that

purpose, we divide the domain [0, 1] into two region: region where κ ≥ 1 and region where

κ < 1. We have showed that W a(x) and W (x) are monotonically decreasing functions of x

on region where κ ≥ 1 which allowed us to limit our search to the latter region.
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In the second numerical example, we set α = 0.6, λ = 0.8, hA = 7, hB = 1 and assume

that priority and nonpriority service time are random variables drawn from Gamma(4,4) and

Gamma(3.15,3), respectively. In other words, µ = 1/1.05, β = 1.05, e1 = 1.25, u1 ≈ 1.875,

e2 ≈ 1.4525, and u2 ≈ 2.49. We use the curve shown in Figure 2.9a to model the imperfect

information.

As shown in Figure 2.8, W a(x) and W (x) are no longer monotonic decreasing functions

of x on region where κ ≥ 1 under the quadratic waiting costs assumption. The second part
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Figure 2.8: Counter example to Proposition 5 when the waiting costs are quadratic

of the uniqueness proof also depends on the proof that W (x) is a unimodular function of

κ on that region where κ < 1. Please refer to the Appendix for details. We run the third

numerical example by setting α = 0.6, λ = 0.8, hA = 7, hB = 1. In the example, we assume

that priority and nonpriority service time are random variables drawn from Gamma(6,6)

and Gamma(30,48), respectively where the first term is the shape parameter and the second

term is the rate parameters: µ = 1/1.2, β = 1.2, e1 ≈ 1.16, u1 ≈ 1.55, e2 = 1.48, and

u2 ≈ 1.87. We use the ROC curve shown in Figure 2.9a to model the imperfect information.

As shown in Figure 2.9, W (x) is no longer unimodular function of x on the region where

κ < 1.
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CHAPTER 3

DECISION TREES FOR PATIENT PRIORITIZATION IN

EMERGENCY DEPARTMENTS

3.1 Introduction

In the Emergency Department (ED), overcrowding occurs when “the identified need for

emergency services exceeds available resources for patient care in the emergency department

(ED), hospital, or both (ACEP [2019])". Due to this mismatch between resource capacity

and the need for healthcare services, patients can experience negative consequences such

as long wait times and poor care quality. When an ED is overcrowded, it approaches its

full capacity; new patients are placed in a waiting room until a licensed ED bed becomes

available or they get medical treatment in the waiting room/hallway bed. The quality of care

in hallway beds and chairs is inferior compared to the treatment on a standard and licensed

ED bed (Richards et al. [2014]). Given the limited availability of standard ED beds, patients

are prioritized to be placed in a standard ED bed based on their urgency and resource needs.

All patients are “triaged", i.e., sorted by acuity upon their arrival. In the United States,

the five-level ESI (Emergency Severity Index) triage system is widely used in emergency

departments (EDs), with ESI-1 being the most urgent and ESI-5 being the least urgent.

The ESI score is determined by demographics, chief complaints, medical history, vital signs,

and estimated resource needs (Gilboy et al. [2020]). The ESI triage system provides triage

nurses with guidelines on assigning acuity scores to patients, which can be seen as a proxy

for how urgent the patient needs medical treatment. The decision-makers consider the time-

sensitive nature of the patient’s health status and aim to provide medical treatment to

patients quickly and effectively. Since ESI scores are a proxy for how long a patient can wait

without significant deterioration in the health status, the ESI score is an important factor

in the patient prioritization for ED beds.

Other factors that play a role in patient prioritization might be related to various aspects

of the expected care that cannot be explicitly captured in the data. For example, predicted

disposition outcomes can impact the assignment decision. Li et al. [2021] study the patient
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prioritization for physician assessment and empirically show that if the ED blocking is suffi-

ciently low, Admit patients are prioritized over Discharge within the high acuity group. On

the other hand, if the ED blocking is sufficiently high, then Discharge patients are prioritized

over Admit patients.

Not all patients in the ED have life-threatening emergencies. Patients who show up

with minor complaints are usually assigned to the lower acuity class. Although treating

patients with minor complaints takes a shorter time, they could wait more because they

are de-prioritized over patients with more complicated complaints. To improve patient flow

and decrease the waiting time, ED departments have established a fast-track area dedicated

to patients with less urgent medical conditions (Welch [2009]). Patients with higher acuity

scores are prioritized for the primary service area, while patients with lower acuity scores

are prioritized for the fast-track area.

The Emergency Department at the University of Chicago Emergency Medicine (UCM)

had thirty-six treatment rooms between November 1, 2016, and December 15, 2017. Thirty-

one of those were sufficiently equipped to treat patients with mid-to-high acuity. Five ED

rooms were better suited to treat patients with non-emergency situations and utilized simi-

larly to the fast-track area. In literature, most studies focus on the primary service area by

excluding the fast-track area during the peak load hours. At UCM, a choice incident, where

multiple patients are waiting to be placed in a bed, happens at any time during the day,

not just during a specific time window. Figure 3.1 shows that the time window between 12

pm and 6 am on the next day includes the highest number of choice incidents while 17.88%

of the incidents occur between 6 am and 12 pm, during which non-urgency rooms are not

available. Figure 3.2 shows that the 33.36% of patients who are assigned to an urgency room

between 6 am and 12 pm are by low-priority patients while this ratio goes down to 1.49%

between 6 pm and midnight. In other words, urgency rooms are not only used for mid-high

acuity patients but also for low acuity patients. The utilization percentage by each acuity

group changes whether the fast tract is open and the time of the day.

We model the patient prioritization problem using the discrete choice framework, partic-

ularly the conditional logit model. A patient assigned to a bed represents a decision epoch.

All patients waiting to be assigned to a bed in the ED comprises a choice set; the current
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Figure 3.1: Percentage of choice incidents for urgency room by time of the day.
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status of the ED represents the decision-maker. The decision-maker selects the patient who

brings the most utility to the present ED status. The empirical evidence from our data anal-

ysis and the literature suggests that the utility of each alternative depends not only on its

attributes but also on interactions between its attributes and the decision-maker attributes.

For instance, the likelihood of selecting a low acuity patient instead of a high acuity patient

is higher between 6 am and 12 pm than during the rest of the day at UCM ED. At the

Canadian hospital, ED studied by Li et al. [2021], the likelihood of selecting a Discharge

patient rather than an Admit patient increases as the ED blocking increases.

Theory-driven models, e.g., logit models, assume an additive and linear utility structure

rather than learning it from the data. This inflexibility can be restricting to model the

observed choice behavior in complex environments such as an ED, where system attributes

impact the choice outcome. The interaction terms between system and patient attributes

can be added to capture the system effects on the choice outcome. This method requires

either an a priori hypothesis formed by the domain knowledge or the addition of all pairwise

interaction terms. Although the former can result in more interpretable estimation results,

the interaction effects unknown to the domain expert can be missing. The latter can capture

the most relevant interactions, but it also results in estimation results that are harder to

interpret. Both methods capture the system and patient interactions in a very specific

form, multiplication, and thus might not be flexible enough for a more complicated form of

interactions.

Machine learning offers techniques and practices that could overcome the limitations

of the current theory-driven models in the choice modeling field (van Cranenburgh et al.

[2021]). For example, the decision tree approach, one of the most popular supervised learning

algorithms in machine learning, is flexible enough to capture the interaction effects without

explicit modeling and is still easy to interpret and visualize. We utilize decision trees and

logit models to discover the system and patient interaction terms and study the impact of

ED status on the patient prioritization rule.

Aouad et al. [2019] recommend a tree-based segmentation algorithm, Marketing Segmen-

tation Trees (MST). The MST algorithm is a modified version of the CART algorithm, the

standard decision tree generation approach proposed by Breiman et al. [2017], and performs
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successive decision tree splits into the consumer attributes. It fits a choice model at each

leaf node. We first evaluate the performance of the MST algorithm in an artificial choice

dataset generated via simulating a simple ED system where all patient routing decisions are

based on an optimal deterministic policy. The rationale behind this step is that any plausible

algorithm should accurately predict the choice outcomes in this setting. We observe that

the performance of the MST algorithm is comparable to the conditional logit model with all

pairwise system-patient interactions, and both approaches can predict the choice outcomes

with almost perfect accuracy.

The rest of this chapter is organized as follows. Section 3.2 first reviews relevant papers

on patient routing in emergency departments and then provides a brief literature review on

customer segmentation. In Section 3.3, we model the patient prioritization problem using

the discrete choice framework and introduce the MST algorithm. In Section 3.4, we simulate

the patient routing decisions at UCM and generate an artificial choice dataset on which we

run the MST algorithm.

3.2 Literature Review

Choice Modelling in ED Operations: We first summarize three recently published

papers that model patient routing as a discrete choice problem.

Ding et al. [2019] analyze patient prioritization decisions in an emergency department

that uses the Canadian Triage and Acuity Scale (CTAS). CTAS proposes a fractile response

objective for each urgency class but does not provide clear guidelines on routing patients

within the same urgency level. The authors model the ED as a multiclass queuing system and

observe that the routing decisions generally follow the “cµ” rule proposed by Van Mieghem

[1995]. They estimate the ED patient marginal cost structure perceived by decision-makers

using the conditional logit model proposed by McFadden et al. [1973]. Their setting focuses

on the primary service area, where rooms are similar when the system is critically loaded

during a busy period. Thus, they justify that decision-makers are homogeneous. Our model

focuses on primary (better suited to treat patients with high urgency) and secondary service

areas when a choice incident appears without restricting to a specific time window. The
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study data shows that not all room types are available all day, so an hour of the day also

matters in routing decisions.

Li et al. [2021] analyze the average waiting time for Admit and Discharge patients with

middle-to-low urgency levels at a large Canadian hospital. They observe that Discharge

patients have a shorter waiting time than Admit patients within the same triage level. The

authors use a mixed logit model to model patient routing decisions for the primary service

area during peak hours. They add the related interaction terms to the model to capture

how the expected disposition outcome affects the prioritization decision across triage and

ED blocking levels.

The intensive care units (ICUs) generally include ED patients, transfers from other ICUs

(planned and unplanned), and scheduled patients. Shen et al. [2020] observe that the ICU

admission rate from ED varies as ED and ICU occupancy varies but is not sufficient to

explain the heterogeneity in the admission rates. The authors hypothesize that forward-

thinking behavior can impact admission decisions and find confirming evidence in the data.

They deploy a multinomial logit model to estimate ICU admission decisions. They divide

the time into 2-hour intervals. There are three choices for each patient: admission to ICU,

admission to the non-ICU unit, or continuing to wait in ED. Both system and patient-level

characteristics are used as covariates in the MNL model.

Customer Segmentation: The discrete choice framework allows us to redefine the

patient prioritization problem in terms of marketing terminology. The ED status at each

decision epoch represents the customer, and the patients in the waiting area represent the

assortment. In marketing literature, customers are segmented based on their shared at-

tributes to better understand their choice behaviors. Similar to customer segmentation, ED

attributes can be segmented so that a similar decision rule is observed in ED environments

belonging to the same segment.

A popular approach in the industry to perform customer segmentation is to cluster pa-

tients based on their attributes before any choice model is fit. An unsupervised algorithm,

K-clustering, is commonly used to form K clusters so that the customers who belong to the

same cluster are as homogeneous as possible in their attributes.

A more recent approach in customer segmentation is decision trees, a supervised learning
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algorithm. Decision trees are heavily studied for classification and regression problems in

machine learning literature (Breiman et al. [2017]). Decision trees are easy to interpret and

capture complex non-linear relationships; however, they could be unstable due to their high

variance nature. Combining decision trees with stable models such as linear and logistic

regression could help mitigate the model instability and improve performance. Quinlan et

al. (Quinlan et al. [1992]) introduce the “model tree" algorithm based on the idea of decision

trees with leaves that contain linear regression functions. Landwehr et al. (Landwehr et al.

[2005]) extend this idea for classification problems by replacing linear regression with logistic

regression. The splitting criterion for Quinlan et al. and Landwehr et al. is based on class

purity. Zeileis et al. [2008] focus on the decision trees’ interpretability, proposes a stability

metric, and splits the nodes based on parameter stability.

To our knowledge, Mišić [2016] is the first to use model trees for the customer segmen-

tation process. The author uses a CART-based decision tree algorithm to partition the

customers based on their attributes and fits a multinomial logit model (MNL) at every leaf.

The objective is to minimize the log-likelihood to improve the predictive accuracy. Aouad

et al. [2019] propose a similar decision tree generation process where the MNL is replaced

with the conditional logit model (CLM). Replacing CLM with MNL offers a more general

framework that could be applied to settings where choice alternatives are not explicitly cat-

egorized. The authors test the algorithm on synthetic datasets and a publicly available

Expedia dataset. The synthetic datasets include the choice alternatives comprised of 2 to

5 options. In the Expedia dataset, each hotel represents the choice alternative. In both

datasets, alternatives appear in more than one choice incident, and an alternative appears

only once in a given choice incident. For example, the same hotel can appear on the dis-

play page for different Expedia users. The total number of hotels on the Expedia website is

countably finite. In contrast, there is no natural categorization of patients in the ED dataset;

thus, the set of all choice alternatives - patients - is not countable finite. Our work is the

first to deploy the model tree in the ED setting with infinite choice alternatives to the best

of our knowledge.
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3.3 Methodology

We model the patient prioritization problem in ED as a discrete choice problem. Patients

waiting to be roomed represent the choice set, while the current status of the ED system

represents the decision-maker. The patient and system-level covariates determine the utility

of choosing a patient at a given ED status. The triage nurse chooses the patient with the

highest utility for the next bed assignment among all patients in the waiting room.

We will first explore the traditional logit models to model the prioritization rule in ED.

Logit models are derived from random utility maximization theory and assume that utility

function is a linear weighted function of observable covariates and an error term. They

are widely used for discrete choice modeling where the choice set has two or more discrete

alternatives. The choice probabilities are expressed in an interpretable closed form, making

logit models attractive for researchers.

The standard logit models, multinomial logit, and conditional logit model are suitable for

discrete choice modeling when the Independence of Irrelevant Alternative (IIA) holds. This

property implies that the relative probability of choosing an alternative does not depend on

other alternatives. Suppose that a patient is deemed more important than another patient.

Even if we add more patients similar to the former, they will still be more important than

the latter. Therefore, we assume that IIA property holds in the ED setting.

In the multinomial logit model, the utility of alternatives depends solely on the decision-

maker attribute values. Each alternative has a different coefficient vector which measures

how the decision-maker attribute value impacts the utility of that alternative. On the other

hand, in the conditional logit model, the utility of the alternative depends on its attributes.

The coefficient vector is allowed to be the same across all alternatives and measures the

marginal utility of an alternative attribute.

Conditional logit is better suited than the multinomial logit to model patient routing

decisions. To use the MNL framework, we need to cluster patients so that patients belonging

to the same cluster will have the same or nearly the same attribute covariates. Even if we

could cluster patients successfully, there is no guarantee that only one patient from each

category will appear at any choice incident. Therefore, we eliminate the multinomial choice
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model as a modeling approach. The simplest conditional logit model assumes that the utility

function is a weighted linear function of alternative characteristics. Weights, i.e., coefficients,

are estimated via maximum likelihood estimation with no need to cluster patients. It is

possible to add interaction terms between the decision-maker and patients to capture the

impact of decision-maker covariates on the choice probabilities.

Now, we explain how we constructed the dataset to apply the CLM model for patient

prioritization. In our terminology, incident refers to the decision epoch. If two patients are

in the system at an incident, two rows are associated with the incident in the dataset. Each

row stores the information regarding system status and patient covariates at the time of that

incident. Since both patients are experiencing the same system at the same decision epoch,

columns related to system status have the same values. The columns related to patients’

covariates store the information about the patient at that incident.

At each incident t ∈ T = {1, . . . , T}, the system (ED) is represented by the vector

zt = ⟨zt1, . . . , ztMs⟩, and each choice alternative (patient) i in choice set Ct is represented

by vector xi = ⟨xi1, . . . , xiMa⟩, where Ms and Ma are the number of system and patient

level covariates, respectively.

Patients stay in the choice set until they get roomed in ED or depart from the ED.

Therefore, the same patient can appear multiple times in the choice dataset. However, a

subset of the patient attributes could change across these decision epochs. For example, a

patient’s health can worsen or improve, resulting in a change in the ESI score. The waiting

time increases as the patient stays in the waiting room and transfers to the next choice set.

Therefore, each patient-incident pair represents an alternative that appears only once in the

dataset. We let I to be the set of all alternatives in the dataset, i.e, I = C1 ∪C2 ∪ · · · ∪CT .

The notation Vti denotes the utility obtained by choosing alternative i at incident t. The

decision-maker chooses the alternative with the highest utility. Let ct ∈ Ct be the actual

choice outcome at decision epoch t, and yti ∈ {0, 1} denote whether the alternative i is

chosen at at incident t:

yti =

1, if decision-maker chooses alternative i at incident t, i.e., ct = i

0, otherwise
(3.1)
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The conditional logit model assumes that utility is a linear function of covariates. Since all

patients experience the same ED at the same incident, we cannot add ED-level covariates

in the utility function unless we interact those covariates with patient-level covariates. The

utility Vti in the conditional logit model with no interaction terms is given by:

Vti =
Ma∑
k=1

βkxi,k + ϵti. (3.2)

The utility Vti in the conditional logit model with all pairwise system-patient interaction

terms is given by:

Vti =
Ma∑
k=1

βixi,k +
Ma∑
k=1

Ms∑
m=1

βk,mxi,kzt,m + ϵti. (3.3)

The noise terms ϵti are Gumbel random variables i.i.d across incidents and alternatives. The

probability that decision-maker chooses alternative i at incident i is given by

P (yti = 1) =
eVti∑

i′∈Ct
eVti′

∀i ∈ Ct. (3.4)

We use the “Pylogit" package developed by Brathwaite and Walker [2018] on Python to

implement the conditional logit model.

Instead of adding all pairwise system-patient interaction terms in the form of multiplica-

tion, we use decision trees to capture the interactions. We split training observations using a

decision tree and fit a conditional logit model at each leaf node. In this tree, splits are based

on the system-level ED attributes. Therefore all observations belonging to the same incident

fall into the same leaf. Leaf nodes represent the system status. System status is similar for

the incidents in the same leaf; thus, we expect a similar decision rule. As the system status

changes, decision rules can change. Room type, time of the day, and waiting room census

can change the prioritization rule; accordingly, it is likely to run the CLM model at each leaf

with the same covariates but obtain different coefficient estimates and thus different decision

rules.

In the next two subsections, we give an overview of the decision trees and then introduce

the MST algorithm recommended by Aouad et al. [2019].
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3.3.1 Decision Trees Overview

Decision trees are created using a top-down, greedy approach that splits the predictor space

into non-overlapping regions. A split, a branch node, is defined by a predictor and cut

point. A decision tree splits the predictor space into two regions at the top of the tree

and iteratively splits the previously defined regions until a stopping criterion is reached. At

each step of the branching process, the algorithm picks the best split that minimizes an

error function (e.g., mean squared prediction error for regression, classification error rate,

the Gini index, or entropy for classification) within the resulting tree. The predicted value

of an observation is determined by its leaf membership. The predicted value is the mean

of all training observations that fall into that leaf for regression problems. For classification

problems, the predicted value is the most commonly occurring class among the training

observations that fall into that leaf (James et al. [2014]).

Decision trees are likely to overfit the training data due to the complexity of the resulting

tree. To mitigate this problem, we can only continue to branch the tree if there is a split

that decreases the error function by at least a certain predefined amount. Although this

method can decrease tree complexity, it is too myopic since powerful splits can be hidden

behind weaker splits. This issue can be avoided by a two-step process that includes growing

a very deep tree and pruning it back to a subtree by penalizing the tree’s complexity (James

et al. [2014]).

3.3.2 The MST algorithm

The MST algorithm is a modified version of the Classification and Regression Trees (CART)

algorithm presented by Breiman et al. [2017], which involves two main steps: tree growing

and tree pruning. The MST algorithm performs successive decision tree splits into the

consumer attributes and fits a choice model at each leaf node.

The algorithm starts with the root node, which includes all consumers, and considers

a split encoded by a splitting variable and split point to partition the data. The split

values are limited to a small set for categorical variables such as ESI score and abnormal

vital sign indicators. All possible values of a categorical variable are considered as a split
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point. Searching for the best split over all possible values can be computationally expensive

for continuous variables. Therefore, the observed values of the continuous variable in the

training data are sorted, and various quantile values are considered a split point. Once the

data is split into two leaf nodes, a choice model is fit to model the consumers’ response

at each leaf. The choice model is trained to maximize the log-likelihood function. The

performance of the split is measured as the summation of the log-likelihood functions of the

best choice models fit at newborn leaves. The algorithm selects the best split and applies

this branching procedure recursively until a stopping criterion is reached.

Once the algorithm completes the tree growing stage, it prunes back the fully grown

tree to a subtree using the CART pruning technique to prevent overfitting. This technique

evaluates the performance of the tree on the held-out validation set and prunes it if the

marginal benefit of the split is below a certain threshold. The reader can refer to Aouad

et al. [2019] for an in-depth explanation of the MST algorithm.

3.4 ED Simulation

We model the ED environment as a Markov Decision Process and find the optimal policy

that minimizes the expected infinite horizon discounted waiting costs via value iteration.

Given the system state, the optimal decision is deterministic. Once we have the system

parameters and optimal policy, we can simulate the ED and decision process and create an

artificial choice set. We first evaluate the performance of algorithms on the artificial choice

set. Since there is no randomness in the choice decisions in the controlled environment, we

expect that any candidate algorithm should closely mimic the optimal deterministic policy

and have perfect or nearly perfect accuracy.

Let us describe the simulated ED system in more detail. There are three patient types

with different urgency levels: urgent (1), moderately urgent (2), and non-urgent (3). Patient

arrival and treatment are time-homogeneous Poisson processes with the rate λb and µb,

respectively, where b denotes the urgency level of the patient. Parameter hb denotes the

waiting cost of a patient with urgency level b. Higher urgency patients have higher waiting

costs than lower urgency patients.
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There are two different types of rooms: urgency rooms and non-urgency rooms. There

are Nu urgency rooms and Nn non-urgency rooms. Urgent patients can be treated only in

urgency rooms. Moderately urgent patients can be treated in either room, but if a moderately

urgent patient is treated in a non-urgent room, a linear cost with w is incurred. Non-urgent

patients can be treated in either room at no additional cost. Patients will leave the system

only after their treatment is completed, i.e., there is no abandonment.

While waiting, urgent and non-urgent patients do not switch to a different urgency class.

However, moderately urgent patients can switch to higher or lower urgency classes while

waiting. They can become urgent after an exponentially distributed waiting time with a

mean of 1/θu and become non-urgent after an exponentially distributed waiting time with

a mean of 1/θn. Figure 3.3 illustrates the simulated ED environment.

Urgent

Moderate

Non-urgent

𝜃!

𝜃"

𝜆#, 𝜇#, ℎ# Waiting room Service rooms

Urgency 
rooms

Nonurgency
rooms 

Figure 3.3: Illustration of ED simulation

The system’s control times are when a patient arrives, treatment of a patient is completed,

and a moderately urgent patient switches to a different urgency class. The state st =

⟨x1,t, x2,t, x3,t, Nu
t , N

n
t , yt⟩ where xb,t denotes the number of patients with urgency level

b ∈ {1, 2, 3} waiting for a room at decision epoch t; Nu
t (Nn

t ) is the number of available

urgency and (non-urgency rooms) at decision epoch t; and yt is the number of moderately
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urgency patients in non-urgency beds. The action is to decide how many patients with level

b to send urgency rooms and non-urgency rooms. Let aub,t be the number of patients with

level b to send urgency rooms where b ∈ {1, 2, 3}; and anb,t be the number of patients with

level b to send non-urgency rooms where b ∈ {2, 3} at decision epoch t. The action space for

state st is:

A(st) =
{
⟨au1,t, a

u
2,t, a

u
3,t, a

n
2,t, a

n
3,t⟩ : 0 ≤ au1,t ≤ x1,t,

0 ≤ au2,t + an2,t ≤ x2,t,

0 ≤ au3,t + an3,t ≤ x3,t,

au1,t ≤ Nu
t ,

au1,t + au2,t + au3,t ≤ Nu
t ,

an2,t + an3,t ≤ Nn
t ,

au1,t + au2,t + au3,t + an2,t + an3,t ≤ 1
}
.

(3.5)

The last inequality ensures that only a single patient is routed at each decision epoch. This

condition naturally holds when the number of occupied rooms is close to its capacity. We

enforce this constraint, not for optimization purposes but to create a well-defined choice set.

To limit the state space size, we will assume that if the total number of patients in the

waiting room and servers is M , any patient arrival is rejected. Once the decision a is made,

the state st = ⟨x1,t, x2,t, x3,t, Nu
t , N

n
t , yt⟩ immediately transitions to an intermediate state:

T (st, at) =
〈
x1,t − au1,t,

x2,t − au2,t − a
n
2,t,

x3,t − au3,t − a
n
3,t,

Nu
t − au1,t − a

u
2,t − a

u
3,t,

Nn
t − an2,t − a

n
3,t,

yt + an2,t
〉
.

(3.6)

48



The cost rate function for state st = ⟨x1,t, x2,t, x3,t, Nu
t , N

n
t , yt⟩ is given by

C(⟨x1,t, x2,t, x3,t, Nu
t , N

n
t , yt⟩) =

(
3∑

b=1

hbxb,t

)
+ wyt.

Let V (s)π denote the expected expected infinite-horizon discounted costs under the policy

π where the initial state is s0 = s:

V (s) = Esπ

[∫ ∞
t=0

e−αtC(sπt )dt
]
,

where sπt is the random variable that denotes the state at time t under policy π.

We use the uniformization method to approximate the described continuous MDP by a

discrete MDP. We find the optimal policy by using value iteration. Since optimal policy does

not distinguish between patients with the same urgency level, we assume that First-Come-

First-Served (FCFS) is applied at each urgency level.

3.4.1 Numerical Example

Once we have the model and optimal policy, we simulate the ED and collect choice data.

Table 3.1 is an example of a choice dataset formatted in the long format for illustration

purposes. We run 4 algorithms on the simulated data:

• CLM-1: Conditional Logit Model with patient-level covariates: urgency (encoded as a

dummy variable), wait time.

• CLM-2: Conditional Logit Model with patient-level covariates and interaction terms

between urgency and urgency room indicator.

• CLM-3: Conditional Logit Model with patient-level covariates and all pairwise inter-

actions between patient and system-level covariates.

• The MST Algorithm splits the decision tree based on system-level attributes and fits

a CLM model at each leaf by using only patient-level attributes.
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Table 3.1: Simulated choice dataset in the long format.

incident 1 1 . . . N N N
altkey 1 2 . . . 3 4 5
urgency room indicator 1 1 . . . 0 0 0
# urgent patients in waiting room 0 0 . . . 1 1 1
# moderately urgent patients in waiting room 1 1 . . . 2 2 2
# non-urgent patients in waiting room 1 1 . . . 2 2 2
# urgent patients in urgency rooms 2 2 . . . 2 2 2
# moderately urgent patients in urgency rooms 1 1 . . . 2 2 2
# non-urgent patients in urgency rooms 0 0 . . . 1 1 1
# urgent patients in non-urgency rooms 0 0 . . . 0 0 0
# moderately urgent patients in non-urgency rooms 1 1 . . . 0 0 0
# non-urgent patients in non-urgency rooms 1 1 . . . 1 1 1
# available urgency rooms 2 2 . . . 0 0 0
# available non-urgency rooms 1 1 . . . 2 2 2
urgency 2 3 . . . 1 2 3
wait time 1 3 . . . 1 2 3
choice 1 0 . . . 0 0 1

We evaluate the algorithm performance by measuring the percentage of the times that the

patient chosen by the algorithm is the same as the patient chosen at the time of the inci-

dent. Based on the patient routing restrictions, adding interaction terms between the room

type and urgency level to the CLM-1 should significantly improve the prediction accuracy.

Furthermore, there might be system-patient interactions that are not as obvious but can sig-

nificantly improve prediction accuracy; thus, CLM-3 should perform better than the CLM-2

in a sufficiently large dataset so that overfitting issues can be avoided.

Table 3.2 indicates that most of the variation in the choice outcomes that cannot be

explained solely on patient attributes could be explained by the interaction between the

urgency level and urgency room indicator. The other pairwise system-patient interactions

could almost capture the remaining variation. Table 3.2 shows that the MST algorithm

performs better than CLM-1 and CLM-2 and is comparable to CLM-3. Since CLM-3 includes

all pairwise system-patient interactions, it would be harder to interpret. On the other hand,

the decision tree generated by the MST algorithm illustrates how the patient prioritization

rule can change based on the system state in a clear way and makes it easier to interpret the

coefficient estimates of CLM models fit at each leaf node. Furthermore, a systematic and
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sound comparison of coefficient estimates helps us to discover not-so-obvious system-patient

interactions. Later, we can use the newly discovered interactions in the CLM model and

assess their significance in explaining the variation in choice outcomes. The next chapter uses

the MST algorithm and the described approach to gain insights into the patient prioritization

decisions at UCM ED.

Table 3.2: Prediction accuracy of conditional logit models and the MST algorithm
at different waiting room census levels on the artificial dataset.

no. waiting CLM-1 CLM-2 CLM-3 MST no. incidents

2 75.49% 93.75% 100.0% 100.0% 1681

3 75.75% 92.88% 98.97% 99.06% 1068

4 77.12% 94.31% 99.33% 99.11% 896

5 76.65% 94.49% 99.34% 99.21% 762

6 73.13% 92.82% 98.78% 98.78% 655

7 73.64% 94.89% 99.36% 99.04% 626

8 75.52% 95.66% 99.31% 98.44% 576

9 69.59% 92.65% 98.98% 98.37% 490

10 67.07% 89.27% 99.27% 98.54% 410

11 67.08% 85.64% 99.01% 99.50% 404

12 66.00% 83.25% 99.25% 98.50% 400

13 54.84% 67.74% 100.0% 100.0% 31

14 80.00% 80.00% 100.0% 100.0% 5
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CHAPTER 4

APPLICATIONS TO THE UNIVERSITY OF CHICAGO

MEDICINE EMERGENCY DEPARTMENT

4.1 Data Description

We study a dataset that includes all adult patients with emergency encounters from Novem-

ber 1, 2016, to December 15, 2017, at the UCM. There are 31 rooms in the primary service

area, which we call urgency rooms, that are sufficiently equipped to treat patients with

medium-to-high urgency levels. There are five rooms, which we call nonurgency rooms,

preferable for patients with low urgency levels. The urgency rooms are available all day,

while the nonurgency rooms are available from 12 pm to 6 am the next day.

Each patient encounter includes clinical information and operational event timestamps.

Clinical information includes the patient’s ESI score, vital signs (pulse, respiratory rate,

blood oxygen level, blood pressure, temperature), age, gender, arrival mode, chief complaint,

pain score, and level of consciousness. Main operational event timestamps include:

• Arrival time to the ED.

• Triage start and completion time.

• Initial provider contact time.

• Room-time (time at which patient roomed in ED).

• Disposition time (when the provider decides whether to admit or discharge the patient).

• Bed request time for Admit patients.

• Departure (the time when the patient leaves the ED).

The choice set comprises patients in the waiting area to be roomed. A patient enters the

waiting area if their triage is completed. If the patient has a missing triage completion time,

we assume the triage completion date is the same as the arrival date. Patients depart from

the waiting area if they are roomed or leave without being seen/roomed. Once we determine
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which patients are in the waiting area at the time of the incident, we determine the most

recent clinical and operational information available to the decision-maker. For instance,

patients’ health might get worse or better, resulting in a change in the assigned ESI score

while waiting. We assume the decision-maker decides which patient to select based on the

most recent information.

4.1.1 Patient-Level Data Description

We assume that the decision-maker selects which patient to room based on the following

patient-level attributes.

• ESI score. Based on clinical information and resource needs, patients are categorized

into five urgency classes, with ESI-1 being the most urgent and ESI-5 being the least

urgent. We use the ESI score as a categorical variable in our analysis.

• Wait. Wait time is calculated as the time elapsed from triage completion until the

time of the incident.

• Age. We use age as a categorical variable by grouping patients into six categories:

(18-45 years), (46-55 years), (56-65 years), (66-75 years), (76-85 years), and (86 years

and over).

• Vital signs. There are four primary vital signs: pulse, respiratory rate, blood pressure,

and temperature. We categorize the vital signs based on whether they fall into an

abnormal range. An adult can have a pulse of 60-100 beats per minute (bpm). If

the pulse rate exceeds this range, we encode it as an abnormal pulse. The normal

respiratory rate for adults is 12-20 breaths per minute. A respiratory rate below 12

or over 20 breaths per minute indicates a serious health problem and is thus encoded

as an abnormal respiratory rate. The normal adult body temperature can range from

97.8 °F to 99 °F. An abnormal body temperature refers to either hypothermia or fever.

Hypothermia occurs when the body temperature drops below 95 °F (of Rochester Med-

ical Center [2020]). Fever is not usually a concern if the body temperature reaches 103

°F or higher (Clinic [2020]). We categorize the body temperature as abnormal if it
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drops below 95 °F or reaches 103 °F or higher. If the systolic blood pressure is over 180

or diastolic blood pressure is over 120, this is encoded as a hypertensive crisis. If the

systolic blood pressure is between 130 and 179 or diastolic blood pressure is between

80 and 119, this is encoded as hypertension (Association [a]). Pulse oximetry (SpO2)

is considered the “fifth vital sign”. SpO2 measures the oxygen saturation in the blood.

A drop in SpO2 below 92% is considered as dangerous (Association [b]); and thus we

encode it as abnormal SpO2.

• Disposition outcome. Inspired by Li et al. [2021], we use the estimated probability of

being admitted to an inpatient stay rather than the realized disposition outcome to

avoid potential endogeneity issues. We train the prediction algorithm on the dataset

that includes patient encounters from January 1, 2018, to October 31, 2019. This

dataset has approximately 55000 encounters. We use age, gender, arrival mode, ESI

score, vital signs, pain score, and level of consciousness as explanatory variables. We

assign 80% of the sample to the training set and the remaining 20% to the test set.

We implement several prediction models: random forests, gradient boosted trees, and

logistic regression to predict the disposition outcome. The ROC AUC (area under the

ROC curve) is around 0.82 for the prediction models.

• Special conditions. The dataset includes if a patient has the following special condi-

tions: immunocompromised, at-risk, infection concern.

• Arrival by ambulance.

• Last ED visit date. Using operational data, we determine when the patient’s last ED

visit was before their current visit. If the last visit is within 30 days (90 days), the

patient is encoded as 30-day readmission (90-day readmission).

• Seen by a provider. While the patient is still waiting to be roomed, a provider might

initiate the first contact by ordering diagnostic tests. If the patient is contacted before

the incident, this covariate takes the value of 1; 0 otherwise.

• Chief complaint. In our dataset, there are more than a thousand chief complaints;

and most of these chief complaints occur for a very small number of patients. For
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that reason, we categorize all chief complaints based on natural language and clinical

information. Please refer to the Appendix A.2 for details.

Figure 4.1 shows the correlation between the patient-level attributes. Expected disposition

outcome is strongly and positively correlated with patient urgency and age. Infection con-

cern and immuno-compromised are moderately and positively correlated with each other.

Correlation between other patient-level attributes seems to be small or none.

esi admit 
probability ambulance seen by 

provider male 30 day 
readmission

90 day 
readmission age abnormal 

resp
abnormal 

SpO2
abnormal 

pulse
abnormal 

temp hypertension hypertensive 
crisis

immuno 
compromised at_risk infection 

concern wait

esi 1.000
admit 
probability -0.921 1.000

ambulance -0.076 0.151 1.000
seen by 
provider -0.081 0.075 0.006 1.000

male 0.011 0.124 0.032 -0.009 1.000
30 day 
readmission -0.058 0.063 0.037 -0.008 0.016 1.000
90 day 
readmission -0.056 0.062 0.013 0.007 -0.014 -0.168 1.000

age -0.291 0.567 0.126 0.036 0.098 0.014 0.038 1.000
abnormal  
resp -0.135 0.139 0.031 0.008 0.007 0.019 0.020 0.059 1.000
abnormal 
SpO2 -0.073 0.075 0.018 0.003 0.008 0.008 0.012 0.039 0.130 1.000
abnormal 
pulse -0.117 0.221 0.009 -0.003 0.006 0.026 0.017 -0.020 0.111 0.043 1.000
abnormal 
temp -0.049 0.054 -0.011 -0.008 0.017 -0.007 -0.006 -0.021 0.034 0.027 0.116 1.000

hypertension -0.007 0.004 0.005 0.006 0.067 -0.021 -0.012 0.189 0.021 -0.004 0.022 -0.020 1.000
hypertensive 
crisis -0.100 0.117 0.003 0.004 0.008 0.009 0.001 0.131 0.035 0.010 0.021 -0.005 -0.239 1.000
immuno 
compromised -0.123 0.126 0.000 0.023 0.043 0.006 0.028 0.063 0.018 0.015 0.043 0.029 -0.012 -0.007 1.000

at_risk -0.013 0.019 0.023 0.021 -0.003 -0.004 0.005 0.019 0.022 0.000 0.009 -0.001 0.004 -0.001 0.001 1.000
infection 
concern -0.099 0.109 0.002 0.017 0.036 0.030 0.020 0.045 0.025 0.023 0.063 0.127 -0.015 0.000 0.362 -0.001 1.000

wait 0.043 -0.035 -0.003 0.056 -0.030 -0.008 -0.001 -0.004 -0.057 -0.033 -0.034 -0.012 -0.003 -0.014 -0.033 -0.001 -0.020 1.000

Correlation Matrix of Patient (Incident-Patient) Level Attributes

Figure 4.1: Correlation Matrix of Patient (Incident-Patient) Level Attributes

4.1.2 System-Level Data Description

We define the emergency department by using the following system-level attributes:

• Type of the room to which patient is routed at the time of the incident.

• Waiting room census.

• Clean room availability. All ED rooms must be cleaned after every patient encounter

to maintain a sterile environment and reduce infection risk. We do not have the

information on when the cleaning process starts and ends. We first estimate the average
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time to clean a room based on the data and then calculate the estimated number of

clean ED rooms at each decision epoch.

• Number of boarders. A boarding patient is defined as a patient who is admitted to

an inpatient stay but has not been transferred to an inpatient bed because no beds

are available. According to Li et al. [2021], the boarding starts when an inpatient bed

is requested for the patient at the hospital and ends once the patient has departed

the ED and transferred to the inpatient stay. We use their definition to calculate the

number of boarders at each decision epoch.

• The time of the day. We divide the day into six-hour periods: from midnight to 6 am,

from 6 am to noon, from noon to 6 pm, and from 6 pm to midnight.

• Whether or not the day associated with the incident is a holiday.

To estimate the average cleaning time, we focus on the busy period that many patients are

waiting to be roomed. For each room, we find the median length of the time that starts

with the existing patient’s departure from the room and ends with a new patient’s arrival

in the room. During this time, the room’s number of occupants will be zero. We will call

this period a zero-state period. It is important to limit our analysis to the busy period.

If a room is available during a busy period, we infer that the room is being disinfected

and thus not utilized. During a non-busy period in that not many patients are waiting to

be seen, a room will not necessarily be given to a patient immediately after cleaning. We

observe that median zero-state time decreases as the number of patients in the waiting room

increases. Figure 4.2 shows that the median zero-state time stabilizes around 0.3 hours.

Figure 4.3 shows the correlation between system-level attributes. The waiting room census is

positively correlated with the number of boarders but negatively correlated with the number

of clean urgency and nonurgency rooms. The number of clean urgency and nonurgency

rooms is positively correlated with each other while negatively correlated with the number

of boarders. This is not surprising because as the ED gets busier, waiting room census

and the number of boarders increases, and clean room availability decreases. Figure 4.4

illustrated how system attributes at UCM ED change throughout the day.
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Figure 4.2: Median time from an outflux event to an influx event for an urgency room
(excluding 6 am -12 pm)

4.2 Discrete Choice Model

At incident t, the decision-maker chooses to room a patient from choice set Ct. The choice

set Ct is dynamic and changes over time as patients depart from and arrive in the waiting

room. The choice set Ct+1 comprised all patients in the choice set Ct minus patients, who

were selected at incident t or left the waiting room due to other reasons, plus patients who

arrived between incident t and t + 1. Once we have the choice set data, we perform the

following steps to make the discrete choice model better reflect the patient prioritization

decisions.

1. If only a single patient is waiting at incident t, i.e., |Ct| = 1, we drop that incident

from the choice data.

2. If there is a patient with a missing ESI score at incident t, we drop the incident t from

the choice data.

3. We exclude incidents that include an ESI-1 patient (0.7% of encounters). Because

ESI-1 patients have unstable medical conditions and require immediate care; thus, the
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num waiting clean avail urgent clean avail nonurgent num boarding
num waiting 1.000
clean avail urgent -0.455 1.000
clean avail nonurgent -0.341 0.212 1.000
num boarding 0.542 -0.388 -0.242 1.000

num waiting clean avail urgent num boarding
num waiting 1.000
clean avail urgent -0.385 1.000
num boarding 0.292 -0.257 1.000

Correlation Matrix of System Level Attributes (from 12 pm to 6 am)

Correlation Matrix of System Level Attributes (from 6 am to 12 pm)

Figure 4.3: Correlation Matrix of Patient System Level Attributes

prioritization rule is always to choose the ESI-1 patient.

4. If there is a patient at incident t with missing and unfilled entries, we exclude that

patient from the choice set Ct. If the updated choice set size is zero or one, we drop

the incident t from the choice data.

5. If the chosen patient at incident t has missing and unfilled entries, we drop the incident

t from the choice data.

6. If there is a “not" chosen patient in Ct who gets roomed within X minutes of incident

t, we exclude those patients from the choice set Ct. If the number of patients in the

waiting room after the exclusion is zero or one, we drop the incident t from the choice

data.

The rationale behind the last step is that room-time information serves as a proxy for

the time that a prioritization decision is made. Suppose two patients, A and B, are triaged

and waiting to be roomed. Suppose there are more than a couple of rooms available, and

the triage nurses simultaneously assign these two patients to the ED beds. The most likely

scenario is that these two patients are not roomed simultaneously but within a couple of

minutes of each other. Therefore, we cannot always claim that one patient is prioritized over

another, even if they roomed earlier than the other patient. To mitigate this problem, we

should estimate the time it takes to transfer a patient from the waiting room to a room in

the ED.
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Figure 4.4: UCM ED system attributes over time of the day

The time from triage completion to room time includes the transfer time and the time

spent waiting for patients deemed a higher priority to be roomed in the ED. If the patient is

the first person to be roomed after they are triaged, we conclude that there are no patients

deemed a higher priority than them. That is why the waiting time should only include the

transfer time. We first identify the patients who never see another patient to be roomed

during their stay in the waiting room. Taking the median of the wait times across these

patients, we estimate the transfer time as 5 minutes.

Once we update the choice set Ct per steps described above, we apply the conditional

logit model. The decision-maker chooses alternative i at incident i with probability

P (yti = 1) =
eVti∑

i′∈Ct
eVti′

∀i ∈ Ct.
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Recall that alternative i refers to the patient-incident pair rather than the patient itself. In

other words, the same patient can appear in different choice incidents, and we use a different

label each time we refer to the patient. We first apply the CLM model with no interaction

terms:

Vti =
4∑

k=2

βesi,kx
esi,k
i +

5∑
k=2

x
esi,k
i

(
βwait,kWaiti + βwait2,kWait2i + βadmit,kx

admit
i

)
+ βT

p x
p
i .

(4.1)

Notation x
esi,k
i = 1 if alternative i has an ESI score of k at time of the incident for all

k ∈ {2, 3, 4}. The notation Waiti is the time elapsed from alternative i’s triage completion

to the time of incident t. We add quadratic term Wait2i to capture the nonlinear effect of

waiting time on the decision maker’s utility. Notation xadmit
i is the estimated probability

that alternative i will be admitted into inpatient-stay. The vector x
p
i contains information

on alternative i’s arrival mode, gender, previous ED visit, age, vital signs, the existence of a

special condition (such as substance abuse, altered mental status, etc.), chief complaint and

whether a provider has seen the alternative.

Table 4.1: Estimation results for urgency and non-urgency rooms on UCM ED dataset.

Urgency room Nonurgency room
No. observations 26606 6346
McFadden pseudo R2 0.259 0.510
McFadden pseudo R2

adj 0.256 0.499
Variables Coef Std Err Coef Std Err

ESI = 2
ESI −2.9587∗∗∗ (0.223) −0.5682 (0.983)
ESI × Wait −1.2039∗∗∗ (0.026) −0.7531∗ (0.352)
ESI × Wait2 −0.1123∗∗∗ (0.005) −0.0556 (0.072)
ESI × admit prediction −0.4078 (0.228) −7.0589∗∗∗ (1.380)

ESI = 3
ESI −1.1838∗∗∗ (0.181) −0.2414 (0.286)
ESI × Wait −1.1322∗∗∗ (0.020) −0.9212∗∗∗ (0.092)
ESI × Wait2 −0.0750∗∗∗ (0.003) −0.1400∗∗∗ (0.019)
ESI × admit prediction −0.1731 (0.178) −6.1436∗∗∗ (0.536)

Continued on next page
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Table 4.1 – continued from previous page
Urgency room Nonurgency room

Variables Coef Std Err Coef Std Err

ESI = 4
ESI −0.3160 (0.184) −0.0645 (0.241)
ESI × Wait −1.0706∗∗∗ (0.037) −2.1304∗∗∗ (0.069)
ESI × Wait2 −0.0630∗∗∗ (0.005) −0.2768∗∗∗ (0.015)
ESI × admit prediction −1.4070 (0.778) −2.3128 (1.369)

ESI = 5
ESI × Wait −0.6251∗∗∗ (0.079) −2.2921∗∗∗ (0.256)
ESI × Wait2 −0.0333∗∗∗ (0.008) −0.4219∗∗∗ (0.072)
ESI × admit prediction −8.5222∗ (3.903) −8.0470 (5.767)

ambulance −0.1674∗∗∗ (0.031) −0.2402∗ (0.118)
seen by provider −0.8899∗∗∗ (0.036) −0.5798∗∗∗ (0.070)
gender(base = female) −0.0613∗∗ (0.021) −0.1916∗∗∗ (0.050)
30-day ED readmission −0.0912∗∗∗ (0.021) −0.1995∗∗ (0.060)
90-day ED readmission −0.0551∗∗ (0.023) −0.1681∗∗ (0.060)
age (base = 18-45 years)

46-55 years −0.0187 (0.031) −0.0398 (0.075)
56-65 years −0.0950∗ (0.038) −0.0390 (0.099)
66-75 years −0.1569∗∗ (0.047) −0.0855 (0.140)
76-85 years −0.2868∗∗∗ (0.058) −0.2310 (0.198)
86+ years −0.4757∗∗∗ (0.074) −0.0337 (0.299)

abnormal Resp −0.4516∗∗∗ (0.039) −0.0501 (0.248)
abnormal SpO2 −0.3111∗∗∗ (0.073) −0.4212 (0.359)
abnormal Pulse −0.1229∗∗∗ (0.024) −0.0591 (0.060)
abnormal Temp −0.1173∗ (0.055) −0.2694 (0.162)
hypertension −0.0009 (0.018) −0.0394 (0.041)
hypertensive crisis −0.0782∗ (0.038) −0.3804∗∗ (0.144)
special conditions

immunocompromised −0.3576∗∗∗ (0.054) −0.1275 (0.280)
at risk −2.1143∗∗∗ (0.266) −1.0586 (1.662)
infection concern −0.1753∗∗∗ (0.040) −0.1485 (0.119)

chief complaints (base = other)a

abdominal pain −0.1775∗∗∗ (0.034) −0.7322∗∗∗ (0.093)
abnormal labs −0.2297∗∗∗ (0.066) −1.1251∗ (0.489)

Continued on next page
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Table 4.1 – continued from previous page
Urgency room Nonurgency room

Variables Coef Std Err Coef Std Err

alcohol intoxication −0.3962∗∗ (0.136) −M M
allergic reaction −0.3426∗∗ (0.107) −0.5322∗ (0.237)
altered mental status −0.7704∗∗∗ (0.091) −M M
back pain −0.1580∗∗ (0.059) −0.0705 (0.093)
chest pain −0.2249∗∗∗ (0.036) −0.9584∗∗∗ (0.138)
drug abuse −0.7817∗∗∗ (0.267) −M M

extremity pain −0.4096∗∗∗ (0.097) −0.0955 (0.163)
headache −0.1650∗∗ (0.049) −0.2217 (0.119)
leg pain −0.2708∗∗∗ (0.066) −0.0382 (0.118)
lower extremity edema −0.2957∗∗ (0.067) −1.0147∗∗ (0.341)
motor vehicle crash −0.0239 (0.079) −0.1455 (0.117)
possible stroke −1.1230∗∗∗ (0.163) −M M

psyc evaluation −0.5874∗∗∗ (0.156) −M M

respiratory distress −0.8523∗∗ (0.309) −M M

seizure −0.4696∗∗∗ (0.101) −1.3500 (1.014)
shortness of breath −0.1456∗∗∗ (0.040) −0.9639∗∗∗ (0.195)
sickle cell pain −0.6090∗∗∗ (0.062) −3.5870∗∗∗ (1.007)
sore throat −0.1573 (0.089) −0.2525∗ (0.107)
suicidal ideation −2.0898∗∗∗ (0.120) −M M
urinary problem −0.3746∗∗∗ (0.095) −0.3240∗ (0.137)
vaginal bleeding −0.1743∗∗ (0.061) −0.6295∗∗∗ (0.168)

a A subset of chief complaints are shown; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001; M is a varying large number

The MST algorithm discovers that the room type is the most important system-level

attribute impacting patient prioritization. Therefore, we present estimation results sepa-

rately for urgency and nonurgency rooms. Table 4.1 shows that the patient prioritization

rule indeed differs based on the room type. Estimation results suggest that the decision-

maker prioritizes low acuity patients by putting more weight on their waiting time costs for

nonurgency rooms and prioritizes mid/high acuity patients over low acuity patients for ur-

gency rooms. We have the following observations based on the estimation results on urgency

rooms.
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• The decision-maker prioritizes high acuity patients over mid/low acuity patients; pri-

oritizes mid acuity patients over low acuity patients. Within the same acuity class, the

First-Come-First-Served principle is followed.

• The coefficient of Wait and Wait2 are significant at the level 0.001% across all ESI

scores. Based on the coefficient estimates, we infer that wait time has an increasing

and concave impact on the utility function.

• Patients with abnormal respiratory rate, pulse, SpO2, old age, and special conditions

are more likely to be selected than those with normal vital signs and young/middle

age.

• If a provider sees the patient, it is likely that the provider has ordered diagnostic

tests and is waiting for results to initiate the treatment process, thus prioritizing other

patients over patients with in-progress diagnostics.

• If the patient has an ED encounter within 90 days before their current visit, they

might be considered a frequent patient who uses the ED as primary care and thus be

deprioritized.

• Patients with chief complaints such as altered mental status, allergic reaction, abnormal

labs, drug abuse, alcohol intoxication, possible stroke signs, psychiatric evaluation,

respiratory distress, seizure, and suicidal evaluation receive priority to be placed in

urgency rooms. On the other hand, patients with the most common chief complaints

such as abdominal pain, chest pain, shortness of breath, back pain, and headache are

deprioritized over patients with less common chief complaints, given that all other

attributes are the same.

Next, we present the decision tree generated by the MST algorithm on the study data by

controlling the room type as urgency rooms. The resulting tree is given by Figure 4.5.

Afterward, we present the estimation results for urgency rooms at different waiting room

census, time of the day, and clean nonurgency room availability and compare the estimation

results to understand how the system status impacts the decision rule.
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# waiting room census ≥ 10

# waiting room
census ≥ 6

# available clean
nonurgency rooms ≥ 3

6am − 12pm

Figure 4.5: Decision tree on emergency department attributes controlling the room type =
urgency room.

Table 4.2: Estimation results for urgency rooms at different waiting room census level I

num-waiting ∈ [2, 10) num-waiting ≥ 10
No. observations 11681 14925
McFadden pseudo R2 0.250 0.288
McFadden pseudo R2

adj 0.241 0.284
Variables Coef Std Err Coef Std Err

ESI = 2
ESI −2.2831∗∗∗ (0.269) −5.5917∗∗∗ (0.241)
ESI × Wait −1.3927∗∗∗ (0.090) −1.0235∗∗∗ (0.029)
ESI × Wait2 −0.2248∗∗∗ (0.025) −0.0822∗∗∗ (0.005)
ESI × admit prediction −0.6537 (0.419) −0.3695 (0.270)

ESI = 3
ESI −1.1187∗∗∗ (0.106) −2.8281∗∗∗ (0.193)
ESI × Wait −1.5860∗∗∗ (0.045) −1.2873∗∗∗ (0.031)
ESI × Wait2 −0.1885∗∗∗ (0.008) −0.0752∗∗∗ (0.004)
ESI × admit prediction −0.1288 (0.298) −0.1646 (0.223)

ESI = 4,5
Continued on next page
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Table 4.2 – continued from previous page
num-waiting < 10 num-waiting ≥ 10

Variables Coef Std Err Coef Std Err

ESI × Wait −1.2227∗∗∗ (0.048) −1.6013∗∗∗ (0.074)
ESI × Wait2 −0.1084∗∗∗ (0.008) −0.0952∗∗∗ (0.008)
ESI × admit prediction −2.3939∗ (1.139) −0.0920 (1.219)

ambulance −0.2188∗∗∗ (0.054) −0.1084∗∗ (0.038)
seen by provider −1.1861∗∗∗ (0.074) −0.8361∗∗∗ (0.041)
gender(base = female) −0.0770∗ (0.035) −0.0473 (0.026)
30-day ED readmission −0.1918∗∗∗ (0.035) −0.0496 (0.025)
90-day ED readmission −0.0439 (0.039) −0.0556∗ (0.028)
age (base = 18-45 years)

46-55 years −0.0283 (0.051) −0.0142 (0.038)
56-65 years −0.0088 (0.065) −0.1068∗ (0.047)
66-75 years −0.1096 (0.083) −0.1430∗ (0.057)
76-85 years −0.2019 (0.104) −0.2748∗∗∗ (0.069)
86+ years −0.3721∗∗ (0.139) −0.4768∗∗∗ (0.087)

A subset of covariates removed for the sake of space; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 4.2 hints that the decision-maker follows the urgency-based prioritization rule more

frequently if the waiting room is moderately and highly crowded. Suppose that all patient

characteristics, excluding ESI score, are the same. If there are equal to or more than ten

patients in the waiting room, the selection of an ESI-2 patient generates 2.7696 higher utility

than the selection of an ESI-3 patient; the selection of an ESI-3 patient generates 2.8221

higher utility than the selection of a low acuity patient. If there are less than ten patients

in the waiting room, the selection of an ESI-2 patient generates 1.1664 higher utility than

an ESI-3 patient; the selection of an ESI-3 patient generates 1.1187 higher utility than the

selection of a low acuity patient.

As the waiting room becomes moderately or highly crowded, the estimated coefficient

of Wait2 increases but is still negative, i.e., the impact of waiting time on the utility func-

tion becomes more linear but still concave. Suppose two patients are waiting to be roomed

with the same covariates except waiting time. Assume, for instance, that the first patient

is waiting for 30 minutes and the second patient is waiting for 60 minutes. The likelihood

of selecting the first patient is higher than what it would be if the former and latter were

65



waiting for 120 minutes and 150 minutes, respectively. Suppose the waiting room is mod-

erately/highly crowded. In that case, the probability of selecting the first patient in both

situations is closer to each other than if the waiting room was less crowded.

66



Table 4.3: Estimation results for urgency rooms at different waiting room census levels II

num-waiting ∈ [2, 6) ∈ [6, 10)

No. observations 6272 5409
McFadden pseudo R2 0.229 0.295
McFadden pseudo R2

adj 0.208 0.281
Variables Coef Std Err Coef Std Err

ESI = 2
ESI −2.0468∗∗∗ (0.405) −3.1295∗∗∗ (0.370)
ESI × Wait −0.8948∗∗∗ (0.149) −1.4969∗∗∗ (0.116)
ESI × Wait2 −0.1069∗∗∗ (0.029) −0.2728∗∗∗ (0.033)
ESI × admit prediction −0.2241 (0.631) −1.0033 (0.566)

ESI = 3
ESI −0.9379∗∗∗ (0.147) −1.6887∗∗∗ (0.172)
ESI × Wait −1.7008∗∗∗ (0.092) −1.7273∗∗∗ (0.058)
ESI × Wait2 −0.2853∗∗∗ (0.023) −0.1804∗∗∗ (0.010)
ESI × admit prediction −0.0191 (0.444) −0.3058 (0.409)

ESI = 4 or 5
ESI × Wait −1.2826∗∗∗ (0.074) −1.5231∗∗∗ (0.071)
ESI × Wait2 −0.1598∗∗∗ (0.013) −0.1133∗∗∗ (0.010)
ESI × admit prediction −3.3034∗ (1.619) −1.6740 (1.601)

ambulance −0.3216∗∗∗ (0.084) −0.1357 (0.073)
seen by provider −1.4869∗∗∗ (0.118) −0.9547∗∗∗ (0.096)
gender(base = female) −0.0091 (0.052) −0.1251∗∗ (0.048)
30-day ED readmission −0.1162∗ (0.051) −0.2477∗∗∗ (0.049)
90-day ED readmission −0.0621 (0.059) −0.0444 (0.053)
age (base = 18-45 years)

46-55 years −0.0096 (0.075) −0.0680 (0.071)
56-65 years −0.0403 (0.095) −0.0108 (0.091)
66-75 years −0.0834 (0.124) −0.1410 (0.114)
76-85 years −0.2982 (0.160) −0.1261 (0.140)
86+ years −0.3156 (0.206) −0.3616 (0.188)

A subset of covariates removed for the sake of space; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 4.3 also hints that adherence to urgency-based prioritization rules increases as the

waiting room census increases, even if the waiting room is less crowded than the busy hours.

If less than six patients are waiting, the ambulance arrival significantly increases the utility of

the patient. In comparison, if there are more than six patients, this impact either decreases
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or vanishes.
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Table 4.4: Estimation results for urgency rooms at different time of the day by controlling
num-waiting ∈ [2, 6)

time ̸∈ [6am,12pm) time ∈ [6am,12pm)

No. observations 4532 1740
McFadden pseudo R2 0.314 0.147
McFadden pseudo R2

adj 0.284 0.069
Variables Coef Std Err Coef Std Err

ESI = 2
ESI −2.3597∗∗∗ (0.492) −0.3397 (0.900)
ESI × Wait −2.5632∗∗∗ (0.267) −0.3142 (0.209)
ESI × Wait2 −0.6540∗∗∗ (0.112) −0.0306 (0.020)
ESI × admit prediction −0.1349 (0.762) −0.8200 (1.347)

ESI = 3
ESI −1.0888∗∗∗ (0.193) −0.6147∗ (0.284)
ESI × Wait −2.4405∗∗∗ (0.146) −1.2751∗∗∗ (0.131)
ESI × Wait2 −0.4158∗∗∗ (0.048) −0.2075∗∗∗ (0.026)
ESI × admit prediction −0.4926∗ (0.548) −1.9977∗ (0.872)

ESI = 4 or 5
ESI × Wait −1.4551∗∗∗ (0.137) −0.7685∗∗∗ (0.093)
ESI × Wait2 −0.1478∗∗∗ (0.028) −0.0993∗∗∗ (0.015)
ESI × admit prediction −1.5284∗∗∗ (2.084) −7.4387∗ (2.875)

ambulance −0.3431∗∗ (0.110) −0.3375∗ (0.145)
seen by provider −1.8521∗∗∗ (0.139) −0.5686 (0.312)
gender(base = female) −0.0254 (0.066) −0.1067∗∗∗ (0.095)
30-day ED readmission −0.0094 (0.065) −0.3050∗∗ (0.091)
90-day ED readmission −0.0560 (0.073) −0.3356∗∗ (0.116)
age (base = 18-45 years)

46-55 years −0.0423 (0.094) −0.0311 (0.138)
56-65 years −0.0729 (0.119) −0.2110 (0.175)
66-75 years −0.1128 (0.154) −0.0589 (0.244)
76-85 years −0.1995∗∗ (0.192) −1.0063∗∗ (0.361)
86+ years −0.3928∗ (0.252) −0.5959 (0.411)

A subset of covariates removed for the sake of space; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 4.4 hints that the ESI scores are not as important as between 6 am and 12 pm

compared to the rest of the day when there are not many patients in the waiting room. A

plausible explanation for this observation is that the fast track is closed during this period.
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Therefore, low acuity patients also need to be treated in the urgency rooms. Furthermore,

not many patients are waiting to be roomed, and thus, prioritization becomes relatively less

important.
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Table 4.5: Estimation results for urgency rooms at different clean non-urgency room
availability by controlling num-waiting ∈ [2, 6) and time ̸∈ [6am,12pm)

# available clean # available clean
non-urgency rooms < 3 non-urgency rooms ≥3

No. observations 2139 2393
McFadden pseudo R2 0.413 0.292
McFadden pseudo R2

adj 0.353 0.233
Variables Coef Std Err Coef Std Err

ESI = 2
ESI −3.6634∗∗∗ (0.742) −1.5804∗∗∗ (0.720)
ESI × Wait −3.2816∗∗∗ (0.466) −2.8510∗∗∗ (0.406)
ESI × Wait2 −1.1646∗∗∗ (0.263) −0.6079∗∗∗ (0.131)
ESI × admit prediction −1.0238 (1.157) −0.0296 (1.114)

ESI = 3
ESI −2.5150∗∗∗ (0.286) −0.6051∗ (0.256)
ESI × Wait −2.5120∗∗∗ (0.215) −2.9108∗∗∗ (0.228)
ESI × Wait2 −0.4454∗∗∗ (0.073) −0.4771∗∗∗ (0.068)
ESI × admit prediction −1.4789 (0.858) −1.0090 (0.770)

ESI = 4 or 5
ESI × Wait −3.1174∗∗∗ (0.383) −1.4519∗∗∗ (0.162)
ESI × Wait2 −0.6794∗∗∗ (0.144) −0.1274∗∗∗ (0.032)
ESI × admit prediction −3.0830 (3.353) −4.2825 (2.755)

ambulance −0.2761 (0.174) −0.3822∗ (0.153)
seen by provider −1.7494∗∗∗ (0.189) −2.3505∗∗∗ (0.245)
gender(base = female) −0.0439 (0.106) −0.0265 (0.092)
30-day ED readmission −0.0192 (0.102) −0.0097 (0.090)
90-day ED readmission −0.0204 (0.113) −0.0515 (0.102)
age (base = 18-45 years)

46-55 years −0.1303∗ (0.149) −0.2073 (0.130)
56-65 years −0.0265 (0.187) −0.0955 (0.167)
66-75 years −0.2268 (0.241) −0.3114 (0.216)
76-85 years −0.0756 (0.292) −0.3083 (0.275)
86+ years −0.4342 (0.388) −0.1962∗ (0.360)

A subset of covariates removed for the sake of space; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Table 4.5 suggests that the resource availability impacts the prioritization rule. If nonur-

gency room availability is limited, the likelihood of selecting a low acuity patient instead of
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a mid/high patient with all other attributes being the same is less than what it would be

if there were a large number of nonurgency rooms. These estimation results can be seen as

counter-intuitive at first. One can expect that if there are not many available nonurgency

rooms, the selection likelihood of low acuity patients should increase as in the case of Ta-

ble 4.4 interpretation. However, there is no urgency room availability between 6 am and

12 pm. If a low acuity patient arrives at 10 am, they cannot be placed in an urgency bed

until noon. When less than six patients are waiting to be roomed while nonurgency rooms

are currently and soon to be available, the need to room a low-acuity patient in an urgency

room is weak. Therefore, we interpret nonurgency room availability as resource availability

since they are positively correlated.

We use our observations based on coefficient estimates to form hypotheses about how ED

system status impacts patient prioritization. The most important factor that splits the tree

for urgency room prioritization is whether ED is highly crowded. If the waiting room census is

ten or more, i.e., the ED is highly crowded, then the algorithm finds no further segmentation.

Therefore, we conclude that the prioritization rule is stable and tends to comply ESI-based

FCFS principle during the busy period. The algorithm finds further segmentation if the

waiting room census is less than ten patients. The impact of the ESI scores on the utility

function changes as the time of the day, waiting room census, and resource availability,

approximated by the number of available clean urgency rooms, changes. We estimate the

aforementioned interaction effects by adding the following variables: ESI × 11[12am,6am),

ESI× 11[12pm,6pm), ESI× 11[6pm,12am), ESI× clean-avail-nonurgent, and ESI× num-waiting

for all ESI ∈ {2, 3}. Furthermore, Table 4.2 and Table 4.3 hints that waiting room census

impacts how the utility function behaves in waiting time. We estimate the interaction

effect between the wait time and waiting room census by adding the following variables:

ESI×Wait× num-waiting and ESI×Wait2× num-waiting for all ESI ∈ {2, 3, 4− 5}. Based

on Table 4.3, we also add the interaction impact between the arrival by ambulance and

waiting room census.
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Table 4.6: Estimation results for urgency rooms at different waiting room census level
with interaction terms

num-waiting ∈ [2, 10) num-waiting ∈ [10,−)
No. observations 11681 14925
McFadden pseudo R2 0.280 0.297
McFadden pseudo R2

adj 0.270 0.293
Variables Coef Std Err Coef Std Err

ESI = 2
ESI −0.1943 0.297 −5.1436∗∗∗ 0.331
ESI × 11[12am,6am) −1.4146∗∗∗ 0.172 −0.6415∗∗ 0.191
ESI × 11[12pm,6pm) −2.6221∗∗∗ 0.178 −0.0656 0.323
ESI × 11[6pm,12am) −2.3353∗∗∗ 0.203 −0.3925 0.203
ESI × num-waiting −0.4020∗∗∗ 0.035 −0.0299 0.054
ESI × clean-avail-nonurgent −0.3462∗∗∗ 0.034 −0.0727 0.037
ESI × Wait −0.6396∗∗ 0.202 −1.3844∗∗∗ 0.056
ESI × Wait2 −0.0451 0.044 −0.1726∗∗∗ 0.011
ESI × Wait × num-waiting −0.1502∗∗ 0.042 −0.0521∗∗∗ 0.006
ESI × Wait2 × num-waiting −0.0383∗∗ 0.010 −0.0109∗∗∗ 0.001
ESI × admit prediction −0.6886 0.420 −0.3620 0.269

ESI = 3
ESI −0.2720 0.150 −2.4370∗∗∗ 0.296
ESI × 11[12am,6am) −1.2978∗∗∗ 0.150 −0.3355 0.182
ESI × 11[12am,6am) −2.2705∗∗∗ 0.161 −0.6558∗ 0.315
ESI × 11[6pm,12am) −1.9596∗∗∗ 0.189 −0.7112∗∗∗ 0.196
ESI × num-waiting −0.2035∗∗∗ 0.032 −0.0597 0.056
ESI × clean-avail-nonurgent −0.2708∗∗∗ 0.031 −0.0316 0.037
ESI × Wait −1.6919∗∗∗ 0.123 −1.7435∗∗∗ 0.054
ESI × Wait2 −0.3307∗∗∗ 0.030 −0.1408∗∗∗ 0.007
ESI × Wait × num-waiting −0.0279 0.024 −0.0464∗∗∗ 0.008
ESI × Wait2 × num-waiting −0.0219∗∗∗ 0.005 −0.0082∗∗∗ 0.001
ESI × admit prediction −0.2317 0.301 −0.1024 0.224

ESI = 4 or 5
ESI × Wait −0.7762∗∗∗ 0.096 −1.9171∗∗∗ 0.119
ESI × Wait2 −0.1286∗∗∗ 0.016 −0.1402∗∗∗ 0.014
ESI × Wait × num-waiting −0.0984∗∗∗ 0.021 −0.0782∗∗ 0.024

Continued on next page
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Table 4.6 – continued from previous page
num-waiting ∈ [2, 10) num-waiting ∈ [10,−)

Variables Coef Std Err Coef Std Err

ESI × Wait2 × num-waiting −0.0052 0.003 −0.0105∗∗∗ 0.002
ESI × admit prediction −2.5095∗ 1.147 −0.1972 1.287

ambulance −0.2433∗ 0.107 −0.0232 0.061
ambulance × num-waiting −0.0025 0.023 −0.0129 0.007
seen by provider −1.1499∗∗∗ 0.076 −0.8694∗∗∗ 0.041
gender(base = female) −0.0601 0.035 −0.0430 0.026
30-day ED readmission −0.1810∗∗∗ 0.035 −0.0443 0.025
90-day ED readmission −0.0408 0.039 −0.0542 0.028
age (base = 18-45 years)

46-55 years −0.0325 0.051 −0.0006 0.038
56-65 years −0.0247 0.066 −0.0949∗ 0.047
66-75 years −0.0756 0.084 −0.1353∗ 0.057
76-85 years −0.1615 0.105 −0.2553∗∗∗ 0.069
86+ years −0.3557∗ 0.140 −0.4591∗∗∗ 0.087

A subset of covariates removed for the sake of space; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

Bases on the estimation results shown on Table 4.6, we make the following observations:

• When less than ten patients are waiting, it is more likely to select a mid/high acuity

patient than low acuity patient if

– time ∈ [12pm, 6am next day)

– more patients are waiting to be roomed

– there are fewer available nonurgency rooms.

• The positive waiting room census effect on the likelihood of selecting mid/high acuity

patients rather than low acuity patients vanishes after the waiting room census reaches

a certain level. Suppose that there are less than ten patients in the waiting room.

Then an ESI-2 patient and ESI-3 patient gains additional utility of 0.4020 and 0.2035,

respectively, for each patient in excess of two in the waiting room. This implies that

as the waiting room census increases, ESI-2 patient brings more utility to the decision-

maker than ESI-3 patient. Similarly, an ESI-2 or ESI-3 patient brings more utility to
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the decision-maker than an ESI-4 or ESI-5 patient. Suppose that ten or more patients

are waiting, then the coefficients ESI × num-waiting for all ESI ∈ {2, 3} estimates

the additional utility gain of an ESI-2 and ESI-3 relative to low acuity patient for

each patient in excess of ten in the waiting room. Our estimation results show that

these interaction terms are not statistically significant. Therefore, we infer that the

interaction effect between the ESI score and waiting room census decreases once the

waiting room census reaches a certain level.

• Marginal waiting cost rate behaves more “linear” as the waiting room census increases.

• Table 4.3 suggests that as the waiting room census increases, the positive impact of

the arrival by ambulance on the utility function starts to decrease. In Table 4.6, the

coefficient estimate of the interaction between ambulance and waiting room census is

negative as expected, but not significant. This might be due to insufficient sample

size or the strong nonlinear impact of waiting room census on the additional utility

obtained if the arrival mode is an ambulance.

4.3 Performance Measure

We evaluate the algorithm’s performance based on the number of patients in the waiting

room. If the choice set comprises only two patients, a random algorithm predicts the true

chosen patient correctly with a 50% chance. If twenty patients are in the choice set, the

likelihood of accurately identifying the true chosen patient goes down to the 5%. Therefore,

an algorithm with a predictive accuracy of 50% can be considered bad if two patients are in

the choice set but good if twenty patients are in the choice set. Let w denote the choice set

size and Nw denote the set of possible levels of choice set sizes. We let nw be the number

of incidents with a choice set size of w. At each w ∈ Nw, we measure the algorithm’s

performance using algw(N) which we define as the percentage of the times that the actual

chosen patient is ranked in the top N by the prediction algorithm. We take a weighted
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average of algw(N) to measure the overall algorithm performance.

1∑
w∈Nw

nw

∑
w∈Nw

nwalgw(N). (4.2)

We observe and compare the performance of the MST algorithm to ESI-FCFS policy and

CLM with the utility function given by equation 4.1. The ESI-FCFS policy provides strict

priority for patients with the most urgent ESI score regardless of how long the patient with

a less urgent ESI score waits. If multiple patients have the highest ESI score, the algorithm

picks the patient with the longest waiting among those.

Table 4.7 shows that the ESI-FCFS policy performs the best at metric algw(1), i.e.,

predicting the actual chosen patient for urgency rooms. As indicated by Table 4.7 and

Table 4.8, the CLM model and the MST algorithm perform similar to or better than the ESI-

FCFS policy at metrics algw(N) where N > 2. Figure 4.6 supports this claim by illustrating

how the overall performance of ESI-FCFS, CLM, and the MST algorithm (excluding trivial

cases) changes based on the selected measure algw(N) as a function of N . Based on the

empirical evidence, we conclude that the CLM model and the MST algorithm cannot predict

the chosen patient as well as ESI-FCFS policy but provides a set of patients who are more

likely to be chosen than those who are highly ranked by ESI-FCFS policy in practice.

Table 4.8 suggest that performance of the MST algorithm over the CLM model tends to

increase as we use larger n to define the metric algw(N).

Furthermore, the MST algorithm uses the brier score to measure the performance and

generate the segmentation tree. The Brier score of an algorithm is calculated by taking the

mean of squared error terms between the realized outcome (either 0 or 1) and the assigned

probability by the algorithm. See Aouad et al. [2019] for a better understanding of the

Brier score calculation. The Brier score of the CLM model is 0.6917, while the Brier score

of the MST algorithm is 0.6784 on the test data. The MST algorithm provides a 1.93%

improvement in the Brier score over the CLM model. Furthermore, the MST algorithm

provides useful pedagogical insights into how the ED system impacts patient prioritization,

which can be further used to develop a better decision rule that improves patient outcomes.
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Table 4.7: Comparison of the MST algorithm, ESI-FCFS and CLM model on
UChicago ED dataset I.

w nw algw(1) algw(2) algw(3)

ESI FCFS CLM MST ESI FCFS CLM MST ESI FCFS CLM MST
2 720 75.83% 68.89% 71.81% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 562 65.84% 61.21% 65.30% 91.10% 88.43% 88.43% 100.00% 100.00% 100.00%
4 439 61.73% 61.28% 56.72% 85.88% 84.74% 83.14% 95.22% 95.44% 94.76%
5 363 60.06% 58.68% 56.20% 80.99% 82.92% 80.17% 90.91% 91.74% 90.63%
6 358 50.00% 49.72% 50.00% 72.07% 74.86% 74.86% 86.59% 89.11% 87.71%
7 363 46.56% 43.53% 42.70% 71.35% 74.10% 71.63% 84.57% 86.23% 86.23%
8 383 45.17% 45.95% 42.56% 68.41% 71.54% 67.62% 80.94% 87.21% 83.55%
9 323 43.96% 47.99% 46.75% 66.56% 69.97% 69.35% 80.80% 81.11% 81.11%
10 336 45.83% 44.05% 45.83% 67.86% 68.45% 70.24% 77.98% 81.55% 79.46%
11 326 38.65% 40.49% 40.49% 61.96% 64.11% 63.19% 78.22% 77.30% 77.61%
12 319 38.87% 37.30% 37.62% 54.86% 59.25% 57.99% 69.91% 74.29% 73.98%
13 316 37.34% 39.56% 37.66% 62.97% 60.44% 60.13% 73.10% 73.73% 74.05%
14 250 37.20% 34.00% 34.00% 58.80% 57.20% 56.00% 71.20% 75.20% 73.60%
15 274 40.15% 32.48% 33.58% 57.30% 55.47% 54.74% 68.98% 70.44% 70.80%
16 262 35.88% 30.15% 31.68% 52.29% 53.82% 55.73% 66.79% 67.94% 68.70%
17 224 34.82% 30.80% 33.04% 52.68% 52.23% 53.57% 64.29% 63.84% 66.07%
18 203 30.54% 33.00% 32.51% 51.72% 50.74% 52.22% 60.10% 63.05% 64.53%
19 146 29.45% 28.08% 29.45% 48.63% 47.26% 47.95% 58.22% 57.53% 58.90%
20 128 21.88% 23.44% 25.00% 42.19% 41.41% 39.84% 53.91% 51.56% 50.00%

21+ (23.37) 412 32.52% 27.43% 27.43% 48.06% 43.93% 45.14% 58.49% 58.98% 58.74%
overall 6707 48.19% 46.01% 46.19% 69.90% 70.15% 69.63% 80.39% 81.72% 81.33%

overall (w > 2) 5987 66.28% 66.56% 65.98%
overall (w > 3) 5425 75.76% 77.40% 76.92%
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Figure 4.6: Comparison of the MST algorithm, ESI-FCFS and CLM model on UCM ED
dataset III.
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Table 4.8: Comparison of the MST algorithm, ESI-FCFS and CLM model on
UCM ED dataset II.

w nw algw(4) algw(5) algw(6)

ESI FCFS CLM MST ESI FCFS CLM MST ESI FCFS CLM MST
2 720 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
3 562 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
4 439 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
5 363 95.87% 97.52% 96.69% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
6 358 93.58% 95.53% 94.13% 97.49% 97.49% 97.49% 100.00% 100.00% 100.00%
7 363 92.56% 93.94% 94.49% 97.52% 98.07% 97.52% 99.17% 99.45% 99.45%
8 383 87.99% 92.43% 89.82% 93.21% 95.82% 94.52% 97.91% 98.17% 96.87%
9 323 87.93% 90.09% 91.33% 93.19% 96.28% 96.28% 97.83% 97.83% 97.83%
10 336 85.42% 89.58% 89.29% 91.37% 94.35% 95.54% 95.24% 98.51% 97.92%
11 326 87.73% 88.34% 89.26% 91.10% 93.87% 93.56% 93.25% 96.32% 96.63%
12 319 81.19% 85.27% 85.89% 88.40% 91.54% 92.48% 91.22% 95.30% 94.67%
13 316 80.70% 81.96% 82.91% 85.76% 86.39% 87.66% 90.51% 90.82% 90.82%
14 250 80.00% 82.80% 83.60% 86.40% 91.20% 92.80% 93.20% 95.20% 95.60%
15 274 78.10% 81.75% 81.39% 84.67% 90.15% 90.51% 88.32% 92.34% 93.43%
16 262 75.95% 77.48% 79.77% 80.53% 83.97% 87.02% 85.11% 88.93% 90.46%
17 224 76.34% 74.11% 75.00% 83.48% 84.82% 83.93% 89.73% 87.50% 89.29%
18 203 66.50% 72.41% 75.86% 73.89% 78.82% 79.80% 80.79% 82.27% 82.27%
19 146 65.75% 67.12% 66.44% 73.29% 78.08% 79.45% 82.19% 83.56% 84.93%
20 128 67.97% 60.94% 64.84% 73.44% 67.19% 71.88% 79.69% 71.88% 77.34%

21+ (23.37) 412 65.05% 65.54% 66.26% 0.6796 70.87% 71.84% 72.57% 77.18% 77.91%
overall 6707 86.75% 88.21% 88.47% 90.64% 92.32% 92.74% 93.60% 94.68% 94.92%

overall (w > 4) 4986 82.17% 84.14% 84.50%
overall (w > 5) 4623 86.42% 88.86% 89.47%
overall (w > 6) 4265 89.94% 91.63% 92.01%
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CHAPTER 5

ALTERNATIVE-SPECIFIC DECISION TREES

5.1 Introduction

The Emergency Department choice set comprises patients with different health conditions

and complaints. ESI scores could be used for the segmentation, but there is room for

improvement. First, there is empirical evidence that a prioritization rule solely based on

ESI scores is not strictly followed. Figure 5.1 and Figure 5.2 show that the prioritization is

not only based on ESI scores at UCM, even for the primary service area dedicated to triage

levels 1,2 and 3 patients. Furthermore, a study conducted at a large Canadian hospital

shows that patients with medium urgency are chosen over patients with high urgency for the

primary service area 57.1% when at least one of each is present in the waiting room (Ding

et al. [2019]). Secondly, there are no clear guidelines on prioritizing patients within the

same triage level, which evokes the need for greater segmentation. We develop an algorithm

that simultaneously performs the alternative (e.g., patient) segmentation and prediction

process so that the alternative segmentation is (nearly) optimized for the prediction process.

This tree-based algorithm can discover the underlying alternative segmentation process of

the decision-maker when there is no explicit categorization for alternatives as patients at

ED. We evaluate the performance of our algorithm and conditional logit model (CLM) on

artificially created datasets for different settings with different utility function forms. We

observe that the tree-based algorithm does not overfit the data where the interaction effects

are weak, or there is no alternative segmentation. When the interaction effects are stronger,

or there is alternative segmentation, the tree-based algorithm performs better than the CLM

on the artificially generated datasets.

5.2 Literature Review

In choice models, alternative specific constants reflect the additional utility of choosing that

alternative instead of the reference alternative. The inherent utility of the alternatives could

differ across different segments. We summarize the relevant papers that allow customer
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Figure 5.1: Percentage of deviations from ESI-based prioritization by the time of the day.

segmentation using alternative specific constants.

Arentze and Timmermans [2007] propose a parametric action decision tree algorithm

(PADT) that includes alternative-specific constants in the parametric model. The PADT

algorithm first uses a CHAID-based decision tree method to partition the population-based

on its categorical attributes. Then it adds alternative specific constants that reflect the leaf

membership in the multinomial logit model. The information on continuous attributes is

used in the final model to improve the predictive accuracy.

Kim [2009] proposes a two-stage logistic regression to capture the model’s interaction

effects. A decision tree algorithm is used in the first stage to partition the population

into clusters. The optimal split criterion is based on the chi-squared test. In the second

stage, dummy variables are added to the model to indicate the observation’s cluster – leaf

membership–.

Similar to the previous paper, Kim and Kim [2011] proposes a two-stage MNL model

(TMLM) to capture the interaction effects of the attributes in a choice model with multi-

category responses. In contrast to PADT, in the TMLM model, all attributes, including both
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Figure 5.2: Acuity distribution of chosen patients in urgency room choice incidents when
there is at least one patient from each priority group by the time of the day.
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continuous and categorical attributes, belong to the decision-maker and can be used to con-

struct the decision tree. In the first stage, a decision tree algorithm is used for clustering. In

the second stage, alternative-specific constants are added to the model, similar to the PADT.

The main difference between the two models is whether additional information is available

on the alternatives. PADT is used for choice models in that alternatives have information

that affects the outcome. For example, PADT uses the information on continuous attributes

of the alternatives in the second stage. The main application behind PADT is to model

travel mode choice where each transport mode can have specific information on attributes

such as cost and duration. On the other hand, TMLM is used to model multi-categorized

outcomes rather than choice outcomes. For example, the authors used TMLM to predict

the degree of the disability. The outcome is solely based on the available information on the

decision-maker.

Our model is most similar to PADT. In both models, leaf nodes of the resulting decision

tree represent the group memberships that could be integrated into the model in the form

of alternative specific constants. Both models result in a single logit model that could

leverage the information on alternatives. The PADT algorithm model is used for the choice

models in which the set of alternatives is finite. It does not capture the interactions between

the alternative attributes because decision tree generation in the PADT model is solely

based on the decision-maker attributes. Our model uses the MST algorithm to partition the

decision-makers, which already captures the decision-maker interactions and partitioning.

Our decision tree generation process on the alternative attributes at each partition allows us

to capture the interaction terms. Secondly, the PADT algorithm first performs the clustering

and then fits a multinomial logit model. In our model, clustering is based on the response

behavior, i.e., how much it improves the predictive accuracy of the resulting logit model.

In other words, the clustering step cannot be isolated from the model fit step, while the

clustering step is independent of the model fit step in the PADT algorithm.

The second part of the algorithm is similar to the MST algorithm. The decision tree is

based on response behavior and integrated with the model fit process in both models. In

the MST algorithm, leaf nodes represent a disjoint group of decision-makers, and a separate

logit model is used for each segment. In our model, leaf nodes represent the high-level
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priority segmentation of alternatives and are integrated into a single logit model in the form

of alternative-specific constants.

5.3 The Algorithm Description

We create a decision tree based on alternative-specific covariates. Branch nodes split the set

of alternatives I into smaller partitions presented by leaf nodes. We let L be the set of leaf

nodes, and Aℓ denote the set of alternatives that fall into leaf node ℓ.

I =
⋃
ℓ∈L

Aℓ,

where Aℓ ∩ Aℓ′ = ∅ ∀ℓ ̸= ℓ′. We expect alternatives with similar covariates to fall into

the same leaf node and provide similar utility to the decision-maker. We model leaf-node

membership in the form of alternative specific constant in the CLM. In other words, leaf node

membership represents the alternative category and captures the interactions and nonlinear

relationships between alternative attributes.

We formulate the leaf-node membership by using indicator variables 11i∈Aℓ
:

11i∈Aℓ
=

1, if alternative i falls into leaf node ℓ

0, otherwise ∀ℓ ∈ L, i ∈ I.
(5.1)

We let αm be the utility constant of alternative category m then we can write the utility of

patient i at decision epoch t as

Vti =
∑
m∈M

11i∈ℓmαk +
Ma∑
k=1

βkxi,k + ϵti,

= αT ei + βTxi,

(5.2)

Let ei is a 1×|L| dimensional unit vector that takes value of 1 at the position that corresponds

to leaf node into which the alternative i fall and takes value of 0 at anywhere else. Let β be

1×Ma dimensional vector such that β = ⟨β1, . . . , βMa⟩ and α be 1× |L| α = ⟨αℓ : ℓ ∈ L⟩,
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Without loss of generality, we assume that a leaf node with higher ℓ value is placed after the

leaf node with a smaller ℓ value in the vector α.

After assigning each patient to a category, we run a single CLM model with alternative

specific constants on the training data. In the decision tree generation process for standard

regression and classification problems, it is sufficient the evaluate the performance of a split

only on a subset of the training data that fall into that node that just got split because

observations only impact the prediction outcome of the observations that fall into that same

node. In our case, patients who belong to the same choice incident can fall into different leaf

nodes. Changing the leaf node membership of one observation will impact the prediction

outcome of observations associated with the same incident because only one patient in a

choice incident can have the “chosen” outcome.

We split the dataset into training, validation, and test set. We use maximum likelihood

estimation to estimate the problem parameters ⟨α,β⟩ on the training set. The objective is

to minimize the log-likelihood function:

∑
t∈T

∑
i∈Ct

− log
(
αT ei + βTxi

)

We evaluate the performance of the CLM with the estimated parameters on the validation set.

Let us explain the first iteration in the decision tree process in detail to better understand

the algorithm. We start with the root node 1 at the first iteration, i.e., assume that all

alternatives belong to a single category, i.e., the initial tree T1 is a single node. Then, the

utility function is given by

Vti = α + βTxi + ϵti.

For each split, attribute and cut-off value (k, x̄k), we partition the set of alternatives into

two sets: I = C2 ∪ C3.
C2 (k, x̄k) = {i ∈ I : xik < x̄k},

C3 (k, x̄k) = {i ∈ I : xik ≥ x̄k}.

84



Then, the utility function is given by

Vit = αT ei + βTxi + ϵti,

where α = ⟨α2, α3⟩ and

ei =

⟨1, 0⟩ if i ∈ C2 (k, x̄k) ,

⟨0, 1⟩ if i ∈ C3 (k, x̄k) .

The problem parameters ⟨α,β⟩ is estimated via maximum likelihood estimation on the train-

ing set. If the size of the newborn leaf nodes satisfy the minimum observation requirement,

then this is a feasible split. We perform the feasible split that results in the best performance

on the validation set. Let
(
k∗, x̄∗k

)
be the best feasible split at the root node and

C2 = {i ∈ I : xik < x̄∗k},

C3 = {i ∈ I : xik ≥ x̄∗k}.

If there is no split at the parent node 1 such that both children C2 and C3 satisfy the

minimum observation requirement, then the parent node is terminated and represents a leaf

node in the final tree. We assume that the root node has at least one split that satisfies

the minimum observation requirement. Suppose that no split satisfies this requirement but

does not perform better than the previous CLM model on the validation set, then we do not

perform the split.

At each iteration, we let Lh represent the set of leaf nodes in the Th. For example, the

root node is the only node on that we can perform a feasible split at the first iteration:

L1 = {1}. For all ℓ ∈ Lh, we iterate over all feasible splits and measure the performance of

the split on the validation set. Suppose that (k, x̄∗k) is the best feasible split that results in

two newborn leaves 2ℓ and 2ℓ+ 1:

C2ℓ (k, x̄k) = {i ∈ Cℓ : xik < x̄∗k},

C2ℓ+1 (k, x̄k) = {i ∈ Cℓ : xik ≥ x̄∗k}.

The resulting tree Th,ℓ,k,x̄k is the modified version of the Th such that the ℓ is a branch node
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with two newborn leaves 2ℓ and 2ℓ+ 1. The CLM model for this split is

α = ⟨αℓ′ : ℓ′ ∈ Lh \ ℓ⟩+ ⟨α2ℓ, α2ℓ+1⟩,

where plus operator concatenates two vectors in a way the leaf node with higher m value gets

positioned at a higher index. We update the vector ei accordingly for all i ∈ I. We estimate

⟨α,β⟩ via maximum likelihood estimation on the training set. We evaluate the performance

of the new CLM model on the validation set. We let accuracy
(
Th,ℓ,k,x̄k ,X1,y1,X2,y2

)
function returns the performance of the CLM model, induced by the tree Th,ℓ,k,x̄k by using

the data (X1,y1), on the data (X2,y2). At each iteration our objective is to find the node

(ℓ∗), attribute (k∗), cutoff value (x̄∗k) such that

ℓ∗, k∗, x̄∗k = argmax
ℓ,k,x̄k

accuracy
(
Th,ℓ,k,x̄k ,X,y,X,y

)
. (5.3)

Then,
Th+1 = Th,ℓ∗,k∗,x̄∗k

,

Lh+1 = Lh+1 \ ℓ∗ ∪ {2ℓ∗, 2ℓ∗ + 1}
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Algorithm 1 TreeGrowing

1: Input: Starting with root node T; training data (X,y)

2: metric← accuracy (T,X,y,X,y)

3: repeat

4: L← leaf-nodes(T)

5: ℓbest = −1

6: for all ℓ ∈ L do

7: Tℓ,metricℓ ← BranchingProcess(T, ℓ,X,y)

8: if metricℓ > metric then

9: ℓbest = ℓ

10: metric← metricℓ

11: end if

12: end for

13: if ℓbest ̸= −1 then

14: T,metric← Tℓbest ,metricℓbest

15: end if

16: until ℓbest = −1

17: return T
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Algorithm 2 BranchingProcess

1: Input: Tm, ℓ ∈ leaf-nodes(Tm), metricm and training data (Xm,y) where Xm is the

set of observations that fall into leaf node m and y is the outcome of all observations

regardless of which leaf node they fall into.

2: n, p← size of Xm

3: Tbest ← Tm, metricbest ← metricm

4: for all j = 1, . . . , p do

5: values ← candidate split values for jth patient attribute

6: sort values in ascending order

7: for all i = 1, . . . , |values| − 1 do

8: b← 1
2 (valuesi + valuesi+1)

9: T ← modified Tm s.t. ℓ is a branch with eTj x < b; two new leaves 2ℓ and 2ℓ + 1

are born.

10: if min{size(2ℓ), size(2ℓ+ 1)}) ≥ Nmin then

11: metric← accuracy(T,X,y,X,y)

12: if metric > metricbest then

13: metricbest ← metric

14: Tbest ← T

15: end if

16: end if

17: end for

18: end for

19: return Tbest,metricbest
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Algorithm 3 TreePruning

1: Input: Tm, ℓ ∈ leaf-nodes(Tm), metricm, training data (Xm,y) and validation data

(Xv
m,y

v)

2: Output:

3: metricbest ← metricm

4: repeat

5: Tbest ← Tm, metricprev ← metricbest

6: for all ℓ ∈ leaf-nodes do

7: if sibling(ℓ) ∈ leaf-nodes then

8: T← modified Tm s.t. ℓ and sibling(ℓ) are pruned and parent(ℓ) is a leaf.

9: metric← accuracy(T, X̃,y, X̃v,yv)

10: if metric > metricbest then

11: metricbest ← metric

12: Tbest ← T

13: end if

14: end if

15: end for

16: metricm ← metricbest

17: Tm ← Tbest

18: until |leaf-nodes(Tm)| = 1 or metricprev = metricbest

19: return Tm,metricm

5.4 Numerical Examples

We evaluate the performance of the tree-based first on the artificially generated datasets and

then on the UCM ED dataset.

We first randomly generate ten datasets. Each dataset includes 6000 observations,

i.e., incidents. At each observation, the decision-maker is offered a set of alternatives.

The number of alternative options at each observation is randomly sampled from the set

{2, 3, 4, 5, 6, 7, 8, 9, 10}. Each alternative (i) is encoded by five attributes ({xi,k}k=1,2,3,4,5)
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that are independently sampled from Uniform(0,1) distribution.The utility function is gen-

erated for each of the three ground truth models:

• Linear utility function. We assume that the utility function has the following form:

Vti =
5∑

k=1

βkxi,k + ϵti.

For each dataset, we generate parameter vector β by independently sampling element

βi from Uniform(-1,1) distribution for all i ∈ {1, 2, 3, 4, 5}. We sample each ϵti inde-

pendently from Gumbel(0,0.01).

• Linear utility function with interaction terms. We assume that the utility function has

the following form:

Vti =
5∑

k=1

βkxi,k + βint
∏

k∈Kint

xi,k + ϵti.

To generate set Kint, we randomly sample 2 attributes without replacement. We

generate the parameter vector β and random shock as described in the previous bullet

point. We let βint denote the interaction coefficient term and repeat the same data

generation process for each value of βint ∈ {−1,−0.5, 0.5, 1}.

• Linear and tree-based utility function. We assume that alternatives are partitioned

into segments based on a tree. We first create a set of tree structures where the tree

depth is at most three. We randomly select a tree from this set. For each branch node

of the sampled tree, we independently sample an attribute from the set {1, 2, 3, 4, 5}

and a split value from the Uniform(0,1) distribution with the constraint that each leaf

node should contain at least N alternatives. For each leaf node (ℓ) of the sampled

tree, we independently sample a leaf membership value (U(ℓ)) from the Uniform(0,1)

distribution. We let ℓi denote the leaf node that the alternative i falls into given the
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constructed tree. We assume that the utility function has the following form:

Vti =
5∑

k=1

βkxi,k + U(iℓ) + ϵti.

We generate the parameter vector β and random shock as described in the first bullet

point.

We compare the performance of the tree-based CLM with the standard CLM for each ground-

truth model. We first make the performance comparison for the linear utility model on ten

different randomly generated datasets. We observe that tree-based CLM prunes the tree to

depth 0 root node at each dataset. This shows that the tree-based CLM does not overfit the

attributes.

We then evaluate the performance of the tree-based CLM against the CLM model for

the linear utility model with interaction terms on ten different randomly generated datasets.

Figure 5.4 shows that the improvement provided by tree-based CLM over the CLM model

increases as the value of the interaction coefficient term, βint, increases. This result is

expected due to the fact that decision trees are able to capture the interaction effects.

Finally, we compare the performance of the tree-based CLM against the CLM model on

ten different randomly generated datasets where the alternatives provide utility determined

by an unknown tree structure in addition to the linear utility. Figure 5.3 shows that the

improvement provided by tree-based CLM is significantly higher compared to the previous

utility model scenarios.

In the previous chapter, we applied the MST algorithm to the UCM ED data to find

system segments where a similar prioritization is followed for patient routing decisions. We

reported that the room type is the most important factor than changes in the patient pri-

oritization rule. We also showed that waiting room census and then the time of the day

are also important system-level attributes that impact the patient prioritization rule but do

not significantly improve the prediction accuracy. In this chapter, we apply tree based logit

model on the UCM ED data where an urgency room is utilized. We run the CLM model

with the utility function given by equation 3.3. Recall that this utility function includes

the linear and quadratic impact of the waiting time and ESI interactions with the wait time
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Figure 5.3: Performance of CLM and Tree-based CLM
on synthetic datasets generated on linear and tree-based
utility model.
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Figure 5.4: Performance of CLM and Tree-based CLM
on synthetic datasets generated on linear utility with
interactions model.
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and disposition outcome. We observe that either there is no patient further segmentation

or segmentation by wait time is the most important patient-level attribute. However, we do

not find a significant improvement in prediction accuracy as we see in the application of the

alternative segmentation algorithm on the synthetic datasets. Therefore, we infer that other

nonlinear and interaction impacts of the patient-level attributes not already included in the

utility function are relatively weak.
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CHAPTER 6

CONCLUSION AND FURTHER RESEARCH

In this thesis, we studied machine learning for queue prioritization in theoretical and em-

pirical settings. In the first part of the thesis, we have focused on analyzing the multiclass

queuing system under imperfect information. In the second part of the thesis, we imple-

mented a tree-based algorithm to predict the patient prioritization decisions at the UCM

ED. We drove insights into how patient prioritization decisions are based on the system

attributes. Finally, we have implemented another tree-based prediction algorithm that can

capture patient-level attributes’ nonlinear impact and interactions by creating patient clus-

ters.

Multiclass queuing systems are extensively studied in the operations literature. While

there is a vast literature on the perfect information case where all customer types are imme-

diately known, relatively few papers focus on the imperfect information case. Many real-life

service system providers segment their customers into different priority classes to efficiently

allocate their limited resources. However, the service providers usually have limited knowl-

edge on to which class the customer belongs upon arrival. With the growing popularity

of artificial intelligence, service providers have started implementing machine learning mod-

els to accurately predict the customer class and improve their operations. However, these

models tend not to consider the externalities customers impose on each due to shared re-

sources. Multiclass queuing models can capture these externalities; thus are useful tools to

improve operations. In this thesis, we have provided a queueing model integrated with ma-

chine learning concepts, particularly binary classification, and ROC curve. Our model also

captures the service differentiation based on the customer classification outcome. Although

the traditional queueing literature assumes that service rate depends on the true customer

type rather than classification, there are applications in the emergency department and call

centers where the classification outcome impacts the patient/customer service.

Under perfect information, we have proved that classification-based service differentia-

tion may result in a misclassification incentive to minimize the waiting costs. In contrast,

the optimal policy under type-dependent service differentiation does not result in any mis-
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classification incentive. We have proved that the optimal threshold policy under imperfect

information with classification-dependent service rates trades off a lower loss in specificity for

a higher gain in sensitivity, i.e., lowers the threshold probability until the marginal gain in

sensitivity does not exceed the marginal loss in specificity. However, we can no longer argue

that this statement holds if service differentiation is type-dependent. Similarly, we have run

numerical experiments showing that characteristics of the optimal policy that minimizes the

waiting costs in the setting with type-dependent service differentiation are no longer valid if

the service differentiation is class-dependent.

We emphasize that (i) machine learning methods tend to ignore the operational nature

of the threshold selection problem and (ii) classification-dependent service rate differentia-

tion occurs in real-life business applications, and the associated optimal policy deviates from

the optimal policy established under the type-dependent service differentiation assumption.

We have introduced a queuing system addressing these points and studied the optimal pol-

icy. However, there are other research directions to be explored in queue prioritization under

imperfect information. First, service time can depend on true customer type and the classifi-

cation outcome. Secondly, the current model assumes a stationary arrival rate and customer

mix. In practice, customer arrival and mix are not necessarily stationary. For example,

more patients arrive at ED late evening or night at UCM, while fewer patients arrive during

the daytime. Patients, who arrive et the ED at night, are more likely to have more urgent

conditions and are more likely to be admitted to the inpatient stay. Exploring the dynamic

threshold policy and how it depends on the system parameters would be interesting.

This thesis has explored the patient prioritization problem at UCM ED using statistical

tools such as the conditional logit model (CLM) and machine learning methods such as

decision trees. We have mainly focused on understanding how the ED system and patient

characteristics impact the prioritization rule and predicting which patient will be roomed

next. However, the current prioritization rule is not necessarily optimal. A natural extension

is to develop an improved prioritization rule by estimating the effect of waiting time on

medical outcomes such as length of stay (LOS), Left Without Being Seen (LWBS), mortality,

risk of admission, ED bounce-backs, etc.

In Chapter 5, we report that the ESI-FCFS policy is better at predicting the next patient
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to be roomed than the MST Algorithm. At the same time, the CLM model with patient-level

interaction terms is slightly better at predicting the set of patients who are most likely to be

roomed. Since the performance of these methods does not significantly differ, we infer that

triage nurses generally follow the ESI-FCFS policy.

We have first tested the performance of the CLM model and the MST Algorithm on an

artificially generated dataset that includes choice incidents based on a deterministic optimal

policy and have found that both methods with appropriate covariates explain most of the

variation in the choice outcome. However, when we apply the MST algorithm and ESI-

FCFS policy to the dataset that includes choice incidents at UCM ED, we find that they

explain only a fraction of the variation in the choice outcome. This situation is either

due to the possibly missing covariates in the model or some patient prioritization decisions

made at random. To address the first matter, we have added pain score, conscious level as

covariates, and other special condition indicators but found no significant improvement in

prediction accuracy. It is possible that some patient attributes are observable to the triage

nurse but not captured in the data. It is also possible that the MST algorithm might not

have sufficient power to fully explain an extremely complex system such as an emergency

department. Another possibility is that some patient routing decisions are indeed based on

randomization, possibly due to different triage nurses. Here, randomization can be either

complete or based on a subset of covariates, such as the ESI score. A future research direction

is to explore whether we can estimate what fraction of the unexplained variation is due to

the model structure versus randomization.

We start exploring this estimation question on the artificially generated dataset by assum-

ing complete randomization. We first calculate the optimal deterministic policy as explained

in Chapter 3 and then run a simulation study with randomization. In the simulation, the

decision-maker selects the optimal action with probability 1− p or selects a random patient

with probability p whenever it is optimal to transfer a patient to a room from the waiting

area. The decision-maker cannot violate the patient routing decisions. For example, if the

decision-maker selects the random action, they cannot room a non-urgent patient in an ur-

gency room. After we run the simulation, we generate the choice dataset. Next, we estimate

p̂ and compare how this estimate is close to the real p.
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Let us introduce our preliminary approach to estimate the randomization probability.

Suppose that p = 1, then any deterministic algorithm can correctly estimate on average

rrand fraction of choice incidents where

rrand =
1∑

w∈Nw
nw

∑
w∈Nw

nw
1

w
. (6.1)

Suppose that p = 0, then there is an algorithm with perfect accuracy that can estimate

the outcome of all incidents. We assume that if the estimation dataset is sufficiently large

and the model includes the relevant covariates, the CLM model with interaction terms and

the MST algorithm should be able to pick the optimal policy. The optimal policy should

accurately predict the following percentage of the choice outcomes on average:

p̂rrand + (1− p̂)1 = Aclm, (6.2)

where Aclm is the fraction of incidents correctly predicted by the CLM model in the test

data. Then, we have

p̂ =
1− Aclm

1− rrand
(6.3)

We run our simulation study and estimate the randomization probability at different levels

of p. Figure 6.1 shows that our estimate is biased and tend to underestimate the actual

p. More work is needed to explore obtaining an unbiased estimate of the randomization

probability.

In Chapter 5, we introduce an algorithm that simultaneously performs the patient seg-

mentation and prediction process so that the segmentation is (nearly) optimized for the

prediction process. The algorithm is tree-based and, thus, can flexibly capture the inter-

actions and nonlinear relationships between alternative attributes. We observe that this

tree-based algorithm performs well on artificially generated datasets but cannot perform as

well in the UCM ED dataset. Therefore, we infer that nonlinear and interaction impacts

of the patient-level attributes (excluding the quadratic impact of the wait and interaction

between the ESI score and wait, which are already included in the utility function) are rel-

atively weak. Another possibility is that the algorithm is sufficiently flexible to capture the
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Figure 6.1: Randomization probability estimation

patient-level nonlinear effects and interaction terms in simple settings but not sufficiently

flexible to capture these in more complex settings and needs improvement.

98



APPENDIX A

APPENDIX

A.1 Chapter 2 Proofs

A.1.1 Notation

For notational convenience, we write W a(z), W d(z), and W (z) as

W a(z) =
λβµ

2
R(z)Ha(z), (A.1a)

W b(z) =
λβµ

2
R(z)Hb(z), (A.1b)

W (z) =
λβµ

2
R(z)H(z) (A.1c)

where

R(z) = (z(e1 − e2) + e2) , (A.2a)

Ha(z) =
1

βµ− λz
, (A.2b)

Hb(z) =
1

βµ− λz

(
z − α
1− α

+
1− z
1− α

βµ

(βµ− λβ + λ (β − 1) z)

)
, (A.2c)

H(z) =
1

βµ− λz

(
γα + (z − α) + βµ(1− z)

(βµ− λβ + λ (β − 1) z)

)
. (A.2d)

We will frequently refer to the first and the second derivative of H(z) function:

d

dz
H(z) =

a(γ − 1)λ+ (β − 1)µ

(βµ− λz)2
− µ(β − 1)

(βµ− λβ + λ (β − 1) z)2
, (A.3a)

d2

dz2
H(z) = 2λ

(
a(γ − 1)λ+ (β − 1)µ

(βµ− λz)3
+

µ(β − 1)2

(βµ− λβ + λ (β − 1) z)3

)
. (A.3b)

A.1.2 Proofs for Perfect Information

Proof of Proposition 1. Assume that e1βµ ≤ e2(βµ − λ). We first prove that W b(z) is

decreasing function of z under the assumption. Let us take the first derivative of W b(z) with
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respect to z by using product rule :

d

dz
W b(z) =

(
λβµ

2

)(
Hb(z)

d

dz
R(z) +R(z)

d

dz
Hb(z)

)
. (A.4)

Functions R(z) and H(z) are clearly positive. The first derivative of R(z) is negative as a

direct implication of the assumption:

d

dz
R(z) = e1 − e2 < 0. (A.5)

Now, we take the first derivative of Hb(z) with respect to z and express it in terms of problem

parameters and observe that it is negative for all z ∈ [α, 1) :

d

dz
Hb(z) =

λ

(1− α) (βµ− λz)2

(
−α− (β − 1)βµ(1− z)(2βµ+ βλz − βλ− 2λz)

(βµ− λz − λ(1− z)β)2

)
< 0.

(A.6)

Note that β > 1, µ > λ, and z ∈ [α, 1), the expression above is negative. By plugging

inequalities (A.5 -A.6) into equation (A.4), we show that W b(z) is a decreasing function of

z. To show that W a(z) is decreasing function of z under this assumption, we take the first

derivative of W a(z) with respect to z:

d

dz
W a(z) =

(
λβµ

2

)
e1βµ− e2(βµ− λ)

(βµ− λz)2
.

The expression above is negative (nonpositive) for all z ∈ [α, 1] when the inequality on the

higher moments is strict (non-strict). Since W (z) = αγW a(z) + (1− α)W b(z), i.e., W (z) is

summation of a positive decreasing function and nonincreasing function, then it is positive

decreasing function of z, and thus z∗ = 1 to minimize W (z) under the assumption that

e1βµ ≤ e2(βµ− λ). This concludes the proof. ■

Proof of Proposition 2. To show that W(z) is convex function if e1βµ ≥ e2(βµ−λ), we take

the second derivative of W (z) (eq. A.1c) by using the product rule:

d2

dz2
W (z) =

λβµ

2

(
(e1 − e2)(2H ′(z) + zH ′′(z)) + e2H

′′(z)
)
. (A.7)
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First, we divide interval [α, 1] into two disjoint intervals: S and S̄:

S = {z ∈ [α, 1] : H ′(z) > 0},

S̄ = {z ∈ [α, 1] : H ′(z) ≤ 0}.

Next we will separately show that W (z) is convex function of z on each interval.

Case I: Suppose that z ∈ S̄. By (A.7),

d2

dz2
W (z) =

λβµ

2

(
(e1 − e2)(2H ′(z) + zH ′′(z)) + e2H

′′(z)
)

=
λβµ

2

(
(e1 − e2)2H ′(z) +H ′′(z)(ze1 + (1− z)e2)

)
> 2(e1 − e2)2H ′(z)

≥ 0.

The first inequality is by H ′′(z) > 0 ∀z ∈ [α, 1] (see eq. A.3b) and the second inequality is

by e1 ≤ e2 and H ′(z) ≤ 0 for all z ∈ S̄.

Case II: Suppose that z ∈ S. By (A.7),

d2

dz2
W (z) =

λβµ

2

(
(e1 − e2)(2H ′(z) + zH ′′(z)) + e2H

′′(z)
)
. (A.8)

By assumption:

e1 ≥ e2
(βµ− λ)

βµ
,

we immediately have

e1 − e2 ≥ −e2
λ

βµ
. (A.9)

Note that (2H ′(z) + zH ′′(z)) > 0 for any z ∈ S since H ′(z) > 0 and H ′′(z) > 0 for any

z ∈ S. After we multiply the both sides of inequality (A.9) by (2H ′(z)+ zH ′′(z)), we obtain

(e1 − e2)
(
2H ′(z) + zH ′′(z)

)
≥ −e2

λ

βµ
(2H ′(z) + zH ′′(z)). (A.10)
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By plugging (A.10) into (A.8), we obtain

d2

dz2
W (z) ≥ λβµ

2
e2

(
−λ
βµ

(
2H ′(z) + zH ′′(z)

)
+H ′′(z)

)
=
λβµ

2
e2

(
−λ
βµ

2H ′(z)− λz

βµ
H ′′(z) +

βµ

βµ
H ′′(z)

)
=
λe2
2

(
− 2λH ′(z) + (βµ− λz)H ′′(z)

)
︸ ︷︷ ︸

⋆

.

(A.11)

By using explicit expressions of H ′(z) and H ′′(z) given by (A.3a,A.3b), we can write

−2λH ′(z) and (βµ− λz)H ′′(z) in terms of problem parameters and decision variable z:

−2λH ′(z) = −2λ

(
a(γ − 1)λ+ (β − 1)µ

(βµ− λz)2
− µ(β − 1)

((βµ− λz − λ(1− z)β)2

)

= −2λa(γ − 1)λ+ (β − 1)µ

(βµ− λz)2
+ 2λ

µ(β − 1)

((βµ− λz − λ(1− z)β)2
;

(βµ− λz)H ′′(z) = (βµ− λz)2λ
(
a(γ − 1)λ+ (β − 1)µ

(βµ− λz)3
+

µ(β − 1)2

(βµ− λz − λ(1− z)β)3

)
= 2λ

(
a(γ − 1)λ+ (β − 1)µ

(βµ− λz)2
+

µ(β − 1)2

((βµ− λz − λ(1− z)β)2

× (βµ− λz)
(βµ− λz − λ(1− z)β)

)

≥ 2λ

(
a(γ − 1)λ+ (β − 1)µ

(βµ− λz)2
+

µ(β − 1)2

((βµ− λz − λ(1− z)β)2

)
.

(A.12)

The inequality is by (βµ− λz) ≥ (βµ− λz − λ(1− z)β) > 0.
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By combining terms of (A.12):

⋆ = −2λH ′(z) + (βµ− λz)H ′′(z)

≥ −2λa(γ − 1)λ+ (β − 1)µ

(βµ− λz)2
+ 2λ

µ(β − 1)

((βµ− λz − λ(1− z)β)2

+ 2λ
a(γ − 1)λ+ (β − 1)µ

(βµ− λz)2
+ 2λ

µ(β − 1)2

((βµ− λz − λ(1− z)β)2

= 2λ
µ(β − 1)

((βµ− λz − λ(1− z)β)2
+ 2λ

µ(β − 1)2

((βµ− λz − λ(1− z)β)2

> 0.

(A.13)

The first inequality is by equation and the inequality given by (A.12); the last inequality is

by β > 1.

Plugging (A.13) into (A.11), we obtain

d2

dz2
W (z) > 0 ∀z ∈ S.

This concludes the proof. ■

Lemma 1. Suppose that e1βµ > e2 (βµ− λ). Then

∂

∂α

d

dz
W (z) > 0,

∂

∂γ

d

dz
W (z) > 0.

(A.14)

Proof of Lemma 1. Suppose that e1βµ > e2(βµ − λ). Let us take the first derivative of

W (z):
d

dz
W (z) =

λβµ

2

((
e1 − e2

)(
H(z) + zB′(z)

)
+ e2B

′(z)
)
.
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Next, we take the derivative of right hand side respect to γ and lower bound by zero:

d

dγ

d

dz
W (z) =

λβµ

2

(
(e1 − e2)

(
d

dγ
H(z) + z

d

dγ
H ′(z)

)
+ e2

d

dγ
H ′(z)

)
=
λβµ

2

(
(e1 − e2)

(
α

βµ− zλ
+ z

αλ

(βµ− λz)2

)
+ e2

αλ

(βµ− λz)2

)
>
λβµe2

2

(
− λ

βµ

(
α

βµ− zλ
+ z

αλ

(βµ− λz)2

)
+

αλ

(βµ− λz)2

)
=
λβµe2

2

αλ

βµ

(
− 1

βµ− zλ
− z λ

(βµ− λz)2
+

βµ

(βµ− λz)2

)
=
λβµe2

2

αλ

βµ

(
(−(βµ− λz)− λz + βµ

(βµ− λz)2

)
= 0.

The inequality is holds as direct implication of the assumption on second moments. Similarly,

we can also show that

d

dα

d

dz
W (z) =

λβµ

2

(
(e1 − e2)

(
d

dα
H(z) + z

d

dα
B′(z)

)
+ e2

d

dα
B′(z)

)
=
λβµ

2

(
(e1 − e2)

(
(γ − 1)

βµ− zλ
+ z

(γ − 1)λ

(βµ− λz)2

)
+ e2

(γ − 1)λ

(βµ− λz)2

)
>
λβµe2

2

(
− λ

βµ

(
(γ − 1)

βµ− zλ
+ z

(γ − 1)λ

(βµ− λz)2

)
+

(γ − 1)λ

(βµ− λz)2

)
=
λβµe2

2

(γ − 1)λ

βµ

(
− 1

βµ− zλ
− z λ

(βµ− λz)2
+

βµ

(βµ− λz)2

)
=
λβµe2

2

(γ − 1)λ

βµ

(
(−(βµ− λz)− λz + βµ

(βµ− λz)2

)
= 0.

■

Proof of Proposition 3. The notation MB denote the optimal misclassification rate among

type-B customers for a given set of system parameters:

MB =
z∗(α)− α
1− α

.

Case I: Suppose that e1βµ ≤ e2(βµ− λ). By Proposition 1, W (z) is decreasing function of
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z on interval [α, 1] and thus z∗ = 1 for any α and γ, implying optimal misclassification rate

is hundred percent.

Case II: Suppose that e1βµ > e2(βµ − λ). By Lemma 1, W ′(z) increases as γ and α

increases. Thus, W ′(z) with higher γ or/and α is always positive or will hit the zero earlier,

implying that z∗ decreases as γ or/and α increases. As γ increases, z∗ decreases, and thus

misclassification rate decreases. To evaluate how change in α impacts the misclassification

rate, we take the first derivative ofMB with respect to α:

d

dα
MB =

(
d
dαz
∗(α)− 1

)
(1− α) + (z∗(α)− α)

(1− α)2
.

We upper-bound the numerator of the expression on the right hand can by zero by using the

following inequalities:
d

dα
z∗(α) < 0 by Lemma 1,

z∗ ≤ 1 by feasibility.

We conclude that misclassification rate decreases as α increases. ■

A.1.3 Proofs for Imperfect Information

For notational convenience, we define W a(x) and W b(x) as follows:

W a(x) =
λβµ

2
R(x)A(x); (A.15a)

W b(x) =
λβµ

2
R(x)B(x), (A.15b)

where

R(x) = G(x)(e1 − e2) + e2, (A.16a)

A(x) =
1

βµ− λG(x)

(
g(x) +

βµ(1− g(x))
βµ− λβ + λ (β − 1)G(x)

)
, (A.16b)

B(x) =
1

βµ− λG(x)

(
x+

βµ(1− x)
βµ− λβ + λ (β − 1)G(x)

)
. (A.16c)
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Then we plig (2.11) into functions R(x), A(x), and P (x) (see A.16) and obtain:

R(x) = (α(f + xκ) + (1− α)x) (e1 − e2) + e2

A(x) =
1

βµ− λ (α(f + xκ) + (1− α)x)

(
(f + xκ) +

βµ(1− (f + xκ))

βµ− λβ + λ (β − 1) (α(f + xκ) + (1− α)x)

)
,

B(x) =
1

βµ− λ (α(f + xκ) + (1− α)x)

(
x+

βµ(1− x)

βµ− λβ + λ (β − 1) (α(f + xκ) + (1− α)x)

)
.

(A.17)

For notational convenience, we define

A(x) =
Na(x)

D(x)
, (A.18a)

B(x) =
Nb(x)

D(x)
, (A.18b)

where

Na(x) = βµ+ (f + κx)
(
− λβ + λ (β − 1) (α(f + xκ) + (1− α)x)

)
,

Nb(x) = βµ+ x
(
− λβ + λ (β − 1) (α(f + xκ) + (1− α)x)

)
,

D(x) =
(
βµ− λ (α(f + xκ) + (1− α)x)

)
×
(
βµ− λβ + λ (β − 1) (α(f + xκ) + (1− α)x)

)
,

(A.19)

Let us take the derivative of A(x) and B(x):

d

dx
A(x) =

ϕa(x)

D2(x)
, (A.20a)

d

dx
B(x) =

ϕb(x)

D2(x)
, (A.20b)

where

ϕa(x) = N ′a(x)D(x)−D′(x)Na(x), (A.21a)

ϕb(x) = N ′b(x)D(x)−D′(x)Nb(x). (A.21b)

Before we get into the proof of Proposition 5, we will prove two lemmas related to the

gradient of W a(x). First, we will show that function ϕa(x) is an increasing function of x on
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any interval and it takes only negative values as long as the the slope of ROC curve is equal

or greater than 1 on the interval that it is evaluated. Note that derivative of g(x) is not

defined at breakpoints and thus function ϕa(x) can be discontinuous at breakpoints. Next,

we will describe how function ϕa(x) behaves at breakpoints.

Suppose that x ∈ In = (xn−1, xn]; and g(x) = f + κx, where f is defined by equation

(2.12). Since g(xn) cannot be greater than 1, xn ≤ 1−f
κ . Instead of evaluating ϕa(x) on

interval (xn−1, xn], we will evaluate on interval
[
0, 1−fκ

]
since g(x) and thus ϕa(x) will

exactly take same values on the interval of our interest.

Lemma 2. Suppose that g(x) = f + κx, where x ∈ [x, x̄], where x̄ = 1−f
κ . Function ϕa(x)

is an increasing function of x on interval [x, x̄]. Suppose that κ ≥ 1, then ϕa(x) < 0 for all

x ̸= 1 and ϕa(x) ≤ 0 for x = 1 on that interval.

Proof of Lemma 2. Let us take the derivative of ϕa(x):

d

dx
ϕa(x) = N ′′a (x)D(x)−D′′(x)Na(x),

where,
N ′′a (x) = 2(β − 1)(1− α + ακ)κλ > 0,

D′′(x) = −2(β − 1)(1− α + ακ)2λ2 < 0.
(A.22)

By (A.22), it is clear that ϕ′a(x) > 0, and thus

ϕa(x) ≤ ϕa

(
1− f
κ

)
∀x ∈

[
x,

1− f
κ

]
.

Now, we will show that ϕa (x̄) is negative, where x̄ = 1−f
κ given that κ ≥ 1. After some

algebraic manipulation, ϕa (x̄) can be written as

ϕa

(
1− f
κ

)
=M1M2, (A.23)

where

M1 = λ(1− α)β(µ− λ) + (β − 1)(α + x̄(1− α)) (A.24a)
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M2 = −β2κµ(1− x̄) + (β − 1)λ(1− x̄)(1− κx̄)α + β (µ− λ+ λx̄) (1− κx̄)− λx̄(1− κx̄).

(A.24b)

It is clear that M1 > 0 because α ∈ [0, 1), µ > λ, and β > 1. Now, we will show that M2

is negative. Note that g(x̄) = f + κx̄ ≤ 1, and thus κx̄ ≤ 1 and observe that following

inequalities hold:

−λx̄(1− κx̄) ≤ 0,

(β − 1)λ(1− x̄)(1− κx̄)α ≤ (β − 1)λ(1− x̄)(1− κx̄).
(A.25)

Next, we put an upper bound on ϕa (x̄):

ϕa (x̄) ≤ −β2κµ(1− x̄) + (β − 1)λ(1− x̄)(1− κx̄) + β(µ− λ+ λx̄)(1− κx̄))

= −β2κµ(1− x̄) + (β − 1)λ(1− x̄)(1− κx̄) + βµ(1− κx̄)− βλ(1− x̄)(1− κx̄)

= −β2κµ(1− x̄) + βµ(1− κx̄)− λ(1− x̄)(1− κx̄)

= −βµ (βκ(1− x̄)− (1− κx̄))− λ(1− x̄)(1− κx̄)

≤ −βµ (βκ(1− x̄)− (1− κx̄))

≤ 0.

The first inequality is by plugging inequalities given by (A.25) into (A.24b). The second

inequality is trivial. The last inequality holds because κ ≥ 1 and β > 1 allowing the

following inequality hold:

βκ (1− x̄) ≥ 1− x̄ ≥ 1− κx ≥ 0.

Observe that if x̄ ̸= 1, then the first inequality is strict, i.e. ϕa (x̄) < 0 for all x̄ ̸= 1. This

concludes the proof. ■

Now we need to check how ϕa(x) changes at the breakpoints. Suppose that (r, w) is the

nth breakpoint, i.e., (xn, g(xn)) = (r, w). To compare the value of left and right function at

this breakpoint, we will take the derivative of function ϕa(r) with respect to κ.
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Lemma 3. Fix x = r and g(x) = w. Suppose that r ̸= 1.

d

dκ
ϕa(r) = µ3ρ

(
β + ρq1

)((
q1q2 + αβ + αwρq1

)
+
(
β − 1

)
αβq2

(
w − 1

))
< 0,

where h = αw + (1− α)r and ρ = λ
µ ; q1 = −β + (β − 1)h and q2 = β − ρh.

Proof of Lemma 3. The value of function ϕa(x) at point (r, w) is given by (A.21a):

ϕa(r) = N ′a(r)D(r)−D′(r)Na(r).

We take the derivative of ϕa(r) with respect to κ. Noting that N ′a(r) and D′(r) are functions

of κ while Na(r) and D(r) are not, we have

d

dκ
ϕa(r) = D(r)

d

dκ

(
dNa(x)

dx

∣∣∣
x=r

)
−Na(r)

d

dκ

(
dD(x)

dx

∣∣∣
x=r

)
. (A.26)

After some algebraic manipulation, (A.26) can be written as

d

dκ
ϕa(r) = µ3ρ

(
(β + ρq1)︸ ︷︷ ︸

⋆

(q1q2 + αβ + αwρq1)︸ ︷︷ ︸
⋆⋆

+(β − 1)αβq2 (w − 1)︸ ︷︷ ︸
⋆⋆⋆

)
.

Note that 0 > q1 > −β and ρ < 1 and thus ⋆ is a positive expression. On the other hand,

⋆ ⋆ ⋆ is a nonpositive expression since β > 1, ρ < 1, h ≤ 1 and w ≤ 1. If we show that ⋆⋆ is
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also nonpositive, then we are done with the proof.

⋆⋆ =
(
q1q2 + αβ + αwρq1

)
=
(
q1q2 + α (β + wρq1)

)
≤
(
q1q2 + β + wρq1

)
=
(
q1(q2 + wρ) + β

)
=
((
− β + (β − 1)h

)
(β − ρh+ wρ) + β

)
=
(
− β2 + (β2 − β)h+

(
− β + (β − 1)h

)
ρ
(
w − h

)
+ β

)
=
(
(β2 − β)(h− 1) +

(
− β + (β − 1)h

)
ρ
(
w − h

))
< 0.

The first inequality by the fact that β+wρq1 are positive (q1 ≥ −β and ρ < 1 and w ≤ 1) and

thus ⋆⋆ increases as α increases. The last inequality is follows from r ≤ h = αw+(1−α)r <

w ≤ 1 and β > 1. ■

Corollary 3. ϕa(x) is an increasing function of x at all points including breakpoints. More-

over, ϕa(x) < 0 for all x ∈ [0, xn̄], where n̄ = max{n : κn ≥ 1}.

It is possible that ϕa(x) is discontinuous at x = r. Therefore, to show that ϕa(r) <

ϕa(r + ϵ), we need to show that the value of the right function is higher than the value of

the left function at x = r. This is sufficient since ϕa(x) is increasing function of x on any

interval by Lemma 2 and, thus ϕa(r+ ϵ) must be greater than the value of the right function

at x = r. By Lemma 3, we know that as κ decreases the value of ϕa(x) function increases

for a given x = r. Since κ value associated with right function is no greater than the κ value

associated with left function, we conclude that ϕa(r) < ϕa(r + ϵ).

Proof of Proposition 5. Recall eq. 2.6b:

W a(x) =
λβµ

2
R(x)A(x).

If we can show that A(x) and R(x) are nonnegative decreasing function of x where x ∈ [0, xn̄],
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then we are done. By equation (A.20a), the first derivative of A(x) is defined as

d

dx
A(x) =

ϕa(x)

(D(x))2
.

By Corollary 3, we know that ϕa(x) < 0 for all x ∈ [0, xn̄] . Therefore, A(x) is a nonnegative

decreasing function of x. It is straightforward that

R(x) = (αg(x) + (1− α)x) (e1 − e2) + e2

is positive nonincreasing function of x for all x ∈ [0, 1] because e1 ≤ e2 by assumption. The

function generated via multiplication of a positive nonincreasing and a positive decreasing

function is decreasing. This concludes the proof. ■

Recall that the average waiting cost of a patient is given by

W (x) = γαW a(x) + (1− α)W b(x) (see eq. 2.7). (A.27)

By (2.6b-2.6d) and (A.18a-A.18b), we have

W (x) =
λβµ

2
R(x) (γαA(x) + (1− α)P (x)) ,

=
λβµ

2
R(x)

(
γα

Na(x)

D(x)
+ (1− α)Nb(x)

D(x)

)
.

Let us take the derivative of W (x):

d

dx
W (x) =

λβµ

2

(
R′(x)

(γαNa(x) + (1− α)Nb(x))

D(x)
+R(x)

(γαϕa(x) + (1− α)ϕb(x))
D2(x)

)
=
λβµ

2

(
R′(x)D(x) (γαNa(x) + (1− α)Nb(x)) + (γαϕa(x) + (1− α)ϕb(x))

D2(x)

)
=
λβµ

2

(
ψ(x)

D2(x)

)
,

(A.28)

where,

ψ(x) = R′(x)D(x)N(x) +R(x)ϕ(x), (A.29a)
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N(x) = γαNa(x) + (1− α)Nb(x), (A.29b)

ϕ(x) = N ′(x)D(x)−D′(x)N(x), (A.29c)

ϕ(x) = γαϕa(x) + (1− α)ϕb(x). (A.29d)

To comment on the properties of W (x), we first need to understand how ψ(x) function

behaves. We have explicit expressions for R′(x), D(x), N(x), and R(x) while ϕ(x) is hard

to express explicitly. We write ϕ(x) as weighted summation of functions ϕa(x) and ϕb(x).

The following lemma shows that ϕ(x) increases as x increases on a given interval.

Lemma 4. Suppose that g(x) = f + κx, where x ∈ [x, x̄], where x̄ = 1−f
κ . Function ϕ(x) is

an increasing function of x on interval [x, x̄]. If κ ≥ 1, then ϕ(x) takes only negative values.

Proof of Lemma 4. Let us take the derivative of ϕa(x):

d

dx
ϕb(x) = N ′′b (x)D(x)−D′′(x)Nb(x). (A.30)

Let us take the second derivative of Nb(x) and D(x):

N ′′b (x) = 2(β − 1)(1− α + ακ)λ > 0,

D′′(x) = −2(β − 1)(1− α + ακ)2λ2 < 0.
(A.31)

By (A.30) and (A.31), ϕb(x) is increasing function of x on any interval. Thus,

ϕb(x) ≤ ϕb

(
1− f
κ

)
∀x ∈

[
0,

1− f
κ

]
.

This inequality with together with Lemma 2 implies that

ϕ(x) = γαϕa(x) + (1− α)ϕb(x)ϕb(x)

≤ γαϕa

(
1− f
κ

)
+ (1− α)ϕb

(
1− f
κ

)
= (γ − 1)αϕa

(
1− f
κ

)
+ αϕa

(
1− f
κ

)
(1− α)ϕb

(
1− f
κ

)
≤ αϕa

(
1− f
κ

)
+ (1− α)ϕb

(
1− f
κ

)
︸ ︷︷ ︸

⋆

∀x ∈
[
x,

1− f
κ

]
.
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The first inequality by ϕa(x) and ϕb(x) being increasing with x on any interval. The second

inequality is by the fact that (i) ϕa(x) is negative for any associated κ value that is equal

to or greater than 1 (See Lemma 2) and (ii) γ > 1 by assumption. After some algebraic

manipulation ⋆ can be explicitly expressed as

⋆ = βλµ(1− α)(1− x̄)(β − 1)(ακ+ 1− α)︸ ︷︷ ︸
†

(
βλ(1− α)(1− x̄) + 2λ(α + x̄− αx̄)− 2βµ

)
︸ ︷︷ ︸

‡

Observe that † is nonnegative. If we can show that ‡ is negative, then we are done.

‡ = βλ(1− α)(1− x̄) + 2λ(α + x̄− αx̄)− 2βµ

< βλ(1− α)(1− x̄) + 2λ(α + x̄− αx̄)− 2βλ

< λ(1− α)(1− x̄) + 2λ(α + x̄− αx̄)− 2λ

= λ(1− α)(1− x̄)− 2λ(1− α)(1− x̄)

≤ 0.

The first inequality holds because ‡ decreases as µ increases and µ > λ by assumption. The

second inequality holds because the right hand side of the inequality decreases as β increases.

The inequality is by rearranging terms. The last inequality is trivial. ■

Suppose that (r, w) is a breakpoint where xn = r and g(xn) = w. Next we will derive

an explicit expression of the derivative of function ϕb(r) with respect to κ. Then use this

expression together with Lemma 3 to analyze how function ϕ(x) behaves at the break point

(r, w)

Lemma 5. Fix x = r and g(x) = w.

d

dκ
ϕb(r) = ρµ3

(
β (β − 1)αq2 (r − 1) + (β + rρq1)α (β + ρq1)

)
,

where r < h = αw + (1− α)r < w ≤ and ρ = λ
µ ; q1 = −β + (β − 1)h and q2 = β − ρh.

Proof of Lemma 5. Let us first express ϕb(r) in terms of Nb(r), N ′b(r) D(r), and D′(r). For
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this purpose, we explicitly write Nb(x), N ′b(x), D(x), and D′(x):

Nb(x) = βµ+ x
(
− λβ + λ (β − 1) (α(f + xκ) + (1− α)x)

)
,

N ′b(x) =
(
− λβ + λ (β − 1) (α(f + xκ) + (1− α)x)

)
+ xλ (β − 1) (ακ+ 1− α) ,

D(x) =
(
βµ− λ (α(f + xκ) + (1− α)x)

)(
βµ− λβ + λ (β − 1) (α(f + xκ) + (1− α)x)

)
D′(x) = −λ (ακ+ 1− α)

(
βµ− λβ + λ (β − 1) (α(f + xκ) + (1− α)x)

)
+ (βµ− λ (α(f + xκ) + (1− α)x)) (λ (β − 1) (ακ+ 1− α)) .

(A.32)

At (x, g(x)) = (r, w),

f + κx = w,

and value of functions given by (A.32) are

Nb(r) = βµ+ r
(
− λβ + λ (β − 1)h

)
,

N ′b(r) = (−λβ + λ (β − 1)h) + rλ (β − 1) (ακ+ (1− α)) ,

D(r) = (βµ− λh) (βµ− λβ + λ (β − 1)h)

D′(r) = −λ (ακ+ 1− α) (βµ− λβ + λ (β − 1)h)

+ (βµ− λh) (λ (β − 1) (ακ+ 1− α)) .

Note that Nb(r) and D(r) independent of κ and thus their derivative with respect to κ is

zero. Then the derivative of ϕb(r) can be written as

d

dκ
ϕb(r) =

(
d

dκ
N ′b(r)

)
D(r)−

(
d

dκ
D′(r)

)
Nb(r) (A.33)

After some algebraic manipulation, (A.33) can be written as

d

dκ
ϕb(r) = ρµ3

(
r (β − 1)αq2 (β + ρq1)−

(
− α (β + ρq1) + q2 (β − 1)α

)(
β + rρq1

))
= ρµ3

(
r (β − 1)αq2 (β + ρq1) + (β + rρq1)α (β + ρq1)

− (β + rρq1) q2 (β − 1)α
)

= ρµ3
(
β (β − 1)αq2 (r − 1) + (β + rρq1)α (β + ρq1)

)
.
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■

The following lemma helps us understand how ϕ(x) behaves at breakpoints.

Lemma 6. Fix x = r and g(x) = w. Suppose that r ̸= 1.

d

dκ
ϕ(r) ≤ 0.

Proof of Lemma 6. By using Lemma 3 and Lemma 5, we can write d
dκϕ(r) as

d

dκ
ϕ(r) = γα

d

dκ
ϕa(r) + (1− α) d

dκ
ϕb(r)

≤ α
d

dκ
ϕa(r) + (1− α) d

dκ
ϕb(r)

= αµ3ρ
(
(β + ρq1) (q1q2 + αβ + αwρq1) + (β − 1)αβq2 (w − 1)

)
+ (1− α)ρµ3

(
β (β − 1)αq2 (r − 1) + (β + rρq1)α (β + ρq1)

)
.

(A.34)

The inequality is by d
dκϕa(r) is negative (as shown by Lemma 3) and γ > 1. Note that

r ≤ h = αw+ (1−α)r ≤ w and ρ = λ
µ ; q1 = −β + (β − 1)h and q2 = β − ρh. Then we have

αµ3ρ
(
(β − 1)αβq2 (w − 1)

)
≤ 0

(1− α)ρµ3
(
β (β − 1)αq2 (r − 1)

)
≤ 0.

(A.35)

By plugging inequalities (A.35) into (A.34), we obtain

d

dκ
ϕ(r) ≤ αµ3ρ

(
β+ρq1

)(
q1q2+αβ+αwρq1

)
+(1−α)ρµ3

(
(β + rρq1)α (β + ρq1)

)
. (A.36)

After rearranging the terms on the right hand side of (A.36), we have

d

dκ
ϕ(r) ≤ αµ3ρ

(
β + ρq1

)(
q1q2 + (αw + (1− α)r)ρq1 + β

)
.
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Recall that h = (αw + (1− α)r); q1 = −β + (β − 1)h and q2 = β − ρh.

d

dκ
ϕ(r) ≤ αµ3ρ

(
β + ρq1

)(
q1q2 + (αw + (1− α)r)ρq1 + β

)

= αµ3ρ
(
β + ρq1

)(
q1(q2 + hρ) + β

)
by h = (αw + (1− α)r)

= αµ3ρ
(
β + ρq1

)(
q1β + β

)
by q2 = β − ρh

= αµ3ρ
(
β + ρq1

)
β

(
q1 + 1

)

= αµ3ρ
(
β + ρq1

)
β

(
− β + (β − 1)h+ 1

)
by q1 = −β + (β − 1)h

= αµ3ρ
(
β + ρq1

)
β(1− h)(1− β)

< 0.

The last inequality by the fact that αin (0, 1), h < 1, β > 1 and β + ρq1 > 0. ■

Corollary 4.
d

dx
ϕ(x) > 0 ∀x ∈ [0, 1).

By Lemma 4, function ϕ(x) increases on a given interval. Suppose that xn = r and

g(xn) = w for some n. By Lemma 6, we know that d
dκϕ(r) ≤ 0, i.e.,function ϕ(r) increases

as the associated κ value decreases. This implies that the value of the right function is higher

than the value of the left function at breakpoint x = r. We can conclude that ϕ(x) increases

as x increases, including at breakpoints.

Lemma 7. Suppose that (r, w) is a breakpoint where xn = r and g(xn) = w

d

dκ
ψ(r) < 0.

Proof. By (A.29a),

ψ(r) =

(
dR(x)

dx

∣∣∣
x=r

)
D(r)N(r) +R(r)ϕ(r).
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Note that D(r), N(r) and R(r) are positive and independent of κ.

d

dκ
ψ(r) = D(r)N(r)

d

dκ

(
dR(x)

dx

∣∣∣
x=r

)
+R(r)

d

dκ
ϕ(r)

= D(r)N(r)
d

dκ
(ακ+ 1− α) (e1 − e2) +R(r)

d

dκ
ϕ(r)

= D(r)N(r)α (e1 − e2) +R(r)
d

dκ
ϕ(r)

≤ D(r)N(r)α (e1 − e2)

≤ 0.

The first inequality follows from Lemma 6 and the second inequality holds because e1 ≤ e2

by assumption. ■

Lemma 8. Whenever ψ(x) ≥ 0, ψ′(x) > 0 on a given interval I.

Proof of Lemma 8. By definition of ψ(x) (see eq. A.29a),

ψ(x) ≥ 0 iff
R′(x)
R(x)

≥ − ϕ(x)

N(x)D(x)
. (A.37)

Recall that R(x) = (α (f + κx) + (1− α)x) (e1 − e2) + e2 is positive decreasing function of

x since e1 ≤ e2 ∀x ∈ [0, 1]. Thus,

R′(x)
R(x)

≤ 0 ∀x ∈ [0, 1] .

Observe that if ϕ(x) < 0, then the negation of the statement on the right hand will immedi-

ately hold. Since it is "iff", the negation of the statement on the left hand side must hold,

i.e., ψ(x) < 0. Therefore, W (x) is a decreasing function of x on that interval. Therefore, we

focus on the subinterval that ϕ(x) ≥ 0.

Is = {x ∈ I : ϕ(x) ≥ 0} .

Let us take the first derivative of ψ(x) (see eq. A.29a) by using the product rule:

d

dx
ψ(x) = R′(x)

d

dx

(
N(x)D(x)

)
+R′′(x)N(x)D(x) +R′(x)ϕ(x) +R(x)ϕ′(x). (A.38)
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By using the equality R′′(x) = 0, and plugging (A.29c) into (A.38), we obtain

d

dx
ψ(x) = R′(x)

d

dx

(
N(x)D(x)

)
+R′(x)

(
N ′(x)D(x)−D′(x)N(x)

)
+R(x)ϕ′(x)

= R′(x)
(
N ′(x)D(x) +D′(x)N(x) +N ′(x)D(x)−D′(x)N(x)

)
+R(x)ϕ′(x)

= 2R′(x)N ′(x)D(x) +R(x)ϕ′(x).
(A.39)

Next, we will show that ψ′(x) > 0 whenever ψ(x) ≥ 0 by examining two complementary

cases: (i) N ′(x)D(x) ≤ 0 and (ii)N ′(x)D(x) > 0.

Case I: Suppose that N ′(x)D(x) ≤ 0. Plug this inequality into (A.39). then ψ′(x) > 0

since R′(x) ≤ 0 and R(x) > 0 and ϕ′(x) > 0 (see Corollary 4).

Case II: Suppose that N ′(x)D(x) > 0. By (A.39), it is clear that

d

dx
ψ(x) > 0 iff

R′(x)
R(x)

> − ϕ′(x)
2N ′(x)D(x)

. (A.40)

By Lemma 9(which we will prove afterwards), we have

− ϕ(x)

N(x)D(x)
> − ϕ′(x)

2N ′(x)D(x)
∀x ∈ Is, (A.41)

Whenever ψ(x) ≥ 0, the inequality on the right hand side of (A.37) immediately holds:

R′(x)
R(x)

≥ − ϕ(x)

N(x)D(x)
∀x ∈ {x : ψ(x) ≥ 0}.

Note that {x : ψ(x) ≥ 0} ⊂ Is. By plugging inequality (A.41) into (A.37), we immediately

have
R′(x)
R(x)

> − ϕ′(x)
2N ′(x)D(x)

∀x ∈ {x : ψ(x) ≥ 0}. (A.42)

This inequality together with (A.40) implies ψ′(x) > 0. This concludes the proof. ■

Lemma 9. Suppose that x ∈ Is.

Υ(x) = ϕ′(x)N(x)− ϕ(x)2N ′(x) > 0. (A.43)
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Proof. Let us take the left derivative of Υ(x) with respect to x:

d

dx
Υ(x) = ϕ′(x)N ′(x) + ϕ′′(x)N(x)− 2ϕ′(x)N ′(x)− 2ϕ(x)N ′′(x)

= ϕ′′(x)N(x)− ϕ′(x)N ′(x)− 2ϕ(x)N ′′(x)

=
(
N ′′(x)D′(x)N(x)−D′′(x)N ′(x)N(x)

)
−
(
N ′′(x)D(x)N ′(x)−D′′(x)N(x)N ′(x)

)
− 2ϕ(x)N ′′(x)

= N ′′(x)
(
D′(x)N(x)−N ′(x)D(x)

)
− 2ϕ(x)N ′′(x)

= −3ϕ(x)N ′′(x)

≤ 0

(A.44)

The inequality holds because (i) ϕ(x) ≥ 0 by construction and ϕ(x); (ii) N ′′(x) > 0 (see eq.

(A.22, A.31) ). Since Υ(x) is a nonincreasing function of x in Is, we have

Υ(x) ≥ Υ(1) ∀x ∈ Is.

To calculate the value of Υ(1), we calculate the value of following terms:

Na (1) = βµ− λβ + λ (β − 1)

N ′a (1) = κ (−λβ + λ (β − 1)) + λ (β − 1) (α + (1− α)κ) ,

N ′′a (1) = 2λ(β − 1)(1− α + ακ)κ,

Nb (1) = βµ− λ,

N ′b (1) = 1λ (β − 1) (1− α + ακ)− λβ + λ (β − 1)

N ′′b (1) = 2λ (β − 1) (1− α + ακ),

D (1) =
(
βµ− λ

)(
βµ− λβ + λ (β − 1)

)
,

D′ (1) =
(
− λ(1− α + ακ)

)(
βµ− λβ + λ (β − 1)

)
+
(
βµ− λ

)(
λ (β − 1) (1− α + ακ)

)
,

D′′ (1) = −2λ2(1− α + ακ)2 (β − 1) .

(A.45)

To show that Υ(1) = ϕ′(1)N(1)−2ϕ(1)N ′(1) is bounded below by zero, we first lower bound
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the value of ϕ′(1)N(1) by using the function values at x = 1 given by (A.45)::

ϕ′(1)N(1) =
(
N ′′(1)D(1)−D′′(1)N(1)

)
N(1)

=
(
2λ(1− α + ακ) (β − 1) (καγ + 1− α) (βµ− λ)2 + 2λ2(1− α + ακ)2

× (β − 1) (βµ− λ) (αγ + 1− α)
)(

(βµ− λ) (αγ + (1− α))
)

=
(
2λ(1− α + ακ) (β − 1) (βµ− λ)2 (αγ + 1− α)

)
×
(
(καγ + 1− α) (βµ− λ) + λ(1− α + ακ) (αγ + 1− α)

)
≥
(
2λ(1− α + ακ) (β − 1) (βµ− λ)2 (αγ + 1− α)

)
×
(
(καγ + 1− α) (βλ− λ) + λ(1− α + ακ) (αγ + 1− α)

)
=
(
2λ2(1− α + ακ) (β − 1) (βµ− λ)2 (αγ + 1− α)

)
×
(
(καγ + 1− α) (β − 1) + (1− α + ακ) (αγ + 1− α)

)
.

(A.46)

The inequality is by µ > λ. Next, we calculate the value of ϕ(1)N ′(1) by using the function

values at x = 1 given by (A.45):

ϕ(1)N ′(1) =
(
N ′(1)D(1)−D′(1)N(1)

)
N ′(1)

=
((

(1− α + ακ)λ(β − 1)(αγ + 1− α)− λ(καγ + 1− α)
)(
βµ− λ

)2
− λ(1− α + ακ) (βµ− λ)2 (β − 2) (αγ + 1− α)

)
×
(
(1− α + ακ)λ(β − 1)(αγ + 1− α)− λ(καγ + 1− α)

)
= λ2 (βµ− λ)2

(
(1− α + ακ)(αγ + 1− α)− (καγ + 1− α)

)
×
(
(1− α + ακ)(β − 1)(αγ + 1− α)− (καγ + 1− α)

)
.

(A.47)

For notational convenience, let q1 = 1 − α + ακ, q2 = 1 − α + αγ, and q3 = 1 − α + ακγ.
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Using (A.46) and (A.47), we have

Υ(1) = ϕ′(1)N(1)− 2ϕ(1)N ′(1)

≥ 2λ2 (βµ− λ)2
(
q1q2q3(β − 1)2 + (β − 1)q21q

2
2 − (q1q2 − q3) (q1q2(β − 1)− q3)

)
= 2λ2 (βµ− λ)2 q3

(
q1q2(β − 1)2 + q1q2β − q3

)
≥ 2λ2 (βµ− λ)2 q3 (q1q2 − q3)

= 2λ2 (βµ− λ)2 q3 (1− α)α(1− κ)(γ − 1)

> 0.

(A.48)

The first equality is by definition of Υ(1). The first inequality is by inequality (A.44) and

equality (A.48). The second equality is by rearranging the terms of the right hand side.

The second inequality trivially holds because q1, q2, q3 are nonnegative functions. The third

equality by plugging q1, q1 into the right hand side and rearranging the terms. The final

inequality holds because γ > 1, q3 > 0, α ∈ (0, 1) and κ < 1 (ϕ(x) ≥ 0 only if κ < 1 by

Corollary 4). ■

Proof of Theorem 1. By Proposition 8, we know that ψ′(x) > 0 whenever ψ(x) ≥ 0 on a

given interval. Next, we will show that the right value of ψ(x) should be no less than the

left value of the left value of the function at breakpoint (x, g(x)) = (r, w). Since κ value

associated the right function is less than the κ value associated the left function, we only

need to show d
dκψ(r) ≤ 0.

d

dκ
ψ(r) =

d

dκ

(
R′(r)D(r)N(r)

)
+

d

dκ
(R(r)ϕ(r))

= D(r)N(r)
d

dκ
R′(r) +R(r)

d

dκ
ϕ(r)

= D(r)N(r) (e1 − e2)α +R(r)
d

dκ
ϕ(r)

≤ R(r)
d

dκ
ϕ(r)

< 0.

The second equation holds because that N(r), D(r) and R(r) are constant at breakpoint

(x, g(x)) = (r, w), thus their derivative with respect to κ is zero. The first inequality is by
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e1 ≤ e2 and the second equality is by Lemma 6. We can finally conclude that ψ(x) increases

once the objective function starts the increase. This is enough to show that there is a unique

minimizer x∗. ■

A.1.4 Proofs for the Expected Value of Perfect Information

Proof of Proposition 6. We have already showed that value of perfect information is zero if

e1βµ ≤ e2 (βµ− λ) since it is optimal to misclassify all class-b customers for any feasible

problem parameters. For the remaining of the proof, suppose that e1βµ > e2 (βµ− λ).

Suppose that for a given set of parameters and α, the optimal solution to problem Pp is

z∗p(α).

Case I: Suppose that z∗p(α) ≥ α + 1−α
κ . This is feasible to problem Pi, and thus value of

perfect information is zero. Then, the claim trivially holds.

Case I: Suppose that z∗p(α) < α+ 1−α
κ . Assume the same set of parameters and α′ > α, and

let z∗p(α′) be the optimal solution to the new perfect information problem. By Proposition 1,

we know that

z∗p(α
′) ≤ z∗p(α) ∀α′ ≥ α,

and, thus we have

z∗p(α
′) ≤ z∗p(α) < α+

1− α
κ
≤ α′ +

1− α′

κ
. (A.49)

The last inequality is by α′ ≥ α and κ > 1. This implies that z∗p(α′) is not a feasible solution

to imperfect information problem with α′. Let us compare the value of perfect information

for settings with α and α′.

W
(
z∗i (α

′)
)
−W

(
z∗p(α

′)
)
=

∫ α′+1−α′
κ

z∗p(α′)
dW (z, α′)

≥
∫ α+1−α

κ

z∗p(α)
dW (z, α′)

≥
∫ α+1−α

κ

z∗p(α)
dW (z, α)

= W (z∗i (α))−W
(
z∗p(α)

)
.
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The first equation is given by (2.16). The first inequality holds because dW (z, α) ≥ 0 for

all z ≥ z∗p(α
′) by convexity (see Proposition 2) and the inequality chain (A.49) holds. The

second inequality is by dW (z, α) being an increasing function of α (see Lemma 1). The final

equation is by (2.16). The details of the proof for γ is similar, so we omit the details. ■

A.1.5 Proofs for Classification when the Service Rate is Type-dependent

Proof of Proposition 4. Suppose perfect information. Recall that there is only incentive to

misclassify type-A customers as nonpriority in the setting with class-dependent service rates

because if nonpriority service time is relatively less variable and not too much more variable

than the priority service time, then the expected residual time can decrease and result in

decrease in type-A customers waiting time. However, if the service rates are type-dependent

then, expected residual time is the same regardless of any classification outcome as shown

in Argon and Ziya [2009]. Therefore, we conclude that there would be no misclassification

incentive to misclassify type-A customers as nonpriority in their setting. Next we will show

that there is also no misclassification incentive to misclassify type-B customers as priority.

First, let us introduce some notation:

• (1− η) fraction of true type-A customers who classified as priority.

• (η − s) fraction of true type-B customers who are classified as priority.

• s fraction of true type-B customers who are classified as nonpriority.

Suppose perfect information. Then, the mean waiting time of customers who are identified

as priority (class-1) and nonpriority (class-2) are respectively given by W1(s) and W2(s):

W1(s) =
λ ((1− η)e1 + ηe2)

2 (1− λ(1− η)aA − λ(η − s)aB)
,

W2(s) =
W1(s)

1− ρ
,

(A.50)

where

ρ = λ (ηaB + (1− η)aA) .
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The cost function C(s) is given by

C(s) = λ ((1− η)hAW1(s) + (η − s)hBW1(s) + shBW2(s))

= λW1(s)

(
(1− η)hA + (η − s)hB +

shB
1− ρ

)

=

(
(1− η)hA + (η − s)hB + shB

1−ρ

)
(1− λ(1− η)aA − λ(η − t)aB)

=
λ2 ((1− η)e1 + ηe2)

2

(
(1− η)hA + (η − s)hB + shB

1−ρ

)
(1− λ(1− η)aA − λ(η − t)aB)

.

(A.51)

Define κ, κA, κB , c1, c2 as

κ =
λ2 ((1− η)eA + ηeB)

2
,

κA = (1− η)hA + ηhB ,

κB = 1− λ(1− η)aA − ληaB = 1− ρ,

c1 = hB

(
1

1− ρ
− 1

)
= hB

(
ρ

1− ρ

)
,

c2 = λaB

(A.52)

Now, we can rewrite the cost function C(s) as

C(s) = κ
κA + c1s

κB + c2s
. (A.53)

The first and second derivative of the function are Define κ, κA, κB , c1, c2 as

d

ds
C(s) =

κBc1 − κAc2
(κB + c2s)

2
,

d2

ds2
C(s) = 2c2

κAc2 − κBc1
(κB + c2s)

3
.

(A.54)

Next, we figure out the sign of the nominator

κAc2 − κBc1 = (1− η)λaBhA + ηλaBhB −
(

ρ

1− ρ

)
(1− ρ)hB

= (1− η)λaBhA + ηλaBhB − ρhB
(A.55)
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By assumption hA/aA > hB/aB , i.e. hAaB > hBaA, we can rewrite the above expression

as
κAc2 − κBc1 > (1− η)λaAhB + ηλaBhB − ρhB

= hB (ρ− ρ)

= 0.

(A.56)

We conclude that for all s ∈ [0, η], we have

d

ds
C(s) < 0,

d2

ds2
C(s) > 0.

(A.57)

This implies that C(s) is a convex decreasing function of s, and thus s∗ = η. We conclude

that there is no incentive to misclassify type 2 customers. ■

A.2 Chapter 4: Chief Complaint Categorization

Chief complaints (CCs) are brief statements that explain why the patient initiates an ED

encounter. A patient can have a single or multiple CCs. For example, the patient can

say “I have abdominal pain”, “I have nausea” or “I have abdominal pain and nausea”. We

consider two approaches to model multiple chief complaints. The first approach is adding

the main and interaction effect of each chief complaint into the model. For example, a

patient with abdominal pain and nausea takes value of 1 for abdominal pain, nausea and

abdominal pain + nausea. We observe 598 distinct CCs in our dataset after data cleaning.

Even if we want to add the simplest type of interaction – two-way interaction –, we need to

add (598 − 1)2 ≈ 350, 000 terms into the model. This approach causes overfitting because

our dataset includes 40, 000 choice incidents. Even if we want to utilize dimension reduction

techniques to prevent overfitting, we can come across run-time and memory issues given the

immense nature of the feature space. Therefore, we suggest the following clustering approach

for CC modeling.

1. For each patient encounter, combine all CCs into a single statement. For example, if

the patient has abdominal pain and nausea, their CC is neither abdominal pain nor
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nausea. It is abdominal pain + nausea, which is a new category.

2. Group modified CCs into two groups: Cs — the set of CCs associated with 400 or

more encounters (the most common 104 CCs) — and Cs — the set of CCs associated

with less than 104 encounters.

3. We replace less common CCs with more common CCs based on the natural language

and clinical information, in particular, associated ESI scores with CCs.

Let us introduce some notation before presenting the CC clustering algorithm. We define

Cover(ci, cj) as the ratio of the number of the shared items in ci and cj to the number

of items in cj . Suppose that ci = abdominal pain + nausea + vomiting + fatigue and cj =

abdominal pain. Then Cover(ci, cj) = 1 and Cover(cj , ci) = 0.25. We let ESIc as the average

ESI score of patients with chief complaint c.

We should not assign a patient with abdominal pain + nausea + vomiting to a chief

complaint that includes an item that the patient does not present such as chest pain or back

pain. For each cs ∈ Cs, we let M(cs) denote the set of ch ∈ Ch such that all items in ch is

covered by cs, i.e, Cover(cs, ch) = 1. Assume a less common cs = abdominal pain+nausea+

vomiting+ fatigue and a more common CC co = abdominal pain+ chest pain. Observe that

Cover(cs, c0) = 0.5; thus cs cannot be assigned to common co.

If the set M(cs) contains multiple CCs, we select ch that looks like cs the most. Assume,

for instance, that M(cs) = {c1, c2, c3} where c1 = abdominal pain + nausea + vomiting,

c2 = abdominal pain+nausea, and c3 = abdominal pain. Among these three CCs, c1 has the

highest number of shared items with cs, i.e., highest value of Cover(ci, cs). Cover(c1, cs) =

0.75 > Cover(c2, cs) = 0.50 > Cover(c3, cs) = 0.25. If there is a tie between multiple items in

M(cs) in terms of the number of shared items, we select the common CC associated with the

highest urgency. The Algorithm 4 presents the formalization of our CC clustering approach.

126



Algorithm 4 CC-Reassignment

1: Input:Cs, Ch,
{
ESIch

}
ch∈Cs

2: for all cs ∈ Cs do

3: M = ⟨⟩

4: for all ch ∈ Ch do

5: rh, rs = Cover(cs, ch),Cover(ch, cs)

6: if rh = 1, i.e., all components of ch is covered by cs then

7: M ←M + ⟨ch, rs,ESIch⟩

8: end if

9: end for

10: if M = ∅ then

11: cs ← other

12: else

13: Sort M in descending order of rs and then in ascending order of ESIch
14: Select c∗ as the ch in the top row of M

15: cs ← c∗

16: end if

17: end for
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