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Abstract  
 

This dissertation explores how “quantity” was reconceptualized in the context of 19th 

century experimental sciences. In canonical works of philosophy by Aristotle, Descartes or Kant, 

“quantity” serves as the link between mathematics and its application in the empirical domain. 

The conception that “quantities” are composed out of equal, additive units is based on the 

archetypical geometrical magnitudes and its part-whole structure. Despite the fact that 

measurement techniques in most experimental sciences already involved much more complex 

conceptual and practical operations than counting units, the old conception of “quantity” 

continued to play a crucial role in philosophers and scientists’ attempt to explain how 

mathematics is applied well into the 19th century. In the second half of the 19th century, 

philosophically minded scientists shifted their attention away from defining the generalized 

“quantity” to reflecting on the methods and foundation of the measurement process. As they 

incorporated considerations of experimental work into their philosophical thinking, they 

highlighted the role of measurement operations, instruments, and the underlying hypotheses and 

laws in constituting the meaning of every quantitative concept. Even length and time—the most 

elementary quantities known to mankind—are not a priori quantitative, but rest on certain 

assumptions underlying the measurement process carried over from experience. This shift of 

attention led to the disappearance of “quantity” with a fixed, generalized definition from 

philosophical writings concerning measurement from late 19th century onward.  

Specifically, this dissertation contextualizes several sets of discussions among 19th century 

scientists regarding the foundation of measurement in general or the measurability of specific 

concepts. The first is Hermann von Helmholtz’s discussion of the foundation of measurement in 

light of his broader experimental work, such as the quantification of electricity and magnetism, 
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whose concepts were embodiments of dynamic laws in experiments. The second is the discussion 

of common problems shared by thermometry and psychophysics by Ernst Mach, Gustav 

Fechner, Wilhelm Wundt, Alexius Meinong and others. The issue boiled down to the possibility 

of constructing uniform scales for quantities incapable of direct comparison and the complexities 

involved. The third discussion concerns the implication of non-Euclidean geometry on spatial 

measurement. In light of special relativity at the beginning of 20th century, space and time both 

became derived quantities, calculated from laws of physics given a chosen method of 

measurement. Overall, a few common themes and approaches coalesced through 19th century 

discussions, which became crucial for later thinkers and scientists to think about measurement 

through conceptual laws, observation and experiment. 
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Introduction  

Overview  

When thinking of measurement, the term “quantity” seems to inevitably come to mind. But 

what is a quantity? What is it that we measure when we measure? Philosophers from Aristotle to 

René Descartes to Immanuel Kant devoted significant passages in their works to the term 

“quantity” when discussing the relationship between mathematics and its applications to 

empirical experience. But quantity seems to entirely disappear in post-20th century philosophical 

texts on measurement, which tend to focus on epistemic questions arising from the measurement 

process, whether these questions concern the conceptual or operational aspects of measurement. 

Some of these questions might include: how does observation relate to formal theories? To what 

extent does measurement operations constitute the meaning of the concept?1 However, almost 

no one except a few authors in late 19th century seem to be able to speak of “quantity,” at least 

not as definitively as Descartes or Kant did.2 “Quantity” used to serve as the link between 

numbers, empirical experiences and the concepts manipulated by the sciences. How, when and 

why did it disappear from theories of measurement?  

                                                
1 This characterization comes from the entry on “Measurement” from the Routledge Companion to Philosophy of 
Science. Hasok Chang and Nancy Cartwright, “Measurement,” in The Routledge Companion to Philosophy of Science, 
ed. Martin Curd and Stathis Psillos (Routledge, 2013), 411–19.  
2 “Quantity” was one of the first things that Descartes, in the fifth meditation and immediately after the proof 
of the existence of God, could grasp clearly and distinctly about material things external to the thinking subject: 
“quantity…or ‘continuous’ quantity as the philosophers commonly call it, is something I distinctly imagine. 
That is, I distinctly imagine the extension of the quantity (or rather of the thing which is quantified) in length, 
breadth and depth. I also enumerate various parts of the thing, and to these parts I assign various sizes, shapes, 
positions and local motions; and to the motions I assign various durations.”  René Descartes, “Fifth 
Meditation,” in The Philosophical Writings of Descartes: Volume 2 (Cambridge University Press, 1984), 44 (63-64). 
For Kant, providing a mathematical foundation for a concept in science meant constructing this concept as a 
“quantum.” See Chapter 1 for more details.  
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It is often taken for granted that philosophical questions surrounding measurement only 

emerged at the beginning of the 20th century, in response to the intellectual revolution brought 

forth by the theory of relativity. It is to the legacy of Albert Einstein, Henri Poincaré, Percy 

Bridgman, and so on, that we owe our current, more sophisticated understanding of 

measurement. Granted, special relativity fundamentally challenged and redefined how we 

understand the most elementary quantities known to mankind—length and time—and hence 

opened up entirely new fields of philosophical inquiries about measurement. But there were also 

significant debates in the second half of the 19th century that paved way for a new conception of 

the foundation of measurement. Specifically, these late 19th century discussions led to a shift of 

philosophical attention away from the universal and abstract “quantity” to the methods and 

processes of measurement, by focusing on foundational issues emerging from the latter in specific 

experimental contexts. On a closer look, the term “quantity” in most pre-19th century canonical 

works of philosophy was based on the archetypical geometrical magnitude, with a “self-evident” 

part-whole structure, equal units, and an unambiguous additive procedure. This scheme was 

projected onto concepts in the exact sciences whenever they became measurable—time, motion, 

force, etc., which were obtained by a much more complicated process than “multiplying units to 

obtain the whole.” What 19th century scientists and philosophers exposed was the inadequacy of 

the unit-based understanding of quantity in explaining how numbers were applied and scales 

were constructed, in an era when sciences became increasingly inseparable from experimental 

methods. What kind of unit do we count, for instance, in the case of electricity and magnetism, if 

quantitative concepts such as charges and current intensities are defined as nothing other than 

the dynamic regularities exhibited by a certain experimental arrangement? What kind of equal 

units does a temperature scales have, if the very concept is only a common banner under which 

heterogeneous behaviors of materials under thermal changes are grouped, and there is no way to 
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directly compare 1° at different locations on the scale? The notion of quantity as divisible into 

equal units, and the notion of measurement as the addition of units, only applied to concepts that 

are already measurable by well-established methods, allowing them to reap all the benefits of 

arithmetical numbers, including divisibility and additivity. These notions do not explain how 

properties and phenomena become measured in the first place.  

It was through 19th century debates that a unit-based conception of “quantity” gave in to a 

more-or-less common understanding that units and quantities are derived from laws, hypotheses 

and techniques involved in measurement. The view that quantitative concepts were simply 

discovered in nature was replaced by the understanding that measurement processes also 

constituted the meaning of quantitative concepts. Scientists and philosophers realized that even 

the most basic quantity—spatial extension—was neither inherently mathematical nor a priori, 

but rested on certain assumptions about the method of measurement, i.e., rigidity of bodies in 

motion. In a sense, the reconceptualization of space and time at the beginning of the 20th century 

also stemmed from this shift of perspective, since special relativity itself treated length and time 

not as primitive quantities, but as derived from the laws describing inertial motion, a natural 

constant, and the specific operation of measuring time (by traveling light).  

The emerging field of inquiries into the foundation of measurement resulted from the 

interplay between the new quantitative sciences of the 19th century, such as non-Euclidean and 

projective geometries, electricity, magnetism, thermometry, psychophysics, photometry, and 

philosophical ideas of the time. In my dissertation, I examine writings on the foundation of 

measurement from a variety of philosophically minded scientists and scientifically minded 

philosophers, including Hermann von Helmholtz, Hermann Cohen, Johannes von Kries, Ernst 

Mach, Gustav Fechner, Wilhelm Wundt, Alexius Meinong and many others, in relation to the 
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specific problems they encountered in experimental sciences. They might be active researchers in 

multiple disciplines and simultaneously prolific writers in philosophy of science; they might also 

be concerned with specific problems in a single discipline, such as the construction of scales for 

newly established concepts or the interpretation of new experimental results. But over again they 

found themselves tackling broader issues regarding the foundation of measurement drawn out by 

their specific, either theoretical or experimental work. Collectively, their discussion on issues 

related to measurement in 19th century sciences shifted the focus of philosophical inquiry away 

from defining “quantity” to the measurement process.  

Overall, developments in late 19th century sciences paved way for 20th century thinkers’ 

consideration of the intellectual and operational processes involved in measurement, by 

challenging the paradigm of quantity built on the part-whole structure and equal units. While 

revolutionary ideas like Henri Poincaré’s conventionalism and Einstein’s special relativity were 

indeed influential, 19th century discussions laid the groundwork for an emerging field of 

philosophical inquiries into measurement. 

Methods and Literature review   

My dissertation discusses 19th century scientists and philosophers’ ideas on the foundation 

of measurement in relation to the specific experimental methods and measurement tasks they 

were dealing with. As a result, my chapters blend philosophical discussions with narratives in the 

style of intellectual history and descriptions of the technical aspects of experiments and 

instruments. While there is extensive literature on different aspects of 18th and 19th century 

measurement,3 and on application of numbers in different realms—not just sciences but also 

                                                
3 M. Norton Wise, ed., The Values of Precision (Princeton University Press, 2020); Jimena Canales, A Tenth of a 
Second: A History (University of Chicago Press, 2010); Peter Galison, Einstein’s Clocks, Poincaré’s Maps: Empires of 
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social institutions and private practices, policies, governance, cultures4, etc., my dissertation 

differs from these existing works by bridging philosophical ideas about what measurement is with 

the specific techniques and tasks in experimental sciences that helped form these ideas. The focus 

is on how certain philosophical ideas relate to concrete experiments, instruments, and broader 

philosophical debates. As a result, the role of institutions, political events, social dynamics is at the 

moment of less concern. Similarly, the expansion of quantitative methods into social sciences, as 

well as the rise of probability and statistics, are not included in my dissertation, although both 

very likely did play significant roles in shaping theories on the foundation of measurement and 

should be incorporated into future research on the topic.  

In addition, there are many studies on individual scientist-philosophers’ ideas and the 

interplay between these ideas, often focusing only on contexts related to philosophy and 

theoretical physics.5 Different from these works, my focus is on filling in the gaps between 

                                                
Time (W. W. Norton & Company, 2003); Hasok Chang, Inventing Temperature:Measurement and Scientific Progress: 
Measurement and Scientific Progress (Oxford University Press, USA, 2004); J. L. Heilbron, Weighing Imponderables and 
Other Quantitative Science around 1800 (University of California Press, 1993); Timothy Lenoir, “Helmholtz and the 
Materialities of Communication,” Osiris, 1994, 24; Kathryn Olesko, “Precision, Tolerance, and Consensus: 
Local Cultures in German and British Resistance Standards,” in Scientific Credibility and Technical Standards in 19th 
and Early 20th Century Germany and Britain, ed. Jed Z Buchwald, Archimedes: New Studies in the History and 
Philosophy of Science and Technology, 1996; Bruce J. Hunt, “The Ohm Is Where the Art Is: British 
Telegraph Engineers and the Development of Electrical Standards,” Osiris 9 (January 1994): 48–63, 
https://doi.org/10.1086/368729; Bruce J. Hunt, “Scientists, Engineers and Wildman Whitehouse: 
Measurement and Credibility in Early Cable Telegraphy,” The British Journal for the History of Science 29, no. 2 
(June 1996): 155–69, https://doi.org/10.1017/S0007087400034208; Simon Schaffer, “Late Victorian 
Metrology and Its Instrumentation: A Manufactory of Ohms,” in Invisible Connections: Instruments, Institutions, and 
Science, vol. 10309 (Invisible Connections: Instruments, Institutions, and Science, SPIE, 1992), 27–60, 
https://doi.org/10.1117/12.2283709; Klaus Hentschel, “Gauss, Meyerstein and Hanoverian Metrology,” 
Annals of Science 64, no. 1 (January 1, 2007): 41–75, https://doi.org/10.1080/00033790600964339. John B. 
Hearnshaw, The Analysis of Starlight: Two Centuries of Astronomical Spectroscopy (Cambridge University Press, 2014). 
4 Tore Frängsmyr, J. L. Heilbron, and Robin E. Rider, eds., The Quantifying Spirit in the 18th Century (University 
of California Press, 1990). 
5 Francesca Biagioli, Space, Number, and Geometry from Helmholtz to Cassirer (Springer, 2016); Francesca Biagioli, 
“Cohen and Helmholtz on the Foundations of Measurement,” in Philosophie und Wissenschaft bei Hermann 
Cohen/Philosophy and Science in Hermann Cohen (Springer, 2018), https://link.springer.com/chapter/10.1007/978-
3-319-58023-4_4; Robert DiSalle, “Helmholtz’s Empiricist Philosophy of Mathematics. Between Laws of 
Perception and Laws of Nature,” in Hermann von Helmholtz and the Foundations of Nineteenth-Century Science, ed. 
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philosophical ideas with issues in the practical scientific work that authors of these ideas might 

have in the back of their minds. Ideas are embedded in broader scientific practices and concerns, 

not merely products of pure thought exchange. Rather than deriving the full philosophical 

consequences of some of these ideas, I trace the historical changes in the way measurement was 

conceived. Although many aspects of the 19th century sciences I discuss might not have survived 

the test of time (e.g., psychophysics, photometry, the “absolute system” of units, conventional 

thermometry relying on individual thermometric substances) as certain parts of physics did, e.g., 

special relativity, this does not mean that they played insignificant roles in shaping the discussions 

surrounding the foundation of measurement. Successful and failed sciences equally helped their 

contemporaries in understanding measurement and measurability. 

I want to emphasize a few works that have significantly shaped my topic, materials and 

approach. The first is Michael Heidelberger Nature from Within: Gustav Theodor Fechner and His 

Psychophysical Worldview, which pointed to many source materials I end up using in Chapter 2 and 

3. In one of his chapters, Heidelberger identifies how controversies over Fechner’s psychophysics 

was a debate about the foundation of measurement and discusses the views of many authors that 

I cover, including both Helmholtz and Mach. Where I differ from Heidelberger is that I 

contextualize ideas of Helmholtz and Mach on measurement in other areas of science. For 

instance, Helmholtz was heavily involved in the creation of an absolute system of units for 

electricity and magnetism. Although he was on board with some of Fechner’s ideas, his stance on 

                                                
David Cahan (University of California Press, 1993), 498–521; Karim P. Y. Thébault, “On Mach on Time,” 
Studies in History and Philosophy of Science Part A 89 (October 1, 2021): 84–102, 
https://doi.org/10.1016/j.shpsa.2021.08.001;  
Two other major works that may be related to my topic are: Robert DiSalle, Understanding Space-Time: The 
Philosophical Development of Physics from Newton to Einstein (Cambridge University Press, 2006); Julian B. Barbour, 
The Discovery of Dynamics: A Study from a Machian Point of View of the Discovery and the Structure of Dynamical Theories 
(Oxford University Press, 2001). 
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measurement incorporated much broader concerns over the quantitative and experimental 

methods in the exact sciences, as proved by the mention of measurement techniques in 

electricity, magnetism and photometry in his 1887 “Counting and Measuring.” In drawing a 

comparison between Mach’s ideas on thermometry, I also focus more closely on the issues within 

thermometry, which Mach outlined in his lecture series Principles of the Theory of Heat. Specifically, 

I argue that there is a parallel in the problems in conventional thermometry and psychophysics, 

and these problems came from the attempt to construct a uniform scale for quantities that could 

not be directly compared, but must be measured surrogatively, i.e., stood for by other quantities 

of different kinds. I also ask what Mach would have said about William Thomson’s absolute scale 

for temperature. To Hasok Chang’s extraordinary study Inventing Temperature: Measurement and 

Scientific Progress I owe my understanding of the historical development and epistemological 

problems in thermometry. If I hope to add anything to Chang’s analysis of the epistemic 

circularity involved in constructing a thermometric scale6, it is that this problem is not unique to 

temperature but is present with other surrogatively measured concepts. Chang’s book also 

provides significant methodological guidance on integrating philosophical inquiries with 

historical case studies.  

Joel Michell’s various articles7 on the shift from the “classical” to the “representational” 

theory of measurement has led me to investigate the precise difference in the way “quantity” was 

                                                
6 This is also designated by “the problem of nomic measurement”: “1. We want to measure quantity X. 2. 
Quantity X is not directly observable by unaided human perception so we infer it from another quantity Y, 
which is directly observable. 3. For this inference we need a law that expresses X as a function of Y, X = f(Y). 
4. The form of this function f cannot be discovered or tested empirically, because that would involve knowing 
the values of both Y and X, and X is the unknown variable that we are trying to measure.”  Hasok Chang, 
“Spirit, Air, and Quicksilver: The Search for the ‘Real’ Scale of Temperature,” Historical Studies in the Physical 
and Biological Sciences 31, no. 2 (2001): 249–84, https://doi.org/10.1525/hsps.2001.31.2.249. 
7 Joel Michell, “The Origins of the Representational Theory of Measurement: Helmholtz, Hölder, and 
Russell,” Studies in History and Philosophy of Science Part A 24, no. 2 (June 1, 1993): 185–206, 
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conceptualized in canonical works of philosophy, such as the works of Aristotle, Descartes and 

Kant. Oliver Darrigol’s article “Number and measure: Hermann von Helmholtz at the 

crossroads of mathematics, physics, and psychology”8 also points to many sources that proved 

helpful to my dissertation. Darrigol relates Helmholtz’s views on measurement to his 

contemporary scientists including mathematicians like Paul Du Bois Reymond and Hermann 

Grassman, psychologists and philosophers (concerned with the possibility of quantitative 

psychology) like Fechner and von Kries, Wundt and Edward Zeller and physicists like Maxwell 

and Mach. Darrigol also mentions Helmholtz’s reception by mathematicians such as Gottlob 

Frege and Bertrand Russell. Building on Darrigol’s survey of the views on quantity and 

measurement by the authors mentioned above, I look into the specific scientific issues and 

measurement tasks some of these authors were faced, and how these specific issues and tasks 

contributed to their specific views. Francesca Biagioli’s Space, Number, and Geometry from Helmholtz to 

Cassirer similarly points to some useful sources on the discussion of measurement. Unlike 

Biagioli’s book, which focuses on the debate on non-Euclidean geometry and neo-Kantianism, I 

focus more on the experimental practices that informed many of the authors we both discuss.  

Chapter Summary  

In the first chapter, I present the “classical” united-based conception of quantity that 

became increasingly out of synch with measurement practices in the sciences. In the writings of 

                                                
https://doi.org/10.1016/0039-3681(93)90045-L; Joel Michell, “The Logic of Measurement: A Realist 
Overview,” Measurement, The logical and philosophical aspects of measurement, 38, no. 4 (December 1, 2005): 
285–94, https://doi.org/10.1016/j.measurement.2005.09.004. 
8 Also see David Cahan, Helmholtz: A Life in Science (Chicago: The University of Chicago Press, 2018) for the 
connection between Helmholtz’s “Counting and Measuring” and his extensive research and practical work.  
In addition, Matthias Neuber’s article also helps me solidify my interpretation of Helmholtz. See Matthias 
Neuber, “Helmholtz, Kaila, and the Representational Theory of Measurement,” HOPOS: The Journal of the 
International Society for the History of Philosophy of Science 8, no. 2 (September 2018): 409–31, 
https://doi.org/10.1086/699015. 



   9 

most pre-19th century philosophers, quantity means a plurality of units that composed the whole. 

Since Greek (pure) mathematics (e.g., as in Euclid’s The Elements) dealt with either numbers or 

specific geometrical magnitudes—lines, areas and volumes—it was natural for early modern 

natural philosophers to conceive of the generalized “quantity” in terms of the part-whole 

relationship exemplified by these archetypical magnitudes. Galileo Galilei’s success in 

representing the laws of motion by geometrical diagrams prompted him to consider quantities 

like speed to be composed of additive parts. Just like segments of space and intervals of time were 

additive, one should also follow “the habit and custom of nature herself” and “conceive additions 

of speed as taking place without complication.”9 Yet in what sense can we understand speed as 

composed of smaller speeds, in the same way that length is composed of smaller lengths? 

Immanuel Kant grappled with the same issue in the Metaphysical Foundations of Natural Sciences, as 

he attempted to reconcile his belief that motion as a quantity simply could not be thought as 

parts constituting the whole, with the fact that it had been successfully quantified in Newtonian 

physics. This conceptual difficulty, I argue, is symptomatic of the failure of part-whole structure 

to account for how concepts in natural sciences became quantitative through measurement. In 

other words, a gap between mathematical theories and the practices of measurement was never 

bridged since the 14th century, when the concept of motion as an additive quantity was invented 

by Galileo’s own predecessors. 

In the second chapter, I discuss how in the second half of the 19th century, new theories to 

conceptualize the relation between number and quantities emerged, which for the first time 

accounted for the role of the method of measurement. This was achieved first through challenges 

                                                
9 Galilei Galileo, The Discourses and Mathematical Demonstrations Relating to Two New Sciences, trans. Henry Crew and 
Alfonso de Salvio (Macmillan Company, 1914), 197.  
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to the validity of geometrical measurement. In a series of essays on the foundation of geometry, 

the German scientist Hermann von Helmholtz popularized non-Euclidean geometries as not just 

mathematical possibilities, but legitimate candidates to describe physical space. Crucially, he 

revealed that quantitative comparisons in Euclidean space rest on an empirical presupposition 

not fully validated. Congruence in superposition, on which every comparison in Euclidean 

geometry rests, does not in itself guarantee irrefutable results: had one’s measuring rod been 

shriveling up in motion together with one’s body, there would be no way to detect it by 

geometrical means alone. Helmholtz’s thought experiment of the “world in a convex mirror” 

illustrating pseudo-spherical space became a crucial point in Henri Poincaré’s 1902 Science and 

Hypothesis, with which the latter leveraged the argument of conventionalism: empirical experience is 

often insufficient in arbitrating two systems of mathematical representation, hence the choice 

ultimately rests on convenience.   

In addition, Helmholtz also proposed a theory of measurement in an 1887 article 

“Counting and Measuring” to account for his contemporary measurement practices. Referring 

to how examples in electricity and magnetism, heat, and color science, he argued that notions 

like unit and divisibility are not useful in understanding measurability. Instead, mathematization 

depends on whether the method of comparison allows for an unambiguous interpretation of 

mathematical equality and additivity in terms of experimental effects. A quantitative concept 

embodies physical objects’ capacity to bring forth precisely these experimental effects, which 

render the result of comparison lawful and mathematically describable. In addition to analyzing 

these ideas in my second chapter, I examine the techniques of measurement in electricity and 

magnetism, an area which Helmholtz was involved in when he joined the international effort to 

standardize electrical units in the 1880s. By highlighting the definitions of these units in terms of 
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basic electrodynamic laws and the canonical experiments that embodied the principles of their 

measurement, I argue that these practices informed Helmholtz’s unique views on quantity and 

measurement. The large-scale, high-profile experiments leading to the determination of electrical 

units in Germany and Britain underscored the embeddedness of abstract quantitative concepts in 

empirical procedures.   

While Helmholtz brought attention to how the conditions and methods of measurement 

played a role in constituting quantitative concepts, his contemporaries like Ernst Mach and 

commentators on psychophysics like Wilhelm Wundt and Alexius Meinong confronted the 

following question: how could indirectly measured, non-additive quantities be said to have a 

uniform scale? In the third chapter, I examine the reflection on the foundation of measurement 

provoked by controversies in thermometry and psychophysics, which shared similar problems. 

Temperature was traditionally represented by the volume or pressure of a particular substance. 

Had all substances expanded to the same proportion, one might have been able to simply define 

a uniform scale for temperature through an 1-1 mapping to volume, but this is not the case: 

experiments up to mid-19th century showed that all substances behave somewhat differently from 

each other with temperature change. This means that an 1° increase on different thermometers, 

and on different parts of the same thermometer, correspond to different quantities of heat. In 

conventional thermometry there was no way to provide an external reference for the quantity 

that 1° represented without choosing an arbitrary material as a standard. As Mach pointed out in 

1896 Die Principien der Wärmelehre (Principles of the Theory of Heat) and Hasok Chang does in Inventing 

Temperature more recently, to speak of the possibility of any thermometric substance expanding 

“uniformly” with “real” temperature in conventional thermometry is an illusion, because it 

presumes that one already knows how to measure temperature independent of specific 
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thermometric substances. Interestingly, this problem is not unique to temperature. Through a set 

of experiments showing that humans tend to perceive a difference in two physical stimuli when 

the physical intensities of these stimuli maintain a constant proportion, the psychophysicist 

Gustav Fechner proposed that he had found an additive scale for sensation with equal units. 

These equal units were represented by “just-noticeable-differences” in sensation, which he 

claimed to be measured every time the experimental subjects reported that they noticed a 

difference in stimuli. Fechner then proceeded to integrate these “just-noticeable-differences” to 

obtain an additive scale for sensation. Commentators from Rudolf Elsa to Wilhelm Wundt to 

Alexius Meinong endorsed the experimental facts, while denying Fechner’s arguments for an 

additive scale, for the reason that “just-noticeable-differences” could neither be proved equal nor 

be constitutive of the original sensation. They argued that psychophysical “measurement” was 

analogous to primitive temperature measurement; as such, it provided a quantitative description 

allowing for fixed points on the “continuum of sensation” without producing equal, additive 

units.  

With the redefinition of absolute temperature by the conversion rate of heat into work 

(which depended on temperature) in an ideal Carnot cycle by William Thomson, differences 

between degrees of temperature obtained a common external reference. But concepts like 

temperature and potential remained “concepts of level,” in Mach’s words, implying a difference 

from quantities with additive parts. Noticing that controversies about psychophysics were at its 

root a debate about the foundation of measurement, Meinong argued that it was crucial to 

provide a conceptual foundation for non-additive, “surrogatively” measured quantities (i.e., 

quantities incapable of directly comparison, but must be stood for by other quantities or 

relationships), which by the end of the 19th century dominated the exact sciences. Most of these 
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quantitative concepts could not fall under the binary categories of extensive or intensive, divisible 

or indivisible magnitudes. Instead, they represented complexes of relations between other 

measurable quantities exhibited in experiments. 

My fourth chapter discusses how spatial and temporal quantities—the paradigmatic 

extensive magnitudes supposedly sharing the same part-whole structure with the geometrical 

length—came under close scrutiny at the turn of the 20th century. Debates over psychophysics, in 

fact, touched upon some issues with measurement in the exact sciences: Fechner, for instance, 

pointed out that judgments of equality in the measurement of mechanical quantities boiled down 

to psychic impressions (e.g., the aligning of ends of two lengths). In the 1898 Science and Hypothesis, 

Poincaré argued that intuition of rigid body motions (on which the “equality” of spatial 

magnitudes was based) is compatible with multiple criteria for rigidity, depending on the 

geometry used to describe these motions. Furthermore, experience cannot determine the 

“correct” geometry of space and, by extension, the “correct” analytic expressions for rigid body 

motions. As the possibility of spatial measurement was cast into doubt, so did the measurement of 

time. Mach had previously noted how the measurement of time is ultimately about the 

interdependence of bodily motions, just as thermometry without an external “absolute” scale is 

about the mutual coordination of individual substances’ behaviors with respect to heat. When 

regarding time as measurable by equal durations set by uniform motions, uniformity is projected 

onto an abstract concept of time that actually does not exist independent of individual motions, 

while individual motions can only be determined as uniform given that one knows how to 

measure time. As more physicists came to regard Newtonian absolute time as a theoretical 

hypothesis, Poincaré brought attention to the fact that judgments of simultaneous events across a 

distance, on which “equal” durations must be based, always lacks self-evidence. Instead of being 
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an immediate judgment, it depends on the method with which one chose to calculate time. With 

the acceptance of Einstein’s special relativity, length and time became derived quantities given 

the invariance of speed of light and laws of motion in inertial frames, and they must be calculated 

from the relative motions of reference frames. Spatial and temporal measurement lost their 

universal validity across reference frames.  

Given these intellectual and scientific developments, the traditional conception of quantity 

based on the archetype of geometric length became increasingly irrelevant. If this generalized 

quantity served as a link between pure mathematics and its application before the 19th century, 

then the exclusion of “quantity” from pure mathematics itself, due to the discipline’s pursuit of 

formal precision and rigor, rendered it unnecessary for any theory of measurement to explain 

what the term meant in pure and applied contexts. The growth of projective geometry proved 

the possibility of an autonomous, non-quantitative geometry, while the quest to transform 

mathematical statements into symbolic logical statements eliminated intuitive notions like 

“continuous magnitude” as variables of mathematical functions. Developments in pure 

mathematics were taken into account by early 20th century accounts of measurement, which took 

it as a given that mathematics did not deal with magnitudes, but rather formal structures and 

relations. Specifically, authors such as Ernst Cassirer and Norman Campbell both echoed the 

ideas I discuss in previous chapters. For instance, they explicitly noted how traditional 

understanding of measurement failed to explain the foundation and principles of measurement in 

scientific practice. Cassirer noted that “what guides us in the choice of units is…always the 

attempt to establish certain laws as universal.” These laws were therefore the true constants in 

measurement, not the “measuring rods and units.”10 Campbell, on the other hand, was 

                                                
10 See Chapter 4 for reference of this quote.  
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dissatisfied with how measurement had been depicted simplistically as “comparison with a unit of 

the same kind”: “a student set to measure g with Atwood machine may well wonder at what 

stage he is comparing the gravitational acceleration with a unit of the same kind; and an engineer 

may be puzzled when he considers that the unit of force that he employs causes an acceleration 

in his unit mass of 32.2.”11 The focus of these accounts therefore shifted to the measurement 

process, and on the role of physical laws in constituting quantitative concepts. In a sense, both 

Cassirer and Campbell fleshed out in a more systematic way many inchoate ideas discussed by 

their 19th century predecessors. 

                                                
11 Also see Chapter 4 for this quotation.  
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Chapter 1 Quantity in the Canons: the Archetype of Geometrical 
Magnitudes   
 
1.1. Introduction 

Measurement was not a problematic concept before the 19th century. Quantities were 

assumed to exist in nature independent of the measuring process, and measurement was assumed 

to simply discover their numerical relationships. Once a property or phenomena became 

measurable, it was considered a quantity, which entailed a part-whole structure typical of 

geometrical magnitudes. The relationship between number and quantity was likewise not very 

complex: the ratio between two quantities was equated with the ratio between two numbers or a 

number, given that one of the quantities served as the unit. In a 1993 paper, Joel Michell labelled 

the pre-19th century view as “the classical concept of measurement,” in juxtaposition with the 

“representational view of measurement,” which became prevalent in the 20th century, regarding 

measurement as a mapping, or a correlation, between a numerical and an empirical structure.1   

This chapter examines the “classical” conception of measurement in detail. 

Characterization of quantity and measurement in canonical works of philosophy, such as the 

writings of Aristotle, Descartes and Kant, as well as the intellectual roots of such characterization, 

have not been discussed at length in existing literature concerning the history of measurement 

theory. There are several common features in the way philosophers writing before the 19th 

century understood quantity: first, they tended to assume that the mathematical structure of a 

quantity inhered in nature or in mankind’s unmediated experience of nature.2 Secondly, this 

                                                
1 Joel. Michell, Measurement in Psychology: Critical History of a Methodological Concept (Cambridge, U.K.: Cambridge 
University Press, 1999), 25; Michell, “The Origins of the Representational Theory of Measurement,”188. 
2 A similar point was made by Michell and others, namely that numerical properties were assumed to exist in 
nature as a fact. My point is similar but not restricted to the properties of numbers. Moreover, in this chapter I 
analyze a number of historical sources that differed from Michell’s. 
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mathematical structure was believed to be geometrical and best represented through straight-line 

segments, or rectilinear figures in general. Geometrical magnitudes were the archetypical 

quantities through which all other quantitative concepts came to be conceived. Not only the part-

whole structure of geometrical magnitudes, but also their mode of composition, i.e., the 

successive conjoining of the parts, were projected onto the way all other quantitative concepts 

were thought to be measured. Kant went as far as taking the “successive synthesis part by part” 

as one of the basic modes of perception itself. As a result, the philosophical characterization of 

measurement as an intellectual activity boiled down to counting units: the part or unit taken so 

many times as to exhaust the whole constituted the plurality (or quantity). This conception 

remained persistent even if, by the 17th century, highly sophisticated measurement techniques 

and instruments were widely used for measuring quantities indirectly. When Christiaan Huygens 

studied the intricate causes impacting pendulum swings in designing extremely accurate 

mechanical clocks, or when Guillaume Amonton used the constant relationship between air 

pressure (measured in turn by a mercury column it could support) and volume to measure 

temperature, what kind of homogeneous unit were they counting? In both cases, the conjoining 

of units clearly fails to describe the conceptual and practical operations involved. However, 

philosophical theories of measurement up until Kant’s time continued to center on the 

comparison of units contained in a whole, modelled on the geometrical magnitude. 

The relationship between mathematics and empirical sciences3 was characterized as a 

relationship between genus and species according to Aristotle and his followers in the 17th 

                                                
3 By empirical sciences I mean the “mathematical disciplines” or “mixed mathematics” in premodern contexts: 
astronomy, optics, music, etc., including those later known as “physico-mathematics” in the 16th and 17th 
century. For the use of the term “physico-mathematics” see Peter Dear, Discipline and Experience: The Mathematical 
Way in the Scientific Revolution (University of Chicago Press, 1995), 168-179. Dear also noted that the Aristotelian 
distinction between physics (dealing with essences and causes) and mathematics (dealing with quantities alone) 
 



   18 

century, and this view further lent support to conceiving quantitative concepts in terms of the 

part-whole structure of the geometrical line. In Aristotle’s theory, quantities in the sciences, 

obtained by empirical measurement, are particulars, while pure mathematical magnitudes (the 

discrete and the continuous) are universals. As Aristotle believed, there is no essential difference 

between the two. Objects have quantitative properties insofar as they are considered measurable, 

but these properties are also inseparable from the objects. When arithmetic and geometry study 

“pure” magnitudes and mathematical sciences like astronomy (and, later, physico-mathematics) 

study quantitative concepts, the distinction is merely a matter of the division of labor. It is not 

surprising that when natural philosophers first applied geometry to motion, i.e., when speed and 

acceleration were declared quantities, concepts of motion were represented in geometrical forms 

and thought to have the same part-whole structure as magnitudes in pure geometry, e.g., the 

straight line. But this was not entirely uncontroversial—scholastic philosophers from the 14th 

century did debate whether the intensity of qualities and motion could simply be represented 

through the addition of parts. That is, before uniform speed and acceleration were accepted as 

the uncontroversial starting point of a quantitative science of motion, it was actually not clear to 

many how these concepts could be considered quantities just like the lengths, times, and natural 

numbers. After all, are speeds composed of smaller speeds? The spectacular success of Galileo’s 

mechanics perhaps overshadowed these philosophical inquiries. Galileo used rectilinear figures to 

represent accelerated motion without qualms, arguing that the “additions of speed” represented 

                                                
began to dissolve through the efforts of 16th and 17th century Jesuit mathematicians, who urged that 
mathematical demonstrations served as causal explanations as well. However, this shift was not complete. 
Many German physicists in the early 19th century continued to distinguish physics from other disciplines in 
terms of “causes” and “the essence of phenomena,” as shown by Kenneth L. Caneva, “From Galvanism to 
Electrodynamics: The Transformation of German Physics and Its Social Context,” Historical Studies in the 
Physical Sciences 9 (1978): 63–159, https://doi.org/10.2307/27757377. 
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by straight lines took place “without complication.” The ease and simplicity of such conception, 

he noted, stemmed from “the habit of nature.”4 In what way concepts like speed shared the same 

structure as additive geometrical lines was unaddressed—perhaps considered unnecessary in light 

of the success of the laws of motion.  

Newer concepts in the exact sciences were comprehended in similar ways. According to 

Descartes in Rules for the Direction of the Mind, the simplest mode to represent any measurable 

feature of nature is through the straight line. The mathematician Paul Du Bois Reymond, writing 

as late as the second half of the 19th century, continued to share this view. However, tension 

created by the assumed part-whole structure of quantitative concepts also persisted. In Immanuel 

Kant’s Metaphysical Foundations of Natural Science, Kant refused to think of speeds as simply an 

additive “extensive” quantity in the manner of length and space. Speed is an “intensive 

magnitude,” according to Kant, which cannot be grasped through the successive synthesis of part 

by part, but only as a whole at an instant, as an intensive degree. In his effort to provide a “pure” 

mathematical foundation for the science of motion in Metaphysical Foundations, Kant gave an 

idiosyncratic and difficult solution to the problem of adding motions. If Kant was motivated to 

define and construct speed as pure, additive magnitudes in order to explain the apodictic 

certainty of the mathematical laws of motion, in the end his solution still does not elucidate what 

components in the empirical experiments are translatable through geometrical representations 

and relations (in Galileo’s or Newton’s work), so that mathematical laws are capable of correctly 

describing and predicting the empirical outcome.   

I argue that the difficulties encountered by Kant are symptomatic of the tension between 

a traditional way of conceiving quantity and explaining the application of mathematics, and the 

                                                
4 Galilei, Dialogues Concerning Two New Sciences, 197. 
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emergence of new quantitative concepts and measurement techniques in the sciences. By Kant’s 

time, the default way of explaining the applicability of mathematics in realms beyond geometry 

and arithmetic was to define magnitudes as direct bearers of quantitative properties, rather than 

considering the conceptual and practical activities in the measurement process. When the typical 

definition of quantity through part-whole structure clearly failed in the case of speed and motion, 

Kant sought to solve the puzzle while maintaining the existing paradigm of explaining 

mathematical application: to define an immediately additive magnitude with the same kind of 

intuitive immediacy as the composition of geometric magnitudes. In this sense, his solution in the 

first chapter of Metaphysical Foundations of Natural Sciences appears ad hoc. With the benefit of 

hindsight, we might argue today that in quantifying any concept, relations between experimental 

objects and phenomena that stand for measures of space, time, or other quantities come to be 

described in a mathematical way, with the goal of establishing a universally applicable law. 

However, Kant’s views on mathematical application provided the backdrop against which 

fledging philosophies of measurement emerged in the 19th century.  

In the 19th century, the extensive magnitudes modeled on the geometrical line remained 

influential to the way many thinkers conceptualized the foundation of measurement and 

quantification. As quantitative concepts became more and more inextricable from experimental 

procedures, many 19th century scientists argued that a measurable concept must be reducible to 

units of length, mass and time. These three mechanical units were still conceived through the 

part-whole structure, and the reason why they provided a solid foundation for all other physical 

measurement, for many, was that their equality and addition had indubitably clear meaning. 

Mathematician like do Bois Reymond, on the other hand, argued along Descartes’ line that all 

measurable quantities can be considered as “linear mathematical quantities.” The culmination of 
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the “classical” conception of measurement was perhaps the standardization of length and mass at 

the 1875 International Metre Convention, when the material standard of a length prototype was 

literally obtained from congruence of superposition—the method by which geometrical length is 

ordinarily measured and equal unit length determined. 

1.2. Abstraction and Universal Mathematics 

Aristotle is the main progenitor of idea that mathematical properties reside in natural 

objects but are separated out for the purpose of analysis. As Aristotle’s natural philosophy and 

logic formed the core of medieval university education by 1255,5 his views on the status of 

mathematics and the definition of its subject matter had a long-lasting impact. Mathematics is 

not the first science in Aristotle’s writings (it occupies an intermediate position between 

metaphysics and the sciences), but it deals with the universal. In his philosophy, under the 

heading of pure mathematics are the subordinate mathematical disciplines, such as harmonics, 

mechanics, optics and astronomy. These subordinate disciplines deal with the particulars. Pure 

mathematical entities do not exist on their own, independent from the perceptible objects, a 

claim that Aristotle held specifically against Plato. Instead, perceptible objects are treated as 

geometrical entities, or as divisibles or indivisibles, insofar as they share geometrical and 

arithmetical properties. For instance, if a segment along a straight path is bounded by two 

extremities, it can be treated as a geometrical line while remaining distinctly as a segment of a 

road or a wall.6 In the meantime, Aristotle believed that there are real objects in nature that truly 

                                                
5 Edward Grant, The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional and Intellectual 
Contexts (Cambridge University Press, 1996), 45. 
6  Jonathan Barnes Barnes, ed., The Cambridge Companion to Aristotle (Cambridge University Press, 1995), 86-7. 
Peter M. Distelzweig, “The Intersection of the Mathematical and Natural Sciences: The Subordinate Sciences 
in Aristotle,” Apeiron 46, no. 2 (2013): 85–105. 

 



   22 

instantiate geometrical objects, such as a perfect bronze sphere or isosceles triangle.7 The Greek 

sciences provide plentiful examples to illustrate what Aristotle meant.  In Euclid’s Optics, for 

example, rays of vision were treated as straight lines, while the eye’s position with respect to 

objects’ locations was illustrated as a triangle.8 Theories of visual perception were directly proved 

by geometrical theorems. (Figure 1)   

In Greek music theory, there are similarly extensive use of mathematical language. The 

Pythagoreans constructed musical scales from arithmetical principles. They discovered that 

certain numerical relations, e.g., when the strings of an instrument were in the ratio of 4:3 in 

length, consistently produce consonance. With respect to this discovery, sounds are said to be in 

ratios with each other. Since higher frequency of motion leads to higher pitches, according to 

                                                
A more often used example: When counting a multitude such as a flock of sheep, each sheep is indivisible for 
the purpose of serving as a unit in counting, regardless whether the sheep, as an animal, is divisible or not.  
7 Jonathan Lear, “Aristotle’s Philosophy of Mathematics,” The Philosophical Review 91, no. 2 (May 1, 1982): 161–
92. 
8 Richard D. McKirahan, “Aristotle’s Subordinate Sciences,” The British Journal for the History of Science 11, no. 3 
(1978): 197–220. 

 

Figure 1 Proposition IV in Euclid's Optics. “of equal spaces located upon 
the same straight line, those seen from a greater distance appear shorter.”  

Specifically, node E represents the position of the eye. EA is perpendicular 
to AG.  AB, BG, GD represents three equal distant lengths. EA, EB, EC, 
ED are visual rays. Z is the midpoint of EA. K is the midpoint of EB. Draw 
ZB parallel to EG and KG parallel to ED. By proving that angle ZEB > 
angle BEG, it follows that AB appears longer than BC. 

The proof goes as follows: AZ=EZ, AB=BG, so EZ:ZA=GB:BA. BZ>ZA , 
so BZ>ZE. So angle ZEB> angle ZBE = angle BEG. Therefore, AB 
appears longer than BC. By a similar proof one can show that CD appears 
smaller than BC. 

Source: Harry Edwin Burton, trans., “The Optics of Euclid,” Journal of the 
Optical Society of America 35, no. 5 (May 1945): 375–372. 
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Euclid, “sounds must be said to consist of parts, since they reach their proper pitch by addition or 

subtraction.”9  

In the sense illustrated above, Aristotle claimed that each mathematical discipline (music, 

astronomy, etc.) “concern the same items” as geometry or arithmetic.10 Geometrical and 

arithmetical theorems, which in their own respect only concern pure magnitudes, directly explain 

phenomena in the subordinate disciplines. In Aristotle’s words, “the fact falls under one science, 

while the reason falls under the higher science (mathematics).”11 This characterizes the genus-

species, universal-subordinate relation between mathematics and its realm of application.  

To Aristotle, quantities meant lengths, areas, volumes, sounds, visual rays, times12, etc.. 

Each form their own distinct kinds.13 Magnitudes are not numbers, and arithmetic operations are 

performed on magnitudes of the same kind. A pair of magnitudes can be in the same ratio as a 

pair of numbers with the exception of the incommensurables. The theory of proportions in Book 

V of Euclid’s Elements (see next section for more details) thus plays the role of interconnecting 

different realms within mathematics.  

                                                
9 Euclid, “Sectio Canonis, Introduction,” in A Source Book in Greek Science, ed. Morris Raphael Cohen and I. E. 
Drabkin, 1st ed. (New York: McGraw-Hill Book Co., 1948), 291. 
10 Aristotle, Posterior Analytics, trans. Jonathan Barnes, 2nd ed., Clarendon Aristotle Series (Oxford: Clarendon 
Press, 1994), 77b1-10. Distelzweig, “The Intersection of the Mathematical and Natural Sciences.” 
11 Aristotle. Posterior Analytics, 76a10.  
12 For Aristotle’s conception of time, see Ursula Coope, Time for Aristotle: Physics IV. 10-14 (Clarendon Press, 
2005). Mark Sentesy, “The Now and the Relation between Motion and Time in Aristotle: A Systematic 
Reconstruction,” Apeiron 51, no. 3 (2018): 279–323. 
13 This was characterized succinctly by Stein in a 1990 article: these specific concrete magnitudes like length, 
area, volume, time, sound, etc., constitute the “substrate” of number, they were “the bearer of magnitude.” 
“for us, to say that two distinct triangles are equal in area is to say that they have ‘the same area.’ But on the 
suggested reading of the Greek terminology, it would be incorrect to speak of ‘the area of this triangle’: a 
triangle does not have an area, it is an area—that is, a finite surface; this area means this figure, and the two 
distinct triangles are two different, but equal, areas.” Howard Stein, “Eudoxos and Dedekind: On the Ancient 
Greek Theory of Ratios and Its Relation to Modern Mathematics,” Synthese 84, no. 2 (1990): 163–211. 
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It is unclear whether Euclid himself intended the theory of proportion for things that are 

not geometrical magnitudes. Book V of Euclid’s Elements, where the theory of proportion is 

introduced, is directly continuous from the previous four geometrical books. In the first four 

books, the quantitative relationships between geometrical objects—lines, angles, rectilinear 

figures, solids, etc.—have a very concrete foundation, because Euclid painstakingly constructed 

geometrical figures in various quantitative relationships using a compass and a straight edge 

without invoking numerical or abstract notions. The compass and the straight edge, as well as 

their methods of constructing figures, underlie quantitative assertions about geometrical figures 

arranged in a particular manner—assertions such as “this triangle is double that triangle; this 

angle can be bisected into these two angles; this rectilinear figure is double the triangle 

constructed on the same base; or, this rectangle is the sum of two other rectilinear figures.”14 

Because Euclid showed that it is possible to construct geometrical figures as same, double, triple, 

or multiple of each other using the very concrete instruments of compass and straight edge, it 

makes sense to discuss the quantitative relationships between magnitudes abstractly in Book V: it 

is a progression from the concrete methods of construction that enable and justify quantitative 

relationships between geometric figures to the more general and abstract discussion of these 

various quantitative relationships. 

                                                
14 For example, in propositions I.3 and I. 23 in Book I, Euclid showed how equal lines and equal angles can be 
constructed through compass and straight edge (and through the construction of equilateral triangles). In 
another two propositions (I.9 &10), he showed how a given rectilinear angle or a given straight line can be cut 
in half by constructing equilateral triangles through certain relevant points. In several other propositions (I.34, 
35, 36, 41), he demonstrated the equality as well as quantitative relationships (e.g., half or double) of rectilinear 
figures of the same or different kinds, e.g., the equality between a triangle and a parallelogram. In book II, 
Euclid showed geometrically how a rectilinear figure is the sum of rectilinear figures constructed on its base. 
Also see Ian Mueller, Philosophy of Mathematics and Deductive Structure of Euclid ’s “Elements” (Dover Publications, 
1981). 
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But in Aristotle’s writings, there is a sense that the theory of proportion is applicable to all 

that can be considered magnitudes regardless of how they become quantitative. In Posterior 

Analytics, Aristotle noted that the theory of proportion deals with the universal: “Numbers, 

lengths, times, solids—do not constitute a single named item and differ in form from one 

another,” he noted, but the theory of proportion proved that ratios alternate unanimously for all 

quantities: “now, however, it is proved universally: what they suppose to hold of them universally 

does not hold of them as lines or as numbers but as this.”15 Insofar as the quantities are 

considered as “having-such-and-such ratio,” the same theories pertaining to ratios apply to the 

quantities. In this sense, the theory of magnitudes is the universal that governed the subordinate, 

and these subordinates extend beyond geometrical magnitudes like lengths, angles, triangles and 

cubes, to which Euclid limited himself in Book V of the Elements. For Aristotle, the theory of 

magnitudes also should apply to various magnitudes dealt with by different mathematical 

disciplines regardless of how they come to be called magnitudes. Hence if magnitudes, abstractly 

speaking, are represented through the part-whole structure of the geometrical line (see next 

section), and if all measurable aspects of nature automatically produce quantities subject to the 

theory of magnitudes, then these various magnitudes are also represented as straight line 

segments with a part-whole structure.  

The classification of sciences in medieval curriculum echoed Aristotle on the status of 

mathematics and its subject-matter. Scholastic philosophers reaffirmed the idea that mathematics 

deals with properties abstracted from natural objects by the intellect, as can be found in various 

accounts. For instance, writing in the 12th century, Hugh of St Victor noted that “[mathematics] 

                                                
15 Aristotle. Posterior Analytics. 74a18-25. Later he said: “why do proportional alternate? The explanation in the 
cases of lines and of numbers is different—and also the same: as lines it is different, as having such-and-such 
ratio it is the same.” (Ibid, 99a9-11) 
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is a branch of theoretical knowledge ‘which considers abstract quantity. Now quantity is called 

abstract when, intellectually separating it from matter or from other accidents, we treat of it as 

equal, unequal and the like, in our reason alone.’” In analyzing the relationship between pure 

magnitudes studied by mathematics and physical entities possessing them, the 12th century 

Domingo Gundisalvo noted that quantitative features such as length, breadth, height are found 

in all physical things. Pure magnitudes can be abstracted from tangible surfaces or thickness not 

because mathematical objects “exist or could exist as such in reality, but because the reason often 

considers actual aspects of things…with respect to reason itself, or, as reason might allow them to 

be.”16  

The idea that mathematical properties are only separated out from perceptible objects for 

the purpose of analysis also implies that they inhere in natural objects. As the 17th century natural 

philosophers elevated the status of mathematics, we see them not only confirming the 

abstractionist view from Aristotle, but also emphasizing that quantitative features are properties 

that objects themselves possess rather than products of our interpretation of relationships 

exemplified through the act of measurement in various ways. For instance, Isaac Barrow’s 1664 

mathematical lectures notes that the objects of mathematics, magnitude and multitude, are to be 

understood in two respects: as “abstracted from all matter, material circumstances, and accidents 

(i.e., are considered generally in themselves, without regard to these Things); or as they inhere in 

some particular subject, and are found conjoined with certain other physical qualities, actions 

                                                
16 Edward Grant, ed., A Source Book in Medieval Science (Harvard University Press, 1974), 55, 65, 66. Gundisalvo 
also said that mathematical studies are divided into the continuous and discrete. Geometry and astronomy deal 
with the mobile and immobile magnitudes such as “[the magnitude] of a tree or a stone”; arithmetic and music 
deal with the discrete, “like that of a flock or of a people.”(Ibid.) 
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and circumstances.”17 He meant that quantities are either treated by geometry and arithmetic as 

pure magnitudes, or as a bearer of pure magnitudes, with substantive and qualitative features, be 

it an object, an “action,” or a phenomenon.18 The difference is merely a matter of perspective: 

“there is no reason why the doctrine of generals should be separated from the consideration of 

particulars, since the former entirely includes and primarily respects the latter.”19 More 

importantly, mathematics ought to apply ubiquitously in the study of nature, because no branch 

of natural science can exclude the consideration of quantities: “For magnitude is the common affection 

of all physical things, it is interwoven in the nature of bodies, blended with all corporeal accidents, and well-nigh 

bears the principal part in the production of every natural effect.”20 Since quantities inhere in 

bodies, accidents, and natural effects, quantification are merely a process of discovery, the 

reading of the book of nature.  

Descartes’ vision of “mathesis universalis,” a universal science governing all matters 

regarding measure and order, quickly became well-known. He also identified extension—length, 

breadth, depth, easily measurable as geometrical magnitudes—as the essence of substance. This 

is a convenient solution to the question of how mathematics can be known a priori but highly 

efficacious in application.21 In the same vein as Aristotle, and in fact using the language of genus 

                                                
17 My italics. 
18 Here are some examples he used: a straight line is a pure magnitude insofar as divisibility, congruence, 
proportionality are concerned; it can simultaneously be the path of a light ray in optics, or as a suspended 
string sustaining a weight that determine the momentum of circular motion. 
19 Immediately after this sentence, he also noted that theorems in geometry and arithmetic “descended to the 
very lowest species” of mathematical disciplines, reaffirming the genus-species relation between pure 
mathematics and its application. Isaac Barrow, The Usefulness of Mathematical Learning Explained and Demonstrated: 
Being Mathematical Lectures Read in the Publick Schools at the University of Cambridge, trans. John Kirkby (S. Austen, 
1734), 19. 
20 Ibid, 21. 
21 The essence of nature was simply identified with extension—the subject matter of mathematics—therefore 
mathematics “naturally” applied. Lisa Shabel, “Apriority and Application: Philosophy of Mathematics in the 
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and species, Descartes argued that there is no essential difference between mathematical entities 

and the objects of their application. Just as the term “extension” does not mean anything distinct 

and separate from the extended subject, numbers and geometrical figures do not exist apart from 

the bodies. Numbers should not be distinguished from concrete multitudes, while geometrical 

entities are “simply a mode of body.”22 It would be a mistake to think otherwise. Thus, whenever 

numbers are invoked, one must “imagine some subject which is measurable in terms of a set of 

units.” Although the intellect tends to exclusively fix its attention to this abstract set, the 

conclusion still fundamentally concerns a concrete group of objects being numbered. “Those 

who attribute wonderful and mysterious properties to numbers…would surely not believe so 

firmly in such sheer nonsense, if they did not think that number is something distinct from things 

numbered.”23 Where mathematics is applied, there is some concrete bearer of the mathematical 

properties, some magnitude; and the notion that no essential difference between mathematical 

entities and the object of their application exist is not far away from the notion that certain 

mathematical features (such as the part-whole structure) exist in nature independent of the 

measuring process.  

In the contexts discussed above, the universal-subordinate relationship between pure 

mathematics and mathematical disciplines, such as astronomy, optics, and other predecessors of 

mathematical physics, was not merely a methodological description. Not only were mathematics 

applied historically in these disciplines as a tool to understand nature, philosophers also thought 

that mathematical properties reside in natural bodies, accidents, and effects. Hence this view 

                                                
Modern Period,” in The Oxford Handbook of Philosophy of Mathematics and Logic, ed. Stewart Shapiro (Oxford 
University Press, USA, 2005).  
22 René Descartes, “Rules for the Direction of the Mind,” in The Philosophical Writings of Descartes (Cambridge 
University Press, 1984), 446/61. 
23 Ibid, 445-6/60-1.  
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implies a pre-established harmony between mathematical (primarily geometrical) structures and 

things investigated by mathematical disciplines, namely magnitudes. Philosophers largely 

neglected the intellectual and practical activities involved in the act of measurement, as well as 

the assumptions carried into representing non-geometrical objects geometrically. Measurement 

was to them merely the discovery of quantities or magnitudes. But what is a quantity or a 

magnitude? This brings us to the second feature of the pre-19th century conception, which is the 

tendency to project the part-whole structure of geometrical magnitudes onto other quantitative 

concepts.   

1.3. Part-whole Structure and Non-geometrical Concepts  

While the term “quantity” had almost never been explicitly defined before the 19th 

century (it was often simply assumed to include multitude and magnitude, or the discrete and the 

continuous), quantities were assumed to be constituted by parts or equal units. Geometrical 

magnitudes, mostly the straight line, served as the archetype through which the abstract term 

quantity was conceived. On the surface this seems irreproachable, but certain conceptual 

problems also emerge when the part-whole structure (or the relation between unit, plurality and 

the whole) is applied to non-geometrical concepts whenever they are considered quantitative. 

Can two degrees of intensity or two speeds simply be added to each other, giving rise to a third 

degree, like two lines added to each other to form a new line? 14th century scholastic philosophers 

grappled with this issue, in a way echoed by late 19th century psychophysicists who aimed to 

measure sensation (chapter 3). In light of the success of Galilean physics, this philosophical issue 

was sidelined. 

In Book V of Elements, Euclid discussed various theorems that can be proved regarding 

ratios between magnitudes in general. As mentioned earlier, the abstract theorems of magnitudes 
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have a concrete geometric foundation in Elements. Euclid noted that a magnitude can be a part of 

another magnitude when one measures another, in which case the latter is a multiple of the 

former. By this definition, measurement is explicitly linked to part-whole relation.24 Two 

magnitudes of the same kind can be in a certain ratio, which in turn can be the same as the ratio 

between two other magnitudes of a different kind (although he distinguished the “sameness” 

between ratios of magnitudes from the “sameness” between ratios of numbers). Notably, even if 

the theorems in Book V are about ratios between magnitudes in general, which can potentially 

apply to any specific type of magnitudes (e.g., lengths, triangles, etc.), Euclid illustrated the 

relationships between magnitudes and between ratios by straight-line segments, as illustrated by 

proposition 1 in Book V (Figure 2), as well as all other propositions in the same book:  

“Proposition 1: If there be any number of magnitudes whatever which are, respectively, 
equimultiples of any magnitudes equal in multitude, respectively, whatever multiple one of the 
magnitudes is of one, that multiple also will all be of all.”25  

 

 
Figure 2 Illustration of Euclid’s Proposition 1, Book V. If AB is some multiple of E, and CD is the same 
multiple of F, then the sum of AB and CD is the same multiple of the sum of E and F. While the 
proposition itself applies to any general magnitude, the illustration is through straight line segments. 
(Source: Euclid, The Thirteen Books of Euclid’s Elements, Translated from the Text of Heiberg with 
Introduction and Commentary, trans. Thomas L. Heath, vol. II, 3 vols. (The University Press, 1908), 
138.)  

Euclid used straight line segments to illustrate the relationship between magnitudes as 

well as those between numbers (in Book VII). This can be explained by the primacy of geometry 

                                                
24 This is specified in the list of definitions in Book V: “a magnitude is a part of a(nother) magnitude, the lesser 
of the greater, when it measures the greater”; “the greater (magnitude is) a multiple of the lesser when it is 
measured by the lesser.” (Euclid, Definition 1-3, Book V, The Thirteen Books of Euclid’s Elements, Translated from the 
Text of Heiberg with Introduction and Commentary, trans. Thomas L. Heath, vol. II, 3 vols. (The University Press, 
1908).) 
25 Ibid, 138. 
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over arithmetic in Greek mathematics as well as convenience—the proofs themselves in fact do 

not rely on geometrical propositions, i.e., their proofs are not geometric. Nevertheless, Euclid’s 

illustrations might have added to the “naturalness” in representing the abstract notion of quantity 

by straight-line segments. If the theory of magnitudes is supposed to apply to all things 

measurable, as Aristotle said, then a glance at Euclid’s Book V would suggest that there is a 

“natural” way of representing quantitative concepts—through geometrical line segments, which 

have clear part-whole structures. 

According to Aristotle in the Categories, all quantities are made of parts.26 As in the Greek 

mathematical tradition, quantities are either discrete (e.g., number, speech) or continuous (e.g., 

geometrical figures, time, place), depending on whether the parts have “relative position in 

reference each to the others.” The parts of a straight line either share a common boundary or 

“each…must lie somewhere, and each can be clearly distinguished.” In contrast, the parts of a 

discrete quantity, like number, are only ordered, but do not have relative positions with respect to 

each other.27 More importantly, quantities cannot admit degrees, but can only be said to be as 

equal or unequal: “what is ‘three’ is not more truly three than what is ‘five’ is five.” In contrast, 

qualities (e.g., habits, virtues, natural power, healthiness, sweetness, coldness, color, sensation, 

etc.) only admits variations of degrees and be described in terms of more or less. Action and 

affection (action and being acted upon), such as heating and cooling, being pleased and being 

                                                
26 Aristotle, Aristotle: The Categories. On Interpretation. Prior Analytics (Harvard University Press, 1962)., 39. Although 
all quantities had parts, for Aristotle, the relation between part and whole is not necessarily a numerical 
relationship. Aristotle’s theory of time presented a counterexample: time is a continuous quantity with an 
order.  
27 Ibid, 6. 
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pained, also have degrees.28 Part-whole structure is central to Aristotle’s quantity-quality 

distinction.  

In the 17th and 18th century, a number of new quantitative concepts were invented, such 

as universal time and space, uniform velocity, uniform acceleration, quantity of motion, quantity 

of matter. They became foundational for modern mechanics. Regardless of how these 

quantitative concepts were obtained, geometrical magnitudes were the default lens through 

which they were seen. In Rules for the Direction of the Mind, Descartes proposed the notion of the 

dimensional unit, by which he meant any “mode or aspect in respect of which some subject is 

considered to be measurable,” such as length, breadth, depth, weight, speed, and “countless 

other instances of this sort.”29 This allowed quantitative concepts to not be restricted by the 

multitude/magnitude categorization. But he further stressed that quantities of any dimension 

should be represented as a straight line or a linear geometrical magnitude: “Rectilinear and 

rectangular surfaces, or straight lines…must serve to represent sometimes continuous 

magnitudes, sometimes a set or a number. To find a simpler way of expressing differences in 

relation would be beyond the bounds of human endeavor.”30 Meanwhile, he reaffirmed the 

classical notion of quantity and measure: measurement is a process where “we regard the whole 

as being divided into parts.”31 Such parts can even be intellectual. (Equal) units are “basis and 

foundation of all the relations,” the “common nature” of all things being compared, and “if no 

                                                
28 Ibid, VIII-IX. 
29 Descartes, “Rules for the Direction of the Mind.” 447. In “Apriority and application: philosophy of 
mathematics in the modern period,” Shabel points out that Descartes invented dimension as a representational 
format so that quantities could be more flexibly treated by mathematics. 
30 Ibid, 452. 
31 Ibid, 448. 
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determinate unit is specified in the problem, we may adopt as unit either one of the magnitudes 

already given.”32  

This view was reiterated in Isaac Barrow’s mathematical lectures. Barrow did in fact 

mention cases of indirect measurement. For instance, time is not directly measurable but must be 

measured by “the space… run over equably with a certain velocity by some noted moveable 

body… for it cannot be known how much time is passed, but by estimating the quantity of such a 

space.” In astronomy, indirect inferences based on geometrical laws were used: the earth’s 

diameter for example, was used as a measure of the distance between distant stars.33 Both cases 

involved measurement which “expressed its [one quantity’s] relation to other known quantities,” 

and this was in fact how their quantitative values were known. Strikingly, while this line of 

thought in the late 19th century would lead to either the conclusion that measurement is in most 

cases indirect measurement, or the conclusion that time intervals are never directly compared for 

time to be measured, Barrow reached a conclusion in the opposite direction. He wrote: strictly 

speaking, measurement is still defined by enumerating the parts contained in a whole: “a 

measure is more strictly taken for a magnitude, which some number of times taken does constitute 

and compose another magnitude, or which being some number of times taken from another 

magnitude leaves no reminder, but entirely exhausts it… a measure thus taken will never exceed 

the thing measured, but either is equal to it, or some aliquot part of it, i.e., which being 

sometimes repeated according to any number composes the whole.”34 Regardless of how 

                                                
32 Ibid, 450. 
33 Barrow, The Usefulness of Mathematical Learning Explained and Demonstrated. 
34 Ibid, 261-2. 
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measurement actually proceeded, he imagined the process of measurement to be the counting of 

equal units to exhaust the whole.  

In Isaac Newton’s Principia, the relationship between parts and the whole as the defining 

feature of quantities was not explicitly mentioned but taken for granted.35 Although he defined 

absolute time separately, in some of his actual theorems, he used space to measure times.36 The 

part-whole structure was not only the precondition of a metric for relative space and time, given 

through the ratio between two parts of time or space. It also allowed Newton to extrapolate laws 

of motion drawn from local phenomena on a universal scale. One of the four rules of reasoning 

in the Principia is that  

“the extension, hardness, impenetrability, mobility, and force of inertia of the whole arise 
from the extension, hardness, impenetrability, mobility and force of inertia of each of the parts; 
and thus we conclude that every one of the least parts of all bodies is extended, hard, 
impenetrable, movable, and endowed with a force of inertia. And this is the foundation of all 
natural philosophy.”37 

The principle that properties of the whole are derived from the properties of parts 

allowed Newton to define quantity of motion as “velocity and quantity of matter conjointly.” As 

he explained: “the motion of the whole is the sum of the motions of all the parts. And therefore in 

a body double in quantity, with equal velocity, the motion is double; with twice the velocity, it is 

quadruple.”38 As the quantity of matter (mass) serves as a universal measure of the “number of 

parts” contained by matter (this measure of matter was also defined through part-whole relation), 

                                                
35 It seems that Newton’s definitions for absolute time and space does not involve a metric with a given unit. 
But the comparison between parts of space and parts of time gives rise to the metric for relative space and time. 
36 See Barbour, The Discovery of Dynamics. 
37 Isaac Newton, Newton’s Principia: The Mathematical Principles of Natural Philosophy, trans. Andrew Motte (New-
York : Published by Daniel Adee, 1846), http://archive.org/details/newtonspmathema00newtrich. 
38 Ibid., Definition III. Ibid, 73. 
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the quantity of motion is naturally the sum of all the motion possessed by the parts.39 For my 

purpose here, it is worth pointing out how theoretical concepts that were either measured 

indirectly, or only theoretically postulated and in a way substantiated through quantitative laws 

that predicted motion correctly at the time, they were quite naturally conceived through parts 

and the whole by the authors I have mentioned. To state a quantitative law expressing an 

invariant relationship seem to entail that there is some quantity—some concrete bearer of the 

magnitude with a part-whole structure—even if such quantity ultimately only stands for a 

conceptual relationship.40  

1.4. Conceptual Problems in Representing Motion Through Part-Whole Structure  

Geometrical representation was an essential tool for modern mechanics in its early days. 

By favoring geometrical representation, the structure of geometrical magnitudes was projected 

onto new quantitative concepts. Descartes’ call to represent all quantities using straight lines and 

rectilinear figures was indeed carried out in Galileo’s mathematics of motion. In Dialogue 

Concerning the Two New Sciences, Galileo represented the concepts of time, speed, and acceleration 

by straight lines, rectangles, and other rectilinear figures. Granted, there is an intuitive 

plausibility in thinking of distances, temporal intervals (if, for instance, equal times are measured 

by the equal weights of water in a water clock), and speeds that have gone through uniform 

increase or decrease in terms of equal increments of straight-line segments. But nowhere did 

Galileo question whether by representing these concepts using the straight line and rectilinear 

                                                
39 Ori Belkind, “Newton’s Scientific Method and the Universal Law of Gravitation,” in Interpreting Newton: 
Critical Essays, ed. Andrew Janiak and Eric Schliesser (Cambridge University Press, 2012). 
40 This part-whole relation served as the condition of numerical representation, since Newton defined numbers 
as “not so much a multitude of unities, as the abstracted ratio of any quantity to another quantity of the same 
kind, which we take for unity.” Isaac Newton, Universal Arithmetick: Or, A Treatise of Arithmetical Composition and 
Resolution, trans. Joseph Raphson (London, Printed for W. Johnston, 1769), 1. 



   36 

figures, one would also bring in additional assumptions regarding how these concepts should be 

understood. Is a speed or a time composed of smaller speeds? Is adding two speeds or times like 

adding two line-segments? Instead of engaging with these issues, Galileo wrote that uniform 

addition of speeds is simply an insight taking from “the habit and custom of nature herself,” as he 

employed “only those means which are most common, simple and easy.” What he meant is this: 

“just as uniformity of motion is defined by and conceived through equal times and equal spaces 

(thus we call a motion uniform when equal distances are traversed during equal time-intervals, so 

also we may…through equal time-intervals, conceive additions of speed as taking place without 

complication.”41 In retrospect, the reason why motion was successfully mathematized cannot be 

that speed is composed of smaller, additive speeds—such notion simply makes no sense. But 

Galileo’s quote suggests that he had no alternative to explain why motion can be mathematized 

other than that speed must be an additive quantity with parts just like spatial distances or 

geometric line.   

Galileo’s mathematization of motion using geometric means was indebted to a broader 

attempt to mathematize qualitative intensities by scholastic philosophers, and it had not been 

uncontroversial from the start that the intensity of motion, or any other quality, should be 

regarded as having additive parts. We recall from Aristotle’s Categories that quality does not admit 

of parts, only degrees. Aristotle did not specify in what way the variation of qualities should take 

place, which led to different interpretations among scholastic philosophers. Meanwhile, since 

Aristotle regarded both variations of qualities and local motion as change or movement, 

scholastic philosophers also recognized an analogy between varying speed and the varying 

qualitative intensity. But how precisely the variation of qualitative intensities should be 

                                                
41 Galileo, The Discourses and Mathematical Demonstrations Relating to Two New Sciences, 197. 
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conceptualized was one of hotly debated issues among scholastic philosophers since the 12th 

century.42 Two dominant theories from the 14th century stated the following: 1. each degree of 

quality succeeds one another at every instant and destroys the former degree completely, because 

each degree of quality is indivisible and cannot be said to have parts (the succession theory); 2. In 

the same subject, degrees of quantity are simply additive, composed of homogeneous parts (the 

addition theory). A group of Oxford scholars called Oxford Calculators embraced the second 

view—the addition theory, namely that degrees of intensity are no different from extensive 

magnitudes. They also treated concepts of speed and acceleration, from the newly invented 

uniform motion and uniformly accelerated motion, just as additive quantities and succeeded in 

proving the mean-speed theorem, one of the crucial theorems in Galileo’s own mathematical 

physics.43 Meanwhile, the geometric representation in Galileo’s style was first invented by Nicole 

                                                
42 For instance, Thomas Aquinas claimed that some qualities, like health or motion, goes through intension and 
remission through the addition and subtraction of parts, while others, like heat, color, or the God-given charity, 
vary only in the sense that the subject participates in these unchanging qualities by varying extent. 
See Marshall Clagett, “Richard Swineshead and Late Medieval Physics: I. The Intension and Remission of 
Qualities (1),” Osiris 9 (January 1, 1950): 131–61, https://doi.org/10.1086/368527; Elzbieta Jung, “Intension 
and Remission of Forms,” in Encyclopedia of Medieval Philosophy: Philosophy Between 500 and 1500, ed. Henrik 
Lagerlund (Springer Science & Business Media, 2010). 
43 Clagett points out that although propositions regarding “uniform speed” appear in the writings of the 
Greeks, they do not assume the concept to be a magnitude but focus on the proportionality between distance 
and time. Medieval philosophers first used the notion of “the proportion of the movements (i.e., velocities)” and 
applied the theory of proportions to it. In this sense the quantity of uniform speed was invented in the 13th and 
14th century. Marshall Clagett, The Science of Mechanics in the Middle Ages (University of Wisconsin Press, 1959), 
218.  
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Oresme through the “latitude of forms.”44 Oresme argued that “every intensity which can be 

acquired successively ought to be imagined by a straight line perpendicularly erected on some 

point of the space.” The intensity could belong to color, speed, hotness or coldness, visual 

                                                
44 Edith D. Sylla, “Medieval Concepts of the Latitude of Forms: The Oxford Calculators,” Archives d’histoire 
Doctrinale et Littéraire Du Moyen Âge 40 (1973): 223–83. Jung, “Intension and Remission of Forms.” For more on 
the topic, see Grant, The Foundations of Modern Science in the Middle Ages, 100. Clagett, “Richard Swineshead and 
Late Medieval Physics.” 

 

Figure 3 (Left) Nicole Oresme represented the intensity of a quality 
as a straight-line segment erected on a point. (Right) Galileo’s 
reproduction of the mean speed theorem in Dialogues, arguing that 
the addition of speeds should be considered straightforward and 
unproblematic. 
Oresme spoke directly of the ratio of intensities of qualities as the 
ratio of straight-line segments and applied geometry directly to these 
intensities. This figure (left) proves that “uniformly disuniform” 
quality (represented by ABC) is “of the same quantity” as the 
“quality of the same or equal subject that is uniform according to 
the degree of the middle point of the same subject.”  
Similarly, Galileo represented the uniformly “increasing values of 
speed” in terms of the horizontal straight lines in AEB and proved 
the mean speed theorem in the same manner as Oresme did for 
“the quantity” of “uniformly disuniform” quality.  
Source: Oresme, Nicole Oresme and the Medieval Geometry of Qualities and 
Motions, 409; Galileo, The Discourses and Mathematical Demonstrations 
Relating to Two New Sciences, 173. 
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powers, or anything else capable of varying continuously.45 The ratios between intensities at 

different points would simply be the ratios between the straight lines. This analogy was supposed 

to apply to motion as well: for a point moving along a distance, its intensity of velocity was 

represented as the altitude of straight lines erected along every point it traversed. Using this 

representational scheme, Oresme proved the mean speed theorem geometrically, in almost the 

exact same manner as Galileo did three centuries later (Figure 3). 

Before scholastic philosophers first began to treat motion along with other qualitative 

intensities mathematically, it was not unproblematic to assume that speed or other qualitative 

intensity is acquired through the addition of parts: objections arose almost at the same time as 

those quantitative treatments. Perhaps the success of the Oxford Calculators and, later, Galileo, 

overshadowed issues surrounding these foundational concepts, namely what had been lost or 

presupposed with certain representational forms. Thanks to the ground paved by his scholastic 

predecessors, Galileo could declare that the addition of speed should be considered as 

unproblematic. By ignoring such philosophical problems as how mathematization is possible 

when it cannot be explained by the part-whole structure of magnitudes, Galileo could proceed 

with his mathematical physics. On the other hand, it is not surprising that the unresolved 

philosophical issues would resurface in later centuries. 

1.5. Kant’s Construction of Quantities     

In the previous section, I argue that the part-whole structure characteristic of geometrical 

magnitudes was the primary form through which quantitative concepts were understood. This 

leads us to Immanuel Kant, the most influential voice on epistemology in 19th century German-

                                                
45 Nicola Oresme, Nicole Oresme and the Medieval Geometry of Qualities and Motions: A Treatise on the Uniformity and 
Difformity of Intensities Known as Tractatus de Configurationibus Qualitatum Et Motuum, ed. Marshall Clagett (UMI, 
1968), 167. 
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speaking philosophy. At the end of the 18th century, the Konigsberg philosopher set the goal of 

explaining the possibility of knowledge from the point of view of human subjectivity. In the 

Critique of Pure Reason, Kant first identified the forms of receptibility, through which the external 

world is immediately received by us, which Kant called the pure intuition of space (all possible 

forms of shape, dimension and spatial relations) and time (all forms of succession, order and 

simultaneity). External objects cannot possibly be apprehended without being represented in 

space, while inner states cannot be apprehended without being related through time.46 Second, 

Kant identified the pure concepts of understanding, or the categories, as the forms of all concepts 

pertaining to objects—only when concepts of objects are formed in accordance to these 

categories can they enter valid judgments.47 The concepts apply to the content of intuition, 

namely the (pure and empirical) intuitions in space and time. It is through this application that 

experience and cognition become possible at all: the immediate impressions presented in space 

and time must be subsumed under the concepts to be meaningful, and concepts must be 

instantiated through intuition in order to produce objective knowledge. Both the forms of 

intuition and the categories are a priori, meaning that their origin lie in the subject, and are 

imputed to our experience of the external world. 

For Kant, mathematics constructs concepts in a priori intuition, which means that it 

exhibits “a priori the intuition corresponding to it [the concept].”48 The classical example used in 

Transcendental Aesthetic is that the concept of “5+7” does not contain the concept of “12,” and 

one must invoke intuition using the fingers of one’s hand, the intuition of the successive addition 

                                                
46 Immanuel Kant, Critique of Pure Reason (Cambridge University Press, 1999), A23/B38. 
47 Paul Guyer, ed., The Cambridge Companion to Kant (Cambridge University Press, 1992). 
48 Kant, Critique of Pure Reason, A714/B742. Also see Michael Friedman, Kant’s Construction of Nature: A Reading of 
the Metaphysical Foundations of Natural Science (Cambridge University Press, 2013).  
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one by one, to obtain the sum. Similarly, in (Euclidean) geometry, axioms and theorems must be 

demonstrated by drawing the figures themselves in accordance with their definitions; they cannot 

follow from the conceptual definitions themselves: “I cannot represent to myself any line, no 

matter how small it may be, without drawing it in thought.”49 Geometry therefore demonstrates 

different possible ways of synthesizing (i.e., putting together; combining) the pure intuition of 

space.  

Instead of attempting to explain Kant’s views on mathematics fully, I examine here only 

the presuppositions concerning the use of the concept quantity in the First Critique. Quantity is 

among the four categories (the others were quality, relation and modality) applied to the content 

of intuition, whose origin lies in the understanding. Under its heading are three categories—unity 

(Einheit), plurality (Vielheit), totality (Allheit).50 These categories are most clearly illustrated by 

the structure of geometrical magnitudes, they also correspond with Kant’s definition of the 

extensive magnitudes: those magnitudes whose representation of the whole is achieved through 

the successive synthesis of the homogeneous part by part. The association with measurement is 

stronger in Prolegomena, where these three subcategories are rephrased as measure (das Mass), the 

magnitude (die Grösse) and the whole (das Ganze). Furthermore, quantity is a more primitive 

concept than number. As Kant defined number as the “schema of quantity (quantitas).”51 What 

he meant by “schema” is this: intuition must be subsumed under a specific concept according to 

specific procedures. The schema of a concept is a “universal procedure” for generating a pure 

image in the imagination to illustrate the concept. So while the pure image generated in pure 

                                                
49 Kant, Immanuel. Critique of Pure Reason, A162. 
50 “Totality is nothing other than plurality considered a unity.” Kant, Immanuel. Critique of Pure Reason, B111. 
51 Ibid, B182. 
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intuition to illustrate the concept quantum (a concrete magnitude) is space (a spatial magnitude), 

the procedure that generated this image is through number.52 Number is intertwined with the 

“the homogeneous in intuition” to produce quantitative cognition; it is “the representation that 

summarizes the successive addition of one (homogeneous units) to another.” In this sense, natural 

numbers are central to Kant’s understanding of numbers.53   

The concept of quantity is applied to both the empirical and pure intuitions. In Kant’s 

theory, quantitative cognition is a part of the cognition of the objects. Specifically, Kant made 

this point in the following passage:  

“all appearances contain, as regards their form, an intuition in space and time, which 
grounds all of them a priori. They cannot be apprehended, therefore, i.e., taken up into 
empirical consciousness, except through the synthesis of the manifold through which the 
representations of a determinate space or time are generated, i.e., through the composition of 
that which is homogeneous and the consciousness of the synthetic unity of this manifold (of the 
homogeneous). Now the consciousness of the homogeneous manifold in intuition in general, 
insofar as through it the representation of an object first becomes possible, is the concept of a 
magnitude (Quanti).”54     

With this passage, he concluded that all appearances are extensive magnitudes, those 

“cognized through successive synthesis (from part to part) in apprehension.”55 What he meant in 

this paragraph is that the representation of an object is not possible unless the mind synthesizes 

(again, puts together, or combines) its spatial and temporal forms to form a coherent 

representation. The mind synthesizes the spatial and temporal form of any particular object or 

phenomenon in empirical intuition in the same way as it synthesizes the parts of pure space and 

                                                
52 According to this definition, one can argue that although it is not possible to have an image of a large 
number such as 1000, it is possible to apprehend this number as the method of its enumeration, the successive 
addition of units up to 1000 times and the grasping of such aggregate as one. 
53 Ibid, B180-2.   
54 Ibid, B202-3.  
55 Ibid, B204. 
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time, through the successive addition from part to part.56 Now the synthesis of the pure intuition 

of space and time through conjoining or adding homogeneous parts, by definition, exhibits 

magnitudes, i.e., the composition of the homogeneous. Such synthesis follows the stages from 

unity to plurality to totality. As a result, any part of space and time constitutes a magnitude, and 

magnitudes are ingrained in all appearances—all representations of the external object and 

phenomena—as a constituent part of the appearances. This took Descartes’ view that 

quantitative structure is ingrained in natural objects one step further by locating an explanation 

for it in cognition, in our mode of perceiving the external world. The three subcategories of 

quantity have a strong connotation of the part-whole structure, demonstrated paradigmatically 

by geometrical magnitudes. Applying mathematics means, primarily, applying this structure.  

But there is another kind of magnitudes in the First Critique, called the intensive 

magnitude. As opposed to extensive magnitudes whose “representation of the parts makes 

possible the representation of the whole (and therefore necessarily precedes the latter),”57 the 

intensive magnitudes are those “which can only be apprehended as a unity, and in which 

multiplicity can only be represented through approximation to negation = 0.”58 This definition 

initially comes up in Kant’s discussion of sensation: sensations have degrees, and this degree has 

any arbitrary magnitude above zero. The apprehension of this degree, or magnitude, is “not 

successive but instantaneous.”59 In other words, although intensive magnitudes range 

continuously from zero to infinity, each magnitude can only be apprehended in an instant, 

                                                
56 “As intuitions in space or time they [appearances] must be represented through the same synthesis as that 
through which space and time in general are determined.” Ibid, B203. 
57 Ibid, A162-3. 
58 Ibid, A169. 
59 Ibid.  
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instead of proceeding from part to part. Between a given degree and null, there is a “continuous 

nexus” of intermediate degrees. This applies to not only sensation but also the magnitude of 

gravity (or “the moment of gravity” apprehended instantaneously60), color, and velocity. By 

invoking the notion of the intensive magnitude, Kant seems to have the views of Descartes in 

mind in juxtaposition, because the undeniable cognition of intensive magnitude illustrates that 

extension alone is inadequate in describing the properties of matter, e.g., the same space can be 

illuminated by different degrees of light, or the same volume of matter can weigh differently.61 

Notably, the distinction between extensive and intensive magnitudes not only harkens 

back to Aristotle’s distinction between quantity and quality, it also harkens back to the scholastic 

discussion in the 14th century about the intension and remission of forms. After all, Kant could 

not accept that qualitative intensities could simply be represented like geometrical magnitudes 

with parts. The emphasis that each intensive degree must be apprehended in an instant is 

reminiscent of the medieval “succession theory,” the view that each degree of intensity replaces 

the next one held by some scholastic philosophers in the 14th century. Although Kant did not 

argue that intensities would replace one another, the similarities between these two lines of 

thought are prominent, as he claimed that the apprehension of an intensity is “not successive, but 

instantaneous,” and between any two different degrees, there are an “infinite gradation of every 

smaller degrees,” each of which is also to be apprehended in an instant.62 

                                                
60 Ibid. 
61 Tim Jankowiak, “Kant’s Argument for the Principle of Intensive Magnitudes,” Kantian Review 18, no. 3 
(November 2013): 387–412, 406. 
62 Kant, Critique of Pure Reason, A169, B214.  
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Since intensive magnitudes still invoke the synthesis of the homogeneous, they are still 

magnitudes—although the synthesis is not from part to part, but a “coalition.”63 Although the 

categories under quantity (unity, plurality, totality) clearly correspond with the part-whole 

structure of extensive magnitudes, and although Kant stressed that each intensive magnitude is 

not composed of parts but can only be grasped as a whole, he still applied those categories to the 

intensive magnitude. Unity is exemplified in the fact that each intensive magnitude could only be 

grasped as a unity; plurality in the “approximation towards negation = 0,”64 presumably in the 

difference, or heterogeneity, between any two intensive magnitudes arbitrarily close. If we 

illustrate the intensive magnitude with degrees of sensation like pain or pleasure, this makes 

sense. Nevertheless, the notion of number, the universal procedure of successive addition of part 

to part, then by definition does not apply to intensive magnitudes; furthermore, the pure image of 

quantum, space, clearly does not reflect intensive magnitudes. Finally, it is not easy, if at all, to 

see how unity and plurality, identified with measure (Mass) and magnitude (Grösse) in 

Prolegomena, retains its connection to measurement when applied to intensive magnitudes. This is 

especially notable in his treatment of motion in Metaphysical Foundations of Natural Sciences.  

The intensive magnitude played a crucial role in Kant’s effort to reconcile his belief that 

speed cannot be represented through the addition of parts (as Galileo might claim) with the fact 

that motion can be mathematized. For Kant, the latter requires clarifying what kind of magnitude 

is involved, just as the empirical validity of the Pythagorean theorem in actual measurement 

requires the definition of triangles and their properties in Euclid’s Elements. His answer to what 

kind of mathematical magnitude is involved in motion is that speed is an intensive magnitude. In 

                                                
63 Ibid, B202. 
64 B210. 
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Metaphysical Foundations of Natural Science, he dedicated the first chapter to explaining how speed 

can be additive without being composed of parts of smaller speed, namely how it can be 

constructed as a “quantum” in a priori space and time, through which the composition of the 

homogeneous is made immediately intuitive. This is what Kant meant when he said in the first 

chapter of Metaphysical Foundations that he intended to provide a “pure mathematical” solution to 

the quantification of motion.65 Since geometrical magnitudes served as the archetype of 

magnitude for Kant and many others, Kant similarly required the same kind of intuitive 

immediacy of composition for all that qualify as magnitudes. This means that two magnitudes of 

motion must be composed into a third in both direction and speed without referring to empirical 

observation or experiment, or any measuring technique, but in a different way from the 

composition of lengths and angles through parts. To demonstrate that motion is a quantum in a 

priori intuition is the precondition of even considering the relationship between forces and 

motions.66   

The simplest case of adding two motions of the same point is when these two motions are 

along the same line, in the same direction. From our contemporary point of view, if we want to 

add two speeds 𝑣"m/s to 𝑣#m/s, we would simply add the two scalars to get (𝑣" + 𝑣#)m/s, 

namely in the same second during which the object previously covered 𝑣" meter, it now covered 

(𝑣" + 𝑣#) meters. If we want to represent this sum geometrically like Galileo, we would simply 

combine the line segment 𝑣" meters and the line segment 𝑣# meters and call the geometrical sum 

                                                
65 “The connection of motions by means of physical causes, that is, forces, can never be rigorously expounded, 
until the principles of their composition in general have been previous laid down, purely mathematically, as 
basis.” Also, “…“phoronomy has first to determine the construction of motions in general…a priori solely as 
magnitudes.” Kant, Immanuel. Metaphysical Foundations of Natural Science, 486-7 [original paging], 21-2. 
66 For a more detailed analysis, see Daniel Sutherland, “Kant on the Construction and Composition of Motion 
in the Phoronomy,” Kant: Studies on Mathematics in the Critical Philosophy, December 22, 2017. 
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of these two line segments the new speed, indicating the distance the object would now cover in a 

second. As we recall from Galileo, velocity increase was represented as simply an increase in the 

length of the straight-line segment, since the quantity of velocity was represented geometrically or 

spatially in an unproblematic way. But Kant denied this method. His objections go as follows 

(Figure 4)67:  

 

Figure 4 Kant's illustration explaining how two speeds in the same direction cannot be added spatially.  
Source: Immanuel Kant, Kant’s Prolegomena, and Metaphysical Foundations of Natural Science, 162. 

Let one represent the first speed by the geometrical line AB, and the second speed by the 

geometrical line ab, and ab equaled the line BC in length, and for convenience let it be assumed 

that the geometrical segments AB, BC and ab were all equal. Then each of these three line 

segments represented an equal speed: AB/unit time, BC/unit time, ab/unit time.68 Then the 

sum of two speeds AB/unit time and BC/unit time, which was equivalent as the sum of AB/unit 

time and ab/unit time, could not be AC/unit time. Why? Because BC was “not traversed in the 

same time as the line ab” if the object travelled with a speed AC/unit time. In other words, 

doubling the speed would mean that distance AB was traversed in ½ unit time, and distance BC 

or ab would also be traversed in ½ unit time. But AB/½ unit time was a different speed from the 

original addend—AB/unit time—just as ab/½ unit time represented a different speed from 

ab/unit time. If speed AC/unit time was the sum of those two original speeds, it was not 

intuitively clear that the original addends composed into the sum, AC/unit time, since neither 

                                                
67 Images on the following pages are from Immanuel Kant, Kant’s Prolegomena, and Metaphysical Foundations of 
Natural Science, trans. Ernest Belfort Bax (London : G. Bell and Sons, 1883). 
68 Kant did not use “unit time” but he used AB, BC and ab to represent spaces traversed “in equal times.” Ibid, 
490, 26. 
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was distinguishable in the sum.69 One would have to refer to an empirical test to show that this 

was indeed the case, which violated the condition that the mathematical foundation of motion 

must be constructed in a priori intuition. Furthermore, if one had referred to the parallelogram 

of forces that showed how one motion was affected by another, then this construction was 

mechanical, not mathematical, which “should only make intuitive what the object (as quantum) is 

to be, not how it may be produced by nature or art by means of certain instruments and forces.”70 

But Kant stated another reason why he refused to represent speed as spatial magnitudes:  

“something is assumed here that is not obvious in itself—namely, that two equal speeds 
can be combined in precisely the same way as two equal spaces—and it is not clear in itself that a 
given speed consists of smaller speeds, and a rapidity of slownesses, in precisely the same way that a space consists 
of smaller spaces. For the parts of the speed are not external to one another like the parts of the 
space, and if the former is to be considered as a quantity, then the concept of its quantity, since 
this is intensive, must be constructed in a different way from that of the extensive quantity of 
space.”71 

Basically, Kant denied that speed is composed of smaller speeds, i.e., that its “parts” are 

smaller speeds, just as length or angle are composed of smaller lengths and angles. Therefore, 

speed cannot simply be represented as a geometrical or extensive magnitude, but can only be 

conceived as an intensive magnitude, like a degree of a sensation. The composition of speeds 

does not invoke any numerical notions, nor the concatenation of parts, but must be the 

“coalition” of two intensities, each of which can only be grasped as a unity, and this coalition 

must be self-evident in a priori intuition. If this is not difficult enough, the composition must also 

                                                
69 As Kant also noted, “geometrical construction requires that one quantity be the same as another or that two 
quantities in composition be the same as the third, not that they produce the third as causes, which would be 
mechanical construction.” (Ibid, 493, 29.) In Sutherland’s words, the difficulty here was the 
“unrepresentability” of the “identity of parts of magnitude with the whole magnitude they compose.” 
Sutherland, Daniel. “Kant on the Construction and Composition of Motion in the Phoronomy.”  
70 Kant, Immanuel. Metaphysical Foundations of Natural Science, 495, 31-2. 
71 Ibid, 493, 28-9. My italics.  
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conform to the categories of quantity defined in the First Critique—unity, plurality, totality—a 

criterion derived, ironically, from magnitudes that have a clear part-whole structure.   

Kant’s solution to this difficult task goes as follows: to think of the composition of two 

motions as occurring in two “relative spaces,” namely two reference frames. Consider the point 

object moving with a speed in one reference frame. Consider a second reference frame going in 

the opposite direction with the same speed with respect to the first reference frame. Then viewed 

from the second reference frame, the point-object is travelling with double speed. From perhaps 

God’s point of view, both addends are simultaneously identifiable in the sum and the identity of 

the sum and the addends was intuitively clear. Similarly, when considering the composition of 

two motions comprising an angle, instead of applying the parallelogram of motion directly, Kant 

proposed to think through the following scenario (Figure 5):   

 

Figure 5 Kant’s illustration for the addition of two speeds in directions that comprise an angle. (Ibid, 163.). 

 

Instead of composing AB/unit time and AC/unit time into AD/unit time, consider an 

object moving with AC/unit time with respect to only one reference frame, let us say in the 

absolute space. Consider a second reference frame moving with a speed equal in magnitude with 

AB/unit time, but in opposite direction of AB, with respect to the absolute space. So at the time 

when the object reaches point E, from the perspective of the second reference frame, which itself 
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is at e, in absolute space, it would seem as if the object has traversed a distance described by Em; 

when the object reaches F, from the perspective of the second reference frame, which itself is at f, 

it would seem as if the object has traversed a distance described by Fn, and so on so forth. This 

allows motion AC and BA to be composed into motion AD.  

To correspond with the subcategories of quantity, Kant reinterpreted unity as the “unity 

of line and direction,” plurality as “plurality of directions in one and the same line,” and totality 

as the “totality of directions, as well as lines.” Each corresponds with the cases of the composition 

of two motions in the same direction along the same line, in different directions along the same 

line, and along different lines.72 This again deviates from the application of unity, plurality, 

totality to intensive magnitudes in the First Critique, where unity is interpreted through the fact 

that each intensive magnitude can only be grasped as a unity, while plurality is interpreted 

through “approximation to zero.” But more crucially, under such interpretation of the 

subcategories of quantity, the connection to measurement is lost. How precisely did Galileo, for 

instance, proceed from experimental phenomena to its mathematical description, then? This is 

not explained by Kant’s demonstration in “Phoronomy”: in fact, we know for sure that Galileo 

did not go through the same kind of reasoning but simply assumed that speed was additive. Kant 

was motivated to build a “pure” mathematical foundation of motion (by constructing it as a 

“quantum”) in order to explain the apodictic certainty of the mathematical laws of motion (by 

proving its synthetic a priori nature), but paradoxically, his solution did not explain what exactly 

in the experimental phenomena was in fact mathematically described by founders of 

mathematical physics like Galileo, or what exactly in such phenomena did conform to 

mathematical laws (e.g., the mean speed theorem). 

                                                
72 Ibid, 495. 



   51 

Why did Kant go through so much trouble to demonstrate the composition of motion as 

two intensive magnitudes? What Kant tried to reconcile were the conflicting beliefs that it makes 

no sense to describe concepts in dynamics by a part-whole structure, and yet dynamics had been 

successfully mathematized. The task was further complicated by his idiosyncratic definition of 

quantity grounded in a priori intuition as well as the assumption that mathematical description 

entails a bearer of magnitude with an additive procedure. If one considers how concepts of 

motion in fact became mathematized, historically, Galileo and Newton simply did not have 

anything like Kant’s composition of motion in mind when they laid the foundation for 

mechanics: they simply took the part-whole structure of concepts like distance, time, speed, etc., 

for granted. The real question, as mentioned above, is then what in the experimental phenomena 

corresponded with the geometrical representation by Galileo or Newton, so that mathematical 

derivations were able to predict the experimental outcome. Such miraculous effectiveness of 

mathematics in empirical sciences motivated Kant to provide an a priori explanation in the first 

place, but because the measurement process was never part of his concern and Kant focused on 

the search for an additive “magnitude,” in the end we still do not have an account of how motion 

was actually quantified that is historically and epistemologically convincing.73 

In the meantime, we recognize that the difficulty stemmed from the deeply grounded 

belief that quantification entailed directly additive magnitudes and the tendency to characterize 

magnitudes in terms of part-whole structure analogous to that of geometrical, spatial, and 

                                                
73 Also, his construction could not extend to other concepts in mathematical physics. Regarding the quantity of 
matter, Kant argued that the quantity of matter could not be constructed as a mathematical magnitude, but 
only “manifests itself in experience” through the quantity of motion at a fixed speed. Neither could it be 
determined by “an aggregate of parts” since matter was “infinitely divisible.” Finally, it was not possible to 
compare every chunk of matter with every other matter through extension if their respective density was 
unknown. Quantity of matter was not constructible partly also because the concept of matter already contained 
causality and force. See Friedman, Michael. Kant’s Construction of Nature, 292. 
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extensive magnitudes. This conception simply became inadequate in explaining how concepts in 

empirical sciences were mathematized. Into the 19th century, the increasing use of indirect 

measuring techniques meant that many quantitative concepts (in particular, those in electricity 

and magnetism, heat, and the measurement of other “imponderables”) were defined 

operationally and through their mechanical effects; their simply could not meet the immediate 

visual intuitiveness that Kant required to determine quantities and their composition. Hermann 

von Helmholtz, for example, regarded the unit as posterior to measurement, additivity as 

operationally defined, geometrical measurement as no more fundamental or inherently certain 

than any other form of measurement. 

1.6. Mechanical or “Absolute” Units in 19th Century Sciences 

The shift from 18th and early 19th century natural philosophy to late 19th century exact 

sciences was characterized by a number of trends: the quantitative spirit came to predominate, 

scientific theories became inseparable from technology and instrumentation, a common set of 

research topics and experimental protocols began to be shared across national boundaries, 

specialized institutions and professional communication channels emerged, among many 

others.74 Problems related to measurement were embedded in these developments. To name one 

of them: the refinement of experimental instruments allowed the discovery of new phenomena 

that became quantifiable due to new experimental designs. For example, the torsional force 

between conductors charged with static electricity could be formulated through an equation 

analogous to the law governing Newtonian central force, only thanks to an experimental setup 

that created conditions hardly existing in nature. As the historian John Heilbron articulated: “the 

                                                
74 Jed Z Buchwald and Sungook Hong, “Physics,” in From Natural Philosophy to the Sciences: Writing the History of 
Nineteenth-Century Science, ed. David Cahan (University of Chicago Press, 2003). 
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instruments not only made the measurement, they also produced the phenomena to be 

measured.”75 Sophisticated instruments, such as protractors used in geodetic surveys or 

astronomical observations, existed long before the 19th century, but in those cases angles 

measured other angles, lengths measured other lengths, and durations measured other 

durations.76 Magnitudes measure other magnitudes of the same kind through geometrical laws. 

The same could not be said for quantities emerging from experimental sciences of the late 18th 

and 19th century, such as charge, potential, current intensity, heat and so on.  

How did the traditional understanding of quantity in terms of part-whole structure, 

homogeneity and units, and so on, reconcile with these new quantitative concepts? One solution 

was to regard measurement simply as reducibility to length, mass and time, which fundamentally 

did not challenge the conception of quantity based on geometrical or extensive magnitudes such 

as length and mass. In other words, the extensive magnitudes, analogous to the geometrical 

archetypes, continued to serve as the foundation of measurement. As mechanics had been the 

paradigmatic model of mathematical physics since Newton’s Principia, various new phenomena 

that later became distinct subfields of physics were initially investigated in terms of their 

mechanical effects, proceeding from the study of forces—between assumed “particles” in 

electricity, magnetism, heat, optics, and so on77—and dynamics of macroscopic experimental 

                                                
75 Heilbron, Weighing Imponderables and Other Quantitative Science around 1800, 3. 
76 Ibid, 65. 
77 The imponderables were thought to carry properties or forces that explained a number of newly discovered 
electrical, magnetic, or thermal phenomena. For instance, before the acceptance of the field theory of 
electromagnetism in late 19th century, it was believed that electricity consisted of one or two “rare, subtle, 
highly elastic” fluids that easily pervaded conducting substances like metals but was obstructed in non-
conductors. The imponderables “eluded the universal pull of gravity or escaped from the pressure of terrestrial 
tourbillion.” Just as the distribution of electric fluid in conductors explained their attractive and repulsive 
forces, the caloric residing in bodies explained such phenomena as the latent heat. (Ibid.) The philosophical 
implication of the successful measurement of the imponderables did not seem to have been explicitly theorized 
for the majority of the century. 
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objects. This approach remained significant in the second half of the 19th century (see Chapter 2 

for details). With the advancements in each field, experimental laws continued to find the easiest 

expression in mechanical terms, which also proved to be the least controversial among scientists 

subscribing to different high-level explanatory theories (e.g., the field approach versus particle 

approach to electricity and magnetism) when they had to decide on a common definition.78 With 

dimensional analysis and the unifying principle of energy conservation, an interconnected system 

of algebraically expressed laws brought disparate realms in the exact sciences together.79 The 

foundation of this system was naturally the mechanical quantities—length, mass and time. 

Length and mass were also the first to be standardized internationally through material artifacts 

in 1875.  

Efforts to materialize this interconnected system and standardize newer quantities (many 

of which were essential for industrial technologies) also relied on their mechanical definition. For 

example, a unit magnetism (or “magnetic fluid”) was defined by Carl Friedrich Gauss in the 

1830s and 40s as “that which produces a repelling effect on another [unit quantity] like itself, 

separated in unit distance, with a motive force = 1, i.e., the effect of accelerative force = 1 for a 

mass = 1.”80 Gauss and Wilhelm Weber gave the name to the system of electrical and magnetic 

quantities defined as functions of mechanical units the “absolute system of measurement” (See 

                                                
78 See Helmholtz, Prof H. “XLVIII. On Systems of Absolute Measures for Electric and Magnetic Quantities.” 
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 14, no. 90 (December 1, 1882): 430–
40. Hermann von Helmholtz, “XLVIII. On Systems of Absolute Measures for Electric and Magnetic 
Quantities,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 14, no. 90 (December 1, 
1882): 430–40, https://doi.org/10.1080/14786448208628441. Also James Clerk Maxwell, A Treatise on 
Electricity and Magnetism (Clarendon Press, 1873). 
79 Buchwald, Jed Z, and Sungook Hong. “Physics.” 
80 Cited in Andre Koch Torres Assis, Karin Reich, and Karl Heinrich Wiederkehr, “On the Electromagnetic 
and Electrostatic Units of Current and the Meaning of the Absolute System of Units — For the 200th 
Anniversary of Wilhelm Weber’s Birth,” Sudhoffs Archiv 88, no. 1 (2004): 10–31. 
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Chapter 2 for details). The name continued to be used among later 19th century scientists. When 

William Thomson, for example, defined temperature scales based on the conversion between 

mechanical work and heat, he also named it the “absolute” temperature (See Chapter 3 for 

details). The term “absolute” signified an indubitable foundation. The edifice of exact science 

rested on the universally accessible and comparable quantities of length, mass and time, whose 

objectivity were also grounded in the a priori intuition in the Kantian spirit. This conception was 

reiterated by 19th century such as the neo-Kantian philosopher Hermann Cohen (Chapter 2) 

and the physicist Heinrich Wilhelm Dove, as the latter wrote in an influential81 essay Über Maaß 

und Messen:  

“Time, space, matter, which occurred in every perception, were the only perception which 
could vary in relation to itself quantitatively. To state these variations, it is required to have a 
communal unit, a measure, which can be either given through nature or stipulated by 
convention.”82  

The quantitative structure of the mechanical units—length, mass and time—was self-

evident: it was characterized by the part-whole structure typical of geometrical magnitudes. This 

structure was also embedded in the innate mode of perceptual experience. Their traditional 

measurement techniques through a(n imagined) process of aggregating or concatenating equal 

units was considered “natural,” only one step away from using body parts or crude senses to 

estimate lengths, durations, and weights. It is therefore is not surprising that many 19th century 

practicing scientists regarded reducibility to these mechanical units or to extensive magnitudes as 

the foundation of measurement in general. In the opening chapters of the highly influential 1873 

Treatise on Electricity and Magnetism, Maxwell noted that  

                                                
81 See M. Norton Wise, ed., The Values of Precision (Princeton University Press, 1997), 118. 
82 Heinrich Wilhelm Dove, Ueber Maass und Messen, oder, Darstellung der bei Zeit-, Raum- und Gewichts-Bestimmungen 
üblichen Maasse, Messinstrumente und Messmethoden, nebst Reductionstafeln (Verlag der Sanderschen Buchhandlung, 
1835), 2. 
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“There must be as many different units as there are different kinds of quantities to be 
measured, but in all dynamical sciences it is possible to define these units in terms of three 
fundamental units of Length, Time, and Mass…hence, in all scientific studies it is of the greatest 
importance to employ units belonging to a properly defined system, and to know the relations of 
these units to the fundamental units, so that we may be able at once to transform our results from 
one system to another.”83 

On a similar theme, when commenting on the foundation of measurement in light of 

psychophysicists’ attempt to measure sensation (see Chapter 3 for more details), the physiologist 

Johannes von Kries wrote in a widely cited essay that the reason why sensation could not be 

measured was because it could not be reduced to extensive magnitudes.84 Certitude in 

measurement lay in the clear intuitive sense in which one could declare two magnitudes as equal. 

Surveying all quantitative concepts in the physical realm, one could observe that magnitudes 

became measurable as some combinations of length, mass and time.  

“…in the final analysis it is always and only values of length, time and mass that are 
compared one to another. The reduction of all other magnitudes to these values is mediated by a 
convention that involves an appropriate and pragmatic consideration of empirical relations.”85  

The only major perceived problem within this system of measurement built on 

mechanical units was error, or, the impossibility of absolute precision due to mankind’s crude 

senses. According to the 1842 Handwörterbuch der Chemie und Physik: “since natural phenomena are 

represented in space and time, a precise understanding according to measure and number is 

essential for a complete knowledge of them (phenomena).”86 Error and uncertainty in 

                                                
83 Maxwell, A Treatise on Electricity and Magnetism, 3.  
84 J. von Kries, “Ueber die Messung intensiver Grössen und über das sogenannte psychophysische Gesetz,” ed. 
R Avenarius, Vierteljahrsschrift fur wissenschaftliche Philosophie 6 (1882): 257–94. 
85 Ibid. 
86 E.F. August et al., “Experiment, Beobachtung,” in Handwörterbuch der Chemie und Physik: A - E (Simion, 1842), 
771. 
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measurement also stemmed from the crudeness of the visual sense, rather than the conception of 

measurement based on the way units of length, mass and time were measured.   

“the quantitative conception of phenomena is nevertheless limited by the imperfectness of 
our senses. Indeed, we attempt to trace the observations, more and more, back to observations 
through the visual sense, which, in itself was the most exact, is still capable of unlimited 
refinement through the instruments. The history of the sciences shows clearly, how the progress 
of sciences is dependent on the perfection of optical instruments and in general, the same devices 
through which visual perception became more accurate.”87 

Indeed, the process of standardizing the first international unit of length and mass in 1875 

did seem to boil down to congruence in superposition, to the perfect alignment of two material 

rods determined by visual means with the aid of microscopes. The original ideas for a metric 

reform proposed by the French Academié des sciences in 1791 was to ground the standards of 

length, mass and time in natural constants that were considered immutable, universally accessible 

by all cultures, and reproducible any time in case that material prototypes were lost. Invariable 

properties of nature served as the ground of certitude for the units thus defined. This vision was 

never truly realized, at least beyond France. Unit length, for instance, was supposed to be 

grounded in either the length of a seconds pendulum or 1/4 of 10-millionth of the earth’s 

meridian. Unit mass was supposed to connect to unit length through the mass of pure 𝐻#𝑂 of a 

given volume, at the temperature of its maximum density. However, the practical difficulties 

involved in determining the relation of these constants to existing standards in the 19th century 

meant that it would be at odds with the goal of producing easily reproducible standards from 

easily accessed resources. The length of a seconds pendulum would vary by geographical location 

due to the differences in gravitation and air resistance, according to Friedrich Bessel.88 Similarly, 

                                                
87 Ibid.  
88 Friedrich Wilhelm Bessel, “Ueber Mass und Gewicht im Allgemeinen und das Preussische Längenmass im 
Besonderen.,” in Populäre Vorlesungen über wissenschaftliche Gegenstände (Penthes-Besser & Manke, 1848), 285. 
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the meridian could not be directly measured, but only calculated based on the length of an arc 

subtending one degree in latitude. But the measurement of such large-scale geographic distance 

required extensive geodetic survey using triangulation, and small inaccuracies in angle 

measurement would be greatly amplified in the process. The intrinsic irregularity of the shape of 

the earth further meant that it was impossible to infer the overall dimensions of the earth with a 

degree of certainty required for the fundamental units of a system of measurement. By mid-19th 

century it was a consensus that the connection between the Metre produced by France and the 

earth’s meridian was only nominal. As pointed out by the astronomer and later the president of 

the International Bureau of Weights and Measures, Wilhelm J. Foester:   

“Good measurements with help of a suitably established and carefully maintained length 
prototype made of metal, perhaps controlled by suitable parts of completely crystalized materials, 
can therefore serve much better to detect the changes in the relationships of extension and 
curvature of a surface portion of the earth’s body…”89 

The original French Metre standard produced as 1/4 of a 10-millionth of the earth’s 

meridian, according to Foester, was so unreliable that its foundation was “illusory” and quickly 

abandoned when the metric system was introduced to Germany. Similarly, pure water in nature 

was impossible to find, hence to define mass on the density of water meant that the chemical and 

thermal conditions of the water must be determined as precisely as possible to calculate the 

deviation of the water used from “pure water,” at maximum density and highest purity.90  

                                                
89 „Gute Messungen mit Hülfe eines zweckmässig eingerichteten und sorgfältig aufbewahrten Urmaasses von 
Metall, vielleicht noch controlirt durch geeignete Stücke aus vollkommen krystallisirten Stoffen, werden daher 
viel eher dazu dienen können, wirkliche Veränderungen in den Erstreckungs - und Krümmungsverhältnissen 
eines bestimmten Flächenstücks des Erdkörpers zu erkennen, als dass man aus derartigen Maass 
bestimmungen unmittelbare und allgemein gültige Controlen der Unveränderlichkeit des Urmaasses ableiten 
könnte.“ Wilhelm Foerster, “Gemeinsames Maass und Gewicht, und der Pariser Vertrag vom 20. Mai 1875,” 
in Sammlung wissenschaftlicher Vorträge (Dümmler, 1887), 61. 
90 Ibid, 55.  
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When 17 nations signed the first metric convention in Paris in 1875, they also agreed to 

produce prototypes of unit length and mass based on the material standards in the Paris Archive, 

rather than on natural constants such as the density of water or the meridian of the earth.91 This 

was motivated largely by pragmatic needs. Linking standards to natural constants would be too 

time consuming, although some scientists had by then advocated a future length standard 

grounded in the speed of light (See Chapter 4). Still, the production of the Meter and Kilogram 

prototypes in 1875 was a highly significant, symbolic event. An abstract mathematical usage was 

ascribed to an arbitrarily chosen artifact by stipulation, which Ludwig Wittgenstein mentioned in 

Philosophical Investigations: “there is one thing of which one can say neither that it is one metre long, 

nor that it is not one metre long, and that is the standard metre in Paris.”92 The production of 

the unit length prototypes was literally achieved by laying one metal bar against another and 

observing the congruence under a microscope. In other words, the whole system of scientific 

quantities rested on the rudimentary principles of congruence in superposition and 

concatenation, which mirror the way geometrical length had been measured for millennia.  

1.7. Paul Du Bois Reymond: the Centrality of Linear Magnitudes 

As mentioned in previous sections, the objects of mathematics had been considered as 

magnitudes and multitudes abstracted from concrete bodies in nature, since quantitative features 

were thought to inhere in particular physical bodies, qualities, actions and so on. The distinction 

between pure mathematics and the mathematical study of nature—the quantitative sciences—

was more or less a division of labor, since they concern ultimately the same objects, namely 

magnitudes and multitudes with concrete embodiments. This conception began to crumble with 

                                                
91 See Terry Quinn, From Artefacts to Atoms: The BIPM and the Search for Ultimate Measurement Standards (OUP USA, 
2012). 
92 Cited in Robert J. Fogelin, Wittgenstein: The Arguments of the Philosophers (Taylor & Francis, 1999), 127. 
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the development of 19th century mathematics. Formalization and rigorous deductive proofs 

replaced intuitive certainty, characteristic of Euclid’s geometry, as the criteria for valid 

mathematical theorems. As mathematical entities emerged, which are entailed by logic but could 

by no means be intuited (e.g., the transfinite numbers or the everywhere continuous but nowhere 

differentiable function), the connection to concrete magnitudes in nature became increasingly 

tenuous. Mathematics as a discipline formed its own domain of topics, methods, and professional 

standards.93  

Hence, since the second half of the 19th century, mathematicians rarely discussed the 

term quantity. But not all mathematicians had abandoned the attempt to establish a connection 

between abstract mathematics, geometrical intuition, and the realms of the application of 

mathematics, despite the increasing difficulty of such a task. In the opening chapters of Paul du 

Bois Reymond’s 1882 Die Allgemeine Functionentheorie, a treatise dealing with a mix of philosophical 

issues and advanced mathematics such as infinite sequences, he provided an extensive discussion 

of the meaning of quantity.94 By quantity, du Bois Reymond meant all quantitative concepts in 

the empirical sciences hitherto capable of measurement. His views demonstrated the persistence 

of Kantian influence among 19th century intellectuals’ understanding of the relationship between 

abstract mathematics and quantitative concepts in the sciences.  

In first chapter titled “Über mathematische Grössen,” du Bois Reymond noted that 

“mathematical quantities (quantum, quantities, quantité)” in general refer to “a common 

property of heterogeneous things, in relation to which they are numerically comparable, such as 

                                                
93 See Jeremy Gray, Plato’s Ghost: The Modernist Transformation of Mathematics (Princeton University Press, 2008). 
94 He was particularly concerned with the existence of certain mathematical limits, such as infinite decimals like 
3.1415926…. Ibid, 145-147. 
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length or weight.”95 While this is a quite ambiguous characterization, he claimed that with any 

more specific “diplomatic definitions” to capture the essence of mathematical quantities would 

yield little results: “We obtain through these definitions as little an overview of the extension and 

content of a concept so delicately and richly ramified, as we can obtain about a new animal 

species when given only a certain number.”96 

The correct way to approach the question, for du Bois Reymond, is to examine the 

various realms of knowledge in which the concept of quantity occurred. These include both 

subjects that studied the external world, e.g., physical sciences, and those that studied the “inner 

life of the soul,” e.g. psychology. A definition of mathematical quantities ought to be based on 

commonalities among heterogeneous quantitative concepts in these disciplines—here, the genus-

species, universal-subordinate relationship between mathematics and the sciences was implicitly 

assumed. In line with tradition, he categorized quantities into the discrete and the continuous. 

Numbers are “a discrete kind of magnitude, [which] arise from the representations of 

separateness of objects in perception.”97 Continuous quantities, on the other hand, seem to 

encompass most quantitative concepts studied in physical sciences—lengths, areas and spatial 

                                                
95 „Unter mathematischer Grösse (quantum, quantities, quantité) versteht man gewöhnlich eine gemeinsame 
Eigenschaft verschiedenartiger Dinge, in Bezug auf welche sie numerisch vergleichbar sind, wie deren Länge 
oder Gewicht...Allein es ist, wie sogleich eingeräumt werden soll, mit dergleichen Produkten diplomatischer 
Definitionskunst überhaupt nicht viel geleistet. Wir erhalten durch sie ebensowenig einen Überblick über den 
Umfang und Inhalt einese so zart und reich verzweigten Begriffs, als wenn uns eine neue Tierform durch 
Angaben einer gewissen Anzahl.“ Paul Du Bois Reymond, Die allgemeine Functionentheorie (H. Laupp, 1882), 14-5. 
96 Ibid.  
97 This way of defining the concept of number in close connection to sensation, perception or counted objects 
following the Kantian tradition remained influential in late 19th century but received a backlash from 
advocates of logicism. Famously, Edmund Husserl outlay a similar analysis of number in the 1891 Philosophy of 
Arithmetic in terms of its origin in unmediated perceptual experience, e.g., cardinal numbers arise from the 
intuition of “something and something and something…” which resulted in severe criticisms from Gottlob 
Frege. See Gottlob Frege, “Review of Dr. E. Husserl’s Philosophy of Arithmetic,” trans. E. W. Kluge, Mind 81, 
no. 323 (1972): 321–37. 
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volumes, weights, time, velocity, force, heat, intensity of light and sound, electric tension, 

intensity of currents, etc. What these continuous mathematical quantities have in common, 

according to du Bois Reymond, is that “their measurement and comparison are based on visual 

perception, and that what they have in common, which can be compared and measured, 

ultimately always boil down to straight lines, and can be divided and combined like straight line 

segments.”98 He gave a few examples: the curve traced by the pointer of the clock describes time, 

while the arm of the scale measures weight; similarly, force is set to be proportional to the energy 

of pressure or motion, which in turn was expressed in terms of length measurement.99 

Reducibility to length is central to conceptualizing the nature of all quantitative concepts 

for du Bois Reymond. Most quantitative concepts in the physical sciences are expressed as 

functions containing length as a variable, he noted, and they can be reduced to length in their 

measurement. More importantly, he claimed that the differences, parts, and multiples of parts of 

these quantities—length, mass, time, velocity, force, heat, intensity of light and sound, electric 

tension, intensity of currents, etc.—are quantities of the same kind just as parts of lengths are again 

the same kind as the whole. How exactly he arrived at this conclusion is unclear. By what means 

could concepts like velocity, force, heat, intensity of light and sound, electric tension, intensity of 

currents, etc., which are measured indirectly through a network of experimental laws, be said to 

have parts constituting the whole? On this du Bois Reymond did not inquire further. Essentially, 

du Bois Reymond would characterize any quantitative concept defined through a function with 

length as a variable as a linear quantity, as long as this concept is bound by zero.  

                                                
98 „Die angeführten stetigen mathematischen Grössen haben, ihre Messung und Vergleichung auf 
Wahrnehmungen des Gesichtssinnes beruht, dass ihr vergleich- und messbares Gemeinsame schliesslich stets 
die geradlinige Strecke wird und dass sie sich wie diese theilen und zusammensetzen lassen.“ (Du Bois 
Reymond, Die allgemeine Functionentheorie, 20.)  
99 Ibid, 22.  
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Furthermore, he thought that both extensive and intensive magnitudes belong among 

linear mathematical quantities. It is easy to comprehend why extensive magnitudes are linear for 

him, according to the criterion discussed just in the previous paragraph. However, intensive 

magnitudes are also linear magnitudes: “the condition that the sequence of magnitude is a 

mathematical one requires only that they are sufficiently determinate [in the sequence] in 

themselves, not that they are determinable for us right now by being assigned to a linear 

measure.”100 In other words, even if intensive magnitudes are not immediately expressible as a 

function of linear quantities, the fact that the difference between degrees are again magnitudes of 

the same kind—again, a claim he did not explain—means that intensive degrees also share the 

essential characteristic of linear quantities.  

Consequently, even temperature and sensation satisfy this criterion, i.e., that their 

differences are magnitudes of the same kind. Du Bois Reymond seemed to have held the view 

that since “continuous magnitudes” like temperature could have infinitesimal increments, they 

are composed out of “arbitrarily small increments with the same property.”101 The reasoning 

behind this conclusion was not explained. As we will see in chapter 3, the claim that part-whole 

                                                
100 „Die Bedingung, dass die Grössenfolge eine mathematische sei, verlangt nur, dass ihre Individuen an sich 
hinlänglich bestimmte, nicht dass sie zur Zeit etwa durch Zuordnung zu lineärem Maass für uns bestimmbar 
seien, oder dass wir auch nur eine Ahnung davon hätten, wie solche Zurückführung je werde bewirkt werden 
können.“ Ibid, 25. 
101 „In der That, wenn die Veränderung einer Veränderlichen durch Unterschiede so zu sagen aus demselben 
Stoff wie die Veränderliche stattfindet, so muss sie, wie schon bemerkt, wenn stetig, mit Null anfangen, weiter 
muss sie, da sie ganz aus beliebig kleinen Zuwächsen von gleicher Beschaffenheit sich aufbaut, auch Vielfache 
und Theile derselben Art zu lassen, und dies ist eben unser Begriff von der lineären Grösse.” (Ibid, 26.) He also 
argued that when we speak of “difference in degree,” the changes (increase or decrease) of a magnitude are 
taken to be the same kind as the original magnitude. (Ibid.) By this logic, sensations were also linear 
mathematical quantities for du Bois Reymond. Sensations that arise from stimuli could be said to have various 
degrees: "increased feeling of warmth, which corresponds to an increment in temperature, arise from the 
increment in sensation, which itself is a sensation of warmth, through which the feeling of warmth becomes an 
inner image of temperature.” (Ibid, 29) 

 



   64 

structure applied to temperature at all would be challenged by Ernst Mach, drawing from the 

history of 19th century thermometry.  

In sum, du Bois Reymond arrived at linearity as a unifying feature for all quantitative 

concepts in the sciences:  

“It seems that however far away we are now and in future from being able to represent all 
phenomena of the external world mathematically, there will be no instance of magnitude that 
cannot be taken as a linear mathematical magnitude…because anywhere we venture into, all the 
variables will show themselves to be graduated in extension or degree, and such magnitudes, if 
capable of more precise determination, we consider…as essentially linear, even if we have not yet 
untangled them in their linear geometrical or mechanical end-variables.”102  

Echoing Descartes’ vision in Rules for the Direction of the Mind, du Bois Reymond noted 

“geometrical representations therefore form the origin and constant refuge of our exact thinking, 

a claim which can encounter little objection.”103 

In this chapter, we have seen that the part-whole structure typical of geometrical 

magnitudes were projected onto all other measurable quantitative concepts in the canons of 

natural philosophy. The part-whole structure was contingent upon homogeneous and equal 

units, and measurement consisted of multiplying such unit so many times as to exhaust the 

whole. There were several reasons for how deeply entrenched this conception of quantity and 

measurement had been: 1. This was encouraged by the view that mathematical structures inhere 

                                                
102  „Es scheint überhaupt, dass, wie weit wir davon entfernt sein und in alle Zukunft bleiben mögen, alle 
Erscheinungen der äußeren Wahrnehmungswelt mathematisch darstellen zu können, kein Beispiel einer 
Grössenart sich darbieten will, die nicht vermuthlich einmal in den Begriff der linearen mathematischen 
Grösse wird aufgenommen werden können, oder besser, die wahrscheinlich nie als eine lineäre sich erweisen 
werde. Denn überall , wohin wir vordringen , zeigt sich alles Veränderliche der Ausdehnung oder dem Grade 
nach abgestuft, und solche Grössen, falls sie genauer Bestimmung fähig sind, betrachten wir, wie dies soeben 
näher erörtert wurde, als wesentlich lineär, auch wenn wir sie noch nicht, ähnlich wie ich dies von der Härte 
bemerkte, in ihre linearen geometrischen und mechanischen Endvariabeln aufgelöst haben.“ (Ibid, 28)  
103 The reason was that all quantities either have length as a factor in their dimensional unit, or their 
measurement boils down to reading scales that have length. Expressing quantities in length was "the first step 
toward mechanical understanding.” (Ibid.) 
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in nature, and that the quantitative concepts subject to mathematical (especially geometrical) 

methods must not be distinguished from the mathematical objects themselves. 2. In these canons, 

quantitative relations, which in fact had concrete basis in the method of measurement (i.e., 

concrete procedures being attached with a numerical meaning), were often represented by 

geometrical magnitudes. This can be observed in Euclid’s Book V, Galileo’s Two New Sciences, 

and Descartes’ Rules on the Direction of the Mind. 3. The conceptual problems with projecting part-

whole structure onto non-geometrical objects had been pointed out by many throughout the 

time, such as by the scholastic philosophers. What does it mean for a speed or acceleration to be 

composed out of parts? There’s no sensible answer to this question. Due to various historical 

reasons, such as the success of Galileo’s mechanics and Kant’s “successful” yet highly ad hoc 

solution to constructing speed as an additive intensive degree, these conceptual problems were 

overshadowed. Throughout the 19th century, the traditional conception of quantity and 

measurement remained influential, and evolved into two notions: 1. That all measurable 

magnitudes were reducible to length, mass and time, which were thought to embody the kind of 

part-whole structure analogous to geometrical magnitudes. 2. That all magnitudes were 

ultimately functions of length. This paves way for our discussion of how quantity and 

measurement came to be reconceptualized in the 19th century, especially as it became 

questionable whether equal units of spatial and temporal magnitudes were attainable at all.  
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Chapter 2 Hermann von Helmholtz’s Theory of Quantity and 
Measurement in the Context of 19th century Scientific Practices 
 

2.1. Introduction  

In the last chapter, I discussed the set of ideas that characterize the predominant conception 

of quantity and measurement prior to the 19th century. Measurement did not constitute its own 

philosophical problem, and quantity was frequently conceived through the relationship between 

parts (unit) and the whole, characteristic of geometrical magnitudes. Aristotle’s dictum “quantity 

means that which is divisible into constituent parts” held strong sway in this framework. In face of 

the growing success in mathematical physics, philosophers including Immanuel Kant had to stretch 

the theory of quantity based on part-whole relation in order to account for the “miraculously 

efficacious” applicability of mathematics in explaining natural phenomena. The challenge of this 

task is revealed by the difficult passage in Kant’s Metaphysical Foundations of Science, where Kant 

attempted to reconcile the intuition that speed is not an extensive quantity with the fact that it must 

be conceived as additive in Galilean and Newtonian mechanics. Meanwhile, the idea that 

quantitative structure is embedded in unmediated cognition or in nature itself grew increasingly 

out of touch with the variety of measurement techniques and practices, which measured quantities 

indirectly or generated new quantitative phenomena.  

The influential German scientist Hermann von Helmholtz contributed to a different 

understanding of quantity and measurement in the second half of the 19th century. In Helmholtz’s 

epistemological writings on geometry, measurement is brought to the forefront. Euclidean and 

non-Euclidean geometry are distinguished in terms of their respective metrical expressions for 

distances and angles. As a result, which geometry describes space was for Helmholtz an empirical 

question to be determined through measurements (e.g., stellar parallax). Moreover, he pointed out 
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that the possibility of using analytic geometry to investigate the structure of space already contains 

an assumption of empirical origin: it must assume the comparability of lengths, derived from the 

existence of rigid structures in our world. In a less renowned article from 1887, “Counting and 

Measuring” Helmholtz presented a theory of quantity more pertinent to scientific practices, with 

an empiricist thesis expanding beyond geometry to virtually all quantitative concepts in physical 

sciences. According to Helmholtz, to clarify what it means to express the relations between real 

objects through numbers—what it means to quantify—is to clarify the empirical conditions under 

which mathematical equality and addition can be interpreted in an experimental context and 

operationalized through specific procedures. The mathematical relation of equality should be 

interpreted by identifying a symmetrical and transitive relation in the act of comparison. 

Mathematical addition, on the other hand, for Helmholtz, ought to be interpreted through a 

concrete combinative operation (e.g., joining two objects side by side) demonstrating conformity 

to the associative and commutative laws of addition. The implication of Helmholtz’s account is 

that the method of comparison provides the condition of possibility for discussing any particular 

quantity concept; it is an integral part of the latter’s meaning and definition. Furthermore, he noted 

that quantity is an “objectification” of objects’ capacity to bring forth certain empirical effects in 

experiments, in such a way that these effects can be mathematically describable. The concept of 

unit, as well as divisibility, are unnecessary for determining the measurability of a quantity, they 

are conceptually secondary: once the quantity obtains a determinate meaning fixed by a reliable 

method of measurement, it would certainly be possible to think of it in terms of unit and division. 

The techniques of measuring length, mass and time are so ancient that these “fundamental units 

of physics” appear intrinsically describable by numbers, but this still does not change the fact that 

their measurability also have an empirical basis, as any other quantitative concept. 
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While Helmholtz’s essays on geometry were highly influential, his theory of measurement 

was included in an article where he simultaneously discussed the foundation of arithmetic. The 

article was delivered at a time when many of his contemporary mathematicians, such as Richard 

Dedekind and Gottlob Frege, came to believe that foundational statements in arithmetic (later 

extended to the entirety of mathematics) must be proved step by step through logical derivations. 

As a result, Helmholtz’s attempt to “prove” the ordinal number sequence and the additive laws 

by appealing to counting or intuition of time appeared both old-fashioned and inadequate to his 

mathematical audience. The 1887 article was poorly received in its time for this reason, even if 

Helmholtz argued in the article in favor of the thesis that number ought to be defined separately 

from quantity, and that the application of numbers form a distinct philosophical problem from 

the foundation of number. While mathematicians led the path towards logicism and formalism, 

the gap between pure mathematics and quantification in scientific practice only widened, in 

absence of a consensus on how pure mathematics is applied. 

Putting the mathematical concerns aside, Helmholtz’s account of measurement was novel 

in his own time. His key arguments were challenged by his contemporary, the neo-Kantian 

philosopher Hermann Cohen. Cohen attributed a naïve empiricism to Helmholtz in an 1888 

critical review, pointing out Helmholtz’s divergence from the Kantian conception, according to 

which number is derived from quantity. He criticized in particular Helmholtz’s attempt to 

explain physical quantity in terms of the “method of comparison,” and for correlating 

mathematical equality and addition with physical operations before giving any explicit definition 

of the term “quantity.” These criticisms are telling because they reveal the novel aspects of 

Helmholtz’s argument. It appears that Cohen found reprehensible the operationalist undertone 

of Helmholtz’s account, especially Helmholtz’s extensive discussion of the “method of 

comparison” when discussing equality and additivity. For Cohen, the epistemologist’s task is to 
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find a universally applicable category of quantity, a certain mode of synthesizing the content of 

perceptual experience rooted in the transcendental subject, through which individual 

quantitative facts in science can be grounded. How could Helmholtz go straight to the “method 

of comparison” without offering a general definition of quantity in the first place? For Helmholtz, 

however, there simply isn’t a single definition or cognitive category that unifies all quantitative 

concepts in science. Quantitative relations are fulfilled by all kinds of methods of measurement. 

One can only set structural requirements that the method of comparison must meet to be able to 

express equality and additivity, but not predetermine the meaning of these terms from the outset. 

The generalized quantity is an empty concept. Mathematical relations are simply coordinated 

with specific empirical regularities and operations, and the ability to express physical attributes as 

quantities was contingent upon experimental facts.  

Why did Helmholtz propose such a theory of measurement at such a time? What could 

he be referring to with the notion of quantity? Considering that his idiosyncratic views are not 

found in Kant or his contemporary philosophers, neither are they fully foreshadowed in his other 

epistemological writings, the solutions to these problems should perhaps be sought in the history 

of science and technology. Helmholtz’s account of measurement is pertinent to his context of 

scientific practice. As historians have shown, physics as a discipline took its modern form in the 

19th century, characterized by its exact, quantitative and experimental methods.1 The subject 

matter and phenomena studied by physicists became increasingly inextricable from their 

experimental context and instrumentation. Physicists’ tendency to avoid metaphysical 

commitments in the latter half of the 19th century further encouraged them to formulate laws in 

dynamical and energetic terms. At the time, quantities were often directly defined in terms of 

                                                
1 Buchwald and Hong, “Physics,” 165, 168. 
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experimental laws; hence their definitions could be translated into directly observable effects. In 

this sense, the experimental method became an integral, though implicit, part of the definitions of 

these quantities. Parameters of the measuring device itself also frequently entered the calculation 

of these quantities.  

Electricity and magnetism provide telling examples to illustrate how quantification of the 

19th century physics progressed. Helmholtz was directly engaged in researches in electrodynamics 

since the 1870s and was familiar with precision measurement techniques by overseeing Europe’s 

first attempt to standardize electrical quantities in the 1880s. The Physikalisch-technische 

Reichsanstalt under Helmholtz’s directorship also performed experimental work in determining 

the standards. A survey of the history of 19th century study of electricity and magnetism shows 

that the quantification of these phenomena was initially made possible through certain canonical 

experiments that lent themselves to mathematical descriptions. The interaction between 

unspecified “imponderable fluids” or “current-elements” was described through mechanical 

actions among ponderable objects through equilibrium scenarios, e.g. the balance of torsion with 

electrostatic or electrodynamic forces. Most instruments for measuring the most common 

electrical quantities were based on prototype experiments such as those conducted by Charles-

Augustin de Coulomb and André-Marie Ampère. When electrical quantities became 

standardized and their units were determined in the Centimetre-Gramm-Second system in the 

1880s, their definitions also simply contained the dynamical terms describing experimental 

regularities. By examining the experimental work underlying their definitions, I show that a scale 

for these quantities, with or without material embodiments (e.g., a mercury column of certain 

dimensions resembling the “Meter” or “Kilogram” prototypes), ultimately referred to regularities 

brought forth by experimental operations. The addition of these quantities no longer resembled 
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the concatenation of geometrical segments. Hence the distinction between extensive and 

intensive magnitudes could be reduced to that of additive and non-additive ones. 

The standardization of electrical units involved large-scale, high-profile experiments that 

integrated the measurement of multiple quantities in a single setting, such as those performed by 

the British Association led by James Clerk Maxwell in the 1860s and by Wilhelm Weber in 

1880s. The determination of electrical units highlighted the experimental foundation of 

quantitative concepts in 19th century physics and the materiality of instrumentation that made 

theoretical, mathematized reasoning in physical sciences possible. It is no wonder that in 

Helmholtz’s account of measurement, the method of measurement comes to the forefront in 

characterizing quantities, while the notion of unit—a byproduct of the measurability of electrical 

quantities—fades to the background, as well as many other Kantian categories, e.g., 

homogeneity, divisibility and so on. It was the method of measurement that determined if the 

structural requirements of mathematical equality and additivity can be met, which in turn 

determined whether a qualitative aspect of physical phenomena could be considered as a 

quantity. 

Apart from showing how Helmholtz’s account of measurement and quantity was tied to 

his context of scientific practices, this chapter has a second purpose. By showing the pattern of 

quantitative methods in physical sciences, I pave way for my discussion in the next chapter of 

how such pattern was followed in other traditionally non-quantitative areas. In recent years, 

scholars have pointed out that Helmholtz implicitly referred to the controversies brought forth by 

psychophysics in “Counting and Measuring.”2 Yet quantitative methods in physics featured in 

                                                
2 See Heidelberger’s section on Helmholtz in Michael Heidelberger, Nature from Within: Gustav Theodor Fechner 
and His Psychophysical Worldview (University of Pittsburgh Pre, 2004); Olivier Darrigol, “Number and Measure: 
Hermann von Helmholtz at the Crossroads of Mathematics, Physics, and Psychology,” Studies in History and 
Philosophy of Science Part A 34, no. 3 (September 1, 2003): 515–73, https://doi.org/10.1016/S0039-3681(03)00043-
8. 
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the broad backdrop against which the philosophical discussion concerning measurability of 

sensation took place, serving as a benchmark when psychologists reflected on what was 

measurable.   

2.2. Helmholtz’s Epistemology Before 18873  

Though being a prominent practicing scientist, Helmholtz wrote a few widely influential 

essays on the epistemology of mathematics, including the 1868 “On the Facts underlying 

geometry,” 1870 “On the Origin and Meaning of Geometrical Axioms,” and 1878 “Facts in 

Perception.” This last essay concerns primarily perception, but he also mentions issues related to 

geometry, since, as we know, the two are intertwined in Kant’s epistemology. There is a common 

thread connecting the empiricist theses of these essays. That is, Helmholtz tended to dissolve any 

notion of a preestablished harmony between knowledge and the external world by revealing the 

empirical conditions that make such knowledge possible in the first place. This is shown by the 

main arguments in his essays on spatial perception and the foundation of geometry: space is not 

given a priori as a unified intuition but acquired through reinforced associations between tactile 

and visual impressions. Similarly, Euclidean geometry, taken for granted as the geometry of 

space, does not have its seat in the transcendental subject so that it is incapable of being refuted 

by experience; rather, its axioms and validity rest on certain assumptions derived from the 

observation of everyday objects. Along the same line, in his essay on the foundation of arithmetic 

and measurement, Helmholtz argued that numbers are not miraculously efficacious in their 

application in nature; instead, it is we who have chosen to coordinate specific empirical 

regularities, in the act of measurement, with mathematical relations, in order to interpret the 

                                                
3 For more on Helmholtz’s epistemology of geometry and perception, see Gary Carl Hatfield, The Natural and the 
Normative: Theories of Spatial Perception from Kant to Helmholtz (MIT Press, 1990). Cahan, Helmholtz: A Life in Science. and 
Biagioli, Space, Number, and Geometry from Helmholtz to Cassirer. 
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former through the latter. The strategies of argument in these various works on epistemological 

issues are similar: just as local signs in perceptual experience indicate lawful correlations between 

sensations acquired empirically, the abstract system of geometrical axioms and quantitative 

concepts in science indicate lawful behaviors of physical objects, which we derive from empirical 

observation or from directly interacting with these objects.  

In his early career, Helmholtz’s research focused on the physiology and psychology, 

where he tackled issues such as the laws of eye movement and mechanisms of depth, distance and 

locality perception in the visual field. He argued against the “nativist” position, according to 

which innate anatomical mechanism is responsible for spatial perception. For instance, the 

nativist might hold that each point on the retina contains its own “spatial values,” so that its 

stimulation can invoke the perception of a corresponding spatial direction.4 For Helmholtz, the 

ability to localize is entirely learned. The effect of the excitation of individual nerve fibers on 

specific locations of the retinal image gives only a “local sign,” just as the contraction of eye 

muscles required to turn the eyes and direct the line of vision to bring a point on the retina into 

focus is a sign, or as the sensation of voluntary movements required to bring the human body to 

an object is a sign.5 These are all signs whose spatial meaning we have learned to interpret 

through repeated trial and error in our interaction with the environment. The spatial meaning of 

these local signs consists of precisely the correlations among them, for instance, how certain 

regular changes in retinal images (indicated by local signs a1, a2, a3, etc.) are always brought 

forth by certain voluntary movements (indicated by local signs b1, b2, b3, etc.).6 Thus the child 

                                                
4 R. S. Turner, “Consensus and Controversy: Helmholtz on the Visual Perception of Space,” in Hermann Von 
Helmholtz and the Foundations of Nineteenth-Century Science (University of California Press, 1993), 154–204, 175. 
5 Here Helmholtz’s “signs” are closer to “signals” than mathematical or linguistic signs with assigned meanings.    
6 Hermann von Helmholtz, “The Recent Progress of the Theory of Vision,” in Popular Lectures on Scientific Subjects, 
trans. Edmund Atkinson (Longmans, Green, 1873), 267. 
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learns to turn its eyes and reach with its hand objects in its vicinity, by playing with whatever 

object presented to it, by turning it over and over to learn all of the perspectival images and all of 

the sensory impressions it can afford as a result of the child’s own movements. Its eyes learn to 

trace the outline of objects, and every occasion that they succeed in doing so again to bring forth 

the corresponding retinal image is a confirmation that the child has executed the correct 

innervations in the eyes to identify such an object. As an adult, the learning process has become 

unconscious through innumerous repetitions. Spatial relations are learned and consolidated in 

the same way, through orienting ourselves in the immediate environment. Every movement and 

the ensuing perception function are an experiment to confirm that we have learned to read our 

perceptual signs correctly, namely, how to modify the appearance of things in specific ways by 

specific innervations or movements. We learn to exert precisely the kind of innervations to bring 

forth the expected changes in sense impressions.78   

Helmholtz then extended the argument involving “local signs” in spatial perception to 

perception in general, as he formulated in the 1878 lecture “The Facts in Perception”:  

                                                
As he formulates in the 1878 essay “The Facts in Perception”: “We observe during our own continuous activities, 
through which we obtain the knowledge of the enduring of a lawful relationship between our own innervations and 
the bringing into presence of different impressions from the current range of presentables.” See Hermann von 
Helmholtz, Epistemological Writings: The Paul Hertz/Moritz Schlick Centenary Edition of 1921, With Notes and Commentary by 
the Editors (Springer Science & Business Media, 1977). 
7 For instance, as soon as the infant succeeds in seeing the shape of objects by converging both eyes to trace their 
outlines, it forms a rule for the movement of the eyes for seeing future objects. In carrying out those movements and 
receiving input in the retinal images as expected, it becomes more convinced of the correspondence between the two 
processes. It is only because such correspondence can be found in various conditions repeatedly that the spatial 
intuition becomes solidified. Helmholtz, Hermann von. “The Recent Progress of the Theory of Vision,” 266. 
The rules for employing the kinds of innervation to bring forth the desired results, for Helmholtz, is “a piece of 
knowledge which cannot be expressed in words but is the result which sums up my previous successful experience.” 
(Ibid, 271.) 
8 “Each of our voluntary movements, whereby we modify the manner of appearance of the objects, is to be regarded 
as an experiment through which we test whether we have correctly apprehended the lawlike behavior of the 
appearance before us, i.e., correctly apprehended the latters’ presupposed enduring existence in a specific spatial 
arrangement.” Helmholtz, Epistemological writings, 136.  
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“Inasmuch as the quality of our sensation gives us a report of what is peculiar to the 
external influence by which it is excited, it may count as a symbol for it, but not as an image. For 
from an image one requires some kind of sameness with the object of which it is an image…but a 
sign need not have any kind of similarity at all with what it is the sign of. The relation between 
the two of them is restricted to the fact that same objects exerting an influence under same 
circumstances evoke same signs.”9  

The point is that sense perception does not provide a direct copy of the external world. 

Experience only yields knowledge of a correspondence between the lawfulness within and the 

lawfulness outside. The configuration of lawful correlations between sensations (the signs) only 

corresponds with the lawfulness of the external world, since sensations are merely “effects 

produced in our organs by external causes.” Scientific investigation takes the same path, he 

noted, it must constantly form hypotheses and conduct experiments, in which our active 

intervention is correlated with each experimental result it affects, and what can be gained is no 

other than lawful connections in the phenomena.    

In a famous 1868 lecture, Helmholtz limited the correspondence between the inner and 

the outer to mathematical relations:  

“only relations of time, of space, of equality, and those which are derived from them, of 
number, size, regularity of coexistence and of sequence—‘mathematical relations,’ in short—are 
common to the outer and the inner world, and in these we may indeed strive for a complete 
correspondence between our representations and the represented objects.”10  

The strategy of argument developed in Helmholtz's theory of perception is carried over 

into his epistemology of geometry. In his essays on geometry, Helmholtz argued against 

Immanuel Kant’s claim that spatial intuition is given as a whole and necessarily governed by the 

axioms of Euclidean geometry. He built his arguments on his contemporary researches on non-

Euclidean geometries by mathematicians such as Bernhard Riemann and Eugenio Beltrami. 

                                                
9 Ibid, 122.  
10 Helmholtz, Hermann von. “The Recent Progress of the Theory of Vision,” 276. Translation is slightly modified 
by me based on the German original. Hermann von Helmholtz, Populäre wissenschaftliche Vorträge: 2 (Vieweg, 1871), 
98. 
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According to Riemann, the distinction between the Euclidean flat n-dimensional manifold, and 

geometries of constant positive or negative curvature (e.g., spherical and pseudo-spherical 

geometries) lies in their distinctive forms of expression for measuring distances and angles. By 

interpreting geodesics as straight lines in Euclid’s original postulates for geometry, one can 

interpret the spherical and pseudo-spherical (or saddle-shaped) geometries as being governed by 

non-Euclidean axioms, namely sets of axioms modified from Euclid’s original ones. In 

pseudospherical geometry, for example, there is not one, but infinitely many, parallels through a 

point outside a straight line; in spherical geometry, there is more than one shortest line between 

two points.  

Reflecting on these mathematical results, Helmholtz argued that non-Euclidean 

geometries are not merely mathematical possibilities. Which set of axioms governs physical space 

is an empirical matter susceptible to refutation. Since spatial intuition is learned by reinforced 

regularities in sensory impressions, we are perfectly capable of forming spatial intuition 

compatible with the axioms of non-Euclidean geometries if exposed to the appropriate 

experiences. For instance, if an observer who has developed their spatial intuition in a flat space 

enters a pseudospherical world, they would continue to see straight lines as the lines of light rays, 

they would see the most distant objects around them as being at a finite distance, but upon 

approaching them these objects would expand in depth. As a consequence, they would form a 

non-Euclidean spatial intuition. Space is therefore not pre-determined to be Euclidean, but 

simply taken for granted as Euclidean. But why has it been taken for granted? It results from 

reinforced experience with physical bodies encountered in everyday life, such as geometrical 

similarity between shapes of different sizes, which is only possible in space of constant zero-
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curvature.11 Similarity is assumed to be valid regardless of the size and location of objects. 

Furthermore, astronomical observations showed zero stellar parallax (in pseudospherical space, 

the parallax is positive even for infinitely distant points) by Helmholtz’s time.12 But this does not 

mean that future measurements would not refute this result and disprove Euclid’s axioms as those 

actually governing space. 

The best way to determine the geometry of physical space is through measurement and 

analytic geometry, which eliminates all intuition from its methods. The value of curvature that 

distinguishes different kinds of geometry (of constant curvature) can be extracted from intrinsic 

measurements (i.e., without referring to external coordinates) to be compared with Euclidean flat 

space using analytic methods.13 However, Helmholtz argued, since analytic geometry requires 

measurement, and measurement in turn relies on the notion of a rigid structure in motion, the 

notion of rigidity truly must be presupposed, despite being an idealization from experience. 

Geometrical means (congruence in superposition) cannot prove or disprove what it must 

presuppose.14 Had our measuring rods been shriveling up along with our body in motion, 

analogous to what occurs in a convex mirror, where the person as well as the measuring rod 

becomes smaller as they move away from the center, there would be no way to discover this by 

geometrical means alone, because the person in the convex mirror would count up exactly the 

                                                
11 For instance, in geometries of constant but non-zero curvature, enlarging the size of a triangle one also changes 
the sum of its angles. In geometries of non-constant curvature, shapes distort in motion. Similarity is only possible in 
Euclidean flat space. 
12 Helmholtz, Epistemological Writings, 18. 
13 For instance, the distance expression in Euclidean geometry is given by the Pythagorean theorem. It is different in 
non-Euclidean geometries. This is also an intrinsic quantity, meaning that it has a fixed form of expression, 
regardless of the selection of the coordinate system and without referring to a higher dimension in which this 
geometry is imagined to be embedded.  
14 It is in this sense that Helmholtz argued “space is transcendental without its axioms being so.” 
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same number of centimeters as the person outside without realizing the distortion. If this had 

been in fact the case, Helmholtz noted, the entire body of physics would have to be rewritten.  

In Helmholtz’s writings on geometry, measurement emerges as a central theme that 

cannot be avoided in discussing the foundation of geometry. From his point of view, not only 

does the choice among different geometries (Euclidean and non-Euclidean ones, in Helmholtz’s 

time) for describing space depend on measurement (e.g., by measuring stellar parallax), the 

possibility of geometry at all also depends on measurement: as Riemann showed, starting from a 

n-dimensional manifold in which only positional information is given, one has to presuppose the 

comparability of small line elements (ds’s) to apply the tools of analytic geometry, from which the 

structure of space can be further investigated. For Helmholtz, geometry rests on certain empirical 

conditions (e.g., the rigidity of the measuring rod) that make measurement possible, rather than 

the other way around. He expanded this argument to all of mathematical representation of 

physical quantities in the 1887 “Counting and measuring from an epistemological standpoint.” 

The effort to dissolve the pre-established harmony between mathematics and the empirical world 

continues. In this essay, Helmholtz no longer identified arithmetic as the “science of 

magnitudes,” but claimed that it has a separate foundation, while quantity is the name given to 

empirical attributes and relationships that can be represented by numbers. The possibility of such 

representation needs to be clarified on a different basis. The essay is split into two parts, each 

dealing with a different set of issues. In the following sections I examine the two distinct parts of 

“Counting and Measuring” respectively.  

2.3. The Foundation of Arithmetic and Its Reception Among Mathematicians   

“Counting and Measuring” was not well received by Helmholtz’s contemporaries, 

especially among the mathematical audience. Mathematicians tended to be hostile to 

Helmholtz’s attempt to prove the basic statements in arithmetic by referring to “psychological 
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facts” or the intuition of time, because it went against an emerging consensus that the foundation 

of number (as well as algebra and analysis) must be grounded in logical proofs (Chapter 4).   

Helmholtz argued in the opening sentences that arithmetic is not the “science of 

magnitudes (Größenlehre)” but instead “a method built upon pure psychological facts, which 

teaches the logical application of a symbolic system (namely, the numbers) to an unlimited extent 

and an unlimited possibility of refinement.” By “a method built upon pure psychological facts,” 

he meant, first, that the ordinal number sequence originates from the one-dimensionality of the 

intuition of time, and second, that the axioms of arithmetic, which consist mainly of the laws of 

addition, can be derived from the fact that the ordinals are fixed in a univocal order. In counting, 

one finds “a sequence, through which the acts of consciousness succeeded one another in time,” 

and is able to hold this sequence in memory. Arbitrary signs can be assigned to fix this 

succession, which gives us the numerals in different languages. Going forward and backward in 

the succession are two essentially different acts, because there is an unambiguous distinction 

between the present activities of the consciousness, which can be thought together with the past 

activities, and the future ones, which are non-existent in memory. There is therefore an essential 

distinction between “1, 2, …n-1,” “1, 2, …n” and “1, 2, …n+1.” This is the distinction between 

succession and precession. As a result, the ordinal numbers form an irreversible sequence and 

every position in the counting sequence is unique (presumably, if one is counting to 4, it is 

impossible that they in fact have counted to 6).15 Cardinal numbers result from applying the 

                                                
15 Hermann von Helmholtz, “Zählen Und Messen Erkenntnisstheoretisch Betrachtet,” in Wissenschaftliche 
Abhandlungen, vol. 3 (Leipzig: Johann Ambrosius Barth, 1895), 356–91. Also in Helmholtz, Epistemological Writings, 75.  
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ordinal numbers: they follow one another as one “throw onto the counted heap” one by one (or, 

mentally grouping the counted ones) at each step of counting.16  

The axioms of arithmetic are taken from two mathematicians, the brothers Robert and 

Hermann Grassmann, and Helmholtz derived them from the univocal ordinal sequence. The 

symbolism of addition “a + b” essentially means counting to position “a” in the sequence, and 

then treating the position “a+1” as “1” and counting from 1 to b. From this, he went on to prove 

the associative law of addition by first proving “(a + b) + 1 = a + (b + 1). The proof again refers 

to counting, or, the equivalence of the following two acts: counting to position “a,” then treat 

“a+1” as the starting position, counting from “1, …b,” then counting one further; and counting 

to position “a,” then treat “a+1” as the starting position, counting from “1, …b+1.” The 

generalized formula a+(b+c)=(a+b)+c can be proved by induction,17 and the commutative law is 

proved in a similar fashion.18 Helmholtz stressed the advantage of his proof, referring to the fixity 

                                                
16 In its application to real objects being counted, the order of counting does not change the cardinal number of a 
group. This is proved in the following manner: in counting, an arbitrary sequence is coordinated with the natural 
number sequence. Suppose two members ε and ζ are coordinate with natural numbers n and n+1. It is certainly 
possible to exchange ε and ζ such that ε is coordinated with n+1 and ζ with n, without skipping or repeating any 
element in the 1-1 mapping between two sequences. Then, it is certainly possible to continually exchange the rest of 
the elements in the arbitrary sequence to get every permutation without skipping or repeating any letter in the 1-1 
mapping with the natural numbers. One would get, for instance, the following coordinations: ")

#
*
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-
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0 …. Or  
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*
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+
0
-
)
/
. …. Or  ".

#
0
+
)
-
*
/
, …. , etc.    

17 Helmholtz’s proof by induction that (a + b) + c	 = 	a + (b + c) goes as follows 
a. This is true when c=1 
b. Prove it is also true when c= c+1.  

Proof: (a + b) + (c + 1) = [(a + b) + c] + 1	according to the statement that (a+b)+1=a+(b+1).* 

=	 [a + (b + c)] + 1 according to the inductive hypothesis 

= a	 +	[(b + c) + 1]	according to *. 

= a	 +	[b + (c + 1)]	according to *. 
18 Basically, Helmholtz proved first that the proposition “1+a=a+1” is true by induction. Then by a similar proof by 
induction, this was generalized to “a+b=b+a.” 
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of each position in the ordinal number sequence alone, as “it can be obtained without referring 

to external experience.”19  

Arithmetic, or the “theory of pure numbers” in general, is built on these basic facts, and it 

investigates “how different combinations of these symbols (the operations of calculation) led to 

the same result.” Subtraction and multiplication are operations based on addition and the 

univocal ordinal sequence. For instance, the symbolism “a - b” can be understood as the number 

that must be added to b in order to obtain a as a sum. Taking the number sequence as having no 

limit in both ascending and descending positions, one obtains negative numbers. Helmholtz did 

not go into more detail on irrational or imaginary numbers. As he noted earlier that the theory of 

number teaches the logical application on a symbolic system to an unlimited extent, one might 

infer that he would consider these newer mathematical entities as created by arithmetical or 

algebraic operations. Overall, the status of these novel entities does not seem to concern 

Helmholtz, since he mentioned that in physical sciences, irrational numbers are simply 

approximated to the best of scientists’ ability. After all, he never considered himself a professional 

mathematician.20  

In light of a new demand for rigor among Helmholtz’s contemporary mathematicians, no 

arithmetical statement was considered as proved unless it was shown by step-by-step deductions 

from preliminary notions (depending on the individual, these notions may differ). Hence 

Helmholtz’s appeal to the unexplained “intuition of time” received much criticism. Gottlob 

Frege, for instance, famously claimed that he had seen “hardly anything…more unphilosophical” 

                                                
19 Ibid, 87. 
20 Cahan, A Life in Science, 372. 
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than Helmholtz’s attempt to ground arithmetic empirically.21 As “Counting and Measuring” 

became largely ignored for its discussion of arithmetic, so did its discussion of measurement. As 

historian Francesca Biagioli points out, “partly because the arithmetical considerations against 

Helmholtz appeared to be so compelling, that the focus of his theory (i.e. the foundation of 

measurement) was moved to the background.”22  

2.4. Measurement, or the Application of Mathematics Through “the Method of Comparison”  

The second half of “Counting and Measuring” deals with the conditions for the 

“objective application of arithmetic to physical magnitudes,” where Helmholtz intended to 

explain the term “quantity” “in the realm of facts.” Arithmetic would remain a “pure game of 

ingenuity with dreamt up objects” if it could be applied to the real world, that is, if it cannot 

describe the relations and attributes of real objects using numbers and make predictions by 

calculation in advance.23 This point potentially continues to hold well in light of a 

logicized/formalized mathematics. The foundation of the application of numbers requires a 

separate explanation from the foundation of numbers, as Helmholtz phrased the issue in the 

following terms: “what is the objective sense of our expressing the relationship between real 

objects, as magnitudes, through denominate numbers? And under what conditions can we do 

this?” These questions can be resolved into two other questions, he argued, namely what it 

means to declare two objects in a given relation as equal, and what conditions must be satisfied 

for us to regard some kind of physical combination as additive. To clarify the term quantity is to 

                                                
21 “Helmholtz wants to ground arithmetic empirically, by hook or by crook. Therefore, he does not ask how far one 
can go, without drawing on the facts of experience. Rather he asks: how can I most quickly draw in whatever facts of 
sensory experience?” Frege, Gottlob. Grundgesetze der Arithmetik. Verlag von Hermann Pohle, 1893, p.140n. A similar 
comment was from George Cantor, who compared Helmholtz to one Enlightenment thinker who claimed that 
numbers were invented by shepherds to count their sheep. See Gray, Plato’s Ghost, 97. 
22 Biagioli, “Cohen and Helmholtz on the Foundations of Measurement.” 
23 Helmholtz, Epistemological Writings, 75.  
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clarify how equality and additivity in arithmetic are interpreted “in the realm of facts.”24 

Concerning the notion of unit, he noted: unit is not an essential concept, but appear as an 

“unnecessary restriction on the realm of valid propositions, if one from the outset treats physical 

magnitudes as only those that were composed of units.” In other words, quantities need not be 

composed of units (or conceived through a part-whole structure) to be measurable. Helmholtz 

then commented on the “fundamental units of physics,” namely length, mass, and time, to which 

virtually all other physical quantities were reduced to in the 19th century: “these universally 

known units are not to be defined by their concept,” but “can only be displayed in particular 

natural bodies (weights, measuring rods) or particular natural processes (day, pendulum beat). 

The fact that they are more universally known by tradition among men does not alter the 

business and the concept of measuring, but appears in contrast as only an incidental feature.”25 In this 

sense, Helmholtz thought that length, mass and time are not quantitative on an a priori basis.  

Measurement first and foremost depends on fixing an empirical condition to which we 

attribute equality. Equality was “an exceptional case” occurring in measurement; it expresses 

itself through the first axiom of arithmetic, namely through its transitivity and symmetry: if a = b, 

b = c, then a = c; and if a = b, b = a. “In factual observation,” he noted, equality is “only 

exhibited in that two equal objects under a suitable condition meet or concur, letting a particular 

success to be observed, which does not, as a rule, happen between another pair of similar 

                                                
24 Here I echo Biagioli’s claim that Helmholtz emphasizes “the physical interpretation of the laws of addition” the 
conditions for such interpretation are largely empirical, not formal. My main argument however diverges from 
Biagioli’s, as she focuses on geometrical measurement. Biagioli, Space, Number, and Geometry from Helmholtz to Cassirer, 
100. 
25 My italics. Helmholtz, Epistemological Writings, 89. This sets his views on measurement apart from those of his 
contemporaries, who argued that the absolute units bear the authority of nature. For example, Fleming Jenkin: the 
absolute system “bears the stamp of authority, not of this or that legislator or man of science, but of nature.” 
Fleeming Jenkin, Reports of the Committee on Electrical Standards Appointed by the British Association for the Advancement of Science 
(E. & F.N. Spon, 1873). 
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objects.”26 With this most generic characterization, he went on to give a list of examples. For 

instance, placing two objects on a balance does not in general create an equilibrium. 

Exceptionally, two objects are found to be in equilibrium, and exchanging them does not disturb 

the equilibrium. The equilibrium is also transitive: when a and b are both found to be in 

equilibrium with c, they are found to be in equilibrium with each other. 

Such empirical interpretation of mathematical equality as a symmetric transitive relation 

also underlies the quantitative nature of the concepts of length and time. Specifically of length, 

congruence in superposition is the “exceptional” case in the act of measurement that is both 

transitive and symmetric. When the end-points of any two segments coincide, the congruence 

also “always recurs in any situation and on exchanging the two point pairs in any arbitrary 

manner.”27 As Helmholtz already argued in his essay on the foundation of geometry, the validity 

of congruence in superposition depends on the existence of rigid physical bodies in motion 

anywhere in space. Time, on the other hand, is measured by physical processes that are 

repeatable. The equality of durations depends on the coincidence of two processes’ beginnings 

and ends. How does one know that the durations of these processes remain unaltered? The only 

justification is that the measurement of duration by different methods—using pendulum beats or 

the depletion of sand or water clocks, for example—all yield the same result.28 If the beginning 

and end of process a coincide with those of a third process c, then c also proceed simultaneously 

with b.  

                                                
26 Translation is modified. The original quote is „Gleichheit zwischen den vergleichbaren Attributen zweier Objecte 
ist ein ausnahmsweise eintretender Fall, und wird also in tatsächlicher Beobachtung nur dadurch angezeigt werden 
können, dass die zwei gleichen Objecte unter geeigneten Bedingungen zusammentreffend oder zusammenwirkend 
einen besonderen Erfolg beobachten lassen, der in der Regel zwischen anderen Paaren ähnlicher Objecte nicht 
eintritt.“ Helmholtz, “Zählen und Messen, erkenntnistheoretisch betrachtet.”  
27 Helmholtz, Epistemological Writings, 92. 
28 Ibid, 93. 
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Other quantitative concepts in physics are also built on “exceptional” occurrence in 

comparison that can be interpreted as a symmetric transitive relation. For instance, electrical 

currents are compared through their electromagnetic effects, i.e., the angle of deflection of the 

magnetic needle of a nearby compass; the (visual) brightness of two lighted areas are compared 

by placing them adjacent to each other and identifying a recognizable line of demarcation.29 

Across all realms of inquiries in the physical sciences, “the most varied physical means have to be 

sought out.” Ultimately, only experiment can determine whether the observed case qualify as a 

symmetric transitive relation, i.e., equality. This is entirely an empirical matter for Helmholtz. 

Additivity is explained in a similar way. A physical connection (Verknüpfung) could be 

“regarded as addition, if the result of the connection—when compared as a magnitude of the 

same kind—is not altered either by exchanging individual elements with each other, or by 

exchanging terms of the connection with equal magnitudes of the same kind.”30 In other words, 

the operation can be regarded as addition when it satisfies the axioms of addition, regardless of 

what the operation consists of, provided that the sums are always determined by the same 

method of comparison which determines equality for the quantity in question. These axioms are: 

II. The associative law of addition: (a+b)+c=a+(b+c) 

III. The commutative law of addition: a+b=b+a 

IV. the same added to the same gives the same.   

Again, whether a physical act of combination satisfies those additive laws can only be 

verified experimentally by interchanging the objects (the addends) in comparison. As Helmholtz 

                                                
29 The comparison of brightness was a common method in astronomy to compare the distances of stars. In the next 
chapter, I discuss photometric methods in more detail. 
30 Helmholtz, “Zählen und Messen, erkenntnistheoretisch betrachtet,” 383.   
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explained using the example of weight again, when balancing five 1-gram weights with one 5-

gram weight, substituting different copies of the 1-gram weights does not change the result of 

equilibrium (equals added to equals are equal), neither does changing the order of putting these 

different 1-gram weights on the balance (commutative law), neither does substituting the five 1-

gram weights with a 5-gram weight (associative law).  

Examples from physical sciences illustrate the heterogeneity of operations that can be 

interpreted as addition. As Helmholtz noted, by joining two conductors end-to-end, one adds the 

quantity of resistance; by joining two conductors side-by-side, one adds the quantity of 

conductance (both quantities are measured by the same method.) Furthermore, joining two 

Leyden jars or condensers side-by-side adds the charge, while joining them end-to-end adds the 

potential. What Helmholtz did not say explicitly is that the precondition for declaring these kinds 

of combination as the addition of the said quantities is the validity of the empirically discovered 

laws in electricity and magnetism (e.g., Ohm’s law). He did, however, point out that the ability to 

interpret a combinative operation as additive ultimately depends “empirical knowledge of certain 

aspects of its [the object’s] physical behavior in meeting and interacting with others.”31 To put it 

in other words, knowing the experimental regularity—how physical objects behave when certain 

operations are performed under certain circumstances—is the precondition of establishing the 

additive structure of the quantity in question.  

Combining what Helmholtz said about equality—an “exceptional” occurrence 

contingent upon the method of comparison—we can infer the following synopsis of his 

arguments: it is not because concepts are quantities that it is possible to map certain aspects of the 

behavior and interaction of physical objects associated with these concepts onto mathematical 

                                                
31 Helmholtz, Epistemological Writings, 103. 
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representation. Instead, it is because we interpret these lawful aspects of their behavior and 

interaction, exhibited in the act of comparison, as indicating structural features like transitivity, 

symmetry, commutativity, etc., that they become quantitative concepts. Measurement does not 

discover quantities in nature but construct them through establishing regularities in experiments, 

and the units being counted are determined with concrete reference to the experimental method 

and even apparatus. This can be said about the fundamental units of length, mass and time as 

well. As Helmholtz wrote, their additive combination and equality are so familiar to us that these 

concepts seem inherently describable in terms of “greater,” “less,” “how many,” and so on.32 But 

this is only because we know the physical operations that underlay their mathematical 

interpretation all along. These operations are so mundane that length, mass, time have become 

disembodied quantitative concepts that in themselves guarantee mathematical representation 

(e.g., as Galileo claiming that it “follows the habit of nature” to represent motion by geometrical 

lines and diagrams, or Descartes claiming that all quantities should be represented in thought as 

lines (Chapter 1)). However, their “quantitative-ness” are derived from an empirical foundation 

just the same. After all, what can be possibly meant by the equality of length, other than the fact 

that in everyday observation, the congruence between the end-points on the measuring rod and 

the end-points on some other object is not altered by the order of superposition, and that 

whenever two pairs of end-points are congruent with a third, they are always found to be 

congruent among themselves? Despite its seeming triviality, superposing line-segments is an 

experimental act that involves hypothesis and intervention, just like human perception.  

                                                
32 Ibid, 96. 
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This message is corroborated by the following quote, when Helmholtz discusses how 

equality of one quantity may be related to the equality of other quantities (for instance, 

conductors are equal in length and material are equal in resistance). He noted:  

“we are accustomed to express this colloquially, that we objectivise (objectiviren) the 
capacity for objects to produce the decisive success in the first kind of comparison as an attribute 
of these objects; we ascribe the equal magnitudes of this attribute to the objects deemed equal, 
and we represent other effects which preserve the equality as the effect of the attribute, or as 
empirically solely dependent upon the attribute. The meaning of such claim is no more than this: 
objects, which demonstrate equality in the same kind of comparison that determines the equality 
of this particular attribute, can also be interchangeable in other conditions (which determine the 
equality of other attributes) without altering the result.”33 

In other words, a quantitative attribute is not a property of the things being compared, it 

is simply the objectification of the set of effects brought forth by objects in the act of comparison, 

to which we attribute equality. It is not because two things are “equal in x quantity” that they are 

in turn “equal in y quantity.” It is rather that the set of effects to which we attribute equality in 

the first kind of comparison always correlate with the set of effects to which we attribute equality 

in the second kind of comparison. Bodies that have the same gravitational mass also have the 

same inertia, but this is based on our empirical knowledge “a particular law of nature for this 

particular connection.”34 Mathematical functions relating different quantities to one another 

ultimately state empirical correlations of this kind. 

In proposing his own theory of quantity and measurement, Helmholtz relegated some of 

the key conceptual categories in his predecessors’ writings on these topics to a secondary status. 

                                                
33 „wir pflegen dies sprachlich dann so auszudrücken, dass wir die Fähigkeit der Objecte den bei der ersten Art der 
Vergleichung entscheidenden Erfolg hervorzubringen, als ein Attribut derselben objectiviren, den gleichbefundenen 
Objecten gleiche Grösse dieses Attributs zuschreiben, und die anderweitigen Wirkungen, in denen sich die 
Gleichheit bewährt, als Wirkungen jenes Attributs, oder das erfahrungsgemäss nur von jenem Attribut abhängend 
bezeichnen. Der Sinn einer solchen Behauptung ist immer nur der, dass Objecte, die sich bei derjenigen Art der 
Vergleichung als gleich erwiesen haben, die über die Gleichheit dieses besondern Attributs entscheidet, sich auch in 
den bezeichneten anderweitigen Fällen gegenseitig ohne Aenderung des Erfolges ersetzen können.“ Helmholtz, 
“Zählen und Messen Erkenntnisstheoretisch Betrachtet,” 377. 
34 Helmholtz, Epistemological Writings, 91. 
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For instance, he claimed that homogeneity, unit and divisibility, and the distinction between 

extensive and intensive magnitudes, are not useful in clarifying the condition and meaning of 

measurement. Instead, they are conceptually derivative to the conditions of equality and 

additivity and can be derived once a quantity is found to be measurable. Let us be reminded that 

in Kant’s writings, homogeneity is a term used to describe the manifold of intuition in space and 

time. When the content of perception is reduced to a homogeneous manifold, it is possible to 

make quantitative distinctions, as Kant wrote in a 1780 text: “homogeneity is specific identity 

with numerical diversity, and a quantum consists of homogeneous parts.”35 Quantity, after all, is 

defined by Kant as the successive synthesis of manifold intuition. This view is inherited by many 

19th century philosophers. For example, similar arguments can be found in the writings of the 

neo-Kantian philosopher Hermann Cohen (next section) and Edmund Husserl.36 But in 

Helmholtz’s article, homogeneity is understood in operational terms: homogeneous magnitudes 

are simply those “whose equality and inequality are to be determined through the same method 

of comparison.”37 

Divisibility and unit are also conceptually derivative notions. As mentioned earlier, 

Helmholtz considered the notion of unit superfluous in discussing the meaning of quantity and 

measurement. If we only include those quantities that are composed of units as quantities, then 

we exclude a vast number of valid propositions in science outside the realm of quantity, he 

claimed. Divisibility is traditionally tied with the notion of continuity. Continuous magnitudes, 

                                                
35 Cited in Daniel Sutherland, “Kant’s Philosophy of Mathematics and the Greek Mathematical Tradition,” The 
Philosophical Review 113, no. 2 (2004): 157–201. 
36 In The Philosophy of Arithmetic, Husserl discusses the concept of multiplicity, which presupposes abstraction from 
particular content into “something” that can be then conceived as “one and one and one…etc.” This gives rise to 
number. See Frege, “Review of Dr. E. Husserl’s Philosophy of Arithmetic.” 
37 „Grössen, über deren Gleichheit und Ungleichheit durch dieselbe Methode der Vergleichung zu entscheiden ist, 
bezeichnen wir ‚gleichartig.‘“ Helmholtz, “Zählen Und Messen Erkenntnisstheoretisch Betrachtet,” 377. 
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such as spatial magnitudes, were considered to be infinitely divisible. But the issues concerning 

infinite divisibility of continuous magnitudes becomes irrelevant in the 1887 article because 

additive magnitudes can be regarded as divisible in general. If a concept is measurable and can 

be represented by numbers, then the usual arithmetical operations can also find meaningful 

empirical interpretations, depending on how this quantity is measured. But for a concept to be 

expressible numerically in the first place, its method of comparison and physical combination 

must be capable of instantiating the relation (equality) and operation (addition) of numbers. 

Similarly, the distinction between extensive and intensive magnitude is no longer meaningful. 

Helmholtz noted that one can think of natural coefficients as “intensive” magnitudes because 

they are not obviously additive. But, he wrote, future scientific research may reveal the empirical 

laws that allow these coefficients to be additive, and they will cease to be “intensive.”  

It is worth noting that Helmholtz’s own views on the issue of quantity changed 

significantly from 1847 to 1887. An unpublished manuscript titled “On General Physical 

Concepts” dated from 1847 shows that he subscribed to a characteristically Kantian approach, 

which proceeds from the faculty of the mind and the structure of perceptual experience, instead 

of the “method of comparison.” In this manuscript, quantity is a “thought-connection” of the 

“relation of an object to another.” Homogeneous units and part-whole relation are central in this 

characterization of the concept of quantity:  

“[Objects are] homogeneous in a relation if both can be decomposed into simple parts 
that are equal with respect to this relation…every object which can be thought as divided into 
equal or homogeneous parts can be considered a magnitude. Measuring means determining the set of 
these parts; a determinate set is called number, an individual part, the unit of measure.”38  

                                                
38 Hermann von Helmholtz, “On General Physical Concepts,” in The Neo-Kantian Reader, ed. Sebastian Luft, trans. 
David Hyder (Routledge, 2015), 6. 
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He went on to discuss the distinction between finite and infinite divisibility, noting that 

continuous magnitudes can be thought of being infinitely divisible, although this cannot be 

actually carried out. Then he writes: “the science of the connection of magnitudes according to quantity is 

arithmetic.”39 In the 1887 article, as we have discussed so far, the foundation of arithmetic is 

separate from the foundation of measurement, and the notions of homogeneity, units and 

divisibility are reduced and operationalized.  

Later in this chapter I will discuss the context of scientific practices that incubated 

Helmholtz’s unique views on measurement. Granted, Helmholtz’s epistemological writings on 

geometry in 1860s, in which he pointed out the empirical presupposition of geometrical axioms 

and the concept of distance, anticipated his treatment of quantity, as an empty abstraction that 

stands for empirical regularities conforming to certain structural features, brought out by the act 

of measurement. However, there are also many aspects of his theory that cannot be fully 

explained by referring to his earlier philosophical writings. The priority of the “method of 

comparison” seems to run against the grain of the Kantian tradition, as it has almost an 

operationalist connotation, namely that the meaning of quantities consists of the operations of 

measurement alone (although Helmholtz qualified this connotation by referring to the empirical 

regularities). This tendency was picked up by Hermann Cohen, as we will immediately see. 

Additionally, from Helmholtz’s point of view, committing to an empiricist foundation of the 

quantity concept does not entail abandoning the part-whole relationship and the centrality of 

unit, both central to other philosophers’ writings on quantity. I shall argue in the rest of the 

chapter that these shifts in Helmholtz’s thought were prompted by the developments in 19th 

century sciences, where many classic examples of “intensive magnitudes” that cannot be 

                                                
39 Ibid.  
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characterized in the same way as length and angles became quantitative through highly 

conspicuous, large-scale experiments. The derivation of units (e.g., in electricity and magnetism) 

as byproducts of experimental laws became simply too apparent to ignore.  

2.5. Hermann Cohen’s Critique 

Helmholtz is frequently associated with the “Back-to-Kant” movement in German 

philosophy. But not all of his views were compatible with the Kantian tradition. Apart from his 

empiricist arguments against the a priori status of Euclidean geometry, his arguments on quantity 

and measurement also appeared foreign to the Kantians. In 1888, the neo-Kantian philosopher 

Hermann Cohen published a critical review of Helmholtz’s “Counting and Measuring.” Cohen’s 

objections shed light on how Helmholtz’s account of number and quantity diverges from the 

accepted views of his time (especially in the Kantian tradition).40 Cohen believed that to analyze 

the validity of scientific concepts, or, to use the Kantian jargon, to provide the condition of 

possibility of these concepts, one must proceed from an analysis of the transcendental subject. 

The validity of concepts should not be established through inductive or empirical proofs but 

should be sought in their a priori basis. As he wrote in his 1885 Kants Theorie der Erfahrung:  

 “elements of consciousness…are sufficient and necessary to provide the ground and 
justification for the fact of science… If one finds, for example, the concept of system necessary 
and constitutive of science, then it becomes necessary to find out an element of consciousness which in 
its generality corresponds with this feature of science…the element of consciousness must serve as 
the foundation of science, and the presuppositions of science must be asserted as the principles of 
the cognizing consciousness.”41  

                                                
40 As Cahan notes, the separation of number from quantity also “gave [Helmholtz] a fresh occasion to distance 
himself—as he had already done in regard to human perception (1855, 1866-67, and 1878) and geometry (since 
1868)—from what he here referred to as the ‘strict adherents of Kant,’ thus implying he was not one of them.” 
(Cahan, Helmholtz: a Life in Science, 629.) 
41 „solche Elemente des Bewusstseins seien Elemente des erkennenden Bewusstseins, welche hinreichend und 
notwendig sind, das der Wissenschaft zu begründen und zu festigen. Die Bestimmtheit der apriorischen Elemente 
richtet sich also nach dieser ihrer Beziehung und Competenz für die durch sie zu begründenden Thatsaschen der 
wissenschaftlichen Erkenntniss. Findet man z.B., dass der Begriff des Systems für die Wissenschaft notwendig, für 
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  This is the basic spirit in which Cohen proposed his own views on quantity against 

Helmholtz’s. First and foremost, Cohen argued, Helmholtz never provided a clear definition of 

the term quantity: “It must be considered as a defect in the clarity of this work, that Helmholtz 

did not proceed from a definition of quantity or something along the lines of “first, it is a case of 

the definition of quantity…” By expressing instead his ’standpoint’ ‘from the outset,’ he started 

from number. Only then did he move on to the question of quantity. Cohen quotes Helmholtz: 

“‘Then we must ask: what is the objective sense, that we express the relation between real objects 

through denominate numbers, as quantities?’ Only ‘express’? Not ‘produce' and ‘generate’? Are 

the relations between real objects accessible or thinkable in any other way than through the 

expression of quantity? Is the concept of quantity not rather an irreplaceable instrument for the 

determination of objects? Must one not, therefore, start from this instrument?”42 

With this exclamation, Cohen questioned the separation of number and arithmetic from 

quantity as well as Helmholtz’s overall approach to the quantity concept, namely, clarifying the 

meaning of quantity through clarifying the criteria for determining empirical equality and 

additivity. His objections will be unpacked in the next few paragraphs. First of all, Cohen raised a 

valid objection to Helmholtz’s account of number based on “pure psychological facts.” 

Helmholtz claimed that the ordinal number sequence is based on the intuition of time, on the 

capacity to distinguish past acts of consciousness from the present act and keep them in memory. 

Nevertheless, Cohen argued, all acts of consciousness presuppose this distinction, without which 

everything will simply blend into a blur. Then what distinguishes the ordinal number sequence 

                                                
dieselbe constitutiv sei, so wird es nothwendig sein, ein Element des Bewusstseins ausfindig zu machen, welches in 
seiner Allgemeinheit diesem Merkmal der Wissenschaft entspricht...die Element des Bewusstseins müssen als 
Grundlagen der Wissenschaft wirksam sein, und die Voraussetzungen der Wissenschaft sind als Grundzüge des 
erkennenden Bewusstseins geltend zu machen.“ Hermann Cohen, Kants Theorie der Erfahrung (F. Dümmler, 1885), 77-
8. 
42 Hermann Cohen, “Jubiläums-Betrachtungen,” Philosophische Monatshefte 24 (1888), 262. 
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from the product of any other psychic activity? Contrary to Helmholtz’s views, Cohen 

maintained that ordinal number sequence is more complex than temporal succession.  

More importantly, for Cohen, the concept of quantity must be tackled from a 

transcendental point of view—quantity is neither pure intuition nor pure concept but stems from 

the interaction of pure concept and intuition. Counting is a process through which units in a 

multiplicity are generated and fixed. Real objects are reduced to “mere comparability,” and only 

then is comparison possible, and only through a comparison of the number of units in one 

multiplicity with another can there be any sense to talk about equality. “Equality always 

presupposes comparability, additivity, namely the unit in multiplicity, namely quantity.”43 

Number is simply the possibility to form multiplicity out of units, through addition. When the 

difference between magnitudes in comparison cannot be fixed by a number, then we call these 

magnitudes extension. This cognitive order from homogeneity to quantity to equality had roots 

in the stages in the “constitution of the object,” by which Cohen meant that quantitative 

conception is already embedded in the grasping of a determinate object by the conscious mind44: 

“without thinking of the object as quantity, we could not think of them as object at all.”45 

But Helmholtz completely reversed this cognitive order, as Cohen noted: 

                                                
43 Ibid, 269.  
Also, „Diese Reduction des sogenannten reellen Objects auf die blosse Vergleichbarkeit mit der Einheit der 
Mehrheit ergiebt die Gleichartigkeit, als die erste und fundamentalste Art einer Art...Die instrumentale 
Gleichartigkeit bedeutet nichts anderes als die Summirbarkeit, die Möglichkeit und Befugniss, Einheit der Mehrheit 
zu bilden, das sind Zahlen. Die Gleichheit dagegen setzt den Begriff der Grösse voraus...dass in den verglichenen 
Grössen durch Zahlen ein Unterschied nicht festgestellt werden kann, oder dass dieselben, in Zahlen bestimmt, 
dieselbe Ausdehnung beschreiben.“  
44 „Es fügen und ordnen sich demgemäss die Begriffe des Gleichartigen, der Gleichheit und der Grösse. Die 
Ordnung dieser Begriffe entspringt aus ihrer kritischen Begründung, welche durch die Aufgabe geleitet wird: den 
Gegenstand zu constituiren. Von dieser Rücksicht wird auch Helmholtz geleitet, aber nicht in kritischer Reinheit 
und Sorgfalt. Er unterscheidet nicht Stufen in der Bildung des Objects.“ (Ibid.) 
45 „Dass wir, ohne den Gegenstand als Grösse zu denken, ihn nicht als Gegenstand denken können.” Ibid.  
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“Helmholtz…did not distinguish the stages in the formation of the object, and thus the 
fundamental questions concerning number and quantity immediately became the question 
concerning ‘physical combination,’ according to which we establish the equality relation. The 
elementary meaning of equality was therefore lost. Plato said: [by equality] I do not mean equal 
rocks and equal sticks, rather I mean equality in itself. The elementary meaning of equality lies in 
homogeneity.”46 

The reference to Plato suggests that Cohen attributed a naïve empiricism to Helmholtz, 

according to which mathematical equality is mistakenly taken as particular instances of equal 

collections of concrete objects. Helmholtz’s equality is therefore only a “relative” equality. It 

seems that Cohen found the operationalist undertone of Helmholtz’s claim particularly 

reprehensible—the claim that in the context of scientific practice, equality is an empirical 

occurrence predicated on some specific method of comparison. Furthermore, Cohen continued, 

the concept of unit is fundamental for its “constitutive character” in the formation of the object-

concept, but this layer of significance is also lost by Helmholtz. More blasphemous is Helmholtz’s 

claim that “quantities, whose equality and inequality are determined by the same method of 

comparison, we call ‘homogeneous.’” Identifying homogeneity with “the method of 

comparison,” as Helmholtz did, seems to indicate nothing other than philosophical confusion. As 

Cohen clarified: the root of quantity lies not in “the method of comparison ‘under a suitable 

circumstance,’ but in the Urmethod of ordering through unit as the building block of 

multiplicity.” He continued: “the reduction of so-called real objects to mere comparability with 

the unit in multiplicity, yields homogeneity, as the first and the most fundamental kind of a 

kind.”47   

Basically, Cohen suggested that the concept of quantity can only be obtained from an a 

priori source, from the “transcendental subject” without reference to properties of any particular 

                                                
46 Ibid, 268. 
47 Ibid, 270.  
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body, any technique of measurement, or any empirical input whatsoever. He upheld a 

conception of quantity passed down from Aristotle, which I have explored in detail in the 

previous chapter. For Helmholtz, however, quantitative expressions have a hidden empirical 

basis. Not only does a claim about quantity assume certain lawful behavior of physical bodies, 

but it also seems that the method of measurement is a prerequisite for discussing the meaning of 

quantity and measurement in the first place. This is why in clarifying the “objective meaning” of 

our expressing physical relations and attributes through numbers, Helmholtz chose to clarify the 

general conditions for operationalizing mathematical equality and additivity, i.e., conformity to 

the structural features of equality and to the laws of addition. But he also admitted that the 

specific interpretation of equality and addition for different quantities are different, and they are 

left to the measurer’s empirical judgment. Ultimately, the possibility of this interpretation 

depends on natural laws, because one has to know how physical objects would behave in the act 

of comparison before identifying certain configuration of their behavior as equality or addition. 

By the time Helmholtz was writing, most quantitative concepts in physics were not the kind that 

can be “constructed in intuition” without the mediation of measuring instruments and 

techniques. Quantitative concepts even in mechanics are not chunks of perceptual experience in 

space and time, but situated in a conceptual space where reference to experimental practices is 

an integral part of theoretical definitions and vice versa. This point I hope to illustrate in full 

detail with a case study of the measurement of electrical units in Helmholtz’s time. Helmholtz’s 

aim in “Counting and Measuring,” I believe, is to explain how quantitative concepts in physical 

sciences are created, defined and measured in his time. The stipulation of a unit or a scale is only 

a by-product of their measurability, as was prominently featured in the determination of 

electrical units.  
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2.6. A Theory of Measurement in the Context of 19th Century Scientific Practices  

Helmholtz’s views on measurement and quantity did not emerge out of a vacuum, nor 

should it be plausibly understood as a response to purely intellectual problems raised by his 

philosophical predecessors, especially those in the Kantian tradition. Despite his frequent 

excursions into philosophy, he was first and foremost a practicing scientist. He also had little 

interest in appealing to his contemporary academic philosophers. In private letter to Rudolf 

Lipschitz in 1881, he spoke of academic philosophers with scorn, most likely referring those who 

had vehemently defended Kant’s doctrine of a priori spatial intuition against his own essays on 

the epistemological foundation of geometry.48 Helmholtz said that he took comfort in the fact 

that mathematicians and physicists increasingly aligned with his epistemological views.49 Given 

this antipathy towards academic philosophy, Helmholtz’s intended audience was most likely his 

contemporary scientists or scientifically minded philosophers.  

Quantification is a hallmark of late 19th century sciences.50 The expansion of quantitative 

methods into the realm of the psychic through Gustav Fechner’s psychophysics, as many scholars 

have pointed out, incited much debate among psychologists and philosophers concerning the 

foundation of measurement at the time. Helmholtz probably had these debates in the back of his 

mind as he wrote the 1887 paper.51 But psychophysics in turn grew out of emulating the 

                                                
48 They were “impotent bookworms who have never generated new knowledge…everyone reads to himself and is 
incapable of reflecting on other peoples’ thoughts.” Rudolf Lipschitz, ed., “Helmholtz to Lipschitz, March 1881,” in 
Briefwechsel mit Cantor, Dedekind, Helmholtz, Kronecker, Weierstrass und anderen (Springer-Verlag, 2013), 131. 
49 As he wrote in the same letter: “..dann empört mich immer, so oft ich mir auch vorgenomen habe mich nicht 
empören zu lassen, die Unverfrorenheit, mit der Leute, die nicht den kleinsten geometrischen Satz zu fassen 
vermögen, in der sicheren überzeugung überlegener Weisheit über die schwierigsten Probleme der Raumtheorie 
absprechen.)” (Ibid.) 
50 See Kathryn Olesko, “The Meaning of Precision: The Exact Sensibility in Early Nineteenth-Century Germany,” 
in The Values of Precision, ed. M. Norton Wise (Princeton University Press, 1997). 
51 Cahan. Helmholtz: A Life in Science, 629; Michael Heidelberger, Nature from Within: Gustav Theodor Fechner and His 
Psychophysical Worldview (University of Pittsburgh Pre, 2004); Olivier Darrigol, “Number and Measure: Hermann von 
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quantitative methods in physical sciences. Its founder, Fechner, had worked in electrodynamics 

in his early career. He translated Jean-Baptise Biot’s work into German and experimentally 

confirmed Ohm’s law. Furthermore, many psychologists commenting on psychophysics 

frequently and self-consciously referred to measurement practices in physical sciences, in their 

effort to either deny or support Fechner’s thesis (Chapter 3). For instance, rejecting Fechner’s 

thesis, the psychologist Johannes Von Kries invoked the Kantian distinction between intensive 

and extensive magnitudes. Von Kries claimed that intensive magnitudes must be reducible to 

extensive (i.e., mechanical) ones, i.e., length, mass and time, in order to be measurable. In 

supporting his argument, he referred to successful precedents in physics—the new “thermal units, 

amperage, voltage, electromotive force, electrical resistance, magnetic flux, etc”—all of which are 

reducible to mechanical units.52 Physicists had also generally believed that these base units 

constitute the foundation of mathematical representation. Wilhelm Weber and Carl Friedrich 

Gauss’s “absolute system of measurement,” reducing electrical and magnetic quantities to 

mechanical units, was decisive in shaping the trajectory of 19th century physics. James Clerk 

Maxwell wrote in the first chapter of his 1873 Treatise on Electricity and Magnetism that “in framing a 

mathematical system we suppose the fundamental units of length, mass and time to be given, and 

deduce all the derivative units from these by the simplest attainable definitions.”53 On the other 

hand, Helmholtz’s own views on this point, as I have already shown, is subtly different: he did 

not consider reducibility to mechanical units in itself the most crucial factor in quantifying 

physical concepts. There is nothing a priori about the concepts of length, mass and time, he 

                                                
Helmholtz at the Crossroads of Mathematics, Physics, and Psychology,” Studies in History and Philosophy of Science Part A 
34, no. 3 (September 1, 2003): 515–73.  
52 Kries, “Ueber die Messung intensiver Grössen und über das sogenannte psychophysische Gesetz.” 
53 Maxwell, A Treatise on Electricity and Magnetism, 1. 
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argued in “Counting and Measuring.” Rather, their quantitative structures are derived from 

experimental regularities (e.g., the transitivity and symmetry of congruence in superposition) that 

are given mathematical interpretations, just like any other quantity. 

While the controversies surrounding quantitative psychology catalyzed a systematic 

reflection on the nature of measurement among late 19th century scientists, the broader backdrop 

against which such reflection took place was the emergence of new quantitative methods in 

physical sciences. The quantification of what had been known in the 18th century as 

“imponderable substances” was conspicuous in particular. Heat, electricity, magnetism, light—

these were thought to be substances that have neither extension nor weight. Temperature 

representing the sensation of hot and cold, or the phenomenon of transient, spectacular electric 

discharge, initially appeared to be classic examples of intensive magnitudes. 18th century natural 

philosophers like Henry Cavendish and Alexander von Humboldt literally shocked themselves to 

compare the intensities of electric currents via the intensities of pain.54 Nevertheless, by the end 

of the 19th century, quantities like charge, current, resistance, temperature, and so on, were 

among the ranks of extensive magnitudes, as their units came to be expressed in mechanical 

units. In this sense, the older categories of extensive versus intensive, and divisible versus 

indivisible magnitudes in pre-19th century philosophy of quantity, lost their significance. Further 

conceptual issues emerged from the fact that most experimental phenomena crucial in the 

quantification of heat, electricity and magnetism seem to have been artificially produced by the 

experimental setup and the instruments involved.55 Granted, one could argue that highly 

                                                
54 Arthur Schuster, A History of the Cavendish Laboratory 1871-1910: With 3 Portraits in Collotype and 8 Other Illustrations 
(Longmans, Green, and Company, 1910), 33. Andrea Wulf, The Invention of Nature: Alexander Von Humboldt’s New World 
(Alfred A. Knopf, 2015), 24. 
55 Heilbron, Weighing Imponderables and Other Quantitative Science around 1800, 66, 3. 
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sophisticated apparatuses (e.g., the sextant) had been prominently used in science since the 

antiquity, but in these cases, angles measured angles, weights measured weights, hence the 

“homogeneity between parts and the whole” in intuition is in this sense intact. The instruments 

that measured the imponderables in the 19th century seem entirely different in nature: in what 

sense could the intensity of “electrical conflicts” inside the conductor be expressed in terms of 

length, mass and time? The homogeneity between parts and the whole no longer seems obvious. 

How do these quantities relate to mechanical units exactly, and why did their quantification 

convince some people that reducibility to mechanical units is the foundation of measurement, but 

not others? What was the implication of the quantification of the “imponderables” for a general 

philosophy of measurement, and specifically for Helmholtz’s views on measurement? He did, in 

fact, invoke examples of quantities in electricity, magnetism, heat, in his 1887 article. It seems 

that an examination of the meaning and definition of these quantitative terms have become 

inevitable for us to understand the historical context of the theoretical debates concerning 

quantity and measurement. 

In the next section, I focus on the quantities in electricity and magnetism mainly by 

examining how they were defined and measured up till the first International Electrical Congress 

in 1881, which represented Europe’s first attempt to standardize units of electrical quantities, 

based on the most uncontroversial definitions of these quantities in the international scientific 

community at the time. Their definitions were documented in various reports of the 1881 

Congress, including a report given by Helmholtz himself. The experimental techniques and 

instruments in which these definitions were embedded can be found in various experimental 

reports published in scientific journals such as Poggendorff’s Annalen der Physik und Chemie. 

Electrical measurement was also quite familiar to Helmholtz himself. Although he never 



   101 

performed the related experimental work, he attended the international electrical congresses to 

serve on the Electrical Standards Committee in 1881, and again in 1882, 1884 and 1893 to 

negotiate further issues based on the experimental work underway.56 These conferences involved 

many high-profile figures in the European scientific community, such as William Thomson, John 

Éleuthère Mascart, Helmholtz, G. H. Wiedemann, and so on, and were major scientific events at 

the time.57 When Helmholtz became the director of the Physikalisch-Technische Reichsanstalt in 

1887, determining electrical standards according to the agreements made at the international 

congresses became a central task at its Electrical Laboratory, headed by one of Helmholtz’s 

student, Wilhelm Jaeger.58   

Helmholtz became a professor of physics in 1871 at the University of Berlin, and he 

began publishing on electricity and magnetism through the problem of open currents in animal 

physiology.59 His work on this topic intervened in two major competing paradigms at the time: 

the action-at-a-distance approach predominantly accepted by continental physicists, which 

explained electrodynamic/-magnetic phenomena in terms of the force between two quantities of 

electric or magnetic fluids in motion, and the field approach shared among British physicists, 

which explained the same phenomena by the intervening medium, or the field. Helmholtz 

adopted a unique methodology by focusing on the energy states of dynamic systems formed by 

                                                
56 Cahan, Helmholtz: A Life in Science, 577. 
57 For more on standardization of electrical units, see Larry Randles Lagerstrom, “Constructing Uniformity: The 
Standardization of International Electromagnetic Measures, 1860-1912” (Ph.D., United States -- California, 
University of California, Berkeley, 1992), 
http://search.proquest.com/pqdtglobal/docview/303998652/abstract/FED093B2B478419CPQ/1; Olesko, 
“Precision, Tolerance, and Consensus: Local Cultures in German and British Resistance Standards.” 
58 Before 1887, experiments had only been carried out by individual scientists in their own labs. David Cahan, An 
Institute for an Empire: The Psysikalisch-Technische Reichsanstalt, 1871-1918 (Cambridge University Press, 2004), 104. 
59 Cahan. Helmholtz: A Life in Science, 378. 
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laboratory objects.60 He mainly relied on the principle of energy conservation rather than the 

interaction between potentially hypothetical entities like the “electric fluid” or “the field.” It was 

within this framework that many German physicists in the 1890s assimilated Maxwell’s field 

theory. For our purposes, it is worth pointing out a significant parallel between Helmholtz’s 

approach to the study of electrodynamics overall and his approach to the theory of quantity and 

measurement: both approaches exemplify his commitment to phenomenological regularities 

(consistent with the law of energy conservation) among directly observable objects. This 

philosophical principle is encapsulated in a set of lectures “Introduction to Theoretical Physics,” 

given in the last few years of his life, where he discussed his broader views on physical laws and 

concepts. For example, he spoke of terms like “attractive force” in Newtonian mechanics as a 

linguistic abstraction, which boiled down to a specific set of observable effects: 

“In colloquial expression, we mostly deviate from the formulation of natural laws given so 
far, in that we form abstractions and use nouns instead of verbs, for example, we express the 
former of the above-stated rules in the following form: between any two heavy bodies at a finite 
distance from each other in space, there is an attractive force of a certain magnitude. We 
introduce an abstraction instead of an easy description of the phenomenon of motion—the 
attractive force. We designate with it not anything, anything that has a factual sense, more than 
what is contained in the mere description of the phenomenon…we know nothing more factual 
about such a force than that, as often as it works, or [that when] conditions for its effectiveness 
arise, the phenomenon concerned will be observed.”61 

                                                
60 However, he favored Maxwell’s theory as opposed to Weber’s. See Olivier Darrigol, Electrodynamics from Ampère to 
Einstein (OUP Oxford, 2003), 233-234. Cahan, Helmholtz: A Life in Science, 443. 
61 “in dem sprachlichen Ausdruck weichen wir nun meistenteils von der bisher angegebenen Formulierung der 
Naturgesetze ab, indem wir Abstracta bilden und statt der Verba Substantiva einsetzen, .z.B. das erste der oben 
angeführten Gesetze in der Form aussprechen, dass zwischen je zwei schweren Körpern, die sich in endlicher 
Entfernung von einander im Raume befinden, fortdauernd eine Anziehungskraft von bestimmter Grösse besteht. 
Wir haben damit statt der einfachen Beschreibung des Phänomens der Bewegung ein Abstractum, die 
Anziehungskraft, eingeführt. Wir bezeichnen damit in der That weiter nichts, wenigstens nichts, was noch einen 
factischen Sinn hat, als was auch in der bloßen Beschreibung des Phänomens enthalten ist. Nun weiss man über eine 
solche Kraft weiter nichts Thatsächliches anzugeben, als dass, so oft sie wirkt, oder die Bedingungen eintreten für 
ihre Wirksamkeit, das betreffende Phänomen beobachtet werden kann. Es ist also ein in gewissem Sinne leeres 
Astractum, welches aber, wenn es richtig verstanden wird, in der That die wirklich vorkommenden Phänomene 
beschreibt.” Hermann von Helmholtz, Vorlesungen über theoretische Physik: Einleitung zu den Vorlesungen über theoretische 
Physik (Barth, 1903). 
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Just as he had argued that the general concept of quantity “objectified” directly 

observable effects when comparing objects through experiments, he argued that the concept of 

force as a noun is more-or-less an empty abstraction, a linguistic sign that ultimately stands for 

specific empirical laws. But in order to fully flesh out this parallel by clarifying in what sense 

quantities were mere objectification of experimental phenomena, we must now turn to specific 

cases in 19th century scientific measurement practices.   

In the next section, I proceed from the content of Helmholtz’s report on electrical units 

defined at the 1881 International Electrical Congress, to the experimental methods for 

measuring these quantities both in their original contexts of discovery and in the “absolute 

system” that integrated different units in a single experimental setup. The latter guided the 

experimental work that determined electrical units before and after 1881. I argue that these 

quantities were defined in terms of phenomenal laws exemplified by certain canonical 

experiments. Therefore, the experimental method, through which the electrodynamic, -static and 

-magnetic phenomena in question were compared, became an inseparable component of the 

definition and meaning of these units. This called for a conception of quantity different from one 

based on unit and part-whole relationship. Helmholtz’s account of measurement that 

characterized the term quantity by heterogeneous “methods of comparison” and considered their 

mathematical structure as interpretations of “exceptional occurrences” brought forth by specific 

operations in experiments, reflected the overarching approach to measurement practices in his 

contemporary science.   

2.7. How Electrical Quantities Were Determined in 1881 

In a report to the Union of Electricians, Helmholtz reviewed the conversations that took 

place in the first International Electrical Congress in Paris. He had travelled there earlier in 1881 
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and served on the Electrical Standards Committee (with the title of “Foreign Vice President”) to 

negotiate with representatives of other European nations on the matter of electrical units, 

including the choice of theoretical definitions,62 nomenclature, the appropriate experimental 

methods, and the material instantiation for resistance unit. Standardization of electrical 

quantities had become an urgent matter in recent years, he noted, due to a rising electrical 

industry and the tremendous amount of capital at stake: the manufacturers of cables and 

different electrical appliances and components (e.g., the dynamo and electrical lighting) had to 

agree on their measurements, while scientists could benefit from standardized instruments.63  

He then went on to explain the principles by which standards were defined in the 

“absolute” system of measurement. There had been two major systems of interconnected units in 

the past few decades: the electrostatic and electromagnetic systems, which defined units in terms 

of electrostatic and electromagnetic laws, respectively. Because electrical technologies like the 

dynamo and telegraphy largely depended on electromagnetic effects generated by currents, the 

electromagnetic system was a natural choice for the first standardized international system of 

electrical units. In the electromagnetic system, three units were connected with each other and 

determined together: electromotive force, current and resistance. The experimental methods for 

executing these two systems of measurement, he noted, had been devised by two German 

scientists earlier in the century: Carl Friedrich Gauss and Wilhelm Weber. Gauss formulated the 

laws of interaction between two quantities of magnetism, and Weber extended this law to the 

interaction between two current-carrying conductors based on Ampère’s work in 

                                                
62 There were some controversies regarding whether Gauss’s definition of unit magnetic pole should be preserved. 
Helmholtz believed that it should, because without Gauss’s phenomenological definition, there would be 
disagreements over the dimension of the magnetic pole in Weber’s and Maxwell’s frameworks. See Helmholtz, 
“XLVIII. On Systems of Absolute Measures for Electric and Magnetic Quantities.” 
63 Hermann von Helmholtz, “Ueber die Berathungen des Pariser Kongresses, betreffend die elektrischen 
Masseinheiten.,” Elektrotechnische Zeitschrift, no. Zehntes Heft (Oktober 1881). 
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electrodynamics. It was through these laws that unit magnetism and current were defined. Now, 

how was unit current defined according to Ampère’s laws? Helmholtz gave a quick description of 

the means of calculating the quantity of current: when calculating the electromagnetic force 

between two electrical circuits with currents in them, placed at arbitrary distance and location 

with respect to each other, one would first integrate the mechanical effects between pairs of 

infinitesimal segments composing the circuits, and then integrate these effects on a macroscopic 

scale. For an arbitrary pair of such infinitesimal segments, the “currents” in them should be 

broken down to two components: one along the line of their connection, the other vertical to that 

line. The attractive or repulsive force between the two segments would be proportional to the 

vertical components of the two “currents” and inversely proportional to their separation, 

depending on whether they flowed in the same or opposite directions. A unit current, Helmholtz 

noted, was defined directly in terms of this effect, that is, by equating the interaction between two 

current-carrying conductors with a mechanical force: 𝑘 = 2	𝑖 ∙ 𝑗	 @	A
BC

 . Because force k was 

conventionally measured by gravitational force—the product of mass and the gravitational 

factor, an acceleration, the product i ∙ 	𝑗 was “a magnitude of the same kind (eine Grösse gleicher Art) 

as force”64 and each current element i, 𝑗 had the dimension √GA
H

 in units of lengths, mass and 

time. The unit quantity of magnetism could be defined by precisely the same principle (since the 

attractive or repulsive force between two quantities of magnetism is also proportional to the 

product of their “quantities,” and inversely proportional to the distance of separation). Therefore, 

unit magnetism had the same dimension as unit current as they were both measured by 

mechanical force. 

                                                
64 Ibid.  



   106 

Now, given the unit magnetism and unit current, one could establish the relationship 

between these two units by measuring the magnetic effect of a current. A common way to do this 

was to put a compass needle at the center of a current-carrying coil, and the deflection of the 

compass needle was proportional to the net force exerted on it by both the current and terrestrial 

magnetism. The ratio between terrestrial magnetic force and the electromagnetic force exerted 

by the current was equal to the tangent of the angle of deflection. Now, given these, it became 

possible to calculate the resistance of any conductor in principle. The development of heat in 

conductors had been found to be proportional to the square of current intensity, time and 

resistance, namely, the product 𝑖#𝑤𝑡. The cause of this heat, Helmholtz noted, was lost 

mechanical work and should be measured as such. That is, if	𝑖#𝑤𝑡 had the same dimension as 

mechanical work, and 𝑖# had the same dimension as force, then resistance 𝑤 had the same 

dimension as velocity, 𝑤 = A
H
. Alternatively, he noted, one could obtain the same result for 

resistance by considering the induced current (by changing magnetic flux), since the latter is 

converted from mechanical work.65    

So far, Helmholtz was recapitulating some of the most long-standing methods to define 

and measure electrical quantities that survived changes in high-level theories in electromagnetism 

in the 19th century. Although he described an interconnected system of measurement that 

seemed perfectly neat and free-floating, the “quantitative-ness” of these concepts had been 

discovered separately. These discoveries were the result of various experimental methods to 

exhibit the effects of various charge-to-charge, current-to-current, and current-to-magnet 

interactions in mechanical frameworks. The definition of quantities, the electrostatic, -dynamic 

                                                
65 Ibid, 484-5. 
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or -magnetic laws in which they occurred, and the experiments which became the model of 

measuring instruments, were all inextricable from one another in their contexts of discovery. To 

illustrate this point, I review some of the most elementary electrical quantities in their context of 

discovery, since the so-called “absolute” system can only make sense given that the experimental 

work behind the definition of these quantities are made clear.  

Take the definition of “electrical quantities” (charge) for example. Charles-Augustin de 

Coulomb’s statement of the force law between two “quantities of electrical fluid,” inversely 

proportional to their distance of separation, was both enabled and physically embodied by his 

torsional balance. The instrument balanced the attractive or repulsive force between two equally 

charged (the “quantities of electrical fluid” were equally distributed between two identical 

spherical conductors by direct contact) spheres—with the torque in the thread suspending one of 

them. With this equilibrium of force, it became possible to formulate an equation outputting the 

unknown “quantity of electricity” as a function of the variables in the experiment. This original 

setup became the model for most modified versions of the electrometer, which remained as one 

of the most accurate measuring instruments throughout the 19th century. Similarly, as already 

mentioned earlier, unit magnetism was also based on the attractive or repulsive force between the 

“quantities of magnetism” (it therefore had the same dimension as unit charge). Its official 

definition at the first international congress was precisely “free magnetism that exert unit force at 

unit distance on the same quantity of magnetism.”66 The technique of measurement was a bit 

more complex, requiring two separate experiments invented by Gauss in order to separate 

terrestrial magnetism, which varied by location, from calculation, but the idea was the same.  

                                                
66 F. Neesen, “II. Verhandlungen der Ersten Sektion und der Kommission für die Elektrischen Einheiten,” 
Elektrotechnische Zeitschrift, no. Zehntes Heft, 2. (Oktober 1881): 399–409. 
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André-Marie Ampère’s force law between “current elements”—in his original 

experiments—was materialized by his experimental setup as well, which allowed the torque 

between two linear or twisted conductors, resulting from their electrodynamic interaction, to be 

balanced by gravity or other mechanical forces. This equilibrium condition allowed him to 

establish equations that had mechanical units on one side, and the factors that were proportional 

(the current itself) or inversely proportional (distance) to this force on the other (though his 

equations concerned infinitesimal elements, it was integrated on a macroscopic scale to compare 

with the experimental effects).67 The quantity of “current intensity” was defined in no other 

terms than this force equation. Ampère was well-known for his agnosticism towards the nature of 

the electrical and magnetic “fluids” and avoided hypotheses that were not grounded in directly 

observable effects.68 As he proposed in his famous 1826 memoir, to describe the so-called 

“current” in terms of numbers, one should only compare different currents in terms of the “actions 

which they exert at the same distance on a similar element of any other current” placed in a 

direction perpendicular to the straight lines joining the mid-points of the currents. The ratio 

between the forces was the measure of the intensity of one current, supposing the other is the 

unit.69  

An instrument that directly instantiated Ampère’s scale for current intensity was Weber’s 

bifilar electrodynamometer, which Weber built to both verify Ampère’s mathematical laws and 

measure currents accurately. The device consisted of a rotatable coil suspended by the two wires 

                                                
67 James R. Hofmann, André-Marie Ampère: Enlightenment and Electrodynamics (Cambridge University Press, 1996); Jed Z. 
Buchwald and Robert Fox, eds., The Oxford Handbook of the History of Physics (OUP Oxford, 2013). 
68 Jed Z. Buchwald and Robert Fox, eds., The Oxford Handbook of the History of Physics (OUP Oxford, 2013), 288.  
69 André-Marie Ampère, Théorie des phénomènes électro-dynamiques, uniquement déduite de l’expérience (Méquignon-Marvis, 
1826). 
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feeding the current, placed at the center of a static coil, corresponding directly to Ampère’s own 

equilibrium experiments.70 The electrodynamic torque would cause the suspended coil to rotate, 

and the torque was found to be inversely proportional to the square of current intensity.71 The 

galvanometer—a more commonly used device for comparing currents since it was simpler than 

the electrodynamometer (also invented by Ampère, though Biot and Félix Savart are credited for 

the better version of the mathematical law)—compared currents by their magnetic effects or 

force on unit magnetism as well.72 The principles of comparing currents by their magnetic effects, 

embodied by every galvanometer used in the 19th century, directly translated into the official 

definition of unit current at the 1881 electrical congress: given a wire of length l with current i 

passing through it, and μ free magnetism in distance L perpendicular from the current, the force 

between them would be expressed in the proportionality 𝑘 = 𝑐𝑜𝑛𝑠𝑡. A∙O∙P
QC

 . The unit current 

would be, therefore, that which exerted A
QC

 force on a unit of magnetism (determined by Gauss’s 

method) according to the above-mentioned relationship.73 

                                                
70 Darrigol, Olivier. Electrodynamics from Ampère to Einstein. (OUP Oxford, 2003), 58. 
71 Ibid, 59. 
72 Weber’s delicate bifilar electrodynamometer was difficult to reproduce, and not suitable for practical use. An 
electrodynamometer that could be manufactured for industrial purposes—suitable for measuring larger currents 
than those at Weber’s laboratory—only came into existence in the 1880s, designed by O. Frölich for Siemens & 
Halske. F. Kohlrausch developed a similar electrodynamometer around the same time. See O. Frölich, Die 
Entwickelung der Elektrischen Messungen, die Wissenschaft. Sammlung Naturwissenschaftlicher und Mathematischer 
Monographien.5. Hft. (Braunschweig: F. Vieweg und sohn, 1905), 
https://catalog.hathitrust.org/Record/005693992. 
73 Ibid.  
It should be noted that proponents of the field theory, such as James Clerk Maxwell, thought that the “absolute” 
definitions were only provisional, but since he was unable to measure the “density, elasticity, &c., of the magnetic 
medium” required for his field theory at the time, he adopted the conventional formulae, noting that they could be 
susceptible to future modifications. See Daniel Jon Mitchell, “What’s Nu? A Re-Examination of Maxwell’s ‘Ratio-of-
Units’ Argument, from the Mechanical Theory of the Electromagnetic Field to ‘On the Elementary Relations 
between Electrical Measurements,’” Studies in History and Philosophy of Science Part A, The Making of Measurement, 65–
66 (October 1, 2017): 87–98, https://doi.org/10.1016/j.shpsa.2016.08.005. 
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 In both of the cases just discussed, 19th century instruments for measuring static 

electricity or current recreated the experimental conditions that enabled discovery of these 

quantities. They embodied the associated laws in electrodynamics and -statics. The scales of these 

quantities were not the visible scale on the face of the measuring instrument. Instead, they were 

embodied by the entire apparatus and the lawful effects exhibited by the measuring process, in a 

very literal sense, as the physicist J. C. Poggendorff complained in 1842: it was difficult to 

establish a scale for current independent from each instrument, because the scale had to be 

specifically computed from each individual component of the device: the dimensions and 

conditions of the coils, the magnets, and so on.74 

                                                
74 J. C. Poggendorff, “Von dem Gebrauch der Galvanometer als Messwerkzeuge,” Annalen der Physik 132, no. 6 
(1842): 324–44. Electrometers provide another telling example, which compare currents by chemical (rather than 
mechanical) means based on an immediate experimental effect (the decomposition of electrolytes, the extent of 
which only depended on time and current intensity). At the same time when Michael Faraday discovered the 
 

Figure 6 (Left) Helmholtz’s 1849 improvement of a tangent galvanometer. (Right) An 
electrodynamic balance based on Helmholtz’s design in 1881. 
The magnetic needle of the tangent galvanometer is not placed at the center of a single coil, 
but between two parallel coils on both sides of the central plane in which the magnetic needle 
swings.  
To use the electrodynamic balance, weights are placed on the pans to balance the 
electrodynamic forces until an equilibrium was restored.  
Source: Frölich, O. Die Entwickelung der Elektrischen Messungen. Die Wissenschaft. Sammlung 
Naturwissenschaftlicher und Mathematischer Monographien.5. Hft (Braunschweig: F. Vieweg und sohn, 
1905), 41, Fig. 28; Ibid, 78, Fig. 52. 
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Upon examining the origin of other quantitative concepts in electrodynamics and -

magnetism, one finds similar stories: they came into existence when a certain regularity in a 

particular experimental arrangement was discovered, in a way that connected to previously 

known regularities. For instance, the concept of resistance was formed when the Gymnasium 

teacher Georg Ohm varied the length, form and material of conductors and found the magnetic 

action of the needle placed nearby to be impacted accordingly. In order to establish the 

quantitative relation, he controlled the increments of the source of power (Ohm called this the 

“exciting force”) using a thermopile, an instrument that represented another set of experimental 

regularities previously discovered by T. J. Seebeck. The thermopile consisted of alternating plates 

that would produce current when being heated. When heating one, two, three, four…pairs of 

these plates, Seebeck had found that the magnetic effect of the current produced increased 

proportionally (Figure 7).75  

 

 

                                                
phenomenon, he already proposed to use it as a means to measure currents: “I endeavored upon this law to 
construct an instrument which should measure out of the electricity passing through it, and which, being interposed 
in the course of the current used in any particular experiment, should serve at pleasure, either as a comparative 
standard of effect, or as a positive measurer of this subtle agent.” A scale, according to this method, corresponded to 
the weight of metal deposits or the volume of gas released, depending on the electrolyte.  
Michael Faraday, Experimental Researches in Electricity, vol. 1 (London : Dent ; New York : Dutton, 1922), 
http://archive.org/details/experimentalrese00faraiala. 
75 Christa Jungnickel and Russell McCormmach, Intellectual Mastery of Nature: The Now Mighty Theoretical Physics, 1870-
1925, vol. 1, 2 vols. (University of Chicago Press, 1986).  
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The definitions of electrical quantities I have discussed so far were mostly given in the 

early 19th century. How did they come to be measured in the second part of the 19th century, 

especially around 1880? To answer this question, one must turn to the so-called “absolute 

system” of measurement, according to which electrical quantities and standards were determined 

both in the years leading up to the first International Electrical Congress and according to the 

agreements reached at the 1881 congress itself. From a pragmatic point of view, the 

standardization of cables and appliances across the electrical industry could be achieved simply 

by having a single material standard serve as the resistance unit for as many manufacturers as 

possible. For instance, Siemen’s mercury standard, as Helmholtz mentioned in his report, had 

very much dominated the Germany and Austrian market, as well as parts of Russia and eastern 

nations, thus the lack of standardization was more of a problem for the British than the 

Germans.76 However, for scientific purposes, the “absolute” system more faithfully instantiated 

the original definitions of these quantities by defining their units in terms of the physical laws they 

occurred in, thereby expressing units of current, electromotive force, and resistance in units of 

length, mass and time. The “absolute system” safeguarded against the potential variation of a 

                                                
76 He noted this also because the British standard „Ohm” created by the British Association in the 1860s and the 
Siemens’s unit were the two main competitors for the European market.  

 

Figure 7 Nobili's thermopile, consisting of alternating 
metal plates. Heating the conjunctions produces a 
current proportional to the temperature difference.  

Source: Frölich, O. Die Entwickelung der Elektrischen 
Messungen, 111.) 
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material standard of resistance (usually a coil), which always remained a possibility however 

stable the chosen metal was thought to be.77 In this case, the laws of electrodynamics and 

electromagnetic induction, on which the experiment depended, were the true invariant in the 

measuring process. 

First proposed by Weber in an 1851 paper, the schema of the experiment was as follows 

(Figure 8): a malleable conductor is shaped into two connected circles, A and B, placed in the 

same plane (the line through their centers was parallel to the direction of earth’s magnetic field). 

C is a magnetic needle measuring the strength of any current in the conductor. When A is 

twisted to be perpendicular to AB (and thus terrestrial magnetism) at a uniform angular speed, a 

current is induced in the conductor and is measured by C. The unit electromotive force, 

according to the laws of induction available then, was defined directly in terms of this method: it 

was that which “unit of measure of earth’s magnetism exerts upon a closed conductor, if the 

latter is so turned that the area of its projection on a plane normal to the direction of the earth’s 

magnetism increases or decreases during the unit time by the unit of surface.”78 In other words, 

unit electromotive force was that which was induced by this experimental setup, when the 

conductor was twisted at unit angular speed in a given terrestrial magnetic field. The unit 

current, on the other hand, was defined as that which exerted unit force on the bar-magnet when 

circulating through unit area. If unit resistance was “that which a closed conductor possesses 

when a unit measure of electromotive force produces a unit measure of current intensity,” then 

the value of a particular resistance standard serving as the induction coil in this experiment could 

                                                
77 See Olesko, Kathryn. “The Meaning of Precision: The Exact Sensibility in Early Nineteenth-Century Germany.” 
78 Wilhelm Weber, “On the Measurement of Electric Resistance According to an Absolute Standard.,” The London, 
Edinburgh and Dublin Philosophical Magazine and Journal of Science 22, no. 146 (1861): 226–40. 
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be calculated as a function of the induced current (measured by the force on the compass needle) 

and the electromotive force (measured by the dimension of the apparatus). 

Based on this schema, there were a few adaptations that had been carried out by various 

scientists or scientific groups between 1851 and 1881. As I mentioned earlier, the British 

Association led by Maxwell and Fleming Jenkin had already performed a set of experiments in 

the 1860s based on Weber’s design, though with slightly modified apparatus (see below). They 

produced a standard called the “Ohm,” which nevertheless was found to deviate from its “true” 

theoretical value by various experimenters. In addition, there were several other experiments 

conducted by various individual scientists. In an 1880 report to the Royal Saxon Society for the 

Science, Weber gave an overview of all of the major adaptations based on his original schema in 

the past three decades. There were four main adaptations. The first method used terrestrial 

magnetism for induction by turning the coil by ninety degrees in the manner specified earlier, 

just as Weber described in the 1851 paper. It measured the induced current by measuring the 

oscillation period of a magnetic compass needle, much smaller than the dimension of the coil. 

This method need not measure the value of local terrestrial magnetism itself, because the latter 

was a factor in both the extent of induction by rotating the conductor and the needle’s oscillation 

in earth’s magnetic field. The factor was thus canceled out in the calculation. Weber conducted 

the experiment himself in 1880 at the old, iron-free observatory at Pleissenburg, Leipzig, 

Figure 8 Weber’s description of the apparatus for 
determining resistance in absolute measure. Source: 
Weber, Wilhelm. “On the Measurement of Electric 
Resistance According to an Absolute Standard,” 
230. 
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accompanied by several physicists and a mechanist (among those present, he named Eduard 

Riecke of Göttingen, Heinrich Weber at Braunschweig, and a Dr. Weinek from the Hessen 

observatory). The apparatus was constructed by the Hamburg firm A. Repsold & Söhne, which 

relied on a weight-releasing mechanism to generate uniform rotation of a large induction coil too 

heavy to be handled manually—made from a copper wire of 414.95 kilograms in weight and 

3.33 millimeter in thickness, constructed by Werner Siemens, for both the induction coil and the 

multiplicator (Figure 9).79 

 The second method used the same apparatus but a multiplicator tightly enclosing an 

astatic needle, whose deflection was calculated by a method called damping. Measurement of the 

local terrestrial magnetism and the initial moment of the needle was required for this experiment. 

Friedrich Kohlrausch used this method in 1870 and conducted the experiment at the Göttingen 

                                                
79 Wilhelm Weber and F Zöllner, “Ueber Einrichtungen zum Gebrauch Absoluter Maasse in der Elektrodynamik 
mit Praktischer Anwendung,” Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu 
Leipzig. Mathematisch-Physische Classe. 32 (1880): 77–143. 

Figure 9 Weber and Zöllner's 1880 apparatus for absolute determination of resistance. The inductor 
on the right rotates in terrestrial magnetic field to generate a current; the multiplicator on the left 
measures the induced current by a magnet suspended at the center of the coil.  
Source: Weber, Wilhelm, and F Zöllner. „Ueber Einrichtungen zum Gebrauch Absoluter Maasse in 
der Elektrodynamik Mit Praktischer Anwendung,“ Tafel. II. 
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magnetic observatory using an apparatus older than Weber’s. He compared the Siemen’s 

mercury unit and the B.A. unit in the “absolute” units and reported that the B.A. “Ohm” 

deviated from its true value (supposedly 10Smillimeter/second) by almost 2%.80 The third 

method was almost identical to the first one but measured the deflection of the compass needle 

through damping, instead of the period of oscillation. The fourth method had been used by the 

British Association under the recommendation of William Thomson in 1862. It required the 

uniform rotation of a multiplicator of known dimensions in the earth’s magnetic field and the 

observation of the deflection of a small magnetic needle suspended at the center of the coil.81 An 

adaptation of this method was made in 1873 by H. Lorentz and was later reproduced in Lord 

Rayleigh and H. Sidgwick’s experiment in 1883, when the British Association performed further 

experiments to determine the value of the “Ohm” and the mercury unit. Rayleigh and Sidgwick 

used a circular disc of metal, instead of a coil, to uniformly rotate in a magnetic field created by a 

battery current circulating through a coil coaxial to the disk. Instead of having a galvanometer 

measure the induced current, they balanced the galvanometer at zero-degree deflection, by 

connecting it to both the induction coil and the external battery, thus cancelling the external 

battery current with the induced current.82 

The above discussion summarizes the kinds of quantity and their methods of 

measurement that a late 19th century practicing scientist like Helmholtz faced on a regular basis. 

It was within these experimental contexts that the following list of definitions, given at the 1881 

                                                
80 Ibid, 426. 
81 Ibid. 
82 Lord Rayleigh and H. Sidgwick, “Experiments, by the Method of Lorentz, for the Further Determination of the 
Absolute Value of the British Association Unit of Resistance, with an Appendix on the Determination of the Pitch of 
a Standard Tuning-Fork,” Philosophical Transactions of the Royal Society of London 174 (1883): 295–322. 
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international congress as the guiding principles for determining electrical units by the “absolute” 

methods, became concrete and meaningful:  

1. “Unit current is that which exerts a force of A
QC

 on unit magnetism” given a conductor 

of length l and current i and μ free magnetism at a distance L, in the direction 

perpendicular to the direction of the current. 

2. Unit of electromotive force is “that which is induced in a straight conductor of unit 

length at a location with unit magnetic force everywhere, if the conductor is moved 

with unit speed to be perpendicular to the plane in which conductor and magnetism 

exerting unit magnetic force.” 

3. “Unit resistance is the same resistance, with which unit electromotive force gives rise 

to unit current.” 

4. “Unit quantity of electricity is that which in unit time moves through the cross-section 

of a conductor of unit resistance.” 

5. “Unit capacity is that of a condenser, which, charged by unit electromotive force, 

contains unit quantity of electricity.”83 

…  

As we can see, these units were not so much parts constituting the whole, as derived from 

the electrodynamic and -magnetic laws associated with each electrical quantity. Their definitions 

were grounded in the experimental methods for their determination. Units were products of the 

measurability of the concepts in electricity and magnetism. Upon examining the experimental 

work that underlay the definitions of each electrical quantity, we find that none of the notions in 

                                                
83 Neesen, F. “II. Verhandlungen der Ersten Sektion und der Kommission für die Elektrischen Einheiten,” 400. 
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traditional philosophy of quantity—part-whole relationship, homogeneity, divisibility, or the 

distinction between extensive and intensive magnitudes—really played any primary role in 

explaining how the concepts discussed so far became quantitative. What mattered was the 

empirical work uncovering regularities in experiments and the interconnectedness of these 

regularities. The nouns “charge,” “current” “resistance” and so on only stood for what would 

occur in particular large-scale experiments. Displaying many characteristics of modern “big 

science,” involving enormous amount of labor and scientific attention, the experimental 

determination of electrical quantities highlights the embeddedness of abstract quantitative 

concepts in empirical procedures. The materiality of instrumentation that made theoretical 

concepts in physics possible in the 19th century was hardly a thing that could be ignored. No 

wonder that in Helmholtz’s 1887 “Counting and Measuring,” the method of measurement is at 

the forefront in characterizing the abstract concept of quantity. Quantities and their scales are 

only “objectifications” of object’s capacity to bring forth certain effects in the act of comparison. 

On its own, the generalized “quantity” is only the collective name for all individual quantitative 

terms measured separately and in different ways, instead of a synthetic a priori concept on whose 

basis empirical measurements need to be grounded.    

As Kant’s dictum that science must be grounded in mathematics was actively pursued in 

the 19th century, the scope and method of mathematization expanded significantly since Kant’s 

time, to the point that the traditional account of quantity seemed almost irrelevant to explain 

some of the most important quantitative concepts in 19th century physics. In effect, Helmholtz’s 

theory of quantity filled a gap between theory and practice left by Kant. When many of his 

contemporary philosophers continued to rely on the notion of unit and part-whole relationship to 
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conceptualize quantity and measurement, these notions became increasingly out of synch with 

scientific practices. 
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Chapter 3 Measuring without Units: Temperature, Sensation, and other 
Non-additive Quantities   

3.1. Introduction  

What do temperature (in practical thermometry), stellar magnitudes (measured by 

photometric methods), and sensory discrimination (as described by Weber’s law) have in 

common? In the context of late 19th century sciences, these concepts posed major challenges to 

existing philosophical theories of quantity and measurement. As shown in chapter 1, the 

conception of quantity through part-whole relationship, based on the archetype of geometrical 

magnitudes and reinforced by the Kantian definition of quantity in terms of “the composition of 

the homogeneous in intuition,” held strong sway among many 19th century authors. The case of 

temperature, brightness intensity, discernibility in sensation, and potentially other concepts that 

were products of the expansion of quantitative methods in the 19th century sciences, complicated 

the way quantities were understood. Strictly speaking, these concepts cannot be considered 

additive quantities composed of equal units. Take temperature as an example: what exactly does 

it measure? It does not quite make sense to say that 10° contains twice the degrees of heat as 

contained in 5° (though temperature does indicate degrees of heat), neither does it make sense to 

add one temperature to another. Even with the thermodynamic definition of a uniform 

temperature scale, it does not make sense to speak of “adding 5° to 10°” universally as one can 

speak of “adding 5 cm to 10 cm,” without specifying the specific heat capacity of the individual 

bodies whose temperatures are being measured.  

Partly, the non-additivity of quantities like temperature is related to the fact that their 

intervals cannot be directly compared. Temperature is not directly accessible but must be 

represented indirectly by something else. In thermometry prior to William Thomson’s absolute 
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scale, it was represented by the change in volume or pressure of a chosen thermometric 

substance—mercury or hydrogen, for instance. While it might be a straightforward matter to 

construct a uniform scale for length or volume, it was not so with making a uniform 

thermometric scale, because there was no way to directly compare temperature intervals. Had all 

substances exhibited the same pattern of expansion with temperature increase, it might have 

been possible to define a uniform scale for temperature through its 1-1 mapping with volume, but 

this is not the case. Each candidate for thermometric substance exhibited more-or-less different 

behaviors with regard to thermal changes. One might ask, as researchers in thermometry did, 

which particular gas or liquid expanded in proportion to the “real” temperature—when early 

19th century experiments discovered that gases expanded in proportion to each other with thermal 

changes, this did lead scientists to believe that gases expanded uniformly with the “real” 

temperature. But on a closer look, the logic is circular: by what standard can we say that gas 

expansion is uniform with respect to temperature, if temperature is defined by none other than 

the behavior of individual substances, including gases?1 This circularity was identified by Ernst 

Mach in the Principles of Theories of Heat, and more recently discussed by historian of science Hasok 

Chang in a series of publications. Interestingly, the circularity was not unique to temperature 

measurement. One of the most controversial topics in 19th century sciences is Gustav Fechner’s 

psychophysics, in which a uniform scale was similarly projected onto sensation as it was projected 

onto gas expansion with respect to temperature. Fechner based his formulation of a functional 

law between “just-noticeable-differences” in sensation and physical stimuli on the discovery that 

experimental subjects almost always noticed a difference in stimuli (e.g., differences between two 

                                                
1 The solution to this problem, as shown by William Thomson’s absolute temperature scale, is to find an 
external reference that is not an arbitrarily chosen thermometric substance. To this end, Thomson defined a 
new scale of temperature whose ratio is fixed by the ratio of work generated to heat input in an ideal Carnot 
cycle. See section 3.4 “Absolute temperature as a concept of level.”   
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weights, between the intensities of two light sources, etc.) only when the physical intensities of 

these stimuli (measured by physical weights, or photometric methods) increased by a fixed ratio. 

That is, given S as a measure of the physical intensity of a stimulus and ΔS its variation, a 

difference between stimuli was noticed when ΔS/S = constant. Fechner therefore concluded that 

he had found an additive scale for sensation composed of equal units, and these units were none 

other than the just-noticeable differences ΔE = ΔS/S. But how could one know that the 

differences in sensation on different locations of the scale were equal to one another, if there was 

no way to directly access sensations other than by marking their intervals by ΔS/S? Fechner 

himself defended the equality of perceived differences by claiming that such equality was proved 

by facts of observation—those very facts that led him to formulate the scale for sensation in the 

first place. But according to the empirical facts Fechner drew on, differences were noticed given 

constant ratio of physical stimuli, this is not equivalent with the claim that those noticed 

differences in sensation were equal. The situation is analogous to primitive temperature 

measurement. In both cases, what were measured could not be directly accessed, but must be 

represented by something else; in both cases, the proportionality between that something else was 

mistaken by historical actors for the proportionality between the thing to be measured. Many of 

Fechner’s contemporaries like Wilhelm Wundt acknowledged the validity of Weber’s law but not 

Fechner’s construction of an additive scale for sensation. Many others, like Rudolf Elsa, Ernst 

Mach and Alexius Meinong, explicitly drew a parallel between the psychophysical scale and 

conventional thermometric scales, since they suspected both of being merely definitional.  

For Ernst Mach, the circularity involved in projecting uniformity onto scales that must be 

represented by other measured quantities could also be extended to Newton’s absolute time, 

since time was thought to be measurable only by uniform motion, but no uniformity could be 
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proved without knowing how to measure time. Mach argued that both temperature or universal 

time are abstract ideas falsely granted a concrete reality; in fact, they only represent the 

interdependence of bodies: in measuring temperature we coordinate the behavior of one body in 

relation to thermal change by that of another, just as in measuring time we gauge the motion of 

one body by the motion of another.  

Many of Fechner’s contemporaries agreed that even if the uniformity of the scales could 

not be proved, this would not render Weber’s law, or by extension, the photometric scale for 

brightness (which inspired Fechner by showing that errors in brightness perception did conform 

to his law) useless. The photometric brightness scale was widely used in 19th century astronomy 

independent of psychophysics, although the scale was neither additive nor necessarily uniform. 

Similarly, conventional thermometry did play a crucial role in offering precise knowledge and 

control over natural phenomena despite being “definitional.” Indeed, the logarithmic law 

Fechner discovered continues to be a part of contemporary cognitive science today.2 These scales 

were not entirely arbitrary products of the minds of their authors, but often established on 

experimental regularities. Among late 19th century authors, the prevalent use of non-additive, 

semi-quantitative scales pushed the boundary between measurement and numerical 

coordination. In 20th century measurement theory, ordinal scales without equal units would be 

admitted as a legitimate form of measurement, especially in social sciences.3  

What psychophysics did succeed in doing was to bring attention to the inability of unit-

based conception of measurement to explain the measurement of basic quantitative concepts in 

                                                
2 Larry Hardesty, “What Number Is Halfway between 1 and 9? Is It 5 — or 3?,” MIT News, October 5, 2012, 
https://news.mit.edu/2012/thinking-logarithmically-1005; Lav R. Varshney and John Z. Sun, “Why Do We 
Perceive Logarithmically?,” Significance 10, no. 1 (2013): 28–31, https://doi.org/10.1111/j.1740-9713.2013.00636.x. 
3 See S.S. Stevens, “Measurement,” in Scaling: A Sourcebook for Behavioral Scientists, ed. Gary Maranell (Routledge, 
2017). 
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the exact sciences. Direct comparison with units independent of anything external is impossible 

even in the case of spatial and temporal measurement. This was Fechner’s defense for using 

external stimuli to stand for sensation. Wundt, for instance, noticed that “the absolute constancy 

of natural laws has emerged the actual condition of every time measurement,” implicitly referring 

to existing contention regarding the role of Newton’s first law as a disguised definition of time.4 

For Alexius Meinong, indirect or “surrogative” measurement like that of temperature or 

sensation deserved its own philosophical analysis. The different values on the scales do not 

represent additive units, but rather a relation of difference (“dissimilarity”), whose values can be 

correlated with an external function involving other variables, and this difference can only be 

considered additive in the sense of relational composition. In Principles of Theory of Heat, Mach 

used the notion of “concept of level” to designate non-additive quantities like temperature (even 

for Thomson’s absolute temperature) or electric potential. He noted: “the conception of 

temperature is a conception of level, like the height of a heavy body, the velocity of a moving 

mass, electric and magnetic potential, and chemical differences.”5 Implicitly, the scales of these 

concepts of level could become uniform, but not strictly speaking additive like length or mass. 

In a sense, some of the issues with non-additive quantities born out of functional 

relationships discovered in an experimental context harken back to Kant’s argument that speed 

could not be conceptualized through additive parts. In late 19th century, those questions were 

particularly brought to the attention of scientists, because of a combination of long-lasting 

difficulties in thermometric measurement and widespread controversies raised by psychophysics. 

Considering the fundamental role some of those concepts played in entire fields of research and 

                                                
4 See the section “Theories of indirect measurement” for the reference. 
5 See the section “Mach’s analysis of the temperature concept” for the reference. 
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the prevalent use of instruments for their measurement in practice, the lack of clarity on what 

precisely was measured and how it was measured within the existing philosophical framework led 

some commentators to reflect on the foundation of measurement in general. The resulting 

discussions further proved how the conventional understanding of quantity through the lens of 

length and other geometrical magnitudes was incapable of addressing many key issues in the 

foundation of measurement.  

3.2. 19th Century Thermometric Research  

The fact that bodies and gases dilate with heat had been known and experimentally 

demonstrated since the antiquity, and the first air- or liquid- in-glass thermometers with 

numbered marks to represent degrees of hot and cold were constructed in Galileo’s time based 

on the volume expansion of bodies and gases. The demand for more precise instruments called 

for a better understanding of the relationship between volume expansion and degrees of heat 

stood for by temperature. Nevertheless, how heat was determined and measured depended on 

hypotheses. For instance, during the 18th century it was believed that the temperature of a 

mixture of 1 portion of boiling water and 9 portions of freezing water would be 10°. Mercury, 

whose volume expansion was close to being proportional to the temperature values predicted this 

way, was the superior thermometric substance.6 In contrast, the caloric theory popular near the 

end of the 18th century argued that the heat substance (caloric) interacted with matter on a 

microscopic level; some portions of the caloric were responsible for exerting an impact on the 

thermometer, while others were responsible for overcoming or acting on intermolecular forces 

                                                
6 This was challenged by the observation that heat can be absorbed without raising the temperature, as in the 
case of melting ice), temperature values could no longer derived by the method of mixture, as heat might be 
absorbed by the mixture without impacting its temperature, or impacting it in unexplained ways. 
Hasok Chang, “Spirit, Air, and Quicksilver: The Search for the ‘Real’ Scale of Temperature,” Historical Studies 
in the Physical and Biological Sciences 31, no. 2 (2001): 249–84. 
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between the material particles, thus becoming latent. According to this theory, since gas 

molecules were widely separated and therefore exerted a weaker force among themselves, almost 

all caloric absorbed were expended in raising its temperature, hence the behavior of gas under 

heating or cooling most accurately reflected the “real” quantity of caloric absorbed.7  

The explanation offered by the caloric theory was compatible with the experiments 

conducted by early 19th century researchers such as Joseph Lois Gay-Lussac and John Dalton, 

who separately demonstrated in 1802 that all gases largely expanded to the same extent between 

the melting point of ice and the boiling point of water under constant pressure. Gay-Lussac 

experimented with atmospheric air, oxygen, nitrogen, hydrogen and found that all expanded 

about 137.5% in volume within the above-mentioned range.8 In a subsequent set of experiment, he 

showed that within this range, the expansion of the air was close to being proportional to the 

indications of the mercury thermometer (Figure 3.1).9 If the mercury thermometer indeed 

marked the “real” temperature “out there in nature,” then this would indicate that gas expanded 

proportionally to degrees of temperature as the caloric theory predicted. While this was indeed 

Dalton’s conclusion, namely that his experimental results showed that “all elastic fluids under the 

same pressure expand equally by heat,” Gay-Lussac explicitly pointed out that since the precise 

nature of the connection between heat and temperature indicated by any particular thermometer 

was not known, their results only facilitated the very urgent practical need to calibrate different 

gas thermometers: “We believe, it is true, in general, equal divisions of its [gas thermometer’s] 

                                                
7 Ibid. See Hasok Chang, Inventing Temperature; Buchwald and Fox, The Oxford Handbook of the History of Physics. 
8 J.B. Biot, “Extract from Biot’s Treaties on Physics, Chapter IX of Volume I.,” in The Expansion of Gases by 
Heat, ed. Wyatt William Randall (American book Company, 1902), 45; Jed Z. Buchwald and Robert Fox, eds., 
The Oxford Handbook of the History of Physics (OUP Oxford, 2013), 483. 
9 J.B. Biot, “Extract from Biot’s Treaties on Physics, Chapter IX of Volume I.,” in The Expansion of Gases by Heat, ed. 
Wyatt William Randall (American book Company, 1902). 
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scale correspond to equal increments of caloric; but this view is supported by no very positive 

fact.”10  

The disclaimer did not prevent widespread misunderstanding among Gay-Lussac’s 

contemporaries, who interpreted his and Dalton’s experiments as showing that the all gases 

expand uniformly with the “real” degrees of heat under constant pressure, while they in fact only 

showed that gases largely expanded proportionally to each other, and to the readings of the 

mercury thermometer at best, all within the range between the freezing and boiling points of 

water.11 As Mach pointed out, the misunderstanding was shared by even Rudolf Clausius in his 

                                                
10 L. J. Gay-Lussac, “Researches upon the Rate of Expansion of Gases and Vapors.,” in The Expansion of Gases 
by Heat: Memoirs by Dalton, Gay-Lussac, Regnault and Chappuis, ed. and trans. Wyatt William Randall (American 
book Company, 1902), 25. 
11 Ernst Mach, Principles of the Theory of Heat: Historically and Critically Elucidated (Springer Science & Business 
Media, 2012), 54. Images on subsequent pages are from the German edition, Ernst Mach, Die Principien der 
Wärmlehre: historisch-kritisch Entwickelt (Barth, 1896). 

Figure 10 Gay-Lussac’s apparatus. By Mariotte’s (1679) law, at constant 
temperature, volume and pressure of a gas are inversely proportional to each 
other. In this experiment pressure is kept constant by keeping GG at 
atmospheric pressure (air is introduced and dried through TT, a tube filled with 
calcium chloride to absorb moisture). M is a small column of mercury, acting as 
a piston that slides along the tube to indicate the volume expansion of gas 
contained in GG. AB is a vessel placed on a furnace, filled with water and can 
be heated to different temperatures, measured by a mercury thermometer t.  
Source: Biot, J.B. “Extract from Biot’s Treaties on Physics, Chapter IX of 
Volume I,” 54. 
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1863 Mechanical Theory of Heat, where Clausius stated the equivalence of heat and work and 

proposed the first law of thermodynamics. In a passage quoted by Mach himself, Clausius wrote 

that due to the weak attraction among gas molecules, the pressure of gas under constant volume 

“must be approximately proportional to the absolute temperature. The correctness of this 

inference has, indeed, so much intrinsic probability that many physicists since Gay-Lussac and 

Figure 11 (Left) Illustration of Dulong and Petit’s apparatus; (Right) Mach’s illustration 
of Dulong and Petit’s finding: the coefficients of expansion of different thermometric 
substances all differ from each other.  

Dulong and Petit’s experiment compared the coefficients of expansion of mercury, 
glass, air and several metals. From the height differences between the mercury in A and 
B, Dulong and Petit calculated mercury’s coefficient of expansion between 0 degree and 
the temperature recorded by the air thermometer. The mercury weight thermometer’s 
reading was determined both by the expansion of mercury and that of glass vessel, so 
knowing mercury’s coefficient of expansion gave glass’s coefficient of expansion. 
Knowing both the expansion of glass and mercury, they inserted a small rod of iron in a 
glass thermometer, filled the rest of the vessel with mercury, and calculated the 
expansion of iron, and repeated the same with copper and platinum. Setting up two 
tubes filled with mercury, one plunged into a bath of melting ice and the other into a 
hot oil bath, whose temperature could be continuously raised to 100°, 200°, or 300° 
(determined by the air thermometer) by heating, Dulong and Petit measured the 
temperature of the hot oil bath using both an air thermometer and a mercury weight 
thermometer (which expels mercury from expansion) to compare their scales.  

As Mach’s illustration shows, if we regard the expansion of air as the standard, the 
coefficients of expansion (the volume expansion responding to 1° increase on the 
thermometer) of all other bodies increase with temperature; if we regard the expansion 
of iron as the standard, the coefficients of expansion of all other bodies decrease with 
temperature; if we regard the expansion of mercury as the standard, the coefficients of 
expansion of iron increase while that of air decrease.  

Source: Thomas Preston, The Theory of Heat (London: Macmillan, 1894), 166; Mach, 
Ernst. Die Principien der Wärmlehre, 45. 
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Dalton have assumed it outright, and based upon it their calculations (!) of the absolute 

temperature.”12 Like many of his contemporaries, Clausius had interpreted Gay-Lussac and 

Dalton’s experiments as indicating that the pressure of gas under constant volume indicated the 

temperature, independent of the particular matter measuring it.  

Except for the gases, it was discovered that all promising candidates for thermometric 

substances exhibited different patterns of expansion. Pierre Dulong and Alexis-Thérèse Petit’s 

classic experiment in 1817, comparing mercury, glass, iron and various metals, was cited by 

Mach to illustrate this point (Figure 11). This confirmed the central dilemma in 19th century 

thermometric research: there was no external standard for accessing the “real” temperature 

other than by the variety of individual bodies, gases, fluids that had hitherto been used as 

thermometric substance. While by the mid-19th century, gas thermometers appeared to be the 

most promising due to their largely uniform increase in pressure or volume with temperature 

among themselves within a range, this still could not lead to the conclusion that gas expanded in 

proportion to temperature, since temperature values were indicated by none other than gas 

expansion.13  

                                                
12 Cited in ibid, 55.   
13 This is best phrased by Chang’s article: we cannot claim that Y = f(X) is a linear function of X if we don’t 
already know the values of Y independent of X. (See Chang, Hasok, Inventing Temperature, 59.)  
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Furthermore, divergences among gases were also revealed: when the increase in pressure 

and reduction in volume reaches beyond certain point, vapors begin to liquefy, and for different 

vapors, the temperature upper limits below which this occurs are different. This means that the 

Mariotte’s law, by which temperature was measured (by either volume or pressure when keeping 

the other variable fixed), could only be applicable within a limited range, and for each gas this 

limited range would appear to be different. (Figure 12) If all bodies exhibit different behaviors in 

response to the same changes, then none can claim an exclusive right to define temperature. The 

10º increment on one thermometer (defined by the behavior of its thermometric substance) 

would not correspond to the 10º on another, or at a different location on the same thermometer. 

Using any particular scale would only result in a definitional scale. In William Thomson’s words, 

in designating temperature values, “it appears then that the standard of practical thermometry 

Figure 12 Mach’s illustration of isothermal curves for 
gases: the pressure of a vapor at a given temperature 
ascends in the curve mn, but at n liquefaction begins. 
At a higher temperature, when pressure ascends along 
pg, the liquefaction starts at a higher pressure g. At the 
critical temperature, no liquefaction every occurs (wv).  
Source: Mach, Ernst. Die Principien der Wärmlehre, 30. 
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consists essentially in the reference to a certain numerically expressible quality of a particular 

substance,” that is, its volume, pressure, or other properties.14   

The problem is analogous to the one in spatial measurement discussed in Helmholtz’s 

papers on the foundation of geometry (chapter 2): if spatial magnitudes were only measurable by 

congruence in superposition, there would be no way to confirm the invariance of the measuring 

rod in motion; if the measuring rod altered through motion, then the result of measurement, and 

the very concept of spatial distance, would be meaningless. In both cases, the quantities of space 

and temperature would be contingent upon certain properties of physical bodies (e.g., the rigidity 

of the measuring rod in motion, or the proportionality of gas pressure or volume with 

temperature) defining them. But there was no way of validating that these properties independent 

of the very concepts that they define. The dilemma in both cases stems from the fact that the 

concepts in question were constituted by the method of measurement, but “abstracted” and 

bestowed an entirely independent existence outside these methods, like the Platonic ideas, as 

Mach would say. 

The acceptance of thermodynamics in the mid-19th century brought forth a new 

framework in which temperature was defined and measured. Heat was no longer viewed as a 

conserved quantity or an imponderable substance but a form of energy. The definition of 

temperature was accordingly based on the interconversion between mechanical work and heat, 

rather than the behavior of specific substances. Still, in connecting these theoretical concepts to 

                                                
14 L. J. Gay-Lussac, “Researches upon the Rate of Expansion of Gases and Vapors.,” in The Expansion of Gases 
by Heat: Memoirs by Dalton, Gay-Lussac, Regnault and Chappuis, ed. and trans. Wyatt William Randall (American 
book Company, 1902). 
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concrete measurement operations, the behaviors of specific gases at different temperatures 

inevitably entered the calculation of work and heat.  

The development of thermodynamics in the 19th century was very much indebted to 

engineering, in particular the study of steam engines and their efficiency. As Mach noted, while it 

was commonly held that thermodynamics began with the conception of heat as motion, those 

who entertained the kinetic theory of heat (the view that heat is the result of “unperceived 

motions of molecules of matter”) often also believed that heat was a conserved quantity. The 

kinetic theory of heat in these earlier accounts therefore remained largely as “wholly 

contemplative, philosophical, and passive,” i.e., they did not play as constructive a role in 

pushing forward thermodynamics as the investigation of steam engines and the behaviors of 

various gases and vapors.15 The connection between mechanical work and heat was investigated 

in detail by the French engineer Sadi Carnot, whose ideas laid the groundwork for 

thermodynamics. Carnot was interested in investigating whether the performance of work by 

heat (given a temperature difference) is independent of the materials, i.e., different gases or 

vapors, and ways to attain the maximum amount of mechanical work given a quantity of heat.16 

To achieve such maximum, Carnot invoked a thought experiment, a 4-step cyclic process 

                                                
15 Mach, Principles of Theory of Heat, 199, 200. Mach noted: “the intuitive notions by which we obtain and 
facilitate our grasp of the facts are of far less importance than the accurate study of the facts themselves. By this 
study the notions spoken of adapt themselves and develop themselves to such an extent that they then attain a 
rich constructive power. Even the material theory of heat would not ultimately have hindered the full 
development of thermodynamics.” (Ibid., 200.)  
16 Carnot held that heat was a conserved quantity, and the passage of heat gave rise to an amount of 
mechanical work without destroying the heat. In Mach’s description, he thought that the performance of work 
by heat was analogous to the performance of work by a waterfall. Carnot’s theory was modified by Thomson, 
Joule, Clausius and others. See Mach, Principles of Theory of Heat. 
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involving a piston performing work or having work performed on it with gas expansion or 

compression. The “Carnot cycle” has now become a standard introduction to thermodynamics:  

1. A cylinder containing gas below a piston stands on an object A serving as the “heat 

reservoir” (being able to confer heat indefinitely) at constant temperature 𝑡". The piston is 

loaded with weight equal to the pressure of the gas. Gas expands and is kept at the same 

temperature 𝑡" by continuing to take heat from A.17 

2. The cylinder is removed from A and prevented from heat transfer. Gas continues to expand, 

pushing the piston, while the temperature of the gas sinks to 𝑡#.  

3. The cylinder stands on an object B serving as the “cold reservoir” (being able to absorb heat 

indefinitely) at constant temperature 𝑡# (𝑡#<𝑡"). Gas is compressed (having external work 

performed on it) and kept at the same temperature 𝑡# as heat continues to be transferred to 

B. The piston is pushed down to such an extent that 

4. when the cylinder is removed from B, further compression to the original volume before step 

1 would also restore the original temperature 𝑡".  

Carnot concluded that the mechanical work in this process was entirely independent from 

the choice of the “working material”—air, steam, or alcohol vapor.18 Instead, the maximum 

                                                
17 The process is an ideal scenario and cannot be actually carried out, because if the temperature of the gas is 
the same as the temperature of A, no heat transfer would occur. The temperature of the gas is therefore 
imagined to be infinitesimally smaller than the temperature of A. Similarly, if the pressure of the gas is equal to 
the weight loaded on the piston, no motion would occur. Again, the weight is imagined to be infinitesimally 
smaller than the pressure. (Mach, Principles of Theory of Heat, 203)  
18 The argument is by reductio ad absurdum: given two such cycles with two different working substance, with 
the same quantity of heat input, the same temperatures of cold and heat reservoirs, if one process produces a 
higher net work W’ than the other, then this latter process could be inverted to expend W, which is smaller 
than W’. Then W’ - W will be the excess work that supplies a perpetuum mobile. (Ibid, 204)  
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work performed by this process was only dependent on the temperatures of the two reservoirs, 

and the transferred heat (the difference between heat taken in from A and heat taken out by B).  

The precise quantitative relations in the Carnot cycle were subsequently studied by B. P. 

E. Clapeyron, James Joule, William Thomson, Rudolf Clausius and so on, and modified based 

on the principle of energy conservation. While Carnot himself assumed that quantities of heat 

was conserved while providing mechanical work as it sank to a lower temperature, the works of 

Julius Mayer (1842), James Joule (1843) and Helmholtz (1847) showed that heat vanished when 

performing work. In a sequence of experiments, Joule found that the amount of heat produced 

by mechanical work was a constant value. He believed there was a constant ratio between 

mechanical work performed (or expended) and quantity of heat gained (or lost).19 (Figure 13) 

This was designated through the “mechanical equivalent of heat,” a constant J.   

                                                
19 See James Prescott Joule, “XI. New Determination of the Mechanical Equivalent of Heat,” Philosophical 
Transactions of the Royal Society of London 169 (1878). 
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Figure 13 James Joule’s 1878 device for determining the mechanical equivalent of heat. The basic idea 
was to “revolve a paddle in a suspended vessel of water, to find the heat thereby produced, measuring the 
work by the force required to hold the vessel from turning, and the distance run as referred to the point at 
which the force was applied.” Rotation was produced by weights on the scales connected to two pulleys, 
and the heat was measured by the small changes of temperature of water in a delicate calorimeter on the 
right. The loss of mechanical work in the rotation should be equivalent to the increment of heat in the 
calorimeter.  
Source: Joule, James Prescott. “XI. New Determination of the Mechanical Equivalent of Heat,” Plate 26.  
 
 

Thomson’s investigation of the efficiency of the Carnot cycle (the engine outlined through 

step 1-4) took Joule’s findings as a given, namely that work and heat were interconvertible. 

Specifically, if Q is the heat absorbed in step 1 of the Carnot cycle from the hot reservoir kept at 

temperature 𝑡", and Q’ is the heat conveyed to the cold reservoir kept at 𝑡# in step 3, then Q-Q’ 

depends on 𝑡" and 𝑡#. Q - Q’, the “vanished heat” in the process, is transformed into mechanical 

work W, and W = J(Q - Q’) according to Joule’s theory about the mechanical equivalent of heat. 

The ratio between W and Q then expresses the efficiency of the cycle—the amount of net work 
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produced in the cycle given initial heat input Q, is itself a function of the temperatures 𝑡" and 𝑡#. 

Thomson designated this ratio as Carnot’s coefficient. Specifically, he expressed the efficiency 𝜇 

in terms of 𝑊 = 𝑄 ⋅ 𝜇 ⋅ 𝑑𝑡, where dt is the differential in temperature. This efficiency played a 

crucial role in the definition of the absolute temperature.20 Earlier, Joule had discovered that the 

efficiency factor μ was inversely proportional to temperature measured by conventional 

thermometers. That is, 𝜇 = 𝐽 ⋅ 𝛼 ⋅ (1 + 𝛼𝑡), where α is a constant and J is Joule’s mechanical 

equivalent of heat. Instead of taking the temperature measured by a thermometer—the t in the 

equation—as the indefinable and measuring μ by it, Thomson defined a new scale of 

temperature, T’s, whose values were determined by μ. μ was supposed to be empirically 

measurable in terms of the work and heat input, both universal quantities independent of 

temperature, in principle. That is, he defined absolute temperature “arbitrarily,” in Mach’s 

words,21 in terms of 𝑇 = 𝐽/𝜇. This was indeed an arbitrary but a convenient definition, in the 

sense that it was suggested by Joule’s formulation of μ, which at the time was not confirmed. It 

was convenient because the new T’s would not deviate too far from existing air thermometer 

scales. This definition is also equivalent to defining the temperatures of the cold and heat 

reservoir in terms of 𝑇"/𝑇# = 𝑄/𝑄].22  

                                                
20 Mach, Principles of the Theory of Heat. Hasok Chang and Sang Wook Yi, “The Absolute and Its Measurement: 
William Thomson on Temperature,” Annals of Science 62, no. 3 (July 1, 2005): 281–308, 
https://doi.org/10.1080/00033790410001712246. 
21 Mach, Principles of the Theory of Heat, 288. 
22 Alternatively, 𝑇" 𝑇#⁄  can also be expressed in terms of 𝑊/𝑄 = 1 − 𝑇#/𝑇", or in terms of the efficiencies 
𝑇"/𝑇# = 𝜇#/𝜇", if a Carnot cycle (or any reversible process) is established for each of them with a third fixed 
temperature.   
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For any two temperatures, in this definition, their ratios have a fixed reference 

independent of any particular substance, namely the ratio between quantities of heat absorbed 

and emitted if a Carnot cycle is established between these two temperatures.23  

3.3. Mach’s Analysis of the Temperature Concept  

The 1896 Principles of Theory of Heat, born out of the lectures series of Ernst Mach as the 

professor of the “History and Theory of Inductive Science” at the University of Vienna, was 

intended to review the development in theories of heat up to the end of the 19th century and 

expel “superfluous ideas and unwarranted metaphysical views” from a narrative of what had 

actually been achieved in the field.24 During this period, his works gained international renown 

and the Principles of Theory of Heat was published in two German editions and translated into 

English in four years.25 Like Helmholtz and others philosophically inclined scientists of his time, 

Mach was concerned with the relationship between mathematical conceptions and how they 

came to represent concepts and phenomena in the empirical sciences. Mach agreed with 

Helmholtz that numbers originated from ordinals—a collection of symbols with a fixed order to 

designate and distinguish counted objects. More complex entities and theorems in mathematics 

were created by the unlimited application of arithmetical operations to the infinitely extended 

ordinal sequence. By conventional wisdom, numbers express the differences between 

                                                
23 Mach, Principles of Theory of Heat, 284;  Chang and Yi, “The Absolute and Its Measurement.” 
24 Mach, “Author’s Preface to the First Edition,” Principles of the Theory of Heat.  
25 Ibid, “Editor’s Note to the English Edition.” 
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“continuums” (continuous quantities) in equal units by means of measurement.26 But this was not 

true with temperature: 

“…temperature is nothing but the characterization or designation of a thermal state by a 
number. This temperature number has exclusively the properties of an inventory number, by 
means of which the same thermal state can again be recognized, and if necessary sought for and 
reproduced. This number likewise informs us in what order the designated thermal states succeed 
one another and between what other states a given state is situated…the conception of 
temperature is a conception of level, like the height of a heavy body, the velocity of a moving 
mass, electric and magnetic potential, and chemical differences.”27  

Mach started his analysis of the temperature concept by discussing its forgotten origins in 

perceptual experiences. Before the concept of temperature, there are initially sensations of warm 

and cold. As we observe changes in physical objects concomitant to the changes in sensation, 

such as the “glowing, the melting, or the evaporation of a certain body, the hissing noise made by 

a drop of water on a hot plate, its freezing on a cold plate,” and so on, we use these phenomena 

instead of direct sensations as a guide to the thermal states of other objects. Volume expansion is 

a conspicuous and convenient indicator concomitant with our ordered thermal sensations, hence 

we assume that the more intense a thermal state is, the greater the volume expansion (1). Because 

thermal sensations tend to equalize after prolonged contact with objects, we assume that thermal 

states themselves (of objects) also equalize after prolonged contact if objects do not cause volume 

alterations in each other (2). This is interpreted as the equality of thermal states, allowing us to 

use the volume of one body after reaching equilibrium to designate not just its own thermal state, 

but also that of another object. For the equality of thermal states to have general meaning, we 

assume that physical equality is transitive, that is, if (2) occurs between A and B, and between B 

                                                
26 By “continuums” he meant any “system of terms,” where each term indicated the degree of some kind of 
property, and between any two terms infinitely many other terms could be interpolated that still preserve the 
order. 
27 Ibid, 60-61. 
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and C, then it also occurs between A and C (3). Finally, due to the continuity of thermal 

sensations, we assume that thermal states are continuous (4). 

It is these sedimented inferences and assumptions originating from unscientific daily 

experiences that allow the concept of temperature to become an abstract scientific concept in the 

first place. From Mach’s point of view, there are arbitrary definitions or conventions in each of 

the steps from (1) to (4). (1) is contradicted by the case of water between +3º and +5ºC, which 

diminishes in volume when combined, (2) by the fact that heat movement occurs when the 

thermometer does not indicate, and (3) and (4) are only good insofar as experience has not 

proven otherwise.28 Once we have an instrument for marking and fixing various thermal states, 

we use numbers—“an orderly system of names” capable of indefinite extension—instead of 

lengthy physical descriptions such as “the melting point of ice” to mark and order thermal 

states.29 The number that is uniquely coordinated with a thermal state is called the temperature. 

For Mach, this relationship between number and thermal states in practical thermometry is just 

that—all that has been accomplished is essentially designation that preserves the order.  

In reference to temperature prior to Thomson’s absolute definitions, the claim that 

temperatures are merely ordinal is validated by several reasons. Temperature in conventional 

thermometry is represented by the volume or pressure of a particular thermometric substance. 

Had all substances exhibited the same pattern of change in volume or pressure under thermal 

changes, it might have been possible to simply use either parameter to stand for temperature. But 

this is not the case—all candidates of thermometric substances exhibit different patterns of 

                                                
28 Ibid, 45-48. 
29 Ibid, 69. 
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expansion—and the choice of any particular substance would be largely arbitrary.30 Whether one 

chooses the volume of air, iron or mercury to designate temperature, there is no other substance 

that expands in a linear relationship to it. No substance can therefore claim to represent the 

“true” temperature. The discovery that all gases exhibits similar patterns of expansion led many 

to believe that gas expand “uniformly with temperature.” But the observation that gases expand 

largely in proportion to each other does not lead to the conclusion that they expand in proportion 

to “true” temperature, because “true” temperature in conventional thermometry is defined 

precisely by various individual expanding objects. Quoting Dulong and Petit, who noted that 

their own experiments showed “how greatly the expansion of glass departs from uniformity,” 

Mach responded: “We ask in astonishment: ‘by what criterion is the ‘uniformity’ or ‘lack of 

uniformity’ of the expansion of glass to be estimated and measured?”31  

The ratio between any two temperatures on a thermometric scale calibrated by the 

volume of a substance, therefore, is designated by numbers by an arbitrary convention. It is 

certainly possible to divide the volume between, say, 0º and 100º by 100 parts equally, but the 

same degree fails to refer to the same quantity—if it refers to an external quantity, like increment 

of heat or difference between two thermal states, at all. In a similar vein, the ratios between 

degrees are also not coordinated with any external reference. The difference between 1° and 2° is 

not the same as the difference between 2° and 4°, because it’s always possible to argue that the 

                                                
30 Ibid., 40-41.  
31 Ibid, 55. He further cited Clausius who noted that the observable pressure of gas was “an approximate 
measure of the dispersive of the heat contained in the gas; and therefore, …this pressure must be 
approximately proportional to the absolute temperature.” Clausius also noted: “In view of Gay-Lussac’s 
discovery…that all gases suffer, under the action of heat, like expansions for like increases of temperature, the 
hypothesis is well justified that the expansion in question is uniform for all degrees of temperature, inasmuch as 
it is more probable that the expansion should be uniform than that all gases should exhibit the same 
variability.” (Ibid.) 
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thermal difference corresponding to the “doubling” on the air thermometer does not correspond 

to the “doubling” on the mercury thermometer. Mach summarized this dilemma as follows:   

 “objects counted, which are alike in some particular respect, and which may replace one 
another in this respect, are called units. What is it that is counted, for example, by the number 
representing a temperature? In the first place it is the division of the scale, the real or apparent 
increments of volume or of tension of the thermometric substance. Geometrically or dynamically 
regarded, the objects here counted may be substituted for one another indifferently; but with 
reference to the thermal state these objects are signs or indices merely of that state, and not 
equivalent, enumerable parts of a universal property of the thermal state itself.”32 

Choosing pressure of a particular gas or vapor instead of volume to designate 

temperature suffers from the same problem. While thermometric scales based on air pressure had 

in fact been extensively made and put in use, the coefficient of pressure for gases is approximately 

the same with the coefficient of volume.  

Choosing any particular thermometric substance and choosing either volume or pressure 

to represent thermal states, both involve arbitrary conventions. Therefore, the relation between 

number and thermal states on the thermometric scale is also conventional. That is, temperature 

numbers can be by different functions of a chosen physical property of a chosen thermometric 

substance. The resulting scales have different features, and none is superior to any other in 

principle. For instance, there is no upper limit to the temperature scale determined by gas 

expansion, but gas pressure or volume cannot fall below zero. Defining temperature as 

proportional to pressure arbitrarily through the equation 𝑝 = 𝑝a(1 + 𝛼𝑡), where 𝑝a is the 

pressure of unit gas under constant volume, then temperature has a lower limit at -273º C, since 

p cannot fall below zero. But replace air by mercury and employ the same reasoning, then -

5000°C is the absolute zero. On the other hand, if one defines temperature through a 

logarithmic function of volume, as John Dalton had in fact done, then there is no lower limit or 

                                                
32 Ibid, 71.  
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“absolute zero” in principle. Dalton marked the indices of -20, -10, 0, 10, 20… on the 

thermometer corresponding to 𝑣a/1.0179#, 𝑣a/1.0179, 𝑣a, 1.0179𝑣a, 1.0179#𝑣a (𝑣a is the 

initial volume of a gas). These values can never reach zero.33 Defining temperature as a linear 

function or a non-linear function of volume or pressure is entirely a matter of convention.  

The pressure or volume here are merely symbols that stand for a particular temperature 

level, and temperature numbers “the symbols of the symbols.” When the symbols disappear, the 

thing symbolized need not disappear along with them; the properties of the symbols cannot be 

outright identified with the properties of the symbolized.34 If one further asks what the symbols 

stand for, the answer would have to be that temperature markings in conventional thermometry 

allow us to recognize if the same thermal states have been reproduced in different scenarios and 

in different objects, the “same” states being the collection of the mutually coordinated behavior 

of objects that occur concomitantly—initially concomitantly with our thermal sensations, later 

with phenomena that designate in place of sensations.  

Mach’s main argument with regard to temperature is captured in the following quote: 

“thermal states exist in nature, but the conception of temperature exists only by virtue of our 

arbitrary definitions, which might very well have taken another form.” Temperature is merely 

the collection of behaviors of objects ordered in a way that roughly mirrors our thermal 

sensations. Volume or pressure changes of objects are merely one (and the most easily noticed) 

phenomena that occur under thermal changes that mirror the order of our sensations. But as 

volume or pressure indications replace thermal sensations to stand for thermal changes, we 

project a uniform relationship between volume or pressure changes and the “real” temperature. 

                                                
33 Ibid, 58. 
34 Mach, Principles of the Theory of Heat, 58. 
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Although different thermometric substances’ behaviors deviate from each other, we still seek a 

substance whose volume or pressure most approximates a proportional relationship with the 

“real” temperature. But independent of the behavior of individual bodies under thermal changes, 

there is no such “Platonic ideal of temperature, of which the temperatures read from the 

thermometric scales were only the imperfect and inexact expression.”35  

The exact same logic infects the measurement of time. Mach argued that Newton’s 

absolute space and time “originated in a similar manner,” as “the sensation of duration plays the 

same part with regard to the various measures of time as the sensation of heat” in the case of 

temperature. In the 1883 edition of The Science of Mechanics, Mach noted: 

“when we say a thing A changes with the time, we mean simply that the conditions that 
determine a thing A depend on the conditions that determine another thing B. The vibrations of 
a pendulum take place in time when its excursion depends on the position of the earth. Since, 
however, in the observation of the pendulum, we are not under the necessity of taking into 
account its dependence on the position of the earth, but may compare it with any other thing (the 
conditions of which of course also depend on the position of the earth), the illusory notion easily 
arises that all the things with which we compare it are unessential. Nay, we may, in attending to 
the motion of a pendulum, neglect entirely other external things, and find that for every position 
of it our thoughts and sensations are different…time is an abstraction, at which we arrive by 
means of the changes of things; made possible because we are not restricted to any one definite 
measure, all being interconnected.”36 

As temperature is born out of the need for ordering behaviors of bodies under thermal 

changes largely in accordance with thermal sensations, time is similarly born out of the need for 

grouping and distinguishing changes in external bodies based on the sensation of duration. 

Volume or pressure of individua substances replaces thermal sensations in temperature 

measurement, i.e., the thermal states of other objects are compared with the thermal states of the 

object serving as thermometric substance and quantified by the changes in the latter. Likewise, 

                                                
35 Ibid, 54. 
36 Ernst Mach, The Science of Mechanics (Open Court, 1893), 233. 
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the durations of one (recurring) motion replaces the sensation of duration in temporal 

measurement, i.e., the durations of other motions are compared with the durations of a fixed 

motion and quantified by the latter. In both cases, the knowledge actually obtained is the 

interdependence of things, i.e., how changes in A can be described by changes in B, but a 

uniform scale is projected onto both temperature and time, postulated as the real standard 

against which all observed behaviors of individual bodies or motions need to be compared, 

although such standard has never been discovered. 

Many of Mach’s contemporaries were already suspicious of Newton’s absolute time, 

especially as they were reminded by astronomers’ discovery that the earth’s rotation is not 

uniform in the mid-19th century that no perfectly uniform motion had yet been validated. Some, 

such as Carl Neumann and Ludwig Lange, attempted to redefine time through inertial motion, 

that is, durations could only be traced out by the displacement of a body undergoing inertial 

motion.37 As Mach rephrased: motions could only be uniform with regard to another motion, but 

not uniform on their own.38 

3.4. Absolute Temperature as a “Concept of Level” 

How does Mach’s arguments hold against Thomson’s absolute temperature based on the 

universal relationships between work and heat, and the conservation of energy? The question 

concerns how Mach conceptualized indirectly measured quantities like the absolute temperature, 

which is uniform but not additive. In the Principles of Theories of Heat, Mach thoroughly examined 

the work of Thomson, Joule, Clausius and others, including the ideas and experiments leading to 

a thermodynamic scale. But he did not extensively discuss whether these developments would 

                                                
37 See Barbour, The Discovery of Dynamics.DiSalle, Understanding Space-Time., Olivier Darrigol, Relativity Principles 
and Theories from Galileo to Einstein (Oxford University Press, 2021).   
38 Mach, The Science of Mechanics, 223.  
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have challenged his arguments on temperature in the opening chapters of the book. The absolute 

temperature scale is based on the fact that given a temperature difference, heat transfer gives rise 

to work. Establish a Carnot cycle on two objects with a temperature difference and designate 

their temperatures to be 𝑇" and 𝑇#, then the ratio between these absolute temperature values has 

a fixed reference: one can now speak of the ratio between any two temperatures on the absolute 

scale meaningfully because such ratio had a fixed reference—𝑇"/𝑇# = 𝑄/𝑄], where Q is the heat 

input (provided by the object serving as heat reservoir) and Q’ the heat dissipated (emitted to the 

object serving as cold reservoir and was not transformed into work), or 𝑇"/𝑇# = 𝜇#/𝜇", where μ’s 

are efficiencies of Carnot cycles if established between each of these temperatures and a third 

one. Previously the efficiencies were measured by temperature readings of thermometers, now 

the relation is inverted: temperatures are measured by the efficiencies.  

Mach briefly noted that in constructing the absolute scale for temperature, the goal is to 

achieve “universal validity analogous to the potential scale.”39 The change in the electrical 

potential of a charged body, as Mach illustrated, when it sinks from 51 to 50 or from 31 to 30, for 

instance, is equivalent to the rise in potential of another body having the same capacity from 10 

to 11 or from 24 to 25. In other words, differences between potential can be universally 

compared and substituted for one another. The absolute temperature, according to Mach, 

achieves something analogous. The ratios between any two temperatures were fixed to the ratios 

between universally comparable quantities of heat (or the ratios between heat and work), and one 

can speak of “doubling” “tripling” this ratio meaningfully because it is tied with a set of 

phenomenological relations in experiment. The ratios between temperatures designate a kind of 

qualitative relation, which refers to specific measurements in an experiment. Still, temperatures 

                                                
39 Mach, Ernst. Principles of the Theory of Heat, 72. 
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themselves are symbols of thermal states of bodies, the banners under which phenomena 

resulting from differences between thermal states are grouped, coordinated with a universally 

comparable scale. In this sense, Mach’s claim still holds true—"the question is always one of a 

scale of temperature that shall be universally comparable and that can be constructed with 

accuracy and certainty, and never one of ‘real’ or ‘natural’ scale.”40  

Furthermore, measuring temperature by the absolute scale does not amount to counting 

units and the difference between two temperatures is not a temperature. This is different from 

how the difference between two lengths can be expressed as a magnitude of the same kind. The 

measurement of temperature is not obtained by the addition of units and there is not a 

universally valid operation to “add” two temperatures. It is in this sense that “the conception of 

temperature is a conception of level (Niveau), like the height of a heavy body, the velocity of a 

moving mass, electric and magnetic potential, and chemical difference.”41 Elsewhere in the book, 

Mach consistently spoke of “potential levels,” “velocity levels,” and so on, harkening back to the 

argument that speeds are not composed of smaller speeds, which dates back to at least the 14th 

century. 

It is noteworthy that Thomson’s definition of the absolute scale is based on the proportion 

of mechanical work done by an ideal gas (absorbed heat is converted into mechanical work 

without contributing to the internal energy of the gas) given a definite amount of heat in a 

Carnot cycle, and such work and heat were still calculated in Thomson’s time by pressure and 

volume of a(n ideal) gas and the heat capacities of particular substances used to measure heat. In 

                                                
40 Ibid, 56. 
41 Ibid, 61. 
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other words, although in theory, absolute temperatures are defined through universal quantities 

independent of any particular substance, in practice, the calculation of both work and heat still 

depends on the properties of specific substances.42 Since hydrogen’s behavior most approximated 

an ideal gas, its pressure under constant volume form the international standard for temperature 

measurement from 1887 onward. The primary task of practical thermometry, as seen from the 

publication concerning the standardization of thermometers at the Physikalisch-Technische 

Reichanstalt in 1894, was to calibrate various existing practical scales with each other and with 

the scale provided by Thomson.43 For higher temperatures, gas thermometers were useless since 

glass vessels soften, hence they had to be calibrated against pyrometers that used metals like 

platinum in porcelain vessels. For other purposes, such as for measuring the maximum and 

minimum temperature over time, alcohol thermometers were superior.44 Temperature 

represented as the “level” indicated by the idiosyncratic state of a particular thermometric 

substance remained palpable in late 19th century practical thermometry.  

3.5. Stellar Magnitudes and Brightness: Steinheil and Pogson  

We have seen that the primary difficulty in conventional thermometry is that there is no 

fixed unit or ratio between different temperatures. The equal increments in volume or pressure of 

two expanding thermometric substances do not correspond to the same quantity; neither do 

equal increments in volume or pressure of the same substance on different parts of the scale. 

There is no fixed, external reference independent of all bodies expanding in different proportions 

to each other. There is a surprising parallel between the difficulties encountered in conventional 

                                                
42 This circularity is noted in Chang, Inventing Temperature, 192. 
43 J Pernet, W Jaeger, and E Gumlieh, “Herstellung und Untersuchung der Quecksilber-Normalthermometer,” 
Zeitschrift für Instrumentenkunde fünfzehnter Jahrgang, no. 1 (January 1895): 2–13. 
44 Neues Handwörterbuch and Hermann Christian von Fehling, Neues Handwörterbuch der Chemie: Vol. I-. (F. 
Vieweg & Sohn, 1905), 626-7. 
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thermometry and in psychophysics, both stemming from the fact that both quantities must be 

stood for by something else—incapable of direct comparison, they must be determined indirectly 

through functional dependency on something else. Though he had been an early advocate of 

Fechner, Mach agreed later in his career with many critics of Gustav Fechcher, noting the 

similarities between the problems encountered by psychophysics and conventional thermometry:   

“to speak of an actual measurement of the sensations makes no sense; instead, the most 
that can be achieved is to exactly characterize or make an inventory of [sensations] by numerical 
means. Compare what I have said about thermal states in Principien der Wärmelehre.”45  

In other words, Mach implied that Fechner’s scale for sensation was an “inventorial” or 

“definitional” scale just like temperature scales based on individual thermometric substances, for 

the reasons discussed in the previous section.  

Despite the amount of criticism Fechner’s work received, it was not entirely ungrounded 

in facts. He saw photometric measurements in 19th century astronomy as a precursor to his 

psychophysical research, claiming that the fundamental psychophysical law was “already 

contained” in the magnitude-intensity scales proposed by his contemporary astronomers Carl 

August von Steinheil and Norman Pogson.46 He was not alone in drawing a close connection 

between the two areas of research. Charles Sanders Peirce’s 1878 report on his comparison of 

various stellar magnitude scales at the Harvard Observatory also contained a lengthy discussion 

of quantities of sensation according to the “approximate truth” of Fechner’s law.47 Before the use 

of photoelectric cells and the analysis of light composition through photographic spectroscopy, 

                                                
45 Ernst Mach, Die Analyse der Empfindungen und das Verhältniss des Physischen zum Psychischen (Jena: G. Fischer, 
1922), 67, n.3,  
46 Fechner, Gustav Theodor. Elements of Psychophysics. Edited by Davis H. Howes and Edwin G. Boring. 
Translated by Helmut E. Adler. Vol. 1. Holt, Rinehart and Winston, 1966, xxviii. 
47 Peirce, C.S. “Photometric Research.” Annals of the Astronomical Observatory of Harvard College. 9 (1856), 
5. 
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19th century astronomers measured the apparent brightness of stars using a combination of 

visual judgment and instrumental techniques. The apparent brightness of stars is influenced by a 

variety of factors: actual quantity of light, distances of the stars, atmospheric conditions, 

individual discrepancies of astronomers, and the eye’s sensitivity to brightness and color 

differences, among others. Hence human perception inevitably entered the equation in the 

determination of stellar magnitudes during this time, whether through pure visual estimates or 

photometric methods. Astronomers showed that there was an approximately constant 

relationship between the ability to perceive a difference in brightness by the human eye and the 

ratios between quantities of light measured by physical parameters. These results inspired 

Fechner to pursue a functional dependency between perceived and physical intensity of stimuli, 

which essentially generalized this relationship to all sensation.  

How were stars assigned magnitudes? In the time of Hipparchus and Ptolemy, thousands 

of stars were observed by naked eye and classified into six different magnitudes and ranked from 

the brightness to the faintest. John Herschel grouped stars in descending order based on the 

equality and differences between brightness. Stars were assigned different magnitudes based on, 

for instance, a small but readily discernible difference, or a difference that “upon longer 

inspection of them we always return to decide it in favor of the same [star].” A more 

programmatic protocol to rank stars by brightness and assign them magnitudes was introduced 

by F. W. Argelander, later the director of Bonn Observatory, in an 1844 publication. Using this 

method, Argelander then compiled massive, multi-volume catalogues containing hundreds of 

thousands of stars (known as the Bonn Durchmusterung) down to the ninth magnitude in the 

following decade, which was later widely referenced in Germany and North America and served 
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as the foundation of most stellar magnitude classification systems until the 1890s.48 The method 

was described as follows in a 19th century handbook on astronomy:  

“…one beholds the two stars to be compared, a and b, alternatively: if they are constantly 
equal, then one notes a · b; in contrast, one notes b · 1 · a, if b now and again appears brighter 
than a (first step); —b · 2 · a if one finds b always brighter than a (second step), —and b · 3 · a if 
one finds b somewhat brighter than a at first glance (third step), — and b · 4 · a if one finds b 
always noticeably brighter than a [presumably at first glance]…”49  

As can be seen, stars were ranked and distinguished from one another by minute 

perceptual differences. Number 60 was assigned to Arcturus, the normal star for the first 

magnitude, and 0 was assigned to the weakest star of the sixth magnitude. Other stars fell in 

between these numbers after being compared with each other using the step-method. Estimates 

were no longer reliable for more than 4 steps or when the stars were widely separated, hence an 

intermediate star would be chosen. 10 steps amounted to one magnitude-class.50 Roughly 

speaking, 1 step corresponded to the smallest discernible difference which could only be 

recognized after some reflection, 2 step with a more noticeable difference, 3 step, with an 

unquestionable difference at first glance, and difference beyond half-magnitude or 5 steps are not 

reliable.51 Despite some noticeable fluctuations, Argelander’s scale exhibited approximately 

uniform gradation along the brightness intensity scale measured by photometric methods (see 

below) and therefore was not subjected to significant changes when photometric scales were 

adopted.52    

                                                
48 G. Müller, Die Photometrie der Gestirne (Leipzig: W. Engelmann, 1897), 455. 
49 Rudolf Wolf, Handbuch der Astronomie, ihrer Geschichte und Literatur, vol. 1, 2 vols. (Druck und Verlag von F. 
Schulthess, 1890), 581. 
50 Ibid. 
51 Simon Newcomb and Rudolph Engelmann, Newcomb-Engelmanns Populäre Astronomie, ed. H.C. Vogel, dritte 
Auflage (W. Engelmann, 1905), 247. 
52 Ibid, 491, 494.  But they also noted in a later section that none of the existing brightness scales, including 
Argelander’s, completely conform to the uniform scale achieved in photometry. (Ibid, 491.)  
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Photometry evolved from 18th century experiments to determine the brightness of 

artificial light sources in the laboratory setting. Brightness of an artificial light source was 

calculated by how much the quantity of light need to be diminished until the light source 

appeared equally bright with another light source or until it appeared completely extinguished. 

The judgment of equality was made by the eye, while the quantity of brightness was expressed in 

mechanical terms based on how much light was reduced.53 Usually the ratio between two 

brightness values was expressed as a ratio between two values of the same variable related to the 

measuring device, such as the aperture of telescopic lens, the distance between the eye and the 

light source, and so on. The method can be illustrated by the first comparison photometer 

designed by Carl August von Steinheil. 

In 1837, Steinheil designed an apparatus capable of comparing the brightness intensities 

of two stars simultaneously held in the visual field and measuring this intensity relationship with 

considerable accuracy. The instrument was described in a prize-winning essay submitted to the 

Royal Bavarian Academy of Science and was later used to classify some two hundred stars in the 

first photometrically determined catalogue.54 It was a telescope with an objective lens split into 

                                                
53 As Newcomb and Engelman described (my translation): 
“The chief principle on which all photometric observations are based is given through the physiological 
peculiarities of our eyes: comparisons between two different brightness’s can only be done with fair accuracy 
when the difference is small. Every eye sees immediately that the sun is extraordinarily brighter than the moon; 
but it is not impossible to determine how many times [the former is] brighter [than the latter], be it thousand 
times or million times. In contrast, an experienced observer can determine with considerable accuracy if two 
stars are equally bright…the task of a photometer…therefore consists in enabling the eye to make precise 
determination of greater brightness difference, by diminishing the light from the brighter of the two objects to 
be compared in a measurable way, to such an extent that it appears equal to the weaker of the two.”(Ibid, 247.) 
54 J. B. Hearnshaw, The Measurement of Starlight: Two Centuries of Astronomical Photometry (Cambridge University 
Press, 1996), 59. 
The first “completely objection-free index of photometrically determined stars” is attributed to Seidel, who 
determined 208 brighter, fixed stars with fairly accurate measurements. Seidel’s catalogue had served as the 
basis of other “modern astrophotometry.” (Müller, Die Photometrie der Gestirne, 444).   
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two halves, with a reflecting prism installed in one of them, so that the images of two separate 

stars could be simultaneously observed on each side of the visual field. Instead of comparing the 

brightness of point-images of the stars, Steinheil observed their out-of-focus images—surface 

areas illuminated by the starlight—for the reason that judgment of brightness equality was easier 

and more accurate with surface comparison than with point-comparison.55 The brightness of the 

out-of-the-focus images could be adjusted: as the total quantity of light coming from a star 

remained fixed, its brightness could be varied by projecting this quantity onto a smaller or larger 

area by shifting the objective lens. Normally, the larger the area on which the same quantity of 

light is distributed, the less bright it appears. The brightness intensities of two stars would then be 

inversely proportional to the sizes of illuminated areas, when the objective lens was shifted until 

the two images looked equally bright.56 Thus the brightness intensity of two different stars could 

thus be determined through parameters easily measurable from the device itself. (Figure 14) 

Crucially, Steinheil used his photometric measurement technique to investigate the 

magnitude class system previously determined by naked eye observation, i.e., to determine the 

difference between magnitude classes in photometric values. He did so by measuring the 

brightness difference between some thirty stars of known magnitudes in photometric values. 

(Figure 14) The result was a logarithmic relation between the difference in stellar magnitude and 

the difference in intensity. In other words, if 𝑑", 𝑑# represent the intensities (proportional to the 

area of the out-of-focus images) measured by the photometer, while 𝑘", 𝑘# represent the 

                                                
55 To do so, the objective lens on each side could shifted along its axis, so that the ocular was positioned not 
exactly at the focal point of the objective lens, but in front of or behind it. 
56 The ratio between the sizes of the illuminated areas, in turn, was proportional to the distance between the 
ocular from the focal point of the objective. Carl August von Steinheil, Elemente der Helligkeits-Messungen am 
Sternenhimmel (Akademie der Wissenschaften, 1836), 9-10. 
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magnitude class of the stars, then𝑙𝑜𝑔 fC
fg
= 𝑚(𝑘" − 𝑘#), where m is a constant to be calculated 

from the data. Since stellar magnitudes before the photometric methods were often determined 

by just discernible differences in the brightness of stars by the naked eye, this logarithmic law was 

also in a sense a relation between brightness perception and quantity of light.   

The logarithmic relation was also confirmed by the British astronomer Norman Pogson 

in 1856, who used a slightly different method, by varying the aperture of his telescope to control 

the quantity of light until the stars could no longer be observed. The brightness intensity was thus 

measured in terms of the physical parameters of the apparatus in a similar way as by Steinheil’s 

method. In the 1856 paper, Pogson tried to determine the relationship between stars separated 

by different magnitudes and their brightness intensity in photometric terms. The magnitudes of 

known stars were taken from the observations of Radcliffe Observatory as well as from 

Argelander’s, Bessel’s, and a number of other catalogues, and their brightness intensity in 

photometric terms were subsequently measured. The result was tested under the formula  

(𝑙𝑜𝑔𝐴 − 𝑙𝑜𝑔𝑎)/(𝑀 −𝑚) = 1/2𝑙𝑜𝑔𝑅, where R is a constant (corresponding to the brightness 

ratio A/a given a M-m magnitude separation), A and a are the photometric intensities of two 

stars, M and m are the magnitude classes. Pogson obtained an estimate of R as 2.512, which 

means that a star of any magnitude contains 2.512 approximately times the quantity of light of 

that of the next smaller magnitude. This result was “remarkably accordant” with the photometric 

measurements of other astronomers, such as the 2.83 obtained by Steinheil, and 2.519 by 
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Argelander in a recent paper, and the values obtained by a number of others.57 Pogson’s scale 

ended up being adopted by both the Potsdam and the Harvard Observatories, the leading two 

observatories at the time.58   

                                                
57 Norman Pogson, “Catalogue of 53 Known Variable Stars, with Notes,” Astronomical and Meterorological 
Observations Made at the Radcliffe Observatory, Oxford, in the Year 1854 XV (1856): 281–98, 296-7. 
58 Hearnshaw, J. B. The Measurement of Starlight, 74. 

Figure 14 (Left) “Light quantities of fixed stars,” one of Steinheil’s plates illustrating how his 
device works. (Right) Data that Steinheil used to determine the relationship between magnitude 
class and intensity by drawing from the photometric measurements of 30 stars and their 
magnitudes. 
The areas of the circles on the left correspond with the sizes of out-of-focus images seen from 
Steinhei’'s split telescope, presumably at equal intensity. The brighter the star, the larger the 
area on which its light is distributed to appear equally bright as other images. From top to 
bottom: images of stars of the first to the sixth magnitude.  
Source: Steinheil, Elemente der Helligkeit-Messungen am Sternenhimmel, Figure 4; Ibid, 28. 
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Both Steinheil and Pogson suggested that although magnitude systems compiled by 

various astronomers in the 18th and 19th century were based on somewhat arbitrary protocols 

and often did not agree with each other, they exhibited a similar relationship to physical quantity 

of light. That is, the difference between stellar magnitudes estimated by directly perceived 

differences in brightness was roughly a logarithmic function of the ratio between the objective 

quantities of light emitted by the stars, measured by different photometric techniques. One-

degree difference in magnitude corresponded to an approximate 2.5-fold brightness in terms of 

quantity of light, consistently across different catalogues compiled by different authors. Although 

the photometric technique was later replaced by photoelectric methods, utterly eliminating the 

human eye from judgment of equal brightness. Pogson’s scale was found to deviate little from the 

photoelectric magnitudes according to an extensive study in 1969.59 To Gustav Fechner writing 

in the late 1850s, the logarithmic relation between magnitudes and intensity coincided with a 

separate set of experiments performed by E. H. Weber on the tactile senses, which provided 

important clues to quantifying human sensation.  

3.6. Fechner Extending Weber’s Law 

Fechner’s psychophysics was one of the most controversial topics in 19th century sciences. 

The claim to quantify sensation challenged the Kantian dictum from the Metaphysical Foundations 

of Natural Sciences that there can never be a scientific doctrine of the inner sense (empirical 

psychology).60 While many critics still based their response to Fechner on Kant’s conception of 

quantity (chapter 2), others provided more complex reflection on existing measurement 

                                                
59 Ibid, 78. 
60 Kant claimed because mathematics could be applied to inner phenomena, which he understood in the 
specific sense that concepts in a science must be constructible in the a priori intuition of space and time 
through the composition of the homogeneous (Chapter 1). 
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techniques in the 19th century sciences. Debates over Fechner’s work prompted many to develop 

new conceptions of measurement to adapt to existing scientific practices that was increasingly 

experimentally focused.   

In the 1850s, Fechner proposed the psychophysical law as a corollary to his philosophical 

doctrine of psychophysical parallelism.61 The logarithmic relation between stellar magnitudes 

and photometric measurements discovered by Steinheil and Pogson struck a chord with him and 

suggested a connection to a completely separate set of experiments on tactile, visual and tonal 

senses, conducted by the Leipzig physiologist E. H. Weber.62 Weber was interested in 

investigating various senses. In one set of experiment, he used several subjects to quantify the 

sensitivity of human tactile senses to weight differences. Two different weights of identical 

appearance were placed on the subject’s two hands, or on their lips, forehead, back of the head, 

shoulders, arms, stomach and so forth. The subjects were asked to report any perceived 

difference between the two weights, when the experimenter would alter the actual difference 

between these weights. Weber reported that his subjects tended to detect a difference when the 

ratio between the two weights was constant, alternatively, when the ratio between weight 

increment ΔG from G was constant, regardless of the value of G, within a particular range.63 

Indeed, just as weight differences became “just-noticeable” when ΔG/G was roughly 

constant regardless of G, one stellar magnitude difference roughly corresponded with 2.5 times 

the quantity of light, photometrically determined, regardless of the magnitude. This suggested to 

                                                
61 The basic belief was that the physical and the psychic worlds were not two separate realms but two sides of 
the same coin, and consciousness extended beyond human life to inanimate objects. See Heidelberger, Nature 
from Within for more details.  
62 Fechner mentioned that both Steinheil’s and Pogson’s scales in the Elements of Psychophysics confirmed his 
own psychophysical law. Gustav Theodor Fechner, Elements of Psychophysics, ed. Davis H. Howes and Edwin G. 
Boring, trans. Helmut E. Adler, vol. 1 (Holt, Rinehart and Winston, 1966), 54. 
63 Fechner, Elements of Psychophysics, 54-7.  
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Fechner a common pattern of discernibility in sensation. He further noticed that Steinheil’s study 

of error statistics in brightness judgment also confirmed Weber’s results. Letting light from the 

same source (thus of equal intensity) enter both sides of his apparatus, Steinheil had asked the 

subjects to adjust the out-of-focus images in the visual field until they appeared equally bright. 

The error in this kind of matching, in photometric values, turned out to be consistently less than 

1/38 of total brightness, regardless of the actual value. In Weber’s terms, the barely perceivable 

increment in brightness was approximately always a constant proportion of the total intensity.   

Fechner believed that Weber’s law, i.e., ΔR/R = constant, could be extended to the 

formula ΔR/R = ΔΕ, where ΔΕ is the “just-noticeable-difference” in sensation. In words, this 

meant “the difference between two stimuli appears equally large to sensation, when the ratio 

between stimuli remains the same. [Both stimuli] may both increase or decrease in absolute 

values, as long as they change in the same ratio [the differences between them still appear the 

same].”64 He also believed that just-noticeable-sensations should be added or subtracted from 

each other. This new formula would then be extended to infinitesimal increments in sensation 

and stimuli. That is, a constant infinitesimal increment in sensation dγ would always correspond 

to the same relative difference, dβ/β, dβ being an infinitesimal increment from stimulus β. 

Consider stimuli as simply a summation of increments in stimuli and consider sensation as simply 

a summation of increments in sensation, then one could justifiably integrate the formula dγ = k 

dβ/β to get a function between sensation and stimuli: 𝛾 = 𝑘(𝑙𝑜𝑔𝛽 − 𝑙𝑜𝑔𝑏) (k and b are 

constants related to the threshold of noticeable stimuli), similar to Steinheil and Pogson’s 

                                                
64 This is a direct quote from Fechner in Adolf Elsas, Über die Psychophysik. Physikalische Und Erkenntnisstheoretische 
Betrachtungen (Marburg: N.G. Elwert, 1886), 5. 
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logarithmic relation between stellar magnitudes and brightness. dγ and dβ were both regarded as 

direct measures, or homogeneous units, of sensations and stimuli.65 

It is noteworthy that underlying this reasoning, Fechner still believed that quantities must 

be defined through the composition of homogeneous units. Otherwise, he would not have felt 

compelled to sum up and integrate the ΔE’s. Implicitly, Weber’s law (ΔS/S =constant) itself was 

not a “sufficiently quantitative” description of sensation on its own to Fechner. Instead, intensive 

magnitudes like degrees of sensation must be “composed” of additive units to claim the status of a 

quantity. When differences between intensive magnitudes were correlated with a physical 

constant, such differences could simply be considered as equal and additive for Fechner. Take 

the case of stellar magnitudes as an example, he believed that the logarithmic function discovered 

by Steinheil did not merely describe a relation between stellar magnitudes and physical intensity, 

but rather implied that perceptual differences were additive:  

“The perceived psychological difference between the second and fourth stellar magnitude 
can be broken down into the two equally perceived differences between the second and third and 
between the third and size class, and can be assumed to be twice as large as each of these.”66  

One must be able to assert this, Fechner argued, because otherwise an entirely analogous 

case in weight measurement would be equally impermissible: ordinarily speaking, if the weight 

difference between A and B is equal to the weight difference between B and C, then the 

difference between A and C is twice the difference between A and B (or B and C).67 Differences 

between weights is thus constitutive of weight as a quantity. By extension, Fechner believed that 

                                                
65 Gustav Theodor Fechner, Elemente der Psychophysik, vol. 2 (Breitkopf & Härtel, 1888), 13. 
66 Gustav Theodor Fechner, “Ueber die Psychischen Massprincipien und das Weber’sche Gesetz,” 
Philosophische Studien Bd. 4 (1888): 161–230, 183.  
67 Ibid.  
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differences in sensation must also sum up to a quantity of sensation when they were shown 

“equal,” and thus provide a measure for sensation itself.  

3.7. Two Sticking Points in Making an Additive Scale of Sensation 

While it is beyond the scope of this chapter to thoroughly examine the responses to 

Fechner’s work, I focus on two sticking points in his attempt to construct a scale for sensation. 

Fechner himself had acknowledged these difficulties, and his commentators also focused on them 

as the main obstacles preventing Fechner’s extension of Weber’s law from being legitimate. 

Meanwhile, these two points are also generalizable problems applicable to the measurement of 

quantities incapable of direct comparison. The first point concerns on what basis one could 

declare the difference between sensations A and B as equal with the difference between points C 

and D, elsewhere on the scale (1). The second point concerns on what basis one could declare 

that differences among sensations, indirectly measured by an external function, could be 

considered constitutive of sensation itself. alternatively, it concerns if the difference between 

degrees in an ordered sequence in general is a degree of the same kind (2). Specifically, in 

Fechner’s case, the experimental subject perceived a sensation of difference 

(Unterschiedsempfindung) given constant ΔR/R, and one could easily protest that this sensation 

of difference was entirely different in kind from the original sensation—the sensation of weight, 

brightness and so on. The sensation of difference would also be different in kind from the 

arithmetic differences between the original sensations (Empfindungsunterschied). Fechner’s 

attempt to directly add or integrate the sensation of difference to get the original sensation, as if 

integrating infinitesimal lengths to get total lengths, was unjustified. These two sticking points 

motivated much of criticisms against Fechner. However, even some of the harshest critics 

acknowledged that Weber’s law itself (ΔR/R = constant for the differences in stimuli to be 
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noticed) depicted facts, without acknowledging Fechner’s extension from Weber’s law to an 

additive scale of sensation. 

These two questions were also addressed by Fechner himself. Regarding the first point, he 

noted in his 1887 reply to critics: “the entire question as to whether a mental measure is totally 

impossible revolves around this very impossibility,” i.e., of claiming that the differences between 

perceived sensations—characterized by “just-noticeable-differences” ΔΕ’s—could be said to be 

equal on different parts of the scale of sensation.68 He seems to believe that just-noticeable-

differences were proven equal by the equality of relative difference in stimuli (ΔR/R) 

accompanying each just-noticeable-difference. As he noted: the claim that differences between 

sensations were equal on different parts of the scale of sensation was proved by “facts of 

astronomical determination of equality of such differences”69 and by other laboratory 

experiments such as those conducted by the Belgian psychologist Joseph Delboeuf.70 But the fact 

that experimental subjects almost always noticed a difference in two sensations when ΔR/R was 

constant, which those empirical results did indeed show, could not actually amount to the 

conclusion that the just-noticeable differences ΔΕ’s were equal. Instead, they merely showed that 

a judgment (e.g., the “noticing” of a difference) was made when the relative differences between 

stimuli ΔR/R was constant. It would be circular to claim that equal ΔΕ’s correspond to equal 

                                                
68 Ibid. 
69 “die Möglichkeit, den empfundenen Unterschied zwischen Helligkeiten in einem Theile der Helligkeitsscala 
dem empfundenen Unterschied zwischen Helligkeiten in einem anderen Theile derselben gleich zu finden, 
wird nun aber eben durch die Thatsache der astrononomischen Gleichschätzung solcher Unterschiede 
bewiesen.” (Gustav Theodor. “Ueber die Psychischen Massprincipien und das Weber’sche Gesetz,” 181) 
70 Ibid, 181. Although he had no decisive evidence against the notion that those magnitude systems were 
established purely by arbitrary protocols, he argued that it would be “a most unlikely coincidence” if 
psychophysical law was not true, because the brightness-intensity relation agreed so well with Weber’s law. 
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ΔR/R ’s when each ΔΕ’s was defined by equal ΔR/R.71 The situation is analogous to 

temperature measurement before the absolute scale—to claim that the volume of a thermometric 

substance was a linear function of temperature, one must be able to determine the equality of 

temperature changes from A to B and from B to C independently of volume. But temperature 

intervals were defined through volume changes. Similarly, to claim that each increment by 

ΔR/R corresponded to equal difference in sensations (more specifically, the sensation of 

brightness, weight, and other stimuli, not the sensation of a difference) would also require one to 

already know how to measure sensations independently. But this was not the case—for Fechner, 

increments in sensations (the just-noticeable differences) were precisely defined by stimuli.  

Regarding the second point, Fechner argued that the “just-noticeable-differences”—the 

noticing of a difference given constant ΔR/R—could simply be considered the absolute 

differences in sensation and of the same kind with the original sensation. Fechner’s own 

arguments were quite muddled on this point. His reasoning went as follows: imagine an ideal 

case where maximum sensitivity could be achieved, that is, every difference between sensation, 

however small, could be noticed. Then the sensation of difference (the noticing of a difference) 

would be identical with the difference in sensation. Now, according to Fechner, Weber’s law 

could be considered valid for infinitesimal increments in sensation (a questionable claim in itself), 

thus we could consider the differences in sensation as the same as the sensations of difference.72  

                                                
71 The circularity in Fechner's reasoning, without referring to the analogous case in temperature measurement, 
has been made by Heidelberger in Nature from Within. 
72 “Man kann bemerken, dass in dem Falle, wo jeder kleinste Unterschied zwischen zwei Empfindungen 
wirklich empfunden wur̈de, die Unterscheidung zwischen Empfindungsunterschieden und empfundenen 
Unterschieden mus̈sig sein, vielmehr der empfundene Unterschied mit dem Empfindungsunterschiede 
zusammen fallen wu ̈rde. Nun kann man sich unter allen möglichen Weisen, wie ein Unterschied empfunden 
werden kann, auch den Fall als Gran̈zfall denken, dass wirklich schon der kleinste Unterschied, der besteht, 
auch empfunden wu ̈rde, welches den grösstmöglichen Grad der Unterschiedsempfindlichkeit bezeichnen 
wur̈de. Insofern kann ein Empfindungsunterschied stets mit einem solchen Gran̈zfalle identificirt werden, und 
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Among Fechner’s critics, many rejected an affirmative answer to (1) based on the 

conviction that sensations could not be compared quantitatively in principle, even with indirect 

measurement, either because it was impossible to compare them directly and achieve the same 

kind of intuitive certainty as in length comparison, or because sensations could not be reducible 

to mechanical units—length, mass and time. Jules Tannary and Johannes von Kries, for instance, 

held this view. I believe that Fechner did in fact have an effective argument against those 

objections, as I will elaborate in the next section. But many others acknowledged the validity of 

Weber’s law (that humans tend to perceive differences in external stimuli at intervals defined by a 

constant ratio between stimuli) without accepting Fechner’s extension of it. The physicist Rudolf 

Elsa, who overall condemned Fechner’s efforts, noted that “no one would object to the 

admissibility of these [the original Weber’s law] formulation. We have, so far, only found a 

measure formula for the difference between sensation (Empfindungsunterschied) and the 

sensation of difference (Unterschiedsempfindung), but not for sensation as a function of 

stimuli.”73 Weber’s law was simply a description of facts:  

“experimental confirmation of [Weber’s] law has been sought by Fechner himself and 
numerous other researchers with great acumen and often with admirable diligence…the 
proportional relationship was not found everywhere and constantly, but for various sensations 

                                                
Gesetze und Verhal̈tnisse bezu ̈glich der Abhan̈gigkeit der Empfindungswerthe von den Verhal̈tnissen der 
Reize, welche fu ̈r jeden Grad der Empfindlichkeit gleich gu ̈ltig bleiben, auch wenn sie nur an empfundenen 
Unterschieden constatirt werden konnten, doch eine Uebertragung auf Empfindungsunterschiede gestatten, da 
wir uns die Empfindlichkeit blos bis zu ihrer Granze gesteigert zu denken haẗten, um die Grösse des 
empfundenen Unterschiedes mit der des Empfindungsunterschiedes zusammenfallen zu sehen. So hat das 
Weber' sehe Gesetz nur an empfundenen Unterschieden bewaḧrt werden können; aber diese hindert nicht, es 
auch fu ̈r Empfindungsunterschiede im engeren Sinne triftig zu halten, und unter Zuziehung des 
mathematischen Hu ̈lfsprincips die Fundamentalformel fu ̈r kleine Empfindungsunterschiede daraus 
abzuleiten…” (Fechner, Gustav Theodor. Elemente der Psychophysik. Vol. 2, 85)  
73 “Niemand wird gegen die Zulässigkeit dieser Formulierungen etwas einzuwenden haben. Wir haben bis jetzt 
aber nur Maasformeln für den Empfindungsunterschied und die Unterschiedsempfindung gefunden, nicht 
aber für die Empfindung als Funktion des Reizes.” Elsas, Über die Psychophysik. Physikalische und 
Erkenntnisstheoretische Betrachtungen, 15. 

 



   163 

the validity of the law cannot be denied…in this judgment one can confidently agree with 
Fechner.”74  

Elsa compared Weber’s law to Mariotte’s law, on which temperature measurement based 

on gas expansion was based: the more experiments were conducted, the more deviations from 

the law were found, but the fundamental significance of the law remained undeniable, and this 

was true to Mariotte’s law as much as to Weber’s law.75  Similarly, the Leipzig psychologist 

Wilhelm Wundt distinguished Weber’s law from Fechner’s law, endorsing the former while 

holding reservations on the latter: 

“According to Weber's principle, noticeable differences in sensation, in terms of the 
degree of their noticeability, can be equated with one another; whereas after the Fechner’s law, 
equally noticeable differences [i.e. by me, equally large sensation of difference] can be considered 
equally large differences in sensations.”76  

The main arguments of Wundt’s article are the following: Weber’s law stated that 

differences in sensations of stimuli were noticed given constant ratios of stimuli, and therefore was 

a statement about the noticeability of difference. Equal noticeability of difference 

(Ebenmerklichkeit der Unterschiede) is about degrees of noticeability (Grad der Merklichkeit), 

not about increments in sensation. This is an explicit negative answer to both (1) and (2): the 

judgment of a difference cannot yield an absolute difference in sensation; they are two different 

kinds of sensations. One could only conclude from Weber’s experiments, Wundt argued, that the 

degrees of noticeability (of differences in sensation) were the same because experimental subjects 

                                                
74 Ibid, 46. 
75 Ibid, 45-46. 
76 „nach dem Weber'schen Princip können eben merkliche Unterschiede der Empfindung in bezug auf den 
Grad ihrer Merklichkeit einander gleich gesetzt; wogegen nach dem Fechneräschen gleich merkliche 
Unterschiede [d.h. nach mir gleich große Unterschiedsempfindungen] als gleich große Unterschiede von 
Empfindungen…betrachtet werden können. (Cited in Gustav Theodor. “Ueber die Psychischen 
Massprincipien und das Weber’sche Gesetz,” 200.)  
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would often not notice a difference in two stimuli until they increased or decreased by a constant 

ratio; alternatively, this meant differences in sensation were equally noticeable, given constant 

ΔR/R. While this degree of noticeability could be equal, it did not mean that differences in 

sensation (Empfindungsunterschiede) were equal.77 On its own, degrees of noticeability could be 

a valid “measure” of sensation, and the only thing that could be “measured” about sensation, 

even if it was not constitutive of sensation itself.78 Degrees of noticeability was nevertheless not an 

additive quantity:  

“A chief objection…[consists in] that the units obtained [for the degrees of noticeability] 
cannot be added at will like parts of a measuring rod, and as a consequence, the gauging of any 
given concrete sensation through a chosen unit appears to be a hopeless problem for now and 
perhaps for good…[but] even those who raise this kind of objections themselves would by no 
means dismiss the measuring experiments of Weber and his researches as completely pointless 
and empty. It is indeed in and itself clear that we are dealing with facts of observation, whose 
interpretation one could have very different opinions about, which cannot be discarded by a 
theoretical discussion.”79 

This is a crucial step beyond the conventional understanding of quantity: Weber’s law 

might be the only quantitative description of sensation we could have, even if it would not result 

in an additive scale of sensation. Its psychological significance could be understood as “a law of 

apperception”—or a general description about how humans perceive: we perceive intensities not 

by their absolute magnitude, but in relation to each other.80 Wundt answered negative to both (1) 

                                                
77 Wilhelm Wundt, “Ueber das Weber’sche Gesetz,” Philosophische Studien 2 (1885): 1–36, 18. 
78 Wundt claimed that ΔR/R could serve as a unit for this degree of noticeability.  
79 „Ein Haupteinwand gegen derartige Feststellungen besteht nun aber noch darin, dass sich die so 
gewonnenen Einheiten nicht beliebig addiren lassen wie die Theile eines Maßstabes, und dass daher vorerst 
und vielleicht für immer die Ausmessung einer beliebigen concreten Empfindung mittelst der gewählten 
Einheit ein aussichtsloses Problem zu sein scheint… In der That werden nun aber selbst von denjenigen, 
welche derartige Einwände erheben, die messenden Versuche Weber's und seiner Nachfolger keineswegs als 
völlig zweck- und inhaltslos verworfen. Es ist ja auch an und für sich klar, dass es sich hier um Thatsachen der 
Beobachtung handelt, über deren Interpretation man sehr verschiedener Meinung sein kann, die sich aber 
nicht durch eine theoretische Discussion aus der Welt schaffen lassen.“ (Ibid, 20)  
80  “Eine psychologisch verständliche Deutung lässt sich nämlich dem Weber'schen Gesetz dann geben...dass 
wir alle in gegenseitiger Beziehung stehenden intensiven Zustände des Bewusstseins ihrer Größe nach nur in 
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and (2). Despite the fact that Wundt believed that strictly speaking, measurement required the 

multiplication of units, he simultaneously accepted a different kind of measure as conveying 

substantial information—a non-additive scale.  

The Graz psychologist Alexius Meinong agreed with Wundt in that the content of 

Weber’s law was about a (qualitative) relation of difference among sensations, not about sensation 

itself: “equally noticeable dissimilarity (Verschiedenheit) are as such not equal, not even equally 

noticeable” as Wundt claimed.81 He made a distinction between what he called “difference 

(Unterschied)” and “dissimilarity (Verschiedenheit).” In his theory, the former expresses a 

numerical difference between magnitudes (values of already measurable quantities), with the 

connotation of “arithmetical difference,” while the latter indicates an irreducible relation of 

difference. The relation of difference is not divisible into parts: A and B are either different or not 

different; this judgment is irreducible. On the other hand, the arithmetical difference between 

two lengths can be another length of a certain magnitude. Now, Meinong asked: if one affirms or 

denies a dissimilarity between two things, are they making a judgment about the arithmetical 

difference between them? The answer is obviously no.82 Meinong did not deny that the 

qualitative difference, the “dissimilarity,” might be correlated with measurable quantities (for 

instance, the “dissimilarity” between two points—their distance—might be correlated with 

length; and he later even argued that the “dissimilarity” between sensations could be expressed as 

                                                
Relation zu einander bestimmen.” Alexius Meinong, Über die Bedeutung des Weber’schen Gesetzes: Beiträge zur 
Psychologie des Vergleichens und Messens (L. Voss, 1896), 32. 
81  „Ebenmerkliche Verschiedenheiten sind als solche nicht gleich, nicht einmal gleich merklich.“ (Ibid.,162.) 
The so-called “just-noticeable-difference” merely indicated a threshold below which the “noticing” could not 
happen; it contained no information on the “how much” of a noticeability. (Ibid, 55) 
82 „Wenn ich vergleiche, genauer, wenn ich auf Grund einer Vergleichung Verschiedenheit affirmiere oder 
negiere, urteile ich da über Differenz? Und aus dieser direkten Empirie heraus, ohne Vor- oder 
Nachgedanken, mufs ich darauf mit entschiedenem 'Nein" antworten.“ (Ibid, 95.) 
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a ratio and correlated with the “dissimilarity” between stimuli), but the judgment made in 

Weber’s or Fechner’s experiments was not a judgment about the arithmetical difference between 

two sensations, but only an affirmation of a qualitative difference. Hence Fechner could not be 

justified to identify ΔR/R = constant with the additive difference between sensations. The 

irreducible difference between two sensations could not be said to constitute sensation itself.  

Direct measurement of sensation, for Meinong, was out of the question— “tonal 

intensities can neither be added or subtracted; neither can intensities of emotion.” However, it 

was still possible to establish fixed points in the “scale” of sensation as reference points. For 

instance, a fixed threshold of stimulus could serve as the fixed “null-point” of sensation. As was 

reminded by primitive temperature measurement, he noted, at times the measurement process 

could be applied beyond the realm of quantities. The comparison of dissimilarities between fixed 

points in a qualitative continuum could also deliver reliable results.83 Fixed points on the 

thermometer could still be useful for comparing the thermal states of things although they did not 

indicate determinate quantities. Similarly, fixed point in sensation, for example the “null-point” 

indicated by a threshold stimulus below which no sensation occurred, could also potentially be 

useful. But this would not be properly considered measurement: “…in my opinion this is not a 

measurement, but only an assignment (Zuordnung).” Meinong further noted that it could be 

considered a case of surrogative measurement, just as primitive temperature measurement. The 

different scales embodied by the behaviors of different thermometric substances corresponded in 

                                                
83 „Je mehr sich einer durch ein Verfahren dieser Art an die primitive Temperaturmessung mittelst 
Thermometer erinnert finden mag, um so weniger wird es ihn befremden, damit vor den schon oben 
berührten Fall gelangt zu sein, wo das Masssverfahren sogar über das Gebiet der Grössen hinaus anwendbar 
ist. Auch die verschiedenen Punkte eines Qualitätscontinuums bieten ja Distanzen, deren Vergleichung, wie 
das Experiment gelehrt hat, nicht minder zuverlässige Ergebnisse liefern kann, als die Vergleichung von 
Intensitätsdistanzen.“ (Ibid., 119)  
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their function with the “permanent or completely fleeting conditions of the difference-sensitivity 

(Unterschiedsempfingdlichkeit).” In both cases, “[one is] incompletely informed about changes in 

this regard.”84   

Regarding the assignment of numbers to intensities in general, Meinong also claimed:  

“the boundary between the realm of measurement and mere fixation without 
measurement is fluid, and the thought of numerical determination without measurement cannot 
be completely rejected.”85  

As can be seen from above, the comparison with thermometry appeared frequently 

among Fechner’s commentators. While most of them would deny that such ordinal assignment 

creates quantities, strictly defined, many still acknowledged the value of such numerical 

description as Weber’s law. Even Tannery, noting that the just-noticeable-differences could only 

lead to a scale in which each sensation was defined to correspond to constant ΔR/R, wrote: “…I 

will not deny that such definition can be of good use…Let this definition be as useful for such 

studies [psychophysics] as the thermometer was, which serves to define temperature, to the 

investigations of physics!”86 A 20th century social scientist, on the other hand, might simply 

accept such definitional scale as proper measurement. It was perhaps only until mathematicians 

confirmed that the paradigmatic quantity—spatial magnitudes—only obtained equal units based 

                                                
84 Here Meinong was specifically talking about Lipps, who argued that a given sensation was composed of just-
noticeable-differences, but the argument also applies to Fechner: “Das ist…meines Erachtens nicht Messung, 
sondern nur noch Zuordnung. Vielleicht köntte man sagen: es ist der Fall der surrogativen Messung, wie er 
auch in der 'Wärmemussung' durch das Thermometer vorliegt...und über diesbezügliche Veränderungen meist 
recht unvollkommen unterrichtet ist.” (Ibid, 119)  
85 “Doch ist hierin das Gebiet der Messung gegen blosse Fixierung ohne Messung nur fliessend abgegrenzt, 
übrigens ist auch der Gedanke einer zahlenmässigen Bestimmung ohne Messung nicht völlig abzuweisen.” 
(Ibid, 162)  
86 Jules Tannery and Wilhelm Wundt, “Streitschriften über die Psychophysik: aus der Revue scientifique de la 
France et de l’Étranger,” in Die Quantifizierung der Natur: Klassische Texte der Messtheorie von 1696 bis 1999, ed. 
Oliver Schlaudt (Brill mentis, 2009), 127–43, 143. 



   168 

on arbitrary assumptions, that ordinal quantities became fully justified. Still, the attitudes of 

Fechner’s commentators were more of ambivalence than outright denial.  

3.8. Theories of Indirect Measurement 

What Fechner did succeed in doing, I believe, was bringing out a re-examination of the 

foundation of physical quantities among his contemporaries, forcing them to address the flaws in 

existing ways of thinking about measurement, especially the measurement of quantities incapable 

of direct comparison. I believe that his arguments against those (e.g., von Kries, Tannery) who 

argued that measurability meant reducibility to length, mass and time, were successful.  

Against the claim that in principle, sensations could never be measured because (a). they 

could not be directly compared; (b). equality determinations between sensations could never be 

obtained with an intuitive, “a clearly understood sense” like length equality, in Johannes von 

Kries’ words, Fechner questioned whether those two criteria were met in physical measurement 

of his time at all: physical measurement often boiled down to the fact that “an equal number of 

equally strong psychical impressions” were made by an equal number of physical causes. 

Equality of physical quantities, such as length and mass, was determined by a judgment in 

human perception—the alignment of points, congruence in superposition, etc. “The number 

of…physical units is determined by the number of psychical impressions, where the magnitude of 

the cause of the single impression, or any multiple thereof, serves as a unit.”87 If the equality of 

quantities like length and mass would boil down to a psychic judgment, then nothing could be 

said against using a psychic criterion to determine the equality of sensation. Meinong, although 

he disagreed with many aspects of Fechner’s work, echoed this diagnosis of physical 

measurement: measurement operations “have value only insofar as their results are given a 

                                                
87 Fechner, Gustav Theodor. Elements of Psychophysics. Vol.1, 51. 
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significance that can never be grasped in any sense other than through a psychic fact. What 

would the ‘laying on top of each other’ mean, other than to bring the stretches concerned to 

‘cover’ [each other]?”88 It was through psychic facts that operations in physical measurement 

obtain their significance.89 If this was the case, how could psychophysical measurement be denied 

from the outset?  

In fact, Fechner did put his finger on an issue that caused great anxiety among 

mathematicians and physicists of his time, namely that all spatial measurement must boil down to 

the validity of congruence in superposition, but whether the measuring rod remains invariant in 

motion cannot be proved (see chapter 2 and 4). Similarly, the measurement of time has also 

never been based on direct comparison of parts but must be based on assumptions of uniform 

motions. However intuitive a quantity might appear, its comparison with and relation to equal 

units still hinges on a concrete measurement process, requiring something that is not the thing to 

be measured. Direct comparison of magnitudes only exists in imagination or pure geometry. 

Fechner asked:   

“Do we count periods of time directly in terms of time, when measuring time, or spatial 
units directly in terms of space, when we measure space? Do we not rather employ an 
independent yardstick, a measuring rod, which for time does not consist of pure time, nor space 
of pure space, when we measure space? Measuring any of these three quantities demands 
something else as well. Why should the case not be the same in the mental or psychological 
sphere?”90 

                                                
88 “Denn sind auch die Messungsoperationen, wie beru ̈hrt, zumeist physischer Natur, so kommt ihnen ihr Wert 
eben doch nur insoweit zu, als ihren Ergebnissen eine Bedeutung beizulegen ist, die sich in einem anderen 
Sinne als dem einer psychischen Thatsache nun und nimmer erfassen las̈st. Was haẗte auch das 
Aufeinanderlegen zu besagen, war̈e es nicht das Mittel, die betreffenden Strecken eventuell zur "Deckung" zu 
bringen?” Meinong, Alexius. Über die Bedeutung des Weber’schen Gesetzes, 63. 
89 Heidelberger pointed out that Mach also made this claim. Heidelberger, Nature from Within. p.245.  
90 Gustav Theodor Fechner, Elements of Psychophysics, ed. Davis H. Howes and Edwin G. Boring, trans. Helmut 
E. Adler, vol. 1 (Holt, Rinehart and Winston, 1966), 47. 
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Wundt built on this argument about the prevalence of indirect measurement in the 

sciences. In an effort to endorse measurement of sensation through a functional dependency on 

external stimuli, Wundt argued that the most basic quantities of time and space are not obtained 

from the successive synthesis of homogeneous parts, as this criterion fails immediately with the 

measurement of time: “we are not in and of itself in the position to measure two periods of time 

which belong to different parts of an unending course of time…the equality of temporal stretches 

can only always be inferred under certain assumption about immutability of natural laws over time.” 

The true foundation of its measurement lies in the validity of certain natural laws:    

“We make use of an assumption with every measurement of time, which cannot be 
verified by direct observation at all, the validity of we can only infer from those applications that 
have not led to contradictions…This assumption is the invariance of time durations of certain 
lawfully recurring natural phenomena.”91 

The earth’s rotation had by then approximated such lawfully recurring phenomena and 

was practically convenient to serve as the standard of time. However, Wundt noted, this 

assumption of the invariance of durations of lawfully recurring phenomena “cannot be realized 

with any possible physical motion in the absolute sense” and the results of measurement were 

only calibrated by the “ideal norm” of motion, against which corrections were made. An 

“absolutely constant, objective measure of time” is “theoretically unrealizable,” Wundt 

continued, “in its place, the presupposition of the absolute constancy of natural laws has emerged as the 

actual condition of every time measurement.”92 Likewise, for all basic quantities in physical sciences, from 

                                                
91 Wundt, Wilhelm. “Ueber das Weber’sche Gesetz,” 15. 
92 “Bei der Messung der Zeit kehren nämlich keineswegs... die nämlichen Verhältnisse wie bei derjenigen des 
Raumes wieder, sondern jede Zeitmessung ist eine wirkliche Messung nur insofern, als bei ihr eine räumliche 
Messung stattfindet. Außerdem bedienen wir uns aber bei jeder Zeitmessung noch einer Voraussetzung, die 
durch unmittelbare Beobachtung gar nicht verificirt werden kann, sondern auf deren Gültigkeit wir nur aus 
der widerspruchslosen Anwendung schließen, die sie in der Wissenschaft sowohl wie in der praktischen 
Anwendung zulässt. Diese Voraussetzung besteht in der Annahme der Unveränderlichkeit der Zeitdauer 
gewisser regelmäßig wiederkehrender Naturerscheinungen, unter denen die Umwälzung der Erde um ihre 
Axe, der sogenannte Sterntag, um ihrer relativ großen Annäherung an jene Voraussetzung und um ihrer 
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mass, speed, to force, their measurement rely on “presuppositions apart from intuition.” In 

making this argument, Wundt anticipated many writings in early 20th century on the foundation 

of measurement (Chapter 4), especially those of Ernst Cassirer. 

Meinong pointed out in general that divisibility into units on its own could no longer 

explain how many concepts in science were measured, returning to Kant’s question regarding 

the additive composition of speeds a century ago:   

“if all measurement, as we have learned so far, is the comparison of parts, then certainly 
only those quantities can be measured, that can already be broken into parts with the same 
name, namely the so-called divisible quantities … Now one would not object at all to measure 
distances or dissimilarity, although…dissimilarities are not composed out of dissimilarities. Also, 
temperature heights and speeds are measured, but no temperature is composed out of 
temperatures, no speed out of speeds. We are obviously dealing with an extension of the concept of 
measure.”93   

Apart from quantities like temperature or speeds, the categories of divisible or indivisible 

magnitudes do not apply to most physical concepts that are defined as functions of other 

quantities. They do not have a basis in intuition as Kant might require for mathematical 

                                                
praktischen Brauchbarkeit willen den Vorzug erlangt hat. Wir wissen heute, dass die genannte Voraussetzung 
bei keiner physisch möglichen Bewegung in absolutem Sinne verwirklicht ist. Um so mehr gestatten wir uns 
unter Umständen sogar sehr ungleichförmige Bewegungenzur Messung der Zeit zu verwenden, sobald wir nur 
in der Lage sind, die Resultate der Messungen durch die erforderlichen Correctionen auf die von uns 
angenommene ideale Norm zurückzuführen. Auf diese Weise ist allmählich die Voraussetzung eines absolut 
constanten objectiven Zeitmaßes als im strengsten Sinne unrealisirbar theoretisch wenigstens in den 
Hintergrund getreten, und an seiner Stelle hat sich die Voraussetzung der absoluten Constanz der 
Naturgesetze als die eigentliche Bedingung jeder Zeitmessung dargethan.” (Wundt, Wilhelm. “Ueber das 
Weber’sche Gesetz,” 15) My italics.  
93 “Ist alle Messung, so wie wir sie bisher kennen gelernt haben, Teilvergleichung, so können selbstverstan̈dlich 
nur solche Gros̈sen messbar sein, die in gleich benannte Teile zerlegbar sind, also die bereits oben im be 
sonderen so genannten teilbaren Grössen. Nun nimmt man aber bekanntlich gar keinen Anstand, etwa 
Distanzen oder Verschiedenheiten zu messen, obwohl, wie schon einmal zu beru ̈hren Gelegenheit war, alle 
Relationen einfach, insbesondere Verschiedenheiten jedenfalls nicht aus Verschiedenheiten zusammengesetzt 
sind. Auch Temperaturhöhen und Geschwindigkeiten werden gemessen, obwohl keine Temperatur aus 
Temperaturen, keine Geschwindigkeit aus Geschwindigkeiten besteht. Wir haben es hier also offenbar mit 
einer Erweiterung des Massbegriffes zu thun, und es gilt, nun auch die Klasse von Messungsvorgängen zu 
charakterisieren, in welcher diese Erweiterung zur Geltung kommt.” Meinong, Alexius. Über die Bedeutung des 
Weber’schen Gesetzes, 68. My italics.  
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expressions, rather they are shorthanded representation of relationships among quantities. These 

concepts play the role of thought-objects, what Meinong called the “objects of higher order,” 

because they are one step removed from immediately intuitable magnitudes. These thought-

objects are never numerically expressed through division into parts but through what he called 

“surrogative measurement.” Consider temperature measurement—what does it actually mean to 

measure heat? Meinong argued:  

“In the truest sense of the word, it is only the mercury column that is measured, albeit on 
a scale that is constructed in a special way. The connection with temperature is only established 
by the fact that a certain temperature corresponds to a certain height of the mercury column, 
and that with the increase and decrease in the height of the column, the temperature of the 
surrounding area also increases or decreases somewhat…the heat can be said to be ‘measured,’ 
insofar as another thing is measured, whose different states coexist with the states of heat in an empirical 
lawful manner.”94  

The similar can be said about the quotient of distance and time standing for the notion of 

“speed.” This is different from measuring the length of Rhine indirectly by another length or 

calculating the altitude by means of an astrolabe. Strictly speaking, the quantity to be measured 

in surrogative measurement is not measured at all; it is simply represented by what is actually 

measured (e.g., the height of the mercury column, the quotient of space and time).95 Even 

distance, he claimed, a relation of dissimilarity between two points, is not directly divisible and is 

                                                
94 „Gemessen im eigentlichsten Wortsinne wird hier doch nur die Quecksilbersäule an einem allerdings in 
besonderer Weise angefertigten Massstabe; der Zusammenhang mit der Temperatur wird nur dadurch 
hergestellt, dass einer bestimmten Höhe der Quecksilbersäule eben ein bestimmter Temperatur zustand 
entspricht, und dass mit der Steigerung und Herabsetzung der Länge dieser Säule auch am 
Temperaturzustande ihrer Umgebung sich etwas steigert resp. herabsetzt. Die Annahme eines Parallelismus in 
den Veränderungen muss dabei nicht einmal sogar wesentlich sein; sonst müsste es dem Alltagsdenken, dem 
bei "Wärme" doch jederzeit die sensible Qualität vorschwebt, mehr Schwierigkeit bereiten, mit dem 'Sinken' 
des Quecksilbers eventuell auch ein "Steigen", das der Kälte nämlich, in Verbindung zu bringen. Jedenfalls 
kann man also sagen: die Wärme gilt hier für "gemessen", sobald ein anderes gemessen ist, dessen verschiedene 
Zustände mit den Wärmezuständen in empirisch festgestellter Regelmässigkeit koexistieren. (Ibid, 69.) My 
italics. 
95 Ibid, 72. 
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measured surrogatively. The distance between two points is a relation of difference between two 

points, but to every such relation is assigned a length (Strecke), and it is by means of this length 

that the indivisible relation of distance is measured. We speak unhesitatingly of a distance or 

velocity being equal to a number, or 10 times more of another distance or speed, because 

ordinary language does not distinguish direct and surrogate measurement, or simply omitted the 

complexities involved in the measurement process.96 This does not change the fact that these 

quantities are not measured by direct comparison of parts. For Meinong, surrogate measurement 

also explains how intensities in general can become measurable and acquire the benefits of 

numerical comparisons. The intensive degrees themselves are never measured; instead, points of 

the “qualitative continuum” are mapped onto a surrogate that stands for the former. The 

dissimilarity between degrees of such “qualitative continuum” is coordinated with measurable 

differences of the surrogate (e.g., the “dissimilarity” between two thermal states is correlated with 

an external reference, such as the relation between work and heat). Nothing prevents intensive 

magnitudes from being measured this way in principle and reap all the benefits of numerical 

measurement. But often times, the coordination does not yield a uniform scale and results only in 

numerical assignment. Regarding this, Meinong admitted that “the idea of numerical 

determination without measurement cannot be completely rejected.”97 

 

 

 

                                                
96 Ibid, 76. 
97 „Doch ist hierin das Gebiet der Messung gegen blosse Fixierung ohne Messung nur fliessend abgegrenzt; 
übrigens ist auch der Gedanke einer zahlenmässigen Bestimmung ohne Messung nicht völlig abzuweisen.“ 
(Ibid, 162.)  
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Chapter 4 Spatial and Temporal Measurement as Problematic Concepts  

4.1. Introduction  

As shown in the first chapter, space and time were believed to be self-evidently 

quantifiable. Spatial extension could be measured by concatenating rigid bodies serving as the 

unit in an unproblematic way, while time was presumed to be composed out of equal durations. 

Kant classified space and time as the paradigmatic “extensive” magnitudes, based on the 

understanding that both could be measured by homogeneous, additive parts. All “appearances,” 

or perception of objects, have an extensive magnitude—an argument that might have served to 

incorporate Descartes’ claim that the essence of material objects is extension.1 The very 

definition of “extensive” magnitudes, according to which the whole presupposed the cognition of 

antecedent parts, is modelled on the spatial and temporal magnitudes measured by additive 

parts: imagine any small parts of space or lines, Kant argued, one must first “successively 

generating all its parts” before one could imagine a whole extension, and similarly, one must 

successively generate the temporal parts of the smallest duration in order to imagine it.2 Partly, 

the notion that quantity must be composed out of equal units had such longevity into the 19th 

century because it seemed applicable to space and time on an a priori basis under the framework 

of Newtonian physics and Kantian epistemology.  

For many 19th century scientists occupied with the conditions of measurability, the 

problem was to explain how the counterpart of “extensive” magnitudes—“intensive” 

magnitudes—could be reduced to “extensive” magnitudes. Physical quantities became 

                                                
1 See Descartes, “Fifth Meditation.” 
2 Kant, Critique of Pure Reason, A162-3. 
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measurable when they were reducible to the units of length, mass and time, because there was a 

clear, intuitive meaning to the equality of two lengths, two durations, and two masses. The 

measurability of “extensive” magnitudes, apart from issues related to precision and error, was 

never cast into doubt except by a few. But through several influential developments at the turn of 

the century, it became clear that some serious problems infected the measurement of space and 

time all along. For instance, under what conditions can spatial or temporal intervals be declared 

equal and their scales uniform? For the measurement of space conventionally understood, it is the 

rigidity of the measuring rod. If one’s measuring rod is not fixed, there is no “equal” units and no 

sensible measurement. For time, durations are never directly compared; the judgment that two 

durations are equal rests on the assumption that identical phenomena must have the same 

duration (i.e., that a motion is “uniform”), and in practice must rely on the determination of 

simultaneity of events (whether the beginning and end of one motion coincide with the beginning 

and end of another serving as standard). It turns out that “equal” spaces or “equal” times are no 

straightforward matter, but contingent upon specific assumptions and methods of the 

measurement process. Some of these assumptions are never fully warranted.  

The first line of attack against the self-evidence of “equal” space came from philosophy of 

geometry, as non-Euclidean geometry came to be more widely accepted and the foundation of 

determining the structure of physical space came under close scrutiny. As mentioned in Chapter 

2, Helmholtz and Riemann were the first to take the non-Euclidean geometries as serious 

candidates to describe physical space. In analytic geometry, different (Euclidean, spherical, 

hyperbolic) geometries are distinguished from each other by their curvature. Helmholtz believed 

that the only way to determine the curvature of the physical space (for Helmholtz, space must 

have constant curvature) was through measurement, e.g., of stellar parallax. But he also saw a 
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potential problem: all geometrical measurement must rest on congruence in superposition, which 

in turn must rest on the assumption of the rigidity of our measuring rod. Should our measuring 

rods, along with all our surrounding bodies including our own bodies, distort in the same 

proportion as the measuring rod, then measurements thought to be performed in Euclidean 

space would not truly be so. Intuition alone is helpless in determining whether such distortion 

actually occurs, but Helmholtz argued that laws of mechanics would provide a way to guarantee 

the rigidity of bodies. 

Helmholtz’s thought experiments were taken up in Henri Poincaré’s 1902 Science and 

Hypothesis in almost the exact same form. However, Poincaré arrived at the opposite conclusion, 

namely that measurement is incapable of determining whether space is Euclidean or non-

Euclidean. More specifically, if we are informed that objects do not actually go through 

Euclidean displacements that preserve their Euclidean metrical properties (by which we 

determine the “rigidity” of bodies by Euclidean metric), i.e., if bodies go through the kinds of 

distortion observed in non-Euclidean geometry, we would face the option of either choosing non-

Euclidean geometry as the description of space, or Euclidean geometry plus specific physical laws 

describing the behaviors of bodies under distortion in motion. There is no absolute standard for 

rigidity, because Euclidean and non-Euclidean geometry have different standards for rigidity. If 

the “correct” geometry is a matter of conventional choice, then so is the criterion for “true” rigid 

body motions. If there is no absolute criterion for rigidity, then what does “equal” space obtained 

from congruence in superposition mean? It could be equal in one geometry and not equal in 

another. Poincaré further argued that behaviors of physical bodies cannot be used to prove the 

metrical structure of space and geometry ultimately describes the motion of bodies (more 

specifically, the motions of “ideal” rigid bodies) instead of properties of space. Suppose we are 
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able to construct bodies that distort in a non-Euclidean manner in motion, which coexists along 

with “rigid” bodies conventionally understood, would we thus conclude that space was both non-

Euclidean and Euclidean? The only conclusion we can reach is that one body moves in a 

Euclidean manner while the other moves in a non-Euclidean manner.   

Newtonian absolute time had been questioned by 19th century scientists, since “truly” 

uniform motion, the standard for time measurement, cannot be proved—the uniformity of 

motion presupposes that one already knows how to measure time. Through the works of 

Poincaré and Einstein, attention was also brought to the meaning of simultaneity, which the 

comparison of durations must rely on. In actual practice, determining the simultaneity of two 

events separated by a geographic distance must rely on a chosen method of measurement (e.g., 

sending a signal through telegraph) from which time must be calculated based on the laws of 

physics involved. Taking this as a starting point, Einstein fleshed out the consequences of taking 

the speed of light as constant and comparing the measurement of both time and length across 

different reference frames. With the consequences of “length contraction” and “time dilation” he 

revealed that their measurements in any particular reference frame are not universally valid. 

Instead, length and time are both derived quantities, calculated from laws of motion, speed of 

light, as well as the relative motions of the reference frames, rather than privileged quantities 

whose quantitative structure is self-evident from intuition.  

Mathematics used to be the “science of magnitudes” prior to the 19th century, hence to 

explain how mathematical techniques could be used in empirical realms was equivalent to 

explaining how concepts could acquire structures mirroring the properties of magnitudes—

capable of division, addition and measuring and being measured by other magnitudes through 

part-whole relation, and modelled on the geometrical line. However, in the 19th century the urge 
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to instill more rigor into their reasoning process and basic definitions led mathematicians to 

exclude quantity based on geometric intuition from mathematics. Two most prominent examples 

include the definition of real numbers based on set theory notions, which replaced “continuous 

magnitudes” as variables of mathematical functions, and the growth of projective geometry, 

containing no quantitative measurement but allowing certain properties of metrical geometries 

(Euclidean, hyperbolic, spherical) to be derived from within the projective framework. Both these 

developments facilitated the reformulation of mathematical propositions in terms of symbolic 

logic. Since “quantity” became increasingly irrelevant to mathematics, it no longer served as the 

link between pure mathematics and quantitative sciences.  

The disappearance of “quantity,” with its implicit part-whole structure exemplified by the 

geometric line, from measurement theory had many reasons. Apart from the fact that it no 

longer applied to the measurement of space and time in a post-relativistic worldview, and apart 

from its exclusion from pure mathematics, there are at least two other related reasons. Kantian 

epistemology had to abandon its doctrine of mathematical cognition based on intuition, and 

geometry in the style of Euclid was replaced by algebraic methods as the dominant form of 

mathematical representation in the sciences. Both these forces made it inevitable that the old 

notion of quantity was no longer relevant in explaining the application of mathematics in the 

empirical sciences. It is not surprising that a brief look into a few early 20th century philosophers 

who wrote on measurement shows that they did not continue the long tradition of speaking of 

quantity. Instead, they shifted toward a law-based conception of measurement, in the sense that 

scientific theories and numerical laws replaced the notion of unit as the real constant in 

measurement. However, many of their views are continuous from the inquiries on measurement 

raised by their 19th century predecessors, especially the claim that every measurement is enabled 
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by scientific hypotheses and the view that additive and non-additive measurement deserve 

separate foundations.  

4.2. Rigidity and the Measurement of Spatial Magnitudes   

In our conventional understanding, rigidity is the precondition of measuring space. Two 

spatial magnitudes can be compared by congruence in superposition, if we overlap the measuring 

rod with one and move it to overlap with another. Without the rigidity of our measuring rods, 

such procedure is meaningless. But in the writings of Henri Poincaré, one of the most influential 

and prolific philosophers of science at the turn of the century, both the notion of an absolute 

criterion for “rigidity” and the notion that “rigid body motions” can measure space are 

problematic.   

In Science and Hypothesis, Poincaré used the same thought experiment from Helmholtz’s 

1868 “On the Origin and Significance of the Axioms of Geometry” to support an entirely 

different argument, namely that empirical experience cannot determine the metrical properties 

of space at all. He agreed with Helmholtz with regard to the centrality of rigid bodies in the 

foundation of geometry: “if there were no solid bodies in nature, there would be no geometry.” 

This is not merely a claim about congruence in superposition as a method of proof in Euclid’s 

geometry, such as in Proposition 4 of the Book I of Elements where Euclid explicitly used the 

overlapping of one triangle onto another to prove the identity of their sides and angles.3 The 

notion of rigidity is much more deeply intertwined with geometry as a whole. Consider the 

subject matter of Euclid’s geometry. Various geometrical entities are constructed from fixed 

lengths and angles: without a fixed notion of “equal” distances between two points, one cannot 

                                                
3 Euclid, The Thirteen Books of Euclid’s Elements, Translated from the Text of Heiberg with Introduction and Commentary, 
trans. Thomas L. Heath, vol. I, 3 vols. (The University Press, 1908), 247. 
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construct a circle, or distinguish equilateral triangles from other triangles, or make any claims 

about one angle, length, or quadrilateral figures being twice or thrice another. The notion of 

“equal” distance undergirds the construction of equal angles as well (see Proposition 23 of Book I, 

where equality of angles is proved through the equality of two triangles with equal sides), as well 

as difference types of geometrical entities in various quantitative relationships. For Euclid, 

“equality” might have simply been guaranteed by the rigidity of the compass and the straight 

edge. In the context of 19th century analytic geometry, the meaning of “equal” distance is tied 

with the analytic expression for distance—the shortest path between two points with coordinates 

in a manifold—which differs for Euclidean, spherical or hyperbolic geometries. When thinking 

about a “rigid” body or fixed geometrical length (which is the basis of defining other geometrical 

shapes) in Euclidean geometry, we think about two points retaining their distance relation 

(shortest path) in motion: if a straight edge, with its two ends at coordinates x and y, moves to a 

different place, with its two ends at new coordinates x’ and y’, the least condition that must be 

satisfied for us to claim it is rigid is that p𝑥# + 𝑦# = p𝑥]# + 𝑦]# =the shortest path between the 

two end points. “Rigid body motions,” for us, are those functions that map coordinates to new 

coordinates but preserve this distance relation between any pair of points—the shortest path 

between them. This is what our experience has led us to believe. However, for Poincaré, nothing 

would prevent us from recognizing that in non-Euclidean geometry, a different criterion for 

rigidity might equally be accepted. In other words, different “rigid body motions” that preserve a 

different “distance” relation between points can be accepted as valid and compatible with 

everyday experience, which I will explain shortly.  

This way of thinking about rigid body motions coincides with how the mathematician 

Felix Klein categorized different kinds of geometries in the 1870s. Klein argued that different 
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geometries ought to be categorized through the transformation groups (i.e., functions mapping 

coordinates to coordinates that form a “group”) that each focuses on, because these 

transformations preserve different invariant relationships between points in different geometries.4 

Euclidean geometry is distinguished from other geometries by functions that preserve its distance 

(expressed by Pythagorean formula): translation, rotation, reflection. Hyperbolic geometry, on 

the other hand, studies other functions (e.g., Möbius transformations in the upper-half plane 

model) that preserve the hyperbolic “distance”—the shortest path between two points in the 

hyperbolic space—and angles. For Poincaré, these functions could potentially be considered as 

“rigid body motions” in non-Euclidean geometries.5   

What is our intuition of rigidity, anyway? According to Poincaré, our intuition of rigidity 

originated from a combination of tactile and perceptual experiences with everyday objects. No 

analytic expressions or metrical constraints are actually forced upon us in our selection of “rigid 

bodies.” Changes in our sense impressions related to an object are distinguished into two kinds: 

those that only involve a change of position for the object and those that involve both changes in 

position and state for the object. We distinguish the former—the “rigid” bodies—by the fact that 

the total sense impressions involving them and their surrounding objects can be restored by our 

voluntary movement of our own bodies. For instance, a body x passes from position α to position 

β. At position α, it causes a total sense impression A, and at β, a total sense impression A’. 

Suppose there is a second body y, which differs from x in all kinds of respects. y also passes from 

α to β, causing a change in total sense impression B and B’, respectively. There is nothing in 

                                                
4 This was studied by both Klein and Sophus Lie, and Lie concluded that there are at most eight possible 
transformation groups that could be considered candidate for describing space, but Poincaré narrowed them 
down to the familiar three: Euclidean, spherical and hyperbolic ones, for the reason that others contain 
counterintuitive properties. Gray, Plato’s Ghost, 127. 
5 Also discussed in Jeremy Gray, Henri Poincaré: A Scientific Biography (Princeton University Press, 2013).  
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common between A and B, or between A’ and B’, except that both changes (from A to A’, and 

from B to B’) can be corrected (i.e., A and B can be restored from A’ and B’) by the same bodily 

movement. It is by virtue of this commonality that x and y are both regarded solid bodies. In 

contrast, if an object z passes from α to β but the change in sense impression regarding it cannot 

be corrected by a simple bodily movement in the manner mentioned above, but requires more 

complex actions, then z is distinguished from x and y as changing in both state and position in 

displacement.6  

Therefore, the notion of rigidity in direct perceptual experience is just this: changes in our 

sense impressions as an object changes in position could be corrected by the same kinds of bodily 

movements. Nothing can prevent us from imagining a different kind of !rigid body motion” 

incompatible with our Euclidean notion of rigidity. According to our judgment of rigidity by 

intuition, bodies undergoing Euclidean motions (those that preserve the Euclidean distance) can 

be regarded as rigid to the same extent that bodies undergoing non-Euclidean motions (those 

that preserve the non-Euclidean distance) can be regarded as rigid, if in both cases the original 

sense impression of those bodies (and their relation to their surroundings) can be restored by the 

same kind of correlative motion of our body. But the mathematics describing the latter kind of 

motions and the invariant components in such motion would differ from the mathematics 

describing rigid body motions in the Euclidean framework.  

Now suppose one observes living beings in a world enclosed in a great sphere, with a 

temperature law that causes everything to contract in size in proportion to distance away from 

the center. Suppose all bodies in this world have the same coefficient of dilation and light travels 

                                                
6 Henri Poincaré, Science and Hypothesis (Science Press, 1905), 47. 
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in arcs. As a living being departs from the center and passes towards the boundary, the 

measuring rod they carry, along with their bodies and every surrounding object, contract by the 

same proportion. But all this is what we observe by mapping the paths and angles from this world 

to our own Euclidean coordinate system. The intelligent beings in this world would not be able to 

detect the deformations in their measuring rods, since everything contracts by the same extent 

(appearing to us). But they too would be able to restore the totality of sense impression of their 

objects in relation to the surrounding objects, etc., through a correlative movement of their 

bodies. They would develop their own class of rigid bodies, i.e., objects that have the same angle 

and length measurement (based on their own formula for calculating distances and angles). They 

would consider the mappings that preserve their length and angle measurements as rigid body 

motions, even if these mappings would appear to distort bodies from our Euclidean point of view. 

In other words, these beings would likely develop non-Euclidean geometry. Or they could adopt 

Euclidean geometry, acknowledge their displacements as actually distorting the measuring rods, 

and describe the behaviors of their world by specific physical laws, e.g., those prescribing the 

specific physical deformation according to temperature. The two choices are equivalent and a 

matter of convention.7 In Poincaré’s words: “no experience will ever be in contradiction to 

Euclid’s postulate; nor, on the other hand, will any experience ever contradict the postulate of 

Lobachevsky.”8   

While the main point of this story is that experience cannot determine fully which 

geometry to choose as the one that describes a space, it also entails that there is no absolute 

rigidity. Rigidity can be associated with the Pythagorean formula if we believe that our Euclidean 

                                                
7 Ibid., 49-51. 
8 Ibid., 57. 
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space with its metric is correct. But rigidity can also be associated with the non-Euclidean 

formula if alien beings enter our world and convince us that our “rigid body motions” 

(translation, rotation, reflection) actually distort bodies in a way we cannot detect and the correct 

metric is the non-Euclidean one. Pythagorean formula as the description of the shortest path is 

obtained from measuring bodies that we think are rigid, but there are not ways to ascertain they 

really are rigid. We cannot even ascertain that our “rigid bodies” actually conform to the fixed 

Pythagorean formula between two points on it without using other supposedly rigid bodies to 

measure it. Euclidean geometry is therefore based on the behavior of ideal solid bodies—ones 

suggested but never definitively proved by our experience. Our idea of rigid body motion merely 

serves as our standard according to which we measure natural phenomena, according to 

Poincaré. This standard is a convenient choice but by no way forced upon us by experience.9  

One further argument from Poincaré’s Science and Hypothesis is that the notion of an 

absolute space with a fixed metrical structure independent of specific bodies is only an ideal, 

because all our measurements pertain only to bodies, not to space—“experiments can only teach 

us the relations of bodies to one another; none of them bears or can bear on the relations of 

bodies with space, or on the mutual relations of different parts of space.”10 Space independent of 

the motion of individual bodies cannot be measured. Suppose one compare the geometrical 

properties of bodies by bring them to contact. Suppose that when moving one body to another, 

thereby bringing the sides and angles of two bodies into congruence, we observe that this motion 

is not like translation or rotation. Specifically, Poincaré used an example of bringing a right angle 

of a triangle to congruence with the angle subtending between the sides of a double hexagon 

                                                
9 Ibid., 53. 
10 Ibid., 60. 
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pyramid and its center—impossible if both are absolute rigid bodies in Euclidean space. If we 

observe this kind of behavior, it’s hard to imagine that we will thereby conclude that space itself 

has been proved to be non-Euclidean, because it is entirely possible to imagine that a skilled 

mechanic has created a special kind of body that morphs in this way as it moves. Suppose that we 

have both bodies that move in this manner and bodies that move in conformity to Euclidean 

motions, then if space can be determined by the motion of bodies, we would have both the proof 

that space is Euclidean and that it is non-Euclidean, which would be a contradiction.11 

While it was possible to argue that the threat to our conventional understanding of the 

measurement of space posed by Poincaré is only a theoretical one, the reconceptualization of 

both space and time by Einstein’s special relativity drastically complicated the issue. According to 

special relativity, the determination of length across geographic distance is dependent on the 

measurement of time, while the measurement of time is dependent on judgments of simultaneity. 

However, simultaneity of two events is in turn dependent on the reference frame—two events 

that are simultaneous in one reference frame would not appear simultaneous in another, and 

thus time durations of a body’s motion as well as length measurement also differ. Whether the 

measurement of length and time are equal is now contingent upon the reference frame from 

which measurement is made, calculated from laws of motion presuming that the speed of light is 

constant. Both space and time become derived quantities that are indirectly measured. The idea 

that spatial extension and temporal durations are quantities measured through the concatenation 

of units or parts constituting the whole, appears irrelevant by contrast.  

                                                
11 Ibid., 62-3.  
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4.3. “Equal” Times (and Lengths) 

19th century scientists widely acknowledged that time had never been measured through 

direct comparison. As mentioned earlier, psychologists like Fechner justified using external 

stimuli as the measure of sensation by arguing that the scale of time was also determined by an 

external reference, i.e., to some particular uniform motion. How do we know that the motions 

serving as the standard of time is truly uniform, if we have to rely on time to determine such 

motion? Scientists were reminded of the fact that no truly uniform motion had been verified with 

the discovery of tidal effect on the rotation of the earth in the 1850s. The discovery had caused 

an uproar (since the previous explanation for the moon’s observed acceleration offered by the 

great Pierre-Simon Laplace was proven wrong) and left a deep impression among some, 

especially those who were already suspicious of Newtonian absolute time.12 The earth’s rotation 

is slowing down, and sidereal days are not truly equal. What else could humans latch onto as an 

approximate measure of the true, mathematical time that Newton described?  

The mathematician Carl Neumann noted in 1869 that equal times should be defined in 

terms of equal distances.13 Neumann’s idea was a part of his critique of Newton’s first law of 

motion, which was accepted by many as a disguised definition of time. The first law states that a 

material point, if set in motion and left entirely to itself without being exerted on by an external 

force, travels in a straight line, covering equal distances in equal times. Neumann saw the law as 

                                                
12 The moon had been observed to accelerate during the previous centuries, which would have contradicted 
Newton’s law of mechanics without the presence of additional forces to explain its acceleration. Pierre-Simon 
Laplace had offered an explanation in terms of the moving eccentricity of the earth’s orbit around the sun, but 
in the 1850s errors in Laplace’s calculation were pointed out by Cambridge astronomer J. C. Adams, who 
instead pointed to the effects of tidal friction in slowing down the earth’s rotation.   
David Edgar Cartwright, Tides: A Scientific History (Cambridge University Press, 2000). 
13 There is extensive literature on 19th century critiques of the law of inertia, see Barbour, The Discovery of 
Dynamics; Darrigol, Relativity Principles and Theories from Galileo to Einstein. 
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incomprehensible because both “straight line” and “equal times” were undefined—“straight” 

with respect to what? “Equal” by what standard, if there is no truly uniform motion and time can 

never be directly compared? So long as we do not know the meaning of “equal time,” it would be 

impossible for determine the meaning of “covering equal distances in equal times” in the law of 

inertia. The solution is to define “equal” times by means of equal distances: “two material points, 

each left to themselves (not subject to external forces), move along in such a way that equal 

sections of the path covered by the first body always correspond to equal sections of the path covered 

by the other.”14 Ludwig Lange, reformulating Neumann’s ideas, echoed that “To determine the 

temporal relations of a given movement means to compare this movement spatially with another 

movement which is taken as a basis at all times.”15 

In Poincaré’s 1898 “the Measure of Time” (later a part of the 1905 Value of Science), he 

argued that astronomers’ conclusion about the tidal effects on the earth’s rotation down revealed 

that time is actually defined in such a way as to allow the laws of physics to retain their simplest 

forms.16 The moon’s apparent acceleration has been known for a long time. Why conclude from 

this observation that the daily rotation of the earth does not actually represent equal durations? 

                                                
14 „Zwei materielle Punkte, von denen jeder sich selbst überlassen ist, bewegen sich in solcher Weise fort, dass 
gleiche Wegabschnitte des einen immer mit gleichen Wegabschnitten des andern correspondiren.“ (Carl 
Neumann, Ueber die Principien der Galilei-Newton’schen Theorie: Akademische Antrittsvorlesung gehalten in der Aula der 
Universität Leipzig am 3. November 1869(B. G. Teubner, 1870), 18.)  
To reformulate the law of inertia, Neumann proposed to define “traveling in a straight line” as traveling in a 
straight line with respect to a postulated body Alpha, which served the same function as Newton’s absolute 
space. 
Also see Barbour, The Discovery of Dynamics and Darrigol, Relativity Principles and Theories from Galileo to Einstein. 
15 Ludwig Lange, “Über das Beharrungsgesetz.,” in Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. 
Mathematisch-Physische Klasse. Berichte über die Verhandlungen, vol. 37, 333–51, 335.  
16 It is unclear whether Einstein had read Poincaré’s paper, “The Measure of Time,” which was originally 
published in 1898. The same paper was contained in the 1905 Value of Science, published just a few months 
earlier than Einstein’s “On the Electrodynamics of Moving Bodies,” where special relativity was proposed.  



   188 

Why not instead reform laws of physics into approximately true laws and maintain the standard 

of time (uniform rotation of the earth)? The latter is less convenient.  

Overall, Poincaré believed that we do not possess an intuition of “equal times” except for 

psychological events (e.g., two motions perceived at the same time by the same person). What do 

we mean when we say that “from noon to one the same time passes as from two to three”? In 

practice, we use recurring phenomenon such as the pendulum swing to measure other durations. 

Implicitly assumed is that identical phenomena have the same durations. But the pendulum 

swing is only uniform in theory, without factors of temperature, air friction, pressure, etc. 

exerting any effect on it. Certainly, no real pendulum operates in ideal conditions, and real 

pendulums must be corrected regularly by referring to sidereal time. Now, again, sidereal time is 

not uniform, as astronomers showed, since it cannot satisfy the ideal conditions stated in the law 

of inertia. By extension, can there be any two completely identical phenomena in the universe at 

all? Technically speaking, even a distant star like Sirius has an effect on the timekeeping device 

like the pendulum on earth. No two phenomena can be under entirely the same circumstances 

and share identical initial conditions, hence we lose our justification for using identical 

phenomena to measure time. But rather than claiming that the laws we have for describing 

pendulum motion as only approximately true and taking this approximately uniform motion as 

the basis of time, we maintain the laws in its simplest form and correct the “errors” of time 

measurement, deviations from its ideal values. Time is !so defined that the equations of 

mechanics may be as simple as possible.”17   

                                                
17 Henri Poincaré, The Value of Science, trans. George Bruce Halsted (Science Press, 1907)., 30. 
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Crucially, as Poincaré pointed out, not only do we lack an intuition of “equal durations,” 

we also lack an intuition of “simultaneity” of event that are not confined in our consciousness, the 

key judgment with which durations can be compared indirectly. As soon as we try to transcend 

one person’s consciousness (in which the simultaneity of two psychological events, e.g., the 

entering of two light signals into the visual field, is still possible) and talk about the simultaneity of 

two physical events separated by a distance, we inevitably have to measure or calculate time. 

Two lightening strikes are simultaneously observed, but to determine if they struck at the same 

time we would have to take into account their distances from the observer. The measurement of 

time in turn depends on the technique of measurement and the laws of physics involved. As Peter 

Galison argued, here Poincaré was speaking from personal experience when invoking the 

timekeeping practices of navigators and geographers, as he had served in the Bureau of 

Longitudes in an era where large-scale geodetic surveys and telegraphic networks required 

extensive clock coordination. When navigators and geographers traveled to distant locations and 

need to determine the time difference from Paris, they had to, for instance, send a telegraphic 

signal to Paris, in which case the lag in time would be calculated based on the speed of the signal. 

Alternatively, they could observe the same astronomical event as observers in Paris, which in 

principle cannot be strictly simultaneously observed at different locations on earth. For all 

available options time must be calculated by presupposing something else—the speed of the 

signal, the distance between the two locations, and so on.18   

As can be seen, by Einstein’s 1905 paper “On the Electrodynamics of Moving Bodies,” 

Newtonian absolute time was widely regarded as a hypothesis since it was unclear by what means 

such absolute time could be accessed through measurement. The 1905 paper made it clear that 

                                                
18 Ibid., 233-4. 
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there is no such thing as fixed time or length across different reference frames. Einstein did fix 

one method for the measurement of time as a convention, i.e., the traveling light signals, and 

took the speed of light as constant and laws of physics as the same in all inertial reference frames. 

Given the extensive literature on the topic19, it suffices here to explain how time and length are 

calculated from traveling light signals obeying Newton’s first law.  

Differences in measuring time and length stems from the differences in the judgment of 

simultaneity. In a “stationary” system (in which observers believe themselves to be stationary), 

two clocks across distance can be synchronized by the following criterion: at A, one sends a signal 

to B when the clock at A reads 𝑡s, and receives the returning signal immediately reflected from B 

when the clock at A reads 𝑡s] ; if the signal is received at B when the clock at B reads 𝑡t, and if 

𝑡t − 𝑡s = 𝑡s] − 𝑡t, then the two clocks are synchronized. In other words, clocks at A and B are 

synchronized when 𝑡t is the mid-point between 𝑡s and 𝑡s] . This is a result of assuming constant 

speed of light and Newton’s first law. Now consider observing this synchronizing procedure being 

performed in a moving system. Suppose that this moving system (a measuring rod, for instance, 

with A and B as its two ends) moves away from the stationary observer at constant speed v. If a 

person in the moving system at A sends a signal to B, the time it takes for the signal to reach B is 

Buv
wxy

 (𝑟st  is the distance from A to B, c the speed of light) and the time it takes for the signal to 

return to A is Buv
w{y

, seen from the observer from the “stationary” system. For this observer, the 

clock at B reads correctly if 𝑡t − 𝑡s =
Buv
wxy

 and 𝑡s] − 𝑡t =
Buv
w{y

. But the person in the moving 

system, with no reason to believe themselves to be moving, would still synchronize their clocks at 

A and B by assuming that the signal reaches B at the midpoint between 𝑡s and 𝑡s] . For them, the 

                                                
19 A few examples include: Galison, Einstein’s Clocks, Poincaré’s Maps; Jungnickel and McCormmach, Intellectual 
Mastery of Nature; Barbour, The Discovery of Dynamics; DiSalle, Understanding Space-Time.  
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clock at B reads correctly (is synchronized with A) if 𝑡t − 𝑡s = 𝑡s] − 𝑡t. Hence the two system—

neither capable of proving themselves to be truly stationary—would not agree on how their 

clocks are synchronized, and hence cannot agree on whether two events are simultaneous.  

If two systems in relative motion cannot agree on synchrony, then their measurement of 

time and length will also differ—both become relative concepts across reference frames. If a light 

signal traveling from one clock to another travels perpendicular to the moving system, then the 

total distance it covers, seen from a “stationary” system, is larger than the total distance, seen 

from within the moving system. Then, what is, say, one hour measured within the moving 

system, is actually more than one hour seen from the “stationary” system. Time is slower in that 

moving system judged from the “stationary” one. Length measurement, on the other hand, is 

dependent on simultaneity and turns out shorter in a moving system. In a “stationary” system, 

measuring a length (across great distance) means subtracting the coordinates of one end point 

from the coordinates of another. Observers from the “stationary” system record the coordinates 

of the two ends of a moving rod at the same instant, then send these coordinates to the observers 

in the moving system. The observers at two ends of that moving rod will receive the two signals 

at different times and assume that the coordinates of one end (the one further away from where 

signals are sent) is sent later than the coordinates of the other end, and in this lag the coordinates 

of the first end has changed. Upon receiving the signals, the observers in the moving system 

therefore concludes that the coordinates they receive in fact indicate a distance longer than the 

actual one. Their measurement of length is therefore shorter than the measurements in the 

“stationary” system.   

In light of the way non-Euclidean geometry and special relativity complicated the way 

length and time are conceptualized and measured, the idea that these quantities have a simple 
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quantitative structure capable of measurement by fixed units appears irrelevant. In special 

relativity, both length and time are indirectly calculated from speed of light and laws of motion 

that are invariant in each reference frame. Instead of being primitive quantities, whose 

measurement lead to the establishment of laws and the discovery of new quantities, length and 

time themselves become derived quantities—derived from natural constants and laws taken as 

primitive. This did not merely happen in theory: during the 1880s attempts had been made by 

researchers like C. S. Peirce and A. Michelson to calibrate the length standard against the 

wavelength of light emitted by certain elements using interferometry. Michelson and Morley’s 

experiment essentially simplified the task down to counting the number of fringes resulting from 

the superposing of two wavelengths of the same kind (and therefore the number of fringes was the 

number of wavelengths) contained within a distance measured by existing standards of length. 

This allowed the length standard to be calibrated against the wavelength by means of the laws of 

optics involved in establishing the relationships between experimental objects in an experimental 

arrangement.20  

In a sense, the intellectual breakthroughs at the beginning of the 20th century themselves 

resulted from an inversion of perspective: instead of taking a given definition of space and time as 

a given, Poincaré or Einstein saw them as derived from stipulated laws and constants underlying 

the measurement process. The process and method of measurement, which had been invisible to 

                                                
20 Michelson, Albert A., and Edward W. Morley. “LIX. On a Method of Making the Wave-Length of Sodium Light the 
Actual and Practical Standard of Length.” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 
24, no. 151 (December 1887): 463–66.   
Also see Canales, A Tenth of a Second. 
Unit time continued to be defined by solar days until the 1960s, when the BIPM switched to the atomic clock 
(the frequency of transition in caesium-133 atom).  
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natural philosophers for centuries, now became determining factors of how a quantitative 

concept ought to be understood and determined.  

4.4. Why Mathematics No Longer Needed Quantity 

As seen from Chapter 1, mathematics used to be intimately tied with its realm of 

application, as it was the “science of magnitudes” prescribing a priori truths to the studies of 

sensible objects instantiating them. In Aristotle’s words, arithmetic and geometry “concern the 

same items” as astronomy, music, and other “mathematical disciplines,” making theorems 

demonstrated in geometry or arithmetic directly applicable to objects and phenomena in applied 

mathematical disciplines. Natural philosophers of the 17th century who argued for more extensive 

application of mathematics into physics (traditionally the study of causes) similarly regarded the 

resulting science as “mixed mathematics” or “physico-mathematics”—this science shared the title 

of “mathematics” precisely because both concerned quantities.21 For Kant, the construction of 

quantities (the successive synthesis of the homogeneous in intuition) was by definition 

mathematical cognition.22 Despite the historical centrality of the notion of quantity to 

mathematics, by the end of the 19th century it was clear that quantity must be excluded from the 

foundation of mathematics. An explicit declaration can be found in Bertrand Russell’s 1903 

Principles of Mathematics, which claims that the notion of quantity divisible into equal units “does 

not occur in pure mathematics” for not being “amenable to mathematical treatment.”23  

The exclusion of quantity from mathematics was part of an effort to instill more rigor into 

its basic notions as mathematics became a more professionalized, autonomous discipline, with 

                                                
21 Dear, Discipline and Experience.   
22 Kant, Critique of Pure Reason, B203.  
23 Bertrand Russell, The Principles of Mathematics (University Press, 1903), 158, 419.  
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the liberty to determine its own subject matter, methodology and evaluation criteria. Several 

steps were taken towards that end during the 19th century: redefining the foundation of calculus, 

redefining numbers, separating analysis and geometry from intuition and mechanics, and 

axiomatizing the entirety of mathematics.24 Taking the foundation of calculus as an example: the 

calculus of Newton and Leibniz (based on improvements by Euler, who introduced the idea of a 

function) was about the dependency of one varying quantity on another. Functions took 

“continuous magnitudes” as its variables and the continuity of the functions was proved by 

invoking the “infinitesimal,” an arbitrarily small quantity in which any continuous magnitude 

could vary.25 This kind of definition allowed Hermann Cohen to argue in his 1883 Das Princip der 

Infinitesimal-Methode that the infinitesimal was grounded in (and justified by) Kant’s a priori 

category of “reality” in The Critique of Pure Reason.26 For Cohen (and for Kant), it was still possible 

to provide an epistemological foundation for the applicability of mathematics by establishing a 

direct link between fundamental notions in mathematics, such as the infinitesimal, and the form 

of direct perceptual experience. It would be increasingly difficult as mathematicians continued to 

eliminate intuitive notions from definitions, to whom the urgent task was to replace these 

ambiguous terms with precisely defined structures. For instance, Richard Dedekind spoke of the 

term “continuous magnitude” in his “Continuity and Irrational Numbers”:   

“The statement is so frequently made that the differential calculus deals with continuous 
magnitudes (Grössen), and yet an explanation of this continuity is nowhere given; even the most 
rigorous expositions of the differential calculus do not base their proofs upon continuity but, with 
more or less consciousness of the fact, they either appeal to geometric notions or those suggested 

                                                
24 See Gray, Plato’s Ghost. 
25 See Cauchy’s definition of continuous functions. Ibid., 62-65. 
26 See Marco Giovanelli, “Hermann Cohen’s Das Princip der Infinitesimal-Methode: The History of an 
Unsuccessful Book,” Studies in History and Philosophy of Science Part A 58 (August 1, 2016): 9–23, 
https://doi.org/10.1016/j.shpsa.2016.02.002.  
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by geometry, or depend upon theorems which are never established in a purely arithmetic 
manner.”27  

Dedekind and Karl Weierstrass were responsible for substituting the notion of continuous 

magnitudes with real numbers in analysis.28 Furthermore, Dedekind defined real numbers 

through the relations and operations governing rational numbers, which simultaneously captures 

the intuition of the continuous line. Specifically, every real number is defined as a partition of 

rational numbers into two sets, such that all members of the first set is smaller than all members 

of the second set, and the first set has no greatest member (or the second set has no smallest 

number). If there is either a greatest member of the first set (or a smallest member of the second 

set), then the partition is created by a rational number. If there is neither, then the partition 

corresponds to an irrational number. Irrational numbers thus “fill the gaps” between the rational 

ones.29 By reducing the real numbers to relations between sets of rational numbers, the notion of 

continuous magnitude is rendered superfluous.  

During the second half of the 19th century, projective geometry underwent prominent 

growth and its significance to mathematics contributed to the view that geometry need not be 

quantitative. As mentioned earlier, geometry according to Klein was the study of invariant 

structures preserved by different groups of transformations. In projections (think of e.g., mapping 

the points and shapes from the surface of a sphere to a flat paper from a point, or mapping points 

                                                
27 Richard Dedekind, Essays on the Theory of Numbers: I. Continuity and Irrational Numbers, II. The Nature and Meaning 
of Number, trans. Wooster Woodruff Beman (Open court publishing Company, 1901). 
28 Gray, Plato’s Ghost. 129-135 
29 Just as between two points on a line there are always infinitely more points, between any two rational 
numbers there are infinitely more rational numbers that can be inserted. But for any length measured by any 
unit, there are always infinitely many incommensurable lengths. Hence if rational numbers are mapped onto 
points on the straight line, then there are infinitely more points on the straight line that cannot be mapped to 
rational numbers. In this sense, the irrational numbers !fill the gap” between rational numbers and can be 
constructed through rational numbers by means of set-theory operations. Dedekind, Essays on the Theory of 
Numbers. 
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from a horizontal to a vertical map, etc.), lengths and angles are not preserved. Therefore, 

projective geometry does not study these quantitative notions. But other properties, such as the 

colineation of points (points lying on the same line still lie on the same line under projection) and 

a relation between 4 points on a line called the cross-ratio, are preserved (Figure 1).30 If the cross-

ratio is equal to -1, then the 4 points form a unique relationship called the “anharmonic range.” 

This is a numerical relationship that does not require the measurement of the distance between 

any two points but can be determined by algebraic means and geometrical construction. Given 

any 3 points and their coordinates, it is capable of determining the unique 4th point that forms 

an “anharmonic range” with them, by geometrical construction that only relies on the incidence 

relations (e.g., if a point lies on a line, or if a line goes through a point) and the assumption that 

projective transformation preserves the cross-ratio (Figure 15). Because of this unique 

relationship, one could construct a coordinate system without any metrical notions: given any 3 

fixed points on a line, assign them the coordinates of 0, 1, and ∞, it is then possible to determine 

the position of 2, 3, 4… uniquely by the iterative construction of the anharmonic range. Just as 

how points on a Euclidean line are assigned numerical coordinates through the iterative 

concatenation of a unit “distance” assuming that the “distance” is invariant, here the iterative 

construction is one of projections by assuming the invariance of cross-ratios, without invoking 

actual measurement of the segments involved (Figure 15). Although there are no pre-determined 

notions of length and angles, it is nevertheless possible to build up the metric of Euclidean and 

                                                
30 On this topic see Bertrand Russell, An Essay on the Foundations of Geometry (University Press, 1897); Jeremy 
Gray, Worlds Out of Nothing: A Course in the History of Geometry in the 19th Century (Springer Science & Business 
Media, 2011); Felix Klein, Elementary Mathematics from an Advanced Standpoint, Geometry, trans. E. R. Hendrik and 
C. A. Noble (Dover Publications, 1939), http://archive.org/details/elementary_mathematics_geometry.   
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non-Euclidean geometries within this new coordinate system.31 Specifically, if for any 4 points in 

a cross-ratio, 2 are fixed points (real or imagined roots of a quadratic function), then the cross-

ratio becomes the expression of distance in Euclidean or non-Euclidean geometries.32 In this 

sense, it is possible to define metrical concepts within projective geometry. For this reason, Felix 

Klein argued that “the projective method embraces the whole of geometry.”33  

                                                
31 See Sebastien Gandon, Russell’s Unknown Logicism: A Study in the History and Philosophy of Mathematics (Palgrave 
Macmillan, 2012).  
32 Ibid. 
33 Felix Klein, “On the So-Called Noneuclidean Geometry,” in Sources of Hyperbolic Geometry, ed. John Stillwell 
(American Mathematical Soc., 1996), 69–112. 
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When Russell wrote the Principle of Mathematics at the turn of the century, which aimed to 

deduce the entire mathematics from a small number of premises through propositional logic, he 

similarly regarded projective geometry as more fundamental, for two reasons: it requires the 

smallest number of axioms, and metrical geometry can be derived from within projective 

Figure 15 (Left) Cross-ratio in projective geometry; (Right) Karl von Staudt’s 
quadrilateral construction.  

The cross-ratio between points 1,2,3,4 (D = |gx|C
|gx|}

: |�x|C
|�x|}

 where 𝑥". . . 𝑥- are the 
coordinates of points 1,2,3,4 ) is equal to the cross-ratio between 1’,2’,3’,4’, which is in 
turn equal to the cross-ratio between 1’’,2’’,3’’,4’’. The numerical value of D is invariant 
through projective transformations, which are linear fractional functions taking the 
coordinates of 1, 2, 3, 4 as variables.  

Karl von Staudt’s quadrilateral construction shows why the anharmonic range is a 
unique relation that does not depend on measurement of lengths, but only depends on 
algebra and geometric construction. Consider any 4 points in a harmonic range. If any 
A, B, C, D with cross-ratio = -1 (not necessarily referring to the A, B, C, D in the image 
above), then AB/AD: CB/CD = -1 = CB/CD:AB/AD. That is, the cross-ratio between 
A, B, C, D is equal to the cross-ratio between C, B, A, D. Notably, here AB…CD need 
not indicate lengths between points, but can just represent the differences between the 
coordinates of these points. Suppose we are only given A, B, D on a straight line, as seen 
in the image above, and want to find the 4th point C such that A, B, C, D have cross-
ratio = 1 (*). This task is equivalent to finding a 4th point such that there is a projective 
transformation that maps A, B, C, D to C, B, A, D (**). Von Staudt proved that the 
following construction satisfies (**) and thereby (*): take a point O outside A, B, D. Join 
OB, OD. Through A draw a straight line cutting OD, OB at P and Q. Join DQ, BP, 
and let their intersection b R. Join OR, meeting ABD at C. C is the point required, 
because A, B, C, D are projected onto S, P, O, D through R, and S, P, O, D are 
projected onto R, Q, T, D through A, and R, Q, T, D are projected onto C, B, A, D.  

Source: Klein, Felix. Elementary Mathematics from an Advanced Standpoint: Geometry, 7; 
Russell, Essay on the Foundation of Geometry, 125. 
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geometry, while the reverse is not so easy.34 The proclamation that projective geometry is more 

fundamental was very much motivated to encompass all geometries into a system of deductive, 

logical statements. Metrical geometries, including the Euclidean and non-Euclidean ones, were 

regarded by Russell as a branch of empirical science. The reason was that quantity, or distance, 

which requires divisibility into equal parts, is an empirical rather than logical notion: “Quantity, 

in fact, though philosophers appear still to regard it as very essential to mathematics, does not 

occur in pure mathematics, and does occur in many cases not at present amenable to 

mathematical treatment.”35 This view was later embraced by the neo-Kantian philosopher Ernst 

Cassirer, who came to adopt Russell’s vision of mathematics in the 1910 Substance and Function and 

noted that the development of projective geometry realized Leibniz’s vision, namely that before 

space is defined as a quantum, it must first be grasped “in its qualitative peculiarity as an ‘order 

of coexistence.’”36 In light of 19th century developments in mathematics, the discipline is no 

longer merely an instrument of measuring and comparing magnitudes, as Descartes’ “mathesis 

universalis” outlined, but rather the study of relations.37  

If the generalized quantity (implicitly based on the archetype of geometrical magnitudes 

found in Euclidean geometry) is no longer a relevant notion in pure mathematics, then theories 

explaining how mathematics is applied do not need to appeal to the notion either. Quantity used 

to be the link between mathematics and empirical disciplines, but for authors writing at the turn 

of the century, this link no longer existed. The application of mathematics can be as much the 

application of its methods (e.g., the differential equation) and its formalization techniques as the 

                                                
34 Russell, The Principles of Mathematics, 426-8. Gandon, Russell’s Unknown Logicism.  
35 Ibid., 426.  
36 Ernst Cassirer, Substance and Function, and Einstein’s Theory of Relativity (Open court publishing Company, 
1923).91.  
37 Ibid., 95 
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application of particular “quantitative structures” to a particular concept. The quantity concept 

based on part-whole structure is no longer the only model through which mathematical 

application is conceptualized.  

4.5. Early 20th Century Philosophical Discussions of the Measurement Processes  

As discussed in the previous chapters, 19th century authors already began to turn their 

attention away from giving definitions of quantity to discussing the conditions and processes of 

measurement. This led, for instance, Helmholtz to discuss how mathematical relations and 

properties like equality and additivity are translated in terms of empirical observations or 

operations. Meanwhile, Mach and Fechner’s numerous commentators confronted the question of 

how uniform scales for quantities that must be measured “surrogatively,” incapable of direct 

comparison, can be constructed. To what extent do lawful experimental phenomena define a 

new quantity with a uniform scale? In their reflections, notions of unit, homogeneity, parts and 

the whole, extensive and intensive magnitudes, fade into background. Too often these notions are 

used to project a fixed structure onto measurable aspects of nature, without clarifying how these 

aspects become quantifiable in the first place or what quantification means. In philosophers’ 

discussion of measurement at the beginning of the 20th century, we see a more decisive and 

explicit shift away from those terms in traditional philosophy of quantity. Early 20th century 

writers fleshed out the implications of conceiving measurement through the experimental laws 

involved, or through the conceptual and operational procedures in measurement. Units of 

length, mass and time no longer occupy a privileged status apart from other measurable 

quantitative concepts in these discussions. 

One notable trend in early 20th century discussion is the law-based conception of 

measurement (as opposed to the unit-based conception). That is, measurement is conceptualized 
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as a process of establishing quantitative laws of nature. For some philosophers, measurement 

constitutes not so much a standalone topic as integral to broader epistemological questions 

regarding the relationship between theory and observation, between formal symbolic knowledge 

and “raw” experience. For instance, in Morris Schlick’s “Form and Content” (originally 

delivered as a 3-part lecture in 1932), he mentioned measurement in his discussion of how formal 

systems are interpreted in an empirical context through observation:  

“In the case of the physicist, observation always takes the strict form which is called 
measurement. The relationships between what is actually observed or measured and the 
quantities which finally appear in the equations expressing the laws of nature are extremely 
complicated, but we do not have to concern ourselves with them. It is sufficient to remark that 
the whole process leads to the establishment of a one-one-relation between a particular value of a 
certain physical quantity and a particular fact of observation. In other words: it is stipulated —
lastly by arbitrary agreement—that the proposition ‘Under such and such circumstances (here 
the apparatus and the whole procedure have to be exactly described) such and such a fact is 
observed’ shall be equivalent to the proposition: ‘The quantity so-and-so has the value so-and-so.’ 
This is simply the definition of the quantity: it is the way in which the sign denoting the quantity is 
connected with reality.”38 

Quantitative concepts are therefore placeholders for conditional statements in 

observation, which organize the immediately “given” in perceptual experience into formal 

knowledge through quantitative descriptions. Schlick’s law-based conception of measurement is 

quite explicit in his claim that quantities are just statements of experimental effects under specific 

conditions.   

An earlier explicit declaration of the law-based conception of measurement can be found 

in the writings of Ernst Cassirer, a prominent spokesperson for the Neo-Kantian school of 

philosophy. As a student of Hermann Cohen, Cassirer’s views on the topic of number and 

measurement diverged significantly from his teacher. Notably, in Cassirer’s 1910 Substance and 

                                                
38 Moritz Schlick, “Form and Content,” in The Norton Anthology of Western Philosophy: After Kant, ed. Richard 
Schacht et al. (W.W. Norton, 2017),732-733. My italics.  
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Function, Cassirer took the logicism of his contemporary mathematicians as his starting point, 

quoting Russell’s claim that “quantity” does not belong to pure mathematics. Hence he treated 

measurement as a different topic from mathematics, requiring different epistemological 

foundations. Cassirer highlighted the theory-ladenness of measurement. Measurable or 

numerable phenomena are never self-evidently given in sensations, but created through certain 

conceptual operations, which according to Cassirer are theoretical hypotheses taken to be 

universally valid.39 Consider how the unmediated sensation of heat transforms into the 

measurable concept of temperature, he noted. We would assume that differences between 

temperature are directly proportional to the volume of mercury serving as the thermometric 

substance, but the assumption of the functional dependency between extension and temperature 

is “nothing but a hypothesis suggested by empirical observation” that never forces itself upon us. 

Indeed, using a different thermometric substance, the formula of proportionality immediately 

calls for modification: “the simple quantitative determination of a physical fact draws it into a 

network of theoretical presuppositions, outside of which the very question as to the measurability of the 

process could not be raised.”40   

Measurement for Cassirer, as for Schlick, is synonymous with establishing experimental 

laws. Defining quantity is not making an ontological assertion, i.e., asserting a type of “thing,” a 

bearer of magnitude, a substratum in nature that shares the properties of some generalized, 

                                                
39 This, I argue, is where Cassirer differs from Kant. While both agree that quantities are the result of applying 
conceptual procedures to the immediately given, Kant identified such conceptual procedures with the 
construction of magnitudes in the same way geometrical magnitudes are constructed in Euclid’s Elements, 
while Cassirer identified them with theoretical hypotheses. While Cassirer would not deny that there are 
certain commonalities in forming different theoretical hypotheses, the specific hypotheses are ultimately 
susceptible to theory changes.  
40 Ernst Cassirer, Substance and Function, and Einstein’s Theory of Relativity (Open court publishing Company, 1923), 
142. 
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Platonic idea of magnitude. Instead, the measurable concept stands for a general principle, a 

functional dependency between parameters observed. 

The law-based conception of measurement is also clear from his critique of the concept of 

unit: the constancy of the unit for any quantity, for Cassirer, is conferred by hypotheses—the 

“hypothetical assumption of a universal principle, which first make possible the unit of measure.” 

He used the example of time measurement. Equal times has been defined by various principles: 

the “uniform” rotation of the earth, or the law of inertia (equal distance is covered by an object in 

equal times in inertial motion), or the exponential law of decay when using radioactive decay of 

radium as the measure of time. The question of whether equal units are possible are in fact about 

whether certain laws are valid:  

“What guides us in the choice of units is thus always the attempt to establish certain laws 
as universal…the real constants are thus fundamentally…not the material measuring-rods and 
units of measurement, but these very laws, to which they are related and according to whose 
model they are constructed.”41  

If special relativity has taught us anything, according to Cassirer, it is the lesson that 

measurement process is a crucial part of theory making—“the physicist does not have only to 

hold in mind the measured object itself, but also always the particular conditions of 

measurement.”42 Every experimental object is not a mere material body but an instantiation of 

some conceptual process. A small magnetic needle in a tangent compass and a conducting wire 

are symbolized as an infinitesimally small magnetic axis and a strict geometrical circle. Every 

experimental instrument embodies some theories and performed its function only insofar as these 

                                                
41 Ibid., 146. 
42 Ibid., 358.  
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theories are valid.43 Each is idealized as the perfect instrument, based on which the “errors” from 

measurement can be corrected.   

The physicist and philosopher of science Norman Campbell developed a theory on 

measurement in 1928 of Principles of Measurement and Calculation, which fleshed out his ideas on 

measurement from an earlier publication (the 1920 Physics: The Elements). One of Campbell’s 

motivations was that physics textbooks frequently opened with a chapter on “Measurement and 

Units,” simplifying this complex activity to merely the “comparison with a unit of the same 

kind”—the classical conception of measurement that I discussed in the first chapter. Campbell 

considered this treatment as “perfunctory” and at times “false,” since it fails to reflect basic 

measurement practices in experimental sciences: “a student set to measure g with Atwood 

machine may well wonder at what stage he is comparing the gravitational acceleration with a 

unit of the same kind; and an engineer may be puzzled when he considers that the unit of force 

that he employs causes an acceleration in his unit mass of 32.2.”44 The conceptual processes 

involved in measurement, the principles under which properties become quantified, for 

Campbell, deserve a systematic discussion on their own.  

There is much continuity between Campbell’s approach to the topic and his 19th century 

predecessors. His book presents a rare case in early 20th century philosophy of measurement in 

which principles of measurement are derived from surveying existing quantitative concepts in the 

exact sciences. As shown in Chapter 1, this approach seems more common with 19th century 

authors. Although Campbell classified different kinds of quantitative concepts, his classification 

                                                
43 Ibid., 365, 144. 
44 Norman Robert Campbell, An Account of the Principles of Measurement and Calculation (Longmans, Green and 
Company, Limited, 1928). vi.  
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focuses not so much on the quantities themselves as their measurement methods. No generalized 

characterization of “quantity” is found in the book.  

Specifically, Campbell made a crucial distinction between “fundamental” and “derived” 

measurement echoing Meinong’s distinction between directly and surrogatively measured 

quantities. “Fundamental” measurement according to Campbell relies on an additive procedure 

for the elements to be measured, while “derived” measurement depends on the discovery and 

formulation of laws expressing relations between quantities that are already measurable. 

Quantitative concepts like length, mass, periods of time, electrical resistance, area, volume, force, 

energy, momentum, current, potential difference, charge, conductance, capacity, thermo-

capacity, monochromatic illumination, etc., are capable of being “fundamentally” measured, 

given that there are operations that could be interpreted as direct addition for these quantities. 

Concepts like density or pressure, defined as mass per volume or force per area, are defined 

through other measurable concepts and not directly additive.  

Quantities obtained from “derived” measurement are those tied with the “discovery and 

formulation of a certain class of laws,” which he called numerical laws.45 Consider numerical 

laws like m = ρV, which defines density in relation to mass and volume. These kinds of laws 

assert some uniform association between already measurable quantities under certain conditions, 

e.g., between two properties of chemically similar liquids at the same temperature. Oftentimes 

the quantity defined by such laws might have no meaning apart from the law, but they can also 

be associated with an observed property originally thought to be incapable of measurement. For 

instance, before density is defined, there is undoubtedly some notion of a property ranking 

different liquids by floatation: if an object that floats in A sinks in B, then A > B. As Campbell 

                                                
45 Ibid., 57. Examples of these numerical laws: m = ρV, 𝐸 = 𝑅 ⋅ 𝑖, 𝐼 = 𝐼a ⋅ 𝑒x@H, and so on.  
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noted, while this ordinal sequence is not capable of being uniquely coordinated with numbers (as 

we have also seen with the case of temperature), its order might later coincide with an ordinal 

sequence of ρ defined through some relation between two other quantities, such as m = ρV. m = 

ρV, on its own, was merely a definition. But the property of liquids defined by flotation can be 

identified or coordinated with the property defined by m = ρV. As Campbell argued, scientists 

might invoke further theoretical explanations to justify that the two properties should be regarded 

as identical, but more often “the purely experimental discovery of a uniformly identical order is 

sufficient to justify the assertion that a previously known but immeasurable property has been 

measured.”46 That is, a purely experimental observation often allows definitions through 

numerical relationships to be merged with some previously known, qualitatively defined 

property. The discovery of experimental laws, as Campbell pointed out, is the key to defining 

new quantities that could stand for previously immeasurable aspects of phenomena: 

“This procedure is of the greatest importance, especially for the sciences bordering on 
physics. The extension of the ‘physical methods’ (physics, it must be remembered, is the science 
of measurement) to other sciences, such as chemistry or physiology, consists mainly in the 
establishment of numerical laws relating magnitudes already known and the identification of the 
constants in them with properties already recognized by those sciences, but in the absence of 
measurement, recognised somewhat vaguely…in fact, the history of any branch of science which 
has become quantitative within recent times would be nothing but a variation of the steps in this 
procedure.”47  

The quantification of temperature, as showed in the last chapter, has also gone through a 

similar conceptual process. Campbell’s account of how qualities become quantitative is 

compatible with the history of thermometry described in the previous chapter. Temperature (or 

density, which Campbell often used as an example) are not quantities that “exist” out there in 

nature. The actual algebraic formula is artificially defined, but it is defined as some relation 

                                                
46 Ibid., 82 
47 Ibid., 83. 
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between other quantities such that the numerical values of this formula have the same order as 

some previously observed, qualitatively described ordinal sequence. In the case of temperature 

this ordinal sequence used to be thermal sensations, in the case of density the order associated 

with floatation. Temperature scientifically defined is not thermal sensation, and density not the 

order of floatation. Language does not distinguish the two, since the same concept are still used. 

But the quantitative concepts defined through numerical laws have thoroughly replaced the 

previous notion associated with perceptual experience, in exchange for precision and control.    

Notably, Campbell also addressed the view that measurement in physical sciences is 

equivalent to reduction to length, mass and time, for the reason that these quantities are more 

fundamental. This view, as discussed in the first chapter, was shared among many 19th century 

scientists: 

“…It is quite common to find in the writings of those who ought to know better, and not 
only of philosophers, such statements as that it is the practice in physics ‘to reduce all 
measurements to those of space and time.’ This is, of course, an absurd error.”48  

The reason for such error is that the reading of instrument, which involves finding that 

the pointer coincides with the marks on the scale in space, is not equivalent to measuring space 

or time. The process of reading from a measuring instrument is conflated with the circumstances 

under which a concept became measurable in the first place. The latter involve often an additive 

process for some quantities, or a process through which relations among additive quantities are 

experimentally established for some others. These are absent in the act of reading from an 

instrument, where only the equivalence relation “=“ is required. Reading from an instrument is 

                                                
48 Norman Robert Campbell, An Account of the Principles of Measurement and Calculation (Longmans, Green and 
Company, Limited, 1928), 40-1. 
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not equivalent to the measurement of a quantity, even if it involves the reading of a linear scale. 

The conflation resulted from the division of intellectual labor in modern science:  

“the result of the widespread use of calibrated instrument of one kind or the other is that 
most of us leave all true measurement to instrument-maker and standardizing laboratories. It is 
they, and not the users of their products, who assign numerals to represent properties, and are 
therefore concerned with the rules which determine the assignment. This division of 
labour …becomes dangerous only if we allow ourselves to forget that the labour has been 
divided, that the operations to which laboratory practice is confined are not complete 
measurement, and that an understanding of the principles of measurement must be based on an 
investigation of laws and operations which the most experienced and accomplished physicist may 
never have occasion to establish or to perform for himself.”49  

Hence even if the measurement of a quantity in laboratory practice boils down to reading 

scales of length, mass and time on instruments, this does not necessarily mean that the 

measurement of the quantity concerned is none other than reducing concepts to length, mass and 

time. This latter conception originates from examining the measurement process after a 

quantitative concept is well-established, when there is an agreed-upon method of measurement 

for it. The problem remains under what condition such concept renders itself to quantitative 

descriptions in the first place.  

Both Cassirer and Campbell showed that early 20th century philosophical discussions no 

longer need to rely on the unit-based conception of measurement. They attempted to reveal the 

conceptual activities, hypotheses, and laws involved in the measurement process. While their 

views are not remembered as radical breakthroughs in philosophy, their focus on the role of 

theories and laws in measurement represent a common understanding among early 20th century 

intellectuals, which shifted significantly from late-19th century. 

                                                
49 Ibid, 10-11. 
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As mentioned above, Campbell’s establishing order as the first principle of measurement, 

more primitive than additivity and physical laws, reflects the conceptual and historical process of 

quantifying intensive magnitudes like temperature. Let us be reminded that, as I discussed in 

Chapter 3, a few late 19th century scientists recognized the kind of numerical coordination that 

preserves the order of the states to be measured and produces fixed points for reproducing such 

non-additive states. The measurement of sensation and primitive temperature measurement are 

among the ranks of such quasi-measurement. Although 19th century scientists did not recognize 

this as proper measurement, they acknowledged its usefulness. When Campbell took order 

instead of unit as the starting point of measurement, it encouraged some 20th century 

philosophers to simply regard ordinal measurement as proper measurement. Ordinal scale also 

provides an intermediary stage between arbitrary designation and measurement that establishes a 

uniform scale. For instance, Ernst Nagel spoke of the prevalence of ordinal, non-additive 

quantities in physical sciences in a 1931 article: “no science, certainly not physics, can dispense 

with qualities that are incapable of addition in the fullest sense, and the progress of modern 

science has consisted very largely in bringing nonadditive qualities like density, temperature, 

hardness, viscosity, compressibility, under the sway of numerical determination.”50 Ordinal scale 

is classified along interval and ratio scales in S. S. Stevens’s table of scales of measurement and in 

the 1971 Foundations of Measurement by Krantz et al., regarded as a foundational text in social 

sciences. The justification of ordinal scales from a theoretical standpoint confers legitimacy and 

mathematical status to the use of ranking in social sciences. Granted, the fact that order appeared 

more fundamental to 20th century authors than notions like unit, homogeneity and division into 

                                                
50 Ernest Nagel, “Measurement,” in Scaling: A Sourcebook for Behavioral Scientists, ed. Gary Maranell (Routledge, 
2017). Stevens, “Measurement,” in Ibid. 
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parts, typically found in older texts on quantity, has much to do with the formalization of 

mathematics and that of the quantity concept.51 However, 19th century discussions that revealed 

the prevalence of non-additive ordinal measurement in the sciences certainly opened up the 

possibility of extending the criterion of measurement. 

                                                
51 Starting from Hilbert’s Foundation of Geometry, originally a set of lectures given between 1898-1899, the 
geometrical line was defined as entities (points) governed by formal axioms that mimic geometrical relations. 
The axioms of order form one of the first sets of axioms that describe the relation between points and straight 
lines. See David Hilbert, The Foundations of Geometry (Open Court Publishing Company, 1902). 



   211 

Closing Thoughts 

In November 2018, member states of the Bureau International des Poids et Mesures 

(BIPM) voted to adopt a revision of the international system of units. The decision has been 

celebrated as changing the foundation of measurement in a fundamental way—“a landmark 

moment in scientific progress” in the words of BIPM’s director—because it ended the use of 

tangible artifacts to define measurement units, a practice in use since antiquity. Henceforth the 

seven base units1 for all scientific measurement are defined in terms of physical constants: these 

physical constants are now taken to be primitive and invariant, safeguarded by the state-of-art 

knowledge in physical sciences. Some of the more familiar constants include the speed of light, 

the Planck constant, the frequency of oscillation of a microwave beam to excite the transition of 

energy level of cesium-133 atoms,2 the elementary electrical charge, and so on. The base units 

such as length and time, which were previously defined by tangible artefacts like the Meter rod 

from the 1875 International Metre Convention, from which physical constants used be 

calculated, are now derived from and calibrated by the latter.   

 The most dramatic change in the 2018 convention was the replacement of the kilogram. 

The unit length had previously been redefined through the speed of light in 1993, and unit time 

through the frequency of microwave radiation exciting cesium-133 in 1967. For about 130 years, 

unit mass had been the alloy cylinder locked under three bell jars in an archive in Paris, a 

                                                
1 “Kilogram, Ampere, Kelvin and Mole Redefined: International System of Units Overhauled in Historic 
Vote,” ScienceDaily, November 16, 2018, 
https://www.sciencedaily.com/releases/2018/11/181116115556.htm.  
2 Edwin CartlidgeMar. 1, 2018, and 12:00 Pm, “With Better Atomic Clocks, Scientists Prepare to Redefine the 
Second,” Science | AAAS, February 28, 2018, https://www.sciencemag.org/news/2018/03/better-atomic-
clocks-scientists-prepare-redefine-second. 
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remnant of Europe’s first attempt at standardization, an emblem of the conventional basis of all 

modern, quantitative, and scientific knowledge.3 The new definition drew an end to defining 

scientific concepts based on these tangible units. Instead, unit mass is now some function of the 

Planck constant, which it used to measure, balanced by electromagnetic force that in turn is 

calculated from the other units, such as voltage and current, derived from natural constants that 

determine them.  

Doesn’t the shift from unit-based conception of quantity to law-based or experiment-based 

conception of measurement that occurred during the 19th century anticipate this new way of 

thinking about measurement? The term “quantity” disappeared from conceptions of 

measurement because it has largely served to project a uniform structure onto concepts that are 

already measurable by well-established methods. The well-defined quantitative concepts thus 

reap all the benefits of the arithmetical number, including divisibility and additivity. However, 

the conjoining of, or the comparison with, units does not explain how concepts become 

measurable in the first place, neither does it distinguish different ways of quantification. The unit-

based conception of quantity owed much of its longevity to the “self-evident” quantitative 

structure of length and time, and to the use of geometrical representation in natural philosophy. 

It led natural philosophers to treat all quantitative concepts through terms like unit, 

homogeneity, plurality, divisibility, and so on, as if underneath each concept there were some 

“bearer of magnitude” mirroring the kind of structure outlined in Euclid’s Book V on the theory 

of proportion. But measurement is a much more complicated conceptual and practical process. 

                                                
3 For instance, Wittgenstein discussed the meter prototype a lot in his Philosophical Investigations. For 
instance: “there is one thing of which one can say neither that it is one metre long, nor that it is not one metre 
long, and that is the standard metre in Paris.” W. J. Pollock, “Wittgenstein on The Standard Metre,” 
Philosophical Investigations 27, no. 2 (April 1, 2004): 148–57. 
Wittgenstein compared the unit with rules of grammar or deduction, which were neither true or false. Possibly, 
Jorge Luis Borges’s short story “On Exactitude in Science” also fits here. 
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What 19th century scientists discovered is precisely measurement as an object of philosophical 

inquiry and generalization. They became interested in questions such as what in general allows 

properties and phenomena to be meaningfully expressed by numbers in the first place, and how 

numbers and scales actually relate to the property and phenomena gauged by them. Perhaps this 

was inevitable, due to the increasingly experimental nature of the exact sciences. Through 

interrogating the specific intellectual or practical activities involved in the process of 

measurement, they exposed the unspoken and unjustifiable assumptions concerning the unit-

based conception of quantity. The focus on how measurement process itself constitutes the 

meaning of quantitative concepts paved way for the reconception of the measurement of space 

and time.  

Overall, developments in late 19th century sciences paved way for the collapse of 

paradigms in many realms. Among them, the paradigm of quantity based on geometrical 

magnitudes and its concatenation procedure is a crucial one. The intellectual developments I 

examine in my dissertation formed the basis of many 20th century themes that are commonly 

associated with revolutionary ideas concerning the nature of measurement. As a historical 

investigation, my dissertation shows the productivity of cross-disciplinary conversations in 

spawning new paths in individual sciences. Philosophically, it challenges the conception that 

nature is inherently mathematical, by showing how quantitative methods have expanded into 

different realms of inquiry by design and argument, and by the invention of new techniques and 

justifications for relating numbers or mathematical tools to the empirical world. This process calls 

for a constant revision in how we conceptualize the process of measurement, as the historical 

figures in my narrative strove to do. 
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