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ABSTRACT

Distinct biological species can coexist in the same ecosystem by occupying distinct niches.

However, the niches available in a given environment – which reflect the range of environ-

mental conditions and limiting factors that are present – are not necessarily a fixed property

of the system. Environmental conditions can be shaped, and possibly diversified, by the

resident community, through modifications that range from chemical excretion to physical

remodeling to biotic control of local environmental microbiomes. To varying degrees, all

species modify their local environment, driving changes that can feed back to affect the set

of available niches and ultimately the composition and coexistence of the community. Here,

we study minimal mathematical models for these kinds of modifications in the context of

community coexistence. We review some existing empirical and theoretical approaches to

understanding environmental feedbacks, highlighting the essential similarities in the dynam-

ics of several system-specific examples. We then extend and carefully examine one prominent

model for plant-soil feedbacks, a broad class of environmental feedbacks that operate in plant

communities. We show that this widely-used model cannot account for the coexistence of

more than two plant species. We go on to develop a simple, nested modeling framework for

environmental feedbacks based on the classic metapopulation paradigm. We show that this

model can account for the coexistence of an arbitrary number of species, and we derive ana-

lytical characterizations of when and how species coexist in ecosystems with environmental

feedbacks.
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CHAPTER 1

INTRODUCTION

A classic question in ecology asks, Why are there so many kinds of animals [112]? A classic

answer is that species partition variation in the environment, allowing different biological

types to coexist by occupying distinct ecological niches. While modern notions of the niche

and niche partitioning were not developed until the mid-twentieth century, the basic idea that

environmental variation explains biological variation was central even at ecology’s inception

more than a century earlier. In work that laid the foundations for all of biogeography, and

much of the rest of ecology, Alexander von Humboldt pioneered the use of rigorous, quanti-

tative approaches to map the variation of biotic communities across space and geophysical

gradients [171, 117]. Around the same time, the lesser-known George Sinclair undertook

one of the first manipulative experiments in ecology, systematically measuring the growth

of grasses in various soils to dissect the mechanisms that led distinct soils to foster distinct

plant communities in natural landscapes [220, 98]. Later researchers, whether arguing for

the primacy of abiotic controls on species distributions and coexistence [12, 256, 37], or

the importance of interspecific competition for niches [152, 193, 52], largely maintained an

emphasis on interpreting biological diversity within the constraints set by environmental

variation.

Alongside this link from environmental to biotic pattern, ecologists have always recog-

nized a causal arrow pointing in the opposite direction. While primarily thinking of soils

as determinants of plant yield, Sinclair, drawing on centuries of agricultural folk knowledge,

also discussed the capacity of different plants to exhaust or rejuvenate soils [220]. In fact, all

organisms change their local environment in some way – through the depletion of resources,

the excretion of wastes, the modification of physical structures. This old observation implies

that species do not simply occupy niches carved out by geology, chemistry, and climate.

Instead, organisms have the capacity to shape and even create niches through their interac-
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tions with the environment [120, 175]. Because such interactions are bidirectional, they may

give rise to complex feedbacks between biotic communities and the landscapes they inhabit.

Despite this recognition, ecological research from Sinclair’s time up to the present has typ-

ically focused much more on abiotic conditions as drivers of biotic community composition,

rather than the reverse. The principal exception is consumer-resource theory, which provides

a mathematical framework for species interactions mediated by exploitative competition for

resources [244, 46, 44]. In this picture, species do not interact with one another directly,

but all deplete a set of shared resources, which they depend on for sustenance and growth.

Consumer-resource theory boasts some of the most sophistical analytical development and

widespread application in ecology. However, consumer-resource models depict a limited kind

of environmental feedback. Species are assumed to modify the environment only by consum-

ing resources, and resources are strictly beneficial to consumers. As we will see below, and

as one might already imagine, the ways in which species can affect their environment, and

vice versa, are much more diverse and nuanced. Standard consumer-resource models also do

not capture two important features of many environmental feedbacks [96]: the modifications

made by species are often localized in space and persistent in time. While both aspects have

been addressed to some degree in extensions of the usual consumer-resource framework, such

as spatially explicit models with variation in resource supply [244, 180, 2, 83], and models

that include explicit nutrient cycling [62, 90, 182], these directions remain underdeveloped.

Developing them further is no easy task, because these models tend to quickly become cum-

bersome and analytically intractable.

A final limitation of classical consumer-resource theory brings us back to the question

of why there are so many species. G. Evelyn Hutchinson puzzled over this question at a

time when ecologists were rapidly refining the limits of coexistence permitted by niche parti-

tioning. The competitive exclusion principle [71, 93] and various quantitative generalizations

[150, 159] implied that the number of coexisting species in an ecosystem should be limited by
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the number of distinct niches – and ultimately by the amount of environmental heterogene-

ity available for species to partition. But in many ecosystems, there is not enough apparent

variation to support the rich biodiversity that we observe. Hutchinson exemplified this incon-

sistency with his paradox of the plankton: How could many species of phytoplankton coexist

in an essentially uniform environment with little abiotic variation and very few distinct re-

sources [113]? This paradox is apparently irreconcilable within standard consumer-resource

theory, which only permits species to draw down the availability of a fixed number of re-

sources. However, a more general vision of feedbacks between community and environment

allows that species might modify their surroundings in a way that generates variation above

and beyond what is present in the abiotic landscape. Thus, environmental feedbacks might

offer a sort of generic bootstrap to many-species coexistence – a possibility that has been

recognized in number of specific ecological contexts, but rarely treated systematically.

Of course, this is not to say that environmental feedbacks are the answer to Hutchinson’s

question, or that there is any unique answer. Indeed, the intervening decades of ecological

research have established many possible or partial resolutions. Hutchinson himself suggested

several, including temporal fluctuations in environmental conditions, or biotic relationships

such as symbiosis or predation that could multiply the possibilities for coexistence. But the

generation of environmental heterogeneity, the raw material for niche partitioning and coex-

istence, by biotic processes represents a mechanism of considerable generality and potential

importance.

This thesis is concerned with the mathematical theory of such processes, and especially

the question of when they are able to support the coexistence of many species. We examine

both existing theoretical models and some newly proposed. In developing new theory, we aim

to strike a productive balance between the complexity needed to capture potentially intricate

and indirect environmental feedbacks, and the simplicity and generality that make it possible

to analyze the models, draw meaningful conclusions, and, with luck, recognize principles that
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apply across ecosystems. In this respect, our theory fills a gap between existing approaches.

Environmental feedbacks of the kind considered here fall under the very broad umbrella of

contemporary niche theory, a framework for understanding species coexistence in terms of

species’ impacts and requirements in a shared environment [44, 163, 130]. While contempo-

rary niche theory encompasses general forms of environmental modification in principle, its

development and applications have typically focused on consumer-resource dynamics, with

the limitations already discussed (but see, for example, [137, 248, 130]). Additionally, the

graphical analysis at the heart of contemporary niche theory can be challenging generalize to

ecosystems with many species and complex environments. The models we consider in later

chapters can be viewed as specific instances of a general niche model [163, 157], emphasizing

features not captured by the usual specializations, although we leave behind the frame of

contemporary niche theory for our analysis and instead draw on mathematical tools from

various sources within and outside of ecology.

More progress has been made on understanding environmental feedbacks and community

coexistence in the context of specific ecosystems, or specific kinds of feedbacks. The essential

dynamics have been recognized a number of times independently, leading to the development

of several distinct strands of theory. We briefly review four such strands here. These examples

illustrate the range of biological processes or mechanisms that might underlie environmental

feedbacks, as well as the unifying features they share. We also survey the diversity of existing

theoretical approaches, each with certain strengths or limitations. A central aim of this thesis

is to bridge these independent lines of inquiry by developing and analyzing minimal models

that capture the core features of these dynamics.

Our first example comes from microbial communities, where the transfer of nutrients be-

tween cells, known as cross-feeding, plays a critical role in mediating interspecific interactions

and coexistence [262, 79]. An explosion of research into these processes has demonstrated

that microbes do not simply deplete resources, as in classical consumer-resource models, but
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also recycle them and, through internal biochemical reactions, transform them to generate

forms not present in the abiotic resource environment. By generating novel variation in the

ecosystem, cross-feeding creates new niches and facilitates coexistence. For example, recent

experiments have demonstrated how feedbacks due to cross-feeding can allow the emergence

and persistence of complex communities supplied with a single external resource – a situa-

tion that should lead to the competitive exclusion of all but one species in the conventional

view [202, 79, 61]. Quantitative theory for microbial cross-feeding has advanced rapidly by

extending standard consumer-resource models to include resource recycling, yielding math-

ematical stability criteria [40, 41, 73] and testable predictions for community-scale patterns

and dynamics [79, 156, 146]. However, cross-feeding theory remains in its infancy, with

many open questions in both the specification and analysis of its models [146, 73]. Addition-

ally, theoretical work in this area continues to focus heavily on consumable resources, while

other forms of chemical excretion and uptake, such as pH modification [196, 9] and produc-

tion or degradation of toxins [126, 194], are widespread and can drive microbial community

dynamics.

While cross-feeding represents a direct extension of consumer-resource dynamics, the

literatures on ecosystem engineering and niche construction have highlighted quite distinct

environmental modification processes [120, 175]. These concepts emphasize the importance

of environmental feedbacks for creating novel habitats and ecological niches, often focusing

on modifications that shape the physical environment, such as tunneling by earthworms

or the building of structures like nests, reefs, or dams [96, 119]. Research on ecosystem

engineers demonstrates their role in generating habitat heterogeneity and thereby promoting

species diversity [260, 20, 201]. Such studies usually focuses on the modifications made by

exceptionally impactful species, which shape the environment for many others, and often

function as keystone species. Beavers, which create habitat for a range of plants, insects, and

other organisms through their construction of dams, are a prototypical example [260, 20].
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Reciprocal relationships between different “engineers” have been much less studied (but

see [111]). As a result, this field has developed less in the way of mathematical theory

for species coexistence, with more theoretical emphasis on the evolutionary consequences

of environmental feedbacks [138, 175, 39], and with quantitative models centered on the

population dynamics of focal engineer species [86, 259, 59, 197].

At something of an opposite extreme, research in plant communities has shown an im-

portant role for more passive and diffuse environmental modification in maintaining the

coexistence of very diverse communities. Many plants attract or cultivate a specialized com-

munity in their immediate surroundings, including microbial pathogens or mutualists in the

soil beneath them, or seed- and sap-feeding insects on and around them. The presence of

this associated biota can impact the survival of plants germinating nearby, or at the same

site even after the death of the occupant. Known as Janzen-Connell effects [118, 54] or

plant-soil feedbacks [31, 28], these processes create heterogeneity in the biotic background

of a landscape, which can promote the coexistence of multiple species even in the absence

of abiotic variation [31, 30, 237, 250]. In particular, the theory of these processes empha-

sizes the role of specialized pathogens and predators that disadvantage conspecifics of a focal

plant. Across a landscape, this kind of “modification” creates negative frequency-dependent

feedbacks, which ensure that there are always patches of habitat less hospitable to each

species, thereby maintaining diversity in the landscape and community. Both mathematical

theory [31, 28] and experimental evidence [188, 135, 155] support this picture, with theory

closely guiding empirical research in this area. Plant-soil feedback theory is overwhelmingly

grounded in a simple modeling framework that generates tractable criteria for species co-

existence, but which encompasses only two plant species [31]. The Janzen-Connell view of

these feedbacks emphasizes a spatial component, which has made analytical theory more

difficult to develop. However, there is a need for theoretical predictions that can help dis-

entangle the importance of feedback effects and other drivers of coexistence in experimental
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and observational data [16, 211, 49].

The preceding example illustrates that it can be useful to take a broad view of what con-

stitutes the “environment” for a focal community, to include biotic factors such pathogens

or microbial mutualists. Contemporary niche theory adopts the same position, allowing the

conceptual unification of processes such as resource and predator partitioning. Our final

example pushes this view of environmental variation even further, to include the immune

status of hosts for set of a pathogens. Pathogens modify their hosts by inducing specific

immunity following infection. Like the legacy effects of plants in soil, or the creation of

meadows by beavers, this immunity changes the suitability of a host for colonization by the

same or related pathogens in the future. Strain theory in disease ecology explains how the

resulting heterogeneity in host populations can mediate pathogen competition and coexis-

tence [11, 85, 80]. Because adaptive immunity typically disadvantages strains that have been

previously encountered, this kind of modification gives rise to negative frequency-dependent

feedbacks essentially identical the dynamics of plant-soil feedbacks. Sophisticated modeling

frameworks have been developed for multi-strain pathogen dynamics, building on the robust

theory of compartmental models in epidemiology [76, 133]. This area of research has grappled

productively with the central challenge of modeling the high-dimensional state space that

results from combinatorial nature of immune history, although significant difficulties remain

[257], such as understanding and incorporating path-dependent immune memory [176].

These four examples span a tremendous range of taxa, physical scales, and specific mech-

anisms. They hint at the ubiquity of environmental feedbacks across ecosystems. In each

system considered here, modification by the focal community generates heterogeneity in the

environment, and when these processes are organized in the right way, they can create the

conditions for the coexistence of many species. Tractable – and sufficiently general – models

for environmental feedbacks can help clarify precisely what we mean by “the right way”.

They can also foster a more unified understanding of feedback dynamics. As we have seen,
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existing approaches reflect the diversity of their study systems: Microbial cross-feeding and

immune-mediated pathogen competition have inspired sophisticated theory for large num-

bers of species or strains, but these models are somewhat restricted to particular feedback

mechanisms. Ecosystem engineering theory takes a broader view of mechanism, but usually

treats environmental heterogeneity as produced by one species and experienced by others,

neglecting more complex indirect interactions between species. Feedback research in plant

communities encompasses multiple mechanisms in highly diverse ecosystems, but lacks for-

mal theory that can explicitly handle this diversity.

Each of these areas of research has a produced important insights, but we argue that

a more general and systematic approach is needed to facilitate the transfer of knowledge

between them, and to help draw out generic principles from system specific details. The

remaining chapters take several steps toward such an approach. In the second chapter, we

examine the canonical model at the heart of plant-soil feedback research. We extend this

model to include an arbitrary number of plant species, and show that the extended model

cannot support robust species coexistence. This surprising case study highlights two impor-

tant lessons: There is an important role to play for tractable models that can guide the design

and analysis of feedback experiments, but models for community coexistence must account

for the species diversity of natural systems in order to offer useful guidance. Motivated by

these lessons, in the third chapter we develop a novel modeling framework for environmental

feedbacks among many species. We begin by considering a minimal model for community

dynamics in the presence of fixed, abiotic heterogeneity, and then show how to incorporate

feedbacks that shape this heterogeneity over time. Our framework treats environmental het-

erogeneity as distributed across space – building on the classic metapopulation paradigm

to provide a minimal implementation of spatial structure – but is otherwise agnostic to the

mechanisms underlying environmental modification and feedbacks. We analyze the feedback

model in several special cases, and in the fourth chapter we look closely at this model in the
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limit where environmental feedbacks occur much faster than population dynamics. Finally,

in the fifth chapter we discuss conclusions suggested by these models, potential implications

and applications, and important questions left open.
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CHAPTER 2

NO ROBUST MULTISPECIES COEXISTENCE IN A

CANONICAL MODEL OF PLANT-SOIL FEEDBACKS

2.1 Introduction

It has become well understood that reciprocal interactions between plants and the soil biota,

collectively termed plant-soil feedbacks (PSFs), play an important role in structuring the

composition and dynamics of plant communities. PSFs operate alongside other factors, in-

cluding abiotic drivers [23] and above-ground trophic interactions [251], but are thought to

be a key mechanism generating negative frequency-dependent feedbacks that promote co-

existence and maintain plant diversity [135, 250, 30]. The existence of PSFs has long been

known [252, 26], but our understanding of their importance – particularly in relation to pat-

terns of coexistence – has developed rapidly in recent years [129, 188, 155, 55]. Broad interest

in PSFs was ignited by the development of simple mathematical models that illustrated the

potential of PSFs to mediate plant coexistence [31, 28, 124]. These models have played a

crucial guiding role for a wide range of empirical studies, as well [135, 186, 136].

The first, and still most widely known and used, model for PSFs was introduced by

Bever and colleagues in the 1990s [25, 31, 24]. In this framework, often referred to simply

as the Bever model, each plant species is assumed to promote the growth of a specific soil

component (i.e. associated bacteria, fungi, invertebrates, considered collectively) in the

vicinity of individual plants. In turn, the fitness of each plant species is determined by the

relative frequency of different soil components. Starting from minimal assumptions, Bever et

al. [31] derived a set of differential equations to capture these dynamics. PSFs can be either

Originally published as: Miller, Zachary R., Pablo Lechón-Alonso, and Stefano Allesina. “No robust
multispecies coexistence in a canonical model of plant–soil feedbacks.” Ecology Letters (2022).
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positive (fitness of a plant species is higher in soil conditioned by conspecifics, compared to

heterospecific soil) or negative (a plant species experiences lower relative fitness in its own

soil). Bever et al. introduced a single quantity to summarize whether community-wide PSFs

are positive or negative, and showed that this value characterizes the dynamical behavior of

the model. In the original Bever model of two plant species, positive PSFs lead to priority

effects, and consequently the exclusion of one species, while negative PSFs result in neutral

oscillations. It is thus widely suggested that negative PSFs help sustain coexistence in

real-world plant communities [135, 250], perhaps with spatial asynchrony playing a role in

stabilizing the cyclic dynamics [28, 198].

Subsequent studies have generalized PSF models to include, for example, more realistic

functional forms [247, 65], more explicit representations of the soil community [29], spa-

tial structure [168, 65, 233], or additional processes such as direct competitive interactions

between plants [28]. However, the original Bever model remains an important touchstone

for the theory of PSFs [124, 125, 1] and informs empirical research through the interaction

coefficient, Is, derived by Bever et al., which is commonly measured and used to draw con-

clusions about coexistence in experimental studies. Despite the ubiquity of this model, and

the fruitful interplay of theory and experiment in the PSF literature, extensions to commu-

nities with more than two or three species have appeared only rarely and recently [but see

136, 64, 154]. While PSF models motivate hypotheses and conclusions about species-rich

natural communities, there is much still unknown about the behavior of these models with

natural levels of diversity [250].

Here, we extend the Bever model to include any number of plant species, and show that

the model is equivalent to a special form of the replicator equation studied in evolutionary

game theory [105]. In particular, this model corresponds to the class of bimatrix games,

where there are two players (here, plants and soil components) which interact with asym-

metric strategies and payoffs. The replicator dynamics of bimatrix games are well-studied,
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allowing us to characterize many properties of the Bever model with n plant species. Sur-

prisingly, using this equivalence, we show that coexistence of more than two species in this

model is never robust.

2.2 Results

2.2.1 Generalizing a classic PSF model

Inspired by emerging empirical evidence for the important role of PSFs in plant community

dynamics and coexistence [252, 26], Bever et al. [31] introduced a simple mathematical model

to investigate their behavior. In this model, two plant species, 1 and 2, grow exponentially

with growth rates determined by the state of the soil biota in the system. These effects of

soil on plants are specified by parameters αij , the growth rate of plant species i in soil type j.

There is a soil component corresponding to each plant species, which grows exponentially in

the presence of its associated plant at a rate βi. Bever et al. set an important precedent by

considering the dynamics of relative abundances in such a system; starting from dynamics

of the form


dxi
dt = xi

(
αii yi+αij yj

yi+yj

)
, i, j = 1, 2

dyi
dt = yi

(
βi xi
xi+xj

) (2.1)

for the absolute abundances of plants (xi) and soil components (yi), one derives dynamics

for the relative abundances (frequencies), pi = xi /
∑

j xj and qi = yi /
∑

j yj . Using the

facts pi = 1− pj and qi = 1− qj , these can be written as:
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
dpi
dt = pi pj

(
(αii − αji) qi + (αij − αjj) qj

)
, i, j = 1, 2

dqi
dt = qi qj(βi pi − βj pj) .

(2.2)

This model may admit a coexistence equilibrium where


p⋆i =

βj
βi+βj

, i, j = 1, 2

q⋆i =
αjj−αji

αii−αij+αjj−αji
.

(2.3)

A central finding of the analysis by Bever et al. was that the denominator of q⋆i , which

they termed the “interaction coefficient”, Is (= αii − αij + αjj − αji), controls the model

dynamics: When Is > 0, which represents a community with positive feedbacks, the equi-

librium in Eq. 2.3 is unstable, and the two species cannot coexist. On the other hand, when

Is < 0, the equilibrium is neutrally stable, and the dynamics cycle around it, providing

a form of non-equilibrium coexistence. In fact, these conclusions also depend on the exis-

tence of a feasible equilibrium (i.e. positive equilibrium values), which further requires that

αii < αji for both i, j = 1, 2, in order for the model to exhibit coexistence [31, 124].

This coexistence is fragile. Plant and soil frequencies oscillate neutrally, similar to the

textbook example of Lotka-Volterra predator-prey dynamics. Any stochasticity, external

forcing, or temporal variation in the model parameters can destroy these finely balanced

oscillations and cause one species to go extinct [198]. However, coupled with mechanisms

that buffer the system from extinctions, such as migration between desynchronized patches

or the presence of a seed bank, the negative feedbacks in this model might produce sustained

coexistence [28, 198].

Of course, most natural plant communities feature more than two coexisting species,
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and it is precisely in the most diverse communities that mechanisms of coexistence hold

the greatest interest [250]. While it is not immediately clear how to generalize Eq. 2.2 to

more than two species, Eq. 2.1 is naturally extended by maintaining the assumption that

the overall growth rate for any plant is a weighted average of its growth rate in each soil

type:


dxi
dt = xi

(∑
j αij qj

)
, i = 1, . . . n

dyi
dt = yi (βi pi) .

(2.4)

From Eq. 2.4, one can derive the n-species analogue of Eq. 2.2,


dpi
dt = pi

(∑
j αij qj −

∑
j,k αjk pj qk

)
, i = 1, . . . n

dqi
dt = qi

(
βi pi −

∑
j βj pj qj

) (2.5)

giving the dynamics for species and soil component frequencies (Fig. 2.1). Eq. 2.5 is conve-

niently expressed in matrix form as


dp
dt = D(p)

(
Aq − (pTAq)1

)
dq
dt = D(q)

(
Bp− (qTBp)1

) (2.6)

where vectors are indicated in boldface (e.g. p is the vector of plant species frequencies

(p1, p2, . . . pn)
T and 1 is a vector of n ones) and D(z) is the diagonal matrix with vector

z on the diagonal. We have introduced the matrices A = (αij) and B = D(β1, β2, . . . βn),

specifying soil effects on plants and plant effects on soil, respectively. Because p and q are

vectors of frequencies, they must sum to one: 1Tp = 1Tq = 1. Using these constraints, one
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can easily show that the Bever model (Eq. 2.2) is a special case of Eqs. 2.5 and 2.6 when

n = 2.

This model (Eq. 2.5) is a direct multispecies generalization of the classic Bever model

[31]; it requires precisely the same assumptions as the original, and includes the same bi-

ological processes. Other extensions of the Bever model have been introduced, including

versions that incorporate plant-plant competition and self-regulation [28] or modified soil

dynamics [64, 154]. Contrasting the predictions of these models can illuminate the connec-

tions between particular biological processes (model assumptions) and resulting community

dynamics, a point we return to in the Discussion. However, it is also important to recog-

nize that different biological assumptions can give rise to identical dynamics; for example,

we show in the Supplemental Methods that the model introduced by Bever in 2003, which

includes more realistic plant dynamics and interactions, reduces to our Eq. 2.5 when plants

are competitively equivalent.

2.2.2 Equivalence to bimatrix game dynamics

Systems that take the form of Eq. 2.6 are well-known and well-studied in evolutionary game

theory. Our generalization of the Bever model is a special case of the replicator equation,

corresponding to the class of bimatrix games [235, 103, 105, 56]. Bimatrix games arise

in diverse contexts, such as animal behavior [235, 212], evolutionary theory [105, 56], and

economics [70], where they model games with asymmetric players, meaning that each player

(here, the plant community and the soil) has a distinct set of strategies (plants species and

soil components, respectively) and payoffs (realized growth rates).

Much is known about bimatrix game dynamics, and we can draw on this body of knowl-

edge to characterize the behavior of the Bever model with n species. Essential mathematical

background and details are presented in the Supplemental Methods; for a detailed introduc-

tion to bimatrix games, see Hofbauer and Sigmund [105].
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Figure 2.1: The model described by Eqs. 2.5-2.6 is shown here graphically. Plant species
(top) promote the growth of their respective soil components (bottom) at a rate βi (gray
arrows). In turn, growth of each plant is governed by the mix of soil components present in
the system, with the effect of soil component j on species i quantified by the parameter αij
(black arrows). This model is a straightforward extension of the model proposed by Bever
et al. [31] to an arbitrary number of species. Note only selected parameter labels are shown
for clarity.
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Under the mild condition that matrix A is invertible, Eq. 2.6 admits a unique coexistence

equilibrium given by p⋆ = kpB
−11 and q⋆ = kq A

−11, where kp = 1/(1TB−11) and

kq = 1/(1TA−11) are constants of proportionality that ensure the equilibrium frequencies

sum to one for both plants and soil. Because B is a diagonal matrix, and all βi are assumed

positive, the equilibrium plant frequencies, p⋆, are always positive, as well. Thus, feasibility

of the equilibrium hinges on the soil frequencies, q⋆, which are all positive if the elements of

A−11 all share the same sign.

As we have seen, when the community consists of two plant species, the coexistence

equilibrium, if feasible, can be either unstable or neutrally stable. The same is true for the

n-species extension (and, more generally, for any bimatrix game dynamics; see [67, 212, 105]).

This can be established using straightforward local stability analysis, after accounting for

the relative abundance constraints, which imply pn = 1 −
∑n−1

i=1 pi and qn = 1 −
∑n−1

i=1 qi.

Using these substitutions, Eq. 2.5 can be written as a system of 2n − 2 (rather than 2n)

equations, and the community matrix for this reduced model has a very simple form (see

Supplemental Methods). In particular, the community matrix has all zero diagonal elements,

which implies that the eigenvalues of this matrix sum to zero. These eigenvalues govern the

stability of the coexistence equilibrium, and this property leaves two qualitatively distinct

possibilities: either the eigenvalues have a mix of positive and negative real parts (in which

case the equilibrium is unstable), or the eigenvalues all have zero real part (in which case the

equilibrium is neutrally stable). Already, we can see that the model never exhibits stable

equilibrium coexistence, regardless of the number of species.

In fact, these conclusions apply to a much broader class of models that are structurally

similar to the Bever model. Consider any PSF dynamics that can be written in the form
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
dxi
dt = xi fi(q)

dyi
dt = yi gi(p) .

(2.7)

Such a model has a bipartite structure, meaning that the per capita growth rate of each

plant species is an arbitrary function, fi, of the soil frequencies, with no dependence on the

plant abundances or frequencies, and vice versa. The corresponding dynamics for plant and

soil frequencies may possess one or more coexistence equilibria. At any of these equilibrium

points, the community matrix, which governs its stability, necessarily takes the same form

as for the Bever model, with all zero diagonal elements. As such, these equilibria must be

either unstable or neutrally stable. This is a robust consequence of the strictly bipartite

structure of Eq. 2.7.

Another notable property of bimatrix game dynamics is that the vector field defined

by the model equations is divergence-free or incompressible (see [105] for a proof). The

divergence theorem from vector calculus [14] then dictates that Eq. 2.6 cannot have any

attractors – that is, regions of the phase space that “pull in” trajectories – with multiple

species. This rules out coexistence in a stable limit cycle or other non-equilibrium attractors

(e.g. chaotic attractors). Thus, only the relatively fragile coexistence afforded by neutral

oscillations is possible, as in the two-species model.

Based on the local stability properties of the coexistence equilibrium, Bever et al. con-

cluded that such neutral cycles arise for two species when α11 < α21 and α22 < α12. The

equivalence between their model and a bimatrix game with two strategies allows us to give a

fuller picture of these cycles. Namely, we can identify a constant of motion for the two-species

dynamics:

H = (α12 − α22) log q1 + (α21 − α11) log q2 + β2 log p1 + β1 log p2. (2.8)

18



Using the chain rule and time derivatives in Eq. 2.2, it is easy to show that dH
dt = 0 for any

plant and soil frequencies (see Supplemental Methods). The level curves of H form closed

orbits around the equilibrium when the equilibrium is neutrally stable. Thus, H implicitly

defines the trajectories of the model, and can be used to determine characteristics such as

the amplitude of oscillations arising from particular initial frequencies [254].

Because neutral cycles provide the only possible form of coexistence in this model, a key

question becomes whether and when neutral cycles with n plant species can arise. Do the

“negative feedback” conditions identified by Bever et al. generalize in richer communities?

Indeed, they do; however, for more than two species, these conditions are very severe. The

model in Eq. 2.6 supports oscillations with n plant species – for any n – if matrices A and

B satisfy a precise relationship (see Supplemental Methods for details). In particular, the

model parameters must satisfy the conditions αij = γi + δj for some constants γi, δi in

i = 1, . . . , n (when i ̸= j), and αii = γi + δi − cβi (where c is a positive constant that must

be the same for all species i). In the language of bimatrix games, such systems are called

rescaled zero-sum games [103, 105]. It is a long-standing conjecture in evolutionary game

theory that these parameterizations are the only cases where n-species coexistence can occur

[103, 104].

Ecologically, these conditions mean there is a fixed effect of each soil type and plant

species identity, and the growth rate of plant i in soil type j is the additive combination of

these two, with no interaction effects. The only exception is for plants growing in their own

soil type, which must experience a fitness cost (γi+ δi−αii) exactly proportional to the rate

at which they promote growth of their soil type (βi). These conditions clearly extend the

intuitive notion that each plant must have a disadvantage in its corresponding soil type to

allow for coexistence. But the parameters of the model are constrained so strongly that we

never expect to observe cycles with more than two plant species in practice. When n > 2,

a great deal of fine-tuning is necessary to satisfy the rescaled zero-sum game condition; the
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Figure 2.2: Final community sizes with varying initial richness. We show the distribution
of final richness (number of species, in red) for 5000 communities governed by the n-species
Bever model, initialized with 2, 3, 5, or 6 plant species. Parameters αij and βi were sampled
independently from a standard uniform distribution, U(0, 1). For each random parameteri-
zation at each level of initial richness, we integrated the dynamics of Eq. 2.6 until the system
reached a periodic orbit or until only one species remained. In agreement with the conjecture
that coexistence of more than two species is vanishingly unlikely, we found that regardless
of the number of species initially present, every community collapsed to a subset with one
or two surviving species.
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Figure 2.3: Coexistence of three or more species is not robust. It is possible to obtain neu-
trally stable oscillations with any number of plant species if the model parameters constitute
a rescaled zero-sum game (see text for conditions). Here, for example, we show sustained
oscillations with 4 plant species (soil frequencies not shown) using fine-tuned parameters, Au

(left). However, if we randomly perturb Au by a small amount to obtain new parameters,
Ap, the dynamics quickly collapse to a two-species subset (right). Any slight perturbation
is enough to disrupt coexistence; for this example, the parameters Au and Ap are highly
correlated (inset) and differ in value by less than 3% on average.

probability that random parameters will be suitable is infinitesimally small. We confirm

this numerically with simulations shown in Fig. 2.2. Although n-species cycles are clearly

possible (as in Fig. 2.3), when parameters are drawn independently at random communities

always collapse to one or two species, regardless of the initial richness.

Parameter combinations permitting many-species oscillations are not only rare, they are

also extremely sensitive to small changes to the parameter values. The rescaled zero-sum

condition imposes many exact equality constraints on the matrix A (e.g. αij−αik = αlj−αlk

for all i, j, k, and l). Even if biological mechanisms exist to generate the requisite qualitative

patterns, inevitable quantitative variation in real-world communities will disrupt coexistence

(Fig. 2.3). Coexistence of n > 2 plant species – even in the weak sense of neutral cycles – is

not robust to small changes in the model parameters.

Interestingly, the two-species model is not subject to the same fragility. It can be shown
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(see Supplemental Methods) that all 2× 2 bimatrix games take the same general form as a

rescaled zero-sum game, although the constant c may be positive or negative, depending on

the parameters. When Is, the interaction coefficient identified by Bever et al., is negative, c

is positive, ensuring (neutral) stability. This condition amounts to an inequality constraint,

rather than an equality constraint, and so it is generally robust to small variations in model

parameters. As we can now see, the case n = 2 is unique in this regard.

2.3 Discussion

The Bever model has played a central role in motivating PSF research, and continues to guide

both theory and experiment in this fast-growing field [30, 122, 125, 1]. Here, we extend the

Bever model to include any number of plant species, and highlight its equivalence to bimatrix

game dynamics. Taking advantage of the well-developed theory for these dynamics, we are

able to characterize the behavior of this generalized Bever model in detail.

Our central finding is that there can be no robust coexistence of plant species in this

model. Regardless of the number of species, n, the model never exhibits equilibrium coexis-

tence or other attractors. Coexistence can be attained through neutral oscillations, but these

dynamics lack any restoring force, meaning diversity would quickly be eroded by stochas-

ticity or exogenous forcing. In this respect, the generalized model behaves similarly to the

classic two-species system. However, unlike the two-species model, oscillations with n > 2

species can only occur under very restricted parameter combinations. These parameteriza-

tions are vanishingly unlikely to arise by chance and highly sensitive to small deviations.

Thus, coexistence of more than two species is neither dynamically nor structurally stable.

This result may seem surprising, because a significant body of experimental evidence indi-

cates that PSFs can and do play an important role in mediating the coexistence of more than

two species in natural communities [135, 188, 155, 30]. Apparently, the picture suggested by

the two-species Bever model generalizes in nature, but not in the model framework itself.
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We note that this framework was introduced as an intentional simplification to illustrate the

potential role of PSFs in mediating coexistence, not to accurately model the biological details

of PSFs. Indeed, the model has been wildly successful in spurring research into PSFs. Along-

side extensive empirical study of these processes, other modeling approaches have emerged,

accounting for more biological realism [e.g., 247, 66, 29], or with the demonstrated capacity

to produce multispecies coexistence [e.g., 34, 64, 164]. Some of these are minor modifications

of the Bever model framework; others build on distinct foundations [124, 125]. Our results

suggest that these various avenues are worth pursuing further.

Our findings also help clarify important aspects of coexistence across modeling ap-

proaches. For example, Eppinga et al. [64] and Mack et al. [154] recently introduced a

multispecies PSF model which can exhibit stable coexistence. Their model is inspired by the

Bever model framework, but departs from it in two ways: by introducing more realistic soil

dynamics, including a carrying capacity for soil communities, and by applying a separation

of timescales, under the assumption that soil dynamics are very rapid compared to plant

dynamics. Our analysis indicates that the second feature is unable to account for stabiliza-

tion. Regardless of the relative rates of plant and soil dynamics, the coexistence equilibrium

of the generalized Bever model is never attractive (see also Figs. 2.5 and 2.6). This is a

fundamental feature of the model structure, not a result of particular parameter choices.

When oscillations do exist in the Bever model, they are always neutral, meaning that their

amplitude is fixed by the initial conditions of the system, and cannot diminish through the

dynamics. These observations make clear that the crucial factor driving coexistence in the

model of Eppinga, Mack, and colleagues is self-regulation within soil communities, not rapid

soil dynamics.

Indeed, our analysis suggests that the internal dynamics of plant or soil communities

must interact with PSFs to maintain diversity in natural systems. We have shown that PSF

models that are structurally similar to the Bever model – in which plant dynamics depend
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only on soil frequencies, and soil dynamics depend only on plant frequencies – are incapable

of exhibiting stable coexistence of any number of species. Multispecies coexistence becomes

possible when plants [28, 198], soils [64, 154], or both experience an independent source of

self-regulation, which might arise from resource competition, physical limits to density, or

some other mechanism. PSFs are likely to matter most for the maintenance of diversity

when they interact with these internal plant or soil dynamics in non-trivial ways. In the case

of combined plant competition-feedback models [28], for example, we have already seen that

no robust coexistence is possible when plants are competitively equivalent and experience

“mean-field” interactions. On the other hand, when plant competition is dominated by

strong intraspecific interactions, all plant species would coexist even in the absence of PSFs.

Thus, PSFs can only contribute to the maintenance of diversity in such models by modifying

competitive outcomes [28, 198, 122] – that is, by interacting with the structure of the plant-

plant competitive network.

These conclusions have practical implications for the study of PSFs in real-world com-

munities. The predictions of the Bever model are commonly used to guide the design and

analysis of PSF experiments, especially in drawing conclusions about coexistence. Our anal-

ysis cautions that direct application of this model in multispecies communities might lead

to incorrect inference. For example, attempts to parameterize the Bever model for three

species using empirical data have produced predictions of non-coexistence in plant com-

munities that coexist experimentally [136]. In many other studies, the interaction coeffi-

cient, Is, is calculated for species pairs and used to assess whole-community coexistence

[135, 68, 185, 233, 134, 225, 21, 195, 55]. However, we have seen that whole-community

coexistence is virtually impossible within the generalized model, and there is no guarantee

that the pairwise coexistence conditions for this model will agree with n-species coexistence

conditions in other frameworks (but see [155, 64]). For example, Is < 0 for all species pairs

is neither necessary nor sufficient to produce coexistence in a metapopulation-based model
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for PSFs [164].

Theory suggests that when PSFs do play a role in maintaining robust coexistence, inter-

actions between plants and soil will necessarily be only part of the picture. On this point, we

echo calls that have emerged in the empirical literature for more closely integrated study of

PSFs and other processes, such as plant competition [42, 140] and more detailed soil biology

[29, 102]. Our results strongly suggest that pairwise PSF measurements are insufficient to

characterize plant coexistence and require contextualization alongside these other ecosystem

processes.

Fundamentally, our analysis demonstrates that PSFs as envisioned in the classic Bever

model cannot produce robust n-species coexistence in isolation. Our results also indicate

basic structural features that are necessary for PSF models to support multispecies coexis-

tence. Significantly, we find not only the absence of stabilization in the Bever model, but

generic instability. This suggests that, in diverse communities, other processes must exert

a sufficiently strong influence on the community dynamics to overcome the baseline insta-

bility. We illustrate this idea in the Supplemental Methods, where we examine the effect of

adding negative frequency-dependence in the classic Bever model. Any amount of frequency-

dependence stabilizes neutral oscillations, but when these effects are weak, they cannot turn

unstable equilibria into stable ones. The result is that the augmented model can only sup-

port multispecies coexistence when the rescaled zero-sum game condition is met, and, as we

have shown, this condition is never robust to small parameter variations.

In this example, we consider negative frequency-dependence, rather than density-dependence

(as in [28]), because it is difficult to compare the strengths of processes that mix units of

frequency and density. This difficulty hints at a central limitation of classic PSF models,

which are derived by projecting dynamics for plant and soil abundances onto the space of

frequencies. [136, 198, 64, 125]. The projected dynamics can mask unbiological outcomes

in the original model (e.g. relative abundances oscillate around equilibrium while absolute

25



abundances shrink to zero or explode to infinity). Indeed, the absolute abundance model

(Eq. 2.4) used to derive our n-species frequency dynamics (Eqs. 2.5-2.6) does not generally

possess any fixed point, which is a basic requirement for species coexistence [114, 115]. The

same is true for the model introduced by Eppinga et al. [64] and Mack et al. [154], even

though this model exhibits stable dynamics for plant and soil frequencies. It is usually seen

as desirable to study PSFs in the space of species frequencies, both because this facilitates

connections to data, and because frequencies are considered appropriate units for analyzing

processes that stabilize coexistence ([4, 64], but see [122, 125]). But models that introduce

frequencies through a natural constraint, such as competition for finite space, will likely

produce more realistic and straightforwardly interpretable dynamics.

From a broader theoretical perspective, the qualitative change in model behavior that

we observe as the number of species increases from two to three or more is a striking phe-

nomenon, but not an unprecedented one. Ecologists have repeatedly found that intuitions

from two-species models can generalize (or fail to generalize) to more diverse communities

in surprising ways [230, 222, 19]. Our analysis provides another illustration of the fact that

“more is different” [10] in ecology, and highlights the importance of developing theory for

species-rich communities.

2.4 Supplemental methods

2.4.1 Model derivation

As described in the Main Text, we begin with the system


dxi
dt = xi

(∑
j αij qj

)
, i = 1, . . . n

dyi
dt = yi (βi pi)

(2.9)
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governing the time-evolution of plant abundances xi and soil components yi, where pi =

xi/
∑

j xj , qi = yi/
∑

j yj , and Greek letters denote nonnegative parameters. These equa-

tions capture the assumptions outlined by Bever et al. [31] for two species and extend them

straightforwardly to any n species. Following the approach of Bever et al. for two species [31]

and consistent with other generalizations of this model (e.g., [135, 64]), we derive dynamics

for frequencies by applying the chain rule:

dpi
dt

=
d

dt

xi∑
xj

=
1∑
j xj

dxi
dt

− xi
(
∑

j xj)
2

∑
j

dxj
dt

=
xi∑
j xj

∑
j

αij qj

− xi∑
j xj

∑
j

xj∑
k xk

∑
l

αjl ql


= pi

∑
j

αij qj −
∑
j,k

αjkpjqk

 .

(2.10)

This last expression is identical to the first line of Eq. 2.5 in the Main Text. The dynamics

for qi can be derived in exactly the same way (using the definitions βii = βi and βij = 0).

The two terms of each per capita growth rate in Eq. 2.5 have natural interpretations in the

language and notation of linear algebra:
∑

j αij qj is the ith component of the matrix-vector

product Aq and
∑

j,k αjkpjqk is the bilinear form pTAq. Here, A (and B) is an n×n matrix

and p and q are vectors of length n, as described in the Main Text. We can re-write Eq. 2.5

as

dpi
dt

= pi

(
(Aq)i − pTAq

)
dqi
dt

= qi

(
(Bp)i − qTBp

) (2.11)
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or even more compactly as


dp
dt = D(p)

(
Aq − (pTAq)1

)
dq
dt = D(q)

(
Bp− (qTBp)1

) (2.12)

which is Eq. 2.6 in the Main Text.

An alternative derivation of these dynamics (Eqs. 2.5 and 2.6) takes the model introduced

by Bever [28] as a starting point. Using our notation, this model can be written as


dxi
dt = xi

(
ri +

∑
j αij qj −

∑
j cijxj

)
, i = 1, . . . n

dyi
dt = yi (βi pi)

(2.13)

where all variables have the same meaning as before. In this model, plants experience com-

petitive Lotka-Volterra dynamics alongside frequency-dependent soil effects. The parameters

ri are intrinsic growth rates for plants, and the cij quantify the competitive effect of plant

j on plant i, as in the usual Lotka-Volterra model. We note that in this context, the soil

effects on plants, αij may be positive or negative, as they modify the baseline plant growth

rates, set by ri. The dynamics of soil communities are exactly as before.

One can write the dynamics for plant frequencies under this model as:

dpi
dt

= pi

ri +
∑
j

αij qj −
∑
j

cijxj −
∑
j

pj

[
rj +

∑
k

αjk qk −
∑
k

cjkxk

] , i = 1, . . . n

(2.14)

following a calculation similar to Eq. 2.10. As other researchers have noted [28, 64], if ri = r

and cij = c for all i and j, indicating a situation where all plants are demographically and
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competitively equal, then Eq. 2.14 reduces to

dpi
dt

= pi

∑
j

αij qj −
∑
j

pj
∑
k

αjk qk

 , i = 1, . . . n (2.15)

which is identical to the dynamics for plant frequencies shown in Eq. 2.5 of the Main Text.

Thus, under the simplifying assumption of “mean-field” plant interactions, the two models

yield equivalent dynamics for plant and soil frequencies. We will show at the end of this

section that the potential difference in signs (i.e. αij must be nonnegative in the first model

formulation, but may take any sign here) has no effect on the dynamics.

The system described by Eq. 2.12, however obtained, is identical to standard bimatrix

replicator dynamics [103, 105]. Bimatrix games have two strategy sets (here, the pi and qi),

and interactions take place only between strategies from opposite sets. The growth rate terms

we considered above now have interpretations as payoffs or fitnesses:
∑

j αij qj = (Aq)i is

the payoff for strategy i (an average of payoffs playing against each strategy of the other

“player”, weighted by the frequency of each strategy, qj) and
∑

j,k αjkpjqk = pTAq is the

average payoff across the population of strategies. A general bimatrix game may have any

B; our model assumptions lead to the special case where B is diagonal. We note that one

could easily and plausibly consider an extension of the Bever model where each plant species

has some effect on (up to) all n of the soil components. Then, our PSF model would be

map exactly onto the full space of bimatrix game dynamics (rather than just a subset).

However, all of the results we consider hold for arbitrary bimatrix games, meaning the same

conclusions about the dynamics of Eqs. 2.5-2.6 would apply to this extended model, as well.

We note two useful properties of Eqs. 2.5-2.6, as they will be important for the analysis

that follows. First, we have the constraint
∑

i pi =
∑

i qi = 1 at every point in time. Second,

the dynamics are completely unchanged by adding a constant to any column of the parameter
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matrices A or B. The first fact is a direct consequence of our definition for pi and qi; the

second can easily be shown. Suppose we have added a constant w to each element in the lth

column of A. Then

dpi
dt

= pi

∑
j

αij qj + w ql −
∑
j,k

αjk pj qk −
∑
j

w pj ql


= pi

∑
j

αij qj + w ql −
∑
j,k

αjk pj qk − w ql


= pi

∑
j

αij qj −
∑
j,k

αjk pj qk


(2.16)

which is precisely the differential equation we obtained prior to adding w. Clearly the

trajectories of both systems (with and without the column shift) must be identical. The

same considerations apply for the matrix B. Intuitively, this property reflects the fact that

we are always subtracting the average payoff, and so any change to the payoffs that benefits

(or harms) each species equally is “invisible” to the dynamics.

In the remaining sections, we outline the main behaviors of Eqs. 2.5-2.6, especially with

regard to coexistence. We closely follow the treatment by Hofbauer and Sigmund [105], and

urge interested readers to consult this excellent introduction (see especially chapters 10 and

11). Here, we reproduce or sketch the essential details needed to justify the results in the

Main Text.

2.4.2 Coexistence equilibrium

Written in matrix form, it is easy to see that the model admits a unique fixed point where

all species are present at non-zero frequency. This fixed point, (p⋆, q⋆), must take the form

(kpB
−11, kqA

−11) for some undetermined constants kp and kq. Substituting this ansatz
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into the growth rates in Eq. 6 and equating them to zero, we have

Aq⋆ − ((p⋆)TAq⋆)1 = kqAA
−11− (kpkq1

T (B−1)TAA−11)1 = kq(1− kp1
T (B−1)T1)1 = 0

Bp⋆ − ((q⋆)TBp⋆)1 = kpBB−11− (kpkq1
T (A−1)TBB−11)1 = kp(1− kq1

T (A−1)T1)1 = 0

(2.17)

From the final two equations, it is clear that kp = 1
1T (B−1)T1

= 1
1TB−11

and kq =
1

1T (A−1)T1
=

1
1TA−11

.

These rescaling factors make intuitive sense, as they ensure that
∑

i p
⋆
i =

∑
i q

⋆
i = 1,

consistent with their definition as frequencies.

Describing these equilibrium frequencies in terms of the parameters is a difficult problem

that has received significant attention elsewhere [64, 154, 205, 213, 190, 204]. In particular,

one is usually interested in identifying whether all of the frequencies are nonnegative (such

a fixed point is said to be feasible). The existence of a feasible fixed point is a requirement

for the model to exhibit permanence, meaning that no species go extinct or grow to infinity.

Throughout our analysis, we assume the existence of a feasible fixed point; considering the

question of feasibility simultaneously would only make coexistence less likely in each case.

We present some additional details regarding feasibility in the section Equilibrium feasibility,

below.

2.4.3 Local stability analysis

Perturbations around the coexistence equilibrium are constrained to respect the conditions∑
i pi =

∑
i qi = 1. For this reason, it is convenient to remove these constraints before

performing a local stability analysis. As in the two species case [31], this can be done by

eliminating the nth species and soil component, which leaves us with a 2n − 2 dimensional

system with no special constraints.
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We use pn = 1 −
∑n−1

i=1 pi ≡ f(p) and qn = 1 −
∑n−1

i=1 qi ≡ g(q) and write these

frequencies as functions of the others. The reduced dynamics are given by



dpi
dt = pi

(∑n−1
j αij qj + αing(q)−

∑n−1
j,k αjk pj qk − f(p)

∑n−1
j αnjqj −

g(q)
∑n−1

j αjnpj − αnnf(p)g(q)
)

dqi
dt = qi

(
βi pi −

∑n−1
j βj pj qj − βnf(p)g(q)

)
, i = 1, . . . n− 1

(2.18)

Although these equations appear more complex, it is now straightforward to analyze the

local stability of the coexistence equilibrium.

The elements of the community matrix (the Jacobian evaluated at the coexistence equilib-

rium) are easily computed from Eq. 2.18. First we consider the plant dynamics differentiated

with respect to the plant frequencies. In these calculations, all frequencies are evaluated at

their equilibrium values.

∂

∂pj

dpi
dt

= pi

(
−

n−1∑
k

αjk qk +
n−1∑
k

αnkqk − αjng(q) + αnng(q)

)

= pi

(
−

n∑
k

αjk qk +
n∑
k

αnkqk

)

= 0

(2.19)

Here, we have used the fact that Aq⋆ ∝ 1. Notice that, because the factors in parentheses

in Eq. 2.18 are zero at equilibrium, these community matrix calculations are valid even for

i = j.

The other elements are computed similarly:
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∂

∂qj

dqi
dt

= qi (−βiqi + βnf(p))

= 0

(2.20)

∂

∂qj

dpi
dt

= pi

(
αij − αin −

n−1∑
k

αkj pk − αnj f(p) +
n−1∑
k

αknpk + αnnf(p)

)

= pi(αij − αin)

(2.21)

∂

∂pj

dqi
dt

=


qi βi , i = j

0 , i ̸= j

(2.22)

From these calculations, it is apparent that the trace of the community matrix, given by∑n−1
i

∂
∂pi

dpi
dt +

∑n−1
j

∂
∂qj

dqj
dt , is zero. The trace of a square matrix is equal to the sum of

its eigenvalues [109], so the eigenvalues of the community matrix must include either (i) a

mix of positive and negative real parts or (ii) only purely imaginary values. In the first case,

the coexistence equilibrium is locally unstable, because at least one eigenvalue has positive

real part. In the second case, the coexistence equilibrium is neutrally or marginally stable.

These two possibilities exclude asymptotically stable equilibria. In this respect, the behavior

of the two-species model is the generic behavior of the generalized n-species model.

2.4.4 Zero divergence implies no attractors

We can extend this picture beyond a local neighborhood of the coexistence equilibrium by

considering the divergence of the vector field associated with Eqs. 2.5-2.6. The divergence,

defined by
∑

i
∂
∂pi

dpi
dt +

∑
i

∂
∂qi

dqi
dt , measures the outgoing flux around a given point. It can
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be shown [see 67, 105] that up to a change in velocity (i.e., rescaling time by a positive

factor), the vector field corresponding to any bimatrix game dynamics has zero divergence

everywhere in the interior of the positive orthant (i.e., where pi, qi > 0 for all i).

The divergence theorem [14] equates the integral of the divergence of a vector field over

some n-dimensional region to the net flux over the boundary of the region. For a vector

field with zero divergence, this implies that every closed surface has zero net flux. As

a consequence, such divergence-free vector fields cannot have attractors, or subsets of the

phase space toward which trajectories of the corresponding dynamical system tend to evolve.

If an attractor existed, one could define a surface enclosing it sufficiently tightly, and the net

flux over this surface would be negative (as trajectories enter, but do not exit, this region).

But this would present a contradiction, and so we conclude that there can be no attractors,

such as limit cycles, for the dynamics.

For our model, these facts mean that attractors can only exist on the boundary of the

phase space. Because each boundary face for the n-dimensional system is another bimatrix

replicator system on n−2 dimensions, the same logic applies, and the only possible attractors

are points where a single species (and corresponding soil component) is present [105]. States

with multiple species present are never attractive. This leaves neutrally-stable oscillations

as the only potential form of species coexistence.

2.4.5 Rescaled zero-sum games are neutrally stable

In the context of bimatrix games, a zero-sum game is one where A = −BT . A rescaled zero-

sum game is one where there exist constants γi, δj , and c > 0 such that aij − δj = −cbji+γi

for all i and j (here, we understand A = (aij), B = (bij)) [105]. Any rescaled zero-sum

game can be turned into a zero-sum game by adding constants (in particular, δj and −γj)

to each column of A and B, and then multiplying B by a positive constant 1/c. As such, the

dynamics of a rescaled zero-sum game and its corresponding zero-sum game are the same
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up to a rescaling of time.

If a rescaled zero-sum game has a feasible coexistence equilibrium, this equilibrium is

neutrally stable. We can see this by considering the associated community matrix. First,

we assume without loss of generality that A = −cBT (otherwise, we shift columns to obtain

this form, without altering the dynamics in the process) Now we add the column-constant

matrix 1
cbn1

T to A and can1
T to B, where an (bn) denotes the nth column of A (B). Again,

the dynamics, including both equilibrium values and stability properties, are unchanged by

this operation. From Eqs. 2.19-2.22, we see that the community matrix, J , of the resulting

system is given by

 0 D(p⋆)(Ā+ 1
cbn1

T − 1aTn )

D(q⋆)(B̄ + can1
T − 1bTn ) 0

 (2.23)

where Ā (B̄) denotes the (n − 1) × (n − 1) submatrix of A (B) obtained by dropping the

nth row and column. Finally, we consider the similarity transform P−1JP , defined by the

change of basis matrix

P =

√
cD(p⋆)1/2 0

0 D(q⋆)1/2

 . (2.24)

The resulting matrix, J ′, which shares the same eigenvalues as J [109], is given by

 0
√
cD(p⋆)1/2(Ā+ 1

cbn1
T − 1aTn )D(q⋆)1/2

√
cD(q⋆)1/2(−ĀT + an1

T − 1
c1b

T
n )D(p⋆)1/2 0


(2.25)

which is a skew-symmetric matrix. Every eigenvalue of a skew-symmetric matrix must have

zero real part [109]. Thus, the eigenvalues of J , the community matrix, have zero real part,

and the coexistence equilibrium of our original system is neutrally stable.
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Here, we have outlined a proof that applies to all rescaled zero-sum games. When B is a

diagonal matrix, as in our model of PSFs, the condition for A and B to constitute a rescaled

zero-sum game reduces to the condition given in the Main Text.

Rescaled zero-sum games are the only bimatrix games known to produce neutrally stable

oscillations. It is a long-standing conjecture that no other bimatrix games have this property

[103, 105, 104].

2.4.6 Two-species bimatrix games

For n > 2, the rescaled zero-sum game condition is very stringent – it places exacting equality

constraints on the elements of A and B. However, for n = 2, every bimatrix game satisfies

aij − δj = −cbji + γi for some c potentially positive (in which case we have a rescaled

zero-sum game) or negative (in which case the game is called a partnership game, and the

coexistence equilibrium is unstable) [105]. Thus, neutral oscillations arise whenever c > 0.

To see that this is true, we first suppose that A and B have the form

A =

 0 a1

a2 0

 B =

 0 b1

b2 0

 . (2.26)

If this is not the case, we can use constant column shifts to arrive at this form (e.g., in

general, a1 = a12 − a22). Now consider the constants c = −a1+a2
b1+b2

and γ1 = −δ1 = a1 + cb2

and γ2 = δ2 = 0. Examining the equation aij − δj − γi = −cbji for each i and j, one verifies

0− γ1 − δ1 = 0

a1 − γ1 − δ2 = −cb2

a2 − γ2 − δ1 = −c(b1 + b2 − b2) = −cb1

0 = 0

(2.27)
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and so the parameters A and B always constitute a rescaled zero-sum or partnership game. In

the particular case of our model, a1+a2 = −α11+α21+α12−α22 = −Is and b1+b2 = −β1−

β2. c is positive (as needed for cycles) when these signs disagree; since b1 + b2 = −β1 − β2

is always negative, a1 + a2 must be positive, meaning Is < 0, as found by Bever et al. [31].

2.4.7 Constants of motion

When A and B satisfy the rescaled zero-sum game condition, the function

H(p, q) =
∑
i

p⋆i log pi + c
∑
j

q⋆j log qj (2.28)

is a constant of motion for the dynamics [105]. As above, we suppose that A = −cBT , and

shift the columns of each matrix as needed if this is not the case. Then consider the time

derivative
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dH

dt
=
∑
i

p⋆i
1

pi

dpi
dt

+ c
∑
j

q⋆j
1

qi

dqi
dt

=
∑
i

p⋆i

∑
j

αij qj −
∑
j,k

αjk pj qk

+ c
∑
j

q⋆j

βi pi −
∑
j

βj pj qj


=
∑
i,j

αij p
⋆
i qj −

∑
j,k

αjk pj qk + c
∑
i

βi q
⋆
i pi − c

∑
j

βj pj qj

=
∑
i,j

αij (p
⋆
i − pi) qj + c

∑
i

βi (q
⋆
i − qi) pi

Now, because A = −cBT , we have

= c
∑
i

βi (−(p⋆i − pi) qi + (q⋆i − qi) pi)

= c
∑
i

βi (−p⋆i qi + q⋆i pi)

and because q⋆i = p⋆i = Z
βi
, with Z the normalizing constant,

= c Z
∑
i

(−qi + pi)

= 0

(2.29)

In the last line, we use the fact that both sets of frequencies always sum to one.

Each orbit remains in the level set defined by the initial conditions, (p0, q0):

H(p0, q0) =
∑
i

p⋆i log pi + c
∑
j

q⋆j log qj (2.30)

For the two-species model studied by Bever et al. [31], these level sets precisely define the
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trajectories in the (p, q) phase plane.

2.4.8 Equilibrium feasibility

Throughout this study, we focus primarily on the stability properties of the generalized Bever

model. However, as mentioned above, coexistence also requires the existence of a feasible

equilibrium – that is, an equilibrium where all frequencies are nonnegative. In the context of

this model, feasibility is determined solely by the matrix A. If all elements of A−11 share the

same sign, the coexistence equilibrium is feasible. For even moderately large n, feasibility of

the coexistence equilibrium is very unlikely if the parameters αij are iid random variables.

However, the probability of feasibility has little bearing on the prospects for coexistence in

this model. Even assuming the existence of a feasible equilibrium, our results show that

robust coexistence of more than two species is impossible. To confirm that this is the case,

we repeat the simulations shown in Fig. 2.2 (Main Text), but now rejecting parameter

combinations that do not yield a feasible coexistence equilibrium. The results are show in

Fig. 2.4. Conditioning on feasibility increases the probability that randomly parameterized

two-species communities oscillate neutrally from 1
4 to 1

2 , but has little effect on the results

observed for n > 3. In particular, coexistence of more than two species is never observed,

regardless of feasibility.

It is interesting to note that the rescaled zero-sum game condition, which ensures neutral

stability of a fixed point, also ensures feasibility. This is easy to verify using the transfor-

mation explained in the section Rescaled zero-sum games are neutrally stable, above. Using

column shifts applied to A and B, one obtains a new system where both matrices are diag-

onal with constant signs. In other words, one finds a system of the form A = −cBT with

the same dynamics (and so the same equilibria) as the original. Because B is a diagonal

matrix, and we assume βi > 0 for all i, both p⋆ and q⋆ will be feasible. However, we note

that this property does not alter any of the conclusions of the Main Text. While the rescaled
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Figure 2.4: Final community sizes with varying initial richness, conditioned on feasible
coexistence equilibrium. As in Fig. 2.2 (Main Text), except that parameter combinations
yielding unfeasible equilibria were discarded. We continued sampling until 5000 feasible
parameter sets were obtained for each level of initial richness. Conditioning on feasibility
increases the probability that an initial community of two species coexists in a neutral cycle,
but has negligible effect on the results for richer communities. In particular, coexistence of
more than two species is never observed.
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zero-sum game condition guarantees a weak form of coexistence (i.e. the existince of neutral

oscillations), this behavior is extremely fragile; small changes in the model parameters will

cause all but two species to go extinct.

2.4.9 Varying relative timescales

To clearly demonstrate that varying the relative timescales of plant and soil dynamics does

not affect the qualitative character of the dynamics, we include two representative simulations

below (Figs. 2.5 and 2.6).

In each case, we sampled model parameters uniformly at random and then simulated the

dynamics starting with identical initial conditions but with soil parameters given by ϵβ for

different values of ϵ. As ϵ becomes large, the dynamics of soil components become rapid

relative to the dynamics of plants. We show that varying these timescales across two orders

of magnitude has no qualitative effect on the dynamics – an unstable equilibrium remains

unstable (Fig. 2.5) and a neutrally stable equilibrium remains neutrally stable (Fig. 2.6).

2.4.10 Adding frequency dependence

To illustrate the robustness of our main findings, we consider an extension of the Bever

model to include direct intraspecific plant competition. Building on Eq. 2.9, we add a

negative frequency-dependent term for each plant species:

dxi
dt

= xi

∑
j

αijqj − cipi

 (2.31)

Here, ci specifies the strength of intraspecific competition. Soil dynamics remain exactly as

in Eq. 2.9.

This model is conceptually close to the combined plant competition-feedback model in-
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Figure 2.5: See text for simulation details. Time is shown on the x-axis, and frequencies are
shown on the y-axis. Here, n = 3 (species identities are unlabeled). As ϵ varies across two
orders of magnitude, the qualitative outcome of the dynamics is unchanged: One species
excludes the other two. Only the rate of exclusion changes.
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Figure 2.6: See text for simulation details. Time is shown on the x-axis, and frequencies are
shown on the y-axis. Here, n = 3 (species identities are unlabeled). As ϵ varies across two
orders of magnitude, the qualitative outcome of the dynamics is unchanged: One species is
excluded and the two surviving species oscillate neutrally. The frequency and amplitude of
the oscillations change with ϵ, but we note that these properties will also depend on rate at
which the third species is excluded.
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troduced by Bever [28]. Unlike Bever, we consider only intraspecific plant interactions for

simplicity. Additionally, while Bever took plant-plant interactions to be density-dependent,

as in the Lotka-Volterra competition model, we assume frequency-dependent effects. As

explained in the Main Text, this choice is motivated by consistency with the frequency-

dependent nature of PSFs in this model.

The frequency dynamics associated with this model are given by


dpi
dt = pi

(∑
j αij qj − ci pi −

∑
j pj(

∑
k αjk qk − cj pj)

)
, i = 1, . . . n

dqi
dt = qi

(
βi pi −

∑
j βj pj qj

)
.

(2.32)

To consider small deviations from the canonical Bever model, we focus on the case where

the negative frequency-dependence is weak relative to PSFs (i.e. ci parameters are much

smaller than αij parameters). At the opposite extreme (ci ≫ αij), it is easy to see that all

plant species will coexist, with no meaningful role for PSFs. We also assume that frequency-

dependence is equal for all plant species (i.e. ci = c), for simplicity.

Now we study the stability properties of equilibria in this extended model. After some

algebraic manipulations to remove the zero-sum constraints (as in the section Local stability

analysis), we find that the community matrix for the coexistence equilibrium takes the form

J ′ =

−cI M1

M2 0

 (2.33)

where

J =

 0 M1

M2 0

 (2.34)

is the community matrix for the corresponding Bever model (i.e. the model with c = 0). We

have already shown that the eigenvalues of J must be of mixed signs or all purely imaginary.
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Let us denote those eigenvalues by λi. The eigenvalues of our extended matrix, which we call

λ′i, can be related to the λi in a straightforward way. We first notice that the eigenvectors of

J ′ are closely related to the eigenvectors of J , which we write as (ui,vi)
T . The eigenvector

equations for J ′ take the form

−cI M1

M2 0


 ui

kivi

 = λ′i

 ui

kivi

 (2.35)

with ki an undetermined constant. This system implies the relations ki λ
′
i = λi and

λ′i+c
ki

=

λi. Solving these equations for λ′i gives

λ′i =
−c±

√
c2 + 4λ2i

2
(2.36)

and finally, for small c, the approximation

λ′i ≈ λi −
c

2
. (2.37)

This analysis shows that there is a tight relationship between the stability properties

of the Bever model and the extension with weak frequency-dependent self-regulation. If

the underlying Bever model has an unstable coexistence equilibrium, where the eigenvalues

λi have mixed signs, then the extended model will have an unstable equilibrium as well.

The slight shift by c
2 is not enough to push the positive real parts of these eigenvalues

across zero, by assumption. The correspondence when all of the λi are purely imaginary

is more interesting. In this case, the eigenvalues of the extended model, λ′i, will all have a

small negative real part. This shift induces a qualitative change in the model dynamics: a

neutrally stable equilibrium in the underlying Bever model becomes an asymptotically stable

equilibrium in the model with frequency-dependence. Each of these cases is illustrated in

Fig. 2.7.
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Figure 2.7: Representative dynamics for the extended Bever model with negative plant
frequency-dependence. When the Bever model (left column) possess an unstable coexistence
equilibrium, so will the extended model (right) with weak self-regulation (top row). On the
other hand, when the Bever model possesses a neutrally stable equilibrium, the extended
model will have a corresponding stable equilibrium, with the same number of species. We
show an example where one of three species goes extinct and the other two cycle in Bever
model, or stably coexist in the extended model (middle row). We also see that when the
Bever model possess an n-species cycle (here n = 3), the extended model will have a stable
equilibrium with all n species. Such cases are only possible when the matrices A and B
satisfy the rescaled zero-sum game condition, described in the Main Text and above.
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Very weak frequency-dependence can only produce such a qualitative change when the

underlying model is structurally unstable – i.e. when the real parts of the λi are exactly

zero. We have shown that this is only the case when the Bever model parameters meet

the rescaled zero-sum game condition. Thus, even though the extended model can support

stable coexistence, this outcome is subject to the same stringent conditions as are n-species

oscillations in the Bever model. In particular, these parameterizations are never realized at

random, and are not robust to small perturbations of the parameters.

This simple example demonstrates that the lack of robust n-species coexistence in the

Bever model can be disentangled from the biologically unrealistic prediction of neutral os-

cillations. The generic behavior of the Bever model with more than two plant species is

instability, and other ecological processes must be sufficiently strong to overcome this insta-

bility; very small modifications of the dynamics will not do.

2.4.11 Numerical simulations

To complement our analytical findings, we investigated the dynamics of many randomly pa-

rameterized communities using numerical simulations. In particular, we integrated Eq. 2.12

with 2, 3, 5, or 6 initial plant species and corresponding soil components (see Figs. 2.2 and

2.4). For each case, we sampled 5000 parameter sets at random and integrated the dynamics

in Python using SciPy’s (version 1.7.1) solve ivp function with the “BDF” method. We

sampled non-singular payoff matrices A and B with each non-zero element drawn indepen-

dently from the uniform distribution U(0, 1). For every choice of parameters, we integrated

the system until a subset with ≤ 2 species was reached (which occurred in all cases). Code

for reproducing all numerical simulations is available at https://github.com/pablolich/

plant_soil_feedback.
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CHAPTER 3

HABITAT HETEROGENEITY, ENVIRONMENTAL

FEEDBACKS, AND SPECIES COEXISTENCE ACROSS

TIMESCALES

3.1 Introduction

Environmental heterogeneity provides the raw material for niche partitioning in ecological

communities. When the environment varies from place to place, differences in the ways

species respond to local conditions can facilitate their coexistence at the landscape scale,

even when local coexistence is impossible [47, 7]. This connection between environmental

heterogeneity and the maintenance of species diversity has deep roots in ecology [12, 151,

256], and has been well-studied both theoretically [108, 48, 116, 47] and empirically [209,

219, 51, 177].

However, this picture becomes more complex when species themselves shape their envi-

ronment. Feedbacks between the biotic community and landscape conditions across space can

enhance or reduce environmental heterogeneity over time [57, 260, 181]. Prominent exam-

ples include plant-soil feedbacks [31, 155, 250] and related Janzen-Connell effects [118, 54],

wherein plants directly or indirectly shape the local densities of soil microbes or natural

enemies such as seed predators, generating a dynamic landscape of legacy effects. These

processes are thought to play an important role in maintaining the diversity of many natural

plant communities, but they may also lead to positive feedbacks that drive monodominance

[258, 250].

Here, we introduce a flexible modeling framework for community dynamics in heteroge-

neous landscapes with and without feedbacks that change environmental conditions through

time. We build on the classical metapopulation paradigm [144] and related patch mod-

els, which provide a minimalist approach to studying ecosystems with distinct local and
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global scales [48, 116, 7]. The simplicity of this framework allows us to capture and an-

alyze essential features of complex environmental feedbacks. While a range of conceptual

and quantitative models [203, 31, 86, 111, 197, 170] have shed light on such processes – and

particularly on when they might help or hinder coexistence – they remain challenging to

incorporate in tractable mathematical frameworks. One central obstacle is the high species

diversity in many natural systems, although accounting for this diversity is crucial to under-

standing real-world coexistence [167]. Additionally, many studies – and even sub-fields of

ecology – focus on a single source of heterogeneity, making it hard to draw general conclu-

sions that cut across system specifics. In particular, fixed or “exogenous” heterogeneity and

biotically-generated or “endogenous” heterogeneity have often been approached from very

different perspectives [32, 223]. Our models and analysis help overcome these challenges by

providing coexistence criteria that extend naturally to communities of arbitrary size, and by

building endogenous environmental feedbacks directly into a core model for landscapes with

exogenous heterogeneity.

We develop a general approach that is agnostic to the specific sources of environmental

heterogeneity and allows us to consider feedbacks on a wide range of timescales. We show

that our framework includes a recent model for rapid habitat modification [164] as a lim-

iting case. To delineate the full spectrum of possible dynamics, we focus especially on the

the opposite extreme of feedbacks that shape the landscape over very long times. In doing

so, we identify essential features of coexistence maintained by exogenous and endogenous

heterogeneity. Across the two extremes of very fast and very slow feedbacks, coexistence

maintained by endogenous heterogeneity can be characterized by the same simple analytical

conditions. Over long times, these limiting cases behave similarly to one another, and qual-

itatively differently from systems with exogenous heterogeneity, even though slow feedbacks

are difficult to distinguish from exogenous heterogeneity on short timescales. Our results

help explain how environmental feedbacks emerge and play out over different timescales,
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Figure 3.1: Metapopulation models with exogenous and endogenous patch heterogeneity.
(A) We model an ecosystem where species disperse between patches with varying local
conditions. The environmental conditions within a patch, summarized by the patch type or
state, influence the rates at which different species can colonize and establish. We consider
models where variation in patch conditions is (B) a fixed property of the landscape (Eq. 3.2),
or (C) shaped by the biotic community over time (Eq. 3.5). Here, colors indicate patch
types/states and species identities. When heterogeneity is endogenous (C) each patch state is
identified with a species in the community, reflecting environmental modifications (occurring
at a rate d) due to that species’ presence.

and the modeling framework we introduce offers a platform for comparing exogenous and

endogenous heterogeneity on equal footing. Finally, we discuss how and under what condi-

tions our models can be parameterized from observational data, and other implications for

the analysis of community dynamics in natural communities.

3.2 Exogenous heterogeneity

We consider a landscape composed of many local patches, which can be classified into ℓ

discrete types. The type of a patch summarizes its internal conditions as they are relevant

to a focal community of n species inhabiting the landscape. For example, in the context of a

plant community, patches might be classified by soil type or topography. The rate at which

each species can establish in a patch depends on the patch type, and may differ between
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species, reflecting interspecific differences in niche requirements. Following conventional

models, we assume there is global dispersal between all patches, and that each patch can be

occupied by at most a single species at any time. Denoting the proportion of all patches that

are of type j and occupied by species i at time t by Xij(t), and the proportion of all patches

that are of type j and vacant by yj(t), we can model the dynamics of these proportions

across a sufficiently large landscape by:

dXij(t)

dt
= −mijXij(t) + pijyj(t)

ℓ∑
k=1

Xik(t)

dyj(t)

dt
=

n∑
i=1

mijXij(t)− yj(t)
n∑

i=1

pij

ℓ∑
k=1

Xik(t)

(3.1)

The parameters pij ≥ 0 and mij > 0 specify the rates at which species i establishes or

goes locally extinct in patches of type j, respectively. As in classic metapopulation models,

the dynamics represent the net action of these two processes: colonization of empty patches

by propagules or dispersers from occupied patches, and local extinctions at a constant rate

per patch. The summations over patch type (index k) reflect the fact that empty patches

of type j may be colonized by propagules of species i dispersed from patches of any type.

Summations over species identity (index i) reflect the fact that the type is a fixed property of

each patch, so a patch of type j always returns to the yj class when vacated. This also implies

that the total proportion of patches of type j, which we denote by wj = yj(t) +
∑

iXij(t),

is constant through time for every j.

In principle, we can allow local extinction rates to depend on both species identity and

patch type; however, in this study we focus primarily on the simplest case where mij = m.

Thus, the effects of landscape heterogeneity are realized through rates of establishment, not

local persistence. The suitability of this assumption will depend on the community of interest,

but environmental heterogeneity is thought to act more strongly on establishment than
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persistence in many relevant systems, typically because smaller populations or immature

individuals are more sensitive to patch conditions [84, 132, 153, 17]. We are also assuming

that there are no significant differences in local extinction rates between species, reflecting a

community of demographically similar species, or a community where patch extinctions are

primarily driven by external disturbance.

Under this equal m assumption, we can greatly simplify the dynamics by tracking only

the proportion of patches – regardless of type – occupied by species i at time t. We denote

these proportions by xi =
∑

j Xij . Instead of ℓ(n+ 1) equations, there are now n+ ℓ, given

by:

dxi(t)

dt
= −mxi(t) + xi(t)

ℓ∑
j=1

pijyj(t)

dyj(t)

dt
= m

(
wj − yj(t)

)
− yj(t)

n∑
i=1

pijxi(t) .

(3.2)

The wj , which must sum to one, are now seen as parameters that describe the heterogeneity

of the landscape.

These dynamics take precisely the same mathematical form as a consumer-resource model

with external inflow of abiotic resources [243, 40, 157]. In this parallel, each species plays the

role of a consumer, and each patch type is interpreted as a resource with inflow rate propor-

tional to wj . Both “consumers” and “resources” experience density-independent mortality

at a rate m, and pij are analogous to consumption rates.

Consumer-resource systems of the form in Eq. 3.2 have been studied extensively, al-

lowing us to immediately draw conclusions about multispecies dynamics in heterogeneous

metapopulations by translating results from the consumer-resource setting. For example,

it is well-known that the number of coexisting consumers is at most equal to the number

of resources in such models, a classic result known as the competitive exclusion principle
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Figure 3.2: We illustrate the relationship between landscape parameters (A) and species’
equilibrium frequencies (B) using a simulated community of habitat specialists. We sampled
P such that each species had a strong advantage colonizing a distinct patch type, and
pij < m for non-preferred patches (parameters available at [166]). We then calculated
species’ frequencies (x⋆) for landscapes (w) ranging from a uniform environment dominated
by one patch type, to equal frequency of all types. The full gradient ofw parameters is shown
in (A); the five species community is only feasible for a small subset (blue shading). In (B),
we show species’ frequencies, as a function of landscape diversity (measured in Shannon
entropy), for the feasible range. Species’ frequencies are not straightforwardly related to the
availability of their preferred habitat types (indicated by matching colors), and species go
extinct as w varies, even though all patch types are present. Surprisingly, even increasing
the diversity (evenness) of the landscape drives some species extinct. To generate a gradient
of w, we selected parameters v compatible with feasibility and let wi = v

p
i /
∑

j v
p
j varying

p from 0 to 10.
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[141]. Our model equivalence provides a formal demonstration that this intuitive principle

carries over to the context of environmental heterogeneity. Given this upper limit, we study

coexistence assuming ℓ = n, representing a fully “packed” consumer community. In this

case, Eq. 3.2 has at most a single coexistence equilibrium, which is easily expressed in matrix

form:

y⋆ = mP−11

x⋆ = m
(
PT )−1

(
D(y⋆)−1w − 1

)
.

(3.3)

Here we use the notation y⋆ for the vector of equilibrium proportions (and similarly for x⋆

and w), and we collect the coefficients pij in the matrix P . We also use D(y⋆) for the

diagonal matrix with non-zero elements given by y⋆, and 1 for a vector of n ones.

Many important properties of this equilibrium are known. Coexistence of all n species

requires that the equilibrium is biologically feasible, meaning that the components of y⋆ and

x⋆ are all positive. In fact, it can be proven that this equilibrium is globally stable whenever

it is feasible, and therefore coexistence is entirely controlled by feasibility in this model (see,

e.g., [157]; for completeness, we provide a proof of this result in Supporting Information

3.6.1).

In accordance with the fact that x and y are proportions in our original framing of the

model, we find that feasibility of x⋆ requires
∑

j y
⋆
j < 1. This means that there is an upper

limit on m imposed by the matrix of establishment rates: m < 1T (P−1)1. Remarkably, the

vacant patch equilibrium values, y⋆, are completely unaffected by the underlying distribu-

tion of patch types in the environment, w. As in consumer-resource models, this “shielded”

behavior arises because the species in the system robustly drive the supply of vacant patches

to a point determined only by their own demographic rates [241]. Feasibility of these values

requires that every element of P−11 is positive. Loosely, in ecological terms this expresses a

54



requirement that species are sufficiently similar in overall colonization ability (i.e., pij aver-

aged across patch types), or sufficiently specialized on distinct habitat types (see Supporting

Information 3.6.1 for detailed interpretation of this condition).

The equilibrium proportions for species themselves are sensitive to w, but indirectly.

Even if each species is specialized on a different patch type, the x⋆ and w are not simply

proportional, unless the species are all perfect specialists [241]. For example, in Fig. 3.2,

we illustrate a scenario where each species is sufficiently specialized so that all non-preferred

patches are net sinks (i.e., pij < m for all i ̸= j). Changing the distribution of patch types in

the landscape can cause some species to go extinct, even though patches of all types remain

available. Counterintuitively, this means that increasing the diversity (evenness) of habitat

types will often, and sometimes drastically, decrease the species diversity of the system.

This kind of strong competitive interference can occur because the joint distribution of

species and patch types reflects not just habitat preference, but also source-sink dynamics

between patches. The potential for such dynamics in heterogeneous landscapes has long

been noted [108, 106, 218]. In our model, we can examine this joint distribution more closely

by returning to the “full” dynamics in Eq. 3.1. The hierarchical structure of Eqs. 3.1 and

3.2 immediately implies that each Xij reaches a stable equilibrium value

X⋆
ij =

1

m
pij x

⋆
i y

⋆
j . (3.4)

Here, and in Fig. 3.3, we see clearly that the net pattern of patch occupancy in an equilibrial

landscape is shaped by the particular rates at which a focal species i can colonize and

establish in patches of type j (pij), as well as the overall abundance of i and availability

of j in the system (x⋆i y
⋆
j ). These two factors can be identified with “species sorting” and

“mass effects” processes, respectively, which are usually viewed as two ends of a continuum

for metacommunity dynamics [139, 217]. While many studies of metacommunities focus on

determining the importance of one or the other process in a particular community, our model
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Figure 3.3: Pattern of habitat association reflects combination of species sorting and mass
effects. The joint distribution of species and patch types at equilibrium, X⋆

ij (Eq. 3.4),

at bottom, is shaped by the matrix of colonization and establishment rates P (left) and
the overall abundance of species and vacant patch types in the ecosystem xyT (right).
The left pattern sets an expectation based on species’ habitat preferences (in this example,
strong specialization on distinct patch types), while the right pattern shows the expected
distribution if patches were homogeneous. The actual pattern of habitat association is the
element-wise product of the two. Here each matrix is normalized so that the elements sum
to one. Higher values are indicated by light colors (yellow), and low values by dark colors
(blue).

quantitively predicts how the two should act together to shape observed patterns of habitat

association.

3.3 Endogenous heterogeneity

Next, we consider how community dynamics change when patch heterogeneity is no longer

a static feature of the environment, but an outcome of biotic feedbacks. For simplicity and

for compatibility with the framework developed for exogeneous heterogeneity, we maintain

the assumption that patches can be classified into distinct types, although now we speak of
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patch states, since these attributes change through time. Each patch state is associated with a

distinct species, reflecting the impacts of that species on local environmental conditions. For

example, we might consider distinct soil microbial communities associated with particular

host plants [27, 210, 191], immune statuses corresponding to recent infection history in

vertebrate hosts [133], substrate morphologies shaped by benthic “ecosystem engineers”

[145, 88], or chemical concentrations maintained by different bacterial strains [196, 9]. Thus,

the number of species and patch states are both n, and we assume these are labelled so that

state i corresponds to legacy effects of species i. As before, patch states affect the dynamics

by governing the rate of colonization and establishment by each species in the community.

We approximate changes in local environmental conditions as discrete shifts between

patch states. In a patch occupied for some time by species i, we assume that the local

population of species i can drive a transition from the current patch state to state i at some

rate d. In principle, this rate might depend on both the current patch type and the identity

of the occupant species, but we focus on the case where d is constant. This scenario naturally

describes systems where some external disturbance, occurring at a constant rate across the

landscape, is needed to shift patches between alternative states, or where species all species

modify their environment at roughly equal rates.

With biotic feedbacks operating, the distribution of patch states in the landscape, w, is

now a dynamic variable. But given a particular distribution of patch statesw(t) at time t, we

assume the instantaneous dynamics of colonization and extinction are exactly the same as in

Eq. 3.1. This leads to the following model for a community with endogeneous heterogeneity:
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dxi(t)

dt
= −mxi(t) + xi(t)

n∑
j=1

pijyj(t)

dyj(t)

dt
= m

(
wj(t)− yj(t)

)
− yj(t)

n∑
i=1

pijxi(t)

dwk(t)

dt
= d
(
xk(t) + yk(t)− wk(t)

)
(3.5)

Intuitively, the total proportion of patches in state k increases when the number of patches

occupied by species k, regardless of state, exceeds the total number of occupied patches in

state k, regardless of occupant (given by wk(t)− yk(t); see Supporting Information 3.6.2 for

a detailed derivation of Eq. 3.5).

The dynamics of Eq. 3.5 can be much more complex than Eq. 3.2 – potentially includ-

ing non-equilibrium coexistence or multistability – making it difficult to fully characterize

the behavior of this model. To make progress, we first consider two limiting cases where

patch dynamics and underlying landscape dynamics operate on very different timescales,

permitting a natural simplification of the model via fast-slow decomposition [240, 179].

In the first case, all species modify their local environment extremely rapidly. Conse-

quently, the state of a vacant patch will invariably reflect the identity of the most recent

resident species. Formally, this scenario represents the limit where d → ∞, and we can apply

a fast-slow decomposition. Treating x(t) and y(t) as fixed, because these variables change

slowly compared to the patch states, w(t), the
dw(t)
dt become a set of n decoupled differential

equations, each with a stable equilibrium where wk(xk(t), yk(t)) = xk(t) + yk(t). We take

w to be at this equilibrium at all times and substitute in the dynamics for y(t) to produce

the slow system:
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dxi(t)

dt
= −mxi(t) + xi(t)

n∑
j=1

pijyj(t)

dyj(t)

dt
= mxj(t)− yj(t)

n∑
i=1

pijxi(t)

(3.6)

In fact, this system is precisely the model we have studied previously [164].

At the opposite extreme, patches change state very slowly (that is, rarely). This limit

corresponds to a system where patches resist modification – for example, where patch states

are alternative stable states [189, 9] – but species occasionally drive patches from one state

to another. Again, we consider a fast-slow decomposition, now with d → 0. Taking w(t) as

fixed over short timescales, we obtain a fast system that is identical to Eq. 3.2. Provided

the equilibrium (Eq. 3.3) for this system is feasible, we have seen that it is globally stable,

so we take x(t) and y(t) to be at this equilibrium (as a function of w(t)) at all times. Then

we find the slow system for the gradual evolution of patch states:

1

d

dw(t)

dt
=

((
D(P−11)PT

)−1
− I

)
w(t) +m

(
P−1)

A1 (3.7)

Here I is the identity matrix of size n and SA denotes the anti-symmetric part of a matrix,

SA = S − ST . This system is a matrix differential equation, which is very amenable to

analysis. In Supporting Information 3.6.2, we prove that Eq. 3.7 has a unique equilibrium

solution, w⋆, which is always feasible if y⋆ = mP−11 is feasible, and which guarantees the

feasibility of x⋆. This equilibrium may be stable or unstable, depending on the structure of

the colonization rate matrix P . We derive a simple graphical condition that characterizes

the stability of Eq. 3.7 in terms of the eigenvalues of PD(P−11), which is a weighted version

of P reflecting the distribution of vacant patch states at equilibrium (see Fig. S1). This

normalization by P−11 removes any effect of the overall quality of different habitat types.
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Figure 3.4: Stable feedback dynamics converge to fast-slow limit. Here we show the evolution
of species frequencies (top) and the distribution of patch states (bottom) over time when
feedbacks are slow. Colored lines indicate the solution obtained by numerically integrating
Eq. 3.5 with d = 10−5. Dashed lines show the predicted dynamics using the fast-slow
decomposition. The predictions for patch states were obtained by solving the slow system
(Eq. 3.7), and the predictions for species’ frequencies were calculated from the predictedw(t)
using Eq. 3.3 at each time point. The dynamics rapidly collapse to the slow manifold derived
analytically. In these simulations,m = 0.1 and the elements of P were sampled symmetrically
iid from the standard uniform distribution until a feasible and stable parameter set was found
(parameters available at [166]). Note that time is shown on a log scale, to highlight dynamics
on long and short timescales.
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In the special case where P is symmetric (i.e., pij = pji), the analysis and interpretation

of the model become even simpler. This kind of symmetry may arise naturally (at least

approximately) in systems where the effect of one species’ habitat modifications on another

species’ establishment rate depends on some measure of similarity between them. For ex-

ample, the degree of “spillover” of Janzen-Connell effects between two tropical tree species

is a function of their phylogenetic relatedness [75]. In this symmetric case, x⋆, y⋆, and w⋆

all become proportional to P−11. This equilibrium is stable if and only if P has exactly one

positive eigenvalue. We prove this result in Supporting Information 3.6.2 and also show that

this characterization of stability extends somewhat beyond the context of strict symmetry.

For arbitrary P , if exactly one eigenvalue of PD(P−11) lies in the right half of the complex

plane, then the coexistence equilibrium is stable (although this condition is only necessary

for stability if P is symmetric).

Precisely the same stability condition characterizes the dynamics of Eq. 3.6 when P is

symmetric. Miller and Allesina [164] showed that P having exactly one positive eigenvalue

can be interpreted as a quantitative generalization of the notion that each species must

modify the environment in a way that disadvantages itself in order to generate negative

frequency-dependent feedbacks that maintain diversity. The appearance of this stability cri-

terion at both limiting extremes of Eq. 3.5 suggests that it applies more broadly to feedbacks

on any timescale. Indeed, in Supporting Information 3.6.2, we prove that this condition char-

acterizes local stability of the coexistence equilibrium when P is symmetric for any value

of d. There are other qualitative similarities between the dynamics with very fast and very

slow feedbacks. In particular, we have shown that feasibility in both cases depends only on

y⋆; there is always a distribution of patch states w⋆ compatible with feasibility, and the

system will evolve toward this configuration when a stability criterion is met. This behavior

stands in contrast to the model with exogenous heterogeneity (Eq. 3.2), where any feasible

equilibrium is stable, but feasiblity depends on w.
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The dynamics of fast and slow feedbacks are not entirely identical, however. The fast-

feedback dynamics (Eq. 3.6) can exhibit stable limit cycles when P is not symmetric [164].

Because Eq. 3.7 is a linear system, this behavior is impossible when feedbacks occur on

very long timescales. But as d → 0, the model can still exhibit complex dynamics in the

form of long transients [95]. In Fig. 3.5, we illustrate two interesting and ecologically

relevant behaviors that can arise. First, if P meets the stability condition for the slow

system (Eq. 3.7), then the dynamics will eventually reach a stable, feasible equilibrium.

However, w(t) may transiently take on values that are incompatible with the feasibility of

some species (i.e., some xi(w(t)) < 0 for a range of t). In this case (Fig. 3.5A), the dynamics

will “jump” between feasible subsystems where some species reach extremely low frequencies.

In natural systems with finite size, this might lead to the extinction of these species before

the coexistence equilibrium is reached. Alternatively, in very large systems or where there is

a source of immigration that can rescue populations from rarity, the dynamics will be highly

episodic as the system abruptly switches between feasible states, potentially over long times.

If instead P is not compatible with stability, some species will eventually be excluded

from the system due to long-term feedbacks between the community and the landscape. On

short timescales, however, the distribution of patch states is approximately constant, and

the dynamics of Eq. 3.5 will closely resemble Eq. 3.2. In particular, species frequencies will

be stable to perturbations. Thus, we can find surprising scenarios where a species rapidly

recovers from reduction to low abundance in the short term, even though it is ultimately

doomed to a gradual extinction (Fig. 3.5B).

These two scenarios illustrate that species’ ability to invade when rare can change at

different points in the dynamics, as the community modifies conditions across the landscape.

62



Figure 3.5: Complex transient dynamics when environmental feedbacks are much slower
than community dynamics. Here we show species’ frequencies (x(t)) for the two scenarios
described in the text. (A) When the slow system (Eq. 3.7) is stable, the ecosystem will
eventually evolve toward a distribution of patch states such that species coexistence is fea-
sible. However, if w is transiently incompatible with feasibility of the full community, the
system will jump between (transiently) feasible sub-communities, leading to highly episodic
dynamics. Each species reaches very low abundances during the transient dynamics, which
would lead to extinctions in the absence of immigration or storage mechanisms (e.g., seed
banks). (B) When the slow system is unstable, one or more species will eventually be ex-
cluded, but very gradually. During the transient period, the frequencies of all species are
robust to perturbations. Here, the green species, which is driven to extinction by the long-
term feedback dynamics, rapidly recovers from reduction to near extinction (dashed line)
early in the dynamics. In these simulations, m = 0.5, d = 10−5, and the elements of P were
sampled iid from the standard uniform distribution until the desired properties were found
(parameters available at [166]).

63



3.4 Discussion

Environmental heterogeneity is commonly understood to beget species diversity, but the con-

verse can also be true. To better understand the relationships between the two, we introduced

a simple, tractable modeling framework for species coexistence in an ecosystem where habi-

tat heterogeneity is either a fixed feature of the landscape, or dynamically generated through

biotic feedbacks. Our models, which are grounded in the metapopulation formalism, add

to the rich literature on species coexistence in spatially-varying environments, and advance

ecologists’ growing understanding of feedbacks between multispecies communities and envi-

ronmental variation. For fixed, or exogeneous, heterogeneity, our work extends classic models

[108, 106, 218], recapitulates foundational theory in a new setting [48, 116, 47], and formalizes

a connection between habitat partitioning and consumer-resource dynamics. In the context

of endogenous heterogeneity, our model demonstrates how environmental modification by

different species can lead to the stable maintenance of landscape and species diversity over

long time scales, and clarifies the conditions under which these processes will occur. The

minimal nature of our model makes it a promising tool to understand generic aspects of such

feedbacks, which have been studied in many system-specific contexts [31, 133, 196].

Crucially, our approach also allows us to study exogenous and endogenous heterogeneity

in a shared framework, revealing similarities and differences between coexistence mediated

by both kinds of environmental variation. We showed that coexistence under endogenous

heterogeneity is sensitive to the distribution of patch types in a landscape, but that the

stability of a coexistence equilibrium is insensitive to the structure of species’ colonization

and establishment rates. When heterogeneity is endogenously generated, in contrast, the

ecosystem has the capacity to “self-tune” the distribution of patch states to ensure feasibility.

However, the landscape will only evolve toward this coexistence equilibrium if species’ patch

modifications generate negative frequency-dependent feedbacks. We derived quantitative

criteria for such feedbacks to maintain coexistence, and showed that these same criteria
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apply whether species modify the environment on very short or very long timescales. While

the model dynamics are not identical at these two extremes, there are qualitative similarities

that distinguish the endogenous cases from the exogenous one.

Although our models are quite abstract, they may nonetheless be useful for inference

in natural systems. Eq. 3.4 expresses a relationship between the joint distribution of patch

types and resident species at equilibrium (X⋆
ij), and the model parameters pij . An identical

relationship holds for Eq. 3.5 once the distribution of patch states has equilibrated. We

have discussed how this relationship expresses a net pattern of habitat association that

emerges from the combined effects of species sorting and mass effects. By inverting this

relationship, one can also obtain an estimator for each pij parameter (up to a constant

factor, m) in terms of X⋆
ij and the marginal frequencies x⋆i and y⋆j . In principle, these

frequencies could be computed in systems where well-resolved census and environmental

data are available. Such data have been collected for plant communities [94, 192]. This

method makes it possible to estimate dynamical model parameters from static, observational

data, which is highly desirable for systems such as tropical forests where the slow pace of

dynamics complicates experimental or time-series analysis. However, an important challenge

to putting this approach into practice is defining operational patch types in context.

Our results suggest other practical considerations for inference and management in nat-

ural landscapes. For example, we found that manipulating the distribution of patch types

in a landscape (with exogenous heterogeneity) can produce unexpected changes in the dis-

tribution of species frequencies. In particular, we illustrated a case where increasing habitat

diversity quantitatively decreased species diversity qualitatively, even though all species were

specialized on different habitat types [108, 218]. Without a very accurate knowledge of P , it

is difficult to predict the effects of a perturbation to the landscape, and without considering

the entire community context, it is impossible to determine important practical thresholds,

such as the minimum abundance of a habitat type needed to sustain a species that relies on
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it. As another example, we showed that biotic feedbacks can produce situations where all

species are transiently resilient to perturbations, despite long-term dynamics that drive some

of them to extinction. In such systems, efforts to characterize stability using experimental

perturbations or analysis of population fluctuations over short timescales may be misleading

about stability over longer timescales [95].

Of course, the abstract formulation of our model means that significant caveats may

apply. We sought to explore the relationships between habitat heterogeneity, environmental

feedbacks, and species coexistence in a minimal framework for these processes; therefore our

model necessarily neglects other important processes present in real ecosystems. Following

other patch models, our framework assumes no local co-occurrence of species, and therefore

no direct species interactions. This allows us to isolate dynamics mediated by landscape het-

erogeneity, but direct interactions are certainly crucial in many systems, and within-patch

dynamics might interact with regional dynamics in non-trivial ways. We also treat space

implicitly in our model, but the spatial structure of ecological landscapes could shape how

patch modification and dispersal interact. For example, a recent theoretical analysis incor-

porating both habitat partitioning and Janzen-Connell effects (endogenous heterogeneity)

showed that these processes can combine to promote coexistence in a strongly synergistic

manner when the spatial autocorrelation of patches is accounted for [223]. Even when only

one source of heterogeneity is present, the spatial arrangement of patches could modulate

our understanding of coexistence, for instance by reducing source-sink effects that limit the

coexistence of imperfect habitat specialists [226].

Our approach also relies on a highly idealized implementation of environmental modi-

fication and legacy effects. We assume that patches can be classified into discrete types,

and when heterogeneity is generated by the community, we assume that each species’ effects

on the environment can be summarized by a single patch state. This discreteness will only

approximate the variation of environmental conditions in some natural systems, although in
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others it may be apt. For instance, plant-associated microbial communities can differenti-

ate into discrete types [27, 210, 191]. We also assume that when environmental conditions

change, they do so by shifting abruptly between these discrete states. In reality, local condi-

tions may change gradually, potentially reflecting the legacy effects of multiple past resident

species at a single time, especially when change is slow (e.g., in the d → 0 limit).

Intriguingly, one case where these simplifying assumptions might apply directly even in

the d → 0 limit comes from multi-strain pathogen systems [133]. It has long been known

that a host’s first infection by a pathogen can induce a lifelong imprinting effect, specific to

the strain of first infection, that shapes future immune response [176]. This phenomenon,

known as original antigenic sin, can have consequences at the level of population and strain

dynamics. Recasting individual hosts as patches, and imprinting effects that modulate sus-

ceptibility as patch states, our model maps naturally onto these dynamics. Here, changes in

the “landscape” occur not through shifts between states, but through demographic turnover

that replaces imprinted hosts (lost to mortality) with näıve, newborn hosts on timescales

much longer than infection dynamics. In Supporting Information 3.6.2, we show that an al-

ternative model incorporating these processes behaves qualitatively identically to the model

studied above. Our modeling approach could help explain how imprinting effects affect the

maintenance of strain diversity. Interestingly, [164] showed that the stability criterion for

symmetric feedbacks would imply a “burden of diversity” in such systems – greater strain

diversity would raise the threshold for interventions aimed at eradicating the pathogen [97].

This example aside, our mathematical description of environmental modification is likely

to be just a coarse approximation in many systems. Still, our approach provides a tractable

way to link environmental conditions and community composition across varied timescales,

offering a first step toward a more complete picture of these landscape feedbacks in a mul-

tispecies context. It has become increasingly clear that such feedbacks play a central and

ubiquitous role in mediating interspecific interactions, whether maintaining species coex-
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istence [31, 260], shaping patterns of abundandance and productivity [203, 155, 170], or

driving species invasions [258, 250, 9]. Ecosystems are rarely a one-way street from land-

scape variation – set by abiotic features or “bottom-up” biotic process – to species diversity;

understanding the dynamic interplay between environmental heterogeneity and “top-down”

habitat modification is an important goal for ecology [57, 181, 170]. Simple models for these

processes can illuminate essential features of each source of heterogeneity, and guide the way

to unraveling how they interact and contribute to structuring natural communities.

3.5 Materials and methods

All computations were conducted in R (version 3.6.3). Where dynamics are shown, the

model equations were integrated numerically using the deSolve package with the “ode45”

Runge–Kutta method. Code to generate all figures and simulation results, including all

parameters used in the text, is available on GitHub [166].

3.6 Supporting information

These supplementary materials are organized by the type of heterogeneity. We provide

derivations, analysis, and commentary for the results stated in the Main Text.

3.6.1 Exogenous heterogeneity

In these sections, we derive and analyze the mathematical models for exogenous environ-

mental heterogeneity (Eqs. 3.1-3.2) that appear in the Main Text.

Model reduction

We begin with the mathematical model
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dXij(t)

dt
= −mijXij(t) + pijyj(t)

ℓ∑
k=1

Xik(t) for 1 ≤ i ≤ n and 1 ≤ j ≤ ℓ

dyj(t)

dt
=

n∑
i=1

mijXij(t)− yj(t)
n∑

i=1

pij

ℓ∑
k=1

Xik(t) for 1 ≤ j ≤ ℓ

(3.8)

which is introduced and motivated in the Main Text. These dynamics can be viewed as a

straightforward extension of classic metapopulation models to include ℓ patch types and n

species, with colonization rates pij that depend on the combination of patch type and species

identity.

The total number of patches of each type, whether vacant or occupied, is constant through

the dynamics. Defining these quantities by wj = yj(t) +
∑

iXij(t), we have that
dwj
dt = 0,

which can be verified by summing the derivatives in Eq. 3.8. Naturally, then, we also have∑
j wj constant, and we take this total to be 1, so that all model variables can be interpreted

as proportions, or frequencies.

Assuming mij = m, as in the Main Text, we can simplify Eq. 3.8 by summing over patch

types in the Xij . We find that

∑
j

dXij(t)

dt
=

d
∑

j Xij(t)

dt
= −m

∑
j

Xij(t) +
∑
j

pijyj(t)
ℓ∑

k=1

Xik(t) (3.9)

and, defining xi(t) =
∑

j Xij(t), the total proportion of patches occupied by species i, we

have the reduced model

dxi(t)

dt
= −mxi(t) + xi(t)

l∑
j=1

pijyj(t)

dyj(t)

dt
= m

∑
i

Xij(t)− yj(t)
n∑

i=1

pijxi(t) .

(3.10)
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Eq. 3.10 still contains the quantities
∑

iXij(t), which are the total proportions of occu-

pied patches of type j. Because the total proportion of patches of each type is constant, we

can express
∑

iXij(t) = wj − yj(t) and re-write Eq. 3.10 only in terms of xi(t) and yj(t)

variables:

dxi(t)

dt
= −mxi(t) + xi(t)

ℓ∑
j=1

pijyj(t)

dyj(t)

dt
= m

(
wj − yj(t)

)
− yj(t)

n∑
i=1

pijxi(t)

(3.11)

This is Eq. 3.2 in the Main Text. Notice that Eq. 3.11 does not uniquely determine the

dynamics of Eq. 3.8. However, we will see that a stable equilibrium for Eq. 3.11 implies a

stable equilibrium solution for Eq. 3.8, so we concentrate on studying Eq. 3.11. As noted

in the Main Text, Eq. 3.11 is typically a much smaller system than the full dynamics,

because the size of this model grows with the sum of the number of patch types and species,

rather than the product. Eq. 3.11 is also formally equivalent to widely-studied consumer-

resource models with abiotic resources, making it possible to leverage known properties of

such models.

Coexistence equilibrium and feasibility

In order to study the coexistence equilibrium (i.e. equilibrium where all species are present

at positive abundances) of Eq. 3.11, it is convenient to express the model in matrix form.

Using the notational conventions of the Main Text, we have
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dx(t)

dt
= −mx(t) +D(x(t))Py(t)

dy(t)

dt
= m

(
w − y(t)

)
−D(y(t))PTx(t) .

(3.12)

Here P is an n × ℓ matrix. As discussed in the Main Text, coexistence of all species

requires that n ≤ ℓ. We focus on the case where n = ℓ, and so P is a square matrix.

However, we note that there is a growing literature on typical properties of this model (in the

consumer-resource context) when n < ℓ, which could be applied to understand coexistence

in heterogeneous landscapes using the equivalence established here [241, 60]. We will also

assume that P is invertible, which requires that there are differences among species in their

ability to colonize different patch types.

Under these assumptions, the coexistence equilibrium frequencies can be obtained by

setting the derivatives in Eq. 3.12 to zero, and then solving for x⋆ and y⋆. We find

y⋆ = mP−11

x⋆ = m
(
PT )−1

(
D(y⋆)−1w − 1

)
.

(3.13)

Feasibility of this equilibrium requires that all P−11 > 0, and that
∑

j y
⋆
j = m1TP1 < 1.

The latter condition effectively sets an upper bound on the local extinction rate, m; the

condition can always be met if this rate is sufficiently small. Feasibility of the x⋆ is also

sensitive to the distribution of patch types, w, as explored in the Main Text. Our analysis of

the model with endogeneous heterogeneity, below, will imply that, if y⋆ is feasible, there is

always at least one admissible (i.e. positive and summing to one) w such that x⋆ is feasible.

Thus, the condition P−11 > 0 plays a fundamental role in determining whether species

coexist.

We briefly consider the interpretation of this condition in ecological terms. Fully char-
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acterizing the relationship between P and feasibility is a difficult problem with no simple

account despite significant study of the same underlying mathematical relationship in other

contexts [205, 213, 204, 190]. This condition expresses the fact that Py = 1 must have a

positive solution, or in other words, there must be some possible distribution of available

patch types such that all species attain equal effective colonization rates (i.e. colonization

rate averaged over the distribution of available patch types:
∑

j pijyj). More loosely, we can

interpret this condition as requiring that all species are sufficiently similar in overall colo-

nization ability, or sufficiently specialized on distinct habitat types, or some combination of

the two.

To justify this statement, we first re-write P in a more interpretable form. One can think

of p̄i = 1
ℓ

∑
j pij as summarizing the overall colonization ability of species i – this is the

average colonization rate for species i across all patch types. We can express P as

P = ℓD(p̄)Q (3.14)

where Q is a row stochastic matrix. The elements of Q represent the relative establishment

ability of each species in different patch types. Intuitively, Q captures the degree of spe-

cialization of each species – if the elements of Q are of similar magnitude within a row, the

corresponding species is not strongly specialized on a particular habitat.

Now we can show that if all species are exactly equal in overall colonization ability, or

perfectly specialized on distinct habitat types, then coexistence is always feasible. In the

first case, p̄i = p̄ for all species, so P−11 = 1
p̄ℓQ

−11. Because Q is row stochastic, Q−1 is

also, and so y⋆ = m
p̄ℓ1, which is all positive. In the second case, Q is the identity matrix,

so P is a positive diagonal matrix, and y⋆i = m
p̄iℓ

> 0. These two extreme cases show that

when all species have equal overall colonization ability, coexistence is feasible regardless of

specialization, and similarly when all species are perfectly specialized, coexistence is feasible

regardless of overall colonization abilities.
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Next we develop a quantitative version of the statement that some combination of equality

and specialization is necessary for feasibility. Assume that all species are able to colonize

and establish in all habitat types at some non-zero rate. Let q′ be the minimum element of Q

(i.e. the smallest relative establishment ability of any species in any patch type). q′ provides

one measure of specialization in the community. Larger q′ implies less overall specialization,

while small q′ means that there is at least one species that relies on certain habitat types

much less than others. We prove that there is now a limit on how much any two species can

differ in their overall colonization ability before feasible coexistence is precluded. Assume

that two species, i and j, have p̄i = ϵp̄j . For feasible coexistence, there must be some positive

y such that

∑
k

qikyk =
1

ϵ
and

∑
k

qjkyk = 1 (3.15)

From the former equality we have
∑

k yk ≥ 1
ϵ , because the elements of Q are between

zero and one. Then we know that the latter sum is at least equal to q′
ϵ . If ϵ < q′, then this

sum is greater than one, which contradicts the equilibrium conditions. Thus, any two species

in the community must be have overall colonization abilities within a factor of 1
q′ , and we

have a quantitative statement of the notion that a certain degree of specialization requires

a sufficient amount of similarity among species for coexistence. We make no attempt to

sharpen this bound; we simply emphasize that these two ecologically meaningful attributes

are constrained by one another.

Stability analysis

It is known, in the context of consumer-resource theory, that the coexistence equilibrium of

Eq. 3.11 is always globally stable if it is feasible (see e.g. [157]). Global stability means that

trajectories of the system will approach the equilibrium from any initial condition where
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all species are present. For completeness, we outline a proof of this fact by constructing a

Lyapunov function for the dynamics.

A Lyapunov function for an autonomous dynamical system dz
dt = g(z), with z ∈ Rn, is

a continuous scalar function V : Rn → R that has continuous first derivatives and satisfies

the following:

1. V (z) > 0 except for an equilibrium point z⋆, where V (z⋆) = 0

2. dV
dt < 0 except when z = z⋆, where dV

dt = 0

In words, V is a positive function that is strictly decreasing through the dynamics, until

reaching a minimum at z⋆. The existence of such a function implies that the point z⋆

is globally Lyapunov stable. For a thorough discussion of Lyapunov functions and global

stability, see [35, 89].

Unfortunately, there is no general method to construct Lyapunov functions. However,

we illustrate how one can sometimes be found using a technique called Generalized Lotka-

Volterra (GLV) embedding, which exploits the facts that (i) a large class of differential equa-

tions can be recast as GLV systems, and [234] (ii) well-studied candidate Lyapunov functions

for GLV systems are known [78]. Thus, GLV embedding removes some of the need for “divine

inspiration” that is usually require to find Lyapunov functions. For more detailed exposition

of this method, see [199, 234, 164].

Eq. 3.11 is not a GLV system, but we can define the new variables rj(t) = 1
yj(t)

and

“recast” the model as the larger system

74



dxi(t)

dt
= xi(t)

−m+
ℓ∑

j=1

pijyj(t)


dyj(t)

dt
= yj(t)

(
−m+ wjrj(t)−

n∑
i=1

pijxi(t)

)
drj(t)

dt
= rj(t)

(
m− wjrj(t) +

n∑
i=1

pijxi(t)

)
(3.16)

subject to the constraints rj(0) = 1
yj(0)

on the initial conditions. This system is a GLV

model. If we define the vector of abundances z(t) = (x(t),y(t), r(t)), Eq. 3.16 can be

written as
dz(t)
dt = D(z(t)) (Mz(t) + λ) with

M =


0 P 0

−PT 0 D(w)

PT 0 −D(w)

 and λ =


−m1

−m1

m1

 . (3.17)

Now we that we have a GLV system, we can try to apply the well-known candidate

Lyapunov function [78]

V (z(t)) =
∑
i

γi

(
zi(t)− z⋆i − z⋆i log

(
zi(t)

z⋆i

))
(3.18)

where γ is a vector of non-negative constants, and z⋆i is the equilibrium value of the corre-

sponding component of z. Defined this way, V is positive everywhere except at the coexis-

tence equilibrium [78]. The time derivative of V is given by

V̇ (z(t)) = (z(t)− z⋆)T
(
D(γ)M +MTD(γ)

)
(z(t)− z⋆) (3.19)

and thus we seek a choice of γ such that V̇ (z(t)) ≤ 0 for all times. Consider γ = (1,1,0)T .

Then we find

75



V̇ (z(t)) = 2(y(t)− y⋆)TD(w)(r(t)− r⋆) . (3.20)

But we know that rj(t)− rj(t)
⋆ = 1

yj(t)
− 1

y⋆j
= −

yj(t)−y⋆j
yj(t)y

⋆
j

and so

V̇ (z(t)) = −2
∑
j

wj

(
yj(t)− y⋆j

)2
yj(t)y

⋆
j

≤ 0 . (3.21)

This expression is actually zero whenever y(t) = y⋆, regardless of whether x(t) is also at

equilibrium. But we note that if y(t) = y⋆ and x(t) ̸= x⋆, then
dy(t)
dt ̸= 0 and the trajectory

leaves the set where V̇ (z(t)) = 0. Thus, LaSalle’s invariance principle guarantees that the

coexistence equilibrium is globally stable.

The stability of this equilibrium for Eq. 3.11 immediately implies that the full model in

Eq. 3.8 also reaches a stable coexistence equilibrium. Taking x and y at equilibrium, the

dynamics for the joint distribution of species and patch types become:

dXij(t)

dt
= −mXij(t) + pijy

⋆
jx

⋆
i . (3.22)

These equations are now uncoupled from one another, and each has a stable (noting that

−m is always negative) equilibrium given by Eq. 3.4 in the Main Text.

3.6.2 Endogenous heterogeneity

In these sections, we derive and analyze the mathematical models for endogenous environ-

mental heterogeneity (Eqs. 3.5-3.7) that appear in the Main Text. We also introduce an

alternative model where environmental modification is tied to demographic turnover in a

host population, or strong disturbances that revert patches to a “näıve” state. We show

that our major conclusions are robust to this difference in model particulars.
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Model reduction

As described in the Main Text, we now consider a scenario where the type of each patch is

not fixed, but instead patches can be in one of n states, corresponding to the n species in

the community. When a patch in state j is occupied by species i, at some rate it may shift

to state i. This provides a phenomenological way to model habitat modification by each

species, which can change the state of the environment over some characteristic timescale.

Combining these new processes with the assumptions outlined for dynamics with exogenous

heterogeneity, we have a model analogous to Eq. 3.8, which in the most general case is given

by

dXij(t)

dt
= −mijXij(t) + pijyj(t)

ℓ∑
k=1

Xik(t)− dijXij(t) + δij
∑
k

dikXik(t)

dyj(t)

dt
=

n∑
i=1

mijXij(t)− yj(t)
n∑

i=1

pij

ℓ∑
k=1

Xik(t)

(3.23)

Here δij is the Kronecker delta, which equals one when i = j and zero otherwise. In this

model, we automatically have 1 ≤ i, j ≤ n by assumption. In general, the rate at which

species i modifies patches in state j might depend on both i and j, as shown here. Following

the exogeneous case, however, we assume mij = m and dij = d and track the dynamics for

xi(t) =
∑

j Xij(t). In this case, we must also track the dynamics of patch states, since these

are not fixed. We define wk(t) = yk(t)+
∑

iXik(t). Using these definitions to compute sums

of the derivatives in Eq. 3.23, we write the reduced model
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dxi(t)

dt
= −mxi(t) + xi(t)

n∑
j=1

pijyj(t)

dyj(t)

dt
= m

(
wj(t)− yj(t)

)
− yj(t)

n∑
i=1

pijxi(t)

dwk(t)

dt
= d
(
xk(t) + yk(t)− wk(t)

)
(3.24)

which is Eq. 3.5 in the Main Text.

As described in the Main Text, we can study this model in two limits (d → ∞ and d → 0,

corresponding to very fast and very slow feedbacks) where the equations become simplified.

These fast-slow decompositions rely on Tikhonov’s theorem [240], and are valid whenever

the coexistence equilibrium for the relevant fast system is feasible and stable. We know that

stability will hold in all cases, and in the limit d → ∞, feasibility is also guaranteed. In this

fast limit, Eq. 3.24 becomes identical to the model studied by [164]. We refer the reader to

this study for detailed analysis of the model dynamics. However, we note that Miller and

Allesina showed that when P = PT , the coexistence equilibrium is stable if and only if P

has exactly one positive eigenvalue. This condition reappears in the analysis below. Miller

and Allesina additionally discuss the ecological interpretation of this eigenvalue condition.

Stability for slow feedbacks

In the slow limit (d → 0), we take

y(t) = mP−11

x(t) = m
(
PT )−1

(
D(y(t))−1w(t)− 1

) (3.25)
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assuming that these fast variables rapidly approach their equilibrium given w(t), and then

substitute into the equations for
dw(t)
dt to obtain the slow system

1

d

dw(t)

dt
= m

(
PT )−1

(
D(mP−11)−1w(t)− 1

)
+mP−11−w(t)

=

((
D(P−11)PT

)−1
− I

)
w(t)−m

((
P−1)T − P−1

)
1

(3.26)

which is Eq. 3.7 in the Main Text. This decomposition holds when y(t) and x(t) are feasible,

which may not be true for all initial conditions w (see discussion in Main Text).

Eq. 3.26 is a linear matrix equation with several special properties. The constraint∑
k wk(t) = 1 implies that the dynamics should be confined to the simplex. These dynamics

can be expressed in terms of the eigenvectors and eigenvalues of A =
(
D(P−11)PT

)−1
− I.

We note that D(P−11)PT is column stochastic, so this matrix has a right eigenvector, which

we denote v, with an associated eigenvalue of 1. Because the matrix is non-negative, v is in

fact the Perron eigenvector of D(P−11)PT , and it is also non-negative [109]. It is easy to

see that Av = 0, which means that the dynamics have no component in this direction. The

remaining eigenvectors of A have components that sum to zero, as we verify by considering

1Tu =
1

λ
1TAu = 0 (3.27)

for any eigenvector u with associated eigenvalue λ ̸= 0. Here we used the fact that 1 is a

left eigenvector of A with an associated eigenvalue of zero. Because the dynamics can be

written as a linear combination of zero-sum eigenvalues, the dynamics for w are zero-sum,

and remain in the simplex, as expected.

Taking this constraint into account, Eq. 3.7 has a unique equilibrium given by

w⋆ = mP−11+ kv (3.28)
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where v is the eigenvector defined above, normalized such that 1Tv = 1, and k is the quantity

1−m1TP−11. We can verify that

1

d

dw⋆

dt
=

((
D(P−11)PT

)−1
− I

)
w⋆ −m

((
P−1)T − P−1

)
1

=

((
D(P−11)PT

)−1
− I

)(
mP−11+ kv

)
−m

((
P−1)T − P−1

)
1

= m
(
D(P−11)PT

)−1
P−11−mP−11+ 0−m

((
P−1)T − P−1

)
1

= m
(
P−1)T1−mP−11−m

((
P−1)T − P−1

)
1

= 0 .

(3.29)

Provided that P−11 > 0 and m1TP−11 < 1 (the feasibility conditions for y in the fast

system), this equilibrium is feasible. It also implies a feasible equilibrium for the species

frequencies, given by

x⋆ = m
(
PT )−1

(
D(y⋆)−1w⋆ − 1

)
= m

(
PT )−1

(
D(mP−11)−1

(
mP−11+ kv

)
− 1
)

= m
(
PT )−1

(
1+ kD(mP−11)−1v − 1

)
= k

(
D(P−11)PT

)−1
v

= kv

(3.30)

Here we used the definition of v, and the fact that v is a Perron eigenvector implies that all

components are positive.

It is worth noting that because the existence of this equilibrium is independent of the

timescales of the dynamics, these equilibrium calculations apply for Eq. 3.24, for any choice

of d.
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Finally, we consider the stability of this equilibrium (assuming again that d → 0). Tra-

jectories of Eq. 3.26 will approach w⋆ from any initial condition if and only if the matrix

A has eigenvalues with all negative real parts (excepting the zero eigenvalue, which corre-

sponds to directions forbidden by the zero-sum constraint). Equivalently,
(
D(P−11)PT

)−1

must have eigenvalues with real part less than 1. To relate this condition to the eigenvalues

of D(P−11)PT (or, equivalently, PD(P−11), which shares the same eigenvalues), suppose

that this matrix has an eigenvalue a + bi. The eigenvalues of an inverse matrix are the in-

verses of the eigenvalues, so
(
D(P−11)PT

)−1
has a corresponding eigenvalue with real part

a
a2+b2

. Thus, we require that a
a2+b2

< 1 or equivalently (a− 1
2)

2 + b2 >
(
1
2

)2
. Overall, the

Perron-Frobenius theorem implies that a2+ b2 < 1 (because D(P−11)PT has an eigenvalue

1), and stability requires that (a− 1
2)

2 + b2 >
(
1
2

)2
. In graphical terms, the eigenvalues of

D(P−11)PT must lie within a crescent-shaped region in the complex plane, within a circle

of radius 1 centered at the origin, and outside of a circle of radius 1
2 centered at a = 1

2 (see

Fig. 3.6). From this geometric picture, we immediately see that if all but one eigenvalue

(the Perron eigenvalue) of D(P−11)PT have negative real part, this is sufficient to ensure

stability.

The matrix PD(P−11) defines a natural normalization of P in this context – multiplying

by the diagonal matrixD(P−11) maps every eigenvalue into the unit disk. In more ecological

terms, this normalization also removes any effect of differences in overall quality between

patches. To see this, decompose P as QD(PT1), where Q is a column stochastic matrix

and PT1 are the column sums of P . Any differences in the overall quality of patches are

captured by PT1. Now we see that PD(P−11) is completely insensitive to PT1: we have

P−11 = D(PT1)−1Q−11, and so

PD(P−11) = QD(PT1)D(PT1)−1D(Q−11) = QD(Q−11) . (3.31)

In general, it is not possible to relate this stability condition more directly to P . However,
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in the special case where P is symmetric (i.e. P = PT ), this stability condition reduces to the

statement that the coexistence equilibrium is stable if and only if P has exactly one positive

eigenvalue. This because PD(P−11) is similar to the matrix S = D(P−11)1/2PD(P−11)1/2

(and therefore shares the same eigenvalues), and S is congruent to P (and therefore shares

the same number of positive, negative, and zero eigenvalues) [109]. This conclusion follows

from Sylvester’s law of inertia and relies on the symmetry of P . This symmetry also ensures

that P (and consequently S and PD(P−11)) has strictly real eigenvalues. From Fig. 3.6,

it is apparent that along the real line, the region of stability reduces to the interval (−1, 0).

In other words, the eigenvalues of P (excepting the Perron eigenvalue, as usual) must be

negative.

Stability for symmetric feedbacks on arbitrary timescales

The appearance of the necessary and sufficient stability condition P has exactly one positive

eigenvalue for symmetric feedbacks at two opposite limits of the dynamics suggests that this

condition should apply more broadly for Eq. 3.24 with feedbacks on any timescale (i.e any

choice of d). Here, we prove that this is indeed the case. In particular, we show that this

condition characterizes the local stability of the coexistence equilibrium of Eq. 3.24 whenever

P is symmetric.

If P = PT , the equilibrium frequencies found in the previous section simplify dramat-

ically. We find y⋆ = mP−1, x⋆ = k′y⋆ and w = (1 + k′)y⋆, where k′ = 1
m1TP−11

− 1.

That is, all three equilibrium vectors become proportional to P−11. This is easily verified

by noting that P−11 is a right eigenvector of D(P−11)PT = D(P−11)P with an associated

eigenvalue of 1.

This simple form for the coexistence equilibrium of Eq. 3.24 makes it possible to analyze

the Jacobian matrix for these dynamics at equilibrium. We find the Jacobian
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Figure 3.6: Graphical stability condition for Eq. 3.26. Stability of the coexistence equilibrium
is determined by the eigenvalues of D(P−11)PT (or, equivalently, PD(P−11)). This matrix
has a Perron (dominant) eigenvalue λ = 1, indicated here by a black X. The remaining n−1
eigenvalues fall within the unit disk in the complex plane (light blue shaded region). The
coexistence equilibrium is stable if these remaining eigenvalues all lie outside of a disk of
radius 1

2 centered at 1
2 on the real line (red shaded region). Thus, there is a crescent-shaped

stability region which must contain the non-Perron eigenvalues in order for the dynamics
to be stable. Notice that if all non-Perron eigenvalues have negative real part, then they
necessarily lie in the stability region, so this condition is sufficient to ensure stability. When
P is a symmetric matrix, all eigenvalues of PD(P−11) lie on the real line, so negativity of
the non-Perron eigenvalues becomes necessary, as well as sufficient, for stability.
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J =


0 k′D(y⋆)P 0

−D(y⋆)PT −m(k′ + 1)I mI

dI di −dI

 (3.32)

It is actually more convenient to work with another matrix, J ′, that is similar to J , and

thus shares the same eigenvalues [109]. We first define the change of basis matrix

U =


D(y⋆)1/2 0 0

0 D(y⋆)1/2 0

0 0 D(y⋆)1/2

 (3.33)

and then define J ′ = U−1JU . More explicitly, we have

J ′ =


0 mk′S 0

−mS −m(k′ + 1)I mI

dI di −dI

 (3.34)

where S = D(P−11)1/2PD(P−11)1/2. Following [164], we use the ansatz that the eigen-

vectors of J ′ all take the form (ui, c1ui, c2ui)
T , where ui is the ith eigenvector of S, and c1

and c2 are undetermined constants. We will show that each eigenpair of S generates three

associated eigenpairs of J ′, and the eigenvalues of S control the signs of the eigenvalues of

J ′.

With our ansatz, each eigenvalue of J ′ satisfies

J ′


ui

c1ui

c2ui

 = λ


ui

c1ui

c2ui

 (3.35)

and taking the matrix multiplication by blocks yields the following system of equations:
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mk′λ(S)iui = λui

−mλ(S)iui −m(k′ + 1)ui +mui = c1λui

d(ui + c1ui − c2ui) = λc2ui

(3.36)

where λ(S)i is the ith eigenvalue of S (which appears when we consider the definition of ui).

Provided suitable constants exist, this system of equations confirms our ansatz for the form

of the eigenvectors of J ′. These equations imply the scalar system

mk′λ(S)i = λ

−mλ(S)i −m(k′ + 1) +m = c1λ

d(1 + c1 − c2) = λc2

(3.37)

and using substitution for c1 and c2, we can reduce this system further to the cubic equation

λ3 + (m(k′ + 1) + d)λ2 + (k′m2λ(S)2i + dk′m)λ+ dk′m2λ(S)i(λ(S)i − 1) = 0 . (3.38)

We note that the coefficients of the first three terms are positive for any choice of the model

parameters. The constant term is negative if λ(S)i > 0, and positive if λ(S)i < 0 (noting

that the eigenvalues of S must be less than 1 in magnitude – see discussion in the previous

section). Descartes’s rule of signs implies that number of positive and negative roots is

controlled by the sign of the constant terms, and therefore by the sign of λ(S)i. If λ(S)i < 0,

there are zero positive roots; if λ(S)i < 0, there is exactly one positive root. There is one

special case to consider: we know that S has an eigenvalue of 1, and when λ(S)i = 1, the

constant term in the equation above vanishes, leading to a root λ = 0. This is consistent
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with our expectation that there is one direction pointing “out” of the simplex, along which

the dynamics cannot change.

Overall, this analysis shows that each eigenvalue of S generates three eigenvalues of J ′,

and the number of positive eigenvalues of J ′ is exactly one less than the number of positive

eigenvalues of S. In particular, J ′ has all non-positive eigenvalues if and only if S has exactly

one positive eigenvalue. Because S and P are symmetric and congruent, Sylvester’s law of

inertia dictates that the number of positive eigenvalues of P and S are the same, and we

recover the conjectured stability condition [109].

An alternative model

In some cases, it is natural to assume that changes in patch state are mediated by significant

disturbance events that remove any species present and reset the patch to a “näıve” state. In

the context of immune imprinting, discussed in the Main Text, this might actually represent

the replacement of an old patch (host) by a new one, due to births and deaths in the host

population. In other contexts, we might simply imagine severe perturbations, such as fire,

that clear the patch. Then the new state is determined by the next species to occupy this

näıve patch.

In this section, we introduce a modification of Eq. 3.24 that incorporates this kind of pro-

cess. We show that this modified model behaves qualitatively like Eq. 3.24 when disturbance

events are very rare and näıve patches are re-colonized sufficiently quickly.

We consider the model
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dxi(t)

dt
= −mxi(t) + xi(t)

n∑
j=1

pijyj(t) + cxi(t)
(
1−

n∑
j=1

wj(t)
)
− dxi(t)

dyj(t)

dt
= m

(
wj(t)− yj(t)

)
− yj(t)

n∑
i=1

pijxi(t)− dyj(t)

dwk(t)

dt
= cxk(t)

(
1−

n∑
j=1

wj(t)
)
− dwk(t)

(3.39)

where all variables have the same interpretation as before. Now d is interpreted as the rate of

disturbance in the system, and the new parameter c is the rate at which all species colonize

näıve patches. The frequency of näıve patches is represented implicitly as 1 −
∑n

j=1wj(t),

which we henceforth denote by z(t) for concision. In this model, all patches are subject to

disturbance, which leads to losses from the x and y variables, and changes in the distribution

of patch states (w) occur as näıve patches are colonized by different species, which set the

state of the patch.

In the limit where d → 0 and assuming z(t) is of the same order as d, we can apply a

fast-slow decomposition and show that the dynamics of Eq. 3.39 are essentially identical to

the slow limit of Eq. 3.24. By taking z(t) to be small, we are assuming that näıve patches

are recolonized sufficiently quickly (relative to d) so that the frequency of näıve patches in

the landscape is small. We will show that this assumption is consistent with the equilibrium

behavior for z(t).

In this limit, we take
dx(t)
dt = 0 and

dy(t)
dt = 0, assuming that these variables change and

equilibrate much more rapidly than the w(t) (more formally, we notice that all terms in

dw(t)
dt are of order d, taking d → 0). Then we obtain
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y(t) = (m+ d− cz(t))P−11

x(t) =
(
PT )−1

(
mD(y(t))−1w(t)− (m+ d)1

) (3.40)

which is nearly identical to equation Eq. 3.25. Now we consider the dynamics of z(t), given

by

dz(t)

dt
= −

d
∑

j wj(t)

dt
= d(1− z(t))− cz(t)

n∑
j=1

xj(t) (3.41)

Using Eq. 3.40, we have

dz(t)

dt
=

1

m+ d− cz(t)
×(

c(d+m)(1 + cq)z(t)2 − (cm(1 + qm) + d(c+m+ d+ 2cqm+ cqd)) z(t) + (m+ d)d
)

(3.42)

where q = 1TP−11. Under our assumptions that d and z(t) are small, the prefactor is

approximately equal to 1
m , and in particular, it will be positive. This means the dynamics

of z(t) are controlled by the quadratic factor. This factor can be well-approximated by

f(z(t)) = cm(1 + cq)z(t)2 − cm(1 +mq)z(t) +md . (3.43)

One root of f(z(t)) is small – using a binomial approximation, this root is approximately

d
c(1+mq)

. This root is associated with a stable equilibrium point for
dz(t)
dt , which we can

verify by noting that f(z(t)) is negative above this root and positive below. Thus, our initial

assumption that z(t) is of order d is supported. For z(0) small enough (precisely how small

will depend on the other root), z(t) will approach an equilibrium z⋆ ≈ d
c(1+mq)

. In other

88



words, provided the proportion of patches in the näıve state is initially small, it will remain

small through the dynamics.

Finally, we can consider the slow system

dw(t)

dt
=

(
cmz(t)

m+ d− cz(t)

(
D(P−11)PT

)−1
− dI

)
w(t)− c(m+ d)z(t)

(
P−1)T1 (3.44)

After sufficiently long times, we can take z(t) ≈ z⋆ in these dynamics. In this case, Eq. 3.44

becomes a linear matrix equation, very similar to Eq. 3.26. The matrix that multiplies w(t)

shares the same eigenvectors as the matrix A in Eq. 3.26; however the eigenvalues of the

two differ. As we have seen previously,
(
D(P−11)PT

)−1
has an eigenvalue of 1, and so the

matrix coefficient in this case has an eigenvalue

λ =
cmz⋆

m+ d− cz⋆
− d = −cq(m+ d)z⋆

1− z⋆
(3.45)

where the last equality follows from the equilibrium condition for z(t) (i.e. setting
dz(t)
dt = 0).

This eigenvalue is always negative, consistent with our conclusion that the proportion of näıve

patches, and so the sum of w(t), converges to equilibrium. The remaining eigenvectors of(
D(P−11)PT

)−1
sum to 0, as shown previously. So, as in the original model, the remaining

dynamics occur in a manifold where
∑

j wj is constant. What are the eigenvalues for these

directions? Denoting the eigenvalues of
(
D(P−11)PT

)−1
by λ′, we have

λ =
cmz⋆

m+ d− cz⋆
λ′ − d ≈ d

1 +mq
λ′ − d (3.46)

using our approximation z⋆ = d
c(1+mq)

. This implies that if Re(λ′) < 1 +mq, then λ < 0.

In particular, if Re(λ′) < 1, the real part of the corresponding λ will always be negative.

This is exactly the stability condition we found for the original model, and we see that the

conclusions for our original model apply here qualitatively.

89



CHAPTER 4

METAPOPULATIONS WITH HABITAT MODIFICATION

4.1 Introduction

Many interactions between species are realized indirectly, through effects on a shared environ-

ment. For example, consumers compete indirectly by altering resource availability [244, 46].

However, the ways that species affect and are affected by their environment extend far be-

yond the consumption of resources. Across the tree of life, and over a tremendous range of

spatial scales, organisms make complex and sometimes substantial changes to the physical

and chemical properties of their local environment [120, 250, 196, 148]. Many species also

impact local biotic factors; for example, plant-soil feedbacks are often driven by changes in

soil microbiome composition [250, 31, 188, 155].

Numerous studies have recognized and discussed the ways such changes can mediate

interactions between species, as well as the obstacles to modeling these complex, indirect

interactions [96, 31, 196, 119, 169]. In some instances, the effects of environmental modifi-

cation by one species on another can be accounted for implicitly in models of direct interac-

tions [253, 46, 3], or within the well-established framework of resource competition [169, 194].

But in many other cases, new modeling approaches are necessary.

Because the range of ecosystems where interactions are driven by environmental modifi-

cation is wide and varied, many parallel strands of theory have developed for them. Exam-

ples include “traditional” ecosystem engineers [86, 259, 111, 131, 197], plant-soil feedbacks

[31, 198, 250], and chemically-mediated interactions between microbes [169, 196]. Similar

dynamics underlie Janzen-Connell effects, where individuals (e.g., tropical trees) modify

Miller, Zachary R., and Stefano Allesina. “Metapopulations with habitat modification.” Proceedings of
the National Academy of Sciences 118, no. 49 (2021).
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their local environment by supporting high densities of natural enemies [118, 54, 15, 188],

and immune-mediated pathogen competition, where pathogen strains modify their hosts by

inducing specific immunity [85, 11, 76, 50]. These last two examples highlight that environ-

mental modification might be “passive”, in the sense that it is generated by the environment

itself.

While each of these systems has attracted careful study, it is difficult to elucidate gen-

eral principles for the dynamics of environmentally-mediated interactions without a simple,

shared theoretical framework. Are there generic conditions for the coexistence of many

species in these systems? What are typical relationships between diversity and ecosystem

productivity or robustness? We especially lack theoretical expectations for high-diversity

communities, as most existing models focus on the dynamics of one or two species [31, 86,

259, 250].

To begin answering these questions, we introduce and analyze a flexible model for species

interactions mediated by environmental modification. Two essential features of these inter-

actions – which underlie the difficulty integrating them into standard ecological theory –

are that environmental modifications are localized in space and persistent in time [96]. To

capture these aspects, we adopt the metapopulation framework, introduced by Levins [144],

which provides a minimal model for population dynamics with distinct local and global

scales. Metapopulation models underpin a productive and diverse body of theory in ecology

[92, 91], including various extensions to study multi-species communities [139, 82]. Here, we

adopt the simplest such extension, by assuming zero-sum dynamics and an essentially hori-

zontal community [245, 81]. Our modeling framework accommodates lasting environmental

modification by introducing a versatile notion of “patch memory”, in which the state of local

sites depends on past occupants.

In line with evidence from a range of systems, we find that patch memory can support the

robust coexistence of any number of species, even in an initially homogeneous landscape. We
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Figure 4.1: Metapopulation model with patch memory effects. (A) Schematic view of the
model. Patches (hexagons) may be occupied by any of n (here, 3) species (distinguished by
color and shape). Upon local extinction of the resident species, which happens at rate mi, a
patch becomes vacant, but retains a “memory” of the last resident (light color). The memory
state of a vacant patch determines the rate at which it is (successfully) re-colonized by each
species in the community (arrow thickness proportional to rate pij). Note that colonization
events occur at a rate proportional to the frequency of the colonizing species (pijxi), while
local extinction rates are constant per patch. Dynamics for the 3-species community with
colonization rates (P matrix) given in (B) are shown in (C). The frequency of patches
occupied by each species (xi) is shown with solid lines of the corresponding color, while
vacant patches in each memory state (yi) are shown with dashed lines. In this example,
the colonization rate matrix is symmetric and has exactly one positive eigenvalue, so the
community exhibits stable coexistence (see section Symmetric memory effects). In (C), m =
1 for all species.

derive quantitative conditions for species’ coexistence and show how they connect to existing

conceptual models. Importantly, these conditions apply even as several model assumptions

are relaxed. We also investigate an emergent relationship between species diversity and

robustness, demonstrating that our modeling framework can provide new insight for a variety

of systems characterized by localized environmental feedbacks.
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4.2 Results

4.2.1 Model

We consider a community of n species inhabiting a landscape composed of many local

patches, all linked by dispersal. At any time, each patch may be occupied by a single

species or vacant. A patch becomes occupied by colonization from another patch, and is

made vacant by local extinction. In contrast to traditional metapopulation models, vacant

patches are not homogeneous. Instead, each vacant patch may be in one of n states, corre-

sponding to its last resident, and modeling the effects of modification by that resident. We

refer to these modifications collectively as patch memory effects. The ability of species to

successfully establish in a patch is sensitive to environmental state, and consequently the

state of a vacant patch determines the rate at which it is recolonized by any species in the

community.

A simple model for community dynamics incorporating these processes (Fig. 4.1) is:

dxi(t)

dt
= −mi xi(t) + xi(t)

n∑
j=1

pij yj(t)

dyi(t)

dt
= mi xi(t)− yi(t)

n∑
j=1

pji xj(t)

(4.1)

where xi(t) is the proportion of patches occupied by species i at time t and yi(t) is the

proportion of vacant patches in state i (i.e., last occupied by species i). The parameters

pij ≥ 0 specify the rate at which species i can colonize patches in state j. The local

extinction rate for species i is given by mi > 0.

This system has close connections to existing ecological models. Eq. (4.5) reduces to

the Levins’ metapopulation model when n = 1. Neglecting memory effects, the underlying

n-species model is conceptually similar to a lottery system [206, 261]. And the full system
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is closely related to models of infectious disease with multiple strains and partial immunity.

As indicated above, when hosts are viewed as patches, with memory effects provided by

immunological memory, strain competition is characterized by precisely the kind of dynamics

that motivate this study. In fact, our model can be seen as a simplification of the model

by Andreasen et al. [11], describing a system with short-term immunity in which only the

most recent infection is tracked. As widely discussed in the literature on metapopulation

dynamics [92] and compartmental models in epidemiology [63], the form of Eq. (4.5) reflects

several standard assumptions: most notably, that the number of patches is large and fixed,

and that colonizers or propagules disperse randomly across the landscape. Depending on the

context, patches may represent local populations with fast within-patch dynamics, or sites

holding a single individual, such as trees in a forest [245].

Patch memory effects in this model are entirely captured by the matrix of species-by-state

colonization rates, P = (pij). Rather than track the (potentially many) internal properties

of each patch that affect and are affected by resident species, we incorporate them implicitly

through these rates. A change in patch state may increase or decrease the rate of colonization

by each species, as a net result of factors that facilitate or impede successful establishment.

This simplification permits us to model scenarios where the factors mediating patch memory

are unknown or complex, and to apply a common modeling framework across systems where

these mechanisms differ. Our approach builds on a rich literature modeling metapopulation

dynamics in heterogeneous landscapes [142, 106, 8]; however, in our model environmental

heterogeneity is generated by the community itself.

We also suppose that the state of a vacant patch depends only the last resident species,

and only affects species’ colonization rates, not local extinction rates. Both of these features

reflect an underlying assumption that species modify their local environment on a shorter

timescale compared to that of extinction. The modifications of each species “overwrite”

previous alterations, such that the earlier occupancy history of a patch has negligible effect
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A B C

Figure 4.2: Diversity and coexistence with species-specific memory effects. We consider
a pool of 4 species with negative memory effects α = (-0.9, -1.9, -1.6, -0.4) and β = 2.
These species coexist stably from any non-zero initial condition, provided that the common
extinction rate, m, is not too large. The maximum sustainable extinction rate, denoted
mmax, is a function of the species present. As successive species join the community (A),
mmax increases (B). Species introductions are marked with vertical gray lines. While mmax

always increases with diversity, eventually saturating at mmax = β (dashed line in (B)), the
frequency of individual species may increase or decrease. For example, in (A) the equilibrium
frequency of species 1 (blue) increases when species 2 (green) joins the community, but
decreases with each subsequent species introduction. (C) The positive relationship between
mmax and species richness means that whole-community collapse is possible when diversity
is reduced. Here, all species can coexist with m = 1.57, but when species 4 (orange) is
removed at time t = 100 (vertical gray bar), mmax drops below m, and all species go extinct.
In (A), on the other hand, m = 1, which permits coexistence at any level of richness. For
clarity, unoccupied patch frequencies are not shown.
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on current colonization rates. This kind of behavior arises naturally when all species modify

a small number of shared environmental features, such as pH or physical structure, and new

changes necessarily efface old ones [196, 148]. It is also likely to be a good approximation for

many communities where modifications wane without maintenance (see below), resulting in

patch memory that is effectively characterized by the most recent occupant [58].

When there is no patch memory (i.e., pij = pik for all i, j, and k), the model does not

generally admit a biologically feasible equilibrium (an equilibrium with all positive frequen-

cies). The only robust outcome in this case is the eventual extinction of all but one species.

However, with patch memory, any number of species may potentially coexist at equilibrium.

For a community of n species, this full coexistence equilibrium is unique if it exists. Assum-

ing P is invertible, the steady-state frequencies for vacant patches are simply y⋆ = P−1m,

where m = (m1,m2 . . .mn). In general, x⋆, the vector of steady-state frequencies for the

n species, is obtained by solving an eigenvector problem with no closed form solution (al-

though x⋆ can be written explicitly under special conditions). However, the signs of x⋆, and

thus the feasibility of the equilibrium state, can always be determined from y⋆ alone. In

Supporting Information 4.5.1, we show that the conditions y⋆i > 0 for all i and
∑

i y
⋆
i < 1

are necessary and sufficient for feasibility.

In this study, we are interested in understanding the long-term dynamics of the model.

We first consider cases in which P is highly structured, allowing a complete characterization

of the long-term dynamics. Then, we go on to examine conditions for coexistence in more

general parameterizations of the model.

4.2.2 Species-specific memory effects

When patch memory effects are species-specific, the colonization rate matrix, P , has a very

simple structure:
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pij =


β + αi , i = j

β , i ̸= j

. (4.2)

Here, β ≥ 0 is the “background” rate of colonization, and αi expresses the patch memory

effects of species i on conspecifics. We allow each αi to be positive or negative, subject to

αi > −β (ensuring colonization rates are non-negative). This form of P models a community

where every species modifies and responds to unique properties of the local environment. A

number of important and well-studied ecological processes are characterized by this kind of

memory effect; for example, local enhancement of specialized natural enemies [118, 54] or

specific mycorrhizal symbionts [236] in plant communities, and multi-strain disease dynamics

with weak cross immunity [50]. Previous theoretical and empirical studies suggest that

memory effects leading to positive intraspecific feedback (αi > 0) should be destabilizing,

while negative feedback (αi < 0) provides a source of self-regulation, thereby promoting

species diversity [118, 54, 31, 250, 196].

If all species have identical local extinction rates, m—as, for example, among demo-

graphically equivalent species or when extinction is driven by external disturbance—the

steady-state abundance of a species i is:

x⋆i =
1

αi

(
R(α)−1 + β −m

1 + β R(α)

)
. (4.3)

The quantity R(α) =
∑

i
1
αi

summarizes the net memory effects in the community. Because

the factor in parenthesis in Eq. 4.3 does not depend on i, feasibility of the equilibrium (with

corresponding y⋆) requires that all αi have the same sign. In Supporting Information 4.5.2,

we show that if all αi > 0, the coexistence equilibrium is unstable whenever n > 1. When

all αi < 0, the equilibrium is instead globally stable, so that coexistence is robust to any
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perturbation of species frequencies short of extinction. These results align precisely with

previous studies that identify stable coexistence with negative environmental feedback.

This highly idealized scenario provides insight into the relationship between diversity and

coexistence that extends to systems with more general memory effects. Assuming now that

αi < 0 for all i, x⋆ will be feasible (and therefore stable) if and only if the common local

extinction rate is not too large:

m < R(α)−1 + β . (4.4)

The stability criteria imply that this bound on m is strictly increasing as new species are

added to the community (Fig. 4.2A-B). In other words, the model exhibits a positive relation-

ship between diversity and community robustness, defined here as the capacity to tolerate

increased disturbance or more marginal environmental conditions (i.e., larger m). This effect

arises as each new species in the system effectively dilutes the (negative) specific patch mem-

ory effects experienced by others. At the same time, however, all species compete for a fixed

number of patches. These contrasting effects of diversity are manifest in the relationship be-

tween the equilibrium abundance of a focal species, i, and R(α) (i.e., a measure of effective

species diversity). When diversity is low, R(α)−1 is very large and negative. Here, x⋆i may

be increased by the arrival of new species. As more species join the community, however,

the beneficial dilution effect of diversity quickly saturates, and x⋆i begins to decrease due to

the competitive effect of each new species (see, for example, the dynamics of species 1 in

Fig. 4.2A). This transition occurs at the critical value R(α) = 1
m−β (1 +

√
m
β ).

The results of this section are largely unchanged by variation in local extinction rates

among species. When the rates mi differ, the coexistence equilibrium can become unfeasible;

however, the (global) stability of any internal equilibrium point depends only on the signs of

αi. Additionally, there remains a well-defined positive diversity-robustness relationship (see

Supporting Information 4.5.2).
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4.2.3 Symmetric memory effects

Next, we consider the more general class of symmetric memory effects, i.e., pij = pji for all

i and j. This kind of rate structure may arise whenever patch memory effects depend on

some measure of similarity between species. For example, if the local abundances of different

predators (pathogens, mutualists, etc.) determine establishment rates, and resident species

drive recruitment of their respective predators, then the rates pij = pji will depend on the

number of shared predators of species i and j. Similarly, for bacterial species with different

preferences for environmental pH, and which modify the pH according to their preference,

the induced memory effects would be symmetric. This kind of symmetry is considered typical

in immune cross-reactivity, as well [224].

For two species, any symmetric matrix can be written in the same form as Eq. 4.2, so

the results of the previous section apply. Assuming feasibility, the two-species equilibrium is

globally stable if and only if p12 = p21 > max (p11, p22), regardless of m1 and m2. As noted

above, this requirement captures the notion that negative feedbacks must predominate in

the system for coexistence to be stable. When this condition is met, each species has an

advantage colonizing patches last occupied by the other, which generates negative frequency

dependence. But how does this intuition generalize to larger communities where patch

memory effects cannot be neatly partitioned into intra- and inter-specific components?

In more diverse communities, a different approach is needed to assess stability. Under

the assumption of identical local extinction rates (as discussed above) we can study the

local stability of the coexistence equilibrium for any n. The weaker notion of local stability

characterizes the system’s response to small perturbations from equilibrium. For symmetric

P , we show (Supporting Information 4.5.3) that the coexistence equilibrium will be locally

stable whenever P has exactly one positive eigenvalue (Fig. 4.3). Because P is non-negative,

it is guaranteed to have a positive eigenvalue, called the Perron eigenvalue. Thus, our

stability condition requires that this is the only positive eigenvalue of P .
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C D

Figure 4.3: Stability criterion for symmetric memory effects. (A) When the colonization
rate matrix P has exactly one positive eigenvalue, any feasible equilibrium is locally stable.
(B) Coexistence emerges through the dynamics for the 10-species community corresponding
to (A). (C) When P has any additional positive eigenvalues, the coexistence equilibrium
is unstable. (D) For the 10-species community corresponding to (C), 5 species go extinct,
despite the existence of a feasible equilibrium. The dynamics prune the community to a
subset that meets the coexistence criteria. In (B) and (D), m = 1 for all species. For clarity,
vacant patch frequencies are not shown. All parameter values can found in the online code
[165].
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In general, there is no simple characterization of this stability condition in terms of

inequalities between elements of P , as was possible for n = 2. However, we can find separate

necessary and sufficient conditions for a positive symmetric matrix to have exactly one

positive eigenvalue [183]. These partial characterizations provide biological intuition for the

stability condition. First, a necessary condition: pij ≥ min(pii, pjj) for all i and j, to

have the possibility of coexistence. On the other hand, if pij > 1
n

∑n
k=1 pik for all i ̸= j,

then a feasible coexistence equilibrium is guaranteed to be stable. Naturally, the second

condition is stronger than the first, and in fact implies pij > max(pii, pjj). Fig. 4.1B-C

shows an example of a stable system that meets the first (necessary) condition, but not the

second. Both conditions place limits on the strength of same-species memory effects (i.e.,

the magnitudes of pii) relative to inter-specific effects. In this way, the requirement that P

has exactly one positive eigenvalue is a natural generalization of the intuitive notion that all

species must be at a disadvantage when colonizing patches last occupied by conspecifics.

While this characterization of stable coexistence relies on local stability and identical

local extinction rates, extensive numerical evidence suggests that stability is in fact global

and unaffected by different mi (Supporting Information 4.5.3), as can be proved in the more

tractable species-specific case. Expressing equilibrium frequencies (and therefore character-

izing feasibility) is also less straightforward for arbitrary n. However, the symmetry of P

means that x⋆ will be proportional to y⋆ (see Supporting Information 4.5.1). Because y⋆

solves a linear system of equations, a number of techniques may be applied to characterize

feasibility and the distribution of species abundances in special cases, such as communities

structured by phylogeny or functional groups [214], or when colonization rates are randomly

distributed [213]. Additionally, we can ask how diversity affects the “community-wide” fea-

sibility condition,
∑

i y
⋆
i < 1. In the previous section, this condition gave rise to a positive

relationship between diversity and robustness (i.e., the range of m values compatible with

coexistence). In Supporting Information 4.5.3, we prove that the same is true here: For any
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symmetric system with equal rates m, the stability criterion induces a positive diversity-

robustness relationship. Specifically, whenever a species is added to a coexisting community

and the augmented equilibrium is stable, mmax must increase. In other words, a coexisting

community is always more robust than any of its subsets. While this result alone gives no

indication of the strength of the relationship, we show that the robustness benefit of increas-

ing species diversity can be substantial in simulated communities with randomly-distributed

memory effects.

4.2.4 Nonsymmetric memory effects

When patch memory effects are not symmetric, a wide variety of dynamics are possible,

including non-equilibrium coexistence. To illustrate the range of outcomes, we consider

two particular structures for P . We will see that these examples also shed light on typical

behaviors for nonsymmetric systems.

Our first example extends the symmetric case to allow variation in dispersal ability. We

have so far implicitly assumed that species have equal dispersal rates in defining pij , which,

in practice, represents a composite of two factors: dispersal (ability to reach a new patch)

and establishment (ability to successfully establish residence). If each species now has a

characteristic dispersal rate, ci, and the establishment rates P ′ = (p′ij) have a symmetric

structure, then pij = ci p
′
ij and P is symmetrizable. While the colonization rate matrix is

nonsymmetric, we find that stability is governed solely by the eigenvalues of the establishment

rate matrix, P ′, according to the stability condition for symmetric matrices (Supporting

Information 4.5.4).

In our second example, P is proportional to a cyclic permutation matrix. Here, patches

last occupied by species i may only be colonized by species j, patches vacated by j may only

be colonized by k, and so on, forming a loop. This intransitive structure is well-known to

ecologists, as in the three-species “rock-paper-scissors” dynamics [6]. In our model, this kind
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of P matrix can be seen as a caricature of successional dynamics or facilitation cascades [239],

where each species modifies the environment in a way that leads to colonization by the next

in the cycle. Strictly interpreted, this structure assumes that the successional process forms

a closed loop [249, 198], but these dynamics might also approximate transitive succession in

the presence of disturbance [8].

Assuming identical local extinction rates, m, and colonization rates, c, all species have

equal equilibrium frequencies. In contrast to our previous cases, the stability of this equi-

librium now depends on the magnitude of m (see Supporting Information 4.5.4). For suf-

ficiently small m, the coexistence equilibrium is locally stable and approached by damped

oscillations. However, when n > 2 there is a threshold value, mc, above which the equilib-

rium point loses stability and the dynamics approach a stable limit cycle. The amplitude of

these cycles increases sharply as m increases, making coexistence above mc tenuous in any

real system where environmental and demographic fluctuations would be present. When m

is sufficiently large, feasibility is lost altogether. For example, the three species community

shown in Fig. 4.4A begins to cycle at mc = 2/9 and loses feasibility at mmax = 1/3. Un-

like the symmetric cases, this feasibility threshold decreases as n increases, so that diverse

communities are actually less robust to elevated local extinction rates.

These qualitative behaviors are shared by many nonsymmetric systems. For randomly-

distributed P , a progression from stable coexistence, to limit cycles, to species extinctions

is often observed as m increases and abundances decrease (e.g., Fig. 4.4B; see Supporting

Information 4.5.4 for additional simulations). The frequent appearance of a bifurcation point

at high m indicates that coexistence mediated by nonsymmetric memory effects is “fragile”

in marginal environments. As disturbance increases or environmental quality deteriorates,

these systems can collapse sooner than expected on the basis of abundance declines alone

(i.e., before feasibility is lost).

103



A

B

Figure 4.4: Loss of stability with nonsymmetric memory effects. When P is nonsymmetric,
the long-term dynamics can depend on the magnitude of local extinction (m), even when
all species experience equal extinction rates. (A) For the 3-species community with cyclic
memory effects, a stable equilibrium exists at lowm, but gives way to limit cycles atm = 2/9.
Beyond m = 1/3, all species go extinct. (B) This qualitative progression is often observed
for nonsymmetric matrices sampled at random, for example the 3-species community shown
here. The frequencies of patches occupied by each species (xi) are shown with solid lines,
while unoccupied patches in each memory state (yi) are shown with dashed lines.
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4.2.5 Waning memory

Our model assumes that patch memory persists indefinitely, until a patch is re-colonized.

This may be reasonable when the mechanisms mediating patch memory are durable, or when

the typical time to re-colonization is short. However, in many systems, we expect patch mem-

ory effects to decay in time. For example, nutrient concentrations might re-equilibrate, and

physical modifications may erode. This assumption is particularly problematic for modeling

pathogen strain competition, where our model is best viewed as an approximation to sys-

tems with short-term immunological memory (i.e., immunity well-characterized by the last

infection). Clearly this is at odds with the indefinite persistence of memory effects in the

absence of new colonization.

To relax the persistent memory assumption, we extended our model to include an ad-

ditional “näıve” state (see Supporting Information 4.5.5). Our extended model mirrors

Eq. (4.5), except that vacant patches of each type i decay into a näıve state at a constant

rate, di, simulating waning patch memory. Each species colonizes näıve patches at a constant

rate, ci, regardless of the identity of the previous resident.

How do these changes affect the long-term dynamics? For simplicity, we analyze the case

where P is symmetric, and all species have equal demographic rates m, c, and d. Under

these assumptions, the conditions for coexistence of n species are very closely related to those

found without waning memory. In particular, the requirement that P must have exactly one

positive eigenvalue for stability still holds. Now, however, this condition only indicates local,

not global, stability of the coexistence equilibrium. This distinction is important because

the model can exhibit bistability (discussed below). As before, feasibility of the coexistence

equilibrium depends on the signs of y⋆ ∝ P−11, in addition to a community-wide condition

on the demographic parameters.

The space of outcomes, including global stability of the coexistence equilibrium, bistabil-

ity, or no feasible equilibrium, is presented graphically in Fig. 4.5A, and derived in Supporting
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Figure 4.5: Coexistence conditions for waning (symmetric) memory effects. (A) Assuming
P has exactly one positive eigenvalue and P−11 > 0 elementwise, the long-term dynamics
depend on the relationship between demographic parameters m (local extinction rate), d
(memory decay rate), c (colonization rate for näıve patches), and q (a statistic quantifying
the effective community-wide colonization rate; see main text and Supporting Information
4.5.5). When c > m, there is a unique, stable coexistence equilibrium for all d and q (dark
blue). When c < m, there may be no feasible equilibrium (orange). However, coexistence is
possible when d is sufficiently small, and c and q are sufficiently large. In that case (light
blue), there is a strong Allee effect. Coexistence is locally stable, but requires that species are
not too rare initially. (B) and (C) show two possible outcomes for the parameter combination
indicated by the black diamond in (A). (B) When initial frequencies of community members
are high enough, all 3 species coexist stably. (C) When näıve patches are initially abundant,
the community collapses and all species go extinct. In (B) and (C), the frequencies of patches
occupied by each species (xi) are shown with solid lines, unoccupied patches in each memory
state (yi) are shown with dashed lines, and näıve patches (z) are shown with dotted orange
line. The matrix P used for this example is from Fig. 1.1B.
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Information 4.5.5. The primary determinant of coexistence is the ratio between c and m:

When c > m, the coexistence equilibrium is always feasible, and the only stable fixed point.

When c < m, coexistence may be impossible (no feasible equilibrium) or contingent on initial

conditions (bistability). In this second regime, the coexistence equilibrium is locally stable,

but a community-wide Allee effect operates at low species abundances. If the initial fraction

of näıve patches is not too large, all species coexist, while if näıve patches are very abundant,

all species go extinct.

This strong Allee effect is present when c < m, d is small, and the net colonization

rate of patches with memory (measured by a summary statistic of P , q = (1TP−11)−1) is

sufficiently large. These conditions correspond to an ecosystem where no species is able to

colonize näıve patches fast enough to outpace local extinction (c < m), but patch memory

effects facilitate colonization overall, and memory effects are sufficiently durable to influ-

ence the dynamics. Negative feedbacks for each species maintain diversity, while a positive

community-wide feedback maintains the growth rates of all species once their frequencies

exceed a certain threshold. This picture can become much more complicated if species vary

significantly in their rates of memory decay and näıve patch colonization. In this general

setting, it is possible for Allee effects to emerge on multiple timescales, leading to more

complex multistability.

4.3 Discussion

Species interactions mediated by local environmental feedbacks are ubiquitous in natural sys-

tems and arise from many different proximal mechanisms. We presented a highly simplified

but flexible model for the dynamics of such communities, with the goal of elucidating general

principles that govern coexistence across these disparate settings. Our model recapitulates

behaviors observed empirically and in system-specific theory, namely coexistence of many

species maintained by negative feedbacks [31, 188, 155, 15, 76]. By virtue of the simplicity of
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the model, we were able to derive precise conditions for this coexistence, in addition to novel

predictions regarding diversity and community robustness, and the emergence of bistability

when memory effects are impermanent.

Our central finding, that patch memory effects allow the potential coexistence of any

number of species, shares close conceptual similarities with models of facilitation-driven co-

existence [162], particularly microbial crossfeeding [40, 156]. In these phenomena and our

model, high species diversity can be maintained because community members generate el-

evated environmental heterogeneity relative to the abiotic background. But in contrast to

crossfeeding models, where the number of coexisting species is eventually bounded by the

number of distinct resources produced and consumed, our model of patch memory automat-

ically produces the possibility of coexistence no matter how many species are added to the

community.

Of course, the possibility of coexistence is no guarantee that it will be realized. We have

shown that there are nontrivial – but interpretable – conditions for the feasibility and stability

of equilibria in our model. These conditions are unlikely to be met when parameters are

drawn at random. However, a number of ecological and evolutionary mechanisms are known

that may structure memory effects in way that would promote coexistence [76, 31, 118, 54].

Our model can provide theoretical guidance to help understand these mechanisms and their

associated colonization rate structures. For example, there has been significant debate over

the degree of enemy specialization needed to produce coexistence through Janzen-Connell

effects, which can be modeled (in a simplistic way) through our framework [69, 211, 207].

And for symmetric memory effects, the stability condition we derived offers a natural and

precise generalization of the rule that environmental modification must produce negative

feedbacks for every species.

Aside from clarifying and generalizing the conditions for coexistence, our model makes

several distinct predictions about the relationship between diversity and robustness. When
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memory effects are symmetric, more diverse communities can tolerate higher local extinction

rates. This phenomenon is due to “dilution effects” closely related to those studied in

disease ecology [53]. If memory effects decay in time, the benefits of diversity may be even

greater. In the bistable regime, high diversity in terms of species richness and relative

abundance is needed to maintain coexistence. However, a negative relationship between

diversity and robustness is observed when communities form a successional cycle, indicating

that varied behaviors are possible even in this simple model, and that qualitatively distinct

rate structures can support coexistence.

In the cases where diversity promotes robustness, coexistence may be sensitive to species

loss as a result. Fig. 4.2C shows an example where the removal of a single species causes

the extinction of the entire community. In the waning memory model, even perturbing some

species to low abundance may cause such a collapse. These outcomes are most likely in

marginal environments (high m). The dependence of long-term outcomes on the magnitude

ofm – observed in the nonsymmetric case, as well, through the loss of stability asm increases

– is a surprising behavior that has no analog in simple models of community dynamics that

do not incorporate local environmental feedbacks (e.g., generalized Lotka-Volterra models).

Our model is not meant to capture the detailed behavior of any particular community, but

instead to highlight and investigate the essential dynamics common to a range of systems.

This approach strikes a balance between models that explicitly incorporate the mechanisms

of environmental modification [74, 196, 172] and those that fold environmental modification

into direct interactions between species [46, 253, 3]. We view our approach as complementary

to both. Despite its simplicity, our model exhibits rich and informative dynamics. It may

also be possible to parameterize and test our model in empirical systems where investigators

have measured parameters akin to our colonization rate matrices [31, 188, 250].

Inevitably, this approach requires us to make several strong assumptions about the un-

derlying metapopulation dynamics of the community. For instance, we ignore the possibility
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of age or stage structures; complex spatial structures; co-occupancy of patches; and direct

interactions between species. Many or all of these factors will be present in natural land-

scapes, and each has been shown to affect the dynamics of model communities [261, 91, 82].

However, by omitting these and other factors known to shape community dynamics, we are

able to isolate the behavior of environmentally-mediated interactions, especially in relation

to species coexistence. Integrating additional processes will likely raise interesting questions.

To take one example, strong spatial structure, which is a central feature of many of the

systems discussed here, might stabilize oscillatory dynamics, like those shown in Fig. 4.4,

by coupling out of sync patches [198] or distributing oscillations over space [127]. Alterna-

tively, though, localized dispersal could lead to spatial segregation of species, decoupling the

successional cycles or negative feedbacks that sustain community diversity.

We have shown that our main findings are robust to relaxing one central assumption

of the model – the permanence of memory effects – although qualitatively new behaviors

arise in this case, as well. Many natural systems likely violate our model assumptions in the

opposite direction, by exhibiting memory effects that endure beyond each new colonization

event. Adaptive immunity, where memory effects may be lifelong, is an obvious example

[85, 76, 50], but many others are possible. It is straightforward to extend our model to

include longer-term memory effects, but not to analyze such extensions, which require a

precipitous expansion of the state space and model complexity [11, 76]. It may be possible

to consider other approximations, such as memory influencing extinction rates, or patch

memory of the last two or three occupants – although even characterizing the behavior

of our simple model under the most general (nonsymmetric) parameterizations remains an

open problem. Expanding ecological theory to account for environmental feedbacks – beyond

resource competition – on multiple spatial and temporal scales remains a key challenge and

opportunity for further investigation.
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4.4 Materials and methods

All computations (simulations and calculation of eigenvalues) were conducted in R (version

3.6.3). Where dynamics are shown, the model equations (Eq. 4.5) were solved numerically

using the deSolve package with the “ode45” Runge-Kutta method. Coexistence conditions

shown in Fig. 4.5A were obtained using Mathematica (see Supporting Information 4.5.5 for

details). Code to generate all figures and simulation results is available on GitHub [165].

4.5 Supporting information

4.5.1 Model equations and coexistence equilibrium

Model equations

It is convenient to express our model (Eq. 4.1 in the main text) in matrix form:

dx(t)

dt
= D(x(t)) (−m+ Py(t))

dy(t)

dt
= (D(m)−D(y(t))PT )x(t)

(4.5)

Here, D(z) denotes a diagonal matrix with vector z on the diagonal. Vectors x(t) ∈ Rn

and y(t) ∈ Rn express the frequency (at time t) of patches occupied by species i and vacant

patches last occupied by species i (“in state i”), respectively. m ∈ Rn is a vector of local

extinction rates, m1, . . . , mn > 0, and P ∈ Rn×n is a matrix of non-negative colonization

rates.

As discussed in the main text, this system of equations generalizes Levins’s classical

metapopulation model in two ways: (i) there are n species in the landscape, which interact

by competing for patches, and (ii) vacant patches retain a “memory” of their last resident

species, which determines the rate of re-colonization by every species in the community. The
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fact that each patch may be occupied by only a single species at any time (and therefore

species compete for free patches) means that every patch is counted exactly once in the state

variables x(t) and y(t). This implies zero-sum dynamics, as verified by summing:

∑
i

dxi(t)

dt
+
dyi(t)

dt
=
∑
i

−mi xi(t) + xi(t)
n∑

j=1

pij yj(t) +mi xi(t)− yi(t)
n∑

j=1

pji xj(t)

 = 0 .

Patches, therefore, are never created or destroyed through the dynamics. Since the invariant

quantity T =
∑n

i=1 xi +
∑n

i=1 yi is arbitrarily determined by the initial conditions, we

assume throughout that T = 1; in other words, x(t) and y(t) are frequencies.

In the following sections, we analyze the model (Eq. 4.5) in detail for arbitrary n and

considering a range of assumptions.

Coexistence equilibrium

The system defined by Eq. 4.5 admits 2n equilibria, corresponding to distinct combinations

of species presence/absence (and counting the degenerate equilibrium with x(t) = 0). In this

study, we are primarily interested in the existence and stability of the unique equilibrium

where all species (and patch states) are present at non-zero frequency – we refer to this as

the coexistence equilibrium. To solve for the coexistence equilibrium (frequencies x⋆ and y⋆,

dropping the time dependence), we first set dx
dt = 0, which yields the linear system

Py⋆ = m (4.6)

for y⋆. When P has full rank, the equilibrium frequencies are found by matrix inversion:

y⋆ = P−1m. Invertibility of P requires (at a minimum) that patch memory effects operate

in the system. If not, then pij = pik = pi for all i, j, and k (i.e., P has constant rows),

which means P is a rank-one matrix, and therefore non-invertible for any n > 1. In this
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case, Eq. 4.6 admits a solution only if m is exactly proportional to the columns of P . If not,

there is no equilibrium at all. However, even if this proportionality holds, there is no robust

equilibrium. This situation, corresponding to a perfect trade-off in species’ colonization and

extinction rates, is degenerate, and unbiological for two reasons: (i) it requires fine-tuning

of the parameters, and (ii) there are infinitely many equilibria, which means that all but one

species will eventually drift to zero frequency (extinction) in a system of finite size. For the

rest of the analysis, we assume that memory effects do operate, and that the colonization

rate structure is non-degenerate, so P is invertible.

Solving for the equilibrium species frequencies x⋆ is less straightforward. Substituting

y⋆ = P−1m into dy
dt gives us the system

(D(m)−D(P−1m)PT )x⋆ = 0. (4.7)

Let us define Q = D(m) − D(P−1m)PT . The equilibrium frequencies x⋆ correspond to

the one-dimensional null space of Q, or equivalently, an eigenvector of Q with eigenvector 0.

In general, then, there is no closed form expression for x⋆ (although these frequencies are

easily computed numerically). However, for the important purpose of determining whether

the coexistence equilibrium is biologically feasible (having all positive components), it is not

necessary to compute x⋆ – only y⋆ is needed. This is because the matrix −QT has the

special structure of a transition rate matrix, which means that it satisfies:

1. −qii > 0 for all i

2. −qij < 0 for all i ̸= j

3.
∑

i qij = 0 for all j .

All three conditions are easily verified by observing that Q = D(Py⋆)−D(y⋆)PT (using

the equilibrium relationship m = Py⋆). Every transition rate matrix possesses a zero
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eigenvalue corresponding to an eigenvector of constant sign (the stationary distribution of

the corresponding continuous-time Markov chain). This establishes that either all xi > 0 or

all xi < 0. Eq. 4.7 determines x⋆ only up to a multiplicative constant; in order to determine

the constant (and thus the sign), we invoke the fact that 1 =
∑n

i=1 xi +
∑n

i=1 yi. Let C be

the sum of x⋆ at equilibrium. Then we have

1 = 1T (x+ y)

= C + 1TP−1m

(4.8)

and so

C = 1− 1TP−1m (4.9)

where 1T is a vector of n ones. Combining these facts, all components of x⋆ are positive

only if 1TP−1m < 1; in other words, only if the vacant patch frequencies sum to less than

1.

The coexistence equilibrium is therefore feasible if and only if both P−1m > 0, elemen-

twise, and 1TP−1m < 1. Clearly these two criteria may be checked without reference to

x⋆.

Equilibrium species frequencies in special cases

Under various conditions, it becomes possible to express the equilibrium species frequencies

in a straightforward way. Most notably, when P is symmetric (i.e., P = PT ), the species

frequencies x⋆ are proportional to the vacant patch frequencies y⋆. This is verified by setting

x⋆ = ky⋆, where k is a constant of proportionality, and then substituting into Eq. 4.7:
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(D(m)−D(P−1m)PT )x = k(D(m)−D(P−1m)P )P−1m

= k(D(m)P−1m−D(P−1m)m)

= 0.

(4.10)

As when assessing feasibility, the constant k must be determined using the zero-sum con-

straint. We find

k =
1∑
y⋆

− 1 =
1

1TP−1m
− 1. (4.11)

It is also possible to write x⋆ directly when P is symmetrizable, meaning P is of the

form DS, where D is a diagonal matrix and S is symmetric. Then, we find y⋆ = S−1D−1m

and, following a calculation similar to Eq. 4.10, x⋆ = kD−1y⋆ = k(DSD)−1m, with k once

again a constant to be determined.

An explicit expression for x⋆ is possible in other circumstances, as well, but these two

cases will be needed in the following sections.

4.5.2 Species-specific memory effects

Simplest case

We begin by studying the simplest non-trivial parameterization of the model. Let P =

D(α) + βJ , where α = (α1, . . . , αn)
T is a vector of species-specific memory effects (of any

sign) and β > 0 expresses the background colonization rate for all species. We must have

αi ≥ −β to ensure all rates are non-negative. Here, J denotes the n × n matrix of ones,

J = 11T . Initially, we will assume that all species experience identical local extinction rates,

m.

Under these assumptions, P is a rank-one perturbation of a diagonal matrix, and it
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is possible to compute P−1 using the Sherman-Morrison formula [109]. We find that the

equilibrium frequencies are

y⋆i =
1

αi

(
m

1 + β R(α)

)
(4.12)

where R(α) is the sum of reciprocals of the αi, R(α) =
∑

i
1
αi
. Using Eqs. 4.10 and 4.11,

we also have

x⋆i =
1

αi

(
R(α)−1 + β −m

1 + β R(α)

)
. (4.13)

In Eq. 4.13, the factor in parentheses has no dependence on i. This shows that the equilibrium

frequency of each species is inversely proportional to the strength of its memory effects. This

also makes clear that the equilibrium can only be feasible if all αi share the same sign. We

will assume this is case; otherwise, coexistence of all species at equilibrium is not possible,

and some species will go extinct.

Global stability

For this equilibrium to be an attractor of the system, it must be stable as well as feasible. We

would ideally like to know whether the equilibrium is globally stable, meaning the dynamics

approach the equilibrium from any initial condition (assuming all species are initially present

at some non-zero frequency). Global stability can be established by constructing a Lyapunov

function for the dynamics. A Lyapunov function for an autonomous dynamical system

dz
dt = g(z), with z ∈ Rn, is a continuous scalar function V : Rn → R that has continuous

first derivatives and satisfies the following:

1. V (z) > 0 except for an equilibrium point z⋆, where V (z⋆) = 0

2. dV
dt < 0 except when z = z⋆, where dV

dt = 0
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In words, V is a positive function that is strictly decreasing through the dynamics, until

reaching a minimum at z⋆. The existence of such a function implies that the point z⋆

is globally Lyapunov stable. For a thorough discussion of Lyapunov functions and global

stability, see [35, 89].

Unfortunately, there is no general method to construct Lyapunov functions. For some

well-studied models in ecology, including MacArthur’s consumer-resource model [149] and

the generalized Lotka-Volterra (GLV) model [78], candidate Lyapunov functions are known,

and can be used to show global stability under appropriate parameterizations. While our

model is not among these, we take advantage of an embedding technique from dynamical

systems theory to make use of the known results for GLV.

Brenig [36] has shown that GLV is a canonical model, in the sense that any quasi-

polynomial (QP) system of ordinary differential equations can be recast into GLV form

through a change of variables. QP systems take the form

dui
dt

= ui

λi +
m∑
j=1

Aij

l∏
k=1

u
Bjk

k

 , i = 1, ..., l (4.14)

where A is an l × m matrix and B is an m × l matrix, with m ≥ l. Many ecological

models are in QP form, including ours. By casting our model from QP into GLV form, it

becomes possible to use a class of candidate Lyapunov functions for GLV to prove global

stability. Typically, this process requires an enlargement of the state space, and therefore

the embedded dynamics are subject to constrained initial conditions. As we will show, these

constraints are crucial for our stability analysis.

More concretely, our model is a QP system with u(t) = (x(t),y(t))T , λ = (−m, 0)T ,

and A and B are block-structured matrices
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A =

 0 P 0

−PT 0 mI

 B =


I 0

0 I

I −I

 (4.15)

where each block is n × n (so l = 2n and m = 3n). Such a system can be recast into GLV

form with state variables

zi =
m∏
j=1

u
Bij

j , i = 1, ...,m (4.16)

and dynamics given by

dz

dt
= D(z)(Bλ+BAz). (4.17)

For more details, see [36, 100, 234]. In our particular case, this procedure amounts to defining

the new variables ri =
xi
yi
, with the resulting 3n-“species” GLV system defined by variables

z(t) = (x(t),y(t), r(t))T , growth rates Bλ = (−m, 0,−m)T , and interaction matrix

BA =


0 P 0

−PT 0 mI

PT P −mI

 . (4.18)

The interaction matrix for this larger system is singular, and the models defined by Eq. 4.5

and Eqs. 4.17-4.18 are equivalent only on the manifold where ri =
xi
yi

for all i.

All of these manipulations finally put us in a position to try applying a well-known family

of candidate Lyapunov functions for GLV. The function

V (z) =
∑
i

σi

(
zi − z⋆i − z⋆i log

(
zi
z⋆i

))
, (4.19)

with non-negative constants σi, is smooth and always positive except at V (z⋆) = 0. Thus,

118



V is a Lyapunov function for the GLV system with equilibrium z⋆ if there is a choice of σ

such that dV
dt < 0 for all z ̸= z⋆ [78]. The quantity dV

dt conveniently reduces to

(z − z⋆)T

(
D(σ)M +MTD(σ)

2

)
(z − z⋆) (4.20)

where M is the interaction matrix (in our case, M = BA).

We can now show that the equilibrium found in Eqs. 4.12-4.13 is globally stable for our

simplest model. Let σ = (1,1, −1
k+1D(α)−11)T , where k is the constant of proportionality

R(α)+β−m
m . We use the short-hand ∆x = x − x⋆, and similarly for y and r. Evaluating

Eq. 4.20, and noting the symmetry of P , yields

dV

dt
= m∆yT∆r − m

k + 1
(∆x+∆y)TPD(α)−1∆r +

m2

k + 1
∆rTD(α)−1∆r (4.21)

= m∆yT∆r − m

k + 1
(∆x+∆y)T (D(α) + βJ)D(α)−1∆r +

m2

k + 1
∆rTD(α)−1∆r

(4.22)

which simplifies to

= m∆yT∆r − m

k + 1
(∆x+∆y)T∆r +

m2

k + 1
∆rTD(α)−1∆r (4.23)

=
−m

k + 1
(∆x− k∆y)T∆r +

m2

k + 1
∆rTD(α)−1∆r (4.24)

using the zero-sum constraint, (∆x+∆y)TJ = 0. Next we recall that ri =
xi
yi
, which, along

with the proportionality of y⋆ and x⋆, implies that ∆r = D(y)−1(∆x− k∆y), and so

dV

dt
=

1

k + 1
(−m∆rTD(y)∆r +m2∆rTD(α)−1∆r). (4.25)
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Because the frequencies y are always non-negative, and ∆rTD(y)∆r is a quadratic form,

the first term is always negative. The second term is always negative if D(α)−1 is a negative

definite matrix. This requires αi < 0 for all i. These calculations show that when all species

have negative memory effects, the coexistence equilibrium is globally stable. It is straight-

forward to show using similar arguments that if all αi > 0, the coexistence equilibrium is

never stable, except when n = 1. In other words, when species exhibit positive memory

effects, the only long-term outcome is monodominance.

While our Lyapunov function can be written entirely in terms of the original model

variables and parameters as

V =
∑
i

xi − x⋆i − x⋆i log

(
xi
x⋆i

)
+ yi − y⋆i − y⋆i log

(
yi
y⋆i

)
− 1

(k + 1)αi

(
xi
yi

− k − k log

(
xi
kyi

))
=
∑
i

−x⋆i log

(
xi
x⋆i

)
− y⋆i log

(
yi
y⋆i

)
− 1

(k + 1)αi

(
xi
yi

− k − k log

(
xi
kyi

))
(4.26)

and verified without reference to the GLV embedding, we trace the process of recasting in

GLV form to demonstrate the utility of this approach. The difficulty of generating suitable

Lyapunov functions – which is usually seen a matter of inspired guesswork or laborious trial-

and-error – is a major obstacle to their wider application. The canonical status of GLV,

and the potential to exploit this fact for constructing Lyapunov functions, has been known

for decades, but very rarely utilized in ecology (but see [199]). Our derivation illustrates

how GLV embedding can systematize the search for a Lyapunov function, by reducing the

problem to a choice of appropriate constants (here, σi). In many cases, this is likely to be a

more fruitful effort than divining an appropriate function directly.
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Feasibility and diversity

We now return to consideration of feasibility. We have seen that feasibility requires that

all αi share a common sign, and stability requires that all αi < 0. When these conditions

are satisfied, what else is needed to guarantee feasibility? The remaining criterion is a

community-wide condition:

m < R(α)−1 + β. (4.27)

When this inequality holds, and assuming all αi < 0, both x⋆ and y⋆ are strictly positive.

Eq. 4.27 gives an upper bound on the local extinction rate that the coexisting community

can tolerate. Because αi < 0, the quantity R(α)−1 is always negative, but it increases

toward zero as any new species is added to the community. As a consequence, the maxi-

mum m compatible with feasibility, mmax, increases with diversity, as well. This implies a

positive diversity-robustness relationship: Assuming some environmental component to m

(habitat quality, external disturbance rate, etc.), more speciose communities can tolerate

environments that would drive a subset of the species to extinction. In this scheme, species

with weaker memory effects (i.e. αi closer to 0) contribute more strongly to raising mmax.

Intuitively, these species are more abundant at equilibrium, and more effectively dilute the

negative memory effects of other species. As species join the community, mmax increases to

an asymptotic upper bound at mmax = β. In this limit, the memory effects in the system

are so diluted that the effective colonization rate for all species is just β, the background

rate.

It is indicative of the contrasting effects of diversity in this model that species with

weak negative memory effects provide a strong community benefit (higher mmax) but also

occupy a large fraction of patches. Coexisting communities blur the distinction between

mutualism and competition, as species benefit one another through a dilution effect, but

compete for available patches. One consequence is a non-monotonic relationship between
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diversity and equilibrium frequency. Consider the equilibrium value, x⋆i , for a focal species

as the community composition varies with m constant. Adding or removing species affects

x⋆i through the quantity R(α), which we take for a moment as a continuous variable, R,

that ranges from 1
m−β (species i alone with strong negative memory effects) to −∞ (very

many species, or species with very weak negative memory effects). The derivative of x⋆i with

respect to R is

dx⋆i
dR

=
−1

αi

(
1

R2
− mβ

(1 + βR)2

)
(4.28)

which changes sign as R tends toward −∞. For R ≈ 1
m−β , recalling that αi < 0, we have

dx⋆i
dR > 0, indicating that x⋆i increases with increasing diversity (decreasing R). However, as

R becomes very negative,
dx⋆i
dR approaches 0 from above. The sign of

dx⋆i
dR changes once at

R =
1

m− β

(
1 +

√
m

β

)
(4.29)

which can be found by setting Eq. 4.28 equal to 0 (the other root always falls above 1
m−β ).

Once R drops below the critical value in Eq. 4.29, any increase in diversity decreases R

further, decreasing x⋆i , as well.

Variation in local extinction rates

How does this picture change when species differ in their local extinction rates? Now, we

allow each species to have a distinct local extinction rate, mi > 0. It turns out that stability

is unaffected by this variation, although feasibility may be. And while the relationship

between diversity and robustness becomes more complex in this case, we will see that there

is still a well-defined positive relationship between the two.

Using the Sherman-Morrison formula, as before, we find
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y⋆i =
1

αi

mi −
β(
∑

j
mj
αj

)

1 + βR(α)

 . (4.30)

Using Eq. 4.11, we also have

x⋆i =
1

αi

mi −
β(
∑

j
mj
αj

)

1 + βR(α)

1 + βR(α)∑
j
mj
αj

− 1

 . (4.31)

As before, all αi must share the same sign for feasibility. For stability, this common sign must

be negative. This can be verified using a Lyapunov function of the same form as Eq. 4.19,

but with σ = {1,1, −1
k+1D(m)D(α)−11}.

The requirement that αi < 0 induces a positive diversity-robustness relationship in this

case, as well. The picture is complicated by the fact that each species may react differently

to a set of environments – a favorable environment for one species (decreased mi) may be

unfavorable for another (increased mj). However, any community-environment pair can be

characterized by a weighted average of of the local extinction rates: w(m) =
∑

j

(
R(α)
αj

)
mj .

Then a community-wide feasibility condition, directly analogous to Eq. 4.27, is

w(m) < R(α)−1 + β . (4.32)

The interpretation of Eq. 4.32 is nearly identical to Eq. 4.27: R(α)−1 is negative and in-

creasing with species richness, so diverse communities are able to tolerate higher w(m).

Unlike the constant m case, Eq. 4.32 is not sufficient for feasibility. We also find a

requirement that no particular mi is too much larger than the rest. From Eq. 4.31, one can

show that the inequality

mi

w(m)
<

βR(α)

1 + βR(α)
(4.33)

must hold for all i. This feasibility condition sets an upper bound on the ratio of each species’
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local extinction rate to the weighted average of the whole community. When diversity is low,

this condition is not very restrictive, but as diversity increases and R(α) decreases toward

−∞, the allowable variation in mi becomes very small.

4.5.3 Symmetric memory effects

In this section we consider arbitrary symmetric memory effects (i.e., P = PT ). For two

species, every symmetric matrix has constant off-diagonals, so the results of the previous

section apply. For n > 2, we derive a stability condition that naturally, but precisely,

generalizes the intuitive notion that all species must have a disadvantage colonizing “their

own” vacant patches (patches of type i, for species i), compared to vacant patches in other

states.

As n grows, it quickly becomes impractical to write the equilibrium frequencies explicitly.

The general feasibility conditions in Supporting Information 4.5.1 must be checked in each

case. For the remainder of this section we assume the coexistence equilibrium is feasible

and focus on its stability properties. In subsection Feasibility and Diversity, we return to

consider the diversity-robustness relationship, as suggested by Eqs. 4.27 and 4.32.

Local stability

Allowing P to be an arbitrary (non-negative) symmetric matrix makes the problem of con-

structing a Lyapunov function much more difficult. Instead, we consider the local stability

of the coexistence equilibrium. Once again, we begin by assuming m is identical for all

species. However, in subsection Relaxing Assumptions we present numerical evidence that

any locally stable equilibrium is in fact globally stable, and that variation in local extinction

rates never affects stability.

Local stability of the coexistence equilibrium depends on the real parts of the eigenvalues

of the Jacobian matrix, J⋆, evaluated at (x⋆, y⋆)T . Due to the zero-sum constraint, the
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model dynamics are confined to the simplex, and there is necessarily one zero eigenvalue,

which corresponds to an eigenvalue pointing “out” of the simplex. This eigenvalue has no

bearing on stability. The coexistence equilibrium is then locally asymptotically stable if and

only if the remaining 2n − 1 eigenvalues of J⋆ all have negative real part. In general, we

have the Jacobian

J⋆ =

 0 D(x⋆)P

D(m)−D(y⋆)PT −D(PTx⋆)

 (4.34)

or, using the equilibrium relationship D(m)x⋆ = D(y⋆)PTx⋆,

J⋆ =

 0 D(x⋆)P

D(m)−D(y⋆)PT −D(y⋆)−1D(m)D(x⋆)

 (4.35)

which simplifies considerably to

J⋆ =

 0 kD(y⋆)P

mI −D(y⋆)P −kmI

 (4.36)

under the assumptions P = PT and mi = m.

It is actually more convenient to work with another matrix, J ′, which is similar to J⋆.

As such, J⋆ and J ′ share the same eigenvalues. Let us define the change of basis matrix

U =

D(y⋆)1/2 0

0 D(y⋆)1/2

 (4.37)

125



Then J ′ is given by

J ′ = U−1J⋆U

=

 0 kD(y⋆)1/2PD(y⋆)1/2

mI −D(y⋆)1/2PD(y⋆)1/2 −kmI

 (4.38)

For simplicity we introduce the shorthand S = D(y⋆)1/2PD(y⋆)1/2. Now we will see that

the eigenvalues of J ′ can be written in terms of the eigenvalues of S. The ith eigenvalue of

J ′, denoted λi, satisfies

J ′

ui

vi

 = λi

ui

vi

 (4.39)

for the corresponding eigenvector (ui,vi)
T , with components ui and vi each of length n.

This gives us the system of equations

kSvi = λiui

mui − Sui −mkvi = λivi.

(4.40)

We notice that Eq. 4.40 can satisfied by ui = cvi, for an undetermined constant c,

whenever vi is an eigenvector of S. Denote the corresponding eigenvalue of S as λ(S)i,

which must equal c
kλi, according to the first equation. Assuming λi ̸= 0, we can then

re-write the second equation entirely in terms of vi:

mk
λ(S)i
λi

vi − k
λ(S)i
λi

Svi −mkvi = mk
λ(S)i
λi

vi − k
λ(S)2i
λi

vi −mkvi = λivi (4.41)
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which yields the scalar equation

0 = mk
λ(S)i
λi

− k
λ(S)2i
λi

−mk − λi

= λ2i + kmλi + kλ(S)i(λ(S)i −m).

(4.42)

Eq. 4.42 has the solutions

λi =
−km±

√
(km)2 − 4kλ(S)i(λ(S)i −m)

2
. (4.43)

We can see that each eigenvalue of S determines a pair of eigenvalues J ′, which we write

as λ+i and λ−i . If the coexistence equilibrium is feasible, −km will always be negative, and

so λ−i will have negative real part. The real part of λ+i will be negative if λ(S)i < 0 or

λ(S)i > m, and exactly zero when λ(S)i = 0 or m. In fact, one eigenvalue of S is equal to

m, with corresponding eigenvector D(y⋆)1/21. This is easy to verify:

SD(y⋆)1/21 = D(y⋆)1/2PD(y⋆)1/2D(y⋆)1/21

= D(y⋆)1/2PD(y⋆)1

= mD(y⋆)1/2PP−11

= mD(y⋆)1/21.

(4.44)

This eigenpair generates the expected zero eigenvalue of J ′.

The matrix S and its eigenvector D(y⋆)1/21 are both non-negative, so m is the Perron

eigenvalue of S [109]. This implies that all other eigenvalues of S are smaller than m

in magnitude. In particular, there is no λ(S)i > m. This means that the coexistence

equilibrium is stable if an only if m is the sole positive eigenvalue of S. Because S and P

are symmetric and congruent, Sylvester’s law of inertia guarantees that they share the same

number of positive, negative, and zero eigenvalues [109]. Thus, we can equivalently state

127



that the coexistence equilibrium is stable if and only if P has a single positive eigenvalue.

This kind of matrix (nonnegative, symmetric, with exactly one positive eigenvalue) has

previously been associated with the stable maintenance of polymorphisms in models in pop-

ulation genetics (e.g. [128, 110, 123]). These and other studies [18, 184, 183] have produced

several characterizations of this class of matrix, which allow us to develop some biological

intuition for the stability condition (see main text).

Relaxing assumptions

While the analysis above relies on the assumption mi = m and shows only local stabil-

ity, numerical simulations suggest that the same stability condition holds regardless of m

(assuming feasibility), and that this stability is global in character.

To examine the consequences of variation in m, we drew random symmetric P matrices

with n = 4 and pij = pji ∼ U [0, 1], and numerically checked local stability for different

choices of m. To assess whether the stability criterion derived with constant m remained

necessary and sufficient for stability in this generalized setting, we collected 1000 randomly

distributed P matrices with exactly one positive eigenvalue (putatively stable) and 1000

matrices with additional positive eigenvalues (putatively unstable). For each matrix, we

considered 1000 random m vectors. To avoid sampling many choices of m incompatible

with feasibility, which would be computationally costly, we first sampled a vector l uniformly

from the n-simplex, which we took to be proportional to y⋆ (and consequently x⋆). Then

we computed m as cP l where c is a scalar uniformly distributed between 0 and 1. Finally,

the equilibrium frequencies were computed accordingly. This sampling strategy is commonly

used to draw random parameters compatible with feasibility (see, for example, [45, 200, 72]).

Across all 106 combinations of P and m for each stability category (stable or unstable), we

found that the stability of the system with variation in mi was always correctly predicted by

the stability of the associated system with no variation. This suggests that the condition P
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has exactly one positive eigenvalue is necessary and sufficient for stability of any community

with symmetric memory effects, regardless of the values of each species’ local extinction

rates.

To check whether local stability implies global stability in this model, we again drew

random symmetric P matrices with n = 4 and pij = pji ∼ U [0, 1]. For these simulations, we

only retained P matrices with exactly one positive eigenvalue, and sampled until we collected

1000 such matrices. For each realization of P , we calculated mmax and set m = 1
2mmax for

all species. Then we numerically integrated the model dynamics from 100 random initial

conditions, sampled uniformly from the 2n-simplex. In each case, we integrated the dynamics

for 5000 time steps, and then checked if the trajectory had converged to the coexistence

equilibrium. If not, we integrated for another 5000 time steps, and repeated this procedure

up to 10 times. For all 105 combinations of P and initial conditions, we observed convergence

to the equilibrium. This consistency strongly suggests that any locally stable equilibrium is

also globally stable in our (symmetric) model. It is unnecessary to check the converse, in

this case, because local instability implies that trajectories will always eventually move away

from the equilibrium, regardless of initial conditions.

R scripts implementing these simulations are available on GitHub [165].

Feasibility and diversity

Motivated by our analysis of the model with species-specific memory effects, it is natural

to ask whether this stability condition for symmetric memory effects also induces a positive

diversity-robustness relationship. To make this question precise we maintain the assumption

of identical m for all species, and consider the notion of an assembly sequence [215]. An

assembly sequence is a sequence of sets of species beginning with a single species, and where

each set contains the preceding set along with one additional species. For instance, {i},

{i, j}, {i, j, k}, where i, j and k are species labels, is an assembly sequence of length 3. For
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any set of species there is an upper bound, mmax, on m for feasibility of the coexistence

equilibrium. We ask whether, for any coexisting set of species S, mmax increases along any

assembly sequence that ends at S.

For this question to be meaningful, each set of species along the assembly sequence should

coexist (for suitable m). Even if the equilibrium frequencies for S all share the same sign,

there is no guarantee that this property will hold for a subset. Thus, we need to assume this

property holds for each set along the assembly sequence. On the other hand, given (potential)

feasibility, it is the case that, if the equilibrium for S is stable, then every subset will also

be stable [18]. This is a straightforward consequence of the eigenvalue interlacing theorem

for bordered matrices [109], which we will rely on again to prove that mmax is increasing

along any assembly sequence. For our purposes, the theorem states that, if P k is a k × k

symmetric matrix and P k−1 is the matrix obtained by deleting the last row and column of

P k, then their respective eigenvalues, λki and λk−1
i , can be ordered as:

λk1 ≥ λk−1
1 ≥ λk2 ≥ λk−1

2 · · · ≥ λk−1
k−1 ≥ λkk. (4.45)

Using Eq. 4.45, along with the Perron-Frobenius theorem [109], we see that if P k is a positive

symmetric matrix with exactly one positive eigenvalue, then P k−1 must be as well. For any

set of species, S, we can always order the corresponding colonization rate matrix, P , so that

a subset of interest is obtained by sequentially removing the last row and column of P ; the

stability of any subset follows inductively.

We will also use the identity [121]

qk−1
ii = qkii −

qkin
qkni

qknn ∀i = 1, . . . , k − 1 (4.46)

which relates the elements of inverse matrices (P k−1)−1 = (qk−1
ij ) and (P k)−1 = (qkij).

We are now in a position to prove the statement that mmax increases along any assembly
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sequence terminating in a coexisting set of species, S. mmax can be computed from Eq. 4.11,

which gives

mmax =
1

1TP−11
. (4.47)

We see that mmax is a decreasing function of the quantity 1TP−11. Thus, for S with k

species and the preceding subset with k − 1 species, we have mk
max ≥ mk−1

max if and only if

1T (P k)−11 ≤ 1T (P k−1)−11. To manipulate this second inequality, we introduce the matrix

(P̃ k−1)−1, which is just (P k−1)−1 with a row and column of zeros appended. Now both

(P k)−1 and (P̃ k−1)−1 are k × k, so we can subtract:

1T (P k)−11− 1T (P k−1)−11 = 1T
(
(P k)−1 − (P̃ k−1)−1

)
1 = 1TR 1 ≤ 0. (4.48)

Using Eq. 4.46, the elements of R are simply (rij) =
(qkin)

2

qknn
. Clearly the sign of the quadratic

form in Eq. 4.48 is determined by the sign of qknn. If this sign is always negative (or zero),

then the inequality holds. As we have noted that the rows and columns of P can be re-

ordered to make any species the nth, we now show that qknn ≤ 0 by proving that every

diagonal element of (P k)−1, the inverse of a positive symmetric matrix with exactly one

positive eigenvalue, is non-positive.

This can be done by induction. In Eq. 4.48, we have at least k = 2. Taking this as our

base case and computing the inverse explicitly we find

(P k=2)−1 =
1

det(P k=2)

 p22 −p12

−p21 p11

 (4.49)

which must have non-positive diagonal elements because P k=2 is non-negative and the de-

terminant is strictly negative. Now, in the induction step, we prove that if qk−1
ii ≤ 0 for
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all i = 1, . . . k − 1, then qkii ≤ 0 for all i = 1, . . . k, as well. Here we use a proof by con-

tradiction. First assume that qkkk > 0. Then, using Eq. 4.46, we must have qkii ≥ qk−1
ii for

all i = 1, . . . k − 1. This implies that Tr((P k)−1) > Tr((P k−1)−1). But the eigenvalues of

(P k)−1 and (P k−1)−1, which are 1
λki

and 1
λk−1
i

, respectively, obey

1

λk−1
1

≥ 1

λk1
≥ 0 ≥ 1

λkk
≥ 1

λk−1
k−1

· · · ≥ 1

λk−1
2

≥ 1

λk2
. (4.50)

using Eq. 4.45 and the fact that both matrices have exactly one positive eigenvalue. These

inequalities imply that Tr((P k)−1) < Tr((P k−1)−1), a contradiction. Thus, we conclude

that qkkk < 0. In this case, Eq. 4.46 shows that qkii ≤ qk−1
ii for all i = 1, . . . k − 1. These

inequalities establish that if qk−1
ii ≤ 0 for all i = 1, . . . k − 1, then qkii ≤ 0 for all i = 1, . . . k,

so altogether we have shown that qkii ≤ 0 for any k ≥ 2 and i.

Combined with the results above, this ultimately establishes that mk
max ≥ mk−1

max at every

step along a (coexisting) assembly sequence. In this setting, a species-rich community can

always tolerate a higher local extinction rate than any subset of its species. Notice that, if

m is constant, these results also imply that the total fraction of occupied patches at equi-

librium increases along any assembly sequence. This kind of positive diversity-productivity

relationship is commonly observed in empirical studies [107, 99, 246]. In our model, the

relationships between diversity-robustness and diversity-productivity are closely connected,

because the robustness benefit of diversity arises from a positive “dilution effect” of a more

productive community, as discussed in the main text.

While we have shown here that the conditions for coexistence generically induce a positive

diversity-robustness relationship, we are not able to quantify the magnitude of this effect,

as in Eqs. 4.27 and 4.32. To get a sense of the possibilities, we simulated 500 assembly

sequences, each terminating in a distinct coexisting community of 5 species. The matrix P

for each community was drawn at random with pij = pji ∼ U [0, 1] i.i.d. for simplicity. We

discarded matrices that did not permit coexistence, and sampled until we obtained 500 that
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did. For every community, we calculated mmax first for species 1 alone, then species 1 and

2 together, and so on, up to the full 5 species. If any subset along the assembly sequence

lacked a feasible equilibrium, the entire sequence was discarded. As a comparison, we also

simulated 500 assembly sequences terminating in communities having equilibria that were

potentially feasible (i.e., P−11 > 0, elementwise), but unstable. Our procedure for these

communities was identical, except that matrices were checked for instability, rather than

stability. The results of these numerical experiments are shown in Fig. 4.6. For stable com-

munities, mmax always increases with richness, as expected, and grows more than twofold

on average from 1-species to 5-species communities. For unstable communities, we never

observed mmax increase consistently along an assembly sequence, and Fig. 4.6 shows no

trend in the average change of mmax with richness. This comparison makes it clear that the

positive diversity-robustness relationship seen in coexisting communities is a consequence of

the stability condition, rather than the feasibility conditions.

4.5.4 Nonsymmetric memory effects

When P is no longer symmetric, we are unable to find a general characterization of m and

P yielding coexistence. Many behaviors are possible, including non-point attractors. While

a complete picture of the model dynamics awaits further study, we consider two special (but

nonsymmetric) structures that are potentially biologically relevant and amenable to closer

study. In subsection Simulating Dynamics for Random Nonsymmetric Memory Effects, we

also present the outcomes of numerical simulations with many nonsymmetric colonization

rate matrices sampled at random. These results illustrate general patterns in the dynamics

across parameter space.
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Figure 4.6: Coexistence criteria induce a positive relationship between diversity and robust-
ness. Along 500 random assembly sequences leading to coexisting communities of 5 species,
mmax always increases (left). When the final community does not coexist, mmax is never
strictly increasing. Here we show a normalized measure of mmax for each assembly sequence,
obtained by dividing mmax at each level of richness by its value for the first species alone.
See Supporting Information 4.5.3 for simulation details.
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Symmetrizable matrices

In Supporting Information 4.5.3, we implicitly assumed equal dispersal rates in defining the

rates pij , which in fact represent a composite of two factors: dispersal (ability to reach a

new patch) and establishment (ability to successfully establish residence). If each species

has a characteristic dispersal rate, ci, and now we assume the establishment rates p′ij are

symmetric, then pij = ci p
′
ij , and P is called symmetrizable. This kind of matrix is nonsym-

metric, but can be made symmetric by pre-multiplication with a diagonal matrix. Extensive

simulations suggest that stability in this case is controlled entirely by P ′, the matrix of

establishment rates. In particular, to examine the consequences of variation in c, we drew

random symmetric P matrices with n = 4 and p′ij = p′ji ∼ U [0, 1] and numerically checked

local stability of the coexistence equilibrium for different choices of c. This procedure fol-

lowed closely the analysis of variation in m, discussed in Supporting Information 4.5.3. To

assess whether the stability criterion derived with equal dispersal rates remained necessary

and sufficient for stability in this generalized setting, we used 1000 randomly distributed

P ′ matrices with exactly one positive eigenvalue (putatively stable) and 1000 matrices with

additional positive eigenvalues (putatively unstable). For each matrix, we considered 1000

random c vectors. To avoid sampling many choices of c incompatible with feasibility, which

would be computationally costly, we first sampled a vector l uniformly from the simplex,

which we took to be proportional to y⋆. Then we computed D(c)−1 as P ′l and chose m

(equal for all species) uniformly distributed between 0 and 1. Finally, the equilibrium fre-

quencies were computed accordingly. This sampling strategy is commonly used to draw

random parameters compatible with feasibility (see, for example, [45, 200, 72]). Across all

106 combinations of P ′ and c for each stability category (stable or unstable), we found that

the stability of the system with variation in ci was always correctly predicted by the sta-

bility of the associated system with no variation. This suggests that the condition P ′ has

exactly one positive eigenvalue is necessary and sufficient for stability of any community with
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symmetric memory effects, regardless of the values of each species’ colonization ability.

R scripts implementing these simulations are available on GitHub [165].

Successional cycles

One tractable special case is when P takes the form of a cyclic permutation matrix. As

discussed in the main text, this choice of P can be viewed as a simple model for successional

dynamics. And we will see that this case illustrates some general features for nonsymmetric

P , as well.

A cyclic permutation matrix can be written as

Q =



0 0 . . . 0 1

1 0 . . . 0 0

0
. . . . . .

...
...

...
. . . . . . 0 0

0 . . . 0 1 0


(4.51)

assuming species are labeled in the appropriate order. When n = 3, this yields the well-

known “rock-paper-scissors” dynamics. The key property of this kind of matrix, for our

purposes, is that Q−1 = QT . We will use this fact to write the equilibrium frequencies and

study the local stability of the coexistence equilibrium.

We assume that all species have identical local extinction rates m and colonization rates

c (i.e., P = cQ) for simplicity. The equilibrium frequencies for a community of n species are

then

y⋆i =
m

c

x⋆i =
1

n
− m

c
, for all i.

(4.52)
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The only condition for feasibility in this case is thatm < c
n . Although P is nonsymmetric, the

equivalence of species in this highly idealized case means that y⋆ and x⋆ are both constant,

and therefore proportional. Abusing notation slightly, we let k = c
mn − 1 be the constant of

proportionality.

The Jacobian evaluated at the coexistence equilibrium is given by

J⋆ =

 0 kmc P

mI − m
c P

T −kmI

 (4.53)

which yields the system of equations

k
m

c
Pvi = λiui

mui −
m

c
PTui − kmvi = λivi

(4.54)

for the ith eigenvalue and eigenvector of J⋆. Using the fact that PT = c2P−1, and assuming

λi ̸= 0, we can re-arrange Eq. 4.54 to obtain

Pvi = (c+
c

m
λi +

c

km2
λ2i )vi (4.55)

which implies that the eigenvalues of J⋆ and Q are related by

λ(Q)i = 1 +
1

m
λi +

1

km2
λ2i . (4.56)

Solving for λi, we find

λi =

−km

(
1±

√
1− 4

k (1− λ(Q)i)

)
2

. (4.57)

The quantity km is always positive when the coexistence equilibrium is feasible, so the real
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parts of the λi will be all negative if and only if 1 > Re

(√
1− 4

k (1− λ(Q)i)

)
for every

λ(Q)i. In general, λ(Q)i may be complex, so we write these eigenvalues more explicitly as

λ(Q)i = a+ bi. The real part of a complex square root then gives us

1 > Re

(√
1− 4

k
(1− λ(Q)i)

)

=

√√√√1− 4
k + 4

ka+
√

(1− 4
k + 4

ka)
2 + (4k b)

2

2

=

√√√√1− 4
k + 4

ka+
√

1− 8
k (1−

4
k )(1− a)

2

(4.58)

using the fact that a2 + b2 = 1 for any permutation matrix to obtain the last line. This

expression can be simplified substantially to produce the equivalent inequality

k > a+ 1 (4.59)

or

m <
c

n(a+ 2)
. (4.60)

Finally, we consider the eigenvalues of Q, which are the nth roots of unity, with real parts

ak = cos
(
2πk
n

)
for k = 0, ..., n − 1. For k = 0, the associated λi is the (structural) zero

eigenvalue of J . The relevant bound for m is found by considering the largest (non-trivial)

value of ak, which is cos
(
2π
n

)
, for k = 1. This gives us the stability threshold

mc =
c

n
(
cos
(
2π
n

)
+ 2
) . (4.61)

When m < mc, the coexistence equilibrium is stable. For n > 2, this threshold is always

less than the threshold for feasibility, mmax = c
n . For the range of m values in between,

mc < m < mmax, we observe limit cycles (Fig. 4.7). Numerical evidence shows that the
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amplitude of these cycles grows rapidly asm increases, so that for n ≥ 3, all species go extinct

even before mmax is reached (Fig. 4.8). The parameter space where stable coexistence is

possible shrinks rapidly as n increases; for large n, we have mc ≈ c
3n . As one might expect,

higher colonization rates increase the stability threshold, as well as the feasibility threshold.

Both are proportional to c, so that the stable fraction of feasible parameter space has no

dependence on c.

Simulating dynamics for random nonsymmetric memory effects

The previous sections suggest that even keeping m equal for all species, communities with

nonsymmetric memory effects may behave similarly to the symmetric case, or very dissimi-

larly, with the possibility for limit cycles and stability dependent on the magnitude of m. To

better understand which outcomes might be typical, we sampled nonsymmetric P matrices

and integrated the model dynamics for a range of m values (equal for all species) up to mmax

for each model community. Specifically, we sampled P matrices for 3-species communities

with pij ∼ U [0, 1] i.i.d. and discarded matrices which were not potentially feasible (i.e.,

P−11 not all positive). To save computing time, we checked whether each matrix had a lo-

cally stable equilibrium for m small (m = 1
100mmax); if not, it was discarded. This procedure

was motivated by the hypothesis that if a P matrix is compatible with stability for some

choice of m, say m′, then we will find stability for any m < m′. This hypothesis is suggested

by the case of cyclic P , and supported by the simulation results. However, to ensure the

observed pattern was a not a consequence of selecting communities stable at low m, we also

repeated the simulations with P drawn as before, but checking local stability for m large

(m = 99
100mmax). For both sets of simulations, we collected 200 matrices meeting the stated

criteria, and then simulated the model dynamics for 50 values of m evenly spaced between

0 and mmax. Each community was initialized at a random point near the coexistence equi-

librium, to avoid long transients. We integrated the dynamics for 5000 time steps, and then
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checked if (i) species frequencies had converged to the coexistence equilibrium, (ii) one or

more species had gone extinct, or (iii) the dynamics had converged to a stable limit cycle

(using the criterion that the final frequencies had been visited at least 5 times independently

through the dynamics). If none of these criteria were met, we integrated another 5000 time

steps and checked again. This was repeated up to 10 times, until an outcome could be

classified.

The results of these simulations are shown in Fig. 4.9. We find that a progression from

stability, to limit cycles, to instability as m increases is a common outcome (47% of the

communities lose stability). Thus, the qualitative behavior shown analytically for cyclic P

seems to be a fairly general feature of the dynamics when P is nonsymmetric. However,

many communities exhibited a stable equilibrium for all values of m, consistent with the

symmetric and symmetrizable cases. When we required P to produce a stable equilibrium

at high m (Figure 4.9, right), the only observed outcome was stability for all values of m.

Together, these results strongly support our hypothesis that stability can only be lost, not

gained, as m increases.

4.5.5 Waning memory effects

Modified model

To relax the assumption that patches remain in state i indefinitely after occupation by

species i, we extended our model to include an additional “näıve” state. The dynamics of

this extended model are given by:
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Figure 4.7: Long-term dynamics for cyclic memory effects. When P is proportional to a
cyclic permutation matrix, all species may coexist stably, cycle, or go extinct, depending on
the magnitude of m. (A) Each point represents the outcome of simulated dynamics with n
species and local extinction rate m. Coexistence (blue) occurs for sufficiently small values
of m. Above a threshold given by Eq. 4.61 (black curve), stability is lost, leading to limit
cycles (orange) and eventually extinction of all species (pink). For each n, we simulated
communities at 30 values of m evenly space between 0 and mmax. Beyond mmax, there is
no feasible equilibrium. Notice that the feasibility threshold declines sharply with n. (B) As
in (A), except the x-axis shows m values normalized by mmax, for each n (rows).

dxi(t)

dt
= −mixi(t) + cixi(t)z(t) + xi(t)

n∑
j=1

pijyj(t)

dyi(t)

dt
= mixi(t)− diyi(t)− yi(t)

n∑
j=1

pjixj(t)

dz(t)

dt
=

n∑
j=1

djyj(t)− z(t)
n∑

j=1

cjxj(t)

(4.62)

where z(t) is the frequency of näıve patches. All parameters are interpreted as before, with

the addition of decay rates di (the rate at which patches in state i transition into the näıve

state) and parameters ci, which encode the rate at which species i colonizes näıve patches.

While this model easily accommodates differences in the durability of memory effects or

baseline colonization rates across species, we will assume all species have equal demographic
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Figure 4.8: Bifurcation diagram for cyclic P . As m increases, the (common) equilibrium
abundance of all species decreases linearly. At a threshold indicated in red (mc), there
is a bifurcation point where the dynamics begin to cycle (minimum and maximum points
shown). The amplitude of these cycles increases rapidly, leading to the extinction of all
species before the feasibility threshold is reached at mmax = 0.25 (gray shaded area). In
a community experiencing gradually increasing m (e.g. increasing disturbance), predicting
future equilibrium frequencies based on the rate of decline at small m (dashed blue line) fails
suddenly at m = mc. These simulations used n = 4 and c = 1, but qualitatively identical
behavior is observed for any n ≥ 3 and any c.
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Figure 4.9: Long-term dynamics for nonsymmetric P . Each row shows the long-term dy-
namics for a different 3-species community with randomly-distributed P , along a gradient of
m values. Communities were selected to be stable at either low (m = 1

100mmax; left) or high

(m = 99
100mmax; right) values of m. For the latter, stability may be lost as m increases (this

occurs in 47% of cases shown). As suggested by the analysis of cyclic P , there is often a
narrow region where limit cycles are observed between loss of stability of the equilibrium and
the extinction of some species. When P is selected for stability at high m (right), stability is
never lost. In the left panel, communities are ordered along the y-axis by the point at which
they lose stability.
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rates m, c, and d for simplicity. We also focus on the case where P is symmetric. In

this section, we show that the stability condition derived for symmetric P without memory

extends straightforwardly to the modified model.

For the coexistence equilibrium of the modified model one finds

y⋆ = (m− d

k
)P−11

x⋆ = k y⋆

z⋆ =
d

c k
.

(4.63)

Just as before, x⋆ is proportional to y⋆, with constant of proportionality k. Now, however,

we have the modified zero-sum condition 1T (x⋆ + y⋆ + z⋆) = 1, so k satisfies the quadratic

equation

(m− d

k
)
1

q
+ (km− d)

1

q
+

d

c k
= 1 (4.64)

or

k2 + (1− d

m
− q

m
) k +

d

m
(
q

c
− 1) = 0 (4.65)

where q = (1TP−11)−1. The value q can be seen as a statistic summarizing the effective

whole-community colonization rate, in the following sense: If matrix P has summary statis-

tic q, then the associated system behaves identically – with respect to its “demographic”

features, such as k values and demographic eigenvalues (see below) – to a single-species

metapopulation with colonization rate q.

From Eq. 4.65, there are two solutions for k (and possibly two distinct equilibria), given
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by

k =

d
m + q

m − 1±
√

(1− d
m − q

m)2 − 4 d
m(qc − 1)

2
. (4.66)

An examination of Eq. 4.63 shows that for feasibility, we must have all entries of P−11 >

0, as before, and also k > d
m . The latter inequality might be satisfied by 0, 1 or 2 values of k.

When c > m, there will be exactly one such k. On the other hand, when d+m < q, there will

be no k compatible with feasibility. These conditions are found by substituting k = k′ + d
m

into Eq. 4.65 and applying Descartes’ rule of signs. In cases where c < m and d +m > q,

there may be 0 or 2 feasible values of k, depending on the sign of the discriminant in Eq. 4.66.

The condition c < m implies that the zero-biomass equilibrium, z⋆ = 1, is attractive, and

we will see that the second equilibrium, corresponding to the smaller value of k, is always

unstable when feasible. These properties signal the presence of a strong Allee effect. If the

coexistence equilibrium corresponding to the larger value of k is locally stable in this case,

there will be bistability, with trajectories attracted to the zero-biomass equilibrium or the

coexistence equilibrium depending on the initial condition.

When is the coexistence equilibrium stable in this extended model? Evaluating the

Jacobian at the equilibrium corresponding to either k (and assuming feasibility), we find

J⋆ =


0 D(x⋆)P cx⋆

D(m)−D(y⋆)P −D(Px⋆)− d I 0

−c z⋆ 1T d1T −c (1Tx⋆)

 (4.67)

with appropriate x⋆,y⋆, and z⋆.

As in Supporting Information 4.5.3, we can use an equilibrium relationship D(m)x⋆ =
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D(y⋆)(Px⋆ − dI) to re-write this matrix slightly:

J⋆ =


0 D(x⋆)P cx⋆

D(m)−D(y⋆)P −kmI 0

−c z⋆ 1T d1T −c (1Tx⋆)

 . (4.68)

Let us denote the upper-left 2n × 2n block of J⋆ by Q. Notice that Q is of exactly the

same form as Eq. 4.36. We will see that 2n−2 of the eigenvalues of J are also eigenvalues of

Q, governed by the same stability criterion as in the case without waning memory. In other

words, the condition P has exactly one positive eigenvalue is now a necessary condition for

local stability of the coexistence equilibrium. In fact, we will see that it is also sufficient.

But first we will consider the eigenvalues of J⋆ corresponding to those of Q more carefully.

Any eigenvectors of Q, written with components of length n as (u,v)T , must satisfy the

system

D(x⋆)Pv = λu

mu−D(y⋆)Pu− kmv = λv.

(4.69)

Multiplying both equations by 1T , we obtain

(km− d)(1Tv) = λ(1Tu)

m(1Tu)− (m− d

k
)(1Tu)− km(1Tv) = λ(1Tv)

(4.70)

and so

km(1Tv) =
d

k
(1Tu)− λ(1Tv) = λ(1Tu) + d(1Tv). (4.71)
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This last set of equalities can be satisfied by (1Tu) = (1Tv) = 0, or when (1Tu), (1Tv) ̸= 0.

In the latter case, one can divide by (1Tu) to obtain the system

(d− km)w2 − kmw +
d

k
= 0

λ =
d

k

1

w
− km

(4.72)

for w = (1Tv)/(1Tu) and the eigenvalue, λ. Two eigenvalues of Q are associated with

Eq. 4.72, and the remaining 2n−2 must be associated with eigenvectors that satisfy (1Tu) =

(1Tv) = 0. The latter eigenpairs of Q generate eigenpairs of J⋆ with the same eigenvalues

and augmented eigenvectors (u ,v, 0)T . This is easy to verify:

J⋆ (u ,v , 0)T =


Q . . . cx⋆

...
. . . 0

−c z⋆ 1T d1T −c (1Tx⋆)

 (u ,v , 0)T

=

 λ (u ,v)T + 0

−c z⋆ 1Tu+ d1Tu+ 0

 =

λ (u ,v)T

0

 = λ (u ,v 0)T .

(4.73)

Since Q is of the same form as Eq. 4.36, its eigenvalues (all 2n) are related to the

eigenvalues of S = D(y⋆)1/2PD(y⋆)1/2 according to Eq. 4.43. The Perron eigenvector of

S is non-negative, and therefore must violate (1Tu) = (1Tv) = 0, so the two eigenvalues

of Q that are not also eigenvalues of J⋆ are those associated with the Perron eigenvalue of

S. This eigenvalue is equal to m − d
k , which bounds the spectral radius of S below m, and

following the logic developed in the unmodified case, the remaining 2n− 2 eigenvalues of Q

will be negative if and only if P has exactly exactly one positive eigenvalue.

Finally we consider the remaining three eigenvalues of J⋆. One of these must be zero,

because the dynamics are confined to the simplex. We call the final two eigenvalues of J⋆ its
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“demographic” eigenvalues, as they depend only on c, m, q, and d – and not on the structure

of P . Each of these three eigenvalues correspond to eigenvectors of the form (x⋆, a1x
⋆, a2)

T

for undetermined constants a1 and a2. Assuming this structure and multiplying by J⋆ yields

the nonlinear scalar system

a1 k (m− d

k
) + a2 c = λ

d

k
− a1 km = a1 λ

(
−d

k
+ a1 d− a2 c)(km− d)

1

q
= a2 λ.

(4.74)

We solved this system using Wolfram Mathematica (12.2) (scripts available on GitHub

[165]). One solution is λ = 0, as expected. The two demographic eigenvalues are given by

rd− km(r + 1)±
√

(rd− km(r − 1))2 + 4d(dk −m)(r − 1)

2
. (4.75)

using the shorthand r = c
q . We used Mathematica to verify that these eigenvalues are

always negative for the unique feasible coexistence equilibrium (when c > m). When two

equilibria are feasible, we verified that one or both eigenvalues are always positive for the

equilibrium corresponding to smaller k. Although we are unable to prove it analytically,

extensive numerical simulations suggest that the other equilibrium is always stable in this

case, as well.

Altogether, this analysis suggests that if the equilibrium corresponding to larger k is

feasible, it will always be locally stable provided P has exactly one positive eigenvalue. If

the second equilibrium is also feasible, the model exhibits bistability. The possible outcomes

across parameter space are illustrated graphically in Fig. 4.5 in the main text.
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CHAPTER 5

CONCLUSION

The extent to which environmental feedbacks can drive community dynamics has, in many

ecosystems, become clear only quite recently. The ecosystem engineer concept, which centers

the role of biotic drivers of environmental heterogeneity – and, ultimately, biodiversity – was

proposed less than 30 years ago [120]. Most of the other research programs surveyed in

the Introduction – the study of microbial cross-feeding, plant-soil feedbacks, and immune-

mediated pathogen competition – are even younger. This pattern is evident across ecology,

where interest in “top-down” control of environmental heterogeneity, ranging from predator

effects on spatial biogeochemistry [38, 208, 170] to forest effects on atmospheric flows and

rainfall regimes [33, 216, 228], has surged in the last two decades. The only exception among

our examples, Janzen-Connell effects, serve to prove the rule: While hypothesized more than

50 years ago [118, 54], research on this mechanism has matured and advanced rapidly in just

the last few years [30, 238].

As we have discussed, a central role for environmental feedbacks challenges ecology’s his-

torical focus on explaining biological diversity within the fixed constraints of abiotic variation.

This has undoubtedly contributed to their late arrival in the mainstream of the discipline.

But aside from intellectual inertia, recognizing these processes is inherently challenging, be-

cause it requires a holistic view of ecosystems. Understanding the dynamics of microbial

cross-feeding has required community ecologists to contemplate the details of intracellular

metabolism and biochemistry. An appreciation of plant-soil feedbacks requires forest ecolo-

gists to consider the interactions between trees and soil microbes, organisms that can differ

by eight orders of magnitude in size, and six or more orders of magnitude in lifespan. These

processes cut across physical scales and disciplinary boundaries, and unraveling them has

demanded new tools and new perspectives.

The same features that complicate the identification of environmental feedbacks pose
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challenges for modeling them. To account for these processes, it is necessary to couple dy-

namics across multiple spatial and temporal scales. Feedbacks also open the door to complex

dynamics, such as long transients, limit cycles, and historical contingency, that can be diffi-

cult to analyze. In this thesis, we developed and studied simple models for these processes,

using minimal implementations of distinct spatial and temporal scales to capture the es-

sential features of environmental feedback dynamics, while preserving analytical tractability.

This simplicity made it possible to identify precise criteria for community coexistence, as well

as new insights into the emergence of ecologically-relevant phenomena, such as the potential

for instability at high rates of disturbance, episodic dynamics when environmental change

is much slower than population dynamics, and a generic relationship between diversity and

robustness when feedbacks take a symmetric form. In the second chapter, however, we ana-

lyzed a canonical model for plant-soil feedbacks and demonstrated that simplification can go

too far, making it impossible to account for the coexistence of diverse communities. Striking

an appropriate balance between simplicity and biological veracity is a recurring theme in

this work, and an important ongoing challenge for developing a comprehensive theory of

environmental feedbacks.

Minimal models are not only desirable because they permit analysis, but also because they

lay bare the basic structure of environmental feedback dynamics. This facilitates comparison

and synthesis across ecosystems, and across distinct strands of theory. The recent recognition

of many kinds of environmental feedbacks means that these strands of theory have developed

unevenly and not yet coalesced; there is surely much to gain simply by sharing insights,

methods, and models between them. In this thesis, we have emphasized connections between

models: the equivalence of the Bever model for plant-soil feedbacks and bimatrix game

dynamics from evolutionary game theory, the essential similarity of metapopulation dynamics

in heterogeneous landscapes and classical consumer-resource dynamics, the close relationship

between our “fast” feedback model and recent models for microbial cross-feeding. These
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connections are not mere curiosities, but powerful tools to leverage knowledge from one area

to another. For example, we used the well-developed theory of bimatrix games to characterize

the dynamics of the extended Bever model, and the theory of consumer-resource dynamics

to conclude that our metapopulation model with exogenous heterogeneity is globally stable.

Our analysis sheds new light on the potential for environmental feedbacks to maintain

coexistence of many species, but leaves many questions only dimly illuminated. We conclude

by briefly discussing some of these questions, and the challenges and opportunities they hold

for future study. These open directions can be roughly grouped into three categories: (i)

questions regarding further analysis of our models, which will likely demand new mathemat-

ical insights or analytical tools, (ii) questions regarding extensions or generalizations of the

model framework, which will demand a mix of careful biology to distill the necessary compo-

nents and creative mathematical implementation to preserve model tractability, and finally

(iii) some questions regarding experimental validation and application of these models, which

only nature can answer.

5.1 Open questions for analysis

Our analysis of the Bever model in the second chapter leaves little open, aside from the

already long-standing rescaled zero-sum games conjecture [103], which is of more mathemat-

ical than biological relevance, in any case. However, there is a great deal of room for deeper

analysis of the models introduced in our third and fourth chapters. One especially intriguing

phenomenon is the transition to instability sometimes observed as the rate of disturbance

increases. We were able to characterize this transition in a special case, but our simula-

tion results suggest that such bifurcations are a much more general feature of nonsymmetric

environmental feedbacks. Indeed, the same type of behavior has recently received atten-

tion in models for microbial cross-feeding [156, 41, 73]. The existence of such transitions

in our mathematical models raises the possibility that real-world ecosystems could collapse

151



suddenly under deteriorating environmental conditions. In general, it is unclear when the

model will possess such a transition point – we observe this feature in the limiting case of

fast feedbacks, but prove that it is precluded in the opposite limit of slow feedbacks. Is it a

generic feature of the dynamics in between? Can we predict quantitatively where a transition

will occur, as function of the colonization rate matrix P?

Aside from the practical relevance of this phenomenon, it seems a promising entry point

for further analysis of the nonsymmetric model. Many of our results hold only under cer-

tain symmetries; for example, we can give a complete account of the local stability of the

coexistence equilibrium only in the limit where feedbacks are very slow. Even in this case,

the stability condition we derive lacks an intuitive interpretation comparable to what we

can establish when the matrix P is symmetric. We rely on other symmetries, such as the

assumptions that local extinction rates and environmental modification rates are the same

for all species and patch types. Relaxing these assumptions would greatly extend the scope

of the model analysis, and in particular make it possible to account for the obvious biological

reality that some species are much more impactful “ecosystem engineers” than others. For

the fast feedback model in our fourth chapter, we presented some evidence that variation

in local extinction rates has little effect on the qualitative model dynamics, at least when

P is symmetric. However, once these rates are allowed to vary, the model reduction that

we employ in the third chapter becomes impossible. Progress here will likely come from

studying the full model directly.

Finally, we note that while our analysis focused almost exclusively on establishing con-

ditions for coexistence, our model framework could be used to investigate other aspects of

ecosystem dynamics, such as invasions and community assembly, or aspects of community

structure, composition, and function. Exploring these questions would require little or no

modification to the model itself, but necessitate new approaches to the analysis.
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5.2 Open questions for extension

As we have emphasized, our intention in this thesis is to develop theory of a minimal char-

acter, so there are many ways our model framework could be amended or extended. Here,

we mention a few of particular interest.

Our model is grounded in the metapopulation framework, and treats space implicitly.

Incorporating explicit spatial structure in our analysis, by considering the configuration of

patches and limitations to dispersal, has the potential to refine or alter our conclusions. The

distribution of species in space is considered an important aspect of some environmental feed-

back paradigms, such as Janzen-Connell effects, but it remains unclear how much the details

of spatial structure and dispersal affect the essential dynamics [231]. Some theoretical studies

have suggested that accounting for these factors can significantly modify the conditions for

coexistence by, for example, reducing dispersal between habitat types [226], dampening or

distributing oscillations over space [127, 198], or concentrating and strengthening feedbacks

that maintain coexistence [232, 223]. Modern extensions of the metapopulation framework

offer a variety of tools to account for explicit landscape structure and spatial distribution of

habitat quality [91, 178, 173, 101, 147], but adapting these approaches to include multiple

species and habitat modification poses significant challenges.

Another limitation of our framework is the assumption that patches can be characterized

by one of n discrete states at any time. In many systems, especially those where environ-

mental modification plays out on longer timescales than population dynamics, it is likely

that local conditions will reflect the modifications of many species, which accumulate in

some way over time. However, tracking the full history of patches becomes intractable us-

ing näıve approaches, because even simply accounting for the presence or absence of each

species within some window of “memory” leads to an exponential blow-up in the number

of model variables [11, 132]. Epidemiological strain theory offers some strategies to attack

this problem [76, 77, 132, 13]. One promising possibility is to explicitly model only pairwise
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associations between species, and use a low-order closure approach to approximate the full

distribution of patch histories. However, one still needs to consider how the modifications of

different species interact with one another. In epidemiological models, it is often reasonable

to assume that specific immunity accumulates in an additive way, or to avoid this issue by

assuming polarized immunity, but in other contexts, such as chemical habitat modification

by microbes, the mechanics of such interactions may be non-trivial. As an alternative to

our state-based framework, one could deal with this issue by explicitly modeling the inter-

nal processes and variables that mediate local patch conditions, but this would sacrifice the

main virtues of our approach, which makes it possible to model dynamics without detailed

knowledge of these internal details. It is worth noting that a solution to this problem of

accumulated modification effects would open the door to allowing co-occupancy of patches

– another desirable extension of the model, bringing the framework closer to true metacom-

munity models [139] – by resolving the associated ambiguity in how to combine modification

effects.

A final generalization of the model is perhaps the most approachable, requiring only the

integration of pieces already present in our framework. In our third chapter, we constructed

and compared models for exogenous or endogenous environmental heterogeneity, but any

natural landscape will contain some of both sources. While for the purposes of developing

theoretical expectations it is useful to contrast the two cases, for accurately modeling ecosys-

tems of interest, it may be important to combine the two mechanisms within a single model.

This could be easily done by including additional patch types in our feedback model with

fixed frequencies and no associated species. However, analysis of the model becomes more

complicated because the number of environmental variables exceeds the number of species.

For this scenario, it may be useful to draw on recent research in consumer-resource theory,

where approaches from statistical physics have been applied to study equilibrium coexis-

tence in the generic case where the number of species is less than the number of resources
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[241, 5, 60]. This extension is also closely related to the problem of allowing variation in en-

vironmental modification rates, discussed above. A more general approach to that problem

would likely translate into progress here.

5.3 Open questions for application

The ultimate goal of any theory is to help make sense of real-world ecosystems. Throughout

this thesis, we have discussed the implications of our models and analysis for studying and

managing natural systems. Like most “strategic” models, our approach is primarily meant

as a platform to explore the essential features and qualitative behaviors of a general class

of dynamics, and not as an attempt to accurately model any particular ecosystem. Our

analysis suggests several qualitative hypotheses that should be robust to system specifics

or quantitative details, such as general features of feedbacks that promote coexistence, a

diversity-robustness relationship that should emerge when these conditions are met, and

long-term qualitative differences between landscapes dominated by exogenous or endogenous

heterogeneity. However, there are cases where our framework may be put to the test, and

ultimately to work, more directly. Plant-soil feedbacks, in particular, represent a promising

system for the application of our models. Experiments of the kind needed to parameterize

our feedback model are routinely conducted in plant-soil feedback research, usually with the

goal of conducting inference using the Bever model [31, 186]. While we showed in our second

chapter that such inference may be spurious, it would be straightforward to use these data,

and this kind of experimental design, to instead parameterize our model and attempt to

predict plant community dynamics or outcomes such as community coexistence. This exper-

imental paradigm could also be used to test specific model assumptions or approximations,

such as the dependence of patch states on the most recent resident species, as we assume

in our fourth chapter. This approximation could easily be assessed using a fully factorial

experiment with two stages of soil conditioning.
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We have also discussed the possibility of inferring model parameters from static associ-

ations between species and patch states in natural landscapes. Plant communities offer a

suitable context for this kind of approach, because these associations persist on timescales

long enough to measure without difficulty. Indeed, for trees and other long-lived species,

these associations persist so long that manipulative approaches to parameter estimation are

impractical. While validation of the model would be more challenging in these systems,

our framework represents a promising tool for inferring coexistence mechanisms and long-

term dynamics. For these applications, a combined framework integrating exogenous and

endogenous sources of heterogeneity, as discussed above, would be most useful.

One specific application of considerable interest is clarifying the degree and structure of

host specialization needed for natural enemies to maintain coexistence via Janzen-Connell

effects or plant-soil feedbacks. This question has been a matter of significant debate as

different modeling approaches have suggested conflicting requirements, in some cases casting

doubt on the capacity of these mechanisms to maintain high levels of diversity [174, 211, 22,

49, 158, 227]. The tractability of our framework makes it a promising tool to help resolve

this kind of ambiguity.

In general, our phenomenological modeling approach represents a practical way forward

for studying environmental feedbacks. For applications where one is interested in emer-

gent dynamics at the community level, suppression of the mechanistic details that underlie

feedbacks may be a convenient and potentially more robust alternative to more granular

modeling (see, for example, [187, 160]). However, the flexibility of this kind of approach can

create other challenges. Combining estimates for many free model parameters can lead to

inconsistent or unbiological predictions and inference, even in situations where very small

changes in the parameter estimates would yield qualitative improvement [161, 160]. Such

situations often arise when some model parameters are not strongly constrained and the

mapping between model parameters and predictions is complex [87]. In diverse communi-
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ties, this is the generic case. We view this issue as a fundamental challenge not only for

modeling environmental feedbacks, but for all of community ecology. Robust inference for

whole-community dynamics and outcomes will require a strong focus on the unique features

of high-dimensional models [10, 230, 242]; emphasis on model prediction rather than param-

eterization [87, 160]; and creative strategies to constrain model fitting, such as ecologically-

inspired low-dimensional structures [214, 221], biologically-informed penalization [161, 160],

and other forms of statistical regularization [43, 255].
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[22] M.-S. Beńıtez, M. H. Hersh, R. Vilgalys, and J. S. Clark. Pathogen regulation of plant
diversity via effective specialization. Trends in Ecology & Evolution, 28(12):705–711,
2013.

[23] J. A. Bennett and J. Klironomos. Mechanisms of plant–soil feedback: interactions
among biotic and abiotic drivers. New Phytologist, 222(1):91–96, 2019.

[24] J. Bever. Dynamics within mutualism and the maintenance of diversity: inference from
a model of interguild frequency dependence. Ecology Letters, 2(1):52–61, 1999.

[25] J. D. Bever. Ecological and evolutionary dynamics between plants and their soil com-
munity. Duke University, 1992.

[26] J. D. Bever. Feedback between plants and their soil communities in an old field com-
munity. Ecology, 75(7):1965–1977, 1994.

[27] J. D. Bever. Host-specificity of am fungal population growth rates can generate feed-
back on plant growth. Plant and Soil, 244(1):281–290, 2002.

159



[28] J. D. Bever. Soil community feedback and the coexistence of competitors: conceptual
frameworks and empirical tests. New phytologist, 157(3):465–473, 2003.

[29] J. D. Bever, I. A. Dickie, E. Facelli, J. M. Facelli, J. Klironomos, M. Moora, M. C.
Rillig, W. D. Stock, M. Tibbett, and M. Zobel. Rooting theories of plant community
ecology in microbial interactions. Trends in ecology & evolution, 25(8):468–478, 2010.

[30] J. D. Bever, S. A. Mangan, and H. M. Alexander. Maintenance of plant species diversity
by pathogens. Annual review of ecology, evolution, and systematics, 46:305–325, 2015.

[31] J. D. Bever, K. M. Westover, and J. Antonovics. Incorporating the soil community into
plant population dynamics: the utility of the feedback approach. Journal of Ecology,
pages 561–573, 1997.

[32] B. M. Bolker. Combining endogenous and exogenous spatial variability in analytical
population models. Theoretical Population Biology, 64(3):255–270, 2003.

[33] G. B. Bonan. Forests and climate change: forcings, feedbacks, and the climate benefits
of forests. science, 320(5882):1444–1449, 2008.

[34] G. Bonanomi, F. Giannino, and S. Mazzoleni. Negative plant–soil feedback and species
coexistence. Oikos, 111(2):311–321, 2005.

[35] W. E. Boyce, R. C. DiPrima, and D. B. Meade. Elementary differential equations.
John Wiley & Sons, 2017.

[36] L. Brenig. Complete factorisation and analytic solutions of generalized lotka-volterra
equations. Physics Letters A, 133(7-8):378–382, 1988.

[37] J. H. Brown. Two decades of homage to Santa Rosalia: toward a general theory of
diversity. American Zoologist, 21(4):877–888, 1981.

[38] J. K. Bump, R. O. Peterson, and J. A. Vucetich. Wolves modulate soil nutrient
heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses.
Ecology, 90(11):3159–3167, 2009.

[39] C. C. Buser, R. D. Newcomb, A. C. Gaskett, and M. R. Goddard. Niche construction
initiates the evolution of mutualistic interactions. Ecology Letters, 17(10):1257–1264,
2014.

[40] S. Butler and J. P. O’Dwyer. Stability criteria for complex microbial communities.
Nature communications, 9(1):1–10, 2018.

[41] S. Butler and J. P. O’Dwyer. Cooperation and stability for complex systems in resource-
limited environments. Theoretical Ecology, 13(2):239–250, 2020.

[42] B. B. Casper and J. P. Castelli. Evaluating plant–soil feedback together with compe-
tition in a serpentine grassland. Ecology letters, 10(5):394–400, 2007.

160



[43] S. Cenci, G. Sugihara, and S. Saavedra. Regularized S-map for inference and forecasting
with noisy ecological time series. Methods in Ecology and Evolution, 10(5):650–660,
2019.

[44] J. M. Chase and M. A. Leibold. Ecological Niches: Linking Classical and Contemporary
Approaches. University of Chicago Press, 2003.

[45] X. Chen and J. E. Cohen. Global stability, local stability and permanence in model
food webs. Journal of Theoretical Biology, 212(2):223–235, 2001.

[46] P. Chesson. Macarthur’s consumer-resource model. Theoretical Population Biology,
37(1):26–38, 1990.

[47] P. Chesson. General theory of competitive coexistence in spatially-varying environ-
ments. Theoretical population biology, 58(3):211–237, 2000.

[48] P. L. Chesson. Coexistence of competitors in spatially and temporally varying envi-
ronments: a look at the combined effects of different sorts of variability. Theoretical
Population Biology, 28(3):263–287, 1985.

[49] R. A. Chisholm and T. Fung. Janzen-Connell effects are a weak impediment to com-
petitive exclusion. The American Naturalist, 196(5):649–661, 2020.

[50] S. Cobey. Pathogen evolution and the immunological niche. Annals of the New York
Academy of Sciences, 1320(1):1, 2014.

[51] C. Codeco and J. Grover. Competition along a spatial gradient of resource supply: a
microbial experimental model. The American Naturalist, 157(3):300–315, 2001.

[52] M. L. Cody. Competition and the Structure of Bird Communities. Princeton University
Press, 1974.

[53] C. D. Collins, J. D. Bever, and M. H. Hersh. Community context for mechanisms
of disease dilution: insights from linking epidemiology and plant–soil feedback theory.
Annals of the New York Academy of Sciences, 1469(1):65, 2020.

[54] J. H. Connell. On the role of natural enemies in preventing competitive exclusion in
some marine animals and in rain forest trees. Dynamics of populations, 298:312, 1971.

[55] K. M. Crawford, J. T. Bauer, L. S. Comita, M. B. Eppinga, D. J. Johnson, S. A.
Mangan, S. A. Queenborough, A. E. Strand, K. N. Suding, J. Umbanhowar, et al.
When and where plant-soil feedback may promote plant coexistence: a meta-analysis.
Ecology Letters, 22(8):1274–1284, 2019.

[56] R. Cressman and Y. Tao. The replicator equation and other game dynamics. Proceed-
ings of the National Academy of Sciences, 111(Supplement 3):10810–10817, 2014.

161



[57] J. A. Crooks. Characterizing ecosystem-level consequences of biological invasions: the
role of ecosystem engineers. Oikos, 97(2):153–166, 2002.

[58] F. Crotty, R. Fychan, R. Sanderson, J. Rhymes, F. Bourdin, J. Scullion, and C. Marley.
Understanding the legacy effect of previous forage crop and tillage management on soil
biology, after conversion to an arable crop rotation. Soil Biology and Biochemistry,
103:241–252, 2016.

[59] K. Cuddington, W. G. Wilson, and A. Hastings. Ecosystem engineers: feedback and
population dynamics. The American Naturalist, 173(4):488–498, 2009.

[60] W. Cui, R. Marsland III, and P. Mehta. Effect of resource dynamics on species packing
in diverse ecosystems. Physical Review Letters, 125(4):048101, 2020.

[61] M. Dal Bello, H. Lee, A. Goyal, and J. Gore. Resource–diversity relationships in
bacterial communities reflect the network structure of microbial metabolism. Nature
Ecology & Evolution, 5(10):1424–1434, 2021.

[62] T. Daufresne and L. O. Hedin. Plant coexistence depends on ecosystem nutrient cycles:
extension of the resource-ratio theory. Proceedings of the National Academy of Sciences,
102(26):9212–9217, 2005.

[63] O. Diekmann and J. A. P. Heesterbeek. Mathematical epidemiology of infectious dis-
eases: model building, analysis and interpretation, volume 5. John Wiley & Sons,
2000.

[64] M. B. Eppinga, M. Baudena, D. J. Johnson, J. Jiang, K. M. Mack, A. E. Strand, and
J. D. Bever. Frequency-dependent feedback constrains plant community coexistence.
Nature Ecology & Evolution, 2(9):1403–1407, 2018.

[65] M. B. Eppinga, M. Rietkerk, S. C. Dekker, P. C. De Ruiter, and W. H. Van der Putten.
Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions.
Oikos, 114(1):168–176, 2006.

[66] M. J. Eppstein and J. Molofsky. Invasiveness in plant communities with feedbacks.
Ecology Letters, 10(4):253–263, 2007.

[67] I. Eshel, E. Akin, et al. Coevolutionary instability of mixed nash solutions. J. Math.
Biol, 18(2):123–133, 1983.

[68] M. S. Fitzsimons and R. M. Miller. The importance of soil microorganisms for main-
taining diverse plant communities in tallgrass prairie. American Journal of Botany,
97(12):1937–1943, 2010.

[69] R. P. Freckleton and O. T. Lewis. Pathogens, density dependence and the coexistence of
tropical trees. Proceedings of the Royal Society B: Biological Sciences, 273(1604):2909–
2916, 2006.

162



[70] D. Friedman. Evolutionary games in economics. Econometrica: Journal of the Econo-
metric Society, pages 637–666, 1991.

[71] G. F. Gause. The struggle for existence: a classic of mathematical biology and ecology.
Courier Dover Publications, 2019.

[72] T. Gibbs, J. Grilli, T. Rogers, and S. Allesina. Effect of population abundances on the
stability of large random ecosystems. Physical Review E, 98(2):022410, 2018.

[73] T. Gibbs, Y. Zhang, Z. R. Miller, and J. P. O’Dwyer. Stability criteria for the con-
sumption and exchange of essential resources. bioRxiv, 2021.

[74] E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak, and E. Meron. A mathemati-
cal model of plants as ecosystem engineers. Journal of Theoretical Biology, 244(4):680–
691, 2007.

[75] G. S. Gilbert and C. O. Webb. Phylogenetic signal in plant pathogen–host range.
Proceedings of the National Academy of Sciences, 104(12):4979–4983, 2007.

[76] J. R. Gog and B. T. Grenfell. Dynamics and selection of many-strain pathogens.
Proceedings of the National Academy of Sciences, 99(26):17209–17214, 2002.

[77] J. R. Gog and J. Swinton. A status-based approach to multiple strain dynamics.
Journal of mathematical biology, 44(2):169–184, 2002.

[78] B. S. Goh. Global stability in many-species systems. The American Naturalist,
111(977):135–143, 1977.
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