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ABSTRACT

To learn e�ciently from randomized experiments, it is critical to understand how they may

be designed and analyzed to best accumulate and interpret the statistical information that

their data provide. To that end, this dissertation includes research on three important

problems. In the first paper, we develop promising Bayesian uncertainty-directed (BUD)

designs for faster and more informative dose-ranging clinical trials. The basic principle is to

randomize new patients more often to doses that are expected to generate the most added

information about the optimal dose, averaged over the posterior predictive distribution of

their still unknown outcomes. This typically means assigning new patients to doses that

are understudied relative to how strongly the data suggest they are optimal. We also use

Bayesian model averaging of dose-response curves to robustly accelerate learning by letting

each dose’s e↵ectiveness partially inform those of nearby doses. This butts against a com-

putational challenge that has made BUDs with nontrivial data models impractical, so we

develop an e�cient Sequential Monte Carlo strategy to enable this appealing approach to

multi-arm trial design. In the second paper, we propose a new model for borrowing from his-

torical controls in e�cacy trials. This model is called SPx (“synthetic prior with covariates”)

and uses carefully posed Bayesian model averaging to balance between competing philoso-

phies about how the historical and new data are related. In simulations and a case study we

show how SPx quickly distinguishes between historical data that are helpful and historical

data that are misleading, leading to a smaller control group in the new trial to the extent

reasonable. In the third paper, we consider the often overlooked problem that in multi-site

e�cacy trials there are often substantive grounds to believe that the e↵ectiveness of each

site may be related to its size or randomization ratio. We call this phenomenon endogeneity

of design. We re-evaluate treatment e↵ect estimators commonly used in practice and derive

asymptotic and finite-sample results as well as run extensive simulations to characterize their

performance under this more realistic assumption. In a detailed case study of a landmark

viii



trial in education, we take a Bayesian viewpoint to evaluate the likely performance of the

popular estimators in this specific setting. The implication is that endogeneity of design

can significantly complicate analysis of multi-site trials, and existing methods are not well-

equipped to handle this situation. For all three papers, code to reproduce the main analyses

and simulations is included as supplementary files.
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INTRODUCTION

This collection of papers is broadly focused on characterizing and making the most of the

statistical information in randomized experiments: how it is accrued over time, how it may

be supplemented by outside sources, and how well it is captured by standard methods. We

primarily take a Bayesian approach to these analyses, which is the natural way to describe

and quantify information about unknown quantities such as treatment e↵ects given available

data.

The setting of the first paper is a Phase 2b dose-ranging clinical trial, which seeks to

identify which dose of a drug (if any) is e↵ective enough to merit final testing in a large

confirmatory trial. Here we develop a trial design using a Bayesian uncertainty-directed

(BUD) randomization rule, which assigns new patients to doses in a way that seeks to quickly

increase information about the optimal dose, given what we currently know about it from

previous patients. This is combined with the use of Bayesian model averaging to flexibly

incorporate pharmacological knowledge about the dose-response curve. In the literature,

BUD trial design has not yet been used with nontrivial data models because of the inherent

computational challenge, so we develop fast algorithms to overcome this barrier to making

full use of the BUD principle.

In the second paper we turn our attention to early phase clinical trials of drug e�cacy,

where the control group has been studied in previous trials and we would like to use this

information source to accelerate the new trial. The key statistical challenge is to appropri-

ately control the degree of information borrowing so the historical data are relied upon when

relevant but discounted when irrelevant. We propose the SPx model, standing for “synthetic

prior with covariates,” which extends existing approaches by using, again, Bayesian model

averaging to account for di↵erent sources of heterogeneity between historical data and cur-

rent trial data. Needless to say, we find Bayesian model averaging to be a convenient and

tempting tool to balance between complexity and simplicity. We combine SPx with a simple

1



adaptive design and show strong performance in simulations and a case study.

The third paper considers multi-site randomized e�cacy trials, especially but not exclu-

sively in the social sciences, and reconsiders the performance of popular estimators under

the more realistic assumption that site sizes and e�cacy may be related. It is usually at

least plausible that the size of a site (e.g. school or hospital) might be somewhat correlated

with its e↵ectiveness, which can dramatically change how accurate di↵erent estimators are.

The first half of the paper presents new asymptotic theory and other analytic results about

the estimators’ performance, supplementing with simulations. While the estimators we com-

pare in this paper are Frequentist (though some may be considered empirical Bayes), in the

second half of the paper we compare them through a novel Bayesian lens. In the motivat-

ing case study, we apply a Bayesian model to quantify uncertainty about the key unknown

parameters arising in our Frequentist analytic comparisons of the estimators (e.g. RMSE

formulae). This then lets us directly describe, given the study’s data, what the probable

Frequentist performance (or if you prefer, Bayes risk) of the common estimators is in this

setting.

2



CHAPTER 1

BAYESIAN UNCERTAINTY-DIRECTED DESIGNS WITH

MODEL AVERAGING FOR MORE INFORMATIVE

DOSE-RANGING TRIALS

1.1 Introduction

Phase 2b dose-ranging clinical trials are a critical milestone in drug development. They are

when drug developers must decide if their drug is e↵ective enough to merit running a Phase

3 trial for final approval and, if so, which dose of the drug should be used in the Phase 3

trial. Weak trial designs and analysis at Phase 2b can cause wrong and costly decisions

for drug development and harm patients both in the trial and in the general population.

Suboptimal designs not only make Phase 2b trials slower but also hinder decision-making

about any subsequent Phase 3 trials. Undesirable outcomes include both wasting time and

resources before learning that a poor drug is ine↵ective and ending development of drugs

that are actually beneficial. This second error happens by either wrongly stopping e↵ective

and safe drugs before Phase 3 or by sending ine↵ective or toxic doses of otherwise good

drugs to Phase 3. Recent work has shown in detail how suboptimal methods in Phase 2

can reduce the chance of running a successful Phase 3 trial because they are less likely to

produce reliable evidence about if and how the Phase 3 trial should be run (Antonijevic et

al. 2010). In fact, most drugs fail in the transition from Phase 2 to 3 (Hay et al. 2014), a

sign of the need for stronger Phase 2 designs.

We find that, by and large, existing methods for Phase 2b trials either do not use adaptive

randomization to maximize information about the trial goal or do not honestly leverage

scientific beliefs about the dose-response curve. Yet these are two promising strategies to

make Phase 2b trials more reliable and e�cient, especially when combined.
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1.1.1 Design goals and philosophy

In this work we propose a Bayesian uncertainty-directed (BUD) design, which is a design for

multi-arm trials that adaptively randomizes patients while explicitly seeking to quickly in-

crease evidence about the stated scientific goal of the trial (Ventz et al. 2018). In particular,

when a new cohort of patients is enrolled in a BUD the probability that they will be random-

ized to each arm is proportional to the amount of information we expect to gain, given all

current data, from treating them on that arm. Intuitively, we might gain more information

from arms that have relatively few patients or that currently appear most promising (in

trials where the goal is to find the “best” dose). However, in general which arms are most

informative depends on the goal of the trial and the model, if any, that relates the arms to

one another. The earliest example of this strategy we are aware of is Berry et al. (2002), but

it has received little discussion until the approach was fleshed out more formally by Ventz

et al. (2018) and Domenicano et al. (2019).

As opposed to quickly increasing information, most Bayesian adaptive designs for multi-

arm trials are focused on maximizing benefit to the patients enrolled in the trial and explicitly

randomize patients more often to the arms that currently appear most promising. These de-

signs are often called Bayesian response-adaptive or adaptive randomization (BAR) designs,

and have become increasingly common over the past two decades (Thall & Wathen 2007;

Yuan & Yin 2011; Trippa et al. 2012; Yin et al. 2012; Wason & Trippa 2014).

At the same time, non-adaptive designs are still the de facto choice in Phase 2b trials,

especially when coupled with the highly popular MCP-Mod approach to analysis (Bretz et

al. 2005; Pinheiro et al. 2014). MCP-Mod is predominantly (though not always; Bornkamp

et al. 2011) used in conjunction with a fixed design that uses equal randomization (ER)

across arms. Its popularity is due in part to receiving regulatory blessing as an e↵ective

method from both the US Food and Drug Administration (LaVange & Zineh 2016) and the

European Medicines Agency (CHMP 2014).
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Earlier work in di↵erent settings has shown that BUD designs tend to be more e�cient

than BAR and ER designs, in some cases considerably so (Ventz et al. 2018). This means

that BUD designs show promise to be faster (requiring fewer patients) or more informative

(giving more reliable answers) than competitors, perhaps unsurprising because e�ciently

accruing information is a BUD design’s organizing goal.

We have suggested that clinical trialists have an ethical responsibility to prioritize the

scientific goals of a trial, but what about our ethical responsibility to the patients enrolled in

the trial? For one, BUD designs can certainly be constrained to avoid apparently suboptimal

doses, though this may somewhat slow down trials and make them less informative. Perhaps

more to the point, BUD designs may actually avoid inferior doses more consistently than

other designs intended for that purpose (e.g. BAR) by finding the optimal dose faster and

more reliably. (See Table 2 in Ventz et al. (2018), where the BUD design tended to allocate

similar numbers of patients to the best dose as did the BAR design, and the final allocation

itself was less variable than with the BAR). In some sense, response-adaptive designs are

greedy algorithms that may be worse at learning which doses are superior, thus harming

their ability to assign patients to these doses.

1.1.2 Modeling the dose-response curve

For any Phase 2b trial design, an essential strategy for increasing e�ciency is bringing in

pharmacological background knowledge by modeling the dose-response curve. Intuitively

this allows our inference about how e↵ective each dose is to be informed not just by patient

data from that dose, but also partially by patient data from other, and especially nearby,

doses.

While we have some scientific understanding of how the true dose-response curve for any

given drug may look, in all honesty we will be uncertain about the exact parametric form the

curve should take (Bornkamp et al. 2011; Pinheiro et al. 2014). Our scientific expectations
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about the dose-response curve (in the range of doses being studied) typically include the

ideas that (1) it is continuous and smooth, (2) increases in the dose probably do not lead

to reductions in the response rates (i.e. probably non-decreasing), and (3) the curve might

show relatively diminished returns from small dose increases for both low doses (which may

all be too low to have much e↵ect) and high doses (which may all be close to achieving the

maximum e↵ectiveness of the drug). Beyond this, we cannot be certain that we know what

parametric shape the dose-response curve follows. In truth, a simple dose-response curve

with relatively few parameters is probably wrong, but it may still capture enough of the

true relationship to enable a better design (compared to modeling each dose’s response rate

totally separately).

To this end we propose Bayesian model averaging (BMA) of simple parametric dose-

response curves, which has the merit of relatively honestly describing the uncertainty in

pharmacological beliefs about the shape of the dose-response curve while being relatively

easy to communicate. Put colloquially, under the BMA our final estimate of the dose-

response curve is a weighted average of the simple curves, weighting by how likely it is we

think each simple curve is correct.

1.1.3 Computational demands

To use a BUD design along with non-conjugate data models raises computational complexity

that has yet to be addressed in the existing BUD literature, so we develop fast Sequential

Monte Carlo algorithms to enable this combination. This makes simulation studies of the

method feasible, a necessity in a regulatory environment that requires checking Frequentist

properties. The general Sequential Monte Carlo strategy we outline will likely be a helpful

way forward to allow BUD designs in other settings to use non-conjugate models.
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1.1.4 Specific setting and plan for the paper

To be more concrete, we consider a trial setting with a binary e�cacy outcome and where

the dose we would like to carry forward into Phase 3 is the minimum e↵ective dose (MED),

that is, the lowest dose with a response rate above some pre-specified threshold (deemed

e↵ective). In particular, we model the binary responses yi for patient i = 1, . . . , n assigned

to dose di 2 D as

yi|di, ✓
ind⇠ Bern(⇡✓(di)),

where ⇡✓ is the dose-response curve (with parameter ✓). So the MED is defined as

d⇤ := min{d 2 D : ⇡✓(d) � ⇡0}

for the threshold ⇡0 2 [0, 1]. When no dose satisfies ⇡✓(d) � ⇡0 we say d⇤ = “does not exist”.

We consider trials with a moderate number of fixed doses (say 4-6), enough so that popular

parametric dose-response models may reasonably be employed. For modeling convenience

we scale the doses so that the minimum dose is 0 and the maximum dose is 1.

In this late Phase 2 setting the MED is commonly thought to be the appropriate dose

to carry forward into Phase 3 because drug developers typically assume (1) that the doses

included in the study all have tolerable toxicity levels (because of earlier clinical safety

studies) and (2) that the dose-toxicity curve is monotone, so the lowest e↵ective dose is also

the safest. Typically the minimum dose being studied is either a placebo or rather low dose

of the drug and the maximum dose is the largest dose confidently deemed safe given earlier

clinical results.

The paper proceeds as follows. In Section 1.2 we describe the proposed BUD designs

in substantive and mathematical detail. Section 1.3 outlines the Bayesian model averaging

strategy to incorporate common pharmacological beliefs about the dose-response curve. Sec-

tion 1.4 details our computational strategy using Sequential Monte Carlo to make BUDs with
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non-trivial data models feasible to use and simulate in practice. In Section 1.5 we present

results from an extensive simulation study comparing the design and modeling merits of our

BUD-BMA approach to alternative methods, and in Section 1.6 we conclude with directions

for future research.

1.2 Adaptive Trial Design

In plain English, a BUD design consists of the following steps:

1. Precisely define the scientific goal of the trial (the parameter of interest, in our case the

“minimum e↵ective dose” or MED) and a way to measure information about that goal

given a set of data (the information criterion, which is some measure of the posterior

certainty about this parameter given available data).

2. For each dose we could assign the next patient cohort to, calculate how much informa-

tion we expect to gain about the scientific goal of the trial by assigning the cohort to

that dose beyond what we already know from current data.

3. Randomize the next patient cohort to doses proportional to (a power of) the doses’

information gains.

And the design continues until the trial’s maximum sample size is reached or some adaptive

stopping rule is met.

The basic premise of a BUD design for dose-ranging is that as the trial unfolds and we

collect data, we start to learn about the response rates and about what doses are and are

not likely to turn out to be the MED. Then we can often speed up a trial and get more

information by concentrating future patients on the doses that will help us learn the most.

To illustrate this point, Figure 1.2.1 shows 80% posterior credible intervals of the response

rate for each dose during the middle of a trial, with the darkness of the interval indicating

the posterior probability that each dose is the MED. Here the MED is defined as the lowest

8



Figure 1.2.1: Illustration of which doses are likely to be most helpful to assign new patients
to, given example data in the middle of a hypothetical trial. The vertical axis shows the
posterior mean and 80% credible interval of each dose’s response rate, and the color of each
point/bar reflects the posterior probability. The extreme doses are relatively unlikely to be
the MED (with a target rate of 35%, horizontal grey line) so putting the next cohort of
patients on them is expected to help relatively little in narrowing down the MED.

dose (being studied) with a response rate greater than 35%. At this point in the trial we can

see that the 0 and 0.1 doses probably have response rates that are too low to make them the

MED and that the 1.0 dose is probably too e↵ective, given that there are lower doses that

seem quite possible as the MED. Because of this, it makes sense to focus new patients on

the 0.2, 0.4, and 0.7 doses — the other doses are less likely to help us narrow down which

dose is the MED.

Of course, the form of the model itself also impacts how informative we expect each dose

to be. As a simple example, if early on in the trial (or at some later point) we are unsure

if the drug is e↵ective at any dose, and we have a model that says that the dose-response

curve is monotone, then it makes the most sense to assign more patients to the highest (or

at least higher) dose since if it is not e↵ective enough then we know that none is (and the

MED does not exist).
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To explain the expected information gain, note that we can think of it as asking “if we

assign the next cohort to this dose and saw these outcomes for them, what would our new

posterior be and how much information (certainty) about the MED would it have?” Since

we do not know what the outcomes will be, we consider how likely we think each di↵erent

set of possible outcomes is for the next cohort (assigned to this dose) given our current data

(i.e. the posterior predictive probability of the possible new data), and use that to average

over the di↵erent amounts of information we would have for each possible new data for this

next cohort. That average is the posterior predictive expectation of the information we will

have after treating the next cohort at this dose, and the di↵erence between it and the current

information gives us the posterior predictive information gain from assigning the next cohort

to this dose.

1.2.1 The BUD design, mathematically

We first introduce some notation. Let ⌃t be all the data (outcomes yi and doses di for each

patient i) up to patient cohort t. Let D be the set of doses being studied. Let ⌃t+1,d :=

(⌃t, y, d) be the full data up to time t + 1 if cohort t + 1 is assigned to dose d and has

outcome vector y. Also let d⇤ be the minimum e↵ective dose (MED), that is, the lowest dose

among those being studied with a response rate greater than some predefined target rate.

The MED does not exist if none of the doses being studied has a response rate greater than

the target rate, so “does not exist” is a value d⇤ may take and thus the parameter space of

d⇤ is D+ := D [ {“does not exist”}.

Then mathematically, the BUD design includes the following steps:

1. Define the target of inference and the information metric.
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The target of inference is d⇤, the MED. The current information is

I(⌃t) := f(P (d⇤|⌃t))

=
X

d2D+

P (d⇤ = d|⌃t) logP (d⇤ = d|⌃t)

where f is generically some functional of a distribution that measures how concentrated

it is (i.e. close to degenerate) and P (d⇤|⌃t) is the posterior of the MED given all the

data up to cohort t. In our case we take f to be the negative entropy, partially since

it is defined no matter the parameter space of d⇤ (which is not strictly numerical).

2. Calculate the posterior predictive expected information gain if cohort t+ 1 is assigned

to dose d.

Let the expected information gain be

�t+1,d := Ey|⌃t,d

⇥
I(⌃t+1,d)|⌃t

⇤
� I(⌃t)

where we take expectation over the posterior predictive distribution of the responses

for cohort t+ 1, y, given that it is assigned to dose d and ⌃t.

3. Randomize and treat the next cohort t+ 1.

Assign the patients in cohort t+ 1 to dose d with probability

P (dt+1 = d) / �h

t+1,d

where h is some positive power. Typically we default to h = 1 (Ventz et al. 2018).

Patients can be assigned individually (i.e. a cohort size of 1), though assigning larger cohorts

may be easier computationally and logistically.
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1.2.2 Early stopping

The trial will continue until it reaches a pre-specified maximum sample size, or if early

stopping is allowed, it will stop when the early stopping rule is first met. The common,

intuitive Bayesian approach is to stop the trial when

P (d⇤ = d|⌃t) � c

for some d 2 D+ and threshold c (e.g. 95%). In other words, stop the trial when the

posterior is su�ciently certain that it knows which dose is the MED.

In the BUD design, we may also want to stop trials early for purely computational reasons.

As the posterior of the MED becomes very concentrated on a single dose, the information

gains will become smaller and thus estimates of them can become too noisy, leading to

unstable allocations. Stabilizing the allocations would require much more computation, and

is probably not worthwhile if the data are really so blatant that the posterior is extremely

confident. For this reason in our implementation of BUD designs we always stop trials when

P (d⇤ = d|⌃t) exceeds 99% for some d 2 D+.

1.3 Model

Our modeling strategy is based on Bayesian model averaging (BMA) of multiple parametric

dose-response curves. This model suggests that the we believe the data to have been gener-

ated by one of a finite set of candidate curves but that we are uncertain as to which one, so

inferences get averaged over each of the models. Formally, we

1. Specify a set of possible models M and suppose that the data ⌃t were generated by

some unknown model M 2 M. In particular, these models are the dose-response

curves ⇡m
✓m

(where ✓m is the parameter, possibly multivariate, for model m) for the

Bernoulli outcome. This gives us the model-specific likelihoods p(⌃t|M = m, ✓m).
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2. Specify priors over both the models, p(M = m), and the parameters in each model,

p(✓M |M = m).

3. Find the posterior probability that the data came from each model m 2M,

p(M = m|⌃t) / p(⌃t|M = m)p(M = m),

where p(⌃t|M = m) =
R
p(⌃t|✓m,M = m)p(✓m|M = m)d✓m is the marginal likelihood

(or evidence) of model m.

4. Then BMA inferences come from averaging all model-specific inferences (such as esti-

mates of the response rates for each dose) over the posterior probability of each model.

For example, the BMA posterior of the MED d⇤ is

p(d⇤ = d|⌃t) =
X

m2M
p(M = m|⌃t)p(d

⇤ = d|M = m,⌃t).

BMA is an attractive strategy to account for uncertainty in the shape of the dose-response

curve for multiple reasons. First, it lets us directly include di↵erent scientific theories about

how the drug a↵ects patients, and because of this it is relatively straightforward to specify

priors over the models and within each of them. Furthermore, statistical theory has long

suggested that Bayesian model averaging gives superior predictions to Bayesian model se-

lection (i.e., basing inferences entirely on the model with the highest posterior probability)

(Wasserman 2000), which is closely tied to our problem — predicting the response rates at

each dose to find the MED. Similar findings have also emerged in non-Bayesian comparisons

of model averaging and model selection (Schorning et al. 2016), and notably in the dose-

finding setting where the original and common usage of MCP-MOD relies on model selection

(Bretz et al. 2005; Pinheiro et al. 2014). Finally, there may be little gain (or actual harm)

from nonparametric strategies because although our setting has a decent number of doses
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Figure 1.3.1: Example analysis under the Bayesian model averaging (BMA) of simple
parametric dose-response curves. Each panel shows, for a di↵erent model, the posterior
mean dose-response curve (blue) with doses along the x-axis and response rate along the
x-axis. The BMA panel shows the average of the other five, weighted by the posterior
probability that each is correct (P (M |D)). The observed data (long-dashed grey line) and
true data-generating curve (short-dashed black curve) are the same in each panel and shown
for reference.

compared to many clinical trials (6), we still do not have enough design points to estimate

particularly nuanced curves.

In particular, we propose a set of 5 candidate dose-response curves and use these for the

rest of the project, though of course this set should be tailored to each given setting. Figure

1.3.1 shows each of these curves, estimated from an example data set, as well as the BMA

curve (averaging these 5 over the posterior distribution of the identity of the “true” curve).

The specific functional forms and priors (independent, except where specified condition-
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ally):

Flat: ⇡✓(d) = p

p ⇠ Unif(0, 1)

Linear: ⇡✓(d) = ↵ + �d

↵ ⇠ Beta(0.1, 3)

�|↵ ⇠ Unif(0, 1� ↵)

Loglinear: ⇡✓(d) = ↵ + � log2(d+ 1)

↵ ⇠ Beta(0.1, 3)

�|↵ ⇠ Unif(0, 1� ↵)

Quadratic Logistic: ⇡✓(d) =
1

1 + exp(�(ad2 + bd+ c))

⇡placebo := ⇡✓(0), ⇡high := ⇡✓(1), xext :=
�b
2a

⇡placebo ⇠ Beta(0.1, 3)

⇡high ⇠ Unif(0, 1)

xext ⇠ N(0.75, 0.292)

EMAX: ⇡✓(d) = ↵ + Emax

d�

d� + ED�
50

↵ ⇠ Beta(0.1, 3)

Emax|↵ ⇠ Unif(0, 1� ↵)

� ⇠ Gamma(2, 2)

ED50 ⇠ TN(0.5, 32; (0, 1))

where TN(x, y;S) denotes a normal distribution with mean x and variance y that has been

truncated to the set S.

This set of models was chosen to accommodate a range of dose-response curves of varying
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complexity (the number of parameters ranges from 1 to 4) and to include the possibility

that the dose-response curve is non-monotone in the range of doses being studied, with the

response rate peaking before the maximum dose of 1. This last feature is built into the

quadratic logistic model, where we state the prior in terms of the transformed parameters

⇡placebo (the response rate at the 0 dose, corresponding to ↵ in the other models), ⇡high (the

response rate at the high dose of 1), and xext (the dose at which the dose-response curve

has its extremum) so that there is an 80% prior chance that this model is non-monotone in

the range of doses being studied.

The Bayesian model averaging procedure is also desirable since it has a penalty for

unnecessary model complexity naturally built in. In particular, the posterior probability of

each model is mainly controlled by the marginal likelihood of the model, which will tend to be

relatively smaller for more complex models that do not explain the data significantly better.

This is because in the calculation of the marginal likelihood the likelihood function must be

integrated over a higher-dimensional parameter space, so unless the additional parameter

substantially improves the model fit (height of the likelihood) at some values, this integral

will be over more small likelihood values, dragging down the average.

1.4 Computation

1.4.1 Computational needs of the method

BUD designs are conceptually attractive but can require considerably more computation

than simpler designs. Even compared to Bayesian response-adaptive randomization (BAR)

designs, BUD designs must compute many more posterior distributions, which is a challenge

if these posteriors are not conjugate.

The piece of the BUD that requires more computation is the expected information gain,

since direct calculation of this quantity requires that we learn what the information criterion
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would be if we observed each possible new data set. Since the information criterion is a

summary of the posterior of the MED, we apparently need to compute this posterior for

each of these hypothetical data sets in order to decide how to randomize the new patients.

In particular, to run the adaptive design we need to computeD·(ncohort+1)·(nper cohort+

1) · k posterior distributions, where D is the number of doses being studied, ncohort is the

number of cohorts, nper cohort is the number of patients per cohort, and k is the number of

dose-response models included in the BMA. For example, with 6 doses, cohorts of 5 patients,

20 cohorts, and 4 dose-response curves, this comes to 6·21·6·4 = 3024 posteriors to adaptively

randomize just 100 patients.

“Brute force” independent MCMC simulation for each of these posteriors would make

running an actual trial cumbersome (even though in real life computation only happens

for one cohort at a time) and importantly would make simulation studies for Frequentist

properties of the design impractical or infeasible in most cases. To address this issue, we

make use of the fact that many of these posteriors are closely related to each other since

sequentially the data they condition on only di↵ers by a few observations.

1.4.2 Sequential Monte Carlo

Our approach is based on a Sequential Monte Carlo (SMC) algorithm (Chopin & Pa-

paspiliopoulos 2020). The basic idea is to sequentially use importance sampling to reweight

the posterior at time t to reflect the posterior at time t+ 1.

In general, importance sampling is a method used to compute the mean (of a function h)

for some “target” distribution f when it is only easy to sample directly from a “proposal”

distribution g. Let ✓ = (✓1, . . . , ✓k) 2 ⇥ denote a parameter vector for a model defined over

a parameter space ⇥ (having dimension k). Importance sampling begins by taking a random
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sample of parameter (vectors) ✓(1), . . . , ✓(J)
iid⇠ g and then using the unbiased estimator

µ̂h :=
1

J

JX

j=1

h(✓(j)) · f(✓
(j))

g(✓(j))

=
1

J

JX

j=1

h(✓(j)) · wj

where f and g are the densities of each distribution. This is just a weighted mean, where

samples drawn from g are reweighted to resemble samples from f . The more similar g gets

to f , the less variable the weights wj and the more e�cient µ̂h become, that is, a smaller

J will be needed for a specified level of precision. The weighted sample (✓(j), wj)j=1,...,J is

often called a particle system.

It is intuitive how importance sampling might be used in our setting where the current

posterior is changing step by step as new data gets added. This is the key idea, though

even the relatively simple SMC approach we discuss has some further nuances. For example,

we occasionally need to move the samples around so the weights don’t get too extreme and

variable (that is, a point that was unlikely under the posterior at time t� 5 might be much

likelier at time t+ 1 and now require an extreme weight).

1.4.3 SMC to update a single model’s posterior

Here we give the SMC algorithm to update the posterior for a single dose-response curve,

directly applied from Chopin (2002). It is the basic building block of our overall algorithm

to compute the BMA of dose-response curves.

Let pt be the posterior (for ✓ in dose-response model M , suppressed in the notation)

after observing data for the first t cohorts. Let yt be the binomial response of cohort t.

Let f(yt|✓(j)) be the likelihood of the new data yt under parameter ✓(j). So say we have a

particle system (✓(j), wj)j=1,...,J for pt�1 — how do we update it to get a particle system
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for pt?

Algorithm 4.1 SMC to update a single curve’s posterior

1. Reweight: Let wj  wj · f(yt|✓(j)) for each particle j = 1, . . . , J .

2. If ESS < ESSthreshold,

(a) Resample: Resample ✓(j) w.p. / wj and let wj  1 for each particle j =
1, . . . , J .

(b) Move: Move ✓(j) by some transition kernel Kt with stationary distribution pt.

3. Compute posterior: Now (✓(j), wj)1,...,J is a particle system for pt, so we have
unbiased estimates of Ept(h(✓)) given by

µ̂ht :=
JX

j=1

wjh(✓
(j)).

The ESS, or e↵ective sample size, of a particle system is the number of independent

draws from pt that would give us an estimator with the same variance as what we get from

the particle system. It can be estimated as a simple function of the weights (Chopin 2002).

By monitoring the ESS we can make sure that the particle system is always at least as

e�cient as an independent sample of the desired size (ESSthreshold).

Because the posteriors pt�1 and pt have the same prior and because the data for each

patient is independent in our model’s likelihood, the weight for particle j only needs to

change by a factor of f(yt|✓(j)), i.e. the likelihood of the new data under ✓(j).

When the particle system is becoming impoverished (the ESS is too small), we would

like to refresh it so that we can get more precise (but still unbiased) estimates for the new

posterior (particularly, so our information criterion calculations are stable). The resampling

step gives us the chance of discarding particles that are relatively unlikely in pt (those with

especially small weights), and after this the particle system (✓(j), wj)j=1,...,J , where the

weights are now constant, is another valid particle system for pt.
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The move step gives us the chance to include new particles that were not previously in

the system, especially those that are relatively likelier under pt than the current particles.

By definition of Kt having stationary distribution pt, after the move step (✓(j), wj) is still a

valid particle system for pt, and now one that should estimate its features more accurately.

In practice, for Kt we use a single Metropolis-Hastings step where the proposal distribution

is multivariate normal with mean vector and covariance matrix being the weighted sample

mean and weighted sample covariance of the current particle system.

We stress here that the parameterization of the model can be critical to the accuracy and

reliability of the posterior computation, especially after multiple updates, as Chopin (2002)

mentioned briefly. In particular, given the normal proposals in the move step the SMC should

be done on a parameter space ⇥ that will have relatively smooth posterior density over Rk

(where k is the dimension of the model) and no tall spikes (especially if there are multiple

modes). For example, parameterizing the quadratic logistic model’s curvature parameter

xext by ✓3 = (xext � 0.5)3 can produce a bimodal posterior with one mode being a spike.

Unfortunately this causes the sequence of SMC estimated posteriors to degrade to biased

representations of the actual posteriors after a moderate number of cohorts. In this case the

fixed scale of the move step’s normal proposals, which is determined by the overall variance

of the current particle system, make the spiked region both hard to move to and move out of.

This leads to unstable and worsening estimates of the size of the spike over time, meaning

that the computed posterior for this parameter can be very wrong.

1.4.4 Algorithm to run a full trial

The SMC algorithm just given is the key tool required to get the necessary posterior infer-

ences for the full BMA as the trial proceeds. We do this by maintaining a particle system for

the current posterior of each of the dose-response curves and update each at each step of the

trial. To find the BMA weights (the posterior probability of each dose-response curve) we
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just need the marginal likelihood for each dose-response curve model, which can be estimated

as a simple function of the particle system weights (Drovandi et al. 2014).

Each dose-response curve posterior, summarized by its current particle system, implies a

posterior for the MED, that is, the posterior probability that the MED is equal to each dose

being studied, given the type of dose-response curve. We can get each curve’s implied MED

posterior from its particle system (since we want to estimate the posterior expectation of the

function h(✓) := 1{✓ : dose d is the MED} for each d). And the overall, BMA, posterior for

the MED is simply the average of these posteriors, averaged by the BMA weights we have

already calculated.

Then the overall algorithm for running a trial is as follows:

Algorithm 4.2 BUD-BMA dose-ranging trial

1. Run-in: Start trial with a short period of equal allocation.

2. BUD:

(a) Calculate the next cohort’s BUD allocation by finding each dose’s expected infor-
mation gain, for all the cohort’s possible outcomes:

i. do SMC to get the posterior for each dose-response curve in the BMA (Algo-
rithm 1)

ii. calculate the BMA posterior for the MED and its information

and average these information criteria over the posterior predictive distribution.

(b) Randomize next cohort to their dose.

(c) After observing new outcomes, return to 1 to allocate the following cohort.

3. Stop Trial: When max sample size is reached or when there’s high posterior certainty
about the MED.

To avoid excessive computation, we approximate the information gains by ignoring the

next cohort’s possible outcomes that are extremely unlikely (such as 5 out of 5 responders

when the current posterior predictive probability of response for this dose is 20%; such a

scenario would account for 0.03% of the expected information gain). We have found that this
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can cut down computation time by nearly half without noticeably changing the allocations

chosen in the BUD.

1.5 Simulation Study

To better understand the performance of BUD-BMA and the underlying design and modeling

choices, we conducted extensive simulations organized around four primary questions. First,

how does the BUD strategy perform compared to other patient randomization schemes for

dose-ranging trials? Second, how do di↵erent choices of the dose-response curve impact

results? Third, what are the e↵ects of adaptive trial stopping and the number of doses being

studied? And fourth, how does BUD-BMA compare to other dose-ranging methods most

popular in clinical trial practice? To measure performance, we focus primarily on Frequentist

rates of identifying the MED and average total trial size but also consider average patient

outcomes as a measure of benefit to trial participants.

In our simulations we consider trials run with each combination of four randomization

rules and three modeling strategies, plus one popular Frequentist method, leading to 13

total combinations. The Frequentist method is MCP-Mod with equal number of patients

randomized to each dose (ER-MCP-Mod).

For the randomization rules we consider BUD as described in Section 1.2, along with two

more familiar Bayesian adaptive randomization rules as well as equal randomization. The

first Bayesian alternative is response-adaptive randomization, where patients are randomized

to doses with probability proportional to the posterior probability that each dose is e↵ective

(i.e. has response rate greater than the target rate for the MED), and we denote this by

BAR-EFF. This will put more patients on doses perceived to have the highest response

rates. The second Bayesian alternative is a bit more tailored, and randomizes patients with

probability proportional to the posterior probability that each dose is the MED, and we

denote this by BAR-MED. Finally in the equal randomization (ER) design we randomize an
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Figure 1.5.1: Data-generating (true) dose-response curves for the simulation study. The
points indicate the doses being studied, with the starred points excluded in the cases with
only 4 doses. The horizontal grey line denotes the 40% target rate defining the MED, and
in each panel the large point denotes the MED.

equal number of patients to each dose.

In terms of specific design parameters, we also vary the total trial size and number of

doses being studied. For all four designs we ran trials with a fixed total size of 250 patients,

which also lets us record what would have happened had these trials stopped earlier at

smaller fixed total sizes. For the designs with adaptive randomization (BUD, BAR-EFF,

and BAR-MED) we also ran trials that stopped adaptively when there was 95% or higher

posterior probability of knowing the MED. Across all designs we included both trials using

4 and 6 fixed doses.

The three modeling strategies include (1) the BMA of simple parametric dose-response

curves described in Section 1.3, (2) the EMAX model that is used as a submodel in the

BMA, and (3) an independent model that makes the doses’ response rates totally unrelated
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to one another by using independent Beta(1/2, 1/2) priors for each. The EMAX model,

which describes four-parameter sigmoid curves, is very flexible and popular in pharmacology

(Thomas 2006), but it cannot accomodate non-monotone curves and may be too large a

model when there is little data and fewer doses.

The data-generating scenarios we simulate from consist of the 7 dose-response curves

shown in Figure 1.5.1. Two each are EMAX curves, quadratic logistic curves, and linear

threshold curves, with “easy” and “hard” cases, and there is also a flat scenario where the

drug is ine↵ective and all doses have the same response rate. The linear threshold model,

which is not included in the BMA ensemble, is flat at low doses and at some point transitions

to increasing linearly over the remaining higher doses. For each scenario and method we

simulated 1,000 trials.

In general we find that while no approach dominates universally across all scenarios, the

BUD-BMA is overall a strong choice that is often best or close to best and that otherwise

appears not to fall too far behind.

1.5.1 Choice of randomization rule

If the dose-response model is fixed, how do the di↵erent randomization rules compare to one

another? An initial answer is given by Table 1.5.1, which reports method performance for

trials with 6 doses and fixed trial size.

For a given modeling strategy, no matter the modeling strategy, BUD tends to handily

beat or match ER and BAR-EFF at MED accuracy and average trial size. BUD also produces

respectable patient outcomes compared to these designs despite that not being its stated goal,

often greatly improving over ER and not falling too far of BAR-EFF (which has the main

goal of maximizing patient outcomes within reason).

Compared to BAR-MED, BUD is often quite similar in MED accuracy, especially when

BMA is used. At the same time it often produces smaller trials (sometimes by about 5-10
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BMA EMAX Independent MCP-Mod
Scenario Design MED n sd y/n MED n sd y/n MED n sd y/n MED n sd y/n

EMAX

Easy

ER 0.70 250 0 37 0.83 250 0 37 0.83 250 0 37 0.67 250 0 37
BAR-EFF 0.72 249 9 47 0.78 248 13 48 0.76 249 10 47
BAR-MED 0.83 245 21 43 0.85 243 22 43 0.79 246 18 41

BUD 0.85 241 28 42 0.93 234 39 41 0.92 228 44 35

Hard

ER 0.78 250 0 29 0.70 250 0 29 0.49 250 0 29 0.63 250 0 29
BAR-EFF 0.75 250 6 35 0.75 250 7 35 0.47 250 0 34
BAR-MED 0.79 250 0 34 0.77 250 0 34 0.53 250 2 32

BUD 0.79 250 6 36 0.81 250 0 36 0.56 249 9 32

Flat

Easy

ER 1.00 250 0 10 1.00 250 0 10 1.00 250 0 10 1.00 250 0 10
BAR-EFF 1.00 50 17 9 1.00 42 15 9 1.00 139 28 10
BAR-MED 1.00 50 17 9 1.00 43 15 9 1.00 138 29 10

BUD 1.00 49 15 9 1.00 40 12 9 1.00 129 24 10

Quad. Log.

Easy

ER 0.88 250 0 34 0.64 250 0 30 0.80 250 0 34 0.95 250 0 33
BAR-EFF 0.91 249 7 40 0.72 250 8 38 0.80 250 3 40
BAR-MED 0.95 248 10 40 0.90 250 3 40 0.87 249 8 38

BUD 0.96 248 10 38 0.87 249 8 38 0.95 240 30 34

Hard

ER 0.63 250 0 34 0.53 250 0 34 0.66 250 0 34 0.74 250 0 34
BAR-EFF 0.63 249 10 37 0.45 248 17 37 0.65 250 4 37
BAR-MED 0.68 249 10 38 0.64 249 12 38 0.74 250 5 36

BUD 0.71 249 10 37 0.56 249 14 37 0.81 248 12 34

Threshold

Easy

ER 0.84 250 0 27 0.87 250 0 27 0.69 250 0 27 0.79 250 0 27
BAR-EFF 0.86 247 13 40 0.87 246 19 40 0.67 250 3 39
BAR-MED 0.87 245 19 36 0.86 243 23 36 0.69 249 10 35

BUD 0.89 238 31 36 0.91 232 41 37 0.80 241 29 31

Hard

ER 0.72 250 0 36 0.70 250 0 36 0.26 250 0 36 0.52 250 0 36
BAR-EFF 0.76 250 0 40 0.74 250 0 40 0.30 250 6 38
BAR-MED 0.76 250 0 38 0.76 250 0 38 0.35 249 12 36

BUD 0.75 250 0 38 0.74 250 0 38 0.37 250 9 34

Table 1.5.1: Performance metrics for the trial methods with fixed trial stopping at 250
patients and 6 doses under study. In particular, for each combination of design and modeling
strategy we give the proportion of trials in which the MED is correctly identified (MED),
mean trial size (n) and standard deviation of trial size (sd), and mean observed patient
response rate as a percentage (y/n). The total trial size is not always 250 because the
adaptive randomization designs were stopped early at 99% posterior confidence in the MED
(see Section 1.2).
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patients but other times by dozens). Figure 1.5.2 provides a broader comparison of BUD-

BMA and BAR-MED-BMA. For the most part, BUD-BMA matches or moderately improves

on BAR-MED in terms of MED accuracy and trial size. This is especially the case when

there is a dose that is obviously not the MED but that is still essential to study to find

the MED quickly because of the insights it provides about the underlying dose-response

curve. This arises is in the easy quadratic logistic and threshold scenarios, and we return

to this point in Section 1.5.4. An exception to BUD’s better performance arises in the hard

threshold scenario when only 4 doses are being studied. Here it puts relatively more patients

at the lowest and highest dose, and slightly more often concludes that the 0.4 dose is the

MED (despite in truth being ine↵ective).

1.5.2 Choice of dose-response model

If the randomization rule is fixed, which dose-response model performs best? Looking again

to Table 1.5.1 we can see that here there is no universal winner, since model misspecification

and ine�ciency have di↵erent consequences depending on the underlying true dose-response

curve. In general the BMA performs respectably, beating or nearly matching the next-best

model (EMAX or independent) at MED accuracy and trial size in all but two scenarios.

The first case where it falters somewhat is (perhaps ironically) the “easy” EMAX scenario.

Here it puts nontrivial mass on the loglinear submodel, which is biased downwards for the

response rate of the true MED, the 0.4 dose, occasionally causing the BMA to lose just enough

confidence in the 0.4 dose’s e↵ectiveness to instead claim that the next higher dose (0.7) is

the MED. Unsurprisingly, simply using the EMAX model (which is correctly specified) does

better here. The second case where the BMA struggles a bit is the hard quadratic logistic

scenario, where it is more challenging to detect the non-monotonicity (since the EMAX

model also fits relatively decently here) and the independent model does better.

In contrast to BMA, when the EMAX and independent models do poorly their perfor-
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Figure 1.5.2: Di↵erence in BUD-BMA and BAR-MED-BMA accuracy and trial size. For
both accuracy and trial size the ordering is BUD minus BAR-MED.
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Figure 1.5.3: MED accuracy of BUD trials as a function of trial size and model. Rates
computed based on the simulated trials with fixed size of 250 patients by considering what
each trial would have concluded about the MED if it were stopped earlier (subject addition-
ally to early stopping at 99% posterior confidence as described in section 1.2.
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mance can be much worse. The EMAXmodel does very well in all scenarios but the quadratic

logistic ones, where it is badly biased since it cannot accommodate non-monotonicity and

depending on the design this can make it 15-20% (additively) less accurate at detecting the

MED than the BMA or independent models. The independent model struggles very badly

in cases where many of the doses have similar (or identical) response rates, which is common

in the hard scenarios and the flat one, where it requires dozens of extra patients to be as

accurate as the other models. These are essential situations where a method must perform

well because it is typical for drugs being studied in Phase 2b to not be e↵ective (regardless

of dose) or at least to not be so wildly e↵ective that the range of response rates across doses

is very large.

Another important point here is that when misspecification and bias are at play the

models show diverging performance as trial size grows (Figure 1.5.3). In other words, the loss

in MED accuracy from using a badly biased dose-response model can be worse with a larger

trial. This is evident in the quadratic logistic scenarios, where the EMAX model struggles

relative to the others at larger trial sizes and the BMA is outpaced by the independent model

in the hard case, where the flatter curve makes it harder to confidently identify the non-

monotonicity (since the EMAX submodel still has a competitive overall fit here). Intuitively,

the EMAX model’s response rate estimates are biased upwards for the 1.0 dose (which isn’t

actually e↵ective) but biased downwards for the 0.4 and 0.7 doses, which increases our

uncertainty about if the MED even exists. This means a BUD will be more inclined to

reduce this uncertainty, which under monotonicity it will do by putting more patients on the

highest dose.

1.5.3 Adaptive trial stopping

What is the e↵ect of stopping trials adaptively after a certain level of posterior confidence in

the MED has been reached, as opposed to stopping at a fixed trial size? Figure 1.5.4 reveals
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Figure 1.5.4: Di↵erence in average accuracy and trial size between trials stopped adaptively
vs. those with fixed total size. For both accuracy and trial size the ordering is adaptive minus
fixed, so positive numbers mean the adaptive trial is more accurate/larger. Columns indicate
randomization rule, rows indicate scenario, the shape of each point indicates the model, and
the color of each point indicates the number of doses being studied.
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how in many of the scenarios we consider 250 patients is not enough data to typically give

95% posterior certainty in the MED, so in these cases the adaptively stopped trials are larger

and, unsurprisingly, more accurate due to the additional data (top right quadrant). This

reflects how power to detect the MED is depends very sensitively on the a variety of features

of the underlying dose-response curve, so it may not be sensible to follow the traditional

strategy of choosing a fixed trial size based on a priori power analysis.

In some cases, such as when there are fewer doses being studied or the MED is obvious

(e.g. the flat scenario), the adaptively stopped trials are on average much smaller and still

as or more accurate. This is possible due to the definition of the stopping rule, which will

stop trials early when the data are conclusive (perhaps most of the time, in these cases)

but will make trials run longer when the data are inconclusive (and potentially misleading).

If these trials with “unlucky” data are not too common (i.e. in scenarios where the MED

can typically be learned quickly) then allowing to become large can increase the overall

Frequentist accuracy rate while still keeping the average trial size fairly small.

Another e↵ect of early stopping is on the Frequentist calibration of the posterior MED

accuracy claims. This reflects the extent to which, when the BUD-BMA posterior is x%

confident in the MED, if it is also correct x% in the Frequentist long-run of repeated sampling

(Rubin 1984). Figure 1.5.5 shows that in general BUD-BMA is conservatively calibrated,

in that its Frequentist accuracy is typically greater than or equal to its posterior certainty

(of the maximum a posteriori MED estimate being correct). An exception can crop up in

trials that are stopped adaptively with greater than or equal to 95% posterior certainty of

knowing the MED (see, especially the quadratic logistic hard case). This is unsurprising, as

conditioning on seeing more dramatic data (which the early stopping does) means the data

are likely to be slightly noisier. This implies that more conservative or nuanced adaptive

stopping rules may be useful in Bayesian trials that require strict Frequentist calibration (or

conservative calibration).
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Figure 1.5.5: Frequentist calibration of BUD-BMA. The 1,000 simulated trials for each
scenario are broken into deciles on the posterior credibility of trial’s final MED estimate
and plotted against the proportion among those 100 trials in which the MED estimate is
actually correct. For instance, the leftmost point in each panel represents the 100 trials in
each simulation in the lowest 10% of posterior confidences in the final MED guess. The
location along the x-axis is the median posterior probability in each decile. The loess curves
and confidence band reflect a regression of the underlying binary correctness of each trial’s
MED estimate on that trial’s posterior credibility in its MED estimate.
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1.5.4 BUD-BMA compared to popular alternatives

In Figure 1.5.6 we compare the BUD-BMA’s patient allocations and accuracy to its likely

competitors in practice. ER-MCP-Mod is standard in the field, BAR-EFF-EMAX is the most

familiar Bayesian adaptive design and uses a simpler (to state) model of the dose-response

curve, and BAR-MED-BMA has the most similar design philosophy and performance to

BUD. The Bayesian designs shown here use adaptive trial stopping, while ER-MCP-Mod

does not. We show the underlying true dose-response curves to make reasoning about the

patient allocations easier.

In general the BUD puts fewer patients on low doses than do other designs when these

doses are obviously not very e↵ective and are not expected to be otherwise helpful for iden-

tifying the MED (by clarifying relevant features of the dose-response curve). The poorer

performance of BAR-EFF compared to BUD and BAR-MED is due somewhat to its un-

abashed use of the EMAX model but more so to its insistence on putting patients on doses

with higher response rates. In some cases this requires many more patients and still lead to

lower accuracy.

Earlier we noted that BUD and BAR-MED can have quite di↵erence performance when

there is a dose that is obviously ine↵ective (and thus not the MED) but that is nevertheless

important for learning about the MED under the model being used. The easy threshold

scenario highlights one such case. Here the key dose is the 0.4 dose, which the BUD places

more patients on (despite running a much smaller trial). Evidently it is important for learning

about the slope of the curve and that the 0.7 dose is in fact above the 40% target rate defining

the MED. In contrast the BAR-MED puts fewer patients on the 0.4 dose because it is well

below the 40% target rate. A similar situation arises in the easy quadratic logistic scenario

with the 0.2 dose.

Compared to ER-MCP-Mod, BUD-BMA is often much more accurate. This is due in

part to its adaptive stopping, which allows larger trials. However, Table 1.5.1 reveals that
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Figure 1.5.6: Patient allocations of BUD-BMA and competitors. We plot the true dose-
response curve for each scenario (solid line), how many patients were assigned to each dose
on average (number above each point and size of point), and in what proportion of trials
each dose was declared the MED (number below each point and color of point). The box in
the top left of each panel shows the average total sample size for each trial. The MED was
defined as the lowest dose with response rate above 40% (horizontal gray line).
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the BUD randomization rule and the BMA modeling are also major contributors to this

di↵erence in performance.

1.6 Discussion

In this paper we proposed a new approach to design and analysis of Phase 2b dose-ranging

trials that combines a Bayesian uncertainty-directed (BUD) rule to randomize patients with

Bayesian model averaging (BMA) of the dose-response curve. This is the first time in the

literature that a BUD design has been used with a nontrivial data model, and we developed

a fast Sequential Monte Carlo algorithm to handle the resulting increased computational

burden. In general, we find that the BUD randomization strategy is well-suited to dose-

ranging trials and can lead to more accurate or smaller trials than competing designs. While

it is challenging to specify a model that performs optimally for a broad range of underlying

dose-response curves in this setting, BMA is capable of striking a relatively attractive balance

between e�ciency and robustness.

There are a number of open problems for future work in this research area, both for

design and analysis. An important practical problem is extending BUD designs to better

accommodate outcomes that are slow to be observed. When new patients arrive before all

previous patients have had their outcomes observed, a simple BUD can lose e�ciency because

the information gain calculation it uses for randomization does not account for the doses of

these patients with pending outcomes, which we will soon learn more about regardless of

how the next cohort is randomized. In ongoing work we are characterizing the extent and

e↵ects of this problem in practical settings, and to develop BUD rules and computational

strategies that do not have this shortcoming.

Another possible direction is to consider more sophisticated and relevant forms of Bayesian

model combination than model averaging. One issue with Bayesian model averaging is the

fact that it assumes that one of the candidate models does in fact include the data-generating
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distribution. Another is that it weighs the candidate models by their overall fit, which is

not necessarily desirable in settings like this one where our goal is inference for a specific

target parameter. In truth, if our goal is to identify the MED, then we likely want to draw

most from the models that have good fit for the doses surrounding the MED (rather than

for those that are far from it).
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CHAPTER 2

DYNAMIC BORROWING FROM HISTORICAL CONTROLS

VIA THE SYNTHETIC PRIOR WITH COVARIATES IN

RANDOMIZED CLINICAL TRIALS

2.1 Introduction

There is an explosive interest in utilizing historical control data to improve the design and

analysis of a future trial, both in terms of methodological research and clinical trial conduct

(Viele et al. 2014). From a regulatory perspective, historical controls have been permitted

in confirmatory trials primarily in rare and pediatric diseases as well as in devices (Ghadessi

et al. 2020). However, the regulatory threshold for their use is lower in non-confirmatory

settings where there is less demand for conservative Type I error guarantees (U.S. Food and

Drug Administration 2019). Statistical models are critical due to the challenge in reconciling

historical data and concurrent control data. Ideally, historical data that are more “similar”

should be borrowed from more to aid statistical inference. The main questions are how to

measure the similarity and how to “borrow” based on this measure.

Popular statistical methods for leveraging historical controls include propensity score

approaches, which typically match or weight historical and current patients based on covari-

ates (Lim et al. 2018, Lin et al. 2018), as well as Bayesian modeling strategies including

meta-analytic priors such as MAP and RMAP (Neuenschwander et al. 2010; Schmidli et

al. 2014), power priors (Chen & Ibrahim 2000), commensurate priors (Hobbs et al. 2012),

and multisource exchangeability models (Kaizer et al. 2018), which tend to borrow based

primarily on similarities in response rates between the historical and new data. A barrier

to using propensity score methods is that they require rich patient-level data, which is often

unavailable (e.g. when such data are owned by a competing developer), and they must both

have and select a su�cient set of covariates to control bias. While the Bayesian methods
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are attractive strategies to dynamically adapt the degree of historical borrowing, our current

work suggests that in some cases there is room in this framework to do so more e�ciently.

We propose a new model called SPx, standing for “synthetic prior with covariates”,

to sharpen inferences about a new trial’s control group response rate by borrowing from

historical data. It relies on a Bayesian expert system (Spiegelhalter et al. 1993) that merges

di↵erent philosophies for how the historical data should be treated. This model can be used

simply for the analysis of a completed trial, but we also discuss how it can be embedded in

an adaptive trial design to reduce the needed control arm sample size.

To be very clear, SPx requires only summary statistics, not patient-level data, from the

historical trials. Such trial-level information is routinely reported in publications and press

releases, and includes sample size, response rate, eligibility criteria, and average demograph-

ics or pre-trial clinical measures. This means that researchers using SPx may potentially

draw from many more historical trials than if they were to use methods that rely on patient-

level data, which are often inaccessible due to ethical and confidentiality reasons.

The paper proceeds as follows. In Section 2.2 we introduce the specific statistical

setting, related methods, and the SPx model. Section 2.3 describes a two-stage adaptive

design that leverages SPx to reduce control group sizes. In Section 2.4 we discuss results

from an extensive simulation study that benchmarks the method’s performance and sheds

light on its approach to dynamic borrowing. In Section 2.5 we apply the SPx approach to

the design and analysis of a trial in rheumatoid arthritis, and in Section 2.6 we conclude.

2.2 The SPx Model

2.2.1 Basic Data Setting and Related Models

Data structure. Following Schmidli et al. (2014), we consider trial-level historical data, which

are summary statistics for the control arm. Specifically, denote the data by (yh, nh,xh) for

39



trials h = 1, . . . , H,H + 1 where trials 1, . . . , H are the historical trials and trial H + 1

is the new trial, yh is the number of responders in trial h’s control group (from a binary

endpoint), nh is the number of control patients in trial h, and xh is a (p + 1)-dimensional

vector containing p group-level covariates for trial h’s control group as well as an intercept.

The sampling model of the historical and new trial control data is simply

yh|xh, h
iid⇠ Bin(nh, h), h = 1, . . . , H,H + 1,

where Bin denotes a binomial distribution, and  h, potentially a function of covariates xh,

is the true response rate of the control arm from trial h. While we say “control” arm here,

in the historical trials this arm may have been a “treatment” that is now the standard of

care. The key modeling questions are how to specify a joint prior on the true response rates

 h across the historical and new trials and how to take advantage of the covariates.

MAP and RMAP priors. The MAP, or meta-analytic predictive prior (Neuenschwander

et al. 2010) is exchangeable, and models the logits ✓h := logit( h) of the historical trials

and the new one with a common normal prior distribution:

✓1, . . . , ✓H , ✓H+1|µ, ⌧2
iid⇠ N(µ, ⌧2).

The prior mean µ and variance ⌧2 are given hyperpriors to complete the hierarchical model.

Although the authors emphasize the predictive interpretation of the MAP prior in (Neuen-

schwander et al. 2010), here we focus on its hierarchical nature to emphasize how it induces

borrowing through shrinkage. In MAP the variance parameter ⌧2 controls the degree of

historical borrowing: if it is small then the posterior will shrink ✓H+1 strongly towards the

historical data, and if it is large then historical borrowing will be curtailed. Thus the hy-

perprior for ⌧2 is crucial to the performance of the MAP method, and in the original work

Neuenschwander et al. (2010) recommended sensitivity analysis for this part of the prior.
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In contrast, MAP’s performance does not depend as heavily on the hyperprior for µ as long

as it is not unreasonably concentrated, and often a noninformative uniform prior is used.

The MAP model’s popularity stems from its simple, familiar random e↵ects model and good

performance when the historical control rates are largely similar to the new trial’s control

rate. However, when the historical data are misleading the MAP approach often continues

to borrow too heavily and thus lacks robustness.

Due to the MAP approach’s strong reliance on the historical data’s relevance to avoid

bias and inflated Type I error, a Robust MAP (RMAP) model was also proposed (Schmidli

et al. 2014). This extension is a mixture of the MAP prior and an independent prior that

involves no borrowing from historical data, given by

✓1, . . . , ✓H |µ, ⌧2 iid⇠ N(µ, ⌧2), and

✓H+1|µ, ⌧2
ind.⇠ ⇡N(µ, ⌧2) + (1� ⇡)Logistic(0, 1).

The componenent Logistic(0, 1) in the mixture prior for ✓H+1 gives rise to robustness as it

does not allow shrinkage of ✓H+1. Back on the probability scale, the Logistic(0, 1) component

is equivalent to a Unif(0, 1) prior. In contrast to MAP, in RMAP the hyperprior on ⌧2 is less

essential for limiting bias because of the inclusion of the independent component. However,

the prior weight ⇡ on the historical borrowing component is pre-specified and must be tuned

through simulation to reliably control bias and Type I error. Based on that work ⇡ = 0.5

may be a reasonable default value in some settings.

Commensurate priors. Another approach to historical borrowing is a commensurate

prior model (Hobbs et al. 2012), which explicitly models the di↵erence between the historical

and new trials (Pocock 1976). In our setting it first assumes that all historical rates are equal

and then specifies the joint prior on the historical and new rates through a marginal prior
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on the historical rate and a “commensurate” prior on the new rate given the historical one:

✓1 = · · · = ✓H = ✓|µ, ⌧2 ⇠ N(µ, ⌧2), and

✓H+1|✓ ⇠ N(✓, �2).

Thus the (logit) di↵erence between the new trial’s rate and the historical rate is modeled

as N(0, �2), where the variance �2 is the key parameter controlling the amount of historical

borrowing. Despite that assuming homogeneity of the response rates in the historical trials

may be an oversimplification, this conditional specification provides a di↵erent mechanism

to control borrowing than in the meta-analytic approaches. In past work (Hobbs et al. 2012)

commensurate priors have been designed to work with patient-level data and covariates.

2.2.2 The SPx Prior

SPx uses Bayesian model averaging (BMA) to combine elements from both the RMAP and

commensurate prior methods with a regression on covariates. In particular, we model the

historical rates as conditionally exchangeable given covariates. Then the prior for the new

rate, ✓H+1, is a mixture of three alternative points of view, or “experts”:

Expert 1. a commensurate model, a prediction based directly on the historical rates (cen-

tered on their weighted average);

Expert 2. a regression model, a prediction based on the new trial’s covariates xH+1 and

the same covariate-response relationship in the historical data (centered on this

regression); and

Expert 3. an independent no-borrowing model, in which the new rate is unrelated to the

historical rates and no historical borrowing occurs.

A key distinction with RMAP is that the SPx priors within the experts are well-separated,

leading to decisions about the degree of historical borrowing that adapt more quickly to the

data as we later discuss. We now introduce the SPx model step-by-step.
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2.2.2.0.1 Priors for ✓h (h = 1, . . . , H) and ✓H+1. Below we assume that the historical

response rate ✓h for trial h = 1, . . . , H can be modeled by a regression on covariates, and

the new response rate ✓H+1’s prior is a mixture of three experts each using a di↵erent

borrowing strategy: direct historical borrowing, regression (on covariates), and no borrowing.

Specifically,

✓h|�, ⌧2,xh
ind.⇠ N(�Txh, ⌧

2), h = 1, . . . , H

✓H+1 = zhist ✓hist|{z}
Expert 1

+zreg ✓reg|{z}
Expert 2

+zind ✓ind|{z}
Expert 3

.

Here the mixture, or model averaging, prior is obtained by assuming a Categorical prior for

(zhist, zreg, zind), given by (zhist, zreg, zind) ⇠ Cat(phist, preg, pind), meaning that the zk are

binary and ✓H+1 is drawn from model k 2 {hist, reg, ind} with prior probability pk. Priors

for each expert, i.e. ✓hist, ✓ref , and ✓ind, are discussed next.

2.2.2.0.2 Priors for {✓hist, ✓reg, ✓ind}. Below we use the terms “expert” and “sub-

model” interchangeably. The three prior submodels for ✓H+1 are the key construction in

SPx:

Expert 1 (direct historical): ✓hist|µhist, �2 ⇠ N(µhist, �
2), µhist :=

HX

h=1

wh✓h;

Expert 2 (regression): ✓reg|�, ⌧2,xH+1 ⇠ N(�TxH+1, c⌧
2);

Expert 3 (no-borrowing): logit�1(✓ind) ⇠ Beta(0.5, 0.5).

The prior for ✓hist, the direct historical borrowing expert, is similar to the ideal of the

commensurate prior without assuming the historical rates to be all equal; it instead assumes

that ✓hist is centered at a weighted average of the historical rates. We define the weights

wh to sum to 1 and be proportional to a distance metric between the regression’s predicted
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response rates for trials h and H + 1:

wh / (0.5)
|⇡̃
h
�⇡̃H+1|
0.05

with ⇡̃h := logit�1(�Txh). Although the form of the weights typically does not have an

outsize e↵ect on the posterior (especially when H is not very small), this choice encourages

more borrowing from historical trials with more similar covariates, to the extent that the

covariates are thought to predict response rates.

The prior on ✓reg, the regression expert, accounts for the noise from regression on

covariates. Note that this prior uses the same � coe�cients as in (2.2.1), which “borrows”

the information through covariates as the impact of the covariates on response rate is assumed

to be the same (�) in all the trials, historical or new. A key point is that its scale depends on

the same ⌧2 indicating how successful the regression is at predicting the historical response

rates, but modified by a constant c = 1/25 for reasons we discuss below along with the

hyperpriors.

Lastly, ✓ind is the independent or no-borrowing expert. It is included for robustness,

and uses a standard Je↵reys prior.
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To summarize, the full hierarchical model so far is given by

yh|xh, h
iid⇠ Bin(nh, h), h = 1, . . . , H,H + 1

✓h := logit( h), h = 1, . . . , H,H + 1

✓h|�, ⌧2,xh
ind.⇠ N(�Txh, ⌧

2) h = 1, . . . , H

✓H+1 = zhist✓hist + zreg✓reg + zind✓ind,

✓hist|µhist, �2 ⇠ N(µhist, �
2), µhist :=

HX

h=1

wh✓h,

wh / (0.5)
|⇡̃
h
�⇡̃H+1|
0.05 , ⇡̃h := logit�1(�Txh)

✓reg|�, ⌧2,xH+1 ⇠ N(�TxH+1, c⌧
2),

logit�1(✓ind) ⇠ Beta(0.5, 0.5),

(zhist, zreg, zind) ⇠ Cat(phist, preg, pind).

2.2.2.0.3 Prior model probabilities and model hyperpriors. The prior model prob-

abilities (phist, preg, pind) and the hyperpriors for the variances �2 and ⌧2 (and to a lesser

degree �) are important because they impact how SPx’s model averaging balances between

the di↵erent borrowing strategies. To see how, note that the posterior for ✓H+1 is the aver-

age of the posteriors under each expert, weighting by the posterior probability that each is

“correct”:

p(✓H+1|D) =
X

k2{hist,reg,ind}
p(✓k|zk = 1, D) · p(zk = 1|D). (2.2.1)

The posterior weights in (1), p⇤
k
:= p(zk = 1|D) for k 2 {hist, reg, ind}, may be written as

p⇤
k
/ pk · p(D|zk = 1)
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where p(D|zk = 1) =
R
RH+1 p(D|✓1, . . . , ✓H+1) · p(✓1, . . . , ✓H+1|zk = 1) dH+1(✓1, . . . , ✓H+1)

is the marginal likelihood, or evidence, of expert k. It is important to recognize that under

each expert the hyperprior a↵ects the marginal prior on the logit rates, p(✓1, . . . , ✓H+1|zk =

1), which in turn can greatly influence the expert’s marginal likelihood and posterior model

probability, changing the behavior of SPx overall.

In light of this we set the hyperpriors with the goal of making SPx adaptively either

allow fairly aggressive historical borrowing or quickly transition to little historical borrowing,

depending on the similarity between the current and historical trial data. To do so we both:

(a) make the priors in the hist and reg submodels relatively strongly concentrated (i.e.

high prior probability of small �2 and ⌧2), and

(b) give relatively high prior weight to the ind (no-borrowing) submodel (i.e. pind >

phist, preg).

In particular, we take

(phist, preg, pind) =

✓
1

8
,
1

8
,
3

4

◆
,

� ⇠ TCauchy(0, 0.02, (0,1)),

⌧ ⇠ TCauchy(0, 2.5, (0,1)),

where TCauchy(m, s, I) represents a Cauchy distribution with location m and scale s that

has been truncated to the interval I. While ⌧ has a larger scale than �, recall that the (con-

ditional) prior variance of the regression submodel is c⌧2 = 1/25 ·⌧2, not ⌧2, so the regression

submodel makes similarly strong prior predictions as the direct historical borrowing one.

The prior on the regression coe�cients, which does not unduly a↵ect inference, is

�i
iid⇠ Cauchy(0, 2.5), i = 0, 1, . . . , p,
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following from Gelman et al. (2008).

This choice of prior underlies SPx’s novel strategy to dynamically determine how much

historical borrowing is appropriate. Combining (a) and (b) makes SPx more robust as needed

in (1) primarily by increasing the posterior probability given to the no-borrowing submodel,

p⇤
ind

, and to a much lesser degree by making the posterior inferences of the borrowing sub-

models more conservative. In further detail, (a) makes the borrowing submodels’ marginal

likelihoods decrease more quickly as disagreement between the new and historical data grows,

and (b) accounts for the fact that the no-borrowing submodel makes less confident predic-

tions overall and thus may have a relatively lower marginal likelihood even when it should be

favored. While similar robustness might be sought by giving the borrowing submodels more

di↵use priors, this would come at the cost of weaker borrowing when the historical data are

actually relevant. We discuss these points further in the supporting information.

E↵ectively, through its well-separated BMA formulation SPx cleanly distinguishes be-

tween the questions of 1) whether we should borrow from the historical data at all and 2)

how strongly we should borrow from those data, if we decide to. Standard commensurate

prior models do not make this distinction since they have a unimodal prior on �2 and typ-

ical uses of RMAP do so less because of more di↵use priors for ⌧2, meaning that the MAP

component will be unable to suggest as strong historical borrowing when appropriate; see,

e.g. the credible interval widths in Table 2.4.1. Although this approach may not be the only

strategy to achieve refined dynamic borrowing, we find it to be a useful device.

Treatment e↵ect estimation. To make inferences for the treatment e↵ect we model

the treatment group data (ytrt, ntrt) as independent from the historical and control data:

ytrt| trt ⇠ Bin(ntrt, trt)

 trt ⇠ Beta(0.5, 0.5).

Combined with the SPx prior for the new trial’s control rate this induces a prior on the treat-
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ment e↵ect, which we define as the di↵erence � :=  trt� H+1 (although other comparisons,

such as relative risk, could just as easily be used).

Computation. Posterior computation for SPx can be done easily and e�ciently using

standard Bayesian MCMC tools. We implemented the model using JAGS (called from R)

and it takes at most a few seconds to analyze a single data set on a personal computer. This

produces draws from the posterior distribution of  H+1, which can be combined directly

with draws from the conjugate posterior for  trt to get draws from the posterior for the

treatment e↵ect �. For full details, see the JAGS and R code included in the supporting

information.

2.3 Adaptive Design Based on Posterior Inference

We propose a two-stage adaptive design, largely following Schmidli et al. (2014), to poten-

tially reduce the control group size to the extent that additional reliable information can

be gained through historical borrowing. Intuitively, in the first stage the new trial enrolls

a fixed and prespecified number of control group patients, then uses an interim check to

assess how much historical borrowing is desirable and calibrates the remaining number of

control patients to enroll in stage two accordingly. The interim check measures the degree

of “compatibility” between the historical and new trial (stage one) data and expresses this

as the number of control patients e↵ectively gained by using the historical data. If the new

trial’s stage one control data is deemed less compatible with the historical data, little bor-

rowing will happen and the stage two size will not be reduced much or at all. This limits

the impact of prior assumptions about the relevance of the historical data on the overall

trial size. Because we model the treatment group data independently from the control group

data (having no shared parameters), the treatment group patients may be enrolled without

reference to the control patients or the stages of the adaptive design (i.e. by simply changing

the randomization probability after the interim check).

48



Formally, the adaptive design follows:

• Stage 1: Collect data on nc1 control patients.

• Interim: Calculate the prior e↵ective sample size nc
eff

of the SPx model for  H+1

given the Stage 1 data.

• Stage 2: Collect data on nc2 more control patients, where nc2 = ncmax � nc
eff
� nc1 but

truncated to be at least pminn
c
max but no more than pmaxncmax for some pmin 2 [0, 1]

and pmax 2 [1,1) (e.g. pmin = 0.75 and pmax = 1.25).

The second stage is designed so that the total sample size of the control group is not intol-

erably lower or higher than the target size ncmax.

Crucial to this design is the prior e↵ective sample size of SPx at interim, nc
eff

, which is

intended to assess how much information the historical data contribute about the new trial’s

control rate and how many fewer patients the new control group needs in exchange for this

additional information (Hobbs et al. 2013, Schmidli et al. 2014). We use a simple moment

matching definition of e↵ective sample size (Weber 2020), which finds the Beta distribution

with the same mean and variance as the SPx posterior, takes the e↵ective sample size of this

Beta distribution (the sum of its parameters; Morita et al. 2008), and subtracts the current

sample size at interim, nc1. In truth, defining an e↵ective sample size that has desirable

properties for complex non-conjugate models such as SPx is an open research area (Morita

et al. 2008, Morita et al. 2012, Neuenschwander et al. 2020). Partially to this end, the

sample size thresholds used in Stage 2 of the design somewhat limit the impact of the choice

of definition. The simplistic definition we use has the benefit of producing more conservative

(smaller) e↵ective sample sizes for SPx than other definitions, which sometimes produce

implausibly large e↵ective sample sizes for the SPx model. In any case, by measuring the

e↵ective sample size during, and not before, the trial we can measure the extent to which

the new data diverge from the historical data, potentially safeguarding against inappropriate
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borrowing from irrelevant historical data.

At the end of the trial, the decision rule to detect a treatment e↵ect may take a variety

of forms. Depending on the disease and regulatory setting, interest may focus on detecting

nonzero or clinically significant e↵ects. To detect nonzero e↵ects, we may use the rule

P (� 6= 0|D) � 1� qnonzero (2.3.1)

for the treatment e↵ect � :=  trt �  H+1 where D is all of the historical and new trial

data and qnonzero 2 (0, 1) is the posterior Type I error threshold. Alternatively, to detect

clinically significant e↵ects, we may use the rule

P (� > �0|D) � 1� qclinical (2.3.2)

for some minimal threshold �0 > 0 and some qclinical 2 (0, 1).

2.4 Simulation Study

How accurately does the SPx model estimate the new trial’s control response rate, and

does it perform respectably when the historical data are misleading and borrowing would be

detrimental? Further, when used with an adaptive design does SPx successfully reduce the

trial’s control group size while maintaining power and Type I error?

To answer these questions we simulated clinical trials from scenarios defined by two

factors: (a) whether or not the historical control rates are misleading (i.e. on average

notably di↵erent from the new control rate), (b) whether or not the group-level covariates

are associated with response rates. This yields four basic scenarios: Scenario 1 [ideal], where

historical control rates are not misleading and covariates are predictive; Scenario 2 [covr],

where historical rates are misleading but covariates are still predictive; Scenario 3 [hist],

where historical rates are not misleading but covariates are not predictive; and Scenario 4
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[worst], where not only are historical rates misleading but also covariates are not predictive.

In all cases the historical trials were loosely based on the real historical trials we analyze in

Section 2.5.

The full details of data generation for all four scenarios are provided in the supporting

information. For each scenario, we generated a historical data set where the number of

historical trials ranged from 48 to 50 (see supporting information for details). We fixed

that single data set, and repeatedly generated data for a new trial, 1,000 times for each

method. This reflects the type of Frequentist repeated sampling we expect drug developers

and regulators to be concerned with, since at the point of trial planning or analysis it is

reasonable to imagine replicating the new trial but not also all of the historical ones. We also

varied the target maximum sample size for the new trial, and in the scenarios where covariates

are predictive (1 and 2) we varied whether SPx would include all the useful covariates. In

all scenarios we simulated treatment group data for the new trial independently from the

control data, at rates higher by both 0 and 30 percentage points.

The historical data for Scenarios 3 and 4 are identical to those from Scenarios 1 and

2, respectively, except that the covariate data have been permuted so they are no longer as-

sociated with the response rates. In our “non-misleading” Scenarios (1 and 3) the observed

historical control rates ranged from roughly 18% to 37% and the new trial’s true control

response rate was roughly 26%; in our “misleading” Scenarios (2 and 4) the observed histor-

ical rates only ranged from roughly 24% to 37% while the new trial’s true control rate was

lower at roughly 18%. This means that direct historical borrowing in Scenarios 2 and 4 will

bias estimates of the new trial’s control rate upwards and thus estimates of the treatment

e↵ect estimates downwards, reducing both the Type I error and power of e↵ect testing. The

opposite would happen if the historical control response rates were lower than the new trial’s

response rate. Which situation is more likely in practice depends on how a variety of factors

such as standard of care, lifestyle, and demographics have changed over time.
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We compared several methods including SPx, RMAP (Schmidli et al. 2014), and an

independent model (Ind.) with no historical borrowing (i.e. ✓H+1 ⇠ Logistic(0, 1)). For SPx

and RMAP we included both versions where the new trial’s control group size was fixed and

where the two-stage adaptive design described in Section 2.3 was used (with nc1 = ncmax/2,

pmax = 1.25, and pmin = 0.75). The two versions gave a contrast on the potential gain in the

adaptive design in reducing the control group sample size. The value ncmax is fixed at 150 or

80, which are the maximum control sample size. For SPx our standard implementation used

only 2 of 6 covariates associated with response rates to mimic imperfect knowledge or data

collection, but we also include cases where SPx uses all 6 covariates to show the e↵ectiveness

of the method when the regression is strong and not misspecified. For RMAP we used a

50-50 mixture between the borrowing (MAP) component and the non-borrowing component,

since this specification performed well in Schmidli et al. (2014). The 90-10 mixture they

consider was too aggressive and extremely biased in many of our scenarios.

2.4.1 Estimation Accuracy for the New Trial’s Control Rate

Table 2.4.1 shows performance of the models and designs for the task of reliably and e�ciently

estimating the new trial’s control response rate. Although the overall goal of the trial is

treatment e↵ect testing, performance of the modeling strategies can be understood with

more nuance by first considering control response rate estimation.

The results in Scenarios 1 and 3 reveal that SPx performs strongly when the historical

controls are directly relevant (i.e. their average response rate is close to the new trial’s rate),

as shown by much smaller control group size in the adaptive design and uniformly better

RMSE and interval width while maintaining good coverage. Interestingly, the benefit of

covariate adjustment is limited mainly to better credible intervals (in length and coverage)

when the historical control rates happen to be similar to the new rate; the RMSE and average

control group size of SPx are not distinguishable comparing Scenario 1 to 3.
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ncmax = 150 ncmax = 80
SPx RMAP Ind. SPx RMAP Ind.

Fixed Adapt. Fixed Adapt. Fixed Fixed Adapt. Fixed Adapt. Fixed

Scenario 1
Size 150 123.4 150 116.1 150 80 64.9 80 61.1 80
RMSE 0.025 0.026 0.025 0.027 0.032 0.024 0.026 0.022 0.027 0.032
Coverage 94.2 96.0 98.2 98.5 96.7 99.0 98.7 99.8 99.7 99.6
Width 0.104 0.113 0.123 0.136 0.140 0.135 0.153 0.155 0.173 0.190

Scenario 2
Size 150 127.7 150 147.6 150 80 65.0 80 71.7 80
RMSE 0.031 0.034 0.041 0.045 0.030 0.033 0.038 0.050 0.059 0.030
Coverage 91.4 92.0 91.8 88.2 97.1 97.2 95.6 95.1 89.8 99.6
Width 0.114 0.123 0.138 0.138 0.125 0.153 0.165 0.183 0.187 0.171

Scenario 3
Size 150 122.7 150 115.9 150 80 64.1 80 60.9 80
RMSE 0.022 0.023 0.025 0.027 0.033 0.021 0.023 0.022 0.026 0.032
Coverage 96.6 96.8 98.6 98.5 97.3 99.8 99.6 99.9 99.9 99.7
Width 0.106 0.116 0.123 0.136 0.140 0.138 0.157 0.155 0.173 0.190

Scenario 4
Size 150 156.4 150 146.9 150 80 78.6 80 72.3 80
RMSE 0.040 0.043 0.042 0.046 0.030 0.046 0.052 0.050 0.057 0.029
Coverage 93.5 92.1 91.3 87.2 96.4 98.1 96.0 95.7 92.1 99.7
Width 0.140 0.135 0.138 0.139 0.125 0.189 0.187 0.183 0.187 0.170

Table 2.4.1: Control group size and Frequentist estimation accuracy for the new trial’s
control response rate, averaged over 1,000 simulated trials. Two of six predictive covariates
are used. Metrics are defined as follows: size is the mean control group size; RMSE is
the root mean square error of the posterior mean of the control group rate; coverage is the
proportion of trials in which the 95% quantile-based posterior credible interval for the control
group rate contains the true rate; width is the mean width of these credible intervals. Note
that the credible intervals are Bayesian and not designed or calibrated to give exactly 95%
Frequentist coverage.

Notably, SPx can still perform well when the historical control rates are misleading

as long as group-level covariates are moderately predictive of the rates (Scenario 2); in

this case SPx saw modest dips in RMSE and coverage compared to the no-borrowing Ind

approach, unlike RMAP, while still allowing a considerably smaller control group in the

adaptive design. Beyond this, when regression is not just moderately but instead strongly

predictive (Table 2.4.2, where all 6 covariates are known to the analyst) SPx performs even

better, either further surpassing other methods (when the historical rates are directly relevant

as in Scenario 1) or now slightly edging them out (when historical rates are misleading as in
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Scenario 1 Scenario 2
SPx RMAP Ind. SPx RMAP Ind.

Fixed Adapt. Fixed Adapt. Fixed Fixed Adapt. Fixed Adapt. Fixed

ncmax = 150
Size 150 121.1 150 115.7 150 150 128.7 150 148.6 150
RMSE 0.022 0.023 0.025 0.027 0.032 0.029 0.032 0.042 0.046 0.030
Coverage 97.0 96.2 98.2 98.9 96.8 94.9 96.1 91.4 86.4 96.9
Width 0.102 0.113 0.123 0.136 0.140 0.115 0.123 0.138 0.138 0.125

Table 2.4.2: Control group size and estimation accuracy for the new trial’s control response
rate when all six predictive covariates are used, averaged over 1,000 simulated trials. See
Table 2.4.1 for metric definitions.

Scenario 2).

Unsurprisingly, the performance of SPx is less rosy in the challenging setting of Sce-

nario 4 where the historical data are entirely misleading, though a silver lining is that its

Frequentist coverage only degrades slightly. Its RMSE also slightly edges out that of RMAP,

but the no-borrowing approach is clearly much preferred here. This highlights the point that

if there is significant concern about the relevance of the historical data then priors should be

made more conservative to protect against the greater likelihood of bias. The straightforward

way to achieve this in SPx would be to change the prior submodel probabilities to further

favor the independent component. We conducted a small sensitivity analysis to demonstrate

this point (see supporting information). As one might predict, bias is mitigated in Scenarios

2 and 4 at the cost of smaller e�ciency gains from borrowing in Scenarios 1 and 3.

2.4.2 Power and Type I Error for the New Trial’s Treatment E↵ect

Results for testing treatment e↵ects largely follow from those on control rate estimation. We

report the Type I error rate of declaring a nonzero treatment e↵ect when the e↵ect is zero,

and the power to declare a clinically significant e↵ect (a response rate di↵erence of greater

than 20%) when the e↵ect is moderately large (a di↵erence of 30%).

Tables 2.4.3 and 2.4.4 examine the statistical power of the adaptive designs assuming

2 and 6 covariates were included in SPx, respectively. Type I error is well controlled by
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all methods, with the exception of SPx having slightly inflated error in Scenario 1 in the

larger trial setting. Of course, a drug developer or regulator requiring that Frequentist Type

I error be more strictly controlled may calibrate the model or decision rule by simulation

under the specific scenarios they are concerned about. This is a reality of all Bayesian trial

methods and some Frequentist ones as well (e.g. Lewis et al. 2007), a point we revisit in the

Discussion.

The power of SPx tends to be stronger than that of RMAP except in Scenario 3,

where it is more or less matched. Compared to the no-borrowing approach, SPx has better

(Scenario 1), similar (Scenario 3), or slightly lower (Scenario 2) power except in Scenario

4, all while substantially reducing the control group size when allowed. Naturally, using

a stronger collection of covariates for the regression (Table 2.4.4) makes SPx even more

powerful. Scenario 4 is where SPx has more substantial power loss compared to not borrowing

since neither the historical data nor covariates are informative of the new trial’s control rate.

In reality, if there is a strong belief that historical data are not reliable and covariates are

not informative, SPx should not be considered and more importantly, one might not want

to try borrowing information from historical data in the first place.

2.4.3 SPx’s Adaptive Weighting of Borrowing Strategies

To illustrate how SPx automatically adjusts the type of borrowing it performs depending

on the historical and new trial data, Figure 2.4.1 plots the simulation distribution of SPx’s

posterior submodel weights p⇤
k
in Scenarios 1 through 4. When the historical data are entirely

misleading (Scenario 4) SPx strongly favors its no-borrowing submodel, especially when the

new trial is larger. Otherwise SPx puts most posterior mass on its two borrowing submodels,

appropriately favoring the regression submodel over the historical one when the historical

rates are misleading but covariates are useful (Scenario 2). In the reversed setting where

the historical rates are not misleading but covariates are not predictive (Scenario 3) SPx
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ncmax = 150 ncmax = 80
SPx RMAP Ind SPx RMAP Ind

Fixed Adapt. Fixed Adapt. Fixed Fixed Adapt. Fixed Adapt. Fixed

� Scenario 1
Size 150 123.4 150 116.1 150 80 64.9 80 61.1 80

0 P (� 6= 0) 7.8 6.9 3.0 2.6 4.3 4.5 3.7 1.7 1.5 2.1
0.3 P (� > 0.2) 70.9 70.4 56.0 52.5 55.5 54.2 51.7 37.5 33.8 34.4

Scenario 2
Size 150 127.7 150 147.6 150 80 65.0 80 71.7 80

0 P (� 6= 0) 0.9 1.2 1.1 1.3 3.3 0.7 0.6 0.2 0.0 1.9
0.3 P (� > 0.2) 55.7 53.1 42.8 42.9 61.5 31.4 27.4 16.9 14.6 38.3

Scenario 3
Size 150 122.7 150 115.9 150 80 64.1 80 60.9 80

0 P (� 6= 0) 1.6 1.4 2.2 2.2 3.3 2.0 2.0 1.9 2.0 2.0
0.3 P (� > 0.2) 60.0 56.8 60.3 57.0 58.0 36.8 34.1 36.1 33.2 32.6

Scenario 4
Size 150 156.4 150 146.9 150 80 78.6 80 72.3 80

0 P (� 6= 0) 2.5 2.2 1.2 1.4 2.8 0.9 0.9 0.5 0.4 2.5
0.3 P (� > 0.2) 48.4 49.8 41.0 39.3 60.7 21.3 21.2 16.5 14.6 36.8

Table 2.4.3: Type I error and power for the new trial’s treatment e↵ect when two of six
predictive covariates are used.

Scenario 1 Scenario 2
SPx RMAP Ind. SPx RMAP Ind.

Fixed Adapt. Fixed Adapt. Fixed Fixed Adapt. Fixed Adapt. Fixed

� ncmax = 150
0 P (� 6= 0) 5.9 6.4 2.4 1.6 3.3 1.6 1.5 1.1 0.9 3.1
0.3 P (� > 0.2) 74.6 72.5 59.1 55.0 57.9 60.3 57.0 43.5 42.3 61.0

Table 2.4.4: Type I error and power for the new trial’s treatment e↵ect when all six
predictive covariates are used.

still gives moderate weight to the regression model because its inclusion of covariates adds

some noise but not substantial bias. This can be verified from small values of the estimated

regression coe�cients (results not shown).

2.5 Case Study

We discuss the application of SPx to the development of novel treatments for rheumatoid

arthritis (RA). RA is an auto-immune disease that a↵ects more than 1.3 millions of patients

in the United States (Hunter et al. 2017). The symptoms of this disease include pain and
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Figure 2.4.1: Boxplots of SPx’s posterior submodel weights over 1,000 simulated trials in
each scenario (columns) and trial size (rows).

swelling joints in hands and feet as well as morning sti↵ness lasting longer than 30 minutes.

Although there is no cure for RA, several treatments are available to slow down the disease

progression and alleviate symptoms. Adalimumab is a well-established, standard biologic

therapy in RA and has been approved for almost 20 years. Because of the competitive

landscape in RA, it is necessary to show that the new therapies are not only better than

placebo but also better than adalimumab. We apply our SPx methodology in adalimumab

trials conducted in the past two decades to illustrate the impact of including covariates

in the model. Since adalimumab’s own development was extensive, there are many past

trials including an adalimumab arm that could be used as a rich source of historical data to

potentially accelerate trials of prospective RA drugs.

We have collected group-level data from 11 past adalimumab trials, as shown in Table
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Trial Reference
Previous
Treatment

Average
Age

Size
Response
Rate (%)

ALTARA Kennedy et al. (2014) MTX 48.8 43 39.5
ARMADA Weinblatt et al. (2003) MTX 56.0 62 21.0
DE019 Keystone et al. (2004) MTX 56.1 200 24.0
IM133-001 Weinblatt et al. (2015) MTX 51.4 61 39.3
ORAL-Standard van Vollenhoven et al. (2012) MTX 53.7 106 26.4
RA-BEAM Taylor et al. (2017) MTX 53.0 488 40.2
STAR Furst et al. (2003) MTX 55.8 315 29.5
A3921035 Fleischmann et al. (2012) none 53.0 59 22.0
CHANGE Miyasaka et al. (2008) none 53.4 87 12.6
DE007 van de Putte et al. (2003) none 50.2 70 10.0
DE011 van de Putte et al. (2004) none 53.5 110 18.2

Table 2.5.1: Trials included in the adalimumab case study. Previous treatment, average
age, size, and response rate refer to those of the control group in each trial. MTX is an
abbreviation for methotrexate. The response rate is the proportion of patients experiencing a
20% improvement in joint health at 12 or 13 weeks on the American College of Rheumatology
criterion (ACR20).

2.5.1. We note that Lim et al. (2018) provided a framework of objectively selecting historical

trials to avoid cherry picking, and their strategy could be used to expand the data set to

include even more historical adalimumab trials. We illustrate the use of SPx by borrowing

from the placebo arms of these trials, though in practice the same could be done using the

adalimumab arms. The primary endpoint we use is the popular, regulatory approved binary

endpoint of ACR20, which is whether or not a patient has a 20% or greater improvement

in joint health on the American College of Rheumatology criterion (ACR20) 12 or 13 weeks

after treatment. The first trial-level covariate we use is whether patients in the trial had

previous or ongoing treatment with methotrexate (MTX), a common first line therapy for

rheumatoid arthritis. Unsurprisingly, Table 2.5.1 suggests that MTX use is a very strong

predictor of ACR20 rates: the MTX trials have rates ranging from roughly 20-40% while the

no-MTX trials have rates ranging from roughly 10-20%. This suggests that the regression

strategy embedded in SPx may be useful despite the modest number of trials. We also

include average age, which may be a proxy for disease progression or otherwise relate to

ACR20 rates, though evidently in a weaker fashion here.
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Figure 2.5.1: Posterior distributions of the new trial’s control response rate in two exam-
ples. In A, 22 of 75 control patients in the new trial are responders, and in B 30 of 75 are
responders. The top 3 panels in each show the posterior distribution for each of SPx’s sub-
model, along with the submodel’s posterior model probability P (M |D). The bottom panel
shows the model averaged posterior, which is the SPx inference.

We now show how SPx would borrow information from this historical data set in

designing and analyzing the control arm in a new RA trial. We suppose that the new trial

enrolls 75 control arm patients who have all had previous treatment with MTX and have

an average age of 53. From Figure 2.5.1 we can see what the the Bayesian model averaging

inference in SPx would be when the new control group’s observed response is similar (A,

at 29.3%) and quite di↵erent (B, at 40%) from the average historical response rates of

25.7% overall and of 31.4% among prior MTX trials. In A, we can see that SPx borrows

fairly heavily, giving 75% of the posterior mass to to the relatively concentrated borrowing

submodels. On the other hand, in B SPx is more conservative; while it still gives substantial
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posterior mass to the borrowing submodels and its mean shrinks away from the observed

rate, its 95% credible interval more or less reproduces that of the no-borrowing submodel.

Figure 2.5.2: A and B plot the range of posterior submodel probabilities in SPx as the
new trial’s observed response rate varies, after 75 and 150 patients respectively. C plots the
range of interim sample size decisions as the new trial’s observed response rate varies, after
75 patients. The vertical grey lines mark the sample mean of the historical response rates
over all 11 trials (solid) and among just the prior MTX trials (dashed).

Figure 2.5.2 illustrates how SPx would adjudicate between its three borrowing strategies

over a continuum of possible new trial data, with the observed response rate ranging from

(roughly) 10% to 50%. Like in Figure 2.5.1, the new trial’s control arm has had previous

MTX treatment and has an average age of 53. In panels A and B we can see that the

degree of borrowing is largely controlled by how close the new trial’s rate is to the overall
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historical rate and the MTX historical rate. The borrowing submodels receive their maximum

posterior weighting near these rates. As the observed rate diverges from these historical rates

the no-borrowing submodel quickly gains posterior weight, especially when the new trial’s

control group size is larger. Panel C shows how the degree of borrowing a↵ects the Stage 2

sample size calculation, which allows a much smaller control group when the observed rate

at interim is close to the predictions of the hist and reg submodels. When the observed rate

at interim di↵ers from these historical predictions by a moderate but not large amount, the

design requires a larger Stage 2 control group than the target size of 75. Within this range

of observed response rates the modest historical borrowing that occurs actually increases

uncertainty about the new trial’s rate compared to not borrowing at all, and so the design

calls for collecting more data than otherwise planned.

2.6 Discussion

The SPx method allows flexible borrowing from historical data using a novel Bayesian model

averaging approach that balances between direct borrowing from the historical response

rates, regression prediction using group-level covariates, and no borrowing at all. The key

methodological insight to improve the model averaging is to make the borrowing submodels

give strong prior predictions that are well-separated from the no-borrowing submodel while

giving high prior weight to the no-borrowing submodel. This strategy o↵ers multiple avenues

to not only take advantage of the historical data but also to avoid over-using it when the

data suggest this may be unwise. If the group level historical data are relevant to the new

trial then under a simple two-stage adaptive design SPx can considerably reduce its control

group size, reducing the trial duration and cost.

Our simulation results are in line with the intuitive appeal of the SPx approach and

its performance is strong except when its prior assumptions are badly violated and the

historical data are by no means useful. Aside from this exception, it produces more or
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similarly accurate estimates of the new trial’s control group rate and treatment e↵ect while

substantially reducing the control group size. We recommend that trialists concerned with

dramatically unfavorable scenarios include these in their design simulations and tune the

prior or decision rules accordingly as is standard practice.

More generally, trialists wanting to prospectively calibrate the borrowing/no-borrowing

tradeo↵ (i.e. power/Type I error tradeo↵) for a specific planned trial may find the best

success in tuning one of two method parameters. First, they may experiment with increasing

or decreasing pind, the prior probability of the no-borrowing submodel, as we do in Table

A.1. Alternatively, they may experiment with changing the decision rule threshold qnonzero

or qclinical for the trial’s final treatment e↵ect inference in equations (2) or (3), which would

not require fresh simulation for each value if MCMC output has been saved. Both reducing

pind and qclinical or qnonzero would reduce Type I error at the cost of also reducing power.

In general, a variety of factors impact whether a trial setting is likely to benefit and

safely reduce control group size by using SPx. The greatest benefit will come when the

historical and new trials share data on group-level covariates that are strongly predictive

of response rates and when there are enough historical trials to estimate this regression

relationship with reasonable accuracy. This may include heavily studied disease areas and

drugs (e.g. pembrolizumab) or those where treatments and outcomes have been slow to

change (e.g. newly diagnosed glioblastoma). Because the method only requires group-level

data, it may be possible to include trials where the patient-level data would not be available

due to privacy or proprietary concerns. The group-level covariates might ideally be believed

to be strong predictors based on solid theoretical or past empirical evidence, though in

settings with enough historical trials it may be possible to incorporate higher-dimensional

covariates through the use of sparsity-inducing priors on the regression coe�cients. While

not the focus of the present work, using the SPx mixture modeling strategy with patient-

level data and covariates would likely reduce trial sizes and increase accuracy even more
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substantially.
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CHAPTER 3

TREATMENT EFFECT ESTIMATION IN MULTI-SITE

TRIALS WITH ENDOGENOUS DESIGN: OLD ESTIMATORS,

NEW RESULTS

3.1 Introduction

In a multisite randomized field trial, sites such as schools or hospitals are sampled; then,

within those sites, individuals are assigned at random to treatments. These studies are now

common in social welfare, medicine, and education (Raudenbush & Bloom 2015; Miratrix,

Weiss, and Henderson 2021; Spybrook, 2013). It is often useful to regard the multisite trial

as a fleet of planned experiments that di↵er in setting, implementation of the treatment,

compliance, and subject demographics (Bloom et al. 2017; Raudenbush & Schwartz 2020;

Walters 2015; Weiss et al. 2017). In these cases, we can estimate an average treatment e↵ect

specific to each site and it makes sense to regard these treatment e↵ects as varying randomly

over sites. Naturally the distribution of treatment e↵ects across sites is of great substantive

interest.

In contrast to what the classical theory of randomized block designs assumes (Cochran

& Cox 1982), in many large-scale trials it also makes sense to regard site-specific design

features such as sample sizes and proportions treated as varying randomly over sites. In these

trials – where the blocks are typically administrative or geographic units such as schools,

hospitals, or neighborhoods – design features are not entirely controlled by the investigator.

Instead, they are realizations of an idiosyncratic social process that di↵ers from site to site.

For statistical purposes, these design features are conveniently encapsulated in the sampling

precision (inverse variance) with which each site-specific treatment e↵ect is estimated (by

the di↵erence between the treatment and control group sample means).

Taking this stance also makes obvious the possibility that treatment e↵ects and pre-
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cisions covary or are otherwise dependent. In this case we say that the site sizes or the

design are “endogenous.” This is often plausible when site size is associated with local re-

sources, sta↵ expertise, subject demographics, or other potential moderators of treatment

e↵ectiveness. For example, a common practice is to hold a random lottery among applicants

at each site to decide who should be o↵ered admission to a novel program (Angrist et al.

2016). Our concern is that the number who apply to each site may reflect the popularity, and

thus, indirectly, the e↵ectiveness, of each program. More may apply when local alternatives

are limited, reflecting anticipated potential treatment e↵ects (Heckman and Vytlical, 1998).

Even in studies that do not use lotteries, sites with di↵erent sizes, resources, or participant

preferences may vary unexplainably with regard to site sample sizes or proportions treated.

In this paper, we re-evaluate and review how the most common estimators of treat-

ment e↵ects perform under such endogeneity. In particular, we study how such endogeneity

changes the performance of four common estimators of the site-average treatment e↵ect (the

“site-ATE”). The site-ATE is important for learning about the distribution of treatment

e↵ects across sites – a crucial and initial task when there are e↵ectively di↵erent implemen-

tations of the treatment across sites. This work suggests that endogeneity is also important

for other multi-site trial estimands (see Raudenbush and Bloom, 2015; Miratrix, Weiss, and

Henderson, 2021), where our general approach to comparing estimators can still be used. In

general, the combination of heterogeneous treatment e↵ects and an endogenous design can

give rise to a challenging bias-variance tradeo↵, at least among popular estimators.

3.1.1 Logic of the Evaluation

The first three estimators we discuss are an unweighted or design-based estimator that

weights sites equally (UW), a fixed e↵ects estimator that weights sites by their precisions

(FE), and random e↵ects estimator having fixed intercepts and random coe�cients that

weights sites by a stabilized transformation of their precisions (FIRC). Reviews by Kautz,
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Schochet, and Tilley (2017) and Miratrix, Weiss, and Henderson (2021) find that these

are the dominant estimators in multisite field trials in education, and our informal reading

suggests that they are also popular in a wider range of multisite trials in social, economic,

and health sciences.

The UW estimator is unbiased under very general conditions, but when the design is

imbalanced (which is typical) it can be extremely ine�cient. In contrast, the FE and FIRC

estimators condition on the observed design in a way that can greatly reduce their variances

but introduces bias if the design is endogenous. Our fourth estimator, FIRC+, is not actually

common, but is a natural extension of FIRC that includes the log precision in the regression

in an attempt to eliminate bias. While model-based like FE and FIRC, it often produces

estimates that are more towards the UW end of the spectrum.

To compare these approaches, we need a model for the joint distribution of site-specific

treatment e↵ects and precisions. Then comparing the estimators amounts to comparing

their marginal distributions, integrating out the precisions. Under a parametric version of

our model, we show how these marginal distributions depend on three scale-free parameters

that characterize (1) variation in treatment e↵ects (treatment e↵ect heterogeneity), (2) vari-

ation in precisions (design imbalance), and (3) the association between treatment e↵ects and

precisions (endogeneity of design). In our real data case study we integrate over these three

scale-free parameters within a Bayesian framework to compute the posterior probability that

each estimator would achieve a smaller mean squared error than would a competitor, given

available data, and we study the sensitivity of these conclusions to changes in the prior distri-

butions of those parameters. For the most part our analytic results depend on a parametric

model, use asymptotic Laplace-type approximations, and do not directly address the validity

of standard confidence intervals, so we use simulations to test and broaden these results. We

also identify situations leading to extreme pathology of the conservative unweighted estima-

tor by using Meng & Xie’s (2014) concept of self-e�ciency to check when this estimator is

69



improved by throwing out data; these situations are surprisingly plausible.

3.1.2 Motivating Example: Head Start Impact Study

We apply these estimators to the Head Start Impact Study (“HSIS;” Puma et al. 2010) and

use our analytic approaches, simulations, and Bayesian framework to illustrate their perfor-

mance in an important applied setting. Head Start is a federally-funded preschool program

for low-income families in the United States since 1965 (Vinoskis 2005). The program now

serves nearly 900,000 children and has an annual budget of more than $10 billion (US De-

partment of Health and Human Services 2019). Its congressional mandate requires that

Head Start promote the development and learning of low-income children, with a particular

focus on the outcomes we analyze: cognitive development in reading, vocabulary, math, and

listening comprehension, and socio-emotional development as indicated by disinclination to

aggressive behavior. Many more parents seek admission to Head Start than the program

can accommodate. From a list of all Head Start centers in the U.S., centers were randomly

selected to be included in the study. Within each center, admission to the program was

based on a random lottery. A basic first question about Head Start’s success is how well

the typical center met key program aims. At the same time, HSIS exhibits the conditions

suggestive of endogenous sample size. Centers are highly variable, not just in resources and

demography but also in curriculum and pedagogy. Centers also vary greatly in size, depend-

ing on the number of parents who apply for admission and the number of available places in

the local program. These conditions incline us to regard sample sizes and fractions assigned

as random variables plausibly correlated with site e↵ectiveness.

3.1.3 Plan of the Paper

In Section 3.2 we propose a simple model for potential outcomes and causal e↵ects in a

large-scale multi-site field trial. We define the joint distribution of the treatment e↵ects and
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site sizes as a basis for critically examining the estimators of interest. Section 3.3 reviews the

asymptotic behavior of the point estimators by using Laplace approximations to characterize

their marginal distributions. Section 3.4 evaluates point estimators and confidence intervals

by simulation under a broader array of assumptions and Section 3.5 uses the self-e�ciency

to further characterize the pathology of the unweighted estimator. Section 3.6 analyzes the

Head Start data. We assess the self-e�ciency of the unweighted estimator, and we propose

and illustrate our approach to Bayesian sensitivity analyses that compare the mean squared

errors and confidence interval coverage of commonly-used estimators. Section 3.7 concludes

with broader implications for experimental design and statistical research on estimation in

related trials.

3.2 Potential Outcomes, Causal E↵ects, Estimands, and

Estimators

We envision a multi-site trial in which each person i within site j possesses two potential

outcomes Yij(tj) for tj 2 {0, 1} , where tj = 1 if this person is assigned to the potentially

unique version of the treatment practiced in site j and tj = 0 if not. We define the person-

specific causal e↵ect of assignment to treatment as Bij = Yij(1)�Yij(0), and the site-specific

average causal e↵ect of assignment, defined over a large super population of persons in site

j, is E(Bij |site = j) =: �j = µ1j � µ0j , where µ1j is the average outcome if all members of

this site-specific super-population are assigned to treatment and µ0j is the average outcome

if all such members are assigned to control. We envision that a sample of size njpersons in

site j is recruited to participate in the experiment. The super-population of interest in our

case study is thus composed of Head Start sites with families that actively seek participation

in the program. The site-specific sample size may reflect the appeal of the new program to

local persons or the lack of local alternative options within that site.

Sample members are then assigned at random to treatment (Tij = 1) or control . The
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fraction of persons assigned to treatment, T̄j =
Pnj

i=1 Tij/nj , may depend on njas well

the number of available slots in the new program. We will compute the site-specific causal

e↵ect estimate �̂j = Ȳ1j � Ȳ0j where Ȳ1j =
Pnj

i=1 TijYij/
Pnj

i=1 Tij and Ȳ0j =
Pnj

i=1(1 �

Tij)Yij/
Pnj

i=1(1 � Tij) are sample means for treated and control persons in sit j. The

estimate �̂j is unbiased for �jhaving sampling variance Vj := V ar(�̂j |�j , nj , T̄j). Based on

our experience with large-scale multi-site trials, we expect Vjto be estimated very precisely,

and, for simplicity, we assume Vj to be known. Although known, we regard Vjas random

because it depends on randomly varying sample sizes. Thus, the basic data for our inquiry

are {�̂j , Vj : j = 1, . . . , J}.

3.2.1 Causal Inference Assumptions

The following assumptions underlie our choice of potential outcomes. First, following Hong

and Raudenbush (2006), we have

(A1) Intact sites. A person can be a member of one and only one site.

(A2) No interference between sites. The potential outcomes of a person in one site do

not depend on the treatment assignment of any person in any other site.

(A3) No interference within sites. The potential outcomes of a person do not depend

on the treatment assignment of other persons in the same site.

(A4) All units exposable. Each person is potentially exposable to the treatment and

control treatment within that person’s site.

(A1) ensures that a person has potential outcomes in only one site. Together, (A2-A4) imply

that each person has two and only two potential outcomes within that site. Our assumptions

are equivalent to the “Stable Unit Treatment Value Assumption” (Rubin 1986) strictly within

each site. One could readily challenge (A3). For example, Head Start instruction occurs
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within a classroom setting, and the composition of the classroom will tend to generate peer

behaviors and teacher responses that can shape the outcomes of each child. However, we

shall assume for simplicity that such e↵ects are baked into the version of the treatment

potentially experienced by each child within a given local site.

(A5) Ignorable Treatment Assignment. Potential outcomes are independent of treat-

ment assignment, that is Yij(0), Yij(1) ? Tij .

Together with (A1-A4), (A5) implies that the sample mean di↵erence �̂j is unbiased for the

site-specific mean di↵erence �j , an assumption that is fulfilled by random assignment within

sites.

3.2.2 The Joint Distribution of the Treatment E↵ects and Site-specific

Sample Sizes

We are interested in the joint distribution of treatment e↵ects and sample sizes across a

super population of sites. Note that the sample sizes a↵ect inference through the site-

specific sampling variance Vj , which we model as Vj = µV e
�⌘j , where µV is the geometric

mean of these sampling variances and ⌘j is a zero-mean random variable that we refer to

as the log precision of �̂j (though it has also been centered). For deriving our asymptotic

results, we will regard Vj as log normal, i.e., ⌘j
?⇠N(0, �2⌘), but our simulations will relax that

assumption. For the treatment e↵ects, we write a simple model �j = � + bj where bj is a

zero mean random e↵ect having variance �2
b
. We regard the joint distribution of treatment

e↵ects and log precisions as

�̂j | �j , Vj
ind⇠ f(�j , Vj , . . .)0

B@
�j

⌘j

1

CA iid⇠ g

0

B@

2

64
�

0

3

75 ,

2

64
�2
b

�⌘b

�⌘b �2⌘

3

75 , . . .

1

CA
(3.2.1)
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Here f is the sampling distribution of �̂j , describing how, within each site, the estimate �̂j

varies around its mean �j due to random measurement error and which people were sampled

within the site. We avoid the incorporation of covariates for simplicity. The ellipses in f

and g are included because conceptually they could depend on additional parameters not

specified here. g is some bivariate distribution on the real plane with mean vector (�, 0)T ,

and �⌘b = Cov(bj , ⌘j). We note that �2⌘ is a scale-free measure of design imbalance, and �⌘b

is a measure of the endogeneity of the design.

3.2.3 Estimands

Looking across an infinite super-population of sites, our key estimand is the site-average

treatment e↵ect (“site-ATE”). Given a simple random sample of size J from a list of all sites

in the population,

E(�j) = lim
J!1

0

@
JX

j=1

�j/J

1

A =: �. (3.2.2)

Another important quantity is the between-site variance of the site-specific treatment e↵ects,

that is

V ar(�j) = lim
J!1

0

@
JX

j=1

b2
j
/J

1

A =: �2
b

(3.2.3)

where bj = �j � �is a site-specific, zero mean random e↵ect.

3.2.4 Estimators to be Compared

The most commonly used estimators include a simple unbiased and consistent design-based

or unweighted estimator and two alternatives that exploit variation in sampling variances Vj

to reduce variance at the risk of incurring bias.
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Unweighted (UW). The simplest estimator of the site-average mean treatment e↵ect is

�̂uw =
JX

j=1

�̂j/J (3.2.4)

and it is unbiased under our assumptions and the definition (3.2.1) regardless of the value

of �⌘b and the shape of g. This is the design-consistent estimator if sites constitute a simple

random sample.

Ordinary Least Squares with Site Fixed e↵ects (FE). Perhaps the most popular estima-

tor of the average treatment e↵ect in multisite trials (Weiss et al. 2017; Bloom et al. 2017;

Miratrix, Weiss, and Henderson, 2021) models the treatment e↵ects as constant using ordi-

nary least squares with site fixed e↵ects. In (3.2.1) this amounts to assuming �2
b
= �⌘b = 0

and normality of f , and defining Pj := V �1
j

, MLE gives us the fixed e↵ects (FE) estimator

�̂FE =
JX

j=1

Pj �̂j

,
JX

j=1

Pj =
JX

j=1

e⌘
j
�̂j

,
JX

j=1

e⌘
j
. (3.2.5)

Under weaker assumptions this estimator arises from ordinary least squares with fixed e↵ects

such that Yij = �Tij + µ0j + eij , where µ0j is an unknown constant for each site j , and

treatment e↵ects are equal in every site. The error eij is often assumed to have constant

variance �2 across persons and sites, though more complex models for V ar(eij) may be

desirable (Bloom et al. 2017).

Fixed intercepts, random coe�cients (FIRC). Bloom et al. (2017) expand the fixed

e↵ects model with a random coe�cient for treatment, writing Yij = (� + bj)Tij + µ0j +

eijwhere bj is a mean zero random e↵ect, independent across sites, having variance �2
b
. FIRC

is a simplified linear mixed model that removes potential confounding of random intercepts

and treatment e↵ects. Linear mixed models (also known as hierarchical linear models),

along with FE have been found to be very commonly used estimators in multi-site trials in
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education and behavioral science (Kautz, Schochet, and Tilley 2017; Miratrix, Weiss, and

Henderson, 2021). The FIRC estimator can be written as

�̂FIRC =
JX

j=1

�̂j �̂j

,
JX

j=1

�̂j , (3.2.6)

where �̂j :=
�̂
2
b

�̂
2
b
+Vj

and �̂2
b
is the MLE �2

b
under FIRC when site-specific sample sizes are

assumed fixed (see Section B.1 of the Appendix). Note that the �̂2
b
in the numerator of

�̂jcancel in (3.2.6) and when �̂2
b
= 0 the estimator is defined as �̂FE . Thus �̂FIRC converges

to �̂FE as �̂2
b
! 0 and to �̂UW as �̂2

b
! 1. In terms of model (3.2.1) this estimator is

MLE assuming normality for f , �⌘b = 0, and bivariate normality of g. It is also equivalent

to the traditional random e↵ects estimator in meta-analysis (Raudenbush & Bryk 1985).

In the multilevel modeling literature, �̂j is known as the estimated site-specific reliability

of �̂j as an estimate of the true site-specific e↵ect �j (Raudenbush & Bryk 2002, Chapter

3). Reliabilities are high when the site-specific treatment e↵ects have large variance relative

to the sampling variances, Vj . To see how FIRC relates to FE more explicitly, note also,

when �̂2
b
> 0, that �̂FIRC =

JP

j=1
e⌘j (1� �̂j)�̂j

,
JP

j=1
e⌘j (1� �̂j). Like FE, FIRC is biased

whenever �⌘b is nonzero.

Fixed intercepts, random coe�cients plus (FIRC+). Although not used to date in the

literature, we consider a fourth estimator that is a natural modification of FIRC to handle

endogeneity by including a linear adjustment for the log precision, ⌘j . If �jand ⌘j are linearly

related, we can remove the bias by estimating the model �̂j = �+↵⌘j+"j+ej , where ↵ is a

regression coe�cient, "j := �j � (� + ↵⌘j), ⌘j , and ej are independently normal with mean

zero and constant variance; we call this model FIRC+. In terms of (3.2.1), assuming that

both f and g are normal imposes this linear conditional relationship between site-specific

ATEs and log precisions. For �̂2
b

> 0, the maximum likelihood estimate (MLE) of the
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site-average treatment e↵ect is

�̂FIRC+ =
JX

j=1

�̂+
j
(�̂j � ↵̂⌘j)

,
JX

j=1

�̂+
j

(3.2.7)

where �̂+
j

= �̂2
b|⌘/(�̂

2
b|⌘ + Vj) with �̂2

b|⌘ being the MLE of �2
b|⌘ = �2

b
(1 � ⇢2

⌘b
) with ⇢

⌘b
=

�⌘b/(�⌘�b) and ↵̂ is the MLE of ↵. See the Section B.1 of the Appendix for further details.

For �2
b
= 0, the MLE is the fixed e↵ects estimator.

3.3 Asymptotic Behavior of the Point Estimators

In any multi-site trial, three main quantities control the comparisons among our four es-

timators. First, the role of heterogeneity of treatment e↵ects operates largely through the

reliability �̃ = �2
b
/(�2

b
+ µ

Ṽ
), where 0  �̃  1, which measures in aggregate how accu-

rately the site-specific estimates �̂j estimate the true impact �j relative to how much these

impacts vary. This reliability will be high when site impacts vary greatly and/or when the

typical sampling variance, µ
Ṽ
, is small. Second, the role of variation in precisions is cap-

tured by �2⌘, the variance of the (centered) log precision of �̂j . Although �2⌘ can exceed 1,

a value approaching 1 would indicate exceptionally large variation in precision. And third,

the contribution of endogeneity of precisions is captured by⇢⌘b, the correlation between log

precisions and e↵ect sizes.

Analytic expressions for the biases and variances of the four estimators are given in

Table 3.3.1. Except where noted otherwise, they are approximate in three senses: they are

large-sample (as the number of sites J ! 1); they rely on bivariate normality of �jand

⌘j ; and they are based on Laplace approximations to the actual asymptotic distributions.

Our simulations show that the approximations are accurate under a fairly wide range of

assumptions about the joint distribution of �j and ⌘j , even for modest J . We provide two

approximations for the variance of the FIRC estimator to facilitate clear comparisons to FE
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Estimator Asymptotic Bias Asymptotic Variance

UW 1
J

P
J

j=1 �̂j 0 �2
b
+ µ

Ṽ
e
1
2�

2
⌘

FE
P

J

j=1 e
⌘j �̂jP

J

j=1 e
⌘j

�⌘b �2
b
(1 + ⇢2

⌘b
�2⌘)e

�
2
⌘ + µ

Ṽ
e�

1
2�

2
⌘

FIRC
P

J

j=1 �̂j �̂jP
J

j=1 �̂j

�⌘b(1��̃⇤)
1+�2⌘�̃(1��̃⇤)

(i) :
h
�2
b

⇣
1 + ⇢2

⌘b
A
⌘
ev

⇤
2(1��̃⇤)2

+µ
Ṽ
e�

1
2v

⇤
2(1�2�̃⇤2)

i ⇣
1 + �2⌘d

⇤
1
2v⇤2
⌘1/2

(ii) :
(�⇤2

b
+ µ

Ṽ
)[1 + �2⌘�̃

⇤(1� �̃⇤)]
1
2

e
1
2v

⇤2
1 (1��̃⇤)2

FIRC+

P
J

j=1 �̂
+
j
(�̂j�↵̂⌘j)

P
J

j=1 �̂
+
j

0
(�2

b|⌘+µ
Ṽ
)[1+�

2
⌘�̃

+(1��̃+)]
1
2 [1+v

+
1 (1��̃)2]

e
1
2v

+
1 (1��̃+)2

Table 3.3.1: Asymptotic Bias and Variance of the estimators. For UW the results are
finite-sample under (3.2.1), with the variance (normalized by J�1) also requiring marginal
normality of ⌘j . The FE, FIRC, and FIRC+ results are asymptotic under (3.2.1) with
bivariate normality, and FIRC and FIRC+ also use the Laplace approximations. As an
exception, the FIRC+ bias result is finite-sample and only requires that the conditional
expectation of �j is linear in ⌘j (as happens under bivariate normality). For full definitions

of �̃⇤, �̃+, v⇤1, v
⇤
2, A, and v+1 see the Appendix. Briefly, �̃⇤ and �̃+ are the probability limits

(as J !1) of ˆ̃� under FIRC and FIRC+ respectively, A is near 1, and v⇤1, v
⇤
2, v

+
1 < �2⌘.

and FIRC+ respectively. For full details and derivations see the Appendix.

3.3.1 Comparing UW and FE

Constant treatment e↵ects. When �2
b
= 0 and ⌘j ⇠ N(0, �2⌘), UW has a normalized variance

of V ar(J
1
2 �̂UW ) = µ̃V e

1
2�

2
⌘ . In contrast, FE, which is in this case unbiased, has an asymp-

totic normalized variance of V ar(J1/2�̂FE) = µ̃V e
�1

2�
2
⌘ . Thus, under these assumptions

the asymptotic e�ciency (ARE) of FE relative to UW is e�
2
⌘ . In practice, this ratio can be

quite large. For example, we have found that in the national Welfare to Work experiment,

�2⌘ ⇡ 0.9 (Bloom et al. 2017), yielding an ARE of 1.57. In our own case study of Head Start

�2⌘ ⇡ 0.5, leading to an ARE of 1.28. That FE dominates UW when treatment e↵ects are

constant is no surprise given that, under that assumption, FE is best linear unbiased, but
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the loss of e�ciency using UW can be substantial in practice under this assumption.

Variable treatment e↵ects. When treatment e↵ects vary and are correlated with sam-

pling precisions, FE can be quite seriously biased. For example, when ⌘j ⇠ N(0, �2⌘), the

large-sample bias of FE is �⌘b. We will not be able to rule out a non-negligible bias of �̂FE

in our case study.

Notwithstanding its potential bias, one might suspect that FE would always have a

lower variance than UW. However, the opposite can occur. Even when ⇢
⌘b

= 0, our large-

sample approximations indicate V ar(J1/2�̂FE) � V ar(J1/2�̂UW ) if �̃ �
⇣
1 + e

1
2�

2
⌘

⌘�1
(as

long as �2⌘ >0), a condition that will be met sometimes in practice; for even an extremely

imbalanced study with �2⌘ = 1 this would require �̃ � 0.38 roughly, which is possible when

sites are moderately heterogeneous or large, leading to relatively high precisions. Intuitively,

when heterogeneity is high, FE has a higher chance of heavily up-weighting large sites whose

true e↵ects happen to be in the tails of g (the cross-site site-ATEs distribution), leading to

a more variable estimator.

3.3.2 Comparing FE and FIRC

We generally prefer FIRC to FE for estimating the site-ATE. First, we will show that, under

weak assumptions, Bias(�̂FIRC)  Bias(�̂FE). Moreover, based on our approximations,

the asymptotic variance of FIRC is sometimes much smaller than that of FE.

Comparing the biases. By working directly with the estimators’ expectations, it is

fairly straightforward to show that in finite samples FIRC is never more biased than FE:

Theorem 3.3.1. For any number of sites J ,
���Bias(�̂FIRC , �)

��� 
���Bias(�̂FE , �)

���.

This result does not depend on parametric assumptions or asymptotics. Intuitively,

the FIRC weights are transformations of the FE weights that are always shrunk towards the

constant UW weights, which produce an unbiased estimator. The proof is in the Appendix.

To assess the magnitude of these biases, we see from Table 3.3.1 how the bias of FIRC
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is a simple fraction of the bias of FE under our approximations. This fraction becomes

smaller as the site-ATEs become more variable relative to their estimates’ noise (increasing

�̃). The two estimators converge as �̃! 0 (vanishing treatment e↵ect heterogeneity of e↵ects

across sites). As �̃ ! 1 (heterogeneity of e↵ects across sites increases relative toµ
Ṽ
) FIRC

converges to UW and is thus unbiased. The fraction thus has a maximum of 1 � �̃ and

diminishes as �2⌘ increases. In sum, as �2
b
and �2⌘ increase, FIRC’s bias reduction relative to

FE increases.

Comparing the variances. Table 3.3.1 provides two approximations for V ar(J1/2 �̂FIRC).

Expression (i) gives us clear insight into how FIRC uses available information e�ciently

(putting aside bias). For �̃ near 0 FIRC approximates FE. As �̃ increases, indicating hetero-

geneity of impact, FIRC curbs the tendency of FE to put too much weight on site-treatment

e↵ect estimates that are precise but possibly far from the mean. As �̃ approaches 1, FIRC

converges to UW. Hence, the FIRC estimator ranges between UW and FE, and in fact in

such a way that its asymptotic variance always beats both of theirs (see, e.g., Figure B.7 in

the Appendix). Altogether, FIRC asymptotically dominates FE, at least when site e↵ects

�j and log precisions ⌘j are bivariate normal.

3.3.3 Comparing UW and FIRC and FIRC+

Among the ”bias-reducing” estimators, FIRC+ is unbiased and it dominates UW asymptot-

ically (as the MLE) based on our approximations. However, its variance is typically close

UW’s (see also Figure B.7 in the Appendix); when both �2⌘ and ⇢⌘b are large it can be

somewhat more e�cient (up to about 15% smaller RMSE), but this small gain comes at the

price of extra assumptions, particularly the assumption of a linear association between ⌘ and

b.

We have seen that FIRC is always at least as good as FE (asymptotically). Also, UW

tends to perform similarly to FIRC+ with fewer assumptions. Therefore the comparison
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between FIRC and UW becomes particularly interesting.

While its variance is always smaller than that of UW, in endogenous designs FIRC

will have a larger MSE than will UW when J grows large enough. This is because FIRC

is inconsistent: its bias stays fixed, while all of their variances converge to 0. Given the

imbalance in precision as indexed by �2⌘ , the relative heterogeneity of e↵ect as indexed by

�̃, and endogeneity as indexed by ⇢⌘b, at what “critical” value of Jdoes UW beat FIRC with

respect to MSE? The answer, plotted in Figure 3.3.1, is given by the equation

J =
V ar(J1/2�̂UW )� V ar(J1/2�̂FIRC)

Bias2(�̂FIRC , �)
, (3.3.1)

where the variances of each estimator are normalized to not depend on J . Below each solid

curve FIRC beats UW. When �̃ is small (in the leftmost column) the curves are flatter, so

the amount of bias FIRC can bear and still beat the unbiased estimators decreases relatively

slowly as J increases. For example, when heterogeneity is low and imbalance is high (�̃ = 0.1

and �2⌘ = 0.7) , if ⇢⌘b = 0.1 then a study must have well over 350 sites (not plotted) before

FIRC loses to UW. Yet when heterogeneity is very high and imbalance is low (�̃ = 0.7and

�2⌘ = 0.4), if ⇢⌘b = 0.1 then a study must only have 200 sites before it loses to UW.

Figure 3.3.1 also illustrates where performance of the FIRC and UW estimators diverge

significantly (the light gray lines and the color intensity). These regions are characterized by

high endogeneity and large J, and the discrepancy enhanced when �2⌘ is large and �̃ is near

0.5. The Appendix provides a similar figure that includes FIRC+ as well as UW. FIRC+

plus tends to behave similarly to UW except when endogneity is very high.

To summarize the analytic results, first, FIRC is to be preferred over FE. Second, FIRC

can be much more e�cient than UW and FIRC+ when endogeneity is small or treatment

e↵ects are constant or only modestly variable. However, the bias of FIRC can be problematic,

especially in trials with many sites. If J is small, the endogeneity must be quite large, perhaps

uncommonly so, before FIRC loses to UW and FIRC+ with respect to mean squared error,
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Figure 3.3.1: Curves in J and ⇢⌘b where the approximate FIRC RMSE equals the RMSE

of UW (solid lines) and FIRC+ (dashed lines). Curves are given for varying �̃(columns) and
�2⌘(rows). For fixed�̃, varying Ṽ or �bdoes not a↵ect the curves (since they cancel out in
the ratios). Above the black curves UW beats FIRC in RMSE (as the FIRC bias increases),
while below each curve FIRC beats UW. The gray curves show where the ratio of FIRC over
UW RMSE are 0.9 (below black curve) and 1.1 (above black curve). The intensity of color
shows how far the ratio is from 1 at each point.

and it never loses by much. But if J is large, FIRC can lose, by quite a lot, to UW and

FIRC+ when the endogeneity is more moderate (but still appreciable) and heterogeneity is

appreciable.

3.4 Simulation Study of Point Estimators and Confidence

Intervals

How accurate are these approximations when the bivariate normality assumption fails?

When the approximations are not su�ciently accurate, how do the estimators perform rel-

ative to one another? To address these questions we simulated trials coming from a wide

range of specific cases of model (3.2.1) and design parameters.
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Factor g
(joint dist.

of
site-ATEs
and log

precisions)

J
(# of sites)

�b
(variance

of
site-ATEs)

µ
Ṽ

(geometric
mean of
sampling
variances)

�2⌘
(imbalance)

⇢⌘b
(endogen-
eity of
design)

Levels Normal,
heavy-
tailed,

nonlinear,
het-

eroscedas-
tic

30, 100,
350

0, 0.1, 0.2,
0.35

0.12, 0.32,
0.52

0.1, 0.4,
0.7, 1

0, 0.1, 0.3,
0.5

Table 3.4.1: Factors varied in the simulation study.

3.4.1 Simulation Setup

Table 3.4.1 gives the specific levels of each factor we vary. We consider studies with all

combinations of: small, medium, or large number of sites (J); no, low, moderate, or high

heterogeneity of site-average treatment e↵ects (�
b
); low, moderate, or high precision of site-

average treatment e↵ect estimates (µ
Ṽ
, which depends mainly on the sample sizes nj);

low, moderate, high, or very high imbalance across sites (�2⌘); no, low, moderate, and high

endogeneity of design (⇢⌘b); and four di↵erent plausible parametric joint distributions of

site-ATEs and log precisions (g). We note that our values for �b and µ
Ṽ

let �̃ range fairly

evenly between 0 and 1. Altogether this gives a total of 3 · 4 · 3 · 4 · 4 · 4 = 2304 distinct

scenarios. For each scenario we simulated enough replicates (multisite trial data sets) needed

to get bias and variance estimates accurate to two decimal places; this ranged from 500 to

nearly 100,000 replicates across scenarios.

We specify g through the marginal distribution of ⌘j and the conditional distribution

of �j given ⌘j . For full details see Section B.5 of the Appendix, but briefly in all four cases

we made ⌘j
iid⇠N(0, �2⌘) and then varied the conditionals (and hence the marginal distribution
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of the site-ATEs �j). The conditional distributions have unequal conditional variances, each

scaled so the marginal variance �2
b
is the same (so estimators’ MSEs are comparable across

scenarios). In the normal case, the FIRC+ model is correct. In the heavy-tailed case, where

�j = � + ↵⌘j + j with j

iid⇠ t3, especially e↵ective/ine↵ective sites are more common than

under normality. In the nonlinear case, where �j |⌘j
?⇠N(�+↵⌘j+�(⌘

2
j
��2⌘), ⌧2), the positive

association between log precision and treatment e↵ect grows as log precision increases. In

the heteroscedastic case, where �j |⌘j
?⇠N(� + ↵⌘j , ⌧

2e�
1
2⌘j ), sites with higher precisions

have less variable e↵ects.

3.4.2 Root Mean Squared Error of Point Estimators

As detailed in Appendix Section B.6, the simulation reveals that all of the RMSE approx-

imations are typically very good when �j |⌘j is conditionally normal or heavy-tailed, even

when there are relatively few sites (J = 30). Not surprisingly the FIRC and (especially)

FE approximations deteriorate as nonlinearity or heteroscedasticity increase and when �2
b
is

nonzero; the FIRC+ approximations also su↵er in the nonlinear case (though not much in

the heteroscedastic case). The Monte Carlo error is such that we can trust the simulated

RMSEs to be o↵ from the truth by up to about 5% in either direction.

Simulation results for the relative e�ciency of the estimators are shown in Figure

3.4.1, which plots the ratio of each precision-weighted estimator’s RMSE to that of UW

as �̃ (x-axis), �2⌘ (column), and ⇢⌘b (color and line) vary in quite strongly heteroscedastic

and nonlinear cases when J = 100. The normal (of course) and heavy simulation echo the

asymptotic approximations very closely, so we leave them to the Appendix. When J = 30

and J = 350 the estimator relationships are qualitatively similar to those shown here so we

leave these figures to the Appendix as well. The heteroscedastic and nonlinear simulation

results reveal the following nuances. As previously emphasized, these scenarios may not arise

frequently in practice, but they are important departures from normality to be aware of.
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FIRC vs. FE. FE can beat FIRC in the heteroscedastic case when ⇢⌘b is low, especially

when imbalance �2⌘ and heterogeneity �̃ are high. This happens because the heteroscedastic

case we simulated gives an additional reward to precision weighting (since in this particular

case, the more precise sites also have less variable e↵ects �j) and FE’s precision weighting is

more aggressive than FIRC’s. However, when ⇢⌘b is nonzero and moderate FE’s bias can still

be much larger than FIRC’s and the extra variance reduction is dwarfed. In the nonlinear

case FE’s bias is exacerbated more than FIRC’s is, so it loses by an even wider margin than

in the normal case.

FIRC+ vs. UW. While our asymptotics suggest that FIRC+ universally dominates

UW, of course this is not the case in the nonlinear setting, which violates the FIRC+

regression assumption and gives it a bias that stays fixed as the sample size grows. In

particular, we can see that FIRC+ can become worse than UW (by up to 40% when J =

100, and up to 130% when J = 350) in the nonlinear case when �̃ is not very small or very

large (i.e. bounded away from 0 and 1) and there is at least moderate imbalance.

FIRC vs. UW and FIRC+. In the strongly nonlinear case, FIRC only beats UW

substantially if �̃ is 0 or very close, and otherwise it only beats UW if ⇢⌘b is small and then

by a fairly modest margin (10-20% in our scenarios). But FIRC is less biased than FIRC+

when ⇢⌘b is not large. The heteroscedastic case reduces FIRC’s and FE’s variance, leading

FIRC to beat UW and FIRC+ by a larger margin when there is little endogeneity. An

antagonistic heteroscedastic case (where the more precise or larger sites have more variable

e↵ects) would not make FIRC look so good.

3.4.3 Coverage of Confidence Intervals

To construct confidence intervals for the ATE, the standard strategy most analysts would

default to is to center the interval at the preferred method’s point estimate and then find

bounds by subtracting and adding the appropriate multiple of an estimated standard error.
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Figure 3.4.1: The ratio of each estimator’s RMSE relative to the RMSE of UW, as
⇠
�

varies on the x-axis, for J = 100 in the heteroscedastic and nonlinear cases. Separate plots
are given for each �2⌘(columns) and estimator/distribution (rows). A RMSE ratio of 100%
is shown by the horizontal solid red lines, while the dashed red lines are at 110% and 90%
to demarcate cases where estimators perform comparably to UW. The color of each point
corresponds to the correlation ⇢⌘b. These ratios only depend on �2

b
and µ

Ṽ
(not shown)

through �̃.
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However, centering a confidence interval at a biased point estimator is asking for trouble.

Figure 3.4.2 illustrates this issue through simulation results from the normal case (see the

Appendix Section B.6 for the others). When the bias of FIRC and FE grow, controlled

largely by �⌘b along the x-axis, coverage of the standard FIRC and FE confidence intervals

plummets far below the nominal 95% level. The FIRC+ interval also su↵ers from poor

coverage in the strongly nonlinear case, where it is also biased. The problem is exacerbated

by sample size, since as J grows the standard errors shrink and these confidence intervals

will converge onto the wrong (biased) ATE. Even if the bias is small, in any real study

we will not know exactly where in this downward spiral the coverage will fall – it may be

close to nominal or embarrassingly lower. The conclusion is simple: to accurately measure

uncertainty using the simplest type of confidence interval, one must be conservative and use

an unbiased estimator (UW, or FIRC+ if trusted).

What recourse do researchers have? One possibility is to report a di↵erent point

estimate (e.g. FIRC) than the one used to construct the confidence interval (UW or FIRC+).

This invites the chance that the point estimate is not in the confidence interval, though in

practice this would be extremely rare because the four estimators are highly correlated and

except in unrealistically large (or precise) trials the UW or FIRC+ confidence intervals will

be more than wide enough to cover the FIRC and FE point estimates. Another is to construct

more sophisticated intervals that are likely shorter but still guarantee their advertised level of

coverage (though perhaps asymptotically). For example, one might adapt a FAB (Frequentist

assisted by Bayes) method (Yu & Ho↵ 2018) to this setting or use bias-corrected bootstrap

methods like BCa (Efron 1987).

3.5 Self-Ine�ciency of the Unweighted Estimator

Our asymptotic and simulation results highlight that while UW’s guaranteed unbiasedness

may be important in some settings, the price is that it can use the trial data very ine�ciently,
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Figure 3.4.2: Actual coverage rates (by simulation) for the standard nominal 95% confi-
dence intervals centered on the di↵erent point estimators, as a function of �b (x-axis). Plots
are given for FIRC and FE (columns) and values of ⇢⌘b (rows). Each colored line shows
scenarios with a di↵erent sample sizeJ . The horizontal light grey lines mark the nominal
95% rate, and the dark grey lines mark 90%. The data where simulated from the normal
case (as in the simulation study in Sections 4), with µ

Ṽ
= 0.09 and �2⌘, though changing

these parameters does not change the results qualitatively (i.e. the coverage can still be
bad).

especially if there is substantial imbalance in design across sites. In this Section we consider

another perspective on UW’s use of trial data by asking if, and when, UW can be improved

by throwing out data. This is a form of the self-ine�ciency property coined by Meng and

Xie (2014), and we derive conditions describing when UW su↵ers from this odd problem.

Consider discarding some sites and recomputing the unweighted estimator on the

remaining subset S ⇢ {1, . . . , J} to get the subset estimator �̂S := s�1
P

j2S �̂j where

s :=
P

J

j=1 1{j 2 S}. We refer to �̂S as the subset estimator and focus on the case where

S is the subset of sites with the s most precise site-specific e↵ect estimates. If this subset

estimator has smaller mean squared error than UW, then we say that the original estimator

is self-ine�cient.

Lack of self-e�ciency indicates that a method makes poor use of available data. How-
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ever, we stress that self-e�ciency is likely a basic quality of reasonable estimators and not

necessarily a sign that an estimator is optimal in apparently stronger senses. Self-ine�ciency

of the “obvious” unbiased estimator in a given setting, like the UW estimator of the site-

ATE in multisite trials, is a sign that the problem may su↵er from a di�cult bias-variance

tradeo↵ and may be easier to check than more fully characterizing the tradeo↵ over a class

of estimators. We show later that, in the case of Head Start it is hard to deny that the

unweighted estimator is self-ine�cient, casting doubt on the value of “bias-free” answers

despite that they are often prized (Schochet 2016).

The following theorem describes how �̂UW may be self-ine�cient if the study design

is su�ciently imbalanced across sites. We define ⇡S := s/J (the fraction of sites being kept

for the subset estimator), �2
b2S := V ar(�j |j 2 S) (the variance of site e↵ects in the subset),

�S := E(�j |j 2 S) � E(�j |j /2 S) (the di↵erence in expected e↵ects between kept and

discarded sites), and C2S := Cov(�j , �k|j 2 S, k 2 S) (the covariance of e↵ects in di↵erent

kept sites). Recall that we consider only subsets where we keep the s most precise sites, that

is the sites with ⌘j > ⌘(J�s) where ⌘(J�s) is the (J � s)-th order statistic. Thus the subset

is random (as a function of the ⌘j) but has fixed size.

Theorem 3.5.1. Under (3.2.1), suppose that for some s 2 {1, . . . , J � 1} the set of the s

most precise sites, S := {j 2 {1, . . . , J} : ⌘j > ⌘(J�s)}, satisfies

E(Vj |j 2 S)  ⇡SE(Vj)�
h
�2
b2S � ⇡S�

2
b

i
� s(1� ⇡S)2�2

S
� (s� 1)C2S (3.5.1)

or, equivalently,

�2
S
 (1�⇡S)�2s�1

⇣⇥
⇡SE(Vj)� E(Vj |j 2 S)

⇤
+
h
⇡S�

2
b
� �2

b2S

i⌘
� (1�⇡S)�2

s� 1

s
C2S .

(3.5.2)

Then the unweighted estimator �̂UW is self-ine�cient as an estimator of �.

See Section B.7 of the Appendix for the proof, which is mostly straightforward com-
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putation. Intuitively, condition (3.5.1) is met when the typical sampling variance in the

subset (i.e. the average sampling variance excluding the J � s largest ones), E(Vj |j 2 S),

is small relative to the typical sampling variance over all sites, E(Vj). (3.5.2) describes

this condition in terms of how large the di↵erence in average treatment e↵ects in the kept

and discarded sites, �S , may be (controlled indirectly by the covariance �⌘b). Both show

how self-ine�ciency is less likely when the site e↵ects are variable enough in the subset

(�2
b2S > ⇡S�

2
b
). The covariance term C2S , included here for completeness, is typically neg-

ligible and often provably zero (see Section B.7 of the Appendix) so we exclude it from the

following discussions. Because Theorem 3.5.1 is a finite-sample result that requires weak

assumptions it can be used for rather reliable sensitivity analysis to assess whether the “con-

servative” UW estimator can be demonstrably improved on in practice, as we do in Section

3.6.

3.6 Head Start Impact Study

The e↵ectiveness of Head Start has long been subject to debate, and in 1998 the US Congress

mandated a randomized evaluation, the Head Start Impact Study (Puma et al. 2010). After

drawing a sample of 351 Head Start centers, the experimenters sought applications from

eligible families. Because the number of places was limited, they conducted a lottery to make

o↵ers of admission. The resulting sample included 4,400 3-4 year-old children. Restricting

our analysis to (a) centers with at least one experimental and one control child and (b)

children with complete data on our outcomes, our analytic sample includes 3,392 students in

316 centers (sites). Although an optimal analysis would likely use multiple imputation, we

prefer to avoid questions of missing data here in order to clarify key methodological issues

in this study, which focus on alternative estimators. We analyze the first year of outcome

data, collected in the spring of 2003.

Head Start is mandated to promote learning and socioemotional development among
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low-income preschoolers. We therefore study early reading (Woodcock Johnson III Letter-

Word Identification), math (Woodcock Johnson III Applied Problems), and vocabulary

(Peabody Picture Vocabulary Test or PPVT) in the cognitive domain. For the socioe-

motional domain, we study a measure of aggressive or “externalizing” behavior (the Child

Behavior Problems Index). Oral comprehension (Woodcock Johnson III Oral Comprehen-

sion) requires a mix of cognitive and attentional skill.

For each outcome, we estimate the site-average e↵ect of treatment assignment. Head

Start Centers vary substantially in program design, resources, and geographic context. The

distribution of treatment e↵ects across such heterogeneous programs is of interest and the

mean of that distribution is the site-ATE. We also consider the variance of that distribution.

Many others have focused on a population of sites, even if implicitly through their use of

standard linear mixed models, including Feller et al. (2006), Bloom & Unterman (2014), and

Walters (2015). Our focus on the e↵ects of treatment assignment, often the called intent-to-

treat analysis, reflects the fact that some admitted children went to another or no preschool,

and some rejected children attended Head Start after getting in o↵ a wait list. The e↵ects

of assignment are relevant to a policy environment in which not all who receive an o↵er will

participate. HSIS also exhibits the conditions discussed in the introduction that invite the

bias-variance tradeo↵.

Heterogeneity of impact. Program features such as teacher-sta↵ ratios, sta↵ qualifica-

tions, and facilities vary significantly across program sites (Puma et al. 2010). Sites also

vary in key aspects of program design, including curriculum, teacher evaluation and training,

director qualifications, and the guiding educational philosophy of the 90 agencies that oper-

ate the program. Past studies have found significant variation – even within an agency – in

how sta↵ implement the program, their geographic settings, local labor market conditions,

supply of teachers, and the social, ethnic, and cultural background of parents and children

(Puma et al. 2010). So variation in treatment e↵ects is highly plausible.
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Design-estimand mismatch and endogeneity of design. Our target population is the

population of sites, but the design is highly imbalanced across sites, so equal weighting will

be ine�cient. HSIS planners initially sought to study sites with an average of 27 children

(with 16 assigned to treatment and 11 to control), but the sites ended up being smaller on

average (with a mean site size n̄ = 10.7 in our analytic sample) and quite variable in size

(with nj ranging from 2 to 74). Proportions treated also varied across sites (T̄j ranging from

20% to 89%, with a mean of 62%). This design reflects the dramatic variation across centers

in the number of applicants in competitive lotteries. Varied sample sizes could represent

variation in the e↵ectiveness of local recruiters, in the prestige and perceived e↵ectiveness of

the local Head Start program, in the desirability of local child-care alternatives, or in the size

of the center relative to the size of the local population. Because these factors may plausibly

be related to the actual e↵ectiveness of each center (�j) we cannot ignore the possibility that

the design is endogenous. Putting these three conditions together promotes uncertainty in

how to analyze this study.

3.6.1 Empirical Results

Tests of significance. As indicated in Table 3.6.1, all estimators indicate significant positive

e↵ects of assignment to Head Start on early reading achievement and receptive vocabulary

and no estimator suggests a non-zero e↵ect on oral comprehension. However, the estimators

for the other two outcomes produce ambiguity about impacts. In particular, FIRC and FE

suggest statistically significant e↵ects on math achievement and aggression while the UW

analyses suggest rejecting the null hypothesis in neither case. FIRC+ would lead us to reject

the null hypothesis for math but not aggression. These results are based on two-sided t-tests

(with 315 degrees of freedom) of a null hypothesis of no average treatment e↵ect. Emulating

an analyst who would use a single method of estimation for all five outcomes, these results

control for multiple testing using the popular Benjamini-Hochberg (Benjamini & Hochberg
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1995) method to control the false discovery rate at 3% across outcomes (separately for each

method).1 Point estimates across the four methods are similar, and the apparent di↵erences

in hypothesis rejections reflect smaller standard errors associated with precision-weighted

methods. This may seem to imply that precision-weighting is superior, but if FIRC and FE

(and FIRC+) are biased, their tests will not achieve the nominal level. We will apply our

tools for sensitivity analysis to explore these discrepancies in findings.

Estimated magnitude of treatment e↵ects. For the significant outcomes, the estimators

mostly agree on the magnitude of the site-ATE in terms of both point estimates and con-

fidence intervals. Point estimates of the treatment group di↵erence for reading are 0.18 to

0.19 standard deviation (sd) units of the outcome variable, suggesting that a typical child

assigned to Head Start would outscore about 57 to 58 percent of the members of the control

group. Compared to other important educational evaluations, this e↵ect is large enough

to be substantively important. It is, for example, very similar to the e↵ects produced for

reading in the famous Tennessee study of class size reduction (Finn & Achilles 1991). For

vocabulary, the point estimates are 0.11-0.12 sd units, indicating that a typical child assigned

to the experimental groups would outscore about 54 percent of the control group members.

Point estimates of impact for math and aggression are a bit smaller (about 0.08 and -0.08 sd

units, respectively). One way to gauge the practical significance of the reading impact is to

note that assignment to Head Start produces a gain equivalent to about 14 weeks of learning,

assuming a typical learning rate of 0.014 sd units per week. To obtain this estimated rate, we

regressed the outcome on age among 3 and 4 year-olds, holding constant child fixed e↵ects.

For math, the gain would be 6-7 weeks. (Such a metric is not possible for vocabulary using

PPVT, which is standardized by age).

1. We chose this level because under multiple testing it exacerbates di↵erences between the estimators,
an interesting problem that may crop up in other studies, especially with more outcomes. Marginally, the
“conventional” 5% level leads to the same set of rejections as does 3%.
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UW FIRC+ FIRC FE

Reading
0.173*

(0.045)

0.180*

(0.043)

0.193*

(0.037)

0.194*

(0.037)

Math
0.092

(0.048)

0.096*

(0.043)

0.080*

(0.032)

0.079*

(0.032)

Oral
-0.030

(0.040)

-0.061

(0.039)

-0.026

(0.029)

-0.027

(0.029)

Behavior
-0.080

(0.047)

-0.081

(0.043)

-0.076*

(0.034)

-0.076*

(0.034)

Vocabulary
0.123*

(0.040)

0.125*

(0.038)

0.109*

(0.032)

0.109*

(0.032)

Table 3.6.1: Point estimates of the site-ATE for the five basic outcomes in HSIS under
each method. Standard errors are given in parentheses. The asterisks denote significance at
a 3% FDR level using the Benjamini-Hochberg procedure within each method (over the 5
outcomes). The 3% level was chosen to highlight the potential for di↵erent testing decisions
across methods.

3.6.2 Sensitivity Analyses

To better understand how the four basic estimators perform in HSIS, we consider how the

results of Sections 3 through 5 may apply to this study. In particular we want to assess, given

the Head Start data, (a) how self-ine�cient UW could plausibly be, (b) what the analytic

approximations suggest about FIRC’s RMSE compared to UW, and (c) whether or not the

FIRC confidence intervals may plausibly have unacceptable coverage. The framing of these

sensitivity analysis questions is by definition Bayesian, so we take a Bayesian approach to

answering them. We pose a fully Bayesian version of model (3.2.1), considering a range

of priors, and compute the posterior distribution of the model parameters, which translates

directly into the posterior evidence about each question. Throughout we focus on the reading

and math outcomes as they provide an interesting contrast.
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3.6.2.1 Bayesian Framework and Key Parameter Inferences

Putting priors on the parameters of model (3.2.1) is obviously in some sense a subjective

exercise, as is any sensitivity analysis that makes judgments about what regions of a param-

eter space are worth considering. In general our priors rule out implausibly large parameter

values but are informative about little else, aside from a bivariate normality assumption.

In particular, our main sensitivity analyses are based on the following Bayesian version of

(3.2.1), except where noted otherwise:

�̂j |�j , Vj
ind.⇠ N(�j , Vj)

⌘j = log µ
Ṽ
� log Vj

h
�j
⌘j

i
|�, �2

b
, ⇢⌘b, �

2
⌘, µṼ

iid⇠ N

✓h
�

0

i
,


�
2
b

⇢⌘b�b�⌘

⇢⌘b�b�⌘ �
2
⌘

�◆

�b ⇠ TCauchy(0, 0.065, (0,1))

�⌘ ⇠ TCauchy(0, 0.24, (0,1))

⇢⌘b ⇠ TN(0, 0.3, (�1, 1))

log µ
Ṽ
⇠ N(0, 102)

� ⇠ N(0, 0.52)

(3.6.1)

where N(m, v) indicates a normal distribution with mean (vector) m and (co)variance (ma-

trix) v, TCauchy(c, s, I) indicates a Cauchy distribution with location c and scale s that

has been truncated to the interval I, and TN(m, v, I) indicates a normal distribution with

mean m and variance v that has been truncated to the interval I. The bivariate normality

of �j and ⌘j makes (3.6.1) akin to FIRC+ in its linearity and homoscedasticity assumptions,

points we touch on at the end of this section. The variance components use half-Cauchy

priors following Gelman (2006) and Polson & Scott (2012), which have slowly degrading tails

to not hamper inference if the true variances are quite large. The hyperparameter values

were chosen so that �b has a ⇠10% prior probability of being greater than 0.4 (a very high
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level of heterogeneity), �⌘ has a ⇠15% prior probability of being greater than 1 (extremely

high imbalance), ⇢⌘b has a ⇠95% prior probability of being in (-0.6, 0.6). The prior for µ
Ṽ

is more or less flat on the log scale, and the prior for � is weakly informative in that it rules

out extremely large e↵ect sizes (given that the outcome has been standardized).

Since �2⌘ and µ
Ṽ

are estimated with fairly high information from the data, we only

considered alternative priors for �2
b
and ⇢⌘b. For �

2
b
, we tried both priors putting more mass

on large levels of heterogeneity (TCauchy(0, 0.4, (0,1)), which has a 50% probability of

�b > 0.4, or TCauchy(0.75, 0.01, (0,1)), which has a 99% prior probability of �b > 0.4)

as well priors putting more mass on low levels of heterogeneity. Neither greatly a↵ect our

sensitivity analyses, so we do not report those results. On the other hand, the prior for ⇢⌘b

does matter, and we discuss results for a range of alternatives in Figure 3.6.2. At the end of

the section we discuss the possibility of making larger departures from the underlying model.

To preview the results of this analysis, Table 3.6.2 gives posterior means and credible

intervals for the key sensitivity parameters as well as some hints about the performance

of the estimators across the di↵erent Head Start outcomes. The first major point here

is that for all outcomes there appears to be very little evidence about the magnitude of

any endogeneity of design given the very wide intervals for ⇢⌘b. This point is fleshed out

further in Figure 3.6.2, which we will discuss shortly in the sensitivity analysis for the

analytic approximations. Naturally �2⌘ is well estimated (given the large J) and inferences

are essentially identical across outcomes because this parameter is scale-free. Finally, looking

to the reading and math outcomes, we can see that for reading there is evidence of fairly

substantial heterogeneity of site e↵ects whereas for math this heterogeneity is likely more

modest. This intuitively suggests (based on the results of Sections 3 and 4) that bias is more

likely to be a concern for the reading outcome than the math outcome. We examine this

intuition more formally in the next subsections.
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Reading Math Oral Behavior Vocabulary

⇢⌘b
0.06

(-0.40, 0.52)

-0.04

(-0.59, 0.49)

-0.04

(-0.59,0.49)

0.00

(-0.56, 0.55)

-0.07

(-0.61, 0.47)

�2⌘
0.58

(0.49, 0.67)

0.57

(0.49, 0.67)

0.58

(0.49, 0.67)

0.58

(0.49, 0.67)

0.58

(0.49, 0.67)

�̃
0.04

(0.00, 0.12)

0.01

(0.00,0.04)

0.01

(0.00,0.05)

0.01

(0.00, 0.03)

0.01

(0.00,0.06)

�b
0.11

(0.00, 0.25)

0.05

(0.00, 0.13)

0.05

(0.00, 0.13)

0.05

(0.00, 0.13)

0.05

(0.00, 0.15)

Table 3.6.2: Posterior means and 95% credible intervals (in parentheses) for the key sen-
sitivity parameters controlling the operating characteristics of the site-ATE estimators, for
each of the Head Start outcomes. The credible intervals are highest posterior density, and
note that for �̃ and �b the lower bounds are only written as 0 after rounding.

3.6.2.2 Self-ine�ciency of the UW Estimator

Figure 3.6.1 shows sensitivity analyses to check for self-ine�ciency of the UW estimator in

HSIS, as described in Section 3.5. We see strong evidence of self-ine�ciency. When discard-

ing only one site (right where the curves approach the y-axis), |�S | must be larger than 0.68

or 0.64 in order to ensure self-e�ciency in reading and math respectively; in other words the

least precise site must have an site-specific ATE more than 0.64 (or more) better or worse

than the ATE of all the others, an extreme proposition. Further, if precisions are uncorre-

lated with site-specific ATEs then we could discard 45-64% of sites (see the x-intercepts) and

still achieve the same MSE using UW. We conclude that the UW analysis, which produces

unbiased point estimates and honest confidence intervals under weak assumptions, is almost

surely self-ine�cient, and possibly quite seriously so. One would hope we can do better with

a di↵erent estimator.
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Figure 3.6.1: Sensitivity analyses for self-e�ciency in the case studies. Each panel shows
how large |�S | can be before the UW estimator is self-e�cient (from the RHS of (3.2)),
as a function of the fraction of sites being discarded (1 � ⇡S). Above the curves UW is
self-e�cient and below them it is self-ine�cient. We hold �2⌘ constant at its point estimate
0.57 since the curves are qualitatively similar across its 95% confidence intervals. The dotted
and dashed curves are for �b at the bounds of its 95% CI from FIRC; �b2S is fixed at its
conservative lower bound ⇡S�b (harder to find self-ine�ciency).

3.6.2.3 RMSE Approximations

As already alluded to in Table 3.6.2, there appears to be little evidence in the HSIS data

about the magnitude of ⇢⌘b. The top portion of Figure 3.6.2 underlines this point by showing

that posterior distribution for ⇢⌘b essentially reproduces its prior, over a range of substan-

tively diverse alternative prior distributions (top row). While dramatic, this is perhaps not

surprising given the small site sizes and relatively high noise levels for �̂j in HSIS.

The bottom portion of Figure 3.6.2 shows the induced posterior distributions of the

RMSE ratio between FIRC and UW for the four alternative priors on ⇢⌘b. For math,

essentially regardless of prior beliefs about ⇢⌘b, the data and model imply that bias is not

plausibly big enough to make FIRC’s RMSE worse than UW’s. This is because the strong
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Figure 3.6.2: Bayesian inference for endogeneity and asymptotic RMSE expressions. The
top grid of plots shows the four alternative prior densities for ⇢⌘b (columns, with A corre-
sponding to Table 3.6.2), as well as corresponding posteriors for this parameter given the
reading and math data respectively. Column A corresponds exactly to (3.6.1), whereas B-D
are (3.6.1) with the change to the ⇢⌘b prior as shown in the first row. The bottom grid of
plots shows the posterior densities of the ratio of the FIRC to UW RMSE approximations,
which is simply a function of model parameters, under the four di↵erent priors.

evidence for very low heterogeneity of e↵ects (see Table 3.6.2) in math limits the influence of

even very large values of ⇢⌘b (recall the expression for FIRC’s asymptotic bias in Table 3.3.1).

In contrast, for reading there is more evidence of cross-site treatment e↵ect heterogeneity,

so antagonistic priors that more or less rule out small ⇢⌘b (panels C and D) suggest that

FIRC’s bias is more significant. That said these (probably substantively unrealistic) priors
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Figure 3.6.3: Simulated FIRC confidence interval coverage using parameter values plausible
under the HSIS posteriors, as ⇢⌘b (x-axis), �̃ (columns), and �2⌘ (color and line shape) vary.

Values for �̃ correspond to the bounds for 95% and 50% highest posterior density intervals
under (3.6.1) given the math (top row) and reading (bottom row) data. Values for �2⌘
correspond to the 95% highest posterior density interval and the posterior mean, which are
virtually identical for both outcomes.

for ⇢⌘b still only yield roughly 30% posterior probability that FIRC’s RMSE is larger than

UW’s, and deep posterior concern about FIRC’s RMSE would require extremely antagonistic

priors for ⇢⌘b even beyond the prior in panel D (i.e. saying that it is close to 1 with high

probability). It is worth noting that these conclusions rely on the accuracy and relevance

of the asymptotic expansions from Table 3.3.1, though the simulation results of Section 3.4

suggest that these are quite accurate except for fairly extreme departures from bivariate

normality.
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3.6.2.4 Confidence Interval Coverage

Figure 3.6.3 displays coverage rates of nominal 95% confidence intervals, evaluated at plau-

sible values of �2⌘ and �̃ for the math and reading outcomes based on their posterior distri-

butions under (3.6.1), with ⇢⌘b ranging from 0 to 0.5 (not taken from any posterior). We

focus on FIRC because it will have better coverage than FE since its bias is smaller (Theo-

rem 2). When heterogeneity is very small (�̃ < 0.005 roughly), coverage rates for FIRC are

better than 90% even for high endogeneity (|⇢⌘b| = 0.5). However, FIRC’s coverage declines

below 90% as heterogeneity increases (at about �̃ = 0.05). When heterogeneity is rather

higher (�̃ = 0.13, the upper limit of its 95% credible interval in reading), coverage of FIRC

confidence interval deteriorates quite rapidly even for fairly moderate levels of endogeneity.

3.6.3 Conclusions and Caveats

The sensitivity analyses in this section show that (a) the unweighted estimator is very likely

self-ine�cient and may be extremely so, (b) FIRC is likely non-trivially more accurate as a

point estimator than UW, and (c) the FIRC confidence intervals may have poor coverage

for the reading outcome if endogeneity is nontrivial. For better or for worse, these analyses

also indicate that the very small site sizes in HSIS mean that the data provide very little

evidence about how endogenous the design may have been.

The bivariate normality assumption underlying our Bayesian inferences and the asymp-

totic approximations we evaluate here may be considered a limitation of these sensitivity

analyses, although arguably not a challenging one to overcome. First, any nonlinearity or

heteroscedasticity in the joint distribution of �j and ⌘j is likely not detectable in the HSIS

data given the high noise level (small �̃). Further, because heterogeneity is small there is

limited potential for these features to exist (since the magnitudes of both are constrained by

the marginal variance of the site e↵ects) and substantially a↵ect our conclusions. However,

in a study with larger heterogeneity they would be more important possibilities for analysts

101



to explore (e.g. through models and priors that allow and even expect them).

3.7 Implications and Open Research Areas

This paper is premised on the idea that the sample sizes in each site of a large multi-

site randomized field trial often arise from a random social process. The precision with

which a site’s treatment e↵ect can be estimated may then plausibly be endogenous. The

initial statistical consequence is that the joint distribution of these site-specific precisions

and treatment e↵ects then becomes an important object of study. Our aim has been to shed

new light on familiar estimators of the site-average treatment e↵ect through asymptotics,

simulations, and Bayesian analysis of key sensitivity parameters in an illustrative case study.

The basic conclusion is that when endogeneity of design is a possibility none of the com-

mon estimators we consider strikes a generally attractive balance between bias and variance.

Three scale-free parameters largely control the biases and variances of these estimators: (1)

�̃, the reliability with which site-specific treatment e↵ects vary (measuring treatment e↵ect

heterogeneity), (2) �2⌘, the variance of the centered log precisions (measuring design imbal-

ance), and (3) ⇢⌘b, the correlation between treatment e↵ects and log precisions (measuring

endogeneity of design).

The design-based approach, while producing unbiased point estimates and valid confi-

dence intervals, may in some cases be self-ine�cient, meaning that it makes such poor use

of data that its variance and even mean squared error can be improved by discarding data.

Yet a precision-based estimator (FIRC), which in many cases will plausibly produce a better

point estimator, will be inconsistent under endogeneity, meaning that confidence interval

coverage will inevitably deteriorate as the number of sites, J , increases. The bias-variance

trade-o↵ that arises from a forced choice among the most common estimators strikes us as

intolerable. We can readily envision a class of estimators that tolerate more bias when J is

small and less as J increases.
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Better estimators of the site-ATE under endogeneity. For these reasons we recommend

research on new estimators that would perform better when endogeneity of design is a con-

cern. One estimation strategy that comes to mind is weight-smoothing, potentially of the

“penalized spline of propensity” variety (Little 2004), where smoothing would be greater for

smaller values of J , given the scale-free parameters. Another possible direction is Bayesian

approaches that explicitly try to model the endogeneity of design while perhaps being careful

to not take it so seriously as to discount the finite-sample e�ciency gains from borrowing

more heavily from the more precise sites. A key methodological challenge here is the fact

that, for most multi-site trials, noise levels make the level of endogeneity hard to estimate

accurately.

Other features of the site-specific ATE distribution. While our inquiry has focused on

the site-average impact, any representation of the distribution of average treatment e↵ect

across sites would require estimation of the treatment e↵ect variance and/or quantiles. Also

of interest is the association between the site-specific control-group means and treatment

e↵ects, which is a measure of how much the treatment reduces or increases inequality. Here

design-based versus model-based estimators may di↵er markedly.

Other target populations. We have focused on inferences regarding an unweighted

population of sites, for example, schools, school districts, hospitals, or neighborhoods within

which random assignment occurs. A population that is typically also of interest is the

populations of persons nested within those sites. Miratrix, Weiss, and Henderson (2021)

found that, in 12 multi-site trials they reviewed, inferences for the site-average mean were

more sensitive to choice of estimator than were inferences regarding the average treatment

e↵ect defined over a population or persons. In general, however, design-based estimators

of the person-average mean will be fairly e�cient when sites are sampled proportional to

their size. Suppose that, instead, an experimenter has opted for a constant sample size for

each site despite the fact that the site-specific population sizes vary substantially. Then the
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bias-variance trade-o↵s among model-based versus design-base estimators would be similar

to those discussed in this article. Such a design might seem irrational. Experience suggests,

however, that large-scale trials are intended to serve multiple purposes, including describing

the distribution of e↵ects or over persons. Therefore, optimizing design for a single use may

not be desirable.

Trial Design. It seems to follow from these findings that experimental design should

consider the risk of endogeneity of precision. Designs based on randomized lotteries seem

particularly vulnerable, but other aspects of participant recruitment may also produce en-

dogenous sample sizes. While beyond the scope of this article, the tools we have developed

can readily be adapted to probe these design questions as they arise in application.
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APPENDICES

A Appendix to “Dynamic Borrowing From Historical Controls

Via the Synthetic Prior with Covariates in Randomized

Clinical Trials”

A.1 Data generation details for the simulation study . . . . . . . . . . . . 108

A.2 Simulation results for variations on the SPx prior . . . . . . . . . . . 113

A.3 Rationale for the SPx hyperprior . . . . . . . . . . . . . . . . . . . . 114

A.1 Data generation details for the simulation study

A.1.1 Factors defining the di↵erent simulation settings

In the simulation study data are generated according in a wide array of schemes, which

consists of a (nearly) full factorial design with the following factors.

Direct relevance of historical rates and usefulness of covariates. The most important

conditions we vary across simulations are (a) whether the historical control rates are directly

relevant (similar) to the new rate or not and (b) whether the covariates predict response

rates or not. These conditions define what we call Scenarios 1-4:

• Scenario 1: Historical rates similar to new rate and covariates predictive

• Scenario 2: Historical rates not similar but covariates predictive

• Scenario 3: Historical rates similar and covariates not predictive

• Scenario 4: Historical rates not similar and covariates not predictive

For further details see the beginning of Section A.1.2 and the attached code/simulated

historical data files.
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Maximum target control group size. The maximum target control group size may be

either 150 or 80 patients, reflecting some of the range of sample sizes typical in non-oncology

Phase 2 e�cacy trials (see, e.g., Table 2.5.1). In the designs we consider 150 or 80 are also

the fixed sample sizes of the treatment group, with equal randomization between treatment

and control in Stage 1 and unbalanced randomization in Stage 2 (depending on the # of

Stage 2 control patients). This leads to total trial sizes on the order of 300 or 160, more or

less depending on the concordance between the historical and new control data at interim.

Whether all covariates are used. The data-generating schemes for the main simulation

results in Tables 1 and 3 are given by a full factorial design defined on the previous factors,

in a setting where the analyst only observes and uses 2 of the 6 covariates actually associated

with response rates. Finally, just for Scenarios 1 and 2 (where covariates are useful) and the

ncmax = 150 maximum trial size case, we also simulate cases in which the analysts observe

and may use all 6 covariates, yielding Tables 2 and 4.

A.1.2 Exact sampling procedure

We directly generate trial-level data without sampling any patient-level data. To generate

random trial-level covariates and true response rates that are correlated, we first sample

from a marginal distribution for the covariates and then from a conditional distribution for

response rates given covariates. In Scenarios 1 and 3, the historical trials come from groups

i(h) 2 {1, 2, 3, 4, 5, 6} (with 8 from each, for a total of 48 historical trials) and the new trial

comes from group i(H +1) = 6. In Scenarios 2 and 4, the historical trials come from groups

i(h) 2 {1, 2, 3, 4, 6} (missing group 5; with 10 from each, for a total of 50 historical trials)

while the new trial comes from group i(H + 1) = 5, leading to a lower response rate than

any of the historical trials.

To sample a single trial’s control data:

1. Sample covariates.
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The trial-level covariates include both patient characteristics, which are randomly sam-

pled, and trial eligibility or treatment regimen features, which are fixed under repeated

sampling for a given trial (but vary deterministically across trials). To reflect a setting

where di↵erent trials (indexed by h) are conducted in di↵erent settings, we pose 6

di↵erent covariate distributions and each trial’s covariates are sampled from just one

of these 6 (indexed by the function i(h)).

• Proportion male:

⇠ Binom(n, µi(h))/n

where µi(h) is the i(h)-th component of the vector (0.3, 0.2, 0.28, 0.34, 0.42, 0.35).

• Average weight at trial start (kg):

⇠ N(µi(h), 9)

where µi(h) is the i(h)-th component of the vector (75, 55, 60, 64, 82, 66).

• Average disease duration at trial start (years):

⇠ µi(h) +

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

�2 w.p. 0.15

�1 w.p. 0.2

0 w.p. 0.3

1 w.p. 0.2

2 w.p. 0.15

where µi(h) is the i(h)-th component of the vector (18, 16, 8, 18, 22, 12).

• Dosing scheme:

= di(h)
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where di(h) is the i(h)-th component of the vector

(biweekly, twice daily, weekly, weekly, biweekly, weekly).

In regressions this is represented as two binary covariates (biweekly or not, and

twice daily or not).

• Previous/background treatment at trial start:

= bi(h)

where bi(h) is the i(h)-th component of the vector

(none, none, MTX, MTX, none, none).

2. Sample response rate given covariates.

yh| h
ind.⇠ Binom(nh, h)

 h, xh
ind.⇠ Beta(↵h, �h)

↵h and �h are such that the Beta distribution has a mean given by the regression on

covariates

logit

✓
↵h

↵h + �h

◆
= 10 log(0.85) ·maleh + 0.1 log(0.95) · weighth+

0.2 log(0.95) · durationh + log(0.9) · I(di(h) = biweekly)+

log(1.1)I(di(h) = twice daily)

111



and scaled so that all 6 covariates explain 80% of the variation in true response rates

(i.e. considering the law of total of total variance, we have conditional variance given

covariates = 0.2 * marginal variance). This scaling is determined by Monte Carlo

integration to find the marginal variance of the response rates.

Sampling both  h and yh means there is randomness in the true response rates beyond

just randomness in the observed response rate given the truth. This can be compared

to a Frequentist repeated sampling regime in which when a trial is replicated not only

would the same exact patients have di↵erent observed responses, but also the sample

of patients would change (leading to a di↵erent ”true” response rate).

These covariate distributions and regression equation were calibrated to mimic the

range of covariate values and response rates we observed in an expanded version of Table

2.5.1.

To sample the new trial’s treatment group data we take

ytrt| trt ⇠ Bin(ntrt, trt)

where ntrt is the control group’s maximum target sample size (half for interim analysis) and

 trt is 0 or 0.3 greater than the new trial’s control rate of  H+1 (reflecting no treatment

e↵ect or an additive treatment e↵ect of 30 percentage points).

For the Frequentist repeated sampling in the simulation study, we sampled the histor-

ical trials’ data just once for each of Scenarios 1-4 and fixed it under repeated sampling,

only resampling the new trial’s data on each replicate. This reflects a setting where the

historical trials have already been run, and the Frequentist replication being considered is

just replication of the yet-to-be conducted new trial. The fixed historical data set that was

generated for each Scenario is shared along with the code.
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A.2 Simulation results for variations on the SPx prior

In Table A.1 we give simulation results from Table 2.4.1, with the addition of those for two

minor variations on the original SPx prior.

“SPx C.” stands for “SPx Careful”, and mimics the SPx prior stated in Section 2.2

but with

(phist, preg, pind) =

✓
3

40
,
3

40
,
34

40

◆

instead of (phist, preg, pind) =
⇣
1
8 ,

1
8 ,

3
4

⌘
, giving the no-borrowing submodel 85% prior weight

instead of 75%.

“SPx D.” stands for “SPx Di↵use”, and it puts equal prior weights on the submodels

while making the priors within the borrowing submodels more di↵use (i.e. pushing them to

borrow less strongly). In particular, it changes the SPx prior stated in Section 2.2 in three

ways:

1. for the historical borrowing submodel, the prior variance � gets the less concentrated

hyperior

� ⇠ TCauchy(0, 0.1, (0,1)),

whereas in the regular SPx method the scale parameter is 0.02,

2. for the regression submodel, the prior variance is not scaled down, so we just have

✓reg|�, ⌧2,xH+1 ⇠ N(�TxH+1, ⌧
2),

whereas in the regular SPx the prior variance here is c⌧2 with c = 1
25 , and

3. the prior submodels weights are

(phist, preg, pind) =

✓
1

3
,
1

3
,
1

3

◆
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instead of (phist, preg, pind) =
⇣
1
8 ,

1
8 ,

3
4

⌘
in the regular SPx.

From the SPx C. columns in Table A.1 we can see that putting slightly more prior

weight on the no-borrowing submodel may be an attractive alternative, at least in this

formulation where the borrowing submodels have concentrated priors and are well separated

from the no-borrowing submodel. SPx C. achieves more conservative coverage (and slightly

better RMSE) than SPx in Scenarios 2 and 4, where SPx can su↵er slightly. At the same

time its RMSE in Scenarios 1 and 3, where borrowing is “easy,” is only slightly worse than

that of SPx, though its crfedible intervals are somewhat wider.

In contrast, the SPx D. results are poorer and vindicate the regular SPx strategy of

making the borrowing submodels have tight priors while putting most prior mass on the no-

borrowing submodel. SPx D. ends up borrowing more aggressively and confidently, leading

to poor coverage (and in some cases pitiful RMSE) in Scenarios 2 and 4.

A.3 Rationale for the SPx hyperprior

Near the end of Section 2.2 in the text, we highlighted two prior choices in SPx that drive

its adaptive historical borrowing:

(a) make the priors in the hist and reg submodels relatively strongly concentrated (i.e.

high prior probability of small �2 and ⌧2), and

(b) give relatively high prior weight to the ind (no-borrowing) submodel (i.e. pind >

phist, preg).

A more detailed explanation of these choices follows.

By posing quite informative priors for the hist and reg borrowing submodels, (a), we

both allow strong borrowing when deemed appropriate (and p⇤
hist

+ p⇤reg is large) and make

the marginal likelihoods of these submodels more sensitive to conflict between the new and

historical data. This means that their marginal likelihoods will more quickly dwarf the no-

borrowing submodel’s marginal likelihood as borrowing grows safer and shrink compared to it
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ncmax = 150 ncmax = 80
SPx SPx C. SPx D. Ind. SPx SPx C. SPx D. Ind.

Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed Fixed Adapt. Fixed Adapt. Fixed Adapt. Fixed

Scenario 1
Size 150 123.4 150 127.0 150 116.7 150 80 64.9 80 66.7 80 60.0 80
RMSE 0.025 0.026 0.026 0.027 0.025 0.026 0.032 0.024 0.026 0.024 0.027 0.024 0.026 0.032
Coverage 94.2 96.0 96.0 96.5 93.0 94.2 96.7 99.0 98.7 99.5 99.2 98.1 97.7 99.6
Width 0.104 0.113 0.115 0.124 0.090 0.098 0.140 0.135 0.153 0.153 0.170 0.107 0.119 0.190

Scenario 2
Size 150 127.7 150 133.6 150 119.2 150 80 65.0 80 68.14 80 61.3 80
RMSE 0.031 0.034 0.031 0.033 0.032 0.034 0.030 0.033 0.038 0.032 0.036 0.034 0.038 0.030
Coverage 91.4 92.0 94.1 93.6 87.7 87.1 97.1 97.2 95.6 98.0 97.8 90.5 90.3 99.6
Width 0.114 0.123 0.118 0.125 0.100 0.112 0.125 0.153 0.165 0.160 0.171 0.131 0.144 0.171

Scenario 3
Size 150 122.7 150 126.0 150 116.6 150 80 64.1 80 65.7 80 60.9 80
RMSE 0.022 0.023 0.024 0.025 0.022 0.023 0.033 0.021 0.023 0.022 0.025 0.019 0.023 0.032
Coverage 96.6 96.8 97.2 97.4 98.5 98.8 97.3 99.8 99.6 99.9 99.9 100.0 100.0 99.7
Width 0.106 0.116 0.116 0.127 0.111 0.123 0.140 0.138 0.157 0.155 0.173 0.139 0.155 0.190

Scenario 4
Size 150 156.4 150 156.9 150 146.7 150 80 78.6 80 79.9 80 71.1 80
RMSE 0.040 0.043 0.037 0.039 0.045 0.049 0.030 0.046 0.052 0.040 0.046 0.056 0.065 0.029
Coverage 93.5 92.1 95.3 93.7 87.3 86.7 96.4 98.1 96.0 99.6 97.4 91.4 87.5 99.7
Width 0.140 0.135 0.136 0.132 0.140 0.140 0.125 0.189 0.187 0.186 0.185 0.183 0.184 0.170

Table A.1: Control group size and Frequentist estimation accuracy for the new trial’s
control response rate, averaged over 1,000 simulated trials. Metrics are defined as in Table
2.4.1.

when borrowing grows more dangerous. The rationale for a priori favoring the no-borrowing

submodel, (b), is to compensate for the behavior of the three submodels’ marginal likelihoods

in the challenging setting of moderate but not necessarily obvious conflict between the new

and historical data. In this case, especially when the new trial size is small (e.g. at interim),

the marginal likelihood of the no-borrowing submodel may not be much larger than that of

the borrowing submodels because its prior is more di↵use and thus still gives nontrivial prior

mass to response rates that have low likelihoods, so to get large p⇤
ind

in this case we must

have large pind. This also reflects the idea that we should be conservative about historical

borrowing, especially when sample sizes are small.
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B.1 Computational Derivations and Formulae

B.1.1 FIRC Estimator

The maximum likelihood estimators �̂
2

bFIRC
and �̂FIRC are the solutions to the pair of

estimating equations

�̂
2

bFIRC
= min

( P
�̂�2
FIRCj

[(�̂j � �̂FIRC)
2 � Vj ]

P
�̂�2
FIRCj

!
, 0

)
(B.1)

�̂FIRC =

P
�̂�1
FIRCj

�̂j
P

�̂�1
FIRCj

(B.2)

where �̂FIRCj = �̂2
bFIRC

+ Vj . For �̂2
bFIRC

= 0, �̂FIRC = �̂FE . For �̂2
bFIRC

> 0,

we find it convenient to replace the weight �̂�1
FIRCj

with the equivalent weight �̂FIRCj =

�̂FIRC
2

b
�̂�1
FIRCj

, a number lying in the interval (0, 1) that helps us evaluate the behavior of

the FIRC without reference to the scale of the outcome.

We can solve this system of equations iteratively based on the method of Fisher scor-

ing. Given values (�̂
(m)2

bFIRC
, �̂

(m)
FIRC

) at iteration m, compute weight �̂
(m)
FIRCj

and squared

residuals(�̂j � �̂
(m)
FIRC

)2; substitute into the RHS of (B.1) and (B.2) and solve to obtain

(�̂
(m+1)2

bFIRC
, �̂

(m+1)
FIRC

). Repeat until convergence.

Proof. The density f(�̂j |Vj) = (2⇡�
j
)�

1
2 e�

1
2�

�1
j

(�̂j��)2 ; the log-likelihood for the sample
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is

L(�, �2
b
|data) = constant� 1

2

X
ln(�j)�

1

2

X
��1
j

(�̂j � �)2

The score functions are

S(�2
b
) = �1

2
P

��1
j

+ 1
2
P

��2
j

(�̂j � �)2

= 1
2
P

��2
j

h
(�̂j � �)2 ��j

i

= 1
2
P

��2
j

h
(�̂j � �)2 � Vj

i
� 1

2
P

��2
j
�2
b
;

S(�) =
P

��1
j

(�̂j � �).

Setting S(�2
b
)=S(�) = 0 and solving for �2

b
and � yields (B.1) and (B.2).

B.1.2 FIRC+ Estimator

FIRC+ uses iteratively re-weighted least squares applied to the regression model

�̂j = � + ↵⌘j + "j + ej . (B.3)

Here "j = bj � ↵⌘j ⇠ N(0, �2
b|⌘), ej = �̂j � �j ⇠ N(0, Vj), "j?⌘j . To maximize the

likelihood with respect to�2
b|⌘,↵ and �, we can solve the estimating equations iteratively:

�̂
(m+1)2
b|⌘ = max

8
<

:

0

@
P

�
(m)�2
+j

[(�̂j � �̂
(m)
FIRC+ � ↵̂

(m)⌘j)
2 � Vj ]

P
�
(m)�2
+j

1

A , 0

9
=

; (B.4)

↵̂(m+1) =

P
�
(m)�1
+j

⌘j(�̂j � �̄)]
P

�
(m)�1
+j

⌘2
j

(B.5)

�̂
(m+1)
FIRC+ = �̄(m) � ↵̂(m)⌘̄. (B.6)

Here �+j
= �2

b|⌘ + Vj , �̄ =
P

��1+j
�j/

P
��1+j

and ⌘̄ = ��1+j
⌘j/
P

��1+j
. For �̂2

b|⌘ > 0,
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we find it convenient to substitute �+j = �2
b|⌘�

�1
+j

for ��1+j
in (B.4)-(B.6). Given values

�̂
(m)2
b|⌘ and ↵̂(m)at iteration m, compute weight �

(m)�1
+j

and solve the LHS for estimates at

iteration m+1.

Proof. Model (B.3) can be written

�̂j = �0 + ↵(⌘j � ⌘̄) + "j + ej

=

✓
1 ⌘j � ⌘̄

◆
0

B@
�0

↵

1

CA+ "j + ej =: xT
j
✓ + "j + ej

where �0 = � + ↵⌘̄, xT
j

=

✓
1 ⌘j � ⌘̄

◆
and ✓ =

✓
�0 ↵

◆T

. The density function for

the data is thus

h(�̂j |⌘j) = (2⇡�+j)
�1

2 e�
1
2�

�1
+j

(�̂j�xTj ✓)
2
,

and the score functions are

S(�2
b|⌘) =

�1
2

JX

j=1

��1
j

+
1

2

JX

j=1

��2
j

(�̂j � xT
j
✓)2

=
1

2

JX

j=1

��2
j

h
(�̂j � xT

j
✓)2 � �j

i

=
1

2

JX

j=1

��2
j

h
(�̂j � xT

j
✓)2 � Vj

i
� 1

2

JX

j=1

��2
j
�2
b|⌘

and

S(✓) =
X

��1
j

xj(�̂j � xT
j
✓

=
X

��1
j

xj �̂j �
X

��1
j

xjx
T
j
✓.
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Setting S(�2
b|⌘) = 0 and solving for �2

b|⌘ yields (B.4). Setting S(✓) = 0 and solving for

✓ yields

✓̂ =
⇣X

��1
j

xjx
T
j

⌘�1X
��1
j

xj �̂j

=

0

B@
�̂0

↵̂

1

CA =

0

B@
P

��1
j

0

0
P

��1
j

(⌘ � ⌘̄)2

1

CA

�10

B@
P

��1
j
�̂j

P
��1
j

(⌘j � ⌘̄)�̂j

1

CA .

Note that
P

��1
j

(⌘j � ⌘̄)�̂j =
P

��1
j
⌘j(�̂j � �̄). This then gives (B.5) and (B.6).

B.1.3 Finding Vj

Define Yij as the outcome for person i in site j. The sample means for treated and control

units are Ȳ1j =
Pnj

i=1 TijYij/
Pnj

i=1 Tijand Ȳ0j =
Pnj

i=1(1 � Tij)Yij/
Pnj

i=1(1 � Tij). We

regard the site-specific treatment e↵ect �̂j = Ȳ1j � Ȳ0j as an unbiased estimator of �j =

µ1j � µ0jhaving sampling variance

Vj := V ar(�̂j |�j) =
njX

j=1

Tij�
2
ij
/

njX

j=1

Tij +

njX

j=1

(1� Tij)�
2
ij
/

njX

j=1

(1� Tij).

Here µ1j is the mean outcome in site j if all persons in that site were treated and µ0j is the

mean outcome if all such members were untreated, and �2
ij

= V ar(Yij |µ1j , µ0j), which we

shall call the “within-site variance” for person i in site j.

Clearly some structure must be imposed upon the within-site variance if we are to

estimate Vj . Many analysts have assumed a constant variance �2
ij

= �2 for all i and j,

in which case Vj = �2/[nj T̄j(1 � T̄j)]. This is the assumption underlying �̂FE . However,

Bloom et al. (2017) show why this assumption is unreasonable when treatment e↵ects vary

across sites and show that a reasonably robust alternative is to specify di↵erent constants for

treated and control units, that is �2
ij
⌘ Tij�

2
1 + (1� Tij)�

2
0, in which case Vj = �21/(nj T̄j) +
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�21[nj(1 � T̄j)]. In either case the constants �2 or �21, �
2
0 can be estimated consistently

by pooling sums of squares within sites or by estimating a two-level hierarchical model.

For the purpose of analyzing the Head Start data in this paper, we estimated the model

Yij = �0 + b0j + (�1 + b1j)Tij + eijvia maximum likelihood where b0jand b1jare zero-mean

random e↵ects having variances �2
b0
and �2

b1
respectively and covariance �

b0b1
. We found that

the specification of a single level-1 variance V ar(eij) = �2 was suitable in this case.

In the trials that we have seen, estimates of �2 or �21, �
2
0 are quite precise. We caution

against specifying unique variances for each site (e.g., Vj = �21j/(nj T̄j) + �21j [nj(1 � T̄j)])

unless site sizes are very large, although one could obtain precise estimates of �21j , �
2
1j by

modeling them as a function of covariates or by specifying an exchangeable prior (Kasim &

Raudenbush, 1998).
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B.2 Some Finite Sample Bias Results

This section proves a general characterization of the finite sample bias of a weighted estimator

of the site-ATE, as well as the result showing that in finite samples the FIRC estimator is

never more biased than the FE estimator for the site-ATE.

B.2.1 Bias of weighted estimators

Lemma B.1. If an estimator �̂ of � can be written �̂ =
P

J

j=1wj �̂j/
P

J

j=1wj where
P

J

j=1wj 6= 0 and Cov
⇣
wj

w̄
, �̂j � �j

⌘
= 0, then under model (3.2.1), Bias(�̂, �) = Cov(wj/w̄, �j)

, with w̄ := J�1
P

J

j=1wj .

Proof. We can immediately see that the bias is

J�1
JX

j=1

E
⇣wj

w̄
�̂j
⌘
� � = J�1

JX

j=1

h
Cov

⇣wj

w̄
, �̂j
⌘
+ �

i
� � = Cov

⇣wj

w̄
, �j
⌘

The first equality follows because E
⇣
wj

w̄

⌘
= 1 (by exchangeability) and the second follows

by exchangeability and the assumption that the normalized weights have zero covariance

with the sampling errors.

In English, this lemma says that the bias for the site-ATE is simply the covariance

between the estimator’s (normalized) weights and the site-specific ATEs.

B.2.2 FIRC is never more biased than FE

Theorem 3.2. For any number of sites J ,
���Bias(�̂FIRC , �)

��� 
���Bias(�̂FE , �)

���.

Proof. The basic argument here is that the FIRC estimator is bounded between the FE

estimator and the UW estimator, and FE is biased while UW is not.

To see this, note that the normalized FIRC weight for site j, as a function of the
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estimated variance �̂2
b
, can be written

hj(�̂
2
b
) :=

1
�̂
2
b
+Vj

J�1
P

J

j=1
1

�̂
2
b
+Vj

It is easy to see that hj(0) = Pj/P̄ , the normalized FE weight, and that lim
�̂
2
b
!1

h(�̂2
b
) = 1/J ,

the UW weight. Furthermore, note that hj is monotone in �̂2
b
(decreasing if the j-th weight

is above average, and increasing if it is below average), which can be checked for instance

through the derivative (or by noting that it is continuous and open). The monotonicity

means that in fact the (normalized) FIRC weights are each bounded between the respective

(normalized) FE precision weight and the UW constant weight. And because the estimators

are weighted sums, this implies that the FIRC estimator is bounded between the FE and

UW estimators, so its expectation (and bias) is also bounded between theirs. Since UW is

always unbiased whereas FE may not be, FIRC is never more biased than FE.
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B.3 Approximations of the Bias and Variance of Estimators

This section derives the bias and variance results shown in Table 3.3.1 of the text, reproduced

here for convenience.

First we describe the basic derivation strategy that we apply to each of the estimators,

which is fairly straightforward. We want to find the asymptotic distributions of estimators

that each have the form �̂ =
P

J

j=1wj �̂j/
P

J

j=1wj . We consider the estimator �̂ in a

sequence of estimators as J ! 1, so more formally we could write �̂(J) to emphasize the

dependence on J , but we avoid this notation except where necessary for clarification. Our

derivations are based on the representation

J1/2(�̂ � �⇤) =
J1/2

⇣P
J

j=1wj(�̂j � �⇤)
⌘

P
J

j=1wj

=
J1/2 · 1

J

P
J

j=1 Zj

1
J

P
J

j=1wj

=
J1/2Z̄

w̄
, (B.7)

where �⇤ := plim(�̂) (which exists by direct application of the WLLN to �̂) and Zj :=

wj(�̂j��⇤). Our strategy for analyzing (B.7) is to deal with the numerator and denominator

separately by applying the Central Limit Theorem in the numerator, the Weak Law of Large

Numbers in the denominator, and then Slutsky’s Theorem to combine the results. This

strategy assumes that wj �̂j and wj are both iid sequences asymptotically as J ! 1, so it

can be applied immediately to UW, FE, and FIRC+ but only after slight modification to

FIRC, which has an estimated weight (as a function of �̂2
b
) with a mean that changes as J

changes.

In particular, these iid assumptions and the construction of Zj implies that Zj is itself

iid and that it has mean 0 because

�⇤ = plim

 
J�1

P
J

j=1wj �̂j

J�1
P

J

j=1wj

!
=

E(wj �̂j)

E(wj)
) E(Zj) = E(wj �̂j)� E(wj)�

⇤ = 0,

where the second equality comes from Slutsky and the WLLN assuming that the summands
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Estimator Asymptotic Bias Asymptotic Variance

UW 1
J

P
J

j=1 �̂j 0 �2
b
+ µ

Ṽ
e
1
2�

2
⌘

FE
P

J

j=1 e
⌘j �̂jP

J

j=1 e
⌘j

�⌘b �2
b
(1 + ⇢2

⌘b
�2⌘)e

�
2
⌘ + µ

Ṽ
e�

1
2�

2
⌘

FIRC
P

J

j=1 �̂j �̂jP
J

j=1 �̂j

�⌘b(1��̃⇤)
1+�2⌘�̃(1��̃⇤)

(i) :
h
�2
b

⇣
1 + ⇢2

⌘b
A
⌘
ev

⇤
2(1��̃⇤)2

+µ
Ṽ
e�

1
2v

⇤
2(1�2�̃⇤2)

i ⇣
1 + �2⌘d

⇤
1
2v⇤2
⌘1/2

(ii) :
(�⇤2

b
+ µ

Ṽ
)[1 + �2⌘�̃

⇤(1� �̃⇤)]
1
2

e
1
2v

⇤2
1 (1��̃⇤)2

FIRC+

P
J

j=1 �̂
+
j
(�̂j�↵̂⌘j)

P
J

j=1 �̂
+
j

0
(�2

b|⌘+µ
Ṽ
)[1+�

2
⌘�̃

+(1��̃+)]
1
2 [1+v

+
1 (1��̃)2]

e
1
2v

+
1 (1��̃+)2

Table 3.3.1: Asymptotic Bias and Variance of the estimators. For UW the results are
finite-sample under (3.2.1), with the variance (normalized by J�1) also requiring marginal
normality of ⌘j . The FE, FIRC, and FIRC+ results are asymptotic under (3.2.1) with
bivariate normality, and FIRC and FIRC+ also use the Laplace approximations. As an
exception, the FIRC+ bias result is finite-sample and only requires that the conditional
expectation of �j is linear in ⌘j (as happens under bivariate normality).
The FIRC results use the following new definitions:

�̃⇤ := �⇤2
b
/(�⇤2

b
+ µ

Ṽ
), where �⇤2

b
:= plim(�̂2

b
) ⇡ �2

b
[1� 2⇢2

⌘b
v⇤2�̃
⇤(1� �̃⇤)]

v⇤1 :=
�2⌘

1 + �2⌘�̃
⇤(1� �̃⇤)

v⇤2 :=
�2⌘

1 + 2�2⌘�̃
⇤(1� �̃⇤)

A :=
1 + (1� �̃⇤)2v⇤2

1 + 2�2⌘�̃
⇤(1� �̃⇤).

The FIRC+ results use the following new definitions:

v+1 :=
�2⌘

1 + �2⌘�̃
+(1� �̃+)

�̃+ := �2
b|⌘/(�

2
b|⌘ + µ

Ṽ
e�⌘j ), where �2

b|⌘ = �2⌘(1� ⇢2⌘b).
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are iid as J ! 1; also Zj has finite variance which we denote �2
Z

:= V ar(Zj) and this

variance is constant in j. So we can apply the Central Limit Theorem to the numerator

on the far RHS of (B.7), and we find that J1/2Z̄
d!N(0, �2

Z
). Applying the Weak Law of

Large Numbers to the denominator we get plim(w̄) = E(wj) =: µw. These results can be

combined with Slutsky’s Theorem, so we have the main result

J1/2(�̂ � �⇤) d!N

 
0,
�2
Z

µ2w

!
. (B.8)

To summarize the estimator’s probability limit, we have

�̂
p!�⇤ = � +

µ
w(�̂��)
µw

. (B.9)

We refer to the second term as the asymptotic bias of �̂ (as an estimator of �), and we define

µ
w(�̂��) := E[wj(�̂j � �)]. The asymptotic variance of �̂ is given by

AV ar(�̂) =
�2
Z

µ2w
. (B.10)

Then the derivations mostly amount to finding µ
w�̂

, �2
Z
, and µw for each estimator. To

compute these expectations we use (a) varying features of and reliance on the bivariate

normality assumption for �j and ⌘j , and (b) Laplace-type approximations for expectations

involving the FIRC and FIRC+ weights, which are otherwise opaque. In the subsections

that follow we show the details for each estimator.

B.3.1 Unweighted (UW)

Recall that �̂UW =
P

J
j=1�̂j/J .

Theorem B.1. If ⌘j ⇠ N(0, �2⌘), then J
1
2 (�̂UW � �)

d!N(0, �2
b
+ µ

Ṽ
e
1
2�

2
⌘).

Proof. This estimator is simple enough to be analyzed with the CLT alone, but in terms
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of our framework above we have wj = 1 and Zj = �̂j � �, so µw = 1, µZ = 0, and

�2
Z
= �2

b
+ µ

Ṽ
E(e�⌘j ) = �2

b
+ µ

Ṽ
e
1
2�

2
⌘ under the assumption that ⌘j ⇠ N(0, �2⌘) since e�⌘j

is lognormal. Then applying (B.8) yields the result.

B.3.2 Fixed E↵ects (FE)

Recall that �̂
FE

=
P

J
j=1e

⌘j �̂j/
P

J
j=1e

⌘j .

Theorem B.2. If we assume bivariate normality of site-ATEs and centered log precisions,

that is 0

B@
�j

⌘j

1

CA iid⇠ N

0

B@

2

64
�

0

3

75 ,

2

64
�2
b

�⌘b

�⌘b �2⌘

3

75

1

CA (B.11)

then we have

�̂FE

p!�⇤
FE

= � + �⌘b

and

J
1
2 (�̂FE � �⇤FE

)
d!N{0, e2�

2
⌘ [�2

b
(1 + ⇢2

⌘b
�2⌘) + Ṽ e�

3
2�

2
⌘ ]}.

Proof. Here we have wj = e⌘j , Zj = e⌘j (�̂j � �⇤
FE

), and �⇤
FE

=
µw�

µw
. To start, the log

normality implied by (B.11) implies that

µw = E(e⌘j ) = e
1
2�

2
⌘ . (B.12)

Then we just need to calculate µ
w(�̂��) = E[e⌘j (�̂j � �)] and �2Z = V ar(e⌘j [�̂j � �⇤FE

]).

To more easily evaluate these expectations we note that under model (3.2.1) and (B.11)

we can decompose the site-ATE estimate �̂j into sampling error ej , a term predicted by the

log precision ⌘j , and an additional error independent of the log precision, "j . In particular,

�̂j = �j + ej = � + bj + ej = � + ↵⌘j + "j + ej (B.13)
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where the errors satisfy E(ej |⌘j) = 0, V ar(ej |⌘j) =: Vj = µ
Ṽ
e�⌘j , sgn(ej)?�j (thanks to

symmetry of the sampling distribution f in (3.2.1)), and "j ⇠ N [0, �2
b
(1� ⇢2

⌘b
)] with ⌘j?"j .

We may also write ↵ = �⌘b/�
2
⌘ and ⇢

⌘b
= �⌘b/(�⌘�b).

We will also use the facts that, under (B.11),

E(e⌘j ) = e
1
2�

2
⌘ E(⌘je

⌘j ) = �2⌘e
1
2�

2
⌘

E(e2⌘j ) = e2�
2
⌘ E(⌘je

2⌘j ) = 2�2⌘e
2�2⌘

E(⌘2
j
e2⌘j ) = (4�4⌘ + �2⌘)e

2�2⌘ .

(B.14)

These equalities can be confirmed for example by evaluating, for any real numbers p and q,

the integral

E(⌘p
j
eq⌘j ) = (2⇡�2⌘)

�1
2

Z

R
⌘p
j
e
q⌘j�

⌘
2
j

2�2⌘ d⌘j

= e
1
2q

2
�
2
⌘E

q�2⌘ ,�
2
⌘
(⌘p

j
)

(B.15)

where E
q�2⌘ ,�

2
⌘
(.) is an expectation taken over a normal density with mean q�2⌘ and variance

�2⌘.

Therefore using (B.13) we can write

µ
w(�̂��) = E(e⌘jE[�̂j � �|⌘j ]) =

�⌘b
�2⌘

E(⌘je
⌘j ) = �⌘be

1
2�

2
⌘ (B.16)

where we use the tower law, (B.13), and (B.14) (to evaluate the final expectation). So

applying (B.9) the asymptotic bias is simply

�⇤
FE
� �FE = �⌘be

1
2�

2
⌘�1

2�
2
⌘ = �⌘b. (B.17)

To evaluate �2
Z

(and the asymptotic variance), we first recall that Zj has mean 0 and
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use (B.17) to write

�2
Z
= E(Z2

j
) = E

h
e2⌘j (↵⌘j + "j + ej � �⌘b)2

i
. (B.18)

And (B.13) and (B.11) imply E("j+ej |⌘j) = 0 and V ar("j+ej |⌘j) = �2
b
(1�⇢2

⌘b
)+µ

Ṽ
e�⌘j ,

so further we have

�2
Z
= E

h
e2⌘jE

⇣
[↵⌘j + "j + ej � �⌘b]2|⌘j

⌘i

= E
⇣
e2⌘j [↵2⌘2

j
+ �2

b
(1� ⇢2

⌘b
) + µ

Ṽ
e�⌘j + �2

⌘b
� 2↵�⌘b⌘j ]

⌘

= ↵2E
⇣
⌘2
j
e2⌘j

⌘
+ �2

b

⇣
1� ⇢2

⌘b

⌘
E
⇣
e2⌘j

⌘
+ µ

Ṽ
E (e⌘j ) + �2

⌘b
E
⇣
e2⌘j

⌘
� 2↵�⌘bE

⇣
⌘je

2⌘j
⌘

(B.19)

where we use the tower law on the first line. Now plugging (B.14) in to (B.19) yields

�2
Z
=
⇣
�2
⌘b
/�2⌘

⌘
e2�

2
⌘ + �2

b

⇣
1� ⇢2

⌘b

⌘
e2�

2
⌘ + µ

Ṽ
e
1
2�

2
⌘ + �2

⌘b
e2�

2
⌘

= e2�
2
⌘

h
�2
b

⇣
1 + ⇢2

⌘b
�2⌘

⌘
+ µ

Ṽ
e�

3
2�

2
⌘

i
.

(B.20)

Finally, from (B.12) we have µ2w = e�
2
⌘ , so combined with (B.20) we can see that the

asymptotic variance is

AV ar(�̂FE) = �2
b
(1 + ⇢2

⌘b
�2⌘)e

�
2
⌘ + µ

Ṽ
e�

1
2�

2
⌘ . (B.21)

At last, using (B.8) concludes the proof.

B.3.3 Fixed Intercept Random Coe�cients (FIRC)

Recall that for the FIRC estimator, we have �̂FIRC =
P

J

j=1 �̂j �̂j/
P

J

j=1 �̂j where

�̂j :=
�̂2
b

�̂2
b
+ Vj

and �̂2
b
:=

0

@
P

J

j=1 �̂
2
j

h
(�̂FIRC � �̂j)2 � Vj

i

P
J

j=1 �̂
2
j

1

A

+
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and the ()+ indicates that �̂2
b
is taken to be 0 when the inside is negative.

Theorem B.3. Under bivariate normality assumption (C.5),

�̂FIRC

p!�⇤
FIRC

⇡ � +
�⌘b(1� �̃⇤)
1 + �2⌘d

⇤
1

and

J
1
2 (�̂FIRC � �⇤FIRC

)
d!N(0, �⇤

2

FIRC
).

The asymptotic variance is

�⇤
2

FIRC
⇡

(�⇤2
b

+ µ
Ṽ
)(1 + �2⌘d

⇤
1)

1
2

e
1
2v

⇤
1(1��̃⇤)2

,

where �̃⇤ = �⇤2
b
/(�⇤2

b
+ µ

Ṽ
), d⇤1 = �̃⇤(1� �̃⇤), v⇤1 = �2⌘/(1 + �2⌘d

⇤
1), and

�̂2
b

p!�⇤
b

2 ⇡ �2
b
+ �2

b
⇢2
⌘b
(A� 1)

where

A =
1 + (1� �̃⇤)2v⇤2

1 + 2�2⌘d
⇤
1

.

Furthermore, we have the alternative asymptotic variance approximation

�⇤
2

FIRC
⇡
⇣
�2
b

h
1 + ⇢2

⌘b
A
i
ev

⇤
2(1��̃⇤)2 + µ

Ṽ
e�

1
2v

⇤
2(1�2�̃⇤2)

⌘
[1 + �2⌘d

⇤
1
2v⇤2]

1/2.

Remark.

These approximations, which are shown through simulation (see Section B.6) to be

very accurate under our assumptions, are based on Laplace approximations as shown be-

low (Section B.3.3.2). To clarify the approach we used to derive these, we’ll first consider

the simple case in which site-specific treatment e↵ect,�j , and the natural logarithm of sam-

pling precision,⌘j , are uncorrelated. We then turn to the more challenging task of deriving
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Theorem B.3 when �j and ⌘j are correlated.

Before jumping into the derivations we recall that our basic CLT decomposition (B.8)

cannot be directly applied to �̂FIRC because its actual weights do not form an iid sequence,

an assumption needed to use the WLLN and the CLT. To clarify this point, we emphasize

the FIRC estimator’s dependence on the number of sites J by using the notation �̂FIRC =

�̂
(J)
FIRC

=
P

J

j=1 �̂
(J)
j
�̂j/

P
J

j=1 �̂
(J)
j

. The notation �̂
(J)
j

may seem strange, but it comes from

the fact that when there are a total of J sites, the FIRC estimator’s weight for site j depends

on both the sampling variance just in site j (Vj) and the overall e↵ect heterogeneity estimate

using data from all J sites ((�̂2
b
)(J)), i.e. �̂

(J)
j

= (�̂2
b
)(J)/[(�̂2

b
)(J)+Vj ]. This makes clear that

the FIRC weights cannot form an iid sequence because (�̂2
b
)(J) is, of course, not iid as J !1

(since both its mean and variance will be changing as it contracts around its probability

limit). (And this puts aside the slightly confusing question of how to simultaneously pick j

and J when considering �̂
(J)
j

as an infinite sequence).

Instead, in the derivations below we will work with the asymptotic, not estimated,

weights �⇤
j

:=
�
⇤
b

2

�
⇤
b
2+Vj

where �̂2
b
is replaced with its probability limit �⇤

b

2 := plim(�̂2
b
).

Since this weight is iid as j ! 1, we can apply (B.7) and (B.8) to find the asymptotic

distribution of J1/2(�̂⇤
FIRC

� �⇤
FIRC

), where �̂⇤
FIRC

:=
P

J

j=1 �
⇤
j
�̂j/

P
J

j=1 �
⇤
j
is the FIRC

estimator replacing �̂j with its probability limit �⇤
j
. (Note that �̂⇤

FIRC
is not to be confused

with �⇤
FIRC

, the probability limit of �̂FIRC). In fact, this is also the asymptotic distribution

of J1/2(�̂
FIRC

� �⇤
FIRC

) because
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J1/2(�̂⇤
FIRC

� �⇤
FIRC

)

� J1/2(�̂
FIRC

� �⇤
FIRC

)
= J1/2

 P
J

j=1 �
⇤
j
�̂j

P
J

j=1 �
⇤
j

�
P

J

j=1 �̂j �̂j
P

J

j=1 �̂j

!

= J1/2

0

@

⇣P
J

j=1 �̂j
⌘⇣P

J

j=1 �
⇤
j
�̂j
⌘
�
⇣P

J

j=1 �
⇤
j

⌘⇣P
J

j=1 �̂j �̂j
⌘

⇣P
J

j=1 �
⇤
j

⌘⇣P
J

j=1 �̂j
⌘

1

A

p! 0

(B.22)

(using the traditional argument that if Xn

d!X and |Xn�Yn|
p!0 then Yn

d!X). The last line

can be seen by noting that �̂j = �⇤
j
+ op(1) (as J !1 and j stays fixed, by the Continuous

Mapping Theorem applied to �̂2
b
), plugging this result in to the numerator of the second

line, and using the appropriate op notation arithmetic rules.

The upshot of this detailed argument is that to find the asymptotic distribution of

�̂FIRC we can replace the estimated weight �̂j with the asymptotic weight �⇤
j
:= �⇤

b

2/(�⇤
b

2+

Vj) in our usual calculations in (B.7)-(B.10).

B.3.3.1 Asymptotic distribution when �⌘b = 0

First we derive the asymptotic distribution of �̂⇤
FIRC

in this easy special case when in fact

�⌘b = 0 (as the FIRC model assumes) to illustrate the basic process without getting bogged

down in long computations.

Proof. If the data are normally distributed as in (B.11) and �⌘b = 0, then FIRC is MLE under

the true model so it is consistent for both � and �2
b
, meaning that �̂⇤

FIRC
is asymptotically

unbiased (without even needing to calculate (B.9)) and �̂⇤
FIRC

=
P

J

j=1 �j �̂j/
P

J

j=1 �j ,

where �j = �2
b
/(�2

b
+ Vj) is the “true” weight using the true e↵ect heterogeneity �2

b
=

plim(�̂2
b
).
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Then in (B.7), we have wj = �j and Zj = �j(�̂j � �). So µw = E(�j), and

�2
Z

= E[�2
j
(bj + ej)

2]

= E[�2
j
E((bj + ej)

2|⌘j)]

= E[�2
j
(�2

b
+ Vj)]

= �2
b
E(�j)

where the first line uses the fact E(Zj) = 0 and (B.13), the second line uses the tower

law, the third line uses (B.13), and the last line follows from the definition of �j . Using

the Laplace approximations listed in Section B.3.3.2 below (and derived in Section B.4) to

evaluate E(�j), we find that the asymptotic variance is

AV ar(�̂⇤
FIRC

) =
�2
b
E[�j ]

E[�j ]2
=

�2
b

E[�j ]
⇡

(�2
b
+ µ

Ṽ
)(1 + �2⌘d1)

1/2

e
1
2v1(1��̃)2

where d1 = �̃(1 � �̃), �̃ = �2
b
/(�2

b
+ µ

Ṽ
), and v1 = �2⌘/(1 + �2⌘d1). Then applying (B.8) to

�̂⇤
FIRC

and recalling that �̂FIRC has the same asymptotic distribution as �̂⇤
FIRC

gives the

special case of Theorem B.3 and concludes the proof.

Remark. Note that d1 is bounded by 0  d1  0.25, reaching its minimum when �̃ is 0 or 1

and reaching its maximum when �̃ is 0.5. Also, v1 is bounded by 0  v1  �2⌘.

B.3.3.2 Laplace Approximations Useful for FIRC

To derive (B.15) and results below, we apply a Laplace transform to obtain the following
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approximations:

E(�j) ⇡ �̃e
1
2v1(1��̃)2

(1+�2⌘d1)
1
2
, E(�j⌘j) ⇡

v1(1��̃)�̃e
1
2v1(1��̃)2

(1+�2⌘d1)
1
2

E(�2
j
) ⇡ �̃

2
e
2v2(1��̃)2

(1+2�2⌘d1)
1
2
, E(⌘j�

2
j
) ⇡ 2v2(1��̃)�̃2e2v2(1��̃)2

(1+2�2⌘d1)
1
2

,

E(⌘2
j
�2
j
) ⇡ [4v22(1��̃)2+v2]�̃

2
e
2v2(1��̃)2

(1+2�2⌘d1)
1
2

, E(e�⌘j�2
j
) ⇡ �̃

2
e
1
2v2(1�2�̃)2

(1+2�2⌘d1)
1
2

(B.23)

where v1 := �2⌘/(1 + �2⌘d1) and v2 := �2⌘/(1 + 2�2⌘d1), the subscripts 1 and 2 denoting

which power of �j these terms appear in (i.e. v1 appearing in expectations with �1
j
and v2

appearing in expectations with �2
j
). A general derivation underlying these results is given in

Section B.4.

B.3.3.3 Asymptotic distribution when �⌘b 6= 0

In the general case, FIRC is the MLE under the wrong model and, as we will show,

inconsistent for both � and �2
b
. We prove the fully general Theorem B.3 in pieces.

Setup

As before, we apply (B.7)-(B.10) to �̂⇤
FIRC

=
P

J

j=1 �
⇤
j
�̂j/

P
J

j=1 �
⇤
j
where �⇤

j
=

�⇤
b

2/(�⇤
b

2 + Vj) and now �⇤
b

2 := plim(�̂2
b
) 6= �2

b
. Now in (B.7), we have wj = �⇤

j
and

Zj = �⇤
j
(�̂j � �⇤FIRC

). The Laplace approximations we will use here are the same as those

in (B.19) except for �⇤
b

2 replacing �2
b
and the same notation a↵ecting the � terms.

Asymptotic bias

Proof. To find the asymptotic bias �⇤
FIRC

� � using (B.9), we have µw = E(�⇤
j
) and

µ
w(�̂��) = E[�⇤

j
(�̂j � �)]

= E[�⇤
j
E(�̂j � �|⌘j)]

= ↵E[�⇤
j
⌘j ].

The second line uses the tower law and the third line uses (B.13). So from (B.9) the asymp-
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totic bias of �̂⇤
FIRC

, which we also write with the notation BFIRC , is

BFIRC := �⇤
FIRC

� � =
µ
w(�̂��)
µw

= ↵
E(�⇤

j
⌘j)

E(�⇤
j
)
⇡ ↵(1� �̃⇤)v1 =

�⌘b(1� �̃⇤)
1 + �2⌘d

⇤
1

, (B.24)

where the third line plugs in Laplace approximations for the expectations (recall that d⇤1 :=

�̃⇤(1 � �̃⇤)). The last expression shows how our asymptotics reflect the finite-sample fact

(Theorem 3.2) that FIRC is never more biased than FE.

Asymptotic variance (similar to FIRC+ expression)

Proof. Next, for the asymptotic variance we have

�2
Z

= E[�⇤
j
2(↵⌘j + "j + ej � BFIRC)

2]

= E[�⇤
j
2E[(↵⌘j + "j + ej � BFIRC)

2|⌘j ]]

= E[(�⇤
j
2E[("j + ej)

2 + (↵⌘j � BFIRC)
2|⌘j ]]

= E[�⇤
j
2(�2

b|⌘ + Vj)] + E[�⇤
j
2(↵⌘j � BFIRC)

2].

(B.25)

The first line uses (B.13), the second line uses the tower law, the third line again uses (B.13)

(especially the fact that the errors have conditional mean 0), and the fourth line uses (B.13).

Considering the first term in the last line of (B.25), we have

E[�⇤
j
2(�2

b|⌘ + V j)] = E
n
�⇤
j
2[�⇤

b

2 + Vj + (�2
b|⌘ � �

⇤
b

2)]
o

= E
n
�⇤
j
2(�⇤

b

2 + Vj) + �⇤
j
2(�2

b|⌘ � �
⇤
b

2)
o

= �⇤
b

2E(�⇤
j
) + (�2

b|⌘ � �
⇤
b

2)E[�⇤
j
2].

On the first line we add and subtract �⇤
b

2, and after the second line we simplify the first

term by using the definition of �⇤
j
. And from our derivation of �⇤

b

2, coming later, and in

particular (C.24), we see that in fact the second term in (B.25) satisfies

E[�⇤
j
2(↵⌘j � BFIRC)

2] = �(�2
b|⌘ � �

⇤
b

2)E(�⇤
j
2) (B.26)
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so we get a cancellation in (B.25) and the simple, familiar result that

�2
Z
= �⇤

b

2E(�⇤
j
).

Then applying (B.10) we get the asymptotic variance

AV ar(�̂⇤
FIRC

) =
�⇤
b

2E(�⇤
j
)

E2(�⇤
j
)

=
�⇤
b

2

E(�⇤
j
)
⇡

(�⇤
b
+ µ

Ṽ
)(1 + �2⌘d1

⇤)1/2

e
1
2v1(1��̃⇤)2

,

where the last expression uses the appropriate Laplace approximation from (B.23), replacing

�2
b
everywhere with �⇤

b

2 (although (B.23) approximates moments of �j , not �
⇤
j
, a quick look

at the general Laplace approximation derivation confirms that this is the only di↵erence).

Finally, as before, we apply (B.8) to �̂⇤
FIRC

and recall that �̂FIRC has the same

asymptotic distribution as �̂⇤
FIRC

to conclude the proof.

Alternate approximation for the asymptotic variance (similar to FE expression)

Proof. In the previous asymptotic variance derivation we could have continued to simplify

(B.25) di↵erently, instead proceeding as

�2
Z

= E[�⇤
j
2(�2

b|⌘ + Vj)] + E[�⇤
j
2(↵⌘j � BFIRC)

2]

=
h
�2
b|⌘E(�⇤

j
2) + µ

Ṽ
E(�⇤

j
2e�⌘j )

i
+
h
↵2E(�⇤

j
2⌘2

j
)� 2↵BFIRCE(�⇤

j
2⌘j) + B2

FIRC
E(�⇤

j
2)
i

(B.27)

where for the first term we have not added and subtracted �⇤
b

2 in an attempt to lower the

power on �⇤
j
, and in the second term we simply expand the square. Before plugging in any

approximations to (B.26), we consider the key ratio

�2
Z

µ2w
= �2

b|⌘
E(�⇤

j
2)

E2(�⇤
j
)
+ µ

Ṽ

E(�⇤
j
2e�⌘j )

E2(�⇤
j
)

+ ↵2
E(�⇤

j
2⌘2

j
)

E2(�⇤
j
)
� 2↵BFIRC

E(�⇤
j
2⌘j)

E2(�⇤
j
)

+B2
FIRC

E(�⇤
j
2)

E2(�⇤
j
)

(B.28)

136



Plugging in our Laplace approximations to (B.27), with the notation

E(�⇤
j

2)

E2(�⇤
j
)
⇡ r1 := e2v

⇤
2(1��̃⇤)2�v⇤1(1��̃⇤)2 1+�

2
⌘d

⇤
1

(1+2�2⌘d
⇤
1)

1/2

E(�⇤
j

2
e
�⌘j )

E2(�⇤
j
)

⇡ r2 := e�v
⇤
2(1/2��̃⇤2)2 1+�

2
⌘d

⇤
1

(1+2�2⌘d
⇤
1)

1/2 ,

we have

�
2
Z

µ2w
⇡ �2

b|⌘ · r1 + µ
Ṽ
· r2 + ↵2 ·

h
4v⇤2

2(1� �̃⇤)2 + v⇤2

i
r1 � 2↵ · ↵v⇤1(1� �̃

⇤) · 2v⇤2(1� �̃
⇤)r1

+↵2v⇤2
2(1� �̃⇤)2 · r1

⇡ �2
b|⌘r1 + µ

Ṽ
r2 + ↵2

h
v⇤2 + v⇤2

2(1� �̃⇤)2
i
r1

⇡ �2
b
(1� ⇢2

⌘b
)r1 + µ

Ṽ
r2 + �2

b
⇢2
⌘b
��2⌘

h
v⇤2 + v⇤2

2(1� �̃⇤)2
i
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⇡ �2
b

h
1� ⇢2

⌘b
+ ⇢2

⌘b
��2⌘ v⇤2

⇣
1 + v⇤2(1� �̃

⇤)2
⌘i

r1 + µ
Ṽ
r2

⇡ �2
b

⇣
1 + ⇢2

⌘b
A
⌘
r1 + µ

Ṽ
r2

where on the second line we combine the ↵2 terms (using the fact that v⇤1 � v⇤2 = O(v21)

so they are interchangeable up to our order of approximation), on the third line we plug in

characterizations of �2
b|⌘ and ↵2 in terms of �2

b
, on the fourth line we combine the �2

b
terms,

and on the fifth line we use the notation A :=
1+v

⇤
2(1��̃⇤)2

1+2�2⌘d
⇤
1

. If we simplify the exponential

term in r1 by using the fact that v⇤1 � v⇤2 = O(v21), and notice that in the definitions of r1

and r2 we can also slightly simplify by writing

1 + �2⌘d
⇤
1

(1 + 2�2⌘d
⇤
1)

1/2
=

"
(1 + �2⌘d

⇤
1)

2

1 + 2�2⌘d
⇤
1

#1/2
=

"
1 + 2�2⌘d

⇤
1 + �4⌘d

⇤
1
2

1 + 2�2⌘d
⇤
1

#1/2
= [1 + �2⌘d

⇤
1
2v⇤2]

1/2,

then we get that

�2
Z

µ2w
⇡
⇣
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b

h
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A
i
ev

⇤
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Ṽ
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1
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⇤
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⌘
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1/2. (B.29)
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Derivation of �⇤
b

2 and (B.26)

Proof. To understand the asymptotic behavior of the FIRC heterogeneity estimator, �̂2
b
, we

consider the probability limit of its estimating equation:

�⇤
b

2 = plim

0

BBBB@

J�1
JP

j=1
�̂2
j
[(�̂j � �̂FIRC)

2 � Vj ]

J�1
JP

j=1
�̂2
j

1

CCCCA

= plim

0

BBBB@

J�1
JP

j=1
�⇤
j
2[(�̂j � �⇤FIRC

)2 � Vj ]

J�1
JP

j=1
�⇤
j
2

1

CCCCA

where on the second line we replace �̂j and �̂⇤
FIRC

for the same reasons and by the same

argument discussed in the remark on Theorem B.3. Continuing on, we use the WLLN and

the tower law to get

�⇤
b
=

E
h
�⇤
j
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)2 � Vj |⌘j ]
i
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2)
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�⇤
j
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i

E(�⇤
j
2)

=
E
h
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j
2[(↵⌘j � BFIRC)

2 + �2
b|⌘ + Vj � Vj ]

i

E(�⇤
j
2)

= �2
b|⌘ +

E
h
�⇤
j
2(↵⌘j � BFIRC)

2
i

E(�⇤
j
2)

,

(B.30)

where the second and third lines use (B.13) just like in (B.25) above, and the last line

simplifies. The last line immediately implies (B.26). Continuing further by expanding the
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square, we have

�⇤
b

2 = �2
b|⌘ + ↵2

E(�⇤
j
2⌘2

j
)

E(�⇤
j
2)
� 2↵BFIRC

E(�⇤
j
2⌘j)

E(�⇤
j
2)

+B2
FIRC

(B.31)

and from the Laplace approximations in (B.23) we have

E
⇣
�⇤
j
2⌘2

j

⌘

E
⇣
�⇤
j
2
⌘ ⇡


4v⇤2

2
⇣
1� �̃⇤

⌘2
+ v⇤2

�

E
⇣
�⇤
j
2⌘j
⌘

E
⇣
�⇤
j
2
⌘ ⇡ 2v⇤2

⇣
1� �̃⇤

⌘
.

So plugging these approximations and expression (B.24) for BFIRC into (B.31) we get

�⇤
b

2 ⇡ �2
b|⌘ + ↵2

h
4v⇤2

2(1� �̃⇤)2 + v⇤2
i
� 2↵ ·

h
↵(1� �̃⇤)v⇤1

i
·
h
2v⇤2(1� �̃

⇤)
i
+
h
↵(1� �̃⇤)v⇤1

i2

⇡ �2
b|⌘ + ↵2

h
4v⇤2

2(1� �̃⇤)2 + v⇤2 � 4(1� �̃⇤)2v⇤1v
⇤
2 + (1� �̃⇤)2v⇤1

2
i

⇡ �2
b|⌘ + ↵2v⇤2

h
1 + (1� �̃⇤)2v⇤2

i

⇡ �2
b
+ �2

b
⇢2
⌘b

"
1 + (1� �̃⇤)2v⇤2

1 + 2�2⌘d
⇤
1
� 1

#
= �2

b
+ �2

b
⇢2
⌘b
(A� 1).

(B.32)

where the third line uses the convenient fact that v⇤1 � v⇤2 = v⇤1v
⇤
2d
⇤
1 = O(v21) (which is the

order of our Laplace approximations, so v1 can be replaced with v2 or vice versa), and the

last line uses the definitions of �2
b|⌘, ↵, and v⇤2. This concludes the proof.

B.3.4 FIRC+

Recall for FIRC+ that we have the estimator:
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�̂FIRC+ :=

P
J

j=1 �̂
+
j
(�̂j � ↵̂⌘j)

P
J

j=1 �̂
+
j

(B.33)

where

�̂+
j
:=

�̂2
b|⌘

�̂2
b|⌘ + Vj

, �̂2
b|⌘ :=

0

@
P

J

j=1 �̂
+
j

2
h
(�̂FIRC+ � �̂j � ↵̂⌘j)2 � Vj

i

P
J

j=1 �̂
+
j
2

1

A

+

(and the ()+ indicates that �̂2
b|⌘ is taken to be 0 when the inside is negative), and

↵̂ :=

JP

j=1
�̂+
j
⌘j(�̂j � �̄)

JP

j=1
�̂+
j
⌘j(⌘j � ⌘̄)

, with �̄ :=

JP

j=1
�̂+
j
�̂j

JP

j=1
�̂+
j

and ⌘̄ :=

JP

j=1
�̂+
j
⌘j

JP

j=1
�̂+
j

.

Theorem B.4. Under bivariate normality assumption (B.11),

J
1
2 (�̂FIRC+ � �)

d!N(0, �2
FIRC+)

where

�2
FIRC+ ⇡

(�2
b|⌘ + µ

Ṽ
)[1 + v+1 (1� �̃

+)2](1 + �2⌘d
+
1 )

1
2

e
1
2v

+
1 (1��̃+)2

,

with �̃+ = �2
b|⌘/(�

2
b|⌘ + µ

Ṽ
), v+1 = �2⌘/(1 + �2⌘d

+
1 ), and d+1 = �̃+(1� �̃+).

Setup and Asymptotic Bias

Proof. We make two changes to the general derivation strategy we have used earlier. First,

we consider the FIRC+ estimator where the estimated weight �̂+
j
(a function of the estimate

�̂2
b|⌘) is replaced by its probability limit �+

j
(a function of the true conditional variance �2

b|⌘).

This is done for the same reason and same justification as in the FIRC derivations. (And since

FIRC+ is MLE under the bivariate normality assumption of the theorem, �̂2
b|⌘ is consistent
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for �2
b|⌘ and the continuous mapping theorem then implies that �̂+

j

p!�+
j
:= �2

b|⌘/(�
2
b|⌘+Vj)).

And second, we jointly analyze the FIRC+ estimators of � and ↵, that is we consider

the multivariate estimator ✓̂⇤
FIRC+ := (�̂⇤

FIRC+, ↵̂
⇤
FIRC+)

T , where the * indicates that we

have already substituted �+
j

for �̂+
j

in these estimators. This notation comes from writing

the FIRC+ regression model as

�̂j = � + ↵⌘j + "j + ej

=

✓
1 ⌘j

◆
0

B@
�

↵

1

CA+ "j + ej =: xT
j
✓ + "j + ej

(B.34)

where xj :=

✓
1 ⌘j

◆T

, ✓ :=

✓
� ↵

◆T

, and �̂j |⌘j ⇠ N(xT
j
✓, �2

b|⌘+Vj). Thus the FIRC+

estimator (with �2
b|⌘ known) may be written as

✓̂⇤
FIRC+ =

0

@
JX

j=1

�+
j
xjx

T
j

1

A
�1

JX

j=1

�+
j
xj �̂j

= ✓ +
⇣X

�+
j
xjx

T
j

⌘�1X
�+
j
xj("j + ej).

(B.35)

This will turn out to be easier to analyze than �̂⇤
FIRC+ alone, which depends on ↵̂⇤

FIRC+.

For the asymptotic bias, we simply note that under the bivariate normality assumption

(B.11) FIRC+ is the MLE under the correct model (whether or not �2
b|⌘ is known), so

✓̂⇤
FIRC+

p!✓, which means the estimator is asymptotically unbiased. In fact, FIRC+ is also

finite-sample unbiased for ✓; although we do not give a proof here, it is very easy to see by

applying the tower law (conditioning on all ⌘j) to the estimator.

For intuition as to why we cannot also send ↵̂FIRC+ to its probability limit (↵) when

analyzing �̂FIRC+, like we did with �̂2
b|⌘, note that in fact an argument like (B.22) that

justifies doing this with �̂2
b|⌘ would fail for ↵̂FIRC+. If we write �̂

(↵)
FIRC+ for the FIRC+
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estimator �̂FIRC+ where we have replaced ↵̂FIRC+ with ↵, it is fairly quick to see that

J1/2(�̂
(↵)
FIRC+ � �)� J1/2(�̂

FIRC+ � �) = J1/2⌘̄(↵� ↵̂FIRC+)

p!0.
(B.36)

The first line is basic algebra, and to understand the lack of convergence in probability, note

that

V ar
h
J1/2⌘̄ (↵� ↵̂FIRC+)

i
= JE

⇥
⌘̄2(↵� ↵̂FIRC+)

2
⇤

= JE
⇥
⌘̄2V ar

�
↵̂FIRC+|⌘j 8j

�⇤

and that by standard weighted least squares results V ar(↵̂FIRC+|⌘j 8j) is only of order

J�1/2, so although (B.36) has mean 0 (since ↵̂FIRC+ is conditionally unbiased) it does not

have decreasing variance as J ! 1, meaning that it cannot converge in distribution to 0

and thus cannot converge in probability to 0.

Asymptotic Variance

Proof. Then to find the asymptotic distribution of the estimator, we will consider

p
J(✓̂⇤ � ✓) =

p
J ·
⇣P

�+
j
xjx

T
j

⌘�1P
�+
j
xj("j + ej)

=
p
J ·
⇣
1
J

P
�+
j
xjx

T
j

⌘�1 1
J

P
�+
j
xj("j + ej)

: =
p
J
⇣
1
J

P
cj
⌘�1 1

J

P
Zj

d!µ�1c N2
�
0, �2

Z

�

where we use the notation cj := �+
j
xjx

T
j
, Zj := �+

j
xj("j + ej), µc := E(cj), and �2

Z
:=

V ar(Zj) = E(ZjZ
T
j
). The last line follows from multivariate forms of Slutsky’s theorem, the

WLLN, and the CLT, analogously to our basic approach (B.7)-(B.8). For the CLT, note that

Zj indeed has expectation 0 because in the tower law (conditioning on ⌘j) E("j + ej |⌘j) = 0

as we stated in (B.13). Then we just need to calculate µc and �2
Z

to find the asymptotic
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variance

�2
FIRC+ = µ�1c �2

Z
µ�1c .

Note that

ZjZj
T = �+

j

2("j + ej)
2xjx

T
j
= �+

j
("j + ej)

2cj (B.37)

and

xjx
T
j
=

2

64
1 ⌘j

⌘j ⌘2
j

3

75

so for the asymptotic variance we have

�2
FIRC+ = µ�1c E

⇣
ZjZ

T
j

⌘
µ�1c

= µ�1c E
⇣
�+
j

2E
⇥
("j + ej)

2|⌘j
⇤
xjx

T
j

⌘
µ�1c

= µ�1c E
⇣
�+
j

2(�2
b|⌘ + Vj)xjx

T
j

⌘
µ�1c

= µ�1c �2
b|⌘E

⇣
�+
j
xjx

T
j

⌘
µ�1c

= �2
b|⌘µ
�1
c

= �2
b|⌘

2

64
E(�+

j
) E(�+

j
⌘j)

E(�+
j
⌘j) E(�+

j
⌘2
j
)

3

75

�1

�2
FIRC+ =

�
2
b|⌘

E(�+
j
)E(�+

j
⌘
2
j
)�E2(�+

j
⌘j)

2

64
E(�+

j
⌘2
j
) �E(�+

j
⌘j)

�E(�+
j
⌘j) E(�+

j
)

3

75

where the second line uses the tower law, the third line uses (B.13), the fourth line uses the

definition of �+
j
, and the fifth line uses the definitions of cj and µc. Substituting the Laplace

approximations

E(�+
j
) ⇡ �̃

+
e
1
2v

+
1 (1��̃

+)2

(1+�2⌘d
+
1 )

1
2

E(�+
j
⌘
j
) ⇡ v+1 (1� �̃

+)E(�+
j
)

E(�+
j
⌘2
j
) ⇡ v+1 [1 + v+1 (1� �̃

+)2]E(�+
j
)
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into the (1, 1) element of this final matrix, we get that the asymptotic variance of �̂FIRC+

is approximately

�2
FIRC+ ⇡ (�2

b|⌘ + µ
Ṽ
)[1 + v+1 (1� �̃

+)2][1 + �2⌘�̃
+(1� �̃+)]

1
2 e�

1
2v

+
1 (1��̃+)2 ,

concluding the proof.
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B.4 Laplace Approximations

B.4.1 General Result

At various points in the asymptotic derivations we want to approximate E
⇣
f(⌘j)⌘

k
j

⌘
for

some fixed positive function f where the expectation is with respect to ⌘j ⇠ N(0, �2⌘). In

particular we need the cases when k = 0, 1, 2 and f(⌘j) = �⇤
j
,�⇤

2

j
,�⇤

2

j
e�⌘j (where the ⇤

indicates that �⇤
j
depends on a fixed probability limit �⇤

2

b
instead of a random estimate �̂2

b
,

whether for FIRC or FIRC+), but the Laplace-type approximations we derive below apply

more generally.

Theorem B.5. Suppose h(⌘j) :=
�1
2�2⌘

⌘2
j
+ log f(⌘j) has a bounded third derivative. Then

E0,�2⌘

⇣
⌘k
j
f(⌘j)

⌘
=

v1/2

�⌘
f(0)eQ(⌘̂)E⌘̂,v

⇣
⌘k
j

⌘
2

41 +O

0

@
E⌘̂,v

⇣
⌘k+3
j

)
⌘

E⌘̂,v

⇣
⌘k
j

⌘

1

A

3

5 (B.38)

where Q(⌘j) := h0(0) · ⌘j + 1
2h
00(0) · ⌘2

j
, ⌘̂ := �h0(0)

h00(0) (the maximizer of Q), and v := �1
Q00(⌘̂) ,

and on the LHS E0,�2⌘
denotes expectation with respect to ⌘j ⇠ N(0, �2⌘) while on the RHS

E⌘̂,v denotes expectation with respect to ⌘j ⇠ N(⌘̂, v).

Proof. First note that

E
⇣
f(⌘j)⌘

k
j

⌘
= (2⇡�2⌘)

�1
2

Z 1

�1
f(⌘j)⌘

k
j
e

�1
2�2⌘

⌘
2
j

d⌘j

= (2⇡�2⌘)
�1
2

Z 1

�1
⌘k
j
eh(⌘j)d⌘j

(B.39)

where the second line follows by definition of h. Now Taylor expand h around ⌘j = 0 using

the Mean Value Theorem remainder, so

h(⌘j) = h(0) + h0(0) · ⌘j +
1

2
h00(0) · ⌘2

j

| {z }
:=Q(⌘j)

+
1

6
h(3)(cj)⌘

3
j

| {z }
:=S(⌘j)
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for some cj bounded between 0 and ⌘j . It is important to note that cj is a random variable

because one of its bounds is random. Finally Taylor expand Q around its maximizer ⌘̂ (or

complete the square) to see the factorization

Q(⌘j) = Q(⌘̂) +
1

2
Q00(⌘̂) · (⌘j � ⌘̂)2,

so we have

h(⌘j) = h(0) +Q(⌘̂) +
1

2
Q00(⌘̂) · (⌘j � ⌘̂)2 + S(⌘j). (B.40)

Plugging (B.40) into (B.39), we get

E0,�2⌘

⇣
f(⌘j)⌘

k
j

⌘
= (2⇡�2⌘)

�1
2 f(0)eQ(⌘̂)

Z 1

�1
⌘k
j
eS(⌘j)e

1
2Q

00(⌘̂)·(⌘j�⌘̂)2d⌘j

= (2⇡�2⌘)
�1
2 f(0)eQ(⌘̂)

✓
2⇡
�1

Q00(⌘̂)

◆1
2
E⌘̂,v

⇣
⌘k
j
eS(⌘j)

⌘

=
v
1
2

�⌘
f(0)eQ(⌘̂)E⌘̂,v

⇣
⌘k
j
eS(⌘j)

⌘

(B.41)

where v := �1
Q00(⌘̂) (note that Q00(⌘̂) is negative because ⌘̂ is the maximizer of Q), giving us

nearly the full result. To evaluate E⌘̂,v

⇣
⌘k
j
eS(⌘j)

⌘
, note that
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E⌘̂,v

⇣
⌘k
j
eS(⌘j)

⌘
= E⌘̂,v

✓
⌘k
j


1 + S(⌘j) +

1

2
S2(⌘j) + · · ·

�◆
, by expanding eS(⌘j)

= E⌘̂,v

⇣
⌘k
j

h
1 +O(⌘3

j
)
i⌘

, as ⌘2
j
! 0 by def. of S and (⇤)

= E⌘̂,v

⇣
⌘k
j

⌘
+ E⌘̂,v

⇣
O(⌘k+3

j
)
⌘

, by def. of big O

= E⌘̂,v

⇣
⌘k
j

⌘
·

2

41 +
E⌘̂,v

⇣
O(⌘k+3

j
)
⌘

E⌘̂,v

⇣
⌘k
j

⌘

3

5

= E⌘̂,v

⇣
⌘k
j

⌘
·

2

41 +
O(E⌘̂,v

⇣
⌘k+3
j

)
⌘
)

E⌘̂,v

⇣
⌘k
j

⌘

3

5 , by def. of big O as �2⌘ ! 0

= E⌘̂,v

⇣
⌘k
j

⌘
·

2

41 +O

0

@
E⌘̂,v

⇣
⌘k+3
j

)
⌘

E⌘̂,v

⇣
⌘k
j

⌘

1

A

3

5 , by def. of big O

so approximately we can just evaluate a familiar normal moment for this expectation.

By (*) we note also that h(3) is bounded so the value of cj does not a↵ect the order relation.

Plugging this into (B.41) concludes the proof.

For the cases we consider for f , we have ⌘̂ / v which causes the order term in (B.38) to

be O(v) when k is odd and O(v2) when k is even. This can be seen by evaluating the normal

expectations, which will be polynomials in v, and then taking the di↵erence between the

order of the numerator and the order of the denominator (which just depends on whether

k is even or odd; consider the cases k = 1 and k = 2) – recall that big O notation allows

comparisons of this kind.

B.4.2 Specific Cases

When f(⌘j) = �j
⇤p :=


�
⇤2
b

�
⇤2
b
+µ

Ṽ
e
�⌘j

�p
for p = 1, 2, then f(0) = �̃⇤

p

:=


�
⇤2
b

�
⇤2
b
+µ

Ṽ

�p
and

we find that v := v⇤p =
�
2
⌘

1+p�2⌘�̃
⇤(1��̃⇤)

(corresponding to the v⇤1 and v⇤2 elsewhere), ⌘̂ =

v⇤pp(1� �̃⇤), and h
0
(0) = p(1� �̃⇤).
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Therefore, a first-order Laplace approximation of interest is

E(⌘q�̃⇤
p

) ⇡ �̃⇤
p

e
1
2p

2
v
⇤
p(1��̃⇤)2

[1 + p�2⌘�̃
⇤(1� �̃⇤)]

1
2

EN(⌘̂,v⇤p)
(⌘q) (B.42)

Specific cases we need evaluate to

E(�⇤
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⇤
e
1
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⇤
1(1��̃

⇤)2

[1+�2⌘�̃
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1
2
, with v⇤1 =

�
2
⌘
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E(�⇤
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⇤
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2
, with v⇤2 =

�
2
⌘

1+2�2⌘�̃
⇤(1��̃⇤)

and

E(�⇤
j
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j
)v⇤1(1� �̃

⇤)

E(�⇤
j
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)v⇤1[1 + v⇤1(1� �̃
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j
)v⇤2(1� �̃

⇤)

E(�⇤
2

j
⌘2
j
) ⇡ E(�⇤

2

j
)[4v⇤

2

2 (1� �̃⇤)2 + v⇤2].

We are also interested in evaluatingE(�⇤
j
2e�⌘j ), the case of (D.1) where f(⌘j) = �⇤

j
2e�⌘j

with v = v⇤2, ⌘̂ = v⇤2(1� 2�̃⇤), h(1)(0) = (1� 2�̃⇤). Therefore we have

E(�⇤
2

j
e�⌘j ) ⇡ �̃⇤

2
e
1
2v

⇤
2(1�2�̃⇤)2

[1 + 2�̃⇤(1� �̃⇤)]
1
2

.

The results used for the FIRC+ derivations are identical, except for replacing �̃⇤ with

�̃+ and �⇤
2

b
with �2

b|⌘.
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B.5 Simulation Scenario Details

B.5.1 Normal Case

In the simple normal case with linear conditional expectation, which is the FIRC+ model,

we let

�j |⌘j
?⇠N(� + ↵⌘j , �

2
b|⌘) (B.43)

where recall that ↵ = �⌘b/�
2
⌘ and �2

b|⌘ = �2
b
(1� ⇢2

⌘b
).

B.5.2 Heavy-tailed Case

In the heavy-tailed case we let

�j = � + ↵⌘j + j (B.44)

where j
iid⇠ t3 (t-distributed with 3 degrees of freedom) independently of ⌘j (we take  =

⇣
1
3�

2
b
(1� ⇢2

⌘b
)
⌘1/2

so �j still has marginal variance �2
b
). Thus marginally �j has heavy

tails (mirroring the t3 component more than the normal ⌘j), meaning that more sites are

especially e↵ective or ine↵ective (compared to the average site) than in the normal model.

To illustrate, see Figure B.1.

B.5.3 Nonlinear Case

In this case we make �j conditionally normal with a quadratic mean function:

�j |⌘j
?⇠N(� + ↵⌘j + �(⌘2

j
� �2⌘), ⌧2) (B.45)

where we take � = 0.7�b/�
2
⌘ ⇤
q

1
2(1� ⇢

2
⌘b
) and ⌧2 = �2

b
(1 � ⇢2

⌘b
) � 2�2�4⌘ so again �j has

marginal variance �2
b
. So as �b increases and �2⌘ and ⇢⌘b

2 decrease the conditional mean

will be more nonlinear and the conditional variance will become accordingly smaller. This
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Figure B.1: Illustration of the heavy-tailed case. The vertical bars show a histogram of
the true �j ’s in a randomly sampled trial of 100 sites. The plotted curves are densities: the
red one is the true marginal distribution of the �j in this scenario, and the dotted black
one is normal marginal distribution for the corresponding normal scenario. Although it is
hard to see, the red curve does indeed have heavier tails for extreme values for �j (but since
these distributions have identical variance it is not apparent as quickly). In this case, we
had � = 0.2, �b = 0.1, ⇢⌘b = 0.3, and �2⌘ = 0.6.

model says that sites with extreme log precisions (low and high) are more e↵ective than

sites with average log precisions. This exceptional circumstance could happen in practice,

for example, if both small and large sites have di↵erent relative advantages over medium-

sized sites (suppose the smallest sites have an easier time tailoring treatment to a relatively

homogeneous clientele and the largest sites tend to be better funded or more professionally

run). However, in many studies is probably not an appropriate default assumption. This

type of nonlinearity is uniquely challenging for FIRC+ since compared to parabolas most

other nonlinear functions are better approximated by a line. To illustrate, see Figure B.2.
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Figure B.2: Illustration of the nonlinear case. Shown is a scatterplot of the true ⌘j and
�j ’s in a randomly sampled trial of 100 sites. The red curve shows the true conditional mean
function of �j given ⌘j , and the grey bands show the 90% central interval of this conditional
distribution for each value of ⌘j . In this case, we had � = 0.2, �b = 0.1, ⇢⌘b = 0.3, and

�2⌘ = 0.6.

B.5.4 Heteroscedastic Case

Finally, in the heteroscedastic case

�j |⌘j
?⇠N(� + ↵⌘j , ⌧

2e�
1
2⌘j ) (B.46)

where ⌧2 = �2
b
(1 � ⇢2

⌘b
)e�

1
2�

2
⌘ to make the marginal variance of �j be �2

b
. This model

says that sites with higher precisions have (exponentially) less variable e↵ects. Again, this

is a fairly particular situation but it could happen if larger sites have more standardized

interventions or are less di↵erent from one another in their subject populations (compared

to the smaller sites). To illustrate, see Figure B.3
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Figure B.3: Illustration of the heteroscedastic case. Shown is a scatterplot of the true ⌘j
and �j ’s in a randomly sampled trial of 100 sites. The red curve shows the true conditional
mean function of �j given ⌘j , and the grey bands show the 90% central interval of this
conditional distribution for each value of ⌘j . In this case, we had � = 0.2, �b = 0.1,

⇢⌘b = 0.3, and �2⌘ = 0.6.

B.6 Additional Figures

This section includes figures with further details of the asymptotic and simulation results.

B.6.1 Asymptotic RMSE, Variance, and Bias

The first three figures here plot the relative RMSE approximations of the estimators for

di↵erent values of J , and the next two plot the variance ratios (which do not depend on J)

and biases (which do not depend on J) respectively. All are based on the expressions given

in Table 3.3.1.
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Figure B.4: Relative RMSE approximations when J = 30. The ratio of each estimator’s
RMSE to that of FIRC+ is plotted on the y-axis, as �̃ varies on the x-axis. In the grid of
plots the columns let �2⌘ vary while the rows let ⇢⌘b vary. The type of the line indicates
the estimator being compared to FIRC+, which itself is noted by the flat, solid grey line at
100% in each plot.
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Figure B.5: Relative RMSE approximations when J = 100. The ratio of each estimator’s
RMSE to that of FIRC+ is plotted on the y-axis, as �̃ varies on the x-axis. In the grid of
plots the columns let �2⌘ vary while the rows let ⇢⌘b vary. The type of the line indicates
the estimator being compared to FIRC+, which itself is noted by the flat, solid grey line at
100% in each plot.
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Figure B.6: Relative RMSE approximations when J = 350. The ratio of each estimator’s
RMSE to that of FIRC+ is plotted on the y-axis, as �̃ varies on the x-axis. In the grid of
plots the columns let �2⌘ vary while the rows let ⇢⌘b vary. The type of the line indicates
the estimator being compared to FIRC+, which itself is noted by the flat, solid grey line at
100% in each plot.
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Figure B.7: Relative variance approximations. The ratio of each estimator’s asymptotic
variance to that of FIRC+ is plotted on the y-axis, as as �̃ varies on the x-axis. In the grid
of plots the columns let ⇢⌘b vary while the rows let �2⌘ vary (compared to the RMSE and

bias figures, this was reversed to accommodate the wide range of ratios as a function of �2⌘).
The type of the line indicates the estimator being compared to FIRC+, which itself is noted
by the flat, solid grey line at 100% in each plot.
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Figure B.8: Bias approximations for FIRC and FE. The asymptotic bias of FIRC and FE
is plotted on the y-axis, as �̃ varies on the x-axis. In the grid of plots the columns let �2⌘
vary while the rows let ⇢⌘b vary. FE is denoted by the solid line and FIRC is denoted by the
dashed line.

B.6.2 Accuracy of the Asymptotic Approximations

These figures show the accuracy of the analytic RMSE approximations given in Table 3.3.1,

which is generally quite good with few exceptions.
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Figure B.9: Accuracy of the RMSE approximations when J = 30. Each observation in the
histograms is the ratio of simulation RMSE over approximation RMSE for one of the 2,304
scenarios in the simulation study, grouped by distribution type (columns) and estimator
(rows). The color of the bars indicates whether �b > 0, for example in the heavy, FE
histogram roughly 20 scenarios where �b = 0 have a RMSE ratio near 1 (the teal portion
of the tallest bar) while about 15 scenarios where �b > 0 have a RMSE in this range (the
red portion of the tallest bar). Note that the x-axis has a di↵erent range for each simulation
distribution, reflecting the widely varying accuracies in some cases. The gray vertical bars
at 0.95 and 1.05 roughly indicate the interval in which the true RMSE would fall (due to
approximately unbiased Monte Carlo error in the simulation RMSE), based on the fact that
the UW RMSE “approximation” is an exact finite-sample result giving the true RMSE and
the simulation RMSE for UW always falls in this range.
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Figure B.10: Accuracy of the RMSE approximations from Table 3.3.1 when J = 100. See
Figure B.9 caption for full explanation.

Figure B.11: Accuracy of the RMSE approximations from Table 3.3.1 when J = 350. See
Figure B.9 caption for full explanation.
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B.6.3 Simulation-based RMSE

These figures show the RMSE of the estimators in simulation when J = 30, 100, 350 (separate

figures) and the conditional distribution of �j |⌘j is normal, heavy, heteroscedastic, and

nonlinear (each large row in the figure grids). They are analogous to Figure 3.4.1 in the

text, which only gave the J = 100 case for the heteroscedastic and nonlinear scenarios. The

normal and heavy cases largely follow the analytic results, as suggested by the approximation

accuracy figures in Section B.6.2, while the heteroscedastic and nonlinear cases for J =

30, 350 are qualitatively similar to Figure 3.4.1.
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Figure B.12: Scatterplots of the ratio of each estimator’s RMSE relative to the RMSE
of UW, as �̃ varies on the x-axis, for J = 30 in the heteroscedastic and nonlinear cases.
Separate plots are given for each �2⌘(columns) and estimator/distribution (rows). A RMSE
ratio of 100% is shown by the horizontal solid red lines, while the dashed red lines are at
110% and 90% to demarcate cases where estimators perform comparably to UW. The color
of each point corresponds to the correlation ⇢⌘b. These ratios only depend on �2

b
and µ

Ṽ

(not shown) through �̃.
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Figure B.13: Scatterplots of the ratio of each estimator’s RMSE relative to the RMSE
of UW, as �̃ varies on the x-axis, for J = 350 in the heteroscedastic and nonlinear cases.
Separate plots are given for each �2⌘(columns) and estimator/distribution (rows). A RMSE
ratio of 100% is shown by the horizontal solid red lines, while the dashed red lines are at
110% and 90% to demarcate cases where estimators perform comparably to UW. The color
of each point corresponds to the correlation ⇢⌘b. These ratios only depend on �2

b
and µ

Ṽ

(not shown) through �̃.
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Figure B.14: Scatterplots of the ratio of each estimator’s RMSE relative to the RMSE of
UW, as �̃ varies on the x-axis, for J = 30 in the heavy and normal cases. Separate plots
are given for each �2⌘(columns) and estimator/distribution (rows). A RMSE ratio of 100%
is shown by the horizontal solid red lines, while the dashed red lines are at 110% and 90%
to demarcate cases where estimators perform comparably to UW. The color of each point
corresponds to the correlation ⇢⌘b. These ratios only depend on �2

b
and µ

Ṽ
(not shown)

through �̃.
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Figure B.15: Scatterplots of the ratio of each estimator’s RMSE relative to the RMSE of
UW, as �̃ varies on the x-axis, for J = 100 in the heavy and normal cases. Separate plots
are given for each �2⌘(columns) and estimator/distribution (rows). A RMSE ratio of 100%
is shown by the horizontal solid red lines, while the dashed red lines are at 110% and 90%
to demarcate cases where estimators perform comparably to UW. The color of each point
corresponds to the correlation ⇢⌘b. These ratios only depend on �2

b
and µ

Ṽ
(not shown)

through �̃.
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Figure B.16: Scatterplots of the ratio of each estimator’s RMSE relative to the RMSE of
UW, as �̃ varies on the x-axis, for J = 350 in the heavy and normal cases. Separate plots
are given for each �2⌘(columns) and estimator/distribution (rows). A RMSE ratio of 100%
is shown by the horizontal solid red lines, while the dashed red lines are at 110% and 90%
to demarcate cases where estimators perform comparably to UW. The color of each point
corresponds to the correlation ⇢⌘b. These ratios only depend on �2

b
and µ

Ṽ
(not shown)

through �̃.
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B.6.4 Simulation-based Coverage

These figures simulate coverage of nominal 95% Wald-type confidence intervals for FE and

FIRC, analogously to Figure 3.4.2 except for the heavy, heteroscedastic, and nonlinear cases.

The basic conclusion is the same: in situations where the estimator has nontrivial bias

coverage can quickly become unacceptable.

Figure B.17: Actual coverage rates (by simulation) for the standard nominal 95% confi-
dence intervals centered on the di↵erent point estimators, as a function of �b (x-axis) in the
heavy case. Plots are given for FIRC and FE (columns) and values of ⇢⌘b (rows). Each col-
ored line shows scenarios with a di↵erent sample sizeJ . The horizontal light grey lines mark
the nominal 95% rate, and the dark grey lines mark 90%. The data where simulated from
the normal case (as in the simulation study in Sections 4), with µ

Ṽ
= 0.09 and �2⌘, though

changing these parameters does not change the results qualitatively (i.e. the coverage can
still be bad).
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Figure B.18: Actual coverage rates (by simulation) for the standard nominal 95% con-
fidence intervals centered on the di↵erent point estimators, as a function of �b (x-axis) in
the heteroscedastic case. Plots are given for FIRC and FE (columns) and values of ⇢⌘b
(rows). Each colored line shows scenarios with a di↵erent sample sizeJ . The horizontal light
grey lines mark the nominal 95% rate, and the dark grey lines mark 90%. The data where
simulated from the normal case (as in the simulation study in Sections 4), with µ

Ṽ
= 0.09

and �2⌘, though changing these parameters does not change the results qualitatively (i.e. the
coverage can still be bad).
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Figure B.19: Actual coverage rates (by simulation) for the standard nominal 95% confi-
dence intervals centered on the di↵erent point estimators, as a function of �b (x-axis) in the
nonlinear case. Plots are given for FIRC and FE (columns) and values of ⇢⌘b (rows). Each
colored line shows scenarios with a di↵erent sample sizeJ . The horizontal light grey lines
mark the nominal 95% rate, and the dark grey lines mark 90%. The data where simulated
from the normal case (as in the simulation study in Sections 4), with µ

Ṽ
= 0.09 and �2⌘,

though changing these parameters does not change the results qualitatively (i.e. the coverage
can still be bad).
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B.7 Self-e�ciency

In the results below, we consider a version of self-e�ciency that is more narrow than Meng

& Xie’s notion in two ways. First, we restrict attention to the case when � = 0 (or whatever

notation we’re using) so self-e�ciency reduces to comparing the risks (MSEs) of the complete

and subset estimators. This covers the most intuitive case of self-e�ciency and simplifies the

derivations. And second, we just consider subsets where the most imprecise sites (probably

the smallest) are discarded so S = {j : ⌘j > ⌘(J�s)} (where ⌘(J�s) is the (J � s)-th order

statistic) and the size of the subset is fixed at s and not a random variable. Again, this is

the most intuitive way to discard data (since we’re trying to find a more e�cient estimator)

and simplifies the math in some regards. (This does, however, mean that we truncate ⌘ by

discarding a random region determined by the observed order statistic).

First we find the variance of the unweighted estimator, �̂UW , and the bias and variance

of the subset unweighted estimator, �̂S , and then using these results we derive the condition

for self-ine�ciency of the unweighted estimator.
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B.7.1 Variance of the Unweighted Estimator

This derivation is very straightforward:

V ar
⇣
�̂UW

⌘
= V ar

0

@ 1

J

JX

i=1

�̂j

1

A

=
1

J2

JX

j=1

V ar
⇣
�̂j
⌘

, by independence

=
1

J2

JX

j=1

V ar
�
�j + ej

�

=
1

J2

JX

j=1

h
�2
b
+ E(Vj)

i
, by law of total variance

V ar
⇣
�̂UW

⌘
=

1

J

h
�2
b
+ E(Vj)

i
, by independence.

To help make this comparable to the subset estimator’s variance which we will describe

below, we relate the marginal variance of site e↵ects �2
b
to the conditional variances of site

e↵ects in and out of the subset. Leting �2
b2S := V ar(�j |j 2 S) and �2

b 62S := V ar(�j |j 62 S),

we can note

�2
b
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⇥
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⇤
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�22S + �262S � 2�2S�62S
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�2
b
= ⇡s�

2
b2S + (1� ⇡S)�2b 62S + ⇡s(1� ⇡S)�2

S
,

where on the first line we use the law of total variance, on the second line we use the tower

170



law, and on the third line we use the fact that V ar(X) = E(X2)� E2(X).

B.7.2 Bias and Variance of the Subset Estimator

The key issue in characterizing the bias and variance of �̂S is that we select the random subset

S ⇢ {1, . . . , J} as a function of the random vector (⌘1, . . . , ⌘J ) so the distributions of �j in

selected and unselected sites may di↵er if (�1, . . . , �J ) is not independent of (⌘1, . . . , ⌘J ). In

addition, the distribution of the noise ej = �̂j��j will di↵er between selected and unselected

sites (since we select on ⌘j and V ar(ej |⌘j) = Vj = µ̃V e
�⌘j ).

We will discuss subsets of fixed size s chosen using the order statistic ⌘(J�s) to keep

only the sites with the s most precise e↵ect estimates, so we may write S := {j 2 {1, . . . , J} :

⌘j � ⌘(J�s)}. Our model almost surely excludes the possibility of ties, since the distribution

of the transformed precisions is continuous, despite that in practice they are technically

possible (in sites with the same size nj and proportion treated T̄j). This is conceptually

intuitive in practice, and the fixed size of S simplifies the following derivations.

To describe the subset estimator’s bias, let �2S := E(�j |j 2 S), �62S := E(�j |j 62 S),

and �S := �2S � �62S so by the tower law we have � := E(�j) = ⇡S�2S + (1 � ⇡S)�62S =

�62S+⇡S�S . To make the equations below more concise, we adopt the notational shorthand

for inclusion indicators that 1j := 1{j 2 S} for any j 2 {1, . . . , J}. We emphasize that

these indicators are random variables whose randomness is a result of the randomness of

(⌘1, . . . , ⌘J ) .
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Then
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Now for the variance observe that
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where the covariance term appears because sites are selected for the subset without replace-

ment (so the indicators 1j and 1k are dependent).

To simplify V ar
⇣
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⌘
further we must evaluate V ar

⇣
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⌘
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⇣
�̂j1j , �̂k1k

⌘
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above, and to do so we will rely on the useful identities
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where the final line follows from our model for �̂j (the noise around �j is symmetric and its

sign is independent of �j and ⌘j).

Similarly, we can evaluate the covariance term by using the law of total covariance and
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noting
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where the coe�cients in the last line can be found directly (for the covariance, take the

mean of the product minus the product of the means, and for the expectation, use the

tower law) or by noting that jointly the indicators come from a multivariate hypergeometric

distribution. For notational simplicity, we write C2S := Cov
�
�j , �k|j 2 S, k 2 S

�
(and it

was ok to replace �̂j with �j and the same for k because the errors ej and ek are assumed

to be symmetrically distributed around 0). We note this covariance term is not zero in the

uninteresting case that the subset contains only one site (throwing out all but one) since

then in the second-to-last line 1j1k = 1 with probability 1.
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And so finally we have (from above)

V ar
⇣
�̂S

⌘
=

J

s2
V ar

⇣
�̂j1j

⌘
+

J(J � 1)

s2
Cov

⇣
�̂j1j , �̂k1k

⌘

=
J

s2

h
⇡S

⇣
�2
b2S + E[Vj |j 2 S]

⌘
+ ⇡S(1� ⇡S)�22S

i

+
J(J � 1)

s2


⇡s

✓
s� 1

J � 1
� ⇡S

◆
�22S + ⇡S

✓
s� 1

J � 1

◆
C2S

�

V ar
⇣
�̂S

⌘
=

1

s

h
�2
b2S + E(Vj |j 2 S) + (s� 1)C2S

i
.

B.7.3 The Covariance Term C2S is Likely to be Negligible

There are a few reasons that C2S will tend to be very small, likely negligible. In fact,

if we make basic regression-type assumptions on the joint distribution of (�1, . . . , �J ) and

(⌘1, . . . , ⌘J ) then C2S is nonzero only because the truncation region is random (since we

truncate using the order statistic ⌘(J�s)). In addition, C2S ! 0 as either ⇡S ! 1 (when we

discard a smaller proportion of sites) or J !1 (asymptotically in the number of sites).

In particular, using the law of total covariance to condition on the order statistic, we

can see that

C2S = E⌘(J�s)

h
Cov(�j , �k|j, k 2 S, ⌘(J�s))

i

+ Cov⌘(J�s)

h
E(�j |j 2 S, ⌘(J�s)), E(�k|k 2 S, ⌘(J�s))

i
. (+)

The point of conditioning on the order statistic is to make the truncation region (the cuto↵

on ⌘ for whether a site is kept) fixed. This makes it convenient for us use the results (45.156)

and (45.157) from Kotz, Balakrsihnan, & Johnson (2000) (originally due to Aitken (1936)

and Lawley (1943)), which gives the joint mean vector and covariance matrix of two random

vectors after conditioning on a fixed selection event (of arbitrary form) on the first random

vector, at least under some regression-type assumptions on the two vectors’ joint distribution.
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In particular, their expressions are valid when (1) the conditional expectation of the second

vector given the first vector is linear in the first vector and (2) the conditional covariance

matrix of the second vector given the first vector does not depend on the first vector.

Lemma B.6. Assume additionally that the conditional expectation of (�1, . . . , �J ) given

(⌘1, . . . , ⌘J ) is linear in (⌘1, . . . , ⌘J ) and that the corresponding conditional covariance matrix

does not depend on (⌘1, . . . , ⌘J ) (in other words, is homoscedastic in the log precisions), while

also conditioning on ⌘(J�s). Then Cov(�j , �k|j, k 2 S, ⌘(J�s)) = 0.

Proof. We apply KBJ expression (45.157) to the two vectors (⌘j , ⌘k) and (�j , �k) with (in

their notation) V11 = �2⌘,⇠I2, V12 = V21 = �⌘b,⇠I2, and V22 = �2
b,⇠I2, where the ⇠ notation

indicates that these terms are conditional variances and covariances given ⌘(J�s). This gives

Cov
⇣h

�j

�k

i
|j 2 S, k 2 S, ⌘(J�s)

⌘
= �2

b,⇠I2 � �
2
⌘b,⇠/�2⌘,⇠(I2 � ��2⌘,⇠U11)

where U11 = Cov(
⇥ ⌘j
⌘k

⇤
|j 2 S, k 2 S, ⌘(J�s)) = V ar(⌘j |⌘j � ⌘(J�s), ⌘(J�s))I2. Since U11 is

diagonal there is no conditional covariance between �j and �k.

Remark. The assumptions of Lemma B.6 (linear conditional expectation and homoscedas-

ticity) are essentially the FIRC+ model without normality.

Applying Lemma B.6 to (+) implies that

C2S = Cov⌘(J�s)

h
E(�j |j 2 S, ⌘(J�s)), E(�k|k 2 S, ⌘(J�s))

i

and we can see from (45.156) in KBJ that both conditional expectations are the product

of the conditional mean of ⌘j after truncation on the same random cuto↵ ⌘(J�s) and the

regression coe�cient of �j on ⌘j (conditioning on the random order statistic). Because these

terms depend weakly on the same order statistic, this covariance will be nonzero if small.

However, asymptotically the dependence will fade as the order statistic becomes fixed.
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B.7.4 Self-ine�ciency of the Unweighted Estimator

Theorem 3.2. Under (3.2.1), suppose that for some s 2 {1, . . . , J�1} the set of the s most

precise sites, S := {j 2 {1, . . . , J} : ⌘j > ⌘(J�s)}, satisfies

E(Vj |j 2 S)  ⇡SE(Vj)�
h
�2
b2S � ⇡S�

2
b

i
� s(1� ⇡S)2�2

S
� (s� 1)C2S

or, equivalently,

�2
S
 (1�⇡S)�2s�1

⇣⇥
⇡SE(Vj)� E(Vj |j 2 S)

⇤
+
h
⇡S�

2
b
� �2

b2S

i⌘
� (1�⇡S)�2

s� 1

s
C2S .

Then the unweighted estimator �̂UW is self-ine�cient as an estimator of �.

Proof. Using the results from above the proof just requires very basic algebra, which we show

for completeness. For the bound on E(Vj |j 2 S), note that MSE(�̂UW , �) � MSE(�̂S , �)

if and only if

V ar(�̂UW ) � Bias2(�̂S , �) + V ar(�̂S)

1

J

h
�2
b
+ E(Vj)

i
� (1� ⇡S)2�2

S
+

1

s

h
�2
b2S + E(Vj |j 2 S)

i
+

s� 1

s
C2S

⇡S�
2
b
+ ⇡SE(Vj) � s(1� ⇡S)2�2

S
+ �2

b2S + E(Vj |j 2 S)

E(Vj |j 2 S)  ⇡SE(Vj) +
h
⇡S�

2
b
� �2

b2S

i
� J⇡S(1� ⇡S)2�2

S
� (s� 1)C2S

Similarly, we may solve for �2
S
:

(1� ⇡S)2�2
S


1

J
�2
b
� 1

s
�2
b2S

�
+


1

J
E(Vj)�

1

s
E(Vj |j 2 S)

�

�2
S
 (1� ⇡S)�2

1

J⇡S

h�
⇡SE[Vj ]� E[Vj |j 2 S]

�
+
⇣
⇡S�

2
b
� �2

b2S

⌘i
.
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Remark. The condition in this theorem is su�cient for Meng & Xie’s notion of self-e�ciency

but necessary and su�cient for the limited notion we focus on.
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DESCRIPTION OF SUPPLEMENTARY FILES

Supplementary files may be found attached, and include code to run the analyses and sim-

ulation studies included in each of the three chapters.
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