
THE UNIVERSITY OF CHICAGO

INCENTIVIZING FLEXIBILITY AND COOPERATION IN COMPUTER SYSTEMS

USING FEEDBACK MECHANISMS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

MUHAMMAD HUSNI SANTRIAJI

CHICAGO, ILLINOIS

AUGUST 2022



Copyright © 2022 by Muhammad Husni Santriaji

All Rights Reserved



Dedication Text

First, I want to thank God for making me the luckiest person on Earth. He gives me ways

to solve problems out of nowhere that I would never imagine I could solve by myself.

I thank my adviser, Hank Hoffmann, for believing in me and having unlimited patience

in listening to me during our meeting.

I want to thank my wife, Dwi Kartika Sari, for her unlimited support during my study

on another side of the Earth.

I also want to thank my family, My Mother, and Father, who make this Ph.D. journey

possible.

My thanks to Haryadi Gunawi and Yohannes Surya, who allowed me to do world-class

research.

I also want to thank my friends, lab mates, committee, Uchicago staff, and others who

support me in finishing my thesis.



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 GRAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 MERLOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 ALERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4 SIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 GRAPE: MINIMIZING ENERGY FORGPUAPPLICATIONSWITH PERFORMANCE
REQUIREMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 The Translator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Actuator Model Update . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Performance Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Energy Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Power Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 Comparison with Prior Work . . . . . . . . . . . . . . . . . . . . . . 25
2.3.5 Sensitivity to Idle Power . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 MERLOT: ARCHITECTURAL SUPPORT FOR ENERGY-EFFICIENT REAL-TIME
PROCESSING IN GPUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Software-Hardware Interface . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Checkpoint Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.4 Resource Allocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.5 Using MERLOT for Dynamic Timing Analysis . . . . . . . . . . . . . 40
3.2.6 Real-Time Considerations . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iv



3.3.2 Energy Saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.3 Comparison with Prior Work . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 ALERT: ACCURATE ANYTIME LEARNING FOR ENERGY AND TIMELINESS 47
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Inputs & Outputs of ALERT . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 ALERT Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Key Ideas of ALERT Estimation . . . . . . . . . . . . . . . . . . . . 53
4.2.4 ALERT Estimation Algorithm . . . . . . . . . . . . . . . . . . . . . . 57
4.2.5 Integrating ALERT with Anytime DNNs . . . . . . . . . . . . . . . . 59
4.2.6 Limitations of ALERT . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.2 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.3 Detailed Results and Sensitivity . . . . . . . . . . . . . . . . . . . . . 66

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 SIM: RUNTIMEMANAGEMENT FORANYTIME NEURAL NETWORK IN SHARED
SENSING INFRASTRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Handling dynamics in single stakeholder scenario . . . . . . . . . . . 73
5.2.2 Handling dynamics in multistakeholder scenario . . . . . . . . . . . . 74
5.2.3 Challenge to handling dynamics in multistakeholder scenario . . . . . 75

5.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.1 Anytime Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Managing Anytime Neural Networks . . . . . . . . . . . . . . . . . . 79
5.3.3 SIM Design Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.1 Input of The System . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4.2 Monitoring Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.3 SIM Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.4 Properties of SIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.5 Feedback Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.1 Platform and Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.2 Point of Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6.1 Overall Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6.2 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

v



5.7 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 FUTURE WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.1 More Complex Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2 Enforcing Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Automatic Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

vi



LIST OF FIGURES

2.1 GRAPE Control Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 GRAPE Control Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 GRAPE Performance Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 GRAPE energy savings compared to race-to-idle. . . . . . . . . . . . . . . . . . 21

2.5 GRAPE energy efficiency (performance/Watt) compared to race-to-idle. . . . . 23

2.6 Average Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 GRAPE comparison with Equalizer-to-idle in 25% goal (top-left chart), 50% goal

(top-right chart), 75% goal (bottom-left chart) and unconstrained performance

(bottom-right chart). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 GRAPE energy saving compared to race-to-sleep. . . . . . . . . . . . . . . . . . 26

2.9 Energy Reduction in Varying Idle Power . . . . . . . . . . . . . . . . . . . . . . 26

3.1 GPU Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 GPU Hardware Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 A GPU application with two kernels (a), each of which is divided into cooperative

thread arrays (CTAs). The CTAs are scheduled in hardware (b), which assigns

CTAs to SMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 MERLOT block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Running time normalized to deadline. The left figure shows the results where the

worst case is 1.5× the average case and the right side shows the case where the

ratio is 2.0×. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Energy normalized to the race-to-idle approach. The left figure shows the results

where the worst case is 1.5× the average case and the right side shows the case

where the ratio is 2.0×. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 MERLOT and GRAPE Performance . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



3.8 MERLOT and GRAPE Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1 ALERT inference system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Result Summary: average performance normalized to OracleStatic (Smaller is

better; Details in Table 4.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Minimize error rates w/ latency, energy constraints @ CPU1. ALERT in blue;

ALERTTrad in orange; constraints in red. Memory contention occurs from about input 46 to

119; Deadline: 1.25× mean latency of largest Anytime DNN in Default; power limit: 35W. . . 67

5.1 Using ANN to handle multitenancy . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Schedulability Analysis of Anytime Neural Network vs Traditional Neural Network 74

5.3 Two Flexible DNN without Coordination . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Two Flexible DNN with Coordination . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Comparison of Embedded Scheduling vs Ours . . . . . . . . . . . . . . . . . . . 76

5.6 Comparison of Embedded Scheduling vs Ours . . . . . . . . . . . . . . . . . . . 77

5.7 Traditional and Anytime DNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 Algorithm Building Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9 Error of Cooperative Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.10 Error of untruthful stakeholder . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.11 Error of truthful stakeholder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

viii



LIST OF TABLES

2.1 Notation used in the paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Notation used in the paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Resource Allocator Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Settings and schemes under evaluation (* measured under default setting without

resource contention) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Average energy consumption and error rate normalized to OracleStatic, smaller

is better. (Each cell is averaged over 35–40 constraint settings; superscript: #

of constraint settings violated for >10% inputs and hence excluded from energy

average.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 ALERT normalized average energy consumption and error rate to OracleStatic @

Sparse ResNet (Smaller is better) . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 Notation used in this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Model of Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.3 Runtime Statistic of Application . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Anytime Workloads Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

ix



ABSTRACT

Many computer systems and applications, from small embedded systems to large datacenters

have deployment requirements. Meeting these requirements in a dynamic environment is

challenging and requires flexibility from the application and the system.

Flexibility is the ability to trade-off the value of one measure space by adjusting the value

of another measure space. For example, both DNN and approximate computing applications

can reduce their runtime latency by sacrificing their output accuracy. However, managing

this flexibility is difficult. Prior approaches do not incentivize flexibility and cooperation. In

the single stakeholder scenario where applications come from one stakeholder, they do not

cooperate with the application and system knobs which makes the deployment inefficient in

terms of energy, output accuracy, and performance. In the multistakeholder scenario, they do

not incentivize the flexibility of applications which make flexible application produce higher

output error.

Our first contribution is GRAPE and MERLOT, a hardware feedback mechanism to meet

latency requirements while reducing energy usage. GRAPE is a hardware control system

for GPU that provides a soft guarantee to meet the performance requirements. Meanwhile,

MERLOT is a real-time hardware scheduler that provides a hard real-time guarantee.

Our second contribution is ALERT, runtime management for Deep Neural Networks that

decrease output error or energy usage while meeting latency requirements. ALERT achieves

cooperation between application and system by coordinating the flexibility offered from both.

ALERT uses a probabilistic feedback mechanism that predicts the energy, performance, and

output accuracy of the applications during the runtime.

The third contribution is SIM, runtime management that incentivizes the flexibility of

applications in the multistakeholder scenario. Prior approaches inadvertently disincentivize

flexibility by forcing flexible applications to adapt to meet their deployment requirement,

thus encouraging greedy behavior where every stakeholder deploys inflexible approaches that

x



consume as many resources as possible. SIM instead only enforces the adaptation for the

application that holds the most resources. In each iteration, on behalf of the applications,

SIM would make an application to a configuration that minimizes their output error such

that the resource usage is either less than the application that holds most resources or higher

as long as there are enough slack resources. SIM incentivize the deployment of flexible

application by giving opportunity for all of the applications to fight for the slack resources

by being flexible.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Many computer systems and applications, from small embedded systems to large datacenters

have deployment requirements. For example, neural networks deployed in remote sensing

infrastructure needs to minimize their output error while meeting latency deadlines and

energy budgets. Meanwhile, a software application deployed in a large data center needs to

minimize energy and meet Quality of Service (QoS) requirements. Meeting these deployment

requirements in a dynamic environment is challenging and requires flexibility from the

application and the system.

Flexibility is the ability to trade-off the value of one measure space by adjusting the

value of another measure space. For example, both neural networks and approximate

computing applications can reduce their runtime latency by sacrificing their output accuracy.

Meanwhile, the computer hardware can run in different DVFS configurations to adjust

its performance and energy usage. However, managing this flexibility is difficult. Prior

approaches do not incentivize flexibility and cooperation. In the single stakeholder scenario

where applications come from one stakeholder, they do not cooperate with the application

and system knobs which makes the deployment inefficient in terms of energy, output accuracy,

and performance. In the multistakeholder scenario, they do not incentivize the flexibility of

applications which make flexible application produce higher output error.

In this dissertation, we incentivize the flexibility and cooperation in computer systems

using feedback mechanisms. We focus on addressing these questions:

• How do we incentivize the hardware flexibility for interactive GPU applications?

• How do we incentivize the flexibility and cooperation of both application and system

knobs for DNN deployment?
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• How do we incentivize the flexibility and cooperation of anytime algorithms in the

multistakeholder deployment scenario?

1.2 Contributions

This dissertation addresses the flexible management of applications and systems. We answer

the first question by proposing GRAPE and MERLOT, a hardware feedback mechanism to

meet latency requirements while reducing energy usage. We answer the second question by

proposing ALERT, runtime management for Deep Neural Networks that decrease output

error or energy usage while meeting latency requirements. We answer the third question by

proposing SIM, runtime management that incentivizes the flexibility of applications in the

multistakeholder scenario. We describe the overview of contributions below.

1.2.1 GRAPE

Many applications have performance requirements (e.g., real-time deadlines or quality-of-

service goals) and we can save tremendous energy by tailoring resource usage so the application

just meets its performance using the minimal resources. This problem is a classic constrained

optimization: the performance goal is the constraint and energy consumption is the objective

to be optimized. While several existing hardware approaches solve unconstrained optimizations

(i.e., maximizing performance or minimizing energy), we are not aware of a hardware

approach that minimizes GPU energy under an externally defined performance constraint.

Therefore, we propose GRAPE, a hardware control system for GPUs that coordinates

core usage, wavefront/warp action, core speed, and memory speed to deliver user-specified

performance while minimizing energy. We implement GRAPE in VHDL (to demonstrate

feasibility) and as an extension to GPGPU-Sim (for performance and power measurement).

2



1.2.2 MERLOT

Correct functioning of embedded systems requires strict timing guarantees. Traditionally,

enforcing timing guarantees is the operating system’s responsibility. The OS scheduler

assigns sufficient resources to an application task to ensure it meets its deadline. Meeting

hard real-time deadlines requires the scheduler to be conservative and allocate for the worst

case timing; when behavior is not worst case, extra resources are allocated and energy

is wasted. Some software schedulers reduce this energy waste by recognizing when an

application is ahead of a worst case schedule and reclaiming unneeded resources, but they are

fundamentally limited by (1) overhead and (2) a lack of visibility into low-level resource usage.

Therefore, this paper advocates hardware assistance for energy management of hard real-time

tasks. Specifically, we propose MERLOT, a hardware-based resource manager for GPUs that

enforces software-specified timing guarantees with minimal energy. We implement MERLOT

in VHDL and find that its performance, power, and area overheads are minuscule. We

implement MERLOT in GPGPU-Sim to test timing and energy consumption and compare

to two software-only approaches: one that always allocates for worst case timing and an

intelligent approach that reduces resource usage when it recognizes better than worst case

behavior.

1.2.3 ALERT

An increasing number of software applications incorporate runtime Deep Neural Networks

(DNNs) to process sensor data and return inference results to humans. Effective deployment

of DNNs in these interactive scenarios requires meeting latency and accuracy constraints

while minimizing energy, a problem exacerbated by common system dynamics.

Prior approaches handle dynamics through either (1) system-oblivious DNN adaptation,

which adjusts DNN latency/accuracy tradeoffs, or (2) application-oblivious system adaptation,

which adjusts resources to change latency/energy tradeoffs. In contrast, this paper improves

3



on the state-of-the-art by coordinating application- and system-level adaptation. ALERT,

our runtime scheduler, uses a probabilistic model to detect environmental volatility and

then simultaneously select both a DNN and a system resource configuration to meet latency,

accuracy, and energy constraints. We evaluate ALERT on CPU and GPU platforms for

image and speech tasks in dynamic environments.

1.2.4 SIM

Recent work has proposed shared sensing infrastructure, multi-tenant embedded systems

that different scientists can apply to deploy neural networks to process information collected

from a third-party sensor. Examples include the Array of Things in Chicago and the National

Ecological Observatory. Scheduling on these devices is difficult. They want to accommodate

as much science as possible while keeping the neural network accuracy as high as possible.

They are all subject to dynamic workload changes (as networks from different scientists enter

and exit the system). Prior work has proposed anytime networks that flexibly operate across

a wide range of accuracy/latency tradeoffs to minimize neural network error in dynamic

environments. These anytime networks achieve great results when deployed by a single

stakeholder (e.g., in a traditional embedded system); however, we find that anytime networks

by themselves are a poor solution to the problem of shared sensing infrastructure as the

networks are deployed by different stakeholders (i.e., the different scientists). Specifically, we

find that traditional multi-stakeholder schedulers and traditional embedded scheduling based

on worst-case execution time sacrifice accuracy compared to an optimal schedule. Perhaps

worse, we find that applying prior approaches to SSI disincentivizes the deployment of

flexible, anytime networks and encourages greedy behavior where every stakeholder deploys

networks that consume as many resources as possible. In this paper, we identify this problem

and propose a scheduler that incentivizes Anytime networks by rewording stakeholders that

deploy such flexible networks and detecting and punishing bad actors that are inflexible and

4



consume the most resources.
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CHAPTER 2

GRAPE: MINIMIZING ENERGY FOR GPU APPLICATIONS

WITH PERFORMANCE REQUIREMENTS

2.1 Overview

Energy consumption is a first order concern for computing systems, from mobile devices

(where it defines battery life) to supercomputers (where it determines operating costs). At

the same time, ever-increasing performance demands have led to the adoption of GPU-

based acceleration in a wide range of computing platforms. While GPUs deliver tremendous

computational throughput, they consume a significant portion of total system energy. Therefore,

this chapter studies hardware support for GPU energy reduction when executing applications

with performance requirements.

Such applications are not required to achieve the best possible performance, but deliver

results with predictable timing — often expressed as a latency or quality-of-service goal.

Examples exist in mobile platforms — including video, media capture, and display where

the system interacts with a user ([114]). At the other end of the computing spectrum, future

supercomputer workloads will include interactive simulations and data analysis applications

([111, 100]). In these cases, applications should not run as fast as possible, but meet their

performance requirements with minimal energy.

Many prior approaches manage resources for energy reduction. Some consider a single

resource only, eg. CPU ([79]) or memory ([27]) frequency. Others coordinate multiple

resources for greater energy savings ([44, 92, 53, 30, 113]). Finally, some approaches incorporate

application-level knowledge (e.g., frame rates) to tailor resource usage to an application’s

frame-based performance requirements [97, 138]. While these approaches combine multi-

component management with domain knowledge, they do so in software. We are not aware of

a hardware approach that manages multiple components to meet performance requirements

6



while minimizing energy.

A hardware resource management system has the potential to both remove the optimization

burden from software and react more quickly than software can. Of course, providing a

hardware solution presents several challenges:

• Overhead: Significant area, time, or power overhead will diminish any potential gains.

• Unknown Applications: To support different applications; hardware management

should (1) rapidly detect applications’ response to different resources and (2) react

when this response changes (eg. it transitions from memory bound to compute bound).

Figure 2.1: GRAPE Control Diagram

To provide hardware resource management, we introduce GRAPE (GPU Resource Adaptation

for Performance and Energy). GRAPE is a hardware control system for GPUs designed

to meet user-specified performance while minimizing energy through management of (1)

streaming multiprocessors (SMs), (2) wavefronts/warps, (3) SM speed, and (4) DRAM speed,

while keeping overhead low. Figure 2.2 illustrates the GRAPE controller’s block diagram.

The application provides a performance goal in the form of a target computation rate. This

target is compared to the current performance and the difference is passed to a controller.

The controller computes a signal indicating how much to speedup the application. This

speedup signal is passed to a translator, which converts speedup into specific allocations

7



of SMs, wavefront/warps, SM speed, and DRAM speed that deliver the controller-specified

speedup with minimal energy. Each resource is adjusted and the application executes with

the new resource configuration. GRAPE then observes both the stall behavior and the new

performance of the application. The stall behavior will be used to update translation on the

next iteration, while the performance is fed back into the controller and the process begins

again. Compared to prior work, GRAPE provides three innovations:

• The domain knowledge comes at runtime in the form of a performance requirement. For

this paper, the desired performance is expressed as instructions per second. GRAPE’s

design, however, is independent of any one metric; eg. it could be trivially modified to

support floating point rate. GRAPE’s general interface supports frame-based applications

as well as potential future interactive applications.

• All management is performed in hardware. Whereas prior approaches for constrained

optimization in GPUs require software support, GRAPE’s hardware solution meets

performance goals with minimal energy.

• GRAPE’s control theoretic design provides some formal guarantees about its dynamic

behavior, including guaranteed convergence to the desired performance and bounded

convergence time. These guarantees make are appropriate for meeting soft real-time

requirements.

We integrate GRAPE into GPGPU-Sim v3.2.2 ([7]) and GPUWattch ([80]) and then

it using 17 benchmarks drawn from Rodinia ([20] and Parboil [118]). We compare to the

strategy of racing-to-idle; ie. allocating all resources and transitioning to a low-power idle

state when a task completes. We also implement GRAPE in VHDL to demonstrate its

feasibility. The evaluation shows that GRAPE provides:

• Low Overhead: We synthesize the VHDL for an FPGA using Quartus to demonstrate

feasibility and provide a rough estimate of overhead. The PowerPlay Early Power

8



Estimator shows that GRAPE needs 0.478 Watts to operate.

• Performance Predictability: Across a range of different targets (from 25% to 100%

of maximum achievable performance), GRAPE meets the goal with only 0.75% average

error.

• Energy Efficiency: At low performance targets, GRAPE consumes only 74% of the

energy of race-to-idle. At higher performance targets, the energy savings diminishes;

however, even at maximum performance GRAPE reduces energy consumption by

9.02% compared to allocating all resources.

• Peak Power Reduction: At low performance targets, peak power is only 40.29% of

race-to-idle. At maximum performance, peak power is 87.48% of race-to-idle.

• Competitiveness with Prior Work: GRAPE’s knowledge of performance requirements

allows it to save substantial energy over Equalizer ([113]), a prior approach that is not

aware of user-defined performance goals.

GRAPE is for applications with performance constraints; however, its low overhead

allows it to be incorporated into many GPU designs. Overall this paper makes the following

contributions:

• Developing a hardware control framework that adapts resource usage to meet application

performance requirements with minimal energy.

• Evaluating the approach empirically.

• Releasing the code (both simulation and VHDL) as open source so others can expand

or evaluate it 1.

1. Available at: https://github.com/grapemicro/GRAPE.git
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To the best of our knowledge, GRAPE is the first approach to propose a hardware

solution for reducing GPU energy while meeting user-defined performance goals.

2.2 Design and Implementation

Figure 2.2: GRAPE Control Diagram

GRAPE is a hardware control system for GPUs designed to meet user-specified performance

while minimizing energy through management of (1) streaming multiprocessors (SMs), (2)

wavefronts/warps, (3) SM speed, and (4) DRAM speed, while keeping overhead low. Figure

2.2 illustrates the GRAPE controller’s block diagram. The application provides a performance

goal in the form of a target computation rate. This target is compared to the current

performance and the difference is passed to a controller. The controller computes a signal

indicating how much to speedup the application. This speedup signal is passed to a translator,

which converts speedup into specific allocations of SMs, wavefront/warps, SM speed, and

DRAM speed that deliver the controller-specified speedup with minimal energy. Each

resource is adjusted and the application executes with the new resource configuration.

GRAPE then observes both the stall behavior and the new performance of the application.

The stall behavior will be used to update translation on the next iteration, while the
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performance is fed back into the controller and the process begins again.

We detail each GRAPE module in turn. For each of the three modules we give an intuitive

overview and then formally specify its behavior in the form of equations and algorithms.

The final subsection discusses GRAPE’s hardware implementation. Table 5.1 summarizes

the notation used throughout this section.
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Table 2.1: Notation used in the paper.

Symbol Meaning

Controller
guser performance goal set by the user
t time index
e performance error
g internal performance goal set by controller
α control correction constant
ŵ current workload
x inverse workload
x̂ a posteriori estimate of x
x̂− a priori estimate of x
p a posteriori performance variance estimate
p− a priori performance variance estimate
k Kalman filter gain
h current performance
s general control speedup signal

Translator
cost power cost
sm status of SM in GPU
nSM number of SMs
nW number of wavefronts
DRAMstall stall from SM to DRAM
SMstall stall in SM pipeline due to memory request
DRAMthreshold stall threshold for DRAM
SMthreshold stall threshold for SM
M ordered set of memory configurations
MEMindex index in M ; ie. a specific configuration
sMEMindex speedup value of memory configuration
cMEMindex power cost of memory configuration
fMEMindex memory frequency of configuration
SMindex SM configuration
sSMindex speedup of SM configurations
cSMindex power cost of SM configurations
fSMindex SM frequency of configuration
fmax maximum SM frequency available
costtemp temporary cost for finding selection
costmin least cost for finding selection

Model Update
highboundMEMindex upper bound on speedup for mem. config.
lowboundMEMindex lower bound on speedup for mem. config.
β learning rate

2.2.1 The Controller

The controller determines how much to speed up the application at time t. It does so by

computing the error between the desired behavior and the measured behavior. The controller
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accounts for both immediate behavior — eg. application performance is too low at this

iteration — and long-term behavior — eg. the application initially ran too slowly and now

needs extra speed to meet the overall performance target. Additionally, the controller tailors

response to individual applications — or phases in applications — by continually estimating

the application workload; ie. the application’s instruction latency with minimal resources.

GRAPE’s controller has several strengths: (1) it uses a simple feedback model, which is easy

to calculate in hardware at runtime, (2) it is provably convergent to the desired behavior,

and (3) it is robust in the face of noise and model errors [81].

It is assumed that the controller executes at discrete time steps t, and the controller

executes Algorithm 1 at each step. The algorithm has four inputs: (1) the user-specified

performance goal guser, (2) the current measured performance h(t), (3) the number of

instructions completed so far I, (4) and the elapsed time executing the application ℓ. The

controller first sets an internal goal g(t) allows GRAPE to correct for any errors it may

have made previously — if GRAPE is initially too slow, it will speed up its own internal

goals. GRAPE then computes the difference between its internal goal and the measured

performance at the current time (Algorithm 1, line 2).

Phase Estimation. Next, GRAPE estimates the application workload at the current

time ŵ(t). The workload is a key parameter that tunes control response to the current

application; it represents the number of instructions that the application would retire in a

time step if allocated the minimal resources. As the application goes through phases, this

value might change, so it is continually updated as part of the control action. Lines 4-9 of

Algorithm 1 estimate workload using a standard one-dimensional Kalman filter formulation

[128]. GRAPE uses a Kalman filter because it is specifically designed to provide accurate

estimations in noise and it is exponentially convergent, meaning that the time it takes to

converge to the correct estimation is proportional to the logarithm of the error between the

initial estimate and the true value [16].
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Algorithm 1 The Controller

Require: guser ▷ application specified performance goal
Require: h(t) ▷ instructions per second at time t
Require: I ▷ completed instructions
Require: ℓ ▷ elapsed time
1: procedure The Controller

▷ Update local goal based on global progress
2: g(t) = guser − α(I/ℓ− guser)

▷ Error between new goal and current performance
3: e(t) = g(t)− h(t)

▷ Estimate application workload (i.e., phases)
4: x̂−(t) = x̂−(t− 1)
5: p−(t) = p(t− 1) + q(t)

6: k(t) =
p−(t)s(t−1)

[s(t)]2p−(t)+o

7: x̂(t) = x̂−(t) + k(t)[h(t)− s(t− 1)x̂−(t)]
8: p(t) = [1− k(t)s(t− 1)]p−(t)
9: ŵ(t) = 1

x̂(t)
▷ Compute speedup

10: s(t) = s(t− 1) + ŵ(t)· e(t)
11: return s(t) ▷ speedup to apply at current time
12: end procedure

The last step in each control iteration is to use the error (from Algorithm 1 line 2) and

the workload estimate (from line 9) to compute the speedup (line 10-11). The speedup is

computed according to the Proportional Integral (PI) control law using standard techniques

[41]. This speedup signal is then passed to the translator.

Algorithm 1 is constant time and a small number of instructions. It can easily be

implemented in fixed-point arithmetic for hardware. Despite this simplicity, control adapts

in several ways. First, by keeping an internal goal, separate from the externally specified

goal, the controller can adapt to both errors it generates and to phases in application

behavior that radically change the performance. Second, the Kalman filter provides fine

grain customization of control by adapting to the current workload. Note that as workload

increases, the controller’s output speedup will also increase (line 10), which is consistent

with intuition. Similarly, if the application suddenly entered a phase where it performed less
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work, then the controller would reduce speedup appropriately.

One of the advantages of the GRAPE approach is that the control theoretic techniques

presented here emit formal analysis, which heuristic techniques do not. While a rigorous

mathematical analysis is beyond the scope of this paper (and also straightforward as GRAPE’s

controller is built on top of several standard mechanisms). The two major advantages of

GRAPE’s controller are: 1) it will converge to the desired performance (if achievable) and 2)

the convergence time is bounded by the logarithm of the workload error estimate produced

by the Kalman filter. Intuitively, GRAPE will hit the performance target and do so in a

small number of steps (ie. invocations of Algorithm 1).

2.2.2 The Translator

The translator takes the generic speedup signal and produces a specific setting for the number

of SMs, wavefronts, SM frequency, and memory frequency. Ideally, the translator would

guarantee the desired speedup is achieved and minimize energy usage, which is properly

an integer programming problem, and thus expensive to solve in hardware exactly even for

small numbers of configurable resources. GRAPE, therefore, relies on a heuristic solution

based on empirical observations.

At a high-level, the heuristic solution first finds the fastest combination of SMs and

wavefronts for this application, it then selects the appropriate memory frequency based

on the observed number of memory stalls, and finally reduces the SM frequency as much

as possible while still achieving the speedup signal. Thus this heuristic still achieves the

required speedup, but may sacrifice optimality to produce a simple implementation. Said

another way, the heuristic will meet the required performance, but may use more energy

than a true optimal solution.

Algorithm 2 details GRAPE’s translation stage. It is broken into three distinct phases

labeled with comments in the algorithm.
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Algorithm 2 The Translator

Require: s(t) ▷ speedup provided by controller
1: procedure The Translator

▷ Compute the number of SMs
2: nSM = 0
3: for all sm in the GPU do
4: if sm == active then
5: nSM = nSM + 1
6: end if
7: end for

▷ Compute the number of wavefronts
8: if Cachestall ≥ Cachethreshold then
9: if nW > 32 then
10: nW = 32
11: end if
12: nW = nW − 4
13: else
14: nW = nW + 4
15: end if

▷ Compute the SM and memory frequencies
16: if DRAMstall ⩾ SMstall then
17: M = {6, 7, 8}
18: else
19: M = {1, 2, 3, 4, 5, 6}
20: end if
21: costmin =∞
22: for MEMindex ∈M do
23: if si ≥ s(t) then

24: fSMindex = ⌈fmax· s(t)
sMEMindex

⌉
25: costtemp = cSMindex· cMEMindex
26: if costtemp ≤ costmin then
27: costmin = costtemp
28: fSM ← fSMindex
29: fMEM ← fMEMindex
30: end if
31: end if
32: end for
33: return nSM ▷ number of SMs to use
34: return nW ▷ number of wavefronts/warps
35: return fSM ▷ SM frequency
36: return fMEM ▷ DRAM frequency
37:

38: end procedure

16



Number of SM. The first phase (lines 2-7) simply counts how many SMs are active,

meaning they have a CTA(Cooperative Thread Array) running. Empirically, it is always

better to run as many SMs as possible. If the SM is not active, then GRAPE will set it to

its lowest frequency setting.

Wavefront Scheduler. The next phase (in lines 8-15) determines the number of

wavefronts to use. The key to determining the number of SMs is looking at the time the SM

pipeline is spent stalling. If the stalls are above a threshold, then GRAPE limits wavefronts

to 32 — 2/3 of its maximum capacity. We move wavefronts in steps of 4 per control action

as we find it gives the best results empirically.

SM and DRAM DVFS. The final phase of translation (lines 16-32) set the SM and

DRAM frequency. This phase uses two small tables that are stored in hardware and each

indexed by an id. Each id has its own frequency, estimated speedups and costs (in power).

In this final phase, GRAPE is heuristically determining whether the application is compute

or memory bound. It first checks if memory stalls are above a certain threshold (line 16).

If they are, the application is considered memory bound, and GRAPE will only consider

actuator settings that provide high memory frequency (line 17). Otherwise, GRAPE classifies

the application as compute bound and only considers slower memory settings. At this stage,

these settings are simply indexes into the tables mentioned above.

Once GRAPE has determined the settings to consider, it walks through those memory

settings trying to find the slowest frequency setting that will meet or exceed the specified

speedup (lines 21-31). Each step of the for loop matches a memory frequency setting to a

corresponding SM frequency, determines whether or not that is above the required speedup,

and then determines whether the cost (in power) is less than the lowest cost found so far. If

the cost is lower, then GRAPE saves this new cost and the settings it found. After completing

this final phase, the translator returns the number of SMs, number of wavefronts, the SM

frequency, and the DRAM frequency.
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Translation takes time proportional to the number of indices in the tables. In practice

this tends to be a small number as hardware supports only a few frequency settings.

2.2.3 Actuator Model Update

The translator is reliant on models of frequency costs and speedups to produce good results.

These values are not universal, however, and may differ for different applications. For

example, a slight decrease in memory frequency may not have significant effect on a compute-

bound benchmark, but it will for a memory-bound one. To account for these differences

GRAPE updates these models on the fly. Initial actuator models assume that cost and

performance between actions is linear, then after several decision period GRAPE will update

the models to reflect actual behavior of the application under control.

We note that there is a complicated, non-linear relationship between the resources used,

application workload, measured behavior and system noise. Rather than build a computationally

expensive model, GRAPE adopts the approach of continually estimating this non-linear

behavior with a series of linear models, including the Kalman filter presented above and the

model update presented here. This approach is analogous to the way scientific applications

model complicated, non-linear physical systems with iterative application of linear equations.

Every time GRAPE computes a new control action, it updates the table that stores its

models of speedup and cost using Algorithm 3. This is a simple algorithm that updates the

model as a function of its current value and the measured behavior. Line 2 computes a new

estimate for the memory speedup in the last memory configuration used. The constant fmax

represents the maximum frequency for SMs which is 800 MHz. β the learning rate which

affects how fast the value changes. For example, β = 1 would always use the last measured

value and ignore history. We set this value to 0.85 in our implementation. Lines 3-8 clamp

the new value such that not overlap the higher and lower ID value to prevent overflow in the

fixed-point hardware implementation. Line 9 updates the cost model, or power consumption,
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Algorithm 3 Update Model

Require: h(t) ▷ measured throughput
Require: ŵ(t) ▷ estimated workload
Require: cost(t) ▷ measured cost (power)
1: procedure Update Model

2: sMEMindex = β· fmax
fSMindex

w(t)·h(t) + (1− β)· sMEMindex

3: if sMEMindex ≥ highBoundMEMindex then
4: sMEMindex = highBoundMEMindex
5: end if
6: if sMEMindex ≤ lowBoundMEMindex then
7: sMEMindex = lowBoundMEMindex
8: end if
9: cMEMindex = β

cost(t)
cSMindex

+ (1− β)cMEMindex

10: end procedure

of applying this system resource configuration.

GPU applications generally exhibit three distinct kinds of behavior depending on the

resource that bottlenecks performance: compute, memory, or cache. Despite, this difference,

however, we find that it is only necessary to update the model of memory response — the

SM frequency response tends to keep linear for all types of benchmarks. Thus, we find that

updating the SM frequency model is unnecessary. Therefore, to save area overhead, we only

update the memory frequency model (using Algorithm 3) and keep the SM frequency model

constant.

2.2.4 Hardware Implementation

GRAPE is designed to be implementable in hardware. While we do not have the resources

to synthesize a GPU that includes GRAPE, we believe it is important to demonstrate that

GRAPE can be implemented in hardware. We therefore implement (and release as open

source) a VHDL implementation of GRAPE.

To get some specific numbers, we synthesize GRAPE for an FPGA using Quartus II

software. The target FPGA device we use is DE2-115. We implement a fixed point package
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to perform multiplication and division in VHDL [13]. We synthesize the design and find that

GRAPE requires 12,154 logic elements. TimeQuest timing analyzer shows that GRAPE’s

fmax is 1.35 MHz or 519 cycles overhead in GPU SM frequency. PowerPlay Early Power

Estimator shows that GRAPE needs 0.178 Watts to operate. We share this implementation

on the link below 2.

We implemented the dynamic frequency and SM actuator by masking the clock in

GPGPU-Sim. Wavefront actuator implemented by swl scheduler. We edit the GPUWattch

to count the dynamic voltage and leakage static power [17]. We use GTX480 model provided

by those simulators. We model the DVFS overhead as 512 cycles [73]. These actuators

increase the GPU power consumption by 0.3 W. One decision period for GRAPE is 8192

cycles. We include all of this overhead during simulation in GPGPU-Sim.

GRAPE samples the sensors every 4096 cycles. We assume there is no overhead in

sampling the data. Control calculation is called early at 550 cycles earlier to reduce the

error in calculation. Frequency overhead is 512 cycles, during this overhead period the

simulator runs the application in previous frequency action.

Overall, we find that these results show GRAPE to be low overhead and easily implemented

in hardware. The area, power, and timing would probably all improve if GRAPE was

synthesized in ASIC or custom VLSI and added to a real GPU implementation. For the

purposes of our evaluation we use these numbers from the FPGA for all experiments.

2.3 Evaluation

This section presents our empirical evaluation of GRAPE, using the experimental setup

described in the previous section. We first measure GRAPE’s ability to meet performance

requirements. We then evaluate GRAPE’s energy savings and peak power reduction. The

section concludes by studying the impact of idle power on energy savings.

2. Available at: https://github.com/grapemicro/GRAPE.git
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Figure 2.3: GRAPE Performance Accuracy
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Figure 2.4: GRAPE energy savings compared to race-to-idle.

2.3.1 Performance Impact

For each benchmark we evaluate several performance goals. Specifically, we set a performance

goal corresponding to X% of maximum performance where X ∈ {25, 50, 75, 100}. For

example, FFT has a maximum performance of 408,346 MIPS (millions of instructions per

second). The 25% goal for FFT means we set the performance at 102,086 MIPS.

We quantify error as the relative error expressed as a percentage. Relative error is the

difference between the target and achieved performance divided by the target. We only count

error if GRAPE runs the application below goal and count the error as zero if GRAPE runs

the benchmark above the goal. Of course, running above the goal will incur additional energy

costs, but we evaluate energy in the next section.

Figure 2.3 shows the relative error for each benchmark and performance target. GRAPE

successfully maintains the performance goal achieving, on average, 99.25% of the desired

performance; ie. 0.75% average error across all performance targets. We note that the race-

to-idle strategy will never miss a target – the major advantage of this strategy – because it

21



always completes all work in the default configuration and idles.

While GRAPE’s accuracy is, in general, quite good, the results demonstrate two areas

where GRAPE struggles. First, error increases as the performance target increases. Second,

the errors are highest for the LUD and SAD benchmarks. As the performance target

increases, GRAPE’s margin for error decreases. While GRAPE’s controller is self-correcting,

at high performance targets, there may simply not be enough time to correct an error before

the benchmark completes. This lack of time for the self-correction mechanism to take effect is

the same issue that affects the LUD and SAD benchmarks. Both of these benchmarks consist

of multiple kernels where the first kernel has very high parallelism and subsequent kernels

have lower parallelism. GRAPE reduces resource usage for the high parallelism kernel, but

then it is not physically possible to meet the performance target when the lower-parallelism

kernels start to execute.

This pattern – highly parallel kernels followed by low-parallelism kernels – represents the

worst case for GRAPE. Despite this worst case behavior, the results for SAD and LUD are

still fairly good. We note that the results would improve if we ran these kernels in a loop,

as that would allow GRAPE’s self-correction mechanism to work over repeated application

invocations. In addition, in future work, we could address this issue by combining GRAPE

with static program analysis to provide GRAPE with the foreknowledge necessary to address

this pattern.

2.3.2 Energy Impact

Figure 2.4 shows GRAPE’s energy consumption and figure 2.5 shows its energy efficiency

(performance/Watt). All numbers are normalized to the race-to-idle strategy. By geometric

mean, targeting performance goals of 25%, 50%, 75% and 100% results in energy reductions

of 25.76%, 24.66%, 19.25% and 9.02% compared to race-to-idle (higher is better). Meanwhile,

targeting performance goal as 25%, 50%, 75% and 100% from default gives us 1.35×, 1.34×,
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1.25× and 1.11× energy efficiency (MIPS/Watt, higher is better) compared to race-to-idle.

At the 100% performance target, race-to-idle is not actually idling the system at all.

However, GRAPE’s intelligent resource allocation strategies provide relative energy savings

even when performance is not reduced. This is because GRAPE can reduce the energy

consumed by unnecessary resources even when running at maximum performance. For

example, GRAPE will reduce memory energy for compute bound benchmarks and reduce

compute energy for memory bound benchmarks, compared to race-to-idle.
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Figure 2.5: GRAPE energy efficiency (performance/Watt) compared to race-to-idle.

The kmeans benchmark gets the biggest benefit, as GRAPE increases its energy efficiency

up to 1.93× and achieves energy saving of 48.18% compared to race-to-idle. GRAPE’s

wavefront scheduling successfully configures the most effective wavefront available. This

increasing performance then turns into a reduction in resource usage. Streamcluster also

benefits from this scenario, increasing energy efficiency up to 1.42× and achieves energy

saving of 29.55%. GRAPE’s generality also benefits computational benchmarks like Hotspot

– increasing its performance efficiency up to 1.39× and achieves energy saving of 27.84%.

These results demonstrate the claim from the introduction: that careful tailoring of

resource usage can greatly reduce energy consumption compared to strategies like racing-

to-idle. Furthermore, these results demonstrate that it is possible to build a resource

management strategy into hardware and achieve good results.
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2.3.3 Power Impact

GRAPE not only decreases the energy consumption, it also decreases peak power consumption

significantly compared to racing to idle. As we see in figure 2.6 GRAPE successfully manages

the performance goal for 25%, 50%, 75% and 100% to give us 40.29%, 52.08%, 67.54% and

87.84% power reductions respectively.
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Figure 2.6: Average Power Consumption
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2.3.4 Comparison with Prior Work
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Figure 2.7: GRAPE comparison with Equalizer-to-idle in 25% goal (top-left chart), 50% goal
(top-right chart), 75% goal (bottom-left chart) and unconstrained performance (bottom-right
chart).

Figure 2.7 compares the energy savings of GRAPE to that of Equalizer [113], a comprehensive

dynamic system which coordinates SM frequency, DRAM frequency, interconnect frequency,

L2 frequency and number of CTA.While GRAPE performs constrained optimization (meeting

performance with minimum energy), Equalizer is an unconstrained optimizer, it provides no

performance guarantees, but generally tries to reduce energy without impacting performance.

In this section, we compare GRAPE’s constrained optimization approach to Equalizer-to-

idle.

The results show that GRAPE’s incorporation of performance requirements allows it to

save substantial energy compared to Equalizer for all the targets less than 100%. For the

100% target, GRAPE is similar to Equalizer. We emphasize that GRAPE is not designed

to improve on Equalizer, instead it solves a different problem: constrained optimization.

These results, however, demonstrate that GRAPE can provide competitive behavior on

unconstrained performance (bottom-right chart). Thus, GRAPE provides a new capability

without diminishing existing capabilities.
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Figure 2.8: GRAPE energy saving compared to race-to-sleep.
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Figure 2.9: Energy Reduction in Varying Idle Power

2.3.5 Sensitivity to Idle Power

GRAPE’s energy reduction is clearly sensitive to both the idle power consumption and the

performance goal. We have already explored sensitivity to various performance goals in the

above results. In this section we explore sensitivity to idle power.

Figure 2.8, compares GRAPE’s energy savings to a race-to-sleep strategy. We assume

sleeping GPU GTX480 power is 34.3265W, which all the SMs are in idle state and the voltage

is minimum [80] and that the sleep state can be entered and exited with no overhead (likely

an optimistic assumption). Compared to race-to-sleep, GRAPE can still increase the energy

efficiency to 1.18 and decrease the energy consumption to 0.86×.

GRAPE saves energy by finding the best configuration and avoiding the high idle power
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in the GPU. If the idle power is very low then the energy saving and energy efficiency

also become lower and if the idle energy is higher then the energy saving will be increasing

too. We show the relation between different idle power and energy savings in Figure 2.9.

However, due limitations in technology scaling, future processors are expected to decrease the

dynamic power while the leakage power – and thus, idle power – increase [72, 60]. Therefore,

we believe GRAPE will continue to be suitable and applicable to reduce future GPU energy

consumption while maintaining performance goals.

2.4 Conclusion

GRAPE is a resource management system for interactive GPU applications. GRAPE takes

a performance goal and then determines how to allocate resources to an application such

that the performance goal is met and energy is minimized. GRAPE uses a computationally

inexpensive control system which is easily realizable in hardware with low overhead. GRAPE

is highly accurate in delivering performance yet it provides significant energy savings for

applications with different performance goals. In addition, our results indicate that GRAPE

is competitive with prior approaches for un- constrained optimization – meaning that GRAPE

can have a positive benefit even for non-interactive applications. The combination of low-

overhead and competitiveness with prior techniques means that GRAPE could be integrated

into GPUs with almost no downside while providing significant energy savings for interactive

applications.
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CHAPTER 3

MERLOT: ARCHITECTURAL SUPPORT FOR

ENERGY-EFFICIENT REAL-TIME PROCESSING IN GPUS

3.1 Overview

Systems such as self-driving cars have enormous computational requirements and incorporate

GPUs ([33, 131]) and emerging GPU-like accelerators (e.g., for deep neural network sensor

processing [99]) to meet those computational demands. A number of software schedulers

have arisen for managing these GPU and accelerator resources to ensure complex embedded

applications—like autonomous vehicles—meet the timing requirements necessary to ensure

correct operation [33, 66, 65, 32, 87]. A secondary priority for these systems is minimizing

energy consumption given the timing constraints.

There is a natural tension between timing guarantees and energy efficiency. When

timing guarantees cannot be violated—ie. hard real-time requirements—software must

conservatively allocate resources for worst case [14]. This conservatism is wasteful when

inputs do not exercise the worst case execution path, consuming more energy than necessary

[70].

Several software approaches have arisen to augment real-time schedulers with energy

reduction [22, 112, 50, 12, 5, 38, 133, 55]. While these schedulers all differ in their details,

the unifying theme is the exploitation of timing slack. If the scheduler can detect a task will

terminate before its worst case schedule, the resulting slack can be converted into energy

savings. In a GPU application consisting of multiple kernels, if an early kernel finishes ahead

of schedule, then the slack can be transferred to the next kernel, slowing it down to save

energy without risking the overall application timing.

Implementing slack transfer requires the application to signal sub-task completion to the

software scheduler. This need for signaling, or checkpointing, limits the energy software can
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save through slack transfer. While kernels form a natural checkpoint, GPU applications may

have only a few kernels (or even just one). Each kernel, however, consists of thousands of

threads, making it tempting to use thread termination as a checkpoint. Signaling thread

completion to a software scheduler, however, requires making significant changes to GPU

code to trigger fine-grain communication between the GPU and CPU. Unfortunately, the

overhead of this increased communication will quickly overwhelm any energy savings.

Consequently, this paper advocates hardware support for managing GPU resources to

meet hard real-time deadlines with minimal energy by observing and managing timing slack

at a sub-kernel level. This hardware support is not designed to replace software scheduling,

but to complement it by extracting extra energy savings not available to software schedulers.

There are two advantages to hardware-based resource management for real-time processing

and one challenge to be addressed. The potential advantages are:

1. Fast reaction time. Hardware can perform fine-grained, low-overhead checkpointing to

determine definitively when a kernel is not worst case and reduce its resource usage.

Software cannot effectively detect or adapt to timing slack below the kernel level,

because it cannot know a kernel is ahead of schedule until it completes.

2. Knowledge of resource usage. Hardware has the most up-to-date information on a

kernel’s resource usage. Even a worst case kernel rarely requires all resources. One

kernel may require more memory bandwidth, while a different one requires more

compute. By observing usage, hardware can tailor resources to minimize energy while

ensuring timing requirements.

The challenge of hardware-based resource management for real-time systems, however, is

that software has all the information about timing requirements and progress. For example,

it is software that knows task periods and deadlines. Hardware resource management is

also not appropriate for all platforms, such as time-shared general-purpose processors, where

tasks are not required to be decomposed into identical threads operating on different data. A
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hardware approach does make sense, though, for the growing class of specialized accelerators

that have been proposed to increase performance and energy efficiency at the end of Dennard

scaling [123, 34].

To enable hardware resource management in GPUs, we propose a small change in instruction

set architecture that informs hardware of timing constraints. We show how to use this

information to build a hardware resource allocator that provides hard timing guarantees

with lower energy than state-of-the-art software-only approaches. While we think this

approach is generally applicable to a number of accelerators—including recently released

GPU-like accelerators for deep neural network based sensor processing [99]—we implement

and evaluate it for GPUs.

We call our systemMERLOT. It consists of an interface allowing software to communicate

timing requirements to hardware and a hardware resource manager that automatically

adjusts (1) GPU frequency, (2) memory frequency, and (3) GPU core usage. The interface is

a set of registers software uses to specify a GPU kernel’s deadline and worst case execution

time for a number of checkpoints hardware should take within the kernel. MERLOT begins

executing the kernel with all resources available. It then samples execution—measuring

progress as completed thread blocks—at fixed time intervals to determine (1) whether the

current kernel is worst case and (2) which resources the kernel actually needs to meet its

deadline. MERLOT then reduces the resources in use so that the software-specified deadline

is met while energy consumption is minimized.

Figure 3.1 presents a high-level overview of a GPU program. Programmers create software

applications that run on a traditional CPU and offload significant computation to the GPU,

which provides a much faster and more energy efficient platform for highly parallel, regularly

structured computations. The pieces of computation that are offloaded are called kernels,

which correspond to parallel loops in traditional programs. Kernels themselves are broken

up into cooperative thread arrays (CTAs), or blocks of threads that are executed in single-
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(a)
b

Figure 3.1: GPU Application

(a)
b

Figure 3.2: GPU Hardware Scheduling

Figure 3.3: A GPU application with two kernels (a), each of which is divided into cooperative
thread arrays (CTAs). The CTAs are scheduled in hardware (b), which assigns CTAs to SMs.

instruction multiple-data style on the GPU’s streaming multiprocessors (SMs), analogous to

CPU cores.

The kernel is the lowest-level software schedulable unit in a GPU program. Software

running on a CPU (whether real-time or not) is responsible for launching the kernel on the

GPU and synchronizing to ensure the kernel completes before the results are read from shared

memory. Many software schedulers exist that allow GPUs to be shared among multiple

processes [105, 67], and real-time schedulers exist that manage applications and kernels to

ensure predictable timing in GPU-augmented systems [66, 65, 32, 33].

Note, however, that while software specifies CTAs, it has no control over—or even

visibility into—how they are scheduled on the GPU hardware. While a GPU may have

dozens of SMs, a typical kernel will have 100s to 1000s of CTAs. Therefore, GPU hardware

maintains its own scheduling queue (as shown in Figure 3.2). As CTAs complete, hardware

is responsible for selecting the next CTA to run. While hardware-level schedulers have been

proposed [113], we know of only one that can provide soft timing guarantees [106], and we
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Figure 3.4: MERLOT block diagram

are not aware of any that support hard timing requirements.

Thus, in GPU-based systems there is divided knowledge. Software has information about

application structure and kernel timing requirements that hardware does not. Hardware,

however, can observe kernel progress at the much finer granularity of CTA completion.

Additionally, hardware has knowledge about what resources are actually in use; eg. whether

the kernel compute- or memory-bound. The primary goal of this paper is to bridge this

knowledge gap so that software can provide timing information to hardware, and hardware can

use that information to reduce energy while ensuring software-specified timing requirements

are met.

Figure 3.4 illustrates MERLOT’s design. When software launches a kernel on the GPU,

it specifies a number of checkpoints (in units of CTAs) and a worst case completion time (in

milliseconds) for each. These values are written into hardware registers on the GPU. As the

kernel executes, MERLOT measures the time at each checkpoint to determine whether or

not the kernel is ahead of its worst case timing.

If the kernel is ahead, then this timing slack can be transferred to the next checkpoint; ie.

MERLOT adjusts hardware resources to slow the next set of CTAs down such that energy

efficiency is maximized and the deadline is just met. MERLOT’s hardware consists of three

modules: (1) a checkpoint handler that tracks execution progress and determines available

slack; (2) an optimizer that turns the slack into specific settings for the number of SMs to

use, the SM frequency, and the DRAM frequency; and (3) a resource allocator that actually
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enforces the settings determined by the optimizer.

We implement MERLOT in VHDL and synthesize for an FPGA to show it can be

implemented in hardware. To demonstrate it meets hard real-time requirements on a GPU,

we integrate the design into GPGPU-Sim, a cycle-accurate simulator of an NVIDIA GTX

480 GPU [7]. We compare the timing guarantees and energy consumption to prior software-

only approaches that either (1) race-to-idle—completing the kernel as fast as possible and

then idling the GPU—or (2) transfer timing slack between kernels [12, 5, 38].

We test MERLOT with a wide range of applications and latency targets. MERLOTmeets

hard real-time deadlines. Compared to race-to-idle, MERLOT reduces energy consumption

by 16.43%. Compared to the sophisticated software scheduler that transfers slack between

kernels, MERLOT reduces energy consumption by 15.63%. Compared to a prior hardware

approach that provides only soft timing guarantees, MERLOT provides almost equivalent

energy savings without missing deadlines. MERLOT provides energy savings even when

deadlines are large multiples of the worst case latency. Finally, experiments with modified

power models show that MERLOT’s energy savings will increase as GPUs incorporate more

energy efficient features and lower-power idle states.

MERLOT’s primary contribution is recognizing the potential for energy savings by incorporating

hardware support into hard real-time scheduling. This energy savings arises from hardware’s

ability to quickly detect (1) when inputs are not worst case and (2) what resources are

actually needed by the current task. Once 1 and 2 are known, hardware can scale back

resource usage without violating the timing constraints. We demonstrate this benefit for

GPUs, but we believe the idea is widely applicable to the plethora of accelerators that

have recently been proposed for various specialized tasks. We release our modifications to

GPGPU-Sim as open source so that others can recreate or extend our results 1.

1. https://github.com/santriaji/MERLOT.git
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3.2 Design and Implementation

MERLOT provides architectural support for meeting hard real-time deadlines while minimizing

energy through management of a GPU’s (1) streaming multiprocessors (SMs or cores), (2) SM

frequency, and (3) DRAM frequency. We emphasize that MERLOT’s goal is not to replace

existing software schedulers, but to augment them by ensuring the software-specified timing

requirements are met while adjusting the specified resources to reduce energy. MERLOT

operates on hardware-level structures that are simply not accessible to software. Thus,

MERLOT allows existing software schedulers to focus on high-level scheduling decisions (eg.

when to schedule a kernel), while hardware focuses on low-level resource management, for

which it is better suited.

Figure 3.4 illustrates MERLOT’s design. When software launches a kernel on the GPU,

it specifies a number of checkpoints (in units of CTAs) and a worst case completion time (in

milliseconds) for each. These values are written into hardware registers on the GPU. As the

kernel executes, MERLOT measures the time at each checkpoint to determine whether or

not the kernel is ahead of its worst case timing. If the kernel is ahead, then this timing slack

can be transferred to the next checkpoint; ie. MERLOT adjusts hardware resources to slow

the next set of CTAs down such that energy efficiency is maximized and the deadline is just

met. MERLOT’s hardware consists of three modules: (1) a checkpoint handler that tracks

execution progress and determines available slack; (2) an optimizer that turns the slack into

specific settings for the number of SMs to use, the SM frequency, and the DRAM frequency;

and (3) a resource allocator that actually enforces the settings determined by the optimizer.

We detail each MERLOT module in turn. For each module we give an intuitive overview

and then formally specify its behavior in the form of equations and algorithms. The final

subsections discuss how MERLOT’s hardware structures can be trivially repurposed for

timing analysis instead of enforcement and then describe MERLOT timing guarantees and

implementation issues. Table 5.1 summarizes the notation used throughout this section.
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Table 3.1: Notation used in the paper.

Symbol Meaning
nCTAj number of CTAs in checkpoint j
wCTAj WCET of checkpoint j
tcurrent current time
o timing overhead
tahead timing slack
η slowdown factor ranged from 0 to 1
fmax maximum frequency id
λ frequency id ranged from 0 to fmax

fcrit critical frequency for energy efficiency
ALUutil ALU utilization in GPU, ranged from 0 to 1
thALU a threshold to distinguish memory and compute needs
sm status of SM in GPU
nSM number of SMs
fmem memory frequency of configuration
fSM SM frequency of configuration

3.2.1 Software-Hardware Interface

An exclusively software approach can only transfer slack between kernels. MERLOT allows

further energy savings by tracking CTA completions in hardware as checkpoints within a

kernel, allowing slack to be transferred within a kernel at a finer granularity than software

alone can handle. To ensure timing, however, hardware must be informed of software’s

requirements.

The interface between software and hardware is a set of special purpose registers on the

GPU that allow software to specify the number of checkpoints (in terms of number of CTAs

to complete) and the deadline for each checkpoint (in terms of the worst case timing for that

set of CTAs). A checkpoint j is a pair: the number of CTAs in a checkpoint nCTAj and

the worst case timing for that set of CTAs wCTAj . To keep the memory overhead low, we

bound the number of checkpoints to 16 per application in this implementation.

We believe this is a flexible interface that supports a wide range of software schedulers.

Using this simple interface, software can specify checkpoints per application or per kernel

by simply dividing existing timing requirements among the checkpoints. More sophisticated

schedulers with deep knowledge of the underlying hardware and data access patterns can
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even split timing requirements unevenly among CTAs. A methodology for worst case timing

analysis of kernels, CTAs, and threads in GPU applications can be found in [10]. Notably, as

MERLOT tracks individual CTAs’ completion time, MERLOT can be trivially extended to

produce per CTA timing reports (as described in Section III.E). Using this profiling mode,

a developer could first use MERLOT to better understand CTA timing and then switch to

enforcement mode using the deadlines produced from profiling.

3.2.2 Checkpoint Handler

Algorithm 4 lines 3–9 show pseudo-code for the checkpoint handler. Starting from the last

checkpoint, MERLOT counts CTA completion in hardware. When the count is equal to

a checkpoint count (ie. when the required number of CTAs has been completed), then

MERLOT measures the current time tcurrent. It then calculates how far ahead of schedule

it is tahead by subtracting tcurrent from the worst case time for this checkpoint wCTAj .

(Although beyond the scope of the paper, this interface could easily be extended to detect

when a kernel was behind the supposed worst case schedule and trigger a software interrupt

on the CPU.) MERLOT then calculates how much time until the next checkpoint’s worst

case deadline wCTAj+1. We note that if tahead > 0, then the system resources can be

reduced without jeopardizing worst case timing. Thus, tahead represents the timing slack

that hardware transfers from one set of CTAs to the other.

Given this timing information, MERLOT’s checkpoint handler then computes the slowdown

η that is permissible given the timing slack tahead. Note that this slowdown calculation (line

7 of Algorithm 4) includes the overhead o of changing hardware configurations—ie. the worst

case timing (in milliseconds) of adjusting the number of SMs in use, their frequency and the

DRAM frequency—which is set by the hardware developer. η is a fixed point number in

the range of 0 to 1. Smaller η corresponds to more timing slack, meaning the hardware can

reduce resources for the next checkpoint.
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As a final step, the checkpoint handler transforms η into an effective frequency λ my

multiplying η with the GPUs maximum clock frequency fmax and rounding to the nearest

whole number. Thus λ represents a slower than maximum frequency that will still meet

the specified checkpoint deadline. The checkpoint handler then passes this value to the

optimizer.

3.2.3 Optimizer

The optimizer takes the effective frequency λ and converts it into a frequency for the SMs,

a frequency for the DRAM, and the number of SMs to activate for the upcoming checkpoint

(inactive SMs are power-gated to save energy). The optimizer here specifies frequencies

as integer identifiers. For example, if the system supports 10 frequencies for SMs, then

0 ≤ fSM ≤ 9. The resource allocator will convert these identifiers into actual settings for

the underlying hardware.

There are two challenges that complicate the optimization process. First, all processors

(CPUs, GPUs, and other specialized accelerators) have some critical threshold beyond

which additional slowdown actually causes higher energy consumption [95], so the optimizer

must avoid reducing resources to the point that energy consumption is actually worse.

Second, different applications will need different resources; some will require more memory

bandwidth, while others will require more compute. The optimizer must deliver the resources

that the application actually needs so that it can save energy.

Regarding the first challenge: while reducing the hardware resources in use will always

reduce power, there is an critical frequency threshold fcrit beyond which additional slowdown

will actually increase energy consumption [95, 106]. This threshold arises from the fact that

chip power consumption consists of both a dynamic and static component. Dynamic power

is decreased with decreased resource usage. While static power will remain constant if only

frequency is changed. The critical frequency threshold is the point at which additional
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Algorithm 4 Hardware Real-time Management

Require: cj [wCTAj , nCTAj ] ▷ WCET for checkpoint j
Require: tcurrent ▷ current elapsed time
Require: ALUutilization

Require: fmax ▷ maximum id for frequency scaling
Require: fcrit ▷ frequency id that gives best energy
Require: thALU ▷ ALU threshold that split memory and compute phase
Require: CTAcurrent ▷ current number of CTA that already finished
Require: o ▷ Overhead
1: procedure Initialization
2: j ← 0
3: end procedure
4: procedure Checkpoint Handler
5: if nCTAj = CTAcurrent then
6: tahead = wCTAj − tcurrent
7: tremaining = wCTAj+1 − wCTAj

8: η =
tremaining+o

tremaining+tahead+o

9: λ = ⌈fmax· η⌉
10: j ++
11: end if
12: end procedure
13: procedure Optimizer
14: if λ < fcrit then
15: if ALUutilization < thALU then
16: fSM ← fcrit − 1
17: fmem ← fcrit
18: else
19: fSM ← fcrit
20: fmem ← fcrit − 1
21: end if
22: else
23: if ALUutilization < thALU then
24: fSM ← λ
25: fmem ← λ+ 1
26: else
27: fSM ← λ
28: fmem ← λ
29: end if
30: end if
31: nSM = 0
32: for all sm in the GPU do
33: if sm == active then
34: nSM = nSM + 1
35: end if
36: end for
37: end procedure
38: procedure Resource Allocator
39: if fmem > fmax then
40: fmem ← fmax

41: end if
42: Allocate(fSM , fmem, nSM)
43: end procedure
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slowdown increases energy consumption. If λ is below this value, then it is more energy

efficient to run the processor at fcrit and then transition to a low-power idle state than it is

to slowdown beyond fcrit.

Regarding the second challenge: prior work shows that memory- and compute-bound

kernels can be distinguished by both their progress through the hardware scheduling queue

and through their arithmetic and logical unit (ALU) utilization [113]. The exact threshold

thALU for distinguishing these two types of kernels is hardware dependent; ie. it is a function

of the SM core and memory design. Therefore, it must be determined by the hardware

designer. On our experimental system, we determined this threshold to sit at 20% utilization,

which is consistent with prior work [113].

MERLOT’s optimizer uses these two observations to turn the effective frequency λ into

an actual set of resources for the kernel to use, specified in pseudo-code in Algorithm 4,

lines 10–28. Using nested conditionals, the optimizer accounts for four cases in lines 11–

24. The cases correspond to whether or not the effective frequency λ is below the critical

frequency fcrit and whether or not the kernel is memory-bound or compute-bound. For the

SM frequency, if λ < fcrit, MERLOT simply uses fcrit, otherwise using λ. To set DRAM

frequency, MERLOT relies on the observation that memory-bound applications should have

DRAM set faster than the processor, while compute bound applications should have the

DRAM set slower than the processor [113].

After adjusting SM and DRAM frequency, MERLOT sets the active number of SMs in

Algorithm 4, lines 26–28. Power gating in our test system is not implemented well, so it is

always most energy efficient to use all SMs, as long as there are CTAs to schedule. If there

are not enough CTAs to saturate all SMs, then MERLOT records them as inactive, so that

the resource allocator can set them to their lowest frequency and save energy. On a system

with better power-gating, MERLOT could use SMs as another configuration parameter to

tune the performance/energy tradeoffs to meet the required effective frequency with lower
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Table 3.2: Resource Allocator Translation

SM frequency DRAM frequency Normalized Voltage
fSM frequency fmem frequency
7 700 MHz 7 924 MHz 1
6 600 MHz 6 792 MHz 0.9
5 500 MHz 5 660 MHz 0.83
4 400 MHz 4 528 MHz 0.76
3 300 MHz 3 396 MHz 0.7
2 200 MHz 2 264 MHz 0.62
1 100 MHz 1 132 MHz 0.55

energy.

One issue to note is that misclassifications may occur, but they will not cause the system

to miss a deadline. The result of a misclassification is that energy efficiency will be lower than

optimal. Misclassifications only affects energy (rather than timing) because the optimizer

never reduces frequency below that determined by λ in the checkpoint handling procedure;

ie. the frequency is always above the “safe” zone.

3.2.4 Resource Allocator

The resource allocator translates integer fSM and fmem from the optimizer to actual SM and

DRAM frequency values and a voltage for each. This step is entirely hardware dependent.

The hardware designer has to supply a table mapping the integer identifiers into actual

frequency and voltage values. As an example, Table 3.2 shows this mapping for the evaluation

system used in this paper. Lines in 30–31 check whether the frequency identifiers are out of

bounds, which can only happen due to the increase in memory frequency in line 21.

3.2.5 Using MERLOT for Dynamic Timing Analysis

As mentioned earlier, MERLOT can not only enforce deadlines, it can be used to help

developers understand how to set those deadlines in the first place. As shown in Algorithm 1,

observes the completion time of each CTA before reconfiguring the GPU. Thus, at the cost of

40



an additional register for storage, we can easily operate MERLOT in a profiling mode, where

it simply updates a register with the longest completion time measured for each CTA (and

the GPU resources are not changed). When the kernel completes, software on the CPU can

query this register to get the measured CTA time. This profiling mode would be especially

helpful during system design and development (before deployment). Developers can run all

key kernels in profiling mode and record their observed CTA completion time. Software

developers could even stress the system; for example, flushing all GPU caches and memories

then run the kernels and measure CTA time using MERLOT’s profiling ability. We emphasize

that this support is only for dynamic timing analysis: it reports the worst measured time,

but provides no guarantees that it finds the true worst case timing. Developers requiring

true worst case timing bounds will need a static timing analysis tool.

3.2.6 Real-Time Considerations

We analyze MERLOT’s hard real-time guarantees by following the example in [103]. This

work shows a real-time scheduler guarantees that tasks will meet the deadline if the task set

is schedulable. The task set is schedulable under EDF (earliest deadline first) if C1/P1 +

C2/P2 + ... + Cn + Pn ≤ 1, C is wcet and P is period. Then the task is schedulable under

scaled value η if C1/P1 + C2/P2 + ... + Cn + Pn ≤ η. Line 7 of Algorithm 4 reflects this

schedulability test.

3.3 Evaluation

Because it is a simulator, GPGPU-Sim is entirely deterministic, which means that in simulation,

all kernels have the same completion time. We therefore add some randomization to each

program’s timing properties. Specifically, for each benchmark we evaluate two different

timing profiles, where the worst case timing is a factor of X times the average case timing

when the application is allocated all resources and X ∈ {1.5, 2}. We note that these relative
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Figure 3.5: Running time normalized to deadline. The left figure shows the results where
the worst case is 1.5× the average case and the right side shows the case where the ratio is
2.0×.
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Figure 3.6: Energy normalized to the race-to-idle approach. The left figure shows the results
where the worst case is 1.5× the average case and the right side shows the case where the
ratio is 2.0×.

differences between the average and worst case timing are tighter than found in prior work

[10].

The race-to-idle approach only takes advantage of dynamic power management, completing

all work as fast as possible and then switching to the low-power idle state. Meanwhile the

software approach will slowdown the configuration between the kernels, using a combination

of slack transfer, dynamic voltage and frequency scaling and dynamic power management.

This software scheduler runs as slow as possible such that the deadline is met by reducing

the frequency of SMs and DRAM. MERLOT runs Algorithm 4 whenever the checkpoint is

triggered. MERLOT is configured so that each application has 16 checkpoints.
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3.3.1 Performance

Figure 3.5 shows how much faster MERLOT is done ahead of the worst case deadline (note

the last set of bars on the x-axis is the geometric mean across all applications). Both race-

to-idle, software and MERLOT never miss the deadlines. MERLOT in average runs 13.6%

faster than the deadlines. We highlight several examples that illustrate the different behavior

of the different schedulers.

As discussed in motivation, backprop has 2 kernels each of which take almost equal time,

the first kernel is 11% longer than the second kernel. Software cannot configure the resources

until the first kernel is finished, but MERLOT configures the resources at every checkpoint.

Thus, MERLOT is closer to deadline—only 5% faster than necessary in 2.0X of ACET, while

software is 43% faster than deadline. As we will see, this means that software incurs a higher

peak power and higher total energy consumption.

hotspot is an example of an application with a single kernel. Race-to-idle and slack

transfer are equivalent for this application because software cannot transfer slack in this

application. Meanwhile, MERLOT can transfer the slack between CTA and slowdown the

runtime to save power.

Because it is composed of many different kernels the software slack transfer approach has

many chances to slowdown the bfs application. For this application, software actually drops

the frequency below the critical threshold, which increases energy consumption. MERLOT’s

hardware-based approach is aware that it is not beneficial to slow down this much. Therefore

the software approach is closer to the deadline—only 1.42× faster—and MERLOT is faster,

but saves more energy as we will see in the next section.

3.3.2 Energy Saving

Figure 3.6 shows race-to-idle, software and MERLOT’s energy consumption normalized

to race-to-idle (note the last set of bars on the x-axis is the geometric mean across all
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applications). On average, software spends 93.4% energy and MERLOT saves 16.73% energy

compared with race-to-idle with 16.43% in 1.5X and 17.03% in 2.0X. MERLOT consistently

gives a better energy savings than the race-to-idle and software approaches. The main

reason is that MERLOT simply has more opportunities to reduce resource usage. This

fact is illustrated by the backprop and hotspot applications for which MERLOT provides

20.6% and 15.4% energy savings, respectively. In contrast, the software approach reduces

backprop’s energy by just 1% with no savings for hotspot, as it has just a single kernel.

In previous subsection we saw that software approach is closer to deadline than MERLOT

for the cfd and bfs applications. This timing occurs because the software is not aware of

the critical frequency threshold and slows down the applications too much. This slowdown

reduces peak power consumption, but actually increases energy use. The software approach

uses 3.5% and 1.7% more energy in 1.5X and 2.0X for cfd than race-to-idle, while MERLOT

saves 13.99% and 16.4% energy. In bfs, software saves 10.19% and 11.83% energy, which is

worse than MERLOT which saves 17.68% and 15.05% energy.

3.3.3 Comparison with Prior Work
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Figure 3.7: MERLOT and GRAPE Performance

GRAPE is a prior hardware approach to minimize energy in soft real-time systems [106].

GRAPE is based on control theory and cannot guarantee deadlines, but instead achieves

close to the desired performance on average. As published numbers show, GRAPE will fail to

meet deadlines if kernels within an application vary significantly in achievable performance.

Another important difference is that GRAPE tracks application process using instructions
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Figure 3.8: MERLOT and GRAPE Energy

retired, while MERLOT uses CTAs as checkpoints. Due to the different guarantees and

progress metrics, the user interfaces are also different. GRAPE accepts a single number

from a user: the target rate of instructions per second for a complete GPU application.

In contrast, MERLOT requires each kernel to specify deadlines (in terms of number of

checkpoints and worse-case timing for those checkpoints). This interface also affects the

implementation, as GRAPE periodically checks progress and predicts whether or not the

application is on schedule. In contrast, MERLOT triggers only at user-specified checkpoints

and performs far less work, as it simply transfers any slack from the previous checkpoint to

the next. This difference in workload can be see in the implementation details: GRAPE’s

FPGA implementation requires 18K logic elements and 63 multipliers, where MERLOT

requires only 1K logic elements and no multipliers (see Section 2.2.4). Figure 3.7 compares

the performance of MERLOT to GRAPE. Both target twice the default latency. Figure 3.8

compares the energy savings between those two. MERLOT reduces energy by transferring

the slack of the task meanwhile GRAPE takes an average of the performance over time using

a feedback control system. Figure 3.7 shows that while MERLOT never misses a deadline,

GRAPE misses deadlines in all of the benchmarks. While MERLOT provides hard real-time

guarantees, GRAPE’s energy saving is slightly worse to MERLOT. MERLOT saves 16.38%

energy consumption while GRAPE saves 15.96% energy saving on average. This is because

MERLOT already know what is the best frequency to working on fcrit while GRAPE is

oscillating to find the best energy configuration.
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3.4 Conclusion

The computational demands of embedded systems like au- tonomous vehicles has created a

need for GPU and GPU-like accelerators in these systems. While a great deal of work has

been done to support real-time processing on GPU-equipped systems, energy management

remains a concern. This paper argues that a simple hardware interface can allow software

schedulers to make timing constraints known to hardware. Once those constraints are

known, hardware can quickly detect when applications are running ahead of schedule and

reduce their resource usage to save energy without violating their timing requirements. To

test this insight we have proposed and implemented MERLOT. We find that MERLOT

incurs negligible performance, power, and area overhead; but it can reduce GPU energy

consumption substantially compared to sophisticated software-only schedulers. While implemented

and tested on GPUs, we believe the insights are applicable to a wide variety of hardware

accelerators that break software- specified tasks up into smaller hardware-schedulable units.
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CHAPTER 4

ALERT: ACCURATE ANYTIME LEARNING FOR ENERGY

AND TIMELINESS

4.1 Overview

Deep neural networks (DNNs) have become a key workload for many computing systems due

to their high inference accuracy. This accuracy, however, comes at a cost of long latency,

high energy usage, or both. Successful DNN deployment requires meeting a variety of user-

defined, application-specific goals for latency, accuracy, and often energy in unpredictable,

dynamic environments.

Latency constraints naturally arise with DNN deployments when inference interacts with

the real world as a consumer—processing data streamed from a sensor—or a producer—

returning a series of answers to a human. For example, in motion tracking, a frame must be

processed at camera speed [57]; in simultaneous interpretation, translation must be provided

every 2–4 seconds[85]. Violating these deadlines may lead to severe consequences: if a self-

driving vehicle cannot act within a small time budget, life threatening accidents could follow

[82].

Accuracy and energy requirements are also common and may vary for different applications

in different operating environments. On one hand, low inference accuracy can lead to software

failures [101, 119]. On the other hand, it is beneficial to minimize DNN energy or resource

usage to extend mobile-battery time or reduce server-operation cost [58].

These requirements are also highly dynamic. For example, the latency requirement for

a job could vary dynamically depending on how much time has already been consumed by

related jobs before it[82]; the power budget and the accuracy requirement for a job may

switch among different settings depending on what type of events are currently sensed [1].

Additionally, the latency requirement may change based on the computing system’s current
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context; e.g., in robotic vision systems the latency requirement can change based on the

robot’s latency and distance from perceived pedestrians [29].

Satisfying all these requirements in a dynamic computing environment where the inference

job may compete for resources against unpredictable, co-located jobs is challenging. Although

prior work addresses these problems at either the application level or system level separately,

each approach by itself lacks critical information that could be used to produce better results.

At the application level, different DNN designs—with different depths, widths, and

numeric precisions—provide various latency-accuracy trade-offs for the same inference task

[122, 59, 40, 54, 115]. Even more dynamic schemes have been proposed that adapt the

DNN by dynamically changing its structure at the beginning of [36, 91, 121, 129] or during

[75, 120, 49, 78, 127, 48, 124] every inference tasks.

Although helpful, these techniques are sub-optimal without considering system-level

adaptation options. For example, under energy pressure, these application-level adaptation

techniques have to switch to lower-accuracy DNNs, sacrificing accuracy for energy saving,

even if the energy goal could have been achieved by lowering the system power setting (if

there is sufficient latency budget).

At the system level, machine learning [4, 77, 102, 104, 116, 25, 26? ] and control theory

[61, 62, 93, 43, 107, 136] based techniques have been proposed to dynamically assign system

resources to better satisfy system and application constraints.

Unfortunately, without considering the option of application adaptions, these techniques

also reach sub-optimal solutions. For example, when the current DNN offers much higher

accuracy than necessary, switching to a lower-precision DNN may offer much more energy

saving than any system-level adaptation techniques. This problem is exacerbated because, in

the DNN design space, very small drops in accuracy enable dramatic reductions in latency,

and therefore system resource requirements.

A cross-stack solution would enable DNN applications to meet multiple, dynamic constraints.
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However, offering such a holistic solution is non-trivial. The combination of DNN and system-

resource adaptation creates a huge configuration space, making it difficult to dynamically

and efficiently predict which combination of DNN and system settings will meet all the

requirements optimally. Furthermore, without careful coordination, adaptations at the

application and system level may conflict and cause constraint violations, like missing a

latency deadline due to switching to higher-accuracy DNN and lower power setting at the

same time.

4.1.1 Contributions

This paper presents ALERT, a cross-stack runtime system for DNN inference to meet user

goals by simultaneously adapting both DNN models and system-resource settings.

Understanding the challenges We profile DNN inference across applications, inputs,

hardware, and resource contention confirming there is a high variation in inference time. This

leads to challenges in meeting not only latency but also energy and accuracy requirements.

Furthermore, our profiling of 42 existing DNNs for image classification confirms that different

designs offer a wide spectrum of latency, energy, and accuracy tradeoffs. In general, higher

accuracy comes at the cost of longer latency and/or higher energy consumption. These trade-

offs offered provide both opportunities and challenges to holistic inference management.

Run-time inference management We design ALERT, a DNN inference management

system that dynamically selects and adapts a DNN and a system-resource setting together

to handle changing system environments and meet dynamic energy, latency, and accuracy

requirements.

ALERT is a feedback-based run-time. It measures inference accuracy, latency, and energy

consumption; it checks whether the requirements on these goals are met; and, it then outputs

both system and application-level configurations adjusted to the current requirements and

operating conditions. ALERT focuses on meeting constraints in any two dimensions while
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Figure 4.1: ALERT inference system

optimizing the third; e.g., minimizing energy given accuracy and latency requirements or

maximizing accuracy given latency and energy budgets.

The key is estimating how DNN and system configurations interact to affect the goals.

To do so, ALERT addresses three primary challenges: (1) the combined DNN and system

configuration space is huge, (2) the environment may change dynamically (including input,

available resources, and even the required constraints), and (3) the predictions must be low

overhead to have negligible impact on the inference itself.

ALERT addresses these challenges with a global slow-down factor, a random variable

relating the current runtime environment to a nominal profiling environment. After each

inference task, ALERT estimates the global slow-down factor using a Kalman filter. The

global slow-down factor’s mean represents the expected change compared to the profile,

while the variance represents the current volatility. The mean provides a single scalar that

modifies the predicted latency/accuracy/energy for every DNN/system configuration—a

simple mechanism that leverages commonality among DNN architectures to allow prediction

for even rarely used configurations (tackle challenge-1), while incorporating variance into

predictions naturally makes ALERT conservative in volatile environments and aggressive
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in quiescent ones (tackle challenge-2). The global slow-down factor and Kalman filter are

efficient to implement and low-overhead (tackle challenge-3). Thus, ALERT combines the

global slow-down factor with latency, power, and accuracy measurements to select the DNN

and system configuration with the highest likelihood of meeting the constraints optimally.

We evaluate ALERT using various DNNs and application domains on different (CPU and

GPU) machines under various constraints. Our evaluation shows that ALERT overcomes

dynamic variability efficiently. Across various experimental settings, ALERTmeets constraints

while achieving within 93–99% of optimal energy saving or accuracy optimization. Compared

to approaches that adapt at application-level or system-level only ALERT achieves more than

13% energy reduction, and 27% error reduction.

4.2 Design and Implementation

ALERT’s runtime system navigates the large tradeoff space created by combining DNN-level

and system-level adaptation. ALERT meets user-specified latency, accuracy, and energy

constraints and optimization goals while accounting for run-time variations in environment

or the goals themselves.

4.2.1 Inputs & Outputs of ALERT

ALERT’s inputs are specifications about (1) the adaption options, including a set of DNN

models D = {di | i = 1 · · ·K} and a set of system-resource settings, expressed as different

power-caps P = {Pj | j = 1 · · ·L}; and (2) the user-specified requirements on latency,

accuracy, and energy usage, which can take the form of meeting constraints in any two

of these three dimensions while optimizing the third. ALERT’s output is the DNN model

di ∈ D and the system-resource setting pj ∈ P for the next inference-task input.

Formally, ALERT selects a DNN di and a system-resource setting pj to fulfill either of
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these user-specified goals:1

Maximizing inference accuracy q (minimizing error) for an energy budget Egoal and

inference deadline Tgoal:

argmax
i,j

qi,j s.t. ei,j ≤ Egoal ∧ ti,j ≤ Tgoal (4.1)

Minimizing the energy use e for an accuracy goal Qgoal and inference deadline Tgoal.

argmin
i,j

ei,j s.t. qi,j ≥ Qgoal ∧ ti,j ≤ Tgoal (4.2)

Generality Along the DNN-adaptation side, the input DNN set can consist of any DNNs

that offer different accuracy, latency, and energy tradeoffs; e.g., those in Figure ??. In

particular, ALERT can work with either or both of the broad classes of DNN adaptation

approaches that have arisen recently, including: (1) traditional DNNs where the adaptation

option should be selected prior to starting an inference task [36, 91, 121, 129, 35] and (2)

anytime DNNs that produce a series of outputs as they execute [75, 120, 49, 78, 127, 48, 124].

These two classes are similar in that they both vary things like the network depth or width

to create latency/accuracy tradeoffs.

On the system-resource side, ALERT uses a power cap as the proxy to system resource

usage. Since both hardware [24] and software resource managers [134, 45, 23] can convert

power budgets into optimal performance resource allocations, ALERT is compatible with

many different schemes from both commercial products and the research literature.

4.2.2 ALERT Workflow

ALERT works as a feedback controller. It follows four steps to pick the DNN and resource

settings for each input n:

1) Measurement. ALERT records the processing time, energy usage, and computes

inference accuracy for n− 1.

1. For space, we omit discussion of meeting energy and accuracy constraints while minimizing latency as
it is a trivial extension of the discussed techniques and we believe it to be the least practically useful.
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2) Goal adjustment. ALERT updates the time goal Tgoal if necessary, considering the

potential latency-requirement variation across inputs. In some inference tasks, a set of

inputs share one combined requirement (e.g., in the NLP1 task in Table ??, all the words in

a sentence are processed by a DNN one by one and share one sentence-wise deadline) and

hence delays in previous input processing could greatly shorten the available time for the

next input [1, 68]. Additionally, ALERT sets the goal latency to compensate for its own,

worst-case overhead so that ALERT itself will not cause violations.

3) Feedback-based estimation. ALERT computes the expected latency, accuracy, and

energy consumption for every combination of DNN model and power setting.

4) Picking a configuration. ALERT feeds all the updated estimations of latency, accuracy,

and energy into Eqs. 4.1 and 4.2, and gets the desired DNN model and power-cap setting

for n.

The key task is step 3: the estimation needs to be accurate and fast. In the remainder of

this section, we discuss key ideas and the exact algorithm of our feedback-based estimation.

4.2.3 Key Ideas of ALERT Estimation

Strawman Solving Eqs. 4.1 and 4.2 would be trivially easy if the deployment environment

is guaranteed to match the training and profiling environment: we could estimate ti,j to be

the average (or worst case, etc) inference time t
prof
i,j over a set of profiling inputs under model

di and power setting pj . However, this approach does not work given the dynamic input,

contention, and requirement variation.

Next, we present the key ideas behind how ALERT estimates the inference latency,

accuracy, and energy consumption under model di and power setting pj .

How to estimate the inference latency ti,j? To handle the run-time variation,

a potential solution is to apply an estimator, like a Kalman filter [84], to make dynamic

predictions based on recent history about inferences under model di and power pj . The
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problem is that most models and power settings will not have been picked recently and

hence would have no recent history to feed into the estimator. This problem is a direct

example of the challenge imposed by the large space of combined application and system

options.

Idea 1: Handle the large selection space with a single scalar value. To

make effective online estimation for all combinations of models and power settings, ALERT

introduces a global slow-down factor ξ to capture how the current environment differs from the

profiled environment (e.g., due to co-running processes, input variation, or other changes).

Such an environmental slow-down factor is independent from individual model or power

selection. It can fully leverage execution history, no matter which models and power settings

were recently used; it can then be used to estimate ti,j based on t
prof
i,j for all di and pj

combinations.

Applying a global slowdown factor for all combinations of application and system-level

settings is crucial for ALERT to make quick decisions for every inference task. Although it is

possible that some perturbations may lead to different slowdowns for different configurations,

the slight loss of accuracy here is out-weighed by the benefit of having a simple mechanism

that allows prediction even for configurations that have not been used recently.

This idea is also novel for ALERT, as previous cross-stack management systems all use

much more complicated models to estimate and select different setting combinations (e.g.,

using model predictive control to estimate combinations of settings [86]). ALERT’s global

slowdown factor is based on several unique features of DNN families that accomplish the

same task with different accurarcy/latency tradeoffs. We categorize these features as: (1)

similarity of code paths and (2) proportionality of structure. The first is based on the

observation that DNNs do not have complex conditional code dependences, so we do not

need to worry about the case where different inputs would exercise very different code paths.

Thus, what ALERT learns about latency, accuracy, and energy for one input will always
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inform it about future inputs. The second feature refers to the fact that as DNNs in a family

scale in latency, the proportion of different operations tend to be similar, so what ALERT

learns about one DNN in the family generally applies to other DNNs in the same family.

These properties of DNNs do not hold for many other types of software, where different

inputs or additional functionality can invoke entirely different code paths, with different

resource requirements or responses.

How to estimate the accuracy under a deadline? Given a deadline Tgoal, the

inference accuracy delivered by model di and power setting pj is determined by three factors,

as shown in Eq. 4.3: (1) whether the inference result, which takes time ti,j , can be generated

before the deadline Tgoal; (2) if yes, the accuracy is determined by the model di;
2 (3) if not,

the accuracy drops to that offered by a backup result qfail. For traditional DNN models,

without any output at the deadline, a random guess will be used and qfail will be much worse

than qi. For anytime DNN models that output multiple results as they are ready, the backup

result is the latest output [75, 120, 49, 78, 127, 48, 124], which we discuss more in Section

4.2.5.

qi,j [Tgoal] =


qi , if ti,j ≤ Tgoal

qfail , otherwise

(4.3)

A potential solution to estimate accuracy qi,j at the deadline Tgoal is to simply feed

the estimated ti,j into Eq. 4.3. However, this simple approach fails to account for two

issues. First, while DNNs are generally well-behaved, significant tail effects are possible

(see Figure ??). Second, Eq. 4.3 is not linear, and is best understood as a step function,

where a failure to complete inference by the deadline results in a worthless inference output

(qfail). Combined, these two issues mean that for tail inputs, inference will produce a

worthless result; i.e., accuracy is not proportional to latency, but can easily fall to zero

for tail inputs. The tail will, of course, be increased if there is any unexpected resource

2. Since it could be infeasible to calculate the exact inference accuracy at run time, ALERT uses the
average training accuracy of the selected DNN model di, denoted as qi, as the inference accuracy, as long as
the inference computation finishes before the specified deadline.
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contention. Therefore, the simple approach of using the mean latency prediction fails to

account for the non-linear affects of latency on accuracy.

Idea 2: handle the runtime variation and account for tail behavior To handle the

run-time variability mentioned in Section 4, ALERT treats the execution time ti,j and the

global slow-down factor ξ as random variables drawn from a normal distribution. ALERT

uses a recently proposed extension to the Kalman filter to adaptively update the noise

covariance [2]. While this extension was originally proposed to produce better estimates

of the mean, a novel approach in ALERT is using this covariance estimate as a measure

of system volatility. ALERT uses this Kalman filter extension to predict not just the

mean accuracy, but also the likelihood of meeting the accuracy requirements in the current

operating environment. Section 4.4.3 shows the advantages of our extensions.

How to minimize energy or satisfy energy constraints? Minimizing energy or

satisfying energy constraints is complicated, as the energy is related to, but cannot be easily

calculated by, the complexity of the selected model di and the power cap pj . As discussed

in Section ??, the energy consumption includes both that used during the inference under

a given model di and that used during the inference-idle period, waiting for the next input.

Consequently, it is not straightforward to decide which power setting to use.

Idea 3. ALERT leverages insights from previous research, which shows that energy

for latency-constrained systems can be efficiently expressed as a mathematical optimization

problem [71, 18, 76, 93]. These frameworks optimize energy by scheduling available configurations

in time. Time is assigned to configurations so that the average performance hits the desired

latency target and the overall energy (including idle energy) is minimal. The key is that

while the configuration space is large, the number of constraints is small (typically just two).

Thus, the number of configurations assigned a non-zero time is also small (equal to the

number of constraints) [71]. Given this structure, the optimization problem can be solved

using a binary search over available configurations, or even more efficiently with a hash table
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[93].

The only difficulty applying prior work to ALERT is that work assumed there was only

a single job running at a time, while ALERT assumes that other applications might contend

for resources. Thus, ALERT cannot assume that there is a single system-idle state that will

be used whenever the DNN is not executing. To address this challenge, ALERT continually

estimates the system power when DNN inference is idle (but other non-inference tasks might

be active), pDNNidle. With this estimating DNN-idle power, Eq. 4.1 is transformed into:

argmax
i,j

qi,j [Tgoal] s.t. pi,j · ti,j + pDNNidle· tDNNidle ≤ Egoal (4.4)

4.2.4 ALERT Estimation Algorithm

Global Slow-down Factor ξ. As discussed in Idea-1, ALERT uses ξ to reflect how the

run-time environment differs from the profiling environment. Conceptually, if the inference

task under model di and power-cap pj took time ti,j at run time and took t
prof
i,j on average

to finish during profiling, the corresponding ξ would be ti,j/t
prof
i,j . ALERT estimates ξ using

recent execution history under any model or power setting.

Specifically, after an input n − 1, ALERT computes ξ(n−1) as the ratio of the observed

time t
(n−1)
i,j to the profiled time t

prof
i,j , and then uses a Kalman Filter3 to estimate the mean

µ(n) and standard deviation σ(n) of ξ(n) at input n. ALERT’s formulation is defined in Eq.

4.5, where K(n) is the Kalman gain variable; R is a constant reflecting the measurement

noise; Q(n) is the process noise capped with Q(0). We set a forgetting factor of process

variance α = 0.3 [2]. ALERT initially sets K(0) = 0.5, R = 0.001, Q(0) = 0.1, µ(0) = 1,

σ(0) = 0.1, following the standard convention [84].

3. A Kalman Filter is an optimal estimator that assumes a normal distribution and estimates a varying
quantity based on multiple potentially noisy observations [84].
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

Q(n) = max{Q(0), αQ(n−1) + (1-α)(K(n−1)y(n−1))2}

K(n) =
(1−K(n−1))σ(n−1) +Q(n)

(1−K(n−1))σ(n−1) +Q(n) +R

y(n) = t
(n−1)
i,j /tprofi,j − µ(n−1)

µ(n) = µ(n−1) +K(n)y(n)

σ(n) = (1−K(n−1))σ(n−1) +Q(n)

(4.5)

Then, using ξ(n), ALERT estimates the inference time of input n under any model di

and power cap pj : t
(n)
i,j = ξ(n) ∗ tprofi,j .

Accuracy. As discussed in Idea-2, ALERT computes the estimated inference accuracy

q̂i,j [Tgoal] by considering ti,j as a random variable that follows normal distribution with its

mean and standard deviation computed based on that of ξ:

q̂i,j [Tgoal] = E(qi,j [Tgoal] | t(n)i,j )

= E(qi,j [Tgoal] | ξ(n)· tprofi,j )

ξ(n) ∼ N (µ(n), (σ(n))2)

(4.6)

Energy. As discussed in Idea-3, ALERT predicts energy consumption by separately

estimating energy during (1) DNN execution: estimated by multiplying the power limit by

the estimated latency and (2) between inference inputs: estimated based on the recent history

of computer idle power using the Kalman Filter in Eq. 4.7. ϕ(n) is the predicted DNN-idle

power ratio, M (n) is process variance, S is process noise, V is measurement noise, and W (n)

is the Kalman Filter gain. ALERT initially sets M (0) = 0.01, S = 0.0001, V = 0.001.
W (n) =

M (n−1) + S

M (n−1) + S + V

M (n) = (1−W (n))(M (n−1) + S)

ϕ(n) = ϕ(n−1) +W (n)(pidle/p
(n−1)
i,j − ϕ(n−1))

(4.7)

ALERT then predicts the energy by Eq. 4.8.

e
(n)
i,j = pi,j · ξ(n)· tprofi,j + ϕ(n)· pi,j · (Tgoal − (ξ(n)· tprofi,j )) (4.8)
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4.2.5 Integrating ALERT with Anytime DNNs

An anytime DNN is an inference model that outputs a series of increasingly accurate inference

results—o1, o2, ... ok, with ot more reliable than ot−1. A variety of recent works [75, 120,

49, 78, 127, 124] have proposed DNNs supporting anytime inference, covering a variety of

problem domains. ALERT easily works with not only traditional DNNs but also Anytime

DNNs. The only change is that qfail in Eq. 4.3 no longer corresponds to a random guess.

That is, when the inference could not generate its final result ok by the deadline Tgoal, an

earlier result ox can be used with a much better accuracy than that of a random guess. The

updated accuracy equation is below:

q.,j =



qk , if tk,j ≤ tgoal

qk−1 , if tk−1,j ≤ tgoal < tk,j

· · ·

qfail , otherwise

(4.9)

Existing anytime DNNs consider latency but not energy constraints—an anytime DNN

will keep running until the latency deadline arrives and the last output will be delivered to

the user. ALERT naturally improves Anytime DNN energy efficiency, stopping the inference

sometimes before the deadline based on its estimation to meet not only latency and accuracy,

but also energy requirements.

Furthermore, ALERT can work with a set of traditional DNNs and an Anytime DNN

together to achieve the best combined result. The reason is that Anytime DNNs generally

sacrifice accuracy for flexibility. When we feed a group of traditional DNNs and one Anytime

DNN to construct the candidacy set D, with Eq. 4.6, ALERT naturally selects the Anytime

DNN when the environment is changing rapidly (because the expected accuracy of an

anytime DNN will be higher given that variance), and the regular DNN, which has slightly

higher accuracy with similar computation, when it is stable, getting the best of both worlds.

In our evaluation, we will use the nested design from [124], which provides a generic

59



coverage of anytime DNNs.

4.2.6 Limitations of ALERT

ALERT’s prediction, particularly the Kalman Filter, relies on the feedback from recent

input processing. Consequently, it requires at least one input to react to sudden changes.

Additionally, the Kalman filter formulations assume that the underlying distributions are

normal, which may not hold in practice. If the behavior is not Gaussian, the Kalman filter

will produce bad estimations for some amount of time. Fortunately, after 2–3 such bad

predictions, the estimated variance will increase, which will then trigger ALERT to pick

anytime over traditional DNNs or pick a low-latency traditional DNN over high-latency

ones, because the former has a better chance to produce results at latency deadlines and

hence a higher expected accuracy under high variance. So—worst case—ALERT will choose

a DNN with slightly less accuracy than what could have been used with the right model of

randomness. We evaluate ALERT’s ability to handle non-normal distributions in Section

4.4.3.

ALERT provides probabilistic, not hard, guarantees. As ALERT estimates not just

average timing, but the distributions of possible timings, it can provide arbitrarily many

nines of assurance that it will meet latency or accuracy goals; e.g., scheduling for slow-down

factors of up to three standard deviations corresponds to meeting the goals 99.7% of the

time. Providing 100% guarantees, however, requires much more conservative configuration

selection—hurting both energy and accuracy—a property shared by all systems that have to

choose between probabilistic and hard guarantees [15].

How the inference behaves ultimately depends not only on ALERT, but also on the DNN

models and system-resource setting options. As we will evaluate in Section 4.4, ALERT helps

make the best use of supplied DNN models, but does not eliminate the difference between

different DNN models.
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4.3 Implementation

We implement ALERT for both CPUs and GPUs. On CPUs, ALERT adjusts power through

Intel’s RAPL interface [24], which allows software to set a hardware power limit. On GPUs,

ALERT uses PyNVML to control frequency and builds a power-frequency lookup table.

ALERT can also be applied to other approaches that translate power limits into settings for

combinations of resources [45, 52, 23, 134].

In our experiments, ALERT considers a series of power settings within the feasible range

with 2.5W interval on our test laptop and a 5W interval on our test CPU server and GPU

platform, as the latter has a wider power range than the former. The number of power

buckets is configurable.

ALERT incurs small overhead in both scheduler computation and switching from one

DNN/power-setting to another, just 0.6–1.7% of an input inference time. We explicitly

account for overhead by subtracting it from the user-specified goal (see step 2 in Section

4.2.2).

Users may set goals that are not achievable. If ALERT cannot meet all constraints, it

prioritizes latency highest, then accuracy, then power. This hierarchy is configurable.

4.4 Results

We apply ALERT to different inference tasks on both CPU and GPU with and without

resource contention from co-located jobs. We set ALERT to (1) reduce energy while satisfying

latency and accuracy requirements and (2) reduce error rates while satisfying latency and

energy requirements. We compare ALERT with both oracle and state-of-the-art schemes

and evaluate detailed design decisions.
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Run-time environment setting
Default Inference task has no co-running process

Memory
Co-locate with memory-hungry STREAM [90] (@CPU)
Co-locate with Backprop from Rodinia-3.1 [21] (@GPU)

Compute
Co-locate with Bodytrack from PARSEC-3.0 [11] (@CPU)
Co-locate with the forward pass of Backprop [21] (@GPU)
Ranges of constraint setting

Latency 0.4x–2x mean latency* of the largest Anytime DNN
Accuracy Whole range achievable by trad. and Anytime DNN
Energy Whole feasible power-cap ranges on the machine
Task Trad. DNN Anytime [124] Fixed deadline?
Image Classifi. Sparse ResNet Depth-Nest Yes
Sentence Pred. RNN Width-Nest No
Scheme ID DNN selection Power selection
Oracle Dynamic optimal Dynamic optimal
OracleStatic Static optimal Static optimal
App-only One Anytime DNN System Default
Sys-only Fastest traditional DNN State-of-Art[? ]
No-coord Anytime DNN w/o coord. with Power State-of-Art[? ]
ALERT ALERT default ALERT default
ALERTAny ALERT w/o traditional DNNs ALERT default
ALERTTrad ALERT w/o Anytime DNNs ALERT default

Table 4.1: Settings and schemes under evaluation (* measured under default setting without
resource contention)

Plat. DNN Work. ALERT
ALERT-
Any

Sys-
only

App-
only

No-
coord

Oracle ALERT
ALERT-
Any

Sys-
only

App-
only

No-
coord

Oracle

Energy in Minimizing Energy Task Error Rate in Minimizing Error Task

CPU1

Sparse
Resnet

Idle 0.64 0.68 1.0819 1.19 0.941 0.64 0.91 0.92 1.35 1.023 0.913 0.89
Comp. 0.57 0.58 0.8019 1.30 1.391 0.57 0.38 0.39 0.51 1.3524 0.396 0.36
Mem. 0.53 0.55 0.7619 1.43 1.372 0.53 0.34 0.34 0.46 1.4728 0.392 0.33

RNN
Idle 0.61 0.65 1.0130 1.34 0.952 0.61 0.87 0.87 0.87 0.8721 0.8714 0.86

Comp. 0.60 0.57 0.9330 1.21 1.265 0.60 0.42 0.44 0.50 0.4628 0.4623 0.42
Mem. 0.54 0.56 0.9531 1.45 1.249 0.54 0.45 0.45 0.50 0.5728 0.5427 0.44

CPU2

Sparse
Resnet

Idle 0.93 0.88 0.9620 0.99 1.18 0.91 0.68 0.68 0.97 0.792 0.7124 0.66
Comp. 0.59 0.57 0.6023 1.00 1.01 0.58 0.58 0.57 0.85 0.7416 0.7129 0.55
Mem. 0.38 0.37 0.3919 0.65 0.6313 0.38 0.24 0.82 0.32 0.3317 0.7531 0.21

RNN
Idle 0.87 0.99 0.8034 1.04 1.006 0.83 0.84 0.85 0.99 0.8914 0.891 0.84

Comp. 0.60 0.60 0.5534 0.99 0.867 0.60 0.51 0.52 0.60 0.5321 0.5417 0.52
Mem. 0.52 0.51 0.4333 0.70 0.8514 0.52 0.26 0.27 0.31 0.2821 0.2717 0.26

GPU
Sparse
Resnet

Idle 0.97 0.99 0.9220 1.36 1.37 0.92 0.90 0.92 1.22 1.092 1.7412 0.86
Comp. 0.96 0.97 0.9420 1.66 1.77 0.89 0.32 0.34 1.28 1.2123 2.5018 0.30
Mem. 0.97 1.01 0.9120 1.39 1.43 0.91 0.89 0.92 1.22 1.112 1.8114 0.86

Harmonic mean 0.64 0.64 0.7327 1.11 1.084 0.62 0.46 0.47 0.63 0.6716 0.6315 0.45

Table 4.2: Average energy consumption and error rate normalized to OracleStatic, smaller
is better. (Each cell is averaged over 35–40 constraint settings; superscript: # of constraint
settings violated for >10% inputs and hence excluded from energy average.)
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4.4.1 Methodology

Experimental setup. We use the three platforms listed in Table ??: CPU1, CPU2, and

GPU. On each, we run inference tasks4, image classification and sentence prediction, under

three different resource-contention scenarios: (1) no contention (Default); (2) contention

with a computation-intensive job (Memory); (3) contention with a memory-intensive job

(Compute). We then evaluate a number of management schemes’ ability to meet latency,

accuracy, and energy constraints. Table 4.1 lists the details.

Schemes under evaluation. We give ALERT three different DNN sets: traditional

DNN models (ALERTTrad), an Anytime DNN (ALERTAny), and both (ALERT).

We compare with two Oracle∗ schemes that have perfect predictions for every input under

every DNN/power setting (i.e., impractical). The “Oracle” allows DNN/power settings to

change across inputs, representing the best possible results; the “OracleStatic” has one fixed

setting across inputs, representing the best results without dynamic adaptation.

Finally, we compare with three state-of-the-art approaches: the “App-only” conducts

adaptation only at the application level through an Anytime DNN [124]; the “Sys-only”

conducts adaptation only at the system level following an existing resource-management

system that minimizes energy under soft real-time constraints [93]5 and uses the fastest

candidate DNN to avoid latency violations; the “No-coord” uses both the Anytime DNN for

application-level adaptation and the power-management scheme [93] to adapt power, but

with these two working independently.
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Figure 4.2: Result Summary: average performance normalized to OracleStatic (Smaller is
better; Details in Table 4.2)

4.4.2 Overall Results

Table 4.2 shows the results for all schemes for different tasks on different platforms and

environments. Each cell shows the average energy or accuracy under 35–40 combinations of

latency, accuracy, and energy constraints (the settings are detailed in Table 4.1), normalized

to the OracleStatic result. Figure 4.2 compares these results, where lower bars represent

better results and lower *s represent fewer constraint violations. ALERT and ALERTAny

both work very well for all settings. They outperform state-of-the-art approaches, which

have a significant number of constraint violations, as visualized by the many superscripts in

Table 4.2 and the high * positions in Figure 4.2. ALERT outperforms OracleStatic because

it adapts to dynamic variations. ALERT also comes very close to the theoretically optimal

Oracle.

Comparing with Oracles. As shown in Table 4.2, ALERT achieves 93-99% of Oracle’s

energy and accuracy optimization while satisfying constraints. Oraclestatic, the baseline in

Table 4.2, represents the best one can achieve by selecting 1 DNN model and 1 power setting

for all inputs. ALERT greatly out-performs Oraclestatic, reducing its energy consumption

4. For GPU, we only run image classification task there, as the RNN-based sentence prediction task is
better suited for CPU [135].

5. Specifically, this adaptation uses a feedback scheduler that predicts inference latency based on Kalman
Filter.
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by 3–48% while satisfying accuracy constraints (36% in harmonic mean) and reducing its

error rate by 9-66% while satisfying energy constraints (54% in harmonic mean).

Figure ?? shows a detailed comparison for the energy minimization task. The figure

shows the range of performance under all requirement settings (i.e., the whiskers). ALERT

not only achieves similar mean energy reduction, its whole range of optimization behavior

is also similar to Oracle. In comparison, OracleStatic not only has the worst mean but also

the worst tail performance. Due to space constraints, we omit the figures for other settings,

where similar trends hold.

ALERT has more advantage over Oraclestatic on CPUs than on GPUs. The CPUs have

more empirical variance than the GPU, so they benefit more from dynamic adaptation. The

GPU experiences significantly lower dynamic fluctuation so the static oracle makes good

predictions.

ALERT satisfies the constraint in 99.9% of tests for image classification and 98.5% of

those for sentence prediction. For the latter, due to the large input variability (NLP1 in

Figure ??), some input sentences simply cannot complete by the deadline even with the

fastest DNN. There the Oracle fails, too.

Note that, these Oracle schemes not only have perfect—and hence, impractical—prediction

capability, but they also have no overhead. In contrast, ALERT is running on the same

machines as the DNN workloads. All results include ALERT’s run-time latency and power

overhead.

Comparing with State-of-the-Art. For a fair comparison, we focus on ALERTAny,

as it uses exactly the same DNN candidate set as ”Sys-only”, ”App-only”, and ”No-coord”.

Across all settings, ALERTAny outperforms the others.

The System-only solution suffers from not being able to choose different DNNs under

different runtime scenarios. As a result, it performs much worse than ALERTAny in satisfying

accuracy requirements or optimizing accuracy. For the former (left side of Table 4.2 and
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Plat. Work.
ALERT Any Trad ALERT Any Trad
Minimize Energy Task Minimize Error Task

CPU1
Idle 0.64 0.68 0.651 0.91 0.92 0.93

Comp. 0.57 0.58 0.656 0.38 0.39 0.41
Mem. 0.53 0.55 0.533 0.34 0.34 0.35

CPU2
Idle 0.93 0.88 0.951 0.68 0.68 0.69

Comp. 0.59 0.57 0.604 0.58 0.57 0.59
Mem. 0.38 0.37 0.408 0.23 0.24 0.32

GPU
Idle 0.97 0.99 0.95 0.90 0.92 0.89

Comp. 0.97 1.01 0.96 0.89 0.92 0.89
Mem. 0.96 0.97 0.95 0.32 0.34 0.32

Harmonic mean 0.66 0.66 0.673 0.47 0.48 0.50

Table 4.3: ALERT normalized average energy consumption and error rate to OracleStatic @
Sparse ResNet (Smaller is better)

Figure 4.2), it creates accuracy violations in 68% of the settings as shown in Figure 4.2;

for the latter (right side of Table 4.2 and Figure 4.2), although capable of satisfying energy

constraints, it introduces 34% more error than ALERTAny.

The Application-only solution suffers from not being able to adjust to the energy requirements.

As a result, it consumes 73% more energy in energy-minimizing tasks (left side of Table 4.2

and Figure 4.2) and introduces many energy-budget violations particularly under resource

contention settings (right side of Table 4.2 and Figure 4.2).

The no-coordination scheme is worse than both System- and Application-only. It violates

constraints in both tasks with 69% more energy and 34% more error than ALERTAny.

Without coordination, the two levels can work at cross purposes; e.g., the application

switches to a faster DNN to save energy while the system makes more power available.

4.4.3 Detailed Results and Sensitivity

Different DNN candidate sets. Table 4.3 compares the performance of ALERT working

with an Anytime DNN (Any), a set of traditional DNN models (Trad), and both. At a high

level, ALERT works well with all three DNN sets. Under close comparison, ALERTTrad

violates more accuracy constraints than the others, particularly under resource contention

on CPUs, because a traditional DNN has a much larger accuracy drop than an anytime
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DNN when missing a latency deadline. Consequently, when the system variation is large,

ALERTTrad selects a faster DNN to meet latency and thus may not meet accuracy goals.

Of course, ALERTAny is not always the best. As discussed in Section 4.2.5, Anytime DNNs

sometimes have lower accuracy then a traditional DNN with similar execution time. This

difference leads to the slightly better results for ALERT over ALERTAny.

Figure 4.3 visualizes the different dynamic behavior of ALERT (blue curve) and ALERTTrad

(orange curve) when the environment changes from Default to Memory-intensive and back.

At the beginning, due to a loose latency constraint, ALERT and ALERTTrad both select

the biggest traditional DNN, which provides the highest accuracy within the energy budget.

When the memory contention suddenly starts, this DNN choice leads to a deadline miss and
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an energy-budget violation (as the idle period disappeared), which causes an accuracy dip.

Fortunately, both quickly detect this problem and sense the high variability in the expected

latency. ALERT switches to use an anytime DNN and a lower power cap. This switch is

effective: although the environment is still unstable, the inference accuracy remains high,

with slight ups and downs depending on which anytime output finished before the deadline.

Only able to choose from traditional DNNs, ALERTTrad conservatively switches to much

simpler and hence lower-accuracy DNNs to avoid deadline misses. This switch does eliminate

deadline misses under the highly dynamic environment, but many of the conservatively

chosen DNNs finish before the deadline (see the Latency panel), wasting the opportunity

to produce more accurate results and causing ALERTTrad to have a lower accuracy than

ALERT. When the system quiesces, both schemes quickly shift back to the highest-accuracy,

traditional DNN.

Overall, these results demonstrate how ALERT always makes use of the full potential of

the DNN candidate set to optimize performance and satisfy constraints.

Sensitivity to latency distribution. ALERT assumes a Gaussian distribution. However,

ALERT is still robust for other distributions, as explained in Section 4.2.6. As shown in

Figure ??, the observed ξs (red bars) are indeed not a perfect fit for Gaussian distribution

(blue lines) in all scenarios, which confirms ALERT’s robustness.

4.5 Conclusion

This paper demonstrates the challenges behind the important problem of ensuring timely,

accurate, and energy efficient neural network inference with dynamic input, contention, and

requirement variation. ALERT achieves these goals through dynamic and coordinated DNN

model selection and power management based on feedback control. We evaluate ALERT

with a variety of workloads and DNN models and achieve high performance and energy

efficiency.
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CHAPTER 5

SIM: RUNTIME MANAGEMENT FOR ANYTIME NEURAL

NETWORK IN SHARED SENSING INFRASTRUCTURE

5.1 Overview

Remote sensing is the process of gathering data from a distance. Shared sensing infrastructure

(SSI) is an emerging class of remote sensing system that allows multiple, independent

stakeholders to deploy their workload and share the sensors and associated compute. For

example, the Array of Things (AoT) provides a shared sensing infrastructure for scientists

to measure urban and environmental phenomena in the city of Chicago [19]. The National

Ecological Observatory Network (NEON) provides a shared sensing infrastructure allowing

scientists to collect ecological data from remote sites around the world [42]. Due to both

privacy concerns [37, 89] and bandwidth limitations [9], the raw, sensed data cannot leave

the SSI. Consequently, the sensor data must be processed locally, typically with some sort of

machine learning to detect the phenomena of interest from within the raw data. The output

of these machine learning algorithms are then communicated from the sensor.

Like many embedded workloads, SSI workloads process sensor data under latency constraints

to avoid missing important data. For example, a meteorologist using NEON would want to

detect lightning phenomena that last for only 20-93 ms [88, 31]. Additionally, the inference

must be done with minimal error. Workloads like a gunshot detector [96] and a forest

fire detector [74] should avoid making a false alarms to call the emergency response unit

while avoiding false negatives that would fail to detect these events. While meeting latency

constraints is well-studied in single-stake holder systems. The multitenancy in SSI adds novel

system dynamics because the stakeholders can come and go. For example, a car detection

workload might only run during rush hour [56] and flood detection might only run when

there is a rain [98].
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Designing an SSI that allows multiple stakeholders to do in-sensor inference while meeting

latency requirements and minimizing error prediction has 2 main challenges. The first

is dynamics : the SSI should ensure that the workloads still meet latency constraint even

when the computing environment is changing; e.g., a new stakeholder deploys an additional

workload on the SSI. The second is stakeholder behavior : when stakeholders have the

freedom to choose how to deploy their workload, they can either (1) launch a greedy

workload that consumes most resources and inhibits other workloads or (2) deploy a workload

that consumes just enough resources such that all other workloads can meet their latency

requirements with minimal error. Ideally, the SSI should prevent greedy behavior and

incentivize users who cooperate by helping the system meet latency constraints while minimizing

the overall inference error. In summary, SSI’s unique combination of embedded requirements

with multi-tenancy means that a novel solution is required to address these challenges.

A promising prior approach to handling the dynamics challenge is to deploy anytime

machine learning to process sensor data. Anytime machine learning return a sequence of

results over time, the more time they are given the lower the error [83, 3]. This behavior

makes anytime machine learning a flexible application because it can trade the runtime

latency with error output. Thus, anytime machine learning are a good match for meeting

latency constraints in systems with unpredictable dynamics, provided that all the workloads

are deployed by a single stakeholder. If there is just one stakeholder, then it is in their

interest to carefully design the system to minimize the overall error [47, 126]. Recent work

pairs anytime machine learning (for neural networks) with timing based scheduling (such as

scheduling for the worst case execution time of every workload’s earliest output) [130, 6].

This approach has two problems when deployed on SSI. First, it fails to minimize error

because it only ensures schedulability of the highest error output for each workload. Second,

and perhaps more importantly for SSI, if a workload submits an incorrect timing and error

profile, then that workload can effectively steal resources from other stakeholders, decreasing
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its error while increasing the error of cooperative workloads. Cooperative workloads in this

case is a flexible anytime machine learning that allows the scheduler to limit their incremental

output such that the scheduler can ensure other application to meet their latency deadline.

Another approach would be to use anytime machine learning with the type of fair resource

allocation found on typical multi-tenant server-class systems [39, 8]. While this approach

prevents any workload from accessing more resources, it fails to minimize inference error. The

problem is that fair schedulers assume that any additional resource can be put to beneficial

use by the workload to which it is allocated. When systems are judged by throughput, this

assumption holds. However, for SSI, just increasing throughput is not sufficient: workloads

must meet a latency deadline and if latency deadlines are met, the system will be judged

by overall error. The problem with fairly allocating resources to anytime inference machine

learning is that they are discrete and non-linear. Thus, it is not always the case that more

resources reduces error for an anytime workload. In practice, fair resource allocation may not

be enough resources for some workloads to meet their latency deadlines, while others might

have more resources than they can use to reduce error (i.e., they hit a point of diminishing

returns.

This paper proposes SIM, a runtime manager for anytime machine learning in shared

sensing infrastructure, to meet latency requirements while incentivizing flexibility and cooperation.

Flexibility is the ability to trade runtime latency and output quality, while cooperation is

the decision to let the scheduler limit their incremental output. We differ from the previous

approach in multiple aspects. First, instead of scheduling based on a fixed runtime profile,

SIM updates the time profile online, thus giving better results because the application

adapts to the dynamic environment. Second, unlike prior approaches that punish flexibility

and cooperation, SIM incentivizes flexibility by auctioning resources only to flexible and

cooperative ANN. SIM also incentivizes cooperation by protecting them from a greedy

applications. In each iteration, SIM monitors the resource usage and output of applications
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and compares it with the most greedy application. Envy happens if the cooperative application

can improve the output by swapping the resource with a greedy application. SIM will

resolve the envy by setting a new, improved output goal for the flexible application. SIM

then monitors the feedback. If the output goal cannot be met, SIM enforces the greedy

application to adapt. If the greedy application cannot adapt, it will be kicked from SSI

because the application is not flexible enough.

We evaluate our proposed solution in GPU using different kinds of Anytime Neural

Networks. Our evaluations show that we incentivize application flexibility by decreasing the

error prediction of a flexible anytime neural network by 20% on average compared to an

approach that is not aware of untruthful stakeholders. In the scenario where all stakeholder

is cooperative and deploys the flexible application, SIM decreases the error prediction by 21%

compared to an approach that schedules based on fixed profile time and by 16% compared

to a fair scheduler. Our solution only differs from the optimal solution by 5%.

In summary, we provide the following contributions:

1. We describe the potential problem in SSI, where the current state-of-the-art runtime

manager mismanages Anytime machine learning workload. It can lead to higher error

prediction, and an untruthful stakeholder can exploit the SSI.

2. We present SIM, an Anytime workload runtime management that meets latency deadlines

and incentivizes the flexibility and cooperation between stakeholders.

5.2 Motivation

This section demonstrates how a single stakeholder can use Anytime machine learning to

handle dynamics. Then we describe the challenge of deploying the Anytime machine learning

in a multistakeholder scenario.
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5.2.1 Handling dynamics in single stakeholder scenario

In an embedded multitenancy system, the number of applications that need to use the

computation simultaneously can change dynamically. A stakeholder who wants their application

to meet latency deadlines must ensure that the embedded system can provide enough

resources. Since an embedded system has a fixed amount of resources, the application

needs to be flexible to trade runtime latency and accuracy to meet the latency deadline

with dynamic resource allocation. This single stakeholder scenario guarantees the flexibility

and cooperation between applications. The stakeholder can design which application to be

flexible and which application needs to cooperate to ensure all applications meet their latency

deadlines.

Figure 5.1: Using ANN to handle multitenancy

Figure 5.1 shows how the Anytime machine learning (AML) adapts to dynamics in a

scenario where all applications are designed and deployed by the same stakeholder. In the

beginning, AML ran alone and could produce a low error by improving its output until all

the timeshares were consumed. Then, a co-located application is deployed that interferes

with the AML. Suddenly both AMLs have to share the timeshare. The stakeholder has

to limit both AML incremental output so that there is enough timeshare to handle both

AMLs. Now, both AMLs run with a higher error output but less runtime latency. When

an application is no longer running, the stakeholder reallocates the slack timeshare to the

running AML such that it can produce a lower error.
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Figure 5.2: Schedulability Analysis of Anytime Neural Network vs Traditional Neural
Network

The deployment of the Anytime algorithm benefits the SSI as its success is determined

by how many sciences it can provide [19]. Figure 5.2 shows the number of applications SSI

can guarantee to meet their deadlines across different periods. The flexible AML can trade

their latency with error output. Therefore, the SSI can schedule them such that all of them

meet their latency deadline. Meanwhile, the traditional DNN only produces one output with

low error and high runtime latency. The scheduler cannot adjust traditional DNN runtime

latency and can only guarantee the latency deadlines of fewer applications.

5.2.2 Handling dynamics in multistakeholder scenario

Figure 5.3: Two Flexible DNN without Coordination

Even though the AML can adapt to the dynamic environment, in multi-stakeholder

scenarios, AMLs need to cooperate such that AMLs can meet latency deadlines. When
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multiple stakeholders run together in SSI, they will compete for resources. Figure 5.3 shows

a scenario where two stakeholders deploy Anytime Cifar Spareseresnet DNNs [137]. These

are image classification neural networks trained using CIFAR dataset and can incrementally

improve their output quality. Each stakeholder controls their AML, but they do not cooperate.

Both AMLs are blocking each other’s resources, which eventually makes them miss many

deadlines. Figure 5.4 shows the advantages of cooperation. Here a scheduler makes the AML

cooperate by limiting the incremental output of each AML.

Figure 5.4: Two Flexible DNN with Coordination

5.2.3 Challenge to handling dynamics in multistakeholder scenario

There are prior approaches to meeting the latency deadlines of applications by limiting or

early exiting the AML. However, those schedulers assume that all applications are designed

and deployed by a single stakeholder. In SSI, applications come from different stakeholders,

and it is no longer reasonable to assume that all stakeholders would be cooperative. An

AML can be untruthful such that they are flexible but do not want to cooperate. This

untruthful stakeholder can exploit the scheduler to increase their intent while sacrificing

other stakeholders that have truthful behavior. Truthful behavior is when the application

is flexible and wants to cooperate.

There is recent work in the embedded system to meet latency deadlines of AMLs [132].

The scheduler uses dynamic programming to minimize the error output given the information
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of WCET and the expected error output of each incremental output of the AML. Application

with low error value will have high priority as it decreases the overall error of the system. If

a single stakeholder designs and deploys all applications, they can validate the application’s

error value. However, there is no way to validate the error value in a multi-stakeholder

scenario. A stakeholder with malicious intent can self-declare their application error output

as low as possible and get high priority during the deployment. For the rest of the

paper, we call a stakeholder with malicious intent an untruthful stakeholder.

The untruthful stakeholder exploits the SSI by either lying about their error output value

(see figure 5.5) or by hiding their flexible configuration (see figure 5.6).

Figure 5.5: Comparison of Embedded Scheduling vs Ours

Figure 5.5 shows how the embedded scheduler works in SSI when a cooperative stakeholder

is running together with an untruthful stakeholder. The untruthful stakeholder exploits the

SSI by declaring a deficient error output for each of their incremental output. Since the

untruthful application has a lower error, the embedded scheduler will limit the incremental

output of the cooperative application to make room for the untruthful application. Then

the cooperative stakeholder would run in the high error output.
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Figure 5.6: Comparison of Embedded Scheduling vs Ours

Figure 5.6 shows that the prior scheduler and resource allocation methods disincentivize

a cooperative deployment. The error output of the flexible application is consistently lower

than the similar application that does not cooperate. Here, the untruthful stakeholder did

not declare their flexible configuration and forced the scheduler to configure the AML only.

Meanwhile, our potential solution incentivizes a cooperative flexible application deployment,

and the error of a flexible application is lower than the inflexible one.

Incentivizing the deployment of the cooperative application is essential. We can summarize

that the SSI has the highest utility when the stakeholders deploy their application as a

truthful flexible application. SSI can maximize the number of applications running while

meeting their latency deadline. However, the best deployment strategy for the stakeholder

is to deploy the application as untruthful by either hiding their flexible information or

falsifying their error output. Disincentivizing flexibility will make all stakeholder deploy

their application untruthfully.

5.3 Preliminaries

This section describes Anytime machine learning (AML), an analysis showing why prior

approaches are not suitable to manage AML in terms of Pareto optimality and envy-freedom.

Finally, we summarized this analysis into the design principles for SIM.

77



5.3.1 Anytime Neural Network

Anytime machine learning (AML) uses principles from incremental algorithms, and approximate

computing [? ]. AML provides multiple outputs in multiple time increments. In other words,

an anytime machine learning system produces a series of increasingly accurate inference

results—the more time available, the more accurate the result.

Figure 5.7: Traditional and Anytime DNN

Figure 5.7 shows the differences between a traditional neural network and an anytime

neural network (AML). AML is a neural network that produces a series of increasingly

accurate outputs over time. In contrast, a traditional neural network is a neural network

that only produces one output at the end of time. AML is robust and can adapt to

system dynamics. The earlier, less accurate result will be used when the inference cannot

produce the output by the deadline. Therefore, scheduling AML by its worst-case execution

time (WCET) while providing more protection in case the WCET calculation is inaccurate

eliminates the potential improvement of the output quality when the runtime latency is

faster than the WCET. It is better to schedule AML by using a dynamic time profile.

AML’s incremental output is discrete and nonlinear. Scheduling AML by allocating the

time resources would waste unnecessary timeshare. The error output of AML would not

decrease unless the additional timeshare is enough to produce the subsequent incremental

output. Therefore it is more efficient to schedule AML by limiting its incremental output

rather than scheduling them by time resources.
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5.3.2 Managing Anytime Neural Networks

An AML would want to minimize the error output by using as many resources as possible.

Therefore, the deployment of multiple AMLs together requires cooperation between the

AMLs. A scheduler is needed to control AMLs such that they are not competing for the

resources. Meanwhile, cooperation is needed such that the scheduler has something to be

controlled. AML is cooperative if they provide their outputs to the scheduler representing

their error-accuracy tradeoff and letting the scheduler limit their incremental output.

Pareto optimal is a condition where no stakeholder’s application can decrease their error

output without worsening the other error output. Meanwhile, envy-free is a situation where

stakeholders cannot decrease their errors when they swap each other’s resources. Scheduling

in multitenancy would aim to achieve both Pareto optimal and envy-free as a desirable

condition [? ]. There are multiple ways to manage AMLs to meet latency requirements.

Here, we will analyze prior approaches used in embedded systems to meet latency deadlines

in terms of Pareto optimality and envy-freedom.

Managing by Profile

A real-time scheduler solves the problem of managing multiple applications to meet their

deadline. It makes sure that applications pass the schedulability analysis:

n∑
i=0

Ci

Ti
≤ 1 (5.1)

Ci is the worst-case execution time (WCET) for application i. Ti is deadline of application

i. Based on equation 5.1, the ratio between worst-case running time and the deadline should

not be higher than one. If the sum is less than 1, the system has enough timeshare to run all

of the applications. If it is higher than 1, then it means that the system is overloaded, and

adjustment is needed. The value of Ci needs to be adjusted. The approximate algorithm

gives the scheduler ability to adjust the Ci.
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Prior approaches manage the flexibility of AML by limiting the output they produce.

They decide when AML should do early exiting such that the worst-case execution time to

do early exiting Ci is schedulable for the system. An embedded system’s specific scheduler

goal is to meet latency deadlines while minimizing error output. The developer assigns each

application’s incremental output with an error value. Then a management mechanism such

as reinforcement learning [132] and probabilistic scheduling [126] would be embedded in the

scheduler to prioritize the application and output that minimize the overall error output.

For example, the lowest error application will allocate all the resources needed. Then the

higher error application will be allocated the slack of this application.

The scheduler managed by the profile and flexibility would converge into a Pareto optimal

condition but not envy-free. It is Pareto optimal because a cooperative AML cannot decrease

its error without making a non-cooperative application’s error output higher. Meanwhile, it

is not envy-free because a cooperative AML can decrease its error output if the allocated

timeshare is swapped with the non-cooperative application.

Fair Scheduling

A fair scheduler would divide the available resource evenly based on how many applications

are available [? 39, 8]. Dividing resources evenly is not suitable for hardware utilization

because each application requires different resources. The fair scheduler would converge

into an envy-free condition but not Pareto optimal. It is envy-free because the resource

allocated to one stakeholder is the same; therefore, no stakeholder can improve their output

by swapping with other stakeholders’ resources. Meanwhile, it is not Pareto optimal since

each application would require a different timeshare, and an application might not have a

good timeshare. At the same time, the others are allocated too many resources.
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Notation Description
Ci Worst Case Execution Time (WCET) of application i
Ti deadline of application i
li runtime latency of application i
nm number of times the application run produces output m
cm output of application i

Table 5.1: Notation used in this paper

5.3.3 SIM Design Principle

Building on the information and analysis from previous subsections, we have two critical

ideas for building SIM. First, AML should be scheduled by its output and dynamic time

profile. Second, the flexibility and cooperation of stakeholders are exploited by untruthful

stakeholders because the prior scheduler is either not envy-free or not Pareto optimal.

To handle dynamics SIM employs a monitoring block that updates the timing profile of

AML’s incremental output. SIM also schedules the AML by limiting its output. This output

limit is set as a goal in SIM’s feedback mechanism, and SIM then monitors the output as

feedback to decide the subsequent actions. If an application cannot achieve the output goal,

then SIM will enforce the greedy application to be flexible and cooperative by reducing their

output goal to release timeshare resources.

To achieve envy freedom, SIM would set the goal of each AML as if they are allocated

to the most greedy AML that uses most of the resources. However, to avoid oscillation and

decrease performance overhead, SIM relaxed the resource swapping from equal timeshare to

slightly less timeshare.

To achieve Pareto optimality, SIM would auction the slack resources to the flexible

application. This auction also incentivizes flexibility since SIM will allocate the resources

(by increasing their output goal) to the currently most flexible application.
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5.4 Design and Implementation

Figure 5.8 shows our approaches to handling multiple stakeholders in SSI. When a new

stakeholder i launch the application to SSI, they have to declare their latency deadline Di

and their AML’s output that can be used to tradeoff latency and output error, SIM then will

monitor the application to get the timing resource required for each output. This information

is then used to schedule the applications. The decision-maker will decide the AML’s output

based on their flexibility and resource usage. SIM then embedded a feedback mechanism to

this AML. The feedback mechanism will dynamically adjust the output knobs to minimize

errors while meeting the latency deadlines.

Actor

Monitor Decision
Maker

Recorder

DNN
Family

Deadlines

Current
Runtime

Latency
Model

Action

DNN Runtime

Miss
Deadline?

Figure 5.8: Algorithm Building Block

We start our discussion by describing the input that is needed from the AMLs. Then

the monitoring block. The auction decision-maker. Last is the local feedback mechanism to

manage flexibility.

5.4.1 Input of The System

SIM’s inputs are the workload’s name i and its deadline Di. They must also declare their

specifications as shown in Table 5.2. While the latency profile is needed for the scheduling,
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Output Latency Error
c0 l0 e0
c1 l1 e1
... ... ...

cmax lmax emax

Table 5.2: Model of Workload

Output Average Latency Number
No Output - nmissed
0 l0 n0
1 l1 n1
... ... ...
m ln mn

Table 5.3: Runtime Statistic of Application

our monitor system would measure it during runtime because it is better suited for the

dynamic phase and environment. We do not require the expectation error of the application.

A stakeholder can put the error information. However, it would not be used for calculation

but as a relative preference of their other output. An application is considered untruthful if

it cannot provide the output to be limited later.

5.4.2 Monitoring Block

Monitoring block duty is to measure the application’s runtime statistic and maintain the

record table for each auction period. Table 5.2 shows the runtime statistic to be maintained.

When an auction is performed, SIM will look for this data table for their process and reset

the table.

5.4.3 SIM Workflow

The algorithm starts by getting the runtime statistic from the monitoring block (line 2).

Then determines which application is the most greedy and how much timeshare it is used

(line 3). This statistic is shown in table 5.3. Given this statistic, the algorithm calculates
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Algorithm 5 SIM Workflow

1: while TRUE do
2: Get runtime statistics from the monitoring block. (Table 5.3)
3: Determine which application is greedy.
4: if Output targets are not met then
5: Force the greedy application to adapt.
6: else
7: Auction the slack timeshare.
8: Adjust the output target for the auction winner.
9: end if
10: for each application do
11: Resolve the envy-freedom.
12: end for
13: for each application do
14: Assign output target to local controller
15: end for
16: end while

the output realization of each application. Then compare it with the previously assigned

output target (line 4).

When any workload misses the output target, SIM will fix the system by releasing some

resources from the most greedy application. In line 5, SIM forces the application that uses the

most resource to adapt by reducing its output target, which reduces its resource allocation.

If they cannot adapt, then they have to leave the system.

When all the goals are met, each application can claim the slack resources if any slack

is available. However, SIM would grant the resources to those who claim the least. Only

flexible applications can bid for the slack resource since they have to provide their following

output profile.

bidi = lnext − lgreedy

resourceincrement = lnext − lcurrent

(5.2)

SIM calculates bidi and resourceincrement for each application i based on equation 5.2.

On behalf of the application, SIM does the auction where the winner is the one with the
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least bid, and the resourceincrement is less than slack. Once the winner is decided, SIM

increases the output target and resource for the winner.

Line 10-11 shows the resource allocation for other applications. Using the model from

table 5.2, SIM resolves the envies of the application. SIM assigns output goal such that the

expected resource usage is less than the previous resource used by the greedy application

lgreedy. In prior approaches, the flexible application is disincentivized because they are

allocated the slack resource of the non-flexible or higher priority application. Here, SIM, on

behalf of each application, would set the application target as highest as possible, but the

expected resource usage is below the last most used resource.

5.4.4 Properties of SIM

Incentivize Cooperation

SIM incentivizes cooperative behavior and punishes untruthful behavior. Whenever an

application cannot meet the target output, SIM looks for the greedy workload instead of the

one that can be controlled. When this greedy workload cannot be controlled, the agent kicks

this workload from the system instead of allocating more time. The mechanism encourages

cooperation. A cooperative stakeholder can get more resources by bidding for slack resources

using their subsequent output.

Convergence

The mechanism converges when all the slack resources are claimed and applications meet

their target output. SIM would auction the slack resources until all of them are claimed

or when all the applications cannot decrease their output error without increasing their

resource usage above the most greedy one. On the opposite, SIM would iteratively decrease

the resource allocation of the greedy application when there is an application that cannot
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meet its target output.

Rationality

The mechanism is individually rational, meaning that when the stakeholder is truthful, they

will not be at a loss. In each iteration, SIM solves envies by setting the output target of all

applications as if they are allocated the same resources as the most greedy one. Since the

outputs and resources are discrete, this will ensure an envy-free condition.

Robustness

The mechanism is robust from misbehaving. A stakeholder cannot lie about their utility, and

SIM does not schedule and allocates resources based on their utility. There is no incentive

to hide their flexibility. A stakeholder must declare their output stages. If an application is

punished with no more minor output stage, it will be kicked from SSI. A stakeholder cannot

acquire more resources if they do not declare their increased output.

5.4.5 Feedback Mechanism

Our feedback mechanism is embedded into each of application locally. It solves the following:

minimize e

s.t.li ≤ Di

oi ≤ gi

(5.3)

Algorithm 6 shows the runtime of Anytime Workload. SIM controls the ANN by limiting

its output. ANN is an incremental algorithm that keeps reducing the error output over time.

ANN will stop producing a new output when they reach their output limit clim.
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Algorithm 6 Runtime of Anytime Machine Learning

Require: Climit
Ensure: cdone
Ensure: lelapsed
1: for cj inClimit do
2: IncrementalInference
3: cdone ← cj
4: end for

5.5 Experimental Setup

This experiment aims to show that SIM can meet the latency deadline of all the workloads

while incentivizing flexible applications. We use multiple Anytime Machine Learning applications,

from image processing to speech recognition, to simulate the arbitrary scientist’s Neural

Network application.

5.5.1 Platform and Benchmark

We evaluate SIM on Nvidia GeForce RTX2080MQ GPU. A mobile GPU with 8 Giga Bytes

of GDDR6 memory and 46 streaming multiprocessors with a maximum power of 90 Watts.

We believe this mobile GPU can simulate the environment in a shared sensing infrastructure.

We test our experiment by mimicking a shared infrastructure. We evaluate the ability

to minimize the error of the DNNs with multiple latency deadlines to mimic the actual

deployment of SSI with a camera sensor. For each experiment, we quantify the expected

error calculation based on whether the AML can finish before the deadline or not. If AML

can finish before the deadline, we will record the error as the training accuracy of the selected

configuration. If it cannot finish before the deadline, we quantify it as the error of the last

output.

Table 5.4 shows the AML workloads used in this paper. We adopt nested architecture

[125] on classic neural networks to get these AMLs.We also provide the symbol used in this

paper. For example, later, SII would mean that we run a single Sparseresnet colocated with
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2 Imagenet together.

Base Network Task Symbol
Sparse ResNet [137] Image classification on CIFAR S
Sparse ResNet Image classification on ImageNet I
RNN Word prediction N
SASRec [63] Recommendation system R

Table 5.4: Anytime Workloads Description

5.5.2 Point of Comparison

We compared our scheduler with different kinds of the current state-of-the-art approaches.

• Local adaptation. In this scenario, each AML controls itself locally to maximize its

accuracy while meeting its latency deadlines without considering other DNNs. They

react to the difference between their runtime latency and latency deadline.

• Worst case approach (embedded system). In this scenario, the system manager will

profile the DNNs. Then determine each AML’s configuration WCET based on the

most prolonged observed latency. The manager then reconfigures the DNNs to meet

the latency deadlines while maximizing accuracy based on profiling information.

• Fair time share allocation (cloud system). In this scenario, the system manager will

allocate a fair share of computing utilization for all DNNs. The resource manager will

divide and allocate the computation timeshare based on the number of DNNs available.

Then each DNN will control itself to maintain its latency deadline using the same step

as in local adaptation but limited by the timeshare from the resource manager.

• Oracle. In this scenario, the system manager knows which configurations can meet the

latency deadlines while minimizing the harmonic mean of error prediction. We create

this scenario to evaluate how far we differ from the optimal solution.
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5.6 Evaluation

5.6.1 Overall Results

This section evaluates our runtime management to meet latency deadlines while incentivizing

flexibility and cooperation. First, we evaluate our system to minimize errors and meet latency

deadlines when all workloads are flexible by quantifying the harmonic mean error and latency

misses. Next, we introduce a non-flexible Neural Network which is not flexible and relies

on other workloads. Last, we show a scenario about our system handling the dynamic

environment.

Our System in Flexible Workloads

Figure 5.9: Error of Cooperative Workloads

Comparison in general. Figure 5.9 shows our system in minimizing error under latency

constraints. We already included the violated latency calculation in this result. The result

is normalized to the oracle, where the lower the value is, the better. Our system minimizes

error by only 5% more than the Oracle, which is the best across all of the baseline.

Compared to local adaptation. Local adaptation gives high errors, and the worst

result because they will compete for timeshare. Without coordination, Anytime Neural

Network runtime is limited by their latency deadline. So they will occupy the computation

without knowing other colocated ANN also needs to run. This colocated ANN misses its
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latency constraints because it simply cannot run its work. SIM decreases the error by 63%

compared with the local adaptation.

Compared to WCET scheduling. Applications met their latency constraints but with

low quality because scheduler schedules were based on their WCET. The worst-case rarely

happens, and Anytime DNN should be scheduled by their average case instead since they

can adapt by sacrificing their accuracy. SIM is better because we manage the configurations

dynamically by monitoring the quality and latency and responding when there is a change

in the dynamics. SIM is better by 23% compared with this approach.

Compared with fair scheduling. Fair scheduling does not regard any resource need

of applications and only allocates a fair timeshare for all DNNs. All truthful stakeholders

here are not incentivized to fulfill the remaining slack timeshare available. Our approach

is different here, such that we allocate the remaining timeshare for DNNs that can increase

their utilization but with the least additional resources. Because of this policy, we encourage

the stakeholders to design and deploy their DNN as flexibly as possible. SIM is better by

16% compared with this approach to decrease error.

Compared with oracle. The oracle knows the best configuration from the beginning.

We slightly worse than this approach because we need time to discover the best action for

the system.

Scenario of a untruthful stakeholder

In this scenario, we add an untruthful stakeholder into the multitenancy. This untruthful

stakeholder will not cooperate with other ANNs and will not sacrifice their quality of

prediction. This untruthful stakeholder relies on other ANN to do the adaptation for the

untruthful stakeholder’s benefit.
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Figure 5.10: Error of untruthful stakeholder

Figure 5.11: Error of truthful stakeholder

Comparison in general. We show that our approach can punish the deployment

of untruthful stakeholders compared to all other baselines. By punishing the untruthful

stakeholder we decrease the error prediction of the truthful stakeholder thus incentivizing

them.

Compared with local adaptation. Without coordination, ANNs in the local adaptation

baseline would be untruthful stakeholders. They are competing with each other to use as

many resources as possible to minimize their error prediction. Both good and untruthful

stakeholders have high errors because they will compete for time share and miss their

latency constraints. Contrary, we are coordinating the DNNs by limiting their timeshare

and configuration. We prevent the competing behaviour thus we have less error prediction

compared to this baseline.

Compared with scheduling by WCET. In the WCET baseline, they assume all of the

stakeholders are truthful stakeholders. The scheduler will look for the profiling configuration
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of each DNNs to meet latency deadlines and minimize error prediction. Since the untruthful

stakeholder is not reconfigurable, the scheduler will force the truthful stakeholder to reduce

their quality when the timeshare is not enough. We can see from the result, the error

prediction of untruthful stakeholders are the best in this scenario. The untruthful stakeholder

game the system, having small error prediction by sacrificing the truthful stakeholder. Our

solution differs in the term of meeting the latency deadlines. Instead of looking for any

configuration which comes from the truthful stakeholder, we detect which DNN is actually

consuming resources such that other DNN missed the deadline. By doing this, we prevent

the bad behavior of DNN and force the DNN to use only the fair enough amount for their

runtime.

Compared with fair scheduling. In a fair baseline, the errors of both truthful

stakeholders and untruthful stakeholders are quite similar. This happened because the

system manager allocates the same time share for all DNNs regardless of their behavior.

Our approach differs from this such that we punish the bad behavior of the system. When

a DNN is dominating other DNN to sacrifice their accuracy, we detect this by asking the

bad behavior to provide a configuration that is not dominating. If they cannot provide that

configuration, then we will kick them out of the system and allocate the timeshare for other

truthful stakeholder DNNs. We argue that just providing a fair timeshare is bad for the

system in general. First, there is no incentive to be a truthful stakeholder because regardless

of the strategy they will be allocated the same timeshare as a untruthful stakeholder. The

second, it actually hurt the global accuracy prediction when all of the DNNs are truthful

stakeholders. We will cover the explanation in the next session.

Compared with oracle. We assume Oracle would want to kick the untruthful stakeholder.

Here our result is slightly differ from the oracle because we need time to detect which one is

the untruthful stakeholder.
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5.6.2 Overhead

Our algorithm only has a really small overhead. The overhead is less than 1% of the inference

latency.

5.7 Related Works

Much prior work focuses on designing networks that meet latency requirements under all

timeshare variations. Some focus on designing efficient networks that achieve high accuracy

with fewer operations [46, 69, 51]. Others propose networks supporting anytime [127, 125,

47, 78] inference and cascade design [75, 120, 49, 48], which produce a series of increasingly

accurate outputs over time. These works are already incorporated into our system.

Many prior works meet latency constraints using control theory ([109, 110, 64]), real-

time scheduler ([108, 94]) or neural network ([28, 117]). Those approaches solve different

scenarios that would not be suitable for SSI. SSI consists of multiple application that comes

from different stakeholders. We already show in this paper that an untruthful stakeholder

can exploit it.

5.8 Conclusion

This paper demonstrates the potential problem that arises when Anytime machine learning

are deployed in an embedded multi-tenancy system. Our work solves this problem by building

a scheduler that incentivizes flexibility and cooperation between applications. We evaluate

our work with multiple varieties of Anytime machine learning and meet latency goals with

low error.
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CHAPTER 6

FUTURE WORKS

While this thesis explores the mechanism to manage the flexibility of computer system and

application, it is still a tip of iceberg and many things can be done.

6.1 More Complex Resources

In this thesis, we already described the mechanism to incentivize flexibility in real time

environment. For the future, we can extend this work into more complex resource allocation.

The resource allocation should be extended not only for timeshare but also the computation

allocation and memory allocation.

6.2 Enforcing Flexibility

The design of flexible application is difficult. Sometime stakeholder is not actually have bad

intent. We want to extend our work such that it treats the inflexible application better

instead of kicking them out of system.

6.3 Automatic Cooperation

Currently, the mechanism to meet goals while optimizing something need to be designed

together. However, this is not applicable in real deployment. For example in serverless

computing, the goals of the application and the system are contradict each other. The

applications want to meet performance requirements while minimizing the cost. Meanwhile

the provider want to minimize the energy usage while maintaining the QoS of their tenants.

In the next research, I want to explore the requirement to build a serverless computing

framework that can handle multiple control problems.
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