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ABSTRACT

Adapting populations have often been characterized in the context of static environments.

However, many natural environments vary on timescales similar to or faster than the rate of

evolutionary adaptation. Examples of time-varying environments include the environment

faced by the adaptive immune system when generating antibodies against highly mutagenic

viruses or the environment faced by an organism attempting to escape from an incoming

predator.

We begin by exploring adaptation against HIV, a virus that mutates on the same timescale

as it takes for B-cells to evolve antibodies. In our study, we propose a conceptual framework

in which there exists generalist and specialist phenotypes. Specialist phenotypes are strategies

that confer high fitness in a given environment, and may not confer high fitness in any other

environment. Generalist phenotypes, on the other hand, are ’jack-of-all-trades’ strategies

and work well across a family of environments, though they may not work as well as a

specialist phenotype for a given environment. We are able to demonstrate that the preferred

phenotype depends on the variation of the environmental landscape. Further, we identify that

generalist phenotypes confer fitness by exploiting the correlation structure of the time-varying

environment.

We then consider the sensory encoding scheme used by the retina against changing visual

scenes. Unlike in the previous study, the natural environment changes much more rapidly

than the evolutionary adaptation time of the sensory encoding scheme. Consequently, we

explore how a sensory encoding scheme can be predictive for a fixed level of compression.

Using the information bottleneck method, we explore the optimal sensory encoding schemes

for a range of time-varying environments relevant to the visual system. In addition, we also

explore the transferability of a sensory encoding scheme, identifying the best schemes when

the autocorrelation structure of the environment itself varies.
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CHAPTER 1

INTRODUCTION

There are many environmental threats that can challenge the survival of a given species. These

threats can range from infection by foreign antigens to predation by other species. In order to

survive against such threats, biological organisms undergo evolution. In evolution, organisms

reproduce and mutate over the course of many generations. The rate of reproduction, often

called fitness, depends on both the external environment and the expressed phenotype of each

organism. During reproduction, organisms pass on their phenotypes to the next generation,

unless a mutation occurs during reproduction. Mutations cause offspring to develop different

phenotypes from their parents. This can be beneficial because it enables individual organisms

in a population to adapt to an environmental threat. In addition, the organisms that initially

acquired the beneficial mutations will proliferate more rapidly than their peers, eventually

resulting in the population having adapted to this environmental threat.

Evolution can be studied through the Wright-Fisher model(180). In the bi-allelic Wright-

Fisher model, we suppose there exist two alleles of a given gene, a0 and a. We assume a0

has a selective advantage over a - that is, individuals with the allele a0 reproduce faster

than individuals with allele a. Assuming no mutation, the probability that k individuals in

a population of size N have allele a0, assuming that k0 individuals had allele a0 in the last

generation is given by

P (Na0 = k) =

✓
N

k

◆
(
k0(1 + s)

N + k0s
)k(

N � k0

N + k0s
)N�k. (1.1)

Here, the selective advantage is of size s. This distribution can also be extended to the

continuous distribution and to include mutations:

df

dt
= sf(1� f) + µ(1� f)� ⌫f +

r
f(1� f)

N
⌘(t). (1.2)
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Here, f represents the frequency of allele a0, µ represents the transition rate from allele a

to a0, ⌫ represents the transition rate from a0 to a, and ⌘(t) is Gaussian white noise.

The Wright-Fisher distribution can be used to study both real data and provide testable

predictions about the trajectories of a species. For example, the Wright-Fisher distribution

has been used to compute the minimum population size at which a beneficial mutation

escapes the stochastic effects of frequency-dependent reproduction(73). In addition, the

Wright Fisher model can be used to solve inverse problems, and identify the benefit of a

mutation at a particular gene using real data(157). However, a core assumption of this work

is that the benefit of a mutation is static compared to the timescale it takes for a mutation

to fix or go extinct in a population.

Relaxing this assumption, however, yields exciting results. Some theoretical works have

shown that if selection pressure fluctuates periodically, phenotypes that are entropically

disfavored may become the predominant phenotype in a population(79). In addition, by

connecting the Wright-Fisher diffusion approximation to the Fokker-Planck equation, it can

be shown that the dynamics of a population in a fluctuating selection pressure resembles that

of a heteropolymer in an external field. This connection, among many others, enables existing

insights generated about physical systems to be applied to population genetics. Further, it has

been shown that the effect of a mutation in a time-varying environment is not simply given

by its average fitness effect across all environments(40). In fact, even deleterious-on-average

mutations can sometimes fix if the environmental conditions are sufficient.

Some of these effects have been observed in natural settings. For example, the evolution

of broadly neutralizing antibodies, typically disfavored for both entropic and efficacy reasons,

against fast mutating viruses such as HIV has been observed in clinical data(84; 53; 25).

Further experiments and computational studies demonstrated that in fact, static selection

pressures fail to yield broadly neutralizing antibodies. Instead, by cycling through several

strains of a virus, broadly neutralizing antibodies can be elicited(173).

2



Inspired by this work, in Chapter 2, we set out to engineer a time-varying landscape which

robustly drives populations of antibodies towards being broadly neutralizing against a full

family of viruses, rather than just one particular strain of a virus. We observe that both the

entropic and energetic costs of being a broadly neutralizing antibody presents two disjoint

challenges: driving a population towards a broadly neutralizing antibody and then stabilizing

it in the broadly neutralizing antibody state. We demonstrate ways of navigating this tension,

and eventually propose a robust time-varying landscape which could be translated into a

vaccination protocol. This work also appears in (141).

We can also explore population adaptations through the lens of the efficient coding

hypothesis(11). In the efficient coding hypothesis, it is assumed that over evolutionary

timescales, sensory encoding schemes have evolved such that their response to an external

stimuli is maximally informative of a relevant statistic subject to constraints originating

from internal noise and resource constraints. A core prediction of the efficient coding

hypothesis is that sensory encoding schemes are evolved to match the statistics of their

natural environment. Evidence for this prediction has been observed in the visual system,

where early visual processing systems are shown to reduce generalized redundancy(9). In

general, however, a core challenge has been identifying the relevant statistic for a biological

system. Several paradigms have been proposed, such as sparsity and predictiveness(29). For

this thesis, we will consider prediction to be the primary relevant statistic.

The need to be predictive emerges from the delay between information being transmitted

to the brain by sensory organs and the ability to then cue a motor response in reaction to

the received information(18). Without prediction, some organisms may be unable to escape

predation. In order to identify if a sensory organ is efficient for prediction, we utilize the

information bottleneck method(158). In the information bottleneck method, we imagine

there exists a system with coordinates given by the vector X evolving in time t. This system

represents the external environment. Sensory organs respond to the dynamical system at

3



each time according to a sensory encoding scheme given as p(zt|xt). Biological systems,

over evolutionary timescales, have adapted their sensory encoding schemes to maximize the

objective function:

L = max
p(zt|xt)

I(Xt+�t;Zt)� �I(Xt;Zt). (1.3)

� represents a tradeoff parameter that encapsulates the effects of internal noise and

resource constraints. Here, I(A;B) is the mutual information between two random variables,

A and B. It measures the reduction in uncertainty in one random variable caused by knowing

the value of the other. It is computed as
P

a2A,b2B p(a, b) log( p(a,b)
p(a)p(b)).

Evidence for efficient predictive coding was observed in tiger salamander retina(125). In

this experiment, a tiger salamander retina was placed on a microelectrode array and was

exposed to a moving bar stimulus with predictable dynamics. The tiger salamander retina’s

firing pattern was recorded using the microelectrode array. The response was characterized

by the neurons firing within some time window. The amount of predictive information in

the retinal response was shown to be a maximum for the overall amount of information the

retina could encode.

In Chapter 3, we present analytical predictions for the optimal sensory encoding schemes

for a range of statistics expected in the visual world. This includes both stimuli with and

without the heavy-tailed noise observed in the real world(139). Further, we propose the

structure of an efficient predictive encoding for the adaptive immune system. We also propose

a novel transferability metric that describes how well a particular sensory encoding scheme

could be used for a stimulus with different underlying statistics. Using this transferability

metric, we identify the optimal sensory encoding scheme if the visual scene’s autocorrelation

structure is rapidly varying. This work also appears in (142).

Not directly considered in either Chapters 2 or 3 is the question of how much data is

needed to actually make predictions and how the inference method used impacts the amount of

4



data needed. While we do not explicitly treat how a biological system might make inferences,

we consider some common inference methods that may be biologically plausible(103). Most

available biological data exists in the strongly undersampled limit(74), and consequently,

much care needs to be taken to avoid overfitting. In Chapter 4, we explore the impact of

inference method on the number of samples needed to infer the generating distribution of a

dataset. We compare global inference methods to local inference methods, and show that

the efficacy of the method depends on whether the generator of a dataset is in an ordered

phase or disordered phase. In particular, global inference methods are more effective for data

generated in the ordered phase, as it is more sensitive to variations in the dataset, while local

inference methods are better in the disordered phase. The work is presented as it appears in

(116).

We extend upon the work in Chapter 3 in Chapter 5, focusing primarily on how an organism

can make use of estimation memory to improve sensory encoding schemes. We argue that

because biological systems are continuously making measurements of the external world

throughout their lifetime, they may be able to use information from previous measurements

to inform present estimates of the external world. The Bayes-optimal way of combining

information from previous estimates of an external stimuli and a current measurement is

given by the Kalman Filter(67). However, previous work on the Kalman Filter has assumed

the measurement model, analogous to the sensory encoding scheme, is held fixed. However,

biological systems are capable of changing their sensory encoding scheme, up to some

resource constraints, to be more efficient, as predicted by the efficient coding hypothesis. We

demonstrate that when sensory encoding schemes are optimized in this way, the biological

organism decorrelates estimates based on previous measurements and estimates based on the

current measurement. This decorrelation enables significant improvements in the ability of a

biological system to estimate the stimulus with high precision.
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CHAPTER 2

TUNING ENVIRONMENTAL TIMESCALES TO EVOLVE AND

MAINTAIN GENERALISTS

This work was completed in collaboration with Kabir Husain, Jiming Sheng, Shenshen Wang,

and Arvind Murugan.

2.1 Significance

Generalists, or jack-of-all-trades, that are fit across diverse environments can be difficult

to evolve since they may not be as fit as a specialist in any particular environment. Such

generalists are sought in immunology, where broadly neutralizing antibodies that can detect

a broad variety of strains of a rapidly changing virus like HIV are often hard to evolve. Here

we find that generalists are most easily evolved in the most poorly understood regime of

evolution - where the environment changes are neither fast nor slow but on the same timescale

as evolutionary response of the population. Our methods let us propose new temporal

vaccination protocols, such as a chirp, that exploit this highly dynamic regime of evolution.

2.2 Abstract

Natural environments can present diverse challenges, but some genotypes remain fit across

many environments. Such ‘generalists’ can be hard to evolve, out-competed by specialists

fitter in any particular environment. Here, inspired by the search for broadly-neutralising

antibodies during B-cell affinity maturation, we demonstrate that environmental changes

on an intermediate timescale can reliably evolve generalists, even when faster or slower

environmental changes are unable to do so. We find that changing environments on timescales

comparable to evolutionary transients in a population enhances the rate of evolving generalists

from specialists, without enhancing the reverse process. The yield of generalists is further
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increased in more complex dynamic environments, such as a ‘chirp’ of increasing frequency.

Our work offers design principles for how non-equilibrium fitness ‘seascapes’ can dynamically

funnel populations to genotypes unobtainable in static environments.

2.3 Introduction

Evolutionary outcomes are driven by environmental pressures, but environments are rarely

static(83). In a changing environment, some genotypes – termed generalists – maintain a

uniformly high fitness over time, even if they are not globally fit at any particular instant. A

striking example is that of broadly-neutralizing antibodies (bnAbs) against HIV and other

viruses – these antibodies maintain potency against the large diversity of viral strains that may

arise in an infected individual over time (27; 28; 184). It is desirable for the immune system

to select for generalist antibodies during B-cell affinity maturation, a rapid evolutionary

process(35), but generalists are often out-competed by specialists that only bind particular

viral strains.

Recent work has suggested that sequential vaccination with different viral antigens, rather

than a single cocktail of those antigens, can better select for generalist antibodies during

affinity maturation (128; 89; 171; 173). This result is consistent with the broader idea

that a time-varying environment can drive evolution out of equilibrium and into genotypes

unevolvable in static environments (115; 114; 8; 78; 58). However, the broader principles

underlying generalist selection by dynamic environments remain unknown. In particular, the

interplay of environmental and evolutionary timescales and choices of correlated antigens

generates a high-dimensional space of possible vaccination protocols. Hence guiding principles

are needed to find optimal protocols for evolving generalist genotypes.

Here, we take a phenomenological approach to design dynamic environments that select

generalists. We analyze situations in which generalists are entropically disfavoured or isolated

by fitness valleys, and thus unevolvable in a static environment. We find that a dynamic
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environmental protocol can maximize the yield of generalists if the environment changes on

the same timescale as the evolutionary transients of the population, i.e., on the timescale for

allele frequencies to reach steady state. Consequently, switching antigens before antibody

populations have evolved to a steady state can dynamically funnel finite populations from

specialists to generalists, even when faster or slower switching is unable to do so.

We understand these results in terms of a kinetic asymmetry between generalists and

specialists. Environmental dynamics at the right timescale perturbs specialist populations

while leaving generalists relatively undisturbed. This asymmetry favours evolution from

specialists to generalists without enhancing the time-reversed process. In contrast, faster or

slower environmental dynamics may be cast into effective static fitness landscapes (39), and

are thus unable to maintain a strong kinetic asymmetry between specialists and generalists. In

this sense, the intermediate cycling mechanism studied here exploits a truly non-equilibrium

evolutionary ‘seascape’ (78; 114) with no static analog.

Our framework proposes novel protocols for evolving generalists, such as a ‘chirp’ where

the environment is cycled at an increasing frequency, and predicts optimal correlations

between antigens to be used. Since we use a sufficiently abstracted model of B-cell affinity

maturation, our analysis might be adapted for other temporal evolution protocols, e.g., to

avoid antibiotic resistance(163; 91; 42) and for cancer treatments (56; 71).

Numerous works have studied evolution in time-varying environments, including in the

context of evolving generalists (70; 46; 164; 60; 69; 85; 185; 133; 75; 150). Relatively fewer

works(39; 113; 79; 97) have analyzed the case of intermediate timescales where the environment

changes before populations reach steady state, though these works do not consider the high

dimensional genotypic space and correlated environments studied here. In this broader

sense, our work is a step towards a theory of evolution in time-varying environments with no

separation of timescale between the evolutionary response of populations and environmental

changes.
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Fig 2.1: Time-varying environments on intermediate timescales can dynamically funnel
specialists to generalists. (a) Generalist antibodies that bind multiple antigens can be hard to
evolve during B-cell affinity maturation as compared to specialists that only bind one antigen.
Specialists for an antigen can constitute a single (Fig.2.2) or multiple islands (Fig.2.4) in
antibody sequence space. (b) We consider time-varying selection pressure on timescales (i)
fast, (ii) intermediate or (iii) slow relative to evolutionary transients. In the intermediate
regime, the selection pressure (e.g., antigen) changes before evolutionary transients (dashed
lines) are complete and a steady state is reached.

2.4 Results

We study evolution in fitness landscapes with multiple fitness peaks in antibody sequence space

as shown in Fig.2.1. During affinity maturation, each antigen defines a distinct ‘environment’

and thus a distinct fitness function with distinct fitness peaks. In general, ‘specialist’ fitness

peaks for one antigen are not fitness peaks for other antigens. However, we assume one of these

fitness peaks is approximately in the same location for all antigens. We first study evolution

in the vicinity of this ‘generalist’ fitness peak and ignore the larger landscape. True generalists

are found at the intersection of these peaks across environments; the challenge in evolving

such generalists is primarily entropic. We then consider evolution on the full landscape

with multiple fitness peaks; now, fitness valleys can prevent the evolution of generalists. By

exploiting mathematical constructions from spin glass theory, we systematically study the

impact of the relative placement of fitness peaks, or equivalently, correlation of features

across antigens. In both cases, we model populations, e.g., the population of B-cells across

all germinal centers in an organism. We explain our results in terms of the rate at which a
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Fig 2.2: Intermediate timescale cycling of antigens strikes a balance between evolving and
maintaining rare generalist antibodies. (a) We assume many specialist antibodies can bind
each antigen at a partially conserved epitope; see text for model. Generalists and specialists
have similar fitness. (b) Cycling antigens at an intermediate timescale ⌧epoch most reliably
yields generalists in repeated K = 500 population simulations. (c) An initially-specialist
population is more likely to evolve generalists (higher �s!g) with slower cycling since (d,i) fast
cycling typically leads to death of the entire population before any generalists are evolved. In
contrast, slow cycling allows generalists to specialize; the probability of an initially-generalist
population that remains generalists, �g!g, falls with ⌧epoch (see (d,iii)). (d,ii) Intermediate
timescale switching allows sufficient time for generalists to evolve from specialists without
providing enough time for generalists to specialize.

population of specialists evolves generalists in time-varying environments relative to the rate

of the time-reversed processes from generalists to specialists.

Both models here have been used in the context of affinity maturation((111; 30; 173; 127)

and (34; 45)), corresponding to different molecular models of antigen-antibody binding. While

more extensive antibody-antigen binding assays(84; 53; 25) can clarify the situation for a

particular virus like HIV, we remain agnostic to the issue here and study both cases since

they might be relevant in different evolutionary contexts.

2.4.1 Entropically disfavored generalists

A basic difficulty in evolving generalists is that generalists are often far fewer in number than

specialists. This is schematically shown in Fig. 2.2a, where specialists in each environment

form a connected set of genotypes of similar fitness. The relatively few generalists, found at

the intersection of such sets, can easily mutate into the more numerous specialists in any
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fixed environment.

We study the problem quantitatively in a simplified molecular model of antigen-antibody

binding, as used for affinity maturation against HIV antigens. Antibodies bind to a single

epitope, partially conserved across antigens ⌘ = 1, 2. A (binary) antibody sequence x binds

to an epitope sequence h⌘ with an affinity given by an additive sum-of-sites model: x · h⌘.

Antibodies that bind above a threshold T are assigned fitness s(✏� 1) > 0, while those that

bind weaker have fitness �s < 0. We take 1 < ✏ < 2, such that the average fitness of an

antibody across antigens is negative.

Since the epitope is relatively but not entirely, conserved across antigens, h⌘ for different

antigens are assumed to share a conserved region of length Lc = 12 but have a variable region

of length Lv = 7 (173) (see Fig. 2.8 for other choices). While based on a simple model of

molecular binding, our results below apply broadly to the phenomenological description of

specialists as connected islands of relatively uniform fitness, with no fitness barriers separating

the generalists.

We simulate a finite population (N ⇠ 500) of antibodies in an environment that switches

between antigens 1 and 2 on a timescale ⌧epoch using a birth-death model (see Section 2.5.1),

working in the limit of frequent mutations (µN > 1). Initializing a monoclonal population

in a random specialist state for antigen ⌘ = 1, we monitor the fraction of generalists in the

populations at late times (Fig. 2.2d), systematically varying the timescale of switching ⌧epoch.

Averaging over many simulation, we find that neither fast nor slow cycling is able to reliably

elicit generalists in the population; however, an intermediate timescale of switching is able to

do so (Fig.2.2b).

We sought to understand the origin of this non-monotonic behaviour by examining

population dynamics in the limits of fast and slow cycling. For fast cycling, (i.e., small

⌧epoch), the initial specialist population is repeatedly confronted with an antigen it cannot

bind to. Without enough time to mutate into a generalist, purifying selection drives the
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Fig 2.3: Chirped cycling yields generalist populations more robustly than fixed frequency
cycling. (a) We consider chirped protocols, where the cycling frequency is increased over
time, ⌧epoch ! 5

6⌧epoch after each epoch. (b) When the number of generalists ⌦g is reduced
by reducing the length of the conserved epitope, the range of ⌧epoch that yields generalists
decreases. Chirped cycling, however, continues to recover generalists with little parameter
tuning. (c) Fixed frequency cycling results in a tension between high number of generalists if
the population survive (high for fast cycling) and population survival (high for slow cycling),
resulting (d) in a trade-off along a Pareto front. Chirped cycling breaks the trade-off since
slow cycling initially ensures population survival and fast cycling later on ensures that a high
fraction of the surviving population are generalists.

population to extinction (Fig. 2.2d,i). Consequently, the fraction of trials in which specialists

evolve into generalists, �s!g, is low (Fig. 2.2c).

In fact, in this limit the dynamics of the population are effectively described by a static,

average landscape, where the specialist has fitness s(✏� 2) < 0. In this regime, we find that

purifying selection drives the population to extinction when s > µ logN ; see Section. 2.5.1

for derivation and discussion of alternative cases where purifying selection is reduced.

On the other hand, for very slow cycling (large ⌧epoch), any generalists that arise have

enough time to specialize again by mutational drift (Fig. 2.2d,iii). As a result, the fraction of

an initially-generalist population that stay generalists over an environmental cycle, �g!g,

falls with ⌧epoch, as seen in Fig.2.2c.

Consequently, we find that intermediate timescale cycling strikes a balance: providing
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enough time to for specialists to evolve into generalists (high �s!g), but not enough time for

generalists to switch back to specialists again (high �g!g). In Section. 2.5.1, we determine

this regime to be,

⌧min ⇠
1

µ
dinit!g < ⌧epoch < ⌧max ⇠

1

µ
log
�
⌦gN

�
(2.1)

where dinit!g and ⌦g are the mutational distance of the initial naive repertoire from

generalists, and the number of generalist genotypes, respectively; see Sections 2.5.1,2.5.1.

Notably, an intermediate regime – that is, a cycling time ⌧ capable of eliciting generalists

– only exists when the number of generalists, ⌦g, is sufficiently large: log⌦g N > dinit!g. In

contrast, when the number of specialists is large compared to the number of generalists, and

population sizes are small, it takes longer for generalists to evolve from specialists than to

specialize again. In this regime, the entropic bias in sequence space driving generalists to

specialists is large and even fixed frequency cycling may not produce generalists.

Hence, we propose a new dynamic protocol - a ‘chirp’ - that can alleviate this tension

between evolving generalists from specialists (�s!g), which requires slower cycling, and the

ability to maintain a population of generalists (�g!g), which requires faster cycling. A chirp,

shown in Fig. 2.3, starts with slow cycling and increases the cycling frequency over time.

Such highly dynamic ‘chirp’ protocols outperform any fixed frequency cycling protocol; see

Fig. 2.3c.

2.4.2 Generalists isolated by fitness valleys

We now consider a more general case where fitness valleys separate viable genotypes, and

specialists and generalists form disconnected sets in sequence space. Such models have been

used to describe antibodies for influenza and malaria (111; 30; 45; 34), as well as describing

RNA molecular fitness landscapes (129; 24). Rugged landscapes are relevant whenever
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mutations can act non-additively; that is, when epistasis is present. Indeed, epistasis has been

broadly observed for molecular phenotypes and was quantified recently for antigen-antibody

binding interactions(1). In the affinity maturation context, such a model with multiple fitness

peaks naturally arises if each antigen has multiple epitopes, with one epitope shared across

antigens (34).

Here, we take a phenomenological approach that is agnostic to molecular details. Ex-

ploiting Hopfield’s (61) (or more generally, Gardner’s (55)) construction, we construct fitness

landscapes for each antigen with fitness islands around sequences corresponding to each

epitope. In particular, consider P epitopes on each antigen ⌘ = 1, 2, that bind to antibody

sequences h⌘↵ (↵ = 1, . . . P ). The fitness of an antibody with sequence x confronted by

antigen ⌘ is chosen to be F ⌘ / s
P

↵ ↵(x · h⌘↵)p where we set p = 2 (the Hopfield model).

This minimal construction produces fitness landscapes with peaks at the specified epitopes

h⌘↵, provided P is sufficiently small compared to sequence length L (6). Larger p creates

more sharply defined fitness peaks. Finally, the weights ↵ are used to reduce the fitness of

generalists relative to specialists in any one environment.

By making different choices for the epitopes h⌘↵, we may construct fitness landscapes

with arbitrary amounts of correlation between them. We begin by studying the minimal

case where 1 epitope is shared between the two antigens, h11 = h21, with the others epitopes

being uncorrelated. Later, we relax this assumption. For our theoretical analysis, we assume

selection is strong and beneficial mutations are rapidly fixed, sN � µN , sN � 1; hence

fitness valleys between islands play a significant role.

We simulate a finite population of antibodies evolving via Moran dynamics. Initialising

a monoclonal population at a specialist, we once again carried out simulations at different

antigen switching times, ⌧epoch, and quantified the fraction of generalists in the population at

long times. As seen in Fig.2.4b, an intermediate timescale of switching elicits generalists in

the population. This is reminiscent of the entropic model above, but for different underlying
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Fig 2.4: Intermediate timescale cycling enhances specialist-to-generalist conversions across
fitness valleys without enhancing the time-reversed process. (a) Antibodies that bind distinct
epitopes on antigens (right) form distinct specialist islands (left) in sequence space, separated
by fitness valleys. Generalists bind an epitope shared by antigens. (b) Cycling at intermediate
⌧epoch most reliably yields generalists in a finite population N = 100 simulation. (c) Specialist-
to-generalist transitions, �s!g, grows with ⌧epoch, while the ability to retain generalists �g!g
falls (both measured after n = 30 cycles). (d) Fast cycling traps populations at fitness
peaks near where they are initialized. (e) But intermediate ⌧epoch allows evolution between
specialists. Such evolution introduces sequence variance even in initially monoclonal specialist
populations (red arrows in (e), quantified in (f)) but not for generalists. Such higher variance
for specialists enhances specialists-to-generalists transitions but not the reverse process.
(g) Cycling-induced variance is largest when specialists in F (1), F (2) are uncorrelated (low
hF (1)|F (2)is).
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reasons.

Here, fast switching fails to produce generalists because populations stay confined to their

initial position(178) (Fig.2.4d). Rapid switching can be approximated by the averaged fitness

landscape if the switching is fast enough and each individual has a fitness given by its fitness

averaged over environments experienced in its lifetime. In such cases, new fitness peaks and

valleys can be created as shown before for the spin glass-like fitness functions used here(6).

Consequently, the population remains segregated away from the generalist genotypes by

valleys of low-fitness, and generalist acquisition, �s!g, is small. In practice, such populations

stuck in a specialist genotype for extended time can go extinct in the presence of multiple

antigens (173).

In contrast, at slower switching times, evolution in each environment can shift the

population away from its initial position in the prior environment (Fig.2.4d). As shown in

Section. 2.5.3, this requires at least time ⌧min ⇠ d12/µ, where d12 is the typical mutational

distance separating specialists across environments. Consequently, the population is forced

to continually traverse genotype space. This continual evolution is by necessity stochastic

(Fig.2.4f), contingent on the random order of mutations that arise, as well as on any potential

population variance. This cycling-induced mobility, augmented by stochasticity, allows the

population to widely explore genotype space and find the generalist, and hence �s!g rises

(Fig.2.4d).

Importantly, upon evolving into generalists, environmental cycling no longer disturbs the

population, as the fitness of generalist sequences does not appreciably change over time. Thus

cycling breaks the symmetry between specialists and generalists and enhances �s!g without

enhancing �g!s. Intuitively, intermediate cycling selectively ‘warms up’ (i.e., increases

stochasticity) specialist parts of sequence space, naturally leading the population to collect

in ‘cooler’ generalist sequences.

Cycling significantly slower than ⌧min is counterproductive. The cycling-induced leaks
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from specialists to generalists only occur due to environmental switches; hence unnecessarily

long ⌧epoch only adds dead time with no additional population divergence.

In the meantime, as shown in Section. 2.5.3, escape from generalists to specialists becomes

significant on timescales of (1/µ)e�FgN where �Fg is the fitness of the generalist relative to

the fitness valley separating it from specialists; N is the population size. See (64; 166; 178)

for calculations of valley crossing rates in other parameter regimes. These considerations

limit intermediate timescales favorable for evolving generalists:

⌧min ⇠ d12/µ < ⌧epoch < ⌧max ⇠ (1/µ)e�FgN (2.2)

As in the earlier model, if ⌧min > ⌧max, fixed frequency cycling may fail. In SI Fig. 5, we

find that chirped cycling can continue to recover generalists, even in these regimes. Chirp

protocols produce generalists by alleviating the tension between �s!g and �g!g and do

not require fine-tuning of parameters, as before in our models of entropically disfavored

generalists.

Correlation between specialists

The effectiveness of this theoretical cycling mechanism depends on the correlation between

specialists of F (1) and F (2), as demonstrated in a recent study of generalist evolution in

tunably correlated landscapes (172): if specialists of F (1) and F (2) are similar or well within

each other’s attractors, cycling will primarily cycle the population between specialists with

minimal divergence into generalists. In contrast, given that generalists exist, least similarity

between specialists of F (1) and F (2) would best enable reliable evolution of generalists. As

shown in Section. 2.5.3, we can quantify relevant correlations by

hF (1)|F (2)is ⌘
c1,2

p
c1,1 c2,2
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where c⌘,� = 1
LP

P
↵,� 6=1 h

⌘
↵ ·h�� excludes the generalist pattern h11 = h21. When hF (1)|F (2)is

is high, cycling-induced variance is low; see Fig.2.4g. Consequently, the small asymmetry

between �s!g and �g!s created by a single environmental cycle must be compounded by

cycling multiple times; however, in practice, other considerations might limit the number

of such cycles. Hence, our proposal requires specialists of F (1) and F (2) to be sufficiently

uncorrelated (low hF (1)|F (2)is).

Is cycling a practical strategy given correlations between specialist antibodies found during

HIV infection and physiological parameters for population dynamics?

We analyzed specialist and generalist antibody sequences collected from an HIV patient

(84; 53; 25); see Fig.2.5a. We constructed landscapes F (1), F (2) with fitness peaks at these

observed specialist and generalist sequences following Gardner’s construction (55); as detailed

in Section. 2.5.2, we repeated the analysis for multiple choices of fitness functions and

restriction of sequence data to variable regions.

Simulations of cycling environments F (1), F (2) constructed from the above sequence

data evolved generalist antibodies, while simultaneous presentation of both antigens, a

practical alternative to fast cycling(173), fails to produce such generalists; see Fig.2.5b.

We then artificially shuffled antigen labels for antibodies, so that CH105 was considered a

Ag2 specialist and CH186, an Ag1 specialist and reconstructed F (1), F (2). This artificial

shuffling significantly increased the correlation hF (1)|F (2)is = 0.78 compared to the real data

(hF (1)|F (2)is = 0.43). Cycling is no longer effective in evolving generalists. We conclude that

the low correlation between specialists in the real data is crucial for time-varying selection of

generalists, in line with the result of Ref. (172).

While our model here did not explicitly account for extinction, simultaneous presentation

or fast cycling can cause most specialist B-cells to perish, especially if many distinct antigens

are used (see Section. 2.5.1). In this more realistic case, ‘chirped’ cycling at increasing

frequency as in Fig.2.3 will alleviate the tension between �s!g and �g!g as demonstrated
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in Figure 2.4c. That is, initial slow cycling allows the system to take advantage of cycling-

induced stochasticity to find the generalist (the regime of high �s!g), while fast cycling

towards the end forces the localization of the population to the generalist (high �g!g).

2.5 Supporting Information

2.5.1 Entropically Disfavored Generalists

Model

To construct landscapes with entropically disfavored generalists, we model antibodies and

antigens in a manner similar to the one described by by Wang et. al(173). In this model,

the sequence of each antibody, x is a sequence of length L with entries ±1. Each antigen,

indexed by ⌘, is assumed to have an epitope of sequence, h⌘. Each epitope is length L with

entries ±1. The binding energy of a given antigen to an antibody is given by an additive

sum-over-sites model:

E (x,h⌘) = � 1

L

LX

i

h⌘i xi (2.3)

The fitness of each antibody x in the presence with antigen ⌘ is given by thresholding its

binding affinity, as follows:

F (⌘) (x) = s✏⇥

✓
�
✓
E(x,h⌘) +

T

L

◆◆
� s (2.4)

Here, ⇥(x) is the Heaviside function. T
L is the binding energy threshold that an antibody

must overcome before reaping a fitness benefit. The binding energy threshold, T
L can be

translated into minimum number of binding interactions needed to reap a fitness benefit, Tsites,

by Tsites = (L+ T )/2. By construction, all fit individuals have the same fitness s(✏� 1) > 0

and all unfit individuals are equally unfit to an extent �s, resulting in a degeneracy of fit
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Fig 2.5: Cycling between fitness landscapes constructed using antibody sequences from HIV
patients yields generalists; however, cycling is less effective for artificially shuffled data with
higher specialist correlation. (a) Sequence divergence of antibodies that bind two distinct
strains (red, blue) of HIV. See SI Antibody Sequence Data for sequence and binding affinity
data, reproduced from (84; 53; 25). (b) Following Gardner(55), we constructed two fitness
landscapes F (1), F (2) with peaks at red, blue sequences resp. and simulated evolution with
realistic parameters (see Section. 2.5.3. Generalists are evolved only if antigens are cycled.
Cycling is less effective if we shuffle antibody-antigen assignment: CH105 now considered
specialized for strain 2 (i.e., now red), CH186 for strain 1 (i.e., now blue). Shuffling artificially
increases specialist correlation hF (1)|F (2)is from 0.43 to 0.78.

20



and unfit genotypes.

Specialists and Generalists

Here, we demonstrate the fraction of antibodies that are generalists for two antigens. Biological

constraints impose that parts of an antigen’s epitope is conserved, while other parts are

variable as the viral strain evolves. As such, we suppose Lc sites of the L total sites are fixed

across ⌘, while the others are unique to each antigen. This constraint results in the possibility

that some antibody sequences have a positive fitness for all antigens. Such antibodies are

called generalists. The number of generalists is a function of the threshold T and the lengths

of the conserved Lc and variable Lv = L � Lc regions. In particular, if Tsites > Lc +
1
2Lv,

there are no generalists. A simple equation to compute the fraction of antibodies with positive

fitness for an antigen that are generalists is given as follows:

⌦g

⌦
=

PL
j=0

�Lc
j

�� Lv
Tsites�j

�

PL
k=Tsites

�L
k

� (2.5)

where,
�N
m

�
is the combinatorial function, ⌦g is the number of generalists, and ⌦ is the

number of antibodies with positive fitness. By rule, this function is zero if m > N or m < 0.

Here, j indices the number of sites matched in the conserved portion of the antibody and k

indices the number of overall sites matched along the string.

Here, we considered L = 19, Lc = 12, and T = 11. The proportion of antibodies with

positive fitness that are generalists for these parameter choices is ⇡ 1.3%. This choice is

qualitatively similar to the analysis developed in (173) based on experiments there. The

analysis can be repeated for longer sequences and the results are qualitatively unchanged;

the primary effect of changing L is explained by the change in entropy, as predicted by SI

Equation 2.5.
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Finite population simulation

Affinity maturation is an evolutionary process for antibodies with complex population

dynamics(132). Here, we first model this process using a simplified canonical birth-death-

mutation model - a ‘Yule’ process (92) - commonly used to study evolutionary dynamics. The

‘Yule’ process ignores many of the molecular details of affinity maturation while still enabling

us to develop a minimal model of evolutionary dynamics in time-varying environments. We

then verify our results with an independent simulation that accounts for population dynamics

and complexities inherent to affinity maturation.

Yule Process The key ingredients in a Yule process are:

• Mutation with rate µ per individual, in which a single site on the genome is mutated

(i.e. a single bit-flip of x).

• Birth-death with rate � per individual.

• The population size is maintained at a carrying capacityK by modulating the probability

of replication by a factor (1�N/K). With the particular fitness function of this model,

we have Pr (x reproduces) = ⇥ (E(x, h⌘)� T ) (1�N/K). If the individual does not

reproduce, it is removed from the population. Here, N is the current population size,

K = 500 is a carrying capacity that prevents the population from growing indefinitely,

and F (⌘) is the fitness of that individual in the (current) landscape ⌘.

At each event, time is advanced by the usual exponentially distributed amount. The

environment ⌘ is taken to alternate between ⌘ = 1 and ⌘ = 2 every ⌧epoch.

Choosing units of time by setting the birth-death rate � = 1, we set the mutation rate to

µ = 0.05. Finally, we set the carrying capacity K = 500. We can infer from these choices

that s = 1, ✏ = 2� 2N
K .

We evolved an initially monoclonal population of size N = 10 (initialised with x = h⌘ for

all individuals). Simulations were run for either a fixed time t = 100 (in units of �) or for
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t = 10⌧epoch, whichever is longer, and we performed 25 replicates for each value of ⌧epoch.

For each run, we saved the number of generalists and the overall population size at the end

of the simulation. In Fig. 2b of the main text, we plotted the proportion of trials that had

more than 10 generalist antibodies at the end of the simulation, finding that the proportion

was high for an intermediate rate of cycling.

Affinity Maturation Inspired Model To more directly model affinity maturation,

we also simulate a model that mirrors the known dynamics of B-cells in germinal centers

(173; 35; 34). The steps are as follows:

• B-cell clones expand without significant mutation in the first week after vaccination.

We model such a formation of germinal centers by taking a B-cell with an antibody

that meets the binding affinity threshold for one antigen and replicate it to a size of

1500 B-cells.

• We model the reproduction and somatic hypermutation phase of affinity maturation in

the dark zone of the germinal center by allowing each B-cell to duplicate twice with a

mutation rate of 0.00625 per replication per base pair.

• We then model the selection phase in the light zone by determining if each B-cell in

our B-cell population can internalize antigens it encounters on a follicular dendritic cell

(FDC). We say that a B-cell can internalize an antigen if its antibody’s binding affinity

for that antigen, as given by Equation 2.3 meets a threshold, T .

• B-cells receive T-cell help to avoid an apoptosis signal as a function of whether or not

they internalized antigen. As in earlier work(173; 35; 34), we assume the probability B-

cells do not receive help increases with binding energy is proportional to exp(↵(F (⌘)(x)�

Fthreshold)).
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Fig 2.6: Evolving generalists using a detailed model of affinity maturation. We simulated
cycling antigens in a model with known details of the population dynamics of B-cells in
germinal centers. Here, we plot the probability that the population at the end of affinity
maturation has at least 75% of its population in a generalist genotype. We observe a resonant
peak in this probability, similar to results presented in the main paper for the simpler
population dynamics model based on a Yule process.

• The surviving B-cells are recycled into the dark zone. We repeat the steps above until

the B-cell population grows to be larger than 2000 or the process has cycled 100 times.

These choices model antigen depletion on the follicular dendritic cells (FDCs) in the

germinal center and antigen decay.

We present the results of this simulation in Fig. 2.6.

We find that the results from using this affinity maturation-specific evolutionary scheme

are qualitatively similar to the minimal Yule process model. Note that this affinity maturation

model incorporates numerous ingredients, particular to affinity maturation, that are not

captured by the Yule process used in the earlier section. E.g., the specifics of birth and death,

carrying capacity and details of how the affinity maturation process terminates differ. And

yet we obtain qualitatively similar results, showing that our results are primarily tied to the

broad topology of the fitnesss landscape and the ratio of broadly relevant timescales and not

to particular details of evolutionary population dynamics.
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Evolution between Specialists and Generalists: �s!g and �g!g

As discussed in the main text, there are two possible failure modes: (1) at cycling rates too

fast, the population does not have the time to evolve a generalist before adverse selection

result in population extinction, (2) at cycling rates too slow, the population loses its ability

to maintain generalists. In order to illustrate the tension between cycling too fast and cycling

too slow, we compute two quantities:

• �g!g, the fraction of trials starting from an initially generalist population maintaining

at least 20% generalists after one epoch.

• �s!g, the fraction of trials in which a monoclonal population of specialists, initialized

at x = h(1), evolve a single generalist within an epoch.

Both �g!g, �s!g are computed from 50 replicates for each ⌧epoch. As plotted in Fig. 2c,

we observe that �s!g starts initially at 0 and rises with ⌧epoch, while �g!g starts at 1 and

falls with ⌧epoch.

Population traces: Fig. 2d shows population traces in single runs. As in Section 2.5.1,

we initialized a population at x = h(1) with parameters as above. Generalist fraction is

defined as number of generalists
population size .

We use the following values of ⌧epoch for Fig.2(d): Fast cycling ⌧epoch = 1 (Fig. 2d(i)),

Intermediate cycling ⌧epoch = 60 (Fig.2d(ii)), Slow cycling ⌧epoch = 400 (Fig.2d(iii))

Timescale Analysis

Our numerical study found that an intermediate timescale of environmental cycling, ⌧min <

⌧epoch < ⌧max, was most effective at obtaining generalists. Here we estimate the bounds,

⌧minand ⌧max, in terms of the mutation rate µ, the population size N , the length of the

genotype L, and the distance from the initial ancestral genotype to the generalist, di!g.
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Finding the generalist: ⌧min Consider a population initialised as a specialist for antigen

1. For sufficiently strong selection pressure (s > µ logN), purifying selection drives the

population to extinction if a generalist has not been discovered before the environment

switches to antigen 2. Thus we demand that ⌧epoch is long enough for the population to

evolve a generalist in a single epoch.

As fitness is uniform across the specialist region, the population must discover the

generalist by diffusion. An initially monoclonal population of size N diffuses out from the

initial genotype. If the population size is much smaller than the number of possible genotypes

(N ⌧ 2L), there are two possible regimes of the diffusive search:

1. The initial genotype is far from the generalist: more precisely, the population size N is

smaller than the set of sequences between the initial genotype and the generalist. In

terms of the Hamming distance between the initial genotype to the generalist, di!g:
Pdi!g

d=0

�L
d

�
> N

In this regime, finding the generalist is a rare event, requiring time µ⌧min ⇠ 2L, i.e. the

time taken to explore all of genotype space. It is therefore extremely improbable that

the generalist will be found, and population extinction is likely.

2. The initial genotype is close to the generalist: that is, the generalist is sufficiently

close to the initial condition that it may be found by the diffusing population of

antibodies:
Pdi!g

d=0

�L
d

�
< N

For L = 19 and N = 500, as used in the simulation, this suggests that for di!g  4 the

generalist may be reasonably found by diffusion.

Assuming that we are in the latter regime, we may estimate ⌧min from hd(t)i, the average

distance away from the initial condition that an individual has diffused in time t, by solving:

hd(⌧min)i ⇠ di!g (2.6)
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We compute hd(t)i as follows: the probability that a diffusing individual may be found at

(Hamming) distance d from its initial genotype is:

P (d, t) =

✓
L

d

◆
e�µt sinhd

✓
µt

L

◆
coshL�d

✓
µt

L

◆
(2.7)

Thus, hd(t)i =
PL

d=0 dP (d, t) = Le�
µt
L sinh

⇣
µt
L

⌘
. Inserting into Eq. 2.6 and solving for

⌧min:

⌧min =
L

2µ
log

✓
L

L� 2di!g

◆
⇡

di!g

µ
(2.8)

where the approximation is valid for di!g/L⌧ 1. For values used in the simulation (L = 19,

di!g = 3), we obtain µ⌧min ⇡ 3.5, which is consistent with our numerical results.

Maintaining a generalist: ⌧max We may similarly estimate the upper bound for effective

cycling, ⌧max. Supposing that an evolving population has found the generalist, it must now

remain localised there. For this to happen, the environment must switch rapidly enough to

prune, by purifying selection, those individuals that diffuse away from the generalist.

Consider a monoclonal population of size N at a generalist at time t = 0. For simplicity,

let us suppose that the generalist has to accrue dg!s mutations to become a specialist. The

number of generalists in sequence space, ⌦g, is then approximated by the volume of the

Hamming ball of radius dg!s

⌦g =

dg!sX

k=0

✓
L

k

◆
⇡
✓

L

dg!s

◆
(2.9)

where we have replaced the sum by its dominant term, valid when the genome length L is

large and dg!s ⌧ L.

From Eq. 2.7, the number of generalists remaining at time t is:
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Pgeneralists(t) = e�µt
dg!sX

k=0

sinhk
✓
µt

L

◆
coshL�k

✓
µt

L

◆ ✓
L

k

◆

⇡ e�µt
✓
µt

L

◆dg!s

⌦g (2.10)

where we have once again replaced the sum by its dominant term, assumed that µt/L is

small (valid when genome length L is large), and used Eq. 2.9 to write
� L
dg!s

�
⇡ ⌦g.

Then, ⌧max is defined as the time taken for the occupancy of the generalist region to fall

below 1 individual, Pgeneralists(⌧max) = 1/N , i.e. the solution of

e�µt
✓
µt

L

◆dg!s

=
1

N⌦g
(2.11)

For t > 1µ, the expression on the left hand side is dominated by the exponential; we

thereby solve for t to obtain:

⌧max ⇠
1

µ
log⌦g N (2.12)

For the parameters used in the simulations (N = 500, ⌦g ⇡ 7⇥ 105, as computed from

Eq. 2.5), we have µ⌧max ⇡ 20, which is consistent with the numerical results (see �g!g in

Fig. 4c in the main text).

Existence of an intermediate timescale The existence of an intermediate timescale

⌧epoch that produces generalists requires ⌧min < ⌧max. However, the above expressions make

it clear that ⌧min < ⌧max only if (a) the initial condition is close enough to generalists (small

di!g), (b) the fraction of generalists relative to specialists is large enough (large ⌦g).

Fig SI 2.7a shows how the yield of generalists at intermediate timescales disappears as the

initial conditions are made less favorable. This panel was constructed using the simulation

method described in Section 2.5.1 with variations on the initial condition for x such that
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(a) (b)

Fig 2.7: (a) We compute the probability of evolving generalists for varying Hamming distances
from the generalist, given by d, using the method described in Section 2.5.1. We note that as
d increases, the time at which generalists begins to be evolved increases, though the time at
which they probability decays remains fixed. (b) We compute �s!g for each initial condition
and take ⌧min to be the smallest time where �s!g > 0.6. We find that this rises, eventually
rising above ⌧max for large enough d. By construction, ⌧max is independent of d.

the Hamming distance between x and the generalist varied by some distance d. Fig SI 2.7b

shows that ⌧min rises in this limit and exceeds ⌧max. We approximated ⌧min by computing

the smallest time for which �s!g > 0.6 and ⌧max by computing the largest time for which

�g!g > 0.6.

When ⌧min < ⌧max is not satisfied, there is no intermediate timescale. The time needed for

generalists to specialize is shorter than the time needed to evolve generalists from specialists.

In this case, the chirp protocol described below is still successful at producing generalists.

Simultaneous presentation of antigens

The cycling strategy explored in this paper may not be practical in the fast limit in the

context of B-cell affinity maturation. A common practical alternative is vaccination with a

cocktail of antigens, i.e., simultaneous exposure to multiple antigens.

Such simultaneous exposure to multiple antigens is mathematically equivalent to fast cy-

cling of those antigens if specific microscopic assumptions about antibody-antigen interactions

29



in germinal centers hold(173). During the affinity maturation process, folicular dendritic cells

(FDCs) host antigens on their surface for B-cells to interact with, and if antibodies expressed

on B-cells bind the antigens with high enough affinity, B-cells internalize those antigens. This

process enables those B-cells to avoid apoptosis, and thus proliferate and continue affinity

maturation.

There are two currently experimentally unresolved hypotheses about antigen presentation

by FDCs:

1. Antibodies are fit only if they can bind ALL presented antigens: In this hypothesis,

FDCs only present a single antigen or present antigens in a spatially heterogeneous manner.

Consequently, each B-cell is randomly exposed to a single antigen at the selection stage of

the affinity maturation process. A B-cell must be able to bind ALL presented antigens to

survive selection.

Such simultaneous presentation is qualitatively similar to the fast cycling limit studied in

this paper. When presented with such a cocktail vaccine, antibodies starting from a naive

repertoire are expected to go extinct since such antibodies typically cannot bind all antigens

with high affinity, as seen in the experiments of (173).

2. Antibodies are fit if they can bind ANY one of the presented antigens: If the FDCs

present the antigens in a homogeneous manner, each B-cell only needs to bind ANY single

one of the presented antigens to avoid apoptosis.

In this case, specialists are fit enough to survive early rounds of selection and evolve

generalists. But generalists cannot be maintained in preference over specialists unless

selection pressures are fine tuned (e.g., specialists are strongly out-competed by generalists

once generalists evolve, despite specialists having significant fitness to begin with).
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Death and fast cycling

In the fast cycling limit, ⌧epoch ! 0, the fitness of specialist antibodies is the average of their

fitness in different environments; as seen Eqn. 2.4, this fitness is s(✏� 2).

As discussed above for simultaneous presentation, we only consider the case where fast

cycling corresponds to hypothesis (1), where antibodies need to bind all antigens to survive.

Hence, we need s(✏� 2) to be sufficiently negative, so that a specialist population of size N

typically dies out before reaching the generalists in this fast cycling limit. Since the latter

process takes time ⌧min ⇠ di!g/µ as derived earlier and the initial population size is N , the

condition for a specialist population to go extinct in the fast limit is N exp(s(✏� 2)⌧min) ⇠

N exp(s(✏ � 2)/µ) < 1. Assuming that 1 < ✏ < 2, we find s > µ logN as a conservative

criterion independent of ✏.

Thus, cycling is necessitated because of population extinction in the fast cycling limit (or

equivalently, in the averaged environment). Population extinction does appear to be relevant

in affinity maturation (173). However, given this reliance on population extinction, one can

ask whether the cycling strategies proposed here are relevant to other problems. For example,

in other evolutionary contexts, can one evolve generalists easily in the fast cycling or averaged

environment limit by violating the 1 < ✏ < 2 condition?

In fact, reducing death in this manner reduces purifying selection and hence does not

always make it easier to evolve generalists. To see this, note that without death, the average

fitness of specialists is positive. Consequently, the purifying selection needed to proliferate

generalists over specialists is much weaker. Such reduced purifying selection is especially

relevant in evolutionary processes that terminate at finite population sizes.

As a concrete example, in Sec I of the SI, we have run simulations of an affinity maturation

process that terminates once the population exceeds a threshold, a realistic termination

criterion(173). There, we find that if population death is removed (i.e., ✏ > 2), we still fail to

find generalists in the fast limit because the germinal centers are filled with a large number
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Fig 2.8: Here, the color in the color map represents the proportion of trials leading to a
generalist, where yellow corresponds to all trials, while blue corresponds to no trials leading
to a generalist. We initialize our population at size N = 10 with a carrying capacity K = 500.
We maintain L = 19, Lc = 12, and T = 11. We ran our simulations for a total of ten epochs.
We ran each ordered pair of conserved and variable matches for 50 replicates in environment
⌘ = 1 and assumed symmetry over environments. (i) Fast cycling (µ⌧epoch = 0.05) can
only evolve generalists when initial conditions are already very close to generalists. (ii)
Intermediate cycling (µ⌧epoch = 3) increases the number of viable initial conditions. (iii) Slow
cycling (µ⌧epoch = 15) does not lead to generalists for any initial condition since this limit is
unable to maintain generalists.

of specialists which typically terminates the process. Thus, the principles developed here

have larger relevance to any context of evolving generalists where there is sufficient purifying

selection.

Dependence on initial repertoire

In the main paper, we initialize our population from a genotype that exactly binds the antigen

characterized by genotype h(1). In SI Fig 2.8, we show that not only does intermediate cycling

increase the likelihood of evolving generalists from a given initial condition, it also increases

the number of initial conditions (e.g., initial B-cell repertoire) that can lead to generalists.

Hence, intermediate cycling increases the effective attractor size of the fitness peak associated

with a generalist. In SI Fig 2.8, we consider cycling fast (µ⌧epoch = 0.05 < µ⌧min), cycling at

an intermediate rate (µ⌧epoch = 3), and cycling slowly (µ⌧epoch = 15 > ⌧max). Blue regions

in the heatmap correspond to initial conditions that led to few surviving populations after
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ten epochs. Yellow regions in the heatmap correspond to initial conditions that led to many

surviving populations after ten epochs. We ran each ordered pair of conserved matches and

variable matches for 50 replicates in environment ⌘ = 1 and symmetrized over environments.

Chirp protocol

Trade-off in fixed frequency cycling: The anticorrelated behavior of �s!g and �g!g is

indicative of a trade-off between evolving generalists and maintaining them in the population.

We first assess this by only considering simulation runs used in Fig 2b that did not result

in extinction and computed the number of generalists at the end of such simulations. This

number is plotted in Fig 3a. We note that as epoch length increases, the number of generalists

remaining in the population decreases, but the probability of a population evolving a single

generalist increases.

To illustrate this point we compute two quantities for each simulation for a given ⌧epoch:

• The number of generalists (if non-zero): The number of generalists is simply the average

number of generalists in the population for simulations where the population survived

an evolutionary run. This is plotted on the y-axis of Fig 3c.

• The probability of a surviving population: The proportion of trials for a given ⌧epoch

that a population does not go extinct during the evolutionary run. This is plotted on

the x-axis of Fig 3c.

By plotting these two quantities against each other, as in Fig 3c in black dots, we observe a

tradeoff front.

Chirp Cycling Breaks the Trade-off: This trade-off leads us to proposing a ‘chirp’

protocol. In a ‘chirp’ cycling protocol, we decrease the length of the epoch using a multiplica-

tive factor after each cycle, enabling us to take advantage of high probability of population

survival (favored by slow cycling) and still obtain high yield (favored by fast cycling). We
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update ⌧epoch according to the following rule:

⌧epoch  k⌧epoch (2.13)

where k is some number smaller than 1. We continue evolving the population until ⌧epoch << �.

Plotted in Fig 3a is a time trace of the population size and the fraction of the population that

is of a generalist genotype. Generalist fraction is Number of Generalists
Population Size . We note that as the

length of each epoch decreases, the generalist fraction decreases less in time, until eventually,

it remains stabilized at ⇡ 1. Additionally, fluctuations in population size are suppressed. We

ran the chirp protocol for 25 replicates and computed the number of generalists at the end of

each run, if the population survived the run, and the probability that the population survived

a chirp protocol. Plotting this in Fig 3d. demonstrates that the tradeoff boundary has been

broken. Finally, we compared the chirp protocol to fixed frequency cycling for Lc ranging

from 11 to 14. We computed the mean number of generalists observed over 50 replicates in

fixed frequency cycling and plot the results in Fig 3b. We compare this to the mean number

of generalists discovered under chirp cycling. For this particular chirp, we set  = 1
6 and

initial µ⌧epoch = 5. We demonstrate that even in regimes where entropic cost is high, chirped

cycling can yield generalists robustly.

We note that a similar tradeoff can be observed in Figure 4c of the main text. This

indicates that the chirp protocol will work for models with other fitness landscape topologies,

so long as there exists a tension between �s!g and �g!g.

Chirped Cycling Evolves Generalists when ⌧max < ⌧min By implementing the

same chirped strategy for initial conditions where ⌧max < ⌧min, we find that we have high

generalist yield at rates match are near the maximum probability of evolving generalists of

the fixed frequency evolutionary runs, as demonstrated in Fig 3b.
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2.5.2 Generalists Separated by Valleys

Model

We model the fitness landscape of an antibody binding to an antigen with multiple epitopes

through a phenomenological construction, inspired by Hopfield’s spin glass landscape.

Consider an antigen ⌘ with P⌘ epitopes (i.e., sets of residues on the antigen that form

binding locations for antibodies). Suppose that for each epitope, an antibody with sequence

h
(⌘)
↵ of length L with entries ±1 binds with high affinity (with ↵ 2 {1, ..., P⌘} indexing

epitopes). Then, the overall binding affinity to antigen ⌘ of any antibody with sequence x, of

length L with entries ±1 is taken to be:

F (⌘)(x) = s
X

↵


(⌘)
↵

 
h
(⌘)
↵ · x
L

!p

(2.14)

This construction naturally produces islands of high fitness around the epitope-binding

antibodies h(⌘), separated by regions of low fitness. Our results are tied to the topology of

fitness islands and not to details of the functions used to achieve them, provided genotypic

space is of sufficiently high dimension. The specific mathematical choice of p has a limitation

set by capacity; in a sequence space of dimension L, this method only allows us to program

fewer than ↵L(p�1) fitness islands. Beyond this ‘capacity’, there is a spin glass transition and

the mathematical function above actually models a glassy landscape with many other fitness

peaks. We can increase this capacity by increasing the non-linearity p of the model. In what

follows, we choose p large enough to stay under this spin glass transition. Note that in the

mathematical construction of this landscape , �x is as equally fit as x. Such a degeneracy

can be lifted by adding a linear term,
PL

i=1 hixi to the fitness function. However, we found

we did not need such a term since the degenerate pairs of fitness peaks, x and�x}, are far

from each other in sequence space. Here, 
(⌘)
↵ is the binding affinity of the ideal antibody

h(⌘) to its cognate epitope. We shall take epitope ↵ = 1 to be present for all antigens, thus
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defining the generalist. In keeping with the assumption that the generalist is less fit in any

landscape, we take its binding affinity 
(1)
1 = 

(2)
1 = 0.8 and all other 

(⌘)
↵ = 1.

Fitness penalty for generalists: We impose that the height of the fitness peak

associated with the generalist is lower than the peaks of the specialist (

(⌘)
1


(⌘)
↵ 6=1

= 0.8), reflecting

fitness costs associated with being a generalist relative to specialists in a fixed environment.

Population Simulations

We simulate a population of antibodies evolving in these landscapes by implementing a Moran

process(108) with three events:

• Environment shifts with a deterministic rate, 1
⌧epoch

• Mutation with a rate, µ per individual, where a single site on x is bit-flipped

• Reproduction with a rate, � per individual, where an individual is selected from the

population with probability proportional to exp(F (⌘)), with F (⌘) defined above with

p = 2 (Hopfield model), to be duplicated and another individual from the population

to be removed with uniform probability

and a population size of N .

In our population simulations, we impose the following values for our simulation parameters.

We fix the total number of epitopes for each landscape, P⌘ = 11 across all ⌘, keeping just

one generalist. We impose sequence length to be L = 100, generating each optimal epitope-

binding antibody randomly. We initialize our simulations from a monoclonal specialist initial

condition of size N = 100 unless otherwise specified. We impose a per individual mutation

rate of µ = 0.25 and a reproduction rate of � = 1. The overall selection strength is set to

s = 0.1.
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Fig 4b: Resonance Peak in Generalist Discovery as a function of ⌧epoch

We ran our simulation for 50 replicates from random monoclonal initial conditions of size

N = 100 with sequences of length L = 100. We initialize the landscapes with 10 specialist

antibodies and 1 generalist antibody (i.e. P⌘ = 11 for all ⌘). Our simulations were run for a

total of 30 ⌧epochs. We swept over ⌧epochs. We note that during the simulations, regardless of

the frequency of environmental shifts, the population remains tightly clustered as it evolves

in time. This behavior corresponds to evolution in the strong selection and weak mutation

limit. We consider a generalist to have been discovered if, after a run, there exists at least one

individual whose overlap with the generalist antibody is 90%. Using these simulations, we

demonstrate that an intermediate regime of switching enhances the discovery of generalists.

We plot the results of these simulations in Fig. 4b.

Time traces of the population from its initial condition: To identify the reason for

this resonant peak, we run the simulation for a 100 cycles and plot in SI Fig 2.9 how far the

population is from its initial condition in hamming distance after a fixed number of epochs

We initialize a population at a specialist antibody and a generalist antibody, comparing the

behavior for fast cycling and slow cycling. We show that for generalist initial conditions,

regardless of cycling rate, the population remains in the generalist. There is some fluctuation

out but the population returns to the generalists often. Given enough time, the population

will escape though this is a slow process. However, for specialist initial condition, slow cycling

enables the population to escape its initial condition, while fast cycling does not allow such

escape.

2.5.3 Timescale Analysis

Computing the minimum epoch length, ⌧min:

Cycling benefits evolution of generalists in fitness landscapes with valleys by enabling

the population to escape specialist peaks in one landscape by evolving subject to a different
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Fig 2.9: Specialist populations evolve significantly through sequence space for intermediate
timescale cycling but not fast cycling; generalists do not evolve significantly for any timescale
cycling. (a) An initially specialist population does not evolve away from the initial genotype
for fast cycling. However, with slower cycling, the population evolves to a significantly
different genotype(s). (b) An initially-generalist population does not significantly evolve away
from the initial genotype for fast or slow cycling.

fitness landscape. To escape from a specialist peak in environment 1, the population must

accrue enough mutations when subject to environment 2, such that when environment 1

returns again, the population is not likely to return to the original specialist peak.

We first consider the strong selection limit sN � 1. Consider a monoclonal population at

a specialist peak h(1)↵ in fitness landscape F (1). When such a population is now subject to

landscape F (2) for a time ⌧epoch, h
(1)

↵ serves as an initial condition of typical low fitness and

will evolve towards a fitness peak h(2)� in F (2). If we switch back to F (1) after a sufficiently

long time, the population genotype x will be sufficiently mutated compared to h(1)↵ that

the population will likely fix to an alternative fitness peak h(1)� in F (1). Let us assume that

the number of such mutations needed is d12.

Since the population in genotype h(1)↵ is typically of low fitness in landscape F (2), most

mutations are beneficial. Then, in the strong selection limit, the time needed to acquire d12

beneficial mutations is by the mutation rate,

⌧min ⇡ d12
µ .
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This minimal number of mutations d12 to escape the ‘attractor basin’ of a fitness peak

h(1)↵ is model dependent. - d12 depends on the size of the attractor basin around h(1)↵ and

the correlations between F (1) and F (2). In our Hopfield-inspired model of fitness landscapes

F (i), if the fitness peaks are randomly distributed in a sequence space of length L, then the

empirical value of d12 ⇠ 1
4L. In real fitness landscapes, this distance d12 can vary widely for

different specialists which can have attractor regions of different size.

Computing the maximum epoch length, ⌧max:

Unnecessarily long times ⌧epoch > ⌧min spent in each environment is counter-productive.

To see this, note that specialists are most likely to evolve to generalists in a short duration

of time after an environmental switch. Any extra time spent ⌧epoch > ⌧min in the same

environment is simply ‘dead time’ that does not increase the yield of generalists further. Hence

the effective rate of evolving generalists from specialists falls as 1/⌧epoch for ⌧epoch > ⌧min.

Meanwhile, existing generalists can specialize again. Let the rate of this process be rg!s.

The yield of generalists is reduced when this escape rate rg!s from generalists to specialists

is larger than the switching-induced rate from specialists to generalists 1/⌧epoch. Hence,

⌧max ⇠ 1/rg!s.

The rate rg!s at which generalists specialize is easily estimated since the fitness landscape

does not change in time for sequences near the generalist. Hence this process is the well-

studied process of an asexual population crossing a fitness valley by picking up a sequence

of deleterious mutations. This process has been studied in numerous regimes with different

assumptions about population sizes, selection pressure (178; 166; 64). Here, we assume strong

selection and weak mutation, allowing us to use the simple result rgs ⇠ µ e�N�Fg result

obtained from the analogy of statistical physics and population dynamics; population size N

plays the role of temperature and �Fg, the fitness difference between the generalist peak
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and the fitness valley, plays the role of an energy barrier. Hence,

⌧max ⇡
exp(N�Fg)

µ
.

Real populations can often violate these assumptions; in that case, any other relevant

result(64; 166; 178) for valley crossing rates can be used in place of rg!s.

Fig 4c: Transitions Amongst Specialists and Generalists: �s!g and �g!g

The presence of a resonant peak in Fig. 4b is suggestive an underlying tension between

discovering the generalist and escaping the generalist, similar to that in the earlier model of

entropically disfavored generalists. As such, we re-introduce the quantities �s!g and �g!g:

• �s!g is the proportion of trials initialized from a monoclonal specialist initial condition

that evolve a generalist (i.e. a single member of the population matches 90% of the

generalist) antibody within 30 epochs of an evolutionary run for a given ⌧epoch

• �g!g is the number of trials in which a population, initialized from the generalist initial

condition, maintains 20% of its population in the generalist (i.e. a given antibody

maintains 90% overlap with h
(⌘)
1 ) after 30 epochs for a given ⌧epoch.

We chose 30 epochs in the definitions above as 30 epochs are needed to give the population

enough time to accrue enough cycling-induced stochasticity to explore genotype space. This

extension was not necessary for entropically disfavored generalists because multiple epochs

are not needed to induce cycling induced stochasticity in such landscapes. We discuss cycling

induced stochasticity in more detail in SI Section 2.5.3. Plots for �g!g and �s!g are shown

in Fig. 4c and illustrate the same behavior as in the entropically disfavored models.
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Fig 2.10: We compute the success rate of finding a generalist using fixed frequency cycling and
chirped strategies when the fitness of binding a generalist is 70% of binding a specialist site. We
see, in black, that fixed frequency cycling finds generalists with very low probability. However,

in orange, we see that chirped protocols, where ⌧
(n+1)
epoch  

15
16⌧

(n)
epoch and µ⌧

(0)
epoch = 100, find

the generalists at a probability 0.16 ± 0.05, which is higher than the best fixed frequency
cycling strategy. This demonstrates the success of chirped strategies
.

Chirping in Rugged Landscapes

Here, we demonstrate that chirp cycling provides benefits over fixed frequency cycling in

fitness landscapes where peaks are separated by fitness valleys. We begin by changing the

binding affinity of the antibody to the generalist site to 
(1)
1 = 

(2)
1 = 0.7. This results in the

performance of fixed frequency cycling decreasing dramatically. Chirping, however, continues

to provide generalists in a robust manner, as demonstrated in SI Figure 2.10.

Cycling-induced variance and correlations between environments

To illustrate how cycling enables the discovery of generalists, we consider population trajecto-

ries during cycling. We consider the impact of the initial condition of the population on these

trajectories and the impact of the correlation structure between the different environments.

To this end, we introduce a measure of correlation and introduce a new simulation to capture

the effective behavior of the population.
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Definition of Correlations between Environments We measure the correlation between

landscapes, denoted hF (1)|F (2)is using the following equation:

hF (1)|F (2)is ⌘
c(h(1),h(1))

c(h(1),h(2))c(h(2),h(2))
(2.15)

where we have defined the function c(h(1),h(2)) =
PP1,P2

↵1,↵2=2 h
(1)
↵1 · h(2)↵2 /(L

p
P1P2).

This measure of correlation is high if the specialist genotypes for different antigens are

highly similar in pairs; e.g., if each specialist for antigen 1 is similar to a specialist for antigen

2. As seen below, a high correlation by this measure implies that specialist antibodies do not

evolve significantly due to cycling and thus generalists are not easily evolved.

Note that this measure is normalized so the measure is unaffected by the diversity

c(h(⌘),h(⌘)) of specialist genotypes for a single antigen ⌘.

Modeling Population Trajectories with Single Walkers To measure the role of cycling

between landscapes and the correlation structure of the landscape, we studied the dynamics

of single walkers. This is justified as the population is shown to be roughly monoclonal in

its evolutionary trajectories. Single walkers were simulated via the well-known Metropolis-

Hasting algorithm(101). We preserve definitions of x, F (⌘)(x), and all related quantities from

before. The process is as follows:

• Randomly select a single site to mutate to create new variant x0 from original x

• Compute fitness of new variant

• Accept new variant with probability exp(�(F (⌘)(x0)� F (⌘)(x))) and repeat.

Because of the differences between single walker dynamics and population dynamics, we

include an overall scale for the landscapes, �. � is chosen to be � = 4.
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Fig 4f: Cycling-Induced stochasticity We begin by considering antigens with uncor-

related specialists (ie, hF (1)|F (2)is ⇡ 0). Starting from two initial conditions, a generalist

antibody and a specialist antibody for antigen ⌘ = 1, we evolve the walker for k proposals in

the presence of antigen 2, and then allowed the walker enough proposals to relax to a stable

solution in the presence of antigen 1. By computing the final state for 20 different walkers in

a given landscape, and averaging over 20 random landscapes, we can compute the variance in

the final positions of the walkers. This is accomplished by computing the average pairwise

distance between walkers in the same landscape, and then averaging over landscapes. To

demonstrate the importance of the number of proposals, k, which is serving as a proxy for

⌧epoch, we swept over k. The result is plotted in Fig. 4f.

We see that when starting from a specialist initial condition, cycling-induced variance

rises when ⌧epoch is sufficiently large. Generalists, as predicted, are unaffected by cycling, as

those genotypes are fit in both environments.

Fig 4g: Impact of Correlation Structures Between Cycled Environments We

then repeated the same simulations as above with increasing correlation structure between

the landscapes. We enforced that k = 250 was large enough to ensure high stochasticity

in uncorrelated environments. We see that as correlation between the landscapes rises,

cycling-induced stochasticity decreases. This indicates that generalist discovery hinges on

the landscapes being sufficiently uncorrelated. The results are plotted in Fig. 4g.

More than 2 Antigens

Throughout the main text, we only consider the evolution of generalists in the presence of

two antigens. Here, we demonstrate that when we increase the number of antigens, discovery

of the generalist becomes easier. We demonstrate this in the Moran simulations by increasing

the number of randomly constructed landscapes with a single generalist peak shared across
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Fig 2.11: An increased number of distinct antigens makes it easier to evolve generalists
through cycling. We increased the number of distinct antigens in stepsfrom 2 through 20,
each with 10 randomly chosen specialist epitopes, and one generalist epitope common to all
of them. We cycle between these landscapes using the Moran simulation described in Section
2.5.2 for 30 ⌧epoch. We consider the evolutionary run to have evolved a generalist if at least
one antibody has an overlap of 90% with the generalist. We find that increasing the number
presented increases the likelihood that generalist genotypes are discovered.

the landscapes. In order to probe a dynamic range of antigen number, we weight the generalist

to be smaller than in previous trials, setting 
(⌘)
1 = 0.07, rather than 0.08. We ensure each

antigen is presented at least once, cycling for at least 30 epochs. We maintain the parameters

used before.

We find that increasing the number of antigens increases the discovery-likelihood of

generalists, as plotted in SI Fig 2.11. We interpret these results as due to effectively reduced

correlation between landscapes since correlations shared across a subset of the antigens may

not be shared across all antigens. For example, the population can settle into a limit cycle

between specialists with only 3 antigens but evolution in the presence of other antigens allows

escape from such cycles. As a result, we increase the rate of evolution from specialists to

generalists without enhancing the reverse process.

We further consider the number of cycles needed for the first generalist to appear as a

function of the number of antigens. This can be interpreted as the number of vaccine doses
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Fig 2.12: The number of vaccine shots required to evolve generalists is reduced if distinct
antigens are used. We repeat the simulation described in SI Figure 2.11, except we run until
a generalist is discovered for a fixed µ⌧epoch = 40. We compute the average first arrival time
across 50 replicates and the standard error. We find that increasing the number of distinct
antigens used decreases the number of doses needed up.

needed when using a particular number of strains in the vaccine course. We probe this by

running Moran dynamics at a fixed µ⌧epoch = 40 with 
(⌘)
1 = 0.08, as in other simulations,

for as many epochs as needed to discover a generalist. We run 50 replicates of this simulation,

reporting the average time at which a generalist first appeared across those replicates. Our

choice of epoch length is the epoch length at probability of evolving generalists appears to

maximize. We find that the number of vaccine doses decreases as the number of antigen

strains increases, as plotted in Fig. 2.12.

Molecular specificity

A critical requirement of antibodies, including broadly neutralizing antibodies, is molecular

specificity. This is, antibodies must show higher binding affinity for their particular target and

low binding affinities for all other antigens. We quantify molecular specificity of antibodies

in our models by comparing the binding energies of antibodies to antigens featuring the

conserved epitope to the binding energies of antibodies to antigens without the conserved

45



epitope. We use these comparisons to identify parameter regimes in which antibodies show

molecular specificity; all analyses in the paper are carried out in such regimes.

Molecular Specificity in the Entropic Model We consider antibodies of length L = 20.

We impose that the first 15 sites of this antibody bind to a conserved region on some set of

antigens. We further impose that for the antibody to be considered to bind to an antigen,

its binding energy, as given by Equation 2.3 to be below T
L = �1

2 , which is to say that

� 1
L

PL
i hixi +

T
L must be negative. We randomly generate 1000 antigens featuring the

conserved eptiope and compute the binding energies of the antibody to the antigens. We

then compare these binding energies to the binding energy of the same antibody against 1000

randomly generated antigens that are not obligated to feature the conserved epitope. We

present the results of this in Fig. 2.13a, with the antigens featuring the conserved epitope in

blue and the antigens without in black. We observe that while the antibody strongly binds

all antigens featuring the conserved epitope, it only binds a small fraction of random antigens,

showing molecular specificity in this parameter regime.

To ensure molecular specificity is achieved, we must ensure that the number of antigens to

which an antibody binds must be small compared to the space of all antigens. We determine

the choice of binding energy thresholds T that enforces molecular specificity by first stating

that the fraction of antigens bound by a particular antibody is given by

PL
i=Tsites

(Li )
2L , where

the numerator represents the volume of the Hamming ball associated with the antigens that

the antibody binds and the denominator represents the space of all antigens. We note that

for T ⇠ O(1), the volume of the Hamming ball is similar to that of the whole space, and for

this choice of binding energy threshold, molecular specificity is not achieved. For T ⇠ L, the

volume of the Hamming ball can be upper bounded by LL

TT

⇣
1

(L�T )L�T

⌘
. This results in a

vanishingly small fraction antigens being bound by our antibody when T ⇠ L. We work only

in this regime.
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Molecular Specificity in Landscapes with Barriers We begin by initializing an

antibody of length L = 100 to bind to a conserved epitope. We then randomly construct 1000

antigens using the prescription described in Section 2.5.2 with 11 epitopes, 1 fixed across all

antigens, and the remaining 10 random. We compute the binding energy of the antibody

against these antigens. We then compare these binding energies to the binding energy of the

antibody to 1000 antigens, each with 11 randomly generated epitopes. The results are plotted

in Fig. 2.13b, with the binding energies associated with the conserved epitope in blue and

the binding energies with random epitopes in black. We observe a large separation between

the binding energies of the the antigens featuring the conserved epitope and the antigens

without. In general, we expect that for conditions where the number of epitopes is below the

Hopfield capacity(6), the probability that a random antigen is bound by an antibody that

does not bind one of its epitopes to be vanishingly small.

HIV Antibody Data

The success of our proposed cycling strategy depends on specific assumptions about correla-

tions between different antigens. In particular, antigens need to be sufficiently correlated in

that the same generalist antibodies can bind them (e.g., the antigens share a epitope). And

yet antigens need to be sufficiently uncorrelated : i.e., specialist antibodies that bind different

antigens must be sufficiently distinct as measured by hF (1)|F (2)is (e.g., the specialist epitopes

on antigens must be sufficiently distinct).

We sought to test whether these correlation conditions are met by antibodies evolved in

response to real HIV strains.

Antibody sequences and Binding Affinity Data Several works have studied observed

antibodies from individuals afflicted with different strains of HIV(25; 53; 84). These works

sequenced the observed antibodies, studied their binding affinities to different strains, and
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Fig 2.13: (a) We fix an antibody of length L = 20. We construct 1000 antigens, each of which
with a conserved portion of length 15. We compute the binding energies of the antibody with
each of these antigens and plot them in blue. We note that the binding energy for each of
these falls below the binding energy threshold. We compare this to the binding energy of the
same antibody to 1000 random antigens, plotted in black, and find it to be unlikely that the
binding energy to fall below the threshold, indicating the antibody is unlikely to bind random
antigens. (b) We fix an antibody of length L = 100 to bind to some conserved epitope. We
generate 1000 antigens, each with 11 epitopes, 1 of which is conserved. We compute the
binding energy of the antibody to these antigens and plot them in blue. We compare these
binding energies to the binding energy of the same antibody to 1000 antigens, each with their
own random 11 epitopes, plotted in black. We observe that a large separation in the binding
energies, suggesting it is unlikely that an antibody will spontaneously bind a random antigen.
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proposed intermediate antibodies in between the germline antibody and the discovered broadly

neutralizing antibody. They evaluated the binding affinities of each of these antibodies using

the ELISA assay. The binding affinity data is presented in SI Table 2.1. The mutational

distance between each antibody is given in SI Table 2.2.

Antibody Sequence Data: Two classes of antibodies are presented here: mature

antibodies observed in patients during their course with HIV and antibody sequences inferred

to be (25; 53; 84) intermediate between the germline and the mature broadly neutralizing

antibody. The natural antibodies appear with the prefix ’CH’, and the inferred antibodies,

which were synthesized, appear with the prefix ’IA’.

Antibody Binding Data: The binding affinity of each antibody to two different strains

of HIV, 31D8gp120/293F and 11D8gp120, is evaluated using the ELISA assay. Particular

values for binding are presented in table 2.1. We impose a cutoff of 10 log(AUC) to indicate

when an antibody has bound an HIV strain. By this rule,

• 31D8gp120/293F is bound by antibodies IA2, IA3, CH105, and CH103.

• 11D8gp120 is bound by antibodies CH186, CH187, CH200, and CH103.

Constructing landscapes F (1) and F (2) Let F (1) and F (2) define the fitness landscape

of antibody space corresponding to 31D8gp120/293F and 11D8gp120 respectively. In each

landscape, the experimentally discovered and synthetically produced antibodies will define

disconnected neighborhoods of antibodies that are fit for that landscape.

We begin constructing these landscapes by converting the sequence of each antibody

into a binary vector with entries ±1, noting that each antibody is length L = 121. We

accomplish this randomly generating a binary vector with entries ±1 of length L to represent

the unmutated common ancestor. Then, using the sequence data given by (25; 84; 53), we

determine where each antibody differs from the unmutated common ancestor and introduce

a binary spin vector for each that preserve the differences from the unmutated common
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HIV strain, Ab CH105 CH186 CH187 CH200 IA2 IA3 CH103

31D8gp120/293F 13.52 1.13 0.00 5.80 13.34 13.01 13.63
11D8gp120 8.97 13.59 10.21 10.92 9.12 6.82 10.92

Table 2.1: Binding affinity of different antibodies (columns) to two different HIV strains
(rows), measured via the ELISA assay (units of the logarithm of the area under the curve
(logAUC) of the absorbance of the sample)(25; 53; 84). Higher values reflect stronger affinity.
We consider an antibody to be a specialist for a strain using a cutoff of 10 logAUC. Note
that only CH103 is a generalist in this dataset.

ancestor as presented in the real data. We define the sequences associated with F (⌘) as h
(⌘)
↵ .

We set h
(1)
1 = h

(2)
1 to the sequence of the generalist antibody CH103.

We take the fitness of each antibody, represented by x with entries ±1 and length L, to

be:

F (⌘)(x) = s
X

↵

 
h
(⌘)
↵ · x
L

!p

. (2.16)

In the main text, we take p = 10 to stay below the spin glass transition for the sequences

under consideration. s is a scalar that controls overall magnitude of fitness, which we take to

be s = 200.

Simulations We simulated evolution using the technique described in Section 2.5.3. Given

that mutation rates in B-cells undergoing somatic hypermutation are taken to be 10�3 per

base pair per division(173), we choose our epoch length to be long enough that the population

accumulates 100 mutations. This corresponds to an epoch length that allows 800 total

divisions. The initial condition for these simulations was set to be the unmutated common

ancestor (UCA). We note that if the population is not started from the UCA, the simulation

fails to find successful antibodies.
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Antibody UCA CH105 CH186 CH187 CH200 IA2 IA3 CH103
UCA 0 27 8 16 20 27 19 28
CH105 27 0 25 24 38 21 9 24
CH186 8 25 0 11 20 25 25 26
CH187 16 24 11 0 27 23 19 24
CH200 20 38 20 27 0 37 31 38
IA2 27 21 25 23 37 0 15 4
IA3 19 9 25 19 31 15 0 19

CH103 28 24 26 24 38 4 19 0

Table 2.2: Mutational distances (Hamming Distance) between antibody sequences for anti-
bodies observed in an HIV patient who eventually developed bnAbs. Sequences for these
antibodies are found in (25; 84; 53). Using the raw sequence data and the binding energy
presented in 2.1, we can construct fitness landscapes F (1) and F (2) with fitness peaks that
reflect these mutational distances.

Shuffled assignment We earlier demonstrated that the correlation structure of the land-

scape impacted the ability of the landscape to effectively cycle its way to a generalist. Here,

we find that

hF (1)|F (2)is = 0.43 (2.17)

which reflects the distance between specialist sequences for the two strains in the data of

(25; 53; 84) (see Table 2.2). With such low correlations between specialists, the simulations

discover generalists around 60% of the time when cycling in this landscape, as shown in Fig.

5b.

To understand how increasing the correlation structure can impact generalist discovery

in real data, we artificially shuffled the antibody binding data. In particular, we treated

CH186 as a specialist antibody for 11D8gp120 and CH105 as a specialist antibody for

31D8gp120/293F and then followed the same construction of landscapes described in 2.5.3.

In the new constrution, we find that the two things are substantially more correlated.

hF (1)|F (2)is = 0.78 (2.18)
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Then, after running simulations with changing environments, we find that recovery rates of

the generalist drops significantly, as shown in Fig. 5b. This demonstrates that our results

are relevant when the fitness landscapes are sufficiently uncorrelated.

In Fig. 2.14, we repeat the simulation described above, but construct the patterns using

only the antibody sites that are variable across the antibodies considered. This restriction

reduces the length of the antibody sequences from L = 121 to L = 47. As a result, the

correlation measure for the unshuffled landscape drops from 0.43 to 0.07, while the correlation

measure for the shuffled landscape drops from 0.78 to 0.54. We set the epoch length to be

longer than before, as a result of the differences in the magnitudes of correlations and the

sequence length. The results of the simulation are shown in Fig.2.14.

Despite the resulting quantitative differences, qualitatively, these results are similar to

those displayed in Figure 5 of the main text for the full L = 121 length sequences.

Thus, our conclusions primarily depend on the correlations between the fitness landscape

and not the mathematical details of how we construct the fitness landscape. In particular,

the dimensionality of sequence space affects our results to the extent that the dimensionality

changes correlation structure across environments. We expect the effects of cycling to be

weaker in lower dimensions, such as the case explored in (79) where there are fewer paths from

specialists to generalists. For example, in 1 dimension, cycling can be entirely unproductive

if cycling-induced evolution repeatedly traps the population at specialist peaks adjacent to

the generalist genotype.
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Fig 2.14: We construct a landscape only using sites along the antibodies which feature
genotypic diversity, reducing the overall length of the antibodies from L = 121 to L = 47.
We set p = 10 and s = 200 and repeat the simulation described in Section 2.5.3 and observe
qualitatively similar results to those observed in Figure 5 of the main text.
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CHAPTER 3

OPTIMAL PREDICTION WITH RESOURCE CONSTRAINTS

USING THE INFORMATION BOTTLENECK

This work was done with Thierry Mora, Aleksandra Walczak, and Stephanie Palmer.

3.1 Abstract

Responding to stimuli requires that organisms encode information about the external world.

Not all parts of the input are important for behavior, and resource limitations demand that

signals be compressed. Prediction of the future input is widely beneficial in many biological

systems. We compute the trade-offs between representing the past faithfully and predicting

the future using the information bottleneck approach, for input dynamics with different levels

of complexity. For motion prediction, we show that, depending on the parameters in the input

dynamics, velocity or position information is more useful for accurate prediction. We show

which motion representations are easiest to re-use for accurate prediction in other motion

contexts, and identify and quantify those with the highest transferability. For non-Markovian

dynamics, we explore the role of long-term memory in shaping the internal representation.

Lastly, we show that prediction in evolutionary population dynamics is linked to clustering

allele frequencies into non-overlapping memories.

3.2 Author summary

From catching a ball to building immunity, we rely on the ability of biological systems to

incorporate past observations to make predictions about the future state of the environment.

However, the success of these predictions is limited by environmental parameters and encoding

capacities of the predictors. We explore these trade-offs in three systems: simple intertial

motion, more complex motion with long-tailed temporal correlations, and mutating viral
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strains. We show that the velocity and position of a moving object should not be equally

well-remembered in the biological systems internal representation, and identify the flexible

“best-compromise” representations that are not optimal but remain predictable in a wide

range of parameters regimes. In the evolutionary context, we find that the optimal predictive

representations are discrete, reminiscent of immune strategies that cover the space of potential

viruses.

3.3 Introduction

How biological systems represent external stimuli is critical to their behavior. The efficient

coding hypothesis, which states that neural systems extract as much information as possible

from the external world, given basic encoding capacity constraints, has been successful

in explaining some early sensory representations in the brain. Barlow suggested sensory

circuits may reduce redundancy in the neural code and minimize metabolic costs for signal

transmission (11; 80; 44; 123). However, not all external stimuli are as important to an

organism, and behavioral and environmental constraints need to be integrated into this

picture to more broadly characterize biological encoding. Delays in signal transduction in

biological systems mean that predicting external stimuli efficiently can confer benefits to

biological systems (18; 81; 134; 151), making prediction a general goal in biological sensing.

Evidence that representations constructed by sensory systems efficiently encode predictive

information has been found in the visual and olfactory systems (135; 125; 188). Molecular

networks have also been shown to be predictive of future states, suggesting prediction may be

one of the fundamental principles of biological computation (98; 175). However, the coding

capacity of biological systems is limited because they cannot provide arbitrarily high precision

about their inputs: limited metabolic resources and other sources of internal noise impose

finite-precision signal encoding. Given these trade-offs, one way to efficiently encode the

history of an external stimulus is to keep only the information relevant for the prediction of
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the future input (158; 3; 175). Here, we explore how optimal predictions might be encoded

by neural and molecular systems using a variety of dynamical inputs that explore a range of

temporal correlation structures. We solve the ‘information bottleneck’ problem in each of

these scenarios and describe the optimal encoding structure in each case (158).

The information bottleneck framework , introduced by Tishby and colleagues (158; 31; 52;

148), allows us to define a ‘relevance’ variable in the encoded sensory stream. We take the

relevant piece to be the future behavior of that input. Solving the bottleneck problem allows

us to optimally estimate the future state of the external stimulus, given a certain amount

of information retained about the past. In general, predicting the future coordinates of a

system, Xt+�t reduces to knowing the precise historical coordinates of the stimulus Xt and

an exact knowledge of the temporal correlations in the system. These rules and temporal

correlations can be thought of as arising from two parts: a deterministic portion, described

by a function of the previous coordinates, H(Xt), and the noise internal to the system,

⇠(t). Knowing the actual realization of the noise ⇠(t) reduces the prediction problem to

simply integrating the stochastic equations of motion forward in time. If the exact realization

of the noise if not known, we can still perform a probabalistic prediction by calculating

the future form of the probability distribution of the variable Xt or its moments (54; 165).

The higher-order moments yield an estimate of Xt and the uncertainty in the estimate.

However, biological systems cannot precisely know Xt due to inherently limited readout

precision (14; 16), creating a trade-off between representing the past and predicting the

future.

We briefly summarize the information bottleneck method to quantify this trade-off here,

and provide a more thorough explanation of the case with Gaussian statistics (reproduced

from (31)) in S1 Text. The method assumes that the input variable, in our case the signal

Xt�t0:t, which considers measurements between times t � t0 and t. We will call the past.

This can be used to make inferences about the relevance variable, in our case the future
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signal Xt+�t:t+�t+t0 , which considers measurements between times t+ �t and t+ �t+ t0.

We will call this the future. For convenience, in this introduction, we will take the past as a

single point in time, Xt and the future as Xt+�t. The resource constraints are introduced

via a representation variable, X̃, which can have a varying amount of information about the

input signal, Xt. This X̃, which has a dependence on the input, P(X̃|Xt), is constrained

to be maximally informative of the future signal, subject to a constraint on I(Xt; X̃), the

information it has about the past (Fig 3.1).

Formally, this representation is constructed by optimizing the objective function,

min
P(X̃|Xt)

L[P(X̃|Xt)] = I(Xt; X̃)� �I(X̃;Xt+�t). (3.1)

Each term is the mutual information between two variables: the first between the Xt and

estimate of Xt given our representation model, X̃, and the second between X̃ and future

input. The tradeoff parameter, �, controls how much future information we want X̃ to retain

as it is maximally compressed. For large �, X̃ must be maximally informative about Xt+�t,

and will have, in general, the lowest compression. Small � means less information is retained

about the future and high, lossy compression is allowed.

The causal relationship between Xt and Xt+�t results in a data processing inequality,

I(Xt; X̃) � I(Xt+�t; X̃), meaning that the information generated about Xt+�t cannot

exceed the amount encoded about Xt (13). Additionally, the information about Xt that the

representation can extract is bounded by the amount of information Xt, itself, contains

about the Xt+�t, I(X̃;Xt+�t)  I(Xt;Xt+�t).

We use this framework to study how biological systems can optimally encode external

stimuli for downstream decoding, but without any explicit constraints on or specification

of that decoder. Here, we assume that the compressed representation variable has a one-

time-step output and only has access to a fixed amount of historical information about the

stimulus. Here, we assume that the compressed representation variable has a single ‘present’
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time-step output and only has access to a fixed amount of historical information about the

stimulus. This reflects, for example, the instantaneous neural output from a retinal ganglion

cell population that is passed downstream to the cortex for further processing and readout.

We start with a one-time-step past input and then extend this to a longer temporal window

into the past. We begin by assuming a one-time-step past input and then later extend it

to a more extended temporal window in the past. The optimal predictive encoder does in

general favor some aspects of this past information (position information) over others (velocity

information). A downstream decoder may be able to recover some of the lower priority

information by combining measurements and predictions across time to reduce variance post

hoc, but the gain in precision comes at the cost of additional constraints on the size and

complexity of the encoded representation variable. In addition, the gained information about

the stimulus that was originally discarded may not provide significant predictive advantages.

We do, however, provide a comparison between our information bottleneck framework and

the results of a model that performs this kind of prediction combined with measurement

and error estimates across time in Section D in S2 Text. There we demonstrate that for a

given level of I(Xt; X̃), a Kalman filter achieves lower I(X̃;Xt+�t). A question we do not

explore here is how to, practically, read out the optimally encoded representation. It has

been shown previously that simple perceptrons can read out predictive information from the

retinal code(147), which makes biologically plausible readout possible and is a direction of

future work.

We use information bottleneck to compute the optimal predictive encoding in two well-

studied dynamical systems with ties to biological data: the stochastically-driven damped

harmonic oscillator (SDDHO) and the Wright-Fisher model. We look at these two different

systems to gain intuition about how different types of dynamics influence the ability of a

finite and noisy system to make accurate predictions. We further consider two types of

SDDHO processes to study the effects of noise correlations on prediction. Our exploration of
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the SDDHO system has a two-fold motivation: it is a physical system that describes motion

that a visual system might need to process and predict to catch prey or evade predators. It

is also the simplest possible continuous stochastic system whose full dynamics can be solved

exactly. Previous studies used the SDDHO process to create moving bar stimuli and quantify

retinal prediction (125; 147; 143). Prediction of a time series with Markovian dynamics is

not limited to physical motion, of course. The Wright-Fisher model (180) is a canonical

model of evolution (157) which has been used to consider how the adaptive immune system

predicts the future state of the pathogenic environment (96; 98). Resource constraints also

create trade-offs between representation precision and prediction in the immune system,

and finding the general principles that connect prediction in these two contexts can reveal

common principles across biological systems and scales.

The results of these information bottleneck calculations in these different dynamical

contexts will reveal the form and content of optimally predictive features. These features are

matched both to the input parameters and to the level of resource constraints that compress

the input. Our results form expectations about what to find in biological systems when the

internal representation can be measured (e.g. as in (125)), and the input statistics match the

kinds of dynamics studied here. While our results will show what types of feature extraction

are expected in systems predicting their inputs optimally, not all systems may be optimized for

a broad range of input dynamics. In fact, we assume that natural selection favors encodings

that confer just enough predictive capacity to support the organism’s behavioral repertoire.

That might mean flexibly predicting in many different environments either over an individual

or group migratory lifespan. To help quantify the ‘transferability’ of any optimally predictive

encoding scheme, we will develop a metric, Q, that tracks how well one representation

performs under other input dynamics, where it might not be the absolute optimal, but still

performs well. Of course, we only expect our maximally predictive encodings to match

biological filters when the system has an intrinsic behavioral goal that requires prediction.
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Build compressed
representation

Information
Bottleneck

Noisy Channel

Fig 3.1: A schematic representation our predictive information bottleneck. On the left hand
side, we have coordinates Xt evolving in time, subject to noise to give Xt+�t. We construct
a representation, X̃, that compresses the Xt (minimizes I(Xt; X̃)) while retaining as much
information about Xt+�t (maximizes I(X̃;Xt+�t)) up to the weighting of the prediction
compared to the compression set by �.

There are computations that do not require prediction, and would presumably result from

constraints that prioritize other types of information in the input.

3.4 Results

3.4.1 The Stochastically Driven Damped Harmonic Oscillator

Previous work explored the ability of the retina to construct an optimally predictive

internal representation of a dynamic stimulus. Palmer et al (125) recorded the response of

a salamander retina to a moving bar stimulus with SDDHO dynamics. In this case, the

spike trains in the retina encode information about the past stimuli in a near-optimally

predictive way (125). In order for optimal prediction to be possible, the retina should encode

the position and velocity as dictated by the information bottleneck solution to the problem,

for the retina’s given level of compression of the visual input. In that study, the SDDHO

was set near critical damping, and only one set of parameters in the model was shown to the
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retina. Inspired by this experiment, we explore the optimal predictive encoding schemes as a

function of the parameters in the dynamics, and we describe the optimal solution across the

entire parameter space of the model, over a wide range of desired prediction timescales.

We consider the dynamics of a mass m in a viscous medium attached to a spring receiving

noisy velocity kicks generated by a temporally uncorrelated Gaussian process, as depicted

in Fig 3.2A. The dynamics of this model were solved previously(119). See Section A in S2

Text for details. Equations of motion are introduced in terms of physical variables x̄, v̄, and

t̄ (bars will be dropped later when referring to rescaled variables), which evolve according to

m
dv̄

dt̄
=� kx̄� �v̄ + (2kBT�)1/2⇠(t̄), (3.2)

dx̄

dt̄
=v̄,

where k is the spring constant, � the damping parameter, kB the Boltzmann constant, T

temperature, h⇠(t̄)i = 0, and h⇠(t̄)⇠(t̄0)i = �(t̄� t̄0). We rewrite the equation with !0 =
q

k
m ,

⌧ = m
� , and D = kBT

� .We also introduce a dimensionless parameter, the damping coefficient,

⇣ = 1/(2!0⌧). When ⇣ < 1, the system is underdamped and the motion of the mass will be

oscillatory. When ⇣ � 1, the system is overdamped and the motion will be non-oscillatory.

Additionally, the equipartition theorem tells us that hx̄(t̄)2i ⌘ x20 = kBT/k = D/(⌧!20).

Putting this all together, we obtain

dv̄

dt̄
= � x̄

4⌧2⇣2
� v̄

⌧
+

x0p
2⌧3⇣

⇠(t̄) (3.3)

We make two changes of variable to further simplify our expressions. We set t = t̄
⌧ and

x = x̄
x0
. We also define a rescaled velocity, dx

dt = v, so that our equation of motion now reads

dv

dt
= � x

4⇣2
� v +

⇠(t)p
2⇣

. (3.4)
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There are now just two parameters that govern a particular solution to our information

bottleneck problem: ⇣ and �t, the timescale on which we want to retain optimal information

about the future. We define Xt = (x(t), v(t)) and Xt+�t = (x(t+ �t), v(t+ �t)) and seek a

representation, X̃(⇣,�t), that can provide a maximum amount of information about Xt+�t

for a fixed amount of information about Xt. By considering position and velocity, our

system is Markovian, so extended temporal windows provide no additional information. If

we were to ignore velocity in this model, estimates of the future would become suboptimal to

the information bottleneck bound. We explore models where extended temporal windows

are relevant in Section 3.4.2. To construct the information bottleneck solution in the case

with Gaussian variables, we follow the construction given in (31). We note that due to the

Gaussian structure of the joint distribution of Xt and Xt+�t for the SDDHO, the problem

can be solved analytically. The optimal compressed representation is a noisy linear transform

of Xt (see S1 Text) (31),

X̃ = A�Xt + ⇠. (3.5)

A� is a matrix whose elements are a function of �, the tradeoff parameter in the information

bottleneck objective function, and the statistics of the input and output variables. The added

noise term, ⇠, has the same dimensions as Xt and is a Gaussian variable with zero mean and

unit variance.

We calculate the optimal compression, X̃, and its predictive information (see Section B

in S2 Text). The coordinates at time t and time t+ �t in the SDDHO bottleneck problem

are jointly Gaussian, which means that the optimal compression can be fully described by its

first and second-order statistics. We generalize analytically the results that were numerically

obtained in Ref. (125) and explore the full parameter space of this dynamical model and

examine all predictive bottleneck solutions, including different desired prediction timescales.

We quantify the efficiency of the representation X̃ in terms of the variance of the

following four probability distributions: the prior distribution, P(Xt), the distribution of
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Xt conditioned on the compression, P(Xt|X̃), the distribution of Xt+�t conditioned on

the compressed variable P(Xt+�t|X̃), and the distribution of Xt+�t conditioned on Xt

P(Xt+�t|Xt). We represent the uncertainty reduction, or the mutual information between

these two variables, using two dimensional contour plots that depict the variances of the

distributions in the ((x � hxi)/�x, (v � hvi)/�v) plane, where �x and �v are the standard

deviations of the signal distribution P(Xt). We present example distributions of P(Xt|X̃)

and P(Xt+�t|X̃) in Fig 3.2B (left, right, respectively).

The representation, X̃, will be at most two-dimensional, with each of its components

corresponding to linear combinations of position and velocity. It may be lower dimensional

for certain values of �. The smallest critical � for which the representation remains two-

dimensional is given in terms of the smallest eigenvalue of the matrix ⌃Xt|Xt+�t
⌃�1Xt

as

�c = 1/(1�min {�1,�2}) (see Section B in S2 Text). ⌃Xt|Xt+�t
is the covariance matrix

of the probability distribution of P(Xt|Xt+�t) and ⌃Xt is the input variance. Below this

critical �, the compressed representation is one dimensional, X̃ = k1x+ k2v + noise, but it is

still a combination of position and velocity.

Limiting cases along the information bottleneck curve help build intuition about the

optimal compression. If X̃ provides no information about the stimulus (e.g. � = 0), the

variances of both of the conditional distributions match that of the prior distribution, P(Xt),

which is depicted as a circle of radius 1 (blue circle in Fig 3.2C). However, if the encoding

contains information about Xt, the variance of P(Xt|X̃) will be reduced compared to the

prior. The maximal amount of predictive information, which is reached when � !1, can

be visualized by examining the variance of P(Xt+�t|Xt) (e.g. the purple contour in Fig

3.2C), which quantifies the correlations in X, itself, with no compression. Regardless of how

precisely the current state of the stimulus is measured, the uncertainty about the future

stimulus cannot be reduced below this minimal variance, because of the noise in the equation

of motion.
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Fig 3.2: Schematic of the stochastically driven damped harmonic oscillator (SDDHO). (a) The
SDDHO consists of a mass attached to a spring undergoing viscous damping and experiencing
Gaussian thermal noise of magnitude. There are two parameters to be explored in this
model: ⇣ = 1

2!0⌧
and �t = �t

⌧ . (b) ⇣ = 1
2 , �t = 1. Here, we show an example distribution

of the history (yellow, left) and show its time evolution (purple, right). We take 5000
samples from the distribution, at random, and let these points evolve in time according to
the SDDHO equation of motion. We visualize the evolution of the distribution of points
in time via an ellipse representing the 1-⌃ confidence region of the rescaled position and
velocity. (c) We illustrate the limiting case of the information bottleneck method when
� ! 1. Representations of the past and how that constrains an estimate of the future
position and velocity of the object can be compared to the prior be examining the relative
size and shape of their respective ellipses. The blue circle represents the prior and its 1-⌃
confidence region. In yellow, we plot the inferred 1-⌃ confidence interval associated with
the estimate of past, Xt, given by the encoding distribution when � ! 1. In this limit,
the distribution is reduced to a single point. In purple, we plot the 1-⌃ confidence region
of Xt+�t given our knowledge of Xt. Precise knowledge of the past coordinates reduces
the our uncertainty about the future position and velocity (as compared to the prior), as
depicted by the smaller area of the purple ellipse.
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From Fig 3.2B, we see that the conditional distribution P(Xt+�t|Xt) is strongly com-

pressed in the position coordinate with some compression in the velocity coordinate. The

information bottleneck solution at a fixed compression level (e.g. I(Xt; X̃) = 1), shown in

Fig 3.3A (left), gives an optimal encoding strategy for prediction (yellow curve) that reduces

uncertainty in the position variable. This yields as much predictive information, I(Xt+�t; X̃),

as possible for this value of I(Xt; X̃). The uncertainty of the prediction is illustrated by the

purple curve. We can explore the full range of compression levels, tracing out an information

bottleneck curve for this damping coefficient and desired prediction timescale, as shown in

Fig 3.3. Velocity uncertainty in the compressed representation is only reduced (i.e. predictive

information that uses past velocity estimates is only useful) as we allow for less compression,

as shown in Fig 3.3A (right). For both of the cases represented in Fig 3.3A, the illustrated

encoding strategy yields a maximal amount of mutual information between the compressed

representation, X̃, and the future for the given level of compression, as indicated by the red

dots in Fig 3.3B.

As noted above, there is a phase transition along the information bottleneck curve, where

the optimal, predictive compression of Xt changes from a one-dimensional representation to

a two-dimensional one. This phase transition can be pinpointed in � for each choice of ⇣

and �t, and can be determined using the procedure described in is given in the S1 Text. To

understand which directions are most important to represent at high levels of compression,

we derive the analytic form of the leading eigenvector, w1, of the matrix ⌃Xt|Xt+�t
⌃�1Xt

. We

have defined !2 = 1
4⇣2
� 1

4 such that

w1 =

2

64
! cot(!�t) + | csc(!�t)|

2
p
2⇣

p
2� ⇣2 � ⇣2 cos(2!�t)

1

3

75 . (3.6)
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The angle of the encoding vector from the position direction is then given by

� = arctan

 ✓
! cot(!�t) +

| csc(!�t)|
2
p
2⇣

q
2� ⇣2 � ⇣2 cos(2!�t)

◆�1!
. (3.7)

We consider � in three limits: (I) the small �t limit, (II) the strongly overdamped limit

(⇣ !1), and (III) the strongly underdamped limit (⇣ ! 0).

(I): When !�t⌧ 1, the angle can be expressed as

� = arctan

✓
�t

1 + !2

◆
. (3.8)

This suggests that for small !�t, the optimal encoding scheme favors position information

over velocity information. The change in angle of the orientation from the position axis in

this limit goes as O(�t).

(II): The strongly overdamped limit. In this limit, � becomes

� = arctan

0

@ 2 sinh(�t
2 )

cosh(�t
2 ) +

q
1+cosh(�t)

2

1

A . (3.9)

In the large �t limit, �! ⇡
4 . In the small �t limit, �! arctan(�t). Position information

is the best predictor of the future input at short lags, which velocity and position require

equally fine representation for prediction at longer lags.

(III) The strongly underdamped limit. In this limit, � can be written as

� = arctan

0

@
2⇣ sin(�t

2⇣ )

cos(�t
2⇣ ) +

q
2� ⇣2 � ⇣2 cos(�t

⇣ )

1

A . (3.10)

We observe periodicity in the optimal encoding angle between position and velocity. This

means that the optimal tradeoff between representing position or velocity depends on the

timescale of prediction. However, the denominator never approaches 0, so the encoding scheme
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never favors pure velocity encoding. It returns to position-only encoding when �t/2⇣ = n⇡.

At large compression values, i.e. small amounts of information about Xt, the information

bottleneck curve is approximately linear. The slope of the information bottleneck curve

at small I(Xt; X̃) is given by 1 � �1, where �1 is the smallest eigenvalue of the matrix,

⌃Xt|Xt+�t
⌃�1Xt

. The value of the slope is

1� �1 = exp(��t)(
1

4!2⇣2
+

cos(2!�t)

4!2
+

| sin(!�t)|
2
p
2!2⇣

q
2� ⇣2 � ⇣2 cos(2!�t)). (3.11)

For large �t, it is clear that the slope will be constrained by the exponential term, and the

information will fall as exp(��t) as we attempt to predict farther into the future. For small

�t, however, we see that the slope goes as 1��t2, and our predictive information decays

more slowly.

For vanishingly small compression, i.e. � !1, the predictive information that can be

extracted by X̃ approaches the limit set by the temporal correlations in X, itself, given by

I(Xt;Xt+�t) =
1

2
log(|⌃Xt |)�

1

2
log(|⌃Xt|Xt+�t

|). (3.12)

For large �t, this expression becomes

I(Xt;Xt+�t) / exp(��t). (3.13)

For small �t,

I(Xt;Xt+�t) / �t� 1

2
log(�t). (3.14)

The constant term emerges from the physical parameters of the input dynamics.
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Fig 3.3: We consider the task of predicting the path of an SDDHO with ⇣ = 1
2 and �t = 1.

(a) (left) We encode the history of the stimulus, Xt, with a representation generated by the
information bottleneck, X̃, that can store 1 bit of information. Knowledge of the coordinates
in the compressed representation space enables us reduce our uncertainty about the bar’s
position and velocity, with a confidence interval given by ellipse in yellow. This particular
choice of encoding scheme enables us to predict the future, Xt+�t with a confidence interval
given by the purple ellipse. The information bottleneck guarantees this uncertainty in future
prediction is minimal for a given level of encoding. (right) The uncertainty in the prediction
of the future can be reduced by reducing the overall level of uncertainty in the encoding of
the history, as demonstrated by increasing the amount of information X̃ can store about
Xt. However, the uncertainty in the future prediction cannot be reduced below the variance
of the propagator function. (b) We show how the information with Xt+�tscales with the
information about Xt, highlighting the points represented in panel A.
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Optimal representations in all parameter regimes for fixed I(Xt; X̃)

We sweep over all possible parameter regimes of the SDDHO keeping I(Xt; X̃) fixed at

5 bits and find the optimal representation for a variety of timescales (Fig 3.4), keeping a

fixed amount of information encoded about Xt for each realization of the stimulus and

prediction. More information can be transmitted for shorter delays (Fig 3.4A, 3.4D, and

3.4G) between the Xt and Xt+�t signal than for longer delays (Fig 3.4C, 3.4F, and 3.4I).

In addition, at shorter prediction timescales more information about Xt is needed to reach

the upper bound, as more information can be gleaned about the future. In particular, for

an overdamped SDDHO at short timescales (Fig 3.4A), the evolution of the equations of

motion are well approximated by integrating Eq. 3.3 with the left hand side set to zero, and

the optimal representation encodes mostly position information. This can be visualized by

noting that the encoding ellipse remains on-axis and mostly compressed along the position

dimension. For the underdamped case, in short time predictions (Fig 3.4G), a similar strategy

is effective. However, for longer predictions (Fig 3.4H and 3.4I), inertial effects cause position

at one time to be strongly predictive of future velocity and vice versa. As a result, the

encoding distribution has to take advantage of these correlations to be optimally predictive.

These effects can be observed in the rotation of the encoding ellipse, as it indicates that

the uncertainty in position-velocity correlated directions are being reduced, at some cost to

position and velocity encoding. The critically damped SDDHO (Fig 3.4D-F) demonstrates

rapid loss of information about the future, like that observed in the underdamped case. The

critically damped case displays a bias towards encoding position over velocity information

at both long and intermediate timescales, as in the overdamped case. At long timescales,

Fig 3.4F, the optimal encoding is non-predictive.
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Fig 3.4: Possible behaviors associated for the SDDHO for a variety of timescales with a
fixed I(Xt; X̃) of 5 bits. For an overdamped SDDHO, panel a-c, the optimal representation
continues to encode mostly position information, as velocity is hard to predict. For the
underdamped case, panels g-i, as the timescale of prediction increases, the optimal repre-
sentation changes from being mostly position information to being a mix of position and
velocity information. Optimal representations for critically damped input motion are shown in
panels d-f. Comparatively, overdamped stimuli do not require precise velocity measurements,
even at long timescales. Optimal predictive representations of overdamped input dynamics
have higher amounts of predictive information for longer timescales, when compared to
underdamped and critically damped cases.
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Suboptimal representations

Biological systems might not adapt to each input regime perfectly, nor may they be optimally

efficient for every possible kind of input dynamics. We consider what happens when an optimal

representation is changed, necessarily making it suboptimal for predicting the future stimulus.

We construct a new representation by rotating the optimal solution in the position, velocity

plane. We examine the conditional distributions for this suboptimal representation, both

about Xt, P(Xt|X̃suboptimal), and the future, P(Xt+�t|X̃suboptimal). For a fixed amount

of information about Xt, I(Xt; X̃optimal) = I(Xt, X̃suboptimal), we compare the predictive

information in the optimal (Fig 3.5A) and the suboptimal representations (Fig 3.5B). We

examine the choice of parameters in the stimulus dynamics for which encoding position

alone is an optimal strategy. We note that encoding velocity with high certainty provides

very little predictive power, indicating that encoding velocity and position is not equally

important, even for equal compression levels. While the nature of the suboptimal and optimal

representations depend on the input dynamics, we see that the encoding schemes discovered

by the information bottleneck are, indeed, optimally predictive.

Transferability of a representation

So far, we have described the form that optimal predictive compressions take along the

information bottleneck curve for a given ⇣ and �t. How do these representations translate

when applied to other prediction timescales (i.e. can the optimal predictive scheme for near-

term predictions help generate long-term predictions, too?) or other parameter regimes of

the model? This may be important if the underlying parameters in the external stimulus

are changing rapidly in comparison to the adaptation timescales in the encoder, which we

imagine to be a biological network. For example, a salamander may, on one hand, need to be

able to predict at a timescale relevant for prey catching and predict the dynamics of its prey,

while on the other, be able to make predictions at different timescales to avoid predators, and
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Fig 3.5: Example of a sub-optimal compression. An optimally predictive, compressed
representation, in panel (a) compared to a suboptimal representation, in panel (b) for a
prediction at �t = 1 in the future, within the underdamped regime (⇣ = 1/2). We fix the
mutual information between the representations and Xt (I(Xt; X̃) = 3 bits), but find that,
as expected, the suboptimal representation contains significantly less information about the
future.
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predators may have a different dynamical regime(143; 139). One possible solution is for the

encoder to employ a representation that is useful across a wide range of input statistics. This

requires that the predictive power of a given representation is, to some extent, transferrable

to other input regimes. To quantify how ‘transferrable’ different representations are, we take

an optimal representation from one (⇣,�t) and ask how efficiently it captures predictive

information for a different parameter regime, (⇣ 0,�t0).

We identify these global strategies by finding the optimal encoder for a stimulus with param-

eters (⇣,�t) that generates a representation, P(X̃|Xt), at some given compression level, Ipast.

We will label the predictive information captured by this representation I futureoptimal((⇣,�t), Ipast).

We hold the representation fixed and apply it to a stimulus with different underlying pa-

rameters (⇣ 0,�t0) and compute the amount of predictive information the previous rep-

resentation yields for this stimulus. We call this the transferred predictive information

I futuretransfer((⇣,�t), Ipast ! (⇣ 0,�t0)). We note that I futuretransfer((⇣,�t), Ipast ! (⇣ 0,�t0)) may

sometimes be larger than I futureoptimal((⇣,�t), Ipast), because changing (⇣,�t) may increase both

Ipast and Ifuture (see e.g. Fig 3.6A).

For every fixed (⇣,�t) and Ipast, we can take the optimal X̃ and transfer it to a wide

range of new ⇣ 0’s and timescales, �t0. For a particular example (⇣,�t), this is shown in Fig

3.6B. The representation optimized for critical damping is finer-grained than what’s required

in the overdamped regime. We can sweep over all combinations of the new ⇣ 0’s and �t0s.

What we get, then, is a mapping of I futuretransfer for this representation that was optimized for one

particular (⇣,�t) pair across all new (⇣ 0,�t0)’s. This is shown in Fig 3.6C, (Fig 3.6B are just

two slices through this surface). This surface gives a qualitative picture the transferability of

this particular representation.

To get a quantitative summary of this behavior that we can then compare across different

starting points (⇣,�t), we integrate this surface over 1/3 < ⇣ 0 < 3, 0.1 < �t0 < 10,

and then normalize by the integral of I futureoptimal((⇣
0,�t0), Ipast) over the same surface. This
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yields an overall transferability measure, Qtransfer(⇣,�t). We report these results in Fig

3.6D. Representations that are optimal for underdamped systems at late times are the

most transferable. This is because generating a predictive mapping for underdamped motion

requires some measurement of velocity, which is generally useful for many late-time predictions.

Additionally, prediction of underdamped motion requires high precision measurement of

position, and that information is broadly useful across all parameters.

3.4.2 History-dependent Gaussian Stimuli

In the above analysis, we considered stimuli with temporal correlations that fall off exponen-

tially. However, natural scenes, such as leaves blowing in the wind or bees moving in their

hives, are shown to have heavy-tailed statistics (22; 143; 140). To extend our results to such

stimuli, we consider prediction where the statistics of the motion model may feature long-

ranged temporal correlations and by increasing the dimensionality of the input and output

to the information bottleneck, we demonstrate that the information bottleneck continues to

provide useful predictive encoding schemes for such stimuli. We show this through the use of

the Generalized Langevin equation (144; 88; 66):

dv

dt
= �

Z t

0

�v

|t� t0|↵dt� !
2
0x+ ⇠(t) (3.15)

dx

dt
= v (3.16)

Here, we have returned to unscaled definitions of v, and t. The damping force has a power-law

kernel. In order for the system to obey the fluctuation-dissipation theorem, we note that

h⇠(t)i = 0, and h⇠(t0)⇠(t)i / 1
|t�t0|↵ . In this dynamical system, position autocorrelation

hx(t)x(t0)i ⇠ t�↵ and velocity autocorrelation hv(t)v(t0)i ⇠ t�↵�1 for large t.

The prediction problem is similar to the prediction problem for the memoryless SD-
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Fig 3.6: Representations learned on underdamped systems can be transferred to other types
of motion, while representations learned on overdamped systems cannot be easily transferred.
(a) Here, we consider the information bottleneck bound curve (black) for a stimulus with
underlying parameters, (⇣,�t). For some particular level of Ipast = I0past, we obtain a

mapping, P(X̃|Xt) that extracts some predictive information, denoted I futureoptimal((⇣,�t), I0past),

about a stimulus with parameters (⇣,�t). Keeping that mapping fixed, we determine the
amount of predictive information for dynamics with new parameters (⇣ 0,�t0), denoted by
I futuretransfer((⇣,�t), I0past ! (⇣ 0,�t0)). (b) One-dimensional slices of I futuretransfer in the (⇣ 0,�t0)

plane: I futuretransfer versus ⇣
0 for �t0 = 1. I0past = 1 (top), and versus �t0 for ⇣ 0 = 1. Parameters

are set to (⇣ = 1,�t = 1), I0past = 1. (c) Two-dimensional map of I futuretransfer versus (⇣
0,�t0)

(same parameters as b). (d) Overall transferability of the mapping. The heatmap of (c) is
integrated over ⇣ 0 and �t0 and normalized by the integral of I futureoptimal((⇣

0,�t0), Ipast). We see
that mappings learned from underdamped systems at late times yield high levels of predictive
information for a wide range of parameters, while mappings learned from overdamped systems
are not generally useful.
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DHO, but we now take an extended past, Xt�t0:t, for prediction of an extended future,

Xt+�t:t+�t+t0 , where t0 sets the size of the window into the past we consider and the future

we predict (Fig 3.7A). Using the approach described in S1 Text, we compute the optimal

representation and determine how informative the past is about the future. The objective

function for this extended information bottleneck problem is,

L = min
P(X̃|Xt�t0:t)

I(Xt�t0:t; X̃)� �I(Xt+�t:t+�t+t0 ; X̃). (3.17)

We demonstrate the impacts of the discretization of time in S2. The information bottleneck

curves show more predictive information as the prediction process uses more past information

(larger t0 in Fig 3.7B). Not including any history results in an inability to extract the

predictive information. However, for low compression, large �, we find that the amount of

predictive information that can be extracted saturates quickly as we increase the amount of

history, t0. This implies diminishing returns in prediction for encoding history. Despite the

diverging autocorrelation timescale, prediction only functions on a limited timescale and the

maximum available prediction information always saturates as a function of t0 (Fig 3.7C).

These results indicate that efficient coding strategies can enable prediction even in complex

temporally correlated environments.

3.4.3 Evolutionary dynamics

Exploiting temporal correlations to make predictions is not limited to vision. Another aspect

of the prediction problem appears in the adaptive immune system, where temporal correlations

in pathogen evolution may be exploited to help an organism build and maintain immunity

in a changing environment. Exploiting these correlations can be done at a population level,

in terms of vaccine design (86; 47; 173; 141), and has been postulated as a means for the

immune system to adapt to future threats (98; 120). Here, we present efficient predictive

coding strategies for the Wright-Fisher model, which is commonly used to describe viral
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Fig 3.7: The ability of the information bottleneck Method to predict history-dependent stimuli.
(a) The prediction problem, using an extended history and a future. This problem is largely
similar to the one set up for the SDDHO but the past and the future are larger composites of
observations within a window of time t� t0 : t, expressed as Xpast for the past and t+ �t :

t+�t+t0, expressed asXfuture for the future. (b) Predictive information I(Xt+�t:t+�t+t0 , X̃)
with lag �t. (c) The maximum available predictive information saturates as a function of
the historical information used t0.
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Fig 3.8: The information bottleneck solution for a Wright Fisher process. (a) The Wright-
Fisher model of evolution can be visualized as a population of N parents giving rise to a
population of N offspring. Genotypes of the offspring are selected as a function of the parents’
generation genotypes subject to mutation rates, µ, and selective pressures s. (b) Information
bottleneck schematic with a discrete (rather than continuous) representation variable, X̃.
(c) Predictive information as a function of compression level. Predictive information increases
with the cardinality, m, of the representation variable. The amount of predictive information
is limited by log(m) (vertical dashed lines) for small m, and the mutual information between
allele frequencies at time t+ �t and time t, I(Xt+�t;Xt) (horizontal dashed line), for large
m. Bifurcations occur in the amount of predictive information. For small I(Xt; X̃), the
encoding strategies for different m are degenerate and the degeneracy is lifted as I(Xt; X̃)
increases, with large m schemes accessing higher I(Xt; X̃) ranges. Parameters: N = 100,
Nµ = 0.2, Nµ = 0.2, Ns = 0.001, �t = 1. (d-i) We explore information bottleneck solutions
to Wright-Fisher dynamics under the condition that the cardinality of X̃, m, is 2 and take �
to be large enough that I(Xt; X̃) ⇡ 1, � ⇡ 4. Parameters: N = 100, Ns = 0.001, �t = 1,
and Nµ = 0.2, Nµ = 2, and Nµ = 40 (from left to right). (d-f) In blue, we plot the steady
state distribution. In yellow and red, we show the inferred historical distribution of alleles
based on the observed value of X̃. Note that each distribution is corresponds to roughly
non-overlapping portions of allele frequency space. (g-i) Predicted distribution of alleles based
on the value of X̃. We observe that as mutation rate increases, the timescale of relaxation to
steady state decreases, so historical information is less useful and the predictions becomes
more degenerate with the steady state distribution.
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Fig 3.9: Transferability of prediction schemes in Wright-Fisher dynamics. We transfer a
mapping, P(X̃|Xt), trained on one set of parameters and apply it to another. We consider
transfers between two choices of mutability, Nµ1 = 0.2 (low) and Nµ2 = 20 (high), with
N = 100, Ns = 0.001, �t = 1. The dotted line is the steady state allele frequency
distribution, the solid lines are the transferred representations, and the dashed lines are the
optimal solutions. The top panels correspond to the distributions of Xt and the bottom
panels correspond to distributions of Xt+�t. (a) Transfer from high to low mutability.

Optimal information values: Ipastoptimal = 0.98 and I futureoptimal = 0.93; transferred information

values: Ipasttransfer((Nµ2), Ipast = 0.92 ! (Nµ1)) = 0.14 and I futuretransfer((Nµ2), Ipast = 0.92 !
(Nµ1)) = 0.05. Representations learned on high mutation rates are not predictive in the
low mutation regime. (b) Transfer from low to high mutability. Optimal information values:

Ipastoptimal = 0.92 and I futureoptimal = 0.92 and I futureoptimal = 0.28. Transferred information values:

Ipasttransfer((Nµ1), Ipast = 0.98! (Nµ2)) = 0.79 and I futuretransfer((Nµ1), Ipast = 0.98! (Nµ2)) =
0.27. Transfer in this direction yields good predictive informations.
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Fig 3.10: Amount of predictive information in the Wright Fisher dynamics as a function
of model parameters. (a-c), Value of the asymptote of the information bottleneck curve,
I(Xt;Xt+�t) with: (a) N = 100, Ns = 0.001, �t = 1 as a function of µ; (b) N = 100,
Nµ = 0.2, Ns = 0.001 as a function of �t; and (c) N = 100, Nµ = 0.2, and �t = 1 as a
function of s.

evolution (138). In contrast to the two models studied so far, Wright-Fisher dynamics are

not Gaussian, though they are still Markovian. This implies that predictive information

can reside in higher-order moments of the joint distribution, thus the optimal compressed

representation variable can no longer be Gaussian. The Wright-Fisher model allows us to

explore how the results obtained in the previous sections generalize to non-Gaussian statistics

of the past and future distributions. To make this computationally tractable, we will take

the representation variable to be discrete, though later allow its cardinality to be large

to approximate the continuous solution. There exist methods to approximate continuous

compressed representations directly(29; 124; 76), though we do not use those here.

Wright-Fisher models of evolution assume a constant population size of N . We consider

a single mutating site with each individual in the population having either a wild-type or

a mutant allele at this site. The allele choice of subsequent generations depends on the

frequency of the mutant allele in the ancestral generation at time t, Xt, the selection pressure

on the mutant allele, s, and the mutation rate from the wild-type to the mutant allele and

back, µ, as depicted as Fig 3.8A. For large enough N , the update rule of the allele frequencies
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Fig 3.11: Encoding schemes with m > 2 representation variables. The steady state is plotted
as a dotted line and the representation for each realization of the value of X̃ are plotted as
solid lines. The representations which carry maximum predictive information for (a) m = 2
at I(Xt; X̃) ⇡ log(m) = 1 bit, and (b) m = 3 at I(Xt; X̃) ⇡ log(m) ⇡ 1.5 bits. The optimal
representations at large m tile space more finely and have higher predictive information. The
optimal representations for m = 200 at fixed � = 1.01 (I(Xt; X̃) = 0.28, I(Xt+�t; X̃) = 0.27)
(c) and � = 20 (I(Xt; X̃) = 2.77, I(Xt+�t; X̃) = 2.34). (d) At low I(Xt; X̃), many of the
representations are redundant and do not confer more predictive information than the m = 2
scheme. A more explicit comparison is given in S3 Fig. At high I(Xt; X̃), the degeneracy is
lifted. All computations done at N = 100, Nµ = 0.2, Ns = 0.001, �t = 1.
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is given through the diffusion approximation interpreted with the Ito convention (72):

dXt

dt
= sXt(1�Xt) + µ(1� 2Xt) +

p
Xt(1�Xt)/N⌘(t), (3.18)

where h⌘(t)i = 0, h⌘(t)⌘(t0)i = �(t� t0). We note that this model is Markovian, so as we did

with the SDDHO, we will take the historical variable to be Xt and the future variable to be

Xt+�t. Details are given in S3 Text. Extending the timescale of the representation of the

past will not confer additional predictive information.

For this model, defining the representation X̃ as a noisy linear transformation of Xt, the

allele frequency at time t, as we did for the Gaussian case in S1 Text Eq.1 does not capture

all of the dependences between the past and future allele frequencies, because correlations

exist beyond second order. This arises because of the non-linear form of Eq. 3.18. Instead, we

determine the mapping of Xt to X̃ numerically using the Blahut-Arimoto algorithm (7; 23).

In general, for a discrete representation variable X̃, the true cardinality of X̃ is unknown for

a given �. Our approach is to first fix the cardinality of X̃ to a given value m (Fig 3.8C)

and compute the information curve for the given m by sweeping over �. We then repeat

this for larger values of m. We note that for small �, the solutions for different values of m

are degenerate, while at higher values of �, bifurcations emerge between encoding schemes

for the solutions with cardinality m and m � 1. This is because the true cardinality of

the optimal solution undergoes transitions to higher and higher values as � increases (158).

The discreteness of X̃ results in each realization of the representation tiling a distinct part

of frequency space. This encoding scheme can be thought of a different types of immune

defenses: innate, adaptive, and different lymphocyte phenotypes acting at different stages

or for different types of immune responses (112). Accordingly, m would correspond to the

number of distinct cell types mobilized against pathogens of various frequencies. The concept

of discrete tiling of space is also analogous to ideas of immune coverage, whereby a finite

number of distinct antigen receptors cover the entire “shape space” of possible antigens(126).
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However, to make this analogy more precise would require to study an effective theory of

phenotypic evolution(121).

We first consider the example with m = 2 representations. In the weak-mutation, weak-

selection limit (Nµ,Ns⌧ 1), the steady state probability distribution of allele frequencies,

Ps(X) / [X(1�X)]Nµ�1 eNsX (3.19)

(blue line in Fig 3.8D) is peaked around the frequency boundaries, indicating that at long

times, an allele either fixes or goes extinct. In this case, one value of the representation

variable corresponds to the range of high allele frequencies and the other corresponds to low

allele frequencies (Fig 3.8D, yellow and red lines). These encoding schemes can be used to

make predictions, whether it be by an observer or the immune system, via determining the

future probability distribution of the alleles conditioned on the value of the representation

variables, P(Xt+�t|X̃). We present these predictions in Fig 3.8G. The predictive information

conferred by the representation variable is limited by the information it has about Xt as in

the Gaussian case ( Fig 3.8C.)

For larger mutation rates, the steady state distribution becomes centered around the equal

probability of observing either one of the two alleles, but the two representation variables

still cover the frequency domain in way that minimizes overlap (Fig 3.8E and 3.8F). We

observe a sharp drop in P (Xt|X̃) at the boundary between the two representations. The

future distribution of allele frequencies in this region (Fig 3.8H and 3.8I), however, displays

large overlap. The degree of this overlap increases as the mutation rate gets larger, suggesting

prediction is harder in the strong mutation limit. The optimal encoding of the distribution

of Xt biases the representation variable towards frequency space regions with larger steady

state probability mass.

In Fig 3.9, we explore the consequence of transferring a mapping, P(X̃|Xt), from a high

mutation model to a low mutation model and vice versa. We observe that the weak mutation
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representation is more transferrable than the strong mutation representation. One reason

for this is that the strong mutation limit provides little predictive information, as seen in

Fig 3.10A. In addition, high mutation representations focus on X = 1/2, while the population

more frequently occupies allele frequencies near 0 and 1 in other regimes. Comparatively,

representations learned on weak mutation models can provide predictive information, because

they cover more evenly the spectrum of allele frequencies.

We can extend the observations in Fig 3.8 to see how the predictive information depends

on the strength of the selection and mutation rates (Fig 3.10A and 3.10C). Prediction

is easiest in the weak mutation and selection limit, as population genotype change occur

slowly and the steady state distribution is localized in one regime of the frequency domain.

For evolutionary forces acting on faster timescales, prediction becomes harder since the

relaxation to the steady state is fast. Although the mutation result might be expected, the

loss of predictive information in the high selection regime seems counterintuitive: due to a

large bias between one of the two alleles evolution appears reproducible and “predictable”

in the high selection limit. This bias renders the allele state easier to guess but this is

not due to information about the initial state. The mutual information-based measure of

predictive information used here captures a reduction of entropy in the estimation of the

future distribution of allele frequencies due to conditioning on the representation variable.

When the entropy of the future distribution of alleles H(Xt+�t) is small, the reduction is

small and predictive information is also small. As expected, predictive information decreases

with time �t, since the state Xt and Xt+�t decorrelate due to noise (Fig 3.10B).

So far we have discussed the results for m = 2 representations. As we increase the tradeoff

parameter, � in Eq. 3.1, the amount of predictive information increases, since we retain more

information about the the allele frequency at time t. However, at high � values the amount

of information the representation variable can hold saturates, and the predictive information

reaches a maximum value (1 bit for the m = 2 yellow line in Fig 3.10A). Increasing the number
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of representations m to 3 increases the range of accessible information the representation

variable has about the past I(Xt;X), increasing the range of predictive information (purple

line in Fig 3.8C)). Comparing the m = 2 and m = 3 representations for maximum values

of � for each of them (Fig 3.11A and 3.11B), shows that larger numbers of representations

tile allele frequency space more finely, allowing for more precise encodings of the past and

future distributions. The maximum amount of information about the past goes as log(m) (

Fig 3.8C). The predictive information curves for different m values are the same, until the

branching point . log(m) for each m ( Fig 3.8C).

We analyze the nature of this branching by taking m � 1, m = 200 (Fig 3.11C and

3.11D). At small � (and corresponding small I(Xt; X̃)) the optimal encoding scheme is the

same if we had imposed a small m (Fig 3.11C), with additional degenerate representations (S3

Fig). By increasing � (and I(Xt; X̃)), the degeneracy is lifted and additional representation

cover non-overlapping regimes of allele frequency space. This demonstrates the existence of a

critical � for each predictive coding scheme, above which m needs to be increased to extract

more predictive information and below which additional values of the representation variable

encode redundant portions of allele frequency space. While we do not estimate the critical �,

approaches to estimating them are presented in (183; 182).

The m = 200 encoding approximates the continuous X̃ representation. In the high

I(Xt; X̃) limit, the m = 200 encoding gives precise representations (i.e. with low variability

in P(Xt|X̃)) in regions of allele frequency space with high steady state distribution values,

and less precise representations elsewhere (Fig 3.11D top panel and S4). This dependence

differs from the Gaussian case, where the uncertainty of the representation is independent of

the encoded value. The decoding distributions P(Xt|X̃) are also not Gaussian. This encoding

builds a mapping of internal response to external stimuli, by tiling the internal representation

space of external stimuli in a non-uniform manner. These non-uniform frequency tilings are

similar to Laughlin’s predictions for maximally informative coding in vision (80), but with
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the added constraint of choosing the tiling to enable the most informative predictions.

3.5 Discussion

We have demonstrated that the information bottleneck method can be used to construct

predictive encoding schemes for a variety of biologically-relevant dynamic stimuli. The

approach described in this paper can be used to make predictions about the underlying

encoding schemes used by biological systems that are compelled by their behavioral and

fitness constraints to make predictions. These results thus provide experimentally testable

hypotheses. The key principle is that not all input dimensions are equally relevant for

prediction; information encoding systems must be able to parse which dimensions are relevant

when coding capacity is small relative to the available predictive information. Hence, the

biological (or engineered) system must navigate a tradeoff between reducing the overall

uncertainty in its prediction while only being able to make measurements with some fixed

uncertainty.

It may not always be the case, experimentally, that a system uses an optimal encoding

for prediction of a particular motion stimulus. When the stimulus nonetheless falls within

the natural scene input repertoire for the organism, we hypothesize that biological systems

may use a best-compromise predictive encoding of their inputs because that need to operate

flexibly across a wide range of different input statistics. We provide a transferability metric,

Q, which quantifies how useful a particular scheme is across other dynamic regimes and

prediction timescales, that can be used to experimentally predict what the best-compromise

predictive encoding scheme is in cases where a biological system needs to be flexible. We

observe that a compromise between representing position and velocity of a single object

provides a good, general, predictor for a large set of input behaviors. When adaptation is

slower than the timescale over which the environment changes, such a compromise might be

beneficial to the biological system. On the other hand, if the biological encoder can adapt,
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the optimal predictive encoder for those particular dynamics is the best encoder. We have

provided a fully-worked set of examples of what those optimal encoders look like for a variety

of parameter choices. The dynamics of natural inputs to biological systems could be mapped

onto particular points in these dynamics, providing a hypothesis for what optimal prediction

would look like in that system.

We also explored the ability to predict more complex, non-Markovian dynamics. We

asked about the usefulness of storing information about the past in the presence of power-law

temporal correlations. The optimal information bottleneck solution showed fast diminishing

returns as it was allowed to dig deeper and deeper into the past, suggesting that simple

encoding schemes with limited temporal span have good predictive power even in complex

correlated environments.

Superficially, our framework may seem similar to a Kalman filter (67). There are few

major differences in this approach. Kalman filtering algorithms have been used to explain

responses to changes in external stimuli in biological system (63). In this framework, the

Kalman filters seek to maximize information by minimizing the variance in estimating the

true coordinates of an external input. The estimate is, then, a prediction of the next time step,

and is iteratively updated. Our information bottleneck approach extracts past information,

but explicitly includes another constraint: resource limitations. The tuning of Ipast is the

main difference between our approach and a Kalman filter. Another major difference is that

we do not assume the underlying encoder has any explicit representation of the ‘physics’ of

the input. There is no internal model of the input stimulus, apart from our probabilistic

mapping from the input to our compressed representation of that input. A biological system

could have such an internal model, but that would add significant coding costs that would

have to be treated by another term in our framework to draw a precise equivalence between

the approaches. We show in the S1 Fig that the Kalman filter approach is not as efficient, in

general, as the predictive information bottleneck approach that we present here.
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Our results on systems with Wright-Fisher input dynamics reveal that discrete represen-

tations that tile input space are optimally predictive encoders. Although we impose discrete

internal representations, their non-overlapping character remains even it the limit of a large

number of representations. These kinds of solutions are reminiscent of the Laughlin solution

for information maximization of input and output in the visual system given a nonlinear

noisy channel (80), in which the input space is covered proportionally to the steady state

distribution at a given frequency, in chunks given by the size of the noise in the system. Tiling

solutions have also been described when optimizing information in gene regulatory networks

with nonlinear input-output relations, when one input regulates many gene outputs (168). In

this case each gene was expressed in a different region of the input concentration domain.

Similarly to our example, where the lifting the degeneracy between multiple representations

covering the same frequency range allows for the prediction of more information about the

future, lifting the degeneracy between different genes making the same readout, increases

the transmitted information between the input concentration and the outputs. More gen-

erally, discrete tiling solutions are omnipresent in information optimization problems with

boundaries (118; 149).

Biologically, predicting evolutionary dynamics is a different problem than predicting

motion. Maybe the accuracy of prediction matters less, while covering the space of potentially

very different inputs is important. In our simple example, this is best seen in the strong

mutation limit where the mutant allele either fixes or goes extinct with equal probability. In

this case, a single Gaussian representation cannot give a large values of predictive information.

A discrete representation, which specializes to different regions of input space, is a way to

maximize predictive power for very different inputs. It is likely that these kinds of solutions

generalize to the case of continuous, multi-dimensional phenotypic spaces, where discrete

representations provides a way for the immune system to hedge its bets against pathogens

by covering the space of antigen recognition(96). The tiling solution that appears in the
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non-Gaussian solution of the problem is also potentially interesting for olfactory systems.

The number of odorant molecules is much larger than odor receptors (167; 49), which can

be thought of as representation variables that cover the phenotypic input space of odorants.

The predictive information bottleneck solution gives us a recipe for covering space, given a

dynamical model of evolution of the inputs.

The results in the non-Gaussian problem are different than the Gaussian problem in two

important ways: the encoding distributions are not Gaussian (e.g. Fig 3.8D and 3.8E), and

the variance of the encoding distributions depends on the the value of P(Xt|X̃) (Fig 3.11D).

These solutions offer more flexibility for internal encoding of external signals.

The information bottleneck approach has received a lot of attention in the machine

learning community lately, because it provides a useful framework for creating well-calibrated

networks that solve classification problems at human-level performance(3; 29; 4). In these

deep networks, variational methods approximate the information quantities in the bottleneck,

and have proven their practical utility in many machine learning contexts. These approaches

do not always provide intuition about how the networks achieve this performance and what

the information bottleneck approach creates in the hidden encoding layers. Here, we have

worked through a set of analytically tractable examples, laying the groundwork for building

intuition about the structure of information bottleneck solutions and their generalizations in

more complex problems.

In summary, the problem of prediction, defined as exploiting correlations about the past

dynamics to anticipate the future state comes up in many biological systems from motion

prediction to evolution. This problem can be formulated in the same way, although as we have

shown, the details of the dynamics matter for how best to encode a predictive representation

and maximize the information the system can retain about the future state. Dynamics that

results in Gaussian propagators is most informatively predicted using Gaussian representations.

However non-Gaussian propagators introduce disjoint non-Gaussian representations that are
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nevertheless predictive.

By providing a set of dissected solutions to the predictive information bottleneck problem,

we hope to show that not only is the approach feasible for biological encoding questions, it also

illuminates connections between seemingly disparate systems (such as visual processing and

the immune system). In these systems the overarching goal is the same, but the microscopic

implementation might be very different. Commonalities in the optimally predictive solutions

as well as the most generalizable ones can provide clues about how to best design experimental

probes of this behavior, at both the molecular and cellular level or in networks.

3.6 Computing the optimal representation for jointly Gaussian

past-future distributions

We reproduce Chechik et al.(31) to show the analytic construction of the optimally predictive

representation variable, X̃, when the input and output variables are jointly Gaussian. The

input is Xt ⇠ N (0,⌃Xt) and the output is Xt+�t ⇠ N (0,⌃Xt+�t
). The joint distribution

of Xt and Xt+�t is Gaussian. To construct the representation, we take a noisy linear

transformation of Xt to define X̃

X̃ = A�Xt + ⇠. (3.20)

Here, A� is a matrix whose elements are a function of �, the tradeoff parameter in the

information bottleneck objective function between compressing, in our case, the past while

retaining information about the future. ⇠ is a vector of dimension dim(Xt). The entries of ⇠

are Gaussian-distributed random numbers with 0 mean and unit variance. Because the joint

distribution of the past and the future is Gaussian, to capture the dependencies of Xt+�t

on Xt we can use a noisy linear transform of Xt to construct a representation variable that

satisfies the information bottleneck objective function(31).

We compute A� by first computing the left eigenvectors and the eigenvalues of the
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regression matrix, ⌃Xt|Xt+�t
⌃�1Xt

. Here, ⌃Xt|Xt+�t
is the covariance matrix of the probability

distribution of P(Xt|Xt+�t). These eigenvector–eigenvalue pairs satisfy the following relation

vTi ⌃Xt|Xt+�t
⌃�1Xt

= �iv
T
i . (3.21)

(We are taking vTi to be a row vector, rather than a column vector.)

The matrix, A� , is then given by

A� =

2

66664

↵1v
T
1

↵2v
T
2

...

3

77775
. (3.22)

↵i are scalar values given by

↵i =

s
�(1� �i)� 1

�iv
T
i ⌃Xtvi

if � >
1

1� �i
(3.23)

↵i =0 otherwise.

The ↵i define the dimensionality of the most informative representation variable, X̃. The

dimension of X̃ is the number of non-zero ↵i. The optimal dimension for a given � is, at

most, equal to the dimension of Xt+�t. The set of values, {�ci |� = 1/(1� �i)}, can be

thought of as critical values, as each �ci triggers the inclusion of the ith left eigenvector into

the optimal X̃. The critical values depend strongly on the particular statistics of the input

and output variable, so they may be different as the parameters that generate X change.

To compute the information about the past and future contained in X̃, we compute

P(Xt|X̃) and P(Xt+�t|X̃). These distributions are Gaussian. The mean of each distribution

corresponds to the encoded value of Xt and Xt+�t. The variance corresponds to the
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uncertainty, or entropy, in this estimate. To compute the variance, we need the variance of X̃

⌃X̃ = hX̃T X̃i = hX̃TAT
�A�X̃i+ h⇠T ⇠i, (3.24)

where the excluded terms are zero. Recalling the definition of ⇠, we can simplify this expression

to yield

⌃X̃ = A�⌃XtA
T
� + I2. (3.25)

Here, I2 is the identity matrix. To compute the mutual information quantities, we use the

following equations,

I(Xt; X̃) =
1

2
log2(|A�⌃XtA

T
� + I2|), (3.26)

I(Xt+�t; X̃) = I(Xt; X̃)� 1

2

n(�)X

i=1

log2(�(1� �i)),

where n(�) corresponds to the number of dimensions included in A� . We also need the cross

covariances between X̃ and Xt and between X̃ and Xt+�t, which are particularly useful for

visualizing the optimal predictive encoding. To obtain these matrices, we use

⌃X̃Xt
= A�⌃Xt (3.27)

⌃X̃Xt+�t
= A�⌃Xt+�tXt .

We can use these results and the Schur complement formula to obtain

⌃Xt|X̃ = ⌃Xt � ⌃XtX̃
⌃�1
X̃

⌃T
XtX̃

(3.28)

⌃Xt+�t|X̃
= ⌃Xt+�t

� ⌃Xt+�tX̃
⌃�1
X̃

⌃T
Xt+�tX̃

.
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3.7 Harmonic Oscillator Model With No Memory

We begin by considering a mass attached to a spring undergoing viscous damping. The mass

is being kicked by thermal noise. This mechanical system is largely called the stochastically

driven damped harmonic oscillator (SDDHO). A simple model for its position and velocity

evolution is given by

m
dv

dt
= ��v(t)� kx+ (2kBT�)1/2⇠(t) (3.29)

dx

dt
= v.

We use the redefined variables presented in the main text Equations 2 � 9 to rewrite the

equations as

dv

dt
= � x

4⇣2
� v +

⇠(t)p
2⇣

(3.30)

dx

dt
= v.

There are now two key parameters to explore: ⇣ and �t. There are three regimes of motion

described by this model. The overdamped regime occurs when ⇣ > 1. In this regime of

motion, the mass, when perturbed from its equilibrium position, relaxes back to its equilibrium

position slowly. The underdamped regime occurs when ⇣ < 1. In this regime of motion,

when the mass is perturbed from its equilibrium position, it oscillates about its equilibrium

position with an exponentially decaying amplitude. At ⇣ = 1, we are in the critically damped

regime of motion; in this regime, when the mass is perturbed from equilibrium, it returns to

equilibrium position as quickly as possible without any oscillatory behavior.

To apply the information bottleneck method to this system, we need to compute the

following covariance and cross covariance matrices: ⌃Xt , ⌃Xt+�t
, and ⌃XtYt+�t

. We note

that because the defined motion model is stationary in time, ⌃Xt = ⌃Xt+�t
. Using the
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procedure given in Flyvbjerg et. al. (119), we can compute the requisite autocorrelations to

describe the cross-covariance matrix, ⌃XtXt+�t
.

We begin by using the equipartition theorem that states that

hx20i = 1 (3.31)

hx0v0i = 0

hv20i =
1

4⇣2
.

The covariance matrices are symmetric, so we can use these values to define the elements of

⌃Xt . We then obtain expressions for ⌃XtXt+�t

⌃XtXt+�t
= exp

✓
��t

2

◆
2

64
cos(!�t) + sin(!�t)

2! � sin(!�t)
4⇣2!

sin(!�t)
4⇣2!

cos(!�t)
4⇣2

� sin(!�t)
8!⇣2

3

75 (3.32)

where we have defined !2 = 1
4⇣2
� 1

4 . An alternative approach for the derivation of the above

correlation values by methods of Laplace transforms can be found in Sandev et. al. (144).

To construct the optimal representation for prediction, we need the conditional covariance

matrices, ⌃Xt|Xt+�t
and ⌃Xt+�t|Xt

. This can be computed using the Schur complement

formula to yield

⌃Xt|Xt+�t
= ⌃Xt � ⌃XtXt+�t

⌃�1Xt
⌃T
XtXt+�t

(3.33)

⌃Xt+�t|Xt
= ⌃Xt � ⌃T

XtXt+�t
⌃�1Xt

⌃XtXt+�t

We provide a graphical representation of these distributions in Fig 2B (main text). These

graphical representations correspond to the contour inside which ⇠ 68% of observations are

observed (i.e. one standard deviation from the mean).
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3.7.1 Applying the information bottleneck Solution

To apply the information bottleneck solution, we construct the matrix, ⌃Xt|Xt+�t
⌃�1Xt

, and

find its eigenvalues and eigenvectors. The left eigenvectors of the matrix will be denoted by

the columns of a new matrix, w, given by

w =

2

64
a+ b a� b

1 1

3

75 . (3.34)

with a = ! cot(!�t), and b = | csc(!�t)|
2
p
2⇣

p
2� ⇣2 � ⇣2 cos(2!�t). The eigenvalues are then

�1 = 1� exp(��t)

✓
1

4!2⇣2
� cos(2!�t)

4!2
+

| sin(!�t)|
2
p
2!2⇣

q
2� ⇣2 � ⇣2 cos(2!�t)

◆
(3.35)

�2 = 1� exp(��t)

✓
1

4!2⇣2
� cos(2!�t)

4!2
� | sin(!�t)|

2
p
2!2⇣

q
2� ⇣2 � ⇣2 cos(2!�t)

◆

The transformation matrix, A� , will now depend on the parameters of the stimulus. Hence,

we now refer to this matrix as A�(⇣,�t), illustrating its functional dependence on those

parameters.

Some general intuition can be gained from the form of the above expressions. The

eigenvalue gap, �1 � �2 is proportional to exp(��t)k2 sin(!�t)k
⇣ . Intuitively, the eigenvalue

gap corresponds the relative importance of the two coding dimensions given by the eigenvectors

of the regression matrix. The larger the eigenvalue gap, the more emphasis there is the

eigenvector with lower eigenvalue for efficient predictive coding. If the eigenvalue gap is small,

there is little benefit for prediction in measuring one dimension over the other. The nature of

the dimensions to be measured depends on the direction of the eigenvectors of the regression

matrix. This suggests that the eigenvalue gap grows for small �t, then shrinks for large �t.

Additionally, in the small �t limit, the eigenvectors align strongly along the position and

velocity axes, with the eigenvector corresponding to the smaller eigenvalue being along the
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position axis. Hence, for predictions with small �t, the representation variable must encode

a lot of information about the position dimension. For longer timescale predictions, both

eigenvectors contribute to large levels of compression, suggesting that the encoding scheme

should feature a mix of both position and velocity. This is presented in Fig 4 (main text).

We also compute the total amount of predictive information available in this stimulus.

This is given by

I(Xt;Xt+�t) =
1

2
log(|⌃Xt |)�

1

2
log(|⌃Xt|Xt+�t

|). (3.36)

Simplifying this expression yields

I(Xt;Xt+�t) = �t� 1

2
log

✓
exp(2�t) + cos4(!�t)� sin4(!�t) (3.37)

�2 exp(�t)

✓
cos2(!�t) +

1 + ⇣2

1� ⇣2
sin2(!�t)

◆
+ 2 sin2(!�t)

◆

We can see for very large �t, this expression becomes

I(Xt;Xt+�t) ⇠ �t� 1

2
log (exp(2�t)� 2 exp(�t)) . (3.38)

For small �t, we note there are two conditions: |⌃Xt|Xt+�t
| < k and |⌃Xt|Xt+�t

| > k, where

k corresponds to width of the distribution. If the width of the Gaussian is below k, we treat

this as being effectively deterministic. In this case,

I(Xt;Xt+�t) /
1

2
log(|⌃Xt |) (3.39)

where there are some constants that set the units of the information and the reference point.
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For widths larger than k, the expression becomes:

I(Xt;Xt+�t) / exp(��t) (3.40)

3.7.2 Comparing the information bottleneck Method to Different Encoding

Schemes

We compare the encoding scheme discovered by the information bottleneck to alternate encod-

ing schemes. We accomplish this by computing the optimal transformation for a particular

parameter set for some value of �, A�(⇣,�u). We then determine the conditional covariance

matrix, ⌃Xt|X̃ . We generate data from this distribution and apply a two-dimensional unitary

rotation. We then compute the covariance of the rotated data. This gives us a suboptimal

encoding scheme, as represented in Figure 5b in yellow. We note that this representation

contains the same amount of mutual information with the past as the optimal representation

variable, though the dimensions the suboptimal encoding scheme emphasizes are very different.

Evolving the rotated data forward in time and then taking the covariance of the resulting

coordinate set gives us ⌃Xt+�t|X̃
, as plotted in Fig 5B in purple. We clearly see that encoding

the past with the suboptimal representation reduces predictive information, as the predictions

of the future are much more uncertain.

3.7.3 Comparing the information bottleneck method to Kalman filters

An alternative approach to predictive coding is Kalman filtering. Kalman filter-based ap-

proaches fuses predictions of a system’s coordinates at a given time and historical observations

of the system’s coordinates to achieve increased certainty about the future coordinates of

the system(67). However, despite the high-level similarity between Kalman filtering and the

information bottleneck method, there are key differences making each technique unique. To

show this difference, we present the mathematical structure of a Kalman filter:
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X(naive)(�t) = H(�t)X(0) + ⇠(�t) (3.41)

X̃(measured)(�t) = OX(�t) + �(�t)

X(corrected) = X(naive)(�t) +K�t(X̃
(measured)(�t)�OX(naive)(�t)).

Here, O represents a measurement map and H(�t) represents a dynamical systems model.

These features are given to the Kalman filter by the designer. K�t is the filter, and is a

function of the measurement map, the dynamical systems model, and the prior uncertainty

in the coordinates of the system. The Kalman filter is applied iteratively on each success �t.

The structure of the Kalman filter reveals two key differences. First, the Kalman filter

focuses on the decoding aspect of predictive coding, and is used to improve estimates of a

predicted future coordinate via the measurement map and the dynamical systems model.

However, the information bottleneck method focuses on the encoding aspect of this problem

and generates an optimal encoding scheme for the past. Decoding is not considered explicitly

in the information bottleneck. Second, because of the iterative structure of the Kalman Filter,

it can use information from an extended time window into the past, while the information

bottleneck method can only use one time point of information for predictive coding. This

results in Kalman-filtering based approaches using more information about the past than

necessary, resulting in inefficient predictive coding. We illustrate this in S1 Fig.

3.7.4 An approach to encoding when the parameters of the stimulus are

evolving

We examine prediction in the SDDHO when the underlying parameters governing the

trajectory are evolving faster than adaptation timescales. While there are many possible

strategies for prediction in this regime, we consider a strategy where the system picks a
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representation that provides a maximal amount of information across a large family of stimulus

parameters. We chose this strategy because it enables us to analyze the transferability of

representations from one parameter set against another. In other words, we can understand

how robust representations learned for particular stimulus parameters are.

We first determine the predictive information extracted by an efficient coder for a

particular representation level, Ipast for a particular stimulus with parameters (⇣,�t),

I futureoptimal((⇣,�t), Ipast). This predictive mapping is achieved by having a mapping, P(X̃|Xt).

We apply this mapping to a new stimulus with different parameters (⇣,�t) to determine the

amount of predictive information extracted by this mapping on a different stimulus with

parameters (⇣ 0,�t0). We call this predictive information I futuretransfer((⇣,�t), Ipast ! (⇣ 0,�t0)).

We quantify the quality of these transferred representations in comparison with

I futureoptimal((⇣
0,�t0), Ipast) as

Qtransfer((⇣,�t)) =

R�tmax
�tmin

R ⇣max
⇣min

I futuretransfer((⇣,�t), Ipast ! (⇣ 0,�t0))d⇣ 0d�t0

R�tmax
�tmin

R ⇣max
⇣min

I futureoptimal((⇣
0,�t0), Ipastd⇣ 0d�t0

(3.42)

The resulting value is the performance of the mapping against a range of stimuli. In Figure

6, we analyzed the performance of mappings learned on 1
3 < ⇣ < 3, 0.1 < t < 10, on stimuli

with parameters 1
3 < ⇣ 0 < 3, 1 < t0 < 10. This choice of range is somewhat arbitrary, but it

is large enough to see the asymptotic behavior in �t, ⇣.

3.8 History Dependent Harmonic Oscillators

We extend the results on the Stochastically Driven Damped Harmonic Oscillator to history-

dependent stimuli by modifying the original equations of motion to have a history dependent

term using the Generalized Langevin Equation
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dv

dt
= �

Z t

0

�v

|t� t0|↵dt
0 � !20x+ ⇠(t) (3.43)

dx

dt
= v

where � �
|t�t0|↵ governs how the history impacts the velocity-position evolution. In the main

text, we take � = 1, ! = 1, and ↵ = 5/4. To compute the autocorrelation functions, we

compute the Laplace transform of each autocorrelation function and numerically invert the

Laplace transform to estimate the value

L[hv(t)v(0)i] = s

s2 + �s↵ + !2
(3.44)

L[hv(t)x(0)i] = � 1

s2 + �s↵ + !2

L[hx(t)v(0)i] = �L[hv(t)x(0)i]

L[hx(t)x(0)i] = 1

!2s
� 1

s2 + �s↵ + !2
.

To expand our past and future variables to include multiple time points, we extend the

past variable to be observations between t� t0 and t and the future variable to be t+ �t to

t+ �t+ t0. The size of the window is set by t0. We discretize each window with a spacing of

dt = 1 and compute correlation functions along the discrete points of time, yielding the full

covariance matrices. Ideally, we would make the discretization interval arbitrarily small,

dt! 0. However, this introduces numerical issues, as the determinant of ⌃t�t0:t approaches

0. As such, we make dt as small as possible without causing this numerical issue. We explore

a few values of dt in S2 Fig to determine the effect on the information curve. While small dt

confers more information, there are diminishing returns and we asymptotically approach the

correct values. After this, the recipe is as outlined in Section. 3.6.
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3.9 Wright Fisher Dynamics

Wright-Fisher dynamics are used in population genetics to describe the evolution of a

population of fixed size over generations. Here, we consider the diffusion approximation to

the Wright-Fisher model with continuous time, given by Eq.18. We numerically integrate

Eq.18 using a time step of dt = 0.001 and use 10000 data points starting from a given

initial allele frequencies to estimate the joint distribution, P (Xt+�t, Xt). We discretize allele

frequency space with N + 1 bins. We compute the maximum available predictive information

for different values of the parameters (Figure 10) using

I(Xt;Xt+�t) =�
X

Xt

P(Xt) log(P(Xt))�
X

Xt+�t

P(Xt+�t) log(P(Xt+�t)) (3.45)

+
X

Xt,Xt+�t

P(Xt, Xt+�t) log(P(Xt+�t, Xt)).

A simple estimate for I(Xt; X̃) can be obtained by considering the case where each individual

memory reflects a distinct cluster of allele frequencies. In the optimal encoding case, each

memory encodes an equal amount of probability weight on the input variable(80; 151). The

upper bound on the information the representation variable has about the past state is

I(Xt; X̃) = log(m).
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Information bottleneck results

Kalman Filter results
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Fig 3.12: Kalman filtering schemes are not efficient coders for a given channel capacity. We
compare the amount of information conferred about the future for a given encoding level
and find that Kalman Filter-based approaches do not maximize the amount of predictive
information conferred, suggesting they are not efficient predictive coding schemes.
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Fig 3.13: We plot the information curve for �t = 10, t0 = 20 for different values of dt. We
note that there are diminishing returns for increasingly small dt. However, we cannot make
dt arbitrarily small, as this introduces numerical errors.
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Fig 3.14: The optimal P (Xt|X̃) and P (Xt+�t|X̃) for Wright Fisher dynamics with N = 100,
Nµ = 0.2, Ns = 0.001, �t = 1 with information bottleneck parameters � = 1.01 (I(Xt; X̃) =
0.27) for m = 2. (a) and m = 200 (b). Many representations are degenerate in the m = 200
in this limit. The encoding schemes for m = 2 versus m = 200 are nearly identical for this
small I(Xt; X̃) limit.
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Fig 3.15: Mean (left) and variance (right) of the past allele frequency Xt conditioned on
the (categorical) representation variable X̃ (left), for the information bottleneck solution of
the Wright-Fisher dynamics with m = 200, N = 100, Nµ = 0.2, Ns = 0.001, � =1. The
standard deviation is not constant: it is smaller where the prior probability of Xt is large.
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CHAPTER 4

INFERRING COUPLINGS ACROSS ORDER-DISORDER

PHASE TRANSITIONS

This work was pursued in collaboration with Vuditwat Ngampruetikorn, Hanna Torrence,

Jan Humplich, David Schwab, and Stephanie Palmer.

4.1 abstract

Statistical inference is central to many scientific endeavors, yet how it works remains un-

resolved. Answering this requires a quantitative understanding of the intrinsic interplay

between statistical models, inference methods and the structure in the data. To this end,

we characterize the efficacy of direct coupling analysis (DCA)—a highly successful method

for analyzing amino acid sequence data—in inferring pairwise interactions from samples of

ferromagnetic Ising models on random graphs. Our approach allows for physically motivated

exploration of qualitatively distinct data regimes separated by phase transitions. We show

that inference quality depends strongly on the nature of data-generating distributions: op-

timal accuracy occurs at an intermediate temperature where the detrimental effects from

macroscopic order and thermal noise are minimal. Importantly our results indicate that

DCA does not always outperform its local-statistics-based predecessors; while DCA excels

at low temperatures, it becomes inferior to simple correlation thresholding at virtually all

temperatures when data are limited. Our findings offer new insights into the regime in which

DCA operates so successfully and more broadly how inference interacts with the structure in

the data.
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4.2 Introduction

A quantitative understanding of the limitations and biases of inference methods is critical for

developing high performing and trustworthy approaches to data analyzes. While emerging,

such an understanding is incomplete, not least because it requires a thorough investigation

of the intertwined nature of statistical models, inference methods and the structure in the

data (187). Statistical physics models are ideally suited for this investigation for three

main reasons. First, they often encompass the statistical models used in practice; take, for

example, the Potts model in direct coupling analysis (DCA) (176; 109). Second, they enjoy

a number of well-studied inference methods owing to a long history of inverse statistical

physics problems (137; 117; 36). Third, they provide a controlled and physically motivated

way to alter data-generating distributions across qualitatively distinct regimes. Adopting

a statistical physics approach, we characterize the performance of DCA, one of the most

oft-used tools in biological sequence analyzes, and highlight the importance of the structure

in the data in quantifying the performance of inference methods.

DCA has proved successful as a technique for inferring the physical interactions that

underpin the structure of biological molecules from amino acid sequence data (176; 109).

This success has led to new insights into the protein folding problem (90) and how RNAs

obtain their structures (43; 177; 170). The essence of DCA is to draw a distinction between

direct and indirect correlations—those originating from direct physical interactions between

two sites in a sequence and those mediated via other sites—by fitting a global statistical

model to sequence data. But while DCA supersedes its local-statistics-based predecessors

in virtually all applications, relatively little is known about the conditions that underlie its

success (74).

The statistical model in DCA, well-known in physics as the Potts model (181), captures a

phase transition that results from a competition between disorder-promoting thermal noise

and order-promoting interactions. The disordered phase, which prevails at high temperatures,
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Fig 4.1: Data generation and inference. We generate samples from a ferromagnetic spin model
on an Erdős-Rényi random graph and evaluate inference methods on the data at different
model temperatures across order-disorder phase transitions. Direct coupling analysis ranks
the likelihood of an interaction by leveraging global statistics whereas local inference uses
pairwise statistics such as empirical correlations. We obtain predictions by thresholding the
likelihood scores. In general, local and global inference method result in different predictions.
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describes a system whose constituents (e.g., residues in a sequence) are largely uncorrelated;

on the other hand, a macroscopic number of such constituents assume the same state in the

low-temperature ordered phase. Both phases make for difficult inference: the data are noisy

in the disordered phase and macroscopic ordering leads to strong indirect correlations in the

ordered phase (104). A question arises as to the regime in which DCA operates so successfully

and more broadly how the nature of data-generating distributions affects inference (see, also

Ref (21)).

Recent work suggests that sequence data are drawn from distributions poised at the onset

of order (156; 155). This regime sits at the boundary of the two phases, thus minimising the

detrimental effects from thermal noise while avoiding precipitation of macroscopic order. In

fact signatures of criticality—a defining property of a type of phase transitions—appear ubiq-

uitous across a wide variety of biological systems (105; 17), including antibody diversity (106),

genetic regulations (122; 77), neural networks (82; 33; 160; 161; 107; 32; 100), behaviors of

individuals (37) and those of groups (20; 10). This apparent ubiquity has inspired a search

for the origin of this behavior (146; 2; 110; 12) as well as work that attempts to uncover

its function (99). However the structure of data distributions alone cannot capture the

complete phenomenology of inference and as such cannot explain the success of DCA relative

to local-statistics-based methods.

The use of the Potts model to capture correlations among constituents of a system is

neither unique to DCA nor limited to analyzing sequence data. Indeed this approach is

applicable to a range of biological systems from neural activity (145; 159) to flocks of birds (19).

In addition, the Potts model is closely related to probabilistic graphical models and Markov

random fields in probability theory, statistics and machine learning with applications including

inferring interactions among genetic transcription factors (51) and computer vision (169).

Understanding what affects the performance of DCA and when it outperforms local statistical

inference is relevant to a large class of problems beyond the application of DCA in structural
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biology.

Here we investigate the efficacy of DCA in inferring pairwise couplings from samples

drawn from ferromagnetic spin models on random graphs at different temperatures across

order-disorder phase transitions, see Fig 4.1. We demonstrate that the inference quality

depends on data-generating distributions; in particular, better inference methods need not be

more elaborate nor computationally more expensive. We show that a simple method based

on thresholding pairwise correlations can easily outperform DCA at all temperatures in the

under-sampled regime—a condition applicable to nearly all amino acid sequence datasets. We

find further that more data improve DCA most significantly in the ordered phase where strong

indirect correlations limit the performance of local methods. Interestingly we do not observe

direct effects of criticality despite its association with diverging Fisher information (26; 65;

38; 95; 130). Instead we attribute the accuracy maximum at an intermediate temperature to

the competition between the emergence of macroscopic order at low temperatures and high

thermal noise level at high temperatures. Our work underscores the necessity to characterize

the role of data-generating distributions when evaluating inference methods and offers a first

step towards a deeper understanding of the intertwined nature of inference, models and the

structure in the data.

4.3 Data Generation

To highlight the role of a phase transition, we consider the problem of reconstructing the

interaction matrix of an Ising model on a random graph. A limiting case of the Potts model,

the Ising model is one of the simplest models that captures a phase transition. It describes

a system of n spins, ~�=(�1, �2, . . . , �n), each of which is a binary variable �i2{±1}. The

spins interact via the Hamiltonian

H(~�) = �
Pn

i=1
Pn

j=i+1 Jij�i�j �
Pn

i=1 hi�i, (4.1)

110



where Jij denotes the interaction between spins i and j, and hi the bias field on spin i. The

probability distribution of this system is given by

P (~�) =
e��H(~�)

P
~�0 e��H(~�0)

, (4.2)

where �=1/T is the inverse temperature and the summation is over all spin configurations.

Fig 4.1 provides an overview of our work. We generate samples from a uniform-interaction

ferromagnetic Ising model on an Erdős-Rényi random graph,

Hdata(~�) = �
P

i<j Jij�i�j with Jij ⇠ Bern(�/n) (4.3)

for a graph with n vertices and mean degree �. Each interaction is drawn from a Bernoulli

distribution with parameter p=�/n, i.e., an interaction is present (Jij=1) with probability

p and absent (Jij=0) with probability 1� p. In the thermodynamic limit n!1, a sharp

transition exists between the high-temperature disordered phase and the low-temperature

ordered phase. This phase transition is characterized by the order parameter �⌘ 1
n |h
P

i �ii|,

which vanishes in the disordered phase and grows continuously with decreasing temperature

in the ordered phase. A standard mean-field approximation yields the critical temperature

Tc=� with the order parameter given by the largest root of the equation �=tanh(��/T ).

As a result, when the mean degree is relatively high, the effect of a change in � is completely

captured by critical temperature rescaling [see, also, Eq (4.34)]. Our results are based on

samples generated with exact Monte Carlo sampling (131).

4.4 Mean-field Inversion

While several methods exist for the inverse Ising problem (117), we focus on the so-called naive

mean-field inversion which forms the basis for a number of practically relevant algorithms (137;

109; 90; 152). Derived from a mean-field theory and the linear response theorem (68; 154)
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Fig 4.2: Local statistical modeling outperforms mean-field DCA in the disordered phase. We
show density histograms of empirical and direct pair correlations—h�i�jidata and h�i�jidir
[see, Eq (4.5)]—for interacting (filled) and non-interacting (line) pairs of spins at T/Tc=
0.7, 1.0, 1.5 (a-c, respectively). The predictions of pairwise interactions are depicted in a
contact map for local (upper half) and global (lower half) inference. The discrimination
threshold is chosen such that the number of positive predictions is equal to the number of
real interactions, and false positives and false negatives are equal (see legend). In general
both empirical and direct pair correlations are higher among interacting spins and are
thus informative of interactions. For local inference, the prediction error decreases with
temperature and is smaller than that of global inference at T/Tc=1.5 (c). Global inference
error exhibits non-monotonic temperature dependence and is minimal at an intermediate
temperature T/Tc=1.0 (b). Shown results are based on 5⇥103 samples drawn from Ising
models on an Erdős-Rényi graph with 50 vertices and mean degree 20.

(see, Appendix 4.8), the naive mean-field inversion expresses interactions Jij in terms of

empirically accessible connected correlation matrix C,

�Jij = �(C�1)ij for i < j, (4.4)

where Cij⌘h�i�ji � h�iih�ji. In the following, global statistical inference refers to the naive

mean-field inversion.
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Fig 4.3:
Local inference is more data efficient but more severely affected by macroscopic order.
We depict the local (red) and global (blue) inference discriminability of interactions (area
under the ROC curve) for Ising models on Erdős-Rényi graphs with mean degree 40 and
different number of vertices n (see legend) for sample sizes K=2⇥103 and 104 (a and b,
respectively). Both local and global inference exhibits discriminability maximum near Tc.
Local inference is more discriminating at all temperatures when the data are limited (a). But
global inference performs better in the ordered phase when more data are available (b).

4.5 Results

4.5.1 Discriminability of interactions

One measure of inference quality is the ability to discriminate directly interacting spin pairs

from those that interact only via other spins. Fig 4.2 visualizes this discrimination based

on local and global statistical inference. For each spin pair, we assign a score that ranks

the likelihood of an interaction being present; here, we use empirical correlations h�i�jidata

and direct correlations h�i�jidir in local and global inference, respectively. The average

h· · · idata is taken with respect to the empirical distribution and h· · · idir to the direct pairwise

distribution (176),

P̂dir
ij (�i, �j) ⌘

exp(�Ĵij�i�j + h̃i�i + h̃j�j)P
�0

i,�
0
j
exp(�Ĵij�

0
i�
0
j + h̃i�

0
i + h̃j�

0
j)

(4.5)

where Ĵij denotes the inferred interactions from naive mean-field inversion and the fields h̃i

and h̃j are chosen such that the marginal distributions coincide with empirical single-spin

distributions. In Fig 4.2, we see that on average both empirical and direct correlations are
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higher among interacting pairs and are thus predictive of true interactions. To turn the

likelihood scores into concrete predictions, we need to define a threshold which separates

positive and negative predictions. We choose a discrimination threshold that equates the

number of positive predictions to the number of true interactions and display inference

predictions and errors as a contact map (Fig 4.2a-c). The accuracy of the global approach

exhibits non-monotonic temperature dependence with higher error rates at temperatures

above and below Tc. In contrast the accuracy of local inference increases with temperature

over the range shown in Fig 4.2. (But note that the accuracy must eventually go down

at adequately high temperatures, see Fig 4.3.) While the error rate of global inference is

less than half of that of local inference at low temperatures (Fig 4.2a-b), a local statistical

approach outperforms global inference at high temperature (Fig 4.2c; see also, Fig 4.3).

Although specifying a discrimination threshold allows us to make concrete predictions,

its choice is often arbitrary. We now consider a more general measure of discriminability

grounded in receiver operating characteristic (ROC) analysis. ROC analysis constructs a

curve that traces the true and false positive rates as the discrimination threshold varies. In

the following, we identify discriminability with the area under the ROC curve which is equal

to the probability that a real positive scores higher than a real negative.

Local and global statistical inference exhibits qualitatively different sample size dependence,

see Fig 4.3. At low samples, local inference is more discriminating than naive mean-field

inversion at all temperatures (Fig 4.3a). This behavior is a result of the distinct natures

of local and global approaches. Global inference requires a good estimate of the full joint

distribution whereas local inference relies only on pairwise distributions which are much easier

to estimate, especially with limited samples. An increase in samples improves both local

and global inference but this improvement diminishes for local inference at low temperatures

(Fig 4.3b). This results from the fact that the entropy of the model increases with temperature

and thus, given a fixed number of samples, a low-temperature model is better sampled. In
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Fig 4.4:
We use 20% of pairs chosen at random (validation set) to compute the discrimination threshold
(a) and report inference properties on the rest (test set, b-d). a Typical ROC curve for the
validation set. We choose a threshold such that the resulting model is closest to the ideal
model, as measured by the Euclidean distance in the ROC space. b True and false positive
rates vs temperature. Both local and global methods are most accurate at a temperature
close to Tc but local inference worsens faster at low temperatures. c Temperature dependence
of the positive rate (the ratio between positive predictions and all pairs). Over-prediction is
most acute for local inference at low temperatures. d Distribution of the number of shortest
paths among false positive pairs with graph distance two at different temperatures. At
low temperatures the false positives from local inference contain a larger fraction of highly
connected pairs, compared to all pairs with distance two (grey) as well as to the false positives
from global inference. Thus non-interacting pairs in denser parts of the graph are likelier to
be mis-classified than those in sparser parts. Shown results are based on 104 samples from
an Ising model on an Erdős-Rényi graph with 400 vertices and mean degree 40.
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Fig 4.3a, pairwise distributions are already well-sampled at low temperatures and more

samples do not lead to higher accuracy for local inference (Fig 4.3b). However well-sampled

pairwise distributions do not imply a good estimate of the full distribution; indeed, more

samples improve the discriminability of global inference in the low-temperature regimes, i.e.,

the blue points in Fig 4.3b are higher than in Fig 4.3a below Tc.

Inference performance depends not only on well-measured probability distributions but

also the structure of the distributions. Despite having lower entropy and being better

sampled, low-temperature models are more difficult to infer compared to those in the vicinity

of the phase transition, see Fig 4.3. This feature is a consequence of macroscopic ordering

below Tc. In the ordered phase, two spins are likely to align regardless of the presence

of an interaction and therefore pair correlations become less discriminating. While the

decrease in discriminability affects both local and global inference, its effect is less severe

for global inference (Fig 4.3). The use of global statistics—statistical quantities that require

measurements of the entire system such as the inverse connected correlation matrix—helps

avoid direct comparisons between spin pairs in dense clusters of the interaction graph and

those in sparser parts.

4.5.2 The effects of local interaction networks on inference

Indeed local inference is more likely to mis-classify well-connected non-interacting spin pairs.

To illustrate this point, we randomly divide all of the spin pairs into two disjoint sets for

validation and testing. We use the validation set to determine a discrimination threshold and

report inference quality on the test set. In Fig 4.4 we use 20 percent of pairs in validation and

choose the discrimination threshold such that the resulting true and false positive rates are

closest to that of ideal classifiers, as measured by the Euclidean distance in the ROC plane

(Panel A). Note that while the Euclidean distance is not the only possibility, the concavity

of the ROC curve means our results remain qualitatively the same for any metric based on
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`p-norm with p�1. Fig 4.4b and c show that the quality of local inference deteriorates faster

as temperature decreases below Tc—i.e., decreasing true positive rate, increasing false positive

rate and more over-prediction (excess positive predictions compared to ground truth).

We characterize the false positives (mis-classified non-interacting pairs) by the number

of shortest paths between spins in each pair (Fig 4.4d). Here we focus only on pairs with a

graph distance of two (less than two percent of pairs have distance greater than two for this

particular graph). At high temperatures the distribution of the number of shortest paths

among false positives is the same as that for non-interacting pairs; that is, any non-interacting

pair is equally likely to be mis-classified. As temperature lowers to around Tc, the false

positives from local inference contain a disproportionately large fraction of pairs that are

connected by more paths. This behavior is a direct consequence of the emergence of order

which generates strong correlations, especially among pairs in denser parts of the graph.

At very low temperatures, macroscopic order proliferates and pair correlations are strong

regardless of the number of paths or physical interactions. While this effect reduces the

disproportionate mis-classification among better connected pairs, it increases the discrepancy

between the predicted and actual positive rates (Fig 4.4c). In fact the positive rate of ⇠50

percent results from the fact that any pair leads to a positive prediction with probability

1
2 . We see that in contrast to local inference, mean-field DCA is less likely to confound

path multiplicity with interactions, especially close to the onset of order. In addition it

suffers less from strong indirect correlations as evidenced by smaller over-prediction rates at

low temperatures. In sum, leveraging global statistics helps DCA draw a better distinction

between direct and indirect correlations, thus making it more accurate at low temperatures.

4.5.3 Root-mean-square error of inferred couplings

While a useful characterization of discriminability, ROC analysis is agnostic about the

magnitude of the inferred interactions. We now show that the root-mean-square (RMS)
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Fig 4.5:
Interactions inferred from mean-field DCA are statistically unbiased with smallest variances
around phase transitions.
a Root-mean-square error of inferred interactions as a function of temperature at different
sample sizes K (see legend). b Density histograms of inferred interactions for non-interacting
and interacting pairs whose true interactions are one and zero, respectively. Shown results
are for an Ising model on an Erdős-Rényi graph with 400 vertices and mean degree 40.

error of the interactions inferred by naive mean-field inversion exhibits similar temperature

dependence to discriminability. In Fig 4.5a, we see that the RMS error is smallest at a

temperature slightly below Tc for a range of sample sizes. Fig 4.5b reveals the origin of this

temperature dependence. On average mean-field inversion correctly predicts the interactions—

Jij 2{0, 1} depending on whether an interaction is present—but the prediction variance is

minimum around Tc. Above Tc, an increase in temperature leads to a model with higher

entropy, thus requiring a larger number of samples to maintain inference accuracy. Below Tc,

macroscopic order interferes with inference by generating strong indirect correlations among

non-interacting pairs.
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4.5.4 The role of data-generating models

Since inference quality is intrinsically a combined property of inference methods and data

distributions, it is a priori unclear whether the observed non-monotonic temperature de-

pendence (Figs 4.3 and 4.5) originates from the inductive bias in inference methods or

the structure in the data. To isolate the role of data-generating models, we consider the

response of data distributions to a change in model parameters as a proxy for how informa-

tive a data point is about model parameters. We quantify the distributional response by

the f -divergence, an information-theoretic distance between two distributions, defined via

Df (PXkQX)⌘hf(PX/QX)iX⇠QX
where f : [0,1)!(�1,1) is convex and f(1)=0. The

f -divergence between two zero-field Ising models on different graphs, parametrized by J and

J 0, reads [see, Eqs (4.2) and (4.3)]

Df (J
0, J) =

*
f

0

B@
e�
P

i<j �Jij�i�j

D
e�
P

i<j �Jij�0
i�

0
j
E

~�0⇠HJ

1

CA

+

~�⇠HJ

, (4.6)

where �J=J 0 � J and the average h. . . i is with respect to the model on the graph J .

Before we discuss the numerical results, it is instructive to derive an expression for the

f -divergence in a mean-field approximation. Expanding Eq (4.6) around �=0 and taking

P (~�)=
Q

i
1
2(1 + �i�) yield

Dmf
f (J 0, J) =

1

2
f 00(1)k�Jk1

1��(T )4

T 2 , (4.7)

where �(T ) is the mean-field order parameter and the `1-norm k�Jk1 counts the number of

different edges in J and J 0. Note that the elements of J and J 0 are either zero or one and we

set Jij=0 for i�j as they do not enter the model [see, Eq (4.3)]. In the disorder phase T >Tc,

high noise level makes models less dependent on the parameters and the f -divergence decays

as T�2. The dependence on the order parameter means different parameters also result in
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Fig 4.6: Jensen-Shannon (JS) divergence between two Ising models vs temperature. a
JS divergences computed from 104 samples using Eq (4.6) for a fixed graph J and many
realizations of J 0 generated by randomly deleting and adding edges to J . The curves are
grouped by the number of different edges in J and J 0 (see legend). b empirical JS divergences
compared to a mean-field prediction Eq (4.7), showing good agreement for T >Tc (same color
code as in a). Here J is an Erdős-Rényi graph with 400 vertices and mean degree 40.

more similar models at low temperatures (since �(T )!1 as T!0). Indeed the competition

between thermal noise and macroscopic order leads to a maximum at T/Tc⇡0.83.

Fig 4.6 illustrates the temperature dependence of the f -divergence between two Ising

models. Here we adopt the Jensen-Shannon (JS) divergence which is an f -divergence defined

with f(t)=(t+ 1) log2
2

t+1 + t log2 t. We compute the divergence DJS(J
0, J) from data using

Eq (4.6) for a fixed Erdős-Rényi graph J and we generate J 0 by randomly deleting and

adding edges in J , allowing J and J 0 to have different numbers of edges. We see that, as

expected from the mean-field analysis, the f -divergence decays as T�2 at high temperatures

and peaks at a temperature below Tc with its scale controlled by the number of different

interactions in J and J 0 (Fig 4.6a). In Fig 4.6b, we compare the empirical JS-divergence

to the mean-field approximation [Eq (4.7)] and find good agreement for T >Tc. Below Tc,

the mean-field result only captures the qualitative behavior due to large variance in the JS

divergence (from different realizations of J 0). This is an expected result since the locations

where macroscopic order nucleates depend on graph structure and a change to which can

yield a range of divergences.
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4.5.5 Inference discriminability for Potts models

It is tempting to view the inference quality maximum as a manifestation of critical phenomena,

not least because the Fisher information (magnetic susceptibility) diverges at Tc (26; 65;

38; 95; 130). However criticality does not seem to play an important role in inferring the

interaction graph. Indeed Fig 4.6 illustrates that the distance between two models on different

graph varies smoothly across the critical temperature.

To elaborate this point further, we consider q-state Potts models on an Erdős-Rényi

random graph which generalizes the binary spins in Ising models to q states. Unlike the

Ising model, a q-state Potts model with q>2 exhibits a discontinuous phase transition which

does not display critical behaviors and at which the susceptibility remains finite. Fig 4.7

compares the inference discriminability for 3 and 4-state Potts models with that for Ising

models (q=2). We use the naive mean-field inversion, generalized to Potts models (109) for

both Ising and Potts models (see, Appendix 4.8). In Fig 4.7, we see that, in the disordered

phase, the discriminability for Potts and Ising models shows similar dependence on sample

size and temperature. In the ordered phase, the inference quality decreases with temperature

and worsens with increasing q. This q-dependence results from the fact that macroscopic

order forms more rapidly for larger q with order parameter discontinuity growing with q, see

Appendix 4.9 [Eq (4.36)]. In fact, Fig 4.7b illustrates that the inference discriminability for

Potts and Ising cases displays similar dependence on the mean-field order parameter (for a

mean-field analysis of the Potts model, see Ref (181) and Appendix 4.7), thus suggesting

that macroscopic ordering rather than criticality is an important determinant of inference

performance.

4.6 Discussion

Despite being more elaborate and computationally more expensive than local statistical

approaches, mean-field DCA does not always lead to better inference quality. Indeed we
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Fig 4.7:
Interaction discriminability for Ising and Potts models.
Discriminability maximum results from the competition between thermal noise and macro-
scopic ordering but is not a signature of criticality associated with second-order phase
transitions. We show DCA discriminability at different sample sizes K (see legend) as a func-
tion of temperature (a) and mean-field order parameter � (b). In all cases, discriminability
peaks at an intermediate temperature and displays similar temperature dependence above Tc.
By plotting discriminability as a function of � for T <Tc, we see that different temperature
dependence for Ising and Potts models at T <Tc originates from the fact that macroscopic
order forms more rapidly in Potts models which admit first-order phase transitions. This
highlights the detrimental effect of macroscopic order on inference quality. Shown results are
based on the same Erdős-Rényi interaction graph with 400 vertices and mean degree 40.

show that local statistical methods can be more accurate when data are limited. More

generally, although global statistics encode more information that could potentially improve

inference, they are more difficult to estimate in the under-sampled regime. Inference quality

depends not only on sample size but also the nature of data distributions. A low-temperature

generative model, while better-sampled due to lower entropy, is more difficult to infer,

compared to higher-temperature models around the phase transition. This feature highlights

how macroscopic ordering, and more broadly data distributions, can interfere with inference.

For models exhibiting an order-disorder phase transition, we find that DCA provides the

most advantage over local statistical modeling in the ordered phase and when the systems

are relatively well-sampled. Our results highlight the fact that inference quality can only

be quantified with respect to the structure in the data and illustrate the central role of

data-generating distributions in understanding inductive biases of inference methods (41).

Finally our work lays a foundation for future investigations seeking to provide a prescription
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for inference method selections based on the structure in the data.

While we consider ferromagnetic models on relatively dense interaction networks, our

analysis yields qualitative insights applicable to models with sparser interactions. In particular

we expect better performance from local inference as each spin pair becomes less connected

(see, Sec 4.5.2). In addition, the increased probability of isolate spins means that the

connected correlation matrix is more likely to be singular, thus making naive mean-field

inversion ill-defined without regularization. A quantitative study of inference for models on

sparse networks is an interesting research direction, not least because of the important role

of fluctuations in such models.

Although we base our analysis on naive mean-field inversion, a number of methods exist

for inferring pairwise interactions (see, e.g., Ref (117)). The general conclusion of our work

also applies to these methods; the inference quality must depend on the structure in the

data-generating distribution as well as the number of available observations. Revealing the

optimal setting for each of these methods is likely to require generative models that capture

different types of correlations in the system, and is a promising avenue for future research.

For the ferromagnetic model considered here, we expect that our qualitative results hold for

other inference methods, not least because the inference performance maximum near the

phase transition stems from the property of the generative model (see, Sec 4.5.4).

To isolate the role of a phase transition, we specialize our analysis to uniform-interaction

models on Erdős-Rényi random graphs which tend to be less structured than interaction

graphs of real systems. For example, the structural organization of proteins leads to a

hierarchy of sectors of strongly interacting amino acids (59). Spin models on hierarchical

random graphs also capture order-disorder phase transitions (48) and it would be interesting

to investigate how such a structure affects inference. Another promising future direction is to

extend our analysis beyond ferromagnetic models to systems with richer phase diagrams such

as spin-glass models and sparse Hopfield networks.
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4.7 Graphical Potts models

Potts models describe a system of q-state spins ~�=(�1, �2, . . . , �n) with �i 2 {1, 2, . . . , q},

interacting via the Hamiltonian,

H(~�) = �
nX

i=1

nX

j=i+1

Jij(�i, �j)�
nX

i=1

hi(�i). (4.8)

The probability distribution of this system is given by

P (~�) =
e��H(~�)

P
~�0 e��H(~�0)

. (4.9)

This measure is invariant under the gauge transformation,

hi(µ)! hi(µ) + �i +
Xj 6=i

j
⇤ij(µ)

Jij(µ, ⌫)! Jij(µ, ⌫)� ⇤ij(µ)� ⇤ji(⌫) +  ij

(4.10)

for any �i,  ij and ⇤ij(µ). This gauge symmetry means that the Potts measure is characterized

by
�n
2

�
(q � 1)2 + n(q � 1) independent parameters, which is the same number of independent

parameters in single and two-spin distributions, P (�i) and P (�i, �j) (see, e.g., Ref (109)).

Indeed for specified P (�i) and P (�i, �j) the Potts measure is the unique maximum-entropy

model (109). Another consequence of the gauge invariance is that a family of model parameters

(J, h) can result in the same measure. As a result, inference methods that produce a unique

set of parameters must invoke gauge fixing conditions (either explicitly or via implicit

regularization).
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4.8 Mean-field inversion

For completeness, we reproduce the derivation of the mean-field inversion method for Potts

models from Ref (109). We define the free energy

F = F(J, h) = � ln
X

~�
e��H(~�) (4.11)

It follows that the first and second-order derivatives of this free energy are related to the

single-spin and pairwise distributions via

@F
@hiµ

= �Piµ and
@2F

@hiµ@hj⌫
= �Piµ,j⌫ + PiµPj⌫ (4.12)

where we introduce the shorthand notations

hiµ = hi(�i=µ), Jiµ,j⌫ = Jij(�i=µ, �j=⌫),

Piµ =
X

~�
��i,µP (~�), Piµ,j⌫ =

X
~�
��i,µ��j ,⌫P (~�).

Eq (4.12) also implies
@Piµ
@hj⌫

= Piµ,j⌫ � PiµPj⌫ ⌘ Ciµ,j⌫ (4.13)

where Ciµ,j⌫ denotes the connected correlation matrix.

4.8.1 Gauge fixing

To infer a unique set of model parameters, we adopt the lattice-gas gauge which explicitly

limits the model parameters to those that are independent (see, Eq (4.10) and the text around

it). In this gauge each spin has a gauge state, ci for spin i, for which the pairwise coupling

and local field vanish, i.e.,

8~�, i, j : Jij(�i, cj) = Jij(ci, �j) = hi(ci) = 0 (4.14)
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We assume this gauge in the following analysis unless specified otherwise.

4.8.2 Legendre transformation

Since the local field hiµ is conjugate to the single-spin distributions Piµ (see, Eq (4.12)), we

can define a Legendre transform of the free energy

G = F +
X

iµ
hiµPiµ. (4.15)

Note that G does not depends explicitly on the probability of the gauge state Pici ; it is left

out of the summation by the gauge condition hici =0 [Eq (4.14)]. In this ensemble the local

fields are given by

hiµ =
@G
@Piµ

. (4.16)

Taking the derivative of the above equation yields

@hiµ
@Pj⌫

=
@2G

@Piµ@Pj⌫
= (C�1)iµ,j⌫ (4.17)

where the last equality follows from Eq (4.13) and the fact that the first-order derivatives of

a function and its Legendre transform are inverse functions of one another. Note that the

indices (iµ, j⌫) in Eqs (4.16) and (4.17) do not include the gauge states.

4.8.3 Small-coupling expansion

To derive the mean-field inversion, we consider a systematic expansion around the non-

interacting Hamiltonian, treating the coupling term as a perturbation (57; 186),

��H↵(~�) = ↵
X

i<j
Jij(�i, �j) +

X
i
hi(�i) (4.18)
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where the parameter ↵ tunes the interaction strength: H0 corresponds to the non-interacting

case and H1 to the original Hamiltonian. Expanding G as a power series in ↵ yields

G↵ = G0 + G00↵ + 1
2G
00
0↵

2 +O(↵3) (4.19)

where G0↵ = dG↵/d↵ and G00↵ = d2G↵/d↵2. Substituting the above expression in Eqs (4.16)

and (4.17) gives

hiµ =
@G0
@Piµ

+
@G00
@Piµ

↵ +O(↵2)

(C�1)iµ,j⌫ =
@G0

@Piµ@Pj⌫
+

@G00
@Piµ@Pj⌫

↵ +O(↵2)

, (4.20)

for iµ 6= ici and j⌫ 6= jcj .

4.8.4 Zeroth order

When ↵ = 0, the spins decouple and the free energy reads

F0 = �
X

i
ln
X

⌫
ehi⌫ (4.21)

From Eq (4.12), we have Piµ = ehiµ/
P

⌫ e
hi⌫ and

G0 =
X

iµ 6=ici

Piµ lnPiµ +
X

i

0

@1�
X

⌫ 6=ci

Pi⌫

1

A ln

0

@1�
X

⌫ 6=ci

Pi⌫

1

A . (4.22)

Taking the derivatives, we have

@G0
@Piµ

= ln
Piµ
Pici

and
@2G0

@Piµ@Pj⌫
= �ij

✓
�µ⌫
Piµ

+
1

Pici

◆
, (4.23)

where Pici = 1 �
P

µ 6=ci
Piµ. We note that the pairwise coupling does not appear in the

zeroth-order expansion.
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4.8.5 First order

Differentiating the thermodynamic potential G↵ with respect to ↵ gives

G0↵ = �
X

~�

e��H↵(~�)

P
~�0 e��H↵(~�0)

X

i<j

Jij(�i, �j). (4.24)

Note that the expression for G↵ can be obtained from Eqs (4.11) and (4.15) for the small-

coupling Hamiltonian in Eq (4.18). In the limit ↵!0, the Boltzmann weight becomes that

of the non-interacting system and the above equation reduces to

G00 = �
X

i<j

X
µ⌫

PiµPj⌫Jiµ,j⌫ (4.25)

Therefore we have
@G00
@Piµ

= �
Xj 6=i

j⌫
Pj⌫Jiµ,j⌫ . (4.26)

Here the gauge condition on J ensures that the single-spin probability of the gauge state

does not appear on the r.h.s. Note that Jiµ,j⌫ for j < i does not enter the model and we let

Jiµ,j⌫ = Jj⌫,iµ for convenience. Taking the derivative of Eq (4.26), we obtain

@2G00
@Piµ@Pj⌫

= �(1� �ij)Jiµ,j⌫ (4.27)

Substituting Eq (4.23) and the above equation in Eq (4.20) gives

(C�1)iµ,j⌫ ⇡

8
><

>:

�µ⌫
Piµ

+ 1
Pici

if i = j

�↵Jiµ,j⌫ if j 6= i
(4.28)

Finally we combine Eqs (4.20),(4.23) and (4.26) to obtain the self-consistent condition for

the local fields

hiµ = ln
Piµ
Pici
� ↵

Xj 6=i

j⌫
Pj⌫Jiµ,j⌫ +O(↵2) (4.29)
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The naive mean-field inversion method is based on Eqs (4.28) and (4.29) which relate the

model parameters to the empirically accessible connected correlation matrix.

4.9 Phase transitions in Potts models on homogeneous random

graphs

Here we reproduce the mean-field analysis of Potts models (see, e.g., Ref (181, Sec. IC)).

Consider a uniform-interaction ferromagnetic q-state Potts model on a graph,

H(~�) = �
X

(ij)2E
��i,�j , (4.30)

where ��i,�j denotes the Kronecker delta and the summation is over the graph’s edges E . In

the mean-field approximation, all spins are identical and the internal energy and entropy of

the system read

U = �|E|
Xq

µ=1
p2µ and S = �n

Xq

µ=1
pµ ln pµ (4.31)

where pµ is the fraction of spins in state µ, n the number of spins and |E| the numbers of

edges (interactions). To analyze the ferromagnetic transition, we consider the ansatz

pµ =
1

q
(1��) + �µ,q� (4.32)

where � is the order parameter and we chose the state q as the spin state of the ferromagnetic

phase. This ansatz yields the free energy per spin

�(f(�)� f(0)) =
1 + (q � 1)�

q
ln(1 + (q � 1)�)

+
q � 1

q
(1��) ln(1��)� q � 1

2q

�

T
�2

(4.33)
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where �=2|E|/n is the mean coordination number. In the thermodynamic limit n!1, a

phase transition exists at the critical temperature

1

Tc
=

1

�
⇥

8
><

>:

q if q  2

2q�1q�2 ln(q � 1) if q > 2
(4.34)

The free energy is minimized by �=0 for T >Tc and by the largest root of the equation

e���/T =
1��

1 + (q � 1)�
(4.35)

for T <Tc. This phase transition is continuous for q2 and discontinuous for q>2 in which

the order parameter and internal energy per spin are discontinuous across the transition,

�(T�c )��(T+
c ) =

q � 2

q � 1

u(T�c )� u(T+
c ) = �� (q � 2)2

2q(q � 1)
.

(4.36)

Finally we note that the above analysis is exact for complete graphs in which all spins in the

system are truly (as opposed to statistically) identical.
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CHAPTER 5

ORGANIZATION OF MEMORY IN INFORMATION

BOTTLENECK ENHANCED KALMAN FILTERS

This work was done in collaboration with Thierry Mora, Aleksandra Walczak, and Stephanie

Palmer.

5.1 Abstract

In order to respond efficiently to changes in the external world, living systems evolve sensory

encoding schemes that make effective measurements of the relevant external features in their

input stimuli, subject to resource constraints. A typical method for quantifying that trade-off

is the information bottleneck (IB) approach. Some sensory encoding schemes have been

shown to be optimized for encoding stimulus features that are relevant for prediction in this

IB sense. However, typical models do not consider how the organism might make use of a

previous stimulus estimate. The Kalman filter (KF) approach makes estimation memory

explicit. KF also posits a known model of the input’s dynamical system and the measurement

model is fixed and is not optimized for efficiency. Connecting these approaches reveals the

structure of an optimal encoding that has both a notion of efficient measurement and a

memory of the previous stimulus estimate. We derive the encoding that maximally reduces

uncertainty in the stimulus estimate, subject to a fixed model ‘size’, analogous to a power

constraint. We demonstrate that by optimizing a sensory model of this type, organisms can

achieve larger reductions in uncertainty about their inputs than is possible without memory

of their past estimates.

131



5.2 Introduction

A core challenge for biological systems is estimating the state of the external environment

and projecting that forward in time. Examples include predicting sunset in systems that have

internal circadian clocks(179; 62), representing the position and velocity of an incoming visual

object to drive escape from a predator(125; 15; 174; 143), and sculpting a antibody repertoire

in anticipation of future pathogenic attacks (112; 5). All of these important functions involve

prediction of future inputs(18; 11). These estimates come at a cost to the organism, as they

require resources to develop, maintain, and operate a predictive sensory encoding scheme.

Biological systems must make trade-offs between the cost of a measurement and the benefit

of knowing the future external state(153).

The classic information bottleneck approach to quantifying this trade-off does not usually

include a memory of past estimates(158; 94). The well-know Kalman Filter approach to

the same type of prediction problem relies heavily on these past estimates, but does not

optimize the encoding to consider just these predictive features(67). Optimizing the encoding

subject to that resource constraint can make the measurement model most efficient. Can

the combination of these two approaches yield a better, efficient encoder? How useful is

estimation memory when measurements are constrained? We set out to answer these questions

by merging IB with KF for a few toy problems.

We have previously solved predictive IB problems for these toy models(29; 142), but now

include an internal estimate in our IB framework. By incorporating internal estimates into

the optimization of the sensory encoder, different features of the stimulus are encoded. This

difference emerges from the fact that measurement and internal prediction reduce uncertainty

along different input dimensions. The allows for the combination to perform better stimulus

estimation than the typical IB framework alone.
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Fig 5.1: Internal estimates based on past sensory responses can be used to improve the
state estimates when combined with current sensory responses.(A) Internal estimates can be
constructed through prediction based on previous sensory responses and then combining the
information provided by each prediction. (B) Leveraging both the current sensory response
with the internal estimate enables significant reduction in uncertainty of the posterior estimate
of the environment.

5.3 Results

We consider a dynamical system with coordinates, Xt��t. A biological system uses an

encoder to build a sensory representation, Zt��t. This sensory representation can be used to

construct an internal estimate of the external world, X̂t��t. The biological system can then

infer further states of the environment either through a prediction step or an instantaneous

measurement via the sensory encoder (Fig. 5.1A). Together, these two distinct estimates can

be fused to provide a more precise estimate of the external environment(Fig. 5.1B).

For a fixed sensory encoder, a biological system can minimize its uncertainty of the

external environment by varying its internal estimate construction based on previous internal

estimates and sensory responses. This is accomplished by optimizing the objective function:
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max
p(xt|{x̂t��t,zt})

I(Xt; X̂t) (5.1)

This is an information theoretic generalization of the Kalman Filter objective function(162;

67; 87).

Biological systems are capable, however, of evolving their sensory encoders to make them

more efficient. This is to say that a sensory encoder may be evolved to provide preferentially

provide information about one dimension of the input over another for a fixed overall level of

power. As such, we propose the optimization of a new objective function:

L = max
p(x̂t|{x̂t��t,zt}),p(zt|xt)

I(Xt; X̂t)� �I(Xt;Zt). (5.2)

The optimal sensory encoder will maximize the amount of mutual information between

the internal estimate and the external environment for a given cost of encoding, controlled

by �.

The optimization of the sensory encoder is reminiscent of the optimization of the repre-

sentation variable in the IB method. The method proposed here differs, however, in that the

internal representation is constructed as a function of previous internal representations and

the sensory response, while in the IB method, no additional information is incorporated.

5.3.1 One-dimensional stimulus

We present the results for the objective function for a one-dimensional stimulus. Our stimulus

is a Brownian motion process with viscosity parameter �. In this model, there are two

parameters which impact the shape of the sensory encoding: the autocorrelation of the

stimulus, exp(���t), and the cost of encoding, �.

We fix the autocorrelation of the stimulus to be exp(���t) = 0.9 and the cost to be

� = 3.7 and compute the uncertainty reduction achieved by the sensory response, the
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prediction based on prior internal estimates, and the combination of the two (Fig. 5.2A). We

see that the sensory representation, at each time step, provides only a small reduction in

the uncertainty of the state estimate. However, when the sensory encoding estimate is fused

with the forecast estimate, a significant reduction in uncertainty of state estimate can be

achieved. This reduction in uncertainty emerges from forecasting based on previous estimates.

Forecasting based on previous estimates effectively allows the biological organism to take

advantage of the repeated measurement of the system and internal prediction mechanisms.

We vary the encoding cost and identify the optimal encoding strategy for each cost(Fig. 5.2B).

Initially, there is a rapid increase in the mutual information between the state estimate and the

sensory encoding scheme. However, for low encoding costs, the information about the external

world is coming primarily from the instantaneous measurement, as I(Xt;Zt) ⇡ I(Xt; X̂t).

Thus, there appears to be encoding cost at which the memory no longer becomes useful.

We then vary both the autocorrelation parameter and the encoding cost simultaneously,

and observe three distinct regimes (Fig. 5.2C). In the upper left regime (blue), we have

a trivial regime where encoding costs are too high to maintain an encoding scheme. In

the bottom regime (yellow), encoding costs are small relative to the autocorrelation of the

stimulus. Consequently, memory is unnecessary for estimating the external world. This

corresponds to the regime where the internal estimate uncertainty is primarily dependent

on the sensory response. Finally, in between these two regimes, there exists some pair of

autocorrelations and encoding costs that demonstrate that memory can provide significant

enhancements in the precision of the external environment estimate.

The boundaries between each regime can be determined analytically for a one-dimensional

stimulus. The derivation is given in the SI. Using this framework, we have identified

sensory encoding costs for which maintaining previous internal estimates can enable reduced

uncertainty in external environments.
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Fig 5.2: Combining internal estimates with current sensory responses provides significant
improvements in state estimate uncertainty under certain conditions on encoding costs and
environmental correlations. (A) The uninformed uncertainty corresponds to the level of
uncertainty in an estimate of the state one could achieve given only an unordered list of
velocities. The sensory response uncertainty corresponds to the uncertainty about the state
when inferring based only on the sensory response. The forecast uncertainty corresponds to
the uncertainty about the state one would have using only previous internal estimates of
the state. The posterior, or fused, uncertainty, corresponds to the uncertainty arising when
optimally fusing both the sensory response and the forecast estimate. (B) The maximal
amount of information the posterior estimate could provide about the state of the system
at a given level of sensory response. (C) The phase diagram of sensory response models,
visualizing it by plotting log(I(Xt;Zt)). We observe three phases: a low cost high correlation
phase, where I(Xt;Zt)!1; a high cost low correlation phase, where I(Xt;Zt)! 0; and an
intermediate phase, where the sensory response is non trivial. The phase boundaries, drawn
as dashed lines, are analytically determined.
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5.3.2 Two-dimensional stimulus

We extend our results on one-dimensional stimuli to two-dimensional stimuli by extending our

brownian motion model to include a harmonic oscillator force. This results in a first-order

Markov process of two input variables. There is now one additional defining parameter,

⇣, corresponding to oscillatory motion about an equilibrium ⇣ < 1 and relaxation to an

equilibrium ⇣ � 1(119). Sensory encoding schemes are now optimized by both identifying a

dimension along which to reduce uncertainty and the magnitude by which uncertainty should

be reduced. This is represented through the use of confidence regions, where the confidence

region outlined in blue corresponds to the prior and the confidence region corresponding

to the sensory encoder is in orange (Fig. 5.3A). Due to the numerical intractability of the

optimization of the objective function, the optimal encoding scheme is computed by scanning

over the dimension along which uncertainty is reduced and the magnitude by which the

uncertainty is reduced (Fig. 5.3B).

We visualize the optimal sensory encoder (Fig. 5.3C(left)) and compare to a suboptimal

sensory encoder (Fig. 5.3C(right)). The uncertainty of the sensory encoder is given in

the orange ellipse, the uncertainty of the forecase estimate is given in the yellow ellipse,

and the posterior estimate is given as the purple ellipse. Though the optimal sensory

encoder and suboptimal sensory encoder presented have equal areas, the difference in the

dimension along which they reduce uncertainty impacts the forecast based on previous internal

estimates. In particular, the forecast based on previous internal estimates for the optimal

sensory encoder provides uncertainty reduction along a dimension distinct from the sensory

encoder. Meanwhile, in the suboptimal case, the internal estimate is redundant with the

sensory encoder, and thus, provides no additional information about the future state of the

environment. We formalize this by calculating the synergy between the sensory encoder and

the prediction based on the internal estimate (Fig. 5.3D). We find that optimal dimension

for the sensory encoder is the one that maximizes this synergy.
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We now explore the structure of the optimal sensory encoder for different motion statistics

and values of the encoding cost. The differing motion statistics are given by varying ⇣ and �t

(Fig. 5.4A). We see that the underlying motion statistics do not impact the types of encoders

as much as the timescale and sensory encoding costs. We also consider the impact of reducing

uncertainty along two-dimensions in the sensory encoder (Fig. 5.4B). We find that encoding

both dimensions of the stimulus offers no benefit in reducing the uncertainty of the estimate

of the external environment. This is due to the fact that forecast based on previous internal

estimates already provides information about a dimension distinct from the sensory encoder.

Finally, we present the results of optimizing the objective function using a two-dimensional

and a one-dimensional encoder for different values of �(Fig. 5.4C). We find that though the

two-dimensional encoder can reduce uncertainty along both dimensions, it is degenerate with

the one-dimensional encoder up until a memorization phase, where the previous internal

estimates do not provide additional information about the external environment.

5.4 Discussion

In our work, we have connected the Kalman filter to models of sensory information processing.

We demonstrate the impact of a neural Kalman filter on the structure of an efficient sensory

encoder, extending on previous works that have demonstrated how a neural system could

implement a Kalman filter(102). It also provides predictions on the structure of efficient

representations neural networks may discover(93).

demonstrated the impact of Kalman filtering on the . This extends on explored a novel

framework that connects Kalman filter approaches to integrating data over a long timescale

to improve state estimates with information theoretic measure-based constraints to identify

the relevant dimensions of the data to measure. This presents novel insight over previous

work, in which observations from previous time points’ impact to the optimization of the

sensory model were not considered. This may be relevant for behaviors whose timescales are
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Fig 5.3: The results for the optimal sensory encoding scheme for a two-dimesional stimuli
show that the preferred encoding dimension is the dimension which provides the largest
marginal benefit over using just the previous internal estimate.(A) To determine the optimal
sensory response organ, we sweep through a range of dimensions along which we reduce
uncertainty and vary the amount by which we reduce the uncertainty. We will analyze this
for ⇣ = 1, � = 1.1, �t = 1. (B) By sweeping through this range of parameters, we are capable
of identifying which sensory organ optimizes the objective function. We present one example,
and denote the maximal point with a star. (C) A comparison of the impact of the sensory
encoding angle. The sensory encoding scheme with the optimal angle (yellow) is to the left,
while the suboptimal encoding scheme is plotted to the right. The comparison suggests that
the optimal sensory encoding scheme will be minimally redundant with the internal estimate
uncertainty (orange). The suboptimal encoding encodes ⇡/2 radians off the correct angle.
The suboptimal encoding encodes in a (D) A cross section of the objective function along the
✓ axis. The objective function maximizes where I(Xt; {Zt; X̂t��t)� I(Xt;Zt) is maximized.
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Fig 5.4: Encoding two feature dimensions provides no additional benefit in the posterior
estimate uncertainty.(A) The magnitude of the optimal sensory encoding scheme, I(Xt;Zt)
for different values of the tradeoff parameter for different underlying motion models. (B) A
comparison of one-dimensional sensory encoding schemes (top) to two-dimensional encoding
schemes (bottom). Here, ⇣ = 0.1, � = 1.1, �t = 0.1. Two-dimensional encoding schemes do
not provide significant improvements in the poster estimate uncertainty. (C) Two-dimensional
encodings can, at best, match one-dimensional encodings until the sensory estimate is a
memorization of the input statistic.
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faster than that of neural computations, such as reflexive reaction to a predator hunting prey,

while it may not be relevant for longer timescale behavior. For example, updating internal

estimates from one sensory modality with information from another sensory modality has

been shown to improve the efficiency of olfactory searches in computational models(136).

We demonstrate the solution for this problem for both one and two-dimensional Gaussian

stimuli, and note two key principles that emerge. First, there emerges a regime where

memories can be used to improve state estimates. This regime depends on the encoding

cost, relative to the cost of keeping an internal estimate based on previous sensory responses.

Second, the sensory encoding scheme discovered differs from the encoding scheme predicted

by the information bottleneck method. This is because by leveraging previous internal

estimates, the organism is capable of computing features that might otherwise need to

be measured. For example, the organism no longer precisely needs to measure velocity be-

cause the organism is capable of discovering velocity through its previous estimates of position.

In general, optimizing the objective function for this problem is analytically intractable

due to the update structure of the prior and posterior estimate. We make a key simplification

by considering the model to be in the stationary regime; that is, the regime where the

stimulus had been observed long enough that the posterior and prior estimate reach steady

state. However, this may not be the case for stimuli whose statistics may be changing. Novel

behavior may emerge if the underlying statistics themselves change. There may regimes of

changes where only the gain needs to be changed to make significant improvements in state

inference, and others where the observation model itself needs to be changed.

We have not considered cases where the external dynamical model also needs to be

learned. However, learning the dynamical systems model is also a critical element of this
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state estimation framework. While we have not explored this in this work, learning the

dynamical systems model could be included through the implementation of an Ensemble

Kalman filer(50). By imposing constraints on the learned dynamical systems model, this

extension could be used to make predictions on how precisely an external dynamical systems

model needs to be learned for “good enough” state inference. This could be relevant for

circadian rhythms, where intrinsic noise is always present, even though the dynamical model

governing the external system is fully deterministic. Such a framework could also be used to

explore the condition in which a learned model can be transferred to dynamical systems with

varying underlying statistics.
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CHAPTER 6

DISCUSSION

In this work, we demonstrated that biological systems adapt to changing environments by

exploiting the temporal correlation structure of the environment, enabling them to predict

and avoid future threats. We demonstrated this in both molecular and neural settings. In

molecular settings, we are able to demonstrate that depending upon the rate of environmental

variation, biological systems can be driven towards prediction, even when prediction is not

the best strategy at any given time. In neural settings, we demonstrate how information

about the external environment should be encoded in order to enable prediction.

Excitingly, these short timescale prediction problems are solved by the long timescale

evolutionary process. On top of that, the long timescale evolutionary process is responsible

for evolving the nature of evolution itself. This suggests that by evolving an evolutionary

process, short timescale prediction becomes an emergent phenomenon. Future work will

explore how mutation rates themselves evolve, and how prediction emerges from the extant

variation generated by those mutations.

The evolution of predictive strategies depends on a biological system’s ability to navigate

tradeoffs. In molecular settings, these tradeoffs emerge from the entropic cost of discovering

a predictive strategy and the benefit of being well fit to future environments with little

adaptation. This tradeoff has molecular motivations, as in binding the conserved residues of

HIV obligates binding an embedded residue on the HIV envelop protein. This is inherently

less energetically favorable than binding an exposed residue.

In the neural setting, the tradeoff emerges between the cost of encoding information about

the external environment and the need to be predictive. The particular optimization achieved

by a predictive strategy then depends on the type of prediction problem. We observe that for

visual scenes, which can vary rapidly, the optimal encoder is very informative of future states

and continuous representations are preferable. However, when attempting to build predictive
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strategies for dynamics with discrete outcomes, rather than attempt to be predictive, it

becomes preferable to discretely tile the possible outcomes.

Studying adaptation to changing environments offers key insights into the way real

biological systems may have evolved, as biological systems must respond to changes in the

external environment in order to survive. While in this work, we considered adaptive strategies

that enable explicit responses to external environments, such as sensing the environment or

generalizing against families of environments, there are many strategies that provide implicit

responses. Such implicit responses include rapidly changing phenotype in response to a new

environmental threat. Many molecular mechanisms can give rise to such rapidly adaptable

phenotypes, such as chaperone proteins that buffer mutations(? ), evolving mutation rates(?

), and sensory encoding schemes.

None of these rapidly adaptable phenotypes confer immediate fitness benefit, and some

may even come at a cost, but can offer fitness benefits if the environment shifts. Hence,

these phenotypes should be described in terms of their second-order impact. Second-order

impact means how a given phenotype impacts the reproductive viability of the lineage of the

individuals carrying the phenotype, as opposed to first-order impact, which reflects how a

phenotype impacts the reproductive viability of the individual themselves. Such an impact

cannot be straightforwardly explained by the Wright-Fisher equation, as df
dt , the change in

frequency of an allele over time, is not impacted by the future of the allele. Instead it could

be explained by the structure of the second derivative of the change in frequency of allele in

time. By changing d2f
dt2

, however, the rate of evolution itself can be changed. By exploring

how the fundamental forces of evolution impact d2f
dt2

, one can identify what kinds of selective

and mutational forces give rise to phenotypes which are rapidly adaptable.

The impact of mutation rates on adaptation can be explored experimentally. For example,

by competing populations with distinct mutation rates in families of selective pressures, one

can identify under what conditions higher mutation rates are preferable. Such experiments

144



are exciting because they offer empirical evidence for the strength and sign of the epistasis

between first- and second-order selective impacts. Depending on the structure of epistasis, it

may be evolvable traits have no clear notion of fitness. Instead, their viability depends on the

background in which they are evolved. Such a dramatic outcome is not unique to mutation

rates. There are many other traits, such as recombination rate or cryptic variation, which

may give rise to the same effect.

The impact of extinction rates on the rate of adaptation can be explored mathematically.

The rate of evolution can be given by identifying the rate at which a new mutant can fix

in a population. While the probability of fixation of a mutation has been given by Kimura

et. al.(73), studies on what parameters govern the rate of fixation of a mutation are less

prevalent. By identifying how the rate of mutation is impacted by extinction rates, one can

understand why, for example, B-cell evolution is poised near extinction. A simple theoretical

argument would suggest that extinction rates need to be higher to promote evolvability, as

being nearer to extinction offers larger opportunities for mutants to fix.

Finally, exploring the landscape of viable mutations themselves may yield insight into how

rapidly adaptation can occur. Biological systems are faced with a serious constraint during

evolution - that is, they can never fix a phenotype that results in extinction. Consequently,

evolving systems may sometimes traverse longer mutational pathways than necessary, in

order to avoid strongly deleterious pathways. As such, continued work on characterizing the

topology of the mutational landscape of a given trait could explain under what conditions

being evolvable is even possible.

Altogether, the work presented here presents some preliminary steps in studying evolution

in a changing environment. This allows for the relaxation of strong assumptions made on

previous studies of evolution, and. clear identification for when such assumptions are valid.

Violating these assumptions yields novel behaviors, some of which are explored here.
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[115] Ville Mustonen and Michael Lässig. Fitness flux and ubiquity of adaptive evolution.
Proc. Natl. Acad. Sci. U. S. A., 107(9):4248–4253, March 2010. ISSN 0027-8424,
1091-6490. doi: 10.1073/pnas.0907953107.

[116] Vudtiwat Ngampruetikorn, Vedant Sachdeva, Johanna Torrence, Jan Humplik, David J.
Schwab, and Stephanie E. Palmer. Inferring couplings in networks across order-disorder
phase transitions, 2021. URL https://arxiv.org/abs/2106.02349.

[117] H. Chau Nguyen, Riccardo Zecchina, and Johannes Berg. Inverse statistical problems:
from the inverse Ising problem to data science. Adv. Phys., 66(3):197–261, 2017. doi:
10.1080/00018732.2017.1341604.

[118] Alexander P. Nikitin, Nigel G. Stocks, Robert P. Morse, and Mark D. McDonnell.
Neural population coding is optimized by discrete tuning curves. Phys. Rev. Lett., 103:
138101, Sep 2009. doi: 10.1103/PhysRevLett.103.138101. URL https://link.aps.

org/doi/10.1103/PhysRevLett.103.138101.

[119] Simon F. Nørrelykke and Henrik Flyvbjerg. Harmonic oscillator in heat bath: Exact
simulation of time-lapse-recorded data and exact analytical benchmark statistics. Phys.
Rev. E, 83:041103, Apr 2011. doi: 10.1103/PhysRevE.83.041103. URL https://link.

aps.org/doi/10.1103/PhysRevE.83.041103.

[120] Armita Nourmohammad and Ceyhun Eksin. Optimal evolutionary control for artificial
selection on molecular phenotypes, 2019.

[121] Armita Nourmohammad, Stephan Schiffels, and Michael Lassig. Evolution of molecular
phenotypes under stabilizing selection. Journal of Statistical Mechanics: Theory and
Experiment, 2013(01):P01012, jan 2013. doi: 10.1088/1742-5468/2013/01/p01012. URL
https://doi.org/10.1088%2F1742-5468%2F2013%2F01%2Fp01012.

156

https://books.google.com/books?id=GmPLCwAAQBAJ
https://arxiv.org/abs/2106.02349
https://link.aps.org/doi/10.1103/PhysRevLett.103.138101
https://link.aps.org/doi/10.1103/PhysRevLett.103.138101
https://link.aps.org/doi/10.1103/PhysRevE.83.041103
https://link.aps.org/doi/10.1103/PhysRevE.83.041103
https://doi.org/10.1088%2F1742-5468%2F2013%2F01%2Fp01012


[122] Matti Nykter, Nathan D. Price, Maximino Aldana, Stephen A. Ramsey, Stuart A.
Kauffman, Leroy E. Hood, Olli Yli-Harja, and Ilya Shmulevich. Gene expression
dynamics in the macrophage exhibit criticality. Proc. Natl. Acad. Sci. U.S.A., 105(6):
1897–1900, 2008. doi: 10.1073/pnas.0711525105.

[123] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381(6583):607—609,
1996. URL https://doi.org/10.1038/381607a0.

[124] Amichai Painsky and Naftali Tishby. Gaussian lower bound for the information
bottleneck limit. J. Mach. Learn. Res., 18:213–1, 2017.

[125] Stephanie E. Palmer, Olivier Marre, Michael J. Berry, and William Bialek. Predictive
information in a sensory population. Proceedings of the National Academy of Sciences,
112(22):6908–6913, 2015. ISSN 0027-8424. doi: 10.1073/pnas.1506855112. URL
https://www.pnas.org/content/112/22/6908.

[126] Alan S Perelson. Immune network theory. Immunol. Rev, 110(5), 1989.

[127] Alan S. Perelson and George F. Oster. Theoretical studies of clonal selection: Min-
imal antibody repertoire size and reliability of self-non-self discrimination. Jour-
nal of Theoretical Biology, 81(4):645 – 670, 1979. ISSN 0022-5193. doi: https:
//doi.org/10.1016/0022-5193(79)90275-3. URL http://www.sciencedirect.com/

science/article/pii/0022519379902753.

[128] Franco Pissani, Delphine C Malherbe, Harlan Robins, Victor R DeFilippis, Byung
Park, George Sellhorn, Leonidas Stamatatos, Julie Overbaugh, and Nancy L Haigwood.
Motif-optimized subtype a HIV envelope-based DNA vaccines rapidly elicit neutralizing
antibodies when delivered sequentially. Vaccine, 30(37):5519–5526, August 2012. ISSN
0264-410X, 1873-2518. doi: 10.1016/j.vaccine.2012.06.042.

[129] Abe D Pressman, Ziwei Liu, Evan Janzen, Celia Blanco, Ulrich F Müller, Gerald F
Joyce, Robert Pascal, and Irene A Chen. Mapping a systematic ribozyme fitness
landscape reveals a frustrated evolutionary network for Self-Aminoacylating RNA. J.
Am. Chem. Soc., 141(15):6213–6223, April 2019. ISSN 0002-7863, 1520-5126. doi:
10.1021/jacs.8b13298.

[130] Mikhail Prokopenko, Joseph T. Lizier, Oliver Obst, and X. Rosalind Wang. Relating
Fisher information to order parameters. Phys. Rev. E, 84:041116, Oct 2011. doi:
10.1103/PhysRevE.84.041116.

[131] James Gary Propp and David Bruce Wilson. Exact sampling with coupled Markov
chains and applications to statistical mechanics. Random Struct. Alg., 9:223–252, 1996.
doi: 10.1002/(SICI)1098-2418(199608/09)9:1/2h223::AID-RSA14i3.0.CO;2-O.

[132] Klaus Rajewsky. Clonal selection and learning in the antibody system. Nature,
381(6585):751–758, 1996. doi: 10.1038/381751a0. URL https://doi.org/10.1038/

381751a0.

157

https://doi.org/10.1038/381607a0
https://www.pnas.org/content/112/22/6908
http://www.sciencedirect.com/science/article/pii/0022519379902753
http://www.sciencedirect.com/science/article/pii/0022519379902753
https://doi.org/10.1038/381751a0
https://doi.org/10.1038/381751a0


[133] Arjun S Raman, K Ian White, and Rama Ranganathan. Origins of allostery and
evolvability in proteins: A case study. Cell, 166(2):468–480, July 2016. ISSN 0092-8674,
1097-4172. doi: 10.1016/j.cell.2016.05.047.

[134] Rajesh P. N. Rao and Dana H. Ballard. Dynamic model of visual recognition predicts
neural response properties in the visual cortex. Neural Computation, 9(4):721–763,
1997. doi: 10.1162/neco.1997.9.4.721. URL https://doi.org/10.1162/neco.1997.9.

4.721.

[135] Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: a func-
tional interpretation of some extra-classical receptive-field effects. Nature Neuroscience,
2(1):79–87, 1999. doi: 10.1038/4580. URL https://doi.org/10.1038/4580.

[136] Nicola Rigolli, Nicodemo Magnoli, Lorenzo Rosasco, and Agnese Seminara. Learning to
predict target location with turbulent odor plumes, 2021. URL https://arxiv.org/

abs/2106.08988.

[137] Yasser Roudi, Erik Aurell, and John Hertz. Statistical physics of pairwise probability
models. Front. Comput. Neurosci., 3:22, 2009. doi: 10.3389/neuro.10.022.2009.

[138] Elsa Rousseau, Benoit Moury, Ludovic Mailleret, Rachid Senoussi, Alain Palloix,
Vincent Simon, Sophie Valiere, Frederic Grognard, and Frederic Fabre. Estimating
virus effective population size and selection without neutral markers. PLOS Pathogens,
13(11):1–25, 11 2017. doi: 10.1371/journal.ppat.1006702. URL https://doi.org/10.

1371/journal.ppat.1006702.

[139] Daniel Ruderman and William Bialek. Statistics of natural images: Scaling in the
woods. Advances in neural information processing systems, 6, 1993.

[140] Daniel L. Ruderman. Origins of scaling in natural images. Vision Research, 37(23):3385
– 3398, 1997. ISSN 0042-6989. doi: https://doi.org/10.1016/S0042-6989(97)00008-4.
URL http://www.sciencedirect.com/science/article/pii/S0042698997000084.

[141] Vedant Sachdeva, Kabir Husain, Jiming Sheng, Shenshen Wang, and Arvind Murugan.
Tuning environmental timescales to evolve and maintain generalists, 2019.

[142] Vedant Sachdeva, Thierry Mora, Aleksandra M. Walczak, and Stephanie E. Palmer.
Optimal prediction with resource constraints using the information bottleneck. PLOS
Computational Biology, 17(3):1–27, 03 2021. doi: 10.1371/journal.pcbi.1008743. URL
https://doi.org/10.1371/journal.pcbi.1008743.

[143] Jared M. Salisbury and Stephanie E. Palmer. Optimal prediction in the retina and
natural motion statistics. Journal of Statistical Physics, 162(5):1309–1323, Mar 2016.
ISSN 1572-9613. doi: 10.1007/s10955-015-1439-y. URL https://doi.org/10.1007/

s10955-015-1439-y.

158

https://doi.org/10.1162/neco.1997.9.4.721
https://doi.org/10.1162/neco.1997.9.4.721
https://doi.org/10.1038/4580
https://arxiv.org/abs/2106.08988
https://arxiv.org/abs/2106.08988
https://doi.org/10.1371/journal.ppat.1006702
https://doi.org/10.1371/journal.ppat.1006702
http://www.sciencedirect.com/science/article/pii/S0042698997000084
https://doi.org/10.1371/journal.pcbi.1008743
https://doi.org/10.1007/s10955-015-1439-y
https://doi.org/10.1007/s10955-015-1439-y
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