
THE UNIVERSITY OF CHICAGO

MACHINE LEARNING FOR PERFORMANCE ACCELERATION

AND PREDICTION IN SCIENTIFIC COMPUTING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

YULIANA ZAMORA

CHICAGO, ILLINOIS

AUGUST 2022

Copyright © 2022 by Yuliana Zamora

All Rights Reserved

To my family, for always believing in me, thank you. Maria Bernardita and Juan David

Gomez, the sacrifices you made, leaving everything you know, to provide a better future for

me, will never be taken lightly. Your constant strength, courage, and fortitude have been

my steady source of fuel during my own long journey. To my brother and sister, Cristian

and Maria Teresa, thank you for setting that bar high. You both are the trail blazers. You

continuously show me the impossible is possible.

To my husband and son, Richard and Derek Zamora, thank you. You both have been my

rock and escape throughout this long endeavour. Thank you for grounding me and being a

source of calm. Derek, you started this journey as a toddler. You are a big kid now! You

probably know more about material and computer science than any seven (almost eight!)

year old should. This Phd was made possible by you both.

”Our greatest glory is not in never failing, but in rising up every time we fail.”

Ralph Waldo Emerson

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . xiii

ACKNOWLEDGMENTS . xiv

ABSTRACT . xv

1 INTRODUCTION & MOTIVATION . 1

2 PERFORMANCE PREDICTION . 4
2.1 Introduction . 4
2.2 Related Work . 7
2.3 Background . 11

2.3.1 GPU Architectures: NVIDIA P100 and V100 12
2.3.2 Architecture Performance: IPC . 15
2.3.3 Active Learning . 15
2.3.4 DeepHyper and Balsam for Neural Architecture Search 16

2.4 Methodology . 18
2.4.1 Benchmark Data . 19
2.4.2 Intra-Architecture IPC Prediction . 19
2.4.3 Inter-architecture Memory Bound Classification 20
2.4.4 Inter-Architecture IPC Prediction Methodology 24
2.4.5 Curating Training Sets: Active Learning and Random Selection . . . 24
2.4.6 Neural Architecture Search at Scale 27
2.4.7 Deep learning and Random Forest . 31

2.5 Results . 32
2.5.1 Intra-node Architecture IPC Prediction 32
2.5.2 Memory Bound Cross-Architecture Prediction 32
2.5.3 Inter-Architecture IPC Prediction . 37

2.6 Summary . 49

3 ACCELERATING SCIENTIFIC COMPUTING 53
3.1 Proxima: Accelerating the Integration of Machine Learning in Atomistic Sim-

ulations . 53
3.1.1 Introduction . 53
3.1.2 Related Work . 56
3.1.3 Background . 57
3.1.4 Methodology . 62
3.1.5 Results . 76
3.1.6 Summary . 84

v

3.2 Dynamic On-The-Fly Integration of Surrogates in Molecular Dynamics Sim-
ulations . 85
3.2.1 Introduction . 85
3.2.2 Related work . 89
3.2.3 Background . 90
3.2.4 Methodology . 92
3.2.5 Results . 96
3.2.6 Summary . 99

4 SUMMARY AND FUTURE WORK . 103
4.1 Performance Prediction . 103
4.2 Accelerating Scientific Computing . 103
4.3 Future Work . 104

REFERENCES . 106

vi

LIST OF FIGURES

2.1 Comparison of P100 and V100 IPC. There does not exist a mapping from P100

IPC to V100 IPC. 14

2.2 Illustration of abstraction presentation of Neural Architecture Search methods by

Elsken et al. The search strategy, similar to the search strategy we use, selects

an architecture A from a predefined search space A. The architecture is passed

to a performance estimation strategy, which returns the estimated performance

of A to the search strategy [40]. 17

2.3 Illustration of DRAM read and write throughput and total dram throughput on

the V100 and P100. We see that in all three cases, there is no function that

can map DRAM read throughput, write throughput, or total utilization from one

architecture to another. 21

2.4 Illustration of memory throughput for Nvidia P100 and V100. Points above the

green line are considered memory bound kernels, or having over 75% of memory

bandwidth utiization. In comparison, the same applications run on the V100

show kernels becoming memory bound on the V100 that were not memory bound

on the P100. 21

2.5 Dram read and write utilization on both P100 and V100 GPUs 22

2.6 Memory bound applications vs. IPC of application on both P100 and V100 ar-

chitectures . 23

2.7 Active learning flow chart showing the first batch of 250 points being trained with

random forest and the cycle of querying new data points and adding them to the

training set. The cycle terminates once the target training set is reached. 25

2.8 Results of one round of active learning. Blue points are the points chosen by the

active learner and put into the training set. Red points are the predicted points

on the unlabeled data set. 26

vii

2.9 Normalized application percentage breakdown of data points that were chosen at

random. 27

2.10 Normalized application percentage and distribution breakdown of data points

created using active learning. 28

2.11 Illustration of modeling comparison workflow. We start we a pool of data points,

create refined datasets with an active learner and have random selection as com-

parison. These datasets are then used in random forest, deep learning model, and

neural architecture search. 28

2.12 Model throughput results. The graph shows that over 1.4 million models were

tested and created in about 1200 hours. 29

2.13 Illustration of distributed NAS architecture by Balaprakash et al. Balsam runs

on a designated node where the launcher is a pilot job that runs on the allocated

resources and launches tasks from the database. The multiagent search runs as a

single MPI application, and each agent submits model evaluation tasks through

the Balsam service API. The launcher continually executes evaluations as they

are added by dispatch on idle worker nodes [8]. 30

2.14 Results of P100 IPC prediction using 451 training data points. 33

2.15 Results of P100 IPC prediction with reduced input metrics (5 total metrics) using

451 training data points. 34

2.16 Results of P100 IPC prediction with reduced input metrics (5 total metrics) using

15,824 training data points. 35

2.17 Results of P100 IPC prediction using 4,521 data points. 36

2.18 IPC prediction results of DeepHyper model using a training set with randomly

chosen data points. 37

2.19 IPC prediction results of DeepHyper model using a active learning curated train-

ing set. 38

viii

2.20 Mean squared error, common loss metric used in machine learning models, shows

a minor decrease for actively queried training sets. According to the MSE score,

the DeepHyper returned model using an active learning queried training set shows

a 36% decrease in error over a model using random selection. 39

2.21 Mean absolute percentage error (MAPE) of each framework across applications

tested with 20% of the training set used. Each number above the bar is the

MAPE for each application and the corresponding model used 40

2.22 Mean absolute percentage error (MAPE) of models using full training set in

comparison with Old and New IPC. Each number above the bar is the MAPE

for each application and the corresponding model used 41

2.23 Mean absolute percentage error (MAPE) and error bar of each framework across

applications tested with 20% of the training set used. The last set of the columns

is the harmonic mean over the applications. 42

2.24 Mean absolute percentage error (MAPE) and error bar using full training set.

The models shown here are the random forest (RFFULL), conventional deep

learning model (CFULL), and DeepHyper NAS created model (DHFULL). Active

learning results are not shown as the full training set is used. Harmonic mean

across applications shows that random forest has better performance compare to

both neural network models. 43

2.25 Graph of harmonic mean between application predictions of models using the full

training dataset and 20% of the training dataset. 44

2.26 Prediction of backprop IPC using DeepHyper model with active learning chosen

training set. 45

2.27 Prediction of backprop IPC using DeepHyper model a randomly chosen training

set. 46

ix

2.28 Prediction of Stream application using model returned from Deephyper using a

training set curated by the active learning model 47

2.29 Prediction of Stream application using model returned from DeepHyper with

random selection. 48

2.30 Conventional deep learning architecture layout. 50

2.31 DeepHyper + Active learning architecture layout. 51

3.1 Illustrates the fundamental ideas that this work leverages in atomistic modeling.

A molecule state is represented by coordinates, say A. These can be perturbed

to yield a different state, B. A state can be encoded in a Coulumb matrix, which

when treated as a point in a multi-dimensional space allows for distance com-

putations. A is within a distance T of a previously evaluated state, B is not.

. 58

3.2 Logical flow of the Proxima surrogate modeling process. At upper left, an input

value u is received and checked relative to a distance threshold from recently

evaluated values. Ultimately either the target function F or the surrogate model

are used to compute the return value e. A key difference between Proxima and

prior work is that the threshold used to determine whether the surrogate should

be used (Tk in the upper left) is determined dynamically; i.e., this threshold

changes with time k. 63

3.3 Proxima examples of the relationship between α and threshold T. In these two

simulation runs, at 500 K and 800 K, the threshold is directly effected and changed

by α. 68

3.4 Results of running Fixed with T = 0.3 and no retrain interval, for temperatures

100–1000 K in increments of 100 K. Results show slow downs of up to 5× when

compared to a no surrogate application. 71

x

3.6 A scatter plot of the (RI, T) points in Figure 3.1.4.8, with markers classifying

each point. The points with acceptable MAE and execution time (the green

squares) fall in a relatively narrow range. 74

3.7 Speed-up results for Fixed (with parameters T = 0.3, RI = 50) and for Proxima

without the use of reference data. The harmonic mean is labeled as HM. 77

3.8 MAE of the energies predicted by surrogates, not including target function calls,

across 10 temperatures. The harmonic mean is labeled as HM. 78

3.9 Mean of ROG comparison between Baseline, Fixed, and Proxima without the

use of reference data. Fixed is with parameter values T = 0.3, RI = 50. 79

3.10 MAE of ROG comparison between Fixed and Proxima without the use of refer-

ence data. 80

3.11 Proxima accuracy and speed vs. user-defined error bound. As the error bound

increases from 0.0005 to 0.006, normalized error remains less than 1, indicating

that Proxima always stays within the user defined error, while speedup increase

to a maximum of 5.52. 81

3.12 Logical flow of the Proxima-SLUSCHI surrogate modeling process. At upper left,

an input value u is received as input to the ensemble of models where the standard

deviation of the results is then calculated. Ultimately either the target function

F or the surrogate model are used to compute the return value Force. A key

difference between Proxima and prior work is that the threshold used to deter-

mine whether the surrogate should be used (Tk in the upper left) is determined

dynamically; i.e., this threshold changes with both time k and temperature T. . 93

3.13 The learning curve using an aluminum system through a SLUSCHI workflow

simulation datapoints. The root mean square virial, energy, and force errors of

the training and validation sets are presented against the training step. 94

xi

3.14 The figures shows the linear relationship between the mean absolute error of sim-

ulation ensemble prediction and standard deviation of the ensemble predictions.

. 95

3.15 This graph presents the threshold against the steps in the simulation. 97

3.16 This graph presents the force error against the steps in the simulation. 98

3.17 This graph presents the force error from the steps between 5,000 and 10,000. . 99

3.18 This graph presents threshold changes from the steps between 5,000 and 10,000. 100

3.19 This graph presents surrogate usage from the steps between 5,000 and 10,000. . 101

3.20 Liquid-solid ratio results of SLUSCHI using no surrogate, fix standard deviation

usage threshold, and Proxima. 102

xii

LIST OF TABLES

2.1 Key specifications of selected GPUs of different generations. Computation capa-

bility is considered numerical label for the hardware version. 13

2.2 Confusion matrix showing results of memory bound random forest classifier that

predicts whether an application will be memory bound going from the P100 to

V100 GPU architecture. 33

xiii

ACKNOWLEDGMENTS

I would like to thank my committee members Hank Hoffmann, Ian Foster, and Logan Ward

for giving excellent support and insight. Thank you to the amazing scientists at both Los

Alamos National Laboratory and Argonne National Laboratory: Bob Robey, Hai Ah Nam,

Bethany Lusch, Misha Salim, Venkat Vishwanath, Ganesh Sivaraman, and Murali Emani.

You have all been an inspiration to me throughout this journey. I would also like to thank

the staff at the Argonne Leadership Computing Facility. Without access to ALCF resources,

this work would not have been possible.

xiv

ABSTRACT

Scientific applications often require massive amounts of compute time and power. With the

constantly expanding architecture landscape and growing complexity of application runs,

understanding how to improve performance is vital. In this thesis, we will use machine

learning in two distinct ways to improve science applications.

First, in an effort to understand future performance, we focus on predicting performance

across multiple architectures. Cross-architecture metric mapping is heavily studied with

hopes of understanding application performance on future or untested machine architectures.

Often, there are months or even years spent on porting applications to new architectures, that

may or may not provide an increase in performance. Here, we will use a data-driven approach

to predict total throughput across different GPU architectures in order to understand future

success of these applications. Our goal is to create a general framework that can predict

application performance on a target hardware, given performance metrics from a different

hardware architecture, without expert input. In this thesis, we propose such a framework

and present two case studies of predicting total throughput and IPC between two GPU

architectures.

Second, we use a data-driven approach and leverage machine learning to understand and

improve performance in high-performance computing applications. The goal of this work

is to create a streamlined workflow of integrating machine learning surrogates into such

applications. Using control theory to automatically and dynamically configure parameters,

we can meet accuracy constraints while maximizing performance. This workflow, which we

examine in the context of molecular dynamics simulations, will allow for faster and larger

simulations by improving overall performance. By replacing typically high-cost functions,

such as density functional theory calls or Hartree-Fock calls, with a low-cost machine learning

inference call, our proposed workflow can reduce run-time while producing scientifically

usable results. We create a decision engine that will automate finding the accuracy and

xv

performance trade-off relationship between using a high-fidelity, high-cost function call, and

a lower fidelity machine learning inference.

xvi

CHAPTER 1

INTRODUCTION & MOTIVATION

The advancements and increased complexity in scientific applications has often been a chal-

lenge in varying optimization and acceleration techniques. With the looming end of Moore’s

law, performance optimization is only becoming more difficult motivating the rise in special-

ized hardware rather than making general hardware faster. Users often look at porting of an

application to new hardware with the promise of an uncertain immediate speedup, or replac-

ing a repetitive high-cost kernel with a faster but possibly, less accurate approximation. In

this thesis, we leverage the advancements of machine learning to both accelerate performance

and understand performance. Accordingly, this thesis is broken down into two components:

(1) data-driven performance prediction and (2) accelerating scientific computing.

We focus on a simple case of performance prediction: estimating how much performance

to expect on the next generation of a hardware. Thus, the first part of the thesis uses

two architectures, one generation apart: NVIDIA P100 and V100, for two case studies on

performance prediction. Though these architectures are only one generation apart, there is

no simple linear mapping between performance of one architecture to another. With over

70,000 data points collected across both architectures, the first part of this thesis discusses

and explores the use of advanced machine learning techniques to find such a mapping. With

two case studies, predicting IPC (instructions per cycle) and memory throughput, we show

a purely data-driven approach, which centers analyzing large quantities of empirical data, at

understanding future performance. Using the performance metrics as input features enabled

low error predictions without the need for cycle accurate simulators or any code changes. The

performance community can leverage such a machine learned performance model to lesson

the need for code changes or use of expensive simulators, while still giving an understanding

of performance on a target architecture.

The second part of the thesis focuses on accelerating science applications by replacing

1

expensive functions with a faster approximation. Here, we show the dynamic integration of

machine learned models into scientific applications, commonly referred to as machine learned

surrogates. This section is split into two components covering two applications: (1) Monte

Carlo simulation of methane and (2) a molecular dynamics application (SLUSCHI) that

simulates a melting aluminum structure. We first introduce Proxima, or the light-weight

library we create that allows users to dynamically integrate machined learned surrogates

into science applications to replace a repeating high-cost functions (1). Here, we develop

the requirements and feedback system for dynamic surrogate integration. We then look at

a more complex application that poses new challenges to the surrogate feedback system (2).

Next, we advance the Proxima surrogate feedback technique by using the uncertainty of an

ensemble models and the correlation with the error as the new feedback mechanism. We

show the successful integration of machine learned surrogates into two science applications.

Additionally, Proxima is a technique that can be generalized to other science applications as

the method is not tied to the algorithm.

In summary, this thesis approaches both performance and acceleration through the lens

of machine learning. The contributions of this work are as follows:

• Provide a fully data-driven approach for performance prediction

• Give two case-studies showing performance prediction of IPC and memory throughput

across two GPU architectures

• Given an uncertainty metric, dynamically integrate a machine learned surrogate into

both a monte carlo and molecular dynamics simulation

• Develop an algorithm agnostic method of surrogate integration

• Maximize surrogate usage while maintaining a user specified error bound

• Establish using the uncertainty of ensemble models is a suitable feedback for threshold

calculations for on-the-fly surrogate integration in molecular dynamics

2

• Show that the controller is a critical asset in surrogate integration

With the advances presented in this thesis, we provide insight in ways of using machine

learning to advance the understanding of future performance along with accelerating perfor-

mance of science applications. The pure data-driven performance results further motivate

use of a data-driven global performance model, allowing the user to achieve a light-weight

approximate of future performance and portability across a set of architectures. Combining

the advances from both control theory and machine learning, we have shown the ability to

dynamically integrate machine learned models into dynamic simulations without requiring

the many iterations previously needed to do so. This further opens the doors of running

larger applications, increases user confidence in using machine learning in science applica-

tions because of the ability to meet user defined error thresholds, and motivates further

exploration of machine learning in other complex science applications.

3

CHAPTER 2

PERFORMANCE PREDICTION

2.1 Introduction

With computing architectures constantly evolving and diverging from the general-purpose

CPU, the nature of understanding said architectures has only grown more complicated.

These new architectures include, among many others, graphical processing units (GPUs),

neuromorphic computing chips, tensor processing units (TPUs), and field-programmable

arrays (FPGAs). The increase interest has been motivated in part by a growing popularity of

deep learning methodologies within both industry and scientific research [17, 73, 32, 94, 122,

128, 131]. Understanding how to realize performance gains among these architectures can

be a laborious process. The common direct simulations of computing architectures involve

a clear trade-off between accuracy and performance, with cycle-accurate simulations often

considered the gold standard in performance projection, but prohibitive for most real-world

applications [93, 95, 13, 91]. Consequently, performance projection across architectures, has

long been considered a difficult task.

Given this clear motivation to understand future performance, a large body of work has

already explored application performance projection [6, 23, 126, 82, 86, 62, 66, 27, 75, 72,

9, 109, 110, 65]. Ipek et al. [66] and Carrington et al. [27] each looked at a single large

applications, while Konstantinidis and Cotronis [72] and others studied simpler kernels such

as DAXPY, DGEMM, FFT, and stencil kernels. There is also work on application projection

within the same architecture [89, 66]. Prior work [27, 28, 9], also requires significant expert

input, such as awareness and the ability to pinpoint and extract the most compute-intensive

kernels in the application or reliance on a lab generated private profiling tool [86, 6, 10].

Additionally, application performance projection has been used for the benefit of improving

efficiency in power consumption, grid job scheduling, and resource management [127, 74,

4

46, 65]. Prior work requires code changes and/or complex programming models, or time-

consuming cycle accurate simulators to understand performance.

With the limited focus on data-driven methods, we believe there to be room for better

projection accuracy. The limited access to these high-performance computing architectures

along with the lack of publicly available performance data has constrained the data-driven

approaches among GPU to GPU performance projections. With the increased adoption of

GPU acceleration in the scientific and machine learning community, it is only becoming more

vital to understand future performance among these type of architectures.

To the best of our knowledge, previous work, while valuable, has not targeted data-driven

performance projection across modern architectures (e.g. GPU to GPU). Due to the scarcity

of data-driven performance projection in the past, previous work has not contributed large

usable datasets to the public. To address this, we make three novel contributions: a large

dataset and two case studies of performance projections.

The dataset generated for this work was collected over a 6-month period on super com-

puters at Argonne National Laboratory. This dataset will be made publicly available to help

accelerate future research in data-driven performance projection. In this study, we use the

Rodinia Benchmark in addition to the commonly used STREAM benchmark [29, 85]. With

over 30,000 runs across two GPU architectures (NVIDIA P100 and V100), we used current

state-of-the-art profiling tools (NVIDIA NVProf), to collect over 100+ low-level metrics.

This produced a collection of over 3.6 million data points of performance metrics, that, to

the best our knowledge, is the largest cross-architecture GPU metric dataset available.

The first case study on using this large dataset was focused on the projection of IPC

performance. In this and the following case, we consider the P100 as the base architecture,

and V100 as the target architecture. This decision was made because the V100 is the newer

architecture in comparison to P100. Here, we were able to explore many points in design, such

as any specific features that may matter in IPC projection, varying common machine learning

5

techniques, and using more advanced learning techniques in order to increase accuracy. With

the large curated dataset, we were able to explore the use of the neural architecture search

library (DeepHyper - used in cancer research), developed by a team at Argonne National

Laboratory [8]. We tested over 1.4 million models, using over 1,200 core hours, which

resulted in a mean absolute percentage error of around 12%, using 70% of the data to train

the model.

For our second case study, we look at another popular performance metric: memory

throughput. Being that a large amount of scientific applications are memory bound, under-

standing memory throughput on target architectures can give insights on potential optimiza-

tions of the application and limitations of the target architecture. More recently, memory

throughput and similar performance metrics are being used as the main metrics in under-

standing performance portability in terms of architecture efficiency [54]. Similar to case

1, we start by using standard machine learning techniques and progress in complexity to

increase accuracy. We also identified nine important features that carry the most impact on

accuracy. We achieved a mean absolute error of 15.82 Gb/s, where the memory throughput

can range from 0.00067 Gb/s to 812.89 Gb/s. We also show how application developers can

use the results of our analysis for better resource management. For example, using machine

learning classification, we can identify when a workload changes from non-memory bound to

memory bound as the application is ported from one architecture to another architecture.

Our contributions in this work are as follows:

• We describe how the community can leverage our datasets to perform various data-

driven generic cross-architecture analysis.

• We give three more case studies on potential insights that others can do with our

dataset.

• We empower data science in the field of computer architecture.

6

2.2 Related Work

With such strong motivation behind performance prediction, there is much prior work. From

single intra-architecture performance prediction [88, 90, 7, 130, 39, 64] and inter-architecture

predictions [6, 126, 82, 27]. Ardalani et al. [6] want to understand the benefit of estimating

GPU performance prior to writing a specific GPU implementation of their current CPU

implementation. Here, the authors look at the potential benefits of a GPU implementation

by looking at corresponding counterparts of the current CPU implementation. They note

that since CPU programming is much easier than GPU programming, programmers can

implement different algorithms for the CPU and use the CPU-based GPU performance

prediction to get speed-up estimations for the different developed algorithms. This tool

will then be able to help the developers into choosing and porting the correct algorithm.

Specifically, they were able to use program properties, features inherent to the program or

algorithm and independent of what hardware the program runs, to create a mapping between

these features to GPU execution time. The tool built predicts GPU execution time for CPU

code prior to developing the GPU code. Our work looks at a specific metric, IPC, and

whether the application in question will become memory bound to obtain an understanding

of whether the application is worth porting over to a new architecture. Their final dataset

consists of 122 datapoints which was used to test and train 100 different ensemble models

achieving an average relative error of 22.4%.

Similar to Ardalani et al., Boyer et al. [23] created a modeling framework, built on

top of GROPHECY, that not only predicts kernel execution time, but data transfer time to

represent the total execution time of a GPU application. They extended a GPU performance

model to include a data usage analyzer for a sequence of GPU kernels, to determine the

amount of data that needs to be transferred, and a performance model of the PCIe bus, to

determine how long the data transfer will take.

Yang et al. [126] looks at relative performance between two platforms while only needing

7

to observe short partial executions of two ASCI Purple applications. Their method targets

performance predictions in guidance for resource allocation. The partial executions require

an API where the user must understand where the repetitive phases occur to understand

execution behavior across the entire application without the need for full execution. The

predictions and evaluations were done across CPUs only and partial execution on the target

is required in order to extrapolate and predict whole application performance. Unlike this

approach, our work does not require the user to understand the specific partial executions

needed to run to implement the workflow.

Marin et al. [82] created a toolkit that semi-automatically measures and models static

and dynamic characteristics of applications using the application binaries to predict the

L1, L2, TLB cache miss counts, and execution time. They describe a methodology as a

function of how the application exercises the memory subsystem, for constructing models

of an application’s characteristics parameterized by problem size or other input parameters.

Though Marin et al. created a architecture-neutral models, our work doesn’t require the

developer to work on application binaries nor go through a complex workflow to create an

initial characterization of the application.

Meng et al. [86] created a GPU performance projection framework, used by Boyer et al.,

that estimates the performance benefit of using a GPU without requiring GPU programming,

but by providing pieces of CPU code that targets for GPU acceleration. The authors defined

CPU code skeletons, automated a mechanism to restructure CPU code skeleton and mimic

transformations need to tune GPU code, characterized the benefits and side effects of GPU

code transformations, projected a CPU kernel’s performance on GPUs without producing

GPU code. The authors also allowed the ability to explore future GPU generations and

evaluate their performance by varying GPU hardware specifications. The developed code

skeletons are transformed to mimic tuned GPU codes where the cost and benefit of GPU

development can then be estimated according to this transformed skeleton. Our workflow

8

would not require converting the application into skeleton code and instead would require the

user to profile the application on the current architecture using NVIDIA’s NVprof profiling

tool to gain the applications characterization.

Hong et al. [62] created a power and performance prediction model (IPP) that predicts

the optimal number of active processors for a given application. IPP, takes a GPU kernel as

input and predicts both power consumption and performance together. Using these power

consumption and performance outcomes, IPP predicts the optimal number of cores that

result in the highest performance per watt. Their results show that by using fewer cores

based on the IPP prediction, they would be able to save up to 22,09% of runtime energy

consumption for the five memory bandwidth-limited benchmarks. In particular, this work

characterizes performance prediction in terms of power modeling for the GPU.

Ipek et al. [27] created an easy to use model using one parallel application, SMG2000, to

predict performance across two platforms. Similar to our work, they employed a multilayer

neural network trained on input data from executions on the target platform capturing full

system complexity achieving 5%-7% error across a large, multi dimensional parameter space.

In our work, we expand the search beyond one application, to multiple applications creating

a complex training set that is not application specific.

Carrington et al. [27] also presented a performance modeling framework, developed by

the Performance Modeling and Characterization (PMaC) Lab that is faster than traditional

cycle-accurate simulation and shown to be effective on the LINPACK benchmark. The

framework is not design for a specific application or architecture. To do so, they developed a

benchmark probe tool for collecting machine profiles (Memory Access Patter Signature) and

a tool for gathering application signatures (MetaSim Tracer). They rely on a convolution

method that maps this application signature onto a machine profile. Their MetaSim Tracer

processes all of the memory addresses of an application on-the-fly. Similar to the Carrington

et al. work, the returned NVProf performance metrics used in this work, characterizes the

9

application’s memory and bandwidth utilization on the architecture and is what we use as

the input features for our models. Carrington et al. is also predicting execution time and

not IPC or whether the application becomes compute bound or not.

Carrington et al. [28] furthered development of their framework to include blind predic-

tions for three systems as well as establishing sensitivity studies to advance understanding of

observed and anticipated performance of bother architecture and application. Here, the de-

fined that the Machine Profile is measurements of the rates at which a machine can perform

basic operations, including message passing, memory loads and stores, and floating-point

operations which is collected via low level benchmarks and probes. They specifically look at

performance on two applications, Cobalt60 and HYCOM.

Lee et al. [75] looked deeply into parameter space characterization for highly param-

eterized parallel applications. They construct and compare two classes of effective pre-

dictive models: piecewise polynomial regression and artificial neural networks. They look

at performance prediction of Semicoarsening Multigrid (SMG2000) and High-Performance

Linpack(HPL). Here, a single neural network is developed and was tested using only 100

validation points. We tested over a million neural networks which were each tested with val-

idation sets that had between 400 to thousands of validation points. As noted in the paper,

they observed a non-monotonic trend when adding data to their training set illustrating the

difficulty of identifying an optimal sample size, which is something we encountered as well.

Konstantinidis et al. proposed a performance prediction of GPU kernels on 4 different

computation kernels: DAXPY, DGEMM, FFT and stencil kernels achieving an absolute

error in predictions of 10.1% in the average case and 25.8% in the worse case [72]. To

achieve realistic results the authors applied three adjustments to the theoretical peak device

performance. The adjustments are on the compute and memory transfer peaks and the

compute peak of a particular kernel.

Balaprakash et al. [9] present an iterative parallel algorithm that builds surrogate perfor-

10

mance models for scientific kernels and workloads on single-core, multi-core, and multi-node

architectures. They developed ab-dynaTree, a dynamic tree model obtained through up-

dates of the first in previous iterations which is then used to choose the next inputs for

training. In [10], Balaprakash et al. use their previously developed active learning model,

ab-dynaTree to obtain surrogate models for GPU kernels when concurrent evaluations are

not possible due to the lack of availability of a GPU cluster. Here, they present an active

learning approach for obtaining surrogate models for GPU kernels and an empirical study

spanning a diverse set of GPU kernels and graphic cards. In line with our work, Balaprakash

built these surrogate models to minimize execution times of benchmark problems.

From predicting execution time, specific metric predictions, and CPU to GPU mapping,

prior work has made many advances in application performance prediction. That said, the

work mentioned often requires expert input,lab specialized profiling tools, and/or pinpoint-

ing specific compute heavy kernels in the application. Additionally, prior results achieving

good performance, error less than 5%, look at only 1-2 similar applications. Finding an

automatically created generalized model without expert input can have significant benefits.

A generalized model has an input of any application, from simple computations to machine

learning models, and predict performance on a target hardware.

2.3 Background

In this section we provide background information on the following aspects of the work

that we present in subsequent chapters: the two GPU architectures considered in this work-

Nvidia P100 and V100, the main metric we are predicting - IPC, and modeling methods

used - random forest, deep learning, neural architecture search, and active learning.

11

2.3.1 GPU Architectures: NVIDIA P100 and V100

The two architectures we use in this work are NVIDIA’s P100 and V100 provided by Ar-

gonne’s Leadership computing facility. In all cases presented, we use P100 as the architecture

we are predicting from, and the V100 as the architecture we predicting to. The P100 metrics

are used as features in the training set. The V100 IPC are used as the target value in the case

of IPC prediction. For memory bound prediction, a labeling is created for each datapoint

regarding whether they are considered memory bound on the corresponding architecture.

Though at face value, NVIDIA’s P100 and V100 may not look that different, especially

compared to older models (going from K40 to V100 has a 200% increase in computation

capability whereas going from P100 to V100 only 16%), we can see substantial differences

when comparing performance across these two architectures. Table 2.1 shows the architec-

tural details of present and past NVIDIA GPUs. The last two columns, P100 and V100, are

similar although showing an increase in the number of streaming multiprocessors (SMs) and

memory cache for the V100. However, Figure 2.1 illustrates that there is no function that

can map a P100 IPC value to a V100 IPC value, because one P100 IPC value can map to

multiple V100 IPC values. Therefore, we are not looking a 1-1 mapping between one metric

to another, but have an application characterization of multiple metrics. Though they are

only one generation apart, the P100 and V100 have fundamental differences that can be

seen when executing and profiling a variety of applications between them. The V100 was

developed with a core purpose of creating better performance for AI applications, though it

is not always the case, as shown here and by other benchmarks [83].

In this thesis, we use NVIDIA’s NVprof to profile all applications, acquiring around 120

metrics, depending on the architecture, to give a detailed overview of an application’s per-

formance on the GPU architecture. In this work, we look at 116 shared metrics between

the two GPU architectures, listed in the Appendix, as the P100 did not have the NVLink

metrics the V100 has. Metrics such as dram read throughput, dram write throughput, sin-

12

gle precision fu utilization, and flop count dp, along with 112 other metrics are used as fea-

tures to predict IPC on the given architecture. The total metrics used are reduced to 116

as P100 does not have NVLINK performance metrics in the profiling result. Similar to how

Carrington et al. created and collected machine profiles, these metrics give an overview of

the applications performance. Unlike Carrington et al., these profiles are mapped to the

specific architecture the application was run on.

Table 2.1: Key specifications of selected GPUs of different generations. Computation capa-
bility is considered numerical label for the hardware version.

Kepler (K40) Maxwell
(M60)

Pascal
(P100)

Volta (V100)

CPU IBM Power8
@2.2GHz

Intel Xeon
E5-2670 @2.60
GHZ

IBM Power8
@2.2GHz

Intel Xeon E5-
2699 @2.20GHz

Computation
capability

3.5 5.2 6.0 7.0

SMs 15 16 56 80
Cores/SM 192 SP

cores/64 DP
cores

128 cores 64 cores 64 SP cores/32
DP cores

Texture Unit-
s/SM

16 8 4 4

Register File
Size/SM

256 KB 256 KB 256 KB 256 KB

L1 Cache/SM Combined 64K
L1+Shared

Combined
24KB

Combined 24
KB

128 KB Unified

Texture Cache 48KB
Shared Memo-
ry/SM

Combined 64K
L1+Shared

96 KB 64 KB

L2 Cache 1536 KB 2048 KB 4096 KB 6144KB
Constant Mem-
ory

64 KB 64 KB 64 KB 64 KB

Global Memory 12 GB 8 GB 16 GB 16 GB

13

Figure 2.1: Comparison of P100 and V100 IPC. There does not exist a mapping from P100
IPC to V100 IPC.

14

2.3.2 Architecture Performance: IPC

Instruction per cycle (IPC) is often used as a simple metric of performance in the development

of CPUs. IPC is a good indicator on whether an architecture is optimally performing. A high

IPC is not always indicative of a more efficient architecture, but is a start at recognizing the

potential of an architecture with a simple metric. Additionally, because of the complexities

and differences between CPU and GPU’s, IPC is an easily available metric that can be traced

across these two differing chip architectures. In particular, NVIDIA defines the IPC value

as the instruction throughput over a period of collection. As we hope this framework will

eventually extend to cross-chip (GPU to CPU) predictions, we chose a metric can be carried

from one architecture to another [2].

2.3.3 Active Learning

The key idea behind active learning is a machine learning algorithm that can perform better

with fewer labeled training instances if it is allowed to choose the data from which it learns

[107, 31, 76]. In our work, we employ the an active learning system due to the fact that we

will have much more unlabeled data (P100 performance metrics), than labeled data (V100

performance metrics). Additionally, Settles notes that labeled instances are difficult, time-

consuming, or expensive to obtain. In our case, there was only one V100 GPU with a long

queue time, while collecting performance metrics of certain larger applications taking longer

than the allotted time cap. Some of examples of the successful use of active learning are

in speech recognition [51, 98], information extraction [114, 68], classification and filtering

[132, 4]. All examples show how active learning systems overcame the labeling bottleneck

querying in the form of unlabeled instances to be labeled by an oracle. With this querying

scenario, active learning aims to achieve high accuracy using as few labeled instances as

possible and as a result, minimizing the cost of obtaining labeled data.

Active learning has several scenarios in which is may pose queries. In this thesis, we will

15

focus on pool-based active learning cycle. Pool-based scenarios has been studied for many

machine learning problems [76, 84, 112, 69]. In this active learning scenario, queries are

selected from a large pool of unlabeled instances. An uncertainty sampling query strategy

where the where the instances in the pool that the model is least certain how to label are

chosen. The learner can begin with a small number of instances in the labeled training

set and request labels for low confident instances learned from the querying results. These

requested labels are added to the labeled set, and the learner proceeds from there in a

standard supervised way.

There are different querying frameworks when using active learning: uncertainty sam-

pling, query-by-committee, and expected model change to name a few. We use uncertainty

sampling as our querying framework. Uncertainty sampling is a commonly used query frame-

work where the active learner queries instances about which it is least certain how to label

[77, 36]. The unlabeled instances will be ranked based on uncertainty and the learner queries

the top most uncertain instance to have them labeled. Uncertainty sampling in regression,

and used in this thesis, is the calculation of the sampling variance of the random forest.

Wager, et al. developed this method of estimating the variance of bagged predictors and

random forests. This variance estimation tells whether the random forest is more confident

about certain predictions compared to others [119].

Though there are many potential benefits to employing an active learner, we should

note that there are some caveats with active learning. First, the learner measures based

on a single hypothesis. The training set returned is very small and as a result introduces

potential sampling bias.

2.3.4 DeepHyper and Balsam for Neural Architecture Search

Neural architecture search (NAS) is the process of automating architecture design for a ma-

chine learning model [134]. We employ this powerful process to search across over a million

16

machine learning models predicting performance prediction. Zoph et al. present a Neural

Architecture Search, that uses a recurrent network to generate the model descriptions of

neural networks. They train the RNN with reinforcement learning to maximize the expected

accuracy of the generated architectures on a validation set. Elsken et al. categorize methods

for NAS according to three dimensions: search space, search strategy, and performance esti-

mation strategy. Figure 2.2 shows an illustration of the Neural Architecture Search method

often referred to and something employed by the version of NAS in DeepHyper. Specifically,

the search space defines which architectures can be represented in principle. This stage can

still introduce human bias which can in return prevent finding novel architectural building

blocks. The search strategy details the exploration of the search space. The Performance Es-

timation Strategy refers to the process of estimating the predictive performance on resulting

NAS architectures on unseen data [40].

Figure 2.2: Illustration of abstraction presentation of Neural Architecture Search methods by
Elsken et al. The search strategy, similar to the search strategy we use, selects an architecture
A from a predefined search space A. The architecture is passed to a performance estimation
strategy, which returns the estimated performance of A to the search strategy [40].

DeepHyper and Balsam frameworks developed at Argonne National Laboratory, are vital

in conducting a scaled search over millions of deep learning models [11] [102]. DeepHyper is

a scalable framework designed to search the hyper-parameter space of deep neural-network

models. DeepHyper also includes an integrated neural-architecture search (NAS) mechanism,

which enables the automated generation and testing of neural-network models. DeepHyper is

tightly coupled with Balsam, a workflow manager that uses a persistent job/task database to

17

efficiently utilize leadership-scale distributed supercomputing resources. Balsam dynamically

packages tasks into ensemble jobs and manages the end-to-end scheduling life cycle, ensuring

fault tolerance along the way. Additionally, Balsam allows for a complex multi-workflow

solution with little user configuration.

As validated using a class of representative cancer data [8], DeepHyper-NAS automates

the generation of deep-learning models using a reinforcement-learning. To execute an NAS

workflow, DeepHyper results are used to dispatch reward-estimation tasks, based on R2,

to Balsam. After the architecture search is completed, there are between 15,000 to 30,000

distinct models generated, trained and tested. From this large pool of models, the estimated

reward values are used to select the top 50 DNN architectures. The top 50 DNN architectures

are then submitted to a post-training sequence, during which each model is thoroughly

trained on the full training data.

In this work, we utilize this Deephyper-based NAS workflow to predict performance

metrics on NVIDIA GPU architectures. The use of this model-generation pipeline allowed

us to test more than one million neural architecture models.

2.4 Methodology

The following sections will discuss both intra- and inter-architecture performance predic-

tion, as well as the benchmark data used to train and validate the models. For the intra-

architecture case, we consider the prediction of application performance (IPC) on a P100

GPU, given profiling metrics from a P100. Our results for intra-architecture prediction

confirm that IPC can be accurately predicted, given either complete or partial profiling met-

rics. For the inter-architecture case, we consider the prediction of application performance

(IPC) on a V100 GPU, given profiling metrics from a P100 GPU. We also explore the inter-

architecture classification of specific application runs as either memory bound or not memory

bound. The memory-bound classification task does not result in a numerical performance

18

prediction, but ideally captures a similar relationship between the alternative architectures.

For inter-architecture IPC prediction, we compare various methodologies, including random

forest, deep learning, and NAS.

2.4.1 Benchmark Data

Metrics are collected by Nvidia’s NVProf profiling tool. NVProf instruments the CUDA

kernels, and collects a variety of useful performance metrics. We acquire 116 NVProf per-

formance metrics for each of the 46,039 application runs (see Appendix for metric list). The

target applications include backprop, hybridsort, kmeans, stream, gaussian, and leukocyte; all

except stream come from the Rodinia benchmark suite [29].

Backprop, containing two kernels, is a deep learning algorithm used in the training of

feedforward neural networks for supervised learning. Hybridsort, containing seven kernels,

is a parallel bucketsort that splits the list into enough sublists to be sorted in parallel using

mergesort. Kmeans, containing two kernels, is a clustering algorithm that divides an initial

cluster of data objects into K sub-clusters. Kmeans represents data by the mean values or

centroids of their respective sub-clusters. Iterations of the algorithm compare the data object

with its nearest center, based on a distance metric [29]. Srad, containing eight kernels, or

Speckle Reducing anisotropic diffusion is a diffusion method for ultrasonic and radar imaging

applications based on partial different equations [113]. Leukocyte, containing three kernels, is

an application that detects and tacks rolling white cells [29]. Stream, containing five kernels,

is a benchmark designed to measure sustainable memory bandwidth for contiguous, long

vector memory accesses [85].

2.4.2 Intra-Architecture IPC Prediction

As seen in prior work, it is possible to predict performance metrics within the same architec-

ture using a variety of techniques and tools. That being said, we acknowledged that there

19

is no function that can map P100 IPC directly to V100 IPC, as shown in Figure 2.1, and

thus we use the fuller scope of P100 metrics to predict V100 IPC. Here we present a deep

learning method that allows for IPC prediction of applications run on the P100 architecture.

We consider this step as a proof of concept that a certain scope of metrics can predict IPC.

For our intra-architecture prediction, we use a feed-forward fully-connected deep-learning

model that has weights initialized with a normal distribution. The model has 1 input layer

and 2 hidden layers, with all layers (excluding the output layer) using ReLU activation

functions. We use ReLU because it shows better convergence results compared to using

other activation functions. The deep learning model uses the Adam optimizer, along with

a mean squared error loss function. The Adam algorithm calculates an exponential moving

average of the gradient and the squared gradient [71]. The model is trained for 100 epochs.

Furthermore, to stress the relationship between metrics and IPC, we reduced the in-

put metrics from 112 to 5. The following definitions for the reduced metrics are pro-

vided by CUDAs Toolkit Documentation [1]. The reduced metrics include shared utilization,

stall other, single precision fu utilization, dram read throughput, and dram write throughput.

shared utilization is the shared memory relative to peak memory utilization. stall other is the

percentage of stalls occuring due to miscellaneous reasons. single precision fu utilization is

the utilization level of the multiprocessor function units that execute single-precision floating-

point instructions on a scale of 0 to 10. dram read throughput is the device memory read

throughput. dram write throughput is the device memory write throughput.

2.4.3 Inter-architecture Memory Bound Classification

We first look at cross-architecture memory-bound prediction. Similar to the results of com-

paring IPC between V100 and P100, Figure 2.3 shows that there is no linear function that

can map between V100 dram write, read, and total utilization to P100 dram write, read,

and total utilization. In Figure 2.5, you can also see the differences in dram utilization be-

20

Figure 2.3: Illustration of DRAM read and write throughput and total dram throughput on
the V100 and P100. We see that in all three cases, there is no function that can map DRAM
read throughput, write throughput, or total utilization from one architecture to another.

Figure 2.4: Illustration of memory throughput for Nvidia P100 and V100. Points above the
green line are considered memory bound kernels, or having over 75% of memory bandwidth
utiization. In comparison, the same applications run on the V100 show kernels becoming
memory bound on the V100 that were not memory bound on the P100.

21

tween the two architectures in both scaled and un-scaled versions. There is no simple linear

function that would map all P100 dram values to V100 dram values. In addition to the P100

data points collected for the intra-architecture prediction step, 32,291 V100 data points are

collected using the NVProf profiling tool. Only P100 data points that had corresponding

V100 data points were used. We explore whether an application was not memory bound on

P100, but is on V100. Applications that require processing large amounts of data, such as

multiplying large matrices, would likely be memory bound. In Figure 2.6, memory bound

applications on both P100 and V100 NVIDIA architecture are plotted along their IPC value.

Here, IPC results are more spread out with a high DRAM total throughput on the V100

compared to the P100.

Figure 2.5: Dram read and write utilization on both P100 and V100 GPUs

By NVIDIA architecture standards, an application becomes memory bound on their

architecture is an application having a dram utilization of over 75% on the architecture. As

shown in Figure 2.4, there are kernels that become memory bound on the V100 that are

not memory bound on the P100. In order to label our dataset, we calculate the ratio of

the total DRAM throughput with that of the theoretical memory maximum. Total DRAM

throughput is calculated by adding dram read throughput and dram write throughput. We

consider all data points with ratios greater than 0.75 to be memory bound. Using a random

22

Figure 2.6: Memory bound applications vs. IPC of application on both P100 and V100
architectures

23

forest classifier, we were able to predict whether an application run on a P100 would become

memory bound on a V100 (given P100 profiling data). We optimize the hyperparameters

of the random-forest classifier using a grid search. The classifier is trained on a set of P100

metrics with the applications corresponding to V100 target values. It is then tested on the

validation and test sets to confirm that the model is not over-fitted and performs well on

untested data.

2.4.4 Inter-Architecture IPC Prediction Methodology

Here, we present the three modeling frameworks tested for IPC prediction. Due to the

limited data size available of performance metrics, we employed the use of an active learner

to identify if there were application points that best characterized applications performance

on the architecture. Essentially, with the use of active learning, we want to avoid collecting

more data than necessary. The total data set (32,291 points) is split into a training (22,603)

and hold out set (9,688). We used Argonne’s DeepHyper framework to test over a million

deep learning models. We used a random forest model and conventionally developed deep

learning model as a baseline comparison. All three modeling methodologies are tested with

an active learner queried dataset and a training set created by random selection.

2.4.5 Curating Training Sets: Active Learning and Random Selection

In real world applications, gathering data can be quite time consuming. This, combined with

the fact that new computing architectures are often scarce, means that labeled datasets are

likely to be relatively small in practice. We will also not be training to the entire dataset and

therefore, using active learning to create refined datasets. We do this for a range of different

refined dataset sizes.

First, an initial base set is chosen. Though there are many forms of creating the base

set, the original training set batch (250 points) are points randomly chosen from the data

24

set. We use a random forest as the supervised machine learning model in our active learning

strategy. We use additions with batch size of 250 data points during each training cycle. 12

different training sets are created by taking sizes of 2.5 to 30 percent in increments of 2.5,

from the training dataset. Therefore, the active learning training cycle is run 12 times, once

for each size, creating 12 training sets with corresponding sizes.

Figure 2.7: Active learning flow chart showing the first batch of 250 points being trained with
random forest and the cycle of querying new data points and adding them to the training
set. The cycle terminates once the target training set is reached.

We use a pool-based active learning strategy, where the active learner can query from

a pool of data points. Figure 2.7 shows the active learning workflow of creating a queried

training set. First, the supervised learning model, we use a random forest model, is initially

trained with the base set and predicts on the unlabeled points. The random forest is trained

on 250 datapoints with 116 P100 GPU architecture performance metrics as features, to

predict IPC (target value) of the given application run on a V100 GPU architecture (inter-

architecture IPC prediction). Next, the unlabeled points are then ordered from highest to

lowest based on the model’s confidence of the predicted unlabeled points. We use scikit-

learn’s implementation of Wager’s uncertainty definition described here [119] to rank the

25

unlabeled data. The batch of points with the highest uncertainty are chosen. These points

are considered valuable as the model has low confidence in its accurate prediction of them,

and thus these points will be added to the training set. The model is retrained with the

newly formed training set (base set and new points).

One full round of active learning can be seen in Figure 2.8, where the blue dots are the

most uncertain points and the red points are the predicted points on the unlabeled data set.

After the learning cycle is completed, the points are once again ranked dependent on their

uncertainty score, and a new batch of points are added to the initial training set. After each

addition to the training set, the model is retrained and the uncertainty is recalculated until

the specified training size and learning cycles are completed. These specified 12 training sets

are used in all models, as show in 2.11.

Figure 2.8: Results of one round of active learning. Blue points are the points chosen by
the active learner and put into the training set. Red points are the predicted points on the
unlabeled data set.

As a baseline for comparison, equivalent sized training sets are created with randomly

chosen data points from the same training set the active learner has access to. Additionally,

26

the random forest model, conventional deep learning model, and DeepHyper are all trained

on a the full training dataset, 70 percent of the full dataset (22,603 data points).

Figure 2.9: Normalized application percentage breakdown of data points that were chosen
at random.

The data distribution and percentage breakdown of the application points selected by

random and active learner selection can be seen in Figures 2.9 and 2.10, respectively. In

particular, the random selection process gives a more stratified overlook of the total appli-

cation data. The active learning selection process, slowly increases the amount of points

from other applications, as the training set gets bigger. In particular, the active learning

workflow shows a significant focus on the more difficult to predict backprop application. The

continuous addition of the backprop data points can be understood by seeing that the back-

prop application obtains the lowest confidence when predicted. Additionally, the quantity

of the backprop data dominates the data set sampling insuring a high amount of backprop

application specific points will be ranked high.

2.4.6 Neural Architecture Search at Scale

Following preliminary success with DeepHyper-based NAS, we further scale the initial search

procedure to generate specialized architectures for each of the fine-tuned active-learning

datasets. Altogether, we consider 24 training sets, of which half are random and the rest are

curated with active learning. The NAS framework utilizes Balsam to test and train a large

27

Figure 2.10: Normalized application percentage and distribution breakdown of data points
created using active learning.

Figure 2.11: Illustration of modeling comparison workflow. We start we a pool of data points,
create refined datasets with an active learner and have random selection as comparison.
These datasets are then used in random forest, deep learning model, and neural architecture
search.

28

Figure 2.12: Model throughput results. The graph shows that over 1.4 million models were
tested and created in about 1200 hours.

29

set of models needed for reinforcement learning based optimization.

Figure 2.13: Illustration of distributed NAS architecture by Balaprakash et al. Balsam
runs on a designated node where the launcher is a pilot job that runs on the allocated
resources and launches tasks from the database. The multiagent search runs as a single MPI
application, and each agent submits model evaluation tasks through the Balsam service API.
The launcher continually executes evaluations as they are added by dispatch on idle worker
nodes [8].

For each of the target datasets, we consider the following neural architecture search space.

The search space comprises up to 10 architecture cells, with each cell containing a collection

of architecture nodes. The nodes can manifest as various neural network features, depending

on the actions of the reinforcement-learning agents. For example, the first node in each cell

is the Variable node, which can be an identity operator (i.e. no layer added), or a dense layer

with a range of sizes and activation-functions. In this case, the Variable nodes allowed for

dense layers between the sizes of 16 and 96 (increment of 16), and activation functions in the

set (None, relu, tanh, sigmoid). In order to enable skip connections, each cell also contained

an optional connection to each of the previous three cells (including the input layer) and an

addition operation to combine multiple input layers.

To use the defined search space to select an optimal neural architecture, NAS employs

proximal policy optimization (PPO) search strategy. PPO is a policy gradient method for

reinforcement learning which requires a reward estimation strategy for the agents. In this

work we use R2 for the reward estimation. The overall workflow for the DeepHyper-Balsam

30

NAS is illustrated in Figure 2.13 for the case of a single multi-agent search. The multi-agent

search runs as a single MPI application with each of the agents submitting model evaluation

tasks through Balsam. In this work, we leverage multiple multi-agent searches in parallel,

allowing for the concurrent execution of multiple MPI applications.

The neural architecture search produces between 15,000 and 30,000 models for each

training set. Since a thorough NAS requires large-scale computing resources for even a

single target data set, the approach benefited greatly from access to Argonne’s leadership

computing facility. As shown in Figure 2.12, there were over 1.4 million models tested and

created in about 1200 hours.

2.4.7 Deep learning and Random Forest

With the use of the same 24 training sets used for the NAS For comparison, we used a

classical machine learning approach, random forest for performance prediction. A random

forest is an essemble machine learning method that uses multiple decision trees. Each of the

decisions trees are trained on different data sets where sampling is done with replacement

[80, 106]. As with the previous models, we used P100 performance metrics as features and

the V100 IPC as the target value. The particular random forest tested has 100 n estimators.

We use mean squared error as the optimization metric and used the full feature set.

Similar to the intra-node prediction model, we used a sequential fully-connected deep

learning model. Deep learning creates models with multiple processing layers to learn rep-

resentations of data with multiple levels of abstract [73]. Deep learning can discover com-

plicated and intricate structures of large data sets. Our deep learning model uses an Adam

optimizer and mean squared error for loss. In neural networks, the activation function trans-

forms the summed weighted input from the node into the activation of the node or output

for that input. All layers but the last layer use a ReLU as an activation function as it

showed better convergence compared to other activation functions. The results are trained

31

in batches of 250 points and for 1000 epochs. The model created can be seen in Figure 2.30.

The same workflow is used when training with the full training set.

2.5 Results

Here we present the results of intra-architecture IPC prediction, inter-architecture memory

bound classification, and inter-architecture IPC prediction. We also present the results of

using two types of neural architectures.

2.5.1 Intra-node Architecture IPC Prediction

Although the ultimate goal is inter-architecture performance prediction, we use intra-architecture

IPC prediction as a preliminary step. That is, we start by confirming that supervised

machine-learning methods can be used to predict performance, given profiling data from

the same GPU architecture. As shown in Figures 2.14 and 2.17, we observe mean absolute

percentage errors of 4.11 and 2.96 when trained on 451 and 4,521 data points, respectively.

Additionally, we explore the effects of using a reduced feature space (i.e. fewer profiling met-

rics) to train similar models. As illustrated in Figures 2.15 and 2.16, the use of a reduced

feature space does not significantly degrade the accuracy of intra-architecture IPC prediction.

This overall success implies that, even with a reduced characterization of the application, it

is still possible to acquire accurate IPC predictions, thus motivating the more-challenging

task of inter-architecture prediction.

2.5.2 Memory Bound Cross-Architecture Prediction

As shown in the confusion matrix in Table 2.2, both the false-positive and false-negative

prediction rates for the inter-architecture memory-bound classifier are below 2%. The goal

of the model is to predict if a particular application run will become memory bound on

32

Figure 2.14: Results of P100 IPC prediction using 451 training data points.

Memory Bound Classifier Confusion Matrix
Predicted: No Predicted: Yes

Actual: No 0.995 0.0048
Actual: Yes 0.0174 0.983

Table 2.2: Confusion matrix showing results of memory bound random forest classifier that
predicts whether an application will be memory bound going from the P100 to V100 GPU
architecture.

33

Figure 2.15: Results of P100 IPC prediction with reduced input metrics (5 total metrics)
using 451 training data points.

34

Figure 2.16: Results of P100 IPC prediction with reduced input metrics (5 total metrics)
using 15,824 training data points.

35

Figure 2.17: Results of P100 IPC prediction using 4,521 data points.

36

Figure 2.18: IPC prediction results of DeepHyper model using a training set with randomly
chosen data points.

a V100 GPU, given profiling data from a P100 GPU. The task is complicated by the fact

that none of the runs are memory bound on the P100 architecture, requiring the model to

implicitly capture critical transitions in performance behavior. The results further suggest

that there are some applications, such as backprop, that are likely to become memory bound

when moved from the P100 to the V100.

2.5.3 Inter-Architecture IPC Prediction

First, we will look at overall IPC prediction across the three models tested. In Figures

2.18 and 2.19, the IPC prediction compared to true IPC across all applications is shown

for random selection and active learning selection of 20% of the data, respectively, using

37

Figure 2.19: IPC prediction results of DeepHyper model using a active learning curated
training set.

38

Figure 2.20: Mean squared error, common loss metric used in machine learning models,
shows a minor decrease for actively queried training sets. According to the MSE score,
the DeepHyper returned model using an active learning queried training set shows a 36%
decrease in error over a model using random selection.

39

Figure 2.21: Mean absolute percentage error (MAPE) of each framework across applications
tested with 20% of the training set used. Each number above the bar is the MAPE for each
application and the corresponding model used

DeepHyper. Across these graphs, it is clear that backprop dominates the data set and is a

notoriously difficult application to predict compared to the other applications. Additionally,

all models have difficulties in predicting leukocyte with good accuracy.

The majority of all training data corresponds to the backprop and stream applications.

The results of backprop are further inspected in Figures 2.26 and 2.27, showing DeepHyper

predictions using an active learning training set and a random selection training set. These

results show that the generated models have trouble adjusting to scenarios when going from

high-IPC values on P100 and to low-IPC values on V100, which is the case for a large portion

of the backprop data points.

The stream prediction results are shown in Figures 2.28 and 2.29 for a DeepHyper model

trained with active learning created and random selection training sets of size 20%. Al-

though performance accuracy is relatively good for the reduced data set sizes, random forest

surprisingly out performed a NAS optimized deep learning model with an actively learned

40

Figure 2.22: Mean absolute percentage error (MAPE) of models using full training set in
comparison with Old and New IPC. Each number above the bar is the MAPE for each
application and the corresponding model used

41

training set.

Figure 2.23: Mean absolute percentage error (MAPE) and error bar of each framework across
applications tested with 20% of the training set used. The last set of the columns is the
harmonic mean over the applications.

These trends are further supported in the Figure 2.21, where the mean absolute percent-

age error (MAPE) is shown for each of the applications. Figure 2.23 shows the error bar for

each application across all models along with a harmonic mean across the applications, as the

last set of bars. Among these applications, srad has the highest MAPE error variation across

the data. Figure 2.22 shows the MAPE scores of the models using the full training set and

Figure 2.24 shows the error bar among the same tested applications. Similar to the models

trained with 20% of the training data, there is notable variation in the srad application and

little to no variation in stream.

For the simplest baseline, we look at mapping the current architecture IPC value to the

target IPC value : ’OldNew’. In other words, we assume that if the IPC is x on P100, then

it will also be x on V100. Certain applications, such as stream, would not do well with

this mapping, but applications such as backprop would not fair any worse. The ’Random

Forest’ bar corresponds to the prediction of V100 IPC using P100 metrics as features. The

42

Figure 2.24: Mean absolute percentage error (MAPE) and error bar using full training set.
The models shown here are the random forest (RFFULL), conventional deep learning model
(CFULL), and DeepHyper NAS created model (DHFULL). Active learning results are not
shown as the full training set is used. Harmonic mean across applications shows that random
forest has better performance compare to both neural network models.

43

Figure 2.25: Graph of harmonic mean between application predictions of models using the
full training dataset and 20% of the training dataset.

44

Figure 2.26: Prediction of backprop IPC using DeepHyper model with active learning chosen
training set.

random forest performance is on par with the deep learning model performance or obtains

lower error, such as the error on hybridsort. The ’Random Forest + AL’ bar corresponds to

a random forest model that uses a training set created by the active learner discussed above.

This particular model does not do well in applications such as kmeans and hybridsort, in

comparison to random forest without a curated training set by an active learner. This could

45

Figure 2.27: Prediction of backprop IPC using DeepHyper model a randomly chosen training
set.

be due to the fact that the active learning selection has a concentrated focus on the backprop

and stream application data in comparison to these other applications, and thus does not

focus on acquiring points in the training set for these applications.

The ’Conv DL’ bar corresponds to a conventionally developed deep learning model. The

simple, sequential structure of this neural network architecture is shown in Figure 2.30.

46

Figure 2.28: Prediction of Stream application using model returned from Deephyper using
a training set curated by the active learning model

We explored various network sizes, activation functions, and regularization approaches. We

discovered that deeper models tended to overfit the data, while wider models achieved better

results. The ’DH’ bar corresponds to the NAS-generated model using a randomly sampled

data set. The ’DL + AL’ bar corresponds to a NAS-generated model using an actively

47

Figure 2.29: Prediction of Stream application using model returned from DeepHyper with
random selection.

learned training set. Figure 2.31 shows the diagram of a neural architecture chosen by

NAS. This is the architecture returned by DeepHyper using a training data set created by

an active learner, showing skip connections and a variation of activation functions chosen.

Every model created by DeepHyper is as complex if not more complex than the one shown

in Figure 2.31. Overall, when looking at Figure 2.25, which shows the Harmonic mean across

48

applications for both models trained with the full training set and the partial training set,

random forest outperforms all other models. Furthermore, tripling the data used to train

the random forest shows very little improvement in error, compared to the conventional deep

learning model.

Finally, considering all models use mean square error (MSE) as the loss metric, it is

only fair to look at the results of mean squared error with respect to training data size and

models used. Figure 2.20 shows a small decrease, in MSE for models using an active learning

queried training set. There is about a 36% decrease in error when comparing a DeepHyper

returned model with an active learn queried dataset to a randomly selected dataset. That

being said, though there is a decrease in this error metric, when looking at the MAPE, it is

not significant enough to warrant success for any of these models.

2.6 Summary

The initial results of the intra-architecture IPC prediction, using limited data, suggest that

the available nvprof-based features are sufficient for accurate intra-architecture performance

prediction. In-line with those results, the memory bound cross-architecture prediction, with

accuracy of 99%, can be particularly useful when identifying applications that become mem-

ory bound from one GPU architecture to another. This information can be useful to appli-

cation developers and end users. Advanced knowledge of a memory-bound transition allows

developers to focus on different performance optimizations and users to avoid the use of

certain chip architectures altogether.

If limited data is a requirement, the final DeepHyper model prediction does better than

some models but still needs improvement. Given that a majority of the data corresponds to

the backprop and stream application, shown in Figure 2.10, we can focus on these applica-

tions for our overall evaluation. Unfortunately, as shown in Figure 2.22, both random forest

and NAS-optimized deep learning models fail to outperform a simple old to new mapping.

49

Figure 2.30: Conventional deep learning architecture layout.

The overall poor accuracy of IPC for backprop data suggests that this particular application

is very difficult to predict, and that domain specific feature engineering engineering is most

likely required to further improve the model.

50

Figure 2.31: DeepHyper + Active learning architecture layout.

In contrast to backprop, all models were successful at predicting performance of the

stream application. While a simple old to new mapping results in a 33 percent error, both

random forest and deep learning models reduced this error to 3 percent when using the full

51

training set.

When comparing DeepHyper created models, there are some cases where the random

selection does significantly better than the active learning selection. There are also cases

where active learning out performs random selection. If we say a MAPE of under 5% is

excellent, only one application prediction falls into that category - stream. These results show

that active learning did not always give beneficial improvements to the model and at times

reduced the accuracy tremendously. These results also show that even after training and

testing over a million models, a more complicated heuristic and further feature engineering

is needed to identify the relationship between these architectures.

Here, we present two case studies showing a purely data-driven method of performance

prediction. Developers can leverage such techniques to overcome the limitations of prior

common performance prediction methods. By no longer having to make code changes or

create and run expensive simulators, machine learning and the corresponding performance

dataset can be capitalized to further enhance and accelerate other performance analytics,

such as performance portability.

52

CHAPTER 3

ACCELERATING SCIENTIFIC COMPUTING

3.1 Proxima: Accelerating the Integration of Machine Learning

in Atomistic Simulations

3.1.1 Introduction

Scientific computing applications, such as continuum fluid dynamics (CFD), lattice quan-

tum chromodynamics (QCD), and atomistic simulations account for a large fraction of the

supercomputing cycles used at national laboratories and other supercomputer facilities [5].

These applications are often dominated by the repetitive execution of a few high-cost func-

tions [50, 19]. In the past, speedups in these domains have relied on advances in hardware

architecture and numerical-algorithm development [49, 45, 92]. However, recent advances

in machine learning have enabled another promising acceleration technique: replacing ex-

pensive functions with machine-learned surrogates [16, 42]. Because the learned surrogate is

an approximation of the expensive target function, the use of learned surrogates introduces

opportunities for trade-offs between computation latency and accuracy (or error).

Pioneering work on surrogate methods has proved the value of integrating machine learn-

ing into scientific applications [100, 22, 125, 21]. However, that work has focused primarily

on the construction of the surrogate models themselves, rather than on how to integrate

these approximations into larger simulations. In particular, it employed ad hoc, heuristic

integration strategies, such as featurizing the expensive function and then using the surro-

gate only when a function call’s features are in the range seen when the surrogate model was

trained [21, 20]—an approach that demonstrates the potential value of surrogate usage, but

has significant practical drawbacks.

The speed and accuracy of a simulation that uses a surrogate model depends on factors

53

such as (1) the form of the surrogate model, (2) when to use the surrogate model, (3) how

much training data to use to generate the surrogate model, and (4) how often to retrain

said model while the simulation runs. Prior methodologies for using surrogate models have

typically fixed these parameters or left the choice of values to the user—approaches that

prevent optimal choices or impose significant burdens on users in terms of profiling to find

acceptable surrogate configurations. Furthermore, prior methodologies use the same config-

uration values during an entire run (and from run to run), leading to suboptimal outcomes

when the simulation’s properties change as it evolves.

We describe in this work a new approach to this problem that both simplifies and opti-

mizes the use of machine learning in scientific simulation by creating a dynamic surrogate

configuration engine. In so doing, we remove the need for a previously trained model, pre-

computed training set, or user-specified retraining schedule—and permit surrogate-based

simulations to adapt dynamically to changing simulation behaviors. To do so, we introduce

Proxima, an application-agnostic Python library developed to incorporate surrogate models

within a scientific simulation, allowing the user to specify a desired maximum mean absolute

error to be met. Proxima achieves this acceptable requested error by continually monitoring

the simulation execution, dynamically adapting the surrogate configuration parameters and

determining when to retrain the surrogate model at run-time.

Specifically, we focus on the decision engine which sets the criteria for when to use the

surrogate model or revert to the original, high-cost, high-accuracy target function. We

implement a domain agnostic decision engine based on control theory. Our control-theoretic

decision engine ties in how often the model is retrained while determining the training

set size and thus establishing a relationship between performance and accuracy. Unlike

prior work that sets key parameters on surrogate usage before the simulation is run, when

using Proxima, these values are determined automatically by Proxima’s run-time system.

Thus, instead of requiring extensive testing and specific parameters for each application run,

54

Proxima dynamically tunes the parameters for each test case based on run-time feedback

without prior training. Additionally, unlike prior approaches, Proxima no longer requires

the model to be retrained at every step, significantly reducing overall run-time.

We showcase Proxima by applying it to an example application involving Monte Carlo

(MC) simulation of a methane molecule (CH4) across a wide range of temperatures. Methane

is the smallest member of the hydrocarbon family. Interactions in methane are dominated

by many-body weak dispersion interactions, for which surrogate models must provide first-

principles accuracy [118]. Finding training datasets and configuration parameters that can

deliver this accuracy with good performance is a tedious process. We compare Proxima to a

system with no surrogate and to a surrogate-based approach that uses prior methodologies

based on profiling to find the best fixed surrogate configuration parameters for the entire

simulation.

We demonstrate that Proxima, when run for temperatures in the range {100, 200, ...

1000}K, obtains speedups from 1.02× to 5.52× over the non-surrogate version, with a har-

monic mean speedup of 1.64×, while respecting the error bounds in all cases. Testing with

error bounds that stress Proxima verifies that Proxima works across a wide range of these

user-defined error bounds. Finally, we double-check the accuracy results by comparing ap-

proaches along a secondary physical property, the radius-of-gyration (ROG), that relies on

not just average accuracy, but the accuracy of each individual simulation step. We find

that Proxima achieves a mean absolute error of less than 0.00126Å. In contrast, the fixed

parameter approach of prior work yields results beyond the acceptable error bounds across

most of the temperatures tested.

In summary, our contributions are:

• Proposing dynamic tuning of machine-learned surrogate usage in scientific computing.

• Designing the algorithms that can perform this tuning while respecting error bounds.

• Developing a library to make surrogate integration a lightweight addition to existing

55

simulation software.

• Demonstrating the value of tuning surrogate usage parameters to optimize performance

with accuracy guarantees.

• Open source release of the code.1

3.1.2 Related Work

The potential for performance gains via the integration of machine learning into atomistic

simulations has spurred much research in this area [21, 20, 117, 99, 70].

Botu and Ramprasad developed a numerical fingerprint to represent an atom config-

urations and proposed an algorithm for surrogate decision usage [21, 20]. They use this

numerical fingerprint as a feature vector to represent the atom coordinates in a way that can

then be mapped to molecular properties, such as energy and force. Similarly to Proxima,

they add training data each time that the target function is invoked and choose the surrogate

when the input is within a certain distance threshold of the training data; in contrast to

Proxima, they use a static threshold. Proxima’s dynamically changing threshold allows it to

invoke the surrogate model more often while meeting a required error bound, and thus to

achieve higher performance.

Vandermause et al. use the internal uncertainty of a Gaussian process regression model

to decide whether to accept a model prediction or to use the target function [117]. They

applied their on-the-fly learning methodology to a range of single and multi-element systems.

Though they attempt to keep the amount of training data low, their methodology retrains

the model after every data addition and they do not discuss speedups. Zhenwei Li et al.

using the workflow created by Cansyi et al. also investigate ways on integrating machine

learning into atomistic simulations [79, 35]. The workflow created by Cansyi et al. and used

1. https://github.com/globus-labs/proxima/tree/proxima control

56

in Zhenwei Li et al. require iterations of the simulation to find the consecutive n-steps to run

the model as well as re-iterating through those same n-steps after every n steps are taken,

indicating very little trust in the model.

Rupp et al. describe a surrogate implementation, presenting results on accuracy and

discusses using hyperparameters. They used a specified training set and found that machine

learning can predict potential energy with high accuracy [99].

Other related work has investigated methods for accelerating surrogate model creation

via automated model selection and learning algorithms that mimic the underlying structure

of algorithms [12, 104]. That work requires the full training data set prior to to prediction,

but could potentially be adapted to improve the models used within Proxima.

In summary, although prior work has yielded many advances in the integration of surro-

gate models into atomistic simulations, none are able to guarantee a user-specified level of

accuracy, as Proxima has shown to be able to do.

3.1.3 Background

In this work, we use atomistic simulations, a scientific application domain with a history of

combining physics and machine learned surrogates. Here, we explain the methods behind

the physics and machine learning components and how they are combined in prior work.

We also provide a brief background on control theory, as it forms the basis of our proposed

method for tuning surrogate configurations in running science simulations.

3.1.3.1 Atomistic Modeling

Atomistic modeling computes interactions between atoms to capture the complex behavior

of materials and molecules [24]. With atomistic modeling, scientists can study material

properties and defects difficult to observe experimentally due to both spatial and temporal

constraints. To do so, the simulation evaluates the energy of a system and the forces acting

57

C 1.04 -0.05 -0.07
H 2.13 -0.05 -0.07
H 0.67 0.17 -1.07
H 0.67 0.69 0.62
H 0.67 -1.03 0.22

[36.85, 5.50, 0.50,
5.50, 0.56, 0.50,
5.50, 0.56, 0.56,
0.50, 5.50, 0.56,
0.56, 0.56, 0.50]

Coulomb matrix
15 x 1 energies

Molecular representation
5 types, 5 x 3 coordinates

Methane

C 1.04 -0.05 -0.07
H 2.13 -0.05 -0.07
H 0.67 0.17 -1.07
H 0.67 0.69 0.62
H 0.67 -1.03 0.22

Encode

Perturb

[36.85, 5.50, 0.50,
5.50, 0.56, 0.50,
5.50, 0.56, 0.56,
0.50, 5.50, 0.56,
0.56, 0.56, 0.50]

Encode

eA S

FeB

A

B

T

Figure 3.1: Illustrates the fundamental ideas that this work leverages in atomistic modeling.
A molecule state is represented by coordinates, say A. These can be perturbed to yield a
different state, B. A state can be encoded in a Coulumb matrix, which when treated as a
point in a multi-dimensional space allows for distance computations. A is within a distance
T of a previously evaluated state, B is not.

on each atom in many different configurations. Dominant atomistic modeling methodologies,

like density functional theory (DFT) and Hartree-Fock (HF), rely on computing interactions

from first principles (i.e., quantum mechanics), which can take many minutes, hours, or days

to complete such energy computations [18, 108]. They also quickly become limited in terms

of the size of the system that can be simulated, as computational requirements scale with

the number of electrons cubed or worse [33]. Much time and resources are invested in these

calculations with the goal of understanding the dynamic behavior of metals, semiconductors,

thin films, ceramics, and biological materials [24] and significant new applications are possible

if the length and timescale of these models can be expanded.

3.1.3.2 Atomistic Machine Learning

Machine learning based atomistic simulations gives access to times and length scales not

accessible to first-principle simulation, while maintaining first-principle accuracy. In partic-

ular, supervised learning techniques can be built to compute the potential energy of a system

58

in milliseconds (105 times speedup over some quantum mechanical methods) and with com-

putational costs that scale linearly with problem size. The key innovation which has enabled

the use of machine learning is how to represent the structure of an atomic system in a form

amenable to machine learning [52, 15]. For our work, we rely on the large body of prior

work on representations and how to use them in conjunction with modern machine learning

approaches [56, 48, 63, 120, 25, 105, 124].

In this work, we use two common methods for atom representation: Coulomb Matrix and

Smooth Overlap of Atomic Positions (SOAP). Both representations are designed specifically

for modeling atomic systems. For example, they are invariant to translating and rotating the

coordinate system and permuting the order in which atoms are number. These invariances,

in conjunction with being designed to capture that atomic interactions are dominated by

local, many-body interactions, make the Coulomb Matrix and SOAP suitable for building

surrogates. We chose the two methods to give a tradeoff between speed and accuracy for the

machine learning methods themselves.

SOAP [15] is a common atom representation used with training models for the energy and

forces acting on atoms that uses a similarity measure between atomic neighbor environments.

We use the SOAP implementation in the Dscribe library [56] as the featurization and training

data for our model. Then, in a similar manner to the non-linear kernel ridge regression (KRR)

method used by Botu et al. [20], we train a simple Bayesian ridge regression model to predict

the potential energy.

In addition, we also use the Coulomb Matrix as a quicker-to-compute alternative to

SOAP. The Coulomb Matrix representation of the atom, proposed by Rupp et al. [100],

describes an atom based on the atomic numbers and pairwise distances between atoms. As

illustrated in Figure 3.1, we use the Coulomb matrix as a similarity metric between different

molecular geometries when quantifying how similar a new geometry is from those used to

train our model. Because the similarity check step of Proxima occurs at every time step,

59

regardless of whether or not we need to invoke the SOAP-based surrogate model, the small

computational cost of the Coulumb matrix is beneficial.

Configuring Surrogate Usage

Previous work has established there are benefits in switching between using surrogate

models and the high-cost, target function during a simulation, which presents an obvious

tradeoff between accuracy and speed [79, 21, 67]. Many implementations of these “hy-

brid” physics + machine learning applications require a decision about whether a new set of

function inputs can be effectively treated with the surrogate model rather than the target

function. The metrics used to inform these “domain of applicability” judgements are nu-

merous and each require setting a threshold value based on empirical evidence (i.e., profiling

the simulation with a surrogate across a range of thresholds) [96, 101]. As we demonstrate,

setting an applicability threshold is complicated by the ideal threshold being dependent on

the boundary conditions for a simulation and, potentially, even the current state of the

simulation.

In the work reported here, we use the distance of a set of function inputs from all entries

used to train a model as our domain of applicability metric. The target function is then used

for a function call whenever the distance from that call’s inputs to all training data exceeds

a specified threshold. Our use of a threshold metric is based on work from Botu et al. [20],

who observed that the error of a surrogate model for DFT calculations scales quadratically

with distance from the training set. We use this result as a justification for setting a single

threshold to identify which predictions should be feasible. We elected for this method over

alternative approaches, such as measuring the variance of an ensemble of models [96], due

to the low cost of computing nearest neighbors.

As hybrid physics+ML applications evolve, surrogate configuration may even go beyond

deciding when a surrogate should be used. For example, the amount of computational

resources devoted to the machine learning and physics components of the multi-scale par-

60

titioning strategy of Caccin et al. [26] would be an example of a parameter that strongly

controls application performance. The high computational cost of retraining machine learn-

ing models also introduces opportunities for accelerating applications by deferring training

until sufficient data are collected—introducing more parameters to be tuned. Further, mod-

els such as sparse KRR [111] provide easy tradeoffs between model accuracy and inference

speed. The additional opportunities for performance optimization further motivate the need

to automatically tune performance parameters.

3.1.3.3 Control Theory

Prior work statically configured surrogate usage: scientists determined a single threshold

for acceptable surrogate use and then used that threshold for the life of the program. Our

proposal is that dynamically tuning the threshold results in better outcomes. Key to our

approach is using a control theoretic design to dynamically tune surrogate usage.

Control theory is a discipline for managing dynamic systems [47]. At a high level, a

controller is given a target metric and then measures dynamic feedback from the system.

The feedback is used (in combination with a model of the system to control) to determine

how to adjust parameters such that the desired behavior is achieved. As computers are

dynamic systems, several researchers have proposed methods for building controllers that

manage computer systems [55, 115, 37, 43, 81, 88, 103, 14], with a particular emphasis on

controlling accuracy and performance tradeoffs [57, 58, 59, 41, 121]. One major challenge

of applying control theory to computer systems is that control theory was developed for

continuous linear systems, and computers are discrete, non-linear systems.

Control systems thus appear to be a natural match for our problem. We want to adjust

surrogate usage such that a user-defined error bound is met. To apply this technique, we need

to do three things: (1) find an appropriate feedback metric that can be measured at runtime

and relates to a scientifically meaningful error metric, (2) find appropriate configuration

61

parameters that can be dynamically tuned to change error and latency tradeoffs, and (3)

account for the non-linearities in the relationship between surrogate usage and error. We

explain in detail how we address these three issues in Section 3.1.4.1.

3.1.4 Methodology

3.1.4.1 Proxima

The basic idea of surrogate modeling is to replace an expensive target function with a faster

machine-learned surrogate model. The strategy is to speed up the overall simulation by

sacrificing accuracy in a systematic manner. Thus the surrogate must provide an acceptable

level of accuracy, but take less time to train and execute than the target function. The crux of

the problem is knowing when to use the surrogate model, when to add data to the training set,

and how often to retrain said model. In prior work, these decisions are made explicitly by the

scientist—who is responsible for setting appropriate surrogate configuration parameters—

and require laborious profiling to find an acceptable accuracy/performance tradeoff. In

contrast, Proxima automatically and dynamically configures these values to meet accuracy

constraints with good performance, eliminating the scientists’ burden of manually tuning

these parameters.

In this section, we describe Proxima, independently of any specific scientific application.

In the subsequent section, we describe how it is applied to atomistic Monte Carlo, replacing

a Hartree–Fock-energy prediction target function with a Proxima-managed surrogate.

To begin, in every application, Proxima has a target function F. We need to process a

series of requests for the value of that function for different arguments, each of which we can

be evaluated either by running F on the supplied argument, or alternatively by running a

surrogate model S. The surrogate model is dynamically trained using results from previous

evaluations of F.

There are thus two key decision points in the system: 1) For each call to the target

62

min ∥u - x∥ < Tkx ∈ V
?

What was
last run?

Retrain
S

e = S(u)

e = F(u)

Target
function

Surrogate
model

u

e

No

Yes

Figure 3.2: Logical flow of the Proxima surrogate modeling process. At upper left, an input
value u is received and checked relative to a distance threshold from recently evaluated
values. Ultimately either the target function F or the surrogate model are used to compute
the return value e. A key difference between Proxima and prior work is that the threshold
used to determine whether the surrogate should be used (Tk in the upper left) is determined
dynamically; i.e., this threshold changes with time k.

function, whether to use F or S to evaluate it; and 2) for each new evaluation of F, whether

or not to retrain S, and which past results to use for that retraining. We organize our

solutions to these problems as an Executor, which decides whether to execute F or S based

on the distance logic shown in Figure 3.2, and a Controller, which updates the configurable

parameters of the Executor during execution. One parameter could be a distance threshold,

Tk, that controls how similar inputs must be to the training set of S before the Executor

chooses to run S. Prior work (see Section 3.1.3.2) uses a static distance threshold to determine

when to use the surrogate. However, we observe that the relationship between surrogate

accuracy and distance changes as the simulation executes.

3.1.4.2 Executor: Surrogate Selection Logic

We now explain the logic behind the Executor. We use the following notation. Let µ̃ be

a user-supplied target error expressed as mean absolute error (MAE) on a specific value in

the scientific simulation; and V be a vector of results collected so far, ordered by time of the

corresponding request, and each of the form (x, y, y′, d), where x is a valid argument to F,

63

y = F(x), y′ = S(x), and d is a distance, computed as described below. Also, let N be the

number of recent observations in V used for computing MAEs.

Let Vk be V after k observations have been made and Tk be the current distance threshold.

Now consider a new request for a function evaluation on a value u. We compute the distance

from u to the nearest observation in the N most recent observations in V , denoted as Vk[N]:

d = min
x∈Vk[N]

x− u.

If d < Tk, then we retrain the surrogate model S if the target function was run for the

preceding request, and return the value S(u) and continue to the next request. If d ≥ Tk,

then we run both the target function and the surrogate model, and add (u, F(u), S(u), d)

to Vk, producing Vk+1. Here we assume that the surrogate model is significantly cheaper

than the target function so running both presents very little overhead.

3.1.4.3 Controller: Setting Distance Threshold

We now discuss how we use the Controller to perform dynamic online adjustments of the

Executor. Here we are computing a threshold Tk for the current time k.

We formulate this task as a control problem. Specifically, we want to control the simula-

tion error to meet the user-specified error bound µ̃. We want to use the surrogate as much

as possible (to maximize speedup) while maintaining an error at or below the bound. At any

time k, we can compute the achieved error as µk+1, the MAE of Vk+1[N]; i.e., the average

of the absolute differences between the y and y′ values in the N most recent elements of

Vk+1. In this case, controlling the error means that we want µk − µ̃ ≤ 0. We can control

the error by setting the threshold Tk. Intuitively, if we set the threshold extremely high, the

surrogate is always used, while if we set it extremely low, the target function is always used.

Our goal is to formulate a controller that dynamically sets the threshold to bring the error

64

to the user-specified bound.

To formulate the controller, we need to know the relationship between error and threshold.

A simple linear model characterizes this relationship as:

µ = α · T, (3.1)

where α is simply a coefficient that represents how much a change in threshold affects the

change in error. With this model we can formulate a basic control system that manages the

error by dynamically tuning the threshold:

Tk+1 = Tk −
1

α
· (µk − µ̃) (3.2)

This controller is simple and low-overhead, requiring just a handful of floating point

computations to compute a new threshold. The drawback is that the linear relationship, α

from Equation 3.1, rarely holds in practice because the relationship between the error and

the threshold changes as the simulation evolves. For example, in our case study later in this

thesis we find that at higher temperatures, the same threshold will produce a higher error

than at lower temperatures.

One approach to address this issue would be to build a non-linear model for α. In

some sense, however, this approach would simply replace the laborious profiling prior work

requires to set the threshold with a different laborious profiling task to build an appropriate

non-linear model that adapts α over time. Therefore, we take a different approach and

approximate the true version of α by continually estimating it with a time varying linear

model. Specifically, we compute αk+1 via regression analysis of the formula d = αk+1|y −

y′|+ β, for (xi, yi, y
′
i, di) ∈ Vk+1[N]. We then compute this dynamic version of αk+1 and use

it in Equation 3.2:

65

Tk+1 = Tk −
1

αk+1
· (µk − µ̃). (3.3)

Intuitively, the threshold for surrogate usage in the next time step (k+1) is a function of

the previous threshold, the estimated relationship between threshold and error at the current

time, and the difference between the measured and desired error.

The above approximation of α works well in practice, however to insure stability, it is

necessary to bound the change in threshold, tk by a maximum change of ±0.1. In the latter

case (i.e., if Vk+1 is produced), we also compute a new distance threshold, Tk+1, bound

by reasonable operating minimum and maximum thresholds. We also compute µk+1, the

MAE of Vk+1[N] (i.e., the average of the absolute differences between the y and y′ values

in the N most recent elements of Vk+1). A potential problem could arise if Equation 3.3

oscillates, producing large swings in threshold from one update to another. This could occur

if the approximation of α is consistently off by more than a factor of 2 [43]. However, the

bounding of the threshold described above prevents extreme oscillation in practice. Further-

more, Proxima can detect the attempted oscillation and report it to the scientist for further

examination.

To provide intuition as to how this update rule works, consider three cases. 1) If µk+1 =

µ̃, i.e., if the MAE of Vk+1[N] is equal to the user’s desired maximum MAE, T is left

unchanged. 2) If µk+1 > µ̃, i.e., if the MAE of Vk+1[N] is greater than the user’s desired

maximum MAE, T is increased, by an amount that is larger if α is smaller. 3) If µk+1 < µ̃,

i.e., if the MAE of Vk+1[N] is less than the user’s desired maximum MAE, T is decreased,

by an amount that is smaller if α is larger. Figure 3.3 shows the operation of the update

rule in practice; the α-threshold relationship is clearly visible.

The above starts with a basic control formulation (Equation 3.2), which is provably

convergent to the goal using basic control analysis [43]. The convergence proof relies on

the rate of change in the threshold. Our modifications to the basic control formulation

66

(in Equation 3.3 and the preceding paragraph) can only reduce the change in threshold,

never increase it. Therefore, we expect Proxima’s control formulation to converge under any

circumstances where the basic approach will converge. Proxima, may converge more slowly,

however, because it may choose to reduce the change in threshold.

3.1.4.4 Configuration

To apply Proxima to a specific problem, we must establish a target function and a machine

learning model. For the machine learning model we also need a distance metric for the

features and an accuracy metric for the prediction.

The only required user parameter is the target error which should be more intuitive to

estimate than a distance threshold; we assume scientists know an acceptable error and that

can be determined without profiling. In contrast, prior work required scientists to determine

a threshold that may not have an intuitive mapping to error. If desired, the user may specify

the number of training-set initialization steps, window comparison size, and initial distance

threshold. However, the results were not particularly sensitive to the variations in the default

settings.

67

0 200 400 600 800 1000
Simulation Step(k)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Al
ph

a
(

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Th
re

sh
ol

d
(T

k)

Alpha
Threshold (Tk)

(a) 500 K

0 200 400 600 800 1000
Simulation Step(k)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Al
ph

a
(

)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Th
re

sh
ol

d
(T

k)

Alpha
Threshold (Tk)

(b) 800 K

Figure 3.3: Proxima examples of the relationship between α and threshold T. In these two
simulation runs, at 500 K and 800 K, the threshold is directly effected and changed by α.

68

3.1.4.5 Experimental Setup

Xo : I n i t i a l s t a t e o f molecule

T: Temperature

N: Number o f s t ep s to s imulate

de f s imp le monte car l o (Xo , T, N) :

X = Xo

f o r n in range (N) :

X next = perturb (X, T)

E = ene rgy func t i on (X) # Target func t i on

R = random ()

i f accepted (E, R, T) :

X = X next

Listing 3.1: Pseudo-code for the Monte Carlo sampling application used in experiments.

We next describe the example application that we use both to illustrate the use of Proxima

and to evaluate various aspects of its performance. This application is run on an Intel Core

i7-8700 CPU with 16GB of memory. The Monte Carlo sampling application (MCSA), for

which pseudo-code is provided in Listing 3.1, computes the average property of an atomic

system, using the Psi4 simulation code [116] as the underlying energy calculator.

The Monte Carlo algorithm makes small perturbations to the system, choosing whether to

accept the perturbation as a new starting point based on a probability related to the energy

change, and then repeating for many iterations. The average of the value of a property over

all iterations is the expected value at the set temperature (T) if the acceptance probability

is P (∆E) = max{exp(−∆E
kT), 1}, where ∆E is the energy change [87].

An example of a physical property that can be computed in this way is the average radius

of gyration of a molecule, which is expected to increase with temperature.

In order to converge on a realistic structure, we need an accurate energy calculation

69

at every Monte Carlo step. Therefore, Proxima’s job is to speed up the simulation while

capturing the energy as accurately as possible.

To instantiate Proxima, a Python wrapper, also called Proxima, is used as an interface

to the application. The arguments to Proxima are the target function, the machine learning

model, and the MAE bound. For this example, Bayesian ridge is the machine learning model

used, the data in the training set are represented using SOAP, and the decision engine uses

a Coulomb Matrix representation to quickly calculate whether or not to use the surrogate

model. We report results in the following with a MAE bound of 0.002, unless otherwise

stated.

We use the energy calculated by Psi4 as ground truth. We measure error as the MAE

of all steps, with the baseline for each step being the Psi4 prediction. For steps where the

surrogate energy is used, there will be some error. For steps where the surrogate energy is

not used, there will be no error. The MAE includes both of these cases, unless otherwise

stated.

In the MCSA example considered here, the target function takes a molecule as its argu-

ment, and molecules are represented as a multi-dimensional Coulomb matrix [100] used to

calculate distances and a SOAP representation as featurization for the training data.

MCSA parameters are the target molecule (e.g., methane), the temperature at which the

molecule is to be simulated, the perturbation size, the number of steps to be run, and a

random seed.

3.1.4.6 Baseline Workflow

This section presents methods used to evaluate Proxima. We compare Proxima to a non-

surrogate system, which we call Baseline, and to a fixed parameter surrogate system, which

we call Fixed. Fixed uses prior work where the scientist is responsible for configuring the

surrogate usage by setting an appropriate threshold for surrogate usage. In the following

70

10006 × 102

Execution time
0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

AE
 (e

V)
×10 3

10
0K

10
00

K

20
0K 30
0K40

0K 50
0K

60
0K70

0K 80
0K

90
0K

Figure 3.4: Results of running Fixed with T = 0.3 and no retrain interval, for temperatures
100–1000 K in increments of 100 K. Results show slow downs of up to 5× when compared
to a no surrogate application.

sections, strategies for Baseline, Fixed, and the methodology for acquiring the best fixed

parameters are discussed.

3.1.4.7 Baseline and Fixed Surrogate Strategies

We define two strategies against which we compare Proxima proper in later sections.

The Baseline strategy runs the target function in response to every request. We deter-

mine the accuracy of other methods by comparing the result obtained at each step against

that achieved by the target function; thus, Baseline has, by definition, the highest accuracy,

as it uses Psi4 to calculate all energies. However, as it uses the target function at every step,

its computational cost is high.

71

The Fixed strategy runs with a fixed value for the threshold T and retrains the surrogate

model after a specific number of new data points, the retrain interval (RI), have been added

to the dataset. As we explain below, we performed parameter sweeps in which Fixed was run

with a variety of (T, RI) combinations in order to study sensitivity to those two parameters.

These optimal parameters were used to run Fixed for 10 temperatures between 100 and

1000 K.

Finally, we performed runs with a lazy training method used in Proxima, in which re-

training is performed only if the last step used a target function. This is the case when

the model is only retrained if the input data are calculated to be within the specified T.

Figure 3.4, shows that no runs, even with a conservative threshold of 0.3, met both the error

and time bounds. Therefore, lazy training was not used for Fixed.

3.1.4.8 Establishing Best Fixed Parameters

We next discuss how we find the optimal parameters for Fixed. These parameters achieve

the best speedup while staying below a given mean absolute error bound at 500 K and

1000 K.

Due to the significant stochastic variation of the application, we must use reference data

to compare the performance and accuracy of different methods. Reference data are the saved

atom coordinates and energies obtained from a simulation that uses the target function only.

Using reference data allows for an equivalent comparison between parameter choices. They

are needed because the atomistic simulations that we consider here proceed by starting with

a molecule’s atoms in a particular state, and then repeatedly using the target function to

compute potential energies on those atoms and then using the computed potential energies

to update the positions of the atoms. As a result, the molecule’s atoms trace out a trajectory

in space: a trajectory that is highly sensitive to minor perturbations, so that a small change

in potential energies (as might result from the use of a surrogate rather than the target

72

100 1000 10000 100000
Execution time

0

1

2

3

4

5

6

7

8

9

M
AE

 (e
V)

×10 3
Ba

se
lin

e
tim

e

Target MAE

N=23

N=153

N=45

Acceptable
MAE too high
Runtime too long
Target function only

200 300 400 500
Execution time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
AE

 (e
V)

×10 3

0.2, 100

0.2, 200

0.2, 300

0.2, 400

0.2, 500

0.2, 50

0.3, 100
0.3, 200

0.2, 200

0.2, 3000.3, 10
0.3, 15

0.3, 200.3, 50

0.3, 5

500K
1000K

Figure 3.5: Left: MAEs and execution times achieved by Fixed with MCSA for methane at

500 K and 1000 K, for 221 different (RI, T) parameter combinations. The vertical line is

the time taken by Baseline and the horizontal line is a target MAE. The N= numbers are of

parameter combinations in different regions. Note that only the 23 parameter combinations

in the lower left meet both error and time bounds. Also shown as a red circle at (0, 523) is the

performance achieved by Baseline. Right: Highlighting the 500 K and 1000 K combinations

that lie within the error and time bounds, with RI, T values shown for those with MAE less

than 1.75. The best results are obtained with relatively low retrain intervals and distance

thresholds.

73

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Threshold

0

100

200

300

400

500

Re
tra

in
 in

te
rv

al

Acceptable
MAE too high
Runtime too long

Figure 3.6: A scatter plot of the (RI, T) points in Figure 3.1.4.8, with markers classifying
each point. The points with acceptable MAE and execution time (the green squares) fall in
a relatively narrow range.

74

function to compute potential energies) can result in the simulation following an entirely

different trajectory.

Such differences between trajectories are not a problem scientifically, because atomistic

modeling is concerned not with individual trajectories but with the statistics of many tra-

jectories. However, they make comparisons of different methods on the basis of individual

runs challenging, because different trajectories might involve different numbers of surrogate

function evaluations as the molecule visits different parts of molecular space. To overcome

this problem, we use what we call reference data. First, we perform a simulation using only

the target function, saving all atomic coordinates and energies. Then, when running other

methods that we want to compare with that first simulation, we make the molecule follow

exactly the same trajectory.

In the end, we still need Proxima performance data without using any reference data,

which is shown below, to compare full runs.

Using reference data, we ran a parameter sweep on Fixed for 7 × 17 = 119 parameter

combinations (T, RI) in (T ∈ {0.1, 0.2, ..., 0.7})× (RI ∈ {1, 2, 5, 10, ...50, 100, 200, ..., 500}),

while keeping fixed the number of steps (1000), for temperatures at both at 500 K and 1000 K,

the molecule (methane), random seed (1), and perturbation (0.003). For the 1000 K, the T

of 0.1 is not taken into account as runs would take more than 24 hours to be finished, and

would not be a parameter that could be used in the end. Therefore, we consider a total of

221 combinations: 119 at 500 K and 102 at 1000 K.

From this parameter sweep, we see in Figures 3.1.4.8 and 3.6, nine (RI, T) combinations

for 500 K and 14 combinations for 1000 K that meet both the error and time bounds. Of

these, four combinations meet the bounds for both temperatures. From those four, (T = 0.3,

RI = 50) achieve the best speedup (2.31× for 500 K and 1.99× for 1000 K), while staying

within the MAE bound for both 500 K and 1000 K. We establish that these are the best

fixed parameters for Fixed.

75

3.1.5 Results

We present the results of MCSA for three different methods: (1) no surrogate (Baseline),

(2) surrogate with fixed parameters (Fixed), and (3) Proxima. We discuss the practical

details of surrogate modeling with Proxima, compare it to other approaches, and discuss its

scientific significance.

3.1.5.1 Accuracy and Speedup Results

We first run MCSA with the Baseline and Fixed strategies to obtain data for later com-

parisons with Proxima. In these runs, we keep fixed the number of steps (1000), molecule

(methane), random seed (1), and perturbation (0.003).

Running MCSA first with the Baseline strategy (i.e., always using the target function),

we observe that target-function execution takes a cumulative time of 523 seconds: an average

of of 0.523 seconds per evaluation.

Next, we obtain results for Fixed. As the combination T = 0.3, RI = 50 gave the best

speed and accuracy results for both 500 K and 1000 K, we ran Fixed with these parameter

values. This combination was able to achieve a low MAE of 0.00149, with a 2.81× maximum

speedup. Though Fixed can achieve high speedups at higher temperatures compared to

Proxima, as illustrated in Figure 3.7, Fixed exceeds the error bound, especially at higher

temperatures. For example, at 1000 K, Fixed’s achieved error is over 50% greater than

the bound. In fact, Fixed exceeds the error bound for all temperatures above 600 K. So

while it can provide great speedups, those results are meaningless as the scientific simulation

would have to be rerun to produce meaningful results. On the other hand, as illustrated in

Figure 3.8, Proxima consistently stays within the given error bound across all temperatures.

This is important, because exceeding the scientist-supplied bound by only a small amount

can throw the scientific validity of a result into question, as we will explore in the next

section. Finally, it is worth noting that the relatively low cost target function used in this

76

100 200 300 400 500 600 700 800 900 1000 HM
Temperature (K)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

Proxima - No Reference Data
Fixed - No Reference Data

Figure 3.7: Speed-up results for Fixed (with parameters T = 0.3, RI = 50) and for Proxima
without the use of reference data. The harmonic mean is labeled as HM.

77

100 200 300 400 500 600 700 800 900 1000 HM
Temperature (K)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

En
er

gy
 M

AE
 (e

V)

×10 3

Proxima - No Reference Data
Fixed - No Reference Data

Figure 3.8: MAE of the energies predicted by surrogates, not including target function calls,
across 10 temperatures. The harmonic mean is labeled as HM.

78

200 400 600 800 1000
Temperature (K)

0.273

0.274

0.275

0.276

0.277
RO

G
M

EA
N

(Å
)

Proxima
Baseline
Fixed

Figure 3.9: Mean of ROG comparison between Baseline, Fixed, and Proxima without the
use of reference data. Fixed is with parameter values T = 0.3, RI = 50.

work suggests that these speedups are conservative.

3.1.5.2 Scientific Significance of Surrogate Error

The results of the atomistic simulations considered in this thesis can be used to derive a

resulting secondary physical property, the radius of gyration (ROG). This quantity is highly

sensitive to the accuracy of the entire Monte-Carlo trajectory and is not explicitly considered

by Proxima during a run, but rather is determined only at the end of a simulation. Thus it

provides a useful validation of the Proxima approach.

We shown in Figure 3.9, the ROG values obtained for 10 runs of each of Baseline, Fixed,

and Proxima for temperatures from 100 to 1000 K. The multiple runs (with different initial

random seeds) capture the variations that result from the randomness of the Monte-Carlo

79

200 400 600 800 1000
Temperature (K)

0.000

0.002

0.004

0.006

0.008

0.010

RO
G

M
AE

 (Å
)

Proxima
Fixed

Figure 3.10: MAE of ROG comparison between Fixed and Proxima without the use of
reference data.

80

0.
00

05

0.
00

1

0.
00

2

0.
00

4

0.
00

6

User Defined Error Bound

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
No

rm
al

ize
d

Er
ro

r

0

1

2

3

4

5

Sp
ee

du
p

Normalized Error
Speedup

Figure 3.11: Proxima accuracy and speed vs. user-defined error bound. As the error bound
increases from 0.0005 to 0.006, normalized error remains less than 1, indicating that Proxima
always stays within the user defined error, while speedup increase to a maximum of 5.52.

simulation.

We see in Figure 3.9 that Proxima outperforms Fixed in predicting an accurate ROG,

achieving results that are closer to those of Baseline (indeed, coinciding with Baseline’s

error bars) and with less variation, as captured by the error bars, and without the increased

variation in error with temperature that is seen for Fixed. This is further demonstrated in

Figure 3.10, where the accuracy of Proxima is much more stable than that of Fixed. In

other words, Proxima achieves scientifically meaningful results where Fixed fails to do so.

81

3.1.5.3 Results for Different Error Bounds

Many existing frameworks for surrogate use consider only inference time and model error

when selecting ‘optimal’ parameters, without detailed results of model training and decision-

engine execution time, nor any focus on managing error [44, 20, 21]. The work presented

here, in contrast, focuses on control mechanisms that can meet a user-defined error bound

while optimizing end-to-end execution of an application across a range of temperatures.

As we demonstrated above, the use of control mechanisms is important because even with

extensive profiling, it is difficult to find parameters that satisfy an error bound across a range

of temperatures.

We report here on experiments that evaluate Proxima’s ability to meet a wide range of

user-specified error bounds. Specifically, we run Proxima for error bounds in the range 0.0005

– 0.006 and measure the achieved error and speedup in each case. The results, displayed in

Figure 3.11 presents the the error bound on the x-axis and the normalized error (where a

value of 1 indicates the error bound, and values <1 indicate staying below the target error)

on the y-axis. As expected, Proxima abides by the given error bounds, while achieving

up to 5.52× speedup for the highest error bound. These results emphasize the point that

surrogates are most useful when there is some room for error. The results with low error

bounds are important as they show that Proxima performs acceptably even in those stressful

situations; however, we should not be concerned that performance is poor in those cases,

because they are not the cases that we are targeting.

3.1.5.4 Error Sensitivity and Reduction

Since both the energy landscape and surrogate model are nonlinear, a conservative distance

threshold, T, for one configuration may result in significant error for another configuration.

Therefore it is impossible to choose a static distance threshold that can satisfy a specific user-

defined error bound. Proxima solves this problem by dynamically changing the threshold,

82

illustrated in Figure 3.3, based on simulation error feedback and a user-defined error bound.

3.1.5.5 Proxima Overhead

The largest source of overhead in Proxima is the time needed to train the underlying surrogate

model. While model inference is typically orders of magnitude faster than the target function,

training time grows with training set size, and can reach 60% of total runtime in worse-case

scenarios. Proxima’s decision engine can also be a source of meaningful overhead. For

MCSA, the decision engine requires a Euclidean-distance calculation based on a Coulomb-

Matrix representation of the atomistic geometry. Calculating this distance can take as much

as 9% of total runtime. The controller logic requires much less overhead, taking ∼10µs

per step. The reported Proxima speedups consider all costs, including Proxima logic,model

(re)training, surrogate usage, and inference.

3.1.5.6 Ease of Use

Identifying the best parameters for Fixed required running 221 simulations. Running them

all is expensive, because while some simulations run in five minutes, others take days. The

results must then compared based on speedup and error obtained. Even removing the need

for the retrain interval, and using the retraining technique applied in Proxima, results in

only four configurations stay within both error and latency bounds, as shown in Figure 3.4.

Additionally, Figure 3.8 shows that parameter values that work well for one temperature

are not necessarily effective at other temperatures, where they result in errors above a given

bound. Proxima removes these steps while staying below the user-defined error bound and

achieving speedup: see Figure 3.7.

83

Xo : I n i t i a l s t a t e o f molecule

T: Temperature

N: number o f s t ep s to s imulate

import Proxima

de f s imp le monte car l o (Xo , T, N} :

X = Xo

Make the Proxima wrapper

prox func = Proxima (c a l c . ene rgy funct i on ,

ml model , mae bound)

c a l c . ene rgy func t i on = prox func

f o r n in range (N) :

X next = perturb (X, T)

E = ca l c . ene rgy func t i on (X) # Target func t i on

R = random ()

i f accepted (E, R, T) :

X = X next

Listing 3.2: Applying Proxima to MCSA.

The user no longer needs to run the many simulations to find the best parameters and

can import Proxima as a simple Python library, as shown in Listing 3.2.

3.1.6 Summary

We have presented Proxima, a novel method for simplifying the incorporation of machine-

learning-based surrogate models into science applications. A surrogate model is effective

when it is sufficiently accurate for scientific goals and the cost of its (re)training is less

than that saved by its use. We used the example of atomistic simulations to illustrate the

challenges inherent in the resulting speed-accuracy tradeoffs, which are typically too complex

84

for users to navigate without extensive and expensive experimentation. We showed how

simple approaches to the integration of surrogate models, in which default values are used

for various surrogate model configuration parameters, can easily result in inaccurate results

and/or extreme slowdowns. We also showed how the complexity of such simulations means

that users cannot readily identify good values for parameters without performing extensive

experimentation. We then showed how with Proxima, a user does not need to perform

extensive testing, curate a training set, or pre-train a machine learning model. Instead,

Proxima used control theory to determine values for configuration parameters automatically,

in ways that satisfy error bounds while also delivering substantial speedups: up to 5.52× in

the case studied here.

We have focused in this work on a simple atomistic modeling problem, namely computing

the energy of methane, the simplest hydrocarbon. In future work, we will apply the method

to larger atomistic modeling problems, where we expect Proxima to provide yet greater

benefits. The relationship between threshold and error is not expected to change with

increased problem size, so we expect Proxima to continue to meet the error bounds. And

because Proxima replaces a target function that scales as O(n3) with a linear surrogate, the

speedups could be even larger for larger problems. By delivering large speedups with only

minor modifications to the science application, Proxima thus further opens the capabilities

of using machine learning in these science applications.

3.2 Dynamic On-The-Fly Integration of Surrogates in Molecular

Dynamics Simulations

3.2.1 Introduction

We further explored the generality of Proxima and potential challenges in ML surrogate

control using a molecular dynamics application. From drug to material discoveries, molecular

85

dynamics (MD) simulations capture behaviour that would otherwise not be seen or would

require extensive expensive realistic simulation [53, 60]. MD can help the scientist understand

an insight at the level of the atomic structure. Additionally, it is not only a snapshot, but

follows the movement of individual molecules and reproduces the behavior using model

systems [97]. Hollingsworth et al. explain how molecular dynamics simulations can “predict

how every atom in a protein or other molecular system will move over time based on a

general model of the physics governing inter-atomic interactions.” With the ability to both

help interpret experimental results and guide the work, the popularity and accessibility of

MD simulations is only growing.

The increase complexity of integrating machine learning into this MD problem comes

from how time steps are explicitly related to each other. The goal of MC is to make each

time step independent from the last, therefore, an incorrect prediction on one step won’t

effect the following step. Unlike MC, the time step dependence in MD can cause cascading

ramifications of using an ML model on incorrect steps, resulting in subsequent incorrect

usage. Each time-step also requires a vector prediction for every atom in the system. Com-

pared to the trajectory produced in the Monte Carlo (MC) work from the previous chapter,

which requires one scalar value prediction for each step in the system [129].

In addition, the application we explore here has a system that is changing size and

state (solid, liquid, solid and liquid). Unlike the MC application we previously explored,

that simulated a simple system, a single methane molecule, the MD simulation explored

here, simulating many aluminum atoms, need to be run for many hundreds of thousands

of time steps and uses machine learning models that are trained on substantially larger

datasets. Furthermore, methane (like many other hydrocarbons), can be explained by simple

force fields. The complex aluminum system requires DFT. Thus, using Proxima in an MD

simulation poses further challenges in finding the correct feedback metric to set the threshold.

To integrate machine learning into MD applications, prior methods require many itera-

86

tions to find fixed usage parameters. Fixed usage parameters is defined as parameters set

by the user that are held constant throughout the simulation, often not yielding the best

performance trade offs. As discussed in the previous chapter, it can take many iterations to

set parameters for the Monte Carlo simulation, but setting the correct usage bounds is in-

tensified in molecular dynamics because the ramifications of poor force predictions are likely

to be more significant. In our work, we show an advanced version of Proxima to enable the

dynamic usage of machine learning, without the need to run many iterations to find usage

parameters or being tied to the specific MD algorithm.

The more atoms or complex the material is, the more complex the interactions will be

to simulate. Running these simulations take a significant amount of compute time—taking

up to several months to run large simulations, quickly becoming limited in size due to

computational requirements (scaling with the number of electrons cubed) [34, 96]. There

have been many attempts at accelerating molecular dynamics simulations—from high cost,

gold-standard approximations, Density Functional Theorem (DFT) to lighter weight approx-

imations, effective medium theory potential (EMT), to machine learning models. Often used

in high-cost design, scientists want to make sure approximations are as close to first-principle

calculations with a shorter time-frame of execution. Current common methodologies rely on

using one type of approximation for the entirety of the simulation; i.e. either using machine

learning or more classical approximations. This is because atomistic modeling presents a

distinct set of challenges for machine learning. Being that new states,structures, or regions

are often explored where training examples are sparse or not yet covered, it is often not

sufficient to assess a model’s fit with typical training and validation sets [96].

With this challenge, there has been a focus on understanding when to use machine

learned models or surrogates during the simulation. Some work has focused on on-the-fly

usage of machine learning in MD simulations. Botu et al. create a fingerprint technique

where the atom configuration is characterized in a way that a distance metric is used as

87

a deciding fixed factor or threshold on model usage [20]. For example, a new input data

point is compared to the current training set based on a Euclidean distance. After many

iterations, the scientists can find the best distance threshold to use for the studied model

and simulation. The current state-of-the-art research in on-the-fly surrogate usage, Li et al.

leverage predictor-corrector molecular dynamics to embed Gaussian process model within

first-principles molecular dynamics [78]. Similarly, after many iterations, they too would

find the best fixed boundaries or parameters of surrogate usage during the simulation. The

limitations of these past approaches is in the requirement for using fixed parameters that

involve many iterations to find. These usage parameters are limited to specific simulations.

Past work on finding such fixed parameters is applicable only to simulations that do not

change state. For example, going from solid to liquid, liquid to solid, or changing boundary

conditions. Additionally, usage parameters are often tied into the time-stepping algorithm

itself [78], limiting utilization across differing applications.

To tackle the current limitation of requiring and finding fixed threshold parameters for

on-the-fly machine learning, we introduce an advanced version of Proxima. Within a complex

molecular dynamics application, we establish the relationship between the standard devia-

tion of a bootstrap ensemble of neural network-based calculators and force error, proposed

by Peterson et al [96], can be used to dynamically adjust the surrogate usage threshold.

This is in addition to using the more accurate force prediction provided by the model ensem-

ble. For this simulation, a traditional classical approximation (EMT) is replaced by a deep

learning model based on whether the standard deviation of the model ensemble is less than

a usage threshold. The controller feedback mechanism uses force error to then dynamically

change this usage threshold throughout the simulation. In order to examine a more complex

molecular dynamics applications, we use a deep learning model and methodology created by

the DeePMD team [123].

The contributions of this work are:

88

• The ability to dynamically use surrogate models in molecular dynamic simulations in

a way that is completely agnostic to the algorithms used by the application

• Confirm that the controller works for molecular-dynamics by reducing calls to the high-

fidelity function. Show that the controller is a critical asset in surrogate integration as a

fixed parameter cannot achieve both accurate science results and reduced high-fidelity

function calls together.

• Establish that using ensemble models for uncertainty is a suitable method for on-the-fly

surrogate integration in molecular dynamics.

• Given an uncertainty quantification metric (here we use an ensemble approach, previ-

ously we used distance), we can dynamically modify and adjust usage bounds - which

have been previously fixed and required many iterations to find.

3.2.2 Related work

Csanyi et al. use both high-fidelity (DFT) and low-fidelity (classical force model optimiza-

tion) at simulation time. Using a predictor-corrector approach (there auditing scheme), they

created a flow that after a n number of time steps, runs quantum calculations then tunes

the parameters of the classical potential to increase the force prediction accuracy [35]. Using

this same methodology, Li et al. replaced the classical force model with a Gaussian Process

model. In this case, after n time steps, the quantum calculations will be run and the new

data will be added to the QM database to improve model accuracy [78]. Both these meth-

ods use a specific time stepping algorithm to incorporate two different force approximations.

Proxima is not connected to the dynamics the way it is in these past approaches, because it

is not connected to the time-stepping algorithm, nor does Proxima rely on a fixed number

of time steps for surrogate usage. Proxima can be used without changing any part of the

simulation that uses it.

89

3.1 has further details in work related to ML accelerated molecular dynamics simulation.

3.2.3 Background

The control theory and Proxima method is explained in the section 3.1. The modifications

and improvements discussed here are of the feedback metric used for the threshold, how it

is calculated, and the model used. The methodology behind these changes are explained in

the following section. Here, we look at a more complex application in molecular dynamics.

In comparison, instead of requiring a singular scalar prediction for the entire system of four

atoms, we will now calculate a force vector for every single atom in the system of hundreds

of atoms.

Molecular dynamics simulations are based on Newton’s laws of motion. Given the atom

positions in a system (in our case, aluminium atoms), the simulation calculates the force

exerted on each atom by all the other atoms in the system using Newton’s Law of motion

to predict the spatial position of each atom as a function of time [60]. MD is a simulation

of steps through time, that captures snapshots of atom positions at each step, where it

calculates forces on each atom and use those forces to update the positions and velocity

of each atom. In the end, the simulation returns a specific atom-configurations at each

time-step.

In this work, we are able to take advantage of the substantial advances in deep learning

for molecular dynamics. Specifically, we use models developed by the DeePMD team using

their DeePMD-toolkit [123]. The toolkit is interfaced with TensorFlow, allowing the training

process to be automatic and efficient. Though we do not look at on-the-fly re-training in

this work, it is something that could be useful and discussed in the future work section. The

models created by the DeePMD-kit allow for efficient molecular simulations. The methodol-

ogy and example they used is based on learning the inter-atomic potential energy and forces

of a water model using data obtained from density functional theory. The team was able to

90

show their methodology reproduced accurate structural information [133]. With confidence

in the DeePMD methodology, we use the same set-up to find the inter-atomic potential forces

to simulate the solid-liquid phase boundary of aluminum to find the melting temperature.

Surrogate usage is typically seen in examples when temperature and/or states are held

constant. In order to show the effectiveness of our methodology, we incorporate the method

into an application where the states are changing, i.e. solid to liquid, liquid to solid, with

solid-liquid boundaries. Though there are many approaches for melting point calculations, we

use the detailed guideline, SLUSCHI, provided by Hong et al. SLUSCHI or “solid and liquid

in ultra small coexistence with hovering interfaces,” a guideline created for wide community

use. The creators of SLUSCHI outlines and offers a detailed guideline to perform melting

point calculations [61]. The set-up is as follows: SLUSCHI starts with a crystal or solid

structure that the user specifies. SLUSCHI then builds a supercell—a large cell built from

many unit cells. Then SLUSCHI prepares the solid-liquid coexistence and employs the

small-cell coexistence method. This coexistence method is run many times to find the ratio

of liquid to solid, that then indicates how close the guess temperature is to the correct

melting-temperature of the structure.

Furthermore, because calculating the feedback metric for the threshold is a larger driver

of time in the Monte Carlo simulation of the previous Proxima version, we incorporate a

new feedback metric. In the previous methodology, calculating the distance value of the new

input value required a comparison of that new input value, and every value in the training

system. This was possible in the small Monte Carlo simulations, where there were only

1,000 steps. Being that molecular dynamics can go for many hundreds of thousands of steps,

and deep learning models can have equivalent data sizes, such a comparison or using the

euclidean distance as a feedback metric, would not be the most efficient route. We found a

promising approach with ensemble methods as they are common methodologies that have

been established in the machine learning and material science community [96, 3, 38]. In this

91

work, we use an ensemble of deep learning models for both the end prediction value and

feedback metric for the threshold. The prediction value is the mean of the model results and

standard deviation is used for feedback metric.

3.2.4 Methodology

In this section, we explain the modifications and improvements made to Proxima and how

the deep learning ensemble model is dynamically incorporated into SLUSCHI. The feedback

metric, model error calculation, and type of model input and output used are the items

updated. As discussed in the previous chapter, the Proxima controller is able to dynamically

change the surrogate usage parameters using an error feedback during the simulation. The

standard workflow, edited from the original Proxima workflow, is shown in Figure 3.12. Akin

to the previous version of Proxima, the intention is to replace the simulation’s high-cost

function with another lighter-weight approximate, decided by whether or not the feedback

metric is below a given threshold (Tk). The threshold is what will be dynamically changing

throughout the simulation and is based on the relationship between the error and standard

deviation of the ensemble model. Here, we will not be looking at retraining the model, so it

was taken out of the workflow.

For this study, we look at a molecular dynamics methodology to calculate the melting

temperature of a material or element. Here, we are looking at a well studied element,

aluminimum, with the SLUSCHI methodology to calculate the melting temperature. The

configurations of the SLUSCHI configurations are as follows. We start with a 4x4x4 super-

cell of the face-centered cubic structure – a total of 256 aluminum atoms. After equilibrating

this structure near the melting temperature, we duplicate the cell in the Z-direction and melt

the new atoms at a temperature above the aluminum melting point while holding the original

atoms fixed. The resultant half-solid, half-liquid cell has a total of 512 atoms. We equilibrate

the system at a temperature of 900K (aluminium melting temperature is 933.5K).

92

Std. Dev (ML Models)< T

?
Force= S

Force = F(u)

Ensemble
Surrogate

model

u

Force

No

Yes

Figure 3.12: Logical flow of the Proxima-SLUSCHI surrogate modeling process. At upper
left, an input value u is received as input to the ensemble of models where the standard
deviation of the results is then calculated. Ultimately either the target function F or the
surrogate model are used to compute the return value Force. A key difference between
Proxima and prior work is that the threshold used to determine whether the surrogate
should be used (Tk in the upper left) is determined dynamically; i.e., this threshold changes
with both time k and temperature T.

We set an initial guess of melting temperature of 900K (aluminiums melting temperature

933.5K). There are 10,000 coexistence steps and 2,000 melting steps taken. For ease of

iteration and development, we use the very fast EMT potential. EMT or effective medium

theory is another common theory-based inter-atomic potential [30].

To enable the use of a machine learned surrogate in SLUSCHI, we require advanced ma-

chine learning techniques. Here, we utilize the advances of DeepMD team. To use DeePMD,

we first had to acquire training data, which DeePMD-kit refers to as a list of systems.

Each system contains a number of frames. We ran the SLUSCHI application using different

random seeds with the same configurations discussed above. These models are trained on

NVIDIA A100 GPU’s provided by Argonne’s Computing Leadership Facility, taking around

3 hours to train. The models achieve a root mean squared error of 0.1 eV/A for force, virial

stress, and energy. We only use the model prediction force in this case. The loss across the

93

Figure 3.13: The learning curve using an aluminum system through a SLUSCHI workflow
simulation datapoints. The root mean square virial, energy, and force errors of the training
and validation sets are presented against the training step.

training period can be seen in Figure 3.13, taking around one million steps to train for the

model converge for force predictions. We train and use three deep learning models created

using the DeePMD software.

For a molecular dynamics simulation, there is no guarantee that you will always be

making predictions for atomistic configurations that are well represented by your training

set. Now that we have a working model, we need a way to decide when to use it. Being

that we need Proxima to be (1) algorithm agnostic and (2) able to handle a much longer

simulation, we need a feedback metric that meets both these requirements. Additionally, the

feedback metric will also need to have some correlation with the model prediction error in

94

Figure 3.14: The figures shows the linear relationship between the mean absolute error of
simulation ensemble prediction and standard deviation of the ensemble predictions.

order to dynamically change the threshold with the controller. Past work in both machine

learning and machine learning in material science has shown such a relationship when using

the standard deviation of an ensemble of models and the ensemble error. Similarly, we too

found such a relationship between the standard deviation and error of an ensemble of three

deep learning models, show in Figure 3.14. Similar to the Monte Carlo application,though

the relationship is not always perfectly linear, we use a time-varying linear model to capture

the relationship through the simulation. Using the results of the ensemble eclipses the need

to do data comparisons for each of the values in the training set - done in the previous

Proxima implementation. Furthermore, this method does not require the user to have access

to the training set. The mean of the three model predictions is used as the final value for

error calculation and prediction value.

95

Since we no longer are comparing two scalar values and instead of a vector, we tackle error

calculations differently as well. Here are two ways we evaluated error. Both the surrogate

model and EMT() method return a 3N force matrix. N is the number of atoms in the

systems and the three corresponds to the X,Y,Z coordinates of the atoms. We take the L2

force error for each atom. Then, we take the maximum value over all atoms. This final value

is what is taken as the error for that current snapshot or window. This error method can

help highlight error localized to specific atoms in the simulation. This is is a strict error as

it would not let any atoms have an error about the given error threshold, regardless of the

size of the system. For a less strict error calculation. We find the average of element wise

difference of the force predictions. Both error options are available in Proxima.

3.2.5 Results

We will show (1) the dynamically changing threshold related to error, allowing the controller

to successfully adapt surrogate usage throughout the simulation, (2) target the given error,

and (3) capture the necessary science. We will also discuss how using a constant threshold

is not possible for this type of dynamic simulation.

First, Figure 3.16, shows the model mean absolute error throughout the simulation. The

peak at the beginning of the simulation relates to the high melting point of at the beginning

of the SLUSCHI simulation. Figure 3.15, shows the corresponding threshold set by the

controller throughout the simulation. Similar to results from past work in machine learning

and material science workflows, there is almost a distinct pattern of when the surrogate

is used and not. This pattern is commonly identified after running many iterations of the

simulation and surrogate. Proxima can identify this pattern with more detail. Figures 3.17

and 3.18, show the corresponding zoomed in simulation steps and results at the peak of

the simulation. The lower threshold values indicates low confidence in the model, which

corresponds to the error results that are above the user defined threshold. Though it may

96

seem that the model is never used within this low threshold pattern, Figure 3.19, illustrates

that there are some steps that the model can actually be used. Additionally, the pattern

among the simulation is not consistent, as surrogate runs are shorter or longer than others.

Figure 3.15: This graph presents the threshold against the steps in the simulation.

Additionally, to explore how well the science was captured, we compare the melting

results after 20 coexistence runs. That is, we calculate the percentage that the liquid-solid

system turned all liquid or all solid. These results heavily depend on the user defined error

threshold. Here, we use two standard deviation thresholds for the ”Fixed” parameter results

and two user defined error thresholds for Proxima. The baseline comparison is when no

surrogate is used. Figure 3.20 shows the SLUSCHI liquid-ratio results of using no surrogate,

a fixed standard deviation usage threshold, and Proxima. The baseline is the first bar in the

graph, where it achieves a liquid solid ratio of 14%. The second bar is a standard deviation

97

Figure 3.16: This graph presents the force error against the steps in the simulation.

usage threshold of 0.01. When using this threshold, all results turned liquid. The following

bar represents a more conservative threshold of 0.001. With this threshold, the system

returned a liquid-solid ratio of 53%. Even with a conservative threshold, and low surrogate

usage (18.96%), the end results are incorrect. This could indicate that the surrogate is used

at critical moments of the simulation. The following two bars are the results of using the

surrogate with Proxima. The first bar is using user defined mean absolute error of 0.001,

resulting in a 1% error for the liquid-solid ratio. The following bar is set at an mean absolute

error of 0.01, resulting in an error of 3%for the liquid-solid ratio. This graph clearly shows

that even with a conservative fixed parameter, the approach does not work for this type of

complex simulation, with changing states. Even with such a low usage parameter, the model

was likely used in critical parts of the simulation, producing in incorrect final results.

98

5000 6000 7000 8000 9000 10000
Steps

0.02

0.04

0.06

0.08

0.10

0.12

0.14
M

AE

Figure 3.17: This graph presents the force error from the steps between 5,000 and 10,000.

3.2.6 Summary

With the complex nature of molecular dynamics exploring new regions, identifying when

to best use machine learning, is a complicated task. Prior work has often required many

iterations to find the best machine learning usage parameters, often relying on fixed usage

thresholds or number of consecutive time steps while having to re-run the same time steps

with updated models. Combining advances in understanding MD ensemble uncertainty and

MD deep learning, our improvements to Proxima have enabled the dynamic usage of deep

learning models in molecular dynamics simulations. This advanced version of Proxima, no

longer requires multiple iterations of the application to find those best fixed usage boundaries.

Furthermore, we demonstrated the ensemble method standard deviation relationship with

force error as as a suitable method for on-the-fly surrogate integration. Proxima allows for

99

5000 6000 7000 8000 9000 10000
Steps

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

Th
re

sh
ol

d
Proxima 84.94% surrogate

Figure 3.18: This graph presents threshold changes from the steps between 5,000 and 10,000.

a surrogate modeling framework that can be introduced into an application using a single

function decorator and user error tolerance.

100

5000 6000 7000 8000 9000 10000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
rro

ga
te

 U
se

d

Surrogate Used: 84.94%

Figure 3.19: This graph presents surrogate usage from the steps between 5,000 and 10,000.

101

Figure 3.20: Liquid-solid ratio results of SLUSCHI using no surrogate, fix standard deviation
usage threshold, and Proxima.

102

CHAPTER 4

SUMMARY AND FUTURE WORK

4.1 Performance Prediction

With the significant investment in performance prediction across architectures, we propose

two case studies to empower research in performance projection on modern architectures.

The two architectures we use in this work are NVIDIA’S P100 and V100. Though they are

only one generation apart, the differences in the architectures is apparent in the the non-

linear relationship among the performance metrics across a range of kernels. By being able to

predict total memory throughput and IPC, the application developer can gain insights into

future performance, such as whether or not their application will be memory bound on their

target architecture enabling researchers and developers in making preemptive optimizations.

With low errors across both performance metrics studied here, we find a purely data-driven

approach for cross-architecture performance prediction a viable option.

4.2 Accelerating Scientific Computing

Molecular dynamics often requires the use of high-cost functions, such as density functional

theory, which can take many hours to complete. With the recent advances in machine

learning, these high-cost function calls have been able to be replaced/modeled with deep-

learning neural networks, where inference time can be fractions of a second. Typically, the

surrogate-integration workflow has had a fixed parameter deciding when the pre-trained

model is used. This could lead to replacing the high-cost function without guarantees in

accuracy or error.

In this thesis, we presented Proxima, a library that allows the dynamic integration of

machine-learned surrogates. Using a controller based decision engine and the relationship

with the feedback and error of the simulation, Proxima can dynamically decide when to use

103

the machine learned model. We look at two Proxima implementations in Chapter 3. In both,

Proxima guarantees a given error within an approximate threshold. This library enables the

on-the-fly automatic and dynamic use of the machine learned surrogate during a molecular

dynamics simulation. Proxima is a step forward in creating a workflow that can more easily

carried out to scale. This workflow will enable larger simulations as well as increase overall

performance while staying within a given target error bound.

4.3 Future Work

The insights illuminated by this work, open the door to a variety of follow-on research:

1. With the increasing complexity in molecular dynamics applications, integrating ma-

chine learning requires addressing the improvement of said machine learning model,

often at simulation time. As a supplement and further improvement of Proxima, we

can look at retraining the models on-the-fly. The challenges we are trying address are:

reducing both the number of times the model needs to be retrained, along with limiting

the amount of data the model needs. To do so, we can use a similar Proxima workflow,

focused on retrain intervals. For example, the initial retrain interval will start with a

guess on what the new input data set size needs to be before the models are retrained.

After retraining, the controller will either increase or decrease the data window size

dependent on whether or not it increases or decreases the prediction error. If there is

little improvement in prediction error, a larger dataset is needed. As the model starts

improving or the simulation keeps visiting states where it has sufficient training data,

future dataset sizes will get smaller (speeding up model training as the simulation goes

on). Eventually, the model will no longer need retraining or retraining becomes sparse.

We would have a model manager on one end (with it’s own controller), database of

atom data on disk, and Proxima on the other end, controlling surrogate usage on the

application. Having a model manager, disjoint to Proxima, will allow for many models

104

to train and the application to run asynchronously among many processes. These pro-

cesses will place new datapoints into the core atom database where the model manager

can check the database has reached the optimal size and retrain the models. Proxima

will have a low cost check if the models on disk have been updated and use the new

models when they have, accelerating the application, while still producing scientifically

usable results. Finally, we will want to incorporate Proxima in to the ASE library sys-

tem. ASE supports over a dozen atomistic calculators and with a set of tools that

allow for quick set-up of a variety of atomistic simulations. Having the availability

of Proxima in such a widely used library will not only increase usability of surrogate

models in molecular dynamics simulations.

Furthermore, when looking at the spatial decomposition of atomic structures, Proxima

can be used at identifying what part of the structure needs to be run by the high-cost

function and what part can be run using a lighter-weight approximate. By reducing

the number of atoms the high-cost function has to calculate the force or energy for,

Proxima simultaneously reduces the overall runtime it takes to do those calculations.

2. We can leverage the findings from the performance prediction work to further expand

the study of performance portability. Calculating the performance portability of an ap-

plication among a set of architectures often requires compute heavy runs across several

architectures. Leveraging low-cost machine learning, such as the memory throughput

prediction model, can reduce the time needed to acquire such numbers.

105

REFERENCES

[1] Profiler :: Cuda toolkit documentation. https://docs.nvidia.com/cuda/

profiler-users-guide/index.html. (Accessed on 12/05/2019).

[2] Programming guide :: Cuda toolkit documentation. https://docs.nvidia.com/

cuda/cuda-c-programming-guide/index.html. (Accessed on 12/02/2019).

[3] Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mo-

hammad Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra

Acharya, et al. A review of uncertainty quantification in deep learning: Techniques,

applications and challenges. Information Fusion, 76:243–297, 2021.

[4] Mohamad Mahmoud Al Rahhal, Yakoub Bazi, Haikel AlHichri, Naif Alajlan, Farid

Melgani, and Ronald R Yager. Deep learning approach for active classification of

electrocardiogram signals. Information Sciences, 345:340–354, 2016.

[5] Katie Antypas, BA Austin, TL Butler, RA Gerber, Cary Whitney, Nick Wright, Woo-

Sun Yang, and Zhengji Zhao. NERSC workload analysis on Hopper. Lawrence Berkeley

National Laboratory Technical Report, 6804:15, 2013.

[6] Newsha Ardalani, Clint Lestourgeon, Karthikeyan Sankaralingam, and Xiaojin Zhu.

Cross-architecture performance prediction (xapp) using cpu code to predict gpu per-

formance. In Proceedings of the 48th International Symposium on Microarchitecture,

pages 725–737. ACM, 2015.

[7] Rajive Bagrodia, Ewa Deeljman, Steven Docy, and Thomas Phan. Performance pre-

diction of large parallel applications using parallel simulations. In ACM SIGPLAN

Notices, volume 34, pages 151–162. ACM, 1999.

106

https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

[8] Prasanna Balaprakash, Romain Egele, Misha Salim, Stefan Wild, Venkatram Vish-

wanath, Fangfang Xia, Tom Brettin, and Rick Stevens. Scalable reinforcement-

learning-based neural architecture search for cancer deep learning research. arXiv

preprint arXiv:1909.00311, 2019.

[9] Prasanna Balaprakash, Robert B Gramacy, and Stefan M Wild. Active-learning-based

surrogate models for empirical performance tuning. In 2013 IEEE International Con-

ference on Cluster Computing (CLUSTER), pages 1–8. IEEE, 2013.

[10] Prasanna Balaprakash, Karl Rupp, Azamat Mametjanov, Robert B Gramacy, Paul D

Hovland, and Stefan M Wild. Empirical performance modeling of gpu kernels using

active learning. In ParCo, pages 646–655. Citeseer, 2013.

[11] Prasanna Balaprakash, Michael Salim, Thomas Uram, Venkat Vishwanath, and Stefan

Wild. Deephyper: Asynchronous hyperparameter search for deep neural networks. In

2018 IEEE 25th International Conference on High Performance Computing (HiPC),

pages 42–51. IEEE, 2018.

[12] Prasanna Balaprakash, Ananta Tiwari, Stefan M Wild, Laura Carrington, and Paul D

Hovland. AutoMOMML: Automatic multi-objective modeling with machine learning.

In International Conference on High Performance Computing, pages 219–239. Springer,

2016.

[13] Michael Balmer, Marcel Rieser, Konrad Meister, David Charypar, Nicolas Lefebvre,

and Kai Nagel. Matsim-t: Architecture and simulation times. In Multi-agent systems

for traffic and transportation engineering, pages 57–78. IGI Global, 2009.

[14] Saeid Barati, Ferenc A. Bartha, Swarnendu Biswas, Robert Cartwright, Adam Du-

racz, Donald Fussell, Henry Hoffmann, Connor Imes, Jason Miller, Nikita Mishra,

Arvind, Dung Nguyen, Krishna V. Palem, Yan Pei, Keshav Pingali, Ryuichi Sai, An-

107

drew Wright, Yao-Hsiang Yang, and Sizhuo Zhang. Proteus: Language and runtime

support for self-adaptive software development. IEEE Software, 36(2):73–82, 2019.

[15] Albert P Bartók, Risi Kondor, and Gábor Csányi. On representing chemical environ-

ments. Physical Review B, 87(18):184115, 2013.

[16] Jörg Behler. Perspective: Machine learning potentials for atomistic simulations. The

Journal of Chemical Physics, 145(17):170901, 2016.

[17] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends® in

Machine Learning, 2(1):1–127, 2009.

[18] F Matthias Bickelhaupt and Evert Jan Baerends. Kohn-Sham density functional the-

ory: Predicting and understanding chemistry. Reviews in computational chemistry,

15:1–86, 2000.

[19] Kurt Binder, Jürgen Horbach, Walter Kob, Wolfgang Paul, and Fathollah Varnik.

Molecular dynamics simulations. Journal of Physics: Condensed Matter, 16(5):S429,

2004.

[20] Venkatesh Botu, Rohit Batra, James Chapman, and Rampi Ramprasad. Machine

learning force fields: Construction, validation, and outlook. The Journal of Physical

Chemistry C, 121(1):511–522, 2017.

[21] Venkatesh Botu and Rampi Ramprasad. Adaptive machine learning framework to

accelerate ab initio molecular dynamics. International Journal of Quantum Chemistry,

115(16):1074–1083, 2015.

[22] Venkatesh Botu and Rampi Ramprasad. Learning scheme to predict atomic forces and

accelerate materials simulations. Physical Review B, 92(9):094306, 2015.

108

[23] Michael Boyer, Jiayuan Meng, and Kalyan Kumaran. Improving gpu performance

prediction with data transfer modeling. In 2013 IEEE International Symposium on

Parallel & Distributed Processing, Workshops and Phd Forum, pages 1097–1106. IEEE,

2013.

[24] Markus J Buehler. Atomistic modeling of materials failure. Springer Science & Business

Media, 2008.

[25] Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and Aron Walsh.

Machine learning for molecular and materials science. Nature, 559(7715):547–555, 2018.

[26] Marco Caccin, Zhenwei Li, James R. Kermode, and Alessandro De Vita. A framework

for machine-learning-augmented multiscale atomistic simulations on parallel supercom-

puters. International Journal of Quantum Chemistry, 115(16):1129–1139, June 2015.

[27] Laura Carrington, Allan Snavely, Xiaofeng Gao, and Nicole Wolter. A performance

prediction framework for scientific applications. In International Conference on Com-

putational Science, pages 926–935. Springer, 2003.

[28] Laura Carrington, Nicole Wolter, Allan Snavely, and Cynthia Bailey Lee. Applying an

automated framework to produce accurate blind performance predictions of full-scale

hpc applications. In Department of Defense Users Group Conference, 2004.

[29] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha

Lee, and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing.

In 2009 IEEE international symposium on workload characterization (IISWC), pages

44–54. Ieee, 2009.

[30] Tuck C Choy. Effective medium theory: principles and applications, volume 165. Oxford

University Press, 2015.

109

[31] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with

statistical models. Journal of artificial intelligence research, 4:129–145, 1996.

[32] Matthieu Courbariaux, Jean-Pierre David, and Yoshua Bengio. Low precision storage

for deep learning. arXiv preprint arXiv:1412.7024, 2014.

[33] Christopher J Cramer and FM Bickelhaupt. Essentials of computational chemistry.

Angewandte Chemie, 42(4):381–381, 2003.

[34] CJ Cramer. Molecular mechanics. Essentials of Computational Chemistry. Theories

and Models, 2nd ed., John Wiley and Sons Ltd., England, pages 36–37, 2004.

[35] Gabor Csányi, T Albaret, MC Payne, and Alessandro De Vita. “learn on the fly”:

A hybrid classical and quantum-mechanical molecular dynamics simulation. Physical

review letters, 93(17):175503, 2004.

[36] Aron Culotta and Andrew McCallum. Reducing labeling effort for structured predic-

tion tasks. In AAAI, volume 5, pages 746–751, 2005.

[37] Yixin Diao, Joseph L Hellerstein, Sujay Parekh, Rean Griffith, Gail Kaiser, and Dan

Phung. Self-managing systems: A control theory foundation. In 12th IEEE Inter-

national Conference and Workshops on the Engineering of Computer-Based Systems,

pages 441–448. IEEE, 2005.

[38] Thomas G Dietterich. Ensemble methods in machine learning. In International work-

shop on multiple classifier systems, pages 1–15. Springer, 2000.

[39] Yi Ding, Nikita Mishra, and Henry Hoffmann. Generative and multi-phase learning for

computer systems optimization. In Proceedings of the 46th International Symposium

on Computer Architecture, ISCA ’19, pages 39–52, New York, NY, USA, 2019. ACM.

110

[40] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search:

A survey. arXiv preprint arXiv:1808.05377, 2018.

[41] Anne Farrell and Henry Hoffmann. MEANTIME: Achieving both minimal energy and

timeliness with approximate computing. In 2016 USENIX Annual Technical Confer-

ence (USENIX ATC 16), pages 421–435, Denver, CO, June 2016. USENIX Association.

[42] Scott E Field, Chad R Galley, Jan S Hesthaven, Jason Kaye, and Manuel Tiglio. Fast

prediction and evaluation of gravitational waveforms using surrogate models. Physical

Review X, 4(3):031006, 2014.

[43] Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of self-

adaptive software with control-theoretical formal guarantees. In 36th International

Conference on Software Engineering, pages 299–310, 2014.

[44] Nathan A Garland, Romit Maulik, Qi Tang, Xian-Zhu Tang, and Prasanna Bal-

aprakash. Progress towards high fidelity collisional-radiative model surrogates for rapid

in-situ evaluation. In 3rd Workshop on Machine Learning and the Physical Sciences.

PMLR, 2020.

[45] Luigi Genovese, Matthieu Ospici, Thierry Deutsch, Jean-François Méhaut, Alexey

Neelov, and Stefan Goedecker. Density functional theory calculation on many-cores

hybrid central processing unit-graphic processing unit architectures. The Journal of

chemical physics, 131(3):034103, 2009.

[46] Soraya Ghiasi, Thomas Walter Keller Jr, Ramakrishna Kotla, and Freeman Leigh Raw-

son III. Scheduling processor voltages and frequencies based on performance prediction

and power constraints, June 10 2008. US Patent 7,386,739.

[47] Torkel Glad and Lennart Ljung. Control theory. CRC press, 2018.

111

[48] Andrea Grisafi, David M Wilkins, Gábor Csányi, and Michele Ceriotti. Symmetry-

adapted machine learning for tensorial properties of atomistic systems. Physical Review

Letters, 120(3):036002, 2018.

[49] Mohamed Hacene, Ani Anciaux-Sedrakian, Xavier Rozanska, Diego Klahr, Thomas

Guignon, and Paul Fleurat-Lessard. Accelerating VASP electronic structure calcula-

tions using graphic processing units. Journal of computational chemistry, 33(32):2581–

2589, 2012.

[50] J Hafner. Atomic-scale computational materials science. Acta Materialia, 48(1):71–92,

2000.

[51] Dilek Hakkani-Tür, Giuseppe Riccardi, and Allen Gorin. Active learning for automatic

speech recognition. In 2002 IEEE International Conference on Acoustics, Speech, and

Signal Processing, volume 4, pages IV–3904. IEEE, 2002.

[52] Christopher Michael Handley and Jörg Behler. Next generation interatomic potentials

for condensed systems. The European Physical Journal B, 87(7), July 2014.

[53] Tomas Hansson, Chris Oostenbrink, and WilfredF van Gunsteren. Molecular dynamics

simulations. Current opinion in structural biology, 12(2):190–196, 2002.

[54] Stephen Lien Harrell, Joy Kitson, Robert Bird, Simon John Pennycook, Jason Sewall,

Douglas Jacobsen, David Neill Asanza, Abaigail Hsu, Hector Carrillo Carrillo, Hes-

soo Kim, et al. Effective performance portability. In 2018 IEEE/ACM International

Workshop on Performance, Portability and Productivity in HPC (P3HPC), pages 24–

36. IEEE, 2018.

[55] Joseph L Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M Tilbury. PID controllers.

In Feedback Control of Computing Systems, chapter 9, pages 293–335. John Wiley &

Sons, Ltd, 2004.

112

[56] Lauri Himanen, Marc OJ Jäger, Eiaki V Morooka, Filippo Federici Canova, Yashasvi S

Ranawat, David Z Gao, Patrick Rinke, and Adam S Foster. DScribe: Library of de-

scriptors for machine learning in materials science. Computer Physics Communications,

247:106949, 2020.

[57] Henry Hoffmann. CoAdapt: Predictable behavior for accuracy-aware applications run-

ning on power-aware systems. In 26th Euromicro Conference on Real-Time Systems,

pages 223–232. IEEE Computer Society, 2014.

[58] Henry Hoffmann. JouleGuard: Energy guarantees for approximate applications. In

Ethan L. Miller and Steven Hand, editors, 25th Symposium on Operating Systems

Principles, pages 198–214. ACM, 2015.

[59] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal,

and Martin C. Rinard. Dynamic knobs for responsive power-aware computing. In Rajiv

Gupta and Todd C. Mowry, editors, 16th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 199–212. ACM,

2011.

[60] Scott A Hollingsworth and Ron O Dror. Molecular dynamics simulation for all. Neuron,

99(6):1129–1143, 2018.

[61] Qi-Jun Hong and Axel Van De Walle. A user guide for SLUSCHI: Solid and liquid in

ultra small coexistence with hovering interfaces. Calphad, 52:88–97, 2016.

[62] Sunpyo Hong and Hyesoon Kim. An integrated gpu power and performance model.

In ACM SIGARCH Computer Architecture News, volume 38, pages 280–289. ACM,

2010.

[63] Giulio Imbalzano, Andrea Anelli, Daniele Giofré, Sinja Klees, Jörg Behler, and Michele

113

Ceriotti. Automatic selection of atomic fingerprints and reference configurations for

machine-learning potentials. The Journal of Chemical Physics, 148(24):241730, 2018.

[64] Connor Imes, Steven Hofmeyr, and Henry Hoffmann. Energy-efficient application

resource scheduling using machine learning classifiers. In Proceedings of the 47th In-

ternational Conference on Parallel Processing, ICPP 2018, New York, NY, USA, 2018.

Association for Computing Machinery.

[65] Connor Imes, Huazhe Zhang, Kevin Zhao, and Henry Hoffmann. CoPPer: Soft real-

time application performance using hardware power capping. In IEEE International

Conference on Autonomic Computing, pages 31–41. IEEE, 2019.

[66] Engin Ipek, Bronis R De Supinski, Martin Schulz, and Sally A McKee. An approach to

performance prediction for parallel applications. In European Conference on Parallel

Processing, pages 196–205. Springer, 2005.

[67] T. L. Jacobsen, M. S. Jørgensen, and B. Hammer. On-the-fly machine learning of

atomic potential in density functional theory structure optimization. Physical Review

Letters, 120(2), January 2018.

[68] Rosie Jones, Rayid Ghani, Tom Mitchell, and Ellen Riloff. Active learning for infor-

mation extraction with multiple view feature sets. Proc. of Adaptive Text Extraction

and Mining, EMCL/PKDD-03, Cavtat-Dubrovnik, Croatia, pages 26–34, 2003.

[69] Takafumi Kanamori. Pool-based active learning with optimal sampling distribution

and its information geometrical interpretation. Neurocomputing, 71(1-3):353–362,

2007.

[70] Alireza Khorshidi and Andrew A Peterson. Amp: A modular approach to machine

learning in atomistic simulations. Computer Physics Communications, 207:310–324,

2016.

114

[71] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[72] Elias Konstantinidis and Yiannis Cotronis. A practical performance model for compute

and memory bound gpu kernels. In 2015 23rd Euromicro International Conference on

Parallel, Distributed, and Network-Based Processing, pages 651–658. IEEE, 2015.

[73] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[74] Benjamin C Lee and David M Brooks. Accurate and efficient regression modeling for

microarchitectural performance and power prediction. In ACM SIGOPS Operating

Systems Review, volume 40, pages 185–194. ACM, 2006.

[75] Benjamin C Lee, David M Brooks, Bronis R de Supinski, Martin Schulz, Karan Singh,

and Sally A McKee. Methods of inference and learning for performance modeling

of parallel applications. In Proceedings of the 12th ACM SIGPLAN symposium on

Principles and practice of parallel programming, pages 249–258. ACM, 2007.

[76] David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised

learning. In Machine Learning Proceedings, pages 148–156. Elsevier, 1994.

[77] David D Lewis and William A Gale. A sequential algorithm for training text classifiers.

In SIGIR’94, pages 3–12. Springer, 1994.

[78] Zhenwei Li, James R Kermode, and Alessandro De Vita. Molecular dynamics with

on-the-fly machine learning of quantum-mechanical forces. Physical review letters,

114(9):096405, 2015.

[79] Zhenwei Li, James R. Kermode, and Alessandro De Vita. Molecular dynamics with

on-the-fly machine learning of quantum-mechanical forces. Physical Review Letters,

114(9), March 2015.

115

[80] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R

news, 2(3):18–22, 2002.

[81] Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry Hoff-

mann. Automated control of multiple software goals using multiple actuators. In Eric

Bodden, Wilhelm Schäfer, Arie van Deursen, and Andrea Zisman, editors, 11th Joint

Meeting on Foundations of Software Engineering, pages 373–384. ACM, 2017.

[82] Gabriel Marin and John Mellor-Crummey. Cross-architecture performance predictions

for scientific applications using parameterized models. In ACM SIGMETRICS Per-

formance Evaluation Review, volume 32, pages 2–13. ACM, 2004.

[83] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S

Vetter. Nvidia tensor core programmability, performance & precision. In 2018 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW),

pages 522–531. IEEE, 2018.

[84] Andrew Kachites McCallumzy and Kamal Nigamy. Employing em and pool-based

active learning for text classification. In Proc. International Conference on Machine

Learning (ICML), pages 359–367. Citeseer, 1998.

[85] John D McCalpin. Stream benchmark. Link: www. cs. virginia. edu/stream/ref. html#

what, 22, 1995.

[86] Jiayuan Meng, Vitali A Morozov, Kalyan Kumaran, Venkatram Vishwanath, and

Thomas D Uram. Grophecy: Gpu performance projection from cpu code skeletons.

In Proceedings of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, page 14. ACM, 2011.

[87] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.

116

Teller, and Edward Teller. Equation of state calculations by fast computing machines.

The Journal of Chemical Physics, 21(6):1087–1092, June 1953.

[88] Nikita Mishra, Connor Imes, John D. Lafferty, and Henry Hoffmann. Caloree: Learning

control for predictable latency and low energy. In Proceedings of the Twenty-Third

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’18, pages 184–198, New York, NY, USA, 2018. ACM.

[89] Nikita Mishra, John D Lafferty, and Henry Hoffmann. Esp: A machine learning ap-

proach to predicting application interference. In 2017 IEEE International Conference

on Autonomic Computing (ICAC), pages 125–134. IEEE, 2017.

[90] Nikita Mishra, Huazhe Zhang, John D Lafferty, and Henry Hoffmann. A probabilistic

graphical model-based approach for minimizing energy under performance constraints.

In ACM SIGPLAN Notices, volume 50, pages 267–281. ACM, 2015.

[91] Christoph Morbitzer, PA Strachan, Brian Spires, David Cafferty, and Jim Webster.

Integration of building simulation into the design process of an architectural practice.

2001.

[92] Phani Motamarri, Sambit Das, Shiva Rudraraju, Krishnendu Ghosh, Denis Davydov,

and Vikram Gavini. DFT-FE–A massively parallel adaptive finite-element code for

large-scale density functional theory calculations. Computer Physics Communications,

246:106853, 2020.

[93] Shubhendu S Mukherjee, Sarita V Adve, Todd Austin, Joel Emer, and Peter S Mag-

nusson. Performance simulation tools. Computer, (2):38–39, 2002.

[94] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin Strauss,

and Eric S Chung. Toward accelerating deep learning at scale using specialized hard-

117

ware in the datacenter. In 2015 IEEE Hot Chips 27 Symposium (HCS), pages 1–38.

IEEE, 2015.

[95] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose. Marss: a full system

simulator for multicore x86 cpus. In 2011 48th ACM/EDAC/IEEE Design Automation

Conference (DAC), pages 1050–1055. IEEE, 2011.

[96] Andrew A Peterson, Rune Christensen, and Alireza Khorshidi. Addressing uncertainty

in atomistic machine learning. Physical Chemistry Chemical Physics, 19(18):10978–

10985, 2017.

[97] Dennis C Rapaport. The art of molecular dynamics simulation. Cambridge university

press, 2004.

[98] Giuseppe Riccardi and Dilek Hakkani-Tur. Active learning: Theory and applications

to automatic speech recognition. IEEE transactions on speech and audio processing,

13(4):504–511, 2005.

[99] Matthias Rupp. Machine learning for quantum mechanics in a nutshell. International

Journal of Quantum Chemistry, 115(16):1058–1073, 2015.

[100] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, and O Anatole

Von Lilienfeld. Fast and accurate modeling of molecular atomization energies with

machine learning. Physical Review Retters, 108(5):058301, 2012.

[101] Faizan Sahigara, Kamel Mansouri, Davide Ballabio, Andrea Mauri, Viviana Consonni,

and Roberto Todeschini. Comparison of different approaches to define the applicability

domain of QSAR models. Molecules, 17(5):4791–4810, April 2012.

[102] Michael A Salim, Thomas D Uram, J Taylor Childers, Prasanna Balaprakash, Venka-

tram Vishwanath, and Michael E Papka. Balsam: Automated scheduling and execution

of dynamic, data-intensive hpc workflows. arXiv preprint arXiv:1909.08704, 2019.

118

[103] Muhammad Husni Santriaji and Henry Hoffmann. Grape: Minimizing energy for

gpu applications with performance requirements. In 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 1–13, 2016.

[104] Pedro Savarese and Michael Maire. Learning implicitly recurrent CNNs through pa-

rameter sharing. arXiv preprint arXiv:1902.09701, 2019.

[105] Jonathan Schmidt, Mário RG Marques, Silvana Botti, and Miguel AL Marques. Recent

advances and applications of machine learning in solid-state materials science. npj

Computational Materials, 5(1):1–36, 2019.

[106] Mark R Segal. Machine learning benchmarks and random forest regression. 2004.

[107] Burr Settles. Active learning literature survey. Technical report, University of

Wisconsin-Madison Department of Computer Sciences, 2009.

[108] John C Slater. A simplification of the Hartree-Fock method. Physical review, 81(3):385,

1951.

[109] Warren Smith, Ian Foster, and Valerie Taylor. Predicting application run times using

historical information. In Workshop on Job Scheduling Strategies for Parallel Process-

ing, pages 122–142. Springer, 1998.

[110] Warren Smith, Valerie Taylor, and Ian Foster. Using run-time predictions to estimate

queue wait times and improve scheduler performance. In Workshop on Job scheduling

strategies for Parallel Processing, pages 202–219. Springer, 1999.

[111] Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processes using pseudo-

inputs. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information

Processing Systems, volume 18, pages 1257–1264. MIT Press, 2006.

119

[112] Masashi Sugiyama and Shinichi Nakajima. Pool-based active learning in approximate

linear regression. Machine Learning, 75(3):249–274, 2009.

[113] Lukasz G Szafaryn, Kevin Skadron, and Jeffrey J Saucerman. Experiences accelerating

matlab systems biology applications. In Proceedings of the Workshop on Biomedicine

in Computing: Systems, Architectures, and Circuits, pages 1–4, 2009.

[114] Cynthia A Thompson, Mary Elaine Califf, and Raymond J Mooney. Active learning

for natural language parsing and information extraction. In ICML, pages 406–414.

Citeseer, 1999.

[115] Martin Törngren. Fundamentals of implementing real-time control applications in

distributed computer systems. Real-time systems, 14(3):219–250, 1998.

[116] Justin M Turney, Andrew C Simmonett, Robert M Parrish, Edward G Hohen-

stein, Francesco A Evangelista, Justin T Fermann, Benjamin J Mintz, Lori A Burns,

Jeremiah J Wilke, Micah L Abrams, et al. Psi4: An open-source ab initio electronic

structure program. Wiley Interdisciplinary Reviews: Computational Molecular Science,

2(4):556–565, 2012.

[117] Jonathan Vandermause, Steven B Torrisi, Simon Batzner, Yu Xie, Lixin Sun, Alexie M

Kolpak, and Boris Kozinsky. On-the-fly active learning of interpretable Bayesian force

fields for atomistic rare events. npj Computational Materials, 6(1):1–11, 2020.

[118] Max Veit, Sandeep Kumar Jain, Satyanarayana Bonakala, Indranil Rudra, Detlef Hohl,

and Gábor Csányi. Equation of state of fluid methane from first principles with machine

learning potentials. Journal of Chemical Theory and Computation, 15(4):2574–2586,

2019.

[119] Stefan Wager, Trevor Hastie, and Bradley Efron. Confidence intervals for random

120

forests: The jackknife and the infinitesimal jackknife. The Journal of Machine Learning

Research, 15(1):1625–1651, 2014.

[120] Nicholas Wagner and James M Rondinelli. Theory-guided machine learning in mate-

rials science. Frontiers in Materials, 3:28, 2016.

[121] Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann, Michael Maire,

and Shan Lu. ALERT: Accurate learning for energy and timeliness. In 2020 USENIX

Annual Technical Conference (USENIX ATC 20), pages 353–369. USENIX Associa-

tion, July 2020.

[122] Chao Wang, Lei Gong, Qi Yu, Xi Li, Yuan Xie, and Xuehai Zhou. Dlau: A scalable

deep learning accelerator unit on fpga. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 36(3):513–517, 2016.

[123] Han Wang, Linfeng Zhang, Jiequn Han, and E Weinan. Deepmd-kit: A deep learn-

ing package for many-body potential energy representation and molecular dynamics.

Computer Physics Communications, 228:178–184, 2018.

[124] Logan Ward, Ruoqian Liu, Amar Krishna, Vinay I Hegde, Ankit Agrawal, Alok

Choudhary, and Chris Wolverton. Including crystal structure attributes in machine

learning models of formation energies via Voronoi tessellations. Physical Review B,

96(2):024104, 2017.

[125] Mitchell A Wood, Mary A Cusentino, Brian D Wirth, and Aidan P Thompson. Data-

driven material models for atomistic simulation. Physical Review B, 99(18):184305,

2019.

[126] Leo T Yang, Xiaosong Ma, and Frank Mueller. Cross-platform performance prediction

of parallel applications using partial execution. In Proceedings of the 2005 ACM/IEEE

conference on Supercomputing, page 40. IEEE Computer Society, 2005.

121

[127] Lingyun Yang, Jennifer M Schopf, and Ian Foster. Conservative scheduling: Using

predicted variance to improve scheduling decisions in dynamic environments. In Pro-

ceedings of the 2003 ACM/IEEE conference on Supercomputing, page 31. ACM, 2003.

[128] Qi Yu, Chao Wang, Xiang Ma, Xi Li, and Xuehai Zhou. A deep learning prediction

process accelerator based fpga. In 2015 15th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, pages 1159–1162. IEEE, 2015.

[129] Yuliana Zamora, Logan Ward, Ganesh Sivaraman, Ian Foster, and Henry Hoffmann.

Proxima: accelerating the integration of machine learning in atomistic simulations. In

Proceedings of the ACM International Conference on Supercomputing, pages 242–253,

2021.

[130] Jidong Zhai, Wenguang Chen, and Weimin Zheng. Phantom: predicting performance

of parallel applications on large-scale parallel machines using a single node. In ACM

Sigplan Notices, volume 45, pages 305–314. ACM, 2010.

[131] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Op-

timizing fpga-based accelerator design for deep convolutional neural networks. In Pro-

ceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, pages 161–170. ACM, 2015.

[132] Yi Zhang, Wei Xu, and James P Callan. Exploration and exploitation in adaptive

filtering based on bayesian active learning. In Proceedings of the 20th International

Conference on Machine Learning (ICML-03), pages 896–903, 2003.

[133] Yuzhi Zhang, Haidi Wang, Weijie Chen, Jinzhe Zeng, Linfeng Zhang, Han Wang,

and E Weinan. Dp-gen: A concurrent learning platform for the generation of reliable

deep learning based potential energy models. Computer Physics Communications,

253:107206, 2020.

122

[134] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.

arXiv preprint arXiv:1611.01578, 2016.

123

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction & Motivation
	Performance prediction
	Introduction
	Related Work
	Background
	GPU Architectures: NVIDIA P100 and V100
	Architecture Performance: IPC
	Active Learning
	DeepHyper and Balsam for Neural Architecture Search

	Methodology
	Benchmark Data
	Intra-Architecture IPC Prediction
	Inter-architecture Memory Bound Classification
	Inter-Architecture IPC Prediction Methodology
	Curating Training Sets: Active Learning and Random Selection
	Neural Architecture Search at Scale
	Deep learning and Random Forest

	Results
	Intra-node Architecture IPC Prediction
	Memory Bound Cross-Architecture Prediction
	Inter-Architecture IPC Prediction

	Summary

	Accelerating Scientific Computing
	Proxima: Accelerating the Integration of Machine Learning in Atomistic Simulations
	Introduction
	Related Work
	Background
	Methodology
	Results
	Summary

	Dynamic On-The-Fly Integration of Surrogates in Molecular Dynamics Simulations
	Introduction
	Related work
	Background
	Methodology
	Results
	Summary

	Summary and Future Work
	Performance Prediction
	Accelerating Scientific Computing
	Future Work

	References

