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to my spubbo 



All generalization is a hypothesis. It ought always, as soon as possible and as often as possible, to 

be subjected to verification. If it does not stand this test, it ought to be abandoned without reserve. 

This is what we generally do, but sometimes with rather an ill humor. Well, even this ill humor is 

not justified. The physicist who has just renounced one of his hypotheses ought, on the contrary, 

to be full of joy; for he has found an unexpected opportunity for discovery. 

-Henri Poincare, La Science et L’Hypothese, 1906
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ABSTRACT 

 
 Epilepsy is a neurological disorder characterized by recurrent, unprovoked seizures that 

produce a distinct signature of hypersynchronous neural activity in electroencephalographic 

(EEG) recordings. This phenomenon is generally attributed to hyperexcitability caused by an 

imbalance of excitatory and inhibitory activity in the brain. This model, however, does not 

sufficiently explain how seizures are generated since treatments that curb excitation and increase 

inhibition do not adequately treat 1/3 of epilepsy patients. These patients often turn to 

neurosurgical options to remove the culprit brain area suspected to be the origin of seizure activity. 

However, 1/3 of surgical patients fail to find adequate seizure relief, bringing into question the 

validity of how we identify, localize, and even conceive of epileptogenicity. The search for 

epileptogenic tissue is further complicated by the fact that seizures exhibit significantly different 

characteristics depending on the scale at which they are observed. Because observations do not 

readily translate across scales, accurate interpretation of clinical recordings requires in-depth 

understanding of seizure dynamics at various scales as well as knowledge of how these dynamics 

translate into recorded signals. To this end, the overall goal of this thesis is to gain a multiscale 

understanding of epileptiform activity using a combinination of signal analysis and mathematical 

modeling to develop mechanistically meaningful interpretations of clinical EEGs. This thesis is 

presented as a series of three studies. In the first study, we show that intracranial and extracranial 

EEG signals show a tight temporal coupling that suggests signals from deep brain sources may be 

detected by scalp EEG. In the second study, we present a novel method to obtain very low 

frequency activity in human ictal recordings. We then show that these low frequencies are 

observed at seizure onset. In the third and final study, we characterize the relationship between 

neural spiking and low frequency activity in epileptogenic brain areas. Throughout the 

presentation of these studies and in the concluding chapter, I discuss the potential clinical 

implications of these findings.  



 

 
1 CHAPTER 1 

INTRODUCTION 

 

1.1 Epilepsy: a brief history 

 Seizures have likely been a feature of the human brain as long as human brains have 

existed, with the earliest written description of what we now call “epilepsy” dating to the 

Babylonians over 4500 years ago. This first record was not written so much as chiseled as it is a 

stone tablet describing an unconscious person turning left and right with froth flowing from the 

mouth (Labat, 1951). 1000 years later, the Babylonians would dedicate two full tablets1  in their 

diagnostic text to epilepsy, referring to it as “the falling disease”  (Wilson & Reynolds, 1990). 

Beyond Mesopotamia, descriptions of seizures have been found in the traditional medical text of 

all of the world’s oldest civilizations including Egypt, Greece, China, and India (Panteliadis et al., 

2017). The history of epilepsy is an ancient one that has spanned eras, cultures, and geography. 

 The earliest explanations of epilepsy were universally religious in nature with most ancient 

cultures attributing seizures to possession by demons or evil spirits (Temkin, 1994; Wilson & 

Reynolds, 1990). In the absence of any scientific understanding of the disease, those afflicted with 

epilepsy were frequently shunned as cursed, unclean, or immoral. Thus, epilepsy was considered 

the purview of priests and shamans, and the remedies offered were spiritual, taking the form of 

prayers and exorcisms (Gross, 1992; Temkin, 1994).  

 The scientific chapter in the story of epilepsy arguably starts in 400 B.C. with the 

publication of The Sacred Disease, an ancient Greek text that outlines the manifestations, causes, 

and treatments for seizures (Hippocrates, c.a. 400 B.C.E.).2 The Sacred Disease offered a distinct 

 
1 Two is a remarkable number given that the whole series contains only 40 tablets meant to 
encapsulate “all diseases.”  
 
2 The true authorship of The Sacred Disease remains unknown. It is an essay included in the 
larger body of work called the “Hippocratic Corpus,” a collection of Greek medical texts with 
several authors that are attributed to Hippocrates for citation purposes (Temkin, 1994). 

1



 

 
2 departure from the traditionally held spiritual explanations of epilepsy and emphasized that 

seizures are not the consequence of a diseased soul or demonic possession (Temkin, 1994). 

Epilepsy is instead described as an ailment of the brain and the body—an affliction no more divine 

than other somatic illnesses.  

 Despite the temporal chasm between The Sacred Disease and modern medicine, the 

description of a seizure provided in the text feels remarkably familiar:  

 

The patient becomes speechless and chokes; froth flows from the mouth; he 

gnashes his teeth and twists his hands; the eyes roll, and intelligence fails, and in 

some cases, excrement is discharged. These symptoms manifest themselves 

sometimes on the left, sometimes on the right, sometimes on both sides. 

(Hippocrates, c.a. 400 B.C.E.) 

 

Evidently, the nature of seizures and its manifestations in the body has not changed throughout 

the course of human history. Our conception and understanding of epilepsy, however, has evolved 

significantly. Because society’s relationship with epilepsy tends to reflect the prevailing scientific 

and religious views, treatments for epilepsy offers a sort of litmus test for the state of medicine in 

any given era. 

 In line with the medical theories proposed by contemporaries of his time, the author of 

The Sacred Disease provided a humoral explanation for seizures (Temkin, 1994). Epileptic fits 

were thought to be a consequence of an accumulation of phlegm in the brain. When the excess 

phlegm leaked out of the brain and entered the veins, the body contracted and trembled in 

response. Two millennia later in the era of Galen (2nd century AD), physicians began to describe 

seizures more distinctly as central or peripheral entities (Gross, 1992; Temkin, 1994). Auras, the 

phantom sensations that frequently precede a seizure, were first described and associated with 

specific somatic correlates as knowledge of human anatomy expanded (Gross, 1992).  

2



 

 
3  By the 17th century, epilepsy was increasingly accepted as a brain disorder, although the 

underlying pathology was more widely believed to be vascular in nature (Temkin, 1994; World 

Health Organization, 2005). The study of epilepsy as a disorder of neural electrical activity 

emerged in the 18th and 19th centuries with the advent of modern neurology (Temkin, 1994). 

Inspired by Michael Faraday’s new discoveries, 3  Dr. Robert Todd in 1849 first proposed an 

electrical hypothesis for seizures (World Health Organization, 2005). This hypothesis was later 

confirmed after Hans Berger’s first human electroencephalogram (EEG) recording in 1929 

(Berger, 1929).4  

  

1.2 Current impact of epilepsy 

 The story of epilepsy and our attempts to describe and explain it is one that has engaged 

the human investigative spirit for many millennia. It is a story that continues today. Nearly 2500 

years after the writing of The Sacred Disease, epilepsy still remains as one of the most common 

neurological disorders, affecting about 1% of the world population (World Health Organization, 

2022). Beyond its high prevalence, epilepsy also accounts for 0.5% of the entire global disease 

burden with 12 million years of healthy life lost between 1990-2015 (Feigin et al., 2017).  

 The burdens of epilepsy for both the individual and society are multifold. Epilepsy patients, 

especially those who are not adequately treated, have reduced life expectancies and are at high 

risk for severe accidents and injury such as drowning and falling (Granbichler et al., 2017; Laxer 

et al., 2014; Tan et al., 2019). These risk factors can make tasks such as driving dangerous or 

impossible, resulting in reduced quality of life (Drazkowski, 2007). Comorbidities are high in 

 
3 Michael Faraday (1791-1867) was an English scientist who discovered many of the most 
fundamental concepts in electromagnetism (Williams, 2021).  
 
4 Although this seminal paper that is ubiquitously cited for the first human EEG recording was 
published in 1929, the actual recording was captured by Berger five years prior in 1924. History 
describes Berger as a melancholic man, and this delay in publication may have been driven by 
Berger’s anxiety and self-doubts about the validity of what would eventually become one of the 
most important landmark moments in neurology (Kaplan, 2011). 

3



 

 
4 epilepsy patients for both somatic (obesity, diabetes, stroke) and psychiatric (anxiety, depression, 

suicidal ideation) conditions (Keezer et al., 2016; Kobau et al., 2008; Tellez-Zenteno et al., 2007).  

 Epilepsy also carries a large socioeconomic burden as people with epilepsy report high 

rates of unemployment and low income (Kobau et al., 2008). Stigma is also prevalent in the lives 

of epilepsy patients in almost all spheres of life. Negative perception of people who experience 

seizures results in social exclusion and isolation at school, discrimination in work settings, and 

loss of friendship and romantic relationships (Shi et al., 2021). 

 

1.3 Modern classification system for seizure disorders 

 Epilepsy is a neurological disease marked by the recurrence of unprovoked seizures 

(World Health Organization, 2022). More formally, the guidelines published by the International 

League Against Epilepsy (ILAE) states that a diagnosis of epilepsy can be made if any of the 

following criteria are met (Fisher et al., 2014):  

 

1. At least two unprovoked (or reflex) seizures occurring more than 24 hours apart 

2. One provoked (or reflex) seizure with a 60% or higher probability of further seizures over 

the following 10 years 5 

3. Diagnosis of an epilepsy syndrome 

 

 Due to the heterogeneous nature of seizures, however, it is difficult to talk about epilepsy 

as a single disorder. Like cancer, epilepsy is perhaps more accurately described as a large category 

of diseases. In an effort to standardize the descriptions of seizures and seizure disorders, the 

International League Against Epilepsy (ILAE) created in 2017 a structured way to classify seizures 

and epilepsy (Scheffer et al., 2017). This framework utilizes four components that can be used to 

 
5 60% is the general recurrence risk of having a seizure after two unprovoked seizures.  
 

4



 

 
5 describe a patient’s seizure disorder: (1) seizure type, (2) epilepsy type, (3) epilepsy syndrome, 

and (4) etiology.  

 Seizure type refers to the characteristics of the onset of the seizure. There are three main 

categories: focal, generalized, and unknown. Although nuanced variations exist in the definition 

for these terms, focal seizures engage only one hemisphere, while generalized seizures engage 

distributed networks bilaterally.6 Each of these types of onset can be further divided by their 

associated motor features and/or level of awareness. The guidelines list over a dozen motor 

descriptors, and a table of the “most common” behaviors during seizures features over 50 terms 

(Fisher et al., 2017).   

 Once a patient has a diagnosis of epilepsy, their epilepsy type and syndrome may be 

considered. Epilepsies may be generalized, focal, a combination of generalized and focal, or 

unknown. Epilepsy syndrome refers to clusters of clinical features that frequently occur together 

(Scheffer et al., 2017). The list of epilepsy syndromes is vast, but well-known examples include 

childhood absence epilepsy, Dravet syndrome, Lennox-Gastaut syndrome (Wilfong, 2022). 

Finally, etiology refers to the underlying cause for seizures. There are seven sub-categories: 

structural, genetic, infectious, metabolic, immune, and unknown (Scheffer et al., 2017).  

 Through such a framework, scores of different types of seizure disorders can be described 

in detail. The vast spectrum of different types of seizures, their etiologies, and clinical 

management is far too vast to be covered adequately in this introduction. For the purposes of this 

thesis, we will focus on the most common type of focal seizures in adults: temporal lobe epilepsy.  

 

 

 
6 Previously, the term “partial” was used to describe seizures with a limited area of onset, and 
“complex” was used for seizures that engaged the brain bilaterally. Because the clinical data 
used in this dissertation have been collected over the past several years, some clinical notations 
in the text use these older terms that are now considered outdated. For the purposes of this 
dissertation, “partial” is synonymous with “focal”, and “complex” is synonymous with 
“generalized”.   
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6 1.4 Temporal lobe epilepsy 

 The temporal lobe is an area that can be found on both sides of the brain, medial to the 

ears. It seems to be a particularly seizure-prone area of the brain—temporal lobe epilepsy (TLE) 

is the most common form of focal epilepsy in adults and accounts for over a quarter of all epilepsy 

cases (Asadi-Pooya et al., 2017; Stern, 2021; Tatum, 2012). Although temporal lobe seizures can 

occur both in the neocortex and mesial structures, the vast majority originate from mesial 

structures such as the hippocampus (Cendes, 2022; Stern, 2021). In these cases, the term mesial 

temporal lobe epilepsy (mTLE) may be used. A variety of lesions and pathologies such as cortical 

dysplasia, gliomas, traumatic and infectious lesions are associated with TLE, but hippocampal 

sclerosis is the most common and is present in over half of cases (Tatum, 2012). 

 TLE is one of the most treatment-resistant epilepsies, with approximately 1/3 of patients 

failing to achieve adequate seizure freedom through medications (Kwan & Brodie, 2000). These 

patients are then considered for surgical treatment. Although surgical outcomes are largely 

favorable, 1 of 3 surgical patients fail to achieve adequate seizure freedom, with up to 15% of 

patients seeing no improvement at all 1 year after surgery (Engel et al., 2003; Spencer & Huh, 

2008; Téllez-Zenteno et al., 2005). 

 

1.5 Surgical planning in temporal lobe epilepsy 

 Because most seizures in TLE are focal, patients are often good candidates for surgical 

intervention (Stern, 2021). The goal of epilepsy surgery is to remove the area of the brain that 

generates seizures. This culprit brain tissue is known as the epileptogenic zone (EZ), a theoretical 

brain area that is somewhat tautologically defined as the minimum amount of cortex that must 

be resected to produce seizure freedom (Jehi, 2018; Rosenow & Lüders, 2001). It is an area that 

can only be confirmed retrospectively as it depends on the final surgical outcome. Hence, for the 

purposes of surgical planning, the seizure onset zone (SOZ) is frequently used as a proxy for the 

EZ (Jobst et al., 2020). The SOZ is defined as the brain area where seizure activity is first observed 
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7 by clinical electrodes (Rosenow & Lüders, 2001). The variety of clinical approaches and tests that 

are utilized to identify the SOZ/EZ are discussed in this section.  

 

1.5.1  Seizure semiology 

 Seizure semiology refers to the description of clinically observable behaviors associated 

with a patient’s seizures (Tufenkjian & Luders, 2012). Because seizures can exhibit specific 

features depending on the affected brain area, semiology can provide information about the 

anatomical area that is engaged during seizures. This area is known as the symptomatogenic zone 

and may overlap with or be proximate to the EZ (Chowdhury et al., 2021; Tufenkjian & Luders, 

2012). Consequently, semiology may have value in helping identify the EZ, especially when 

imaging modalities do not point to a specific lesion (Tufenkjian & Luders, 2012).  

 Seizure semiology may be divided into four main categories: sensory/auras, motor, 

consciousness, and autonomic (Rossetti & Kaplan, 2010).  Auras are common in TLE and are 

typically experiential (e.g., feelings of anxiety, déjà vu, fear) or viscerosensory (e.g., nausea). 

Perseverative automatisms involving the mouth and/or hands are also common (Blair, 2012). 

Most seizures in TLE are focal with impaired consciousness. 

 There are some limitations to using seizure semiology as a localization technique. Seizure 

semiology may have no localizing value if the symptoms are a consequence of seizure activity 

spreading to an area rather than originating in that area (Blair, 2012). Furthermore, different 

semiology categories can have different efficacy for helping localize seizures (Marks & Laxer, 

1998). For example, auras seems to be reliable for differentiating between frontal lobe and 

temporal lobe focal seizures (Blair, 2012), but some motor manifestations are less reliable and 

may even allow correct lateralization of seizures (Marks & Laxer, 1998; Tufenkjian & Luders, 

2012). Thus, seizure semiology is most effective when used in combination with other assessment 

tools such as scalp EEG (Serles et al., 2000). Finally, seizure semiology can be very subjective, 

7



 

 
8 and assessments can be highly variable among evaluators, necessitating the need for 

standardization (Tufenkjian & Luders, 2012).  

 

1.5.2  Clinical electroencephalograms 

 Although clinical signs and symptoms are a useful tool in evaluating TLE, seizures are 

most definitively described by their electrographic features. One of the most important tools in 

the assessment of epilepsy is the electroencephalogram (EEG), a method that allows monitoring 

of the brain’s electrical activity. Neural activity generates ionic currents, and the electric potential 

generated by the action of many synchronized neurons is reflected in the EEG recording.7 The 

normal, healthy human brain exhibits a variety of electrical patterns, and aberrant patterns point 

to the presence of brain pathologies.  

 A variety of different types of EEG electrodes are used clinically in the assessment, 

diagnosis, and management of TLE. The scalp EEG is used in most initial assessments for seizure 

patients as it is the least invasive method. Electrodes are placed on the head following a 

standardized layout known as the international 10-20 system (Fig. 1.1A). The system includes 21 

electrodes, each of which are assigned a letter and number that identifies its location on the head.8 

 

 

 
7 “Many” is a number that is dependent on a variety of factors such as the recording modality, 
the brain area that is being monitored, and the pathology being studied. 
 
8 It is not uncommon practice for clinical recordings to include additional electrodes in the 
spaces between the electrodes in the 10-20 layout. The positions of the additional electrodes are 
typically borrowed from the higher density 10-10 system (Jurcak et al., 2007). 
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Figure 1.1. Illustrations of clinical EEG modalities.  
(A) Schematic of scalp EEG electrode placement using the international 10-20 system. The 10 
and 20 refer to the fact that the spacing between electrodes are 10% or 20% of the length of the 
skull along the front-back and left-right axes. The nasion is the bridge of the nose, and the inion 
is the bony prominence at the midline of the occipital bone. Even numbers are used for electrodes 
in the right hemisphere, and odd numbers are used for electrodes in the left hemisphere. Smaller 
numbers indicate greater proximity to the midline, and the letter z is used in lieu of a number for 
electrodes directly on the midline. Letters indicate the anatomical region of the electrode. Fp = 
pre-frontal, F = frontal, T = temporal, P = parietal, O = occipital, C = central, A = auricle.  
(B) Electrocorticography electrodes (pink) may be in grid or strip form and are placed directly on 
the surface of the brain. The strip form is depicted in this figure. Depth electrodes (orange) are 
inserted into the brain for monitoring deeper structures such as the hippocampus (blue). 
  

 

 Because electrical potentials attenuate sharply with distance, the scalp EEG requires 

relatively large and distinct waveforms due to its distance from the brain (Nunez et al., 2006). The 

generation of potentials measurable by a distant electrode requires many neurons to fire and 

induce currents in synchrony and in the same direction. Consequently, scalp EEG is thought to 

largely reflect the summed activity of tens of millions to hundreds of millions of neurons in the 
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neocortical surface of the brain on the order of 6cm2  (Britton et al., 2016).9  Although the spatial 

resolution for the scalp EEG is relatively poor, rough approximation of the SOZ and seizure 

lateralization is possible, especially in cases where seizures engage large neocortical areas. 

 To improve localizing power, the scalp EEG may be used in combination with other 

imaging methods such as positron emission tomography (PET), computerized tomography (CT), 

and magnetic resonance imaging (MRI) to more precisely identify a seizure locus (Rosenow & 

Lüders, 2001). In cases where a clear lesion is identified that is concordant with seizure semiology 

and scalp EEG, surgery may proceed without further invasive monitoring (Diehl & Lüders, 2000; 

Rathore & Radhakrishnan, 2015).  

 For some patients, the addition of more invasive EEG assessments may be indicated. For 

example, patients whose scalp EEG results are not concordant with imaging and/or seizure 

semiology, patients with no lesion identified on MRI, or patients with diffuse cortical dysplasia 

may require invasive studies (Jayakar et al., 2016; Rathore & Radhakrishnan, 2015). Additionally, 

invasive monitoring is indicated for patients whose seizures are suspected to be close to eloquent 

areas,10 since a high level of spatial precision is desirable to avoid detriment to critical functions 

during neurosurgery (Rathore & Radhakrishnan, 2015). 

 Two main forms of invasive monitoring are electrocorticography (ECoG) and depth 

electrode recordings (Fig. 1.1B). For ECoG recordings, grids or strips of electrode contacts are 

placed directly on the surface of the brain. For recording from deeper structures, depth electrodes 

may be inserted into the brain. A major advantage of intracranial monitoring over scalp EEG is 

high spatial resolution. The diameter for the field of view for intracranial electrodes is thought to 

be ~2-3mm to ECoG contact and ~1-2mm for depth electrodes (Dubey & Ray, 2019; Parvizi & 

 
9 The neocortex is not only closest to the scalp but also contains large pyramidal neurons whose 
projections are in columnar, parallel form, allowing for summation of currents.  
10 “Eloquent cortex” is a term that entered the neurosurgical lexicon in the 1950’s and refers to 
those brain areas that have functions such as motor, sensory, and language processing (Kahn et 
al., 2017).  
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Kastner, 2018). In many cases, a combination of depth and ECoG electrodes are used to monitor 

a single patient. The cost of high spatial resolution is the risk of undersampling, as it is hard to get 

coverage for large areas of the brain (Parvizi & Kastner, 2018). 

 Recordings from these probes are generally used to identify the seizure onset zone (SOZ). 

The SOZ is defined by the location of the electrode that first records seizure activity, and the 

resection area is identified by using all of the different clinical approaches in combination (Jobst 

et al., 2020; Rosenow & Lüders, 2001). Depending on the size of the area to be removed, laser 

ablation or resection may be performed. Laser ablations are used for smaller areas, and resections 

are preferred for areas larger than 1-2cm (Jobst et al., 2020). 

  

1.6 Markers of epileptogenicity 

 Despite the extensive work that goes into localizing an epileptogenic focus for surgical 

resection, 1/3 of TLE surgical patients do not find adequate seizure freedom (de Tisi et al., 2011). 

Why does surgical resection fail for these patients? There are several reasonable hypotheses: 

 

• The seizure had multiple onset foci, only one of which was detected and resected. 

• The SOZ was poorly delineated, and some epileptogenic tissue was left behind.  

• The seizure may have started elsewhere and propagated to the tissue recorded by the 

electrodes. Therefore, the SOZ was incorrectly identified due to undersampling.  

 

There is one additional hypothesis that challenges our fundamental understanding of seizures. It 

is one that is of particular relevance to this thesis:  

 

• The repertoire of electrographic features used to identify epileptogenic tissue is limited 

and incomplete.  
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This last hypothesis implies that the range of electrographic features that we associate with 

epileptiform patterns must be expanded. In this section, I review the evidence for some emerging 

markers of epileptogenicity, their potential, and current limitations. 

 

1.6.1  Interictal epileptiform activity 

 The interictal period refers to the periods of time between a patient’s seizures. Even when 

there is no active seizure activity, epilepsy patients tend to exhibit aberrant waveforms on EEG 

(Tatum, 2021). Interictal epileptiform discharges (IEDs) are large, transient paroxysmal events 

that happen in the absence of ictal events (Pillai & Sperling, 2006). IEDs are considered 

diagnostically important in the evaluation of epilepsy, as they are nearly ubiquitously observed in 

epilepsy patients (Staley & Dudek, 2006; Tatum, 2021; Vollmar et al., 2018). Their features can 

be quite heterogeneous, but common waveforms include sharp waves and spike-wave complexes 

(Kural et al., 2020; Noachtar & Remi, 2009). They can be observed through both extracranial and 

intracranial recording methods, but they are generally much more prominent in intracranial 

recordings, especially in the context of TLE (Pyrzowski et al., 2021). 

 IEDs have been traditionally considered a marker of epileptogenicity as they are 

frequently associated with the SOZ (Jobst et al., 2020; Tatum, 2021). IEDs also seem to have 

similar spatiotemporal properties as ictal discharges, such as location and direction or spread 

(Smith et al., 2022). Interictal discharges may also be useful as an early prodrome marker of 

epilepsy, as there is evidence that incidental findings of interictal discharges increases the risk of 

epilepsy diagnosis in the future (Seidel et al., 2016). 

 The utility of using IEDs as part of surgical planning, however, remains in debate 

(Dworetzky & Reinsberger, 2011). Higher rates of IEDs have been associated with increased risk 

of developing treatment resistant epilepsy and decreased surgical success (Krendl et al., 2008; 

Napolitano et al., 2021). The continued presence of IEDs post-surgery has also been associated 

with poor outcomes (Rathore & Radhakrishnan, 2010). A different study, however, showed that 
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leaving behind some areas showing IEDs did not negatively impact surgical outcome (Kim et al., 

2010). A study that used source localization on IEDs showed that resection of IED sources on 

ECoG resulted in better surgical outcomes (Lee et al., 2014), although the fact that IEDs can 

propagate makes them difficult to localize (Alarcon et al., 1997; Alarcon et al., 1994). Furthermore, 

the spatial distribution of IEDs, however, can fluctuate over time, making their spatial localization 

benefits less useful. (Conrad et al., 2020).  

 The use of interictal information is desirable because most recordings obtained from 

patients are interictal. Seizures are relatively rare events, and sometimes several days of 

monitoring is required to successfully capture a recording (Tatum, 2021). Therefore, getting 

useful information out of interictal recordings has the potential to dramatically reduce monitoring 

time and lengths of hospital stays.  

 One limitation of using IEDs is that they may be hard to detect non-invasively, especially 

when they originate from deeper structures. There is some evidence, however, that IEDs may have 

subtle features that allow for their identification on scalp EEG (Pyrzowski et al., 2021). Another 

limitation to using IEDs is that they may sometimes be misdiagnosed in non-epilepsy patients as 

there are some sharp transients that are normal variants but can be confused with epileptiform 

activity (Noachtar & Remi, 2009).  

 

1.6.2  Epileptiform activity in unconventional frequency bands11 

 Real-world signals are typically composed of a heterogenous mixture of frequencies, and 

the recordings of neural activity are no exemption. Consequently, seizures can look remarkably 

different depending on the frequency band that is used for signal visualization. Clinical 

assessment occurs mostly in the relatively narrow range of 1-30Hz. There is increasing interest, 

 
11 This section is adapted from Lee, S., Issa, N.P., Rose, S., Tao, J.X., Warnke, P.C., Towle, V.L., 
van Drongelen, W., Wu, S. (2020). DC shifts, high frequency oscillations, ripples and fast ripples 
in relation to the seizure onset zone. Seizure. 77:52-58. doi: 10.1016/j.seizure.2019.05.001.  
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however, in studying seizure activity below and above this conventional range to help identify the 

EZ (Modur et al., 2012).  

 On the high end of the frequency spectrum are high frequency oscillations (HFOs). HFOs 

are defined as events faster than 80Hz with at least four oscillations that are distinct from 

background activity (Frauscher et al., 2017).12 They have emerged as a marker of interest in 

identifying the EZ since they have been associated with various seizure onset patterns (Ferrari-

Marinho et al., 2016; Weiss et al., 2016). Additionally, both retrospective and prospective studies 

have demonstrated that resection of areas with high rates of interictal HFOs is correlated with 

better surgical outcomes (Akiyama et al., 2011; Fedele et al., 2017; Fujiwara et al., 2012; Haegelen 

et al., 2013; Jacobs et al., 2010; Weiss et al., 2015). Inversely, the continued presence of HFOs 

post-surgery predicts poor seizure outcome (van 't Klooster et al., 2015).  

 At the opposite end the frequency spectrum is infraslow activity (ISA), which is defined as 

EEG activity below 0.5Hz  (Modur et al., 2012; Thompson et al., 2016).13 Similar to HFOs, slow 

oscillations have been associated with seizure onset patterns (Gumnit & Takahashi, 1965; 

Kanazawa et al., 2015; Rampp & Stefan, 2012; Wu et al., 2014). ISAs also seem to hold some 

promise as a marker of the EZ as full resection of areas with ISA activity has been associated with 

more positive surgical outcomes (Ikeda et al., 1999).  

 HFOs and ISAs may also help define a narrower area of tissue as they are more spatially 

restricted than conventionally assessed SOZ (Ikeda et al., 1996; Mader et al., 2005; Modur, 2014; 

Modur & Scherg, 2009; Rampp & Stefan, 2012; Rodin & Modur, 2008; Wu et al., 2014). Although 

 
12 In the literature, HFOs are sometimes divided into high gamma (80-150Hz), ripples (80-
250Hz), fast ripples (250-500Hz), and very high-frequency oscillations (500-2000Hz). These 
ranges are somewhat arbitrary, however, and the exact definition of these bands varies by 
authors. The potential clinical implication of these subdivisions is a field of active research. In 
this introduction, I use the term HFO for all activity greater than 80Hz.  
 
13 In the literature, the term ictal baseline shift (IBS) or DC shifts is also used to refer to slow 
activity in ictal recordings. The term DC refers to direct current, and its use originates from the 
requirement of DC amplifiers to view the very low frequency signals (Rodin & Modur, 2008). 
For the purposes of consistency, I typically use the term ISA throughout this thesis.  
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very few studies have directly addressed the combined effects of using ISA and HFOs together, 

co-occurrence of HFOs and ISAs within the EZ has been observed (Gnatkovsky et al., 2014). 

Although the phase relationship between ISA and HFO as a marker of ictal activity is a recent and 

promising line of research (Hashimoto et al., 2020, 2021), the vastly different time scales make 

comparing the temporal dynamics of these two frequency bands difficult.  

 The study of unconventional frequencies in ictal EEGs has been hampered not by lack of 

interest, but rather by the limited technical ability to record such frequencies. Accurate and 

meaningful analysis of fast frequency activity is contingent upon several features of the EEG 

recording system. According to the Nyquist theorem, sampling rates used to record HFOs should 

be at least two times the upper bound of the frequency band of interest (Van Drongelen, 2018). 

Realistically, even higher rates are required to determine wave morphology. Additionally, low 

noise systems are particularly important for recording HFOs as they tend to have very low 

amplitudes (Zijlmans et al., 2017). Finally, because HFOs happen on such small timescales, visual 

analysis can be particularly time consuming, necessitating the development of automated 

detection algorithms (Wong et al., 2021).  

 Although the ability to record HFOs has been improved by increasing sampling rates in 

clinical EEGs, infraslow activity still presents a technical challenge in the actual recording process. 

EEG recording systems necessarily include a high-pass filter early in the measurement chain to 

remove large artifactual drifts that can saturate recording elements such as the amplifier. This 

filter unfortunately attenuates any legitimately seizure-related low frequencies, making ISA 

difficult to study in many EEG recordings. The studies that have utilized DC amplifiers to bypass 

this issue have largely been limited to the study of healthy subjects in experimental conditions 

(Grooms et al., 2017; Picchioni et al., 2011; Rodin et al., 2017) because standard clinical EEG 

equipment do not utilize DC amplifiers. Consequently, direct study of ISA in human ictal 

recordings has been limited.  
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1.6.3  Epileptiform activity across spatial scales 

 What a seizure looks like can vary dramatically across spatial scales. On one end of the 

spectrum are the single neurons whose primary action is to spike. On the other end are large local 

field potentials (LFPs) that are the summation of the spiking of many neurons of millions of 

neurons (Nunez et al., 2006). How the activity of these single neurons translates into global 

activity patterns is an active field of research.  

 Although recording from single cells has technical challenges that are difficult to overcome 

in the context of clinical patient recordings, microelectrodes allow us to observe the spiking 

activity of small populations of neurons.  The arrays used for this thesis are 96 channel 

microelectrode arrays (MEA), sometimes called Utah arrays.14 They are 4mmx4mm in size and 

are typically implanted in the putative seizure onset zone that was determined through 

conventional clinical methods (Fig. 1.2). The fast frequency activity measured by these electrode 

arrays is termed multiunit activity (MUA) and is thought to reflect the action potential or spiking 

activity of small or single neuronal units (Harrison & Pantelis, 2010). 

 

 

 
14 The Benhke-Fried depth electrode is another microelectrode option that is commercially 
available, but they were not used for any of the studies presented in this thesis.  They are 
essentially depth electrodes that contain several microwires that fan out at the tip (Misra et al., 
2014). 
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Figure 1.2. Schematic of a Utah microelectrode array (MEA) and example of array 
placement in surgical planning for a patient with temporal lobe epilepsy. 
The Utah array is a 4mm x 4mm 96-electrode array that is arranged in a 10 by 10 grid of electrodes 
with empty corners. After assessment via electrocorticography, the MEA is placed in the putative 
seizure onset zone (dark gray square). Orange electrodes indicate areas that showed early seizure 
activity. Shaded purple area shows the part of the brain planned for resection.  
 

 

 Research using these arrays has let us glean how seizures manifest at spatial resolutions 

not achievable by conventional clinical recordings. What was uniformly referred to as the SOZ is 

a much more heterogeneous entity when viewed at a smaller scale. One study found that for a 

MEA implanted in the seizure onset zone, only 1/3 of electrodes showed any ictal activity related 

changes, suggesting that neurons in the SOZ behave heterogeneously (Bower et al., 2012). 

Another study showed that a MEA recording of an interictal epileptiform discharge (IED) showed 

the IED waveform in only a subset of channels, suggesting that the underlying tissue may actually 

be more mosaic (Yang et al., 2021).  

  MEA studies have demonstrated that cortical tissue that has been classically defined as 

the SOZ can be subdivided into two areas: recruited and unrecruited (Eissa et al., 2017; Schevon 
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et al., 2012; Weiss et al., 2013).15 The two areas are separated by a moving and spreading boundary 

known as the seizure wavefront (Schevon et al., 2012; Smith et al., 2022). In the recruited area, 

multi-unit spiking activity shows high levels of spiking activity that is also highly correlated with 

the overlying seizure LFP. In the unrecruited areas, spiking increases more moderately. 

Importantly, this spiking activity in unrecruited areas is not well correlated to the low frequency 

LFP. These two zones, as well as the wavefront, are not identifiable with lower spatial resolution 

modalities such as ECoG and depth probe recordings.  

 Additional studies have shown that the spiking activity in the recruited zone is correlated 

with overlying LFP activity in brain tissue that is on the order of several centimeters away from 

the putative SOZ (Eissa et al., 2017). These studies in sum paint a picture in which small micro to 

mesoscale ictal networks engage the macro-level hypersynchronous ictal activity that is observed 

in clinical recordings.   

 A major limitation in MEA studies is that they are very small, and it is impractical to 

sample from multiple brain areas. Consequently, obtaining a recording that captures activity from 

different types of seizure territories (i.e., recruited and unrecruited) is nearly impossible. Methods 

that allow for wider coverage studies are starting to be conducted using newer probes (Paulk et 

al., 2022). Additionally, the currently available dataset of these recordings is very limited due to 

the small number of patients who are participating in these studies.  

 

1.7 Overview and aims of thesis 

 The elusive hunt for epileptogenicity raises a conceptually simple but philosophically 

complicated question—exactly what does a seizure look like? The issue becomes non-trivial when 

one realizes that seizures exhibit markedly different characteristics depending on the scale at 

 
15 The terms “core” and “penumbra” were used in the literature when this phenomenon was first 
reported. More recent studies have shifted to using the terms “recruited” and “unrecruited” as 
nuances in the spatial and temporal evolution of these areas have been characterized in greater 
detail. The work presented in this dissertation uses the terms “recruited” and “unrecruited”. 
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19which they are observed. This complication is furthered by the numerous modalities and 

equipment used to monitor neural activity, ranging from scalp EEG electrodes that detect 

cumulative activity from millions of neurons to microelectrode arrays that have near single-

neuron resolution. Because observations of neural activity do not readily translate across scales, 

accurate and meaningful interpretation of clinical recordings requires an in-depth understanding 

of which facets and mechanisms of seizures are captured by each recording method.  

This thesis aims to fill some of the gaps in our ability to link the manifestations of 

epileptiform activity in EEG recordings across scales and frequencies with their underlying 

mechanisms by asking the following three questions: 

1. How do seizure dynamics change across spatial and temporal scales?

2. How do these dynamics manifest in recorded EEG signals?

3. What may be the biological mechanisms underlying these dynamics?

 The overall goal of this thesis is to characterize multiple facets of epileptiform activity by 

using a combination of clinical patient data, mathematical modeling, and signal analysis to 

develop mechanistically meaningful interpretations of clinical EEG. To achieve this goal, 

this thesis describes three projects in chapter 2-4.   

Chapter 2: Characterization of the manifestations of hippocampal interictal activity in scalp EEG 

recordings  

In this chapter, I will show that scalp EEG recordings can be used to detect and 

characterize distinct groups of hippocampal interictal discharges. By using signal analysis applied 

to a dataset composed of simultaneous intracranial and scalp recordings of temporal lobe epilepsy 

patients, I show that hippocampal interictal discharges are temporally associated with identifiable 

features in scalp EEG. I then show evidence that these scalp features are likely to reflect the 
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hippocampal discharges through volume conduction and propagation, and that characterization 

of the scalp signals may help elucidate these different types of discharges.  

 

Chapter 3: Digital reconstruction of infraslow activity in ictal recordings  

 In this chapter, I present a digital, inverse-filter tool that uses deconvolution to reconstruct 

the infraslow activity (ISA) in ictal recordings. I then show that reconstruction of ISA allows for 

observations of seizure onset and offset not visible via current methods. Finally, I discuss potential 

applications in applying reconstructed ISA to characterize the seizure onset zone.  

 

Chapter 4: Characterization of the spatiotemporal relationship between ictal spiking and LFP 

during human focal seizures 

 In this chapter, I show that the spiking activity of individual neurons has a distinct 

temporal and spatial relationship to the overlying low-frequency local field potential. I show that 

there is a special mathematical relationship to these spatial and temporal patterns. Finally, I 

discuss how different patterns may allow identification of different mechanisms underlying focal 

seizures.  

 Chapter 5 is the concluding chapter for this dissertation in which I summarize the major 

findings presented in this thesis. I then discuss the potential future directions and clinical 

research and end with some closing thoughts.  

 

1.7.1  A brief note on navigating this thesis  

 Chapter 2, 3, and 4 all have the same format. The summary and introduction sections are 

followed directly by the results and discussion. The methods are described in the last section of 

each chapter. I chose to present the results first to avoid burdening the reader with methodological 

details such as the specifics of patient recruitment, software versions, and stepwise explanations 

of analysis pipelines. While these details are necessary and useful, I felt that they detracted from 
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the storyline when presented first without the context of the results and discussion. In places 

where I felt it was useful to do so, I periodically refer the reader to the methods section in the 

course of presenting the study’s results. This in all cases refers to the “Methods” section found at 

the end of that given chapter. 
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CHAPTER 2 

Manifestation of hippocampal interictal discharges on clinical scalp EEG 

recordings1 

 

2.1 Summary 

Epileptiform activity limited to deep sources such as the hippocampus is widely thought to be 

undetectable on scalp EEG. In this study, we challenge this notion and present evidence that 

interictal discharges restricted to the hippocampus have detectable effects on the scalp’s electric 

field. Using paired intracranial and scalp EEG recordings obtained from 17 patients, we show that 

hippocampal interictal epileptiform activity visibly contributes to scalp EEG recordings and that 

these contributions are significant enough to be useful in a clinical setting. We first show that 

hippocampal spike-triggered averaging of the scalp EEG reveals clear signals that are temporally 

coincident with intracranially-recorded hippocampal interictal discharges. We then show that 

these signals have characteristics of hippocampal potentials that reach the scalp electrodes via 

volume conduction. Cross-correlation of intracranial hippocampal discharges with their 

associated scalp signals resulted in two classes of scalp waveforms—one with no time delay from 

the associated hippocampal discharges and another with significant delays between the observed 

scalp and hippocampal signals. Additionally, the scalp signals with no delay showed topographies 

with a broad field with higher amplitudes on the same side of the head as the hippocampal 

discharges and a left-right flip in polarity over the course of the discharge—observations that are 

consistent with a unilateral signal originating from an ipsilateral deep source. In contrast, scalp 

waveforms showing significant time lags showed a more complex, rotational dynamic, suggesting 

 
1 This chapter is adapted from Lee, S., Wu, S., Tao, J.X., Rose, S., Warnke, P.C., Issa, N.P., van 
Drongelen, W. (2021). Manifestation of Hippocampal Interictal Discharges on Clinical Scalp 
EEG Recordings. Journal of Clinical Neurophysiology. doi: 
10.1097/WNP.0000000000000867 
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synaptic propagation and engagement of other brain areas may underlie these scalp patterns. 

Together, these results show that the topographic evolution of scalp manifestations of 

hippocampal interictal discharges may be used to distinguish spikes that are limited to the 

hippocampus from those that travel to or engage other brain areas.   

 

2.2 Introduction 

Mesial temporal lobe epilepsy (MTLE) is the most common form of focal epilepsy in adults, 

comprising over a quarter of all epilepsy cases (Asadi-Pooya et al., 2017; Stern, 2021). Despite its 

prevalence, MTLE is difficult to diagnose because hippocampal epileptiform activity is not readily 

identifiable on scalp electroencephalography (EEG) (Koessler et al., 2015; Wennberg et al., 2011). 

Previously, a quantitative study showed that hippocampal spikes produce on average 7µV 

deflections on scalp EEG, making them difficult to distinguish from background fluctuations of 

~10µV. This observation led to the conclusion that hippocampal discharges can generate clinically 

detectable signals on scalp recordings only with the engagement of an extended neocortical 

network (Koessler et al., 2015). In early MTLE, however, epileptiform activity may be restricted 

to the hippocampus, and the development of scalp EEG methods for detecting signals from deep 

brain sources is important for early diagnosis (Jacoby et al., 1996; Sperling, 2004), prevention of 

misdiagnoses (Mirsattari et al., 2011), and reducing delay in getting definitive treatment (Berg, 

2004; Simonato et al., 2012). 

In contrast, some theoretical studies have argued that deep discharges might be detectable 

by both EEG and magnetoencephalography (MEG) (Attal et al., 2007; Goldenholz et al., 2009). 

This theoretical finding was recently corroborated by a study demonstrating that individual 

hippocampal discharges can sometimes be detected by MEG (Pizzo et al., 2019). In a clinical study, 

a subset of intracranially recorded hippocampal discharges were associated with waveforms 

visible on scalp EEG (Issa, Wu, et al., 2018). This study, however, could not preclude the 
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possibility that the scalp waveforms were reflective of epileptiform activity that also engaged 

neocortical areas outside the hippocampus.  

In this study, we provide evidence that hippocampal signals manifest on scalp recordings 

and result in distinct topographic patterns on the scalp that may allow inference of the nature of 

the underlying intracranial activity. These scalp topographies could be differentiated by their 

timing in relationship to the hippocampal activity, opening up the possibility that epileptiform 

activity limited to the hippocampus may be identified and characterized through noninvasive 

recording methods. Using simultaneous intracranial and scalp EEG recordings of hippocampal 

interictal epileptiform discharges, we provide evidence that hippocampal discharges are 

associated with signals observable in scalp recordings that fall into two categories: scalp signals 

that are consistent with the volume conduction of a single, deep, unilateral source, and scalp 

signals suggestive of epileptiform that engages other brain areas through physiological 

mechanisms such as synaptic propagation. The ability to characterize and differentiate 

hippocampal discharges using scalp EEG would improve diagnostic power, prevent misdiagnoses, 

and potentially reduce the need for invasive intracranial monitoring in the diagnosis and 

treatment of MTLE.  

 

2.3 Results 

2.3.1  Classification of hippocampal interictal discharges 

Hippocampal interictal discharges were recorded on intracranial electrodes in 16 patients. 

Individual discharges from individual subjects were detected with an automated algorithm and 

grouped based on morphological similarity in the time domain using connected components 

analysis (Methods). Across the 16 patients, 42 groups of hippocampal discharges were found. A 

spike triggered average (STA) was calculated for each group using the hippocampal discharge as 

the trigger (Fig. 2.1). Figure 2.1A shows example STA signals from hippocampal depth electrodes 

for the five groups of discharges found in Patient 1. In groups 1, 2, 3, and 5, scalp EEG amplitudes 
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were larger on the temporal channels ipsilateral to the spiking hippocampus and were inverted in 

polarity on the left temporal channels (Fig. 2.1B). Group 4, which had the smallest intracranial 

signals (Fig. 2.1A), also showed the smallest scalp signals with maximal amplitudes in frontal 

channels (Fig. 2.1B). Scalp EEG amplitudes ranged between 1 and 19µV with an average±standard 

deviation of 5.5±4.1µV (N=42 groups; Fig. 2.2).
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Figure 2.2. Distribution of maximum absolute scalp STA amplitudes by group.  
For each of the 42 groups of hippocampal discharges, the greatest absolute amplitude seen across 
all channels in the scalp signal STA is plotted. Symbol shapes indicate groups included or excluded 
from the analysis shown in Figure 2.4C.  
 
 
 

2.3.2  Characterization of scalp waveforms based on temporal lag 

Next, we asked if the observed scalp EEG patterns were consistent with the volume 

conduction of hippocampal discharges. Volume conduction occurs at the speed of light, so a 

finding of no lag between a scalp signal and an associated hippocampal discharge would be 

consistent with volume conduction. Temporal lag was determined from the cross-correlogram 

between each scalp EEG channel STA and the depth electrode channel STA with the greatest 

amplitude (Fig. 2.1, 2.3). For example, in Group 1, cross-correlation of the STA of scalp channel 
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F9 and the STA of channel RHD4 yielded a maximum correlation coefficient of 0.93 at a lag time 

of -3ms, where a negative value implies the scalp signal leads the hippocampal signal (Fig. 2.3A). 

Although volume conduction theoretically occurs with zero lag, noise in real recordings 

may cause the peak in cross-correlations of synchronous signals to deviate from zero. To 

determine the range of measured lag times that were sufficiently small to be interpreted as zero, 

we conducted a Monte Carlo simulation of lag times resulting from cross-correlation of two 

identical signals corrupted by varying levels of noise (Methods). The black curve in Figure 2.3B 

shows the result of this simulation and represents the 99% confidence interval (CI) for the 

distribution of lag times across the range of signal to noise ratios (SNR). For example, for the 

cross-correlation of an 8dB scalp signal with a 25dB hippocampal signal, the 99% CI of lag times 

was ±4.8ms. As expected, signals with low SNR have a larger spread of lag times than signals with 

high SNR. This non-zero threshold for lag times does allow for the possibility of physiological 

propagation in signals categorized as volume conduction. Consequently, we interpret small lag 

times as not proof of volume conduction, but rather a characteristic that is consistent with volume 

conduction.  

The scatter plot in Figure 2.3B shows the lag times of all scalp channel STAs for Patient 1. 

Points that fall below the 99% CI line have a lag sufficiently close to zero to be consistent with 

volume conduction. For points that fall above the simulation curve, scenarios involving secondary 

sources likely contribute to the scalp signal. Of the 5 groups identified, Group 4 had the smallest 

amplitude signals in both the hippocampal and scalp channels. The small and sparse nature of 

the scalp signals seen in Group 4 reduces their interpretability, and therefore we highlight here 

the results of other groups with more robust and distinctive characteristics. Of the 20 channels 

with significant scalp signals in Group 2, 16 channels had lag times below the 99% CI while 4 

channels had lag times above the 99% CI. This observation suggests that the scalp correlates seen 

for Group 2 are more consistent with volume conduction. In contrast, Group 5 had 21 channels 
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with significant scalp STA signals, 17 of which had lag times greater than the 99% CI, suggesting 

that the scalp correlates for Group 5 are more consistent with a propagated or secondary source.
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2.3.3  Topographic analysis of scalp STAs 

In addition to temporal correlation, we investigated the spatiotemporal development of 

scalp discharges. We hypothesized that scalp topographies that reflect volume conduction from a 

single, deep source would exhibit a relatively stationary dipole, while sources that propagate to 

and engage other brain areas would show a more dynamic evolution of scalp potentials. The scalp 

STAs for each group were used to generate topographic maps of scalp potentials at different time 

points. The topographies for the five groups from Patient 1 are shown in Figure 2.4A. Qualitatively, 

some of the discharges show fields that are largely stationary except for an abrupt flip in polarity 

(Fig. 2.4A, Group 2), while others show a more dynamic, rotational pattern (Fig. 2.4A, Group 5). 

To quantify this observation, we used the standard deviation (SD) in the field dipole angle as a 

metric to determine how the topography of each discharge evolves over time (Fig. 2.4B). Of the 

42 groups, 24 met the criteria for inclusion in this analysis (Fig. 2.2). A small angle-SD implied a 

relatively stationary dipole, while a high angle variance implied a rotating dipole. We then asked 

if the SD of this angle correlated with the percentage of scalp channels with no lag in that group 

(Fig. 2.4C). The groups dominated by zero lag times showed smaller SD (i.e., more stationary 

topographies) than groups with predominantly non-zero lag times (r = -0.61; p = 0.001). This 

supports the hypothesis that scalp manifestations consistent with volume conduction are more 

stationary than discharges consistent with other mechanisms such as neuronal propagation. 
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Figure 2.4. Topographic analysis of hippocampal discharge-related scalp EEG 
signals.  
(A) Topography of the five groups of discharges in Patient 1. The zero value of the time scale is 
aligned with the maximum amplitude of the discharge. (B)  To estimate the angle of the dipole 
underlying the topographic field, a line was drawn between the electrodes with the maximum and 
minimum value (green). The zero–degree axis was defined as the inion-nasion line (dotted black). 
(C) For all patients and groups: variance of topography plotted versus the % of channels with zero 
lag. The line is the linear regression (n = 24; r = -0.62, p = 0.001).  
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2.3.4 Theoretical estimation of scalp signal amplitudes  

 The scalp signals observed in our study were on the order of 10µV (Fig. 2.1), which are 

consistent with other studies (Koessler et al., 2015) . We wished to estimate whether this 

amplitude was plausible from a physics viewpoint. To probe the underlying physics associated 

with our volume conduction hypothesis, we estimated the theoretical order of magnitude for local 

and scalp measurements of a hippocampal source using a four-shell model of the head (Fig. 2.5) 

(Methods). The results of this model showed that intracranial measurements of the hippocampal 

source range from 0.5mV to 30mV as the electrode distance from the hippocampus decreases 

from 6cm. In our analysis of the theoretical clinical scalp EEG, we observed a range between 

±25µV, depending on the location of the scalp electrode (Fig. 2.5B). The ranges for these 

intracranial and scalp values agree well with the findings in our patient data shown in Figure 2.1. 

 

 

 

 
Figure 2.5. Estimation of the effect of a hippocampal source on the scalp potential.  
(A) A four-shell spherical model representing the brain, cerebrospinal fluid, skull, and skin. The 
hippocampal dipole is indicated by the blue arrow. Distances are expressed in cm. (B) Predicted 
topographic map at the scale generated by the field evolved by the dipole in (A). Color scale is in 
µV.  
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2.4 Discussion 

In this study, we present evidence that scalp waveforms associated with hippocampal 

interictal discharges have varying topographic morphology. Furthermore, whether the scalp 

waveform was consistent with volume conduction of a hippocampus-limited discharge could be 

determined by comparing the lag time between the scalp and hippocampal signals. While the 

exact source of any signal cannot be definitively proven without sampling from all brain areas 

simultaneously, the observations in our study suggest that the combination of cross-correlation 

lag time analysis and scalp topographic analysis can be used to group and categorize hippocampal 

spikes into those consistent with physiological propagation and those consistent with volume 

conduction.  

Two types of scalp topography were identified—static and dynamic (Fig. 2.4). In the static 

case, electrical fields were consistent with a largely stationary dipole with an abrupt left-right flip 

during the course of the discharge (Fig. 2.4A, Groups 1 & 2). These characteristics, along with the 

observations that waveforms were present bilaterally with higher amplitudes on the side 

ipsilateral to the hippocampal spike and with inverted polarity on the contralateral scalp 

electrodes, point to a lateralized, single, deep source. Additionally, the near-simultaneous timing 

of the scalp and hippocampal waveforms and their high correlations are consistent with a signal 

that travels from the hippocampus to the scalp via volume conduction, an electromagnetic process 

that occurs with virtually zero delay. In contrast, scalp waveforms that occur with significant lag 

from the hippocampal discharge showed more complex, rotational dynamics, suggestive of a 

signal that either travels to or engages other cortical areas using a more time-consuming 

mechanism such as neuronal propagation and synaptic transmission (Fig. 2.4A, Groups 3 & 5).  

By using only hippocampal depth and scalp electrodes, it is not possible to ascertain the exact 

origin of physiologically propagated signals. This limitation may be addressed in future studies 

that incorporate recordings from other cortical areas simultaneously.  
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Other groups have suggested that differences in topographic evolution can be used to 

differentiate between benign and pathological scalp small sharp spikes (Wennberg et al., 2018). 

Both the static and dynamic waveforms observed in our study show a horizontal dipole at the time 

of the spike, consistent with what has been described as benign epileptiform transients of sleep 

(BETS) (Wennberg et al., 2018). However, BETS showed a 30° rotational component, suggesting 

that our dynamic group aligns more with what has been described as BETS while our static group 

may be more aligned with pathological waveforms (Issa, Lee, et al., 2018). To differentiate 

between benign versus pathological waveforms, more comprehensive prospective studies using 

both neurotypical and epileptic patients will be required.  

In mesial temporal lobe epilepsy, epileptiform activity can be limited to deep structures 

such as the hippocampus or involve larger networks that include neocortical regions. Classical 

epileptiform discharges such as spikes and sharp waves are frequently observed on scalp EEG 

when neocortical regions are involved (Koessler et al., 2015; Merlet & Gotman, 1999). When 

epileptiform activity is restricted to regions around the hippocampus, however, scalp waveforms 

are not readily apparent (Wennberg et al., 2011), and only small sharp spikes have been implicated 

as scalp EEG markers of hippocampal discharges (Issa, Wu, et al., 2018). While the natural history 

of temporal lobe epilepsy is incompletely defined (Berg, 2008; Hesdorffer et al., 2016; Issa, Sedler, 

et al., 2018; Shukla & Prasad, 2012), one line of thought posits that epileptogenic activity is 

restricted to the hippocampus in the early phases of MTLE with recruitment of neocortex 

occurring as the disease progresses (Morrell, 1985; Morrell et al., 1989; Wennberg et al., 1997). 

Because engagement of larger networks may be associated with poorer surgical outcomes with 

targeted resections (Sinha et al., 2017), the ability to detect and differentiate early hippocampal 

discharges with or without neocortical involvement could lead to earlier diagnosis, prevent 

misdiagnoses, and improve patient outcomes.  

For clinical purposes, hippocampal discharges in early MTLE should ideally be identifiable 

without the need for invasive monitoring. Scalp markers are likely to be low in sensitivity for the 
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detection of individual hippocampal discharges since we are relying on greatly attenuated 

hippocampal signals to break through the relatively high noise levels of the scalp EEG. Chen et al. 

(2020) found that in patients evaluated in an epilepsy monitoring unit, small sharp spikes on 

scalp EEG had an odds ratio of 9.1 for epilepsy, but only a sensitivity of ~19%. In our own dataset, 

approximately 15% of all hippocampal spikes were associated with a visible waveform on the scalp, 

results that are within range with the detection rate of 22% found by down-sampling dense array 

scalp EEG signals (Yamazaki et al., 2012). Although sensitivity for individual hippocampal 

discharges is low, small sharp spikes may be visible in up to 50% of patients with hippocampal 

discharges (Issa, Wu, et al., 2018). If indeed some of these waveforms are a result of volume 

conduction of hippocampal discharges, higher rates of detection may be possible for patients with 

smaller heads and thinner skulls, meaning that this may be a particularly useful marker in 

pediatric populations. For example, children with febrile status epilepticus have been shown to 

be at higher risk for developing TLE (Lewis et al., 2014), and small sharp spikes might be an early 

marker for such pathology.  

Previous studies concluding that hippocampal discharges are undetectable on the scalp 

due to signal attenuation have largely relied on signal-to-noise ratio (SNR) calculations. By 

definition, low amplitude signals embedded in high amplitude noise yield SNR values < 1. These 

signals, however, may still be visible if they have features distinct from background signals. SNR 

calculations find signals that differ from background by their amplitude and power. Signals 

captured in clinical recordings, however, have other attributes that can be used to identify low 

amplitude signals: 

(1) Clinical recordings utilize multichannel systems. A low amplitude signal that is

undetectable in a single channel may become readily visible if it is synchronously observed

in several channels. The ability to identify low amplitude signals by extracting information
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across multiple channels may be uniquely advantageous in the measurement of deep 

sources, since these signals are more likely to be captured by multiple electrodes. 

(2) Differences in frequency composition can be used to identify signals. Low amplitude signals

embedded in high amplitude noise may be identified if their frequency composition is

distinct from noise. For example, a very small discharge with a fundamental frequency of

20Hz may be highly noticeable if the background noise and rhythms are composed of lower

frequencies.

2.5 Methods2 

2.5.1  Patients and data acquisition 

Data were collected from 17 patients (10 females; Table 2.1) undergoing phase II 

monitoring for medically intractable, right temporal lobe epilepsy between 2015 and 2017 at the 

University of Chicago Adult Epilepsy Center. Written informed consent was provided through a 

process approved by the University of Chicago Institutional Review Board.  

Intracranial recordings were collected using depth electrodes placed into the right 

hippocampus. All patients were implanted with a 12-channel depth electrode placed along the 

length of the right hippocampus, with contact #1 (RHD1) being most anterior and contact #12 

(RHD12) being most posterior. Although other intracranial electrodes were placed in various 

locations for all patients, only the RHD intracranial electrodes and scalp EEG electrodes were 

analyzed for this study. Contact locations were confirmed with post-implantation CT scans. 

Scalp EEG data collected from the following 22 electrodes (named according to the 

international 10-10 arrangement) were used for analysis: F9, T9, F7, T7, P7, F3, C3, P3, O1, Fz, Cz, 

Pz, Oz, F4, C4, P4, O2, F8, T8, P8, F10, T10. Data from Fp1, Fp2, M1, and M2 were recorded but 

2 Custom scripts used to generate the results presented in this chapter can be found at 
https://github.com/sominlee14/hippocampal_ied (Appendix). 

37



not included in this analysis because they typically contained large non-cortical artifacts. All 

hippocampal depth and scalp EEG signals were collected using the XLTEK system (Natus, 

Pleasanton, CA, USA). Signals were digitized at 1024 samples/s and referenced to the FCz 

electrode. The raw broadband data (0.1-344 Hz) were stored for subsequent analysis.  

Table 2.1. Summary of demographics and diagnoses for 16 patients. 
MTLE = mesial temporal lobe epilepsy 

Patient # Age Gender Diagnosis 

1 51 Female Right MTLE 

2 21 Male Bilateral MTLE 

3 33 Male Bilateral MTLE 

4 51 Male Bilateral MTLE 

5 33 Female Right MTLE 

6 21 Male Bilateral MTLE 

7 22 Female Right MTLE 

8 22 Female Bilateral MTLE 

9 24 Male Right MTLE 

10 40 Female Right MTLE 

11 19 Female Right MTLE 

12 47 Female Right MTLE 

13 26 Male Right MTLE 

14 43 Male Right MTLE 

15 58 Female Right MTLE 
16 44 Female Bilateral MTLE 
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2.5.2  Data analysis pipeline 

For each patient, a two-hour EEG segment recorded during drowsiness and sleep was 

analyzed. A custom C++ routine was used to convert raw data into Matlab files. All other analyses 

and statistics were performed in Matlab (Matlab, Natick, MA, USA). The relationship between 

intracranial and extracranial signals was analyzed using the following pipeline:  

(1) Automated detection of intracranially recorded hippocampal discharges

(2) Grouping of similarly shaped hippocampal discharges using connected components

analysis

(3) Calculation of spike-triggered averages (STAs) of intracranial and scalp EEG signals

(4) Cross-correlation of intracranial and scalp EEG signals

(5) Topographic analysis of scalp signals

Unless otherwise noted, the average reference montage was used, in which all signals were 

referenced to the average of the scalp EEG channels. All analyses were performed separately for 

each patient. Specifics of these five steps are described below.  

(1) Detection of hippocampal discharges

Signals from the 12 channels on the right hippocampal depth (RHD) electrode were used 

to identify epochs containing interictal discharges. Because the detection method only utilized 

intracranial channels, the FCz common reference montage was used. EEG signals were digitally 

filtered using a zero-phase, 2nd order 10-50Hz Butterworth bandpass filter. The signals from the 

12 RHD channels were then averaged, and peak detection was applied. Peaks were defined as 

points having an absolute amplitude >5 standard deviations from the signal mean and that were 

a local minimum or maximum in a 1 second window. This detection method was independently 

validated by visual inspection by an epileptologist.  
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(2) Grouping of hippocampal discharges 

Hippocampal discharges in a given subject were grouped by waveform using connected 

component analysis (Hopcroft & Tarjan, 1973). A 500ms epoch centered on each peak was used 

for classification. For each epoch, signals from the 12 RHD channels were concatenated, creating 

a 6000 ms-long vector. A correlation coefficient was then calculated between pairs of vectors, 

resulting in an n x n correlation matrix where n was the number of hippocampal discharges (Fig. 

2.6A). Using a correlation coefficient threshold, this correlation matrix was converted into a 

binary matrix by replacing coefficients above or below the threshold with 1’s and 0’s, respectively 

(Fig. 2.6B). This binary matrix was then converted into an undirected graph in which discharges 

were represented by nodes connected by edges specified by 1’s in the matrix. The connected 

components of this graph were extracted using the Matlab function conncomp, which assigns two 

nodes to the same component if they are connected by an edge. A group was defined as the set of 

discharges belonging to the same connected component (Fig. 2.6C). 

40



  

  

 

Fi
gu

re
 2

.6
. S

ch
em

at
ic

 o
f f

in
di

ng
 c

on
ne

ct
ed

 c
om

po
ne

nt
s 

us
in

g 
co

rr
el

at
io

ns
 b

et
w

ee
n 

sp
ik

es
.  

(A
) 

Ex
am

pl
e 

co
rr

el
at

io
n 

m
at

ri
x 

of
 s

pi
ke

 c
om

pa
ri

so
ns

. (
B

) 
Bi

na
ry

 m
at

ri
x 

cr
ea

te
d 

fr
om

 s
et

tin
g 

a 
th

re
sh

ol
d 

co
rr

el
at

io
n 

co
ef

fic
ie

nt
. (

C
) 

Co
nn

ec
te

d 
co

m
po

ne
nt

s g
en

er
at

ed
 fr

om
 u

si
ng

 1’
s i

n 
th

e 
bi

na
ry

 m
at

ri
x 

as
 e

dg
es

. I
n 

th
is

 d
um

m
y 

ex
am

pl
e 

of
 se

ve
n 

sp
ik

es
, s

pi
ke

s 1
-4

 a
re

 
in

 o
ne

 g
ro

up
, a

nd
 sp

ik
es

 5
-7

 a
re

 in
 a

no
th

er
 g

ro
up

.

41



 

 

To determine the appropriate threshold correlation coefficient for the grouping procedure, 

discharges were preliminarily grouped using threshold values ranging from 0.5 to 1.0 in 0.01 

increments. The threshold value that maximized the number of large groups (defined as ≥20 

discharges/group) was used in the final analysis (Fig.  2.7). This threshold value was determined 

for each patient separately.
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(3) Calculation of spike-triggered averages for EEG signals  

For each group of discharges, spike-triggered averages (STAs) for RHD and scalp EEG 

signals were calculated. STAs were calculated by averaging the signals from all discharges in a 

given group, using the peaks detected in the RHD signals as triggers. Noise levels were estimated 

using 250ms flanks before and after the 500ms STA epoch. The signal-to-noise ratio (SNR) in dB 

was defined as:  

 

 $%& = 20*+,!" -
#$%!"#$%&
#$%$'"!(

.  (2.1) 

 

where RMS&'()*+	is the root mean square (RMS) amplitude of the STA and RMS),'&- is the RMS 

amplitude of the 250ms flanks around the STA. Scalp STAs with an SNR≥6dB were used for 

subsequent analyses.  

 

(4) Cross-correlation of intracranial and scalp EEG signals  

We determined the temporal relationship between the hippocampal discharge measured 

by the intracranial channels and the voltage changes measured by the scalp electrodes. Within 

each group of hippocampal discharges, we computed the cross-correlation R./  between the 

intracranial channel STA with the highest amplitude (x)	and scalp STAs at each electrode (y) using: 

 

 &01[5] = 	∑ 8[9]:[9 − 5]2
34!  (2.2) 

 

in which m is the index of the sampled data point, N is the total number of samples in the epoch, 

and k is the lag time. This procedure resulted in 22 cross-correlograms per group. For each cross-

correlogram, the lag time at which the greatest absolute correlation occurred was determined.  
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Although volume conduction theoretically occurs with zero lag, noise in real recordings 

may cause the peak in cross-correlations of synchronous signals to deviate from zero. To 

determine what range of lag times is sufficiently small to be interpreted as zero, we conducted the 

following Monte Carlo simulation. We generated two 500ms epochs containing identical 20Hz 

sine waves: one epoch represented the intracranial hippocampal discharge and the other 

represented the scalp EEG signal. After various levels of random Gaussian noise were added to 

each epoch, the two epochs were cross-correlated, and the lag time at which the maximum 

correlation occurred was determined. The SNR for the epoch representing the intracranial signal 

was fixed at 25dB (a level based on our measurements), while a range of 6-25dB was used for the 

epoch representing the scalp signal. This procedure was repeated 1000 times for each noise level 

to generate a distribution of maximum correlation lag times for a range of SNRs. The 99% CI for 

this distribution was determined, and lag times within this interval were considered to be 

sufficiently small to be interpreted as having no delay.  

 

(5) Topographic analysis of scalp signals 

For each discharge group, the scalp STAs were used to create field potential maps using 

EEGLAB software (Delorme & Makeig, 2004), using the topoplot function with default electrode 

coordinates. Topographic maps were generated for each time point across the 500ms STA epoch. 

The topographic maps reflect 2-dimensional projections of 3-dimensional coordinates of the scalp 

electrodes.  

The dynamics of the scalp topography were quantified by the standard deviation (SD) in 

the direction of the scalp field dipole during the course of the 500ms discharge epoch. For each 

time point, the direction of the scalp field dipole was estimated by the angle between the inion-

nasion line and the line connecting the electrodes with the minimum and maximum amplitude 

(Fig. 2.4B). The dipole angle was calculated at time points with a dipole amplitude ³5 standard 

deviations from the mean dipole amplitude over the 500ms epoch. To obtain reliable SD estimates, 
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we only included groups that had scalp EEG SNR ≥6dB in at least 5 channels and waveforms with 

a minimum duration of 20ms.  

 

2.5.3  Volume conduction estimation  

We employed a four-shell, spherical model representing brain tissue, CSF, skull, and skin. 

The radii of these four layers were set at 7.9, 8.0, 8.5, and 9.0cm, and the location of the 

hippocampal source at 2.45cm (Nunez et al., 2006) (Fig. 2.5A). We set the soft tissue (brain tissue 

and skin) conductivity at 0.33 (W.m)-1, the soft tissue/skull conductivity ratio at 20, and the 

CSF/soft tissue ratio of 5 (Nunez et al., 2006; Zhang et al., 2006). During the peak of the interictal 

hippocampal discharge, we assumed that 105 neurons are active, each with 2000 active synapses 

that each generates 1pA. At a 1mm distance between the cellular sink and source, this translates 

into a hippocampal dipole moment of 2.10-7 Am, which is a value close to the 10-7 Am used in 

Naess et al. (2017). We used equations (5), (6), (17), and (18) from Naess et al. (2017) to compute 

the amplitude of scalp and depth signals. Note that the parameters in these equations are 

corrected versions from the ones in Appendix G in Nunez et al. (2006). 
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CHAPTER 3 

Digital reconstruction of infraslow activity in ictal recordings1 

 

3.1 Summary 

 Infraslow activity (ISA) is a biomarker that has recently become of interest in the 

characterization of seizure recordings. Recent data from a small number of studies have suggested 

that the epileptogenic zone may be identified by the presence of ISA. Investigation of low 

frequency activity in clinical seizure recordings, however, has been hampered by technical 

limitations. EEG systems necessarily include a high-pass filter early in the measurement chain to 

remove large artifactual drifts that can saturate recording elements such as the amplifier. This 

filter, unfortunately, attenuates legitimately seizure-related low frequencies, making ISA difficult 

to study in clinical EEG recordings. In this study, we present a deconvolution-based digital inverse 

filter that allows recovery of attenuated low frequency activity in intracranial recordings of 

temporal lobe epilepsy patients. First, we show that the unit impulse response (UIR) of an EEG 

system can be characterized by differentiation of the system’s step response. As proof of method, 

we present several examples that show that the low frequency component of a high-pass filtered 

signal can be restored by deconvolution with the UIR. We then demonstrate that this method can 

be applied to biologically relevant signals including clinical EEG recordings obtained from seizure 

patients. Finally, we discuss how this method can be applied to study ISA to identify and assess 

the seizure onset zone.  

 

3.2 Introduction 

 Epilepsy is one of the most prevalent neurological conditions and affects over three million 

people in the United States (Zack & Kobau, 2017). A third of patients with epilepsy continue to 

 
1 Results presented in this chapter are in revision at Scientific Reports. 
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experience seizures despite medication treatment (Kwan & Brodie, 2000). Although many of 

these patients pursue surgical options, 40-70% of surgical patients continue having seizures after 

resective surgery (Téllez-Zenteno et al., 2005). Surgical intervention is thought to fail in these 

cases due to the incomplete removal of the culprit brain tissue, a putative and theoretical area 

known as the epileptogenic zone (EZ). Because the EZ is an area that can only be defined post-

surgically, the seizure onset zone (SOZ) is used as a proxy for the EZ during surgical planning 

(Jobst et al., 2020). The limited efficacy of surgical interventions suggests that our ability to 

identify the SOZ/EZ is insufficient. Thus, identifying features that are unique to the SOZ/EZ has 

great potential for improving surgical outcomes. 

 Low frequency ictal activity is a biomarker that has recently become of interest in the 

characterization of seizure recordings. Recent data from a number of studies suggest that the EZ 

may be identified by the presence of very low frequency oscillations (Ikeda et al., 2020; Modur, 

2014; Wu et al., 2014) (for a review, see Lee et al. (2020)). Termed “infraslow activity” (ISA) or 

direct current (DC) shifts in the literature, this low frequency band is typically defined as activity 

below 0.1 or 0.5Hz. This frequency band is much slower than the 1-70Hz band at which clinical 

EEGs are typically interpreted. The study of low frequency activity in seizure recordings, however, 

has been hampered by technical limitations. EEG systems necessarily include a high-pass filter 

early in the measurement chain to remove large artifactual drifts that can saturate recording 

elements such as the amplifier. This filter unfortunately attenuates legitimately seizure-related 

low frequencies, making ISA difficult to study in clinical EEG recordings. Although a few studies 

have utilized DC amplifiers to try to bypass this issue (Kim et al., 2009; Miller et al., 2007; 

Vanhatalo et al., 2003; Vanhatalo et al., 2004), DC amplifiers are not immune to saturation issues 

(Fig. 3.1). Furthermore, standard clinical EEG equipment does not utilize DC amplifiers, making 

observing ISA directly in clinical recordings difficult. Consequently, development of a method to 

evaluate ISA in recordings obtained with alternating-current (AC) amplifiers is desirable. 
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 In this study, we present a novel approach to digitally reconstruct attenuated low 

frequency activity in clinical EEG recordings using a deconvolution-based inverse filter. First, we 

show that a clinical EEG recording system’s unit impulse response (UIR) may be derived by 

differentiation of the system’s step response. We then use this UIR to deconvolve a variety of 

synthetic signals to demonstrate successful restoration of attenuated low frequencies. We then 

show that this method is stable when applied to clinical intracranial recordings obtained from 

temporal lobe epilepsy patients. Finally, we discuss how this method may be applied to study ISA 

as it relates to the identification and assessment of the SOZ.  

 

 

 
Figure 3.1. Limitations in using direct-current (DC) and alternating-current (AC) 
amplifiers in recording low frequency activity.  
Although the use of a DC amplifier allows preservation of low frequency components, signals can 
become clipped if the large amplitude slow activity exceeds the range of the amplifier (top chain). 
AC amplifiers include a high-pass filter that allows signals to comfortably stay within the amplifier 
range, but low frequency activity is greatly attenuated (lower chain). Using a deconvolution-based 
inverse filter algorithm to digitally restore low frequency activity in signals measured with an AC 
amplifier is one solution to this issue (bottom, orange trace).
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3.3 Results 

 In linear time invariant (LTI) systems, the effects of recording elements such as filters on 

signals may be mathematically described as a convolution of the input signal with the system’s 

characteristic unit impulse response (UIR) (Fig. 3.2). Inversely, the input of this system can be 

found by deconvolution of the output signal with the UIR (Fig. 3.2). If the LTI element in question 

is a filter, the deconvolution operation may be thought of as an “inverse filter” that allows for 

recovery of frequencies attenuated by the filter. While this concept is mathematically 

straightforward, the challenge of applying this method to real-world signals lies in the ability to 

accurately characterize the UIR of the recording system. 

 

 
 

Figure 3.2. Elements of a linear time invariant (LTI) system may be described by 
convolution and deconvolution operations.  
In a LTI system, output function y(t) may be described by a convolution of the input signal x(t) 
with the system’s unit impulse response d(t). Inversely, the input signal may be obtained by 
deconvolving y(t) with d(t). The unit impulse response fully characterizes the LTI system in the 
time domain. In this schematic, the LTI system is the EEG recording machinery that includes 
elements such as amplifiers and high-pass filters. 
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3.3.1  Characterization of the unit impulse response of a clinical EEG system 

 Mathematically, the UIR of a system is the derivative of the system’s step response (Van 

Drongelen, 2018). To characterize the UIR of a clinical EEG unit (Natus XLTEK Brain monitor 

with Connex headbox), we used a digital/analog (D/A) converter to input a synthetically 

generated step function (Fig. 3.3A) (Methods). The output measured by the EEG system (i.e., the 

system’s step response) was fitted with a 9th order polynomial (Fig. 3.3B, C). Taking the derivative 

of this polynomial approximation resulted in the putative characteristic UIR of the recording 

system (Fig. 3.3D). The accuracy of this UIR was verified by deconvolving the recorded output of 

a test function with known low frequency activity. The test function was a series of two step 

functions (Fig. 3.4A). Deconvolution of the recorded output of these step functions (Fig. 3.4B) 

with the UIR resulted in a reconstruction that resembled the input (Fig. 3.4C). Notably, the flat 

feature of the step functions was restored, confirming that this method is appropriate for 

reconstructing DC shifts. The deconvolution operation was also robust to noise, as the square 

shape of the reconstruction was preserved even with the addition of high levels of normally 

distributed random noise (Fig. 3.4D-F).  
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Figure 3.3. Determination of an EEG system’s unit impulse response (UIR) by 
measuring the system’s step response.  
A synthetically generated step function was used as input into the EEG system (A). The measured 
output was the system’s step response (B). This step response was fitted with a 9th order 
polynomial (light green trace) (C). Taking the derivative of this polynomial function resulted in 
the system’s UIR (D).   
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Figure 3.4. Application of deconvolution-based inverse filter to step functions.  
A series of two step functions was used as a test input signal (A). The EEG system’s recorded 
output (B) was deconvolved by the unit impulse response (UIR) depicted in Figure 2D, which 
resulted in the reconstruction of the original step function (C). This method was able to 
reconstruct the general step function shape with high fidelity even with the addition of varying 
levels of normally distributed random noise (D, E, F). In panels D, E, and F, the black traces 
show the recorded output with added noise, and the orange traces show the inverse filtered 
reconstructions. SNR = signal-to-noise ratio.  
  

 

3.3.2  Validation of deconvolution-based inverse filter using synthetic signals  

 We then tested our inverse filter procedure on two different types of synthetic signals. All 

inputs were generated digitally in MATLAB and converted to an analog signal using a 

digital/analog converter to be used as inputs into the EEG system (Methods). The first test signal 

was a step function with a 10Hz sine overlay (Fig. 3.5A). As expected, the DC component of the 

53



 

 

recorded output was greatly attenuated by the system’s 0.1Hz high-pass filter while the 10Hz sine 

was unaffected (Fig. 3.5B). Deconvolution of this output with the UIR reconstructed a function 

that closely resembled the original synthetic input (Fig. 3.5C).  
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Figure 3.5. Inverse filter reconstruction of a step function with a 10Hz oscillation.  
A signal composed of a 10Hz oscillation riding on the top of a step function was used as input into 
the EEG system (A). The system’s recorded output (B) was deconvolved with the system’s UIR, 
resulting in a reconstruction of the original step function (C). The dotted line insets indicate a 
0.5s window showing the 10Hz oscillation.  
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 Next, we tested an input that was a mixed sine function composed of the following 

frequencies: 0.01, 0.05, 0.07, 0.15, 0.2, 1, 6, and 10Hz (Fig. 3.6A1). Presence of these frequency 

components were confirmed with an amplitude spectrum (Fig. 3.6A2). Low frequency 

components were visibly attenuated in the EEG system’s recorded output, and an amplitude 

spectrum confirmed this attenuation (Fig. 3.6B1, B2). Inverse filtering of the recorded output 

resulted in a mixed sine wave with the low frequency components restored, which was evident by 

visual inspection of the time series and confirmed by the amplitude spectra (Fig. 3.6C1, C2).  

 The phase spectra of the recorded output showed that the recording process distorts the 

phase of the input signal (Fig. 3.6A3, B3). The phase spectra of the original input and 

reconstruction were similar, demonstrating that the inverse filter was also able to correct the 

phase distortion caused by the EEG system (Fig. 3.6A3, C3). The fidelity of the reconstruction to 

the original input was quantified by correlation analysis. The time series, amplitude spectra, and 

phase spectra of the original input were more highly correlated with the reconstruction than the 

recorded output (Table 3.1).  
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Figure 3.6. Inverse filter reconstruction of a mixed sine signal.  
An input signal with known low frequency components was generated by mixing sine waves of 
varying frequencies (A1). The frequency composition was confirmed with an amplitude spectrum 
(A2). As expected, activity in frequencies below 0.1Hz was attenuated in the recorded output (B1, 
B2). The recording process also introduced a phase distortion (A3, B3). Deconvolution of the 
recorded output with the system’s UIR resulted in a signal with the low frequency components 
restored (C1, C2). This deconvolution process also corrected the phase distortion (A3, C3). 
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Table 3.1. Correlation results for comparing the time series, amplitude spectra, and 
phase spectra for the mixed sine signal.  
In all comparisons, the correlation between the input and reconstruction was higher than the 
correlation between the input and recorded output.  
 

Correlation results for mixed sine signal 
Time series correlations 

 Recorded output Inverse filtered reconstruction 
Input Pearson correlation  r = 0.70 r > 0.99 

Sig. two-tailed 
N 

p < 0.001 
n = 68304 

p < 0.001 
n = 68304 

 
Amplitude spectra correlations 

  

 Recorded output Inverse filtered reconstruction 
Input Pearson correlation  r = 0.84 r > 0.99 

Sig. two-tailed 
N 

p < 0.001 
n = 34153 

p < 0.001 
n = 34153 

    
Phase spectra correlations   
 Recorded output Inverse filtered reconstruction 
Input Pearson correlation  r = 0.036 r > 0.99 

Sig. two-tailed 
N 

p < 0.001 
n = 34153 

p < 0.001 
n = 34153 
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3.3.3   Application of deconvolution-based inverse filter to a known biological signal 

 Next, we wished to test a signal that was of biological relevance. A recording of a 

hippocampal seizure in a mouse that was available through a public repository was used 

(Bonaccini Calia et al., 2022) (Methods). This seizure was originally recorded with a DC amplifier, 

which allowed preservation and recording of low frequency components. Notably, there is a DC 

shift prior to the start of the seizure and spreading depolarization activity after the seizure (Fig. 

3.7A1). These features were predictably attenuated in the recorded output (Fig. 3.7B1). Inverse 

filtering of this recorded output resulted in a signal that was similar to the original input signal in 

time, frequency, and phase (Fig. 3.7C1, C2, C3). This fidelity was confirmed with correlation 

analysis that showed that, for all measures, the input signal was more highly correlated with the 

reconstruction than the recorded output (Table 3.2).  
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Figure 3.7. Inverse filter reconstruction of a mouse hippocampal seizure  
A mouse hippocampal seizure with a known low frequency shift shortly after seizure offset was 
used as the input signal (A1). The presence of infraslow frequencies was confirmed with an 
amplitude spectrum (A2). As expected, activity in frequencies below 0.1Hz was attenuated in the 
recorded output (B1, B2). The recording process also introduced a phase distortion (A3, B3). 
Deconvolution of the recorded output with the system’s UIR resulted in a signal with the low 
frequency components restored (C1, C2). This deconvolution process also corrected the phase 
distortion (A3, C3). 
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Table 3.2. Correlation results for comparing the time series, amplitude spectra, and 
phase spectra for the mouse cortical seizure.  
In all comparisons, the correlation between the input and reconstruction was higher than the 
correlation between the input and recorded output.  
 

Correlation results for mouse cortical seizure 
Time series correlations 

 Recorded output Inverse filtered reconstruction 
Input Pearson correlation  r = 0.22 r > 0.99 

Sig. two-tailed 
N 

p < 0.001 
n = 116797 

p < 0.001 
n = 116797 

   
Amplitude spectra correlations   
 Recorded output Inverse filtered reconstruction 
Input Pearson correlation  r = 0.66 r > 0.99 

Sig. two-tailed 
N 

p < 0.001 
n = 58399 

p < 0.001 
n = 58399 

    
Phase spectra correlations   
 Recorded output Inverse filtered reconstruction 
Input Pearson correlation  r = 0.72 r = 0.90 

Sig. two-tailed 
N 

p < 0.001 
n = 58399 

p < 0.001 
n = 58399 

 

 

 

3.3.4   Application of deconvolution-based inverse filter to clinical EEG recordings 

 In the results presented so far, we validated the ability of our inverse filter algorithm to 

restore low frequencies by using known input signals. Next, we wished to test our inverse filter on 

a dataset where the ground truth (i.e., the original signal) is unknown. To do this, we used the 

inverse filter to study low frequency activity in seizure recordings obtained during long-term 

monitoring of temporal lobe epilepsy patients. Because the EEG set-ups used in the inpatient unit 

are not portable, characterizing the UIR using the laboratory-based D/A signal generation system 

is impractical. Therefore, we wished to develop a more convenient method to characterize the UIR. 

To do this, we took advantage of the fact that the clinical system includes a square wave calibration 
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signal. Because a square wave is simply a series of step functions, we recorded this calibration 

output, averaged three step responses, and fitted a function to this average to approximate the 

system’s step response (Fig. 3.8A). To check that the UIR was characterized correctly, this UIR 

was used to deconvolve the recorded calibration signal, which resulted in a function resembling a 

square wave (Fig. 3.8B). 

 

 

 
Figure 3.8. Characterizing the unit impulse response (UIR) for an inpatient XLTEK 
EEG system using the native calibration signal.  
The native calibration signal is known to be a square wave, which may be thought of as a series of 
step functions. The average of three peaks in the calibration signal was used to approximate the 
system’s step response and calculate the UIR (A). Deconvolution of the calibration signal with 
the calculated UIR resulted in the expected square wave (B). 
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 The UIR derived from the calibration signal was used to deconvolve intracranial 

recordings obtained from epilepsy patients undergoing presurgical monitoring for medically 

intractable, temporal lobe epilepsy (Table 3.3). Figures 3.9 and 3.10 show example 

reconstructions of right-sided hippocampal depth (RHD) electrodes for two different patients. 

The depth probe is inserted along the anterior-posterior axis of the hippocampus, with RHD1 

being the most anterior electrode (Methods).  

 

 

Table 3.3. Patient demographics and diagnoses.  
Age refers to the age at which the recording was obtained. TLE = temporal lobe epilepsy 
 

Patient # Age (years) Gender Diagnosis Engel score 

1 20 Female Drug-resistant TLE II 

2 51 Female Drug-resistant TLE I 
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Figure 3.9. Inverse filter reconstruction of two intracranial ictal recordings for 
Patient 1. 
Black traces are the raw recorded signals, orange traces are the inverse filtered signals. Large 
amplitude, low frequency shifts are present at the start of the seizure in electrodes RHD3-6 (A). 
These observations were replicated in a second seizure from the same patient (B). RHD = right 
hippocampal depth. Vertical dotted lines indicate seizure onsets and offsets. 
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Figure 3.10. Inverse filter reconstruction of intracranial ictal recordings for Patient 
2. 
Black traces are the raw recorded signals, orange traces are the inverse filtered signals. Large 
amplitude, low frequency shifts are present at the start of the seizure in electrodes RHD3-4 (A). 
These observations were replicated in a second seizure from the same patient (B). RHD = right 
hippocampal depth. Vertical dotted lines indicate seizure onsets and offsets. 
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 To demonstrate that the reconstructions successfully recovered low frequency signals, 

high resolution, time-frequency analysis was performed using a Morlet wavelet. An example of 

the wavelet analysis for a single channel result for Patient 1, Seizure 1 is shown in Figure 3.11. A 

distinct lack of power in frequencies below 0.1 Hz was observed in the analysis of the raw signal 

(Fig. 3.11B), as expected by the presence of the 0.1Hz high-pass filter in the recording system. The 

inverse filtered reconstruction showed a clear increase in power in the sub-0.1Hz frequency band 

that is not present in the raw signal (Fig. 3.11C). The increase in power was also temporally aligned 

with the seizure onset (vertical dotted lines).   
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Figure 3.11. Wavelet analysis of channel RHD4 for the recording for Patient 1, 
Seizure 1.  
The inverse filtered reconstruction (orange trace) shows a large low frequency component at 
seizure onset that is not apparent in the raw recording (black trace) (A). Time-frequency analysis 
confirmed that frequencies below 0.1Hz are severely attenuated in the raw recording (B) but 
restored in the reconstruction (C). The vertical dotted lines indicate seizure onset and offset. 
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 The restoration of these low frequency components allowed for observations not readily 

apparent in the raw recordings. In Patient 1, channels RHD3 and RHD4 showed prominent 

downward shifts at the start of the seizure (Fig. 3.9A). Channel RHD3 also showed a small upward 

shift prior to seizure onset. Notably, channels RHD3 and RHD4 were identified as the seizure 

onset zone (SOZ) during the presurgical assessment of this patient. The SOZ was determined by 

visually identifying channels that first showed ictal activity in the conventional clinical band of 1-

70Hz. Channels RHD5 and RHD6 also showed prominent downward shifts that occurred shortly 

after the shifts in RHD3 and RHD4. Patient 2 showed similar patterns except the downwards 

shifts were more concentrated in channels RHD3 and RHD4 (Fig. 3.10A). For Patient 2, RHD1-8 

were identified as the SOZ during conventional clinical assessment. For both patients, these 

patterns were replicated in a second seizure recording (Fig. 3.9B, 3.10B), showing that this inverse 

filter method performs reliably and consistently when applied to clinical recordings.  

 

3.4 Discussion 

3.4.1  Advantages of the deconvolution-based inverse filter  

 The deconvolution-based inverse filter presented in this study offers several advantages 

over current approaches to studying infraslow activity (ISA) in clinical recordings. The use of DC 

amplifiers has been suggested as a way to preserve low frequency signals in EEG recordings, and 

some studies have successfully used such set-ups to study ISA (Kim et al., 2009; Miller et al., 2007; 

Vanhatalo et al., 2003; Vanhatalo et al., 2004). This method, however, has not been a practical 

solution for studying ISA in larger, clinical datasets because DC amplifiers are not used in 

standard clinical equipment. Furthermore, even DC amplifiers have amplifier range limitations 

that are determined by the power supply potentials. When signals exceed this range, signals 

become clipped and useful information is lost (Fig. 3.1). One distinct advantage of the method 

presented in this study is the ability to apply this technique retroactively to clinical recordings 

obtained with an AC amplifier. The method is entirely computational and does not require any 
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specialty equipment. Consequently, the inverse filter algorithm can be applied to any recordings 

that are obtained from a system for which a unit impulse response (UIR) can be successfully 

characterized. 

 This method is also able to reconstruct the phase information of the original input signal. 

Hardware filter components, such as those in EEG systems, introduce phase distortions during 

the filtering process. Our inverse filter method not only reconstructs the attenuated frequency 

components but also restores the original phase relationships across the spectrum (Fig. 3.6, 3.7). 

The fidelity of the phase spectrum is important as it allows for accurate comparisons of the relative 

timing of signal components. This timing is particularly important when studying the activity of 

different frequency bands in relation to the seizure onset or when studying relationships such as 

ISA-HFO coupling.  

 Some other studies have posed the idea of an inverse filter to reconstruct low frequency 

activity in EEG recordings (Kemp et al., 2010; Nasretdinov et al., 2021). The inverse filter 

algorithms presented in these studies, however, necessitate characterization of various filter 

parameters such as resistance and capacitance. This requires knowledge of the precise 

specifications of the EEG system’s real-time, high-pass filter implementation, which may not be 

readily available, proprietary, or otherwise difficult to obtain. In contrast, the method presented 

in this study is completely non-parametric, and no specific attributes of the equipment need to be 

known to characterize the system’s UIR. Furthermore, the UIR may be obtained for any clinical 

recording equipment that include a native calibration signal, which allows this method to be 

potentially applied more ubiquitously to clinical recordings (Fig. 3.8).  

 

3.4.2  Limitations of the deconvolution-based inverse filter 

 The deconvolution-based inverse filter relies completely on the ability to accurately 

characterize the UIR of the recording system. Since the UIR is specific to the model of the 

amplifier, the UIR must be re-characterized if a different model of amplifier is used. Consequently, 
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any updates to hospital recording systems that involve equipment changes will require a 

recharacterization of the UIR.  

 This method can be computationally intensive as the computation time scales 

exponentially with the length of the signal being reconstructed. Depending on the computing 

resources available, inverse filtering longer signals (>4hrs) may be not practical, although this 

issue may be bypassed by reconstructing a series of shorter clips and concatenating the results. 

Significant downsampling of the signals can be also used to reduce computing time since high 

sampling rates are not necessary to study low frequency activity.   

 Finally, this method will also reconstruct any low frequency artifacts that can obscure or 

confound seizure-related ISA. Therefore, any signal being used must be reasonably noise-free, 

and reconstructions should be screened for results that likely contain artifactual drifts.  

 

3.4.3  Potential clinical applications 

 The most distinct advantage of this deconvolution-based inverse filter is that it may be 

applied retroactively to clinical recordings of seizures. Because ISA has emerged as a topic of 

interest in identifying epileptogenic tissue (reviewed in Lee et al. (2020)), the ability to observe 

low frequency activity in larger clinical datasets is critical for further investigation. Although the 

exact clinical utility of ISA and its potential mechanistic role in seizure generation is beyond the 

scope of this study, the clinical examples presented here suggest that distinct patterns of ISA can 

be observed in the SOZ. For Patient 1, the clinically defined SOZ were channels RHD3 and RHD4. 

Interestingly, these two channels also showed the most prominent ISA at the seizure onset (Fig. 

3.9). This is consistent with literature that have suggested that ISA is concordant with the SOZ 

(Ikeda et al., 1999; Modur et al., 2012). Large amplitude, downward ISAs were also observed in 

channels RHD5-6, but they occurred after the ISA in channels RHD3-4 and had a longer time 

course. The mechanistic implication of these observations is a target for future studies, but our 
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current results suggest that ISA patterns allow for differentiation between electrodes in a way that 

is not evident by conventional methods.  

For Patient 2, the standard clinical assessment identified a much more diffuse SOZ 

spanning RHD1 to RHD8. In contrast to this assessment, Patient 2 shows a concentration of ISA 

power in a smaller range of electrodes, namely electrodes RHD3 and RHD4 (Fig. 3.10). This 

observation is consistent with the literature that have suggested that ISA may allow delineation 

of a smaller epileptogenic area compared to conventional methods (Ikeda et al., 1996; Mader et 

al., 2005; Rampp & Stefan, 2012; Rodin & Modur, 2008). 

3.5 Methods2 

3.5.1  Recording of synthetic and biological test signals 

The three synthetic signals (step, step with 10Hz sine overlay, mixed sine) were generated 

in MATLAB (MATLAB, Natick, MA, USA) (Fig. 3.4, 3.5, 3.6). Signals were generated with a 

sampling rate of 1000 samples/s. The mouse hippocampal seizure recording was downloaded 

from a publicly available repository (https://doi.org/10.5281/zenodo.5655535) (Bonaccini Calia 

et al., 2022) in HDF5 format, downsampled to 1000 samples/s, and converted to a *.mat file (Fig. 

3.7A1). These signals were saved as text files, and a plain-text word processor (WordPad, 

Microsoft, Windows 10) was used to add a header and convert them into *.atf files that could be 

read by Clampex (Molecular Devices LLC, San Jose, CA, USA, v.10.4.1.10). 

Next, a Clampex episodic stimulation protocol was used with a digital/analog (D/A) 

converter (Digidata 144A, Molecular Devices LLC, San Jose, CA, USA) to generate an analog 

output corresponding to each test signal. The output from the D/A converter was attenuated by a 

factor of 1/1000 using a 10 kOhm/10 Ohm resistor pair in series. This attenuated signal was 

2 Custom scripts used to generate the results presented in this chapter can be found at 
https://github.com/sominlee14/deconvolution_based_inverse_filter (Appendix). 
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recorded with a clinical EEG machine (Natus XLTEK Brain monitor with Connex headbox). The 

recorded signals were exported in the *.edf format for subsequent analysis in MATLAB. 

 

3.5.2  Unit impulse response curve fitting and deconvolution  

 Curve fitting to approximate the step response was performed using the polyfit interface 

in MATLAB. A 9th order polynomial was used. Deconvolution was performed using the deconv 

function. Signals were zeroed by subtracting the mean prior to deconvolution. MATLAB scripts 

that demonstrate this process step-by-step are available in a Github repository 

(https://github.com/sominlee14/deconvolution_based_inverse_filter) (Appendix).  

 

3.5.3  Signal processing and statistical analysis  

 All signal processing and statistical analyses were performed in MATLAB. All 

reconstructed signals were filtered with a 2nd order, high-pass Butterworth filter with a cutoff 

frequency of 0.005Hz prior to visualization. This filter step is necessary because the 

deconvolution process, in some cases, introduces a triangular drift due to the accumulation of 

rounding errors. The frequency of this drift is entirely dependent on the epoch length of the signal 

being deconvolved and is equal to  !
5	×	89:;<	=8>?@<. To avoid confounding this triangular drift with 

ictal-associated slow activity, we only used signals with lengths at least three times the period of 

the lowest frequency of interest. For example, to analyze frequencies around 0.005Hz, the signal 

being inverse filtered was at least 600 seconds long.  

 

3.5.4  Patients and clinical data acquisition 

 Clinical EEG recordings were collected from two patients undergoing phase II monitoring 

for medically intractable, right temporal lobe epilepsy at the University of Chicago Adult Epilepsy 

Center (Supplementary Table S3). Written informed consent was obtained through a process 

approved by The University of Chicago Institutional Review Board. For both patients, intracranial 

recordings were collected using depth electrodes placed into the right hippocampus, 12 channel 
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depth electrodes placed along the length of the right hippocampus with contact #1 (RHD1) being 

most anterior and contact #12 (RHD12) being most posterior. Other intracranial electrodes were 

placed in other locations, but recordings from these channels were not used for this study.  

 All patient recordings used in this study were collected using an XLTEK EEG recording 

system (Natus Neurolink IP EEG Amplifier, INBOX-1166A/B, Natus, Pleasanton, CA, USA). 

Signals were digitized at 1024 samples/s and referenced to the FCz electrode. The raw broadband 

(0.1-344Hz) was converted into *.mat files using a custom C++ routine. Signals were 

downsampled to 256 samples/s for all subsequent analyses.   
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CHAPTER 4 

Characterization of the spatiotemporal relationship between spiking and 

LFP during focal seizures1 

 

Attestation statement 

 The work presented in this chapter was a collaborative effort with Sarita Deshpande, a 

fellow PhD student in the Wim van Drongelen lab. She and I equally split all major elements of 

this project including project design, data preprocessing, data analysis, and figure generation.  

 

4.1 Summary 

 The relationship between action potentials and the associated local field potential (LFP) 

in neural recordings is typically studied only in the temporal domain using the spike-triggered 

average (STA). In this study, we present a novel approach, termed the spatiotemporal spike-

centered average (st-SCA), that allows for visualization of the spike-LFP relationship in both the 

temporal and spatial domains. In this method, a 3D spatiotemporal topography of spike-

associated LFP is calculated from a 2D spatial average of the LFP centered around the time and 

location of individual spikes. We applied this method to 25 microelectrode array (MEA) 

recordings obtained from seven patients with pharmacoresistant focal epilepsy during ictal and 

interictal states. Five patients in this dataset had MEA implants in recruited cortex, and two had 

implants in unrecruited cortex. Of the five patients with arrays implanted in recruited territory, 

three showed STAs that resembled sine cardinal (sinc) functions, and two showed non-sinc 

functions. Using the st-SCA, we found that the patients who showed a sinc-function pattern in the 

temporal domain showed a donut-shaped ring of LFP activity in the spatial domain. This 

observation was corroborated by a theoretical model describing an ictal spike as measured by a 

 
1 Results presented in this chapter are in revision at Communications Biology. 
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macroelectrode. The model also revealed a special symmetry wherein the temporal component of 

the st-SCA predicts the spatial component when they both approximate sinc-functions. 

Supporting this theoretical derivation, a radial cut of the donut-shaped st-SCA showed a spatial 

pattern consistent with a sinc-function. This spatial sinc-function had peaks separated by 

~2.5mm—a measurement that supports the role of mid-range excitatory connections during ictal 

activity. In sum, these findings suggest that patients whose seizures engage mid-range 

connections may be identifiable by the spatiotemporal features of ictal spike-associated LFP 

activity.  

 

4.2 Introduction 

Spatiotemporal patterns of brain electrical activity reflect neural mechanisms 

underpinning different brain pathologies. Consequently, temporal and spatial patterns observed 

in electrographic recordings are frequently employed to guide diagnostic and therapeutic 

approaches in the treatment of epilepsy. During surgical evaluation of patients with epilepsy, a 

variety of electrodes are used to record brain electrical activity across different scales. For example, 

large-scale global activity can be recorded by macroelectrodes at the scalp or cortex, and meso- 

and microscale activity can be recorded by intracranial arrays or bundles of microelectrodes 

(Eissa et al., 2017; Eissa et al., 2016; Schevon et al., 2012). Despite the heavy reliance on 

electrophysiology in clinical practice, the relationship between neural activity across scales and 

the mechanistic implications of the observed spatiotemporal patterns remain poorly 

characterized.  

One important question in understanding cortical seizure dynamics is how the activity of 

individual neurons relates to local and global network activity in ictal and interictal states. The 

interactions of neural networks during human focal seizures across micro-, meso- and 

macroscopic scales have been characterized by other recent studies (Eissa et al., 2017). Specifically, 

one study showed that the spike-triggered average (STA) of the ongoing low frequency component 
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of the local field potential (LFP) could be approximated by a sine cardinal (sinc) function (Eissa 

et al., 2018). Furthermore, filtering a train of ictal action potentials with a rectangular (brick wall) 

filter generated an output that correlated well with the observed seizure, consistent with the fact 

that the Fourier transform of a rectangular function is the sinc-function (Van Drongelen, 2018). 

While the ictal STA was determined in the temporal and frequency domains, the spatial 

component of the relationship between action potentials and low frequency LFP was not 

characterized.  

Similarly, most previous studies that describe the relationship between single spiking 

activity and the surrounding LFP have focused primarily on temporal descriptions using the STA 

(Bazelot et al., 2010; Glickfeld et al., 2009). The few studies that have investigated the spatial 

component of this relationship do so by incorporating spatial information into the STA through 

the addition of spatial filters (Telenczuk et al., 2017) or use a covariance-based approach (Rust et 

al., 2004). None so far have directly visualized the full spatial topography of LFP associated with 

spiking activity.  

In this study, we present a novel approach, termed the spatiotemporal spike-centered 

average (st-SCA), in which a mesoscale spatial topography of spike-associated LFP can be 

visualized by calculating a spatial average of the LFP centered around the location of individual 

spikes. Calculation of this topography results in a powerful tool that allows for the visualization of 

both the spatial and temporal components of the spike-LFP relationship. We apply this method 

to microelectrode array (MEA) recordings of human focal seizures to reveal unique 

spatiotemporal patterns that support the role of mid-range excitatory connections during ictal 

activity. We then combine these MEA observations with a mathematical model describing an ictal 

spike as measured by a macroelectrode to show that, in special cases, the temporal and spatial 

features of the spike-associated LFP can predict one another. In the discussion, we explore the 

biological mechanisms and clinical implications of the newly observed spatiotemporal properties 

in the context of pharmacoresistant focal epilepsy.  

76



 

 

 

4.3 Results 

To expand upon the traditional temporal characterization of the complex relationship 

between neuronal firing and the overlying global LFP, we introduce a novel calculation termed 

the spatiotemporal spike-centered average (st-SCA). The st-SCA builds upon the more typically 

utilized STA by accounting for both spike timing and location. The st-SCA is determined with 

respect to the action potential's timing (>, temporal component) and location in the cortical plane 

(8, :; spatial component). To do this, we characterize the multi-unit action potential train (with ? 

= 1, ... , % action potentials occurring at 8A , :A , >A) as a series of unit impulses:  

 

 ∑ A(8 − 8A , : − :A , > − >A)2
A4!  (4.1) 

 

This produces the expression for the normalized spatiotemporal cross-correlation C(D, E, F) 

between the LFP and action potential:  

 

 C(D, E, F) = !
2∭(∑ A(8 − 8A , : − :A , > − >A))	HIJ(8 + D, : + E, > + F)2

A4! 	L8	L:	L> (4.2) 

 

To evaluate this expression, we interchange the integration and summation operations and 

integrate over the spatiotemporal domain. The resulting expression is defined as the st-SCA: 

 

 C(D, E, F) = !
2∑ HIJ(8A + D, :A + E, >A + F) 	= 	M>-$CO(D, E, F)2

A4!   (4.3) 

 

 Note that if we set the range of (D, E) equal to the area covered by a fixed spatial range, we 

obtain the well-known temporal STA (Fig. 4.1A). In contrast, if we set F to a fixed temporal range, 
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we obtain purely the spatial component of the st-SCA for that epoch. In the following, we describe 

the computational steps to determine the st-SCA in MEA recordings. 

 

4.3.1  Calculation of the st-SCA in MEA recordings 

To apply the st-SCA to MEA recordings, we must account for the irregular timing and 

location of spiking activity across the array. A simplified analogy of this approach is to visualize 

spiking activity as stones being tossed into water. Consider throwing a single stone into water and 

analyzing the consequent effects by observing the resulting water ripples. We can simulate 

multiple sources by dropping identical stones from the same height but at different times and 

locations across the horizontal plane of the water surface, resulting in a complex landscape. To 

determine the contribution of a single stone to this landscape, we can take a field of view centered 

around individual stones. According to Eq. 4.3, averaging across all stones gives us the spatial 

pattern of activity associated with each stone. If we also include the time interval around each 

dropped stone, we obtain the stone's characteristic spatiotemporal perturbation.  

To apply this to the analysis of MEA recordings, spikes are detected for each channel in 

the MEA (Fig. 4.1B, left column), and the low frequency LFP associated with each spike is 

determined (Fig. 4.1B, middle column). This LFP is then spatially translated such that the 

associated spike position (8, :) is at the origin of a new set of axes (D, E) (Fig 4.1B, right column). 

This spike detection and LFP translation process is then applied to all channels. Averaging the 

results across all channels results in a field of view of the spike-associated LFP that is (1) centered 

around individual spikes and (2) approximately four times larger than the area of the MEA. This 

field is then calculated for time points F to result in the st-SCA (Fig. 4.1B, right panel). 
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Figure 4.1. Schematic for computing the mesoscale spatiotemporal spike-centered 
average (st-SCA) between spiking activity and the local field potential (LFP) during 
a human focal seizure. 
(A) During seizure activity, the LFPs within the area of the electrode array (the summed LFP of 
the microelectrode array is depicted in the upper trace) are associated with a multi-unit action 
potential train. The LFP's relationship to the spike is considered over time F	relative to the spike 
events.  
(B) For each spike (left column) across the MEA, its associated spatiotemporal LFP (middle 
column) is determined. The red circle in the middle column indicates the spike position on the 
MEA. Next, the (8, :)axes of the LFP are translated into the (D, E) axes, such that the associated 
spike position is at the origin (right column). Finally, the results in the right column are averaged 
to create a matrix that contains the st-SCA. Note that the corners of the average are undefined 
because the MEA does not have electrodes in the corner positions. 
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4.3.2   Application of st-SCA to clinical recordings of human focal seizures 

We applied the st-SCA method to analyze microelectrode recordings of focal seizures in 

patients undergoing epilepsy surgery evaluation. These recordings were obtained from 96-

channel, 4x4mm MEA during and around ictal activity (Schevon et al., 2012; Truccolo et al., 2011). 

Filtering was used to extract local multi-unit activity and the associated low frequency component 

of the LFP of the surrounding network (Methods). A total of 19 seizures from seven patients was 

used for the study (Table 4.1). Both ictal and interictal recordings were evaluated, where interictal 

was defined as being at least two hours away from any known ictal activity. Of the seven patients 

analyzed for this study, five patients had arrays implanted in the recruited seizure territory 

(Patients 1-5), and two patients had arrays implanted in unrecruited seizure territory but within 

the clinically-determined seizure onset zone  (Patients 6-7) (Schevon et al., 2012). As previously 

described, recruited seizure territory is defined as local tissue invasion by the seizure wavefront. 

Unrecruited territory is located outside of the recruited territory but can show rhythmic EEG 

activity due to local synaptic activity (Merricks et al., 2021; Schevon et al., 2012).  
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The representative STAs calculated across ictal and interictal states for two recruited 

territory recordings and one unrecruited territory recording are depicted in Figure 4.2. The black 

lines represent the STAs, the red lines represent the associated noise estimates, and the vertical 

dotted lines indicate ! = 0, i.e., the timing of the spike trigger. For both recruited and unrecruited 

territory recordings, the amplitudes of the ictal STAs (Fig. 4.2C, E, G) were larger than the 

corresponding the interictal STAs (Fig. 4.2D, F, H). The amplitude for the unrecruited ictal STA 

(Fig. 4.2G), however, was much smaller than the recruited ictal STAs (Fig. 4.2C, E).   
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Figure 4.2. Spike-triggered averages (STAs) in recruited and unrecruited cortical 
territories during ictal and interictal phases show different patterns.  
The black traces are the signals, and the red traces represent the associated noise estimates. 
Vertical stippled lines represent the zero of the time-axis.  
(A—B) Example signal trace of average ictal and interictal LFP activity across MEA channels.  
(C—F) The STA in the recruited territories show an evolution towards a characteristic negative 
peak, with or without surrounding oscillations, during the ictal phase. The ictal phase amplitudes 
are also much higher than those of the interictal phase.  
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Figure 4.2. (continued) 
(G—H) The STA in the unrecruited territory show much smaller, non-zero ictal signals than the 
ones in the recruited territories. In contrast to the recruited territories, the small but dominant 
ictal peak polarity is positive in this case.  
The insets in panels D, F, G, H show that all unrecruited ictal conditions and all interictal 
conditions show smaller amplitude, albeit non-zero STAs. 
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Patients with the MEA located in recruited seizure territory showed STAs with different 

morphologies (Fig. 4.3A-E), but all had a dominant negative peak around ! = 0. Consistent with 

previous findings, we found that the STA for Patients 1-3 resembled a sinc-function with a peak 

embedded in a weak oscillatory component (Fig. 4.3A-C) (Eissa et al., 2018). In contrast, the STA 

for Patients 4 and 5 did not resemble a sinc-function as Patient 4 showed a dominant peak 

embedded in a strong oscillation (Fig. 4.3D) while Patient 5 showed no oscillatory component 

(Fig. 4.3E). The STAs for Patients 6 and 7 with the MEA in unrecruited territory were weak with 

a smaller amplitude deflection around to ! = 0 (Fig. 4.3F, G).  
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Figure 4.3. Representative temporal and spatial components of the spike-centered 
averages (SCAs) for each patient.  
Patients 1-5 had microelectrode arrays (MEAs) implanted in recruited territory, and Patients 6-7 
had MEAs implanted in unrecruited territory. Grayscale is in µV units. 
(A—C) Patients 1-3 resemble sinc-functions in the temporal domain.  
(D—E) Patients 4-5 resemble deep wells of excitatory activity in the spatial domain.  
(F—G) Patients 6-7 are characterized by comparatively smaller amplitude signals in both the 
temporal and spatial components.  
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We then evaluated the relationship between spiking activity and the LFP in the 

spatiotemporal domain by computing the st-SCA over the entire MEA ($, &) and times ' = ±1ms 

(Fig. 4.4C, D). This 2ms interval was averaged to yield a 2D spatial topography. In the ictal phase 

for Patients 1-3, we observed a centrally located trough surrounded by a pair of rings with 

apparent radial symmetry (Fig. 4.3A, B, 4.4C). The distance between the center and the region 

indicated by the inner circle was ~1.5mm, and the distance between center and the region 

indicated by the outer circle was ~2.5mm (Fig. 4.4C). In contrast, the ictal phase for Patients 4 

and 5 showed a deep well of stronger negative activity (Fig. 4.3D-E, 4.4D). The st-SCAs during the 

interictal phase as well as the results obtained in unrecruited territories showed different patterns 

with relatively smaller amplitude signals (Fig. 4.5B, D-F).  
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Figure 4.5. Spatial components of the spatiotemporal spike-centered averages (st-
SCAs) in recruited and unrecruited territories show differing patterns.  
The st-SCA in panels A and C represent the same spike-LFP relationship as depicted in Figure 
4.4C and D, respectively. In all patients, the ictal signal (A, C, E) is stronger than the interictal 
one (B, D, F). In Patient 1 (A), the two rings surrounding the center are indicated by the circles. 
Patient 5 (C) instead shows a deep well of negative activity. The dynamics in unrecruited 
territories (E-F) are markedly different and are also much smaller in amplitude. Grayscale is in 
µV units. 
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In sum, three of five patients with recordings from recruited territories (Patients 1-3) 

showed st-SCAs resembling sinc-functions in the temporal domain and st-SCAs resembling 

donut-shaped rings of activity in the spatial domain (Fig. 4.3A-C, 4.4C). In Patients 4 and 5, the 

STAs were characterized by a non-sinc morphology, and the st-SCAs showed deep and diffuse 

wells of negative activity (Fig. 4.3D-E, 4.4D). 

Note that these observations were not attributable to widespread correlations among MEA 

electrodes. To demonstrate that the observed st-SCA patterns are representative of the spike-LFP 

relationship and not the global, macroscale correlations amongst network LFPs, we showed that 

STAs in unrecruited territory show a large and significant oscillatory component only when 

triggered by spikes from recruited territories (Fig. 4.6B), and not when triggered by spikes from 

unrecruited territories (Fig. 4.6C). This result is a replication of previous studies (Eissa et al., 

2017). Furthermore, randomizing the spike times detected across the MEA resulted in complete 

destruction of the observed st-SCA patterns, emphasizing the importance of spike timing as the 

driver for these spatiotemporal patterns (Fig. 4.7). Finally, calculation of the st-SCA after applying 

a spatial filter to decorrelate LFP signals across MEA channels did not qualitatively alter the st-

SCA patterns (Fig. 4.8) (Methods).   
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Figure 4.6. Temporal spike-triggered averages (STAs) in recruited and unrecruited 
territories are calculated with spike triggers from different locations. 
The STA of the LFP in the recruited area triggered by spikes in the recruited area (A) shows a 
large negative peak at the time of the trigger. The STA in the unrecruited areas have a strong signal 
component when triggered by spikes in from the recruited areas (B), but not if triggered by spikes 
in the unrecruited area (C). 
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Figure 4.7. Representative spatiotemporal spike-centered averages (st-SCAs) after 
randomization of spike trigger timing. 
When the spikes and local field potential are no longer coupled temporally, no spatial patterns are 
seen, highlighting the importance of spike timing in the st-SCA calculation. Grayscale is in µV 
units. 
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Figure 4.8. Representative spatiotemporal spike-centered averages (st-SCAs) after 
spatial filtering 
The spatially filtered st-SCAs resemble similar patterns to non-whitened st-SCAs, albeit a smaller 
amplitude signal. Grayscale is in arbitrary units (A.U.). 
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4.3.3  Theoretical model of a macroelectrode 

The st-SCA calculations presented above were obtained indirectly by an averaging 

procedure in order to reduce the noise not associated with the spike trigger in the spike-LFP 

relationship. In this section, we simulate an ideal noise-free, controlled environment where 

spatial and temporal relationships can be measured directly (Fig. 4.9).  

 

 

 

 

Figure 4.9. A mathematical model as represented by the recording of 
macroelectrode measuring the underlying network’s st-SCA.  
The electrode covers an area of one-dimensional cortex where we record the effect associated with 
a single, centrally located ictal action potential, !(r, τ) = δ(0,0); i.e., the macroelectrode measures 
the underlying network's temporal component of the st-SCA, *+ − -./!(0). This measurement can 
be approximated by an unknown action potential's spatiotemporal cortical activation function, 
1(2, 0), integrated over the spatial range [−4, 4] covered by the electrode. 

 

 

Here, the sum of all measurements across the MEA can be represented by a single 

macroelectrode, which records cortical activity when a spike occurs at time zero and at the center 

of the electrode. This is a measurement of the noise-free, spatiotemporal local field function 

1(2, 0) (space (2) and time (0)) associated with the central spike represented by a delta function, 

!(2, 0). Because the potential of cortical generators attenuates sharply with distance, we consider 

contributions from activity in areas not directly under the macroscopic electrode to be negligible. 
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Under this assumption, the electrode's signal can be approximated by summing the contributions 

over the neocortical area under the electrode, and we find the following expression for -6/(0): 

-6/(0) ≈ ∫ 1(2, 0)	:2"
#" =	∫ 2;<+(−4, 4)	1(2, 0)	:2$

#$  (4.4) 

with 2;<+(−4, 4) representing a rectangular window bounded by [−4, 4]. Similarly, if we compute 

the spatial component of the SCA, *+--./%(2), by integration over a fixed time epoch, [−6, 6], 

around the seizure onset, we get: 

*+--./%(2) = ∫ 1(2, 0):+&
#& 	= 	 ∫ 2;<+(−6, 6)1(2, 0):0$

#$  (4.5) 

Because the action potential can be represented by a unit impulse, -6/(0) and *+--./%(2) are 

equivalent to a cortical unit impulse response (UIR). Thus, the UIR can be used to link the spike 

train to the associated LFP.2 In most cases the function 1(2, 0) cannot be simply derived from 

measuring the -6/(0)	and *+--./%(2), but one could apply an ad hoc solution so that Eqs. 4.4 and 

4.5 produce the correct characterization: 

1(2, 0) ∝ *+--./%(2)-6/(0) (4.6) 

In special cases, however, 1(2, 0) may be mathematically derived. Note that we determined earlier 

that in three of five patients with recordings in the recruited territory, the -6/(0)	resembles a 

sinc-function: 

-6/(0) 	∝ 	*?@<(0) (4.7) 

2 A detailed stepwise explanation of how action potentials and LFP can be represented as the 
inputs and outputs of a linear time invariant (LTI) system can be found in the supplementary 
section of this chapter (section 4.6). 
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This represents a unique scenario in which the 1(2, 0) and *+--./%(2) may be predicted 

from the characterization of -6/(0) alone. The sinc-function is the UIR of an ideal filter, and a 

previous study has used this property to show that an ictal spike train passed through an ideal 

filter recreates the seizure's LFP (Eissa et al., 2018). Since the sinc-function is defined as the 

Fourier transform of a rectangular function, the relationship between time and space conveniently 

parallels a time-frequency Fourier-transform-pair. Accordingly, we find:  

 

 1(2, 0) 	∝ ;'() (4.8) 

 

Substitution of this finding into Eq. 5 enables us to find the *+--./%(2), which represents the 

spatial postsynaptic effects of an action potential effective over a fixed time epoch around the 

seizure onset ([−6, 6]): 

 

 *+--./%(2) ∝ 	∫ 2;<+(−6, 6)	;'():0$
#$ 	= 	*?@<(2) (4.9) 

 

Thus, we find that in the special case where both -6/(0) and *+--./%(2) are described by sinc-

functions, the temporal features of the spike-associated LFP can predict the spatial features, and 

vice versa. 

 

4.3.4  Quantification of the st-SCA spatial patterns 

Since the model showed that a sinc-function in the temporal domain predicts a sinc-

function in the spatial domain, we aimed to more quantitatively describe the donut-shaped 

activity observed in Fig. 4.4C. Taking advantage of the radial symmetry observed in the st-SCA, 

we converted the Cartesian coordinates (A, B) into polar coordinates (2, C) and focused on the 

spatial relationship with respect to 2 (Fig. 4.10A). This enabled us to depict the st-SCA in two 
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dimensions, (2, 0) (Fig. 4.10B). A detail of that relationship is depicted in Figure 4.10C, and the 

summed values across this two-dimensional detail are plotted along its margins. These summed 

values are the two components as a function of space and time (2 and 0). Note that the bottom 

graph in Figure 4.10C represents the central trough (0	 = 	±	35ms) of the function shown in Figure 

4.4A. As anticipated by the outcome in Eq. 4.9, we observed a spatial component that shows a 

central trough with smaller amplitude side lobes (Fig. 4.10C, left trace) –a pattern consistent with 

the shape of a sinc-function. Note that the resolution and range of the spatial component (2	 =

	±3.6mm) is limited by the size of the MEA (Fig. 4.1B). Consistent with the donut-shaped rings 

observed in Figure 4.4C, the peaks of the spatial component were separated by ~2.5mm (Fig. 

4.10C, left trace, blue arrows).  
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Figure 4.10. The 2D spatiotemporal spike-centered average for Patient 1. 
(A) The Cartesian coordinates (ξ, ψ) from the 3D st-SCA are converted into polar coordinates 
(2, C), resulting in a 2D st-SCA. 
(B) A color representation of *+--./(2, 0). The top trace, the temporal component of the *+-
-./!(0), is obtained by the sum of *+--./(2, 0)	over 2. Amplitude and color scale are in µV.  
(C) Detail of the central part of Panel B. The left margin shows the resulting wave from 
summation over time, generating the spatial component of st-SCA. The green arrows on the left 
indicate the distance (~2.5mm) between the peaks seen in this function. The bottom margin 
depicts the resulting wave from summation over space, generating the temporal component of the 
st-SCA. 

99



 

 

4.4 Discussion 

 The neural dynamics of human focal seizures show a complex relationship between action 

potential activity and the LFP (Movie S1). Because characterizing this relationship is important 

for understanding seizure generation and propagation, this study aimed to determine the 

spatiotemporal patterns observed across seizure states and cortical locations. Analyses of clinical 

recordings (Fig. 4.2-4.5) showed that the spike-LFP relationship for some focal seizures can be 

approximated by a sinc-function in both the spatial and temporal domains. Our theoretical model 

(Eq. 4.4-4.9; Fig. 4.9) further showed that a sinc-function in the temporal domain can predict a 

sinc-function in the spatial domain. Here, we discuss the potential biological implications of our 

findings. 

Under physiological conditions, synaptic activity is a major contributor to the extracellular 

potential field (Nunez et al., 2006). Other contributors may include intrinsic membrane currents, 

gap junctions, neuron-glia interactions, and ephaptic effects (Buzsaki et al., 2012; Herreras, 2016). 

While the relative contributions of these different mechanisms during pathological states such as 

seizures have not been fully elucidated, a non-zero cross-correlation between action potentials 

and LFPs is expected because synaptic currents are a major component in the compound activities 

observed in ictal states.  

In our discussion of the mechanistic implications of the observed st-SCAs, we assign a net 

excitation to negative deflections and net inhibition to positive deflections, as previously 

described (Eissa et al., 2017). Accordingly, our st-SCA analyses (Fig. 4.2, 4.3) show that in the 

recruited ictal territory, the spike-LFP correlation at small lags are dominated by net excitation 

during seizures in all patients. The activity level in the excitatory center, representing the activity 

at the ictal wave, is excessively high, possibly due to saturation of the local inhibitory population 

(Tryba et al., 2019). In Patients 1 and 2, we also observe a ring of reduced excitation at a distance 

~1.5mm around the excitatory center (Fig. 4.4C, 4.3A-B). In turn, the ring of reduced excitation 

is surrounded by a second ring at an additional distance of ~1mm where excitation increases again. 
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For these patients, this donut-shaped st-SCA is specific to the recruited seizure territory in the 

ictal phase (Fig. 4.5A, B). This observation suggests that the ictal wave in the recruited territory, 

represented by the excitatory center (A, B = 0,0), creates an escape of hyperexcitation via a jump 

that engages mid-range connectivity in the millimeter range (Fig. 4.4C, 4.10C). Decorrelation of 

the LFP prior to the st-SCA calculations yielded similar spatiotemporal patterns (Fig. 4.8), further 

corroborating the importance of local mm-range excitatory connections in focal seizures. 

A question that remains is the biological basis for this connectivity. Histological studies 

have shown that there are indeed excitatory mid-range connections at the millimeter scale 

mediated by axon collaterals within the gray matter in the neocortex in addition to short-range 

excitatory and inhibitory connections at a scale of hundreds of µm (Fig. 4.11A) (Nieuwenhuys, 

1994; Oberlaender et al., 2011; Pichon et al., 2012; Zhang & Deschênes, 1997). Additionally, 

previous studies of ictal wave dynamics provide direct evidence that mm-range connections are 

invoked during seizure activity (Schevon et al., 2012). An example of this jump in action potential 

activity is depicted in the spatial plot in Figure 4.11B, in which there are multiple areas of 

simultaneously increased neural activity across the MEA, separated by mm-range gaps. This is 

consistent with the distance between the excitatory center and outer ring we observe in the donut-

shaped spatial cross-correlation depicted in Figure 4.4C. This pathological escape of uncontrolled 

excitation across the cortex could be considered a candidate mechanism in seizure recruitment 

and propagation. 
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Figure 4.11. The propagation of the ictal wavefront and the involvement of mid-
range excitatory neocortical connectivity by axon collaterals.  
(A) Diagram of gray matter excitatory connections of a neocortical pyramidal cell showing the 
short-range connections (order of 100s of µm) and mid-range connections (order of mm) via the 
pyramidal cell axon collaterals (based on Figure 5 in Nieuwenhuys, 1994).  
(B) A snapshot of a video (see Supplement) showing the propagation of ictal, multi-unit action 
potentials across part of a Utah array. The black arrows show multiple contiguously active areas 
that are separated by a mid-range, mm-sized distance, supporting that the excitatory axon 
collateral connections are invoked for propagation of the ictal activity. Color scale represents the 
number of spikes per second. 

 

 

By combining current and previous findings on ictal dynamics, we can outline the 

following summary for an evolving, neocortical focal seizure. At the micro and meso-scales, an 

ictal wave of action potential activity propagates at a velocity of ~1 mm/s by invoking excitation 

via the local connections over distances < 1 mm. This wave of hyperexcitation propagates locally 

when the inhibition in front of this wave fails to constrain the excitation (Eissa et al., 2017; 

Schevon et al., 2012; Tryba et al., 2019). In this context, it is interesting to note that this 

propagation process seems compatible with the evolution of the clinically observed Jacksonian 

march first described by Hughlings Jackson in 1870 (Extercatte et al., 2015). We now find 

evidence that, in addition to the slow propagation process, the ictal wave excites cortical areas 

farther than 1 mm away, probably via axon collaterals within the gray matter, which allows 
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excitation to ‘escape,’ and enables recruitment of additional cortical territory. This activation of 

areas > 1 mm away might also explain modular propagation of ictal activity, a property previously 

observed in experimental seizures (Trevelyan et al., 2006). At the macro-scale, white matter, 

intracortical connections are invoked, spreading ictal activity across a cm-sized territory. The 

activity in this macroscale territory is still highly correlated with the action potential activity in 

the ictal wave located in the recruited territory rather than the local action potential activity 

located in the non-recruited areas (Fig. 4.6) (Eissa et al., 2017). In addition, while local inhibition 

fails at the ictal wavefront, longer range inhibition remains intact and plays a critical role in 

sustaining the synchronous oscillatory component of the ongoing seizure at the macroscale (Eissa 

et al., 2017; Eissa et al., 2018).   

Not all patients with implants in recruited territory showed spatiotemporal patterns 

resembling a sinc-function, and the clinical etiologies for these patients may offer some clues 

about why this is the case. The diffuse depressions observed in the spatial domains for both 

Patients 4 and 5 (Fig. 4.3D-E, 4.4D) are consistent with a local flood of excitation. Indeed, the 

seizures in both of these patients were characterized as secondarily generalized. This suggests that 

in generalized seizures, the mid-range excitatory connectivity structure (as represented by the 

sinc-function) may play a diminished role in comparison to other mechanisms of ictal propagation, 

such as local excitation or engagement of white matter tracts (Fig. 4.11A). Furthermore, a unique 

case is Patient 3, who was diagnosed with cortical dysplasia. The STA is sinc-like, and the st-SCA 

partially resembles a sinc-function (Fig. 4.3C). Cortical dysplasias have been shown to be 

associated with functional connectivity defects (Hong et al., 2017; Jeong et al., 2014; Rezayev et 

al., 2018) which may explain the partial donut ring of activity in the st-STA (Fig. 4.3C).  

From these results, we propose that focal seizures that engage mid-range, excitatory 

circuits may be identified by their spike-LFP spatiotemporal patterns. With this information, 

clinicians can potentially target specific mechanisms underlying a patient’s seizures and choose 

appropriate therapeutic strategies. For example, removal of horizontal interactions on a mm-scale 
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has been the rationale for performing subpial transections in patients with intractable epilepsy 

(Morrel et al., 1989). In these cases, characterization of the st-SCA may inform the 

appropriateness of such interventions in personalized patient treatment plans. 

In addition, our results suggest that these spatiotemporal patterns may be obtained 

without the use of MEAs. While MEAs are advantageous for monitoring and studying seizure 

activity with high temporal and spatial resolution, their current clinical utility is limited as they 

cannot be easily used to sample from multiple cortical areas. Our theoretical model, however, 

showed that a sinc-function in the temporal domain can predict the presence of a donut-shaped 

ring of activity in the spatial domain. Consequently, a clinician could hypothesize that mid-range 

excitatory connections may be involved during a patient’s focal seizure if a sinc-function is 

observed in the temporal domain. Interestingly, we found that the sinc-function can be 

characterized in the temporal domain by using spiking and LFP information from a random 

subset of only eight electrodes (Fig. 4.12). This suggests that the st-SCA may be characterized by 

using neocortical microelectrodes that allow for recording from multiple areas by reducing the 

number of channels per probe. The development of such electrodes is technologically feasible as 

similar probes are already used clinically for the monitoring of deep brain structures (Misra et al., 

2014).  
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Figure 4.12. The spike-triggered average (STA) calculated from spike timing and 
LFP activity from only a random subset of eight electrodes for Patient 1.  
The sinc-function may be characterized in the temporal domain using signals from only eight 
channels across the MEA. The different colors in (A) represent different random subset of eight 
electrodes, and their corresponding STA in (B). 
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4.5 Methods3 

4.5.1  Patients 

Seven patients with pharmacoresistant focal epilepsy underwent chronic intracranial EEG 

studies to help identify the epileptogenic zone for subsequent removal. Patients 1, 4, 6, and 7 were 

recruited at Columbia University Medical Center, and Patients 2, 3, and 5 were recruited from 

Massachusetts General Hospital/Brigham and Women's Hospitals (Table 4.1). Procedures were 

approved by the Internal Review Board committees at Columbia University Medical Center, The 

University of Chicago Comer Children's Hospital, and Massachusetts General Hospital/Brigham 

and Women's Hospitals. The patients' surgeries and treatment plans were not directed by or 

altered as a result of these studies.  

4.5.2  Signal acquisition and pre-processing 

A 96-channel, 4 x 4mm MEA (Utah array; Blackrock Microsystems) was implanted along 

with subdural electrodes (ECoG) with the goal of recording from seizure onset sites. Additional 

details of study enrollment and surgical procedures have been previously published (Schevon et 

al., 2012; Truccolo et al., 2014). Signals from the MEA were acquired continuously at a sample 

rate of 30 kHz per channel (0.3-7500Hz bandpass, 16-bit precision, range ±8 mV). The reference 

was epidural. Up to three seizures from each patient were selected for detailed analysis to avoid 

biasing the dataset from the patients from whom many seizures were recorded. Seizure recordings 

were categorized as recruited or unrecruited territory using previously described methods 

(Schevon et al., 2012). Channels and time periods with excessive artifact or low signal-to-noise 

ratio were excluded. 

Unit activity was identified using filtered 0.3-3kHz signals with spikes defined as 

deflections ≥4 standard deviations below the mean. The low frequency component of the local 

3 Custom scripts used to generate the results presented in this chapter can be found at 
https://github.com/sominlee14/stSCA_scripts (Appendix). 
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field potential (LFP) activity across the array was created by averaging the artifact-free LFP 

activity from all micro-electrode signals filtered 2-50Hz. The averaged LFP procedure has been 

shown to generate signals that are representative of and comparable to nearby 

electrocorticography signals (Eissa et al., 2017; Eissa et al., 2018). 

 

4.5.3  Spatiotemporal spike-centered average (st-SCA) calculations and signal analysis 

All signal processing and statistical analyses were performed in MATLAB (MATLAB, 

Natick, MA, USA). The st-SCA was determined as follows: first, as previously described (Eissa et 

al., 2017; Eissa et al., 2018), we detected the spikes in the multi-unit activity. Next, we collected 

the spatiotemporal data around each spike and translated the time and position of all associated 

LFPs relative to each spike's time and position (Fig. 4.1). Finally, we summed all translated data 

and computed the average at each time and position by dividing the sum by its number of 

contributions. Note that this position-dependent average is necessary because not every position 

receives the same number of contributions during the translation of the LFP's axes.  

Evidence of radial symmetry of the st-SCA (Fig. 4.4C) allowed conversion from Cartesian 

coordinates (A, B ) to polar coordinates (2, C ). By ignoring the minor deviations from radial 

symmetry, we focused on the spatial component of the st-SCA with respect to 2 (Fig. 4.10A), which 

enabled us to depict the spatiotemporal properties in two dimensions (Fig. 4.10B). Furthermore, 

if we compute the sum across space, we obtain purely the temporal component of the st-SCA, 

which is equivalent to the STA. Similarly, summation over time 0 generates the spatial component 

of the st-SCA. With these results, we can assess to what extent our model of the ictal network, a 

linear time-invariant (LTI) system with unit impulse response .(0) ∝ *?@<(2, 0), fits the data. The 

following is a stepwise description of this method: 

1. Each broadband signal of the 10×10 MEA was bandpass filtered for the low frequency 

component (2-50Hz) of the local field potential (LFP) and for spike detection (0.3–3kHz). 
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2. Spikes were detected in the multi-unit activity as negative deflections that exceeded four 

standard deviations of the filtered signal. A complete list of spike detection results can be 

found in Table 4.2. 

3. For each spike, the 10 × 10 frames of the LFP data were collected for ±@ sample times 

representing ±5s around the spike time, and the timescale of the frames was set such that 

the spike occurred at time zero, 0 = 0. 

4. All LFP frames associated with a single spike were translated such that the spike location 

was at the origin of the new spatial coordinate system A, B = 0,0. Note that this spatial 

translation is necessarily spike specific because spikes do occur at different locations.  

5. Next, the translated 10 × 10 × (2@ + 1)	 frames were put into a three dimensional 

19 × 19	 × (2@ + 1) configuration with the spatiotemporal origin (A, B, 0 = 0,0,0) is at 

position 10,10, @ + 1. This step was done to keep the LFP frames compatible across spikes. 

6. For each spike, these frames were summed into a three dimensional 19 × 19 × (2@ +

1)	matrix. 

7. For each position in the 19 × 19 × (2@ + 1) matrix, the total number of contributions P 

was counted. 

8. Finally, to obtain the spatiotemporal cross-correlation, the sum obtained in step 6 was 

divided by the P  obtained in step 7 for each position. This resulted in the discrete 

spatiotemporal estimate of .(A, B, 0), as shown in Eq. 4.3. 
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Table 4.2. Patient Table: Seizure recording and spike detection information 
 

 Epoch Length (sec) n spikes* spikes/s* 
PATIENT 1 

Interictal 180 7720 43 
Seizure 1 58 78479 1353 
Seizure 2 80 77788 972 
Seizure 3 102 153063 1501 

PATIENT 2 
Interictal 180 181116 1006 
Seizure 1 29 110896 3824 

PATIENT 3 
Interictal 180 16582 92 
Seizure 1 52 162707 3129 
Seizure 2 88 274656 3121 
Seizure 3 57 193733 3399 

PATIENT 4 
Interictal** 180 23881 133 

Seizure 1 82 385978 4707 
Seizure 2 102 366705 3595 
Seizure 3 96.23 322148 3348 

PATIENT 5 
Interictal 180 52998 294 
Seizure 1 102 304058 2981 
Seizure 2 101 314402 3113 
Seizure 3 73 349189 4783 

PATIENT 6 
Interictal 180 24438 136 
Seizure 1 12 3471 289 
Seizure 2 13 4902 377 
Seizure 3 6 1635 273 

PATIENT 7 
Seizure 1 20 17157 858 
Seizure 2 23 7778 338 
Seizure 3 31 7065 228 

 
*Across all channels of the MEA. 
**Due to limitations in available recordings, this interictal clip is 12 minutes away from the nearest 
known ictal activity. 
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4.5.4  Spatial filtering 

For calculations involving the spatial filtering of LFP signals, we applied the spatial 

whitening process as described in Hyvärinen et al. (2001) and Telenczuk et al. (2017). As 

previously published, a signal is spatially filtered by matrix multiplication with a whitening matrix 

Q, where Q is the inverse square root of the signal’s covariance matrix, R:  

 

 Q	 = 	R%*+,-.
#//1 = 	ST#//1S&  (4.10) 

 

where S is a matrix of eigenvectors of R%*+,-., and T is a diagonal matrix with inverse square roots 

of eigenvalues U*on its diagonal, such that T** =
/
2!

 and T*' = 0 (Telenczuk et al., 2017). In this 

study, the signals being transformed were the MEA channel signals bandpass filtered at 2-50Hz. 
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4.5.5  Noise estimation 

 To evaluate the signal-to-noise ratio (SNR) of the averaged results, we estimated the 

residual noise using the plus-minus averaging approach. We implemented this by employing the 

above eight steps while keeping two three-dimensional 19 × 19 matrices: one summed the even 

contributions for each location and the other summed the odd ones. To obtain the averages for 

the odd and even components, each position in the matrix was then divided by its number of 

contributions. The sum of the even and odd averages is the same result obtained in step 8 above. 

In contrast, the difference between the even and odd averages cancels the consistent component 

(i.e., the signal) while preserving the random noise estimate (4). The -P4  was estimated by 

computing the root mean square (rms) of the signals and the rms of their noise estimates, leading 

to a signal-to-noise ratio calculated by: 

 

 -P4	 = 	20	VWX Y(3%"!#$%&(3%$'!"(
Z dB (4.11) 

 

Average ratios for the st-SCAs across space and time all were >30dB (Fig. 4.13). 
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Figure 4.13. Representative noise estimates of the spatiotemporal spike-centered 
average (st-SCA) for Patient 1.  
(A) Detail of the temporal component of the st-SCA from Figure 4.4A (black) and its noise 
estimate (red). The signal-to-noise ratio (SNR) of the depicted data is 45dB.  
(B) The spatial component of the st-SCA depicted in Figure 4.4C (left) and its estimated noise 
component (right). The location specific SNR of the depicted data range is 26 – 80dB, with an 
average of 38dB. The units for the grayscale are identical for both maps and identical to the scale 
in Figure 4.4.  
(C) The 2D st-SCA from Figure 4.10C (left) and its noise estimate (right). The SNR of the depicted 
data is 39dB. The units for the color scale are identical for both maps and the same as in Figure 
4.10. 
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4.6 Supplementary information 

Spikes and local field potentials as inputs and outputs to a linear time invariant (LTI) system 

 Computation of the spatiotemporal spike-centered average (st-SCA) using ictal recordings 

presents a challenge because the occurrence of action potentials across a seizing network is not 

experimentally controlled, unlike the scenario in which the location and timing of the neuronal 

activities are evoked by external stimuli. The derivation presented below addresses this problem 

and demonstrates that the st-SCA is a spatiotemporal analog of the well-known spike-triggered 

average (STA). 

 For convenience, we repeat here that ([, \, +)	are the spatiotemporal components of the 

signals; ([* , \* , +*)	 are the spatiotemporal coordinates of spike ?  and (A, B, 0)  are the 

spatiotemporal components of the signal relative to the spike. Using a similar approach as in 

(Eissa et al., 2018), we now extend the model of the ictal network as a linear time invariant (LTI) 

system with the multi-unit action potential activity as input, the LFP as its output, and the 

network’s unit impulse response (UIR) defined as the LFP associated with a single unit impulse 

(!): 

 ]^4 = *+--./	 = .(A, B, 0) (4.12) 

 

We now can recover the network output _ using the convolution of the ]^4 and the network’s 

input, i.e., the spikes: 

 

 _	 = 	∭.(A, B, 0) a/4∑ !([ − [* − A, \ − \* − B, + − +* − 0)4
*5/ c 	:A	:B	:0 (4.13) 

 

Note that we used the /4 scaled version of the input here. Plugging in the expression for .(A, B, 0) 

results in: 
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_ =∭ d
1
Pefgh([* + A, \* + B, +* + 0

4

*5/
)i . .. 

 . . . a/4∑ !([ − [* − A, \ − \* − B, + − +* − 0)4
*5/ c :A	:B	:0 (4.14) 

 

Exchange of the summation and integration operations and evaluation of the triple integral gives 

the model’s estimate of the spatiotemporal fgh from the LTI system: 

 

 _ = /
4) 	∑ ∑ fgh([, \, +)4

*5/
4
*5/ 	= 	fgh([, \, +) (4.15) 

 

As shown in Eissa et al. (2018), the time domain component of this linear estimate produces a 

close approximation of the ongoing seizure activity with significant correlation (p < 0.01) between 

recorded and estimated activity.  
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CHAPTER 5 

CONCLUSIONS 

 

5.1 Summary of thesis work 

 On my first day of work after deciding to join an EEG analysis lab, I naively pointed to an 

EEG recording open on my advisor’s desktop and asked,  

 “So, what does this EEG mean?”  

 “Great question. Why don’t you look into it?” was his reply.  

At the time, I found his response annoying but in hindsight I can appreciate its depth. At its core, 

this thesis grapples with this ostensibly simple question I had on my first day: When we read an 

EEG, exactly what are we looking at?  

 To address this question, studies presented in Chapter 2-4 approached the following three 

questions from different angles: 

 

(1) How do seizure dynamics change across spatial and temporal scales? 

(2) How do these dynamics manifest in recorded EEG signals? 

(3) What may be the biological mechanisms underlying these dynamics? 

 

 In Chapter 2, I presented a study that used interictal recordings obtained with scalp EEG 

and intracranial depth electrodes. This design allowed comparison between the intracranial and 

extracranial manifestations of epileptiform activity. The results showed that intracranially 

recorded hippocampal interictal discharges have correlates on scalp EEG. The tight temporal 

coupling between the scalp EEG and intracranial waveforms suggest that the scalp EEG 

manifestations are due to volume conduction of signals originating from the hippocampus. 

Furthermore, the features of these scalp correlates may allow differentiation between static and 

propagating discharges.  
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 In Chapter 3, I presented an algorithm that allowed for digital reconstruction of low 

frequency activity that is attenuated by a high-pass filter. This digital reconstruction was 

performed with a deconvolution-based inverse filter that relied on characterizing the unit impulse 

response of an EEG recording system. I showed that this algorithm can be stably performed on 

seizures recordings obtained on clinical EEG machines. Application of this inverse filter to clinical 

ictal recordings obtained from temporal lobe epilepsy patients showed that infraslow activity is 

associated with the conventionally determined seizure onset zone. Furthermore, these 

reconstructions showed that the infraslow activity patterns may allow more unique 

characterization of the seizure onset zone compared to traditional methods.  

 In Chapter 4, I presented a spatiotemporal calculation that showed that the spiking activity 

in an ictal network was associated with various spatial patterns in the global local field potential 

(LFP). I also showed that this spike-LFP relationship has unique mathematical features that allow 

the temporal component to predict the spatial component, and vice versa. Furthermore, 

characterization of these spatial patterns allows differentiation of seizures that engage mesoscale 

networks from seizures that engage micro or macro level networks. 

 

5.2 Bench to bedside: future directions  

 The ultimate goal of this research is to take the tools and insights presented in this thesis 

from the lab (bench) and translate them to improved care and outcomes for epilepsy patients 

(bedside). In this section, I discuss the questions that still need to be addressed and the potential 

clinical applications of the work presented in this thesis.  

 

5.2.1  Understanding neural mechanisms underlying seizure generation  

 The research presented here focused on identification and characterization of 

electrographic features that expand the current repertoire of epileptiform activity. From these 

characterizations, we can make some informed hypotheses about their underlying mechanisms. 
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For example, in Chapter 2, I discussed how the rotating scalp marker may be more indicative of a 

propagating interictal discharge. In Chapter 4, I discuss the possibility that the spatiotemporal 

characteristics of the spike-associated LFP may reflect the engagement of midrange horizontal 

connections.  

 From these studies alone, however, it is difficult to ascertain the neural mechanisms that 

underlie these observations. To address this question, other experimental systems such as animal 

or computer modeling must be pursued. Human data, although interesting, makes it difficult to 

conduct experiments. In the face of this obstacle, computational modeling may be used to confirm 

(or refute) biological plausible explanations to explain particular electrographic features. Better 

understanding the mechanisms will help parse out which features are likely to be causative or 

correlative. Such an understanding would be important for improving EEG interpretation.  

 

5.2.2   Improving outcomes of epilepsy surgery 

 Surgical treatment of epilepsy depends heavily on the concept of the epileptogenic zone 

(EZ), the putative source of seizure activity. It is formally defined as the minimum amount of 

tissue that can be resected to achieve seizure freedom (Rosenow & Lüders, 2001). This definition 

highlights the two opposing goals that are at a fine balance during neurosurgical interventions. If 

the procedure is to be curative, all of the epileptogenic tissue must be removed. On the other hand, 

the resection areas should be minimized to avoid potential loss of function. Thus, surgical 

planning may be improved in the following ways:  

 

(1) Improve identification of epileptogenic tissue 

 One major way to improve surgical planning is to identify features that are unique to 

epileptogenic tissue. The results in this thesis point to the possibility that triangulating between 

several metrics may have the best chance at delineating a more accurate target for surgery. In 

Chapter 2, I presented data that showed that interictal discharges are very heterogeneous in 
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nature and have different propagation patterns. Consequently, understanding how these patterns 

link to pathology may allow interictal discharges to become more valuable in surgical planning. 

In Chapter 3, I showed that infraslow activity has a more heterogeneous time course between 

electrodes than activity in the conventional clinical band (1-70Hz), suggesting that this feature 

may be used to identify a smaller set of electrodes that need to be resected. The current studies 

are correlative, meaning that while features such as ISA are observed in the SOZ, whether ISA is 

a true marker of the EZ remains unknown. Discerning the true utility of these biomarkers will rely 

on future prospective studies that can link these features to clinical outcomes.  

 

(2) Better identify patients who would benefit from resective or ablative procedures 

 The results presented in Chapter 4 suggest that EEG techniques may be used to identify 

whether a patient’s seizures engage microscale, mesoscale, or macroscale networks. The ability to 

identify these mechanisms in individual patients may be useful in determining what kind of 

procedure would most benefit the patient.  If the seizure originates from a small, localized network, 

then resection of the area may be sensible. If a mesoscale network is involved, then an intervention 

such as subpial transections that disconnects mi-drange horizontal connections may be effective. 

The engagement of larger networks with long-range connections may be useful for indicating 

neuromodulation techniques such as RNS. Determining the efficacy of choosing specific 

interventions based on a patient’s seizure network characteristics will require prospective studies 

that monitor surgical outcomes.  

 

5.2.3   Improving epilepsy diagnostic and monitoring 

 Presurgical monitoring frequently requires invasive surgeries and long hospital stays. 

When invasive monitoring is indicated, patients undergo surgery for electrode implantation and 

must stay at the hospital until one or more seizures can be properly captured and characterized. 

There are two ways to improve this onerous process:  
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(1) Reduce the need for invasive monitoring by increasing the informative value of non-

invasive EEG techniques. 

(2) Decrease monitoring time by extracting more useful information from interictal 

recordings.  

 In Chapter 2, I showed that simultaneously recorded intracranial and extracranial signals 

may be used to better understand how seizure activity from deep sources manifest on scalp EEG. 

One of the future directions for this project is to develop a more complete understanding of the 

link between intracranially and extracranially recorded signals such that epileptiform activity may 

be inferred by looking at the scalp EEG alone. Furthermore, the ability to identify these scalp 

markers for TLE can increase sensitivity for scalp EEG in detecting TLE, which would allow for 

earlier diagnoses, ultimately reducing morbidity and mortality. Prospective studies must be done 

to see if these scalp markers truly have value in identifying TLE patients earlier in the course of 

the disease.  

 This project also showed that interictal data can be used to identify different morphologies 

of interictal discharges. A 2-hour recording from each patient was sufficient to capture enough 

interictal discharges to discern discharges with static versus propagating patterns. If these 

features could be linked directly to epileptogenicity, then interictal data would become much more 

valuable in surgical planning, and seizure monitoring times may be dramatically reduced. The 

results in Chapter 3 identify ISA as a marker of interest for seizure activity. It is possible that ISA 

may be observed in interictal periods as well, although this analysis has yet to be completed. The 

ability to use interictal ISA would also give more diagnostic value to interictal recordings and 

potentially reduce monitoring times.  

 Studying ISA also has potential for reducing invasive monitoring as low frequencies may 

be more obvious and better observed on the scalp, unlike high frequency oscillations, which has 

also become popular to study as a marker of the SOZ. HFOs require synchrony in microscale 

networks, and desynchronization at larger networks makes them unobservable at meso- to 
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macroscales (Eissa et al., 2016). ISA, in comparison, tends to be much larger in amplitude and 

does not require high levels of synchronized spiking. Consequently, ISA may be more readily 

accessible than HFOs in the context of scalp recordings.  

 

5.2.4   Automation of EEG interpretation 

 All of the markers and electrographic features of epileptiform activity discussed in this 

thesis were characterized quantitatively, and the analyses presented are algorithmic pipelines that 

are readily automated. The ability to use computational methods to identify epileptiform activity 

potentially has several clinical advantages:  

 

(1) Reduction of clinical workload in EEG interpretation 

 EEG are often large datasets composed of hours to days to weeks of continuous data. The 

ability to better automate detection of seizure markers would potentially decrease the amount of 

EEG that needs to be manually read by a human reader.  

 

(2) Increased sensitivity to epileptogenic markers 

 Algorithmic methods may be better suited to identifying seizure markers that are too 

subtle to be easily discerned by a human reader. Furthermore, human readers are subject to error 

due to lapses in attention and fatigue. Consequently, automating some of these tasks may be 

useful in decreasing human error. 

 

(3) Increased consistency in EEG interpretation 

 A chronic issue to clinical EEG interpretation is that inter-rater variability tends to be very 

high, even amongst expert neurologists with subspecialty training in clinical neurophysiology 

(Jing et al., 2020). When multiple clinicians look at the same EEG, they can come to very different 

conclusions. Because patient treatment plans are dependent on EEG interpretation, a more 
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quantitative approach to identifying seizure markers would for increased standardization in 

seizure assessments

 

5.3 Closing thoughts  

 No scientific story is ever truly complete, and epilepsy research is no exception. As is so 

often the case in science, it seems that each new finding spawns another dozen questions. This is 

perhaps best illustrated by the fact that a search in the PubMed database for “epilepsy” results in 

over 169,000 results.1 Nearly half of those papers were published in the past ten years. In 2021 

alone (even in the midst of the global COVID-19 pandemic), over 10,000 papers were published 

on the topic. We are all clearly working very hard. 

 The past several years, my advisor has frequently greeted me with,  

 “So, Somin, have you cured epilepsy yet?”  

 While I am sorry to say that I have not in fact cured epilepsy, I am happy to have 

contributed to the enormous amount of effort and resources expended by the scientific and 

medical community to better understanding this disease. I do hope that one day, I’ll be able to 

answer,  

 “Why yes, yes we have.”  

 
 

 

(Chen et al., 2020; Jurcak et al., 2007; Kahn et al., 2017; Kaplan, 2011; Misra et al., 2014; Naess 

et al., 2017; Rodin & Modur, 2008; Williams, 2021)  

 
1 Search conducted June 7, 2022. 
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APPENDIX 

 

Guide to Github repositories 

 Custom scripts written for the projects described in this thesis are available publicly in 

Github repositories. For ease of navigation, this section lists scripts with their corresponding 

results. The figure reference is to indicate that the output of a script was used to generate the 

figure. In many cases, the script does not directly generate the referenced figure. Not all files and 

scripts found in the repositories are listed here. Only key and representative scripts are described 

here for guidance purposes. 

 This appendix was written June 20, 2022, therefore any versions that may have been 

created after this date may not correspond to this thesis exactly.  

 

Chapter 2: Manifestation of hippocampal interictal discharges on clinical scalp EEG recordings 
Repository link: https://github.com/sominlee14/hippocampal_ied 

File Name File Type Description 

channel_locs .mat Variable containing coordinates for scalp EEG 
electrodes. Used to calculate dipole angle. (Fig. 2.4) 

dipole_angle_calculation .m Calculates dipole angle of scalp STA (Fig. 2.4) 

grouped_sta_calculation .m Calculates STA scalp and intracranial interictal 
discharges by group (Fig. 2.1) 

peak_detection .m Detects interictal discharges using hippocampal 
intracranial recordings 

xcorr_lag_simulation .m Monte-Carlo simulation to determine jitter and 
acceptable range for zero lag in cross-correlation 
analysis (Fig. 2.3B) 
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Chapter 3: Digital reconstruction of infraslow activity in ictal recordings 
Repository link: https://github.com/sominlee14/deconvolution_based_inverse_filter 

File Name File Type Description 
calculate_uir_portable_system .mlx MATLAB Live Script demonstrating how 

to characterize a system’s unit impulse 
response using a step input signal (Fig. 
3.3) 

inverse_filter_mixed_sine .mlx MATLAB Live Script demonstrating 
application of deconvolution filter to a 
synthetic sine signal. Also calculates 
amplitude spectra and phase spectra (Fig. 
3.6) 

noise_robustness .mlx MATLAB Live Script showing that 
deconvolution method is robust to noise 
(Fig. 3.4) 

 

 

Chapter 4: Characterization of the spatiotemporal relationship between spiking and LFP during 
focal seizures 
Repository link: https://github.com/sominlee14/stSCA_scripts 

File Name File Type Description 
fx_calculate_temporal_sta .m Function that calculates just the 

temporal STA (e.g., Fig. 4.2) 
fx_calculate_spatiotemporal_sta .m Function that calculates the 

spatiotemporal SCA (Fig. 4.1) 
fx_calculate_temporal_sta_subset_channels .m Function that chooses a random 

subset of channels for spike 
timing to calculate the temporal 
STA (Fig. 4.12) 

fx_find_spikes_columbia_data .m Function for spike detection 
fx_randomize_spike_times .m Function that shuffles spike times 

before calculating st-SCA (Fig. 
4.7) 
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