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3.1 Computational model of the patchy colloid tetrahedral tetramers. (a) A staggered
dimer of tetrahedral tetramers showing the colloids (“A” particles, grey) func-
tionalized with anisotropic surface patches (“B” particles, blue). (b) A zoomed-
in view of a single spherical patchy colloid belonging to one of the tetrahedral
tetramers. The interaction patches are modeled as Lennard-Jones spheres placed
in an equilateral triangle configuration at a tunable surface depth. (c) A zoomed-
in view of the staggered dimer interface between the two tetrahedral tetramers
along the axis connecting their centers of mass. The dark blue spheres represent
the surface patches in one of the tetrahedral tetramers and the light blue spheres
to those in the other. An interlocked configuration of the surface patches favors
the staggered dimer configuration. (d) A schematic diagram of a patchy colloid
illustrating the polar angle ϕB and protrusion ratio αB of the surface patches.
The transparent blue circles represent the patches and the dark blue dots repre-
sent the centers of patches. dAB is the distance between the center of colloid and
the center of patch and RA is the radius of colloid. The protrusion ratio αB is
defined as αB = dAB/RA. All molecular renderings in this figure and throughout
the paper are constructed using Visual Molecular Dynamics (VMD)1. . . . . . 65
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and b⃗3). (c) Schematic diagram of Ψij = minm∈patchi,n∈patchj (ψ

mn
ij ) considering

a particular interfacial arrangement of the three light blue “B” patches on colloid
i and three dark blue “B” patches on colloid j. Assuming θij is small such that

the colloids are approximately cofacial Ψij = ψ11
′

ij = ψ22
′

ij = ψ33
′

ij defines the
minimum azimuthal rotation required to achieve an eclipsed configuration. . . . 69
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3.4 Evolution of design parameters and objective function over the CMA-ES op-
timization course. Evolution of the (a) interaction strength εB , (b) polar an-
gle ϕB , and (c) protrusion ratio αB over the 28-generation optimization. The
lines and error bars correspond, respectively, to the mean and standard deviation
of each parameter over the M = 12 candidates in each generation. The opti-

mization converges at generation g = 28 to an optimum of {εoptB , ϕ
opt
B , α

opt
B } =

{8.18ε, 19.6°, 0.907}. (d) The mean value of objective function (Equation 3.6)
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medium of ϵr = 12.0. The x-axis traverses the corners of irreducible region in
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where ω is the angular frequency, a is the lattice constant, and c is the speed
of light in vacuum. The shaded bar denotes the complete band gap between the
second and the third bands. (b) Computed photonic band diagram for the hexag-
onal diamond lattice of tetrahedral tetramers at ϵr = 12.0. (c) Dependence of
the ratio between gap size ∆ω and midgap frequency ωm as a function of relative
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ABSTRACT

Self-assembly refers to a process in which initially disordered systems spontaneously form

ordered structures over time driven by the interactions between the building blocks. The self-

assembly of soft materials systems, such as colloids and peptides, has drawn a lot of research

interests. When their components and inter-molecular interactions are carefully calibrated,

these systems could self-assemble into interesting nanostructures with practical applications,

such as colloidal crystalline lattices or peptide nanorods. A major area of study in the self-

assembly is then the rational design of the building blocks and interactions between them

to direct these systems to self-assemble into target nanostructures. This is the so-called

“inverse design” problem, where we are given a target nanostructure and would like to figure

out the optimal building block and interactions that could lead to the target structure. In

our works, we explore and develop various inverse design techniques for anisotropic colloids

and peptides. We begin by employing molecular simulation techniques, such as molecular

dynamics and Monte Carlo simulations, to characterize the ability of a particular building

block design to form the target structure. Then we use modern optimization and machine

learning algorithms to find the optimal design that could lead to maximum ability of forming

the target structure. Based on this general methodology, we have developed (1) inverse design

protocols that optimize anisotropic colloids to self-assemble into target crystalline lattices

with omnidirectional optical bandgaps by combining molecular simulation with stochastic

optimization algorithm and (2) high-throughput screening pipeline to find optimal peptides

that could self-assemble into vesicular structures as chassis materials for synthetic cells using

molecular simulation and Bayesian optimization.
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CHAPTER 1

INTRODUCTION

1.1 Overview of the Self-assembly of Soft Matter Systems

The self-assembly of soft matter systems is a popular research area since it provides a way for

the “bottom-up” fabrication of nanostructures that are difficult to fabricate in a “top-down”

manner. For example, an interesting class of nanostructures are “photonic crystals” which

are composed of dielectric materials arranged in a periodic lattice whose spatial periodicity

roughly matches the wavelength of visible light2. Traditional top-down methods to fabricate

photonic crystals include holographic lithography3 and direct laser writing4 that essentially

drill the bulk dielectric materials using laser to periodically modulate the dielectric constant.

These top-down approaches are expensive, tedious and have trouble with making 3D pho-

tonic crystals5. However, because the sizes of colloids are naturally on the scale of desired

wavelength, the self-assembly of colloids into periodic arrays provides a more straightforward

and cheap bottom-up approach to fabricate photonic crystals5. Similarly, the self-assembly

of synthetic and natural polymers provides a bottom-up approach to synthesize monolayers

as water-repellent coating6 or micelles and vesicles as drug carriers7. Due to the versatility

of soft materials, their chemical and physical properties could be easily modified. This gives

researchers extensive flexibility in the control of the self-assembly behaviors of soft matter

systems, as these building blocks could be modified in a controllable way to guide their

self-assembly toward specific directions. For example, recent advances in experimental tech-

niques have enabled modifications of the surfaces of colloidal particles, such as grafting DNA

oligomers8–11 or attaching interactive patches by glancing angle deposition12–14 and contact

layer lithography15. These surface-modified colloidal particles have proven their abilities to

spontaneously form various nanoscale colloidal crystalline structures8,12. Peptides are an-

other important building block in self-assembly. By changing the constituent amino acids,
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they are able to self-assemble into various structures such as nanosheets16, nanospheres17,

nanorods18,19 and nanotubes20. In particular, the nanorods formed by A9K peptide could

potentially serve as antibiotic by breaking bacterial membrane19. A specific class of peptides

that has drawn a lot of research focuses is elastin-like polypeptide (ELP), which are synthetic

biopolymers that share a lot of structural characteristics with intrinsically disordered pro-

teins such as tropoelastin. In recent experiments, some specially designed ELPs have been

shown to self-assemble into large and stable vesicles21,22 that may sustain more osmotic

stress than conventional lipid vesicles and become ideal candidates as drug carriers23.

A specific research focus in the self-assembly of soft matter systems is the inverse design

of the building blocks. Given a target structure, the inverse design strategy tries to find the

optimal building block that could self-assemble into the target structure. With the help of

modern machine learning and optimization algorithms, this approach could accelerate the

design of materials relative to Edisonian trial-and-improvement and avoid traps associated

with flawed intuition. The general approach is to first quantify the ability of building block to

form the target structure and then use machine learning and optimization algorithms to find

the optimal design of building blocks that maximizes this ability. For example, some efforts

have been made to optimize the isotropic interactions between spherical colloids, such as the

functional form of potential or parameters in the potential, so that the colloidal particles

interacting through the optimal potential could self-assemble into various target 2D or 3D

crystalline structures24–28. Many researches have also been conducted to perform inverse

design of peptides29, such as using deep representational learning and Bayesian optimization

to identify optimal amino acid sequence capable of assembling 1D nanoaggregates with good

stacking of the electronically active π-cores30.

Two key components in the inverse design are the quantitative measurement of the “good-

ness” of a specific building block for desired self-assembly behavior and the optimization

algorithm to maximize the “goodness” with respect to the building block design parameters.
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The former is usually done by running molecular simulation to simulate the self-assembly

behavior of the building blocks and then computing a thermodynamic or kinetic objective

function that quantitatively characterizes the quality of the self-assembly behavior from the

simulation trajectory. Since the self-assembly behavior is directly affected by the building

block design parameters, a numerical optimization algorithm could be employed to optimize

the objective function with respect to those parameters. If the functional form of the ob-

jective function is not available (usually referred as a “black-box” optimization problem),

genetic optimization algorithms could be employed, or a machine learning algorithm could

first be used to build a predictive model for the objective function and numerical optimization

could be performed over this proxy model. In the next two sections, we describe the molec-

ular simulation techniques, machine learning methods and optimization algorithms that are

usually used in inverse design strategies.

1.2 Molecular Simulation Techniques

In general, molecular simulation uses numerical algorithms to generate microscopic realiza-

tions of a system governed by a particular Hamiltonian. These snapshots of configurations

can then be used to evaluate the thermodynamic and kinetic properties of the system. Gener-

ally speaking, molecular simulation techniques can be divided into two categories: molecular

dynamics and Monte Carlo simulations.

In a molecular dynamics simulation, the system configurations, which are completely

described by the positions r⃗rr and momenta p⃗pp of particles, are generated by integrating the

Hamiltonian equation of motion forward in time:

˙⃗rrr =
∂H
∂p⃗pp

˙⃗ppp = −∂H
∂r⃗rr

(1.1)
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Various numerical methods exist to integrate equation 1.1 numerically forward in time31.

For example, a well-known numerical algorithm is the Verlet algorithm32, which is based on

the following scheme:

r⃗rr(t+∆t) = r⃗rr(t) +
p⃗pp(t)

m
∆t+

1

2
a⃗aa(t)∆t2

p⃗pp(t+∆t) =
p⃗pp(t)

m
+
a⃗aa(t) + a⃗aa(t+∆t)

2
∆t

(1.2)

It could be shown that the Verlet algorithm is time-reversible and volume-preserving, so it

approximately conserves energy in the long term. After integrating the equation of motion

for T steps, the desired property of the system could be evaluated as a time-average over

simulation trajectory:

⟨A⟩ = 1

T

T∑
t=1

A(⃗rrr(t), p⃗pp(t)) (1.3)

The Verlet algorithm essentially describes a system that follows Hamiltonian equation of

motion, which conserves the number of particles N , the total energy E and the volume V .

Therefore, it simulates the system in aNV E ensemble. However, in many practical situations

such as membrane simulation, the system is better modeled to be under constant pressure

and temperature (NPT ensemble) or constant volume and temperature (NVT ensemble).

There exist various extensions to the basic Verlet algorithm to simulate system in other

ensembles. For example, the Nose-Hoover thermostat33 is an algorithm that is based on an

extended Hamiltonian:

HNose =
∑
i

ppp2i
2mis2

+ U(rrrN ) +
p2s
2Q

+ L
ln(s)

β
(1.4)

where s and ps are the generalized coordinate and momentum of the extra degree of freedom

corresponding to the thermal reservoir and β = 1
kBT

is the inverse temperature. Integrating

the equation of motion derived from the extended Hamiltonian would generate configurations

{rrrN (t), pppN (t)} of the original system according toNV T ensemble. The Berendsen barostat34

aims to keep the system pressure at a target pressure Ptarget by scaling the particle position
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and simulation box length at each step by a factor η
1
3

η
1
3 =

(
1− γ∆t

τp
(Ptarget − P (t))

)1
3

(1.5)

where γ is the isothermal compressibility, ∆t is the time step and τp is the pressure coupling

time constant and P (t) is the instantaneous pressure.

Monte Carlo simulations generate the microscopic realizations in a different way. It tries

to directly sample system configurations {rrrN , pppN} from the corresponding equilibrium prob-

ability distribution over these variables. In a NV T ensemble, this probability distribution

is given by

P (rrrN , pppN ) =
1

Z
e−βH(rrr

N ,pppN ) (1.6)

where Z is the partition function, and the ensemble average of an observable is given by

⟨A⟩ = 1

Z

∫
A(rrrN , pppN )e−βH(rrr

N ,pppN )drrrNdpppN (1.7)

The Hamiltonian is H = U(rrrN )+K(pppN ) and K(pppN ) is a quadratic function of the momenta,

so usually in equation 1.7 the momenta part could be analytically integrated out and we are

interested in

⟨A⟩ = 1

Z

∫
A(rrrN )e−βU(rrrN )drrrN (1.8)

which is an ensemble average according to the marginal probability density

P (rrrN ) =
1

Z
e−βU(rrrN ) (1.9)

The Monte Carlo approach tries to directly sample {rrrN1 , ..., rrr
N
L } from equation 1.9 and then
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use the sample average to approximate the ensemble average:

⟨A⟩ ≈ 1

L

L∑
j=1

A(rrrNj ) (1.10)

Equation 1.9 is a probability density where we don’t know the normalization constant Z,

since in practical cases it is impossible to calculate analytically. Markov Chain Monte Carlo

(MCMC)35 is a technique to sample from a probability density without knowing the normal-

ization constant. It proceeds by constructing a Markov Chain of microstates {rrrN} whose

steady state distribution is equation 1.9. In order for the Markov Chain to have this steady

state distribution, its transition probability T (rrrNt+1|rrr
N
t ) between microstates must satisfy

the detailed balance condition:

P (rrrNt )T (rrrNt+1|rrr
N
t ) = P (rrrNt+1)T (rrr

N
t |rrrNt+1) (1.11)

One way to construct a transition probability that satisfies detailed balance condition is

by first sampling a new state rrrNt+1 given current state rrrNt from a proposal distribution

Q(rrrNt+1|rrr
N
t ) and then defining the transition probability as

T (rrrNt+1|rrr
N
t ) = Q(rrrNt+1|rrr

N
t )min

(
1,
P (rrrNt+1)Q(rrr

N
t |rrrNt+1)

P (rrrNt )Q(rrrNt+1|rrr
N
t )

)
(1.12)

The latter part in equation 1.12 can be interpreted as the acceptance probability of the

proposed state rrrNt+1 given the state rrrNt . The algorithm is summarized in algorithm 1.

Note that the normalization constant Z in equation 1.9 cancels out when evaluating the

transition probability in equation 1.12. The Markov chain constructed in this way is guaran-

teed to have unique steady state distribution according to equation 1.9, and for sufficiently

large L the samples generated (once the chain has stabilized) should be distributed according

to the steady state distribution. The choice of proposal distribution Q is arbitrary; common
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Algorithm 1 MCMC

Initialize rrrN0
while t ≤ L do
Sample r̃rrNt+1 ∼ Q(rrrNt+1|rrr

N
t )

Set a = min

(
1,
P (r̃rrNt+1)Q(rrrNt |r̃rrNt+1)

P (rrrNt )Q(r̃rrNt+1|rrrNt )

)
Sample u ∼ Unif[0, 1]
if u ≤ a then
rrrNt+1 ← r̃rrNt+1

else
rrrNt+1 ← rrrNt

end if
t← t+ 1

end while

choices include uniform distribution with a step size δ or a multivariate Gaussian with di-

agonal covariance matrix σ2I. There are some more advanced Monte Carlo methods that

aim to increase the sampling efficiency, such as parallel tempering method36 and cluster

methods37,38.

1.3 Machine Learning and Optimization Algorithms

Generally speaking, machine learning algorithms could be divided into two categories: su-

pervised and unsupervised learning algorithms. In supervised learning, we are provided with

some inputs xxx and outputs yyy. The task of supervised learning is to find an optimal function

mapping from the inputs to the outputs. Depending on the type of outputs, this could be a

regression problem (yyy is continuous) or classification problem (yyy is discrete). On the other

hand, unsupervised learning algorithms try to find patterns in the unlabeled data. Two

major areas in unsupervised learning include clustering and dimensionality reduction.

There exist numerous algorithms for performing supervised learning, ranging from linear

regression to modern deep neural networks. Many of these algorithms have been widely

applied to build fast predictive and classification models for properties of materials. For
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example, Sanchez-Lengeling et al. has implemented a Gaussian Process Regression model to

enable fast prediction of the solubility parameters of compounds39. Leslie et al. proposed

mismatch kernels based on a tree data structure to perform support vector machine classifi-

cation of proteins for several benchmark tasks and demonstrated good performance40. Yang

et al. employed doc2vec model from natural language processing to embed proteins into a

vector space on which they performed Gaussian Process Regression on benchmark tasks and

nonlinear dimensionality reduction to evaluate the performance of protein embedding41. Ye

et al. trained a graph neural network model to accurately predict the stabilities of compos-

ite crystals42. The AlphaFold model developed by DeepMind has done an amazing job in

predicting the 3D folding structures of proteins43. With the help of supervised learning, re-

searchers can not only predict the material properties, but can also perform high-throughput

screening to search for optimal building blocks that have desired properties. For example,

Shmilovich et al.30 trained variational autoencoders to embed π-conjugated peptides into

a low-dimensional vector space over which Gaussian Process Regression were constructed

to support Bayesian optimization discovery of new π-conjugated peptides that can sponta-

neously form nanostructures with emergent optoelectronic properties.

Unsupervised learning algorithms have also been helpful in understanding the behaviors

of molecular systems. A key aspect in unsupervised learning is dimensionality reduction tech-

nique which tries to find a meaningful low-dimensional representation of high-dimensional

data. This is particularly useful in molecular simulation, where snapshots of system configu-

rations live in a very high dimensional space (3N -dimensional space where N is the number

of particles in the system) and projecting the snapshots into a low-dimensional space could

provide more insights into the time-evolution of system. The most well-known dimensionality

reduction technique is the principal component analysis (PCA) which tries to project data

into a lower-dimensional hyperplane that maximizes the variance after projection. PCA has

been applied to understand the conformational change of proteins and lipids in molecular
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dynamics simulations44,45. A limitation of PCA is that it could only find lower dimensional

representations that consist of linear combination of original features. However, usually

the configurations generated in a molecular simulation occupy a nonlinear manifold in 3N -

dimensional configuration space due to the coupling between the degrees of freedom. In this

case, linear dimensionality reduction algorithms such as PCA may be inadequate to find a

meaningful lower-dimensional representation. Thus, many nonlinear dimensionality reduc-

tion techniques have become popular, such as locally linear embedding, Isomap46, Laplacian

Eigenmap47 and diffusion map48. These nonlinear dimensionality reduction techniques all

aim to find a low-dimensional representations that capture the manifold structure of the

data in high-dimensional space. These nonlinear techniques have been successfully applied

to the analysis of molecular simulation trajectories, such as probing the folding pathway of

antimicrobial peptide49 and defining reaction coordinates for the construction of free en-

ergy surface50. Deep-learning approaches, such as variational autoencoders, have also been

applied to find meaningful low-dimensional representation of peptides30. Besides dimen-

sionality reduction, clustering techniques such as K-means and K-medoids have also been

widely utilized to study the transition between different metastable states in molecular sys-

tem. Usually, a clustering algorithm is first applied to the simulation trajectories to identify

meaningful metastable states by grouping conformations into clusters based the similarities

between pairs of conformations, and then the transition between the metastable states could

be analyzed51. For example, Beauchamp et al.52 proposed to use Ward clustering to identify

appropriate clusters for conformations of 14 different proteins and then used a Markov State

Model to understand the protein folding dynamics.

Finally, another major area in machine learning that is often helpful for materials re-

search is black-box optimization, which is usually used in combination with supervised and

unsupervised learning. Usually, researchers would like to optimize the chemical and physical

properties of materials (for example, ability of colloids to self-assemble into desired crys-
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talline lattice). However, when considering the target properties as functions of the features

of materials, we usually do not have the information about the functional form and the

derivatives of the target functions but still want to optimize them. This is called a black-box

optimization problem since the target functions act like “black boxes”: we could evaluate

their values for a given set of features of materials by simulation or experiment, but we

could not evaluate their derivatives. This requires the use of optimization algorithms that

do not need information about gradient or Hessian. A variety of such algorithms have been

developed. For example, genetic algorithms are stochastic optimization algorithms that are

based on guided random walks over input space to direct the random walks to regions with

high probability of optimal target function values53. Such algorithms have been successfully

applied in the optimization of copolymer self-assembly54. Bayesian optimization is another

commonly used black-box optimization algorithm which relies on building a Gaussian Pro-

cess Regression model for the target function55. It has been used in the search of optimal

nanoporous materials56,57.

1.4 Outline of the Thesis Work

In this thesis, we have employed modern machine learning and black-box optimization al-

gorithms to tackle some of the challenging tasks in the data-driven design of soft materials.

The outlines of each of the subsequent chapters are summarized below.

• In chapter 2, we describe our work that combines molecular simulation and stochastic

optimization algorithm to find optimal design parameters in anisotropic patchy colloids

that enable them to self-assemble into open crystalline lattices. The method is based

on generating the free energy surface that quantifies the stability of achievable self-

assembled structures of colloidal system by molecular simulation, and then sculpting

the free energy surface to maximize the stability of target structure by stochastic

optimization algorithms. We demonstrate the success of our inverse design strategy in
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designing patchy colloids to self-assemble into colloidal pyrochlore and cubic diamond

lattices, which are highly sought-after nanostructures with useful optical properties.

This chapter is primarily based on the paper: Y. Ma and A.L. Ferguson “Inverse

design of self-assembling colloidal crystals with omnidirectional photonic bandgaps”

Soft Matter 15 8808-8826 (2019).

• In chapter 3, we describe a follow-up work to chapter 2 in which we perform inverse

design on colloidal clusters composed of anisotropic patchy colloids to enable those

clusters to self-assemble into open crystalline lattices. The patchy colloid model is

simpler than the one considered in chapter 2 and is more amenable to experimental

realization. Also, we use a simpler objective function that is computationally cheaper

to evaluate but still captures the thermodynamic stability of target structure. We

demonstrate our inverse design protocol in designing colloidal clusters to self-assemble

into cubic diamond lattice with omnidirectional bandgap. This chapter is based on

the paper: Y. Ma, J. Aulicino, and A.L. Ferguson “Inverse design of self-assembling

diamond photonic lattices from anisotropic colloidal clusters” J. Phys. Chem B 125 9

2398-2410 (2021).

• In chapter 4, we describe our work on building a high-throughput screening protocol

for finding optimal elastin-like polypeptides that could self-assemble into stable vesi-

cles. Here we use molecular simulation to generate potential of mean force profile that

quantifies the thermodynamic stability of self-assembled vesicles and use Bayesian op-

timization to find peptide sequence that maximizes this stability. This chapter is based

on the works reported in: (1) B. Sharma, Y. Ma, A.L. Ferguson, and A.P. Liu “In

search of a novel chassis material for synthetic cells: Emergence of synthetic peptide

compartment” Soft Matter 16 10769 (2020); (2) B. Sharma, Y. Ma, H.L. Hiraki, B.M.

Baker, A.L. Ferguson, and A.P. Liu “Facile formation of giant elastin-like polypeptide

vesicles as synthetic cells” Chem. Commun. 57 13202-13205 (2021).
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• In chapter 5, we summarize our projects and suggest potential future directions to

continue our work.

12



CHAPTER 2

INVERSE DESIGN OF SELF-ASSEMBLING COLLOIDAL

CRYSTALS WITH OMNIDIRECTIONAL PHOTONIC

BANDGAPS

2.1 Abstract

Open colloidal lattices possessing omnidirectional photonic bandgaps in the visible or near-

visible regime are attractive optical materials whose realization has remained elusive. We

report the use of an inverse design strategy called landscape engineering that rationally

sculpts the free energy landscape of self-assembly using evolutionary algorithm to discover

anisotropic patchy colloids capable of spontaneously assembling pyrochlore and cubic dia-

mond lattices possessing complete photonic bandgaps. We validate the designs in computer

simulations to demonstrate the defect-free formation of these lattices via a two-stage hi-

erarchical assembly mechanism. Our approach demonstrates a principled strategy for the

inverse design of self-assembling colloids for the bottom-up fabrication of desired crystal

lattices. This chapter is mainly based on the work reported in: Y. Ma and A.L. Ferguson

“Inverse design of self-assembling colloidal crystals with omnidirectional photonic bandgaps”

Soft Matter 15 8808-8826 (2019).

2.2 Introduction

The self-assembly of colloidal nanoparticles provides a powerful tool for forming many com-

plex structures, such as colloidal aggregates58–62, multi-shell clusters63, helical structures64

and crystals8,24,65–71. The assembly of open colloidal lattices has drawn particular atten-

tion8,24,65–71 because many of these structures posses complete photonic bandgaps and are

therefore useful as 3D photonic crystals with omnidirectional bandgaps69,72–74.The optical
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properties of a colloidal crystal are dictated by the organization of colloids within the crystal

lattice75. The size of the colloids, refractive index contrast between the colloids and voids,

and specific pattern of refractive index changes due to the packing of colloids all dictate

the photonic properties of the crystal75. Whereas hexagonal close packed (hcp) and face-

centered cubic (fcc) lattices are most easily assembled from isotropic colloidal spheres, they

do not possess complete photonic bandgaps that forbid passage of photons with particular

energies in all directions. It is for this reason that more exotic open lattices such as py-

rochlore69,72,74, diamond76,77 and inverse opal75,78,79 that do possess complete bandgaps

have attracted much attention. These crystals have desirable applications in the manipula-

tion of photons in optical wave guiding80 and in optical computing81.

Many techniques have been explored to synthesize colloidal crystals by bottom-up self-

assembly8,24,65–71. For example, van Driel and coworkers have synthesized single crystalline

silicon inverse opal using close-packed silica colloidal spheres as a template79. Damman and

coworkers have assembled colloidal lattices by vertical deposition on curved surfaces and

demonstrated that the optical properties of the resulting colloidal crystal could be manipu-

lated by the surface curvature without introducing crystal defects82. Crocker and coworkers

have employed two differently-sized spherical colloids functionalized with complementary

DNA oligomers to fabricate “double diamond” (B32) colloidal crystals isomorphic to the

NaTl Zintl phase83. Pine and coworkers have co-assembled tetrahedral colloidal clusters

and colloidal spheres using complementary DNA binding to fabricate a colloidal MgCu2

crystal8. In a recent work, Pine and coworkers also have employed compressed tetrahedral

colloidal clusters with a combination of adhesive interactions and steric interlocking to realize

cubic diamond lattice84. Grzybowski and coworkers have assembled diamond-like colloidal

lattices from nearly equally-sized oppositely-charged nanoparticles70,85. In the context of

the assembly of open crystal structures, patchy colloids functionalized with anisotropic and

directional surface interactions have emerged as a promising means for their fabrication
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by self-assembly12,66–68,71,75,78. This class of building blocks is experimentally attractive

as they are based on simple spherical colloids that can be flexibly functionalized through

anisotropic surface patterning techniques9,15,86–88. For example, Chen et al.89 have experi-

mentally demonstrated the self-assembly of triblock patchy colloids into metastructures by a

step-wise control of ion concentration in solution, and Morphew et al.66 have computation-

ally investigated the hierarchical self-assembly of triblock patchy colloids into body-centered

cubic and cubic diamond crystals.

A primary challenge in patchy colloid self-assembly is the design of the anisotropic in-

teractions to favor the assembly of the desired crystal lattice. Of particular concern is the

existence of competing crystal structures with similar free energies that can frustrate defect-

free assembly of the target lattice. For example, the pyrochlore lattice (also known as cubic

tetrastack)74,90 can be viewed as a tetrahedral network of corner-sharing tetrahedral clus-

ters72, where the tetrahedral clusters occupy the voids of a cubic diamond lattice8,90. How-

ever, the pyrochlore lattice has a closely-related analogue known as the hexagonal tetrastack

lattice, which differs from the pyrochlore lattice by the orientations of adjacent layers but

has similar free energy65,90,91. Similarly, cubic diamond lattice (also known as conventional

diamond or c-diamond) and hexagonal diamond lattice (also known as h-diamond or Lons-

daleite) are structurally similar crystals with similar free energies that differ in the stacking

of subsequent layers68. In each case, care must be taken in the patchy particle design to

favor one polymorph over the other65,67,68,90. As such, a primary concern in our design pro-

tocol is to engineer anisotropy into the particle interaction to break the degeneracy between

the desired lattice structures and closely related analogues (i.e., pyrochlore vs. hexagonal

tetrastack, cubic diamond vs. hexagonal diamond).

A number of inverse design techniques have been proposed for optimizing the interac-

tions between colloidal particles8,24–27,66,67,90,92–98 to favor the formation of the desired

target crystal. For example, Truskett and coworkers have used inverse design strategies to
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design isotropic pairwise potentials that favor the formation of various two-dimensional and

three-dimensional colloidal crystals25,96–98. Torquato and coworkers also have employed

inverse statistical mechanical strategies to design isotropic potentials that favor various col-

loidal lattices26,27,95 as well as anisotropic potentials that favor the formation of various

two-dimensional colloidal lattices92. Lyubartsev and Laaksonen99 and Mungan et al.100

have deduced optimal interaction potentials from structural correlation functions. Cohn and

Kumar28 have employed linear programming to determine isotropic potentials leading to the

desired configuration as ground state. Dijkstra and coworkers have employed an isotropic

repulsive pairwise potential to favor the formation of a pyrochlore-like colloidal crystal24. Es-

cobedo93 has used anisotropic particles and potentials to form different colloidal compounds.

Romano and Sciortino have employed asymmetric patterning to robustly assemble pyrochlore

and disfavor hexagonal tetrastack lattice90. Morphew et al.66 have used a basin-hopping

optimization method to design the potentials that favor the formation of three-dimensional

cubic diamond lattice and BCC lattice via colloidal molecules. Glotzer and coworkers have

proposed the introduction of angular potentials or charge repulsion to favor cubic over hexag-

onal diamond67. Pine and coworkers have designed isotropic DNA-grafted colloidal clusters

and singlet colloids to realize a colloidal MgCu2 lattice8. In the absence of some means to

break the degeneracy between competing polymorphs it is typically necessary to seed the

system with a fragment of the desired crystal structure67 to robustly assemble the target

crystal. Failing to break the degeneracy through one or other of these strategies risks the

uncontrolled fabrication of hybrid lattices66.

In this work, we employ a recently developed inverse design protocol, termed landscape

engineering101, to systematically discover patchy colloid building blocks capable of sponta-

neously assembling into a pyrochlore lattice and a cubic diamond lattice formed from tetrahe-

dral clusters. The approach iteratively sculpts the free energy surface of the self-assembling

colloids using evolutionary algorithm to update the placement and strength of the colloidal
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patches to stabilize the target lattice over all competing polymorphs. We target pyrochlore

and cubic diamond as 3D lattices possessing complete photonic bandgaps that have proven

frustratingly elusive to fabrication via self-assembly66,68. We show that the colloidal designs

predicted by landscape engineering spontaneously nucleate and grow defect-free photonic

lattices of the desired crystal polymorphs in a two-stage hierarchical assembly mechanism.

Since we conduct inverse design over the free energy surface rather than the potential energy

surface, the interaction potentials discovered by landscape engineering are not those that

would have been expected by energy minimization or zero-temperature optimization of the

target lattice, which demonstrates the importance of incorporating many-body and entropic

effects into the particle design. The interaction potentials discovered by landscape engineer-

ing are not those that would have been expected by energy minimization or zero-temperature

optimization of the target lattice, demonstrating the importance of many-body and entropic

effects in particle design.

The anisotropic potentials employed in this work are relatively simple and generic, but

may be considered as simplified and idealized models of inter-particle interactions that may

be experimentally realized through advanced surface-patterning techniques8–15,86,102. For

example, the patchy colloid model considered in this work can be considered as a simplified

representation of nanodot-decorated nanoparticles of the sort realized by Bae et al.15 and

Wang et al.86 through regions of titania or propyl methacrylate whose interaction strengths

depend on the specific materials properties. In a similar vein, Zhang et al.103 used colloidal

masks to fabricate anisotropic nanoparticles decorated with nanodots on opposite poles. We

might also consider our models to be idealized representations of colloids whose surfaces

are functionalized with localized patches of complementary DNA oligomers with defined

sequence and specificity8–11,102. The Kern-Frenkel model104 is one of the most popular

computational models employed to simulate patchy particle assembly66,90 and can be con-

sidered a simplified model for patchy particles with surface interaction patches deposited via
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glancing angle deposition13,14,105. Accordingly, our computational patchy particle model

and others like it are intended as simplified idealizations of experimentally-realizable inter-

particle interactions. It is the primary goal of the present work to employ such potentials

to expose the fundamental principles governing assembly, provide new insight into the ther-

modynamic, kinetic, and morphological processes underpinning assembly, and demonstrate

a new methodology for the rational design of patchy colloids programmed to self-assemble

into desired aggregates. In doing so, we aim to provide new understanding and precepts

for the experimental design of self-assembling colloidal lattices. Romano and Sciortino have

previously proposed the use of asymmetric Kern-Frenkel type patchy colloids to form py-

rochlore lattice90. The present work considers a different patchy particle model with defined

isotropic surface interactions that may be considered a simplified representation of nanodot-

decorated nanoparticles15,86. Moreover, we design the anisotropic interaction potentials

using a systematic and automated inverse design protocol. Accordingly, this work reports

a new automated inverse design strategy for the fabrication of desired colloidal lattices,

and reduces this to practice in the design of two patchy particle building blocks capable of

spontaneously self-assembling pyrochlore and cubic diamond lattices with omnidirectional

photonic bandgaps.

2.3 Methods

2.3.1 Self-Assembling Patchy Colloid Model

Pyrochlore Lattice

The pyrochlore lattice can be viewed as a tetrahedral network of corner-sharing tetrahedra.

An illustration of the pyrochlore lattice is given in figure 2.1a. Every particle (i.e. vertex of

tetrahedron) in the pyrochlore lattice exists in a staggered local configuration (figure 2.1b)

where its six nearest neighbors are rotated by 60° around it. A competing crystal structure
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with similar free energy is the hexagonal tetrastack lattice in which 75% of particles exist

in staggered local configuration and 25% of particles exist in eclipsed local configuration90

(figure 2.1c). In order to favor the pyrochlore lattice against hexagonal tetrastack lattice,

we decorate three “B” patches (blue patches) forming an equilateral triangle on the north

pole of the central sphere (“A” particle) and three “D” patches (purple patches) forming an

equilateral triangle on the south pole. The “D” patches are rotated by 60° degree around the

central axis with respect to the “B” patches. As we shall see, the “B” patches serve as the

interaction sites for directing individual patchy colloids to form tetrahedral clusters, and “D”

patches serve as the interaction sites for directing tetrahedral clusters to form corner-sharing

network of tetrahedra while maintaining the staggered local configuration of the vertices of

tetrahedra in this network. This model is illustrated in figure 2.1d-f.

The patches and the central particle are treated as a single rigid body building block, and

the interactions within the same rigid body are ignored. The diameters of central particle

and the patches are chosen as σA = 5σ and σB = σD = σ. The masses are chosen as

mA = 125m and mB = mD = m. The interactions between “B”-“B” and “D”-“D” patches

on different patchy colloids are modeled by Lennard-Jones potential:

U iiLJ(r) = 4εi

[(σi
r

)12
−
(σi
r

)6]
for i ∈ {B,D} (2.1)

where εi is the well depth, or the “interaction strength”, of particle i, and σi is its diameter.

The interactions between “A”-“X”, where “X” ∈ {“A”,“B”,“D”}, and between “B”-“D”

particles on different patchy colloids are modeled by Weeks-Chandler-Andersen (WCA) po-

tential106 to incorporate excluded-volume effects:

U
ij
WCA(r) =


4εij

[(
σ

r−∆

)12
−
(

σ
r−∆

)6]
+ εij if r < 2

1
6σ +∆ij

0 if r ≥ 2
1
6σ +∆ij

(2.2)
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(a) (b)

(d) (e) (f)

(c)

Figure 2.1: Pyrochlore lattice. (a) A unit cell of the pyrochlore lattice. (b) An illustration
of the staggered tetrahedral configuration that forms the fundamental motif of the lattice.
The central particle forms a regular tetrahedron with its three nearest neighbors above
and similarly with its three nearest neighbors below. The two tetrahedra are rotated 60°
relative to one another to form a staggered configuration. (c) An illustration of the eclipsed
local configuration. Schematic (d) top-down and (e) side views of the anisotropic patchy
colloid building block to be optimized by landscape engineering. The blue “B” patches
with interaction strengths εB define the vertices of an equilateral triangle on the north
pole of the patchy colloid at a polar angle of ϕB . The purple “D” patches with interaction
strengths εD lie at the vertices of an analogous south pole equilateral triangle at a polar angle
ϕD = ϕB and a relative azimuthal rotation of 60°. The 60◦ azimuthal rotation between the
north and south pole patches energetically favors the staggered tetrahedral configuration
(b) over the eclipsed (c). (f) Three dimensional rendering of the patchy colloid where the
central particle is made transparent to show the staggered orientation between “B” and “D”
patches. Landscape engineering is employed to optimize {EB , ϕB , ED, ϕD} to promote the
two-stage hierarchical self-assembly of the pyrochlore lattice.

∆ij =
σi+σj

2 − 1 shifts the potential to act on the surfaces of particles i and j. εij =
√
εiεj

is given by the Lorentz-Berthelot mixing rule. Since there are three “B” patches and three

“D” patches on each patchy colloid, we specify the total interaction strength of each of these

two species: Ei = 3εi where i ∈ {B,D}, and evenly distribute it among all three patches of

each species.

We design the particles to assemble the pyrochlore lattice via a two-step hierarchical

assembly mechanism. The “B” patches possess a stronger interaction strength and are ac-
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tivated during the high temperature phase of the assembly process at Thigh to direct the

patchy colloids to assemble into tetrahedral clusters. The “D” patches, which have a weaker

interaction strength, are then activated during the temperature cooling process down to Tlow

and direct the assembly of the tetrahedral clusters into the pyrochlore lattice. The two-stage

hierarchy in interaction strengths maps to a two-stage hierarchy in structure that has pre-

viously been exploited for the fabrication of hierarchically structured materials66,89,107,108.

In the present work, the high-temperature assembly process can be conceived as producing

tetrahedral building blocks from spherical colloids, and the low-temperature assembly pro-

cess as directing the assembly of the tetrahedra into a pyrochlore lattice. Thermal decoupling

between the two levels of the hierarchy is asserted in the relation between EB and ED as:

ED =
Tlow
Thigh

EB . (2.3)

Since the “B” and “D” patches both mediate the formation of tetrahedra, their polar angles

are related as:

ϕD = ϕB . (2.4)

As mentioned above, their azimuthal angles are mutually rotated by 60° to favor staggered

local configurations (figure 2.1d). An illustration of the desired two-stage assembly process

is shown in figure 2.2.

The “D” patches on the south pole act as the low-temperature counterparts of “B”

patches on the north pole and the desired self-assembled tetrahedral motif in both cases is

the same. At the high temperature Thigh we seek to optimize the interaction strength and

polar angle of the “B” patches at the north pole {EB , ϕB} to favor the assembly of tetrahedral

clusters relative to all competing structures. We solve this inverse design problem using the

landscape engineering101 approach described below. We then obtain the optimal solution

for the “D” patches on the south pole through equations 2.3 and 2.4. In doing so we assume
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Temperature

Time

Thigh

Tlow

Interaction through "B" patches

Interaction through "D" patches

Figure 2.2: An illustration of the two-stage hierarchical assembly mechanism for the py-
rochlore lattice. During the high temperature phase at Thigh, the more strongly interacting
“B” patches direct the formation of tetrahedral clusters while the more weakly interacting
“D” patches are effectively inert. During the cooling process to Tlow, the “B” patches lock
the patchy colloids into the self-assembled tetrahedra and the “D” patches direct the tetra-
hedral clusters to assemble into the pyrochlore lattice.

that the optimal solution for the “D” patches at the low temperature is identical to that for

the “B” patches at the high temperature, with the interaction strength just appropriately

scaled by the temperature ratio. The motivation for this equivalence is that the “B” and “D”

interfaces are structurally identical, but we do note that the former is formed from constituent

monomers whereas the latter is formed from constituent tetrahedra, so the multibody and

entropic interactions during the assembly process may differ. Nevertheless, the assumption

of this equivalence simplifies the inverse design problem for the pyrochlore lattice by reducing

it to a single optimization. As we will show, the assumption turns out to be a good one as

it leads to the successful assembly of defect-free crystals. As discussed later, in the case of

cubic diamond this symmetry is absent and we must independently optimize the two poles

of the colloidal building blocks within two separate optimization protocols.

Our computational model for the anisotropic interaction patches is deliberately a simple

and generic potential. Experimentally, such directional and specific patches with particular
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{EB , ϕB , ED, ϕD} might be realized by advanced surface-patterning techniques8–15,86,102.

For example, the central colloidal spheres may be functionalized by DNA oligomers with

tunable interaction strengths and specificities9, or patterned with regions of titania or propyl

methacrylate whose interaction strengths depend on the specific materials properties15,86.

We perform our simulation in reduced units, where σ = 1, ε = εA = 1, and m = 1. Using

these units, we specify σA = 5, σi = σ = 1 for i ∈ {B,D}, mA = 125 and mi = m = 1

for i ∈ {B,D}. We may define a mapping between our reduced units and real units. For

example, consider central particle “A” of diameter σA = 5σ = 1 µm and density ρA = 1

g/cm3, and an energy scale of ε = 1 kBT at T = 298 K. From these fundamental units, we

can derive the temperature in real units as T = T ∗ εkB and time in real units as t = t∗σ
√m

ε ,

where T ∗ and t∗ are temperature and time in reduced units. In our two-stage assembly

process, we use T ∗high = 0.8 at high temperature and T ∗low = 0.3 at low temperature, which

correspond to Thigh = 238.4 K and Tlow = 89.4 K in real units, respectively. Also, we use a

step size of dt∗ = 0.005 in our simulations, which corresponds to dt = 0.36 µs in real units.

Cubic Diamond Lattice

The fundamental motif of the cubic diamond lattice formed from tetrahedral clusters is

dimers of tetrahedra in staggered configurations (figure 2.3a)66,67,90. (For short, we will

henceforward simply refer to this lattice as cubic diamond except when it is unclear to do

so.)

These staggered tetrahedral dimers come together to form chair-like rings (figure 2.3b)

within the cubic diamond crystal. A competing structure sharing similar free energy is the

hexagonal diamond lattice that contains tetrahedral dimers in both staggered and eclipsed

(figure 2.3c) configurations. The hexagonal diamond lattice consists of 25% chair-like rings

and 75% boat-like rings (figure 2.3d)68. To favor cubic over hexagonal diamond, we employ

a similar patchy colloid design to that for pyrochlore. Three “B” patches with interaction
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Cubic diamond lattice. (a) Staggered dimer of tetrahedral clusters. (b) Chair-
like ring of tetrahedral clusters. (c) Eclipsed dimer of tetrahedral clusters. (d) Boat-like ring
of tetrahedral clusters. (e) Schematic side view of the anisotropic patchy colloid. The blue
“B” patches with interaction strengths εB define the vertices of an equilateral triangle on
the north pole of the patchy colloid at a polar angle of ϕB . The purple “D” and the lime
“E” patches with interaction strengths εD and εE lie at the vertices of a analogous south
pole equilateral triangles at a polar angle ϕ = ϕD = ϕE . The “D” patches are azimuthally
aligned with the “B” patches and the “E” patches rotated by 60°. The (f) bottom and (g)
side views of a three dimensional rendering of the patchy colloid. In (g) the central particle
is made transparent to show the relative orientations of the “B”, “D”, and “E” patch types.
(h) Illustration of a staggered dimer formed by two tetrahedral clusters of patchy colloids.
Landscape engineering is employed to optimize {EB , ϕB , ED, EE , ϕ = ϕD = ϕE} to promote
the two-stage hierarchical self-assembly of the cubic diamond lattice.
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strength εB are placed in an equilateral triangle on the north pole at a polar angle of ϕB

to favor the high temperature formation of tetrahedral clusters (figure 2.3e-g). The south

pole must be functionalized with two kinds of patches, “D” patches and “E” patches, at a

polar angle ϕ = ϕD = ϕE in order to preferentially stabilize the staggered dimer relative to

the eclipsed one. The “D” patches (purple) are aziumthally aligned with the “B” patches

(blue), and the “E” patches (lime) are rotated by 60°. The “B”-“B” interaction is still

modeled by Lennard-Jones potential as in equation 2.1. The “D”-“E” interaction is also

modeled by Lennard-Jones potential with the interaction strength and range given by the

Lorentz-Berthelot mixing rules:

UDELJ (r) = 4εDE

[(σDE
r

)12
−
(σDE

r

)6]
εDE =

√
εDεE

σDE =
σD + σE

2

(2.5)

All other interactions are given by WCA potential defined in equation 2.2. In this way,

the “D”-“E” attractive interactions induce the contact dimer formed by two tetrahedra to

stabilize a mutual rotation of 60° and favor the staggered dimer over the eclipsed one figure

2.3(h). Our use of this design with two patch types in an alternating ring with attractive

interactions between unlike patches is motivated by the need to induce a 60° rotation between

the two tetrahedra at the dimer interface.

The optimal parameters {EB , ϕB} for the “B” patches will be the same as those for

pyrochlore since in both cases the high temperature assembly process into tetrahedral clusters

is identical. The remaining goal is to optimize the parameters for “D” and “E” patches

{ED, EE , ϕ = ϕD = ϕE} through landscape engineering. Without loss of generality, we

choose to optimize the parameters for “D” and “E” patches at T ∗high = 0.8, and then scale

down the interaction strengths to match the low temperature phase T ∗low = 0.3 by a factor

of T ∗low/T
∗
high. We specify σD = σE = 1 and mD = mE = 1 in reduced units. The mapping
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between reduced units and real units is defined in the same manner as section 2.3.1.

2.3.2 Landscape Engineering

We follow a previously developed optimization procedure, called landscape engineering101,

to optimize the design parameters of patchy colloid. Hereafter we will refer to a set of design

parameters as a “candidate”. The whole procedure consists of the following steps: Starting

from a group of initial candidates, we first conduct Langevin dynamics simulations of the

self-assembly of each candidate and use diffusion map nonlinear dimensionality reduction to

construct a low-dimensional embedding of the various self-assembled configurations observed

over the course of the simulation. Next, on this low-dimensional diffusion map space, we

select biasing centers and perform umbrella sampling109,110 for each candidate in order to

enhance the sampling of accessible configurations. From the results of umbrella sampling, for

each candidate, we construct its self-assembly free energy surface which contains information

about the stability of all accessible configurations. We then locate the target structure on

the free energy surface and define a fitness metric based on the relative stability between

the target structure and the nearest competitor. Finally, we use an evolutionary algorithm,

called Covariance Matrix Adaptation Evolution Strategy (CMA-ES)111, to propose new and

improved candidates based on the fitness values of old candidates. These steps are repeated

until the proposed new candidates stabilize around an optimal candidate. A flowchart of

this procedure is shown in figure 2.4.

As described in the previous section, the parameters being optimized in the patchy col-

loid models for assembling pyrochlore lattice and cubic diamond lattice are {EB , ϕB} and

{ED, EE , ϕ}, respectively. In case of pyrochlore lattice, our goal is to optimize {EB , ϕB}

that favor the formation of tetrahedral cluster at T ∗high = 0.8, and then the parameters for

the “D” patches are obtained through equations 2.3 and 2.4. In this case, we conduct land-

scape engineering on particles possessing only “B” patches on the central sphere such that
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Figure 2.4: Flowchart of the landscape engineering inverse design procedure.

we temporarily ignore the “D” patches during this optimization. This approach is valid if

the interaction strengths of the “D” patches are sufficiently weak compared to that of the

“B” patches to be considered thermally decoupled. After the optimization is complete we

place “D” patches on the opposite pole with parameters given by equations 2.3 and 2.4.

In case of the cubic diamond lattice, our goal is to optimize {ED, EE , ϕ} to favor dimer

formation. During this optimization, we only put “D” and “E” patches on the central sphere

and temporarily ignore the “B” patches. This assumption is a warranted if it can be assumed

that the “B” and “D”,“E” interactions are thermally decoupled and the tetrahedra formed by
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the “B” interactions can be considered to be rock-like building blocks at the low-temperature

at which “D” and “E”-mediated assembly into the cubic diamond lattice proceeds. After

the optimization is complete, the “B” patches are added back on the opposite pole with

{EB , ϕB} taken from the pyrochlore optimization, and the interaction strengths of “D” and

“E” patches are scaled down from T ∗high = 0.8 at which the optimization was conducted

down to T ∗low = 0.3.

We now briefly discuss each step of the landscape engineering procedure (figure 2.4).

Langevin Dynamics Simulation

For each candidate, we need to estimate the corresponding accessible configurations. To

do this, we employ Langevin dynamics simulation using HOOMD-blue112,113. For each

simulation, we initialize the system with 64 randomly placed and oriented patchy colloids in

a cubic simulation box with side length L = 52.52σ. Taking a patchy colloid to be a sphere

with radius corresponding to the sum of the radii of the central particle and its surface

patches, the corresponding volume fraction of patchy colloids in the system is φ = 0.05. We

use Langevin dynamics integrator with T ∗ = 0.8 and step size dt∗ = 0.005. We evolve the

system for 3.5 × 107 steps and track the cluster formed by one randomly-selected tagged

colloid every 3500 steps. This results in a total of 104 snapshots per simulation. We perform

three independent Langevin dynamics simulations for each candidate.

Diffusion Maps

Diffusion map48,114 is a widely-used nonlinear dimensionality reduction technique that has

previously been applied to study of time evolution of molecular systems49,50,59,115,116. In

the study of self-assembly process, it can provide a dynamically meaningful low-dimensional

representation of the assembly process59. In our case, the diffusion map embeds the N

self-assembled aggregates {xi}Ni=1 observed from the molecular simulations onto a low-
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dimensional manifold. The algorithm starts from constructing the Gaussian kernel matrix

based on the pairwise distances between aggregates:

Aij = e−
d2ij
2ϵ (2.6)

where dij is the pairwise distance between aggregate i and aggregate j, and ϵ is a Gaussian

bandwidth. The definition of dij will be provided below. From this kernel matrix, a stochas-

tic matrix representing the random walk over the data set is defined by row-normalizing the

kernel matrix:

Mij =
Aij∑
j Aij

(2.7)

where Mij may be interpreted as the probability of hopping from aggregate i to aggregate

j in a time step ∆t = ϵ. The eigenvectors {ψ⃗i}Ni=1 of the stochastic matrix M are the

discrete approximations of the eigenfunctions of the backward Fokker-Planck operator which

describes a diffusion process over the data set48,114. The eigenfunctions associated with large

eigenvalues describe the “slow” modes of the diffusion process, while the eigenfunctions

associated with small eigenvalues describe the “fast” modes. The long-time behavior of the

system is captured by top few eigenfunctions. Since the matrix M is Markovian, its top

eigenvalue is λ1 = 1 and the associated eigenvector is the trivial eigenvector ψ⃗1 = 1⃗117. The

diffusion map nonlinear embedding into a d-dimensional space is achieved by projecting each

self-assembled aggregate observed over the course of the simulations {xi}Ni=1 into the top d

nontrivial eigenvectors:

xi →
[
ψ⃗2(i) ψ⃗3(i) . . . ψ⃗d+1(i)

]T
. (2.8)

An appropriate choice of d is defined by a gap in the eigenvalue spectrum59,101. In all cases in

the present work a gap was identified after the third eigenvalue λ3 informing two-dimensional

embeddings into the two leading non-trivial eigenvectors {ψ⃗2, ψ⃗3}.
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The key to construct the diffusion map is to appropriately define the pairwise distance

dij in equation 2.6. We need a way to compare the structural similarities between aggregates

formed by the patchy colloids. To do this, we employ the graph-based approach described

in ref101, which is a modification of the Isorank algorithm118. This graph-based approach

transforms the task of comparing structural similarities between aggregates into the task of

comparing similarities between the graphs representing the aggregates. It first represents

each aggregate by a graph G whose nodes correspond to the colloids within the aggregate

and whose edges are weighted by the Euclidean distances between those colloids. In case of

two aggregates with different number of colloids (i.e. two graphs with different number of

nodes), the algorithm augments the smaller graph with |Ni−Nj | ghost nodes. The algorithm

then employs a greedy approach to find the pseudo-optimal alignment between two graphs

by seeking an alignment Hmin that minimizes the L1 distance between two graphs Gi and

Gj :

Hmin = argmin

∑
m,n |(HTGiH)(m,n)−Gj(m,n)|

|Nj |(|Nj | − 1)
(2.9)

and the “distance” (i.e. structural similarity) between aggregate i and aggregate j is:

dij =

∑
m,n |(HT

minGiHmin)(m,n)−Gj(m,n)|
|Nj |(|Nj | − 1)

. (2.10)

Importantly, this graph-based distance measure is invariant to rotation, translation, and

particle permutation (i.e., particle relabeling) of the self-assembled aggregates. It serves

as a good similarity metric between aggregates since it captures both the local fluctuation

within clusters of the same shape (e.g. tetrahedra with small fluctuations of intra-cluster

particle distance) and the global difference between clusters of different shapes (tetrahedra

vs trimers).

During each Langevin dynamics simulation conducted for each candidate in a generation,

we record the aggregates comprising a single tagged colloid. Then, we collect together the ag-
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gregates sampled from all such simulations for all candidates within a generation. From this

group of aggregates, we construct a single composite diffusion map. By generating a com-

posite diffusion map for all candidates in a generation, we obtain a unified low-dimensional

embedding within which to construct and compare free energy surfaces.

Umbrella Sampling – Hamiltonian Monte Carlo

Having constructed the low-dimensional diffusion map space, we now need to construct the

free energy surface for each candidate in terms of the diffusion map coordinates {ψ⃗i}d+1
i=2 . To

avoid the possible kinetic trapping due to potentially high free energy barrier, we combine

umbrella sampling109,110,119 with Hamiltonian Monte Carlo120–122 to efficiently sample con-

figuration space by applying biasing potentials within the collective variables (i.e., leading

eigenvectors {ψ⃗i}) determined by diffusion maps. We then reweight these data to estimate

the unbiased free energy surfaces governing the self-assembly of each candidate building

block. In brief, we tile the d-dimensional diffusion map embedding with harmonic biasing

potentials:

W (ψ⃗, ψ⃗∗) =
1

2
(ψ⃗ − ψ⃗∗)TK(ψ⃗ − ψ⃗∗) (2.11)

where ψ⃗∗ is the d-dimensional harmonic center and K is a d × d dimensional diagonal

matrix whose elements are the strengths of harmonic potential along each dimension. We

conduct an independent biased simulation under each biasing potential and efficiently sample

configuration space within the Hamiltonian Monte Carlo (HMC) framework using a NVE

integrator to propose a trial move under the unbiased Hamiltonian. The volume-preserving

and time-reversible properties of NVE integrator (e.g. Verlet or leapfrog algorithm) ensure

that detailed balance could be maintained. The initial translational and angular momenta

are drawn from the Maxwell-Boltzmann distribution. The acceptance probability of the trial

move from the old state {{q}old, {p}old, ψ⃗old} to the new {{q}new, {p}new, ψ⃗new} is dictated
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by the Metropolis-Hasting criterion:

Pacc(old→ new) = min

(
1,
e−β(U({q}new)+K({p}new)+W (ψ⃗new,ψ⃗∗))

e−β(U({q}old)+K({p}old)+W (ψ⃗old,ψ⃗∗))

)
(2.12)

where β = (kBT )
−1, U({q}) is the potential energy associated with the particle positions

{q}, K({p}) is the kinetic energy associated with the particle velocities {p}, and W (ψ⃗, ψ⃗∗)

is the artificial biasing potential defined by equation 2.11. Importantly, the HMC NVE trial

move proposal does not require the calculation of biasing forces on the particles due to the

artificial biasing potentials. The diffusion map does not provide an explicit differentiable

expression for the collective variables as a function of the particle positions, meaning that

analytical expressions for these biasing forces are unavailable. Should these forces be desired

to perform, for example, biased molecular dynamics, techniques such as SandCV exist to

estimate these forces by approximate interpolation and basis function expansions within the

low-dimensional embedding123, or the CVs themselves could be estimated using artificial

neural network approaches such as MESA that provide the necessary derivatives through

automatic differentiation124–126.

We perform umbrella sampling simulations for each candidate around each harmonic

biasing potential. In each case the system is initialized from the snapshot that is closest

to the center of the harmonic biasing potential in the diffusion map embedding. Next, the

aggregate formed by the tagged colloid is frozen, and the system is relaxed using the Fast

Inertial Relaxation Engine127 (FIRE) algorithm until the energy of the system converges

within a tolerance of 0.1ε. During the relaxation, only WCA potential is enabled. After

the relaxation, the aggregate formed by the tagged colloid is unfrozen and the full Hamilto-

nian comprising all Lennard-Jones and WCA potentials are enabled. During the first three

generations of optimization for tetrahedron, we set the harmonic constant of the biasing

potentials to be 2500ε. In later iterations we relax this to 25ε. Each Hamiltonian Monte

Carlo loop is conducted at T ∗ = 0.8 and comprises 3500 steps of NVE integration with step
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size dt∗ = 0.005. We perform 16000 Monte Carlo loops by equilibrating the system for the

first 7000 loops and collecting data for the remaining 9000 loops. All molecular dynamics

calculations are performed using HOOMD-blue112,113. After conducting umbrella sampling

on the diffusion map space, we use BayesWHAM128 algorithm to reconstruct the maxi-

mum a posteriori (MAP) estimate of the unbiased free energy surface for each candidate

supported in the basis of the diffusion map collective variables by reweighting the biased

umbrella sampling data.

Covariance Matrix Adaptation Evolution Strategy

Having constructed the free energy surface for each candidate in a generation, we then

employ an objective function to define their relative fitnesses. The free energy surface is first

coarse-grained by its inherent structures129 by partitioning it into the basins of attraction

for local free energy minima detected by steepest descent. The free energy of the inherent

structure associated with the target self-assembled aggregate βFtarget is compared with the

lowest free energy inherent structure of a competitor aggregate βFcompetitor. The fitness of

each candidate colloidal building block is defined as the free energy gap:

∆βF = βFtarget − βFcompetitor. (2.13)

Minimization of this objective function seeks to make the target structure the global free

energy minimum on the self-assembly free energy surface and also open up a free energy

gap between the nearest metastable competing structure. This topography can carry kinetic

benefits in mitigating kinetically-trapped configurations and increasing both the yield and

the rate of assembly of the target aggregate.

Having evaluated the fitness values for all candidates in a generation, we then propose new

candidates by Covariance Matrix Adaptation Evolutionary Strategy111(CMA-ES), which is
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a derivative-free algorithm for non-convex optimization problem. By stochastically seeding

multiple walkers to probe the local topography based on running estimates of the local

covariance matrix, CMA-ES has demonstrated good robustness and convergence rates on

a variety of optimization problems and rugged landscapes111,130. Moreover, the CMA-ES

could be formulated as a combination of natural gradient descent and step-size control on the

expected fitness based on sampling distribution131. Based on the fitness values of candidates

in generation g, the algorithm first selects top µ candidates. Next, based on these top µ

candidates, the algorithm updates the estimate of covariance matrix C and step size σ. Then,

it proposes a new generation (g + 1) of P candidates by:

x(g+1) = ⟨xg⟩µ + σgN (0, Cg) (2.14)

where x is the vector of design parameters characterizing a candidate, and ⟨xg⟩µ is the mean

value of the top µ candidates in generation g. We set µ = 3, so CMA-ES will select top three

candidates to propose the next generation. The optimization for the self-assembly of tetrahe-

dral clusters for pyrochlore and cubic diamond proceeds in the two-dimensional design space

x = [EB , ϕB ]
T , and for the self-assembly of the tetrahedral clusters into dimers required

by the cubic diamond lattice in the three-dimensional space x = [ED, EE , ϕ = ϕD = ϕE ]
T .

N (0, Cg) is a k dimensional multivariate Gaussian random vector with mean 0 and covari-

ance matrix Cg, where k is the dimensionality of the design space. If the standard deviation

of each parameter in x dips lower than 1 kBT at T = 298 K in the interaction strengths

and 1° in the polar angle, we declare the CMA-ES to have converged and terminate the

optimization. Otherwise, a new generation of candidates is proposed, and we repeat the

whole optimization procedure for the new generation: conducting Langevin dynamics simu-

lations for each new candidate, generating composite diffusion map for the new candidates,

performing umbrella sampling on the composite diffusion map space, constructing the free

energy surfaces and evaluating fitness values for each new candidate.
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2.4 Results

We now proceed to describe our results for the inverse design of patchy colloids by landscape

engineering to spontaneously nucleate and grow defect-free photonic lattices by a two-stage

hierarchical assembly mechanism.

2.4.1 Inverse Design of Self-Assembling Pyrochlore Lattice

Optimization of Tetrahedral Aggregate Formation

We first apply landscape engineering to perform inverse design of patchy colloids to assemble

pyrochlore lattice. As described in section 2.3.1, the pyrochlore lattice may be viewed as a

tetrahedral network of corner-sharing tetrahedra. The optimization of the anisotropic patchy

colloid design in figure 2.1 proceeds in the four-dimensional design space {EB , ϕB , ED, ϕD}

defining the polar angle and interaction strength of the more strongly interacting “B” patches

on the north pole that mediate high-temperature assembly of monomers into tetrahedra at

T ∗high = 0.8 and the more weakly interacting “D” patches on the south pole that direct

assembly of the pre-assembled tetrahedra into the pyrochlore lattice at T ∗low = 0.3. By

the symmetry of the design, we may first optimize “B” patches at a reduced temperature of

T ∗ = 0.8 and then obtain the corresponding parameters for “D” patches by equations 2.3 and

2.4. Thus, we optimize {EB , ϕB} at T ∗ = 0.8 and the target structure is the tetrahedron.

To initialize the optimization, we generate 10 initial candidates from a multivariate

Gaussian distribution centered around (15.41ε, 30.0◦) with an initial covariance matrix of

C0 = diag(5, 5) (i.e., a diagonal matrix with main diagonal vector (5,5)) and initial step size

1. This relatively large choice of initial covariance matrix and step size was made to favor

early exploration of the design space. As detailed in section 2.3.2, for each candidate in

each generation we perform unbiased Langevin dynamics simulations of assembly, construct

composite diffusion maps, perform biased umbrella sampling – Hamiltonian Monte Carlo
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simulations, estimate self-assembly free energy landscapes, and evaluate the relative fitness

of each candidate. The evolution of fitness values ∆βF and parameters {EB , ϕB} as a func-

tion of generation is shown in figure 2.5. In the 16th generation, the parameters converge to

EB = 15.54ε and ϕB = 30.44° within standard deviations of 1 kBT at T = 298 K and 1°.

(a) (b)

(c)

Figure 2.5: Landscape engineering of the pyrochlore patchy colloid. (a) The fitness values
∆βF for all candidates in each generation. Error bars are estimated from the standard
deviation of the fitness value of each candidate. The blue points correspond to the µ =
3 best candidates selected by CMA-ES in each generation, and the red points to those
less fit candidates that are discarded. The black dashed line corresponds to the boundary
between them. Evolution of (b) interaction strength EB and (c) polar angle ϕB of the “B”
patches as a function of generation. The solid line corresponds to the mean value among all
candidates in each generation, and the dashed line corresponds to the mean value of the µ
= 3 best candidates in each generation. The optimization converges after 16 generations to
EB = 15.54ε and ϕB = 30.44°.
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To see how the free energy surfaces change across generations, we select the best candidate

from each generation and generate a composite diffusion map for all such candidates to

provide a common set of collective variables that we can use to compare their free energy

surfaces. The result is shown in figure 2.6. Here we compare the free energy surfaces of

the best candidates in generations 1, 7 and 15. In particular, figure 2.6 (d)-(f) show the

free energy surfaces of these candidates in the composite diffusion map space, and figure 2.6

(a)-(c) show the partition of design space into the Voronoi cells around the candidates in

each of these generations. Panels (a)-(c) show that CMA-ES draws the initial distribution

of candidates down into the optimum of the fitness landscape in ∆βF over the course of

the 16-generation optimization. Panels (d)-(f) show that the free energy surface is sculpted

such that the tetrahedron is preferentially stabilized with respect to all competitors. In the

1st generation the tetrahedron is the most stable aggregate but the monomer and dimer

are also very stable, lying, respectively, just +1 kBT and +2 kBT higher in free energy.

The trimer lies at +4 kBT . In the 7th generation, the stability of the monomer relative to

the tetrahedron is decreased to nearly +3 kBT , but that of the dimer and trimer now lie

at +2 kBT . Finally in the 15th generation, the relative stabilities of the dimer and trimer

are decreased to +2.6 kBT and +4 kBT , respectively, and the monomer lies at +2.5 kBT ,

making the tetrahedron at least 2.5 kBT more stable than all of its competitors. The net

effect of the landscape engineering approach can be seen to have maximized the free energy

gap (relative stability) between tetrahedron and all competing aggregates.

High-Temperature Assembly of Tetrahedra

Landscape engineering discovers the optimized parameters for the “B” patches of EB =

15.54ε and ϕB = 30.44°. We now proceed to verify that this design leads to the self-

assembly of tetrahedral aggregates in high yield. We perform four independent unbiased

Langevin dynamics simulations at T ∗ = 0.8 for 2×106 reduced time units for patchy colloids
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Figure 2.6: Landscape engineering sculpting of the self-assembly free energy landscape for
tetrahedral cluster formation. (a)-(c) Distribution of candidates within the {EB , ϕB} design
space in generations 1, 7 and 15. The candidates are represented by black dots. The red
circle represents the CMA-ES covariance matrix from which the candidates in the current
generation are sampled. For visualization purposes, we partition design space into Voronoi
cells around each candidate and color each cell by the fitness ∆βF of the corresponding
candidate. (d)-(f) Free energy surfaces of the best candidates in generations 1, 7 and 15
in the composite diffusion map space spanned by the leading two diffusion map collective
variables {ψ2, ψ3}. The particular values of {EB , ϕB} pertaining to each candidate are listed
above each panel. Representative aggregates from the local free energy minima are projected
onto the low-dimensional embedding. The values of the local free energy minimum associated
with each aggregate are displayed next to the representative structures.
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decorated with “B” patches employing the optimal design parameters. All simulations are

initialized with 512 randomly placed and oriented particles in a cubic box of side length

L = 105.54σ, corresponding to a volume fraction of φ = 0.05. The solid colored lines in

figure 2.7 show the temporal yield of tetrahedral aggregates as a function of time. Assuming

monomers are depleted according to simple first-order kinetics, we can fit an expression

for the tetrahedral yield of form y(t) = b
(
1− e−kt

)
, where y(t) is the fraction of colloids

residing within tetrahedra, t is time, b = (96.2± 0.3)% is the equilibrium fraction of colloids

forming tetrahedral clusters, and k = (63.4±6.7) s−1 is the best-fit first-order rate constant.

It is also instructive to compare the assembly kinetics to that for a patchy colloid de-

sign employing the same interaction strength but an empirical patch angle based on the

tetrahedral geometry. A polar angle of ϕB = 35.26° corresponds to the case where the at-

tractive patches point directly towards the neighboring particles within an ideal tetrahedral

aggregate. This can be considered the patch angle arising from zero-temperature energy

minimization of an isolated tetrahedral cluster60,132. We note that direct application of the

landscape engineering approach at T = 0 K may present challenges in sampling the con-

figurational energy landscape at absolute zero and would require the use of an alternative

sampling technique to molecular dynamics such as simulated annealing or basin hopping.

The dashed lines in figure 2.7 present the tetrahedral yield for particles with “B” patches

of EB = 15.54ε and ϕB = 35.26°. Fitting of the first-order kinetic model yields values of

b = (87.2± 2.3)% and k = (38.6± 6.0) s−1, demonstrating that the optimal design dis-

covered by landscape engineering exhibits both higher asymptotic yield and faster assembly

kinetics. Analysis of the simulation trajectories shows that the ∼ 5° larger polar angle for the

empirical geometric design results in the formation of many clusters larger than tetrahedra.

This can be understood as the larger polar angle of the patches enabling promiscuous inter-

actions between the particles comprising a tetrahedral cluster and outsider particles, whereas

the smaller polar angle optimized through landscape engineering disfavors the formation of
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Figure 2.7: Yield of tetrahedral clusters as a function of simulation time at T ∗ = 0.8 in unbi-
ased Langevin dynamics simulations. Each colored line corresponds to an independent simu-
lation. The four colored solid lines correspond to patchy colloids decorated with “B” patches
of the optimal design {EB = 15.54ε, ϕB = 30.44◦} deduced by landscape engineering. The
four colored dashed lines correspond to “B” patches with {EB = 15.54ε, ϕB = 35.26◦}
employing the same interaction strength but a polar angle corresponding to the zero-
temperature energy minimum of an isolated tetrahedral cluster. The black solid and dashed
lines are fits of the corresponding data to first-order kinetics. Landscape engineering dis-
covers an improved particle design exhibiting better yield and assembly rate beyond that
derived from purely geometric considerations.
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these large aggregates to improve assembly rate and yield.

The landscape engineering optimization was conducted at a volume fraction φ = 0.05,

but it is of interest to assess the robustness of this design in mediating high-yield tetrahedral

assembly at other volume fractions. Langevin dynamics simulations conducted at volume

fractions over the range φ = 0.025-0.1 reveal the tetrahedral yield to remain stable and high

at 95% or better for up to two-fold increases and decreases in the volume fraction away from

that at which the optimization was conducted. Very high volume fractions risk trapping

within kinetically arrested glassy states, whereas very low volume fractions introduce strong

entropic driving forces disfavoring assembly. At either of these extremes we anticipate that

re-optimization under the volume fraction of interest would be required to maintain high

tetrahedral yields

Two-Stage Hierarchical Assembly of Pyrochlore Lattice

After obtaining {EB = 15.54ε, ϕB = 30.44◦} as the optimal design parameters for “B”

patches, we obtain the optimal design for the “D” patches according to equations 2.3 and

2.4:

ϕD = ϕB = 30.44°

ED =
T ∗low
T ∗high

EB =
0.3

0.8
× 15.54ε = 5.83ε.

(2.15)

We then decorate the patchy colloids with the optimal north pole “B” patches and south pole

“D” patches to arrive at the final landscape engineering design of the patchy colloids. We

validate the capacity of the design to achieve two-stage hierarchical assembly of pyrochlore

lattice by locating 512 randomly placed and oriented patchy colloids in a cubic simulation

box of side length L = 105.04σ, corresponding to a volume fraction of φ = 0.05. The first

stage of assembly proceeds by a high-temperature hold at which the system is evolved at

T ∗high = 0.8 for 2× 106 reduced time units to allow for the formation of tetrahedral clusters

from the colloidal monomers. The second stage of assembly is effected by a two-stage cooling
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Figure 2.8: Evolution of system potential energy and temperature for two-stage hierarchical
assembly of pyrochlore lattice. The two horizontal arrows indicate which of the two axes –
potential energy or temperature – pertain to each curve on this double y-axis plot.

protocol to favor nucleation of the pyrochlore lattice whereby the system is rapidly cooled

from T ∗high = 0.8 to T ∗intermediate = 0.5 for 5× 105 reduced time units and then slowly cooled

from T ∗intermediate = 0.5 to T ∗low = 0.3 for 1× 107 reduced time units. Finally, the system is

subjected to a low-temperature hold at T ∗low = 0.3 for another 5 × 104 reduced time units

to gather statistics on the terminal crystal. The evolution of system potential energy and

temperature is presented in figure 2.8. Nucleation of the pyrochlore lattice occurs during the

second slow cooling phase at around T ∗ = 0.45 as indicated by the sudden drop in potential

energy corresponding to the latent heat of crystallization.

At the end of the T ∗high = 0.8 high-temperature assembly stage the yield of tetrahedral

clusters is 97.7% corresponding to the formation of 125 tetrahedral clusters mediated by

interactions between the north pole “B” patches. The radial distribution function g(r)

between the geometric centers of the tetrahedral clusters demonstrates that they behave
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Figure 2.9: Radial distribution function between the geometric centers of tetrahedral clusters
at the end of the high-temperature assembly stage of pyrochlore lattice.

effectively as an ideal gas (figure 2.9). The small correlation peak at r∗ ≈ 12 indicating the

presence of very weak structural correlations between the tetrahedra is largely attributable

to the weak interactions between the south pole “D” patches, but numerical simulations in

which the “D”-“D” interactions are turned off show that ∼20% of the correlation peak can

be attributed to effective entropic attractions driven by excluded volume interactions. This

validates the design expectation that interactions between “D” patches should be thermally

decoupled from that of the “B” patches.

During the slow cooling process we observe nucleation and subsequent growth of a py-

rochlore lattice (figure 2.10a). We note that sufficiently slow cooling rates are necessary to

assure a single nucleation event and production of defect-free crystal. In experimental real-

izations employing orders of magnitude more colloids than our simulations it can be quite

challenging to achieve defect-free crystals. We anticipate that very slow cooling rates, pos-

sibly coupled with programmed temperature oscillations to heal defects, may be required to

obtain high-fidelity periodic crystal lattices. At the end of the T ∗low = 0.3 low-temperature
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hold, we perform structural characterization of the crystal. To do so we compute the radial

distribution function g(r) between the centers of mass of patchy colloids (figure 2.10b) and

Steinhardt bond order parameters133,134 q⃗4
∗(i) · q⃗4(j) (figure 2.10c) and q4(i) (figure 2.10d),

where “∗” denotes the complex conjugate. The complex vector q⃗l(i) is a (2l+1) dimensional

vector whose non-normalized elements are:

qlm(i) =
1

Nb(i)

Nb(i)∑
k=1

Ylm(r̂ik) =
1

Nb(i)

Nb(i)∑
k=1

Ylm(θik, ϕik) (2.16)

where Nb(i) is the number of nearest neighbors of particle i, k loops over all such nearest

neighbors, r̂ik is the unit displacement vector from particle i to particle k, {θik, ϕik} are the

polar and azimuthal angles that r̂ik makes with respect to a specific coordinate system, and

Ylm are the spherical harmonics. A nearest neighbor is defined as a particle lying within a

cutoff distance dcut = 6.0σ, where this threshold is calibrated to cover the first peak in the

radial distribution function at rpeak,1 ≈ 5.25σ (figure 2.10b). When computing the inner

product q⃗4
∗(i) · q⃗4(j), we normalize each vector to have unit l2-norm. It can be shown that

the inner product, q⃗l
∗(i) · q⃗l(j), between two particles i and j is real and independent of

the coordinate system. An outline of the proof is given here. By the addition theorem of

spherical harmonics, given two unit vectors r̂ = (θ, ϕ) and r̂′ = (θ′, ϕ′), we have the following

identity:
l∑

m=−l
Ylm(θ, ϕ)Y ∗lm(θ′, ϕ′) =

2l + 1

4π
Pl(cos γ) (2.17)

where γ is the angle between r̂ and r̂′ and Pl is the Legendre polynomial. Let us choose

some arbitrary coordinate system, and focus on two particles i and j. The complex inner
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product is evaluated as:

q⃗∗l (i) · q⃗l(j) =
l∑

m=−l
q∗lm(i)qlm(j)

=
1

Nb(i)Nb(j)

l∑
m=−l

Nb(i)∑
k=1

Nb(j)∑
k′=1

Ylm(θik, ϕik)
∗Ylm(θjk′ , ϕjk′)

=
1

Nb(i)Nb(j)

Nb(i)∑
k=1

Nb(j)∑
k′=1

l∑
m=−l

Ylm(θik, ϕik)
∗Ylm(θjk′ , ϕjk′)

∝
Nb(i)∑
k=1

Nb(j)∑
k′=1

Pl(cos γ{ik,jk′})

(2.18)

where γ{ik,jk′} is the angle between r̂ik and r̂jk′ . Since these angles are independent of the

coordinate system, we have proved that the inner product is real and independent of the

coordinate system. The parameter ql(i) is defined using the relation:

ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2 (2.19)

The parameter q⃗4
∗(i) · q⃗4(j) defined between nearest neighbor pairs {i, j} has been shown

to be able to distinguish between pyrochlore lattice and hexagonal tetrastack lattice90 by

aggregating bond angle information between pairs of particles separated by up to three bonds.

The parameter q4(i) provides a more localized structural characterization by averaging over

only the nearest neighbors of particle i and providing a way to tell whether a particle exists

in a locally staggered or eclipsed configuration. Taken together g(r), q⃗4
∗(i) · q⃗4(j), and q4(i)

allow us to determine whether the system adopts the radial and angular order expected

for a pure pyrochlore lattice, and whether it contains crystal defects or is a mixture of the

pyrochlore and hexagonal tetrastack polymorphs.

The radial distribution function computed over the final snapshot of the simulation at

T ∗low = 0.3 possesses exactly the characteristic peaks of a pyrochlore lattice (figure 2.10b).
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(a) (b)

(c) (d)

Figure 2.10: Structural characterization of the self-assembled pyrochlore lattice. (a) Snap-
shot of terminal crystal lattice structure. (b) Radial distribution function g(r) between the
patchy colloid centers of mass. (c) The distribution of q⃗4

∗(i) · q⃗4(j) computed between all
patchy colloid nearest-neighbor pairs (gray) and restricted to crystalline colloid pairs (blue)
defined as those in which each partner possesses six bonded nearest neighbors. (d) The dis-
tribution of q4(i) for crystalline colloids. In all panels the orange dashed lines represent the
expected peak positions for an ideal pyrochlore lattice and the green dashed lines represent
those for an ideal hexagonal tetrastack lattice.
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The distributions of q⃗4
∗(i) · q⃗4(j) (figure 2.10c) and q4(i) (figure 2.10d) also both possess

peaks at the positions expected for the ideal pyrochlore lattice, and lack those expected

for the hexagonal tetrastack. Specifically, the pyrochlore lattice will possess only one peak

at 0.0123 in q⃗4
∗(i) · q⃗4(j) and one peak at 0.375 in q4(i)

90. In contrast, the hexagonal

tetrastack will show two peaks at 0.0123 and −0.5 in q⃗4
∗(i) · q⃗4(j) and two peaks at 0.375

and 0.181 in q4(i)
90. The gray bars in figure 2.10c show the distribution of q⃗4

∗(i) · q⃗4(j)

for all nearest neighbor pairs of patchy colloids. Due to finite-size effects, in some nearest

neighbor pairs the constituent colloids lie on the boundary of the crystal structure and do

not have exactly six bonded nearest neighbors. These finite-size effects cause the second

small peak at q⃗4
∗(i) · q⃗4(j) ≈ 0.5 to emerge. The blue transparent bars show the distribution

q⃗4
∗(i) · q⃗4(j) among nearest neighbor pairs in which both colloids are constrained to have six

bonded nearest neighbors (i.e., crystalline colloids). Here we see that the blue transparent

bars are indeed centered around the characteristic peak in ideal infinite pyrochlore lattice and

the small shoulder disappears. Similarly, the distribution of q4(i) in figure 2.10d restricted

to six-neighbor crystalline colloids possesses a single peak centered on the pyrochlore result.

Taken together, figure 2.10 demonstrates that the colloids do spontaneously form a defect-free

pyrochlore lattice, and not a mixture of the pyrochlore and hexagonal tetrastack polymorphs.

Having characterized the final structure, we then proceed to compute the band structure

of the corresponding periodic crystal using the MIT Photonic Bands (MPB) software135.

We create an infinite periodic pyrochlore lattice from the primitive lattice vectors R⃗1 =

(0, a2 ,
a
2), R⃗2 = (a2 , 0,

a
2), R⃗3 = (a2 ,

a
2 , 0) where a is the lattice constant. The positions of

the four basis particles reported in the basis of the primitive lattice vectors (i.e., (l,m,n)

denotes a position vector lR⃗1 +mR⃗2 + nR⃗3) are given in table 2.1. The lattice constant a

is related to the first peak in radial distribution function (nearest-neighbor distance) rpeak,1

by a = 4√
2
rpeak,1. We estimate the nearest-neighbor distance from the radial distribution

function of final configuration (figure 2.10b) to be rpeak,1 ≈ 5.25σ. The radius of the colloidal
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Basis particle index Position

1
(
1
2 ,

1
2 ,

1
2

)
2

(
0, 12 ,

1
2

)
3

(
1
2 , 0,

1
2

)
4

(
1
2 ,

1
2 , 0
)

Table 2.1: Positions of basis particles of the pyrochlore lattice in the basis of primitive lattice
vectors R⃗1 = (0, a2 ,

a
2), R⃗2 = (a2 , 0,

a
2), R⃗3 = (a2 ,

a
2 , 0) where a is the lattice constant. The

tuple (l,m,n) denotes a particle position vector lR⃗1 +mR⃗2 + nR⃗3.

particles is that of “A” spheres σA/2 = 2.5σ and the dielectric constant is set to ϵr = 12.0

corresponding to the value for silicon. The medium is taken to be air. We use a 16× 16× 16

grid to discretize the primitive unit cell to compute the band structure along the high-

symmetry lines in the first Brillouin zone. We have verified that our results have converged

with respect to the grid spacing. The resulting photonic band structure is shown in figure

2.11. The band structure shows the opening of an indirect bandgap between the second and

third bands with a width-to-midgap ratio (ratio between the bandgap width and the midgap

frequency) of 4.63%.

2.4.2 Inverse Design of Self-Assembling Cubic Diamond Lattice

Optimization of Dimer Formation

Following the success in pyrochlore assembly, we then apply our landscape engineering ap-

proach to design a new patchy colloid to assemble cubic diamond lattice via tetrahedral

clusters. As described in section 2.3.1 and illustrated in figure 2.3, the cubic diamond lattice

comprises tetrahedral clusters arranged in staggered dimers. The high-temperature assembly

of patchy colloids into tetrahedra proceeds in exactly the same fashion as for pyrochlore, and

we adopt EB = 15.54ε and ϕB = 30.44° as the optimal design solution for the “B” patches.

The design problem then reduces to optimization of the interaction strengths and polar an-
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Figure 2.11: Photonic band structure of the self-assembled pyrochlore lattice. The y-axis

reports the dimensionless frequency fa
c , where f is the frequency, a is lattice constant, and c

is the speed of light in vacuum. The x-axis labels the corners of the irreducible region of first
Brillouin zone in canonical order. For a lattice constant of a = 2.97 µm corresponding to our
choice of length scale, the bandgap lies within the frequency range of 3.74 < f < 3.94 THz
and wavelength range of 76.2 < λ < 80.3 µm, placing the bandgap in the infrared regime of
electromagnetic spectrum. For a lattice constant of a = 27.0 nm the bandgap lies within the
frequency range of 411 < f < 433 THz and wavelength range of 692 < λ < 729 nm, placing
the bandgap in the visible regime.

gles of the south pole “D” and “E” patches to mediate the low-temperature assembly of the

pre-assembled tetrahedral aggregates into cubic diamond lattice. We choose to optimize the

parameters for “D” and “E” patches at T ∗high = 0.8, and then scale down the interaction

strengths to match the low temperature phase T ∗low = 0.3 by a factor of T ∗low/T
∗
high. Thus,

we optimize {ED, EE , ϕ = ϕD = ϕE} at T ∗ = 0.8 and the target structure is a staggered

dimer.

We initialize the optimization by generating 10 initial candidates from a multivariate

Gaussian distribution centered around (6.67ε, 6.67ε, 26.60°) with an initial covariance matrix

of C0 = diag(5, 5, 5) and an initial step size 1. The evolution of {ED, EE , ϕ} and the fitness
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∆βF over the landscape engineering generations are shown in figure 2.12. In the 18th

generation, all parameters have converged to ED = 10.02ε, EE = 11.64ε and ϕ = 26.68°

within standard deviations of 1 kBT at T = 298 K and 1°.

(a) (b)

(c)

Figure 2.12: Landscape engineering of the cubic diamond patchy colloid. (a) The fitness
values ∆βF for all candidates in each generation. Error bars are estimated from the standard
deviations in the fitness values corresponding to each candidate. The blue points correspond
to the µ = 3 best candidates selected by CMA-ES in each generation, and the red points
to those less fit candidates that are discarded. The black dashed line corresponds to the
boundary between them. Evolution of (b) interaction strengths ED (blue) and EE (red)
and (c) polar angle ϕ = ϕD = ϕE as a function of generation. The solid line corresponds to
the mean value among all candidates in each generation, and the dashed line corresponds to
the mean value of the µ = 3 best candidates in each generation. The optimization converges
after 18 generations to ED = 10.02ε, EE = 11.64ε and ϕ = 26.68°.

The distribution of candidates within the design space and free energy surfaces for the
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best candidates in generations 1, 9 and 17 are presented in figure 2.13 to show how landscape

engineering changes the design and assembly properties of the building block over the course

of the optimization. In figure 2.13a-i we partition the design spaces {ϕ,EE}, {ϕ,ED} and

{EE , ED} by the Voronoi cells around the candidates in generations 1, 9 and 17, and we color

each Voronoi cell by the fitness value of the corresponding candidate. Despite the relatively

poor initial guesses for ED and EE , CMA-ES was able to efficiently move the mean and shrink

the variance of subsequent generations of candidates to converge to the optimum of the ∆βF

fitness landscape. In figure 2.13j-l we show that the self-assembly free energy surfaces are

driven towards a topography in which the staggered dimer is preferentially stabilized relative

to all competing aggregates. In the 1st generation, the monomer is the most stable aggregate

lying (-1) kBT lower in free energy than the dimer. The trimer and tetrahedron are each less

stable than the dimer, lying, respectively, +4 kBT and +8 kBT higher in free energy. In the

9th generation, the landscape engineering protocol has successfully rendered the dimer the

most stable aggregate on the landscape, with the monomer, trimer, and tetrahedron lying,

respectively, +5 kBT , +5 kBT , and +6 kBT higher in free energy. In the 17th generation, the

dimer has been even further stabilized, with the trimer and tetrahedron each lying +6 kBT

higher in free energy, and the monomer rendered completely unstable within the sampling

resolution of our simulations.

High-Temperature Assembly of Dimers

We verify the optimal landscape engineering design of ED = 10.02ε, EE = 11.64ε and

ϕ = 26.68° by performing four Langevin dynamics simulations at T ∗ = 0.8 for 2 × 106

reduced time units for patchy colloids decorated with “D” and “E” patches. Simulations are

initialized with 512 colloidal monomers with random positions and orientations in a cubic

simulation box with side length L = 105.04σ corresponding to a volume fraction of φ = 0.05.

The yield of staggered dimers as a function of time for the four runs is presented in figure
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Figure 2.13: Landscape engineering sculpting of the self-assembly free energy landscape for
the formation of staggered dimers. (a)-(i) Distribution of candidates within the {ϕ,EE},
{ϕ,ED} and {EE , ED} design space in generations 1, 9 and 17. The candidates are repre-
sented by black dots. The red circle represents the CMA-ES covariance matrix from which
the candidates in the current generation are sampled. For visualization purposes, we parti-
tion design space into Voronoi cells around each candidate and color each cell by the fitness
∆βF of the corresponding candidate. (j)-(l) Free energy surfaces of the best candidates in
generations 1, 9 and 17 in the composite diffusion map space spanned by the leading two
diffusion map collective variables {ψ2, ψ3}. The particular values of {ED, EE , ϕ} pertaining
to each candidate are listed above each panel. The values of the local free energy minimum
associated with each aggregate are displayed next to the representative structures.
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Figure 2.14: Yield of staggered tetrahedral dimers as a function of simulation time at
T ∗ = 0.8 in unbiased Langevin dynamics simulations. Each colored line corresponds to
an independent simulation at the optimal design {ED = 10.02ε, EE = 11.64ε, ϕ = 26.68◦}
deduced by landscape engineering. The solid black line is the fit to first-order kinetics.

2.14. Fitting the first-order kinetic model for the dimer yield y(t) = b
(
1− e−kt

)
results in

best-fit constants of k = (459.9± 29.1)s−1 and b = (99.1± 0.1)%, demonstrating that this

design produces staggered dimers with nearly quantitative yield.

Two-Stage Hierarchical Assembly of Cubic Diamond Lattice

Landscape engineering furnished {ED = 10.02ε, EE = 11.64ε, ϕ = 26.68°} as the optimal

values of design parameters for “D” and “E” patches at T ∗high = 0.8. We proportionally scale

these interaction strengths by a factor of T ∗low/T
∗
high = 0.3/0.8 in order to thermally decou-

ple the “D” and “E” interactions from the “B” interactions such that they direct assembly

of tetrahedral clusters into cubic diamond lattice at the second, low-temperature stage of

assembly. This results in optimal “D” and “E” patch designs of {ED = Tlow
Thigh

10.02ε = 3.76ε,

EE = Tlow
Thigh

11.64ε = 4.36ε, ϕ = 26.68°}. We test our design in simulations of 512 randomly
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Figure 2.15: Evolution of system potential energy and temperature for two-stage hierarchical
assembly of cubic diamond lattice. The two horizontal arrows indicate which of the two axes
– potential energy or temperature – pertain to each curve on this double y-axis plot.

placed and oriented colloids in a cubic simulation box with side length L = 132σ, corre-

sponding to a volume fraction of φ = 0.025. We first evolve the system at high temperature

T ∗high = 0.8 for 2×106 reduced time units, then quickly cool the system to T ∗intermediate = 0.6

for 5× 105 reduced time units, then slowly cool the system down to T ∗low = 0.3 for 1.5× 107

reduced time units, and finally equilibrate the system at T ∗low = 0.3 for 5× 104 reduced time

units to gather statistics. The evolution of system potential energy and temperature versus

simulation time is shown in 2.15. Nucleation of the cubic diamond lattice occurs at around

T ∗ = 0.48 as indicated by the sudden drop in potential energy.

At the termination of the T ∗high = 0.8 high-temperature hold the yield of tetrahedral

clusters is 95%. The radial distribution function between the geometric centers of tetrahedral

cluster demonstrates that they behave as an effective ideal gas with only a small correlation

peak due to weak “D” and “E” patch interactions and effective entropic attractions driven

54



by excluded volume interactions (figure 2.16). A snapshot of the structure formed at the end

Figure 2.16: Radial distribution function between the geometric centers of tetrahedral clus-
ters at the end of the high-temperature assembly stage of cubic diamond.

of the T ∗low = 0.3 low-temperature hold is presented in figure 2.17a. The radial distribution

function (figure 2.17b), the distribution of q⃗3
∗(i) · q⃗3(j) (figure 2.17c), and distribution of

q⃗3(i) (figure 2.17d) between the geometric centers of tetrahedral clusters all show peaks at

precisely the expected locations for cubic diamond lattice, and no peaks at the locations

for hexagonal diamond lattice. In calculating the Steinhardt bond order parameters, a pair

of tetrahedral clusters are defined as nearest neighbors if their geometric centers lie within

a cutoff distance dcut = 13.0σ calibrated to cover the first peak in the radial distribution

function at rpeak,1 ≈ 12.05σ (figure 2.17b). In figure 2.17c the gray bars correspond to

q⃗3
∗(i) · q⃗3(j) computed for all pairs of tetrahedral clusters, and the blue bars correspond to

the values computed for pairs of crystalline tetrahedral clusters defined as those in which

each cluster has four bonded nearest neighbors. It is clear that the finite-size effect causes the

distribution of gray bars to spread out, but the blue bars are centered on the expected peak
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location for ideal cubic diamond lattice. The value of q3(i) is the same for the ideal cubic

and hexagonal diamond lattices, so this measure possesses no discriminatory power between

the two but does show the q3(i) distribution of the self-assembled lattice to be located in

exactly the expected location (figure 2.17d). This structural characterization verifies that the

tetrahedral clusters have assembled a defect-free cubic diamond lattice instead of a mixture

of the diamond and hexagonal polymorphs.

(a) (b)

(d)(c)

Figure 2.17: Structural characterization of the self-assembled cubic diamond lattice. (a)
Snapshot of terminal crystal lattice structure. (b) Radial distribution function g(r) between

the geometric centers of the tetrahedral cluster. (c) The distribution of q⃗∗3(i)· q⃗3(j) computed
between all pairs of tetrahedral clusters (gray) and restricted to pairs of crystalline tetrahe-
dral clusters (blue) defined as those in which each partner has four bonded nearest neighbors.
(d) The distribution of q3(i) for pairs of crystalline tetrahedral clusters. In all panels the
orange dashed lines represent the expected peak positions for an ideal cubic diamond lattice
and the green dashed lines represent those for an ideal hexagonal diamond lattice. In the
last panel the orange and green dashed lines are coincident.

The photonic band structure of the assembled cubic diamond lattice is determined by
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defining an infinite periodic lattice with primitive lattice vectors R⃗1 = (0, a2 ,
a
2), R⃗2 =

(a2 , 0,
a
2), R⃗3 = (a2 ,

a
2 , 0), where a is the lattice constant. The eight basis particles within the

{R⃗1, R⃗2, R⃗3} basis are given in table 2.2. The lattice constant is related to the first peak in

radial distribution function between colloidal geometric centers rpeak,1 as a =
4rpeak,1√

2

√
3√

3+
√
2
,

where we take rpeak,1 ≈ 5.25σ as estimated for pyrochlore. Using the same parameters as for

the pyrochlore calculation, we employ MPB135 to obtain the band structure in figure 2.18.

We observe an indirect bandgap between the second and third bands with a width-to-midgap

ratio of 7.47%.

Basis particle index Position

1 (18 ,
1
8 ,

1
8) +

√
3√

3+
√
2
(−1

8 ,−
1
8 ,−

1
8)

2 (18 ,
1
8 ,

1
8) +

√
3√

3+
√
2
(38 ,−

1
8 ,−

1
8)

3 (18 ,
1
8 ,

1
8) +

√
3√

3+
√
2
(−1

8 ,
3
8 ,−

1
8)

4 (18 ,
1
8 ,

1
8) +

√
3√

3+
√
2
(−1

8 ,−
1
8 ,

3
8)

5 (−1
8 ,−

1
8 ,−

1
8) +

√
3√

3+
√
2
(18 ,

1
8 ,

1
8)

6 (−1
8 ,−

1
8 ,−

1
8) +

√
3√

3+
√
2
(−3

8 ,
1
8 ,

1
8)

7 (−1
8 ,−

1
8 ,−

1
8) +

√
3√

3+
√
2
(18 ,−

3
8 ,

1
8)

8 (−1
8 ,−

1
8 ,−

1
8) +

√
3√

3+
√
2
(18 ,

1
8 ,−

3
8)

Table 2.2: Positions of basis particles of the cubic diamond lattice of tetrahedral clusters in
the basis of primitive lattice vectors R⃗1 = (0, a2 ,

a
2), R⃗2 = (a2 , 0,

a
2), R⃗3 = (a2 ,

a
2 , 0) where a is

the lattice constant. A tuple (l,m,n) denotes a particle position vector lR⃗1 +mR⃗2 + nR⃗3.

2.5 Conclusions

In this work we have demonstrated an automated data-driven strategy for the inverse de-

sign of colloidal particles capable of spontaneous self-assembly into periodic crystals. This

approach combines molecular simulation, enhanced sampling, and nonlinear dimensionality

reduction to efficiently estimate self-assembly free energy landscapes, and the use of evolu-

tionary algorithms to rationally sculpt the topography of the landscape to stabilize desired
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Figure 2.18: Photonic band structure of the self-assembled cubic diamond lattice. The y-axis

reports the dimensionless frequency fa
c , where f is the frequency, a is lattice constant, and

c is the speed of light in vacuum. The x-axis labels the corners of the irreducible region of
first Brillouin zone in canonical order. For lattice constant of a = 1.63 µm corresponding to
our choice of length scale, the bandgap lies within the frequency range of 4.95 < f < 5.32
THz and wavelength range of 56.4 < λ < 60.6 µm, placing the bandgap to be in the infrared
regime of electromagnetic spectrum. For a lattice constant of a = 16.3 nm the bandgap lies
within the frequency range of 495 < f < 532 THz and wavelength range of 564 < λ < 605
nm, placing the bandgap in the visible regime.

58



aggregates by manipulation of the building block design parameters. We demonstrated the

technique in the successful design of anisotropic patchy colloids to self-assemble pyrochlore

and cubic diamond lattices of tetrahedral clusters as highly sought-after optical materi-

als possessing omnidirectional photonic bandgaps. Our approach presents a principled and

constructive means to reverse engineer the optimal building block design. This systematic

approach can accelerate design relative to Edisonian trial-and-improvement and avoid traps

associated with flawed intuition. The approach can be straightforwardly generalized to arbi-

trary particle designs and lattice structures by identifying the self-assembled aggregates and

interfaces to be stabilized and the design variables to be manipulated.

We adopted a relatively simple and generic model of our patchy particles that intro-

duces anisotropy through the precise placement of specific and attractive patches. The

interaction potentials we employed (Lennard-Jones and WCA) were deliberately simple in

form but sufficient to capture the essential physics of assembly. These patchy particle po-

tentials60 and similar anisotropic Kern-Frenkel models66,90 can be considered rude models

of the anisotropy introduced by current experimental fabrication techniques such as glanc-

ing angle deposition12–14, grafting of complementary DNA oligomers8–11,102, contact layer

lithography15 and colloidal fusion136. In follow-on work it would be of interest to employ

more realistic potentials designed to more closely mimic experimentally-realizable interac-

tion potentials and particle designs8,11, and incorporate the limits of fabrication robustness

and precision by considering polydispersity in the building block ensemble66,90. Also, the

rational design strategy used in the current work may be extended to design patchy colloids

decorated with nanodots that may form helical structures64, which are fundamental build-

ing blocks for chiral photonic crystals137. Possessing omnidirectional photonic bandgaps and

the capacity to circularly polarize light, these materials have potential applications as chiral

beamsplitters and components of optical computers137.
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CHAPTER 3

INVERSE DESIGN OF SELF-ASSEMBLING DIAMOND

PHOTONIC LATTICES FROM ANISOTROPIC COLLOIDAL

CLUSTERS

3.1 Abstract

Colloidal nanoparticles with anisotropic interactions are promising building blocks for the

fabrication of complex functional materials. A challenge in the self-assembly of colloidal

particles is the rational design of geometry and chemistry to program the formation of a de-

sired target structure. We report an inverse design procedure integrating Langevin dynamics

simulations and evolutionary algorithms to engineer anisotropic patchy colloidal clusters to

spontaneously assemble into a cubic diamond lattice possessing a complete photonic band

gap. This work is a follow-up to the work in chapter 2 in which we consider a more simpli-

fied model of the patchy colloids that is more amenable for experimental realization. The

combination of a tetrahedral cluster geometry and optimized placement of a single type of

anisotropic interaction patch results in a colloidal building block predicted to assemble a cu-

bic diamond lattice with around 82% yield. This design represents an experimentally viable

colloidal building block capable of high fidelity assembly into a cubic diamond lattice. This

chapter is based on the work reported in: Y. Ma, J. Aulicino, and A.L. Ferguson “Inverse

design of self-assembling diamond photonic lattices from anisotropic colloidal clusters” J.

Phys. Chem B 125 9 2398-2410 (2021).

3.2 Introduction

In chapter 2, we developed an inverse design protocol that sculpts the free energy surface

governing the self-assembly of patchy colloids and used this approach to find optimal de-
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sign parameters that favor the formation of pyrochlore and cubic diamond lattices. This

design strategy relied on relatively intricate placement of patches on the surface of spherical

patchy colloids requiring multiple specific patch types and a two-stage hierarchical assembly

mechanism. Using this approach, we discovered patchy colloid designs capable of assem-

bling defect-free pyrochlore and cubic diamond lattices, but the relatively complex design of

the particles placed them at the very edge of what is experimentally achievable even with

state-of-the-art fabrication techniques.

In this chapter, we followed up on the work in chapter 2 employing a simpler inverse-

design protocol and a simplified design space more amenable to experimental realization.

We also employed a simpler and less computationally expensive objective function. We

target the cubic diamond lattice and restrict our designs to a single patch type placed

upon pre-assembled clusters of spherical patchy colloids within a rigid tetrahedral tetramer.

Many surface-patterning techniques have been developed recently to decorate the surfaces

of colloids with functional materials15,86,138 and recent experimental advances have realized

the fabrication of colloidal clusters62,139–141. The geometry of the tetrahedral colloidal

cluster compensates for the loss of design flexibility associated with restricting ourselves to

a single patch type. Using this strategy we report a design for an experimentally-realizable

anisotropic patchy colloidal cluster that exhibits in excess of 82% yield of the open cubic

diamond lattice.

The remainder of this chapter is structured as follows. In the next section we describe

our computational model for the colloidal particles, Langevin dynamics simulations, and our

inverse design strategy based on evolutionary algorithm. In the following section we describe

the results of our inverse design approach and the validation that tetrahedral tetramers

composed of patchy colloids with optimal patch design can self-assemble into the target

cubic diamond lattice with high fidelity. Finally, we present our conclusions and outlook for

future work.
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3.3 Methods

3.3.1 Cubic Diamond Lattice

In chapter 2, we have described the basic motif of cubic diamond lattice and its analogue, the

hexagonal diamond lattice (figure 2.3 (a)-(d)). The cubic diamond lattice is composed solely

of rings of staggered dimers (chair-like rings, figure 2.3(b)) while the hexagonal diamond

contains 25% chair-like rings and 75% boat-like rings (figure 2.3(d)). Compared to the

cubic diamond lattice, the hexagonal diamond lattice possesses smaller photonic band gap

occurring at higher band indices142, making it less desirable for optical applications than

cubic diamond lattice. The hexagonal diamond lattice possesses a very similar free energy

to the cubic diamond lattice, making it hard to thermodynamically favor the cubic diamond

lattice over the hexagonal diamond lattice68. The similar stabilities of competing polymorphs

of open lattices has been a principal challenge in the bottom-up assembly of defect-free

crystals with desirable band structures.

3.3.2 Anisotropic Patchy Colloid Building Blocks

Advanced experimental techniques have enabled fabrication of colloidal clusters with high

yield and fidelity8,62,139–141 and the surfaces of the constituent colloids forming these col-

loidal clusters can also be anisotropically functionalized to program the hierarchical assem-

bly into more complex structures8,89. In our prior work (chapter 2), we used an inverse

design strategy known as landscape engineering to discover a design for spherical patchy

colloids to assemble a cubic diamond lattice by a two-stage hierarchical process: (i) the high-

temperature assembly of groups of four patchy colloids into tetrahedral tetramers followed

by (ii) the low-temperature assembly of these tetrahedral tetramers into a cubic diamond

lattice. The two-stage hierarchical assembly mechanism and required rigidity of the tetra-

hedral tetramers necessitated a relatively complex colloid design possessing nine patches of
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three different types (figure 2.3 (e)-(h)) with different interaction potentials and patch-patch

specificities. In the present work, we greatly simplify the design problem in two ways. First,

we adopt as the fundamental building block a patchy tetrahedral tetramer as opposed to

a spherical colloid and optimize the single-step assembly of tetrahedral tetramers into the

cubic diamond lattice. Second, we functionalize the colloids using only a single patch type.

We previously used three patch types and employed complementarity between patch types

to stabilize the staggered (Figure 2.3a) over the eclipsed (Figure 2.3c) dimer configurations

to favor the cubic diamond lattice over the hexagonal one. In the present work, we show

that by adjusting the protrusion of the interaction patches above the surface of the colloid

we may exploit excluded volume interactions to preferentially stabilize the staggered dimer

configuration using only a single patch type. These two simplifications are motivated by

experimental advances in the fabrication of rigid colloidal clusters (“colloidal molecules”)

with quite complex geometries, including the tetrahedral tetramer62,139–141,143,144 and so-

phisticated surface-patterning techniques to precisely functionalize the surfaces of colloids

with anisotropic interaction patches composed of organic, inorganic, or biological mate-

rials15,86,138,145. Conceptually, we reduce the complexity in the anisotropic interaction

patches (i.e., going from three patch types to one) at the expense of increased complex-

ity in the colloid shape (i.e., tetrahedral colloidal building blocks rather than spherical ones)

to design a building block that is more readily accessible to existing experimental techniques.

In our model, each tetramer is treated as a tetrahedral assembly of four spherical colloids

(type “A” particles) that move as a rigid body. Figure 3.1a illustrates a tetrahedral tetramer

dimer in a staggered configuration wherein the base of one tetrahedral tetramer is azimuthally

rotated through 60° with respect to the other along the axis connecting their centers of mass.

The surface of each spherical colloid is functionalized with three anisotropic interaction

patches (type “B” particles) in an equilateral triangle arrangement as illustrated in Figure

3.1b. The “B” patches are located at a polar angle ϕB from the pole of each “A” colloid. The
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placement of each patch on each colloid in the tetrahedral cluster is identical such that the

tetrahedral tetramer is tetrahedrally symmetric. The “B” interaction patches are represented

as Lennard-Jones spheres on the surface of the “A” colloid. The degree of protrusion of the

“B” patches is quantified by the protrusion ratio αB = dAB/RA, where dAB is the distance

between the center of the “B” patch and the center of the “A” colloid and RA is the radius

of the “A” colloid. A protrusion ratio of αB = 1 indicates that the center of the “B” sphere

is coincident with the surface of the “A” colloid, a value of αB = (1 + RB/RA) indicates

that the “B” sphere lies tangent upon (i.e., “kisses”) the “A” colloid, and a value of αB =

(1−RB/RA) indicates that the “B” patch is buried just below the surface of the “A” colloid.

Controlling the protrusion ratio of the patch enables us to stabilize the staggered dimer of

tetrahedral tetramers using a single patch type by favoring interlocking configurations of the

patches at the interface as shown in Figure 3.1c. Figure 3.1d presents a schematic drawing

of the colloidal particle architecture illustrating ϕB and αB .

As in chapter 2, we model the patch-patch (“B”-“B”) interactions between the spherical

patches with a Lennard-Jones potential,

UBBLJ (r) = 4εB

[(σB
r

)12
−
(σB
r

)6]
, (3.1)

where r is the center of mass distance between the “B” spheres, εB is the well depth control-

ling the interaction strength, and σB is the patch diameter. Following our previous work we

choose the colloid to be five times larger than the surface patches such that σA = 5σ and σB

= σ. The colloid-colloid (“A”-“A”) and colloid-patch (“A”-“B”) interactions are treated by

a surface-shifted Weeks-Chandler-Andersen (WCA) potential106 to model excluded-volume
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Figure 3.1: Computational model of the patchy colloid tetrahedral tetramers. (a) A staggered
dimer of tetrahedral tetramers showing the colloids (“A” particles, grey) functionalized with
anisotropic surface patches (“B” particles, blue). (b) A zoomed-in view of a single spherical
patchy colloid belonging to one of the tetrahedral tetramers. The interaction patches are
modeled as Lennard-Jones spheres placed in an equilateral triangle configuration at a tunable
surface depth. (c) A zoomed-in view of the staggered dimer interface between the two
tetrahedral tetramers along the axis connecting their centers of mass. The dark blue spheres
represent the surface patches in one of the tetrahedral tetramers and the light blue spheres to
those in the other. An interlocked configuration of the surface patches favors the staggered
dimer configuration. (d) A schematic diagram of a patchy colloid illustrating the polar angle
ϕB and protrusion ratio αB of the surface patches. The transparent blue circles represent
the patches and the dark blue dots represent the centers of patches. dAB is the distance
between the center of colloid and the center of patch and RA is the radius of colloid. The
protrusion ratio αB is defined as αB = dAB/RA. All molecular renderings in this figure and
throughout the paper are constructed using Visual Molecular Dynamics (VMD)1.
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interactions,

U
ij
WCA(r) =


4εij

[(
σ

r−∆ij

)12
−
(

σ
r−∆ij

)6]
+ εij if r < 2

1
6σ +∆ij ,

0 if r ≥ 2
1
6σ +∆ij ,

(3.2)

where εA is the well depth controlling the interaction strength for the “A”-“A” interaction,

εij =
√
εiεj is given by the Lorentz-Berthelot mixing rule, and ∆ij = (σi + σj)/2− σ shifts

the potential to act between the surfaces of particles i and j. The assembly of four “A”

colloids and 12 “B” patches comprising the tetrahedral tetramer is treated as a rigid body

and interactions between particles in the same rigid body are neglected.

The geometry and interaction potential of the system is fully defined by the six parameters

{εA, εB , σA, σB , αB , ϕB} defining the interaction strength, size and relative arrangement of

the “A” and “B” particles. Since only the relative strength of the “A” and “B” interactions

is meaningful – the absolute values can be scaled by modulating temperature – we reduce

the parameter space by eliminating εA from consideration and considering only the relative

value of εB . Similarly, only the relative values of σA and σB are meaningful, with the

absolute values corresponding to a global rescaling in the size of the particles. In this work,

we follow our previous work and fix the relative ratio of the particle size as σA = 5σB =

5σ. We achieve good results under this choice, but, in principle, we could also consider

changing the size and/or shape of the patch. As such, the inverse design problem is defined

over the three-dimensional design space defining the interaction strength, polar angle, and

protrusion ratio of the “B” patch {εB , ϕB , αB}. The design strategy seeks to optimize both

the chemistry (i.e., interaction strength) and geometry (i.e., polar angle and protrusion ratio)

of the anisotropic surface patches to favor the staggered dimer configuration and promote

spontaneous defect-free assembly of a cubic diamond lattice.
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3.3.3 Optimization Objective Function

A direct computational approach to optimizing {εB , ϕB , αB} would randomly place tetra-

hedral tetramers within a simulation box, gently anneal the system to induce nucleation and

growth of a crystal, and then modify {εB , ϕB , αB} to maximize yield of the cubic diamond

lattice at the termination of the annealing procedure. This direct optimization is inefficient,

however, due to the need for very slow cooling rates in order to avoid kinetic traps and reli-

ably estimate the thermodynamic yield of cubic diamond crystals67,146. Instead, we define

a proxy optimization problem in which {εB , ϕB , αB} are optimized to favor the formation of

staggered dimers between colloidal monomers (i.e., isolated “A” spheres functionalized with

“B” patches) at a fixed temperature. This problem is simpler and faster since we do not

perform explicit slow temperature ramping during the optimization and directly focus on

optimizing the colloid-colloid interface to favor an interlocking patch conformation. We show

later during temperature ramping simulation for pre-assembled tetramers that transferring

the optimal design found for monomeric patchy colloid to the tetrahedral tetramer does in-

deed result in quite high-yield cubic diamond crystals and provides post hoc validation of

our more efficient proxy optimization.

We evaluate the quality of a particular {εB , ϕB , αB} triplet by conducting Langevin dy-

namics simulations of the assembly of colloidal monomers (Section 3.3.4) and computing the

fraction of aggregates that exist as staggered dimers at equilibrium. We define a geometric

criterion under which a dimer between colloidal monomers i and j should be classified as

staggered based on the planar angle θij and the dihedral angle Ψij between the constituent

colloids (Figure 3.2). The angle θij is defined as,

cos(θi) = ξ̂i · r̂ij

cos(θj) = ξ̂j · r̂ji

θij = max(θi, θj),

(3.3)
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where ξ̂i and ξ̂j denote the unit orientation vectors of each particle pointing from the center

of mass of the “A” colloid to the centroid of the three “B” patches and r̂ij denotes the

unit displacement vector from i to j (Figure 3.2a). The planar angle θi measures the angle

between ξ̂i and r̂ij and θj measures the angle between ξ̂j and r̂ji. Defining θij as maximum of

these returns the larger deviation of either partner in the dimer from a face-to-face alignment

in which ξ̂i and ξ̂j are antiparallel.

The dihedral angle Ψij is defined as,

Ψij = min
m∈patchi,n∈patchj

(ψmnij ), (3.4)

where ψmnij defines the relative rotation between each of the three patches m on colloid i

and the three patches n on colloid j. We compute ψmnij by finding the centroid of three

patches on colloid i denoted by ci and the centroid of three patches on colloid j denoted

by cj , then calculate ψmnij as the angle between the plane through {m, ci, cj} and the plane

through {ci, cj , n}. Denoting the vector from m to ci as b⃗1, the vector from ci to cj as b⃗2,

and the vector from cj to n as b⃗3, the dihedral angle ψmnij is computed as,

n⃗1 =
b⃗1 × b⃗2∥∥∥⃗b1 × b⃗2∥∥∥ ,

n⃗2 =
b⃗2 × b⃗3∥∥∥⃗b1 × b⃗2∥∥∥ ,

cos
(
ψmnij

)
= n⃗1 · n⃗2.

(3.5)

The dihedral angle Ψij is defined as the minimum over the nine ψmnij , which – assuming a

small value of θij and therefore relatively cofacial dimer alignment – quantifies the minimum

rotational dihedreal between the colloids in the dimer pair required to align the patches on

each colloid into an eclipsed configuration. Figure 3.2c provides a schematic illustration for

the case in which Ψij = ψ11
′

ij = ψ22
′

ij = ψ33
′

ij .
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Figure 3.2: Geometry of self-assembled dimers of colloid monomers. (a) The angle θij =
max(θi, θj) measures the larger deviation of either partner dimer i or j from a face-to-face

alignment in which the unit orientation vectors ξ̂i and ξ̂j linking the center of the colloid to
the pole containing the patch are antiparallel and collinear with the unit vector r̂ij linking
the colloidal centers. (b) The dihedral angle Ψij measures the minimum dihedral rotation
required within a cofacial dimer pair to align the patches on each colloid into an eclipsed
configuration. The value of Ψij is taken as the minimum over all nine ψmnij defining the
dihedral angles between the three patches m on colloid i and the three patches n on colloid
j. The ψmnij are computed by first finding the centroid ci of patches on colloid i and the
centroid cj of patches on colloid j and then computing the angle between the plane through

{m, ci, cj} (spanned by b⃗1 and b⃗2) and the plane through {ci, cj , n} (spanned by b⃗2 and

b⃗3). (c) Schematic diagram of Ψij = minm∈patchi,n∈patchj (ψ
mn
ij ) considering a particular

interfacial arrangement of the three light blue “B” patches on colloid i and three dark blue
“B” patches on colloid j. Assuming θij is small such that the colloids are approximately

cofacial Ψij = ψ11
′

ij = ψ22
′

ij = ψ33
′

ij defines the minimum azimuthal rotation required to
achieve an eclipsed configuration.
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We classify a dimer as staggered if (0° ≤ θij ≤ 5°) and (55° ≤ Ψij ≤ 60°). Enforcing a

low threshold on θij ensures that the patches are approximately face-to-face aligned (i.e. ξ̂i

and ξ̂j are nearly antiparallel) and that the value of Ψij is meaningful. An ideal staggered

dimer would possess (θij = 0°, Ψij = 60°). The 5° threshold in both θij and Ψij is motivated

by the range of the observed distribution of these angles in the ensemble of stable staggered

dimers resulting from favorable {εB , ϕB , αB} choices.

Having defined a criterion by which counts the number of staggered dimers, we define the

objective function to be maximized as the equilibrium fraction of staggered dimers among

all self-assembled aggregates,

f(εB , ϕB , αB) =

〈
Nstaggered dimer

Naggregates

〉
=

1

Z

∫
e−βU(rN ,ΩN ;εB ,ϕB ,αB)Nstaggered dimer(r

N ,ΩN ; εB , ϕB , αB)

Naggregates(rN ,ΩN ; εB , ϕB , αB)
dΩNdrN

≈ 1

n

n∑
i=1

Nstaggered dimer(r
N
i ,Ω

N
i ; εB , ϕB , αB)

Naggregates(r
N
i ,Ω

N
i ; εB , ϕB , αB)

(3.6)

where rN and ΩN denote the positions and orientations of the N patchy colloidal monomers

in the simulation, rNi and ΩN
i denote their positions and orientations in frame i of simu-

lation trajectory, U(rN ,ΩN ; εB , ϕB , αB) is the potential energy of the system, β = 1/kBT

is the reciprocal temperature, Nstaggered dimer is a function returning a count of staggered

dimers according to the criterion defined above for a particular system configuration, and

Naggregates is a function returning a count of aggregates of all sizes (monomers, staggered

and non-staggered dimers, trimers, tetramers, pentamers, etc.). The ensemble average in

the second line is approximated by a time-average in the third line that is evaluated over

n frames from the equilibrated production portion of the Langevin dynamics simulation.

We evaluate this objective function by running unbiased Langevin dynamics simulations,

whereas the objective function in chapter 2 (equation 2.13) is evaluated by running many
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umbrella sampling simulations to construct the free energy surface. Although it is more

rigorous to evaluate the relative thermodynamic stabilities of self-assembled structures by

constructing the free energy surface, the objective function defined here requires less simu-

lations to calculate and the results of our study show that its optimization could guide the

colloidal clusters toward desired self-assembly behavior.

3.3.4 Langevin Dynamics Simulations

We evaluate the objective function in Equation 3.6 by conducting Langevin dynamics sim-

ulations of the self-assembly of patchy colloidal monomers in HOOMD-blue112,113. We ini-

tialize each simulation from a random dispersion of N = 64 monomeric patchy colloids with

a particular combination of {εB , ϕB , αB} design parameters and observe the distribution

of self-assembled aggregates that spontaneously form. Importantly, by running many-body

simulations of assembly we seek to both maximize the thermodynamic yield of the desired

staggered dimers relative to all competing aggregates and also assure their kinetic accessi-

bility. We perform our simulation in reduced units, where σ = 1, ε = εA = 1, and m = 1.

Using these units, we specify σA = 5, σB = σ = 1, mA = 125 andmB = m = 1. The relative

mass of the colloid and patch is scaled in proportion to size but these choices could be tuned

based on the relative densities of the colloidal “A” particle (e.g., silica, silicon, polystyrene)

and “B” patches (e.g., metal, polymer). We perform simulations in a cubic simulation box

of side length L = 52σ, corresponding to a φ = 0.05 volume fraction of colloidal monomers.

The equations of motion are numerically propagated for 1 × 108 steps using a Langevin

dynamics integrator with a step size of dt∗ = 0.005 and temperature of T ∗ = 0.8. The first

5 × 107 steps are discarded for equilibration and frames are saved every 1 × 104 steps over

the remaining 5× 107 step production period to evaluate f(εB , ϕB , αB) using Equation 3.6.

We verify that the equilibration period is sufficiently long such that the system energy and

aggregation numbers of various aggregates (monomers, staggered dimers, eclipsed dimers,
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Figure 3.3: Flow diagram of the optimization procedure combining Covariance Matrix Adap-
tation Evolution Strategy (CMA-ES) and Langevin dynamics simulations.

trimers, etc.) fluctuate around stable mean values over the production period. We perform

three independent simulations for each candidate and pass the mean value of the objective

function to the evolutionary optimization algorithm (CMA-ES in section 2.3.2 of chapter 2).

An illustration of the inverse design pipeline is shown in figure 3.3.

By performing the evaluation of the objective function at a single temperature of T ∗

= 0.8, we optimize assembly of staggered dimers at this temperature. Once the optimal

design is determined, we transfer the patch design to the tetrahedral tetramers and perform

slow temperature annealing from a high temperature state point at which the tetrahedral

tetramers are fully dispersed to a low temperature state at which the system is fully as-

sembled. Since εB is the only tunable energy scale in our reduced unit calculations, the

optimal εB discovered at T ∗ = 0.8 may be arbitrarily rescaled to modulate the assembly

temperature.

A mapping between reduced units and real units can be made by specifying the size σA

and density ρA of the “A” colloid and the energy scale ε. The temperature and time in

real units (T , t) are then related to corresponding quantities in reduced units (T ∗, t∗) as
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T = T ∗ εkB and t = t∗σ
√m

ε . For example, adopting σA = 5σ = 1 µm, ρA = 1 g/cm3, and ε

= 0.4 kBT at T = 298 K means that the reduced temperature of T ∗ = 0.8 corresponds to

T = 95 K, the reduced time step of dt∗ = 0.005 to dt = 0.05 µs, and the total length of our

simulations to t = 5 s.

3.4 Results and Discussion

We first report the determination of the optimal patch parameters determined using our

CMA-ES optimization and Langevin dynamics protocol to maximally favor the assembly of

staggered dimers of colloidal monomers. We then transfer this patch design to tetrahedral

tetramers and report our validation of their capacity to assemble into a cubic diamond lattice

in slow temperature annealing simulations.

3.4.1 Determination of Optimal Patch Design

We commenced the optimization loop in figure 3.3 by seeding it withM = 12 initial building

block designs with parameters {εB , ϕB , αB} sampled from a multivariate Gaussian distribu-

tion with mean ⟨x0⟩ = (3.33ε, 20.00°, 0.85)T and covariance C0 = diag(1.11, 10.00, 0.01).

Hereafter, we call each particular set of parameters {εB , ϕB , αB} a “candidate” in the pa-

rameter space. The initial step size was set to σ0 = 1.0 to favor early exploration of the

design space and mitigate possible trapping in a local optimum. For each candidate, we ran

three independent Langevin dynamics simulations and passed the average of the objective

function value (Equation 3.6) obtained from each simulation to the optimizer. Subsequent

CMA-ES generations were seeded based on the top µ = 3 of the M = 12 candidates.

The evolution of {εB , ϕB , αB} over the course of CMA-ES generations are presented in

figure 3.4a-c and the evolution of the mean value of objective function over the top µ = 3

candidates for each generation is shown in figure 3.4d. In conducting the optimization we

constrained the protrusion ratio to lie in the range αB = [0.8,1.0] by penalizing the objective
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function to f = (−∞) for candidates outside of this range. This prevented the unphysical

situations of the patch detaching from the colloid (αB > 1.0) or completely sinking below

the surface (αB < (1 − σB/σA) = 0.8). The optimizer converges to a value of αB inside

this range and these constraints are inactive in the later generations of the optimization.

The optimization is terminated at generation g = 28 at which point the standard deviations

{0.239ε, 0.300°, 0.005} in the three design variables proposed for generation g = 29 fall below

the prescribed convergence thresholds of {0.33 ε, 1.0°, 0.01} and the mean design is declared

the converged solution {εoptB , ϕ
opt
B , α

opt
B } = {8.18ε, 19.6°, 0.907}. Under the reduced to real

unit mapping defined in Section 3.3.4, the optimal interaction strength corresponds in real

units to ε
opt
B = 3.3 kBT at T = 298 K.

Inspection of the optimization time courses show that the interaction strength εB climbs

from its initial starting point of 3.33ε to more than double and reach its terminal plateau at

8.18ε by around generation g = 20 (Figure 3.4a). The protrusion ratio αB undergoes some

exploratory fluctuations before increasing slightly from it starting point of 0.85 to settle down

to its terminal optimum of 0.907 (Figure 3.4c). The polar angle ϕB reaches an optimum

of 19.6° that is changed very little from the initial guess of 20.0°, but the large fluctuations

in the early generations show that the algorithm does broadly explore a variety of angles

before converging (Figure 3.4b). The mean value of objective function evaluated over the

top µ = 3 candidates undergoes large fluctuations in the early generations but by generation

g = 15 approaches and then asymptotes to a high plateau that nearly quintuples the fraction

staggered dimers among aggregates from ⟨f0⟩µ = 0.17 to ⟨f28⟩µ = 0.83.

Analysis of the assembly trajectories allow us to rationalize the behavior of the optimizer

from a structural perspective. The polar angle ϕB is constrained to lie in the vicinity

of 20° in order to admit interlocked colloidal interfaces between the tetrahedral tetramers

(Figure 3.1). At this angle, the patches can maximize favorable contacts via short range

attractive Lennard-Jones interactions (Equation 3.1) in an interlocked configuration wherein
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(a) (b)

(c) (d)

Figure 3.4: Evolution of design parameters and objective function over the CMA-ES op-
timization course. Evolution of the (a) interaction strength εB , (b) polar angle ϕB , and
(c) protrusion ratio αB over the 28-generation optimization. The lines and error bars cor-
respond, respectively, to the mean and standard deviation of each parameter over the M
= 12 candidates in each generation. The optimization converges at generation g = 28 to

an optimum of {εoptB , ϕ
opt
B , α

opt
B } = {8.18ε, 19.6°, 0.907}. (d) The mean value of objective

function (Equation 3.6) evaluated over the top µ = 3 candidates in each generation reporting
the fraction of staggered dimers among self-assembled aggregates. The terminal value of the
mean objective function value reaches ⟨f28⟩µ = 0.83 corresponding to 83% staggered dimers.
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each patch interacts with two nearest neighbors. Smaller angles prevent a tight interlocking

due to insufficient free volume between the patches and lager angles spread the patches

too far apart to admit two nearest neighbor contacts. Larger protrusion ratios αB and

stronger interaction strengths εB would appear to offer increasing energetic stabilization of

the staggered dimer but this process must be viewed in the context of alternative accessible

assembly pathways and states. This process is limited by the fact that too large protrusion

ratios and interaction strengths make the triplet of “B” patches too accessible and strongly

bound to multiple interaction partners, thereby favoring the formation of large aggregates

that can outcompete the staggered dimer. Furthermore, the interaction strength cannot be

so strong as to prevent mutual rearrangements and relaxations of bound particles thereby

preventing irreversible aggregation and kinetic trapping into a glass147.

3.4.2 Validation of Optimal Patch Design

The optimal patch design programs 83% of colloidal monomers to assemble into staggered

dimers. We now proceed to validate that this same patch design can also induce the robust

assembly of tetrahedral tetramers into a cubic diamond lattice.

Slow Temperature Annealing Assembly of Optimal Tetramers

We conduct Langevin dynamics simulations of N = 512 initially randomly placed tetrahedral

tetramers decorated with the optimal patch design {εoptB , ϕ
opt
B , α

opt
B } = {8.18ε, 19.6°, 0.907}.

We recall that these tetrahedral tetramers comprise a rigid cluster of four “A” colloids each

decorated with three “B” patches as a simplified model of an experimentally-realizable “col-

loidal molecule”62,139–141,143,144 functionalized by surface patterning techniques to induce

anisotropic patchy interactions15,86,138,145. Simulations were conducted in a cubic box with

side length L = 204.08σ, corresponding to a tetrahedral tetramer volume fraction of φ =

0.05. We perform a high-temperature equilibration of the system at T ∗high = 4.0 (Thigh =
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476.8 K, under the real unit mapping defined in Section 3.3.4) for 1× 108 steps with a step

size of dt∗ = 0.005 (t∗ = 5 × 105; t = 5.0 s). Under these high temperature conditions the

attractive “B” patch interactions are insufficient to promote aggregation and the tetrahedral

tetramers behave effectively as an ideal gas. We then perform slow temperature annealing

of the system under a linear ramp down to T ∗low = 2.0 (Tlow = 238.4 K) over the course of

2× 109 steps (t∗ = 1× 107; t = 101 s; ∆T/t = 2.36 K/s). Finally, we conduct a 1× 107 step

(t∗ = 5× 104; t = 0.5 s) hold at T ∗low = 2.0 (Tlow = 238.4 K) over which we collect data on

the self-assembled structure.

(a) (b)

Figure 3.5: Slow temperature annealing induction of tetrahedral tetramer self-assembly.
(a) Commencing from an equilibrated high-temperature effective ideal gas of tetrahedral
tetramers at T ∗high = 4.0, a linear temperature ramp down to T ∗low = 2.0 is executed over

the course of 2 × 109 integration steps of dt∗ = 0.005. (b) The potential energy over the
course of the cooling run undergoes a precipitous drop at t∗ ≈ 0.7× 107 corresponding to a
temperature of T ∗ ≈ 2.75 that marks the assembly transition. The small temperature spike
at t∗ ≈ 0.7 × 107 is attributable to the latent heat of fusion released by the self-assembly
process.

The plots of temperature and potential energy over the course of the annealing run

are presented in Figure 3.5. The system undergoes an assembly transition from the initial

dispersion of isolated tetrahedral tetramers marked by the precipitous drop in potential
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energy at t∗ ≈ 0.7× 107 (Figure 3.5b) corresponding to a temperature of T ∗ ≈ 2.75 (Figure

3.5a). The small temperature peak in Figure 3.5a at t∗ ≈ 0.7× 107 can be attributed to the

latent heat of fusion released upon assembly. A slow cooling schedule was adopted to favor a

single nucleation event of the most thermodynamically favored polymorph and avoid kinetic

traps. Assembly commences at a higher temperature (T ∗ ≈ 2.75) than that at which the

patch design was optimized (T ∗ = 0.8), indicating that the optimization of the patches was

conducted well below the phase boundary for assembly. As detailed above, regardless of the

temperature at which the optimization was conducted, the transition temperature may be

tuned by rescaling ε
opt
B .

Characterization of the Self-assembled Lattice

We now analyze the structure of the self-assembled lattice produced in the slow temperature

annealing to assess the yield of the desired cubic diamond lattice. The self-assembled crystal

produced at the end of the low temperature hold is presented in Figure 3.6a. We charac-

terize the structure by computing the radial distribution function of the geometric centers

of tetramers (Figure 3.6b) and the inner product of the Steinhardt bond-order parameters

(defined in equation 2.16) q⃗3(i)
∗ · q⃗3(j) between nearest-neighbor pairs of geometric centers

of tetramers. Nearest-neighbors are defined according to a cut-off distance dcut = 12.0σ

covering the first peak in the radial distribution function.

The radial distribution function shows sharp peaks at r∗ = 11.25σ, 18.45σ, 21.55σ, 26.05σ

and 28.35σ corresponding to the locations of the first five characteristic peaks expected for

a cubic diamond lattice (Figure 3.6b). The hexagonal diamond lattice, however, possesses a

nearly indistinguishable peak fingerprint that differs only in a weak splitting of the second

and fourth peaks. Instead we turn to the q⃗3(i)
∗ · q⃗3(j) Steinhardt bond-order parameter

analysis that is better able to distinguish these two polymorphs by also incorporating angu-

lar information68. The distribution of q⃗3(i)
∗ · q⃗3(j) computed over all nearest-neighbor pairs
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(a) (b)

(c) (d)

Figure 3.6: Characterization of the self-assembled crystal lattice. (a) A snapshot of the
terminal self-assembled lattice. (b) Radial distribution function of the geometric centers of
tetramers in the terminal lattice. The orange dashed lines correspond to characteristic peak
positions of an ideal cubic diamond lattice. (c) Distribution of the inner product of Steinhardt
bond-order parameters q⃗3(i)

∗ · q⃗3(j) between nearest-neighbor pairs of geometric centers of
tetramers. The orange dashed line corresponds to the characteristic peak of cubic diamond
lattice and the green dashed line corresponds to the extra peak in hexagonal diamond lattice.
(d) Reproduction of panel c considering only tetramers possessing four nearest neighbors to
exclude tetramers at the boundary of the finite-sized crystal.
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(Figure 3.6c) exhibits a strong primary peak at (-1) and a smaller peak at (-0.115). The

additional peaks between (-1) and (-0.115) are attributable to finite-size effects due to com-

puting q⃗3(i)
∗ · q⃗3(j) over tetramers on the boundary of the final structure that do not possess

exactly four nearest-neighbors. Excluding these boundary particles by restricting the calcu-

lation to nearest-neighbor pairs possessing exactly four nearest-neighbors eliminates these

ancillary peaks (Figure 3.6d). An ideal cubic diamond lattice should possess a single peak

in q⃗3(i)
∗ · q⃗3(j) at (-1). A hexagonal diamond lattice should possess an additional peak at

(-0.115) with a magnitude one third of that of the (-1) peak68.

We quantify the proportions of tetrahedral tetramers within cubic and hexagonal dia-

mond environments following an approach suggested by Romano et al.68 First, we classify

a tetramer i as solid-like if it has four nearest neighbors with q⃗3(i)
∗ · q⃗3(j) ∈ [−1,−0.87) ∪

[−0.3, 0.1) – where the former range identifies cubic diamond neighbors and the latter range

hexagonal diamond neighbors – and each of its nearest neighbors also has four nearest neigh-

bors. Second, we classify a solid-like tetramer i as living in a cubic diamond environment

if q⃗3(i)
∗ · q⃗3(j) ∈ [−1,−0.87) for all four neighbors j. To provide a statistical estimate of

these fractions, we performed 10 independent temperature annealing simulations using the

method described at the beginning of this section and measured the fraction of solid-like

tetramers living in a cubic diamond environment in self-assembled crystal at the termina-

tion of the low-temperature hold. We compute a mean cubic diamond fraction of 58% with

a 95% confidence interval of (53%, 63%).

The root of the mixed cubic/hexagonal character of the self-assembled lattice is the

small free energy difference between the two polymorphs. A short-ranged attractive model of

tetramers developed by Romano et al. calculated the cubic phase to be only marginally more

stable than the hexagonal phase by only 0.02 kBT in a short-range patchy particle model68.

In analogous work, triblock patchy colloids designed by Rao et al.146 were observed to form a

mixed pyrochlore/hexagonal tetrastack lattice upon slow temperature annealing as a result of
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a similarly marginal stability of the pyrochlore polymorph. In the present work, we sought to

break the degeneracy between the desired cubic diamond polymorph relative to the undesired

hexagonal diamond by engineering the geometry and interactions of the three “B” patches

to favor a staggered interface between tetrahedral tetramers over the eclipsed interface.

Although we were able to achieve 83% selectivity for the formation of staggered dimers

over all competing aggregates in our simulations of colloidal monomer aggregation, this

only translated to a 58% selectivity for the cubic diamond under our temperature annealing

protocol.

Boosting the Cubic Diamond Fraction

We experimented with a number of ways to boost the cubic diamond fraction of the self-

assembled lattice. First, we explored the sensitivity of the observed cubic diamond fraction

to modifications of the patch size σB . It is valuable to assess the robustness of our optimal

design to variations in patch size and we also reasoned that small changes could potentially

elevate the cubic diamond fraction. Following the same cooling schedule described in section

3.4.2, we measured the fraction of solid-like tetramers in a cubic diamond environment for

self-assembled crystals produced by our optimal particle design but now with patch sizes

of σB = 0.90σ, 0.95σ, 1.05σ, 1.10σ, 1.20σ, 1.30σ and 1.40σ. For each σB , we performed

three independent cooling simulations. The resulting cubic diamond fractions with 95%

confidence intervals for those patch sizes are illustrated in Figure 3.7. Within the error bars

of our calculations, the observed selectivity for cubic diamond is robust to variations in the

patch size over the range σB = 0.95-1.20σ. A degradation in the observed fraction is observed

outside this range at σB = 0.90σ, 1.30σ, and 1.40σ. This result indicates that our optimal

design lies within a relatively flat-topped optimum with respect to perturbations in σB and

provides post hoc validation that fixing σB = 1.0σ produces good assembly behaviors. It is

conceivable that augmenting our design space to explicitly include σB could potentially open
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Figure 3.7: Sensitivity to patch size σB of the observed cubic diamond fraction produced by

the optimal particle design {εoptB , ϕ
opt
B , α

opt
B } = {8.18ε, 19.6°, 0.907} after slow temperature

annealing. The selectivity for cubic diamond within the self-assembled crystal is robust to
perturbations in the patch size over the range σB = 0.95-1.20σ. Error bars represent 95%
confidence intervals.

up directions in the 4D space of {εB , ϕB , αB , σB} along which significant improvements in the

cubic diamond fraction might be observed, but the present result indicates that this cannot

be achieved by modulating σB alone. Second, we explored the use of cubic diamond seeds to

promote nucleation of the desired polymorph. Specifically, we introduced a small rigid seed

of cubic diamond lattice composed of 18 tetrahedral tetramers, performed 10 independent

cooling simulations for the seeded system using the same cooling schedule. This proved to

be a quite successful strategy, with the cubic diamond fraction of the terminal crystal in the

seeded system achieving 82% with a 95% confidence interval of (74%, 89%). This suggests

that a combination of slow annealing and initial seeding may be combined to exploit the small
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separation in the stability of the cubic over hexagonal polymorphs to induce the assembly

of defect-free cubic diamond lattices.

Band Structure Calculation

Finally, we compute the band structure of an ideal cubic diamond lattice formed by our

designed tetrahedral tetramers. This calculation verifies that the patches do not disrupt the

band structure of the underlying cubic diamond lattice of tetrahedral tetramers and that

if a defect-free crystal lattice of these particles can be achieved, it will possess a complete

band gap. We used the MIT Photonic Bands (MPB) package135 to compute the band

diagram along the corners of the irreducible region of the first Brillouin zone employing a

16 × 16 × 16 grid to discretize the unit cell. For the cubic diamond lattice composed of

tetramers, the lattice constant a is related to the nearest neighbor distance between colloids

rnn by a = (2
√
2 + 4

3

√
3)rnn. We set rnn = 5.05σ, corresponding to the the first peak of the

radial distribution function between patchy colloids (“A” particles) in the final structure.

Assuming a relative permittivity between the colloidal particles and the medium of ϵr =

12.0 corresponding to that between silicon and air, we compute the band structure in Figure

3.8a. The cubic diamond lattice does indeed possess a complete photonic band gap between

the second and third bands with a ratio between gap size and midgap frequency of ∆ω/ωm

= 13.8%. Under the real unit mapping described in Section 3.3.4 with σA = 5σ = 1 µm,

the corresponding lattice constant of a = 5.2 µm places the band gap in the frequency range

39 < ν < 45 THz and wavelength range of 6.7 µm < λ < 7.7 µm, situating the band gap

around the near-infrared regime of the electromagnetic spectrum.

We performed a corresponding calculation for the ideal hexagonal diamond lattice in

which the lattice constant a is related to rnn as a = (2 + 2
3

√
6)rnn. The resulting band

structure assuming the same silicon/air relative permittivity of ϵr = 12.0 is presented in

Figure 3.8b. At this relative permittivity, the hexagonal diamond lattice does not possess
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a complete photonic band gap. By examining the band structure as a function of relative

permittivity, the hexagonal diamond lattice does support a complete band gap between the

fourth and fifth bands, but the band only opens for relative permittivity in excess of ϵr

= 14.0, corresponding to the approximate relative permittivity between silicon-germanium

alloy and air (Figure 3.8c). The cubic diamond lattice possesses a substantially larger ratio

between gap size and midgap frequency ∆ω/ωm at all values of ϵr, making the cubic diamond

a more attractive photonic crystal than the hexagonal analogue.

3.5 Conclusions

We have performed inverse design of a patchy tetrahedral colloidal cluster that spontaneously

assembles into a cubic diamond lattice with high fidelity. We stabilize the open lattice struc-

ture through the geometry and anisotropic interaction potentials of the colloidal cluster

building blocks and promote the cubic diamond polymorph over the competing hexagonal

diamond by rational engineering of the strength, positioning, and protrusion of the inter-

action patches through an iterative optimization strategy. In chapter 2, we considered a

patchy spherical colloidal building block comprising nine patches of three different types and

interaction complementarities that was capable of defect-free assembly into a cubic diamond

lattice in slow cooling simulations. In this work, we greatly simplified the design space to

a single interaction patch type upon a tetrahedral colloidal cluster that is more representa-

tive of experimentally realizable designs and amenable to existing experimental fabrication

techniques. Colloidal clusters, including the tetrahedral tetramer, have been produced by a

variety of experimental techniques141, including controlled surface-nucleation of colloids onto

seeds148, advanced encapsulation emulsion techniques8,140,149, depletion interactions139 and

crystal-templated fabrication62. Anisotropic interaction patches can be functionalized onto

colloids using techniques such as contact area lithography15,86,138, glancing angle depo-

sition12–14, grafting of DNA oligomers8–11,102 and surface-patterning with polymeric or
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(a) (b)

(c)

Figure 3.8: Photonic band structure of diamond lattices of the designed tetrahedral
tetramers. (a) Computed photonic band diagram for the cubic diamond lattice of tetra-
hedral tetramers at a relative permittivity between the colloidal particles and the medium
of ϵr = 12.0. The x-axis traverses the corners of irreducible region in the first Brillouin zone.
The y-axis reports the dimensionless frequency ωa/2πc, where ω is the angular frequency,
a is the lattice constant, and c is the speed of light in vacuum. The shaded bar denotes
the complete band gap between the second and the third bands. (b) Computed photonic
band diagram for the hexagonal diamond lattice of tetrahedral tetramers at ϵr = 12.0. (c)
Dependence of the ratio between gap size ∆ω and midgap frequency ωm as a function of
relative permittivity ϵr for the cubic and hexagonal diamond lattices.

metallic patches145. We demonstrated the assembly of a cubic diamond lattice with 82%

yield using seeded slow temperature annealing simulations of our optimal design. The ideal

cubic diamond lattice composed of these colloidal particles was computationally verified to

possess a complete photonic band gap. It is hoped that this computational work may guide

the experimental fabrication of self-assembling building blocks to realize this material in the

laboratory.
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We see multiple avenues for potential future work. First, we would like to expand the

design space to incorporate additional design variables within the optimization that may

further promote robust assembly of the target cubic diamond lattice. The present work de-

fined a three-dimensional optimization problem in the interaction strength, polar angle, and

protrusion ratio of the surface patches, but the design strategy could be straightforwardly

extended to include, for example, the size and shape of the patches to explore larger, smaller,

and potentially non-spherical geometries. One might also allow for more elaborate expan-

sions of the design space such as allowing for potentially non-isotropic patch interactions90,

deviations from the idealized tetrahedral tetramer geometry to a compressed or other im-

perfect geometries84, or changes in the surface chemistry and interaction of the colloids to

mimic, for example, polymer adsorption and depletion effects150. Second, the present study

can be conceived as defining the single optimal patch design within the defined design space.

Determining the influence of polydispersity in the design of the colloidal particles is im-

portant in understanding its impact on assembly fidelity and placing bounds on acceptable

variabilities and imperfections in particle synthesis. We envisage a comprehensive follow-on

study on the influence of polydispersity in the optimizable (i.e., patch interaction strength,

polar angle, and protrusion ratio) and fixed (e.g., patch size, shape, and interaction strength;

size, shape, and relative arrangement of the colloids comprising the tetrahedral tetramer)

design variables in which we conduct ensembles of additional simulated annealing calcula-

tions to sample this multidimensional parameter space and explore these effects. One could

also conceive of a more sophisticated design strategy where the optimization is performed

such that the particle design parameters are random variables drawn from pre-defined dis-

tributions representing the anticipated polydispersity151. The terminal designs discovered

by this strategy are likely to be inferior in assembly performance relative to the single best

design discovered in the absence of polydispersity, but superior in terms of robustness to

imperfections in the particle designs.
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CHAPTER 4

HIGH-THROUGHPUT SCREENING OF ELASTIN-LIKE

POLYPEPTIDES FOR VESICLE SELF-ASSEMBLY

4.1 Abstract

Giant lipid vesicles have been used extensively as a synthetic cell model to recapitulate vari-

ous life-like processes, including in vitro protein synthesis, DNA replication, and cytoskeleton

organization. Cell-sized lipid vesicles are mechanically fragile in nature and prone to rup-

ture due to osmotic stress, which limits their usability. Recently, peptide vesicles have been

introduced as a synthetic cell model that would potentially overcome the aforementioned

limitations. Peptide vesicles are robust, more stable than lipid vesicles and can withstand

harsh conditions including pH, thermal, and osmotic variations. In this work, we aim to use

molecular simulation and machine learning techniques to perform high-throughput screening

of diblock elastin-like polypeptides to search for candidate peptides that could form stable

vesicular structures. Our approach could provide a systematic way of screening promising

elastin-like polypeptides for specific self-assembly behavior. This chapter is based on the

work reported in the following papers: (1) B. Sharma, Y. Ma, A.L. Ferguson, and A.P. Liu

“In search of a novel chassis material for synthetic cells: Emergence of synthetic peptide com-

partment” Soft Matter 16 10769 (2020); (2) B. Sharma, Y. Ma, H.L. Hiraki, B.M. Baker,

A.L. Ferguson, and A.P. Liu “Facile formation of giant elastin-like polypeptide vesicles as

synthetic cells” Chem. Commun. 57 13202-13205 (2021).

4.2 Introduction

Synthetic cells are engineered biological or polymeric membranes that mimic one or many

functions of a biological cell. They have a wide range of applications in understanding the
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fundamentals of biological cells as well as smart drug delivery152,153. Traditionally, lipid

bilayers (liposomes) have been used as the chassis materials for synthetic cells since they

resemble the natural component and morphology of biological cells153. However, cell-sized

lipid vesicles are rather fragile154 and sensitive to osmotic pressure155, making their bottom-

up synthesis a challenging task. Therefore, there exist opportunities to explore alternative

chassis materials for the synthesis of artificial cells.

Recently, a class of materials called elasin-like polypeptides (ELPs) have drawn a lot

of research interests. ELPs are synthetic biopolymers that share structural characteristics

with intrinsically disordered proteins such as tropoelastin. The general structure of ELP

polymers is (VPGXG)n, where V is Valine, P is Proline, G is Glycine and X can be any guest

residue except Proline. ELPs are intrinsically disordered polymers that exhibit temperature-

triggered phase transition: below certain lower critical solution temperature (LCST), ELP

stays in a random coil configuration; as the temperature rises above LCST, ELP transforms to

β-spiral configurations23,156. The guest residue X is one of the key component in determining

the LCST; usually the LCST decreases as the hydrophobicity of the guest residue increases23.

It is for this reason that amphiphilic diblock and multiblock ELPs have drawn a lot of research

interests because their self-assembly behavior could be manipulated by controlling the guest

residues in each block and thus controlling the LCST of each block. Micelles are the most

common self-assembled structures from amphiphilic diblock ELPs, where the hydrophobic

block has lower LCST and the hydrophilic block has higher LCST. At the temperature

between these LCSTs, the hydrophobic blocks associate with each other to form the core

of micelles while the hydrophilic blocks form micelle corona157. However, several recent

experiments have indicated that amphiphilic diblock and triblock ELPs could self-assemble

into large vesicular structures that are stable under extreme conditions such as extreme pH

or temperature158. For example, Vogele et al. have utilized glass bead method to direct a

diblock ELP with glutamic acid as the hydrophilic guest residue and phenylalanine as the
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hydrophobic guest residue to form giant vesicles22. Schreiber et al. compared the vesicular

structures formed by two kinds of diblock ELPs with the same length but different guest

residues and conclude that guest residue composition could be a key factor in modulating

the vesicle stability159. Frank et al. demonstrated the formation of giant ELP vesicles by

using solvent evaporation method21.

Although there are some experimental efforts in producing self-assembled vesicles from

ELPs, the current experiments choose ELP candidates by physically and chemically inspired

intuition. Therefore, there exist opportunity to build a more systematic approach for the

high-throughput screening of candidate ELPs that could form stable vesicular structures.

Recent advances in machine learning have provided novel tools for the prediction of chemo-

physical properties of peptides and the rational design of peptides to optimize those proper-

ties. For instance, kernel regressions160,161, support vector machines (SVM)162 and artificial

neural networks163 have been deployed for the classification of peptides, prediction of peptide

properties and design of novel peptide sequences that suit particular purposes. Leslie et al.

proposed mismatch kernels based on a tree data structure to perform SVM classification of

proteins for several benchmark tasks and demonstrated good performance40. Lee et al. used

SVMs to identify and discover new membrane-active and antimicrobial α-helical peptides164.

Zhou et al. used Gaussian Process Regression (GPR) model with custom kernel to predict

the antimicrobial abilities of various pentadecapeptides160. Thurston and Ferguson pro-

posed a quantitative structure–property relation model to perform extensive screening over

π-conjugated oligopeptides and selected promising candidates that can self-assemble into

nanoaggregates with desired optoelectronic properties165. Yang et al. employed doc2vec

model from natural language processing to embed proteins into a vector space on which

they performed Gaussian process regression (GPR) on benchmark tasks and nonlinear di-

mensionality reduction to evaluate the performance of protein embedding41. Shmilovich et

al. trained variational autoencoders to embed π-conjugated peptides into a low-dimensional
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vector space over which GPR model is constructed to support Bayesian optimization discov-

ery of new π-conjugated peptides that can spontaneously form nanostructures with emergent

optoelectronic properties30. In general, machine learning techniques can assist the discovery

of novel promising materials by building predictive or generative models from existing data,

thus making it a powerful tool to complement and guide simulation and experiment in the

rational design of peptides that may be suitable as a novel chassis materials for synthetic

cells.

In this work, we have proposed a high-throughput screening procedure that combines

molecular dynamics simulation, free energy calculation and Bayesian optimization to se-

lect out optimal peptide from a library of diblock ELPs that could form stable vesicular

structures. To the best of our knowledge, this is the first attempt to use modern machine

learning techniques to perform high-throughput screening of diblock ELPs for the vesicle

self-assembly. We envisage that this framework could be easily extended to the rational

design of multiblock ELPs for various tasks.

4.3 Methods

4.3.1 Molecular Modeling of ELP Vesicle

In this work, we primarily considered diblock amphiphilic ELP sequences as our search

space where one block contains a hydrophilic guest residue and the other block contains a

hydrophobic guest residue. The hydrophobicity scales of amino acids were taken from the

Kyte-Doolittle scale166. Because an entire vesicle is too large to simulate, we instead focused

on a zoomed-in region of the vesicle which could be approximated as a planar bilayer (figure

4.1). We used PyMol167 software to construct an all-atom representation of the ELP chain

and then used Martini force field version 2.2168 to coarse-grain it. When coarse-graining the

ELP, we set the secondary structure of the hydrophilic block (i.e. block with a hydrophilic
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Figure 4.1: Illustration of ELP vesicle and bilayer. The hydrophobic block is shown in red and
the hydrophilic block is shown in blue. The ELP bilayer (right) represents an approximate
zoomed view of the vesicle.

guest residue) to random coil and the secondary structure of the hydrophobic block to β-turn

as experimentally observed for many ELPs23. We inserted a 10 × 10 gird of diblock ELP

chains separated by 0.1 nm to create the upper layer and another 10×10 grid of ELP chains

to create the lower layer. The ELP chains in the lower layer were flipped upside down so

that the hydrophobic blocks of these two layers were close to each other to form the middle

part of the bilayer. We then added coarse-grained water molecules and ions that were also

modeled by Martini force field to the regions above and below the bilayer. A complete initial

setup of the bilayer is illustrated in figure 4.2. After setting up the initial bilayer, we first ran

steepest descent energy minimization to relax the system. After energy minimization, we

performed 10 ns NVT equilibration at 300 K. Then we performed 10 ns NPT equilibration

at 300 K and 1 bar. Finally, we performed 200 ns NPT production simulation at 300 K

and 1 bar to prepare the system for subsequent umbrella sampling simulations which are

detailed in section 4.3.2. For all simulations, the temperature was controlled by a stochastic

velocity re-scaling algorithm169. For NPT equilibration run, Berendsen barostat34 was used

while for NPT production run Parrinello-Rahman barostat170 was used. The coupling type

of pressure coupling was semi-isotropic, which was isotropic in x- and y- directions (lateral

directions of bilayer) but different in z-direction (normal direction of bilayer), and the time

constant for pressure coupling was 12 ps. The step size for all simulations was set to 20 fs.
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Figure 4.2: An illustration of initial bilayer setup. The dark blue beads represent hydrophilic
blocks, the red beads represent hydrophobic blocks, the light blue bead are coarse-grained
water and the green beads are coarse-grained ions.

All molecular dynamics simulations were performed using Gromacs 2019171.

4.3.2 Quantitative Characterization of Stability of Diblock ELP Vesicle

The thermodynamic stability of self-assembled structures of peptides and proteins could

be estimated by evaluating the free energy of dissociation of the structure. One way to

estimate this free energy is to pull out one molecule from the self-assembled structure and

mapping out the potential of mean force (PMF) of this dissociation process (figure 4.3).

The PMF reflects the free energy profile along a specific pulling coordinate and the free

energy difference between the starting (bounded) and ending (free) state could reflect the

stability of the self-assembled structures. For example, Lemkul and Bevan have performed

molecular dynamics simulation to determine the PMF of extracting constituent peptide from

Alzheimer’s amyloid protofibril to assess the stabilities of these fibrils172. Sevgen et al. used
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Figure 4.3: Illustration of the free energy of dissociation ∆G. The bilayer is made transparent
to emphasize the pulled ELP chain.

similar technique to estimate the stability of micelles formed by block copolymers composed

of OES and PEG blocks173.

Due to the possible existence of many local free energy minima that the system could be

trapped in, enhanced sampling techniques are usually used to facilitate sufficient sampling

of all relevant configurations to ensure good estimate of free energy profile174. There exist

many techniques to perform enhanced sampling, including metadynamics175, adaptive force

bias176 and umbrella sampling110. Since enhanced sampling methods usually introduce

biasing force and potential to help the system escape local free energy minima, the resulting

trajectories need to be post-processed to obtain unbiased estimate of the free energy profile

and numerous analysis techniques, such as Multistate Bennett Acceptance Ratio (MBAR)177

and Weighted Histogram Analysis Method (WHAM)178, have been proposed to perform that

task. Here, we use a combination of umbrella sampling and WHAM to construct the PMF.

After creating and equilibrating the ELP bilayer as detailed in section 4.3.1, we randomly

chose a peptide chain from the bilayer as the chain to be pulled out. We chose two reaction

coordinates, zhead and ztail, as described in figure 4.4a. zhead is the z-component of displace-

ment from the COM of the bilayer to the COM of hydrophilic block of chosen chain and ztail

is the z-component of displacement from the COM of the bilayer to the COM of hydrophobic

block of the chosen chain. The pulling process was divided into three stages (figure 4.4b): In
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the first stage, the relative displacement between bilayer and hydrophilic block of the chosen

chain was constrained by high harmonic potential and the hydrophobic block of the chosen

chain was gradually pulled away from the bilayer. In the second stage, both hydrophilic and

hydrophobic blocks were pulled away from the bilayer to extract the chosen chain out of the

bilayer. This process ensures that the chosen chain does not undergo sudden conformation

change when it comes out of the bilayer and avoids hysteresis in PMF due to insufficient

sampling of orthogonal degrees of freedom179. In the final stage, the hydrophilic block was

pulled out while the hydrophobic block was constrained by harmonic potential. The pur-

pose of the last stage is to allow the peptide chain to relax and estimate the equilibrium

chain length in bulk solvent. After all of the pulling simulations were completed, we placed

Figure 4.4: Illustration of reaction coordinates and the path over which the PMF is con-
structed. (a) Definition of reaction coordinates. The bilayer is made transparent to high-
light the opaque chosen peptide chain. The hydrophobic blocks are shown in red and the
hydrophilic blocks are shown in dark blue. The green dashed line represents the COM of
the bilayer, the red dashed line represents the COM of the hydrophobic block of the chosen
chain and the black dashed line represents the COM of the hydrophilic block of the chosen
chain. (b) Illustration of the path over which the PMF is constructed. Solvents are not
shown in all plots for clarity. Stage I is the stage where the hydrophilic block is constrained
and hydrophobic block is pulled up. Stage II is the stage where both blocks are pulled up
to extract the chain out of the bilayer. Stage III is the stage where the hydrophilic block is
again pulled up to estimate the equilibrium chain length in bulk solvent.

equidistant centers for harmonic potential along the path and selected out snapshots from
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the pulling simulations closest to each center as the starting configuration for each umbrella

sampling simulation. We then introduced harmonic potential of the form

W ({zhead, ztail}, {z∗head, z
∗
tail}) =

1

2
k1(zhead − z∗head)

2 +
1

2
k2(ztail − z∗tail)

2 (4.1)

where {z∗head, z
∗
tail} are the centers for the harmonic potential, and performed 100 ns umbrella

simulations around each center under T = 300 K and P = 1 bar. We fine-tuned the spacing

between adjacent umbrella windows and the strength of harmonic constraints to ensure good

overlaps of histograms from each umbrella sampling simulation. The histograms of reaction

coordinates {zhead, ztail} recorded during the umbrella sampling simulations were then pro-

cessed by WHAM to reconstruct the unbiased PMF. The free energy of dissociation(∆G) is

taken as the difference between the minimum free energy when the peptide chain is embedded

in the bilayer and the minimum free energy when the chain exists in bulk solvent:

∆G = Gbounded −Gsolvent (4.2)

In all pulling simulations, the time step was set to 20 fs. In stage I pulling, a harmonic

potential of the form 4.1 was applied to the chosen chain. Both spring constants (k1 and

k2) were chosen to be 15,000 kJ mol-1 nm-2. The harmonic center z∗head was fixed at the

starting value of zhead and z∗tail was gradually increased from the starting value with a rate

of 5×10−5 nm ps-1 until it reaches z∗head. In stage II pulling, both spring constants were set

to 20,000 kJ mol-1 nm-2 and both harmonic centers were increased from their starting values

with a rate of 5× 10−5 nm ps-1 until the chain leaves the upper layer. In stage III pulling,

both spring constants were set to 5000 kJ mol-1 nm-2. z∗tail was kept fixed at the starting

value of ztail and z∗head was increased from the starting value with a rate of 5 × 10−5 nm

ps-1 for 80 ns. In all pulling simulations, temperature was controlled by stochastic velocity

re-scaling and pressure was controlled by Parrinello-Rahman barostat.

95



For all subsequent umbrella sampling simulations, the harmonic centers were kept fixed

and we dynamically adjusted the spring constants based on whether the chain is embedded

in the bilayer (larger spring constants) or exists in bulk solvent (smaller spring constants). In

each umbrella sampling simulation, we first performed 40 ns NPT equilibration with stochas-

tic velocity re-scaling thermostat and Berendsen barostat followed by a 100 ns production

run with stochastic velocity re-scaling thermostat and Parrinello-Rahman barostat. All sim-

ulations were performed using Gromacs 2019171 and the WHAM analysis was done using

the program developed in Grossfield Lab180.

4.3.3 Gaussian Process Modeling and Bayesian Optimization of ∆G

Having characterized the free energy of dissociation ∆G of single peptide chain from pre-

assembled bilayer, we want to minimize this ∆G (i.e. making it as negative as possible)

with respect to the ELP sequence so as to maximize the stability of vesicle. This could

be again viewed as a black-box optimization problem, where the target function ∆G is

related to the inputs (ELP sequence) in an unknown way, and the only thing we could do

is to run simulations for any given input to calculate the target function value. The CMA-

ES algorithm mentioned ins previous chapters is primarily designed to handle black-box

optimization of continuous numeric inputs. However, in the current setting, the inputs are

peptide sequences which are essentially strings of amino acids. Since the inputs are not

numeric, we seek other way to perform the black-box optimization.

Bayesian optimization is a widely used black-box optimization technique55. It is based

on building a surrogate predictive model for the target function that is better suited for

optimization over the search space. It then employs an “acquisition function” calculated

based on the surrogate model to guide the search toward most promising candidates. Since

the surrogate model is an approximation of the target function, it has some uncertainty on

the prediction of target function values and the acquisition function would propose promising
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candidates under this uncertainty. The most commonly used surrogate model is the Gaussian

Process Regression(GPR) model55. The GPR model assumes the target function f(x) is the

realization of a Gaussian Process over its inputs x with mean 0 and covariance function given

by a kernel K that acts on pair of inputs. That is, given a set of inputs X = {x1, .., xn}, the

target functions f⃗ = {f(x1), f(x2), ..., f(xn)} follow the multivariate Gaussian distribution:

f⃗ ∼ N (⃗0, K(X,X)) (4.3)

where K(X,X) is the n×n Gram matrix whose components are K(xi, xj). Now, given a set

of training data D = {(x1, y1), ..., (xn, yn)} where each yi = f(xi) + εi is noisy observation

of f(xi) and εi are independent errors following N (0, σ2i ) distributions, we could get the

joint distribution of training y⃗ and the target function values f⃗∗ at m testing points X∗ =

{x∗1, ..., x
∗
m}:  y⃗

f⃗∗

 ∼ N
0⃗,

K(X,X) + Σ K(X,X∗)

K(X∗, X) K(X∗X∗)


 (4.4)

where Σ = diag(σ21, ..., σ
2
n). Therefore, the posterior predictive distribution of f⃗∗ given the

training data is

f⃗∗|D, X∗ ∼ N
(
µ⃗, cov(f⃗∗)

)
(4.5)

where µ⃗ and cov(f⃗∗) are given by

µ⃗ = K(X∗, X)[K(X,X) + Σ]−1y⃗

cov(f⃗∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + Σ]−1K(X,X∗)
(4.6)

Usually, the kernel function contains some parameters θ⃗, and these parameters are optimized
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by maximizing the log-likelihood of training data181,

l(D; θ⃗) = log p(y⃗|X; θ⃗)

= −1

2
y⃗T [K(X,X; θ⃗) + Σ]−1y⃗ − 1

2
log |K(X,X; θ⃗) + Σ| − n

2
log 2π.

(4.7)

The key component in GPR is the kernel function K. It needs to be positive definite,

meaning that for any set of inputs X = {x1, ..., xn} the Gram matrix K(X,X) must be

positive semidefinite. Moreover, in our case the inputs are amino acid strings, so that we

need kernels that operate on string data. Many string kernels have been proposed for peptide

and protein data. For example, the Hamming distance kernel measures the minimum number

of substitutions to make two equal length strength the same. The weighted degree kernel182

computes similarity between two equal length sequences by counting the co-occurrences

of k-mers at corresponding positions of two sequences. However, many of the proposed

kernels only operate on strings with fixed length. In our case, the number of hydrophilic

and hydrophobic blocks could vary so the ELP sequences could have varying lengths. Thus,

we need a string kernel that could handle amino acid sequences with different lengths. In

2013, Giguère et al. proposed a string kernel, termed the “generic string kernel”, that

could serve this purpose161. The generic string kernel first featurizes each amino acid into a

d-dimensional vector of chemical properties:

ψ⃗(a) =

[
ψ1(a) ψ2(a) · · · ψd(a)

]
(4.8)

As such, a string of l amino acids (a1, · · · , al) could be encoded into a d× l matrix:

Ψ(a1, · · · , al) =
[
ψ⃗(a1), · · · , ψ⃗(al)

]
(4.9)

Now, given two amino acid strings x and x′, the generic string kernel with parameters

98



{L, σp, σc} gives:

GS(x, x′;L, σp, σc) =
L∑
l=1

|x|−l∑
i=0

|x′|−l∑
j=0

e
− (i−j)2

2σ2p e
− ||Ψ(x[i:i+l])−Ψ(x′[j:j+l])||2

2σ2c (4.10)

In other words, the generic string kernel look at all substrings of maximum size L and

compute the similarity between these substrings (second exponent inside triple-summation)

conjugated with a position-dependent term (first exponent) that decays exponentially. The

parameter L controls the maximum length of substrings to be compared, and σp and σc

control the penalties due to shifts in positions and difference in chemical properties of sub-

strings, respectively. The parameters {σp, σc} could be optimized by taking the derivative of

log-likelihood (equation4.7) and performing a gradient-based optimization. The parameter

L is found by trying out values from 1 to the length of shortest ELP in the training data

and using the value that maximize the log-likelihood. We use the BLOSUM62 matrix183 as

the featurization of amino acids.

Having defined the GPR model, we can then proceed to the Bayesian optimization. The

basic procedure of Bayesian optimization is summarized in algorithm 2. The key part is to

Algorithm 2 Bayesian Optimization

Initialize Training data D0
for t = 1 · · ·T do
Build GPR model based on D1:t−1
Find xt = argmaxu(x|D1:t−1)
Evaluate the (noisy) target function yt = f(xt) + εt
Augment training data D1:t = D1:t−1 ∪ {(xt, yt)}

end for
Output x∗ with minimum target function value in D1:T

maximize the acquisition function u(x|D), which guides our search under the uncertainty of

the predictions on true target function given by GPR model. There are many ways to define

the acquisition function. A common choice is the expected improvement (EI)184 which is
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defined as:

EI(x|D) = E[max(f† − ξ − f, 0)]

= (f† − µ(x)− ξ)Φ

(
f† − ξ − µ(x)

σ(x)

)
+ σ(x)ϕ

(
f† − ξ − µ(x)

σ(x)

)
(4.11)

where f(x) = ∆G(x) is the predicted target function value following the posterior predic-

tive distribution at x (equation 4.5) with mean µ(x) and standard deviation σ(x) given by

the GPR model trained on D. f† is the minimum target function value in D and ξ is a

hyperparameter controlling the exploration-exploitation trade-off: higher value of ξ tends

to favor regions in input space with high posterior variance σ(x)2 and lower ξ tends to

favor input space with lower posterior mean µ(x)57. An intuitive way of interpreting equa-

tion 4.11 is that it represents the expected amount of reduction from previous minimum:

max(f† − ξ − f, 0) is equal to the reduction f† − ξ − f only if f < f† − ξ. The candidate

with the greatest expected amount of reduction then becomes the next one to consider since

we focus on minimizing the target function.

At each iteration of Bayesian optimization, we trained a GPR model based on the cur-

rently explored peptides D1:t. Then, for all the unexplored peptides, we could get the

posterior predictive distribution over their ∆G values by equation 4.5 and evaluate the ac-

quisition function (equation 4.11) for each of them. Then we selected one single peptide

with the maximum acquisition function value as the next peptide to explore. It should be

noted that there exist choices to propose multiple candidates to be explored next during

one iteration of Bayesian optimization30 in order to maximally utilize available computing

resources. However, in our case we already maximally utilized available computing resources

to parallelize the umbrella sampling simulations in section 4.3.2. Proposing multiple candi-

dates at the same time would not speed up the process since the simulations for one peptide

have already consumed all available computing resources.

We performed the Bayesian optimization and keep monitoring the coefficient of determi-
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nation (R2) of GPR models during the fitting process (by leave-one-out cross validation).

We also monitored the Bhattacharyya distance185 between posterior Gaussian distributions

(equation 4.5) returned by successive GPR models on a testing set that are not used during

training. The Bhattacharyya distance is a statistical distance that measures the similarity

between two probability distributions and is defined as:

DB(p, q) = − ln

(∫ √
p(x)q(x)dx

)
(4.12)

These two metrics help to identify whether the GPR models given by the Bayesian opti-

mization have saturated and the optimization could be stopped186. A schematic of the

high-throughput screening pipeline is shown in figure 4.5.

4.4 Results

We gathered a search space of 168 candidate ELPs of the form (VPGX1G)5(VPGX2G)n,

where X1 is a hydrophilic guest residue, X2 is a hydrophobic guest residue and n = 4, 5.

This choice for the sizes of hydrophilic and hydrophobic blocks was made because many

experimental works on forming ELP vesicles use nearly equal number of hydrophilic and

hydrophobic blocks21,187. In these experiments, usually longer ELP chains are used (for

example, Schreiber et al.187 tested diblock ELPs with more than 70 blocks). Since longer

chains require much longer simulation time to equilibrate, we decided to try shorter chains

with nearly equal number of hydrophilic and hydrophobic blocks to keep the relative size of

hydrophilic and hydrophobic blocks similar to experiments, and made the assumption that

the trends of ∆G that we see for shorter chains reflect the trends of ∆G for longer ones that

are usually considered in experiments.

We started the screening process by generating an initial set of 20 candidates randomly

selected from the search space. For each candidate in the initial training set, we performed
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Figure 4.5: Pipeline of high-throughput screening. The top left panel shows a diblock ELP
where X1 is a hydrophilic guest residue and X2 is a hydrophobic residue. The lower right
panel shows an example of GPR model for ∆G. The green dots are training data. The black
line and blue shaded area are posterior mean and variance of the prediction, respectively. The
lower left panel shows an example of expected improvement acquisition function. The black
dashed line and the purple star shows the candidate with maximum acquisition function
value, which is the one that is selected to evaluate next. The x-axes, ψ1, in the plots of GPR
model and acquisition function represent the projection of all ELPs onto a one-dimensional
space by multidimensional scaling.

umbrella sampling simulations as described in section 4.3.2. After we obtained the two-

dimensional PMF in terms of reaction coordinates zhead and ztail, we further projected the

PMF onto the one-dimensional reaction coordinate zcom, which describes the z-component

of the relative displacement between the COM of the entire pulled peptide and COM of

bilayer using the projection algorithm described in reference 128. This projection of PMF

onto an one-dimensional reaction coordinate makes the visualization of PMF easier. In figure

4.6, we show an example of original two-dimensional PMF and one-dimensional projected

PMF for the sequence (VPGYG)5(VPGCG)4. As expected, the value of PMF gradually

rises when the chain is pulled from the bilayer out to the bulk solvent. Once the pulled chain
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Figure 4.6: Example PMF for (VPGYG)5(VPGCG)4 system with snapshots to identify the
stage of the pulling process. The hydrophilic (VPGYG)5 blocks are shown in blue and
the hydrophobic (VPGCG)4 blocks are shown in red. The bilayer is made transparent to
highlight the opaque pulled chain. Solvents are not shown for clarity. (a) Two-dimensional
PMF in the reaction coordinates {zhead, ztail} that are directly used in the harmonic potential
during umbrella sampling. (b) The projection of the two-dimensional PMF onto the one-
dimensional reaction coordinate zcom. The black, green and red dashed lines represent the
ends of each of the three stages of pulling as defined in figure 4.4.

enters the bulk solvent, the PMF becomes flat then rises again once the hydrophilic block

is pulled away from the hydrophobic block. The ∆G value for this specific ELP sequence

is calculated as the difference between the free energy minimum when the pulled chain is

within the bilayer and the free energy minimum when the pulled chain is in bulk solvent,

which is ∆G = −462.9± 16.5kBT where the error is obtained by block analysis.

We show the prediction of ∆G for all peptides in the search space made by the terminal

GPR model in figure 4.7. We project each peptide onto a one-dimensional space using multi-

dimensional scaling188 based on the Jukes-Cantor distance between biological sequences189.

We monitored the evolution of R2 of all GPR models and the Bhattacharyya distance be-
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Figure 4.7: Demonstration of the GPR model. The black solid line is the mean of posterior
predictive distribution and the blue shaded area represents one standard deviation. The
green dots are the training data. The x-axis, ψ1, represents the projection of all ELPs onto
a one-dimensional space by multidimensional scaling.

tween successive GPR models. The plots of R2 and the Bhattacharyya distance are shown in

figure 4.8. Both quantities converge after six generations. After running up to 10 iterations,

we assert that the Bayesian optimization has converged and have explored 30 candidates

(roughly 18% of entire search space) during the search. We ranked the explored candidates

in increasing order of their ∆G values obtained in simulation, and the top 10 candidates

are shown in table 4.1. We also ranked all 168 ELPs in increasing order of their predicted

∆G values made by the terminal GPR model and show top 10 ELPs in table 4.2. From

table 4.1 and table 4.2, we could see that the Bayesian optimization proposes the sequence

(VPGHG)5(VPGVG)5 as the candidate that could form the most stable self-assembled vesi-

cle, which has not been tested in experiments before. The experimentally verified sequence

(VPGHG)5(VPGLG)4
187 was ranked among the top ten candidates by the terminal GPR

model. Therefore, our approach could discover previously unknown sequences, while having

some agreements with current experimental result. For future work, we would work with our
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Figure 4.8: Plots of the R2 values of GPR models and the Bhattacharyya distance between
successive GPR models in the Bayesian optimization.

ELP sequence Computed ∆G(kBT ) Discovery Iteration Previously Known?
H5V5 −742.57± 10.73 2 N
H5F4 −637.01± 9.94 5 N
H5F5 −629.27± 3.55 6 N
H5V4 −609.56± 3.69 3 N
H5L4 −599.24± 12.87 0 Reference 187
H5L5 −576.68± 19.70 1 N
H5C4 −506.8101± 4.91 4 N
Y5F4 −503.64± 4.60 0 N
Y5V5 −478.12± 1.94 0 N
H5A4 −470.43± 9.14 7 N

Table 4.1: Table of top 10 candidates among 30 explored diblock ELPs and their computed
∆G values. Abbreviation (X1)m(X2)n stands for (VPGX1G)m(VPGX2G)n. Uncertainties
are measured via block averaging.
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ELP sequence Predicted ∆G(kBT ) Computed ∆G(kBT )
H5V5 −738.13± 10.52 −742.57± 10.73
H5F4 −636.64± 9.81 −637.01± 9.94
H5F5 −629.20± 3.55 −629.27± 3.55
H5V4 −609.90± 3.68 −609.56± 3.69
H5L4 −594.76± 12.56 −599.24± 12.87
H5L5 −584.03± 18.61 −576.68± 19.70
H5C4 −506.85± 4.90 −506.8101± 4.91
H5I4 −506.14± 114.87 N/A
Y5F4 −503.58± 4.60 −503.64± 4.60
H5C5 −503.07± 56.46 N/A

Table 4.2: Table of top 10 candidates among all 168 ELPs. The predicted ∆G is the predic-
tion of ∆G and its standard deviation estimated by the terminal GPR model. The computed
∆G is the actual ∆G value (and its uncertainty) obtained from MD simulation if the cor-
responding candidate has been explored during Bayesian optimization. The abbreviation of
ELPs follows the same convention as in table 4.1.

experimentalist collaborators (Dr. Bineet Sharma and Prof. Allen Liu) at the University of

Michigan to verify the newly discovered sequences.

4.5 Discussion and Conclusion

We have developed a high-throughput screening procedure for discovering optimal diblock

amphiphilic elastin-like polypeptide that could form stable vesicles. Our approach uses

molecular simulation to obtain a quantitative measurement of the stability of the self-

assembled vesicle, and then employs Bayesian optimization to discover the best diblock

ELP that maximizes this stability. The optimization procedure converges after 10 iterations

and we have explored 30 peptides (roughly 18% of the entire search space). The explored

ELPs are ranked according to their computed vesicle stabilities. In addition, all peptides

in the search space are ranked by the predicted vesicle stabilities by the final GPR model.

We have discovered some previously unknown ELPs that could form very stable vesicles and

predicted vesicle stability in agreement with the results for experimentally tested ELP. We

will be working with our experimentalist collaborators in Prof. Allen Liu’s group at the Uni-
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versity of Michigan to test the top candidates suggested by our high-throughput screening

procedure.

For future work, we would expand the search space to longer chains. In current experi-

ments, the diblock ELPs usually contain dozens of hydrophobic and hydrophilic blocks that

enable relatively thick vesicles to be formed21,22,159,187. These larger vesicles structurally

resemble the compartments of biological cells152 and enable interesting bioactivities, such

as compartmentalized peptide synthesis22, to happen inside. Besides diblock ELPs, triblock

ELPs with hydrophilic blocks on two ends and hydrophobic blocks in the middle have also

been experimentally used to form vesicles190. Therefore, in future work it would be inter-

esting to expand the search space to include larger diblock and triblock ELPs with more

than ten hydrophilic and hydrophobic blocks to match experimental interests. In principle,

this is feasible for the current GPR model because the generic string kernel161 could operate

on amino acid strings of arbitrary lengths, but the evaluation of the kernel on long amino

acid strings could be very expensive. Some alternative strategies are discussed in section

5.2 in chapter 5. Another potential challenge is that the umbrella sampling simulations

might become inefficient due to increasing number of degree of freedom and the potential

existence of high free energy barriers in degree of freedom orthogonal to the chosen reaction

coordinates179. Thus, it would interesting to explore alternative enhanced sampling tech-

niques, such as adaptive biasing force191 or alchemical free energy calculations192, to try to

overcome the shortcomings of umbrella sampling when considering larger ELP systems.
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CHAPTER 5

SUMMARY AND FUTURE WORK

5.1 Summary of Work

In summary, we have demonstrated the use of machine learning and black box optimization

algorithms in the development of novel inverse design and high-throughput screening pro-

tocols for soft materials design. Throughout our work, we have formulated three material

inverse design and high-throughput screening tasks as optimization problems and imple-

mented suitable black box optimization algorithms for each task.

In chapter 2, we considered the inverse design of patchy colloids capable of self-assembling

into open crystalline lattices. Colloidal crystals possess periodic relative permittivity whose

periodicity roughly matches the wavelength of light, and thus they possess complete photonic

bandgaps and allow researchers to control the flow of light inside these crystals2,5. An

active research topic in colloidal crystal is the inverse design problem, which considers how

to optimally tune the properties of colloids such that they could self-assemble into a target

lattice193. In this work, we have developed a novel inverse design protocol to optimize the

properties of patchy colloids for desired self-assembly behavior. We performed Monte Carlo

simulations of the self-assembly process of patchy colloids and utilized a popular stochastic

black-box optimization algorithm, CMA-ES130, to maximize the free energy gap between

target structure and competing structures based on the free energy surface calculated from

simulation trajectories. CMA-ES algorithm is a derivative-free optimization algorithm which

does not require the gradient information of the target function and has been widely used in

various soft materials inverse design problems54,101. The patchy colloids with the optimal

design parameters demonstrated the ability to self-assemble into high-quality open crystalline

lattices in molecular dynamics simulation.

In chapter 3, we considered the inverse design of pre-assembled tetrahedral colloidal
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clusters capable of self-assembling into cubic diamond lattice. This work was a follow-up to

the work in chapter 2 where we considered a simplified version of the model for patchy colloid

that is more amenable for experimental realization. CMA-ES is applied to maximize the

fraction of target structure in equilibrium, which is an easier objective function to evaluate

than the free energy surface considered in chapter 2. Although we make these simplifications,

the CMA-ES optimization still could converge to a set of design parameters that direct the

tetrahedral colloidal clusters to self-assemble into a mixture of cubic and hexagonal diamond

lattices in which the cubic diamond lattice structure is dominant. By further introducing

a small initial seed, which is a common practice in colloidal self-assembly67,194, we could

significantly enhance the fraction of cubic diamond lattice formed by the self-assembly of

colloidal clusters with optimal design parameters.

In chapter 4, we have developed a high-throughput screening protocol to search for di-

block amphiphilic elastin-like polypeptides (ELPs) that could form stable vesicles. Elastin-

like polypeptides are block co-polymers whose motifs are derived from tropoelastin. When

carefully designed, they could self-assemble into vesicles that are more robust to osmotic

pressure and membrane stretching than lipid vesicles21, thus serving as good candidates for

forming the compartments of synthetic cells. Our approach of high-throughput screening is

to use enhanced sampling simulation to measure the stability of self-assembled ELP vesi-

cles, and then use black box optimization to search for the sequence in search space that

maximizes this stability. Quantitatively, the stability of the vesicle is measured by the free

energy ∆G of dissociation of the vesicle. We implemented a string kernel to perform Gaus-

sian Process Regression and Bayesian optimization to find the ELP in the search space that

maximizes this free energy gap. After around 10 iterations, our Bayesian optimization has

converged and we have identified some good diblock ELPs that have not been experimentally

explored before. We would then work with our experimentalist collaborators to verify that

these ELPs could self-assemble into stable vesicles.
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To conclude, recent developments in machine learning and black-box optimization have

opened new opportunities for the inverse design and high-throughput screening of materials.

We have explored some of the recently developed machine learning and optimization methods

and demonstrated their success in several challenging problems.

5.2 Future Directions

We foresee several possible future directions to continue our work.

First, for the inverse design of patchy colloids, currently we assume that the patch prop-

erties could be controlled precisely and there is no imprecision or fluctuation in the patch

properties in individual patchy colloids. In experiments, usually there would be some poly-

dispersity in patch properties due to the unavoidable imprecision in the manufacturing pro-

cess66,84,89,90,136. For example, Chen et al.89 have manufactured triblock patchy colloids

with an uncertainty of less than 5° in patch size. Morphew et al.66 have simulated the self-

assembly of triblock patchy colloids whose patch sizes are drawn from pre-defined Gaussian

distributions. In order to take polydispersity in patch properties into account, one direct

modification to our method could be to draw patch properties from pre-defined Gaussian

distributions whose standard deviation is determined by experimental precision. Then, we

could apply the inverse design protocols developed in chapter 2 and 3 to perform optimiza-

tion over the mean values of the patch properties. At every iteration of the optimization,

for each patchy colloid in the system we would construct its surface patches by sampling

from the Gaussian distributions with pre-defined standard deviations and the mean values at

that iteration and proceed to the molecular simulation. Another way of incorporating poly-

dispersity into account is to use a black-box optimization algorithm that directly takes the

uncertainty of input variables into account. For example, Oliveira et al.151 have proposed

a modified Bayesian optimization framework that takes uncertainty in the measurements of

input variables into account and minimize the expected regret. It is thus possible to replace
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the CMA-ES algorithm used in chapter 2 and 3 by such approaches151. Another possible

future direction of investigation would be to change the way of measuring the goodness

of self-assembly. Currently we break the self-assembly process into hierarchical stages and

optimize the self-assembly at each stage separately. This requires us to have a priori knowl-

edge of the kind of desired intermediate structures at each stage in order to form the final

target structure (e.g. tetrahedral network of tetrahedron for pyrochlore lattice or dimers of

tetrahedron for cubic diamond lattice). However, there might be situations in which this

a priori knowledge is not available or we would like the target structure to be formed in a

single stage. This would require a more direct way to estimate the quality of self-assembled

structure. A possible way of doing so is to characterize the local environments of each colloid

in the structure and measure the quality by the fraction of colloids whose local environment

matches that of the target structure. This fraction would then be the target function to

be maximized using black-box optimization. There exist multiple ways of characterizing

the local environments of a particle. For example, one could use the Steinhardt bond order

parameter defined in equation 2.16 in section 2.4 of chapter 2 and compare it with the value

obtained from the desired crystal68. However, this would still require a priori knowledge of

the degree of spherical harmonics (l) that is suitable for this identification. It is well known

that l = 3 could distinguish cubic vs hexagonal diamond67,68 and l = 4 distinguishes be-

tween pyrochlore and hexagonal tetrastack65,90. However, there is no general rule on how to

choose l to distinguish one specific lattice from its competitor. The network graph analysis

method proposed by Reinhart et al.195 might provide an alternative and automatic way of

characterizing the local environment of particles without a priori knowledge.

For the high-throughput screening of elastin-like polypeptides, we could expand the search

space to larger diblock and triblock ELP chains. Current experiments on multiblock ELP

self-assembly usually use much longer chains with dozens of hydrophilic and hydrophobic

blocks187,190. The large vesicles formed by long ELP chains may support RNA transcrip-
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tion or protein expression inside22, making their functionalities more closely mimic those

of natural cells. Due to the increase in the degree of freedom, it might be necessary to

explore alternative ways of performing the enhanced sampling174 to evaluate the stability of

self-assembled vesicles of larger chains. Adaptive biasing force191 or alchemical free energy

calculations192 could potentially be used. Also, as the chain length increases, the evaluation

of the string kernel defined in equation 4.10 of chapter 4 becomes more expensive161. It

might be helpful to first train a neural network (e.g. autoencoder) to embed all peptides

onto an Euclidean space and perform Bayesian optimization over this embedding. The GPR

model in this case would consist of kernel functions defined in Euclidean space, such as radial

basis kernel or Matérn kernel181, that are less computationally expensive to evaluate. Such

approaches have been used by Shmilovich et al.30 to perform Bayesian optimization over

three-dimensional embedding of peptides provided by a variational autoencoder. Yang et

al.41 have also employed doc2vec model originated in natural language processing to find

embeddings of proteins with varying lengths.
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Berk Hess, and Erik Lindah. Gromacs: High performance molecular simulations
through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2:19–25,
9 2015.

[172] Justin A. Lemkul and David R. Bevan. Assessing the stability of Alzheimer’s amyloid
protofibrils using molecular dynamics. Journal of Physical Chemistry B, 114(4):1652–
1660, 2 2010.

[173] Emre Sevgen, Moshe Dolejsi, Paul F. Nealey, Jeffrey A. Hubbell, and Juan J. De Pablo.
Nanocrystalline Oligo(ethylene sulfide)- b-poly(ethylene glycol) Micelles: Structure
and Stability. Macromolecules, 51(23):9538–9546, 12 2018.

[174] Rafael C. Bernardi, Marcelo C.R. Melo, and Klaus Schulten. Enhanced sampling
techniques in molecular dynamics simulations of biological systems. Biochimica et
Biophysica Acta (BBA) - General Subjects, 1850(5):872–877, 5 2015.

[175] Alessandro Barducci, Massimiliano Bonomi, and Michele Parrinello. Metadynamics.
Wiley Interdisciplinary Reviews: Computational Molecular Science, 1(5):826–843, 9
2011.

[176] Eric Darve and Andrew Pohorille. Calculating free energies using average force. Journal
of Chemical Physics, 115(20):9169–9183, 11 2001.

126



[177] Michael R. Shirts and John D. Chodera. Statistically optimal analysis of samples from
multiple equilibrium states. Journal of Chemical Physics, 129(12):124105, 9 2008.
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