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ABSTRACT

This thesis studies a pair of problems relating rigidity and Lyapunov exponents.

In Chapter 2, we study Anosov automorphisms of nilmanifolds. More precisely, we obtain

necessary and sufficient conditions for an Anosov automorphism of a nilmanifold with simple

Lyapunov spectrum to be locally Lyapunov spectrum rigid.

In Chapter 3, we study perturbations of random walks on isotropic manifolds. Our

main result in this section is a necessary and sufficient criterion for this random walk to be

isometric with respect to some metric. This criterion is a generalization of work of Dolgopyat

and Krikorian [DK07]
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CHAPTER 1

INTRODUCTION

Smooth dynamics investigates properties of diffeomorphisms of smooth manifolds that emerge

when the diffeomorphisms are iterated. An important motivation for this study is classical

mechanics. During the 20th century, it was discovered that some diffeomorphisms have

strong rigidity properties: certain features of their dynamics persist even when small modifi-

cations are made to the diffeomorphisms. For example, periodic trajectories of some systems

persist under perturbations. Some systems are “chaotic” in the sense that nearby trajec-

tories quickly diverge, whereas others are isometric, in the sense that different trajectories

remain a fixed distance apart as the system is iterated. In this work, we investigate rigidity

phenomena for both types of systems related to numbers called Lyapunov exponents.

Lyapunov exponents describe the exponential infinitesimal convergence or divergence

of trajectories in a dynamical system. Suppose that A1, A2, . . . is a sequence of linear

transformations between d-dimensional inner product spaces such that the composition

An = AnAn−1 · · ·A1 is defined. Consider the singular values of An, which we denote by

σ1(n) ≥ σ2(n) ≥ · · · ≥ σd(n). If limn→∞ n−1 log σj(n) exists, we denote this number by λj

and call it a Lyapunov exponent.

Lyapunov exponents exist in many settings. For example, if the Ai are chosen i.i.d. from

a finite set of matrices, then almost surely for each j the limit exists and is independent

of the sequence of matrices. Lyapunov exponents are particularly important for studying

dynamical systems: If f : M →M is a diffeomorphism of a closed Riemannian manifold M ,

by setting An = Dx(f
n) we obtain Lyapunov exponents associated to the derivative of f ; the

Lyapunov exponents in this case are important information about the exponential rate of
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divergence of trajectories under the iteration of f . For example, if f is an isometry then all

of its Lyapunov exponents are zero. In many situations, the existence of non-zero Lyapunov

exponents implies that a system exhibits “chaotic” behavior.

Lyapunov Spectrum Rigidity of Anosov Automorphisms

The study of maps called Anosov diffeomorphisms is central in dynamical systems as these

maps exhibit very strong “chaotic” behavior. One may construct such maps algebraically

by the following method: If L ∈ SL(n,Z) and L has no eigenvalue of unit modulus, then the

induced map on Tn = Rn/Zn is an Anosov diffeomorphism called an Anosov automorphism.

If f is an Anosov diffeomorphism of Tn, then there exists a unique Anosov automorphism L

in the same homotopy class as f as well as a homeomorphism h such that h−1fh = L. The

map h is called a conjugacy and f and L are said to be conjugate. We think of L as the

linear model of f . The conjugacy h is always Hölder, but need not be C1 because this would

imply that corresponding invariant measures of f and L have the same Lyapunov exponents,

which need not be true.

Surprisingly, for some Anosov automorphisms L, if f is an volume-preserving Anosov

diffeomorphism with L as its linear model and f has the same volume Lyapunov exponents

as L, then f is automatically C1 conjugate to L. Such an Anosov automorphism L is

called Lyapunov spectrum rigid. Sometimes an automorphism is known only to be “locally”

Lyapunov spectrum rigid, which means that the previous statement only holds when f is a

sufficiently C1 small perturbation of L.

Lyapunov spectrum rigidity is well studied in the case of the torus. Early work was

done by de la Llave, Marco, and Moriyon [Dll87, Dll92] for Anosov diffeomorphisms of

T2. More recently, Gogolev, Kalinin, and Sadovskaya [GKS18] showed rigidity under the

assumption that no three eigenvalues of L have the same modulus and that L4 has irreducible

characteristic polynomial overQ. Earlier results appeared in [Gog08] and [GKS11]. Recently,

Saghin and Yang obtained several additional results on the torus [SY19]. The previously
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mentioned results are all for automorphisms of tori.

We say that an Anosov automorphism has simple spectrum if all of its Lyapunov expo-

nents are distinct. In [Gog08], Gogolev characterizes local Lyapunov spectrum rigidity of

Anosov automorphisms of tori with simple spectrum. The only manifolds known to support

Anosov diffeomorphisms are those that are finitely covered by nilmanifolds. Based on a con-

jecture of Smale, these are the only manifolds supporting Anosov diffeomorphisms [Sma67],

hence understanding Lyapunov spectrum rigidity requires studying nilmanifold automor-

phisms. The following theorem characterizes local Lyapunov spectrum rigidity in the case

of nilmanifold automorphisms. Its proof introduces several new coarse geometric techniques

needed for working on nilmanifolds.

Theorem 1.0.1. Let L be an Anosov automorphism of a nilmanifold N/Γ with all Lyapunov

exponents distinct. Then L is locally Lyapunov spectrum rigid if and only if L is irreducible

and has sorted spectrum.

Irreducibility is a generalization of the existing irreducibility criterion appearing in [GKS11].

The criterion of “sorted spectrum” requires a substantial development of nilmanifolds in or-

der to state, and so will be explained in detail below. The above theorem first appeared in

[DeW21].

Perturbations of Isometric Systems.

A dramatic example of a dichotomy involving Lyapunov exponents appears in the case

of perturbations of some random isometric systems. Random dynamical systems are just

like deterministic ones, except one chooses the map to apply in the following “random”

way. If (f1, . . . , fm) is a tuple of diffeomorphisms of a manifold M , then choose a uniform

i.i.d. sequence of numbers ωi ∈ {1, . . . ,m}. The random dynamics is then given by applying

the maps fω1 , fω2 , . . . sequentially. We then speak of the random dynamical system associated

to the tuple (f1, . . . , fm). The Lyapunov exponents of the random system are those associated

3



to the random sequence of mapsDx(fωn · · · fω1). A precise statement of when this limit exists

requires the notion of an ergodic stationary measure, which we now define.

Stationary Measures. A probability measure µ onM is stationary for a random dynamical

system if it satisfies m−1
∑m

i=1(fi)∗(µ) = µ. Such a measure is called ergodic if it is not the

non-trivial sum of two distinct stationary measures. Associated to an ergodic stationary

measure µ are a list of numbers λ1(µ) ≥ · · · ≥ λd(µ). For µ-a.e. x ∈ M the Lyapunov

exponents associated to the random sequence of maps Dx(fωn · · · fω1) almost surely exist

and are equal to λ1(µ), . . . , λd(µ). In this way, the Lyapunov exponents depend only on the

measure µ.

The following is a conceptual re-statement of Theorem 3.1.1 below and gives a converse

to the statement that isometric systems have all Lyapunov exponents zero: a situation where

the existence of a stationary measure with all Lyapunov exponents zero implies that a system

is isometric.

Theorem 1.0.2. LetM be a rank-1 symmetric space of compact type. Suppose that (R1, . . . , Rm)

is a tuple of isometries of M that generates a dense subset of the isometry group of M . If

(f1, . . . , fm) is a small perturbation of (R1, . . . , Rm), then either:

1. All Lyapunov exponents for the random dynamical system associated to the tuple (f1, . . . , fm)

are zero and there exists a smooth diffeomorphism ψ such that for each i, ψfiψ
−1 is an

isometry, or

2. The random dynamical system associated to the tuple (f1, . . . , fm) has uniformly large

top Lyapunov exponent, i.e. there exists ϵ > 0 such that for every ergodic stationary

measure µ, λ1(µ) > ϵ.

Theorem 1.0.2 is a generalization of a result of Dolgopyat and Krikorian, who proved the

same result when M is a sphere [DK07]. A novelty in the proof of Theorem 1.0.2 is the

development of a framework for studying the nearness of diffeomorphisms to isometries by

use of the strain tensor. This above theorem previously appeared in [DeW20].
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CHAPTER 2

LOCAL LYAPUNOV SPECTRUM RIGIDITY OF

NILMANIFOLD AUTOMORPHISMS

2.1 INTRODUCTION

Since their introduction, Anosov diffeomorphisms have been a central class of examples in

the field of dynamical systems. A diffeomorphism f of a closed Riemannian manifold M is

Anosov if the tangent bundle ofM splits into the continuous direct sum of two Df -invariant

subbundles TM = Eu ⊕ Es such that Df uniformly expands the length of vectors in Eu

and uniformly contracts the length of vectors in Es (see Subsection 2.2.1 for a more precise

description). We refer to Eu as the unstable bundle and Es as the stable bundle associated

to f . An important feature of Anosov diffeomorphisms is their structural stability. This

means that there exists a C1 neighborhood U of f such that if g ∈ U then there exists a

homeomorphism h such that hgh−1 = f . The map h is called a conjugacy and f and g are

said to be conjugate. See [KH97, Sec. 2.3] for more concerning structural stability.

In this paper, we study a rigidity phenomenon concerning conjugacies between two

Anosov diffeomorphisms. It is well known that a conjugacy between two Anosov diffeo-

morphisms is necessarily Hölder continuous, and, in general, no more than Hölder continuity

can be expected. If a conjugacy between two maps is C1, then the maps are said to be

C1 conjugate. Maps that are C1 conjugate have many common features and so there are

natural reasons why two diffeomorphisms cannot be C1 conjugate. In our work, we consider

two obvious obstructions to the existence of a C1 conjugacy. Our main result is to show, in

a particular setting, that if there is not an obvious obstruction, then there is indeed a C1
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conjugacy between a map and its perturbation.

To begin, we will describe the most elementary obstruction to the existence of a conju-

gacy: the periodic data. Suppose that f and g are two diffeomorphisms that are C1 conjugate

by a conjugacy h, so that f = hgh−1. If p is a periodic point of f of period n, then h(p) is

a periodic point of g of period n. By differentiating, we see that

Dpf
n = Dh(p)hDh(p)g

n(Dh(p)h)
−1.

Consequently, we see that the differentials of fn at p and gn at h(p) are conjugate. Given

two diffeomorphisms f and g and a conjugacy h, we say that f and g have the same periodic

data with respect to h if for each periodic point p, if p has period n, then Dpf
n and Dh(p)g

n

are conjugate as linear maps. The previous discussion shows that for two diffeomorphisms

to be C1 conjugate, it is necessary for them to have the same periodic data.

We say that a map is C1+ when the map is C1 and its derivative is θ-Hölder continuous

for some θ > 0. We write Diff1+
vol(M) for the set of volume-preserving diffeomorphisms of M

that are C1+. We are now able to introduce one of the two kinds of rigidity that we will

study.

Definition 2.1.1. We say that an Anosov diffeomorphism f is locally periodic data rigid if

there exists a C1 neighborhood U of f inside of Diff1+(M) such that if g ∈ U and f and g

have the same periodic data with respect to a conjugacy h, then h is C1+.

In this paper, we obtain local periodic data rigidity results for Anosov automorphisms

of nilmanifolds. Before stating this result, we briefly explain this setting and why it is the

appropriate generalization. A nilmanifold is a smooth manifold obtained by the following

construction. One begins with a nilpotent Lie group N and a discrete subgroup Γ such that

N/Γ is compact. The manifold N/Γ is then known as a nilmanifold. If L is an automorphism

of N preserving Γ, then L descends to a map on the quotient N/Γ. Write n for the Lie

algebra of N . The automorphism L induces an automorphism of the Lie algebra n. If
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the induced map on n has no eigenvalues of unit modulus, then the map on N/Γ is an

Anosov diffeomorphism. We refer to the map on the quotient L : N/Γ → N/Γ as an Anosov

automorphism. It is an open question, first raised by Smale [Sma67], whether if f : M →M

is an Anosov diffeomorphism, then M is finitely covered by a nilmanifold. Consequently,

studying Anosov automorphisms on nilmanifolds is quite natural. As far as the author is

aware, there are no known examples of Anosov automorphisms exhibiting periodic data

rigidity on a non-toral nilmanifold. In this paper we establish the first such example.

We say that an Anosov automorphism has simple spectrum if the magnitudes of all the

eigenvalues of the induced map on n are distinct. In this paper, we restrict our study

to automorphisms with simple spectrum. However, even with this restriction not every

automorphism exhibits local periodic data rigidity. In the toral case, a condition called irre-

ducibility is necessary for periodic data rigidity. We generalize the definition of irreducibility

to a nilmanifold automorphism. As it turns out, irreducibility alone is insufficient to ensure

periodic data rigidity. We also introduce a condition on the spectrum that we call sorted-

ness. Precise statements of these conditions are given later, as they rely on a more detailed

development of the notion of an Anosov automorphism of a nilmanifold. For irreducibility,

see Section 2.6. For sortedness, see Definition 2.2.3.

Theorem 2.1.2. Suppose that L : N/Γ → N/Γ is an Anosov automorphism with simple

spectrum. Then L is locally periodic data rigid if and only if L is irreducible and has sorted

spectrum.

The proof of sufficiency in this theorem relies on periodic approximation (Proposition 1),

which reduces the sufficiency claim to that in Theorem 2.1.4. The necessity of the condition

follows from Theorem 2.9.8.

As the title of this paper suggests, we also study Lyapunov spectrum rigidity. Before

we can state our rigidity result in this direction, we briefly develop the necessary language.

Suppose that f is a diffeomorphism of a manifold M of dimension n preserving an ergodic

invariant measure µ. Then there exists a list of numbers λ1 ≤ · · · ≤ λn such that for µ-a.e.
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x ∈M , and any non-zero v ∈ TxM there exists 1 ≤ i ≤ n such that

lim
n→∞

1

n
log ∥Dxf

nv∥ = λi.

The numbers λi are referred to as the Lyapunov exponents of f with respect to µ. Note

that some of the λi may be repeated. We refer to this list with multiplicity as the Lyapunov

spectrum of f with respect to µ. In the case of an Anosov automorphism L, vol is an ergodic

invariant measure. If the induced map on n has eigenvalues λ1, ..., λn, then the Lyapunov

exponents of L with respect to volume are the numbers log |λi| for 1 ≤ i ≤ n. Hence when

we restrict to L with simple spectrum, the Lyapunov exponents of L with respect to volume

are all distinct. For more information, see [KH97, Supplement].

There is a close relationship between Lyapunov exponents and periodic data. The work of

Kalinin in [Kal11] contains a very useful result relating periodic data to Lyapunov exponents.

We will not recapitulate this result in full, but instead state a conclusion that follows from

it. Suppose that f is an Anosov diffeomorphism of a nilmanifold. Kalinin establishes the

following for the Lyapunov exponents of measures invariant under f . Suppose that µ is

an ergodic invariant measure and that χ1 ≤ · · · ≤ χn are the Lyapunov exponents, listed

with multiplicity, of f with respect to µ. For any periodic point p there is a natural ergodic

invariant measure supported on the orbit of p, namely, the uniform measure. Write the

Lyapunov exponents of this measure with multiplicity as χ
(p)
1 ≤ · · · ≤ χ

(p)
n . What Kalinin

shows is that for every ϵ > 0, there exists a point p, so that for 1 ≤ i ≤ n,
∣∣∣χi − χ

(p)
i

∣∣∣ < ϵ

[Kal11, Thm. 1.4]. In this sense the Lyapunov exponents of µ are approximated by the

Lyapunov exponents at a periodic point. If an Anosov diffeomorphism has the same periodic

data as a linear example, then every periodic point has the same Lyapunov exponents.

Consequently, we deduce the following proposition, which is immediate from Kalinin’s work.

Proposition 1. (Periodic Approximation) [Kal11] Suppose that f is an Anosov diffeomor-

phism with the same periodic data as an Anosov automorphism L. Then the Lyapunov
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exponents of every ergodic invariant measure of f coincide with those of L.

We now introduce a notion of local rigidity that pertains to the volume Lyapunov spec-

trum.

Definition 2.1.3. Suppose that L ∈ Diff1+
vol(M) is an Anosov automorphism. We say that

L is locally Lyapunov spectrum rigid if there exists a C1 neighborhood U of L in Diff1+
vol(M)

such that if g ∈ U , and the Lyapunov spectrum of g with respect to volume is equal to the

Lyapunov spectrum of L with respect to volume, then g is C1+ conjugate to L.

There are dynamical systems other than Anosov automorphisms that exhibit Lyapunov

spectrum rigidity. For instance, Butler [But17] recently showed that closed locally symmetric

spaces of negative curvature are characterized either in terms of the Lyapunov exponents

of their geodesic flow or the periodic data of their geodesic flow. While Butler’s result also

concerns Lyapunov spectrum rigidity, his approach is quite different from the approach in

this paper.

A C1+ Anosov diffeomorphism with the same periodic data as an Anosov automorphism

preserves a C1+ volume [KH97, Thm 19.2.5]. Thus, by Proposition 1, we see that in order to

show that an Anosov automorphism is locally periodic data rigid that it suffices to show that

the automorphism is locally Lyapunov spectrum rigid. Obtaining local Lyapunov spectrum

rigidity is our main result.

Theorem 2.1.4. Suppose that L : N/Γ → N/Γ is an Anosov automorphism with simple

Lyapunov spectrum. Then L is locally Lyapunov spectrum rigid if and only if L is irreducible

and has sorted spectrum.

This theorem follows from the combination of Theorem 2.8.1 and Theorem 2.9.8, each of

which shows one direction of the equivalence. We show that the theorem is not vacuous by

constructing explicit examples of such automorphisms in Section 2.10. We believe that this

theorem establishes the first known instance of Lyapunov spectrum rigidity for an Anosov
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automorphism of a nilmanifold that is not a torus. For previous work on Lyapunov spectrum

rigidity in the torus setting, see [SY19] as well as [GKS18].

In the nilmanifold case, there are several new complications that arise in the study

of the local rigidity of Anosov automorphisms. One major complication is that certain

weak foliations that exist in the toral case do not exist in the nilmanifold case because the

distributions that define them are not integrable. Another difficulty is that the foliations that

arise in our proof are not minimal, whereas in the work of Gogolev, Kalinin, and Sadovskaya,

all foliations arising in their proof are minimal by assumption [GKS18, Thm. 1.1]. This work

provides some of the first examples of rigidity in a setting without an abundance of minimal

dynamical foliations. A final important difficulty is that in Rn a geodesic is a line, i.e.

minimizes distance between its points. In a nilpotent Lie group, geodesics may take very

inefficient paths at large scale. This difficulty is overcome by working directly within unstable

manifolds and using their coarse geometry. This approach is one of the novelties of this work.

A more technical difference between our result and previous results is that we allow the

perturbation to have slightly lower regularity. We assume that the perturbation is C1+

whereas in [GKS18] the perturbation is assumed to be C2. This seems to be the lowest that

the regularity of f can be lowered using the current approach. See Subsection 2.2.5 for a

more detailed discussion.

2.1.1 Earlier Work

Periodic data rigidity is well studied in the case of Anosov automorphisms of tori. One of

the first papers to study this problem was the paper of de La Llave [Dll87], which considered

local periodic data rigidity on the two dimensional torus and showed that if a C∞ Anosov

diffeomorphism and a C1 close C∞ perturbation had the same periodic data then the two

diffeomorphisms were C∞ conjugate. De la Llave generalized this result to other regularities

of diffeomorphism in [Dll92]. Later works considered generalizations of this problem to

higher dimensional tori. For example, Gogolev generalized this result to the case of an
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arbitrary dimensional torus [Gog08] while retaining the assumption of simple spectrum. A

substantial difficulty is caused when the Lyapunov spectrum is not simple. One of the first

results not requiring simple spectrum was [GKS11] which showed local periodic data rigidity

for toral automorphisms having at most two eigenvalues of equal modulus. Many of the

aforementioned papers make use of the Livsic theorem in order to show that the derivative

cocycles of a system and its perturbation are cohomologous. As equality of periodic data is

a hypothesis required to apply the Livsic theorem, periodic data rigidity is quite natural to

consider.

Recently, there has been interest in studying the questions of Lyapunov spectrum rigidity

for toral automorphisms. For instance, Saghin and Yang [SY19] obtained several results on

the torus. Most importantly, they showed local Lyapunov spectrum rigidity in the case of

simple spectrum. A stronger version of this result is obtained in [GKS18, Thm. 1], which

established local Lyapunov spectrum rigidity of an Anosov automorphism L of a torus under

the assumptions that no three eigenvalues of L have the same modulus and that L and

L4 are both irreducible. In both cases, the authors study C2 perturbations of an Anosov

automorphism that are C1 small and conclude that the conjugacy is C1+. Hence our choice

to study C1+ perturbations is reasonable.

In all the previous results, either an irreducibility assumption is explicitly assumed or

is implied by another hypothesis such as the dimension of the manifold. In every case,

considered above, the irreducibility condition assumed is either equivalent to or stronger

than the irreducibility condition considered in this paper.

In either the case of Lyapunov spectrum or periodic data rigidity, arguments for regularity

of the conjugacy typically show that that the derivative cocycle of the perturbation is quasi-

conformal when restricted to summands in the splitting into Lyapunov subspaces. In the case

that the stable and unstable distributions are one dimensional, this is immediate. However,

in the case of non-simple Lyapunov spectrum more subtle arguments are required. For this

reason, it is natural that we are considering the case of simple spectrum in this paper.
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For more general background on rigidity theory related to the present context, the reader

may find the notes on rigidity theory by Gogolev useful [Gog19].

2.1.2 Sketch of proof of Theorem 2.1.4

Our proof of the sufficiency of the condition in Theorem 2.1.4 follows the approach taken in

[GKS18]. We construct a neighborhood U of L in the following way. By Theorem 2.2.2, we

may choose the neighborhood U so that if f ∈ U then the unstable bundle Eu = Eu,f for

f splits into the direct sum of one-dimensional Hölder continuous Df -invariant subbundles

Eu,f
i . We index these subbundles so that if i < j then the expansion properties of Df

acting on Eu,f
i are weaker than those of Df acting on Eu,f

j . We call the Eu
i distribution

the ith unstable distribution. For each 1 ≤ j ≤ dimEu, the distribution ⊕i≥jE
u,f
i uniquely

integrates to a foliation, which we call the ith strong unstable foliation and denote by Su,fi .

We use this superscript notation analogously for other objects depending on the map f . Note

that the indices i are arranged so that Su,f1 is the full unstable foliation and the dimension of a

leaf of Su,fi decreases as i increases. This construction is standard and recalled in Proposition

12. We say that a conjugacy h intertwines two foliations F and G if h(F(x)) = G(h(x)) for

each x. Here and elsewhere, F(x) is the leaf of the foliation F through the point x.

The proof of the theorem is by an inductive argument. The core claim in the induction

is that if h is a conjugacy and h intertwines Su,fi and Su,Li , then h intertwines Su,fi+1 and Su,Li+1.

To prove this claim, we construct a one-dimensional foliation Wu,f
i that restricted to an

Su,fi leaf has a global product structure with the Su,fi+1 foliation (see Subsection 2.2.4 for the

definition of this term). The foliation Wu,f
i is tangent to the Eu,f

i distribution, and so one

thinks of the Wu,f
i foliation as the weakest part of the Su,fi foliation. Constructing the Wu,f

i

foliation is involved and uses a detailed study of the coarse geometry of nilpotent Lie groups,

which comprises Section 2.3. The proof also uses the result that h induces a quasi-isometry

on leaves of the Su,fi foliation (see Corollary 2). In this argument, L having sorted spectrum

plays a crucial role.
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As a byproduct of the construction of Wu,f
i in Proposition 14, we also obtain that h

intertwines the Wu,f
i foliation with an algebraically defined and analytic foliation Wu,L

i . We

pull back the Su,fi+1 foliation by h to obtain a foliation F . We then study the holonomies of

F between leaves of the Wu,L
i foliation. Surprisingly, we prove in Lemma 2.8.2that these

holonomies are isometries. Via an additional argument appearing in Section 2.7, we show

that the foliation F is equal to the foliation Su,Li+1. This additional argument also requires

a detailed study of the geometry of nilmanifolds. In this argument, the assumption of

irreducibility plays its most important role. One finally concludes that h is C1+ by studying

the disintegration of volume along the Wu,f
i foliations; the key idea used is discussed in

Subsection 2.2.5.

The proof of necessity of the condition in Theorem 2.1.4 is a systematic procedure for

perturbing an automorphism L should either sortedness of the Lyapunov spectrum or irre-

ducibility fail. The general idea is to shear a fast direction into a slower one. This argument

appears in Section 2.9.

2.2 PRELIMINARIES

2.2.1 Anosov diffeomorphisms

We say that an automorphism of a finite dimensional real vector space is hyperbolic if it

has no eigenvalues of modulus one. A hyperbolic linear map A : Rn → Rn decomposes Rn

into the direct sum of two subspaces: a stable subspace, Es, on which A is a contraction,

and an unstable subspace, Eu, on which A−1 is a contraction. We say that an eigenvector

v of A is stable or unstable according to which subspace it lies in. In this paper, we study

diffeomorphisms whose differentials satisfy an analogous property. A diffeomorphism f of a

compact manifold M is Anosov if there exists a continuous splitting of TM into the direct

sum of two Df -invariant subbundles Es,f and Eu,f , a Riemannian metric on M , and λ > 1
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such that, for any x ∈M ,

∥Dxf |Es,f ∥ < λ−1 < 1 < λ < ∥Dxf
−1 |Eu,f ∥−1.

We refer to the distributions Es,f and Eu,f as the stable and unstable distributions of f ,

respectively.

A nilmanifold N/Γ is a smooth manifold obtained as the quotient of a nilpotent Lie group

N by a cocompact lattice Γ. For information on nilmanifolds and nilpotent Lie groups, see

[Rag72]. A right-invariant metric onN descends to a metric onN/Γ and makes the projection

π : N → N/Γ a local isometry.

Definition 2.2.1. We say that a map L : N/Γ → N/Γ of a nilmanifold N/Γ is an Anosov

automorphism if the natural lift of L to N is an automorphism of N and the differential of

the lift at e ∈ N is hyperbolic. In an abuse of notation, we may use L to refer to both the

map on N and N/Γ.

An Anosov automorphism is an Anosov diffeomorphism. On a nilmanifold, every Anosov

diffeomorphism is topologically conjugate to an Anosov automorphism by a result of Franks

[Fra69] and Manning [Man74].

In this paper, we consider the regularity of a conjugacy h between an Anosov automor-

phism L and an Anosov diffeomorphism f . In general, there may be infinitely many such

conjugacies. However, all conjugacies between f and L have the same regularity. For a

discussion of all possible conjugacies, see [KKRH10].

Proposition 2. Suppose that f is an Anosov diffeomorphism and L is an Anosov automor-

phism. If, for some k ∈ N and θ ∈ [0, 1), there exists a Ck+θ conjugacy between f and L,

then every other conjugacy between f and L is Ck+θ.

Proof. Conze and Marcuard [CM70, Thm. 1] proved that if γ is a homeomorphism and A

is an Anosov automorphism such that γAγ−1 = A, then γ is an affine transformation. Note
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that if hf = Lh and h′f = Lh′, then h′h−1Lhh′−1 = L and hh′−1Lh′h−1 = L. Applying the

result of Conze and Marcuard to h′h−1 and h′−1h, we see that both are affine and hence C∞.

This implies that h′ is as regular as h.

Mather spectrum

We say that a diffeomorphism has simple Mather spectrum if there exists a continuous

splitting of TM into one-dimensional Df -invariant subbundles Ei, i.e. TM = E1 ⊕ · · · ⊕

EdimM , and there exist constants ai < bi such that bi < ai+1 and a Riemannian metric on

M such that if v ∈ Ei,

ai∥v∥ ≤ ∥Dxfv∥ ≤ bi∥v∥. (2.1)

Note that this is different from the usual definition of Mather spectrum but is equivalent.

See, for instance, the introduction to [JSdll95]. For a diffeomorphism f with simple Mather

spectrum, we say that the spectrum is contained in [ai, bi]-rings in accordance with the

constants ai and bi in equation (2.1).

We will use the following standard result when making perturbations. See, for example,

[JSdll95, Thm. A].

Theorem 2.2.2. Suppose that f has simple Mather spectrum contained in [ai, bi]-rings. For

every ϵ > 0, there exists a neighborhood U of f in Diff1(M) such that the Mather spectrum of

any diffeomorphism g ∈ U is contained in [a′i, b
′
i] rings with 0 < ai−a′i < ϵ and 0 < b′i−bi < ϵ,

1 ≤ i ≤ dimM , and the corresponding splitting TM = ⊕iE
g
i satisfies ρ(Ef

i , E
g
i ) ≤ ϵ, where

ρ is a metric on the Grassmanian of 1-planes induced by the Riemannian metric on M .

Note that simple Mather spectrum gives an estimate, equation (2.1), that is uniform

over all of M . In the sequel, we work with the decomposition of TM into one-dimensional

subbundles having the properties given in Theorem 2.2.2. In the case of simple Mather

spectrum, there is a splitting of the unstable bundle into continuous one-dimensional Df -
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invariant subbundles. In the notation of the theorem, we write:

Eu,f =
dimEu⊕
i=1

Eu,f
i , (2.2)

and order the subspaces so that i < j implies that the maximum expansion bi of Eu,f
i

is smaller than the minimum expansion aj of Eu,f
j . We refer to Eu,f

i as the ith unstable

subspace.

2.2.2 Dynamical foliations for Anosov automorphisms

We describe algebraically the stable and unstable manifolds of an Anosov automorphism.

Let L be an automorphism of a nilpotent Lie group N . For g ∈ N , write Rg for right

multiplication by g. By right translation, we identify TN with N × TeN .

As follows, this allows a precise study of the dynamics of an automorphism of N and of

its induced map on a quotient N/Γ for an invariant lattice Γ.

Proposition 3. (Dynamical foliations for nilmanifold automorphisms). Suppose that L : N →

N is an automorphism of a nilpotent Lie group N such that DeL : n → n has simple real

spectrum with no eigenvalues of modulus 1. Index the eigenvalues of DeL of modulus greater

than one so that

1 < |λu1 | < · · · < |λuk| ,

and write Eλui for the corresponding eigenspace.

1. For 1 ≤ i ≤ k, the “strong” linear subspace sui := ⊕j≥iEλuj is a subalgebra of n tangent

to a subgroup Sui . Similarly, the “weak” subspace Eλui is tangent to a subgroup W u
i .

There exists a right-invariant foliation of N obtained from the right translates of these

subgroups. The leaf through x ∈ N of these foliations is equal to Sui x and W u
i x,

respectively.

2. Suppose that Γ is a lattice such that L(Γ) = Γ. Then L descends to a map N/Γ → N/Γ.
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Moreover, for each 1 ≤ i ≤ k, the foliations of N with leaves W u
i x and Sui x descend

to L-invariant foliations of N/Γ. We refer to these foliations as the Wu,L
i and Su,Li

foliations. For xΓ ∈ N/Γ, Wu,L
i (xΓ) = W u,L

i xΓ and Su,Li (xΓ) = Su,Li xΓ.

3. The right-invariant distribution defined by Eλui at the identity projects to a distribution

on N/Γ. The leaves of the Wu,L
i foliation are characterized by their tangency to this

distribution. Similarly, the leaves of the Su,Li foliation are characterized by their tan-

gency to the projection of the right-invariant distribution arising from the subalgebra

sui = ⊕j≥iEλuj ⊆ n. In particular, these distributions are uniquely integrable.

4. Finally, any right-invariant framing of Eλui on N projects to a framing of the cor-

responding distribution on N/Γ via the differential of π : N → N/Γ. Fixing such a

framing, we identify the action of the differential of L restricted to the W u
i xΓ folia-

tion with the action of L on the right-invariant framing of Eλui on N , which itself is

identified with the action of DeL on n via the trivialization. The action on Eλui ⊂ n is

multiplication by λui . So, with respect to this framing of the projection of Eλui to N/Γ,

the differential of L is multiplication by λui . Similar considerations apply to Sui .

Remark 1. In the sequel we use the notation Wu,L
i and Su,Li to denote these “weak” and

“strong” foliations on both N and N/Γ. Given the context in which this notation appears,

this should cause no confusion.

We now outline the proof of the above proposition.

Proof of Proposition 3. Fixing a metric on TeN , we obtain a right-invariant metric on N .

The automorphism L has differential DeL : n → n at e. With respect to the trivialization of

the tangent bundle on the right, the map DL : N × TeN → N × TeN is

(g, v) 7→ (L(g), (DL(g)RL(g)−1)(DgL)(DeRg)v).

(Note that L(g) is the image of g under the automorphism L and not left translation.) In the
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above expression, the composition of differentials applied to v is the differential of the map

h 7→ L(hg)L(g)−1 = L(h) at e. As this map is equal to L, we see that the map being applied

to v is DeL. Consequently, with respect to the trivialization of TN by right translation, DL

has the expression

Dg(g, v) = (L(g), (DeL)v).

By assumption, n splits into one-dimensional eigenspaces of DL, so that n = ⊕λEλ. By

pushing this splitting into eigenspaces through the trivialization, we obtain a right-invariant,

DL-invariant splitting of TN . A right-invariant metric makes L Anosov on N . In particular,

any estimate we have on the growth of norm of vectors in Eλ ⊂ n now holds globally for the

splitting on N .

1. Consider DeL : n → n in this way. As we previously assumed, there is a splitting of

n into one-dimensional eigenspaces of DeL that we write as n = ⊕λEλ where λ ∈ R.

Observe that if v ∈ Eλ and w ∈ Eλ′ then DL([v, w]) = [DLv,DLw] = λλ′[v, w].

As the bracket of eigenvectors is either an eigenvector or zero, for a fixed i, ⊕|λ|≥|λui |Eλ

is a subalgebra of n and hence is tangent to an analytic subgroup of N . We write

Sui for the analytic subgroup tangent to ⊕|λ|≥|λui |Eλ at e. We also consider the one-

dimensional subspaces Eλ, which are subalgebras as they are one-dimensional. We

write W u
i for the analytic subgroup tangent to Eλui at e.

We write ns for the subspace of n spanned by eigenvectors with eigenvalue of modulus

less than one and nu for the subspace of n spanned by eigenvectors with eigenvalue

of modulus greater than one. In this case we write Nu and N s for the corresponding

analytic subgroups. Note that Nu = Su1 .

Suppose that E ⊂ n is a DeL-invariant subspace. If E is a subalgebra of n, then E is

tangent to an analytic subgroup of N , which we will call NE. The right translates of

NE are tangent to the right translates of E. Hence any properties of the differential

of L on E hold at every point of NEx for all x ∈ N , with respect to a right-invariant
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metric. Applying this reasoning to the subalgebras ⊕|λ|≥|λui |Eλ and Eλ establishes the

first part of the proposition.

2. Consider a lattice Γ ⊂ N such that L(Γ) = Γ. Note that N/Γ is a compact manifold,

see [Rag72, Thm. II.2.1], and, as the metric we chose on N is right-invariant, the

quotient map π : N → N/Γ is a local isometry. Moreover, right-invariant structures

on N descend to structures on N/Γ. As the foliations with leaves W u
i x and Sui x are

right-invariant, they descend to foliations on N/Γ via the projection. We refer to these

foliations as Wu,L
i and Su,fi respectively.

3. The tangent distribution to the W u
i x foliation and Sui x foliations are right-invariant,

and hence descend to distributions tangent to the foliations Wu,L
i and Su,Li . An inte-

grable smooth distribution is uniquely integrable, so we see that the Wu,L
i and Su,Li

distributions are characterized by their tangent distributions.

4. The final part is immediate. A fixed framing of the invariant splitting of n extends to

a right-invariant framing of N that projects to a framing of N/Γ. As π : N → N/Γ is

a local isometry and respects the action of L, we see that the action on a frame may

be computed by lifting the frame and then projecting back to N/Γ. Consequently, any

estimates on the framing in N give estimates on the framing in N/Γ.

2.2.3 Automorphisms of nilmanifolds

In this section, we give an explicit description of the eigenspace decomposition associated to

an automorphism of a real nilpotent Lie algebra with sorted simple spectrum.

We write N = {1, 2, . . .}. An N-grading of a Lie algebra g is a direct sum decomposition

into subspaces g = ⊕i∈Ng(i) such that [g(i), g(j)] = g(i+j). We say that a N-grading of a

nilpotent Lie algebra is Carnot if g(1) generates g as a Lie algebra, i.e. g is the smallest
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subalgebra of itself containing g(1). For a nilpotent Lie algebra n, we write ni for the ith

term in the lower central series of n. Recall that, by definition, n1 = n and ni+1 = [n, ni]. If

n is a nilpotent Lie algebra equipped with an automorphism L that admits a real eigenbasis,

we define the L-grading of n in the following way: define n(i) to equal to the linear subspace

generated by the eigenvectors of L acting on ni that do not lie in ni+1. While the notation

n(i) for the L-grading does not demonstrate the dependence on L, we only ever consider one

automorphism at a time and this should not cause confusion.

We are now able to define sorted spectrum.

Definition 2.2.3. Suppose L : n → n is an automorphism of a nilpotent Lie algebra n. We

say that L has sorted unstable spectrum if, for any j > k and any two unstable eigenvectors

v and w with eigenvalues λv and λw, if v ∈ n(k) and w ∈ n(j), then |λw| > |λv|. We say that

L has sorted stable spectrum if L−1 has sorted unstable spectrum. We say that an Anosov

automorphism of N/Γ has sorted spectrum if the induced map on n has sorted stable and

unstable spectrum.

Proposition 4. Suppose that L is an automorphism of a real nilpotent Lie algebra n with

a real eigenbasis. Then the L-grading of n is Carnot. Further, if v ∈ n(i) is an eigenvector,

then there exist v1, . . . , vi ∈ n(1) such that v = [v1, [v2, . . . , [vi−1, vi] . . .]].

Proof. We begin by showing inductively that for i ≥ 2, n(i) = [n(1), n(i−1)]. So, suppose

i ≥ 2. Then a basis for [n(1), n(i−1)] is obtained as a subset of the brackets of a basis for

n(1) with a basis for n(i−1). The bracket of eigenvectors of L is another eigenvector of L.

Consequently, [n(1), n(i−1)] has a basis comprised of eigenvectors of L. Further, any bracket

is in ni. Thus [n(1), n(i−1)] ⊆ n(i) by definition of n(i). Consequently, we are done once we

show that n(i) ⊆ [n(1), n(i−1)].

Suppose that v ∈ n(i). Then there exist rk ∈ n and sk ∈ ni−1 such that v =
∑

k[rk, sk].

Write rk = rk,1 + rk,2 where rk,1 ∈ n(1) and rk,2 ∈ n2. Similarly, write s = sk,1 + sk,2 where
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sk,1 ∈ n(i−1) and sk,2 ∈ ni. Then

v =
∑
k

[rk, sk] =
∑
k

[rk,1 + rk,2, sk,1 + sk,2]

=
∑
k

[rk,1, sk,1] + [rk,1, sk,2] + [rk,2, sk,1] + [rk,2, sk,2].

The second and third terms inside the sum are in ni+1, and the fourth term is in ni+2.

Thus as v ∈ n(i), [rk,1, sk,1] ∈ n(i), and ni = n(i) ⊕ ni+1, the final three terms are 0. So,

v =
∑

k[rk,1, sk,1], and so n(i) = [n(1), n(i−1)].

We now show the second claim in the theorem: an eigenvector is the bracket of eigen-

vectors in n(1). The second claim immediately implies that the grading is Carnot. We give

a proof by induction. Suppose that the claim holds for i. Let V = {vj} be an eigenbasis

for n(1) and let W = {wk} be an eigenbasis for n(i). By hypothesis, each wk is a repeated

bracket of the vectors vj. Observe that

n(i+1) = [n(1), n(i)] = span{[r, s] : r ∈ n(1), s ∈ n(i)}

= span{[vj, wk] : vj ∈ V,wk ∈ W}.

Thus as n(i+1) is spanned by the vectors [vj, wk], it has a basis consisting of vectors of the

form [vj, wk], each of which is an eigenvector. Thus every eigenvector of L in n(i+1) is of the

form [vj, wk], and hence is the repeated bracket of eigenvectors in n(1).

If an automorphism L of n is hyperbolic, we write ns and nu for its stable and unstable

subspaces. Suppose that L has simple spectrum. Then ns and nu are subalgebras of n spanned

by the stable and unstable eigenvectors of L acting on n, respectively. Consequently, these

are each subalgebras of n as eigenvectors of L bracket to other eigenvectors or to 0.

Proposition 5. Suppose that L is an automorphism of a real nilpotent Lie algebra n with

sorted spectrum admitting an eigenbasis, and let ns and nu be the stable and unstable subal-

gebras. Then [ns, nu] = 0. Thus n = ns ⊕ nu as a Lie algebra.
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Proof. Suppose not. Then there exists a stable eigenvector v ∈ ns and an unstable eigenvec-

tor w ∈ nu such that [v, w] ̸= 0. Suppose that |λv|−1 < |λw|; if the reverse inequality holds

a similar argument applies. Suppose w ∈ n(i). Then [v, w] ∈ ni+1 is an unstable eigenvector

with eigenvalue smaller in magnitude than w, contradicting that L has sorted spectrum.

The proof of the following is then almost immediate.

Proposition 6. Suppose that L is an automorphism of a real nilpotent Lie algebra n admit-

ting a real eigenbasis and having sorted spectrum. Then the L-grading of the unstable algebra

nu is Carnot.

Proof. Proposition 5 implies that ni = nsi ⊕nui . This implies immediately that nu(i) = n(i)∩nu

and that ns(i) = n(i) ∩ ns. That the grading is Carnot now follows from Proposition 4.

From this we easily deduce:

Proposition 7. Suppose that L is an automorphism of a real nilpotent Lie algebra n admit-

ting a real eigenbasis and that L has sorted spectrum. Let λ1, . . . , λk be the eigenvalues of

the eigenvectors in nu(1). Then if v is an eigenvector in nu(j), then the eigenvalue of v is equal

to λi1 · · ·λij where each ij satisfies 1 ≤ ij ≤ k.

Proof. This is immediate because the L-grading of nu is Carnot; v is the bracket of j eigen-

vectors of L lying in nu(1).

The eigenvalues of L do not accurately reflect the divergence of points in the large scale

geometry of a nilpotent Lie group. We say that an automorphism L of n is expanding

if n = nu. Let L be an expanding automorphism of a nilpotent Lie algebra n. For an

eigenvector v ∈ n(i), write λv for the eigenvalue of v. We define

σv = |λv|1/i . (2.3)

We refer to σv as the escape speed of L in the direction v.
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Corollary 1. Suppose that L is an expanding automorphism of a nilpotent Lie algebra n and

that L has simple real spectrum. Let v be an eigenvector associated to the smallest magnitude

eigenvalue λ1 of L. Then for any eigenvector w such that v and w are linearly independent,

we have σw > σv = |λ1|.

Proof. By Proposition 4, the L-grading of n is Carnot. So, for any other eigenvector w ∈ n(i),

we may write w as the bracket of eigenvectors v1, . . . , vi ∈ n(1), so that the eigenvalue of w

is λv1 · · ·λvi . By the assumption of simple spectrum, the modulus of one of the terms in this

product is greater than |λ1| and the modulus of each other term is at least |λ1|, so we obtain

σw = |λv1 · · ·λvi |
1/i > |λ1| = σv.

2.2.4 Foliations

We now recall some notions concerning foliations. For a more detailed discussion, see

[PSW97]. Let F be a foliation of a closed manifold M . For p ∈M , we may locally represent

the leaf F(p) as a graph. For a normed space F , we write F (δ) for the closed disk of radius

δ around 0. For small δ > 0, there is a unique function g(·, y) : Fp(δ) → F⊥
p , where Fp is a

subspace of TpM , such that

ϕ : (x, y) 7→ expp ◦(x, g(x, y))

is a foliation chart.

We say that a foliation has uniformly Ck+θ leaves if the map x 7→ g(x, y) is Ck+θ and

its derivatives of order less than k with respect to x are continuous in (x, y) and the kth

derivative varies Hölder continuously with exponent θ.

We say that a foliation has uniformly Ck+θ holonomy if the map h : y 7→ g(x, y) is Ck+θ

and its derivatives of order less than k with respect to y depend continuously on (x, y) and

the kth derivative varies Hölder continuously with exponent θ.

We say that two foliations F and G of a manifold M have global product structure if
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dimF + dimG = dimM and for each distinct pair x, y ∈ M the set F(x) ∩ G(y) consists

of exactly one point. Note that given a global product structure, we may identify two

leaves of the F foliation by “sliding” along the leaves of the G foliation. We say that two

subfoliations F and G of a foliation W have subordinate global product structure to W if

dimF +dimG = dimW and the restrictions of the foliations F and G to any leaf of W give

a global product structure on that leaf.

If F and G are two foliations of a manifold M , then we say that F is a subfoliation

of G if the partition of M given by F is a refinement of the partition given by G. Given

two subfoliations F and G with subordinate global product structure to a foliation W and

a, b ∈ W(c), define HF
a,b : G(a) → G(b) by HF

a,b(x) = F(x) ∩ G(b). We refer to HF
a,b as the

F-holonomy between the leaves G(a) and G(b). Briefly we call it the F-holonomy. Note that

for any a, b ∈ W(c), HF
a,b is continuous.

We will also take the opportunity to define some notation. Suppose F is a foliation with

C1 leaves of a Riemannian manifold M . The inclusion of a leaf of F into M is C1, and so

we may pullback the Riemannian metric on M to a metric on the leaf. We endow each leaf

with this pullback metric. For two points x, y in the same leaf of F , we define the distance

dF(x, y) to be the distance between x and y with respect to the pullback metric on F(x).

Later, in Lemma 2.8.2, we will obtain a foliation of N whose holonomies are isometries.

For later use, we record an algebraic description of all such isometries.

Proposition 8. Suppose that W is a one-parameter subgroup of nilpotent Lie group N and

that x, y ∈ N . If I : Wx → Wy is an orientation-preserving isometry with respect to the

induced Riemannian metric on Wx and Wy, then I is given by right multiplication on N

restricted to Wx. In particular, if I takes x to y, then I is the restriction of

z 7→ zx−1y.
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Every other such isometry between Wx and Wy is of the form

z 7→ zx−1wy

for some w ∈ W .

This follows because right translation realizes every isometry of Wx.

2.2.5 A criterion for regularity

We summarize a result in Saghin and Yang [SY19, Thm. G] that we will use in the proof of

Theorem 2.8.1 to establish the regularity of a conjugacy along the leaves of a foliation.

Suppose that F is a continuous foliation of a compact manifold M with uniformly Cr+θ

leaves where r ∈ N and θ ∈ (0, 1]. Assume that F is invariant under a Cr+θ diffeomorphism,

f : M →M , and that with respect to some Riemannian metric ∥ · ∥ on M there exists λ > 1

such that for all x ∈ M ∥Dxf |TxF ∥ ≥ λ. We say that such a foliation is a Cr+θ expanding

foliation for f .

A particular type of absolutely continuous measure is used for detecting the regularity of

a conjugacy intertwining expanding foliations. We now recall the notion of a disintegration

of measures in a manner that is adapted to our context. For a detailed account, see [Rok52].

Let µ be a Borel measure on a manifold M and let F be a foliation on M . For a foliation

chart ϕ : Bn
τ × Bn−k

⊥ → U ⊂ M the plaques of the chart form a partition P of the set U .

The natural projection π : U → P allows us to push foward the restriction of the measure µ

to U to a measure µ on P . We then seek a system of measures {µP}P∈P where each µP is a

Borel measure on the plaque P . By system of measures we mean that µP (P ) = 1 for µ-a.e.

P , that for a fixed continuous f that the function P 7→
∫
P
f dµP is measurable, and further

that we may express an integral over U against µ as an iterated integral:

∫
U

f dµ =

∫
P

∫
P

f dµP dµ.
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By the work of Rokhlin, there exists such a system of measures [Rok52]. Further, if we had

two systems {µαP}P∈P and {µβP}P∈P , then µ
α
P = µβP for µ-a.e. P . We refer to these systems

of measures as the disintegration of the measure µ along the plaques of the chart ϕ. Given

this notion of disintegration, we make the following slight modification of the definition of a

Gibbs expanding state found in [SY19, Def. 2.2]. As before, we write C1+ for an object that

is C1+θ for some θ > 0. Note that the notation C1+ does not make an implicit statement of

uniformity: different maps that are C1+ may have different Hölder exponents.

Definition 2.2.4. Let F be an expanding foliation for a C1+ diffeomorphism f . An f -

invariant measure µ is a Gibbs expanding state along F if, for any foliation chart of F , the

disintegration of µ along the plaques of the chart is equivalent to the Lebesgue measure on

the plaque for µ-almost every plaque.

The following is an abridgement of a more general result, [SY19, Thm. 6], to the one-

dimensional case. However, that result has an additional hypothesis that the dynamics be

C2 instead of C1+. We state the sharpened version of this result and outline the proof, which

is essentially contained in the implication (B1) implies (B5’) in [SY19].

Lemma 2.2.5. Let M be a smooth closed manifold, and let f, g ∈ Diff1+(M). Let F be a

one-dimensional expanding foliation for f , and let G be an expanding foliation for g such that

F and G have uniformly C1+ leaves. Let µ be a Gibbs expanding state of f along F . Suppose

that f and g are topologically conjugate by a homeomorphism h and that h intertwines F

and G. Then the following two conditions are equivalent:

1. ν := h∗(µ) is a Gibbs expanding state of g along the foliation G.

2. h restricted to each F leaf within the support of µ is uniformly C1+.

Proof. Fix a foliation box Bf for F . By this, we mean that Bf is the image of a foliation chart

ψ : Dk×Dn−k →M , where Dk is a disk. As h intertwines F and G, the set h(Bf ), which we

call Bg, is a foliation box of G. As µ and ν are expanding states, one may explicitly calculate
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their densities against volume on the leaves of F . Write Bf (x) for the plaque containing x.

Specifically, for almost every x ∈ Bf the disintegration of µ along the plaque containing x

has density ρf against volume, where

ρf (z) =
∆(x, z)∫

∆(x, z) d volBf (x)

, and

∆(x, z) = lim
n→∞

∥Dfn |TzF ∥
∥Dfn |TxF∥

.

One may check that this density is uniformly Hölder along almost every plaque of F [SY19,

Prop. 2.3]. If we write µx for the disintegration of µ along the plaque Bf (x), then we may

show that h∗(µx) = νh(x) for µ-a.e. x ∈ Bf ; one may prove this by using the essential

uniqueness of the disintegration. Continuity then forces h∗(µx) = νh(x) for every x ∈ Bf .

Now consider the restriction of h to a single plaque; we write hx : B
f (x) → Bg(h(x)) for the

restricted map. We have already established that h∗(µx) = νh(x). We also know that

µx = ρf d volBf (x) and νh(x) = ρg d volBg(h(x)),

where ρf and ρg are uniformly Hölder. This implies that if y ∈ Bf (x) then

∫ y

x

ρf d volBf
x
=

∫ h(y)

h(x)

ρg d volBg
h(x)

.

The implicit function theorem then implies that hx is uniformly C1+. By fixing a covering

of M by finitely many foliation boxes, we obtain a uniform estimate over all of M .

Remark 2. We remark that Lemma 2.2.5 is one of the major obstacles to lowering the

regularity from C1+ in Theorem 2.1.4 to C1. If the dynamics are only assumed to be C1,

then there is no a priori reason why the function ∆(x, z) that appears in the above proof

would even be defined.

We now introduce one final result that will be of use. Suppose that F is an expanding
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foliation for a C1+ diffeomorphism f of a manifold M and that µ is an f -invariant measure.

If P is a partition of a manifold M , then P is said to be a measurable partition with respect

to a measure µ if there exists a sequence of Borel measurable subsets En of M such that

P = {E1,M \ E1} ∨ {E2,M \ E2} ∨ · · · mod 0,

where the mod 0 refers to µ. Suppose that ξ is such a measurable partition of M . We say

that ξ is subordinate to F and µ if

1. the common refinement ∨i≤0f
iξ is the partition into points;

2. for all x ∈M , ξ(x) is contained in a single F leaf;

3. for µ-a.e. x, ξ(x) is bounded and contains a neighborhood of x in F(x).

In addition, if the partition fξ is coarser than ξ we say that ξ is an increasing partition.

The construction of increasing measurable partitions for expanding foliations is classical. In

the C1+ setting, see, for instance, [Yan16, Sec. 3].

We now recall a useful result concerning the Pesin entropy formula. See [SY19, Sec. 2.4]

for an explanation of this result in the present context. The argument there is an adaptation

of the argument of Ledrappier presented in [LY85].

Lemma 2.2.6. Let f be a C1+ diffeomorphism and let µ be an f -invariant measure. Suppose

that F is a C1+ expanding foliation for f . Suppose that ξ is an increasing measurable parti-

tion subordinate to F and µ. Then the conditional measures of µ are absolutely continuous

on the leaves of F if and only if

Hµ(f
−1ξ | ξ) =

∫
log ∥Df |TF ∥ dµ,

where Hµ(f
−1ξ | ξ) is the conditional entropy of f−1ξ given ξ.
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2.3 COARSE GEOMETRY OF RIEMANNIAN

NILMANIFOLDS

This section studies the coarse geometry of Riemannian nilmanifolds. The important idea

used in this section, namely the function ϕ defined below, is due to Guivarc’h and was defined

in [Gui73]. For a recent use of these same estimates in a different context, see [Cor16].

Let G be a connected Lie group. Fix a compact symmetric neighborhood U of the

identity of G and a right-invariant metric dG on G. For x, y ∈ G, we define dU(x, y) to be

the minimum n such that yx−1 = u1u2 · · ·un where ui ∈ U . Note that dU is right-invariant

but not necessarily left-invariant. The following proposition is a special case of [Bre07, Prop.

4.4].

Proposition 9. The metrics dU and dG are quasi-isometric: there exist A ≥ 1,B > 0 such

that for all x, y ∈ G

1

A
dU(x, y)−B ≤ dG(x, y) ≤ AdU(x, y) +B.

Suppose that N is a nilpotent Lie group and write n for the Lie algebra of N . As before,

write nk for the kth term in the lower central series of n. A norm ∥ · ∥ on n induces a norm

on nk/nk+1. Choose vector space complements n(k) to nk+1 inside of nk. The norm restricts

to a norm on these subspaces. Decompose an element x ∈ n as
∑

k xk where each xk ∈ n(k).

Define the Guivarc’h length of an element x ∈ n by

ϕ(x) = max
k

∥xk∥1/k.

Note that if n is not abelian then ϕ is not a norm. We will always use the Carnot grading

for the choice of complements. The following theorem is implicit in the work of Guivarc’h

[Gui73], though it does not seem to be explicitly stated. A thorough explication of Guiv-

arc’h’s result is given in [Bre07, Thm. 2.7].
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Theorem 2.3.1. Let N be a nilpotent Lie group endowed with a right-invariant Riemannian

metric. Then there exist constants A > 0, B ≥ 0 such that for any x ∈ N ,

1

A
ϕ(log x)−B ≤ dN(e, x) ≤ Aϕ(log x) +B.

Using this coarse estimate, we now return to the escape speeds defined in equation (2.3).

The following proposition shows that points lying in the slowest subgroup of an expanding

automorphism with simple real spectrum are characterized by their escape speed.

Proposition 10. Suppose that N is a nilpotent Lie group and L : N → N is an expanding

automorphism of N with simple sorted spectrum. Let λ be the smallest modulus eigenvalue

of L and let v be an eigenvector of eigenvalue λ. Let Σ be an eigenbasis for L containing

v. Let σ = minw∈Σ\{v} σw, where σw is the escape rate in direction w as defined in equation

(2.3). Then σ > σv = |λ|. Choose any η such that σv < η < σ. Then for any x ∈ N , if

there exist C,D such that dN(L
n(x), e) ≤ Cηn +D for all n ≥ 0, then x lies in the subgroup

tangent to v.

Proof. That σ > σv is the content of Corollary 1. Now suppose that σv < η < σ. Suppose

that x ∈ N and that there exist C,D such that dN(L
n(x), e) < Cηn+D for all n ≥ 0. Write

log(x) =
∑

k xk. Where xk ∈ n(k). Then L acts on log(x) by scaling each of its components

in the eigenspace decomposition. Specifically, write log(x) =
∑

1≤i≤r
∑

1≤j≤dim n(i)
aijvi,j

where vi,j is is the jth slowest unstable eigenvector in n(i). Consequently, dLn(log(x)) =∑
i

∑
j λ

n
vi,j
aijvi,j. Now, dLn(log x) = logLn(x). By Theorem 2.3.1, there exist A and B
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such that AdN(x, e) +B ≥ ϕ(log(x)). Thus, for sufficiently large n,

ACηn + (B + AD) ≥ ϕ(log(Ln))

= ϕ

(∑
i

∑
j

λnvi,jaijvi,j

)

= max
i

∥
∑
j

λnvi,jaijvi,j∥
1/i

≥ (σvi,j)
n |aij|1/i ∥vi,j∥1/i

But by choice η < σvi,j for all vi,j except v1,1. Thus aij = 0 except possibly for i = 1, j = 1.

Thus x lies in the subgroup tangent to v1,1 as its logarithm is a multiple of v1,1.

Note that the proof of Proposition 10 provides detailed information about the distance

between e and Ln(x). However, we have only extracted the above statement concerning the

slowest speed because it is all we need.

Theorem 2.3.2. Suppose that N/Γ is a nilmanifold and L is an automorphism of N/Γ

with simple sorted spectrum. Fix some i; then by Proposition 3, the ith strong foliation Su,Li

exists. By the same proposition, the ith weak foliation Wu,L
i exists and subfoliates Su,Li . Let

Σ be an eigenbasis for the action of dL on sui and let v be the vector with smallest modulus

eigenvalue in Σ. Let σ = minw∈Σ\{v} σw be the second slowest escape speed of the action of

dL on sui . Then σ > σv, where σv denotes the escape speed of v associated to the action of

dL on sui . Choose η such that σv < η < σ. Then for any x ∈ N/Γ and y ∈ Su,Li (x), if there

exist C,D such that dSu,L
i

(Ln(x), Ln(y)) ≤ Cηn +D for all n ≥ 0, then x ∈ Wu,L
i (y).

Proof. We reduce to Proposition 10. Suppose that that for some C,D,

dSu,L
i

(Ln(x), Ln(y)) < Cηn +D

for all n ≥ 0. As distance along unstable leaves is the same in N/Γ or in the lifted foliation
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on N , it suffices to work in the universal cover. In the universal cover, the lifted foliation

has leaf through x equal to Sui x, where S
u
i is the strong subgroup defined in Proposition 3.

Consequently, we may write y = mx for somem ∈ Sui . By assumption, dSu,L
i

(Ln(x), Ln(y)) ≤

Cηn + D for all n ≥ 0. The strong unstable foliation is preserved by right multiplication.

Right multiplication preserves the distance along leaves as the leaf metric is induced by a

right-invariant metric on N . Thus,

dSu,L
i

(Ln(x), Ln(y)) = dSu,L
i

(e, Ln(y)(Ln(x))−1) = dSu,L
i

(e, Ln(yx−1))

= dSu,L
i

(e, Ln(m))

The restriction of L to Sui is an expanding automorphism with simple sorted spectrum,

and so the previous proposition applies with the same choice of η. We conclude that m lies

in the subgroup of Sui generated by v, as desired.

2.4 COARSE GEOMETRY AND CONJUGACIES

In the first subsection, we show that a conjugacy intertwining the leaves of two sufficiently

nice foliations induces a quasi-isometry between the leaves of those foliations. In the second

section, we use this result to show that under suitable conditions the Eu,f
i distribution is

uniquely integrable. The proof of unique integrability is obtained by using that a quasi-

isometry respects escape speeds.

Before we begin, we record a basic result showing that a conjugacy interwines stable

manifolds. Recall that Su,f1 is equal to the full unstable foliation.

Proposition 11. Suppose that L is an Anosov automorphism, f is an Anosov diffeomor-

phism, and h is a conjugacy satisfying h◦f = L◦h. Then h(Su,f1 ) = Su,L1 and h(Ss,f1 ) = Ss,L1 .

Proof. Two points are in the same stable manifold if and only if they converge to each other
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under forward interation. If d(fn(x), fn(y)) → 0, then

d(h(fn(x)), h(fn(y))) = d(Ln(h(x)), Ln(h(y))) → 0

as h is uniformly continuous. So, if x ∈ Ss,f1 (y), then h(x) ∈ Ss,L1 (h(y)). The proof is similar

in the case of unstable manifolds.

2.4.1 Bounded geometry

When working with non-compact Riemannian manifolds, it is easy to accidentally allow

trivial counterexamples to seemingly reasonable analytic claims. However, there exists a

natural class of manifolds that are suitable for analysis: those with bounded geometry. For

further discussion and examples, see [Eld13, Ch. 2], which gives an extended discussion of

bounded geometry in a dynamical setting.

Definition 2.4.1. We say that a smooth Riemannian manifold N equipped with a smooth

metric, g, has bounded geometry if

1. The global injectivity radius of N is positive; i.e. there is a uniform lower bound on

the injectivity radius of the exponential map over all points n ∈ N .

2. For each k ≥ 0, there exists Ck such that pointwise

∥∇kR∥ ≤ Ck,

where ∥ · ∥ is the norm on tensors induced by g and R denotes the curvature of the

Levi-Civita connection ∇ of g.

Consider the universal cover Ñ of a compact Riemannian manifold N . Endowed with the

pullback metric from N , Ñ has bounded geometry. For an example of a manifold without

bounded geometry, consider a Riemannian manifold with a two-dimensional cusp: for any
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ϵ > 0, there is a point x sufficiently deep in the cusp that the injectivity radius of the

exponential map at x is less than ϵ.

We also introduce a class of submanifolds of bounded geometry manifolds that are also

suitable for analysis.

Definition 2.4.2. [Eld13, Def. 2.21] Let k ≥ 1 be an integer. Let N be a Riemannian

manifold of bounded geometry and let i : M → N be a Ck immersion of a Ck manifold M

into N . For x ∈M , we writeMx,δ for the connected component of x in i−1(Bδ(i(x))∩ i(M)),

where Bδ(i(x)) is the open ball of radius δ in N centered at i(x). We say that M is a Ck

uniformly immersed submanifold of N when there exists δ > 0 such that for all x ∈M , Mx,δ

is represented in normal coordinates on N by the graph of a function gx : TxM → TxM
⊥.

We also require that there is a uniform bound over all x on the Ck norm of gx, where this

norm is defined with respect to the natural Euclidean structure on TxM and TxM
⊥.

Note that our definition of uniformly immersed does not reference the pullback metric on

M . The reason for this is that the definition of bounded geometry includes reference to the

exponential map, which need not be defined ifM or the pullback metric has regularity lower

than C2. However, in the case that i and M are both sufficiently regular being uniformly

immersed is equivalent to M having low order bounded geometry [Eld13, Lem. 2.27]. One

should also note that the definition is quite adapted to a dynamical setting. In the graph

transform approach to constructing unstable manifolds, one essentially obtains the needed

estimate in the course of constructing the unstable manifolds.

Proposition 12. Suppose that f is a C1+ partially hyperbolic map of a smooth compact

manifold M and that Su,f is the strong unstable foliation of M defined by the partially

hyperbolic splitting of f . Then Su,f is a foliation with uniformly C1+ leaves. Moreover, each

leaf of Su,f is a C1 uniformly immersed submanifold of M .

Proof. This follows because the strong foliation Su,f admits a C1 plaquation, see [HPS77,

Cor. 5.6]. Let Emb1(Dk,M) be the space of C1 embeddings of the closed k-dimensional unit
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disk in M endowed with the C1 topology. Admitting such a plaquation implies that there is

a subset U ⊆ Emb1(Dk,M), where k is the dimension of a leaf of Su,f , such that each point

in the foliation is in the image of such a disk. The precompactness of U immediately implies

the uniformity estimate in the definition of uniformly immersed.

The following proposition shows that for a uniformly immersed submanifold we may

locally approximate distance along a leaf by the distance in the manifold.

Proposition 13. [Eld13, Lem. 2.25] Let M be a C1 uniformly immersed submanifold of a

smooth Riemannian manifold N that has bounded geometry. Write dM for the Riemannian

distance on M induced by the pullback metric and dN for the Riemannian distance on N .

Then for any C > 1 there exists δ such that if dM(x, y) < δ, then

dN(x, y) ≤ dM(x, y) ≤ CdN(x, y).

For a full proof see [Eld13, Lem. 2.25]. However, we will describe briefly the idea.

The assumption of bounded geometry allows us to locally approximate the geometry M by

the geometry of a graph g : Bδ(0) ⊆ Rm → Rk where m is the dimension of M , k is the

codimension of M in N , and D0g = 0. Suppose (p, g(p)) and (q, g(q)) are two points on the

graph of g. If δ is chosen to be sufficiently small, then the distance between (p, g(p)) and

(q, g(q)) is approximately the same as the distance between p and q in Rm. More needs to

be said, particularly about uniformity, but this is essentially the idea.

Lemma 2.4.3. Suppose that h : N → N is a continuous map of a compact smooth Rie-

mannian manifold N . Suppose that M and M ′ are two C1 uniformly injectively immersed

submanifolds of M and that h : M →M ′ is a bijection. Then h |M is a quasi-isometry from

M to M ′ in the induced metric.

Proof. Let η and C be constants such that the conclusion of Proposition 13 holds for M and

M ′. Because h is a map of a compact manifold there exists δ, such that if dN(x, y) < δ, then
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dN(h(x), h(y)) < η/2. Fix a minimum length path γ between two points x and y in M such

that dM(x, y) > δ/C. Divide γ into n segments of length δ/C and one segment, the last,

of length less than δ/C. Write the endpoints of these segments as x1, . . . , xn = y. We then

have that

dM ′(h(x), h(y)) ≤

(
n−2∑
i=1

dM ′(h(xi), h(xi+1))

)
+ dM ′(h(xn−1), h(xn)).

As dM(xi, xi+1) < δ/C, we see by the bilipschitz estimate from Proposition 13 that dN(xi, xi+1) <

δ, and hence dN(h(xi), h(xi+1)) < η/2. By the bilipschitz estimate again, this time on M ′,

dM ′(h(xi), h(xi+1) ≤ Cη/2. So, we see that

dM ′(h(x), h(y)) ≤ n · Cη/2,

but n = ⌈dM(x, y)/(δ/C)⌉, so

dM ′(h(x), h(y)) ≤ dM(x, y)
η

δ
C2 + 1.

To obtain the lower bound, do the same argument using h−1. This gives that there exist

constants C ′, D′ such that

dM(h−1(x), h−1(y)) ≤ C ′dM ′(x, y) +D

Thus by rearranging quasi-isometry follows.

Suppose that F is a foliation with uniformly C1 leaves and let F ′ be the space that is

topologized and given the smooth structure of the disjoint union of the leaves of F . The

inclusion of F ′ into M is a C1 uniform immersion, so the conclusion of Proposition 13

holds with a uniform constant over the inclusion of all leaves of F into M . Applying this

observation to a map h intertwining two such foliations yields the following corollary.
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Corollary 2. Suppose that F and G are two topological foliations with uniformly C1 leaves

of a smooth compact manifold M . If h : M →M is homeomorphism that intertwines the F

and G foliations, then for all x ∈ M , h is a quasi-isometry from F(x) to G(h(x)) and the

constants of the quasi-isometry can be taken to be uniform over all leaves of F .

2.4.2 Quasi-isometry and unique integrability

Using Corollary 2, we show in this subsection that, under certain hypotheses, the Eu,f
i

distribution uniquely integrates to a 1-dimensional foliation.

Proposition 14. Suppose that L is a Anosov automorphim of a nilmanifold N/Γ with

simple sorted spectrum. Then there exists a C1 neighborhood U of L in Diff1+(M) with

the following property. If f ∈ U and hf is a conjugacy between f and L, and, if, for some i,

hf (Su,fi ) = Su,Li , then the Eu,f
i distribution is uniquely integrable and integrates to a foliation

Wu,f
i with uniformly C1+ leaves. In addition,

1. For each x ∈ N/Γ, hf (Wu,f
i (x)) = Wu,L

i (hf (x)).

2. The Wu,f
i foliation and the Su,f1+1 foliation have subordinate product structure to the Su,fi

foliation.

3. The Su,fi+1 holonomies between leaves of Wu,f
i are uniformly C1+.

Proof. It suffices to construct such a neighborhood for each i; intersecting these neighbor-

hoods then gives the result.

Fix some 1 ≤ i ≤ dimEu. We apply Theorem 2.3.2 on the manifold Su,Li . Let Σ be an

eigenbasis for the action of L on sui that contains v, a vector tangent to the subgroup W u
i .

Let σ = minw∈Σ\{v} σw > |λui |. Note that the σw are the escape rates of the action on Sui .

Choose η such that σv < η < σ. Then for any x ∈ N/Γ and y ∈ Su,Li (x), if there exist C,D

such that if dSu,L
i

(Ln(x), Ln(y)) ≤ Cηn +D for all n ≥ 0, then, by Theorem 2.3.2, x lies in

the same Wu,L
i leaf as y.
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Pick ϵ > 0 such that |λui |+ϵ < η. Then by Theorem 2.2.2, there exists a C1 neighborhood

Uϵ of L such that for any unit vector w ∈ Eu,f
i , we have ∥Dfw∥ ≤ (|λui |+ ϵ) < η.

Suppose now that f ∈ Uϵ and that h is a conjugacy between f and L intertwining

the ith strong foliations. Then all of the previously mentioned considerations hold for f .

Suppose that x ∈ N/Γ and let γ be a curve tangent to the Eu,f
i distribution containing

x. Suppose that y is another point on γ. Write ℓ(γ) for the length of γ. The inequality

∥Dfw∥ ≤ (|λui |+ ϵ) < η implies

ℓ(fn ◦ γ) ≤ (|λui |+ ϵ)nℓ(γ),

and hence,

dSu,f
i

(fn(x), fn(y)) ≤ (|λui |+ ϵ)nℓ(γ).

By Proposition 12 the Su,fi foliation has uniformly C1 leaves and so by Corollary 2 there

exist constants C,D such that for all n ≥ 0

dSu,L
i

(h(fn(x)), h(fn(y))) ≤ CdSu,f
i

(fn(x), fn(y)) +D. (2.4)

But as h ◦ fn = Ln ◦ h, this implies that

dSu,L
i

(Ln(h(x)), Ln(h(y))) ≤ C(|λui |+ ϵ)n +D.

Consequently, as |λui | + ϵ < η, we see that h(x) ∈ Wu,L
i (h(y)). Thus h(γ) ⊆ Wu,L

i (h(x)).

This implies that Eu,f
i is uniquely integrable and integrates to the h−1(Wu,L

i ) foliation.

Finally, we need to show the claim about subordinate product structure. The dimensions

of the foliations are correct, so we just need to show that a Wu,f
i leaf and a Su,fi+1 leaf intersect

at exactly one point if they lie in the same Su,fi leaf.

To see that there is at most one point of intersection, note that as Su,fi+1 and Wu,f
i are

uniformly transverse there is a uniform lower bound on the distance between points of

38



Su,fi+1(x) ∩ Wu,f
i (x) independent of x. If there were another point y ∈ Su,fi+1(x) ∩ Wu,f

i (x),

then by iterating the dynamics backwards, we would obtain points f−n(x) and f−n(y) ar-

bitrarily close to each other and with f−n(y) ∈ Su,fi+1(x) ∩ Wu,f
i (x). This contradicts our

previous observation about transversality.

Next, we show how to deduce that there exists a point of intersection. The argu-

ment is similar: the distributions that the Wu,f
i and Su,fi+1 foliations are tangent to are

uniformly transverse. Consequently, there exists ϵ > 0 such that if there are two points

x, y ∈ Su,fi (z) and dSu,f
i

(x, y) < ϵ, then Wu,f
i (x) ∩ Su,fi+1(y) is non-empty. So, to see that for

y ∈ Su,fi (x) that Wu,f
i (x) ∩ Su,fi+1(x) intersect, observe that for sufficiently large n, we have

dSu,f
i

(f−n(x), f−n(y)) < ϵ. This concludes the first two claims.

Finally, the C1+ uniformity of the holonomies follows from [Bro16, Sec. 2.2], which gives

this result in the C1+ setting.

2.5 WEAK AND STRONG DISTANCE ALONG FOLIATIONS

Suppose that two foliations F and G have subordinate product structure to a foliation W of

a Riemannian manifold M and that all three foliations have uniformly C1 leaves. Fix two

points x, y ∈ M such that x ∈ W(y). Then one can consider the distance between x and

F(x)∩G(y) along the F foliation, which is denoted dF(x,F(x)∩G(y)). While one might not

expect such a quantity to be useful in general, in the algebraic setting it has a substantial

application. As before, fix a nilmanifold N/Γ and an Anosov automorphism L with simple

spectrum that is sorted and irreducible. In this section, we study this construction in the

case of the foliations Wu,L
i and Su,Li+1 subordinate to the foliation Su,Li .

We begin by studying the analogous foliations on N . As we have seen in Proposition 3,

the Su,Li foliation of N is subfoliated by the Su,Li+1 foliation as well as the Wu,L
i foliation. We

now formally introduce the quantity dF(x,F(x) ∩ G(y)) for some foliations arising in our

setting. Although we use the term “distance” in the definition below, note that the notion

is not symmetric.
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Definition 2.5.1. Suppose that L is an Anosov automorphism of the nilpotent group N

endowed with a right-invariant metric. For 1 ≤ i ≤ dimNu, we define the ith weak and

strong distances on Su,Li (x) = Sui x as follows. For two points, q, r ∈ Su,Li (x), we define

dWi
(q, r) = dWu,L

i
(Sui+1q ∩W u

i r, r),

dSi
(q, r) = dSu,L

i+1
(q, Sui+1q ∩W u

i r).

In other words, we find the point z = Su,Li+1(q)∩Wu,L
i (r) and measure the distance from q

to z along the (i+1)st strong unstable foliation to define the strong distance. One measures

the distance from z to r along theWu,L
i foliation to find the weak distance. Further, note that

this notion depends on the automorphism L used to define the strong and weak foliations. We

do not include the automorphism in the notation as we only ever consider one automorphism

at a time.

The following is immediate due to the right-invariance of the dynamical foliations and

the right-invariance of distance measured along these foliations.

Lemma 2.5.2. The weak and strong distances are invariant under right multiplication by

elements of N , i.e. for n ∈ N , and any q, r ∈ Sui x,

dWi
(q, r) = dWi

(qn, rn),

dSi
(q, r) = dSi

(qn, rn).

We now record some lemmas concerning weak and strong distances that will be of use

later.

Lemma 2.5.3. Suppose that w ∈ W u
i and s ∈ Sui+1. Then

dWi
(e, ws) = dWi

(e, w) and dSi
(e, ws) = dSi

(e, s).
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Proof. For the first claim, by definition, dWi
(e, ws) = dWu,L

i
(Sui+1e ∩ W u

i ws,ws), but as

W u
i ws = W s

i s, this is equal to dWu,L
i

(s, ws), which by right invariance is equal to dWu,L
i

(e, w),

which is equal to dWu,L
i

(Sui+1 ∩W u
i w,w). But this is equal to dWi

(e, w) by definition. For

the second claim, by definition, dSi
(e, ws) = dSu,L

i+1
(e, Sui+1 ∩W u

i ws). Because W
u
i ws = W u

i s,

this is equal to dSu,L
i+1

(e, Sui+1 ∩W u
i s). This is equal to dSu,L

i+1
(e, s), which is equal to dSi

(e, s)

because Sui+1e ∩W u
i s = s.

Before the next proof, we record a useful observation about one-parameter subgroups.

Remark 3. Suppose that G is a Lie group endowed with a right-invariant metric. Fix an

abelian subalgebra h ⊆ g, and let H := exp(h) be the analytic subgroup of G tangent to h at

e ∈ G. Then exp = Exp, where Exp is the Riemannian exponential map on H in the metric

given by the restriction of the metric on G.

Proof. The right-invariant metric on G restricted to H is a bi-invariant metric on the abelian

group H. The exponential map of any invariant metric on an abelian Lie group is the Lie

exponential. Since H is abelian Exp and exp must coincide.

We now study the change in weak and strong distance under an automorphism of N/Γ.

As before, we consider an Anosov automorphism L of N/Γ such that L has simple sorted

spectrum.

Claim 1. Suppose that L is an Anosov automorphism of a nilpotent Lie group N with

simple sorted spectrum. Suppose that x, y ∈ N with y ∈ Su,Li (x). Then for all m ∈ Z,

dWi
(Lm(x), Lm(y)) = |λui |

m dWi
(x, y). (2.5)

Proof. Note that dWi
(Lm(x), Lm(y)) = dWi

(e, Lm(yx−1)) by right-invariance of weak dis-

tance. So, writing yx−1 as ws for some w ∈ W u
i and s ∈ Sui+1, we see that

dWi
(Lm(x), Lm(y)) = dWi

(e, Lm(w)Lm(s)) = dWi
(e, Lm(w)),
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by Lemma 2.5.3.

Note that if exp(v) = w, then Lm(w) = exp(dLme v) = exp((λui )
mv). By appealing to

Remark 3, we see immediately that dWu
i
(e, exp(tv)) = |t| dWu

i
(e, w). Thus,

dWi
(e, Lm(w)) = |λui |

m dWu
i
(e, w) = |λui |

m dWi
(e, w) = |λui |

m dWi
(e, ws)

= |λui |
m dWi

(x, y).

Like the previous claim, the following lemma follows from Lemma 2.5.3 and Remark 3

by estimating distance along one-parameter subgroups.

Lemma 2.5.4. Let L be an Anosov automorphism of a nilpotent Lie group N with sorted

simple spectrum. Suppose that w ∈ W u
i and s ∈ Sui+1. Then there exist C,D > 0 such that

for all m ∈ Z,

dWi
(e, wmsm) = mD,

and

dSi
(e, wmsm) ≤ mC.

2.6 IRREDUCIBILITY

In this section, we discuss irreducibility and show the equivalence between its algebraic and

dynamical formulations.

2.6.1 The toral case

We begin by recalling the existing notion of irreducibility for toral automorphisms. An ele-

ment A ∈ SL(n,Z) is said to be irreducible if the characteristic polynomial of A is irreducible

over Q. This notion appears in [GKS11] and [GKS18]. This is equivalent to each eigenspace

of A being dense when projected to Tn. If A is not irreducible, it is shown in [Gog08, Sec. 3],
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that A is not locally Lyapunov spectrum rigid. There is a small oversight in the argument

of [Gog08], which occurs in the case of non-simple spectrum. We will not explain this here,

however, as the argument below, which is based on [Gog08, Sec. 3], is self-contained.

2.6.2 Nilmanifold case

We now consider nilmanifolds. Fix an automorphism, L, of N/Γ. As in the preliminaries, we

write Eu = ⊕Eu
i . If these subspaces are one-dimensional, then they are tangent to subgroups

W u
i at the identity. Moreover, the foliation by W u

i x leaves is invariant under left translation

by elements of W u
i . Now, descending to the quotient N/Γ, we are interested in the density

of the W u
i xΓ leaves. As before, we write Nk for the kth term in the lower central series of

N .

Definition 2.6.1. We say that an Anosov automorphism L of a nilmanifold N/Γ is irre-

ducible if, for any eigenvector w of L such that w ∈ n(k), we have WΓ = NkΓ in N/Γ where

W is the one-parameter subgroup tangent to w. Here n(k) is the kth term in the L-grading

as defined in Subsection 2.2.3.

Note that in the case thatN/Γ is a torus that Definition 2.6.1 coincides with the definition

of irreducibility recalled in the previous subsection. We think of the above definition as a

dynamically defined irreducibility criterion because it concerns the density of leaves of a

foliation defined using L. The following proposition gives an algebraic characterization of

irreducibility. Recall that if N is a nilpotent Lie group admitting a lattice Γ, then exp−1(Γ)

is a discrete subset of n. Any basis of n contained in the Z-span of exp−1(Γ) has rational

structure constants. Such a choice of basis gives a Q-structure on n in the sense that it

determines Q-vector space V contained in n of the same dimension as n. If L : N → N is

an automorphism that preserves Γ, then with respect to a basis contained in exp−1(Γ), dL

is defined over Q.

Proposition 15. Suppose that L : N/Γ → N/Γ is an automorphism of a nilmanifold with
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sorted simple spectrum. Then L is irreducible if and only if for each k, the induced action

of L on Nk/[Nk, Nk] is irreducible over Q with respect to the Q-structure given by Γ.

Before we give the proof, we elaborate on what is meant by the statement of the propo-

sition. If Γ is a lattice in N , then Γ ∩ Nk is a lattice in Nk, see [Rag72, Thm. 2.3 Cor.

1]. Consequently, if L is a map of N preserving Γ, then L restricts to a map on Nk pre-

serving Γ ∩ Nk. There is a quotient map π : Nk → Nk/[Nk, Nk]. We may then further

quotient by π(Γ ∩ Nk). The automorphism L induces an automorphism on the resulting

torus (Nk/[Nk, Nk])/π(Γ ∩ Nk). The irreducibility in the theorem is equivalent to the ir-

reducibility for each k of the automorphism on this torus in the sense mentioned in the

previous subsection.

In the proof of the proposition, we use the following claim that is derived from the

discussion of nilrotations in [EW13, Ch. 10].

Lemma 2.6.2. Suppose that exp(tv) is a one-parameter subgroup of a nilpotent group N

containing a lattice Γ. Then exp(tv) is dense in N/Γ if and only if π(exp(tv)) is dense in

(N/[N,N ])/(π(Γ)).

We now turn to the proof of the proposition.

Proof of Proposition 15. The equivalence is seen by using the claim stated in the previous

paragraph. Suppose that W is a one-parameter subgroup tangent to w, which is an eigen-

vector of L in n(k). By Lemma 2.6.2, WΓ is dense in Nk/(Γ ∩ Nk) if and only if π(W ) is

dense in (Nk/[Nk, Nk])/π(Nk ∩ Γ). Note that π(W ) is a one-parameter subgroup tangent

to dπ(w), which is an eigenvector tangent to an eigenspace of the induced automorphism

on this quotient torus. Using the Q-structure coming from the lattice, the induced map on

the quotient torus (Nk/[Nk, Nk])/π(Nk ∩ Γ) may be identified with a matrix Ak ∈ SLm(Z)

for some m. Each eigenspace of Ak is dense in this torus if and only the induced automor-

phism Ak is irreducible in the sense that its characteristic polynomial does not factor over

Q. Thus we have obtained equivalence between irreducibility in the dynamical sense and in
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the algebraic sense.

Remark 4. In the case of maps of the torus, one is able to obtain estimates on how many

of the elements of SLn(Z) define rigid automorphisms of the torus [GKS11, Prop. 3.1]. One

is able to do this by stating reducibility as a Zariski closed condition on SLn(R). However,

in our case as the condition of sorted spectrum involves inequalities between eigenvalues it

is unclear if this approach can be adapted.

2.7 FOLIATIONS WITH ISOMETRIC HOLONOMIES

In this section, we prove a rigidity result characterizing a particular type of topological

foliation subordinate to the strong unstable foliation of an irreducible Anosov automorphism

L on N/Γ with sorted simple spectrum.

Proposition 16. Suppose that L is an irreducible automorphism of a nilmanifold N/Γ with

sorted simple spectrum. Suppose that F is an L-invariant, continuous foliation subordinate

to the Su,Li foliation. Moreover, suppose that F and Wu,L
i have subordinate product structure

to the Su,Li foliation. Further, suppose that the F holonomy between the Wu,L
i leaves endowed

with their right-invariant metric is an isometry. Then F coincides with Su,Li+1.

In the proof of this proposition we use the following lemma. Note that without the

product structure the lemma is false. For example, consider the Reeb foliation.

Lemma 2.7.1. Let L be a irreducible Anosov automorphism with sorted simple spectrum

of a nilmanifold N/Γ. Assume that F is a continuous foliation that subfoliates the Su,Li

foliation and has product structure with the Wu,L
i foliation subordinate to the Su,Li foliation.

Write F̃ for the lift of this foliation to N . Suppose that for some xn, yn ∈ N that xn → x

and yn → y and yn ∈ F̃(xn). Then y ∈ F̃(x).

Proof. We work in the universal cover. Suppose we have such a pair of sequences. Pick

a transversal τ to the Su,Li foliation of N . Note that the algebraic structure of the Su,Li

45



foliation allows us to ensure that any leaf of Su,Li intersects τ at exactly one point. We define

a map Π:
⊔
p∈τ W

u,L
i (t) → W u

i as follows. First, using the subordinate product structure

project along F̃ onto the Wu,L
i leaf containing p. Since Wu,L

i (p) = W u
i p, we then compose

with the identification of W u
i p with W u

i via n 7→ np−1. Note that Π is continuous due to the

continuity of F and the subordinate product structure. Observe that if x ∈ Su,Li (y), then

F̃(x) = F̃(y) if and only if Π(x) = Π(y) due to the product structure. To conclude, note

that Π(xn) = Π(yn), and so by continuity we have Π(x) = Π(y).

The contradiction obtained in the following proof is the same contradiction as obtained

in [GKS11, p. 851].

Proof of Proposition 16 . We proceed by induction and show that F is invariant under left

translation by elements of the subgroups SudimEu−j. We begin with j = 0, and increase j

until we reach j = dimEu − (i+ 1).

Suppose we know the result for j; we show it for j + 1. By continuity of F and the

density of periodic points of L, it suffices to prove that F(x) = Su,Li+1(x) at each periodic

point x. For any periodic point, we may pass to a power of the dynamics so that the point

is fixed. If pΓ is a fixed point of L then consider the cover π ◦ Rp : N → N/Γ which sends

x 7→ xpΓ. Note that in this cover e is in the fiber over pΓ. As L(pΓ) = pΓ, L : N → N is

a lift of L : N/Γ → N/Γ with respect to this cover. These two observations show that we

have reduced to the case of the periodic point pΓ being equal to the eΓ. Using the lift to

this particular cover, it now suffices to show that F̃(e) is equal to Su,Li+1(e).

Suppose that s ∈ SudimEu−(j+1). If s ∈ F̃(e), then we are done. For the sake of contra-

diction, suppose not. By Proposition 8, which characterizes the isometries between leaves of

the Wu
i foliation, there exists w ∈ W u

i such that

H F̃
e,s(x) = xws. (2.6)

By Proposition 15, the assumption of irreducibility implies that Sui Γ ⊆ W u
i Γ in N/Γ.
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Thus we may fix a sequence bi ∈ W u
i and γi ∈ Γ such that biγ

−1
i → ws.

Now, we have that biws ∈ F̃(bi) by equation (2.6). Note that by the definition of the

commutator1,

biws = [bi, ws]wsbi,

and that [bi, ws] ∈ SudimEu−j, by the Carnot grading on Nu. Since F̃ is SudimEu−j-invariant

under left multiplication, we have

wsbi ∈ F̃(bi).

Consequently by right-invariance of F̃ under the action of Γ,

wsbiγ
−1
i ∈ F̃(biγ

−1
i ).

As biγ
−1
i → ws, and left multiplication is continuous, we find that

wsbiγ
−1
i → (ws)2.

So, by the Lemma 2.7.1, we see that

(ws)2 ∈ F̃(ws) = F̃(e).

By once again using the Carnot structure and commutators we see that wsws = s′w2s2,

for some s′ ∈ SudimEu−j. So, again using invariance under left multiplication, we see that

w2s2 ∈ F̃(e). By repeating the argument from the point where we chose the sequence bi, we

obtain that w2ms2
m
is in F̃(e) for all m ≥ 0.

By considering the weak and strong distances, we show that this leads to a contradiction.

By Lemma 2.5.4, there exist C,D > 0 such that

dSi
(e, w2ms2

m

) ≤ 2mC

1We define the commutator by [g, h] = ghg−1h−1.
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and

dWi
(e, w2ms2

m

) = 2mD.

We will obtain a contradiction by applying L−1. Fix some small ϵ > 0 and let cϵ(m) be

the minimum j ≥ 0 such that ϵ2 < dSi
(e, L−j(w2ms2

m
)) < ϵ. We now estimate the weak

and strong distances of the points L−cϵ(m)(wmsm) from e. By Claim 1, we see that the weak

distance is contracted by a multiple of |λui |. The strong distance is contracted by a rate of at

least
∣∣λui+1

∣∣, as the norm of the differential of L restricted to Sui+1 is bounded below by
∣∣λui+1

∣∣.
Consequently, as ϵ2 < dSi

(e, L−cϵ(m)wmsm) and dSi
(e, L−cϵ(m)wmsm) ≤ 2mC/

∣∣λui+1

∣∣cϵ(m)
, we

see that ∣∣λui+1

∣∣cϵ(m) ≤ 2mC/ϵ2.

Consequently, for each m, by Claim 1 and the inequality,

dWi
(L−cϵ(m)(e), L−cϵ(m)(wmsm)) = |λui |

−cϵ(m) 2mD

≥ |λui |
−cϵ(m)

∣∣λui+1

∣∣cϵ(m) D

C
ϵ2.

Observe that as m → ∞, that cϵ(m) → ∞ as well, so this lower bound is going to ∞. This

is impossible however: we will show that it violates the continuity of the F̃(e) foliation.

We claim that the set

K = {x ∈ F̃(e) | dSi
(e, x) ≤ ϵ}

is compact. To see this, note that the F̃(e) foliation and the Su,Li+1 foliation both have subor-

dinate global product structure with the Wu,L
i foliation to the Su,Li foliation. Consequently,

there is a well-defined homeomorphism Π: Su,Li+1 → F̃(e) given by s 7→ W u,L
i s ∩ F̃(e). Note

that Π(s) = ws for some w ∈ W u
i , so, by Lemma 2.5.3, Π preserves strong distances from e.

Consequently,

K = Π({x ∈ Sui+1 | dSi
(e, x) ≤ ϵ}),
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is compact. Because weak distance varies continuously and K is compact, the function x 7→

dWi
(e, x) is bounded on K. But this contradicts the existence of the points L−c(m)(smwm) ∈

F̃(e) that have strong distance from e of size at most ϵ, but for large m have unbounded

weak distance from e. Having reached this contradiction, we see that s ∈ F̃(e) and we are

done.

2.8 PROOF OF MAIN RIGIDITY THEOREM

In this section, we prove the sufficiency of the condition in Theorem 2.1.4.

Theorem 2.8.1. Suppose that L is an Anosov automorphism of a nilmanifold N/Γ that is

irreducible and has sorted simple Lyapunov spectrum. Then there exists a C1 neighborhood

U of L in Diff1+
vol(N/Γ) such that if f ∈ U and the Lyapunov spectrum of f with respect to

volume coincides with that of L and hf is a conjugacy between f and L, then hf is C1+.

We begin with a lemma.

Lemma 2.8.2. Let N/Γ and L be given as in Theorem 2.8.1. Suppose that F is a continuous,

L-invariant foliation subordinate to the Su,Li foliation, that F and Wu,L
i have subordinate

product structure, and that F has uniformly C1 holonomies between the Wu,L
i leaves. Then

the holonomies of F between the leaves of Wu,L
i are isometries in the induced metric on the

Wu,L
i leaves.

Proof. Write HF
a,b for the holonomy of F between Wu,L

i (a) and Wu,L
i (b). As F is L-invariant,

this holonomy satisfies

HF
a,b = Ln |Wu,L

i (bn)
◦HF

an,bn ◦ L−n |Wu,L
i (a),

where an = L−na, bn = L−nb.

It suffices to show that ∥DHF
a,b∥ = 1, as we are working with maps of 1-manifolds.

The differentials are conformal, so the norm of a composition is the product of norms. In
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particular,

∥DHF
a,b∥ = ∥DLn∥∥DHF

an,bn∥∥DL
−n∥.

As we are regarding Wu
i with its right-invariant metric, the norm of DL is constant, so

the first and third terms above multiply to 1. Thus we need only show that ∥DHF
an,bn

∥ → 1

as n → ∞. Pass to a subsequence so that an, bn → c in N/Γ. Then as the holonomies are

uniformly C1, we see that ∥DHF
an,bn

∥ converges to ∥DHF
c,c∥ = 1 because HF

c,c is the identity.

Thus ∥DHF
a,b∥ = 1. The result follows.

Remark 5. If the foliation Wu
i had higher dimensional leaves and we assumed that DL is

conformal on Wu
i , then the proof of Lemma 2.8.2 still works and we get the same conclusion.

We now proceed to the proof of the theorem.

Proof of Theorem 2.8.1. By Proposition 14, there exists a C1 neighborhood U of L in Diff1+
vol(M)

such that if f ∈ U and hf is a conjugacy between f and L, and if, for some i, hf (Su,fi ) = Su,Li ,

then there exists a continuous foliation Wu,f
i satisfying the properties mentioned in the con-

clusion of Proposition 14.

Suppose that f ∈ U and that the volume Lyapunov spectrum of f coincides with the

volume Lyapunov spectrum of L. We will prove the claim about f by induction. However,

before proceeding to the induction we make the following observation.

Lemma 2.8.3. If hf (Wu,f
i ) = Wu,L

i , then hf is uniformly C1+ along Wu,f
i .

Proof. If hf (Wu,f
i ) = Wu,L

i , then hf intertwines the action of f and L on the Wu,f
i and Wu,L

i

foliations. Both are expanding foliations, as elements of U have simple Mather spectrum.

By the Pesin entropy formula, the volume entropy of f is equal to

∫
N/Γ

∑
1≤i≤dimEu

ln |λui | d vol,

which coincides with the entropy of L against volume. Volume is the measure of maximal

entropy for L. Consequently as f and L have the same volume entropy, vol is also the unique
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measure of maximal entropy for f . Thus (hf )∗ vol = vol as vol is the unique measure of

maximal entropy for f and L and a conjugacy intertwines the measures of maximal entropy.

We next claim that the disintegration of volume along Wu,L
i and Wu,f

i leaves is absolutely

continuous. The case of Wu,L
i is immediate by Fubini’s theorem as Wu,L

i is analytic. We

now explain why the disintegration along Wu,f
i is absolutely continuous. First, note that

if ξ is an increasing measurable partition subordinate to the Wu,L
i foliation then h−1

f (ξ) is

an increasing measurable partition subordinate to the Wu,f
i foliation as (hf )∗(vol) = vol.

Consequently, we have the following equality of conditional entropies:

Hvol(f
−1(h−1

f (ξ)) | h−1
f (ξ)) = Hvol(L

−1ξ | ξ) = ln |λui | .

But as the volume spectrum of f is the same as the volume spectrum of L, we see that

∫
ln ∥Df |Wu,f

i
∥ d vol = ln |λui |

as well. Consequently, the hypotheses of Lemma 2.2.6 are satisfied and so the disintegration

of volume along the Wu,f
i foliation is absolutely continuous. Then, by Lemma 2.2.5, we

conclude that hf is uniformly C1+ along Wu,f
i .

We now proceed by induction to show that hf (Sf,ui ) = Su,Li ; i.e., that hf carries strong

foliations to strong foliations. We induct on 1 ≤ i ≤ dimEu beginning with i = 1. In

the case that i = 1, this is the statement that a conjugacy carries unstable manifolds to

unstable manifolds, which is verified in Proposition 11. Suppose now that the claim holds

for i. Then as f ∈ U and the induction hypothesis, we see that there exists a foliation Wu,f
i

such that hf (Wu,f
i ) = Wu,L

i satisfying the conclusion of Proposition 14. By Lemma 2.8.3,

hf is uniformly C1+ along Wu,f
i .

Let F denote the image of Su,fi+1 by hf . Then F is a subfoliation of Su,Li , by the induction

hypothesis. As hf (Wu,f
i ) = Wu,L

i , F and Wu,L
i have subordinate product structure to the

Su,Li foliation. Further, we claim that the holonomy of F between Wu,L
i leaves is uniformly
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C1+. The holonomy HF is the composition hf ◦HWu,f
i+1 ◦h−1

f . The conjugacy hf restricted to

Wu,L
i is uniformly C1+ by the previous discussion. The holonomies of the fast foliation Su,fi+1

between leaves of the Wu,f
i foliation are uniformly C1+ by Proposition 14. Thus F satisfies

the hypotheses of Lemma 2.8.2 and so F has isometric holonomies between Wu,L
i leaves.

Consequently, F satisfies the hypotheses of Proposition 16, which implies F = Su,Li+1. Thus

hf (Su,fi+1) = Su,Li+1 and the induction holds.

Note that at each step in the induction that we concluded that hf is uniformly C1+ along

Wu,f
i . This shows that for f ∈ U with the same volume spectrum as L that the map hf is

C1+ along Wu,f
i for each 1 ≤ i ≤ dimEu. To conclude that hf is C1+ on the full unstable

manifold Su,f1 , we now appeal to Journé’s lemma:

Lemma 2.8.4. [Jou88] Let F1 and F2 be two continuous transverse foliations with uniformly

C1+ leaves. If f is uniformly C1+ along the leaves of F1 and F2 then f is C1+.

We now apply Journé’s lemma inductively. The foliations Su,fi+1 and Wu,f
i are transverse

subfoliations of Su,fi . So, if hf is C1+ along both, then, by the lemma, f is C1+ along

Su,fi . Proceeding inductively from strongest to weakest, we see that hf is C1+ along the full

unstable manifold. Repeating the argument for the stable manifold gives the full result.

2.9 NECESSITY OF IRREDUCIBILITY AND SORTED

SPECTRUM FOR LOCAL RIGIDITY

In this section, we establish through constructions a necessary condition for Lyapunov spec-

trum rigidity in the case of simple spectrum. We will frequently consider a nilmanifold N/Γ

as well as the quotient nilmanifold N/Z(N)/π(Γ), which we denote by N/Γ. As elsewhere,

Z(N) denotes the center of N . If L is an Anosov automorphism of N/Γ, we denote by L the

induced map on N/Γ. To show necessity, we produce perturbations of L with the same pe-

riodic data as L that are not even Lipschitz conjugate to L. A volume-preserving map with

the same periodic data as L has the same volume Lyapunov spectrum as L by Proposition 1.
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This implies the necessity of the condition in Theorem 2.1.4 on volume Lyapunov spectrum

rigidity. The proof of necessity proceeds by induction. The base case of the induction is the

claim that if the induced automorphism L of N/Γ is irreducible and has sorted spectrum

but L does not, then L is not periodic data rigid. The induction step shows that if an

automorphism is not rigid, then a central extension of this automorphism is also not rigid.

By considering iterated central extensions, we reduce to the base case.

The organization of this section is as follows. First, we give explicit constructions in

the base case depending on whether the automorphism is not reducible or fails to have

sorted spectrum. The approach is an extension to nilmanifolds of the perturbative technique

studied by Gogolev [Gog08] and de la Llave [Dll92] in the case of the torus. The general

idea is to shear a fast unstable direction into a slower unstable direction. After giving the

constructions in the base case, we give a separate construction for the induction step. In the

final section, we conclude.

2.9.1 Non-sorted spectrum

In this section we show that if L : N/Γ → N/Γ is an Anosov automorphism with unsorted

simple spectrum and L : N/Γ → N/Γ is sorted, then L is not rigid.

Proposition 17. Suppose that L : N/Γ → N/Γ is an Anosov automorphism with simple

spectrum of a nilmanifold N/Γ. Suppose that the induced action on n has an unstable eigen-

vector w ∈ z, where z is the center of n, and another unstable eigenvector u /∈ z. Write λw

and λu for the eigenvalues of u and w. If |λu| > |λw|, then L is not Lyapunov spectrum or

periodic data rigid. Indeed, there exist arbitrarily C∞-small perturbations of L with the same

periodic data so that a conjugacy between L and the perturbation need not even be Lipschitz.

Before we begin the proof, we outline the approach. We construct a family of perturba-

tions of L by shearing the base dynamics into the slow direction, w, in the fiber. For each

element in the family, we then obtain an explicit equation for a conjugacy between that ele-

ment and L. By analyzing the resulting equation, we then obtain a necessary and sufficient
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condition for the conjugacy to be Lipschitz. We then show that this necessary condition

for the conjugacy to be Lipschitz fails on arbitrarily small perturbations, which proves the

proposition. The criterion in Lemma 2.9.3 first appeared in [Gog08, Prop. 1].

Proof of Proposition 17. The map L descends to a map L on N/Γ. If x ∈ N/Γ, we write x

to denote the image of x in N/Γ. We will also use x to denote an element of N/Γ even if

we have not introduced an element x.

Recall that Z acts on N/Γ on the left and this action preserves the structure of the

fibration Tn → N/Γ → (N/Z)/π(Γ). Consequently, for an element z ∈ Z and a point x ∈

N/Γ, we may consider the point x+z. If ϕ ∈ C∞(N/Γ,R), we define a map Iϕ : N/Γ → N/Γ

via x 7→ x + ϕ(x)w. We similarly define the perturbation Lϕ := L(x) + ϕ(x)w. Finally, we

observe that for t ∈ R and x ∈ N/Γ, that L(x+ tw) = L(x) + λwtw.

Lemma 2.9.1. The perturbation Lϕ has the same periodic data as L.

Proof. Consider the differential of Lϕ when viewed in charts that trivialize the principal

bundle structure of N/Γ. In such charts, Lϕ is a map B1 × Tn → B2 × Tn where Bi is an

open disk in Rk and k = dimN/Γ. As Lϕ is a bundle map, we may choose the chart so that

the differential is of the form:  DL 0

Dϕ(x)w L |Z(N)

 .
We see immediately from the block form of this matrix that Lϕ has the same periodic data

as L.

Lemma 2.9.2. If ϕ ∈ C∞(N/Γ,R) and ψ ∈ C0(N/Γ,R) satisfy the cohomological equation

ϕ(x) + ψ(Lx) = λwψ(x), (2.7)

for all x ∈ N/Γ , then Iψ is a conjugacy between Lϕ and L.
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Proof. We check by computation that Iψ ◦Lϕ = L ◦ Iψ. Suppose that x ∈ N/Γ, then Iψ ◦Lϕ

sends

x 7→ L(x) + ϕ(x)w 7→ L(x) + ϕ(x)w + ψ(Lx)w = Iψ ◦ Lϕ(x).

On the other hand, L ◦ Iψ(x) is

L(x) + λwψ(x)w.

Thus if the stated condition holds, then Iψ is such a conjugacy.

In fact, we can write down an explicit function ψ satisfying equation (2.7). The form of

ψ can be guessed by using the relation appearing in Lemma 2.9.2 as a recurrence. Define

J (ϕ) = λ−1
w

∑
k≥0

λ−kw ϕ(Lk x), (2.8)

so that IJ (ϕ) provides a conjugacy between L and Lϕ. Note that J (ϕ) is a well-defined

continuous function as this series is absolutely convergent.

Lemma 2.9.3. The vector u defines a vector field U on N/Γ. Let U be the foliation of N/Γ

tangent to the integral curves of U . For ϕ ∈ C∞(N/Γ,R), J (ϕ) is Lipschitz along U if and

only if the following two sums converge and are equal in the sense of distributions,

∑
k≥0

λ−kw λkuϕu ◦ Lk = −λ−1
w

∑
k<0

λ−kw λkuϕu ◦ Lk, (2.9)

where ϕu = U(ϕ) is the derivative of ϕ in the direction of U .

Proof. In the proof we write ψ for J (ϕ) for both clarity and convenience. First, suppose

that ψ is Lipschitz along U . Then for Lebesgue-a.e. point p in N/Γ, ϕu exists at p, and

hence by differentiating equation (2.7), there is an L-invariant set of full volume such that

ϕu + λuψu ◦ L = λwψu
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on this set. This relation implies that almost everywhere

ψu = − 1

λu
ϕu ◦ L−1 +

λw
λu
ψu ◦ L−1.

By similarly using this relation as a recurrence and noting that |λu| > |λw|, we obtain that

ψu = −λ−1
u

∑
k<0

(
λu
λw

)k
ϕu ◦ Lk, (2.10)

almost everywhere. As |λu| > |λw|, the series above converges in C0 sense. As ψ is Lipschitz

along U , it is absolutely continuous and is equal to the integral of its derivative by U . The

foliation U is analytic, so we see that ψ is differentiable with derivative ψu, and ψu satisfies

equation (2.10) along a.e. U leaf. In particular, this implies that the distributional derivative

of ψ along almost every U leaf is given by pairing with ψu as in equation (2.10). This implies

that the distributional derivative of ψ in the direction U is regular, and, in particular, is

given by pairing with the expression in equation (2.10).

We may compute the distributional derivative of ψ in another way as well. In particular,

by definition,

ψ =
∑
k≥0

λ−kw ϕ ◦ Lk.

To find the distributional derivative of ψ in the direction U , we differentiate term by term;

hence, in the sense of distributions,

ψu =
∑
k≥0

λ−kw λkuϕu ◦ Lk.

Thus the claimed equality holds. This establishes the implication in the theorem.

Next, suppose that the stated sums converge in the sense of distributions and are equal.
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The distribution given by pairing with

ψ =
∑
k≥0

λ−kw ϕ ◦ Lk,

has distributional derivative in direction U given by the sum of the distributions

∑
k≥0

λ−kw λkuϕu ◦ Lk.

By assumption this is equal to the distribution

−λ−1
u

∑
k<0

λ−kw λkuϕu ◦ Lk.

However, this distribution is regular as |λu| > |λw|, and is equal to pairing with some function

ω ∈ C0. Hence the distributional derivative of ψ is given by pairing with ω, i.e. ψ is weakly

differentiable along U with weak derivative ω. Note that ω is in C0, as is ψ. Hence a standard

argument implies that ψ is Lipschitz in the direction U with Lipschitz constant depending

on ∥ω∥C0 .

The proof of Proposition 17 is then finished by the following lemma.

Lemma 2.9.4. In any neighborhood of 0 in C∞(N/Γ,R), there exists a function ϕ violating

equation (2.9).

Proof. It suffices to consider the case that the image of u is central in n/z. We may make

this reduction by the following means. If N ′/Γ′ is a nilmanifold fibering over N ′/Γ′, then

we can pullback a function ϕ on N ′/Γ′ to a function on N ′/Γ′. Suppose that ϕ is a function

on N ′/Γ that fails to satisfy equation (2.9). Then there exists a function ψ on N ′/Γ′ that

pairs to different things with each side of equation (2.9). Denote by ϕ and ψ the pullbacks

of these functions to N ′/Γ′. We claim that ϕ does not satisfy equation (2.9). To see this

note that if ρ and ω are two functions on N ′/Γ′ then the pairing of ρ with ω is equal to the

57



pairing of the pullbacks of ρ and ω.

We now assume that u is tangent to the central direction in N/Γ. As is standard,

L2(N/Γ,C) is a unitary representation of the group N/Z, in which exp(u) is central. Note

that as the subgroup tangent to u is central in N/Z that exp(u) acts inside of irreducible rep-

resentations by multiplication. Pick a non-trivial irreducible representation Vγ ⊆ L2(N/Γ,C)

as well as a C∞ vector ϕ ∈ Vγ on which u acts nontrivially. Note that there exists such a

vector as there are functions on N/Γ that are not constant in the u direction.

Let U t be the flow given by left translation by exput. Observe that as u is central inside

Vγ that U t acts by multiplication by eiλγ for some λγ ∈ R \ {0}. Suppose now that ϕ is a

smooth function in Vγ. Then

ϕ ◦ U t = eiλγtϕ.

Observe that

ϕ ◦ L ◦ U t = ϕ ◦ Uλut ◦ L.

Thus ϕ ◦ L lies in a representation Vγ′ where u acts by λγ′ = λuλγ. Note that ϕu =

limt→0(ϕ ◦ U t − ϕ)/t lies within Vγ as ϕ is smooth. Similarly, by applying Lk, we obtain a

function ϕ(k) on which U t acts by multiplication by eiλγλ
k
ut. For j and k such that |j − k| is

sufficiently large, ϕ(j) and ϕ(k) are orthogonal as

⟨ϕ(j), ϕ(k)⟩ = ⟨U tϕ(j), U tϕ(k)⟩ = ⟨eiλγλ
j
utϕ, eiλγλ

k
utϕ⟩ = eiλγλ

j
ute−iλγλ

k
ut⟨ϕ, ϕ⟩

must be constant in t.

Observe now that if we evaluated equation (2.9) on ϕ, that the two distributions in that

equation are different. The functions ϕ ◦Lk for large positive and negative k are orthogonal

by the discussion above. Consequently, in equation (2.9), when we pair with ϕ ◦ Lk for

sufficiently large k the left hand distribution gives a non-zero quantity, while the right hand

gives a zero quantity. By working with the real and imaginary parts we may then obtain a

function in C∞(N/Γ,R) with the same property. As the relation in equation (2.9) is linear,
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if it fails for ϕ it fails for ϵϕ as well, and so the needed result holds in any neighborhood of

0 in C∞(N/Γ,R).

This finishes the proof of Proposition 17, as we have now shown that there exist arbitrarily

small ϕ such that Lϕ has the same periodic data as L and is not Lipschitz conjugate to L.

2.9.2 Lack of irreducibility

In this section we show the following.

Proposition 18. Suppose that L : N/Γ → N/Γ is an Anosov automorphism with simple

spectrum. If the restricted map L |Z, where Z is the center of Z, is reducible with respect to

the Q-structure given by Γ, then L is not periodic data rigid.

This proposition follows because if the action of L is reducible, the map

π : N/Γ → N/Γ

naturally decomposes into a sequence of two fiber bundles each with torus fiber. We then

shear a fast unstable direction tangent to one of these bundles into a slower unstable direction

tangent to the other just as we did in Proposition 17.

Proof of Proposition 18. If L |Z : Z → Z is reducible with respect to the Q-structure coming

from Γ ∩ Z and L |Z has simple spectrum, then the characteristic polynomial of L splits

over Q into two distinct factors p and q with no common roots. Let Vp be the subspace of z

tangent to the eigenvectors of L |Z with eigenvalues coming from p and Vq by the analogous

subspace for q. Both of these subspaces are rational. Consequently, Vq ∩ Γ is a lattice in Vq.

Let Vq denote the image of Vq in Z/(Z ∩ Γ). In particular, observe that Vq is a torus.

This torus acts freely and faithfully on N/Γ by translation. Note in addition that the map

L commutes with the action of Vq up to an element of Vq because Vq is invariant under
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L. Consequently, if we quotient by the action of Vq, we obtain that N/Γ fibers over some

manifold (N/Vq)/(π(Γ)) with torus fiber and that the map L descends to the quotient.

We may now repeat the proof of Proposition 17. Suppose that the action of L on Vq has

a larger unstable eigenvalue λ than any eigenvalue of the action on Vp. Let w be a vector

tangent to the subspace associated to λ. Using w we can shear Vp into Vq as in the proof of

Proposition 17, and repeat the argument there to obtain that L is not Lyapunov rigid.

2.9.3 Lack of rigidity persists in extensions

If one has a nilmanifold N/Γ and an automorphism L of N/Γ that is not Lyapunov spectrum

rigid, then one may wonder if there exists an Anosov automorphism L′ : N ′/Γ′ → N ′/Γ′

and a natural algebraic quotient map π : N ′/Γ′ → N/Γ such that π ◦ L′ = L ◦ π and L′

is Lyapunov spectrum rigid. The content of the following proposition is that this cannot

happen. The value of the proposition is that it allows for Lyapunov spectrum rigidity to be

studied inductively.

The construction that follows is closely related to the homotopy theoretic approach devel-

oped by Gogolev, Otaneda, and Rodriguez Hertz in [GORH15]. For an automorphism A of a

Lie group G, they study A-maps of principal G-bundles, which means that if F : E → F is a

map of principal G-bundles, then F (x.g) = F (x).A(g). Note that any Anosov automorphism

N/Γ → N/Γ is an A-map of N/Γ when viewed as a map of principal torus bundles. In this

case, the map A is the map restricted to the torus fiber through eΓ, which is Z/(Z ∩Γ). The

basic theory of such A-maps is developed clearly in [GORH15] and so we do not repeat the

development here. We recall one result, Proposition 4.4., which gives that if A,B ∈ Aut(G),

and f is an A map and g is a B map, then f ◦ g is an BA-map.

Proposition 19. Suppose that L : N/Γ → N/Γ is a Anosov automorphism with simple

spectrum that is not periodic data rigid. Then, if N ′ is a nilpotent group containing a lattice

Γ′ such that N ′/N ′
k = N and Γ′/(N ′

k ∩ Γ′) = Γ, and L′ : N ′/Γ′ → N ′/Γ′ is an Anosov

automorphism with simple spectrum inducing the map L on the quotient N/Γ, then L′ is not
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periodic data rigid.

Proof. By induction on the degree of nilpotency, it suffices to show the result when N ′ is a

central extension of N so that N ′/Γ′ → N/Γ is a principal Tn-bundle, where n = dimZ(N ′).

Lemma 2.9.5. Suppose that L : N/Γ → N/Γ is an Anosov automorphism and L′ is a central

extension of L to the torus bundle N ′/Γ′ that is an A-map, where A is the restriction of L′ to

the fiber through eΓ′. Then there exists a C0 neighborhood U of L in Diff∞(N/Γ) such that if

f ∈ U then there exists a smooth A-map F covering f such that dCk(F,L′) = O(dCk+1(f, L)).

In principle, the above lemma is immediate from Theorem 6.2 in [GORH15]. We will not

recapitulate that theorem in full here as it requires developing the language of classifying

spaces. Vaguely, the theorem says that the only obstruction to the existence of such a map

is at the level of homotopy. As L′ is an A-map covering L and f is homotopic to L, there is

no obstruction to finding an A-map covering f . However, the theorem there does not assure

us that F is near to L′ nor that F is as smooth as L′.

Consequently, we will give a different more explicit proof which produces F that is C∞

near to L′.

Proof. Choose U sufficiently C0-small so that if f ∈ U then for any x ∈ N/Γ there exists a

unique length minimizing geodesic γx starting at f(x) and ending at L(x). We write Ex for

the fiber of N ′/Γ′ over N/Γ.

As N ′/Γ′ is a principle Tn-bundle over N/Γ, we may choose a Tn-connection on this

bundle, which gives an associated parallel transport. See, for instance, [KN63, Ch. 2 Sec.

3]. Consequently, parallel transport along γx gives a map Px : Ef(x) → EL(x), which in a

trivialization, is a translation on Tn. Observe that these maps Px piece together to form a C∞

map Ψ: N ′/Γ′ → N ′/Γ′, which is defined fiberwise and is an Id-map of Tn-bundles covering

L◦f−1. Note that ∥Ψ∥Ck = O(∥L◦f−1∥Ck+1) due to the definition of Ψ via parallel transport.

Consequently, F = Ψ◦L′ is an A-map covering f such that dCk(F,L′) = O(dCk+1(f, L)).

Lemma 2.9.6. Suppose that F is an A-map of the bundle N ′/Γ′ covering a map f : N/Γ →
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N/Γ. Suppose f has the same periodic data as L, then F has the same periodic data as L′.

Further, if f is volume-preserving then so is F and, in this case, F has the same volume

Lyapunov spectrum as L′.

Proof. To begin, we show that F and L′ have the same periodic data. Note that every

periodic point of F lies above a periodic point of f , i.e. if p is F periodic then π(p) is f

periodic. Suppose, for the moment, that x is a fixed point. Then consider the differential of

F in a trivialization U × Tn. As F is an A-map, the trivialization looks like:

(u, z) 7→ (f(u), Az + ϕ(u)),

for some C∞ function ϕ : U → Tn, which gives the translational part of the map. Observe

that the differential of the map is Df 0

Dϕ A

 . (2.11)

Similar considerations apply at all periodic points. Consequently, the periodic data of F

is the union of the periodic data of f with the periodic data of A. By Proposition 1, this

implies that all of the Lyapunov exponents for every invariant measure of F coincide with

those of L′.

It remains to show that F preserves a volume. Let ω be the volume form onN/Γ preserved

by f . There is a well-defined n-form, η, on N ′/Γ′ coming from the principal torus bundle

structure. Consider the form (π∗ω)∧ η, i.e. the pullback of volume on the base wedged with

the volume on the fiber. That this form is preserved is immediate due to the block form of

the differential of F obtained in equation (2.11).

The following lemma shows that a conjugacy between L′ and the perturbation F fibers

over a map on N/Γ.

Lemma 2.9.7. As above, suppose that F : N/Γ → N/Γ is an A-map and L is an Anosov

automorphism with simple spectrum that is also an A-map. If H is a C1 conjugacy between
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F and L then H perserves the fibers of the fibration N/Γ → N/Γ.

Proof. By supposition as H is C1, F has a number of dynamical features that it inherits

from L. In particular, the stable and unstable subspaces are defined and have a continuous

splitting into continuous one-dimensional subbundles. Let Ei be a subspace associated to

an eigenvalue λi of A. We claim that H intertwines the corresponding distributions Ei

associated to eigenvalues of the map A acting on the fiber. By inspecting equation (2.11),

we see that for a periodic point of F that the subspace Ei is tangent to the fiber of the

projection N/Γ → N/Γ. This holds for each exponent arising from A as the distribution

defined by the splitting into one-dimensional subbundles is continuous and periodic points

are dense. Similarly, the one-dimensional stable and unstable subspaces of L arising from the

action of L on the center of N are tangent to the fiber. Since we assumed simple spectrum,

we see that DH carries E∗,F
i to E∗,L

i for ∗ ∈ {s, u}, and consequently H preserves the fibers

of the fibration.

We now show that the perturbation F of L′ that we constructed cannot be C1 conjugate

to L′. Suppose, for the sake of contradiction, that it is so that there exists a C1 conjugacy

H satisfying F ◦H = H ◦ L′. By the lemma, all three of these maps preserve the structure

of the fibration N ′/Γ′ → N/Γ. So, each descends to a map N/Γ → N/Γ and these quotient

maps satisfy F ◦H = H ◦L′. By assumption, we already know what two of these maps are,

so we have that f ◦ H = H ◦ L. But, as H was assumed to be a C1 map, and we showed

that it perserves the fibers of the bundle N ′/Γ′ → N/Γ, we obtain that H is C1. However,

as h is not C1, this contradicts Proposition 2, which shows that if one conjugacy between f

and L is C1 then all conjugacies are C1.

Using the above we can prove the following theorem.

Theorem 2.9.8. Suppose that L : N/Γ → N/Γ is an Anosov automorphism with simple

spectrum such that either L is not irreducible or the exponents of L are not sorted. Then L

is not locally Lyapunov spectrum rigid or periodic data rigid.
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Proof. There exists a term Nk in the lower central series such that the map induced by L

on (N/Nk)/π(Γ) satisfies the hypotheses of either Proposition 17 or Proposition 18. Conse-

quently the induced map on the quotient is not periodic data rigid. By Proposition 19, we

conclude that L is not periodic data rigid or Lyapunov spectrum rigid either.

2.10 EXAMPLES, COUNTEREXAMPLES, AND

CURIOSITIES

In this section we construct several examples of Anosov automorphisms of nilmanifolds illus-

trating novelties of the nilmanifold case. Most importantly, we construct an automorphism

of a two-step nilmanifold that is irreducible and has sorted spectrum, which shows that the

rigidity theorem in this paper is not vacuous. We also describe nilmanifolds that do not

admit locally rigid automorphisms. We also give an example of an automorphism where the

conjugacy is C1+ along the unstable foliation but not the stable foliation.

2.10.1 A locally rigid automorphism

In his seminal survey of smooth dynamics, [Sma67], Smale gave two examples of Anosov

automorphisms on a particular two-step nilmanifold. However, Smale’s examples are not

rigid because on the quotient torus they are the direct sum of two automorphisms of T2.

Consequently, they are reducible. Though Smale’s particular examples are not rigid, it is

possible to construct a rigid example on that nilmanifold.

Example 1 (Smale’s nilmanifold). Consider the Lie group given by the product of two

copies of the Heisenberg group, H1 and H2. Write Xi, Yi, Zi, where [Xi, Yi] = Zi for the

usual basis of the Lie algebra hi of Hi. We then construct an automorphism of the Lie group
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and algebra by setting:

X1 7→ (26 + 15
√
3)X1 + (8733 + 5042

√
3)Y1

Y1 7→ (71 + 41
√
3)X1 + (28901 + 16686

√
3)Y1

Z1 7→ (262087 + 151316
√
3)Z1

X2 7→ (26− 15
√
3)X2 + (8733− 5042

√
3)Y2

Y2 7→ (71− 41
√
3)X2 + (28901− 16686

√
3)Y2

Z2 7→ (262087− 151316
√
3)Z2.

Note that for X2, Y2, Z2 we have just changed +
√
3 to −

√
3. This defines an automorphism

of H1×H2. As in Smale’s case, we define a lattice by first defining a lattice in h1⊕h2. View

this Lie algebra as matrices of the form


0 X Z

0 0 Y

0 0 0

⊕


0 X Z

0 0 Y

0 0 0

 .

Now for the lattice, take the elements where the first matrix has entries in O(Q(
√
3)) and

for the second factor take the conjugate entries to those chosen in the first factor. Explicitly,

this lattice consists of matrices with entries in Z+ Z
√
3 of the form


0 a+ b

√
3 e+ f

√
3

0 0 c+ d
√
3

0 0 0

⊕


0 a− b

√
3 e− f

√
3

0 0 c− d
√
3

0 0 0

 .

The automorphism specified preserves this lattice in h because the automorphism is defined

over Z[
√
3], and is invertible because its determinant is in Z[

√
3]×. Thus it can be shown that

the lattice, Γ, generated by the exponential image of this lattice inH1⊕H2 is preserved by the
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corresponding automorphism of H1⊕H2. Thus we obtain an automorphism of (H1⊕H2)/Γ.

We now check that this automorphism is sorted and totally irreducible. First we need

irreducibility over Q of the action in the base and in the fiber. The map in the fiber is a map

of a 2-torus and hence is irreducible as it is hyperbolic. The map in the fiber has eigenvalues

262087 + 151316
√
3 and 262087− 151316

√
3.

In order to compute the map in the base, it suffices to study the automorphism we obtain

of the lattice when we have quotiented out by the fiber. Represent an element of the basis

for the quotient lattice by (a, b, c, d) corresponding to the matrix:


0 a+ b

√
3 ∗

0 0 c+ d
√
3

0 0 0

⊕


0 a− b

√
3 ∗

0 0 c− d
√
3

0 0 0

 .

Written with respect to the coordinates (a, b, c, d), the automorphism is:



26 45 71 123

15 26 41 71

8733 15126 28901 50058

5042 8733 16686 28901


. (2.12)

We then calculate the eigenvalues of this matrix using Mathematica. They are approxi-

mately:

57844.9, 9.06171, 0.0193643, 0.0000985198

Whereas the eigenvalues in the central fiber are approximately:

524174, .00000190779(=1.9*10e-6)

Thus we see that the stable and unstable spectrum are sorted. Finally, one may compute

the characteristic polynomial of this matrix and check that it is irreducible over Q. This
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automorphism is sorted and irreducible and so is locally Lyapunov spectrum rigid by the

main theorem.

2.10.2 Non-rigid families

Using the necessity of sorted spectrum for local rigidity, we can exhibit nilmanifolds such that

no Anosov automorphism with simple spectrum on that nilmanifold is Lyapunov spectrum

rigid. For this construction we use a free nilpotent Lie group. Much additional information

about automorphisms of free nilpotent groups is contained in [Pay09]. We consider the two-

step free nilpotent group on 3 generators, N3,2. Explicitly, define a Lie algebra n via three

generators x, y, z. These generators bracket to linearly independent elements [x, y], [x, z] and

[y, z], and we stipulate that n3 = 0, so that this Lie algebra is two-step. In fact, we see that

{x, y, z, [x, y], [x, z], [y, z]} is a basis for n with rational structure coefficients, and hence its

Z-span is a lattice in n. The exponential image of this lattice generates a lattice in N , which

we call Λ. As N3,2 is free, an automorphism L of N3,2 is determined by the induced map L on

N3,2/Z(N3,2), which we identify with R3. If L has eigenvalues 0 < |λ1| < 1 < |λ2| < |λ3|, and

preserves volume so that |λ1| |λ2| |λ3| = 1, then we see that L |Z(N2,3) has as its exponents

|λi|−1, for i ∈ {1, 2, 3}. In particular, 1 > |λ2|−1 > |λ1|, and so such an automorphism has its

stable exponents out of order. Consequently, no such automorphism of N3,2/Λ is Lyapunov

spectrum rigid.

As an example of this, consider the map induced by the companion matrix associated

to the polynomial x3 + x2 − 8x + 1 acting on a basis that generate the Lie algebra to N3,2.

This polynomial defines a totally real extension of degree 3 over R. Despite the resulting

automorphism, L, not being rigid, it is still irreducible and its unstable exponents are sorted.

Consequently, the argument in this paper shows that a conjugacy between L and a sufficiently

small perturbation with the same spectrum is C1+ along the unstable foliation even though

it might not be C1+ along the stable foliation.
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2.10.3 Rigidity of non-linear examples

It is natural to ask whether there are non-linear Anosov diffeomorphisms that exhibit volume

Lyapunov spectrum rigidity. Recent examples constructed by Erchenko show that even in the

case of T2, two diffeomorphisms may have the same volume Lyapunov spectrum and not be

C1 conjugate. This follows from [Erc19, Thm. 1.1], which gives examples of diffeomorphisms

with the same volume Lyapunov spectrum but different Lyapunov spectrum for the measure

of maximal entropy. See Question 2 of [Erc19] for a more refined question relating rigidity

to an associated pressure function.
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CHAPTER 3

SIMULTANEOUS LINEARIZATION OF DIFFEOMORPHISMS

OF ISOTROPIC MANIFOLDS

3.1 INTRODUCTION

A basic problem in dynamics is determining whether two dynamical systems are equivalent.

A standard notion of equivalence is conjugacy: if f and g are two diffeomorphisms of a

manifold M , then f and g are conjugate if there exists a homeomorphism h of M such

that hfh−1 = g. Some classes of dynamical systems are distinguished up to conjugacy by a

small amount of dynamical information. One of the most basic examples of this is Denjoy’s

theorem: a C2 orientation preserving circle diffeomorphism with irrational rotation number

is conjugate to a rotation [KH97, §12.1]. In the case of Denjoy’s theorem, the rotation

number is all the information needed to determine the topological equivalence class of the

diffeomorphism under conjugacy.

Rigidity theory focuses on identifying dynamics that are distinguished up to conjugacy by

particular kinds of dynamical information such as the rotation number. There are finer dy-

namical invariants than rotation number which require a finer notion of equivalence to study.

For instance, one obtains a finer notion of equivalence if one insists that the conjugacy be a

C1 or even C∞ diffeomorphism. A smoother conjugacy allows one to consider invariants such

as Lyapunov exponents, which may not be preserved under conjugacy by homeomorphisms.

For a single volume preserving Anosov diffeomorphism, the Lyapunov exponents with respect

to volume are invariant under conjugation by C1 volume preserving maps. Consequently,

one is naturally led to ask, “If two volume preserving Anosov diffeomorphisms have the same
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Lyapunov exponents are the two C1 conjugate?” In some circumstances the answer is “yes”.

Such situations where knowledge about Lyapunov exponents implies systems are conjugate

by a C1 diffeomorphism are instances of a phenomenon called “Lyapunov spectrum rigidity”.

See [Gog19] for examples and discussion of this type of rigidity. For recent examples, see

[But17], [DeW21],[GRH19],[GKS18], and [SY19].

In rigidity problems related to isometries, it is often natural to consider a family of

isometries. A collection of isometries may have strong rigidity properties even if the indi-

vidual elements of the collection do not. For example, Fayad and Khanin [FK09] proved

that a collection of commuting diffeomorphisms of the circle whose rotation numbers satisfy

a simultaneous Diophantine condition are smoothly simultaneously conjugated to rotations.

Their result is a strengthening of an earlier result of Moser [Mos90]. A single diffeomorphism

in such a collection might not satisfy the Diophantine condition on its own.

Although the two types of rigidity described above occur in the dissimilar hyperbolic and

elliptic settings, a result of Dolgopyat and Krikorian combines the two. They introduce a

notion of a Diophantine set of rotations of a sphere and use this notion to prove that certain

random dynamical systems with all Lyapunov exponents zero are conjugated to isometric

systems [DK07]. Our result is a generalization of this result to the setting of isotropic

manifolds. We now develop the language to state both precisely.

Let (f1, ..., fm) be a tuple of diffeomorphisms of a manifold M . Let (ωi)i∈N be a sequence

of independent and identically distributed random variables with uniform distribution on

{1, ...,m}. Given an initial point x0 ∈ M , define xn = fωnxn−1. This defines a Markov

process on M . We refer to this process as the random dynamical system associated to the

tuple (f1, ..., fm). Let f
n
ω be defined to equal fωn ◦· · ·◦fω1 . We say that a probability measure

µ onM is a stationary measure for this process ifm−1
∑m

i=1(fi)∗µ = µ. A stationary measure

is ergodic if it is not a non-trivial convex combination of two distinct stationary measures. Fix

an ergodic stationary measure µ. For µ-almost every x, almost surely for any v ∈ TxM \{0},
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the following limit exists

lim
n→∞

1

n
ln ∥Dxf

n
ωv∥ (3.1)

and takes its value in a fixed finite list of numbers depending only on µ:

λ1(µ) ≥ λ2(µ) ≥ · · · ≥ λdimM(µ). (3.2)

These are the Lyapunov exponents with respect to µ. In fact, for almost every ω and µ-a.e. x

there exists a flag V1 ⊂ · · · ⊂ Vj inside TxM such that if v ∈ Vi \ Vi−1 then the limit in (3.2)

is equal to λdimM−dimVi . The number of times a particular exponent appears in (3.2) is given

by dimVi−dimVi−1; this number is referred to as the multiplicity of the exponent. For more

information, see [Kif86].

Our result holds for isotropic manifolds. By definition, an isotropic manifold is a Rie-

mannian manifold whose isometry group acts transitively on its unit tangent bundle. The

closed isotropic manifolds are Sn, RPn, CPn, HPn, and the Cayley projective plane. In the

following we write G◦ for the identity component of a Lie group G.

Theorem 3.1.1. Let Md be a closed isotropic Riemannian manifold other than S1. There

exists k0 such that if (R1, ..., Rm) is a tuple of isometries of M such that the subgroup of

Isom(M) generated by this tuple contains Isom(M)◦, then there exists ϵk0 > 0 such that the

following holds. Let (f1, ..., fm) be a tuple of C
∞ diffeomorphisms satisfying maxi dCk0 (fi, Ri) <

ϵk0. Suppose that there exists a sequence of ergodic stationary measures µn for the ran-

dom dynamical system generated by (f1, ..., fm) such that |λd(µn)| → 0, then there exists

ψ ∈ Diff∞(M) such that for each i the map ψfiψ
−1 is an isometry of M and lies in the

subgroup of Isom(M) generated by (R1, . . . , Rm).

Dolgopyat and Krikorian proved Theorem 3.1.1 in the case of Sn [DK07, Thm. 1].

Dolgopyat and Krikorian also obtained a Taylor expansion of the Lyapunov exponents

of the stationary measure of the perturbed system [DK07, Thm. 2]. Fix (R1, . . . , Rm)

generating Isom(Sn)◦. Let (f1, . . . , fm) be a Ck0 small perturbation of (R1, . . . , Rm) and µ
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be any ergodic stationary measure for (f1, . . . , fm). Let Λr = λ1+ · · ·+λr denote the sum of

the top r Lyapunov exponents. In [DK07, Thm. 2], it is shown that the Lyapunov exponents

of µ satisfy

λr(µ) =
Λd
d

+
d− 2r + 1

d− 1

(
λ1 −

Λd
d

)
+ o(1)|λd(µ)|, (3.3)

where o(1) goes to zero as maxi dCk0 (fi, Ri) → 0. Using this formula Dolgopyat and Kriko-

rian obtain an even stronger dichotomy for systems on even dimensional spheres: either

(f1, . . . , fm) is simultaneously conjugated to isometries or the Lyapunov exponents of every

ergodic stationary measure of the perturbation are uniformly bounded away from zero. By

using this result they show if (R1, . . . , Rm) generates Isom(S2n)◦ and (f1, . . . , fm) is a Ck0

small perturbation such that each fi preserves volume, then volume is an ergodic stationary

measure for (f1, . . . , fm) [DK07, Cor. 2].

It is natural to ask if a similar Taylor expansion can be obtained in the setting of isotropic

manifolds. Proposition 12 shows that Λr may be Taylor expanded assuming that (R1, ..., Rm)

generates Isom(M)◦ and the induced action of Isom(M)◦ on Grr(M), the Grassmanian

bundle of r-planes in TM , is transitive.

In Theorem 3.6.1, we give a Taylor expansion relating λ1 and λd which holds for isotropic

manifolds. However, we cannot Taylor expand every Lyapunov exponent as in equation

(3.3) because if a manifold does not have constant curvature then its isometry group cannot

act transitively on the two-planes in its tangent spaces. The argument of Dolgopyat and

Krikorian requires that the isometry group act transitively on the space of k-planes in TM

for 0 ≤ k ≤ d.

It is natural to ask why the proof of Theorem 3.1.1 does not work in the case of S1 even

though S1 is isotropic. As Proposition 6 shows, for a tuple (R1, . . . , Rm) as in the theorem,

uniformly small perturbations of (R1, . . . , Rm) are uniformly Diophantine in a sense explained

below. This uniformity is used crucially in the proof when we change the tuple of isometries

that we are working with. The same uniformity of Diophantineness does not hold for tuples

of isometries of S1: a small perturbation may lose all Diophantine properties. The reason
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that the proof of Proposition 6 does not work for S1 is that the isometry group of S1 is not

semi-simple.

There are not many other results like Theorem 3.1.1. In addition to the aforementioned

result of Dolgopyat and Krikorian, there are some results of Malicet. In [Mal12], a similar

linearization result is obtained that applies to a particular type of map of T2 that fibers over

a rotation on S1. In a recent work, Malicet obtained a Taylor expansion of the Lyapunov

exponent for a perturbation of a Diophantine random dynamical system on the circle [Mal20].

Acknowledgements. The author thanks Aaron Brown and Amie Wilkinson for their criti-

cal comments during all parts of this project. The author also thanks Dmitry Dolgopyat for

his generosity in answering the author’s questions about [DK07]. The author is also grateful

to the anonymous referee for carefully reading the manuscript and providing many useful

comments and suggestions.

3.1.1 Outline

The proof of Theorem 3.1.1 follows the general argument of [DK07]. For readability, the

argument in this paper is self-contained. While a number of the results below appear in

[DK07], we have substantially reformulated many of them and in many places offer a different

proof. Doing so is not merely a courtesy to the reader: the results in [DK07] are stated in

too narrow a setting for us to use. Simply stating more general reformulations would unduly

burden the reader’s trust. In addition, as will be discussed below, there are some oversights

in [DK07] which we explain in subsection 3.1.2 and that we have remedied in Section 3.5.

We have also stated intermediate results and lemmas in more generality than is needed for

the proof of Theorem 3.1.1 so that they may be used by others. Below we sketch the general

argument of the paper and emphasize some differences with the approach in [DK07].

The proof of Theorem 3.1.1 is by an iterative KAM convergence scheme. Fix a closed

isotropic manifold M . We start with a tuple of diffeomorphisms (f1, . . . , fm) nearby to a
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tuple of isometries (R1, . . . , Rm). We must find some smooth diffeomorphism ψ such that

f̃i := ψfiψ
−1 ∈ Isom(M). To do this we produce a conjugacy ψ that brings each fi closer

to being an isometry. To judge the distance from being an isometry, we define a strain

tensor that vanishes precisely when a diffeomorphism is an isometry. By solving a particular

coboundary equation and using that the Lyapunov exponents are zero, we can construct ψ

so that f̃i has small strain tensor. In our setting, a diffeomorphism with small strain is near

to an isometry, so (f̃1, . . . , f̃m) is near to a tuple of isometries (R′
1, . . . , R

′
m). We then repeat

the procedure using these new tuples as our starting point. The results of performing a

single step of this procedure comprise Lemma 3.6.1. Once Lemma 3.6.1 is proved, the rest of

the proof of Theorem 3.1.1 is bookkeeping that checks that the procedure converges. Most

of the paper is in service of the proof Lemma 3.6.1, which gives the result of a single step in

the convergence scheme.

Proofs of technical and basic facts are relegated to a significant number of appendices.

This has been done to focus the main exposition on the important ideas in the proof of

Theorem 3.1.1 and not on the technical details. The appendices that might be most beneficial

to look at before they are referenced in the text are appendices 3.7.1 and 3.7.2. These

appendices concern Ck calculus and interpolation inequalities. Both contain estimates that

are common in KAM arguments. The organization of the main body of the paper reflects

the order of the steps in the proof of Lemma 3.6.1. There are several important results in

the proof of Lemma 3.6.1, which we now describe.

The first part of the proof of Lemma 3.6.1 requires that a particular coboundary equation

can be tamely solved. The solution to this equation is one of the main subjects of Section

3.2. The equation is solved in Proposition 7. This proposition is essential in the work

of Dolgopyat and Krikorian [DK07] and its proof follows from the appendix to [Dol02]; it

relies on a Diophantine property of the tuple of isometries (R1, . . . , Rm). This property is

formulated in subsection 3.2.2. The stability of this property under perturbations is crucial

in the proof and an essential feature of our setting. In addition, the argument in Section
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3.2 is different from Dolgopyat’s earlier argument because we we use the Solovay-Kitaev

algorithm (Theorem 3.2.1), which is more efficient than the procedure used in the appendix

to [Dol02].

Section 3.3 considers stationary measures for perturbations of (R1, . . . , Rm). Suppose M

is a quotient of its isometry group, its isometry group is semisimple, and (R1, . . . , Rm) is

a Diophantine subset of Isom(M). Suppose (f1, . . . , fm) is a small smooth perturbation of

(R1, . . . , Rm). There is a relation between a stationary measure µ for the perturbed system

and the Haar measure. Proposition 11 relates integration against µ with integration against

the Haar measure. Lyapunov exponents are calculated by integrating the log Jacobian

against a stationary measure of an extended dynamical system on a Grassmannian bundle

over M . Consequently, this proposition relates stationary measures and their Lyapunov

exponents to the volume on a Grassmannian bundle.

The relationship between Lyapunov exponents and stationary measures is explained in

Section 3.4. Proposition 12 provides a Taylor expansion of the sum of the top r Lyapunov

exponents of a stationary measure µ. Three terms appear in the Taylor expansion. The first

two terms have a direct geometric meaning, which we interpret in terms of strain tensors

introduced in subsection 3.4.2. The final term in the Taylor expansion depends on a quantity

U(ψ). This quantity does not have a direct geometric interpretation. However, in the proof

of Lemma 3.6.1, we show that by solving the coboundary equation from Proposition 7 the

quantity U(ψ) can be made to vanish. Once U(ψ) vanishes, then we have an equation directly

relating Lyapunov exponents to the strain. This equation then allows us to conclude that a

diffeomorphism with small Lyapunov exponents also has small strain. We reformulate in a

Riemannian geometric setting some arguments of [DK07] by using the strain tensor. This

gives coordinate-free expressions that are easier to interpret.

Section 3.5 contains the most important connection between the strain tensor and isome-

tries: diffeomorphisms of small strain on isotropic manifolds are near to isometries. The

basic geometric fact proved in Section 3.5 is Theorem 3.5.1, which is true on any manifold.
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Theorem 3.5.1 is then used to prove Proposition 13, which is a more technical result adapted

for use in the KAM scheme. Proposition 13 then allows us to prove that our conjugated

tuple is near to a new tuple of isometries, which allows us to repeat the process.

All of the previous sections combine in Section 3.6 to prove Lemma 3.6.1. We then obtain

the main theorem, Theorem 3.1.1, and prove an additional theorem that relates the top and

bottom Lyapunov exponents of a perturbation, Theorem 3.6.1.

3.1.2 An oversight and its remedy

Section 3.5 is entirely new and different from anything appearing in [DK07]. Consequently,

the reader may wonder why it is needed. Section 3.5 provides a method of finding a tuple

of isometries (R′
1, . . . , R

′
m) near to the tuple (f̃1, . . . , f̃m) of diffeomorphisms. In [DK07], the

new diffeomorphisms Rm are found in the following manner. As in equation (3.9), one may

find vector fields Yi such that

expRi(x)
Yi(x) = fi(x).

If Z is a vector field onM , we define ψZ , as in equation (3.10) to be the map x 7→ expx Z(x).

There is a certain operator, the Casimir Laplacian, which acts on vector fields. This operator

is defined and discussed in more detail in subsection 3.2.2. Dolgopyat and Krikorian then

project the vector fields Yi onto the kernel of the Casimir Laplacian, to obtain a vector field

Y ′
i . They then define R′

i to equal ψY ′
i
◦ Ri. This happens in the line immediately below

equation (19) in [DK07].

One difficulty is establishing that the maps (R′
1, . . . , R

′
m) are close to the (f̃i, . . . , f̃m). The

argument for their nearness hinges on part (d) of Proposition 3 in [DK07], which essentially

says that, up to a third order error, the magnitude of the smallest Lyapunov exponent is a

bound on the distance. As written, the argument in [DK07] suggests that part (d) is an easy

consequence of part (c) of [DK07, Prop. 3]. However, part (d) does not follow. Here is a

simplification of the problem. Suppose that f : Rn → Rn is a diffeomorphism. Pick a point
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x ∈ Rn and writeDxf = A+B+C, where A is a multiple of the identity, B is symmetric with

trace zero, and C is skew-symmetric. The results in part (c) imply that A and B are small,

but they offer no information about C.1 Concluding that the norm of Df is small requires

that C be small as well. As C is skew-symmetric it is natural to think of it as the germ of

an isometry. Our modification to the argument is designed to accommodate the term C by

recognizing it as the “isometric” part of the differential. Pursuing this perspective leads to

the strain tensor and our Proposition 13. Conversation with Dmitry Dolgopyat confirmed

that there is a problem in the paper on this point and that part (d) of Proposition 3 does

not follow from part (c).

3.2 A DIOPHANTINE PROPERTY AND SPECTRAL GAP

Fix a compact connected semisimple Lie group G and let g denote its Lie algebra. Endow G

with the bi-invariant metric arising from the negative of the Killing form on g. We denote

this metric on G by d. We endow a subgroup H of G with the pullback of the Riemannian

metric from G and denote the distance on H with respect to the pullback metric by dH . We

use the manifold topology on G unless explicitly stated otherwise. Consequently, whenever

we say that a subset of G is dense, we mean this with respect to the manifold topology on G.

We say that a subset S of G generates G if the smallest closed subgroup of G containing S is

G. In other words, if ⟨S⟩ denotes the smallest subgroup of G containing S, then S generates

if ⟨S⟩ = G.

Suppose that S ⊂ G generates G. We begin this section by discussing how long a word in

the elements of S is needed to approximate an element of G. Then using this approximation

we obtain quantitative estimates for the spectral gap of certain operators associated to S.

Finally, those spectral gap estimates allow us to obtain a “tameness” estimate for a particular

operator that arises from S. This final estimate, Proposition 7, will be crucial in the KAM

1For those comparing with the original paper, A and B correspond to the terms q1 and q2, respectively,
which appear in part (c) of [DK07, Prop. 3].
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scheme that we use to prove Theorem 3.1.1.

The content of this section is broadly analogous to Appendix A in [Dol02]. However, our

development follows a different approach and in some places we are able to obtain stronger

estimates.

3.2.1 The Solovay-Kitaev algorithm

Suppose that S is a subset of G. We say that S is symmetric if s ∈ S implies s−1 ∈ S.

For a natural number n, let Sn denote the n-fold product of S with itself. Let S−1 be

{s−1 : s ∈ S}. For n < 0, define Sn to equal (S−1)−n. The following theorem says that any

sufficiently dense symmetric subset S of a compact semisimple Lie group is a generating set.

More importantly, it also gives an estimate on how long a word in the generating set S is

needed to approximate an element of G to within error ϵ. If w = s1 · · · sn is a word in the

elements of the set S, then we say that w is balanced if for each s ∈ S, s appears the same

number of times in w as s−1 does.

Theorem 3.2.1. [DN06, Thm. 1](Solovay-Kitaev Algorithm) Suppose that G is a compact

semisimple Lie group. There exists ϵ0(G) > 0 and α > 0 and C > 0 such that if S is any

symmetric ϵ0-dense subset of G then the following holds. For any g ∈ G and any ϵ > 0,

there exists a natural number lϵ such that d(g, Slϵ) < ϵ. Moreover, lϵ ≤ C logα(1/ϵ). Further,

there is a balanced word of length lϵ within distance ϵ of g.

Later, we use a version of this result that does not require that the set S be symmetric.

Using a non-symmetric generating set significantly increases the word length obtained in

the conclusion of the theorem. It is unknown if there exists a version of the Solovay-Kitaev

algorithm that does not require a symmetric generating set and keeps the O(logα(1/ϵ)) word

length. See [BO18] for a partial result in this direction.

Proposition 1. Suppose that G is a compact semisimple Lie group endowed with a bi-

invariant metric. There exists ϵ0(G) > 0, α > 0, and C ≥ 0 such that if S is any ϵ0-dense
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subset of G then the following holds. For any g ∈ G and any ϵ > 0, there exists a natural

number lϵ such that d(g, Slϵ) < ϵ. Moreover, lϵ ≤ Cϵ−α.

Our weakened version of the Solovay-Kitaev algorithm relies on the following lemma,

which allows us to approximate the inverse of an element h by some positive power of h.

Lemma 3.2.1. Suppose that G is a compact d-dimensional Lie group with a fixed bi-invariant

metric. Then there exists a constant C such that for all ϵ > 0 and any h ∈ G there exists a

natural number n < C/ϵd such that d(h−1, hn) < ϵ.

Proof. This follows from a straightforward pigeonhole argument. We cover G with sets of

diameter ϵ. There exists a constant C so that we can cover G with at most C vol(G)/ϵd such

sets, where d is the dimension of G. Consider now the first ⌈C vol(G)/ϵd⌉ iterates of h2. By

the pigeonhole principle, two of these must fall into the same set in the covering, and so

there exist natural numbers ni and nj such that 0 < ni < nj < ⌈C vol(G)/(ϵd)⌉ and h2ni and

h2nj lie in the same set in the covering. Thus d(h2ni , h2nj) < ϵ. As h is an isometry it follows

that d(e, h2nj−2ni) < ϵ and hence d(h−1, h2nj−2ni−1) < ϵ as well. This finishes the proof.

We now prove the proposition.

Proof of Proposition 1. Let Ŝ = S ∪ S−1. Note that as Ŝ is a symmetric generating set of

G that by Theorem 3.2.1 for any ϵ > 0, there exists a number lϵ/2 = O(logα(1/ϵ)) such that

for any g ∈ G there exists an element h in Ŝlϵ/2 such that d(h, g) < ϵ/2. Further, by the

statement of Theorem 3.2.1, we know that h is represented by a balanced word w in Ŝlϵ/2 .

To finish the proof, we replace each element of w that is in S−1 by a word in Sj for some

uniform j > 0. To do this we show that there exists a fixed j so that the elements of Sj

approximate well the inverses of the elements of S. Write S = {s1, · · · , sm} and consider

the element (s1, ..., sm) in the group G × · · · × G, where there are m terms in the product.

By applying Lemma 3.2.1 to the group G× · · · × G and the element (s1, ..., sm), we obtain

that there exists a uniform constant C ′ and j < C ′2dmldmϵ/2/ϵ
dm such that any s ∈ S−1 may

be approximated to distance ϵ/(2lϵ/2) by an element in Sj.
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We now replace each element of S−1 appearing in w with a word in Sj that is at distance

ϵ/(2lϵ/2) away from it. Call this new word w′. Because w is balanced, we replace exactly

half of the terms in w. Thus w′ is a word of length jlϵ/2/2 + lϵ/2/2 as we have replaced half

the entries of w, which has length lϵ/2, with words of length j. Let h′ be the element of G

obtained by multiplying together the terms in w′.

Note that multiplication of any number of elements of G is 1-Lipschitz in each argument.

Hence as we have modified the expression for h in exactly lϵ/2/2 terms and each modification

is of size ϵ/(2lϵ/2), h
′ is distance at most ϵ/2 from h and hence at most distance ϵ from g.

Thus Sjlϵ/2/2+lϵ/2/2 is ϵ dense in G and

jlϵ/2/2 + lϵ/2/2 < C ′′ldm+1
ϵ/2 /ϵdm = O(log(dm+1)α(1/ϵ)ϵ−dm),

which establishes the proposition as m depends only on |S|.

We record one final result that asserts that if S ⊆ G generates, then the powers of S

individually become dense in G.

Proposition 2. Suppose that G is a compact connected Lie group. Suppose that S ⊆ G

generates G. Then for all ϵ > 0 there exists a natural number nϵ such that Snϵ is ϵ-dense in

G.

Proof. Let {g1, ..., gm} be an ϵ/2-dense subset of G. Because S generates, for each gi there

exists ni and wi ∈ Sni such that d(gi, wi) < ϵ/2. By a pigeonhole argument similar to the

proof of Lemma 3.2.1, it holds that for all ϵ > 0 there exists a natural number N such that

for all n ≥ N , d(Sn, e) < ϵ. Thus there exists N such that for all n ≥ N , Sn contains

elements within distance ϵ/2 of the identity. Thus SN+maxi{ni} is ϵ-dense in G.

3.2.2 Diophantine Sets

We will now introduce a notion of a Diophantine subset of a compact connected semisimple

Lie group G. Write g for the Lie algebra of G. We recall the definition of the standard
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quadratic Casimir inside of U(g), the universal enveloping algebra of g. Write B for the

Killing form on g and let Xi be an orthonormal basis for g with respect to B. We will also

denote the inner product arising from the Killing form by ⟨·, ·⟩. Then the Casimir, Ω, is the

element of U(g) defined by

Ω =
∑
i

X2
i .

The element Ω is well-defined and central in U(g). Elements of U(g) act on the smooth vec-

tors of representations of G. Consequently, as Ω is central and every vector in an irreducible

representation (π, V ) is smooth, π(Ω) acts by a multiple of the identity. Given an irreducible

unitary representation (π, V ), Define c(π) by

c(π) Id = −π(Ω). (3.4)

The quantity c(π) is positive in non-trivial representations. Further, as π ranges over all

non-trivial representations, c(π) is uniformly bounded away from 0. For further information

see [Wal18, 5.6].

Definition 3.2.2. Let G be a compact, connected, semisimple Lie group. We say that a

subset S ⊂ G is (C, α)-Diophantine if the following holds for each non-trivial, irreducible,

finite dimensional unitary representation (π, V ) of G. For all non-zero v ∈ V there exists

g ∈ S such that

∥v − π(g)v∥ ≥ Cc(π)−α∥v∥,

where c(π) is defined in (3.4). We say that S is Diophantine if S is (C, α)-Diophantine

for some C, α > 0. If (g1, ..., gm) is a tuple of elements of G, the we say that this tuple is

(C, α)-Diophantine if the underlying set is (C, α)-Diophantine.

Our formulation of Diophantine is slightly different from the definition in [Dol02] as we

refer directly to irreducible representations. We choose this formulation because it allows for

a unified analysis of the action of Ω in diverse representations of G.
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Proposition 3. [Dol02, Thm. A.3] Suppose that S is a finite subset of a compact connected

semisimple Lie group G. Then S is Diophantine if and only if ⟨S⟩ = G. Moreover, there

exists ϵ0(G) such that any ϵ0-dense subset of G is Diophantine.

Before proceeding to the proof we will show two preliminary results.

Lemma 3.2.3. Suppose that G is a compact connected semisimple Lie group. Suppose that

(π, V ) is an irreducible unitary representation of G. Then for any v ∈ V of unit length, any

X ∈ g of unit length, and t ≥ 0,

∥π(exp(tX))v − v∥ ≤ t
√
c(π).

Proof. A similar argument to the following appears in [Wal18, 5.7.13]. There exists an

orthonormal basis {X1, ..., Xn} of g such that X1 = X. Observe that

π(exp(tX))v − v = tdπ(X)v +O(t2).

The transformation dπ(X) is skew symmetric with respect to the inner product. Thus

dπ(X)2 is positive semidefinite. Consequently:

⟨dπ(X)v, dπ(X)v⟩ = −⟨dπ(X)2v, v⟩ ≤ −⟨π(Ω)v, v⟩ = c(π)∥v∥2.

Hence

∥π(exp(tX)v)− v∥ ≤ t
√
c(π) +O(t2).
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For 0 ≤ i ≤ n, let ti =
i
n
t. Then

∥π(exp(tX))v − v∥ ≤
n∑
i=1

∥π(exp(tiX))v − π(exp(ti−1X))v∥

≤
n∑
i=1

∥π(exp(tX/n))v − v∥

≤ n

(
t

n

√
c(π) +O((t/n)2)

)
.

Taking the liminf of the right hand side as n→ ∞ gives the result.

The following lemma will be of use in the proof of Proposition 4.

Lemma 3.2.4. Suppose that (π, V ) is a non-trivial, irreducible, finite dimensional, unitary

representation of a compact, connected, semisimple group G. Then for any v ∈ V , there

exists g such that ⟨π(g)v, v⟩ = 0.

Proof. If such a g does not exist, then for all g ∈ G, π(g)v lies in the same half-space as v.

But then
∫
G
π(g)v dg ̸= 0 and is a G invariant vector, which contradicts the irreducibility of

π.

Proposition 4. Suppose that G is a compact connected semisimple Lie group. Then there

exist ϵ0, C, α > 0 such that any ϵ0-dense subset of G is (C, α)-Diophantine. If S is a subset

of G such that Sn0 is ϵ0-dense in G, then S is (C/n0, α) Diophantine.

Proof. Let ϵ0 equal the ϵ0(G) in Theorem 3.2.1, the Solovay-Kitaev algorithm. In the case

that S is already ϵ0-dense, let n0 = 1. By Theorem 3.2.1, there exist C and α such that for

each ϵ there exists lϵ ≤ C logα(ϵ−1) such that Sn0lϵ is ϵ-dense in G. Suppose that (π, V ) is a

non-trivial irreducible unitary representation of G and suppose that v ∈ V is a unit vector.

By Lemma 3.2.4 there exists g ∈ G such that ⟨π(g)v, v⟩ = 0. Now fix ϵ = 1/(100
√
c(π)).

Then there exists an element w ∈ Sn0lϵ such that d(g, w) < ϵ. Thus by Lemma 3.2.3,

∥π(g)v − π(w)v∥ ≤ ϵ
√
c(π) <

1

100
.
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By the triangle inequality, this implies that

∥π(w)v − v∥ ≥ 1.

Write w = gσ11 · · · gσn0lϵ

n0lϵ
where each σi ∈ {±1} and each gi ∈ S. Let wi = gσ11 · · · gσii . Let

w0 = e. By applying the triangle inequality n0lϵ times, we see that

n0lϵ−1∑
i=0

∥π(wi)v − π(wi+1)v∥ ≥ ∥v − π(w)v∥ ≥ 1.

Thus there exists some i such that

∥π(wi)v − π(wi+1)v∥ ≥ 1

n0lϵ
.

Applying π(w−1
i ) and noting by our choice of ϵ that lϵ ≤ C logα(c(π)), we obtain that

∥v − π(gσii )v∥ ≥ 1

n0C ′ logα(c(π))
. (3.5)

Thus we are done as we have obtained an estimate that is stronger than the required lower

bound of C/c(π)α.

We now prove the equivalence of the Diophantine property appearing in Proposition 4

with that in Definition 3.2.2.

Proof of Proposition 3. To begin, suppose that S is Diophantine. For the sake of contradic-

tion, suppose that H := ⟨S⟩ ≠ G. Consider the action of G on L2(G/H) by left translation.

Note that H acts trivially. However, L2(G/H) contains non-trivial representations of G.

Thus S ⊂ H cannot be Diophantine, which is a contradiction.

For the other direction, suppose that ⟨S⟩ = G. Then by Proposition 2 there exists n such

that Sn is ϵ0(G)-dense and, hence S is Diophantine by Proposition 4.

The stronger bound in equation (3.5) gives an equivalent characterization of Diophan-
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tineness.

Corollary 1. Let G be a compact, connected, semisimple Lie group. A subset S of G is

Diophantine if and only if there exist C, α > 0 such that the following holds for each non-

trivial, irreducible, finite dimensional, unitary representation (π, V ) of G. For all v ∈ V

there exists g ∈ S such that

∥v − π(g)v∥ ≥ ∥v∥
C logα(c(π))

.

Diophantine subsets of a group are typical in the following sense.

Proposition 5. Suppose that G is a compact connected semisimple Lie group. Let U ⊂ G×G

be the set of ordered pairs (u1, u2) such that {u1, u2} is a Diophantine subset of G. Then U

is Zariski open and hence open and dense in the manifold topology on G×G.

Proof. Let U ⊂ G×G be the set of points (u1, u2) such that {u1, u2} generates a dense subset

of G. Theorem 1.1 in [Fie99] gives that U is Zariski open and non-empty. By Proposition 3,

this implies that {u1, u2} is Diophantine. As U is non-empty, the final claim follows.

3.2.3 Polylogarithmic spectral gap

In this subsection, we study spectral properties of an averaging operator associated to a

tuple of elements of G. Consider a tuple (g1, ..., gm) of elements of G. Let R[G] denote the

group ring of G over R. From this tuple we form L := (g1 + · · · + gm)/m ∈ R[G]. The

element L acts in representations of G in the natural way. If (π, V ) is a representation of

G, then we write Lπ for the action of L on V . The main result of this subsection is the

following proposition, which gives some spectral properties of Lπ under the assumption that

{g1, ..., gm} is Diophantine.

Proposition 6. Suppose that G is a compact connected semisimple Lie group, (g1, ..., gm) is

a tuple of elements of G, and that {g1, ..., gm} generates G. Then there exists a neighborhood
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N of (g1, ..., gm) in G × · · · × G and constants D1, D2, α > 0 such that if (g′1, ...., g
′
m) ∈ N ,

then {g′1, . . . , g′m} is Diophantine and its associated averaging operator L satisfies

∥Lnπ∥ ≤ D1

(
1− 1

D2 log
α(c(π))

)n
,

for each non-trivial irreducible unitary representation (π, V ).

The proof of Proposition 6 uses the following lemma, which is a sharpening the triangle

inequality for vectors that are not colinear.

Lemma 3.2.5. Suppose that v, w are two vectors in an inner product space. Suppose that

∥v∥ ≤ ∥w∥ and let v̂ = v/∥v∥ and ŵ = w/∥w∥. If

∥v̂ − ŵ∥ ≥ ϵ,

then

∥v + w∥ ≤ (1− ϵ2/10)∥v∥+ ∥w∥.

Proof. We begin by considering the following estimate for unit vectors.

Claim 2. Suppose that the angle between two unit vectors v̂ and ŵ is θ ∈ [0, π], then

∥v̂ + w∥ ≤ ∥v̂∥+ (1− θ2/10)∥ŵ∥.

Proof. It suffices to consider the two vectors v̂ = (1, 0) and ŵ = (cos θ, sin θ) in R2. It then

suffices to show:

∥v̂ + ŵ∥2 ≤
(
∥v̂∥+

(
1− θ2

10

)
∥ŵ∥

)2

.

From the definitions,

∥v̂ + ŵ∥2 = 2 + 2 cos θ
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and (
∥v̂∥+

(
1− θ2

10

)
∥ŵ∥

)2

= 4− 4
θ2

10
+

θ4

100
≥ 4− 4

θ2

10
.

Thus it suffices to show for θ ∈ [0, π] that

2 + 2 cos θ ≤ 4− 4
θ2

10
,

which follows because for θ ∈ [0, π] we have the estimate cos θ ≤ 1− θ2/5.

We may prove the lemma once we have one more observation. Note that if v̂ and ŵ are

two unit vectors, then ∥v̂ − ŵ∥ = ϵ is less than the angle θ between v̂ and ŵ because the

distance between v̂ and ŵ along a unit circle they lie on is precisely θ. Thus we see that

ϵ ≤ θ for 0 ≤ θ ≤ π.

We now compute. Note that without loss of generality we may assume that ∥w∥ = 1,

which we do in the following. By the triangle inequality,

∥v + w∥ ≤ ∥v∥∥v̂ + ŵ∥+ (1− ∥v∥)∥ŵ∥.

By the claim it then follows that

∥v + w∥ ≤ ∥v∥((1− θ2)∥v̂∥+ ∥ŵ∥) + (1− ∥v∥)∥ŵ∥.

Noting from before that 0 ≤ ϵ ≤ θ for θ ∈ [0, π], we then conclude:

∥v + w∥ ≤ ∥v∥((1− ϵ2/10)∥v̂∥+ ∥ŵ∥) + (1− ∥v∥)∥ŵ∥ = (1− ϵ2/10)∥v∥+ ∥w∥.

Proof of Proposition 6. For convenience, let W = (g1, ..., gm) and let S = {g1, ..., gm}. Let

ϵ0(G) be as in Proposition 4. By Proposition 2, because ⟨S⟩ = G there exists some n0 such
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that Sn0 is ϵ0/2-dense in G. Then let N be the neighborhood of (g1, ..., gm) in G× · · · × G

such that if p = (g′1, ..., g
′
m) ∈ N then {g′1, ..., g′m}n0 is at least ϵ0-dense in G. It now suffices

to obtain the given estimate for the set W = (g1, ..., gm) using only the assumption that Sn0

is ϵ0-dense. Below, W
n0 is the tuple of the mn0 words of length n0 with entries in W .

By Proposition 4, there exist (C, α) such that any ϵ0-dense set is (C, α)-Diophantine. As

Sn0 is ϵ0-dense, so is Sn0S−n0 , and hence Sn0S−n0 is (C, α)-Diophantine.

Consider now a non-trivial irreducible finite dimensional unitary representation (π, V ) of

G. Since Sn0S−n0 is (C, α)-Diophantine, Corollary 1 implies that for any unit length v ∈ V

there exist w1, w2 ∈ Sn0 such that

∥v − π(w−1
1 w2)v∥ ≥ 1

C logα(c(π))
,

and so

∥π(w1)v − π(w2)v∥ ≥ 1

C logα(c(π))
.

Hence by Lemma 3.2.5, since π is unitary

∥π(w1)v+π(w2)v∥ ≤
(
1− 1

10C2 log2α(c(π))

)
∥π(w1)v∥+∥π(w2)v∥ ≤

(
2− 1

10C2 log2α(c(π))

)
∥v∥.

Then by the triangle inequality:

∥Ln0
π v∥ =

∥∥∥∥∥ 1

|W |n0

∑
w∈Wn0

π(w)v

∥∥∥∥∥
≤ 1

|W |n0

∥π(w1)v + π(w2)v∥+
∑

w∈Wn0\{w1,w2}

∥π(w)v∥


≤ 1

|W |n0

(
2− 1

10C2 log2α(c(π))

)
∥v∥+ |W |n0 − 2

|W |n0
∥v∥

≤
(
1− 1

10C2|W n0 | log2α(c(π))

)
∥v∥.
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Interpolating gives that for all n ≥ 0,

∥Lnπ∥ ≤
(
1− 1

10C2|W n0| log2α(c(π))

)−1(
1− 1

10C2|W n0| log2α(c(π))

)n/n0

.

As (π, V ) ranges over all non-trivial representations, c(π) is uniformly bounded away from

0; see [Wal18, 5.6.7]. This implies that the first term above is uniformly bounded by some

D > 0 independent of π. Applying the estimate (1 + x)ϵ ≤ 1 + ϵx to the second term then

gives the proposition.

Notice that in Proposition 6 that we obtain an entire neighborhood of our initial set S

on which we have the same estimates for Lπ. Consequently, because these estimates remain

true under small perturbations, we think of them as being stable. We will use the term

“stable” in the following precise sense.

Definition 3.2.6. Suppose that T is some property of a tupleW = (g1, ..., gm) with elements

in a Lie group G. We say that T is stable at W = (g1, ..., gm) if there exists a neighborhood

N of (g1, ..., gm) in G× · · · ×G such that if (g′1, ..., g
′
m) ∈ N then T holds for (g′1, ..., g

′
m). We

will also say that T is stable without reference to a subset when the relevant tuples that T

is stable on are evident.

A crucial aspect of the Diophantine property in compact semisimple Lie groups is that

by Proposition 4 there is a stable lower bound on (C, α). This stability will be essential

during the KAM scheme.

3.2.4 Diophantine sets and tameness

Consider a smooth vector bundle E over a closed manifold M . We may consider the space

C∞(M,E) of smooth sections of E. Consider a linear map L : C∞(M,E) → C∞(M,E).

We say that L is tame if there exists α such that for all k there exists Ck, such that for all

s ∈ C∞(M,E),

∥Ls∥Ck ≤ Ck∥s∥Ck+α .
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See [Ham82, II.2.1] for more about tameness. The main result of this section is to show such

estimates for certain operators related to L.

Though L acts in any representation of G, we are most interested in the action of G

on the sections of certain vector bundles, which we now describe. Suppose that K is a

closed subgroup of G and that E is a smooth vector bundle over G/K. We say that E is a

homogeneous vector bundle over G/K if G acts on E by bundle maps and this action projects

to the action of G on G/K by left translation. We now give an explicit description of all

homogeneous vector bundles over G/K via the Borel construction. See [Wal18, Ch. 5] for

more details about this topic and what follows. Suppose that (τ, E0) is a finite dimensional

unitary representation of K. Form the trivial bundle G × E0. Then K acts on this bundle

by (g, v) 7→ (gk, τ(k)−1v). Then (G × E0)/K is a vector bundle over G/K that we denote

by G×τ E0. Note, for instance, that C
∞(G,R) is the space of sections of the homogeneous

vector bundle obtained from the trivial representation of {e} < G. The left action of G on

G× E0 descends to G×τ E0, and hence this is a homogeneous vector bundle.

In order to do analysis in a homogeneous vector bundle, we must introduce some addi-

tional structures. Suppose that E = G ×τ E0 is a homogeneous vector bundle. The base

G/K comes equipped with the projection of the Haar measure on G. As the action of K on

G× E0 is isometric on fibers, the fibers of E are naturally endowed with an inner product.

We may then consider the space L2(E), the space of all L2 sections of E. In addition, we

will write C∞(E) for the space of all smooth sections of E. The action of G on E preserves

L2(E) and C∞(E).

We recall briefly how one may do harmonic analysis on sections of such bundles. As

before, let Ω be the Casimir operator, which is an element of U(g). Then Ω acts on the C∞

vectors of any representation of G. Denote by ∆ the differential operator obtained by the

action of −Ω on C∞(E). Then ∆ is a hypoelliptic differential operator on E. We then use the

spectrum of ∆ to define for any s ≥ 0 the Sobolev norm Hs in the following manner. L2(E)

may be decomposed as the Hilbert space direct sum of finite dimensional irreducible unitary
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representations Vπ. Write ϕ =
∑

π ϕπ for the decomposition of an element ϕ ∈ L2(E). Then

the s-Sobolev norm is defined by

∥ϕ∥2Hs =
∑
π

(1 + c(π))s∥ϕπ∥2L2 .

We write ∥f∥Cs for the usual Cs norm of a function or section of a vector bundle. It is not

always necessary to work with the decomposition of L2(E) into irreducible subspaces, but

instead use a coarser decomposition as follows. We let Hλ denote the subspace of L2(E)

on which ∆ acts by multiplication by λ > 0. There are countably many such subspaces

Hλ and each is finite dimensional. In the sequel, those functions that are orthogonal to the

trivial representations in L2(E) will be of particular importance. We denote by L2
0(E) the

orthogonal complement of the trivial representations in L2(E), and C∞
0 (E) the subspace

L2
0(E) ∩ C∞(E).

We now consider the action of L on the sections of a homogeneous vector bundle.

Proposition 7. [DK07, Prop 1.] (Tameness) Suppose that (g1, ..., gm) is a Diophantine

tuple with elements in a compact connected semisimple Lie group G. Suppose that E is a

homogeneous vector bundle that G acts on. Then there exist constants C1, α1, α2 > 0 such

that for any s ≥ 0 there exists Cs such that for any nonzero ϕ ∈ C∞
0 (G/K,E) the following

holds:

∥(I − L)−1ϕ∥Hs ≤ C1∥ϕ∥Hs+α1

and

∥(I − L)−1ϕ∥Cs ≤ Cs∥ϕ∥Cs+α2 .

Moreover, these estimates are stable.

Proof. As before, let Hλ be the λ-eigenspace of ∆ acting on sections of E. Let Lλ denote

the action of L on Hλ. From Proposition 6, we see that there exist D1, D2 and α3 such

that for all λ > 0, ∥Lnλ∥H0 ≤ D1(1 − 1/(D2 log
α3(λ))n. Thus there exists C3 such that
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∥(I − Lλ)−1∥H0 ≤ C3 log
α3(λ). Now observe, that in the following sum that λ ̸= 0 by our

assumption that ϕ is orthogonal to the trivial representations contained in L2(E):

∥(I − L)−1ϕ∥2Hs =
∑
λ>0

(1 + λ)s∥(I − Lλ)−1ϕλ∥2L2

≤
∑
λ>0

(1 + λ)s∥(I − Lλ)−1∥2∥ϕλ∥2L2

≤
∑
λ>0

C2
3 log

2α3(λ)(1 + λ)s∥ϕλ∥2L2

≤
∑
λ>0

C2
4(1 + λ)s+α1∥ϕλ∥2L2

≤ C2
4∥ϕ∥2Hs+α1 ,

for any α1 > 0 and sufficiently large C4. The second estimate in the proposition then follows

from the first by applying the Sobolev embedding theorem.

3.2.5 Application to isotropic manifolds

We now introduce the class of isotropic manifolds, which are the subject of this paper and

whose isometry groups may be studied along the above lines. We say that M is isotropic

if Isom(M) acts transitively on the unit tangent bundle of M , T 1M . This is equivalent to

Isom(M)◦ acting transitively on T 1M . There are not many isotropic manifolds. In fact,

all are globally symmetric spaces. See [Wol72, Thm. 8.12.2] for the full classification. The

compact examples are:

1. Sn = SO(n+ 1)/ SO(n), sphere,

2. RPn = SO(n+ 1)/O(n), real projective space,

3. CPn = SU(n+ 1)/U(n), complex projective space,

4. HPn = Sp(n+ 1)/(Sp(n)× Sp(1)), quaternionic projective space,

5. F4/ Spin(9), Cayley projective plane.
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Though S1 is an isotropic manifold, we will exclude it in all future statements because

its isometry group is not semisimple. The reason that we study isotropic manifolds is that

if M is an isotropic manifold, Isom(M) is semisimple.

Lemma 3.2.7. Suppose that M is a compact connected isotropic manifold other than S1,

then Isom(M) is semisimple. The same is true for Isom0(M), the connected component of

the identity.

For a proof of this Lemma, see [Sha01], which computes the isometry groups for each of

these spaces explicitly. In fact, these isometry groups all have simple Lie algebras.

One minor issue with applying what we have developed so far to isotropic manifolds is

that Isom(M) need not be connected. Even in the case of S2, Isom(M) is disconnected.

In fact, Dolgopyat and Krikorian assume that the isometries in their theorem all lie in the

identity component of Isom(M) and hence are rotations. Here, we consider the full isometry

group. Hence Theorem 3.1.1 is a generalization even in the case of Sn. That said, the

generalization is minor: the identity component is index 2 in the full isometry group.

Although connectedness of Isom(M) has not been the crux of previous arguments, if

Isom(M) ̸= Isom(M)◦, then there are “extra” representations of Isom(M) that appear in

the definition of Diophantineness that would need to be dealt with slightly differently. For

this reason we give the following definition, which is adapted to the case where Isom(M) is

not connected.

Definition 3.2.8. We say that a tuple (g1, . . . , gm) with each gi ∈ Isom(M) is Diophantine

if there exists n such that if S = {g1, . . . , gm} then Sn ∩ Isom(M)◦ is (C, α)-Diophantine for

some C, α > 0. We say that such a tuple is (C, α, n)-Diophantine.

It follows from Proposition 3 that if a tuple is Diophantine, then there exists a neigh-

borhood of that tuple such that the constants C, α, n may be taken to be uniform over that

neighborhood. Thus Diophantineness in this more general sense is a stable property. The

following analogue of Proposition 8 is then immediate.
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Proposition 8. LetM be a closed isotropic manifold of dimension at least 2 and S be a finite

subset of Isom(M). The set S is Diophantine if and only if Isom(M)◦ ⊆ ⟨S⟩. Moreover,

there exists ϵ0(M), C, α, n > 0 such that any subset of Isom(M) that is ϵ0-dense in Isom(M)◦

is stably (C, α, n)-Diophantine.

We will show a tameness result in this setting. The important point is that Isom(M)◦ is

a semisimple connected Lie group and TM is a homogeneous vector bundle that Isom(M)◦

acts on. Further, due to M being isotropic L2(M,TM) contains no trivial representations

of Isom(M)◦. Thus we are almost in a position where we can apply Proposition 7. There is

one small issue: there may be representations of Isom(M) that are trivial on Isom(M)◦ and

hence the previous arguments do not apply directly to these representations. However, for

the purpose of studying sections of TM , studying representations of Isom(M)◦ suffices. The

following Proposition explains how one may get around this issue to recover the appropriate

analog of Proposition 6. It is important to note that there are many choices of a “Laplacian”

acting on vector fields over a manifold, and they may not all be the same. In our case,

we are choosing to work with the Casimir Laplacian, which arises from viewing TM as a

homogeneous vector bundle.

Proposition 9. Suppose thatM is a closed isotropic manifold with dimM ≥ 2. Suppose that

(g1, . . . , gm) is a Diophantine tuple with elements in Isom(M). There exists a neighborhood

N of (g1, . . . , gm) in Isom(M) × · · · × Isom(M) and constants D1, D2, α > 0 such that if

(g′1, . . . , g
′
m) ∈ N , then {g′1, . . . , g′m} is Diophantine. Let Hλ denote the λ-eigenspace of ∆

acting on sections of TM . For any tuple in this neighborhood, the associated operator L acts

on L2(M,TM) and preserves the Hλ-eigenspaces. In fact, writing Lλ for this induced action

we have that:

∥Lnλ∥ ≤ D1

(
1− 1

D2 log
α(λ)

)n
.

The same holds for the eigenspaces Hλ of ∆ acting on other bundles over M assuming that

Isom(M) acts isometrically on the space of sections of those bundles. In cases where there is
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a trivial representation, we must also assume λ > 0. Examples of such bundles are L2(M,R)

as well as L2(Grr(M),R) in the case that Isom(M)◦ acts transitively on the r-planes in TM .

Proof. The key steps in the proof are substantially similar to those in Proposition 6, once

we show that the elements of Isom(M) all preserve the spaces Hλ. Let Γ be a bundle as in

the statement of the proposition that Isom(M) acts on isometrically.

Claim 3. Suppose that V ⊂ Γ is an irrep of Isom(M)◦ isomorphic to (π,W ). Then for any

k ∈ Isom(M)◦, kV is an irrep of V isomorphic to (π ◦ α,W ) for some automorphism α of

Isom(M)◦. In particular, c(π ◦ α) = c(π).

Proof. Let gk = k−1gk as usual. We claim that for any k ∈ Isom(M) that kV is a represen-

tation of Isom(M)◦. To see this note that for v ∈ V , that gkv = kgkv, but gk ∈ Isom(M)◦,

so kgkv ∈ kV . Moreover, it is straightforward to see that the representation of Isom(M)◦ on

kV is isomorphic to the representation (π ◦ α,W ) where α is the automorphism g 7→ gk.

We now claim that c(π◦α) = c(π). Because α is an automorphism, it preserves the Killing

form, and hence we see that we can write the Casimir element as
∑

i(dα
−1(Xi))

2. Now note

that if one traces through the computation of what the value c(π ◦ α) for the representation

π ◦ α, that the α−1 we have introduced cancels with the α. Thus the computation reduces

to the computation of c(π) with the original expression
∑

iX
2
i . Hence c(π ◦ α) = c(π).

To conclude from this point, one does the same argument as in Proposition 6, except

we start with the set Sn0 and only make use of the elements in Sn0 ∩ Isom(M)◦. No issues

arise because any terms that do not lie in Isom(M)◦ are isometries of Hλ as we have now

shown.

Having established the previous proposition the following is immediate and may be shown

by repeating the argument of Proposition 7.

Proposition 10. Suppose that M is a closed isotropic manifold with dimM ≥ 2. Suppose

that (g1, . . . , gm) is a Diophantine tuple with elements in Isom(M). There exist constants
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C1, α1, α2 > 0 such that for any s ≥ 0 there exists Cs such that for any ϕ ∈ C∞(M,TM) the

following holds:

∥(I − L)−1ϕ∥Hs ≤ C1∥ϕ∥Hs+α1 ,

and

∥(I − L)−1ϕ∥Cs ≤ Cs∥ϕ∥Cs+α2 .

Moreover these estimates are stable. The same holds for the action of L on any of the

sections of any of the bundles that Proposition 9 applies to.

3.3 APPROXIMATION OF STATIONARY MEASURES

In this section, we introduce the notion of a stationary measure associated to a random

dynamical system. We consider stationary measures of certain random dynamical systems

associated to a Diophantine subset of a compact semisimple Lie group as well as perturbations

of these systems. We begin by introducing these systems and some associated transfer

operators. In Proposition 11, we give an asymptotic expansion of the stationary measures

of a perturbation.

3.3.1 Random dynamical systems and their transfer operators

We now give some basic definitions concerning random dynamical systems. For general

treatments of random dynamical systems and their basic properties, see [Kif86] or [Arn13].

If (f1, ..., fm) is a tuple of maps of a standard Borel space M , then these maps generate

a uniform Bernoulli random dynamical system on M . This dynamical system is given by

choosing an index 1 ≤ i ≤ m uniformly at random and then applying the function fi to

M . To iterate the system further, one chooses additional independent uniformly distributed

indices and repeats. We always use the words random dynamical system to mean uniform

Bernoulli random dynamical system in the sense just described.

Associated to this random dynamical system are two operators. The first operator is
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called the Koopman operator. It acts on functions and is defined by

Mϕ :=
1

m

m∑
i=1

ϕ ◦ fi. (3.6)

The second operator is called the transfer operator. It acts on measures and is defined by

M∗µ :=
1

m

m∑
i=1

(fi)∗µ. (3.7)

Depending on the space M , we may restrict the domains of these operators to a suitable

subset of the spaces of functions and measures on M . We say that a measure is stationary

if M∗µ = µ. We assume that stationary measures have unit mass.

In this paper, we take M to be a compact homogeneous space G/K. If g ∈ G, then left

translation by g gives an isometry of G/K that we also call g. As before, a tuple (g1, ..., gm)

with each gi ∈ G generates a random dynamical system on G/K. We will also consider

perturbations of this random dynamical system. Consider a tuple (f1, ..., fm) where each

fi ∈ Diff∞(G/K). This collection also generates a random dynamical system on G/K. The

indices 1, ...,m give a natural way to compare the two systems. We refer to the initial system

as homogeneous or linear and to the latter system as non-homogeneous or non-linear.

We will simultaneously work with a homogeneous and non-homogeneous systems, so we

now introduce notation to distinguish the transfer operators of each. We write M for the

Koopman operator associated to the system generated by the tuple (g1, ..., gm) and we write

Mϵ for the Koopman operator associated to the tuple (f1, ..., fm). Analogously we use the

notation M∗ and M∗
ϵ .

Later we will compare the homogeneous system given by a tuple (g1, ..., gm) and a non-

homogeneous perturbation (f1, ..., fm). We thus introduce the notation

εk := max
i
dCk(fi, gi), (3.8)
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for describing how large a perturbation is. In addition, it will be useful to have a linearization

of the difference between fi and gi. The standard way to do this is via a chart on the Fréchet

manifold Diff∞(G/K). If dC0(fi, gi) <↪→ G/K, then we associate fi with the vector field Yi

defined at gi(x) ∈ G/K by

Yi(gi(x)) := exp−1
gi(x)

fi(x), (3.9)

where we choose the minimum length preimage of fi(x) in Tgi(x)G/K under the map exp−1
gi(x)

.

In addition, if Y is a vector field on M , then we define ψY : M → M to be the map that

sends

ψY : x 7→ expx(Y (x)). (3.10)

The following theorem asserts the existence of Lyapunov exponents for random dynamical

systems.

Theorem 3.3.1. [Kif86, Ch. 3, Thm. 1.1]. Suppose that E is measurable vector bundle

over a Borel space M . Suppose that F1, F2, ... is a sequence of independent and identically

distributed bundle maps of E with common distribution ν and suppose that ν has finite

support. Suppose that µ is an ergodic ν-stationary measure on M for the random dynamics

on M induced by those on E.

Then there exists a list of numbers, the Lyapunov exponents,

−∞ < λs < λs−1 < · · · < λ1 <∞,

such that for µ a.e. x ∈ M and almost every realization of the sequence, there exists a

filtration of linear subspaces

0 ⊂ V s ⊂ · · · ⊂ V 1 ⊂ Ex

such that, for that particular realization of the sequence, if ξ ∈ V i+1 \ V i, where V i ≡ {0}

for i > s, then

lim
n→∞

1

n
log ∥F n ◦ · · · ◦ F 1ξ∥ = λi.
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3.3.2 Approximation of stationary measures

Let dm denote the push-forward of Haar measure to G/K. Note that Haar measure is

stationary for the homogeneous random dynamical system given by (g1, ..., gm). The fol-

lowing proposition compares the integral against a stationary measure µ for a perturbation

(f1, ..., fm) and the Haar measure. Up to higher order terms, the difference between inte-

grating against Haar and against µ is given by the integral of a particular function U(ϕ).

We obtain an explicit expression for U(ϕ), which is useful because we can tell when U(ϕ)

vanishes and thus when µ is near to Haar. Compare the following with [DK07, Prop. 2].

Proposition 11. Suppose that S = (g1, ..., gm) is a Diophantine tuple with elements in a

compact connected semisimple group G or elements in Isom(M) for an isotropic manifold M

with dimM ≥ 2. Let G/K be a quotient of G in the former case or a space Isom(M)◦ acts

transitively on in the latter. There exist constants k and C such that if (f1, ..., fm) is a tuple

with elements in Diff∞(G/K) with ε0 = maxi dC0(fi, gi) <↪→ G/K, then the following holds

for each stationary measure µ for the uniform Bernoulli random dynamical system generated

by the fi. Let Yi = exp−1
gi(x)

fi(x). Then for any ϕ ∈ C∞(G/K), we have

∫
G/K

ϕ dµ =

∫
G/K

ϕ dm+

∫
G/K

U(ϕ) dm+O(ε2k∥ϕ∥Ck), (3.11)

where dm denotes the normalized push-forward of Haar measure to G/K and

U(ϕ) := 1

m

m∑
i=1

∇Yi(I −M)−1(ϕ− ∫ ϕ dm). (3.12)

Moreover, ∣∣∣∣∫ U(ϕ) dm
∣∣∣∣ ≤ C∥ϕ∥Ck

∥∥∥∥∥
m∑
i=1

Yi

∥∥∥∥∥
Ck

, (3.13)

and the constants, including the constant in the big-O in equation (3.11), are stable in S.

Proof. The proof is similar to the proof of [Mal12, Prop. 4]. We write the proof for the

connected group G; the proof for Isom(M) is identical with us using Proposition 10 instead
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of Proposition 7.

Note that a smooth real valued function defined on G/K is naturally viewed as a section

of the trivial bundle overG/K. If we view the Koopman operatorM associated to (g1, ..., gm)

as acting on the sections of the trivial bundle G/K ×R, then M satisfies the hypotheses of

Proposition 7. Thus there exists α and constants Cs such that for any ϕ ∈ C∞
0 (G/K), the

space of integral 0 smooth functions on G/K,

∥(I −M)−1ϕ∥Cs ≤ Cs∥ϕ∥Cs+α . (3.14)

Observe that for any i:

|ϕ ◦ fi(x)− ϕ ◦ gi(x)| ≤ ε0∥ϕ∥C1 .

Since µ is M∗
ϵ invariant, this implies that

∣∣∣∣∫ ϕ−Mϕ dµ

∣∣∣∣ = ∣∣∣∣∫ Mεϕ−Mϕ dµ

∣∣∣∣ ≤ ε0∥ϕ∥C1 .

Substituting (I−M)−1(ϕ−
∫
ϕ dm) for the function ϕ in the previous line and using equation

(3.14) yields a first order approximation:

∣∣∣∣∫ ϕ dµ−
∫
ϕ dm

∣∣∣∣ ≤ ε0C1∥ϕ∥C1+α . (3.15)

We now use this first order approximation to obtain a better estimate. Note the Taylor

expansion:

ϕ ◦ fi(x)− ϕ ◦ gi(x) = (∇Yiϕ)(gi(x)) +O(ε20∥ϕ∥C2).

Integrating against µ yields

∫
ϕ−Mϕ dµ =

∫
Mεϕ−Mϕ dµ =

∫
1

m

m∑
i=1

∇Yiϕ(gi(x)) dµ+O(ε20∥ϕ∥C2).

We now plug in (I − M)−1(ϕ − ∫ ϕ dm) for ϕ in the previous line and use the estimate in
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equation (3.14) to obtain:

∫
ϕ dµ−

∫
ϕ dm =

∫
1

m

m∑
i=1

(
∇Yi(I −M)−1(ϕ− ∫ ϕ dm)

)
(gi(x)) dµ+O(ε20∥ϕ∥C2+α).

Using equation (3.15) on the first term on the right hand side above yields

∫
ϕ dµ−

∫
ϕ dm =

∫
1

m

m∑
i=1

(
∇Yi(I −M)−1(ϕ− ∫ ϕ dm)

)
(gi(x)) dm (3.16)

+O

(
ε0

∥∥∥∥∥
m∑
i=1

∇Yi(I −M)−1ϕ

∥∥∥∥∥
C1+α

)
+O(ε20∥ϕ∥C2+α).

Note that ∥∥∥∥∥
m∑
i=1

∇Yi(I −M)−1ϕ

∥∥∥∥∥
C1+α

= O(ε2+α∥(I −M)−1ϕ∥C2+α).

The application of equation (3.14) to ∥(I −M)−1ϕ∥C2+αthen gives that the first big O-term

in (3.16) is O(ε0ε2+α∥ϕ∥C2+2α). Thus,

∫
ϕ dµ−

∫
ϕ dm =

∫
1

m

m∑
i=1

(
∇Yi(I −M)−1(ϕ− ∫ ϕ dm)

)
(gi(x)) dm+O(ε22+α∥ϕ∥C2+2α).

Now, by translation invariance of the Haar measure we may remove the gi’s:

∫
ϕ dµ−

∫
ϕ dm =

∫
1

m

m∑
i=1

∇Yi(I −M)−1(ϕ− ∫ ϕ dm) dm+O(ε22+α∥ϕ∥C2+2α).

This proves everything except equation (3.13).

We now estimate the integral of

U(ϕ) = 1

m

m∑
i=1

∇Yi(I −M)−1(ϕ− ∫ ϕ dm),

= ∇ 1
m

∑m
i=1 Yi

(I −M)−1(ϕ− ∫ ϕ dm),
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against Haar. By equation (3.14) there exists C1 such that

∥∥∥∥(I −M)−1(ϕ−
∫
ϕ dm)

∥∥∥∥
C1

≤ C1∥ϕ∥C1+α ,

which establishes equation (3.13) by a similar argument to the estimate of the big-O term

occurring in the previous part of this proof.

3.4 STRAIN AND LYAPUNOV EXPONENTS

In this section we study the Lyapunov exponents of perturbations of isometric systems. The

main result is Proposition 12, which gives a Taylor expansion of the Lyapunov exponents of

a perturbation. The terms appearing in the Taylor expansion have a particular geometric

meaning. We explain this meaning in terms of two “strain” tensors associated to a diffeo-

morphism. These tensors measure how far a diffeomorphism is from being an isometry. After

introducing these tensors, we prove Proposition 12. The Lyapunov exponents of a random

dynamical system may be calculated by integrating against a stationary measure of a certain

extension of the original system. By using Proposition 11, we are able to approximate such

stationary measures by the Haar measure and thereby obtain a Taylor expansion.

3.4.1 Norms on Tensors

Throughout this paper we use the pointwise L2 norm on tensors, which we now describe.

For a more detailed discussion, see the discussion surrounding [Lee18, Prop. 2.40]. If V is

an inner product space with orthonormal basis [e1, . . . , en], then V
⊗k has a basis of tensors

of the form

ei1 ⊗ · · · ⊗ eik

where 1 ≤ ij ≤ n for each 1 ≤ j ≤ k. We declare the vectors of this basis to be orthonormal

for the inner product on V ⊗k. This norm is independent of the choice of orthonormal basis.
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For a continuous tensor field T on a closed Riemannian manifold M , we write ∥T∥ for

maxx∈M ∥T (x)∥. If T is a tensor on a Riemannian manifold M , we then define its L2 norm

in the expected way by integrating the norm of T (x) as a tensor on TxM over all points

x ∈M , i.e.

∥T∥L2 =

(∫
M

∥T (x)∥2 d vol(x)
)1/2

.

3.4.2 Strain

If a diffeomorphism of a Riemannian manifold is an isometry, then it pulls back the metric

tensor to itself. Consequently, if we are interested in how near a diffeomorphism is to being an

isometry, it is natural to consider the difference between the metric tensor and the pullback

of the metric tensor. This leads us to the following definition.

Definition 3.4.1. Suppose that f is a diffeomorphism of a Riemannian manifold (M, g).

We define the Lagrangian strain tensor associated to f to be

Ef :=
1

2
(f ∗g − g) .

This definition is consonant with the definition of the Lagrangian strain tensor that

appears in continuum mechanics, c.f. [LRK09].

The strain tensor will be useful for two reasons. First, it naturally appears in the Taylor

expansion in Proposition 12, which will allow us to conclude that a random dynamical system

with small Lyapunov exponents has small strain. Secondly, we prove in Theorem 3.5.1 that

for certain manifolds that a diffeomorphism with small strain is near to an isometry. The

combination of these two things will be essential in the proof of our main linearization

result, Theorem 3.1.1, which shows that perturbations with all Lyapunov exponents zero are

conjugate to isometric systems.

We now introduce two refinements of the strain tensor that will appear in the Taylor

expansion in Proposition 12. Note that Ef is a (0, 2)-tensor. Consequently, we may take its
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trace with respect to the ambient metric g.

Definition 3.4.2. Suppose that f is a diffeomorphism of a Riemannian manifold (M, g).

We define the conformal strain tensor by

Ef
C :=

Tr(f ∗g − g)

2d
g.

We define the nonconformal strain tensor by

Ef
NC := Ef − Ef

C =
1

2

(
f ∗g − g − Tr(f ∗g − g)

d
g

)
.

3.4.3 Taylor expansion of Lyapunov exponents

Suppose that M is a manifold and that f is a diffeomorphism of M . Let Grr(M) denote

the Grassmannian bundle comprised of r-planes in TM . When working with Grr(M) we

write a subspace of TxM as Ex to emphasize the basepoint. Then f naturally induces a map

F : Grr(M) → Grr(M) by sending a subspace Ex ∈ Grr(TxM) to DxfEx ∈ Grr(Tf(x)M). If

we have a random dynamical system on M , then by this construction we naturally obtain a

random dynamical system on Grr(M). The following Proposition should be compared with

[DK07, Prop. 3].

Proposition 12. Suppose that M is a compact connected Riemannian manifold such that

Isom(M) is semisimple and that Isom(M)◦ acts transitively on Grr(M). Suppose that S =

(g1, ..., gm) is a Diophantine tuple of elements of Isom(M). Then there exists ϵ > 0 and

k > 0 such that if (f1, ..., fm) is a tuple with elements in Diff∞(M) such that dCk(fi, gi) < ϵ,

then the following holds. Suppose that µ is an ergodic stationary measure for the random

dynamical system obtained from the (f1, ..., fm). Let Λr be the sum of the top r Lyapunov
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exponents of µ. Then

Λr(µ) =− r

2dm

m∑
i=1

∫
M

∥Efi
C ∥

2 d vol+
r(d− r)

(d+ 2)(d− 1)m

m∑
i=1

∫
M

∥Efi
NC∥

2 d vol (3.17)

+

∫
Grr(M)

U(ψ) d vol+O(ε3k).

where ψ = 1
m

∑m
i=1 ln det(Dfi | Ex), εk = maxi{dCk(fi, gi)}, U is defined as in Proposition

11, and det is defined in Appendix 3.7.4.

Proof. Given the random dynamical system on M generated by the tuple (f1, ..., fm), there

is the induced random dynamical system on Grr(M) generated by the tuple (F1, ..., Fm).

The Lyapunov exponents of the system on M may be obtained from the system on Grr(M)

in the following way. By [Kif86, Ch. III, Thm 1.2], given an ergodic stationary measure µ

on M , there exists a stationary measure µ on Grr(M) such that

Λr(µ) =
1

m

m∑
i=1

∫
Grr(M)

ln det(Dfi | Ex) dµ(Ex).

Reversing the order of summation, this is equal to

∫
Grr(M)

1

m

m∑
i=1

ln det(Dfi | Ex) dµ(Ex). (3.18)

As Isom(M) acts transitively on Grr(M), Grr(M) is a homogeneous space of Isom(M). Thus

as (g1, ..., gm) is Diophantine, we may apply Proposition 11 to approximate the integral in

equation (3.18). Letting U be as in that proposition, there exists k such that

Λr(µ) =

∫
Grr(M)

1

m

m∑
i=1

ln det(Dfi | Ex) d vol(Ex) +
∫
Grr(M)

U

(
1

m

m∑
i=1

ln det(Dfi | Ex)

)
d vol

(3.19)

+O

(
(max

i
{dCk(Fi, Gi)})2

∥∥∥∥∥
m∑
i=1

ln det(Dfi | Ex)

∥∥∥∥∥
Ck

)
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We now estimate the error term. The following two estimates follow by working in a chart

on Grr(M). If f, g are two maps of M and F,G are the induced maps on Grr(M), then

dCk(F,G) = O(dCk+1(f, g)). In addition, by Lemma 3.7.13 we have that

∥∥∥∥∥
m∑
i=1

ln det(Dfi | Ex)

∥∥∥∥∥
Ck

= O(εk+1). (3.20)

Thus the error term in (3.19) is small enough to conclude (3.17).

To finish, we apply the Taylor expansion in Proposition 18, which is in Appendix 3.7.5,

to ∫
Grr(M)

ln det(Dfi | Ex) d vol(Ex),

which gives precisely the first two terms on the right hand side of equation (3.17) and error

that is O(ε31).

3.5 DIFFEOMORPHISMS OF SMALL STRAIN:

EXTRACTING AN ISOMETRY IN THE KAM SCHEME

In this section we prove Proposition 13, which gives that a diffeomorphism of small strain on

an isotropic manifold is near to an isometry. In the KAM scheme, we will see that diffeomor-

phisms with small Lyapunov exponents are low strain and hence conclude by Proposition 13

that they are near to isometries. Proposition 13 follows from Theorem 3.5.1, which shows

that certain diffeomorphisms with small strain of a closed Riemannian manifold are C0 close

to the identity.

Theorem 3.5.1. Suppose that (M, g) is a closed Riemannian manifold. Then there exists

1 > r > 0 and C > 0 such that if f ∈ Diff2(M) and

1. there exists x ∈M such that f(x) = x and ∥Dxf − Id ∥ = θ < r,

2. ∥f ∗g − g∥ = η < r, and
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3. dC2(f, Id) = κ < r,

then for all γ ∈ (0, r),

dC0(f, Id) ≤ C(θ + κγ + ηγ−1).

Theorem 3.5.1 is the main ingredient in the proof of our central technical result.

Proposition 13. Suppose that (M, g) is a closed isotropic Riemannian manifold. Then for

all σ > 0 and all integers ℓ > 0, there exist k and C, r > 0 such that for every f ∈ Diffk(M),

if there exists an isometry I ∈ Isom(M) such that

1. dCk(I, f) < r, and

2. ∥f ∗g − g∥H0 < r,

then there exists an isometry R ∈ Isom(M) such that

dC0(R, I) < C(dC2(f, I) + ∥f ∗g − g∥1−σH0 ), and (3.21)

dCℓ(f,R) < C(∥f ∗g − g∥1/2−σH0 dC2(f, I)1/2−σ). (3.22)

Though the statement of Proposition 13 is technical, its use in the proof of Theorem

3.1.1 is fairly transparent: the proposition produces an isometry near to a diffeomorphism

with small strain, which is the essence of iterative step in the KAM scheme. This remedies

the gap in [DK07].

3.5.1 Low strain diffeomorphisms: Proof of Theorem 3.5.1

The main geometric idea in the proof of Theorem 3.5.1 is to study distances by intersecting

spheres. In order to show that a diffeomorphism f is close to the identity, we must show

that it does not move points far. As we shall show, a diffeomorphism of small strain distorts

distances very little. Consequently, a diffeomorphism of small strain nearly carries spheres to

spheres. If we have two points x and y that are fixed by f , then the unit spheres centered at
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x and y are carried near to themselves by f . Consequently, the intersection of those spheres

will be nearly fixed by f . By considering the intersection of spheres in this way, we may

take a small set on which f nearly fixes points and enlarge that set until it fills the whole

manifold.

Before the proof of the theorem we prove several lemmas.

Lemma 3.5.1. Let M be a closed Riemannian manifold. There exists C > 0 such that the

following holds. If f ∈ Diff1(M) and ∥f ∗g − g∥ ≤ η then for all x, y ∈M ,

(1− Cη)d(x, y) ≤ d(f(x), f(y)) ≤ (1 + Cη)d(x, y).

Proof. If γ is a path between x and y parametrized by arc length, then f ◦γ is a path between

f(x) and f(y). The length of f ◦ γ is equal to

len(f ◦ γ) =
∫ len(γ)

0

√
g(Dfγ̇,Dfγ̇) dt

=

∫ len(γ)

0

√
f ∗g(γ̇, γ̇) dt

=

∫ len(γ)

0

√
g(γ̇, γ̇) + [f ∗g − g](γ̇, γ̇) dt

=

∫ len(γ)

0

√
1 + [f ∗g − g](γ̇, γ̇) dt.

By our assumption on the norm of f ∗g − g, there exists C such that |[f ∗g − g](γ̇, γ̇)| ≤ Cη.

Then using that
√
1 + x ≤ 1 + x for x ≥ 0, we see that

len(f ◦ γ) ≤
∫ len(γ)

0

1 + |[f ∗g − g](γ̇, γ̇)| dt ≤ len(γ) + Cη len(γ).

The lower bound follows similarly by using that 1 + x ≤
√
1 + x for −1 ≤ x ≤ 0.

Lemma 3.5.2. Let M be a closed Riemannian manifold. Then there exist r, C > 0 such

that for all f ∈ Diff2(M), if
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1. there exists x ∈M such that f(x) = x and ∥Dxf − Id ∥ = θ < r, and

2. dC2(f, Id) = κ < r,

then for all 0 < γ < r and y such that d(x, y) < γ

d(y, f(y)) ≤ C(γθ + γ2κ).

Proof. Let r =↪→ M/2. We work in a fixed exponential chart centered at x, so that x is

represented by 0 in the chart. Write

f(y) = 0 +D0fy +R(y) = y + (D0f − Id)y +R(y).

As the C2 distance between f and the identity is at most κ, by Taylor’s Theorem R(y) is

bounded in size by Cκ |y|2 for a uniform constant C. Thus

|f(y)− y| ≤ θ |y|+ Cκ |y|2 .

In particular, for all y such that |y| ≤ γ < r,

|f(y)− y| ≤ C ′(γθ + γ2κ).

But the distance in such a chart is uniformly bi-Lipschitz with respect to the metric on M ,

so the lemma follows.

The following geometric lemma produces points on two spheres in a Riemannian manifold

that are further apart than the centers of the spheres.

Lemma 3.5.3. Let M be a closed Riemannian manifold. There exist C, r > 0 such that for

all β ∈ (0, r), if x, y ∈M satisfy ↪→M
3

< d(x, y) < ↪→M
2

, and there is a fixed p ∈M such that

d(x, p) = d(y, x) and d(p, y) < r, then there exists q ∈M depending on p such that:
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y

x

p

q

Sd(x,y)(x)

Sd(x,y)(y)

Figure 3.1: The four points x, y, p, q appearing in Lemma 3.5.3. Given x, y, p, the lemma
produces the point q and gives an estimate on the length of the dotted line, which is longer
than d(x, y).

110



1. d(q, y) = d(y, x),

2. d(q, x) < β, and

3. d(q, p) ≥ d(x, y) + Cd(y, p)β.

In order to prove Lemma 3.5.3, we recall the following form of the second variation of

length formula. For a proof of this and related discussion, see [CE75, Ch. 1,§6].

Lemma 3.5.4. Let M be a Riemannian manifold and γ be a unit speed geodesic. Let γv,w

be a two parameter family of constant speed geodesics parametrized by γv,w : [a, b]× (−ϵ, ϵ)×

(−ϵ, ϵ) → M such that γ0,0 = γ. Suppose that ∂γv,w
∂v

= V and ∂γv,w
∂w

= W are both normal to

γ̇0,0, which we denote by T . Then

∂2 len(γv,w)

∂v∂w
= ⟨∇WV, T ⟩|ba + ⟨V,∇TW ⟩|ba.

Proof of Lemma 3.5.3. We will give a geometric construction using the points x and y and

then explain how this construction may be applied to the particular point p to produce a

point q.

Let Q be a unit tangent vector based at y that is tangent to Sd(x,y)(x), the sphere of

radius d(x, y) centered at x. Let γt : [a, b] → M be a one-parameter family of geodesics

parametrized by arc length so that γ0 is the unit speed geodesic from x to y, ∂tγt(b)|t=0 = Q,

γt(b) is a path in Sd(x,y)(x), and γt(a) = x for all t. The variation γt gives rise to a Jacobi

field Y . Note that Y (a) = 0, Y (b) = Q, and Y is a normal Jacobi field.

Next, let X be the Jacobi field along γ0 defined by X(b) = 0 and ∇TX|b = Y (b),

where T denotes γ̇0, i.e. the tangent to the curve γ0. Such a field exists and has uniformly

bounded norms because γ0 is shorter than the injectivity radius. Let ηt : [a, b] → M be a

one-parameter family of geodesics tangent to the field X such that ηt(b) = y, ηt is arc length

parametrized, and η0 = γ0. Note that each ηt has length d(x, y). Let T now denote γ̇s,t,

which give the tangent direction to each curve γs,t in the variation.
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Define γs,t : [a, b] → M to be the arc length parametrized geodesic between ηs(a) and

γt(b). The variation γs,t is a two parameter variation satisfying the hypotheses of Lemma

3.5.4. Consequently, we see that

d2 len(γs,t)

dsdt
= ⟨∇XY, T ⟩|ba + ⟨Y,∇TX⟩|ba. (3.23)

The first term may be rewritten as

⟨∇XY, T ⟩|ba = ∇X⟨Y, T ⟩|ba − ⟨Y,∇XT ⟩|ba. (3.24)

As Y (a) = 0 and X(b) = 0, the second term in (3.24) is zero. Similarly ∇X⟨Y, T ⟩|b = 0.

We claim that ∇X⟨Y, T ⟩|a = 0 as well. To see this we claim that Y = ∂tγs,t|a = 0 for

all s. This is the case because γs,t(a) is constant in t as γs,t(a) depends only on s. Thus

⟨Y, T ⟩|a = 0. When we differentiate by X, we are differentiating along the path γs,0(a). Thus

∇X⟨Y, T ⟩|a = 0 as ⟨Y, T ⟩ is 0 along this path. Thus ⟨∇XY, T ⟩|ba = 0. Noting in addition

that Y (a) = 0, equation (3.23) simplifies to

d2 len(γs,t)

dsdt
= ⟨Y,∇TX⟩|b.

Hence as we defined X so that ∇TX|b = Y (b),

d2 len(γs,t)

dsdt
= ⟨Y (b), Y (b)⟩ = ∥Q∥ = 1.

Note next that d2

ds2
len(γs,t) = 0 because the geodesics γs,0 all have the same length. Similarly,

d2

dt2
len(γs,t) = 0. Thus we have the Taylor expansion

d2

dsdt
len(γs,t) = d(x, y) + st+O(s3, t3). (3.25)
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There exist r0 > 0 and C > 0 such that for all 0 ≤ s, t < r0,

len(γs,t) ≥ d(x, y) + Cst. (3.26)

Consider now the pairs of points γs,0(a) and γ0,t(b). We claim that if p is of the form

p = γ0,t(b) for some small t then we may take q = γs,0(a), where the choice of s will be

dictated by β.

Note that

d(γs,0(a), x) = s∥X(a)∥+O(s2) and d(γ0,t(b), y) = t∥Y (b)∥+O(t2).

Hence there exists s0 such that for 0 < s, t < s0,

d(γs,0(a), x) < 2s∥X(a)∥ and d(γ0,t(b), y) < 2t∥Y (b)∥. (3.27)

For any β < min{2s0∥X(a)∥, 2r0∥X(a)∥}, by (3.26) taking s = β/2∥X(a)∥ we obtain

d(γs,0(a), γ0,t(b)) ≥ d(x, y) + tβC/2∥X(a)∥,

which by (3.27) implies

d(γs,0(a), γ0,t(b)) ≥ d(x, y) +
C

4∥X(a)∥∥Y (b)∥
βd(γ0,t(b), y).

By (3.27) and our choice of s

d(γs,0(a), x) < β.

Finally, d(γs,0(a), y) = d(x, y) by the construction of the variation. Thus the conclusion of

the lemma holds for the points p = γ0,t(b) and q = γs,0(a).

We claim that this gives the full result. First, note that for all pairs of points x and y
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and choices of vectors Q in our construction that ∥X(a)∥ and ∥Y (b)∥ are bounded above

and below. This is because the distance minimizing geodesic from X to Y does not cross the

cut locus. Similarly, the constants C, r0, and s0 may be uniformly bounded below over all

such choices of x and y by compactness. Thus as all these constants are uniformly bounded

independent of x, y and Q, the above argument shows that for any pair x and y that there

is a neighborhood N of y in Sd(x,y) of uniformly bounded size, such that for any p ∈ N there

exists q satisfying the conclusion of the lemma. This gives the result as any p sufficiently

close to y such that d(x, p) = d(x, y) lies in such a neighborhood N .

The following lemma shows that if a diffeomorphism with small strain nearly fixes a large

region, then that diffeomorphism is close to the identity.

Lemma 3.5.5. Let (M, g) be a closed Riemannian manifold. Then there exists r0 ∈ (0, 1)

such that for any r′, β ∈ (0, r0), there exists C > 0 such that if f ∈ Diff1(M) and

1. dC0(f, Id) ≤ r0,

2. there exists a point x ∈M such that all y with d(x, y) < r′ satisfy d(y, f(y)) ≤ β ≤ r0,

and

3. ∥f ∗g − g∥ = η ≤ r0,

then

dC0(f, Id) < C(β + η). (3.28)

Proof. Let r1, C1 denote the r and C in Lemma 3.5.3. Let C2 be the constant in Lemma 3.5.1.

There exists a constant r2 such that for any x, y ∈ M with ↪→ (M)/3 < d(y, x) <↪→ (M)/2

and any z such that d(y, z) < r2, then d(y, ẑ) < r1, where ẑ is the radial projection of z onto

Sd(x,y)(x). Let r0 = min{r1, r2, ↪→ (M)/24}.

Suppose that x ∈ M has the property that d(x, z) < r implies d(z, f(z)) ≤ β. Suppose

that y is a point such that ↪→ (M)/3 < d(y, x) <↪→ (M)/2. Let f̂(y) be the radial projection

of f(y) onto Sd(x,y)(x).
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By choice of r0 ≤ r2, d(y, f(y)) < r2 and so d(y, f̂(y)) ≤ r1. Hence we may apply Lemma

3.5.3 with β = r′, x = x, y = y and p = f̂(y) to conclude that there exists a point q ∈ M

such that

d(q, y) = d(x, y), (3.29)

d(q, x) < r′, (3.30)

d(q, f̂(y)) ≥ d(x, y) + C1d(y, f̂(y))r
′. (3.31)

Using the triangle inequality, we bound the left hand side of (3.31) to find

d(q, f(q)) + d(f(q), f(y)) + d(f(y), f̂(y)) ≥ d(q, f̂(y)) ≥ d(x, y) + C1d(y, f̂(y))r
′. (3.32)

First, as d(q, x) < r′ and points within r′ of x do not move more than β,

d(q, f(q)) ≤ β.

Second, by Lemma 3.5.1, as the distance between q and y is bounded above by ↪→ (M)/2,

there exists C3 such that

d(f(q), f(y)) ≤ d(q, y)(1 + C2η) = d(x, y) + C3η.

Similarly, as ↪→ (M)/3 < d(x, y) <↪→ (M)/2, Lemma 3.5.1 implies the following two bounds

d(x, f(y)) ≤ d(x, f(x)) + d(f(x), f(y)) ≤ β + d(x, y) + C3η (3.33)

and similarly

d(x, f(y)) ≥ d(x, y)− β − C3η. (3.34)

For w sufficiently close to Sd(x,y)(x) we claim that the radial projection ŵ is the point
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in Sd(x,y)(x) that minimizes the distance to w. To see this we use that below the injectivity

radius geodesics are the unique distance minimizing path between two points. There are

two cases: if d(x,w) > d(x, y) and there is some other point w′ ∈ Sd(x,y)(x) with d(w′, w) ≤

d(ŵ, w), then the path from x to w′ to w along geodesics must be strictly longer than the

geodesic path from x directly to ŵ. If d(x,w) < d(x, y) and ŵ ̸= w′ ∈ Sd(x,y)(x), then one

obtains two distance minimizing paths from x to Sd(x,y)(x) passing through w: the first along

a single geodesic and the second from x to w and then from w to w′. By the uniqueness of

distance minimizing geodesics, the latter path must have length greater than d(x, y) because

it is not a geodesic. Thus d(w,w′) > d(w, ŵ); a contradiction.

The estimates (3.33) and (3.34) imply that |d(f(y), x)− d(x, y)| ≤ β + C3η. Thus the

distance from f(y) to Sd(x,y)(x) is at most β + C3η. By the previous paragraph, f̂(y) is the

point in Sd(x,y)(x) that minimizes distance to f(y). Thus

d(f(y), f̂(y)) ≤ β + C3η. (3.35)

Thus, we obtain from equation (3.32)

β + d(x, y) + C3η + β + C3η ≥ d(x, y) + C1d(y, f̂(y))r
′.

Thus

2β + 2C3η

C1r′
≥ d(y, f̂(y)).

Hence

d(y, f(y)) ≤ d(f(y), f̂(y)) + d(y, f̂(y)) ≤ 2β + 2C3η

C1r′
+ β + C3η.

Thus by introducing a new constant C4 ≥ 1, we see that for any y satisfying ↪→ (M)/3 <

d(y, x) <↪→ (M)/2, that

d(y, f(y)) ≤ C4(β + η).
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Note that the constant C4 depends only on r′ and (M, g).

Consider a point y where (1/3+1/24) ↪→ (M) < d(x, y) < (1/2−1/24) ↪→ (M). Because

r′ <↪→ (M)/24 such a point y has a neighborhood of size r′ on which points are moved at

most distance C4(β + η) by f . Hence we may repeat the procedure taking y as the new

basepoint. Let x be the given point in the statement of the lemma. Any point q ∈ M

may be connected to x via a finite sequence of points x = x0, . . . , xn = q such that each

consecutive pair of points in the sequence are at a distance between (1/3 + 1/24) ↪→ (M)

and (1/2 − 1/24) ↪→ (M) apart. As M is compact there is a uniform upper bound on the

length of the shortest such sequence. If N is a uniform upper bound on the length of such

a sequence, the above argument shows that for all q ∈M

d(q, f(q)) ≤ NCN
4 (β + η),

which gives the result.

The proof of Theorem 3.5.1 consists of two steps. First a disk of uniform radius is

produced on which f nearly fixes points. Then Lemma 3.5.5 is applied to this disk to

conclude that f is near to the identity.

Proof of Theorem 3.5.1. Let r1, C1 be denote the r and C in Lemma 3.5.2, and let r2, C2

denote the r and c in Lemma 3.5.3. There will be a constant r3 > 0 introduced later

when it is needed. Let r4 denote the constant r0 appearing in Lemma 3.5.5. We let r =

min{1, r1, r2, r3, r4, ↪→ (M)/24}. Let C3 be the constant in Lemma 3.5.1. Let γ ∈ (0, r) be

given.

By Lemma 3.5.2, for all z such that d(x, z) < γ,

d(z, f(z)) ≤ C1(θγ + γ2κ). (3.36)

Suppose that y satisfies ↪→ (M)/3 < d(x, y) <↪→ (M)/2. Let f̂(y) be the radial projection
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of f(y) onto the sphere Sd(x,y)(x).

By Lemma 3.5.1,

d(x, y)(1− C3η) ≤ d(f(x), f(y)) ≤ d(x, y)(1 + C3η).

As f(x) = x, this implies

d(x, y)(1− C3η) ≤ d(x, f(y)) ≤ d(x, y)(1 + C3η).

Hence as d(x, y) is uniformly bounded above and below, there exists C4 such that

d(f(y), f̂(y)) < C4η. (3.37)

There exists r3 > 0 such that if η < r3, then C4η < r2. Hence by our choice of r,

d(y, f̂(y)) < r2 and we may apply Lemma 3.5.3 with β = γ, x = x, y = y, p = f̂(y) to

deduce that there exists q such that

d(q, y) = d(x, y), (3.38)

d(q, x) < γ, (3.39)

d(q, f̂(y)) ≥ d(x, y) + C2d(y, f̂(y))γ. (3.40)

By Lemma 3.5.1, and using that d(x, y) is bounded by ↪→ (M)/2, there exists C5 such

that

d(f(q), f(y)) ≤ d(q, y)(1 + C3η) ≤ d(x, y) + C5η. (3.41)

By equation (3.36), as d(q, x) < γ,

d(q, f(q)) < C1(θγ + κγ2). (3.42)
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Using the triangle inequality with (3.37), (3.41), (3.42), to bound the left hand side of

equation (3.40), we obtain that

C1(θγ+κγ
2)+d(x, y)+C5η+C4η ≥ d(q, f(q))+d(f(q), f(y))+d(f(y), f̂(y)) ≥ d(x, y)+C2d(y, f̂(y))γ.

Moreover (3.37) gives the lower bound d(y, f̂(y)) > d(y, f(y))− C4η. We then obtain that

C1(θγ + κγ2) + C5η + C4η ≥ C2d(y, f(y))γ − C2C4ηγ,

and so

C1(θγ + κγ2) + C5η + C4η + C2C4ηγ

C2γ
≥ d(y, f(y)).

The constants C1, . . . , C5 are uniform over all y satisfying ↪→ (M)/3 < d(x, y) <↪→ (M)/2.

Thus there exists C6 > 0 such that for all such y,

C6(ηγ
−1 + θ + κγ) ≥ d(y, f(y)). (3.43)

Suppose that y is a point at distance 5
12
↪→ (M) from x. The above argument shows if z

satisfies d(y, z) <↪→ (M)/12 then (3.43) holds with y replaced by z, i.e.

C6(ηγ
−1 + θ + κγ) ≥ d(z, f(z)).

Define α by

α = C6(ηγ
−1 + θ + κγ). (3.44)

Assuming that α < r4, z satisfies the second numbered hypothesis of Lemma 3.5.5 with

β = α and any r′ ≤↪→ (M)/12.

There are then two cases depending on whether α > r4 or α ≤ r4. In the case that

α ≤ r4, we apply Lemma 3.5.5 with x0 = z, r′ = r/2, and β = α. This gives that there
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exists a C7 depending only on r/2 such that

dC0(f, Id) ≤ C7(ηγ
−1 + θ + κγ).

If α > r4, then as κ ≤ r4,

dC0(f, Id) ≤ κ ≤ r4 ≤ α = C6(ηγ
−1 + θ + κγ).

Thus letting C8 = max{C6, C7}, we have that

dC0(f, Id) ≤ C8(ηγ
−1 + θ + κγ),

which gives the result.

3.5.2 Application to isotropic spaces: proof of Proposition 13

We now prove Proposition 13, which is an application of Theorem 3.5.1 to isotropic spaces.

The idea of the proof is geometric. We consider the diffeomorphism I−1f . This diffeomor-

phism is small in C0 norm, so there is an isometry R1 that is close to the identity such that

R−1
1 I−1f has a fixed point x. The differential of R−1

1 I−1f at x is very close to preserving

both the metric tensor and curvature tensor at x. We then use the following lemma to obtain

an isometry R2 that is nearby to R−1
1 I−1f .

Lemma 3.5.6. [Hel01, Ch. IV Ex. A.6] Let M be a simply connected Riemannian globally

symmetric space or RPn. Then if x ∈ M and L : TxM → TxM is a linear map preserving

both the metric tensor at x and the curvature tensor at x, then there exists R ∈ Isom(M)

such that R(x) = x and DxR = L.

We take the diffeomorphism in the conclusion of Proposition 13 to equal IR1R2. We

then apply Theorem 3.5.1 to deduce that R−1
2 R−1

1 I−1f is near the identity diffeomorphism.
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It follows that IR1R2 is near to f . Before beginning the proof, we state some additional

lemmas.

Lemma 3.5.7. Suppose that V1 and V2 are two subspaces of a finite dimensional inner

product space W . Then there exists C > 0 such that if x ∈ W , then

d(x, V1 ∩ V2) < C(d(x, V1) + d(x, V2)).

Lemma 3.5.8. Suppose that R is a tensor on Rn. Let stab(R) be the subgroup of GL(Rn)

that stabilizes R under pullback. Then there exist C,D > 0 such that if L : Rn → Rn is an

invertible linear map and ∥L− Id ∥ < D, then

dGL(Rn)(L, stab(R)) ≤ C∥L∗R−R∥.

Proof. Let s be the Lie algebra to stab(R). Then consider the map ϕ from gl to the tensor

algebra on Rn given by

w 7→ exp(w)∗R−R.

We may write w = v + v⊥, where v ∈ s and v ∈ s⊥. Because ϕ is smooth it has a Taylor

expansion of the form

ϕ(tv + tv⊥) = 0 + tAv + tBv⊥ +O(t2). (3.45)

Note that A is zero because v ∈ s. We claim that B is injective. For the sake of contradiction,
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suppose Bv⊥ = 0 for some v⊥ ∈ s⊥. Then exp(tv⊥)∗R−R = O(t2). But then

exp(v⊥)∗R−R =
n−1∑
i=0

exp((i+ 1)v⊥/n)∗R− exp(iv⊥/n)R

=
n−1∑
i=0

exp(iv⊥/n)∗(exp(v⊥/n)∗R−R)

= O(1/n).

And hence exp(v⊥)∗R−R = 0, which contradicts v⊥ /∈ s. Thus B is an injection and hence

by Taylor’s theorem for small v⊥ there exists C1 such that

∥ exp(v⊥)∗R−R∥ ≥ C1∥v⊥∥. (3.46)

By using the Taylor expansion (3.45) and noting that A = 0 there, we obtain from equation

(3.46) that there exists C2 > 0 such that

∥ exp(w)∗R−R∥ ≥ C2∥v⊥∥. (3.47)

It then follows there exists a neighborhood N of Id ∈ GL(Rn) such that stab(R) ∩ N is

the image of a disc D ⊂ s under exp. Write gl = s ⊕ s⊥ as a vector space. Thus as exp

is bilipschitz in a neighborhood of 0 ∈ gl there exists C3 such that if we write w ∈ D as

w = v + v⊥, where v ∈ s and v⊥ ∈ s⊥, then

C−1
3 ∥v⊥∥ ≤ dGL(Rn)(exp(w), exp(D)) ≤ C3∥v⊥∥. (3.48)

As stab(R) ∩ N = exp(D), for all w in a smaller neighborhood D′ ⊂ D, the middle term

above is comparable to dGL(Rn)(exp(w), stab(R)).
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Thus combining (3.48) with (3.47), we obtain

dGL(Rn)(exp(w), stab(R)) ≤ C−1
2 C3∥ exp(w)∗R−R∥.

This gives the result as exp is a surjection onto a neighborhood of Id ∈ GL(Rn).

The following lemma is immediate from [Hel01, Thm. IV.3.3], which explicitly describes

the isometries of globally symmetric spaces.

Lemma 3.5.9. Suppose that M is a closed globally symmetric space. There exists C > 0

such that if x, y ∈ M , then there exists an isometry I ∈ Isom(M)◦ such that I(x) = y and

dC0(I, Id) ≤ Cd(x, y). As Isom(M)◦ is compact, it follows that for each k there exists a

constant Ck such that one choose I with dCk(I, Id) ≤ Ckd(x, y).

We also use the following lemma, which is the specialization of Lemma 3.5.8 to the metric

tensor.

Lemma 3.5.10. Suppose that V is a finite dimensional inner product space with metric g

of dimension d. There exists a neighborhood U of Id ∈ GL(V ) and a constant C such that if

L ∈ U then

dGL(V )(L, SO(V )) ≤ C∥L∗g − g∥,

where GL(V ) is endowed with the right-invariant Riemannian metric it inherits from the

inner product space V .

We now prove the proposition.

Proof of Proposition 13. Pick 0 < λ < 1 and a small τ such that

λ

2
− λτ >

1

2
− σ and σ > τ > 0. (3.49)

We also assume without loss of generality that ℓ ≥ 3. By Lemma 3.7.10 there exist k0 and

ϵ0 > 0 such that if s is a smooth section of the bundle of symmetric 2-tensors over M ,
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∥s∥Ck0 ≤ 4, and ∥s∥H0 ≤ ϵ0, then ∥s∥Cℓ ≤ ∥s∥1−τH0 . Choose k such that

k > max{k0,
ℓ

1− λ
}. (3.50)

In addition, there are positive numbers ϵ1, . . . , ϵ7 that will be introduced when needed in the

proof below. We define

r = min{ϵ0, ϵ1/(1−τ)1 , ϵ2, . . . , ϵ7, 1}.

Let ϵ1 > 0 be small enough that for any x ∈ M , if L : TxM → TxM is invertible and

∥L∗g − g∥ ≤ ϵ1, then the conclusion of Lemma 3.5.10 holds for L.

Let η = ∥f ∗g − g∥H0 and ε2 = dC2(f, I). Consider the norm ∥f ∗g − g∥Ck0 . As dCk(I, f)

is uniformly bounded, we see that ∥f ∗g − g∥Ck−1 is uniformly bounded. In fact, there exists

ϵ2 > 0 such that if dCk(I, f) < ϵ2, then ∥f ∗g − g∥Ck−1 ≤ 4. As r < ϵ0, the discussion in the

first paragraph of the proof implies that

∥f ∗g − g∥C3 ≤ η1−τ . (3.51)

Note that this is less than ϵ1 by the choice of r.

For x ∈M , we may consider the Lie group GL(TxM) as well as its Lie algebra gl. There

exists ϵ3 > 0 such that restricted to the ball of radius ϵ3 about 0 ∈ gl, the Lie exponential,

which we denote by exp, is bilipschitz with constant 2.

Let x ∈ M be a point that is moved the maximum distance by I−1f . By Lemma 3.5.9,

there exists a constant Dk > 0 independent of x and an isometry R1 such that R1(x) =

I−1f(x) and dCk(R1, Id) < Dkd(x, I
−1f(x)). Let h = R−1

1 I−1f and note that h fixes x. Note

that there exists ϵ4 > 0 such that if dCk(f, I) < ϵ4, then by the previous sentence R1 can be

chosen so that dCk(R1, Id) is small enough that

∥Dxh− Id ∥ ≤ C0ε2. (3.52)
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We claim that Dxh is near a linear map of TxM that preserves both the metric tensor

and the curvature tensor. Let SO(TxM) be the group of linear maps preserving the metric

tensor on TxM and let G be the group of linear maps preserving the curvature tensor on

TxM . Both of these are subgroups of GL(TxM). By the sentence after equation (3.51),

Dxh pulls back the metric on TxM to be within ϵ1 of itself. Thus by Lemma 3.5.9, there

exists a uniform constant C1 such that Dxh is within distance C1η
1−τ of SO(TxM). Again

by equation (3.51), we have that ∥h∗g − g∥C3 ≤ η1−τ . In particular, as the curvature tensor

is defined by the second derivatives of the metric, this implies by Lemma 3.5.8 that there

exists a constant C2 such that Dxh is within distance C2η
1−τ of G.

The previous paragraph shows that there exists C3 such that Dxh is within distance

C3η
1−τ of both SO(TxM) and G. Consider now the exponential map of GL(TxM). As

before, let gl denote the Lie algebra of GL(TxM). Let H = exp−1(Dxh) ∈ GL(TxM). Note

that this preimage is defined as Dxh is near to the identity. Let so be the Lie algebra to

SO(TxM) and let g be the Lie algebra to G. As both SO(TxM) and G are closed subgroups

and exp is bilipschitz we conclude that the distance both between H and each of so and g is

bounded above by 2C3η
1−τ . Thus by Lemma 3.5.7, there exists C4 such that H is at most

distance C4η
1−τ from g ∩ so. Let X ∈ GL(TxM) be an element of g ∩ so minimizing the

distance from H to g ∩ so. There exists ϵ5 > 0 such that if η ≤ ϵ5 then C4η
1−τ < ϵ3. Hence

as r < ϵ5, the same bilipschitz estimate on the Lie exponential gives

d(exp(X), Dxh) ≤ 2C4η
1−τ . (3.53)

Note that exp(X) ∈ SO(TxM)∩G. By Lemma 3.5.6, there exists an isometry R2 of M such

that R2 fixes x and DxR2 = exp(X). In fact, because of equation (3.52) and because X is

within distance C4η
1−τ of H, we may bound the norm of X and hence deduce that there

exists C5 such that

dCk(R2, Id) ≤ C5(ε2 + η1−τ ). (3.54)
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The map R in the conclusion of the proposition will be IR1R2. We must now check

that R = IR1R2 satisfies estimates (3.21) and (3.22). The former is straightforward: (3.21)

follows from (3.54) combined with knowing that R1 was constructed so that d(R1, Id) ≤ D′ε2

for some uniform D′ > 0.

Let h2 = R−1
2 h. The map h2 has x as a fixed point. There exists C6 > 0 such that the

following four estimates hold:

∥Dxh2 − Id ∥ ≤ C6η
1−τ , (3.55)

∥h∗2g − g∥C3 ≤ η1−τ , (3.56)

dC2(h2, Id) ≤ C6(ε2 + η1−τ ), (3.57)

dCk(h2, Id) ≤ C6(η
1−τ + dCk(I, f)). (3.58)

The first two estimates above are immediate from equations (3.53) and (3.51), respectively.

The third and fourth follow from an estimate on Ck compositions, Lemma 3.7.5, and equation

(3.54).

Let r0 be the cutoff r appearing in Theorem 3.5.1. Note that there exists ϵ6 > 0 such that

if dCk(f, I) < ϵ6 and η < ϵ6, then the right hand side of each of inequalities (3.55) through

(3.58) is bounded above by r0. Hence as r < ϵ6 we apply Theorem 3.5.1 to h2 to conclude

that there exists C7 such that for all 0 < γ < r0,

dC0(Id, h2) < C7(η
1−τ + C6(ε2 + η1−τ )γ + η1−τγ−1).

But h2 = R−1
2 R−1

1 I−1f , so

dC0(R, f) < C8(η
1−τ + C6(ε2 + η1−τ )γ + η1−τγ−1). (3.59)

We now obtain the high regularity estimate, equation (3.22), via interpolation. By simi-
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larly moving the isometries from one slot to the other, (3.58) gives that

dCk(R, f) < C9(η
1−τ + dCk(I, f)). (3.60)

There exists ϵ7 > 0 such that if dCk(I, f) < ϵ7 and η < ϵ7, then the right hand side of

equation (3.60) is at most 1.

We now apply the interpolation inequality in Lemma 3.7.7 and interpolate between the

C0 and Ck distance to estimate dCℓ(R, f). Write ℓ = (1 − λ′)k for some λ′ and note that

1 > λ′ > λ by (3.50). We use the estimate in equation (3.59) to estimate the C0 norm and

use 1 to estimate the Ck norm, which we may do because r < ϵ7. Thus there exists C10 such

that for 0 < γ < r0,

dCℓ(R, f) < C10(η
1−τγ−1 + ε2γ)

λ′ . (3.61)

Note that there exists C11 > 0 such that ∥f ∗g−g∥H0 ≤ C11ε2. Consequently, there exists

a constant C13 such that C12

√
η/ε2 is less than the cutoff r0. We take γ to equal C12

√
η/ε2

in equation (3.61), which gives

dCℓ(R, f) < C13(η
1/2−τε

1/2
2 + η1/2ε

1/2
2 )λ

′
< C14(η

λ/2−λτε
λ/2
2 + ηλ/2ε

λ/2
2 ). (3.62)

Hence by our choice of λ and τ in equation (3.49) and because η < r < 1,

dCℓ(R, f) < C15η
1/2−σε

1/2−σ
2 , (3.63)

which establishes equation (3.22) and finishes the proof.

3.6 KAM SCHEME

In this section we develop the KAM scheme and prove that it converges. A KAM scheme is

an iterative approach to constructing a conjugacy between two systems in the C∞ setting.
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We begin by discussing the smoothing operators that will be used in the scheme. Then we

state a lemma, Lemma 3.6.1, that summarizes the results of performing a step in the scheme.

We then prove in Theorem 3.1.1 that by iterating the single KAM step that we obtain the

convergence needed for this theorem. We conclude the section with a final corollary of the

KAM scheme which gives an asymptotic relationship between the top exponent, the bottom

exponent, and the sum of all the exponents.

3.6.1 One step in the KAM scheme

In the KAM scheme, we begin with a tuple of isometries (R1, ..., Rm) and a nearby tuple

of diffeomorphisms (f1, ..., fm). We want to find a diffeomorphism ϕ such that for all i,

ϕ−1fiϕ = Ri. However, such a ϕ may not exist.

We will then attempt construct a conjugacy, ϕ that has the following property. Let f̃i

equal ϕ−1fiϕ. If we consider the tuple (f̃1, ..., f̃m) and (R1, ...., Rm), we can arrange that

the error term, U , in Proposition 12, is small. Once we know that the error term is small,

the estimate in Proposition 12 shows that small Lyapunov exponents imply that each f̃i

has small strain. Then using Proposition 13, small strain implies that there exist R′
i that

each f̃i is near to that R′
i. We then apply the same process to the tuples (f̃1, ..., f̃m) and

(R′
1, . . . , R

′
m).

The previous paragraph contains the core idea of the KAM scheme. Following this

scheme, one encounters a common technical difficulty inherent in KAM arguments: regular-

ity. In our case, this problem is most crucial when we construct the conjugacy ϕ. There is

not a single choice of ϕ, but rather a family depending on a parameter λ. The parameter λ

controls how smooth ϕ is. Larger values of λ give less regular conjugacies. We refer to this

as a conjugation of cutoff λ; the formal construction of the conjugation of cutoff λ appears

in the proof in Lemma 3.6.1 which also gives estimates following from this construction. The

nth time we iterate this procedure we will use a particular value λn as our cutoff. The proof

of Theorem 3.1.1 shows how to pick the sequence λn so that the procedure converges.
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We now introduce the smoothing operators. Suppose that M is a closed Riemannian

manifold. As before, let ∆ denote the Casimir Laplacian on M as in subsection 3.2.4. As

∆ is self adjoint, it decomposes the space of L2 vector fields into subspaces depending on

the particular eigenvalue associated to that subspace. We call these subspaces Hλ. For a

vector field X, we may write X =
∑

λXλ, where Xλ ∈ Hλ is the projection of X onto the λ

eigenspace of ∆. All of the eigenvalues of ∆ are positive. By removing the components of X

that lie in high eigenvalue subspaces, we are able to smooth X. Let TλX =
∑

λ′<λXλ′ equal

the projection onto the modes strictly less than λ in magnitude. LetRλX =
∑

λ′≥λXλ′ be the

projection onto the modes of magnitude greater than or equal to λ. Then X = TλX +RλX.

We record two standard estimates which may be obtained by application of the Sobolev

embedding theorem. For s ≥ 0, there exists a constant Cs > 0 such that for any s ≥ s and

any C∞ vector field X on M ,

∥TλX∥Cs ≤ Csλ
k3+(s−s)/2∥X∥Cs , (3.64)

∥RλX∥Cs ≤ Csλ
k3−(s−s)/2∥X∥Cs . (3.65)

The smoothing operators and the above estimates on them are useful because without

smoothing certain estimates appearing in the KAM scheme become unusable. One may see

this by considering what happens in the proof of Lemma 3.6.1 if one removes the smoothing

operator Tλ from equation (3.72).

The proof of the following lemma should be compared with [DK07, Sec. 3.4]

Lemma 3.6.1. Suppose that (Md, g) is a closed isotropic Riemannian manifold other than

S1. There exists a natural number l0 such that for ℓ > l0 and any (C, α, n0) the following

holds. For any sufficiently small σ > 0, there exist a constant rℓ > 0 and numbers k0, k1, k2

such that for any s > ℓ and any m there exist constants Cs,ℓ, rs,ℓ > 0 such that the following

holds. Suppose that (R1, ..., Rm) is a (C, α, n0)-Diophantine tuple with entries in Isom(M)

and (f1, ..., fm) is a collection of C∞ diffeomorphisms of M . Suppose that the random dy-
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namical system generated by (f1, ..., fm) has stationary measures with arbitrarily small in

magnitude bottom exponent. Write εk for maxi dCk(fi, Ri). If λ ≥ 1 is a number such that

λk0εl0 ≤ rℓ (3.66)

and

λk1−s/4εs + ε
3/2
l0

< rs,ℓ, (3.67)

then there exists a smooth diffeomorphism ϕ and a new tuple (R′
1, ..., R

′
m) of isometries of

M such that for all i setting f̃i = ϕfiϕ
−1, we have

dCℓ(f̃i, R
′
i) ≤ Cs,ℓ(λ

k1−s/10ε1−σs + ε
9/8
l0

), (3.68)

dC0(Ri, R
′
i) ≤ Cs,ℓ(εl0 + (λk1−s/4εs + ε

3/2
l0

)1−σ), (3.69)

dCs(f̃i, R
′
i) ≤ Cs,ℓλ

k2εs, and (3.70)

dCs(ϕ, Id) ≤ Cs,ℓλ
k2εs. (3.71)

The diffeomorphism ϕ is called a conjugation of cutoff λ.

Proof. As in equation (3.9), let Yi be the smallest vector field on Yi satisfying expR(x) Yi(x) =

fi(x). Let L be the operator on vectors fields defined by L(Z) = m−1
∑m

i=1(Ri)∗Z as in

Proposition 10. Let

V := −(1− L)−1

(
1

m

∑
i

TλYi

)
(3.72)

and let f̃i = ψV fiψ
−1
V . Let ε̃k = maxi dCk(f̃i, Ri) and let Ỹi be the pointwise smallest vector

field such that expR(x) Ỹi(x) = f̃i(x). By Proposition 15, for a C1 small vector field V ,

Ỹi = Yi + V −RiV +Q(Yi, V ), (3.73)

where Q is quadratic in the sense of Definition 3.7.1. By Proposition 7, we see that ∥V ∥Ck ≤

Ckεk+α for some fixed α. There exist β,D1 such that ∥Q(Yi, V )∥Ck ≤ Dkε
2
k+β. By estimating
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the terms in equation (3.73), it follows that for each k > 0 if εk+α+β < 1 then there exists a

constant D2,k such that

dCk(f̃i, Ri) < D2,kεk+α+β. (3.74)

Let µ be an ergodic stationary measure onM for the tuple (f̃1, ..., f̃m) as in the statement

of the lemma. We now apply Proposition 12 with r = d− 1, d and recall why the hypotheses

of that proposition are satisfied. First, by our assumption thatM is isotropic, Isom(M)◦ acts

transitively onM and Gr1(M). We have also assumed the tuple (R1, . . . , Rm) is Diophantine.

The nearness of (f̃1, . . . , f̃m) to (R1, . . . , Rm) is guaranteed by equation (3.74), a sufficiently

small choice of rℓ, and sufficiently large choice of l0 by equation (3.66) as λ ≥ 1. Thus by

applying Proposition 12 to the conjugated system, there exists k1 such that, in the language

of that proposition:

Λr(µ) =
−r
2dm

m∑
i=1

∫
M

∥E f̃i
C ∥

2+
r(d− r)

(d+ 2)(d− 1)m

m∑
i=1

∫
M

∥E f̃i
NC∥

2 d vol+

∫
Gr(M)

U(ψr)d vol+O(∥Ỹ ∥3Ck1 ),

where ψr(x) =
1
m

∑m
i=1 ln det(Dxf̃i | Ex) and U is defined in Proposition 11.

Pick a sequence of ergodic stationary measures µn so that |λd(µn)| → 0. Subtracting the

expression for Λd−1(µn) from the expression for Λd(µn), we obtain that

λd(µn) = Λd(µn)− Λd−1(µn) =
−1

2dm

m∑
i=1

∫
M

∥E f̃i
C ∥

2 d vol+
−(d− 1)

(d+ 2)(d− 1)m

m∑
i=1

∫
M

∥E f̃i
NC∥

2 d vol

−
∫
Grd−1(M)

U(ψd−1) d vol+

∫
Grd(M)

U(ψd) d vol+O(∥Ỹ ∥3Ck1 ).

(3.75)

Write Grr(R) for the map on Grr(M) induced by R. Write Yi for the shortest vector field

on Grr(M) such that expGrr(Ri)(x)
Yi = Grr(f̃i)(x). By Lemma 3.7.11, for each k there exists

C1,k such that ∥∥∥∥∥
m∑
i=1

Yi

∥∥∥∥∥
Ck

≤ C1,k

(∥∥∥∥∥
m∑
i=1

Ỹi

∥∥∥∥∥
Ck+1

+ ε̃2k+1

)
.
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Hence by the above line and the final estimate in Proposition 11 there exists k2 such that

∣∣∣∣∫
Grr(M)

U(ψr) d vol
∣∣∣∣ ≤ C2∥ψr∥Ck2

(∥∥∥∥∥ 1

m

m∑
i=1

Ỹi

∥∥∥∥∥
Ck2

+ ∥Ỹi∥2Ck2

)
. (3.76)

The term ∥ψr∥Ck2 is bounded by a constant times ε̃k2 . By using equation (3.73) we may

rewrite the second term appearing in the product in equation (3.76).

1

m

m∑
i=1

Ỹi =
1

m

∑
i

Yi +−(1− L)−1(
1

m

∑
i

TλYi)−
1

m

∑
i

(Ri)∗(−(1− L)−1)(TλYi) +
1

m

∑
i

Q(Yi, V )

=
1

m

∑
i

RλYi +
1

m

∑
i

TλYi − (1− L)(1− L)−1(
1

m

∑
i

TλYi) +
1

m

∑
i

Q(Yi, V )

=
1

m

∑
i

RλYi +
1

m

∑
i

TλYi −
1

m

∑
i

TλYi +
1

m

∑
i

Q(Yi, V )

=
1

m

∑
i

RλYi +
1

m

∑
i

Q(Yi, V )

By equation (3.65), there exists k3 such that for all s ≥ 0:

∥RλYi∥C1 ≤ C3,sλ
k3−s/2∥Yi∥Cs .

As the Q term is quadratic, there exist ℓ2, C4 such that

∥Q(Yi, V )∥Ck2 ≤ C4∥Yi∥Cℓ2∥V ∥Cℓ2 = C4∥Yi∥Cℓ2∥(1− L)−1(TλYi)∥Cℓ2 ≤ C5ε
2
ℓ3

for some ℓ3 by Proposition 10. Thus

∥∥∥∥∥ 1

m

∑
i

Ỹi

∥∥∥∥∥
Ck2

≤ C6,s(λ
k3−s/2εs + ε2ℓ3).

Finally, by equation (3.74) we have that ∥Ỹi∥Ck2 ≤ C7εℓ3 as before. Let ℓ4 = max{ℓ3, k2 +
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α + β}. Applying all of these estimates to (3.76) gives

∣∣∣∣∫
Grr(M)

U(ψr) d vol
∣∣∣∣ ≤ C8,sεk2(λ

k3−s/2εs + ε2ℓ4). (3.77)

By taking ℓ5 > max{k1 + α + β, k2, ℓ4}, using that λd(µn) → 0,2 and combining equations

(3.77) and (3.75) we obtain for s ≥ 0 that there exists C9,s such that

C9,s(λ
k3−s/2εsεℓ5 + ε3ℓ5) ≥

1

2dm

m∑
i=1

∫
M

∥E f̃i
C ∥

2 d vol+
(d− 1)

(d+ 2)(d− 1)m

m∑
i=1

∫
M

∥E f̃i
NC∥

2 d vol .

(3.78)

Note that the coefficients on each of the strain terms are positive. If s > ℓ5, then by taking

square roots, we see that there exist constants C10,s such that for each i

C10,s(λ
k3/2−s/4εs + ε

3/2
ℓ5

) ≥ ∥f̃ ∗
i g − g∥H0 . (3.79)

We now give a naive estimate on the higher Cs norms under the assumption that ε1 is

bounded by a constant ϵ1 > 0. To begin, by combining equation (3.64) and Proposition 7 we

see that there exists α > 0 such that for each s there exists D3,s such that ∥V ∥Cs ≤ D3,sλ
αεs.

Hence by Lemma 3.7.4, both dCs(ψV , Id) and dCs(ψ−1
V , Id) are bounded by D4,sλ

αεs. This

establishes equation (3.71).

Now applying the composition estimate from Lemma 3.7.5, we find that assuming λ ≥ 1:

dCs(f ◦ ψ−1
V , R) ≤ C11,s(dCs(f,R) + dCs(ψ−1

V , Id))

≤ C12,s(εs + λαεs)

≤ C13,s(λ
αεs).

2Note that we did not need λ(µn) → 0 in order to conclude equation (3.78). It suffices to know that there
µ such that λd(µ) is comparable to the right hand side of (3.77). This observation is the essence of the proof
of Theorem 3.6.1.
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We then apply the other estimate in Lemma 3.7.5, to find:

dCs(ψV ◦ f ◦ ψ−1
V , R) ≤ C11,s(dCs(ψV , Id) + dCs(f ◦ ψ−1

V , R))

≤ C14,s(λ
αεs + λαεs)

≤ C15,sλ
αεs.

Hence under an assumption of the type in equation (3.66), namely ε1 < ϵ1, we may conclude

dCs(f̃i, R) ≤ C15,sλ
αεs, (3.80)

which establishes equation (3.70).

We now apply Proposition 13 to this system. Let kσ and rσ be the k and r in Proposition

13 for a given choice of σ and our fixed ℓ. In preparation for the application of the lemma,

we record some basic estimates:

1. By combining equation (3.64) and Proposition 10 as before, we see that there exists ℓ6

such that

dC2(f̃i, Ri) ≤ εℓ6 . (3.81)

2. From the previous discussion we also have

∥f̃ ∗
i g − g∥H0 ≤ C10,s(λ

k3/2−s/4εs + ε
3/2
ℓ5

).

3. We also need the Ckσ estimate

dCkσ (f̃i, R) ≤ C15,kσλ
αεkσ .

Hence if

C15,kσλ
αεkσ < rσ (3.82)
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and

C10,s(λ
k3/2−s/4εs + ε

3/2
ℓ5

) ≤ rσ, (3.83)

then by Proposition 13 and the previous estimates there exist C6 and isometries R′
i such

that

dCℓ(f̃i, R
′
i) ≤ C16,s(λ

k3/2−s/4εs + ε
3/2
ℓ5

)1/2−σε
1/2−σ
ℓ6

(3.84)

and

dC0(R′
i, Ri) < C17,s(εℓ6 + (λk3/2−s/4εs + ε

3/2
ℓ5

)1−σ). (3.85)

Let ℓ7 = max{ℓ5, ℓ6}. If s > ℓ7, then equation (3.84) implies

dCℓ(f̃i, R
′
i) ≤ C16,s(λ

k4−s/9ε1−2σ
s + ε

5/4−(5/2)σ
ℓ7

),

which yields equation (3.68) under the assumption that σ > 0 is sufficiently small. Note that

equation (3.85) establishes equation (3.69). Thus we are done as we have established these

estimates assuming only bounds of the type appearing in equations (3.66) and (3.67).

Remark 1. In the above lemma, we could instead have assumed that there exist stationary

measures for which both the top exponent and the sum of all the exponents were arbitrarily

small and concluded the same result. The reason being if we had considered Λ1 − Λd in

equation (3.75), the coefficients of the strain terms would still have the same sign and so

we could conclude the same result. By related modifications, one can produce many other

formulations of the main result in [DK07] that require other hypotheses on the Lyapunov

exponents.

3.6.2 Convergence of the KAM scheme

In this section we prove the main linearization theorem.

Theorem 3.1.1. Let Md be a closed isotropic Riemannian manifold other than S1. There

exists k0 such that if (R1, ..., Rm) is a tuple of isometries of M such that the subgroup of

135



Isom(M) generated by this tuple contains Isom(M)◦, then there exists ϵk0 > 0 such that the

following holds. Let (f1, ..., fm) be a tuple of C
∞ diffeomorphisms satisfying maxi dCk0 (fi, Ri) <

ϵk0. Suppose that there exists a sequence of ergodic stationary measures µn for the ran-

dom dynamical system generated by (f1, ..., fm) such that |λd(µn)| → 0, then there exists

ψ ∈ Diff∞(M) such that for each i the map ψfiψ
−1 is an isometry of M and lies in the

subgroup of Isom(M) generated by (R1, . . . , Rm).

Before giving the proof, we sketch briefly the argument, which is typical of arguments

establishing the convergence of a KAM scheme. In a KAM scheme where one wishes to show

that some sequence of objects hn converges there are often two parts. The first part of the

proof is an inductive argument obtaining a sequence of estimates by the repeated application

of the KAM step, which in our case is Lemma 3.6.1. The second half of the proof checks

that the repeated application of the KAM step is valid by showing that we never leave the

neighborhood of its validity and then checks that the procedure is converging in C∞.

In the first part, one inductively produces a sequence of estimates by iterating a KAM

step. The estimates produced usually come in two forms: a single good estimate in a low

norm and bad estimates in high norms. The low regularity estimate probably looks like

∥hn∥C0 ≤ N−(1+τ)n where τ > 0, while for every s one has a high regularity estimate like

∥hn∥Cs ≤ N (1+τ)n . A priori, the hn become superexponentially C0 small, yet might be

diverging in higher Cs norms. To remedy this situation one then interpolates between the

low and high norms by using an equality derived from Lemma 3.7.7. In this case such an

inequality for the objects hn might assert something like

∥hn∥Cλ·0+(1−λ)s ≤ Cs∥f∥λC0∥f∥1−λCs .

If λ is sufficiently close to 1 and s is sufficiently large, a brief calculation then implies that

the C(1−λ)s norm is also super exponentially small. By changing s and λ one then obtains

convergence in C∞.
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Proof of Theorem 3.1.1. The proof is by a KAM convergence scheme. To begin we intro-

duce the Diophantine condition we will use. By Proposition 8, (R1, ..., Rm) is (C ′, α′, n′)-

Diophantine for some C ′, α′ > 0 and is stably so. By stability, there exist (C, α, n) and a C0

neighborhood U of (R1, ..., Rm) such that any tuple in U is also (C, α, n)-Diophantine. Hence

if (R′
1, ..., R

′
m) ∈ U , then the coefficients Ci,s appearing in Lemma 3.6.1 are uniform over all

of these tuples. Assuming we do not leave the set U , the constants appearing in Lemma

3.6.1 will be uniform. We check this at the end of the proof in the discussion surrounding

equation (3.90).

We now show that there exists a sequence of cutoffs λn so that if we repeatedly apply

Lemma 3.6.1 with the cutoff λn on the nth time we apply the Lemma, then the result-

ing sequence of conjugates converges and the hypotheses of Lemma 3.6.1 remain satisfied.

Given such a sequence λn the convergence scheme is run as follows. Let (f1,1, . . . , fm,1) =

(f1, . . . , fm) and let (R1,1, . . . , Rm,1) = (R1, . . . , Rm). Given (f1,n−1, . . . , fm,n−1) and (R1,n−1, . . . , Rm,n−1)

we apply Lemma 3.6.1 with cutoff λ = λn to produce a diffeomorphism ϕn and a tuple of

isometries that we denote by (R1,n, . . . , Rm,n). We set fi,n = ϕnfi,n−1ϕ
−1
n to obtain a new

tuple of diffeomorphisms (f1,n, . . . , fm,n). We write ψn for ϕn ◦ ϕn−1 ◦ · · · ◦ ϕ1, so that

fi,n = ψn ◦ fi ◦ ψ−1
n . Let εk,n = maxi dCk(fi,n, Ri,n).

We now show that such a sequence of cutoffs λn exist. Let σ be a small positive number

and let l0 and ϵl0 be as in Lemma 3.6.1. Let k0, k1, k2, rℓ, Cs,ℓ, rs,ℓ be as in Lemma 3.6.1 as

well. To show that such a sequence of cutoffs λn exists we must also provide a fixed choice

of s, ℓ for the application of Lemma 3.6.1. We will first show that the scheme converges in

the C l0 norm and then bootstrap to get C∞ convergence. Fix some arbitrary ℓ > l0. The

choice of ℓ does not matter in the sequel because we only will consider estimates on the l0

norm. We will choose s such that

s > ℓ. (3.86)
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Further, if s is sufficiently large and τ is sufficiently small, then we can pick α such that

2 + τ

s/4− k1
< α < min{1/k0, τ/k2} (3.87)

So, we increase s if needed and choose such a τ satisfying

1/8 > τ > 0. (3.88)

Pick s, α, τ so that each of equations (3.86), (3.87), (3.88) is satisfied.

Let λn = Nα(1+τ)n for some N we choose later. We will show that with this choice of

cutoff at the nth step that the KAM scheme converges. In order to show this, we show the

following two estimates hold inductively given a choice of sufficiently large N :

εl0,n ≤ N−(1+τ)n (H1)

εs,n ≤ N (1+τ)n (H2)

max
i

{dC0(Ri,n, Ri,1)} ≤
n∑
i=1

N− 1
2
(1+τ)i . (H3)

This involves two arguments. The first argument shows that there is a sufficiently large N

such that if we have these estimates for n, then the hypotheses of Lemma 3.6.1 are satisfied.

The second argument is the actual induction, which checks that if equations (H1) and (H2)

hold for n then they also hold for n + 1, i.e. we apply Lemma 3.6.1 and then deduce (H1)

and (H2) for n+ 1 from this.

We begin by checking that for all sufficiently large N > 0 and any n ∈ N if (H1), (H2),

and (H3) are satisfied, then the hypotheses of Lemma 3.6.1 are satisfied as well. To begin,

as the summation in (H3) is summable, for all sufficiently large N , we are assured that

(R1,n, . . . , Rm,n) lies in U . The first numbered hypothesis of Lemma 3.6.1 is equation (3.66):

λk0n εl0,n ≤ rℓ.
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Given the choice of λn, if equations (H1) and (H2) hold it suffices to have

Nαk0(1+τ)nN−(1+τ)n < rℓ,

which holds for N sufficiently large and all n by our choice of α. The other hypothesis of

Lemma 3.6.1, equation (3.67), requires that

λk1−s/4n εs,n + ε
3/2
l0,n

< rs,ℓ.

Given equations (H1) and (H2) and our choice of λn it suffices to have

Nα(k1−s/4)(1+τ)nN (1+τ)n +N− 3
2
(1+τ)n < rs,ℓ.

Our choice of s and α implies that α(k1 − s/4) < −1, hence the above inequality holds for

sufficiently large N . Thus the two hypotheses of Lemma 3.6.1 follow from equations (H1)

and (H2). Thus we may apply Lemma 3.6.1 given (H1), (H2), (H3), and our choice of N .

We now proceed to the inductive argument. What we will show is that for all N suffi-

ciently large, if we now require that our perturbation is small enough that (H1) and (H2)

hold for n = 1 and our choice of N we check that we may continue applying Lemma 3.6.1

and that these estimates as well as (H3) continue to hold. Note that (H3) is trivial when

n = 1. We must then check that equations (H1), (H2), and (H3) are satisfied for n+1 given

they hold for n. By the previous paragraph, we are free to apply the estimates from Lemma

3.6.1 as long as N is sufficiently large.

We now check that equation (H1) holds for n+ 1. By equation (3.68), we obtain that

εl0,n+1 ≤ Cs,ℓ(λ
k1−s/10
n ε1−σs,n + ε

9/8
l0,n

).
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By applying equations (H1) and (H2) to each term on the right it suffices to show

Cs,ℓ(N
α(k1−s/10)(1+τ)nN (1−σ)(1+τ)n +N−9/8(1+τ)n) < N−(1+τ)n+1

. (3.89)

By our choice of s, α, and τ , the lower bound in equation (3.87) implies that

α(k1 − s/10) + (1− σ) < −(1 + τ).

In addition, by equation (3.88), −9/8 < −(1+ τ). Thus for sufficiently large N the left hand

side of equation (3.89) is bounded above by N−(1+τ)n+1
.

Next we check equation (H2) holds for n+ 1. By equation (3.70),

εs,n+1 ≤ Cs,ℓλ
k2
n εs,n.

Hence,

εs ≤ Cs,ℓN
k2α(1+τ)nN (1+τ)n ,

By equation (3.87), 1 + k2α < 1 + τ and hence, assuming N is sufficiently large, the right

hand side is bounded by N (1+τ)n+1
, which shows equation (H2) is satisfied.

We now check that (H3). This follows easily by the application of equation (3.69), which

gives

dC0(Ri,n, Ri,n+1) ≤ Cs,ℓ(εl0,n + (λk1−s/4n εs,n + ε
3/2
l0,n

)1−σ) (3.90)

Applying (H1) and (H2) and the definition of λn to estimate the right hand side of equation

(3.90), we find that for the γ given in (H3) and N sufficiently large that

dC0(Ri,n, Ri,n+1) ≤ N− 1
2
(1+τ)n , (3.91)

and (H3) holds for n+ 1.

We have now finished the induction but not the proof. We have shown that there exists
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a sequence λn and a choice s, α, ℓ, τ,N , so that if the initial conditions of the scheme are

satisfied then we may iterate indefinitely and be assured of the estimates in equations (H1),

(H2), (H3) at each step. We must now check that the conjugacies ψn are converging in

C∞ and that the tuples (R1,n, . . . , Rm,n) are converging. The latter is immediate because

by (3.91) this is a Cauchy sequence. In fact, we chose N large enough that we never leave

U , hence the limit is in U . As the group of isometries of M is C0 closed and the distance

of the tuples (f1,n, . . . , fm,n) from a tuple of isometries is converging to 0, it follows that

(f1,n, . . . , fm,n) is converging to a tuple of isometries. To show that the ψn converge in

C∞, we obtain for every s an estimate on dCs(ϕn, Id). By a similar induction to that just

performed, the estimate (3.71) implies

dCs(ϕn, Id) ≤ CsN
(1+τ)n .

Let j > 0 be an integer. By Lemma 3.7.8, interpolating with λ = 1− 1/10 between the C l0

distance and the Cjl0 distance of ϕn to the identity gives

dC.9l0+(j/10)l0 (ϕn, Id) ≤ CjN
−.9(1+τ)nN .1(1+τ)n = CjN

−.8(1+τ)n .

Thus by increasing j, we see that there exists τ ′ > 0 such that for each Cs norm

dCs(ϕn, Id) < C ′
sN

−(1+τ ′)n .

The previous line is summable in n. Hence we can apply Lemma 3.7.6 to obtain convergence

of sequence of the ψn = ϕn ◦ · · · ◦ ϕ1 in the Cs norm for each s and thus C∞ convergence.

Thus we see that we have simultaneously conjugated each fi into Isom(M). In order to

obtain the full theorem, we must be assured that ψ−1fiψ lies in the subgroup of Isom(M)

generated by (R1, . . . , Rm). Note that Isom(M)/ Isom(M)◦ is a finite group and that ψ

is homotopic to the identity by construction. Thus we see that the image of the group
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generated by (ψ−1f1ψ, . . . , ψ
−1fmψ) in Isom(M)/ Isom(M)◦ is the same as the image of

the group generated by (R1, . . . , Rm). By our choice of N , (ψ−1f1ψ, . . . , ψ
−1fmψ) is in U

and thus generates Isom(M)◦. Thus the original tuple and the new one generate the same

subgroup of Isom(M) and we are done.

3.6.3 Taylor expansion of Lyapunov exponents

In order to recover Dolgopyat and Krikorian’s Taylor expansion in the setting of isotropic

manifolds, we would need to apply Proposition 12 for each 0 ≤ r ≤ dimM . However,

one of the hypotheses of Proposition 12 is that Isom(M)◦ acts transitively on Grr(M). In

Proposition 14, we see that unless M is Sn or RPn, Isom(M) does not act transitively on

Grr(M) for r ̸= 1 or d − 1. Despite Proposition 14, we are able to obtain a partial result:

the greatest and least Lyapunov exponents are symmetric about the “average” Lyapunov

exponent 1
d
Λd(µ).

Theorem 3.6.1. Suppose that Md is a closed isotropic manifold other than S1 and that

(R1, ..., Rm) is a subset of Isom(M) that generates a subgroup of Isom(M) containing Isom(M)◦.

Suppose that (f1, ..., fn) is a collection of C∞ diffeomorphisms of M . Then there exists k0

such that if µ is an ergodic stationary measure of the random dynamical system generated

by the (f1, ..., fm), then

∣∣∣∣λ1(µ)− (−λd(µ) +
2

d
Λd(µ))

∣∣∣∣ ≤ o(1) |λd(µ)| . (3.92)

where the o(1) term goes to 0 as maxi dCk0 (fi, Ri) → 0. The o(1) term depends only on

(R1, ..., Rm).

Proof. By Theorem 3.1.1, there are two cases: either (f1, . . . , fm) is conjugate to isometries

or it is not. In the isometric case equation (3.92) is immediate, so we may assume that there

there is an ergodic stationary measure µ with λd(µ) non-zero. The proof that follows is then

essentially an observation about what happens when the KAM scheme is run on a system
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that has a measure with such a non-zero Lyapunov exponent. If we run the KAM scheme

without assuming that (f1, ..., fm) has a measure with zero exponents, we can keep running

the scheme until the non-trivial exponents prevent us from continuing. At a certain point

in the procedure, the non-trivial exponents cause a certain inequality fail. Using the failed

inequality then gives the result.

We now give the details. Fix an ergodic stationary measure µ and consider equation

(3.75) appearing in the KAM step:

λd(µ) =
−1

2dm

m∑
i=1

∫
M

∥E f̃i
C ∥

2 d vol+
−(d− 1)

(d+ 2)(d− 1)m

m∑
i=1

∫
M

∥E f̃i
NC∥

2 d vol

−
∫
Grd−1(M)

U(ψd−1) d vol+

∫
Grd(M)

U(ψd) d vol+O(∥Ỹ ∥3Ck1 ).

(3.93)

The above equation allows us to use that the exponent λd is small in magnitude. In the

KAM step, we proceed from this estimate by estimating the ∥Ỹ ∥3
Ck1

term as well as the U

terms. Equation (3.77) and the choice of ℓ5 imply that these terms satisfy:

∣∣∣∣∣
∫
Grd−1(M)

U(ψd−1) d vol−
∫
Grd(M)

U(ψd) d vol+O(∥Ỹ ∥3Ck1 )

∣∣∣∣∣ ≤ C8,sεℓ5(λ
k3−s/2εs+ε

2
ℓ5
). (3.94)

Hence as long as

|λd(µ)| < (C9,s − C8,s)(εℓ5(λ
k3−s/2εs + ε2ℓ5)) (3.95)

the proof of Lemma 3.6.1 may proceed to equation (3.78) even if there is not a sequence of

measures µn such that |λd(µn)| → 0. Hence we may continue running the KAM scheme until

equation (3.95) fails to hold.

Suppose that we iterate the KAM scheme until equation (3.95) fails. We consider the

estimates available in the KAM scheme at the step of failure. By applying Proposition 12

with r equal to 1, d, and d− 1, we obtain:
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Λ1(µ) =
−1

2dm

m∑
i=1

∫
M

∥E f̃i
C ∥

2 d vol+
(d− 1)

(d+ 2)(d− 1)m

m∑
i=1

∫
M

∥E f̃i
NC∥

2 d vol+

∫
G1(M)

U(ψ1) d vol+

O(∥Ỹ ∥3Ck1 )

Λd−1(µ) =
−(d− 1)

2dm

m∑
i=1

∫
M

∥E f̃i
C ∥

2 d vol+
(d− 1)

(d+ 2)(d− 1)m

m∑
i=1

∫
M

∥E f̃i
NC∥

2 d vol+

∫
Gd−1(M)

U(ψd−1) d vol+

O(∥Ỹ ∥3Ck1 )

Λd(µ) =
−d
2dm

m∑
i=1

∫
M

∥E f̃i
C ∥

2 d vol+

∫
Gd(M)

U(ψd) d vol+O(∥Ỹ ∥3Ck1 )

(3.96)

Write Ui as shorthand for the term
∫
Gri(M)

U(ψi) d vol. Then,

λ1(µ)− (−λd(µ) +
2

d
Λd(µ)) = Λ1(µ)− Λd−1(µ) +

(d− 2)

d
Λd(µ) (3.97)

= U1 + Ud−1 + Ud +O(∥Ỹ ∥3Ck1 ). (3.98)

Using equations (3.77), (3.74), and that ℓ5 > k1+α, we bound the right hand side of equation

(3.98) to find

∣∣∣∣λ1(µ)− (−λd(µ) +
2

d
Λd(µ))

∣∣∣∣ ≤ 4C8,s(λ
k3−s/2
n εsεℓ5 + ε3ℓ5).

But by the failure of estimate (3.95), we may bound the right hand side of the previous line

to obtain: ∣∣∣∣λ1(µ)− (−λd(µ) +
2

d
Λd(µ))

∣∣∣∣ ≤ 4

C9,s − C8,s

|λd(µ)| . (3.99)

Note in the above equation that the larger C9,s is the smaller the left hand side of the

equation is. We can take C9,s as large as we like and still run the KAM scheme. Running

the KAM scheme while having a larger constant C9,s only requires that we assume our initial
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perturbation is closer to the original system of rotations in the Ck0 norm. Hence by assuming

that the initial distance is arbitrarily small in the Ck0 norm, we may take C9,s as large as we

like. Thus equation (3.92) follows from equation (3.99).

We now check the claim about isotropic manifolds.

Proposition 14. Suppose thatM is a closed isotropic manifold other than RPn or Sn. Then

Isom(M) does not act transitively on Grk(M) except if k equals = 0, 1, dimM −1 or dimM .

Proof. From subsection 3.2.5, we have a list of all the closed isotropic manifolds, so we may

give an argument for each of the families, CPn, HPn, and F4/ Spin(9).

The isometry group of CPn is PSU(n+ 1). If we fix a point p in CPn, then the isotropy

group is naturally identified with SU(n). It is then immediate that the action of the isotropy

group preserves complex subspaces of Grk(CPn). Consequently Isom(CPn) does not act

transitively on Grk(CPn) as CPn has subspaces that are not complex. In the case of HPn,

which is constructed similarly to CPn, a similar argument works where we use instead that

the isotropy group is Sp(k), the compact symplectic group.

We now turn to the Cayley plane, for which we give a dimension counting argument.

The dimension of F4 is 52 while dimF4/ Spin(9) = 16. Recall that if M is a manifold and

dimM = d then dimGrk(M) = (k + 1)d + k(k+1)
2

. Hence dimGr3(F4/ Spin(9)) > 52. If

Isom(M) acts transitively on 2-planes then M must have constant sectional curvature and

hence is a sphere. The Cayley plane does not have constant sectional curvature hence k = 2

is ruled out. Similarly, a dimension count excludes the possibility that F4 acts transitively

on Grk(F4/ Spin(0)) when k ̸= 0, 1, 15, 16.
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3.7 APPENDIX

3.7.1 Ck Estimates

In this subsection of the appendix, we collect some basic results concerning the calculus of

Ck functions. Most of the estimates stated here are used to compare constructions coming

from Riemannian geometry and constructions coming from a chart.

Most of the estimates we prove below involve the following definition, which is an appro-

priate form for a second order term in the Ck setting.

Definition 3.7.1. Suppose that X, Y, Z are all vector fields and that Z = Z(X, Y ) is a

function of X and Y . We say that Z is quadratic in X and Y if there exists a fixed ℓ such

that for each k there is a constant Ck depending only on Z such that:

∥Z∥Ck ≤ Ck(∥X∥2Ck+ℓ + ∥Y ∥2Ck+ℓ). (3.100)

In addition to quadratic, we may also refer to Z as being second order in X and Y . In the

case that Z depends only on X the definition is analogous.

One thinks of equation (3.100) as a quadratic tameness estimate. Our main use of

this notion is the following proposition, which allows us compose diffeomorphisms up to a

quadratic error. As before, if Y is a vector field on M , we write ψY for the map of M that

sends x 7→ expx(Y (x)). To emphasize that ψ depends on a metric g, we may write ψgY .

The main result from this subsection is the following, which is used in the KAM scheme

to see how the linearized error between fi and Ri changes when fi is conjugated by a diffeo-

morphism ψ.

Proposition 15. [DK07, Eq. (8)] Suppose that (M, g) is a closed Riemannian manifold

and that R is an isometry of M . Suppose that f is a diffeomorphism of M that is C1 close

to R. Let Y (x) = exp−1
R(x) f(x). If C is a C1 small vector field on M , then the error field
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exp−1
R(x) ψCfψ

−1
C is equal to

Y + C −R∗C +Q(C, Y ),

where Q is quadratic in C and Y .

The proof of Proposition 15 is straightforward. It particularly relies on the following

proposition, which simplifies working with diffeomorphisms of the form ψX .

Proposition 16. Let M be a compact Riemannian manifold. If X, Y ∈ Vect∞(M) are

sufficiently C1 small and we define Z by

ψY ◦ ψX = ψX+Y+Z ,

then there exists a fixed ℓ such that for each k there exists Ck such that

∥Z∥Ck ≤ Ck(∥X∥2Ck+ℓ + ∥Y ∥2Ck+ℓ),

i.e. Z is quadratic in X and Y .

The proof of Proposition 16 uses the following two lemmas concerning maps of Rn.

Lemma 3.7.2. [Hör76, Thm. A.7] Suppose that B is a compact convex domain in Rn with

interior points. Then for k ≥ 0, there exists C such if f, g are Ck maps from B to R, then

∥fg∥Ck ≤ Ck(∥f∥Ck∥g∥C0 + ∥f∥C0∥g∥Ck).

Lemma 3.7.3. [Hör76, Thm. A.8] For i ∈ {1, 2, 3}, let Bi be a fixed compact convex domain

in Rni with interior points. Let k ≥ 1. There exists Ck > 0 such that if f : B1 → B2 and

g : B2 → B3 are both Ck, then f ◦ g is Ck and

∥f ◦ g∥Ck ≤ Ck(∥f∥Ck∥g∥kC1 + ∥f∥C1∥g∥Ck + ∥f ◦ g∥C0).
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Using the previous two lemmas, we prove the following.

Proposition 17. Suppose that g is a metric on Rn. For a smooth vector field Y such that

∥Y ∥C1 < 1, define

Z(x) = ψgY (x)− Y (x)− x.

Let B be a compact convex domain in Rn with interior points. Then Z|B is quadratic in Y .

In fact, for each k there exists Ck such that

∥Z|B∥Ck ≤ Ck∥Y ∥2Ck .

Proof. Let B be as in the statement of the proposition. Define γ(Y (x), t) to be the map that

sends x 7→ expx tY (x)− x, so that γ(Y (x), 1) + x = ψgY and γ(Y (x), 0) = 0. We rewrite Z.

Z = ψgY (x)− x− Y (x) = γ(Y (x), 1)− Y (x)

=

∫ 1

0

γ̇(Y (x), t)− Y (x) dt

=

∫ 1

0

γ̇(Y (x), t)− γ̇(Y (x), 0) dt

=

∫ 1

0

∫ 1

0

tγ̈(Y (x), st) ds dt

=

∫ 1

0

t

∫ 1

0

γ̈(Y (x), st) ds dt.

By differentiating under the integral, we see that the nth derivatives of Z are controlled by

the maximum of the nth derivatives of γ̈(Y (x), t) for each fixed t. Hence it suffices to show

for each t ∈ [0, 1] that γ̈(Y (x), t) is second order in Y .

Dropping the explicit dependence on x, we recall the coordinate expression of the geodesic

equation. For a coordinate frame [e1, . . . , en] and indices 1 ≤ µ, ν, λ ≤ n, we define the

Christoffel symbols Γλµν by ⟨∇eµeν , eλ⟩. In addition, we write γ̇ν for ⟨γ̇, eν⟩ and similarly for
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γ̈. The coordinate expression for the geodesic equation is then

γ̈λ = −Γλµν γ̇
µγ̇ν .

We estimate the Ck norm of the right hand side. Write ϕt for the geodesic flow on TB.

For fixed r > 0 in TB, let TB(r) be the set of vectors v ∈ TB such that ∥v∥ < r. Note

that the restriction ∥ϕt|TB(t)∥Ck is bounded. Let π be the projection from a tangent vector

in TRn to its basepoint in Rn. Then

γ(x, t) = π ◦ ϕt ◦ Y (x).

Hence, writing ϕ̇ for the geodesic spray,

γ̇(x, t) = Dπ ◦ ϕ̇ |ϕt(Y (x)) . (3.101)

Dπ ◦ ϕ̇t |TB(r) has its C
k norm uniformly bounded in t by some Dk. By Lemma 3.7.3 because

∥Y ∥C1 < 1 it follows that ∥ϕt(Y (x), t)∥Ck ≤ Ck∥Y ∥Ck .

Hence by applying Lemma 3.7.3 to (3.101), and similarly using that ∥Y ∥C1 < 1 and

Dπ ◦ ϕ̇ is uniformly bounded we find

∥(Dπ ◦ ϕ̇t) ◦ Y ∥Ck ≤ C ′
k(Dk∥Y ∥C1 +D1∥Y ∥Ck + ∥Y ∥C0).

Hence

∥γ̇(x, t)∥Ck = ∥Dπ ◦ ϕ̇|ϕt(Y (x))∥Ck ≤ Ck∥Y ∥Ck .

The geodesic equation shows that at each point the coordinates of γ̈ are a quadratic poly-

nomial in the coordinates of γ̇. Hence by Lemma 3.7.2

∥γ̈(x, t)∥Ck ≤ C ′′
k∥Y ∥2Ck
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for all t ∈ [0, 1]. Thus we obtain a uniform estimate on Z.

Proof of Proposition 16. As before, it suffices to prove the estimate in a chart. So, we are

reduced to working in a neighborhood of 0 ∈ Rn. Fix some k, then by Proposition 17 we

may write

ψY (x) = x+ Y (x) + ZY (x),

where ZY (x) is quadratic in Y . Similarly define ZX(x) and ZX+Y (x). Then

ψY ◦ ψX = ψY (x+X(x) + ZX(x))

= x+X(x) + ZX(x) + Y (x+X(x) + ZX(x)) + ZY (x+X(x) + ZX(x)).

To prove this proposition, we compare the previous line with

ψX+Y = x+X(x) + Y (x) + ZX+Y (x).

The difference is

ψY ◦ψX−ψX+Y = ZX(x)−ZX+Y (x)+Y (x+X(x)+ZX(x))−Y (x)+ZY (x+X(x)+ZX(x))

The first and second terms satisfy the appropriate quadratic Ck estimate already. For the

last term, we apply Lemma 3.7.3. Hence by assuming that ∥X∥C1 is sufficiently small, we

conclude that the ZY term is quadratic. We now turn to the Y terms:

Y (x+X(x) + ZX(x))− Y (x).

For this we apply the same trick as before. Write

Y (x+X(x) + ZX(x))− Y (x) =

∫ 1

0

Y ′(x+ t(X(x) + ZX(x)))∥X(x) + ZX(x)∥ dt.
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By differentiating under the integral, it suffices to show that the integrand is quadratic in X

and Y . By Lemma 3.7.2, the integrand will be quadratic if there exists ℓ such that for each k

there is a constant Ck such that both of ∥Y ′(x+ t(X(x)+ZX(x)))∥Ck and ∥X(x)+ZX(x)∥Ck

are bounded by Ck(∥X∥Ck+ℓ + ∥Y ∥Ck+ℓ). This follows for both terms by the application of

Lemma 3.7.3, so we are done.

We now show another basic fact: near to the identity map a diffeomorphism and its

inverse have comparable size.

Lemma 3.7.4. Suppose that M is a closed Riemannian manifold. Then there exists ϵ > 0

such that for all k ≥ 0 then there exists Ck, such that if f ∈ Diffk(M) and dC1(f, Id) < ϵ

then

dCk(f−1, Id) ≤ CkdCk(f, Id).

Proof. This proof follows the outline of the similar estimate in [Ham82, Lem. 2.3.6]. For

convenience, write g = f−1. In a chart, we write f(x) = x+X(x) where the Ck norm of X

is bounded by dCk(f, Id). Similarly write g(x) = x + Y (x). We now apply the chainrule to

differentiate g ◦ f . The case where n = 1 is immediate by differentiating g ◦ f = x+X(x) +

Y (x+X(x)), which gives that

DX +DY (Id+DX) = 0.

Hence

DY = −DX(Id+DX)−1,

which is uniformly comparable to ∥DX∥ because dC1(f, Id) is uniformly bounded.

For k > 1, we must estimate the higher order derivatives of Y . Note that for k > 1 that

Dkg = DkY and Dkf = DkX.

151



Applying the chain rule to f ◦ g = Id to calculate the kth derivative gives:

0 =
k∑
l=1

∑
j1+···+jl=k

Cl,j1,...,jlD
l
g(x)f{Dj1

x g, . . . , D
jl
x g},

and hence

Dk
xg = −(Dg(x)f)

−1

k∑
l=2

∑
j1+···+jl=k

Cl,j1,...,jlD
l
g(x)f{Dj1

x g(x), . . . , D
jl
x g(x)}. (3.102)

As (Df)−1 has uniformly bounded norm, it suffices to show that the each term in the sum

has norm bounded by ∥X∥Cn .

We use the interpolation estimate in Lemma 3.7.7. If j > 1, then

∥Djg∥ = ∥DjY ∥,

By interpolation between the C1 and Cn−1 norms, for 1 ≤ j ≤ n− 1,

∥Y ∥Cj ≤ C1,n−1∥Y ∥
n−j−1
n−2

C1 ∥Y ∥
j−1
n−2

Cn−1 .

By interpolation between the C1 and Cn norms, for 1 ≤ j ≤ n,

∥X∥Cj ≤ C1,n∥X∥
n−j
n−1

C1 ∥X∥
j−1
n−1

Cn .

We now estimate the terms in the right hand side of equation (3.102). In the case that

some ji = 1, then Djig = Id+DY . Hence the right hand side of equation (3.102), may be

rewritten as the sum of terms of the form

Dl
g(x)X{A1, ..., Al},

where each Ai is either equal to Id or DjiY and the sum of the ji is less than or equal to
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k. If ∥Y ∥Ck−1 ≤ 1, then we are immediately done as the norm of this expression is at most

∥Dkf∥. Otherwise, we may suppose that ∥Y ∥Ck−1 ≥ 1. The C1 norms of X and Y are

uniformly bounded. Hence by interpolating between the C1 and Ck norm to estimate the

DlX term and the C1 and the Ck−1 norm to estimate the Ai terms, we find that

∥Dk
g(x)X{A1, ..., Ak}∥ ≤ C ′∥X∥

l−1
k−1

Ck ∥Y ∥
k−r
n−2

Ck−1 ,

where r ≥ l. But as ∥Y ∥Ck−1 > 1, this bounded above by

C ′∥X∥
l−1
k−1

Ck ∥Y ∥
k−l
k−2

Ck−1 .

Thus

∥DkY ∥C0 ≤ C ′′
k∑
l=2

∥X∥
l−1
k−1

Ck ∥Y ∥
k−l
k−2

Ck−1 .

We may now proceed by induction on k. We already established the theorem for k = 1.

Now, given that ∥Y ∥Ck−1 ≤ Ck−1∥X∥Ck−1 , it follows that

∥DkY ∥C0 ≤ C ′′′
k∑
l=2

∥X∥
l−1
k−1

Ck ∥X∥
k−l
k−2

Ck−1 .

By interpolation between the 1 and k norms, the uniform bound on the C1 norm, we find

that ∥X∥Ck−1 ≤ Dk∥X∥
k−2
k−1

Ck . This yields

∥DkY ∥C0 ≤ D′
k∑
l=2

∥X∥
l−1
k−1

Ck ∥X∥
k−l
k−1

Ck ≤ D′′∥X∥Ck ,

which is the desired result.

We now obtain the following corollary.

Corollary 2. Suppose that M is a closed Riemannian manifold. For smooth C1 small vector
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fields X on M , we may write

ψ−1
X = ψ−X+Z ,

where Z is quadratic in X.

Proof. To begin we know by Proposition 16 that

ψX ◦ ψ−X = ψZ ,

where Z is quadratic in X. Note that ψ−X ◦ ψ−1
Z = ψ−1

X . By Lemma 3.7.4, ψ−1
Z = ψZ′

where Z ′ is quadratic in X. Hence ψ−1
X = ψ−X ◦ ψZ′ . By Proposition 16, this gives that

ψ−1
X = ψ−X+Z′+Q, where Q is quadratic in X and Z ′. Hence as Z ′ is quadratic in X and the

corollary follows.

We can now complete the proof of the estimate on the error field of the conjugated

system.

Proof of Prop. 15. To show this, we repeatedly apply Proposition 16 and Corollary 2. Writ-

ing Z for anything second order in C and Y , we find:

ψCfψ
−1
C = ψCψYRψ

−1
C

= ψC+Y+ZRψ
−1
C

= ψC+Y+ZRψ−C+Z

= ψC+Y+Z+R∗(−C+Z)R

= ψC+Y−R∗C+ZR.

We now show two additional lemmas that we use in the KAM scheme.

Lemma 3.7.5. Let M be a closed Riemannian manifold. Fix k ≥ 1. There exist C, ϵ > 0

such that if R ∈ Isom(M) and f, g ∈ Diffk(M) satisfy dC1(f,R) < ϵ, and dC1(g, Id) < ϵ,
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then

dCk(f ◦ g,R) ≤ Ck(dCk(f,R) + dCk(g, Id)),

and

dCk(g ◦ f,R) ≤ Ck(dCk(f,R) + dCk(g, Id)).

Proof. We begin with a proof for the first inequality. In coordinates write f(x) = R(x)+Y (x)

and g(x) = x+X(x). Then we just need to estimate

f ◦ g(x)−R(x) = R(x+X(x))−R(x) + Y (x+X(x)).

The last term is controlled by dCk(f,R) + dCk(g, Id) by Lemma 3.7.3. So, it suffices to

estimate the first term. The kth derivative of R(x+X(x))−R(x) is then

k∑
l=1

∑
j1+···+jl=k

Cl,j1,...,jlD
l
x+X(x)R{Dj1

x g, . . . , D
jl
x g} −Dl

xR.

For all the terms with l < k, the same interpolation approach as in Lemma 3.7.4 gives the

appropriate estimate, i.e. they are bounded by

C
k−1∑
l=1

∥X∥
l−1
k−1

Ck ∥X∥
k−l
k−2

Ck−1 .

There are two remaining terms which are unaccounted for: DkRx+X(x) − DkRx. This is

bounded by a constant time ∥X∥C0 and the result follows.

We now consider the second inequality. As before we must estimate

g ◦ f(x)−R(x) = X(x) + Y (R(x) +X(x)).

The important term is the second one. A similar argument to before then gives the result

as all derviatives of R are uniformly bounded independent of R.
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Lemma 3.7.6. Let M be a closed Riemannian manifold and k ≥ 0. If gn ∈ Diffk(M) is a

sequence of diffeomorphisms and
∑

n dCk(gn, Id) < ∞, then the sequence of compositions of

diffeomorphisms hn = gngn−1 · · · g2g1 converges in Ck to a diffeomorphism.

Proof. As before, we check in charts. Having fixed a chart, write gn(x) = x+Xn(x). Write

hn(x) = 1 + Yn(x). Let an = ∥Xn∥Ck and let bn = ∥Yn∥Ck . Note that

hn(x) = x+ Yn−1(x) +Xn(x+ Yn(x)). (3.103)

Suppose for the moment that ∥Yn−1∥Ck ≤ 1. Using Lemma 3.7.3 and that ∥Yn∥Ck ≤ 1,

∥Xn(x+ Yn−1)∥Ck ≤ Ck(∥Xn∥Ck∥x+ Yn−1∥kC1 + ∥Xn∥C1∥x+ Yn−1∥Ck + ∥X∥C0) (3.104)

≤ C ′
k(an + anbn−1) (3.105)

Hence it follows from equation (3.103) that there exists Dk such that if bn−1 ≤ 1 then

bn ≤ bn−1 +Dkan(1 + bn−1).

By induction, under the same assumption that ∥Yj∥Ck ≤ 1 for j < n, it follows that

bn ≤ −1 +
n∏
i=1

(1 +Dkai).

By noting that
∏∞

i=1(1 + xn) ≤ exp (
∑∞

i=1 xn) for xn ≥ 0, we can conclude that a tail of the

sequence converges. This follows because as
∑

n an converges we can inductively check that

these inequalities hold starting the argument from an index N satisfying exp(
∑∞

i=N Dkai)−

1 < 1. Hence as a tail of the infinite composition converges so does the whole composition.
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3.7.2 Interpolation Inequalities

There is a basic Ck interpolation inequality, which may be found in the appendix of [Hör76,

Thm A.5]. It states that:

Lemma 3.7.7. Suppose that M is a closed Riemannian manifold. For 0 ≤ a ≤ b < ∞

and 0 < λ < 1 there exists a constant C(a, b, λ) such that for any real valued Cb function f

defined on M ,

∥f∥Cλa+(1−λ)b ≤ C∥f∥λCa∥f∥1−λCb .

The following is an immediate consequence of Lemma 3.7.7.

Lemma 3.7.8. Suppose that M is a closed Riemannian manifold. There exists ϵ > 0 such

that for 0 ≤ a ≤ b < ∞ and 0 < λ < 1 there exists a constant C(a, b, λ) such that for any

f ∈ Diff∞(M) such that dC0(f, Id) < ϵ, then

dCλa+(1−λ)b(f, Id) ≤ CdCa(f, Id)λdCb(f, Id)1−λ.

Lemma 3.7.9. Consider the space C∞(M,N) where M and N are Riemannian manifolds

and M and N are closed. For all j, σ > 0, there exists a natural number k and a number

ϵ0 > 0 such that if f, g ∈ C∞(M,N), ∥f − g∥Hj < ϵ0 < 1, and ∥f − g∥Ck ≤ 1/2 then

∥f − g∥Cj ≤ ∥f − g∥1−σ
Hj .

Proof. The proof is a relatively straightforward application of the Sobolev embedding the-

orem and interpolation inequalities. First, we recall an interpolation inequality for Sobolev

norms, see [BL76, Thm. 6.5.4]. For each 0 < θ < 1, s0, s1, there exists a constant C such

that if we let s = (1− θ)s0 + θs1, then we have

∥f − g∥Hs ≤ C∥f − g∥1−θHs0∥f − g∥θHs1 .

To begin the proof, note that it suffices to estimate ∥f − g∥Cj+1 . Fix ℓ large enough that
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Hℓ embeds compactly in Cj+1 by a Sobolev embedding. Then pick k large enough that

∥f − g∥Hℓ ≤ Cλ,ℓ∥f − g∥1−θ
Hj ∥f − g∥θHk ,

where 0 < θ < σ. The term ∥f − g∥θ
Hk is uniformly bounded by Ck∥f − g∥θ

Ck . Hence as Hℓ

compactly embeds in Cj+1, there exists C ′ > 0 such that

∥f − g∥Cj+1 ≤ C ′∥f − g∥1−θ
Hj = C ′∥f − g∥σ−θ

Hj ∥f − g∥1−σ
Hj .

If we choose ϵ0 sufficiently small that C ′∥f − g∥σ−θ
Hj ≤ 1, then the result follows.

A similar argument shows the following:

Lemma 3.7.10. Suppose that E is a smooth Riemannian vector bundle over a closed Rie-

mannian manifold M . For all choices j, ℓ, σ,D > 0 there exist k, ϵ0 such that if f is a smooth

section of E and ∥f∥Hj ≤ ϵ0 < 1 and ∥f∥Ck ≤ D then ∥f∥Cℓ ≤ ∥f∥1−σ
Hj .

3.7.3 Estimate on Lifted Error Fields

The goal of this subsection is to prove a technical estimate on the error fields of a lifted

system. The proof is a computation in charts.

Lemma 3.7.11. Suppose that M is a closed Riemannian manifold. Fix numbers m, k ≥ 0

and d such that 0 ≤ d ≤ dimM . There exists a constant C such that the following holds. For

any tuple (f1, ..., fm) of diffeomorphisms of M and (r1, ..., rm) a C
1 close tuple of isometries

of M , let Yi be the shortest vector field such that expri(x) Yi(x) = fi(x). Let Fi be the lift of fi

to Grd(M) and Ri be the lift of ri to Grd(M). Let Ỹi be the shortest vector field on Grd(M)

such that expRi(x)
Ỹi(x) = Fi(x). If ∥

∑
i Yi∥Ck = ϵ and maxi ∥Yi∥Ck = η, then

∥∥∥∥∥
m∑
i=1

Ỹi

∥∥∥∥∥
Ck−1

≤ C(ϵ+ η2).
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Proof. The proof is straightforward but tedious. We give the proof in the case that each Ri

is the identity. Removing this assumption both complicates the argument in purely technical

ways and substantially obscures why the lemma is true. At the end of the argument, we

indicate the modifications needed for the general proof.

For readability we redevelop some of the basic notions concerning Grassmannians. First

we recall the charts on Grd(V ), the Grassmannian of d-planes in a vector space V . Recall

that given a vector space V and a pair of complementary subspaces P and Q of V that

if dimP = d we obtain a chart on Grd(V ) in the following manner. Let L(P,Q) denote

the space of linear maps from P to Q. For A ∈ L(P,Q), we send A to the subspace

{x + Ax | x ∈ P} ∈ Grd(V ). This gives a smooth parametrization of a subset of Grd(V ).

Having fixed a complementary pair of subspaces P and Q, let πP denote the projection to

P along Q.

Suppose that U is a chart on M and let ∂1, ..., ∂n denote the coordinate vector fields. We

use the usual coordinate framing of TU to give coordinates on the Grassmannian bundle

Grd(M). The tangent bundle to U naturally splits into sub-bundles spanned by {∂1, ..., ∂d}

and {∂d+1, . . . , ∂n}. Call these sub-bundles P and Q, respectively. Let End(P,Q) denote the

bundle of maps from P to Q. We obtain a coordinate chart via associating an element of

A ∈ End(P,Q) and a point x ∈ U with the graph of A in the tangent space over x.

As we have assumed that each ri is the identity, in charts we write fi(x) = x + Xi(x).

As the fi are C
1 small, we work in a single chart. It now suffices to prove the corresponding

estimate on the field Xi because Xi and Yi are equal up to an error that is quadratic in

the sense of Definition 3.7.1. We now calculate the action of f on Grd(U). Suppose that

A ∈ End(P,Q). Then we have that {Df(v + Av)} is a subspace of Tf(x)M . We must find

the map A′ whose graph gives the same subspace. Let IA be the n×d matrix with top block

I and bottom block A. Then the action of Df sends A to A′ which is equal to

A′ = DfIA(πPDfIA)
−1 − Id .
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To see that this is true, we must check that A′V ⊆ Q and that {Dfv + DfAv | v ∈ V }

is the same as {v + A′v}. The second condition is evident from the definition of A′. If

v ∈ P , then (πPDfIA)
−1v = w is an element of P satisfying πPDfIAw = v. Thus A′v =

DfIA(πPDfIA)
−1v − v ∈ Q and hence A′V ⊆ Q. Write F for the induced map on Grd(U).

In coordinates F is the map that sends

(x,A) 7→ (x,DfIA(πPDfIA)
−1 − Id). (3.106)

Write Id for the d by d identity matrix. Let D̂Xi be the matrix comprised of the first d rows

of the matrix DXi. In the estimates below, we will assume that the size of A is uniformly

bounded. This does not restrict the generality as any subspace may be represented by such

a uniformly bounded A. Then note that

(πPDf

[
Id
A

]
)−1 = (Id + D̂X

[
Id
A

]
)−1

= Id − D̂X

[
Id
A

]
+O(DX2),

where the O(DX2) is quadratic in the sense of Definition 3.7.1. Write XA for the second

term above.

We then have that

DfIA(πPDfIA)
−1 − Id = (Id+DX)

[
Id
A

]
(Id −XA)−

[
Id
0

]
+O(DX2).

=

[
Id
A

]
−
[
Id
A

]
XA +DX

[
Id
A

]
+DX

[
Id
A

]
XA −

[
Id
0

]
+O(DX2).

=

[
0

A

]
−
[
Id
A

]
XA +DX

[
Id
A

]
+O(DX2).

=

[
0

A

]
+H(A,DX) +O(DX2).

where H(A,DX) is the sum of the second and third terms two lines above. Note that H is

linear in DX and that ∥H(A,DX) ≤ C∥DX∥ given our uniform boundedness assumption
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on A.

Thus we see that in this chart on Grd(U) that

F (x,A)− (x,A) = (f(x)− x,H(A,DX) +O(DX2)). (3.107)

In this chart, ∥
∑

i fi(x) − x∥Ck ≤ ϵ. Hence writing fi(x) = x + Xi(x) as before,

∥
∑

iDXi(x)∥Ck−1 ≤ ϵ. Thus

∥∥∥∥∥∑
i

Fi(x,A)− (x,A)

∥∥∥∥∥
Ck−1

=

∥∥∥∥∥∑
i

(fi(x)− x,H(A,DXi) +O(DX2))

∥∥∥∥∥
Ck−1

≤ C

(∥∥∥∥∥∑
i

Xi

∥∥∥∥∥
Ck

+max
i

∥Xi∥2Ck

)

by the linearity of H. This completes the proof in the special case where ri = Id for each i.

In the general setting one follows the same sequence of steps. One writes fi(x) =

ri(x) + Xi(ri(x)). One then does the same computation to determine the action on the

Grassmannian bundle. This is complicated by additional terms related to R. Having fin-

ished this computation, one finds a natural analog of H(A,DX), which now comprises eight

terms instead of two, and also depends on ri. Recognizing the cancellation is then somewhat

complicated because of the dependence on ri. However, this dependence does not cause an

issue because the terms that would potentially cause trouble satisfy some useful relations.

These relations emerge when one keeps in mind the base points, which is crucial when the

isometries are non-trivial.

3.7.4 Determinants

Suppose that V and W are finite dimensional inner product spaces. Consider a linear map

L : V → W . The determinant of the map L is defined as follows. If {vi} is an orthonormal

basis for V , one may measure the size of the tensor Lv1 ∧ · · · ∧Lvn with respect to the norm
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on tensors induced by the metric on W . If {v1, ..., vn} is a basis for V , then we define

det(L, g1, g2) :=

√
Det (⟨Lvi, Lvj⟩g2)
Det (⟨vi, vj⟩g1)

,

where Det is the usual determinant of a square matrix. Sometimes we have a map L : V → W

and a subspace E ⊂ V . We then define

det(L, g1, g2 | E) = det(L|E, g1|E, g2). (3.108)

When the spaces V and W are understood, we may write det(L | E).

There are some properties of det that we will record for later use.

Lemma 3.7.12. Fix a basis and suppose that V = W . Working with respect to this basis,

the determinant has the following properties:

det(L, g1, g2) = det(Id, g1, L
∗g2), (3.109)

det(Id, Id, A) =
√
det(A, Id, Id) =

√
|Det(A)|. (3.110)

Proof. For the first equality, let {vi} be a basis of (V, g1), then

det(L, g1, g2) =

√
Det⟨Lvi, Lvj⟩g2
Det⟨vi, vj⟩g1

But, ⟨vi, vj⟩L∗g2 = ⟨Lvi, Lvj⟩g2 , so, this is equal to√
Det⟨vi, vj⟩L∗g2

Det⟨vi, vj⟩g1
,

which is the definition of det(Id, g1, L
∗g2).
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For the second equality, fix an orthonormal basis {ei}, then

det(Id, Id, A) =
√

Det⟨ei, ej⟩A =
√

DetAij

whereas,

det(A, Id, Id) =
√

Det⟨Aei, Aej⟩Id =
√
DetATA =

√
|DetA|2 = |DetA| .

We record the following estimate which is used in the proof.

Lemma 3.7.13. Let M be a closed manifold and let 0 ≤ r ≤ dimM . If g is an isometry of

M , then ln det(Df |Ex), which is defined on Grr(M), satisfies the following estimate:

∥ln det(Df | Ex)∥Ck = O(dCk+1(f, g)),

as f → g in Ck+1. The big-O is uniform over all isometries g.

Proof. It suffices to show that this estimate holds in charts. So, fix a pair of charts U and V

onM such that f(U) has compact closure inside of V . We define a mapH : Grd(U)×U×V ×

Rn2 → R by sending the point (E, x, y, A) to the ln det(A, gx, gy|E), where gx and gy denote

the pullback metric from M . Using f we define a map f̃ : Grd×U → Grd(U)×U ×V ×Rn2

by

(E, x) 7→ (E, x, f(x), Df),

where we are using the coordinates to express Df as a matrix. Then the quantity we wish

to estimate the Ck norm of is H ◦ f̃ . If we analogously define g̃, then note that H ◦ g̃ ≡ 0

because g is an isometry. By writing out the derivatives using the chain rule and using that

f is uniformly close to g, one sees that ∥H ◦ g̃ −H ◦ f̃∥Ck = O(dCk+1(f, g)), and the result

follows.
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3.7.5 Taylor Expansions

Taylor expansion of the log Jacobian

Proposition 18. For C1 small vector fields Y on a Riemannian manifold M , the following

approximation holds

∫
Grr(M)

ln det(DxψY , Id, gψY (x)
| Ex) d vol =− r

2d

∫
M

∥EC∥2 d vol+
r(d− r)

(d+ 2)(d− 1)

∫
M

∥ENC∥2 d vol

+O(∥Y ∥3C1),

where EC and ENC are the conformal and non-conformal strain tensors associated to ψY as

defined in subsection 3.4.2. In addition, det is defined in Appendix 3.7.4 and ψY is defined

in equation (3.10).

The proof of this proposition is a lengthy computation with several subordinate lemmas.

Proof. In order to estimate the integral over M , we will first obtain a pointwise estimate on:

∫
Grr(TxM)

ln det(DxψY | E) dE.

To estimate this we work in an exponential chart on M centered at x. In this chart, x is 0

and ψY (0) = Y (0). Then

∫
Grr(TxM)

ln det(DxψY | E) dE =

∫
Grr(TxM)

ln det(D0ψY , Id, gY (0) | E) dE.

We now rewrite the above line so that we can apply the Taylor approximation in Proposition

19.

Write the metric as Id+ĝ. As we are in an exponential chart, ∥ĝY (0)∥ = O(∥Y ∥2C0). Write

DψY = Id+ψ̂. The integral we are calculating only involves ψ̂0 and ĝY (0), so below we drop
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the subscripts. Then

∫
Grr(TxM)

ln det(DxψY | E) dE =

∫
Grr(TxM)

ln det(Id+ψ̂, Id, Id+ĝ | E) dE.

Now applying the Taylor expansions in Propositions 19 and 20, we obtain the following

expansion. For convenience let

K = (ψ̂ + ψ̂T )/2− Tr ψ̂

d
Id . (3.111)

Then

∫
Grr(TxM)

ln det(DψY , Id, gY (0) | E) dE =

(3.112)

r

d
Tr(ψ̂) +

[
− r

2d
Tr(ψ̂2) +

r(d− r)

(d+ 2)(d− 1)
Tr(K2)

]
+O(∥ψ̂3∥) + r

2d
Tr(ĝ) +O(∥ĝ∥2)

(3.113)

Note that ∥ψ̂∥ = O(∥Y ∥C1) and ∥ĝ∥ = O(∥Y ∥2C0), hence the fourth and sixth terms in

the above expression are each O(∥Y ∥3C1).

We now eliminate the two trace terms that are not quadratic in their arguments. For

this, we use a Taylor expansion of the determinant.3 Thus

det(Dψ, Id, gY (0)) = 1 + Tr ψ̂ +
(Tr(ψ̂))2 − Tr(ψ̂2)

2
+

Tr(ĝ)

2
+O(∥Y ∥3C1)

The integral of the Jacobian is 1, so integrating the previous line over M against volume

3Recall the usual Taylor expansion Det(Id+A) = Id+Tr(A) + (Tr(A))2−Tr(A2)
2 + O(∥A∥3). We combine

this with the first order Taylor expansion

det(Id, Id, Id+G) =
√
Det(1 +G) =

√
1 + Tr(G) +O(∥G∥2) = 1 +

Tr(G)

2
+O(∥G∥2).
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we obtain

1 = 1 +

∫
M

Tr ψ̂ +
(Tr(ψ̂))2 − Tr(ψ̂2)

2
+

Tr(ĝ)

2
d vol+O(∥Y ∥3C1).

Thus ∫
M

Tr(ψ̂) +
Tr(ĝ)

2
− Tr(ψ̂2)

2
d vol = −

∫
M

(Tr(ψ̂))2

2
d vol+O(∥Y ∥3C1).

Now, we integrate equation (3.112) over M and apply the previous line to eliminate the

non-quadratic terms. This gives

∫
Grr(M)

ln det(DxψY , Id, gψY (x)
| Ex) dEx =

∫
M

− r

2d
(Tr(ψ̂x))

2 +
r(d− r)

(d+ 2)(d− 1)
Tr(K2

x) d vol+O(∥Y ∥3C1),

(3.114)

where we have written ψ̂x and Kx to emphasize the basepoint. The formula above is not yet

very usable as both Kx and ψ̂x are defined in terms of exponential charts. We now obtain

an intrinsic expression for these terms. Recall that pointwise we use the L2 norm on tensors.

Below we suppress the x in ∥EC(x)∥ and ψ̂x.

Lemma 3.7.14. Let EC be the conformal strain tensor associated to ψY . Then

∫
M

(Tr(ψ̂x))
2 d vol =

∫
∥EC∥2 d vol+O(∥Y ∥3C1).

Proof. We use an exponential chart and compute a coordinate expression for ∥EC∥2 in the

center of this chart. As before, write DψY = Id+ψ̂, where ψ̂ = O(∥Y ∥C1). Then working in

exponential coordinates,

Tr(ψ∗
Y g − g) = Tr((Id+ψ̂)T (Id+O(∥Y ∥2C0))(Id+ψ̂)− Id)

= Tr(Id+ψ̂T + ψ̂ − Id+O(∥Y ∥2C1)

= 2Tr(ψ̂) +O(∥Y ∥2C1).
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Thus since ψ̂ = O(∥Y ∥C1), by definition of EC , we have

∥EC∥2 =
∥∥∥∥Tr(ψ∗

Y g − g)

2d
Id

∥∥∥∥2
=

∥∥∥∥∥2Tr(ψ̂)2d
Id

∥∥∥∥∥
2

=
Tr(ψ̂)

d
∥ Id ∥2

= Tr(ψ̂).

Integrating over M , we obtain the result.

Lemma 3.7.15. Let ENC be the non-conformal strain tensor associated to ψY and let Kx

be as in equation (3.111), then

∫
M

Tr
(
K2
x

)
d vol =

∫
M

∥ENC∥2 d vol+O(∥Y ∥3C1).

Proof. As before, we first compute a local expression for the integrand and check that this

expression is comparable to the local expression for the non-conformal strain tensor. We

compute at the center of an exponential chart. As before, write DψY = Id+ψ̂ where

ψ̂ = O(∥Y ∥C1). In this case

ψ∗
Y g = (Id+ψ̂)T (Id+O(∥Y ∥2C0))(Id+ψ̂) = Id+ψ̂T + ψ̂ +O(∥Y ∥2C1).
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Using the above line and the definition of ENC we then compute:

∥ENC∥2 =
∥∥∥∥12
(
ψ∗
Y g − g − Tr(ψ∗

Y g − g)

d
g

)∥∥∥∥2
=

1

4
∥(Id+ψ̂)T (Id+O(∥Y ∥2C0)(Id+ψ̂)− Id−2

Tr ψ̂

d
Id+O(∥Y ∥2C1)∥2

=
1

4
∥ψ̂T + ψ̂ − 2

Tr ψ̂

d
Id+O(∥Y ∥2C1)∥2

=
1

4
Tr

(ψ̂T + ψ̂ − 2
Tr ψ̂

d
Id+O(∥Y ∥2C1)

)2


= Tr

( ψ̂T + ψ̂

2
− Tr ψ̂

d
Id

)2
+O(∥Y ∥3C1)

= Tr(K2) +O(∥Y ∥3C1).

By integrating the above equality over M , the result follows.

Finally, the proof of Proposition 18 follows by applying Lemma 3.7.14 and Lemma 3.7.15

to equation (3.114), which gives

∫
Grr(M)

ln det(DxψY , Id, gψY (x)
| Ex) dEx =− r

2d

∫
M

∥EC∥2 d vol (3.115)

+
r(d− r)

(d+ 2)(d− 1)

∫
M

∥ENC∥2 d vol+O(∥Y ∥3C1).

(3.116)

Approximation of integrals over Grassmanians

Let Gr,d be the Grassmanian of r-planes in Rd. In this subsubsection, we prove the following

simple estimate.
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Proposition 19. For 1 ≤ r ≤ d, let Λr : End(Rd) → R be defined by

Λr(L) :=

∫
Gr,d

ln det(Id+L, Id, Id | E) dE,

where dE denotes the Haar measure on Gr,d. Then the second order Taylor approximation

for Λr at 0 is

Λr(L) =
r

d
TrL+

[
− r

2d
Tr(L2) +

r(d− r)

(d+ 2)(d− 1)
Tr(K2)

]
+O(∥L∥3),

where

K =
L+ LT

2
− TrL

d
Id .

Let λr(L) = Λr(L)− Λr−1(L). Then the above expansion implies

λr(L) =
1

d
TrL+

[
− 1

2d
Tr(L2) +

d− 2r + 1

(d+ 2)(d− 1)
Tr(K2)

]
+O(∥L∥3).

Proof. Before beginning, note from the definition of Λr that if U is an orthogonal transfor-

mation, Λr(U
TLU) = Λr(L). Consequently, if αi is the ith term in the Taylor expansion of

Λr, then αi is invariant under conjugation by isometries.

The map Λr is smooth, so it admits a Taylor expansion:

Λr(L) = α1(L) + α2(L) +O(∥L∥3),

where α1 is linear in L and α2 is quadratic in L. The rest of the proof is a calculation of

α1 and α2. Before we begin this calculation we describe the approach. In each case, we

reduce to the case of a symmetric matrix L. Then restricted to symmetric matrices, we

diagonalize. There are few linear or quadratic maps from End(Rn) to R that are invariant

under conjugation by an orthogonal matrix. We then write αi as a linear combination of

such invariant maps from End(Rn) to R and then solve for the coefficients of this linear
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combination.

We begin by calculating α1.

Claim 4. With notation as above,

α1(L) =
r

d
TrL.

Proof. Let Λ̃r(Id+L) = Λr(L). Then from the definition, note that if U is an isometry

then Λ̃r(U(Id+L)) = Λ̃r((Id+L)U)) = Λr(L). Suppose that Ot is some path tangent to

O(n) ⊂ End(Rn) such that O0 = Id. Then Λ̃r(Ot) = 0. Write Ot = Id+tS +O(t2) where S

is skew symmetric. Then we see that

Λ̃r(Id+tS +O(t2)) = O(t2),

So, Λr(tS) = O(t2). Hence α1 vanishes on skew symmetric matrices.

Thus it suffices to evaluate α1 restricted to symmetric matrices. Suppose that A is a

symmetric matrix, then there exists an orthogonal matrix U so that UTAU is diagonal.

Restricted to the space of diagonal matrices, which we identify with Rd in the natural way,

observe that α1 : Rd → R is invariant under permutation of the coordinates in Rd because

it is invariant under conjugation by isometries. There is a one dimensional space of maps

having this property, and it is spanned by the trace, Tr. So, α1(A) = α1(U
TAU) = a1Tr(A)

for some constant C. To compute the constant c it suffices to consider a specific matrix, e.g.

A = Id.

α1(Id) =
d

dϵ

∫
ln det(Id+ϵ Id | E) dE

=
d

dϵ

∫
ln(Id+ϵ)r dE

=
d

dϵ
r ln(1 + ϵ)

= r.
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So, a1 = r/d. Thus for L ∈ End(Rd), α1(L) =
r
d
Tr((L+ LT )/2) = r

d
Tr(L).

We now compute α2.

Claim 5. With notation as in the statement of Proposition 19,

α2(L) = − r

2d
Tr(L2) +

r(d− r)

(d+ 2)(d− 1)
Tr(K2).

Proof. Let Λ̃r(Id+L) = Λr(L). From the definition, note that for an isometry U , that

Λ̃r((Id+L)U) = Λ̃r(U). Fix L and let J = (L− LT )/2. Observe that

(Id+L)e−J = Id+(L− J) + (J2/2− LJ) +O(|L|3).

Thus we see that

Λr(L) = Λ̃r(Id+L)

= Λ̃r((L+ Id)e−J)

= Λ̃r(Id+(L− J) + (J2/2− LJ) +O(|L|3))

= Λr((L− J) + (J2/2− LJ)) +O(|L|3).

Now comparing the two Taylor expansions of Λ̃r(Id+L), we find:

α2(L) = α2(L− J) + α1(J
2/2− LJ).

Thus as we have already determined α1:

α2(L) = α2((L+ LT )/2) +
r

d
Tr(J2/2− LJ).

So, we are again reduced to the case of a symmetric matrix S. In fact, by invariance of α2

under conjugation by isometries, we are reduced to determining α2 on the space of diagonal
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matrices. Identify Rd with diagonal matrices as before. We see that α2 is a symmetric

polynomial of degree 2 in d variables. The space of such polynomials is spanned by
∑
x2i

and
∑

i,j xixj. It is convenient to observe that for a diagonal matrix, D, Tr(D2) and Tr(D)2

span this space as well. Hence

α2(S) = b1Tr(S)
2 + b2Tr(S

2)

Now in order to calculate b1 and b2 we will explicitly calculate α2(Id) and α2(P ), where

P is the orthogonal projection onto a coordinate axis.

In the first case,

2α2(Id) =
d

dϵ1

d

dϵ2

∫
Gr,d

ln det((Id+ϵ1 + ϵ2) | E) dE |ϵ1=0,ϵ2=0 =
d2

dϵ
ln(1 + ϵ)r |0= −r.

So, α2(Id) = −r/2.

Next suppose that P is projection onto a fixed vector e. Suppose that ∠(e, E) = θ. We

now compute ln det(Id+ϵP | E). We fix a useful basis of E. Let v be a unit vector making

angle ∠(e, E) with e. Then let e2, ..., er be unit vectors in E that are orthogonal to e and v.

Then using the basis v, e2, ..., er, we see that

det(Id+ϵP | E) = ∥(Id+ϵP )v ∧ (Id+ϵP )e2 ∧ · · · ∧ (Id+ϵP )er∥
∥v ∧ · · · ∧ er∥

=
√

⟨(Id+ϵP )v, (Id+ϵP )v⟩,

by considering the determinant defining the wedge product. But then as Pv = cos(θ)e,

√
⟨v + ϵ cos(θ)e, v + ϵ cos(θ)e⟩ =

√
⟨v, v⟩+ 2ϵ cos θ⟨v, e⟩+ ϵ2⟨Pv, Pv⟩ =

√
1 + 2ϵ cos2 θ + ϵ2 cos2 θ.
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Now, the Taylor approximation for ln
√
1 + x at x = 0 is x/2− x2/4 +O(x3), so

ln det(Id+ϵP | E) = ϵ cos∠(E, e) + ϵ2
[
cos∠(E, e)

2
− cos4∠(E, e)

]
+O(ϵ3).

Hence, as this estimate is uniform over E, by integrating,

∫
Gr,d

ln det(Id+ϵP | E) dE = ϵ

∫
Gr,d

cos2∠(E, e) dE+ϵ2
∫
Gr,d

[
cos2∠(E, e)

2
− cos4∠(E, e)

]
dE+O(ϵ3).

So, we are reduced to calculating the coefficient of ϵ2 in the above expression. One may

rewrite the above integrals in the following manner, by definition of the Haar measure as

Gr,d is a homogeneous space of SO(d). Write x1, ..., xd for the restriction of the Euclidean

coordinates to the sphere. By fixing the coordinate plane E0 = ⟨e1, ..., er⟩, and letting

θ = ∠((x1, ..., xd), E) we then have that cos(θ) =
√∑r

i=1 x
2
i . Thus

∫
Gr,d

cos2∠(E, e) dE =

∫
SOd

cos2∠(gE0, e) dg

=

∫
SOd

cos2∠(E0, ge) dg

=

∫
Sd−1

cos2∠(E0, x) dx

=

∫
Sd−1

r∑
i=1

x2i dx,

Similarly, fixing the plane E0 = ⟨e1, ..., er⟩, we see that as cos4∠(E0, x) = (
∑r

i=1 x
2
i )

2

∫
Gr,d

cos4∠(E, e) =
∫
Sd−1

(
r∑
i=1

x2i

)2

dx.

The evaluation of these integrals is immediate by using the following standard formulas:

∫
Sd−1

x21 dx =
1

d
,

∫
Sd−1

x41 dx =
3

d(d+ 2)
,

∫
Sd−1

x21x
2
2 dx =

1

d(d+ 2)
.
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Thus we see that

∫
Gr,d

cos2∠(E, e)
2

− cos4∠(E, e) dE =
r

2d
− r(r + 2)

d(d+ 2)
.

Thus

α2(P ) =
r

2d
− r(r + 2)

d(d+ 2)
.

Returning to b1, b2, the coefficients of (Tr(S))2 and Tr(S2), respectively, combining the

cases of Id and P gives

−r
2
= b1d

2 + b2d.

and

r

2d
− r(r + 2)

d(d+ 2)
= b1 + b2.

We can now solve for b1 and b2 with respect to this basis of the space of conjugation invariant

quadratic functionals. However, the computation will be more direct if instead we we use a

different basis and write write α2(S) as

b1(Tr(S))
2 + b2Tr(

(
S − TrS

d

)2

),

so that the second term is trace 0. Our computations from before now show that:

−r
2
= b1d

2 + 0,

and

r

2d
− r(r + 2)

d(d+ 2)
= b1 +

d− 1

d
b2

(
= b1(Tr(P ))

2 + b2Tr

(
(P − TrP

d
Id)2

))
.

The first equation implies that

b1 = − r

2d2
,
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The left hand side of the second equation of the pair is equal to

r(d− r)

d(d+ 2)
− r

2d
.

This gives

b2 =
r(d− r)

(d− 1)(d+ 2)
− r

2d
.

So, for symmetric L, we have

α2(S) =
−r
2d2

(Tr(S))2 +

(
r(d− r)

(d− 1)(d+ 2)
− r

2d

)
Tr((S − TrS

d
Id)2). (3.117)

Recall that we specialized to the case of a symmetric matrix, and that for a non-symmetric

matrix there is another term. For L ∈ EndRd, setting J = (L− LT )/2, as before,

α2(L) = α2

(
L+ LT

2

)
+
r

d
Tr

(
J2

2
− LJ

)
.

To simplify this we compute that:

Tr

(
J2

2
− LJ

)
= Tr

(
L2 − LLT − LTL+ (LT )2

8
− L

L− LT

2

)
= Tr

(
LLT − L2

4

)
.

Write

S =
L+ LT

2
.

Observe that for an arbitrary matrix X, Tr((X − (TrX)/d Id)2) = Tr(X2) − (Tr(X))2/d.
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Thus

− r

2d2
(Tr(S))2 − r

2d
Tr(
(
S − (TrS)/d Id)2

)
+
r

d
Tr(

LLT − L2

4
)

= − r

2d2
(Tr(S))2 − r

2d

(
Tr(S2)

)
− −r

2d2
(Tr(S))2 +

r

d

(
Tr

(
LLT − L2

4

))
= − r

2d

(
Tr(S2)

)
+
r

d

(
Tr

(
LLT − L2

4

))
=
r

d

[
−1

2
Tr(((L+ LT )/2)2) + Tr(

LLT − L2

4
)

]
=
r

d

[
−1

2
(Tr(

L2 + (LT )2 + 2LLT

4
)) + Tr(

LLT − L2

4
)

]
= − r

2d
Tr(L2).

From before, we have that

α2(L) = − r

2d2
(Tr(S))2 +

(
r(d− r)

(d− 1)(d− 2)
− r

2d

)
Tr((S − TrS

d
Id)2) +

r

d
Tr(

LLT − L2

4
).

So substituting the previous calculation we obtain:

α2(L) = − r

2d
Tr(L2) +

(
r(d− r)

(d− 1)(d− 2)

)
Tr

((
L+ LT

2
− TrL

d
Id

)2
)
,

which is the desired formula.

We have now calculated α1 and α2. This concludes the proof of Proposition 19.

We will also use a first order Taylor expansion as well with respect to the metric.

Proposition 20. Let Λr(G) be defined for symmetric matrices G by

Λr(G) :=

∫
Gr,d

ln det(Id, Id, Id+G | E) dE.
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Then Λr(G) admits the following Taylor development:

Λr(G) =
r

2d
TrG+O(∥G∥2).

Proof. The proof of this proposition is substantially similar to that of the previous propo-

sition. Let α1 denote the first term in the Taylor expansion. Note that if U is an isometry

that Λr(U
TGU) = Λr(G). Thus α1 is invariant under conjugation by isometries. Thus by

conjugating by an orthogonal matrix, we are reduced to the case of G and diagonal matrix.

As before, we see that α1(D) is a multiple of Tr(D) as Tr spans the linear forms on Rd that

are invariant under permutation of coordinates.

Thus it suffices to calculate the derivative in the case of D = Id. So, we see that

α1(Id) =
d

dϵ

∫
E

ln det(Id, Id, Id+ϵ Id | E) dE.

Thus the integral is equal to ln
√

(1 + ϵ)r on every plane E. Thus the derivative is r/2 and

so

α1(Id) =
r

2
=

r

2d
Tr(Id).

And so the result follows.
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[Kal11] B. Kalinin, Livšic theorem for matrix cocycles, Annals of Mathematics, 173 (2011),

1025–1042.

[KKRH10] B. Kalinin, A. Katok and F. Rodriguez Hertz, Errata to “measure rigidity beyond

uniform hyperbolicity: Invariant measures for Cartan actions on tori” and “uniqueness

of large invariant measures for Zk actions with Cartan homotopy data”, Journal of

Modern Dynamics, 4 (2010), 207.

[KH97] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical

systems, vol. 54, Cambridge university press, 1997.

[Kif86] Yuri Kifer, Ergodic theory of random transformations, Birkhäuser, 1986.
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