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ABSTRACT

Statistical recovery in high-dimensional statistics and signal processing often requests a determi-

nation of multiple structured signals from massive data. And depending on its application, either

one or both of the signals may be of primarily interest. While most classical statistical techniques

focus on the recovery of a single signal with other parameters being pre-fixed, the recent advances

in mathematical and computational tools have facilitated the development of estimating multiple

structured signals simultaneously. This thesis details several such problems with different goals of

signal recovery.

Chapter 2 describes a low-rank + sparse decomposition problem under data compression and

we study rigorous statistical performance guarantee that is achievable using a joint convex opti-

mization based estimator. It is well known that the convex relaxation of the structural constraints

leads to a large bias on the strong signals, although it affords computationally tractable algorithms.

Chapter 3 develops a new notion of local concavity coefficients to directly handle nonconvexity

of structural constraints. Based upon these coefficients, Chapter 4 analyzes convergence of alter-

nating minimization when nonconvex constraints are placed on each of the variables. The theory

developed here is general enough to encompass a broad class of multiple structured statistical

models such as low-rank + sparse decomposition, multitask regression, and Gaussian factor model

under a single framework. Chapter 5 discusses a simultaneous framework for the calibration of

an imaging system and image reconstruction in CT imaging. As a preliminary work, an efficient

optimization-based approach is proposed for spectrum estimation.
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CHAPTER 1

INTRODUCTION

High-dimensional data are routinely faced in modern statistics, in which knowledge of the under-

lying structure of the parameter space is typically leveraged to allow for consistent estimation of

parameters. Complex data may exhibit multiple signals at the same time, each of which represents

different structures or components of interest. In this thesis, we will cover three scenarios involv-

ing multiple structured signals in the data, with different goal and perspective on signal recovery

for each of the scenarios.

Matrix decomposition is perhaps one of the most well known problems in high-dimensional

statistics where multiple structured signals naturally arise. In the matrix decomposition problem,

a data matrix is typically observed as a noisy realization of the sum of a low-rank matrix and a

sparse matrix (or variants of sparsity) and the goal is to simultaneously recover both components.

Problems of matrix decomposition are best motivated by the robust principal component analysis

(RPCA) problem, which seeks to separate low-rank trends from sparse outliers within a data ma-

trix [1], that is, to approximate a matrix D as the sum of a low-rank matrix L and a sparse matrix

S. For example, in video surveillance, if we stack the video frames into a matrix D, the low-rank

matrix L capture a background component, whereas the sparse matrix S capture the foreground

objects. Other examples include face recognition [1], factor analysis [2], latent variable graphical

model [3], among others.

In Chapter 2, we consider the robust principal component analysis problem under data com-

pression, where the data Y is now approximately given by (L+S) ·C, that is, a low-rank + sparse

data matrix that has been compressed to a size substantially smaller than the original dimension

via multiplication with a compression matrix C. Typical applications include data compression

for the purpose of preserving privacy or for reducing resources such as communication bandwidth

and storage space, and recovering a motion component from a background component in dynamic

MRI [4]. We propose a convex program for recovering the sparse component S along with the

compressed low-rank component L ·C, and derive deterministic upper bounds on the error of this
1



reconstruction that scales naturally with the compression dimension m and coincides with existing

results for the uncompressed setting. We will also consider model errors introduced through addi-

tive noise or through missing data, under which non-asymptotic bounds on the reconstruction error

are derived in terms of dimension, compression, signal complexity, and noise magnitudes.

Various estimators for statistical recovery are based on minimizing a loss function (for exam-

ple, a negative log-likelihood) while constraining signals to the underlying structural constraints—

a method often referred to as a constrained (or regularized) M-estimator in the high-dimensional

statistics literature; here the loss function typically measures how well the model fits the data

while the constraint encourages desirable structure. Accordingly, much of the literature in this

area focuses on developing a computationally tractable algorithm for solving such optimization

problems. Computational issue concerning optimization becomes even more crucial as larger data

sets are collected in recent years. Although common constraints arising in high-dimensional statis-

tics are naturally nonconvex, such as sparsity, and low rank, many estimators are based on convex

relaxations of these structured constraints, such as the `1 norm (as a convex approximation to spar-

sity) or nuclear norm (as a convex approximation of low rank). Working with a convex penalty

or convex constraint, as a proxy for the nonconvex structure of the variable of interest, allows for

easier optimization from both a theoretical and a practical point of view.

Further, in settings where multiple structures may be present simultaneously in the data, we

may need to optimize a function over several variables, which are each believed to exhibit some

latent structure. For instance, we seek to optimize both a low-rank term and a sparse term in the

compressed robust PCA setting in Chapter 2. Alternating minimization is a simple yet powerful

algorithm for solving this type of problem, in which we iteratively minimize the loss as a function

of one variable while the other variables are fixed. A large body of research has been devoted to

understanding the method under classical settings with convex constraints [5, 6]. In contrast to

optimization with a single variable which is now better understood in high-dimensional settings

(e.g. [7]), however, alternating minimization still lacks the corresponding theoretical justifications,

despite its superior empirical performance. For the special cases such as matrix factorization [8],

2



multivariate regression [9], and phase retrieval [10], a fast convergence rate (i.e. linear rate) has

been established.

In Chapters 3 and 4, we examine convergence of gradient descent, alternating minimization,

and other optimization algorithms in high-dimensional settings when the constraints are noncon-

vex. With the presence of nonconvex constraints, we may face an fundamental challenges that are

both theoretical and practical in nature. To handle nonconvexity arising from the constraints, in

Chapter 3, we develop the notion of local concavity coefficients of the constraint set, a measure

of the extent to which a constraint set violates convexity. The extent of violation can be seen as

a measure of “concavity” for the set, and thereby, this concavity coefficient naturally extends the

standard theory of projected gradient descent with convex constraints. Chapter 4 uses the con-

cavity coefficients as a tool to develop conditions for alternating minimization that allows for fast

convergence of the algorithm under nonconvex constraints. As a byproduct of our analysis, we

also show the computational gain inherent in the alternating minimization method, compared to

the non-alternating method.

Finally in Chapter 5, we turn to simultaneous spectrum estimation and image reconstruction

in CT imaging. Computed tomography (CT) is an imaging technology using x-ray beams to cre-

ate cross-sectional images based on the transmission measurements of the scanned objects from

multiple view angles. Due to the polychromatic nature of the x-ray beams, the x-ray spectrum,

which accounts for the energy spectrum of the x-ray radiation source and the detector response

across different energy values (detector spectral response), is typically unknown and needs to be

estimated when realizing CT imaging (also known as spectral calibration).

Reconstructing the x-ray spectrum from transmission measurements is a common strategy for

spectrum calibration. In this approach, the problem can be concisely written as a linear inverse

problem; solving such an inverse problem, however, poses challenges since the system matrix is

highly ill-conditioned which effectively leads to high-dimensionality of the spectrum relative to

transmission measurements.

To address this issue, in Chapter 5, we begin with designing a new regularization scheme for the

3



task of spectral calibration and derive a constrained optimization problem for accurately recovering

the x-ray spectrum from transmission measurements. We use the exponentiated-gradient (EG)

algorithm [11] to solve the optimization problem, which is seen to be efficient. While our focus

is mostly on spectrum estimation for given image values, the ultimate goal of this work will be

to simultaneously estimating x-ray spectrum and unknown images. This simultaneous framework

will allow for calibration of CT system and reduction of the image artifacts at the same time,

potentially enhancing diagnostic accuracy in real applications. We combine our spectral calibration

approach and previously developed MOCCA algorithm [12] for spectral CT image reconstruction,

and employ alternating minimization to perform simultaneous estimation on small size simulated

data. The result suggests promising research direction for further investigation.

1.1 Summary

A common theme underlying this thesis is to investigate statistical models with multiple structured

signals arising in different problems. We take many perspectives on estimating the signals depend-

ing on the circumstances. In Chapter 2, we consider the robust PCA problem where a data matrix

is compressed so that we have access only to the compressed data. In Chapters 3 and 4, our focus

is on investigating the performance of alternating minimization when nonconvex constraints are

placed on the variables. In Chapter 5, we work in the CT imaging where our goal is to eventually

realize the simultaneous image reconstruction and spectrum estimation algorithm.

1.2 Notation

Throughout we will use the following notation. We write [n] = {1, . . . ,n} for any n ≥ 1. We

write ‖x‖0 or ‖X‖0 to denote the number of nonzero entries in a vector x or matrix X (note that

this is not in fact a norm). Xi∗ and X∗ j denote the ith row and jth column of a matrix X (always

treated as column vectors) and XAB denotes the submatrix of X indexed by A×B. We We will

use the matrix norms ‖X‖F (Frobenius norm), ‖X‖1 (elementwise `1 norm), ‖X‖∞ (elementwise
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`∞ norm), ‖X‖2,∞ (largest row `2 norm), ‖X‖sp (spectral norm, i.e. largest singular value), and

‖X‖nuc (nuclear norm, also known as the trace norm, given by the sum of the singular values of

X). For a function f :Rd 7→R, we write ∇f and ∇2f to denote a gradient and a Hessian respectively.

Similarly, for a function f : Rd×m 7→ R, we write ∇f and ∇2f to denote a gradient and a Hessian

with respect to a vectorized variable. For ρ > 0, we use B2(x,ρ) to denote the `2-ball of radius ρ

centered around x. For a set T , we use PT (·) to denote the Euclidean projection onto T .
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CHAPTER 2

LOW RANK + SPARSE DECOMPOSITION WITH COMPRESSED DATA

Principal component analysis (PCA) is a tool for providing a low-rank approximation to a data

matrix D∈Rn×d , with the aim of reducing dimension or capturing the main directions of variation

in the data. More recently, there has been increased focus on more general forms of PCA, that is

more robust to realistic flaws in the data such as heavy-tailed outliers. The robust PCA (RPCA)

problem formulates a decomposition of the data,

D≈ L+S ,

into a low-rank component L (capturing trends across the data matrix) and a sparse component S

(capturing outlier measurements that may obscure the low-rank trends), which we seek to separate

based only on observing the data matrix D [1, 13].

In this chapter,1 we examine the possibility of demixing sparse and low rank structure, under

the additional challenge of working with data that has been compressed,

Y = D ·C ≈ (L+S) ·C ∈ Rn×m,

where L,S∈Rn×d comprise the (approximately) low-rank and (approximately) sparse components

of the original data matrix D, while C ∈ Rd×m is a random or fixed compression matrix. In the

compressed robust PCA setting, we hope to learn about both the low-rank and sparse components.

Unlike compressed sensing problems where sparse structure may be reconstructed perfectly with

undersampling, here we face a different type of challenge: the sparse component S is potentially

identifiable from the compressed component S ·C, using the tools of compressed sensing; however,

the low-rank component L is not identifiable from its compression L ·C. Specifically, if we let

PC ∈Rd×d be the projection operator onto the column span of C, then the two low-rank matrices

1. The work presented in this chapter is published in Ha and Barber [14].
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L and L′ = L ·PC cannot be distinguished after multiplication by C.

Therefore, our goal will be to recover both the sparse component S, and the compressed low-

rank component L ·C. Note that recovering L ·C is similar to the goal of recovering the column

span of L, which may be a useful interpretation if we think of the columns of the data matrix D as

data points lying in Rn; the column span of L characterizes a low-rank subspace of Rn that captures

the main trends in the data.

2.1 Problem formulation

Consider the data, which takes the form of a n× d matrix, that is well-approximated by a sum

L?+S?, where L? is low-rank and S? is sparse. However, we can only access this data through a

(noisy) compression: our observed data is the n×m matrix

Y = (L?+S?) ·C+Z, (2.1)

where C ∈Rd×m is the compression matrix, and Z ∈Rn×m absorbs all sources of error and noise—

we discuss specific models for Z later on.

While we can aim to recover the sparse component S?, as we mentioned earlier, there is no

hope to recover the original low-rank component L?, since L? is not identifiable in the compressed

model. Therefore, we instead aim to recover the underlying compressed low-rank component

P? := L? ·C and the sparse component S?. Specifically, our data model is now expressed as

Y = P?+S? ·C+Z. (2.2)

In the ordinary robust PCA setting, the task of separating the low-rank and sparse components

has been known to be possible when the underlying low-rank component L? satisfies certain condi-

tions such as an incoherence condition as in [1] requiring certain bounds on the singular vectors, or

a spikiness condition as in [2] which bounds the matrix entries themselves. In order to successfully
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decompose the low-rank and sparse component in the compressed data, we thus need the similar

conditions to hold for the compressed low-rank component P?. As we will see, if L? satisfies the

spikiness condition, i.e. ‖L?‖∞ ≤ α0, then the compressed low-rank component P? satisfies the

similar spikiness condition, i.e. a bound on ‖P?C>‖∞. This motivates the possibility to recover

both the low-rank and sparse components in the case of compressed data.

We define our estimators of the sparse component S?, and the low-rank product P?, as follows:

(P̂, Ŝ) = argmin
(P,S):‖PC>‖∞≤α

{
1
2
‖Y −P−S ·C‖2F+ν‖P‖nuc +λ‖S‖1

}
. (2.3)

Note that we impose the spikiness condition ‖PC>‖∞ ≤ α on P, in order to guarantee good per-

formance for demixing two such superimposed components—later in section 2.2, we will see that

the same condition holds for P?.

2.1.1 Related work

Existing methods to separate the sparse and low-rank components include convex [1, 13] and non-

convex [15] methods, and can handle extensions or additional challenges such as missing data [1],

column-sparse rather than elementwise-sparse structure [16], streaming data [17, 18], and different

types of structures superimposed with a low-rank component [2].

Random projection methods have been shown to be highly useful for reducing dimensionality

without much loss of accuracy for numerical tasks such as least squares regression [19] or low-rank

matrix computations [20]. Here we use random projections to compress data while preserving the

information about the underlying low-rank and sparse structure. Zhou and Tao [21] also applied

random projection methods to the robust PCA problem, but their purpose is to accelerate the com-

putational task of low-rank approximation, which is different from the aim of our work.

The most relevant work to ours is Mardani et al. [4] where they work directly with the com-

pressed model (2.2) without assuming the underlying data model (2.1). They are working in the

noiseless setting and prove exact recovery under restricted isometry condition on the compressed

8



matrix. While our results in this chapter are stated in terms of the original data, the same results

will hold without assuming the underlying model (2.1). In this regard, our work can be seen as

an extension of Mardani et al. [4] into the noisy setting with relaxed conditions (i.e. restricted

eigenvalue property). See the remark following Theorem 2.2.1 for a more detailed discussion of

this distinction.

2.1.2 Motivating examples

Here we illustrate several applications that involve data model of the form (2.1) and (2.2), along

with models for the compression matrix C.

Random compression In some settings, the original data naturally lies in Rn×d , but is com-

pressed by the user for some purpose. In general, we think of the compression dimension m as

being significantly smaller than d, motivated by several considerations:

• Communication constraints: if the n×d data matrix consists of d-dimensional measurements

taken at n remote sensors, compression would allow the sensors to transmit information of

dimension m� d;

• Storage constraints: storing a matrix with nm many entries instead of nd many entries;

• Data privacy: if the data is represented as the n× d matrix, where n-dimensional features

were collected from d individuals, we can preserve privacy by compressing the data by a

random linear transformation and allow the access to database only through the compressed

data. This privacy-preserving method has been called matrix masking in the privacy literature

and studied by [22] in the context of high-dimensional linear regression.
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In either case, we control the choice of the compression matrix C, and are free to use a simple

random model. Here we consider two models:

Gaussian model: the entries of C are generated as Ci j
iid∼ N(0,1/m). (2.4)

Orthogonal model: C =
√

d/m ·U ,

where U ∈ Rd×m is an orthonormal matrix chosen uniformly at random.
(2.5)

Note that in each case, E
[
CC>

]
= Id .

Deterministic compression In other settings, compression matrix cannot be controlled by the

user and is determined through observing the specific event or phenomenon. For instance, in

a multitask learning, if the unknown regression matrix is approximately low-rank + sparse, the

model can precisely be written in the form of (2.1) by taking the transpose: in this case, the

compression matrix C is given by the transpose of the design matrix.

Another example is dynamic MRI, where measurements are acquired in a temporal series in

order to resolve degradation of the quality of MRI due to respiratory motion [4]. Each image

comprises of a background component and a motion component, and the motion component often

admits a sparse representation under some dictionary D. If we stack the background component

and the motion component of the dynamic MRI frames into matrices, which we denote by L and

D ·S, the scanned temporal sequences of images in the frequency domain can be written as

Y ≈Φ(L+DS),

where Φ is the partial FFT matrix consisting of a row subset of the full FFT matrix. Compare

to the model (2.2), where we replace Y and S with Y> and S>, and use the compression matrix

C = (ΦD)>. Then, if we set P = (ΦL)>, the measurement model for dynamic MRI can be treated

as a special case of our general model (2.2). For the purpose of dynamic MRI, since the motion

component is a major concern, it suffices to recover S and subsequently D ·S, which coincides the
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aim of this study. More examples, such as traffic anomaly detection and face recognition, can be

found in [4].

2.1.3 Sources of errors and noise

Next, we give several examples of models and interpretations for the error term Z in (2.1) and (2.2).

Random noise First, we may consider a model where the signal has an exact low-rank + sparse

decomposition, with well-behaved additive noise added before and/or after the compression step:

Y = (L?+S?+Zpre) ·C+Zpost, (2.6)

where the entries of the pre- and post-compression noise, Zpre and Zpost, are i.i.d. mean-zero

subgaussian random variables. In this case, the noise term Z in (2.1) and (2.2) is given by

Z = Zpre ·C+Zpost.

Missing data Given an original data matrix D = L?+S?, we might have access only to a partial

version of this matrix. We write DΩ to denote the available data, where Ω ⊂ [n]× [d] indexes the

entries where data is available, and (DΩ)i j = Di j ·1i j∈Ω. Then, a low-rank + sparse model for our

compressed data is given by

Y = DΩ ·C = (L?+S?
Ω
) ·C+Zmissing ·C,

where Zmissing = L?
Ω
−L?. In some settings, we may first want to adjust DΩ before compressing

the data, for instance, by reweighting the observed entries in DΩ to ensure a closer approximation

to D. Denoting the reweighted matrix of partial observations by D̃Ω, we have compressed data

Y = D̃Ω ·C = (L?+ S̃?
Ω
) ·C+Zmissing ·C, (2.7)
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with Zmissing = L̃?
Ω
−L?, and where S̃?

Ω
is the reweighted matrix of S?

Ω
. Then the error from the

missing data can be absorbed into the Z term, i.e. Z = Zmissing ·C.

2.1.4 Restricted eigenvalue condition

We state a version of the Restricted Eigenvalue property found in the compressed sensing and

sparse regression literature [23], which plays a key role in our analysis:

Definition 2.1.1. For a matrix X ∈ Rm×d and for c1,c2 ≥ 0, X satisfies the restricted eigenvalue

property with constants (c1,c2), denoted by REm,d(c1,c2), if

‖Xv‖2 ≥ c1‖v‖2− c2 ·
√

log(d)
m
· ‖v‖1 for all v ∈ Rd . (2.8)

2.2 Theoretical results

Now we develop theoretical error bounds for the compressed robust PCA problem under several

of the scenarios described above.

2.2.1 Deterministic result

We first give a general deterministic result for the accuracy of the convex program (2.3).

Theorem 2.2.1. Let L? ∈Rn×d be any matrix with rank(L?)≤ r, and let S? ∈Rn×d be any matrix

with at most s nonzero entries per row, that is, maxi‖S?i∗‖0 ≤ s. Let C ∈Rd×m be any compression

matrix and define the data Y and the error/noise term Z as in (2.1). Let P? = L? ·C as before.

Suppose that C> satisfies REm,d(c1,c2), where c0 := c1− c2 ·
√

16s log(d)/m > 0. If parameters

(α,ν ,λ ) satisfy

α ≥ ‖L?CC>‖∞, ν ≥ 2‖Z‖sp, λ ≥ 2‖ZC>‖∞ +4α, (2.9)
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then deterministically, the solution (P̂, Ŝ) to the convex program (2.3) satisfies

‖P̂−P?‖2F+ c2
0‖Ŝ−S?‖2F ≤ 18rν

2 +9c−2
0 snλ

2.

Remark on model assumptions It is worthwhile to mention that while Theorem 2.2.1 assumes

the underlying model (2.1), analogous results can be obtained without assuming (2.1) but only with

the model (2.2). In particular, if the spikiness condition holds for P?, namely‖P?C>‖∞ ≤ α , and

C> satisfies REm,d(c1,c2), under the same choice of parameters as in (2.9), the same error bounds

holds, as long as rank(P?)≤ r and maxi‖S?i∗‖0 ≤ s.

2.2.2 Results for random compression with subgaussian noise

We specialize our main result to handle scenarios of pre- and post-compression noise, given

in (2.6). We assume the compression matrix C is generated under either the Gaussian (2.4) or

orthogonal (2.5) model, and the noise matrices Zpre,Zpost are independent from each other and

from C, with entries

(Zpre)i j
iid∼ N(0,σ2

pre) and (Zpost)i j
iid∼ N(0,σ2

post).

For this section, we assume d≥m without further comment (that is, the compression should reduce

the dimension of the data). Let σ2
max ≥max{σ2

pre,σ
2
post}. Specializing the result of Theorem 2.2.1

to this setting, we obtain the following probablistic guarantee:

Theorem 2.2.2. Assume the model (2.6). Suppose that rank(L?)≤ r, maxi‖S?i∗‖0≤ s, and ‖L?‖∞≤

α0. Then there exist universal constants c,c′,c′′ > 0 such that if we define

α = 5α0

√
d log(nd)

m
, ν = 24σmax

√
d(n+m)

m
, λ = 32σmax

√
d log(nd)

m
+4α,
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and if m≥ c · s log(nd), then the solution (P̂, Ŝ) to the convex program (2.3) satisfies

‖P̂−P?‖2F+‖Ŝ−S?‖2F ≤ c′ · d
m

(
σ

2
max · r(n+m)+(σ2

max +α
2
0 ) · sn log(nd)

)
(2.10)

with probability at least 1− c′′
nd .

We remark that if the entries of Zpre and Zpost are subgaussian rather than Gaussian, then the

same result holds, except for a change in the constants appearing in the parameters (α,ν ,λ ). Theo-

rem 2.2.2 shows the natural scaling: the first term r(n+m) is the degree of freedom for compressed

rank r matrix P whereas the term sn log(nd) is the signal complexity of sparse component S, which

has sn many nonzero entries. The multiplicative factor d
mσ2

max can be interpreted as the noise

variance of the problem amplified by the compression.

2.2.3 Results for random compression with missing data

Next, we consider a missing data scenario where the original n× d matrix is only partially ob-

served. We first specify a model for the missing data. For each (i, j) ∈ [n]× [d], let ρi j ∈ [0,1] be

the probability that this entry is observed. Additionally, we assume that the sampling scheme is

independent across all entries, and that the ρi j’s are known.2

Define reweighted versions of the partially observed data matrix and the low rank and sparse

components:

(D̃Ω)i j = Di j/ρi j ·1i j∈Ω and (L̃?
Ω
)i j = Li j/ρi j ·1i j∈Ω and (S̃?

Ω
)i j = Si j/ρi j ·1i j∈Ω,

and consider the model (2.7), where Y is approximated with a compression of L?+ S̃?
Ω

. The role

of the reweighting step is to ensure that this noise term Z has mean zero. Note that, while the

original sparse component S?, is not identifiable via the missing data model (since we have no

2. In practice, the assumption that ρi j’s are known is not prohibitive. For example, we might model ρi j = αiβ j
(the row and column locations of the observed entries are chosen independently, e.g. see [24]), or a logistic model,
log
(

ρi j
1−ρi j

)
= αi +β j. In either case, fitting a model using the observed set Ω is extremely accurate.
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information to help us recover entries S?i j for (i, j) 6∈Ω), this new decomposition L?+ S̃?
Ω

now has

a sparse component that is identifiable, since by definition, S̃?
Ω

preserves the sparsity of S? but has

no nonzero entries in unobserved locations, that is, (S̃?
Ω
)i j = 0 whenever (i, j) 6∈Ω.

With this model in place, we obtain the following probabilistic guarantee for this setting, which

is another specialized version of Theorem 2.2.1.

Theorem 2.2.3. Assume the model (2.7). Suppose that rank(L?)≤ r, maxi‖S?i∗‖0≤ s, and ‖L?‖∞≤

α0. If the sampling scheme satisfies ρi j ≥ ρmin for all (i, j) ∈ [n]× [d] for some positive constant

ρmin > 0, then there exist universal constants c,c′,c′′ > 0 such that if we define

α = 5α0

√
d log(nd)

m
, ν = 10ρ

−1
minα0

√
d(n+m) log(nd)

m
, λ = 12ρ

−1
minα0

√
d log2(nd)

m
+4α,

and if m≥ c · s log(nd), then the solution (P̂, Ŝ) to the convex program (2.3) satisfies

‖P̂−P?‖2F+‖Ŝ− S̃?
Ω
‖2F ≤ c′ · d

m
·ρ−2

minα
2
0

(
r(n+m) log(nd)+ sn log2(nd)

)

with probability at least 1− c′′
nd .

2.3 Empirical results

Now we use simulated data to study the behavior of the convex program (2.3) for different com-

pression dimensions, signal complexities and missing levels. We generate the compression matrix

C under the orthogonal model (2.5). We solve the convex program (2.3) via alternating minimiza-

tion over L and S, selecting the regularization parameters ν and λ that minimizes the squared

Frobenius error. For simplicity, in all experiments, we select α = ∞, which is easier for optimiza-

tion and generally results in a solution that still has low spikiness (that is, the solution is the same

as if we had imposed a bound with finite α). All results are averaged over 5 trials.
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Figure 2.1: The total squared error, calculated as in Theorem 2.2.2, is plotted against the compres-
sion ratio d/m.
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Figure 2.2: The total squared error, calculated as in Theorem 2.2.2, is plotted against the rank r or
sparsity proportion s/d.

2.3.1 Compression ratio.

First we examine the role of the compression dimension m. We fix the matrix dimension n =

d ∈ {400,800}. The low-rank component is given by L? =
√

r ·UV>, where U and V are n× r

and d× r matrices with i.i.d. N(0,1) entries, for rank r = 10. The sparse component S? has 1%

of its entries generated as 5 ·N(0,1), that is, s = 0.01d. The data is D = L?+ S?+ Z, where

Zi j
iid∼ N(0,0.25). Figure 2.1 shows the squared Frobenius error ‖P̂−P?‖2F+ ‖Ŝ−S?‖2F plotted

against the compression ratio d/m. We see error scaling linearly with the compression ratio, which

supports our theoretical results.
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Figure 2.3: The total squared error, calculated as in Theorem 2.2.3, is plotted against ρ (proportion
of observed data) or against 1/ρ2, for various values of m, based on one trial.

2.3.2 Rank and sparsity.

Next we study the role of rank and sparsity, for a matrix of size n = d = 200 or n = d = 400.

We generate the data D as before, but we either vary the rank r ∈ {5,10, . . . ,50}, or we vary the

sparsity s with s/d ∈ {0.01,0.02, . . . ,0.1}. Figure 2.2 shows the squared Frobenius error plotted

against either the varying rank or the varying sparsity. We repeat this experiment for several dif-

ferent compression dimensions m. We see a little deviation from linear scaling for the smallest m,

which can be due to the fact that our theorems give upper bounds rather than tight matching upper

and lower bounds (or perhaps the smallest value of m does not satisfy the condition stated in the

theorems). However, for all but the smallest m, we see error scaling nearly linearly with rank or

with sparsity, which is consistent with our theory.

2.3.3 Missing data.

Finally, we perform experiments under the existence of missing entries in the data matrix D = L?+

S?. We fix dimensions n= d = 400 and generate L? and S? as before, with r = 10 and s= 0.01d, but

do not add noise. To introduce the missing entries in the data, we use a uniform sampling scheme,

where each entry of D is observed with probability ρ , with ρ ∈ {0.1,0.2, . . . ,1}. Figure 2.3 shows

the squared Frobenius error ‖P̂−P?‖2F+‖Ŝ− S̃?
Ω
‖2F (see Theorem 2.2.3 for details) across a range

of probabilities ρ . We see that the squared error scales approximately linearly with 1/ρ2, as

predicted by our theory.
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2.4 Proofs

2.4.1 Background

First we introduce a few definitions using the decomposability of the `1 norm and the nuclear norm.

Let Ω ⊂ [n]× [d] be the support of the true sparse component S?, and let Ωi ⊂ [d] be the i-th row

of Ω, i.e. Ωi = { j : S?i j 6= 0}. Let T be the tangent space to the nuclear norm at P?, which is given

by [1]

T = {AV>+UB> : any matrices A ∈ Rn×r,B ∈ Rm×r},

where P? = UΣV> is a singular value decomposition of P? with U ∈ Rn×r and V ∈ Rm×r. It is

known [23] that, for any S ∈ Rn×d , for each row i ∈ [n],

‖S?i∗‖1−‖Si∗‖1 ≤ ‖(S−S?)iΩi‖1−‖(S−S?)iΩc
i
‖1, (2.11)

which trivially yields

‖S?‖1−‖S‖1 ≤ ‖PΩ(S−S?)‖1−‖P⊥Ω (S−S?)‖1, (2.12)

where PΩ() and P⊥
Ω
() denote projection onto the subspace of matrices supported on Ω, and onto

the orthogonal subspace. Furthermore for any P ∈ Rn×m,

‖P?‖nuc−‖P‖nuc ≤ ‖PT (P−P?)‖nuc−‖P⊥T (P−P?)‖nuc, (2.13)

where PT () and P⊥T () denote projection onto the subspace T ⊂ Rn×m, and onto its orthogonal

complement T⊥. Throughout, we will use the facts that ‖M‖nuc ≤ ‖PT (M)‖nuc +‖P⊥T (M)‖nuc

and similarly ‖M‖1 ≤ ‖PΩ(M)‖1 +‖P⊥Ω (M)‖1 without comment.
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2.4.2 Proofs of Theorems

Proof of Theorem 2.2.1. By optimality,

1
2
‖Y − P̂− ŜC‖2F+ν‖P̂‖nuc +λ‖Ŝ‖1 ≤

1
2
‖Y −P?−S?G‖2F+ν‖P?‖nuc +λ‖S?‖1 . (2.14)

Define errors ∆P = P̂−P? and ∆S = Ŝ− S?. Using our model (2.2) for Y , and applying (2.12)

and (2.13), we rearrange terms to obtain

1
2
‖∆P +∆

SC‖2F ≤ 〈Z,∆
P +∆

SC〉+ν

(
‖PT (∆

P)‖nuc−‖P⊥T (∆P)‖nuc

)
+λ

(
‖PΩ(∆S)‖1−‖P⊥Ω (∆S)‖1

)
≤ ‖Z‖sp · ‖∆P‖nuc +‖ZC>‖∞ · ‖∆S‖1 +ν

(
‖PT (∆

P)‖nuc−‖P⊥T (∆P)‖nuc

)
+λ

(
‖PΩ(∆S)‖1−‖P⊥Ω (∆S)‖1

)
≤ ‖PT (∆

P)‖nuc(ν +‖Z‖sp)−‖P⊥T (∆P)‖nuc(ν−‖Z‖sp)

+‖PΩ(∆S)‖1(λ +‖ZC>‖∞)−‖P⊥Ω (∆S)‖1(λ −‖ZC>‖∞) .

Now we consider the left-hand side. We have

1
2
‖∆P +∆

SC‖2F =
1
2
‖∆P‖2F+

1
2
‖∆SC‖2F+ 〈∆

P,∆SC〉

≥ 1
2
‖∆P‖2F+

1
2
‖∆SC‖2F−‖∆

PC>‖∞ · ‖∆S‖1

≥ 1
2
‖∆P‖2F+

1
2
‖∆SC‖2F−2α‖∆S‖1 ,

where the last step uses ‖∆PC>‖∞ ≤ ‖P̂C>‖∞ +‖P?C>‖∞ ≤ 2α by the assumption ‖P?C>‖∞ ≤

α (2.9) and the constraint ‖P̂C>‖∞ ≤ α in the optimization problem (2.3). Including this into the
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work above, then,

1
2
‖∆P‖2F+

1
2
‖∆SC‖2F ≤ ‖PT (∆

P)‖nuc(ν +‖Z‖sp)−‖P⊥T (∆P)‖nuc(ν−‖Z‖sp)

+‖PΩ(∆S)‖1(λ +‖ZC>‖∞ +2α)−‖P⊥
Ω
(∆S)‖1(λ −‖ZC>‖∞−2α)

≤ ν(1.5‖PT (∆
P)‖nuc−0.5‖P⊥T (∆P)‖nuc)+λ (1.5‖PΩ(∆S)‖1−0.5‖P⊥

Ω
(∆S)‖1) , (2.15)

where the last step uses the assumptions (2.9) on the parameters (α,ν ,λ ).

Next, we need to use the restricted strong convexity assumption on C. First, we consider the

rows of Ŝ individually. Fixing P̂, we note that the optimization problem (2.3) separates over the

rows of Ŝ: ignoring the term ν‖P̂‖nuc which is constant with respect to S, we have

1
2
‖Y − P̂− ŜC‖2F+λ‖Ŝ‖1 = ∑

i

(
1
2
‖Yi∗− P̂i∗−C>Ŝi∗‖22 +λ‖Ŝi∗‖1

)
.

Therefore, Ŝi∗ is the minimizer of the term in parentheses, for each i, and in particular we have

1
2
‖Yi∗− P̂i∗−C>Ŝi∗‖22 +λ‖Ŝi∗‖1 ≤

1
2
‖Yi∗− P̂i∗−C>S?i∗‖

2
2 +λ‖S?i∗‖1 .

Rearranging terms and applying (2.11), we get

1
2
‖C>(Ŝi∗−S?i∗)‖

2
2 ≤ 〈Yi∗− P̂i∗−C>S?i∗,∆

S
i∗〉+λ

(
‖∆S

iΩi
‖1−‖∆S

iΩc
i
‖1
)

≤ ‖C(Yi∗− P̂i∗−C>S?i∗)‖∞ · ‖∆
S
i∗‖1 +λ

(
‖∆S

iΩi
‖1−‖∆S

iΩc
i
‖1
)
.

We also have

‖C(Yi∗− P̂i∗−C>S?i∗)‖∞ = ‖C(Zi∗− (P̂−P?)i∗)‖∞ ≤ ‖(Z− (P̂−P?))C>‖∞

≤ ‖ZC>‖∞ +‖P̂C>‖∞ +‖P?C>‖∞ ≤ ‖ZC>‖∞ +2α ≤ λ/2 ,
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by the assumption (2.9) on λ . Combining this with the above, we then have

1
2
‖C>∆

S
i∗‖

2
2 ≤ λ

(
1.5‖∆S

iΩi
‖1−0.5‖∆S

iΩc
i
‖1
)
,

and since the left-hand side is nonnegative, we therefore have

‖∆S
iΩc

i
‖1 ≤ 3‖∆S

iΩi
‖1 ,

that is, for every row of the sparse matrix, a substantial portion of the `1 norm of the error is located

on the correct support. Therefore,

‖∆S
i∗‖1 = ‖∆S

iΩc
i
‖1 +‖∆S

iΩi
‖1 ≤ 4‖∆S

iΩi
‖1 ≤ 4

√
s‖∆S

iΩi
‖2 ≤ 4

√
s‖∆S

i∗‖2 ,

where the next-to-last inequality holds because |Ωi| ≤ s by assumption on the sparsity of the row

S?i∗. Next, by assumption of the theorem, C> satisfies REm,d(c1,c2). We then have

‖C>∆
S
i∗‖2 ≥ c1‖∆S

i∗‖2− c2 ·
√

log(d)
m
‖∆S

i∗‖1 ≥

(
c1− c2 ·4

√
s ·
√

log(d)
m

)
‖∆S

i∗‖2 = c0‖∆S
i∗‖2 ,

where the last step uses the definition of c0 in the theorem. (Recall that c0 > 0 by assumption.)

Summing over the rows, we then have

‖∆SC‖2F = ∑
i
‖C>∆

S
i∗‖

2
2 ≥∑

i
c2

0‖∆
S
i∗‖

2
2 = c2

0‖∆
S‖2F . (2.16)

Now we return to (2.15) and plug in our result in (2.16), to obtain

1
2
‖∆P‖2F+

c2
0
2
‖∆S‖2F

≤ ν(1.5‖PT (∆
P)‖nuc−0.5‖P⊥T (∆P)‖nuc)+λ (1.5‖PΩ(∆S)‖1−0.5‖P⊥

Ω
(∆S)‖1) .
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Removing negative terms from the right-hand side and multiplying by 2,

‖∆P‖2F+ c2
0‖∆

S‖2F ≤ 3ν‖PT (∆
P)‖nuc +3λ‖PΩ(∆S)‖1 .

Since rank(PT (∆
P)) ≤ 2r by definition of T , and similarly since ‖PΩ(∆S)‖0 ≤ sn by definition

of Ω, we have

‖∆P‖2F+ c2
0‖∆

S‖2F ≤ 3ν‖PT (∆
P)‖F ·

√
2r+3λ‖PΩ(∆S)‖F ·

√
sn

≤ 3ν‖∆P‖F ·
√

2r+3λ‖∆S‖F ·
√

sn

≤
√
‖∆P‖2F+ c2

0‖∆S‖2F ·
√

18rν2 +9c−2
0 snλ 2 ,

where the last step uses the Cauchy-Schwarz inequality. In particular, this implies that

‖∆P‖2F+ c2
0‖∆

S‖2F ≤ 18rν
2 +9c−2

0 snλ
2 ,

which proves the desired result.

Proof of Theorem 2.2.2. This result is a straightforward application of Theorem 2.2.1. It will be

sufficient to check that, with the stated probability, the following statements all hold:

C> satisfies REm,d(c1,c2), with c0 := c1− c2

√
16s log(d)

m
> 0, (2.17)

and

α ≥ ‖L?CC>‖∞, ν ≥ 2‖Z‖sp, λ ≥ 2‖ZC>‖∞ +4α. (2.18)

To prove that (2.17) holds, the following lemma is sufficient (along with the assumption m ≥

c · s log(nd)):

Lemma 2.4.1. Under either the Gaussian model (2.4) or the orthogonal model (2.5) for the com-
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pression matrix C, for any δ > 0, C> satisfies REm,d(c1,c2) for constants

c1 =
1

4(2+
√

2)
and c2 =

9
2+
√

2

with probability at least 1− c′e−cm, where c,c′ > 0 are universal constants.

To prove (2.18), we consider the first inequality by treating L? as fixed and analysing the

random model for C:

Lemma 2.4.2. Under either the Gaussian model (2.4) or the orthogonal model (2.5) for C, for any

fixed matrix L? ∈ Rn×d and fixed δ > 0, if m≥ 16log(nd), then

P

{
‖L?CC>‖∞ > ‖L?‖∞ ·

(
1+

√
16d log(nd)

m

)}
≤ 4

nd
.

For the second and third inequalities in (2.18), we first have the following bound on C:

Lemma 2.4.3. Under either the Gaussian (2.4) or orthogonal (2.5) model for C, with probability

at least 1−2de−m/8,

‖C‖sp ≤
√

12d/m and ‖C‖2,∞ ≤ 2 .

Next, we consider C as fixed and analyse the random model for the noise terms Zpre and Zpost

(we can treat C as fixed since the noise is generated independently from C). Fixing C, the rows of

Z = ZpreC+Zpost are i.i.d. draws from the distribution N(0,σ2
preC

>C+σ2
postIm). Then, writing

Σ = σ2
preC

>C+σ2
postIm, we have

‖Z‖sp ≤ ‖Z ·Σ−1/2‖sp ·
√
‖Σ‖sp ≤ 3

√
n+m ·

√
‖Σ‖sp ,

with probability at least 1− e−m, where the last step uses the fact that Z ·Σ−1/2 is a n×m matrix

with i.i.d. standard normal entries, and applies [25, Theorem II.13]. Furthermore,

‖Σ‖sp ≤ σ
2
pre‖C‖2sp +σ

2
post ≤ σ

2
max · (12d/m+1)≤

(
4σmax

√
d/m

)2
,
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where the last step follows from Lemma 2.4.3. Combining these steps,

‖Z‖sp ≤ 12σmax
√

n+m ·
√

d/m .

Next, we need to bound ‖ZC>‖∞. Note that the entries are distributed as

(ZC>)i j ∼ N(0,σ2
pre(CC>CC>) j j +σ

2
post(CC>) j j) ,

and this variance term is bounded as

σ
2
pre(CC>CC>) j j +σ

2
post(CC>) j j = σ

2
pree>j CC>CC>e j +σ

2
poste

>
j CC>e j

≤ σ
2
max

(
‖C‖2sp +1

)
‖C>e j‖22 ≤ σ

2
max · (12d/m+1) ·22 ≤

(
8σmax

√
d/m

)2
,

where the last step follows from Lemma 2.4.3. Therefore, using standard tail bounds on the normal

distribution, with probability at least 1− 2
nd ,

‖ZC>‖∞ = max
i j

∣∣∣(ZC>)i j

∣∣∣≤ 8σmax
√

d/m ·2
√

log(nd) .

Proof of Theorem 2.2.3. This result is another immediate consequence of Theorem 2.2.1, with S̃?
Ω

in place of S? (note that maxi‖(S̃?Ω)i∗‖0 ≤ maxi‖S?i∗‖0 ≤ s by assumption) . Since the restricted

eigenvalue property and the condition α ≥‖L?CC>‖∞ follow from Lemma 2.4.1 and Lemma 2.4.2

respectively, it is sufficient to check that, with the stated probability, the following statements both

hold:

ν ≥ 2‖Z‖sp, λ ≥ 2‖ZC>‖∞ +4α, (2.19)

where Z = (L̃?
Ω
−L?) ·C as defined before. Let Bi j

⊥⊥∼ Bernoulli(ρi j) be an indicator variable for
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(i, j) ∈Ω, that is, for whether we observe entry (i, j). Then we can write L̃?
Ω

as

(L̃?
Ω
)i j =

Bi j

ρi j
·L?i j

for each (i, j) ∈ [n]× [d], and so Z can be written as

Z = ∑
i j

(
Bi j

ρi j
−1
)
·Ei j (2.20)

where Ei j = L?i j · eiC>j∗ ∈ Rn×m, and where ei ∈ Rn is the i-th standard basis vector and C j∗ ∈ Rm

is j-th row of the compression matrix C. To prove the first inequality in (2.19), we consider C as

fixed and analyse the random model for Bi j’s. We first have the following bound on the sum of

random scalars times fixed matrices:

Lemma 2.4.4 (Adapted from [26, Theorem 4.1.1]). Let A1, . . . ,AL ∈ Rd1×d2 be fixed matrices,

and let B1, . . . ,BL be independent mean-zero random variables, such that for each `= 1, . . . ,L, B`

is σ2-subgaussian, that is,

E
[
etB`

]
≤ eσ2t2/2 for all t ∈ R .

Then

P

{∥∥∥∥ L

∑
`=1

B`A`

∥∥∥∥
sp
≥ t

}
≤ (d1 +d2)exp

− t2

2σ2 max
{
‖∑L

`=1 A`A>` ‖sp,‖∑L
`=1 A>` A`‖sp

}
 .

To apply Lemma 2.4.4 to the error term expression Z in (2.20), we first show that the random

scalar, defined by

B̃i j =
Bi j

ρi j
−1 ,

is σ2-subgaussian with σ2 = 2µ2 for all (i, j) ∈ [n]× [d]. To see this, first note that E
[
B̃i j

]
= 0

25



and |B̃i j| is bounded by µ for all (i, j) ∈ [n]× [d]. If |t| ≥ (2µ)−1, then

E
[
etB̃i j

]
≤ E

[
e(2µ2t2+B̃2

i j/2µ2)/2
]
= eµ2t2

E
[

eB̃2
i j/4µ2

]
≤ eµ2t2

e1/4 ≤ e2µ2t2

where the last inequality holds due to |t| ≥ (2µ)−1. If |t| ≤ (2µ)−1, we have |tB̃i j| ≤ 1/2, and so

E
[
etB̃i j

]
≤ 1+ tE

[
B̃i j

]
+ t2E

[
B̃2

i j

]
= 1+ t2E

[
B̃2

i j

]
≤ e

t2E
[
B̃2

i j

]
≤ eµ2t2

where the first inequality follows from the fact that ex ≤ 1+ x+ x2 for |x| ≤ 1/2. Therefore, we

apply Lemma 2.4.4 to the error term expression (2.20) so that, with probability at least 1− 1
nd (with

respect to the randomness of the Bi j’s),

‖Z‖sp ≤

√√√√4µ2 max

{
‖∑

i j
Ei jE>i j ‖sp,‖∑

i j
E>i j Ei j‖sp

}
log(nd · (n+m)) .

Next, we derive the probabilistic bound on max
{
‖∑i j Ei jE>i j ‖sp,‖∑i j E>i j Ei j‖sp

}
. We first state

the following bound on C:

Lemma 2.4.5. Under either the Gaussian (2.4) or orthogonal (2.5) model for C, with probability

at least 1−2e−m,

‖C‖sp ≤
√

12d/m and ‖C‖F ≤
√

3d .

Direct calculation shows that

‖∑
i j

Ei jE
>
i j ‖sp = max

i

(
d

∑
j=1
‖C j∗‖22L?i j

2

)
≤ α

2
0 · ‖C‖

2
F

and

‖∑
i j

E>i j Ei j‖sp = ‖∑
i j

L?i j
2C j∗C

>
j∗‖sp ≤ α

2
0 ·n‖C‖

2
sp.
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Then, applying Lemma 2.4.5, with probability at least 1−2e−m,

max

{
‖∑

i j
Ei jE

>
i j ‖sp,‖∑

i j
E>i j Ei j‖sp

}
≤ α

2
0 max

{
‖C‖2F,n‖C‖

2
sp

}
≤ α

2
0 ·12

d(n+m)

m
.

In total, we have with probability at least 1− 2
nd ,

‖Z‖sp ≤ µα0

√
48

d(n+m)

m
log(nd(n+m)) .

Since m ≤ d, we can write log(nd(n + m)) ≤ log(nd(n + d)) ≤ max{log(2n2d), log(2nd2)} ≤

2log(nd), where we assume n,d ≥ 2 to avoid triviality. So,

‖Z‖sp ≤ 10µα0

√
d(n+m)

m
log(nd) . (2.21)

Next, we need to bound on ‖ZC>‖∞. Note that

‖ZC>‖∞ = ‖(L̃?
Ω
−L?)CC>‖∞ ≤ ‖L̃?Ω−L?‖∞ +‖(L̃?

Ω
−L?)(CC>− Id)‖∞ .

By our assumptions, we can immediately bound ‖L̃?
Ω
−L?‖∞ ≤ µα0. Next consider the term

‖(L̃?
Ω
−L?)(CC>− Id)‖∞. We first consider C as fixed and analyse the random model for Bi j’s.

The (i, `)-th entry of (L̃?
Ω
−L?)(CC>− Id) can be written as

[
(L̃?

Ω
−L?)(CC>− Id)

]
i`
= ∑

j
B̃i j ·L?i j(CC>− Id) j` ,

which is mean zero random scalar and bounded above by µα0‖CC>− Id‖∞. Therefore, apply-

ing Hoeffding’s Lemma and union bound, with probability at least 1− 1
nd (with respect to the

randomness of the Bi j’s),

‖(L̃?
Ω
−L?)(CC>− Id)‖∞ ≤

√
2d(α0 +α1)

2µ2‖CC>− Id‖2∞ log(2n2d2) . (2.22)
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For the bound on ‖CC>− Id‖∞, we have the following result:

Lemma 2.4.6. Under either the Gaussian (2.4) or orthogonal (2.5) model for C, with probability

at least 1− 4
nd ,

‖CC>− Id‖∞ ≤
√

24log(nd)
m

.

Combining (2.22) with Lemma 2.4.6, we have with probability at least 1− 5
nd ,

‖ZC>‖∞ ≤ 7µα0

√
d log(nd) log(2n2d2)

m
≤ 12µα0

√
d log2(nd)

m
.

2.4.3 Concentration lemma

We first state a concentration result under the Gaussian model (2.4) or the orthogonal model (2.5):

Lemma 2.4.7. Under either the Gaussian model (2.4) or the orthogonal model (2.5), for any fixed

vector w ∈ Rd and any ε > 0,

P

{
‖C>w‖22
‖w‖22

−1 > ε

}
≤ exp

{
−m

8
·min{ε,ε2}

}
,P

{
‖C>w‖22
‖w‖22

−1 <−ε

}
≤ exp

{
−m

4
ε

2
}
.

(2.23)

Proof. Under the Gaussian model,

m ·
‖C>w‖22
‖w‖22

∼ χ
2
m

and therefore, by the χ2 tail bounds of [27, Lemma 1], for any t > 0,

P

{
m ·
‖C>w‖22
‖w‖22

> m+2
√

mt +2t

}
≤ e−t and P

{
m ·
‖C>w‖22
‖w‖22

< m−2
√

mt

}
≤ e−t .

Setting t = m
8 ·min{ε,ε2}, we obtain the desired result (2.23). Next, turning to the orthogonal

model, we have G =
√

d
m ·U where U ∈ Rd×m is an orthonormal matrix chosen uniformly at
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random. Let v∈Rd be a random unit vector. Then ‖U>w‖22 is equal in distribution to v2
1+ · · ·+v2

m.

In this setting, [28, Lemma 2.4] states that, for any 0 < β0 < 1,

P
{

v2
1 + · · ·+ v2

m < β0
m
d

}
≤ exp

{m
2
(1−β0 + log(β0))

}

and for any β1 > 1,

P
{

v2
1 + · · ·+ v2

m > β1
m
d

}
≤ exp

{m
2
(1−β1 + log(β1))

}
.

Next, set β1 = 1+ ε . Then, since for all x > 0 we have log(1+ x)≤ x− min{x,x2}
4 , then

1−β1 + log(β1)≤ 1− (1+ ε)+ ε− min{ε,ε2}
4

=−min{ε,ε2}
4

.

Therefore,

P

{
‖C>w‖22
‖w‖22

> 1+ ε

}
≤ exp

{
−m

8
·min{ε,ε2}

}
.

Next we want to bound the probability of the event ‖C
>w‖22
‖w‖22

< 1− ε . If ε ≥ 1 then trivially this

cannot occur. If instead ε < 1, then we set β0 = 1−ε . Since log(1−x)≤−x− x2

2 for all 0 < x < 1,

we have

1−β0 + log(β0) = 1− (1− ε)− ε− ε2

2
=−ε2

2
,

and so

P

{
‖C>w‖22
‖w‖22

< 1− ε

}
≤ exp

{
−m

4
· ε2
}
.

This is sufficient to prove the desired bound.

2.4.4 Proofs of supporting lemmas

Proof of Lemma 2.4.2. Set ε =

√
16log(nd)

m and note that ε ≤ 1 by assumption. For each i ∈ [n],

define the unit vector vi =
L?i∗
‖L?i∗‖2

(treated as a column vector). Now fix any i ∈ [n] and any j ∈ [d].
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Then

(
L?CC>

)
i j
= ‖L?i∗‖2 · v

>
i CC>e j = ‖L?i∗‖2 ·

1
4

(
‖C>(vi + e j)‖22−‖C

>(vi− e j)‖22
)
.

By Lemma 2.4.7, with probability at least 1−4e−mε2/8,

∣∣∣∣∣‖C>(vi + e j)‖22
‖vi + e j‖22

−1

∣∣∣∣∣≤ ε and

∣∣∣∣∣‖C>(vi− e j)‖22
‖vi− e j‖22

−1

∣∣∣∣∣≤ ε .

If these bounds hold, then

(
L?CC>

)
i j
= ‖L?i∗‖2 ·

1
4

(
‖C>(vi + e j)‖22−‖C

>(vi− e j)‖22
)

≤ ‖L?i∗‖2 ·
1
4

(
(1+ ε) · ‖vi + e j‖22− (1− ε) · ‖vi− e j‖22

)
= ‖L?i∗‖2 ·

1
4

((
‖vi + e j‖22−‖vi− e j‖22

)
+ ε

(
‖vi + e j‖22 +‖vi− e j‖22

))
= ‖L?i∗‖2 ·

1
4

(
4〈vi,e j〉+ ε

(
2‖vi‖22 +2‖e j‖22

))
= ‖L?i∗‖2 ·

(
〈vi,e j〉+ ε

)
since ‖vi‖2 = ‖e j‖2 = 1

= 〈L?i∗,e j〉+ ε‖L?i∗‖2 by definition of vi

= L?i j + ε‖L?i∗‖2

≤ ‖L?‖∞
(

1+ ε
√

d
)
.

Using the same arguments, the same bound holds for −(L?CC>)i j, and therefore,

∣∣∣(L?CC>)i j

∣∣∣≤ ‖L?‖∞(1+ ε
√

d
)
.

Applying the union bound over each i ∈ [n] and each j ∈ [d], we see that

‖L?CC>‖∞ ≤ ‖L?‖∞(1+ ε
√

d)
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with probability at least

1−nd ·4e−mε2/8 = 1−4nd exp

m
8

(√
16log(nd)

m

)2
= 1− 4

nd
.

Proof of Lemma 2.4.3. First we treat ‖C‖sp. Under the orthogonal model, ‖C‖sp ≤
√

d/m triv-

ially, while under the Gaussian model for C (2.4), ‖C‖sp≤
√

d/m(2+
√

2) with probability at least

1−e−m by again applying [25, Theorem II.13]. Next consider ‖C‖2,∞ = maxi=1,...,d‖C>ei‖2. For

each i, by Lemma 2.4.7,

P
{
‖C>e j‖2 > 2

}
≤ e−m/8 .

Therefore,

P
{
‖C‖2,∞ > 2

}
≤ d · e−m/8 .

Proof of Lemma 2.4.4. [26, Theorem 4.1.1] proves this exact statement for the special case that

either B`
iid∼ N(0,1) (Gaussian variables) or B`

iid∼ {±1} (Rademacher variables). To see why the

statement holds in this more general case, we observe that for Corollary 4.2 in Tropp, the distribu-

tion of the B`’s is used only once: to prove the bound

E
[
etB`A

]
� et2A2/2
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for each ` and for any fixed Hermitian matrix A. For the general case, take a fixed Hermitian matrix

A, with A = QΛQ> its eigendecomposition. We have

E
[
etB`A

]
= E

[
eQ·(tB`Λ)·Q>

]
= Q ·diag{E

[
etB`λi

]
} ·Q>

� Q ·diag{eσ2t2λ 2
i /2} ·Q>

= eQ·(σ2t2Λ2/2)·Q>

= eσ2t2A2/2 .

Therefore, this is sufficient to see that Corollary 4.2 of Tropp holds in this case also.

Proof of Lemma 2.4.5. The result for ‖C‖sp follows from Lemma 2.4.3. Next consider ‖C‖2F. Un-

der the orthogonal model, ‖C‖2F = tr(C>C) = d holds. Under the Gaussian model for C, we note

that ‖C‖2F ∼ χ2
md/m. By the χ2 tail bounds of [27, Lemma 1], we have

P
{
‖C‖2F ≥ d +2

√
d +2

}
≤ e−m .

Since 3d ≥ d +2
√

d +2 for d ≥ 1, with probability at least 1− e−m, we have ‖C‖2F ≤ 3d.

Proof of Lemma 2.4.6. This result is the consequence of Lemma 2.4.7 and union bound. Set ε =√
24log(nd)

m and ε ≤ 1. By Lemma 2.4.7, with probability at least 1−2e−mε2/8, for i 6= j,

(CC>− Id)i j = e>i (CC>− Id)e j =
1
4
(‖C>(ei + e j)‖22−‖C

>(ei− e j)‖22)

≤ 1
4
((1+ ε)‖ei + e j‖22− (1− ε)‖ei− e j‖22)≤ ε .

The same bound holds for −(CC>− Id)i j if we use the same arguments, and so with probability

at least 1−4e−mε2/8,

|(CC>− Id)i j| ≤ ε .
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For i = j, applying Lemma 2.4.7 again, with probability at least 1−2e−mε2/8,

|(CC>− Id)i j|= |e>i (CC>− Id)e j|= |‖C>e j‖22−1| ≤ ε .

Applying the union bound over each (i, j) ∈ [d]× [d], we have that

‖CC>− Id‖∞ ≤
√

24log(nd)
m

with probability at least 1−4d2e−mε2/8 ≥ 1− 4
nd .

Proof of Lemma 2.4.1 (restricted strong convexity). First, for the Gaussian model (2.4), by [29,

Theorem 1], for universal constants c,c′ > 0,

P

{
‖C>x‖2 ≥

1
4
‖x‖2−9

√
log(d)

m
‖x‖1 for all x ∈ R

}
≥ 1− c′e−cm .

Next, we turn to the orthogonal model (2.5). Let H ∈Rd×m be a matrix with Hi j
iid∼ N(0,1/m),

let H =UDV> be its singular value decomposition, and without loss of generality take C =
√

d
m ·U

(since H is rotation invariant and so U is uniformly distributed over the space of uniform matrices,

this satisfies the orthogonal model (2.5)). Then for any x ∈ Rd ,

‖H>x‖22 = ‖V DU>x‖22 ≤ ‖V D‖2sp‖U>x‖22 = ‖H‖2sp ·
m
d
· ‖C>x‖22 .

By the work above for the Gaussian model, with probability at least 1− c′e−cm,

‖H>x‖2 ≥
1
4
‖x‖2−9

√
log(d)

m
‖x‖1 for all x ∈ Rd ,

and by [25, Theorem II.13], with probability at least 1− e−m,

‖H‖sp ≤
√

d
m
+1+

√
2m
d
≤
√

d
m

(
2+
√

2
)
.
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Combining all these bounds, with probability at least 1−c′e−cm−e−m≥ 1−(c′+1)e−min{c,1}·m,

for all x ∈ Rd ,

‖C>x‖2 ≥
1

4(2+
√

2)
‖x‖2−

9
2+
√

2

√
log(d)

m
‖x‖1 .

Clearly, this statement holds also for the Gaussian model as well (since this is a strictly weaker

result than the one stated above.)
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CHAPTER 3

CONCAVITY COEFFICIENTS FOR A NONCONVEX SPACE

A convex relaxation is a common technique in many applications with high-dimensional data, and

enables consistent estimation of signals from fewer measurements than the ambient dimension.

Examples include the `1 norm and nuclear norm as a proxy to sparsity and low rank, which we have

seen in the compressed RPCA setting of Chapter 2. While estimation via convex relaxations often

enjoys near-optimal sample complexity and global convergence guarantee [30], there also exists a

well-known tradeoff between shrinkage and bias in the accuracy in which convex relaxations lead

to increased bias of the large signals. Nonconvex optimization can avoid such loss of accuracy,

but now we are faced with the possibility of becoming trapped in a local minimum or failing to

converge.

As a first step to study nonconvex optimization algorithm over multiple signals, this chapter1

explores local geometric properties of a nonconvex constraint set C and develops local concavity

coefficients, characterizing the extent to which C is nonconvex relative to each of its points. These

coefficients, a generalization of the notion of prox-regular sets in the analysis literature, bound

the set’s violations of four different characterizations of convexity—e.g. convex combinations of

points must lie in the set, and the first-order optimality conditions for minimization over the set—

with respect to a structured norm, such as the `1 norm for sparse problems, chosen to capture the

natural structure of the problem. As we will see later on, these multiple notions of nonconvexity are

in fact exactly equivalent. The local concavity coefficient allow us to characterize the geometric

properties of the constraint set C that are favorable for analyzing the convergence of projected

gradient descent.

1. The work presented in this chapter is published in Barber and Ha [31].
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3.1 Global concavity coefficients

Consider the constraint set C ⊂ Rd , and we quantify the concavity of C by describing the extent

to which the constraint set C deviates from convexity. Concretely, we consider four properties

that would hold if C were convex, and define the (global) concavity coefficient of C , denoted

γ = γ(C ), to characterize the extent to which these properties are violated. Since we are interested

in developing flexible tools for high-dimensional optimization problems, several different norms

will appear in the definitions of the concavity coefficients:

• The Euclidean `2 norm, ‖·‖2. Projections to C will always be taken with respect to the `2

norm. If our variable is a matrix X ∈Rn×m, the Euclidean `2 norm is known as the Frobenius

norm, ‖X‖F =
√

∑i j X2
i j.

• A “structured” norm ‖·‖, which can be chosen to be any norm on Rd . In some cases it

may be the `2 norm, but often it will be a different norm reflecting natural structure in the

problem. For instance, for a low-rank estimation problem, if C is a set of rank-constrained

matrices then we will work with the nuclear norm, ‖·‖= ‖·‖nuc. For sparse signals, we will

instead use the `1 norm, ‖·‖= ‖·‖1.

• A norm ‖·‖∗, which is the dual norm to the structured norm ‖·‖. For low-rank matrix prob-

lems, if we work with the nuclear norm, ‖·‖ = ‖·‖nuc, then the dual norm is given by the

spectral norm, ‖·‖∗ = ‖·‖sp. For sparse problems, if ‖·‖= ‖·‖1 then its dual is given by the

`∞ norm, ‖·‖∗ = ‖·‖∞.

When we take projections to the constraint set C , if the minimizer PC (z)∈ argminx∈C ‖x− z‖2

is non-unique, then we write PC (z) to denote any point chosen from this set. We will assume with-

out comment that C is closed and nonempty so that the set argminx∈C ‖x− z‖2 is nonempty for

any z. In the following, we present several definitions of the concavity coefficient of C .
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Curvature First, we define γ as a bound on the extent to which a convex combination of two

elements of C may lie outside of C : for x,y ∈ C ,

limsup
t↘0

minz∈C ‖z− ((1− t)x+ ty)‖
t

≤ γ‖x− y‖22. (3.1)

Approximate contraction Second, we define γ via a condition requiring that the projection oper-

ator PC is approximately contractive in a neighborhood of the set C , that is, ‖PC (z)−PC (w)‖2

is not much larger than ‖z−w‖2: for x,y ∈ C ,

For any z,w ∈ Rd with PC (z) = x and PC (w) = y,(
1− γ‖z− x‖∗− γ‖w− y‖∗

)
· ‖x− y‖2 ≤ ‖z−w‖2. (3.2)

For convenience in our theoretical analysis we will also consider a weaker “one-sided” version of

this property, where one of the two points is assumed to already lie in C : for x,y ∈ C ,

For any z ∈ Rd with PC (z) = x, (1− γ‖z− x‖∗) · ‖x− y‖2 ≤ ‖z− y‖2. (3.3)

First-order optimality For our third characterization of the concavity coefficient, we consider

the standard first-order optimality conditions for minimization over a convex set, and measure the

extent to which they are violated when optimizing over C :2 for x,y ∈ C ,

For any differentiable f : Rd → R such that x is a local minimizer of f over C ,

〈y− x,∇f(x)〉 ≥ −γ‖∇f(x)‖∗‖y− x‖22. (3.4)

2. A more general form of this condition, with f Lipschitz but not necessarily differentiable, appears in (3.32) (see
Section 3.5.3 for further details).
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Inner products Fourth, we introduce an inner product condition, requiring that projection to the

constraint set C behaves similarly to a convex projection: for x,y ∈ C ,

For any z ∈ Rd with PC (z) = x, 〈y− x,z− x〉 ≤ γ‖z− x‖∗‖y− x‖22. (3.5)

We emphasize the distinction between the structured norm ‖·‖ (and its dual norm ‖·‖∗) and the

`2 norm ‖·‖2 in the definitions of the concavity coefficients. We will see later that, by choosing

‖·‖ to reflect the structure in the signal (rather than working only with the `2 norm), we are able

to obtain a more favorable scaling in our concavity coefficients, and hence to prove meaningful

convergence results in high-dimensional settings. On the other hand, regardless of our choice of

‖·‖, note that the `2 norm also appears in the definition of the concavity coefficients, as is natural

when working with inner products (recall the projection operator PC (·) is defined with respect to

the `2 norm).

Now we show that the above conditions are in fact exactly equivalent:

Theorem 3.1.1. The properties (3.1), (3.2), (3.3), (3.4), and (3.5) are equivalent; that is, for a

fixed choice γ ∈ [0,∞], they either all hold for every x,y ∈ C , or all fail to hold for some x,y ∈ C .

Formally, we will define γ(C ) to be the smallest value such that the above properties hold:

γ(C ) := min{γ ∈ [0,∞] : Properties (3.1), (3.2), (3.3), (3.4), (3.5) hold for all x,y ∈ C } .

This global coefficient γ(C ) is often of limited use in practical settings, since many sets are

well-behaved locally but not globally. For instance, the set C = {X ∈ Rn×m : rank(X) ≤ r} has

γ(C ) = ∞, but exhibits smooth curvature as long as we stay away from rank-degenerate matrices

(that is, matrices with rank(X) < r). This motivates us to expand to a local version of the same

concavity bounds.
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3.2 Local concavity coefficients

Next we consider the local concavity coefficients γx(C ), measuring the concavity in a set C relative

to a specific point x in the set. First we define a set of “degenerate points”,

Cdgn = {x ∈ C : PC is not continuous over any neighborhood of x} ,

and then let

γx(C ) =


∞, x ∈ Cdgn,

min{γ ∈ [0,∞] : Property (*) holds for this point x and any y ∈ C } , x 6∈ Cdgn,

(3.6)

where the property (*) may refer to any of the four definitions of the concavity coefficients,3

namely (3.1), (3.3), (3.4), or (3.5). We will see shortly why it is necessary to make an exception

for the degenerate points x ∈ Cdgn in the definition of these coefficients.

We show that the equivalence between the four properties (3.1), (3.3), (3.4), and (3.5) in terms

of the global concavity coefficient γ(C ), holds also for the local coefficients:

Theorem 3.2.1. For all x ∈ C , the definition (3.6) of γx(C ) is equivalent for all four choices of the

property (*), namely the conditions (3.1), (3.3), (3.4), or (3.5).

To develop an intuition for the global and local concavity coefficients, we give a simple example

in R2 (relative to the `2 norm, i.e. ‖·‖ = ‖·‖∗ = ‖·‖2), displayed in Figure 3.1. Define C = {x ∈

R2 : x1 ≤ 0 or x2 ≤ 0}. Due to the degenerate point x = (0,0), we can see that γ(C ) = ∞ in this

3. In this definition, we only consider the “one-sided” formulation (3.3) of the contraction property, since the two-
sided formulation (3.2) would involve the local concavity coefficient at both x and y due to symmetry—we will see in
Lemma 3.2.4 below that a version of the two-sided contraction property still holds using local coefficients.
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Figure 3.1: A simple example of the local concavity coefficients on C = {x ∈ R2 : x1 ≤ 0 or x2 ≤
0}. The gray shaded area represents C while the numbers give the local concavity coefficients at
each marked point.

case. The local concavity coefficients are given by


γx(C ) = ∞, if x = (0,0),

γx(C ) = 1
2t , if x = (t,0) or (0, t) for t > 0,

γx(C ) = 0, if x1 < 0 or x2 < 0.

Note that at the degenerate point x = (0,0), C actually contains all convex combinations of this

point x with any y ∈ C , and so the curvature condition (3.1) is satisfied with γ = 0. However,

x ∈ Cdgn, so we nonetheless set γx(C ) = ∞.

Practical high-dimensional examples, such as a rank constraint, will be discussed in depth in

Section 3.3. For example we will see that, for the rank-constrained set C = {X ∈Rn×m : rank(X)≤

r}, the local concavity coefficients satisfy γX (C ) = 1
2σr(X)

relative to the nuclear norm.

In general, a rough intuition for the local coefficients is that:

• If x lies in the interior of C , or if C is convex, then γx(C ) = 0;

• If x lies on the boundary of C , which is a nonconvex set with a smooth boundary, then we

will typically see a finite but nonzero γx(C );

• γx(C ) = ∞ can indicate a nonconvex cusp or other degeneracy at the point x.
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3.2.1 Properties

We examine some properties of the local coefficients γx(C ) that will be useful for gaining intuition

for these coefficients.

First, the global and local coefficients are related in the natural way:

Lemma 3.2.1. For any C , γ(C ) = supx∈C γx(C ).

Next, observe that x 7→ γx(C ) is not continuous in general (in particular, since γx(C ) = 0 in

the interior of C but is often positive on the boundary). However, this map does satisfy upper

semi-continuity:

Lemma 3.2.2. The function x 7→ γx(C ) is upper semi-continuous over x ∈ C .

Furthermore, setting γx(C ) = ∞ at the degenerate points x ∈ Cdgn is natural in the following

sense: the resulting map x 7→ γx(C ) is the minimal upper semi-continuous map such that the

relevant local concavity properties are satisfied. We formalize this with the following lemma:

Lemma 3.2.3. For any u ∈ Cdgn, for any of the four conditions, (3.1), (3.3), (3.4), or (3.5), this

property does not hold in any neighborhood of u for any finite γ . That is, for any r > 0,

min
{

γ ≥ 0 : Property (*) holds for all x ∈ C ∩B2(u,r) and for all y ∈ C
}
= ∞,

where (*) may refer to any of the four equivalent properties, i.e. (3.1), (3.3), (3.4), and (3.5). (Here

B2(u,r) is the ball of radius r around the point u, with respect to the `2 norm.)

Finally, the next result shows that two-sided contraction property (3.2) holds using local coef-

ficients, meaning that all five definitions of concavity coefficients are equivalent:

Lemma 3.2.4. For any z,w ∈ Rd ,

(
1− γPC (z)(C )‖z−PC (z)‖∗− γPC (w)(C )‖w−PC (w)‖∗

)
· ‖PC (z)−PC (w)‖2 ≤ ‖z−w‖2
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In particular, for any fixed c ∈ (0,1), Lemma 3.2.4 proves that

PC is c-Lipschitz over the set
{

z ∈ Rd : 2γPC (z)(C )‖z−PC (z)‖∗ ≤ 1− c
}

, (3.7)

where the Lipschitz constant is defined with respect to the `2 norm. This provides a sort of converse

to our definition of the degenerate points, where we set γx(C ) = ∞ for all x ∈ Cdgn, i.e. all points

x where PC is not continuous in any neighborhood of x.

3.2.2 Connection to prox-regular sets

The notion of prox-regular sets and sets of positive reach arises in the literature on nonsmooth

analysis in Hilbert spaces, for instance see [32] for a comprehensive overview of the key results in

this area.

A prox-regular set is a set C ⊂ Rd that satisfies

〈y− x,z− x〉 ≤ 1
2ρ
‖z− x‖2‖y− x‖22, (3.8)

for all x,y ∈ C and all z ∈ Rd with PC (z) = x, for some constant ρ > 0. To capture the local

variations in concavity over the set C , C is prox-regular with respect to a continuous function

ρ : C → (0,∞] if

〈y− x,z− x〉 ≤ 1
2ρ(x)

‖z− x‖2‖y− x‖22 (3.9)

for all x,y ∈ C and all z ∈ Rd with PC (z) = x (see e.g. [32, Theorem 3b]). Prox-regularity was

first formulated via the notion of “positive reach” [33]: the parameter ρ appearing in (3.8) is the

largest radius such that the projection operator PC is unique for all points z within distance ρ of

the set C ; in the local version (3.9), the radius is allowed to vary locally as a function of x ∈ C .

These definitions (3.8) and (3.9) exactly coincide with our inner product condition (3.5), in the

special case that ‖·‖ is the `2 norm, by taking γ = 1
2ρ

or, for the local coefficients, γ = 1
2ρ(x) . The

distinctions between our definitions and results on local concavity coefficients, and the literature
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on prox-regularity, center on two key differences: the role of continuity, and the flexibility of the

structured norm ‖·‖ (rather than the `2 norm).

First, for prox-regular sets, the “reach” function x 7→ ρ(x) ∈ (0,∞] is assumed to be continuous

[32, Definition 1]. Equivalently, we could take a continuous function x 7→ γx =
1

2ρ(x) ∈ [0,∞) to

agree with the notation of our local concavity coefficients. However, we do not enforce continuity

of the map x 7→ γx in our definitions, and instead define γx(C ) as the smallest value such that the

conditions are satisfied. This leads to substantial challenges in proving the equivalence of the var-

ious conditions; in Lemma 3.2.2 we prove that the map is naturally upper semi-continuous, which

allows us to show the desired equivalences. In addition, if we do require a continuity assumption

on the function x 7→ γx, then we would be forced to have γx > 0 for some points x ∈ Int(C ) since

we must have γx > 0 for at least some of the points x on the boundary of C . This means that γx

would not give a precise quantification of the concavity in its interior Int(C ).

Next, prox-regularity is defined with respect to the `2 norm, whereas we define local concavity

coefficients with respect to a general structured norm ‖·‖, such as the `1 norm in a sparse signal

estimation setting. While the equivalence of all norms on Rd means that if γ(C ) is finite when

defined with respect to the `2 norm (i.e. C is prox-regular), then it is finite with respect to any

other norm, the distinction is that in optimization problems arising in high-dimensional settings

(for instance, high-dimensional regression in statistics), structured norms such as the `1 norm (for

problems involving sparse signals) or the nuclear norm (for low-rank signals) allow for statistical

and computational analyses that would not be possible with the `2 norm. In particular, we will

see later on that convergence for the minimization problem minx∈C g(x) will depend on bounding

‖∇g(x)‖∗. If ‖·‖ is the `1 norm, for instance, then ‖∇g(x)‖∗ = ‖∇g(x)‖∞ will in general be much

smaller than ‖∇g(x)‖2. For instance, in a statistical problem, if ∇g(x) consists of Gaussian or sub-

gaussian noise at the true parameter vector x, then ‖∇g(x)‖∞ ∼
√

log(d) while ‖∇g(x)‖2 ∼
√

d.

Therefore, being able to bound the concavity of C with respect to the `1 norm rather than the `2

norm is crucial for analyzing convergence in a high-dimensional setting.

43



3.3 Examples

In this section we consider a range of nonconvex constraints arising naturally in high-dimensional

statistics, and show that these sets come equipped with well-behaved local concavity coefficients.

3.3.1 Low rank

Estimating a matrix with low rank structure arises in a variety of problems in high-dimensional

statistics and machine learning. A partial list includes PCA (principal component analysis), factor

models, matrix completion, and reduced rank regression.

Here we will study the set of rank-constrained matrices

C = {X ∈ Rn×m : rank(X)≤ r}

to determine how our general framework of local concavity applies to this specific low rank setting.

To avoid triviality, we assume r < min{n,m}. Writing σ1(X) ≥ σ2(X) ≥ . . . to denote the sorted

singular values of any matrix X , we compute the curvature condition of C :

Lemma 3.3.1. Let C = {X ∈Rn×m : rank(X)≤ r}. Then C has local concavity coefficients given

by γX (C ) = 1
2σr(X)

for all X ∈ C , with respect to norms ‖·‖= ‖·‖nuc and ‖·‖∗ = ‖·‖sp.

3.3.2 Sparsity

In many applications in high-dimensional statistics, the signal of interest is believed to be sparse or

approximately sparse. Using an `1 penalty or constraint serves as a convex relaxation to the sparsity

constraint, i.e. the Lasso method [34], in the case of a linear regression problem. However, the `1

norm penalty also leads to undesirable shrinkage bias on the large coefficients of x, e.g. [35]. The

shrinkage problem can be alleviated by turning to nonconvex regularization functions, including

the SCAD penalty [36], the MCP penalty [37], and the adaptive Lasso / reweighted `1 method [38]

(which is related to a nonconvex “log-`1” penalty).
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Loh and Wainwright [39] considers a class of nonconvex sparse regularizers, which takes the

form

Pen(x) = ∑
i
p(|xi|) where



p(0) = 0 and p is nondecreasing,

t 7→ p(t)/t is nonincreasing (i.e. p is concave),

t 7→ p(t)+ µ

2 t2 is convex,

p is differentiable on t > 0, with limt↘0 p
′(t) = 1.

(3.10)

Essentially, this means that Pen(x) behaves like a nonconvex version of the `1 norm, shrinking

small coefficients to zero but avoiding heavy shrinkage on large coefficients; the SCAD, MCP, and

log-`1 penalties are all examples.

Now consider the sparsity-inducing constraint set C = {x : Pen(x) ≤ c}, then the following

result calculates the local concavity coefficients for C .

Lemma 3.3.2. Suppose that Pen(x) = ∑i p(|xi|) where p satisfies conditions (3.10). Then


γx(C )≤ µ/2

p′(xmin)
, if Pen(x) = c,

γx(C ) = 0, if Pen(x)< c,

with respect to the norm ‖·‖= ‖·‖1 and its dual ‖·‖∗ = ‖·‖∞, where for any x ∈Rd\{0} we define

xmin to be the magnitude of its smallest nonzero entry.

3.3.3 Spheres, orthogonal groups, and orthonormal matrices

We next consider a constraint set given by C = {X ∈Rn×r : X>X = Ir}, the space of all orthonor-

mal n× r matrices. This constraint set arises in PCA type problems where we would like to find

the basis vectors that span the best rank-r subspace of a data set.

Lemma 3.3.3. Let C = {X ∈ Rn×r : X>X = Ir}, the space of orthogonal n× r matrices. Then

C has local concavity coefficients γX (C ) = 1
2 with respect to ‖·‖ = ‖·‖nuc and dual norm ‖·‖∗ =
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‖·‖sp.

Observe that the sphere Sd−1 = {x ∈ Rd : ‖x‖2 = 1} is a special case, obtained when r = 1.

Next, in many problems we may aim to find a rank-r subspace that is optimal in some regard,

but the exact choice of basis for this subspace does not matter; that is, an orthonormal basis X ∈

Rn×r is identifiable only up to a rotation of its columns. In this case, we can instead choose to

work with rank-r projection matrices:

Lemma 3.3.4. Let C = {X ∈ Rn×n : rank(X) = r,X � 0,X2 = X}, the space of rank-r projection

matrices. Then C has local concavity coefficients γX (C ) ≤ 2 with respect to ‖·‖ = ‖·‖nuc and

‖·‖∗ = ‖·‖sp.

A special case is the setting r = n, when C is the orthogonal group, in which case Lemma 3.3.3

proves the concavity coefficient is equal to 1/2

3.4 Convergence of projected gradient descent

In this section, we briefly explore how the concavity coefficients allow us to extend the standard

analysis of projected gradient descent to incorporate the nonconvexity of the constraint set.

Consider an optimization problem constrained to a nonconvex set, min{g(x) : x ∈ C }, where

g : Rd → R is a differentiable function. After choosing some initial point x0 ∈ C , for each t ≥ 0

we define 
x′t+1 = xt −η∇g(xt),

xt+1 = PC (x′t+1),

(3.11)

where if PC (x′t+1) is not unique then any closest point may be chosen.
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3.4.1 Assumptions

Let x̂ be the target of our optimization procedure, x̂ ∈ argminx∈C g(x). We assume that g satisfies

restricted strong convexity (RSC) and restricted smoothness (RSM) conditions over x,y ∈ C ,

g(y)≥ g(x)+ 〈y− x,∇g(x)〉+ α

2
‖x− y‖22−

α

2
ε

2
stat, (3.12)

and

g(y)≤ g(x)+ 〈y− x,∇g(x)〉+ β

2
‖x− y‖22 +

α

2
ε

2
stat. (3.13)

Without loss of generality we can take α ≤ β . The term εstat, often referred to as the “statistical

error” in the high-dimensional statistics literature [7, 39], gives some “slack” in our assumption on

g, and is intended to capture some vanishingly small error level. See Section 4.2 below for a more

detailed discussion of statistical error in the context of high-dimensional optimization.

Next, we assume a norm compatibility condition,

‖z−PC (z)‖∗ ≤ φ min
x∈C
‖z− x‖∗ for all z ∈ Rd , (3.14)

for some constant φ ≥ 1. The norm compatibility condition is trivially true with φ = 1 if ‖·‖ is the

`2 norm, since PC is a projection with respect to the `2 norm. In many natural settings it holds

even for other norms, often with φ = 1.

Finally, we assume a gradient condition that reveals the connection between the curvature of

the nonconvex set C and the target function g: we require that

2φ · max
x,x′∈C∩B2(x̂,ρ)

γx(C )‖∇g(x′)‖∗ ≤ (1− c0) ·α. (3.15)

(Since x 7→ γx(C ) is upper semi-continuous, if g is continuously differentiable, then we can find

some radius ρ > 0 and some constant c0 > 0 satisfying this condition, as long as 2φγx̂(C )‖∇g(x̂)‖∗

< α .) Our projected gradient descent algorithm will then succeed if initialized within this radius
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ρ from the target point x̂, with an appropriate step size. For a detailed discussion of the necessity

of this type of initialization condition, we refer the reader to [31].

3.4.2 Fast convergence guarantee

We now state our convergence result of projected gradient descent. The inner product condi-

tion (3.5) as well as the initialization condition (3.15) ensure fast convergence to x̂ as long as

initialized at some x0 ∈ C sufficiently close to x̂.

Theorem 3.4.1. Let C ⊂ Rd be a constraint set and let g be a differentiable function, with mini-

mizer x̂ ∈ argminx∈C g(x). Suppose C satisfies the norm compatibility condition (3.14) with pa-

rameter φ , and g satisfies restricted strong convexity (3.12) and restricted smoothness (3.13) with

parameters α,β ,εstat for all x,y ∈C , and the initialization condition (3.15) for some c0 > 0. If the

initial point x0 ∈ C and the error level εstat satisfy ‖x0− x̂‖22 < ρ2 and ε2
stat <

c0ρ2

1.5 , then for each

step t ≥ 0 of the projected gradient descent algorithm (3.11) with step size η = 1/β ,

‖xt − x̂‖22 ≤
(

1− c0 ·
2α

α +β

)t
‖x0− x̂‖22 +

1.5ε2
stat

c0
.

In other words, the iterates xt converge linearly to the minimizer x̂, up to precision level εstat.

To compare this result to the convex setting, if C is a convex set and g is α-strongly convex and

β -smooth, then we can set c0 = 1 and εstat = 0. Our result then yields matching known rates for

the convex setting (see e.g. [40, Theorem 3.10]).

Proof of Theorem 3.4.1. For t = 0, the statement holds trivially. To prove that the bound holds for

subsequent steps, we will proceed by induction. Choose any ρ0 ∈ (0,ρ) such that

ρ0 ≥max

‖x0− x̂‖2,

√
1.5ε2

stat
c0

 ,
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where this maximum is < ρ by assumption of the theorem. We will prove that


‖xt+1− x̂‖22 ≤

(
1− 2c0α

α+β

)
‖xt − x̂‖22 +

3α

α+β
ε2

stat,

‖xt+1− x̂‖2 ≤ ρ0,

(3.16)

for all t ≥ 0. Assuming that this holds, then applying the first bound of (3.16) iteratively, we will

then have

‖xt − x̂‖22 ≤
(

1− 2c0α

α +β

)t
‖x0− x̂‖22 +

1.5
c0

ε
2
stat,

which proves the theorem.

Now we turn to proving (3.16), assuming that it holds at the previous time step. First, we have

‖x′t+1− xt+1‖∗ = ‖x′t+1−PC (x′t+1)‖
∗ ≤ φ‖x′t+1− xt‖∗ = φ‖−η∇g(xt)‖∗ ≤

ηα(1− c0)

2γxt+1(C )
,

(3.17)

where first inequality uses the norm compatibility condition (3.14) while the second uses the ini-

tialization condition (3.15), since ‖xt − x̂‖2 ≤ ρ .

Next, the inner product condition yields

〈x̂− xt+1,x
′
t+1− xt+1〉 ≤ γxt+1(C )‖x′t+1− xt+1‖∗‖xt+1− x̂‖22 =

ηα(1− c0)

2
‖xt+1− x̂‖22,

(3.18)

where the last step applies (3.17).
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We will now apply the first-order optimality conditions (3.4) at the point x = x̂. We have

g(xt+1)−g(x̂)

≥ 〈xt+1− x̂,∇g(x̂)〉+ α

2
‖xt+1− x̂‖22−

αε2
stat
2

by restricted strong convexity (3.12)

≥−γxt+1(C )‖∇g(x̂)‖∗‖xt+1− x̂‖22 +
α

2
‖xt+1− x̂‖22−

αε2
stat
2

by first-order optimality

≥−α(1− c0)

2
‖xt+1− x̂‖22 +

α

2
‖xt+1− x̂‖22−

αε2
stat
2

=
c0α

2
‖xt+1(s)− x̂‖22−

αε2
stat
2

, (3.19)

where the next-to-last step applies the initialization condition (3.15) (plus the fact that φ ≥ 1) to

bound ‖∇g(x̂)‖∗. On the other hand, we have

g(xt+1)−g(x̂) = g(xt+1)−g(xt)+g(xt)−g(x̂)

≤ 〈xt+1− xt ,∇g(xt)〉+
β

2
‖xt+1− xt‖22 +

αε2
stat
2

+ 〈xt − x̂,∇g(xt)〉−
α

2
‖xt − x̂‖22 +

αε2
stat
2

= 〈xt+1− x̂,∇g(xt)〉+
β

2
‖xt+1− xt‖22−

α

2
‖xt − x̂‖22 +αε

2
stat, (3.20)

where the inequality applies restricted strong convexity (3.12) and restricted smoothness (3.13).

To bound the remaining inner product term, we have

〈xt+1− x̂,∇g(xt)〉=
1
η
〈xt+1− x̂,xt − x′t+1〉=

1
η
〈xt+1− x̂,xt − xt+1〉+

1
η
〈xt+1− x̂,xt+1− x′t+1〉

≤ 1
η
〈xt+1− x̂,xt − xt+1〉+

α(1− c0)

2
‖x̂− xt+1(s)‖22, (3.21)

where the last step applies (3.18). For the first term on the right-hand side, we can trivially check

that

1
η
〈xt+1− x̂,xt − xt+1〉=

1
2η
‖xt − x̂‖22−

1
2η
‖xt+1− x̂‖22−

1
2η
‖xt+1− xt‖22. (3.22)
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Combining steps (3.19), (3.20), (3.21), and (3.22), then, since 1
2η

= β

2 ,

c0α

2
‖xt+1− x̂‖22 ≤

1
2η
‖xt − x̂‖22−

1
2η
‖xt+1− x̂‖22 +

α(1− c0)

2
‖x̂− xt+1(s)‖22

− α

2
‖xt − x̂‖22 +1.5αε

2
stat.

Rearranging terms we obtain

‖xt+1− x̂‖22 ≤
(

1− 2c0α

α +β

)
‖xt − x̂‖22 +

3α

α +β
ε

2
stat. (3.23)

In particular, since ‖xt − x̂‖2 ≤ ρ0 and ε2
stat ≤

c0ρ2
0

1.5 by assumption, this proves that

‖xt+1− x̂‖2 ≤ ρ0. (3.24)

This proves that the inductive step (3.16) holds for xt+1, as desired, which completes the proof of

Theorem 3.4.1.

3.5 Proofs of local concavity coefficient results

In this section we prove the equivalence of the multiple notions of the (local or global) concavity

of the constraint set C , given in Theorems 3.1.1 and 3.2.1, as well as some properties of these

coefficients (Lemmas 3.2.1, 3.2.2, 3.2.3, and 3.2.4).
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Notation Before the equivalence is established, we begin by introducing notation for the local

concavity coefficients defined using each of these four properties: for all x ∈ C , define

γ
curv
x (C ) = min{γ ∈ [0,∞] : The curvature condition (3.1) holds for this point x and any y ∈ C } ,

γ
contr
x (C ) = min{γ ∈ [0,∞] : The contraction condition (3.3) holds for this point x and any y ∈ C } ,

γ
FO
x (C ) = min{γ ∈ [0,∞] : The first-order condition (3.4) holds for this point x and any y ∈ C } ,

γ
IP
x (C ) = min{γ ∈ [0,∞] : The inner product condition (3.5) holds for this point x and any y ∈ C } .

We emphasize that here we are not explicitly setting these coefficients to equal ∞ at degenerate

points x∈Cdgn—they may take finite values (we will need this distinction for some technical parts

of our proofs later on). We will prove that these four definitions are all equal for all x 6∈ Cdgn,

which is sufficient for the equivalence result Theorem 3.2.1 since the local concavity coefficients

are set to ∞ at degenerate points.

Next, we define a constant Bnorm > 0 such that

For all z ∈ Rd ,


B−1

norm‖z‖2 ≤ ‖z‖ ≤ Bnorm‖z‖2,

B−1
norm‖z‖2 ≤ ‖z‖∗ ≤ Bnorm‖z‖2.

(3.25)

By equivalence of norms on Rd , Bnorm will be always finite.

We state a well-known fact about projections, which we will use throughout our proofs:

For any z ∈ Rd and x ∈ C with PC (z) = x, for any t ∈ [0,1], PC ((1− t)x+ tz) = x. (3.26)

3.5.1 Proof outline of Theorem 3.2.1

To prove the equivalence of the four definitions of the local coefficients in (3.6), we first need to

show that these coefficients are upper semi-continuous, as claimed in Lemma 3.2.2. Since we do

not yet know that the four definitions are equivalent, we first show that the map x 7→ γIP
x is upper
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semi-continuous over x ∈ C \Cdgn (see Lemma 3.5.1 below).

Using upper semi-continuity of γIP
x (C ) over x ∈ C \Cdgn, we next show that

γ
curv
x (C ) = γ

contr
x (C ) = γ

IP
x (C ) = γ

FO
x (C ) for all x ∈ C \Cdgn. (3.27)

In particular, we prove the equivalence between the inner products property (3.5) and other three

conditions, namely the curvature condition (3.1), the (one-sided) contraction property (3.3), and

the first-order condition (3.4). Recall that if x ∈ Cdgn, then γx(C ) = ∞ under all four definitions.

Combining with (3.27), we conclude the equivalence results, as claimed in Theorem 3.2.1.

In fact, we will also show that a weaker statement holds for all x ∈ C (i.e. without excluding

degenerate points), namely

γ
IP
x (C )≤min{γcurv

x (C ),γcontr
x (C ),γFO

x (C )} for all x ∈ C . (3.28)

This additional bound will be useful later in our characterization of the degenerate points, when

we prove Lemma 3.2.3.

3.5.2 Upper semi-continuity

First we prove upper semi-continuity of the map x 7→ γIP
x (C ) for x ∈ C \Cdgn:

Lemma 3.5.1. The map x 7→ γIP
x (C ) is upper semi-continuous over x ∈ C \Cdgn.

Once Theorem 3.2.1 is proved, then Lemma 3.5.1 becomes equivalent to the original lemma,

Lemma 3.2.2, since γx(C ) = ∞ by definition on the subset Cdgn ⊂ C , which is a closed subset

by definition, while Lemma 3.5.1 proves that x 7→ γx(C ) is upper semi-continuous over the open

subset C \Cdgn ⊂ C .

Proof of Lemma 3.5.1. Take any sequence xn→ x, with x,x1,x2, · · · ∈ C \Cdgn. We want to prove

that

γ := limsup
n→∞

γ
IP
xn (C )≤ γ

IP
x (C ). (3.29)

53



Since x 6∈ Cdgn by assumption, we know that PC is continuous in some neighborhood of x. Let

r > 0 be some radius so that PC is continuous on B∗(x,r), where B∗(x,r) is the ball of radius

r around the point x in the dual norm ‖·‖∗. Assume also that γ > 0, otherwise again the claim is

trivial.

Taking a subsequence of the points x1,x2, . . . if necessary, we can assume without loss of

generality that

γ
IP
xn (C )→ γ.

Fix any ε > 0 such that ε < γ . For each n, by definition of the local concavity coefficient γIP
xn (C ),

there must exist some yn ∈ C and some z′n ∈ Rd with PC (z′n) = xn, such that

〈yn− xn,z′n− xn〉>
(

γ
IP
xn (C )− ε

)
‖z′n− xn‖∗‖yn− xn‖22. (3.30)

Define

zn =


z′n, if ‖z′n− xn‖∗ ≤ r/2,

xn +(z′n− xn) · r/2
‖z′n−xn‖∗ , if ‖z′n− xn‖∗ > r/2,

so that ‖zn− xn‖∗ ≤ r/2. By (3.26), PC (zn) = xn. Furthermore, rescaling both sides of the

inequality (3.30),

〈yn− xn,zn− xn〉>
(

γ
IP
xn (C )− ε

)
‖zn− xn‖∗‖yn− xn‖22. (3.31)

Since the left-hand side is bounded by ‖yn− xn‖‖zn− xn‖∗, we see that

‖yn− xn‖22 <
‖yn− xn‖

γIP
xn (C )− ε

≤ ‖yn− xn‖
(γ− ε)/2

for all n sufficiently large so that γIP
xn (C )> γ− γ−ε

2 . Therefore, since ‖yn− xn‖≤ Bnorm‖yn− xn‖2

for some finite Bnorm, then for all large n, yn lies in some ball of finite radius around x. The same

is true for zn since ‖zn− xn‖∗ ≤ r/2 by construction. Thus we can find a convergent subsequence,
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that is, n1,n2, . . . such that 
yni → y for some point y,

zni → z for some point z.

Since C is closed, we must have y ∈ C . And, since xni → x, for sufficiently large i we have

‖xni− x‖∗ ≤ r/2, so that zni ∈ B∗(x,r). Since PC is continuous on the ball B∗(x,r), then,

PC (zni) = xni → x implies that we must have PC (z) = x. And,

〈y− x,z− x〉= lim
i→∞
〈yni− xni,zni− xni〉 ≥ lim

i→∞

(
γ

IP
xni

(C )− ε

)
‖zni− xni‖

∗‖yni− xni‖
2
2

= (γ− ε)‖z− x‖∗‖y− x‖22,

where the inequality applies (3.31) for each ni. Therefore, γIP
x (C )≥ γ−ε . Since ε > 0 was chosen

to be arbitrarily small, this proves that γIP
x (C )≥ γ , as desired.

3.5.3 Equivalence for local concavity

Now we prove the equivalence results Theorem 3.2.1.

Inner products⇒ First-order optimality. Fix any u ∈ C \Cdgn. Let f : Rd → R be differentiable,

and suppose that u is a local minimizer of f over C . By [41, Theorem 6.12], this implies that

−∇f(u) ∈ NC (u), where NC (u) is the normal cone to C at the point u (see [41, Definition 6.3]).

By [32, (12)], we know that the normal cone can be obtained by a limit of proximal normal cones,

NC (u) = lim sup
x∈C ,x→u

{
w ∈ Rd : PC (x+ ε ·w) = x for some ε > 0

}
︸ ︷︷ ︸

Proximal normal cone to C at x

.

Therefore, we can find some sequences u1,u2, · · · ∈ C , w1,w2, · · · ∈ Rd , and ε1,ε2, · · · > 0, such

that PC (un + εn ·wn) = un for all n≥ 1, with un→ u and wn→−∇f(u).
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Now fix any y ∈ C . By the inner product condition (3.5), for each n≥ 1,

〈y−un,wn〉= 〈y−un,(un +wn)−un〉 ≤ γ
IP
un(C )‖wn‖∗‖y−un‖22.

Taking limits on both sides, since un→ u and wn→−∇f(u),

〈y−u,−∇f(u)〉 ≤
(

lim sup
t→∞

γ
IP
un(C )

)
· ‖∇f(u)‖∗‖y−u‖22.

Finally, recall that Lemma 3.5.1 proves that x 7→ γIP
x (C ) is upper semi-continuous over x∈C \Cdgn,

and Cdgn ⊂ C is a closed subset. Since u ∈ C \Cdgn, we therefore have un ∈ C \Cdgn for all suffi-

ciently large t, and therefore limsupt→∞ γIP
un(C )≤ γIP

u (C ). This proves that γFO
u (C )≤ γIP

u (C ), as

desired.

In fact, we can formulate a more general version of the first-order optimality condition:

For any Lipschitz continuous f : Rd → R such that x is a local minimizer of f over C ,

〈y− x,v〉 ≥ −γ‖v‖∗‖y− x‖22 for some v ∈ ∂ f(x), (3.32)

where ∂ f(x) is the subdifferential to f at x (see [41, Definition 8.3]). To see why (3.32) holds, [41,

Theorem 8.15] guarantees that, since f is Lipschitz and x is a local minimizer of f over the closed

set C , then we must have −v ∈ NC (x) for some subgradient v ∈ ∂ f(x).4 The remainder of the

proof is identical to the differentiable case treated above, with v in place of ∇f(x); this proves that,

for any x ∈ C \Cdgn and any y ∈ C , the stronger first-order optimality condition (3.32) holds with

γ = γIP
x (C ).

First-order optimality⇒ Inner products. This direction of the equivalence is immediate: setting

f(w) = 1
2‖w− z‖22, we can easily see that γIP

x (C ) ≤ γFO
x (C ) for all x ∈ C , while previously we

4. More precisely, [41, Theorem 8.15] assumes only that f is proper and lower semi-continuous, but additionally
requires the condition that ∂ ∞f(x)∩

(
−NC (x)

)
= {0} (see [41, Chapter 8] for definitions). Since the horizon subd-

ifferential ∂ ∞f(x) contains only the zero vector for any Lipschitz function f, this condition must be satisfied once we
assume that f is Lipschitz.

56



showed that the reverse inequality holds over x ∈ C \Cdgn. Therefore, γIP
x (C ) = γFO

x (C ) for x ∈

C \Cdgn.

Curvature⇒ Inner products. Fix any x,y ∈ C and any z ∈ Rd with PC (z) = x. For all t ∈ (0,1),

let xt = (1− t)x+ ty, and choose

x̃t ∈ argmin
x∈C

‖x− xt‖ such that limsup
t↘0

‖x̃t − xt‖
t

≤ γ
curv
x (C )‖x− y‖22,

as in the definition of γcurv
x (C ). Fix any ε > 0. Then for some t0 > 0, for all t < t0,

‖x̃t − xt‖
t

≤ γ
curv
x (C )‖x− y‖22 + ε.

Since x = PC (z), this means that for all t ∈ (0,1),

‖z− x‖22 ≤ ‖z− x̃t‖22 = ‖z− xt‖22 +‖x̃t − xt‖22 +2〈z− xt ,xt − x̃t〉.

We can also calculate

‖z− xt‖22 = ‖z− (1− t)x− ty‖22 = ‖z− x‖22−2t〈y− x,z− x〉+ t2‖x− y‖22.

We rearrange terms to obtain

〈y− x,z− x〉 ≤ 1
2t

(
‖x̃t − xt‖22 +2〈z− xt ,xt − x̃t〉+ t2‖x− y‖22

)
.

Recalling that ‖·‖2 ≤ Bnorm‖·‖ for some finite constant Bnorm by (3.25), we then have

〈y− x,z− x〉 ≤ 1
2t

(
(Bnorm)2‖x̃t − xt‖2 +2‖z− xt‖∗‖x̃t − x̃‖+ t2‖x− y‖22

)
≤ 1

2t

(
(Bnorm)2

(
(γcurv

x (C )‖x− y‖22 + ε) · t
)2

+2‖z− xt‖∗(γcurv
x (C )‖x− y‖22 + ε) · t + t2‖x− y‖22

)
= ‖z− xt‖∗(γcurv

x (C )‖x− y‖22 + ε)+
t
2

(
(Bnorm)2

(
(γcurv

x (C )‖x− y‖22 + ε)
)2

+‖x− y‖22

)
.
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Taking a limit as t approaches zero,

〈y− x,z− x〉 ≤ (γcurv
x (C )‖x− y‖22 + ε) · ‖z− x‖∗.

Since ε > 0 was chosen to be arbitrarily small, therefore, γIP
x (C )≤ γcurv

x (C ), for any x ∈ C .

Inner products⇒ Curvature. To prove the curvature condition, we will actually need to use the

stronger form (3.32) of the first-order optimality condition—as proved previously, this condition

holds with γ = γIP
x (C ) for all x ∈ C \Cdgn.

Fix any u ∈ C \Cdgn and y ∈ C . Let ut = (1− t) · u+ t · y, and define f(x) = ‖x−ut‖. Note

that f is a Lipschitz function. Since C is closed, and f is continuous and nonnegative, it must attain

a minimum over C , xt ∈ argminx∈C f(x). Since Cdgn is a closed subset of C , this means that

xt ∈ C \Cdgn for any sufficiently small t > 0, since

‖xt −u‖ ≤ ‖xt −ut‖+‖ut −u‖ ≤ 2‖u−ut‖= 2t‖u− y‖

(where the second inequality uses the definition of xt), and so xt → u.

Next, consider the subdifferential ∂ f(xt). It is well known that this subdifferential is not empty,

and any element v ∈ ∂ f(xt) must satisfy ‖v‖∗ ≤ 1 and 〈v,xt −ut〉 = ‖xt −ut‖. Now, applying the

stronger form of the first-order optimality condition given in (3.32), we have

〈v,y− xt〉 ≥ −γ
IP
xt (C )‖v‖∗‖y− xt‖22 =−γ

IP
xt (C )‖y− xt‖22

and similarly, replacing y ∈ C with u ∈ C ,

〈v,u− xt〉 ≥ −γ
IP
xt (C )‖u− xt‖22.
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Taking the appropriate linear combination of these two inequalities,

〈v,xt −ut〉 ≤ γ
IP
xt (C )

(
(1− t)‖u− xt‖22 + t‖y− xt‖22

)
= γ

IP
xt (C )

(
t(1− t)‖u− y‖22 +‖ut − xt‖22

)
,

where the last step simply uses the definition ut = (1− t)u+ ty and rearranges terms. Finally,

‖ut − xt‖2 ≤ Bnorm‖ut − xt‖ ≤ Bnorm‖u−ut‖= tBnorm‖u− y‖, by definition of ut and xt , so com-

bining everything we can write

min
x∈C
‖x−ut‖= ‖xt −ut‖= 〈v,xt −ut〉 ≤ γ

IP
xt (C )

(
t(1− t)‖u− y‖22 + t2B2

norm‖u− y‖2
)
.

Dividing by t and taking a limit,

lim
t↘0

minx∈C ‖x−ut‖
t

≤

(
lim sup

t↘0
γ

IP
xt (C )

)
· ‖u− y‖22.

Finally, recall that x 7→ γIP
x (C ) is upper semi-continuous by Lemma 3.5.1, and xt → u as proved

above. We thus have limsupt↘0 γIP
xt (C ) ≤ γIP

u (C ). This proves that γcurv
u (C ) ≤ γIP

u (C ), for any

u ∈ C \Cdgn.

Combining with our previous steps, we now have

γ
FO
x (C ) = γ

IP
x (C ) = γ

curv
x (C )

for all x∈C \Cdgn, while for x∈C we have the weaker statement γIP
x (C )≤min{γcurv

x (C ),γFO
x (C )}.

Approximate contraction⇔ Inner products. This proof, for the case of a general norm ‖·‖, pro-

ceeds identically as the proof for the case where ‖·‖= ‖·‖2 (presented e.g. in [32, Theorem 3(b,d)]).

For completeness, we reproduce the argument here.

First, we show that γIP
x (C ) ≤ γcontr

x (C ). Fix any x ∈ C , and any z ∈ Rd with x = PC (z).

Define zt = t · z+(1− t) · x for t ∈ [0,1]. By (3.26), x = PC (zt) for all t ∈ [0,1].
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Then for any y ∈ C , since ‖zt − x‖∗ = t‖z− x‖∗,

‖y− x‖2
(
1− γ

contr
x (C ) · t‖z− x‖∗

)
≤ ‖y− zt‖2

by the approximate contraction property (3.3). For sufficiently small t, the left-hand side is nonneg-

ative (except for the trivial case γcontr
x (C ) = ∞, in which case there is nothing to prove). Squaring

both sides and rearranging some terms,

‖y− x‖22 ≤ ‖y− zt‖22 +(2γ
contr
x (C ) · t‖z− x‖∗− (γcontr

x (C ) · t‖z− x‖∗)2)‖y− x‖22.

And,

‖y− zt‖22 = ‖y− x‖22 +‖x− zt‖22 +2〈y− x,x− zt〉

so rearranging terms again,

2〈y− x,zt − x〉 ≤ ‖x− zt‖22 +(2γ
contr
x (C ) · t‖z− x‖∗− (γcontr

x (C ) · t‖z− x‖∗)2)‖y− x‖22.

Plugging in the definition of zt ,

2t〈y− x,z− x〉 ≤ t2‖x− z‖22 +(2γ
contr
x (C ) · t‖z− x‖∗− γ

contr
x (C )2 · t2(‖z− x‖∗)2)‖y− x‖22.

Dividing by 2t, then taking the limit as t↘ 0,

〈y− x,z− x〉 ≤ γ
contr
x (C )‖z− x‖∗‖y− x‖22.

Therefore, for any x ∈ C , γIP
x (C )≤ γcontr

x (C ).

Now we prove the reverse inequality, i.e. γcontr
x (C )≤ γIP

x (C ). Fix any x,y ∈ C and any z ∈Rd

with x = PC (z). Then

‖y− x‖22 + 〈y− x,z− y〉= 〈y− x,z− x〉 ≤ γ
IP
x (C )‖z− x‖∗‖y− x‖22.
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Simplifying,

(
1− γ

IP
x (C )‖z− x‖∗

)
‖y− x‖22 ≤−〈y− x,z− y〉 ≤ ‖y− x‖2‖z− y‖2,

and so (
1− γ

IP
x (C )‖z− x‖∗

)
‖y− x‖2 ≤ ‖z− y‖2.

Therefore, for any x ∈ C γcontr
x (C )≤ γIP

x (C ).

Combining everything, we have now proved

γ
contr
x (C ) = γ

IP
x (C ) = γ

FO
x (C ) = γ

curv
x (C )

for all x∈C \Cdgn, in addition to the weaker bound (3.28) for all x∈C , as desired. This completes

the proof of Theorem 3.2.1.

3.5.4 Characterization of degenerate points

Proof of Lemma 3.2.3. Next we prove that the degenerate points u ∈ Cdgn are precisely those

points where any of the four local concavity conditions would fail to hold, in any neighborhood of

u and for any finite γ . First, the characterization of prox-regularity given in [42, Proposition 1.2,

Theorem 1.3(i)] proves that, if the projection operator PC is not continuous in a neighborhood

of u ∈ C , then there are no constants ε > 0 and γ < ∞ such that the inner product condition (3.5)

holds for all x ∈ C ∩B2(u,ε). Therefore, for any r > 0, supx∈C∩B2(u,r) γIP
x (C ) = ∞.

Finally, in proving Theorem 3.2.1, we proved (3.28), i.e.

γ
IP
x (C )≤min{γcurv

x (C ),γcontr
x (C ),γFO

x (C )}
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for all x ∈ C . This implies that,

lim
r→0

{
sup

x∈C∩B2(u,r)
γ
(∗)
x (C )

}
= ∞,

where (*) denotes any of the four properties, i.e. γcurv
x (C ) for the curvature condition (3.1),

γcontr
x (C ) for the contraction property (3.3), γIP

x (C ) for the inner product condition (3.5), or

γFO
x (C ) for the first-order optimality condition (3.4). This proves the lemma.

3.5.5 Two-sided contraction property

Proof of Lemma 3.2.4. This proof, for the case of a general norm ‖·‖, proceeds identically as the

proof for the case where ‖·‖ = ‖·‖2 (presented e.g. in [32, Theorem 3(b,d)]). For completeness,

we reproduce the argument here.

Take any x,y ∈ C and any z,w ∈ Rd with PC (z) = x and PC (w) = x. By definition of the

local concavity coefficients, applying the inner product bound (3.5) we have

〈y− x,z− x〉 ≤ γx(C )‖z− x‖∗‖x− y‖22.

Applying the same property with the roles of the variables reversed,

〈x− y,w− y〉 ≤ γy(C )‖w− y‖∗‖x− y‖22.

Adding these two inequalities together,

〈y− x,z− x−w+ y〉 ≤ γx(C )‖z− x‖∗‖x− y‖22 + γy(C )‖w− y‖∗‖x− y‖22.

Rearranging terms and simplifying,

(
1− γx(C )‖z− x‖∗− γy(C )‖w− y‖∗

)
‖x− y‖22 ≤ 〈y− x,w− z〉.
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Since the right-hand side is bounded by ‖x− y‖2‖z−w‖2 by the Cauchy–Schwarz inequality, this

proves the lemma.

3.5.6 Equivalence for global concavity and local vs global coefficients

Proofs of Theorem 3.1.1 and Lemma 3.2.1. We prove Theorem 3.1.1, which states that the five

definitions for the global concavity coefficient γ(C ) are equivalent, alongside Lemma 3.2.1, which

states that γ(C ) = supx∈C γx(C ).

First, suppose that C contains one or more degenerate points, i.e. Cdgn 6= ∅, in which case

supx∈C γx(C ) = ∞. By definition of Cdgn, the projection operator PC is not continuous on any

neighborhood of C . [42, Theorem 4.1] prove that this implies C is not prox-regular, and so γ(C ) =

∞ as discussed in Section 3.2.2.

Next, suppose that C contains no degenerate points. Let γ∗ = supx∈C γx(C ). Then clearly, by

definition of the local coefficients γx(C ),

γ
∗ = min{γ ∈ [0,∞] : Property (*) holds for all x,y ∈ C }

where (*) may refer to any of the four equivalent properties, namely the curvature condition (3.1),

the (one-sided) contraction property (3.3), the inner product condition (3.5), and the first-order

condition (3.4). Next, let

γ
] = min{γ ∈ [0,∞] : The two-sided contraction property (3.2) holds for all x,y ∈ C }.

Clearly, the two-sided contraction property (3.2) is stronger than its one-sided version (3.3), and

so γ∗ ≤ γ]. However, Lemma 3.2.4 shows that they are in fact equal, proving that

(
1− γx(C )‖z− x‖∗− γy(C )‖w− y‖∗

)
· ‖x− y‖2 ≤ ‖z−w‖2

for all z,w ∈ Rd with x = PC (z), y = PC (w). Since γx(C ),γy(C ) ≤ γ∗ for all x,y ∈ C , this
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implies that (
1− γ

∗‖z− x‖∗− γ
∗‖w− y‖∗

)
· ‖x− y‖2 ≤ ‖z−w‖2,

that is, (3.2) holds for all x,y ∈ C with constant γ = γ∗. So, we have γ] ≤ γ∗. Therefore, the

five conditions defining γ(C ) are equivalent, and γ(C ) = γ] = γ∗ = supx∈C γx(C ), proving Theo-

rem 3.1.1 and Lemma 3.2.1.

3.6 Proofs for examples

In this section we prove results calculating the local concavity coefficients γx(C ) for the constraint

sets considered in Section 3.3.

Tangent space For any rank-r matrix X , let TX be the tangent space of low-rank matrices at X ,

given by5

TX =
{

UA>+BV> : A ∈ Rm×r, B ∈ Rn×r are any matrices
}
, (3.33)

where U ∈ Rn×r, V ∈ Rm×r are orthonormal bases for the column and row span of X . This

tangent space has frequently been studied in the context of nuclear norm minimization, see for

instance [43]. This definition has also appeared in Chapter 2 when we analyze error bound of the

estimator for compressed RPCA.

3.6.1 Low rank constraints

Recalling the subspace TX defined in (3.33) for any rank-r matrix X , we begin with an auxiliary

lemma:

5. For X ∈ C which is of rank strictly lower than r, we can define TX by taking U ∈ Rn×r, V ∈ Rm×r to be any
orthonormal matrices which contain the column and row span of X ; this choice is not unique, but formally we assume
that we have fixed some choice of space TX for each X ∈ C .
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Lemma 3.6.1. Let X ,Y ∈ Rn×m satisfy rank(X), rank(Y )≤ r. Then

‖P⊥TX
(Y )‖nuc ≤

1
2σr(X)

‖X−Y‖2F.

Proof of Lemma 3.6.1. Assume σr(X) > 0 (otherwise the statement is trivial). For any matrix

M ∈ (TX )
⊥ with ‖M‖sp ≤ 1, define a function

fM(Z) =
1

2σr(X)
‖Z−X‖2F−〈Z,M〉

over matrices Z ∈ Rn×m. We can rewrite this as

fM(Z) =
1

2σr(X)
‖Z− (X +σr(X)M)‖2F+ 〈X ,M〉− σr(X)

2
‖M‖2F.

Now, we minimize fM(Z) over a rank constraint:

argmin
rank(Z)≤r

fM(Z) = argmin
Z
{‖Z− (X +σr(X)M)‖2F : rank(Z)≤ r}= PC (X +σr(X)M) .

Since σ1(X), . . . ,σr(X)≥ σr(X) while ‖σr(X)M‖sp ≤ σr(X), and M ∈ (TX )
⊥, we see that

X = PC (X +σr(X)M) .

(It may be the case that X and σr(X)M both have one or more singular values exactly equal to

σr(X), in which case the projection is not unique, but X is always one of the values of the projec-

tion.) So, Z = X minimizes fM(Z) over rank-r matrices, and therefore, for any Z with rank(Z)≤ r,

fM(Z)≥ fM(X) =
1

2σr(X)
‖X−X‖2F+ 〈X ,M〉= 0,
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since 〈X ,M〉= 0 due to M ∈ (TX )
⊥. Therefore, in particular, fM(Y )≥ 0 which implies that

〈Y,M〉 ≤ 1
2σr(X)

‖Y −X‖2F.

Since this is true for all M ∈ (TX )
⊥ with ‖M‖sp ≤ 1, we have proved that

‖P⊥TX
(Y )‖nuc = max

M∈(TX )⊥,‖M‖sp=1
〈Y,M〉 ≤ 1

2σr(X)
‖Y −X‖2F,

as desired.

Proof of Lemma 3.3.1. First, let PC (Z) be any closest rank-r matrix to Z (not necessarily unique),

and let U ∈Rn×r and V ∈Rm×r be orthonormal bases for the column span and row span of PC (Z)

(that is, if PC (Z) is unique then the columns of U and V are the top r left and right singular vectors

of Z). Regardless of uniqueness we will have Z−PC (Z) orthogonal to U on the left and to V on

the right, i.e. we can write

Z−PC (Z) = (I−UU>) · (Z−PC (Z)) · (I−VV>).

We then have

〈Y −PC (Z),Z−PC (Z)〉= 〈Y −PC (Z),(I−UU>) · (Z−PC (Z)) · (I−VV>)〉

= 〈(I−UU>) · (Y −PC (Z)) · (I−VV>),Z−PC (Z)〉

≤ ‖(I−UU>) · (Y −PC (Z)) · (I−VV>)‖nuc · ‖Z−PC (Z)‖sp

≤ ‖(I−UU>) ·Y · (I−VV>)‖nuc · ‖Z−PC (Z)‖sp,

where the last step holds since PC (Z) is spanned by U on the left and V on the right. Applying

Lemma 3.6.1 with X = PC (Z), which trivially has U,V as its left and right singular vectors, we

obtain

‖(I−UU>) ·Y · (I−VV>)‖nuc ≤
1

2σr(PC (Z))
‖Y −PC (Z)‖2F.
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Therefore,

〈Y −PC (Z),Z−PC (Z)〉 ≤ 1
2σr(PC (Z))

‖Z−PC (Z)‖sp‖Y −PC (Z)‖2F.

This proves that γX (C )≤ 1
2σr(X)

for all x ∈ C by the inner product condition (3.5).

To prove equality, take any X ∈ C \Cdgn (that is, we assume that rank(X) = r), and let X =

σ1u1v>1 + · · ·+σrurv>r be a singular value decomposition with σ1≥ ·· · ≥ σr > 0. Let u′ ∈Rn,v′ ∈

Rm be unit vectors orthogonal to the left and right singular vectors of X , respectively. Define

Y = σ1u1v>1 + · · ·+σr−1ur−1v>r−1 +σru′v′>

and

Z = X + cu′v′>,

for some fixed c ∈ (0,σr). Then PC (Z) = X , and we have

〈Y −X ,Z−X〉= 〈σru′v′>−σrurv>r ,cu′v′>〉= cσr

while

‖Z−X‖sp‖Y −X‖2F = ‖cu′v′>‖sp‖σru′v′>−σrurv>r ‖2F = 2cσ
2
r ,

therefore by the inner product condition (3.5), we must have γX (C )≥ 1
2σr(X)

. Combining with our

previous steps, we now have γX (C ) = 1
2σr(X)

for all x ∈ C , proving Lemma 3.3.1.

3.6.2 Sparsity

Proof of Lemma 3.3.2. We check the local concavity coefficients. Fix any x ∈ C . As before, if x

is in the interior (i.e. Pen(x) < c) then γx(C ) = 0, so we turn to the case that Pen(x) = c, and in

particular, x 6= 0. Without loss of generality, assume that x1 > 0 and that x1 is the smallest nonzero
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coordinate of x (and then xmin = x1). Choose any y ∈ C and t ∈ [0,1]. Let

xt = (1− t)x+ ty and zt = xt − ste1

where e1 = (1,0, . . . ,0) and

st = t · µ/2
p′((xt)1)

· ‖x− y‖22.

Since limt↘ xt = x, and p is continuously differentiable (since it is both concave and differentiable

on the positive real line), we have

lim
t↘0

st
t
=

µ/2
p′(x1)

· ‖x− y‖22.

In particular, this implies that, for sufficiently small t, we have (xt)1 > 0 and (zt)1 > 0.

We claim that Pen(zt)≤ c, in which case

lim
t↘0

minx′∈C ‖xt − x′‖1
t

≤ lim
t↘0

‖xt − zt‖1
t

= lim
t↘0

st
t
=

µ/2
p′(xmin)

· ‖x− y‖22,

which proves the lemma.

It now remains to check that Pen(zt)≤ c. We have, for coordinate i = 1,

p(|zt |i) = p((xt)1− st)≤ p((xt)1)− stp
′((xt)1),

since 0 < (xt)1− st < (xt)1 and ρ is concave over R+. And, for every coordinate i,

p(|(xt)i|) = p(|(1− t)xi + tyi|)

≤ p((1− t)|xi|+ t|yi|) since ρ is nondecreasing

≤ (1− t)p(|xi|)+ tp(|yi|)+
µ

2
t(1− t)(|xi|− |yi|)2 since t 7→ p(t)+µt2/2 is convex

≤ (1− t)p(|xi|)+ tp(|yi|)+
µ

2
t(1− t)(xi− yi)

2.
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Therefore,

Pen(zt) = ∑
i
p(|zt |i)≤

(
∑
i
(1− t)p(|xi|)+ tp(|yi|)+

µ

2
t(1− t)(xi− yi)

2

)
− stp

′((xt)1)

≤ (1− t)Pen(x)+ tPen(y)+
µ

2
‖x− y‖22− stp

′((xt)1)≤ c+
µ

2
‖x− y‖22− stp

′((xt)1) = c,

where the last step holds by definition of st .

3.6.3 Other examples

Proof of Lemma 3.3.3. Let X ,Y ∈C . For a fixed t ∈ (0,1), let (1− t)X +tY = ADB> be a singular

value decomposition. Since AB> ∈ Rn×r is an orthonormal matrix, we then have

min
Z∈C
‖Z− ((1− t)X + tY )‖nuc ≤ ‖AB>− ((1− t)X + tY )‖nuc = ‖AB>−ADB>‖nuc

=
r

∑
i=1

(1−Dii).

Furthermore,

‖D‖2F = ‖(1− t)X + tY‖2F

= (1− t)2‖X‖2F+ t2‖Y‖2F+2t(1− t)〈X ,Y 〉

= (1− t)2‖X‖2F+ t2‖Y‖2F+ t(1− t)
(
‖X‖2F+‖Y‖

2
F−‖X−Y‖2F

)
= (1− t)2r+ t2r+ t(1− t)

(
r+ r−‖X−Y‖2F

)
= r− t(1− t)‖X−Y‖2F.
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A trivial calculation shows that 1−Dii =
1−D2

ii
2 +

(1−Dii)
2

2 , so we have

min
Z∈C
‖Z− ((1− t)X + tY )‖nuc ≤

r

∑
i=1

(1−Dii) =
r

∑
i=1

1−D2
ii

2
+

(1−Dii)
2

2

=
r−‖D‖2F

2
+

r

∑
i=1

(1−Dii)
2

2
=

1
2

t(1− t)‖X−Y‖2F+
r

∑
i=1

(1−Dii)
2

2
.

Furthermore, we can show that the last term is o(t), as follows. For any unit vector u ∈ Rr,

‖((1− t)X + tY )u‖2 ≥ (1− t)‖Xu‖2− t‖Yu‖2 ≥ 1−2t

since X ,Y are both orthonormal. Therefore (1− t)X + tY has all its singular values ≥ 1−2t, that

is, Dii ≥ 1−2t for all i. And trivially ‖((1− t)X + tY )u‖2 ≤ 1 so Dii ≤ 1. Then ∑
r
i=1(1−Dii)

2 ≤

∑
r
i=1(2t)2 = 4t2r, so we have

min
Z∈C
‖Z− ((1− t)X + tY )‖nuc ≤

1
2

t(1− t)‖X−Y‖2F+2t2r.

Dividing by t and taking a limit,

lim
t↘0

minZ∈C ‖Z− ((1− t)X + tY )‖nuc
t

≤ 1
2
‖X−Y‖2F.

Comparing to the curvature condition (3.1) we see that γX (C )≤ 1
2 , as desired.

Next, to obtain equality, take any X ∈ C . Fix any c ∈ (0,1). Let Y = −X ∈ C and Z = cX ∈

Rn×r. Clearly, PC (Z) = X . By the contraction property (3.3), we must have

(1− γX (C )‖Z−X‖∗)‖Y −X‖F ≤ ‖Y −Z‖F.

Plugging in our choices for Y and Z, we obtain

(1− γX (C ) · (1− c)) ·2
√

r ≤ (1+ c)
√

r,
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and so γX (C )≥ 1
2 .

Proof of Lemma 3.3.4. For X ,Y ∈ C , write X = UU>, and Y = VV> for some orthonormal ma-

trices U,V ∈ Rn×r. For t ∈ (0,1), let Ut = (1− t)U + tV , and let Ut = ADB> be a singular value

decomposition. Then AB> is the projection of Ut onto the set of orthonormal n× r matrices. Since

A ∈ Rn×r is orthonormal, we have AA> ∈ C , and so

min
Z∈C
‖Z− ((1− t)X + tY )‖nuc ≤ ‖AA>− ((1− t)X + tY )‖nuc

≤ ‖AA>−UtU>t ‖nuc︸ ︷︷ ︸
(Term 1)

+‖UtU>t − ((1− t)X + tY )‖nuc︸ ︷︷ ︸
(Term 2)

.

For (Term 1),

‖AA>−UtU>t ‖nuc = ‖AA>−ADB> ·BDA>‖nuc

= ‖A(Ir−D2)A>‖nuc

= r−‖D‖2F = r−‖Ut‖2F

= r−‖(1− t)U + tV‖2F

= r− (1− t)2‖U‖2F− t2‖V‖2F−2t(1− t)〈U,V 〉

= r− (1− t)2‖U‖2F− t2‖V‖2F− t(1− t)
(
‖U‖2F+‖V‖

2
F−‖U−V‖2F

)
= r− (1− t)2r− t2r− t(1− t)

(
2r−‖U−V‖2F

)
= t(1− t)‖U−V‖2F.
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For (Term 2),

‖UtU>t − ((1− t)X + tY )‖nuc

= ‖((1− t)U + tV )((1− t)U + tV )>− (1− t)UU>− tVV>‖nuc

= ‖−t(1− t)UU>− t(1− t)VV>+ t(1− t)UV>+ t(1− t)VU>‖nuc

= ‖−t(1− t)(U−V )(U−V )>‖nuc

= t(1− t)‖U−V‖2F.

Combining the two, then,

min
Z∈C
‖Z− ((1− t)X + tY )‖nuc ≤ 2t(1− t)‖U−V‖2F.

Next, note that the choice of U and V is not unique. Fixing any factorizations X = UU>

and Y = VV>, let U>V = ADB> be a singular value decomposition, and let Ṽ = V BA>. Then

Y = ṼṼ>, and following the same steps as above we can calculate

min
Z∈C
‖Z− ((1− t)X + tY )‖nuc ≤ 2t(1− t)‖U−Ṽ‖2F.

Furthermore,

‖U−Ṽ‖2F = ‖U‖2F+‖Ṽ‖
2
F−2trace(U>Ṽ ) = 2r−2trace(U>V BA>)

= 2r−2trace(ADB>BA>) = 2r−2trace(D).

And,

‖X−Y‖2F = ‖X‖2F+‖Y‖
2
F−2trace(XY ) = 2r−2trace(UU>ṼṼ>)

= 2r−2‖U>Ṽ‖2F = 2r−2‖D‖2F ≥ 2r−2trace(D),
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since ‖D‖2F = ∑i(Dii)
2 ≤ ∑i Dii, as 0≤ Dii ≤ 1 for all i since U,V are both orthonormal matrices.

Therefore, this proves that ‖U−Ṽ‖2F ≤ ‖X−Y‖2F, and so

min
Z∈C
‖Z− ((1− t)X + tY )‖nuc ≤ 2t(1− t)‖X−Y‖2F.

Based on the curvature condition characterization (3.1) of the local concavity coefficients, we have

therefore computed γX (C )≤ 2, as desired.
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CHAPTER 4

ALTERNATING MINIMIZATION AND INEXACT ALTERNATING

MINIMIZATION OVER NONCONVEX CONSTRAINTS

Consider the problem of optimizing a function over two variables, one or both of which is con-

strained to lie in some constraint set:

(x̂, ŷ) = argmin{L (x,y) : x ∈X ,y ∈ Y }, (4.1)

where X ⊂ Rdx and Y ⊂ Rdy reflect our beliefs or desired properties for the x and y variables,

while L is the target function to minimize (for example, a negative log-likelihood, in which case

we are searching for the constrained maximum likelihood estimator). This type of problem arises

naturally in multiple structured statistical models, including multitask regression and robust prin-

ciple component analysis, and we have already seen one realization of this setting in compressed

RPCA (recall we were working with a regularized form in (2.3), but converting to the equivalent

constrained form is straightforward).

Due to its simplicity and effectiveness, alternating minimization has long been a popular opti-

mization method to solve the problem (4.1). Based on the tool of concavity coefficients developed

in Chapter 3, we assume that the constraint sets X and Y may potentially be nonconvex. In

particular, this chapter1 studies the convergence behavior of the (inexact) alternating minimization

method over (possibly) nonconvex sets, where we iterate the steps


Fix y, and choose x ∈X to (approximately) minimize the function x 7→L (x,y);

Fix x, and choose y ∈ Y to (approximately) minimize the function y 7→L (x,y).

This type of method can be practical in scenarios where the loss function is relatively simple to

minimize when viewed as a function of either x or y only—for instance, in multitask regression,

1. The work presented in this chapter is published in Ha and Barber [44].
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where x represents the coefficients and y represents the covariance structure. In other settings, even

the marginal minimization steps are expensive to calculate, but we can instead consider approxi-

mating each one with other iterative procedures, such as gradient descent.

In this chapter, we explore theoretical properties of (exact or inexact) alternating minimiza-

tion as well as its convergence behavior in numerical simulation. We also examine a range of

specific examples with rank-constrained variables, including multitask regression, robust principal

component analysis, and factor models.

4.1 Handling nonconvex constraints in alternating minimization

Before proceeding, we explain how concavity coefficients can be useful for establishing conver-

gence of the alternating minimization method. One main challenge of working over nonconvex

regions is that, since X and Y are potentially nonconvex sets, the standard first-order optimality

conditions under convex setting do not apply. Specifically, fixing any y ∈ Y and defining

xy = argmin{L (x,y) : x ∈X },

the nonconvexity of X means that we cannot assume that 〈x− xy,∇xL (xy,y)〉 ≥ 0 for all other

x ∈X (and same when we reverse the roles of x and y). This makes the analysis of optimization

problem with nonconvex constraints difficult, since the first-order optimality condition is crucial

for understanding convergence behavior.

Recall our definition of local concavity coefficients, γx(X ) for x ∈X , given in (3.6). The

equivalent results, Theorem 3.2.1, tells that the concavity coefficient equivalently characterizes the

extent to which the usual first-order optimality conditions are violated when minimizing over the

set X . Now fix some structured norms ‖·‖x and ‖·‖y for the x and y variables—for instance, for a

low-rank + sparse problem, we might choose ‖·‖x and ‖·‖y to be the nuclear norm and the `1 norm,

respectively. To simplify our exposition, we will assume that our structured norms ‖·‖x,‖·‖y are

scaled to satisfy ‖·‖x,‖·‖y ≥ ‖·‖2, which is the case for many of the structured norms that arise in
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various applications (such as the `1 norm and nuclear norm).

Let the local concavity coefficients γx(X ) and γy(Y ) be defined with respect to these poten-

tially different norms. The first-order condition (3.4) allows us to obtain approximate first-order

optimality conditions for the steps of the alternating minimization algorithm—for instance, letting

xy be a local minimum of the problem min{L (x,y) : x ∈X } (i.e. the x update step of alternating

minimization), then for all x ∈X ,

〈x− xy,∇xL (xy,y)〉 ≥ −γxy(X )‖∇xL (xy,y)‖∗x‖x− xy‖22, (4.2)

and similarly for y. These bounds provide a critical ingredient for our convergence analysis.

4.2 Problem formulation

Given the loss function L (x,y) which is differentiable, we consider an optimization problem given

in (4.1). Formally we require the target of our optimization problem (x̂, ŷ) only to be a local

minimizer of L (x,y)—this is because L (x,y) may potentially be highly nonconvex or degenerate

in regions (x,y) far from the origin, and we may even have limL (x,y) = −∞ as (x,y) tends

to infinity in some direction. If this is the case, then the steps of the alternating minimization

algorithm could potentially diverge, and it may instead be necessary to choose our update steps

locally.

To formalize this, define new constraint sets X0 = X ∩B2(x0,ρx) and Y0 = Y ∩B2(y0,ρy),

where (x0,y0) is our initialization point. These neighborhoods of the original constraint sets X

and Y are assumed to be sufficiently large so as to contain the target point (x̂, ŷ) (in other words,

our initialization point (x0,y0) was chosen to be close to the target (x̂, ŷ)), but sufficiently small so

that the loss function L (x,y) is well-behaved over this small region X0×Y0.

We then define

(x̂, ŷ) = argmin{L (x,y) : x ∈X0,y ∈ Y0} ,
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and run the alternating minimization algorithm locally by iterating the steps


xt = argminx∈X0

L (x,yt−1),

yt = argminy∈Y0
L (xt ,y).

(4.3)

For our intuition, we should interpret these radius constraints, i.e. working in X0 and Y0 rather

than in X and Y , as a technicality for the theory, which we do not need to actually implement in

practice. In particular, for many settings, the alternating minimization steps are implemented with

some kind of local search procedure, such as gradient descent in the x or the y variable, which will

move towards a nearby local minimizer without enforcing a radius constraint. In other settings,

even the global minimizer for the x or the y variable (while the other variable is fixed), stays

within a small neighborhood, without enforcing a radius constraint. In other words, the radius

constraint will generally not be active, and thus we can often ignore it in our implementation of

the algorithm. However, for the theoretical results obtained here, we require it in order to be able

to handle a broader range of problems.

Recall the global concavity coefficient γ(X0) = supx∈X0
γx(X0) and γ(Y0) = supy∈Y0

γy(Y0)

given by Lemma 3.2.1. The following lemma proves that, if the radii ρx,ρy are chosen to be small,

the curvature conditions of X and Y are inherited by X0 and Y0:

Lemma 4.2.1. If ρx <
1

2maxx∈X0 γx(X )
, then γx(X0)≤ γx(X ) for all x ∈X0, and in particular,

γ(X0)≤ max
x∈X0

γx(X ).

The analogous statement holds for y.

To see how this result will play a role in the convergence analysis for alternating minimization,

consider a single update step for the x variable. Let xy = argmin{L (x,y) : x ∈X0}. Then the

first-order condition (3.4) shows the following bound (which we can compare to (4.2)),

〈x′− xy,∇xL (xy,y)〉 ≥ −γ(X0)‖∇xL (xy,y)‖∗x‖x′− xy‖22 for all x′ ∈X0, (4.4)
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while Lemma 4.2.1 proves a useful bound for γ(X0) as long as ρx is sufficiently small (and simi-

larly for y).

4.2.1 Related work

Alternating minimization is a classical topic in the optimization literature, dating back to early

work (e.g. [45]), and a large body of research has been devoted to understanding the method under

various settings (e.g. [46, 6]). Here we summarize some of the key recent results, and describe

how they relate to our contributions; for brevity, we only focus on the papers most relevant to our

work.

Luo and Tseng [6] prove linear convergence for alternating minimization under convex con-

straints, assuming that the loss function L is β -smooth and α-strongly convex in each variable

(and, in the case of more than two variables, for the analogous coordinate descent algorithm).

In some settings, the loss function L may be more well-behaved with respect to one of the

variables than the other, in terms of its smoothness and convexity properties. Beck [5] studies

alternating minimization for a convex loss L (x,y) under convex constraints on x and on y, proving

that the gap in the loss function values, i.e. the difference L (xt ,yt)−L (x̂, ŷ), decays according to

the rate O
(

min{βx,βy}
t

)
, where βx and βy represent the smoothness parameters of the loss L with

respect to the variables x and y respectively. Interestingly, this rate is controlled by the better of the

two smoothness parameters—that is, the algorithm will converge rapidly as long as at least one of

the two smoothness parameters is bounded.

Our main results demonstrate an analogous phenomenon under an additional (restricted) strong

convexity assumption—in this setting, we find a linear convergence rate, with the convergence ra-

dius determined by min
{

βx
αx
,

βy
αy

}
, where βx,βy are smoothness parameters as before, while αx,αy

are the (restricted) strong convexity parameters with respect to x and y, respectively. That is, the

linear convergence rate depends on the better of the two condition numbers, while in Beck [5]’s

result, without strong convexity, the sublinear convergence rate depends on the better of the two

smoothness parameters. Thus, while a main focus of our work is to establish convergence results in
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a nonconvex setting, even in the convex setting our results reveal the interesting role of the two rel-

ative condition numbers (i.e. for the x and the y variables) in determining the overall convergence

rate.

4.2.2 Assumptions

Next we formally establish our assumptions on the loss function L (x,y) as well as initialization

condition.

Loss function We first define some notation. Our convergence results will be derived in terms

of the first-order divergence, a measure of distance to the optimal points x̂ and ŷ that is defined

relative to the loss function:

D2(x; x̂) = 〈x− x̂,∇xL (x, ŷ)−∇xL (x̂, ŷ)〉, and (4.5)

D2(y; ŷ) = 〈y− ŷ,∇yL (x̂,y)−∇yL (x̂, ŷ)〉. (4.6)

This divergence has been used also in [39] to prove statistical errors of any local minimum in the

sparse regression setting. Note that, if L is nonconvex, then potentially D2(x; x̂) or D2(y; ŷ) may

be negative. Abusing notation, we define the square root of the divergence as

D(x; x̂) =
√

max
{

0,D2(x; x̂)
}

and D(y; ŷ) =
√

max
{

0,D2(y; ŷ)
}
,

to accommodate the case where the divergences may be negative.

Throughout we will write εx,εy ≥ 0 to indicate vanishing error terms that allow a small amount

of slack in the convexity and smoothness conditions. In the high-dimensional statistics literature,

these terms often represent the “statistical error”—meaning, if the global minimizer x̂ approximates

some “true” parameter x? only up to an error level of εx, then as soon as our iterative algorithm

reaches a solution xt within distance ∼ εx of x̂, we are already optimal (up to a constant) in terms

of estimating the underlying parameters x?. While our work in this paper is not based in a concrete
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statistical model, we will still refer to εx,εy as the statistical error terms, as this is often the case

for many of the applications of our result.

We now state our assumptions on the loss L (x,y). Our optimization method works locally in

neighborhoods of the initialization point (x0,y0), and consequently it is sufficient for us to require

the assumptions on L (x,y) to hold only locally in the regions X0 and Y0.

First, since (x,y) are being optimized jointly, we need to ensure that these two variables are

identifiable, and require a joint restricted strong convexity (RSC) condition at the target point

(x̂, ŷ):

Assumption 4.2.1. (Joint restricted strong convexity (RSC).) For all x ∈X0 and all y ∈ Y0,

〈

 x− x̂

y− ŷ

,∇L (x,y)−∇L (x̂, ŷ)〉 ≥ αx‖x− x̂‖22 +αy‖y− ŷ‖22−αxε
2
x −αyε

2
y . (4.7)

Note that we require joint RSC to hold only at the target (x̂, ŷ). In other regions of X ×Y , we

may not have joint convexity if the variables x and y are not identifiable from each other in general

(for instance, this arises in low-rank + sparse decomposition problems).

Next, we assume that, marginally in x and in y, the loss function satisfies the restricted smooth-

ness (RSM) property near the optimal point (x̂, ŷ):

Assumption 4.2.2. (Restricted smoothness (RSM).) For all x ∈X0 and all y ∈ Y0,

D2(x; x̂)≤ βx‖x− x̂‖22 +αxε
2
x and D2(y; ŷ)≤ βy‖y− ŷ‖22 +αyε

2
y . (4.8)

Comparing to the restricted strong convexity assumption, we see that we need to choose con-

stants αx ≤ βx and αy ≤ βy.

Finally, we require a “cross-product” condition (explained below):
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Assumption 4.2.3. (Cross-product bound.) For all x ∈X0 and all y ∈ Y0,

∣∣〈x− x̂,∇xL (x,y)−∇xL (x, ŷ)〉−〈y− ŷ,∇yL (x,y)−∇yL (x̂,y)〉
∣∣

≤ 1
2

µx‖x− x̂‖22 +
1
2

µy‖y− ŷ‖22 +αxε
2
x +αyε

2
y ,

where 0≤ µx ≤ αx and 0≤ µy ≤ αy.

To understand this assumption, suppose that L is twice differentiable. In this case, applying

Taylor’s theorem to rewrite the above expression in terms of ∇2L , we find that Assumption 4.2.3

holds with

µx = µy = sup
x∈X0;y∈Y0

t,t ′∈[0,1]

2
∥∥∥∇

2
xyL (x, ty+(1− t)ŷ)−∇

2
xyL (t′x+(1− t′)x̂,y)

∥∥∥
sp
,

where the norm ‖·‖sp is the matrix operator norm (the largest singular value). Since X0 and Y0

are bounded via the radii ρx,ρy, then, this condition is satisfied whenever ∇2
xyL is Lipschitz. As a

special case, if L (x,y) is quadratic, then we can trivially take µx = µy = 0 since ∇2
xyL is constant.

Initialization As our theoretical results mainly concern the local behavior of the alternating min-

imization method, the initialization scheme is crucial to ensure the success of the procedure. Our

results require the following initialization condition:

Assumption 4.2.4. (Initialization condition.)

2γ(X0) ·
(
‖∇xL (x̂, ŷ)‖∗x + max

y∈Y0
‖∇xL (xy,y)‖∗x

)
≤ αx−µx,

and

2γ(Y0) ·
(
‖∇yL (x̂, ŷ)‖∗y + max

x∈X0
‖∇yL (y,yx)‖∗y

)
≤ αy−µy.

Recall that Lemma 4.2.1 provides easy bounds on γ(X0) and γ(Y0), as long as the radii ρx,ρy

are chosen to be sufficiently small; furthermore, if X is convex, then γ(X0) = 0 and so the
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first bound holds trivially, and similarly for the second bound if Y is convex. In the nonconvex

setting where γ(X0) and/or γ(Y0) are nonzero, see [31] for a discussion of the necessity of this

type of initialization condition for the related problem of gradient descent in a single variable (see

also (3.15) in Section 3.4.1). Roughly speaking, the condition requires that algorithm must be

initialized within some neighborhood of the global minimizer—sufficiently close so that, locally,

the (restricted) convexity of the loss function L (x,y) is sufficient to outweigh nonconvexity in the

constraints.

4.3 Convergence guarantee

4.3.1 Exact alternating minimization

Now we prove convergence by working with the first-order divergence defined in (4.5), (4.6) above.

According to Assumption 4.2.1, the divergence will be always nonnegative in the regions X0 and

Y0, up to the statistical error.

Theorem 4.3.1. Suppose that Assumptions 4.2.1, 4.2.2, 4.2.3, and 4.2.4 hold. Then the iterations

of the alternating minimization algorithm (4.3) satisfy the recursive bounds

D(xt ; x̂)≤
√

1−
αy

2βy
·D(yt−1; ŷ)+

√
3(αxε2

x +αyε2
y ), and (4.9)

D(yt ; ŷ)≤
√

1− αx
2βx
·D(xt ; x̂)+

√
3(αxε2

x +αyε2
y ), (4.10)

for all t ≥ 1. In particular, this implies a linear rate of convergence:

‖(xt ,yt)− (x̂, ŷ)‖2 ≤
(√

1− αx
2βx
·
√

1−
αy

2βy

)t
·

√
6βyρy√

min{αx,αy}
+C ·max{εx,εy} (4.11)

for all t ≥ 1, where

C =
18

1−
√

1− αx
2βx
·
√

1− αy
2βy

·

√
max{αx,αy}
min{αx,αy}

.
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Before proceeding, we remark that the order of the updates—that is, after initializing at time

t = 0 with points x0,y0, at time t = 1 we then update first x and then y—is arbitrary. In particular,

the term
√

βyρy appearing in the numerator of (4.11), can of course be replaced instead by
√

βxρx

if we switch the order of the updates. This suggests that it may be best to first update the variable

with poorer smoothness parameter—that is, if the y variable is more well-conditioned, at our first

step we should fix y and update x.

4.3.2 Dependence on condition number

Examining the bound (4.11) for the convergence rate in the `2 norm, we see that the convergence

rate is dominated by the radius √
1− αx

2βx
·
√

1−
αy

2βy

(here we ignore the negligible statistical error term C ·max{εx,εy}). We now discuss the impli-

cations of this result, in terms of its dependence on the convexity and smoothness parameters,

αx,αy and βx,βy. To help us discuss the conditioning of this problem, we define the two marginal

condition numbers of the loss function with respect to the x and the y variables,

κx(L ) =
βx
αx

and κy(L ) =
βy

αy
,

and the joint condition number

κ(L ) =
max{βx,βy}
min{αx,αy}

≥max{κx(L ),κy(L )},

which, up to constant factors, gives the condition number of the loss function L as a function of

the joint variable (x,y).

In (4.11), we see that our convergence radius is strictly smaller than 1, as long as either of

the two marginal condition numbers is bounded from above, that is, if min{κx(L ),κy(L )} is

bounded. On the other hand, if we consider optimization algorithms that work with the com-
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bined joint variable (x,y), the performance of such algorithms typically relies heavily on the joint

condition number κ(L ) ≥ max{κx(L ),κy(L )}. For example, if L is α-strongly convex and

β -smooth in the joint variable (x,y), standard results (see e.g. [40]) prove that gradient descent in

(x,y) yields

‖(xt ,yt)− (x̂, ŷ)‖2 ≤
(√

1−α/β
)t‖(x0,y0)− (x̂, ŷ)‖2.

Comparing to our notation, it can be shown that α ≤ min{αx,αy} and β ≥ max{βx,βy}, and so

the radius of covergence for (joint) gradient descent is controlled by the joint condition number,

κ(L )≥max{κx(L ),κy(L )}.

Therefore, in settings where one of the two—κx(L ) or κy(L )—is much larger than the other,

we may expect that (joint) gradient descent, or other non-alternating algorithms, might perform

poorly, while alternating minimization will continue to perform well, since its linear convergence

rate depends only on the best of the two condition numbers, i.e. on min{κx(L ),κy(L )}. (We

mention that [5] finds an analogous result without strong convexity assumptions, demonstrating

that the sublinear rate of convergence for alternating minimization method is driven by minimum

of the two smoothness parameters, i.e. min{βx,βy}.)

4.3.3 Inexact alternating minimization

In some settings, it may be impractical to solve the alternating minimization steps exactly, i.e. when

L (x,y) is difficult to minimize even as a function of only x or only y. In these cases, we may want

to solve each step of the alternating minimization algorithm inexactly.

We formulate an inexact algorithm where, at each step, we choose xt and yt to be within some

tolerance parameters δ x
t ,δ

y
t of the exact alternating minimization steps at that time: for all t ≥ 1,


xexact

t = argminx∈X0
L (x,yt−1), xt ∈X0∩B2(xexact

t ,δ x
t ),

yexact
t = argminy∈Y0

L (xt ,y), yt ∈X0∩B2(yexact
t ,δ

y
t ).

(4.12)

Here xt and yt can be chosen arbitrarily (or even adversarially) as long as they are within the
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required distance of the true solutions xexact
t and yexact

t .

In order to establish the convergence of the inexact alternating minimization algorithm (4.12),

we require an additional assumption:

Assumption 4.3.1. (Relaxed triangle inequality.) For all x,x′ ∈X0,

D(x; x̂)≤ D(x′; x̂)+
√

βx‖x− x′‖2 +
√

αxεx,

and for all y,y′ ∈ Y0,

D(y; ŷ)≤ D(y′; ŷ)+
√

βy‖y− y′‖2 +
√

αyεy.

It can be shown that a stronger form of the restricted smoothness condition (Assumption 4.2.2)

implies this type of relaxed triangle inequality, but for simplicity we state it as an assumption.

The following theorem states that the inexact alternating minimization inherits fast convergence

of the alternating minimization steps to the target (x̂, ŷ), under the same assumptions as the original

result Theorem 4.3.1, along with the relaxed triangle inequality (Assumption 4.3.1).

Theorem 4.3.2. Suppose that Assumptions 4.2.1, 4.2.2, 4.2.3, 4.2.4, and 4.3.1 hold. Then, the

steps of the inexact alternating minimization algorithm satisfy

D(xt ; x̂)≤
√

1−
αy

2βy
·D(yt−1; ŷ)+

√
βxδ

x
t +

√
8(αxε2

x +αyε2
y ) and (4.13)

D(yt ; ŷ)≤
√

1− αx
2βx
·D(xt ; x̂)+

√
βyδ

y
t +

√
8(αxε2

x +αyε2
y ), (4.14)

for all t ≥ 1.

Of course, in order for this result to be meaningful, the slack terms δ x
t ,δ

y
t need to be sufficiently

small, so that the errors D(xt ; x̂) and D(yt ; ŷ) are able to converge to zero (or, at least, to the level

of the statistical error terms εx,εy). As a special case, consider the setting where the slack terms

δ x
t ,δ

y
t decrease as the solution converges, via the rule

δ
x
t ≤ cx‖xt−1− xexact

t ‖2 +Cxεx, δ
y
t ≤ cy‖yt−1− yexact

t ‖2 +Cyεy, (4.15)
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for some sufficiently small cx,cy ≥ 0 and for some Cx,Cy < ∞. In fact, we will see momentarily

that this recursive bound arises naturally when the approximate iterative solutions xt and yt are

obtained via projected gradient descent.

Lemma 4.3.1. Suppose that, for all t ≥ 1, the slack terms δ x
t ,δ

y
t satisfy (4.15). Then, under the

assumptions of Theorem 4.3.2, if

r :=

(√
1− αx

2βx
+3cy

√
βy

αy

)
·

√1−
αy

2βy
+3cx

√
βx
αx

< 1, (4.16)

then the iterations of the inexact alternating minimization algorithm (4.12) satisfy

‖(xt ,yt)− (x̂, ŷ)‖2 ≤ rt ·

√
6(αxρ2

x +βyρ2
y )√

min{αx,αy}
+C ·max{εx,εy}

for all t ≥ 1, where

C =
39

1− r
·

√
αx +αy +C2

x βx +C2
y βy

min{αx,αy}
.

We should interpret this lemma as covering two distinct scenarios:

• First, if the loss is well-conditioned in both the x and the y variables—that is, both βx
αx

and
βy
αy

are bounded—then we can afford inexact update steps for both variables, allowing cx,cy

to both be small positive constants while still obtaining linear convergence.

• Alternately, if the loss is well-conditioned in one variable only—without loss of generality,

if βx
αx

is large (or even βx = ∞) while βy
αy

is bounded—then we can allow the y variable update

to be performed inexactly, while the x variable should be updated with the exact alternating

minimization step (that is, cx = Cx = 0, i.e. δ t
x = 0 at each update iteration t). In this case,

we can still obtain a linear convergence rate.
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4.3.4 Alternating gradient descent

As mentioned above, if the alternating minimization update for x is approximated via gradient

descent in x (and same for y), then we may expect the errors in each step to scale linearly as

in (4.15). Here we give informal statment for this claim.

In Theorem 3.4.1 of Chapter 3, it is shown that under the framework of local concavity measure,

projected gradient descent converges rapidly to the optimal as long as it is initialized near the

target. Translating this result to the alternating minimization setting, we can bound the tolerance

parameters δ x
t ,δ

y
t appearing in the inexact alternating minimization algorithm (4.12), when the

inexact steps are computed via gradient descent. Here we state the statements informally to avoid

overly complicated assumptions and constants:

Lemma 4.3.2 (Adapted from [Theorem 3.4.1]). Under appropriate assumptions on the loss L ,

initialization, and step size, the output of mx many gradient descent steps on the x variable satisfies

‖xt − xexact
t ‖22 ≤

(
1−ax

2αx
αx +βx

)mx

· ‖xt−1− xexact
t ‖22 +

1.5
ax
· ε2

x .

The analogous statement holds with the roles of x and y reversed.

Examining the conditions (4.15) and (4.16) on the allowed size of the slack terms δ x
t and δ

y
t ,

we can see that taking cx = O
((

αx/βx
)1.5) and cy = O

((
αy/βy

)1.5) is sufficient to ensure that

the condition (4.16) will hold. This yields the following corollary:

Corollary 4.3.1. Under the assumptions of Lemmas 4.3.1 and 4.3.2, for some radius Rad < 1,

‖(xt ,yt)− (x̂, ŷ)‖2 ≤ O
(
Radt ·max{ρx,ρy}+max{εx,εy}

)
for all t ≥ 1 as long as either the x update and the y update are exact, or are approximated via

mx = O
(

βx
αx

log
(

βx
αx

))
and my = O

(
βy
αy

log
(

βy
αy

))
many steps of gradient descent.
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4.4 Examples

In this section, we highlight applications of our general theory to two classes of low-rank estimation

problems, namely matrix decomposition and multitask regression.

4.4.1 Matrix decomposition

We revisit the low rank + sparse decomposition studied in Chapter 2; here we change our notation

slightly and assume X? is a low-rank matrix and Y ? is a sparse matrix. We further assume that the

underlying matrices X? and Y ? belong to the following constraint sets:2

X =
{

X ∈ Sd×d
+ : rank(X)≤ r, ‖X‖∞ ≤

αsp

d

}
, Y =

{
Y ∈ Sd×d : ‖Y‖1 ≤ ‖Y ?‖1

}
, (4.17)

where S and S+ denote the sets of symmetric or positive semidefinite d×d matrices, respectively.

The `∞-ball constraint in the set X makes sure that the low-rank update by the algorithm is at most

αsp-spiky at every iteration. The following lemma computes the upper bound on the concavity

coefficient γX (X ):

Lemma 4.4.1. For the constraint set X = {X ∈ Sd×d
+ : rank(X) ≤ r,‖X‖∞ ≤

αsp
d }, we have

γX (X )≤ 5
4σr(X)

with respect to the nuclear norm ‖·‖X = ‖·‖nuc.

While we prove in Lemma 3.3.1 that the set of rank-constrained matrices without spikiness

constraint has the local concavity coefficient γX (X ) = 1
2σr(X)

, the lemma above shows that the

coefficient for X can be upper bounded with a larger constant factor.

Now we aim to recover the underlying matrices (X?,Y ?) by solving the constrained optimiza-

tion problem

(X̂ ,Ŷ ) = argmin{L (X ,Y ) : (X ,Y ) ∈X ×Y }

via (inexact) alternating minimization.

2. For our analysis, we assume that ‖Y ?‖1 is known exactly; this is a common assumption for the constrained
problem, e.g. see [47]. On the other hand, ‖X?‖∞ needs only to be bounded by some known value αsp/d; we do not
need to know it exactly.
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Robust principal component analysis (RPCA) We study the robust PCA problem as formu-

lated in [2], where the data matrix Z ∈ Sn×n is generated from the model

Z = A (X?+Y ?)+W,

where A : Sd×d→ Sn×n is a linear operator mapping matrices from Sd×d to Sn×n, and W ∈ Sn×n

represents a symmetric noise matrix. We consider the least squares based estimator,

(X̂ ,Ŷ ) = argmin
{

1
2
‖Z−A (X +Y )‖2F : (X ,Y ) ∈X ×Y

}
. (4.18)

We follow the notion of RSC as introduced in [2, Definition 2] and require the restricted eigenvalue

condition on A :

Assumption 4.4.1. (Restricted Eigenvalue.) There exist constants αA,βA and τ ≥ 0 such that for

all ∆X ,∆Y ∈ Rd×d with rank(∆X )≤ 2r,

αA

(
‖∆X‖2F+‖∆Y‖2F

)
− τn,d ≤ ‖A (∆X +∆Y )‖2F ≤ βA

(
‖∆X‖2F+‖∆Y‖2F

)
+ τn,d ,

where τn,d is given by

τn,d = τ ·

 logd
n2 ‖∆Y‖21 +

√
d2 logd

n2 ‖∆X‖∞‖∆Y‖1

 .

The expression
√

d2 logd
n2 ‖∆X‖∞‖∆Y‖1 reflects the restriction on the degree of interaction be-

tween ∆X and ∆Y , which would hold if ‖A ∗A (∆X )‖∞ ≈
√

d2 logd
n2 ‖∆X‖∞ —for instance, an i.i.d.

Gaussian ensemble will satisfy this property with high probability.

Now let the radii ρX ,ρY satisfy ρX ,ρY ≤ c0 ·σr(X?)κ−1(A ) for some c0 > 0, where σr(X?) is

the smallest singular value of X?, and where κ(A ) = βA
αA

, which we can think of as a restricted con-

dition number of the linear operator A (i.e. characterizing the action of A restricted to low-rank

and sparse matrices). Given the initialization point (X0,Y0), denote the corresponding neighbor-
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hoods by X0 = X ∩B2(X0,ρX ),Y0 = Y ∩B2(Y0,ρY ), and further assume that both the underly-

ing matrices (X?,Y ?) and the global optimal (X̂ ,Ŷ ) belong to these local neighborhoods X0×Y0.

With this setup, we then have the following guarantee:

Lemma 4.4.2. Suppose that the sample size is large enough to satisfy

32τ · sd logd
n2 ≤ αA. (4.19)

Then, under the previously stated conditions, if ‖A ∗(W )‖sp ≤ c1 ·αAσr(X?), the steps (Xt ,Yt)
∞
t=1

produced by the alternating minimization algorithm (4.3) satisfy

‖(Xt ,Yt)− (X̂ ,Ŷ )‖F ≤

linear convergence︷ ︸︸ ︷(
1− κ−1(A )

3

)t

·c0σr(X?)

√
κ−1(A )

+ c2 ·C

(
‖Ŷ −Y ?‖2F+

α2
sp

α2
A

sd logd
n2

)
︸ ︷︷ ︸

statistical error term

.

Here, {ci > 0, i = 1,2} are universal constants, and C > 0 is defined in Theorem 4.3.1.

We remark that the result given in the lemma is the bound obtained by updating the Y variable

first instead of the X variable. The statistical error involves the term α2
sp

sd logd
n2 , which appears as a

consequence of the nonidentifiaibility of the model. With extra effort, we can also prove that each

step of the alternating minimization update can be replaced by several steps of the gradient descent

updates, which we do not pursue here.

Gaussian factor model We next consider a Gaussian factor model, where our data consists of

observations

zi =U?wi + εi,

for i = 1, . . . ,n. Here U? ∈ Rd×r represents the latent structure present in the data, while the other

terms in the model are the random factors wi
iid∼N (0,Ir) and the independent noise εi

iid∼N (0,Y ?).
90



We further assume that the covariance structure of the noise, Y ?, is sparse. We can calculate

Cov(zi) = U?U?>+Y ?, a low-rank + sparse decomposition, and can then estimate the unknown

components X? =U?U?> and Y ? by solving the constrained optimization problem

(X̂ ,Ŷ ) = argmin
{
〈Sn,(X +Y )−1〉− logdet(X +Y )−1 : (X ,Y ) ∈X ×Y

}
, (4.20)

for Sn =
1
n ∑

n
i=1 ziz>i , the sample covariance matrix of zi’s, where X and Y are defined as in (4.17).

Zwiernik et al. [48] studies the related loss function L (Σ) = L (X +Y ) in the context of

a linear Gaussian covariance model. They prove that this loss is in fact convex in the region3

{Σ ∈ Rd×d : 0 ≺ Σ ≺ 2Sn} and furthermore this region contains both the true covariance matrix

Σ? and the maximum likelihood estimator Σ̂ with high probability, as long as the sample size is

large enough, n & d. In this regard, our setting can be seen as imposing different structure on the

covariance matrix.

In the lemma to follow, we verify analogous results, showing that the loss (4.20) satisfies all

the assumptions of Theorem 4.3.1 in the local region, ensuring fast convergence of the alternating

minimization algorithm. Suppose that the algorithm is initialized at the point (X0,Y0) with the

corresponding neighborhoods X0 =X ∩B2(X0,ρX ),Y0 =Y ∩B2(Y0,ρY ), where for some c0 >

0 the radii are defined to satisfy

ρX ,ρY ≤ c0 ·min{σr(X?)κ−3(Σ?),λmin(Σ
?)κ−4(Σ?)},

where σr(X?) is the smallest singular value of X?, λmin(Σ
?) (and λmax(Σ

?) resp.) is the minimum

(and maximum resp.) eigenvalue of Σ?, and where κ(Σ?) = λmax(Σ
?)/λmin(Σ

?) is the condition

number of Σ?. Assume also that these neighborhoods X0×Y0 contain the pair of true matrices

(X?,Y ?) and the global optimal (X̂ ,Ŷ ), i.e. (X?,Y ?),(X̂ ,Ŷ ) ∈X0×Y0. With this setup, we now

establish the following probabilistic guarantee:

3. Specifically they show that the Hessian matrix of the loss function L (Σ) is positive semidefinite in the region
{Σ ∈ Rd×d : 0≺ Σ≺ 2Sn}.
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Lemma 4.4.3. Suppose that

√
d
n
≤ c1 ·min{σr(X?)λ−1

min(Σ
?)κ−4(Σ?),κ−1(Σ?)}. (4.21)

Then, under the previously stated conditions, with probability at least 1−2e−d , the steps (Xt ,Yt)
∞
t=1

produced by the alternating minimization (4.3) satisfy

‖(Xt ,Yt)− (X̂ ,Ŷ )‖F ≤

linear convergence︷ ︸︸ ︷(
1− c2κ

−4(Σ?)
)t
·c3 min{σr(X?)κ−1(Σ?),λmin(Σ

?)κ−2(Σ?)}

+ c4 ·C
(
‖Ŷ −Y ?‖2F+α

2
sp

s
d

)
︸ ︷︷ ︸

statistical error term

.

Here, {ci > 0, i = 1, . . . ,4} are universal constants, and C > 0 is defined in Theorem 4.3.1.

The discussion following Lemma 4.4.2 is also valid in this setting—in particular, the error due

to the nonidentifiability of the model now appears as the term α2
sp

s
d .

4.4.2 Multitask regression

Next we consider the multitask regression model where the response takes multiple output values.

Suppose we are given m different tasks, namely each response is of the form zi ∈ Rm. Denoting

the feature vector by φi ∈ Rd , the response is generated through the linear model

zi = X?
φi + εi, (4.22)

where X? ∈ Rm×d is an unknown matrix whose rows correspond to the underlying coefficient

vectors for each task, and εi ∈ Rm is the measurement error from a centered multivariate normal

distribution, with an unknown covariance matrix Cov(εi) = Θ?−1.

In the reduced regression setting [49], the true matrix X? is assumed to be low rank. We then
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optimize the constrained negative log-likelihood function,

(X̂ ,Θ̂) = argmin

{
− logdet(Θ)+

1
n

n

∑
i=1

(zi−Xφi)
>

Θ(zi−Xφi) : X ∈X ,Θ� 0

}
, (4.23)

where X = {X ∈ Rm×d : rank(X) ≤ rank(X?) = r} represents the rank constraint on the coef-

ficients X .4 While this problem is generally nonconvex in (X ,Θ), in addition to the nonconvex

constraint X ∈X , we show that this problem satisfies all the assumptions that we require for our

results.

For the purpose of our analysis, we consider a random design model, i.e. the feature vec-

tors are sampled from a Gaussian distribution φi
iid∼ N (0,Σφ ). Let (X0,Θ0) be the initializa-

tion point, and denote the local neighborhoods of the constraint sets around (X0,Θ0) by X0 =

X ∩B2(X0,ρX ) and Q0 = Sm×m
+ ∩B2(Θ0,ρΘ). We choose the radii ρX ,ρΘ to satisfy ρX ≤ c0 ·

σr(X?)κ−1(Θ?)κ−1(Σφ ) and ρΘ ≤ c0 ·λmin(Θ
?)κ−1(Σφ ) for some c0 > 0, where σr(X?) is the

smallest singular value of X?, λmin(Θ
?) is the smallest eigenvalue of Θ?, and where κ(Θ?),κ(Σφ )

are the condition numbers of Θ? and Σφ , respectively. Assume also that the initialization point

(X0,Θ0) lies within these radii ρX ,ρΘ to the unknown matrices (X?,Θ?) and the global optimal

(X̂ ,Θ̂), i.e. (X?,Θ?),(X̂ ,Θ̂) ∈X0×Q0.

With these definitions in place, we have the following probabilistic guarantee:

Lemma 4.4.4. Suppose that

√
1

λmin(Θ
?)λmax(Σφ )

√
m+d

n
≤ c1 ·σr(X?)κ−1(Θ?)κ−1(Σφ ). (4.24)

Then, under the previously stated conditions, with probability at least 1−c2 exp(−c3(m+d)), the

4. It is also possible to consider structural constraints on Θ or Σ = Θ−1 such as “sparsity” or “low-rank + diagonal”
structure. For simplicity, we don’t pursue this direction further, but our framework can be also applied to this general
setting.

93



steps (Xt ,Θt)
∞
t=1 produced by the alternating minimization algorithm (4.3) satisfy

‖(Xt ,Θt)− (X̂ ,Θ̂)‖F ≤

linear convergence︷ ︸︸ ︷(
1− c4(κ

−1(Θ?)κ−1(Σφ )+κ
−2(Θ?))

)t
·(Const)

+ c5 ·C

(
‖X̂−X?‖2F+

r(m+d)
n

1
λmin(Θ

?)λmax(Σφ )

)
︸ ︷︷ ︸

statistical error term

for all t ≥ 1, where (Const) is given by

(Const) = c6σr(X?)
√

κ−1(Θ?)κ−1(Σφ ) ·min
{

1,λ 3
min(Θ

?)κ2(Θ?)λmin(Σφ )
}
.

Here, {ci > 0, i = 1, . . . ,6} are universal constants, and C > 0 is defined in Theorem 4.3.1.

We remark that the result in Lemma 4.4.4 assumes updating Θ first. While Lemma 4.4.4 is

stated in terms of the exact alternating minimization, by working with Lemmas 4.3.1 and 4.3.2, we

can also obtain a linear rate of convergence for the alternating method when the minimization step

for X is approximated by successive iterates of gradient descent. (The alternating minimization

update for Θ has a closed form solution, Θ =
(

1
n ∑

n
i=1(zi−Xφi)(zi−Xφi)

>
)−1

, i.e. the inverse of

the sample covariance matrix.) We also refer the reader to [9] for similar results under the context

of the pooled model.

4.5 Empirical results

We perform a numerical experiment on the multitask regression problem (Section 4.4.2) to examine

the empirical performance of the alternating algorithm, as compared to performing gradient descent

when treating (x,y) as a single variable. Fix the number of tasks m = 20, the dimension of features

d = 50, and set the low-rank component X? = U?V ?> for rank r = 3, where U? ∈ R20×3 and

V ? ∈ R50×3 are orthonormal matrices drawn uniformly at random. The features φi are drawn

i.i.d. from the Gaussian distribution φi
iid∼ N (0,Σφ ), and the noise terms εi are generated as εi

iid∼
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N (0,Θ?−1), where Σφ and Θ?−1 are both defined to have a tapered covariance structure: we set

Σφ ,i j = 0.3|i− j| and Θ?
i j
−1 = σ2 · ρ |i− j|, where ρ is a local correlation parameter that we vary,

while σ2 =
Mean(‖X?φi‖2

F/m)
3 is chosen to obtain a moderately difficult signal-to-noise ratio. The

responses, zi, are then drawn according to the model (4.22).

The parameter ρ controls the strength of the correlation of the noise (i.e. correlation among

entries of εi, for a single observation i, across the m = 20 tasks). By varying ρ , we can vary the

relative condition numbers of the loss function L (X ,Θ) given in (4.23) with respect to the vari-

ables X and Θ, i.e. κX (L ) versus κΘ(L ). As discussed in Section 4.3.2, convergence rates for

alternating minimization type methods are expected to scale with the minimum of these two con-

dition numbers, while non-alternating methods (i.e. gradient descent in the joint variable (X ,Θ))

will scale with the maximum of the two.

Given the data (φi,zi)
n
i=1 with sample size n = 200, we solve the constrained minimization

problem (4.23) based on two iterative methods:

• The alternating method, which alternates between updating X and Θ at every iteration. For

the X update, fixing Θ we approximately minimize L (X ,Θ) by taking one gradient descent

step, while for the Θ update, fixing X we minimize L (X ,Θ) exactly:


Xt = P{rank(X)≤r}(Xt−1 +ηX ·2Θt−1

(
1
n ∑

n
i=1(zi−Xt−1φi)φ

>
i

)
),

Θt = argminΘ�0 L (Xt ,Θ) =
(

1
n ∑

n
i=1(zi−Xtφi)(zi−Xtφi)

>
)−1

,

with step size ηX = 0.001.

• The joint gradient method, where we take gradient descent steps in the joint variable (X ,Θ).

The update step is given by


Xt = P{rank(X)≤r}(Xt−1 +ηX ·2Θt−1

(
1
n ∑

n
i=1(zi−Xt−1φi)φ

>
i

)
),

Θt = P{Θ�0}(Θt−1 +ηΘ ·
(

Θ
−1
t−1−

1
n ∑

n
i=1(zi−Xt−1φi)(zi−Xt−1φi)

>
)
),
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Figure 4.1: Comparison of the alternating algorithm and the joint gradient descent method applied
to the simulated multitask regression problem. Results are shown for three settings of the noise
correlation parameter ρ , across iterations t = 0,1, . . . ,600. In each plot, the solid line indicates the
median loss over 100 trials, and the light band shows the interquartile range.

where we allow different step sizes on the two variables X and Θ. We set ηX = 0.001 as

for the alternating method, and select ηΘ ∈ {η1, . . . ,η30}, where η1, . . . ,η30 is a geometric

sequence from η1 = 5 to η30 = 400. For each trial, we then retain only the step size ηΘ

that yields the lowest loss over any iteration, mint=1,...,T L (Xt ,Θt), for the first T = 1200

iterations.

Figure 4.1 shows the excess loss at each iteration (on a log scale), where the excess loss is

given by

L (Xt ,Θt)−Lmin,

where Lmin is the minimum loss achieved by either method over T = 1200 iterations (calculated

for each individual trial and each choice of ρ). As clearly seen in the figure, for both methods, the

errors scale linearly with the iteration number. Furthermore, comparing the two methods, we see

that they perform nearly identically when there is no correlation in the noise, i.e. ρ = 0; for low

correlation, ρ = 0.4, the alternating method is moderately faster,5 and for high correlation, ρ = 0.6,

the alternating method still shows rapid linear convergence while joint gradient descent does not

appear to converge well. This is consistent with our theoretical results, since the alternating method

5. Note that the shaded bands in the plots are not standard error bars, but rather interquartile range over 100 trials,
so the difference between the two lines is indeed significant.
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scales with the better of the two condition numbers, i.e. min{κX (L ),κΘ(L )}, while the joint

gradient descent method is known to scale with the maximum. Since κX (L ) ∼ κ(Σφ )κ(Θ
?)

while κΘ(L )∼ κ2(Θ?), and κ(Σφ ) is constant with respect to ρ while κ(Θ) increases as the noise

correlation parameter ρ increases, we see that the minimum condition number is less affected by

increasing ρ , than the maximum condition number.

4.6 Proofs of Theorems

In this section, we prove our main result on linear convergence for the exact alternating minimiza-

tion algorithm, Theorem 4.3.1, and for the inexact algorithm, Theorem 4.3.2.

Proof of Theorem 4.3.1. First we prove the bound on the x update step, given in (4.9), for iteration

number t. By definition of xt , we can apply the first-order optimality condition (4.2), with X0 in

place of X , to obtain

〈x̂− xt ,∇xL (xt ,yt−1)〉 ≥ −γ(X0)‖∇xL (xt ,yt−1)‖∗x‖xt − x̂‖22.

Meanwhile, since x̂ is the minimizer of the problem min{L (x, ŷ) : x ∈X0}, we also have

〈xt − x̂,∇xL (x̂, ŷ)〉 ≥ −γ(X0)‖∇xL (x̂, ŷ)‖∗x‖xt − x̂‖22.

Adding these two inequalities together, applying the initialization condition (Assumption 4.2.4)
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and rearranging terms several times, we have

αx−µx
2
‖xt − x̂‖22

≥ 〈xt − x̂,∇xL (xt ,yt−1)−∇xL (x̂, ŷ)〉

=
1
2

〈 xt − x̂

yt−1− ŷ

,∇L (xt ,yt−1)−∇L (x̂, ŷ)

〉

+
1
2
〈xt − x̂,∇xL (xt ,yt−1)−∇xL (x̂, ŷ)〉− 1

2
〈yt−1− ŷ,∇yL (xt ,yt−1)−∇yL (x̂, ŷ)〉

=
1
2

〈 xt − x̂

yt−1− ŷ

,∇L (xt ,yt−1)−∇L (x̂, ŷ)

〉

+
1
2
〈xt − x̂,∇xL (xt , ŷ)−∇xL (x̂, ŷ)〉− 1

2
〈yt−1− ŷ,∇yL (x̂,yt−1)−∇yL (x̂, ŷ)〉

+
1
2

[
〈xt − x̂,∇xL (xt ,yt−1)−∇xL (xt , ŷ)〉−〈yt−1− ŷ,∇yL (xt ,yt−1)−∇yL (x̂,yt−1)〉

]
≥ αx

2
‖xt − x̂‖22 +

αy

2
‖yt−1− ŷ‖22−

αxε2
x +αyε2

y

2

+
1
2
〈xt − x̂,∇xL (xt , ŷ)−∇xL (x̂, ŷ)〉− 1

2
〈yt−1− ŷ,∇yL (x̂,yt−1)−∇yL (x̂, ŷ)〉

− 1
2

(
1
2

µx‖xt − x̂‖22 +
1
2

µy‖yt−1− ŷ‖22 +αxε
2
x +αyε

2
y

)
,

where the last step holds by applying joint restricted strong convexity (Assumption 4.2.1) to the

first term, and the cross-product condition (Assumption 4.2.3) to the expression in square brackets.

(Note that these assumptions can be applied since we have xt ∈X0 and yt−1 ∈ Y0). Combining

terms and simplifying, multiplying by 2, and using the assumption that µx ≥ 0 while µy ≤ αy, we

obtain

0≥ D2(xt ; x̂)−D2(yt−1; ŷ)+
αy

2
‖yt−1− ŷ‖22−2αxε

2
x −2αyε

2
y . (4.25)

Now, by restricted smoothness (Assumption 4.2.2) and using the assumption αy ≤ βy,

αy

2
‖yt−1− ŷ‖22 ≥

αy

2βy
D2(yt−1; ŷ)−

αy

2
ε

2
y .
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Returning to (4.25) and rearranging terms,

D2(xt ; x̂)≤
(

1−
αy

2βy

)
D2(yt−1; ŷ)+3

(
αxε

2
x +αyε

2
y

)
.

If D2(xt ; x̂)≥ 0, then by taking a square root on both sides, we obtain

D(xt ; x̂)≤
√

1−
αy

2βy
·D(yt−1; ŷ)+

√
3(αxε2

x +αyε2
y ),

thus proving that the bound (4.9) holds at time t, while if D2(xt ; x̂) ≤ 0, then D(xt ; x̂) = 0 and so

the bound holds trivially. The proof that the analogous bound (4.10) for the y update step, proceeds

similarly.

By applying these bounds recursively, along with the restricted strong convexity and restricted

smoothness conditions, we can obtain the result (4.11) showing linear convergence in the `2 norm;

details are given in Section 4.7.1.

Proof of Theorem 4.3.2. This proof is a straightforward combination of the relaxed triangle in-

equality (Assumption 4.3.1) with Theorem 4.3.1, the contraction result for the exact alternat-

ing minimization algorithm. First, since xexact
t exactly solves the alternating minimization step,

i.e. argminx∈X0
L (x,yt−1), Theorem 4.3.1 proves that

D(xexact
t ; x̂)≤

√
1−

αy

2βy
D(yt−1; ŷ)+

√
3(αxε2

x +αyε2
y ).

Next, we use this to bound D(xt ; x̂), using only the assumption that xt is chosen to be within radius

δ x
t of xexact

t . By the relaxed triangle inequality (Assumption 4.3.1),

D(xt ; x̂)≤ D(xexact
t ; x̂)+

√
βx‖xt − xexact

t ‖2 +
√

αxεx

≤
(√

1−
αy

2βy
·D(yt−1; ŷ)+

√
3(αxε2

x +αyε2
y )

)
+
√

βxδ
x
t +
√

αxεx

≤
√

1−
αy

2βy
·D(yt−1; ŷ)+

√
βxδ

x
t +

√
8(αxε2

x +αyε2
y ).
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This proves the bound (4.13). The bound (4.14) on D(yt ; ŷ) is proved analogously.

4.7 Proofs of lemmas

4.7.1 Details on `2 convergence bound (4.11)

Here we give details for the `2 convergence bound (4.11) in Theorem 4.3.1. We first write rx =√
1− αy

2βy
and ry =

√
1− αx

2βx
for simplicity; then (4.9) and (4.10) can be rewritten as

D(xt ; x̂)≤ rxD(yt−1; ŷ)+
√

3(αxε2
x +αyε2

y ),

and

D(yt ; ŷ)≤ ryD(xt ; x̂)+
√

3(αxε2
x +αyε2

y ).

Then, applying these bounds recursively, we have

D(xt ; x̂)≤ rx(rxry)
t−1D(y0; ŷ)+

√
3(αxε2

x +αyε2
y ) ·

1+ rx
1− rxry

,

and

D(yt ; ŷ)≤ (rxry)
tD(y0; ŷ)+

√
3(αxε2

x +αyε2
y ) ·

1+ ry

1− rxry
.

Let αmin = min{αx,αy},αmax = max{αx,αy}. By joint restricted strong convexity (4.7),

‖(xt ,yt)− (x̂, ŷ)‖2 =
√
‖xt − x̂‖22 +‖yt − ŷ‖22

≤

√
(D2(xt ; x̂)+D2(yt ; ŷ))

αmin
+

2αmax(ε2
x + ε2

y )

αmin
≤ D(xt ; x̂)+D(yt ; ŷ)

√
αmin

+

√
2αmax(ε2

x + ε2
y )

√
αmin

≤ (rxry)
t ·D(y0; ŷ) ·

(1+ r−1
y )

√
αmin

+

√
3(αxε2

x +αyε2
y ) ·
(

2+2rx
1−rxry

)
√

αmin
+

√
2αmin(ε

2
x + ε2

y )
√

αmin
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and, by definition of rx and ry and the fact that rxry ≤ 1, we see that rx,ry ∈ [1/
√

2,
√

2]. Simpli-

fying,

‖(xt ,yt)− (x̂, ŷ)‖2 ≤ (rxry)
t ·D(y0; ŷ) ·

√
6

√
αmin

+

√
3(αxε2

x +αyε2
y ) · 2+2

√
2

1−rxry√
αmin

+

√
2αmax(ε2

x + ε2
y )

√
αmin

,

and by restricted smoothness (4.8),

D2(y0; ŷ)≤ βy‖y0− ŷ‖22 +αyε
2
y .

Combining everything, and simplifying, we obtain the overall convergence guarantee (4.11).

Proof of Lemma 4.3.1. For convenience define

rx =

√
1−

αy

2βy
+(1+

√
2) · cx

√
βx
αx

and ry =

√
1− αx

2βx
+(1+

√
2) · cy

√
βy

αy
.

(Comparing to the proof of the `2 convergence bound (4.11) for the exact algorithm, given in

Section 4.7.1, we see that these definitions coincide with the previous ones in the special case that

cx = cy = 0, i.e. when our updates are exact.) Define also D0 =
√

αxρx +
√

βyρy.

We will first show, by induction, that for each t ≥ 1,


D(xt ; x̂)≤ rx · (rxry)

t−1 ·D0 +
1+rx

1−rxry
·C′max{εx,εy},

D(yt ; ŷ)≤ (rxry)
t ·D0 +

1+ry
1−rxry

·C′max{εx,εy},
(4.26)

where

C′ = 4

1+ cx

√
βx
αx

+ cy

√
βy

αy

√αx +αy +Cx
√

βx +Cy

√
βy. (4.27)
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First we prove the bounds (4.26) at time t = 1. For the x bound,

D(x1; x̂)≤
√

1−
αy

2βy
·D(y0; ŷ)+

√
βxδ

x
t +

√
8(αxε2

x +αyε2
y ) by Theorem 4.3.2

≤
√

1−
αy

2βy
·D(y0; ŷ)+

√
βx
(
cx‖x0− xexact

1 ‖2 +Cxεx
)
+
√

8(αxε2
x +αyε2

y ) by (4.15)

≤
√

1−
αy

2βy
· (
√

βyρy +
√

αyεy)+
√

βx (cx ·ρx +Cxεx)+
√

8(αxε2
x +αyε2

y ),

where the last step holds since xexact
1 ∈X0 ⊂B2(x0,ρx), and D(y0; ŷ) can be bounded by restricted

smoothness (Assumption 4.2.2). Simplifying,

D(x1; x̂)≤ rxD0 +C′max{εx,εy},

which proves the bound (4.26) on D(x1; x̂) at time t = 1. Similarly, for the y bound,

D(y1; ŷ)≤
√

1− αx
2βx
·D(x1; x̂)+

√
βyδ

y
t +

√
8(αxε2

x +αyε2
y ) by Theorem 4.3.2

≤
√

1− αx
2βx
·D(x1; x̂)+

√
βy
(
cy‖y0− yexact

1 ‖2 +Cyεy
)
+
√

8(αxε2
x +αyε2

y ) by (4.15)

≤
√

1− αx
2βx
·
(
rxD0 +C′max{εx,εy}

)
+
√

βy
(
cyρy +Cyεy

)
+
√

8(αxε2
x +αyε2

y )

≤ rxryD0 +(1+ ry) ·C′max{εx,εy},

where for the last step we use the fact that ry ≥
√

1− αx
2βx

by definition.
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Next, take any t ≥ 2. For the x bound, we first calculate

‖xt−1− xexact
t ‖2 ≤ ‖xt−1− x̂‖2 +‖xexact

t − x̂‖2

≤ 1
√

αx

(
D(xt−1; x̂)+D(xexact

t ; x̂)
)
+

2
√

αxε2
x +αyε2

y
√

αx
by joint restricted strong convexity (4.7)

≤ 1
√

αx

(
D(xt−1; x̂)+D(yt−1; ŷ)+

√
3(αxε2

x +αyε2
y )
)
+

2
√

αxε2
x +αyε2

y
√

αx
by Theorem 4.3.1

≤ 1
√

αx

(
D(xt−1; x̂)+D(yt−1; ŷ)+4

√
αxε2

x +αyε2
y

)
.

We now bound D(xt ; x̂):

D(xt ; x̂)≤
√

1−
αy

2βy
·D(yt−1; ŷ)+

√
βxδ

x
t +

√
8(αxε2

x +αyε2
y ) by Theorem 4.3.2

≤
√

1−
αy

2βy
·D(yt−1; ŷ)+

√
βx
(
cx‖xt−1− xexact

t ‖2 +Cxεx
)
+
√

8(αxε2
x +αyε2

y ) by (4.15)

≤
√

1−
αy

2βy
·D(yt−1; ŷ)+

√
βx

(
cx

[
1
√

αx

(
D(xt−1; x̂)+D(yt−1; ŷ)+4

√
αxε2

x +αyε2
y

)]
+Cxεx

)
+
√

8(αxε2
x +αyε2

y )

≤

√1−
αy

2βy
+ cx

√
βx
αx

D(yt−1; ŷ)+ cx

√
βx
αx

D(xt−1; x̂)+C′max{εx,εy},

where C′ is defined as in (4.27) above. Assuming by induction that the bounds (4.26) hold with

t−1 in place of t, we obtain

D(xt ; x̂)≤

√1−
αy

2βy
+ cx

√
βx
αx

 ·((rxry)
t−1D0 +

1+ ry

1− rxry
·C′max{εx,εy}

)

+ cx

√
βx
αx

(
rx(rxry)

t−2D0 +
1+ rx

1− rxry
·C′max{εx,εy}

)
+C′max{εx,εy}.
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Since ry ≥ 1/
√

2 we can rewrite this as

D(xt ; x̂)≤

√1−
αy

2βy
+ cx

√
βx
αx

 ·((rxry)
t−1D0 +

1+ ry

1− rxry
·C′max{εx,εy}

)

+ cx

√
βx
αx

(√
2(rxry)

t−1D0 +
1+ rx

1− rxry
·C′max{εx,εy}

)
+C′max{εx,εy}.

Plugging in the definition of rx, then,

D(xt ; x̂)≤ rx · (rxry)
t−1 ·D0

+

cx

√
βx
αx
· 1+ rx

1− rxry
+

√1−
αy

2βy
+ cx

√
βx
αx

 · 1+ ry

1− rxry
+1

 ·C′max{εx,εy}.

Plugging in the definition of rx, and the assumption that rxry < 1, we see that the term in square

brackets is bounded by 1+rx
1−rxry

, which proves the desired bound on D(xt ; x̂) as in (4.26), as desired.

The bound on D(yt ; ŷ) is proved similarly.

Finally, by joint restricted strong convexity (4.7), we know that

‖xt − x̂‖2 ≤
D(xt ; x̂)
√

αx
+

√
αxε2

x +αyε2
y

√
αx

and ‖yt − ŷ‖2 ≤
D(yt ; ŷ)
√

αy
+

√
αxε2

x +αyε2
y

√
αy

.

Combining this with the bounds (4.26) proves the result.

Proof of Lemma 4.2.1. Take any x,x′ ∈X0 ⊂X with x 6= x′ and take t ∈ [0,1]. By the curvature

condition (3.1) on the larger set X , we can find a family of points x̃t ∈X , indexed by t ∈ [0,1],

and some sequence δt → 0, where

‖
(
(1− t)x+ tx′

)
− x̃t‖x ≤ t ·

[
γx(X ) · ‖x− x′‖22 +δt

]
.

Next, we show that x̃t ∈X0 for sufficiently small t > 0. Recall that X0 = X ∩B2(x0,ρx), and
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therefore we only need to check that ‖x̃t − x0‖2 ≤ ρx. Since ‖·‖2 ≤ ‖·‖x by assumption, we have

‖x̃t − x0‖2 ≤ ‖x̃t −
(
(1− t)x+ tx′

)
‖2 +‖

(
(1− t)x+ tx′

)
− x0‖2

≤ ‖x̃t −
(
(1− t)x+ tx′

)
‖x +‖

(
(1− t)x+ tx′

)
− x0‖2

≤ t ·
[
γx(X ) · ‖x− x′‖22 +δt

]
+‖
(
(1− t)x+ tx′

)
− x0‖2.

Next, a simple calculation shows that

‖
(
(1− t)x+ tx′

)
− x0‖2 = ‖(1− t) · (x− x0)+ t · (x′− x0)‖2

=
√
(1− t)‖x− x0‖22 + t · ‖x′− x0‖22− t(1− t)‖x− x′‖22,

and since x,x′ ∈X0 ⊂ B2(x0,ρx), we obtain

‖
(
(1− t)x+ tx′

)
− x0‖2 ≤

√
ρ2

x − t(1− t)‖x− x′‖22 ≤ ρx−
t(1− t)‖x− x′‖22

2ρx
.

Combining everything,

‖x̃t − x0‖2 ≤ ρx− t‖x− x′‖22 ·

[
1

2ρx
− γx(X )− t

2ρx
− δt

‖x− x′‖22

]
.

Since γx(X )< 1
2ρx

by assumption, and δt→ 0, we can find some t0 > 0 such that, for all t ∈ [0, t0],

t
2ρx

+
δt

‖x− x′‖22
≤ 1

2ρx
− γx(X ).

Therefore, x̃t ∈X0 for all t ∈ [0, t0], and so

minx′′∈X0
‖
(
(1− t)x+ tx′

)
− x′′‖x

t
≤
‖
(
(1− t)x+ tx′

)
− x̃t‖x

t
≤ γx(X ) · ‖x− x′‖22 +δt
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for all t ∈ [0, t0]. This proves that

lim
t→0

minx′′∈X0
‖
(
(1− t)x+ tx′

)
− x′′‖

t
≤ γx(X ) · ‖x− x′‖22.

Since x,x′ ∈X0 were chosen arbitrarily, then, we have shown that

γx(X0)≤ γx(X ).

4.8 Proofs for examples

Throughout the section, if f is a function over a matrix variable A ∈ Rm×n, we write ∇2
AAf(A) ∈

Rmn×mn to refer to the second derivative of f(A) with respect to the vectorized variable vec(A) ∈

Rmn.

Proof of Lemma 4.4.1. We first reparametrize the variable X ∈X by X = g(U) =UU> with the

corresponding convex set

U =

{
U ∈ Rd×r : max

i=1,...,d
‖Ui∗‖2 ≤

√
αsp

d

}
,

where Ui∗ represents ith row of U . Note that under such reparametrization, we trivially have

X = g(U ). Now take X ,X ′ ∈X with X =UU>,X ′ =U ′U ′>. For t > 0, let Xt = (1− t)X + tX ′

and Ut =(1−t)U+tU ′. Then, by Taylor’s theorem, for some s,s′ ∈ [0,1], and U∗=(1−s)U+sUt ,
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U# = (1− s)U ′+ sUt , we have

Xt −g(Ut) = (1− t)g(U)+ tg(U ′)−g(Ut)

= (1− t)(g(U)−g(Ut))+ t(g(U ′)−g(Ut))

= (1− t)
[

∇g(Ut)(U−Ut)+
1
2

∇
2g(U∗)(U−Ut ,U−Ut)

]
+ t
[

∇g(Ut)(U ′−Ut)+
1
2

∇
2g(U#)(U

′−Ut ,U ′−Ut)

]
= (1− t)

[
t∇g(Ut)(U−U ′)+

t2

2
∇

2g(U∗)(U−U ′,U−U ′)

]

+ t

[
(1− t)∇g(Ut)(U ′−U)+

(1− t)2

2
∇

2g(U#)(U
′−U,U ′−U)

]

=
t2(1− t)

2
∇

2g(U∗)(U−U ′,U−U ′)+
t(1− t)2

2
∇

2g(U#)(U
′−U,U ′−U). (4.28)

Meanwhile, some calculation yields that for i, j = 1, . . . ,d,

∇
2gi j(U) = (eie

>
j ⊗ Ir + e je

>
i ⊗ Ir) ∈ Rdr×dr,

where ei ∈ Rd denotes the ith standard basis vector. Hence, we have

∇
2g(U∗)(U−U ′,U−U ′) = ∇

2g(U#)(U−U ′,U−U ′) = 2(U−U ′)(U−U ′)>.

Combining with (4.28),

min
X ′′∈X

‖X ′′−Xt‖nuc ≤ ‖g(Ut)−Xt‖nuc = t(1− t)‖(U−U ′)(U−U ′)>‖nuc = t(1− t)‖U−U ′‖2F,

so dividing out by t and taking t→ 0,

limsup
t→0

minX ′′∈X ‖X ′′−Xt‖x
t

≤ ‖U−U ′‖2F ≤
5

4σr(X)
‖X−X ′‖2F,
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where the last inequality follows from [50, Lemma 5.4]. This completes the proof of the lemma.

Proof of Lemma 4.4.2. Recalling the constrained least squares problem (4.18) for the robust PCA

problem, we verify that under the conditions of Lemma 4.4.2, the loss function satisfies the assump-

tions of Theorem 4.3.1, i.e. Assumptions 4.2.1, 4.2.2, 4.2.3, and 4.2.4, with parameters specified

below. Before proceeding, we observe that for all Y ∈ Y0,

‖Y − Ŷ‖1 ≤ ‖Y −Y ?‖1 +‖Ŷ −Y ?‖1 ≤ 2
√

sd‖Y − Ŷ‖F+4
√

sd‖Ŷ −Y ?‖F, (4.29)

where the last step holds thanks to the triangle inequality and the fact that Y ? is sd-sparse by our

assumption.

Note that the cross-product condition (Assumption 4.2.3) trivially holds with µx = µy = 0,

since the Hessian ∇2
XY L (X ,Y ) is constant over all (X ,Y ). We also use the shorthand σr = σr(X?)

to denote the smallest singular value of X?.

Joint restricted strong convexity Let X ∈X0 and Y ∈ Y0. Invoking the restricted eigenvalue

property (Assumption 4.4.1), we have

〈 X− X̂

Y − Ŷ

,∇L (X ,Y )−∇L (X̂ ,Ŷ )

〉
= ‖A (X− X̂ +Y − Ŷ )‖2F

≥ αA(‖X− X̂‖2F+‖Y − Ŷ‖2F)− τ

 logd
n2 ‖Y − Ŷ‖21 +

√
d2 logd

n2 ‖X− X̂‖∞‖Y − Ŷ‖1

 .
Applying the inequality (4.29) and the spikiness constraint, and using the fact that 32τsd logd

n2 ≤
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αA, the last term can be bounded by

τ

 logd
n2 ‖Y − Ŷ‖21 +

√
d2 logd

n2 ‖X− X̂‖∞‖Y − Ŷ‖1


≤ αA

8

(
‖Y − Ŷ‖F+2‖Ŷ −Y ?‖F

)2
+4ταsp

√
sd logd

n2

(
‖Y − Ŷ‖F+2‖Ŷ −Y ?‖F

)
≤
[

αA
4
‖Y − Ŷ‖2F+αA‖Ŷ −Y ?‖2F

]
+

[
αA
4
‖Y − Ŷ‖2F+αA‖Ŷ −Y ?‖2F+

32α2
sp

αA

sd logd
n2

]
,

where the second step uses the identity ab≤ ca2

2 + b2

2c for any c > 0. Combining the pieces, then

〈 X− X̂

Y − Ŷ

,∇L (X ,Y )−∇L (X̂ ,Ŷ )

〉
≥ αA‖X− X̂‖2F

+
αA
2

[
‖Y − Ŷ‖2F−4‖Ŷ −Y ?‖2F−

64α2
sp

α2
A

sd logd
n2

]
.

Restricted smoothness A similar calculation shows that the marginal restricted smoothness con-

dition holds, that is, by the restricted eigenvalue property (Assumption 4.4.1), we have

〈X− X̂ ,∇XL (X ,Ŷ )−∇XL (X̂ ,Ŷ )〉= ‖A (X− X̂)‖2F ≤ βA‖X− X̂‖2F,

and similarly,

〈Y − Ŷ ,∇Y L (X̂ ,Y )−∇Y L (X̂ ,Ŷ )〉= ‖A (Y − Ŷ )‖2F

≤ 3βA
2
‖Y − Ŷ‖2F+

αA
2

[
4‖Ŷ −Y ?‖2F+

64α2
sp

α2
A

sd logd
n2

]
.

Initialization condition Since Y is convex, the initialization condition is trivial for the set Y0.

For X , we first bound ‖∇XL (X ,Y )‖sp for all X ∈X0 and Y ∈Y0. Given the observational model
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Z = A (X?+Y ?)+W , we have the decomposition of ‖∇XL (X ,Y )‖sp into the sums

‖∇XL (X ,Y )‖sp ≤ ‖A ∗A (X−X?)‖sp︸ ︷︷ ︸
(Term 1)

+‖A ∗A (Y −Y ?)‖sp︸ ︷︷ ︸
(Term 2)

+‖A ∗(W )‖sp.

We can find some X ′ with rank(X ′) = 1 and ‖X ′‖F ≤ 1 so that

‖A ∗A (X−X?)‖sp = 〈A (X ′),A (X−X?)〉.

By the restricted eigenvalue condition (Assumption 4.4.1), this proves

‖A (X ′)‖2F ≤ βA and ‖A (X−X?)‖2F ≤ βA‖X−X?‖2F.

So, we have

(Term 1) = ‖A (X ′)‖F‖A (X−X?)‖F ≤ βA‖X−X?‖F ≤ 2βAρX ,

where the last inequality follows from X ,X? ∈ B2(X0,ρX ). Again, by Assumption 4.4.1, we can

bound ‖A (Y −Y ?)‖2F ≤ βA‖Y −Y ?‖2F+
4τsd logd

n2 ‖Y −Y ?‖2F ≤
9βA

8 ‖Y −Y ?‖2F, and so for some

X ′′ with rank(X ′′) = 1 and ‖X ′′‖F ≤ 1,

(Term 2) = 〈A (X ′′),A (Y −Y ?)〉 ≤ 3
√

2
4

βA‖Y −Y ?‖F ≤ 3βAρY .

Putting these bounds together, we have ‖∇XL (X ,Y )‖sp ≤ 3βA(ρX +ρY )+‖A ∗(W )‖sp. Now, by

Lemma 4.4.1, we know γX (X )≤ 5
4σr(X)

, and so

max
X∈X0

γX (X )≤ 5
4σr−8ρX

≤ 5
2σr

, (4.30)

where the first inequality holds due to Weyl’s inequality, while the second inequality follows from

ρX ≤ 1
4σr. Recalling ρX ,ρY ≤ c0 ·σrκ−1(A ) for some sufficiently small c0 > 0, this implies
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that the conditions of Lemma 4.2.1 hold, i.e. ρX < 1
2maxX∈X0 γX (X )

, and in particular, we have

γ(X0)≤ 5
2σr

. Now combining all the pieces, we have

2γ(X0) ·
[
‖∇XL (X̂ ,Ŷ )‖sp + max

Y∈Y0
‖∇Y L (XY ,Y )‖sp

]
≤ 4γ(X0) · max

X∈X0,Y∈Y0
‖∇XL (X ,Y )‖sp

≤ 10
σr
·
(
3βAρX +3βAρY +‖A ∗(W )‖sp

)
≤ αA,

where we use ‖A ∗(W )‖sp ≤ σr · αA
30 in the last step. This establishes the initialization condition.

Now by specializing to the robust PCA problem (4.18), Theorem 4.3.1 immediately yields the

result of Lemma 4.4.2, as desired.

Proof of Lemma 4.4.3. Next we turn to prove our claims for the Gaussian factor model, as pre-

sented in (4.20). First we calculate the gradient and Hessian of L (X ,Y ): for all ∆X ,∆Y ∈ Rd×d ,

〈 ∆X

∆Y

,∇L (X ,Y )

〉
= tr((∆X +∆Y )

>(X +Y )−1(X +Y −Sn)(X +Y )−1),

and

 ∆X

∆Y


>

∇
2L (X ,Y )

 ∆X

∆Y

= vec(∆X )
>H (X ,Y )vec(∆X )+vec(∆Y )

>H (X ,Y )vec(∆Y )

+2vec(∆X )
>H (X ,Y )vec(∆Y ) ,

where H (X ,Y ) is a d2-by-d2 matrix, given by

H (X ,Y ) =
1
2
(X +Y )−1(2Sn− (X +Y ))(X +Y )−1⊗ (X +Y )−1︸ ︷︷ ︸

H1(X ,Y )

+
1
2
(X +Y )−1⊗ (X +Y )−1(2Sn− (X +Y ))(X +Y )−1︸ ︷︷ ︸

H2(X ,Y )

.
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Throughout this proof, we use the following concentration inequality: since zi
iid∼N (0,Σ?) and

Sn is a sample covariance matrix formed by {zi}ni=1, with probability at least 1−2e−d , we have

‖Sn−Σ
?‖sp ≤ ‖Σ?‖sp‖Σ?−1/2SnΣ

?−1/2− Id‖sp ≤ 3λmax(Σ
?)

√
d
n
, (4.31)

where the second step holds by a concentration bound on the extreme singular values of a standard

Gaussian ensemble [25].

We calculate a few inequalities to use later. Recall

ρX ,ρY ≤ c0 ·min{σr(X?)κ−3(Σ?),λmin(Σ
?)κ−4(Σ?)}

for a sufficiently small c0 > 0. For X ∈ B2(X0,ρX ) and Y ∈ B2(Y0,ρY ), assuming X? ∈X0,Y ? ∈

Y0, then we have

‖X +Y −Σ
?‖sp ≤ ‖X +Y −X0−Y0‖sp +‖X0 +Y0−Σ

?‖sp ≤ 2ρX +2ρY ≤
λmin(Σ

?)

4
,

where the last inequality follows from ρX ,ρY ≤
λmin(Σ

?)
16 . Applying Weyl’s inequality, this yields

3
4

λmin(Σ
?)≤ λmin(X +Y )≤ λmax(X +Y )≤ 5

4
λmax(Σ

?). (4.32)

Applying Weyl’s inequality again and using the inequality (4.31), we also have

1
2

λmin(Σ
?)≤ λmin(2Sn−X−Y )≤ λmax(2Sn−X−Y )≤ 3

2
λmax(Σ

?), (4.33)

where we use the assumption
√

d
n ≤

κ−1(Σ?)
24 . In particular, putting these bounds together and

using standard properties of the Kronecker product, we further have

32
125

κ−1(Σ?)

λ 2
max(Σ?)

≤ λmin(H (X ,Y ))≤ λmax(H (X ,Y ))≤ 32
9

κ(Σ?)

λ 2
min(Σ

?)
. (4.34)
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Finally, due to the spikiness constraint and the `1 norm inequality (4.29), we have the following

finite bound on the inner product between the low-rank and sparse components: for all X ∈X0,

Y ∈ Y0,

〈X− X̂ ,Y − Ŷ 〉 ≤ ‖X− X̂‖∞‖Y − Ŷ‖1 ≤ 4αsp

√
s
d
‖∆Y‖F+8αsp

√
s
d
‖Ŷ −Y ?‖F. (4.35)

We are now prepared to prove the desired properties for the loss function of the factor model,

L (X ,Y ) = 〈Sn,(X +Y )−1〉− logdet(X +Y )−1. Throughout the proof, we use the shorthand no-

tation σr = σr(X?).

Joint restricted strong convexity Take X ∈X0 and Y ∈Y0. By Taylor’s theorem, it is sufficient

to lower bound the term

 X− X̂

Y − Ŷ


>

∇
2L (X(t),Y (t))

 X− X̂

Y − Ŷ


=
(

vec
(

X− X̂
)
+vec

(
Y − Ŷ

))>
H (X(t),Y (t))

(
vec
(

X− X̂
)
+vec

(
Y − Ŷ

))
,

where X(t) = (1−t)X +tX̂ and Y (t) = (1−t)Y +tŶ for some t ∈ [0,1]. Using (4.34), and applying

the inequality (4.35) and ab≤ ca2

2 + b2

2c , we can lower bound as

32
125

κ−1(Σ?)

λ 2
max(Σ?)

∥∥∥vec
(

X− X̂
)
+vec

(
Y − Ŷ

)∥∥∥2

2

≥ 32
125

κ−1(Σ?)

λ 2
max(Σ?)

[
‖X− X̂‖2F+

1
2
‖Y − Ŷ‖2F−16‖Ŷ −Y ?‖2F−36α

2
sp

s
d

]
.

Restricted smoothness By Taylor’s theorem and using the inequality (4.34), we have

〈X− X̂ ,∇XL (X ,Ŷ )−∇XL (X̂ ,Ŷ )〉 ≤ 32
9

κ(Σ?)

λ 2
min(Σ

?)
‖X− X̂‖2F,

and similarly with the roles of X and Y reversed.
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Cross-product bound As discussed in Section 4.2.2 following the Assumption 4.2.3, in order to

establish the cross-product condition, it suffices to bound

‖∇2
XY L (X ,Y (t))−∇

2
XY L (X(t′),Y )‖sp (4.36)

for all X ∈X0, Y ∈Y0, where X(t′) = (1−t′)X +t′X̂ and Y (t) = (1−t)Y +tŶ . Also ∇2
XY L (X ,Y )

is symmetric in X and Y , so we will only bound ‖∇2
XY L (X ,Y (t))−∇2

XY L (X ,Y )‖sp; by the

triangle inequality, similar bound would hold for the other term. We can also see that the operator

norms of H1 and H2 are same, and so

‖∇2
XY L (X ,Y (t))−∇

2
XY L (X ,Y )‖sp = ‖H (X ,Y (t))−H (X ,Y )‖sp

≤‖H1(X ,Y (t))−H1(X ,Y )‖sp+‖H2(X ,Y (t))−H2(X ,Y )‖sp≤ 2‖H1(X ,Y (t))−H1(X ,Y )‖sp.

Therefore we only work with the term ‖H1(X ,Y (t))−H1(X ,Y )‖sp. Let

∆H1 = (X +Y (t))−1(2Sn− (X +Y (t)))(X +Y (t))−1− (X +Y )−1(2Sn− (X +Y ))(X +Y )−1.

Then simple algebra yields

H1(X ,Y (t))−H1(X ,Y ) =
1
2

∆H1⊗ (X +Y (t))−1

+
1
2
(X +Y )−1(2Sn− (X +Y ))(X +Y )−1⊗

(
(X +Y (t))−1− (X +Y )−1

)
.

∆H1 is further decomposed as

∆H1 =
(
(X +Y (t))−1− (X +Y )−1

)
(2Sn− (X +Y (t)))(X +Y (t))−1

+(X+Y )−1(Y−Y (t))(X+Y (t))−1+(X+Y )−1(2Sn−(X+Y (t)))
(
(X +Y (t))−1− (X +Y )−1

)
.

114



Meanwhile, by the inequalities (4.32) and (4.33), we have


‖(X +Y (t))−1‖sp,‖(X +Y )−1‖sp ≤ 4

3λmin(Σ?)
,

‖2Sn− (X +Y (t))‖sp,‖2Sn− (X +Y )‖sp ≤ 3λmax(Σ
?)

2 ,

and so using the identity (X +Y (t))−1− (X +Y )−1 = (X +Y (t))−1(Y −Y (t))(X +Y )−1, we have

‖(X +Y (t))−1− (X +Y )−1‖sp ≤
16

9λ 2
min(Σ

?)
t‖Y − Ŷ‖sp.

This implies

‖∆H1‖sp ≤
64
9

λmax(Σ
?)

λ 3
min(Σ

?)
‖Y − Ŷ‖sp +

16
9

1
λ 2

min(Σ
?)
‖Y − Ŷ‖sp,

and hence that

‖H1(X ,Y (t))−H1(X ,Y )‖sp ≤
1
2
‖∆H1‖sp‖(X +Y (t))−1‖sp

+
1
2
‖(X +Y )−1(2Sn− (X +Y ))(X +Y )−1‖sp‖(X +Y (t))−1− (X +Y )−1‖sp

≤ 192
27

λmax(Σ
?)

λ 4
min(Σ

?)
‖Y − Ŷ‖sp +

32
27

1
λ 3

min(Σ
?)
‖Y − Ŷ‖sp ≤

224
27

λmax(Σ
?)

λ 4
min(Σ

?)
‖Y − Ŷ‖sp.

Returning to the above equation, this implies

‖∇2
XY L (X ,Y (t))−∇

2
XY L (X ,Y )‖sp ≤

448
27

λmax(Σ
?)

λ 4
min(Σ

?)
‖Y − Ŷ‖sp,

and in particular, we have

‖∇2
XY L (X ,Y (t))−∇

2
XY L (X(t′),Y )‖sp ≤

448
27

λmax(Σ
?)

λ 4
min(Σ

?)

(
‖X− X̂‖sp +‖Y − Ŷ‖sp

)
.

Summarizing so far, we have shown that µX = µY = 896
27

λmax(Σ
?)

λ 4
min(Σ

?)
(ρX +ρY ). By choosing c0

sufficiently small, this gives the claim µX = µY ≤ 16
125

λmin(Σ
?)

λ 3
max(Σ?)

as desired.
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Initialization condition To prove the initialization condition, it suffices to bound the quantity

4γ(X0) ·maxX∈X0,Y∈Y0‖∇XL (X ,Y )‖sp. Note that for any X ∈X0,Y ∈ Y0,

‖∇XL (X ,Y )‖sp = ‖(X +Y )−1(X +Y −Sn)(X +Y )−1‖sp

≤ 16
9λ 2

min(Σ
?)
·
(
‖X +Y −Σ

?‖sp +‖Sn−Σ
?‖sp

)
≤ 8σr

625
λmin(Σ

?)

λ 3
max(Σ?)

,

where the first step uses the inequality (4.32), and the second step uses the inequality ‖X +Y −Σ?‖sp

≤ 2(ρX +ρY ) and the concentration bound (4.31) as well as our assumptions on the radii and the

sample size (4.21) (by choosing c0,c1 > 0 sufficiently small). Moreover, by the same reasoning to

the equation (4.30), we also have γ(X0)≤ 5
2σr

. Therefore,

4γ(X0) · max
X∈X0,Y∈Y0

‖∇XL (X ,Y )‖sp ≤
10
σr
· 8σr

625
λmin(Σ

?)

λ 3
max(Σ?)

=
16

125
λmin(Σ

?)

λ 3
max(Σ?)

= αX −µX ,

completing the proof of Lemma 4.4.3.

Proof of Lemma 4.4.4. Recall the loss function, given by the negative log-likelihood function

L (X ,Θ) =− logdet(Θ)+
1
n

n

∑
i=1

(zi−Xφi)
>

Θ(zi−Xφi).

We calculate the gradient

∇XL (X ,Θ) =
2
n

n

∑
i=1

Θ(Xφi− zi)φ
>
i and ∇ΘL (X ,Θ) =−Θ

−1 +
1
n

n

∑
i=1

(zi−Xφi)(zi−Xφi)
>,
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and the Hessian operators

〈∆X ,∇
2
XXL (X ,Θ)∆X 〉=

2
n

n

∑
i=1

φ
>
i ∆
>
X Θ∆X φi,

〈∆X ,∇
2
XΘ

L (X ,Θ)∆Θ〉=
2
n

n

∑
i=1

φ
>
i ∆
>
X ∆Θ(Xφi− zi),

〈∆Θ,∇
2
ΘΘ

L (X ,Θ)∆Θ〉= vec(∆Θ)
>
(

Θ
−1⊗Θ

−1
)

vec(∆Θ) .

Throughout we use the shorthand notation σr = σr(X?). Recall that the radii are chosen to

satisfy ρX ≤ c0 · σrκ−1(Θ?)κ−1(Σφ ) and ρΘ ≤ c0 · λmin(Θ
?)κ−1(Σφ ) for some small c0 > 0.

Then, according to Weyl’s inequality, for any Θ ∈Q0, its minimum and maximum eigenvalues are

bounded by
λmin(Θ

?)

2
≤ λmin(Θ)≤ λmax(Θ)≤ 3λmax(Θ

?)

2
, (4.37)

since we have that ‖Θ−Θ?‖F ≤ 2ρΘ and ρΘ ≤
λmin(Θ

?)
4 .

We will use the following two concentration results: first, following [51, Lemma 2], with

probability at least 1−4exp(−n/2), we have the bound of the form:

λmin

(
1
n

n

∑
i=1

φiφ
>
i

)
≥

λmin(Σφ )

9
and λmax

(
1
n

n

∑
i=1

φiφ
>
i

)
≤ 9λmax(Σφ ). (4.38)

Next, letting ε̃i
iid∼ N(0,Im), it has been shown in [51, Lemma 3] that for some c,c′ > 0, with

probability at least 1− cexp(−c′(m+d)),

∥∥∥∥∥1
n

n

∑
i=1

ε̃iφ
>
i

∥∥∥∥∥
sp

≤ 5
√

λmax(Σφ )

√
m+d

n
. (4.39)

Now, we turn to verifying Lemma 4.4.4:
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Joint restricted strong convexity Fix X ∈X0, Θ ∈Q0. By Taylor’s theorem, we have

〈 X− X̂

Θ− Θ̂

,∇L (X ,Θ)−∇L (X̂ ,Θ̂)

〉
=

 X− X̂

Θ− Θ̂


>

∇
2L (X(t),Θ(t))

 X− X̂

Θ− Θ̂

 ,

where X(t) = (1− t)X + tX̂ and Θ(t) = (1− t)Θ+ tΘ̂ for some t ∈ (0,1). Using the expression for

the Hessian operator and substituting our observational model zi =X?φi+ε , we have the following

decomposition:

 X− X̂

Θ− Θ̂


>

∇
2L (X(t),Θ(t))

 X− X̂

Θ− Θ̂

=
2
n

n

∑
i=1

φ
>
i (X− X̂)>Θ(t)(X− X̂)φi︸ ︷︷ ︸

(Term 1)

+
2
n

n

∑
i=1

φ
>
i (X− X̂)>(Θ− Θ̂)(X(t)−X?)φi︸ ︷︷ ︸

(Term 2)

− 2
n

n

∑
i=1

φ
>
i (X− X̂)>(Θ− Θ̂) · εi︸ ︷︷ ︸

(Term 3)

+vec
(

Θ− Θ̂

)>(
Θ(t)−1⊗Θ(t)−1

)
vec
(

Θ− Θ̂

)
︸ ︷︷ ︸

(Term 4)

.

For (Term 1), we lower bound as

(Term 1)≥ 2λmin

(
1
n

n

∑
i=1

φiφ
>
i

)
·λmin(Θ(t))‖X− X̂‖2F ≥

λmin(Θ
?)λmin(Σφ )

9
‖X− X̂‖2F,

where the second step uses the inequalities (4.37) and (4.38). For (Term 2), we further decompose

into the sum

(Term 2) = (1− t) · 2
n

n

∑
i=1

φ
>
i (X− X̂)>(Θ− Θ̂)(X− X̂)φi+

2
n

n

∑
i=1

φ
>
i (X− X̂)>(Θ− Θ̂)(X̂−X?)φi,

then the first term is bounded by

4ρΘ ·λmax

(
1
n

n

∑
i=1

φiφ
>
i

)
‖X− X̂‖2F ≤

λmin(Θ
?)λmin(Σφ )

54
‖X− X̂‖2F,
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where the inequality uses the bound on the radius ρΘ (by choosing c0 ≤ 1
36·54 ) and (4.38). Mean-

while, we can bound the second part of (Term 2) as

2
n

n

∑
i=1

φ
>
i (X− X̂)>(Θ− Θ̂)(X̂−X?)φi

≤ 4ρΘ

n

n

∑
i=1
‖(X− X̂)φi‖2‖(X̂−X?)φi‖2

≤ 2ρΘ

n

n

∑
i=1
‖(X− X̂)φi‖22 +

2ρΘ

n

n

∑
i=1
‖(X̂−X?)φi‖22

≤
λmin(Θ

?)λmin(Σφ )

108
‖X− X̂‖2F+

λmin(Θ
?)λmin(Σφ )

108
‖X̂−X?‖2F.

Combining the two yields

(Term 2)≤
λmin(Θ

?)λmin(Σφ )

36
‖X− X̂‖2F+

λmin(Θ
?)λmin(Σφ )

108
‖X̂−X?‖2F.

Next, using the inequality 〈a,b〉 ≤ ‖a‖nuc‖b‖sp, we find that

(Term 3)≤ 2‖X− X̂‖nuc

∥∥∥∥∥1
n

n

∑
i=1

(Θ− Θ̂)εiφ
>
i

∥∥∥∥∥
sp

≤ ρΘ√
λmin(Θ

?)
·2
√

2r‖X− X̂‖F

∥∥∥∥∥1
n

n

∑
i=1

ε̃iφ
>
i

∥∥∥∥∥
sp

≤
ρΘ

√
λmax(Σφ )√

λmin(Θ
?)
·10
√

2r‖X− X̂‖F

√
m+d

n
,

where the second step follows since X− X̂ is of rank 2r and εi = (Θ?)−1/2 · ε̃i for ε̃i
iid∼ N (0,Im),

and the next step uses the concentration bound (4.39). Using the identity ab ≤ ca2

2 + b2

2c and the

bound on ρΘ, then

(Term 3)≤
λmin(Θ

?)λmin(Σφ )

36
‖X− X̂‖2F+

25
13122

r(m+d)
n

λmin(Σφ )

λmax(Σφ )
.

Lastly, by (4.37), the minimum eigenvalue of Θ(t)−1 is lower bounded by 2
3λmax(Θ?)

, so it
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follows that

(Term 4)≥ 4
9λ 2

max(Θ?)
‖Θ− Θ̂‖2F.

Combining all the bounds together, we have

〈

 X− X̂

Θ− Θ̂

,∇L (X ,Θ)−∇L (X̂ ,Θ̂)〉 ≥
λmin(Θ

?)λmin(Σφ )

18

(
‖X− X̂‖2F−

1
6
‖X̂−X?‖2F

− 25
729

r(m+d)
n

1
λmin(Θ

?)λmax(Σφ )

)
+

4
9λ 2

max(Θ?)
‖Θ− Θ̂‖2F.

Restricted smoothness For the X variable, we apply the inequalities (4.37) and (4.38) to obtain

〈X− X̂ ,∇XL (X ,Θ̂)−∇XL (X̂ ,Θ̂)〉= 2
n

n

∑
i=1

φ
>
i (X− X̂)>Θ̂(X− X̂)φi

≤ 27λmax(Θ
?)λmax(Σφ )‖X− X̂‖2F.

For the Θ variable, by Taylor’s theorem combined with the bound (4.37), for some t ∈ [0,1],

〈Θ− Θ̂,∇ΘL (X̂ ,Θ)−∇ΘL (X̂ ,Θ̂)〉= vec
(

Θ− Θ̂

)>
∇

2
ΘΘ

L (X̂ ,(1− t)Θ+ tΘ̂)vec
(

Θ− Θ̂

)
≤ 4

λ 2
min(Θ

?)
‖Θ− Θ̂‖2F.

Cross-product bound Take X ∈X0, Θ ∈Q0. Then, by Taylor’s theorem, for some t, t′ ∈ [0,1],

|〈X− X̂ ,∇XL (X ,Θ)−∇XL (X ,Θ̂)〉−〈Θ− Θ̂,∇ΘL (X ,Θ)−∇ΘL (X̂ ,Θ)〉|

≤ vec
(

X− X̂
)>(

∇
2
XΘ

L (X , tΘ+(1− t)Θ̂)−∇
2
XΘ

L (t′X +(1− t′)X̂ ,Θ)
)

vec
(

Θ− Θ̂

)
.

=
2(1− t′)

n

n

∑
i=1

φ
>
i (X− X̂)>(Θ− Θ̂)(X− X̂)φi ≤

λmin(Θ
?)λmin(Σφ )

54
‖X− X̂‖2F.

This proves the cross-product condition with µX =
λmin(Θ

?)λmin(Σφ )
27 and µΘ = 0.
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Initialization condition We already know that γX (X ) = 1
2σr(X)

(see Lemma 3.3.1), so

max
X∈X0

γX (X )≤ 1
2σr−4ρX

≤ 1
σr

,

where the first inequality holds due to Weyl’s inequality, and the next inequality holds since ρX ≤
1
4σr. This also shows that the conditions of Lemma 4.2.1 is satisfied, so we have γ(X0)≤ 1

σr
.

Next, we bound the gradient term ‖∇XL (X ,Θ)‖sp. Given the observational model zi =X?φi+

εi, we can decompose the gradient as

‖∇XL (X ,Θ)‖sp ≤

∥∥∥∥∥2
n

n

∑
i=1

Θ(X−X?)φiφ
>
i

∥∥∥∥∥
sp

+

∥∥∥∥∥2
n

n

∑
i=1

Θ · εiφ
>
i

∥∥∥∥∥
sp

.

Using the inequalities (4.37) and (4.38), the first term is upper bounded by 54ρX · λmax(Θ
?) ·

λmax(Σφ ), whereas we can bound the second term as

∥∥∥∥∥2
n

n

∑
i=1

Θ · εiφ
>
i

∥∥∥∥∥
sp

≤ 3λmax(Θ
?)√

λmin(Θ
?)
·

∥∥∥∥∥1
n

n

∑
i=1

ε̃iφ
>
i

∥∥∥∥∥
sp

≤
15λmax(Θ

?)
√

λmax(Σφ )√
λmin(Θ

?)

√
m+d

n
,

where the steps use the inequalities (4.37) and (4.39). Combining the two and using the bound on

ρX and the assumption (4.24), for sufficiently small c0,c1 > 0, we have

max
X∈X0,Θ∈Q0

‖∇XL (X ,Θ)‖sp ≤ σr ·
λmin(Θ

?)λmin(Σφ )

216
,

and therefore

4γ(X0) · max
X∈X0,Θ∈Q0

‖∇XL (X ,Θ)‖sp ≤
λmin(Θ

?)λmin(Σφ )

54
= αX −µX ,

completing the proof of Lemma 4.4.4.
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CHAPTER 5

SPECTRAL CALIBRATION AND IMAGE RECONSTRUCTION IN CT

IMAGING

X-ray computed tomography (CT) is a medical imaging modality that allows to image the internal

structure of human body in a non-invasive way. Generally speaking, x-ray tube in CT scanner

generates a high flux of x-rays which traverse an object from multiple directions, and detectors

observe the incoming x-rays as the outcome of interaction between the x-rays and the object. The

forward model describes the interaction between the x-rays and the object, in which it is typically

assumed that the x-rays travel through the object along straight lines (i.e. ignoring x-ray scatter)

and the intensity of the x-rays are attenuated, while traveling, with a rate of decay depending on the

properties of the materials. Based on these measurements of the object, reconstruction algorithms

aim to recover the structure of the objects that interacted with the x-rays.

In addition to acquiring the x-ray transmission measurements, reconstruction algorithms typi-

cally need knowledge of the x-ray source spectrum and the detector response as the x-ray beams

generated for medical CT is polychromatic in nature. While we may assume that the x-ray source

spectrum can be modeled to a certain degree, the detector spectral response is often unknown due

to many non-ideal physical effects of the detector. For instance, photon-counting detectors can

discriminate incident x-ray photons based on their energies, allowing for the CT data acquisition

in each energy window, and thus are useful for material decompositions to more than two basis

functions; however, they also exhibit undesirable technical issues such as pulse pile-up and charge

sharing [52], potentially resulting in serious artifacts in the reconstructed images—here we refer to

the artifacts as the discrepancy between the reconstructed values in the images and the true image

values of the object. Therefore, in reconstructing CT images, it is crucial to accurately calibrate

the spectral response of the detectors for further reduction of image artifacts.

In this chapter, we present a new x-ray spectrum reconstruction method based on transmission
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measurements of a calibration phantom—a material with known thicknesses and compositions.1

Our aim is to formulate spectrum estimation as an optimization problem, for which an efficient

first-order iterative algorithm is employed to solve the resulting optimization problem rapidly. The

proposed method is capable of incorporating prior information about the physical shape of an x-

ray spectrum, which enables accurate and realistic estimation of x-ray spectrum by including the

characteristic lines of the target spectrum in the final estimation.

Although the method studied here can be used for any spectrum estimation task, the focus here

is on photon-counting CT. Interest in estimating the x-ray spectrum of a CT system is recently

growing due to the development of spectral CT with a photon-counting detector [52, 54, 55].

For spectral CT, the effective spectrum estimate, which includes the source spectrum and detec-

tor response, is needed for material decomposition into basis material sinograms [54] and for

direct inversion into basis material images [55, 12]. This suggests that our optimization-based ap-

proach can be useful when the spectral calibration of an imaging system is combined with other

optimization-based algorithms for spectral CT image reconstruction. As a preliminary study, here

we perform alternating minimization based algorithm on a two-material phantom derived from the

FORBILD head phantom2 to demonstrate the utility of the method on the task of simultaneous

spectrum estimation and spectral CT image reconstruction.

5.1 Background on spectrum estimation

This section presents the discretized forward model that relates the expected photon counts to the

x-ray spectral distribution, and provides a brief overview of expectation-maximization (EM) and

other related methods for the spectrum estimation problem.

1. The work presented in this chapter is published in [53].

2. http://www.imp.uni-erlangen.de/phantoms/
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5.1.1 Transmission measurement model

We assume the standard transmission measurement model for an x-ray imaging system—writing

ĉ` to denote the number of transmitted photon counts along ray ` which encodes different source

positions, then the forward data model after discretization is expressed as

ĉ` = N`∑
i

si exp
{
−∑

m
xm`µmi

}
, (5.1)

where N` is the expected number of photon counts detected along ray ` in the absence of an object,

si is the normalized distribution of x-ray photons at frequency i in the absence of an object (i.e.

∑i si is equal to 1), µmi is the linear x-ray attenuation coefficient for material m at frequency i, and

xm` is the total amount of material m lying along ray `. The model given in (5.1) is idealized and

neglects numerous physical factors such as x-ray scatter.

The x-ray spectrum, given by si across frequencies indexed by i, comprises the energy spectrum

of the x-ray source and the spectral response of the detector. In the task of spectrum estimation,

transmisison measurements are acquired through known dimensions of known materials, so the

attenuation functions {µmi} and the path lengths {xm`} are known and the only uknowns in (5.1)

are the x-ray energy spectrum. The approach for reconstructing th spectrum studied in this section

inverts the forward model (5.1) to estimate the x-ray spectrum, {si}, from noisy transmission

measurements, {c`}.

The difficulty inherenet in inverting (5.1), however, is twofold. First, the system matrix describ-

ing the attenuation of x-ray photons is highly low-rank, leading to the ill-conditioned linear system

of the spectrum estimation problem. In particular, some form of regularization is necessary for re-

liable estimation of the x-ray spectrum. Second, the physical nature of an x-ray spectrum involves

multiple structures in its shape, namely, the low-frequency component arising from bremsstrahlung

radiation, which covers the entire range of the energy bins, and the high-frequency component

arising from characteristic radiation, which produces sharp peaks at certain energy locations—for

instance, see Figure 5.1 in Section 5.1.3 for a typical x-ray spectra. The challenge is to recover
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both structures simultaneously, so that the estimated spectrum accurately represents the spectral

response of the x-ray imaging system.

Here we exploit prior knowledge of the x-ray spectrum to design a suitable regularizer when

we formulate an optimization problem; in this way, we can allows for recovering both structures

and at the same time overcome the ill-conditioning of the problem.

5.1.2 Related work

For an energy resolved CT system, the x-ray spectrum represents the product of the polychromatic

source spectrum and the detector spectral response. Due to its importance in x-ray imaging, a

number of methods have been proposed for obtaining a stable and accurate x-ray spectrum.

Using a physical model with few parameters effectively reduces the degrees of freedom of the

problem, and allows for stable estimation of the spectrum by expressing a low-dimensional repre-

sentation of the x-ray spectrum [56, 57, 58]. The parameters are fitted with least squares or other

data discrepancy objectives. Meanwhile, [59] investigates an iterative perturbation method that

minimizes differences between measured and calculated transmission curves using low-Z attenua-

tors.

Various forms of regularization have been also employed to avoid the ill-conditioning of the

problem and ensure stable spectrum estimation. For instance, [60] performs a minimization of the

sum of a χ2 objective term and a nonlinear regularization term to stabilize the final solution. [61]

uses the expectation-maximization (EM) method to iteratively solve the ill-conditioned linear sys-

tem and truncates the iteration of the algorithm at some finite iteration. Here early stopping serves

as a sort of regularization as it prevents overfitting of the model. Singular value decomposition

(SVD) is a more direct approach that attempts to directly invert the linear system to estimate each

bin contents of spectrum [62, 63]. The SVD method often involves truncating smaller singular

values and singular vectors of the system matrix, also known as truncated singular value decompo-

sition (TSVD), since these components make almost no contribution to the measured data and are

susceptible to the noise [64]. The obtained spectrum from TSVD is sufficiently accurate to model
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the measured transmission curve, but it has the drawback that positivity of the spectrum is not guar-

anteed and the solution exhibits negative values in some energy positions. Recently, an extension

of the TSVD method, called prior truncated singular value decomposition (PTSVD), has been pro-

posed in [65] to further incorporate prior information about the statistical nature of the transmission

data and about high-frequency spectral components such as characteristic peaks. In particular, by

exploiting basis vectors for the null space of the system matrix, the authors reconstruct an x-ray

spectrum that accurately reproduces the physical shape of the ground truth spectrum.

5.1.3 EM method

For the purpose of comparison, here we describe the expectation-maximization (EM) approach

which has frequently been applied to the problem of x-ray spectrum estimation (e.g. [61, 66]).

Broadly speaking, EM is a general framework for solving a maximum likelihood estimation

problem when the obtained data is incomplete. In the setting of spectrum determination, the in-

completeness of the data arises from the fact that the detected photon count along ray ` is observed

through a sum of transmitted photon counts across frequencies i, namely, c` ≈ ∑i X`isi for the

system matrix {X`i}. Under the Poisson noise, EM then finds the maximum likelihood estimate

ŝ = argmin
s

[
∑
`

{
∑
i

X`isi− c` log

(
∑
i

X`isi

)}]
,

by applying the iterations

s(t+1)
i =

s(t)i
∑`X`i

∑
`

X`ic`

∑i′ X`i′s
(t)
i′

for all i. (5.2)

Here the update equation is derived by minimizing the EM objective function Q(s;s(t)), given by

Q(s;s(t)) = ∑
`i

X`isi− c`
X`is

(t)
i

∑i′ X`i′s
(t)
i′

log(X`isi)

 . (5.3)
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Note that the multiplicative form of the update equation (5.2) automatically guarantees non-negativity

of the solution as long as the initial value is chosen to be non-negative. We also note that the EM

iterations does not satisfy the normalization assumption, namely ∑i s(t)i = 1 is not necessarily true.

For an underdetermined and noisy linear system, the maximum likelihood solution is known

to overfit to the data and yield undesirable structure of the x-ray spectrum. Hence, it is desirable

to minimize the data discrepancy function (the transmission Poisson likelihood function in this

case) but possibly subject to constraints and/or regularization on the spectrum. Meanwhile, it is

known that the iterations (5.2) are guaranteed to converge to the solution {ŝi} for any initial point.

Therefore, if run to convergence, the EM iterations should reach the solution {ŝi} and thus fail

to deliver accurate estimation of the x-ray spectrum. In particular, if we try to incorporate prior

information about the x-ray spectrum into the initialization of EM, we would expect it to still

end up at the same solution, {ŝi}. To avoid this issue, early stopping of EM is often employed

(e.g. [61]) to regularize the algorithm path and avoid overfitting to the data. Note that, due to the

global convergence property of EM, the idea of incorporating prior information via initialization

makes sense only in the context of early stopping.

In Figure 5.1, the spectral curves estimated by EM are shown for different numbers of itera-

tions. As seen in the figure, by stopping after 500 iterations, the EM method recovers the ground

truth spectrum remarkably well and both spectra are indistinguishable in the plot; however, for low

iteration number (e.g. 10 iterations), the resulting spectrum is still biased towards the initial value,

and for high iteration number (e.g. 50,000 iterations), the EM method appears to overfit to the

transmission data and therefore cannot generalize to transmission measurements beyond the given

data set. While determining a good iteration number is crucial to implement the EM method, the

authors in [61] further demonstrates the robustness of the EM method, i.e. the estimated x-ray

spectrum is not strongly sensitive to the choice of number of iterations.

While EM enjoys many empirical advantages for spectrum reconstruction, our motivation to

derive a spectrum reconstruction method from an optimization framework is to enhance inter-

pretability and flexibility of the reconstruction procedure; for EM, it is not clear what kind of
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Figure 5.1: Spectrum estimation from simulated transmission measurements by use of EM. A
detailed description of the simulation setting is given in the simulation study (Section 5.3.1). Panel
(a) shows the ground truth x-ray spectrum (black solid line) and the initial x-ray spectrum (black
dotted line). The remaining three panels show the estimated spectra by EM for different number
of iterations.

regularization early stopping is performing for the algorithm, and other desirable constraints on

the spectrum, such as a normalization constraint, cannot be easily incorporated. On the other hand,

our framework is capable of including multiple constraints on the spectrum, and moreover, we

do not require any form of early stopping but rather fully minimize target optimization problem

for accurate reconstruction of x-ray spectrum. Our approach can also allow us to build towards

simultaneous spectrum estimation and basis material maps reconstruction in spectral CT.

5.2 Spectrum estimation via a KL-divergence constraint

Now we turn to the development of our method to estimate the x-ray spectrum from transmission

measurements through an optimization problem.

We assume that an initial spectrum, namely a prior estimate of the x-ray spectrum, is available

128



such that the initial value exactly captures the characteristic peaks of the target spectrum (without

such information, we cannot hope to recover details of the spectral curves such as the characteristic

peaks.) Denoting the initial value by {sini
i }, we measure the distance of the x-ray spectrum {si} to

the initial value via Kullbeck-Leibler (KL) divergence, i.e. dKL(s ;sini), where for positive vectors

x≥ 0,y > 0, the KL divergence is defined by

dKL(x ;y) = ∑
i
{xi log(xi/yi)+ yi− xi} . (5.4)

(Note that the definition (5.4) reduces to the usual definition of KL-divergence over probability

vectors, when the vectors x,y satisfy ∑i xi = ∑i yi = 1.) The KL-divergence is convex in (x,y) and

satisfies dKL(x ;y)≥ 0 for x≥ 0,y > 0, and dKL(x ;y) = 0 if and only if x = y. In order to stabilize

inversion of the data model, a KL-divergence constraint, i.e. a bound on dKL(s ;sini), is placed on

the estimated x-ray spectrum {si} to control the deviation from the initial value.

Specifically, the x-ray spectrum is reconstructed through the following constrained minimiza-

tion problem:

minimize
s

dKL(c ;Xs)

subject to dKL(s ;sini)≤ c,

∑
i

si = 1,si ≥ 0 for all i,

(5.5)

for a constraint parameter c ≥ 0, where the KL-divergence is employed for both the data discrep-

ancy function and the constraint function. Note that the data discrepancy function here, namely,

KL-divergence between measured data and calculated photon counts, is equivalent to the trans-

mission Poisson likelihood (TPL) function up to constant terms [67] hence the solution of the

problem (5.5) is equivalent to a constrained maximum likelihood estimate of the counts data under

a Poisson noise assumption. The TPL function can be useful even when the measured counts data

is inconsistent with the Poisson assumption, since it assigns more weight to higher count measure-

ments [12]. The constraint ∑i si = 1 ensures normalization of the resulting solution, which endows

physical meaning to the reconstructed x-ray spectrum.
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Although the description of the data model (5.1) is idealized, the proposed optimization-based

approach is flexible and can include other physical effects, such as x-ray scatter as well as other

non-ideal detector effects, in the estimation process by adding constraints or modifying the ob-

jective function. The use of KL-divergence as a constraint function can be valid for any given

optimization formulations. In terms of computation, the problem (5.5) is a convex program, so any

convex solver can be applied to solve the problem efficiently. For instance, we have implemented

the method using the “cvx” package in Matlab with solver MOSEK which solves the problem (5.5)

in less than a second. Alternatively, we can apply the exponentiated-gradient (EG) algorithm,

which is a simple first-order algorithm that iteratively performs a descent step followed by projec-

tion onto the feasible region of x-ray spectra. See Section 5.2.2 for a detailed discussion of the EG

algorithm and convergence guarantees for obtaining optimal solution of the problem (5.5).

Care must be taken in specifying the initial value {sini} as it has a great influence on the final

estimation of the x-ray spectrum. If the employed initial value reflects realistic structure of a

spectral curve, the resulting solution can provide accurate estimation of the target spectrum and

therefore accurately reproduce transmission measurements. The robustness of the method with

respect to the initial spectrum is also investigated in the simulation study (see Section 5.3.1).

5.2.1 Connection to maximum entropy method

The proposed method based on KL-divergence is closely related to the well known principle of

maximum entropy in the existing literature. This principle state that, of all possible solutions that

are consistent with the data, we choose the one with the largest entropy −∑i si logsi, or with the

least divergence (or relative entropy) ∑i si log(si/sini
i ) if the prior information {sini

i } is known. The

maximum entropy principle has been widely studied in the following decades, with applications

to a broad range of problems including image reconstruction from incomplete and noisy data [68].

We refer the reader to [69] for justification of the principle.

In the context of spectrum estimation, applying the maximum entropy principle with prior

130



information {sini
i } leads to the following constrained optimization problem:

minimize
s

dKL(s ;sini)

subject to dKL(c ;Xs)≤C,

∑
i

si = 1,si ≥ 0 for all i,

(5.6)

where we again employ the TPL discrepancy function as a measure of the fit to the data, and C > 0

is a parameter that limits the amount of this discrepancy.

Now, since the problem is convex in the variable {si}, we can find a one-to-one correspon-

dence between the parameters c in (5.5) and C in (5.6) such that the solutions from both opti-

mization problems exactly match; this, in turn, implies that the problem (5.5) is equivalent to the

problem (5.6), and particularly shows the equivalence between the proposed approach and the

maximum entropy principle. This provides a justification of the use of KL-divergence as a con-

straint function for spectrum estimation. On the other hand, note that the convexity of the TPL

discrepancy function is essential here. While the KL-divergence constraint can be applied to the

data models including other physical factors, the resulting data discrepancy function can generally

be nonconvex in which case the equivalence property is no longer guaranteed to hold. Even in such

case, however, we believe that a similar kind of interpretation can be useful in gaining insight into

the constrained approach with KL-divergence.

5.2.2 Exponentiated-gradient algorithm

While the problem (5.5) can generally be solved by any convex solver, in some applications, it is

useful to have an iterative algorithm that solves the problem more explicitly. In this work, we solve

this optimization problem using the exponentiated-gradient (EG) algorithm [11], that is designed

to solve general convex objectives over the simplex {s : ∑i si = 1,si ≥ 0 for all i}. Exponentiated-

gradient algorithm can also be viewed as a special case of mirror descent with the mirror map given

as the negative entropy function [40].
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First, we write the constrained problem (5.5) in the equivalent Lagrangian form:

minimize
s

dKL(c ;Xs)+λ ·dKL(s ;sini)

subject to ∑
i

si = 1,si ≥ 0 for all i,
(5.7)

where λ is a regularization parameter that controls the amount of regularizing effect, and the con-

straints represent the feasible region of x-ray spectra. Again, there is a one-to-one correspondence

between c in (5.5) and λ in (5.7), due to the convexity of the problem.

The EG algorithm applied to the above problem yields the following iterations: initialize s(0)=

sini, fix the step size η > 0, then for steps t = 0,1,2, . . .,


Set g(t) = ∇sdKL(c ;Xs(t))+λ∇sdKL(s(t) ;sini);

Set s(t+1)
i ← s(t)i exp(−η ·g(t)i ) for all i;

Set s(t+1)← s(t+1)/∑i s(t+1)
i .

(5.8)

Now examining the steps given in (5.8), we see that the update equation of s(t+1)
i is multiplica-

tive as analogous to the EM iterations (5.2). Particularly, this guarantees automatic inclusion of

non-negativity constraints in the estimated spectrum, as long as the initial spectrum is non-negative.

On the other hand, a distinct feature of the EG algorithm is that at every iteration the normalization

constraint is enforced by the projection step s(t+1)/∑i s(t+1)
i (more precisely, the projection is per-

formed with respect to the KL-divergence), whereas the EM method can give no such guarantees

on the final solution. The projection step can be optional, and is not needed if the normalization

constraint is not included in (5.7). To compare the EG and EM algorithms, while the EM algorithm

seeks to minimize (5.3) at each iteration to reach the maximum likelihood solution (if EM is run

to convergence), EG instead seeks to take each step that monotonically decreases (5.3) with addi-

tional KL-divergence regularization term. Both algorithms will produce a sequence of estimates

that will decrease the (regularized) data discrepancy at each iteration.
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5.2.3 Convergence test

The convergence of the EG algorithm has been well established in the literature—for instance,

Bubeck [40] shows that the objective gap between the point at iteration t and the optimal solution

decays with the rate O
(

1
t

)
. The convergence test of the EG algorithm has appeared in [70],

which we provide here for the sake of completeness. The Lagrangian function associated with the

problem (5.7) is given by

L (s,ν ,γ) = dKL(c ;Xs)+λ ·dKL(s ;sini)−∑
i

νisi + γ · (∑
i

si−1).

By the KKT condition, the optimal solution satisfies the following conditions:

(a) ∑i si = 1 and si ≥ 0 ∀i.

(b) νi ≥ 0 ∀i.

(c) νisi = 0 ∀i.

(d) ∇sL (s,ν ,γ) = 0.

Set γ = −min(∇sdKL(c ;Xs) + λ∇sdKL(s ;sini)) and ν = ∇sdKL(c ;Xs) + λ∇sdKL(s ;sini) + γ ·

1, where min is taken componentwise. Then it can be checked that the conditions (b),(d) are

satisfied. Also the condition (a) is trivial since the optimal solution is always feasible from the

update equation (5.8). It remains to check the complementary slackness condition (c). By the

conditions (a),(b), we know that νi · si is non-negative, so the condition (c) is implied if ∑i νisi = 0.

Therefore, we can test convergence of the algorithm by checking ∑i νisi < ε for a predefined

threshold ε > 0.
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5.3 Numerical analysis

5.3.1 Simulation study

Now we perform a numerical experiment on the simulated transmission measurements to examine

the empirical performance of the proposed method, as well as compare to the EM method.

A step wedge phantom is modeled and simulated, consisting of Aluminum and Polymethyl

Methacrylate (PMMA). The thicknesses of Aluminum and PMMA are each selected in the range

of {0,0.635,1.270,1.905,2.540} and {0,2.540,5.080,7.620,10.160} respectively, giving a total

of 25 combinations across the step wedge. The linear attenuation coefficients are obtained using

the NIST table [71]. Three kinds of polychromatic spectra, sampled at 1 keV intervals between 10

keV and 100 keV, are employed to either generate transmission measurements, or to serve as an ini-

tial value for the effective spectrum estimation; those spectra are determined from the experimental

data described in Section 5.3.2, and represent a typical spectral response of the photon-counting

CT system for energy windows with thresholds at 25 keV, 40 keV, and 60 keV. Using the experi-

mentally determined spectra allows us to model the rational shape of the x-ray spectrum.

Given the true spectrum, the expected total transmitted photon counts {ĉ`} are computed ac-

cording to the data model (5.1) with expected incident photon counts N` = 105 for each ray `. The

noisy measurements {c`} are then generated with an independent Poisson model from which the

true x-ray spectrum is reconstructed. Additionally, we generate another set of noisy transmission

measurements through 20 different thicknesses of water which are varied from 0 to 20 centimeters

at equal intervals, and where the NIST values are used to obtain the energy dependent attenuation

coefficients. These measurements are not included in the reconstruction of the x-ray spectrum, but

will serve as a “validation” set to assess the reproducibility of the spectrum estimation methods.

The x-ray spectrum is reconstructed by solving the optimization problem (5.7) with an imple-

mentation of the EG algorithm, as described in Section 5.2.2. Recall that λ is the user-defined

parameter to control the trade-off between the data fidelity of the model and the regularization on

the KL-divergence of the solution. We vary λ over λ ∈ {20,30, . . . ,1000}, and select the value
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Figure 5.2: Spectrum estimation from simulated transmission measurements by use of KL. Dif-
ferent types of true and initial x-ray spectrum are employed shown in black solid line and black
dotted lines respectively. In each setting, spectrum reconstruction is performed for 20 independent
sets of transmission measurements. Panels (a),(b): Spectral curves for 20 different trials. The band
formed by the curves shows variation between the reconstructed x-ray spectra. Panels (c),(d): The
RMSE curves computed by (5.9) for different regularization parameters. Each point represents an
average over 20 trials.

that minimizes the root mean square error (RMSE)

RMSE(λ ) =

√
∑i(si(λ )− strue

i )2

∑i(strue
i )2 , (5.9)

where {si(λ )} is the estimated spectrum given this choice of λ , and {strue
i } is the true spectrum.

The spectrum achieving the minimum RMSE will be close to the true spectrum in shape, and thus

can reliably reproduce transmission curves for any configurations of materials. For step size, we

fix η = 1.3 · 10−5 throughout the simulation. We run the EG algorithm (5.8) until convergence,

where we check the convergence of the algorithm as given in Section 5.2.3. For the present work,

we set the threshold ε = 10−8.
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Figure 5.2(a,b) show the spectral curves reconstructed from transmission measurements by

employing the ground truth and initial spectrum shown in the figures, respectively. For each given

ground truth and initial spectrum, we simulate 20 independent sets of transmission measurements

and obtain the best spectrum solutions by running the EG algorithm. Hence, each plot of Fig-

ure 5.2(a,b) shows reconstructed x-ray spectrum for 20 different sets of measurements. Due to

the noise, there exist some variation between the spectral curves. As seen in the figures, how-

ever, the spectra generated by the method are concentrated near the respective true spectra and

furthermore every single spectrum resembles the shape of its target with a high precision. More

importantly, the results further show the robustness to the shapes of the chosen ground truth and

initial spectra; the method continues to perform well, as long as the initial spectrum shares the

same locations of the characteristic peaks as the true spectrum even though the relative intensities

can be substantially different. This property can be particularly favorable for spectral calibration

of a photon-counting detector, since spectral information from one energy window can be useful

for estimating the spectral response of other windows.

The lower row of Figure 5.2 displays the RMSE plots, averaged over 20 trials, with respect

to regularization parameter λ . For the two plots, the method yields larger error at first, but drops

rapidly thereafter and achieves a minimum at λ in the range of 200–400. The error remains rel-

atively lower in a broad range of λ ’s around the minimum, which illustrates that the method is

numerically stable relative to the choice of λ . At larger values of λ , bias is induced in the solution

and the error from the true spectrum begins to grow again. In comparison to the other case, the

RMSE curve is placed higher in Figure 5.2(c), which results from the fact that the employed initial

spectrum is farther from the truth than the other case.

Figure 5.3(a) and (b) show comparison of the spectra fitted by the KL-divergence based method

and the EM method from simulated transmission measurements. For EM, the number of iterations

is varied from 10 to 104 and the optimal number is chosen based on the RMSE rule described

in (5.9). While it is seen that EM tends to estimate the true spectrum more faithfully (the averaged

RMSE values by the best case KL and EM solutions are 0.0350 and 0.0184 respectively), the
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Figure 5.3: Comparison of spectrum estimation from simulated transmission measurements by use
of KL and EM. Results for spectral curves, fitted by KL and EM respectively, are displayed for 20
different trials.

spectrum representations by both methods generally exhibit comparable performance in recovering

physical shape of the true spectrum. Moreover, the utility of the KL-divergence approach lies in

the mathematical formulation of spectrum estimation as an optimization problem.

Next, we evaluate the prediction of the transmission curves using the spectrum estimates based

on water transmission measurements at 20 thicknesses. We use the `2-distance for log counts

∑
`′
(log(c`′)− log(ĉ`′))

2 (5.10)

to measure the prediction performance. Figure 5.4(a) shows the prediction error of the KL-

divergence approach plotted against the varying regularization parameter, as well as the prediction

by the best case EM solution (which, recall, minimizes the RMSE criterion in (5.9)) and the true

spectrum for reference (note that even the true spectrum cannot perfectly reproduce the transmis-

sion data due to the noise). For small values of λ , the KL-divergence approach performs nearly

as well as the best case EM solution and slightly less than the true spectrum, demonstrating its

capability to represent the measurement process; for higher values of λ , however, the performance

rapidly degrades which results from the underfitting of the model. Figure 5.4(b) displays the ac-

tual transmission curves predicted by both methods, as well as the simulated water transmission

data and the transmission curve predicted by the initial spectrum. Without loss of generality, here
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Figure 5.4: Panel (a): Prediction error in the transmission curves derived from the x-ray spectra
using KL and EM. For the EM error, the best case solution is used to produce the transmission
curve, which is irrelevant with respect to the regularization parameters. Each point represents
an average over 20 trials. Panel (b): Plot of the predicted transmission curves for the reference
material water. The x-axis indicates the thicknesses index `′ for water, and the y-axis is plotted on
a logarithmic scale. The results for KL and EM are nearly identical and cannot be distinguished in
the plot.

we only give a representative result from different trials. Again it is clearly seen that both pre-

dicted transmission curves are accurate enough to predict the water transmission data and show the

significant improvement over the transmission curve predicted by the initial spectrum.

5.3.2 Experimental study

The proposed KL-divergence approach is evaluated on the experimental data which is performed

on a bench-top x-ray system consisting of a microfocus x-ray tube and a photon-counting Cadmium-

Zinc-Telluride (CZT) detector comprised of 128 detector pixels, of which 96 are usable. A step

wedge phantom made of Aluminum and PMMA, shown in Figure 5.5(a), are measured at the
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Figure 5.5: Left: (a) Step wedge phantom used for spectral calibration in x-ray imaging. Right:
(b) The initial x-ray spectrum.
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same dimensions with the simulated step wedge as described in Section 5.3.1. We refer the reader

to Schmidt et al. [55] for more details of the experimental setup.

The initial spectrum is generated with the SPEC78 software from the IPEM78 report [72],

which contains the expected spectrum exiting the tube for a 100 kV beam with 1-mm of aluminum

filtration. Based on the measurement sets, reconstruction is performed with the KL-divergence

regularized problem (5.7) to estimate effective spectral response of the photon-counting detectors

for each energy window and detector pixel. Determining a good regularization parameter is critical

in obtaining an accurate x-ray spectrum. The RMSE rule (5.9) cannot be applied here, since the true

spectrum is unknown in the experimental setting. A validation method is another attractive option

to choose a good value of λ , for which we randomly partition the transmission measurements

into the training data and test data and select λ that best predicts the test data using the x-ray

spectrum reconstructed from the training data. While the validation method is observed to perform

well in the simulation setting, we find that when applied to the experimental setting, the estimated

spectra tend to highly ovefit the experimental data and show unphysical fluctuations in the resulting

curves. This is attributed to the systematic dependencies present in the measured photon counts,

which can arise from various non-ideal physical effects of photon-counting detectors that have not

been included in the data model (5.1).

For the current experiment, we instead rely on ad hoc procedure for selecting the optimal

value of λ . The selection rule is based on the observation that the bremsstrahlung spectrum typi-

cally reveals unimodal structure in the corresponding energy region. The initial spectrum, shown

in Figure 5.5(b), exhibits characteristic peaks at 58,67,69 keV, but in other regions, the curve is

smooth and nearly unimodal—it has a local minimum at sini
11 (not visible in the figure), and a local

maximum at sini
33 . We expect to see this type of simple structure in the true spectrum as well. We

therefore choose regularization parameters λ that yield the spectrum whose bremsstrahlung part re-

flects the same unimodal structure as the initial spectrum. More specifically, consider the spectrum

{si} constrained to the bremsstrahlung part of the frequency curve, by removing the characteristic
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Figure 5.6: Spectrum estimation from the measured transmission data by use of KL. Each col-
umn represents the results for different spectral windows. Panels (a),(b),(c): Spectral curves for
each energy window. The plots show the solution curves for 96 different detector pixels. Panels
(d),(e),(f): Prediction error in the transmission curves derived from the x-ray spectra shown above
across detector pixels.

peaks at 58,67,69 keV:

sbrem = (s10, . . . ,s57,s59, . . . ,s66,s68,s70, . . . ,s100),

i.e. the energy spectrum of photons is decomposed into sbrem and schar = (s58,s67,s69). We choose

the regularization parameter by taking the smallest value of λ such that the estimated spectrum,

s(λ ), exhibits at most one local minimum and one local maximum, when the characteristic peaks

are removed—that is, at most one local minimum and one local maximum in the vector (s(λ )
)

brem,

the bremsstrahlung part of the estimated spectrum. We expect that values of λ which are too small,

leading to insufficient regularization, would yield an estimated spectrum s(λ ) that overfits to the

data, which would typically exhibit many local minima and maxima; therefore, our procedure

ensures that we choose a value of λ that is not too small, to avoid overfitting.

Results for experimental data are shown in Figure 5.6. Each panel in the upper row shows
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the reconstructed x-ray spectra for three different energy windows, as well as the initial spectrum

depicted as the dotted line. Within each panel, the curves are obtained by running the EG algorithm

from 96 different detector pixels, where step size is set to η = 1.3 ·10−5. While there is substantial

variation in the reconstructed x-ray spectra across the detector pixels, the selection method based

on the unimodality consisitently yields spectra that resemble realistic shapes of the bremsstrahlung

and characteristic lines. Compared to the results for high energy window, the spectra estimated for

low and medium energy windows appear to follow the realistic shape more faithfully. The spectral

curves displayed in high energy window seem to be less stable and exhibit more fluctuations in

the bremsstrahlung region. Similar results are also observed by comparing the prediction errors

for different energy windows shown in the lower row of Figure 5.6, where it is suspected that the

method tends to overfit to the data for high energy window in comparison to the other windows.

Of course we can increase the penalization parameter λ to avoid this problem of overfitting, but

the resulting spectra will now be strongly biased towards the initial spectrum. In principle, the

problem of calibrating spectral response for high energy window is more difficult than the other

cases, because the consecutive photons with low energies can be wrongly counted as the single

photon with high energy, leading to a degradation of the spectral measurements in the high energy

window.

To improve the stability of the estimated spectra for high energy window, we implement a

simple variant of the proposed method that imposes KL-divergence regularization on the spectrum

with different weights on each component of the spectral density si. In particular, we solve the

following regularized optimization problem:

minimize
s

dKL(c ;Xs)+λ ·dw
KL(s ;sini)

subject to ∑
i

si = 1,si ≥ 0 for all i,
(5.11)
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Figure 5.7: Comparison of spectrum estimation from the measured transmission data by use of KL,
EM, and weighted KL. Results are shown for one particular detector pixel (pixel number = 34).
Each panel shows the reconstructed spectra for different spectral windows, along with the initial
spectrum.

where dw
KL(x ;y) is a weighted KL-divergence given by

dw
KL(x ;y) = ∑

i
wi {xi log(xi/yi)+ yi− xi} , (5.12)

for a weight vector {wi}. In the current setting, each column of the system matrix {X`i} that

contributes to the measured photon counts has different scalings, so we choose to use the weights

such that wi ∝ ∑`X`i for each i. This helps to treat different spectral densities si on a more equal

basis. The EG algorithm can also be applied to solve the problem (5.11).

Figure 5.7 shows spectral curves reconstructed by the three methods, the original KL-divergence

based method, its weighted version given in (5.11), and the EM method, from the measured counts

data for different spectral windows. Here we fix the detector pixel (pixel number = 34) such that

the spectrum returned by the KL-divergence approach exhibits some fluctuation in the high energy

window. We can see that employing the weighted KL-divergence removes such unphysical shape

in the resulting curve and makes the spectrum more smooth in the bremsstrahlung energy region.

Moreover, it is interesting to see that in all energy windows, the weighted KL-divergence and the

EM method yield x-ray spectra that are close in shape, but have some deviations from the x-ray

spectra generated by the KL-divergence based method. We observe this phenomenon not only for

the measured data at this particular detector pixel, but across all detector pixels. This is in sharp
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Figure 5.8: Comparison of spectrum estimation from the measured transmission data by use of KL,
EM, and weighted KL. Results are shown for one particular detector pixel (pixel number = 34).
The x-axis indicates the thicknesses index ` for the step wedge. The upper row of each panel shows
prediction error in the transmission curves derived from the x-ray spectra shown in Figure 5.7. The
lower row of each panel shows the residuals between the measured transmission curve and the
predicted transmission curves.

contrast to the results shown in simulation study where both the KL-divergence approach and the

EM method yield x-ray spectra that closely resemble the ground truth. Under the presence of in-

consistency between the data model (5.1) and the physical transmission model, the KL-divergence

based method can perform quite differently in comparison to EM and the weighted KL-divergence

approach.

In Figure 5.8, the prediction performance is evaluated using the fitted x-ray spectra shown

in Figure 5.7, where the error is computed according to the squared log count distance (5.10).

We can see that all three methods significantly improve the prediction of the transmission curves

compared to the initial spectrum. The residuals between the measured and predicted transmission

curves are shown in the lower row of Figure 5.8. While the residuals generally behave similarly

between the three methods, in the case of low and medium energy windows, the EM method

generates larger residual errors for small thicknesses indexes; this is attributed to the fact that
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spectrum normalization constraint is not imposed in the EM solutions, which leads to errors in

the transmission curves when there is no object in the scan system (thickness index 1 in the figure

corresponds to the absence of an object). For high energy window, the three methods appear to

perform similarly in terms of predicting the transmission data, though the curves between the KL-

divergence approach and EM are more similar than the weighted KL-divergence. It is also worth

noting that the plots displayed in Figure 5.8 clearly show visible trends in the residual errors,

indicating the presence of systematic errors due to the unmodeled physics in the measurement

process. In particular, this suggests the need for employing more realistic modeling of physical

factors in order to account for the limitation of the method and enable more accurate and effective

spectrum estimation.

5.4 Alternating minimization based framework for simultaneous spectrum

estimation and image reconstruction

A recent development in detector technology has enabled the use of energy resolved photon-

counting detectors. Photon-counting detectors acquire spectral information for the scanned ob-

ject by separating incoming photons into pre-defined energy windows based on their energies.

Using this energy information in CT imaging, also called spectral CT imaging, can mitigate beam-

hardening artifacts and allows to estimate more than two basis material maps from the measured

counts data.

In this section, we explore the use of KL-divergence approach for spectrum estimation to al-

low for auto-calibration of the spectral response of the imaging system in the spectral CT image

reconstruction. Specifically, we incorporate unknown spectral components in the spectral CT data

model and formulate simultaneous image reconstruction and estimation of these spectral compo-

nents into the framework of alternating minimization. A simulation study is carried out to show

how the algorithm can be implemented on spectral CT data.
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5.4.1 Spectral CT data model

The spectral CT data model employed for the measured photon counts is given by

ĉw` = Nw`∑
i

sw`i exp

{
−∑

km
x`kµmi fkm

}
, (5.13)

where all the terms here are defined analogously as in (5.1), except that the density map fkm of

material m in pixel k is now unknown and the measurements are acquired for each energy window

w and each ray ` (here ` encodes different source and detector positions); x`k is the total length of

the intersection between ray ` and pixel k which can be calculated from the scanning configuration

of the CT scanner. For simplicity, we assume throughout this section that the spectral density

{sw`i} is independent of ray `, i.e. for each energy window w, the detector spectral response

is equal across the detector pixels encoded by `. Hereafter, we write {swi} to denote the x-ray

spectrum for energy window w.

In the idealized setting where the spectral components {swi} are known, the only unknowns

in the model (5.13) are the pixelized material maps { fkm}, and reconstruction algorithm deter-

mines these unknowns from noisy measured data {cw`}. In particular, the one step reconstruc-

tion approach directly estimates the basis material maps from photon counts data by inverting the

model (5.13),

f̂ = argmin
f≥0

DTPL(c, ĉ( f )) subject to ‖ fm‖TV ≤ γm, (5.14)

where the total variation norm ‖·‖TV reflects the fact that the images exhibit locally constant or

nearly-constant regions across pixels indexed by k. The transmission Poisson likelihood function

DTPL(·, ·) is again employed for data discrepancy function. The optimization problem (5.14) is

highly nonconvex, due to the nonlinear dependence of x-ray attenuations in the transmission model,

and thus standard convex optimization techniques do not apply. To resolve this issue, Barber et al.

[12] develops the mirrored convex/concave (MOCCA) algorithm, a nonconvex generalization of

the Chambolle-Pock (CP) primal-dual algorithm [73], which can handle the optimization problem

of the form (5.14). The details of the MOCCA algorithm are further explained in the next section.
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In practice, the spectral response of the detectors are affected by various physical processes

involved in a photon-counting detector and thus the spectral components {swi} are never known

exactly. Accurately calibrating the spectral response is an important task in the spectral CT image

reconstruction as mis-calibrated detector elements can lead to strong ring artifacts in the recon-

structed image. To account for such nonideal detector effects, we propose to calibrate the spectral

response while performing image reconstruction, to adjust for the incorrectly estimated spectra in

the spectral CT data model. Specifically, the optimization problem employed for simultaneous

recovery of the material maps { fkm} and the x-ray spectrum {swi} is

( f̂ , ŝ) = argmin
f≥0,s∈S

DTPL(c, ĉ( f ,s)) subject to ‖ fm‖TV ≤ γm, dKL(sw ;sini
w )≤ cw, (5.15)

where S indicates the feasible set of the x-ray spectrum for each energy window w, namely

S = {s : ∑i swi = 1,swi ≥ 0}, and cw > 0 is the KL-divergence constraint parameter. This prob-

lem is a natural extension of the one step inversion approach in (5.14) by jointly estimating the

unknown spectral response with the basis material maps. The KL-divergence constraint is placed

on the spectrum variables in order to capture important features of x-ray spectra and prevent over-

fitting to the measured counts. The initial estimates {sini
wi} can be obtained from previous direct

measurement of the spectrum, or from preliminary calibration step using transmission measure-

ments before conducting image reconstruction.

The optimization problem (5.15) fits within the framework of alternating minimization since

the TPL function can easily be minimized with respect to each variable while fixing the other vari-

able. In particular, we can alternate between updating the material maps { fkm} and the spectrum

variables {swi} at every iteration as:


For a fixed {swi}, take one step of the MOCCA algorithm to update { fkm};

For a fixed { fkm}, take one step of the EG algorithm to update {swi}.

In other words, given the current estimated spectra, the material maps are iteratively refined
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to find better images, while the update steps on the spectra components always reduces the data

discrepancy function as the minimization problem of (5.15) is convex with respect to {swi}.

5.4.2 An algorithm for simultaneous spectral calibration image reconstruction

We now derive each step of the alternating minimization algorithm for simultaneous spectrum

estimation and image reconstruction implemented in this chapter.

First, we fix {s(n)wi }. The problem (5.15) then reduces to the exact problem studied in [12] with

known x-ray spectra. Specifically, denoting L( f ) = DTPL(c, ĉ( f ,s(n))), it can be shown that L( f )

can be approximated by a quadratic convex function Q( f ; f0) = F(z;z0) at K f0 = z0,

L( f )≈ 1
2

f>K>DK f − f>K>(b+EK f0) := Q( f ; f0),

where the matrices K,D,E and the vector b depend on c and/or f (explicit formulas can be found

in [12]). Denoting F̃(z) = ∑m 1‖zm‖1≤γm
by indicator functions for the sparsity constraint of the

gradient images, the MOCCA algorithm invokes primal-dual algorithm on the problem with the

convex approximation F(z;z0) at the mirrored expansion point z(n+1)
0 = ∇yF∗(y(n),z(n)0 )

min
f≥0

max
y,ỹ
〈K f ,y〉+ 〈∇TV f , ỹ〉−F∗(y;z(n+1)

0 )− F̃∗(ỹ),

where ∇TV f denotes the gradient operator applied to each of the material maps, and F∗(y) and

F̃∗(ỹ) represent convex conjugates of F(z) and F̃(z), respectively. Therefore, at iteration (n+1),
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the iterations steps for MOCCA are given by

y(n+1) = argmin
y
〈K f̄ (n),y〉−F∗(y;z(n+1)

0 )+
1
2
‖y− y(n)‖2

Σ−1,

ỹ(n+1) = argmin
y′
〈∇TV f̄ (n), ỹ〉− F̃∗(ỹ)+

1
2
‖ỹ− ỹ(n)‖2

Σ̃−1,

f (n+1) = argmin
f≥0

〈K f ,y(n+1)〉+ 〈∇TV f , ỹ(n+1)〉+dT−1

KL ( f ; f (n)),

f̄ (n+1) = 2 f (n+1)− f (n),

where for a diagonal matrix W , we define dW
KL( f ; f ′)= ddiag(W )

KL ( f ; f ′) (see (5.12) for the definition

of the weighted KL-divergence). Here in the update step of f (n+1), the (weighted) KL-divergence

is used as the proximity term rather than the (weighted) `2-distance, which has the benefit of

automatically including positiveness in the material maps without explicitly enforcing the positive

constraints.

Next we fix { f (n+1)
km }. We directly solve the constrained problem (5.15) with respect to the

spectrum variables {swi} without relying on the equivalent regularized form as in (5.7), i.e.

Minimize {L(s) : swi ≥ 0,∑
i

swi = 1} subject to dKL(sw ;sini
w )≤ cw,

where L(s) = DTPL(c, ĉ( f (n+1),s)) denotes the TPL function at f = f (n+1). We use an iterative

algorithm based on the alternating direction method of multipliers (ADMM) [74], whose precon-

ditioned form is known to be closely related to the primal-dual algorithm [73]. Specifically, we

employ a slight variant form of ADMM, called Bregman ADMM [75], which is known to perform

well over the simplex S = {s : ∑i swi = 1,swi ≥ 0}. The Bregman ADMM yields the following
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iterations when applied to the above minimization problem:

s(n+1) = argmin
s∈S

L(s)+ 〈u(n),s〉+ρ ·dKL(s ;z(n))

≈ argmin
s∈S

〈∇L(s(n))+u(n),s〉+ρ ·dKL(s ;z(n))+β ·dKL(s ;s(n)),

z(n+1) = argmin
z
−〈u(n),z〉+ρ ·dKL(z ;s(n+1))+∑

w
1dKL(zw ;sini

w )≤cw
,

u(n+1) = u(n)+ρ(s(n+1)− z(n+1)).

Note that in the step for s(n+1), we approximately solve the sub-problem using the Taylor ex-

pansion at the current points and adding the proximity terms. The z(n+1) step can be updated

separately for each energy window w.

5.4.3 Simulation study

Here we implement the algorithm derived in Section 5.4.2 on simulated transmission measure-

ments to investigate the potential of calibrating the detector spectral response during image recon-

struction.

A pixelized two-material phantom from the FORBILD head phantom, shown in Figure 5.9, is

simulated based on the spectral CT data model (5.13). Each of the true material maps, bone and

brain maps, consists of 64×64 pixels and the linear attenuation coefficients for the corresponding

materials are obtained from the NIST attenuation functions [71]. The number of detector bins is

64. Further details on the simulation setup, including the scanning configuration, can be found

in [12].

The photon-counting detectors are simulated with two energy windows in the ranges of [20-

70] keV and [70-120] keV and each energy window exhibits different spectral response as shown

in Figure 5.10. We assume that the spectral response varies only with energy windows and are

otherwise same across the detector pixels. For the spectral CT data, the number of expected total

counts are set to 106 for each ray ` and 64 views are acquired for each detector pixel, giving a total
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Bone map Brain map

Figure 5.9: True bone and brain images shown in the gray scale window [0.9,1.1].
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Figure 5.10: Spectral curves used for CT simulations for energy windows of [20-70] keV and
[70-120] keV.

of 64× 64 measurements for each energy window. The Poisson noise is added in the simulated

counts data.

The image reconstruction is performed with bone and brain as the basis material maps. The

simultaneous estimation of the detector response and image values depends on the choice of con-

straint parameters γm and cw in (5.15). In this study, we fix the constraint parameters as the known

actual values as both the true material maps and x-ray spectra are available in the simulation study.

Further, the algorithm described in Section 5.4.2 needs to specify the tuning parameters, namely

the diagonal matrices Σ, Σ̃,T � 0 for the image reconstruction step and the step size parameters

ρ,β > 0 for the calibration step. We follow the same strategy of Barber et al. [12] for choosing

the diagonal preconditioners Σ, Σ̃,T � 0, while we fix ρ = 5 · 108 and β = 6 · 108 throughout the
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simulation.

Initialization of Bone map Initialization of Brain map

Bone map with true spectrum Brain map with true spectrum

Figure 5.11: The upper row of each panel shows the initialized maps that are fed into the MOCCA
algorithm. The lower row of each panel shows reconstructed material maps from noisy simulated
measurements. The x-ray spectra that generate the transmission measurements are assumed to be
known.

We first show the results for the ideal setting where we assume knowledge of the true x-ray

spectra that generate the transmission measurements, as shown in Figure 5.10. In this setting, the

MOCCA algorithm with TV constraints has been demonstrated to be effective even for undersam-

pling. We apply the MOCCA algorithm to solve the problem (5.14) while initializing the material

maps as depicted in the upper row of Figure 5.11. The reconstructed material maps from the two

energy window CT data are presented in the lower row of Figure 5.11. As seen in the figure,

the MOCCA algorithm accurately recovers the underlying structure of the true phantom material

maps. Figure 5.12 indicates that the algorithm has reached nearly convergence to the solution after

few thousands iterations.

Next we perform image reconstruction without knowledge of the exact distribution of spectral
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Figure 5.12: Plots of the transmission Poisson likelihood and difference between the TV values of
the estimated maps and the true material maps across iterations n = 0,1, . . . ,5000.

components, but prior information is available to capture important features of the x-ray spectra. In

particular, for each energy window, the initial x-ray spectrum is obtained by perturbing the corre-

sponding true spectrum, which are then used in the reconstruction formula (5.15) to simultaneously

determine the x-ray spectrum and the image values. For comparison, the MOCCA algorithm with-

out estimating the spectrum variables is also performed, for which the initial estimates are treated

as the truth throughout the iterations.

Figure 5.13 presents x-ray spectra estimated from the alternating minimization algorithm using

the initial estimates displayed in the figures. Multiple results are shown varying the initial estimates

employed for spectrum estimation. The reconstructed bone maps and brain maps that are estimated

simultaneously with the spectra are also shown in Figure 5.14 and Figure 5.15. As clearly seen in

the figures, the algorithm accurately recovers realistic estimate of the spectra and at the same time

reduce artifacts in the reconstructed images compared to the results without spectrum calibration.

Moreover, better reconstruction results are obtained when the initial estimate is more precise. This

is confirmed by visually comparing the recontruction results in the figures, and also by examining

the convergence behavior of the TPL function values shown in Figure 5.16, in which the algorithm

enters the near convergence region more rapidly if the employed initial estimate is closer to the

true spectrum. The qualitatively same behavior is also observed in the TV plot of Figure 5.17.
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Figure 5.13: Spectrum estimation from the measured transmission data using alternating min-
imization for simultaneous spectrum estimation and image reconstruction. The true spectrum
(green solid line) and the initial spectrum (yellow dotted line) are also displayed in the figures.
Each column represents each of the energy window sensitivity of the detector for varying initial
estimates.
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True bone map Bone map with true spectrum

Bone map with auto-calibration Bone map with uncalibrated spectrum

Figure 5.14: Reconstructed bone maps with and without spectral calibration. Each row corre-
sponds to the different initial estimates of the spectrum as shown in Figure 5.13. For comparison,
the true image and the reconstructed map with true spectrum are also displayed in the top panels.
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True brain map Brain map with true spectrum

Brain map with auto-calibration Brain map with uncalibrated spectrum

Figure 5.15: Reconstructed brain maps with and without spectral calibration. Each row corre-
sponds to the different initial estimates of the spectrum as shown in Figure 5.13. For comparison,
the true image and the reconstructed map with true spectrum are also displayed in the top panels.
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Figure 5.16: Plots of the transmission Poisson likelihood against iteration number for image re-
construction with and without spectrum calibration. Each row corresponds to the different initial
estimates of the spectrum as shown in Figure 5.13.
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Figure 5.17: Plots of the difference between the TV values of the estimated maps and the true mate-
rial maps against iteration number for image reconstruction with and without spectrum calibration.
Each row corresponds to the different initial estimates of the spectrum as shown in Figure 5.13.
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5.5 Discussion and conclusions

In this chapter, we have developed a constrained optimization problem for reconstructing x-ray

spectrum from transmission measurements through known thicknesses of known materials. The

proposed method places a KL-divergence constraint on the spectrum variable which improves

numerical stability of the inversion process and allows to incorporate prior knowledge on the spec-

trum. The formulated optimization problem is a convex program over the simplex, which we

propose to solve based on the exponentiated-gradient algorithm. Both numerical simulations and

experimental results show that the method can yield realistic x-ray spectra that can accurately

reproduce the spectral response of the CT system.

Here we emphasize two benefits of our approach relative to other methods. First, the proposed

approach using a KL-divergence constraint provides the benefit of interpreting spectrum determi-

nation from transmission measurements in relation to the maximum entropy principle. Second, our

formulation is a general optimization framework for spectrum estimation that can support differ-

ent data discrepancy functions and incorporate other desirable constraints on the x-ray spectrum.

More importantly, the flexibility of the method allows to easily incorporate the calibration proce-

dure in the framework of simultaneous spectral calibration and spectral CT image reconstruction.

In Section 5.4.3, we investigated the possibility of combining image reconstruction with the KL-

divergence approach in the simple alternating minimization based framework which is seen to

reduce artifacts in the reconstructed images. We hope that the work here may inspire future work

to build a general framework for auto-calibration of the spectral response of the imaging system

during the spectral CT image reconstruction.
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