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ABSTRACT

Statistical recovery in high-dimensional statistics and signal processing often requests a determi-
nation of multiple structured signals from massive data. And depending on its application, either
one or both of the signals may be of primarily interest. While most classical statistical techniques
focus on the recovery of a single signal with other parameters being pre-fixed, the recent advances
in mathematical and computational tools have facilitated the development of estimating multiple
structured signals simultaneously. This thesis details several such problems with different goals of
signal recovery.

Chapter 2 describes a low-rank + sparse decomposition problem under data compression and
we study rigorous statistical performance guarantee that is achievable using a joint convex opti-
mization based estimator. It is well known that the convex relaxation of the structural constraints
leads to a large bias on the strong signals, although it affords computationally tractable algorithms.
Chapter 3 develops a new notion of local concavity coefficients to directly handle nonconvexity
of structural constraints. Based upon these coefficients, Chapter 4 analyzes convergence of alter-
nating minimization when nonconvex constraints are placed on each of the variables. The theory
developed here is general enough to encompass a broad class of multiple structured statistical
models such as low-rank + sparse decomposition, multitask regression, and Gaussian factor model
under a single framework. Chapter 5 discusses a simultaneous framework for the calibration of
an imaging system and image reconstruction in CT imaging. As a preliminary work, an efficient

optimization-based approach is proposed for spectrum estimation.
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CHAPTER 1
INTRODUCTION

High-dimensional data are routinely faced in modern statistics, in which knowledge of the under-
lying structure of the parameter space is typically leveraged to allow for consistent estimation of
parameters. Complex data may exhibit multiple signals at the same time, each of which represents
different structures or components of interest. In this thesis, we will cover three scenarios involv-
ing multiple structured signals in the data, with different goal and perspective on signal recovery
for each of the scenarios.

Matrix decomposition is perhaps one of the most well known problems in high-dimensional
statistics where multiple structured signals naturally arise. In the matrix decomposition problem,
a data matrix is typically observed as a noisy realization of the sum of a low-rank matrix and a
sparse matrix (or variants of sparsity) and the goal is to simultaneously recover both components.
Problems of matrix decomposition are best motivated by the robust principal component analysis
(RPCA) problem, which seeks to separate low-rank trends from sparse outliers within a data ma-
trix [1], that is, to approximate a matrix D as the sum of a low-rank matrix L and a sparse matrix
S. For example, in video surveillance, if we stack the video frames into a matrix D, the low-rank
matrix L capture a background component, whereas the sparse matrix S capture the foreground
objects. Other examples include face recognition [1], factor analysis [2], latent variable graphical
model [3], among others.

In Chapter 2, we consider the robust principal component analysis problem under data com-
pression, where the data Y is now approximately given by (L+ S) - C, that is, a low-rank + sparse
data matrix that has been compressed to a size substantially smaller than the original dimension
via multiplication with a compression matrix C. Typical applications include data compression
for the purpose of preserving privacy or for reducing resources such as communication bandwidth
and storage space, and recovering a motion component from a background component in dynamic
MRI [4]. We propose a convex program for recovering the sparse component S along with the

compressed low-rank component L - C, and derive deterministic upper bounds on the error of this
1



reconstruction that scales naturally with the compression dimension m and coincides with existing
results for the uncompressed setting. We will also consider model errors introduced through addi-
tive noise or through missing data, under which non-asymptotic bounds on the reconstruction error
are derived in terms of dimension, compression, signal complexity, and noise magnitudes.

Various estimators for statistical recovery are based on minimizing a loss function (for exam-
ple, a negative log-likelihood) while constraining signals to the underlying structural constraints—
a method often referred to as a constrained (or regularized) M-estimator in the high-dimensional
statistics literature; here the loss function typically measures how well the model fits the data
while the constraint encourages desirable structure. Accordingly, much of the literature in this
area focuses on developing a computationally tractable algorithm for solving such optimization
problems. Computational issue concerning optimization becomes even more crucial as larger data
sets are collected in recent years. Although common constraints arising in high-dimensional statis-
tics are naturally nonconvex, such as sparsity, and low rank, many estimators are based on convex
relaxations of these structured constraints, such as the £; norm (as a convex approximation to spar-
sity) or nuclear norm (as a convex approximation of low rank). Working with a convex penalty
or convex constraint, as a proxy for the nonconvex structure of the variable of interest, allows for
easier optimization from both a theoretical and a practical point of view.

Further, in settings where multiple structures may be present simultaneously in the data, we
may need to optimize a function over several variables, which are each believed to exhibit some
latent structure. For instance, we seek to optimize both a low-rank term and a sparse term in the
compressed robust PCA setting in Chapter 2. Alternating minimization is a simple yet powerful
algorithm for solving this type of problem, in which we iteratively minimize the loss as a function
of one variable while the other variables are fixed. A large body of research has been devoted to
understanding the method under classical settings with convex constraints [5, 6]. In contrast to
optimization with a single variable which is now better understood in high-dimensional settings
(e.g. [7]), however, alternating minimization still lacks the corresponding theoretical justifications,

despite its superior empirical performance. For the special cases such as matrix factorization [8],



multivariate regression [9], and phase retrieval [10], a fast convergence rate (i.e. linear rate) has
been established.

In Chapters 3 and 4, we examine convergence of gradient descent, alternating minimization,
and other optimization algorithms in high-dimensional settings when the constraints are noncon-
vex. With the presence of nonconvex constraints, we may face an fundamental challenges that are
both theoretical and practical in nature. To handle nonconvexity arising from the constraints, in
Chapter 3, we develop the notion of local concavity coefficients of the constraint set, a measure
of the extent to which a constraint set violates convexity. The extent of violation can be seen as
a measure of “concavity” for the set, and thereby, this concavity coefficient naturally extends the
standard theory of projected gradient descent with convex constraints. Chapter 4 uses the con-
cavity coefficients as a tool to develop conditions for alternating minimization that allows for fast
convergence of the algorithm under nonconvex constraints. As a byproduct of our analysis, we
also show the computational gain inherent in the alternating minimization method, compared to
the non-alternating method.

Finally in Chapter 5, we turn to simultaneous spectrum estimation and image reconstruction
in CT imaging. Computed tomography (CT) is an imaging technology using x-ray beams to cre-
ate cross-sectional images based on the transmission measurements of the scanned objects from
multiple view angles. Due to the polychromatic nature of the x-ray beams, the x-ray spectrum,
which accounts for the energy spectrum of the x-ray radiation source and the detector response
across different energy values (detector spectral response), is typically unknown and needs to be
estimated when realizing CT imaging (also known as spectral calibration).

Reconstructing the x-ray spectrum from transmission measurements is a common strategy for
spectrum calibration. In this approach, the problem can be concisely written as a linear inverse
problem; solving such an inverse problem, however, poses challenges since the system matrix is
highly ill-conditioned which effectively leads to high-dimensionality of the spectrum relative to
transmission measurements.

To address this issue, in Chapter 5, we begin with designing a new regularization scheme for the



task of spectral calibration and derive a constrained optimization problem for accurately recovering
the x-ray spectrum from transmission measurements. We use the exponentiated-gradient (EG)
algorithm [11] to solve the optimization problem, which is seen to be efficient. While our focus
is mostly on spectrum estimation for given image values, the ultimate goal of this work will be
to simultaneously estimating x-ray spectrum and unknown images. This simultaneous framework
will allow for calibration of CT system and reduction of the image artifacts at the same time,
potentially enhancing diagnostic accuracy in real applications. We combine our spectral calibration
approach and previously developed MOCCA algorithm [12] for spectral CT image reconstruction,
and employ alternating minimization to perform simultaneous estimation on small size simulated

data. The result suggests promising research direction for further investigation.

1.1 Summary

A common theme underlying this thesis is to investigate statistical models with multiple structured
signals arising in different problems. We take many perspectives on estimating the signals depend-
ing on the circumstances. In Chapter 2, we consider the robust PCA problem where a data matrix
is compressed so that we have access only to the compressed data. In Chapters 3 and 4, our focus
is on investigating the performance of alternating minimization when nonconvex constraints are
placed on the variables. In Chapter 5, we work in the CT imaging where our goal is to eventually

realize the simultaneous image reconstruction and spectrum estimation algorithm.

1.2 Notation

Throughout we will use the following notation. We write [n] = {1,...,n} for any n > 1. We
write ||x||g or ||X||p to denote the number of nonzero entries in a vector x or matrix X (note that
this is not in fact a norm). X;, and X, ; denote the ith row and jth column of a matrix X (always
treated as column vectors) and X4p denotes the submatrix of X indexed by A x B. We We will

use the matrix norms ||X||g (Frobenius norm), ||X||; (elementwise ¢; norm), ||X||- (elementwise

4



foo norm), ||X||5 o, (largest row £, norm), ||X||sp (spectral norm, i.e. largest singular value), and
| X |lnuc (nuclear norm, also known as the trace norm, given by the sum of the singular values of
X). For a function f : R? — R, we write Vf and V2f to denote a gradient and a Hessian respectively.
Similarly, for a function f : RA*m R, we write Vf and V2f to denote a gradient and a Hessian

with respect to a vectorized variable. For p > 0, we use B (x,p) to denote the ¢»-ball of radius p

centered around x. For a set 7, we use Z7(-) to denote the Euclidean projection onto 7.



CHAPTER 2
LOW RANK + SPARSE DECOMPOSITION WITH COMPRESSED DATA

Principal component analysis (PCA) is a tool for providing a low-rank approximation to a data

matrix D € R"%d

, with the aim of reducing dimension or capturing the main directions of variation
in the data. More recently, there has been increased focus on more general forms of PCA, that is
more robust to realistic flaws in the data such as heavy-tailed outliers. The robust PCA (RPCA)

problem formulates a decomposition of the data,

D~L+S,

into a low-rank component L (capturing trends across the data matrix) and a sparse component S
(capturing outlier measurements that may obscure the low-rank trends), which we seek to separate
based only on observing the data matrix D [1, 13].

In this chapter,! we examine the possibility of demixing sparse and low rank structure, under

the additional challenge of working with data that has been compressed,

Y=D-Cx~(L+S)-CeR"™™,

where L, S € R"*4 comprise the (approximately) low-rank and (approximately) sparse components

of the original data matrix D, while C € R4*m

is a random or fixed compression matrix. In the
compressed robust PCA setting, we hope to learn about both the low-rank and sparse components.
Unlike compressed sensing problems where sparse structure may be reconstructed perfectly with
undersampling, here we face a different type of challenge: the sparse component § is potentially
identifiable from the compressed component S - C, using the tools of compressed sensing; however,

the low-rank component L is not identifiable from its compression L - C. Specifically, if we let

Pc e R*4 pe the projection operator onto the column span of C, then the two low-rank matrices

1. The work presented in this chapter is published in Ha and Barber [14].
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Land L' = L- 2 cannot be distinguished after multiplication by C.

Therefore, our goal will be to recover both the sparse component S, and the compressed low-
rank component L - C. Note that recovering L - C is similar to the goal of recovering the column
span of L, which may be a useful interpretation if we think of the columns of the data matrix D as
data points lying in R”; the column span of L characterizes a low-rank subspace of R” that captures

the main trends in the data.

2.1 Problem formulation

Consider the data, which takes the form of a n x d matrix, that is well-approximated by a sum
L* 4+ 8*, where L* is low-rank and S* is sparse. However, we can only access this data through a

(noisy) compression: our observed data is the n x m matrix

Y = (L*+S§%) -C+Z, @2.1)

where C € R9%M ig the compression matrix, and Z € R absorbs all sources of error and noise—
we discuss specific models for Z later on.

While we can aim to recover the sparse component S*, as we mentioned earlier, there is no
hope to recover the original low-rank component L*, since L* is not identifiable in the compressed
model. Therefore, we instead aim to recover the underlying compressed low-rank component

P* := L* - C and the sparse component S*. Specifically, our data model is now expressed as

Y=P"+S*-C+Z. (2.2)

In the ordinary robust PCA setting, the task of separating the low-rank and sparse components
has been known to be possible when the underlying low-rank component L* satisfies certain condi-
tions such as an incoherence condition as in [1] requiring certain bounds on the singular vectors, or

a spikiness condition as in [2] which bounds the matrix entries themselves. In order to successfully



decompose the low-rank and sparse component in the compressed data, we thus need the similar
conditions to hold for the compressed low-rank component P*. As we will see, if L* satisfies the
spikiness condition, i.e. ||L*[jcc < @, then the compressed low-rank component P* satisfies the
similar spikiness condition, i.e. a bound on |[P*C ||.. This motivates the possibility to recover
both the low-rank and sparse components in the case of compressed data.

We define our estimators of the sparse component S*, and the low-rank product P*, as follows:

PN , 1

@3~ agmin Iy PosCR VPl + 211 | 23
(PS)|IPCT l<ax

Note that we impose the spikiness condition ||PC " || < & on P, in order to guarantee good per-

formance for demixing two such superimposed components—Ilater in section 2.2, we will see that

the same condition holds for P*.

2.1.1 Related work

Existing methods to separate the sparse and low-rank components include convex [1, 13] and non-
convex [15] methods, and can handle extensions or additional challenges such as missing data [1],
column-sparse rather than elementwise-sparse structure [16], streaming data [17, 18], and different
types of structures superimposed with a low-rank component [2].

Random projection methods have been shown to be highly useful for reducing dimensionality
without much loss of accuracy for numerical tasks such as least squares regression [19] or low-rank
matrix computations [20]. Here we use random projections to compress data while preserving the
information about the underlying low-rank and sparse structure. Zhou and Tao [21] also applied
random projection methods to the robust PCA problem, but their purpose is to accelerate the com-
putational task of low-rank approximation, which is different from the aim of our work.

The most relevant work to ours is Mardani et al. [4] where they work directly with the com-
pressed model (2.2) without assuming the underlying data model (2.1). They are working in the

noiseless setting and prove exact recovery under restricted isometry condition on the compressed

8



matrix. While our results in this chapter are stated in terms of the original data, the same results
will hold without assuming the underlying model (2.1). In this regard, our work can be seen as
an extension of Mardani et al. [4] into the noisy setting with relaxed conditions (i.e. restricted
eigenvalue property). See the remark following Theorem 2.2.1 for a more detailed discussion of

this distinction.

2.1.2 Motivating examples

Here we illustrate several applications that involve data model of the form (2.1) and (2.2), along

with models for the compression matrix C.

Random compression In some settings, the original data naturally lies in R4 but is com-
pressed by the user for some purpose. In general, we think of the compression dimension m as

being significantly smaller than d, motivated by several considerations:

e Communication constraints: if the n X d data matrix consists of d-dimensional measurements
taken at n remote sensors, compression would allow the sensors to transmit information of

dimension m < d;
e Storage constraints: storing a matrix with nm many entries instead of nd many entries;

e Data privacy: if the data is represented as the n x d matrix, where n-dimensional features
were collected from d individuals, we can preserve privacy by compressing the data by a
random linear transformation and allow the access to database only through the compressed
data. This privacy-preserving method has been called matrix masking in the privacy literature

and studied by [22] in the context of high-dimensional linear regression.



In either case, we control the choice of the compression matrix C, and are free to use a simple
random model. Here we consider two models:

Gaussian model: the entries of C are generated as C;; N (0,1/m). (2.4)

Orthogonal model: C = +/d/m-U,
(2.5)

where U € RY*™ is an orthonormal matrix chosen uniformly at random.
Note that in each case, E [CCT] =1y

Deterministic compression In other settings, compression matrix cannot be controlled by the
user and is determined through observing the specific event or phenomenon. For instance, in
a multitask learning, if the unknown regression matrix is approximately low-rank + sparse, the
model can precisely be written in the form of (2.1) by taking the transpose: in this case, the
compression matrix C is given by the transpose of the design matrix.

Another example is dynamic MRI, where measurements are acquired in a temporal series in
order to resolve degradation of the quality of MRI due to respiratory motion [4]. Each image
comprises of a background component and a motion component, and the motion component often
admits a sparse representation under some dictionary D. If we stack the background component
and the motion component of the dynamic MRI frames into matrices, which we denote by L and

D - S, the scanned temporal sequences of images in the frequency domain can be written as
Y =~ ®(L+DS),

where @ is the partial FFT matrix consisting of a row subset of the full FFT matrix. Compare
to the model (2.2), where we replace Y and S with Y and ST, and use the compression matrix
C = (®D) . Then, if we set P = (®L) ", the measurement model for dynamic MRI can be treated
as a special case of our general model (2.2). For the purpose of dynamic MRI, since the motion

component is a major concern, it suffices to recover S and subsequently D - S, which coincides the

10



aim of this study. More examples, such as traffic anomaly detection and face recognition, can be

found in [4].

2.1.3 Sources of errors and noise

Next, we give several examples of models and interpretations for the error term Z in (2.1) and (2.2).

Random noise First, we may consider a model where the signal has an exact low-rank + sparse

decomposition, with well-behaved additive noise added before and/or after the compression step:
Y — (L*+S* +Zpre) 'C+Zpost, (2.6)

where the entries of the pre- and post-compression noise, Zpre and Zpost, are i.i.d. mean-zero
subgaussian random variables. In this case, the noise term Z in (2.1) and (2.2) is given by

Z= Zpre -C+ Zpost-

Missing data Given an original data matrix D = L* 4+ S*, we might have access only to a partial
version of this matrix. We write D¢, to denote the available data, where Q C [n] X [d] indexes the
entries where data is available, and (Dgq);j = D;; - 1;jcq. Then, a low-rank + sparse model for our

compressed data is given by
Y = DQ -C= (L*‘l'S}(z) 'C+Zmissing -C,

where Zpissing = LG — L*. In some settings, we may first want to adjust Dg before compressing
the data, for instance, by reweighting the observed entries in D¢, to ensure a closer approximation

to D. Denoting the reweighted matrix of partial observations by 139, we have compressed data

Y =Dg-C= (L*+S8) C+ Znissing - C: 2.7)

11



with Zpissing = Z’é — L*, and where :5’23 is the reweighted matrix of S3,. Then the error from the

missing data can be absorbed into the Z term, i.e. Z = Zyjssing - C.

2.1.4 Restricted eigenvalue condition

We state a version of the Restricted Eigenvalue property found in the compressed sensing and

sparse regression literature [23], which plays a key role in our analysis:

Definition 2.1.1. For a matrix X € R”*¢ and for c1,cp > 0, X satisfies the restricted eigenvalue

property with constants (c1,c¢3), denoted by RE,, 4(c1,¢2), if

1
og(d). I[v||1 for all v € RY. (2.8)

[Xv|l2 > cr|v]2—c2-

2.2 Theoretical results

Now we develop theoretical error bounds for the compressed robust PCA problem under several

of the scenarios described above.

2.2.1 Deterministic result

We first give a general deterministic result for the accuracy of the convex program (2.3).

Theorem 2.2.1. Let L* € R"*? be any matrix with rank(L*) < r, and let S* € R"*? be any matrix
with at most s nonzero entries per row, that is, max;||S% ||o <s. Let C € RYX™ be any compression
matrix and define the data Y and the error/noise term Z as in (2.1). Let P* = L* - C as before.
Suppose that c’ satisfies REm7d(c1 ,¢2), where ¢y :==c| —cp - \/W > 0. If parameters
(a,v,A) satisfy

00 > [|IL*CCT oo, v > 2|1 Z]|sps A > 2| ZC " [|oo + 40, (2.9)

12



~

then deterministically, the solution (13, ) to the convex program (2.3) satisfies
|P—P*||}+c3||S — S*||} < 18rv* +9cy 2snA’.

Remark on model assumptions It is worthwhile to mention that while Theorem 2.2.1 assumes
the underlying model (2.1), analogous results can be obtained without assuming (2.1) but only with
the model (2.2). In particular, if the spikiness condition holds for P*, namely||P*C " ||e < o, and
CT satisfies RE,, 4(c1,c3), under the same choice of parameters as in (2.9), the same error bounds

holds, as long as rank(P*) < r and max;||S [|p < s.

2.2.2  Results for random compression with subgaussian noise

We specialize our main result to handle scenarios of pre- and post-compression noise, given
in (2.6). We assume the compression matrix C is generated under either the Gaussian (2.4) or
orthogonal (2.5) model, and the noise matrices Zpre,Zpost are independent from each other and
from C, with entries

iid

id
(Zpre)ij ~ N(O, Ggre) and (Zpost )i ~ N(0, Ggost>-

For this section, we assume d > m without further comment (that is, the compression should reduce
the dimension of the data). Let Gr%lax > max{Ggre, Ggost}- Specializing the result of Theorem 2.2.1

to this setting, we obtain the following probablistic guarantee:

Theorem 2.2.2. Assume the model (2.6). Suppose that rank(L*) < r, max;||S% [|o <, and ||L*||cc <

. Then there exist universal constants c,c’,c"" > 0 such that if we define

dlog(nd) d(n+m) dlog(nd)

m

o =504 , V= 240max , A = 320max +4o,

13
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and if m > ¢ - slog(nd), then the solution (P,S) to the convex program (2.3) satisfies
~ ~ d
|P=PH IR+ IS =SE <= (Omax - rln+m) + (Oax + ) -snlog(nd))  (2.10)

with probability at least 1 — Z—Zl

We remark that if the entries of Zpre and Zpost are subgaussian rather than Gaussian, then the
same result holds, except for a change in the constants appearing in the parameters (a,v,A). Theo-
rem 2.2.2 shows the natural scaling: the first term r(n+m) is the degree of freedom for compressed
rank r matrix P whereas the term snlog(nd) is the signal complexity of sparse component S, which

2

has sn many nonzero entries. The multiplicative factor %Gmax can be interpreted as the noise

variance of the problem amplified by the compression.

2.2.3  Results for random compression with missing data

Next, we consider a missing data scenario where the original n X d matrix is only partially ob-
served. We first specify a model for the missing data. For each (i, j) € [n] x [d], let p;; € [0, 1] be
the probability that this entry is observed. Additionally, we assume that the sampling scheme is
independent across all entries, and that the p;;’s are known.2

Define reweighted versions of the partially observed data matrix and the low rank and sparse

components:

(Da)ij =Djj/pij- lijea and (Ld)ij=Lij/pij-Lijeq and (S3)ij = Sij/Pij- Lijeq

and consider the model (2.7), where Y is approximated with a compression of L* + S¢,. The role
of the reweighting step is to ensure that this noise term Z has mean zero. Note that, while the

original sparse component S*, is not identifiable via the missing data model (since we have no

2. In practice, the assumption that p;;’s are known is not prohibitive. For example, we might model p;; = o;3;
(the row and column locations of the observed entries are chosen independently, e.g. see [24]), or a logistic model,

log ( lfi/é,-,-) = o;+ f3;. In either case, fitting a model using the observed set Q is extremely accurate.

14



information to help us recover entries S}*j for (i, j) & Q), this new decomposition L* + :S‘VEZ now has
a sparse component that is identifiable, since by definition, 55 preserves the sparsity of $* but has
no nonzero entries in unobserved locations, that is, (55), = 0 whenever (i, j) € Q.

With this model in place, we obtain the following probabilistic guarantee for this setting, which

is another specialized version of Theorem 2.2.1.

Theorem 2.2.3. Assume the model (2.7). Suppose that rank(L*) < r, max;||S% [|o <5, and ||L*||cc <
Q. If the sampling scheme satisfies p;j > Pmin for all (i, j) € [n] x [d] for some positive constant

Pmin > 0, then there exist universal constants c,c’,c”" > 0 such that if we define

dlog(nd) 1 dlog?(nd)

o , A=12p . 0

. ao\/d(n—I—m) log(nd)

S50 , v=10p_ - +4a,

m

~

and if m > ¢ - slog(nd), then the solution (P,S) to the convex program (2.3) satisfies

~ ~ o~ d
||P—P*H|2: - ||S—S§H,2: < - P2 ch (r(n+m) log(nd) —|—sn10g2(nd)>

min

with probability at least 1 — fl—:;

2.3 Empirical results

Now we use simulated data to study the behavior of the convex program (2.3) for different com-
pression dimensions, signal complexities and missing levels. We generate the compression matrix
C under the orthogonal model (2.5). We solve the convex program (2.3) via alternating minimiza-
tion over L and S, selecting the regularization parameters v and A that minimizes the squared
Frobenius error. For simplicity, in all experiments, we select & = oo, which is easier for optimiza-
tion and generally results in a solution that still has low spikiness (that is, the solution is the same

as if we had imposed a bound with finite ¢¢). All results are averaged over 5 trials.
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Figure 2.1: The total squared error, calculated as in Theorem 2.2.2, is plotted against the compres-

sion ratio d/m.
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Figure 2.2: The total squared error, calculated as in Theorem 2.2.2, is plotted against the rank r or
sparsity proportion s/d.

2.3.1 Compression ratio.

First we examine the role of the compression dimension m. We fix the matrix dimension n =

d € {400,800}. The low-rank component is given by L* = \/r-UV T, where U and V are n x r

and d x r matrices with i.i.d. N(0, 1) entries, for rank r = 10. The sparse component S* has 1%

of its entries generated as 5-N(0,1), that is, s = 0.01d. The data is D = L* + S* 4+ Z, where

iid

Z;j ~ N(0,0.25). Figure 2.1 shows the squared Frobenius error ||13—P*||% + 15— S*H% plotted

against the compression ratio d/m. We see error scaling linearly with the compression ratio, which

supports our theoretical results.
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Figure 2.3: The total squared error, calculated as in Theorem 2.2.3, is plotted against p (proportion
of observed data) or against 1/ pz, for various values of m, based on one trial.

2.3.2 Rank and sparsity.

Next we study the role of rank and sparsity, for a matrix of size n = d = 200 or n = d = 400.
We generate the data D as before, but we either vary the rank r € {5,10,...,50}, or we vary the
sparsity s with s/d € {0.01,0.02,...,0.1}. Figure 2.2 shows the squared Frobenius error plotted
against either the varying rank or the varying sparsity. We repeat this experiment for several dif-
ferent compression dimensions m. We see a little deviation from linear scaling for the smallest m,
which can be due to the fact that our theorems give upper bounds rather than tight matching upper
and lower bounds (or perhaps the smallest value of m does not satisfy the condition stated in the
theorems). However, for all but the smallest m, we see error scaling nearly linearly with rank or

with sparsity, which is consistent with our theory.

2.3.3 Missing data.

Finally, we perform experiments under the existence of missing entries in the data matrix D = L* +
S*. We fix dimensions n = d = 400 and generate L* and S* as before, with » = 10 and s = 0.01d, but
do not add noise. To introduce the missing entries in the data, we use a uniform sampling scheme,
where each entry of D is observed with probability p, with p € {0.1,0.2,...,1}. Figure 2.3 shows
the squared Frobenius error ||P — P*H% +S- % H|2: (see Theorem 2.2.3 for details) across a range
of probabilities p. We see that the squared error scales approximately linearly with 1/ p2, as

predicted by our theory.
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2.4 Proofs

2.4.1 Background

First we introduce a few definitions using the decomposability of the £; norm and the nuclear norm.
Let Q C [n] x [d] be the support of the true sparse component S*, and let Q; C [d] be the i-th row

of Q,ie. Q;={j: S;(j # 0}. Let T be the tangent space to the nuclear norm at P*, which is given
by [1]
T={AV' +UB" : any matrices A € R"" B € R™*"},

where P* = ULV | is a singular value decomposition of P* with U € R" " and V € R™*". It is

known [23] that, for any S € R"*d_for each row i € [n],

17l = Uil < 1S = %)yl = (S = S%)igae 1 (2.11)
which trivially yields

IS*[11 =181y < | Za(S =)l = |2 (S =), (2.12)

where Zq () and 9”5 () denote projection onto the subspace of matrices supported on €, and onto

the orthogonal subspace. Furthermore for any P € R"*"",
1P lnue = I1Pllnue < |27 (P = P*)llnue = | 27 (P = P*) [lnuc, (2.13)

where () and 3”%() denote projection onto the subspace 7 C R"*"™, and onto its orthogonal
complement 7. Throughout, we will use the facts that |M||nuc < || 21 (M)|Inuc + | Z# (M) ||nuc

and similarly |M||; < || P (M)]; + ||<@é (M)||; without comment.
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2.4.2  Proofs of Theorems

Proof of Theorem 2.2.1. By optimality,
1 ~ =~ ~ -~ 1
Y = P=SCIE+V[[Plae +A[IS||1 < 5[Y = P* = S*GIE+VIIP*luc +A[S*[1 - (2.14)

Define errors A” = P — P* and AS = § — S*. Using our model (2.2) for Y, and applying (2.12)

and (2.13), we rearrange terms to obtain

S8+ 85CI2 < (2,87 +-850) v (| 21 (&) e — | 24 (& e
+ 2 (12a@) - |25 @) )
<1Zlsp- 187 nae + 12C T Nl 18511 +v (12 (&) e — .28 (A7) e
+2 (12a@)lh - 125 )
<127 () eV + [ Zl1sp) = 12 (&) e (v = | Z1lsp)

T 1 T
+ P (@)1 (A +[1ZC T |eo) = | 25 () 11 (A — 1 ZC T [|oo) -
Now we consider the left-hand side. We have

1 1 1
5187+ AClE = S A [F+ S IA°CIE + (47, 4C)
T
> SN IR+ SIACIR — 47CT o S0

SLowe
Sl ||F+—||ASC||F 204y ,

where the last step uses [[A’CT ||eo < |[PCT [0 + [|P*C T [|oo < 20t by the assumption ||[P*C T [|eo <

o (2.9) and the constraint |PC " || < o in the optimization problem (2.3). Including this into the
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work above, then,

1 1
SI8°1R + S IACIE < 1277 (&) luc(v + 1Zllsp) = 277 (&) luc (v = [|Zlsp)
+12a(®) 1A+ 12CT [l +20) = |25 (&) |1 (A = 1 ZC " o —20)

< V(15[ 27 (&) nue = 0.5] 27 (A7) |nue) + A (15[ Za (&)1 = 0.5| P (&)]1) . (2.15)

where the last step uses the assumptions (2.9) on the parameters (@, v,1).
Next, we need to use the restricted strong convexity assumption on C. First, we consider the
rows of S individually. Fixing P, we note that the optimization problem (2.3) separates over the

rows of S ignoring the term v ||I3 ||nuc which is constant with respect to S, we have

1 S G2 Q 1 = TS 12 S
1Y =P=SCIR+ 1Sl = £ (515~ B~ CTSuIB+ 21511
l
Therefore, §,* is the minimizer of the term in parentheses, for each i, and in particular we have
1 fy o _ 1 A~
7 ¥ = P —C 85+ A8kl < 5 ¥ = P —CTSEIB+ALSE -

Rearranging terms and applying (2.11), we get

LT 2 5 AT
SICT i = SEIIB < (Vi — P =T 55, 8%) + 2 (1155, 1 — 1830 1)

D T S S S
< N1C i =P = C Sl 1AL 1 2 (g, I — 14301 ) -
We also have
IC(Yix — P — CTSE) oo = |C(Zis — (P = P) i) [Joo < (Z— (P = P*))C [|oa

<|1ZC |eo + IPC oo + | P*CT oo < |1ZC T [|oo + 200 < 4/2,
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by the assumption (2.9) on A. Combining this with the above, we then have
SICT A% 13 < A (1585, I~ 05185 1)
and since the left-hand side is nonnegative, we therefore have
4501 < 30145, 11

that is, for every row of the sparse matrix, a substantial portion of the #; norm of the error is located

on the correct support. Therefore,
S S S
|83 = [1&3ge 11 + 1A%, 11 < 4l1a%g, It < 4v/5lI&kg, ll2 < 4v/5A% 12

where the next-to-last inequality holds because |€;| < s by assumption on the sparsity of the row

S7.. Next, by assumption of the theorem, C' satisfies RE,, 4(c1,¢2). We then have

log log
AL > erlladlle 2/ S L > ( ey a5y 2B )>HA lo=coll &Il

where the last step uses the definition of ¢ in the theorem. (Recall that ¢y > 0 by assumption.)

Summing over the rows, we then have
S 12 T AS S
IACllz =} lIC A; \|2>ZCoHA I3 = G IAIIE - (2.16)
4
Now we return to (2.15) and plug in our result in (2.16), to obtain
2

L2 €0 aS) 2

—||IA —[|A

18712+ 2%

< V(15127 (&) [nue = 0.5(| 27 (87) [nuc) + A (1.5]| P (&) |1 = 0.5]| P (&) 1) -
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Removing negative terms from the right-hand side and multiplying by 2,
14717 + G IA°1IF < 3vI 27 (A7) Inue + 32 P (&)1 -

Since rank( 27 (AP)) < 2r by definition of T, and similarly since || Zq(A%)||¢ < sn by definition

of Q, we have

I8 1F + IR F < 3vII2r () |[F - V2r + 32| Po(&)[[f - v/on

< 3V[|A°||p - V2r + 30| &g - sm

< \JIAPI12 + BISIZ - \/18rv2 4 9cy 2snA2
where the last step uses the Cauchy-Schwarz inequality. In particular, this implies that
18P + 31851 < 18rv2 +9c5 2snA? |

which proves the desired result.

]

Proof of Theorem 2.2.2. This result is a straightforward application of Theorem 2.2.1. It will be

sufficient to check that, with the stated probability, the following statements all hold:

16slog(d
CT satisfies RE,, 4(c1,ca), with cg i= ¢ — ¢a 16slog(d) _ 2.17)
’ m
and
00> |IL*CCT oo, v > 2|1 Z]lsp, A > 2||ZC " ||oo + 4. (2.18)

To prove that (2.17) holds, the following lemma is sufficient (along with the assumption m >

c-slog(nd)):

Lemma 2.4.1. Under either the Gaussian model (2.4) or the orthogonal model (2.5) for the com-
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pression matrix C, for any 8 >0, C" satisfies RE,, 4(c1,c2) for constants

1 9

l=——+—

and ¢y =
42 +/2) 2T 212

with probability at least 1 — c’e™ ™, where c,c’ > 0 are universal constants.

To prove (2.18), we consider the first inequality by treating L* as fixed and analysing the

random model for C:

Lemma 2.4.2. Under either the Gaussian model (2.4) or the orthogonal model (2.5) for C, for any

fixed matrix L* € R and fixed § > 0, if m > 161log(nd), then

16d1 d 4
IP’{HL*CCTHOO > |L*[|eo- (1 + M) } <=,
m nd

For the second and third inequalities in (2.18), we first have the following bound on C:

Lemma 2.4.3. Under either the Gaussian (2.4) or orthogonal (2.5) model for C, with probability

at least 1 — 2de_m/8,

ICllsp < v/12d/m and ||C|z.00 < 2.

Next, we consider C as fixed and analyse the random model for the noise terms Zpre and Zpost
(we can treat C as fixed since the noise is generated independently from C). Fixing C, the rows of
Z = ZpreC + Zpost are i.i.d. draws from the distribution N (0, GgreCTC + Ggostlm)- Then, writing

— a2 T 2
Y = 0preC ' C+ Oposikim, we have

—1
1Zllsp < 1Z- =7 lsp - /IZllsp < 3V tm-/[|Ellsp

with probability at least 1 — e~ ", where the last step uses the fact that Z - Y2 is a n x m matrix

with i.i.d. standard normal entries, and applies [25, Theorem I1.13]. Furthermore,

2
2 2 2 2
[Zlsp < OprellClIZy + Opost < Omax - (124 /m+1) < (40maxy/dfm)
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where the last step follows from Lemma 2.4.3. Combining these steps,
1Zllsp < 126maxV/n+m-\/d/m.
Next, we need to bound [|ZC " ||. Note that the entries are distributed as
(ZCT)ij ~N(0,05(CCTCCT) jj+ om0 (CCT) )
and this variance term is bounded as

2 T~T 2 T 2 Tl T 2 T,-T
Gpre(CC cC )jj—l—Gpost(CC )jj:Gpreej cc cc ej—f—crpostej ccC e

2
< 0 (113 +1) 1€ €13 < 0y (124 /m+1)-22 < (80max/d/m)

where the last step follows from Lemma 2.4.3. Therefore, using standard tail bounds on the normal

C . . .y 2
distribution, with probability at least 1 — v

1ZC T ||oo = max (ZC");j| < 86max\/d/m-2/log(nd) .

]

Proof of Theorem 2.2.3. This result is another immediate consequence of Theorem 2.2.1, with 56
in place of $* (note that max;|(Sg)i«|lo < max;|[S%[lo < s by assumption) . Since the restricted
eigenvalue property and the condition & > ||L*CC T || follow from Lemma 2.4.1 and Lemma 2.4.2
respectively, it is sufficient to check that, with the stated probability, the following statements both
hold:

v >2|Z|lsps A > 2|1 ZC " ||oo + 40, (2.19)

where Z = (Z}‘z —L*) - C as defined before. Let B;; S Bernoulli(p;;) be an indicator variable for
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(i,]) € Q, that is, for whether we observe entry (i, j). Then we can write Zzz as
~ Bij
(LQ)ij = —Lj;
pl]

for each (i, j) € [n] x [d], and so Z can be written as

B
Z:Z(l— >-E,-j (2.20)
ij \Pij

where E;; = ij . e,-C;-l; € R"™™, and where e; € R" is the i-th standard basis vector and C},, € R
is j-th row of the compression matrix C. To prove the first inequality in (2.19), we consider C as
fixed and analyse the random model for B;;’s. We first have the following bound on the sum of

random scalars times fixed matrices:

Lemma 2.4.4 (Adapted from [26, Theorem 4.1.1]). Let Ay,...,A[ € RAXD2 pe fixed matrices,
and let By, ...,By be independent mean-zero random variables, such that for each ¢ =1,... L, By
is Gz-subgaussian, that is,

E [eth] < ecztz/zfor allt e R.

Then

d

To apply Lemma 2.4.4 to the error term expression Z in (2.20), we first show that the random

2

202 maX{HZIg‘:lAKAgTHSp, Hzlg;lAZAEHSp}

L
Y B > t} < (d1 +dy)exp
=1 sp

scalar, defined by

is 02-subgaussian with 62 = 2u? for all (i, j) € [n] % [d]. To see this, first note that E [E,-j} =0
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and |§,~j| is bounded by  for all (i, j) € [n] x [d]. If |f] > (2u) ™!, then

B |:el‘§l‘ji| <E {e(2u2;2+§,-2j/2u2)/2} _ MR {65%//%1 < o2 1/4 < S22t

where the last inequality holds due to |¢| > (2u) 1. If || < (2u) ™!, we have |t§,-j| <'1/2, and so

. N 2R | B2,

E[Bi] <1+m[By| +28 [B] =1+ 28 [B] < 5 <
where the first inequality follows from the fact that & < 1+ x+ x2 for |x| < 1/2. Therefore, we
apply Lemma 2.4.4 to the error term expression (2.20) so that, with probability at least 1 — % (with

respect to the randomness of the B;;’s),

|1Zljsp < | 4p4? max { I EES sp. HZE;EinSp} log (nd - (n+m)).
ij ij

Next, we derive the probabilistic bound on max { 1% EijE;; Isps 1Xi E; EinSp}- We first state

the following bound on C:

Lemma 2.4.5. Under either the Gaussian (2.4) or orthogonal (2.5) model for C, with probability

at least 1 —2e¢™ ",

|Cllsp < V/12d/m and | Cl¢ < /3 .

Direct calculation shows that

d

T 2142 2 12

1Y EijEijllsp = max (Z 1€ ll2L5; ) <o -[IClE
7 =

and

I 2 T 2 2
HZEijEinSP = ”ZL?] Cj*cj*Hsp < o 'I’ZHCHSP.
1 ij
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Then, applying Lemma 2.4.5, with probability at least 1 —2¢~",

T T 2 2 2 2 ,d(n+m)
maX{HZEijEij Isp ||Z,EijEij||Sp} <0 maX{HC“PnHCHsp} <oy 12—
ij ij

In total, we have with probability at least 1 — %,

d(n+m)

1Z]lsp < pog /48 log (nd(n+m)) .

Since m < d, we can write log(nd(n +m)) < log(nd(n+d)) < max{log(2n*d),log(2nd?)} <

2log(nd), where we assume n,d > 2 to avoid triviality. So,

din+m
12l < 10n001) L g 21)
Next, we need to bound on ||ZC T ||«. Note that
T T T T T T
1ZC " oo = (L = L7)CC " |loo < LG = L¥lleo + [[(L = L")HCC " —1g) oo -

By our assumptions, we can immediately bound ||Zf2 — L*||c < noyp. Next consider the term
I (Z’f2 —L*)(CC" —1;)||eo. We first consider C as fixed and analyse the random model for B; j’s.

The (i,)-th entry of (ZfZ —L*)(CCT —1,) can be written as
T T n T
(Lo -r)(cc” —1)| =Y Bij-Li(cCT —Ly)j.
J

which is mean zero random scalar and bounded above by [.LOCOHCCT —1I||e. Therefore, apply-
ing Hoeffding’s Lemma and union bound, with probability at least 1 — % (with respect to the

randomness of the B;;’s),

1Lt~ L)(CCT — 1)l < 1/ 2d (0 + 0202 [CCT — 1|2 log (2n2d?) . (2.22)
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For the bound on ||CC T — I/, we have the following result:

Lemma 2.4.6. Under either the Gaussian (2.4) or orthogonal (2.5) model for C, with probability

4
at least 1 — wd’
241og (nd)

CC" — 1| <
I dlleo < p

Combining (2.22) with Lemma 2.4.6, we have with probability at least 1 — -7,

dlog (nd)log (2n2d>2 dlog?(nd
HZCTHoogmao\/ og (nd)log 2n°d7) _ 1, gy [ 4108 (1)
m m

2.4.3 Concentration lemma

We first state a concentration result under the Gaussian model (2.4) or the orthogonal model (2.5):

Lemma 2.4.7. Under either the Gaussian model (2.4) or the orthogonal model (2.5), for any fixed

vector w € R and any € > 0,

CTwl2 C w3
p{w_1>g}gexp{—%-min{s,ez}},ﬂp{w—l<—£ Sexp{—%ez}.

[Iwl|3 [Iwl|3
(2.23)
Proof. Under the Gaussian model,
w3,
w3 "
and therefore, by the xz tail bounds of [27, Lemma 1], for any ¢ > 0,
IC w3 2 lIC llcTwli3
P m-—>m+2\/ t+2ty<e and P <m—2vVmt p <e
w3 w3
Setting t = mm{s £ } we obtain the desired result (2.23). Next, turning to the orthogonal

model, we have G = \/; .U where U € R9*™ ig an orthonormal matrix chosen uniformly at
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random. Let v € R be a random unit vector. Then U Tw||% is equal in distribution to v% +ot v,%1.

In this setting, [28, Lemma 2.4] states that, for any 0 < By < 1,

P{v%+~~+v,2n <Bo§} Sem{%(l—ﬁoﬂog(ﬁo))}

and for any B > 1,

P{d+ o td> B0} <exp {5 (1= By +1og(B)) }

- 2
Next, set B; = 1 + €. Then, since for all x > 0 we have log(1 +x) <x— % then
min{e, &} min{e, e?}
1= By log(By) < 1~ (1+8) 4o~ e ) - IMEET

Therefore,

cTwl2
P{M > 1+8} gexp{—%-min{e,ez}} .

w3

I w3
Iwll3

Next we want to bound the probability of the event < 1—e¢. If € > 1 then trivially this

cannot occur. If instead € < 1, then we set fy = 1 —é&. Since log(1 —x) < —x— %2 forall 0 <x <1,

we have
e &
1= Bo-+log(Bo) = 1 - (1-) e~ 5 ===,
2 2
and so
CT 2
P w <l—¢€ §exp{—ﬂ-82} .
Iwliz 4
This is sufficient to prove the desired bound. 0

2.4.4  Proofs of supporting lemmas

Proof of Lemma 2.4.2. Set € = %‘g(nd) and note that € < 1 by assumption. For each i € [n],
define the unit vector v; = ﬁ (treated as a column vector). Now fix any i € [n] and any j € [d].
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Then
(reeT), =il ovi cCTe; = [Lila- g (1€ ti+e)I - ICT (ti=e)IB)

By Lemma 2.4.7, with probability at least 1 — 4e*m82/ 8,

IcT (vi—e))l3

vi —ejl13

ICT (vi+e))|I3
vi+ej|3

—l‘ge and —l‘ge.

If these bounds hold, then

1
T T T
(LrecT), =il (1T vitep) B~ T (vi—e))I3)
1 2
< il ((+€) Ivitel3—(1-e)- Ivi—ej13)
1
=gl 5 (Wit ejI3 = Ivi—ej13) +& (Ivi-+ejl3 + Ivi—e/13) )
1
=l 5 (4tvives) +2 (23 +2le;13))

=IL% N2~ ((viej) +€)  since [[villo = lejll2 =1

= (L€

l>(<’

i) +elLfll2 by definition of v;
= L +e|ILi |2

< ||| (1 +s\/3> .
Using the same arguments, the same bound holds for —(L*CCT);; j» and therefore,

’(L*CCT)I'J'

< Il (14£VA)

Applying the union bound over each i € [n] and each j € [d], we see that

|IL*CC T ||oo < ||L*||oo(1 + V)
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with probability at least

2
16log(nd 4
| —nd-4e M€ /8 — 1 _4ndexp %( M) =1-—.
m

]

Proof of Lemma 2.4.3. First we treat ||C||sp. Under the orthogonal model,

Cllsp < /d/m triv-
ially, while under the Gaussian model for C (2.4), ||C||sp < \/d/m(2+V/2) with probability at least
1 — e~ by again applying [25, Theorem II.13]. Next consider ||C||2 .. = max;—1 ,m,d||CTe,-||2. For
each i, by Lemma 2.4.7,

P{HCTeJ-H2>2} <e M8,

Therefore,

P{|[Cllpe >2} <d-e™/3.
]

Proof of Lemma 2.4.4. [26, Theorem 4.1.1] proves this exact statement for the special case that
either By N (0,1) (Gaussian variables) or By ig {£1} (Rademacher variables). To see why the
statement holds in this more general case, we observe that for Corollary 4.2 in Tropp, the distribu-

tion of the B/’s is used only once: to prove the bound

E [ ethA} < JSA%)2
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for each ¢ and for any fixed Hermitian matrix A. For the general case, take a fixed Hermitian matrix

A, with A = QAQ' its eigendecomposition. We have

E [efBﬁA} —E [eQ'(fBeA)'QT}

= Q-diag{E [etBM’} 1ol
< Q-diag{e” "4 /%) T
_ (Q(0’7N?/2)-07

2,242
:thA/Z‘

Therefore, this is sufficient to see that Corollary 4.2 of Tropp holds in this case also. [

Proof of Lemma 2.4.5. The result for ||C||sp follows from Lemma 2.4.3. Next consider ||C |||2: Un-

C||2 = tr(CTC) = d holds. Under the Gaussian model for C, we note

der the orthogonal model,

that HCH,Z: ~ éd/m. By the x tail bounds of [27, Lemma 1], we have
]P’{HCH% 2d+2\/3+2} <o,

Since 3d > d +2+/d + 2 for d > 1, with probability at least 1 — e, we have HCH,Z: < 3d. O

Proof of Lemma 2.4.6. This result is the consequence of Lemma 2.4.7 and union bound. Set € =

241og(nd)
m

and € < 1. By Lemma 2.4.7, with probability at least 1 — 26*’"82/8, fori = j,

1 T
(cCl —1y)ij=¢/ (CC" —Ty)e; = Z(||CT(e,- +e)l3—C" (ei—e))l3)

2 2
< g((I+e)llej+ejlly—(1—-¢)lle;—ejll) <e.

FN.

The same bound holds for —(CCT —1y); j 1f we use the same arguments, and so with probability
at least 1 —4e‘m82/8,

(cCT —1y)ijl <e.

32



For i = j, applying Lemma 2.4.7 again, with probability at least 1 — 2e—me/ 8
T T T T 2
((CCT —1g)ij| = le; (CC" —Tg)ej| =[|C ejll;—1]<e.

Applying the union bound over each (i, j) € [d] x [d], we have that

241og(nd)

m

ICCT =1 e <

with probability at least | —4d2e™m€*/8 > 1 - 4 0

Proof of Lemma 2.4.1 (restricted strong convexity). First, for the Gaussian model (2.4), by [29,

Theorem 1], for universal constants ¢, ¢’ > 0,

log(d)

1
P { 1€ xll2 = 7l =9 Ix]| for all x € R} >1—clemem

N, 1/m),

Next, we turn to the orthogonal model (2.5). Let H € R4X™ be a matrix with H;;
letH=UDV | beits singular value decomposition, and without loss of generality take C = \/% U
(since H is rotation invariant and so U is uniformly distributed over the space of uniform matrices,

this satisfies the orthogonal model (2.5)). Then for any x € RY,
T.12 T.112 2 T 112 2 m T.12
|H x[|z =[[VDU x||5 < ||VD|||lU x”2:”H”sp'z'HC x5
cm

By the work above for the Gaussian model, with probability at least 1 — ¢’e=<",

x| forall x e RY

1 log(d
15l > sl 9y P&
m

and by [25, Theorem II.13], with probability at least 1 — e~ ",

d 2m d
<./2 Y ,
[Hlsp < (/= +1+1/= _\/m(2+\@>
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Combining all these bounds, with probability at least 1 — /e ™™ — e~ > 1 — (¢/ +1)e~ min{e.1}m,

for all x € Rd,
1 log(d
ICTxly > — L ce(d)

9
X2 — XIl1 -
PErRvET AR vy, A

Clearly, this statement holds also for the Gaussian model as well (since this is a strictly weaker

result than the one stated above.)
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CHAPTER 3
CONCAVITY COEFFICIENTS FOR A NONCONVEX SPACE

A convex relaxation is a common technique in many applications with high-dimensional data, and
enables consistent estimation of signals from fewer measurements than the ambient dimension.
Examples include the /| norm and nuclear norm as a proxy to sparsity and low rank, which we have
seen in the compressed RPCA setting of Chapter 2. While estimation via convex relaxations often
enjoys near-optimal sample complexity and global convergence guarantee [30], there also exists a
well-known tradeoff between shrinkage and bias in the accuracy in which convex relaxations lead
to increased bias of the large signals. Nonconvex optimization can avoid such loss of accuracy,
but now we are faced with the possibility of becoming trapped in a local minimum or failing to
converge.

As a first step to study nonconvex optimization algorithm over multiple signals, this chapter1
explores local geometric properties of a nonconvex constraint set 4" and develops local concavity
coefficients, characterizing the extent to which %’ is nonconvex relative to each of its points. These
coefficients, a generalization of the notion of prox-regular sets in the analysis literature, bound
the set’s violations of four different characterizations of convexity—e.g. convex combinations of
points must lie in the set, and the first-order optimality conditions for minimization over the set—
with respect to a structured norm, such as the ¢; norm for sparse problems, chosen to capture the
natural structure of the problem. As we will see later on, these multiple notions of nonconvexity are
in fact exactly equivalent. The local concavity coefficient allow us to characterize the geometric
properties of the constraint set % that are favorable for analyzing the convergence of projected

gradient descent.

1. The work presented in this chapter is published in Barber and Ha [31].
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3.1 Global concavity coefficients

Consider the constraint set € C R?, and we quantify the concavity of % by describing the extent
to which the constraint set 4" deviates from convexity. Concretely, we consider four properties
that would hold if 4 were convex, and define the (global) concavity coefficient of %, denoted
Y = v(¥), to characterize the extent to which these properties are violated. Since we are interested
in developing flexible tools for high-dimensional optimization problems, several different norms

will appear in the definitions of the concavity coefficients:

e The Euclidean ¢, norm, ||-||,. Projections to & will always be taken with respect to the ¢

norm. If our variable is a matrix X € R"*"_ the Euclidean £, norm is known as the Frobenius

norm, [[X |[F = 4 /¥i; X7

e A “structured” norm |-||, which can be chosen to be any norm on R¢. In some cases it
may be the ¢, norm, but often it will be a different norm reflecting natural structure in the

problem. For instance, for a low-rank estimation problem, if ¢ is a set of rank-constrained

matrices then we will work with the nuclear norm, ||-|| = ||-||nuc. For sparse signals, we will
instead use the £; norm, ||-|| = [|-]|;.
e A norm ||-||*, which is the dual norm to the structured norm ||-||. For low-rank matrix prob-

lems, if we work with the nuclear norm, ||-|| = ||||nuc, then the dual norm is given by the

spectral norm, ||-||* = ||-||sp. For sparse problems, if ||-|| = ||-|| then its dual is given by the

loo norm, [-[* = |[-le.

When we take projections to the constraint set ¢, if the minimizer P (z) € argmin, ¢ ||x —z||2
is non-unique, then we write Z (z) to denote any point chosen from this set. We will assume with-
out comment that ¢ is closed and nonempty so that the set argmin, . ||x —z||5 is nonempty for

any z. In the following, we present several definitions of the concavity coefficient of €.
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Curvature First, we define y as a bound on the extent to which a convex combination of two

elements of % may lie outside of €”: for x,y € €,

min e ||z — ((1 —1)x+1y)]
t

lim sup <yl —yll3. (3.1)

™0

Approximate contraction Second, we define Y via a condition requiring that the projection oper-
ator Y is approximately contractive in a neighborhood of the set ¢, that is, || P4 (z) — P (w)|2

is not much larger than ||z —w||,: forx,y € €,

For any z,w € R? with P (z) = x and Pp(w) =y,

(L= vllz =" = Hllw =5II") - e =yll2 < = wll>. (3.2)

For convenience in our theoretical analysis we will also consider a weaker “one-sided” version of

this property, where one of the two points is assumed to already lie in %" for x,y € €,
For any z € RY with Z¢(2) =x, (1= ¥llz=x]")- [x—yll2 < Iz ¥ll2- (3.3)

First-order optimality For our third characterization of the concavity coefficient, we consider
the standard first-order optimality conditions for minimization over a convex set, and measure the

extent to which they are violated when optimizing over €:2 for x,y € €,

For any differentiable f : R? —s R such that x is a local minimizer of f over %,

(v—x,Vi(x)) = =y VE@)|*[ly—*]3. 3.4

2. A more general form of this condition, with f Lipschitz but not necessarily differentiable, appears in (3.32) (see
Section 3.5.3 for further details).
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Inner products Fourth, we introduce an inner product condition, requiring that projection to the

constraint set ¢ behaves similarly to a convex projection: for x,y € €,
For any z € RY with P (z) =x, (y—x,z—x) < ¥llz—x|[*[ly —x/3. (3.5)

We emphasize the distinction between the structured norm ||-|| (and its dual norm ||-||*) and the
¢> norm ||-||» in the definitions of the concavity coefficients. We will see later that, by choosing
||-|| to reflect the structure in the signal (rather than working only with the ¢, norm), we are able
to obtain a more favorable scaling in our concavity coefficients, and hence to prove meaningful
convergence results in high-dimensional settings. On the other hand, regardless of our choice of
I

when working with inner products (recall the projection operator P (-) is defined with respect to

, note that the ¢, norm also appears in the definition of the concavity coefficients, as is natural

the ¢, norm).

Now we show that the above conditions are in fact exactly equivalent:

Theorem 3.1.1. The properties (3.1), (3.2), (3.3), (3.4), and (3.5) are equivalent; that is, for a

fixed choice y € [0,00, they either all hold for every x,y € €, or all fail to hold for some x,y € €.

Formally, we will define (%) to be the smallest value such that the above properties hold:

Y(%€) := min{y € [0,0] : Properties (3.1), (3.2), (3.3), (3.4), (3.5) hold for all x,y € €’} .

This global coefficient y(%’) is often of limited use in practical settings, since many sets are
well-behaved locally but not globally. For instance, the set € = {X € R"*™ : rank(X) < r} has
Y(%€") = oo, but exhibits smooth curvature as long as we stay away from rank-degenerate matrices
(that is, matrices with rank(X) < r). This motivates us to expand to a local version of the same

concavity bounds.
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3.2 Local concavity coefficients

Next we consider the local concavity coefficients ¥(¢ '), measuring the concavity in a set ¢ relative

to a specific point x in the set. First we define a set of “degenerate points”,

Cdgn = {x € € : P4 is not continuous over any neighborhood of x} ,

and then let

o9, X € (gdgna
%(€) =
min {y € [0,e0] : Property (*) holds for this point x and any y € €'}, x & Gygp,
(3.6)
where the property (*) may refer to any of the four definitions of the concavity coefficients,’
namely (3.1), (3.3), (3.4), or (3.5). We will see shortly why it is necessary to make an exception
for the degenerate points x € ¢yg, in the definition of these coefficients.

We show that the equivalence between the four properties (3.1), (3.3), (3.4), and (3.5) in terms

of the global concavity coefficient y(%’), holds also for the local coefficients:

Theorem 3.2.1. For all x € €, the definition (3.6) of ¥x(€) is equivalent for all four choices of the

property (*), namely the conditions (3.1), (3.3), (3.4), or (3.5).

To develop an intuition for the global and local concavity coefficients, we give a simple example
in R? (relative to the ¢ norm, i.e. ||| = ||-||* = ||-||2), displayed in Figure 3.1. Define 4 = {x €

R? :x; <0orx; <0}. Due to the degenerate point x = (0,0), we can see that ¥(¢) = oo in this

3. In this definition, we only consider the “one-sided” formulation (3.3) of the contraction property, since the two-
sided formulation (3.2) would involve the local concavity coefficient at both x and y due to symmetry—we will see in
Lemma 3.2.4 below that a version of the two-sided contraction property still holds using local coefficients.
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Figure 3.1: A simple example of the local concavity coefficients on ¢’ = {x € R2:x; <0orxy <
0}. The gray shaded area represents ¢ while the numbers give the local concavity coefficients at
each marked point.

case. The local concavity coefficients are given by

(
W(?) =eo, ifx=(0,0),
(€)= 4, ifx=(,0)or(0,r)fors >0,

(%)

0, ifx;<Oorxy<0.

\

Note that at the degenerate point x = (0,0), ¢ actually contains all convex combinations of this
point x with any y € %, and so the curvature condition (3.1) is satisfied with ¥ = 0. However,
X € Gygn> 0 we nonetheless set 1(%') = oo.

Practical high-dimensional examples, such as a rank constraint, will be discussed in depth in
Section 3.3. For example we will see that, for the rank-constrained set 4’ = {X € R"*™ : rank(X) <

r}, the local concavity coefficients satisfy yx (%) relative to the nuclear norm.

_ 1
= 26,X)

In general, a rough intuition for the local coefficients is that:
e If x lies in the interior of &, or if € is convex, then ¥ (%) = 0;

e If x lies on the boundary of %, which is a nonconvex set with a smooth boundary, then we

will typically see a finite but nonzero %(%);

e 7%(%) = oo can indicate a nonconvex cusp or other degeneracy at the point x.
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3.2.1 Properties

We examine some properties of the local coefficients ¥ (%) that will be useful for gaining intuition
for these coefficients.

First, the global and local coefficients are related in the natural way:
Lemma 3.2.1. For any €, Y(€¢) = sup,cy Y(€).

Next, observe that x — 7,(%’) is not continuous in general (in particular, since %(%) = 0 in
the interior of % but is often positive on the boundary). However, this map does satisfy upper

semi-continuity:
Lemma 3.2.2. The function x — (%) is upper semi-continuous over x € €.

Furthermore, setting (%) = o at the degenerate points x € ©Cdgn 1s natural in the following
sense: the resulting map x — (%) is the minimal upper semi-continuous map such that the

relevant local concavity properties are satisfied. We formalize this with the following lemma:
Lemma 3.2.3. For any u € %dgn’ for any of the four conditions, (3.1), (3.3), (3.4), or (3.5), this
property does not hold in any neighborhood of u for any finite y. That is, for any r > 0,

min{yz 0: Property (*) holds for all x € € NBy(u,r) and for all y € CK} = oo,

where (*) may refer to any of the four equivalent properties, i.e. (3.1), (3.3), (3.4), and (3.5). (Here
B, (u,r) is the ball of radius r around the point u, with respect to the ¢, norm.)
Finally, the next result shows that two-sided contraction property (3.2) holds using local coef-

ficients, meaning that all five definitions of concavity coefficients are equivalent:

Lemma 3.2.4. For any z,w € R4,
(1 =Y, ) Olz= 2o @I = Y2, (1) (E)llw = P W)II*) | P (2) = Pg(W)l2 < llz = wll2
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In particular, for any fixed ¢ € (0,1), Lemma 3.2.4 proves that
P is c-Lipschitz over the set {z eR?: 2Y 7, (2)(€)llz— Po()||F <1— c}, 3.7)

where the Lipschitz constant is defined with respect to the £, norm. This provides a sort of converse
to our definition of the degenerate points, where we set (%) = oo for all x € (ﬁdgn, 1.e. all points

x where Y is not continuous in any neighborhood of x.

3.2.2  Connection to prox-regular sets

The notion of prox-regular sets and sets of positive reach arises in the literature on nonsmooth
analysis in Hilbert spaces, for instance see [32] for a comprehensive overview of the key results in
this area.

A prox-regular set is a set 4’ C R4 that satisfies

1 2
(y—x,z—x) < ﬁllz—XIIzHy—XHZ, (3.8)

for all x,y € € and all z € R? with P (z) = x, for some constant p > 0. To capture the local
variations in concavity over the set ¢, % is prox-regular with respect to a continuous function
p:%E — (0,00] if

llz—xl2lly —x[3 (3.9)

1
DR S

for all x,y € € and all z € R? with P (z) = x (see e.g. [32, Theorem 3b]). Prox-regularity was
first formulated via the notion of “positive reach” [33]: the parameter p appearing in (3.8) is the
largest radius such that the projection operator & is unique for all points z within distance p of
the set ¢’; in the local version (3.9), the radius is allowed to vary locally as a function of x € €.
These definitions (3.8) and (3.9) exactly coincide with our inner product condition (3.5), in the

special case that ||| is the /5 norm, by taking y = ﬁ or, for the local coefficients, ¥ = ——. The

2p(x)
distinctions between our definitions and results on local concavity coefficients, and the literature
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on prox-regularity, center on two key differences: the role of continuity, and the flexibility of the
structured norm ||-|| (rather than the ¢; norm).
First, for prox-regular sets, the “reach” function x — p(x) € (0, o] is assumed to be continuous

[32, Definition 1]. Equivalently, we could take a continuous function x — ¥, = e [0,00) to

2p(x)

agree with the notation of our local concavity coefficients. However, we do not enforce continuity
of the map x — ¥ in our definitions, and instead define (%) as the smallest value such that the
conditions are satisfied. This leads to substantial challenges in proving the equivalence of the var-
ious conditions; in Lemma 3.2.2 we prove that the map is naturally upper semi-continuous, which
allows us to show the desired equivalences. In addition, if we do require a continuity assumption
on the function x — 7, then we would be forced to have ¥, > 0 for some points x € Int(%) since
we must have > 0 for at least some of the points x on the boundary of 4". This means that 7,
would not give a precise quantification of the concavity in its interior Int(%).

Next, prox-regularity is defined with respect to the £, norm, whereas we define local concavity
coefficients with respect to a general structured norm ||-||, such as the ¢; norm in a sparse signal
estimation setting. While the equivalence of all norms on R means that if y(%) is finite when
defined with respect to the /> norm (i.e. € is prox-regular), then it is finite with respect to any
other norm, the distinction is that in optimization problems arising in high-dimensional settings
(for instance, high-dimensional regression in statistics), structured norms such as the ¢; norm (for
problems involving sparse signals) or the nuclear norm (for low-rank signals) allow for statistical
and computational analyses that would not be possible with the /, norm. In particular, we will
see later on that convergence for the minimization problem min,c g(x) will depend on bounding
|Vg(x)|I*. If ||-|| is the £ norm, for instance, then ||Vg(x)||* = ||[Vg(x)]|| Will in general be much
smaller than ||Vg(x)||». For instance, in a statistical problem, if Vg(x) consists of Gaussian or sub-
gaussian noise at the true parameter vector x, then ||Vg(x)||e ~ +/log(d) while [|Vg(x)||> ~ V/d.
Therefore, being able to bound the concavity of & with respect to the ¢; norm rather than the ¢/,

norm is crucial for analyzing convergence in a high-dimensional setting.

43



3.3 Examples

In this section we consider a range of nonconvex constraints arising naturally in high-dimensional

statistics, and show that these sets come equipped with well-behaved local concavity coefficients.

3.3.1 Low rank

Estimating a matrix with low rank structure arises in a variety of problems in high-dimensional
statistics and machine learning. A partial list includes PCA (principal component analysis), factor
models, matrix completion, and reduced rank regression.

Here we will study the set of rank-constrained matrices
¢ ={X e R""™ :rank(X) < r}

to determine how our general framework of local concavity applies to this specific low rank setting.
To avoid triviality, we assume r < min{n,m}. Writing 61(X) > 0,(X) > ... to denote the sorted

singular values of any matrix X, we compute the curvature condition of %

Lemma 3.3.1. Let € = {X € R"™" :rank(X) < r}. Then € has local concavity coefficients given

by vx(€¢) = #(X)for all X € €, with respect to norms ||-|| = ||-||nuc and ||-||* = ||-||sp-

3.3.2  Sparsity

In many applications in high-dimensional statistics, the signal of interest is believed to be sparse or
approximately sparse. Using an /| penalty or constraint serves as a convex relaxation to the sparsity
constraint, i.e. the Lasso method [34], in the case of a linear regression problem. However, the ¢;
norm penalty also leads to undesirable shrinkage bias on the large coefficients of x, e.g. [35]. The
shrinkage problem can be alleviated by turning to nonconvex regularization functions, including
the SCAD penalty [36], the MCP penalty [37], and the adaptive Lasso / reweighted ¢; method [38]

(which is related to a nonconvex “log-¢;” penalty).
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Loh and Wainwright [39] considers a class of nonconvex sparse regularizers, which takes the
form

(

p(0) = 0 and p is nondecreasing,

t — p(t)/t is nonincreasing (i.e. p is concave),
Pen(x) = Z p(|x;|) where (3.10)

‘ t—p(t)+ %tz is convex,

p is differentiable on 7 > 0, with limy\ p'(t) = 1.
\

Essentially, this means that Pen(x) behaves like a nonconvex version of the ¢; norm, shrinking
small coefficients to zero but avoiding heavy shrinkage on large coefficients; the SCAD, MCP, and
log-¢1 penalties are all examples.

Now consider the sparsity-inducing constraint set 4" = {x : Pen(x) < c}, then the following

result calculates the local concavity coefficients for €.

Lemma 3.3.2. Suppose that Pen(x) = Y; p(|x;|) where p satisfies conditions (3.10). Then

%(€) < ”/2, if Pen(x) = c,

P (Xmin)’
W(@)=0.  ifPen(x) <c.
with respect to the norm ||-|| = ||-||1 and its dual ||-||* = ||-||c, where for any x € R4\{0} we define

Xmin o be the magnitude of its smallest nonzero entry.

3.3.3  Spheres, orthogonal groups, and orthonormal matrices

We next consider a constraint set given by ¢ = {X € R"*": X Tx = I, }, the space of all orthonor-
mal n X r matrices. This constraint set arises in PCA type problems where we would like to find

the basis vectors that span the best rank-r subspace of a data set.

Lemma 3.3.3. Ler € = {X ¢ R"™" : X ' X =1,.}, the space of orthogonal n x r matrices. Then

€ has local concavity coefficients yx (€¢') = % with respect to ||-|| = ||*||nuc and dual norm ||-||* =
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[ lsp-

si-1 = {xe RY . ||lx||» = 1} is a special case, obtained when r = 1.

Observe that the sphere
Next, in many problems we may aim to find a rank-r subspace that is optimal in some regard,
but the exact choice of basis for this subspace does not matter; that is, an orthonormal basis X €

R™*7" is identifiable only up to a rotation of its columns. In this case, we can instead choose to

work with rank-r projection matrices:

Lemma 3.3.4. Let € = {X € R : rank(X) = r,X = 0,X? = X}, the space of rank-r projection
matrices. Then € has local concavity coefficients yx(€) < 2 with respect to ||| = ||||nuc and

1 = - llsp-

A special case is the setting r = n, when % is the orthogonal group, in which case Lemma 3.3.3

proves the concavity coefficient is equal to 1/2

3.4 Convergence of projected gradient descent

In this section, we briefly explore how the concavity coefficients allow us to extend the standard
analysis of projected gradient descent to incorporate the nonconvexity of the constraint set.

Consider an optimization problem constrained to a nonconvex set, min{g(x) : x € €'}, where
g :R? - R is a differentiable function. After choosing some initial point xy € €, for each t > 0
we define

x/ = Xt _nvg(xt)a
ak 3.11)
Xt+1 = y%(x;Jr])a

where if P (x; +1) is not unique then any closest point may be chosen.
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3.4.1 Assumptions

Let X be the target of our optimization procedure, X € argmin, . g(x). We assume that g satisfies

restricted strong convexity (RSC) and restricted smoothness (RSM) conditions over x,y € €,

(04 o
g(y) > g(x)+ (y—x,Vg(x)) + EHx—yHﬁ - 5852tat, (3.12)
and
< v B 2, %2 3.13
g(y) <glx)+{y—x, g(x)>+5|!x—y!\z+§8s,tat- (3.13)

Without loss of generality we can take @ < 3. The term &ga, often referred to as the “statistical
error” in the high-dimensional statistics literature [7, 39], gives some “slack’ in our assumption on
g, and is intended to capture some vanishingly small error level. See Section 4.2 below for a more
detailed discussion of statistical error in the context of high-dimensional optimization.

Next, we assume a norm compatibility condition,
lz— P4 )| §¢)rcréi(2Hz—xH*f0rallzeRd, (3.14)

for some constant ¢ > 1. The norm compatibility condition is trivially true with ¢ = 1 if ||-|| is the
/> norm, since P is a projection with respect to the /> norm. In many natural settings it holds
even for other norms, often with ¢ = 1.

Finally, we assume a gradient condition that reveals the connection between the curvature of

the nonconvex set ¢ and the target function g: we require that

2¢ - max _ %(?)|Ve@)|* < (1—cp)- a. (3.15)
x X' €ENB,y(X,p)

(Since x — (%) is upper semi-continuous, if g is continuously differentiable, then we can find

some radius p > 0 and some constant c( > 0 satisfying this condition, as long as 29 %(%)|| Vg(x)||*

< o.) Our projected gradient descent algorithm will then succeed if initialized within this radius
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p from the target point x, with an appropriate step size. For a detailed discussion of the necessity

of this type of initialization condition, we refer the reader to [31].

3.4.2 Fast convergence guarantee

We now state our convergence result of projected gradient descent. The inner product condi-
tion (3.5) as well as the initialization condition (3.15) ensure fast convergence to x as long as

initialized at some x( € ¢ sufficiently close to X.

Theorem 3.4.1. Let € C RY be a constraint set and let g be a differentiable function, with mini-
mizer X € argmin, o g(x). Suppose € satisfies the norm compatibility condition (3.14) with pa-
rameter @, and g satisfies restricted strong convexity (3.12) and restricted smoothness (3.13) with
parameters Q, 3, Eat for all x,y € €, and the initialization condition (3.15) for some cq > 0. If the
initial point x € € and the error level &yt satisfy ||xg — )?]|2 < p?and €l < 1 5 , then for each

step t > 0 of the projected gradient descent algorithm (3.11) with step size n =1/,

L. 5€stat

t
||xt—ﬂ|%s(1—co- )uxo 73 4 126

o+

In other words, the iterates x; converge linearly to the minimizer X, up to precision level &gtat.
To compare this result to the convex setting, if % is a convex set and g is a-strongly convex and
B-smooth, then we can set ¢y = 1 and &qr = 0. Our result then yields matching known rates for

the convex setting (see e.g. [40, Theorem 3.10]).

Proof of Theorem 3.4.1. For t = 0, the statement holds trivially. To prove that the bound holds for

subsequent steps, we will proceed by induction. Choose any pg € (0,p) such that

1.5¢2
Po = max q [xo —x][2, OStat :
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where this maximum is < p by assumption of the theorem. We will prove that

2
gt =33 < (1 - 298 s — 23+ 225l 16

%41 =2 < po,

for all # > 0. Assuming that this holds, then applying the first bound of (3.16) iteratively, we will
then have
26006
o+p

! , 1.5,
[lx0 = X[|5 + —&5tars
€0

|m—ﬂ6g0

which proves the theorem.

Now we turn to proving (3.16), assuming that it holds at the previous time step. First, we have

* 770‘(1—00)
- 2'}’xt+1(%> ’

(3.17)

Iy =21 1" = I3y = P DI < 9llay g —xll* = oll-nVe(u)|

where first inequality uses the norm compatibility condition (3.14) while the second uses the ini-
tialization condition (3.15), since ||x; — x|, < p.

Next, the inner product condition yields

- 2 _ no(l—cp) 2
<x_xt+1ax;+l_xt+1> < }’x,H((g)Hx;M—xt+1\|*|fxt+1—ﬂ|2 = THXIJA_)/C\”Z?

(3.18)

where the last step applies (3.17).
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We will now apply the first-order optimality conditions (3.4) at the point x = x. We have

AN

g(xr41) —g(x)
2

o
> (x1—x,Vg(x)) + 5 X471 — XI5 — Stat by restricted strong convexity (3.12)
e2
> s (O IVED 1 — 3+ 1 —13 — 2558 by frs-onder optimaliy
a1 —cp) , 0682
> O w1  D - 51—

2
asstat

= O b1 5) 713 - (3.19)

where the next-to-last step applies the initialization condition (3.15) (plus the fact that ¢ > 1) to

bound ||Vg(x)||*. On the other hand, we have

g(xr41) —8(x) = glxi41) —glx) +glx) —g(x)

2 2
oE - o aE
< (X1 —x, Ve (xe)) + §||xt+1 x;||2—|— Sy (% — %, Vg(x)) — §||xt ??]|2+ 2Stat
~ B o
= (1 =X, Vgla)) + 5 llxe — x5 - 7 %t — 313 + cregiar (3.20)

where the inequality applies restricted strong convexity (3.12) and restricted smoothness (3.13).

To bound the remaining inner product term, we have

~ 1 ~ 1 N 1 N
(xr41— X, Vg(x)) = ﬁ(xt—kl — XXt —x;+1> = — (X1 — XX —Xpp1) +H<xt+1 —X X1 —x;+1>

~ a(l—cg),
L TGNy

=

1
< —
n

where the last step applies (3.18). For the first term on the right-hand side, we can trivially check

that

1 ~ 1 1
E<Xt+1—xvxt—xt+1>:Euxt—’?ﬂ%—%\\xtﬂ AHz— th+1 XtH%- (3.22)
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Combining steps (3.19), (3.20), (3.21), and (3.22), then, since 271 %

cot 2 o 2 o(l—cp) 2
_th+1 x5 < Ht—AHz sz+1 ﬂ‘2+T‘|x_xt+l(S)|‘2

o 2 2
~5 [l —X][3 + 1.50&5;-
Rearranging terms we obtain

2co0 3o
2 0 2
et =7 < (1= 205 ) 213+ 2% e 329

In particular, since ||x; — x|, < pg and estat < Op O by assumption, this proves that

X1 —X]|2 < po. (3.24)

This proves that the inductive step (3.16) holds for x;, 1, as desired, which completes the proof of

Theorem 3.4.1.

3.5 Proofs of local concavity coefficient results

In this section we prove the equivalence of the multiple notions of the (local or global) concavity
of the constraint set %, given in Theorems 3.1.1 and 3.2.1, as well as some properties of these

coefficients (Lemmas 3.2.1, 3.2.2, 3.2.3, and 3.2.4).
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Notation Before the equivalence is established, we begin by introducing notation for the local

concavity coefficients defined using each of these four properties: for all x € €, define

1" (€) = min{y € [0,00] : The curvature condition (3.1) holds for this point x and any y € ¢},
YO (%) = min {y € [0, ] : The contraction condition (3.3) holds for this point x and any y € €'},
YO(%) = min{y € [0, 0] : The first-order condition (3.4) holds for this point x and any y € €'} ,

%P (%) = min{y € [0, 0] : The inner product condition (3.5) holds for this point x and any y € €} .

We emphasize that here we are not explicitly setting these coefficients to equal o at degenerate
points x € €y, —they may take finite values (we will need this distinction for some technical parts
of our proofs later on). We will prove that these four definitions are all equal for all x & gy,
which is sufficient for the equivalence result Theorem 3.2.1 since the local concavity coefficients
are set to oo at degenerate points.

Next, we define a constant Bporm > 0 such that

J Brorml|zll2 < 112l < Brorm |zl
For all z € RY, (3.25)

BﬂolrmHZHz <|lz[|* < Bnorml|z[|2-

By equivalence of norms on R<, Byorm will be always finite.

We state a well-known fact about projections, which we will use throughout our proofs:

For any z € R? and x € € with P (z) = x, forany ¢ € [0,1], P ((1 —t)x+1z) =x.  (3.26)

3.5.1 Proof outline of Theorem 3.2.1

To prove the equivalence of the four definitions of the local coefficients in (3.6), we first need to
show that these coefficients are upper semi-continuous, as claimed in Lemma 3.2.2. Since we do

not yet know that the four definitions are equivalent, we first show that the map x — ’}/;P is upper
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semi-continuous over x € 6"\ Gyq, (see Lemma 3.5.1 below).

Using upper semi-continuity of 1i¥ (%) over x € € \%@ggn> we next show that
YV(E) = ON(C) = Y (€) = 1O (€) for all x € E\Cygp. (3.27)

In particular, we prove the equivalence between the inner products property (3.5) and other three
conditions, namely the curvature condition (3.1), the (one-sided) contraction property (3.3), and
the first-order condition (3.4). Recall that if x € €yg,, then Yx(€") = oo under all four definitions.
Combining with (3.27), we conclude the equivalence results, as claimed in Theorem 3.2.1.

In fact, we will also show that a weaker statement holds for all x € % (i.e. without excluding

degenerate points), namely
AP (€) < min{ 2" (€), O (%), EO(4)} for all x € . (3.28)

This additional bound will be useful later in our characterization of the degenerate points, when

we prove Lemma 3.2.3.

3.5.2 Upper semi-continuity

First we prove upper semi-continuity of the map x — ¥ (¢) for x € C\Cygn:
Lemma 3.5.1. The map x — Y\¥ (€) is upper semi-continuous over x € C\Cdgn-

Once Theorem 3.2.1 is proved, then Lemma 3.5.1 becomes equivalent to the original lemma,
Lemma 3.2.2, since 1%(%’) = oo by definition on the subset €4y, C €, which is a closed subset
by definition, while Lemma 3.5.1 proves that x — ¥%(%) is upper semi-continuous over the open

subset 6"\ Gygn C €

Proof of Lemma 3.5.1. Take any sequence x, — x, with x,x1,xp, - € €\6yg,. We want to prove

that

y:=limsupy (€) < % (%). (3.29)

n—oo
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Since x & 6yg, by assumption, we know that Z¢ is continuous in some neighborhood of x. Let
r > 0 be some radius so that P is continuous on By (x,r), where By (x,r) is the ball of radius
r around the point x in the dual norm ||-||*. Assume also that ¥ > 0, otherwise again the claim is
trivial.

Taking a subsequence of the points xj,x,,... if necessary, we can assume without loss of

generality that
Tay () = 7.

Fix any € > 0 such that € < y. For each n, by definition of the local concavity coefficient %ICE(‘K)

there must exist some y, € € and some z}, € R? with P (z,) = x,, such that

On =202y =) > (HE(€) = &) Iz 5l lyn = 303 (3.30)
Define
Zn if [|2, —xal|* < r/2,
in —
5t (e =) e i s —xall > /2,

so that ||z, —xx||* < r/2. By (3.26), P4 (zn) = xn. Furthermore, rescaling both sides of the

inequality (3.30),
<yn —Xn,<n —xn> > <7)Icl:(%) - 8) ||Zn —an*”)’n _xn”%- (3.31)

Since the left-hand side is bounded by ||y, — xx||||z2 — xx||*, we see that

yn =2nll _ llyn = xull

m(€)—€~ (r—¢)/2

|yn —an% <

for all n sufficiently large so that }/,ICE((K) >y— %’S Therefore, since ||y, — xn|| < Bnorm||yn — Xnl2
for some finite Byorm, then for all large n, y, lies in some ball of finite radius around x. The same

is true for z, since ||z, —xu||™ < r/2 by construction. Thus we can find a convergent subsequence,
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that is, ny,ny, ... such that

yn; — y for some point y,
Zp; — 2z for some point z.
Since ¢ is closed, we must have y € 4. And, since x,, — x, for sufficiently large i we have

X, —x||* < r/2, so that z,, € By(x,r). Since P4 is continuous on the ball By (x,r), then,

P (2n;) = xn; — x implies that we must have P (z) = x. And,

(y—xz2—x)= ili_>flolo<yn,~ — Xn;Zn; — Xn;) > llig}o (7’;2 (€) - 8) |2n; _xniH*Hyni _'x”liH%

2
= (r—&)llz—x[I*lly — 2,

where the inequality applies (3.31) for each n;. Therefore, )/}P(%”) > y— €. Since € > (0 was chosen

to be arbitrarily small, this proves that }/)ICP(‘K) > v, as desired. [l

3.5.3 Equivalence for local concavity
Now we prove the equivalence results Theorem 3.2.1.

Inner products = First-order optimality. Fix any u € %\nggn- Let f : R? — R be differentiable,
and suppose that u is a local minimizer of f over 4. By [41, Theorem 6.12], this implies that
—Vf(u) € Ny (u), where Ny (u) is the normal cone to % at the point u (see [41, Definition 6.3]).

By [32, (12)], we know that the normal cone can be obtained by a limit of proximal normal cones,

Ny (u) =lim  sup {weRd:@%(x+£-w):xf0r some8>0}.
XEC x—U

TV
Proximal normal cone to € at x

Therefore, we can find some sequences uj,uy, - € €, wy,wy, -+ € R4, and £,&, - >0, such

that P (uy, + €, -wy) = uy, for all n > 1, with u, — u and w;, — —Vf(u).
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Now fix any y € €. By the inner product condition (3.5), for each n > 1,

(= ttny wn) = (y — tn, (tn +wn) — tn) < Y2 () wal * |y — un3.

Taking limits on both sides, since u, — u and w;, — —Vf(u),

b, ~9F(w) < (1im sup #E() ) - [9F0I y ~

Finally, recall that Lemma 3.5.1 proves that x — i¥ (%) is upper semi-continuous over x € C\Cdgn
and Gygn C € is a closed subset. Since u € €'\ Cyqy,, we therefore have u, € €'\ Cygy for all suffi-
ciently large #, and therefore limsup;,_,., y}}:(‘g ) < 7P(%). This proves that Y0 (%) < yF(¥), as
desired.

In fact, we can formulate a more general version of the first-order optimality condition:

For any Lipschitz continuous f : R? — R such that x is a local minimizer of f over ,

(y—x,v) > —}/HvH*Hy—xH% for some v € df(x), (3.32)

where df(x) is the subdifferential to f at x (see [41, Definition 8.3]). To see why (3.32) holds, [41,
Theorem 8.15] guarantees that, since f is Lipschitz and x is a local minimizer of f over the closed
set ¢, then we must have —v € Ny (x) for some subgradient v € 9f(x).* The remainder of the
proof is identical to the differentiable case treated above, with v in place of Vf(x); this proves that,
for any x € %\%dgn and any y € ¢, the stronger first-order optimality condition (3.32) holds with
r="n (%) O

First-order optimality = Inner products. This direction of the equivalence is immediate: setting

f(w) = %Hw—z”%, we can easily see that P (%) < ¥FO(%) for all x € €, while previously we

4. More precisely, [41, Theorem 8.15] assumes only that f is proper and lower semi-continuous, but additionally
requires the condition that 9°f(x) N (— N (x)) = {0} (see [41, Chapter 8] for definitions). Since the horizon subd-
ifferential d*°f(x) contains only the zero vector for any Lipschitz function f, this condition must be satisfied once we
assume that f is Lipschitz.
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showed that the reverse inequality holds over x € €'\ 6yg,. Therefore, YP(€) = yEO(€) for x €
C\Cdgn- O

Curvature = Inner products. Fix any x,y € € and any z € R with P (z) = x. Forall ¢ € (0,1),

let x; = (1 —)x+ty, and choose
% € argmin||x — x;|| such that limsup ———— % = < Y)Y lx—yl3,

x€€ t\O

as in the definition of Y{""V(%’). Fix any € > 0. Then for some 7 > 0, for all 7 < 1,
B 25l e i)y e
Since x = P (z), this means that for all ¢ € (0, 1),
|z =113 < llz=%ell3 = llz= x5 + 1% = xll3 +2(z — x5 — ).
We can also calculate
2= x5 = llz— (1 =t)x—ay[[5 = [z =x]3 =2t (y —x, 2= x) + £ [[x = y|5.
We rearrange terms to obtain

| . ~
(r=x,2=x) < 5 (1B =3 + 20— w5 =) + 2 —13)

Recalling that ||-||» < Bporm||-|| for some finite constant Byorm by (3.25), we then have

1 - ~
(—x,z=x) < 5 ((Bnormﬂuxz — 2+ 2l = x5 — 3|+ 2 e — 5113

1
SZ(BHOI'H] (
= llz =" (B ()l - y|rz+e>+§((Bnorm>2((y;“fV<<f>||x—y||%+e>)2+||x—y||%).
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Taking a limit as ¢ approaches zero,

(v—x,2—x) < (") Jx—y|3+€) - lz—x||*.

Since £ > 0 was chosen to be arbitrarily small, therefore, yiF (¢) < y£"V(%), foranyx € €. [

Inner products = Curvature. To prove the curvature condition, we will actually need to use the
stronger form (3.32) of the first-order optimality condition—as proved previously, this condition
holds with y =y (%) for all x € €'\ Gygn.

Fix any u € €\Cygn andy € €. Letuy = (1 —1)-u+1-y, and define f(x) = [|x —u||. Note
that f is a Lipschitz function. Since % is closed, and f is continuous and nonnegative, it must attain
a minimum over ¢, x; € argminy ¢ f(x). Since Cygy is a closed subset of ¢, this means that

X € %\%dgn for any sufficiently small # > 0, since
e = ul] < oo — aae[| 4 e = al} < 2w = we | = 21| =y

(where the second inequality uses the definition of x;), and so x; — u.
Next, consider the subdifferential df (x;). It is well known that this subdifferential is not empty,
and any element v € df (x;) must satisfy ||v||* < 1 and (v,x; — us) = ||x; — us]|. Now, applying the

stronger form of the first-order optimality condition given in (3.32), we have

P 2
(ny—xt) = =1 ()W *lly = x5 = =1y (€) |y —xll3

and similarly, replacing y € € withu € €,

vu—2x) > — 18 () |u— x|[3-
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Taking the appropriate linear combination of these two inequalities,

o — ) < HP(E) (1 =)l =3 +lly = xl13) = WP (@) (10 =0)llu— I3 + e —]3)

where the last step simply uses the definition u; = (1 —¢)u 4ty and rearranges terms. Finally,
|\usr — x¢||2 < Bnorm||ur — Xt || < Bnorm||# — u¢|| = tBnorm || — y||, by definition of u; and x;, so com-

bining everything we can write
. P 2, .2p2 2
min | = [ — | = (s — ) < A7) (1(1 =) 1w =313+ 2 Bhomm lu = 1) -

Dividing by ¢ and taking a limit,

tim M el (i Gup P ) - 2.
™NO ! ™\O

Finally, recall that x — }/%P(%) is upper semi-continuous by Lemma 3.5.1, and x; — u as proved
above. We thus have limsup\ g x?(%) < ¥P(€). This proves that Y™ (%) < ¥\P(%), for any
uc %\nggn.

Combining with our previous steps, we now have

NO(E) =W (€) = v"™(%)

for all x € €'\ €ygp, while for x € ¢" we have the weaker statement VP (%) < min{ " (%), O (%¥)}.

O
Approximate contraction < Inner products. This proof, for the case of a general norm ||-||, pro-
ceeds identically as the proof for the case where ||-|| = ||-||> (presented e.g. in [32, Theorem 3(b,d)]).

For completeness, we reproduce the argument here.
First, we show that YIF(%) < y£°"(%). Fix any x € €, and any z € RY with x = P (z).

Define z; =-z+4 (1 —¢)-x fort € [0,1]. By (3.26), x = P (z) forall ¢ € [0, 1].
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*
s

Then for any y € €, since ||z; — x||* =t]jz—x

ly =xll2 (1 =%°"(&) -tz —x]") < lly—zll2

by the approximate contraction property (3.3). For sufficiently small 7, the left-hand side is nonneg-
ative (except for the trivial case Y<°"(%’) = oo, in which case there is nothing to prove). Squaring

both sides and rearranging some terms,
ly =13 < lly =213 + %" () -tl|z = xl|* = (K" (%) -tz = #l")*) [y — 13-

And,

2 2 2
1y =zell3 = lly = xll2 4+ le = z[[2 + 20y =%, 0 = 2)

SO rearranging terms again,
2(y—x,z0 —x) < [x =25+ QEO"(E) -tz — x| = (F™(F) 1]z —x] ) [ly = x3.
Plugging in the definition of z,
26(y—x,z—x) < llx— 2|3+ EM(E) 1]z —x]F = KO ()7 1 ([lz = xF)P) Iy — 3.
Dividing by 2¢, then taking the limit as  \, 0,
(7 —xz=2) < K)o~ [ly 3.

Therefore, for any x € %, }’,ICP(%) < YONI(E).

Now we prove the reverse inequality, i.e. SO (%) < yiF

(€). Fix any x,y € ¢ and any z € RY
with x = P (z). Then

ly—x3+ & —xz—y) = (y—x,2—x) < B (D) |z —x]*[ly — x]3.
60



Simplifying,

2
(1= @) llz=5) ly =l < == x,23) < Iy = xllallz= 1,

and so

(1= 2@l =) Iy =xlla < =2

Therefore, for any x € € 15" (%) < 1iP(%).

Combining everything, we have now proved

KM(E) = %5 (%) = K0(€) = K(%)

forall x € Cf\%dgn, in addition to the weaker bound (3.28) for all x € %, as desired. This completes

the proof of Theorem 3.2.1.

3.5.4 Characterization of degenerate points

Proof of Lemma 3.2.3. Next we prove that the degenerate points u € ‘fdgn are precisely those
points where any of the four local concavity conditions would fail to hold, in any neighborhood of
u and for any finite y. First, the characterization of prox-regularity given in [42, Proposition 1.2,
Theorem 1.3(i)] proves that, if the projection operator & is not continuous in a neighborhood
of u € €, then there are no constants € > 0 and ¥ < o such that the inner product condition (3.5)
holds for all x € € NB,(u, ). Therefore, for any r > 0, SUP x4 MBy (u,r) YP(€) = oo.

Finally, in proving Theorem 3.2.1, we proved (3.28), i.e.

w (%) < min{{(%), £ (€), 0 O (€)}
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for all x € €. This implies that,

im{ sup  {(@) | =e,
r=0 | xe€nB, (u,r)

where (*) denotes any of the four properties, i.e. ¢"" (%) for the curvature condition (3.1),
yEON(4) for the contraction property (3.3), YiF(%) for the inner product condition (3.5), or

yf O(%) for the first-order optimality condition (3.4). This proves the lemma. 0

3.5.5 Two-sided contraction property

Proof of Lemma 3.2.4. This proof, for the case of a general norm ||-||, proceeds identically as the
proof for the case where ||-|| = ||-||>» (presented e.g. in [32, Theorem 3(b,d)]). For completeness,
we reproduce the argument here.

Take any x,y € % and any z,w € R? with P (z) = x and P (w) = x. By definition of the

local concavity coefficients, applying the inner product bound (3.5) we have
O =xz=x) < K@)z~ [ —y3.
Applying the same property with the roles of the variables reversed,
(e=yw=3) < B(@)llw =1 *llv =3,
Adding these two inequalities together,
= xz=x=w+y) < B(@) e =yl13 +%(@) lw =yl = ¥]3.
Rearranging terms and simplifying,

(1= %)z =l = w(E)llw=yI[*) [x = y]5 < (v —x.w—2).
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Since the right-hand side is bounded by ||x —y||2||z— w||, by the Cauchy—Schwarz inequality, this

proves the lemma. O

3.5.6 Equivalence for global concavity and local vs global coefficients

Proofs of Theorem 3.1.1 and Lemma 3.2.1. We prove Theorem 3.1.1, which states that the five
definitions for the global concavity coefficient y(%’) are equivalent, alongside Lemma 3.2.1, which
states that Y(%’) = sup,cy %(€).

First, suppose that ¢’ contains one or more degenerate points, i.e. Ggg, # 9, in which case
sup,ce Yx(€) = . By definition of ©dgn» the projection operator #¢ is not continuous on any
neighborhood of €. [42, Theorem 4.1] prove that this implies ¢’ is not prox-regular, and so y(%') =
oo as discussed in Section 3.2.2.

Next, suppose that ¢ contains no degenerate points. Let ¥* = sup,c¢ 1x(%). Then clearly, by

definition of the local coefficients (%),
y* =min{y € [0,o0] : Property (*) holds for all x,y € €’}

where (*) may refer to any of the four equivalent properties, namely the curvature condition (3.1),
the (one-sided) contraction property (3.3), the inner product condition (3.5), and the first-order

condition (3.4). Next, let
Y= min{y € [0,o0] : The two-sided contraction property (3.2) holds for all x,y € €’}.

Clearly, the two-sided contraction property (3.2) is stronger than its one-sided version (3.3), and

so Y < yﬁ. However, Lemma 3.2.4 shows that they are in fact equal, proving that

(1= %) |z =" = %) w—I*) - x—ll2 < 2wl

for all z,w € RY with x = P (z), y = Py(w). Since 1 (€),1(€) < y* for all x,y € €, this
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implies that

(1= llz =" =y lw=yII") - lIx=yll2 < e = wll2,

that is, (3.2) holds for all x,y € ¥ with constant ¥ = y*. So, we have }/ﬁ < y*. Therefore, the
five conditions defining y(%) are equivalent, and Y(%) = y* = ¥* = sup,c¢ ¥x(€), proving Theo-

rem 3.1.1 and Lemma 3.2.1.

3.6 Proofs for examples

In this section we prove results calculating the local concavity coefficients (%) for the constraint

sets considered in Section 3.3.

Tangent space For any rank-r matrix X, let T be the tangent space of low-rank matrices at X,
given by5

Ty = {UAT +BV' : AeR™, BeR™ are any matrices}, (3.33)

where U € R™7", V € R™*" are orthonormal bases for the column and row span of X. This
tangent space has frequently been studied in the context of nuclear norm minimization, see for
instance [43]. This definition has also appeared in Chapter 2 when we analyze error bound of the

estimator for compressed RPCA.

3.6.1 Low rank constraints

Recalling the subspace Ty defined in (3.33) for any rank-r matrix X, we begin with an auxiliary

lemma:

5. For X € € which is of rank strictly lower than », we can define Tx by taking U € R"*", V € R™*" to be any
orthonormal matrices which contain the column and row span of X; this choice is not unique, but formally we assume
that we have fixed some choice of space Ty for each X € %.
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Lemma 3.6.1. Let X,Y € R"*™ satisfy rank(X),rank(Y) < r. Then

1
P (Y < — _|Ix—Y|3
|27, ( )”““C—zor(x)” IF

Proof of Lemma 3.6.1. Assume o,(X) > 0 (otherwise the statement is trivial). For any matrix

M € (Tx)* with ||M||sp < 1, define a function

1
20,(X)

m(Z) = 1Z—X ||} — (z.M)

over matrices Z € R"*™_We can rewrite this as

B 1
~ 204(X)

or(X)
2

fm(Z) 1Z— (X + 6, (X)M)||} + (X, M) — M]3

Now, we minimize fy;(Z) over a rank constraint:

argmin fy;(Z) = argmin{||Z — (X + Gr(X)M)H% crank(Z) <r} = Py (X +o,(X)M).
rank(Z)<r Z

Since 01(X),...,0,(X) > oy(X) while ||o,(X)M||sp < 6,(X), and M € (Tx )™+, we see that

(It may be the case that X and o,(X)M both have one or more singular values exactly equal to
o,(X), in which case the projection is not unique, but X is always one of the values of the projec-

tion.) So, Z = X minimizes fy;(Z) over rank-r matrices, and therefore, for any Z with rank(Z) < r,

1
-~ 20/(X)

() > fr(X) IX = X[+ (X, M) =0,
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since (X,M) = 0 due to M € (Tx)~. Therefore, in particular, fy;(Y) > 0 which implies that

2
(Y, M) < 1Y — X[l

20,(X)

Since this is true for all M € (Tx )" with ||M llsp < 1, we have proved that

1 2
|23 (Y)lnue = max (Y, M) < ——||Y — X||E,
T e (m) L (M p=1 20,(X) F

as desired. O]

Proof of Lemma 3.3.1. First, let P (Z) be any closest rank-r matrix to Z (not necessarily unique),
and let U € R"*" and V € R™*" be orthonormal bases for the column span and row span of P (Z)
(that s, if Z¢(Z) is unique then the columns of U and V are the top r left and right singular vectors
of Z). Regardless of uniqueness we will have Z — &« (Z) orthogonal to U on the left and to V on

the right, i.e. we can write
Z— Py (Z)=(0-UU")-(Z— Py(Z))-A-VVT).
We then have

(Y = P4 (2),2 - P¢(2)) = (Y = P¢(2),A-UU ") - (Z - P¢(2))- A-VV )
= (A-UU")-(Y = 2¢(2)-(A-VV ), Z = P¢(2))
<|A-UU")-(Y = P(2))- A= VV Dlnuc - 12— P (2)l5p

<JA-UU )Y -A=VV ) nue - 1Z = P (2)lsp,

where the last step holds since Y« (Z) is spanned by U on the left and V on the right. Applying
Lemma 3.6.1 with X = 2 (Z), which trivially has U,V as its left and right singular vectors, we

obtain
1

||(I_ UUT) Y- (I_VVT)”nuc < W

lY — 24 (2)|%.
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Therefore,

Y = P4(2),2 - P¢(2)) <

1
< an—%(znrspny—%an%-

This proves that yx (%) < #(X) for all x € € by the inner product condition (3.5).
To prove equality, take any X € %\%dgn (that is, we assume that rank(X) = r), and let X =
olu ] +- -+ 0rupv, beasingular value decomposition with o) > -+ > 6, > 0. Letu’ e R",)/ €

R™ be unit vectors orthogonal to the left and right singular vectors of X, respectively. Define

Y = Glulvir +- Gr_lur_lvj_l + Gru/v/T

and

Z:X—i-cu/v/T,

for some fixed ¢ € (0,0,). Then P4 (Z) = X, and we have

Y —X,Z-X) = (cuV' T —crumw, ,clv'T) = co,

while

1Z = XlIspllY = X[ = llewV Isplloruv' T = Gpupv, |[F = 2¢07,
therefore by the inner product condition (3.5), we must have yx (¢") > #(X)' Combining with our
previous steps, we now have ¥ (%) = s—— for all x € €, proving Lemma 3.3.1.

20,(X)

3.6.2  Sparsity

Proof of Lemma 3.3.2. We check the local concavity coefficients. Fix any x € ¥. As before, if x
is in the interior (i.e. Pen(x) < ¢) then (%) = 0, so we turn to the case that Pen(x) = ¢, and in

particular, x # 0. Without loss of generality, assume that x; > 0 and that x; is the smallest nonzero
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coordinate of x (and then x;;, = x1). Choose any y € € and ¢ € [0, 1]. Let
xr = (1 —t)x+tyand z; = x; — ss€q

where e; = (1,0,...,0) and

M2

2
sp=1- [lx=yl3.
p'((x)1) ?

Since limt\ x; = x, and p is continuously differentiable (since it is both concave and differentiable

on the positive real line), we have

In particular, this implies that, for sufficiently small z, we have (x;); > 0 and (z;); > 0.

We claim that Pen(z;) < ¢, in which case

. _ / _
i Miwes [ — 1)1 < lim e —zelly _ s _ ,N/Z
N0 ! N0t N0t P (Xmin)

2
=iz,

which proves the lemma.

It now remains to check that Pen(z;) < c¢. We have, for coordinate i = 1,

p(lzli) = p((x1)1 —s1) < p((xe)1) = 5P ((x0)1),

since 0 < (x;)] — 8¢ < (x;)1 and p is concave over R . And, for every coordinate i,

P([(xr)il) = p (I(1 —2)xi +2yil)
<p((1—1)|x;| +¢|y;]) since p is nondecreasing

< (1= 0)p(l) +1p(yil) + 11— 1) (]~ yil)?  since £+ p(r) + ur? /2 s convex

< (1= 0)p (i) oo (lyil) + S (1 =) 5= i)
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Therefore,

1

Pen(zr) = ) p(lali) < (Z(l —1)p(lxil) +ep(lyil) + %t(l —1)(xi —yi)2> —stp'((1)1)

< (1= 1)Pen(x) + tPen(y) + 5 lx = 3113 = 5P (1) < e+ S v = yI3 =9 (a)1) =,

where the last step holds by definition of s;. U

3.6.3 Other examples

Proof of Lemma 3.3.3. LetX,Y € €. Forafixedr € (0,1),let (1—1)X +1Y =ADB' be a singular

value decomposition. Since AB' € R™ T is an orthonormal matrix, we then have

énei}%HZ— (L=1)X 41Y)[Inuc < ||ABT —((1=1)X +1Y)|lnuc = ||ABT —ADBT”nuc

= Zr“l(l—D,-i).

1

Furthermore,

IDIE = 11 =0)X +17 ||
= (1= 02 X[E + 2[R+ 2e(1 - 1)(X.Y)
= (L= X R+ I +o(1—0) (XU + 1Y IR = X - ¥ |)
= (1= r+e2r+1(1—1) (r+r— ||X—YH,2:)

2
= r—1(1- D)X ~ Y|
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1D2 (1-Dy)?

A trivial calculation shows that 1 — D;; = i 4 = 50 we have
: r 1-D? (1—D~~)2
min||lZ— ((1 —£)X +tY < 1—D:) = iy ii
i 2 (1 =X 17 e < 321D ,-; . !
’”_”DHZ a 1 » L (1—-Dj)?
Z Et(l_t)”X_YHF"‘ZT”-
i=1 i=1

Furthermore, we can show that the last term is o(t), as follows. For any unit vector u € R”,
(1 =0)X +2Y)ullz > (1 —1) [ Xulls —t[|Yuly > 121

since X,Y are both orthonormal. Therefore (1 —#)X + Y has all its singular values > 1 — 2z, that
is, D;; > 1 —2t for all i. And trivially ||((1 —#)X +Y)ul[ <1soD; < 1. Then Y} (1 —D;)* <

1 (21)% = 412r, so we have

1 2 52
min||Z—((1 —8)X +tY < =t(1—-8)||X =Y||g +2¢r.
min||Z — (1= )X +17) e < 50(1=1) X Y}

Dividing by ¢ and taking a limit,

oy Minzeg [ Z — (1= )X +1Y)[lnue _
t™\0 t

1
EHX YHF

Comparing to the curvature condition (3.1) we see that yx (%) < %, as desired.
Next, to obtain equality, take any X € €. Fix any c € (0,1). LetY = —X € and Z=cX €

R"*". Clearly, Z(Z) = X. By the contraction property (3.3), we must have
(= (ONZ=XI)Y = X[e < Y = Z]|F.
Plugging in our choices for Y and Z, we obtain

(1=%(€)-(1-c))-2vr<(1+c)VTr,
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and so yx (¢) >

D —

]

Proof of Lemma 3.3.4. For X,Y € €, write X = UU T, and Y = VV | for some orthonormal ma-
trices U,V € R"™" . Fort € (0,1), let U; = (1 —t)U +1V, and let U; = ADB be a singular value
decomposition. Then ABT is the projection of U; onto the set of orthonormal n X r matrices. Since

A € R™ " is orthonormal, we have AA | € %, and so

glei%HZ— (I =0)X +1Y)[Inuc < ||AAT —((1=1)X +1Y)||lnuc

< l|AAT - UzUzTHnug-i-ﬂUtUzT — (1 =1)X +1Y)]|nuc -
(Term 1) (Term 2)

For (Term 1),

IAAT —UU," [lnuc = |AAT —ADBT - BDA ||uc
= AL~ D*)A" |lnuc
=r—|[ID|E =r—|U:?
—r—||(1=0)U +1V||2
=r—(1=0)*|U[lg =2V} —2(1=1)(U,V)
= r= (=02} =2V IR =1 =) (JUIR+IVIE= U - VIE)
— (1= =2 —1(1—1) <2r— \|U—V||%)

2
= 1(1-1)|U V|
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For (Term 2),

10U, = (1= )X +1Y) [nue

= [(1=)U+V) (1 =) U +1tV)T = (1 =0)UU " —tVV T || uc

= |=t(1=)UU " =11 =)V +1(1 =0)UV " +1(1 —=)VU " ||nuc
= |=t(1 =) (U =V)U =V) " [lnuc

2
=11 -1)|[U V|3
Combining the two, then,

min||Z — ((1 —1)X +1Y <2(1=1)||U = V3.
ZG%,H ((1—1) Mlinue < 2t(1—1)]| IF

Next, note that the choice of U and V is not unique. Fixing any factorizations X = UU T
andY =VV', letU'V =ADB' be a singular value decomposition, and let V =VBAT. Then

Y=VV', and following the same steps as above we can calculate

minl||Z — ((1 = )X +1Y <2u(1—1)|U=V|3.
ZG%II ((I—1) MNnue < 2t(1—1)]| IF

Furthermore,

U= V|2 =||U||2+|V||? - 2trace(U V) = 2r — 2trace(U ' VBA )

— 2r—2trace(ADB ' BA ") = 2r — 2trace(D).
And,

IX —Y||2 = |X||2+]|Y]|2 — 2trace(XY) = 2r — 2trace(UU ' VV ")

= 2r—2||U V|2 =2r—2||D||? > 2r — 2trace(D),

72



since ||D||2 = ¥;(D;i)*> < ¥;Dji, as 0 < Dj;; < 1 for all i since U,V are both orthonormal matrices.

Therefore, this proves that ||U — VH% < ||X —Y||2, and so

minl||Z — ((1 —)X +1Y <2u(1—1)||X —Y|2.
chg” ((I—1) )lnue < 2¢(1—1)]] IF

Based on the curvature condition characterization (3.1) of the local concavity coefficients, we have

therefore computed yx (%) < 2, as desired. O
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CHAPTER 4
ALTERNATING MINIMIZATION AND INEXACT ALTERNATING

MINIMIZATION OVER NONCONVEX CONSTRAINTS

Consider the problem of optimizing a function over two variables, one or both of which is con-

strained to lie in some constraint set:

(x,y) =argmin{ Z(x,y) :x € X,y e ¥}, 4.1)

where 2" C R% and # c R% reflect our beliefs or desired properties for the x and y variables,
while .Z is the target function to minimize (for example, a negative log-likelihood, in which case
we are searching for the constrained maximum likelihood estimator). This type of problem arises
naturally in multiple structured statistical models, including multitask regression and robust prin-
ciple component analysis, and we have already seen one realization of this setting in compressed
RPCA (recall we were working with a regularized form in (2.3), but converting to the equivalent
constrained form is straightforward).

Due to its simplicity and effectiveness, alternating minimization has long been a popular opti-
mization method to solve the problem (4.1). Based on the tool of concavity coefficients developed
in Chapter 3, we assume that the constraint sets 2~ and % may potentially be nonconvex. In
particular, this chapter! studies the convergence behavior of the (inexact) alternating minimization

method over (possibly) nonconvex sets, where we iterate the steps

Fix y, and choose x € 2" to (approximately) minimize the function x — £ (x,y);

Fix x, and choose y € ¢ to (approximately) minimize the function y — .Z(x,y).

This type of method can be practical in scenarios where the loss function is relatively simple to

minimize when viewed as a function of either x or y only—for instance, in multitask regression,

1. The work presented in this chapter is published in Ha and Barber [44].
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where x represents the coefficients and y represents the covariance structure. In other settings, even
the marginal minimization steps are expensive to calculate, but we can instead consider approxi-
mating each one with other iterative procedures, such as gradient descent.

In this chapter, we explore theoretical properties of (exact or inexact) alternating minimiza-
tion as well as its convergence behavior in numerical simulation. We also examine a range of
specific examples with rank-constrained variables, including multitask regression, robust principal

component analysis, and factor models.

4.1 Handling nonconvex constraints in alternating minimization

Before proceeding, we explain how concavity coefficients can be useful for establishing conver-
gence of the alternating minimization method. One main challenge of working over nonconvex
regions is that, since 2" and % are potentially nonconvex sets, the standard first-order optimality

conditions under convex setting do not apply. Specifically, fixing any y € % and defining

xy = argmin{.Z(x,y) :x € Z'},

the nonconvexity of 2" means that we cannot assume that (x —xy,V,.Z(xy,y)) > 0 for all other
x € Z (and same when we reverse the roles of x and y). This makes the analysis of optimization
problem with nonconvex constraints difficult, since the first-order optimality condition is crucial
for understanding convergence behavior.

Recall our definition of local concavity coefficients, ¥ (2") for x € 27, given in (3.6). The
equivalent results, Theorem 3.2.1, tells that the concavity coefficient equivalently characterizes the
extent to which the usual first-order optimality conditions are violated when minimizing over the
set 2. Now fix some structured norms ||-||x and ||-||, for the x and y variables—for instance, for a
low-rank + sparse problem, we might choose |- ||x and ||-|| to be the nuclear norm and the ¢; norm,
respectively. To simplify our exposition, we will assume that our structured norms |-||x, ||-||y are

scaled to satisty ||-||x, |||y > ||-||2, which is the case for many of the structured norms that arise in
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various applications (such as the ¢ norm and nuclear norm).

Let the local concavity coefficients y(.2") and ¥%,(#/) be defined with respect to these poten-
tially different norms. The first-order condition (3.4) allows us to obtain approximate first-order
optimality conditions for the steps of the alternating minimization algorithm—for instance, letting
xy be a local minimum of the problem min{.#(x,y) : x € 2"} (i.e. the x update step of alternating

minimization), then for all x € 2",
(x =2y, Vel (x3,9)) = =Y, (2)|VaZ (xy, ) | lIx — xy 13, (4.2)

and similarly for y. These bounds provide a critical ingredient for our convergence analysis.

4.2 Problem formulation

Given the loss function .Z(x,y) which is differentiable, we consider an optimization problem given
in (4.1). Formally we require the target of our optimization problem (x,y) only to be a local
minimizer of £ (x,y)—this is because £ (x,y) may potentially be highly nonconvex or degenerate
in regions (x,y) far from the origin, and we may even have lim_.Z(x,y) = —oo as (x,y) tends
to infinity in some direction. If this is the case, then the steps of the alternating minimization
algorithm could potentially diverge, and it may instead be necessary to choose our update steps
locally.

To formalize this, define new constraint sets 2o = 2 NB;(xg,px) and % = Z NB1 (o, py)s
where (xq,y0) is our initialization point. These neighborhoods of the original constraint sets 2~
and % are assumed to be sufficiently large so as to contain the target point (X,y) (in other words,
our initialization point (xg,yo) was chosen to be close to the target (x,y)), but sufficiently small so
that the loss function .Z(x,y) is well-behaved over this small region 2 x %.

We then define

(x,y) = argmin{.Z(x,y) : x € 20,y € %},
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and run the alternating minimization algorithm locally by iterating the steps

X = argminye g0 L (x,y;1), 4.3)

yr = argmingegy £ (X, ).

For our intuition, we should interpret these radius constraints, i.e. working in Z( and %() rather
than in 2" and %/, as a technicality for the theory, which we do not need to actually implement in
practice. In particular, for many settings, the alternating minimization steps are implemented with
some kind of local search procedure, such as gradient descent in the x or the y variable, which will
move towards a nearby local minimizer without enforcing a radius constraint. In other settings,
even the global minimizer for the x or the y variable (while the other variable is fixed), stays
within a small neighborhood, without enforcing a radius constraint. In other words, the radius
constraint will generally not be active, and thus we can often ignore it in our implementation of
the algorithm. However, for the theoretical results obtained here, we require it in order to be able
to handle a broader range of problems.

Recall the global concavity coefficient y(Z) = supyc 9, ¥e(Z0) and (%) = supyca, %(%0)
given by Lemma 3.2.1. The following lemma proves that, if the radii py, py are chosen to be small,

the curvature conditions of 2~ and % are inherited by 2, and %:

Lemma 4.2.1. If px < 2maxxeglyo AL then v (20) < W%(Z) for all x € 2y, and in particular,

Y(20) < max R (2).
xeZy

The analogous statement holds for y.

To see how this result will play a role in the convergence analysis for alternating minimization,
consider a single update step for the x variable. Let xy = argmin{.%(x,y) : x € Zy}. Then the

first-order condition (3.4) shows the following bound (which we can compare to (4.2)),

<x/—xy,Vx$(xy,y)> > —y(%0)||Vx$(xy,y)||;||xl—xy||% forall X' € 20, 4.4)
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while Lemma 4.2.1 proves a useful bound for y(.Z) as long as py is sufficiently small (and simi-

larly for y).

4.2.1 Related work

Alternating minimization is a classical topic in the optimization literature, dating back to early
work (e.g. [45]), and a large body of research has been devoted to understanding the method under
various settings (e.g. [46, 6]). Here we summarize some of the key recent results, and describe
how they relate to our contributions; for brevity, we only focus on the papers most relevant to our
work.

Luo and Tseng [6] prove linear convergence for alternating minimization under convex con-
straints, assuming that the loss function . is B-smooth and a-strongly convex in each variable
(and, in the case of more than two variables, for the analogous coordinate descent algorithm).

In some settings, the loss function . may be more well-behaved with respect to one of the
variables than the other, in terms of its smoothness and convexity properties. Beck [5] studies
alternating minimization for a convex loss .Z(x,y) under convex constraints on x and on y, proving
that the gap in the loss function values, i.e. the difference .2 (x;,y;) — -Z(X,y), decays according to
the rate & (%) , where By and 3 represent the smoothness parameters of the loss .’ with
respect to the variables x and y respectively. Interestingly, this rate is controlled by the better of the
two smoothness parameters—that is, the algorithm will converge rapidly as long as at least one of
the two smoothness parameters is bounded.

Our main results demonstrate an analogous phenomenon under an additional (restricted) strong
convexity assumption—in this setting, we find a linear convergence rate, with the convergence ra-

Be By

dius determined by min { oy Gy }, where By, By are smoothness parameters as before, while o, oy
are the (restricted) strong convexity parameters with respect to x and y, respectively. That is, the
linear convergence rate depends on the better of the two condition numbers, while in Beck [5]’s
result, without strong convexity, the sublinear convergence rate depends on the better of the two

smoothness parameters. Thus, while a main focus of our work is to establish convergence results in
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a nonconvex setting, even in the convex setting our results reveal the interesting role of the two rel-
ative condition numbers (i.e. for the x and the y variables) in determining the overall convergence

rate.

4.2.2 Assumptions

Next we formally establish our assumptions on the loss function .Z(x,y) as well as initialization

condition.

Loss function We first define some notation. Our convergence results will be derived in terms
of the first-order divergence, a measure of distance to the optimal points X and y that is defined

relative to the loss function:

D?*(x;%) = (x— X,V Z(x,5) — Vo Z(X,7)), and (4.5)

D*(1:3) = (y =3, Vy.Z(%.y) = V3L (%.9)). (4.6)

This divergence has been used also in [39] to prove statistical errors of any local minimum in the
sparse regression setting. Note that, if .% is nonconvex, then potentially D?(x;%) or D?(y;y) may

be negative. Abusing notation, we define the square root of the divergence as

D(x;x) = \/max{O,Dz(x;)?)} and D(y;y) = \/max{O,Dz(y;ﬁ)},

to accommodate the case where the divergences may be negative.

Throughout we will write &, & > 0 to indicate vanishing error terms that allow a small amount
of slack in the convexity and smoothness conditions. In the high-dimensional statistics literature,
these terms often represent the “statistical error’—meaning, if the global minimizer X approximates
some “true” parameter x* only up to an error level of &, then as soon as our iterative algorithm
reaches a solution x; within distance ~ &, of x, we are already optimal (up to a constant) in terms

of estimating the underlying parameters x*. While our work in this paper is not based in a concrete
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statistical model, we will still refer to &, €, as the statistical error terms, as this is often the case
for many of the applications of our result.

We now state our assumptions on the loss .Z(x,y). Our optimization method works locally in
neighborhoods of the initialization point (xg,yq), and consequently it is sufficient for us to require
the assumptions on £ (x,y) to hold only locally in the regions .2 and %.

First, since (x,y) are being optimized jointly, we need to ensure that these two variables are

identifiable, and require a joint restricted strong convexity (RSC) condition at the target point

(x,3):

Assumption 4.2.1. (Joint restricted strong convexity (RSC).) For all x € 2y and all y € %,

x—x ~ o 2 2 2 2
( VL (xy) - VLED) 2 anllr 213+ aply 313 - o — ape

R 2 @D
Y=y

Note that we require joint RSC to hold only at the target (x,y). In other regions of 2" x %, we
may not have joint convexity if the variables x and y are not identifiable from each other in general
(for instance, this arises in low-rank + sparse decomposition problems).

Next, we assume that, marginally in x and in y, the loss function satisfies the restricted smooth-

A~

ness (RSM) property near the optimal point (x,y)

Assumption 4.2.2. (Restricted smoothness (RSM).) For all x € 2y and all y € %,
2/ .o 2 2 27 . 2 2
D2(x3) < Bollv 713+ oxe? and  D2(y:5) < Bylly 113 + onel. (4.8)

Comparing to the restricted strong convexity assumption, we see that we need to choose con-
stants o < By and o, < fBy.

Finally, we require a “cross-product” condition (explained below):
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Assumption 4.2.3. (Cross-product bound.) For all x € Z(y and all y € %,

}(x—)?,Vx.E(x,y) —ng(x,ji\» - <)’—)A’7Vy-$(xv)’) _Vyg(k\?y))‘

1 1
< ttall—F13+ 3y lly 313+ one? + e

where 0 < Uy < oy and 0 < Uy < Q.

To understand this assumption, suppose that .Z is twice differentiable. In this case, applying

Taylor’s theorem to rewrite the above expression in terms of V2.2, we find that Assumption 4.2.3

holds with
wo=py= sup 2| VAL (x4 (1-09) - VAL x+ (1 -z
x€Zo:yE% Sp
1,t'€[0,1]

where the norm ||-|sp is the matrix operator norm (the largest singular value). Since 2( and %
are bounded via the radii py, py, then, this condition is satisfied whenever V%y,i” is Lipschitz. As a

special case, if .Z(x,y) is quadratic, then we can trivially take p, = uy = 0 since V)%y.f is constant.

Initialization As our theoretical results mainly concern the local behavior of the alternating min-
imization method, the initialization scheme is crucial to ensure the success of the procedure. Our

results require the following initialization condition:

Assumption 4.2.4. (Initialization condition.)

2120 (192 G+ max 92 69 ) < 0~
0

and

2136)- (192 @35+ max 9,2 0015 ) < - b
xeZy

Recall that Lemma 4.2.1 provides easy bounds on y(.Zy) and (%), as long as the radii py, py

are chosen to be sufficiently small; furthermore, if 2" is convex, then y(Z3) = 0 and so the
81



first bound holds trivially, and similarly for the second bound if % is convex. In the nonconvex
setting where y(.Z() and/or y(%;) are nonzero, see [31] for a discussion of the necessity of this
type of initialization condition for the related problem of gradient descent in a single variable (see
also (3.15) in Section 3.4.1). Roughly speaking, the condition requires that algorithm must be
initialized within some neighborhood of the global minimizer—sufficiently close so that, locally,
the (restricted) convexity of the loss function .Z(x,y) is sufficient to outweigh nonconvexity in the

constraints.

4.3 Convergence guarantee

4.3.1 Exact alternating minimization

Now we prove convergence by working with the first-order divergence defined in (4.5), (4.6) above.
According to Assumption 4.2.1, the divergence will be always nonnegative in the regions 2 and

%, up to the statistical error.

Theorem 4.3.1. Suppose that Assumptions 4.2.1, 4.2.2, 4.2.3, and 4.2.4 hold. Then the iterations

of the alternating minimization algorithm (4.3) satisfy the recursive bounds

~ Oly .
D(x;%) < 1 - B, D(y;—159) + \/3(axe§ +oye?), and (4.9)
D(ys:y) < 1—&~D(xt'f)+\/3(ax82+a e?) (4.10)
k) — 2Bx ’ X y v/

for allt > 1. In particular, this implies a linear rate of convergence:

||<xt,yt>—<m>||zsWl—z‘%w —ﬂ) - %Wmax{ex,ey} (4.11)
X mind Oy, Qly

co 18 | max{ o, oy}
1_\/1_2&5)‘.\/1_2‘%};} min{ax,ocy}'

forallt > 1, where




Before proceeding, we remark that the order of the updates—that is, after initializing at time
t = 0 with points xq,yq, at time t = 1 we then update first x and then y—is arbitrary. In particular,
the term \/ﬁ_ypy appearing in the numerator of (4.11), can of course be replaced instead by \/E X
if we switch the order of the updates. This suggests that it may be best to first update the variable
with poorer smoothness parameter—that is, if the y variable is more well-conditioned, at our first

step we should fix y and update x.

4.3.2 Dependence on condition number

Examining the bound (4.11) for the convergence rate in the /5 norm, we see that the convergence

T N

(here we ignore the negligible statistical error term C-max{&y,&y}). We now discuss the impli-

rate is dominated by the radius

cations of this result, in terms of its dependence on the convexity and smoothness parameters,
Oix, Oy and By, By. To help us discuss the conditioning of this problem, we define the two marginal

condition numbers of the loss function with respect to the x and the y variables,

Ke(Z) = ;i and Kk (.Z) = %,

and the joint condition number

_ max{f, By}

k(L) = — fanoy] > max{kx (L), Ky (L)},

which, up to constant factors, gives the condition number of the loss function .# as a function of
the joint variable (x,y).

In (4.11), we see that our convergence radius is strictly smaller than 1, as long as either of
the two marginal condition numbers is bounded from above, that is, if min{x(.Z), x,(.Z)} is

bounded. On the other hand, if we consider optimization algorithms that work with the com-
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bined joint variable (x,y), the performance of such algorithms typically relies heavily on the joint
condition number k() > max{ky(.Z),x,(.£)}. For example, if .Z is o-strongly convex and
B-smooth in the joint variable (x,y), standard results (see e.g. [40]) prove that gradient descent in

(x,y) yields
e, 3e) = @2 < (VT—a/B)"[[(x0,50) = 92

Comparing to our notation, it can be shown that & < min{ o, oy} and B > max{f,, By}, and so
the radius of covergence for (joint) gradient descent is controlled by the joint condition number,
k(L) > max{x (L), (L) }.

Therefore, in settings where one of the two—ky(.Z) or &y (.Z)—is much larger than the other,
we may expect that (joint) gradient descent, or other non-alternating algorithms, might perform
poorly, while alternating minimization will continue to perform well, since its linear convergence
rate depends only on the best of the two condition numbers, i.e. on min{ky(.Z), k,(.Z)}. (We
mention that [5] finds an analogous result without strong convexity assumptions, demonstrating
that the sublinear rate of convergence for alternating minimization method is driven by minimum

of the two smoothness parameters, i.e. min{fy,By}.)

4.3.3 Inexact alternating minimization

In some settings, it may be impractical to solve the alternating minimization steps exactly, i.e. when
Z(x,y) is difficult to minimize even as a function of only x or only y. In these cases, we may want
to solve each step of the alternating minimization algorithm inexactly.

We formulate an inexact algorithm where, at each step, we choose x; and y; to be within some

tolerance parameters 87,8, of the exact alternating minimization steps at that time: for all # > 1,

xExact — argminyc o, L(xy—1), X € ZoNBy(xp*a, §7), 4.12)

y;axact = arg minye% g(xﬁy)? Vt & %0 HBZ (y?xact7 6ty>

Here x; and y; can be chosen arbitrarily (or even adversarially) as long as they are within the
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required distance of the true solutions x$*3°t and yxact,

In order to establish the convergence of the inexact alternating minimization algorithm (4.12),

we require an additional assumption:

Assumption 4.3.1. (Relaxed triangle inequality.) For all x,x' € 2y,

D(x:%) < D(13) + /Bellx = o[l + v/,

and for all y,y' € %,

D(y;9) < DY)+ 1/ Bylly =¥ [l2 + /0y ey.

It can be shown that a stronger form of the restricted smoothness condition (Assumption 4.2.2)
implies this type of relaxed triangle inequality, but for simplicity we state it as an assumption.

The following theorem states that the inexact alternating minimization inherits fast convergence
of the alternating minimization steps to the target (x,y), under the same assumptions as the original

result Theorem 4.3.1, along with the relaxed triangle inequality (Assumption 4.3.1).

Theorem 4.3.2. Suppose that Assumptions 4.2.1, 4.2.2, 4.2.3, 4.2.4, and 4.3.1 hold. Then, the

steps of the inexact alternating minimization algorithm satisfy

R o ~
D(x3%) < 1—ﬁ*wnmw+¢m&+¢&%%+%%>am (413)
Y
= [0 ~
D(y;:3) < 1_§'D(x’;x>+ B! + /8 (oce? + o). (19
X

forallt > 1.

Of course, in order for this result to be meaningful, the slack terms 87, 5ty need to be sufficiently
small, so that the errors D(x;;x) and D(y;;y) are able to converge to zero (or, at least, to the level
of the statistical error terms &y, €,). As a special case, consider the setting where the slack terms

" 5ty decrease as the solution converges, via the rule

5 < eall 1 =2+ Gty 8 < eyl 3o+ Gy, (4.15)
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for some sufficiently small cx,cy > 0 and for some Cx,Cy < oo. In fact, we will see momentarily
that this recursive bound arises naturally when the approximate iterative solutions x; and y; are

obtained via projected gradient descent.

Lemma 4.3.1. Suppose that, for all t > 1, the slack terms &, 6ty satisfy (4.15). Then, under the

assumptions of Theorem 4.3.2, if

[ By | [i_ % | Bx
r.—< 1 Zﬁx+3cy\/;y> 1 23y+3cx o <1, (4.16)

then the iterations of the inexact alternating minimization algorithm (4.12) satisfy

- \/6(op? + Byp?)

(et e) = (V) l2 < 77 - .
/min{ oy, oty }

forallt > 1, where

+C-max{&y, &}

C=

30 o+ oy +CPe+CEPy
1—r min{ o, oy } '

We should interpret this lemma as covering two distinct scenarios:

e First, if the loss is well-conditioned in both the x and the y variables—that is, both g—fc and
% are bounded—then we can afford inexact update steps for both variables, allowing cx, ¢y

to both be small positive constants while still obtaining linear convergence.

e Alternately, if the loss is well-conditioned in one variable only—without loss of generality,

By

if g_); is large (or even 3, = o) while o is bounded—then we can allow the y variable update
to be performed inexactly, while the x variable should be updated with the exact alternating
minimization step (that is, cy = Cy =0, 1.e. 5; = 0 at each update iteration #). In this case,

we can still obtain a linear convergence rate.
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4.3.4 Alternating gradient descent

As mentioned above, if the alternating minimization update for x is approximated via gradient
descent in x (and same for y), then we may expect the errors in each step to scale linearly as
in (4.15). Here we give informal statment for this claim.

In Theorem 3.4.1 of Chapter 3, it is shown that under the framework of local concavity measure,
projected gradient descent converges rapidly to the optimal as long as it is initialized near the
target. Translating this result to the alternating minimization setting, we can bound the tolerance
parameters &;, 5ty appearing in the inexact alternating minimization algorithm (4.12), when the
inexact steps are computed via gradient descent. Here we state the statements informally to avoid

overly complicated assumptions and constants:

Lemma 4.3.2 (Adapted from [Theorem 3.4.1]). Under appropriate assumptions on the loss £,

initialization, and step size, the output of my many gradient descent steps on the x variable satisfies

. » 15 5
o, _xexact +—'€ .
t—1 t 2 X

Ay

20,
a
* O + B

|m<ﬁW%sO—

The analogous statement holds with the roles of x and y reversed.

Examining the conditions (4.15) and (4.16) on the allowed size of the slack terms &7 and Sty ,
we can see that taking ¢y = 0 ((ch/ﬁx) 1'5) and cy =0 ((Ocy/ﬁy) 1'5> is sufficient to ensure that

the condition (4.16) will hold. This yields the following corollary:

Corollary 4.3.1. Under the assumptions of Lemmas 4.3.1 and 4.3.2, for some radius Rad < 1,

[Groye) ~ @512 < € (Rad - max{py. py} + max{er.&y})

for all t > 1 as long as either the x update and the y update are exact, or are approximated via

my =0 (% log <g—fc>> and my = 0 (% log <g—§>> many steps of gradient descent.
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4.4 Examples

In this section, we highlight applications of our general theory to two classes of low-rank estimation

problems, namely matrix decomposition and multitask regression.

4.4.1 Matrix decomposition

We revisit the low rank + sparse decomposition studied in Chapter 2; here we change our notation
slightly and assume X* is a low-rank matrix and Y* is a sparse matrix. We further assume that the
underlying matrices X* and Y* belong to the following constraint sets:2

&sp

X = {x € ST rank(X) <7, [[X oo < y

b ={res™ | <}, @1

where S and S denote the sets of symmetric or positive semidefinite d x d matrices, respectively.
The /--ball constraint in the set 2~ makes sure that the low-rank update by the algorithm is at most
Osp-spiky at every iteration. The following lemma computes the upper bound on the concavity

coefficient ¥y (2"):

Lemma 4.4.1. For the constraint set % = {X € Sf{_Xd crank(X) < 1 [[X]Jeo < %}, we have

x(Z) < zlcrrsﬁ with respect to the nuclear norm ||-||x = ||| nuc-

While we prove in Lemma 3.3.1 that the set of rank-constrained matrices without spikiness
constraint has the local concavity coefficient ¥y (2") = #(X)’ the lemma above shows that the
coefficient for 2" can be upper bounded with a larger constant factor.

Now we aim to recover the underlying matrices (X*,Y*) by solving the constrained optimiza-

tion problem

(X,Y) =argmin{ L(X,Y): (X,Y) € Z x ¥}

via (inexact) alternating minimization.

2. For our analysis, we assume that ||Y*||; is known exactly; this is a common assumption for the constrained
problem, e.g. see [47]. On the other hand, || X*||. needs only to be bounded by some known value ¢, /d; we do not
need to know it exactly.
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Robust principal component analysis (RPCA) We study the robust PCA problem as formu-

lated in [2], where the data matrix Z € S"*" is generated from the model
Z=o (X*+Y*)+W,

where o7 : S4%4 —5 S"*" ig a linear operator mapping matrices from S¢*4 to S"*”, and W € S"*"

represents a symmetric noise matrix. We consider the least squares based estimator,
PPN 1
(X,Y) = argmin{§]|Z—£%(X+Y)]\% ((X,Y)e X x @} (4.18)

We follow the notion of RSC as introduced in [2, Definition 2] and require the restricted eigenvalue

condition on &7:

Assumption 4.4.1. (Restricted Eigenvalue.) There exist constants o, Bs and T > 0 such that for

all Ay, Ay € R4 with rank(Ay) < 2r,

o (18X 1B + 1187 I2) = tna < 7 (Ax +Ap) I < Ba (IAx IR+ 1Ay IR) + g

where T, 4 is given by

logd d? logd
Gd =T | —3 I8y [§+1/ =5 Ax|l=l| Ay |1

d? logd

The expression |Ax ||eo||Ay ||1 reflects the restriction on the degree of interaction be-

2

tween Ay and Ay, which would hold if ||.27* .o/ (Ax)||ec & di#d ||Ax ||so —for instance, an i.i.d.
Gaussian ensemble will satisfy this property with high probability.

Now let the radii py, py satisfy px, py < cg-0-(X*)k 1 (/) for some c( > 0, where o,(X*) is

BA

the smallest singular value of X*, and where k(<) = £4 | which we can think of as a restricted con-
dition number of the linear operator o7 (i.e. characterizing the action of .o/ restricted to low-rank

and sparse matrices). Given the initialization point (X, Y), denote the corresponding neighbor-
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hoods by 2y = Z NBy(Xo,px), % = % NB,(Yy, py), and further assume that both the underly-
ing matrices (X*,Y*) and the global optimal (X,Y) belong to these local neighborhoods 27 x %.

With this setup, we then have the following guarantee:

Lemma 4.4.2. Suppose that the sample size is large enough to satisfy

327-sdlogd
”—zoggaA, (4.19)
n

Then, under the previously stated conditions, if ||./*(W)||sp < c1 - @4 6,(X™), the steps (X¢,Y:)77

produced by the alternating minimization algorithm (4.3) satisfy

linear convergence
"

~
t

-1
06 1) — (D) < (1—%@’”) 00, (x*)y/x 1 ()

2
~ 0, sdlogd
+¢y-C <HY—Y*H,2:+—S;—2> .
OCA n

J/

-

statistical error term
Here, {c; > 0,i = 1,2} are universal constants, and C > 0 is defined in Theorem 4.3.1.

We remark that the result given in the lemma is the bound obtained by updating the Y variable
first instead of the X variable. The statistical error involves the term Ocszp“lll#l, which appears as a
consequence of the nonidentifiaibility of the model. With extra effort, we can also prove that each

step of the alternating minimization update can be replaced by several steps of the gradient descent

updates, which we do not pursue here.

Gaussian factor model We next consider a Gaussian factor model, where our data consists of
observations

zi=U"wi+¢,

fori=1,...,n. Here U* € R4*" represents the latent structure present in the data, while the other

terms in the model are the random factors w; iy (0,1,) and the independent noise &; oy (0,Y%).
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We further assume that the covariance structure of the noise, Y™, is sparse. We can calculate
Cov(z;) = U*U* " +Y*, a low-rank + sparse decomposition, and can then estimate the unknown

components X* = U*U* " and Y* by solving the constrained optimization problem
(X,Y) = argmin{(Sn, (X+7)"H —logdet(X +Y)": (X,¥) € 2" x @} , (4.20)

for S, = % X z,-zl-T, the sample covariance matrix of z;’s, where 2~ and % are defined as in (4.17).

Zwiernik et al. [48] studies the related loss function £ (X) = Z(X +Y) in the context of
a linear Gaussian covariance model. They prove that this loss is in fact convex in the region3
{Xe RXd .0 < ¥ < 2S,} and furthermore this region contains both the true covariance matrix
¥* and the maximum likelihood estimator & with high probability, as long as the sample size is
large enough, n = d. In this regard, our setting can be seen as imposing different structure on the
covariance matrix.

In the lemma to follow, we verify analogous results, showing that the loss (4.20) satisfies all
the assumptions of Theorem 4.3.1 in the local region, ensuring fast convergence of the alternating
minimization algorithm. Suppose that the algorithm is initialized at the point (X(,Y;) with the

corresponding neighborhoods 2y = 2 NB,(Xp, px), % = % NB,(Yy, py), where for some ¢ >

0 the radii are defined to satisfy

px,py < co-min{oy(X*) K (2%), Amin (E4) K~ H(Z")},

where 6,(X™) is the smallest singular value of X*, Ain (£*) (and Apax (X*) resp.) is the minimum
(and maximum resp.) eigenvalue of £*, and where k(X*) = Amax(X*)/Amin (L) is the condition
number of £*. Assume also that these neighborhoods Z( x % contain the pair of true matrices
(X*,Y*) and the global optimal (X,Y), i.e. (X*,Y*),(X,Y) € 2 x %. With this setup, we now

establish the following probabilistic guarantee:

3. Specifically they show that the Hessian matrix of the loss function .Z(X) is positive semidefinite in the region
{ZeR™:0< ¥ <2S,}.
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Lemma 4.4.3. Suppose that

\/g < ¢p-min{o,(X*)A L ()4 (=), 1 (ZN)]). 4.21)

Then, under the previously stated conditions, with probability at least 1 — 2¢7 4, the steps (Xt,Y1)72

produced by the alternating minimization (4.3) satisfy

linear convergence
7\

1% 7) ~ R D) < (1 eax#(29) eamin{on(X)x ™ (%), Ain ()5 2(2))

~ )
e C(IF ¥R +0d7).

. . h
statistical error term

Here, {c; > 0,i =1,...,4} are universal constants, and C > 0 is defined in Theorem 4.3.1.

The discussion following Lemma 4.4.2 is also valid in this setting—in particular, the error due

to the nonidentifiability of the model now appears as the term Ocsng.

4.4.2  Multitask regression

Next we consider the multitask regression model where the response takes multiple output values.
Suppose we are given m different tasks, namely each response is of the form z; € R”. Denoting

the feature vector by ¢; € R¥, the response is generated through the linear model

Z; = X*¢i—|—£i, 4.22)

where X* € R”*4 is an unknown matrix whose rows correspond to the underlying coefficient
vectors for each task, and & € R™ is the measurement error from a centered multivariate normal
distribution, with an unknown covariance matrix Cov(g;) = @* 1,

In the reduced regression setting [49], the true matrix X* is assumed to be low rank. We then
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optimize the constrained negative log-likelihood function,

S| =

(X, @)) = argmin {— logdet(®) +
1

1

(Zi—X¢i)T®(zi—X¢,~) XeZ,0x 0}, (4.23)

where 2" = {X € R"™*¢ : rank(X) < rank(X*) = r} represents the rank constraint on the coef-
ficients X.* While this problem is generally nonconvex in (X,®), in addition to the nonconvex
constraint X € 2", we show that this problem satisfies all the assumptions that we require for our
results.

For the purpose of our analysis, we consider a random design model, i.e. the feature vec-
tors are sampled from a Gaussian distribution ¢; 9y (0,Z). Let (Xo,0p) be the initializa-
tion point, and denote the local neighborhoods of the constraint sets around (X, ®g) by 2y =
Z NBy(Xp,px) and 2y = ST NB, (O, pg). We choose the radii py, pg to satisfy px < ¢ -
or(X*)k 1 (©%)k! (Xg) and pg < cp - Agnin (%)~ (Xy) for some ¢y > 0, where o,(X*) is the
smallest singular value of X*, A, (@) is the smallest eigenvalue of @, and where k(0), k(Zy)
are the condition numbers of ®* and Ly, respectively. Assume also that the initialization point
(Xo,0q) lies within these radii py, pg to the unknown matrices (X*,0*) and the global optimal
(X,0),ie. (X*,0%),(X,0) € 2; x 2.

With these definitions in place, we have the following probabilistic guarantee:

Lemma 4.4.4. Suppose that

\/lmin((a*)l/lmax(zq,) W <cp- o (XN @)K (Zg). (4.24)

Then, under the previously stated conditions, with probability at least 1 — cpexp(—c3(m+d)), the

4. Tt is also possible to consider structural constraints on ® or £ = ®~! such as “sparsity” or “low-rank + diagonal”
structure. For simplicity, we don’t pursue this direction further, but our framework can be also applied to this general
setting.
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steps (X;,©r)7> | produced by the alternating minimization algorithm (4.3) satisfy

linear convergence
7\

1%, 00) ~ (K. 8)[lF < (1 - ca(x ™ (@)x (£9) +x2(@7)) ) (Const)

. Y v*|2 r(m+d) !
+¢s C<HX Xle+—, Mn(@*)lmax(%))

. . Vv
statistical error term

forallt > 1, where (Const) is given by

(Const) = c66r(X*)\/ k=1(0%)k~1(Z4) - min {1,/1;m<®*)1<2(@*)zmm(z¢, )} .

Here, {c; > 0,i=1,...,6} are universal constants, and C > 0 is defined in Theorem 4.3.1.

We remark that the result in Lemma 4.4.4 assumes updating ® first. While Lemma 4.4.4 is
stated in terms of the exact alternating minimization, by working with Lemmas 4.3.1 and 4.3.2, we
can also obtain a linear rate of convergence for the alternating method when the minimization step
for X is approximated by successive iterates of gradient descent. (The alternating minimization
update for ® has a closed form solution, ® = <% "z —X)(zi—X ¢i)T) - , 1.e. the inverse of
the sample covariance matrix.) We also refer the reader to [9] for similar results under the context

of the pooled model.

4.5 Empirical results

We perform a numerical experiment on the multitask regression problem (Section 4.4.2) to examine
the empirical performance of the alternating algorithm, as compared to performing gradient descent
when treating (x,y) as a single variable. Fix the number of tasks m = 20, the dimension of features
d = 50, and set the low-rank component X* = U*V* T for rank r = 3, where U* € R20*3 and
V* € R9%3 are orthonormal matrices drawn uniformly at random. The features ¢; are drawn

.. . .. . iid ) iid
i.i.d. from the Gaussian distribution ¢; ~ N (O,Zq)), and the noise terms g; are generated as &; ~
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(0, @*_1), where Xy and ©*~! are both defined to have a tapered covariance structure: we set

Yo ij= 0.3li=J and ®;fj_1 —o2. p|i_j|, where p is a local correlation parameter that we vary,
Mean(|[X*9i[/m)
3

while 62 = is chosen to obtain a moderately difficult signal-to-noise ratio. The
responses, z;, are then drawn according to the model (4.22).

The parameter p controls the strength of the correlation of the noise (i.e. correlation among
entries of &;, for a single observation 7, across the m = 20 tasks). By varying p, we can vary the
relative condition numbers of the loss function .Z(X,®) given in (4.23) with respect to the vari-
ables X and O, i.e. kx(.Z) versus kg(-Z). As discussed in Section 4.3.2, convergence rates for
alternating minimization type methods are expected to scale with the minimum of these two con-
dition numbers, while non-alternating methods (i.e. gradient descent in the joint variable (X, ®))
will scale with the maximum of the two.

Given the data (¢,,z,) - with sample size n = 200, we solve the constrained minimization

problem (4.23) based on two iterative methods:

e The alternating method, which alternates between updating X and ® at every iteration. For
the X update, fixing ® we approximately minimize .2 (X, ®) by taking one gradient descent

step, while for the ® update, fixing X we minimize % (X, ®) exactly:

Xt = P {rank(x)<r} (Xe—1 +1x - 20, 1( i (Zi—Xt—1¢i)¢iT))v

0 = argming,-0 £ (X;,©) = (LT, (5= X9) 5 —X9) )
with step size Ny = 0.001.

e The joint gradient method, where we take gradient descent steps in the joint variable (X, ).

The update step is given by

Xt = P rank(x)<r} Xe—1 +Mx - 20, 1( —Xt—l‘i’i)‘PiT))v

G)t:‘@{@tO}(@t—l"’_n@'( 5 i (2= X 190) Xz—1¢i)T))a

95



Convergence for p=0 Convergence for p=0.4 Convergence for p=0.6
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Figure 4.1: Comparison of the alternating algorithm and the joint gradient descent method applied
to the simulated multitask regression problem. Results are shown for three settings of the noise
correlation parameter p, across iterations =0, 1,...,600. In each plot, the solid line indicates the
median loss over 100 trials, and the light band shows the interquartile range.
where we allow different step sizes on the two variables X and ®. We set Ny = 0.001 as
for the alternating method, and select ng € {ny,...,N30}, where 11,...,M30 is a geometric
sequence from 711 =5 to 1139 = 400. For each trial, we then retain only the step size ng

that yields the lowest loss over any iteration, min,—y 7.2 (X;,0;), for the first T = 1200

iterations.

Figure 4.1 shows the excess loss at each iteration (on a log scale), where the excess loss is
given by
X(Xh@t) _jmim

where Z},,;, is the minimum loss achieved by either method over 7 = 1200 iterations (calculated
for each individual trial and each choice of p). As clearly seen in the figure, for both methods, the
errors scale linearly with the iteration number. Furthermore, comparing the two methods, we see
that they perform nearly identically when there is no correlation in the noise, i.e. p = 0; for low
correlation, p = 0.4, the alternating method is moderately faster,5 and for high correlation, p = 0.6,
the alternating method still shows rapid linear convergence while joint gradient descent does not

appear to converge well. This is consistent with our theoretical results, since the alternating method

5. Note that the shaded bands in the plots are not standard error bars, but rather interquartile range over 100 trials,
so the difference between the two lines is indeed significant.

96



scales with the better of the two condition numbers, i.e. min{ky (-¥), kg(-Z)}, while the joint
gradient descent method is known to scale with the maximum. Since kx(-Z) ~ k(Xy)k(©%)
while kg(.Z) ~ K%(®*), and Kk(Xy) is constant with respect to p while k(@) increases as the noise
correlation parameter p increases, we see that the minimum condition number is less affected by

increasing p, than the maximum condition number.

4.6 Proofs of Theorems

In this section, we prove our main result on linear convergence for the exact alternating minimiza-

tion algorithm, Theorem 4.3.1, and for the inexact algorithm, Theorem 4.3.2.

Proof of Theorem 4.3.1. First we prove the bound on the x update step, given in (4.9), for iteration
number ¢. By definition of x;, we can apply the first-order optimality condition (4.2), with 2 in

place of 2", to obtain
(F =0, Vel (5t 7-1)) = = V(20| Vo (e, e 1) 15 13 = 3.
Meanwhile, since x is the minimizer of the problem min{.Z(x,y) : x € Z(}, we also have
(1 =TV Z(@5)) > ~1(20) | VL @Iz e ~ 73

Adding these two inequalities together, applying the initialization condition (Assumption 4.2.4)
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and rearranging terms several times, we have

a P
B oy 313

> (¢ =X, Vol (x1,y-1) = VaZ (X,3))

1 Xt —X PN
:E R 7V$(xl7yl—1)_vg(x7y)
Ye—1—Y
1 . 1 - PN
+§<Xt =X, Vol (X1,31—1) — VxZ(%,))) — ) (Vr—1— )’»Vy-iﬂ(xtv)’tfl) —Vyf(x,y»
1 X —X
- 5 R 7V$(xl‘ Yi— l
Ye—1—Y

b= BV (9) - Ve E9) — 5015 Z G 1)~ VL (E5)

1 - ~ ~ ~
3 | =B VL (a3 1) = Ve (00,5)) = 11 =,V 2 (xr3i1) = VL @)
€7 + o€l
2
1 PO | ~ ~ s
+2< XV g(xﬁ ) \ g(x )’)>_§<)’t—1_yavyg(xayt—ﬂ_vyg(%)’»

Ox 2 O 2
> 2l =313+ 5 -1 =513 -

1/1 1
5 (il =51+ oo 518 + e + ey ).

where the last step holds by applying joint restricted strong convexity (Assumption 4.2.1) to the
first term, and the cross-product condition (Assumption 4.2.3) to the expression in square brackets.
(Note that these assumptions can be applied since we have x; € 2 and y;_| € %). Combining
terms and simplifying, multiplying by 2, and using the assumption that t, > 0 while py, < o, we
obtain

~ (04
0> D?(x3%) = D*(yy—139) + - llyi—1 = 3113 — 20085 — 20085 (4.25)

Now, by restricted smoothness (Assumption 4.2.2) and using the assumption oy, < fy,
2

Oy 2. &% o ~ %
—||y,_1 — > —D _1;y)— —¢&
) [yr—1-3ll5> 2B, (Vr—1:9) 7 &
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Returning to (4.25) and rearranging terms,

Oy ~
DZ(X[; ) < <1 — 2_ﬁy) Dz(yt_l,y) +3 <(Xx8)%+ Olys)%) .

If D? (x7;x) > 0, then by taking a square root on both sides, we obtain

D(x;:% )—w/l‘ﬁ D(y—135) +/3(0ne? + ayed),

thus proving that the bound (4.9) holds at time ¢, while if D? (xz;x) <0, then D(x;;x) = 0 and so

the bound holds trivially. The proof that the analogous bound (4.10) for the y update step, proceeds
similarly.

By applying these bounds recursively, along with the restricted strong convexity and restricted
smoothness conditions, we can obtain the result (4.11) showing linear convergence in the ¢, norm;

details are given in Section 4.7.1. [

Proof of Theorem 4.3.2. This proof is a straightforward combination of the relaxed triangle in-
equality (Assumption 4.3.1) with Theorem 4.3.1, the contraction result for the exact alternat-

exact

ing minimization algorithm. First, since x exactly solves the alternating minimization step,

i.e. argmin,¢ 97 £ (x,y;1), Theorem 4.3.1 proves that

D(x$*tx) < 1/1—%D(yt B +\/3 (0x€Z + oye?).

Next, we use this to bound D(x;;x), using only the assumption that x; is chosen to be within radius

8 of x§%a°t, By the relaxed triangle inequality (Assumption 4.3.1),

D(xt, ) D exact + /Bx“x _xtexactHz_'_ /_axgx
(‘“_ﬁ D(y;_1;Y) +\/3 (o€2 +ay82>+\/ﬁx5x+\/a_xex
y
<\ J1- ﬁ D(yi—139) + VB + /(e + oy23).
y
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This proves the bound (4.13). The bound (4.14) on D(yy;y) is proved analogously.

4.7 Proofs of lemmas

4.7.1 Details on {» convergence bound (4.11)

Here we give details for the ¢, convergence bound (4.11) in Theorem 4.3.1. We first write r, =

1— Za_ﬁyy and ry = /1 -3 ﬁ for simplicity; then (4.9) and (4.10) can be rewritten as

D(xi;%) < reD(yi-139) + /30l + o),

and

D(ys;y) < ryD(x1;x) + \/3(ocxe)% + ay€7).

Then, applying these bounds recursively, we have

= 14+r
D(x3X) <’”x(”x”y) D(yo;y)+\/3(ax£%+ay8)%)' 1_,,);, )
Xty
and
R 14+r
D(31:3) < (rery)' D(v0:5) + /(02 + 0y £3) - 72—
Xty

Let 0ipin = min{ 04, Oy }, Gmax = max{ oy, 0y }. By joint restricted strong convexity (4.7),

1 Geye) = @)z = /I — 213+ llye 513

<\/<D2<xh>+D2<y, 9)) , 20max (€ +€) _ D(x:) +D(31:5) 20man (83 + )

= < +
Omin Omin Omin Omin
24+2ry
e () B a) (228) 2ol e
< (rary)'-D(y03) - T
Omin Omin Omin
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and, by definition of ry and ry and the fact that ryry < 1, we see that ry, ry € [1/v/2,v/2]. Simpli-

fying,

A~

1Gx, ) = E )2 < (rary)" - D(3035)

NG ) \/3(ax£% + oyed) - % ) \/Zocmax(e)% +€2)
vV ®min vV ®min ®min ’

and by restricted smoothness (4.8),

2 ~ 2 2
D*(y0;3) < Byllyo —¥lI5 + oyey.

Combining everything, and simplifying, we obtain the overall convergence guarantee (4.11).

Proof of Lemma 4.3.1. For convenience define

er\/l—Za—ﬁnyr(lJr\/i)-cx\/g:’;andry:,/1—%+(1+\/§)~cy\/f%.

(Comparing to the proof of the /5 convergence bound (4.11) for the exact algorithm, given in
Section 4.7.1, we see that these definitions coincide with the previous ones in the special case that
cx = ¢y = 0, i.e. when our updates are exact.) Define also Do = /0 px + +/Bypy-
We will first show, by induction, that for each t > 1,
D(xi;%) < re- (rery)' =1 - Do+ 12 . C max{ex, &y},

I—ryry

(4.26)

—~ 1+ry
D(y;y) < (rxry)" - Do+ 1—r:}ry -C'max{éx, &},

where

=4 1+cx,/g—i+cy1/§—i VT @+ Co/Bet Gy B 4.27)
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First we prove the bounds (4.26) at time t = 1. For the x bound,

D(x;x) < ,/1— ﬁ D(y0;y) + v/ Bx6; + \/8 el + ay82> by Theorem 4.3.2
x o~
<, /1= ﬁ -D(y0;¥) + v/ B (exllxo — 272 + Cuex) + \/ 8(0one? + ay€?) by (4.15)

<, /1—%'(\/Eypy+ v oyEy) + Bx(cx-px-i—cxsx)—i-\/8(axe%+aysy2),

where the last step holds since x{**! € 2 C By (xo, px), and D(yp;y) can be bounded by restricted

smoothness (Assumption 4.2.2). Simplifying,
D(x1;x) < ryDy +C'max{£x,8y},

which proves the bound (4.26) on D(x;;X) at time # = 1. Similarly, for the y bound,

D(y1:y) <4 /1- ? D(x1;X) + 1/ By&; + \/S(Otx&‘% + ocye)%) by Theorem 4.3.2
X

Q ~
1— = - D(x13%) + /By (cyllyo — 72 + Cyey) + \/8(ax83+ayey2) by (4.15)

77
1 — = (rxDg +C'max{ex,&}) + /By (cypy + Cy&y) + \/S(axs)% + o)

S rxryDO + (1 +ry) -ClmaX{Sx,Ey},

where for the last step we use the fact that r, >, /1 [3 by definition.
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Next, take any ¢ > 2. For the x bound, we first calculate

[le—1 =272 < ey = X2+ 2 =X

/ 2 2
(D0 —13%) + D(x3)) +

< by joint restricted strong convexity (4.7
S NG Y] g y (4.7)
< (Dx_;)?—i—D - ;A+\/3a£ taye )+ v by Theorem 4.3.1
\/a—x ( t—1 ) (yt 1 y) ( XCx y y) \/a—x y
1

< D(x,_1;%) +D(y,_1:9) + 44/ o €2 aez).
_\/OC_x< (Xt—1:%) + D(ys—15y) + xEx + Oy Ey

We now bound D(x;;X):

D(x;;x) < /11— ?y D(y;—1:9) + / Be&f + \/S(che,% + Ocys}%) by Theorem 4.3.2
<,/1- ﬁ D(yi—139) + VB (cxll—1 — 572 + Crex) + \/8 (oxef + ayeg) by (4.15)

< J1= D0 159)+ VB (| o (Dl +001159) 4y e o0} | < Coee

-l-\/8 O EZ + oY)
1ll—ﬁ—i—cx“ D(y;_1:y —|—ch/ P D(xt 13%) +C max{ey, &},
Y

where C’ is defined as in (4.27) above. Assuming by induction that the bounds (4.26) hold with

t — 1 in place of ¢, we obtain

/ / _ L+ry
D(xs;X 1-— 2_By + cx ”x”y t Do+ —— -C max{ex,&'y}>

Bx

1
o (rx(l’xry)t 2Dy 0+ 1 L 'C/maX{Sx,gy})+C/max{8xa3y}-
X — Ixty

+
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Since ry > 1 / v/2 we can rewrite this as

/ / I+r
1 Iy
D(x;x 1-— Z_ﬁy+ ”xl’y f Dy + T -C max{ex,ey})

1
& (f(rxry)t lD + i C/max{gx,gy}> +C/max{8x,8y}.
ax 1 rxry

Plugging in the definition of ry, then,

D(x;x) <7y (’”x”y)t ! Dy

1 1
+ | ex B Ty 1/1——+ Bx D +1| -C'max{ex, &}.
Ox ’”x’”y 2By L =rary

Plugging in the definition of ry, and the assumption that ryry < 1, we see that the term in square

4

rr’

brackets is bounded by ==, which proves the desired bound on D(x;;x) as in (4.26), as desired.
The bound on D(yy;y) is proved similarly.
Finally, by joint restricted strong convexity (4.7), we know that

o~ / 2 2 ~ / 2 2

and [|y; — +

NCZ NCZ SN V&

%t = x]l2 <
Combining this with the bounds (4.26) proves the result.
O

Proof of Lemma 4.2.1. Take any x,x’ € 2 C 2 with x # x’ and take ¢ € [0, 1]. By the curvature
condition (3.1) on the larger set 2", we can find a family of points x; € 2", indexed by 7 € [0, 1],

and some sequence & — 0, where
1= pad) =Tille <o [5(2) - v =213+ 8]

Next, we show that x; € 2 for sufficiently small # > 0. Recall that 2y = 2 NBy(xg,Px), and
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therefore we only need to check that ||X; —xg||2 < px. Since |||l < ||-||x by assumption, we have

1% —xoll2 < 15 — (1 = 0)x+22) ] + 1| (1 = 1)+ 1) —x0]I2
<% = (L =1)x+2x) e+ [ (1= 1)x+2x) =02

< B2 =X 1B+ &+ 1 (1= 0w+ 1) = xo .

Next, a simple calculation shows that

H((1 = 0)x+12") =20l = [[(1 =) - (x —x0) +1 - (' —x0) |2

= \/(1 —1)|lx =03 +1- [l —xoll5 — (1 —1)|lx—'|[3,

and since x,x’ € 2y C By(xq, Px), we obtain

(1= 1)l — 3

1— Aps < /p2—t(1—1)|lx -2 < py —
(1= px1) —xolla < /o2 =1 (1= )= < pre— =g -

Combining everything,

1 t 1)
% —xola <pr—tllx—X|5 | ——%(2) - — - ———|.
1% —xoll2 < px—1||x tz lsz %(Z) 20x ||x—x/||%

Since % (2") < ﬁ by assumption, and & — 0, we can find some 7 > 0 such that, for all 7 € [0, 7],

t 5;

4+ —— < — —%(Z).
2P Hx_x/H%_sz Y%(Z)

Therefore, x; € 2 for all t € [0,7()], and so

minyre o7 || ((1—)x+2x') —x"[lx _[|((1—1)x+2x') — % ||
Al . ) < I . ) S R(2) =I5+
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for all 7 € [0,7y]. This proves that

. min,e g || (1= 1)x+2x) —x"|
t—0 t

2
< %(2) - [lx =23
Since x,x’ € 2 were chosen arbitrarily, then, we have shown that

W(Zo) < %(2).

4.8 Proofs for examples

Throughout the section, if f is a function over a matrix variable A € R™*", we write mef (A) €
RMXMI 1o refer to the second derivative of f(A) with respect to the vectorized variable vec (A) €

R,
Proof of Lemma 4.4.1. We first reparametrize the variable X € 2" by X = g(U) = UU " with the
corresponding convex set

Os
U =U e R . max ||Upllr </ —2 Y,
{ max U2 < /%

—1,..

where Uj, represents ith row of U. Note that under such reparametrization, we trivially have
X =g(%). Now take X, X' € 2 withX =UU ", X' =U'U"". Fort >0, let X; = (1 —1)X +1X’

and U; = (1 —t)U +tU’. Then, by Taylor’s theorem, for some s, s’ € [0,1], and Uy = (1 —s)U +sU;,
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Uy = (1 —s)U’" + sU;, we have

X —g(Ur) = (1-1)g(U) +1g(U") —g(Up)
=(1-1)(g(U) —g(Uy)) +1(g(U") —g(Uy))

=(1-1) {Vg(U[)(U—Ut) + %Vzg(U*)(U — Ut,U—UI)]

+1 {Vg(Ur)(U’ —Up) + lvzg(U#)(U’ ~UpU"~ Ur)}

2

/ t2 2 / /

=(1-1) |1Ve(U)(U - U) +=V7g(Us)(U -U.U-U)
/ (l_t)z 2 / /
+1|(1—1)Vg(Uy)(U —U)—I—TV g(Uy)(U' —U,U" -U)
(1-1) o / no t(1=1)? ) / /
= > Veg(Us)(U-U"U-U")+ > Veg(Uy)(U' —U, U —U). (4.28)
Meanwhile, some calculation yields that for i, j = 1,...,d,

V2gii(U) = (eie] @1 +eje] ®1,) € RY*,
where ¢; € R¢ denotes the ith standard basis vector. Hence, we have
VZg(U)(U—-U"U-U")=V?gUy)(U-U"U-U)=20-U\U-U")".
Combining with (4.28),
X{}leig&,HX” —Xitllnue < [18(Ur) = Xillnue = (1 =0)[(U =U")(U =U") lnue = 1(1 =) U = U'|[£,
so dividing out by ¢ and taking t — O,

minx//€%||X” _XIHX

2 5 2
<|U-U'llg < ==X =X,

i
imsup 46, (X)

t—0 t
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where the last inequality follows from [50, Lemma 5.4]. This completes the proof of the lemma.

]

Proof of Lemma 4.4.2. Recalling the constrained least squares problem (4.18) for the robust PCA
problem, we verify that under the conditions of Lemma 4.4.2, the loss function satisfies the assump-
tions of Theorem 4.3.1, i.e. Assumptions 4.2.1, 4.2.2, 4.2.3, and 4.2.4, with parameters specified

below. Before proceeding, we observe that for all Y € %,
1Y =Yy <Y =Y*|l i +1IY = Y*[ly <2Vsd|[Y = Y[|g+4Vsd|Y - Y|, (4.29)

where the last step holds thanks to the triangle inequality and the fact that Y* is sd-sparse by our
assumption.

Note that the cross-product condition (Assumption 4.2.3) trivially holds with u, =y, =0,
since the Hessian V)Z(Y.f (X,Y) is constant over all (X,Y). We also use the shorthand o, = o, (X™*)

to denote the smallest singular value of X*.

Joint restricted strong convexity Let X € 2 and Y € %(. Invoking the restricted eigenvalue

property (Assumption 4.4.1), we have

XX I - SR
Y-Y

d?logd

~ ~ loed —~ —~ —~
2 2 g 2
> (I~ RIR+ 1Y IR — 7 |5y~ 713+ o Rl 71y

Applying the inequality (4.29) and the spikiness constraint, and using the fact that

32’L'sd210g d <
— 2z =
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04, the last term can be bounded by

logd d?logd

Sy =PI+ == X =X |lY =
oy ~ ~ 2 sdlogd
sg(uy—yuﬁqu—Y*uF) +4tasp) |55 (Y =Pl +2]7 ¥ e

0A 7112 % 2 oA 7112 v 2,3
< | T = TIR+ ol = V¥ + [ Ay ~PIR+ a7~ ¥ +

2(xsp sd log d
(07} n? ’

. . 2 2 .. .
where the second step uses the identity ab < 5~ + % for any ¢ > 0. Combining the pieces, then

X-X I o
7V$(X7Y)_V$(X7Y> E(XAHX—XHF
Y-Y

~ ~ 6402 sdlogd
2 2 Sp g
IY =Yg —4lY —Y*|[g - 2 2
A

Restricted smoothness A similar calculation shows that the marginal restricted smoothness con-

dition holds, that is, by the restricted eigenvalue property (Assumption 4.4.1), we have
(X=X VxL(X.Y) - VxZ(X.7)) = | (X - X)[[f < Bal X ~ X},
and similarly,

Y =Y, VyZ(X,Y)=Vy L (X,Y)) = | /(Y V)| 2

3[3A 64055p sdlogd |

2

RN =T IR S {41 YR+

A n

Initialization condition Since % is convex, the initialization condition is trivial for the set %.

For 2", we first bound || Vx.Z (X,Y)||sp forall X € 2 and Y € %. Given the observational model
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Z =/ (X*+Y*)+ W, we have the decomposition of || Vx.Z(X,Y)||sp into the sums

IVxZ (X, Y)lsp < |l (X = X" lsp+ || (Y =Y)|[sp +[| " (W) |sp-

(Term 1) (Term 2)

We can find some X’ with rank(X’) = 1 and || X’||g < 1 so that
Lo/ (X = X*)||sp = (o (X'), 7 (X = X*)).
By the restricted eigenvalue condition (Assumption 4.4.1), this proves
o (X")[If < Ba and || (X —X*)[7 < BallX — X .
So, we have
(Term 1) = ||/ (X") [ [/ (X = X*)[[F < BallX —X*||F < 2Bapx,

where the last inequality follows from X, X™* € B, (X, px). Again, by Assumption 4.4.1, we can
bound ||/ (¥ —Y*)|2 < BalY —V*|[ + 22008y |2 < 2Ba|ly —y*|2, and so for some

X" with rank(X”) = 1 and || X" || < 1,

3f

(Term 2) = (o (x"), o/ (Y —Y*)) < ZX=Bu ¥ —V*|[¢ < 3Bapy.

Putting these bounds together, we have ||Vx.Z(X,Y)|sp < 3Ba(px +py) + ||« (W)||sp. Now, by

Lemma 4.4.1, we know ¥y (Z2") < ékfrsw’ and so

5 5
7)< <
ax W2 S o 8ox = 20

; (4.30)

where the first inequality holds due to Weyl’s inequality, while the second inequality follows from

px < %Gr. Recalling px,py < co- 6,k (<) for some sufficiently small ¢ > 0, this implies
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1
2 ()

that the conditions of Lemma 4.2.1 hold, i.e. px < Tmaxy , and in particular, we have
€

Y(Zp) < Zior. Now combining all the pieces, we have

2%(20) | IV L (X, Y) ||sp + Vy Z(Xy,Y <4y(2p)- Vy L (XY
Y 20) - |IVxZ(X,Y)lsp gagxoll yZ Xy, Y)sp| <4v(Z20) Xe;&%?;e%ﬂ xZ X, Y)sp

10 *
< ;~(3ﬁApX+3BAPY+ |7 (W)lsp) < o,
r

where we use ||.27*(W)||sp < oy - (31—8 in the last step. This establishes the initialization condition.
Now by specializing to the robust PCA problem (4.18), Theorem 4.3.1 immediately yields the

result of Lemma 4.4.2, as desired. O

Proof of Lemma 4.4.3. Next we turn to prove our claims for the Gaussian factor model, as pre-

sented in (4.20). First we calculate the gradient and Hessian of .2 (X,Y): for all Ay, Ay € RI*d,

< VZ(X Y)>——t((A +Ay) (X +Y "X+y-8 X +Y !
9 ) r X Y ) ( n)( ) )7
AY

and
V2o, v) | X | =vec(ax)T (X, Y )vec (Ay) +vec (Ay) T (X, Y )vec (Ay)
+2vec(Ay) | (X, Y)vec (Ay),
where 7 (X,Y) is a d*-by-d? matrix, given by

H(X,Y) = %(X+Y)1(2Sn —X+Y)X+Y) e x+y)!

J/

-~

H1(XY)
X+Y) loX+Y)71(2S, — (X +Y)(X+Y)" L.

-~

H5(X,Y)

+

(0o | —
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Throughout this proof, we use the following concentration inequality: since z; i A (0,£%) and

Sp is a sample covariance matrix formed by {z;}7._;, with probability at least 1 — 2¢~4, we have

_ _ d
IS0 == lsp < 1= lspll =2~/ 282 12— 1y | < Mmax(z*)\/; (4.31)

where the second step holds by a concentration bound on the extreme singular values of a standard
Gaussian ensemble [25].

We calculate a few inequalities to use later. Recall

px:Py < co-min{o(X*)k ™ (), Amin(Z*) K~ 4(Z%)}

for a sufficiently small ¢y > 0. For X € B, (X, px) and Y € B, (Y, py), assuming X* € 2, Y* €
%, then we have
A'min (Z*)

IX +Y =X [sp < [ X +Y —Xo —Yollsp + | Xo + Yo — E¥[|sp < 2px +2py < — 1

where the last inequality follows from px, py <

—)'mi?éz*) . Applying Weyl’s inequality, this yields

3 5
ZAMH(Z*) < Amin(X +Y) < Amax (X +7Y) < ZlmaX(Z*)~ (4.32)
Applying Weyl’s inequality again and using the inequality (4.31), we also have

1 3
Eamin(Z*) < Amin(zsn —X - Y) < AmaX(ZSn —-X _Y) < Elmax(z*), (4.33)

—1/y*x
where we use the assumption \/g < Kz—%) In particular, putting these bounds together and

using standard properties of the Kronecker product, we further have

32 x~1(ZY)

25 —)Ll%ax(z*) . (4.34)

| 32 k(X
S /'me(%”(X,Y)) S lmax(%(X’Y» S 9 12 (Z*)

‘min
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Finally, due to the spikiness constraint and the /1 norm inequality (4.29), we have the following
finite bound on the inner product between the low-rank and sparse components: for all X € 2,

Y € %,

(X —=X,¥ —¥) < X — X[l =7 s4asp\/§uAy||F+8ocsp\@|Y—Y*HF- 435)

We are now prepared to prove the desired properties for the loss function of the factor model,
ZL(X,Y) = (Sp,(X+Y)~!) —logdet(X +Y)~!. Throughout the proof, we use the shorthand no-

tation o, = o,(X™).

Joint restricted strong convexity Take X € 2 andY € %;. By Taylor’s theorem, it is sufficient

to lower bound the term

N

X-X 5 X —
VEL(X(1),Y (1))

Y-Y Y —

~<><>

= (VCC (X—)?) + vec (Y—?))T%(X(t),Y(t)) <VCC (X—)?) + vec (Y—?)) ,

where X (1) = (1 —1)X +¢X and Y (t) = (1 —1)Y +1Y for some € [0, 1]. Using (4.34), and applying

the inequality (4.35) and ab < % + lz’—i, we can lower bound as

32 k7 l(z* - (12
—Kz—()Hvec<X—X>+V6c<Y—Y>H
125 23(2) 2
32 k1(ZY)
> — X-X —Y Y|[2—16]]Y —Y* 36
> i X =R+ ~FIR =167~y R ~3603,5

Restricted smoothness By Taylor’s theorem and using the inequality (4.34), we have

. oo o 32 K()
X X, VxZ(X,¥) - Vy Z(X, 7)) < = =) 1x X2,

and similarly with the roles of X and Y reversed.
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Cross-product bound As discussed in Section 4.2.2 following the Assumption 4.2.3, in order to

establish the cross-product condition, it suffices to bound
IVRy-Z(X,Y (1) = Viy-L(X("),Y)lsp (4.36)

forall X € 27, Y € %, where X (') = (1—1)X +¢'X and Y (1) = (1 —1)Y +1Y. Also V%YX(X,Y)
is symmetric in X and Y, so we will only bound HV)Z(Y.,?(X,Y(t)) - V)Z(Y.,?(X, Y)|[sp; by the
triangle inequality, similar bound would hold for the other term. We can also see that the operator

norms of 7] and % are same, and so

IViy L (X, Y (1)) — Viy L (X, Y)|sp = | £ (X.Y (1)) — A(X.Y)|sp

<A XY (1) = 0K, Y)|lsp+[|7(X, Y (1) = H6(X,Y ) |[sp < 2| A4 (X, Y (1)) — F4(X, Y ) [|sp-
Therefore we only work with the term [|.7] (X, Y (¢)) — 71 (X,Y)||sp- Let
A =X+Y0) 28 — (X +Y(O))X+Y(@) ' = (x+Y) 1 2S, — (X +1)(x+Y)" L.
Then simple algebra yields

ALK ()~ AKY) = S0 (X4 Y (1)
+%(X+Y)_l(2Sn—(X+Y))(X+Y)_1 ® ((X+Y(t))_1 —(X+Y)_1>.
A is further decomposed as
A = ((X+Y(t))_1 - (X+Y)—1) (28p — (X +Y (1)) (X +Y(1))"!

XN T =y )XY () X4 T @S = (XY () (X +Y () = (4.
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Meanwhile, by the inequalities (4.32) and (4.33), we have

[+ Y ) g [X+1) sp < 532

1250 — (X +Y () llsps 1280 — (X +7)sp < PmssED),

and so using the identity (X +Y (1)) "' = (X +Y) ' = (X +Y ()" (Y =Y (1)) (X +Y) !, we have

16 N
I +Y () = X 40) T lp < oY =Pl
AmlIl(Z*)
This implies
64 Amax(Z*) 16 1
[AA ||sp < /{;ax = 1Y =Yllsp+ 9 22 (x* | [

and hence that

174 (X, Y () = A (X, Y )|sp < —HMlespH(XJrY( 1) lsp

1 _ _ _ _
+§||(X+Y) NS — (X)X +Y) sl X +Y () = (X +7) " lsp
192 Amax (Z) 3201 o 24 2ma(E) o
S 57 2 (o )|| |!sp+27m||Y Yisp < —= 77 m”Y Y ||sp-

min min min

Returning to the above equation, this implies

2 2 s
IViyZ (XY (1)) = Viy L X Y)llsp < - ﬁ—*HY—YHsp’
mln( )
and in particular, we have
448 Amax (X*)
2 2
[Vir £/ (XY (1)) = Vy LKWl < 55 252 (1X =Ko + 1Y =T sp)

1’1’1111( )

896 Amax (Z¥)

Summarizing so far, we have shown that iy = uy = 57359 == = (px +py). By choosing cg

min

sufficiently small, this gives the claim uy = uy < 76;: (( )) as desired.
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Initialization condition To prove the initialization condition, it suffices to bound the quantity

4y(Zo) -maxye 9, yeay, | VxZ (X, Y) | sp- Note that for any X € Z,Y € %,

IVxZ(X,Y)|lsp= (X +Y) "X +Y —Sp) (X +7) |5
16
9&2 (X¥)

min

80 )Lmln( )

(X +Y =¥ lsp + 10 = ZMlsp) < =
625}’1113)(( )

where the first step uses the inequality (4.32), and the second step uses the inequality || X +Y —X*||sp
< 2(px + py) and the concentration bound (4.31) as well as our assumptions on the radii and the
sample size (4.21) (by choosing cp,c; > O sufficiently small). Moreover, by the same reasoning to

the equation (4.30), we also have y(.Z() < Z%r' Therefore,

HVXg(X Y)HSP < 10 8o, )L’min(z*) N 16 Amin(z*)

W 20) e 0 025 A3n(T) 125 A ()

XeZo,Ye

= Ox — Uy,

completing the proof of Lemma 4.4.3.

Proof of Lemma 4.4.4. Recall the loss function, given by the negative log-likelihood function

1

Z(X,0)=—logdet(® n

n

Z ~X¢) ' Oz —X).
l:
We calculate the gradient

Vx.Z(X,0) = Z®X¢l )0, and Vo2 (X,0)= -0 4+ Z —X0)(zi—Xo) ",

l
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and the Hessian operators

2 n

(Ax,Vix-Z(X,0)Ax) = - Y 0! AxOAx ¢,
=1
n

2
) ¢; Ax Ao (X9 —2),

i3

(Ao, V362 (X, 0)Ag) = vec (Ag) | (@‘1 ® ®—1) vec (Ag) .

(Ax, V%62 (X,0)Ae)

Throughout we use the shorthand notation o, = 6,(X*). Recall that the radii are chosen to
satisfy py < cq- o,k (©%)k ! (X) and pg < cg - Amin (0%) k1 (Xy) for some small ¢y > 0.
Then, according to Weyl’s inequality, for any ® € 2, its minimum and maximum eigenvalues are

bounded by

@ < Amin(®) < Amax (©) <

3A/max (®*)

S (4.37)

since we have that ||@ — ©* || < 2pg and pg < w
We will use the following two concentration results: first, following [51, Lemma 2], with

probability at least 1 — 4exp(—n/2), we have the bound of the form:

1 & 2'min(z ) 1 &
Anin (r_li; ¢i¢iT) > Tq) and Amax (;i; ¢i¢l‘T> < 9Amax (Z¢)- (4.38)

Next, letting &; id N(0,1I,,), it has been shown in [51, Lemma 3] that for some ¢,c’ > 0, with

probability at least 1 — cexp(—c’(m+d)),

+d
<5/ Amax (Tp)\ | = (4.39)

sp

1
- &0,
n'!
i=1

Now, we turn to verifying Lemma 4.4.4:
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Joint restricted strong convexity Fix X € 2, ® € 2. By Taylor’s theorem, we have

T

V2L(X(1),8(r))

Y

XX .
< ,vg(x,®)—vg(x,®)> -

X
0-0 0

X —
G
where X (1) = (1 —1)X +1X and ©(¢) = (1 — t)®+t@) for some ¢ € (0, 1). Using the expression for

the Hessian operator and substituting our observational model z; = X*¢; + &, we have the following

decomposition:
A~ —l— A~
X—-X X-X 21 ~ ~
| vzxmem | T T | =T Y eTx-%Tewx -,
-0 -0 i=1

J/

(Term 1)

F2Y 0T X)T(©-B)(X() - X)oi—> Y ¢ (X %) (0-8) ¢
j i=1

(Term 2) (Term 3)

+ vec <® — @)T <®(t)_1 ®®(t)_l) vec (@— @)) :

J/

(Term 4)

For (Term 1), we lower bound as

> in Gl in(Z S
(Terml)Zﬂmin< Zm) Jin(@(0) X X > T O Ee) g

where the second step uses the inequalities (4.37) and (4.38). For (Term 2), we further decompose

into the sum

(Term2) = (1-1)-2 Y 0 (X~ %) (@~ B) X ~X)gr+ Y. ¢ (X %) (0~ 8)(% - x*)oy
i=1 i=1

then the first term is bounded by

g (@ in(Ze) o
4p@'lmax (; Z ¢i¢iT> HX—XH% < e 5q in\=¢ HX—XH%,
i=1
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where the inequality uses the bound on the radius pg (by choosing ¢y < ﬁ) and (4.38). Mean-

while, we can bound the second part of (Term 2) as

Yol -X)T(0-6)(X X"
i=1

4 = o S
g{?}]mxfm@mwx—xﬂ@m

2P
n@znx R)gi3 + 22 ZNX'X*Mb
i=1

in O in in in
Sﬂm (12? ()HX %2+ ﬂm (1ﬁ? (Zg)

% 2
1X —X*||¢
Combining the two yields

in (™) Amin(Z = in(0™) Amin (X
(Term 2) < "ol @ MmnlZ) e g (@)

Y 2
1X = X||F.
Next, using the inequality (a,b) < ||a||nuc||b||sp, we find that

Po Sl =T
§—~2\/ZHX—XHF ~Y &0,
Amin((")*) ni; o

Pe 1/ Amax(Z¢) .
< PV tovarx - R ey

V )Lmin (®*)

(Term 3) <2||X —5(\”nuc

n
Z (©—0)g¢,"
l:

sp

where the second step follows since X — X is of rank 2r and & = (@*)~1/2.§; for Mo (0,X),
2 2

and the next step uses the concentration bound (4.39). Using the identity ab < <5 + g—c and the

bound on pg, then

)Lmin(G*))'min(Zd)) Si2 25 r(m+d) )L'min(zq))
(Term 3) < 36 X=X+ 32— Tomax ()

Lastly, by (4.37), the minimum eigenvalue of @(t)* is lower bounded by 3 o (07 ( o) 5° it
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follows that

4 ~
(Term 4) > ————[|© — O||¢.
9inax (©*)

Combining all the bounds together, we have

- V.Z(X,0)-V.Z(X,0)) > /lmm(®*i§mm(2¢>
®_

{

~ 1, ~
2 2
(xR 1% - X7

@)

25 r(m+d) 1 N 4
729 n Amin (®*) Amax (Zd) ) 921%121)& (®*>

Q112
160
Restricted smoothness For the X variable, we apply the inequalities (4.37) and (4.38) to obtain

(XX VxZ(x.8) - Vx2(£.0) =2 o (x %) 6 - R)o
i=1

S 27Amax(®*)lmax (Z(P) HX - X\le:.
For the © variable, by Taylor’s theorem combined with the bound (4.37), for some 7 € [0, 1],

~ —~ ~ o~ ~\ | —~ ~ ~
(©—0,VeZ(X,0)— Vo2 (X, )):vec(@)—@) V%)®$(X,(l—t)®+t®)vec<®—®>

Cross-product bound Take X € 2(, ® € 2. Then, by Taylor’s theorem, for some ¢, € [0, 1],

(X —X,Vx.Z(X,0) - Vx.Z(X,0))— (0—0,Ve.L(X,0) - Ve L (X,0))
T

A

<

(¢

(@]
oy

e

|

<)
N—
/N

V20 Z(X,10+(1-1)8) — V2o 2(1'X + (1 —t');?,@)) vec (@- @) .

2(1—¢' > Sy ovg o min(@)Amin(Ee) o
2 p )Y 6T (X -%)T(©-8)(x — X)g < X - X
i=1
This proves the cross-product condition with uy = Pmin(© %mi“(z"’) and ug = 0.
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1

Initialization condition We already know that yx (2") = (see Lemma 3.3.1), so

20,(X)

(2)<—1 !

max — < —
P R SR ey pe ey

where the first inequality holds due to Weyl’s inequality, and the next inequality holds since py <

%Gr. This also shows that the conditions of Lemma 4.2.1 is satisfied, so we have y(Z() < GL,'
Next, we bound the gradient term ||Vx.Z (X, 0)||sp. Given the observational model z; = X*¢; +

&, we can decompose the gradient as

2 n
=Y O(X —X*)9i0,

i=1

IVx-Z(X,0)llsp < +

Sp

2 n
—Z@-e@?
i3

Sp

Using the inequalities (4.37) and (4.38), the first term is upper bounded by 54px - Amax (®*) -

Amax(Z¢), whereas we can bound the second term as

15Amax (©) )’maX(Zd’) fm+d
S 9
A'min((a*) n

where the steps use the inequalities (4.37) and (4.39). Combining the two and using the bound on

1 n

A= X &e'

iz

3Amax (©%)
< =S 2
A’min(G*)

2 n
=Y 0.0,
i=1

Sp Sp

px and the assumption (4.24), for sufficiently small c(,c; > 0, we have

Afmin (®*) /'Lmin (Z(]) )
V jX,@ <G * 9
Xeggg%ie%H xZ(X,0)lsp < o7 516
and therefore
A'min(®*>lmin(z¢)
4v(Zo) - VxZ(X,0 < = Oy — Uy,
Y(Zo) an;?&go” xZ(X,0)|lsp < ” X — Mx

completing the proof of Lemma 4.4.4.
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CHAPTER 5
SPECTRAL CALIBRATION AND IMAGE RECONSTRUCTION IN CT

IMAGING

X-ray computed tomography (CT) is a medical imaging modality that allows to image the internal
structure of human body in a non-invasive way. Generally speaking, x-ray tube in CT scanner
generates a high flux of x-rays which traverse an object from multiple directions, and detectors
observe the incoming x-rays as the outcome of interaction between the x-rays and the object. The
forward model describes the interaction between the x-rays and the object, in which it is typically
assumed that the x-rays travel through the object along straight lines (i.e. ignoring x-ray scatter)
and the intensity of the x-rays are attenuated, while traveling, with a rate of decay depending on the
properties of the materials. Based on these measurements of the object, reconstruction algorithms
aim to recover the structure of the objects that interacted with the x-rays.

In addition to acquiring the x-ray transmission measurements, reconstruction algorithms typi-
cally need knowledge of the x-ray source spectrum and the detector response as the x-ray beams
generated for medical CT is polychromatic in nature. While we may assume that the x-ray source
spectrum can be modeled to a certain degree, the detector spectral response is often unknown due
to many non-ideal physical effects of the detector. For instance, photon-counting detectors can
discriminate incident x-ray photons based on their energies, allowing for the CT data acquisition
in each energy window, and thus are useful for material decompositions to more than two basis
functions; however, they also exhibit undesirable technical issues such as pulse pile-up and charge
sharing [52], potentially resulting in serious artifacts in the reconstructed images—here we refer to
the artifacts as the discrepancy between the reconstructed values in the images and the true image
values of the object. Therefore, in reconstructing CT images, it is crucial to accurately calibrate
the spectral response of the detectors for further reduction of image artifacts.

In this chapter, we present a new x-ray spectrum reconstruction method based on transmission
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measurements of a calibration phantom—a material with known thicknesses and compositions.1

Our aim is to formulate spectrum estimation as an optimization problem, for which an efficient
first-order iterative algorithm is employed to solve the resulting optimization problem rapidly. The
proposed method is capable of incorporating prior information about the physical shape of an x-
ray spectrum, which enables accurate and realistic estimation of x-ray spectrum by including the
characteristic lines of the target spectrum in the final estimation.

Although the method studied here can be used for any spectrum estimation task, the focus here
is on photon-counting CT. Interest in estimating the x-ray spectrum of a CT system is recently
growing due to the development of spectral CT with a photon-counting detector [52, 54, 55].
For spectral CT, the effective spectrum estimate, which includes the source spectrum and detec-
tor response, is needed for material decomposition into basis material sinograms [54] and for
direct inversion into basis material images [55, 12]. This suggests that our optimization-based ap-
proach can be useful when the spectral calibration of an imaging system is combined with other
optimization-based algorithms for spectral CT image reconstruction. As a preliminary study, here
we perform alternating minimization based algorithm on a two-material phantom derived from the
FORBILD head phantom? to demonstrate the utility of the method on the task of simultaneous

spectrum estimation and spectral CT image reconstruction.

5.1 Background on spectrum estimation

This section presents the discretized forward model that relates the expected photon counts to the
x-ray spectral distribution, and provides a brief overview of expectation-maximization (EM) and

other related methods for the spectrum estimation problem.

1. The work presented in this chapter is published in [53].

2. http://www.imp.uni-erlangen.de/phantoms/
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5.1.1 Transmission measurement model

We assume the standard transmission measurement model for an x-ray imaging system—writing
¢y to denote the number of transmitted photon counts along ray ¢ which encodes different source

positions, then the forward data model after discretization is expressed as

6£:N€ZSieXP{_ZXmE.umi}> (5.1
i m

where Ny is the expected number of photon counts detected along ray ¢ in the absence of an object,
s; 1s the normalized distribution of x-ray photons at frequency i in the absence of an object (i.e.
Y ;s;is equal to 1), W, is the linear x-ray attenuation coefficient for material m at frequency i, and
X¢ 18 the total amount of material m lying along ray ¢. The model given in (5.1) is idealized and
neglects numerous physical factors such as x-ray scatter.

The x-ray spectrum, given by s; across frequencies indexed by i, comprises the energy spectrum
of the x-ray source and the spectral response of the detector. In the task of spectrum estimation,
transmisison measurements are acquired through known dimensions of known materials, so the
attenuation functions {,,;} and the path lengths {x,,,} are known and the only uknowns in (5.1)
are the x-ray energy spectrum. The approach for reconstructing th spectrum studied in this section
inverts the forward model (5.1) to estimate the x-ray spectrum, {s;}, from noisy transmission
measurements, {cy}.

The difficulty inherenet in inverting (5.1), however, is twofold. First, the system matrix describ-
ing the attenuation of x-ray photons is highly low-rank, leading to the ill-conditioned linear system
of the spectrum estimation problem. In particular, some form of regularization is necessary for re-
liable estimation of the x-ray spectrum. Second, the physical nature of an x-ray spectrum involves
multiple structures in its shape, namely, the low-frequency component arising from bremsstrahlung
radiation, which covers the entire range of the energy bins, and the high-frequency component
arising from characteristic radiation, which produces sharp peaks at certain energy locations—for

instance, see Figure 5.1 in Section 5.1.3 for a typical x-ray spectra. The challenge is to recover

124



both structures simultaneously, so that the estimated spectrum accurately represents the spectral
response of the x-ray imaging system.

Here we exploit prior knowledge of the x-ray spectrum to design a suitable regularizer when
we formulate an optimization problem; in this way, we can allows for recovering both structures

and at the same time overcome the ill-conditioning of the problem.

5.1.2 Related work

For an energy resolved CT system, the x-ray spectrum represents the product of the polychromatic
source spectrum and the detector spectral response. Due to its importance in x-ray imaging, a
number of methods have been proposed for obtaining a stable and accurate x-ray spectrum.

Using a physical model with few parameters effectively reduces the degrees of freedom of the
problem, and allows for stable estimation of the spectrum by expressing a low-dimensional repre-
sentation of the x-ray spectrum [56, 57, 58]. The parameters are fitted with least squares or other
data discrepancy objectives. Meanwhile, [59] investigates an iterative perturbation method that
minimizes differences between measured and calculated transmission curves using low-Z attenua-
tors.

Various forms of regularization have been also employed to avoid the ill-conditioning of the
problem and ensure stable spectrum estimation. For instance, [60] performs a minimization of the
sum of a y2 objective term and a nonlinear regularization term to stabilize the final solution. [61]
uses the expectation-maximization (EM) method to iteratively solve the ill-conditioned linear sys-
tem and truncates the iteration of the algorithm at some finite iteration. Here early stopping serves
as a sort of regularization as it prevents overfitting of the model. Singular value decomposition
(SVD) is a more direct approach that attempts to directly invert the linear system to estimate each
bin contents of spectrum [62, 63]. The SVD method often involves truncating smaller singular
values and singular vectors of the system matrix, also known as truncated singular value decompo-
sition (TSVD), since these components make almost no contribution to the measured data and are
susceptible to the noise [64]. The obtained spectrum from TSVD is sufficiently accurate to model
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the measured transmission curve, but it has the drawback that positivity of the spectrum is not guar-
anteed and the solution exhibits negative values in some energy positions. Recently, an extension
of the TSVD method, called prior truncated singular value decomposition (PTSVD), has been pro-
posed in [65] to further incorporate prior information about the statistical nature of the transmission
data and about high-frequency spectral components such as characteristic peaks. In particular, by
exploiting basis vectors for the null space of the system matrix, the authors reconstruct an x-ray

spectrum that accurately reproduces the physical shape of the ground truth spectrum.

5.1.3 EM method

For the purpose of comparison, here we describe the expectation-maximization (EM) approach
which has frequently been applied to the problem of x-ray spectrum estimation (e.g. [61, 66]).
Broadly speaking, EM is a general framework for solving a maximum likelihood estimation
problem when the obtained data is incomplete. In the setting of spectrum determination, the in-
completeness of the data arises from the fact that the detected photon count along ray / is observed
through a sum of transmitted photon counts across frequencies i, namely, ¢y =~ }; Xy;s; for the

system matrix {Xy;}. Under the Poisson noise, EM then finds the maximum likelihood estimate

§ = argmin [Z {;Xﬁsi —¢ylog (;Xﬁs,) H ,

$ 14
by applying the iterations

(t+1) _ Sz@ Xyicy

ZZX& Y4 Zi/ Xgl'ls(t)

1
i/

for all i. (5.2)

Here the update equation is derived by minimizing the EM objective function Q(s; st )), given by

(1)

O(s;s\)) =Y. Xéisi_CELi(t)log(Xéisi) ~ (5.3)
li Zi’XEi’Si/
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Note that the multiplicative form of the update equation (5.2) automatically guarantees non-negativity
of the solution as long as the initial value is chosen to be non-negative. We also note that the EM

)

iterations does not satisfy the normalization assumption, namely Zisl(t = 1 is not necessarily true.

For an underdetermined and noisy linear system, the maximum likelihood solution is known
to overfit to the data and yield undesirable structure of the x-ray spectrum. Hence, it is desirable
to minimize the data discrepancy function (the transmission Poisson likelihood function in this
case) but possibly subject to constraints and/or regularization on the spectrum. Meanwhile, it is
known that the iterations (5.2) are guaranteed to converge to the solution {5;} for any initial point.
Therefore, if run to convergence, the EM iterations should reach the solution {5;} and thus fail
to deliver accurate estimation of the x-ray spectrum. In particular, if we try to incorporate prior
information about the x-ray spectrum into the initialization of EM, we would expect it to still
end up at the same solution, {5;}. To avoid this issue, early stopping of EM is often employed
(e.g. [61]) to regularize the algorithm path and avoid overfitting to the data. Note that, due to the
global convergence property of EM, the idea of incorporating prior information via initialization
makes sense only in the context of early stopping.

In Figure 5.1, the spectral curves estimated by EM are shown for different numbers of itera-
tions. As seen in the figure, by stopping after 500 iterations, the EM method recovers the ground
truth spectrum remarkably well and both spectra are indistinguishable in the plot; however, for low
iteration number (e.g. 10 iterations), the resulting spectrum is still biased towards the initial value,
and for high iteration number (e.g. 50,000 iterations), the EM method appears to overfit to the
transmission data and therefore cannot generalize to transmission measurements beyond the given
data set. While determining a good iteration number is crucial to implement the EM method, the
authors in [61] further demonstrates the robustness of the EM method, i.e. the estimated x-ray
spectrum is not strongly sensitive to the choice of number of iterations.

While EM enjoys many empirical advantages for spectrum reconstruction, our motivation to
derive a spectrum reconstruction method from an optimization framework is to enhance inter-

pretability and flexibility of the reconstruction procedure; for EM, it is not clear what kind of
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(a) True and Initial Spectral Plot (b) EM: 10 Iterations
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Figure 5.1: Spectrum estimation from simulated transmission measurements by use of EM. A
detailed description of the simulation setting is given in the simulation study (Section 5.3.1). Panel
(a) shows the ground truth x-ray spectrum (black solid line) and the initial x-ray spectrum (black
dotted line). The remaining three panels show the estimated spectra by EM for different number
of iterations.

regularization early stopping is performing for the algorithm, and other desirable constraints on
the spectrum, such as a normalization constraint, cannot be easily incorporated. On the other hand,
our framework is capable of including multiple constraints on the spectrum, and moreover, we
do not require any form of early stopping but rather fully minimize target optimization problem
for accurate reconstruction of x-ray spectrum. Our approach can also allow us to build towards

simultaneous spectrum estimation and basis material maps reconstruction in spectral CT.

5.2 Spectrum estimation via a KL-divergence constraint

Now we turn to the development of our method to estimate the x-ray spectrum from transmission
measurements through an optimization problem.

We assume that an initial spectrum, namely a prior estimate of the x-ray spectrum, is available
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such that the initial value exactly captures the characteristic peaks of the target spectrum (without
such information, we cannot hope to recover details of the spectral curves such as the characteristic
peaks.) Denoting the initial value by {s%ni}, we measure the distance of the x-ray spectrum {s;} to
the initial value via Kullbeck-Leibler (KL) divergence, i.e. dgy (s ;sini), where for positive vectors

x>0,y > 0, the KL divergence is defined by

dgr(x5y) = Y {xilog(x;/yi) +yi —xi} - (5.4)

1

(Note that the definition (5.4) reduces to the usual definition of KL-divergence over probability
vectors, when the vectors x,y satisfy Y ;x; = Y;y; = 1.) The KL-divergence is convex in (x,y) and
satisfies dgy (x;y) > 0 for x > 0,y > 0, and dgp (x;y) = 0 if and only if x = y. In order to stabilize
inversion of the data model, a KL-divergence constraint, i.e. a bound on dgj (s ;si“i), is placed on
the estimated x-ray spectrum {s;} to control the deviation from the initial value.

Specifically, the x-ray spectrum is reconstructed through the following constrained minimiza-
tion problem:

minismize dgr.(c; Xs)

subject to  dgp(s;s™) <, (5.5)

Zs,- =1,s; > 0 for all i,
i

for a constraint parameter ¢ > 0, where the KL-divergence is employed for both the data discrep-
ancy function and the constraint function. Note that the data discrepancy function here, namely,
KL-divergence between measured data and calculated photon counts, is equivalent to the trans-
mission Poisson likelihood (TPL) function up to constant terms [67] hence the solution of the
problem (5.5) is equivalent to a constrained maximum likelihood estimate of the counts data under
a Poisson noise assumption. The TPL function can be useful even when the measured counts data
is inconsistent with the Poisson assumption, since it assigns more weight to higher count measure-
ments [12]. The constraint ) ; s; = 1 ensures normalization of the resulting solution, which endows

physical meaning to the reconstructed x-ray spectrum.
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Although the description of the data model (5.1) is idealized, the proposed optimization-based
approach is flexible and can include other physical effects, such as x-ray scatter as well as other
non-ideal detector effects, in the estimation process by adding constraints or modifying the ob-
jective function. The use of KL-divergence as a constraint function can be valid for any given
optimization formulations. In terms of computation, the problem (5.5) is a convex program, so any
convex solver can be applied to solve the problem efficiently. For instance, we have implemented
the method using the “cvx’ package in Matlab with solver MOSEK which solves the problem (5.5)
in less than a second. Alternatively, we can apply the exponentiated-gradient (EG) algorithm,
which is a simple first-order algorithm that iteratively performs a descent step followed by projec-
tion onto the feasible region of x-ray spectra. See Section 5.2.2 for a detailed discussion of the EG
algorithm and convergence guarantees for obtaining optimal solution of the problem (5.5).

Care must be taken in specifying the initial value {sini} as it has a great influence on the final
estimation of the x-ray spectrum. If the employed initial value reflects realistic structure of a
spectral curve, the resulting solution can provide accurate estimation of the target spectrum and
therefore accurately reproduce transmission measurements. The robustness of the method with

respect to the initial spectrum is also investigated in the simulation study (see Section 5.3.1).

5.2.1 Connection to maximum entropy method

The proposed method based on KL-divergence is closely related to the well known principle of
maximum entropy in the existing literature. This principle state that, of all possible solutions that
are consistent with the data, we choose the one with the largest entropy — ) ;s;logs;, or with the
least divergence (or relative entropy) Y, s;log(s;/ s%ni) if the prior information {s%ni} is known. The
maximum entropy principle has been widely studied in the following decades, with applications
to a broad range of problems including image reconstruction from incomplete and noisy data [68].
We refer the reader to [69] for justification of the principle.

In the context of spectrum estimation, applying the maximum entropy principle with prior

130



information {s}ni} leads to the following constrained optimization problem:

minimize dgp (s;s™)
N

subject to  dgp (c;Xs) <C, (5.6)

Y si=1,5;>0forall,
i

where we again employ the TPL discrepancy function as a measure of the fit to the data, and C >0
is a parameter that limits the amount of this discrepancy.

Now, since the problem is convex in the variable {s;}, we can find a one-to-one correspon-
dence between the parameters ¢ in (5.5) and C in (5.6) such that the solutions from both opti-
mization problems exactly match; this, in turn, implies that the problem (5.5) is equivalent to the
problem (5.6), and particularly shows the equivalence between the proposed approach and the
maximum entropy principle. This provides a justification of the use of KL-divergence as a con-
straint function for spectrum estimation. On the other hand, note that the convexity of the TPL
discrepancy function is essential here. While the KL-divergence constraint can be applied to the
data models including other physical factors, the resulting data discrepancy function can generally
be nonconvex in which case the equivalence property is no longer guaranteed to hold. Even in such
case, however, we believe that a similar kind of interpretation can be useful in gaining insight into

the constrained approach with KL-divergence.

5.2.2 Exponentiated-gradient algorithm

While the problem (5.5) can generally be solved by any convex solver, in some applications, it is
useful to have an iterative algorithm that solves the problem more explicitly. In this work, we solve
this optimization problem using the exponentiated-gradient (EG) algorithm [11], that is designed
to solve general convex objectives over the simplex {s:Y;s; = 1,s; > 0 for all i}. Exponentiated-
gradient algorithm can also be viewed as a special case of mirror descent with the mirror map given

as the negative entropy function [40].
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First, we write the constrained problem (5.5) in the equivalent Lagrangian form:

minimize dgy (c;Xs)+ A -dgp(s; Sini)
N

(5.7
subject to Zsi =1,s; > 0 for all i,
i

where A is a regularization parameter that controls the amount of regularizing effect, and the con-
straints represent the feasible region of x-ray spectra. Again, there is a one-to-one correspondence
between ¢ in (5.5) and A in (5.7), due to the convexity of the problem.

The EG algorithm applied to the above problem yields the following iterations: initialize s0) =

s fix the step size 1 > 0, then for stepst =0,1,2,...,

Set gt) = Vydgp (3 Xs®) + AV dgy (s 5 si0);
Set sl(ﬂr]) — sl@ exp(—n -gl(t)) for all i; (5.8)

Set sU+1) S(’+1)/Zisl(t+1)_

\

Now examining the steps given in (5.8), we see that the update equation of sl(H—l) is multiplica-
tive as analogous to the EM iterations (5.2). Particularly, this guarantees automatic inclusion of
non-negativity constraints in the estimated spectrum, as long as the initial spectrum is non-negative.
On the other hand, a distinct feature of the EG algorithm is that at every iteration the normalization

+1) (more precisely, the projection is per-

constraint is enforced by the projection step s(t+1) /¥ sl(t
formed with respect to the KL-divergence), whereas the EM method can give no such guarantees
on the final solution. The projection step can be optional, and is not needed if the normalization
constraint is not included in (5.7). To compare the EG and EM algorithms, while the EM algorithm
seeks to minimize (5.3) at each iteration to reach the maximum likelihood solution (if EM is run
to convergence), EG instead seeks to take each step that monotonically decreases (5.3) with addi-

tional KL-divergence regularization term. Both algorithms will produce a sequence of estimates

that will decrease the (regularized) data discrepancy at each iteration.
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5.2.3 Convergence test

The convergence of the EG algorithm has been well established in the literature—for instance,
Bubeck [40] shows that the objective gap between the point at iteration ¢ and the optimal solution
decays with the rate & (%) The convergence test of the EG algorithm has appeared in [70],
which we provide here for the sake of completeness. The Lagrangian function associated with the

problem (5.7) is given by

ZL(s,v,y) = dgpL(c:Xs) + A -dgp(s55™) = Y visi+ - (Lsi — 1).
B i

By the KKT condition, the optimal solution satisfies the following conditions:
(@) Y;s;i=1ands; >0Vi.
(b) v; >0Vi.
(c) vis; =0Vi.
(d) Vi Z(s,v,y)=0.

Set ¥ = —min(Vydgy,(c;Xs) + AVdgp (s:5™)) and v = Vdgy (c;Xs) + AVdgy (s35™) + -
1, where min is taken componentwise. Then it can be checked that the conditions (b),(d) are
satisfied. Also the condition (a) is trivial since the optimal solution is always feasible from the
update equation (5.8). It remains to check the complementary slackness condition (c). By the
conditions (a),(b), we know that v; - s; 1s non-negative, so the condition (c) is implied if }; v;s; = 0.
Therefore, we can test convergence of the algorithm by checking Y ;v;s; < € for a predefined

threshold € > 0.
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5.3 Numerical analysis

5.3.1 Simulation study

Now we perform a numerical experiment on the simulated transmission measurements to examine
the empirical performance of the proposed method, as well as compare to the EM method.

A step wedge phantom is modeled and simulated, consisting of Aluminum and Polymethyl
Methacrylate (PMMA). The thicknesses of Aluminum and PMMA are each selected in the range
of {0,0.635,1.270,1.905,2.540} and {0,2.540,5.080,7.620,10.160} respectively, giving a total
of 25 combinations across the step wedge. The linear attenuation coefficients are obtained using
the NIST table [71]. Three kinds of polychromatic spectra, sampled at 1 keV intervals between 10
keV and 100 keV, are employed to either generate transmission measurements, or to serve as an ini-
tial value for the effective spectrum estimation; those spectra are determined from the experimental
data described in Section 5.3.2, and represent a typical spectral response of the photon-counting
CT system for energy windows with thresholds at 25 keV, 40 keV, and 60 keV. Using the experi-
mentally determined spectra allows us to model the rational shape of the x-ray spectrum.

Given the true spectrum, the expected total transmitted photon counts {é;} are computed ac-
cording to the data model (5.1) with expected incident photon counts Ny = 10 for each ray {. The
noisy measurements {cy} are then generated with an independent Poisson model from which the
true x-ray spectrum is reconstructed. Additionally, we generate another set of noisy transmission
measurements through 20 different thicknesses of water which are varied from 0O to 20 centimeters
at equal intervals, and where the NIST values are used to obtain the energy dependent attenuation
coefficients. These measurements are not included in the reconstruction of the x-ray spectrum, but
will serve as a “validation” set to assess the reproducibility of the spectrum estimation methods.

The x-ray spectrum is reconstructed by solving the optimization problem (5.7) with an imple-
mentation of the EG algorithm, as described in Section 5.2.2. Recall that A is the user-defined
parameter to control the trade-off between the data fidelity of the model and the regularization on

the KL-divergence of the solution. We vary A over A € {20,30,...,1000}, and select the value
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Figure 5.2: Spectrum estimation from simulated transmission measurements by use of KL. Dif-
ferent types of true and initial x-ray spectrum are employed shown in black solid line and black
dotted lines respectively. In each setting, spectrum reconstruction is performed for 20 independent
sets of transmission measurements. Panels (a),(b): Spectral curves for 20 different trials. The band
formed by the curves shows variation between the reconstructed x-ray spectra. Panels (c¢),(d): The
RMSE curves computed by (5.9) for different regularization parameters. Each point represents an
average over 20 trials.

that minimizes the root mean square error (RMSE)

(si(A) — true\2
RMSE(A) = Z(SZ(.(;M;’Z ) , (5.9)

where {s;(A)} is the estimated spectrum given this choice of A, and {s{"'®} is the true spectrum.
The spectrum achieving the minimum RMSE will be close to the true spectrum in shape, and thus
can reliably reproduce transmission curves for any configurations of materials. For step size, we
fixn=13- 1073 throughout the simulation. We run the EG algorithm (5.8) until convergence,
where we check the convergence of the algorithm as given in Section 5.2.3. For the present work,

we set the threshold £ = 1078,
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Figure 5.2(a,b) show the spectral curves reconstructed from transmission measurements by
employing the ground truth and initial spectrum shown in the figures, respectively. For each given
ground truth and initial spectrum, we simulate 20 independent sets of transmission measurements
and obtain the best spectrum solutions by running the EG algorithm. Hence, each plot of Fig-
ure 5.2(a,b) shows reconstructed x-ray spectrum for 20 different sets of measurements. Due to
the noise, there exist some variation between the spectral curves. As seen in the figures, how-
ever, the spectra generated by the method are concentrated near the respective true spectra and
furthermore every single spectrum resembles the shape of its target with a high precision. More
importantly, the results further show the robustness to the shapes of the chosen ground truth and
initial spectra; the method continues to perform well, as long as the initial spectrum shares the
same locations of the characteristic peaks as the true spectrum even though the relative intensities
can be substantially different. This property can be particularly favorable for spectral calibration
of a photon-counting detector, since spectral information from one energy window can be useful
for estimating the spectral response of other windows.

The lower row of Figure 5.2 displays the RMSE plots, averaged over 20 trials, with respect
to regularization parameter A. For the two plots, the method yields larger error at first, but drops
rapidly thereafter and achieves a minimum at A in the range of 200-400. The error remains rel-
atively lower in a broad range of A’s around the minimum, which illustrates that the method is
numerically stable relative to the choice of A. At larger values of A, bias is induced in the solution
and the error from the true spectrum begins to grow again. In comparison to the other case, the
RMSE curve is placed higher in Figure 5.2(c), which results from the fact that the employed initial
spectrum is farther from the truth than the other case.

Figure 5.3(a) and (b) show comparison of the spectra fitted by the KL-divergence based method
and the EM method from simulated transmission measurements. For EM, the number of iterations
is varied from 10 to 10* and the optimal number is chosen based on the RMSE rule described
in (5.9). While it is seen that EM tends to estimate the true spectrum more faithfully (the averaged

RMSE values by the best case KL and EM solutions are 0.0350 and 0.0184 respectively), the
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Figure 5.3: Comparison of spectrum estimation from simulated transmission measurements by use
of KL and EM. Results for spectral curves, fitted by KL and EM respectively, are displayed for 20
different trials.

spectrum representations by both methods generally exhibit comparable performance in recovering
physical shape of the true spectrum. Moreover, the utility of the KL-divergence approach lies in
the mathematical formulation of spectrum estimation as an optimization problem.

Next, we evaluate the prediction of the transmission curves using the spectrum estimates based

on water transmission measurements at 20 thicknesses. We use the ¢,-distance for log counts

Y (log(cyr) —log(ép))? (5.10)
ZI

to measure the prediction performance. Figure 5.4(a) shows the prediction error of the KL-
divergence approach plotted against the varying regularization parameter, as well as the prediction
by the best case EM solution (which, recall, minimizes the RMSE criterion in (5.9)) and the true
spectrum for reference (note that even the true spectrum cannot perfectly reproduce the transmis-
sion data due to the noise). For small values of A, the KL-divergence approach performs nearly
as well as the best case EM solution and slightly less than the true spectrum, demonstrating its
capability to represent the measurement process; for higher values of A, however, the performance
rapidly degrades which results from the underfitting of the model. Figure 5.4(b) displays the ac-
tual transmission curves predicted by both methods, as well as the simulated water transmission

data and the transmission curve predicted by the initial spectrum. Without loss of generality, here
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Figure 5.4: Panel (a): Prediction error in the transmission curves derived from the x-ray spectra
using KL and EM. For the EM error, the best case solution is used to produce the transmission
curve, which is irrelevant with respect to the regularization parameters. Each point represents
an average over 20 trials. Panel (b): Plot of the predicted transmission curves for the reference
material water. The x-axis indicates the thicknesses index ¢’ for water, and the y-axis is plotted on
a logarithmic scale. The results for KL and EM are nearly identical and cannot be distinguished in
the plot.

we only give a representative result from different trials. Again it is clearly seen that both pre-

dicted transmission curves are accurate enough to predict the water transmission data and show the

significant improvement over the transmission curve predicted by the initial spectrum.

5.3.2 Experimental study

The proposed KL-divergence approach is evaluated on the experimental data which is performed
on a bench-top x-ray system consisting of a microfocus x-ray tube and a photon-counting Cadmium-
Zinc-Telluride (CZT) detector comprised of 128 detector pixels, of which 96 are usable. A step

wedge phantom made of Aluminum and PMMA, shown in Figure 5.5(a), are measured at the
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Figure 5.5: Left: (a) Step wedge phantom used for spectral calibration in x-ray imaging. Right:
(b) The initial x-ray spectrum.
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same dimensions with the simulated step wedge as described in Section 5.3.1. We refer the reader
to Schmidt et al. [55] for more details of the experimental setup.

The initial spectrum is generated with the SPEC78 software from the IPEM78 report [72],
which contains the expected spectrum exiting the tube for a 100 kV beam with 1-mm of aluminum
filtration. Based on the measurement sets, reconstruction is performed with the KL-divergence
regularized problem (5.7) to estimate effective spectral response of the photon-counting detectors
for each energy window and detector pixel. Determining a good regularization parameter is critical
in obtaining an accurate x-ray spectrum. The RMSE rule (5.9) cannot be applied here, since the true
spectrum is unknown in the experimental setting. A validation method is another attractive option
to choose a good value of A, for which we randomly partition the transmission measurements
into the training data and test data and select A that best predicts the test data using the x-ray
spectrum reconstructed from the training data. While the validation method is observed to perform
well in the simulation setting, we find that when applied to the experimental setting, the estimated
spectra tend to highly ovefit the experimental data and show unphysical fluctuations in the resulting
curves. This is attributed to the systematic dependencies present in the measured photon counts,
which can arise from various non-ideal physical effects of photon-counting detectors that have not
been included in the data model (5.1).

For the current experiment, we instead rely on ad hoc procedure for selecting the optimal
value of A. The selection rule is based on the observation that the bremsstrahlung spectrum typi-
cally reveals unimodal structure in the corresponding energy region. The initial spectrum, shown
in Figure 5.5(b), exhibits characteristic peaks at 58,67,69 keV, but in other regions, the curve is

smooth and nearly unimodal—it has a local minimum at silnli (not visible in the figure), and a local

maximum at 313“31 We expect to see this type of simple structure in the true spectrum as well. We
therefore choose regularization parameters A that yield the spectrum whose bremsstrahlung part re-

flects the same unimodal structure as the initial spectrum. More specifically, consider the spectrum

{s;} constrained to the bremsstrahlung part of the frequency curve, by removing the characteristic
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(a) Spectral Curves: Low Energy Window (b) Spectral Curves: Medium Energy Window (c) Spectral Curves: High Energy Window
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Figure 5.6: Spectrum estimation from the measured transmission data by use of KL. Each col-
umn represents the results for different spectral windows. Panels (a),(b),(c): Spectral curves for
each energy window. The plots show the solution curves for 96 different detector pixels. Panels
(d),(e),(f): Prediction error in the transmission curves derived from the x-ray spectra shown above
across detector pixels.

peaks at 58,67,69 keV:

Sbrem = (5105---+557,559 - - - 156655685705 - - - »5100)

i.e. the energy spectrum of photons is decomposed into sprem and Schar = (558,567, 569)- We choose
the regularization parameter by taking the smallest value of A such that the estimated spectrum,
s(A), exhibits at most one local minimum and one local maximum, when the characteristic peaks
are removed—that is, at most one local minimum and one local maximum in the vector (s(?L))brem,
the bremsstrahlung part of the estimated spectrum. We expect that values of A which are too small,
leading to insufficient regularization, would yield an estimated spectrum s(A) that overfits to the
data, which would typically exhibit many local minima and maxima; therefore, our procedure

ensures that we choose a value of A that is not too small, to avoid overfitting.

Results for experimental data are shown in Figure 5.6. Each panel in the upper row shows
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the reconstructed x-ray spectra for three different energy windows, as well as the initial spectrum
depicted as the dotted line. Within each panel, the curves are obtained by running the EG algorithm
from 96 different detector pixels, where step size is setton =1.3- 1075, While there is substantial
variation in the reconstructed x-ray spectra across the detector pixels, the selection method based
on the unimodality consisitently yields spectra that resemble realistic shapes of the bremsstrahlung
and characteristic lines. Compared to the results for high energy window, the spectra estimated for
low and medium energy windows appear to follow the realistic shape more faithfully. The spectral
curves displayed in high energy window seem to be less stable and exhibit more fluctuations in
the bremsstrahlung region. Similar results are also observed by comparing the prediction errors
for different energy windows shown in the lower row of Figure 5.6, where it is suspected that the
method tends to overfit to the data for high energy window in comparison to the other windows.
Of course we can increase the penalization parameter A to avoid this problem of overfitting, but
the resulting spectra will now be strongly biased towards the initial spectrum. In principle, the
problem of calibrating spectral response for high energy window is more difficult than the other
cases, because the consecutive photons with low energies can be wrongly counted as the single
photon with high energy, leading to a degradation of the spectral measurements in the high energy
window.

To improve the stability of the estimated spectra for high energy window, we implement a
simple variant of the proposed method that imposes KL-divergence regularization on the spectrum
with different weights on each component of the spectral density s;. In particular, we solve the

following regularized optimization problem:

minimize dKL(C;XS)—F;L'dgL(s;smi)
N

(5.11)
subject to Zs,— =1,s; > 0 forall i,

1
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(a) Spectral Curves: Low Energy Window (b) Spectral Curves: Medium Energy Window (c) Spectral Curves: High Energy Window
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Figure 5.7: Comparison of spectrum estimation from the measured transmission data by use of KL,
EM, and weighted KL. Results are shown for one particular detector pixel (pixel number = 34).
Each panel shows the reconstructed spectra for different spectral windows, along with the initial
spectrum.

where di; (x:y) is a weighted KL-divergence given by

KL(x:y) = Zwi {xilog (x;/y;) +yi —x;}, (5.12)

for a weight vector {w;}. In the current setting, each column of the system matrix {Xy;} that
contributes to the measured photon counts has different scalings, so we choose to use the weights
such that w; o< "y Xy; for each i. This helps to treat different spectral densities s; on a more equal
basis. The EG algorithm can also be applied to solve the problem (5.11).

Figure 5.7 shows spectral curves reconstructed by the three methods, the original KL-divergence
based method, its weighted version given in (5.11), and the EM method, from the measured counts
data for different spectral windows. Here we fix the detector pixel (pixel number = 34) such that
the spectrum returned by the KL-divergence approach exhibits some fluctuation in the high energy
window. We can see that employing the weighted KL-divergence removes such unphysical shape
in the resulting curve and makes the spectrum more smooth in the bremsstrahlung energy region.
Moreover, it is interesting to see that in all energy windows, the weighted KL-divergence and the
EM method yield x-ray spectra that are close in shape, but have some deviations from the x-ray
spectra generated by the KL-divergence based method. We observe this phenomenon not only for

the measured data at this particular detector pixel, but across all detector pixels. This is in sharp
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(a) Transmission Curve: Low Energy Window (b) Transmission Curve: Medium Energy Window (c) Transmission Curve: High Energy Window
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Figure 5.8: Comparison of spectrum estimation from the measured transmission data by use of KL,
EM, and weighted KL. Results are shown for one particular detector pixel (pixel number = 34).
The x-axis indicates the thicknesses index ¢ for the step wedge. The upper row of each panel shows
prediction error in the transmission curves derived from the x-ray spectra shown in Figure 5.7. The
lower row of each panel shows the residuals between the measured transmission curve and the
predicted transmission curves.
contrast to the results shown in simulation study where both the KL-divergence approach and the
EM method yield x-ray spectra that closely resemble the ground truth. Under the presence of in-
consistency between the data model (5.1) and the physical transmission model, the KL-divergence
based method can perform quite differently in comparison to EM and the weighted KL-divergence
approach.

In Figure 5.8, the prediction performance is evaluated using the fitted x-ray spectra shown
in Figure 5.7, where the error is computed according to the squared log count distance (5.10).
We can see that all three methods significantly improve the prediction of the transmission curves
compared to the initial spectrum. The residuals between the measured and predicted transmission
curves are shown in the lower row of Figure 5.8. While the residuals generally behave similarly

between the three methods, in the case of low and medium energy windows, the EM method

generates larger residual errors for small thicknesses indexes; this is attributed to the fact that
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spectrum normalization constraint is not imposed in the EM solutions, which leads to errors in
the transmission curves when there is no object in the scan system (thickness index 1 in the figure
corresponds to the absence of an object). For high energy window, the three methods appear to
perform similarly in terms of predicting the transmission data, though the curves between the KL-
divergence approach and EM are more similar than the weighted KL-divergence. It is also worth
noting that the plots displayed in Figure 5.8 clearly show visible trends in the residual errors,
indicating the presence of systematic errors due to the unmodeled physics in the measurement
process. In particular, this suggests the need for employing more realistic modeling of physical
factors in order to account for the limitation of the method and enable more accurate and effective

spectrum estimation.

5.4 Alternating minimization based framework for simultaneous spectrum

estimation and image reconstruction

A recent development in detector technology has enabled the use of energy resolved photon-
counting detectors. Photon-counting detectors acquire spectral information for the scanned ob-
ject by separating incoming photons into pre-defined energy windows based on their energies.
Using this energy information in CT imaging, also called spectral CT imaging, can mitigate beam-
hardening artifacts and allows to estimate more than two basis material maps from the measured
counts data.

In this section, we explore the use of KL-divergence approach for spectrum estimation to al-
low for auto-calibration of the spectral response of the imaging system in the spectral CT image
reconstruction. Specifically, we incorporate unknown spectral components in the spectral CT data
model and formulate simultaneous image reconstruction and estimation of these spectral compo-
nents into the framework of alternating minimization. A simulation study is carried out to show

how the algorithm can be implemented on spectral CT data.
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5.4.1 Spectral CT data model

The spectral CT data model employed for the measured photon counts is given by

Gyt = Nwﬁzswﬁexp {_fok“mifkm} ) (5.13)
i km

where all the terms here are defined analogously as in (5.1), except that the density map f}, of
material m in pixel k is now unknown and the measurements are acquired for each energy window
w and each ray ¢ (here ¢ encodes different source and detector positions); xy, is the total length of
the intersection between ray ¢ and pixel k£ which can be calculated from the scanning configuration
of the CT scanner. For simplicity, we assume throughout this section that the spectral density
{s,¢;i} is independent of ray /, i.e. for each energy window w, the detector spectral response
is equal across the detector pixels encoded by ¢. Hereafter, we write {s,,;} to denote the x-ray
spectrum for energy window w.

In the idealized setting where the spectral components {s,,;} are known, the only unknowns
in the model (5.13) are the pixelized material maps { f;,,}, and reconstruction algorithm deter-
mines these unknowns from noisy measured data {c,,s}. In particular, the one step reconstruc-
tion approach directly estimates the basis material maps from photon counts data by inverting the

model (5.13),

~

f= arj%n(l)inDTPL(Caé(f)) subject to || fin|lTV < Y, (5.14)
>

where the total variation norm ||-||7v reflects the fact that the images exhibit locally constant or
nearly-constant regions across pixels indexed by k. The transmission Poisson likelihood function
Dtpr(+,-) is again employed for data discrepancy function. The optimization problem (5.14) is
highly nonconvex, due to the nonlinear dependence of x-ray attenuations in the transmission model,
and thus standard convex optimization techniques do not apply. To resolve this issue, Barber et al.
[12] develops the mirrored convex/concave (MOCCA) algorithm, a nonconvex generalization of
the Chambolle-Pock (CP) primal-dual algorithm [73], which can handle the optimization problem

of the form (5.14). The details of the MOCCA algorithm are further explained in the next section.
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In practice, the spectral response of the detectors are affected by various physical processes
involved in a photon-counting detector and thus the spectral components {s,,;} are never known
exactly. Accurately calibrating the spectral response is an important task in the spectral CT image
reconstruction as mis-calibrated detector elements can lead to strong ring artifacts in the recon-
structed image. To account for such nonideal detector effects, we propose to calibrate the spectral
response while performing image reconstruction, to adjust for the incorrectly estimated spectra in
the spectral CT data model. Specifically, the optimization problem employed for simultaneous

recovery of the material maps { f;,,,} and the x-ray spectrum {s,,;} is

(f,5) = argmin Dyp.(c,é(f,s)) subject to || finllTv < ¥m, dip (sw3sih) < ey, (5.15)
f>0,5€.

where .7 indicates the feasible set of the x-ray spectrum for each energy window w, namely
S ={s:Y;swi=1,8,; >0}, and ¢, > 0 is the KL-divergence constraint parameter. This prob-
lem is a natural extension of the one step inversion approach in (5.14) by jointly estimating the
unknown spectral response with the basis material maps. The KL-divergence constraint is placed
on the spectrum variables in order to capture important features of x-ray spectra and prevent over-
fitting to the measured counts. The initial estimates {s‘vgll} can be obtained from previous direct
measurement of the spectrum, or from preliminary calibration step using transmission measure-
ments before conducting image reconstruction.

The optimization problem (5.15) fits within the framework of alternating minimization since
the TPL function can easily be minimized with respect to each variable while fixing the other vari-
able. In particular, we can alternate between updating the material maps { f;,,,} and the spectrum

variables {s,,;} at every iteration as:

For a fixed {s,,; }, take one step of the MOCCA algorithm to update { f;,,,};

For a fixed { f},, }. take one step of the EG algorithm to update {s,,; }.

In other words, given the current estimated spectra, the material maps are iteratively refined
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to find better images, while the update steps on the spectra components always reduces the data

discrepancy function as the minimization problem of (5.15) is convex with respect to {s,,;}.

5.4.2 An algorithm for simultaneous spectral calibration image reconstruction

We now derive each step of the alternating minimization algorithm for simultaneous spectrum
estimation and image reconstruction implemented in this chapter.

First, we fix {sSZ-) }. The problem (5.15) then reduces to the exact problem studied in [12] with
known x-ray spectra. Specifically, denoting L(f) = Dtpy(c,é(f ,s("))), it can be shown that L(f)

can be approximated by a quadratic convex function Q(f; fo) = F(z;2¢) at K fo = 2o,

1

L(f)= 5 f "K' DKf~f K (b+EK[y) = O(f:fo):

where the matrices K, D, E and the vector b depend on ¢ and/or f (explicit formulas can be found
in [12]). Denoting F (2) =Ym lH 2l <V by indicator functions for the sparsity constraint of the
gradient images, the MOCCA algorithm invokes primal-dual algorithm on the problem with the

convex approximation F(z;zq) at the mirrored expansion point Z(()n+1) =V, F* ("), Z(()”))

minmax (Kf,y) + (Vrv f,y) —F*(y;z(()n+1)) —1::*6’77
20 yy

where Vv f denotes the gradient operator applied to each of the material maps, and F*(y) and

F*(7) represent convex conjugates of F(z) and F(z), respectively. Therefore, at iteration (n+ 1),
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the iterations steps for MOCCA are given by

. ~(n * n 1 n
S ) = argnin KF.5) = F* iz ™)+ S Iy =2

. =(n I L "
5)(”_,_1) — arg min <VTVf( )5;} —F ()A/) +§”)’_)A’( )H%—la
y/

s+ = ar]ggéin (Kf DY (Vy £, 500Dy 1 dl (™),

Y

where for a diagonal matrix W, we define d}Y; (f; f') = d(ljgig(w) (f;f)) (see (5.12) for the definition

of the weighted KL-divergence). Here in the update step of f (n+1)

, the (weighted) KL-divergence
is used as the proximity term rather than the (weighted) ¢,-distance, which has the benefit of
automatically including positiveness in the material maps without explicitly enforcing the positive
constraints.

(n+1

Next we fix { Jem )}. We directly solve the constrained problem (5.15) with respect to the

spectrum variables {s,,;} without relying on the equivalent regularized form as in (5.7), i.e.

Minimize {L(s) : s,; > O,st,- =1} subject to dgp (s ;™) < ¢y,
i
where L(s) = Dypy(c,¢(f"1) 5)) denotes the TPL function at f = f"*1). We use an iterative
algorithm based on the alternating direction method of multipliers (ADMM) [74], whose precon-
ditioned form is known to be closely related to the primal-dual algorithm [73]. Specifically, we
employ a slight variant form of ADMM, called Bregman ADMM [75], which is known to perform
well over the simplex . = {s : ¥;s; = 1,s,; > 0}. The Bregman ADMM yields the following
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iterations when applied to the above minimization problem:

s = argmin L(s)+ (u(”),s> +p -dKL(s;z(”))

ses
A argmin (VL(S(”)) + u(”),s> +p -dKL(s;z(”)) + B -dgr(s ;s(”)),
ses
) = argmin —(",2) +p-dr (23T F L i<

Z

unt1) — ,(n) +p(s(n+1) _Z(n—i—l)).

Note that in the step for st we approximately solve the sub-problem using the Taylor ex-
pansion at the current points and adding the proximity terms. The Z(nt1) step can be updated

separately for each energy window w.

5.4.3 Simulation study

Here we implement the algorithm derived in Section 5.4.2 on simulated transmission measure-
ments to investigate the potential of calibrating the detector spectral response during image recon-
struction.

A pixelized two-material phantom from the FORBILD head phantom, shown in Figure 5.9, is
simulated based on the spectral CT data model (5.13). Each of the true material maps, bone and
brain maps, consists of 64 x 64 pixels and the linear attenuation coefficients for the corresponding
materials are obtained from the NIST attenuation functions [71]. The number of detector bins is
64. Further details on the simulation setup, including the scanning configuration, can be found
in [12].

The photon-counting detectors are simulated with two energy windows in the ranges of [20-
70] keV and [70-120] keV and each energy window exhibits different spectral response as shown
in Figure 5.10. We assume that the spectral response varies only with energy windows and are
otherwise same across the detector pixels. For the spectral CT data, the number of expected total

counts are set to 109 for each ray £ and 64 views are acquired for each detector pixel, giving a total
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Bone map Brain map

Figure 5.9: True bone and brain images shown in the gray scale window [0.9,1.1].
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Figure 5.10: Spectral curves used for CT simulations for energy windows of [20-70] keV and
[70-120] ke V.

of 64 x 64 measurements for each energy window. The Poisson noise is added in the simulated
counts data.

The image reconstruction is performed with bone and brain as the basis material maps. The
simultaneous estimation of the detector response and image values depends on the choice of con-
straint parameters Y, and c¢,, in (5.15). In this study, we fix the constraint parameters as the known
actual values as both the true material maps and x-ray spectra are available in the simulation study.
Further, the algorithm described in Section 5.4.2 needs to specify the tuning parameters, namely
the diagonal matrices Z,f, T > 0 for the image reconstruction step and the step size parameters
p,B > 0 for the calibration step. We follow the same strategy of Barber et al. [12] for choosing

the diagonal preconditioners Z,i, T > 0, while we fix p =5- 108 and B=6- 108 throughout the
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simulation.

Initialization of Bone map Initialization of Brain map

Bone map with true spectrum Brain map with true spectrum

Figure 5.11: The upper row of each panel shows the initialized maps that are fed into the MOCCA
algorithm. The lower row of each panel shows reconstructed material maps from noisy simulated
measurements. The x-ray spectra that generate the transmission measurements are assumed to be
known.

We first show the results for the ideal setting where we assume knowledge of the true x-ray
spectra that generate the transmission measurements, as shown in Figure 5.10. In this setting, the
MOCCA algorithm with TV constraints has been demonstrated to be effective even for undersam-
pling. We apply the MOCCA algorithm to solve the problem (5.14) while initializing the material
maps as depicted in the upper row of Figure 5.11. The reconstructed material maps from the two
energy window CT data are presented in the lower row of Figure 5.11. As seen in the figure,
the MOCCA algorithm accurately recovers the underlying structure of the true phantom material
maps. Figure 5.12 indicates that the algorithm has reached nearly convergence to the solution after
few thousands iterations.

Next we perform image reconstruction without knowledge of the exact distribution of spectral
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Figure 5.12: Plots of the transmission Poisson likelihood and difference between the TV values of
the estimated maps and the true material maps across iterations n =0, 1,...,5000.

components, but prior information is available to capture important features of the x-ray spectra. In
particular, for each energy window, the initial x-ray spectrum is obtained by perturbing the corre-
sponding true spectrum, which are then used in the reconstruction formula (5.15) to simultaneously
determine the x-ray spectrum and the image values. For comparison, the MOCCA algorithm with-
out estimating the spectrum variables is also performed, for which the initial estimates are treated
as the truth throughout the iterations.

Figure 5.13 presents x-ray spectra estimated from the alternating minimization algorithm using
the initial estimates displayed in the figures. Multiple results are shown varying the initial estimates
employed for spectrum estimation. The reconstructed bone maps and brain maps that are estimated
simultaneously with the spectra are also shown in Figure 5.14 and Figure 5.15. As clearly seen in
the figures, the algorithm accurately recovers realistic estimate of the spectra and at the same time
reduce artifacts in the reconstructed images compared to the results without spectrum calibration.
Moreover, better reconstruction results are obtained when the initial estimate is more precise. This
is confirmed by visually comparing the recontruction results in the figures, and also by examining
the convergence behavior of the TPL function values shown in Figure 5.16, in which the algorithm
enters the near convergence region more rapidly if the employed initial estimate is closer to the

true spectrum. The qualitatively same behavior is also observed in the TV plot of Figure 5.17.
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Spectral plot for window 1 Spectral plot for window 2
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Figure 5.13: Spectrum estimation from the measured transmission data using alternating min-
imization for simultaneous spectrum estimation and image reconstruction. The true spectrum
(green solid line) and the initial spectrum (yellow dotted line) are also displayed in the figures.
Each column represents each of the energy window sensitivity of the detector for varying initial
estimates.
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True bone map Bone map with true spectrum

Figure 5.14: Reconstructed bone maps with and without spectral calibration. Each row corre-
sponds to the different initial estimates of the spectrum as shown in Figure 5.13. For comparison,
the true image and the reconstructed map with true spectrum are also displayed in the top panels.
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True brain map Brain map with true spectrum

Brain map with auto-calibration Brain map with uncalibrated spectrum

Figure 5.15: Reconstructed brain maps with and without spectral calibration. Each row corre-
sponds to the different initial estimates of the spectrum as shown in Figure 5.13. For comparison,
the true image and the reconstructed map with true spectrum are also displayed in the top panels.
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Figure 5.16: Plots of the transmission Poisson likelihood against iteration number for image re-
construction with and without spectrum calibration. Each row corresponds to the different initial
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estimates of the spectrum as shown in Figure 5.13.
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TV diff with calibration TV diff without calibration
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Figure 5.17: Plots of the difference between the TV values of the estimated maps and the true mate-
rial maps against iteration number for image reconstruction with and without spectrum calibration.
Each row corresponds to the different initial estimates of the spectrum as shown in Figure 5.13.
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5.5 Discussion and conclusions

In this chapter, we have developed a constrained optimization problem for reconstructing x-ray
spectrum from transmission measurements through known thicknesses of known materials. The
proposed method places a KL-divergence constraint on the spectrum variable which improves
numerical stability of the inversion process and allows to incorporate prior knowledge on the spec-
trum. The formulated optimization problem is a convex program over the simplex, which we
propose to solve based on the exponentiated-gradient algorithm. Both numerical simulations and
experimental results show that the method can yield realistic x-ray spectra that can accurately
reproduce the spectral response of the CT system.

Here we emphasize two benefits of our approach relative to other methods. First, the proposed
approach using a KL-divergence constraint provides the benefit of interpreting spectrum determi-
nation from transmission measurements in relation to the maximum entropy principle. Second, our
formulation is a general optimization framework for spectrum estimation that can support differ-
ent data discrepancy functions and incorporate other desirable constraints on the x-ray spectrum.
More importantly, the flexibility of the method allows to easily incorporate the calibration proce-
dure in the framework of simultaneous spectral calibration and spectral CT image reconstruction.
In Section 5.4.3, we investigated the possibility of combining image reconstruction with the KL-
divergence approach in the simple alternating minimization based framework which is seen to
reduce artifacts in the reconstructed images. We hope that the work here may inspire future work
to build a general framework for auto-calibration of the spectral response of the imaging system

during the spectral CT image reconstruction.
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