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Introduction

Differential privacy is an emerging topic in Economics that has just recently
started to gain more attention. In my thesis, I am trying to answer can econo-
metric estimates be preserved when estimation is performed on differentially
private synthetic data? While most current approaches to differential privacy
in causal inference focus on making specific estimators differentially private,
my approach will make synthetic data that is differentially private, so any es-
timator can be applied to this synthetic data. I will do this using generative
adversarial networks (GANs). In doing so, I will also explore other differentially
private methods for econometric estimators, as well as explore ways to achieve
consistent standard errors when reporting these estimators.

We will begin with a review of the literature related to differential privacy,
generative adversarial networks, and how these topics relate to economics. I will
follow this up with a section on calculating standard errors under differential
privacy. I will give a small example to demonstrate how to adjust standard
errors, along with some proofs. I will then finish with experiments and discussion
of drawbacks and future directions.

Literature Review

The literature on differential privacy in economics is relatively new. With only
a few applications in economics, my work should add a considerable amount to
this literature. In this section I will explain what differential privacy is. I will
then explain what GANs are and how both of these topics relate to economics.

Differential Privacy

As more data is collected, the desire to maintain privacy has become increasingly
important. However, the increase in data has also made this goal more difficult
to achieve. There have been high profile examples where privacy of individuals
has been compromised because of auxilary data that has been leveraged to
reveal the underlying data using only anonymity data or in some cases released
statistics [1]. To solve this problem, differential privacy was invented.
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Differential privacy is a method to release the output of an algorithm in a
way that will protect the data that this algorithm was run on [2]. Formally, an
algorithm A that takes data as input is differentially private if for two data sets
D1 and D2 and any set of possible outcomes from K, then

Pr(A(D1) ∈ K) ≤ eϵPr(A(D2) ∈ K)

The intuition for why this a reasonable notion of privacy is that it preserves
privacy even for two data sets that only differ by one entry. As an example,
lets say I am in some data set that holds sensitive data–such as medical data–
and I am worried about the output of A revealing whether or not I have some
condition. If we consider D1 as the data set that claims I have the condition,
while D2 claims I don’t, then I can guarantee that regardless of what output K
is observed from A, that

Pr(A(D1) ∈ K)

Pr(A(D2) ∈ K)
≤ eϵ

This means that there is a limit to how certain an observer can be about
whether D1 or D2 was used, so there is always some level of plausible deniability
as to whether or not I have the condition in question.

In this equation, ϵ is the privacy parameter and an algorithm for which this
condition holds is called ϵ-differntially private. The larger ϵ is, the less privacy is
preserved with ϵ = ∞ providing no privacy and ϵ = 0 providing perfect privacy
but the noise necessary to provide this privacy drowning out any signal.

There is no procedure for the selection of ϵ. This is usually chosen ad hoc,
but some work has looked at the tradeoff of signal to privacy when making this
decision [3]. This work uses common ideas in economics for its analysis. This is
one of the earliest applications of economics to the differential privacy literature,
but will not be the focus of this paper. Instead, I’ll focus on differential privacy
applied to econometric estimators.

Several papers have looked at differential privacy’s application to causal in-
ference. Work by Chetty and Friedman [4] has already been devoted to differen-
tial privacy for OLS regression. This paper aims to obtain differentially private
estimates of OLS regressors for small sample sizes of U.S. census data. However,
they are unable to fully achieve this goal. In their paper, they take the approach
of adding noise to their estimate to ensure privacy, which is a common approach
to achieving differential privacy. However, to get the correct magnitude of noise,
you must know the maximum amount you estimator can change from remov-
ing one data point from your data. This change is theoretically unbounded for
OLS, so Chetty and Friedman instead use the maximum change possible over
the whole data set and applied this for each sample. While this isn’t formally
differentially private, it does provide significant privacy. My approach would
extend this work by allowing for OLS estimation that is actually differentially
private. Because my approach would generate data that is itself differentially
private, any functions of that data would also be differentially private, which
includes OLS estimates.
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Some work has already achieved differential privacy for causal inference[5].
This paper gives a differentially private approach to the additive noise model
framework. In their paper, the authors show that this model successfully pre-
serves causal estimates even under privacy restrictions. This is a good sign for
my paper, as it shows the possibility of successful causal inference under the
requirements of differential privacy. While this paper does give an approach to
differentially private causal inference, the additive noise model is not commonly
used in econometrics. My paper will extend this work by looking specifically at
the most common econometric methods of causal inference (IV, RDD, etc.). My
approach would also be more general, as their work looks at a specific framework
of causal inference, while mine would allow for any framework to be applied.

The previous paper talks about differential privacy for causal inference, with
application one being medical data. Medical data will be a large focus of my
paper as well. Medical data is one of the most important use cases of differential
privacy. Privacy concerns are a big hurdle to even accessing medical data, so
having synthetic data for preliminary analysis could help researchers determine
fruitful paths to take before the strenuous process of actually getting access to
this data. However, in addition to simpler methods discussed earlier in this
review, I would also like for more complex methods (such as debiased machine
learning) to be able to be applied to the synthetic data I create. Since these
approaches rely on machine learning, it is important that synthetic data can
be produced that behaves similarly to the underlying data on machine learning
tasks. Recent work [6] suggests that this is possible with medical data. In
this paper, the authors generate synthetic medical data. They then attempt
several classification tasks on this data, training their models on the synthetic
data and testing on the real data. They then compared this to the performance
of classifiers both trained and tested on the real data. The results for each
training method were very close, showing that the necessary information for
machine learning was preserved. This is promising for my work, as my work also
depends on complex relationships in the data being preserved. If my approach
proves successful then this will be further evidence that differentially private
synthetic data can preserve complex relationships.

In addition to the body of work promoting methods of causal inference that
respect differential privacy, there are also papers looking at the limits of differen-
tial privacy in causal frameworks. A paper by Komarova and Nekipelov [7] looks
at the theoretical limitations of differentially private regression discontinuity es-
timates. However, this work is largely theoretical. My approach will be able to
test these theoretical limits in a practical application. As the authors of this pa-
per acknowledge “While differential privacy does provide formal non-disclosure
guarantees, its impact on the identification of empirical economic models as well
as its impact on the performance of estimators in nonlinear empirical Econo-
metric models has not been sufficiently studied.” Through my research, I will
be able to begin to fill in this gap in knowledge.
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Generative Adversarial Networks

One of the most significant advances in deep learning in the past decade was
the advent of Generative Adversarial Networks (GANs) [8]. The goal of a GAN
is to generate samples that resemble some underlying dataset. These were first
used to imitate images, but can be used to imitate any arbitrary type of data.

GANs are made up of two models: A generator and a discriminator. The
generator takes in random noise as an input, and outputs a sample that is
meant to resemble the underlying data. The discriminator in turn takes as
input samples from out data and outputs from the generator and is trained to
classify the inputs as real or fake. Thus, as the generator gets better (its outputs
look more like the underlying data) then the discriminator must also improve
to discriminate between the increasingly similar samples. As the discriminator
improves, the generator must also improve. This results in generators that can
produce samples that look very similar to the underlying data.

One interesting application to economics is using GANs to train structural
models [9]. By using a structural model as the generator, it is possible to
tune the parameters of the model until a discriminator can’t tell the difference
between data generated by the structural model and the real data used to train
the model.

GANs are especially useful when generating high dimensional data, which is
the focus of this paper. There are certain statistical guarantees that are given
by GANs [10]. In tests, we can see that GANs perform very well [11]. Both of
these papers show that the distribution learned by a GAN will converge to the
actual distribution under a variety of distance metrics.

Confidence Intervals

One of the most important aspects of an econometric estimator is consistent
confidence intervals. Such confidence intervals allow the researcher to assess
the plausibility that the actual value underlying an estimator is in a certain
range. Thus, the researcher can determine whether the estimator is ”signifi-
cant”, meaning the estimator is likely not zero and actually affects the outcome
in question.

Because of the importance of confidence intervals, it would be very useful if
we could find consistent confidence intervals on our synthetic data.

For a differentially private estimator to have consistent confidence intervals,
these intervals need to be increased to account for the increased uncertainty
added by the differential privacy. The propery we want to hold is that

Pr(θ ∈ CI) = 1− α

for an α confidence interval. This is easy to achieve when our estimator is
asymptotically normal and we use additive noise. In this case, we know that

√
n(θ̂ − θ) = N(0,Σ)
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. It then follows that if we add noise L to ˆtheta with mean 0, then we tend
towards a distribution with a mean of zero and variance of

σ2 = 1/n ∗ σ + var(L)

.
Below I will explain 3 ways to achieve consistence confidence intervals. I

will then run some simple experiments to demonstrate the effectiveness of these
methods. The experiments will be as follows:

• Draw n samples from a distribution with support on [0,1] and mean 0.5

• Calculate the mean and standard error (using a t statistic)

• Add differentially private noise to the mean

• Repeat 100 times and report how many time 0.5 lands in the adjusted 95
percent confidence interval

By limiting the distribution to a support of [0,1], we can guarantee that the
mean doesn’t change by more than 1/1000 when changing one data point, which
will allow us to apply differential privacy. Since the mean is asymptotically
normally distributed, we would expect that, with no noise, that 0.5 is in the
reported confidence interval 95 percent of the time. In each table, we will report
both with and without adjustment for a range of ϵ values and for both a uniform
and beta distribution as the distribution we’re drawing from.

Gaussian Noise

As will be seen throughout this paper, there are certain ways to relax differential
privacy in a way that doesn’t provide the same privacy guarantees, but can still
be useful in some instances. One such relaxation is (δ, ϵ) differential privacy [2],
which defines a mechanism as (ϵ, δ) differentially private if it meets the condition

Pr(A(D1) ∈ K) ≤ eϵPr(A(D2) ∈ K)

By relaxing the definition in this way, it is possible to achieve differential
privacy by adding gaussian noise with standard deviation σ = 2ln(1.25/δ)/ϵ
[12]. This only holds for ϵ ∈ (0, 1). In the literuature it is common to set δ to a
small value, so for our analysis I’ll use δ = 0.01 anytime Gaussian noise is used.

Gaussian noise is particularly useful because many econometric estimators
are asymptotically normal. This means that as n increases,

√
n(θ̂ − θ) = N(0,Σ)

For an estimator θ̂ of θ. If L is normally distributed with privacy (δ, ϵ), then

the resulting distribution of θ̂ approaches

N(θ,
1

n
Σ+ (2ln(1.25/δ)/ϵ)2I)
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because the sum of two normally distributed variables is also normally dis-
tributed. Below are experiments using such a normal distribution for gaussian
noise.

ϵ n Distribution Coverage (no adjustment) Coverage (Adjusted)
1 100 uniform 0.73 0.91

beta 0.76 0.94
1000 uniform 0.79 0.95

beta 0.8 0.96
10,000 uniform 0.8 0.94

beta 0.8 0.95
8 100 uniform 0.82 0.92

beta 0.85 0.92
1000 uniform 0.87 0.95

beta 0.87 0.95
10,000 uniform 0.86 0.97

beta 0.87 0.95

Laplace Noise

Even though we know the variance of our resulting asymptotic distribution,
without knowing the actual functional form of this distribution we can’t deter-
mine the necessary confidence intervals. For instance, using confidence intervals
produced by gaussian noise when laplace noise is added gives the following re-
sults.

As can be seen, this doesn’t give the correct coverage because the sum of
a gaussian and laplace distribution is not normally distributed. Thus, to get
the actual desired confidence interval, we need to do a convolution of these two
distributions. Let X = N(µ, σ) and Y = Laplace(0, b). We then need to solve
for Pr(X+Y ≤ k) by integrating over the space where X+Y ≤ k. Since X and
Y are independent, there joint distribution is just the product of each marginal
distribution, so the integral we need to solve is∫ x=∞

x=−∞

∫ y=k−x

y=−∞
(

1√
2πσ

e−
(x−µ)2

σ2 )(
1

2
e−| yb |)dxdy

Since X and Y are independent, we can switch the order of integration pull
the density of X out of the first integral to get∫ x=∞

x=−∞
(

1√
2πσ

e−
(x−µ)2

σ2 )

∫ y=k−x

y=−∞
(
1

2
e−| yb |)dydx∫ x=∞

x=−∞
(

1√
2πσ

e−
(x−µ)2

σ2 )Fy(k − x)dx

where Fy(y) is the CDF of Y . Since Y is a laplace distribution, the CDF is a
piecewise function with Fy(y) = (1/2)ey/b for y ≤ 0 and Fy(y) = 1− (1/2)e−y/b
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for y ≥ 0. Thus, to solve our integral we can split our integral into a sum over
the different pieces of the function. Using this, we get the following equation
for our integral.

∫ x=∞

x=−∞
(

1√
2πσ

e−
(x−µ)2

σ2 )Fy(k − x)dx+

∫ x=∞

x=−∞
(

1√
2πσ

e−
(x−µ)2

σ2 )Fy(k − x)dx

=

∫ x=∞

x=−∞
(

1

2 ∗
√
2πσ

e−
(x−µ)2

σ2 + k−x
b )dx+

∫ x=∞

x=−∞
(

1

2 ∗
√
2πσ

e−
(x−µ)2

σ2 )dx

−
∫ x=∞

x=−∞
(

1

2 ∗
√
2πσ

e−
(x−µ)2

σ2 − k−x
b )dx

We can shift our focus to the integral at the beginning of the equation. To
solve this we’ll convert it back into the form of a gaussian variable with mean µ1

and standard deviation σ1 so we can write it as a function of an error function.
Doing this will leave some leftover term which we’ll call c1.∫ x=∞

x=−∞
(

1

2 ∗
√
2πσ

e−
(x−µ)2

σ2 + k−x
b )dx

=

∫ x=∞

x=−∞
(

1

2 ∗
√
2πσ

e
− (x−µ1)2

σ2
1 + c1)dx

=
σ1e

c1

2σ

∫ x=∞

x=−∞
(

1√
2πσ1

e
− (x−µ1)2

σ2
1 )dx

=
σ1e

c1

2σ
Φ(

k − µ1

σ1
)

Summing the three addends of this equation together we get the following
solution

σ1e
c1

2σ
Φ(

k − µ1

σ1
)− σ2e

c2

2σ
Φ(

k − µ2

σ2
) + Φ(

k − µ

σ
)

Once we have a form for the the CDF of the resulting distribution, all we
have left to do is solve for

Pr(x < k) = 1− α

. While this has no anlytical solution, we can quickly solve this using newton
raphson. In practice, I solved this using an automatic solver from the scipy
package.

7



ϵ n Distribution Coverage (no adjustment) Coverage (Adjusted)
1 100 uniform 0.65 0.89

beta 0.69 0.93
1000 uniform 0.71 0.95

beta 0.69 0.95
10,000 uniform 0.70 0.96

beta 0.72 0.95
8 100 uniform 0.75 0.93

beta 0.77 0.93
1000 uniform 0.80 0.94

beta 0.76 0.95
10,000 uniform 0.79 0.96

beta 0.75 0.95

Bootstrap

One final way to obtain confidence intervals is using the bootstrap. This is a
popular statistical approach that has useful properties when looking for prop-
erties of a distribution underlying a sample. This method is especially useful
when dealing with difficult to calculate standard errors, which is the case here
with the added noise from our differentially private estimators.

To calculate these standard errors, we’ll use the following algorithm. As-
suming that there is some function D(θ̂, ϵ) that returns a differentially private

estimate of θ̂, we do the following, which is outlined in [13]. This method
involves drawing bootstrapped samples from the data, calculating the desired
estimator, and then adding differentially private noise to the estimator. We can
then get a quantile of the estimator by finding the quantile of our bootstrapped
estimators.

In order for this process to be useful, it needs to returns consistent confidence
interval. That means that, at least asymptotically, the probability that the true
θ is in a 1−α confidence interval is α. This is shown to be true in [13]. For add
noise, the simulation below use Laplacian noise.

Synthetic Data Experiment

We already how standard errors can be adjusted when differential privacy is
achieved via additive noise. We looked at two different forms of additive noise:
Gaussian and Laplace. We also showed how bootstrapping can be used to get
standard errors.

One popular way to generate differentially private synthetic data is his-
togram based methods. If we take a histogram of our data, we can add differ-
entially private noise to each bin because a single data point change can only
change the bin by at most 1. We can then use these bins with added noise to
draw from and get new data that is differentially private. We will do this using
the method outlined in [14].

8



ϵ n Distribution Coverage (no adjustment) Coverage (Adjusted)
1 100 uniform 0.66 0.92

beta 0.68 0.95
1000 uniform 0.74 0.95

beta 0.72 0.96
10,000 uniform 0.71 0.95

beta 0.72 0.94
8 100 uniform 0.74 0.95

beta 0.76 0.94
1000 uniform 0.81 0.95

beta 0.78 0.95
10,000 uniform 0.76 0.97

beta 0.73 0.95

ϵ n Distribution Gaussian Adjustment Laplacian Adjustment Bootstrap Adjustment
1 100 uniform 0.82 0.84 0.86

beta 0.84 0.84 0.85
1000 uniform 0.85 0.84 0.85

beta 0.86 0.86 0.86
10,000 uniform 0.85 0.84 0.87

beta 0.84 0.83 0.86
8 100 uniform 0.87 0.88 0.90

beta 0.86 0.86 0.87
1000 uniform 0.87 0.9 0.90

beta 0.85 0.88 0.89
10,000 uniform 0.85 0.87 0.90

beta 0.86 0.90 0.91

We will now use a very simple histogram based method to generate synthetic
data. From here, we can use the three methods proposed previously and see
how it improves coverage of confidence intervals.

In the remainder of this paper, I’ll use the three methods described previ-
ously to adjust standard errors. Because of the black box nature of GANs, it
is hard to say how each will work, so I’ll use experimental results to judge each
method.

Linear Models

One problem that frequently crops up in the differential privacy literature is the
difficulty of reporting differentially private estimators for a range of estimators.
This was acknowledged by Chetty in [4] when looking at linear regression. This
can be easily illustrated using a simple example. Consider a regression of one
variable with no intercept. Thus, we are fitting

Yi = Xiβ
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, which, if a squared error is used, gives a solution of

β =

∑n
i=1 XiYi∑n
i=1 X

2
i

If we let Y1 = X2
1 and we let N =

∑n
i=2 XiYi and D =

∑n
i=2 X

2
i , then we can

rewrite β as

β =
X3

1 +N

X2
1 +D

Thus, choosing large enough or small enough Xi and Yi, we can make arbitrarily
large changes to β, so no amount of noise can distinguish the β when X1 is
included and β whenX1 is not, so we can’t guarantee differential privacy because
we would always know if X1 was present.

Despite this limitation, we can relax differential privacy slightly to get esti-
mators that preserve privacy. In Chetty’s paper, this limitation is overcome by
putting bounds on Xi and Yi. Building out these models will be useful for two
reasons. First, as will be demonstrated, my model of inference will give better
results in simulation, so it is useful in its own right. Secondly, it will give us
another econometric estimator to test on our synthetic data. This is important
because sampling a wide array of econometric estimators will help to see how
useful the synthetic data produced actually is.

While this can be useful in situations where many regressions are being done,
it might not be appropriate for situations in which only a few regressions are
being done. I’ll relax differential privacy in a different way for these instances.
In many cases, the range a variable is able to take is naturally bounded. For
instance, something like a test score might be bounded between 0 and 100. Even
if there isn’t an explicit range, we can usually put reasonable ranges on variables.
For instance, if we’re looking at heart rate, which is technically unbounded, we
can put a large upper limit like 1000 that couldn’t be reasonably achieved. By
doing this, we can now define the maximum difference between two data sets
that differ by one input, so we can use additive noise on our linear regression.

In order to do this, we will assume that the maximum change (absolute
value of the difference between the smallest and largest possible value) across
any element of X or Y is f . We could take maximum differences element by
element to get smaller privacy bounds, but for this paper we’ll just bound all
variables between 0 and 1 in simulations for simplicity of calculations.

We’ll use the classical setup for linear regression where Y = βX. Since
β̂ = (X ′X)−1X ′Y . By the rules of composition, if we use two ϵ/2 differentially
private mechanisms and combine them using some mathematical operation, we
get an ϵ differentially private mechanism. We’ll use this to get ϵ/2 private
estimates of X ′X and X ′Y by adding laplace noise L, and then matrix multiply
(X ′X + L)−1(X ′Y + L) to get an ϵ differentially private estimate of β

To determine the appropriate noise, we need to determine what the maxi-
mum sensitivity is for X ′X and for X ′Y .

Since linear regression is asymptotically normal, we can use the method
above to solve for confidence intervals when Laplace noise is added. However,
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there is the issue of bias that could effect the validity of our confidence intervals.
We can also use the bootstrap method. A similar method for linear regression
is proposed in [13]. Both of these will be presented in the simulations below.

To generate our data for the simulations, we’ll use Y = β′X + u where u is
standard normal (when using chetty’s approximate method) and beta(0.5,0.5)
when using the bounding method from above. Also, X will be standard normal
or beta(0.5,0.5) for those respective methods. I will use β of all 1s and calculate
coverage experiments and MSE using the first element of β

Debiased Machine Learning

An emerging method that has gained popularity in econometrics is debiased
machine learning [15]. This is a semiparametric method used to estimate treat-
ment effects. I will use the auto-DML implementation used in [15]. This method
involves using some machine learning model γ to estimate outcome Y given
treatment D and covariates X. We can then create a biased estimate of the
ATE as the average of γ(1, Xi) − γ(0, Xi) over all Xi in the test set. We can
then use the method in [15] to remove the bias from this estimate.

One advantage of this method is its flexibility. Any estimator can be used
for γ and we can still get unbiased estimates. This is useful because it allows
us to use an estimator trained with differential privacy and still get unbiased
estimates. For this, we will use differentially private neural nets as presented in
(source) and differentially private random forests as presented in [16].

To generate data for my experiments, I will use the following data generating
process

Yi = Di +Di ∗Xi +Xi −X3
i + ui

where ui is standard normal noise, Di is treatment assigned with selection bias,
such that Di = 1 if Xi + vi > 0 where vi is standard normal, and xi is drawn
from a standard normal. This process has an ATE of 1.

Binary Choice Logit Model

One of the most important methods in econometrics is the binary choice logit
model. This model is particularly important in industrial organization. This
model relates a binary variable Yi to some set of regressors Xi with the following
conditional probability.

Pr(Yi = 1|Xi, β) =
eX

′
iβ

1 + eX
′
i
β

When we assume that β is constant, we can estimate this model using
standard maximum likelihood estimation. Let ϕ(x) = ex

1+ex For observations
(Y1, X1), ...(Yn, Xn), we can write the log likelihood as

L = Yiln(ϕ(X
′
iβ)) + (1− Yi)ln(1− ϕ(X ′

iβ))
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. While this cannot be solved analytically, as the equation setting the derivative
to zero isn’t analytically tractable, we can still use gradient based methods
to solve this. While most approaches to logit model estimation use newton
ralphson, we use gradient descent. For my experiments, I will use a β of all 1s
with X drawn from a standard normal.

To give a baseline, I will build a differentially private estimator of the binary
choice logit model. I will start by constructing an estimator that is able to
preserve privacy without any relaxation of the definition of differential privacy.
I will then present a second method that will slightly relax the definition of
differential privacy. I will argue why this relaxation may be useful in some
cases. I will finally construct methods to get standard errors, and then run
some experiments confirming the effectiveness of my approach. To begin, I will
use a method similar to the one used to train differentially private neural nets
[17].

Up until this point, all the methods we have seen have added noise at the end
to guarantee privacy. However, in training a differentially private neural net, the
noise is added during the training process [18]. Specifically, this noise is added
to the gradients, which are clipped after the noise is added. By clipping the
gradients (only allowing them in a certain range), it is possible to set a bound
on the maximum amount that they can differ when a data point is added or
removed from the data set. This is important because the noise that is added
depends on the maximum amount that a single point can effect the output.

As mentioned earlier, binary logit models are usually solved using newton
raphson. However, as shown in [18] this can sometimes be unstable because
the hessian matrix might, under added noise, fail to be positive semidefinite.
To overcome this problem in [18], the authors use a public and private dataset,
pulling the hessian from the public data. While this is an interesting idea,
we’re interested in only having private data, so this method won’t work for our
purposes. Instead, I choose to use gradient descent, as the nueral net literature
does, to ensure privacy. This gives the following algorithm.

• Calculate gradient

• Add Laplacian noise to the gradient

• Clip gradient between -f and f

• Repeat until privacy budget has been expended

Methodology

In the previous sections, we developed differentially private econometric esti-
mators for a number of common econometrics problems. We also showed how
histrogram based methods for generating differentially private synthetic data
can be used effectively for small data sizes. We will now expand to a higher
dimensional setting. In this setting, we will generate the differentially private
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data using GANs (as implemented in) and a histogram based method outlined
in (source).

Using debiased machine learning and binary choice logit have significant
advantages for testing our synthetic data. First, each method is nonlinear, so
we can see if the complex patterns we want to see preserved by the GANs are
actually preserved. Secondly, both can have differential privacy applied directly
to the method itself (as outlined in each methods respective section) so we can
treat this as a ”best case” or using differential privacy. Since the differential
privacy is applied only to the method itself and not the entire data set, it is likely
impossible to better performance. For the synthetic data, privacy is preserved
for every type of analysis, not just one specific analysis.

For our simulations, we will use the data generating processes outlined in the
linear models, debiased machine learning, and binary choice logit model sections
above. We will then compare the mean squared errors and coverage rates of the
respective econometric estimators using the differentially private estimator on
the underlying data and using the non differentially private estimator on the
synthetic data. We will do this over a number of different values of ϵ and
dimensions. We will also choose one dimension and ϵ to test different methods
of adjusting standard errors on the synthetic data. We will look at the resulting
coverage

Results

Linear Model

ϵ n MSE Synthetic Data Coverage Adjusted Estimator Coverage
1 1000 0.835 0.85 0.94

10,000 0.841 0.84 0.93
8 1000 0.506 0.88 0.92

10,000 0.492 0.89 0.95
25 1000 0.252 0.88 0.95

10,000 0.244 0.90 0.96

Debiased Machine Learning

ϵ n MSE Synthetic Data Coverage Adjusted Estimator Coverage
1 1000 0.932 0.82 0.93

10,000 0.906 0.83 0.95
8 1000 0.677 0.85 0.96

10,000 0.655 0.87 0.95
25 1000 0.310 0.90 0.96

10,000 0.324 0.89 0.95
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Binary Choice Logit Model

ϵ n MSE Synthetic Data Coverage Adjusted Estimator Coverage
1 1000 0.678 0.79 0.95

10,000 0.699 0.81 0.96
8 1000 0.456 0.82 0.94

10,000 0.407 0.85 0.96
25 1000 0.105 0.85 0.97

10,000 0.098 0.86 0.95

Discussion

Drawbacks

As can be seen above, the results on the synthetic data are not as good as
with the actual estimator. There is thus a tradeoff between the versatility of
having differentially private synthetic data (which can work on many different
estimators) and a tailored estimator that will have better performance and,
crucially, consistent confidence intervals.

Another problem we ran into was that there are certain estimators that the
synthetic data couldn’t capture at all. This was the biggest problem with the
regression discontinuity design. I used data generated from the following data
generating process.

(a) Synthetic Data with ϵ = 1 (b) Underlying Data

Figure 1: RDD Demonstration

Using the RDD, this should give a LATE at 0 of 1. This can be demonstrated
in the graph below. This graph shows differentially private data generated on
the right, generated from the underlying data on the left.

14



0.1 Graphic

However, as can be seen in one sample of generated data from a GAN, this is
not the case. Across 1000 samples, there was no tendency towards a LATE of
1, with estimates varying wildly. This is consistent with the theory presented
in [7].

Future Work

This work is a very preliminary look at a topic with much potential. I looked
at only a handful of methods and only a couple of data generating methods. It
would thus be a natural extension to look at more econometric methods and
data generating methods. It could also be helpful to tailor data generating
methods to specific econometric estimators. For instance, if we’re working with
consumer data, it would be helpful to have synthetic data that performs well
on logit and probit models.

Conclusion

From the results, we can see that there is still work that needs to be done to
improve the usefulness of synthetic data for econometric methods. However,
there were promising results both in terms of coverage and mean squared error
for the estimators studied. Also, we were able to get excellent performance from
the differentially private estimators for all three methods studied. This suggests
that, at least for the time being, the best approach to differential privacy in
econometrics is using specifically designed differentially private estimators for
each task, rather than using synthetic data.
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