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Abstract

Fluctuations in sustained attention occur at fine time scales. In many cognitive tasks, behavioral
measures such as response time can predict the onset of these fine-scale fluctuations.
Contemporaneous work has indicated a narrowing trend in the time scales on which predicting
sustained attention fluctuations on the basis of fluctuations in functional connectivity among
brain regions is possible. Uniting these ideas, we apply connectome-based predictive modeling
to derive novel brain networks whose degree of activation may contribute to forecasting
upcoming lapses in sustained attention on the order of 2-3 seconds prior to those lapses. We
describe these networks’ predictive power relative to canonical and predefined network models
of task-relevant cognitive processes as well as models relating response time behavior to
upcoming lapses. We find our novel network models offer the best single-feature prediction of
upcoming lapses and are essential to their best overall prediction at this scale. More broadly, we
find that both neural and behavioral measures may enable the prediction of upcoming attention
lapses, but that the signatures of lapsing attention also differ between tasks.



Introduction

Sustained attention is the preservation of directed focus over time (Timmers, 2013). In daily life
we often rely on sustained attention, be it while conversing among friends or driving on the
interstate. A consequence of sustained attention’s ubiquity is the commonality of experiencing
its lapses. If sustained attention is the preserved direction of focus over time, a lapse in
sustained attention is the temporary loss of that direction (Cheyne, 2010). In conversation, such
lapses are trivial; we may ask our friends to repeat what they just said and apologize for zoning
out. On the interstate, consequences for such episodes may be more severe. For this
reason—that we would often prefer to detect lapses in sustained attention before their
behavioral consequences occur—the question emerges whether and how such predictions may
be possible.

Prior work has identified some generally consistent behavioral predictors of lapses in
sustained attention across a variety of task contexts. One such example is the sustained
attention to response task (SART) (Robertson, 2001), in which participants are presented with
streams of stimuli and asked to respond for a frequently-presented stimulus category while
withholding responses to infrequently-presented stimuli. In this context, it is typical for
participants to perform a trivial task (e.g. “press the spacebar if the stimulus is a scene image,
withhold a response if the stimulus is a face), therefore we assume erroneous responding is a
consequence of lapsing sustained attention. In these SART paradigms, it has been
demonstrated that averaging reaction times (RTs) over intervals as short as ~4 seconds
preceding infrequent stimulus trials can meaningfully predict the outcomes of those trials
(Robertson, 2001; Sakai, 2013). In other words, information about a participant’s attentional
state on upcoming trials may be present in their behavior during preceding ones. This finding
has been supported in conceptually similar tasks across a variety of time scales ranging from
40s-3s (deBettencourt, 2018; Rosenberg, 2015; Vaurio, 2009)

The SART’s validity as a measure of sustained attention has been criticized on the basis
of its trials’ abrupt onsets. Potentially attention-reorienting effects of trial-based designs are
thought to complicate the SART’s role as a measure of sustained attention. To address this
issue, the gradual-onset continuous performance task (gradCPT) was developed and applied to
explore how patterns in both brain and behavior may associate with sustained attention
performance (Esterman, 2013). As in the SART, behavioral data collected from participants
performing the gradCPT indicated that pretrial RT (namely RT variability) could be applied to
predict attentional state during future trials. By boiling traditional vigilance tasks into their
essential character with gradCPTs, a concrete behavioral predictor of attentional state—pretrial
RT—was obtained. However, the gradCPT is exactly that: a distillation of task features thought
to best-apprehend sustained attention specifically. Real life tasks demanding sustained attention
are quite unlike this ideal laboratory setup. One question accompanying the behavioral gradCPT
findings, which this present work seeks to address, is the extent to which those findings
generalize beyond the context of gradCPTs.

Implicit to these RT findings is the idea that sustained attention fluctuations may occur at
high frequencies. That is, if RT data collected during the seconds preceding task trials contain
enough information to make reliable predictions about the outcomes of those trials (i.e. about



the likelihood of an attentional lapse), then we may conclude that whatever process underlies
those outcomes might be evident at those time scales. This conclusion is supported by
converging evidence from other tasks, such as the Stroop task (Jong, 1999) and a global-local
letter recognition task (Weissman, 2006), both of which are argued to at least tangentially
measure sustained attention and for which inter-trial attentional lapses on the order of seconds
are thought to have influenced task performance. Further evidence supporting the existence of
fine-scale fluctuations in sustained attention may be observed in clinical literature (Vaurio, 2006)
and animal models (Cohen, 2011).

Although high-frequency measurements are relatively straightforward in the collection of
behavioral data, if we intend to pursue the goal of predicting lapses in sustained attention before
they are evident in behavior, our job grows complex. Some prior work has applied a variety of
univariate and multi-voxel pattern analysis (MVPA) methods to analyzing neural precursors of
lapses in sustained attention.

In the gradCPT, elevated dorsal attention network (DAN) activity preceded correct
responses whereas default-mode network (DMN) activity preceded incorrect responses (i.e.,
lapses) when analyzing trial-level network antecedents of trial-level task performance; however,
this result was complicated by a closer analysis which revealed that these effects were largely
predicated on larger-scale dynamics (Esterman, 2013). That is, the precise relationship between
DAN/DMN activity and task performance on the scale of ~1.6 seconds was, in part, a function of
the participant’s attentional state as indexed by their performance over a much broader temporal
window spanning ~16 seconds. Another study found that MVPA classifiers could predict
behavioral accuracy for a SART-like task on current trials using the voxel-wise activation data
gathered between 6 and 12 seconds prior (deBettencourt, 2015). Further work in this vein
confirmed that, when focusing on trial-level DMN/DAN activity, univariate analysis could not
distinguish between attentional states while MVPA could (Rosenberg, 2015). In the 10 second
regime, it was found that DMN activity alone was insufficient to predict lapsed attention during
CPT performance whereas on the scale of 40 seconds robust within-network connectivity and
between-network anticorrelations were observed (Kucyi, 2018).

Collectively, these results suggest that the notion of a fine-scale brain-based prediction
of lapses in sustained attention may hold promise. However, they are all somewhat tangent to
the question. For example: the behavioral results indicate that attention may fluctuate on the
order of seconds, so a tentative brain-based metric of these fluctuations will require similar
granularity. Another complication is the prominence held by so-called canonical networks like
the DAN and DMN. Recent work has shown that these canonical networks may not offer the
best description of what functional architecture underlies cognitive processes such as attention
(Rosenberg, 2016). By narrowing the scope of their investigation to activity observed in these
canonical networks, the prior work may be missing critical information required for brain-based
predictions. Finally, although univariate and MVP analyses have been historically successful
means of translating functional magnetic resonance imaging (fMRI) data into insights on the
nature of cognition, these approaches are based on the interpretation of brain activity. It has
been shown that sustained attention performance is better-characterized by analyses of
functional connectivity than regional activation (Rosenberg, 2016).



Functional connectivity is a description of the statistical relationships among discrete
brain regions’ activity. For example, two regions that are spatially distant but which consistently
activate in tandem are considered likely to be involved in the same sorts of processes and so
exhibit a connection in function despite their physical separation. Functional connectivity has
been applied in conjunction with connectome-based predictive modeling (CPM), which is a
data-driven method of asking whether edges in a set of brain activity graphs are meaningfully
related to a corresponding set of outcomes (Shen, 2017). In this application, functional
connectivity measurements provide the graphs while some operationalization of success or
failure at preserving sustained attention provides the outcomes.

Functional connectivity and CPM are therefore united to ask whether patterns in a
brain’s organization reliability emerge together with particular sustained attention outcomes.
This line of work first showed that an individual’s general ability to sustain attention is
predictable on the basis of their brain’s resting-state functional architecture (Rosenberg, 2016),
and a novel sustained attention connectome-predictive model (saCPM) was derived. Later
elaboration found that fluctuations in attentional state as indexed by changes in participants’
task performance were predictable on the basis of fluctuations in those participants’ saCPM
network strengths (Rosenberg, 2020). This suggests functional connectivity can be applied to
predict not only a participant’s sustained attention performance on average, but also variation
about that mean associated with changes in the brain’s network organization. These findings
encourage us to apply cutting-edge functional connectivity methods in pursuing a deeper
understanding of sustained attention’s neural bases.

However, there is an incongruence between the time scale on which fluctuations in
sustained attention have been predicted using the CPM approach and the previously-outlined
time scale on which sustained attention fluctuations have been observed in behavioral
experiments. The highest-frequency fluctuations investigated during task performance in prior
work have been on the order of minutes, whereas the behavioral literature suggests these
fluctuations may occur on the order of seconds, if not faster. Therefore, another goal of the
present work is pushing the limits of these brain-based predictions and asking whether the
functional connectivity/CPM approach may be applied profitably to predicting sustained attention
performance on the scale of seconds.

To quantify functional connectivity with this level of temporal granularity, we apply the
measurement of connectome cofluctuation described in (Esfahlani, 2020). These cofluctuation
measurements provide a way to profile the functional connectome at a given instant.
Specifically, by quantifying the extent to which each brain region’s activity is coordinated with
each other region’s activity at a given moment, we develop a graph representation of the entire
brain wherein its parcellated regions form the nodes and functional connectivity among them
form its edges. We then use these fine-scale graphs in the CPM framework to develop
predictive models of the transient neural precursors to lapses in sustained attention. Prior work
has identified magnitudinous episodes of cofluctuation as a key drivers of functional connectivity
(Esfahlani, 2020). That is, high-amplitude bursts of cofluctuation have been shown
disproportionately predictive of the functional connectome’s structure. Other work has shown
that patterns of cofluctuation may associate with transitions between brain states (Song, 2022).
Cofluctuations among brain regions involved in connectome-based models of sustained
attention, measured at critical moments, may therefore offer information about transitions into or



out from attentive states, i.e. of fluctuations and therefore of lapses in sustained attention, prior
to target trials.

We revisit the behavioral prediction of lapses in sustained attention as described by prior
research, ask whether those findings extend beyond their original context, and apply our novel
cofluctuation-based CPM strategy to a large fMRI dataset. Furthermore, we ask how each of
these sources of information—brain and behavior—contribute to the prediction of upcoming
lapses. In many cases, such as on the interstate, it would be ideal to have information about the
likelihood of a lapse before its consequences are behaviorally evident. This research broadly
seeks to advance that ideal.

Methods

Dataset and Participants
We analyzed data from the publicly available Adolescent Brain Cognitive Development (ABCD)
baseline year release, collected when participants were 9-10 years old. The ABCD Study
involves recruitment and longitudinal measurement of 11,875 participants’ behavior, brain
structure, and brain function with MRI throughout their adolescence, with coordinated data
acquisition protocols across 21 collection sites in the United States.

Our analysis specifically focused on the behavioral and fMRI data collected during task
performance. We analyzed a subset of ABCD Study participants described in previous work
(Kardan, 2021). This subset excludes participants whose task data couldn’t be time-aligned with
their scan data due to uncertainties in measurement as well as participants whose scans were
missing entirely or taken with Philips scanners (due to a systematic data preprocessing issue),
reducing our sample to 9155. We performed visual quality control on these participants’ MRI
data and applied an additional frame displacement exclusion threshold of mean < 0.2mm/max <
2mm, after which 1548 participants remained whose scan data were of reasonable quality.
Finally, we excluded one of the data collection sites which was reduced to three usable
participants after the previous exclusions. The final sample was 1545 participants (851 female)
ranging from 9 to 11 years old (µ = 10.03) collected at 18 sites.

Behavioral Task
The ABCD Study protocol includes fMRI during three cognitive tasks: a stop-signal task, a
monetary incentive delay task, and an emotional n-back task. In lieu of a direct sustained
attention task, we analyzed the data collected during performance of the emotional n-back
(EN-back) task. The EN-back task involves two difficulty conditions (0-back and 2-back)
intended to differentially load working memory.

In 0-back blocks, participants are presented first with a target image for 2.5 seconds,
then with a stream of 10 category-matched images, each shown for 2 seconds with an
inter-stimulus interval of 1 additional second. Participants are instructed to respond to every
image with a button press, submitting a “match” response when the stream image matches the
target and a “no match” response otherwise.



In 2-back blocks, participants are presented with a similar stream of images, but are
tasked with responding “match” when the current image matches the one presented two images
ago and “no match” otherwise. The images themselves consist of either face or scene stimuli,
with the face stimuli being further subdivided into faces depicting positive, negative, or neutral
emotional states.



Over the course of one scan session, a participant completed 16 blocks evenly divided
between 0-back and 2-back tasks and assigned in a random order. We take erroneous
responses to target trials as indicating lapses in sustained attention.

Predicting Lapses from Pre-trial Reaction Times
RT data were collected for each EN-back task trial. Trends in RT such as variability or
short-term slowing have been shown predictive of upcoming sustained attention lapses in
previous work (Esterman, 2013; deBettencourt, 2018). To ask whether RT information predicts
upcoming lapses in the 0-back and 2-back tasks, we analyzed RT data for the three trials
preceding each EN-back target trial. First, we omitted a preceding trial’s RT if no response was
given, no RT was collected, or if that preceding trial happened to contain another target. Target
trials for which more than one preceding trial was omitted in this manner were then themselves
omitted. The remaining target trials were split according to response accuracy, and a mean
pre-trial RT was separately calculated by averaging RTs on the three trials prior to these targets.

In a separate analysis, RTs from only the single trials directly preceding target trials were
z-scored within-participants and used to fit general linear mixed-effects models (GLMM)
predicting lapses. These models apply the simple formula Trial Accuracy ~ Previous Trial RT +
(1|Participant), and we apply mixed-effects modeling in part to account for the well-documented
extent of individual variation in sustained attention and its propensity to fail (Welhaf, 2020;
Broadbent, 1982; Unsworth, 2010; Vaurio, 2009).



MRI Data and Preprocessing
ABCD Study baseline year data (ABCD Release 2.0.1) were acquired from the National
Institutes of Mental Health data archive. Reanalysis of these de-identified data was approved by
the University of Chicago’s Institutional Review Board. Prior to their release, MRI data were
subjected to initial preprocessing steps (Hagler, 2019), including motion and distortion
correction, tissue segmentation and co-registration, normalization to the MNI152 nonlinear 6th
generation template, and the regression of 36 nuisance regressors including global signal,
mean signal from cerebro-spinal fluid, mean white matter signal, and head motion (Power,
2012). Data were bandpass filtered (0.008Hz-0.12Hz) and voxelwise time courses were
averaged into 268 parcels as defined by the Shen functional atlas (Shen, 2013).

Cofluctuation
By taking the product of two given parcels’ averaged BOLD measurements, we obtain a signed
representation of their activity’s coordination. For example, if two regions both exhibit relatively
low activity during one pretrial window then their BOLD measurements will both be negative,
which naturally gives a positive result when multiplied. On the other hand, if one of these
regions is relatively active while the other is not, then the product of their signal values will be
negative. In both cases, the product’s sign describes whether our regions are generally
synchronized while its magnitude indicates the extent to which that’s true, and we apply this
method to every combination of pairs of brain regions. The result is a graph which describes the
state of a participant’s functional connectome (i.e. the presence or absence of connectivity
between each parceled brain region) at a given instant. We derive cofluctuation from
standardized BOLD signal measurements associated with brain activity underway over the
course of three TRs (2400ms) preceding target trials during EN-back task, though in practice
these are the fifth through seventh TRs following target presentation on account of the
hemodynamic delay .

Predicting Lapses from Pre-trial Cofluctuation

Canonical Attention Networks
We tested whether pre-trial functional connectivity as indexed by cofluctuation within canonical
networks associated with attentive processes such as the DMN and DAN could be used to
predict EN-back target trial outcomes, which we take to proxy lapses in sustained attention.
These networks are traditionally associated with off- and on-task performance, respectively.
However, recent work has shown this relationship may not be so straightforward (Rosenberg,
2015; Esterman, 2013), and to our knowledge their relevance on fine time scales has yet to be
tested at all. We measured each of these networks’ strengths via cofluctuations preceding target
trials, z-scored these measurements within-participants, and applied those standardized scores
to fit separate GLMMs predicting lapses for each canonical attention network with the formula
Accuracy ~ DAN or DMN Activity + (1|Participant).



Predefined Connectome-based Predictive Models
We also tested whether two predefined connectome-based predictive models could be used to
predict target trial outcomes on the basis of pretrial cofluctuation. These networks—the
previously-described saCPM and its conceptual sibling in working memory (the wmCPM)—have
been shown to predict cognitive abilities relevant to the EN-back task such as sustained
attention (Rosenberg, 2016) and working memory (Avery, 2020), albeit on larger time scales. As
above, we applied the within-participant z-scored cofluctuation observed preceding target trials
in these networks to fit separate GLMMs predicting lapses with the formula Accuracy ~ saCPM
or wmCPM Activity + (1|Participant)

Training and Testing a Lapse Network
To examine whether the cofluctuation graphs described above were related with performance
on their associated upcoming trials in a data-driven manner, we calculated the correlation
between each graph’s edge (indicative of momentary functional connectivity) and its trial’s
outcome. Under the umbrella of a split-half cross-validation strategy, in a randomly assigned
model-training half of participants, edges correlated with outcomes (p < 0.01) were partitioned
according to whether their association was positive or negative. This process allows us to obtain
task-positive and task-negative networks. Cofluctuation measured in those task-negative
networks may then be subtracted from the cofluctuation measured in the task-positive networks
to give a summary metric of the whole network’s relative activation.

In addition to the authentic lapse network model, we use the same model-training data to
generate a null network model for each cross-validation iteration. First, we shuffle the task
outcomes associated with our pretrial cofluctuation measurements to preserve the structure of
our functional connectivity data but remove its actual relationship with lapses in sustained
attention. Then, as above, we examine the correlation of edges in these graphs with the
randomized outcomes. By chance, some of these edges will survive feature selection, but we
know a priori that this relationship is spurious. These spurious edges collectively form a null
network model, also comprising task-positive and task-negative subgraphs, against which our
novel lapse network may be compared.

In a randomly held-out half of participants, both lapse and null network strengths were
gauged, z-scored within-participants, then applied to fit separate GLMMs relating EN-back
target trial accuracy and network strength with the formula Accuracy ~ Lapse or Null Network
Activity + (1|Participant). This procedure is repeated over 50 randomized split-halves of our
participants. If there is a statistically significant difference between the resulting distributions of
log-odds coefficients made by the lapse network and null network GLMMs, then we have reason
to believe the former are not a result of chance associations between cofluctuation and
sustained attention lapse.

We generated separate GLMMs describing previous-trial RT, DAN, DMN, saCPM,
wmCPM, the novel attention-lapse connectome-based predictive model (alCPM), and the null
network model’s fits to target trial outcomes in 50 random split-halves of our 1545 participants.
From this generation we obtain 50 GLMMs for each feature, each describing what relationship
exists between a given feature and sustained attention lapses in the held-out test set of
participants. The GLMMs are summarized by β coefficients assigned to their features, and the



extent to which these summary β distributions differ from a zero-mean normal distribution is
calculated in all cases save the alCPM/null models, for which the above-described
nonparametric significance test was performed instead.

Results

Predicting lapses in sustained attention with behavioral measurements

Pretrial RT predicts lapses in sustained attention
To ask whether this developmental population’s pretrial RT predicts upcoming lapses during 0-
and 2-back task performance, we examined RT data collected during the EN-back task.

As shown in figure 3, for 0-back task blocks, we found a systematic difference in the RTs
preceding correct and incorrect responses to targets. Combined, the three preceding responses
were generally faster before a correct response than before an incorrect response (785ms +/-
270ms pre-correct & 871ms +/- 321ms pre-incorrect; t = -24.8697 p < 10-134). This pattern is
preserved when examining each individual trial among these preceding three. That is, for
0-back task blocks, RTs are consistently faster before correct responses than incorrect
responses even when they are only examined three trials pre-target (789ms +/- 272 ms
pre-correct vs. 870ms +/- 324ms pre-incorrect; t = -12.988, p < 10-36), two trials pre-target
(780ms +/- 268ms pre-correct vs. 881ms +/- 321ms; t = -17.0479, p < 10-63), and one trial
pre-target (784ms +/- 269ms pre-correct vs. 861ms +/- 316ms pre-incorrect; t = -13.0700, p <
0.01x10-37).



Conversely, as figure 4 shows, for 2-back blocks we found no systematic difference in the three
preceding trials’ RTs, either combined or at any individual trial. Mean RT did not differ 3 trials
before correct vs. incorrect target trials (975ms +/- 338ms vs. 970ms +/- 339ms; t = 0.0579, p =
0.953). RT also did not differ 2 trials before correct vs. incorrect targets (961ms +/- 327ms vs.
952ms +/- 334 ms; t = 1.725, p = 0.085) or 1 trial before correct vs. incorrect targets (986ms +/-
320ms vs. 986ms +/- 325ms; t = 1.005, p = 0.315). Combining all three preceding trials’ RTs, the
pre-correct mean was 974ms +/- 329ms and the pre-incorrect mean was 969ms +/- 334ms (t =
1.6151, p = 0.106).

Although RTs before correct vs. incorrect target trials systematically differed in 0-back blocks,
we observed substantial mean RT differences between individuals. To account for this individual
variability, and in accordance with prior work emphasizing the level of individual variation in
these measures, we reanalyzed RT data with mixed-effects models incorporating pre-target RT
as a fixed effect and participant as a random effect predicting target trial outcomes. When we
model target trial outcomes as a function of immediately-preceding RT and include participants
as a random effect, we find that RT contributes significant predictive power on similar orders of
magnitude in both cases (0-back RT mean GLMM β: -0.051 +/- 0.018, p < 10-24 vs. 2-back
GLMM mean RT β: -0.049 +/- 0.019, p < 10-23). To accommodate later comparisons among
identified predictors of sustained attention lapses, this GLMM approach was applied within the
context of our analysis-wide split-half cross validation, repeated for 50 iterations.



Predicting lapses in sustained attention with cofluctuation

To ask whether high-frequency changes in brain activity observed with fMRI predicted upcoming
lapses in sustained attention, we analyzed cofluctuation in the 2.4s leading up to target trial
presentation. This is conceptually most similar to immediately-preceding RT behavior analysis
given the EN-back task’s 3s trial duration.

Canonical networks associated with attention and mind-wandering are inconsistent
predictors of lapses in sustained attention
First we investigated the relationship between cofluctuations within canonical attention networks
and upcoming lapses. Specifically, we tested the extent to which activity in DAN and DMN could
contribute to predicting target trial outcomes. We applied the measured cofluctuations observed
in these canonical networks during 2.4s preceding target trials to model those trials’ outcomes in
separate GLMMs with participants as a random effect. Repeating this process across 50
split-halves of our sample, we derive a distribution of β coefficients, each of which summarizes a
given feature’s predictive power in that iteration’s model. We find that only DMN activity makes
significant contributions to lapse prediction in 0-back blocks (DMN mean β = 0.0306 +/- 0.02; p
< 10-14), while the distribution of DAN βs is statistically inseparable from a zero-mean distribution
(DAN mean β = 0.0051 +/- 0.02, p = 0.1). For 2-back blocks, we find that both networks make
significant contributions to lapse prediction (DMN mean β = 0.0158 +/- 0.02, p < 10-7; DAN mean
β = 0.0239 +/- 0.02, p < 10-11).



Predefined connectome models of sustained attention and working memory are
inconsistent predictors of lapses in sustained attention
Next we applied predefined network models of cognition to ask whether activity in the
previously-described saCPM and wmCPM held information relevant for the prediction of target
trial outcomes. As above, we modeled those trial outcomes as a function of the cofluctuations
observed in these predefined networks during 2.4s preceding target trials with a random
intercept for each unique participant, and repeated this process over 50 random split-halves. We
find that both networks make significant and roughly similarly magnitudious contributions to
lapse prediction in 0-back blocks (saCPM mean β = 0.0413 +/- 0.02, p < 10-19; wmCPM mean β
= 0.0449 +/- 0.02, p < 10-20). However, for 2-back blocks, only the saCPM β distribution
approaches a significant difference from zero (saCPM mean β = 0.005 +/- 0.02, p < 0.05;
wmCPM mean β = -0.007 +/- 0.0251, p = 0.13).



Attention-lapse network models predict lapses in sustained attention
We built a novel attention-lapse connectome-based predictive model (alCPM) from half of our
participants’ data and applied it to predicting target trial outcomes on the basis of cofluctuations
observed in the remaining half prior to EN-back target trials for 50 random split-half iterations.
We additionally derived and applied null network models built to predict upcoming trial outcomes
which had been shuffled within-subject to compare our alCPMs against in contrast with the
canonical and predefined network analyses, for which their predictive model β distributions are
tested against the null hypothesis of a zero-mean normal distribution (i.e. no consistent, general
effect of predictor on trial outcomes). The alCPM and null models were trained and tested
within-block, meaning that a 0-back alCPM does not necessarily consist of the same edges as a
2-back alCPM.

For 0-back blocks we find alCPM models significantly predict upcoming lapses (alCPM
mean β: 0.0745 +/- 0.02, null model mean β: -0.005 +/- 0.03; nonparametric p < 10-13). For
2-back blocks we also find the alCPM significantly predicts lapses in sustained attention (alCPM
mean β: 0.0581 +/- 0.03, null model mean β: -0.006 +/- 0.03; nonparametric p < 10-20)



Comparing predictors of lapses in sustained attention

As shown in figure 9, we observe the strongest contributions to lapse prediction from the novel
alCPM and the immediately-preceding trial RT. We fit models combining these data in 50
random split-halves, reasoning that these feature coefficient distributions could indicate
independent sources of information possibly jointly contributing to prediction.



We then compared the difference in deviance between each predictive model and an empty
model. This “empty model” has the formula Accuracy ~ (1|Participant), and describes a case
where we know there is zero contribution of fixed effects to the outcome variable. This
represents the worst-possible fit available under the mixed-effects paradigm (as our random
effect of participants is preserved); distance from this empty model as quantified by the
difference between empty model deviance and predictive model deviance is therefore a metric
by which predictive models may be compared. That is, a larger difference between some given
predictive model and the empty model, which we know to be maximally poor a priori, indicates a
better fit between the predictive model’s predictor and outcome. These differences in deviance
may then be averaged over split-half iterations to summarize the relative predictive power of
each model tested across our cross-validation scheme.

As shown in figure 10, the highest-quality models incorporate information from both alCPM
cofluctuations and single-preceding-trial RT. Additionally, when evaluating single-predictor
statistical models of upcoming lapses, alCPM models consistently outperform the alternatives,
including canonical network models, predefined CPMs, and behavior-only RT models. It is worth
noting that this superiority is preserved between task difficulty contexts despite the clear
reorganization in predictive power exhibited by the alternative models between 0-back and
2-back lapse models.

Discussion

In this work we have identified some predictors of lapses in sustained attention. Specifically, we
applied various models of behavioral and neural predictors of sustained attention lapses
described in previous work to novel task, population, and temporal contexts. Additionally, we



developed a new attention-lapse connectome-based predictive model (alCPM) shown to
capture meaningful variance associated with upcoming EN-back target trial performance on
granular timescales which previously-described models either do not fully notice or miss entirely.

Behavioral Predictors
We found that RT confers predictive power on statistical models of lapsing sustained attention in
the low-memory-load task condition; however, the direction of association between RT and
lapses is contrary to the expectation furnished by prior research (Robertson, 2001). We found
that, for the EN-back task’s 0-back difficulty condition, faster sample mean pre-target RT on the
scale of 10s prior to target trials in fact tended to precede correct responses. This directly
contradicts findings from other sustained attention tasks such as the SART or gradCPT, wherein
faster pre-target RT tends to precede incorrect responses (Robertson, 2001; deBettencourt,
2018). Additionally, we found no association between sample-wide mean pre-trial RT on the 10s
scale and task performance for the high-memory-load task condition. This finding has several
possible interpretations which could motivate future work. For example, the original SART and
gradCPT research was conducted on adults whereas the ABCD Study participants are still
maturing. The ABCD Study’s longitudinal character allows researchers to track a consistent
population over time, and possibly identify whether the relationship observed here between
pretrial RT and lapses in sustained attention converges to the expectation over the course of
development. Another question involves task differences. The ABCD EN-back task features
relatively many breaks, few trials per block, and attention-orienting instruction screens and
inter-stimulus intervals. This is quite unlike SARTs and gradCPTs, which are designed to
demand more consistent performance. Investigating whether task characteristics such as
reorienting stimuli or frequent breaks influence the attentional dynamics underlying task
performance could shed light on the occasionally-inconsistent results reported in sustained
attention literature.

We applied general linear mixed-effects modeling to look for a relationship between RTs
gathered during trials immediately preceding target trials and those target trials’ outcomes,
assuming the individual variation associated with sustained attention performance may be
complicating our analysis while also restricting our time interval of interest to better resemble our
connectivity analyses. From these GLMMs we observed that there is indeed sufficient
information contained in these single preceding trial RTs to make statistical predictions about the
outcomes of their subsequent trials. This may be taken as evidence in support of RT variability
as a superior behavioral predictor than mean RT in the moments leading up to lapses in
sustained attention (Esterman, 2013). That is, despite the statistical inseparability of
sample-wide mean RTs preceding correct vs. incorrect responses to target trials for 2-back
blocks, the mixed-effects approach demonstrated that there was still some relevant signal on
the same order as that present in 0-back blocks for single pretrial RTs predicting lapses in
sustained attention. Although our modeling approach has offered evidence that some
information consistently relating single pretrial RTs to lapses exists, future work should
disambiguate its source and clarify the relationship between both slowing and variability in RT
and lapses in sustained attention. This matter is naturally complicated by the well-documented
extent of individual variation in all three constructs, as well as possible associations among



them such as the observation that some high-variability response periods may be driven by
particularly slow responding (Unsworth, 2021).

Brain Predictors
We applied a variety of established network models associated with cognitive processes
putatively involved in the ABCD EN-back task to predicting task outcomes on the basis of brain
activity in those networks, indexed via functional cofluctuation, during the moments leading up
to target trials.

Canonical Networks
Applying models of canonical networks such as the DAN and DMN, which have been previously
implicated in attentive processes such as effortful attention (Vossel, 2013) and mind-wandering
(Kucyi, 2018) respectively, we find that only DMN activity predicts upcoming lapses in 0-back
blocks whereas both networks hold significant predictive power for upcoming lapses in 2-back
blocks, with the DAN exhibiting numerically higher average contributions to these statistical
predictions. The 0-back result roughly coheres with a traditional view of the DAN’s involvement
in effortful tasks and the DMN’s involvement in practiced, less-difficult processes; however, the
2-back results challenge conceptions of these networks as strictly task-positive or task-negative.
That is, the average predictive model incorporating information about activity in both networks
describes a positive relationship between network activation and task performance. If the DAN
and DMN were strictly oppositional, this should not be possible. As such, this finding contributes
to our evolving understanding of how these canonical networks are involved in task
performance and attentive processes.

Predefined CPMs
We applied predefined connectome-based predictive models—the saCPM and
wmCPM—previously shown predictive of individual differences in cognitive performance on
sustained attention (Rosenberg, 2016) and working memory tasks (Avery, 2020). Additionally,
fluctuations within individual saCPMs have been shown to relate with fluctuations in sustained
attention on a variety of time scales (Rosenberg, 2020). Extending that effort, this work
continues to explore the limits of these models’ predictive power by applying them on the finest
scales yet. We found that both saCPM and wmCPM activity are similarly predictive of lapses in
sustained attention for 0-back blocks; however, only the saCPM extends that power into 2-back
blocks, and does so with relative weakness. This finding is somewhat surprising, as the wmCPM
should theoretically be well-attuned to a task which engages working memory as extensively as
the EN-back 2-back blocks do. Although the task used to develop wmCPM and the EN-back
task are quite similar, one critical difference between their contexts is the developmental
population studied here. Future work, much in the same vein as the behavioral predictors,
should ask whether the inconsistent findings reported here with regard to previously-established
models are a consequence of developmental processes. Additionally, the relative relevance
saCPM continued to hold for the 2-back task predictions may indicate an underlying cognitive
priority; that is, future work could ask whether there is a directionality in the relationship between
working memory and sustained attention.



Novel attention-lapse CPMs
In addition to the canonical and predefined network models, we applied a data-driven method of
deriving new CPMs in to develop models better-predictive of the second-scale relationship
between brain activity and upcoming lapses in sustained attention. We found that cofluctuation
activity in the resulting attention-lapse connectome predictive models (alCPMs) prior to the
presentation of target trials best-predicted those trials’ outcomes. In other words, of all the
network models tested, information contained in the alCPMs was most relevant to the prediction
of lapses in sustained attention. This remained the case for both 0-back and 2-back alCPMs.
Future work could investigate whether any commonalities exist between alCPMs derived from
similar tasks with differential load conditioning to ask if these fine-scale lapse precursors are
task-specific (as the prior network model results suggest) or share an underlying mechanism.
For example, we could attempt applying the 0-back alCPM to predicting upcoming 2-back block
lapses and vice versa. Another interesting question here deals with the topic of individual
differences; namely, one alternative to the present approach which addresses the individual
variation literature could involve developing personal alCPMs and then asking whether and the
extent to which they generalize—a step impossible for the present data due to their relative
poverty of target trials. The slightly larger standard deviations associated with alCPM
coefficients across cross-validation iterations as compared with other network model coefficients
may indicate that overall alCPM model performance is more affected by the vicissitudes of
randomized half-splitting than its siblings, which in turn may point to a larger role for individual
variation in alCPM activity’s relationship with momentarily lapsing attention than that for e.g.
saCPM activity. Another future direction could continue pushing the temporal boundaries of
lapse prediction. The present decision to average cofluctuation over 2.4 seconds preceding
target trials reflects a conservative preference for higher signal-to-noise ratio at the expense of
finer precision. In principle, there is no reason the same basic approach could not be applied to
data on scales as small as a single fMRI frame; indeed, the fact that novel alCPMs offered a
more robust prediction of upcoming lapses on the basis of preceding brain activity than
comparable models trained on much larger time intervals suggests that the mechanisms
underlying lapses in sustained attention may involve processes underway at a variety of
frequencies. As foreshadowed by our final model comparison, it is likely that the best predictions
will result from data combined across many time scales and sources.

Conclusion
The present study’s limitations offer further directions for elaboration in future work. Some
obvious candidates include its population and specific features of the EN-back task.
Opportunities to follow up on the present findings in longitudinal research have been discussed
and broadly encourage us to ask whether the discrepancies with prior work reported here may
be a consequence of systematic differences resulting from developmental processes. More
accurately, without that follow-up we can not safely eliminate the confounding influence of
participant age on our findings and therefore their generalizability is unclear. Another potential
confound is the question of whether our novel alCPM is measuring intrinsic or task-dependent
attentional dynamics. Although the EN-back task provides a relatively more natural scenario
than SART or gradCPT alternatives, that naturalness involves a variety of attentionally relevant
events such as abrupt stimulus onsets and inter-block task breaks. Future work could revisit



these classic sustained attention tasks and ask whether lapses in those more-dedicated
contexts may be predicted using the analytic approach outlined in the present work. That being
said, we may also argue that the rapid reorientation of attention within task blocks may stave off
lower-frequency attentional dynamics and allows us to better-investigate high-frequency
predictors of lapses in sustained attention.

Despite these minor inconveniences, we have made some contributions to the ongoing program
of characterizing sustained attention and its fluctuations. Returning to our initial motivation: if we
would like the ability to predict lapses before their behavioral consequences manifest, an
important first step would consist of demonstrating whether and the temporal regimes at which
such lapses could be predicted on the basis of brain activity. Modifying the functional
connectivity/connectome-based predictive modeling approach by incorporating cofluctuation for
traction on fine time scales, we have shown that a novel attention-lapse network model can
make more meaningful contributions to the statistical prediction of upcoming lapses than
canonical and predefined network models of task-relevant cognitive functions such as sustained
attention and working memory. These novel alCPMs provide predictive power in this task and
population context greater than even its most successful siblings in behavior, and is an essential
part of the combined brain/behavior models which best-account for imminent, momentary
lapses in sustained attention.

In addition to many directions outlined above, other future work could examine whether
and how the network structure and anatomy of alCPMs may offer theoretical insight into the
functional mechanisms underlying lapses. Still further work could develop our motivating ideal,
replicating the present analyses with more-portable neuroimaging methods such as functional
near-infrared spectroscopy to ask whether these neural antecedents observed in-lab are
general to the world at large. This last direction may be of particular importance, as MRI
scanners are simply not a practical means of sustaining progress to the realization of
brain-based forecasting implemented in the daily life activities during which we would most want
to predict lapses in sustained attention.
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