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Abstract 

 

Many fundamental questions in the molecular evolution of proteins—the roles of 

contingency and determinism in evolutionary processes, the effect of epistatic substitutions in 

structuring available paths, and the characteristics of trajectories of functional innovation—

depend on the distribution of functional proteins in sequence space and knowledge of how 

evolution proceeded across this space. However, empirical insight into the historical sequence 

spaces over which proteins evolved has only recently become accessible with the development of 

model systems in protein evolution and the advent of high-throughput deep mutational scanning 

approaches. In my thesis work, I combined two recently developed experimental tools: ancestral 

protein reconstruction – a phylogenetic technique for inferring the sequences of ancient proteins 

and experimentally charting their evolutionary history – and deep mutational scanning – an 

experimental strategy for functionally characterizing large libraries of protein variants. By 

combining ancestral protein reconstruction and deep mutational scanning for the first time, I 

explored the mechanistic basis for and evolutionary significance of epistasis, contingency, and 

evolvability in protein functional evolution. This work reveals how chance factors play a 

dominant role in the outcomes realized in evolution, how interactions between protein residues 

enhance the ability of evolution to reach protein sequences with novel functional properties, how 

the windows of mutational accessibility fluctuate over evolutionary time, and the genetic and 

biophysical features that give rise to these molecular evolutionary phenomena.  
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Chapter 1 

Introduction 

 

1.1 Sequence space and protein evolution 

The diversity of modern protein sequences, folds, and functions was generated by a long 

and convoluted evolutionary process. Through cycles of mutation, drift, and selection, proteins 

have emerged with remarkable functional capabilities and beautiful three-dimensional structures. 

However, the canvas on which this process unfolds – the map between protein sequence, 

structure, and function (1) – remains elusive. Somewhere out there is a complete map, that 

annotates every possible polypeptide sequence with its physical and biochemical properties (2). 

Unfortunately, there are not enough atoms in the universe with which to store this information, 

and we, as biologists, will never be able to explore more than an infinitesimal fraction of this 

space. Yet this ‘sequence space’ and its functional annotation underlies much that we do as 

biologists – it contains the information that would allow us to predict the consequences of 

missense mutations for human health (3); it contains the information that would allow us to build 

new proteins not yet discovered in terrestrial evolution, for example, to combat pathogens (4) or 

catalyze novel chemistries (5); and it contains the information that would allow us to predict 

future (6) and rationalize historical (7) evolutionary trajectories. 

Many sub-disciplines of biology traverse sequence space in their routine study. Much of 

modern biochemistry relies on the characterization of mutations to proteins of interest, taking 

short, pointed forays into sequence space. Protein design efforts jump into uncharted waters of 

sequence space, to identify protein folds and functions that evolution has not yet come close to 

exploring (8). And studies of protein engineering and evolution trace long pathways through 
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sequence space (7, 9). Although many disciplines work within its backdrop, until recently, we 

have lacked the methods to comprehensively map the sequence-function landscape in an efficient 

manner. 

  

1.2 Deep mutational scanning 

 The advent of high-throughput DNA sequencing has opened up new experimental 

methods for charting protein sequence-function landscapes. These ‘deep mutational scans’ (10) 

characterize function within large protein variant libraries via high-throughput-sequencing-based 

readouts. Broadly, a deep mutational scan subjects a rationally designed library of protein 

mutants to a selection or screen in which the frequency of each genotype in the library changes 

in proportion to some function of interest; by using deep sequencing to characterize each 

genotype’s frequency before and after the selection, a measure of the function of interest can be 

ascribed to each genotype in the library (11, 12). This method is therefore different from a more 

traditional library selection, because instead of just randomly selecting a subset of the most 

active library genotypes, it assigns scores to all genotypes in the library, enabling a 

comprehensive annotation of the sequence-function landscape within some limited mutational 

radius. 

These technologies have allowed huge libraries of protein variants to be characterized in 

parallel, enabling the rapid and efficient annotation of segments of sequence space larger than 

could be done previously. By constructing libraries containing all single mutations across the 

length of a protein sequence, the site-specific amino acid preferences of a protein can be 

determined (13-17), revealing how protein architecture impacts site-specific mutational 

tolerance. By comparing single-mutant libraries across protein homologs, researchers have 
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investigated how amino acid preferences change over evolutionary time (18-20). By 

characterizing libraries containing all single and double mutants across the length of a protein, 

the prevalence and characteristics of epistasis in the local sequence neighborhood of proteins can 

be determined (21). And by assaying higher-order combinations of mutants, combinatorially 

complete subsets of sequence space can be fully annotated (22-26), enabling exploration into 

some of the deeper factors that contribute to the structure of sequence-function landscapes. 

Although these designs still only scratch the surface of the expansive space of possible 

sequences, they enable new insights into its properties and the factors that contribute to its 

structure. 

 

1.3 Epistasis 

 Epistasis describes the non-additivity of mutational effects – for example, when a double 

mutant behaves differently than would be expected from characterization of either of its 

constituent single mutations alone. Epistasis is a central phenomenon influencing the structure of 

the protein sequence-function landscape (27) – if every mutation had the exact same functional 

effect across every possible protein background, what a simple world we would live in! Because 

of epistasis, evolutionary trajectories exhibit historical contingency, meaning that the mutations 

accessible to an evolving protein depend intimately on the mutations that occurred in its prior 

history (7). Because of epistasis, even proteins that fulfill the same function in all living 

organisms have not yet fully explored the constellation of genotypes that could possibly encode 

this function, indicating that the ‘protein universe’ is still expanding in its search through 

sequence space (28). 
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There remains disagreement, however, on the pervasiveness of epistasis in protein 

evolution: computational simulations (29, 30) and comparative sequence analysis (28, 31, 32) 

suggest that epistasis causes rampant turnover in site-specific mutational tolerance over long-

term protein evolution, yet experimental studies have not always borne this result out (18, 33-

35). Furthermore, there is not yet a consensus on the mechanisms by which epistatic interactions 

emerge, and how different types of epistasis might influence evolutionary processes. The 

literature on epistasis in protein evolution is complex and deserves a more detailed elaboration 

than can be done in this Introduction: Chapter 2 is devoted toward reviewing this literature in 

detail and identifying the central questions about epistasis in protein evolution that remain. 

 

1.4 Chance and determinism 

 The degree to which the outcomes of evolution are deterministic or subject to chance is a 

longstanding question in evolutionary biology (36-43). If evolution is deterministic, then 

replicate evolutionary trajectories under the same conditions will reach the same outcome; 

however, if chance factors are at play, different outcomes emerge even under identical 

conditions. This question cannot typically be addressed by looking at natural evolution, which 

has only proceeded once – even when investigating convergent evolution, the starting points of 

each trajectory might subtly differ, and the selective conditions might not be identical. Instead, 

biologists have turned to laboratory evolution experiments to address this question (44): by 

evolving a protein or a population many times in parallel under the same selection pressure, the 

degree to which identical phenotypes and genotypes emerge reveals the conditions under which 

evolution behaves deterministically or idiosyncratically. 
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From these types of experimental evolution studies, some aspects of evolution do indeed 

seem deterministic: for example, selection will deterministically drive populations toward higher 

fitness – even if the underlying sequence changes that drive this adaptation might differ among 

populations (45). Recent studies that evolve a protein toward some defined function many times 

in parallel suggest that protein evolution can be deterministic at the level of function, but the 

specific genetic and biophysical changes that occur in each population can differ due to chance: 

either stochasticity (randomness), in which mutations simply happen to reach fixation in a given 

population due to chance (43), or contingency, in which early chance events dictate which steps 

are taken at later branch points (40, 41, 43). 

 The degree to which chance influences the outcomes of protein evolution ultimately 

depends on the density and connectivity between genotypes with some function in sequence 

space. If functional networks – the mutationally connected network of genotypes sharing some 

common function (1, 46) – are sparsely connected, then there are few paths that can be taken 

through sequence space under selection for some function, so replicate trajectories will tend to 

follow the same path toward the same functional optimum under identical conditions. On the 

other hand, if many routes through a densely-connected functional network are available, 

different outcomes will occur due to stochastic outcomes at each branch point along a trajectory, 

compounded by the dependence of later steps on previous ones. 

 Though the characteristics of functional networks have been pondered for years, only 

with the advent of deep mutational scanning can we comprehensively map their topology in 

defined regions of sequence space, thereby opening the possibility of determining how the 

distribution of functions in sequence space creates roles for chance versus determinism in protein 

evolution. 
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1.5 Evolvability 

 The capacity of proteins to evolve novel functions is a remarkable phenomenon: proteins 

can maintain their core structure and function while accumulating dozens or hundreds of 

substitutions (28), yet in other contexts, a single mutation can alter a protein’s structure (47) or 

function (48). The accessibility of mutations that alter a protein’s function is often referred to as 

its ‘evolvability.’ Previous work on the evolvability of protein functions has focused on the role 

of nonspecific stabilizing mutations in protein evolvability (49-51). In various systems, it has 

been observed that mutations that stabilize a protein’s free energy of folding simultaneously 

enhance its evolvability, allowing it to tolerate previously-disallowed mutations that also endow 

it with new functional properties but are mildly destabilizing (49). 

 Other factors that contribute to protein evolvability, however, have remained 

underexplored. The above examples on the role of stabilizing mutations in protein evolvability 

relate to the phenomenon of ‘nonspecific epistasis’ (7), which we elaborate in Chapter 2. 

However, there is no rigorous understanding of how so-called ‘specific epistasis’ (also 

elaborated in Chapter 2) contributes toward the evolvability of protein functions. 

 

1.6 Ancestral protein reconstruction 

 In this thesis, I will address the above phenomena in the context of ancestrally 

reconstructed proteins. Ancestral protein reconstruction is a powerful technique for framing 

studies of protein evolution (52, 53). This phylogenetic technique reconstructs representative 

sequences of ancestral proteins, which can be cloned and characterized through typical molecular 

biology and biochemical assays. This approach has proven effective at identifying the historical 



 7 

substitutions that underlie shifts in protein functions and identifying the biophysical mechanisms 

by which they exert their effects. 

 To date, studies on ancestral proteins have focused on understanding the effects of only 

those substitutions that happened to occur along a particular evolutionary lineage. While fruitful, 

this approach places evolutionary ‘blinders’ on our view of protein evolution: just because some 

historical substitution altered protein function via some particular mechanism, that doesn’t 

indicate that all possible routes toward the derived function needed to proceed in this very same 

way. A new synergy is now possible: by conducting deep mutational scans in ancestral proteins, 

we can illuminate the broader sequence-function landscape over which historical evolutionary 

trajectories unfolded. By conducting deep mutational scans across related ancestral protein 

backgrounds, we can ask how specific historical substitutions altered the availability and 

characteristics of trajectories of functional change. By conducting targeted mutational scans of 

the sites containing key function-switching substitutions, we can identify whether an 

evolutionary trajectory represented a unique, deterministic outcome, or whether it was simply 

one of many possible alternatives. And by decomposing the sequence-function landscape into its 

underlying genetic and structural determinants, we can address how the biophysics of a protein’s 

structure give rise to the landscape properties that determine its evolution.  

 

1.7 Research questions and approach 

 In this thesis, I combine mutational scanning approaches with ancestral protein 

reconstruction, to explore the prevalence and characteristics of epistasis among amino acid 

substitutions, how this epistasis impacts the structure of ancient protein sequence-function 
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landscapes, and how these landscapes create roles for chance factors in the outcomes of 

evolution. 

In Chapter 2, I review the literature on epistasis in protein evolution to address several 

fundamental questions that are debated in the field: What is the prevalence of epistasis between 

pairs of random mutations in proteins? What is the prevalence of epistasis between substitutions 

that accumulate during long term protein evolution? And, what are the underlying mechanisms 

by which epistatic interactions emerge? By reviewing the literature, I describe an emerging 

picture of pervasive epistasis, in which the physical and biological effects of mutations change 

over the course of evolution in a lineage-specific fashion. I describe two broad classes of 

epistatic interactions, which arise from different biophysical mechanisms and have different 

effects on evolutionary processes. 

 In Chapter 3, in collaboration with Dan Bolon, Julia Flynn, and Parul Mishra at the 

University of Massachusetts Medical School, we perform a medium-throughput mutational scan 

of substitutions that occurred during 1 billion years of a model protein’s evolution, revealing 

pervasive epistasis among the substitutions that occurred during this interval. These results unite 

experimental and computational approaches for determining the impact of epistasis on long-term 

protein evolution, and illustrate how epistasis continually opens and closes windows of 

mutational opportunity over evolutionary timescales to produce contingent and irreversible 

evolutionary histories. 

 In Chapter 4, I perform a deep mutational scanning approach to dissect the roles of 

determinism and chance in protein evolution. I take an evolutionary transition in protein function 

whose historical details are well understood, and survey a massive combinatorial library of 

alternative protein variants to identify and characterize alternative trajectories by which the same 
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functional transition that occurred during history could have unfolded. I find that the outcome of 

historical evolution was not unique in its function, biochemical mechanism, or evolutionary 

accessibility, identifying dominant roles for two forms of chance in the outcome of evolution. 

 In Chapter 5, I ask to what extent epistasis among mutations impacts the evolvability of 

new protein functions in sequence space. I analyze the deep mutational scanning dataset 

described in Chapter 4, to partition the determinants of this sequence-function landscape into its 

non-epistatic and epistatic components. I explore the biophysical basis for observed epistatic 

effects, and explore the role of epistasis in structuring the evolvability between two distinct 

functions in sequence space.  

 Taken together, this work identifies new characteristics, mechanisms, and evolutionary 

impacts of epistasis between amino acid mutations, and connects these behaviors to the global 

properties of the sequence-function landscape. The emerging picture of protein evolution is one 

that is dominated by the context-dependency of mutational effects, leading to dominant roles for 

chance factors in the details and outcomes of protein evolution. 
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Chapter 2 

Epistasis in protein evolution 

The work described in this chapter was published as: Tyler Starr and Joseph Thornton. 

“Epistasis in protein evolution.” Protein Science 25:1204-1218 (2016). 

 

2.1 Summary 

The structure, function and evolution of proteins depend on physical and genetic 

interactions among amino acids. Recent studies have used new strategies to explore the 

prevalence, biochemical mechanisms, and evolutionary implications of these interactions – 

called epistasis – within proteins. Here we describe an emerging picture of pervasive epistasis in 

which the physical and biological effects of mutations change over the course of evolution in a 

lineage-specific fashion. Epistasis can restrict the trajectories available to an evolving protein or 

open new paths to sequences and functions that would otherwise have been inaccessible. We 

describe two broad classes of epistatic interactions, which arise from different physical 

mechanisms and have different effects on evolutionary processes. Specific epistasis – in which 

one mutation influences the phenotypic effect of few other mutations – is caused by direct and 

indirect physical interactions between mutations, which nonadditively change the protein’s 

physical properties, such as conformation, stability, or affinity for ligands. In contrast, 

nonspecific epistasis describes mutations that modify the effect of many others; these typically 

behave additively with respect to the physical properties of a protein but exhibit epistasis because 

of a nonlinear relationship between the physical properties and their biological effects, such as 

function or fitness. Both types of interaction are rampant, but specific epistasis has stronger 

effects on the rate and outcomes of evolution, because it imposes stricter constraints and 
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modulates evolutionary potential more dramatically; it therefore makes evolution more 

contingent on low-probability historical events and leaves stronger marks on the sequence, 

structure, and function of protein families. 

 

2.2 Introduction 

A protein’s biological functions emerge from its chemical and physical properties, which 

in turn are determined by the interactions between its amino acid residues in three-dimensional 

space. It is therefore not surprising that the functional effect of changing an amino acid often 

depends on the specific sequence of the protein into which the mutation is introduced. This 

dependency on genetic context has long been called epistasis by geneticists (54). Epistasis is 

invoked when the combined effect of two or more mutations deviates from that which would be 

predicted by adding their individual effects (Fig. 2.1).  

 

Figure 2.1. Patterns of epistasis between mutations. We use the terms positive and negative 
epistasis, as suggested by Phillips (54). a,b, Mutations aàA and bàB behave additively with 
respect to the measured phenotype (e.g. stability, fitness): the phenotypic effect of a state at one 
site is independent of the state of the other. c,d, The two mutations exhibit negative epistasis: the 
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(Figure 2.1, continued) double mutant AB has a lower phenotype than would be expected from 
the effect of A and B  alone, regardless of the net direction of the mutational effect. e,f, The two 
mutations exhibit positive epistasis: the double mutant AB has a greater phenotype than would 
be expected from the effect of A and B alone, regardless of the net direction of the mutational 
effect. g, In contrast to the nonadditivity in magnitude of mutational effects in (c) through (f), the 
two mutations exhibit negative sign epistasis: the sign of the phenotypic effect of bàB changes 
with respect to the state of the other site. h, The two mutations exhibit positive reciprocal sign 
epistasis: the sign of the phenotypic effect of either mutation changes in the background of the 
other. 

 
Although studies of epistasis have traditionally focused on genetic interactions between 

mutations at different loci (54), recent research has begun to address epistasis within proteins – 

its prevalence, biochemical mechanisms, and impacts on evolution. However, a consensus view 

of these subjects has not yet emerged. Some papers conclude that epistasis is “rampant” (33) or 

even the “primary factor” in protein evolution (31), whereas others claim that the frequency and 

magnitude of epistasis is “sufficiently low” such that it does not strongly affect the patterns of 

substitution in evolving proteins (55). There is also no clear picture of the mechanisms that cause 

epistasis: many papers have focused exclusively on epistasis mediated by effects on protein 

stability (29, 30, 34, 35, 56), although a few have addressed effects on protein conformation, 

ligand binding, and allostery (57-59). 

These disagreements reflect, at least in part, the lack of a unified discussion of the 

parallels and contrasts now emerging from the diverse modes of analysis applied to epistasis and 

its effects on protein evolution. Here we attempt such a unified view, focusing on the following 

specific questions:  How important a factor is epistasis in changing the effects of mutations 

during the course of evolutionary history? Does epistasis typically amplify or dampen the effect 

of individual mutations? Does most evolutionarily relevant epistasis reflect very specific 

interactions between mutations – for example, with only one potential “permissive” mutation 

that can open the path for another specific mutation – or are many-to-one, one-to-many, or 
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many-to-many interactions more common? What are the molecular mechanisms of interaction 

that produce each form of epistasis? And how do epistatic interactions of these various types 

influence the pathways and outcomes of long-term protein evolution? 

 

2.3 Epistasis and protein sequence space 

The concept of sequence space provides a useful metaphor for understanding the 

relationship between a protein’s sequence, its physical or biological properties, and its evolution. 

Sequence space is a multidimensional representation of all possible protein genotypes, each 

connected to its neighbors by edges representing changes in a single residue (1). Assigning 

physical or biological properties to each genotype yields a “topological map” of the sequence 

space, just as a topological map of a geographic landscape assigns elevations to locations defined 

by their latitudinal and longitudinal coordinates. Epistasis makes the topology of sequence space 

“rugged” (27), in that the physical or biological effect of a mutation differs in sign or magnitude 

depending on the sequence background into which it is introduced; just as on a rugged 

geographical landscape, the change in elevation caused by a step in some direction varies 

dramatically depending on the starting point.  

As proteins evolve, they follow trajectories through sequence space, so this topology also 

determines how mutation, drift, selection, and other forces can drive genetic and functional 

evolution. A typical trajectory in natural or directed protein evolution consists of iterative 

mutational steps between functional proteins, based on the idea that nonfunctional variants of 

biologically important proteins will usually reduce fitness and therefore be removed by natural 

selection (1, 60-62). In the absence of epistasis, any mutation that changes protein properties in a 

beneficial way can be fixed by natural selection, irrespective of the genetic background in which 
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it occurs; the result is a relatively large number of passable trajectories through sequence space 

to the functional optimum that combines all of the beneficial sequence states. When epistasis is 

present, however, a mutation may be beneficial in some backgrounds or deleterious (or neutral) 

in others; the number of passable trajectories becomes smaller, the fixation of any one mutation 

may be contingent on the prior occurrence of other specific mutations, and there may be multiple 

local optima, consisting of mutually conditional beneficial states, isolated from each other by 

trajectories of low fitness.  

Epistasis can therefore create a strong path-dependency in trajectories of protein 

evolution (40, 41, 43, 63), because the mutations that are stochastically fixed may determine 

which functional optimum an evolving protein ultimately occupies; these optima may differ not 

only in primary sequence but also in interesting physical or biological properties. Epistasis can 

yield evolutionary “dead-ends” in sequence space, from which a potentially beneficial mutation 

is not immediately accessible; in such cases, a relaxation of selection or even selection for other 

protein properties is necessary before a trajectory is opened to a superior optimum (57, 64-70). 

Epistasis can also cause a mutation that confers or improves a function in one protein to have no 

effect or even be strongly deleterious in a related protein (33, 41, 71); as a result, attempts to 

leverage natural sequence variation or experimental observations to predict mutational effects or 

engineer proteins with desired properties often fails (72). These issues highlight why 

characterizing epistasis – including the breadth of its effect, its mechanistic underpinnings, and 

its evolutionary impact – is important for our basic understanding of protein biochemistry and 

evolution. 
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2.4 Prevalence and strength of epistasis 

How prevalent is epistasis within proteins, how strongly does it modulate the effects of 

mutations, and to what extent does this context-dependence affect long-term evolution?  Studies 

of these questions have used two primary approaches – deep mutational scanning of large 

numbers of mutations in individual proteins, and analyses of changes in mutational effects across 

long-term trajectories of protein evolution.  

 

2.4.1 Epistasis in a protein’s local sequence neighborhood 

Using a recently developed technique called deep mutational scanning, a very large 

library of mutant versions of some protein of interest can be characterized en masse with respect 

to some physical or biological property. By analyzing many or all variants that differ by one or 

two amino acids from a starting protein, it is possible to comprehensively characterize pairwise 

epistatic interactions in that protein’s local sequence neighborhood (10, 21, 73-75). In the 

absence of epistasis, one can predict the behavior of double mutants with perfect accuracy by 

adding the effects of their constituent single mutations (R2 approaches 1 for the correlation 

between observed and predicted double mutant function). In contrast, in a completely epistatic 

landscape, the effect of a mutation is completely independent in every single background (R2 

approaches 0). Experiments reveal an intermediate prevalence of epistasis: the properties of 

single mutants predict double mutant behavior moderately well (R2 ~ 0.65-0.75) (10, 73, 74). 

This result indicates that strong epistasis is not all-pervasive, but it also points to epistasis that is 

pervasive and weak or relatively rare and strong. In fact, it appears that both types of interactions 

are important: a comprehensive study of pairwise interactions in protein G domain 1 (GB1) 

found strong deviations from additivity (by a factor >2) in ~5% of all pairs of mutations, while 
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weak epistasis (<2-fold deviation) affected ~30% of pairs (21). Thus, small-effect epistasis is 

very common, and large-effect epistasis is less so, but still affects a substantial number of 

mutations. 

Does epistasis tend to affect protein properties in one direction more than another?   In 

“negative epistasis” a double mutant’s measured phenotype has a smaller value than expected 

under additivity (e.g. Figs. 2.1c,d,g), whereas in “positive epistasis” the phenotype is greater than 

predicted (e.g. Figs. 2.1e,f,h) (54). In deep mutational scanning studies of ligand affinity and 

fitness effects, far more pairs exhibit negative than positive epistasis – with the former group 

outnumbering the latter by a factor of 3 to 20 (21, 74, 75). Most mutations have deleterious 

effects on these phenotypes, so negative epistasis in the majority of cases acts synergistically to 

make double mutants worse than either single mutant alone (Fig. 2.1d) (21, 74, 75). This kind of 

epistasis would cause weakly deleterious mutations to become progressively less evolutionarily 

accessible as modifying mutations accumulate.  

Of particular importance for evolution is positive sign epistasis (e.g. Fig. 2.1h), in which 

a pair of deleterious or neutral mutations becomes beneficial when combined. Although far less 

prevalent than negative epistasis, positive sign epistasis still appears to be widespread. In GB1, 

most mutations that are deleterious have at least one or more interacting mutations elsewhere in 

the protein that make the first mutation’s effects beneficial or neutral (21). Positive epistasis can 

open mutational trajectories to combinations of substitutions that would otherwise have been 

inaccessible. For example, in a high-throughput screen of a mutant protein library for variants 

that maintained the wild-type function, about 95% of the functional variants recovered would 

have been predicted to be non-functional from the effects of single mutations alone (22). 
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These deep mutational scanning studies provide important insights into how epistasis might 

affect the first stages of an evolutionary process that begins from present-day forms, initially 

closing many paths to beneficial combinations but sometimes opening new ones. But the strategy 

leaves untouched important questions about the effect of epistasis on long-term historical protein 

evolution. For example, mutational scans suggest that many mutations manifest sign epistasis in 

their interactions, but how frequently does the direction of a mutation’s effect actually change 

during evolution?  There is plenty of epistasis in the local sequence neighborhood of a protein, 

but does this epistasis actually matter in determining proteins’ historical trajectories?  Is the 

strength and pervasiveness of epistasis in the immediate neighborhood of extant proteins similar 

to that in the much larger tracts of sequence space traversed by proteins evolving over hundreds 

of millions of years?  Answering these questions requires direct analysis of epistasis across long-

term trajectories of protein evolution. 

 

2.4.2 Epistasis in long-term protein evolution 

One way to gain insight into epistasis in real protein evolution is to compare the effects of 

some mutation on physical or biological properties when it is introduced into different proteins 

related by evolutionary descent (homologs). Some studies have addressed this question 

experimentally, while others have used computational approaches to indirectly infer the 

prevalence and strength of epistasis during long-term evolution. 

Experimental comparisons of mutational effects between homologs: Manipulative 

experiments on protein homologs point to both strong and pervasive effects of epistasis that 

cause the functional effects of mutations to differ between related proteins. One study tested the 

functional effect of 168 amino acid differences that separate orthologous enzymes that have 
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maintained the same function in two bacterial species (33). Each individual residue from one 

ortholog was introduced into the other: about one third of these “sequence swaps” severely 

decreased enzyme activity. This result indicates that permissive epistatic interactions made the 

residue tolerable in its native background, that restrictive epistatic mutations made it intolerable 

in the other, or both. A similar study examined all combinations of nine variable residues that 

differ between closely related orthologous proteins and statistically determined both the average 

effects of each residue on catalytic activity, as well as the variance of its effect across different 

combinations (76). The standard deviation of every mutation’s effect was at least 45% of its 

average effect (up to 75% in the most extreme case), indicating significant epistasis among the 

nine sequence differences between the proteins. 

These studies demonstrate widespread epistasis, but they do not trace the accumulation of 

epistatically interacting mutations over time. A recent study addressed this question using the 

recent evolution of influenza nucleoprotein (34). The mutational trajectory of the protein over the 

last 39 years was reconstructed. Each of the 39 substitutions that occurred during this trajectory 

was assessed for its effects on viral RNA transcription when introduced into the sequence 

context in which it occurred historically and into the sequence from an extinct strain that closely 

resembles an ancestral version of the protein. Every substitution was neutral in the background in 

which it occurred, but three were radically deleterious with respect to both function and fitness in 

the ancestral background, indicating relatively rare but extremely strong epistasis that allowed 

these mutations to be tolerated later. 

The above examples illuminate the variability in mutational effect for states that were 

actually incorporated into diverging proteins during evolution. But what is the impact of epistasis 

on the effects of all mutations, including those that are never observed because they are 
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deleterious? A recent study compared site-specific mutational preferences between two influenza 

nucleoprotein orthologs by assessing the effect on viral fitness of all 19 possible single-amino 

acid replacement mutations at every site in the two proteins, whether or not they changed during 

evolution (55). The two proteins differ at only 6% of sites, but significant differences in site-

specific amino acid preference were found at 3 to 15% percent of sites (depending on the 

statistical method used to evaluate differences). Thus, on average, each substitution during the 

evolution of these two closely related proteins modulated the amino acid preferences at one or 

two other sites. 

Strong epistasis is also apparent in laboratory evolution studies. One study placed a 

protein under strong selective pressure to evolve a new activity and then reimposed selection for 

the original activity, a trajectory that involved 28 amino acid changes in all (41). The “ancestral” 

amino acid state at each of these 28 sites was then introduced singly into the “derived” protein, 

and the derived states were each introduced into the ancestral protein to test for context-

dependence. Almost half of the substitutions were deleterious when swapped into the other 

background, pointing to widespread epistatic interactions among the sites and states that were 

substituted during the laboratory evolutionary process. 

Comparative sequence analysis: Computational analyses of protein sequence data have 

investigated epistasis by seeking evidence that the effects of mutations differ among 

phylogenetic lineages. There are several major “signatures” of epistasis that have been detected 

in these kinds of studies (Fig. 2.2), which point to a strong and pervasive effect of epistasis on 

protein evolution. 
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Figure 2.2. Evidence for epistasis in extant sequence data. a, Though a mutation from F to V 
at a given site is known to cause disease in humans, V is observed as the wild-type state in 
mouse. b, Amino acid usage for a site in a given sub-clade (ua or ub) only represents a fraction of 
the total amino acid usage observed for the site over its long-term evolution (uT). c, Phylogenetic 
analysis is used to infer the directionality of amino acid substitutions (indicated by vertical bars; 
additional sequences used to polarize changes leading to bottom two sequences are not shown). 
The number of paired substitutions to the same amino acid state (convergent substitutions, Nc) 
decreases with increasing evolutionary distance, relative to the number of paired substitutions to 
different amino acid states (divergent substitutions, Nd). d, Pairs of sites that exhibit significant 
covariation correspond to protein structural contacts. 

 
First, amino acid states that cause disease in one lineage frequently correspond to a wild-

type state in the orthologous protein from other species (Fig. 2.2a) (77-83). These states do not 

cause disease in the lineages in which they have fixed, so other lineage-specific substitutions 

must have modulated their effects. Remarkably, of the sequence differences between orthologous 

proteins in humans and other vertebrates, about 1% of the states from other species are known to 

cause disease in humans (77, 79); when the incomplete nature of databases of pathogenic 

mutations is taken into account, it is estimated that up to 10% of differences between orthologs 

might correspond to epistatically modified pathogenic states. 

Second, genome-scale alignments of orthologs with conserved functions from distant 

taxa point to extensive changes in the tolerability of specific mutations over the long term. For 

example, when clades of related species are examined, a typical sequence site samples only a 

small subset of the amino acid states that are sampled across its long-term evolution (Fig. 2.2b) 
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(31), pointing to lineage-specific epistatic constraints. Other studies found that the rate of 

convergent substitutions between orthologs declines as sequence divergence increases, as 

expected if the site-specific tolerability of each amino acid changes in a lineage-specific manner 

(Fig. 2.2c) (28, 84-86). By analyzing these data with an evolutionary model that incorporates 

epistatic interactions, one study found that an average amino acid substitution switches the 

tolerability of five other potential mutations, making deleterious mutations at other sites non-

deleterious, or vice versa (32). Although the patterns – and particularly the quantitative estimates 

of the extent of epistasis – identified in these large-scale computational studies depend on 

assumptions and statistical models (87), their congruence with experimental studies of specific 

proteins suggests that epistasis is indeed likely to be pervasive during long-term protein 

evolution. 

Finally, sequence signatures of covariation provide circumstantial evidence for pervasive 

epistasis in long-term evolution (Fig. 2.2d). Epistasis between residues causes sites within a 

protein to constrain each other’s evolution, and thus the state present at one site in a sequence 

should provide information about the state at an interacting site. Such signatures of covariation in 

sequence alignments have been used to correctly predict protein folds from sequence and to 

produce novel sequences that fold in a desired conformation (88-93). They have also been used 

to predict and engineer protein-protein interactions (23, 94-96), to predict the functional effects 

of mutations (97, 98), and to understand other sequence-structure-function relations (99-101). 

Although the physical basis for the signal of covariation in these analyses has not been 

established, some of the strongest pairwise covariation terms have been experimentally validated 

as strong epistatic interactions (97, 98). Further, efforts to design and predict protein structure 

and function have been far more successful when mutual information among residues is included 
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in the analysis than when only site-specific amino acid frequency profiles are used, suggesting 

that covariation signatures have indeed captured distinct and biologically meaningful 

dependencies among sites (88, 97, 98). That such analyses can capture enough of the relevant 

details about protein architecture to do this kind of practical work suggests that epistasis is likely 

to be a strong determinant of protein structure and function. 

In silico evolutionary simulations: Epistasis has a similarly pervasive role in 

computational simulations of neutral (29, 30) and adaptive (102) protein evolution. In these 

studies, some ancestral protein with a defined structure is allowed to evolve in silico under 

defined population genetic conditions. For example, a recent study simulated the evolution of 

argT for replicate evolutionary trajectories 30 substitutions long under purifying selection to 

maintain a stable fold, implemented by applying a stability prediction algorithm that uses the 

protein’s known crystallographic structure and a very simple function that relates stability to 

fitness (30). Each substitution that occurred during a trajectory was then evaluated for its 

predicted effects on stability and fitness when introduced into every protein sequence that existed 

at some point during that trajectory. The vast majority of substitutions had different predicted 

effects on stability and fitness at the time they occurred during the trajectory than they would 

have if introduced at a different time. Specifically, most substitutions were neutral at the time of 

their fixation but would have been deleterious at earlier points in the trajectory, reflecting an 

important role for permissive mutations in the turnover of evolutionarily viable mutations. 

Epistasis also caused substantial irreversibility in the evolutionary process: once a substitution 

enabled by an earlier permissive substitution at some other sequence site occurs, then the 

ancestral state at the permissive site becomes deleterious, making reversion to that state unlikely.  
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Relationship to epistasis in the local sequence network: How does the epistasis observed 

in long-term evolution compare with the mixture of large- and small-effect epistasis observed in 

the local sequence networks of various proteins?  Two kinds of analyses bear on this problem but 

do not clearly resolve it. Computational simulations suggest that both small- and large-effect 

epistasis have a pervasive influence on proteins’ evolutionary trajectories (30); however, the 

models used in these simulations are highly simplified, so the real-world relevance of their 

quantitative conclusions is unclear (103). Experimental analyses of the effects of mutations 

introduced into homologous proteins have detected extensive large-effect epistasis (33, 34, 41, 

76), demonstrating its relevance in real-world, historical evolutionary trajectories. The pervasive 

small-effect epistasis visible in local sequence networks, however, has not been generally 

observed in these kinds of experiments. It could be that small-effect epistasis does not 

meaningfully impact natural evolution, but we cannot rule out ascertainment bias as an 

alternative explanation; quantifying small deviations from additivity is considerably more 

difficult than establishing the significance of large deviations, and a general view that only large-

effect epistasis is worth reporting may be at play, as well. 

Taken together, analyses to date point to extensive large-effect epistasis in the local 

sequence neighborhoods of present day proteins and in the substitutions that become fixed 

during evolutionary trajectories. Small-effect epistasis is clearly present in sequence 

neighborhoods; the extent to which it affects and is incorporated into real-world evolutionary 

trajectories remains unresolved.  
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2.5 Specificity of epistasis and causal mechanisms 

The above examples demonstrate that epistasis is pervasive and, in some cases, strong 

during the course of long-term evolution. A complete description of epistasis in protein evolution 

requires more detailed attention to the nature of the interactions, including their specificity, their 

effects on evolutionary trajectories, and the molecular mechanisms by which mutations interact. 

The biological properties of a protein are ultimately determined by its physical properties 

(such as stability, ligand affinity, or conformational dynamism), which in turn are determined by 

protein sequence (Fig. 2.3). Nonlinearity in either mapping – from protein sequence to physical 

property, or physical property to biological property – results in epistasis at the level of function 

or fitness. We can distinguish two broad classes of epistatic interaction – specific and 

nonspecific epistasis (7) – which refer to whether the epistasis involves mutations that modify 

the effects of few or many other potential mutations. The difference in specificity arises from a 

difference in the biophysical mechanisms that produces each class of epistasis. The two classes 

also differ, in turn, in the mapping the interaction affects – from sequence to physical property or 

from physical property to biological characteristic – and in their implications for evolutionary 

processes.  
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Figure 2.3. Mechanisms of epistasis and their evolutionary implications. Biological 
properties (e.g. function, fitness) depend on the physical properties of protein molecules (e.g. 
stability, solubility, affinity for ligand), which in turn depend on the peptide sequence. 
Evolutionarily relevant epistasis describes nonadditivity in the mapping from sequence to 
biological properties. Specific epistasis causes nonadditivity in the mapping from sequence to 
physical properties because of physical interactions between sites. Nonspecific epistasis arises 
from the intrinsic nonlinear relationship between various physical and biological properties. 
Specific permissive mutations enable fewer mutations than nonspecific permissive mutations, 
and therefore have a less dramatic impact on protein evolvability. Similarly, mutations that 
require a specific permissive mutation to be tolerated have fewer possible permissive mutations 
than a mutation that can be enabled through a nonspecific effect. This causes specific epistasis to 
underlie stronger historical contingency, lower reversibility, and stronger long-term evolutionary 
constraints. 

 
 

2.5.1 Specific epistasis 

In specific epistasis, a mutation modulates the effects of a small number of other 

mutations. Specific epistasis is typically mediated by physical interactions among residues; these 

may involve direct interactions between amino acid side chains (41, 43, 47), mutual interaction 

with other side chains (104) or ligands (68, 105, 106), or a dependence of one mutation on a 

structural change caused by another (41, 57, 107, 108). Because of these physical interactions, 
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two specifically epistatic mutations affect a physical property of the protein – such as stability, 

affinity, catalysis, or dynamic motions – in a nonadditive fashion (Fig. 2.4b). 

 
Figure 2.4. Examples of specific and nonspecific epistasis. a, The relationship between 
stability and function is often modeled by a sigmoidal function. This relationship is projected 
onto the y- and z-axes of the mutational reaction coordinates of (b) and (c) through a gradient 
from white (functional) to red (non-functional). b, A graphical example of specific epistasis. The 
red mutation in the parental background is destabilizing, resulting in a large functional defect. 
However, a blue mutation, which by itself does not alter stability, interacts with the red mutation 
to reduce its stability defect, and therefore, its functional defect. c, A graphical example of 
nonspecific epistasis. The red mutation in the parental background is destabilizing, resulting in a 
large functional defect. The blue mutation is stabilizing, which by itself has little impact on 
function. However, in this stability-buffered background, the red mutation (whose magnitude of 
destabilization is unchanged) can occur with no functional defect. 

 
A comprehensive case study on specific epistasis has emerged from investigations on 

vertebrate steroid receptors using ancestral protein reconstruction and experimental analysis. 

This work traced the evolution of specificity in the glucocorticoid receptor for its ligand – the 

steroid hormone cortisol – from a promiscuous ancestral protein that was activated by both 

cortisol and a structurally related class of steroids called mineralocorticoids. Seven historical 

substitutions, when introduced into the ancestral protein, are sufficient to fully recapitulate the 

evolution of cortisol specificity. Introducing five of these substitutions, however, yields a 

completely nonfunctional receptor unless the other two “permissive” substitutions, which 

themselves have no effect on function, are in place first (57, 64). Structural analysis suggested a 
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direct conformational mechanism for specific epistasis: the function-switching substitutions 

dramatically shifted the position of a helix that lines the ligand pocket, destabilizing key 

elements of the active conformation but also allowing formation of a new cortisol-specific 

contact. The two permissive substitutions appeared to directly compensate, generating new 

physical interactions that stabilized the same structural elements destabilized by the function-

switching mutations, thereby permitting the evolution of a receptor that could be activated only 

by cortisol.  

To determine whether the permissive substitutions were truly specific, a follow-up 

experiment assessed how many other epistatically acting mutations might have been available 

that could have permitted the function-switching substitutions (38). A library of thousands of 

variants of the ancestral receptor was prepared, each of which contained the function-switching 

substitutions but neither of the permissive substitutions; this library was then screened for 

epistatic mutations that could rescue cortisol activation. In addition to the historical permissive 

substitutions, this screen uncovered three new compensatory mutations. However, none of these 

new compensatory mutations could have been permissive during evolution, because each 

dramatically compromised the ancestral receptor’s function when introduced on its own. Thus, 

the epistatic interaction between the historical permissive and function-switching substitutions 

was extremely specific, with alternate permissive mutations in the neighborhood of the ancestral 

receptor being extremely rare. This genetic specificity arose directly from the biophysical basis 

of the interaction: both the permissive and compensatory mutations acted locally, restoring 

contacts to the same structural elements destabilized by the function-switching mutations, but 

only the historical permissive substitutions were also compatible with both the ancestral and 

derived ensembles of conformations that contribute to ligand-induced activation. Thus, the 
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direct, local relationship between permissive and function-switching substitutions caused them to 

interact nonlinearly in their effects on physical properties (ligand-activation and structure), 

giving rise to a very specific, few-to-few genetic interaction. 

 

2.5.2 Nonspecific epistasis 

In nonspecific epistasis, a mutation modulates the effects of a relatively large number of 

other mutations. Nonspecific epistasis occurs when two mutations interact nonadditively with 

respect to some biological property despite contributing additively at the level of physical protein 

properties. The epistasis arises because of a nonlinearity in the mapping from the physical 

property to the biological property (Fig. 2.4a), so a mutation with the same biophysical effect 

size has a different impact on function or fitness, depending on the current location of the 

parental protein on this property’s landscape (Fig. 2.4c). 

Nonspecific epistasis has been most thoroughly studied for mutations that independently 

affect the stability of the protein’s native fold but exhibit epistasis in the protein’s functionality 

or contribution to fitness (34, 49-51, 109-112). Nonspecific epistasis has also been observed for 

mutations that are additive with respect to other physical properties (folding, affinity, enzyme 

activity), but non-additive with respect to surface expression, transcriptional activity, or fitness, 

because of the nonlinear mapping between the two types of property (69, 70, 113). 

Mutations that interact epistatically in this way manifest low specificity in their coupling 

to each other. Every mutation that affects a physical property that maps nonlinearly to biological 

function or fitness will epistatically interact with every other mutation that affects the same 

property. That is, a mutation that increases stability and is therefore permissive for another 

mutation that reduces stability should be permissive for any mutation that reduces stability by a 
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similar amount; further, its permissive effect could be replaced by that of any other mutation that 

has a similar positive effect on stability. Because the effects on the protein’s physical property 

are independent of each other, the mechanisms that produce nonspecific epistasis typically 

involve no physical interaction, direct or indirect, between the relevant residues.  

For example, in the evolutionary trajectory of influenza nucleoprotein discussed above, 

each of the three cases of epistasis involves a destabilizing mutation that depends on a 

counterbalancing stabilizing mutation to be tolerated (34). Importantly, one single stabilizing 

mutation can rescue any one of the individual destabilizing mutations, highlighting the 

nonspecific nature of this coupling. The stabilizing substitutions do not substantially alter the 

destabilizing effect of the interacting mutations; rather, they buffer the overall stability of the 

protein such that the double mutants are not substantially destabilized relative to the parent. 

Despite such additivity at the level of protein stability, these pairs of mutations exhibit strong 

epistasis at the level of protein function and viral fitness. This epistasis fits a model by which 

stability maps nonlinearly to function and fitness: in the simplest case, suppose that the 

biological function of a protein scales linearly with the quantity of folded protein in the cell 

(114). Two mutations that independently affect protein stability will epistatically affect the 

quantity of folded protein (and thus function), simply because of the sigmoidal shape of the 

Boltzmann distribution that relates changes in the energy of a conformational state to changes in 

the probability that the state is occupied. Since many proteins are only marginally stable, existing 

just slightly above the steep part of the curve that relates stability to fraction-folded, this 

particular type of nonspecific epistasis through stability appears to be a strong factor in protein 

evolution.  
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These two types of epistasis are not mutually exclusive. Mutations may interact 

nonadditively at the level of a physical property, and a nonlinear mapping from that property to 

function or fitness may further amplify (106) or buffer (114) the interaction. For example, 

mutations in ancestral transcription factors exhibited pervasive specific epistasis for DNA-

binding affinity (106), and there is also a nonlinear relationship between DNA-binding affinity 

and transcriptional activation. Together, these two nonlinearities yield dramatic epistasis in the 

effects of mutations in the protein or DNA on transcriptional activation; as a result, mutations in 

the transcription factor can allow the DNA to tolerate affinity-reducing mutations, and 

subsequent mutations in the DNA can exert a permissive effect on the protein, opening up 

mutational pathways that lead to a new regulatory complex with entirely new specificity. In 

contrast, if two mutations interact to increase each other’s effect on stability, but the protein is 

already far above the stability threshold, neither the individual mutations nor their combination 

will strongly affect the protein’s function or fitness (114). 

The distinction between two types of epistasis highlights the need for researchers to be 

transparent and cognizant of where epistasis comes from in their data. Some studies set a 

threshold to distinguish between functional and nonfunctional (or fit and unfit) genotypes and, in 

turn, to classify evolutionary pathways through sequence space as passable or not (22, 23, 106). 

Imposing this kind of nonlinearity will necessarily lead to apparent epistasis and determine a 

study’s conclusions about the availability of mutational trajectories. If the threshold does not 

have a sound biological motivation – or if its role in determining a study’s conclusions is not 

explored – spurious inferences about epistasis and evolution may result. 
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2.5.3 Specific positive versus nonspecific negative epistasis  

What is the relative prevalence of specific and nonspecific epistasis?  Mutational 

scanning studies have identified “hotspot” residues which interact epistatically with dozens or 

hundreds of other mutations, pointing to their nonspecific effect (21, 73-75). As expected, some 

of these hotspots contain stabilizing mutations that can permit many different destabilizing 

mutations to be tolerated (73), or destabilizing mutations that interact negatively with many other 

mildly destabilizing mutations (21, 74). This epistasis arises because the functions being assayed 

– fitness, or affinity for a binding partner – depend on the fraction of protein folded, which is 

nonlinearly related to stability.  

Although nonspecific epistasis accounts for a large number of interactions, specific 

epistasis is also very important. In one mutational scanning study, the most densely connected 

hotspots – the most nonspecifically coupled mutations – accounted for less than 20 percent of all 

epistatic interactions between mutations (74). As expected, specific epistasis typically involves 

direct interactions that modulate the effects of two sequence changes on a protein’s physical 

properties. For example, two individually destabilizing mutations to cysteine yield a stabilizing 

disulfide bond when combined (21). 

Nonspecific mechanisms seem to be associated strongly with negative epistasis, while 

specific mechanisms are associated with positive interactions. In the mutational scan of the GB1 

protein, nearly all of the strong, negatively epistatic pairs in GB1 involve combinations of two 

destabilizing mutations, and these pairs are distributed relatively uniformly in three-dimensional 

space on the protein structure (21). In contrast, most of the positively interacting pairs are in 

close structural proximity (Cβ distance <10Å), and many affect hydrogen bond networks – 

suggesting direct and specific physical interactions (21, 74). The association of nonspecific 
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interactions with negative epistasis makes sense, given that most mutations are destabilizing, and 

most proteins have only a small “stability reservoir” above the critical threshold, below which 

the proportion of folded protein drops off precipitously (Fig. 2.4a). A slightly destabilizing 

mutation – if it does not exhaust the stability reservoir – will therefore typically have only a 

weak effect on folding and function, but combining two such mutations may be strongly 

deleterious.  

 

2.5.4 Specific and nonspecific epistasis in long-term evolution 

Although both positive specific epistasis and negative nonspecific epistasis are prevalent 

in mutational scanning studies, this might not be true in long-term evolution. Deleterious 

combinations of mutations will usually be removed by purifying selection, so positive 

interactions – such as permissive epistasis – might be expected to dominate the record of long-

term sequence evolution. Does specific epistasis dominate, as well? Case-studies of the historical 

evolution of individual proteins have uncovered both specific (38, 57) and nonspecific (34) 

mechanisms of permissive interactions, but such studies are insufficient to determine the general 

prevalence of the two classes of epistasis in protein evolution.  

Several larger-scale studies do suggest that specific positive epistasis is pervasive. In the 

in silico evolution of argT discussed above, most substitutions were tolerated at the time of their 

fixation only because of prior permissive substitutions (30); that is, they were deleterious in at 

least some sequence backgrounds that existed earlier in the evolutionary trajectory. Further, these 

substitutions had smaller predicted stability effects when they occurred than they did at earlier 

times, pointing to a specific epistatic effect of the permissive mutations on the mapping from 

sequence to stability. The average epistatic effect with respect to stability was small (predicted 
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ΔΔΔG=0.5 kcal/mol), suggesting that – at least under the assumed conditions – moderate 

epistatic effects with respect to a protein’s physical properties can have a meaningful impact on 

fitness and evolution.  

Structural analyses of compensated mutations that are pathogenic in humans but fixed in 

other species support a similar conclusion. Most pathogenic mutations are predicted to be 

destabilizing when introduced into the human structure in silico. However, when they are 

introduced into structures in which the nearby residues have the amino acids found in the species 

in which they have fixed, they are predicted to be less destabilizing, again by about half a 

kcal/mol (80). This points to a general role for specific epistasis in this mode of permissive 

evolution, but it does not rule out an additional role for nonspecific, structurally distal epistatic 

modifiers. 

Is the widespread specific epistasis for stability suggested by these in silico predictions 

observed when epistasis is experimentally characterized in real proteins? Two studies have 

experimentally measured the effects on folding stability of a handful of mutations when 

introduced into divergent orthologs, which differ at up to 28 and 43 percent of sites (35, 56). 

Both studies found that it is rare for mutations that are destabilizing in one ortholog to become 

stabilizing in the other, or vice versa. But the magnitude of many mutations’ effects on stability 

does change notably, with the correlation of a residue’s stability effects in the two orthologs 

degrading as sequence distance increases, reaching  R2 = 0.8 among the most divergent 

orthologs. One study observed that the stability effects of a mutation when introduced into 

different orthologs frequently differ by more than 0.5 kcal/mol (35), consistent with 

computational predictions. 
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 Taken together, these studies point to a pervasive effect of specific, positive epistasis in 

evolution that is retained in protein sequences over long periods of time. They do not rule out an 

additional role for nonspecific epistasis. Although combinations of amino acids that negatively 

interact are typically removed from the sequence record by purifying selection, this does not 

mean they are not important during historical evolution, because determining the paths that 

evolution does not take is as important in evolutionary outcomes as shaping those it may pass 

through. 

 

2.6 Evolutionary implications of epistasis 

We have elaborated a body of research that suggests frequent epistasis between and 

among substitutions that fix along evolutionary trajectories. How does this epistasis impact the 

evolutionary process? Furthermore, we have examined two broad classes of mechanism by 

which these mutations interact nonadditively. How do these two types of epistasis differentially 

affect the evolutionary properties of molecules? 

 

2.6.1 Evolvability and robustness 

A protein’s evolvability is determined by the accessibility of mutations that confer new 

functions; its robustness is determined by the set of available neutral mutations. Positive epistasis 

– permissive substitutions of either the specific or nonspecific type – increases both evolvability 

and robustness, because it opens some mutational trajectories that would otherwise have 

involved deleterious steps. A nonspecific permissive mutation, however, has the potential to 

open many more evolutionary pathways than specific epistatic mutations do. For example, when 

stabilizing permissive mutations are introduced into a cytochrome P450 enzyme, it can tolerate a 
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wider range of mutations that confer new functions but are moderately destabilizing (49). 

Similarly, in the antibiotic resistance gene TEM-1 β-lactamase, a “global suppressor” mutation 

M182T stabilizes the protein, relieving the otherwise deleterious effect of many other mutations 

that reduce protein stability, including many that enhance the protein’s activity on new 

antibiotics (51, 109, 111). Permissive mutations that globally buffer other physical properties 

should promote similar increases in evolvability and robustness, though this remains to be 

demonstrated. 

In contrast, a permissive substitution of specific effect can influence the evolutionary 

potential of, at most, the subset of residues with which it is physically coupled. Specific 

permissive substitutions are thus inherently limited in the range of mutational trajectories they 

can enable. Assessing cases in which specific epistatic interactions has narrow effects on 

evolvability and robustness is more challenging, because it requires a robust, negative result to 

demonstrate a few-to-few relationship between mutations. Mutational scanning studies have met 

this challenge to some extent, identifying interactions that increase evolvability and robustness at 

specifically coupled positions, without as global an impact on evolvability as nonspecifically 

permissive mutations (21, 73, 74). Further case studies will be required to assess the generality of 

this result and assess the effects of nonspecific and specific epistasis on these properties during 

historical evolution. 

 

2.6.2 Historical contingency 

When positive epistasis is highly specific, then the outcomes of evolution will be 

contingent on low-probability chance events, because selection for the new function cannot drive 

acquisition of the permissive substitutions that are a prerequisite for the function-switching 
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changes, and the chance that they will fix by mutation and drift alone is very small (38). In such 

cases, evolutionary processes exhibit radical stochasticity in their outcomes: parallel populations 

evolving under the same dynamics will reach different endpoints in response to some selective 

pressure, because the permissive substitutions that happen to fix will generally be different in 

each population, and each set of permissive substitutions in turn will open trajectories to distinct 

functional optima (40, 43). 

In contrast, evolutionary contingency should be much weaker when nonspecific 

permissive epistasis is at play. In such cases, a large number of possible permissive mutations 

could permit any particular function-switching mutation; across parallel evolving populations, 

the probability is reasonably high that one of these permissive mutations would occur eventually, 

opening paths to similar or identical outcomes. Indeed, in the evolution of drug resistance in 

TEM-1 β-lactamase (115) and influenza neuraminidase (116) or immune escape in influenza 

nucleoprotein (34), many different mutations were discovered that permit a particular function-

enhancing mutation through nonspecific buffering of properties such as folding, stability, and 

expression. Thus, nonspecific epistasis appears to be associated with much less stochasticity in 

the outcomes of evolutionary trajectories. 

 

2.6.3 Reversibility 

The reversibility of evolution has long been a topic of interest to evolutionary biologists, 

because irreversibility implies that the accessibility of some genetic or phenotypic state – the 

ancestral one – depends on the moment in the genetic history of the organism when it occurs. 

Specific and nonspecific epistasis appear to differentially affect the reversibility of evolution.  
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Specific epistasis contributes to evolutionary irreversibility. In several cases, some time 

after a substitution that affects function takes place, restrictive epistatic substitutions have 

occurred, making the ancestral state at the first site deleterious. In each case, specific steric 

clashes are involved: the restrictive amino acid is compatible with the derived state at the first 

site but not the ancestral state, either because of a direct clash between side chains or because of 

conformational changes that produce conflicts at other sites (41, 107, 117). The physical 

interaction between these residues affects in a nonadditive fashion the protein’s propensity to 

fold into its functional conformations, making the fitness effect of a reversal strongly deleterious 

– and thus very unlikely – once the restrictive substitution has occurred.  

In contrast, nonspecific epistatic substitutions appear to be reversible over long-term 

evolution. Several studies have shown that destabilizing substitutions that were initially 

permitted by a stabilizing substitution can revert, even after relatively long evolutionary intervals 

(34, 35, 56). In contrast to the specific examples above, the relative stability of the ancestral state 

remains unchanged, and reversion is freely accessible in the subsequent evolution of the protein. 

 

2.6.4 Long-term evolutionary constraints 

Specific and nonspecific epistasis also imprint themselves differently in the constraints 

that leave marks on modern-day sequences. The rate of evolution at a site reflects the strength of 

selective constraint that acts on that sequence position. A mutation can tighten or relax the 

selective constraints at a site it interacts with, slowing or accelerating its rate and changing the 

set of amino acid states that it tolerates. These dynamics lead to signatures of amino acid 

covariation in extant sequence data, which reflect the extent and nature of epistatic constraints 

among sites. 
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Nonspecific epistasis – irrespective of its prevalence and strength – should leave only 

sparse signals of covariation in the evolutionary record. Consider some destabilizing substitution 

that was initially permitted by a prior stabilizing substitution, leading to a temporary epistatic 

dependence: any subsequent stabilizing substitution at the same or another site could relieve the 

constraint that this coupling creates. The association between the two originally dependent states 

would then break down (56).  

In contrast, specific epistasis permanently changes the effects of interacting mutations, 

altering the native preference of sites for particular amino acid states. These types of interactions 

should thus generate strong, precise signals of covariation, as restraints of co-occurrence are not 

easily reduced with subsequent evolutionary change. The fact that signals of covariation in 

sequence alignments are strongly related to the co-localization of amino acid pairs in protein’s 

three-dimensional structures supports the notion that specific epistasis underlies most retained 

signals of epistasis in the evolutionary record. Indeed, across a large number of protein families, 

the majority of the sites with the strongest signal of covariation are in direct structural contact 

(90, 91). 

 

2.7 Conclusions and future directions 

The studies we have discussed paint an emerging picture of pervasive epistasis among the 

sites and states that substitute during protein evolution. Mutational scanning indicates that both 

specific and nonspecific coupling between residues contribute strongly to nonadditivity in 

mutational effects at any moment in time. Over long-term evolution, permissive substitutions – 

either specific or nonspecific – play a particularly critical role in opening evolutionary 
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trajectories. The class of specific epistatic interaction, however, appears to most profoundly 

affect the long-term outcomes of evolution. 

We emphasize that this picture is emerging, not complete. Many more case studies, 

particularly of historical evolution – over various time scales using proteins with different 

functions and architectures – are required to understand the full range of biophysical mechanisms 

and evolutionary implications of epistatic interactions within proteins. Several specific questions 

and approaches seem particularly ripe for study. 

First, combining high-throughput mutational scanning techniques with ancestral protein 

reconstruction provides insight unavailable to either technique alone. Library-based explorations 

of sequence space around some extant protein tells us how epistasis shapes the pathways that 

evolution could follow from the present, but it does not tell us anything about the history that 

produced that protein. Conversely, mechanistic dissection of reconstructed ancestral proteins and 

their trajectories can tell us how epistasis shaped the pathway that evolution did follow. By 

characterizing the sequence space around ancestral proteins, we can begin to address key 

questions about evolutionary processes:  How did epistasis shape the sequence space of an 

evolving protein? How many pathways could have been followed to the same or similar 

outcomes?  How many different outcomes could have been achieved under a given selection 

pressure, and how did epistasis influence their accessibility?  To what extent were mutational 

trajectories transiently opened and closed by permissive and restrictive substitutions?  What are 

the roles and particular mechanisms of specific and nonspecific epistasis that mediated these 

effects?  To date, only one study has sought to characterize an ancestral sequence space – the 

study of specific epistasis in the steroid receptors (38). The extent to which the strong 

evolutionary contingency observed in that case pertains to the evolution of other proteins – and 
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what biophysical and genetic factors contribute to the ensuing evolutionary dynamics – remains 

to be determined. 

Second, higher-order interactions are likely important in evolution. Most of the studies of 

epistasis in protein evolution discussed here focus on pairwise epistasis (the interaction between 

mutations at two sites). However, there is no reason why the impact of epistasis exposed for the 

interactions between two sites cannot extend to higher-order combinatorial interactions (e.g. the 

joint effect of two mutations varies with the identity of a third (106), etc.). A detailed 

understanding of higher-order epistasis requires the characterization of numbers of variants 

inaccessible to traditional experimental techniques (118). However, the technological 

innovations underlying high-throughput mutational scanning techniques (10, 119), coupled with 

quantitative formalisms for higher-order epistasis (118, 120) are expanding explorations into 

how the importance and mechanisms of epistasis inferred at the pairwise level extends to higher-

order combinations of sites. 

Third, epistasis between interacting molecules is a ripe matter for evolutionary 

biochemical analysis. Proteins interact with other proteins, nucleic acids, and small molecules. 

Epistasis between mutations in molecules that interact with each other should also have 

important evolutionary ramifications, but it is unclear how the relative prevalence and 

evolutionary implications compare to those associated with intramolecular epistasis. Recent 

experimental dissections (106, 121), high-throughput mutational scans (122), and systems-level 

approaches (123) have begun to address this question, revealing molecular mechanisms and 

evolutionary implications of epistasis that are unique to interactions between molecules. Further 

work in this area has the potential to broaden our understanding of the impact of epistasis on 

protein biochemistry and evolution.  
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Finally, we would like to highlight a conceptual issue that frames our understanding of 

epistasis and protein evolution. Epistasis is frequently discussed as a “constraint” in molecular 

evolution; this view may reflect the role of epistasis in constraining the outcomes of protein 

engineering efforts, in confounding genetic predictions from single-site data, or in structuring 

sequence space to produce local optima. But epistasis is not only a brake on evolution: dissecting 

the dense network of genetic interactions in multidimensional sequence space reveals how 

epistasis can also make possible the evolution of new genotypes, functions, and phenotypes. 

Permissive mutations can relieve constraints that would otherwise make potentially beneficial 

mutations inaccessible (21, 22), allowing proteins to evolve new functions in a very small 

number of mutational steps. Thus, more functional diversity may exist within the local sequence 

landscape of any given protein than is typically appreciated, and epistasis may allow proteins to 

travel along connected paths among these functionally distinct regions of sequence space.  

Because of the size of sequence space and the ways that epistasis structures it, even some 

of the most ancient proteins have not yet fully explored the boundaries of their networks of 

neutral divergence (28). As we develop a more complete picture of these sequence spaces, the 

ways in which epistasis structures their topologies, and how proteins traverse them during 

evolution, our capacity to understand present-day proteins, their histories, and their possible 

futures should become deeper and more precise. 
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Chapter 3 

Pervasive contingency and entrenchment in a billion years of Hsp90 evolution 

The work described in this chapter was published as: Tyler Starr*, Julia Flynn*, Parul Mishra*, 

Daniel Bolon, and Joseph Thornton. “Pervasive contingency and entrenchment in a billion years 

of Hsp90 evolution.” Proceedings of the National Academy of Sciences, USA 115:4453-4458 

(2018). *co-first authors 

 

3.1 Summary 

Interactions among mutations within a protein have the potential to make molecular 

evolution contingent and irreversible, but the extent to which epistasis actually shaped historical 

evolutionary trajectories is unclear. To address this question, we experimentally measured how 

the fitness effects of historical sequence substitutions changed during the billion-year 

evolutionary history of the heat shock protein 90 (Hsp90) ATPase domain beginning from a deep 

eukaryotic ancestor to modern Saccharomyces cerevisiae. We found a pervasive influence of 

epistasis. Of 98 derived amino acid states that evolved along this lineage, about half compromise 

fitness when introduced into the reconstructed ancestral Hsp90; further, the vast majority of 

ancestral states reduce fitness when introduced into the extant S. cerevisiae Hsp90. Overall, more 

than 75% of historical substitutions were contingent on permissive substitutions that rendered the 

derived state non-deleterious, became entrenched by subsequent restrictive substitutions that 

made the ancestral state deleterious, or both. This epistasis was primarily caused by specific 

interactions among sites rather than a general effect on the protein’s tolerance to mutation. Our 

results show that epistasis continually opened and closed windows of mutational opportunity 
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over evolutionary timescales, producing histories and biological states that reflect the transient 

internal constraints imposed by the protein’s fleeting sequence states. 

 

3.2 Introduction 

Epistatic interactions can, in principle, affect the sequence changes that accumulate 

during evolution. A deleterious mutation’s expected fate is to be purged by purifying selection, 

but it can be fixed if a permissive substitution renders it neutral or beneficial (30, 34, 57). 

Conversely, a neutral mutation – which by definition is initially reversible to the ancestral state 

without fitness cost – may become entrenched by a subsequent restrictive substitution that 

renders the ancestral state deleterious (29, 30, 107); reversal of the entrenched mutation would 

then be unlikely unless the restrictive substitution were itself reversed or another permissive 

substitution occurred. 

The extent to which epistasis-induced contingency and entrenchment actually affected 

protein sequence evolution remains unclear, however, because there is no consensus on the 

prevalence, effect size, or mechanisms of epistasis among historical substitutions. Deep 

mutational scans have revealed frequent epistasis among the many possible mutations within 

proteins (21, 22, 74, 75, 124), but how these interactions affect the substitutions that actually 

occurred during historical evolution is not known. Historical case studies have shown that 

particular substitutions were contingent (42, 57, 69, 70) or became entrenched during evolution 

(107), but whether these are examples of a general phenomenon is unknown. Computational 

approaches suggest pervasive contingency and entrenchment among substitutions (28-31, 79, 83, 

86), but some of these analyses rely on models of uncertain adequacy (56, 87, 125), and their 

claims have not been experimentally validated. Swapping sequence states among extant 
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orthologs reveals frequent epistasis among substitutions (33), but this “horizontal” approach, 

unpolarized with respect to time, leaves unresolved whether permissive or restrictive interactions 

are at play (126). Some experimental studies have systematically examined epistasis among 

substitutions in an historical context, but most have measured effects on protein function (33, 34) 

or stability (35, 56), leaving unexamined the prevalence of epistasis with respect to fitness – the 

phenotype that directly affects evolutionary fate. Others have focused on fitness but used 

methods that cannot detect effects of relatively small magnitude, which could be both 

widespread and consequential for evolutionary processes (18, 34). 

We directly evaluated the roles of contingency and entrenchment on historical sequence 

evolution by precisely quantifying changes over time in the fitness effects of all substitutions that 

accumulated during the long-term evolution of heat shock protein 90 (Hsp90) from a deep 

eukaryotic ancestor to S. cerevisiae. Hsp90 is an essential molecular chaperone that facilitates 

folding and regulation of substrate proteins through an ATP-dependent cycle of conformational 

changes, modulated by co-chaperone proteins. Orthologs from other fungi, animals, and protists 

can complement Hsp90 deletion in S. cerevisiae (127, 128), indicating that the protein’s essential 

molecular function is conserved over large evolutionary distances. To quantify the context-

dependence of historical sequence changes in Hsp90, we used a sensitive deep sequencing-based 

bulk fitness assay (119) to characterize protein libraries in which each ancestral amino acid is 

reintroduced into an extant Hsp90 and each derived state is introduced into a reconstructed 

ancestral Hsp90. We focused our experiments on the N-terminal domain (NTD) of Hsp90, which 

mediates ATP-dependent conformational changes. 
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3.3 Results 

3.3.1 The historical trajectory of Hsp90 sequence evolution 

We inferred the maximum likelihood phylogeny of Hsp90 protein sequences from 261 

species of Amorphea (the clade comprising Fungi, Metazoa, Amoebozoa, and related lineages 

(129)), rooted using green algae and plants as an outgroup (Fig. 3.1a, Appendix 1 Fig. A1.1). We 

reconstructed ancestral NTD sequences at all nodes along the trajectory from the common 

ancestor of Amorphea (ancAmoHsp90) to extant S. cerevisiae (ScHsp90) and identified 

substitutions as differences between the most probable reconstructions at successive nodes.  

 

 
Figure 3.1. Ancestral states are deleterious in the yeast Hsp90 NTD. a, Maximum likelihood 
phylogeny of Hsp90 protein sequences from Amorphea. The evolutionary trajectory studied, 
from the last common ancestor of Amorphea to modern S. cerevisiae, is indicated by a dark 
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(Figure 3.1, continued) black line. Major taxonomic groups are labeled in gray. Ancestral and 
extant genotypes characterized in this study are in black. Complete phylogeny with taxon names 
is in Appendix 1 Fig. A1.1. b, Statistical confidence in ancestral amino acid states. For each of 
the 98 inferred ancestral states in the NTD, the highest posterior probability of the state at any 
internal node along the trajectory is shown. c, Distribution of selection coefficients of individual 
ancestral states when introduced into ScHsp90, measured as the logarithm of relative fitness 
compared to ScHsp90 in a deep-sequencing based bulk competition assay. Dashed line indicates 
neutrality. Inset, close view of the region near s = 0. In each histogram bin, colors show the 
proportion of ancestral states with selection coefficients in that range that are estimated to be 
neutral (white), deleterious (gray), or beneficial (blue) using a mixture model that takes account 
of experimental error in measuring fitness (see Appendix 1 Fig. A1.4). 

 
 

Along this entire trajectory, substitutions occurred at 72 of the 221 sites in the NTD; 

because of multiple substitutions, 98 unique ancestral amino acid states existed at these sites at 

some point in the past and have since been replaced by the ScHsp90 state. The vast majority of 

these 98 ancestral states are reconstructed with high confidence (posterior probability >0.95) in 

one or more ancestors along the trajectory (Fig. 3.1b), and every ancestral sequence has a mean 

posterior probability across sites of >0.95 (Appendix 1 Fig. A1.2a-c). 

 

3.3.2 Entrenchment and irreversibility  

To measure the fitness effects of ancestral amino acids when they are re-introduced into 

an extant Hsp90, we created a library of ScHsp90 NTD variants, each of which contains one of 

the 98 ancestral states. We determined the per-generation selection coefficient (s) of each 

mutation to an ancestral state relative to ScHsp90 via bulk competition monitored by deep 

sequencing, a technique with highly reproducible results (Appendix 1 Fig. A1.3). Our assay 

system reduces Hsp90 expression to ~1% of the endogenous level (130), which magnifies the 

fitness consequences of Hsp90 mutations, enabling us to detect effects of small magnitude.  
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We found that the vast majority of reversions to ancestral states in ScHsp90 are 

deleterious (Fig. 3.1c). Using a mixture model to account for experimental noise in our fitness 

measurements, we estimate that 92% of all reversions reduce the fitness of ScHsp90 (95% CI 

83-99%; Fig. 3.1c, Appendix 1 Fig. A1.4). Three other statistical methods that differ in their 

assumptions yielded estimates that between 54% and 95% of reversions are deleterious 

(Appendix 1 Fig. A1.5a). Two reversions cause very strong fitness defects (s = -0.38 and -0.54), 

but the typical reversion is only mildly deleterious (median s = -0.010, P = 1.2 ´ 10-16, Wilcoxon 

rank sum test; Fig. 3.1c). This conclusion is robust to excluding ancestral states that are 

reconstructed with any statistical ambiguity (P = 4.5 ´ 10-14). The magnitude of each mutation’s 

negative effect on fitness correlates with indicators of site-specific evolutionary, structural, and 

functional constraint, corroborating the view that they are authentically deleterious (Appendix 1 

Fig. A1.6).  

These results do not imply that reversions can never happen—12 sites did undergo 

substitution and reversion at some point along the lineage from ancAmoHsp90 to ScHsp90. 

Rather, our observations indicate that at the current moment in time, most ancestral states are 

selectively inaccessible, irrespective of whether they were available at some moment in the past 

or might become so in the future (131). 

 

3.3.3 Intramolecular versus intermolecular epistasis 

Reversions to ancestral states might be deleterious because the derived states were 

entrenched by subsequent substitutions within Hsp90 (intramolecular epistasis) (29, 30); 

alternatively, they might be incompatible with derived states at other loci in the S. cerevisiae 

genome (intermolecular epistasis), or the derived states might unconditionally increase fitness. 
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Entrenchment because of intramolecular epistasis predicts that introducing into ScHsp90 sets of 

deleterious ancestral states that existed together at ancestral nodes should not reduce fitness as 

drastically as would be predicted from the individual mutations’ effects. To test this possibility, 

we reconstructed complete NTDs from two ancestral Hsp90s on the phylogenetic trajectory (Fig. 

3.2a, Appendix 1 Fig. A1.2) and assayed their relative fitness in S. cerevisiae as chimeras with 

ScHsp90’s other domains. This design provides a lower-bound estimate of the extent of 

intramolecular epistasis, because it does not eliminate interactions between substitutions in the 

NTD and those in other domains of Hsp90.  

 
Figure 3.2. Fitness effects of historical substitutions are modified by intramolecular 
epistasis. For each node along the trajetory from ancAmoHsp90 to ScHsp90 (black line), the 
predicted or actual selection coefficient of the entire NTD genotype is represented from green (s 
= 0) to orange (s = -1.5). a, The Hsp90 phylogeny, represented as in Fig. 3.1a. b, The predicted 
selection coefficient of each ancestral sequence relative to ScHsp90 was calculated as the sum of 
the selection coefficients of each ancestral state present in that ancestor when measured 
individually in ScHsp90. c, The predicted selection coefficient of each sequence relative to 
ancAmoHsp90 was calculated as the sum of the selection coefficients of each derived state 
present at that node when measured individually in ancAmoHsp90. d, Experimentally 
determined selection coefficients for ancAmoHsp90 and ancAscoHsp90 relative to ScHsp90. For 
selection coefficients of each genotype, see Appendix 1 Fig. A1.7. 
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We found that intramolecular epistasis is the predominant cause of entrenchment. The 

first reconstruction, ancAscoHsp90, from the ancestor of Ascomycota fungi (estimated age ~450 

million years (132)), differs from ScHsp90 at 42 NTD sites. If the fitness effects of these 

ancestral states when combined were the same as when introduced individually, they would 

confer an expected fitness of 0.65 (95% CI 0.61–0.69; Fig. 3.2b). When introduced together, 

however, the actual fitness is 0.99 (Fig. 3.2d, Appendix 1 Fig. A1.7a), indicating that the current 

fitness deficit of ancestral states is caused primarily by deleterious epistatic interactions within 

the NTD.  

The older ancestor, ancAmoHsp90 (estimated age ~1 billion years (133)), differs from 

ScHsp90 at 60 NTD sites. When combined, these differences would confer an expected fitness of 

0.23 (95% CI 0.21–0.26; Fig. 3.2b), but the actual fitness of the NTD is 0.43 (Appendix 1 Fig. 

A1.2d, Fig. A1.7a), again indicating strong epistasis within the NTD. We hypothesized that the 

remaining fitness deficit caused by the ancAmoHsp90 NTD could be attributed to intramolecular 

epistasis between the NTD and substitutions in the other Hsp90 domains. We identified a 

candidate substitution in the protein’s middle domain that physically interacts with NTD residues 

to form the ATP-binding site (134); reverting this substitution to the ancAmorphea state (L378i) 

together with the ancAmorphea NTD increases fitness to 0.96 (Fig. 3.2d, Appendix 1 Fig. 

A1.7a).  

These findings indicate that virtually all the context-dependent deleterious effects of 

ancestral states are caused by intramolecular interactions within the NTD and with one other site 

in the Hsp90 protein. Derived states that emerged along the Hsp90 trajectory have been 

entrenched by subsequent substitutions within the same protein, which closed the direct path 

back to the ancestral amino acid without causing major changes in function or fitness (30). 
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3.3.4 Contingency and permissive substitutions 

 We next determined whether the derived states that evolved during the protein’s history 

were contingent on prior permissive substitutions. We constructed a library of variants of the 

ancAmoHsp90 NTD, the deepest ancestor of the trajectory, each of which contains one of the 98 

forward mutations to a derived state. We cloned this NTD library into yeast as a chimera with 

ScHsp90’s other domains (with site 378 in its ancestral state) and used our deep sequencing-

based bulk fitness assay to measure the selection coefficient of each mutation relative to 

ancAmoHsp90 (Appendix 1 Fig. A1.3d,e).  

We found that about half of mutations to derived states were selectively unfavorable (Fig. 

3.3a). After accounting for experimental noise using a mixture model, we estimate that 48% of 

derived states reduce ancAmoHsp90 fitness (95% CI 29–74%), and 32% are neutral (95% CI 0–

57%; Appendix 1 Fig. A1.8); three other statistical approaches gave similar results (Appendix 1 

Fig. A1.5a). Twenty percent of the derived states are beneficial in our assay (95% CI 9–42%), 

which could be because they are unconditionally advantageous or because of epistatic 

interactions with other loci in S. cerevisiae or other regions of ScHsp90. Two derived states had 

very strong fitness defects, but the typical derived state is weakly deleterious (median s = -0.005, 

P = 5.8 ´ 10-4, Wilcoxon rank sum test; Fig. 3.3a).  

As with the reversions to ancestral states, the effects of individual derived states, as 

measured in the ancestral background, predict fitness consequences far greater than observed 

when the derived states are combined in the Hsp90 genotypes that existed historically along the 

phylogeny (Fig. 3.2c,d, Appendix 1 Fig. A1.7b). Thus, many derived states would have been 

deleterious if they had occurred in the ancestral background, but they became accessible 

following subsequent permissive substitutions that occurred within Hsp90. Taken together, the 
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data from the ancestral and derived libraries indicate that 77% of the amino acid states that 

occurred along this evolutionary trajectory were contingent on prior permissive substitutions, 

entrenched by subsequent restrictive substitutions, or both (Fig. 3.3b). 

 
Figure 3.3. Widespread contingency and entrenchment. a, Distribution of measured selection 
coefficients of derived NTD states when introduced singly into ancAmoHsp90. Dashed line 
indicates neutrality. In each histogram bin, colors show the proportion of derived states with 
selection coefficients in that range that are estimated to be neutral (white), deleterious (gray), or 
beneficial (blue) using a mixture model that takes account of experimental error in measuring 
fitness (see Appendix 1 Fig. A1.8). b, The fraction of pairs of ancestral and derived states that 
are inferred to be contingent, entrenched or both. Pairs of ancestral and derived states at each site 
can be classified by the relative fitness of the two states when measured in ancAmoHsp90 or in 
ScHsp90: ancestral state more fit (A larger than D), derived state more fit (D larger than A), or 
fitnesses indistinguishable (A and D same size). The fraction of pairs in each category was 
estimated as the product of the posterior probabilities that each pair of sites is in the relevant 
selection category (ancestral state with fitness greater than, less than, or indistinguishable from 
the derived state) in the ScHsp90 and the ancAmoHsp90 backgrounds.  

 
3.3.5 Specificity of epistatic interactions 

Epistatic effects on fitness can emerge from specific genetic interactions between 

substitutions that directly modify each other’s effect on some molecular property, or from 

nonspecific interactions between substitutions that are additive with respect to bulk molecular 

properties (e.g. stability (34, 114)) if those properties nonlinearly affect fitness (7, 135, 136).  

To explore which type of epistasis predominates in the long-term evolution of Hsp90, we 

first investigated the two strongest cases of entrenchment, the strongly deleterious reversions 
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V23f and E7a (upper-case letters indicate the ScHsp90 state and lower-case the ancestral state). 

We sought candidate restrictive substitutions for each of these large-effect reversions by 

examining patterns of phylogenetic co-occurrence. Substitution f23V occurred not only along the 

trajectory from ancAmoHsp90 to ScHsp90 but also in parallel on another fungal lineage; in both 

cases, candidate epistatic substitution i378L co-occurred on the same branch (Appendix 1 Fig. 

A1.9a,b). As predicted if i378L entrenched f23V, we found that introducing the ancestral state 

i378 in ScHsp90 relieves the deleterious effect of the ancestral state f23 (Fig. 3.4a). These two 

residues directly interact in the protein’s tertiary structure to position a key residue in the ATPase 

active site (Appendix 1 Fig. A1.9c,d), explaining their specific epistatic interaction.  

 
Figure 3.4. Epistatic interactions are specific. Large-effect deleterious reversions and 
restrictive substitutions that contributed to their irreversibility. For each single, double, or triple 
mutant in ScHsp90, the selection coefficient relative to ScHsp90 is shown, as assessed in 
monoculture growth assays. Lines connect genotypes that differ by a single mutation; solid lines 
indicate the effect of the large-effect reversions in each background. Error bars, SEM for 2 to 4 
replicates (see Methods; absence of error bar indicates one replicate). Data points are labeled by 
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(Figure 3.4, continued) amino acid states: lower case, ancestral state; upper case, derived state. 
Mutations tested in each cycle are in the bottom-left corner; those in the same color interact 
specifically with each other. a, Deleterious reversion V23f is ameliorated by L378i. b, 
Deleterious reversion E7a is partially ameliorated by N151a or T13n. c, L378i does not 
ameliorate E7a. d, N151a and T13n do not ameliorate V23f. 
 

 In the case of E7a—the other reversion strongly deleterious in ScHsp90—the ancestral 

state was reacquired in a closely related fungal lineage. We reasoned that the substitutions that 

entrenched a7E on the lineage leading to ScHsp90 must have themselves reverted or been further 

modified on the fungal branch in which reversal E7a occurred. We identified two candidates 

(n13T and a151N) that met these criteria (Appendix 1 Fig. A1.10a,b,c). As predicted, 

experimentally introducing the ancestral states n13 or a151 into ScHsp90 relieves much of the 

fitness defect caused by the ancestral state a7, indicating that substitutions n13T and a151N 

entrenched a7E (Fig. 3.4b). These three sites are on interacting secondary structural elements that 

are conformationally rearranged when Hsp90 converts between ADP- and ATP-bound states 

(Appendix 1 Fig. A1.10d,e).  

To test whether these modifiers specifically restrict particular substitutions or are general 

epistatic modifiers, we asked whether the restrictive substitutions that entrenched one 

substitution also modify the effects of the other (34). As predicted if the interactions among these 

sets of substitutions are specific, introducing L378i does not ameliorate the fitness defect caused 

by E7a, and introducing T13n or N151a does not ameliorate the fitness defect caused by V23f 

(Fig. 3.4c,d). These data indicate that specific biochemical mechanisms underlie the restrictive 

interactions for these large-effect examples of epistatic entrenchment. 

Finally, we investigated whether the epistatic interactions among the set of small-effect 

substitutions in this trajectory are also specific or the nonspecific result of a threshold-like 

relationship between fitness and some bulk property such as stability (34, 114). If epistasis is 
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mediated by a nonspecific threshold relationship, mutations that decrease fitness in one 

background will never be beneficial in another, although they can be neutral if buffered by the 

threshold (Fig. 3.5a) (18, 34, 56). In contrast, specific epistatic interactions can switch the sign of 

a mutation’s selection coefficient in different sequence contexts (Fig. 3.5b) (135). As predicted 

under specific epistasis, we found that for most differences between ancAmoHsp90 and ScHsp90 

(65%), the ancestral state confers increased fitness relative to the derived state in the ancestral 

background but decreases it in the extant background (Fig. 3.5c). The selection coefficients of 

mutations are negatively correlated between backgrounds (P=0.009), indicating that the 

substitutions that became most entrenched in the present also required the strongest permissive 

effect in the past. This pattern is expected if the structural constraints that determine the selective 

cost of having a suboptimal state at some site are conserved over time, but the specific states 

preferred depend on the residues present at other sites.  

Taken together, these findings indicate that most epistasis during the long-term evolution 

of Hsp90 involved specific one-to-one (or few-to-few) interactions among sites, not general 

effects on the protein’s tolerance to mutation. 
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Figure 3.5. A daisy-chain model of epistasis. a,b, Expected relationship under two models of 
epistasis between selection coefficients of ancestral-to-derived mutations (sij) when introduced 
into ancestral (x-axis) or derived (y-axis) backgrounds. a, Nonspecific epistasis: if genetic  
interactions are the nonspecific result of a threshold-like, buffering relationship between stability 
(or another bulk property) and fitness (34, 114), then the effects of strongly deleterious mutations 
will be positively correlated between the two backgrounds, but weakly deleterious mutations in 
the less stable background may be neutral in the more stable background (yellow, ancAmoHsp90 
more stable; green, ScHsp90 more stable). b, Specific epistasis: if interactions reflect specific 
couplings between sites, then mutations from ancestral to derived states can be deleterious in the 
ancestral background but beneficial in the derived background (upper left quadrant). c, Measured 
selection coefficients for ancestral-derived state pairs that differ between ancAmoHsp90 and 
ScHsp90. Dashed lines, s = 0. Error bars, SEM from two replicate bulk competition 
measurements. r, Pearson correlation coefficient and associated P value. Full distribution 
showing strongly deleterious outliers in the ScHsp90 or ancAmoHsp90 data is shown in 
Appendix 1 Fig. A1.10f. d, Daisy-chain model of specific epistatic interactions. Each square 
shows the mutant cycle for a pair of substitutions (A and B or B and C; lower-case, ancestral 
state; upper-case, derived), one of which is permissive for the other. Each circle is a genotype 
colored by its fitness (w): white, neutral; red, deleterious. Edges are single-site amino acid 
changes. The cube shows the combined mutant cycle for all three substitutions. Permissive 
substitutions become entrenched when the mutation that was contingent upon it occurs. 
Substitutions in the middle of the daisy-chain, which require a permissive mutation and are 
permissive for a subsequent mutation, are both contingent and entrenched. 
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3.4 Discussion 

3.4.1 Relation to prior work 

We observed widespread and specific epistasis over the course of a billion years of 

Hsp90 evolution, during which the protein’s function, physical architecture, and fitness were 

conserved. The fraction of historical substitutions that were contingent on permissive 

substitutions, entrenched by restrictive substitutions, or both—about 80%—is considerably 

higher than suggested by previous experimental work (33-35) and some computational analyses 

(79), rivaling the highest estimates from computational studies (28, 30, 31). One explanation for 

the more widespread epistatic interactions in our study may be our method’s capacity to detect 

much smaller growth deficits than have been discernable in previous experimental studies.  

Another difference from previous research is that we primarily observed specific 

epistasis, whereas several studies have found a dominant role for nonspecific stability-mediated 

epistasis, particularly during the short-term evolution of viruses (34, 56, 69). This disparity could 

be attributable to a difference in selective regime or in time scale: the epistatic constraints caused 

by specific interactions are expected to be maintained over far longer periods of time than those 

caused by nonspecific interactions, which are easily replaced by other substitutions because of 

the many-to-many relationship between permissive and permitted amino acid states (34, 56, 

135). The prevalence and type of epistasis may also vary because of differences in proteins’ 

physical architectures. Additional case studies will be necessary to evaluate the causal role of 

these and other factors in determining the nature of epistatic interactions during evolution. 
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3.4.2 Limitations 

Our strategy has some known limitations, but none are likely to change our major 

conclusions. For example, we assayed the effect of long-past substitutions in the context of 

extant yeast cells. Our experiments, however, indicate that there is only very weak epistasis for 

fitness between historical substitutions within Hsp90 and those at other loci, because the 

reconstructed ancestral Hsp90 chimeras cause a fitness deficit of only 0.01 to 0.04 when 

introduced into S. cerevisiae cells—much smaller than the sum of intramolecular 

incompatibilities revealed by introducing the ancestral states individually. Our finding of 

widespread contingency and entrenchment is therefore not an artifact of incompatibilities 

between ancestral Hsp90 states and the genotype of present-day S. cerevisiae at other loci. 

A second potential limitation is that the ancestral states we tested were reconstructed 

phylogenetically, not known empirically. But the vast majority of states were inferred with high 

statistical confidence, because the Hsp90 NTD is well conserved and we used a densely-sampled 

alignment. The ambiguity that was present primarily concerned the specific ancestral node at 

which an inferred ancestral state was present, not whether or not it was ancestral somewhere 

along the trajectory, which is the key inference for our purposes. Further, even when all states 

with any degree of statistical uncertainty in the ancestral reconstruction were excluded from the 

analysis, the remaining data strongly supported our conclusions concerning contingency and 

entrenchment. 

Finally, we measured fitness under a particular set of experimental conditions. Our assay 

system reduces Hsp90 expression to ~1% of the endogenous level (130). Based on previous 

work quantifying the relationship between Hsp90 function, expression, and growth rate (130), 

we estimate that the average selection coefficient of -0.01 we observed among contingent or 
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entrenched substitutions corresponds to a fitness deficit of approximately s = -5 ´ 10-6 under 

native-like expression levels. Mutations with selection coefficients in this range would likely be 

subject to purifying selection in large microbial populations (137-139). Our assay also tests 

fitness under log-phase growth conditions in rich media. A more heterogeneous or demanding 

environment would likely increase the magnitude of selective effects of Hsp90 mutations, 

because stress should amplify the fitness consequences of mutations in the proteostasis 

machinery. 

 

3.4.3 Implications 

Our observation that contingency and entrenchment affected the majority of historical 

substitutions suggests a daisy-chain model by which genetic interactions structured long-term 

Hsp90 evolution (Fig. 3.5d). A permissive mutation becomes entrenched and irreversible once a 

substitution contingent upon it occurs; if the contingent substitution subsequently permits a third 

substitution, it too becomes entrenched (28, 30).  

Most of the substitutions along the trajectory from ancAmoHsp90 to ScHsp90 were both 

contingent and entrenched, suggesting that they occupy an internal position in this daisy chain. 

Each of these changes closed reverse paths at some sites and opened forward paths at others, 

which—if taken—would then entrench the previous step. Evolving this way over long periods of 

time, proteins come to appear exquisitely well-adapted to the conditions of their existence, with 

most present states superior to past ones. The conditions that make today’s states so fit, however, 

include—or are even dominated by—the transient internal organization of the protein itself. 
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3.5 Methods 

Phylogenetic analysis and ancestral reconstruction. We obtained Hsp90 protein 

sequences from the Amorphea clade (129) from NCBI, the JGI Fungal Program, the Broad 

Institute Multicellularity Project, the literature (140), and Iñaki Ruiz-Trello. Each protein was 

used as a query in a BLASTp search against the human proteome to identify and retain Hsp90A 

orthologs. We used CD-HIT (141) to filter proteins with high sequence similarity. We removed 

sequences with >67% missing characters and highly diverged, unalignable sequences. Remaining 

sequences were aligned with Clustal Omega (142). Lineage-specific insertions were removed, as 

were unalignable linker regions (ScHsp90 sites 1-3, 225-237, 686-701). We added six Hsp90A 

sequences from Viridiplantae as an outgroup, resulting in a final alignment of 267 protein 

sequences and 680 sites. 

We inferred the maximum likelihood (ML) phylogeny given our alignment and the LG 

model (143) with gamma-distributed among-site rate variation (4 categories) and ML estimates 

of amino acid frequencies, which was the best-fit model as judged by AIC. The phylogeny was 

inferred using RAxML version 8.1.17 (144). The ML phylogeny reproduces accepted 

relationships between major taxonomic lineages (129, 145-149). Most probable ancestral 

sequences were reconstructed on the maximum likelihood phylogeny using the AAML module 

of PAML version 4.4 (150) given the alignment, ML phylogeny, and LG+G model. The 

trajectory of sequence change was enumerated from the amino acid sequence differences 

between successive ancestral nodes on the lineage from the common ancestor of Amoebozoa + 

Opisthokonta (ancAmorphea) to S. cerevisiae Hsp82 (ScHsp90, Uniprot P02829). 

Coding sequences for the most probable ancestral amino acid sequences of the Hsp90 N-

terminal domain (NTD) from ancAmorphea (ancAmoHsp90) and the common ancestor of 
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Ascomycota yeast (ancAscoHsp90) were synthesized by IDT. These sequences were cloned as 

chimeras with the ScHsp90 middle and C-terminal domains and intervening linkers via Gibson 

Assembly. AncAmoHsp90 also carries an additional reversion to the ancAmorphea state at site 

378 in the middle domain (Appendix 1 Fig. A1.2d), which is part of a loop that extends down 

and interacts with ATP and the NTD (134, 151).  

Generating mutant libraries. ScHsp90 and ancAmoHsp90 gene constructs were 

expressed from the p414ADHΔTer plasmid (130). The ScHsp90 library consists of variants of 

the ScHsp90 NTD, each containing one mutation to an ancestral amino acid state. The 

ancAmoHsp90 library consists of variants of the ancAmoHsp90 NTD, each containing one 

mutation to a derived state. Two sets of PCR primers were designed for each mutation, to 

amplify Hsp90 NTD fragments N-terminal and C-terminal to the mutation of interest; primers 

introduce the mutation of interest and generate a 25-bp overlap between fragments, as well as 20-

bp overlaps between each fragment and the destination vector for gene re-assembly. PCR was 

conducted with Pfu Turbo polymerase (Agilent) for 15 amplification cycles. The resulting PCR 

fragments were stitched together with a 10-cycle assembly PCR, pooled, and combined via 

Gibson Assembly (NEB) with a linearized p414ADHΔTer Hsp90 destination vector excised of 

the NTD. 

Barcode labeling of library genotypes. Following construction of the plasmid libraries, 

each variant in the library was tagged with a unique barcode to simplify sequencing steps during 

bulk competition (152). A pool of DNA constructs containing a randomized 18 base-pair barcode 

sequence (N18) and Illumina sequencing primer annealing regions (IDT) was cloned 200 

nucleotides downstream from the hsp90 stop codon via restriction digestion, ligation, and 

transformation into chemically-competent E. coli. Cultures with different amounts of the 
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transformation reaction were grown overnight and the colony forming units in each culture were 

assessed by plating a small fraction. We isolated DNA from the transformation that contained 

approximately 10-20 fold more colony-forming units than mutants, with the goal that each 

mutant would be represented by 10-20 unique barcodes.  

To associate barcodes with Hsp90 mutant alleles, we conducted paired end sequencing of 

each library using primers that read the N18 barcode in the first read and the Hsp90 NTD in the 

other. To generate short DNA fragments from the plasmid library that would be efficiently 

sequenced, we excised the gene region between the NTD and the N18 barcode via restriction 

digest, followed by blunt ending with T4 DNA polymerase (NEB) and plasmid ligation at a low 

concentration (3 ng/µL) to favor circularization over bi-molecular ligations. The resulting DNA 

was re-linearized by restriction digest, and Illumina adapter sequences were added via an 11-

cycle PCR. The resulting PCR products were sequenced using an Illumina MiSeq instrument 

with asymmetric reads of 50 bases and 250 bases for Read1 and Read2 respectively. After 

filtering low quality reads (Phred scores < 10), the data were organized by barcode sequence. For 

each barcode that was read more than 3 times, we generated a consensus sequence of the N-

domain indicating the mutation that it contained. 

Bulk growth competitions. For bulk fitness assessments, we transformed S. cerevisiae 

with the ScHsp90 library along with wildtype ScHsp90 and a no-insert control; we also 

transformed S. cerevisiae with the ancAmoHsp90 library along with wildtype ScHsp90, wildtype 

ancAmoHsp90, and a no-insert control. Concentrations of plasmids were adjusted to yield a 

2:6:1 molar ratio of wildtype: no-insert control: average variant in the library. Plasmid libraries 

and corresponding controls were transformed into the DBY288 Hsp90 shutoff strain (16, 153), 

resulting in ~150,000 unique yeast transformants representing 50-fold sampling for the average 
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barcode. Following recovery, transformed cells were washed 5 times in SRGal-W (synthetic 1% 

raffinose and 1% galactose lacking tryptophan) media to remove extracellular DNA, and then 

transferred to plasmid selection media SRGal-W and grown at 30°C for 48 hours with repeated 

dilution to maintain the cells in log phase of growth. To select for function of the plasmid-borne 

Hsp90 allele, cells were shifted to shutoff conditions by centrifugation, washing and re-

suspension in 200 mL SD-W (synthetic 2% dextrose lacking tryptophan) media and ampicillin 

(50µg/mL), and grown at 30°C 225 rpm. Following a 16-hour growth period required to shut off 

expression of the wildtype chromosomal Hsp90, we collected samples of ~108 cells at 8 or more 

time points over the course of 48 (ScHsp90 library) or 31 (ancAmoHsp90 library) hours and 

stored them at -80°C. Cultures were maintained in log phase by regular dilution with fresh 

media, maintaining a population size of 109 or greater throughout the bulk competition. Bulk 

competitions of each library were conducted in duplicate from independent transformations. 

DNA preparation and sequencing. We collected plasmid DNA from each bulk 

competition time point as previously reported (154). Purified plasmid was linearized with AscI. 

Barcodes were amplified by 18 cycles of PCR using Phusion polymerase and primers that add 

Illumina adapter sequences, as well as an 8-bp identifier used to distinguish among libraries and 

time points. Identifiers were designed so that each differed by more than two bases from all 

others to avoid misattributions due to sequencing errors. PCR products were purified two times 

over silica columns (Zymo research), and quantified using the KAPA SYBR FAST qPCR Master 

Mix (Kapa Biosystems) on a Bio-Rad CFX machine. Samples were pooled and sequenced on an 

Illumina NextSeq (ancAmoHsp90 library) or HiSeq 2000 (ScHsp90 library) instrument in single-

end 100 bp mode. 
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Analysis of bulk competition sequencing data. Illumina sequence reads were filtered 

for Phred scores >20, strict matching of the sequence of the intervening bases to the template, 

and strict matching of the N18 barcode and experimental identifier to those that were expected in 

the given library. Reads that passed these filters were parsed based on the identifier sequence. 

For each identifier, the data was condensed by generating a count of each unique N18 read. The 

unique N18 count file was then used to identify the frequency of each mutant using the variant-

barcode association table. For each variant in the library, the counts of each associated barcode 

were summed to generate a cumulative count for that mutant.  

Determination of selection coefficient. The ratio of the frequency of each variant in the 

library relative to wildtype (ancAmoHsp90 or ScHsp90) was determined at each time point, and 

the slope of the logarithm of this ratio versus time (in number of generations) was determined as 

the raw per-generation selection coefficient (s) (155): 

s	=	d/dt	[	ln(nm	/	nwt)	]	

where nm and nwt are the number of sequence reads of mutant and wildtype, respectively, and 

time is measured in number of wildtype generations. No-insert plasmid selection coefficients 

were determined from the first three time points because their counts drop rapidly over time. 

Mutants with selection coefficients within three standard deviations of the mean of no-insert 

variants were considered null-like and also analyzed based on the first three time points. For all 

other variants, selection coefficients were determined from all time points. Final selection 

coefficients for each variant were scaled in relative fitness space (w = es) such that the Hsp90 

null allele, which is lethal, has a relative fitness of 0 (s = -¥). This definition of relative fitness, 

unlike that which defines w = 1 – s, has the advantage of making selection coefficients additive 
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and reversible (the selection coefficient of mutation from state i to j is the opposite of the 

selection coefficient of that from j to i) (156). 

Generation of individual mutants and monoculture analysis of yeast growth. To 

measure the relative fitness of ancAscoHsp90, mutations missed in the bulk libraries, and 

genotypes in mutant cycles that we sought to test in combination for epistatic interactions, we 

assayed growth rate in monoculture and related this to fitness, which assumes the relative rate of 

growth of two genotypes is the same in isolation as in direct competition (155). The growth rate 

of individually cloned mutants was estimated over 30 hours of growth with periodic dilution to 

maintain log-phase growth, as per Jiang et al. (130). Growth rates were determined as the slope 

of the linear model relating the log-transformed dilution-corrected cell density to time. The 

growth rate was converted to an estimate of the selection coefficient by taking the difference in 

growth rate (Malthusian parameter) between mutant and wildtype and multiplying this by the 

wildtype generation time (155), then rescaling selection coefficients in relative fitness space such 

that a null mutant analyzed in parallel has relative fitness 0 (s = -¥). 

Individual mutants of ancAmoHsp90 and ScHsp90 were generated in the p414ADHΔTer 

background by Quikchange site-directed mutagenesis, confirmed by Sanger sequencing. 

Mutations that were generated and assayed in ancAmoHsp90 (with number of replicate 

measurements in parentheses) include: S49A (n=1), T137I (n=1), V147I (n=1), I158V (n=1), 

R160L (n=1), G164N (n=1), E165P (n=1), L167I (n=1), K172I (n=1), L193I (n=1), and V194I 

(n=1). Mutations generated and assayed in ScHsp90 include: T5S (n=3), E7A (n=4), T13N 

(n=3), V23F (n=2), N151A (n=3), L378I (n=2), double mutants E7A/T13N (n=3), E7A/N151A 

(n=3), T13N/N151A (n=3), V23F/T13N (n=1), V23F/N151A (n=1), E7A/L378I (n=1), 

V23F/L378I (n=1) and triple mutants E7A/T13N/N151A (n=2) and V23F/T13N/N151A (n=1).  
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Robustness of results to statistical uncertainty and technical variables. The 

conclusion that the typical ancestral state is deleterious in ScHsp90 is robust to the exclusion of 

20 ancestral states that have posterior probability < 1.0 at all ancestral nodes along the trajectory 

(P = 4.5 ´ 10-14, Wilcoxon rank sum test with continuity correction). The mutation to one 

ancestral state was missed in the bulk competition: its selection coefficient was inferred 

separately via monoculture, and including it in the analysis still leads to the conclusion that the 

typical ancestral state is deleterious (P = 7.8 ´ 10-17, Wilcoxon rank sum test with continuity 

correction).  

The conclusion that the average derived state is deleterious in ancAmoHsp90 is retained 

when we include only the 32 mutations for which the ancAmoHsp90 state is inferred with a 

posterior probability of 1.0 and the derived state is inferred with posterior probability 1.0 in at 

least one node along the trajectory (P = 1.1 ´ 10-4, Wilcoxon rank sum test with continuity 

correction). The conclusion is also robust if we include selection coefficients as determined 

separately via monoculture for mutations to 11 derived states that were missed in the bulk 

competition (P = 5.4 ´ 10-4, Wilcoxon rank sum test with continuity correction). 

 We assessed relative fitness for six genotypes (ScHsp90+E7a, ScHsp90+V23f, 

ScHsp90+N151a, ScHsp90+T13n, ancAmoHsp90, and ancAmoHsp90+i378L) both by 

monoculture and by bulk competition. These two measures are well correlated (Pearson R2 = 

0.95), although the magnitude of a fitness effect is smaller when measured by monoculture 

growth assays (Appendix 1 Fig. A1.3f), perhaps because of differences in experimental 

conditions for bulk versus monoculture growth, such as the type of growth vessel and culture 

volume (and consequential aeration). The only conclusion involving a comparison between these 

two kinds of measurements is that ancAscoHsp90 (measured via monoculture) is more fit than 
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would be predicted from the sum of selection coefficients of its component states (measured via 

bulk competition) (Fig. 3.2, Appendix 1 Fig. A1.7). We therefore used the observed linear 

relationship between the two types of fitness assays to transform ancAscoHsp90’s fitness as 

measured by monoculture (0.991); the expected fitness of ancAscoHsp90 in a bulk competition 

is 0.986, still much larger than the predicted fitness of 0.65 in the absence of epistasis. 

 Expected versus observed fitness. To identify epistasis between candidate interacting 

sites (e.g. Fig. 3.4a-d) or among the broader set of substitutions (e.g. Fig. 3.2), we compared the 

observed fitness of genotypes with multiple mutations to that expected in the absence of 

epistasis. In the absence of epistatic interactions, selection coefficients combine additively (156). 

We therefore calculated the expected selection coefficient of a genotype as the sum of selection 

coefficients of its component mutations as measured independently in a reference background 

(ancAmoHsp90 or ScHsp90). The standard error of a predicted fitness given the sum of selection 

coefficients was calculated as the square root of the sum of squared standard errors of the 

individual selection coefficient estimates, as determined from the duplicate bulk competition 

measurements. Epistasis was implicated if the observed fitness of a genotype differed from that 

predicted from the sum of its corresponding single-mutant selection coefficients. 

Estimating the fraction of deleterious mutations. We sought to determine the fraction 

of mutations in each dataset that are deleterious using a modeling approach that incorporates 

measurement error and which does not require individual mutations to be classified as 

deleterious, neutral, or beneficial. We used the mixtools package (157) in R to estimate mixture 

models of underlying Gaussian distributions that best fit the empirical distributions of mutant 

selection coefficients in each library. First, we fit a single Gaussian distribution to the measured 

selection coefficients of replicate wildtype sequences that were present in the library but 
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represented by independent barcodes. We then required one of the Gaussian distributions in each 

mixture model to have a mean and standard deviation fixed to that of the corresponding wildtype 

measurements (ScHsp90 or ancAmoHsp90), with a freely estimated mixture proportion. The 

other Gaussian components in each mixture model had a freely fit mean, standard deviation, and 

mixture proportion. Mixture models were fit to all non-outlier selection coefficients, because the 

presence of strongly deleterious selection coefficients (s < -0.04), which are unambiguously 

deleterious, interfered with model convergence. We assessed mixture models with a variable 

number of mixture components (k = 2 to 6 for the ancAmoHsp90 library and 2 to 5 for the 

ScHsp90 library, because the 6-component model would not converge), and obtained the 

maximum likelihood estimate of each component’s mean, standard deviation, and mixture 

proportion via an expectation-maximization algorithm as implemented in mixtools. We 

compared the models built for each k using AIC. For ScHsp90, the 3-component mixture model 

was favored by AIC (Appendix 1 Fig. A1.4a). For ancAmoHsp90, the 2-component and 5-

component mixture models had virtually indistinguishable AIC (Appendix 1 Fig. A1.8a), but the 

2-component mixture model had a visually suboptimal fit (Appendix 1 Fig. A1.8c,d) and 

attributed a larger proportion of mutations as being deleterious (0.53 versus 0.48 for the 5-

component mixture model), so we selected the more conservative and visually superior 5-

component mixture model. 

The mixture component derived from the wildtype sampling distribution was taken to 

represent neutral mutations in the library, and the other mixture components were taken to reflect 

non-neutral mutations. We estimated the fraction of neutral mutations in each distribution as the 

mixture proportion of the neutral mixture component.  We then estimated the proportion of 

deleterious (or beneficial) mutations as the cumulative density of all non-neutral components that 
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was below (or above) zero. These proportions were re-weighted after including the strongly 

deleterious states that were excluded from the model fitting step, as described above. 

Uncertainty in the estimated fraction of mutations that are deleterious or beneficial was 

determined via a bootstrapping procedure. For each of 10,000 bootstrap replicates, measured 

selection coefficients from the bulk competition were resampled with replacement. Mixture 

models with fixed k were fit to each bootstrap sample, and the estimated fractions of mutations 

that are deleterious, neutral, or beneficial were determined as above.  

For the representations in Figs. 3.1c and 3.3, we sought to assign a probability of being 

deleterious, neutral, or beneficial to each individual mutation. For each mutation, we calculated 

the posterior probability that it is neutral (PPneut) as the probability density of the neutral mixture 

component at the observed selection coefficient measured for the mutant (sobs), divided by the 

sum of the probability density of the neutral and non-neutral components at sobs. The posterior 

probability that a mutation is non-neutral (PPnon-neut) is 1-PPneut.  The posterior probability that a 

mutation is beneficial (PPben) was calculated as PPben = PPnon-neut if sobs > 0, and zero if sobs < 0; 

the posterior probability that a mutation is deleterious (PPdel) was calculated as PPdel = PPnon-neut 

if sobs < 0, and zero if sobs > 0. For variants with s < -0.04 that were excluded from the model 

fitting step, PPdel = 1. To generate the representations in Figures 3.1c and 3.3a, PPdel, PPben, and 

PPneut were each summed for the for the set of mutations that fall within each histogram bin. 

To estimate the probability that a pair of states exhibit contingency and/or entrenchment 

(Fig. 3.3b), we calculated the joint posterior probability as the product of the probabilities that 

each pair of sites is in the relevant selection category (ancestral state with fitness greater than, 

less than, or indistinguishable from the derived state) in the ScHsp90 and the ancAmoHsp90 

backgrounds. For sites that substituted from the ancAmoHsp90 state i to the ScHsp90 state j 
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(i®j, n = 35), i is the ancestral state and j the derived state for measurements in both 

backgrounds. For sites that substituted from the ancAmoHsp90 state i to an intermediate state j 

before substituting back to i in ScHsp90 (i®j®i, n=12), then i is the ancestral state and j derived 

in ancAmoHsp90 assay, and j is the ancestral state and i derived in ScHsp90. For sites that 

substituted from the ancAmoHsp90 state i to an intermediate state j that was further modified to 

k in ScHsp90 (i®j®k, n=25), two comparisons were made: in the first, i was ancestral and k was 

derived for measurements in both backgrounds, while in the second comparison, i was ancestral 

and j derived in ancAmoHsp90, and j ancestral and k derived in ScHsp90. 

In addition to the mixture model approach presented above, we report three independent 

methods for estimating the fraction of mutations in each dataset that are deleterious (or 

beneficial) (Appendix 1 Fig. A1.5a). First, we estimated the fraction of mutations in each 

distribution that are deleterious (or beneficial) as the fraction of observed selection coefficients 

(sobs) that are less (or greater) than zero. This counting approach assumes that, at some 

magnitude, all mutations have a true s > 0 or s < 0, in contrast to the mixture model approach 

that designates some mutations as neutral. This method would be unbiased if experimental errors 

are random and if the number of truly beneficial and truly deleterious mutations is equal. In our 

data, experimental errors are unbiased with respect to sobs (Appendix 1 Fig. A1.5b,c), but there 

appear to be more deleterious than beneficial mutations. As a result, measurement error is likely 

to cause the number of mutations with true s < 0 and sobs > 0 to exceed the number with true s > 

0 and sobs < 0; this approach is therefore expected to underestimate the fraction of mutations with 

true s < 0.  

Second, we used an empirical Bayes approach. For each mutation, we compute the 

posterior probability that it is non-neutral by comparing the likelihoods of two hypotheses: the 
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null hypothesis, that a variant is neutral and therefore s ~ N(0, SEMwt), and the alternative 

hypothesis, that a variant is non-neutral and therefore s ~ N(sobs, SEMmut). We estimated SEMwt 

by calculating the sample standard deviation of repeated wildtype fitness measurements 

(Appendix 1 Figs. A1.4b, A1.8b), divided by 2, because mutant sobs are calculated from 

duplicate measurements. We estimated SEMmut over all duplicate bulk fitness measurements, 

which makes the assumption that all variants have the same experimental error (Appendix 1 Fig. 

A1.5b,c). SEMmut was calculated as: 

SEMmut =	
12314

56
278

9
 

where :; is a measured selection coefficient of a mutant in a single replicate, :< is the 

corresponding mean selection coefficient for that mutant as calculated from both replicates, and 

= is the total number of observations from both replicates. The estimated values for SEMwt and 

SEMmut were similar (0.0040 and 0.0041, respectively). The posterior probability that a variant is 

non-neutral is calculated from the relative likelihoods of the two hypotheses, with a uniform 

prior on the two hypotheses:  

P(non-neutral) = >(1?@A|1~9(1?@A,EFGHIJ)

>(1?@A|1~9 1?@A,EFGHIJ K>(1?@A|1~9(L,EFGMJ)
 

If a variant has sobs > 0, then P(non-neutral) corresponds to a probability that a mutation is 

beneficial; if a variant has sobs < 0, then P(non-neutral) corresponds to a probability that a mutant 

is deleterious. To estimate the proportion of mutations that are in each fitness category, we 

summed the probabilities for each category across all mutants. 

 Last, we constructed a 95% confidence interval (CI) for each mutation given its mean 

selection coefficient and the estimated SEMmut described above. We then counted the fraction of 

mutations that are below (or above) zero and whose 95% CI excludes zero. This yields a 
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conservative estimate for our parameter of interest, the total fraction of mutations that are 

deleterious (or beneficial), as it is designed to indicate whether any particular mutation is 

deleterious (or beneficial), not to estimate the proportion (which does not depend on 

unequivocally classifying any one individual mutation as neutral or not). 

Data and code availability. Processed sequencing data and scripts to reproduce all 

analyses are available at github.com/JoeThorntonLab/Hsp90_contingency-entrenchment. Raw 

sequencing data from each bulk competition have been deposited in the NCBI Sequence Read 

Archive under accession SRP126524. 
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Chapter 4 

Alternative evolutionary histories in the sequence space of an ancient protein 

The work described in this chapter was published as: Tyler Starr, Lora Picton, and Joseph 

Thornton. “Alternative evolutionary histories in the sequence space of an ancient protein.” 

Nature 549:409-413 (2017). 

 

4.1 Summary 

To understand why molecular evolution turned out as it did, we must characterize not only the 

genetic path that evolution followed across the space of possible molecular sequences but also 

the many alternative trajectories that could have been but taken but were not. A large-scale 

comparison of real and possible histories would help to establish whether the outcome of 

evolution represents a unique or optimal state driven by natural selection or the contingent 

product of historical chance events (158); it would also reveal how the underlying distribution of 

functions across sequence space shaped historical evolution (1, 61). Here we combine ancestral 

protein reconstruction (126) with deep mutational scanning (10, 22-24, 119, 124) to characterize 

alternate histories in the sequence space around an ancient transcription factor, which evolved a 

novel biological function through well-characterized genetic and biochemical mechanisms (70, 

106). We found hundreds of alternative protein sequences, distributed in clusters across sequence 

space, that use diverse biochemical mechanisms to perform the derived function at least as well 

as the historical outcome. These alternatives all require prior permissive substitutions that do not 

enhance the derived function, but not all require the same permissive changes that occurred 

during history. We found that if evolution had begun from a different starting point within the 

network of sequences encoding the ancestral function, outcomes with different genetic and 
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biochemical forms would almost certainly have resulted; this contingency arises from the 

distribution of functional variants in sequence space and epistasis between amino acids. Our 

results illuminate the topology of the vast space of possibilities from which history sampled one 

path, highlighting how the trajectory and outcome of evolution depend on a serial chain of 

compounding chance events. 

 

4.2 Introduction 

We applied deep mutational scanning to the DNA-binding domain of a reconstructed 

ancestral steroid hormone receptor, whose historical trajectory of functional, genetic, and 

biochemical evolution is well understood. Steroid receptors are a family of paralogous metazoan 

transcription factors that mediate the classic biological responses to sex and adrenal steroids by 

binding to specific DNA sequences and regulating the expression of target genes. Steroid 

receptors fall into two clades that differ in their DNA-binding specificity (Fig. 4.1a): estrogen 

receptors specifically bind an inverted palindrome of the sequence AGGTCA (estrogen response 

element, ERE)(159), and receptors for androgens, progestogens, and corticosteroids prefer 

inverted palindromes of AGAACA (steroid response element, SRE)(160). Although steroid 

receptors tolerate some degeneracy in their response elements, these sequences represent the 

high-affinity consensus binding sites for each class (159, 160) and have therefore been the focus 

of extensive biochemical characterization (161-164). 

In previous work, the ancestral protein from which all steroid receptors descend 

(AncSR1) was reconstructed and shown experimentally to specifically bind ERE (70, 106). After 

duplication of AncSR1, one of the daughter proteins diverged in function to yield the subsequent 

ancestral protein AncSR2, which strongly prefers SRE. When three substitutions from this 
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historical interval are reintroduced into AncSR1, they radically shift relative affinity for ERE and 

SRE, an effect that is robust to statistical uncertainty about the ancestral sequence (165). These 

key substitutions are located on the protein’s recognition helix (RH), which directly contacts the 

response element’s major groove (161-163). Although they shift specificity, the RH substitutions 

yield a protein with affinity too low to activate transcription. Another eleven substitutions (11P) 

from this evolutionary interval – located outside the RH – were permissive, increasing affinity 

for both DNA targets, thereby allowing the protein to tolerate the function-switching RH 

substitutions (70). 

 

 
Figure 4.1. Diverse sequences and mechanisms can yield the derived DNA specificity. a, The 
historical transition in DNA-binding specificity in steroid receptors occurred through 3 changes 
in the recognition helix (RH), which required permissive substitutions (11P). Here we ask 
whether alternate recognition helix mutations (RH¢) existed that recapitulate the derived 
function, either before or after the historical permissive substitutions occurred. Preferred DNA 
response elements for each clade are shown, along with the amino acid sequence of the protein’s 
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(Figure 4.1, continued) RH (residue numbers 24-33); underlines indicate historically variable 
nucleotide and amino acid states. ERs, estrogen receptors; APGMRs, receptors for androgens, 
progestogens, glucocorticoids, and mineralocorticoids. Reconstructed ancestral proteins are 
labeled and colored by their RE preference. Dotted lines indicate possible alternate trajectories. 
b, A yeast-based FACS-seq assay for steroid receptor DNA-binding. A combinatorial library of 
160,000 RH variants (top; Xs denote variable sites) was cloned into yeast reporters containing 
ERE or SRE upstream of yEGFP. The activity of each RH variant on each response element was 
determined by coupling FACS to deep sequencing. c, GFP activation on ERE and SRE by each 
RH variant in the AncSR1+11P background. Purple dots, ERE-specific variants; green, SRE-
specific; blue, promiscuous; dark gray, non-functional; light gray, stop-codon-containing 
variants. Purple line, activity of AncSR1:EGKA on ERE; green line, activity of 
AncSR1+11P:GSKV on SRE. a.u., arbitrary fluorescence units. d, Logos showing the frequency 
of amino acid states at each variable RH position among ERE-specific and SRE-specific 
variants; n, number of variants in each class. States are colored by biochemical category (red, 
acidic; blue, basic; magenta, polar uncharged; black, large nonpolar; green, small nonpolar). 
Ancestral states for AncSR1 and AncSR2 are indicated along with corresponding residue 
numbers. e,f, Diverse biochemical mechanisms for recognition of SRE (e) or ERE (f) by the 
historical derived RH (GSKV) and an alternative SRE-specific variant (KAAI). Contacts in 
FoldX-generated structural models are shown between RH residues (circles) and DNA bases 
(letters), backbone phosphates (small circles) and sugars (pentagons, numbered by position in the 
DNA motif; dashed numbers refer to the complementary strand). Hydrogen bonds are shown as 
dashed arrows from donor to acceptor; dotted lines, non-bonded contacts. Red squares, bases that 
form hydrogen bonds in the EGKA-ERE structure that are unsatisfied in complex with an SRE-
specific RH. Only DNA contacts that vary among the analyzed structures (Appendix 2 Figure 
A2.4) are shown. 
 

4.3 Results 

4.3.1 Deep mutational scanning of an ancient evolutionary transition 

To characterize alternative outcomes and pathways by which SRE specificity could have 

evolved (Fig. 4.1a), we focused on the RH, the only portion of the protein that directly contacts 

the nucleotides that vary between ERE and SRE. We prepared a library that contains all 160,000 

combinations of all 20 amino acids at four key sequence sites in the RH – the three residues that 

historically shifted DNA specificity, plus a physically adjacent lysine that varies among the 

broader nuclear receptor superfamily. The library was constructed in AncSR1+11P, the genetic 

background that enabled the historical RH substitutions to alter DNA specificity. We engineered 
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yeast reporter strains in which the consensus ERE or SRE sequence drives expression of a 

fluorescent GFP reporter; GFP activation in this system directly relates to DNA affinity 

(Appendix 2 Fig. A2.1a) (70, 106, 164). We transformed the RH library into each reporter and 

used FACS coupled to deep sequencing (FACS-seq) to quantify the ability of each variant in the 

library to bind ERE or SRE (Fig. 4.1b, Appendix 2 Figs. A2.1-3, Table A2.1). We validated this 

method by directly measuring GFP activation of many randomly chosen variants and comparing 

these values to their FACS-seq activities (Appendix 2 Fig. A2.1e). We classified genotypes as 

ERE-specific, SRE-specific, promiscuous, or inactive; the results of all downstream analyses 

were robust to the specific classification criteria (Appendix 2 Table A2.2).  

 

4.3.2 The historical outcome is not unique in its function 

We found 828 new RH variants that are SRE-specific, binding SRE as well or better than 

the historical outcome and displaying no activity on ERE (Fig. 4.1c). The historical outcome of 

evolution was therefore not unique in encoding specificity for SRE over ERE. These alternative 

SRE-specific genotypes are not subtle variations on the historical genotype; rather, they employ 

amino acid states with diverse biochemical characteristics (Fig. 4.1d), and they discriminate 

between SRE and ERE using different sets of physical contacts (Figs. 4.1e, f, Appendix 2 Fig. 

A2.4). For example, the historical outcome (sequence GSKV) binds SRE in part via polar 

contacts from residue Lys28 to nucleotides A1 and G2, but the alternative RH genotype KAAI 

makes no polar contacts using residue 28, instead making hydrogen bonds from Lys25 to A1, 

G2, and the opposite-strand nucleotide T-3 (Fig. 4.1e). It also exhibits novel mechanisms of 

ERE-exclusion: whereas GSKV leaves the hydrogen bonding potential of C-3 unsatisfied, KAAI 

also leaves G2 and T4 unpaired, because Ala28 – unlike Lys28 of GSKV – cannot bond to G2, 
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and Ile29 interferes with a hydrogen bond to T4 made by the conserved Arg33 residue (Fig. 4.1f, 

Appendix 2 Fig. A2.4c).  

 

4.3.3 The historical outcome is not unique in its accessibility 

Although the historical outcome is not unique in its function or biochemical mechanism 

of SRE specificity, it might have been uniquely accessible from the ancestral RH. To investigate 

the distribution of functions across sequence space, we constructed a force-directed graph of 

functional RH variants (Fig. 4.2a). Each node represents a functional RH genotype, and edges 

connect RH genotypes separated by one nonsynonymous nucleotide mutation. Although the vast 

majority of RH variants are nonfunctional, virtually all of the 1351 functional variants are part of 

a single connected network that can be traversed by single-nucleotide mutations (steps) without 

visiting nonfunctional genotypes (1). ERE-specific, SRE-specific, and promiscuous variants are 

interspersed throughout the network, resulting in a very large number of potential evolutionary 

paths. The network contains several clusters of highly interconnected variants that share 

distinguishing amino acid state patterns, with epistasis and the structure of the genetic code 

magnifying separation among clusters.  

The ancestral and derived RHs (EGKA and GSKV, respectively) are connected by a path 

of just three steps, whereas the most distant proteins in the network are 13 steps apart. From the 

ancestral starting point, GSKV is not a uniquely accessible outcome: 64 other SRE-specific RHs 

are accessible in three or fewer steps without passing through nonfunctional intermediates. Some 

of these alternative outcomes can be reached in just one or two steps, and these too exhibit 

biochemically diverse amino acid states (Appendix 2 Fig. A2.5a). Similar conclusions emerge 

under a variety of evolutionary scenarios. For example, if selection against too-tight or too-weak 
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binding allows access only to genotypes with SRE affinity in a narrow range indistinguishable 

from the historical outcome, there are still hundreds of alternative variants, many of which are 

easily accessible from the historical starting point (Appendix 2 Table A2.2, column E). Even 

when trajectories are allowed only if SRE affinity increases at every step – as would occur under 

positive selection for that function – there are numerous alternative SRE-specific genotypes with 

a nontrivial probability of evolving from the ancestral RH, and all of these are more likely than 

the historical outcome (Appendix 2 Fig. A2.5a,b,c). Taken together, these data indicate that the 

historical trajectory was not the only path, or even the shortest, from the ancestral RH to a 

derived protein that is SRE specific. 

 



 79 

 
Figure 4.2. Evolvability of SRE specificity in an ancestral sequence space. a, Functional 
topology of the RH sequence space in AncSR1+11P is shown as a force-directed graph. Nodes 
are functional RH variants, colored by specificity class; SRE-specific variants accessible from 
EGKA in three or fewer mutational steps are yellow. Edges connect variants separated by one 
nonsynonymous nucleotide mutation. Densely connected sets of nodes cluster close together. 
Large clusters (grey arcs) are labeled by their defining genetic features; x’s denote variable sites 
within a cluster. Historical ancestral and derived RH genotypes are indicated. b, Distribution of 
ERE-specific starting points by number of SRE-specific outcomes reached in a trajectory no 
longer than the historical 3-step path. Black bar, ERE-specific variants that reach zero SRE-
specific outcomes because of epistasis (all possible paths of £ 3 steps are blocked by 
nonfunctional intermediates). c, Distribution of SRE-specific outcomes by number of ERE-
specific starting points that reach it by a trajectory of length £ 3 steps. Black bar, outcomes 
reached from zero starting points because of epistasis; white, outcomes reached from zero 
starting points because of the diameter of the functional network of genotypes (all starting points 
would require >3 nonsynonymous mutations irrespective of the functionality of intermediate 
genotypes). d, Distribution of pairs of ERE-specific starting points by the fraction of SRE-
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(Figure 4.2, continued) specific outcomes they reach in £ 3 steps that are shared. Black bar, 
pairs of starting points with zero shared outcomes because of epistasis; white, pairs with zero 
shared outcomes because of the diameter of the functional network of genotypes; grey hatched, 
pairs with zero shared outcomes because of the distribution of functions across sequence space 
(genotypes could have been reached in £ 3 nonsynonymous mutations from both starting points 
but none are SRE-specific). 

 

4.3.4 The historical starting point is not unique in its evolvability 

The ancestral RH was just one of many possible starting points within a large network of 

mutually accessible ERE-specific genotypes. To determine whether the evolution of SRE 

specificity depended on the starting point within this network, we identified trajectories to SRE 

specificity from all ERE-specific RHs. All but 2 ERE-specific starting points can access SRE 

specificity without passing through nonfunctional intermediates (Fig. 4.2a), and more than 90% 

can do so by paths no longer than the historical trajectory (Fig. 4.2b). This observation indicates 

that evolution of the derived specificity per se was not strongly dependent on the starting point. 

Whether any particular SRE-specific genotype would evolve, however, could be contingent on 

where in the network of ERE-specific variants an evolutionary trajectory begins. For each SRE-

specific RH, we asked how many ERE-specific starting points could access it by a path no longer 

than the historical three-step trajectory (Fig. 4.2c). About one-third of possible outcomes are not 

easily reached from any possible starting point – some because the large diameter of the 

functional network means that the minimum genetic distance to the closest ERE-specific variant 

is more than three nonsynonymous mutations, and some because epistasis requires trajectories 

longer than the minimum genetic distance (22, 24). Of the remaining SRE-specific variants, most 

(including the historical outcome GSKV) are readily accessible from just one or a few starting 

points, and even the most accessed outcome is easily reached from less than one-third of all 

possible starting points. As a result, most pairs of ERE-specific starting points lead to entirely 



 81 

non-overlapping sets of SRE-specific outcomes (Fig. 4.2d), which contain genetically and 

biochemically distinct sets of amino acids (Appendix 2 Fig. A2.6a). The evidence for 

dependence on starting point persists when path lengths much longer than the historical 

trajectory are considered (Appendix 2 Fig. A2.6b,c,d) and when alternate evolutionary models 

are applied (Appendix 2 Table A2.2). Taken together, these data indicate that the derived 

specificity for SRE could have evolved in many ways from AncSR1+11P, but the underlying 

genetic and biochemical form depended strongly on the starting RH genotype.  

 

4.3.5 Historical permissive substitutions are broadly permissive 

We next asked how the historical permissive substitutions affected the accessibility of the 

derived specificity and its dependence on starting point. We constructed and characterized the 

same four-site combinatorial RH library, this time in the AncSR1 background without 11P (Fig. 

4.1a, Fig. 4.3a, Appendix 2 Fig. A2.1). Removing 11P causes a large reduction in the number of 

functional variants (Fig. 4.3b) and a striking reduction in the size and connectivity of the 

functional network (Fig. 4.3c). Unlike the RH network in AncSR1+11P, many functional 

variants in AncSR1 are isolated and therefore cannot be reached from most other genotypes 

without passing through nonfunctional intermediates. Nevertheless, most functional RHs – 

including the ancestral RH (EGKA) – remain interconnected in the primary sub-network, within 

which numerous SRE-specific RHs are accessible. This indicates that although the historically 

derived RH genotype GSKV requires the historical permissive substitutions, other RH genotypes 

with the derived specificity could have evolved in the absence of 11P. The set of trajectories 

from AncSR1 to genotypes encoding SRE-specific variants, however, are more complex than 

when 11P are present: in the absence of 11P, the shortest path from the ancestral RH to the 
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closest SRE-specific genotype is 5 steps long, all paths require permissive RH steps that do not 

enhance SRE activity, and all paths pass through promiscuous intermediate genotypes (Appendix 

2 Fig. A2.7a,b). Thus, in the absence of the historical permissive substitutions, other permissive 

mutations would have been required for SRE specificity to evolve from the ancestral genotype. 

Comparison of the two networks shows that the 11P substitutions enhanced the 

accessibility of SRE specificity not only from the ancestral genotype but from all potential ERE-

specific starting points. Whereas virtually all starting points in the AncSR1+11P network could 

access at least one SRE-specific node without passing through nonfunctional intermediates, more 

than one-fourth of ERE-specific variants in the network without 11P have no connected path to 

the derived specificity, and those that can access SRE specificity require longer paths (Fig. 4.3d). 

Removing the historical permissive substitutions also increases the proportion of ERE-specific 

starting points that require a permissive step prior to acquiring activity on SRE (Fig. 4.3e). And, 

unlike the AncSR1+11P network, every path from the ancestral to the derived specificity in the 

AncSR1 space must pass through a promiscuous intermediate (Fig. 4.3e). 
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Figure 4.3. Historical permissive substitutions broadly enhanced evolvability of SRE 
specificity. a, Each RH variant’s GFP activation on ERE and SRE in the AncSR1 background; 
a.u., arbitrary fluorescence units. Figure details as in Fig. 4.1c. b, Number of RH variants in each 
functional class in the AncSR1 and AncSR1+11P backgrounds. c, Functional topology of the RH 
sequence space in AncSR1 is shown as a force-directed graph, represented as in Fig. 4.2a. d, 
Distribution of ERE-specific starting points by the length of the shortest possible path to an SRE-
specific variant in the AncSR1 (left) and AncSR1+11P (right) functional networks. 11P reduce 
the shortest RH path length (P < 10-12, Wilcoxon rank sum test with continuity correction). e, For 
all ERE-specific starting points in AncSR1 (left) and AncSR1+11P (right), the shortest path(s) to 
SRE specificity classified by characteristics of the trajectory: permissive (one or more ERE-
specific intermediates), promiscuous (one or more promiscuous intermediates), both, direct (one-
step path with neither permissive steps nor promiscuous intermediates), or no path (all paths 
require nonfunctional intermediates). If a starting point has multiple equally short paths, it 
contributes to each category proportionally. Distributions differ between the networks (P < 10-7, 
Chi-squared test with simulated p-value).  
 

Finally, we investigated the mechanism by which the historical permissive substitutions 

changed the topology of the RH sequence space and enhanced the potential for evolution across 

it. 11P were broadly permissive, increasing the number of SRE-specific genotypes in the 

network by a factor of 20 (Fig. 4.3b). Previous work has suggested that increases in protein 

stability often mediate this kind of generalized permissive effect (7, 34, 69, 135), but 11P has 
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been shown not to increase the stability of AncSR1 (70). It was previously proposed that 11P 

permitted the historical RH substitutions, which shift DNA preference but reduce affinity to a 

level below that required for activation, by nonspecifically increasing affinity for both kinds of 

response element (70). This hypothesis, which could also explain the broadly permissive effect 

of 11P on many RH genotypes, makes four testable predictions. First, those RH variants that do 

not require 11P to encode a functional SRE-specific DNA-binding domain should have greater 

affinity for SRE and higher mean fluorescence in FACS-seq than those that require 11P, whether 

or not 11P are present; we compared the predicted affinity and mean fluorescence of all 11P-

independent and 11P-dependent SRE-specific variants and found that this prediction holds true 

(Fig. 4.4a, Appendix 2 Fig. A2.8a-d). Second, if 11P nonspecifically increase affinity, they 

should not change the genetic determinants of binding within the RH; as predicted, the amino 

acids that are most enriched among SRE-specific variants do not change, but the magnitude of 

preference becomes more evenly distributed among tolerated states (Fig. 4.4b, Appendix 2 Fig. 

A2.8e). Third, if 11P are nonspecific enhancers of affinity, they should not change the 

biochemical mechanisms by which the RH confers specificity, a prediction we tested by 

identifying the site-specific biochemical properties in the RH that determine specificity for ERE 

and SRE (Appendix 2 Fig. A2.8f): we found that the determinants of SRE specificity are not 

dramatically altered by 11P (Fig. 4.4c). Fourth, if 11P nonspecifically enhance affinity by all 

RHs, they should add new functional genotypes across sequence space; we found that the set of 

variants permitted by 11P are not localized to some region of the network but instead surround 

the sparser set of variants that functioned independently of 11P (Fig. 4.4d,e). As a result, 11P’s 

nonspecific effect on affinity enhanced the connectivity of the ancestral sequence network, 

increasing the number and reducing the length and complexity of paths from ERE to SRE. 
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Figure 4.4. The effect of historical permissive substitutions is mediated by nonspecific 
increases in affinity. a, Predicted SRE-binding affinity of SRE-specific RH variants that are 
functional in the absence of 11P (yellow, n=41) or that require 11P to be functional (orange, 
n=790), modeled by FoldX in the AncSR1 (left) and AncSR2 (right) crystal structures. In each 
category, the median (bar), approximate 95% confidence interval (notch), interquartile range 
(colored box), and range (whiskers) are shown. The P-value for the difference in medians is 
shown (Wilcoxon rank sum test with continuity correction). b, Logos showing the frequency of 
amino acid states at each variable RH position among SRE-specific variants in the AncSR1 (left) 
and AncSR1+11P (right) backgrounds. States are colored by biochemical category as in Fig. 
4.1d. c, Biochemical determinants of SRE specificity in the AncSR1 (top) and AncSR1+11P 
(bottom) backgrounds. A multiple logistic regression model predicts the probability that a variant 
is SRE-specific from the biochemical properties of its amino acid state at each of the four 
variable RH sites: v, volume; h, hydrophobicity; i, isoelectric point; a, a-helix propensity. 
Colored boxes show the best-fit coefficients of this model as the change in log-odds of being 
SRE-specific per unit change in each property. Asterisks indicate site-specific determinants that 
differ significantly between the AncSR1 and AncSR1+11P background (Z-test, P < 0.05). d, The 
AncSR1+11P RH functional network, indicating the location of variants that are functional in the 
absence of 11P (yellow) and those that require 11P to be functional (orange). e, 11P permit 
immediate neighbors of 11P-independent variants. For each RH genotype that was functional in 
the absence of 11P, the number of single-mutant neighbors that became functional when 11P was 
introduced. 

 

4.4 Discussion 

Our results shed light on the roles of determinism and chance in protein evolution (7, 43, 

61, 158). The primary deterministic force is natural selection, which drives the evolution of 



 86 

forms that optimize fitness. Chance appears in two non-exclusive ways: as historical contingency 

– when the accessibility of some outcome depends on prior events that cannot be driven by 

selection for that outcome – and as stochasticity – when there are numerous possible paths to 

genotypes of similar function, and which one is realized is random (Appendix 2 Fig. A2.7c). 

Previous work has shown that historical function-switching substitutions in some proteins were 

contingent on prior permissive mutations (38, 42, 57, 69, 70), but the overall roles of chance and 

determinism in the evolution of a new function can be understood only by characterizing other 

ways that the function could have evolved. Our results point to a major role for stochasticity and 

contingency in the many possible histories by which SRE specificity could have evolved from 

AncSR1. Hundreds of genotypes encoding SRE specificity were accessible from AncSR1, but 

selection for that function alone could not have deterministically driven evolution down any of 

those paths, because all were contingent on permissive mutations – either the historical 11P 

substitutions or the alternative permissive mutations we discovered within the RH. Which 

particular permissive mutations happened to occur determined which SRE-specific genotypes 

then became accessible. Further, given some permissive set of first steps, paths to numerous 

SRE-specific genotypes typically become available. Thus, evolution of any particular SRE-

specific outcome – including the one that evolved during history – would be contingent on the 

initial stochastic acquisition of some set of permissive mutations, followed by the subsequent 

stochastic realization of one of many possible ways to encode the derived function. These serial 

stochastic choices result in compounding contingency, magnifying the role of chance in 

evolution.  

Some aspects of biological history cannot be reconstructed, but our conclusions are likely 

to be robust to major forms of uncertainty. For example, the probability of any evolutionary 
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trajectory across sequence space depends on both the quantitative relationship between 

molecular function and organismal fitness and on population size, but neither of these is known. 

Nevertheless, we found that contingency and stochasticity were important not only under 

scenarios that maximize their effects – such as when evolution proceeds primarily by drift and 

purifying selection, avoiding nonfunctional genotypes – but also under those that favor 

determinism, as when selection drives continuous enhancement of the derived function or allows 

affinity within only a narrow range. Second, sequence space is so vast that we could 

comprehensively explore only a limited portion, studying variability at a relatively small number 

of key sites and evaluating the presence or absence of all 11 historical permissive substitutions as 

a group. But contingency and stochasticity are likely to remain important when larger regions of 

sequence space are considered. If – as seems likely – these unexplored regions contain additional 

trajectories to SRE-specific outcomes, then the role of stochasticity in the “choice” among these 

many options would be even more important. The contingency on starting point that arises from 

the broad distribution of SRE-specific genotypes across sequence space would persist even if 

new potential outcomes were discovered, and it would be magnified if those outcomes were even 

more distant than those we characterized. Finally, the dependence on permissive mutations that 

we observed would be eliminated only if there is a mutation at some other site that could confer 

SRE activity on AncSR1 in a single step; this seems implausible, because all other residues in 

the protein are distant from the variable DNA bases and therefore cannot confer SRE-binding 

without causing a major conformational change that would somehow bring a pre-existing surface 

compatible with SRE into contact with the response element. 

Despite the abundance of accessible SRE-specific genotypes in the sequence space near 

the ancestral and derived RHs (Appendix 2 Fig. A2.5d,e), the RH genotype that historically 
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evolved is conserved among present-day descendants. We cannot rule out the possibility that 

some unknown property made this sequence selectively superior to the hundreds of other 

genotypes that are at least as effective at recognizing SRE and excluding ERE. But its 

conservation could also have been caused by factors that accumulated after its stochastic 

realization. For example, a substitution can become epistatically entrenched by subsequent 

restrictive substitutions at other sites in the protein (30, 107). A transcription factor’s sequence 

may also become pleiotropically entrenched by subsequent mutations in the ensemble of 

response elements it binds (166). If one of the many alternative SRE-specific outcomes had 

instead evolved from the ancestral protein by chance, it too could have been subsequently locked 

in, yielding conservation and the illusion that it evolved deterministically. The singularity of the 

present seems to rationalize the past. History leaves no trace of the many roads it did not take, or 

of the possibility that evolution turned out as it did for no good reason at all. 

 

4.5 Methods 

Construction and validation of a yeast assay for steroid receptor DNA-binding 

domain function. All work was performed in S. cerevisiae strain K20 (CEN.PK 102-5B, URA3-, 

HIS3-, LEU-) (167). We constructed yeast reporter strains containing yEGFP under the control of 

a minimal CYC1 promoter with two upstream ERE or SRE palindromes, integrated into the 

ADE2 locus (167). Colony PCR and Sanger sequencing confirmed correct integration of the 

ERE2-yEGFP or SRE2-yEGFP reporter. An additional 20 µg/mL adenine hemisulfate was added 

to all media to ameliorate ADE2 disruption. 

 The yeast expression plasmid pTNS33 contains the AncSR1 DNA-binding domain 

(DBD, GenBank AJC02122.1) (70) with an N-terminal SV40 nuclear localization sequence and 
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Gal4 Activation Domain (AD) connected by a 9-residue linker (IQQGGSGGS). Expression of 

the AD-DBD fusion protein is controlled by the galactose-inducible GAL1 promoter, in the 

background of the pRS413 plasmid (168) containing a HIS selection marker. We assembled 

pTNS33 by yeast homologous recombination using the LiAc/ssDNA/PEG method (169), 

selecting for growth on SC-His plates with 2% Dextrose (+D). We confirmed correct plasmid 

assembly via Sanger sequencing. 

 To validate the ERE2-yEGFP and SRE2-yEGFP reporters, a selection of previously 

assayed DBDs spanning a range of DNA-binding affinities (70, 106) were cloned into the 

pTNS33 background and transformed into each yeast reporter strain. Individual colonies were 

inoculated in 3mL SC-His with 2% raffinose (+R), and incubated for 16 hours at 30 ºC 225 rpm 

in an orbital shaker incubator. Cells were back-diluted to 0.25 OD600 in SC-His with 2% 

galactose (+G) to induce DBD expression and grown for an additional 24 hours. Cells were 

pelleted and suspended to 1 OD600 in 1x TBS. We analyzed 10,000 cells of each genotype by 

flow cytometry on a BD LSR-Fortessa 4-15, with 488 nm excitation and 530 nm emission. We 

used gates drawn empirically on FSC/SSC and FSC-H/FSC-A scatter plots (e.g. Appendix 2 Fig. 

A2.2) to isolate a homogeneous cell population, from which we determined the mean per-cell 

green fluorescence. The relationship between mean GFP activation and previously measured 

binding affinities was fit to a segmented-linear relationship in R with the ‘segmented’ package 

(170).  

Library generation. AncSR1 and AncSR1+11P RH libraries were constructed by 

synthesizing pools of oligonucleotides containing degenerate NNK codons at four variable sites 

in the recognition helix and inserting these into coding sequences for the previously 

reconstructed AncSR1 DBD or the AncSR1+11P DBD, which contains the 11 previously 
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identified historical permissive mutations (70). These libraries encode all combinations of all 20 

amino acids at the three RH sites that changed during the historical evolution of SRE specificity 

(sites 25, 26, and 29) and at the adjacent position (site 28), which physically interacts with the 

substituted residues (70) and varies among the broader nuclear receptor superfamily (171). Each 

RH library contains 1,048,576 genetic variants, encoding 160,000 full-length proteins and 34,481 

stop-codon-containing variants. To construct the libraries, 53-nt single-stranded DNA 

oligonucleotides were synthesized (DNA2.0, Newark, California), containing variable RH sites 

and invariant flanking sequence identical to the respective plasmid sequences. Oligonucleotide 

pools were converted to dsDNA by primer extension with Klenow polymerase and purified on a 

Qiagen MinElute column. Yeast expression plasmids containing AncSR1 or AncSR1+11P were 

modified by site-directed mutagenesis to introduce EcoRI and NcoI sites, which were cut to 

excise the native RH and linearize the vector to receive the oligonucleotide pool. Plasmid 

libraries were assembled via Gibson Assembly, incubating 0.56 pmol gel-purified linear vector, 

8.4 pmol oligonucleotide pool, and 120 µL 2´ GA Master Mix (NEB) at 50 ºC for 1 hr. 

Assembled libraries were purified over DNA Clean & Concentrator columns (Zymo) and 

transformed into electrocompetent NEB5a E. coli cells with a 2.5 kV electroporation pulse in 0.2 

mm gap cuvettes. Aliquots of cells were serially diluted and plated on LB+carbenicillin to 

estimate transformation efficiencies. Remaining cells were grown overnight, and plasmids were 

harvested using the GenElute Midiprep plasmid purification kit. For both the AncSR1 and 

AncSR1+11P RH libraries, we obtained at least 20 times more transformants than the effective 

size of the library (Appendix 2 Table A2.1). 

 Each RH library (AncSR1 and AncSR1+11P) was independently transformed twice into 

each yeast reporter strain (ERE and SRE) for replicate FACS-seq analyses. We followed a yeast 
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electroporation protocol (172), scaled up for 10 times the number of cells and a total of 120 µg of 

library plasmid in 600 µL H2O. An aliquot of cells was serially diluted and plated on SC-His+D 

to estimate transformation yield, which averaged 1.25´107 cfus across the 8 transformations 

(Appendix 2 Table A2.1). The remaining cells were grown to saturation in 500 mL SC-His+D. 

Consistent with previous observations (173), we observed that seven out of eight colonies post-

transformation were multiple-vector transformants. We performed an additional passage, at 

which point multiple-vector clones were detected at less than one in eight colonies. A total of 

five passages occur prior to quantification (see below), so multiple vector transformants are 

expected to occur at a frequency no greater than 0.007 in the library. Furthermore, if our 

conclusion that there are many functional RH variants were caused by false positives due to co-

transformation of nonfunctional genotypes with functional ones, this would result in stop-codon-

containing variants being classified as functional, but this was never observed. Passaged yeast 

library aliquots of 3´109 cells were flash frozen in liquid nitrogen and stored at -80 ºC as 25% 

glycerol stocks. 

Library induction and FACS. Yeast library aliquots were thawed on ice, added to 500 

mL SC-His+D, and grown for 12 hours at 30 ºC 225 rpm. Cells were diluted to 0.25 OD600 in 

500 mL SC-His+R, and grown for an additional 12 hrs at 30 ºC 225 rpm. Cells were then diluted 

to 0.25 OD600 in 200 mL SC-His+G to induce DBD expression, and grown for 24 hrs at 30 ºC 

225 rpm. Induced cells were spun at 3,000 g for 5 min, suspended to 3´107 cells/mL in 1´ TBS, 

passed through a 40 µm nylon cell strainer, and stored on ice for sorting. Alongside each library 

induction, we induced isogenic controls expressing known DBDs according to the same protocol 

but at 3 mL volumes. 
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 Each library was sorted into 4 bins on a BD FACSAria II. Initial gates were drawn to 

isolate homogenous cells and exclude doublets, using SSC/FSC and FSC-H/FSC-A scatterplots 

(Appendix 2 Fig. A2.2). We assigned sort gate boundaries to the AncSR1+11P/SRE library to 

correspond to the observed mean fluorescence of a stop-codon-containing variant, of 

AncSR1+11P:GSKV, and AncSR1+11P:GGKA, the variant with the highest previously known 

activation; these gates yielded four bins that captured 45%, 45%, 9.5%, and 0.5% of the library 

population, respectively. Gates for other libraries were assigned to yield the same bin sizes. To 

calibrate the arbitrary-unit fluorescence scales of sorting experiments conducted on different 

days, we transformed fluorescence values by a linear model fit to the relationship between mean 

fluorescence of reference isogenic cultures induced and analyzed in parallel to each library 

sorting experiment. Cells were sorted into SC-His+D with 34 µg/mL chloramphenicol to prevent 

bacterial contamination and stored on ice until ~108 cells were sorted. An aliquot of cells sorted 

into each bin was serially diluted and plated to estimate cfu recovery (Appendix 2 Table A2.1). 

Remaining cells were suspended to an estimated 200,000 cells/mL in SC-

His+D+chloramphenicol, and grown for 16 hours at 30 ºC 225 rpm. Plasmids were extracted 

from each outgrowth according to the protocol of Fowler et al. (174), which was scaled up 16-

fold for bins 1 and 2, 8-fold for bin 3, and 3-fold for bin 4 to avoid bottlenecks. Extracted 

plasmids were estimated to be present at a concentration of 2´106 plasmids/µL by comparing 

bacterial transformation efficiencies of yeast-extracted plasmid to pUC19 and bacterial-purified 

plasmid standards. 

Sequencing and processing. We used PCR to amplify the variable RH region from post-

sort plasmid aliquots; primers appended in-line barcodes (175) to identify the experiment and 

sort bin, along with binding sites for sequencing primers and Illumina flow cell adapter 
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sequences. Barcodes were of different lengths to stagger reads across clusters and were assigned 

to bins to optimize the distribution of base calls at each position during the initial rounds of 

sequencing. Multiple barcodes were used for bins 1 and 2, which contained the majority of cells. 

For each bin-barcode combination, PCR was conducted in 8 replicate 50-µL aliquots, with 10 µL 

of plasmid template, 10 µL 5x HF buffer, 1 µL 10 mM dNTPs, 2.5 µL 10 µM forward and 

reverse primer, and 0.5 µL Phusion polymerase per reaction. PCRs were assembled on ice, 

transferred to a thermocycler block preheated to 98 ºC, and subjected to 20 PCR cycles with 60 

ºC annealing. PCRs were gel-purified, quantified via BioAnalyzer and qPCR, and then pooled 

for sequencing according to the relative numbers of cells acquired in each bin. Single-end 50bp 

reads spanning the barcode and RH sequence were acquired on an Illumina HiSeq2500.  

We discarded sequence reads with an average Phred score <30 and sequences that did not 

perfectly match the barcode and invariant portion of the template. Reads were demultiplexed by 

barcode and further processed using tools from the FASTX-Toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/). RH variants with inconsistent read numbers between 

barcodes in the same bin were considered uncharacterized for that entire experiment. This 

procedure yielded filtered read counts in each sort bin greater than the number of cells sorted into 

that bin (Appendix 2 Table A2.1). To estimate the number of cells of a genotype that were sorted 

into a bin, we divided the number of sequence reads of a genotype in a bin by the average 

number of reads per cell in that bin. 

Estimating mean fluorescence and standard error. We estimated the mean 

fluorescence of each variant in the library from the distribution of its reads across fluorescence 

sort bins using a maximum likelihood approach (176). We first assessed the fit of various 

distributions to the observed per-cell fluorescence of a series of isogenic cultures of different RH 
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genotypes analyzed in isolation via flow cytometry, and found the logistic distribution to have 

the best fit by AIC (Appendix 2 Fig. A2.1b,c). We then used the ‘fitdistrplus’ (177) package in R 

to find the maximum likelihood mean fluorescence for each library variant given its distribution 

of cell counts across sort bins, the fluorescence boundaries of those bins, and the logistic 

distribution; this approach explicitly takes into account the fact that the fluorescence of a cell 

within a sort bin is not precisely measured and has been shown to be an unbiased approach for 

estimating underlying activities in FACS-seq analyses (176). Estimates of mean fluorescence 

from the FACS-seq library characterization were compared between independent replicates 

(Appendix 2 Fig. A2.1d). Interval-censored per-cell observations from the two independent 

replicates were then pooled, and the maximum likelihood mean fluorescence for each variant 

estimated from this pooled data. These final estimates were compared to fluorescence observed 

directly for isogenic cultures of randomly selected clones from each library, which were isolated 

post-sort, genotyped, re-induced in isogenic cultures and analyzed via flow cytometry according 

to the protocol above (Appendix 2 Fig. A2.1e). 

 We estimated the standard error of mean fluorescence (SEM) for genotypes based on 

their depth of coverage (number of cells sampled) in two ways. First, we estimated SEMs from 

stop-codon-containing variants in each library by binning them according to their depth of 

coverage and calculating the standard deviation of the sampling distribution of estimated mean 

fluorescence for variants in each bin. Second, we leveraged variability in the mean fluorescence 

estimates from the two replicate FACS-seq experiments for each library: using coding variants 

for which the number of cells sampled between replicates is within 20% of each other, we 

calculated the difference between the estimate of mean fluorescence from the pooled data and the 

estimates from each of the two replicates, binned variants by their average depth of coverage for 
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the two replicates, and calculated the standard deviation of the distribution of differences for 

each bin. Every variant in the library was then assigned the SEM for the appropriate coverage 

depth bin. These two approaches yielded a similar relationship between SEM and sampling 

depth, but the second approach estimated higher SEMs at higher coverage depths (Appendix 2 

Fig. A2.1g); to be conservative, we therefore used the second approach for further analyses.  

Classifying strength of activation on each response element. We used mean 

fluorescence estimates to classify the strength with which each library variant binds to ERE and 

SRE using nonparametric comparisons to distributions of reference genotypes. A variant was 

classified as active on a response element if its mean fluorescence was significantly greater than 

that of stop-codon-containing variants contained in the library: for each variant, the P-value for 

the null hypothesis that a variant is inactive was calculated as the proportion of stop-codon-

containing variants of similar sampling depth with greater mean fluorescence than that of the 

variant of interest; variants were labeled “active” if the null hypothesis could be rejected at a 5% 

false discovery rate (using the Benjamini-Hochberg procedure) or “inactive” if the null 

hypothesis could not be rejected.  

Each active variant was then subclassified as a weak or strong activator by comparing its 

mean fluorescence to that of the relevant ancestral genotypes (AncSR1:EGKA on ERE, or 

AncSR1+11P:GSKV on SRE). Specifically, for each active variant we performed a test of 

noninferiority within an equivalence margin of 20% of the range between the average mean 

fluorescence of stop-codon-containing variants and the mean fluorescence of the ancestral 

reference. This test compares the mean fluorescence of a variant of interest to the fluorescence of 

cells with the relevant ancestral genotype, shifted to 80% of the range between the mean of stop-

codon-containing variants and the ancestral reference. To determine whether a variant’s 
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fluorescence is greater than this shifted ancestral reference, we generated 10,000 bootstrap 

replicates from the shifted distribution of ancestral cellular fluorescence, with replicate size of 

similar sampling depth to the variant of interest; the mean fluorescence of each bootstrap 

replicate was calculated using the FACS gates and maximum likelihood procedure described 

above. The P-value for the null hypothesis that a variant is a weak activator was calculated as the 

proportion of bootstrap replicates with fluorescence greater than that of the variant of interest; 

variants were classified as “strong” if the null hypothesis could be rejected at a 5% false 

discovery rate (using the Benjamini-Hochberg procedure) or “weak” if the null hypothesis could 

not be rejected. AncSR1:EGKA was represented by relatively few cells in the ERE library, 

resulting in an artificially low mean fluorescence determined by FACS-seq and a “weak” 

classification, so it was manually classified as a strong activator on ERE by definition. For 

library classifications, we determined the reference activity of AncSR1:EGKA on ERE from an 

isogenic culture analyzed in parallel to library sorts. Using the lower FACS-seq mean 

fluorescence measurement as the reference activity for this genotype does not alter our 

conclusions (Appendix 2 Table A2.2, column A). 

Extrapolation to missing genotypes. Classification of variants that are rare in the library 

may not be reliable. We examined how agreement in classification between FACS-seq replicates 

is affected by sampling depth, and we found that the probability that a variant is classified as 

positive in one replicate if it is classified as positive in the other depends on sampling depth 

below 15 cells (Appendix 2 Fig. A2.1f). We therefore considered variants with 15 or fewer cells 

to be experimentally undetermined, accounting for 2.0% to 8.8% of all variants across the four 

DBD/response element combinations (Appendix 2 Table A2.1). To predict the classification of 

these variants, we used a continuation ratio ordinal logistic regression model that predicts the 
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probability that a variant is strong, weak, or inactive from its genotype, trained on the empirical 

classification of all the determined genotypes in the library. We modeled amino acid states as 

potentially contributing first-order main effects (20 states ´ 4 positions = 80 parameters) and 

pairwise epistatic effects (4C2 ´ 202 = 2,400 parameters). We fit these models to the observed 

classifications in each library using a coordinate-descent fitting algorithm with L1 penalization, 

as implemented in the ‘glmnetcr’ package (178) in R. We used 10-fold cross validation to 

determine the quality of model predictions and to select the penalization parameter l. We set l = 

10-5 to obtain a high true positive rate without compromising the positive predictive value 

(Appendix 2 Fig. A2.3).  

Classifying response element specificity. The specificity of each variant was 

determined from its functional classification on ERE and SRE. ERE-specific variants are strong 

on ERE and inactive on SRE; SRE-specific variants are strong on SRE and inactive on ERE; 

promiscuous variants are strong on one response element and strong or weak on the other; and 

nonfunctional variants are not strong on either response element. The false positive rate was very 

low, with no stop-codon-containing variants classified as functional. AncSR1+11P:EGKA is 

classified as promiscuous, because it has very strong ERE activity and SRE activity that is very 

weak but statistically distinguishable from background, consistent with previous observations 

(70). 

 A small number of RH variants were unexpectedly inferred to be functional in AncSR1 

but nonfunctional in AncSR1+11P (Appendix 2 Fig. A2.8a-c). To validate this observation, we 

re-cloned the three SRE-specific variants with the largest reduction in fluorescence when 11P 

were included (CARV, HARV, HPRM) and assessed their SRE activation in the AncSR1 and 

AncSR1+11P backgrounds in isogenic cultures via flow cytometry; for comparison, we also 
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validated a putatively 11P-independent genotype (KASM) and two 11P-dependent variants 

(SPKM, YGKQ), alongside GSKV for reference. Inductions were conducted in triplicate, each 

from an independent transformant. Classifications of the three comparison genotypes were all 

confirmed; however, the three genotypes that were putatively restricted by 11P showed no 

reduction in fluorescence in this assay, indicating that they were falsely classified as 

nonfunctional in the AncSR1+11P FACS-seq assay (Appendix 2 Fig. A2.8c). Notably, the 

predictive logistic regression correctly predicts that these three variants are strong SRE-binders 

in the AncSR1+11P background. These three variants manifested strong growth defects in the 

AncSR1+11P background, even in the ERE strain in which they do not activate GFP expression. 

Robustness of results to classification method. We tested the robustness of our 

conclusions to alternative methods for classifying variants as functional. These include: (A) 

using the internal library AncSR1:EGKA mean fluorescence estimated by FACS-seq as the 

reference level of AncSR1 activation on ERE; (B) increasing the margin of equivalence to 50% 

of the activity difference between ancestral and stop-codon-containing variants; (C) classifying 

any active variant (weak or strong) as functional; (D) using the 80% mark of the range from 

stop-codon-containing to ancestral variants as a hard threshold rather than a null hypothesis for 

statistical testing; (E) defining functional variants as between 80% and 120% of the ancestral 

activity, so that extremely strong binders are classified as nonfunctional; (F) using predicted 

classifications for all variants, with experimental classifications used only to train predictive 

models; (G) using no predicted classifications, and labeling all undetermined genotypes as 

nonfunctional; (H) using for each variant the strongest functional class as predicted or 

determined by experiment; (I) using the experimental classification for a variant only if it was 

identical between replicates and predicting all others; (J) and using the per-variant estimates of 
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the standard error of mean fluorescence based on coverage depth to calculate a P-value that a 

variant is inactive or weakly active given a normal distribution, rejecting each null hypothesis at 

a 5% FDR as above. When appropriate, ordinal logistic regression models were re-trained to 

predict missing genotypes under each scheme. These alterations made no qualitative differences 

to our conclusions (Appendix 2 Table A2.2). 

Network construction and trajectories through sequence space. Network 

representations of functional RH variants in the AncSR1 and AncSR1+11P backgrounds were 

constructed using the R package ‘rgexf’ and the network visualization program Gephi (179). 

Nodes representing RH variants were connected by edges if any genetic encoding of their 

protein-coding sequences could be interconverted with a single nucleotide mutation given the 

standard genetic code. The network was represented as a force-directed graph, which clusters 

nodes in two-dimensional space based on connectivity: nodes tend to repel each other, but each 

edge between connected nodes provides an attractive force; in the “equilibrium” layout, sets of 

densely interconnected nodes tend to cluster to the exclusion of less connected nodes. Force-

directed graph layouts were constructed with the ForceAtlas2 method in LinLog mode, Gravity 

1.0 and Scaling 0.8 (AncSR1) or 0.125 (AncSR1+11P). 

We used the ‘igraph’ package in R to characterize the set of paths between functional 

nodes. A step was defined as a nonsynonymous nucleotide mutation between two functional 

variants; synonymous mutations within a single node were not considered as contributing to 

trajectory length. The graph was directed, so that trajectories can proceed from ERE to SRE 

specificity directly or via a promiscuous intermediate; nonfunctional intermediates2 and 

functional reversions were not allowed, but “neutral” steps within a functional class were 

allowed. Epistasis was inferred when the shortest path between two nodes was longer than the 



 100 

minimum genetic distance between genotypes (22, 24); epistasis may arise because the state at 

one site specifically modulates the functional effect of some state at another site or because of 

nonlinearity in the genotype-phenotype map (180), such as the threshold we used to classify 

variants as functional. 

The distribution of shortest path length to SRE specificity from ERE-specific starting 

points in the AncSR1 and AncSR1+11P networks was compared via a Wilcoxon rank sum test 

with continuity correction, as observations were not normally distributed. The number of ERE-

specific starting points in each network that require permissive steps and/or promiscuous 

intermediates on their shortest path to SRE specificity was compared via a Chi-squared test. 

Only one category (AncSR1 network, no path) had an expected value less than 5; the Chi-

squared test remains significant when excluding this class from the comparison (P < 10-7). 

To compare genotypic states among outcomes reached from different ERE-specific 

starting points, we calculated the frequency distribution of amino acid states at each sequence 

site for the set of outcomes reached from each starting point; we then calculated the Jensen-

Shannon (J-S) distance between these distributions for pairs of starting points. To capture a true 

amino acid state distribution across outcomes, we only considered ERE-specific starting points 

that access at least 15 outcomes (the median across all ERE-specific starting points). We 

compared these observed J-S distances to a null expectation of J-S distances in the absence of 

structure in sequence space, in which we randomly sampled two sets of variants from all possible 

SRE-specific outcomes according to the same sample sizes used in each real comparison, and 

calculated the J-S distance between these randomly sampled distributions. 

We also considered a regime in which SRE-binding affinity is under strong selection, 

such that SRE-binding affinity is required to increase with each step; such a scenario has a strong 
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potential to make evolution deterministically favor a single outcome. In this scheme, a step from 

one genotype to a neighbor was allowed only if the lower bound of the 90% confidence interval 

of the neighbor’s mean SRE fluorescence, estimated from its mean and SEM, was greater than 

the upper bound of the confidence interval of the starting genotype. We then calculated the 

probability of each accessible trajectory using two previously described models (24): in the equal 

fixation model, any step that enhances SRE affinity from a particular node is equally likely to 

occur; in the correlated fixation model, the probability that an SRE-affinity-enhancing step 

occurs is directly proportional to the degree to which it increases SRE mean fluorescence, 

relative to the other SRE enhancing steps available from the given node.  

Structural modeling and predictions of RE-binding affinity. We used FoldX (181) to 

predict the affinity to SRE of all RH variants that were 11P-dependent (SRE-specific in the 

AncSR1+11P background and nonfunctional in AncSR1), or 11P-independent (SRE-specific in 

AncSR1) (Appendix 2 Fig. A2.8a). For structure-based affinity prediction, we used the crystal 

structures of AncSR1/ERE (PDB 4OLN) and AncSR2/SRE (PDB 4OOR) as starting points, with 

crystallographic waters and non-zinc ions removed. We removed chains E, F, K and L from the 

4OOR structure. We used the RepairPDB function to optimize both structures according to the 

FoldX force field, and we used the BuildModel function to mutate the AncSR1/ERE structure to 

AncSR1:GSKV/SRE. The BuildModel function was then used to model each SRE-specific RH 

variant in complex with SRE on each of the AncSR1 and AncSR2 structures, and the 

AnalyzeComplex function was used to predict the total DNA-binding energy of each protein 

variant with SRE. The predicted binding energies of 11P-dependent and 11P-independent 

variants were compared using a nonparametric Wilcoxon rank sum test with continuity 

correction, as data were not normally distributed. This test was conducted independently for 
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energies predicted using the AncSR1 and AncSR2 structures. To compare these same groups as 

directly estimated in FACS-seq, a Wilcoxon rank sum test with continuity correction was used, 

as data were not normally distributed. 

 To characterize the diversity in biochemical mechanisms of SRE specificity, we analyzed 

FoldX models of the 10 most active SRE-specific variants that were identified in our 

AncSR1+11P FACS-seq experiment. We modeled binding to SRE using the AncSR2/SRE 

structure as described above and binding to ERE using the crystal structure of 

AncSR2:EGKA/ERE (4OND), with water and non-zinc ions removed and optimized using the 

RepairPDB function. To illustrate protein-DNA contacts made in each structural model, we used 

NUCPLOT (182) to identify all hydrogen bonds with distance ≤3.35Å between non-hydrogen 

atoms and non-bonded packing contacts ≤3.90Å. Summary figures display the union of contacts 

made by a residue in either of the half sites of the response element palindrome; we only 

illustrate residues whose contacts vary among the analyzed structures. 

To ensure structural inferences converge, we built each SRE- and ERE-bound FoldX 

model a second time. We observed convergence in all polar contacts (and absence thereof in 

ERE structures) illustrated in Fig. 4.1 and Appendix 2 Fig. A2.4. Only several non-bonded 

contacts were not replicated: I29/T–4 in KAAI/SRE; Q29/A4 and Q29/T–4 in YGKQ/SRE; 

M29/T–3 in KSAM/SRE; and K25/G2 and K25/T–3 in KASM/SRE. To determine whether 

electrostatic clashes in ERE-bound structures could be satisfied by bridged water molecules 

(183), models were built again using the BuildModel function with predicted waters. In some 

cases (GGRT, YGKQ, DSKM, CGRV), but not all (GSKV, KAAI, PAKE, KSAM, DPKQ, 

SAKE, KASM), polar groups on ERE that were not satisfied by direct interaction with protein 

side chains are predicted to be satisfied by water bridges between protein and DNA. 
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Biochemical determinants of RE-binding specificity. Logos illustrating the frequency 

with which each amino acid state is found at each position among variants of a functional class 

were constructed using WebLogo (184). Since our sequence space is combinatorially complete 

(all 160,000 genotypes are classified, either by FACS-seq or via prediction), the logo plots do not 

need to be normalized by background input frequencies. To evaluate similarity of the frequency 

profiles between classes of variants, the frequency of each amino acid state in a class was 

centered logratio-transformed, the appropriate transformation before computing correlations 

among compositional data; a pseudocount of one was added to the number of observations of 

each amino acid to allow log-transformation of states observed zero times. The Spearman rank 

correlation coefficient was computed for the correlation between functional classes. 

To identify the biochemical properties of amino acids that contribute to DNA specificity, 

we developed a multiple logistic regression model that describes the probability that an RH 

variant specifically binds a response element as a function of the biochemical properties of the 

amino acid states at each of its four variable RH positions. The model includes four properties 

(hydrophobicity, volume, isoelectric point, and a-helix propensity), with the values for each 

amino acid’s properties from ref. (185), which we then centered and standardized; the effect of 

each property at each site on the probability of being a specific binder is reflected in a model 

coefficient, which represent the model’s free parameters. We used R to find the values of these 

coefficients that best fit the observed classifications for each DBD/RE combination. Differences 

in the contribution of a property to specificity were identified if its associated coefficients in two 

models differed by a Z-test (P<0.05 with no correction for multiple testing). 
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Data and code availability. Raw sequencing data were deposited to the NCBI SRA 

under BioProject number PRJNA362734. Processed data and scripts to reproduce analyses are 

available at github.com/JoeThorntonLab/nature-2017_RH-scanning. 

  



 105 

Chapter 5 

Epistasis and evolvability in a protein sequence-function landscape 

 

5.1 Summary 

Though epistasis between amino acid mutations is prevalent and influential in case 

studies of protein functional evolution, we lack an understanding of how epistasis’ contribution 

to the structure of protein sequence-function landscapes impacts the evolution of new protein 

functions on a global scale. Here, we directly probe the pattern of epistasis in a combinatorial 

sequence-function landscape and explore its impact on the evolvability of protein functions. We 

computationally decompose a dual-function sequence-function landscape into its genetic 

determinants, both main-effect and epistatic. We explore the molecular basis for epistatic 

interactions, and explore how the genetic determinants differ between the two distinct protein 

functions. We find that epistatic interactions are key in enabling single mutations to cause a shift 

in protein function, allowing new functions to be quickly gained along mutational trajectories. 

This indicates that epistasis has a constructive role in promoting the evolvability of new 

functions from the global perspective of the sequence-function landscape.  

 

5.2 Introduction 

 Epistasis – the non-additivity of mutational effects – is an important factor in the 

molecular evolution of proteins (7, 135). Whether epistasis contributes positively or negatively to 

the functional evolution of proteins remains an open question. Though it is often a matter of 

perspective, epistasis is often conceived as ‘constraining’ evolutionary trajectories (34, 186, 

187), and epistasis often hinders our ability to engineer new proteins with desirable properties 
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(40, 62, 63, 188). At the same time, a constructive role for epistasis has also been recognized in 

molecular evolution. For example, deep mutational scans have revealed pervasive positive 

epistasis (21, 26, 189), which could enable evolutionary trajectories to distant regions of 

sequence space with new properties, and theoretical considerations and simulation have 

suggested that epistatic interactions might underlie the fundamental ability of protein sequences 

to spontaneously fold into their native structures (190).  

The distribution of functions in sequence space has long been known to be influenced by 

epistasis: early theoretical models on protein sequence-function landscapes considered epistasis 

as a central determinant of the landscape structure (e.g. (191)). In related work, the presence of 

extended functional networks – mutationally connected networks of sequences that share some 

common function – has been theoretically (192-194) and experimentally (195-197) shown to 

enhance the evolvability of new functions, by enabling proteins to drift to regions of the 

functional network that are mutationally adjacent to novel molecular functions. However, the 

precise role of epistasis in determining the mutational adjacency of distinct functions in sequence 

space has not been thoroughly explored. 

New methods for the analysis and description of epistasis (118, 136, 198, 199) coupled 

with new high-throughput methods for characterizing large mutant libraries (11) enable us to 

interrogate the role of epistasis in the structure of protein sequence-function landscapes and how 

this structure impacts protein functional evolution. Epistasis has traditionally been conceived 

from a ‘reference-based’ perspective: the non-additivity of mutational effects is often judged 

based on their individual and joint effects as measured when introduced into some specific 

reference background. More recently, a global approach to describing and characterizing 

epistasis has emerged (198). In this global approach, epistasis is not defined as the non-additivity 
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of mutations when added to some particular reference background, but instead, it is defined as 

the non-additivity of the effects of mutations when averaged across a global ensemble of 

backgrounds. This background-averaged epistasis can be mathematically related to reference-

based epistasis (198), but it represents a more parsimonious and informative way to decompose a 

protein sequence-function landscape into its underlying genetic determinants, particularly when 

considered from the global perspective of sequence space (25, 118, 200). 

Here, we employ a global epistasis analysis to describe epistasis in an empirical 

sequence-function landscape and consider how this epistasis contributes to the evolvability of 

protein functions in sequence space. We focused on a previously collected combinatorial 

mutational scanning dataset of four key residues at the protein-DNA interface of ancestral steroid 

receptor transcription factors (201). Steroid receptors are a clade of paralogous metazoan 

transcription factors, responsible for translating steroid hormone signaling molecules into 

changes in cellular physiology via their sequence-specific DNA-binding function. The ancestral 

steroid receptor bound specifically to a DNA motif called the estrogen response element (ERE); 

after a gene duplication, one lineage of steroid receptors lost this ERE-specificity, and evolved 

specificity for a DNA motif called the steroid response element (SRE) (70). The genetic and 

biophysical mechanism of this historical transition in DNA-binding specificity was previously 

described (70, 106). More recently, we interrogated the key specificity-determining residues with 

a four-site combinatorial mutational scanning approach (201), in which we characterized the 

ability of 160,000 protein variants to bind to the ERE, SRE, or both. Here, we computationally 

decompose this sequence-function landscape into its underlying genetic determinants, to reveal 

how epistasis contributes to the juxtaposition of these two functions in sequence space. We find 
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that epistasis plays a constructive role, enhancing the ease with this evolutionary transition can 

occur on a global scale. 

 

5.3 Results & Discussion 

5.3.1 A global model of the sequence-function landscape 

 To identify the genetic determinants of ERE- and SRE-binding, we built regression 

models that decompose the ERE- and SRE-binding sequence-function landscapes into the first-

order main effects of individual states and second-order pairwise epistatic effects of pairs of 

states across the four variable sites. To perform the regression given complex and unknown 

nonlinearities between the observed high-throughput FACS-seq measurements and the scale to 

which genetic terms combine additively (136, 199), we used a proportional-odds ordinal logistic 

regression model. This generalized linear model expresses a discretized response variable (in our 

case, discretized measurements of ERE- or SRE-activation) as a function of a series of predictor 

variables (in our case, categorical variables representing genetic states or pairs of states). The 

coefficients corresponding to the predictors present in each genotype sum together to produce a 

continuous latent phenotype, which maps to one of n ordered classes based on the location of this 

phenotype relative to the n-1 inferred cut points. The proportional-odds assumption posits that if 

we collapsed our data into successive binary classifications and inferred a series of n-1 logistic 

regression models, the regression coefficients for the predictor variables for each of these binary 

logistic regressions would be consistent. 

As described previously (201), we discretized our FACS-seq mean fluorescence 

measurements for ERE- and SRE-binding into null, weak, and strong binding categories. We 

verified that the proportional-odds assumption holds by plotting the log-odds of each main-effect 
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genotypic state across the null/weak and weak/strong boundaries (Fig. 5.1). We restricted the 

number of amino acid states that we modeled at each position to those that are found at greater 

than 0.01 frequency among weak and strong binders for either or both DNA motifs, reducing the 

number of states to 20 at position 1, 5 at position 2, 15 at position 3, and 16 at position 4 (24,000 

genotypes). Separately for the ERE- and SRE-binding data, we then fit a proportional-odds 

regression model, with the first-order main-effect and second-order epistatic terms as predictor 

variables: 

class ~ A1 + A2 + A3 + A4 + A12 + A13 + A14 + A23 + A24 + A34 

We used a no-intercept, one-hot encoding scheme for the categorical predictor variables, which 

makes this a background-averaged representation of the genetic determinants in this sequence-

function landscape. We inferred the model using L1 (LASSO) penalization, which shrinks 

coefficients to exactly zero to encourage sparsity in the fit and prevent overfitting. We judged 

model performance and selected the LASSO penalization parameter l via 10-fold cross-

validation (Fig. 5.2a-d). Though this proportional-odds implementation was too computationally 

demanding to fit a model that also incorporates third-order epistatic effects, a different but 

related ordinal logistic regression strategy (continuation ratio ordinal logistic regression) was 

also fit with third-order effects, which performed considerably worse in cross-validation than the 

second-order model and exhibited evidence of over-fitting, presumably because of the large 

number of third-order terms (Fig. 5.2e-f). 
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Figure 5.1. A graphical method for evaluating the proportional-odds assumption. For ERE-
binding (a) and SRE-binding (b) models, the log-odds of each amino state across the 
null:weak+strong (circle) and null+weak:strong (triangle) binary classifications. The column 
marked with “N” gives the number of observations of each amino acid state in the experimental 
dataset. If the proportional-odds assumption is perfectly met, the difference in log-odds between 
the two binary classifications will be the same for each amino acid state (the distance between 
the triangle and circle symbols will be the same in each row). This pattern holds decently in the 
data; the amino acid states whose log-odds differ the most dramatically between these two 
classifications tend to be those with lower log-odds, meaning their log-odds are estimated from a 
lower observation count of that genotype among strong or weak+strong binders, which will 
produce higher-variance estimates of the log-odds. 
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Figure 5.2. Ordinal logistic regression model performance. a-d, Cross-validation of 
proportional-odds regression models incorporating main-effect and pairwise epistatic terms. For 
ERE (a,c) and SRE (b,d) models, out-of-sample log-likelihood (a,b) and misclassification rates 
(c,d) were determined across a range of lambda penalization values via 10-fold cross-validation. 
The chosen lambda values are indicated by the vertical dashed line. e,f, Continuation ratio 
ordinal logistic regression models indicate that third-order epistasis terms result in over-fitting. 
For ERE (e) and SRE (f) models across a range of lambda values, out-of-sample 
misclassification rates were determined via 100-fold cross validation (black lines) for nested 
models incorporating first-order main effects only (model order 1), pairwise epistasis terms 
(model order 2), or third-order epistasis terms (model order 3). The third-order model performs 
worse in cross-validation than the second-order model. Red lines show the in-sample (self-
trained and self-tested) misclassification rates; the large difference between the black and red 
lines for the third-order model illustrates over-fitting.  
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 Under the hood, the proportional-odds model builds a linear model relating the genetic 

determinants to some latent phenotype, which by definition is whatever phenotype the genetic 

states contribute to linearly and additively. Though the proportional-odds model is built purely 

on the discretized null/weak/strong classification (without having ever been trained on the 

underlying continuous mean fluorescence measurements), we see that the latent phenotype maps 

closely to the experimental mean fluorescence (Fig. 5.3a,b): it reproduces the known censoring 

that we had previously observed in the relationship between mean fluorescence and log(Ka,mac) at 

low affinities (see Appendix 2 Fig. A2.1a), and it also reveals a previously-unknown saturation 

of our mean fluorescence metric at high values (at least for SRE-binding). While we cannot 

know what this latent phenotype truly represents, we do see that it maps well to log(Ka,mac) (Fig. 

5.3a,b), and DGbinding is a physical quantity that genotypic terms should contribute to additively 

and linearly. While we cannot say that our terms are exactly analogous to DDGbinding terms, we 

will refer to our model parameters as “effects on binding” due to this relationship. 
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Figure 5.3. The latent phenotype of the proportional-odds model relates to binding affinity. 
a,b, For ERE (a) and SRE (b) models, the relationship between the proportional-odds model 
latent phenotype and the experimental FACS-seq mean fluorescence estimate for each genotype. 
c, For a handful of genotypes whose affinity for ERE or SRE was previously measured in vitro 
(106), the relationship between the proportional-odds model latent phenotype and log(Ka,mac). R2, 
Pearson correlation between latent phenotype and log(Ka,mac) To illustrate the ERE- and SRE-
binding latent phenotypes on an equivalent scale, the latent phenotypes for each model were 
normalized (divided by the standard deviation of the latent phenotypes for all genotypes on ERE 
or SRE). 
 

5.3.2 The genetic determinants of ERE- and SRE-binding 

 The above approach estimates each state’s background-averaged main effect on binding, 

and each pair of states’ background-averaged epistatic contribution. For each genotype, its latent 

phenotype is calculated by summing the ten coefficients (four main-effect, six epistatic) that 
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describe its resident amino acid states at the variable positions. A positive term indicates that a 

state or pair of states, on average, improves binding to the respective DNA motif, while a 

negative term indicates that the state or pair of states, on average, worsens binding to the 

respective DNA motif. 

 The heat maps in Fig. 5.4 illustrate the model coefficients for each of the main-effect 

(margins of the matrix) and pairwise epistatic (sub-matrices) terms, for ERE-binding (upper-right 

triangle) and SRE-binding (lower-left triangle). To guide the interpretation of these coefficients, 

sequence logos show the fraction of strong ERE-binders (right) or SRE-binders (left) in the 

library that contain each amino acid state at each of the variable positions. 

 
Figure 5.4. The genetic determinants of ERE- and SRE-binding. For the ERE (upper-right) 
and SRE (lower-left) models, a heat map representation of the model coefficients inferred from 
the second-order proportional-odds model. Main-effect terms at each of the four variable sites 
are illustrated on the matrix margins; pairwise epistasis terms between each pair of sites are 
illustrated in each of the sub-matrices. Heatmap scale is given in the lower-left corner. For 
interpretation, logo plots show the proportion of genotypes in the library that are strong binders 
to ERE (right) or SRE (left) that contain each amino acid state at each variable position. 
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Asparagine (N) at position 1 is the most prevalent state among strong binders to ERE, 

and the regression model ascribes to N1 a strong, positive main-effect coefficient, with no 

strongly negative interaction terms, indicating that this state’s prevalence comes from a more-or-

less universally positive contribution to ERE-binding. In contrast, glutamate (E) is the second 

most prevalent state at position 1 among strong ERE-binders, yet its main effect coefficient is 

shrunk to 0. This indicates that the relatively large number of strong ERE-binders that use E1 

must have a specific amino acid state (or states) at another position (or positions), reflecting 

epistatic coupling of E1 with other residues. Indeed, two of the strongest positive epistatic 

interactions of any residues are E1 with lysine (K) or arginine (R) at position 3. This strong 

context-dependency for the beneficial effect of E1 has a straightforward biophysical basis: E1 

makes a key polar contact to the C–3 DNA base in the crystal structure of the wildtype sequence 

(EGKA) bound to ERE (Fig. 5.5a); E1 also makes a salt bridge interaction with K3, which 

makes additional polar contacts to DNA. Presumably, without the presence of a positively 

charged residue at position 3, E1’s negative charge is not entirely satisfied at the protein-DNA 

interface, which would dramatically weaken ERE-binding affinity. 
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Figure 5.5. Biophysical basis for large epistatic interactions. a-d, Crystal structures (a) and 
molecular models (b-d) illustrating biophysical basis for large effect epistatic interactions. RH 
sequence and DNA motif are labeled above each structure. Yellow dashed lines, polar contacts. 
Important protein residues and DNA bases are labeled. Crystal structure of EGKA-ERE from 
PDB ID 4OLN (70); molecular models built using FoldX, as described in (201). e, Epistatic 
interactions involving one or two charged residues are enriched for larger magnitudes. Violin 
plots for the magnitude of epistatic coefficients, versus the number of charged residues (D, E, K, 
or R) involved in the interaction. The gray violin shows the overall density of the distribution; 
dark gray dot, median; thick black bar, interquartile range. P-values, Wilcoxon rank-sum test 
with continuity correction. 
 
 

Some of the strongest negative epistatic interactions in this heat map also have intuitive 

biophysical underpinnings. Lysine (K), the most prevalent state at position 1 among strong 

binders to SRE, exhibits two of the strongest negative epistatic coefficients together with lysine 

(K) or arginine (R) at position 3. In the structure of the wildtype sequence (GSKV) bound to 

SRE, K3 makes polar contacts to the A1 and G2 DNA bases (Fig. 5.5b). In structural models of 

alternative SRE-specific genotypes (KAAI and KSAM) bound to SRE, K1 makes polar contacts 
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to some of the same DNA moieties as K3 (Fig. 5.5c,d). Presumably, if both K1 and K3 were 

present in the same genotype, one of the two residues would be unable to make its preferred 

polar DNA contacts due to steric or electrostatic clashes, leaving an unsatisfied charged residue 

at the protein-DNA interface, severely compromising SRE-binding affinity. Like the examples 

described above, many of the most extreme epistasis coefficients involve charged residues (D, E, 

K, and R; Fig. 5.5e), indicating that charged amino acids in particular exhibit strong context-

dependency in their effects on DNA-binding. 

These observations emphasize the importance of the background-averaged encoding of 

genetic determinants, compared to the reference-based approach (198): from the perspective of 

the wildtype ERE-binding genotype (EGKA), E1 has a positive main effect contribution to 

binding, because single mutations to E1 decrease binding (70, 106, 163); however, this is only 

because this reference background also has K3, which has a strong, positive epistatic interaction 

with E1. Considered globally across the broader array of backgrounds, E1 is not considered a 

universally beneficial state for ERE-binding, but rather is only beneficial when introduced in 

conjunction with a positively charged residue at site 3. Similarly, from the perspective of the 

wildtype SRE-binding genotype (GSKV), K1 is a deleterious state, because this reference 

background also has K3, with which K1 interacts negatively. It is only by considering the 

background-averaged effects of each of these states that we can observe that K1 is, on average, a 

beneficial state for SRE-binding, and that E1 is not a universally beneficial state for ERE-

binding. 
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5.3.3 Partitioning the determinants of ERE- and SRE-binding 

 Next, we sought to determine how important different sets of model terms are for 

explaining variation among genotypes in ERE- and SRE-binding. We predicted the latent 

phenotype of all 24,000 genotypes from models truncated to include only a subset of model 

terms, and compared this phenotype to the ‘true’ latent phenotype of each genotype predicted 

from the full-order regression model. For example, to determine the proportion of variance in the 

DNA-binding latent phenotype that is explained by first-order main effect terms, we set all 

pairwise epistasis terms to zero, predicted the latent phenotype from the main effect terms only, 

and determined R2 between the full-order latent phenotype and this truncated main-effect-only 

phenotype. This reveals that, across the 24,000 modeled genotypes, main effect terms explain 

91.6% of the variance in ERE-binding and 75.0% of the variance in SRE-binding (Fig. 5.6a). 

The same approach reveals that pairwise epistasis terms account for 16.7% of the variance in 

ERE-binding and 22.5% of the variance in SRE-binding (Fig. 5.6a; these values need not sum to 

1 if there is correlation among the predictor values). Therefore, main effect terms explain a 

substantially larger fraction of variation in ERE- and SRE-binding than epistasis terms across the 

entire landscape, though epistasis makes a sizeable contribution to variation in the latent 

phenotypes. 
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Figure 5.6. Partitioning the genetic determinants of ERE- and SRE-binding. a, The 
coefficient of determination for truncated models including only 1st order main-effect terms or 
only 2nd order epistatic terms, for ERE-binding (purple) or SRE-binding (green). b,c, For each 
genotype, the sum of its component main-effect (x-axis) and epistatic (y-axis) terms, for ERE-
binding (b) or SRE-binding (c). For each scatterplot, dark purple or green dots are 
experimentally determined “strong” binders, light purple or green dots are experimentally 
determined “weak” binders, and gray dots were inactive in the experimental dataset. Diagonal 
dashed line is the 1:1 line; the density of dark purple and green dots to the right of this diagonal 
indicates that main effect terms provide a greater contribution, on average, to the phenotype of 
strong binders. d, For “strong” ERE-binders (purple) and SRE-binders (green), the fraction of 
their phenotype that comes from epistatis coefficients. e, The coefficient of determination for 
truncated models including only the main effect terms at the indicated sites, for ERE-binding 
(purple) or SRE-binding (green). f, The coefficient of determination for truncated models 
including only the epistatic terms at the indicated site-pairs, for ERE-binding (purple) or SRE-
binding (green). 
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 Similarly, for both ERE- (Fig. 5.6b) and SRE-binding (Fig. 5.6c), we observe that 

genotypes experimentally classified as strong binders typically depend more heavily on positive 

contributions from the first-order effect of their genetic states than they do on the marginal 

epistatic effects of their particular combinations of states. Nonetheless, epistasis still makes a 

sizeable contribution to the strong phenotype of many binders, with an average contribution of 

23.7% and 31.1% to strong ERE- and SRE-binders, respectively (Fig. 5.6d). Many genotypes are 

strong binders for ERE or SRE despite a near-zero or negative epistatic contribution; on the other 

extreme, several genotypes (LGVR, LPTR, LPVR) are strong SRE-binders despite a negative 

contribution of their main-effect contributions: L1, V3, T3, and R4 have zero or weakly negative 

main effects, but R4 has very strong positive interactions with L1, V3, and T3 (Fig. 5.4), 

indicating that the contribution of these states to SRE-binding is highly context-dependent. 

Next, we asked how main-effect and epistatic terms at each site or pair of sites explain 

the variance in strength of ERE- and SRE-binding. Through the same approach as described 

above, we predicted phenotypes including terms only from a site or pair of sites, and computed 

the coefficient of determination between the full-order and truncated phenotypes. The pattern of 

explanatory power of main-effect terms at each of the four sites is similar for ERE- and SRE-

binding (Fig. 5.6e): site 2, which has the most stringent state-preferences (see logos in Fig. 5.4), 

explains the most variation in both ERE- and SRE-binding phenotypes, followed by sites 4, 3, 

and 1. This suggests that the overarching importance of each site for DNA-binding is conserved 

between these two functions. However, ERE- and SRE-binding differ in the architecture of their 

epistatic determinants (Fig. 5.6f): for example, the three site-pairs involving site 2 are among the 

most explanatory epistatic site-pairs for ERE-binding, but the three least explanatory site-pairs 

for SRE-binding. Conversely, epistasis with site 4 is important for accounting for variation in 
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SRE-binding, but not so for ERE-binding. Epistasis between sites 1 and 3 is moderately 

important for explaining both ERE- and SRE-binding phenotypes – the only site-pair whose 

explanatory power is consistent between the two DNA motifs. Consistent with this analysis, we 

find that the magnitudes of main effect coefficients are more closely correlated between the ERE 

and SRE models than are the magnitudes of epistasis coefficients (Fig. 5.7). Overall, though 

ERE- and SRE-binding are both strongly determined by the main effects of residues at positions 

2 and 4, this site-4-dependency for ERE-binding is relatively context independent but site 2’s 

influence is context dependent, whereas for SRE-binding the inverse is true: the explanatory 

power of site 4 is much improved by considering epistatic context, while site 2’s explanatory 

power is relatively independent of the other residues in the genotype. 

 

 
Figure 5.7. Epistasis terms differ more than main effect terms between ERE- and SRE-
binding models. For main-effect (a) or epistatic (b) terms, the magnitude of each coefficient in 
the SRE model versus its magnitude in the ERE model. r, Pearson correlation coefficient. 
Diagonal dashed line, 1:1 line. 
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5.3.4 Epistatic and main-effect terms synergize to cause single-step transitions in 

specificity 

 Last, we sought to understand how epistasis shapes the fundamental evolvability between 

ERE- and SRE-specificity in sequence space. We previously observed the presence of many 

single-step transitions between these two DNA-binding specificities, in which just a single 

mutation is sufficient to simultaneously decrease ERE-binding from ‘strong’ to ‘null,’ and 

increase SRE-binding from ‘null’ to ‘strong.’ Though two-step transitions involving a 

promiscuous intermediate can also be important or even necessary for protein functional 

evolution (23), the presence of such single-step ‘discrete’ transitions is a remarkable feature of 

this sequence-function landscape and is more straightforward to dissect.   

A single mutation can modify up to four genetic terms (one main-effect term, and three 

epistatic terms). Fig. 5.8 illustrates the change in terms for ERE- and SRE-binding caused by the 

mutation underlying each of these single-step transitions. Overall, we observed 13 unique 

mutations between 16 ERE-specific and 22 SRE-specific genotypes that cause 23 different 

discrete switches from ERE- to SRE-specificity. Across all 23 transitions, many different main-

effect and epistatic terms at different sites or site-pairs are leveraged to alter specificity, 

indicating that it is not just a handful of terms that are altered by every single-step transition. 

In each of the 23 transitions, there is not a single term whose change is sufficient to 

simultaneously decrease ERE-binding and increase SRE-binding the minimum amount to 

recapitulate the switch in specificity. For example, the main effect of some mutations decreases 

ERE-binding sufficiently (e.g. N1K, C4R), but these same mutations do not sufficiently increase 

SRE-binding; on the other hand, some mutations increase SRE-binding with just the main effect 

(e.g. M1K, L4M), but do not decrease ERE-binding. Similarly, no individual epistasis term is 
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sufficient to cause the functional transition singlehandedly. Instead, each mutation causes its 

functional effect through the synergy between two or more of the four possible terms that are 

changed by the mutation. In this way, epistasis between amino acids appears to be integral to the 

adjacency of genotypes with distinct molecular functions within the sequence-function 

landscape. By opening up the degrees of freedom with which a mutation can alter protein 

functions, epistasis allows a combination of genetic determinants to be unleashed with just a 

single mutation, thereby causing a discrete switch in protein function. 

 



 124 

 
Figure 5.8. Epistasis and main effect terms synergize in single-mutant switches in 
specificity. For each of the 23 transitions in which a single mutation causes a discrete switch 
from ERE- to SRE-specificity, the change in the coefficients underlying this transition are 
shown. The genetic mutation is shown along the left-hand side, with the ERE-specific starting 
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(Figure 5.8, continued) sequence in purple and the SRE-specific outcome in green. The width 
of a bar shows the magnitude of effect caused by the change in the relevant coefficients for ERE-
binding (purple) or SRE-binding (green). The change attributed to main-effect coefficients is 
shown in a pale shade, with the changes in epistatic coefficients shown in a dark shade. For each 
change, the specific site (main effect) or site-pairs (epistasis) of coefficients that changed are 
annotated above (SRE) or below (ERE) the bar chart. Gray dashed lines show the minimum 
decrease in ERE-binding required to change from ‘strong’ to ‘null’ (left) and the minimum 
increase in SRE-binding required to change from ‘null’ to ‘strong’ (right) from the proportional 
odds model; some experimentally determined transitions are not predicted by the model to be 
specificity switches, and so the sum of coefficients may not surpass this threshold from the 
model.  
 

5.4 Conclusions and Future Directions 

By analyzing the steroid receptor deep mutational scanning data via a global epistasis 

model, we reveal the full suite of genetic determinants that structure the sequence-function 

landscape of ERE- and SRE-specificity within these four specificity-determining sites. Though 

the main effect of genetic states accounts for a large fraction of variation in the DNA-binding 

phenotypes, we find that epistasis makes key contributions to the sequence-function landscape, 

particularly among those genotypes that are strong binders to either DNA motif. We find that the 

architecture of epistatic constraints differs more dramatically for the two functions than main 

effects, suggesting epistasis might underlie the origins of DNA-binding specificity within this 

system. Finally, we identify a necessary role for epistatic interactions in the adjacency of distinct 

molecular functions in sequence space, suggesting that epistasis might underlie the evolvability 

of novel protein functions on a global scale. 

The idea that expansive functional networks shaped by epistasis enhance evolvability of 

novel functions has received much theoretical and experimental support (192-197). With just the 

two functions considered here, we see evidence that epistasis contributes to the evolvability of 

novel functions; if a broader diversity of DNA-binding specificities were considered, we believe 
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the role of epistasis would become even more pronounced. Other sequence-function landscapes, 

such as computational models of gene regulatory networks (202) and experimental maps of 

transcription factor binding sites (197, 203), have been elaborated with numerous functional 

annotations. Though not protein-based, the principle we suggest here could be tested in these 

systems, to see if the consideration of many additional function amplifies epistasis’ constructive 

influence on evolvability. 

 An important future direction will be to perform structural analyses to understand the 

biophysical basis for our observations. First, what are the biophysical characteristics of the ERE 

and SRE DNA motifs that cause a difference in the architecture of epistatic determinants 

between these two functions? One possibility is that these two DNA motifs present crucial 

chemical moieties at different positions in the DNA major groove, altering the architecture of 

interactions among recognition helix residues necessary to satisfy the binding requirements of 

the motifs. Indeed, previous work suggests that the ancestral ERE-binder and derived SRE-

binder exhibit stringent requirements for different base positions in the DNA sequence motif 

(106); structural analysis of a broader diversity of ERE- and SRE-binders should reveal if this 

pattern holds true among the broader diversity of genotypes that bind each element. 

 Second, structural analysis can be used to reveal why particular amino acid states are 

especially sensitive to context. At the most extreme, how are genotypes like LPVR strong SRE-

binders despite a negative contribution of the states’ main effects? Most strong SRE-binders 

uncovered in our scan use a positively charged residue at positions 1 or 3; does moving this 

positively charged residue to position 4 satisfy the same polar contacts, and if so, why is it so 

dependent on hydrophobic residues at positions 1 and 3?  
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Third, we suggest that epistasis underlies the ability of single mutations to cause discrete 

switches in DNA-binding specificity: why do these single mutations have amplified effects in 

some backgrounds but not others? What types of biophysical interactions potentiate these 

effects? Determining the structures of proteins with and without a particular mutation in different 

contexts – both epistatically potentiating backgrounds, and main-effects-dominated backgrounds 

– could reveal the biophysical features that underlie this effect. Coupled with our genetic 

observations, the structural analyses outlined here would connect our understanding of this 

global sequence-function landscape to its underlying biophysical determinants, satisfying a 

central goal of evolutionary biochemistry. 

 

5.5 Methods 

 Preparing the data. We used the experimental classifications of null, weak, and strong 

as described in Starr et al. (201). To reduce model size and complexity, we only considered 

amino acid states that are found at a frequency of >0.01 among weak+strong binders for either 

DNA motif, reducing the dataset from 160,000 to 24,000 genotypes. Following this previous 

work, we considered ‘undetermined’ any genotype that was observed with 15 or fewer cells in 

the FACS-seq data (3.9% of ERE-binding and 3.5% of SRE-binding measurements in our 

reduced dataset). 

Evaluating the proportional-odds assumption. The log-odds of an amino acid state for 

each of the null:weak+strong and null+weak:strong binary classifications was calculated from 

the experimental dataset by determining the frequency p of an amino acid state among 

weak+strong or strong binders, respectively, and calculating the log-odds: 

log	(
P

Q3P
) 
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The appropriateness of the proportional-odds assumption is judged by whether the difference in 

log-odds for these two classifications is the same across amino acid states (indicating that each 

amino acid state has a consistent effect on the underlying latent phenotype across the range of 

this latent phenotype); we see visually that this assumption generally holds (Fig. 5.1). The 

coefficients whose difference in log-odds differ most tend to be those with lower log-odds, 

indicating that the log-odds is calculated from a smaller number of observations of that state in 

the strong or weak+strong binders, which will produce higher-variance estimates of the log-odds. 

Fitting the proportional-odds model. We used the ‘ordinalNet’ (204) package in R to 

fit proportional-odds ordinal logistic regressions with LASSO penalization, and to perform cross-

validation. Separately for ERE and SRE, we modeled the 3-class null/weak/strong observations 

as a function of the categorical amino acid state at each position, including main-effect first order 

terms, and pairwise epistasis interaction terms between amino acids at all pairs of sites. 

Categorical variables were encoded in a one-hot scheme with no intercept. An example of the 

contrasts matrix for site 2 (five amino acid states) is shown below: 

 

In this scheme, no state is arbitrarily selected as a reference, and coefficients reflect a global, 

background-averaged term. This encoding is appropriate since we have combinatorially 

complete sampling, and fitting the model with LASSO penalization allows this encoding to have 

a unique solution. 



 129 

 To judge model fit and select the penalization parameter l, we performed 10-fold cross 

validation. For each fold, we trained a model on 90% of the data, and tested it on the remaining 

10%, evaluating the log-likelihood of the test set and calculating the misclassification rate (the 

fraction of null/weak/strong classifications that differ between the experimental classification 

and the model prediction). 
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Chapter 6 

Conclusion 

 

Among all the occurrences possible in the universe the a priori probability 

of any particular one of them verges upon zero. Yet the universe exists; 

particular events must take place in it, the probability of which (before the 

event) was infinitesimal ... Destiny is written concurrently with the event, 

not prior to it ... The universe was not pregnant with life nor the biosphere 

with man. Our number came up in the Monte Carlo game. Is it any wonder 

if, like the person who has just made a million at the casino, we feel 

strange and a little unreal? 

 –Jacques Monod, Chance and Necessity (158) 

 

 By combining mutational scanning approaches with ancestral protein reconstruction, this 

work provides the first map of sequence-function landscapes over which proteins evolved during 

history. The structure of this landscape – determined by epistasis between amino acid mutations, 

and the large number of ways of encoding a functional molecule – indicates important roles for 

chance factors in the outcomes of molecular evolution. As the quotation from Jacques Monod 

above suggests, the presence of a unique reality belies the role that chance played in its 

formation; by revisiting historical molecules and testing the effects of mutations other than that 

which occurred in evolution, we can begin to understand this role. 

 This approach is not without its limits (many of which are discussed within each 

individual chapter). Knowledge of the complete set of functional constraints that determined an 
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ancient protein’s trajectory across sequence space is all-but-inaccessible to us. As such, it is 

possible that other functional constraints that we did not consider might make evolution more 

deterministic than we propose. 

 For Hsp90, this issue is unlikely to negate our conclusion that epistasis between 

substitutions creates pervasive contingency and entrenchment. We revealed a pervasive but 

subtle effect of intramolecular epistasis in the effects of historical substitutions on Hsp90’s 

essential molecular function – the undefined set of functional constraints on Hsp90 that 

determine yeast growth under mild laboratory conditions. If other molecular functions are 

affected by these substitutions that do not result in observable fitness defects under the laboratory 

conditions that we tested, then even more substitutions might manifest an evolutionarily relevant 

defect, producing an even stronger signal of intramolecular epistasis. This premise could be 

tested by quantifying the fitness effects of our two libraries of historical substitutions under 

different environmental conditions, and in different yeast strains or species. Under different 

conditions, I would expect some mutations that were deemed neutral under our conditions to 

exhibit growth defects. 

 For the evolution of steroid receptor DNA-binding specificity, it is not as easy to test the 

robustness of our conclusions on contingency and stochasticity to the consideration of alternative 

functions. Even if we were to test the ability of alternative RH combinations to bind the spectrum 

of non-consensus, genomically distributed SRE motifs in a modern cell, we cannot be sure 

whether any or all of these SREs were present in the ancient organism in which AncSR2 

evolved. Inspired by theoretical consideration (166), our model is that a subset of possible SREs 

emerged or co-evolved with the origin of AncSR2; following the evolution of AncSR2’s new 

DNA-binding specificity, additional SREs across the genome emerged or drifted to the margins 
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of the protein’s DNA-binding capability, giving rise to the diversity of SRE sequences present in 

modern-day organisms and entrenching the derived steroid receptor DNA-binding domain, 

slowing its evolution. Though this model might not be testable in this particular system, other 

more-recently diverged transcription factors in amenable model systems such as yeast might be 

experimentally tractable. Nonetheless, the observation that contingency and stochasticity play 

dominant roles in the outcomes of replicate experimental evolution trajectories – which happen 

over observable timeframes – are consistent with our observations about ancient protein 

evolution (41, 43). 

 At a broader level, the sheer size of sequence-function landscapes emphasizes that we 

will never be able to experimentally probe the depths of its entirety. Comprehensive 

combinatorial scans are currently limited in scale, more or less, to the four-site library that we 

considered in the steroid receptors, and because of epistasis, low-order deep mutational scans do 

not reliably predict the structure of sequence-function landscapes at higher-order mutational 

distances (200). Though the structure of the protein sequence-function landscape may never be 

exhaustively determined, the work described here illustrates how well-crafted evolutionary 

questions can be approached in new ways because of this technology, lending new insight into 

the molecular evolution of proteins.   
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Appendix 1 

Supplementary figures for Chapter 3: Pervasive contingency and entrenchment in a billion years 

of Hsp90 evolution 

 

 
Figure A1.1. Hsp90 phylogeny. The maximum likelihood phylogeny of 267 Hsp90 protein 
sequences, with major taxonomic groups labeled. Taxon names indicate genus, species, and an 
accession number or sequence identifier. Nodes characterized in this study are shown as black 
dots; the trajectory studied is shown as a thick black line. 
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Figure A1.2. Ancestral Hsp90 sequences have high statistical support and complement 
yeast growth. a,b, For the ancestral NTD sequences reconstructed in this study, the distribution 
of posterior probability of ancestral states across NTD sites is shown as a histogram. The mean 
posterior probability of the most probable state across sites (mean PP) is shown for each 
ancestor. c, The distribution of mean PP for all reconstructed ancestral sequences along the 
trajectory from ancAmoHsp90 to ScHsp90. d, Growth of S. cerevisiae Hsp90 shutoff strains 
complemented with ancestral Hsp90 NTD variants. Spots from left to right are 5-fold serial 
dilutions. Control plates represent conditions in which the native ScHsp90 allele is expressed. 
Under selection conditions, the native ScHsp90 allele is turned off, and growth can only persist 
when a complementary Hsp90 allele is provided. The ancAmoHsp90 NTD expressed as a 
chimera with the Sc middle and C-terminal domains exhibits a slight growth defect; this is 
rescued by adding an additional reversion to the ancAmoHsp90 state in the middle domain 
(L378i), which occurs on a middle domain loop that extends down and interacts directly with the 
N-terminal domain and contributes to the NTD ATP-binding pocket. We subsequently refer to 
ancAmoHsp90+L378i as ancAmoHsp90. 
 



 135 

 
 

Figure A1.3. Experimental scheme and reproducibility. a, Experimental scheme for testing 
the fitness effects of individual mutations to ancestral states in ScHsp90 (left) or individual 
mutations to derived states in ancAmoHsp90 (right). An alignment of all ancestors along the 
focal trajectory was constructed to identify the trajectory of Hsp90 NTD sequence change from 
ancAmoHsp90 to ScHsp90. In the ScHsp90 and ancAmoHsp90 backgrounds, libraries were 
constructed consisting of the wildtype sequence and all individual mutations to ancestral or 
derived states. These libraries were transformed into yeast, which grew through a bulk 
competition. The frequency of each genotype at each time point was determined by deep 
sequencing, allowing us to calculate a selection coefficient for each mutation relative to the 
respective wildtype sequence. b, Reproducibility in selection coefficient estimates for replicate 
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(Figure A1.3, continued) bulk competitions of the ScHsp90 library. R2, Pearson coefficient of 
determination. c, For visual clarity, zoomed in representation of the boxed region in (b). d, 
Reproducibility in selection coefficient estimates for replicate bulk competitions of the 
ancAmoHsp90 library. R2, Pearson coefficient of determination. e, For visual clarity, zoomed in 
representation of the boxed region in (d). f, Correlation in fitness as measured via bulk 
competition or monoculture growth assay. R2, Pearson coefficient of determination. The line was 
forced to go through (0, 0); when freely fit, the intercept term was not significantly different 
from zero. 
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Figure A1.4. Estimating the proportion of mutations to ancestral states that are deleterious 
with a mixture model. a, Observed selection coefficients of reversions were fit to mixture 
models containing a variable number of Gaussian distributions; in each case, one neutral mixture 
component is fixed to have the mean and standard deviation of the sampling distribution of 
replicate wildtype ScHsp90 sequences present in the library, the mixture proportion of which is a  
free parameter; each additional non-neutral mixture component has a free mean, standard 
deviation, and mixture proportion. The empirical data were best fit by a 3-component mixture 
model, as assessed by AIC. Proportion deleterious (or beneficial) was estimated by summing the 
cumulative density below (or above) zero of the non-neutral components. b, The best-fit mixture 
model. Gray bars, observed distribution of selection coefficients of ancestral reversions; blue 
bars, distribution of observed selection coefficients of wildtype ScHsp90 sequences present in 
the library. Black line, best-fit mixture model; red dashed lines, individual non-neutral mixture 
components; blue dashed line, neutral (wildtype) mixture component. The area under the curve 
for each mixture component corresponds to the proportion it contributes to the overall mixture 
model. c, Quantile-quantile plot showing the quality of fit of the 3-component mixture model (x-
axis) to the empirical distribution of selection coefficients of ancestral reversions (y-axis). The 
mixture model assigns more extreme selection coefficients to the tails than is observed in the 
empirical distribution, but provides a reasonable fit along the bulk of the distribution. 
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Figure A1.5. Alternate approaches for estimating the proportion of mutations that are 
deleterious. a, The estimated proportion of mutations that are deleterious, neutral, or beneficial 
in each background, as determined by each of four statistical methods. See SI Methods for 
descriptions of each method. b,c, Experimental errors are unbiased with respect to the observed 
selection coefficient. For the ScHsp90 (b) and ancAmoHsp90 (c) backgrounds, the absolute 
difference in s as determined in each replicate is shown versus their mean. In each background, 
there is no significant linear relationship between experimental error and sobs (P = 0.27 and 0.24, 
respectively, Pearson’s correlation). 
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Figure A1.6. Ancestral states are deleterious in yeast Hsp90. a, The signature of deleterious 
ancestral states is present in the independent but lower-resolution dataset of Mishra, Flynn et al. 
(16). For each mutation to an ancestral state, the selection coefficient as determined by Mishra, 
Flynn et al. is shown. The median selection coefficient is -0.007, close to that estimated in the 
current study; however, this median selection coefficient is not significantly different than zero 
(P = 0.11). Because Mishra, Flynn et al. tested a much larger panel of mutations (all single 
mutations across the entire NTD), experimental variability of estimated selection coefficients 
was much larger, possibly explaining the lack of significance of this result in this dataset. b, 
Violin plots show the distribution of mutant effects in the dataset of Mishra, Flynn et al. (16). 
Ancestral states are less detrimental than the average random mutation in the NTD (P = 3.5´10-9, 
Wilcoxon rank sum test with continuity correction). c, Reversions exhibit properties typical of 
genuinely deleterious mutations. For various properties of sites at which we measured the fitness 
of ancestral variants (top) or properties of the specific amino acids mutated (bottom), we asked 
whether there was a significant correlation between the property and the selection coefficients of 
mutations via Spearman’s rank correlation. Ancestral states tend to be more deleterious at 
positions that are less robust to any mutation, evolve more slowly, are less solvent accessible, 
and are closer to the gamma-phosphate of bound ATP. These properties are not completely 
independent; for example, there is a significant positive correlation between relative solvent 
accessibility and distance to ATP gamma-phosphate. Biochemical properties particular to the 
amino acid states in each mutation are generally not significantly correlated with the selective 
effect. Furthermore, we see no evidence for older states being more entrenched, as has been 
observed by others (29, 30, 79). 
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Figure A1.7. Fitness effects of historical substitutions are modified by intramolecular 
epistasis. Each black circle represents an ancestral protein along the trajectory from 
ancAmoHsp90 to ScHsp90. Position along the x-axis shows the evolutionary distance that 
separates it from ScHsp90 (a) or ancAmoHsp90 (b); y-axis position shows the predicted 
selection coefficient assuming no epistasis relative to ScHsp90 (a) or ancAmoHsp90 (b). 
Predicted selection coefficients were calculated as the sum of individual selection coefficients for 
all sequence differences present in its sequence as measured in ScHsp90 (a) or ancAmoHsp90 
(b). Error bars show the 95% confidence interval for the predicted value, calculated by 
propagating the standard errors of individual site-specific selection coefficient measurements. 
Light gray dots show the same data, but excluding the effects of the two strongly deleterious 
outliers in each library. Labeled squares indicate experimentally determined selection 
coefficients for complete genotypes: ancAscoHsp90, ancestral Ascomycota (fitness determined 
via monoculture growth); ancAmoHsp90, ancestral Amorphea (fitness determined via bulk 
competition); ancAmoHsp90+L378i, ancAmoHsp90 with a candidate epistatic substitution in the 
Middle Domain also reverted to its ancAmorphea state (fitness determined via bulk competition). 
Dashed line, s = 0. 
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Figure A1.8. Estimating the proportion of mutations to derived states that are deleterious 
with a mixture model. a, The distribution of selection coefficients of mutations to derived states 
was fit by mixture models containing a variable number of Gaussian distributions; in each case, 
one neutral mixture component is fixed to have the mean and standard deviation of the sampling 
distribution of replicate wildtype ancAmoHsp90 alleles in the library, the mixture proportion of 
which is a free parameter; each additional non-neutral mixture component has a free mean, 
standard deviation, and mixture proportion. The empirical data were best fit by a 2-component 
mixture model, as judged by AIC, with a 5-component mixture being almost equally well fit; the 
5-component mixture resulted in a more conservative estimate of the proportion of mutations 
that were deleterious than the 2-component mixture, and so was chosen despite the AIC 
difference of 0.2. Proportion deleterious (or beneficial) was estimated by summing the 
cumulative density below (or above) zero of the non-neutral components. b, The fit of the 5-
component mixture model. Gray bars, distribution of selection coefficients of mutations to 
derived states; blue bars, distribution of selection coefficients of independent ancAmoHsp90 
alleles present in the library. Black line, five-component mixture model; red dashed lines, 
individual non-neutral mixture components; blue dashed line, neutral (wildtype) mixture 
component. The area under the curve for each mixture component corresponds to the proportion 
it contributes to the overall mixture model. c,d, Quantile-quantile plot showing the quality of fit 
of the 2-component (c), or 5-component (d), mixture models (x-axis) to the empirical distribution 
of selection coefficients of mutations to derived states (y-axis). 
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Figure A1.9. The deleterious V23f reversion is ameliorated by L378i. a,b Character state 
patterns at sites 23 (a) and 378 (b). On the lineage to ScHsp90, f23V co-occurred with i378L 
before the common ancestor of Ascomycota. The same two substitutions also co-occur on an 
independent lineage on this phylogeny (Kickxellaceae fungi), and in the distantly related 
Rhodophyta red algae (GenBank ADB45333.1 and RefSeq XP_005715129.1). c, The locations 
of sites 23 and 378 on the ATP-bound Hsp90 dimer structure (PDB 2CG9). Cyan spheres, site 
23; dark blue; site 378; dark green, other variable NTD sites; gray, other variable middle and C-
terminal domain sites. Magenta sticks, ATP. d, Zoomed view of sites 23 and 378. These side 
chains are in direct structural contact, and may be important for the positioning of the middle 
domain loop that bears R380 (gray sticks), which forms a salt bridge with the ATP gamma-
phosphate and is critical for ATP binding and hydrolysis (134, 151). 
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Figure A1.10. The deleterious E7a reversion is partially ameliorated by N151a or T13n. 
a,b,c, Character state patterns at sites 7 (a), 13 (b) and 151 (c). On the trajectory to ScHsp90, 
a7E occurred before the common ancestor of Ascomycota, then later reverted in the lineage 
leading to Ascoidea rubescens (arrow); on this latter lineage, site 13 also reverted to the ancestral 
state asparagine, and site 151 substituted to a third state lysine. d, The locations of sites 7, 13, 
and 151 on the ATP-bound Hsp90 structure (2CG9), represented as in Fig. S9c. Cyan spheres, 
site 7; dark blue, sites 13 and 151. e, Zoomed in view of sites 7, 13, and 151. These side chains 
are not in direct physical contact; however, site 7 is on a beta strand that undergoes extensive 
conformational movement when Hsp90 converts between ADP- and ATP-bound states. f, The 
same plot as Fig. 5c is shown, including the two strongly outliers V23f and E7a. See Fig. 5c 
legend for details. 
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Appendix 2 

Supplementary figures and tables for Chapter 4: Alternative evolutionary histories in the 

sequence space of an ancient protein 

 

 
Figure A2.1. Design and validation of a yeast FACS-seq assay for steroid receptor DNA-
binding function. a, GFP activation in ERE (purple) and SRE (green) yeast reporters correlates 
with previously measured protein-DNA binding11,12. Asterisk, stop-codon-containing variant. 
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(Figure A2.1, continued) Dashed line, best fit segmented-linear relationship between GFP 
activation and log10(Ka,mac). b, Histogram of the per-cell green fluorescence for AncSR1 on ERE 
measured via flow cytometry, fit to a logistic distribution (dashed line). c, Distributions that 
provide the best fit to flow cytometry data for isogenic cultures of 101 DBD variants, using 
Akaike Information Criterion (AIC). d, Comparisons of mean fluorescence estimates between 
FACS-seq replicates of each protein/response element combination. Black points, coding RH 
variants; light gray, stop-codon-containing variants. R2

pos, squared Pearson correlation 
coefficient for variants with mean fluorescence significantly higher than stop-codon-containing 
variants in either or both replicates. e, Comparisons between mean fluorescence as determined in 
FACS-seq and via flow cytometry analysis of isogenic cultures for a random selection of clones 
from each library. Dashed line, best-fit linear regression. f, Robustness of classification to 
sampling depth. Variants were binned according to the minimum number of cells with which 
they were sampled in either replicate. Below 15 cells sampled (dashed line), the probability that 
a variant called active in one replicate was also called active in the other is dependent on 
sampling depth; to minimize errors due to sampling depth, we eliminated as “undetermined” all 
variants with less than 15 cells sampled after pooling replicates. g, Standard error of mean 
fluorescence estimates (SEM) in each library as a function of sampling depth. Top plots show for 
each background, the relationship between SEM and sampling depth for ERE (purple) and SRE 
(green) libraries, as estimated from the sampling distribution of stop-codon-containing variants 
(dotted lines) or variability in mean fluorescence estimates between replicates (solid lines). 
Bottom panels show the cumulative fraction of coding variants in each library that have a certain 
number of cells sampled in the pooled data. 
 

 
 

 
Figure A2.2. Representative FACS gates for library sorting. a, A scatterplot of side-angle 
scattering (SSC-A) and forward-angle scattering (FSC-A) selects for a homogenous cell 
population (P1). b, A scatterplot of the height of the per-cell forward scatter peak (FSC-H) 
compared to the integrated area of this peak (FSC-A) excludes events where multiple cells pass 
through the detector simultaneously (P2). c, Final sort bins (P3 – P6) are drawn on the 
distribution of green fluorescence (FITC-A). d, Table showing the hierarchical parentage of sort 
gates and the percentage of events that fall in each bin. 
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Figure A2.3. Models to predict the function of missing genotypes. For each protein/response 
element combination, a continuation ratio ordinal logistic regression model was constructed to 
predict the functional class of a variant as a function of its four RH amino acid states, including 
possible first order main effects and second order pairwise epistatic effects. 10-fold cross-
validation was used to select the penalization parameter l and evaluate performance. a,b, True 
positive rate (left, TPR, the proportion of experimental positives that are predicted positive) and 
positive predictive value (right, PPV, the proportion of predicted positives that are 
experimentally positive) are shown as a function of l for AncSR1+11P on ERE. Classifications 
were evaluated for (a) all active (weak and strong) versus inactive variants and (b) strong active 
versus weak active and inactive variants. Gray dotted lines, cross-validation replicates; solid line, 
mean. Dashed line shows the chosen value of l = 10-5; as l continues to decrease beyond l = 10-

5, TPR plateaus but PPV continues to decline. c, The number of non-zero parameters included in 
each model as a function of l. Dashed line, l = 10-5. d, Summary of performance metrics from 
10-fold cross-validation for each model with l = 10-5. Accuracy is the proportion of predicted 
classifications (strong, weak, and inactive) that match their experimentally determined classes. 
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Figure A2.4. Biophysical diversity in DNA recognition. a,b, Diverse mechanisms for 
recognition of SRE (a) or ERE (b) by the historical RH genotypes (GSKV and EGKA) and 
alternative SRE-specific variants. Contacts from FoldX-generated structural models are shown 
between RH residues (circles) and DNA bases (letters), backbone phosphates (small circles) and 
sugars (pentagons, numbered by position in the DNA motif; dashed numbers refer to the 
complementary strand). Hydrogen bonds are shown as dashed arrows from donor to acceptor; 
dotted lines, non-bonded contacts. Red squares, bases that form hydrogen bonds in the EGKA-
ERE structure that are unsatisfied in complex with an SRE-specific RH; red circles, side chains 
with polar groups that are not satisfied in complex with ERE. Only DNA contacts that vary 
among the analyzed structures are shown. c, Large side chains at position 29 correlate with the 
loss of a conserved R33 hydrogen bond to ERE. For ERE-bound structural models, the distance 
of the Arg33 guanidinium hydrogen to the ERE T4 carbonyl oxygen was measured and 
compared to the atomic volume of the residue at position 29 in that variant. 



 148 

 
 
Figure A2.5. The ancestral RH (EGKA) and derived RH (GSKV) can access many SRE-
specific outcomes by short paths in AncSR1+11P. a, Concentric rings contain RH genotypes 
of minimum path length 1, 2, or 3 steps from AncSR1+11P:EGKA (center). The historical 
outcome (GSKV, boxed, bottom) is accessible through a three-step path (EGKA – GGKA – 
GGKV – GSKV). Alternative SRE-specific outcomes accessible in three or fewer steps are in 
green. Lines connect genotypes separated by a single nonsynonymous nucleotide mutation; lines 
among genotypes in the outer ring are not shown for clarity. Orange arrows indicate paths of 
significantly increasing SRE mean fluorescence. b, For trajectories indicated by orange arrows in 
(a), SRE mean fluorescence is shown versus mutational distance from AncSR1+11P:EGKA 
(with x-axis jitter to avoid overplotting). Gray lines connect variants separated by single-
nucleotide mutations. Error bars, 90% confidence intervals. Green dashed line, activity of 
AncSR1+11P:GSKV on SRE. c, For the SRE-specific outcomes accessed in orange paths in (a), 
the probability of each outcome under models where the probability of taking a step depends on 
the relative increase in SRE mean fluorescence (correlated fixation model), or where any SRE-
enhancing step is equally likely (equal fixation model)(22, 24). d, The historical outcome 
(GSKV) has SRE-specific single-mutant neighbors. Concentric rings contain SRE-specific RH 
genotypes of path length 1 or 2 steps from AncSR1+11P:GSKV (center). Lines connect 
genotypes separated by a single nonsynonymous nucleotide mutation; lines among genotypes in 
the outer ring are not shown for clarity. e, The distribution of SRE mean fluorescence of SRE-
specific neighbors of AncSR1+11P:GSKV illustrated in (d). Error bars, 90% confidence 
intervals. 
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Figure A2.6. Evolvability of SRE specificity in an ancestral sequence space. a, Alternative 
ERE-specific starting points reach SRE-specific outcomes with very different amino acid states. 
For each starting point, the frequency profile of amino acid states at each RH site was 
determined for the set of SRE-specific outcomes reached in ≤ 3 steps; for each pair of starting  
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(Figure A2.6, continued) points, the Jensen-Shannon distance between profiles was calculated. 
Blue curve, distribution of pairs of starting points by Jensen-Shannon distances of the outcomes 
they reach; grey, distribution of Jensen-Shannon distances between profiles for randomly 
sampled sets of SRE-specific variants. In each modal peak, the amino acid frequency profiles for 
outcomes reached by a representative pair of ERE-specific starting points are shown. b-d, 
Contingency in the accessibility of individual SRE-specific outcomes remains when path lengths 
longer than the historical trajectory are considered. Plots are equivalent to Figs. 4.2b-d but for 
trajectories of increasing length. 

 

 
Figure A2.7. The historical starting point cannot access the derived function without 
permissive mutations. a, AncSR1 RH functional network layout as in Fig. 4.3c, with the 
shortest paths from AncSR1:EGKA to SRE specificity highlighted. The ancestral RH (EGKA) 
can access SRE specificity. However, all trajectories are at least 5 steps long, require permissive 
RH changes that confer no SRE activity (e.g. K28R and G26A) and proceed through 
promiscuous intermediates. b, For paths highlighted in (a), SRE mean fluorescence is shown 
versus mutational distance from AncSR1:EGKA; gray lines connect variants separated by single-
nucleotide mutations. Error bars, 90% confidence intervals. Green dashed line, activity of 
AncSR1+11P:GSKV on SRE. EGKA was represented by only 7 cells in the SRE library, so its 
FACS-seq SRE mean fluorescence estimate is unreliable (and its classification was thus inferred 
by the predictive model). In isolated flow cytometry experiments, its SRE mean fluorescence 
was indistinguishable from null alleles; the decrease in SRE mean fluorescence from step 0 to 
step 1 suggested by this figure is therefore more likely a flat line (no change in SRE activity). c, 
Stochasticity and contingency in trajectories of functional change. Diagrams illustrate paths from 
a purple starting point (left) to possible green outcomes (right). In a deterministic trajectory (i), a 
particular genotype encoding the green function will evolve deterministically if selection favors 
acquisition of the green function and only that genotype is accessible. The outcome of evolution 
is stochastic (ii) if multiple outcomes are accessible, so which one occurs is random. An outcome 
is contingent (iii) if its accessibility depends on the prior occurrence of some step that cannot be 
driven by selection for that outcome. Contingency and stochasticity can occur independently (ii 
and iii), or they can co-occur in serial (iv). 
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Figure A2.8. The effect of historical permissive substitutions is mediated by nonspecific 
increases in affinity. a-d, 11P nonspecifically increase transcriptional activity as measured by 
FACS-seq, consistent with FoldX predictions of effects on binding affinity. a, Classification of 
SRE-specific variants as 11P-dependent (orange) and 11P-independent (yellow) based on their 
functions in AncSR1 and AncSR1+11P backgrounds. Icons for individual variants specifically 
assessed in (b) and (c) are shown. b, FACS-seq mean fluorescence estimates for 11P-dependent 
(orange) and 11P-independent (yellow) RH variants in the AncSR1 (left) and AncSR1+11P 
(right) backgrounds, shown as box-and-whisker plots as in Fig. 4.4a. Icons represent variants 
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(Figure A2.8, continued) validated in (c). P-values, Wilcoxon rank sum test with continuity 
correction. The mean fluorescence of 11P-independent genotypes is significantly higher in the 
AncSR1 background but not in AncSR+11P. c, Validation of apparently restrictive effect of 11P 
on some genotypes. For three variants nonfunctional in AncSR1+11P but SRE-specific in 
AncSR1 FACS-seq assays (´), we measured mean fluorescence of isogenic cultures by flow 
cytometry. We also assayed variants that are SRE-specific in AncSR1+11P and SRE-specific 
(square) or nonfunctional (open circle) in AncSR1, as validation controls. Isogenic mean 
fluorescence is represented as mean ± SEM from three replicate transformations and inductions 
analyzed via flow cytometry. All FACS-seq classifications were validated except for the three 
apparently restricted variants in AncSR1+11P (highlighted in red), which are in fact strong SRE-
activators in this background. Each of these variants was predicted to be a strong SRE-binder 
based on its genotype, but had an artificially low FACS-seq mean fluorescence estimate, perhaps 
due to a strong growth defect in inducing conditions. d, After removing the three genotypes with 
inaccurate FACS-seq fluorescence measurements (´), 11P-independent genotypes have 
significantly higher mean fluorescence than 11P-dependent genotypes in the AncSR1+11P 
background, consistent with a nonspecific permissive mechanism via affinity. P-values, 
Wilcoxon rank sum test with continuity correction. e, 11P do not alter the genetic determinants 
of SRE specificity. Each plot shows, for a variable site in the library, the frequency of every 
amino acid state in two functionally defined sets of variants. Spearman’s rho for each correlation 
is shown. The top row shows that the determinants of SRE specificity are similar in AncSR1 and 
AncSR1+11P libraries; bottom row shows a much weaker relationship between the determinants 
of SRE and ERE specificity within the AncSR1+11P library. f, Biochemical determinants of 
ERE and SRE specificity in the AncSR1 (top) and AncSR1+11P (bottom) backgrounds. A 
multiple logistic regression model predicts the probability that a variant is RE-specific from the 
biochemical properties of its amino acid state at each of the four variable RH sites. The 
coefficients of this model represent the change in log-odds of being ERE-specific or SRE-
specific per unit change in each property. Asterisks indicate site-specific determinants that differ 
significantly between ERE and SRE specificity in each background (Z-test, P < 0.05). 
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Table A2.1. Library sampling statistics. Sample sizes and sequence read/coverage statistics are 
shown at various stages of the experimental pipeline for each protein library, yeast reporter 
strain, and replicate. For details, see Chapter 4 Methods. 
 

 FACS sequencing coverage, all variants coverage, coding 
variants 

  

bacterial 
transfor-
mation 
yield 
(cfu) 

yeast 
transfor-
mation 
yield 
(cfu) 

smallest 
bottleneck 

during 
FACS 

induction 
(cfu) 

bin 1 
count 
(cfu) 

bin 2 
count 
(cfu) 

bin 3 
count 
(cfu) 

bin 4 
count 
(cfu) 

total 
number 

cells 
recovered 
post-sort 

(cfu) 

bin 1 
read 
count 

bin 2 
read 
count 

bin 3 
read 
count 

bin 4 
read 
count 

read:cfu 
> 1 for 

all 
bins? 

median 
number 
of cells 

sampled 

fraction 
variants 

with 
>15 
cells 

median 
number 
of cells 

sampled 

fraction 
variants 

with 
>15 
cells 

AncSR1 
+11P 

+RH lib 

ERE, 
rep1 

2.3e7 

6.1e6 3.2e8 2.0e7 3.4e7 3.2e6 4.7e5 5.8e7 2.8e7 3.6e7 3.3e6 2.0e7 yes 55.4 0.780 61.1 0.797 

ERE, 
rep 2 1.1e7 4.4e8 1.7e7 1.6e7 2.9e6 1.1e5 3.6e7 3.5e7 3.7e7 7.9e6 1.7e6 yes 64.0 0.830 70.5 0.843 

ERE, 
pooled 1.7e7 Not applicable 9.4e7 Not applicable 127.1 0.913 140.3 0.921 

SRE, 
rep 1 7.1e6 1.0e8 1.6e7 1.3e7 1.8e6 1.9e5 3.1e7 3.0e7 1.6e7 2.6e6 1.1e6 yes 70.7 0.811 78.2 0.826 

SRE, 
rep 2 1.8e7 2.0e8 2.0e7 3.2e7 4.9e6 4.1e5 5.7e7 2.3e7 6.0e7 1.1e7 3.8e6 yes 64.7 0.836 71.9 0.851 

SRE, 
pooled 2.5e7 Not applicable 8.8e7 Not applicable 143.6 0.924 158.9 0.931 

                   

AncSR1 
+RH lib 

ERE, 
rep1 

2.3e7 

8.3e6 3.4e8 2.0e7 3.2e7 5.3e6 2.2e5 5.8e7 2.4e7 5.1e7 6.4e6 5.5e5 yes 57.5 0.812 61.3 0.822 

ERE, 
rep 2 8.6e6 2.6e8 1.6e7 1.6e7 2.8e6 1.6e5 3.5e7 2.5e7 2.9e7 3.5e6 1.1e6 yes 37.1 0.734 39.6 0.748 

ERE, 
pooled 1.7e7 Not applicable 9.3e7 Not applicable 104.5 0.907 111.7 0.912 

SRE, 
rep 1 2.0e7 2.5e8 2.1e7 3.6e7 5.4e6 1.3e5 6.2e7 3.3e7 9.3e7 6.6e6 4.3e5 yes 178.4 0.958 191.3 0.961 

SRE, 
rep 2 2.1e7 2.9e8 2.0e7 3.1e7 5.5e6 5.9e5 5.7e7 3.1e7 5.5e7 2.0e7 1.6e6 yes 82.7 0.873 89.1 0.881 

SRE, 
pooled 4.1e7 Not applicable 1.2e8 Not applicable 289.8 0.979 312.1 0.980 
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Table A2.2. Robustness of inferences to scheme for classification of variants. Each row 
represents an inference reported in Figs. 4.2 and 4.3; each column is a scheme for functionally 
classifying variants from FACS-seq data and FACS-seq-trained predictive models. For details of 
schemes, see Chapter 4 Methods. 

 Classification Scheme 

Inference Main 
text 

(A) Use 
FACS-seq 

ML estimate 
for 

AncSR1/ERE  

(B) Increase 
equivalence 
margin from 
20% to 50%  

(C) 
Classify 

as 
functional 
if weak or 

strong 
activity 

(D) Classify 
as functional 

if ML 
fluorescence 
>0.8´ that of 

ancestral 
reference 

(E) 
Classify 

as 
functional 
only if ML 

fluor  
within 

20% on 
either side 

of 
ancestral 
reference 

(F) Classify 
all variants 
based on 

predictions 
from 

genotype 

(G) No 
predictions; 

classify 
undetermined 

variants as  
inactive 

(H) Classify 
based on 

prediction or 
experiment, 
whichever 

assigns 
stronger 
function 

(I) Keep only 
classifications 

identical 
between 
replicates 

(J) Use 
per-

variant 
estimate 

of 
standard 
error to 
classify 

# ERE-specific, 
AncSR1 43 138 108 444 67 36 27 39 47 11 47 

# promiscuous, 
AncSR1 45 94 84 158 58 38 45 44 60 30 46 

# SRE-specific, 
AncSR1 41 41 58 213 45 19 31 38 40 39 40 

# ERE-specific, 
AncSR1+11P 144 326 264 619 212 114 101 108 133 76 123 

# promiscuous, 
AncSR1+11P 378 525 554 719 464 254 319 341 459 282 358 

# SRE-specific, 
AncSR1+11P 829 832 1206 2728 956 296 670 768 899 809 837 

AncSR1:EGKA 
requires permissives 

to access SRE-
specificity? 

TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE 

Shortest path length 
from EGKA to SRE-
specificity in AncSR1 

5 5 3 2 5 6 5 5 5 no paths 4 

# SRE-specific 
outcomes accessed 

in 3 steps from 
AncSR1+11P:EGKA 

65 66 89 136 77 10 58 53 72 71 65 

Proportion ERE-
specific starting 
points unable to 

access SRE-
specificity in 3 steps, 

AncSR1+11P 

0.063 0.037 0.008 0.066 0.014 0.252 0.050 0.139 0.053 0.026 0.089 

Proportion SRE-
specific outcomes not 

accessed from any 
ERE-specific starting 

point in 3 steps, 
AncSR1+11P 

0.276 0.108 0.118 0.071 0.150 0.571 0.378 0.388 0.276 0.425 0.280 

Proportion pairs of 
ERE-specific starting 
points with no shared 
outcomes in 3 steps, 

AncSR1+11P 

0.542 0.530 0.426 0.229 0.501 0.836 0.543 0.611 0.529 0.390 0.541 

Fraction ERE-specific 
variants with no path 
to SRE-specificity, 

AncSR1 

0.279 0.058 0.505 0.054 0.176 0.378 0.321 0.350 0.250 0.083 0.104 

Fraction ERE-specific 
variants with no path 
to SRE-specificity, 

AncSR1+11P 

0.014 0.021 0.004 0.066 0.005 0.470 0.010 0.056 0.015 0 0.033 

Average shortest 
path length to SRE-
specificity from all 
connected ERE-
specific variants, 

AncSR1  

4.193 4.191 3.796 2.309 4.054 4.304 4.158 4.889 4.278 4.545 4.163 

Average shortest 
path length to SRE-
specificity from all 
connected ERE-
specific variants, 

AncSR1+11P 

2.183 2.122 1.867 1.336 1.986 2.885 2.270 2.333 2.206 2.158 2.294 

Fraction ERE-specific 
variants with 

permissive shortest 
path, AncSR1 

0 0.035 0.059 0.242 0 0 0 0 0 0 0 

Fraction ERE-specific 
variants with 

permissive shortest 
path, AncSR1+11P 

0.290 0.218 0.225 0.191 0.235 0.136 0.207 0.234 0.210 0.140 0.214 

Fraction ERE-specific 
variants with 

promiscuous shortest 
path, AncSR1 

0.483 0.461 0.381 0.370 0.381 0.445 0.548 0.361 0.594 0.634 0.524 

Fraction ERE-specific 
variants with 

promiscuous shortest 
path, AncSR1+11P 

0.413 0.462 0.403 0.133 0.441 0.458 0.504 0.426 0.538 0.524 0.475 
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(Table A2.2, continued) 
 

Fraction ERE-
specific variants with 

permissive and 
promiscuous 
shortest path, 

AncSR1 

0.517 0.481 0.530 0.191 0.619 0.555 0.452 0.639 0.406 0.366 0.476 

Fraction ERE-
specific variants with 

permissive and 
promiscuous 
shortest path, 
AncSR1+11P 

0.108 0.120 0.065 0.002 0.082 0.241 0.149 0.164 0.106 0.165 0.135 

Fraction ERE-
specific variants with 
direct shortest path 

AncSR1 

0 0.023 0.030 0.198 0 0 0 0 0 0 0 

Fraction ERE-
specific variants 

direct shortest path, 
AncSR1+11P 

0.190 0.201 0.308 0.673 0.242 0.165 0.14 0.176 0.145 0.171 0.176 
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