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ABSTRACT

Knowledge and experience learned from investing in physical, tangible capital is sometimes

non-excludable between firms. I explore how this simple externality affects technological

growth. Using the recent fracking revolution in American oil & gas, I develop a two-stage

empirical procedure to 1) provide evidence that this shared intangible exists and 2) show

that firms value this knowledge externality when making investment decisions. I use a

spatial panel model that is a natural network structure for localized knowledge diffusion

to identify cross-sectional differences in intangible capital value across counties. Then, I

use global oil prices as a plausibly exogenous source of variation in investment levels. I

find that one extra investment made by other firms in strong knowledge network areas is

associated with a 13% increase in monthly productivity. I show that this effect is particularly

important for growing technologies; tests using older methods of production do not have the

same impact. In a heterogeneous firm model, I formalize how this mechanism drives growth

cycles by effecting technology improvement and widespread adoption jointly. As more firms

learn by doing, the technology improves for everyone. As the technology improves, more

firms invest. Technology transition is the result of firms optimally re-weighting their capital

portfolios towards newer technology. Because tangible capital investment is the primary

mechanism for technology growth, the distribution of firms in the economy becomes an

important state variable which determines the rate of technology adoption and the phase-

out of old technology.
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CHAPTER 1

1.1 Introduction

Widespread adoption of a new technology as well as observed improvement in that technol-

ogy often occur simultaneously. These episodes of technological growth also have important

implications for broader economic growth. Consider for example, the introduction of hori-

zontally fracked wells into the American oil & gas exploration and production industry. This

development had a profound impact on geopolitics, moving the country from a net importer

to a net exporter of fossil fuels. Despite its importance, the literature on technological change

and endogenous economic growth is largely focused on discovery or innovation as opposed

to improvement and diffusion. As Stokey noted in a recent working paper, “The diffusion

of technological improvements, across producers within a country and across international

borders, is arguably as critical as innovation for long run growth.”1

This paper studies these two processes, improvement and adoption, through the lens of

one such episode, the American fracking revolution. Importantly, both improvement and

adoption are difficult to study empirically. Thus, even as individual mechanisms, little is

understood about them.2 This paper tests an idea which sheds light on the relationship

of growth and diffusion to each other and the joint effect they have on periods of marked

technological growth. Firm investment in physical capital creates knowledge and experience

which is not always excludable from other firms. For example, oil & gas firms have to submit

permits to drill which makes some information regarding their production process publicly

available. This simple externality, the accumulation of shared intangible capital through

physical capital investment, results in a novel mechanism which sheds light on how technol-

ogy revolutions occur. Firms learn as they invest in new technology but due to sharing, that

1. [63]

2. [63] reviews the literature on diffusion for the cases where data are available.
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learning improves the technology for everyone. At the same time, as the technology improves,

the physical capital investment decision for all firms is affected by the creation of valuable,

shared intangible capital. This creates a self-sustaining endogenous growth mechanism which

is explored in a theoretical companion paper.3 In this paper, I use this framework to build

reduced-form empirical tests of both sides of this feedback loop. I show that physical capital

investments results in the creation of valuable shared intangibles evidenced in productivity

differences. I also show that investment activity by other firms have a larger impact on firm

investment decisions when shared knowledge is valuable.

The American fracking revolution in oil & gas presents an interesting empirical test case

of this mechanism. The discovery and subsequent growth of hydraulic fracturing technology

is one of the most recent examples of an influential technology growth episode. Addition-

ally, the American oil & gas sector has close institutional similarities with renewable energy

sectors such as wind and solar. Given the challenges of climate change, the oil & gas sector

presents an interesting opportunity to study the economics of technology growth with appli-

cations to similar, prescient sectors. In particular, sectors which extract natural resources

are monitored by permits and the land leases for oil wells and solar panels both require con-

tracts which are recorded by local municipal authorities. While these are important policies

for resource management, they also make knowledge and experience partially available to

all firms in the industry. Different versions of these externalities exist in other industries

of interest as well. In life sciences and biotechnology, it is not uncommon for firms to pub-

lish peer-reviewed research to test and prove their technology. This is a process by which

other firms may learn about technology developments industry-wide. In consumer finance,

many firms are building products with analyses from the same set of credit-bureau data

(ex: Equifax and TransUnion). This shared data pool also results in shared knowledge and

3. This theoretical companion uses a generic production function which is not energy specific.
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experience.

I develop a novel empirical strategy to estimate this knowledge externality from physical

capital investment. The procedure is two-fold. I first identify cross-sectional variation in

the usefulness of this shared knowledge or experience by estimating a network model. Then,

I find exogenous changes to investment levels which impact all firms in the economy. If

there are areas where the creation of this shared knowledge is more useful, then the decline

in investment levels should disproportionately affect the productivity in those areas since

investment by other firms in the economy contribute disproportionately to the effectiveness

of technology in those areas.

To implement this framework, I rely on natural network structures which intuitively gov-

ern the propagation of shared knowledge. In natural resources, geological differences suggest

that knowledge proliferation is not friction-less industry-wide4. Information produced by

another investment may not be as valuable if it is too far away or if it is in a geology that

is so complex that there is significant heterogeneity in technical design5. Other examples

of natural networks might be trade flows which are determined by historical political agree-

ments instead of economic benefit. I implement the network structure by estimating a spatial

autoregressive model which weights the investment effect from other firms based on their

inverse distance6. This measure is estimated in the first stage using detailed capital unit-

4. Note that I do not assume that there are no global knowledge transfers. Labor movements can result
in knowledge transfers that are not limited by distance. Rather, this procedure precisely captures the local
effect and differentiates it from the global one.

5. Importantly, this network is exogenously formed. While firms may choose to invest near other firms
to take advantage of the network, the fact that the networks differ in their efficacy remains exogenous. The
fact that information from some investments are more useful in some areas is due to exogenous factors such
as geology. Said differently, while the size of networks may be endogenous due to the investment choices
firms make, the heterogeneity in network effectiveness is not.

6. This model is studied in-depth by [15] and has been implemented in house price contagion studies and
environmental impact analyses.
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month level data and the model is implemented separately for each oil producing county in

the United States to capture cross-sectional variation in network strength. To avoid mea-

suring other sources of contagion such as geological productivity, I use indirect measures as

explanatory variables. Rather than studying the network effect of productive investments

on productive investments, I study the effect of proximity to skilled firms on productive

investments. I also consider the impact of more information about nearby investments on

the success of my own well. If investments do not rely on the experiences generated in the

network then the skill of firms nearby should not explain variation in other wells.

The network strength estimated using this spatial autoregressive model forms the basis of

“treatment” and “control” distinctions in a differences-in-differences (“diff-diff”) framework.

I then use the decline in global oil prices starting in 2014Q3 to instrument for sustained

investment declines industry-wide. The full empirical specification is a hybrid between a

“diff-diff” and an instrumental variable specification. In a traditional diff-diff, one studies

how the treatment group differs in their reaction to an exogenous policy change. Here, I

study how the treatment group differs in their reaction to investment changes as instru-

mented by the oil price decline in a two-stage least squares specification. I measure the

effect of lower investment activity by other firms on both lifetime output measures and other

performance indicators. The baseline results show that investment activity by other nearby

firms have a larger effect on the productivity of firms in strong network areas as compared

to weaker network counties. The marginal effect of one additional well drilled nearby in high

knowledge sharing regions is a 13% improvement in well output every month of its life. The

analogous effect in low sharing areas is negative.

I employ this empirical strategy for both new and old type technology. Each county is

sorted once based on its new technology network strength and its old technology network

4



strength. I then test the impact of decreasing investment levels for both production meth-

ods. Notably, the disproportionate impact from other firms making physical investments

only hold in the new technology. Despite measuring a strong productivity network in the old

type of technology, the results show that the coefficient on investment activity is decreasing

in network strength. This indicates that shared knowledge as a spillover is particularly im-

portant for growing technology. This is distinct from other sources of productivity spillovers

which may be relevant in a number of scenarios. For example, increased efficiency from

supply chain effects because a similar plant is opened nearby may result in productivity

spillovers even for mature technology.

I formalize the mechanism in a heterogeneous firm model which incorporates both the

shared knowledge and the investment choices. Using aggregate transition dynamics of in-

vestment and technological sophistication, I develop intuitive results which highlight the

theoretical contribution of this framework. In particular, the mechanism for technological

change is shown to be changing incentives for firms to improve their technology sophistica-

tion rates as compared to making larger level investments in new technology. Further, the

results show that the distribution of firms operating in the economy is important for the

rate of technology transition as well as the ultimate productivity of that new technology.

Empirical predictions from this theoretical discussion is then used to study the other side of

the feedback loop. If there’s shared intangible capital creation, then increased investment

activity by other firms should result in higher investment levels since I can take advantage

of the knowledge. Because the oil price shock affects all investment levels, it is not useful

for this analysis. Instead, I turn to a different source of exogenous variation in investment

levels, the expiration of leases which give firms the option to drill in a given area. This

expiration date has been shown in the literature to correspond with increased investment

activities as firms try to retain the option. The results show that increased investment by

5



other firms corresponds to higher firm-level investments in strong estimated network areas

as compared to weaker ones. Investment activity broken down by firm characteristics are

consistent with predictions from the model. While larger firms make larger level investments

in new technology because of the size effect, it is smaller firms that make larger technology

adjustments.

Finally, I study the broader economic effects from this shared knowledge effect. Relative

to investments in other regions, firm investments in strong network areas tend to outperform

when aggregate investment by other firms is high. Over time, the relative outperformance

in strong network areas parallels industry-wide growth trends. In other words, when high

knowledge sharing areas stop benefitting from the creation of shared intangibles, industry-

wide technology growth also slows down.

The paper proceeds as follows. This introduction concludes with a discussion of related

literature. Section discusses the empirical framework including the empirical specification,

discussions of the strategy and thought experiment, institutional details, and descriptions

of the data. Section 1.3 contains the baseline productivity results including mechanism and

robustness tests, section 1.4 discusses the theoretical model and intuitive results, section 1.5

studies the investment and adoption side of the feedback loop, section 1.6 shows the effect

on industry-wide trends, 1.7 discusses additional mechanisms such as learning, and section

1.8 concludes. More technical details and discussions are left to the appendix. 7

1.1.1 Related Literature

My paper approaches two large strands of literature from the corporate finance perspective,

endogenous growth and technological change. To do this, I draw on insights made in the

7. The appendix materials and model appendix are available at https://www.nverachau.com/research
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productivity and capital allocation literature.

The endogenous growth tradition is focused broadly on characterizing the relationship

between technological change and broader economic growth. Works such as [62], [46], [9],

[47], and [8], explore different ways in which the actions of agents within the economy can

influence growth. This literature makes use of the economics of ideas and integrates it into

technology change and economic growth. My paper also relies on a key characteristics of

ideas, non-rivalry and non-excludability. However, a more recent set of papers focusing on

the process of technology change specifically is probably closer to this paper. The early

endogenous growth papers analyzed idea creation more generally and tended to prescribe

educational reform policies and other ways to push out the technology frontier. A sub-genre

of the growth literature became more interested in understanding the mechanisms which

not only lead to technology change but allows that change to infiltrate the economy. These

include [3], [14], [13], [11], [12], as examples. These papers more closely examine the process

of technological growth. Considerations include the tax regime, the market structure, reg-

ulatory protection of innovation, and financing. My paper is differs in studying technology

improvement through learning as opposed to the process of new technology discovery. Eco-

nomically, I move away from the idea that direct innovative investment activity is necessary

for technology change and study inherently innovative production.

Two closely related mechanisms have been studied alongside the literature on technology

growth. The first is adoption and diffusion. While it is distinct from the technology change

model, adoption and diffusion is important for understanding how technology change can

lead to economic growth. Empirically, this has been a difficult topic to study because the

data is hard to acquire. [42] was a seminal paper looking at diffusion in a specific industry.

[63] surveys the handful of other papers that have conducted this exercise in other industries

7



and [43] gives a good overview of the literature. [23] is a recent example of studies in this

space. Finally, [29] is an example of how this technology diffusion idea has been used to

analyze inter-country growth. Most of these papers focus on understanding how technology

growth leads to adoption of new technology. In my paper, I also allow for the possibility

that changing adoption rates impact technology growth in return. Further, in applying this

to the oil and gas industry, I add to the set of empirical studies trying to estimate this effect.

The second mechanism which is closely related to the technology growth literature is that

of spillovers and imitation. [60], [66], and [20] are three very different approaches to modeling

imitation and social learning. In the spillovers space, much of the work has been applied

to either R&D spillovers as in [25] and [56] or productivity spillovers as in [41]. Although

distinct from the work on productivity spillovers, the large literature on agglomeration often

incorporate similar ideas so I note them here. For example, [18], [28], [57], and [53].

Knowledge creation, sharing, and adoption have also been a critical input in a variety

of contexts. I draw on this diverse set of literature in thinking about how to apply the

economics of knowledge. I contribute empirically by studying the energy sector specifically

but also theoretically but using the spillover mechanism in a model of heterogeneous firms.

The implications for aggregate technology growth differ slightly as a result. A paper which

studied knowledge sharing in a specific industry is [64] whereas [58] analyze adoption of new

technology in the consumer finance industry. There is also growing interest in data as a

capital input and the economics of knowledge given the prevalence of big data. For example,

[24], [36], [2], and [37]. Finally, there is a large set of literature studying how the ability to

create knowledge given different macroeconomic conditions impacts economic growth. Ex-

amples of this include [30], [16],[22],[10]. My paper distorts the knowledge creation process

and develops a tractable equilibrium model which could be incorporated to study larger

8



macroeconomic effects.

While the main economic effect is related to technology change, the empirical application

in energy is directly related to papers trying to understand the role of technology change in

energy and environmental economics. In particular, my paper contributes to studies of the

energy transition which is a natural application of the adoption problem solved by firms in

my model. Further, my empirical work showing the impact of aggregate investment levels on

technology growth have implications for the rate of growth and adoption in a wide variety

of critical industries such as renewables. Papers along this vein include, [4],[61], [5], and

[59]. On the other hand, a number of papers have used the energy space as a test case for

broader economic concepts. Examples include: [51], [50], [31], [40], [32]. In particular, [32]

and [33] both study peer effects in real option exercise using this same institutional setting

as a case study. These paper show that firms exercise their real options to drill strategically

with these peer effects in mind. My paper shows what those peer effects are and how they

manifest in production.

Finally, I drew heavily on existing literature in corporate finance, capital allocation,

and firm life-cycle studies in building both the empirical and theoretical framework for this

paper. While these are not directly related to technology change, my paper incorporates

technology into the problems these papers studied. In return, my work also has implica-

tions for how we study firm valuation and external financing. On the external financing

front, papers like [55] and [54] study the role that private equity and venture capital have

played in innovation. Regarding models of investment, I drew on a large literature including

[35],[27],[44],[45],[26],[1],[21]. My model of technology adoption was heavily influenced by

both macro models of capital allocation and two-sector models such as [34] and [6] as well

as internal capital allocation models such as in [19]. The idea that knowledge spillovers

9



may rely on aggregate investment changes was drawn in part by the literature on firm life-

cycles and how their investment and innovation propensity may be different. These include,

[52],[48],[65],[17], and [49].Finally, my paper is closely related to a set of papers that study

productivity more generally such as [39] and [38]. My study of technology improvement

bridges the gap between technology discovery and productivity growth.

1.2 Empirical Framework

The empirical strategy of the paper can be intuitively described as a network stress test.

The first step is to estimate the network strength in each geography that produces oil using

the spatial panel model. Then, I use an exogenous shock to investment levels which impact

all areas. If there is a strong network effect then removing nodes of the network through

lower investment levels should disproportionately affect the stronger network areas. This

should manifest in larger performance depreciation if the network was in fact valuable. This

approach presents an advantage. One can study the precise channel through which this

shared experience leads to technology growth. By simply changing the dependent variable

used to estimate the first stage network effects, I can study whether the shared experience

proliferates through technical design or methods or even cost reduction. Additionally, it’s

possible to examine instances where this shared knowledge is not valuable. For example, I

show that this network effect isn’t strong in older, mature technology. A challenge to this

method is to find settings where shared knowledge value might vary exogenously. In the

institutional detail section 1.2.2 below, I motivate this variation in the oil & gas example.

1.2.1 Empirical Strategy

The ideal specification would be a differences in differences (“diff-diff”) framework where

regions are divided into treatment and control groups based on their knowledge sharing

propensity, ks or the value of shared knowledge. Contrary to many existing strategies which
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studies the effect from areas that receive the knowledge shock to ones that do not, this study

compares areas which all receive the knowledge shock but that knowledge is more useful in

some areas. If such a measurement existed and investment was exogenous, one could run,

Yw,t = α + γIg,t × ksTreatment + ϵw,t (1.1)

where Y is an outcome of interest such as production associated with well w. Ig,t captures

the investment level in the geography g at month t.8 However, this specification is not usu-

ally available.

I use the period of sustained decline in oil prices which also corresponded to a period

of investment decline industry wide. Figure A.3 shows time series plots of the WTI (West

Texas Intermediate) oil price and corresponding monthly investment levels between 2010

and 2020. Oil prices begin to decline in the fourth quarter of 2014 and shortly afterwards,

investment levels fall. I use this regime switch in oil prices as an instrument for changing

investment levels in an instrumental variable framework.9 Notice that this requires an ad-

ditional modification to the specification in equation 1.1. In order to compare the impact

of investments across knowledge sharing regions (“treatment”), I divide the knowledge shar-

ing measurements described below into quartiles, n, and run the following 2sls specification

individually in each bucket.

log(Ow,t) = log(Agew,t) + γksn Ît + Γ
[
Xg,t Xi,t

]′
+ ϵw,t (second stage)

It = η + βksn1{High Oil Price} + Γ
[
Xg,t Xi,t

]′
+ νg,t (first stage)

(1.2)

8. Recall that knowledge spillovers assume any investment could potentially impact all firm investments.

9. A more direct implementation would be to use the oil price regime as an exogenous policy shift in a
traditional diff-diff setup. However, this specification is more precise in that it captures the impact on Y
due to variation in investment as opposed to a simple pre-post period treatment. Also, I do not want to
assume ex-ante that the investment elasticities are the same across knowledge sharing quartiles. I want to
empirically estimate that.

11



Xg,t,Xi,t is a vector of geography and firm level controls described in the appendix. The

controls capture factors such as geological formation quality and firm skill which may impact

production in addition to knowledge sharing. Each specification is run within each quartile

n bucket of estimated network strength, ks.

The intuition behind the strategy is simple. Higher estimated network areas can be

considered “treatment” groups while weaker network areas act as controls. Both areas are

subjected to the same exogenous decline in physical investment level. If the networks are

indeed valuable then removing a node of the network through lower investment levels should

disproportionately impact areas where the network connections are strong. Figure A.4 illus-

trates the overview of the main empirical thought experiment.

A significant threat to identification is that the oil price instrument violates the exclusion

restriction. The key assumption here is that while oil prices impact the extensive margin

decision to drill a well, it has limited impact on the intensive margin production variables

once that well is drilled. Conditional on paying the fixed cost of exploration and drilling

a well in the first place, firms will want to drill the most productive wells possible.10 The

second panel of figure A.3 also contains a panel showing the average well productivity of

wells in the dataset. Over the same period of declining oil prices and investment, there is

not a corresponding decline in well productivity on average.

The remaining hurdle is finding variation in the value of shared knowledge. The discussion

below proposes that natural networks which are the result of institutional details present a

10. Natural resource firms using more traditional methods in places with large oil reservoirs make use of
various practices to keep the oil in the ground. This is to take advantage of the real option value in waiting
during times of high oil price uncertainty. Until the recent Covid pandemic when oil prices dropped below
the break-even price for most American shale producers, there is limited evidence that American firms use
the practice in meaningful numbers.
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useful method of measuring this variation. First, I discuss the institutional details of the

energy sector which offers one such natural network through geology.

1.2.2 Institutional Details

The discovery that horizontally drilled wells can be combined with the hydraulic fractur-

ing technique known as “fracking” unlocked vast resources in the continental United States

and revolutionized American oil and gas. The first panel of figure 1.1 below shows the

progress of that technology since its inception. The plot shows relative productivity of hor-

izontally drilled wells as compared to its traditional vertical counterparts. In addition to

being more productive at discovery, the new technology has continued to grow relative to

the old technology11. The second panel shows the average count-level investments in new

technology measured by horizontal wells drilled. The third shows industry-level intensive

margin adoption rate. Over the time period when individual investments exhibit substantial

technology efficiency gains, firms are also adoption more of the new technology into their

physical capital stock. In other words, the growth in intangibles illustrated in the first panel

of figure 1.1 parallels the time series growth in adoption rates in the industry. Importantly,

while technology improvement does not decline given the continued adoption rate increases

in panel three, it does slow down when investment levels in the second panel drops. If shared

knowledge is important than both aggregate levels and rates contribute to the creation of

intangible capital. To further motivate the idea that shared knowledge may be important,

the fourth panel limits the analysis to the first well that a firm drills in a given county.

For these wells, firms are likely to rely more on knowledge created by other firms as they

have no experience in that geography. The plots show the relative performance of first wells

in the strongest network quartiles as compared to the weakest. Industry-wide technology

improvement trends parallel not only the aggregate industry level investment time series but

11. The plot shows results from regressions of monthly oil output on a dummy variable indicating that the
output is from a horizontally drilled well.
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the relative performance in higher network areas as well.
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Figure 1.1: Empirical Motivation

The first panel plots coefficients from,

log(Yw,t) = β log(Agewt) + γq1{Horizontal well} + ϵwt

The model is a log version of a common production function used in the oil literature.
The regressions are conducted at the well-month level with each specification re-done
for each quarter of the sample. The second panel plots average monthly county level
investments in units of wells drilled while the third shows average firm-level technology
investment ratios in. The fourth panels show results from regressions,

log(Ow,t) = βlog(Agew,t) + γt1{ksn,n=4} + ϵw,t |n = 1, 4

new type only, first wells

It depicts the relative performance between the highest and lowest knowledge sharing
counties of the first well a firm drills in a new county. Compared to all wells, the first
well drilled is likely to rely more on existing knowledge created by other firms.
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The institutional details section in the appendix discusses the oil and gas upstream pro-

cess for the interested reader. Here I summarize the details which are relevant for this anal-

ysis. Unlike the global oil industry, the American oil and gas industry is large and dispersed.

Small independent exploration and production firms drill alongside British Petroleum and

Exxon Mobile. This makes shared learning particularly potent compared to industries like

pharmaceuticals where large firms hold monopolies on resources. While there certainly exists

“general purpose knowledge” in the drilling process, there is also geology-specific expertise.

This allows for plausible variation in knowledge acquisition and usefulness. Figure A.1 shows

the variance of drilled depths as well as the spacing of wells drilled in North Dakota and

Texas respectively. The North Dakota example shows relatively well lined wells (most of

these are horizontal so they line up accordingly). Also the depths are fairly homogeneous as

depicted by the colors. Texas on the other hand shows wells drilled at a variety of depths.

The example does not suggest one area is more productive or easier to drill. With the more

homogeneous wells, it is expected that optimal well design will be similar making experience

more easily transferred. On the other hand, there is more experience in Texas so information

regarding what does not work is well developed. This heterogeneity will be a useful building

block towards differences in knowledge sharing propensity.

The final good produced in the oil and gas space is a uniform good with limited varia-

tion in quality, a single barrel of oil. Additionally, fracking revolution in oil and gas was a

recent technology revolution that had a meaningful impact on economic growth and data is

available on both the older method of production and the new technology. Natural resource

extraction requires firms to report technology details and production updates back to state

regulators which results in a rich set of data. Finally, oil and gas extraction contains many

similarities in regulation and market structure to other industries of particular interest such

as wind and solar energy. In section 1.5, I take advantage of the leasing structure in Ameri-
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can oil and gas. Unlike nationalized oil companies, American oil companies have to acquire

leases which grant the firm the right to drill in a particular parcel of land. These leases

are signed with individual land owners as well as the federal Bureau of Land Management.

These leases give firms the right to drill during the primary term. If that primary term

expires before a single well has been drilled, the firm loses the option to drill on that land.

The expiration of this option presents a useful proxy for increased investment activity which

will be used in the investment analysis of section 1.5.

1.2.3 Measuring Shared Knowledge Value

There are two ways to estimate the effect from sharing knowledge. The first is to change

the availability of shared knowledge. This is considered in this paper through the data

availability analysis. Institutionally, this study is possible because some firms require more

data disclosure than others. The second method is to vary the usefulness of shared data. I

propose a novel empirical approach which can be replicated in a number of circumstances.

The idea is to find natural, exogenously constructed network structures which one can use

to estimate cross-sectional network strengths. For example, in the oil & gas context, this

network is spatial distance. Wells which are drilled close by are going to be more useful to

you than wells drilled extremely far away. This does not eliminate the possibility of other

types of knowledge transfers. For example, if an engineer moves from one state to another,

their knowledge is likely to be useful as well. This spatial network extracts the impact

of spatial distance which is particularly useful in the data sharing context and shoould be

orthogonal to the human capital transfer.

Network Model: Spatial Panel I use a spatial autoregressive model commonly used in

the household contagion literature to capture a localized network effect. The intuition behind
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the spatial lag model is to capture the impact of nearby, recently drilled wells (“influence”)

on a particular well of interest (“reference”). The model implements “nearby” using a phys-

ical distance measure and weights potential influence wells by the inverse distance to the

reference well.12

Problematically, the direct effect of influence well k’s outcome on the reference well l’s

outcome is the clearest estimate of both knowledge spillovers and other sources of contagion.

While this would be the ideal measure to use, it is difficult to disentangle the two. Instead,

I use an indirect measure of the relationship between influence and reference wells, firm

skill. Using the nation-wide sample of production, I estimate a firm’s quarterly skill level.

The specification is described in section 1.2.4. I study the relationship between the skill of

the firm that drilled the influence well and the outcome of the reference well. This skill

measure introduces variation in ability beyond the influence of the area’s inherent quality.

The correlation between firm skill and approximations of the geology quality is around 0.19.

The assumption underlying this indirect measure is that if no knowledge sharing existed,

investing near a skilled firm should not explain variation in outcomes13 If there is clustering

of successful investments for other reasons14, then much of that variation should be absorbed

by the controls which include the lag outcomes. Further, in an inherently productive area

drilling near a skilled firm should be no more informative than drilling near an un-skilled

one. This knowledge sharing methodology captures a specific spillover effect based on the

idea that as distance between wells increases, the knowledge will be less useful. Of course, it

will not capture other sources of data sharing which could be present. For example, if firms

12. Note that for simplicity, I only use surface distances. With oil drilling, the depths represent different
geological structures or “pay windows” as they are known. I do not use this dimension of distance.

13. It is expected that clustering around skilled firms is not uncommon. Thus, this will capture instances
where that clustering is productive. Note that because oil production tends to decline when too many oils
are drilled close to each other, it would not be unexpected for this effect to be negative.

14. ex: suppose a geological area is just extremely productive
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share oilfield service providers as in [50], the inverse distance weighting is not the right way

to capture that network effect. There’s no reason why data-sharing between two unskilled

firms cannot be useful.

The spatial lag model which estimates the network strength in the first stage of the

empirical strategy is given by,

Y
g,H
t = γ

g,H
1 WY

g,H
t−1 + γ

g,H
2 X

g,H
t + βg,HWS

g,H
t−1 + ϵ (1.3)

Details regarding the econometrics of this specification is available in the appendix under

the “spatial lag model” section. The outcomes of interest used in Y will be discussed in

section 1.2.4 below. Here I point out some notable insights from this specification. The

studies are conducted at the well level. t denotes the month when a well w which appears

in row w pf vector Y occurs. Yt−1 contains a zero for well w but contains values for the

outcomes of interest in rows where a well was drilled at time t− 1.15 γ1 absorbs contagion

effects. The inclusion of lags of the variable of interest should assuage concerns that the

network model is only capturing clustering. In some co the empirical tests, I will utilize this

coefficient, 1 to test this proposition. X includes geograpy level controls of interest such as

the natural productivity of a particularly geography. The superscript H and g indicate that

this specification is run separately for each county g and only during the initial high oil price

regime. This method is similar to the “pre-sorting” technique often used in empirical asset

pricing for portfolio sorts.16 Finally S, which is referred to as the indirect effect variable are

chosen so that βg,H is unlikely to capture direct contagion effects. They are discussed in

detail below. The model is a random effects model which is estimated using maximum like-

15. Again, this specification in matrix form is available in the appendix.

16. Note that the county is the grouping variable used to run the estimates, it does not define the set of
wells that could possibly influence the reference well
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lihood estimates. I assume the strictest error structure, the model does not allow for spatial

correlation or correlation over time. The spatial effect is assumed to be in the mean.17

1.2.4 Indirect Effects & Outcomes of Interest

The outcomes of interest used in the spatial lag model B.4 as well as the skill variable relies

on the commonly used production function for oil production. This is another reason why

the oil and gas case study is particularly useful, the production function is well known and

easy to estimate. The basic Arp’s model is the most basic production function taught to

geology students. It is given by,

Ow,t = QwAge
β
w,t (1.4)

log(Ow,t) = αw + βlog(Agew,t) (1.5)

where the second line contains the log form. The intercept, αw captures baseline productiv-

ity rate log(Qw) which will be used as the outcome of interest Y in many of the network

estimates.

This production function forms the foundation for a number of analyses throughout this

paper. It is used to estimate firm skill but it also forms the basis for the main empirical

specification. In particular I model Qw,t as a linear function of firm and geography level

controls as well as the investment activity of other firms. This impact of investment activity

on output Ow,t through the linear model of Q̂w,t forms the baseline productivity effect in

section 1.3.

17. This assumption may be relaxed in robustness tests. However, it should be noted that correlation in
the error structure is likely to be a completely different network. This would also be interesting but the
empirical tests in this paper tests the network strength of the network as estimated.
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The Firm skill vector S The vector S contains estimates of firm i’s skill in the month t

if a well is drilled that quarter and is zero otherwise. To estimate firm level skill, I modify

the Arp’s model in equation 1.4,

Ow,t = QwAge
β
w,t

log(Ow,t) = αw + βlog(Agew,t) + ϵw,t

where α̂w, the constant, essentially captures log(Qw). I amend the model to estimate a

version of baseline production rate Qw that is firm-specific as opposed to well-specific. Using

the full dataset with every horizontal well drilled across all geographies I estimate,

log(Ow,t) = βlog(Agew,t) + γi,q1{Firm i} × 1{q} + ϵw,t

Rather than αw capturing the baseline production rate of well w, this model has γ̂i,q which

captures the firm-quarter baseline production rate. This coefficient is then used to index

the firm-quarter skill level.18 Vector St then contain this estimate, γ̂i,q if firm i drilled a

well in the quarter that contains month t. Importantly, if a firm drills multiple wells in the

same quarter in the county, their skill estimate is removed from St so that a firm’s own skill

cannot impact its outcome.

Data Availability In some of the analyses, I’ll substitute the indirect effect variable S

for data availability matrix A. This variable measures when a supplementary data point is

available for the influence well. This specification is detailed in the appendix section “Data

18. A similar exercise is done to obtain the geography-quarter level “skill” or production controls but with
1{Geo g} × 1{q} instead of the firm-quarter fixed effect
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Availability Measure Values”. The sets of data are divided into two, the first one contains

general variables useful for improving the well production. The second set provides perfor-

mance data related to the well such as flowing tubing pressure. For each set, a matrix with

each well along the rows and each variable along the columns is defined with 1 in spaces

where the data point is available for that well and 0 otherwise. The spatial lag specification

then regresses Q, the baseline specification measure on the matrix of data availability. I then

average over the coefficients for each data set to create a final “data availability” measure.

There exists one for each data set.

1.2.5 Discussion of the Data

State regulators require operators to report their monthly production and these data are

made publicly available. Monthly production data include total barrels of oil produced or

oil equivalent amount of gas. The data used in this paper is compiled by Enverus19. The

company’s analytical data is widely used in the industry. Even the federal energy informa-

tion administration (EIA) uses the data from Enervus in its reports and assessments of the

American oil industry.

The data include the well-month production information along with their corresponding,

static permit and lease information. Each well is associated with an operator who may or

may not be the only firm actively operating the well. I use this variable to identify firms.

Investments are measured by the number of wells drilled and they are recorded for this

project in the month that the well is completed. The monthly production data is matched

to the relevant permit by the API number which is used to identify all wells in North America.

19. Prevoiusly DrillingInfo
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To be included in the data sample, wells must meet several requirements. First, the well

has to be drilled after 2005 even though I only start the analysis in 2008. A well has to

appear in the dataset for at least 30 months. This allows me to estimate lifetime production

rates with more accuracy and removes wells that may have prematurely stopped production.

While I don’t explicitly remove counties on well count, there needs to be sufficient observa-

tions for the spatial lag model to be estimated so counties with very few wells are removed.

The summary statistics data shows the average well count within the geographies that are

included. The counties included are a random sample of all oil-producing counties in the

continental United States.20 No offshore or Alaskan wells are included.

1.2.6 Summary Statistics & Descriptive Facts

Table 1.1 shows summary statistics for the random sample of counties included in this paper.

The full list of counties as well as the number of wells drilled in each one is located in the

appendix under the “County list” section. Generally, the summary statistics show a wide

distribution of wells and firms within each county. Further, investment activity between the

two oil price regimes declines slightly but there is still significant activity. Table 1.2 describes

the network effects which are estimated in the spatial lag model. In particular, it shows

regressions of the estimated β̂ from the spatial lag model in equation B.4 on various indicators

of geological variance. In the institutional detail section, I used geological complexity as

one motivation for why there may be variation in observed network effects. The results

are broadly consistent with this idea. Estimated network strengths, β̂ are significant and

negatively correlated with proxies for well complexity. The coefficients on geology complexity

and productivity are also negative but not significant.

20. This is due to computation limitations. The full sample of all counties will be included in the near
future. The current county list is available in the appendix.
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N mean sd min 25% 75% max

2008Q1 - 2014Q3

Counties/well counts 90 359 399 6 67 512 1,486
Counties/firms 90 14 10 1 6 20 62

Firms/well counts 686 47 159 1 1 17 1,876
wells/months produced 32,377 66 79 1 13 147 222

2014Q4 - 2017Q4

Counties/well counts 87 235 313 1 31 277 1,276
Counties/firms 90 15 10 1 7 20 49

Firms/well counts 400 51 139 1 2 34.5 1,368
wells/months produced 51,705 49 36 1 31 46 184

Investment: 2008Q1 - 2014Q3

Counties/wells 90 333 371 3 50 525 1414
Counties/firms 90 124 119 3 35 175 583

Investment: 2014Q4 - 2017Q4

Counties/wells 90 240 330 0 30 259 1,433
Counties/firms 87 82 103 1 18 97 583

Table 1.1: Summary Statistics

The table shows summary statistics for the distribution of wells and firms across the
different counties. The first column shows the counts for the first variable in the
description, the rest of the rows then shows the distribution of the second variable in
the description. For example, the first row indicates there are 90 counties which were
randomly drawn to be included in the study. Across those 90 counties, there were an
average of 359 wells drilled.

The statistics are also divided between the oil price regimes which will be used in the
main empirical specification. Note that there may be overlaps. For example, there are
90 counties in the sample in the earlier period of the top panel and 87 counties in the
later period. These are not necessarily new counties nor are they necessarily the exact
same counties.
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Dependent Variable: β̂, Q-skill network estimates

(1) (2) (3) (4) (5) (6)

log(sd(Interval ft)) -0.064∗∗∗

(0.0072)

log(sd(True measured depth (ft))) -0.0038
(0.0022)

log(sd(IP (6 mon))) -0.0016
(0.0044)

log(sd(oil-gas ratio)) 0.0024
(0.0017)

Observations 1565 1565 1565 1565 1273 1565

R2 0.139 0.139 0.139 0.139 0.188 0.147

Table 1.2: Standard Deviation Tests

The table shows results from regressing β̂ from the spatial lag model denoted in
equation B.4 on various measures which proxy for the exogenous complexity of
different geologies. These regressions include geography level controls which are also
used in the baseline specification and detailed in the appendix.

Interval (ft) is the interval length measured in feet. This acts as a proxy for well
complexity. True measured vertical depth measures the depths of the oil wells that
are drilled. This is the variable that is shown graphically in figure A.1. Where the
underlying geology has several layers of useful resources, the variance of measured
depths are likely to be higher. IP rates is also known as initial production rates which
is used as an industry indicator for the potential productivity of the well. This is
measured as the total barrels of oil produced in the first 6 months. The oil-gas ratio
measures the county level oil vs natural gas production ratio.
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1.3 Empirical Results: Baseline Technology Growth Effects

Figure A.6 shows results from the main empirical specification given in equation 1.221,

log(Ow,t) = log(Agew,t) + γksn Ît + Γ
[
Xg,t Xi,t

]′
+ ϵw,t (second stage)

Ig,t = η + βksn1{High Oil Price} + Γ
[
Xg,t Xi,t

]′
+ νg,t (first stage)

The figures plot the second stage coefficients, γksn which are separately estimated for each

of the four estimated network strength quartiles. The first stage regresses Ig,t, investment

by other firms in county g at time t, excluding the firm that drilled well w, on an indicator

for the oil price regime. The second stage starts from the log version of the classic Arp’s

production function for oil wells

Ow,t = QAgeβ

log(Ow,t) = log(Q) + βlog(Age)

For the regression analysis, I add the instrumented investment level Îg,t. I model base-

line productivity Q using a vector of geography and firm level controls [Xg,t Xi,t], which are

listed in the appendix. Baseline productivity Q̂ is used as the outcome, Y in the spatial lag

specification B.4 and firm skill is the indirect effect variable S. The observations are at the

well-month level.

The first panel of figure A.6 shows analyses in which the spatial lag model uses only

horizontally drilled wells and the two stage least squares analyses contains all horizontal

wells drilled in those counties. The full results are reported in table form in table A.1. The

21. In the network model of equation B.4, there is a strong assumption about cohort effects. Only influence
wells drilled nearby at the time the reference well is drilled can become part of the influence set. For the
productivity estimates, I relax this to include investment activity at any time in the well’s life. The studies
are robust to this difference. Because natural resources tend to deplete over time, we would expect more
drilling activity to have a negative impact on output so this specification is actually conservative.
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figure illustrates the effect. In the weakest network strength counties, increased investment

activity by other firms actually leads to less productive wells as compared to times of lower

investment activity. As you move up the knowledge sharing quartiles, the impact of ex-firm

investment activity on productivity increases monotonically. In the highest shared knowl-

edge bucket, the impact of one extra well drilled by other firms in the county is associated

with a higher productivity coefficient of 0.13.

To interpret this result, recall that the regression is modeled after the log version of Arp’s

production model,

log(Ow,t) = log(Q) + βlog(Agew,t) + γÎg,t (1.6)

Ow,t = Q× Age
β
w,t × exp(γÎg,t) (1.7)

For γ̂ ≈ 0.13 and Îg,t = 1, this roughly translates to exp(0.13) = 1.13 or % 13 increase in

productivity accounting for the baseline productivity rate Q̂. Recall that this productivity

rate is modeled as a linear function of firm and geography level controls in this analysis.

Figure A.7 illustrates this effect using simulated wells which are drilled in each network

quartile.

1.3.1 Old Technology Tests

This paper is motivated by technology revolutions and proposes that shared knowledge may

be an important role in understanding the joint effect of technology improvement and adop-

tion on episodes of meaningful technological improvement. However, the baseline results

reported in table A.1 do not necessarily distinguish the estimated effect from the produc-

tivity spillovers which have been studied in the literature. Additionally, it is difficult to

identify conditions under which these spillovers may be more or less effective using the exist-
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ing strategies employed in the literature thus far. One advantage of not relying on plausibly

exogenous knowledge shocks such as [41] is that I can make comparisons between different

technology types and analyze the effect of shared knowledge.

The bottom panel of figure A.6 replicates the main specification in equation 1.2 using

the old technology, vertically drilled wells. The network effects in equation B.4 uses baseline

productivity Q̂ as the outcome of interest, Y and firm skill as the indirect effect variable S.

However, the analysis only uses vertically drilled wells to measure the network strength. The

two stage least squares implementation of the main thought experiment also uses vertically

drilled wells only. Strikingly, the increasing effect seen in the top panel with horizontally

drilled wells is not replicated in the vertical wells. The coefficients are decreasing as you

move along the network quartiles on the x-axis.

This result is intuitive but important. Spillover effects on productivity can be distinct

from spillover effects on learning. For example supply chains can be impacted by the con-

struction of a similar plant nearby which has a positive effect on productivity. The ability

to hire more experienced workers from a nearby office is also another form of productivity

spillover which can be useful regardless of the maturity of the technology involved. How-

ever, this test shows that productivity spillovers which result from learning through shared

knowledge does depend on the technology. To the my knowledge, this is one of the first

empirical studies which uses the same industry and the same output but different produc-

tion technology to analyze this issue. The results show that the shared intangible capital

mechanism proposed in this paper is distinct from the productivity spillovers studied in the

literature. Different types of spillovers also differ in the circumstances under which they are

more or less effective. Data and experience which can be used by other firms is useful in

this new technology environment while other forms of productivity spillovers such as human
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capital transfer may be useful to old type technologies as well. The result also highlights

central point of this paper, that this specific type of spillover is particularly important for

the development of new technology.

1.3.2 Mechanism Tests

This section reports a set of additional results which shed light on the mechanism through

which this shared knowledge functions. They should be seen as complements to the main

productivity results discussed above. The results are shown in figures A.8 and A.9 as well

as table A.2.

Data Availability. Figure A.8 replicates the main specification in equation 1.2. However,

in place of the indirect effect variable S, the spatial network model uses the data availability

matrix A. The matrix is described in detail in section 1.2.4 above. The set of variables

considered along the columns of A contain information regarding the fracking program and

additional well production details which are not uniformly available22. The matrix contains

one when the variable in the column is available for the influence well drilled in that row

and a zero otherwise.

While the results are noisier than the baseline productivity results, there is still a much

larger effect in the highest quartile and the value is statistically significantly different from

the estimated effect in the other three buckets. Importantly, the matrix does not contain

the value of the variable, only an indicator if the variable is available. For example, one

variable included in this exercise is the proppant level in lbs. Proppants are used in frack-

ing fluid to hold fractures open after treatment.23 This measure does not say that larger

proppant measures are associated with better outcomes. Rather, the fact that the data is

22. A full list is available in the appendix

23. See Schlumberger’s oilfield glossary for a formal definition
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available for nearby wells is useful. While this data sharing may not be the only mechanism

by which this shared intangible effect works, this result sheds light on data availability as

one clear channel. The appendix shows analogous results where the standard deviation of

these variables is used instead of the data indicator. There is a clear negative effect from

increased investment in that specification. Taken together, these two sets of results show

the importance of publicly available data in contributing to the creation of valuable shared

intangible capital as firms make physical investments.

Technology & Costs. Figure A.9 and table A.2 take two different approaches to better

understanding the mechanism. Figure A.9 seeks to understand how differences in the net-

work measurements affect productivity. On the other hand, table A.2 seeks to understand

different ways in which the productivity based network effects manifests in outcomes.

In the top panel of figure A.9, the analysis is the main two stage least squares specifica-

tion in equation 1.2. However, the spatial network model uses the horizontal interval length

as the outcome of interest Y with firm skill as the indirect effect variable S. The horizontal

perforated interval length measures the portion of the well that is turned and perforated to

allow for fracking. It is an important technological aspect of the new, horizontally fracked

wells and a dimension along which one would expect significant learning and growth.24 The

spatial network captures areas where firms are more likely to drill more complex wells when

drilling near skilled firms. The main two stage least squares analysis then considers whether

productivity effects from investment activity is stronger due to this technology based net-

work effect. This is distinct from the productivity based network effect studied above.

24. The appendix contains a figure entitled “Average horizontal interval lengths over time” which illustrates
this industry wide growth over time.
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While the result is not monotonic, the effect is largest in the strongest network quartile.

When technological complexity is impacted by nearby firms, increased investment activity

is also associated with more productive wells. The effect is under 0.05 so the magnitude

is lower than the 13% estimated from productivity based networks but the effect is still

strong. Further, the effect is statistically distinct from the lower magnitudes in the other

three shared knowledge quartiles.

This analysis raises a related question which is important to the entire empirical frame-

work. Despite using indirect measures such as firm skill and data availability, the reader may

still be concerned that the results are simply capturing clustering effects which have nothing

to do with the creation of shared knowledge from physical capital investment. The bottom

panel of figure A.9 addresses this issue. Again, the results illustrated are from the baseline

specification in equation 1.2. However, the network model here sorts on γ
g,H
1 in the spatial

network model B.4 instead of βg,H . In other words, the network estimate here is based on

the coefficient on lag interval lengths. It captures areas where complex wells are more likely

to be drilled near other complex wells instead of skilled firms. This network model can be

interpreted as a form of technology clustering. The second stage results from this analysis

shows that productivity does not respond more strongly to investment activity in areas with

technology clustering.

Finally, table A.2 shows results from the baseline specification 1.2 with a different second

stage. The first stage again regresses Ig,t, investment by other firms in county g at time t

excluding the firm that drilled well w on an indicator for the oil price regime. The Second

stage regresses drill time, the time it takes between spudding and completing a well as the

dependent variable. The explanatory variables include the set of geography and firm control

variables [Xg,t Xi,t] as well as the instrumented Îg,t. The observations are limited to one
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observation per well w and t is the month in which the well is drilled (spud date).

Drill times represent one of the larger costs of drilling wells. Additionally, there is signifi-

cant skill and thus learning along the drill time dimension. In addition to simple productivity

effects, this acts as a useful test of additional learning parameters where shared knowledge

may be useful. The results show a strong negative effect in the strongest network quartile.

Firms actually drill faster, and thus less costly wells, when there is increased investment

activity in the area. This effect is stronger than any supply chain issues which one should

expect as more firms vie for access to the same pool of drilling servicers. There is also a

potential positive effect from pooled servicing resources which could be a confounding factor.

However, the network effect is estimated using Q̂ as the Y and firm skill as the indirect effect

S. There is no reason to expect this positive pooled servicing effect to be correlated with

the shared knowledge estimates.

This result suggests that the productivity network estimated in the spatial lag model

captures elements of shared knowledge which are useful not simply for productivity purposes.

It may also suggest that in addition to the pure data availability channel shown in figure

A.8, there may be other forms of experience sharing that is not easily identified in the data.

While there is precedent in the literature for considering drill times as a shared learning

dimension25, it is encouraging that the result holds in this specific shared intangible capital

framework. Further, this presents an interesting opportunity for further research. When

does shared learning along one dimension of firm activity lead to improvements in other

dimensions as well?

25. See [50]
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1.3.3 Robustness Tests

The appendix reports a number of robustness tests which address potential issues or al-

ternative explanations to the results above. I briefly summarize the specifications and the

results here but refer the reader to the appendix of the paper for detailed descriptions of the

specifications and tables of the results.

Standard Deviation Tests “Standard Deviation Tests from extra data sets 1 and 2” stud-

ies the effect of investment activity on productivity based on a network that considers the

informativeness of the data from nearby wells. I take the variables whose availability were

used to construct data availability matrix A used in the data availability studies above.26 I

then index regions based on the average standard deviation of those variables. This measure

proxies for the usefulness or informativeness of the data used in the data availability test. I

then run the same main specification as in 1.2 but across these data informativeness buckets

instead.27 The regions with higher estimated standard deviations in the well production

data of other firms do not exhibit a higher relationship between investment and output.

The results are noisily estimated in each quartile but there is no evidence for a trend across

the region types. The lowest standard deviation regions show the largest magnitude effect

between investment and output though it is also the noisiest estimate. Thus, even though

figure A.8 showed that data availability created when firms invest is important for output,

the informativeness of that same dataset has the inverse effect.

Distribution Tests Another concern is that there is a version of a size effect in the re-

sults. Perhaps the productivity results are capturing effects from large firms with significant

26. Detailed descriptions are available in the appendix.

27. it should be noted that instead of dividing the quartiles with zero as the median, I divided the distri-
bution into quartiles for everything that is nonzero.
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presence in one area. Table “Own Firm Investments Effects” shows the baseline specification

1.2 but with the firm’s own investment levels in the first stage instead of the ex-firm cnty

investment variables that have been used thus far. The results show no trend in the coef-

ficient magnitudes across network buckets. However, the first and third buckets are larger

and significant in magnitude relative to the highest shared knowledge bucket. The effect of

firms making larger investments in a single county is not stronger in high shared knowledge

areas.

On a related note, table “Distribution tests: Dispersed Firm Sample” approaches the

distribution question from a different angle. The ideal thought experiment for the spillover

effect is one where firms are atomistic and changes to ex-firm investment closely track county

level differences. A potential confound here is that there are counties where a single firm

makes a large difference or indeed where there are only two firms so changes from any one

firm have a large effect in the ex-firm result. An important theoretical insight gained from

introducing the knowledge spillover mechanism in this paper is that those distributional

effects in levels should not be ignored. Areas with a single large firm who can afford to

drill a large number of wells still contributes to aggregate knowledge from each well. Thus,

technology improvement is a function of the levels, even if that is disproportionately weighted.

Still, I explore how the main spillover effect is impacted by these distributional effects. I

replicate the main specification for a subset of firms in each county. To create the subset, I

remove any firm that represents over 50% of the investments in a county during that month. I

also remove their investments from the ex-firm investment calculations. This subset of firms is

more dispersed by construction. The results are consistent with the baseline estimate. Even

amongst small, dispersed firms, when other small firms in the region increase investment

activity, the effect on output is strongest in high spillover areas.
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1.4 Theoretical Results: Mechanism Discussion

Various versions of knowledge sharing, technology imitation, and productivity spillovers have

appeared in the literature. Here, I formalize the mechanism behind the shared intangible

capital framework. The full model is analyzed in a theoretical companion paper but addi-

tional details are available in the model appendix to this paper. In this section, I discuss

the intuition behind the theoretical results and point out theoretical contributions from this

mechanism to the broader knowledge and spillover literature. These results also present some

simple empirical predictions which will be tested in the investment and adoption section 1.5

below.

Consider the following profit function,

π = Pt
[
Aoldkit(1− γit) + Anew,itkitγit

]
where Pt denotes an aggregate demand price which is set exogenously. Firm i has capital

stock ki,t at time t. The capital stock is allocated between new and old type capital using

proportion γi,t. For example, a firm with kit = 10 and γi,t = 0.5 has five units of the old

technology used in production and five units of the new. Aold, the productivity of the old

capital is assumed to have reached maturation and is constant. The productivity of new

technology is given by,

Anew,it = [(ηKtΓt)
α1 ]µ1(hith̃)

µ2 (1.8)

Γ =

∫
γg(k, γ, h)dγ (1.9)

Kt =

∫
kg(k, γ, h)dk (1.10)

h̃ = (η2kitγit)
α2 (1.11)
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hit captures accumulated firm level skill while h̃ captures own-firm effects because firms

potentially learn from their own contemporaneous investments. In other words, hit is similar

to being a good student over all while h̃ captures skill in a particular class which is a function

of how much class-specific experience (kitγit) a firm gathers. Γt, Kt denotes industry wide

aggregate technology sophistication and capital stock.

The full HJB is denoted in the model appendix to this paper. Here I only discuss the

problem solved by the firms. Individual state variables include ki, t, γi,t, hi,t. The firms

also have to take into account the aggregate state variables, Kt,Γt. There are two control

variables or choices that the firm has to make. Firms choose aggregate investment level

xi,t taking their technology sophistication level γi,t as given. Firms also choose a stopping

time τ during which it can change its technology sophistication level γit to γ′it subject to an

adjustment cost θs.
28 Firms can move more than once and they are only allowed to become

more sophisticated, not less.

Studying equation 1.8 makes it clear how the mechanism functions. As KtΓt, aggregate

new technology stock, increases the productivity of the new technology improves for everyone

regardless of their existing skill level. Second, as KtΓt increases and therefore Anew,it in-

creases, the marginal contribution of new technology capital stock to firm value increases.29

As this contribution to firm value from new technology capital stock increases, the optimal

investment level also increases. Thus, as investment in new technology increases, the tech-

nology improves. As the technology improves, more firms have an incentive to adopt the new

technology. This mechanism will be illustrated in the results below. There are a few observa-

28. θs is also described in detail in the model appendix. It is increasing in the magnitude of the change
(for example moving from 0 to 0.5 is more costly than moving from 0 to 0.1) and decreasing in aggregate
new type capital installed. Intuitively, if more firms are using the new technology, it becomes less costly for
other firms to become more sophisticated since they can learn from a larger pool.

29. In HJB form, ∂V
∂kγ ↑.
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tions which are less obvious. First, the only mechanism for technology change is investment

xit and changing technology specialization rates, γit. There are no technology productivity

shocks. Further, any shocks that impact investments could also affect technology. This

is particularly relevant to the literature on business cycles and technological growth such

as [30]. Finally, any physical investment which grows the capital stock kit has an impact

technology growth. Thus, the distribution of firms matters for reasons which differ from the

literature on firm dynamics and firm life-cycles. The importance is not due to the fact that

smaller firms tend to be more willing to take risks on R&D but rather that firms along the

size, specialization, and skill distribution make different optimal investments. Those physical

capital investment decisions affect the level of shared knowledge which is created.

The results below show aggregate transition dynamics for variables of interest. The model

appendix details how these solutions are found but show transitions of the economy from a

stationary equilibrium with low aggregate prices to the stationary equilibrium of the economy

following a “MIT” shock to the demand price Pt. Figure A.11 shows the transition dynamics

of Γit, aggregate technological sophistication, Anew,it, average new technology productivity,

avg(h), average accumulated firm skill, and avg(xn), average new technology investment

levels respectively. The results show comparative statics for economies with high knowledge

sharing, α1 = 0.7, mid knowledge sharing, α1 = 0.25, high own-learning, α2 = 0.0.7 and

mid own-learning, α2 = 0.5.

First, aggregate adoption rates are much more rapid when there are significant benefits

to making large investments at one time. This economy is analyzed in the learning section

of the appendix but does not appear in the main empirical analyses. The main empirical

tests only compare α1 = 0 to α1 > 0. However, the theoretical result is still enlightening.

Intuitively, when no one internalizes the benefits of knowledge but rather relies on aggregate
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experience, the diffusion is much slower. This intuition is also made clear in figure A.13.

The optimal target new technology adjustment rates across the distribution of firms is much

faster and the magnitudes are higher when firms can internalize the knowledge benefits of

investing. Additionally, the initial buildup of new technology stock is slow (so slow that it

is hard to see in the plots) but eventually, there exists a “tipping point” where the optimal

new technology adjustment targets begin to increase sufficiently such that the aggregate new

technology ratio begins to increase steadily. Importantly, figure A.14 shows that the optimal

investment levels xit do not change much over the transition. Rather it is the technology

sophistication rates which adjust over time.

Second, the plots of Anew,it show that productivity is actually lower in the high knowl-

edge sharing areas relative to the mid knowledge sharing areas until the tipping point occurs.

Comparing firm skills hit in the bottom left panel, there is a rapid acquisition of skill when

learning is internalized. This process is much slower with the shared knowledge economies.

However, when the tipping point occurs, it is possible for the economy to eventually result in

firms who are, on average, more skilled than the own-learning economies. Finally, the bottom

right panel of figure A.11 shows the aggregate investment levels in new technology over time.

Figure A.12 shows the aggregate new type capital stock installed over time for economies

that begin with different randomly drawn distributions across the (k, γ, h) dimensions. I

reserve discussions of the different distributions for the theoretical companion. However,

the results are an important contribution of the theoretical framework and provide a useful

starting point for future empirical work. The results suggest that the distribution of firms

operating in the economy at the time a new discovery is made may be important to under-

standing inter-industry or even inter-country differences in technological growth. For some

starting distributions, there may never be sufficient capital stock buildup to reach the tipping
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point. Additionally, from a policy perspective, notice that old type capital eventually dies

out in both types of economies. However, the rate at which it dies differs because the main

mechanism here is shifting adoption rates not investment levels. For policy applications in

energy and climate, this result has implications for the rate at which older, dirtier technolo-

gies are transitioned out of the economy. Policies which discourage shared knowledge may

actually be optimal even if it has a positive effect on technological growth.

Finally, figure A.14 shows optimal γ′it for firms along the (k, γ) distribution at different

points in the transition. In the high knowledge sharing economies, adjustment rates are

extremely slow. Additionally, the bulk of the large adjustments are made by smaller firms

regardless of their current specialization rate, γit. This is one useful empirical prediction

which will be considered in the section below and reported in A.4.

1.5 Empirical Results: Adoption and Investment Results

The shared intangible capital mechanism just discussed in the mechanism section above is

distinct from productivity spillovers studied in the literature. In addition to taking many

different forms such as human capital or efficiency gains, those spillover effects tend to mani-

fest as shocks which die down over time. This mechanism takes a particular form: experience

which can be accessed by other firms either through data availability or observation. More

importantly, the theoretical discussion makes an additional point. If there is valuable shared

intangible capital which is accessible to all firms, it should impact the future physical capital

investment decisions as well since this knowledge potentially makes capital more productive.

This second portion of the feedback mechanism, the investment that is attributable to net-

work effects is an important instrument which allows shared intangibles to drive technology

cycles. Note that this type of knock-on effect through additional investments can exist in

other productivity spillovers as well. However, it is difficult to study empirically because
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future investments in an area which receives a plausibly exogenous knowledge shock may

be endogenous. The novel empirical strategy of first sorting counties based on a network

estimate, then analyzing the effect of plausibly exogenous knowledge shocks is useful for

addressing this problem. I am able to compare differences in investment response to plausi-

bly exogenous investment decisions by other firms between areas where shared knowledge is

more or less useful.

Table A.3 shows results from an empirical experiment which is similar to the baseline.

Recall that in the baseline productivity results, I use oil prices which impact investment levels

overall to study the effect of varying capital investment levels on productivity. However, lower

oil prices impact all investment activity which is important to the identification design of the

main experiment. Here, I use a different variable to instrument for changes in investment

level. Leases granting firms the right but not the obligation to drill tend to have a primary

term. If no well is drilled before that expiration, the leases expire and the firms lose the

option. In [50], the author shows significant clustering of drilling activity around lease

expiration times. In the first stage, Expg,t counts the total number of leases which are

reaching their primary expiration at month t. I use Expg,t to instrument for investment

activity by other firms in the county. The specification is,

Iig,t = γksn Ît + Γ
[
Xg,t Xi,t

]′
+ ϵw,t (second stage)

Ig,t−1 = η + βksnExpg,t−1 + Γ
[
Xg,t Xi,t

]′
+ νg,t (first stage)

The knowledge sharing quartiles ksn are sorted using the spatial lag model in B.4 with Q̂,

baseline productivity, as the outcome variable Y and firm skill as the indirect effect variable

S. In the second stage investment levels by firm i in county g at month t is regressed on the

instrumented investment activity variable, Îg,t. The first stage considers investment activity

lagged by a quarter since it is likely that investment activity would not react immediately
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to data that is contemporaneously available.

The results are fairly noisy but the coefficients are consistent with intuition. When other

firms increase their investment activity, they are also involuntarily creating knowledge which

is potentially valuable to other firms and may impact those firms’ investment decisions. In

the lowest shared knowledge quartile, increased investment activity by other firms is associ-

ated with lower investment levels. Firm investment responses to investment by other firms is

largest in magnitude in the highest shared knowledge quartile but the effect is not significant.

The result in the third highest quartile is positive and significant.

Tables A.4 and A.5 show simple investment and adoption decisions made by firms of

different characteristics. The specification is given by,

Iig,t = α + βlog(KSg) + β2Chari,t + γlog(Ksg)× Chari,t + Γ[Xg,t +Xi,t] + ϵi,g,t

Two sets of results are reported. The first in table A.4 sets Iig,t as firm-county level in-

vestments in the new technology (number of horizontally fracked wells drilled). The second

one in table A.5 uses Iig,t =

Iig,t,new

Iig,t,total
−

kig,t,new

ki
g,t,total

kig,t,new

ki
g,t,total

. The first term in the numerator is the firm’s

investment ratio of new to total investments in county g at time t. The second term is it’s

existing new technology production ratio based on the firm’s installed capital stock at time

t. This is taken as a proportion of the firm’s existing technology ratio.

The results are generally consistent with the predictions from the theoretical model dis-

cussed above and shed light on additional trends in firm types which present interesting

opportunities for future research. Unsurprisingly, larger firms are more likely to make larger
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level investments in new technology. This effect is strongest during time periods when oil

prices are increasing as shown in columns one and four of the top panel of table A.4. This

because they are making larger investments in general and effect is accentuated in high

knowledge sharing areas as shown by the interaction terms in that same panel. More spe-

cialized firms are less likely to take make larger investments in high knowledge sharing areas.

Intuitively, specialized firms primarily make new technology investments in all counties so

the high knowledge sharing areas are not distinct. On the other hand, less specialized firms

may find the shared intangible capital value more useful. Leverage ratios does not explain

variations in investment levels.

Adoption rates, which measures the investments needed to change a firm’s technology

profile, are consistent with the adoption predictions from the theoretical discussion. During

periods of increasing oil prices as in column one of table A.5, larger firms are less likely to

make new technology adoption decisions as compared to smaller firms. This effect is even

more negative in the interaction with the knowledge sharing estimate. In the third panel of

table A.5, it is notable that while leverage does not explain investment levels, it does have

an impact on adoption rates. More importantly, the only time period when it is significant

is during the oil price drop of 2015 and 2016. More levered firms were more likely to make

technology adoption decisions, especially in strong network areas.

While the size and specialization effects are consistent with the predictions from the basic

model discussed in the mechanism section 1.4, the leverage results suggest fruitful areas for

future research. Recall that an one contribution of this paper is to make the point that

any investment activity can be potentially useful, regardless of the firm’s skill. Generally,

better understanding the interaction between financial concerns such as debt overhang and

external financing cost on investment in new technology will be important. Not only would
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it shed light on how technology revolutions occur but it establishes a previously unexplored

link between the financial sector and real economic growth precisely because the shared

intangible capital mechanism studied in this paper ties physical capital investment with

technology growth.

1.6 Empirical Results: Industry-wide Technology Effects

The baseline results in section 1.3 and adoption results in section 1.5 show average effects

relating investment levels and productivity. In this section, I take a broader, industry-

wide view. I relate the estimated shared intangible effect with technological and adoption

growth trends that were occurring in the industry over the full time series. In summary, can

knowledge sharing be responsible for driving growth over time?

Table A.6 shows regression results from

∆Y
j
w,t = α + γksn Î

j
t + Γ

[
Xg,t Xi,t

]′
+ ϵw,t (second stage) (1.12)

I
j
t = η + βksn1{PriceRegime} + Γ

[
Xg,t Xi,t

]′
+ νg,t (first stage) (1.13)

The investment variable here is ex-firm investment which measures total investments in

the geography by all other firms. ∆Y measures a firm’s average estimated skill with its

geography specific one. The dependent variable here is
(geography−firmskill)−(firm skill)

firm skill ,

the proportional difference between the firm’s geography-specific skill measurement and its

nation-wide average, calculated quarterly. Firm skill is estimated with the same methodology

as the skill vector used in the spatial lag model. For this sample, the estimate is geography

specific so it is estimated using,

log(Ow,t = βlog(Agew,t) + γi,g,q1{Firmi ,geo} × 1{q} + ϵw,t
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and γ̂i,g,q is the geography specific skill vector. Firm performance in high knowledge sharing

areas outperform their nation-wide estimate when investment activity by other firms is high.

When investment by other firms in these areas increase by one well, firms perform around

20% (0.13 in the highest knowledge sharing bucket and 0.21 in the third) better relative to

their investments in other areas. No such effect exists in the low spillover areas. Not only

is the treatment effect on the treated significant in high spillover areas, these results show

their impact on the industry as a whole given the improved relative performance between

areas.

Figure A.15 shows the growth effects of knowledge sharing from a different perspective.

The y-axis plots fixed effects coefficients from

log(Ow,t) = βlog(Agew,t) + γ1{ksn,n=4} + ϵw,t |n = 1, 4, new type only

The γ̂ coefficient shows the relative productivity of horizontal wells drilled in the highest

knowledge sharing regions compared to those in the lower knowledge sharing buckets. The

regressions are run every quarter and the results show Q-skill based knowledge sharing as

well as production efficiency-skill based spillovers. In both panels, the high knowledge shar-

ing regions suffer a decline in output relative to their lower knowledge sharing counterparts.

This specification differs from the baseline knowledge sharing results in directly comparing

knowledge sharing regions. In 2015 when the oil price decline begins, the highest knowledge

sharing regions begin to decline relative to their low knowledge sharing counterparts. The

growth effect is clearly shown in the Q-skill panel. This is a cross-sectional breakdown of the

productivity time series shown in figure 1.1 which first motivated the paper. At least in part,

the growth in the technology shown in the industry as a whole prior to 2015 is attributable

to the parallel growth from high knowledge spillover areas. When oil prices decline in 2015,

the slow down in growth industry-wide correspond with declines in high knowledge sharing
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areas due to investment declines.

Figure A.15 shows the industry-wide trends from 2010 to 2020. The top panel shows the

oil prices, the second panel shows average county level investments, the third panel compares

productivity of wells in the highest knowledge sharing areas with the lowest, and the fourth

shows the relative productivity of horizontally drilled wells as compared to vertical ones.

The third panel specification is given by,

log(Ow,t) = βlog(Agew,t) + γt1{ksn,n=4} + ϵw,t |n = 1, 4, new type only

Two vertical lines mark the time frame of the rapid oil price decline in all four panels. The

time trend in panel three corresponds with the effect estimated in the baseline specification.

The productivity advantage in the high knowledge sharing areas declines when investment

drops in response to oil price drops. Over that same time period, industry-wide technology

growth for investments made using the horizontally drilled wells slows down significantly.

1.7 Additional Mechanism Comparisons

In the appendix, I discuss some alternative mechanisms which may be important for tech-

nology change. In particular, learning by doing within a firm may be of interest. I design

a separate way of measuring learning effectiveness and explore the possibility that learning

may be complementary to knowledge sharing. Because these mechanisms are supplementary

and the work is more exploratory, I only discuss it in the appendix but the reader may

be interested to know the effect of this additional factor in this unique, knowledge sharing

setting.
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1.8 Concluding Remarks

Knowledge gleamed from making physical investments is often not excludable between firms.

As a new technology diffuses throughout the economy, this results in industry-wide as op-

posed to firm-specific knowledge growth which in turn induces more adoption. This paper

showed evidence for such a mechanism in a recent technology revolution, the fracking boom

in American oil & gas. Using a novel network stress-testing methodology, I showed that high

knowledge sharing areas are disproportionately impacted by plausibly exogenous investment

drops. Additionally, firm investment and adoption decisions are shown to be well explained

by the cross-sectional variation in this network strength.

This paper shows that contrary to productivity spillovers, this effect is particularly rele-

vant to new technology. When the same experiment is replicated in the same industry but

using an older, more mature technology, the network effect disappears. Further, I provide

evidence that the effect propagates through specific, technical channels. First, network esti-

mates computed using design complexity also exhibit disproportionate productivity effects

when aggregate investment levels decline. The same exercise where networks are estimated

based on technology clustering (for example, complex wells tend to follow other complex

wells) do not show the same effect. This indicates that technology imitation through shared

experience as opposed to technology clustering is driving the effects. Finally, network es-

timates conducted using nearby data availability are shown to also be disproportionately

affected by investment levels. This lends further support to the proposal that this public

disclosure of shared data is important for new technology.

The paper also examines the joint effect on growth and adoption. Namely, the knowledge

sharing networks are shown to explain significant variation in the adoption and investment

decisions made by firms. Using an institutional feature of oil & gas leases to instrument for
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changes in lagged investment levels, I show that the impact on current investment decisions

are much higher in high network areas. Further, I divide firms into size and specialization

quartiles and show that their investment decisions in different network buckets are consistent

with the theoretical model. In particular, larger firms make larger level investments in new

technology as expected but they are less likely to make large adoption decisions.

1.8.1 Further Research

The results in this paper serves as a starting point for many interesting projects. First, the

underlying theoretical framework makes a novel contribution to the literature. Because the

level of investments is what leads to aggregate knowledge growth, the distribution of firms in

the economy is critical. Even though large firms are not the most likely to make large pro-

portional investments in the risky new technology, they make larger level investments. The

distribution of firms in the economy and any constraints that restricts the evolution of that

distribution over time is shown to explain variation in both adoption rates and technology

growth levels in the theoretical model. Thus, the mechanism suggests a different predictable

factor to consider when analyzing why technology takes off in some industries and countries

as opposed to others.

In the companion theoretical paper, I explore important aspects of this mechanism that

are undeveloped in this baseline paper. In particular, firms make dynamic, forward-looking

decisions based on their expectations as to how aggregate knowledge will evolve. In that pa-

per, I explore the implications of heterogeneous beliefs on the aggregate technology adoption

path. Other considerations to be included include questions regarding financial constraints.

Because investment activity is the primary mechanism for technological change, this mech-

anism creates a tight link between the financial sector and economic growth. A particularly

important application of this model is in climate change and the energy transition. Regula-
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tion, adoption and growth of new technology, as well as existing costs from climate change

can all be incorporated into the model and studied. This is an extremely important question

for understanding the role that financial considerations outside of climate risk will play in

the fight against climate change.

All of these theoretical considerations should also be taken up in empirical work. Better

understanding whether or not financial constraints play a role in technology growth through

this channel is important. The study should also be extended beyond oil & gas to other

sectors. In particular, sectors of growing importance such as renewable energy should be

considered. Consumer finance and real estate sectors are also important areas that have

been increasingly considering new technology in how they deliver services to customers.

Broadly, the impact of spillovers as formulated in this paper intersects with a large liter-

ature that is suggests many avenues for future research. In particular, if overall firm values

are impacted by the relative technology ratios of a firm, is that reflected in asset prices?

What is the impact of firm valuations over this technology dimension on its ability to raise

capital and make future investments in new technology?
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APPENDIX A

FIGURES & TABLES

A.1 Preliminaries

Figure A.1: Potential sources of geography heterogeneity in knowledge sharing propensity

The figure is pulled from Enverus analytics. It depicts the surface location of wells
drilled in the Bakken shale of North Dakota and the Barnett and surrounding shale
in Texas. The colors depict the depths of the wells drilled. There are significant
geographic differences in both the variance of depths as well as the spacing of wells
across the two regions. North Dakota in the top panel features well-lined wells with
homogeneous depths. Texas in the bottom panel features more differences in depths
as well as the surface locations of wells.

Note that this is not meant to suggest that one region is easier to drill or more produc-
tive. Rather, areas differ in the usefulness of other firms nearby. In North Dakota, it is
likely more predictable on average. However, in Texas, there will be more information
which can be used by other firms.
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Figure A.2: Long term oil price trends with Markov Switching

The figure shows the WTI oil spot price in blue. Its corresponding y-axis is on the
right. In red are the estimated probabilities from fitting a two stage Markov switching
process to the data. Two large structural breaks can be seen. Between 2010-2015,
the model estimates a low consistently low probability of being in the low state. The
period from 2015 to 2018 shows consistently high probability of being in the low state.
The two regimes depicted will be used to instrument for investment levels over those
two, long time periods.

A.2 Empirical Framework
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Figure A.3: Time series of oil prices, investment, and baseline production rates

The three panels show monthly WTI oil prices, total drilling activity, and the average estimated
baseline production rate, Q̂ over the time period in question. Drilling activity comprises all
wells, vertical and horizontal. The data is estimated from the same dataset used in the empirical
analysis of this paper.

The plots support the use of the oil price as an instrument. Over the period of oil price decline,
the second panel shows a corresponding decline aggregate drilling activity. The empirical strategy
treats this exogenous decline in investment as the natural experiment in a diff-diff framework.
There are two threats to identification. The first is that this aggregate decline depicted in the
second panel is drastically different between treatment and control groups. This will be discussed
in the body of the paper. The second threat is that firms drill less productive wells when oil prices
decline because they are less costly and not because of the impact on knowledge spillovers. The
third panel shows increasing average production rates even through the oil price decline.
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Figure A.4: Thought Experiment behind the primary empirical specification

The picture is a graphical representation of the thought experiment underpinning the
main empirical specification. Despite the motivation for cross-sectional differences in
network strengths, the econometrician does not know which is the higher knowledge
sharing area. The first task is to estimate that network strength. Then, when invest-
ments decline, a node is essentially detracted from each network. The area with the
stronger network should be disproportionately impacted by that decline.
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Figure A.5: Spatial lag model set-up with effect sizes

The picture is a graphical representation of how the spatial lag model is implemented
to measure knowledge sharing. The details are available in the section on the spatial
lag model.
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A.3 Results
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Figure A.6: Baseline Productivity Effect: New vs Old Type Technology

The figure plots second stage coefficients from the main empirical specification,

log(Ow,t) = log(Agew,t) + γksn Ît + Γ [Xg,t Xi,t]
′
+ ϵw,t (second stage)

Ig,t = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

The first stage regresses It, investment by other firms in county g at time t excluding the firm that
drilled well w on an indicator for the oil price regime. The Second stage starts from the log version of
the classic Arp’s production function for oil wells

Ow,t = QAgeβ

log(Ow,t) = log(Q) + βlog(Age)

For the regression analysis, I add the instrumented investment level Îg,t. I model baseline productivity
Q using a vector of geography and firm level controls [Xg,t Xi,t], which are listed in the appendix.
The network strength from the spatial lag model is used to sort counties into quartiles which appear
on the x-axis. Baseline productivity Q̂ is used as the outcome ,Y in spatial lag specification B.4 and
firm skill is the indirect effect variable S.

The network effect is estimated once using all horizontal wells in a random selection of counties and once
using the old vertical well types. The top panel shows results using horizontal wells in specification 1.2
with the horizontal network effect. The second panel shows the analysis using vertical wells and vertical
network effects. The top panel shows a clear increasing effect from the creation of shared knowledge.
By contrast, the old type technology shows a decreasing effect from investment. The impact of shared
knowledge affects the productivity rate in new technology but the same effect does not hold in already
developed technology.
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(1) (2) (3) (4) (5) (6) (7) (8)
Ex firm

investments
Knowledge
Sharing 1

Ex firm
investments

Knowledge
Sharing 2

Ex firm
investments

Knowledge
Sharing 3

Ex firm
investments

Knowledge
Sharing 4

1{High Price Regime} -1.16∗∗∗ 3.86∗∗∗ 1.37∗∗∗ 0.79∗∗∗

(0.032) (0.045) (0.040) (0.031)

log(Age) -0.080∗∗∗ -0.36∗∗∗ -0.61∗∗∗ -0.13∗∗∗ -0.74∗∗∗ -0.33∗∗∗ 0.59∗∗∗ -0.53∗∗∗

(0.015) (0.0038) (0.022) (0.0034) (0.024) (0.0054) (0.015) (0.014)

Ex firm investments -0.19∗∗∗ 0.072∗∗∗ 0.096∗∗∗ 0.46∗∗∗

(0.0067) (0.0017) (0.0054) (0.020)

Constant -18.4∗∗∗ -12.7∗∗∗ -50.9∗∗∗ -2.32∗∗∗ -38.3∗∗∗ -9.88∗∗∗ 14.9∗∗∗ -14.1∗∗∗

(0.50) (0.18) (0.93) (0.14) (0.84) (0.22) (0.52) (0.42)

N 552279 552279 276275 276275 236027 236027 293589 293589
Underidentification 1331.0 6606.8 1148.5 635.4
Weak identification 1306.0 7238.8 1171.7 647.6

Marginal effects; Standard errors in parentheses

(d) for discrete change of dummy variable from 0 to 1

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.1: Baseline Productivity Effect: Horizontal Wells

The table shows the full results for the analysis shown in figure A.6 above. The empirical specification is,

log(Ow,t) = log(Agew,t) + γksn Ît + Γ [Xg,t Xi,t]
′
+ ϵw,t (second stage)

Ig,t = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

The first stage regresses It, investment by other firms in county g at time t excluding the firm that drilled
well w on an indicator for the oil price regime. The Second stage starts from the log version of the classic
Arp’s production function for oil wells

Ow,t = QAgeβ

log(Ow,t) = log(Q) + βlog(Age)

For the regression analysis, I add the instrumented investment level Îg,t. I model baseline productivity
Q using a vector of geography and firm level controls [Xg,t Xi,t], which are listed in the appendix. The
network strength from the spatial lag model is used to sort counties into quartiles which appear on the
x-axis. Baseline productivity Q̂ is used as the outcome ,Y in spatial lag specification B.4 and firm skill is
the indirect effect variable S.

The first row shows the first stage results while the third role shows the second stage results. Notably, there
is limited correlation between the rate of investment decline between oil price regimes and the estimated
second stage effect. While investment levels increase in the low oil price period, the effect on productivity is
negative. Amongst the other three network quartiles, Investment declines in response to the lower oil prices
is the lowest in quartile 4 yet the second stage effect on the productivity of remaining wells is the largest in
magnitude.
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Figure A.7: Illustration of the Economic Magnitude from Baseline Regressions

The top panel illustrates the simulated economic impact from incorporating the knowledge
spillover effect. Recall that the Arp’s production model is,

Ow,t = QwAgeβw,t

log(Ow,t) = α̂+ β̂log(Agew,t) + ϵw,t

Each line shows the same baseline productivity rate Qw for a hypothetical well drilled in a county
from each of the four network bucket. All wells share the same Q = 0a and β = −0.6. I then plot,

Ow,t = exp(Q̂+ γ̂ksn × It + β ∗ log(Agew,t))

with γ̂ksn corresponding to second stage results shown in table A.1 and It = 5.

The second panel shows the cumulative production values.

a. Note that this is for comparison only. The actual baseline Q would be much higher to match
actual production numbers.
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A.4 Mechanism Plots
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Figure A.8: Data Availability Productivity Effect

The figure plots second stage coefficients from the main empirical specification,

log(Ow,t) = log(Agew,t) + γksn Ît + Γ [Xg,t Xi,t]
′
+ ϵw,t (second stage)

Ig,t = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

The first stage regresses It, investment by other firms in county g at time t excluding
the firm that drilled well w on an indicator for the oil price regime. The Second stage
starts from the log version of the classic Arp’s production function for oil wells

Ow,t = QAgeβ

log(Ow,t) = log(Q) + βlog(Age)

For the regression analysis, I add the instrumented investment level Îg,t. I model
baseline productivity Q using a vector of geography and firm level controls [Xg,t Xi,t],
which are listed in the appendix. The network strength from the spatial lag model is
used to sort counties into quartiles which appear on the x-axis. Baseline productivity
Q̂ is used as the outcome ,Y in spatial lag specification B.4 and the indirect effect
variable is data availability matrix A which is described in detail in section ??. The
set of variables considered along the columns of A contain information regarding
the fracking program and additional well production details which are not uniformly
available. The matrix contains one when the variable in the column is available for
the well drilled in that row and a zero otherwise.

While the results are noisier, there is still a much larger effect in the highest quartile and
the value is statistically significantly different from the estimated effect in the other
three buckets. Importantly, the matrix does not contain the value of the variable,
only an indicator if the variable is available. While this data sharing may not be
the only mechanism by which this shared intangible effect works, this result sheds
light on data availability as one clear channel. The appendix shows analogous results
where the standard deviation of these variables is used instead of the data indicator.
There is a clear negative effect from increased investment in that specification. Taken
together, these two sets of results show the importance of publicly available data in
contributing to the creation of valuable shared intangible capital as firms make physical
investments.
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Figure A.9: Technology Indicator (horizontal interval length) Results

The two figures plot second stage coefficients from the main empirical specification,

log(Ow,t) = log(Agew,t) + γksn Ît + Γ [Xg,t Xi,t]
′
+ ϵw,t (second stage)

Ig,t = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

The first stage regresses It, investment by other firms in county g at time t excluding the firm
that drilled well w on an indicator for the oil price regime. The Second stage starts from the log
version of the classic Arp’s production function for oil wells

Ow,t = QAgeβ → log(Ow,t) = log(Q) + βlog(Age)

For the regression analysis, I add the instrumented investment level Îg,t. I model baseline
productivity Q using a vector of geography and firm level controls [Xg,t Xi,t], which are listed
in the appendix. The network strength from the spatial lag model is used to sort counties into
quartiles which appear on the x-axis.

The two panels show different network effects. Horizontal perforated interval length measures
the portion of the well that is turned and perforated to allow for fracking. It is an important
technological aspect of the new, horizontally fracked wells. In both panels, interval length is used
as the outcome ,Y in spatial lag specification B.4. In the top panel, firm skill is the indirect
effect variable S. In the second panel, counties are sorted based on γg,H

1 , the coefficient on the
interval lengths of the wells that were drilled in the preceding quarter. The second panel serves
as a test of simple technology clustering as compared to a shared knowledge effect. The result in
the top panel is not monotonic but the effect is still largest and significant in the fourth quartile
of network strength. The same does not hold for technology clustering in the second panel.
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(1) (2) (3) (4) (5) (6) (7) (8)
Ex firm

investments
Knowledge
Sharing 1

Ex firm
investments

Knowledge
Sharing 2

Ex firm
investments

Knowledge
Sharing 3

Ex firm
investments

Knowledge
Sharing 4

1{High Price Regime} -8.68∗∗∗ 11.3∗∗∗ 2.82∗∗∗ 1.92∗∗∗

(0.53) (0.67) (0.53) (0.58)

Ex firm investments (-1 qtr) 0.72 -0.41 -2.66 -11.0∗∗

(0.41) (0.44) (1.76) (3.85)

Constant -98.5∗∗∗ 82.5 -144.5∗∗∗ 208.5 -98.2∗∗∗ -380.2∗ 65.2∗∗∗ 1033.3∗∗∗

(7.50) (168.6) (10.2) (114.0) (10.2) (164.2) (8.81) (276.4)

N 14891 14891 9992 9992 8683 8683 6807 6807
Underidentification 275.1 267.8 27.9 10.8
Weak identification 268.5 284.0 28.2 10.9

Table A.2: Cost Indicator (Drill time) Results

The table reports from the main empirical specification,

log(Ow,t) = log(Agew,t) + γksn Ît + Γ [Xg,t Xi,t]
′
+ ϵw,t (second stage)

Ig,t = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

The first stage regresses Ig,t, investment by other firms in county g at time t excluding the firm that
drilled well w on an indicator for the oil price regime. The Second stage regresses drill time, the time
it takes between spudding and completing a well as the dependent variable. The explanatory variables
include the set of geography and firm control variables [Xg,t Xi,t] as well as the instrumented Îg,t. The ob-
servations are limited to one observation per well w and t is the month in which the well is drilled (spud date).

Drill times represent one of the larger costs of drilling wells. Additionally, there is significant skill and thus
learning along the drill time dimension. In addition to simple productivity effects, this acts as a useful test
of additional learning parameters where shared knowledge may be useful.

The results show a strong negative effect in the strongest network quartile. Firms actually drill faster, and
thus less costly wells, when there is increased investment activity in the area. This effect is stronger than any
supply chain issues which one should expect as more firms vie for access to the same pool of drilling servicers.
There is also a potential positive effect from pooled servicing resources which could be a confounding factor.
However, the network effect is estimated using Q̂ as the Y and firm skill as the indirect effect S. There is no
reason to expect this positive pooled servicing effect to be correlated with the shared knowledge estimates.

A.5 Theoretical Results
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Figure A.10: Theoretical Solutions: Aggregate Dynamics

The figure depicts aggregate transition dynamics from economies with different, im-
mutable knowledge sharing attributes. For production function,

π = Pt [Aoldkit(1− γit) +Anew,itkitγit]

Anew,it = [(ηKtΓt)
α1 ]µ1(hith̃)

µ2

Γ =

∫
γg(k, γ, h)dγ

Kt =

∫
kg(k, γ, h)dk

h̃ = (η2kitγit)
α2

High knowledge sharing is given by α1 = 0.5, α2 = 0, mid knowledge sharing is
α1 = 0.25, α2 = 0, High own learning is α1 = 0, α2 = 0.7 and mid own learning is
α1 = 0, α2 = 0.5.

The two panels show Γt, Anew,it, hit, xn respectively. The transitions begin with low
demand price Pt and is subject to an “MIT” shock that sets Pt to a higher level.
The distribution used to solve for the stationary distribution prior to the shock is
randomly drawn with the limitation that there is only mass in areas with low γ. In
other words, some firms attempt the new technology but there is limited adoption at
first. This distribution is allowed to evolve accord to the kolmogorov forward equation
throughout the transition.
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Figure A.11: Theoretical Solutions: Empirical Counterpart to Aggregate Dynamics

The figure plots empirical counterparts of the theoretical transition dynamics shown
in A.11. The first panel shows average county-level investment measured in total wells
drilled in the county that month. The bottom panel takes each firm’s production profile
and calculates the new technology to total capital stock ratio. The figure then plots
averages over all firms over time.
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Figure A.12: Aggregate Dynamics: Distribution

The figure depicts aggregate capital stock transition dynamics from economies with
different, immutable knowledge sharing attributes. For production function,

π = Pt [Aoldkit(1− γit) +Anew,itkitγit] , Anew,it = [(ηKtΓt)
α1 ]µ1(hith̃)

µ2 ,

Γ =

∫
γg(k, γ, h)dγ, Kt =

∫
kg(k, γ, h)dk h̃ = (η2kitγit)

α2

High knowledge sharing is given by α1 = 0.5, α2 = 0, mid knowledge sharing is
α1 = 0.25, α2 = 0, High own learning is α1 = 0, α2 = 0.7 and mid own learning is
α1 = 0, α2 = 0.5.

The panels along the rows show economies with different initial distributions while the
columns show new vs. old capital stock. All three distributions begin with mass only
in the lower parts of the γ dimension. In initial distribution 1, all firms attempt the
new technology but it is a small part of their capital portfolio. In distribution 2, only
large firms attempt the new technology and in distribution 3, only small firms attempt
it. The transitions begin with low demand price Pt and is subject to an “MIT” shock
that sets Pt to a higher level. This distribution is allowed to evolve accord to the
Kolmogorov forward equation throughout the transition.
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Figure A.13: Optimal Adjustments

The figure shows optimal adjustment targets γ′ for firms along the size and specializa-
tion distribution. The left column shows the high knowledge sharing economies and
the right column shows learning economies. The rows trace out this target throughout
the transition period from an “MIT” shock. The transitions begin with low demand
price Pt and is subject to an “MIT” shock that sets Pt to a higher level.
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Figure A.14: Optimal Investment

The figure shows optimal investment levels, xn for firms along the size and specialization
distribution. The left column shows the high knowledge sharing economies and the
right column shows learning economies. The rows trace out this target throughout the
transition period from an “MIT” shock. The transitions begin with low demand price
Pt and is subject to an “MIT” shock that sets Pt to a higher level.
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A.6 Adoption And Investment

(1) (2) (3) (4) (5) (6) (7) (8)
log(Ex firm

Inv)
Knowledge
Sharing 1

log(Ex firm
Inv)

Knowledge
Sharing 2

log(Ex firm
Inv)

Knowledge
Sharing 3

log(Ex firm
Inv)

Knowledge
Sharing 4

-1 qtr -1 qtr -1 qtr -1 qtr

log(Expiring Leases #), -1 qtr 0.10∗∗∗ -0.016 0.11∗∗∗ 0.0042
(0.0082) (0.013) (0.0099) (0.017)

log(Ex firm Inv), -1 qtr -1.61∗∗∗ 2.36 0.94∗∗ 25.3
(0.36) (3.15) (0.32) (106.5)

Constant -2.33∗∗∗ -5.31∗∗∗ -1.02 1.32 -3.64∗∗∗ 7.87∗∗∗ -2.42∗∗∗ 49.9
(0.43) (1.56) (0.61) (4.59) (0.48) (1.87) (0.65) (253.4)

N 6555 6555 3199 3199 3726 3726 2075 2075
Underidentification 157.5 1.43 113.4 0.058
Weak identification 162.3 1.41 124.4 0.057

Table A.3: The impact of shared intangibles on investment levels

The table shows results from

Iig,t = γksn Ît + Γ [Xg,t Xi,t]
′
+ ϵw,t (second stage)

Ig,t−1 = η + βksnExpg,t + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

The knowledge sharing quartiles ksn are sorted using the spatial lag model in B.4 with Q̂, baseline
productivity, as the outcome variable Y and firm skill as the indirect effect variable S.

Leases granting firms the right but not the obligation to drill tend to have a primary term. If no well is
drilled before that expiration, the leases expire and the firms lose the option. In [50], the author shows
significant clustering of drilling activity around lease expiration times. In the first stage, Expg,t counts the
total number of leases which are reaching their primary expiration at month t. I use Expg,t to instrument
for investment activity by other firms in the county.

In the second stage investment levels by firm i in county g at month t is regressed on the instrumented
investment activity variable, Îg,t. The first stage considers investment activity lagged by a quarter since
it is likely that investment activity would not react immediately to data that is contemporaneously available.

The results are fairly noisy but the coefficients are consistent with intuition. When other firms increase their
investment activity, they are also involuntarily creating knowledge which is potentially valuable to other
firms and may impact those firms’ investment decisions. In the lowest shared knowledge quartile, increased
investment activity by other firms is associated with lower investment levels. Firm investment responses to
investment by other firms is largest in magnitude in the highest shared knowledge quartile but the effect is
not significant. The result in the third highest quartile is positive and significant.
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(1) (2) (3) (4)
2010Q1-
2014Q2

2014Q3-
2015Q4

2016Q1-
2018Q4

2018Q4-
2022Q1

Firm Size (output in BOE)

Log(knowledge sharing), Q-skill -1.96∗ -0.44 -0.031 -0.11
(0.96) (1.42) (0.17) (0.21)

Firm Size Bucket=2 5.57 2.77 -2.45∗∗ 7.45∗∗

(2.93) (4.98) (0.75) (2.73)

Firm Size Bucket=3 7.23∗∗ 4.21 -0.028 6.91∗∗∗

(2.71) (5.11) (0.97) (1.94)

Firm Size Bucket=4 10.7∗∗∗ 6.74 0.80 6.30∗∗∗

(2.70) (5.05) (0.58) (1.57)

Firm Size Bucket=2 × Log(knowledge sharing), Q-skill 1.77 0.30 -0.55∗ 0.70
(1.02) (1.41) (0.27) (0.40)

Firm Size Bucket=3 × Log(knowledge sharing), Q-skill 2.32∗ 0.86 0.057 0.78∗∗

(0.94) (1.44) (0.22) (0.26)

Firm Size Bucket=4 × Log(knowledge sharing), Q-skill 3.05∗∗ 1.04
(0.95) (1.42)

Firm Specialization New Technology Capital
TotalCapital

Log(knowledge sharing), Q-skill 1.62∗∗∗ -0.0041 -0.71 1.16
(0.26) (0.51) (0.53) (1.48)

Firm Specialization -0.99 2.95 3.10 -5.26
(1.18) (2.07) (2.09) (5.54)

Log(knowledge sharing), Q-skill × Firm Specialization -0.73∗ 0.77 0.71 -1.19
(0.37) (0.59) (0.61) (1.51)

Leverage Ratio: Compustat dlttq
atq

Log(knowledge sharing), Q-skill -0.42 0.10 0.43 -0.37
(0.68) (0.62) (0.56) (0.98)

Leverage Ratio 4.15 -3.19 -2.65 11.0
(4.64) (4.51) (2.87) (7.11)

Log(knowledge sharing), Q-skill × Leverage Ratio 1.50 -0.87 -1.17 3.25
(1.69) (1.51) (1.21) (2.18)

Table A.4: Investments by Firm type

The table shows results from

Iig,t = α+ βlog(Ksg)× Chari,t + Γ[Xg,t Xi,t]
′ + ϵi,g,t |t ∈ periodj

The regressions are conducted at the firm-county-month level. Each regression is conducted separately for
time periods j listed across the columns. The dependent variable here is new technology investment levels
given by units of horizontal wells drilled. The three panels separate firms based on their size, specialization
and leverage ratio. Note that in the first panel, firms are divided into quartiles rather than using their
continuous firm value given the large dispersion in firm sizes.
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(1) (2) (3) (4)
2010Q1-
2014Q2

2014Q3-
2015Q4

2016Q1-
2018Q4

2018Q4-
2022Q1

Firm Size (output in BOE)

log(Knowledge Sharing) 18.2∗ 0.37 -0.048∗ 0.18
(7.46) (0.28) (0.022) (0.15)

Firm Size Bucket=2 -60.5∗∗ 3.18 -1.21 -0.42
(23.4) (3.02) (1.29) (1.45)

Firm Size Bucket=3 -49.8∗ -0.77 -0.23 -5.98
(20.0) (1.08) (0.82) (5.15)

Firm Size Bucket=4 -61.1∗∗ -0.40 -0.15 -0.29
(21.0) (1.04) (0.71) (0.83)

Firm Size Bucket=2 × log(Knowledge Sharing) -19.6∗ 0.53 -0.48 0.075
(8.84) (0.78) (0.37) (0.15)

Firm Size Bucket=3 × log(Knowledge Sharing) -16.3∗ -0.53 -0.027 -2.14
(7.32) (0.32) (0.10) (1.80)

Firm Size Bucket=4 × log(Knowledge Sharing) -19.4∗ -0.36
(7.55) (0.28)

Firm Specialization New Technology Capital
TotalCapital

log(Knowledge Sharing) -3.25∗∗∗ 0.46∗∗ -0.26∗∗∗ -8.24
(0.72) (0.16) (0.076) (6.29)

Firm Specialization 6.43∗ -4.68∗∗∗ -1.43∗∗∗ 21.2
(2.51) (0.61) (0.27) (17.4)

log(Knowledge Sharing)× firmboerat 3.16∗∗∗ -0.47∗ 0.28∗∗∗ 8.64
(0.79) (0.18) (0.082) (6.58)

Leverage Ratio: Compustat dlttq
atq

log(Knowledge Sharing) 0.53 -0.22∗ -0.0053 0.051
(0.28) (0.099) (0.066) (0.039)

Leverage Ratio 0.079 1.20∗ -0.49 0.20
(1.88) (0.54) (0.44) (0.37)

log(Knowledge Sharing)× levratio 0.13 0.44∗ -0.16 0.087
(0.69) (0.22) (0.19) (0.11)

Table A.5: Adoption Rates by firm type

The table shows results from

Iig,t = α+ βlog(Ksg)× Chari,t + Γ[Xg,t Xi,t]
′ + ϵi,g,t |t ∈ periodj

The regressions are conducted at the firm-county-month level. Each regression is conducted separately for
time periods j listed across the columns. The dependent variable here is new technology adoption rates

given by

Iig,t,new

Iig,t,total
−

ki
g,t,new

ki
g,t,total

ki
g,t,new

ki
g,t,total

. The first term in the numerator is the firm’s investment ratio of new to total

investments in county g at time t. The second term is it’s existing new technology production ratio based on
the firm’s installed capital stock at time t. This is taken as a proportion of the firm’s existing technology ratio.

The three panels separate firms based on their size, specialization and leverage ratio. Note that in the first
panel, firms are divided into quartiles rather than using their continuous firm value given the large dispersion
in firm sizes. 74



A.7 Industry Level Effects

Dependent Variable: Geography Comparisons of performance
Firm

geo
skill,t−Firmskill,t−1

Firmskill,t−1

Q-skill knowledge sharing

(1) (2) (3) (4) (5) (6) (7) (8)
Ex firm

investments
Knowledge
Sharing 1

Ex firm
investments

Knowledge
Sharing 2

Ex firm
investments

Knowledge
Sharing 3

Ex firm
investments

Knowledge
Sharing 4

1{High Oil Price} -0.0026 -0.0035∗ 0.012∗∗∗ 0.027∗∗∗

(0.0029) (0.0015) (0.00065) (0.00095)

Ex firm Investments 5.06 0.33 0.21∗∗ 0.13∗∗∗

(6.47) (0.99) (0.070) (0.038)

Constant -0.031∗∗ 0.18 -0.17∗∗∗ 0.036 -0.059∗∗∗ 0.0097 -0.029∗∗∗ -0.0093
(0.010) (0.25) (0.012) (0.17) (0.0035) (0.0054) (0.0059) (0.0082)

N 2147 2147 4248 4248 19983 19983 13134 13134
Underidentification 0.77 5.56 331.6 733.6
Weak identification 0.76 5.61 344.3 818.0
Model Diff 2.96 0.72 0.13 2.31
Diff pvalue 0.085 0.39 0.72 0.13

Marginal effects; Standard errors in parentheses

(d) for discrete change of dummy variable from 0 to 1

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table A.6: Average Growth effects: Within geography vs firm average

The Table shows results from:

Y j
w,t = α+ γksn Îjt + Γ [Xg,t Xi,t]

′
+ ϵw,t (second stage)

Ijt = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

in table format. The first stage investment results are shown in the odd-numbered columns while the
second stage results for each knowledge sharing quartile is shown in increasing order in the even-numbered
columns. The knowledge sharing value, ks, is Q-skill. These are estimated in the spatial lag model by
regressing Y = Q, on a weighted vector of nearby firm skill.

Y is given by the proportional difference between the firm’s within-geography estimated skill level and the
firm’s average skill level nation-wide. The first stage investment measure is ex-firm investment which is given
by county − investments− firminvestments. The Firm performance variable is estimated using the same
methodology in estimating the skill vector for the Spatial lag model. The Arp’s model is applied with a
firm-level fixed effect interacted with the geography and quarter where relevant.

Yw,t = βlog(Age) + γ1{Firm} × 1{q} × 1{geo} + ϵw,t (A.1)

Wald tests for the statistical difference between estimates is shown in “Model Diff” and “Diff pvalue”.
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Figure A.15: Relative productivity between knowledge sharing regions

The top panel shows the WTI oil price over the same time period. The two lines show the corresponding
time period when oil prices were undergoing substantial declines. The second panel shows average county
level investment rates including the large decline that occurs when oil prices drop.

The third panels show results from regressions,

log(Ow,t) = βlog(Agew,t) + γt1{ksn,n=4} + ϵw,t |n = 1, 4, new type only

These are estimated in the spatial lag model by regressing Y = Q, production efficiency on a weighted
vector of nearby firm skill.

Regressions are run at a quarterly level and the dummy variable is 1 for high knowledge sharing region
wells (n4) and 0 for low knowledge sharing region wells (n1).

The fourth panel repeats the relative productivity of horizontally drilled wells as compared to vertical wells.
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APPENDIX B

SUPPLEMENTARY MATERIALS

B.1 Firm and Geography controls

Two sets of controls are used throughout the main empirical studies. One set captures ge-

ography -level characteristics and the other is a series of firm controls. They are listed and

described here:

Geography Controls

Variables are estimated at the county -month level. For variables that include geological

formation data, the effective formations within a county are aggregated.

• formation quality (interval) - variance adjusted measure of the formation quality. This

measurement is conducted at the geological formation level which may include many

counties. An individual county may also be located in multiple formations. This

measurement is given by,

avg(IP )

sd(interval (ft))

The initial production rate, “IP” is the cumulative production over the first 6 months.

This is often used by industry practitioners as a first guess at how productive a well will

be. Interval length measures the length of the horizontally perforated interval in feet.

This interval is the portion of the pipe where with the perforations so that fracking

fluid can be released into shale rock. I use this as a proxy for well complexity.

• formation quality (drill time) - variance adjusted measure of formation quality. This

measurement is conducted at the geological formation level which may include many

counties. An individual county may also be located in multiple formations. This
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measurement is given by,

avg(IP )

sd(drill time)

The IP rate is as defined for the interval based formation quality above. Drill time

is measured by the number of days between spud and completion time. Spudding

describes the process of beginning to drill a well, at completion it can begin to produce.

Drill time is another proxy for how complex a well is.

• average output - Geography level average IP rate.

• county well # - Total number of wells in operation in the county at month t.

• interval variance - interval length variance (ft) of the operating wells in the county at

month t.

• county technology specialization - proportion of the county’s total output that is from

horizontal wells.

Firm Controls: Firm level controls are measured using the full sample at month t.

• sd(interval length) - standard deviation of interval length (ft) across all wells operated

by the firm at month t.

• sd(production efficiency) - standard deviation of production efficiency across all wells

operated by the firm at month t; production efficiency measures
avg(IP )

Interval (ft)

• well count - total number of wells operated by the firm at month t

• drilling efficiency - average drilling efficiency over all wells operated by the firm; drilling

efficiency measures drill time
interval (ft)
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• average IP - average initial production rate for all wells operated by the firm at month

t.

• average production efficiency - average production efficiency for all wells operated by

the firm at month t

• interval efficiency - to estimate a firm’s interval efficiency at quarter q of month t, I

use the log version of Arp’s model for monthly oil production,

log(Ow,t) = αw + βlog(Agew,t) + γ1{i} × interval lengthw

γ is the interval efficiency. It measures the effectiveness of interval lengths on output

interacted with a firm dummy. αw is the proxy for baseline production rate Q.

• skill - Estimated skill vector used in the spatial lag model of the main analysis.

B.2 County List

The spatial lag model to measure knowledge sharing was applied to a random sample of

counties. In this section, I list the counties that are included in the analysis along with the

total number of horizontal wells included from each county. The lists are split by horizontal

and vertical wells since the study is done once using all horizontal and all vertical wells. The

list shows the state followed by the county name.

Horizontal county list

AR CLEBURNE (1,095),CA KERN (1,861),CO GARFIELD (36),LA BIENVILLE (231),LA

BOSSIER (427),LA CADDO (725),LA PLAQUEMINES (87),MT HILL (6),MT RICH-

LAND (931),ND BOWMAN (216),ND BURKE (352),ND DIVIDE (759),ND DUNN (2,800),ND
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WILLIAMS (3,107),NM EDDY (4,326),NM LEA (3,900),OHMONROE (432),OK ALFALFA

(1,237),OK BEAVER (244),OK BECKHAM (192),OK CANADIAN (1,376),OK CARTER

(280),OK CUSTER (195),OK DEWEY (551),OK GRANT (470),OK HUGHES (852),OK

KAY (117), OK KINGFISHER (1,658),OK LATIMER (26),OK LOGAN (416),OK PAYNE

(414),OK PITTSBURG (1,113),OK SEMINOLE (203),OK WASHITA (309),OK WOOD-

WARD (63),PA ARMSTRONG (138),PA BRADFORD (1,437), PA CLEARFIELD (98),PA

FAYETTE (221),PA GREENE (1,296),PA LYCOMING (919),PA TIOGA (746),TX ATAS-

COSA (1,216),TX BEE (66),TX BRAZOS (481),TX CLAY (27),TX DENTON (1,393),TX

DEWITT (2,325),TX FREESTONE (82),TX GAINES (129),TX GLASSCOCK (1,279),TX

GONZALES (1,939),TX GREGG (31),TX HARRISON (502),TX HOCKLEY (34),TX HOOD

(818),TX HOWARD (1,943), TX HUTCHINSON (27),TX JACK (141),TX LAVACA (398),TX

LEON (142),TX LIPSCOMB (1,172),TX LOVING (2,526),TX MADISON (263),TX MAV-

ERICK (196),TXMCMULLEN (2,139),TXMONTAGUE (994),TXMOORE (10),TX NACOG-

DOCHES (247),TX OCHILTREE (776),TX PARKER (1,397),TX POTTER (48),TX REA-

GAN (1,901),TX REEVES (3,902),TX ROBERTS (384),TX ROBERTSON (164),TX SMITH

(49),TX WEBB (3,013),TX WHEELER (889),TX WINKLER (420),TX WISE (1,596),TX

YOAKUM (396),TX ZAPATA (16),TX ZAVALA (459),UT DUCHESNE (245),WV JACK-

SON (24),WVMARSHALL (553),WVMINGO (129),WY CONVERSE (1,084), WY SWEET-

WATER (107)

Vertical county list

AR LOGAN (530), AR SEBASTIAN (365), LA BIENVILLE (444),LA BOSSIER (905),LA

CADDO (1,610),LA GRANT (82),NM EDDY (3,936),NM LEA (2,520),OHMONROE (696),OH

STARK (385),OK HARPER (202),OK KAY (438),OK NOBLE (337),OK NOWATA (402),

OKWOODWARD (783), PA ARMSTRONG (2,107), PA CLARION (1,097),PA CLEARFIELD

(719),PA ELK (782), PA FAYETTE (1,444),PA FOREST (2,298),PA GREENE (981), PA

INDIANA (1,927), PA VENANGO (1,296),PA WASHINGTON (701),TX BEE (405),TX
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CROSBY (636),TX DENTON (285),TX DUVAL (469), TX FREESTONE (1,255),TX GAINES

(1,616),TX GARZA (360), TX GLASSCOCK (3,093),TX GREGG (340), TX HOCKLEY

(428),TX HOWARD (2,167),TX IRION (1,205),TX JACK (1,101),TX LAVACA (328),TX

LEON (410),TX LOVING (357), TXMCMULLEN (360),TXMEDINA (487), TXMITCHELL

(943), TX MONTAGUE (446),TX MOORE (528),X NACOGDOCHES (958), TX NUE-

CES (265), TX REAGAN (2,347), TX REEVES (914),TX SMITH (392), TX UPSHUR

(199),TX WEBB (1,503), TX WHEELER (953), TX WICHITA (1,511), TX WINKLER

(683),TX WISE (359), TX YOAKUM (1,020),TX YOUNG (645), TX ZAPATA (1,146), UT

DUCHESNE (3,062), WV HARRISON (673), WV JACKSON (315),WV LEWIS (689), WY

CARBON (1,242), WY FREMONT (431),WY SWEETWATER (2,163)

B.3 Institutional Details

The American oil and gas industry is large and dispersed unlike its more concentrated in-

ternational integrated oil giants such as BP and Total. The actual process of oil production

is conducted by “upstream” companies who specialize in exploration and production. These

companies do not operate gas stations or refine oil. They explore, drill, and deliver the crude

oil to what are known as “midstream” companies. Despite that, all of the major integrated

oil companies do departments involved in exploration and production. This market struc-

ture makes for an advantageous empirical setting for this case study. There is a disperse

set of firms from who vary significantly in characteristics like size and skill. The industry is

not dominated by a handful of firms even though large firms are active.1 Finally, the end

product which they produce is uniform so there is a clear demand price faced by all firms

with limited product differentiation.

1. Additionally, because oil production is such a capital-intensive endeavor, joint ventures and profit
sharing agreements are common. While I don’t measure these directly, it is another reason to believe that
knowledge spillovers are likely in this industry.
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The exploration and production process Traditional oil wells consist of vertical wells

which are drilled straight down to large oil reservoirs. Directional and horizontal wells are

designed so that the drill can be angled. While this technology has existed for decades, it

was not truly transformative until this technique was combined with hydraulic fracturing.

By drilling horizontally into shale rock and fracturing the rock with chemicals through holes

in the horizontal perforated interval, these new wells are able to access the oil and natural

gas trapped within shale rock. In this paper, I’ll use horizontal wells as the indicator for the

new technology instead of fracking data. In the time period studied, these will be virtually

indistinguishable.

After a firm has secured a lease giving it the right to drill2 a well and they’ve conducted

significant research including seismic tests, they submit permits to state regulators for the

permission to drill. These permits include general descriptions of the well including infor-

mation on the location of the well, whether the well will be vertical or horizontal, how far

down the vertical portion of the well will be, how long the horizontal interval of the well

will be and basic information on the operators. Additional information will vary from state

by state. For example, some states maintain strict data on fracking fluids used because of

environmental concerns while others do not. I use the availability of these additional data

variables as an alternative measure of knowledge availability in the tests below.

The time between scouting, permitting, and drilling can differ significantly. Most leases

give firms a three year primary term. If they have not drilled at least one well in that period,

the lease expires. In the studies, I’ll use overall investment activity within a quarter or two to

approximate shared knowledge because it is difficult to measure precisely when firms knew

what given this variance in time between preparation and actual drilling. Further, using

2. These can be from private actors or the bureau of land management.
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permitting dates to estimate knowledge sharing is likely to introduce a lot of noise as well

and risks losing large portions of the observations due to data paucity.

There is significant heterogeneity across geographies due to geological differences. Figure

A.1 shows the variance of drilled depths as well as the spacing of wells drilled in North Dakota

and Texas respectively. The North Dakota example shows relatively well lined wells (most

of these are horizontal so they line up accordingly). Also the depths are fairly homogeneous

as depicted by the colors. Texas on the other hand shows wells drilled at a variety of depths.

The example does not suggest one area is more productive or easier to drill. With the more

homogeneous wells, it is expected that optimal well design will be similar making experience

more easily transferred. On the other hand, there is more experience in Texas so information

regarding what does not work is well developed. This heterogeneity will be a useful building

block towards differences in knowledge sharing propensity.

Oil prices & Investment. The most relevant oil price benchmark used by American oil

companies is the West Texas Intermediate. While there is often a spread between the WTI

spot price and other global oil prices like the Brent, the WTI generally tracks world oil prices

over a long time horizon. As a result, it is difficult to argue that any individual firm can

influence the price. Figure A.2 depicts the WTI over the time period of interest. It has been

well documented that oil prices can be volatile and there’s been a large literature studying

this important time-series. I do not take advantage of the useful short-term variance in oil

prices but focus on a large structural break that occurred during this time period. Plotted

in red in figure A.2 is the estimated probabilities from fitting a two-stage Markov switching

model to the price. There are two significant regimes between 2010 and 2018. In the sections

below, I’ll argue that these two regimes provide a useful source of exogenous variation in

long-term firm investment trends.
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B.4 Spatial Lag Model

Let Y be an outcome of interest described in section “Indirect Effects & Outcomes of Interest”

of the main paper. The general format of the spatial autoregressive model is run for each

county, g separately. g indexes all oil producing counties in the United States. T is the total

number of months where drilling activity has occurred in county g. Importantly, for time

t < T where there is no drilling activity, the month still appears in the data. Let N be the

total number of geo-spatial coordinates where any well has ever been drilled in county g.

Y
g,H
t = γ

g,H
1 WY

g,H
t−1 + γ

g,H
2 X

g,H
t + βg,HWS

g,H
t−1 + ϵ (B.1)

Yt is a N × 1 vector which is nonzero in any n ∈ N if that well was drilled in month t

and zero otherwise. W is a N × N matrix of spatial weights, Xt is a N ×K matrix of K

different controls corresponding to the reference well n and time-varying geography controls,

and St is a N × 1 vector of estimated firm skill. H is an index for the oil price regime and

is 1 during the pre-period when oil prices are high and 0 otherwise. I maintain the g and

H superscript in the matrix format to emphasize that these regressions are conducted by

county-year individually. In the subsequent discussion, I will suppress the g,H for notational

purposes but the reader is asked to remember that these analyses are conducted separately

for each price regime and county. The coefficient βg,H is not used for statistical inference,

rather it measures the impact of other firms on a particular investment outcome. To reduce

noise, I use the point estimate but only for geographies where the coefficient is statistically

significant. Other geographies are left out of the analysis. I repeat this exercise in the ap-

pendix using the lower end of the 95% confidence interval but for all counties.

A more direct estimate of knowledge sharing would be to use γ̂
g,H
1 as the index of knowl-

edge sharing instead of β̂g,H . This coefficient captures persistence and contagion over time
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and between firms which also contain important evidence of knowledge sharing. However,

that estimate suffers from contamination by confounding factors outside of knowledge shar-

ing. There could be a number of reasonable explanations for why γ̂
g,H
1 is significant. There

are fewer, compelling stories for why the skill level of nearby firms, estimated using data

both within and outside of the county, should have a meaningful effect. 3 Finally, I do not

use the full time-varying β̂g,H as the relevant knowledge sharing estimate. I pre-sort coun-

ties using their average β̂g,H measures in the years prior to 2015 then form the knowledge

sharing quartiles using that estimate.

B.4.1 The spatial weight operator

The terms, WYt−1 and WSt−1 are analogous to the lag operator L.y commonly seen in

autoregressive models. Rather than regressing outcome y on its lag, yt−1 observation, the

specification regresses y on a number of nearby investments in vector Yt−1. W acts as an

operator weighting the relative impact of those wells by its inverse distance. To see this

more clearly, consider a simple example. Suppose the outcome Y has realizations denoted

by I. We are interested in a reference well w = 3 drilled in month t for this sample set with

3. Of course, β̂g,H is likely an underestimate of actual knowledge sharing. The estimated effects from
knowledge sharing is also likely to be conservative because the measurement of knowledge sharing is itself
fairly conservative.

85



N = 5.

Yt = WYt−1 +WSt−1 (B.2)

0

0

I

0

0


t

=



0 0 0 0 0

0 0 1
d(2,3)

0 0

0 1
d(3,2)

0 1
d(3,4)

1
d(3,5)

0 0 1
d(4,3)

0 0

0 0 1
d(5,3)

0 0





0

I ′

0

0

I ′′


t−1

+



0 0 0 0 0

0 0 1
d(2,3)

0 0

0 1
d(3,2)

0 1
d(3,4)

1
d(3,5)

0 0 1
d(4,3)

0 0

0 0 1
d(5,3)

0 0





0

S′

0

0

S′′


t−1

(B.3)

In this example, there are 5 wells drilled in the county but only w = 2, 4, 5 are in the “effect

set” of well w = 34 because w = 1 is too far away. However, well w = 4 was not drilled in

time t− 1 so it does not impact the reference well w = 3. I ′, I ′′ are the outcomes for wells 2

and 5 while S′, S′′ are the estimated time t−1 skill levels of the firms that drilled wells 2 and

5. d(w,w′′) denotes the distance between wells w,w′′ measured using their coordinates. For

time t the corresponding data row for well w = 3 can be re-cast in traditional OLS notation

for a specific data observation w,

yw,t = γ1yw,t−1 + βsw,t−1 + ϵw,t

Iw,t = γ1

[
1

d(w,w′)
I ′w′,t−1 +

1

d(w,w′′)
I ′′w′′,t−1

]
︸ ︷︷ ︸

yw,t−1

+β

[
1

d(w,w′)
S′
w′,t−1 +

1

d(w,w′′)
S′′
w′′,t−1

]
︸ ︷︷ ︸

sw,t−1

+ϵw,t

For well w = 3 then, the coefficients γ1 and β capture a version of a linear regression of

outcome yw,t on a weighted sum of influence well outcomes yw,t−1 and firm skills sw′,t−1.

The explanatory variables on the right side also include a vector of controls X
g
t . The controls

correspond to firm and geography level time-varying controls at time t for firm i who drilled

4. I’ll define this shortly
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reference well w as well as geography level variables5.

To construct the dataset, I define an ‘effect set”, wells which are close enough that they

should be included as a potential influence data point. This effect set is implemented through

the weight matrix W. Consider well w contained in vector Y . Let w̄ < N be another well

in the county. If w̄ is in the effect set, then element (w, w̄) contains the inverse distance

between w, w̄. If w̄ is not in the effect set for well w then (w, w̄) will contain a zero. This is

a symmetric matrix so the same weighting will be applied to well w̄ from element w. In the

example above (eq B.2), well 1 is not included in the reference set of well 3 so the matrix W

will always assign zero weight between those wells. Also note that w = 3 is included in the

effect set for wells 2,4,5. If, for example, well 4 is drilled at time t + 1, then W will assign

weight to well 3 outcome I when 4 becomes the reference well.

For every well in the sample, I conduct a geospatial match with every other well in the

sample and keep pairs which are within thirty miles of the reference well. Thirty is arbi-

trarily chosen to maximize the use of the dataset. For smaller effect sizes, large amounts of

data from important oil producing regions such as Colorado often do not enter the dataset.

For larger effect sizes, the model becomes intractable to estimate in dense oil producing

states such as Texas. Thirty miles is empirically the best compromise to maximize use of

the data while maintaining tractability. Importantly, these spatial matches are not limited

by municipal distinctions so that wells which are likely in the same geological formation but

across municipal county lines are included if they are close enough. Then, for every munici-

pal county g, the dataset includes every reference well physically located in that county and

every well in its “effect set” which appears because its corresponding coordinate in W will

5. These include estimates of firm skill, geography side production propensity, the number of produc-
ing wells in firm i’s portfolio nation-wide at time t, geography-wide technology efficiency, the firm’s new
technology investment ratio, and the geography’s new technology production ratio.
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be nonzero.

B.5 Data Availability Measure Values

The data availability measures used in the spatial lag model comprises a set of variables

which are not uniformly available across all geographies. To construct the measure, I first

use the geo-matching done in the spatial lag model. For those matched wells that were

recently drilled, I create a variable that is 1 if the variable is available for the influence wells

and 0 otherwise. Then, I define data availability for variable u to be

∑
1{u available}

Total Influence Wells

for each reference well. For example, if a given well has two influence wells but the data

availability measure is only available for one of those wells, the measure will be 1
2 .

For the standard deviation measure which is used to test the usefulness of information

also starts from the geo-matched reference and influence wells. Here, the actual value of the

dataset is weighted by the inverse distance just as in the main spatial lag model. Then, I

take the standard deviation of the distance weighted u variable.

This exercise is repeated for the two sets of variables described below. Then, for the

spatial lag specification I run,

Y
g,H
t = γ

g,H
1 WY

g,H
t−1 + γ

g,H
2 X

g,H
t + β

g,H
u EA

g,H
t−1 + ϵ (B.4)

where A is a N×k matrix of the data availability measure, which contains 1{u available}.

Note that unlike the skill vector, this variable is not weighted by distance. Instead, I include

an indicator matrix E whose values are 1
Total Influence Wells for each reference well in row

n ∈ N . The E matrix is zero for influence wells that are outside of the effect set for the
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reference well so it still contains a spatial element. Then, for each county, I average over

β
g,H
u during the pre-period H = 1 and over all u variables in the set to construct a general

data availablity index. It should be interpreted as regions where the availability of the data

is positively associated with outcomes Y.

For the standard deviation test, a similar exercise is conducted. Let U denote an analo-

gous matrix to A except that each element contains the actual realization of the extra data

variables instead of an indicator equal to 1 if that variable is available. To be concrete,

consider u1, the variable denoted in column 1 of U. I first create a weighted vector for

this variable. let i denote influence wells in the effect set for reference well n. Then, the

weighted vector is given by (w1u1,1, . . . , wiu1,i, . . . ). I then take the standard deviation over

this vector. This exercise is repeated for each of the variables described in B.5. Finally, I

take the mean of the standard deviations calculations across all of the variables in data set

1 or 2. This variable is used directly to sort wells (as opposed to counties) in the baseline

analysis. Note that it does not get applied to the spatial lag model like the other variables.

This tests directly whether or not informativeness of the shared data has an effect.

List of Data availability Variables

The data availability variables are described here. The are broadly categorized into two

sets based on the nature of the variables. The first captures more closely associated with

inputs to drilling, especially the fracking process. The second set has to do with well design

problems that are associated with the physical nature of the geology. These variables are

not uniformly better for production which is why I use availability measures instead of the

variable realizations themselves.
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Data Availability Set 1 (measures in lbs)67

• proppant - sand or ceramic used in the fracking process to hold fractures open. This

is usually combined with chemicals and water

• biocide - chemical used to to maintain production flow, inhibits corrosion and allows

for smooth flow.

• breaker - chemical used to reduce the viscosity of fluid

• buffer - chemical comprised of water, acide, and salt to control the pH level of stimu-

lation fluids.

• clay control - additive in fracking to control the migration of clay particles when it

interacts with water-based fluid.

• cross linker - compound used to create a viscous gel that stimulates the productivity

of a well.

• friction reducer - additive used to reduce the friction when pumping sand and other

fracking fluids into the well.

• gelling agent - reacts with oil to form solids which can be used in sealing or limiting

sand production

• iron control - reduces iron build-up in fluids to maintain flow of the fracturing chemicals.

• scale inhibitor - prevent or slow down scaling (solid deposits) that prevent fluid flow

through the pipeline.

• surfactant - chemical used to add emulsion to fluid to reduce viscosity.

6. Most of these measures are recorded in units of lbs per 1000 ft of perforated interval or square feet
where appropriate.

7. Many of these definitions are available form the Schlumberger oilfield glossary,
https://glossary.oilfield.slb.com/en/Terms/
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B.6 Learning

The knowledge sharing estimates described above do not exclude the possibility of learning

or experimentation by individual firms. To facilitate analysis of learning as either a comple-

mentary or alternative explanation, I include a set of learning propensity estimates described

here. Broadly, the philosophy behind these estimates is to measure the effectiveness of either

experimenting or acquiring experience within a geography. There are a number of ways that

one can measure experimentation. I use the most clearly measured variable in my data,

horizontal fracked interval lengths and drill times. Of course, there could be other ways

that firms are experimenting which will not be captured in this measure. For the experience

measure, the reader is reminded that oil is a natural resources which suffers from decline over

time. Thus, the experience outcomes should be carefully interpreted. The experimentation

measure is specified in B.5 for production outcome Yw,t,

Yw,t = α + βgeo,11{geo} × Exp+ βgeo,21{geo} × Imit

+Γ[Xi,t Xgeo,t]
′ + FEf + FEq + ϵw,t

ExpI =
∣∣Interval − Avg(Interval)f,q

∣∣
ImitI = −1×

∣∣Interval − Avg(Interval)g = g, t
∣∣

(B.5)

Exp variables capture the deviation of a particular well from the firm average nation-

wide. Imit, on the other hand, captures how close a well’s parameters are to the average

in the geography, or “imitation”. This variable captures a version of the knowledge sharing

estimate without the weighting by firm skills. Naturally, optimal well design varies across

regions so imitation is expected. The difference in returns to experimentation as compared

to imitation, β1−β2, capture regions where deviating from what other firms are doing leads

to higher Y outcomes.
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In addition, I also include experience measures which are estimated in

Yw,t = α + β
exp
geo1{geo} × Expf,t ++Γ[Xf,t Xgeo,t]

′ + FEf + FEq + ϵw,t (B.6)

experience is how many months a firm has drilled horizontal wells in a specific county. I use

months instead of well numbers so that firms which drill multiple wells in the same monthly

only receive credit once. This is a possible under-estimate as firms who drill more in a given

month likely learn more. However, I measure the impact of experience on well-level outcomes

and it would be problematic to classify a better outcome from well number ten drilled in a

given month as being due to the fact that it is the tenth well even though it was drilled at

the same time as well number one from that month.

For each estimated learning (experimentation or experience) effect, I sort regions by

quartiles as I did the knowledge sharing measures. Here, I show results for knowledge

sharing × learning quartiles and repeat the baseline specification.

Y
j
w,t = α + γksn Î

j
t + Γ

[
Xg,t Xi,t

]′
+ ϵw,t (second stage)

I
j
t = η + βksn1{High Oil Price} + Γ

[
Xg,t Xi,t

]′
+ νg,t (first stage)

The first stage I
j
t here is the firm-county level investment activity. In addition to sorting

on knowledge sharing regions, this specification also sorts within each knowledge sharing

bucket on learning effectiveness quartiles. Tables B.3 and B.4 show sample results from Q -

skill knowledge sharing. Note that I only use firm-county investments in the first stage since

the purpose is to study the possible impact from learning propensity. The results are shown

for the effect of experimentation over interval lengths on Q, baseline production efficiency. I

also only show results for the highest knowledge sharing regions. Table B.4 contains the sec-
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ond stage result for the highest knowledge sharing bucket only. In those regions, the lowest

learning quartile has the strongest effect from investment. Within high knowledge sharing

regions, the highest learning regions are not significantly impacted by a firm’s investment

level. This suggests that learning is not likely to be complementary here and that own firm

learning is not driving the baseline knowledge sharing result shown in the paper. Table B.3

shows the same results but for regions where learning propensity is measured by experience.

Here, there is some suggestion that experience is positively associated with the knowledge

spillover effect. The only region where the second stage coefficient is positive is in the third

learning bucket.

As described, the learning variable is also estimated in much the way that the spatial

lag model empirically estimates knowledge sharing propensity. Implicitly, this makes the

same assumption that there are regions where experimentation or experience is more likely

to be useful. Much of the motivation behind knowledge sharing propensity also apply here.

Geological complexity likely makes it difficult for a firm to carry through knowledge from

one well to the next. However, learning is more likely to be the result of firm action than

the sharing of no-excludable knowledge.

B.7 Standard Error in the spatial lag model

To sort firms using the spatial lag model, I only keep counties where the βg,H coefficient on

skill is statistically significant. Note that by sorting regions using the results from the spatial

lag model as an ordinal ranking, I avoid problems with generated regressions. The sampling

variance from the spatial lag model does not directly enter the main specification. However,

the spirit of the problem may still be of concern: there is sampling variance in the spatial

lag model. In table B.5, I show results from the baseline specification for Q and production

efficiency skill based knowledge sharing. The regression is:
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Y
j
w,t = α + γksn Î

j
t + Γ

[
Xg,t Xi,t

]′
+ ϵw,t (second stage) (B.7)

I
j
t = η + βksn1{High Oil Price} + Γ

[
Xg,t Xi,t

]′
+ νg,t (first stage) (B.8)

However, I form the knowledge sharing quartiles using βg,H − 2 ∗ se, the lower end of

the confidence interval. I include all counties in these results, even those where the skill

coefficient was not significant. The result for Q-skill based knowledge spillover illustrates

the problem. The results are actually decreasing in knowledge spillover buckets. Future work

may consider different ways of using the first stage network estimates and incorporate the

sampling variance. Importantly, the empirical specification is consistent within the model.

The empirical test conducts a stress test of the network as it is estimated. This problem

reflects work that is beyond the scope of this paper. Namely, how should the netowrk be

estimated in the first place?

B.8 Model Solution Method

I provide a brief overview of how the model is solved. Interested readers should refer to the

theoretical companion cited in the main paper. There are four main problems that need to

be solved. The main solution methodology is based on work done by [7].

1. The investment problem without technology adjustment

2. The technology adjustment problem

3. The equilibrium variables

4. The transition dynamics
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The investment problem without adjustment. To begin, the solution to the HJB without

adjustment needs to be solved as it serves as the starting point for the stopping problem.

I discretize the value function over an equidistant grid and solve the problem using finite

difference methods. I use an implicit, upwind scheme.

The technology adjustment problem. With the optimal V from the problem without

adjustment in hand, it serves as the initial guess for the stopping time problem. I re-cast

the problem as a linear complementarity problem which has standard solution algorithms.

The formulation is given by,

min {βV (w)−HJBx(V ), V − V ∗(V )} = 0 (B.9)

The iteration methodology here is similar to that of the investment problem.I find the

value of V n+1 that minimizes the problem in B.9 until it converges. The problem of choos-

ing the right value for V ∗(V ) is not standard. For example, in the canonical stopping time

problem, a firm can choose to exit and recover the scrap value. In that case, V ∗(V ) would

just be the scrap value which can be constant and exogenously defined or some proportion

of the firm’s value at the time of exit. In the first case, the more appropriate notation would

be V ∗ whereas the second case would be V ∗(V ) to account for the fact that the scrap value

varies with firm value V . I point out these notation differences to provide intuition for the

problem. In this case, the exit value is varying with firm value.

Recall that to use finite-difference methods, the entire state space is discretized so that

the value function solution can be approximated. In the case of γ, I do not treat the grid

as approximations to the continous variable γ. Rather, I impose that firms can only be

at distinct values of γ. Practically, this does not pose large problems for the investment

solution. I do not need to account for ∂V
∂γ since it does not change. In the LCP problem,
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the technology change is set up as discrete jumps anyway so it is intuitive to interpret firms

as being divided into discrete buckets of technology specialization.

Let V n be the continuation value at iteration n and let g denote different realizations

of values in the γ-grid. For each value of w, I interpolate V n(k,Anew, γ′) at each potential

value of γ′8. Note that the value of γ′ depends also on where the firm is in the (k,Anew(h))

state space. In other words, firms of different size and skill will have different potential values

for new technology rate γ′. For each point in the state space (k,Anew, γ) I pick the γ′ that

corresponds to the maximum V ∗(k,Anew, γ′). Then, that value is V ∗(V ) which is used in

the larger LCP iteration solving in equation B.9.

Equilibrium To find the equilibrium solution, start with a guess of the equilibrium ob-

jects, KΓ and po, pn. These are assumed to be the stationary values. I then solve for the

stationary distribution using the discretized version of the kolmogorov-forward equation at

the stationary solution so that ∂g
∂t = 0 for density function g. With the distribution in hand,

I update aggregate capital which also gives me the aggregate productivity. I use a bisection

method to solve for po, pn. Note that in equilibrium, all three of these values have to clear

the market simultaneously.

To solve for the dynamic transitions, I start the economy at a random distribution and

an entire time series guess for the eqilibrium objects. The distribution has the characteristic

that only a small handful of firms are involved in using the new technology, everyone else

uses the old. Then, I use the time-dependent counterpart to the HJB and KFE to solve

the problem forward for the whole time series. I then update the entire vector of aggregate

capital, po, pn using the same methods as in the stationary equilibrium solution. This is

8. For the version without debt or exits, this is fairly straightforward. With debt which can take on any
value within a range, I
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repeated until entire vector of dynamic equilibrium objects converges.

B.9 Appendix Figures & Tables
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Figure B.1: Average horizontal interval lengths over time

The figure shows the average perforated interval lengths in feet over time. In the
horizontal well figure from B.2, this value corresponds to the part of the well that is
horizontal and perforated. These are for horizontally drilled wells only. The data is
pulled from the permits firms submit when beginning the drilling process. Optimal
interval lengths will vary across geographies. On average, horizontal interval lengths
have been growing and represent an important aspect of the technology growth in
fracking.
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Figure B.2: Horizontally drilled wells example

The figure is pulled from a report by the Environmental Protection Agency. It illus-
trates how the horizontally fracked well technology functions. The horizontal intervals
are perforated and fracking fluid is discharged into shale rock at high temperatures and
the resource is released.
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Figure B.3: Efficacy of longer horizontal wells

The figure is pulled from Enverus analytics. The bubbles reflect oil producing geological
formations by production size. On the x-axis is the average perforated interval for wells
in those formations while the right axis contains the corresponding average IP rates
for those wells. The figure illustrates the heterogeneity in the efficacy of more complex
(longer interval length) wells by geography. The optimal well length is geography-
specific which implies that learning and information is useful across counties.
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B.9.1 Results

Figure B.4: Standard Deviation Tests from extra data sets 1 and 2

The figure plots coefficients γksn from well-level regression:

Y j
w,t = α+ γksn Îjt + Γ [Xg,t Xi,t]

′
+ ϵw,t (second stage)

Ijt = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

The network mode used to sort these buckets is estimated using Q̂ as the outcome
measure but the standard deviation of the additional variables from data availability
matrix A is used as the indirect effect variable. Two different sets of variables are
used, the first one relates to the fracking program of horizontally fracked wells while
the second is a general set of well design variables such as casing pressure. Both of
these are detailed in the descriptions above. These values were not placed through the
spatial lag model. I simply sort counties based on their average standard deviation
measure. The outcome variable of interest is Q. The measures are divided into
n = 1, 2, 3, 4 buckets. t denotes the month that the well was drilled.

The values in gray show, j = ex−firm, investments by all firms in a county excluding
the firm that drilled well w. The black shows, j = county, county level investments.
These are separate regressions conducted at each j, ksn level. The county level speci-
fication clusters standard errors at the county level.
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Dependent Variable: Q

Q-skill Knowledge sharing

(1) (2) (3) (4) (5) (6) (7) (8)
Firm-county
investments
(-1 qtr)

Knowledge
Sharing 1

Firm-county
investments
(-1 qtr)

Knowledge
Sharing 2

Firm-county
investments
(-1 qtr)

Knowledge
Sharing 3

Firm-county
investments
(-1 qtr)

Knowledge
Sharing 4

1{High Price Regime} 3.28∗∗∗ 0.21 7.28∗∗∗ 23.7∗∗∗

(0.64) (0.51) (0.70) (0.83)

Firm -county investments (-1 qtr) 0.053∗∗∗ 1.87 0.061∗∗∗ 0.010∗∗∗

(0.016) (4.60) (0.0090) (0.0017)

Constant 0.98 -1.17 9.44 -21.9 -15.7∗ -5.30∗∗∗ 89.4∗∗∗ -6.98∗∗∗

(5.51) (0.62) (5.63) (48.2) (7.07) (0.93) (9.78) (0.62)

N 9830 9830 7924 7924 6584 6584 8799 8799
Underidentification 26.9 0.17 99.2 534.4
Weak identification 26.7 0.17 108.7 814.0
Model Diff 79.3 8.13 313.3 0.98
Diff pvalue 5.2e-19 0.0044 4.1e-70 0.32

Table B.1: Own Firm Investments Effects

The Table shows results from:

Y j
w,t = α+ γksn Îjt + Γ [Xg,t Xi,t]

′
+ ϵw,t (second stage)

Ijt = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

in table format. The first stage investment results are shown in the odd-numbered
columns while the second stage results for each knowledge sharing quartile is shown
in increasing order in the even-numbered columns. The investment measure is
Firm − countyinvestment. The knowledge sharing value, ks, is Q-skill. These are
estimated in the spatial lag model by regressing Y = Q, on a weighted vector of
nearby firm skill. The outcome variable is baseline production Q. The measures are
divided into n = 1, 2, 3, 4 buckets.

Model Diff in the last row of each panel shows F-test values for Wald tests of statistical
differences between each model while the last row shows the corresponding p-values.
The tests are increasing so the first stage shows the results for γks1 = γks2 and the last
column shows γks4 = γks1 .
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Dependent Variable: Q

Production Efficiency-skill Knowledge sharing

(1) (2) (3) (4) (5) (6) (7) (8)
Ex-firm

investments
(ex-large)

Knowledge
Sharing 1

Ex-firm
investments
(ex-large)

Knowledge
Sharing 2

Ex-firm
investments
(ex-large)

Knowledge
Sharing 3

Ex-firm
investments
(ex-large)

Knowledge
Sharing 4

1{High Price Regime} 47.2∗∗∗ 21.4∗∗∗ 13.7∗∗∗ 11.4∗∗∗

(2.48) (1.07) (0.49) (0.52)

Ex-firm Investments (ex-large) 0.0053∗∗ 0.0099∗∗∗ 0.030∗∗∗ 0.037∗∗∗

(0.0019) (0.0029) (0.0024) (0.0046)

Constant -286.4∗∗∗ -1.26 -138.4∗∗∗ -0.79 64.3∗∗∗ -11.0∗∗∗ -38.4∗∗∗ -4.90∗∗∗

(20.9) (0.73) (7.81) (0.64) (6.61) (0.61) (4.12) (0.55)

N 1692 1692 5649 5649 14259 14259 5120 5120
Underidentification 256.0 325.0 746.2 422.9
Weak identification 361.7 399.1 775.5 483.8
Model Diff 2.91 64.0 0.53 16.2
Diff pvalue 0.088 1.2e-15 0.47 0.000058

Table B.2: Distribution tests: Dispersed Firm Sample

The Table shows results from:

Y j
w,t = α+ γksn Îjt + Γ [Xg,t Xi,t]

′
+ ϵw,t (second stage)

Ijt = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

in table format. The first stage investment results are shown in the odd-numbered
columns while the second stage results for each knowledge sharing quartile is shown
in increasing order in the even-numbered columns. The investment measure is
ex-firm investment which takes total county level investments minus firm-county level
investments. The knowledge sharing value, ks, is production efficiency-skill. These
are estimated in the spatial lag model by regressing Y = production efficiency on
a weighted vector of nearby firm skill. Production efficiency measures oil output
weighted by the well complexity input. The outcome variable is baseline production
Q. The measures are divided into n = 1, 2, 3, 4 buckets.

The regression is for a subset of the sample in each county. Any firm that represents
more than 50% of the horizontal production in a county is removed. They are not
included in the set of firms who could potentially be impacted by knowledge spillovers
and their investment levels are not included when measuring the first stage investment
variable.

Model Diff in the last row of each panel shows F-test values for Wald tests of statistical
differences between each model while the last row shows the corresponding p-values.
The tests are increasing so the first stage shows the results for γks1 = γks2 and the last
column shows γks4 = γks1 .
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Second Stage Results: Q dependent variable

Interval Experimentation Learning on Q outcome

Q -Skill Knowledge Sharing

(1) (2) (3) (4)
Learning 1 Learning 2 Learning 3 Learning 4

Firm-County Investment 0.15∗∗∗ -0.025∗∗∗ 0.0068∗∗ -0.016
(0.032) (0.0066) (0.0021) (0.0099)

Constant -4.78 4.12 -1.80 -10.6∗∗∗

(2.89) (3.03) (1.45) (0.91)

N 1586 3018 2379 7020
Underidentification 27.4 41.1 193.6 36.7
Weak identification 28.4 46.6 193.0 38.1

Table B.3: Learning through experimentation Effects

The tables shows second stage results from,

Y j
w,t = α+ γksn Îjt + Γ [Xg,t Xi,t]

′
+ ϵw,t (second stage)

Ijt = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

The investment level which is instrumented here is the firm-county level investment.
The specification captures the effect from making larger investments within a county on
baseline productivity. The reported results first sorts on the same knowledge sharing
quartiles as in the baseline but then further sorts within each knowledge sharing quartile
by estimates of how useful experimentation is in each county. The results only show the
highest knowledge sharing quartiles. Within these high network area counties, learning
through experimentation is not effective.
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Second Stage Results: Q dependent variable

Interval Experience on Q outcome

Q-Skill Knowledge Sharing

(1) (2) (3) (4)
Learning 1 Learning 2 Learning 3 Learning 4

Firm- County Investment -0.0023 0.0067 0.014∗∗∗ -0.011
(0.023) (0.0062) (0.0022) (0.0060)

Constant 26.5∗∗ -7.81∗ -10.2∗∗∗ -9.03∗∗∗

(8.99) (3.44) (1.08) (0.78)

N 192 2821 3046 7944
Underidentification 35.1 35.3 309.2 83.6
Weak identification 42.3 37.8 273.2 91.5

Table B.4: Learning through Experience Effects

The tables shows second stage results from,

Y j
w,t = α+ γksn Îjt + Γ [Xg,t Xi,t]

′
+ ϵw,t (second stage)

Ijt = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

The investment level which is instrumented here is the firm-county level investment.
The specification captures the effect from making larger investments within a county
on baseline productivity. The reported results first sorts on the same knowledge shar-
ing quartiles as in the baseline but then further sorts within each knowledge sharing
quartile by estimates of how useful experience is in each county. The results only show
the highest knowledge sharing quartiles. The results are mixed. Within these high net-
work area counties, learning through growing experience is not effective in the highest
learning buckets but the results are positive in the third bucket.
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Dependent Variable: Q

Q-skill based knowledge sharing, lower Confidence Interval Sort

(1) (2) (3) (4) (5) (6) (7) (8)
Ex-firm

Investments
Knowledge
sharing 1

Ex-firm
Investments

Knowledge
sharing 2

Ex-firm
Investments

Knowledge
sharing 3

Ex-firm
Investments

Knowledge
sharing 4

1{High Oil Price} 20.6∗∗∗ 22.1∗∗∗ 85.8∗∗∗ 46.7∗∗∗

(2.10) (1.44) (1.17) (0.98)

Ex-firm Investments 0.021∗∗∗ 0.014∗∗∗ 0.0044∗∗∗ 0.0064∗∗∗

(0.0041) (0.0019) (0.00027) (0.00062)

Constant -64.5∗∗∗ -3.09∗∗∗ -104.5∗∗∗ -3.00∗∗∗ -102.7∗∗∗ -3.94∗∗∗ -76.5∗∗∗ -6.85∗∗∗

(12.0) (0.53) (11.3) (0.57) (11.1) (0.27) (8.61) (0.35)

N 6115 6115 6864 6864 26539 26539 18433 18433
Underidentification 95.8 231.1 3869.9 1754.6
Weak identification 96.1 237.1 5396.0 2268.4
Model Diff 2.92 28.2 235.9 0.41
Diff pvalue 0.087 0.00000011 3.0e-53 0.52

Table B.5: Lower β̂ Confidence Interval Tests

The tables shows results from,

Y j
w,t = α+ γksn Îjt + Γ [Xg,t Xi,t]

′
+ ϵw,t (second stage)

Ijt = η + βksn1{High Oil Price} + Γ [Xg,t Xi,t]
′
+ νg,t (first stage)

Y is the Q baseline productivity rate for well w. This only shows up once for each
well at time t when the well was drilled. This experiment replicates a version of
the baseline specification. However, rather than sorting counties based on knowledge
sharing estimates from the spatial panel model where β̂ is statistically significant, I
sort based on β̂ − 2 ∗ se, the lower end of the confidence interval.
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