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ABSTRACT

Microbes play important roles in disease, human health, and climate change. Understanding

how environmental selective forces shape their evolution underpins our ability to prevent,

promote, and engineer their behavior. The genetic diversity of microbial populations can

be quantified with metagenomics, however, such diversity represents the outcome of both

stochastic and selective forces, making it difficult to identify whether variants are maintained

by adaptive, neutral, or purifying processes. This is partly due to the reliance on gene se-

quences to interpret variants, which disregards the physical properties of three-dimensional

gene products that define the functional landscape on which selection acts. Although it

is understood that the accuracy of sequence-based evolutionary models improves by inte-

grating structural information of the encoded protein, including structural bioinformatics

into metagenomic analyses is hampered by the absence of computational tools that allow

researchers to seamlessly integrate these traditionally distinct data types. In my disserta-

tion, I bridge this disconnect by developing anvi’o structure, a computational tool for the

analysis and visualization of metagenomic sequence variants in the context of predicted pro-

tein structures and binding sites. Taking a marine microbial population as a model system,

I illustrate how structure-informed analyses yield insight into the evolutionary relationship

between microbes and their environments that can only be learned by combining metage-

nomics with structural biology. Overall, my work sheds light on how environments induce

selective pressures that in turn impact the genetic diversity of populations, and provides a

software tool that enables the community to employ similar analyses on different microbial

systems.
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CHAPTER 1

INTRODUCTION

1.1 DNA is the lens with which we study microbial life

Microbes are so abundant on earth that it is estimated they outweigh animals by 154:1

[Bar-On et al., 2018]. Their prevalence places them center stage in many of the critical

biogeochemical processes on earth. Indeed, even the pleasure of an oxygen-filled atmosphere

is owed to prototypical photosynthetic microbes that oxygenated our atmosphere 2.4 billion

years ago [Lyons et al., 2014], and still today marine phytoplankton contribute around half

of our atmospheric oxygen [Field et al., 1998]. Microbes are perhaps even more diverse than

they are abundant, comprising the vast majority of the tree of life [Hug et al., 2016], and

persisting in an incredible diversity of environmental niches. To put it plainly, microbes

have colonized every niche Earth has to offer: from the extreme heat and pressures found

in deep-sea thermal vents [Jannasch and Mottl, 1985, Dick et al., 2013], to the intestinal

tract of humans [Fan and Pedersen, 2021, Kho and Lal, 2018, Sender et al., 2016], microbes

are unreasonably proficient at finding a place to call home, which they manage to do by

evolving lifestyles that suit their environment. The scientific discipline that investigates

the relationship between microbes and their environment is broadly referred to as microbial

ecology. However, it has traditionally been very difficult to quantify microbial ecosystems

with any depth of resolution since most cells look the same under a microscope. For this

reason, even basic questions such as “who is where and with what abundance?” had remained

unresolved until the advent of DNA sequencing.

A draft of the first human genome was sequenced in 2001, signifying a landmark milestone

in DNA sequencing technology [Lander et al., 2001]. Yet this achievement was just the start

of a sequencing revolution. Ever since, the cost of sequencing has decreased at a rate that

far exceeds Moore’s law (Figure 1.1). In 2001, sequencing a megabase pair of DNA sequence
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cost $10,000 USD. In 2020 the cost was just ten cents, representing a six order of magnitude

reduction in costs over a two decade period [NIH]. The affordability of sequencing has had

pervading implications across the biological sciences, and some fields, such as microbial

ecology, have been profoundly shaped by this technological progress. Indeed, sequencing

the DNA of microbes in their natural habitats is the primary means of measuring natural

microbial ecosystems, effectively providing a lens into the evolution and lifestyles of microbes.

Figure 1.1: The cost of sequencing a raw megabase of DNA sequence. Figure taken from
https://www.genome.gov/sequencingcostsdata [NIH].

1.2 Studying within-population diversity with metagenomics

Generating large sequencing datasets in microbial ecology has become increasingly practical

as sequence costs drop. Once unaffordable, it is now commonplace to sequence the totality

of DNA in a complex microbial sample, which is broadly known as metagenomics [Quince

et al., 2017]. The widespread use of sequencing of environmental samples with metagenomics
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has catalyzed a revolution in the identification and characterization of uncultured clades of

life [Sunagawa et al., 2015, Human Microbiome Project Consortium, 2012a, Hug et al., 2016,

Delmont et al., 2018], yet it also offers unique opportunities to study the genetic diversity of

naturally occurring populations at unparalleled resolution [Denef, 2019]. In particular, the

alignment of short reads derived from one or more environments to a reference genome pro-

vides direct access to environment-specific single nucleotide variants (SNVs), and analysis of

these variants has the potential to uncover evolutionary processes occurring within natural

populations that can be directly associated to environmental conditions across space and

time [Denef, 2019]. This approach has distinct advantages compared to identifying polymor-

phisms via alignment between two or more isolated genomes. This is because the sparsity of

sequenced genomes typically demands inter-species comparisons, except for highly studied

model organisms such as E. coli, in which thousands of genomes have been sequenced. Even

then, such genomes are sampled in a culture-biased manner and therefore under-represent

natural diversity. In contrast, reads aligned from metagenomic read recruitment experiments

typically share greater than 95% average nucleotide identity (ANI) throughout the genome

[Bendall et al., 2016, Kashtan et al., 2014, Konstantinidis and DeLong, 2008, Oh et al.,

2011b, Caro-Quintero and Konstantinidis, 2012], which matches current species boundary

definitions [Konstantinidis and Tiedje, 2005, Varghese et al., 2015, Jain et al., 2018]. Aligned

reads are therefore likely sampled from members of a single sequence-discrete population (see

notable exception [Delmont et al., 2019]), and depending on the population’s environmental

abundance, an immense number of its members may contribute reads in a culture-unbiased

manner. This makes metagenomic read recruitment well-suited to densely sample natural

populations, providing a lens into their genomic heterogeneity.
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1.3 Protein structures are a missing link in metagenomic analysis

Genetic diversity is commonly quantified through single nucleotide variants (SNVs), i.e.

nucleotide positions in the reference genome where the aligned reads exhibit minor allele fre-

quencies large enough to be distinguished from sequencing error [Denef, 2019]. SNVs can be

leveraged in a number of ways, including to quantify evolutionary processes through statistics

such as nucleotide diversity, fixation index, and rates of synonymous and nonsynonymous

polymorphism (for a review see [Garud and Pollard, 2020]).

Given the critical role that structure plays in the sequence-structure-function paradigm

[Anfinsen, 1973], integrating protein structure into classically sequence-based frameworks is

now commonplace in fields outside of microbial ecology, such as protein evolution, where it

is now broadly appreciated that “bringing molecules back into molecular evolution” creates

a unified view of protein evolution that increases the accuracy of evolutionary models and

data-driven inference [Wilke, 2012, Harms and Thornton, 2013, Sikosek and Chan, 2014].

Furthermore, with the advent of modern de novo protein structure prediction capabilities,

such as DeepMind’s AlphaFold [Jumper et al., 2021], it will soon be a reality that the

majority of novel coding sequences uncovered with metagenomics will have high quality

structure predictions that are either readily available or can be easily calculated. Yet in

general, methods for studying genetic variation in metagenomics continue to be dominated

by purely sequenced-based approaches, where as a matter of practical convenience, we tend

to “treat molecular sequences as mere strings of letters, the patterns of which carry the traces

of historical processes, rather than as functioning objects for which the physical properties

determine their behavior” [Harms and Thornton, 2013].

Although it is clear that structure-informed analyses yield insight into evolutionary pro-

cesses that cannot be learned with sequence alone, including structural bioinformatics into

metagenomic analyses is hampered by the absence of computational tools that allow users to

seamlessly integrate these traditionally distinct data types. In particular, there exists a need
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for tools that allow users to interactively analyze and visualize patterns of polymorphism in

environmental populations in the context of protein structures. Currently, researchers inter-

ested in doing so must face the challenges of interfacing the inputs and outputs of myriad

programs that do one or more of: sequence quality filtering, metagenomic read recruitment,

open reading frame (ORF) prediction, sequence variant calling and filtering, protein struc-

ture prediction, and interactive protein visualization. The totality of this effort inhibits

researchers from interactively browsing, filtering, and visualizing genetic diversity of popu-

lations in the context of protein structure in a high throughput manner.

1.4 A data-rich field demands powerful computational tools

With the advent of affordable sequencing, many exceedingly large, terabyte scale datasets

are now publicly available [Sunagawa et al., 2015, Salazar et al., 2019, Human Microbiome

Project Consortium, 2012b,a, Yachida et al., 2019, Zhernakova et al., 2016, Zeevi et al., 2015],

which has consequently has led to a dramatic shift in the needs of the microbial ecologist,

who now operates in a data-rich landscape. Microbial ecology is now in the middle of an

inflection point where more data exists than we have scientists to analyze it. So fertile are

the soils that every investigation yields new discovery. And the generation of datasets is

accelerating, creating exponentially more opportunity [Abdill et al., 2022].

How are microbial ecologists expected to keep up with this rate of data? In my opinion,

we are doing a poor job. As an analogy, if each dataset is a gold mine, we barely enter the

mine shaft before moving our operations to a bigger and more recently discovered mine. For

example, the sequencing data used in this dissertation comes almost entirely from a public

dataset known as the Tara Oceans Project metagenomes [Sunagawa et al., 2015], which

contains the DNA of 40 million open reading frames from thousands of microbial species,

data ultimately deriving from around 2.4 trillion raw nucleotide base pairs. I conjecture

this dataset alone could yield 1,000 more dissertations before its scientific yield would feel
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saturated. Yet this is unlikely to ever happen, because datasets ten times larger will likely

be generated in the next decade.

Certainly it is not a bad situation to be surrounded by ’too much’ data. Indeed, a surplus

of data is desired: until recently [Farley et al., 2018], macroecology has been considered a

data-sparse field, where it is not uncommon for researchers to spend years acquiring datasets

that are infinitesimally smaller than the big data seen in microbial ecology [Knapp et al.,

2012]. Yet the complexity of analyses, pipelines, and algorithms required to make sense of

big data grows accordingly, and as a field, microbial ecologists have not kept pace.

How do we address this growing gap between availability of data and proper and efficient

use of it? No single answer exists, however what is certainly true is that developing compu-

tational tools that enable researchers aids tremendously in our navigation of this data-rich

landscape.

1.5 Anvi’o

Anvi’o is a multi-’omics software platform that helps microbial ecologists draw scientific

insight from the swaths of data that now surround them. It is primarily used for genomics,

genome-resolved metagenomics and metatranscriptomics, pangenomics, metapangenomics,

phylogenomics and microbial population genetics [Eren et al., 2021]. Its codebase currently

stands at >140,000 lines of code and is used by hundreds of biologists in more than 40

countries around the world.

Anvi’o operates via a network of around 160 command-line programs that can be chained

together, and which all operate on shared database structures that are passed from program

to program. This network of programs means users can create their own workflows traversing

a linear path within this network. By providing full interactive access to the underlying data

at each intermediate step, users can explore their data to determine where the analysis

should go next. This is in contrast to traditional data pipelines that take in raw input and
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spit out summary tables and interactive figures. On one hand this approach is good because

it requires very little computational expertise to use, which is appreciated in a field where

computational sciences have not been taught as part of its formal curriculum, but it suffers

from rigidity because pipelines constrain the kinds of questions that can be asked to those

envisioned by the developer. The modular workflow style of anvi’o is also in contrast to

creating custom workflows, which requires substantial data wrangling skills in matching the

output of one program to the input of the next and requiring in-depth knowledge about each

program. Anvi’o circumvents this requirement by passing around intermediate data objects

that are created, modified, accessed, and generally operated upon by anvi’o programs.

1.6 Thesis topics

This body of work details my contributions to microbial ecology as both a software devel-

oper and a researcher. My research has focused on studying how changing environments

dynamically shape the selective pressures that drive genetic diversity within natural micro-

bial populations. While there exists a large repertoire of bioinformatic tools upon which

my research is based, my specific research questions have demanded tools that did not exist

priorly. For this reason, my graduate studies have revolved around developing computational

tools in tandem with my research. As such, I have contributed extensively to anvi’o as a

primary developer in an attempt to address what I see as a lack of computational solutions

that enable effective data analysis and integration of distinct data types within the field.

I’ve also invested extensive effort into increasing the accessibility of anvi’o to its users, who

often do not have computational expertise, by documenting code, writing tutorials online,

and creating extensive reproducible workflows for my publications, essentially paving way

for others to apply similar analyses with their own data. The totality of these contributions

are formally recognized in Chapter 2, which contains a recent commentary of anvi’o that

summarizes the progress that the many developers of anvi’o have made over the last 5 years.
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Throughout my studies I have focused on a model system known as the 1a.3.V subclade

of SAR11, an abundant and widespread bacteria found in surface oceans. Chapter 3 in-

troduces the first characterization of this subclade, which we defined based on geographical

co-occurrence patterns, phylogenomics, and pangenomics. By analyzing how single-amino

acid variants (SAAVs) in 1a.3.V distribute across environments, we partitioned this sub-

clade into distinct ‘proteotypes’ that display distribution patterns that match ocean current

temperatures. These proteotype distribution patterns favor the hypothesis that temperature

and/or its covariables critically affect the maintenance of genetic variation in 1a.3.V.

The results of Chapter 3 indicate that environmentally-mediated selection induces selec-

tive pressures that shape the genetic diversity of 1a.3.V. However, which variants are under

the influence of which selective pressures? This is not easily answered with analyses that rely

solely on sequences. To better address this question, Chapter 4 introduces anvi’o structure,

a new tool that provides an automated, scalable, and interactive work environment for ana-

lyzing and visualizing metagenomic variants with respect to predicted protein structures and

ligand binding sites. We applied anvi’o structure to the 1a.3.V model system, and explored

patterns of synonymous and nonsynonymous variation with respect to the structural param-

eters relative solvent accessibility (RSA) and distance-to-ligand (DTL). We revealed that as

much as 59% of nonsynonymous genetic variance can be explained by these two parameters

alone, identified an instance where nitrogen availability dictated how close nonsynonymous

variants were ‘allowed’ to get to the active site of a protein regulated by nitrogen availability,

and identified that synonymous polymorphism, though not affecting amino acid sequences,

distributes according to structural protein features.

Overall, this work trailblazes new analyses that blend metagenomics with structural

biology, demonstrating how such an integration increases the interpretability of evolution-

ary processes that drive polymorphism in their natural environments, and provides new

computational tools so that the community can perform similar analyses with their own
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microecological systems with a fraction of the effort.
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CHAPTER 2

COMMUNITY-LED, INTEGRATED, REPRODUCIBLE

MULTI-OMICS WITH ANVI’O

This chapter is derived from the following publication:

Eren, A. Murat, Evan Kiefl, Alon Shaiber, Iva Veseli, Samuel E. Miller, Matthew

S. Schechter, Isaac Fink, et al. 2021. “Community-Led, Integrated, Reproducible

Multi-Omics with Anvi’o.” Nature Microbiology 6 (1): 3–6.

2.1 Author contributions

This is a perspective piece describing the progress that has been made in the development

of anvi’o over the last 5 years, which is represented by >140,000 lines of code that has

been contributed by 34 authors from around the world. This code has directly or indirectly

influenced the analysis of hundreds of papers, and the codebase itself contains substantial

contributions for several PhD dissertations, mine being just one. With that in mind, it is

impossible to accurately attribute each author’s contributions. Nevertheless, what follows is

a specific summary of my personal contributions that this paper recognizes.

My specific contributions include collaborating with microbial ecologists and computa-

tional biologists to implement feature requests, diagnose errors, and fix bugs in ≈150 GitHub

issues and pull requests. I have redesigned mission-critical code, decreasing compute times

from >100 hours to <1 hour for terabyte-scale analyses. I have spearheaded the development

of protein structure prediction, analysis, and visualization capabilities within anvi’o. I have

made significant contributions to the storage, processing, and analysis strategies related to

single nucleotide variants (SNVs), single codon variants (SCVs), single amino acid variants

(SAAVs), and insertions/deletions (INDELs). Overall, I have played a primary role in the
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overall health and maintenance of the codebase in what has totaled >1,600 GitHub com-

mits. I have established docstring conventions for the codebase, contributing >3,000 lines of

docstrings, and authored >20,000 words of user tutorials ((1) https://merenlab.org/201

5/07/20/analyzing-variability, (2) https://merenlab.org/tutorials/infant-gut,

(3) https://merenlab.org/2018/09/04/getting-started-with-anvio-structure, (4)

https://merenlab.org/2020/07/22/interacdome). I’ve also mentored junior developers

through the program development life-cycle via code reviews and pair programming.

2.2 Discussion

Generating hundreds of millions of sequences from a microbial habitat is now commonplace

for many microbiologists [White et al., 2016]. While the massive data streams offer detailed

snapshots of the lifestyles of microorganisms, this data revolution in microbiology means

that a new generation of computational tools is needed to empower life scientists in the era

of multi-omics.

To meet the growing computational needs of the life sciences, computer scientists and

bioinformaticians have created thousands of software tools [Callahan et al., 2018]. These

software fall into two general categories: ‘essential tools’ that implement functions funda-

mental to most bioinformatics tasks, and ‘workflows’ that make specific analytic strategies

accessible.

If a comprehensive microbial ‘omics investigation is a sophisticated dish, then essential

tools are the kitchenware needed to cook. A chef can combine them in unique ways to answer

any question, yet such freedom in data analysis not only requires the mastery of each essen-

tial tool but also demands experience in data wrangling and fluency in the command line

environment to match the output format of one tool to the input requirements of the next.

This barrier is overcome by workflows, which implement popular analysis strategies and

make them accessible to those who have limited training in computation. If a comprehensive
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microbial ‘omics investigation is a sophisticated dish, then each ‘omics workflow is a recipe

that turns raw material into a specific meal. For instance, a workflow for ‘pangenomics’

would typically take in a set of genomes and (1) identify open reading frames in all input

genomes, (2) reciprocally align all translated amino acid sequences, (3) identify gene clusters

by resolving pairwise sequence homology across all genes, and (4) report the distribution of

gene clusters across genomes. By doing so, a software that implements pangenomics, such as

Roary [Page et al., 2015], would seamlessly run multiple essential tools consecutively, resolve

input/output requirements of each, and address various ad hoc computational challenges

to concoct a pangenome. Popular efforts to make accessible workflows that form the back-

bone of ‘omics-based microbiological studies include the Galaxy platform [Jalili et al., 2020],

bioBakery software collection [McIver et al., 2018], M-Tools (i.e., GroopM [Imelfort et al.,

2014], CheckM [Parks et al., 2015]), and KBase [Arkin et al., 2018]. While ‘omics workflows

conveniently summarise raw data into tables and figures, the ability to analyse data beyond

pre-defined strategies they implement continues to be largely limited to master chefs, pre-

senting the developers of ‘omics workflows with a substantial responsibility: pre-determining

the investigative routes their software enables users to traverse, which can influence how

researchers interact with their data, conceivably affecting biological interpretations.

We introduced anvi’o (an analysis and visualisation platform for ‘omics data) as an

alternative solution for microbiologists who wanted more freedom in research questions they

could ask of their data [Murat Eren et al., 2015]. We started with what we regarded as the

most pressing need at the time: a platform that enabled the reconstruction and interactive

refinement of microbial genomes from environmental metagenomes. Fundamentals of this

strategy were already established by those who pioneered genome-resolved metagenomics

[Tyson et al., 2004], but interactive visualisation and editing software that would enable

microbiologists to intimately work with metagenome-assembled genomes was lacking. During

the past five years anvi’o has become a community-driven software platform that currently
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stands upon more than 90,000 lines of open-source code and supports interactive and fully

integrated access to state-of-the-art ‘omics strategies including genomics, genome-resolved

metagenomics and metatranscriptomics, pangenomics, metapangenomics, phylogenomics,

and microbial population genetics (Figure 2.1).

Anvi’o differs from existing bioinformatics software due to its modular architecture, which

enables flexibility, interactivity, reproducibility, and extensibility. To achieve this, the plat-

form contains more than 100 interoperable programs, each of which performs individual tasks

that can be combined to build new and unique analytical workflows. Anvi’o programs gener-

ate, modify, query, split, and merge anvi’o projects, which are really a set of extensible, self-

contained SQLite databases. The interconnected nature of anvi’o programs which are glued

together by these common data structures yields a network (http://merenlab.org/nt),

rather than predetermined, linear paths for analysis. Through this modularity, anvi’o em-

powers its users to navigate through ‘omics data without imposing rigid workflows.

Integrated interactive visualisation is at the center of anvi’o and helps researchers to

engage with their data in all stages of analysis. Within the same interface, an anvi’o user can

visualise amino acid sequence alignments between homologous genes across multiple genomes,

investigate nucleotide-level coverage patterns and variants on the same DNA segment across

metagenomes, interrogate associations between the genomic abundance and transcriptomic

activity of environmental microbes, display phylogenetic trees and clustering dendrograms,

and more. Furthermore, users can extend anvi’o displays with project-specific external data,

increasing the utility of interactive interfaces for holistic descriptions of complex systems.

The anvi’o interactive interface also provides its users with the artistic freedom to change

colours, sizes, and drawing styles of display objects, add annotations, or reorder data layers

for detailed communication of intricate observations. Because each anvi’o project is self-

contained, researchers can easily make their analyses available online as a whole or in part,

thereby enabling the integration, reusability, and reproducibility of their findings beyond
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static figures or tables. This strategy promotes transparency by permitting community

validation and scrutiny through full access to data that underlie final conclusions.

Several key studies that used anvi’o during the past few years have demonstrated the

integrative capabilities of the platform by implementing a combination of ‘omics strate-

gies to facilitate in-depth analysis of naturally occurring microbial habitats. For instance,

Reveillaud and Bordenstein et al. reconstructed new genomes of Wolbachia, a fastidious

endosymbiont [Werren et al., 2008], from individual insect ovary metagenomes, and com-

puted a pangenome to compare these novel genomes to an existing reference [Reveillaud

et al., 2019]. They were then able to characterise the ecology of gene clusters in the environ-

ment by effectively combining metagenomics and pangenomics, discovering new members of

the Wolbachia mobilome [Reveillaud et al., 2019]. Yeoman et al. combined phylogenomics

and pangenomics to infer ancestral relationships between a set of cultivar and metagenome-

assembled genomes through a de novo identified set of single-copy core genes [Yeoman et al.,

2019]. They demonstrated the correspondence among these genomes based on gene cluster

membership patterns, phylogenomic inference, and average nucleotide identity in a single

display [Yeoman et al., 2019]. Delmont and Kiefl et al. characterised the population struc-

ture of a subclade of SAR11, one of the most abundant microbial populations on Earth, by

describing the environmental core genes of a single genome across surface ocean metagenomes

[Delmont et al., 2019]. By linking single-amino acid variants in the environment to the pre-

dicted tertiary structures of these genes, they combined microbial population genetics with

protein biochemistry to shed light on distinct evolutionary processes shaping the population

structures of these bacteria [Delmont et al., 2019]. Each of these studies employs unique ap-

proaches beyond well-established ‘omics workflows to create rich, reproducible, and shareable

data products (see http://merenlab.org/data).

Anvi’o does not implement strategies that take in raw data and produce summary tables

or figures via a single command. As a result, anvi’o has a relatively steep learning curve.
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To address this, we have written extensive online tutorials that currently exceed 120,000

words, organised free workshops for hands-on anvi’o training, and created open educational

resources to learn microbial ‘omics. To interact with anvi’o users we set up an online fo-

rum and messaging service. During the past two years, more than 750 registered members

of these services have engaged in technical and scientific discussions via more than 9,000

messages. But even when resources for learning are available, the journey from raw ‘omics

data to biological insights often takes a significant number of atomic steps of computation.

To ameliorate the burden of scale and reproducibility in big data analyses we have also in-

troduced anvi’o workflows, which automate routine computational steps of commonly used

analytical strategies in microbial ‘omics (http://merenlab.org/anvio-workflows). The

anvi’o workflows are powered by Snakemake [Köster and Rahmann, 2012], which ensures

relatively easy deployment to any computer system and automatic parallelisation of inde-

pendent analysis steps. By turning raw input into data products to be analysed in the anvi’o

software ecosystem, anvi’o workflows reduce the barriers for advanced use of computational

resources and processing of large data streams for microbial ‘omics.

As the developers of anvi’o who strive to create an open community resource, our next

big challenge is to attract bioinformaticians to consider anvi’o as a software development

ecosystem they can use for their own science. Any program that reads from or writes to

anvi’o projects either directly (in any modern programming language) or through anvi’o

application programmer interfaces (in Python) will immediately become accessible to anvi’o

users, and such applications will benefit from the data integration, interactive data visualisa-

tion, and error checking assurances anvi’o offers. As an open-source platform that empowers

microbiologists by offering them integrated yet uncharted means to steer through complex

‘omics data, anvi’o welcomes its new users and contributors.
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Figure 2.1: A glimpse of the interconnected nature of ’omics analysis strategies anvi’o makes
accessible, and their potential applications.
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CHAPTER 3

SINGLE-AMINO ACID VARIANTS REVEAL

EVOLUTIONARY PROCESSES THAT SHAPE THE

BIOGEOGRAPHY OF A GLOBAL SAR11 SUBCLADE

This chapter is derived from the following publication:

Delmont, Tom O.*, Evan Kiefl*, Ozsel Kilinc, Ozcan C. Esen, Ismail Uysal, Michael S.

Rappé, Steven Giovannoni, and A. Murat Eren. 2019. “Single-Amino Acid Variants

Reveal Evolutionary Processes That Shape the Biogeography of a Global SAR11

Subclade.” eLife 8 (September). https://doi.org/10.7554/eLife.46497.

* I share co-first authorship with Tom O. Delmont.

3.1 Author contributions

TOD, EK, and AME conceived and designed the study. EK, OCE, and AME developed

analysis tools to compute single-amino acid variants from metagenomes and visualize them in

the context of protein structures. OK and IU developed analysis tools for machine learning.

EK, TOD, and AME analyzed data, wrote the paper, prepared figures and tables, and

developed the reproducible analysis workflow. MSR and SG contributed to all stages of the

data analysis and interpretation. All authors reviewed and revised the drafts of the paper.

3.2 Abstract

Members of the SAR11 order Pelagibacterales dominate the surface oceans. Their exten-

sive diversity challenges emerging operational boundaries defined for microbial ’species’ and

complicates efforts of population genetics to study their evolution. Here we employed single-
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amino acid variants (SAAVs) to investigate ecological and evolutionary forces that main-

tain the genomic heterogeneity within ubiquitous SAR11 populations we accessed through

metagenomic read recruitment using a single isolate genome. Integrating amino acid and

protein biochemistry with metagenomics revealed that systematic purifying selection against

deleterious variants governs non-synonymous variation among very closely related popula-

tions of SAR11. SAAVs partitioned metagenomes into two main groups matching large-scale

oceanic current temperatures, and six finer proteotypes that connect distant oceanic regions.

These findings suggest that environmentally-mediated selection plays a critical role in the

journey of cosmopolitan surface ocean microbial populations, and the idea “everything is

everywhere but the environment selects” has credence even at the finest resolutions.

3.3 Introduction

The SAR11 order Pelagibacterales [Thrash et al., 2011, Ferla et al., 2013] is one of the most

ubiquitous free-living lineages of heterotrophic bacteria in the world’s oceans [Giovannoni

et al., 1990, Morris et al., 2002, Carlson et al., 2009, Eiler et al., 2009, Treusch et al., 2009].

Successful cultivation efforts and single amplified genomes from the environment have led to

studies revealing their critical role in marine carbon cycling [Rappé et al., 2002, Giovannoni

et al., 2005, Stingl et al., 2007, Oh et al., 2011a, Tsementzi et al., 2016, White et al., 2019],

and environmental sequencing surveys have offered detailed insights into the ecology of this

ancient branch of life in aquatic environments across the globe [Zinger et al., 2011, Brown

et al., 2012].

The evolution of SAR11 is an active area of research [Giovannoni, 2017] that is critically

important to understanding the determinants of its remarkable ability to maintain abundant

populations in the global ocean. The evolutionary origins of SAR11 and thus its precise

placement in the Tree of Life is debated [Thrash et al., 2011, Rodŕıguez-Ezpeleta and Embley,

2012, Ferla et al., 2013, Viklund et al., 2013]. Our understanding of the evolutionary processes
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that define the biogeography of SAR11 cells is not complete: at the level of major SAR11

clades, previous studies have attributed markedly distinct patterns of distribution in the

global ocean to both niche-based [Brown et al., 2012, Eren et al., 2013] and neutral processes

[Manrique and Jones, 2017]. At the level of individual populations, a key simulation by

Hellweger et al. (2014) showed that the intra-population sequence divergence that reflects

the geographic patterns of distribution for SAR11 cells could emerge solely as a function of

ocean currents, without selection [Hellweger et al., 2014]. Between the extremes of inter-clade

and intra-population diversity lies a wealth of variation that potentially can yield insights

into the ecological and genetic forces that determine genomic diversity and fitness between

closely-related, naturally occurring SAR11 populations.

High-throughput sequencing of metagenomes provides access to genome-wide hetero-

geneity within environmental populations [Simmons et al., 2008], and current computational

strategies can reveal associations between ecological parameters and microdiversity patterns

at various levels of resolution [Murat Eren et al., 2015, Scholz et al., 2016, Nayfach et al.,

2016, Costea et al., 2017, Truong et al., 2017]. However, SAR11 poses multiple challenges

for such investigations, including their remarkable intra-population genomic diversity and

the limited success of reconstructing SAR11 genomes from metagenomic data. Compre-

hensive investigations of the genetic contents of naturally occurring microbial populations

(see [Denef, 2019] for a review) often rely on population genomes directly reconstructed from

metagenomes [Simmons et al., 2008, Bendall et al., 2016, Anderson et al., 2017, Garcia et al.,

2018]. While advances in genome-resolved metagenomics have made microbial clades more

accessible without cultivation [Spang et al., 2015, Brown et al., 2015, Anantharaman et al.,

2016], reconstructing SAR11 genomes from the surface ocean remains a difficult endeavor, as

evident in recent comprehensive surveys of metagenome-assembled genomes (MAGs) from

seawater samples from around the globe [Tully et al., 2018, Delmont et al., 2018]. In the

absence of population genomes recovered directly from the environment, genomes from iso-
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lates can also offer insights into environmental populations through genome-wide recruitment

analyses in which short metagenomic reads are aligned to a reference [Denef, 2019].

Using metagenomic read recruitment to investigate the structure of environmental pop-

ulations is confounded by the challenge of defining the boundaries of microbial populations.

Without an established species concept in microbiology, defining units of microbial diversity

and their boundaries is a significant challenge (see [Jesse Shapiro, 2018] and [Cohan, 2019]

for discussions). Nevertheless, from analyses of isolated microbial strains with formal taxo-

nomic descriptions, a genome-wide average nucleotide identity (gANI) cutoff of 95% emerged

as an operational delineation of species [Konstantinidis and Tiedje, 2005, Varghese et al.,

2015] and was confirmed in a recent analysis of eight billion pairwise comparisons of whole

genomes [Jain et al., 2018]. Both gANI calculations using complete genomes, as well as the

average nucleotide identity of metagenomic short reads (ANIr) recruited from environmental

metagenomes using reference genomes, show an interesting discontinuity among sequence-

discrete populations at sequence identity levels between 80% and 90-95% [Konstantinidis

and DeLong, 2008, Caro-Quintero and Konstantinidis, 2012, Jain et al., 2018]. Regardless

of their theoretical significance, these cutoffs are essential for multiple practical purposes,

such as the identification and subsequent exclusion of metagenomic reads that originate from

non-target environmental populations, to avoid inflating variants arising from contaminating

non-specific reads in microbial population genetics studies.

Interestingly, the boundaries of environmental SAR11 populations appear to not comply

with the 95% ANIr cutoff. For instance, Tsementzi et al (2016) observed substantial sequence

diversity within sequence-discrete SAR11 subclades in the environment, and suggested that

an ANIr as low as 92% would be required to adequately define the boundaries of the SAR11

populations recovered in their study [Tsementzi et al., 2016]. These findings are consistent

with a comprehensive study of isolate genomes and marine metagenomes by Nayfach et al

(2016), which suggested that SAR11 is one of the most genetically heterogeneous marine mi-
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crobial clades [Nayfach et al., 2016]. The substantial sequence diversity within environmental

SAR11 populations not only explains the absence of SAR11 population genomes in genome-

resolved metagenomics studies, but also challenges conventional approaches to the study

of population genetics in microorganisms. For instance, the multiple occurrence of single-

nucleotide variants in individual codon positions would render commonly used computational

strategies that classify synonymous and non-synonymous variations based on independent

nucleotide sites (such as in [Schloissnig et al., 2013, Bendall et al., 2016]) unfeasible. Despite

these challenges, SAR11, with its ubiquity in surface seawater samples, extensive diversity

in sequence space, and unique evolutionary history, remains one of the exciting puzzles of

contemporary microbiology. Here we investigated the evolutionary processes that maintain

genetic diversity within a natural SAR11 lineage accessible through a single isolate genome

that recruited more than 1% of surface ocean metagenomic reads from a global dataset.

Using single-amino acid variants, we were able to (1) delineate multiple proteotypes whose

distributions were more closely linked to large-scale oceanic current temperatures than they

were to geographic proximity, and (2) resolve positive and negative selection mediated by

temperature and its co-variables. Our findings suggest that environmentally mediated se-

lection, rather than neutral processes, dominate the biogeographic partitioning of SAR11 at

fine scales of taxonomic resolution. Our study also offers new computational approaches to

characterize variation within complex microbial populations, including additional means to

integrate amino acid and protein biochemistry into microbial population genetics.

3.4 Results and Discussion

To find the most appropriate SAR11 isolate genome to study the population genetics of nat-

urally occurring SAR11, we used the complete genomes of 21 SAR11 isolates in a competitive

recruitment of short reads from 103 metagenomes. Most of these metagenomes were from

the TARA Oceans Project [Sunagawa et al., 2015], and correspond to 93 stations across four
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oceans and two seas. We also included an additional 10 metagenomes from the Ocean Sam-

pling Day Project [Kopf et al., 2015] to cover high-latitude areas of the Northern hemisphere.

All metagenomes correspond to small planktonic cells (0.2-3m in size) from the surface (0-15

meters depth; n=71) and deep chlorophyll maximum (17-95 meters depth; n=32) layers of

the water column (Table 3.1). The isolates we used belonged to SAR11 subclades Ia.1 (n=6),

Ia.3 (n=11), II (n=1), IIIa (n=2) and the related alphaproteobacterium Va (n=1) (Table

3.1), which collectively recruited 1,029,716,339 reads from all metagenomes, or 3.3% of the

dataset (Table 3.2).

3.4.1 The metapangenome of SAR11

To investigate associations between ecology and gene content of SAR11 lineages, we first

performed a pangenomic analysis in conjunction with read recruitment from the metage-

nomic data. The pangenome of SAR11 genomes consisted of all 29,719 genes grouped into

6,175 gene clusters (Table 3.3). The clustering of genomes based on shared gene clusters

matched that of the previously described phylogenetic clades [Grote et al., 2012] (Figure

3.1A; an interactive version of which is available at http://anvi-server.org/p/4Q2TNo).

The SAR11 pangenome across metagenomes (i.e. the SAR11 metapangenome) revealed

distinct distribution patterns for each clade within SAR11 (Figure 3.1A). Clade Ia recruited

the most reads compared to other clades (Table 3.2), consistent with previous studies that

found this clade to be highly abundant in surface seawater [Field et al., 1997, Brown et al.,

2012, Eren et al., 2013, Manrique and Jones, 2017]. Gene clusters divided clade Ia into two

main clusters corresponding to the high-latitude subclade Ia.1 and the low-latitude subclade

Ia.3 (Figure 3.1A). While all high-latitude genomes displayed a bi-polar geographic distri-

bution in the metagenomic dataset, gene clusters in low-latitude genomes revealed multiple

sub-groups that also showed different patterns of geographic distribution (Figure 3.1A).

This emphasized the need to further refine subclade 1a.3, in which each genome pair had
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over 98.6% sequence identity at the 16S rRNA gene level (Table 3.4). Our consideration of

geographical co-occurrence patterns, phylogenomic characteristics, and pangenomic proper-

ties in this metapangenome revealed six subclades within 1a.3 with cultured representatives

(Figure 3.1A). We tentatively name them SAR11 subclade 1a.3.I (HTCC7211, HTCC7214

and HTCC7217; gANI of >93% and 16S rRNA gene identity of >99.4%), 1a.3.II (HIMB5),

1a.3.III (HIMB4 and HIMB1321; gANI of 94.8% and 16S rRNA gene identity of 100%),

1a.3.IV (HTCC8051 and HTCC9022; gANI of 86.9% and 16S rRNA gene identity of 100%),

1a.3.V (HIMB83) and 1a.3.VI (HIMB122 and HIMB140; gANI of 94.6% and 16S rRNA gene

identity of 99.7%). Overall, the refinement of SAR11 subclades reveals a striking agreement

between phylogeny, pangenome, and the ecology of the members of the SAR11 clade Ia.
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Figure 3.1: The SAR11 metapangenome. Panel A describes the pangenome of 21 SAR11
isolate genomes based on the occurrence of 6,175 gene clusters, in conjunction with their
phylogeny (clade level) and relative distribution of recruited reads in 103 metagenomes or-
dered by latitude from the North Pole to the South Pole (top right heat map). The relative
distributions were displayed for a minimum value of 0.1% and a maximum value of 1%.
The layer named “Core 1a.3.V genes” displays the occurrence of the 799 core 1a.3.V genes
(in green) and those found in HIMB83 but not in the 1a.3.V lineage (in purple). Panel B
describes the relative distribution of reads the 799 core 1a.3.V genes recruited across surface
metagenomes from TARA Oceans.
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3.4.2 A remarkably abundant and widespread SAR11 lineage at low

latitudes

While Ia.3 was the most abundant SAR11 subclade in our dataset, the new subclades we

defined in this group differed remarkably in their competitive recruitment of short reads

from metagenomes (Figure 3.1A, Table 3.2). For example, while the least abundant subclade

(1a.3.II; represented by HIMB5) recruited 22.6 million reads, the most abundant one (1a.3.V;

represented by HIMB83), recruited 390.9 million reads, or 1.18% of the entire metagenomic

dataset (Table 3.2). For perspective, this is roughly two times more reads than the most

abundant Prochlorococcus isolate genome recruited from the same dataset [Delmont and

Eren, 2018]. Strain HIMB83 contains a 1.4 Mbp genome with 1,470 genes, and was isolated

from coastal seawaters off Hawai’i, USA. But it also recruited large numbers of reads from

locations that were distant to the source of isolation (Table 3.2). The gANI between HIMB83

and the most similar genome in our dataset, HIMB122 (1a.3.VI) was 82.6%, and the remark-

able abundance of HIMB83 has also been recognized by others [Brucks, 2014, Nayfach et al.,

2016]. To the best of our knowledge, 1a.3.V is the most abundant and widespread SAR11

subclade in the euphotic zone of low-latitude oceans and seas.

Although it is a member of the subclade 1a.3.V, the genomic context HIMB83 provides

does not exhaustively describe the gene content of all members of 1a.3.V. Nevertheless, it

gives access to the core 1a.3.V genes through read recruitment. To identify core 1a.3.V

genes, we used a conservative two-step filtering approach. First, we defined a subset of the

103 metagenomes within the main ecological niche of 1a.3.V using genomic mean coverage

values (Table 3.2). Our selection of 74 metagenomes in which the mean coverage of HIMB83

was >50X encompassed three oceans and two seas between -35.2° and +43.7° latitude, and

water temperatures at the time of sampling between 14.1°C and 30.5°C (Figure 3.5, Table

3.1). We then defined a subset of HIMB83 genes as the core 1a.3.V genes if they occurred in

all 74 metagenomes and their mean coverage in each metagenome remained within a factor
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of 5 of the mean coverage of all HIMB83 genes in the same metagenome. This criterion

accounted for biological characteristics influencing coverage values in metagenomic surveys of

the surface ocean such as cell division rates and variations in coverage as a function of changes

in GC-content throughout the genomic context. Figure 3.5 displays the coverage of all

HIMB83 genes across all metagenomes, and Table 3.5 reports the coverage statistics. While

the 799 genes that met these criteria systematically occurred within the niche boundaries

of 1a.3.V, 40% of the remaining 671 HIMB83 genes that were filtered out were present

in five or fewer metagenomes and coincided with hypervariable genomic loci (Figure 3.5).

Hypervariable genome regions are common features of surface ocean microbes [Coleman

et al., 2006, Zaremba-Niedzwiedzka et al., 2013, Kashtan et al., 2014, Delmont and Eren,

2018] that are not readily addressed through metagenomic read recruitment but do influence

pangenomic trends. Here, less than 10% of gene clusters unique to HIMB83 were among

core 1a.3.V genes (Figure 3.1A), indicating HIMB83’s unique genes are mostly accessory to

the members of 1a.3.V. In contrast, more than 80% of gene clusters that were core to the

21 SAR11 genomes matched to the core 1a.3.V genes. The overlap between environmental

core genes of 1a.3.V revealed by the metagenomic read recruitment and the genomic core

of SAR11 revealed by the pangenomic analysis of isolate genomes suggests that these genes

represent a large fraction of the 1a.3.V genomic backbone (Figure 3.1A). Core 1a.3.V genes

recruited on average 1.25% of reads in the 74 metagenomes (Figure 3.1B, Table 3.5). The

broad geographic prevalence of core 1a.3.V genes represents a unique opportunity to study

the population genetics of an abundant marine microbial subclade across distant geographies.

3.4.3 SAR11 subclade 1a.3.V maintains a substantial amount of genomic

heterogeneity

To investigate the amount of genomic heterogeneity within 1a.3.V, we first studied individual

short reads that the HIMB83 genome recruited from metagenomes. The percent identity of
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reads that matched to the 799 core 1a.3.V genes ranged from 88% to 100% (Figure 3.2),

which is considerably more diverse than those observed in similar reference-based metage-

nomic studies [Konstantinidis and DeLong, 2008, Tsementzi et al., 2016, Meziti et al., 2019].

Notably, we also observed similar trends for the other SAR11 genomes included in this study

(Figure 3.6), suggesting that the relatively high sequence diversity observed among core

1a.3.V genes may be a characteristic shared with other SAR11 lineages in the surface ocean.

Overall, our data confirm that ANIr values of >95% used previously to delineate

sequence-discrete populations does not apply to SAR11. One immediate implication of this

substantial amount of sequence diversity that defies previous empirical observations is our

inability to explicitly define what we are accessing in the environment. This challenge is

partially because a precise and exhaustive description of what constitutes a ‘population’

remains elusive [Cohan and Perry, 2007, Shapiro and Polz, 2015, Cohan, 2019], which

creates significant practical challenges [Rocha, 2018], such as the accurate determination

of the boundaries of naturally occurring microbial populations especially in metagenomic

read recruitment results. Nevertheless, the term ‘population’ is frequently used in literature

[Simmons et al., 2008, Kashtan et al., 2014, Bendall et al., 2016], which implies that

Charles Darwin’s observation in his historical work “On the Origin of Species” continues

to summarize our struggle in life sciences to describe fundamental units of life even though

microbiology has gone beyond species in this pursuit: “no one definition of species has yet

satisfied all naturalists; yet every naturalist knows vaguely what [they mean] when [they

speak] of a species” [Darwin, 1859]. Our study is not well-positioned to offer a precise

theoretical definition, either. Instead, similar to previous studies, we resort to an operational

definition that suggests a population is “an agglomerate of naturally occurring microbial

cells, genomes of which are similar enough to align to the same genomic reference with high

sequence identity” [Delmont and Eren, 2018] (see also [Denef, 2019] and references therein

for a comprehensive discussion of what constitutes a population from a metagenomic per-

28



spective). By outsourcing the hypothetical radius of a population in sequence space to the

minimum sequence identity of short reads recruited from metagenomes, this approach offers

a practical means to study very closely related environmental sequences without invoking

theoretical considerations. The broad heterogeneity continuum that possesses no discernible

sequence-discrete components we observed within the narrow sequence set defined this way,

i.e. metagenomic reads that match competitively to conserved HIMB83 genes (Figure 3.2),

supports the assumption that this set originates within a population boundary (Figure 3.5).

However, due to the incomplete theoretical foundation and limitations associated with the

use of short metagenomic reads, in discussions here we more conservatively assume that

our reads originate from multiple closely related yet intertwined SAR11 populations within

subclade 1a.3.V.

Both high recombination rates between cells displaying low gANI values and frequent

transfer of adaptive genes between ecologically distinct clades could explain the high-level

of cohesion between SAR11 populations in the surface ocean [Vergin et al., 2007, Cohan,

2019]. The high density of closely related 1a.3.V cells in the surface ocean suggests the

strength of these two forces could be high within populations as well. At least two hypotheses

reconcile extensive SAR11 sequence diversity and aide in understanding its implications.

One hypothesis is that the members of 1a.3.V we access are in the process of evolving into

multiple sequence-discrete populations and we are simply observing an emerging fork in the

evolutionary journey of SAR11. Alternatively, the observed diversity may represent a cloud

of random sequence variants akin to a quasispecies [Domingo Esteban et al., 2012]. To

examine these hypotheses, we tested the correlation between basic statistical properties of

these curves (i.e., mean, standard deviation, and skewness) and environmental parameters

via linear regression (Figure 3.7, Table 3.6). This analysis revealed a significant correlation

between in situ temperature and distribution shape (mean p-value: 2.0 × 10−3; standard

deviation p-value: 3.4×10−8; skewness p-value: 1.0×10−8), which suggests a strong influence
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of temperature and its co-variables on the sequence heterogeneity within 1a.3.V (Figure 3.2)

and is incompatible with the hypothesis of random sequence variants.

Figure 3.2: Statistics of recruited reads. Left panel shows percent identity distributions in
each of the 74 metagenomes. Curves are colored based on height. Metagenomes are ordered
according to how the percent identity distributions hierarchically cluster based on Euclidean
distance (dendrogram). Right panels display a summary of distribution statistics for each
percent identity distribution compared against in situ temperature in a linear regression
(correlations to all other available parameters are summarized in Figure 3.7). Each point is
a metagenome and black lines are lines of best fit. For visual clarity, the data in left panel
considers only the median read length and interpolates between data points, whereas the
data in right panels considers all read lengths with no interpolation.

3.4.4 SAAVs: Accurate characterization of non-synonymous variation

Percent identity distributions are useful to assess overall alignment statistics of short reads

to a reference; however, they do not convey information regarding allele frequencies, their

functional significance, or association with biogeography. To bridge this gap, we implemented
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a framework to characterize amino acid substitutions in metagenomic data and to study

genomic variation that impacts amino acid sequences (see Material and Methods). Briefly,

our approach employs only metagenomic short reads that cover all three nucleotides in a given

codon to determine the frequency of single-amino acid variants (SAAVs) in translated protein

sequences. While synonymity is a codon characteristic, in practice it is often determined from

a single-nucleotide variant (SNV) with the assumption that the two remaining nucleotides

are invariant. However, populations with extensive nucleotide variation can violate this

assumption. Indeed, in the case of the core 1a.3.V genes, on average 22.5% of SNVs per

metagenome co-occurred with other SNVs in the same codon. Thus, quantifying frequencies

of full codon sequences as implemented in the SAAV workflow is a requirement to correctly

assess synonymity.

Among the 799 core 1a.3.V genes and 74 metagenomes, we identified 1,074,096 SAAVs

in which >10% of amino acids diverged from the consensus (i.e., the most frequent amino

acid for a given codon position and metagenome) (Table 3.2). The SAAV density (the

percentage of codon positions that harbor a SAAV) of core 1a.3.V genes averaged 5.76%

and correlated with SNV density (19.3% on average) across the 74 metagenomes (linear

regression, p-value < 2.2×1016; R2: 0.90; Figure 3.5 and Table S02). SNV and SAAV density

metrics did not decrease in metagenomes sampled closest to the source of isolation, suggesting

that the location of isolation for strain HIMB83 does not predict the biogeography and

population genetics of 1a.3.V. To improve downstream beta-diversity analyses, we discarded

codon positions if their coverage in any of the 74 metagenomes was <20X, which resulted

in a final collection of 738,324 SAAVs occurred in 37,416 codon positions that harbored a

SAAV in at least one metagenome among the total of 252,333 codon positions (14.8%) within

the core 1a.3.V genes (Tables 3.7 and 3.8). We considered a protein to be ‘invariant’ (i.e.,

absence of variation due to intensive purifying or positive selection) in a given metagenome

if it lacked SAAVs. They were rare in our data: in total, we detected 2,548 invariant
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proteins (only 4.3% of all possibilities across the 74 metagenomes) that encompassed only

113 genes. In addition, all genes, except one 679 nucleotide long ABC transporter (gene id

1469), contained at least one SAAV in at least one metagenome, revealing a wide range of

amino acid sequence diversification among core 1a.3.V proteins (Table 3.7).

3.4.5 Hydrophobicity influences the strength of purifying selection acting

on amino acids

To understand how commonly each amino acid was found in variant sites, we compared the

amino acid composition of SAAVs to the amino acid composition of the core 1a.3.V genes (see

Material and Methods). In a scenario in which amino acids are as common in SAAVs as they

are across all 799 core genes, the frequency that an amino acid occurred in SAAVs (variant

sites) would share one-to-one correspondence with its frequency within the core genes (all

sites). While these variables were correlated (linear regression, p-value: 9.8 × 10−6; R2:

0.65), we observed large deviations from this null expectation, implying strong differential

occurrence of amino acids in SAAVs relative to their occurrence in core genes (Figure 3.3A,

Figure 3.8, Table 3.9). All negatively charged (Asp, Glu) and uncharged polar (Thr, Asn,

Ser, Gln) amino acids were significantly enriched in SAAVs compared to the core 1a.3.V genes

(Figure 3.3A). For instance, while asparagine made up only 6.34% of all amino acids in the

core genes, on average 10.7% (±0.16%) of SAAVs involved asparagine substitutions across the

74 metagenomes (Table S9). Interestingly, unlike negatively charged amino acids, positively

charged amino acids did not exhibit substantial differences (<4% deviation between core

1a.3.V genes and SAAVs). Thus, hydrophilic amino acids were either overrepresented or

exhibited little change in SAAVs with respect to their frequency within core genes. In stark

contrast, all hydrophobic amino acids, with the very notable exceptions of isoleucine and

valine, were underrepresented in SAAVs (Figure 3.3A, Figure 3.8, Table S9).

Hydrophobic interactions within the solvent inaccessible core of proteins are known to be
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critical for maintaining the stability required for folding and activity, which enforces a strong

purifying selection placed on mutations occurring in buried (solvent inaccessible) positions

[Bustamante et al., 2000, Chen and Zhou, 2005, Worth et al., 2009]. Since hydrophobic amino

acids form the majority of buried positions, they are on average under stronger purifying

selection, which is the likely explanation for the underrepresentation of hydrophobic amino

acids within SAAVs. On the other hand, mutations in exposed (solvent accessible) positions

on the surface of proteins are tolerated more, as they are less likely to disrupt protein

architecture. Overall, our compositional analysis revealed that the occurrence of amino acids

in SAAVs is roughly correlated with the occurrence of amino acids within the core 1a.3.V

genes, and that deviations from this expectation are driven in part by levels of purifying

selection that depend upon the suitability of an amino acid’s hydrophobicity for a given

physicochemical environment (Figure 3.8).

3.4.6 Amino acid exchange rates reveal hallmarks of neutral, purifying,

and adaptive evolution

Next, we sought to investigate amino acids that co-occur in variable sites. SAAVs were often

dominated by a few amino acids; hence, the frequency vector for a given SAAV contained

many zero values. To reduce sparsity, we first simplified our data by associating each SAAV

with an amino acid substitution type (AAST), defined as the two most frequent amino acids

in a given SAAV. In 738,324 SAAVs, we observed 182 of 210 theoretically possible unique

AASTs and a highly skewed AAST frequency distribution (Table S9, Figure 3.3B boxplots).

For example, the two most frequent AASTs, ‘isoleucine/valine’ and ‘aspartic/glutamic acid’,

together comprised 20% of all SAAVs (Figure 3.3B). This is not surprising, since the amino

acids in both of these AASTs (1) are common in the genome, (2) share very similar chemical

structure (both differing by only a single methylene bridge), and (3) can be substituted

through a single nucleotide substitution. On the other hand, the ‘glycine/tryptophan’ pair
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Figure 3.3: Physico-chemical properties of amino acid variants. The top panel describes the
structure of 20 amino acids grouped by their main chemical properties. Panel A describes
the solvent accessibility of amino acids, their relative distribution in both the core 1a.3.V
genes and SAAVs, and their percentage increase in SAAVs as compared to the core 1a.3.V
genes. The solvent accessibility of amino acids derives from the analysis of 55 proteins
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Figure 3.3 continued: [Bordo and Argos, 1991]. Panel B describes the relative abundance of
the top 25 most prevalent amino acid substitution types (AASTs) across 74 metagenomes
(boxplots), along with the classes their amino acids belong to and the correlation coeffi-
cient between AAST prevalence and in situ temperature calculated via linear regression (see
Figure 3.9 for p-values). The area shaded in light gray shows bounds for the expected fre-
quency distribution given strictly neutral processes. The upper bound is Model 1 and the
lower bound is Model 2 (see Materials and Methods). The 4 insets example the relation-
ship between AAST prevalence and in situ temperature for the AASTs ’aspartic/glutamic
acid’, ’isoleucine/threonine’, ’alanine/serine’, and ’leucine/phenylalanine’ (Figure 3.9 illus-
trate similar plots for all 25 of the most prevalent AASTs). The 25 AASTs included in
the analysis cover 87.1% of all SAAVs. Panel C displays SAAVs on the predicted protein
structures of four core 1a.3.V genes across six metagenomes from distant locations.

represents an opposite example: these amino acids (1) are uncommon in the genome, (2)

share no chemical or structural similarity to one another, and (3) can only be substituted

through a triple nucleotide substitution. Expectedly, ‘glycine/tryptophan’ was exceedingly

rare in our data and occurred only once in 738,324 SAAVs (Table S9).

While such a skewed AAST frequency distribution cannot be explained by strictly ran-

dom mutational process (Figure 3.3B light-gray shaded area), it is compatible with standard

theories of neutral or nearly-neutral evolution, since such theories consider the role of puri-

fying selection [Ohta and Gillespie, 1996]. Within subclade 1a.3.V the distribution of AAST

frequencies was notably constrained across geographies (Figure 3.3B). For example, the rel-

ative standard deviation of ‘aspartic/glutamic acid’ frequencies across the 74 metagenomes

was just 3.0%, and the statistical spread of other AASTs was comparable (Figure 3.3B).

The overall consistency of AAST frequency distributions across geographies supports the

hypothesis that purifying selection controls the permissibility of amino acid exchangeability

within 1a.3.V and enables an interpretation of these data through a neutral model: SAAVs

composing the AAST frequency distribution represent primarily neutral mutations that have

drifted to measurable levels, and the lack of SAAVs in AASTs of dissimilar amino acids that

likely represent deleterious mutations reflect the influence of purifying selection. However, a

closer inspection reveals a subtle divergence of amino acid exchangeabilities that correlates
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with water temperature and/or its co-variables (Figure 3.3B insets, Figure 3.9). Note that

this divergence is AAST specific; for example, positions with mixed proportions of glutamic

and aspartic acid are less commonly found in warm waters (linear regression, uncorrected

p-value: 2.7 × 10−6), yet for isoleucine and valine such a correlation is nonexistent (linear

regression, uncorrected p-value: 0.418). These findings suggest that amidst a signal that is

predominantly indicative of purifying selection, there appears to be a fingerprint of adap-

tive/divergent processes caused by temperature and/or its co-variables that subtly shift the

mutational profile within 1a.3.V. We were unable to attribute the magnitude or direction of

these correlations to differences between amino acids (i.e., changes in hydrophobicity, size,

or charge). This was likely due to the insufficiency of characterizing SAAVs with only the

chemical properties of the involved amino acids, and disregarding position-specific informa-

tion, such as the surrounding physicochemical environment that can only be studied with

knowledge of the protein’s structure.

To address this shortcoming, we next sought to link SAAVs to predicted protein struc-

tures of the core 1a.3.V genes, 436 of which had significant matches in Protein Data Bank

for template-based structure modeling (see Materials and Methods). Placing SAAVs on pre-

dicted protein structures revealed that their occurrence was not randomly distributed but

was instead strongly dependent on the local physicochemical environment of the structure

(Figure 3.3C, Table 3.10 and http://data.merenlab.org/sar11-saavs). Within the

subset of the 1a.3.V proteome accessible to us, we found that buried amino acids (0-10% rel-

ative solvent accessibility) were approximately 4.4 times less likely to be variant than those

that were exposed (41-100% relative solvent accessibility) (ANOVA, p-value: < 2× 10−16).

This observation was strikingly apparent in TIM barrels, where SAAVs mostly occurred in

the outer alpha helix and loop regions (e.g., Figure 3.3C gene 2,128). This trend directly

confirmed our previous inference (based on the underrepresentation of hydrophobic amino

acids) that solvent inaccessible positions are subject to higher levels of purifying selection
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and thus contain fewer SAAVs. The local physicochemical environment therefore shapes

variation, and visual inspection of Figure 3.3C indicates that this is conserved across dis-

tant geographies; i.e. positions that vary in one metagenome are likely to vary in others,

as well. Overall, 91.7% of variant positions in the core 1a.3.V genes varied in 10 or more

metagenomes, and 21.7% varied in all 74 metagenomes (Table 3.8).

3.4.7 Temperature correlates with amino acid allele frequency trajectories

In addition to considering patterns of variability that emerged when we pooled data across

37,416 codon positions exhibiting variation within the core 1a.3.V genes, we also investigated

the allele frequency trajectories of individual positions (i.e., the relative frequency between

the two most prevalent amino acids across the 74 metagenomes) and sought to identify

those that correlate with in situ temperature and/or its co-variables. Amino acid allele

frequencies in 4,592 of the 37,416 positions were correlated with temperature (Table 3.11;

Benjamini–Hochberg multiple testing correction on linear regression p-values, false discovery

rate 5%). Figure 3.10 illustrates example cases and correlation statistics per AAST. It is

statistically implausible that such correlations with temperature could have arisen from

neutral evolution, given that distant oceans share similar temperatures (Table 3.1). It is

therefore most plausible to conclude that these allele frequency trajectories are the result of

environmentally mediated selection. Although we note that, considering the pervasive effect

of genetic hitchhiking in microbial evolution [Good et al., 2017], variation in a considerable

fraction of positions may be neutral despite their association with temperature.

We then sought to investigate which positions are under selection, and whether the

variation at these positions can be explained by differing levels of purifying selection, or

diversifying selection that could be evidence of adaptive evolution. Scrutinizing all 4,592 po-

sitions to address these critical questions is an intractable problem, so we narrowed our focus

to genes possessing disproportionately high ratios of temperature-correlated to temperature-
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uncorrelated SAAV positions, since we expected this to be a reasonable criterion for iden-

tifying likely candidates of adaptive evolution (Table 3.11). Of the 10 genes fitting this

criterion (see Materials and Methods), the permease subunit of a glycine betaine ATP-

binding cassette (ABC) transporter stood out due to its appreciated relevance to SAR11

biology: glycine betaine transporters of SAR11 are highly translated proteins in the en-

vironment and transport osmolyte compounds into cells for energy production [Noell and

Giovannoni, 2019]. To investigate the positioning of amino acids in the tertiary structure

of the permease relative to the cellular membrane, we first categorized the location of each

residue as transmembrane, cytosolic (inside the inner membrane), or periplasmic (outside

the inner membrane) (Figure 3.11). Positions that were not correlated with temperature

were commonly transmembrane, and infrequently periplasmic. In contrast, most positions

that correlated with temperature were periplasmic (Figure 3.11). The probability of ob-

serving a similar distribution between temperature-correlated and temperature-uncorrelated

positions across transmembrane, periplasmic, and cytosolic regions was only 0.034 (analytic

trinomial test, temperature-uncorrelated distribution as prior), which indicates temperature-

correlated positions are subjected to unique evolutionary forces. A previous study suggested

that periplasmic residues of transmembrane proteins undergo higher rates of adaptive evo-

lution due to their increased exposure to changing environmental conditions [Sojo et al.,

2016]. This observation lends additional support to the hypothesis that periplasmic SAAV

positions within this gene that correlate with temperature are more likely shaped by adaptive

processes.

Allele frequency trajectories also provide an opportunity to study the directionality of

exchange rates of AASTs. For example, of the 1,066 positions dominated by ’alanine/ser-

ine’ SAAVs, 158 positions correlated with temperature (Figure 3.10). If there was no

temperature-driven preference for either amino acid in this subset of positions, the frequency

of alanine should positively correlate with temperature as often as the frequency of serine
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does. Yet this expectation is grossly violated: in 103 of 158 positions alanine frequencies

positively correlated with temperature (binomial test, Bonferroni-corrected p-value: 0.004).

Overall, this result indicates temperature-dependent amino acid substitution preferences that

are independent of site (Figure 3.10B).

3.4.8 SAAV partitioning between warm and cold currents

We finally sought to extend the concept of allele frequency tracking at individual SAAV po-

sitions to investigate large-scale geographic partitioning of metagenomes. For this, we sim-

plified the 738,324 SAAVs into a presence-absence matrix for codon position-specific AASTs

across 74 metagenomes (Table 3.8, also see ‘Recovering codon position-specific AASTs from

SAAVs’ in Material and Methods). Of 57,277 codon position-specific AASTs affiliated with

37,415 unique codon positions, we detected 1.94% in all 74 metagenomes, while 33.3% were

found in single metagenomes (Table 3.8). To estimate distances between metagenomes based

on these data, we used a Deep Learning approach. Briefly, this approach relies on a graph-

based activity regularization technique for competitive learning from hyper-dimensional data,

modified to reveal latent groups of variants in a fully unsupervised manner through frequent

random sampling of variants [Kilinc and Uysal, 2017]. Hierarchical clustering of samples

based on Deep Learning-estimated distances (Table 3.12) resulted in two main groups: the

Western (warm) and Eastern (cold) boundary currents (Figure 3.4A). High latitude, rela-

tively cold, and relatively nutrient rich waters are the source of Eastern boundary currents,

which warm up and typically decline in nutrients as they transit in an equatorial direction.

The opposite is true of Western boundary currents, which move poleward. The first group

of 41 metagenomes, which matched cold currents (Benguela, Canary, California and Peru),

encompassed most metagenomes from the Eastern Pacific Ocean, as well as the East side of

the Atlantic Ocean (except near the southern tip of Africa) and the Mediterranean Sea (Fig-

ure 3.4B). The second group of 33 metagenomes, which matched warm currents (Agulhas,
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Somali, Mozambique, Brazil and Gulf stream), encompassed all metagenomes from the Red

Sea and Indian Ocean, as well as metagenomes from the West side of the Atlantic Ocean

(Figure 3.4B). Samples collected from the deep chlorophyll maximum layer of the water col-

umn mirrored trends observed in the surface samples (Figure 3.12). The association between

SAAVs and ocean current type revealed a strong, global signal at the amino acid-level for

1a.3.V and suggested the presence of two main ecological niches for this lineage. Warm and

cold currents are dynamic environments that differ in a host of factors in addition to the

latitude and temperature of source waters. Factors that could drive adaptive changes in

amino acid sequences between warm and cold currents include major differences in phyto-

plankton communities, altered composition of dissolved organic carbon pools, and the water

temperature itself. Interestingly, the niche defined by cold currents exhibited significantly

more SAAVs (ANOVA, p-value: 1.66 × 10−12). This observation could be explained either

by (1) extinction/re-emergence events that operate continually on specific codon positions

(adaptive evolution), or (2) changes in abundances within a large seed bank of variants due

to positive and negative selection as the lineage transits. A recent study using Lagrangian

particle tracking and network theory suggested that all regions of the surface ocean are con-

nected to each other with less than a decade of transit [Jönsson and Watson, 2016], which

might favor the latter scenario due to lack of time for the extinction and reemergence of

variants in abundant marine microbial lineages.

To explore more detailed trends of the relationships between metagenomes, we further

divided our dendrogram into six sub-clusters based on the elbow of the intra-cluster sum-

of-squares curve of k-means clusters (Figure 3.13). These 1a.3.V ‘proteotypes’ grouped

samples with similar amino acid variations (Figure 3.4A) and could not have been predicted

from the clustering of samples based on percent identity distributions of short reads alone

(Figure 3.14). Among the environmental measurements for each metagenome latitude and

temperature at the time of sampling were the most significant predictors of the proteotypes
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(ANOVA, p-values: 8.56 × 10−13 and 3.57 × 10−7, respectively). These two variables were

followed by the concentrations of nitrate, phosphate, oxygen, and to a lesser extent, silicate

and latitude (Table 3.13). The number of SAAVs and the number of invariant proteins,

however, were more significant predictors of these groups compared to all environmental

parameters (ANOVA, p-value: < 2×10−16, Table 3.13). Strikingly, most 1a.3.V proteotypes

linked samples from distant geographical regions (Figure 3.4B). An exception to this was the

proteotype A, which only contained Pacific Ocean metagenomes (Figure 3.4B). For instance,

proteotypes E and F occurred both in the Indian Ocean and the West side of the Atlantic

Ocean and associated with distinct warm currents: E was characteristic of the Mozambique

and Brazil currents while F dominated the Agulhas current (Figure 3.4B). One of the most

interesting proteotypes, D, whose reads most closely resembled the HIMB83 genome itself

(Figure 3.4A), contained a distinctively low number of SAAVs, and grouped metagenomes

sampled from both sides of the Panama Canal with metagenomes from the Red Sea and

North of the Indian Ocean (Figure 3.4B). We also clustered the same data set using fixation

index, a widely-used metric to measure population structure [Weir, 2012], which we modified

in accordance with [Schloissnig et al., 2013] to permit multi-allelic variant positions. Both

approaches preserved associations between distant geographies (i.e., Proteotype D, Figure

3.4, Figure 3.15). , however, they were not identical in their organization of metagenomes

(i.e., Proteotype E was associated with colder currents according to fixation index rather

than warmer ones; Figure 3.4, Figure 3.15), highlighting the non-trivial nature of establishing

individual proteotypes from SAAVs.That said, the significance of in situ temperature to

explain clustering of metagenomes into two main groups and six proteotypes was higher

with Deep Learning (Figure 3.4, Figure 3.15), suggesting that Deep Learning was able to

better capture the strong association between temperature and the genomic heterogeneity

within 1a.3.V through SAAVs.
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Figure 3.4: Biogeography of SAR11 subclade 1a.3.V based on single amino acid variants.
Panel A describes the organization of 74 metagenomes based on 57,277 codon position-
specific AASTs affiliated with 37,415 unique codon positions and summarizes the number of
detected SAAVs and percent identity of reads HIMB83 recruited for each metagenome. The
world map in panel B displays the geographic partitioning of the two main metagenomic
groups and six proteotypes. Panel B also describes the relative abundance of 1a.3.V and the
number of invariant proteins across the six proteotypes.

The striking connection between geographically distant regions of the oceans through

SAAVs suggests a likely role for adaptive processes to maintain the genomic heterogeneity

of closely related SAR11 populations within 1a.3.V (Figure 3.16). In fact, both the main

ecological niches and more refined proteotypes indicate that SAAVs are not primarily struc-

tured by the global dispersal of water masses but instead tend to link distant geographic

regions with similar environmental conditions (Figure 3.4B). Overall, these results indicate

that environmentally-mediated selection is a strong determinant of SAR11 evolution and

biogeography.

One question remains: what is the proportion of distinct evolutionary processes acting
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upon closely related SAR11 populations within 1a.3.V? Offering a precise answer to this

critical question is compounded by multiple theoretical and technical factors. These factors

include, but are not limited to, (1) the phenomenon of genetic hitchhiking that prevents

accurate determination of amino acid positions that likely confer fitness, (2) the metagenomic

short-read recruitment strategy that prevents absolute confidence regarding the origin of each

fragment, (3) heavy reliance on temperature as the sole environmental stressor to predict

associations between environmental parameters and variation due to limited insights into in

situ physicochemistry, (4) the lack of a complete understanding of syntrophic relationships

between taxa in the environment, and (5) computational bottlenecks to gain rapid and

accurate insights into the role of variable amino acid residues even when protein structures

are available. With these significant limitations in mind, we could nevertheless speculate

that among the 252,333 total codon positions, 37,416 were variable, suggesting purifying

selection maintains the conservancy of 85% of the positions within 799 core 1a.3.V genes.

Of those 37,416 positions that were within the scope of permissible mutations, 4592 had

amino acid frequency trajectories that significantly correlated with temperature, suggesting

an upper-bound of 12% for the variable positions that are likely under the influence of

temperature-driven adaptive processes, while neutral processes explain at least 88% of the

variation. In summary, this global view of the data suggests that among the remarkable

amount of variation within some of the most abundant and prevalent microbial populations

in the ocean, adaptive evolutionary processes operating on core genes are responsible for

variation in about 2% of all codon positions.

3.5 Conclusion

We took advantage of billions of metagenomic reads to investigate single-amino acid vari-

ants (SAAVs) within the environmental core genes of the remarkably abundant and closely

related SAR11 populations within subclade Ia.3.V, which we defined from a SAR11 meta-
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pangenome. The results elicit a highly-resolved quantitative description of purifying selection

constraining the scope of permissible mutations to those non-detrimental to protein stability

requirements. Of permissible variation, thousands of codon positions harbored allele fre-

quencies that systematically correlated with in situ temperatures and, overall, patterns of

amino acid diversity reflected the temperature trends of large-scale ocean currents. This

was especially apparent regarding the clear SAAV partitioning between Western and East-

ern boundary currents. Previous studies have subdivided SAR11 clade Ia into cold-water

(Ia.1) and warm-water (Ia.3) subclades with distinct latitudinal distributions [Brown et al.,

2012], and reported sinusoidal oscillations between their abundances as a function of sea-

water temperature at a single temperate ocean site [Murat Eren et al., 2015]. At a much

finer evolutionary scale (i.e., closely related populations within Ia.3.V), we observed signifi-

cantly more protein variants in cold currents and more invariant proteins in warm currents,

revealing a global pattern of alternating diversity for SAR11 in surface ocean currents in

temperate and tropical latitudes. We were able to track this variation to changes in amino

acid sequence preserved by selection.

Trends that emerged from our culture-independent survey of SAR11 were consistent with

a recent study that also suggested an important role for environmental and ecological selec-

tive processes defining the spatial and temporal distribution of a widespread diatom species

[Whittaker and Rynearson, 2017]. Overall, these findings suggest that environmentally-

mediated selection plays a critical role in the journey of cosmopolitan microbial populations

in the surface ocean, lending credence to the idea for marine systems that “everything is

everywhere but the environment selects” [Baas Becking, 1934]. However, identifying envi-

ronmental variables and their contributions to diversification within a lineage is shrouded

by both the dynamism and complexity of surface ocean environments, as well as the rich

evolutionary dynamics that arise even in the simplest of conceivable environments [Good

et al., 2017]. These formidable challenges stress the importance of designing appropriate ex-
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periments to uncover variables that underpin the evolutionary divergence of closely related

lineages, and drive transitions between them through space and time.

3.6 Materials and Methods

The URL http://merenlab.org/data/sar11-saavs contains a reproducible bioinformatics

workflow that extends the descriptions and parameters of programs used here for (1) the

metapangenome of SAR11 using cultivar genomes, (2) the profiling of metagenomic reads

that the cultivar genomes recruited, (3) the analysis of single nucleotide variants using Deep

Learning, and (4) the visualization of single nucleotide variants in the context of protein

structures.

3.6.1 SAR11 cultivar genomes

We acquired the genomic content of 21 SAR11 isolates from NCBI and simplified the deflines

using anvi’o [Murat Eren et al., 2015]. We then concatenated all contigs into a single FASTA

file, and generated an anvi’o contigs database, during which Prodigal [Hyatt et al., 2010]

v2.6.3 identified open reading frames in contigs, and we annotated them with InterProScan

[Zdobnov and Apweiler, 2001] v1.17. Table 3.1 reports the main genomic features.

3.6.2 Metagenomic datasets

We acquired 103 metagenomes from the European Bioinformatics Institute (EBI) repository

under the project IDs ERP001736 (n=93; TARA Oceans project) and ERP009703 (n=10;

Ocean Sampling Day project), and removed noisy reads with the illumina-utils library (Eren

et al., 2013b) v1.4.1 (available from https://github.com/meren/illumina-utils us-

ing the program ‘iu-filter-quality-minoche’ with default parameters, which implements the

method previously described by Minoche et al. [Minoche et al., 2011]. Table 3.1 reports
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accession numbers and additional information (including the number of reads and environ-

mental metadata) for each metagenome.

3.6.3 Pangenomic analysis

We used the anvi’o pangenomic workflow [Delmont and Eren, 2018] to organize translated

gene sequences from SAR11 genomes into gene clusters. Briefly, anvi’o uses BLAST [Altschul

et al., 1990] to assess the similarity between each pair of amino acid sequences among all

genomes, and then resolves this graph into gene clusters using the Markov Cluster algorithm

[Enright et al., 2002]. We built the gene clustering metric using a minimum percent identity

of 30%, an inflation value of 2, and a maxbit score of 0.5 for high sensitivity. Anvi’o used

the occurrence of gene clusters across genomes data, which is also reported in Table 3.3, to

compute clustering dendrograms both for SAR11 genomes and gene clusters using Euclidian

distance and Ward linkage algorithm.

3.6.4 Estimating distances between isolate genomes based on full-length

16S ribosomal RNA gene sequences

We used the program anvi-get-sequences-for-hmm-hits (with parameters --hmm-source

Ribosomal RNAs and --gene-name Bacterial 16S rRNA) to recover full-length 16S riboso-

mal RNA gene sequences from the anvi’o contigs database for the 21 isolate genomes. We

then used PyANI [Pritchard et al., 2015] through the program anvi-compute-ani to esti-

mate pairwise distances between each sequence.

3.6.5 Competitive recruitment and profiling of metagenomic reads

We mapped reads competitively from each metagenome against a single FASTA file contain-

ing all SAR11 genomes using Bowtie2 [Langmead and Salzberg, 2012] v.2.0.5 with default
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parameters, and converted the resulting SAM files into BAM files using samtools [Li et al.,

2009] v1.3.1. Competitive read recruitment ensures that short reads that match to more

than one genome are assigned uniquely and randomly to one of the matching genomes. This

minimizes computational biases at the mapping level and avoid inflated coverage statistics.

To confirm our observations, we also used BWA [Li and Durbin, 2009] to recruit reads (with

the option n=0.05). We used anvi’o to generate profile databases from the BAM files and

combine these mapping profiles into a merged profile database, which stored coverage and

variability statistics as outlined in Eren et al. [Murat Eren et al., 2015]. Table 3.2 reports

the mapping results (number of recruited reads, as well as mean coverage and detection

statistics) per genome across the 103 metagenomes.

3.6.6 Determining the coverage of HIMB83 genes across metagenomes

The anvi’o merged profile database contains the coverage of individual genes across metage-

nomes. We normalized the coverage of HIMB83 genes in each metagenome (summarized in

Table 3.5) and calculated their coefficient of gene variation. We used the coefficient of gene

variation estimates to identify metagenomes in which HIMB83 was well detected, yet the

coverage values of its genes were highly unstable, which is an indicator of non-specific read

recruitment from other lineages.

3.6.7 Determining the main ecological niche and core genes of 1a.3.V

We considered metagenomes in which HIMB83 was sufficiently abundant (mean genomic

coverage >50X) with a stable detection of its genes (coefficient of gene variation <1.25)

to represent the main ecological niche of 1a.3.V. To determine the core 1a.3.V genes, we

first disregarded metagenomes that displayed an unusually high coefficient of gene coverage

variation (Figure 3.5, panel A), which can indicate non-specific read recruitments from other

abundant populations. The 74 metagenomes fitting these criteria are summarized in Table
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3.1. We defined the subset of HIMB83 genes as the core 1a.3.V genes if in each of the 74

metagenomes, the mean coverage of a gene remained within a factor of 5 of the mean coverage

across all genes. The 799 genes fitting this criterion are summarized in Table 3.4. Calculation

of percent identity distributions of recruited metagenomic short reads. We used percent

identity distributions to broadly characterize how well short reads within a metagenome

matched to the reference sequences by which they were recruited. We determined the percent

identity for each read as 100 × (N − n)/N where n is the number of mismatches to the

reference and N is the read length. For simplicity, visualization of these distributions only

included reads lengths of which matched to the median read length, and we defined bins to

contain only one unique value. For example, if the median length of reads was 100, the bin

domains for visualization purposes were (99,100], (98,99], (97,98], . . . , [0,1]. In contrast, all

statistical calculations were carried out using all read lengths.

3.6.8 Generating single-nucleotide variants (SNV) data

We used the program anvi-gen-variability-profile to report variability tables describ-

ing the nucleotide frequency (i.e., ratio of the four nucleotides) in recruited metagenomic

reads per SNV position. To study the extent of variation of the core 1a.3.V genes across all

metagenomes, we instructed anvi’o to report positions with more than 1% variation at the

nucleotide level (i.e., at least 1% of recruited reads differ from the consensus nucleotide).

To compare the densities of SAAVs to SNVs, we instructed anvi’o to report only positions

with more than 10% variation at the nucleotide level. Table 3.2 reports the density of SNVs

for all SAR11 genomes across all metagenomes. We also used anvi’o to report SNVs for a

subset of genes and metagenomes, and by considering only nucleotide positions with a min-

imum coverage cut-off across metagenomes under consideration. Controlling the minimum

coverage of single nucleotide positions across metagenomes improves confidence in variability

analyses. Table 3.5 reports the SNV density values for all core 1a.3.V genes.
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3.6.9 Definitions of ‘SAAV’, ‘allele frequency’ and ‘AAST’

A single amino acid variant (SAAV) is a codon position that exhibits variation in a metagen-

ome, and the unique identifier of a SAAV is a single codon position and a metagenome. The

position of a SAAV in the reference sequence, and a vector of 21 elements that contain the

allele frequencies of each amino acid as well as the stop codon fully characterize a SAAV. The

allele frequency of an amino acid is equal to the number of short reads that fully cover the

codon that resolves to the amino acid, divided by the total number of reads that fully cover

the same position (the sum of all 21 allele frequencies is therefore 1). We also attributed to

each SAAV an amino acid substitution type (AAST), which corresponds to the two amino

acids with the largest and second largest allele frequencies.

3.6.10 Generating single-amino acid variants (SAAVs) data

The program anvi-gen-variability-profile (with an additional --engine AA flag) re-

ported variability tables describing the allele frequencies for each SAAV. Anvi’o only consid-

ers short reads that cover the entire codon to determine amino acid frequencies at a given

codon position in a metagenome. We instructed anvi’o to report only positions with more

than 10% variation at the amino acid-level (i.e., at least 10% of recruited reads differ from

the consensus amino acid). Table 3.2 reports the density of SAAVs for all SAR11 genome

across all metagenomes. We also used anvi’o to report SAAVs for a subset of genes and

metagenomes, and by considering only gene codons with a minimum coverage cut-off of

20X across all metagenomes of interest. Controlling the minimum coverage of gene codons

across metagenomes improves confidence in variability analyses. Table 3.5 reports the SAAV

density values for all core 1a.3.V genes.
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3.6.11 Differential occurrence of amino acids in SAAVs and in the core

1a.3.V genes

We determined the amino acid composition in the 799 core 1a.3.V genes as well as in

SAAVs maintained in each metagenome using anvi’o programs anvi-get-aa-counts and

anvi-get-codon-frequencies (with the flag --return-AA-frequencies-instead). We

quantified the amino acid composition of all core 1a.3.V genes of in HIMB83 using the

program anvi-get-aa-counts. In contrast, we quantified the amino acid composition of

SAAVs by calculating the frequency of a given amino acid being one of the two dominant

alleles. We then calculated p-values via a binomial test that represents the probability of

observing the difference between amino acid frequencies computed over all core 1a.3.V genes

versus only 1a.3.V SAAVs, given the null hypothesis that amino acids in 1a.3.V SAAVs are

distributed according to the same distribution as the amino acids in the core 1a.3.V genes.

3.6.12 Estimating a neutral AAST frequency distribution

This calculation provides an estimate for the AAST frequency distribution given strictly

neutral mutations. Unlike the neutral theory of evolution, it excludes the influential effects

of purifying selection (negative selection coefficients). Since all mutations are equally likely

to drift to detectable frequencies under a neutral model, the expected number of variant

positions that have Ci and Cj as their two dominant alleles, is proportional to the rate that

Ci mutates to Cj plus the rate that Cj mutates to Ci. Expressed mathematically,

E(N{Ci,Cj}) ∝ P (Ci | m)P (Ci → Cj | Ci,m) + P (Cj | m)P (Cj → Ci | Cj ,m)

where E(N{Ci,Cj}) is the expected number of variant positions that have Ci and Cj as their

two dominant alleles, P (Ci | m) is the probability that a Ci position mutates given that a
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mutation has occurred, and P (Ci → Cj | Ci,m) is the probability that such a mutation will

mutate to Cj . Assuming all sites are equally likely to mutate, P (Ci | m) is equivalent to

the fraction of codons in the reference sequence that are Ci, and we denote this quantity as

fCi
. To extend the equation to the expected number of variant positions that have amino

acids A1 and A2 as their two dominant alleles, i.e. a quantity proportional to the AAST

frequency, one must enumerate over all codons in A1 and A2:

E(NAAST={A1,A2}) ∝
∑

Ci∈A1

∑
Cj∈A2

P ({Ci, Cj})

In general, P (Ci → Cj | Ci,m) will depend primarily upon the nucleotide edit distance

between Ci and Cj , which we denote as d, as well as the transition/transversion rate ratio,

which we will denote κ. How the model handles these aspects will critically influence the

expected frequency distribution. To encapsulate the broadest possible interpretation of the

neutral model, we evaluate expressions for two extreme cases: In the first case (Model 1),

we assume that the probability of an edit distance d > 1 is 0 (in reality, estimates at least

for eukaryotes range from 0.003 [Ellegren et al., 2003] to 0.03 [Schrider et al., 2011]. We also

impose a κ value of 2 so that transitions are twice as likely as transversions. Intuitively, these

impositions have the effect of skewing the AAST frequency distribution towards AASTs that

possess highly similar codons. In the second case (Model 2), we assume all codon transitions

are equally likely regardless of edit distance or the number of transitions/transversions (κ =

1). Intuitively, this has the effect of homogenizing the AAST frequency distribution towards

a more uniform-like distribution.

In Model 1, P (Ci → Cj | Ci,m) = 1
3δd,1P (m), where δd,1 is a Kronecker delta function

describing the probability the mutation has an edit distance d, 1
3 is the probability that the

correct nucleotide position is mutated, and P (m) is the probability that the mutation occurs

based on whether or not it is a transition. Formally,
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 κ/κ+ 2 m = transition

1/κ+ 2 m = transversion

In Model 2, P (Ci → Cj | Ci,m) = 1/63, since all 63 possible mutations are permissible

and equally probable. The expressions for E(NAAST={A1,A2}) for Model 1 and Model 2 thus

simplify to:

(M1)E(NAAST={A1,A2}) ∝ ⟨fCi
, fCj

⟩δd,1P (m)

(M2)E(NAAST={A1,A2}) ∝ ⟨fCi
, fCj

⟩

where M1 and M2 refer to Model 1 and Model 2, respectively. To compare directly with

observation, we extracted fCi
for the 64 codons from the HIMB83 reference sequence using

anvi-get-codon-frequencies and the distributions under both models were calculated

from the above equations.

3.6.13 3D structure of proteins using template-based protein structure

modeling

We used a template-based structure modeling tool, RaptorX Structure Prediction [Källberg

et al., 2012], to predict structures of 1a.3.V amino acid sequences based on available data

from the Protein Data Bank (PDB) [Bernstein et al., 1977]. We used the program blastp

in NCBI’s BLAST distribution to identify core 1a.3.V genes that matched to an entry with

at least 30% similarity over the length of the given core gene. We then programmatically

mapped SAAVs from metagenomes onto the predicted tertiary structures, and used PyMOL

[DELANO and W. L, 2002] to visualize these data. We colored SAAVs based on RaptorX-

predicted structural properties, including solvent accessibility and secondary structure.
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3.6.14 Identifying genes with disproportionately high number of

temperature-correlated positions

First, we calculated the number of temperature-correlated and temperature-uncorrelated

positions for each of the 1a.3.V core genes. Then, we performed a one-sided binomial test

that these numbers are biased towards higher proportion of temperature-correlated positions

compared to a model distribution defined from the total number of temperature-correlated

positions in 1a.3.V. Since there were 4,592 such positions out of 37,416, the model probability

of success was defined as p0 = 4592/37416 = 0.123. In other words, the expected proportion

of variant positions in a gene that are temperature-correlated is 0.123 under the model.

We corrected the resulting p-values for each gene for multiple testing using Benjamini &

Hochberg’s method [Benjamini and Hochberg, 1995].

3.6.15 Predicting transmembrane, periplasmic, and cytosolic regions in the

glycine betaine permease

To categorize amino acid positions as transmembrane, periplasmic, and cytosolic, we used

Phobius [Käll et al., 2004, 2007], a membrane topology and prediction software through the

webserver at http://phobius.sbc.su.se. The output is a probability of the 4 classes for

each residue, and to simplify the data we categorized each residue into the class found to be

most probable. We removed residues with signaling peptide association from downstream

analyses.

3.6.16 Recovering codon position-specific AASTs from SAAVs

We simplified the hyper-dimensional SAAV data into a simpler presence-absence matrix for

downstream analyses. For this, we defined codon position-specific AASTs (cAASTs) and

summarized their occurrence across metagenomes. In such a table the value of ‘1’ indicates
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that a given metagenome had a SAAV at a given codon position that resolved to a given

AAST. In contrast, the value ‘0’ indicates that the metagenome did not have a SAAV that

resolved to this AAST. In the latter case a given metagenome may have another AAST in

this particular codon position (in which case this information would appear in another row in

the same table that is affiliated with the same AAST with the same codon position). Hence,

each AAST listed in the first column of the table will be unique to a single codon position,

yet a given codon position may have different AASTs in different metagenomes, resulting in

multiple AASTs in the resulting table that belong to the same codon position. Combining

AAST with the codon position would then result in a unique cAAST.

3.6.17 Application of Deep Learning to codon-position-specific AASTs data

To estimate an unbiased distance between our metagenomes based on SAAVs, we used a

novel deep neural network modification called the auto-clustering output layer (ACOL).

Briefly, ACOL relies on a recently introduced graph-based activity regularization (GAR)

technique for competitive learning from hyper-dimensional data to demarcate fine clusters

within user-defined ‘parent’ classes [Kilinc and Uysal, 2017]. In this application of ACOL,

however, we modified the algorithm so it can reveal latent groups in our SAAVs in a fully

unsupervised manner through frequent random sampling of SAAVs to create pseudo-parent

class labels instead of user-defined classes [Kilinc and Uysal, 2018]. See the URL http:

//merenlab.org/data/sar11-saavs for the details of the pseudo parent-class generation

algorithm, and the reproducible distance estimation workflow in Python.

3.6.18 Other statistical tests and visualization

We used the aov function in R to perform one way ANOVA tests, used the ggplot2 [Ginestet,

2011a] package for R to visualize the relative distribution of 1a.3.V genes and geographic

distribution of proteotypes, and finalized all figures using an open-source vector graphics
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editor, Inkscape (available from http://inkscape.org/).

3.6.19 Code and data availability

The vast majority of analyses relied on the open-source software platform anvi’o v2.4.0

(available from http://merenlab.org/software/anvio). The URL http://merenlab.o

rg/data/sar11-saavs serves the remaining custom code used in our analyses. We made

available (1) SAR11 isolate genomes (http://doi.org/10.6084/m9.figshare.5248945),

(2) the anvi’o contigs database and merged profile for SAR11 genomes across metagenomes

(http://doi.org/10.5281/zenodo.835218) and the static HTML summary for the

mapping results (http://doi.org/10.6084/m9.figshare.5248453), (3) the SAR11 meta-

pangenome (http://doi.org/10.6084/m9.figshare.5248459), single-nucleotide and

single-amino acid variant reports for 1a.3.V across 74 TARA Oceans metagenomes (http:

//doi.org/10.6084/m9.figshare.5248447), and (4) SAAVs overlaid on predicted tertiary

structures of 58 core 1a.3.V genes (http://doi.org/10.6084/m9.figshare.5248432).

The URL http://anvi-server.org/p/4Q2TNo serves an interactive version of the SAR11

metapangenome, and the URL http://data.merenlab.org/sar11-saavs serves an

interactive web page to investigate the link between SAAVs and predicted protein structures.
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3.8 Supplementary Figures
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Figure 3.5: Distribution and diversity of the core 1a.3.V genes. Panel A displays the relative
distribution of HIMB83 genes across 78 metagenomes, along with their coefficient of variation
and the selection of 799 core 1a.3.V genes (blue outer circle). A world map provides the lo-
cation of 74 metagenomes corresponding to the main ecological niche of 1a.3.V metagenomes
(four metagenomes were disregarded due to high coefficients of variation). Panel B shows the
number of metagenomes in which genes were consistently present. Genes were considered to
be present in a metagenome consistently only if their coverage was within a factor of 5 of the
average coverage of all genes for that metagenome. Those that passed the filter criteria in all
74 metagenomes (far right) were defined as the core 1a.3.V genes. Panel C displays the SNV
density of core 1a.3.V genes across these 74 metagenomes. SNV density varied between 2.9%
and 37.3% across genes and metagenomes. Panel D summarizes the heterogeneity extent of
the core 1a.3.V genes within the population main ecological niche. Specifically, the panel
displays the density of single nucleotide variants (>1% from consensus), environmentally
disconnected nucleotide position (i.e., positions stable in the environment but differing from
the reference, <1% from consensus) and single amino acid variants (>10% from consensus)
within the core genes of 1a.3.V across 103 metagenomes as a function of the mean coverage
of HIMB83.
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Figure 3.6: Percent identity distributions resulting from the competitive mapping experiment
of the metagenomic short reads onto the 21 SAR11 reference genomes. For each reference
genome, metagenomes were only included if they recruited at least 50X coverage. 10 refer-
ences failed to recruit 50X coverage in any metagenome and were excluded from the plot.
Curves were colored according to N, the number of metagenomes passing the 50X threshold,
and each curve represents the mean distribution of these metagenomes, where the shaded
area reflects the ± standard deviation. For visual clarity, the data only includes reads equal
to the median read length.
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Figure 3.7: A matrix illustrating the degree of correlation (via linear regression) between
oceanic metadata and the statistics (mean, standard deviation, skewness) of the percent
read identity distributions of reads recruited by HIMB83 for the 74 metagenomes in which
HIMB83 was covered at least 50X. For example, cells in the temperature column of this
matrix quantify the linear correlation coefficients of the scatterplots shown in Figure 3.2B.
Cell colors correspond to their linear correlation coefficient and sizes are proportional to
R-squared values. We did not correct for multiple testing due to the potential for strong
inter-dependence of the parameters. Table 3.4 reports full numerical statistics including p-
values.
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Figure 3.8: Panel A shows a direct comparison between the amino acid composition in all
positions compared to the amino acid composition within SAAVs. The amino acid com-
position of all positions (y-axis) was quantified by calculating the frequency that amino
acids appeared within the core 1a.3.V genes of the reference sequence, HIMB83, whereas
amino acid composition in SAAVs (x-axis) was quantified by calculating the frequency that
an amino acid was one of the two dominant alleles across the 738,324 SAAVs. The black
diagonal line signifies a one-to-one correspondence between these two variables, and black
vertical lines illustrate the deviation of amino acids from this null expectation. Vertical lines
are labelled with percent differences between frequencies of amino acids in SAAVs relative
to all positions. The linear correlation coefficient of panel A is 0.81, with an R-squared of
0.65, and a probability that no correlation exists of 9.8× 10−6. Panel B shows a comparison
between the average solvent accessibility of amino acids (x-axis) to the percent difference
between frequencies of amino acids in SAAVs relative to all positions (y-axis). Average
solvent accessibilities for amino acids were taken from Table 2 of [Bordo and Argos, 1991].
The linear correlation coefficient of panel B excluding isoleucine and valine (in red) is 0.64,
with an R-squared of 0.41, and a probability that no correlation exists of 0.004. Including
isoleucine and valine, these values are 0.40, 0.16, and 0.08, respectively. The blue line shows
the line of best fit excluding isoleucine and valine, with shaded in regions representing 95%
confidence intervals.
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Figure 3.9: The top 25 most abundant amino acid substitution types (AASTs) and their
relationship with in situ temperature. Each dot represents a metagenome, the x-axis is
in situ temperature, and the y-axis is the percentage of SAAVs that were a given AAST.
The red line is the line of best fit and the shaded-in region illustrates the 95% confidence
interval. The linear correlation coefficient is given as r, and the probability of no relationship
with temperature is given as p (uncorrected for multiple testing). Corrected p-values can
be obtained by dividing p by 25, the number of linear regressions performed (Bonferonni
multiple testing).
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Figure 3.10: Allele frequency trajectories and in situ temperature. Panel A illustrates allele
frequency trajectories across 74 metagenomes with respect to temperature for 16 manually
chosen SAAV positions in the context of protein structures predicted from the core 1a.3.V
genes. Only the two most abundant amino acids were considered for each SAAV. The linear
correlation coefficient is denoted as r and the probability that no correlation exists is denoted
as p (Benjamini–Hochberg corrected p-values <0.05 (i.e. false discovery rate of 5%)). r is
defined such that a positive value refers to the first amino acid (in dark red) positively
correlating with temperature. Panel B shows the 4,592 positions within the core 1a.3.V
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Figure 3.10 continued: genes that had temperature-correlated allele frequency trajectories
(Benjamini–Hochberg corrected p-value <0.05), and the number of times these positions
corresponded to the top 25 most prevalent AASTs. On the x-axis are the 25 most prevalent
AASTs, where red and blue bars indicate the number of times the first and second amino acid,
respectively, had allele frequency trajectories that positively correlated with temperature.
The insets illustrate two example allele frequency trajectories for the AAST ’alanine/serine’.

63



Figure 3.11: Analysis of how temperature-correlated variant positions distribute within Gene
1727, a glycine betaine ATP-binding cassette permease subunit identified for its rare propor-
tion of temperature-correlated variant positions. Panel A illustrates the membrane topology
predicted by Phobius (See Materials and Methods), which associates to each position a prob-
ability it is periplasmic, cytosolic, transmembrane, or within the signaling peptide (colored
lines). We categorized each position according to the maximum probability (shaded regions).
Temperature-correlated and uncorrelated variant positions are denoted by solid
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Figure 3.11 continued: red and dashed red vertical lines, respectively. Panel B illustrates the
frequency that variant positions are found in the membrane, cytosol, and periplasm, based on
whether or not they correlate with temperature. The y-axis is the fraction of variant positions
observed (excluding positions observed in the signaling peptide), and numbers within each
bar denote the number of variant positions observed within each class. The probability
that positions are distributed independent of temperature correlation was 0.034. Formally,
this is the probability that temperature-correlated positions were distributed according to a
trinomial distribution with a probability vector equal to the empirical distribution observed
in temperature-uncorrelated positions.

Figure 3.12: A comparison of the geographic partitioning of the 1a.3.V groups and proteo-
types between metagenomes sampled from the surface versus those sampled from the deep
maximal chlorophyll layer. Panels A and B contain the same information as shown in Figure
3.4, and panel C shows the locations of deep maximal chlorophyll layer metagenomes and
the proteotypes to which they belong.
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Figure 3.13: K-means clustering results (250 iterations) of the Deep Learning distance metric
of 74 metagenomes based on the coordinates and identity of 738,324 SAAVs. The elbow of
this curve is k = 6, which informed our decision to define six proteotypes.
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Figure 3.14: A comparison of dendrograms that organize metagenomes based on the genomic
variability observed in the core 1a.3.V genes. Above, the metagenomes are organized by
applying a novel graph-based activity regularization technique for competitive learning from
hyper-dimensional data to the 738,324 SAAVs (see Materials and Methods). Below, the
metagenomes are organized by a less comprehensive approach in which the percent identity
distributions are hierarchically clustered via Euclidean distance. The first method therefore
is sensitive to the identity and positions of amino acid variability, whereas the second method
is based solely on a summary statistic that quantifies the degree of sequence divergence at
the DNA level and is agnostic to position and identity. Each metagenome is connected to
itself through a straight line and is colored according to the proteotype to which it belongs.
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Figure 3.15: Biogeography of SAR11 subclade 1a.3.V based on single amino acid variants us-
ing Deep Learning (left) and Fixation Index (right) (see Material and Methods). The world
maps display the geographic partitioning of six proteotypes based on the two methodolo-
gies. Finally, ANOVA tests determine whether there are statistically significant differences
between the means of either in situ temperature or SAAV density across (1) the two main
groups and (2) the six proteotypes as inferred from the two methodologies.
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Figure 3.16: Geographic partitioning of SAR11 by matching surface metagenomes analyzed
in our study to simulated results determined using a neutral-agent based model [Hellweger
et al., 2014]. The figure emphasizes biogeographic differences between this simulation focused
on neutral evolution and our large-scale empirical analysis.
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3.9 Supplementary Tables

All supplementary tables are available at https://figshare.com/articles/SAR11 SAAVs

Tables and Figures/5254537.

Table 3.1: Summary of 21 SAR11 genomes and 103 metagenomes from TARA Oceans and
Ocean Sampling Day.

Table 3.2: Summary of metagenomic reads recruitment. The table describes the number
of recruited reads, mean coverage, relative distribution and level of detection for 21 SAR11
genomes across 103 metagenomes, along with the total number of single nucleotide variants
and single amino acid variants identified in each metagenome. The table also summarizes
the relative distribution of 21 SAR11 genomes, along with 31 Prochlorococcus genomes and
957 marine population genomes across 103 metagenomes.

Table 3.3: Summary of the SAR11 metapangenomic analysis. The table describes the func-
tionality of genes identified in the 21 SAR11 genomes and links each gene to a gene cluster
in the SAR11 pangenome. In addition, the table describes gene clusters containing proteins
translated from the 799 core 1a.3.V genes, which were independently identified using the
coverage values of HIMB83 genes across 74 metagenomes.

Table 3.4: Distance metric of 21 SAR11 genomes based on their 16S rRNA gene sequence
similarities.

Table 3.5: Summary of the HIMB83 genes. The table describes the length, functionality
and nucleotide sequence of 1,470 genes identified from HIMB83, along with their normalized
distribution across 103 metagenomes. The table also summarizes the coefficient of variation
of genes in each metagenome determined from these distribution values.

Table 3.6: Summary of the degree of correlation of oceanic metadata to the percent identity
histograms of reads recruited to HIMB83.

Table 3.7: Summary of variability of the core 1a.3.V genes. The table describes the density
of single nucleotide variants and amino acid variants of each core 1a.3.V genes across 74
metagenomes, as well as the occurrence of invariant proteins.
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Table 3.8: Summary of SAAVs in the core 1a.3.V genes. The table describes the coordinates
and identity (defined by the two most frequent amino acids) for codon positions in 738,324
core 1a.3.V genes (1) that were covered more than 20X across 74 metagenomes, (2) and
in which a divergence >10% from consensus was observed in the frequency of amino acids.
The table also links each SAAV to the metagenome it was identified from, and summaries a
gene-level analysis of SAAVs.

Table 3.9: Summary of individual amino acids and AASTs involved in 738,324 SAAVs
identified within the core 1a.3.V genes. The table describes the proportion of amino acids
involved in SAAVs across the 74 metagenomes compared to the core 1a.3.V genes. The table
also describes the proportion of acid substitution types (defined by the two most abundant
amino acids involved in each SAAV) across 74 metagenomes, in the context of amino acid
frequencies in the core 1a.3.V genes.

Table 3.10: SAAV characteristics, including solvent accessibility, for each SAAV belonging
to a core 1a.3.V gene with a successfully predicted protein structure.

Table 3.11: The correlation of allele frequencies to temperature for each position containing
at least one SAAV. The summary of proportion of temperature-correlated to temperature-
uncorrelated positions per gene.

Table 3.12: Deep Learning distance metric of 74 metagenomes based on the coordinates and
identity of 738,324 SAAVs.

Table 3.13: Statistical significance of metadata collected in this study and by the TARA
Oceans consortium to explain the grouping of six proteotypes with Deep Learning.
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CHAPTER 4

STRUCTURE-INFORMED MICROBIAL POPULATION

GENETICS ELUCIDATE SELECTIVE PRESSURES THAT

SHAPE PROTEIN EVOLUTION

This chapter is derived from the following publication:

Kiefl, Evan, Ozcan C. Esen, Samuel E. Miller, Kourtney L. Kroll, Amy D. Willis,

Michael S. Rappé, Tao Pan, and A. Murat Eren. 2022. “Structure-Informed Micro-

bial Population Genetics Elucidate Selective Pressures That Shape Protein Evolu-

tion.” bioRxiv. https://doi.org/10.1101/2022.03.02.482602.

4.1 Author contributions

EK and AME conceptualized the study and interpreted findings. EK curated data, devel-

oped software tools, and performed primary analyses. OCE and AME contributed software.

EK and AME wrote the paper. SEM, KK, and ADW helped with data analyses and inter-

pretation. MSP and TP helped with project management and funding acquisition. AME

supervised the project. All authors commented on the drafts of the study.

4.2 Abstract

Comprehensive sampling of natural genetic diversity with metagenomics enables highly re-

solved insights into the interplay between ecology and evolution. However, intra-population

genomic variation represents the outcome of both stochastic and selective forces, making

it difficult to identify whether variants are maintained by adaptive, neutral, or purifying

processes. This is partly due to the reliance on gene sequences to interpret variants, which
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disregards the physical properties of three-dimensional gene products that define the func-

tional landscape on which selection acts. Here we describe an approach to analyze genetic

variation in the context of predicted protein structures, and apply it to study a marine mi-

crobial population within the SAR11 subclade 1a.3.V, which dominates low-latitude surface

oceans. Our analyses reveal a tight association between the patterns of nonsynonymous poly-

morphism, selective pressures, and structural properties of proteins such as per-site relative

solvent accessibility and distance to ligands, which explain up to 59% of genetic variance

in some genes. In glutamine synthetase, a central gene in nitrogen metabolism, we observe

decreased occurrence of nonsynonymous variants from ligand binding sites as a function of

nitrate concentrations in the environment, revealing genetic targets of distinct evolutionary

pressures maintained by nutrient availability. Our data also reveals that rare codons are

purified from ligand binding sites when genes are under high selection, demonstrating the

utility of structure-aware analyses to study the variants that likely impact translational pro-

cesses. Overall, our work yields insights into the governing principles of evolution that shape

the genetic diversity landscape within a globally abundant population, and makes available

a software framework for structure-aware investigations of microbial population genetics.

4.3 Significance

Increasing availability of metagenomes offers new opportunities to study evolution, but the

equal treatment of all variants limits insights into drivers of sequence diversity. By cap-

italizing on recent advances in protein structure prediction capabilities, our study exam-

ines subtle evolutionary dynamics of a microbial population that dominates surface oceans

through the lens of structural biology. We demonstrate the utility of structure-informed

metrics to understand the distribution of nonsynonymous polymorphism, establish insights

into the impact of changing nutrient availability on protein evolution, and show that even

synonymous variants are scrutinized strictly to maximize translational efficiency when selec-
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tion is high. Overall, our work illustrates new opportunities for discovery at the intersection

between metagenomics and structural bioinformatics, and offers an interactive and scalable

software platform to visualize and analyze genetic variants in the context of predicted protein

structures and ligand-binding sites.

4.4 Introduction

Genetic diversity within populations emerges from and is shaped by a combination of stochas-

tic and selective pressures, which often lead to phenotypic differences between closely related

individuals, sometimes within a few generations [Burke et al., 2010, Lenski et al., 1991]. Sur-

veys of microbial communities within natural habitats through phylogenetic marker genes

[Olsen et al., 1986, Acinas et al., 2004, Sogin et al., 2006] and metagenomics [Simmons et al.,

2008, Allen et al., 2007] have revealed a tremendous amount of genetic variation within en-

vironmental populations [Curtis and Sloan, 2005, Curtis et al., 2006], and an ever-increasing

number of available genomes and metagenomes have provided insight into the selective pres-

sures that shape such variation. However, the overwhelming complexity and dynamicity

of these selective pressures, which occur even in the simplest environments [Good et al.,

2017], has hindered our ability to determine which variants are under the influence of which

pressures [Ochman, 2003, Mes, 2008].

Inferring selective pressures through the isolation of microbial strains and comparative

genomics has been widely successful. More recently, metagenome-assembled genomes [Chen

et al., 2020] and single-amplified genomes [Woyke et al., 2017] have dramatically increased

the number [Almeida et al., 2021, Pachiadaki et al., 2019, Paoli et al., 2021] and diversity

[Hug et al., 2016] of microbial clades represented in genomic databases, offering an even

larger sampling of environmental microbes to study the emergence and maintenance of ge-

netic variation [Garud and Pollard, 2020]. Nevertheless, genomes represent static snapshots

of individual members of often complex environmental populations, and thus, working with
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genomic sequences alone substantially undersamples genetic variability in natural habitats

and its associations with environmental and ecological forces [Van Rossum et al., 2020].

This shortcoming is partially addressed by shotgun metagenomics [Quince et al., 2017] and

metagenomic read recruitment, where environmental sequences that are aligned to a ref-

erence can be studied to identify genetic variants at the resolution of single nucleotides

[Whitaker and Banfield, 2006, Denef, 2019]. In particular, using genomes to recruit reads

from metagenomes enables a comprehensive sampling of all genetic variants within envi-

ronmental populations [Simmons et al., 2008]. Due to the immensity of sequencing data

generated by metagenomic studies, even subtle genetic variation in natural populations is

now resolvable, making it possible to explicitly correlate patterns of genomic variation with

temporal or spatial environmental variables to elucidate the interplay between ecology and

evolution [Schloissnig et al., 2013, Bendall et al., 2016, Anderson et al., 2017, Delmont et al.,

2019, Garud et al., 2019, Zhao et al., 2019, Shenhav and Zeevi, 2020, Olm et al., 2021, Con-

will et al., 2022]. Although quantification and analysis of sequence variants derived from

metagenomic data has improved dramatically, inferring the functional impact of individ-

ual nucleotides remains a fundamental challenge in part due to the sole reliance on DNA

sequences, which do not represent physical properties of proteins they encode, and thus

disguise the functional impact of individual mutations.

Given the intermediary role that structure plays within the ‘sequence-structure-function

paradigm’ [Anfinsen, 1973], including protein structures as a dimension of analysis is com-

monplace in studies of protein evolution [Siltberg-Liberles et al., 2011, Harms and Thornton,

2013, Sikosek and Chan, 2014], and it is appreciated that the accuracy of evolutionary mod-

els improves with combined analyses of protein structures and the evolution of underlying

sequences [Wilke, 2012]. In contrast, the state-of-the-art approaches that quantify genetic

variants in environmental microbial populations typically treat genes as strings of nucleotides

[Schloissnig et al., 2013, Murat Eren et al., 2015, Nayfach et al., 2016, Costea et al., 2017,
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Olm et al., 2021]. While this strategy enables rapid surveys of population dynamics through

single-nucleotide variants, it disregards the physical properties of three-dimensional gene

products that selection acts upon, and thus misses a critical intermediate to understand the

relationship between selection and fitness [Golding and Dean, 1998, Chen and Arnold, 1993].

The importance of mapping sequence variants on predicted protein structures to identify

genetic determinants of phenotypic variation has been noted more than two decades ago

[Sunyaev et al., 2001], yet the limited availability of protein structures has historically ren-

dered protein structure-informed microbial population genetics impractical. Given dramatic

advances in both solving and predicting protein structures in recent years [Kuhlman and

Bradley, 2019], most notably deep learning approaches such as AlphaFold [Jumper et al.,

2021] that offer highly accurate protein structure predictions, this constraint is likely a prob-

lem of the past. Altogether, open questions in microbial ecology and evolution, advances

in computation, and increased availability of data are culminating in a research landscape

that is ripe for new software solutions that integrate protein structures with ’omics data

in order to observe and interpret evolutionary processes that shape sequence variation in

natural populations.

Here we develop an interactive and scalable software solution for the analysis and in-

teractive visualization of metagenomic sequence variants in the context of predicted protein

structures and ligand binding sites as a new module in anvi’o, an open-source, community-

led multi-omics platform (https://anvio.org). By importing AlphaFold-predicted protein

structures into anvi’o structure, we (1) demonstrate the shortcomings of purely sequence-

based approaches to interpret patterns of polymorphism observed within complex microbial

populations, (2) propose two structural features to interpret genetic variation, relative sol-

vent accessibility (RSA) and distance-to-ligand (DTL), (3) illustrate that nonsynonymous

polymorphism is more likely to encroach upon active sites when selection is low, but is purged

from active sites when selection is high, and (4) provide evidence that common codons are
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more translationally robust than their rare synonymous counterparts, which appear within

structurally/functionally noncritical sites when selection is low.

4.5 Results and Discussion

To investigate selective pressures that drive protein evolution within microorganisms inhab-

iting complex naturally occurring environments, we chose a single microbial taxon and a

set of metagenomes that match to its niche boundaries: SAR11 (Candidatus Pelagibacter

ubique), a microbial clade of free-living heterotrophic alphaproteobacteria that dominates

surface ocean waters [Morris et al., 2002], and Tara Oceans Project metagenomes [Sunagawa

et al., 2015], a massive collection of deeply sequenced marine samples from oceans and seas

across the globe. SAR11 is divided into multiple subclades with distinct ecology [Giovannoni,

2017]. Thus, we further narrowed our focus to HIMB83, a single SAR11 strain genome that

is 1.4 Mbp in length. HIMB83 is a member of the environmental SAR11 lineage 1a.3.V, one

of the most abundant [Nayfach et al., 2016] and most diverse [Delmont et al., 2019] microbial

lineages in marine systems, which recruits as much as 1.5% of all metagenomic short reads

in surface ocean metagenomes [Delmont et al., 2019].

To quantify the genetic variability of 1a.3.V, we used HIMB83 as a reference genome of the

subclade, and competitively recruited short reads (see Methods) from 93 low-latitude surface

ocean metagenomes (Table 4.1), resulting in 390 million reads that were 94.5% identical to

HIMB83 on average (Figure 4.5). As an individual member of a diverse subclade, HIMB83

possesses a genomic context that is insufficient for resolving the extent of genetic diversity

within 1a.3.V. Regardless, HIMB83 possesses the ’core’ gene set of 1a.3.V, and so reads

recruited by these genes represent the diversity of the 1a.3.V core genome. Of the 1,470

genes in HIMB83, we restricted our analysis to 799 genes that we determined to form the

1a.3.V core genes, and 74 metagenomes in which the average coverage of HIMB83 exceeded

50X (see Methods). The reads recruited to the 1a.3.V core represent a dense sampling of
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the diversity within this environmental lineage that far exceeds the evolutionary resolution

and volume of sequence data achievable through comparisons of cultured SAR11 genomes

alone (Figure 4.5). As a result, these data provide a unique opportunity to zoom in and

track how genomic variation in one of the most abundant microbial populations on Earth

shifts in response to ecological parameters throughout the global ocean (Figure 4.6).

4.5.1 Polymorphism rates reveal intense purification of nonsynonymous

mutants

To quantify genomic variation in 1a.3.V, in each sample we identified codon positions of

HIMB83 where aligned metagenomic reads did not match the reference codon. We considered

each such position to be a single codon variant (SCV). Analogous to single nucleotide variants

(SNVs), which quantify the frequency that each nucleotide allele (A, C, G, T) is observed

in the reads aligning to a nucleotide position, SCVs quantify the frequency that each codon

allele (AAA, . . . , TTT) is observed in the reads aligning to a codon position (see Methods

for a more complete description). Since SCVs are defined to be ‘in-frame’, they provide

inherent convenience when relating nucleotide variation in the genomic coordinates to amino

acid variation in the corresponding protein coordinates, as well as for determining whether

or not nucleotide variation leads to synonymous or nonsynonymous change. Within the

1a.3.V core genes, we found a total of 9,537,022 SCVs, or 128,879 per metagenome on

average. These SCVs distributed throughout the genome such that 78% of codons (32% of

nucleotides) exhibited minor allele frequencies >10% in at least one metagenome. Despite

this extraordinary level of diversity, our read recruitment strategy is stringent and yields

reads that on average differ from HIMB83 in only 6 nucleotides out of 100 (Table 4.2),

precluding the possibility that this diversity is generated from excessive nonspecific mapping.

While puzzling, this level of diversity is not surprising as it agrees with numerous studies

that have pointed out the astonishing complexity of the SAR11 subclade 1a.3.V [Nayfach
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et al., 2016, Delmont et al., 2019, Haro-Moreno et al., 2020] that could not be further divided

into sequence-discrete populations [Delmont et al., 2019].

We found this diversity to be overwhelmingly synonymous. By splitting each SCV into

its synonymous (s) and nonsynonymous (ns) proportions, we calculated per-site rates of s-

polymorphism and ns-polymorphism as pS(site) and pN(site), not to be confused with the

related concepts dS and dN. While dS and dN quantify rates of synonymous and nonsyn-

onymous substitution between diverged species, pN(site) and pS(site) can (1) resolve shorter

evolutionary timescales than the characteristic fixation rate, (2) be calculated from metage-

nomic read recruitment data without complete haplotypes, and (3) define rates on a per-

sample basis, thus enabling inter-sample comparisons. Overall, we found that the average

pS(site) outweighed pN(site) by 19:1 (Table 4.3), revealing an overwhelming fraction of the

1a.3.V diversity to be synonymous and illustrating how nonsynonymous mutants are purified

at a much higher rate than synonymous mutants in the population at large.

Figure 4.1: Anvi’o workflow for structure-informed population genetics.
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4.5.2 Nonsynonymous polymorphism avoids buried sites

pN(site) values varied significantly from site-to-site and from sample-to-sample, but overall,

more variation existed between sites in a given sample than between samples of a given site

(Figure 4.7). The extent that a given site can tolerate ns-polymorphism is largely determined

by the local physicochemical environment of the encoded residue, which is defined by the

3D structure of the protein. Thus, we broadened our focus by developing a computational

framework, anvi’o structure (Supplementary Information), that enabled the integration of

environmental sequence variability with predicted protein structures (Figure 4.1).

We used two independent methods to predict protein structures for the 799 core genes

of 1a.3.V: (1) a template-based homology modeling approach with MODELLER [Webb and

Sali, 2016], which predicted 346 structures, and (2) a transformer-like deep learning approach

with AlphaFold [Jumper et al., 2021], which predicted 754. Our evaluation of the 339

genes for which both methods predicted structures (Supplementary Information) revealed a

comparable accuracy between AlphaFold and MODELLER (Figure 4.8, Table 4.4). Thus,

we opted to use AlphaFold structures for all downstream analyses due to its higher structural

coverage. Indeed, AlphaFold-predicted protein structures covered over 90% of the core genes,

highlighting the emerging opportunities afforded by recent advances in de novo structure

prediction.

Aligning single-codon variants to predicted structures enabled us to directly compare the

distributions of s-polymorphism and ns-polymorphism rates relative to biophysical charac-

teristics of the encoded proteins. We first investigated the association between polymorphism

rates and relative solvent accessibility (RSA), a biophysical measure of how exposed (RSA

= 1) or buried (RSA = 0) a site is. Since nonsynonymous mutations at buried sites are more

likely to disrupt folding and stability, RSA serves as a powerful proxy to discuss the strength

of structural constraints acting at a site [Echave et al., 2016]. By calculating RSA for each site

in the predicted structures, and then weighting every site by the pN(site) and pS(site) across
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all samples, we established proteome-wide distributions for pN(site) and pS(site) relative to

RSA (Figure 4.2a). These data showed that pS(site) closely resembled the null distribution,

which illustrates the lack of influence of RSA on s-polymorphism, while pN(site) deviated

significantly and instead exhibited strong preference for sites with higher RSA. This finding

aligns well with the expectation that buried sites are likely to purify nonsynonymous change

due to disruption of protein stability while being relatively more tolerant to synonymous

change, and validates our methodology.

4.5.3 Nonsynonymous polymorphism avoids active sites

While structural constraints ensure a given protein folds properly and remains stable, they

do not guarantee its function. Comprehensive analyses of diverse protein families show

that residues that bind or interact with ligands are depleted of mutations [Kobren and

Singh, 2019] due to strong selective pressures that maintain active site conservancy. This

constraint is not limited to the immediate vicinity of ligand-binding residues and has been

observed to radiate outwards from the active site with a strength inversely correlated with

distance from active site [Dean et al., 2002, Jack et al., 2016]. More generally, it has been

observed that conserved sites induce ‘conservation gradients’ that surround them, leading

to increased conservation amongst neighboring sites [Sharir-Ivry and Xia, 2021]. Based on

these ideas, we conceptualized the metric ‘distance-to-ligand’ (DTL) as the distance of a

given site to the closest active site, and hypothesized that DTL may be a suitable proxy

for investigating functional constraints in a manner complementary to RSA, a proxy for

investigating structural constraints. To test this, we investigated distributions of pN(site) and

pS(site) as a function of DTL for each predicted structure by first predicting sites implicated

in ligand binding using InteracDome [Kobren and Singh, 2019], and then calculating a DTL

for each site, given the closest predicted ligand-binding site (Table 4.5).

The average per-site ns-polymorphism rate throughout the 1a.3.V core genome was
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Figure 4.2: (A) Structural constraints shift the pN(site) distribution towards high relative

solvent accessibility (RSA). The pN(site) distribution (red line) and pS(site) distribution (blue
line) were created by weighting the RSA values of 239,528 sites (coming from the 754
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Figure 4.2 continued: genes with predicted structures) by the pN(site) and pS(site) values

observed in each of the 74 samples, totaling 17,725,072 pN(site) and pS(site) values. The
average distribution of 10 independent, randomly shuffled datasets of pN(site) is depicted by
the grey-regions for pN(site), and represents the null distribution expected if no association
between pN(site) and RSA existed. Since the null distribution for pS(site) so closely resembles
the null distribution for pN(site), it has been excluded for visual clarity, but can be seen in
Figure 4.9. (B) Functional constraint shifts the pN(site) distribution towards high distance-

to-ligand (DTL) values. The pN(site) distribution (red line) and pS(site) distribution (blue
line) were created by weighting the DTL values of 155,478 sites (coming from 415 genes that

had predicted structures and at least one predicted ligand) by the pN(site) and pS(site) values

observed in each of the 74 samples, totaling 11,505,372 pN(site) and pS(site) values. The
pN(site) null distribution was calculated according to the procedure described in panel A),

where again, the pS(site) null distribution closely resembled the pN(site) null distribution, and
can be seen in Figure 4.9. (C) Linear models reveal positive correlations between pN(site)

and RSA. The two distributions show Pearson correlation coefficients produced by linear
models of the form log10(pN

(site)) ∼ RSA (red-filled region) and log10(pS
(site)) ∼ RSA

(blue-filled region). A model has been fit to each gene-sample pair that passed filtering
criteria (see Supplementary Information), resulting in 16,285 nonsynonymous models and
24,553 synonymous models. Distribution means are visualized as dashed lines. (D) Per-
group polymorphism rates explain the major selective pressure trends with respect to RSA
and DTL. The left and right panels show heatmaps of pN(group) and pS(group). Each cell
represents a group defined by RSA and DTL ranges shown on the x- and y- axes, respectively.
The color of each cell represents the respective value for the group, where dark refers to low
values and light refers to high values. White lines show the contour lines of smoothed data.

0.0088, however, we observed a nearly 4-fold reduction in this rate to just 0.0024 at predicted

ligand binding sites (DTL = 0), indicating stronger purifying selection at ligand-binding

sites (Figure 4.2b). Sites neighboring ligand-binding regions also harbored disproportion-

ately low rates of ns-polymorphism, as indicated by the significant deviation towards larger

DTL values. This illustrates that purifying selection that preserves proper ligand-binding

functionality is not limited to residues at ligand-binding sites, but extends to proximal sites

as well. When we defined DTL in sequence space rather than Euclidean space, this effect

was no longer observable beyond sequence distances of ∼5-10 amino acids (Figure 4.10).

Comparatively, pS(site) deviated minimally from the null distribution. Overall, integrating

predicted protein structures and ligand-binding sites into the analysis of the genetic di-

versity of an environmental population has enabled us to demonstrate that (1) structural
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constraints bias pN(site) distributions towards solvent exposed sites (i.e. high RSA) (Figure

4.2a), and (2) functional constraints bias pN(site) distributions towards sites that are distant

from ligand-binding sites (i.e. high DTL) (Figure 4.2b).

4.5.4 Proteomic trends in purifying selection are explained by RSA and

DTL

Given the clear shift in ns-polymorphism rates towards high RSA and DTL sites across genes,

we next investigated the extent that RSA and DTL can predict per-site polymorphism rates.

By fitting a series of linear models to log-transformed polymorphism data (Table S6), we con-

clude that RSA and DTL can explain 11.83% and 6.89% of pN(site) variation, respectively.

Based on these models we estimate that for any given gene in any given sample, (1) a 1%

increase in RSA corresponds to a 0.98% increase in pN(site), and (2) a 1% increase in DTL

(normalized by the maximum DTL in the gene) corresponds to a 0.90% increase in pN(site).

In a combined model, RSA and DTL jointly explained 14.12% of pN(site) variation, and after

adjusting for gene-to-gene and sample-to-sample variance, 17.07% of the remaining variation

could be explained by RSA and DTL. In comparison, only 0.35% of pS(site) variation was

explained by RSA and DTL. Using a complementary approach, we constructed models for

each gene-sample pair (Supplementary Information), the correlations of which we used to

visualize the extent that pN(site) can be modeled by RSA and DTL relative to pS(site) (Fig-

ures 4.2c, 4.2d). Analyzing gene-sample pairs revealed that the extent of ns-polymorphism

rate that can be explained by RSA and DTL is not uniform across all genes (Table S7) and

can reach up to 52.6% and 51.4%, respectively (Figures 4.11, 4.12). Finally, we averaged

polymorphism rates within groups of sites that shared similar RSA and DTL values, which

demonstrated the tight association between the rate of within population ns-polymorphism

rate and protein structure (Table S8, Figure 4.2e). Linear regressions of these data show that

83.6% of per-group ns-polymorphism rates and 20.7% of per-group s-polymorphism rates are
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explained by RSA and DTL (Supplementary Information).

The true predictive power of RSA and DTL for polymorphism rates is most likely higher

than we report, since our approaches suffer from methodological shortcomings. For instance,

we calculate RSA from the steric configurations of residues in predicted structures. Thus, er-

rors in structure prediction propagate to errors in RSA. Errors in structure also propagate to

errors in DTL, since DTL is calculated using Euclidean distances between residues, which is

exacerbated by the uncertainty associated with ligand-binding site predictions. Furthermore,

RSA and DTL calculations assume that the protein is monomeric, even though oligomeric

proteins are common, and they represent the majority of proteins in some organisms [Good-

sell and and Olson, 2003]. In these cases, exposed sites in the monomeric structure could be

buried once assembled into the quaternary structure, and this is similarly true for estimates

of DTL. Even if we assume structural predictions are 100% accurate, it is notable that bind-

ing site predictions exclude (1) ligands that are proteins, (2) ligand-protein complexes that

have not co-crystallized with each other, (3) ligands of proteins with no shared homology

in the InteracDome database, and (4) unknown ligand-protein complexes. Each of these

shortcomings leads to missed binding sites, which leads to erroneously high DTL values in

the proximity of unidentified binding sites (Figure 4.13). Furthermore, our predictions as-

sume that if a homologous protein in the InteracDome database binds to a ligand with a

particular residue, then so too does the corresponding residue in the HIMB83 protein. This

leads to uncertain predictions, since homology does not necessitate binding site conservancy.

Additionally, studies have shown that conservation gradients are stronger for catalytic versus

non-catalytic binding sites [Sharir-Ivry and Xia, 2019], yet we do not distinguish between

these ligand classes. Finally, since we do not control for conformational changes induced by

allostery, there are likely instances of sites under strong functional constraint that we have

labeled as high DTL. Yet despite all these methodological shortcomings, our analyses show

that RSA and DTL prevail as significant predictors of per-site and per-group variation.
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Clear partitioning of environmental genetic variation by RSA and DTL (Figure 4.2) high-

lights the utility of these metrics for studies of evolution following the increasing availability

of protein structures. Analyses of total genetic variation lacking the ability to delineate dis-

tinct processes of evolution limit opportunities to identify determinants of fitness in rich and

complex data afforded by environmental metagenomes. Indeed, the application of RSA and

DTL to SAR11 demonstrate that not all variants are created equal; a notion considered com-

mon knowledge by all life scientists, and yet such a treatment is lacking in studies of genomic

heterogeneity that rely upon metagenomic read recruitment. RSA and DTL provide quanti-

tative means to bring a level of scrutiny to distinguish variants based on their distributions

in proteins. For instance, a collection of high-RSA and high-DTL sites will be more likely

to be enriched in neutral variants. In contrast, residues under strong purifying selection will

more likely be enriched in low-RSA and/or low-DTL sites of proteins. The ability to tease

apart distinct evolutionary processes with absolute accuracy will indeed remain difficult due

to a multitude of factors. But by providing structure-informed means to partition the total

intra-population variation into distinct pools, RSA and DTL offer a quantitative framework

that enables new opportunities to study distinct evolutionary processes.

4.5.5 Measuring purifying selection between genes and environments with

pN/pS(gene)

So far, our structure-informed investigation has focused on trends of sequence variation

within the gene pool of an environmental population. Next, we shifted our attention to

individual proteins. pN/pS(gene) is a metric that quantifies the overall direction and magni-

tude of selection acting on a single gene [Schloissnig et al., 2013, Shenhav and Zeevi, 2020],

where pN/pS(gene) < 1 indicates the presence of purifying selection, the intensity of which

increases as the ratio decreases. Since pN/pS(gene) is defined for a given gene in a given sam-

ple, pN/pS(gene) values for a single gene can be compiled from multiple samples, enabling
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the tracking of selective pressures across environments [Shenhav and Zeevi, 2020]. Taking

advantage of the large number of metagenomes in which 1a.3.V was present, we calculated

pN/pS(gene) for all 799 protein-coding core genes across 74 samples (see Methods), result-

ing in 59,126 gene/sample pairs (Table 4.9). We validated our calculations by comparing

sample-averaged pN/pS(gene) to dN/dS(gene) calculated from homologous gene pairs between

HIMB83 and HIMB122, another SAR11 isolate genome that is closely related to HIMB83

(gANI: 82.6%), which we found to yield commensurable results (Figure 4.14, Table 4.12,

Supplementary Information).

We found significantly more pN/pS(gene) variation between genes of a given sample

(‘gene-to-gene’ variation) than between samples of a given gene (‘sample-to-sample’ varia-

tion) (ANOVA, Figure 4.15). All but one gene (gene #2031, unknown function) maintained

pN/pS(gene) ≪ 1 in every sample, whereby 95% of values were less than 0.15 (Figure 4.16,

Table 4.9), indicating an intense purifying selection for the vast majority of 1a.3.V genes

across environments. This was foreshadowed by our earlier analysis in which pS(site) out-

weighed pN(site) by 19:1 within the aggregated data across genes and samples. However,

the magnitude of purifying selection was not uniform across all genes. In fact, gene-to-gene

variance, as opposed to sample-to-sample variance, explained 93% of pN/pS(gene) variation

(ANOVA, Figure 4.15). By analyzing the companion metatranscriptomic data [Salazar et al.,

2019] that were available for 50 of the 74 metagenomes, we were able to explain 29% of gene-

to-gene variance with gene transcript abundance (Table 4.13, Supplementary Information),

a known predictor of evolutionary rate [Pál et al., 2001]. Overall, these data demonstrate

the utility of pN/pS(gene) as a metric to understand the overall extent of selection acting on

genes.

The amount of pN/pS(gene) variation attributable to sample-to-sample variance was only

0.7% (Figure 4.15). While it represents a small proportion of the total variance, the sample-

to-sample variance in pN/pS(gene) encapsulates the extent that polymorphism varies in re-
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sponse to the range of environmental parameters observed across samples. These data there-

fore provide the opportunity to relate how differences in genetic diversity of individual genes

manifests from differences in environmental parameters (Table 4.10), which we focused on

next.

4.5.6 Nitrogen availability governs rates of non-ideal polymorphism at

critical sites of glutamine synthetase

To gain a more highly resolved picture of how selection shapes protein evolution, we searched

for a biologically relevant gene within 1a.3.V that exhibited evolutionary patterns that could

be understood by leveraging structural information. Glutamine synthetase (GS) is a critical

enzyme for the recycling of cellular nitrogen [Bernard and Habash, 2009], a limiting nutrient

for microbial productivity in surface oceans [Bristow et al., 2017]. GS yields glutamine and

ADP from glutamate, ammonia, and ATP, an essential step in the biosynthesis of nitrogenous

compounds.

Given the central role that GS plays in nitrogen metabolism, we expected GS to be under

high selection. Indeed, the sample-averaged pN/pS(GS) was 0.02, ranking GS amongst the

top 11% most purified genes (Figure 4.3b, Table 4.9). Although highly purified, we observed

significant sample-to-sample variation in pN/pS(GS) (min = 0.010, max = 0.036) suggesting

that the strength of purifying selection on GS varies from sample to sample (Figure 4.3b

inset), perhaps due to unique environmental conditions (e.g., nutrient compositions) that

differentially impact the need for glutamine synthesis. Since previous work has shown that

SAR11 upregulates its transcriptional and translational production of GS in response to

nitrogen limitation [Smith Daniel P. et al.], we hypothesized that purifying selection should

be highest in nitrogen-limited environments, and lowest in nitrogen-replete environments. We

utilized measured concentrations of nitrate as an indication of the level of nitrogen limitation

in each sample, and found a positive correlation between measured nitrate concentrations and
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pN/pS(GS) values across samples (Pearson correlation p-value = 0.009, R2 = 0.11) (Figure

4.3c), which ranked amongst the top 12% of positive correlations between pN/pS(gene) and

nitrate concentration (Figure 4.3c inset, Table 4.10). In summary, we find that although GS

is under high selection, subtle differences in selection strength are observed between samples

and are most likely driven by nitrogen availability.

Next, we focused on the GS protein structure to further investigate the associations

between GS polymorphism and processes of selection. Since the native quaternary structure

of GS is a dodecameric complex (12 monomers), our monomeric estimates of RSA and DTL

are unrepresentative of the active state of GS. We addressed this by aligning 12 copies of the

predicted structure to a solved dodecameric complex of GS in Salmonella typhimurium (PDB

ID 1FPY), which HIMB83 GS shares 61% amino acid similarity with (Figure 4.3a). From this

stitched quaternary structure we recalculated RSA and DTL, and as expected, this yielded

lower average RSA and DTL estimates due to the presence of adjacent monomers (0.17

versus 0.24 for RSA and 17.8Å versus 21.2Å for DTL). With these quaternary estimates of

RSA and DTL, we found that ns-polymorphism was 30x less common than s-polymorphism,

and it strongly avoided sites with low RSA and the three glutamate active sites to which

any given monomer was proximal (Figure 4.3d). In comparison, s-polymorphism distributed

relatively homogeneously throughout the protein, whereby 17% of s-polymorphism occurred

within 10Å of active sites (compared to 3% for ns-polymorphism) and 19% occurred in sites

with 0 RSA (compared to 9% for ns-polymorphism). Averaged across samples, the mean

RSA was 0.15 for s-polymorphism and 0.33 for ns-polymorphism (Figure 4.3e left panel).

Similarly, the mean DTL was 17.2Å for s-polymorphism and 22.9Å for ns-polymorphism

(Figure 4.3f left panel). These observations highlight in a single gene what we previously

observed across the 1a.3.V core: selection purifies the majority of ns-polymorphism and does

so with increased strength at structurally/functionally critical sites.

We next investigated whether variance in selection strength (Figure 4.3b inset) affects the
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spatial distribution patterns of polymorphism. For each sample, we calculated how polymor-

phism rates in GS distributed with respect to RSA and DTL and associated these distribu-

tions with pN/pS(GS). While the mean RSA of s-polymorphism remained relatively invari-

ant (standard deviation 0.005) (Figure 4.3e right panel), the mean RSA of ns-polymorphism

varied dramatically from 0.27 to 0.37 and was profoundly influenced by sample pN/pS(GS);

samples exhibiting low selection of GS harbored lower mean RSA and samples exhibiting

high selection of GS harbored higher mean RSA (Figure 4.3e right panel). In fact, 82.9% of

mean RSA ns-polymorphism variance could be explained by pN/pS(GS) alone (Pearson cor-

relation, p-value < 1× 10−16, R2 = 0.829). ns-polymorphism distributions with respect to

DTL were equally governed by selection strength, where 80.4% of variance could be explained

by pN/pS(GS) (Pearson correlation, p-value < 1× 10−16, R2 = 0.804, Figure 4.3f).

When selection is low, we observe high nitrate concentrations (Figure 4.3c inset) and

ns-polymorphism distributions towards lower RSA/DTL (Figures 4.3e, 4.3f). When selec-

tion is high, we observe low environmental nitrate concentrations (Figure 4.3c inset) and

ns-polymorphism distributions towards higher RSA/DTL (Figures 4.3e, 4.3f). Given that

proper functionality of GS is most critical in nitrogen-limited environments and that mu-

tations with low RSA/DTL are more likely to be deleterious, the most likely explanation

for the body of evidence presented is that GS accumulates non-ideal polymorphism in sam-

ples exhibiting low selection of GS that cannot be effectively purified at the given selection

strength. As selection increases, so too does the purifying efficiency, which we indirectly

measure as increases in mean RSA and DTL of ns-polymorphism. Our approach illustrates

this ‘use it or lose it’ evolutionary principle over a spectrum of selection strengths which

have been sampled from natural in situ environmental conditions.

Under this hypothesis, there should exist low DTL amino acid alleles that create a nega-

tive, yet tolerable impact on fitness when selection is low, yet incur an increasingly detrimen-

tal fitness cost as selection increases. One would expect such alleles to be at low frequency
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Figure 4.3: Polymorphism distribution patterns in glutamine synthetase (GS). (A) GS forms
a dodecameric complex. The structure (PDB ID 1FPY) comes from Salmonella typhimurium
(61% sequence similarity to HIMB83) and is shown from two different views. Pink molecules
are ADP and phosphinothricin (steric inhibitor of glutamate), and are situated within the
active site of GS. (B) GS is one of the most highly conserved genes in 1a.3.V. The main plot

shows the distribution of sample-averaged pN/pS(gene) for all 799 genes in the 1a.3.V core

(truncated at 0.30). The vertical green line depicts the sample-averaged pN/pS(gene) for GS

(0.020). The inset plot shows the distribution of pN/pS(gene) value for GS as seen across the
74 samples, which vary from 0.010 to 0.036.
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Figure 4.3 continued: (C) Selection strength on GS correlates with environmental concen-
tration of nitrates. The main plot shows a histogram of Pearson correlation coefficients (one

per gene) between pN/pS(gene) and measured concentration of nitrates in each sample. The
vertical green line depicts the correlation coefficient for GS (0.34). The inset shows a scat-

ter plot of pN/pS(gene) vs nitrate concentrations from which the GS correlation coefficient
was calculated. (D) ns-polymorphism polymorphism rates are reduced in the vicinity of
the active sites. Each image is a view of the predicted structure of monomeric GS. Phos-
phinothricin substrates were situated by aligning the predicted GS structure to the complex
in panel A. Red surfaces are colored according to the sample-averaged log10pN

(site) value

of each residue, and blue surfaces are colored according to the sample-averaged log10pS
(site)

value of each residue. In each case, darker colors refer to higher rates. Left-to-right, each
view is a 90◦ clockwise rotation of the previous view about the vertical axis. Each image
was rendered programmatically using a PyMOL script that was generated from the anvi’o
structure interactive interface. (E) As selection decreases, ns-polymorphism creeps into low-
RSA sites. The left panel shows the distribution of samples’ average RSA of nonsynonymous
(red) and synonymous (blue) polymorphisms. The right panel shows how these average RSA

values (y-axis) correlate with the samples’ pN/pS(gene) values (x-axis). Each data point is

calculated by weighting the RSA of each residue by the pN(site) (red) or pS(site) (blue) values
observed in that sample. The red and blue lines show the nonsynonymous and synonymous
linear fits, respectively, and the corresponding shaded regions show the 95% confidence inter-
vals for the fit. (F) As selection decreases, ns-polymorphism creeps closer to the binding site.
The scheme is identical to panel E, where RSA is replaced with the distance-to-glutamate
substrate (DTL). (G) Some sites exhibit amino acid minor allele frequencies that co-vary

with pN/pS(GS). The top panel shows the extent that sites co-vary with pN/pS(GS). The
x-axis shows the residue number and the y-axis the slope estimate of a linear regression be-

tween the sum of minor allele frequencies and pN/pS(GS). Sites with DTL values less than
the average are indicated in red and are gray otherwise. All sites above an arbitrary cutoff
(dashed horizontal line) are annotated with their residue number. Scatter plots below show
the allele frequency trajectories for a select number of these sites.

in low pN/pS(GS) samples, and to reach increasingly higher frequencies in higher pN/pS(GS)

samples. We identified putative sites fitting this description by scoring sites based on the ex-

tent that their amino acid minor allele frequencies co-varied with pN/pS(GS), including only

sites with DTL less than the mean DTL of ns-polymorphisms (22.9Å). Using an arbitrary

cutoff, we identified 9 top-scoring polymorphisms that co-varied with pN/pS(GS) (Figure

4.3g): I96V, L152I, Q175P/G, I176V, N230D, S288A/D, I323V, A364S, I379L. Though each

of these sites exhibited DTL lower than the average ns-polymorphism, the closest site (residue
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number 323) was still 9Å away from the glutamate substrate. This suggests there are no

‘smoking gun’ polymorphisms occurring in the binding site that abrasively disrupt function-

ality. After all, in absolute terms GS is highly purified regardless of sample – the largest

pN/pS(GS) is 0.036, which is just over half the genome-wide average pN/pS(gene) of 0.063.

Our data therefore represents a subtle, yet resolvable signal of minute decreases in selection

strength manifesting as minute shifts in the distribution of ns-polymorphism towards the

active site.

While identifying signatures of positive selection is typically the primary pursuit in evo-

lutionary analysis, our data instead illustrates a highly resolved interplay between purifying

selection strength and polymorphism distribution. The geography and unique environmen-

tal parameters associated with each sample yielded a spectrum of selection strengths which

enabled us to quantify how polymorphism distributions of a gene under high selection shift

in response to small perturbations in selection strength. In the case of GS, we were able to

attribute these shifts to the availability of nitrogen, thereby linking together environment,

selection, and polymorphism.

Throughout the 1a.3.V core genes, we observed that samples exhibiting low overall selec-

tion of 1a.3.V were strongly associated with increased accumulation of ns-polymorphism at

low RSA/DTL sites (Figures 4.4a, 4.4b, Supplementary Information), suggesting this signal

is not specific to GS, but rather a general feature of the 1a.3.V core genes. Though highly sig-

nificant (one sided Pearson p-values 9×10−12 for RSA and 2×10−4 for DTL), the magnitude

that ns-polymorphism distributions shift with respect to DTL and RSA were subtle: across

samples, the mean DTL of ns-polymorphism varied by less than 1Å, and the mean RSA

varied between 0.230 and 0.236. Resolving such a minute signal with such robust statistical

power is owed to the immense quantities of sequence data afforded by metagenomics.
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Figure 4.4: Polymorphism distribution patterns with respect to genome-wide selection
strength. Each data point is a sample (metagenome). Lines represent lines of best fit and cor-

responding translucent areas represent 95% confidence intervals. The x-axis is pN/pS(core),
which is calculated across the whole core genome and is an inverse proxy of genome-wide
purifying selection strength (see Methods). (A) The ns-polymorphism distribution mean

with respect to RSA is negatively associated with pN/pS(core) (one-sided Pearson p-value =
9×10−12). (B) The ns-polymorphism distribution mean with respect to DTL is negatively as-

sociated with pN/pS(core) (one-sided Pearson p-value = 2×10−4). (C) The s-polymorphism

distribution mean with respect to RSA is negatively associated with pN/pS(core) (one-sided
Pearson p-value = 1 × 10−5). (D) The s-polymorphism distribution mean with respect to

RSA is negatively associated with pN/pS(core) (one-sided Pearson p-value = 3× 10−7). (E)

Rare synonymous codons are more abundant in samples with high pN/pS(core) (one-sided
Pearson p-value = 4 × 10−5). (F) Rare synonymous codons avoid low RSA sites when

pN/pS(core) is low (one-sided Pearson p-value = 1× 10−10). (G) Rare synonymous codons

avoid low DTL sites when pN/pS(core) is low (one-sided Pearson p-value = 7× 10−9).
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4.5.7 Synonymous but not silent: selection against rare codons at critical

sites

Thus far we have observed that purifying efficiency observably decreases in response to

lowered selection strength, as evidenced by ns-polymorphism occurring nearer to binding sites

and in more buried sites. Given the influence of synonymous substitutions in translational

processes [Plotkin and Kudla, 2011], as a final analysis we focused on within-population

trends of s-polymorphism.

Compared to ns-polymorphism, s-polymorphism distributes more uniformly throughout

protein structures (Figures 4.2a, 4.2b). Yet our data also revealed an association between

selection strength and the distribution of s-polymorphism. In samples under higher selection,

s-polymorphism systematically tended to occur (1) in more solvent-exposed sites (Figure

4.4c, one-sided Pearson p-value = 1× 10−5) and (2) farther from binding sites (Figure 4.4d,

one-sided Pearson p-value = 3 × 10−7). These trends indeed mimic the nonsynonymous

trends in glutamine synthetase (Figures 4.3d, 4.3e, 4.3f) as well as the core genes in general

(Figures 4.4a, 4.4b), and cannot be reasonably explained by neutral processes. The surprising

association suggests a relationship between selection and synonymous change that is at least

partly determined by structural features of proteins.

With a GC-content lower than 30%, SAR11 genomes maintain a non-uniform yet con-

served codon composition (Figure 4.17). Previous work has shown that rare codons can

significantly reduce translation rates [Sørensen et al., 1989], cause delays in the production

of the polypeptide chain at the ribosome [Komar, 2009], which can lead to protein misfolding

[Drummond and Wilke, 2008, Agashe et al., 2013], and impair fitness [Walsh et al., 2020].

Thus, we hypothesized that rare codons in 1a.3.V may incur fitness costs relative to their

more common, synonymous counterparts. To test this hypothesis, we investigated the rela-

tionship between selection strength and the occurrence of rare codons, which required us to

define a ’codon rarity’ metric based on the frequency that codons are found in the HIMB83
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genome relative to their synonymous counterparts (Table 4.11). We then attributed an over-

all rarity score to each sample by weighting the rarity of all synonymous codon alleles by

the frequencies with which they were observed (see Methods). Our analysis of these data

revealed a positive correlation between codon rarity in a sample and its pN/pS(core) (Figure

4.4d, one-sided Pearson p-value = 1× 10−5), illustrating that rare codons are more likely to

be found in samples where genome-wide selection is low. We found this to be the case for

s-polymorphism within all 18 amino acids that possess two or more codons (Figure 4.18),

illustrating that this evolutionary process acts ubiquitously throughout the genetic code of

1a.3.V. Rare codons did not distribute throughout protein structures uniformly, either. In

samples with low genome-wide selection, where rarity was highest, rare codons occurred far-

ther away from binding sites (one-sided Pearson p-value = 1 × 10−10) and occurred more

frequently in more solvent-exposed sites (one-sided Pearson p-value = 7×10−9), as compared

to low selection samples (Figures 4.4e, 4.4f).

Overall, these data show that when genome-wide selection strength is low, rare codons

both (1) incorporate into the genome with increased propensity, and (2) manifest in sites

that are statistically more likely to be structurally/functionally important. As previous re-

search suggests, the most likely explanation for these observations is that rare codons are

less fit due to decreased translational accuracy compared to their more common, synony-

mous counterparts. Yet the environmental and structural dimensions of our data reveal the

dynamic nature of the evolutionary processes that maintain synonymous polymorphism as a

function of changing conditions in naturally occurring habitats and elucidates the intensity

of such processes as a function of their physical locations in the structure. Indeed, 1a.3.V

maintains the lowest proportion of rare codons in samples where genome-wide selection is

highest, and rare codons in these samples are statistically more likely to be incorporated

in noncritical sites of proteins, most likely due to the increased efficiency with which puri-

fying selection operates in an environment- and site-dependent manner. These rare codon
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data provide a lens into the potential fitness costs associated with suboptimal translational

accuracy in complex populations, and by including structural data, we demonstrate where

optimal translational accuracy matters most.

4.6 Conclusions

With recent breakthroughs in predicting protein structures and ligand binding sites, mi-

crobial ecology need not be limited to just sequences. By offering an interactive, scalable,

and open-source software solution that integrates environmental genetic variants with struc-

tural bioinformatics, our study takes advantage of recent advances to connect environmental

‘omics and structural biology. Indeed, by leveraging structure and ligand-binding predictions

we were able to describe striking patterns of nucleotide polymorphism in an environmental

microbial population that we could ascribe to evolutionary constraints that preserve protein

structure (folding & stability) and protein function (ligand-binding activity). By tracking a

SAR11 population across metagenomes we were able to demonstrate the presence of dynamic

processes that purge both synonymous and nonsynonymous polymorphism from the vicinity

of ligand binding sites of proteins as a function of selection strength. Overall, our study

proposes a structure-informed computational framework for microbial population genetics

and offers a glimpse into the emerging interdisciplinary opportunities made available at the

intersection of ecology, evolution, and structural biology.

4.7 Methods

4.7.1 Overview

The URL https://merenlab.org/data/anvio-structure provides a complete repro-

ducible workflow for all analysis steps detailed below, including (1) downloading the publicly

available metagenomes and genomes, (2) recruiting reads from metagenomes, (3) calculating
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single amino-acid and single codon variants, (4) predicting protein structures and ligand

binding sites, and (5) visualizing metagenomic sequence variants and binding sites onto

protein structures.

4.7.2 Metagenomic and metatranscriptomic read recruitment and

processing

To study the population structure of the environmental SAR11 population 1a.3.V defined

previously [Delmont et al., 2019], we used anvi’o v7.1 [Eren et al., 2021], and its metagenomics

workflow [Shaiber et al., 2020] which uses snakemake v5.10 [Köster and Rahmann, 2012] to

automate gene calling, gene function annotation, metagenomic and metatranscriptomic read

recruitment steps. The compendium of anvi’o programs the metagenomics workflow called

upon employed Prodigal v2.6.3 [Hyatt et al., 2010] for gene calling, NCBI’s Clusters of

Orthologous Groups (COGs) database [Tatusov et al., 2003] and Pfams [El-Gebali et al.,

2019] for gene function annotation, HMMER v3.3 [Eddy, 2011] for profile HMM searches,

DIAMOND v2.0.6 [Buchfink et al., 2015] for sequence searches, Bowtie2 v2.4 [Langmead

and Salzberg, 2012] for read recruitment, and samtools v1.9 [Li et al., 2009] to generate

BAM files. The metagenomic workflow resulted in a ‘contigs database’ and a ‘merged pro-

file database’ (two anvi’o artifacts detailed at https://anvio.org/help/), which gives access

to gene and genome coverages (with metagenomic or metatranscriptomic short reads), as

well as the sequence variability data to study population genetics as detailed below. We

adopted a competitive read recruitment strategy by using all SAR11 genomes, rather than

only HIMB83, as reference to recruit reads from Tara Oceans Project metagenomes and

metatranscriptomes to maximize the exclusion of reads that matched better to other known

SAR11 genomes, thereby narrowing our scope of probed diversity and minimizing the im-

pacts of non-specific read recruitment. In all subsequent analyses we focused on the core

genes of the 1a.3.V subclade by only considering (a) reads that mapped to HIMB83 (b) the
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74 metagenomes in which HIMB83 was found above 50X, and (c) the 799 HIMB83 genes

that were previously found to maintain consistent coverage patterns [Delmont et al., 2019].

4.7.3 Quantifying SCVs and SAAVs in metagenomes

To characterize the variants in metagenomic read recruitment results we used and ex-

tended the microbial population genetics framework implemented in anvi’o. The program

anvi-profile with the flag --profile-SCVs characterizes single codon variants (SCVs),

from which single amino acid variants (SAAVs) can also be calculated. Anvi’o determines

allele frequency vectors for SCVs by tallying the frequencies of codons observed in the 3-nt

segments of reads that fully map to a given codon position. The frequencies of amino acids

encoded by each 3-nt segment yield SAAVs observed in a given position, which represent

allele frequency vectors of positions after collapsing synonymous redundancy. For a given

codon position, anvi’o excludes any reads that do not map to all 3 nucleotides, which can

happen either if the read terminates within the codon position, or there exists a deletion in

the read relative to the reference genome. Reads that contain insertions within the codon rel-

ative to the reference genome are also excluded during this step. We exported variant profiles

as tabular data using the program anvi-gen-variability-profile, where each row is a

SCV (or SAAV) and the columns specify (1) identifying information such as the correspond-

ing gene, codon position, and sample id, (2) the number of mapped reads corresponding to

each of the 64 codons (or 20 amino acids), and (3) numerous miscellaneous statistics, all of

which can be explored at https://merenlab.org/analyzing-genetic-varaibility.

4.7.4 Calculations of polymorphism rates of individual codon sites, pN(site)

and pS(site)

We calculated the polymorphism rates of individual codon sites from allele frequencies defined

from each SCV based on a recent study by Shenhav and Zeevi [Shenhav and Zeevi, 2020],
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where a given codon allele contributes (to either pN(site) or pS(site)) an amount that is

equal to its observed relative abundance (frequency). To which rate the allele contributes is

determined by its synonymity relative to the popular consensus, i.e. the allele most common

across all samples. After summing the contributions for each of the 63 codons (excluding

the popular consensus), we normalized the resulting values of pN(site) and pS(site) by the

number of nonsynonymous and synonymous sites of the popular consensus, respectively.

For example, if the popular consensus is ‘ACC’ (Thr), there are 9 possible single point

mutations, 3 synonymous and 6 nonsynonymous, therefore pS(site) will be divided by 3/3 =

1 and pN(site) will be divided by 6/3 = 2. This procedure can be mathematically expressed

as

pN(site) =
1

nn

∑
c∈C\r

fcN(c, r), pS(site) =
1

ns

∑
c∈C\r

fc S(c, r)

where C\r is the set of all codons excluding the popular consensus r; nn and ns are the

number of nonsynonymous and synonymous sites of r, respectively; fc is the frequency of

the cth allele; N(c, r) is the indicator function where,

N(c, r) = 1 if not synonymous(c, r) else 0

and S(c, r) is the indicator function where,

S(c, r) = 1 if synonymous(c, r) else 0.

We implemented this strategy into the program anvi-gen-variability-profile as a new

flag --include-site-pnps, which when declared, adds pN(site) and pS(site) values as ad-

ditional columns to the tabular output after calculating them for 3 different choices of the

reference codon r: (1) the popular consensus (as used in this paper), (2) the consensus (the

allele with the highest frequency), and (3) the codon found in the reference sequence (the

100

https://anvio.org/help/main/programs/anvi-gen-variability-profile/


sequence used for read recruitment). For efficient computation, this calculation uses the

Python package numba [Lam et al., 2015] for just-in-time compilation. For a dataset with

12,583,626 SCVs, the current implementation computes pN(site) and pS(site) terms in less

than a minute on a laptop computer.

4.7.5 Calculations of polymorphism rates within a group of sites, pN(group),

pS(group), and pN/pS(group)

We defined groups such that all sites in a group share similar RSA and DTL values. Formally,

we defined pN(group) and pS(group) as

pN(group) =

∑G
g=1

∑
c∈C\r f

(g)
c N(c, r(g))∑G

g=1 n
(g)
n

, pS(group) =

∑G
g=1

∑
c∈C\r f

(g)
c S(c, r(g))∑G

g=1 n
(g)
s

.

G is the number of sites in the group; r(g) is the popular consensus of the gth site; f
(g)
c is the

frequency of the cth allele at the gth site; n
(g)
n and n

(g)
s are the number of nonsynonymous

and synonymous sites of r, respectively. All other definitions are the same as for pN(site)

and pS(site). pN(group) and pS(group) can be expressed in terms of weighted sums of pN(site)

and pS(site), respectively:

pN(group) =

∑G
g=1 n

(g)
n pN(g, site)∑G
g=1 n

(g)
n

, pS(group) =

∑G
g=1 n

(g)
s pS(g, site)∑G
g=1 n

(g)
s

.

Finally, pN/pS(group) is defined as

pN/pS(group) = pN(group) / pS(group).
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4.7.6 Calculations of polymorphism rates for individual and core genes,

pN(gene), pS(gene), pN/pS(gene), and pN/pS(core)

We calculated rates of polymorphism for genes and the 1a.3.V core genome identically to the

calculations of pN(group), pS(group), and pN/pS(group). For example, pN(gene) refers to the

ns-polymorphism rate of all sites in a given gene, and pS(core) refers to the s-polymorphism

rate of all sites in the 1a.3.V core genome.

4.7.7 Predicting and processing protein structures

We attempted to predict protein structures for each gene in the HIMB83 genome that be-

longed to the 1a.3.V core using both AlphaFold [Jumper et al., 2021] and MODELLER

[Webb and Sali, 2016]. To process, store, and access the resulting protein structures we de-

veloped a novel program, anvi-gen-structure-database, which gives access to all atomic

coordinates as well as per-residue statistics such as relative solvent accessibility, secondary

structure, and phi & psi angles calculated using DSSP (Touw et al., 2015; Kabsch and Sander,

1983). For AlphaFold predictions we used a version of the codebase that closely resembles

v2.0.1 (the URL https://github.com/johnaparker/alphafold/tree/3829f4e0ba01aa

1b4f01916c83e9ca5de771d98a gives access to its exact state) and ran predictions using 6

GPUs, which took a week on a high-performance computing system. AlphaFold predicted

structures for 795 of 799 proteins, and after removing structures with gene-averaged pLDDT

scores <80, we were left with 754 structures we deemed ‘trustworthy’ for downstream analy-

ses. To predict protein structures with MODELLER, we developed a pipeline that, for each

gene, (1) searches the Research Collaboratory for Structural Bioinformatics Protein Data

Bank [Berman et al., 2000] (RSCB PDB) for homologs using DIAMOND [Buchfink et al.,

2015], then downloads tertiary structures for matching entries, and (2) uses these homologs

as templates to predict the gene’s structure with MODELLER [Webb and Sali, 2016]. We

discarded any proteins if the best template had a percent similarity of <30%. Unlike more
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sophisticated homology approaches that make use of multi-domain templates [Källberg et al.,

2012], we used single-domain templates which are convenient and are accurate up to several

angstroms, yet can lead to physically inaccurate models when the templates’ domains match

to some, but not all of the sequences’ domains. To avoid this, we discarded any templates

if the alignment coverage of the protein sequence to the template was <80%. Applying

these filters resulted in 408 structures from the 1a.3.V core, which was further refined by

requiring that the root mean squared distance (RMSD) between the predicted structure and

the most similar template did not exceed 7.5 Å, and that the GA341 model score exceeded

0.95. After applying these constraints, we were left with 348 structures in the 1a.3.V that

we assumed to be ‘trustworthy’ structures as predicted by MODELLER. These structures

were on average 44.8% identical to their templates, which is within the sequence similarity

regime where template-based homology modeling generally produces the correct overall fold

[Rost, 1999].

4.7.8 Predicting ligand-binding sites

For the 1a.3.V core genes we estimated per-residue binding frequencies for a diverse collection

of ligands by using InteracDome, a database that annotates the sites (match states) of

Pfam profile hidden Markov models (HMMs) with ligand binding frequencies predicted from

experimentally-determined structural data [Kobren and Singh, 2019]. To associate match

state binding frequencies of the profile HMMs to the sites of HIMB83 genes, we applied a

protocol similar to that described in Kobren & Singh.

First, we downloaded the Representable-NR Interactions (RNRI) from the InteracDome

web server (https://interacdome.princeton.edu/) that “correspond to domain-ligand

interactions that had nonredundant instances across three or more distinct PDB structures”

(Table S5). Next, we downloaded the profile HMMs for Pfam v31.0 and kept only those

2,375 profiles that belonged to the RNRI dataset. Then, we searched each HIMB83 gene
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against this set using HMMER’s hmmsearch. After the removal of HMM hits that were

below the gathering threshold (GA) noise cutoffs defined in Pfam models, 940 of the 1,470

HIMB83 coding genes had at least one domain hit, with a total of 1,770 domain hits from

832 unique profile HMMs. Of these, we removed 177 for being too partial (length of the hit

divided by the profile HMM length was less than 0.5), and 1 hit because the query sequence

did not match all the consensus residues for match states in which the information content

exceeded 4 (Table S5). We then associated binding frequencies for a collection of ligand

types to the HIMB83 genes by parsing alignments of the profile HMMs to the HIMB83 gene

amino acid sequences, which are provided in the standard output of hmmsearch. If a given

HIMB83 residue aligned to multiple match states, each which had the same ligand type,

we attributed the average binding frequency to the HIMB83 residue. We then filtered out

binding frequency scores less than 0.5, yielding 40,219 predicted ligand-residue interactions

across 11,480 unique sites (Table S5). We considered each of these sites to be ‘ligand-binding

sites’.

Our study includes two novel programs to automate this procedure and make it acces-

sible to the community. The first, anvi-setup-interacdome, downloads the RNRI and

Pfam datasets, and only needs to be run once. The second, anvi-run-interacdome, is

a multi-threaded program that takes an anvi’o contigs database as input, and runs the

remainder of the workflow described for each gene in the database. Predicted binding fre-

quencies are stored internally in the database, which enables a seamless integration with

other anvi’o programs to accomplish various tasks, such as the interactive visualization of

the binding sites of predicted structures for any given gene with anvi-display-structure

(see Supplementary Information), or exporting the underlying data as TAB-delimited files

with anvi-export-misc-data. In the present study, anvi-run-interacdome processed the

HIMB83 genome in 53 seconds on a laptop computer using a single thread.
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4.7.9 Calculating relative solvent accessibility (RSA)

We calculated RSA for each residue of each predicted structure, where RSA was defined as

the accessible surface area (ASA) probed by a 1.4Å radius sphere, divided by the maximum

ASA, i.e. the ASA of a Gly-X-Gly tripeptide. RSA values were calculated in the program

anvi-gen-structure-database using Biopython’s DSSP module [Cock et al., 2009].

4.7.10 Calculating distance-to-ligand (DTL)

DTL was calculated for all sites that belonged to genes with (a) a predicted structure and

(b) at least one predicted ligand-binding residue. Ideally, one would calculate DTL as the

Euclidean distance of a residue to the predicted ligand, however our predictions did not yield

the 3D coordinates of ligands. Instead, we approximated DTL as the Euclidean distance

of a residue to the closest ligand-binding residue (see Methods), which lies within a few

angstroms of the predicted ligand. Specifically, we defined this distance according to the

sites’ side chain center of masses. A consequence of approximating DTL with respect to the

closest ligand-binding sites is that by definition, any ligand-binding residue has a DTL of 0.

As discussed in Proteomic trends in purifying selection are explained by RSA and DTL,

missed binding sites lead to erroneously high DTL values. We assessed the magnitude of this

error source by comparing our distribution of predicted DTL values in the 1a.3.V core to that

found in BioLiP, an extensive database of semi-manually curated ligand-protein complexes

[Yang et al., 2013]. We found the 1a.3.V DTL distribution had a much higher proportion

of values >40 Å, suggesting these likely result from incomplete characterization of binding

sites (Figure 4.13). To mitigate the influence of this inevitable error source, we conservatively

excluded DTL values >40 Å (8.0% of sites) in all analyses after Figure 4.2b.
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4.7.11 Calculating polymorphism null distributions for RSA and DTL

The null distributions for polymorphism rates with respect to RSA and DTL were calculated

by randomly shuffling the RSA and DTL values calculated for each site, yielding distributions

one would expect if there was no association between polymorphism rate and RSA. To avoid

biases, each null distribution is the average of 10 shuffled datasets.

4.7.12 Proportion of polymorphism rate variance explained by RSA and

DTL

To calculate the extent that RSA and DTL can explain polymorphism rates, we constructed

3 synonymous models (s-models) and 3 nonsynonymous models (ns-models) (Table 4.6). s-

models fit linear regressions of log10(pS
(site)) to RSA (s #1), DTL (s #2), and both RSA

& DTL (s #3). Similarly, ns-models fit linear regressions of log10(pN
(site)) to RSA (ns #1),

DTL (ns #2), and both RSA & DTL (ns #3). Additionally, each model included the gene

and sample of the corresponding polymorphism as independent variables, in order to account

for gene-to-gene and sample-to-sample differences. Polymorphism rates were log-transformed

because it helped linearize the data, yielding better models. The data used to fit each model

included all codon positions across all samples in each gene that had a predicted protein

structure and at least 1 predicted ligand-binding residue. After excluding monomorphic

sites (pN(site) = 0 for ns-models, pS(site) = 0 for s-models), this yielded 5,838,445 data

points for s-models and 3,850,182 for ns-models. While every protein has RSA values that

span the domain [0,1], protein size creates dramatic gene-to-gene differences in observed

DTL values. We accounted for this by standardizing DTL values on a per-gene basis, which

improved variance explained by DTL. The variance explained by RSA, DTL, sample, and

gene was determined by performing an ANOVA on each model and partitioning the sum of

squares (Table S6).
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4.7.13 Calculating transcript abundance (TA)

Since proper transcription level metrics such as molecules per cell are incalculable from

metatranscriptomic data, we estimated the transcript abundance (TA) to be

TA =
C(MT )

D(MT )
/
C(MG)

D(MG)
,

where C(MT ) is the coverage of the gene in the metatranscriptome, D(MT ) is the sequencing

depth (total number of reads) of the metatranscriptome, C(MG) is the coverage of the gene

in the metagenome, and D(MG) is the sequencing depth (total number of reads) of the

metagenome. This means, for example, that a gene with a metatranscriptomic relative

abundance 10% of its metagenomic relative abundance would have a TA of 0.10.

4.7.14 Definition of codon rarity

Our definition of codon rarity quantifies how rare a codon is compared to the codons it is

synonymous with. Let fc be the frequency that codon c is observed in the HIMB83 genome

sequence, i.e. the proportion of HIMB83 codons corresponding to the codon c. Then, the

rarity of codon i is equal to

Ri = 1− fi∑
j fj S(i, j)

,

where
∑

is a sum over all 64 codons and S(i, j) is the indicator function describing whether

codons i and j are synonymous with one another:

S(i, j) = 1 if synonymous(i, j) else 0.

We utilized this definition to calculate the codon rarity of synonymous polymorphic sites

(pN(site) < 0.0005) by weighting each codon’s rarity by the frequency that the codon was
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observed in the short reads mapping to that position. For example, a polymorphic site with

a coverage of 200, where 50 reads resolve to GCC (RGCC = 0.94) and 150 resolve to GCT

(RGCT = 0.58) would get a rarity score of 50/200×0.94+150/200×0.58 = 0.67. Extending

this to multiple sites, we take the codon rarity of an entire sample to be the average rarity

across all codon sites, excluding those with pN(site) > 0.0005.

4.7.15 Statistical data analysis and visualization

We used R v3.5.1 [R Development Core Team, 2011] for the analysis of numerical data

reported from anvi’o. For data visualization we used ggplot2 [Ginestet, 2011b] library in R

and anvi’o, and finalized images for publication using Inkscape v1.1 (https://inkscape.o

rg/).
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4.9 Supplementary Figures

Figure 4.5: Regimes of sequence similarity probed by metagenomics, SAR11 cultured
genomes, and protein families. Empirical distributions of gene-level percent similarity for
HIMB83 compared with recruited metagenomic reads (pink), homologous SAR11 genomes
(blue), and homologous Pfams (orange). For calculation details, see Supplementary Infor-
mation.

109



Figure 4.6: Different environments exhibit substantial variation in their environmental pa-
rameters. Each subplot shows how the 74 selected metagenomes distribute according to
various environmental variables measured by the TARA ocean metagenome project.
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Figure 4.7: pN(site) varies more significantly between sites in a given sample than between
samples for a given site. The x-axis is the log-transformed standard deviation of either a
sample’s pN(site) values observed over many sites (orange), or a site’s pN(site) values observed
over the 74 samples (gray).
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Figure 4.8: Comparisons between structures predicted by AlphaFold and MODELLER. (A-
B) Distributions of TM scores and RMSD between structures predicted by both MODELLER
and AlphaFold. (C) Distribution of secondary structure fractions, between MODELLER
(black) and AlphaFold (green). Secondary structure fraction was defined for each gene as
the fraction of sites that DSSP predicted as part of an alpha helix or beta strand. (D)
Comparison of secondary structure fractions between MODELLER and AlphaFold for two
TM score groups. The y-axis is the secondary structure fraction of AlphaFold divided by the
secondary structure fraction of MODELLER. The two groups were defined as having TM
scores above or below 0.8, where the >0.8 group corresponded to the 291 best alignments
(left) and the <0.8 group corresponded to the 48 worst alignments. (E-F) Distributions
describing the mean pLDDT and protein sequence length of AlphaFold structures that either
(1) had analog MODELLER structures (red) or (2) did not (blue).
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Figure 4.9: Comparison of null distributions for pN(site) and pS(site) for RSA and DTL.
Each distribution was calculated by averaging 10 independent, randomly shuffled datasets
of either pN(site) (red line) or pS(site) (blue line). To better visualize differences between the

null distributions, the blue lines depicting the pS(site) distributions were shifted right by half
of a bin’s width.

Figure 4.10: Functional constraint is less resolved when using a sequence-distance metric of
DTL. pN(site) (left panel) and pS(site) (right panel) distributions with respect to 1D DTL,
which we defined as the number of sites in a protein’s sequence that separate a given site
from a predicted ligand-binding site. Lines represent the observed distributions, and filled
regions represent the null distributions, calculated via the shuffling procedure described in
Figure 4.2. Insets show the same data zoomed into the 1D DTL range [0, 20].
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Figure 4.11: Select gene-sample pairs illustrate the diversity with which pN(site) associates
with RSA. Scatterplots for handpicked gene-sample pairs are shown from three regimes
of model quality: high (top), mid (middle), and low (bottom). The right panel shows
the distribution of Pearson coefficients, and the bin that each example was taken from is
highlighted in pink. Each scatter plot is a gene-sample pair, each datapoint is a residue, the
x-axis is the RSA of the residue, and the y-axis is the observed log10(pN

(site)). Lines of best
fit are shown in red, with 95% confidence intervals visualized translucently. The Pearson
coefficients of each fit are labeled on the scatterplot.
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Figure 4.12: Select gene-sample pairs illustrate the diversity with which pN(site) associates
with DTL. Scatterplots for handpicked gene-sample pairs are shown from three regimes
of model quality: high (top), mid (middle), and low (bottom). The right panel shows
the distribution of Pearson coefficients, and the bin that each example was taken from is
highlighted in pink. Each scatter plot is a gene-sample pair, each datapoint is a residue, the
x-axis is the DTL of the residue, and the y-axis is the observed log10(pN

(site)). Lines of best
fit are shown in red, with 95% confidence intervals visualized translucently. The Pearson
coefficients of each fit are labeled on the scatterplot.
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Figure 4.13: Incomplete ligand characterization leads to erroneously high DTL values. A
comparison of DTL distributions (semi-log axis) for the 1a.3.V and the BioLiP database.
The 1a.3.V core distribution (red) was calculated from all sites in the subset of genes with
both a predicted structure and at least one predicted ligand-binding residue. The BioLiP
distribution (gray) was calculated from the sites of 5,000 structures in the BioLiP database.
For the 1a.3.V core, DTL was calculated as the distance to the closest predicted ligand-
binding residue. For BioLiP, it was calculated as the distance to the closest annotated
ligand-binding residue. For both methods, distance was calculated between the sites’ side
chain center of masses. The dashed line marks the 40Å cutoff we used for all analyses besides
Figure 4.2b, which excludes 8.0% of the total sites.
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Figure 4.14: Sample-averaged pN/pS(gene) values correlate with dN/dS(gene) values between

HIMB83 and HIMB122. The x- and y-axes are the log-transformed dN/dS(gene) and sample-

averaged pN/pS(gene) values (respectively) for the 743 genes that (1) belonged to the 1a.3.V
core and (2) had HIMB122 homologs. The black line is the equation y = x, meaning that

genes above this line maintain sample-averaged pN/pS(gene) values that exceed dN/dS(gene).
The R2 is for a linear regression of the log-transformed variables.
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Figure 4.15: pN/pS(gene) varies more significantly between genes in a given sample than
between samples for a given gene. The x-axis is the standard deviation of either a sample’s

pN/pS(gene) values observed over genes (orange), or a gene’s pN/pS(gene) values observed
over the 74 samples (gray). The gray box denotes the amount of variance explained by genes

and samples in an ANOVA from the linear model pN/pS(gene) ∼ gene + sample.

Figure 4.16: Distributions of pN/pS(gene). Left panel shows the distribution of pN/pS(gene),

and the right panel shows the distribution of sample-averaged pN/pS(gene). Insets show the
same distributions with a log10-transformed x-axis.
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Figure 4.17: Codon usage of HIMB83 and 20 other genomes in the SAR11 clade.

119



Figure 4.18: Codon rarity measured for each amino acid reveals varied response to selection
strength, with most amino acids preferring rare codons in high selection samples. Each

plot is a different amino acid, and each datapoint is a sample. The x-axis is pN/pS(core),
i.e. the ratio of nonsynonymous to s-polymorphism rates in the 1a.3.V core genome, and is
shared between all plots. For a given plot, the y-axis was determined by first subsetting the
polymorphism data to only include synonymous sites (in this instance we define synonymous

as exhibiting pN(site) < 0.0005) that corresponded to the given amino acid. Using lysine
as an example, this led to on average 21,127 sites per sample. For each amino acid in each
sample, we then calculated the overall codon rarity (y-axis) by averaging codon rarities across
all included positions. A line of best fit (gray line) with 95% confidence intervals (light gray)
is shown for each plot, with equation and Pearson correlation coefficient shown above.

120



4.10 Supplementary Tables

All supplementary tables are available at https://doi.org/10.6084/m9.figshare.1936

3997.

Table 4.1: Read recruitment and coverage statistics of the 21 SAR11 genomes. (A-D)
Genome-wide statistics for each genome in each metatranscriptomic and metagenomic sam-
ple. (A) is the mean coverage, (B) is the mean coverage, excluding nucleotide coverage
values outside the interquartile range (IQR), (C) is the detection, and (D) is the percentage
of reads mapping to a genome (sums to 100 for a given sample) (E) The mean coverage of
each HIMB83 gene in each metatranscriptomic and metagenomic sample.

Table 4.2: Average percent similarity of recruited reads by HIMB83 for each (A) gene-sample
pair, (B) gene (marginalized over samples), and (C) sample (marginalized over genes).

Table 4.3: Mean per-site polymorphism rates (pN(site) and pS(site)) of HIMB83 (A) over all
sites, genes, and samples, as well as (B) for each gene-sample pair (C) each gene (marginalized
over samples), and (D) each sample (marginalized over genes).

Table 4.4: Methodological comparisons between AlphaFold and MODELLER structures.
(A) Key metrics for AlphaFold- and MODELLER-predicted structures and their alignments.
(B) PDB structures used as templates for MODELLER predictions. (C) Per-residue pLDDT
scores for AlphaFold-predicted structures. (D) Gene-averaged pLDDT scores for AlphaFold-
predicted structures. (E-F) Genes with AlphaFold and MODELLER structures, respectively,
that we determined to be of sufficiently high quality.

Table 4.5: Summary of ligand-binding residue predictions with InteracDome. (A) All pre-
dicted ligand-binding sites, the predicted ligand, and the predicted ligand binding score. (B)
Characterization of each HMM domain hit. (C) Each match state from the Pfam profile
HMMs that contributed to each predicted ligand-binding residue of HIMB83.

Table 4.6: Summary of models used for estimating the explanatory power of RSA and DTL
on polymorphism rates (see Methods).

Table 4.7: Summary statistics for the polymorphism models of gene-sample pairs.
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Table 4.8: Summary of per-group polymorphism data for (A) pN(group), (B) pS(group), (C)

pN/pS(group), and (D) the size of each group.

Table 4.9: Summary of per-gene polymorphism data for (A) pN/pS(gene), (B) sample-

averaged pN/pS(gene), (C) pN(gene), (D) pS(gene) and (E) the number of potential syn-
onymous and nonsynonymous point mutations of each gene.

Table 4.10: Correlations of pN/pS(gene) for each 1a.3.V core gene with respect to the mea-
sured environmental parameters: nitrates, chlorophyll, temperature, salinity, phosphate,
silicon, depth, and oxygen.

Table 4.11: Codon metrics, including anti-codon, encoded amino acid, frequency and rarity
in genome, and frequency and rarity compared to synonymous codons.

Table 4.12: Comparison between dN/dS between HIMB83 and HIMB122 homologs and

sample-averaged pN/pS(gene) of 1a.3.V genes.

Table 4.13: Per sample and gene measures of transcript abundance (TA) and related quan-
tities.

Table 4.14: Bootstrap estimates of Pearson correlation coefficients and p-values from Figure
4.24.

4.11 Supplementary Information

4.11.1 Regimes of sequence similarity probed by metagenomics, SAR11

cultured genomes, and protein families

We investigated how sequence similarity between HIMB83 and aligned metagenomic reads

compares to the traditional methods of sequence comparisons between other SAR11 cultured

genomes, as well as between members of associated protein families. To do this, we calculated

the percent similarity (PS) between HIMB83 genes and (a) all aligned reads, (b) homologs

found in 20 SAR11 ocean isolates, and (c) members of the best matching Pfam protein

family.

For (a), PS values for each gene were calculated by considering one metagenome at a

time. In each metagenome, the reads that aligned to the gene were captured, trimmed (so
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there were no reads overhanging the gene), and compared to the aligned segment of HIMB83.

The PS was calculated by comparing non-gap positions. This was then averaged to yield

a PS value for each gene-metagenome pair. To define a single PS value for each gene, PS

values were averaged across metagenomes.

For (b), gene clusters were calculated for HIMB83 and 20 additional SAR11 isolates

using the anvi’o pangenomic workflow. An MSA was built from the sequences of each gene

cluster using muscle [Edgar, 2004], and then each non-HIMB83 sequence was compared to

the HIMB83 sequence. The PS was determined by calculating the fraction of matches in

non-gap positions. Each HIMB83 gene was attributed a single PS value by averaging PS

values in each pairwise comparison, weighted by the number of non-gap positions in the

pairwise alignment. Gene clusters containing multiple HIMB83 genes were ignored.

For (c), HIMB83 genes were matched to Pfam protein families via the anvi’o program

anvi-run-pfams. Hits that passed the GA gathering threshold were retained, and the best

hit (lowest e-value) for each HIMB83 gene was defined as the associated Pfam. For each

HIMB83 gene, the associated Pfam seed sequence MSA was downloaded using the Python

package prody [Zhang et al., 2021] and the HIMB83 protein sequence was added to the

MSA using muscle. PS values were calculated from the MSAs in a manner identical to that

outlined in (b). It is important to note that this comparison used protein sequences, whereas

(a) and (b) both used nucleotide sequences.

Figure 4.5 shows the distribution of percent similarities for each comparative method,

roughly indicating the distinct regimes of evolutionary relatedness that each method probes.

Unsurprisingly, protein families are most evolutionarily divergent (mean amino acid PS

28.8%). Relative to SAR11 homologs (mean nucleotide PS 77.3%), the aligned reads are

highly related (mean nucleotide PS 94.5%), showing that metagenomics offers a modality of

sequence inquiry more highly resolved than sequence comparisons between isolated cultures.
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4.11.2 Comparing structure predictions between AlphaFold and

MODELLER

The biggest difference between structure prediction methods was the expectedly higher por-

tion of predictions yielded by AlphaFold. While AlphaFold produced 754 structures we

deemed trustworthy (see Methods), MODELLER produced 346 due to its reliance on pre-

existing template structures. In 339 cases both methods procured a structure prediction for

a given protein sequence, and it is within this intersection that we drew comparisons between

the methods’ structures.

We compared the topological similarity between AlphaFold and MODELLER structures

using TM score [Zhang and Skolnick, 2004] and alpha carbon RMSD. Overall, the distri-

butions of these metrics (Figures 4.8a, 4.8b) illustrate the overarching similarity between

AlphaFold and MODELLER structures. Poor RMSD scores were usually the result of mul-

tidomain proteins linked by unstructured chains, and not the result of large structural dis-

crepancies. TM scores better handle these cases. Since a TM score of 0.5 indicates that

proteins likely belong to the same fold family [Xu and Zhang, 2010], our average TM score

of 0.88 indicates strong overall agreement between AlphaFold and MODELLER.

On average, AlphaFold yielded a higher proportion of secondary structure (Figure 4.8c),

and we found this discrepancy to be most pronounced when TM scores were low (<0.8)

(Figure 4.8d). In fact, for the worst alignments (TM score <0.6), in 15 of 16 cases AlphaFold

yielded more secondary structure.

Next, we turned our attention to proteins that AlphaFold predicted structures for, but

that MODELLER did not due to absent templates. These proteins were on average smaller

(Figure 4.8e) and yielded lower mean pLDDT scores compared to structures possessing a

MODELLER analog. Since AlphaFold is trained on pre-existing structures, this result is

expected and lends credence to pLDDT as a metric for fold confidence. Even still, these

structures averaged a mean pLDDT score of 90.8, which is considered to be highly accurate
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[Jumper et al., 2021].

Overall, our findings suggest that overall similarity between the two methods is high,

that AlphaFold may be outperforming MODELLER due to increased fraction of secondary

structure, and that proteins modeled by AlphaFold but not MODELLER are still considered

highly accurate predictions.

4.11.3 RSA and DTL predict nonsynonymous polymorphism rates

To complement our analyses in which we estimated the percentage of polymorphism data

that can be explained by RSA and DTL (Table S6, Methods), we constructed synonymous

models (s-models) and nonsynonymous model (ns-models) for each gene in each sample. We

excluded monomorphic sites (pN(site) = 0 for ns-models, pS(site) = 0 for s-models), sites

with DTL > 40Å (see Methods), and removed gene-sample pairs containing <100 remaining

sites, resulting in 16,285 ns-models and 24,553 s-models (Table 4.7).

We fit linear models of log10(pN
(site)) and log10(pS

(site)) to RSA. We found that applying

a logarithmic function to polymorphism rates yielded better fits than without. We filtered

out any genes that did not have a predicted structure and at least one predicted ligand-

binding site, which when applied in conjunction with the above filters resulted in 381 genes

for the s-models and 342 genes for the ns-models. ns-models yielded consistently positive

correlations (average Pearson coefficient of rRSA = 0.353) (Figure 4.2c), whereas s-models

exhibited correlations centered around 0 (average rRSA = -0.029). The average R2 was

0.137 for ns-models, however model quality varied significantly between gene-sample pairs.

In fact, we found that R2 varied from as high as 0.526 (gene 2264 in sample ION 42 80M),

to as low as 0.0% (gene 2486 in sample ION 42 80M). Lines of best fit for select gene-sample

pairs illustrate the range of correlatedness seen between log10(pN
(site)) and RSA (Figure

4.11). Overall, these results show that RSA is a significant predictor that partially explains

the differences in polymorphism rates observed between sites in a given gene and sample.
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Using the same procedure, we linearly regressed log10(pN
(site)) and log10(pS

(site)) with

DTL and found that 96% of ns-models yielded positive correlations with DTL with consid-

erable predictive power, where on average 11.5% of per-site ns-polymorphism rate variation

could be explained by DTL (Table S7). R2 values varied significantly, ranging from 0.514

(gene 2326 in sample PSE 100 05M) to 0.0% (gene 2246 in sample PSE 102 05M). Lines

of best fit for select gene-sample pairs illustrate the range of relatedness observed between

log10(pN
(site)) and DTL (Figure 4.12). Interestingly, we found that log10(pS

(site)) on aver-

age negatively correlates with DTL (average Pearson coefficient -0.057). The overall positive

correlation of DTL with log10(pN
(site)) suggests that on a proteomic scale, selection for

function imposes a spectrum of per-site selective pressures, where pressure increases with

proximity to ligand-binding regions.

Individually, RSA and DTL respectively explain 13.7% and 11.5% of per-site ns-

polymorphism rate variance. To quantify their collective explanatory power, we fit a third

set of models that linearly regressed log10(pN
(site)) and log10(pS

(site)) with RSA and DTL

together (Figure 4.20; Table S7). A Pearson correlation between RSA and DTL revealed the

relative independence of each variable from the other (R2 = 0.082, r = 0.286), precluding

effects of multicollinearity (Figure 4.19). The results revealed that including both RSA and

DTL yielded a considerably better set of models for ns-polymorphism rates, with an average

explained variance of 17.7% (average adjusted R2
RSA-DTL = 0.177).

The predictive power of RSA and DTL illuminates how structural and functional con-

straints influence polymorphism rates by shaping the confines within which neutral evolution

operates [Worth et al., 2009], yet observed rates can also be dominantly driven by stochastic

processes of mutagenesis and drift. For example, no site will be polymorphic in the absence

of a seeding mutagenesis event, even if under low structural and functional constraints.

Thus, polymorphism rates are determined in part by constraints, and in part by random

chance, the latter of which diminishes the predictive power of RSA and DTL when modeling
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polymorphism rates of individual sites.

By averaging across groups of sites, we vastly increased the signal-to-noise ratio of poly-

morphism rate data and revealed a two parameter model (RSA and DTL) that explains the

majority of ns-polymorphism trends. To reduce per-site noise, we first grouped sites sharing

similar RSA and DTL values so that each group contained the same order of magnitude of

data (axes in Figure 4.2e, Table 4.8). For example, the group (RSA1, DTL2) contains the

3,164 sites with RSA values in the 1st RSA range [0.00,0.01) and DTL values in the 2nd

DTL range [5.0Å,6.4Å). Then, we calculated per-group polymorphism rates pN(group) and

pS(group), which are weighted averages of pN(site) and pS(site) values found within a group

(see Methods). Averaging polymorphism rates across sites that exhibit similar RSA and

DTL values has the effect of averaging out per-site and per-sample variance, which we found

to reveal impressive proteome-wide trends in polymorphism rates with respect to RSA and

DTL. pN(group) values from each group collectively describe a 2D surface (Figure 4.2e, Table

S8), where one axis illustrates how structurally constrained sites tend to be due to RSA and

the other axis illustrates how functionally constrained sites tend to be due to DTL. In con-

trast to the noisy pN(site) data observed within gene-sample pairs (Figures 4.11, 4.12), the

pN(group) surface is smooth and roughly linear (Figure 4.2e). Nonsynonymous polymorphism

rates of groups varied from as low as 0.001 to as high as 0.021. A group’s polymorphism

rate appeared to be chiefly determined by the overall constraint of its sites, which is a com-

posite of both structural and functional constraints. Structural and functional constraints

appeared to be additive, such that sites with both low RSA and DTL (left panel of Figure

4.2e, bottom-left) statistically exhibited the lowest rates of ns-polymorphism, and sites with

both high RSA and DTL (left panel of Figure 4.2e, top-right) statistically exhibited the

highest rates of polymorphism. Additionally, these constraints are seen to act independently

of one another: some groups exhibit low pN(group) due to structural constraint (top-left)

while others exhibit low pN(group) due to functional constraint (bottom-right), illustrating
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that selection for structure and selection for function can independently constrain evolution.

Sites exhibited a spectrum of ns-polymorphism rates that is roughly linear. We deter-

mined this by fitting a linear model pN(group) ∼ i + j, where i refers to the group’s RSA

and DTL indices (RSAi, DTLj), yielded an adjusted R2 of 0.836, meaning that 83.6% of

ns-polymorphism rate variation can be explained by RSA and DTL when averaging over

per-site effects (Figure 4.21, Table S8). Increasing the number of groups decreased the

number of sites in each group, weakening the efficacy of signal averaging, which expectedly

decreased model quality. Even still, R2 values for nonsynonymous models were robust to

group numbers ranging from 4 (2x2) to 1,444 (38x38) (Figure 4.22).

Site averaging yielded an unexpected relationship between s-polymorphism rates and

RSA/DTL. pS(group) is not as strongly affected by RSA or DTL as pN(group), as indicated

by the noisy contour lines of its surface (right panel Figure 4.2e). Even still, the linear model

pS(group) ∼ i+ j yielded a significant, anti-correlated relationship with both RSA and DTL

(adjusted R2 of 0.206), in which s-polymorphism rates tended to decrease when RSA and

DTL were high (Figure 4.21). We have observed this surprising finding through other means

as well: in the sample-gene models, (1) the mean Pearson correlation coefficient between

pS(site) and RSA is -0.013 (Figure 4.2c), and (2) the mean Pearson correlation coefficient

between pS(site) and DTL is -0.052 (Figure 4.2d). Signal averaging has revealed the extent of

its effect: 20.6% of s-polymorphism rates can be explained by RSA and DTL when averaging

over per-site effects, compared to 83.6% for ns-polymorphism rates.
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Figure 4.19: RSA and DTL are not problematically correlated. Scatter plot of RSA vs. DTL
for the 143,181 sites belonging to genes with a predicted structure and at least one predicted
ligand. The line of best fit is shown in black, The Pearson coefficient is 0.313 and the R2 is
0.098.
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Figure 4.20: Parameter estimate and standard error distributions of the multidimensional
linear regression models for pN(site) and pS(site). Red denotes parameter/error distributions

for the 16,285 nonsynonymous models of the form pN(site) = β0 + βRSARSA + βDTLDTL

and blue denotes parameter/error distributions for the 24,553 models of the form pS(site) =
β0 + βRSARSA + βDTLDTL.
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Figure 4.21: Observations, fits, and residuals of linear regressions for pN(group), pS(group),

and pN/pS(group). The x-axis and y-axis for each heatmap are RSA and DTL groups,
respectively. The first column shows the observed values (those seen in Figure 4.2e), the
second column shows the planes of best fit, and the third column shows the residuals. A
legend for corresponding colors to values are shown below each heatmap. Contour lines for
observed values and planes of best fit are shown as white and are calculated from smoothed
data. Note that for the planes of best fit, the contour lines of the underlying data are
by definition straight and perpendicular to one another, though due to edge effects of the
smoothing procedure, there is a slight bend in the visualization of some contour lines.
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Figure 4.22: Model quality decreases for pN(site) and pS(group) as the number of RSA and
DTL groups increases. The x-axis represents how many bins RSA and DTL are each split
into. For example, the heatmaps in Figure 4.2e correspond to # bins = 15, since RSA and
DTL are split into 15 bins, totaling 225 (=15x15) groups. The left y-axis corresponds to

the adjusted R2 value for the models pN(group) (red) and pS(group) (blue). The right y-axis
corresponds to the average number of data points (# sites multiplied by # samples) found
in a group (dashed black line).
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4.11.4 dN/dS(gene) and sample-averaged pN/pS(gene) yield consistent results

To validate our pN/pS(gene) calculations, we ascribed a sample-averaged pN/pS(gene) value

to each gene and compared the values to dN/dS(gene) (Table 4.12), a more commonly and

classically utilized metric that is the ratio of nonsynonymous to synonymous substitutions

observed between homologous genes of two or more species. We calculated dN/dS(gene) for

753 homologous gene pairs found between HIMB83 and a closely related cultured repre-

sentative HIMB122 (see Methods). Importantly, ANI between HIMB83 and HIMB122 was

82.6%, whereas the average ANI between HIMB83 and recruited reads was 94.5%, mak-

ing it unlikely that sample-averaged pN/pS(gene) and dN/dS(gene) were cross-contaminated

due to HIMB83 recruiting significant proportions of reads from HIMB122-like populations.

We found that log-transformed sample-averaged pN/pS(gene) highly correlated with log-

transformed dN/dS(gene) (Pearson R2 = 0.380), showing that the two metrics are commen-

surable. Nevertheless, differences were expected and observed. The ratio between sample-

averaged pN/pS(gene) and dN/dS(gene) was on average 6.23 (Figure 4.14), matching ex-

pectations that slightly deleterious, nonsynonymous mutants commonly drift to observable

frequencies, yet far less commonly drift to fixation.

4.11.5 Transcript abundance largely explains genic differences in the

strengths of purifying selection

Sample-averaged pN/pS(gene) values varied significantly between genes, varying from 0.004-

0.539, with a mean of 0.063 (Figure 4.16, Table 4.9). What causes such variation in purifying

selection strengths? Across diverse taxa [Drummond and Wilke, 2008], it has been shown

that highly expressed proteins evolve more slowly due to being selectively constrained to

be robust to mistranslation in order to safeguard against toxicity of misfolded proteins,

whose detrimental fitness costs scale with expression level [Drummond et al., 2005]. We
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assessed the extent to which expression level may explain purifying selection variation in

1a.3.V by calculating metatranscriptomic coverage values for each 1a.3.V core gene in the

50 of 74 environments that had accompanying metatranscriptomics datasets (see Methods).

We defined transcript abundance (TA) as the ratio of metatranscriptomic to metagenomic

relative abundances (see Methods), which yielded a widely skewed distribution of values

(Figure 4.23a, Table 4.13).

Comparing sample-median TA values to sample-averaged pN/pS(gene) values yielded

a strong, negative correlation (Figure 4.23b, Pearson r = -0.539, R2 = 0.290) accord-

ing to an inverse power-law relationship. The specific form of the linear model used was

log10(medians(TA)+0.01) ∼ log10(means(pN/pS
(gene))), where medians and means denote

the median and mean across samples for a given gene, respectively. To avoid excluding zeros,

we added 0.01 to the log-transformation of medians(TA). These findings indicate that 29.0%

of purifying selection variation between genes can be explained via transcript abundance

alone, a value in line with what has been observed between yeast homologs [Drummond

et al., 2005]. Overall, these results recapitulate a central result in protein evolution, and

demonstrate its validity in situ using culture-independent approaches that link genetic vari-

ation and transcript abundance for a naturally occurring microbe.

Next, we tested whether pN/pS(gene) values between samples of a given gene also follow

an inverse power-law relationship with TA. We found that of the 799 genes tested, 74% exhib-

ited (weak) negative correlations between log10(TA+0.01) and log10(pN/pS
(gene)) (Figure

4.23c), yet only 11.5% of genes passed significance tests (one-sided Pearson, 25% Benjamini-

Hochberg false discovery rate) (Figure 4.23d). Given the strong correlation observed between

genes, the lack of correlation observed between samples is a seemingly contradictory result,

yet can be attributed to a difference in timescales: TA fluctuates on the order of minutes, of-

ten occurring in ‘bursts’, whereas pN/pS(gene) is shaped over time scales orders of magnitude

longer than the 2 week replication time of SAR11. Since metagenome-metatranscriptome
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pairs sample single snapshots in time, measured TAs are unlikely to reflect the time-averaged

values that constrain pN/pS(gene). These fluctuations therefore muddy signals that may ex-

ist between pN/pS(gene) and TA. Smoothing these fluctuations by averaging across samples

thereby reveals the strong negative correlation observed (Figure 4.23b). In other words, TAs

that are not averaged across environments are unreliable proxies for overall transcription

level.

135



Figure 4.23: Associations of transcript abundance (TA) data with pN/pS(gene). (A) Log-
transformed distribution of TA values across genes and samples. See Methods for details
on TA calculation. 0.01 has been added to the log-transformation to avoid the exclusion of

zeros. (B) TA is a strong predictor of pN/pS(gene) when pooling data across samples. Each
datapoint is a gene, where the x-axis is the gene’s median TA across samples, the y-axis is

the gene’s sample-averaged pN/pS(gene), and each axis has been log-transformed. The linear
model yielded a Pearson coefficient of 0.539, an R2 of 0.290 and a line of best fit y = (-0.31
± 0.02)x + (-1.63 ± 0.02) shown in pink (95% confidence intervals shown in translucent

pink). (C) pN/pS(gene) between samples of a given gene weakly correlate (on average)

with TA. A one-side Pearson correlation between log10(TA + 0.01) and log10(pN/pS
(gene))

was calculated separately for 799 genes, resulting in the following distribution of Pearson
coefficients, of which 74% were negative (pink). (D) Accounting for multiple testing yields
few statistically significant negative correlations. The x-axis is the Benjamini-Hochberg
false discovery rate (FDR) and the y-axis is the fraction of genes that have statistically
meaningful negative correlations for a given FDR. Allowing a FDR of 25% (pink line), only
11.5% of genes have statistically significant negative correlations of log10(TA + 0.01) with

log10(pN/pS
(gene)).
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4.11.6 Stability analysis of polymorphism distributions with respect to

pN/pS(core)

To assess whether the ‘use it or lose it’ accumulation of ns-polymorphism in low RSA/DTL

sites was specific to GS, or a more general feature of 1a.3.V, we performed a comparable

procedure where instead of restricting our analysis to GS, we compiled polymorphism rates

across all sites in genes with predicted structures and ligand-binding sites, and calculated

pN/pS(core) for each sample, which serves as a proxy for genome-wide selection strength (see

Methods). Within this dataset, we observed the same phenomena: in samples with high

selection strength (low pN/pS(core)), ns-polymorphism throughout the genome distributed

(a) in more solvent-exposed sites (Figure 4.4a) and (b) farther from predicted binding sites

(Figure 4.4b). Our bootstrapping stability analysis (Figure 4.24, Table 4.14) showed that in

99.5% of gene resamplings, the mean RSA of ns-polymorphism negatively associated with

pN/pS(core) (one-sided Pearson coefficient p-value <0.05), whereas in only 69.5% of gene

resamplings did the mean DTL of ns-polymorphism negatively associate with pN/pS(core).

This latter finding indicates that the signal in Figure 4.4b is driven by an incomplete set

of the 1a.3.V core genes. We hypothesized this is due to the many shortcomings of DTL

estimation discussed priorly leading to false-positive and/or false-negative ligand predictions

that skew DTL distributions, or that not all ligands constraint ns-polymorphism patterns

equally.
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Figure 4.24: Robustness of negative associations between sample selection strength

(pN/pS(core)) and mean RSA/DTL of polymorphisms. We tested the robustness of re-
sults in Figure 4.4 by performing a bootstrapping stability analysis in which we created 200
bootstrapped estimates of the correlation coefficients, where each bootstrap was a resam-
pling of genes. (A) Histograms of the correlation coefficients between the mean RSA of

s-polymorphism (blue) and ns-polymorphism (red) versus pN/pS(core). These correspond to
Figures 4.4a and 4.4c, respectively. (B) Histograms of the correlation coefficients between

the mean DTL of s-polymorphism (blue) and ns-polymorphism (red) versus pN/pS(core).
These correspond to Figures 4.4b and 4.4d, respectively.

4.11.7 Enabling interactive, exploratory, structure-informed metagenomic

analyses using anvi-display-structure

There is an absence of computational tools that allow researchers to interactively explore

metagenomic sequence variance in the context of predicted protein structures and ligand-

binding sites. We addressed this gap by developing an interactive interface in which users

can visualize, filter, and interact with metagenomic sequence variants in the context of

modeled protein structures and predicted binding sites (Figures 4.25, 4.26, 4.27, 4.28). The

exploratory analyses enabled by the interface is what has made the current research possible.

We created an interactive interface that dynamically processes data from anvi’o

databases, which is done with the program anvi-display-structure. Once the interactive

interface is initiated, users can select any gene with a modeled structure in their dataset,

upon which anvi’o renders the predicted structure of the gene using NGL [Rose and
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Hildebrand, 2015, Rose et al., 2016] and overlays sequence variants from metagenomes

directly on the structure. By default, all variants across all metagenomes for a given gene are

superimposed on a single display, however, the user can subdivide the display into as many

as 16 sub-displays to compare and contrast variation across arbitrary groups of metagenomes

(Figure 4.25). The interface offers numerous ways to interact with and explore single-codon

variants (SCVs) and single-amino acid variants (SAAVs). Hovering the mouse above any

variant reveals its allele frequency vector and structural information of the reference residue

such as solvent accessibility and secondary structure (Figure 4.26). Interactive sliders filter

variants displayed on structures through a suite of continuous, discrete, and categorical

variables, including variant-specific parameters such as site entropy, solvent accessibility,

BLOSUM scores of the competing alleles, residue number, and secondary structure (Figure

4.26). These same variables can also dynamically change the color and size of individual

variants (Figure 4.27). Filters can be combined for exploratory investigations. For example,

a user could simultaneously color variants by site entropy, size them by their coverage in

metagenomes, and filter out those that exhibit high solvent accessibility (Figure 4.27). The

protein surface and backbone can be colored according to arbitrary user-provided data, for

example, to visualize predicted binding sites of the protein. anvi-display-structure can

save and load sessions to preserve filters, export displays as PNG images, and generate rich

tabular outputs for allele frequencies and other properties of displayed variants. Finally,

users can faithfully migrate the current view into PyMOL [DELANO and W. L, 2002] for

further graphical refinement or statistical analyses (Figure 4.28).
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Figure 4.25: Screenshot of the interface with the ”Main” tab active. The user has chosen
to visualize Gene ID 2 from the left-hand side panel. Functional annotations from COG
indicate this is a Pyridoxine 5’-phosphate synthase, and its structure was modeled using the
PDB IDs 3O6C, 1M5W, and 3F4N templates. The resulting structure is visualized on the
right-hand side in 3 separate views corresponding to each of the 3 groups of metagenomes
specified by the user in the bottom left corner. The spheres overlaid onto the 3 views are
the positions of single-amino acid variants found from each group, and can be switched to
single-codon variants by switching the Variant Type Engine from “AA” (amino acid) to
“CDN” (codon).
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Figure 4.26: Screenshot of the interface with the ”Filter” tab active. Variants can be filtered
in the “Filters” tab, which shows a suite of filters, each represented as an interactive slider
with endpoints that can be clicked and dragged by the user. Above each slider is a histogram
detailing how the variants distribute according to the filter. In this screenshot, the user
has included variants with mid-range “departure from consensus” values, high “entropy”
values, and low “relative solvent accessibility” variants. The right-hand side reveals that
two variants (red spheres) match this filter criteria. Hovering the mouse above one of the
variants activates a pop-up menu from which relevant statistics can be learned about.
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Figure 4.27: Screenshot of the interface with the ”Views” tab active. In the “Views” tab,
variants can be colored and sized according to variables. In this screenshot, the user has
colored variants according to their entropy values on a linear gradient between white and
red, and sized them according to their metagenomic coverage values.
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Figure 4.28: The interface can seamlessly migrate user sessions into PyMOL for visual
refinement and more sophisticated analysis than is possible with anvi-display-structure.
Under the “Output” tab, users can select “Generate in PyMOL” to auto-generate a script
(middle) that when pasted into the PyMOL command line, reproduces the current interface
view directly in PyMOL.
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CHAPTER 5

CONCLUSION

5.1 Summary of contributions

The processes governing the emergence and maintenance of genetic diversity are fascinat-

ingly complex and provide a fingerprint for studying how dynamic environments constantly

remodel the fitness landscape and how microbial populations consequently cope. My work

has furthered this research avenue by including structure-informed analyses into the realm

of microbial population genetics. This work showcases how patterns of polymorphism seen

in natural microbial populations are much more interpretable when viewed from the context

of predicted protein structures and binding sites. Using structural features, I illustrated how

polymorphism in natural populations shift in response to environmentally-mediated selection

strength. Using an abundant marine microbe (SAR11) as a model system, 17% of nonsyn-

onymous polymorphism data was explainable using just relative solvent accessibility and

proximity to active site. In glutamine synthetase, a central gene in nitrogen metabolism, it

was found that nitrogen limitation governs selective pressures that define how close nonsyn-

onymous polymorphism is ’allowed’ to get to the binding site. This is an in situ observation

of conditional neutrality, in which alleles are permissible in one environment but selected

against in another. Finally, this study illustrates how structure governs polymorphism that

is synonymous, but not silent: rare synonymous codons are systematically purified out of

important protein sites when genes are under high selection, yet encroach upon these sites

when selection is low. Although broadly speaking it is commonplace to utilize protein struc-

tures in evolutionary analysis, microbial population genetics has been late to adopt these

practices, in part because there are no tools that enable interactive browsing of polymor-

phism at the scale of data required for metagenomic analyses. To fill this gap so others may

increase the interpretability of their data, my thesis work includes the development of anvi’o
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structure, which is an automated, scalable, and interactive work environment for analyzing

and visualizing metagenomic variants with respect to predicted protein structures and lig-

and binding sites. This software trivializes many tasks that took me years to streamline and

provides a straightforward path for researchers to undertake their own structure-informed

analyses of genetic variation within natural microbial populations.

5.2 Future directions

My studies have focused exclusively on a single marine microbe, SAR11, which was used as

a model system to illustrate how fruitful the intersection between structural bioinformatics

and microbial ecology can be. If I was given more time, I think a more extensive investigation

spanning more environments and more genomes would be practical and rich with discovery.

Having already laid the groundwork, an analysis with thousands of populations rather than

just one is within arm’s reach. In fact, many already existing analyses could be recycled

by referencing the step-by-step reproducible workflow I created for [Kiefl et al., 2022] (see

https://merenlab.org/data/anvio-structure).

On a separate but related note, microbial ecologists rely on short read alignment soft-

ware tools such as Bowtie2 [Langmead and Salzberg, 2012] and BWA [Li and Durbin, 2009]

in order to identify single nucleotide variants. Although these alignment softwares provide

the raw data required for quantifying insertions/deletions (INDELs) relative to the reference

sequence, I am not aware of researchers taking advantage of these potentially very impor-

tant genetic structural changes found in environmental populations. During my studies I

redesigned anvi’o to summarize and store the raw INDEL information in metagenomic read

recruitment results, however as far as I am aware, no anvi’o users are utilizing this data. I

intuit that a proper analysis of this data, perhaps in the project proposed above, would yield

low-hanging fruit.
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