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ABSTRACT

New statistical and machine learning methods have led to important advances in image and

natural language processing, genetics, digital advertising, and other fields where there is an

abundance of high-quality digital data and strong market incentives for automating tasks.

This thesis intentionally focuses on areas such as climate science and public health, as they

have suffered in this space without the same scale of training data and private investment.

Part 1 of this thesis focuses on applications in climate science, specifically forecasting pre-

cipitation at seasonal timescales, which is a challenge due to complex dependence structures

and a short observational record. To address these challenges, we develop a regularization

regression scheme using a graph-guided regularizer that simultaneously promotes sparsity

and similar coefficients for highly correlated covariates. We propose a novel way of combin-

ing climate model simulations and observations by using large ensemble simulations from

a climate model to construct this regularizer, highlighting the potential to combine opti-

mally the space–time structure of predictor variables learned from climate models with new

graph-based regularizers to improve seasonal prediction. In Part 2, we develop a fast and

flexible method for estimating variable importance (VI) measures with large neural networks.

Our VI measure of interest analyzes the difference in predictive power between a full model

trained on all variables and a reduced model that excludes the variable(s) of interest, which

can be expensive to compute. We replace the need for fully retraining a wide neural network

to estimate the reduced model by a linearization initialized at the full model parameters. We

provide inferential guarantees for our method and verify its performance on simulated and

real data. Part 3 of this thesis describes the development of city-scale synthetic populations

for use in an agent-based model (CityCOVID) that simulates the endogenous transmission

of COVID-19 and measures the impact of public health interventions.
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CHAPTER 1

INTRODUCTION

New statistical and machine learning (ML) methods have led to important advances in image

and natural language processing, genetics, digital advertising, and other fields where there is

an abundance of high-quality digital data and strong market incentives for automating tasks.

ML systems are optimized for making accurate predictions on the training data they are

fed. Oftentimes, the systems that do this best are difficult (if not impossible) to interpret,

making it difficult to justify their use in the public sphere (e.g. why did this algorithm

send me to jail?) The intersection of ML and the social/political domain is fraught, and

careful consideration of the types of questions that need to be asked and answered by these

ML systems is imperative to their advancement as decision-makers in society. This thesis

intentionally focuses on areas such as climate science and public health, as they have suffered

in this space without the same scale of training data and private investment.

1.1 Seasonal forecasting of SWUS precipitation

The first part of this thesis focuses on applications in climate science. As the existential

threat of climate change looms, research communities are quickly emerging to try to use

tools from ML and statistics to understand and mitigate the risks associated with a changing

climate. A recent initiative, Climate Change AI1, seeks to bring together volunteers from

academia and industry to pool resources into a more cohesive effort to tackle climate change

with machine learning; a comprehensive overview of the landscape of the types of research

at this intersection can be found in Rolnick et al. (2019).

This work (Stevens et al., 2021) seeks to develop interpretable methods for predicting

precipitation on seasonal timescales (see Figure 1.1 for specific lead times of different fore-

1. https://www.climatechange.ai/
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Figure 1.1: Heuristic of accuracy of different climate forecasting timeframes based on different
predictors. Source: https://wpo.noaa.gov/Programs/S2S

casting timescales). Reliable prediction of seasonal precipitation has important implications

for the economies and ecosystems of many regions in the world. Earth observations and

climate model outputs are witnessing an unprecedented increase in data volume, from 80

terabytes today to 350 terabytes by 2030 (Overpeck et al., 2011). These unprecedented quan-

tities of high-resolution climate data provide an opportunity to discover previously unknown

teleconnections with strong predictive potential to improve seasonal forecasting. However,

many statistical prediction schemes which aim to exploit established climate teleconnections

between large-scale modes of variability (e.g., the El Niño-Southern Oscillation, the Pacific

North America pattern, the Madden-Julian Oscillation, etc.) and regional hydroclimate ei-

ther fail to capture the highly complex and nonstationary nature of the climate system, or

suffer from overparameterization and increased risk of overfitting due to the limited sample

size in the observational records. On the other hand, dynamical models show limited predic-

tive skill at lead times longer than two weeks, due to imperfect physical conceptualizations

and inaccurate initial conditions. Recently, collaborators on this project discovered a new
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teleconnection between sub-tropical sea surface temperatures off the coast of New Zealand

(NZI) and regional precipitation in the Southwestern US (SWUS) with stronger and ear-

lier predictive potential than any other known mode of variability, including the El Nino

Southern Oscillation (ENSO), which has long been used for SWUS seasonal precipitation

forecasting (Mamalakis et al. (2018); Figure 1.2). The tracing of the SST dynamics that

led to this discovery was performed in a physically intuitive way and was guided by their

specific interest in the precipitation across the SWUS.

Figure 1.2: Weakening of the ENSO teleconnection after the mid-1970s and the emergence of
a new teleconnection. 30-year running averages of cross-correlations between SST anomalies
in Sept-Nov in the Niño 3, Niño 3.4 and Niño 4 regions in the equator and winter precipitation
(Nov-March) in SWUS show low and decreasing predictability. The newly discovered NZI
anomaly exhibits a stronger correlation (up to 0.7 compared to 0.4 for ENSO). Correlations
above the dashed lines are statistically significant at the α = 0.05 significant level.

We use this discovery as a motivating example of the importance of developing statistical

methods which are able to robustly identify important climate dynamics. Rather than

relying on ad hoc methods for discovering teleconnections, we seek to cast the forecasting

problem as a regression problem in which modes are not specified in advance but rather are

allowed to emerge from the data as sources of predictability. Such a method must account

for small sample sizes and high dimensionality, strong spatiotemporal dependencies among

the predictors, and the need for interpretability in climate science. Our contribution is
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regularized regression scheme that reflects structural properties learned through simulated

data from physical models. Specifically, we use climate models to estimate a correlation

graph among features to form a graph-based regularizer, which estimates coefficients that

are well-aligned with the spatiotemporal structure of the features. We apply the learned

model to predict winter precipitation in the southwestern United States using sea surface

temperatures over the entire Pacific basin, and demonstrate its superiority compared to other

regularization approaches and statistical models informed by known teleconnections. Our

results highlight the potential to combine optimally the space–time structure of predictor

variables learned from climate models with new graph-based regularizers to improve seasonal

prediction.

We opt to use a linear model (rather than a potentially more predictive black-box ma-

chine learning method) because they are interpretable and well understood by the climate

community. When building models in applied scientific domains, we are often not only inter-

ested in how well the model predicts, but also why the model made the prediction it made.

Because of this, many scientific practitioners hesitate to adopt black-box ML methods like

neural networks due to the opacity of their decision-making. The next section of this thesis

seeks to make neural networks more interpretable by providing a fast, flexible method for

estimating variable importance measures.

1.2 Lazy estimation of variable importance

As opaque predictive models increasingly impact many areas of modern life, interest in

quantifying the importance of a given input variable for making a specific prediction has

grown. Recently, there has been a proliferation of model-agnostic methods to measure

variable importance (VI) that analyze the difference in predictive power between a full

model trained on all variables and a reduced model that excludes the variable of inter-

est. For example, suppose we have data (X, y) and want to learn a regression model. Let
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X−j = (X1, . . . , Xj−1, X̃j , Xj+1, . . . , Xp) be a copy of X with the jth variable constructed

so its dependence on y is broken (e.g. set to noise). We define the variable importance of

variable j as

VIj := E
[
(y − E[y|X−j ])2

]
− E

[
(y − E[y|X])2

]
(1.1)

Our goal is to efficiently approximate V Ij when E[y|X] is estimated with a neural net-

work. As written, computing {VIj}
p
j=1 requires training p+ 1 models; the full model needs

to be trained once, and then a “reduced” model needs to be learned for each of the p vari-

ables. This is potentially computationally intractable, particularly for high-dimensional data

and complicated training networks. In this work, we propose a fast and flexible method for

approximating the reduced model based on a linearization of the neural network around the

full model parameters. Let hθ be a neural network with parameters θ ∈ RM , and suppose

we learn the full model parameters

θ0 = argmin
θ∈RM

1

n
∥y − hθ(X)∥22 (1.2)

In order to estimate VIj , we need an estimate of what we are calling the reduced model hθ−j
,

where

θ−j = argmin
θ∈RM

1

n
∥y − hθ(X−j)∥22 (1.3)

Leveraging the lazy training framework of Chizat et al. (2020), instead of retraining a NN

to estimate θ−j , we can instead estimate the difference between the full model parameters

θ0 and θ−j using a linear approximation and simply update the full model parameters with

this correction to estimate hθ−j
:

hθ−j
(X−j) ≈ hθ0(X−j) +∇θhθ(X−j)

T |θ=θ0(θ−j − θ) (1.4)
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By adding a ridge-like penalty to make the problem convex, we prove that when the

ridge penalty parameter is sufficiently large, our method estimates the variable importance

measure with an error rate of O( 1√
n
) where n is the number of training samples. We also show

that our estimator is asymptotically normal, enabling us to provide confidence bounds for

the VI estimates. We demonstrate through simulations that our method is fast and accurate

under several data-generating regimes, and we demonstrate its real-world applicability on a

seasonal climate forecasting example.

1.3 Synthetic Population Development for COVID-19 Modeling

Part 3 of this thesis describes the development of city-scale synthetic populations for appli-

cation to an agent-based model (CityCOVID) that simulates the endogenous transmission

of Covid-19 and enables computational experiments to measure the impact of public health

interventions. CityCOVID is based on the chiSIM framework (Macal et al., 2018) and is

a city-scale agent-based model (ABM) of millions of people in a large metropolitan area,

currently the Chicago area (Macal et al., 2020). CityCOVID is being used to understand the

possible spread of Covid-19 and to model the uncertainties of human behavior in response

to public health interventions. Underlying CityCOVID is a synthetic population (Kaligotla

et al., 2020b; Macal et al., 2018) that is statistically representative of Chicago’s population

(2.7 million persons), along with their associated places (1.4 million places) and behaviors

(13,000 activity schedules). During a simulated day, agents move from place-to-place, hour-

by-hour, engaging in social activities and interactions with other co-located agents, resulting

in an endogenous co-location or contact network. Covid-19 transmission is determined via a

simulated epidemiological model based on this generated contact network by fitting model

parameters that result in simulation output that matches observed daily COVID-19 death

and hospitalization data from the City of Chicago.

Our synthetic environment is an augmentation of the RTI synthetic household population
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database (Cajka et al., 2010). RTI uses the American Community Survey (ACS) and the

Public Use Microdata Sample (PUMS) to generate geolocated households of individuals that

statistically represent local demographics (age, sex, race, and household income) at a census

block group level. In addition, RTI has generated synthetic workplaces that broadly match

localized labor statistics, and has mapped school-aged agents to both private and public

schools. To better understand COVID-19 transmission dynamics and outcomes, we expand

the RTI synthetic population to include additional attributes like ethnicity and underlying

health conditions, develop a new dataset of social places for agents to occupy using cell-

phone mobility data, and enable CityCOVID to endogeneously generate contact matrices by

assigning schedules to dictate when and where agents go.

With the highly granular synthetic population we develop, we are able to run a wide va-

riety of experiments using the CityCOVID framework. We are able to identify loci of disease

transmission, disentangle disparities in COVID-19 transmission and outcomes, and under-

stand the impact of many different public health interventions. CityCOVID has informed

policy making in the City of Chicago since the start of the pandemic and is an important

development in the realm of highly detailed disease modeling.

Advancing statistical work in these fields at a speed commensurate with their urgency

requires allowing applications to guide methodological developments. This thesis evaluates

the theoretical and practical needs of the problems that are not currently being met, explores

the ways in which these understudied areas can benefit from new applications of existing

methodology, and, where this is lacking, proposes novel methods for these pressing issues.
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CHAPTER 2

FORECASTING PRECIPITATION AT SEASONAL

TIMESCALES

2.1 Introduction

Seasonal prediction of regional hydroclimate is typically based on deterministic physical mod-

els or statistical techniques, yet both approaches exhibit limited predictive ability (Wang,

2009; National Academies of Sciences, 2016). Precipitation predictions based on determin-

istic physical models (regional climate models) exhibit high uncertainty due to imperfect

physical conceptualizations, sensitivity to initial and boundary conditions, and variations

in model physics and grid resolutions (Chang et al., 2000). On the other hand, predictive

statistical approaches (Wu et al., 2009; Schepen et al., 2012; Peng et al., 2014; Tao et al.,

2017), which exploit historically and physically established climate teleconnections between

regional hydroclimate and large-scale modes of climate variability (e.g., the El Niño-Southern

Oscillation, ENSO; see (Ropelewski and Halpert, 1986; Bradley et al., 1987; Redmond and

Koch, 1991; McCabe and Dettinger, 1999; Dai, 2013)) also exhibit limited predictive skill.

The main reason is that the complex and non-stationary interactions between large scale dy-

namics and regional hydroclimate cannot be captured sufficiently well with a limited number

of pre-specified climate indices (regions used for computing sea surface temperature (SST)

anomalies) as predictors, even when sophisticated statistical schemes are used (non-linear

statistical schemes, Bayesian techniques, etc).

Recognizing the limitations above, the community has been increasingly embracing the

application of methods that aim to learn from both climate models and statistical schemes in

order to improve seasonal predictive skill. These methods range from weighted multimodel

averaging techniques (Raftery et al., 2005; Luo et al., 2007; Schepen and Wang, 2013; Cheng

and AghaKouchak, 2015) or methods that directly combine predictions from climate models
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and statistical schemes (Coelho et al., 2004; Schepen et al., 2014; Madadgar et al., 2016), to

data-driven approaches based on machine learning, in a setting where predictor variables are

not pre-specified but rather are guided by the data or climate model outputs (Quan et al.,

2006; DelSole and Banerjee, 2017; Hewitt et al., 2018; Ham et al., 2019; Willard et al., 2021;

He et al., 2021). In the former category of methods, the prediction skill depends strongly

on the skill of each of the models considered, thus making such techniques prone to all the

aforementioned limitations. In contrast, the use of machine learning has potential since

climate information from the entire globe can in principle be used to inform the prediction.

However, these techniques also face important practical limitations. First, because of the

short record of observations and the large number of predictors, the number of degrees of

freedom of the problem is vast, significantly increasing the risk of overfitting (Ham et al.,

2019). Second, strong spatiotemporal dependences among the predictor variables, which are

certainly present in climate applications, need to be taken into consideration for imposing

structure in the predictor space, to reduce the dimensionality of the problem and improve

physical interpretability.

In this study, we aim to address the challenges discussed above by introducing a regu-

larized regression scheme that accounts explicitly for spatiotemporally correlated predictors.

Regularization is an established technique in statistics, machine learning, and signal pro-

cessing that can mitigate the challenges of many degrees of freedom relative to the amount

of data. The key idea is that rather than simply finding the model that best fits the data

according to some loss function, we instead minimize the sum of the loss and a regular-

ization function, where the latter reflects some prior belief about which models are better

than others. Sparsity regularization (e.g. the least absolute shrinkage and selection oper-

ator (LASSO) regularization; Tibshirani and Taylor (2011) has already been explored in

the context of precipitation downscaling and data assimilation (Ebtehaj et al., 2012; Ebte-

haj and Foufoula-Georgiou, 2013) and climate forecasting (DelSole and Banerjee, 2017; He
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et al., 2021), but suffers from ignoring the spatiotemporal dependencies among predictors.

In order to respect the embedded space-time structure of the climate system and enforce

sparsity, we use a “graph total variation” (GTV) regularizer (i.e. constraint) that promotes

similarity of weights (i.e. regression coefficients) for highly correlated predictors. The GTV

is a graph-based regularizer, based on the graph formed by the covariance matrix of the

predictors, which was recently introduced by Li et al. (2020). To address the issue of the

short observational record, and to robustly estimate the covariance matrix of the predictor

variables, we make use of a large ensemble of climate model outputs. Using climate model

outputs in the training of machine learning (ML) models is a subcase of the general category

of techniques that aim to integrate physical knowledge and machine learning Willard et al.

(2021), and it has recently been shown to be highly efficient in increasing predictive skill on

seasonal to interannual timescales (DelSole and Banerjee, 2017; Ham et al., 2019). Although

our study differs from these studies in that it uses the climate model outputs not to train

the ML model per se, but only to compute the covariance matrix of the predictors used as a

GTV regularizer, it adds to this important new line of research in synergistically leveraging

both climate models and observations with the goal of improving prediction skill.

We explore the prediction skill of our methodology for the case study of predicting pre-

cipitation over the southwestern US (SWUS), focusing on the winter season (specifically,

Nov-Mar), when the majority of precipitation occurs. Despite the increasing attention that

it has received over the years (Schonher and Nicholson, 1989; McCabe and Dettinger, 1999;

Gershunov and Cayan, 2003; Schubert et al., 2016; Madadgar et al., 2016; Liu et al., 2018;

Hao et al., 2018; Zhang, 2018; Mamalakis and Foufoula-Georgiou, 2018; Pan et al., 2019),

early and accurate prediction of winter precipitation in SWUS remains a challenge, with

significant implications for the region’s population and economy (Howitt et al., 2014; Kay

et al., 2015; AghaKouchak et al., 2015; Medelĺın-Azuara et al., 2016). Traditional climatic

drivers of SWUS precipitation (e.g. ENSO) explain just a small fraction of the interannual
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variability of precipitation totals, which in some cases are determined by a small number of

winter storms (Dettinger et al., 2011; Dettinger and Cayan, 2014). Moreover, it is known

that the ENSO relationship with SWUS climate undergoes multidecadal fluctuations Mc-

Cabe and Dettinger (1999); Yu et al. (2012), with many recent studies pointing out that it

has been losing strength in the recent decades, while the western Pacific climatic state is

gaining in importance (Wang et al., 2014; Baxter and Nigam, 2015; Teng and Branstator,

2017; Seager et al., 2017; Swain et al., 2017; Myoung et al., 2018; Mamalakis et al., 2018; Lee

et al., 2018). The special difficulty of this problem also arises because the SWUS lies within

a transition zone between the subtropics and the mid latitudes (i.e. 30◦- 40◦ N). In fact, the

latter is among the reasons that the effect of climate change on future precipitation trends

over the SWUS is highly uncertain, with mid-latitude regions expected to become wetter

and subtropical regions drier Allen and Luptowitz (2017). Because of its intrinsic complex-

ity, this region offers an excellent case study for exploring and benchmarking data-driven

predictive methods.

As predictor variables, we use late summer and early fall (Jul, Aug, Sep, and Oct) sea

surface temperature (SST) over the entire Pacific basin. Note that although there are studies

indicating the importance of Atlantic Ocean temperatures as drivers of SWUS precipitation

as well (Enfield et al., 2001; McCabe et al., 2004), our focus here is only on the Pacific

Ocean, as a first step. We cast the prediction problem as an estimation problem in which

predictors are not specified in advance, but rather emerge from the data by minimizing an

appropriate loss function. We first demonstrate the increased predictive skill of the proposed

GTV model when the covariance matrix that defines the GTV regularizer is computed from a

large ensemble of a climate model, rather than the single realization of observations. Second,

we benchmark the GTV model against two different classes of predictive models: (1) other

regularized regression methods (LASSO and fused LASSO; Tibshirani et al. (2005)) and (2)

simple ordinary least squares using known teleconnection indices as predictors. Our analysis
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shows that constraining the predictive model by the spatiotemporal covariance of the predic-

tors via a GTV regularization outperforms all the other considered models and substantially

increases the seasonal precipitation predictive skill. Lastly, we show that both the GTV

performance and the emerged predictors of precipitation are quite robust to perturbations

in the covariance matrix that is used to define the GTV regularization term.

The structure of the paper is as follows. In section 2, we describe the prediction problem

and the data used. We introduce the proposed methodology in section 3 and discuss the

advantages of using a graph-based regularizer in which the graph is based on covariance

information from a climate model, instead from the limited observations. In section 4, we

present results on the performance of our proposed model and compare its skill to other

methods. Moreover, we study the emergent predictors, aiming to gain physical insight about

the drivers of SWUS precipitation. We also perform a sensitivity analysis of our results to

gain more confidence in the predictive performance and the emergent predictors. Conclusions

and directions for future research are discussed in section 5.

2.2 Prediction problem and data/models used

The SWUS (California, Nevada, Utah and Arizona) is composed of 25 climate divisions,

for each of which precipitation series are maintained by and publically accessible thanks

to the NOAA National Centers for Environmental information1 (Vose, 2014). The season

we aim to predict precipitation is Nov-Mar, when the majority of the annual precipitation

occurs; note also that winter precipitation, especially that which is stored as snowpack, is

necessary for sustaining the water supply through relatively dry summers (Mote et al., 2005;

Shukla et al., 2015; Liu et al., 2018). As shown in Figure 2.1a, the northwestern part of

the region receives much higher precipitation than the rest of the SWUS, which is generally

considered a fairly dry area. However, the interannual variability in the central and southern

1. https://www.ncdc.noaa.gov/cag/time-series/us
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part is high, generally higher than 40-50% of the mean precipitation (coefficient of variation

of the order of 0.4-0.5 or higher), compared to the northern part of the SWUS, where the

coefficient of variation is 0.3 or lower (Figure 2.1b). To distinguish between the two different

hydroclimatologies of the northern part and the central/southern part of the SWUS, previous

studies have used different approaches, such as focusing on the area below a certain latitude

(Liu et al., 2018) or considering only the climate divisions for which a specific predictor

(e.g. the Niño 3.4 index; an ENSO index) exhibits a significant relation with precipitation

(Mamalakis et al., 2018). Here, we distinguish between the two precipitation regimes based

on the area-weighted first principal component (PC1). As can be seen from Figure 2.1c,

PC1 (which explains about 64% of the total precipitation variability in the SWUS) is more

strongly associated with the central and southern part of the SWUS than with the northern

part, thus providing a quantitative way of differentiating between the two regions. The

region selected for our analysis, composed of 18 climate divisions, is shown in Figure 2.1d,

together with the series of the area-weighted average precipitation.

As predictor variables, we use late summer and early fall (Jul, Aug, Sep, and Oct)

SSTs over the Pacific basin, which is defined as the area in 60◦S - 60◦N and 80◦E - 280◦E.

Historical time series of SST (monthly series on a 1◦ × 1◦ grid, see Hirahara et al. (2014))

are made publically available by NOAA/OAR/ESRL PSL2. At that resolution, the number

of predictor variables is very large (roughly 120 × 200 × 4 = 96,000) making the problem

highly ill-posed. Thus, we upscale the original SST field by simple areal averaging into grid

boxes of size 10◦ by 10◦ over the Pacific basin, to reduce the dimensionality of the problem.

After removing the boxes over land, we end up with roughly 900 predictor variables in total

(i.e. four months over 12 boxes in latitude and 20 boxes in longitude).

The analysis is performed for the years 1940-41 to 2018-19, since SST records are not

trustworthy before the 1940s, due to the limited availability of observations over the Pacific

2. https://www.esrl.noaa.gov/psd/data/gridded/data.cobe2.html
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Figure 2.1: Spatial patterns of winter precipitation statistics over the southwestern US.
a) Multi-year mean of Nov-Mar precipitation over SWUS, for the period from 1940-41 to
2018-19. b) Coefficient of variation (sample standard deviation divided by sample mean) of
Nov-Mar precipitation for the period from 1940-41 to 2018-19. c) Correlation of the first
area-weighted principal component (PC1) of the Nov-Mar precipitation over the SWUS and
precipitation in each climate division. d) Series of the area-weighted average precipitation
over the climate divisions considered in this study (see panel to the right). In our study, we
use years 1940-41 to 1989-90 as a training period (for model fitting), and years 1990-91 to
2018-19 as a test period (for model evaluation).

basin and globally (Deser et al., 2010). In particular, we use years 1940-41 to 1989-90 as a

training period, and years 1990-91 to 2018-19 as a test period. All individual SST series are

linearly detrended and standardized (zero mean and unit variance) before they are used in

the analysis.

To reduce the uncertainty in the estimation of the spatio-temporal dependency of the

predictors (covariance matrix of SST predictors, used to define the GTV regularizer), we also

examined simulations from the Community Earth System Model-Large ENSemble project
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(CESM-LENS; Kay et al. (2015))3. Specifically, we use monthly series (on a 1.25◦×0.9◦ grid)

of surface temperatures over the Pacific basin, which we also upscale to 10◦ × 10◦ grids to

match the grids used for the observed SSTs. We note that the CESM-LENS project consists

of 40 ensemble members, each one corresponding to the same model physics but different

initial conditions in the atmosphere. CESM-LENS relies on historical boundary conditions

for the period 1920-2005, and the representative concentration pathway 8.5 (RCP8.5) is

applied as forcing for years 2006-2100. Here we used only archives of simulation output

from 1940-2005 to build our model covariance matrices, as the focus of our analysis is on

improving prediction for the contemporary period. Note that the 40 ensemble members

constitute independent, but equally probable trajectories of the Earth system with historical

forcing (see Kay et al. (2015) for more information).

2.3 Methodology

Let y
(i)
r denote the winter precipitation in year i and climate division r. We hypothesize that

y
(i)
r can be predicted from climate variables at different locations over the Pacific Ocean and

different lag times (e.g., months ahead of the winter period), with a model of the form:

y
(i)
r =

p∑
j=1

x
(i)
j βj,r + ϵ

(i)
r (2.1)

where ϵ
(i)
r is a Gaussian noise N(0, σ2) term. Writing (2.1) in a matrix form and dropping

the index r for convenience results in

y = Xβ + ε (2.2)

3. http://www.cesm.ucar.edu/projects/community-projects/LENS/data-sets.html
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where y =
(
y(1), y(2), . . . , y(n)

)T
∈ Rn is the vector of winter precipitation over n years,

X =
[
x(1),x(2), . . . ,x(n)

]T
∈ Rn×p is the matrix of climate variables, i.e., SSTs over the

Pacific Ocean and in the four different months preceding the winter season (Jul, Aug, Sep,

and Oct), β =
(
β1, β2, . . . , βp

)T ∈ Rp is the vector of weights corresponding to p predictors,

and ε =
(
ε(1), ε(2), . . . , ε(n)

)T
∈ Rn is a Gaussian noise vector. We clarify that x(i)is a p-

dimensional vector in year i of SSTs arranged by moving along all longitudes and latitudes of

the Pacific Ocean and for the four months of July, August, September, and October. Thus,

p = 900 in our case, while the number of available years is n = 79 (i.e. we use 50 years

for training and 29 years for testing; from 1940-41 to 1989-90 and from 1990-91 to 2018-19,

respectively). Obviously, this problem is highly under-determined, since n ≪ p. To solve for

β, we reduce the effective dimension of the problem by adding regularization terms, leading

to the formulation:

β̂ = argmin
β
{ 1
n
∥y −Xβ∥22 + λR (β)} (2.3)

where R (β) is a regularization term, chosen to impose structure and sparsity on β, and

λ > 0 is the regularization parameter. A popular choice for R (β) is the LASSO regularizer

(Tibshirani, 1996), i.e., R (β) = ∥β∥1 =
∑p

i=1 |βi|, which yields minimizers of (3) for which

β is sparse, i.e., there are only a few spatiotemporal variables that are truly predictive while

the rest are conditionally independent of the response y. The value of λ, typically estimated

using cross-validation, reflects the weight given to the sparsity constraint. However, the

LASSO regularization does not take into account that predictors might have a significant

spatiotemporal dependence structure which, if included, might further constrain and improve

the prediction.
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2.3.1 Graph Total Variation (GTV)

To overcome this problem, we propose a regularizer that accounts explicitly for the spatiotem-

poral covariance of the predictors. The central idea of this regularizer is that if covariates

xj and xk are highly correlated with one another, then they should receive similar weights

β̂j and β̂k. This approach helps us select highly correlated collections of covariates that

serve as strong predictors of precipitation. In contrast, the LASSO estimator would gener-

ally select either β̂j or β̂k, but not both, and the selected covariate would be very sensitive

to any noise in the data. We form a graph to represent the correlations between pairs of

covariates, and select a set of weights β that is “aligned” with the graph. This regularization

scheme, known as Graph Total Variation (GTV), was introduced in Li et al. (2020). Al-

though graph-based regularizers have been explored before (e.g. fused LASSO, edge LASSO,

graph-trend filtering), Li et al. (2020) developed theoretical guarantees for the GTV regu-

larizer for highly correlated covariates, and showed how imposing additional structure on

β to encourage “alignment” with the covariance graph can lead to optimal solutions. This

property is important in our problem since X contains highly correlated columns, resulting

for example from dependence between SST anomalies at nearby locations for small time lags

or at distant locations but lagged in time.

LetΣ̂ be an estimate of the covariance matrix of X and let ŝj,k = sign
(
Σ̂j,k

)
. The GTV

estimator is given by

β̂ = argmin
β

 1

n
∥y −Xβ∥22 + λTV

∑
j,k

∣∣∣Σ̂j,k

∣∣∣1/2 ∣∣βj − ŝj,kβk
∣∣+ λ1 ∥β∥1

 (2.4)

where λ1and λTV are regularization parameters chosen through cross validation. Here we

use a standard 5-fold cross validation approach applied to the training data (i.e. a total of

50 years) to estimate the optimal
(
λ∗1, λ

∗
TV

)
combination. Specifically, we split the training

dataset into five non-overlapping, random 10-yr sets; for each of the five sets, we train our
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model (i.e. estimate β̂) using the other four sets and compute the prediction error on the

held out fifth set. This is repeated for each candidate tuning parameter pair (λ1, λTV ). The

optimal
(
λ∗1, λ

∗
TV

)
combination is the one that, on average, minimizes the prediction error

across the five different holdout sets. Note that choosing the value of λTV that determines

the importance of the GTV term via cross-validation can mitigate the effect of any systematic

biases reflected in the estimate Σ̂, since if Σ̂ were not informative at all, the optimal λTV

would be close to zero.

We can interpret the estimator in Equation 2.4 from a graph perspective by defining a

covariance graph based on Σ̂. Let G = (V,E,W) be an undirected weighted graph with

vertices V = {1, 2, . . . , p}, edges E :=
{
(j, k) :

∣∣∣Σ̂j,k

∣∣∣ > θ, j ̸= k
}
, and weight matrix W

with wj,k =
∣∣∣Σ̂j,k

∣∣∣1/2. That is, each predictor variable (e.g. SST at a particular place

and time) is associated with one of the nodes of the graph, and edges reflect the pairs of

predictors that are correlated. A threshold parameter θ can be applied to the covariance

matrix (Bickel and Levina, 2008) for assessing with edges (i.e., links between covariates) will

be used in the GTV term (see Section 2.3.3 for further discussion about parameter θ).

The expression in (2.4) may be rewritten using new notation that highlights connections

with previous methods and known software for solving the optimization problem. Specifi-

cally, let Γ ∈ R|E|×p be the weighted edge incidence matrix of G, where each row l represents

a pair of connected vertices (jl, kl):

Γl,jl = wjl,kl

Γl,kl = −ŝjl,klwjl,kl

(2.5)

Then, we can write (2.4) as

β̂ = argmin
β

{
1

n
∥y −Xβ∥22 + λTV ∥Γβ∥1 + λ1 ∥β∥1

}
(2.6)
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As mentioned above, GTV promotes estimates of β that contain sparse clusters of coefficients,

each cluster corresponding to a highly correlated set of variables. That is, the stronger the

correlation between xj and xk, the more similar β̂j and β̂k. The ∥β∥1term promotes overall

sparsity. We note that (2.6) can be viewed as a generalized LASSO estimator (Tibshirani

and Taylor, 2011), for which a number of efficient implementations exist.

2.3.2 Other regularization methods

This work sits alongside a growing body of literature of structured estimation in high dimen-

sions with a specific application to climate data (e.g., Goncalves et al. (2016)). A variety of

regularization schemes have recently shown promise in improving predictive skill by imposing

structure and sparsity on the predictors. Chatterjee et al. (212) proposed using the Sparse

Group Lasso (SGL), in which the regularizer is given by

R (β) = f∥β∥1 + (1− f) ∥β∥1,G (2.7)

where G = {G1, G2, . . . , GM} are M groups of variables across multiple locations and times.

This scheme yields solutions in which variables at certain locations and times are simul-

taneously selected or else zeroed out. Using this scheme to predict monthly temperature

and precipitation showed significant improvement over LASSO. He et al. (2019) proposed a

weighted LASSO given by

R (β) =

p∑
i=1

wi |βi| (2.8)

where the weights are chosen to be proportional to the distance between the location of the

feature and the location of its response. This penalizes predictors that are far away from the

region of interest and it is not appropriate for our problem, in which long-distance climate

teleconnections play an important role.

Finally, we note that GTV is a special case of the fused LASSO estimator (Tibshirani
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et al., 2005). While these estimators have significant theoretical support, the theory relies

on the assumption that X is full rank and does not consider the role of correlations among

columns of X. Furthermore, the edges included in the fusion penalty are assumed to be

highly structured (i.e. only direct spatial or temporal neighbors), and the theory does not

generalize to the types of unstructured covariance graphs that arise in many applications.

In climate and other domains, there are known long-range correlation patterns that would

not be captured by a direct neighbor penalty. We will, however, benchmark GTV against

the fused LASSO, which has regularization term

R (β) =
∑

j,k∈N

∣∣βj − βk
∣∣+ λ1 ∥β∥1

N :=
{
(j, k) |(xj ,xk) are spatially adjacent

}
∪
{
(j, k) |(xj ,xk) are temporally adjacent

}
(2.9)

2.3.3 Using climate model outputs to compute the covariance of the SST

predictors

The theoretical guarantees of GTV depend on a sufficiently accurate estimate of the covari-

ance matrix of the Pacific SSTs Σ:= E(XTX). However, for our problem where n ¡¡ p, the

sample covariance 1
nX

TX is a highly uncertain estimate of Σ (Bickel and Levina, 2008; Cai

et al., 2016). Thus, we propose to explore the use of ensemble simulations from climate

models, the size of which is several times larger than that of observations, in order to reduce

the uncertainty of the covariance matrix estimate and improve the performance of the GTV

regularized regression. While we acknowledge that climate models might not accurately

capture all multi-scale space-time variability of SSTs in the Pacific (e.g. see the studies of

(Szoeke and Xie, 2008; Kim et al., 2014; Bellenger et al., 2014; Li and Xie, 2014; Wang and

Miao, 2018), we assert that leveraging their information content to improve high dimensional

20



data-driven predictive methods offers great potential and deserves careful examination. In

a recent study by Ham et al. (2019), climate model outputs were used in the context of

“physics-guided initialization” (the term is adopted from Willard et al. (2021)). Particu-

larly, the adopted ML model was first trained using climate model outputs, so some initial

estimates of the weights were obtained. Then, as a second step, prediction was performed

by fine-tuning the weights using historical data (a process known as “transfer learning”).

Here, we suggest that defining the GTV regularizer using covariance information from

climate models can increase predictive performance. We term this approach “physics-guided

regularization”. We rigorously demonstrate the merits of this approach using the SST out-

puts from the 40 ensemble members of CESM-LENS. Since CESM-LENS simulations are

produced on a different spatial grid from that of the SST observations, we interpolated late

summer and early fall SSTs from CESM-LENS linearly onto the observation grid. We em-

phasize that the CESM-LENS outputs are used only to estimate the covariance matrix of

the predictors, while the training of our model (estimation of the regression parameters and

coefficients) and its performance evaluation (see Section 2.4) are always performed using the

observed SST and precipitation series in the training and test periods, respectively.

Letting XCL ∈ R40n×p be the detrended and standardized (zero mean and unit variance)

matrix of stacked SST variables from all the CESM-LENS members, we define Σ̂CL as the

sample covariance of XCL. We also define Σ̂obs as the covariance matrix estimated from

the observations. These covariance matrices are p × p matrices in which all considered

variables are ordered by longitude, latitude, and month, resulting in repetitive patterns

arising from the spatial and temporal dependencies (see Figure 2.2a for Σ̂obs). Visually,

there is no striking difference in the dependence structure of SSTs between different months

(Figure 2.2a, left panel). The highest correlations (both positive and negative) are found in

the tropics, with strong SST couplings along the eastern and central tropical Pacific basin

(high positive correlation) and between the eastern and western tropical Pacific basin (high
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negative correlation), features that are a consequence of the ENSO (Wang et al., 2017);

e.g., see the zoom-in panels in Figure 2.2a for the October covariance matrix. Figure 2b

shows Σ̂obsand Σ̂CL for the month of October. Although some differences are observed, the

CESM-LENS appears to capture well the spatial structure of the observed SST correlations

(i.e. tropics vs extratropics etc.), and as demonstrated in section 4.1, the reduced uncertainty

of Σ̂CL adds significant predictive skill and robustness to the GTV model.

To finalize the construction of the graph underlying the GTV regularization, we further

process the SST covariance matrix Σ̂CL estimated from the output of CESM-LENS, using

a thresholding procedure with statistical guarantees (see Bickel and Levina (2008); Li et al.

(2020)), this method simply sets elements of the sample covariance with absolute value

under a certain threshold equal to zero. That is, for a threshold θ, the covariance graph

G has edges E :=
{
(j, k) :

∣∣∣Σ̂j,k

∣∣∣ > θ, j ̸= k
}
. In addition to the statistical advantage of

this thresholding in yielding more consistent covariance estimates, thresholding is also useful

from a computational perspective, as it drastically limits the number of edges used in the

regularization term (i.e., the number of rows in Γ in Equation (6)). We treat the threshold

θ as a model parameter and estimate its optimal value in a cross validation training setting

(i.e., similarly to λ1 and λTV ; see section 3.1), which allows us to disregard the smaller, less

certain SST correlation values that, if included, would have led to a worse performance (i.e.,

if Σ̂CL were not informative at all, the optimal θ would be close to one).

2.3.4 Accounting for non-stationarity in precipitation teleconnections

The last issue that our analysis aims to account for is possible non-stationarities in the

strength of the precipitation teleconnections. Traditionally, precipitation in the SWUS has

been linked to various large scale modes of climate variability, and more commonly the

state of ENSO (Schonher and Nicholson, 1989; Redmond and Koch, 1991; Mo and Higgins,

1998; McCabe and Dettinger, 1999; Cayan et al., 1999). Physically, El Niño (or La Niña)
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Figure 2.2: Space-time covariance of sea surface temperatures (SSTs) in the Pacific Ocean.
a) Sample covariance matrix of the observed Pacific SSTs over longitude-latitude and for four
months. Zoom-in covariance in October highlights the spatial extent of the tropical ENSO
signal and a further zoom-in at the fixed latitude of 60°S shows the spatial longitudinal
dependence. b) Comparison of the sample covariance of October Pacific SSTs as estimated
from the observations and the output of CESM-LENS.

events typically associate with persistent low (or high) atmospheric pressure patterns over

the northeastern Pacific (a teleconnection which materializes via quasi-stationary Rossby

waves (Trenberth et al., 1998; Castello and Shelton, 2004)), and thus disturb the location

and strength of the winter time jet stream, which can then bring more (or fewer) winter

storms to the SWUS, leading to wet (or dry) conditions over the SWUS and dry (or wet)
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conditions over northwestern US. However, recent research shows that the ENSO effect on

the atmospheric pressure and (consequently) on precipitation over the eastern Pacific and

North America has been decreasing in strength during the last 3-4 decades, while many

studies have highlighted to a greater or lesser extent that the western Pacific climatic state

(e.g. SSTs) has been a stronger driver of precipitation variability over North America (Wang

et al., 2014; Baxter and Nigam, 2015; Teng and Branstator, 2017; Seager et al., 2017; Swain

et al., 2017; Myoung et al., 2018; Mamalakis et al., 2018). On a similar note, new research

(Johnson et al., 2019) shows that during the last 3-4 decades, western Pacific SSTs have been

important players in affecting the connection between the tropical atmospheric circulation

and the eastern tropical Pacific SSTs, during weak ENSO events, which highlights changes

in the tropical Pacific dynamics (see also Mamalakis et al. (2019). Whether these changes

in precipitation teleconnections and Pacific dynamics are a result of internal multidecadal

climate variability or anthropogenic forcing is still not clear. However, to acknowledge the

non-stationary nature of the prediction problem, we herein use a weighted loss function that

gives more weight to the more recent years in the training data set, that is, the period after

the 1970-80s. This is roughly the time that most studies have pinpointed as the start of

these changes (Wang et al., 2014; Swain et al., 2016; Mamalakis et al., 2019; Johnson et al.,

2019), and it is also the period during which the SWUS precipitation variability (inter-annual

variance) has started to increase (see Figure 1). As such, with regard to the data-fit term of

Equation 2.6, we minimize the weighted loss function

1989∑
t=1940

{
a1989−t

(
y(t) − ⟨x(t), β⟩

)2}
(2.10)

with a being a discount factor set to a = 0.90. This simple but effective approach is widely

used in the forecasting literature (e.g., Hyndman and Athanasopoulos (2018); Livneh and

Badger (2020)) and gives preference to the relationship between Pacific SSTs and SWUS

precipitation in the more recent decades, while still retaining some information from earlier
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years.

2.4 Results

In Figure 2.3, we summarize schematically the proposed approach based on the GTV de-

scribed in the previous sections, for the prediction of winter precipitation totals in SWUS.

We inform our prediction using observed Pacific SSTs during the late boreal summer and

early fall (Jul, Aug, Sep, Oct) and we form a space-time covariance graph with edge weights

corresponding to pairwise correlations (normalized covariances) between SST boxes of 10◦

by 10◦, to constrain our regularization scheme, in addition to the traditionally used LASSO

term. Correlations are obtained from the output of climate models (i.e. using SST out-

puts from 40 ensemble members of the CESM-LENS, for the period 1940-2005) to decrease

estimation uncertainty and improve prediction in the test period.

Figure 2.3: Schematic for the graph-guided regularization (Graph Total Variation, GTV)
for predicting winter precipitation over SWUS. We use observed Pacific SSTs as input to
the predictive model, and we form a space-time covariance graph with edge weights corre-
sponding to pairwise SST covariances to constrain the model via a GTV regularization term.
The covariance matrix is estimated based on the output of climate models and subjected
to a hard thresholding (see Sec 2.3.3) to increase the consistency of the dependency among
predictors for improved performance of the GTV algorithm.
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2.4.1 Predictive performance of the GTV model

The GTV model (2.6) was fitted in the training period (from 1940-41 to 1989-90) and the

optimal threshold value θ∗and optimal parameter values
(
λ∗1, λ

∗
TV

)
were estimated through

a 5-fold cross validation procedure (see section 3.1). For the case of the areal average pre-

cipitation over SWUS, this procedure identified the values θ∗= 0.5 and
(
λ∗1, λ

∗
TV

)
= (0.013,

0.0007). To test the sensitivity and robustness of the GTV model to this optimal choice

of parameters, and also to showcase the advantage of using the CESM-LENS versus the

covariance of observations, we start by presenting and discussing results for three different

values θ = (0.35, 0.5, 0.75) and various (λ1, λTV ) combinations. Figure 4 shows the October

SSTs covariance for those different θ thresholds, highlighting the sparseness of the covariance

matrix as the threshold increases. Although not shown in Figure 4, the dependency graph

formed by the thresholded covariances has, as expected, a decreasing number of links (it is

sparser) as θ increases. Specifically, the degree of the GTV graph (defined as the average

number of edges each node is connected to) is 80503, 32644, and 5357 for θ = 0.35, 0.5 and

0.75, respectively, highlighting the computational advantages that the reduced-degree graph

also offers.

The middle-column panels in Figure 2.4 show the model performance in the test pe-

riod, measured by the coefficient of determination R2, as a function of the different com-

binations of(λ1, λTV ) parameters. On the same panels, the optimal set of parameters(
λ∗1, λ

∗
TV

)
obtained from the 5-fold cross validation in the training period, conditional on

the three values of θ, is also shown. It is observed that for θ∗= 0.5, the optimal parameters(
λ∗1, λ

∗
TV

)
robustly fall within the region for which the model performance in the test period

is also optimal. This illustrates that optimally thresholding the covariance to reduce the

spatiotemporally correlated predictors used in the regularization, avoids overfitting, and in-

creases model accuracy. Moreover, our results show that the GTV model explains about R2

= 40% of precipitation variance in the test period; even for parameter values other than the
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optimal
(
θ∗, λ∗1, λ

∗
TV

)
, R2 is consistently higher than 30%. This is a significant improvement

over the R2 values obtained in prior work, since commonly used teleconnection indices typ-

ically result in a much lower fraction of explained variance, on the order of 10-20% (see Lee

et al. (2018); Deser et al. (2018), and Figure 2.6 herein). The latter indicates that informing

the GTV regularizer based on the covariance matrix Σ̂CL improves the prediction.

To highlight further the merit of using the climate model covariance Σ̂CL versus the

covariance of the observationsΣ̂obs, the rightmost column panels in Figure 2.4 present the

same analysis as the middle column panels, but using Σ̂obs instead. It is telling that the

performance in the test period in this case is inferior (smaller R2 values) for all combinations

of parameters (λ1, λTV ) and threshold values θ.

Having established the robustness of the GTV model using Σ̂CL with the optimal pa-

rameters θ∗= 0.5 and
(
λ∗1, λ

∗
TV

)
= (0.013, 0.0007), we compare in Figure 5 the predicted

and observed precipitation series for the years from 1990-91 to 2018-1. The predicted series

explains about 42% of the precipitation variability and captures adequately many of the

extreme precipitation years, i.e. the wet years 1992-93, 1994-95, 1997-98 and 2004-05, and

the dry years 1998-99, 2001-02 and 2006-07. Also, the probability of dry/wet hit is high

(high chance in predicting dry/wet, when actually dry/wet conditions occur). Specifically,

if we define a wet/dry year to be a year that falls above/below the multi-year precipitation

average, then our results indicate that our method exhibits a wet hit probability of 64%

and dry hit probability of 72%. Moreover, the residuals between the prediction and obser-

vations are found to be normally distributed and exhibit insignificant autocorrelation at a

0.05 significance level (see Figure 2.5b,c), consistent with the “white noise” assumption in

(1)-(2).

Finally, the residuals of the prediction do not show statistically significant correlation

with the Pacific SSTs (Figure 5d), indicating that no information in the Pacific SSTs is left

unexplored in the predictive model. Only a few small and incoherent SST patterns are found
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Figure 2.4: Sensitivity analysis of the GTV model performance for a range of covariance
thresholds θ and regularization parameters λ1 and λTV . Left column panels show the co-
variance of the October SSTs (as estimated based on the CESM-LENS) for three different
thresholds (θ = 0.35, 0.5, and 0.75). The middle (right) column panels show the coefficient
of determination (R2) between the areal average observed and model predicted precipitation
in the test period (1990-91 to 2018-19), when the CESM-LENS covariance (observed SST
covariance) is used to define the GTV regularizer. In all panels, and conditional on the
corresponding values of θ, the optimal (λ∗1, λ

∗
TV ) pair for each model (obtained by using

a 5-fold cross validation in the training period 1940-41 to 1989-90) is shown (black dots).
These results highlight that (a) the use of the CESM-LENS covariance, instead of the ob-
servational covariance, to inform the GTV regularizer leads to a highly robust and improved
predictive performance, as judged by the larger domain of regularization parameters with
high R2 values (see middle column plots, as compared to their right counterparts), and (b)
our choice to use a threshold of θ∗ = 0.5, which was based on a 5-fold cross validation in the
training period, shows to yield the most robust and highest predictive performance.
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Figure 2.5: Evaluation of the prediction of winter (Nov-Mar) precipitation. a) Series of
observed (green) and predicted (red) Nov-Mar areal average SWUS precipitation during the
test period from 1990-91 to 2018-19. Prediction is made using the sample covariance from the
CESM-LENS output. b-c) Histogram and autocorrelation function of the residual time series
during the test period (residuals are between GTV predictions and observations shown in
(a)). The null hypothesis that the residuals are normally distributed is not rejected at a 0.05
significance level. Also, the null hypothesis that there is no year to year linear dependence
(autocorrelation) in the residual time series is not rejected at the 0.05 significance level.
d) Partial correlation between SWUS precipitation in Nov-Mar and linear detrended grid
point SSTs in Jul-Oct, after accounting for the GTV prediction. Stippling indicates locally
significant correlations. The absence of significant correlation patterns indicates that no more
predictive information can be extracted from the Pacific basin SSTs, providing confidence
for the fitted model.

to significantly correlate to precipitation at a 0.05 significance level, probably due the fact

that in Figure 5d we simultaneously test multiple “local” hypotheses, which increases the

chances of a type I error (i.e. rejecting a true null hypothesis; Wilks (2016)). Thus, we
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can conclude that our model sufficiently exploits the Pacific SST information, and that any

deviation (residual) between our predictions and reality either comes from other forcings not

included in our analysis (e.g. SST variability over the Atlantic Ocean; Enfield et al., 2001),

or is the result of internal stochastic variability.

2.4.2 Benchmarking against other predictive models

In this section, we compare the prediction skill of the GTV, for all climate divisions over

the SWUS and the areal average precipitation, to other regularized regression models and

models based on commonly used teleconnections (Figure 2.6). Specifically, we benchmark

our results against the following methods:

• LASSO: standard ℓ1-penalized regression; coefficients are penalized so that the solution

is very sparse.

• Fused LASSO: Direct spatial and temporal neighbors are penalized to have similar

coefficients (2.9).

• GTV (Obs): GTV with the regularization term defined using the covariance matrix

estimated from the observations and thresholded at θ∗= 0.5.

• GTV (CESM-LENS): GTV with the regularization term defined using the covariance

matrix estimated from CESM-LENS and thresholded at θ∗= 0.5.

• Ordinary least squares using known teleconnection indices.

We highlight that all methods are trained in years from 1940-41 to 1989-90 using the

weighting formula described in Section 2.3.4 to account for non-stationarity and tested in

years from 1990-91 to 2018-19. Only observations are used for training and testing; the

CESM-LENS output is used simply to define the regularization term in the GTV (CESM-

LENS), but not to actually fit or test the model.
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Figure 2.6: Performance of GTV and different methods of regularization (top panel) and of
known teleconnections (bottom panel) in predicting precipitation totals over different SWUS
divisions in the test period from 1990-91 to 2018-19. The coefficient of determination (R2)
is presented. It is shown that GTV with model-estimated covariance of SSTs outperforms
all other regularization methods (top) as well as statistical regression on two known telecon-
nections (bottom).

First, we find that the prediction accuracy differs significantly among climate divisions of

the studied region. Most notably, prediction of the northern climate divisions, CA(4), CA(5),

UT(1), UT(6) and UT(7) is poorer relatively to climate divisions over most of Arizona. The

fact that this holds for all models indicates that the signal of the Pacific SSTs to precipitation

is weaker as one moves to northern California, Nevada, and Utah, which is in accordance with

other studies (see Schonher and Nicholson (1989); McCabe and Dettinger (1999); Castello

and Shelton (2004); Mamalakis et al. (2018), and our discussion in section 2). With regard

to the best performing model, our results show that the proposed GTV model reproduces

the highest fraction of precipitation variability over almost all climate divisions, ranging

from almost R2 = 0.5 in AZ(7) to R2 = 0.1 in UT(1), and R2 = 0.42 for the areal average
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precipitation, when using Σ̂CL. When usingΣ̂obs, the performance is poorer and similar to

the performance of LASSO and fused LASSO, in terms of the areal average precipitation.

Fused LASSO performs slightly better than GTV in AZ(3), but it only slightly exceeds R2 =

0.1 for the areal average precipitation.

As a benchmark, we also compare the prediction performance of GTV with known phys-

ical teleconnections. Specifically, we train a weighted (see section 2.3.4) linear regression

scheme using the averaged Jul-Oct Niño 3.4 index as our predictor, which captures ENSO

variability and is typically associated with SWUS precipitation. We also use a weighted

bivariate regression model combining the Niño 3.4 index and the New Zealand Index (NZI)

over the same summer months. The NZI has been shown to exhibit high correlation with

precipitation over the last four decades (Mamalakis et al., 2018). The latter interhemispheric

teleconnection has been suggested to materialize through a western Pacific ocean-atmosphere

pathway, whereby SST anomalies in the southwestern Pacific during late boreal summer can

modulate time-lagged anomalies of the same sign in the northwestern and central Pacific via

perturbation of the regional southern Hadley cell, which in turn affect the jet stream and

winter storm tracks to the US west coast. Our results show that ENSO-based predictions

explain about 10-15% of the precipitation variability over most climate divisions. When NZI

is added, the prediction performance increases significantly and the explained variance is al-

most twice as high for the areal average SWUS precipitation. However, in almost all climate

divisions, the GTV(CESM-LENS) model outperforms all other models. Similar conclusions

are reached also based on the mean squared error (see Table 2.1), where the GTV model is

not the best performing in only three climate divisions out of the 18 (i.e. in AZ(3), AZ(4)

and AZ(7)).

Generally, the results described above, and summarized in Table 2.1 and Figure 2.6,

show that GTV (CESM-LENS) robustly outperforms the competing regularized regression

schemes and known teleconnections, offering promise for increasing the predictive skill of
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Region Niño 3.4 Niño 3.4
& NZI

Lasso Fused
Lasso

GTV
(Obs)

GTV
(LENS)

Arizona (1) 1.1515 1.0091 1.1556 0.9549 1.1279 0.9321
Arizona (2) 1.0219 0.8037 0.9234 0.9631 0.9349 0.7372
Arizona (3) 1.1344 0.9102 1.0036 0.8540 0.9691 0.8625
Arizona (4) 0.9812 0.6815 0.9017 0.9536 0.7758 0.7571
Arizona (5) 1.1927 0.9918 1.3016 1.0754 1.2016 0.9833
Arizona (6) 0.9684 0.6985 0.8250 0.8656 0.7178 0.6744
Arizona (7) 0.9239 0.6104 0.7885 0.7105 0.5936 0.6135
California (4) 0.8560 0.9695 0.9469 0.8174 0.9549 0.7672
California (5) 0.9169 1.1322 0.9663 0.8756 0.9663 0.8270
California (6) 1.0367 0.9062 1.0598 0.9606 1.1127 0.8552
California (7) 1.1252 0.9870 1.3009 1.0544 1.1543 0.8409
Nevada (3) 0.9632 0.8927 1.0182 0.8761 0.9006 0.7889
Nevada (4) 1.1680 1.0907 1.2489 1.0980 1.1567 0.9255
Utah (1) 1.1706 1.2818 1.2238 1.2196 1.1871 1.1074
Utah (2) 1.1295 1.0078 1.1973 0.9915 1.1512 0.9545
Utah (4) 0.9243 0.8656 0.9108 0.9000 0.8312 0.7773
Utah (6) 0.8958 0.9667 0.8537 0.8849 0.7305 0.7012
Utah (7) 0.8462 0.7622 0.8470 0.8740 0.8450 0.6701
Areal Average 0.9818 0.8671 1.0087 0.9803 1.0074 0.6652

Table 2.1: Mean square error (MSE) of different methods of regularization and telecon-
nections in predicting precipitation totals over different SWUS divisions in the test period
from 1990/91 to 2018/19. Precipitation series has been standardized (zero mean and unit
variance). For the GTV model the covariance threshold of θ∗ = 0.5 has been used. Bold
font indicates the method with the lowest MSE for each climate division.

winter precipitation over the SWUS.

2.4.3 Physical interpretation of the predictors

In this section, we seek insight into which SST patterns play an important role in driving

winter precipitation variability over the SWUS. In doing so, we seek physical interpretations

of the “optimal” solutions of regression coefficients corresponding to each regularization

method. We repeat here that we estimate β̂ by (i) applying a 5-fold cross validation tech-

nique to the training data to estimate the regularization parameters of each model, and (ii)

minimizing the corresponding loss function using the estimated regularization parameters
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from (i). Although this analysis is not suitable to draw rigorous causal inferences, it can

highlight important sources of predictability for precipitation, which should be physically

interpretable.

The optimal coefficients β̂ for the LASSO model are presented in Figure 2.7a. Keeping in

mind that the LASSO regularization promotes sparsity, this method essentially pinpoints the

few regions around the Pacific basin, over which late summer and early fall SSTs contained

the highest predictive information for Nov-Mar precipitation, during the training period

from 1940-41 to 1989-90. Specifically, negative regression coefficients on the order of -0.3

are found over the tropical and subtropical western Pacific, and positive coefficients of the

same order are found over the southern hemisphere mid-latitudes. Fused LASSO (Figure

2.7b), which promotes the assignment of similar weights to neighboring grid boxes, yields a

smoother version of the LASSO solution, in which the majority of Pacific participates in the

prediction, but many regions (grid boxes) contribute in a negligible way (many coefficients

are on the order of 10-3-10-4). There is some contribution by the northern mid-latitude SSTs,

but the highest weights are again assigned to the tropical and subtropical western Pacific

(negative coefficients), and to the southern hemisphere mid-latitudes, especially over the

southeastern Pacific (positive coefficients). Lastly, slightly different solutions are obtained

by the GTV model when using Σ̂obs (Figure 2.7c) or Σ̂CL (Figure 2.7d). However, in terms

of the patterns of the SST predictors (i.e. not in terms of grid by grid comparison), there

is some consistency between these two variants over the southwestern Pacific Ocean (where

both models exhibit high negative coefficients), and the north eastern and central Pacific

basin (positive coefficients).

Although the GTV model (when using Σ̂CL) gives the best prediction performance in

the test period, for our physical interpretation, we focus on SST patterns that are consistent

across all methods. Specifically, in accordance with recent studies (Wang et al., 2014; Seager

et al., 2017; Swain et al., 2017; Myoung et al., 2018; Mamalakis et al., 2018), all models
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Figure 2.7: The emergent predictors of the areal average SWUS winter precipitation for
different models of regularization; a) LASSO, b) Fused LASSO, c) GTV using the sample
covariance of the observed SSTs, and d) GTV using the sample covariance from the CESM-
LENS output. The β̂ values are presented (colored circles) after training each method in the
training period 1940-1989, using a 5-fold cross validation technique. The color of the circles
indicates the sign of the β̂, values (yellow for positive and purple for negative), while the size
of circles is proportional to their magnitude; for each method, the minimum and maximum
β̂, values (in absolute terms) are also given. Niño 3.4 and NZI boxes are also shown. All
models highlight to a greater or lesser extent the western and southwestern Pacific SSTs as
important predictors of SWUS precipitation.

highlight to a greater or lesser extent the western Pacific SSTs as important predictors of

California and SWUS precipitation, rather than the eastern Pacific SSTs. Physically, it has

been shown that the western tropical Pacific is a region over which anomalous convection can

be an important source of Rossby wave energy, which teleconnects through a quasi-stationary
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Rossby wave train with the atmospheric pressure over the northeastern Pacific, affecting the

location of the jet stream, and eventually precipitation totals in the north America (Wang

et al., 2014). Moreover, the southwestern Pacific (close to New Zealand) has been highlighted

in the literature as a special region in leading tropical climate. First, some studies support

that climate variability (e.g. SST, sea level pressure, etc.) over the southwestern Pacific

leads by a few seasons the ENSO variability (Trenberth and Shea, 1987; van Loon and Shea,

1987; Stephens et al., 2007), and specific indices have been suggested to increase predictive

skill of ENSO state (Hamlington et al., 2015). Given that ENSO is known to be related

with SWUS precipitation during winter (i.e. for zero lead time), the southwestern Pacific

SSTs may provide important predictors of precipitation, by leading the ENSO state, and

are highlighted by all models in our analysis. By contrast, eastern tropical Pacific SSTs are

not shown to be predictive, since our analysis considers nonzero lead times. More recent

studies, however, suggest that western Pacific SSTs can also affect precipitation through

a Western Pacific Pathway i.e. not necessarily through ENSO teleconnections (Mamalakis

et al., 2018). The latter has been suggested to materialize through the seasonal migration

of the intertropical convergence zone and the associated expansion of the southern Hadley

cell during late summer (Waliser and Gautier, 1993; Berry and Reeder, 2014; Mamalakis

and Foufoula-Georgiou, 2018), which allows for persistent SST anomalies to impact the

atmospheric circulation and climate variability in the western tropical Pacific, which as

noted earlier is a key region of Rossby wave energy. This teleconnection has been increasing

in importance during the last 40 years, which is also the time when new, ENSO-independent

SST patterns have been emerging and affecting tropical atmospheric circulation (Johnson

et al., 2019).
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2.4.4 Sensitivity of the GTV model to uncertainty in the covariance matrix

Finally, to explore the sensitivity of the GTV model to perturbations of the covariance matrix

used to define the regularization term, we perform a bootstrap analysis. Namely, rather than

stacking all 40 CESM-LENS trajectories to form the covariance matrix, we resample the 40

trajectories (with replacement) and compute the sample covariance of the new sample. Next,

we form our GTV regularization term using this resampled covariance matrix, then fit the

GTV scheme in the training period, and finally calculate the coefficient of determination

(R2) in the test period. By repeating this procedure 1000 times, we can quantify how the

uncertainty in the covariance matrix propagates to uncertainty in the regression coefficients

β̂and model performance. Our results show that the GTV model always captures more

than R2 = 30% of the variability of the Nov-Mar areal-average precipitation, in some cases

reaching R2 = 45%. The bootstrap average is on the order of R2 = 40% and the bootstrap

standard deviation is about 5% (see Figure 2.8a). These results indicate that the GTV

model is not particularly sensitive to the uncertainty in the covariance matrix and always

outperforms all alternative predictive models.

Regarding the propagation of uncertainty to the regression coefficients, the average vector

of β̂ across the 1000 bootstrap realizations (see Figure 2.8b) very closely resembles the results

presented in Figure 7d, indicating the importance of the southwestern Pacific Ocean (high

negative coefficients), and the northeastern and central Pacific basin (positive coefficients).

Moreover, although in some grid points the standard deviation of β̂ across the 1000 bootstrap

realizations is of the same magnitude as the average value, most of the largest coefficients in

Figure 2.8b are characterized by small underlying uncertainty in Figure 2.8c, which implies

that they are not sensitive to covariance perturbations as quantified here. This provides

confidence that these SST features mostly located in the western Pacific are indeed important

sources of predictability of the Nov-Mar SWUS precipitation.

37



Figure 2.8: Bootstrap investigation of the sensitivity of the GTV to the uncertainty of the
covariance estimated from CESM-LENS. a) The histogram of the coefficient of determination
(R2) between the observed Nov-Mar SWUS precipitation and the GTV prediction) across
all 1000 bootstrap realizations. b) The vector-average of the 1000 β̂ vectors from the 1000
bootstrap realizations. For each realization, training is performed in the period 1940-1989,
using a 5-fold cross validation technique. c) Same as in (b), but the standard deviation of
the 1000 β̂ vectors is presented. The small uncertainty of the most important predictors
(grids with the largest β̂ values) is noteworthy.

2.4.5 Conclusions and future work

In this study, we approached the problem of early prediction of winter precipitation over

the SWUS by using machine learning methodologies to increase predictive skill relative to

traditional approaches of utilizing dynamical models or relying on empirically established

teleconnections. We use late summer and early fall SST information to predict precipitation

based on a newly proposed regularized regression scheme, specifically designed to account for
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high dimensionality and high spatiotemporal dependence structure in the predictor variables,

making it well suited to climate applications. The proposed predictive model accounts for

high spatiotemporal dependence structures in the predictors expressed as a graph, which is

then used to define a Graph Total Variation (GTV) regularizer that promotes similar weights

for highly correlated predictors. We also address the short observational record and high

dimensionality of the problem by using LASSO terms that promote sparsity, as well as by

using large-ensemble outputs from climate models to decrease the structural uncertainty in

the estimation of the SST covariance matrix.

Our analysis shows that predictive skill for SWUS precipitation can be increased con-

siderably by using our novel regularization methodology, explaining more than 40% of the

average precipitation variability over the SWUS. Our model’s performance is higher than

any other regularized regression model (LASSO and fussed LASSO), and it also outperforms

models based on known teleconnection indices. Our results also show that, in accordance

with recent literature (DelSole and Banerjee, 2017; Ham et al., 2019), climate models can

be used in a non-conventional way (e.g., for training rather than predicting and, in our

case, for building the graph-based regularizer) towards increasing prediction accuracy. With

regard to important regions/sources of precipitation predictability, our analysis highlights

the tropical and subtropical western Pacific SSTs as the most consistently important pre-

dictors of precipitation, which have increasingly gained attention in the literature (Wang

et al., 2014; Swain et al., 2017; Mamalakis and Foufoula-Georgiou, 2018). Finally, based on

a bootstrap analysis, we show that the proposed model is robust to perturbations in the

covariance matrix used to form the GTV regularization term.

The results presented herein suggest some further questions and challenges with regard

to the exigent task of seasonal SWUS precipitation prediction. For example, future work

should address the intricate non-stationarity of the climate system more explicitly by allowing

the regression coefficients to vary with time. This property might be especially important
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as precipitation variability in the SWUS is expected to increase even more under climate

change (Swain et al., 2018). See Appendix A for an initial exploration into accounting for

nonstationarities. It should also address quantification of the underlying uncertainty of the

regression coefficients (beyond the uncertainty of the covariance matrix explored herein),

which can be translated into confidence intervals of the predicted precipitation. Lastly, our

approach can be extended by using global information from additional climate variables

(e.g. ocean heat content, atmospheric pressure etc.) and using climate model outputs from

different projects, like the 6th phase of the Coupled Model Intercomparison Project (Eyring

et al., 2016) or the Decadal Prediction Large Ensemble project (Yeager, 2018).

In conclusion, while more complex non-linear models, such as deep neural networks, have

been gaining popularity in modeling climate data, our work shows that for high-dimensional

problems with limited historical records, sparse linear models with informative regularization

can play an important role in building predictive models for climate variability. This is

consistent with a recent review paper which focused on seasonal to subseasonal prediction

of climate variables over the entire US (He et al., 2021) and which highlighted the success

of regularized regression models (such as simple LASSO; see also DelSole and Banerjee

(2017)). In addition, an important advantage of sparse linear models in this context is that

they are considerably easier to interpret from a physical perspective, compared to non-linear

models such as deep neural networks. Our results suggest that a promising direction for

future research is the development of new models that can incorporate relevant physical

knowledge (e.g., from large ensemble simulations of climate models), that can retain the

interpretability of sparse linear models, and that have the flexibility to improve the accuracy

of current models for seasonal and subseasonal precipitation prediction.
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CHAPTER 3

VARIABLE IMPORTANCE

3.1 Introduction

As predictive modeling becomes ubiquitous across a wide swath of application areas, it is

especially critical to understand which variables contribute most to making a particular

prediction. Black-box machine learning methods are insufficient in the face of algorithmic

decision-making about things like sentencing, healthcare, and education, and working toward

developing more interpretable methods is becoming more and more relevant (Rudin and

Radin, 2019; Guidotti et al., 2018).

Traditional statistical tools based on parametric models (e.g. p-values, ANOVA) for VI

inference are dissatisfying due to restrictive assumptions often violated in modern datasets.

Non-parametric extensions thus have been explored (Doksum and Samarov, 1995). In recent

decades, many VI methods designed for modern deep learning models have been investigated;

most of these methods are gradient-based and depend on the structure and the weights of

nodes in a given specific neural network (Shrikumar et al., 2019; Sundararajan et al., 2017;

Smilkov et al., 2017; Bach et al., 2015). Few statistically rigorous properties are provided

for these methods, and the VI definition is always intimately attached to the network itself,

making it hard to interpret in a model-agnostic setting.

In a model-agnostic setting, a natural definition of VI that is independent of the esti-

mation procedure is to measure the loss of predictive power when the variables of interest

are deleted. To estimate such model-agnostic VI, retraining is the most widely used type

of method, which involves training separate models on the reduced data with the variables

of interest deleted and assessing the predictive skill difference (Williamson et al., 2021; Lei

et al., 2018; Sapp et al., 2014). Retraining often acts as the best benchmark to evaluate other

VI estimation methods (Hooker et al., 2019) due to its accuracy, yet it is computationally
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infeasible in high-dimensional settings.

Other methods for VI estimation include knockoff methods (Barber and Candes, 2018;

Candes et al., 2017) and Floodgate (Zhang and Janson, 2021), which require the co-variate

distribution to be known. An alternative approach is to use a dropout-type method (Chang

et al., 2017). Dropout is best-suited for assessing how much a variable affects a predictive

model, as opposed to our goal of assessing how much a variable affects the response. Despite

the resulting issues with VI estimation accuracy, it is still widely used in practice as a proxy

for VI due to its computational tractability.

In this work, we propose a computationally efficient variable importance estimation pro-

cedure for model-agnostic and distribution-free settings with theoretical guarantees that

leverages a lazy retraining framework inspired by (Chizat et al., 2020). The key idea is to

train a new model on the transformed training data, akin to retraining, but on a linearized

version of the model centered around model parameters learned from the original (unre-

duced) training data. We perform ridge regression on this linearized model in the gradient

feature space, meaning that our lazy retraining procedure can be computed very quickly.

The resulting method, when applied to wide neural network models, admits error bounds

that show it is nearly as accurate as full retraining, while computationally it is nearly as

fast as dropout. Our theoretical bounds are complemented by a collection of simulations

that explore the limitations of dropout and benefits of lazy retraining under a variety of

conditions and an application to understanding the importance of various climate indices in

a seasonal forecasting task.

In summary, the main contribution of this paper is a new, computationally efficient

VI estimation method with statistical performance guarantees in a model-agnostic

and distribution-free setting when using large neural networks. Our theoretical analysis

facilitates statistical inference, and we illustrate our approach on both synthetic and real-

world data to support the theoretical claims and demonstrate the utility of our method.
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Other empirically-driven VI estimation methods exhibit similarities to our approach; our

theoretical analyses may provide new insights into those methods as well as the one we

propose in this paper.

3.2 Notation and preliminaries

Suppose we have samples Zi = (Xi, Yi), i = 1, . . . , n for data Z = (X, Y ) ∼ P0, where

Xi ∈ Rp is the i-th p-dimensional feature vector and Yi is the i-th observed response.

X denotes the multi-variate random variable containing features, Y denotes the response

random variable. Let X−j ∈ Rp−1 (resp. Xi,−j) denote the features in X (resp. Xi) with

the j-th variable removed; on the other hand, if we replace the j-th random variable in

X (resp. Xi) by its marginal mean µj = E(Xj), we denote it as X(j) (resp. X
(j)
i ), i.e.,

X(j) = (X1, . . . , Xj−1, µj , Xj+1, . . . , Xp).

Let P0, P0,−j be the population distributions for X and X−j and let Pn, Pn,−j be the

empirical distributions of X and X−j for j ∈ [p]. δZi
denotes the point mass probability

measure at the i-th observation Zi. Let f0 denote the true function mapping X to the

expected value of Y conditional on X, and let f0,−j denote the function mapping X(j) to

the expected value of Y conditional on X(j):

f0(X) :=E[Y |X]; (3.1)

f0,−j(X
(j)) :=E[Y |X−j ]. (3.2)

Let fn be the empirical model trained using all p variables in X within a certain function

class F(we refer to this as the full model):

fn ∈ argmin
f∈F

1

n

n∑
i=1

[Yi − f(Xi)]
2. (3.3)
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To measure the accuracy of an approximation fn(x) to its target function f0, we use the

L2(µ)-norm

∥fn − f∥2 =

∫
|fn(x)− f(x)|2dµ(x), (3.4)

where µ is the probability measure for X. Further, we use ϵ and ϵ(j) to denote the respective

remainder terms:

ϵ := Y − E[Y |X]; ϵ(j) := Y − E[Y |X−j ], j ∈ [p]. (3.5)

We will define our measure of variable importance (VI) in terms of a predictive skill measure

V (f, P ) (the same measure in Williamson et al. (2021)). Larger values of V (f, P ) should

indicate better predictive performance. For Z = (X, Y ), we denote V̇ (f, P ; δP ) as the

Gateaux derivative of V (f, P ) at P in the direction δP . Specifically, one of the predictive

skill measures we consider is the negative mean squared error (MSE):

V (f, P ) = −E(X,Y )∼P [Y − f(X)]2, (3.6)

and the corresponding V̇ (f, P ; δP ) is V̇ (f, P ; δP ) = −
∫
Z=(X,Y )(Y − f(X))2d(δP ). Hence,

the Gateaux derivative of the negative MSE is V̇ (f, P0; δZi
−P0) = −(Yi− f(Xi))

2+E[Y −

f(X)]2 and E[V̇ (f0, P0; δZi
− P0)] = 0.

3.3 Estimating variable importance

The VI measure we consider, which makes no assumptions on the data generating mechanism,

is

vij := V (f0, P0)− V (f0,−j , P0,−j). (3.7)

vij quantifies the difference in predictive skill between the full model and the reduced

model for any j ∈ [p]. Consider the following simple linear model example, where we take
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the negative MSE as the predictive skill measure.

Example 3.3.1. Suppose Y = β1X1+β2X2+ϵ, where Xi ∼ N (0, σ2), i = 1, 2, Cov(X1, X2) =

ρ, and ϵ is a N (0, σ2ϵ ) noise that is independent of the features. The variable importance of

the first variable is

vi1 = β21 · Var(X1|X2) = β21(1− ρ2)σ2

due to the fact that X1|X2 ∼ N (ρX2, (1− ρ2)σ2)

In general, we see from this example that the variable importance measure is determined

not only by the relationship between Xj and Y , but also the covariance structure in the

features.

Our goal is to estimate vij for any variable Xj from data {(Xi, Yi)}ni=1 with no assump-

tions on the relationship between X and Y . For empirical estimators fn and fn,−j of f0 and

f0,−j , a plug-in estimator of our VI measure is

v̂ij = V (fn, Pn)− V (fn,−j , Pn,−j). (3.8)

The key problem we are concerned with in this paper is how to estimate fn,−j in an accu-

rate and computationally efficient way. Traditionally, people use the following two types of

methods to do the estimation: dropout and retraining.

3.3.1 Dropout

The method we are calling dropout estimates E(Y |X−j) by plugging the dropout features

X(j) into the full model fn. In this case, the variable importance measure can be estimated

by

v̂i
(dr)
j = V (fn, Pn)− V (fn, Pn,−j). (3.9)
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For the negative MSE measure of predictive skill for instance, the dropout estimate measures

the difference between the squared error on the original training set and the squared error

on the training set after replacing feature j with its mean. Dropout is superior among all

plug-in estimators in terms of computational cost – we only need to train the model once to

get fn. This is desirable, especially when the function class F is large and complicated, such

as with neural networks, and the computational cost for training the model is high. Despite

this benefit, dropout is unreliable in many settings, as we will revisit in 3.3.3.

3.3.2 Retrain

An alternative to dropout is what we call retraining. Given a function class F , the retraining

method estimates vij by training separate models

fn,−j ∈ argmin
f∈F

[Yi − f(X
(j)
i )]2 (3.10)

for each variable j ∈ [p] to estimate f0,−j . Hence, VI under this framework is estimated via

v̂i
(rt)
j = V (fn, Pn)− V (fn,−j , Pn,−j). (3.11)

When taking negative MSE as the predictive skill measure, the retraining estimate in this

case measures the difference between the squared error of a model trained without feature j

and the squared error of a model trained with feature j. Retraining is more accurate than

dropout as long as the function class F is large enough, but requires training p+ 1 models,

which can be prohibitively computationally expensive in many settings. In this paper, we

are especially interested in the setting when the function class is as large as a wide neural

network.
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3.3.3 Dropout vs. Retrain for Linear Models

The dropout method is widely used to estimate variable importance due to its efficiency.

However, in cases where variables in X are highly correlated, dropout behaves problem-

atically. Below, we will illustrate and quantify the difference of the variable importance

estimation in the random design linear model case, where we take the negative MSE as the

V (f, P ) measure as in (3.6). For simplicity, we restrict the function space F to the linear

function space here.

Suppose X ∈ Rp ∼ N (0,Σ), ϵ ∼ N (0, σ2ϵ ). Assume Σ is positive definite. Let β∗ :=

argminw∈Rp E[Y − X⊤w]2, so β∗ = Σ−1E(XY ). In the population version, the dropout

method uses the predictor X⊤−jβ
∗
−j (where β

∗
−j ∈ Rp−1 is β∗ with its j-th element removed)

to estimate E(Y |X−j), while the retraining method uses the predictor X⊤−jβ
(j), where β(j) ∈

Rp−1 is β(j) = argminw∈Rp−1 E[Y − X⊤−jw]
2. The following proposition characterizes the

difference between VI estimates corresponding to the retraining and dropout methods.

Proposition 3.3.2. In the linear function space, the difference between the variable im-

portance estimates for variable j from the population version of the dropout and retraining

methods is:

v̂i
(dr)
j − v̂i

(rt)
j =

γ⃗j
⊤Σ−1

(j)
γ⃗j

(Σjj − γ⃗j
⊤Σ−1

(j)
γ⃗j)

2

[
E(XjY )− γ⃗j

⊤Σ−1
(j)

E(X−jY )
]2

where γ⃗j = E(XjX−j) ∈ Rp−1.

If the true model between Y and X is linear, i.e., Y = X⊤β∗ + ϵ, and X ⊥⊥ ϵ, the

variable importance estimated by retraining linear regression is:

v̂i
(rt)
j = β∗j

2(Σjj − γ⃗j
⊤Σ−1

(j)
γ⃗j); (3.12)

furthermore, in this setting v̂i
(rt)
j is exactly the true variable importance defined in (3.7).
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In contrast, the dropout framework will give

v̂i
(dr)
j = β∗j

2 · Σjj . (3.13)

If feature j is important and highly correlated with feature k (but independent of all other

features), then γ⃗j
⊤Σ−1

(j)
γ⃗j may be very large, making the difference between v̂i

(dr)
j and

v̂i
(rt)
j similarly large. This example illustrates how dropout can significantly overestimate

variable importance, even in simple settings.

3.4 Lazy Training

Our central interest is in inferring VI using complex models that are time-consuming to

train, making the baseline retraining method described above computationally infeasible.

With this in mind, we turn our attention to neural network (NN) models, a setting in which

dropout is widely used.

Motivated by the need for faster and more accurate methods for estimating VI with NN,

we propose a computationally efficient VI estimate inspired by the lazy training framework

of Chizat et al. (2020) that estimates the difference between the full model parameters and

the model parameters when the j-th variable is removed. Like dropout, our procedure only

requires us to train the NN once on the full data, and then we solve a linear system to update

the full model parameters for each variable j ∈ [p].

Given the training data {(X(j)
i , Yi)} sampled from (X, Y ) ∼ P0 for i = 1, . . . , n and

the underlying function f0(X) = EP0
[Y |X], there exists a a neural network function class

{hθ(x) : Rp 7→ R|θ ∈ RM} that is parameterized by a vector θ, such that when we train the

model parameters over this class by

θf = argmin
θ∈RM

1

n

n∑
i=1

[Yi − hθ(Xi)]
2, (3.14)
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the estimation error can be bounded by ∥hθf (x)− f0(x)∥ = O(n−1/2) up to some log terms

(Barron, 1994). To achieve this, the scale of the number of parameters M depends on the

complexity of the target function. For very complex functions, we can still achieve this

accuracy with M = O(
√
n).

In order to estimate vij , we need an estimate of what we are calling the reduced model

hθ−j
, where

θ−j = argmin
θ∈RM

1

n

n∑
i=1

[Yi − hθ(X
(j)
i )]2. (3.15)

Instead of retraining a NN to estimate θ−j , we can instead estimate the difference between

the full model parameters θf and θ−j using this linear approximation, and simply update the

full model parameters with this correction to estimate hθ−j
. We are essentially regressing the

error resulting from the dropout estimation against the gradient to estimate this correction,

and to do so we solve the following convex problem based on the training data {(X(j)
i , Yi)}

for i = 1, . . . , n and a 2-norm penalty on the parameters:

∆θj(λ, n) = argmin
ω∈RM

{ 1
n

n∑
i=1

[
Yi − hθf (X

(j)
i ) (3.16)

− ω⊤∇θhθ(X
(j)
i )|θ=θf

]2
+ λ∥ω∥22

}
,

where λ > 0 is the penalty parameter.

Accordingly, the reduced neural network parameters are ∆θj(λ, n)+θf . For the simplicity

of notation, we write ∆θj(λ, n) as ∆θj for short. Then the reduced model approximation

without the j-th feature is Rp 7→ R : x 7→ hθf+∆θj (x). Hence, the variable importance

measure under lazy training is

v̂i
(lazy)
j = V (hθf , Pn)− V (hθf+∆θj , Pn,−j). (3.17)
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Under the negative MSE measure V (f, P ), we have

v̂i
(lazy)
j =

1

n

n∑
i=1

{[Yi − hθf+∆θj (X
(j)
i )]2 − [Yi − hθf (Xi)]

2}.

(More precisely, we use data splitting for training and estimating VI as detailed in 1.)

Essentially, the linearized approximation of the NN is linear in the gradient feature map

x 7→ ∇θhθ(x)|θf . In fact, this gradient feature map induces the Neural Tangent Kernel

(NTK, Jacot et al. (2020)): for any x, x′ ∈ Rp,

kerθf (x, x
′) := ⟨∇θhθ(x)|θf ,∇θhθ(x

′)|θf ⟩. (3.18)

Thus ∆θj can be viewed as the solution for a kernel ridge regression problem with kernel

kerθf .

3.4.1 Theoretical Guarantee

By Williamson et al. (2021), when the empirical estimates for E(Y |X) and E(Y |X−j) con-

verge to the target functions f0 and f0,−j at the rate of OP (n
−1/4) in function norm, we

achieve an asymptotically normal and efficient estimator for the VI measure. In this sec-

tion, we give a theoretical guarantee to show that the lazy prediction hθf+∆θj (X
(j)) for the

reduced model achieves such convergence rate, so that the lazy training procedure gives an

accurate estimate of VI with an error in the order of O( 1√
n
) and we can make inference

accordingly.

Let e(j) denote the difference between the true reduced function f0,−j(X(j)) and the

corresponding dropout estimation:

e(j) := f0,−j(X
(j))− hθf (X

(j)) ∈ Rn. (3.19)
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Further, we denote the kernel matrix on X(j) induced by the gradient feature map as K(j) ∈

Rn×n, whose elements are defined as:

K(j)
ik := kerθf (X

(j)
i ,X

(j)
k ), i, k ∈ [n]. (3.20)

Assumption 3.4.1. For any j ∈ [p], there exists a constant C <∞, such that

e(j)
⊤
[K(j)]−1e(j) < C with high probability, i.e., e(j)

⊤
[K(j)]−1e(j) = OP (1). Furthermore,

tr(K(j)) = OP (n).

The requirement tr(K(j)) = OP (n) is an assumption commonly used in NTK literature

(see e.g. Hu et al. (2019)). Arora et al. (2019, Corollary 6.2) proved that for the NTK

induced by an overparametrized two-layer neural network, y⊤K(X,X)−1y = O(1) as long as

yi = g(xi) for a certain function g. Based on the definition of e(j) in (3.19), e
(j)
i is a function

ofX
(j)
i , thus this assumption e(j)

⊤
[K(j)]−1e(j) = O(1) can be satisfied for over-parametrized

two-layer neural networks.

Assumption 3.4.2. For the noise term ϵ(j), we have the following assumption on its con-

ditional tail probability: there exists σ such that for any j ∈ [p],

E
[
eλϵ

(j)
|X(j)

]
≤ eσ

2λ2/2, for all λ ∈ R. (3.21)

Assumption 3.4.3. Denote the gradient feature matrix as

Φ ∈ Rn×M = (∇θhθ(X1)|θ=θf , . . . ,∇θhθ(Xn)|θ=θf )
⊤. We assume ∥Φ⊤e(j)∥2 ≤ OP (1).

This assumption essentially requires that the linear space of neural tangent kernels can

well represent e(j). We know that e
(j)
i is a function of X

(i)
i , thus as long as the neural

network function class is large enough, this can be satisfied with respect to the sample size

n.
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Theorem 3.4.4. Suppose Assumptions 3.4.1, 3.4.2 and 3.4.3 hold. Then, for a neural

network structure hθ(·) which is L-smooth with respect to its parameters θ, as long as we

take the ridge penalty parameter in the order λ = O(n1/2), then the lazy training method can

accurately predict the reduced model without the j-th covariate, i.e.,

∥hθf+∆θj (x)− E(Y |X(j))∥2 = Op(n
−1/4). (3.22)

Therefore our variable importance estimator v̂i
(lazy)
j is asymptotically normal and has an

error rate Op(n
−1/2):

v̂i
(lazy)
j − vij = ∆n,j +Op(n

−1/2); (3.23)

where

∆n,j =
1

n

n∑
i=1

[
V̇ (f0, P0; δZi

− P0) (3.24)

− V̇ (f0,−j , P0,−j ; δZi
− P0,−j)

]
→d N (0, τ2n,j);

here the variance is τ2n,j = Var(ϵ(j)
2 − ϵ2)/n, where ϵ and ϵ(j) is defined in 3.5.

This result enables us to construct Wald-type confidence intervals around our LazyVI

estimates. In particular, the α−level confidence intervals are given by

v̂i
(lazy)
j ± zα

2
τ̂n,j (3.25)

where τ̂n,j is the plug-in estimate of τn,j in (3.24) and zα
2
is the α/2 quantile of the standard

normal distribution.

52



3.4.2 Proof Overview

The challenge of proving Theorem 3.4.4 is to bound the error of the lazy neural network

trained using data without a certain variable – note that we are bounding the estimation

error (∥hθf+∆θj − f0,−j∥) instead of the prediction error (∥hθf+∆θj − f0∥) that is the focus

of much of the deep learning community, since the predictive skill of the reduced model is

expected to decrease when an important variable is removed. At a high level, our proof

reduces the estimation error of the neural network from lazy training to the error between

the NTK estimation and the target function, where we use techniques from kernel ridge

regression. The difference here is that most NTK papers (see e.g. Jacot et al. (2020)) use

random initialization for the parameters and optimization without penalty, while our method

starts from a specific initialization (the full model), and requires the penalty parameter λ to

be large (λ = O(n1/2)) to ensure convergence.

The following two lemmas give some intuition on how the neural network trained by the

lazy procedure can accurately estimate the reduced model. Basically, the bound for the error

consists of two parts: the error from the kernel ridge regression (discussed in Lemma 3.4.5),

and the error from the linear approximation of the neural network (in Lemma 3.4.6). More

proof details are deferred to Appendix B.

Denote the linear approximation of the network as

h̃θf+∆θj (x) := hθf (x) + ⟨∇θhθ(x)|θ=θf ,∆θj⟩. (3.26)

Lemma 3.4.5. Letting λ be the penalty parameter in Equation 3.16, we have with probability
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at least 1− δ,

∥h̃θf+∆θj (X
(j))− f0,−j(X

(j))∥n (3.27)

≤

√
λe(j)

⊤
[K(j)]−1e(j)

4n
+

√
σtr[K(j)]

4λn
+ σ

√
2 log(1/δ)

n
.

Lemma 3.4.5 combined with Assumption 3.4.1 when the penalty parameter is λ =

O(n1/2), yields a bound on the empirical error of the kernel ridge regression component

of OP (n
−1/4). Based on this empirical bound, we could then further bound the generaliza-

tion error of the estimated function using function complexity (See Appendix B.2.3).

Lemma 3.4.6. For a large neural network with width in the order O(
√
n), with high proba-

bility we have for all j ∈ [p],

∥h̃θf+∆θj (x)− hθf+∆θj (x)∥ ≤ O(n−1/4). (3.28)

Lemma 3.4.6 shows that as long as the neural network is sufficiently large, the neural

network with updated parameters θf +∆j is close to its linear approximation.

3.5 Implementation

We estimate hθf and hθ−j
using n1 < n samples as training data, and use the remaining

n2 = n − n1 samples to estimate VI. For the dropout method, VI is estimated simply by

plugging the modified testing data {X(j)
i }

n
i=n1+1 into hθf . For the retraining method, first

hθ−j
is estimated by retraining the NN h with {X(j)

i }
n1
i=1, and then VI is estimated by

plugging the modified testing data into this retrained estimate.

For the lazy training method, which we call LazyVI, we use the training data to estimate

the full model parameters, compute the gradient of the network with respect to each model

parameter for each training sample, and then regress these gradients against the difference
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Algorithm 1 Lazy training for VI

Require: Data: {Xi, Yi}ni=1; λ > 0; training size: 0 < n1 < n; n2 ← n− n1; NN structure:

θ ∈ RM 7→ hθ(·) LazyVI{Xi, Yi}ni=1; λ, n1
θf ← argminθ∈RM

1
n1

∑n1
i=1[Yi − hθ(Xi)]

2

vn ← − 1
n2

∑n
i=n1+1[Yi − hθf (Xi)]

2

for j ∈ [p] do

X
(j)
i ← Xi; X

(j)
ij ←

1
n1

∑n1
i=1Xij

e
(j)
i ← Yi − hθf (X

(j)
i ), i = 1, . . . , n1

Φ
(j)
i ← ∇θhθ(X

(j)
i )|θ=θf , i = 1, . . . , n1

∆θj ← argmin
ω∈RM

1

n1

n1∑
i=1

[e
(j)
i − ω⊤Φ(j)

i ]2 + λ∥ω∥22

vn,−j ← −
1

n2

n∑
i=n1+1

[Yi − hθf+∆θj (X
(j)
i )]2

v̂ij ← vn − vn,−j

ti,j ← (Yi − hθf+∆θj (X
(j)
i ))2 − (Yi − hθf (Xi))

2

τ̂j ← 1
n2

∑n2
i=1(ti,j − t̄j)

2/n2
end for

Ensure: v̂ij , j = 1, . . . , p.

between Y the dropout estimates from the training data to estimate the parameter correction

∆θj for variable j. We then update the full model parameters using this learned correction

to compute the VI estimate and its associated standard errors. See Algorithm 1 for full

details.

Theorem 3.4.4 makes the assumption that the ridge parameter λ from Equation (3.16)

is large. Since we are ultimately interested in estimating hθ−j
and not ∆θj , we evaluate

hθf+∆θj (·) through K-fold CV to choose λ̂j for each variable (Algorithm 2).

3.6 Experiments

We assess the performance of LazyVI on real and simulated data to highlight key theoretical

claims and assumptions and show that our method is empirically practical. For all experi-
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Algorithm 2 K-Fold CV for λj

Require: {X(j)
i , Yi, e

(j)
i ,Φ

(j)
i }

n1
i=1 and θf from Algorithm 1 in main paper; candidate λ

values Λ
Partition [n1] into K subsets, each denoted St
for λ ∈ Λ do

for k = 1, . . . , K do

∆θλj = argminω∈RM
1

n1−|Sk|
∑

i/∈Sk [e
(j)
i − ⟨ω,Φ

(j)
i ⟩]

2 + λ∥ω∥22
Ŷi = hθf+∆θλj

(X
(j)
i ) for i ∈ Sk

ϵλ,k = 1
|Sk|

∑
i∈Sk(Yi − Ŷi)

2

end for
ϵλ = 1

K

∑K
k=1 ϵλ,k

end for
Ensure: λ̂j = argminλ{ϵλ}λ∈Λ

ments, we train a wide, fully connected two-layer neural network with ReLU activation for

all simulations. Unless otherwise specified, the width of the hidden layer in the training

network is m = 50.

3.6.1 Linear data generation

Our first set of simulations serve to support key details of our theoretical analysis. We

consider data generated from the linear model f(X) = 1.5X1 + 1.2X2 + X3 + ϵ, where

ϵ ∼ N (0, 0.1) and X ∼ N (0,Σ6×6), so the response only depends on the first three of the

six variables. All variables are independent except for X1 and X2, whose correlation is ρ.

As discussed in Example 3.3.1, the true VI of X1, X2, and X3 are given by (1.5)2(1 − ρ2),

(1.2)2(1 − ρ2), and 1, respectively, and the VI of the remaining 3 variables is zero. In this

simple setting, we find that LazyVI approximates the true vi well with desirable coverage

and a considerable speed-up relative to retraining (Figure 3.1).

We show in Prop. 3.3.2 that, when data are generated from a linear model, the difference

between the dropout and retraining variable importance estimates is a function of the covari-

ance of X. After training the full model, we use both the dropout and our lazy procedure
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Figure 3.1: Distribution of computation time vs. estimation error relative to retrain (v̂i−v̂i(rt)) for
three different groups of variables: important, correlated ({X1, X2}); important, uncorrelated (X3);
and unimportant, uncorrelated ({X4, X5, X6}). 2D box plots show quantiles across 10 repetitions.

to estimate VI for increasing values of ρ. In Figure 3.4, we show the difference between

the dropout and LazyVI estimates for variables X1 and X2 alongside the analytic difference

between v̂i(dr) and vi (dotted line). We see that the gap between LazyVI and dropout

evolves with ρ according to the theoretical analysis, providing evidence that LazyVI behaves

as expected.

We use this simple linear setting to explore two additional assumptions from our the-

oretical resuts. First, the linearization in (3.26) is a first order Taylor approximation and

assumes the full model parameters are close to the reduced model parameters. If we try to

linearize a neural network around a random initialization, our LazyVI estimates are much

less accurate and more highly variable (Figure 3.2). Next, our theory assumes that our train-

ing network is over-parameterized and sufficiently wide. We compute empirical confidence

intervals for LazyVI for increasing network widths and find that coverage increases as the

width increases, but at a computational cost (Figure 3.3).

3.6.2 Binary classification

While the simple linear setting is useful in highlighting some key theoretical aspects of our

work, a key benefit of LazyVI is its computational efficiency, and we are interested in how

well LazyVI can approximate the potentially prohibitively costly retraining method in a

variety of simulation settings. Because we borrow much of our theoretical framework from
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Figure 3.2: Distribution of VI− V̂I for the first 3 variables for dropout, LazyVI initialized
with the parameters from the full model, and LazyVI with a random initialization.

Figure 3.3: Left: empirical coverage of 95% confidence intervals (across 50 repetitions) of
LazyVI estimates for increasing widths of the training network for the important variables.
Dotted line shows 95% coverage; Right: average computation time for LazyVI with increasing
network widths.

Williamson et al. (2021), we also leverage their simulation framework as a useful point of

comparison. We draw independent samples X ∼ N (0, I4×4) and generate a binary outcome

Y ∼ Bernoulli(Φ(Xβ)) where β = (2.5, 3.5, 0, 0). Because the outcome is binary, we use

accuracy as our predictive skill measure, and the true VI values are given by (0.136, 0.236, 0,

0), respectively. We first directly compare the LazyVI and retrain estimators by estimating

vi across 100 simulated datasets of sample size n = 1000 and computing the empirical 95%

confidence intervals. In Figure 3.5, we see that the LazyVI and retrain estimates both achieve

the desired level of coverage with low bias. In this simulation, LazyVI took on average 0.6

seconds (including cross-validating to find the optimal ridge parameter), while retraining
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Figure 3.4: Difference between the dropout and LazyVI estimates for X1 and X2. Dotted
line is theoretical gap and shading shows std. across 10 repetitions.

took 7.5 seconds. In this setting, LazyVI is just as accurate as retraining with a more than

10x speed-up.

Figure 3.5: Left: Average coverage of empirical 95% confidence intervals from the LazyVI
and retrain estimates across 100 simulations. Right: Average empirical bias (vi − v̂i) of
LazyVI and retrain estimates.

3.6.3 Nonlinear, high-dimensional regression

The computational burden of retraining is most pronounced in high-dimensional settings,

since estimating v̂i(rt) for all variables requires refitting at least p models. For this simula-

tion, we have dataX ∼ N(0,Σ100×100), where variables are independent except Corr(X1, X2) =

0.5. Letting β = (5, 4, 3, 2, 1, 0, . . . , 0)T ∈ R100, we construct a weight matrix W ∈ Rm×p

such that the W:,j ∼ N (βj , σ
2) (i.e. the weights associated with variable j are centered at

βj). Letting V ∼ N (0, 1), we generate the response Yi = V σ(WXi)+ϵi where σ is the ReLU
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function. Because the “true” VI values are unknown and difficult to estimate, we present

the accuracy of different estimation methods relative to the retraining estimates, which we

take as ground truth. We estimate vi for X1 across 10 simulated datasets (n = 1000) and

benchmark against retraining using both a linear regression (OLS) and random forest (RF).

In Figure 3.6, we show the spread of both the computation time and normalized error (rel-

ative to retrain) for all methods. We see that LazyVI is the most accurate method and is

substantially faster than retraining, which is especially beneficial in this high-dimensional

setting.
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Figure 3.6: Distribution of computation time vs. normalized estimation error relative to

retrain for the VI of X1 ((v̂i− v̂i(rt))/v̂i(rt)) across 10 repetitions.

3.7 Predicting seasonal precipitation

Extreme precipitation events have become more and more common in recent years, and

are expected to intensify with climate change (Tabari, 2020; Li et al., 2019). Early and

reliable precipitation forecasting is thus critical for regional water resource management,

which increasingly impacts large swaths of the population (AghaKouchak et al., 2015). Many

studies have shown that the sea surface temperature (SST) over various regions of the ocean,

such as the El Niño-Southern Oscillation (ENSO), are predictive of precipitation in the

United States (Mamalakis et al., 2018; Dai, 2013; Lenssen et al., 2020). Understanding
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which ocean regions are most predictive is challenging, however, due to a short observational

record and strong correlations among SSTs (Stevens et al., 2021).

We estimate the importance of different ocean regions for seasonal precipitation forecast-

ing using our lazy training method. The response is the average winter precipitation over

the Southwestern US, and as predictors we use 10 ocean climate indices (OCIs), which are

defined as the average detrended SST anomalies over different ocean regions (Chen et al.,

2016). As data, we use simulations from the Community Earth System Model-Large Ensem-

ble project (CESM-LENS; Kay et al. (2015); de La Beaujardière et al. (2019)). CESM-LENS

is a 40-member ensemble of climate simulations, where the ensemble members all have the

same physics but different initial conditions. From this dataset, we extracted monthly sea

surface temperature (SST) records from 1940-2005 on a 1.25◦ × 0.9◦ grid. We compute

SST anomalies at each grid point relative to the time period 1950-19891 by subtracting the

monthly mean and dividing by the monthly standard deviation, and then we linearly detrend

each time series.

To compute the 10 ocean climate indices (OCI) used in our experiment, we find the

average summer (July-October) monthly SST values of these detrended SST anomalies over

specified ocean regions. These regions are well established in the literature; we refer to the

supplement from Chen et al. (2016) to define the boundaries of all OCIs besides NZI, for

which we use Mamalakis et al. (2018). See 3.1 for the specific boundaries. As a response,

we use the average winter (November-March) precipitation over part of the southwestern

US (see Stevens et al. (2021)). We are interested in predicting winter precipitation from the

previous summer’s SSTs.

1. https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni
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Ocean OCI Latitude Longitude

Pacific Niño1+2 10◦S - 0◦ 90◦W - 80◦W

Niño3 5◦S - 5◦N 150◦W - 90◦W

Niño3.4 5◦S - 5◦N 170◦W - 120◦W

Niño4 5◦S - 5◦N 160◦E - 150◦W

NZI 40◦S - 25◦S 170◦E - 160◦W

Atlantic TNA 5◦N - 25◦N 55◦W - 15◦W

TSA 20◦S- 0◦ 30◦W - 10◦E

Indian SWIO 32◦S - 25◦S 31◦E - 45◦E

WTIO 10◦S- 10◦N 50◦E - 70◦E

SETIO 10◦S- 0◦ 90◦E - 110◦E

Table 3.1: Ocean climate indices (OCIs) are defined as the average of the detrended SST
anomalies across the regions indicated above.

To build more intuition as to why dropout behaves problematically when trying to predict

precipitation, we attempt this analysis using linear regression and find that the coefficient

estimates are highly unstable. Figure 3.7 shows the estimated coefficients with their 95%

confidence intervals from a multiple linear regression including all variables, along with esti-

mated coefficients from separate simple linear regressions. Note that the coefficient for Niño

3 is highly negative in the full regression, which is offsetting the highly positive coefficient

on Niño 3.4; when separated, both of these indices receive much smaller positive coefficients.
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Figure 3.7: OLS coefficients and standard errors for multiple linear regression with all OCIs (black
dots) and simple linear regression with each OCI separately (blue triangles).

There are strong correlations among the various OCIs (3.8)) — in particular, the various

Niño indices appear to be nearly collinear. Because of this, we would expect methods like

linear regression to inaccurately estimate coefficients and their importance (see appendix for

more discussion).

We apply LazyVI to this problem and compare with the dropout and retraining VI

estimates. We see that dropout drastically overestimates VI of Niño 3 and Niño 3.4 relative

to retraining, and that LazyVI results in estimates much closer to the retraining estimates.

These results are consistent with recent literature indicating that the predictive ability of

Niño is often overstated relative to other OCIs (Mamalakis et al., 2018), suggesting that

LazyVI could potentially help us better understand the relative importance of different

climate mechanisms.

3.8 Discussion

Assessing variable importance in machine learning is a vital task as learned-based tools

are increasingly integrated into societally-impactful systems, including autonomous vehicles,

financial and healthcare decision-making, and social and criminal justice. In this work,
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Figure 3.8: Left: sample covariance matrix of the OCIs across the 40 LENS ensemble members;
Right: estimated VI for each OCI across 10 different train/test splits.

we propose a method, LazyVI, for efficiently estimating variable importance based on a

linearization of a fully trained neural network. We prove that our method provides an

accurate estimate of VI and can achieve the same rate of accuracy as a computationally

expensive retraining method nearly as quickly as the inaccurate dropout method. We further

show how to construct confidence intervals around these estimates.

When features are correlated, the quantity VI defined in (3.7) tends to zero. Recent work

proposes using Shapley values to measure variable importance, arguing that their handling of

correlated variables, which assigns similar positive weights to correlated important variables,

is desirable (Owen and Prieur, 2016; Williamson and Feng, 2020). These papers also note

that Shapley values are prohibitively expensive to compute, as they require fitting a new

model for each of the 2p possible subsets of variables. However, we note that computing the

Shapley values requires many calculations of the quantity in (3.7); an important avenue of

future work is investigating the use of our LazyVI framework to accelerate the computation

of Shapley values.

Finally, a potential alternative to our proposed LazyVI method is to first train a full
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Figure 3.9: Estimated VI with increasing number of steps toward retraining. Shading
represents std. across 10 repetitions.

model (as we do) and then train the reduced model using a gradient-based method initialized

with the full model parameters and stopped early. Empirical evidence suggests that this

approach would have similar speed and accuracy to our LazyVI approach due to the implicit

regularization associated with early stopping. 3.9 compares the accuracy of the two methods

at different numbers of steps. However, we currently lack theoretical guarantees for early

stopping in this setting. It is possible that our theoretical results could lead to new insights

into early stopping for assessing VI due to the intimate connection between kernel ridge

regression and early stopping algorithms Raskutti et al. (2014). In fact, if the eigenvalues of

the NTK matrix at the full model initialization decay in a sufficiently fast rate, early stopping

of the reduced model training could give an as good estimate of the reduced model (see 3.9).

However, analyzing early stopping in this setting requires characterizing the spectrum of

the NTK with the full model initialization, whereas most spectral properties of the NTK

have been developed under the assumption of a random initialization Nguyen et al. (2021);

Montanari and Zhong (2020). Better understanding the NTK spectrum after full-model

initialization in the future could provide new insights into fast algorithms for VI estimation.
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CHAPTER 4

DEVELOPMENT OF CITY-SCALE SYNTHETIC

POPULATION TO SIMULATE COVID-19 TRANSMISSION

AND RESPONSE

4.1 Introduction

At the time of writing, the COVID-19 pandemic is two years old. We’ve learned a few things

in that time – we probably don’t need to disinfect our groceries, we should probably pass on

going to the club in the middle of a variant surge, and we should definitely get vaccinated.

Arising at a particularly fraught moment in U.S. politics, we’ve been a nation sharply divided

over public health interventions; with the scientific process playing out in real-time and more

access to information than ever before in human history, this pandemic has made armchair

epidemiologists of us all.1 A true collaboration between data scientists and epidemiologists

was necessary in order to leverage data appropriately to aid in pandemic decision-making,

and this chapter describes work that was used by the Chicago Department of Public health,

the City of Chicago Mayor’s Office, and the Governor of IL’s COVID task force to inform

policy.

This pandemic has interrupted our daily lives and changed the landscape of social in-

teraction, with many office jobs still remote, schools intermittently closing, conferences and

gatherings shifting online, and a varying set of restrictions on how we move about our cities.

Global outcomes of COVID-19 have varied drastically based on locally enacted public health

interventions, household structures, and lifestyles. In addition, disease outcomes have dis-

parately impacted different populations; age, race, and underlying health conditions are all

shown to play a role in disease severity, and disparate access and uptake of vaccines remains

1. This very much includes me.
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a problem. A common pitfall of many existing epidemiologic models is a homogeneity as-

sumption; in most models, diseases are assumed to progress in the same way for an entire

population. However, due to its social complexities, attempts to model COVID-19 trans-

mission and outcomes must take into account not only the highly social and complicated

nature of its transmission, but also the heterogeneity of its progression. These dynamics

are complicated and not easily reducible to standard, equations-based epidemiologic models

(Thompson and Wattam, 2021).

There are two main classes of models to help predict and make inferences about disease

progression. The first and oldest of these, compartment models (Kermack et al., 1927),

partition the population into discrete compartments, each describing a different disease state

(e.g. Susceptible, Exposed, Infections, or Recovered (SEIR)). Importantly, these models

assume homogeneity within each disease state; individuals are assumed to all have an equally

likely chance of becoming infected, and transitions between states are governed by a set of

differential equations. These types of models are fast and flexible, but the homogeneity

assumption makes them a less desirable choice to model COVID-19. With the emergence

of accessible high-powered computing over the past several decades (Collier et al., 2015;

Ozik et al., 2021a), a new class of simulation-based models have emerged that are able

to integrate population heterogeneity in their forecasting. Agent-based models (ABMs)

consist of individual agents, bestowed with individual attributes (e.g. location, age, race,

sex, occupation, income), interacting (read: infecting) one another in real-time (Macal,

2016; Macal et al., 2018). At a high level, ABMs capture the dynamics of human and

social behavior at an individual level in order to study population-level outcomes as complex

emergent phenomena. By simulating agent-to-agent and agent-to-environment interactions,

epidemiologists are able to simulate disease transmission at the individual level, and policy-

makers are able to test public health interventions like stay-at-home orders or closures,

making ABMs particularly well-suited for modeling pandemics like COVID-19 (Macal et al.,
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2014a).

4.1.1 Large-scale simulations as interpretable models

With COVID-19 at the forefront of the public imagination for so many months, thousands

and thousands2 of papers have been published studying various aspects of its spread and

impacts. As mentioned above, the majority of the epidemiological models are either com-

partmental or agent-based, and since ours is agent-based, this literature review will focus

on work using these types of models. For a comprehensive overview of the compartmental

COVID-19 transmission models, see Cao and Liu (2021).

In the context of COVID-19 decision-making, understanding heterogeneous disease trans-

mission is key to model interpretability. By endowing individuals in a population to have

different attributes and different behaviors, policy-makers are able to better understand who

the policies they enact impact the most and why. Because of this, simulation-based agent-

based models are far more interpretable than related methods. There are far too many

excellent COVID-19-related agent-based models to exhaustively list; see Hinch et al. (2021);

Kerr et al. (2021); Gaudou et al. (2020); Milne and Xie (2020); Árbol and Iglesias (2020);

Milne et al. (2020); Alagoz et al. (2021) and Cuevas (2020) for some examples. A few works

in particular were especially influential in the development of our synthetic population. The

first of these, Chang et al. (2021), inspired our use of SafeGraph data (see Section 4.3.1; Safe-

Graph is a company that collects anonymized location data from mobile phones to points

of interest) to help us expand our mobility network, which describes the patterns of move-

ment throughout the simulation and forms the basis for disease transmission. While the

model developed in Chang et al. (2021) is not explicitly an agent-based model, this work

overlaid an SEIR compartmental model on a mobility network derived from SafeGraph data.

From SafeGraph, they were able to construct a mapping between each Census Block Groups

2. A quick Google Scholar search of “COVID-19” returns 1.9 million results, in fact!

68



(CBG) and SafeGraph POI, so each CBG maintained its own disease state. This work was

then able to study transmission patterns based on place type and broad demographics of

each CBG. Prior to this paper, we were using OpenStreetMap to identify places of interest

and assigned places randomly to agents based on location; discovering SafeGraph enabled

us to embed actual mobility patterns into our model for a much more realistic view of how

COVID-19 spread.

The next two works I discuss here take similar approaches to CityCOVID, with some

key differences, and were developed in parallel, lending support to our general approach.

The first of these, JUNE (Aylett-Bullock et al., 2021), is an open-source framework for

running an agent-based simulation of disease spread, with overall goals and attributes quite

similar to ours. JUNE allows for flexible input data to define how granular its synthetic

population is (as published, they only consider age and sex), and probabilistically assigns

activities at each time step according to age sex, largely based on social contact matrices.

Then, JUNE overlays an epidemiology model on top its synthetic population and presents

options for testing policy interventions. A key distinction between JUNE and CityCOVID

is their use of pre-defined contact matrices in dictating disease transmission, rather than

overlaying activity schedules to dictate movement throughout the simulation. Thompson

and Wattam (2021) present a Luxembourg-based ABM that is much more detailed with the

inclusion of a wide variety of place types and behavioral patterns. Notably, like our approach

but unlike most, Thompson and Wattam (2021) use time-use surveys to define interaction

patterns; rather than pre-specifying contact patterns as model inputs, incorporating time-

use surveys allows contact patterns to emerge from the model, enabling closer investigation

of sociodemographic transmission disparities. The Luxembourg model is built to enable the

investigation of highly-granular transmission vectors, but does not concern itself as much

with granularity within the population demographics, and only considers age and household

structure.
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Our contribution is the development of a highly granular and flexible synthetic popu-

lation to be used as the input to CityCOVID. With an eye toward better understanding

health disparities and the social nature of COVID-19 transmission, we use a wide variety of

statistically representative data sources to generate a population of synthetic agents, activity

schedules, and places that are then combined in a way to ensure the synthetic population

mimics the demographic profile and behavioral patterns of the area under study as closely

as possible. At a high level, this work builds upon years of expertise at Argonne National

Lab and employs a suite of statistical methods to use micro-level population data to build a

large-scale simulation of COVID-19 spread as a function of human and social behavior.

4.2 Large-scale agent-based models and synthetic populations

4.2.1 chiSIM

The Chicago Social Interaction Model (chiSIM, Macal et al. (2018)) is a highly-granular city-

scale agent-based model of Chicago, parallelized for running on high-performance computers

(HPCs) (Collier et al., 2015). chiSIM was developed at Argonne National Laboratory and has

been widely used to inform policy-makers in Chicago on topics like the spread of Ebola and

MRSA (Macal et al., 2014b) and the impact of community health interventions (Kaligotla

et al., 2018). With a robust simulation framework in place, the chiSIM framework was

quickly extended to model the spread of COVID-19 in Chicago at the beginning of March

2020, a project known as CityCOVID3.

CityCOVID is a city-scale agent-based model (ABM) of millions of people in a large

metropolitan area, currently the Chicago area (Macal et al., 2020). CityCOVID is being

used to understand the possible spread of COVID-19 and to model the uncertainties of

human behavior in response to public health interventions. Underlying CityCOVID is a

3. https://www.anl.gov/dis/CityCOVID
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Figure 4.1: Disease progression pathways used to define the CityCOVID epidemiology3

synthetic population (Kaligotla et al., 2020b) that is statistically representative of Chicago’s

population (2.7 million persons), along with their associated places (1.4 million places) and

behaviors (13,000 activity schedules). During a simulated day, agents move from place-

to-place, hour-by-hour, engaging in social activities and interactions with other co-located

agents, resulting in an endogenous co-location or contact network. COVID-19 transmission

is determined via a simulated epidemiological model (Figure 4.1) based on this generated

contact network. Model parameters are fit to empirical COVID-19 health and hospitalization

data, and modeling assumptions about agent behavior and government interventions are

informed by the latest scientific findings. Since March 2020, CityCOVID has informed and

supported decision-making by the Chicago Department of Public Health (CDPH), the City

of Chicago Mayor’s office, and the Governor’s task force regarding school closures and other

non-pharmaceutical interventions (NPI) (Hotton et al., 2022).
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4.2.2 Synthetic populations

Synthetic populations act as the primary input to ABMs; it is through their individual

characteristics and interactions with their environments that the complex phenomena under

study can emerge. When ABMs are being used to understand disease transmission within

certain communities and to test policy interventions, it is important for the underlying

population to be as realistic as possible in order to capture population heterogeneity. The

first large-scale synthetic population used to power an ABM is described in Beckman et al.

(1996) for use in a travel forecasting model. This paper was the first of many to use Iterative

Proportional Fitting (IPF), and algorithm introduced by Deming and Stephan (1940) and

shown to converge by Fienberg (1970), to combine census summary tables and microdata to

estimate the joint distribution of population characteristics. Given marginal distributions of

population characteristics (such as those provided through census reports), IPF estimates a

joint distribution across characteristics by estimating cell values in a contingency table such

that the odd ratios of the marginals are held constant. The contingency table is seeded using

microdata such as the Public Use Microdata Sample (PUMS) to specify a covariance struc-

ture among characteristics, and then the IPF procedure updates the contingency table until

the pre-specified marginal totals are matched. The estimated joint distribution defines the

weights with which to sample synthetic agents from the microdata. This method was used

to develop the first large-scale synthetic population specifically built for disease modeling -

the RTI synthetic household population database (Cajka et al., 2010). The RTI synthetic

population was created as part of an NIH infectious disease modeling initiative and is dis-

cussed in greater detail in Section 4.3.1. IPF has been studied extensively, and a variety of

extensions have been proposed to address key issues such as convergence in the presence of

missing or incomplete data, fidelity across population axes, and error propagation (Arentze

et al., 2007; Guo and Bhat, 2007; Ramadan and Sisiopiku, 2020).

The data requirements for IPF are strict - aggregated data (like the census) is used
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to fix the marginals, and disaggregated microdata (like PUMS) are used to intialize the

contingency table. Farooq et al. (2013) presents a simulation-based alternative to IPF that

enables all partial views of the joint distribution (marginals, conditionals, and samples)

and uses Gibbs sampling to draw from the estimated joint distribution. This paper shows

that their method outperforms IPF in terms of fit to the joint distribution and holds the

marginals just as well. This method is restricted to nonhierarchical data, and Casati et al.

(2015) extend the method to hierarchical populations (e.g. individuals with roles inside a

household). Recently, Gallagher et al. (2018) developed a flexible open-source framework for

generating synthetic ecosystems that allows the user to specify their sampling methodology

based on the availability and quality of the input data.

For the purpose of understanding COVID-19 transmission vectors, we require a more

granular synthetic population than what is provided by existing synthetic ecosystems. We

need agents to have behaviors, the ability to visit and interact at a wide variety of locations,

underlying, co-morbid health conditions, and other indicators of vulnerability. The synthetic

population we use for CityCOVID is an augmentation of a 2018 version of the RTI synthetic

population. This is a slightly different task than what the literature described above is

doing - in those cases, the joint distributions that are estimated and then sampled from to

fully create a new population, but in our case, we are estimating conditional distributions

that we will then assign to our population (e.g. given a young Black male in Hyde Park,

Chicago, how likely are they to have a co-morbid health condition?). This chapter describes

the development of this augmented synthetic population, designed specifically to enable a

highly granular modeling of COVID-19 transmission in Chicago.

4.3 Development of the core synthetic population

The synthetic environment required to run CityCOVID consists of 3 elements - a population

of synthetic agents P, activity schedules A, and places L, constructed from various data
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sources. Together, they represent in silico a statistically representative population of the

area under study, which for the purpose of this thesis, is Chicago, Illinois. The development

of the synthetic population described here is an expansion of Macal et al. (2018), which

has been used to study disease transmission and other social processes (Macal et al., 2014a;

Kaligotla et al., 2018; Ozik et al., 2018).

Each agent pi ∈ P is represented by a vector of characteristics pi := (i1, i2, . . . , in)

(e.g., age, race, gender, household location) that are statistically representative of the

area under study. An activity schedule Aj ∈ A contains a vector of individual activities

Aj := (a1, a2, . . . aK) where each ak :=(start time, stop time, location). Activities are

time-continuous (i.e. ai[stop time] = ai+1[start time]) across a 24-hour day. Each Aj is

constructed from a time-use survey (see next section for more details) and is associated with

the demographics of the survey responder. Finally, each location lt ∈ L is represented by

lt := (geolocation, place type). Synthetic population development involves first construct-

ing each of P,A, and L using methods described below, and then developing a series of

algorithms to integrate the datasets to be used by the ABM.

In this section, we describe the method used to construct the core synthetic population.

These methods are flexible and generalizable; while the focus of this thesis is on the Chicago

metropolitan area, the data sources are available for all regions of the United States and

can easily be filtered for other regions. As a proof of concept for the generalizability of our

framework, we developed a similar synthetic population of Northern Idaho for use by the

Idaho National Lab.

4.3.1 Data sources

The RTI synthetic household population databases (Cajka et al., 2010) lay the foundation

for the CityCOVID synthetic population. The RTI synthetic ecosystem consists of agents

with demographic characteristics (age, sex, race, household income/structure, and industry)
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and a limited set of locations associated with the individuals (living quarters, schools, and

workplaces). In our work, we extend this RTI population to include:

• Activity schedules to dictate agent movement throughout the synthetic environment

• Additional place types to better understand transmission vectors, built from actual

mobility data

• Additional attributes for each agent, such as ethnicity, underlying co-morbid health

conditions and occupation

In this section, we walk through the various data sources we used to develop the City-

COVID synthetic population and the algorithms and methods we used to integrate them

all into a cohesive population. The workflow consists of first gathering and processing data

from various census and other sources, and then combining them using a variety of statistical

methods to create a population that realistically reflects the demographics of the area under

consideration. For reference, a very high-level view of our development workflow can be

found in Figure 4.2.

RTI U.S. Synthetic Household Population

The RTI U.S. Synthetic Household Population4 was developed to support the NIH Models

of Infection Disease Agent Study (MIDAS 5) to enable agent-based disease modeling. We

use a version of the RTI synthetic population generated from 2018 U.S. Census data to

generate our synthetic agents and households. At a high-level, RTI first generates synthetic

households that match the American Community Survey (ACS) estimates for household

size, race, income, and age of the head of household at the Census Block Group (CBG)

level. Then, using Public Use Microdata (PUMS), individuals are sampled and assigned

4. https://www.rti.org/impact/rti-us-synthetic-household-population

5. https://midasnetwork.us/
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Figure 4.2: Heuristic for the development of the CityCOVID synthetic population
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to households such that the population in each CBG aligns with 2018 census estimates of

age, race, sex, and relation of person to the head of the household. RTI also maintains

a database of actual K-12 schools that eligible synthetic youths are assigned to based on

location and capacity, along with a database of synthetic workplaces that are appropriately

matched to the population. See Cajka et al. (2010) for full information on the creation of

the RTI synthetic ecosystem. Figure 4.3 shows the population density at the CBG level for

Chicago.

0-999
1000-1999
2000-2999
3000+

Figure 4.3: Population by CBG

Time-use surveys

Agents’ daily activity schedules are constructed from two comprehensive activity surveys of

the general US population – the American Time Use Survey (ATUS) and the Panel Study of

Income Dynamics (PSID). Specifically, we use ATUS 20186 for agents aged 18 and up and

PSID7 data for the under-18 population, as this source has proved more reliable for younger

6. https://www.bls.gov/tus/datafiles-2018.htm

7. https://simba.isr.umich.edu
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schedules in the past (Macal et al., 2018). These are both well-established surveys that asks

a representative sample of individuals in the United States to track their daily activities

for a random weekday or weekend and record the start- and end-time for each activity,

along with the location and activity performed. Each record is associated with a detailed

demographic profile and associated survey weights, included to correct for oversampling of

certain demographics and non-response bias.8. In all, we construct 12, 419 unique activity

profiles.

SafeGraph

The additional social activity locations not included in the base RTI dataset were extracted

from SafeGraph, a data company that aggregates anonymized location data from numerous

applications in order to provide insights about physical places, via the SafeGraph Commu-

nity. To enhance privacy, SafeGraph excludes census block group information if fewer than

two devices visited an establishment in a month from a given census block group.9 The

SafeGraph data universe consists of points of interest (POI) and visitor traffic patterns be-

tween them. For each POI, we are given geographic information like location and geometry,

a categorization of place type given by US Census Bureau industry codes, and additional

information like open hours and branding. Associated with POIs are traffic patterns, which

consist of information about visits to that POI (total monthly visits, median dwell time,

etc) along with information about the demographics of visitors to that POI, such as each

visitor’s census block group (CBG).

For our Chicago-based synthetic population, we extract Illinois POIs and visit patterns

from 2019, which was chosen as the most recent year with “normal” mobility patterns;

establishing a baseline from a time before lockdowns enables us to more accurately test policy

8. https://www.bls.gov/tus/atususersguide.pdf

9. SafeGraph asked that this phrase be included to cite their product
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interventions using CityCOVID (e.g. how will gym closures impact COVID transmission,

relative to regular usage?). An entry in the visits data is a monthly aggregation of visit

information to a single POI; in total, there were 1,931,186 measurements covering 172,249

distinct locations in the 2019 Illinois data. We use this data to augment our synthetic

population with a wide variety of social locations not included in the existing population,

with agent visits to these places dictated by the visit patterns in the data. See Table 4.2 for

a full list of the place types extracted from SafeGraph.

Source Agent attribute Possible values

RTI 2018 Age 0-99
Sex Male, Female
Race Black, White, Asian, Other
Household income ≤10K, 10-15K, 15-25K, 25-35K, 35-50K, 50-100K, >100K
Household size 1-6
Workplace industry 2-digit NAICS codes (Table 4.3)

RTI 2010 General quarters Prison, College Dorm, Nursing Home, Military Barracks
ACS Occupation SOC codes (Table 4.4)
ACS Ethnicity Hispanic/Latino or not
CDPH Co-morbidities Diabetes, Hypertension, Obesity, Asthma
SafeGraph Social locations Place types in Table 4.2

Table 4.1: Agent attributes and sources

4.3.2 Integration algorithms

As shown in Figure 4.2, all the different data sources need to be joined together in such

a way that the population represents the demographics and behaviors of the population of

Chicago. Recall that our population consists of a population of synthetic agents P, activity

schedules A, and locations L. For the population to be a valid input to CityCOVID, we need

to map agents to activity schedules through a mapping function fa : A → P, and agents

to locations with fl : L → P. Once these datasets are combined, the simulation is able to

detect where an individual should be at a given time of day through their activity schedule,

and then send them to an appropriate location based on their available places.
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Source Place Type Total Per agent

RTI Household 1,164,722 1
School 2,259 1
Workplace 152,340 1
Prison 75 1
College Dorm 47 1

SafeGraph Restaurants and bars 20,183 5
Recreation 7,881 5
Stores 7,778 5
Convenience stores 525 3
Supermarket 2,210 3
Museums 157 3
Places of worship 3,202 1
Library 273 1
Daycare 1,961 1

Hand Hospital 122 1
Curated Long-term care facility 113 1

Urgent care clinic 14,187 1

Table 4.2: Types of places in the synthetic population, along with their sources, the total
number of each place type, and the number assigned to each individual agent

Mapping agents to schedules

CityCOVID (and the chiSIM framework in general), unlike many similar COVID-19 ABMs

(see e.g., Aylett-Bullock et al. (2021)), endogenously generates contact networks (Macal

et al., 2018) as an output of the simulation rather than using an imposed pre-generated

contact network (Mossong et al., 2008) to determine transmission vectors and dynamics.

Contact occurs between agents when they are at the same place at the same time, and

mixing dynamics emerge after the simulation has played out over an extended period of

time. For this to happen, the ABM must send agents to different places at certain times of

day in a realistically stochastic manner; to achieve this, each agent is assigned a list of 10

weekday and weekend activity profiles that are then randomly chosen on a given day of the

simulation. Essentially, different people have different schedules, and we use simulations to

investigate at mixing as a result of this heterogeneous behavior. This enables us to generate
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individual-level transmission vectors based on co-locations that capture the heterogeneity of

the population.

Activity profiles are probabilistically assigned to agents through a mapping function

fa : A → P based on overlapping demographics and sample weights. For each agent,

we select all activity profiles that are associated with an ATUS or PSID respondent of

the same age, race, and sex. These demographics are chosen to be granular enough to

capture important transmission patterns while still ensuring random mixing. We are able to

find at least one perfectly matched schedule for 99% of agents; the remaining are assigned

schedules based on age. Schedules are separated by weekend and weekday, and we create

an empirical probability distribution over each group based on the survey weights. We use

these probabilities to randomly sample (with replacement) ten weekday and ten weekend

schedules for each agent, taking into consideration whether an agent is associated with each

place a given activity will send them to (e.g. we will not assign an agent a ”school” activity

if they do not have a school assigned to them).

Formally, for each activity profile Aj ∈ A, let dAj
:=
(
sexj , agej , racej

)
be the de-

mographic attributes associated with Aj , and let wj be its corresponding survey weight.

Separately for weekdays and weekends, each agent pi ∈ P is assigned a list of ten schedules

according to Algorithm 3. Figure 4.4 shows the distribution of agent locations by hour on a

randomly selected weekday and weekend for each individual. We see that during the week,

many agents are in school or at work, while on the weekend we see a larger variety of social

mixing occurring.

Matching agents to places

The base synthetic population from RTI assigns each agent to either a household or group

quarters (like nursing homes, college dorms, or prisons; there was significant concern early

in the pandemic over rapid spread in these types of places due to close proximity) and then,
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Algorithm 3 Schedule mapping (fa : A→ P)

Require: Activity schedules A, Agents P
for pi ∈ P do

Ai = {Aj ∈ A s.t. pi and dAj
overlap on attributes and have compatible place types}

Wi =
∑

j∈[Ai]
wj where [Ai] is the list of indices in Ai

Pi = (wj/Wi)j∈[Ai]

pi[schedules] ∼ Multinomial(10, Pi)
end for

Figure 4.4: Distribution of agent schedule locations for randomly selected weekday and
weekend schedules.

depending on age, schools and workplaces. Because so much of the early-pandemic debate

around COVID-19 policy interventions revolved around the accessibility of social spaces,

we substantially increase the number of place types agents can occupy using POIs from

SafeGraph. Agents are assigned places through a matching function fl := L → P. Each

agent is assigned a certain number of each category of SafeGraph place type (see Table 4.2

for a comprehensive list) that the CityCOVID ABM randomly chooses from when an agent’s

schedule sends them to that location category. For example, each agent is assigned five
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different possible restaurants or bars; if their schedule says to go to a restaurant at 7pm on a

Friday, CityCOVID will randomly choose one of these five places to send them to. In making

these assignments, we seek to mimic, as realistically as possible, the actual flow of traffic

through these places. For each place, we extract the monthly number of visits by the visitor

home CBG field in the 2019 SafeGraph patterns data. This field is determined by analyzing

six weeks of data during nighttime hours, and for increased anonymity, is only populated if

there are at least two devices visiting a POI from a given origin CBG. Because not all visitors

are assigned a home CBG, we estimate the proportion of visitors from each CBG across the

entire year and then distribute the average total number of monthly visits field, which is more

accurately reported, according to these proportions. This level of detail in combination with

demographic-based schedule assignments allows us to realistically understand how and where

COVID-19 transmission might occur.

Formally, we let T store the total monthly visitors to each place such that Ti,j := {Raw

number of visitors to place i during month j}, and C store the monthly visits by home CBG

such that Ci,j,k := {Raw number of visitors from home CBG k to place i during month j}.

Using these inputs, we construct an estimate V of the monthly visitors from each CBG such

that Vi,k := {Estimated monthly visitors from home CBG k to place i} using Algorithm 4.

Algorithm 4 Visit pattern extraction

Require: SafeGraph raw visit patterns T and C
for i ∈ SafeGraph places do

T̃i =
1
12

∑12
j=1 Ti,j ▷ Average total monthly visits

for k ∈ CBGs do
C̃i,k = 1

12

∑12
j=1Ci,j,k ▷ Average monthly visits by home CBG

end for
for k ∈ CBGs do

Vi,k := T̃i

(
C̃i,k∑
k C̃i,k

)
▷ Distribute average total visits according to distribution

from estimated CBG visit patterns
end for

end for

Then, for each agent and each type of SafeGraph POI, we have an estimate of which

83



specific places that agent is likely to visit based on their home CBG. For a given CBG, we

extract all SafeGraph places of a particular type (e.g. restaurants) and the corresponding

estimates of the number of monthly visits from that CBG. We then build an empirical

probability distribution across these places, which we use as weights in a multinomial draw

to assign each agent in that CBG a set of places for CityCOVID to choose (Algorithm 5).

See Figure 4.5 for an example of the assigned locations for a handful of place types relative

to three distinct agent households.

Algorithm 5 Place matching (fl := L→ P)

Require: Estimated CBG visits V , SafeGraph place type p, number of assignments n
for k ∈ agent household CBGs do

vk =
∑

i∈[p] Vi,k where [p] is the set of places of type p

Pk = (Vi,k/vk)i∈[p] ▷ Probability vector across all places of type p
for a ∈ Agents with residing in CBG k do

pa ∼ Multinomial(n, Pk)
Randomly choose from pa when agent’s schedule indicates they go to p

end for
end for

4.3.3 Core population overview

To recap, the core synthetic population necessary for running CityCOVID consists of agents

P, activity schedules A, location L, a schedule mapping fa := A→ P, and a place matching

fl := L→ P. All required input datasets are open-source and available for the entire United

States, and the integration algorithms are efficient and easy to implement. With this core

population, CityCOVID is well calibrated and can begin to answer important questions

about COVID-19 transmission and outcomes.
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Figure 4.5: A sample of the places assigned to three agents representing different demographic
groups. Lines connect places to the agent’s household, and colors represent different place
types. The agent demographics (Age, Sex, Race, Income) are as follows - Left: (30, Female,
White, ≤ $10k); Middle: (46, Female, White, ≥ $100k); Right: (34, Male, Asian, ≥ $100k).
The Bean and Jones Laboratory are shown for spatial context.

4.4 Expansion of synthetic populations for detailed

experimentation

Our core synthetic population is granular and robust, enabling highly detailed modeling of

COVID-19 transmission dynamics in Chicago and elsewhere (Ozik et al., 2021b). With such

a framework in place, public health researchers have the opportunity to explore detailed

hypothesis about disease transmission and impacts. Some hypotheses can be answered using

the core synthetic population, but others require the addition of new population attributes

using localized data sources. The methods used to build the core population offer a glimpse

into a larger body of work known as population synthesis (Ramadan and Sisiopiku, 2020),
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which describes the integration of multiple partial views of population attributes.

4.4.1 Population synthesis

A realistic synthetic population is a necessary component of an ABM to provide decision-

making support, especially for COVID interventions and in the absence of other methods with

similar levels of fidelity (e.g., field experiments). The census and other surveys provide the

most complete views of population attributes available to researchers, but important privacy

concerns limit access to census surveys to high-level aggregates and small microdata samples

(PUMS). As discussed in Section 4.2.2, the typical procedure for synthesizing aggregated and

disaggregated data is IPF, which involves fitting a contingency table to the available data.

IPF has a number of known pitfalls - for example, if there is a zero in the initialization of the

contingency table (i.e. the PUMS sample is missing some combination of attributes), IPF

fixes the cell value at zero. For a complete discussion of the pitfalls of IPF and a proposed

MCMC-based alternative, see Farooq et al. (2013).

In this section, we describe three population synthesis methods to add the following new

attributes to the core synthetic population: ethnicity, essential worker status, and underlying

health conditions, all of which are critical for understanding disparities in COVID-19 trans-

mission and outcomes. A variety of data sources are used to integrate these attributes and

each require a different set of constraints, highlighting some key insights and challenges in

synthetic population development that are broadly applicable to different types of attributes.

4.4.2 Assigning ethnicity

The first new attribute we assign to the core population is ethnicity, and its assignment

procedure is straightforward. Using the American Community Survey (ACS) 2019 census

estimates, we estimate the proportion of the population who are Hispanic or Latino by race

at the census tract level. This process involves aggregating all races besides White, Black,
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and Asian into an ”Other” category and appropriately aggregating the associated margins of

error. To incorporate the appropriate uncertainty into our estimates, for each census tract

c and race r we draw an estimated proportion pcr ∼ N(ACS proportion, ACS margin of

error) (clipping at zero if necessary). Then, for agent Ai in census tract ci and of race ri,

Pr(Ai is Hispanic or Latino) = pciri .

4.4.3 Identifying essential workers through occupations

We next determine whether each agent is an essential worker, which enables experimentation

on workplace vulnerability.In Chicago, Illinois Governor Pritzker’s Executive Order 20-1010,

introduced on March 20, 2020, required non-essential workers to stay home and provided

general guidelines for who was and was not considered an essential worker. Understanding

who was working from home during the different phases of Chicago’s reopening strategy is

critical for understanding how occupational risk factored into peak COVID-19 transmission.

As we can see in Table 4.1, the baseline RTI 2018 synthetic population mapped agents

to broad workplace industries, which are represented by two-digit codes from the North

American Industry Classification System (NAICS)11, which is the Federal standard used by

statistical agencies in classifying businesses; Table 4.3 gives descriptions of the 20 high-level

industries represented by NAICS. The NAICS system sub-divides these high-level industries

up to six digits of granularity; the RTI 2018 synthetic population does not include that in-

formation. An agents’ workplace industry provides insight into whether they are an essential

worker, but industry alone cannot differentiate between those within an industry who were

under the stay at home order and those who were still required to go to work (e.g. a cor-

porate worker for a large retail brand might be working from home while a store employee

might not). Occupations, not high-level industries, likely provide a more accurate picture of

10. https://www2.illinois.gov/Pages/Executive-Orders/ExecutiveOrder2020-10.aspx

11. https://www.census.gov/naics/
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essential workers.

Following the guidelines provided by Governor Pritzker’s executive order, the Chicago

Metropolitan Agency for Planning (CMAP)12 defined 11 broad occupations (from the Stan-

dard Occupational Classification (SOC) system13) as essential (Table 4.4). These occupa-

tional classifications paint a clearer picture of the essential workforce than NAICS industries

alone, and thus integrating occupations into the synthetic population will enable less am-

biguous differentiation between essential and non-essential workers.

Table 4.3: NAICS industries

NAICS
code

Industry Title

11 Agriculture, Forestry, Fishing and Hunting
21 Mining
22 Utilities
23 Construction
31-33 Manufacturing
42 Wholesale Trade
44-45 Retail Trade
48-49 Transportation and Warehousing
51 Information
52 Finance and Insurance
53 Real Estate Rental and Leasing
54 Professional, Scientific, and Technical Services
55 Management of Companies and Enterprises
56 Administrative and Support and Waste Management

and Remediation Services
61 Educational Services
62 Health Care and Social Assistance
71 Arts, Entertainment, and Recreation
72 Accommodation and Food Services
81 Other Services (except Public Administration)
92 Public Administration

12. https://www.cmap.illinois.gov/updates/all/-/asset_publisher/UIMfSLnFfMB6/content/
metropolitan-chicago-s-essential-workers-disproportionately-low-income-people-of-color

13. https://www.bls.gov/soc/home.htm
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Table 4.4: Essential SOC occupations

SOC
Code

Occupation description

21-0000 Community and social services
29-0000 Health diagnosing and treating practitioners, health technologists

and technicians, and other technical occupations
31-0000 Healthcare support
33-0000 Protective service
35-0000 Food preparation and service
37-0000 Building and grounds cleaning and maintenance
45-0000 Farming, fishing, and forestry
47-0000 Construction and extraction
49-0000 Installation, maintenance, and repair
51-0000 Production
53-0000 Transportation and material moving

The U.S. Census Bureau’s American Community Survey (ACS)14 is an annual survey

that collects detailed socio-economic information from a large sample of U.S. households.

This survey includes things like employment, education, housing, and more, and is published

both as aggregate summary statistics and Public Use Microdata Samples (PUMS). We use

the 2018 one-year ACS PUMS15, filtered to only include PUMAs (the smallest identifiable

geographic unit in the data) in the City of Chicago. PUMS contains a record for each person

in a random sample of approximately 1% of the U.S. population. These records include

demographic information like age, race-ethnicity, and gender; employment information like

income, industry, and occupation; and other important information like household structure

and PUMS. Each record is associated with a weight that indicates the number of people in

the U.S. population represented by that record16.

IPUMS classifies occupation and industry using the OCC and IND codes, respectively,

14. https://www.census.gov/programs-surveys/acs/about.html

15. https://usa.ipums.org/usa/sampdesc.shtml#us2018a

16. https://usa.ipums.org/usa/intro.shtml#weights
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while the essential occupations are defined by SOC codes and the synthetic population is

equipped with NAICS codes for industry. IPUMS provides crosswalks to map between

the OCC and SOC, as well as IND and NAICS17. Similarly, we need to map the PUMA

geographies from the IPUMS surveys to the synthetic population, which are specified down

to the Census Block Group (CBG) level. CBGs are nested within Census Tracts, which are

then nested within PUMAs. A crosswalk is provided by the Census to map between the

two18.

To assign occupation (and thus essential worker status) to the synthetic population, we

develop a methodology to probabilistically assign an IPUMS record to each agent in the

synthetic population based on overlapping attributes.

Let R := {r1, . . . , rK} be the set of available records in IPUMS, where record rj and

agent pi are defined by the following vectors of attributes:

rj :=
(
sexj , agej , racej , ethnicityj , incomej ,PUMAj ,NAICSj , SOCj , wj

)
pi := {sexi, agei, racei, ethnicityi, incomei,PUMAi,NAICSi}

(4.1)

where wj is the IPUMS sample weight. For each agent we extract a subset of records Ri so

that the attributes of the records in Ri suitably overlap with pi, and then an occupation is

drawn from the possible records in Ri. Formally, let r
(t)
j represent the tth element of vector

rj (e.g. r
(1)
j corresponds to the sex associated with record rj). If agent pi has all attributes

in common with record rj , then pi overlaps with rj on {r(1)j , . . . , r
(7)
j } with |pi ∩ rj | = 7.

Note that the ordering of the vector rj is specified from most to least general in order ensure

close record matches. Formally,

Ri := {rj : |pi ∩ rj | = argmax
t=1,...,7

{r(k)j ∈ pi ∀k ≤ t}}

17. https://usa.ipums.org/usa/volii/occ_ind.shtml

18. https://www.census.gov/programs-surveys/geography/guidance/geo-areas/pumas.html
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Because all records are not equally representative of the true population, we select an

occupation from the records in Ri with probabilities proportionate to the sample weights as

follows. Suppose agent pi has M matching records in Ri, so Ri = {rj1 , rj2 , . . . , rjM } and let

Wi = {wj1 , wj2 , . . . , wjM } be their associated weights. Then, for record rjk, the probability

that agent pi is assigned the occupation associated with record rjk is given by

Pr(pi is assigned rjk) =
wjk∑M
t=1wjt

All agents are thus assigned an occupation through a multinomial draw from Ri with these

probabilities. All agents who are assigned one of the essential occupations from Table 4.4

are designated as essential workers.

As mentioned in Section 4.3.1, the workplaces mapped to agents in the RTI databases are

purely synthetic. They first used a commercial data product called InfoUSA to estimate the

number of ”firms” by size in each CBG, and then used Census data to estimate the number of

workers commuting between census tracts. Agents of an appropriate age were then randomly

assigned a workplace according to these guidelines. As part of our experimental framework,

we want to simulate worker-visitor interactions in a workplace setting by remapping workers

in relevant industries to SafeGraph social locations.

Overall, this assignment procedure designates approximately 42% of Chicago workers as

essential, consistent with an analysis performed by the Chicago Metropolitan Agency for

Planning19. Also consistent with this analysis, we find large disparities in the spatial and

demographic patterns of essential workers (Figure 4.6). In particular, we notice that far

more Black and Hispanic/Latino workers are essential than White/Asian workers, and in

general essential workers are part of lower-income households.

19. https://www.cmap.illinois.gov/updates/all/-/asset_publisher/UIMfSLnFfMB6/content/
metropolitan-chicago-s-essential-workers-disproportionately-low-income-people-of-color
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(a) By Census Tract (b) By race/ethnicity, age, and household income

Figure 4.6: Proportion of workers our method assigned essential status broken down by
different demographic variables.

4.4.4 Underlying health conditions

Chronic, underlying health conditions like diabetes, hypertension, obesity, and asthma are

known to significantly impact COVID-19 outcomes(Sanyaolu et al., 2020). In this section, we

describe the use of a Chicago-specific data source for assigning underlying health conditions

to individuals; however, the methodology is general enough that other data sources could be

easily swapped in. Once incorporated, we can update the disease pathways in the CityCOVID

epidemiological model to better predict hospitalization and mortality outcomes based on

these underlying conditions.
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Chicago Department of Public Health - Healthy Chicago Survey

Since 2014, the Chicago Department of Public Health (CDPH) had conducted an annual

Healthy Chicago Survey20 (HCS) to better understand the state of public health in Chicago.

This survey is conducted through randomized phone calls and collects a wide variety of

variables, including demographics and health outcomes. The results of these surveys are

reported through the Chicago Health Atlas website, which includes useful visualizations and

data downloads for a variety of aggregations of the survey. Among major cities in the United

States, Chicago is particularly segregated, and there exist significant health disparities along

racial lines. For example, a recent report produced using data from the HCS states that

there is a 9.2 year life expectancy gap between Blacks and non-Blacks in Chicago, with the

gap largely attributable to chronic health conditions (Aikens et al., 2021).

For a wide range of health indicators, including those we are considering for this work, the

Chicago Health Atlas website provides data summaries for individual demographic groups

(age, sex, race-ethnicity, and poverty), along with Chicago community areas. Table4.5 gives

a breakdown of the percent of different demographics with each condition; we notice that

there are wide disparities in disease incidence along racial lines.

Assignment methodology

Assigning these underlying health conditions to agents is less straightforward than ethnicity

or essential worker status. There are known associations between conditions (e.g., obesity

and diabetes or hypertension); independent assignments of each condition may be inaccurate.

Furthermore, we only have a partial view of this data; we don’t have access to any joint

distributions among demographics (e.g. age and gender). This population synthesis task is

slightly different from most described in the literature; typically, the goal is to estimate joint

20. https://www.chicago.gov/city/en/depts/cdph/supp_info/healthy-communities/
healthy-chicago-survey.html

93

https://www.chicago.gov/city/en/depts/cdph/supp_info/healthy-communities/healthy-chicago-survey.html
https://www.chicago.gov/city/en/depts/cdph/supp_info/healthy-communities/healthy-chicago-survey.html


Table 4.5: Percent of each demographic group with underlying health condition from the
2019 CDPH Healthy Chicago Survey reports. Uncertainty represents a 95% confidence
interval.

Obesity Asthma Diabetes Hypertension

Age 18-29 21.2±4.1 9.7±3.1 2.3±1.6 6.1±2.5
30-44 31.9±3.7 9.0±2.2 4.3±1.6 15.2±3.0
45-64 37.0±3.5 11.0±2.2 15.6±2.6 40.8±3.7
65+ 32.8±4.8 7.6±2.3 22.1±4.1 63.3±4.9

Gender Female 33.4±2.7 11.2±1.8 9.4±1.5 26.9±2.5
Male 27.9±3.0 7.7±1.7 10.3±1.8 28.6±2.9

Race/ Hispanic or Latino 37.5±4.1 7.4±2.4 12.0±2.5 19.7±3.2
ethnicity Black 39.3±3.5 13.9±2.4 11.4±2.1 36.9±3.3

White 23.7±3.3 8.4±2.1 8.3±2.2 29.5±3.5
Other 9.8±6.2 N/A N/A 12.4±6.7

distributions from which a synthetic population can be sampled; here, we need to assign

a new attribute to an existing synthetic population, so we need to estimate conditional

distributions. To that end, we assume each agent Ai ∈ A is drawn from a joint distribution

of demographics Di and underlying health conditions Ci. In other words, we assume

Ai ∼ P (Di, Ci)

With joint information from the CDPH survey and RTI 2018, the demographics currently

under consideration are age, gender, race, and location (we map households to community ar-

eas using their coordinates) and we encode health conditions as a binary vector that indicate

which of the conditions an agent has (i.e., Ci := {1Diabetes,1Obesity,1Hypertension,1Asthma}).

Using the aggregate information from CDPH and relevant PUMS microdata, our goal was

to estimate the conditional distribution P (Ci|Di) for each agent Ai.

We ultimately realized that the data sources required to assign a vector of conditions to

each agent, even through partial views, were not easy to access. Instead, we opted to assign

each health condition independently using a similar procedure to assigning essential workers;

we hope to develop a method to account for condition dependencies as future work.
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4.5 Load balancing and other computational considerations

CityCOVID is an MPI-distributed ABM (Collier et al., 2015) based on the chiSIM framework

(Macal et al., 2018). As part of this work, we developed a load balancing algorithm to ensure

efficient computation at scale to enable usable in silico experimentation towards informing

decision-making, where each unique place is assigned to a specific computing rank. Rank

assignments are based on both balancing the number of agents across computing processes

and minimizing cross-process communication. To do this, we form a network where each

place is a vertex and edge weights correspond to the number of agents moving between

those places at a given time-step. We then use the Metis21 graph partitioning software to

optimally allocate vertices to a specified number of nodes. In each time step t = 1, 2, . . . ,T

of the simulation, as agents in the simulation move from one place to another (e.g., from

home to school) according to their assigned schedule, they may move among ranks (if the

new place is on a different rank). Figure 4.7 illustrates this cross-rank movement.

Figure 4.7: Visual Representation of Multi-Rank Distribution of Synthetic Population.
Places are assigned to a specific rank (process) and agents move across ranks based on
their activity schedules and assigned places. Cross-rank movement between ranks n and n′

is shown.

In CityCOVID, agents are assigned 10 possible weekday and weekend demographically

appropriate schedules that are randomly sampled on a given simulation day. In order to

estimate the mobility network, we must run the CityCOVID model for an extended period

21. http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
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of time to capture the stochastic variation in the network (Kaligotla et al., 2020a). City-

COVID’s agents are also assigned a handful of possible social places to go to, like restaurants

and stores, to encourage realistic mixing patterns. By increasing the number of place types

and adding randomness to the place assignment procedure, estimating the network to parti-

tion becomes very computationally expensive, particularly when we are running experiments

to determine optimal ways to structure the network.

At each time step, the CityCOVID simulation:

1. selects and moves agents that need to go to a different rank or are coming from another

rank (based on their daily activity schedules)

2. adds moved agents to their respective places on their destination ranks

3. runs a transmission model for agents co-located in each place; and iv) runs a disease

progression model for each agent

Two factors impact the run-time performance of this model. First, an uneven distribution

of persons among ranks results in longer run-times. With uneven workloads, ranks with

relatively lesser loads (i.e., those with fewer people for which to run the disease progression

model) would be idle while waiting on ranks with greater loads to finish processing. Second,

an MPI-related overhead in transferring persons between ranks (including each person’s

state) causes increased run-times.

An efficient parallel implementation of CityCOVID requires us to balance the rank load

and inter-rank movement. In other wwords, the algorithm for assigning places to ranks in

our synthetic population must account for an even distribution of agents among the ranks

while minimizing the movement of agents between these ranks. We define a load balancing

algorithm f{L,A,P} : L → n, where each unique place in L is assigned to a specific

computing rank n ∈ N , based on the synthetic population (P) and their activities (A). The

total number of ranks N is set based on the model’s scaling characteristics on the specific
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HPC resource (Collier et al., 2015).

4.5.1 Graph Partitioning Problem

We map the load balancing objective to a graph partitioning problem. In this graph, each

place in L is represented as a vertex, and edges connect places between which agents can

move according to their assigned activity profiles. Both vertices and edges have weights, each

encapsulating one of the two factors affecting load balancing and run-time performance.

Vertex weights quantify the corresponding place’s agent load, and edge weights quantify

agent movement between pairs of places. The load balancing objective is to partition the

graph into N parts (corresponding to the N ranks) such that vertex weights are evenly

distributed between parts, and the sum of the weights of edges crossing two distinct parts

is minimized. Figure 4.7 shows a representative example of vertex and edge weights for two

connected ranks.

Computing weights

Each agent is assigned ten possible weekday and weekend schedules, matched across different

census and survey-based data sets by agents’ demographic profile (Kaligotla et al., 2020b).

These schedules consist of hourly activities at one of m ⊂ L possible places. For each hour

of each possible schedule k ⊂ A, we extract the vertices vk = {vk0 , v
k
1 , ..., v

k
m} corresponding

to the m possible places an agent could be. Then, for each vki ∈ vk, we increment the

weight of vki by ds/m where ds = 5 if k is a weekday schedule and ds = 2 if k is a weekend

schedule. Then, to compute edge weights, we extract the list uk = {uk0 , u
k
1 , ..., u

k
m′} ofm′ ⊂ L

vertices corresponding to the places an agent has associated with the activity type for the

subsequent hour, and we increment the weight of each edge (vk, uk) by ds/(m×m′). Figure

4.8 shows a sample subgraph of the weighted network generated through this process for 3163

vertices and 3573 edges. The graph generated for the entire Chicago synthetic population
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has approximately 1.38 million vertices and 167 million edges.

Figure 4.8: Sample subgraph network (3163 vertices and 3573 edges) for a subset of
places.Vertex and edge colors represent weights, with lighter colors signifying larger weights.

We use the METIS graph partitioning software as part of our load balancing strategy

(Collier et al., 2015; Karypis and Kumar, 1998). METIS is a set of applications for parti-

tioning graphs and finite element meshes; specifically, the incorporated gpmetis tool splits

weighted vertices into parts while minimizing the cross-part communication cost, making it

suitable for balancing our places among ranks. Using gpmetis, we partition the graph into

N = 256 ranks, and assign ranks to each place accordingly.

4.5.2 Load Balancing Experiments

While the graph partitioning is automated through METIS, the question that remains to

be addressed is how to best construct the graph itself – that is, whether different vertex

and edge weighting methods affect load balancing, and by extension, CityCOVID run-time

performance.

We designed several load balancing schemes with varying edge and vertex weighting

methods to investigate their effect on run-time performance. We then load balanced our

synthetic population for each scheme detailed in Table 4.6 (resulting in different sets of

place-rank assignment), ran the CityCOVID simulation on HPC resources for each scheme,

and measured the run-time performance. Table 4.6 also indicates which HPC cluster is used
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for each scheme.

Table 4.6: Weighting Schemes for Load Balancing Experiments

Exp# Scheme Description HPC

1 24h vertex weighting + No edge weighting Bebop

2A 24h vertex weighting + 24h edge weighting Bebop

2B Daytime vertex weighting + 24h edge weighting Bebop

2B’ Daytime vertex weighting + 24h edge weighting Theta

3 No vertex weighting + 24h edge weighting Bebop

4 Hierarchical Scheme with vertex weighting Theta

5 Hierarchical Scheme with vertex + edge weighting Theta

Scheme 1 uses only vertex weights so that the partitioning ignores cross-rank movement.

In contrast, Scheme 3 uses only edge weights, thereby minimizing only the cross-rank move-

ment costs. Scheme 2A uses both vertex and edge weights over a 24 hr day. Scheme 2B

is similar but only considers vertex weights for daytime agent activity (between 9 am and

6 pm in each schedule) to prioritize the busiest portion of agent schedules. Scheme 2B’

is similar to 2B but is run on a different HPC cluster. Finally, we generated hierarchical

load balancing schemes (4 and 5), which consisted of partitioning the graph with METIS

on two levels - nodes, and ranks per node. CityCOVID was distributed across four com-

puting nodes (with either 36 cores [Bebop] or 64 cores [Theta] per node). We first split the

graph into four parts to distribute across nodes and then partitioned the resulting subgraphs

following the specified schemes. We used schemes 4 and 5 to determine whether cross-

node movement disproportionately contributes to the total computational cost, compared to

cross-rank movement.

The scale of generated co-location networks in CityCOVID is larger than previous work

(Macal et al., 2014a), which used vertex and edge partitioning procedures (scheme 2A) to

balance the co-location network. CityCOVID thus represents an extended case study to
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investigate the performance of different graph partitioning schemes, providing a basis for

further work to generalize load balancing algorithms in large-scale ABMs.

4.5.3 Performance of Load Balancing Experiments

Each of the schemes in Table 4.6 was run on the indicated HPC resource for a full simulated

year (T = 8736) on an identical synthetic population. The runs were done on the Bebop

cluster and the Theta supercomputer, both hosted at Argonne National Laboratory. Bebop

is a 1024 node cluster with two different types of compute nodes. We used the Intel Broadwell

nodes, which have 36 cores and 96GB of memory per node. Theta has 4392 Intel Knights

Landing computer nodes with 64 cores and 192GB per node. For each HPC run, the following

metrics of interest were recorded at each time step t and rank n ∈ N to compare run-time

performance: the total number of persons received from other ranks at a given rank (precv),

the total number of persons on a given rank at at the end of the time step (pload), and the

computational run-time for each rank for each time step (r).

Comparing Run-Times Across Schemes

We compare the performance of our load balancing schemes based on two run-time metrics.

The per-step run-time, ρ(t), represents how long it takes to run a given time step t, and

is calculated as ρ(t) = max{∀n∈N}(r
t
n). Figure 4.9 shows the distribution of ρ(t) for each

scheme in Table 4.6.

The total run-time metric, Γ, represents the total time to run CityCOVID for a year-

long simulation and is calculated by summing the per-step run-time (ρ(t)) across all time

steps, i.e., Γ =
∑t=8736

t=1 ρ(t). The comparative performance for our experiments in terms

of Γ (in seconds) are: 325 (Exp 1); 401 (Exp 2A); 378 (Exp 2B); 1260 (Exp 2B’); 1639

(Exp 3); 1705 (Exp 4); and 2018 (Exp 5). We see schemes 1, 2B, and 2A have the lowest

average ρ(t) and Γ run-time metrics, while schemes 2B′, 3, 4, and 5 perform comparatively
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Figure 4.9: Distribution of per-step run-time ρ(t) for schemes in Table 4.6.

worse. Figure 4.9 indicates that scheme 1 has a smaller ρ(t) IQR range than 2B and 2A,

indicating consistently better performance across all time steps and ranks, making it our

best load balancing scheme. Comparing schemes 1, 2A, 2B, and 3, we notice that schemes

considering vertex weighting performed considerably better than when only edge weighting

was considered. This observation leads us to take a closer look at the relationship between

rank load (pload) and cross-rank movement (precv) on run-times (r). Figure 4.12 illustrates

this comparison at each time step t and rank n for our four best-performing schemes.

From Figure 4.12, we observe that a) greater rank load alone does not imply poorer

performance - scheme 1 and 2B show a cluster of high-load ranks compared to 2A, and

b) greater cross-rank movement (in 2A and 2B, relative to 1) does incur a performance

penalty, albeit small. Together with our comparison between vertex and edge weighting

schemes, these observations indicate that cross-rank movement in the presence of vertex-

weighting is relatively more costly than rank-load in terms of performance. Characterizing

the relationship between rank load and cross-rank movement alongside vertex weighting is a

promising starting point towards developing a generalized load balancing model to predict

and optimize simulation run-times.

A comparison of run-time performance metrics for schemes 1, 2A, 2B, 2B′, and 3, against
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Figure 4.10: Run-time by total persons (pload) and total persons received (precv) for schemes
{1, 2A, 2B} (all run on Bebop for consistent comparison) and 2B′ (to show differences be-
tween HPC resources). Results are compiled across all simulation ticks and ranks, and plots
are truncated to only show pload ≤ 60, 000 and precv ≤ 10, 000 for consistency.

hierarchical schemes 4 and 5, indicates that, at least for the message passing patterns within

CityCOVID, cross-node movement does not disproportionately contribute to overall perfor-

mance cost compared to cross-rank movement. Investigations into how this result translates

to more general ABM message passing patterns are topics of future work.

For completeness, we include a comparison of the same scheme across different HPC

resources, where we utilize the same number of ranks for each (256) to aid in the comparison.

We see in Figure 4.12 that scheme 2B, run on Bebop, demonstrates different run-time

characteristics, and generally outperforms 2B′, run on Theta. Factors affecting the outcome

include differences in CPU performance, cores per CPU, network infrastructure, and MPI
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implementations. HPC resource-specific details have the potential to significantly affect

overall performance, indicating that tunable parameters are likely to be needed for any

generalized load balancing scheme. Future work will focus on characterizing specific HPC

infrastructure variables on run-time performance.

4.6 Validation of synthetic population

With so many datasets and algorithms required to develop a synthetic population, it is

imperative that we are able to easily verify the accuracy of the population at all stages

of development. To do so, we built an interactive analytics suite to generate analyses and

visualizations to be shared with domain experts for validation. In addition to verifying that

the population demographics matched known regional statistics, we needed to ensure that

the activity schedules and place assignments were reasonable, as these are what determine

contact between agents and ultimately disease transmission. Figre 4.11 provides some ex-

amples of the interactive analytics built for synthetic pouplation validation; the interactivity

enables easy comparison across a wide variety of axes. For example - we see that, on average,

men in the 25-34 age group are spending more time at work than their female counterparts.

Easy generation of these types of visuazliation allowed our team to quickly debug make

necessary updates when something was flagged as unexpected, lending confidence to the

accuracy of the synthetic population.

4.7 CityCOVID model calibration

The synthetic population described in this chapter is the primary input to the CityCOVID

ABM. Each agent in the synthetic population has an individualized COVID-19 disease pro-

gression pathway (see Figure 4.1 for the general framework) based on heterogeneous agent

attributes, exposure through co-location over time with infected individuals, and external
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Figure 4.11: Example of the interactive analytics tools built to validate the synthetic pop-
ulation. On the left, we see the agent gradient of work activities (note that the drop-down
enables generation of this plot for any place type), and on the right we see, on average, how
long agents spend in different place types on weekdays, with the ability to filter by age and
gender.

factors such as seasonality of viral transmissibility. Agent attributes are fixed by the syn-

thetic population and exposures are dictated by activity schedules and place assignments,

but the external factors such as the number of initial exposures, transmission probability,

and seasonality are model parameters that need to be tuned.

Calibrating model parameters requires repeatedly running the CityCOVID simulation

and comparing the output with empirical hospitalization and deaths data for Chicago, both

of which are readily available on the City of Chicago data portal22. In all, CityCOVID needs

to tune 9 parameters, and which is extremely computationally expensive. In recent years,

ML-based approaches have been developed to speed the calibration process, and as part

of the broader ecosystem of this work, the Extreme-scale Model Exploration with Swift/T

(EMEWS) (Ozik et al., 2016) framework was developed to efficiently implement these sys-

tems. For CityCOVID, the model calibration process employed an approximate Bayesian

computation (ABC) framework to more efficiently calibrate model parameters (Ozik et al.,

2021b), which enable generating simulated posterior distributions of the model input pa-

22. https://data.cityofchicago.org/
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rameters (the priors are constructed from the scientific literature), and as a result we can

generate posterior model outputs that efficiently propagate model uncertainties (Beaumont,

2019).

Once calibrated, CityCOVID is run with the optimal model parameters to simulate

Chicago COVID-19 deaths and hospitalizations under a wide variety of experimental scenar-

ios. Figure 4.12 shows the optimally calibrated forecasts for daily deaths and hospitalizations

before and after the inclusion of SafeGraph place types. In both cases, we see that the median

model prediction (black line) matches the empirical data (black dots) well, but the inclusion

of SafeGraph places (hence a more realistically mobile synthetic population) decreases the

uncertainty of the estimates, as evidenced by tighter confidence bands.

Figure 4.12: COVID-19 attributed hospitalization and death outputs from CityCOVID be-
fore and after the inclusion of SafeGraph places in the synthetic population. The black dots
show the empirical Chicago data; the black line is the median simulation output, and the
shading represents confidence bands (50% simulation bands in the dark region and 95% in
the lighter region.)
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4.8 Experimentation with synthetic populations and agent-based

models

With the highly granular synthetic population built and CityCOVID calibrated, we can run a

wide variety of experiments. One important use-case for CityCOVID is studying the impact

of social determinants of health (SDOH) on COVID-19 transmission and outcomes, and the

additional updates to the core synthetic population (Section 4.4) were made in support of

this. The COVID-19 pandemic has highlighted drastic health inequities, particularly in cities

such as Chicago, Detroit, New Orleans, and New York City. Reducing COVID-19 morbidity

and mortality will likely require an increased focus on SDOH, given their disproportionate

impact on populations most heavily affected by COVID-19. A better understanding of how

factors such as household income, housing location, health care access, and incarceration

contribute to COVID-19 transmission and mortality is needed to inform policies around

social distancing and testing and vaccination scale-up.

4.8.1 Contact matrices for occupational risk and racial disparities

With an eye toward understanding the observed racial/ethnic disparities in COVID-19 out-

comes, we hypothesize that occupational risk may be partially true to blame. This may

be due to an overrepresentation of Blacks and Hispanics in the essential workforce, service

industry and public facing jobs that offer limited opportunities to work from home, resulting

in more mobility and more potential for exposure at work.

The first part of this analysis seeks to understand the patterns of interactions between

different subgroups of our population. We do this by generating co-location or contact

matrices, which enumerate the contacts (agents in the same place at the same time) between

pre-specified demographic groups. These matrices are often used to understand population

mobility dynamics (Iozzi et al., 2010a) and can be generated without fully deploying the
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ABM. Contact matrices have long been an important piece of the epidemiological modeling

process.

Pseudo-simulation

Contact matrices can be directly generated using the synthetic population underlying City-

COVID (in contrast to fully running CityCOVID on an HPC). We call this a pseudo-

simulation to differentiate it from the full CityCOVID simulation; it is able to estimate

contact patterns but not disease transmission. The psuedo-simulation consists of randomly

sending agents to one of their assigned locations for each hour of each day of week. We

then keep track of who was at each location during that time in order to estimate contact

matrices. See Algorithm 6 for details.

Algorithm 6 Weekly pseudo-simulation

for pi ∈ P do
for day d = 1, 2, . . . , 7 do

if day ≤ 5 then
Randomly select ai ∈ Aweekday

end if
if day ∈ {6, 7} then

Randomly select ai ∈ Aweekend
end if
for hour h = 1, 2, . . . , 24 do

Randomly choose location l from ai[h]
Record that agent pi was at location l during hour h on day d

end for
end for

end for

Our contact matrices are generated from the output of the pseudo-simulation. Following

Iozzi et al. (2010b), we define two agents to be in contact with one another if they are in the

same place at the same time (here, that means within the same hour). Typically, contact

matrices are generated by investigating the patterns of contacts between different age groups.

Due to the highly granular nature of the synthetic population underlying CityCOVID, we
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are able to generate contact matrices between a variety of different sub-populations (e.g.

race, sex, income levels, etc).

From the pseudo-simulation, we know exactly who was at each location during a given

hour of day and which sub-populations they belong to. For each location, we want to

compute, on average, how often each group within the sub-population was in contact with

every other sub-population group. For the sake of exposition, suppose there are 10 agents

sharing a location during one day/hour; 4 belong to group A and 6 belong to group B.

Each agent in group A encounters 3 other agents in group A and 6 other agents in group B.

Summing across agents, there are 4×3 = 12 contacts in total among group A and 4×6 = 24

between group A and group B.

Recall that each agent pi ∈ P is represented by a set of m socio-demographic characteris-

tics pi = {Agei,Race-Ethnicityi . . . , Sexi}. See Table 4.1 for all possible characteristics and

their associated categories. Let S represent a subset of these characteristics (e.g. S = {Age}

or S = {Age,Race-Ethnicity}) and Si ∈ S be agent pi’s realization of those categories (e.g.

Si = {Young} or Si = {Young,Black}). We are interested in quantifying contacts between

all possible realizations of S (i.e. the Cartesian product of the sets of characteristics in S).

Let C denote the number of possible realizations of S.

Following Klepac et al. (2020), we define our contact matrices M ∈ RC×C such that

MA,B =
Number of contacts between group A and group B

Total population of group A

This value represents the average number of contacts an agent in group A has with agents in

group B on average. Because contact patterns are often computed by age, we first validate

our contact networks by investigating age group mixing patterns overall, and then separated

by household and non-household contacts (top row of Figure 4.13). These are expected

patterns based on related literature (see e.g., Iozzi et al. (2010a)); off-diagonal age contacts

within a household are representative of parent/child interactions, while out-of-household
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interactions more commonly occur within similar age groups. The bottom row of Figure

4.13 shows the interactions between ”workers” and ”visitors” at essential workplaces as an

attempt to investigate the hypothesis that occupational risk influence disparities in COVID-

19 outcomes. The age patterns are expected; essential workers are likely to be in the 20-50

age range, while visitors are more evenly distributed. In general we see that workers are in a

lower income bracket than visitors, again not surprising. The asymmetry of the race matrix

provides insight into workplace-based racial disparities; we see that Black workers interact

with White visitors more often than White workers interacting with Black visitors.

Algorithm 7 Contact counting

for li ∈ L do
for day d = 1, 2, . . . , 7 do

for hour h = 1, 2, . . . , 24 do

Mi,i+ =
(|Gi|

2

)
Mi,j+ = |Gi||Gj |

end for
end for

end for

4.8.2 Impact of changes in protective behaviors and out-of-household

activities by age on COVID-19

A wide variety of scenarios can be explored using the CityCOVID framework. While we

have many experiments in the pipeline, results from an experiment varying different levels of

out-of-household activities are particularly illuminating (Hotton et al., 2022). Even with the

vaccine widely administers and largely effective, protective behaviors like social distancing

and masking remain an important public health tool for mitigating the spread of COVID-19.

Using CityCOVID, we are able to vary the level of protective behavior and out-of-household

activities (OOHA) relative to the calibrated model and quantify the changes in COVID-

19 outcomes under different behavioral scenarios. We find that decreasing adult protective
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Figure 4.13: Sampling of contact matrices generated from the pseudo-simulation. Top: av-
erage daily contacts between age groups overall, within-household, and outside of household.
Bottom: investigation of contact patterns between workers and visitors at essential work-
places for different demographic groups.

behaviors and increasing adult OOHA both substantially impacted COVID-19 outcomes;

school reopening had relatively little impact when adult protective behaviors and OOHA were

maintained. As of January 1, 2021, a 50% reduction in young adult (age 18-40) protective

behaviors resulted in increased latent infection prevalence per 100,000 from 3.39 to 28.32

and 5.51 to 32.9 with 15% and 45% school reopening. Increasing adult (age ≥ 18) OOHA

from 65% to 80% of pre-pandemic levels resulted in increased latent infection prevalence

per 100,000 from 18.06 to 93.14 and 20.36 to 117.06 with 15% and 45% school reopening.

Similar patterns were observed for hospitalizations. Figure 4.14 shows the hospitalizations

and deaths predicted by CityCOVID under different OOHA and school reopening levels.

4.9 Challenges and future work

CityCOVID is a massive undertaking with many stakeholders and moving pieces. The scale

of the model is unprecedented and requires specialized implementations and oversight to
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Figure 4.14: Impact of increases in adult out-of-household activities (OOHA) on COVID-19
infections under various school reopening scenarios. Vertically from top to bottom, effect
of increasing school reopening for a given level of adult OOHA. Yellow plots indicate point
prevalence of latent infections and red plots indicate point prevalence of hospitalizations.
Horizontally from left to right, effect of increasing adult OOHA (65%, 70%, 75%, and 80%
of pre-pandemic levels) or a given level of school reopening, from March 2020 to November
2020.

run; as such, any downstream updates made to the synthetic population can propagate

unexpected outcomes in a full model run, and with each run a significant time and resource

committment, it is important that each update is intentional and accurate. Due to the

resource constraints inherent to this work, setting up a new experimental framework to

answer additional question with the full CityCOVID model is a lengthy process involving

many steps, and so we found that, in practice, the psuedo-simulation framework was able to

act as a reasonable proxy and still leverage most of the potential of the synthetic population.

That said - with new COVID-19 variants always emerging, mandates for protective behav-

ior changing, and vaccine efficacy dwindling, running experiments with CityCOVID remains

relevant. When resources free up, we plan to fully deploy SDOH experiments on CityCOVID
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to validate findings from the contact matrices. We are also interested in studying vaccine

distribution, uptake, and efficiacy, as well as a more concerted effort to understand the

interplay between SDOH, chronic health conditions, and COVID-19 outcomes.

In this work, we’ve shown how using statistical methods to use micro-level population

data to build large-scale simulations is an effective tool for modeling epidemics like COVID-

19. We have built a generalizable and flexible synthetic population development framework

that is significantly more granular than other similar populations, enabling a deep investi-

gation of heterogeneity in disease transmission. This is an important step toward building

more accurate, interpretable models to understand highly complex systems.
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CHAPTER 5

CONCLUSIONS

Anchored by the idea that a prediction made without context is not only unhelpful but

ultimately dangerous when modeling systems that impact society, my thesis is an effort

toward making data science more interpretable, reliable, and application-driven.

The first section of this thesis discussed the use of statistics and machine learning in

climate science, particularly around making seasonal forecasts. In this setting, we were

faced with a short observational record, a high-dimensional dataset, and complex depen-

dencies among the covariates. However, rather than attempting to use an uninterpretable

but potentially more predictive model, we developed a suitable linear model that was not

only predictive but also easily understood by climate scientists. In doing so, we uncovered

further challenges, such as nonstationarities, and opportunities, such as leveraging climate

model simulations to augment the available data. By carefully listening to our collaborators

rather than attempting to use the most exciting new tools at our disposable, we developed

a solution that was well-received, easy to implement, and can be built upon for future work.

Next, I developed a new method to make neural networks, the textbook definition of

”black box” models, easier to understand. Using an established measure of variable impor-

tance (VI) that is prohibitively computationally burdensome for large neural networks, we

first show that a common approximation called dropout is problematic under certain settings.

We then develop a method that uses a linear approximation of the neural network around a

specific initialization to approximate the VI measure in a significantly more efficient manner.

We provide theoretical guarantees for our method, which is rare for these types of approx-

imations and enable us to provide confidence intervals for our estimates. We demonstrate

through simulations and real data that our method is fast and accurate, and argue that it

is flexible enough to extend to a variety of other settings.

The final section in my thesis is quite different from the first two; rather than working with
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statistical prediction models, I focus on an agent-based simulation model for understanding

the transmission and outcomes of COVID-19 in Chicago. My specific contribution was the

development of a robust and highly granular synthetic population that enable models to

capture population heterogeneity to better understand the social structures guiding macro-

level outcomes, something that has been widely observed but is difficult to model. We develop

a wide variety of tools to synthesis different datasets so that, together, they statistically

represent the population of Chicago along with its mobility patterns. We then show that

we can use this highly detailed population to understand the disparate impact of COVID-

19 on different populations, and test the impact of non-pharmaceutical interventions. An

agent-based model is highly interpretable, in that we can understand the specific population

traits that lead to different outcomes, and our model has been widely used by governmental

decision-makers to inform COVID-19 policymaking.

While specific future directions have been noted throughout the thesis, I want to empha-

size here that we are still in the very early stages of making statistics and machine learning

widely applicable to climate science, public health, and other application areas with sig-

nificant human impacts. The dangers of unchecked algorithmic decision-making are widely

documented, and continued efforts to make predictive models more transparent and reliable

should be at the center of every machine learning application that materially affects peoples’

lives. My intention in writing this thesis is to shed light on both the possibilities and limi-

tations of the use of data science in systems that impact society, and I am eager to continue

to work toward building responsible, transparent, and reliable data systems for the things

that matter most.
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APPENDIX A

ADDITIONAL TOPICS IN SEASONAL FORECASTING

A.1 MultiGTV

We know that precipitation patterns across the entire SWUS are tied to similar summer at-

mospheric events, but possibly to a different degree for each region. To that end, rather than

treating individual regions (or their weighted average) as independent prediction problems,

we extended our method to a multitask setting that retains the GTV regularizer for within-

region structure and makes the additional assumption that there is an unknown subset of

covariates that are relevant for prediction, and this subset is preserved across the m regions

of interest.

Let Y = [y(1), y(2), . . . y(m)] ∈ Rn×m be the matrix of the m related response vectors and

B = [β(1), β(2), . . . β(m)] ∈ Rp×m be the matrix of the corresponding m coefficient vectors.

The multitask extension of GTV, which we refer to as MultiGTV, is defined by the objective

B̂ = argmin
B

∥Y −XB∥2F + λ1

m∑
r=1

∥Γβ(r)∥1 + λ2

p∑
j=1

∥β(:)j ∥2

 (A.1)

where Γ is the edge-incidence matrix from (2.5). The first regularization term promotes

similarity of coefficients for highly correlated predictors within each region, and the second

regularization term promotes shared support across regions.

Note that (A.1) is convex but non-differentiable and non-separable. The first regulariza-

tion term is a sum of non-differentiable terms over the columns of B, while the second is the

sum of non-differentiable terms over the rows. Standard gradient descent methods will not

work in this setting, so we develop a new algorithm that incorporates ideas from proximal

gradient methods and ADMM to solve this problem (Algorithm 8).
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Algorithm 8 MultiGTV

Choose B0, λ1, λ2
for k = 1, 2, . . . do

for r = 1, 2, . . . ,m do

β
(r)
k = Bk,r

z
(r)
k ← β

(r)
k + ηXT

(
y(r) −Xβ

(r)
k

)
▷ Gradient descent step

w
(r)
k ← argminβ∥β − w

(r)
k ∥+ ηλ1∥Dβ∥1 ▷ Within-region GTV

end for
Wk =

[
w
(1)
k , w

(2)
k , . . . , w

(m)
k

]
Bk+1 = Wk
for j = 1, 2, . . . , p do ▷ Group soft-thresholding

rj = Wk −
∑

k ̸=j ekβ
T
k

B
(j)
k+1 =

(
1− ηλ2

∥eTj rj∥2

)
+
eTj rj

end for
end for

A.2 Accounting for non-stationarities

It is abundantly clear in the climate literature that anthropogenic forcings in the climate

system (global warming) has a significant impact on the Earth’s coupled ocean-atmosphere-

land dynamics (Mamalakis and Foufoula-Georgiou, 2018). In the data we have studied

so far, we see a clear shift in the mean trend of SSTs before and after the 1970s, the

inter-annual variance of SWUS precipitation has increased, and the strength of established

teleconnections (large scale climate anomalies that are linked to one another) have weakened

over time (Johnson et al., 2019). That is - there are complicated trends in each of y, X, and

β from (2.4) that might be impacting our ability to effectively apply statistical and machine

learning methods.

In our published work (Stevens et al., 2021), we apply more weight to more recent ob-

servations in our training period in the data-fit term, a common practice (Hyndman and

Athanasopoulos, 2018). We may find greater success with models in which regression coef-

ficients may change as a function of time, i.e., for t = 1, . . . n,
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yt = Xtβ
∗
t + ϵt

Understanding the best way to do this in a seasonal forecasting setting is non-trivial, as

the underlying regression problem is already high-dimensional (p≫ n) and the columns of X

are highly correlated. Allowing our coefficients to vary with time add additional complexity

to an already highly underdetermined and complex system.

To demonstrate the necessity of accounting for the nonstationarity of the climate system

in our predictive procedures, we briefly explore its impact on the problem setting from

the above section (i.e. forecasting winter precipitation over the southwestern US using sea-

surface temperature (SST) over the Pacific basin from the previous summer). In this problem

setting, we considered 900 covariates (monthly (July-Oct) SST on a 10◦ × 10◦ spatial grid)

and have just 80 years worth of observational data.

For this demonstration, however, we consider just 2 covariates: averaged summer SSTs

over the NZI region and the Nino 3.4 region, both of which are climate indices known to be

predictive. To understand in what sense the dynamics are changing, we perform a number

of analyses.

A.2.1 Coefficients

First, we investigate how and if the regression coefficients change over time. We do this

through two different methods:

1. A growing window approach: starting with a 20-year window, simple linear regression

is used to find the regression coefficient for each of the two climate indices. Then, we

increase the window by one year, refit the model, and compute the new coefficient.

This is repeated until the model is fit on all available data.

The coefficients estimated using this approach are as follows (note we show the absolute
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value of the NZI coefficient for easier comparison). We also plot the coefficients with

their standard errors (separated so the scales are more informative) in Figure A.1.

Figure A.1: (Top) Regression coefficients for the growing window approach (Bottom) Coef-
ficients with 95% included (rescaled)

2. A sliding window approach: beginning with the 1940-1969 time period, we compute

regression coefficients for a sliding window of 30 years for every window through 1990-

2019. Again, we plot the coefficients and their standard errors in Figure A.2.

In both cases, we certainly see some temporal dependence of the regression coefficients,

further confirmed by looking at their standard errors.
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Figure A.2: (Top) Regression coefficients for the sliding approach (Bottom) Coefficients
with 95% included (rescaled)

A.2.2 Prediction

Next, we investigate the impact of time on these models’ predictive ability. Following a

similar procedure as above, we perform two analyses:

1. We fit a ”growing” training period, starting with 20 years and increasing year by year,

and compute the R2 value on the data from the 20 years following the training period.

2. We fit a ”sliding” training period, where we train the models on 30 years of data,
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compute R2 on the next 20, and then slide the entire procedure up one year.

The results of these analyses are shown in Figure A.3.

Figure A.3: (Top) Test R2 for the “growing” training period scenario from 1960 - 2000.
(Bottom) Test R2 for the “sliding” training period scenario from 1970 - 2000.

In both settings, the predictive performance is highly dependent on time. We see a

stark decline over the past 10-20 years in predictability using these indices, corresponding

somewhat to the patterns seen in the estimated coefficients.
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This analysis suggests that we are dealing with coefficients that are in some way time-

dependent - in this note we explore a few approaches in trying to extend high-dimensional

predictive methods to a time-dependent setting. However, it is also worth considering that

there is nonstationarity coming from either the predictors or the response - this would assume

either covariate shift or the need for some type of auto-regressive regime. We will also briefly

explore some possibilities in that domain that could be applicable to our problem setting.

A.2.3 Time-dependent coefficients

In this section, we consider regression problems of the form

yt = Xtβ
∗
t + ϵt

where β∗t ∈ Rp depends on time, reflecting the nonstationarity of the system. Esti-

mating β∗t without further structural assumptions would be impossible; in the climate data

described above, this would require estimating pn ≈ 70000 parameters with only 80 years

of observations. Some structural assumption that might be reasonable to make are that the

climate dynamics are changing slowly over time, or that there exist subsets of the data that

can each be well-modeled by the same set of coefficients.

Fused Lasso

Under the assumption that climate dynamics are changing slowly over time, we can formulate

this as a Fused Lasso Tibshirani et al. (2005) problem

{β̂1, . . . , β̂n} = argminβ1,...,βn

{
n∑

t=1

(yt −Xtβt)
2 + λ1

n∑
t=1

∥βt∥1 + λ2

n∑
t=2

∥βt − βt−1∥1

}
(A.2)
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In our previous work, we used the Fused Lasso-like GTV term (Li et al., 2020) promote

adherence of our estimator to underlying spatiotemporal structure of the covariates; here it

is used to promote regression coefficients that adapt to significant changes in the underlying

linear model. To solve this problem using existing tools, we rewrite A.2 as

β̂ = argminβ

{
∥y −Xβ∥22 + λ1∥β∥1 + λ2∥Γβ∥1

}
(A.3)

where

X =



X1 0 . . . 0

0 X2 . . . 0

...
...

. . .
...

0 0 . . . Xn


, β =



β1

β2
...

βn


, y =



y1

y2
...

yn


and Γ =



−1 1 0 . . . 0

0 −1 1 . . . 0

...
...

. . . . . .
...

0 0 . . . −1 1


Here, we have X ∈ Rn×pn, so in settings where p ≫ n, the problem becomes quite ill-

posed. There is an extensive body of literature on various extensions of A.3 with a variety of

regularization terms. Degras (2019) specifically considers the problem of model segmentation

in high-dimensional time series settings and proposes replacing the ℓ1 regularization on the

fused term with an ℓ2-norm and calls it Sparse Group Fused Lasso. The author suggests that

this formulation is more suitable for segmenting multivariate models than the ℓ1-norm, which

affects each of the p predictors separately and thus produces change points only shared by

few predictor variables. The author further provides a helpful overview of related methods

(pages 2-5); another closely related method is the Group Fused Lasso (Aláız et al., 2013),

which replaces the ℓ1 norms with ℓ2 norms and provide efficient iterative implementations,

although their work focuses on image denoising rather than temporal smoothing.
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A.3 Combining climate models and observations

While recent years have seen an explosion in the amount high-resolution climate data avail-

able for use in machine learning methods, the observational record is still very short - we have

fewer than 100 years of reliable data for tasks such as seasonal-to-subseasonal forecasting.

However, there is a large supply of output data from dynamical model simulations of many

climatological processes. While these simulations are imperfect and contain many biases,

we believe that they contain useful information that could improve models built using the

observational record. Our published work shows that we can leverage CESM-LENS large

ensembles to help impose structure on our estimated coefficients, but there is much to be

done to better understand when and why including climate models in a machine learning

system might help or hurt the prediction task.

Suppose we observe data Xobs ∈ Rn×p and y ∈ Rn, p≫ n. Further suppose that we have

simulated data Xsim ∈ Rm×p and ysim ∈ Rm, m ≍ p. We are interested in the conditions

under which using the simulated data improves the estimation of β in the linear model

yobs = Xobsβ + ϵ ϵ ∼ N(0, σ2In)

when we assume that

ysim = Xsim(β +∆) + ϵsim ϵsim ∼ N(0, σ2sim), ∆ ∼ N(0,Σ∆)

That is - the regression coefficients for our simulated system are centered at β but shifted

by some random ∆. Equivalently, we have
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ysim ∼ N(Xsimβ, Σ̃)

Σ̃ = XsimΣ∆XT
sim + σ2simIm

A.3.1 Models

We consider three different linear systems we can solve to recover β:

yobs = Xobsβ + ϵ1, ϵ1 ∼ N(0, σ2In) (A.4)

yobs
ysim

 =

Xobs

Xsim

 β + ϵ2, ϵ2 ∼ N

0,

σ2In 0

0 Σ̃


 (A.5)

 1
σyobs

Σ̃−1/2ysim

 =

 1
σXobs

Σ̃−1/2Xsim

 β + ϵ3, ϵ3 ∼ N(0, In+m) (A.6)

Because we are assuming p ≫ n, we will use ridge regression to estimate β for each of

the models.

A.3.2 Risk of estimators

For y ∈ Rn, X ∈ Rn×p and linear system y = Xβ + ϵ, ϵ ∼ N(0,Σ), the ridge estimator is

given by

β̂ = (XTX + λI)−1XT y

The risk of β̂ is
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E∥β̂ − β∥22 = var(β̂) + bias2(β̂)

Letting Wλ = (XTX + λIp)
−1XT , we can show that

var(β̂) =
1

n
tr
(
WλΣW

T
λ

)
bias2(β̂) = βT (WλX − Ip)

T (WλX − Ip)β

We now compute the closed-form ridge estimator and associated risk for each of the three

systems. We make the following simplifying assumptions:

• Xobs is rotated so that XT
obsXobs = diag(λ1, . . . , λp)

• Xsim is rotated so that XT
simXsim = diag(δ1, . . . , δp)

• Σ∆ = diag(α1, . . . , αp).

Case 1: Observations Only

β̂1 = (XT
obsXobs + λpI)

−1XT
obsyobs

risk(β̂1) =
σ2

n

p∑
j=1

λj

(λj + λ)2
+

p∑
j=1

β2j

(
λ

λj + λ

)2

Case 2: Observations and Simulations Naively Combined

β̂2 = (XT
obsXobs +XT

simXsimλpI)
−1(XT

obsyobs +XT
simysim)

risk(β̂2) =
σ2

n+m

p∑
j=1

λj + δj +
1
σ2

δ2jαj

(λj + δj + λ)2
+

p∑
j=1

β2j

(
λ

λj + δj + λ

)2
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Case 3: MAP Estimator

β̂3 =

(
1

σ2
XT
obsXobs +XT

simΣ̃−1Xsim + λpI

)−1( 1

σ2
XT
obsyobs +XT

simΣ̃−1ysim

)

risk(β̂3) =
σ2

n+m

p∑
j=1

λj + ξj

(λj + ξj + λ)2
+

p∑
j=1

β2j

(
λ

λj + ξj + λ

)2

ξj = δj

(
1−

δjαj

σ2 + δjαj

)
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APPENDIX B

TECHNICAL DETAILS FOR LAZYVI

B.1 Supporting lemmas

Conditions

(A1) There exists some constant C > 0 such that, for each sequence f1, f2, · · · ∈ F such

that ∥fi − f0∥F → 0, |V (fj , P0)− V (f0, P0)| ≤ C∥fj − f0∥2F for each j large enough;

(A2) There exists some constant δ > 0 such that for each sequence ϵ1, ϵ2, · · · ∈ R and

h, h1, h2, · · · ∈ R satisfying that ϵj → 0 and ∥hj − h∥∞ → 0, it holds that

sup
f∈F :∥f−f0∥F<δ

|
V (f, P0 + ϵjhj)− V (f, P0)

ϵj
− V̇ (f, P0;hj)| → 0;

(B2)
∫
[gn(z)]

2dP0(z) = oP (1);

Lemma B.1.1. (Williamson et al. (2021)) Suppose (A1-A2, B2) regularity conditions hold.

Denote fn(X) and fn,−j(X−j) as the estimate for f0 and f0,−j, Then for a predictive skill

measure V (f, P ) satisfying conditions (A1)-(A2), (B2) in Appendix, as long as the estimators

satisfy the following condition:

∥fn − f0∥F = OP (n
−1

4 ), ∥fn,−j − f0,−j∥F = OP (n
−1

4 ), (B.1)

for all j ∈ [p], then we have

vn − v0 =
1

n

n∑
i=1

V̇ (f0, P0; δZi
− P0) +OP (

1√
n
),

vn,−j − v0,−j =
1

n

n∑
i=1

V̇ (f0,−j , P0,−j ; δZi
− P0,−j) +OP (

1√
n
),

(B.2)
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where vn = V (fn, Pn) and vn,−j = V (fn,−j , Pn,−j), ∀j ∈ [p].

B.2 Missing Proofs

B.2.1 Proof of Lemma 3.4.5

In this section, we present the detailed proof of Lemma 3.4.5, which gives the empirical

estimation error bounds for the NTK kernel ridge regression estimation. The proof follows

the proof framework provided in Hu et al. (2019).

[Proof.]

First of all, according to kernel ridge regression, denote

• Y = (Y1, . . . , Yn)
T ;

• h
(j)
θf

= (hθf (X
(j)
1 ), . . . , hθf (X

(j)
n ))T ;

• f0,−j = (f0,−j(X
(j)
1 ), . . . , f0,−j(X

(j)
n ))T .

we have

(h̃θf+∆θj (X
(j)
1 ), . . . , h̃θf+∆θj (X

(j)
n ))T = K(j)(K(j) + λIn)

−1(Y − h
(j)
θf

) + h
(j)
θf

. (B.3)

Recall that ϵ(j) = Y − E(Y |X−j) = Y − f0,−j(X(j)), we define its observed samples as

ϵ(j) =
(
Y1 − f0,−j(X

(j)
1 ), . . . , Yn − f0,−j(X

(j)
n )
)T

= Y − f0,−j ;

Recall the definition of e(j), we have

e(j) = f0,−j − h
(j)
θf

.
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Hence we have

√
n∥h̃θf+∆θj (X

(j))− f0,−j(X
(j))∥n

=

√√√√ n∑
i=1

[
h̃θf+∆θj (X

(j)
i )− f0,−j(X

(j)
i )
]2

=∥K(j)(K(j) + λIn)
−1(Y − h

(j)
θf

) + h
(j)
θf
− f0,−j∥

=∥K(j)(K(j) + λIn)
−1(f0,−j + ϵ(j) − h

(j)
θf

) + h
(j)
θf
− f0,−j∥

=∥K(j)(K(j) + λIn)
−1(e(j) + ϵ(j))− e(j)∥

=∥K(j)(K(j) + λIn)
−1ϵ(j) − λ(K(j) + λIn)

−1e(j)∥

≤∥K(j)(K(j) + λIn)
−1ϵ(j)∥+ ∥λ(K(j) + λIn)

−1e(j)∥.

(B.4)

According to 3.4.2 and Hsu et al. (2012), we have

P

(
∥Aϵ(j)∥2/σ2 > tr(Σ) + 2

√
tr(Σ2)t+ 2∥Σ∥t | X(j)

)
≤ e−t, (B.5)

where A = K(j)(K(j) + λIn)
−1, and Σ = A⊤A. Hence we have with probability at least

1− δ for any δ > 0, we have

∥K(j)(K(j) + λIn)
−1ϵ(j)∥ ≤ σ

√
tr(Σ) + 2

√
tr(Σ2) log(

1

δ
) + 2∥Σ∥ log(1

δ
). (B.6)

Let λ1, . . . , λn > 0 be the eigenvalues of K(j), we then have

tr[Σ] = tr[A⊤A] =
n∑

i=1

λ2i
(λi + λ)2

≤
n∑

i=1

λ2i
4λi · λ

=
tr[K(j)]

4λ
,

tr[Σ2] = tr[A⊤A2A⊤] =
n∑

i=1

λ4i
(λi + λ)4

≤
n∑

i=1

λ4i

44λ(λi3 )
3
=

33tr[K(j)]

44λ
≤ tr[K(j)]

4λ
,

∥Σ∥ = ∥K(j)(K(j) + λIn)
−2K(j)∥ ≤ 1.

(B.7)

129



Hence we have with probability at least 1− δ,

∥K(j)(K(j) + λIn)
−1ϵ(j)∥

≤σ

√√√√tr[K(j)]

4λ
+ 2

√
tr[K(j)]

4λ
+ 2 log(

1

δ
)

≤σ

√√√√tr[K(j)]

4λ
+ 2

√
tr[K(j)]

2λ
+ 2 log(

1

δ
)

=σ

√
tr[K(j)]

4λ
+ σ

√
2 log(

1

δ
).

(B.8)

By the fact that

∥λ(K(j) + λIn)
−1e(j)∥ = λ

√
(e(j))⊤(K(j) + λIn)−2e(j), (B.9)

we have

∥h̃θf+∆θj (X
(j))−f0,−j(X(j))∥n ≤

λ√
n

√
(e(j))⊤[K(j) + λIn]−2e(j)+σ

√
tr[K(j)]

4nλ
+σ

√
2

n
log(

1

δ
).

(B.10)

□

B.2.2 Lemma B.2.1 and its proof

Define the Hilbert norm for a function f(x) = αTK(x,X(j)), ∀α ∈ Rn in the NTK kernel

space is: ∥f∥H =
√
αTK(j)α. The following lemma is to bound the Hilbert norm for

h̃θf+∆θj − hθf so that we could bound the complexity of the function class it lies in.

Lemma B.2.1. With probability at least 1− δ, for any j ∈ [p] we have

∥h̃θf+∆θj (x)−hθf (x)∥H ≤
√

(e(j))T (K(j) + λIn)−1e(j)+
σ√
λ

(
√
n+

√
2 log(

1

δ
)

)
. (B.11)
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[Proof.] Recall that h̃θf+∆θj (x) = kerθf (x,X
(j))(K(j) + λIn)

−1(Y − h
(j)
θf

) + hθf (x).

Based on the fact that Y − h
(j)
θf

= e(j) + ϵ(j), we have

∥h̃θf+∆θj (x)− hθf (x)∥H

=∥(Y − h
(j)
θf

)T (K(j) + λIn)
−1kerθf (X

(j), x)∥H

=

√
(e(j) + ϵ(j))T (K(j) + λIn)−1K(j)(K(j) + λIn)−1(e(j) + ϵ(j))

≤
√

(e(j) + ϵ(j))T (K(j) + λIn)−1(e(j) + ϵ(j))

≤
√

(e(j))T (K(j) + λIn)−1e(j) +
√

(ϵ(j))T (K(j) + λIn)−1ϵ(j)

≤
√

(e(j))T (K(j) + λIn)−1e(j) +

√
(ϵ(j))T ϵ(j)

λ
.

(B.12)

Using the concentration inequality in Hsu et al. (2012) again, we have with probability

at least 1− δ, we have

√
(ϵ(j))T ϵ(j) ≤ σ

√
n+ 2

√
n log(

1

δ
) + 2 log(

1

δ
) ≤ σ

(
√
n+

√
2 log(

1

δ
)

)
. (B.13)

Hence we prove B.2.1 by combining B.12 and B.13.

B.2.3 Generalization error bound and its proof

In the following, we will bound the generalization error based on the above empirical error

bound.

Lemma B.2.2. For any j ∈ [p], let ∥·∥ be the L2(P0) norm defined as ∥f∥ =
√∫
|f(x(j))|dP0(x),
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then we have with probability at least 1− δ for any δ > 0,

∥h̃θf+∆θj − f0,−j∥ ≤

 λ√
n

√
(e(j))⊤[K(j) + λIn]−2e(j) + σ

√
tr[K(j)]

4nλ
+ σ

√
2

n
log(

3

δ
)


+

2
√

tr[K(j)]

n

[
O(1) +

σ√
λ
(
√
n+

√
2 log(3/δ))

]
+

√
log(3/δ)

2n
.

(B.14)

Under Assumptions 3.4.1 and 3.4.2, when we take the penalty parameter in the rate λ =

O(
√
n), we have with high probability that ∥h̃θf+∆θj − f0,−j∥ ≤ O(n−1/4).

[Proof.] According to 3.4.5, we know that with probability at least 1− δ/3,

∥h̃θf+∆θj−f0,−j∥n ≤
λ√
n

√
(e(j))⊤[K(j) + λIn]−2e(j)+σ

√
tr[K(j)]

4nλ
+σ

√
2

n
log(

3

δ
). (B.15)

By Bartlett and Mendelson (2002), we know that the empirical Rademacher complexity

for a function class FB = {f(x) = αT kerθf (X
(j), x) : ∥f∥H ≤ B} is bounded as

R̂S(FB) ≤
B

√
tr[K(j)]

n
.

According to Mohri et al. (2018), with probability at least 1− δ/3, we have

sup
h̃θf+∆θj

−hθf∈F

{∥∥∥h̃θf+∆θj (x
(j))− hθf (x

(j))−
(
f0,−j(x

(j))− hθf (x
(j))
)∥∥∥

− ∥h̃θf+∆θj (x)− f0,−j(x
(j))∥n

≤2R̂S(F) +
√

log(3/δ)

2n
.

(B.16)
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From 3.4.1 and B.2.1, we have with probability 1− δ/3

∥h̃θf+∆θj (x)− hθf (x)∥H := B′ ≤ O(1) +
σ√
λ

(
√
n+

√
2 log(

3

δ
)

)
. (B.17)

Then we have with probability 1− δ,

∥h̃θf+∆θj − f0,−j∥

≤∥h̃θf+∆θj − f0,−j∥n + 2R̂S(F) +
√

log(3/δ)

2n

≤

 λ√
n

√
(e(j))⊤[K(j) + λIn]−2e(j) + σ

√
tr[K(j)]

4nλ
+ σ

√
2

n
log(

3

δ
)

+
2B′
√

tr[K(j)]

n
+

√
log(3/δ)

2n

≤

 λ√
n

√
(e(j))⊤[K(j) + λIn]−2e(j) + σ

√
tr[K(j)]

4nλ
+ σ

√
2

n
log(

3

δ
)


+

2
√

tr[K(j)]

n

[
O(1) +

σ√
λ
(
√
n+

√
2 log(3/δ))

]
+

√
log(3/δ)

2n

(B.18)

By the assumptions that ∥[K(j) + λIn]
−1e(j)∥2 = OP (1/

√
n) and tr[K(j)] = O(n) in

3.4.1, when we take λ = O(
√
n), we have

∥h̃θf+∆θj − f0,−j∥ ≤ O(n−1/4). (B.19)

B.2.4 Proof of 3.4.6

3.4.6 For a large neural network whose width is in the order of O(
√
n) where n is the

training sample size, our lazy trained neural network is close to its linearization with high

probability:

∥h̃θf+∆θj (x)− hθf+∆θj (x)∥ ≤ O(n−1/4). (B.20)
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[Proof.] Since h̃θf+∆θj (x) = hθf + ∆θTj ∇θhθ(x)|θ=θf is a linearization of hθf+∆θj (x)

around the initialization θf , according to Theorem 2.1 in Lee et al. (2020), when the neural

network has a width M , the neural network is close to its linearization with probability

arbitrarily close to 1:

∥h̃θf+∆θj (x)− hθf+∆θj (x)∥2 = O(
1√
M

). (B.21)

Specifically, when the neural network M takes the order of O(
√
n), we have ∥h̃θf+∆θj (x)−

hθf+∆θj (x)∥2 = O(n−1/4).

B.2.5 Proof of the Main Theorem (3.4.4)

Based on Lemmas B.2.2 and 3.4.6, for a neural network with width at least M = O(
√
n)

when the assumptions hold true, by triangle inequality we have

∥hθf+∆θj − f0,−j∥ ≤ ∥hθf+∆θj − h̃θf+∆θj∥+ ∥h̃θf+∆θj − f0,−j∥ = Op(n
−1/4). (B.22)

This holds true for any j ∈ [p]. Then by B.1.1, we finish the proof for 3.4.4.

B.2.6 Proof of 3.3.1

The density of X1 given X2 in the setting of 3.3.1 is:

f(x1|x2; ρ, σ) =
1

2πσ2
√

1− ρ2
exp

{
− 1

2(1− ρ2)σ2
(x21 − 2ρx1x2 + x22)

}
, (B.23)

thus we have X1|X2 ∼ N (ρX2, (1− ρ2)σ2).
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