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ABSTRACT

Discovery and understanding of new quantum phases of matter are essential for the devel-

opment of modern science and technology. For example, the discovery of conventional and

high-Tc superconductors, quantum Hall and fractional quantum effects have great potential

in applications for efficient storage and transfer of energy and information. On the other

hand, a deep understanding of the underlying many-body quantum states and their asso-

ciated properties can greatly improve our knowledge of nature and eventually guide us to

develop devices with optimal performance.

Ultracold quantum gas, enabled by the techniques of laser cooling and trapping and

evaporative cooling, serves as an ideal laboratory for the study of many-body physics. The

system of interacting ultracold atoms has been proven successful for demonstrating novel

and strongly correlated quantum phases of matter, such us Bose-Einstein condensate (BEC),

Bardeen-Cooper-Schrieffer (BCS) and Berezinskii-Kosterlitz-Thouless (BKT) superfluid and

Mott insulator. On the other hand, the unique control of atomic interaction and external

potential in a widely tunable range also allows us to drive the system far from equilibrium and

to study its quantum dynamics happening at length and time scales that are easily tractable,

which can reveal new phases of matter that typically do not occur near equilibrium and allow

us to explore novel emergent coherent and collective phenomenon.

This thesis describes experiments on the coherent dynamics and reactions of ultracold,

bosonic Cs atoms and Cs2 molecules. Our apparatus is robust and versatile for extensive

control of quantum gases. In particular, atomic BECs with different shape and dimensional-

ities are produced as the starting point of most of our experiments; we have precise temporal

control over inter-atomic interactions through external magnetic field in vicinity of Feshbach

resonances and we can project dynamic external potentials by our digital micromirror device

(DMD).

Taking advantage of our apparatus, we first apply strong driving to a quasi-two dimen-
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sional (2D) BEC by periodically modulating the atomic interaction between repulsive and

attractive and observed novel stimulated emission of atomic matter wave jets from conden-

sate into radial directions, which we name as ”Bose fireworks”. Even though locally the

number of atoms in the jets follows thermal distribution, we find the spatial and temporal

coherence by interfering two sets of matter wave jets with different momentum and time

reversal of the jet emission, respectively. This suggests global unitary evolution of a closed

system. By applying dual-frequency interaction modulation schemes, we observed sponta-

neous formation of density wave patterns with D2, D4 and D6 symmetries emerging from

uniform disk-shaped condensates. The patterns are revealed by our unbiased real-space pat-

tern recognition algorithm, which provides richer information than conventional correlation

functions. Furthermore, we identified a resonant nonlinear wave mixing process underlying

the formation of hexagonal density wave pattern from a novel g3/2 correlator. The D6 pat-

tern grows through an interplay of the g3/2 correlator and population of excited momentum

modes, which is expected to grow faster than exponential. On the other hand, the matter

wave emission also serves as a tool for extracting the initial BEC wave function. As two

examples, we studied jet emission from a nonuniform BEC with a relative phase between

its two halves and a rotating BEC with vortices inside. The relative phase between two

halves of the BEC and both the magnitude and chirality of angular momentum of vortices

in the rotating BEC are extracted from the substructure of near field matter wave emission

patterns.

Besides the interaction control, Feshbach resonances also allow us to directly associate

atoms in a condensate into molecules. We demonstrated the creation of Cs2 molecular

BEC by pairing atoms in an atomic condensate near a narrow g-wave Feshbach resonance,

which is confirmed by our equation of state measurement for the molecular quantum gas.

We extract the elastic molecular scattering length to be +220 Bohr from the equation of

state for the first time. The two-dimensional and flat-bottomed trap geometry and low
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temperature help to stabilize the molecules and remain thermal equilibrium. Our work

thus demonstrates the long-sought transition between atomic and molecular condensates,

the bosonic analogue of BCS-BEC crossover in a degenerate Fermi gas. Apart from the

equilibrium properties, we also studied reaction dynamics in an atomic BEC by quench

magnetic field close to the resonance point. Molecules are produced rapidly from atomic

samples after the quench. As a function of the atomic sample temperature, the initial

molecule formation rates sharply transition from the values determined by thermal collisions

between atoms in normal gas phase to those in the degeneracy regime where the wave

nature of atoms dominates. Following the initial proliferation, the molecules reach quasi-

equilibrium with the atoms and the number of molecules shows coherent oscillatory evolution

with the oscillation frequency determined by both the molecular binding energy and the

atomic density. We further enhance the amplitude of the molecule number oscillation by

periodically modulating the molecular binding energy. Our experiments thus demonstrate

collective chemical reactions in a strongly interacting atomic BEC.
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CHAPTER 1

INTRODUCTION

Since its first prediction by Einstein almost a century ago, condensates of various types of

atoms such as alkali metal, alkaline earth metal and lanthanide atoms can now be produced

daily in the lab, thanks to the development of laser cooling and traping and collisional cooling

techniques. This new form of matter emerges out of quantum statistics of indistinguishable

bosons and it is achieved when the temperature reaches below a critical value Tc, where the

thermal de Broglie wavelength of each particle is larger than the average inter-particle spac-

ing. For a BEC in a weakly interacting dilute gas, almost all the atoms share the same wave

function on the mean field level and show macroscopic coherence. Various exotic collective

phenomena can thus occur in BECs, such as interference between two BECs [6], four-wave

mixing with matter waves [45], bosenova explosion [46] and soliton train formation [132]

in BECs with attractive interaction. Quantum phase transitions are also observed such as

the transition from a superfluid to a Mott-insulator realized with the addition of external

periodic potential—the optical lattice—formed by interference of counter-propagating laser

beams [60].

Ultracold atom experiments offer great opportunities for us to study both the properties

of quantum matter at or near equilibrium and novel dynamics when the system is driven

far from equilibrium, due to several of their unique advantages compared to, e.g. condensed

matter experiments. Prepared in a ultrahigh vacuum chamber, the atoms are well isolated

from the environment. External potential felt by atoms can be precisely controlled with wide

tunability in its strength and geometry. With the application of period potential formed by

interference of laser beams, the dispersion of atoms can be largely modified either statically

or dynamically [33]. Ultracold atoms loaded into an optical lattice also enable the simulation

of fundamentally important models in condensed matter physics such as Bose- and Fermi-

Hubbard models [18], whose solution requires exponentially large computation resources
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as the system size increases. Together with the tunability of atomic interaction using the

Feshbach resonance [30], all the parameters in the model to be simulated can be precisely

controlled microscopically. On the other hand, the typical length scale of few micrometers

and time scale of sub to few milliseconds in quantum gas system are easy to be detected

using conventional optical imaging and electronic control techniques. Therefore, ultracold

quantum gases provide an ideal platform for the benchmark of theory models as well as

discovery of new phases of matter and out-of-equilibrium phenomena.

Here we are interested in studying emergent many-body dynamics when BECs are driven

far from equilibrium. Specifically, we demonstrated the long range spatial coherence and

correlation as well as temporal coherence in the stimulated emission of matter wave jets—the

”Bose fireworks”—when the interaction strength between atoms is periodically modulated in

vicinity of a Feshbach resonance, which is first observed by previous members in our lab [35].

Together with the fact that the emission happens only when the modulation amplitude

exceeds a threshold value that is determined by the escape rate of atoms from BEC [35],

”Bose fireworks” emission stands as a matter wave analogue of lasing of light in a gain

medium. We thus build different kinds of atom-optical elements for manipulating the matter

waves, by projecting various potential profiles using a digital micromirror device.

On the other hand, we also looked into how the system under the external driving evolves

into a particular pattern starting from a uniform BEC. We developed three modulation

schemes at two commensurate modulation frequencies, which allow us to create density

waves with D2, D4 and D6 symmetries on demand formed by the interference of excited

atoms with remaining BEC atoms before the excited atoms leave condensate to form jets.

The density wave patterns are identified from repetitive experiments by a real space pattern

recognition algorithm we developed. We further found a nonlinear resonant wave mixing

process underlying the D6 pattern formation, revealed by a novel three point correlator we

evaluate. This nonlinear wave mixing actually leads to faster-than-exponential population
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growth in the momentum modes forming the D6 pattern.

In addition, we found that the fireworks emission pattern contains essential information

about both the density and phase distributions of the initial condensate. In particular, we

demonstrate the extraction of the phase information either from a BEC separated into two

halves with a relative phase or from a vortex embedded BEC. The relative phase between

the two half BECs and the vortex winding number are extracted from the substructure of

the density-density correlation function of the emitted atomic jets. In general, arbitrary

initial BEC wave functions can be extracted with the interaction modulation technique as

long as a set of correlators are measured from near field interference and far field momentum

distribution of the emitted matter wave jets.

Feshbach resonance not only allows us to tune the effective interaction between atoms,

it also opens the door to ultracold molecules where pairs of atoms are associated in conden-

sates. Cold and ultracold molecules are important tools for precision measurements, ultracold

chemistry, quantum simulation and quantum information processing, due to their rich energy

structure and interaction properties [20, 22, 119]. In particular, theories [123, 120, 48] have

predicted that a quantum phase transition can occur between an atomic and a molecular

BEC, which is very different from the BCS-BEC crossover where overlapping fermion pairs

smoothly turn into bound molecules across the Feshbach resonance in a degenerate atomic

Fermi gas. In our case, we pair condensed Cs atoms in a 2D flat-bottomed box trap po-

tential to create ultracold Cs2 molecules by adiabatically ramping through a narrow g-wave

Feshbach resonance. Through equation of state measurements, we demonstrated that the

molecules also condense in the ground state of the trap. The low temperatue and 2D trap

geometry help to suppress inelastic collision loss of the molecules such that they can reach

thermal equilibrium. One the other hand, we induce reaction dynamics by quenching the

magnetic field close to the resonance point starting from ultracold atoms. We observed that

the initial molecule formation rate follows different rules for initial atomic samples prepared
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in normal gas and quantum degenerate regimes. In the degeneracy regime, after the faster

initial growth, the molecular population shows coherent oscillation, at a frequency that is

determined by both the molecular binding energy and atomic density. We also demonstrated

the coherence in the reverse reaction—molecule dissociation—starting from pure ultracold

molecular samples, using a Ramsey type of pulse sequence approching the resonance. Pos-

sible many-body effects such as Bose stimulation in the reaction processes remain to be

explored in our future experiments.

1.1 Overview of the thesis

This thesis proceeds as follows: First, in Ch.2 we describe the current status of our experi-

mental system (details can be found in Ref. [72, 146, 62, 33, 54]) and the essential techniques

we use in the experiments presented in later chapters. Next, in Ch.3, we present the theory

for atomic BECs with periodically modulated interaction as well as the phase transition

and reaction dynamics in atomic and molecular Bose-Einstein condensates near a narrow

Feshbach resonance. The two subsequent chapters includes the main results of the thesis on

coherent many-body dynamics in a driven BEC: In Ch.4 we present our study of spontaneous

pattern formation from a uniform BEC driven at two commensurate frequencies. Then, in

Ch.5 we demonstrate Bose fireworks emission as a tool to image the density and phase distri-

butions of the initial BEC wave functions. The next two chapters present the core results of

the thesis on coherent reaction dynamics in atomic and molecular Bose-Einstein condensates:

In Ch.6, we demonstrate the creation of a molecular BEC by pairing atoms in a condensate

trapped by a 2D flat-bottomed box potential via ramping through a narrow g-wave Feshbach

resonance. In Ch.7, we present our systematic study of the coherent reaction dynamics in

ultracold atoms and molecules. Finally, we conclude in Ch.8 with preliminary experimental

results on building various atom-optical elements by DMD projection and a theory proposal

for creating quasi-crystal patterns from a uniform BEC driven at three different frequencies.
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CHAPTER 2

VERSATILE AND ROBUST ULTRACOLD CESIUM

APPARATUS

2.1 General setup

For most of our experiments, we start by preparing a Cs BEC in a crossed dipole trap.

First, atomic flux from a Cs oven heated up to ∼70oC flows through an intermediate region

and Zeeman slower tube where a counter-propagating near-resonant laser beam slows down

the atoms before they are captured by a magneto-optical trap (MOT) in the ultrahigh

vacuum science chamber, see Fig. 2.1. Then stages of compressed MOT, optical molasses

and degenerate Raman sideband cooling (dRSC) further cool atoms down to ∼1.5 µK with

around 6 to 8 million atoms. After dRSC, atoms are levitated by a magnetic field gradient of

31 G/cm against gravity and are trapped by crossed x-, y- and z-axis dipole trap (XDT,YDT

and ZDT) beams shown in Fig. 2.3. X(Y)DT that is propagating in x(y) direction mainly

provides confinement in y(x) direction. ZDT propagates at 45o relative to X and YDT in the

same horizontal plane and strongly confines atoms in the vertical direction, with additional

confinement in the horizontal plane perpendicular to its propagation direction, which makes

the atomic cloud elliptical. Then evaporative cooling is performed with the levitation field

gradient gradually decreased to zero and the intensity of ZDT reduced simultaneously, at a

magnetic field of around 20.8 G where the scattering length is 210 a0 for the thermalization of

remaining atoms [74]. A pure BEC with ∼60,000 atoms is obtained after ∼6 s of evaporation.

We can control the temperature and density of atoms by tuning the intensity of the ZDT at

the end of evaporation, as is used in Chapter 7.

For future users of the system, it’s worth mentioning an accident that happened to the

vacuum parts of the system. In August 2020, after we replaced a broken thermoelectric

cooler (TEC) in the cooling block at the cold nipple between Cs oven and the intermediate

5



AB

C

b

a

Figure 2.1: Overview of the experimental system. a, The vacuum design diagram
including the Cs source and oven (A), the intermediate region (B) and the ultrahigh vacuum
region (C). This figure is regenerated from Ref. [146]. b, A picture of the actual setup taken
on 04/21/2022 by the author of this thesis.

region (see Fig. 2.1) by a new one, the lower aperture of the nipple tube seemed to be

blocked, see Fig. 2.2 (see Ref. [72] for more about the cold nipple and small apertures on its

two ends). We checked that the Zeeman slower beam cannot transmit through the higher

side window in Cs oven region shown in Fig. 2.1. In this situation, after loading MOT for 2

s we could only get 16 million atoms whereas before the accident we can get 40 million. The

atom number doesn’t saturate after loading for 5 s, which means the atom flux is insufficient

compared to before. We thus decided to heat up the two apertures to 110oC using heating

tape and heat the nipple tube up to 30oC by turning off the TEC in the cooling block. After

6



one day, we found the MOT loading recovered to its previous performance and we got a

BEC. But the number of atoms in BEC was only 38,000 based on our previous evaporation

procedure, reduced by ∼40% compared to before and BEC 1/e lifetime drops to 6 s [36]. We

found that the lower aperture is presumably still blocked because the Zeeman slower bean

still cannot pass through the side window in the Cs oven region. Due to possibly high Cs

vapour pressure in the science chamber where BEC is prepared, the collision between BEC

atoms with background gas is more severe than before and we recover the atom number in

the BEC by reducing the evaporation time to ∼4 s for less background gas collision time

during the evaporation process. With the system running in this mode, we don’t need to

b. Gate valve open
    wobble-stick moved to right

c. Gate valve closed
    wobble-stick moved to right

e. Gate valve closed
    wobble-stick moved to left

d. Gate valve open
    wobble-stick moved to left

a

Figure 2.2: Images of the lower aperture of the nipple tube. a, Zoom out view of the
lower aperture looking from one of the side windows on the science chamber. b-e, Zoom in
view of the lower aperture with the wobble stick and gate valve in the intermediate region
shown in Fig. 2.1 set to different states.

heat the Cs oven to 70oC as we did previously but instead we keep it to be ∼20oC, the same

as the room temperature. Recently, we found that we have to increase MOT loading time

to 3 s to maintain the performance of the BEC preparation, likely due to the reduction of

Cs vapour pressure in the science chamber.

After a BEC is achieved in the crossed dipole trap, we can reshape the BEC adiabatically
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by transferring it into a single site of a vertical lattice and arbitrary potential profile projected

by DMD, see Fig. 2.3. Two 1064 nm laser beams split from a single source cross at a small

angle of 16o, and interfere to form the vertical lattice with lattice spacing 3.8 µm. By

increasing the intensity of the ZDT to compress the atomic cloud vertically and adjusting

the vertical cloud position using the magnetic field gradient, atoms can be loaded into a

single site of the vertical lattice. Since the trap frequency of a single lattice site can go up to

2 kHz, which is much larger than the chemical potential and temperature of typical BECs,

we can prepare a 2D quantum gas in which atomic wave function is frozen to the ground state

of the vertical trap, as is used in Chapter 3-6. In addition, a BEC with horizontally uniform

density profile can be achieved by loading it into flat-bottomed box potential projected by

the DMD. We can also change the shape of the DMD potential to make a elongated BEC in

the vertical lattice, as is used in Chapter 8.

Vertical
lattice

Vertical
lattice

ZDT

Vertical
imaging beam

Objective

XDT

XDT-retro
16º

YDT-
retro

YDT

Dichroic
mirror

CCD

Steering mirror

DMD

DMD
illumination
beam

Beam
dump

OFR
beam

Figure 2.3: Schematic diagram of the apparatus for manipulating and imaging
ultracold Cs atoms. The arrangement of crossed dipole trap beams, vertical lattice, DMD
beam projection, optical Feshbach resonance (OFR) beam, imaging beam and associated
optics, CCD camera are shown here. This figure is regenerated from Ref. [33].

Besides the control of external potential for atoms, we can also tune atomic interactions

simply by changing external magnetic or optical fields thanks to Feshbach resonances [30].
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We use a pair of Helmholtz coils running controllable currents to generate a uniform magnetic

field in the region of atoms. With a bandwidth of 3.3 kHz, the coils allow us to modulate the

magnetic field quickly to drive the system out of equilibrium and induce interesting dynamics.

We can also use a near resonant optical field to generate an effective magnetic field using the

vector light shift, which allows us to do modulation even faster with a bandwidth of ∼10 MHz

and enables molecular spectroscopy across a wide range [36]. Feshbach resonance also opens

the door to ultracold molecules by association of ultracold atoms near the resonance. We

can either adiabatically ramp magnetic field across the resonance to create a molecular BEC

from atomic BEC (see Chapter 6) or quench to the resonance to induce coherent reaction

dynamics in an atomic or molecular BEC (see Chapter 6,7). All of the above techniques

allow us to explore the fascinating ultracold world.

2.2 In situ and time-of-flight imaging of atoms and molecules

We use the standard absorption imaging method to image atoms by shining a light pulse with

its frequency near resonant with the cycling transition from |F = 4,mF = 4⟩ to |F ′ = 5,

mF ′ = 5⟩ in the Cs D2 line. Since the atoms are usually in the hyperfine ground state

|F = 3,mF = 3⟩ before imaging, we add another repumping beam to pump atomic popu-

lation into |F = 4⟩ before the imaging pulse. Depending on the density of atoms we want

to image, we either use a light intensity about 5 times the saturation intensity Isat of the

imaging transition for high density samples or ∼ Isat for low density samples.

The imaging naturally integrates out atomic density along the direction of the imaging

beam and the resulting 2D atomic column density follows the modified Beer-Lambert law

for our case where the imaging beam intensity is comparable to Isat:

n(x, y)σ0 = − ln
Iout(x, y)

Iin(x, y)
+
Iin(x, y)− Iout(x, y)

Isat
, (2.1)
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where σ0 is the resonant scattering cross section proportional to laser wavelength squared

and Iout (Iin) is the light intensity after (before) transmitting through the atomic sample.

We usually take another image of the light pulse to get Iin after the first pulse that blows

away all the atoms.

2.2.1 In situ imaging

To probe the atomic and molecular density distributions in trap, e.g. the density waves

formed under modulation of atomic interaction in Chapter 4 and the equation of state mea-

surement for molecules inside the flat-bottomed box potential in Chapter 6, we perform in

situ imaging. Due to the finite resolution of our imaging system, the real density distribution

1¹m-1

1 2 MTF

Exp Fit

Figure 2.4: Measurement of modulation transfer function for determination of
response of the imaging system at different wave vectors. Left panel is from Fourier
transform of thermal gas density fluctuation and right panel is a fit to the experimental data
based on the model in Ref. [76].

n(r) is blurred by the point spread function P (r), which results in the density distribution

nexp(r) we measure in our experiment:

nexp(r) =

∫
drn(r′)P (r− r′). (2.2)
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In Fourier space, Eq. 2.2 has a simple form nexp(k) = n(k)P (k). It turns out the power

spectrum of density fluctuation which can be extracted from the density distribution we

measure is related to an important quantity–the structure factorS(k)– that characterize the

collective and statistical behaviour of thermodynamic phases [76]:

⟨|δnexp(k)|2⟩ = NS(k)M2(k), (2.3)

where δnexp(k) =
∫
dr[nexp(r)− n̄exp]e−ik·r, N is total particle number and the modulation

transfer function M(k) = |P (k)| is the magnitude of the Fourier transform of point spread

function, which characterizes how much the imaging system response to the feature of an

object at wave vecter k.

For an ideal thermal gas at low phase-space density, the structure factor is almost constant

up to the inverse of de Broglie wavelength, which is larger than the spatial sampling frequency

in our case [76]. Therefore, we measure the density fluctuation power spectrum of a 2D

thermal gas, from which we extract the modulation transfer function through Eq. 2.3, see

Fig. 2.4. For the measurement of density waves in driven BEC in Chapter 4, we need to

make sure the expected wave number of the density waves is within the sensitivity of our

imaging system. When we calculate the strength of the density waves, we have to take into

account the factor of M(k).

2.2.2 Time-of-flight imaging

In the other case where we are interested in the momentum distribution of the sample in

trap, we switch off the trap and let the particles fly for some time before doing the absorption

imaging [18]. For example, the temperature of atoms after dRSC mentioned in Sec. 2.1 is

measured after 60 ms time-of-flight, from which the velocity of atoms is extracted.

In Sec. 2.4, we also use the expansion of a pure BEC at different magnetic fields to measure
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Figure 2.5: Thomas-Fermi width of BEC during time-of-flight in horizontal plane
confined in a single site of vertical lattice. Solid lines are fits to the data based on
Eq. 2.10.

the s-wave scattering length between atoms in the condensate. In this case the interaction

energy of BEC is converted into kinetic energy during time-of-flight (see Fig. 2.5). To make

use of our high resolution vertical imaging as characterized in Sec. 2.2.1, after turning off the

horizontal confinement, we either keep the vertical lattice in the case of 2D BEC expansion

as measured in Fig. 2.5 or switch on a levitation field gradient to keep the atoms in the focal

plane of our objective.

In addition, short time-of-flight allows us to obtain near field interference patterns of

matter waves with different momentums, e.g. for matter waves created from interaction

modulation at different frequencies in Sec. 3.1.4 and matter wave emissions from two halves

of a BEC with a relative phase and a rotating BEC in Chapter 5.

2.2.3 Focused time-of-flight imaging

Sometimes the particle density can become very low after time-of-flight, which leads to poor

signal to noise ratio and makes the temperature measurement very hard, e.g. for low thermal
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fraction density in an almost pure BEC in Chapter 7. In this situation, we focus particles with

the same momentum to the same location after releasing them into an horizontal isotropic

harmonic trap for a quarter trap period. To illustrate, let’s consider a single particle moving

in a 1D harmonic potential V (x) = mw2
xx

2/2. Its position at time t given the initial position

x0 and momentum p0 is solved to be:

x(t) =
p0
mωx

sin (ωxt) + x0 cos (ωxt). (2.4)

Therefore after a quarter period tq = π/2ωx, the particle reaches at x(tq) = p0/mωx, which

is proportional to the initial momentum p0. This focused time-of-flight then maps particles

having the same momentum to the same point in real space independent of the particles’

initial positions, which helps to accumulate larger spatial density and thus higher signal to

noise ratio.
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Figure 2.6: Time-of-flight of a thermal gas in an isotropic horizontal harmonic
trap. a, 2D atomic densities in the horizontal plane where atoms are levited by a magnetic
field gradient of 31 G/cm at different time after the release. b, Cloud width in long (red) and
short axis (blue) directions at different time after being released into the isotropic harmonic
trap.
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In Fig. 2.6, we release an initially elliptical thermal gas into an isotropic harmonic trap

having ωx ≈ ωy ≈ 2π × 15 Hz. It can be seen that after a quarter period tq ≈ 17 ms, the

cloud becomes elliptical, which signifies the momentum distribution in the initially elliptical

thermal atomic sample. In Chapter 7, we use this method to measure the atomic and

molecular densities in momentum space for extraction of their effective temperatures.

2.3 Preparation of BEC wave functions with dynamical

potentials projected by DMD

After getting a BEC in the crossed dipole trap, we can reshape the BEC depending on

our science goals by transferring it into different trap potentials projected by DMD. We

typically dynamically project 64 patterns that smoothly transition from a big box trap

including all the atoms to the final trap geometry we want within ∼700 ms. The underlying

harmonic trap is gradually reduced at the same time and eventually turned off at the final

trap geometry. During the transfer process, to make the center position of the trap remain

roughly unchanged and thus induce less sloshing motion of the BEC, we use a quadrupole

magnetic trap/anti-trap created by the pair of coils running currents in a superposition of

Helmholtz and anti-Helmholtz configuration together with an offset magnetic field in the

horizontal plane to align the trap center [76].

Figure 2.7 shows three examples of preparing different BEC density profiles. To make the

matter waves directionally emit into a few momentum modes and demonstrate the various

atom-optical elements in Sec. 8.2, we shape BEC into the one-dimentional geometry such

that the stimulated matter wave emission mostly happens in the long-axis direction, see

Fig. 2.7a. To demonstrate the BEC wave function reconstruction in Sec. 5.4.1, two half

BECs with phase correlation are prepared and shown in Fig. 2.7b. The DMD can update

the pattern it projects as fast as every 0.25 ms [33], which allows us to apply a light pulse of

0.4 ms on one half of the BEC to introduce an additional phase shift relative to the other half.

14



40

20

0A
to

m
ic

 d
en

si
ty

 (¹
m

-2
)

20 ¹m

a b c

Figure 2.7: Shaping BEC using potential profiles projected by DMD. a-c, BEC 2D
column densities in traps projected by DMD, with the patterns sent to DMD shown on the
top right corners where each bright spot means a micro mirror that is turned on. The atomic
densities in a and b are reduced by a factor of 2 for clarity when they are shown together
with c on the same color scale.

The phase shift is controlled by the light pulse intensity. In addition, we can adiabatically

ramp up a potential barrier, e.g. at the center of the trap (see Fig. 2.7c), to measure the

density response of the sample as a function of local potential barrier height to extract the

equation of state that characterizes its thermodynamic equilibrium properties.

2.4 Control of atomic interaction and creation of ultracold

molecules with magnetic and optical Feshbach resonances

Feshbach resonances allow us to tune the effective interaction between atoms and to transfer

population from free atoms to bound molecules, simply by changing the external magnetic

field [30]. Thus it is essential to have a good knowledge and control of the magnetic field in

our experiment.

To calibrate the magnetic field at the location of atoms, we perform microwave spec-

troscopy where the transition from |F = 3,mF = 3⟩ to |F = 4,mF = 4⟩ in the electronic

ground state 62S1/2 is driven and we either hold for 30 ms to look at the inelastic loss be-

tween atoms in these two states or directly image the atoms transferred to |F = 4,mF = 4⟩

by absorption imaging [76]. The resonant microwave transition frequency is plugged into the
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Breit-Rabi formula to calculate the magnetic field felt by the atoms [131].
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Figure 2.8: Response of magnetic field at the location of atoms after quench
using the coarse and fine controls. a, The solid red line is a fit using B(t) = ∆B(1 −
e−(t−td)/τc)H(t− td), where H(x) is the Heaviside step function, the delay time td = 34(1)
µs and the time constant τc = 30(3) µs. b, The blue solid line is a fit using B(t) =

∆B(1 − d × e−t/τf )H(t), where d = 0.19(2) and τf = 1.24(16) ms. Dashed lines represent
the set values of the final magnetic field for the quench.

We control the magnetic field with computer control voltages that change the current

running through the coils. There are two channels that provide coarse and fine controls of

the field, which have a stepsize of 0.33 G and 3 mG, respectively. To mitigate the limitation

of magnetic field switching speed due to eddy currents in metallic parts of the science cham-

ber and surroundings, a pre-emphasis circuit is installed to provide the current overshoots

necessary to cancel the field contribution from eddy currents [146]. The coarse control has

this pre-emphasis compensation and can switch the field with a time constant as fast as 30

µs (see Fig. 2.8a), which the fine control without the pre-emphasis switch the field with a

much long time constant of 1.24 ms (see Fig. 2.8b).

The response function for a quench characterized in Fig. 2.8b as R(t) = (1 − d ×

e−t/τf )H(t) allows us to build a pre-emphasis circuit in our future experiments for cal-

culating the overshoot current needed to get the real magnetic field felt by atoms to match

the waveform we want. To illustrate, let’s first consider the actual magnetic field atoms feel
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given an arbitrary input waveform I(t) for the fine control. The input can be written as a

superposition of the Heaviside step functions as

I(t) =
∑
n

I(tn)[H(t− tn)−H(t− tn+1)]

=
∑
n

[I(tn)− I(tn−1)]H(t− tn)

=
∑
n

I ′(tn)∆t×H(t− tn), (2.5)

where the time is discretized as tn = ti + n∆t. Since we know the response of the system to

a quench of step function is R(t), the output magnetic field is:

B(t) =
∑
n

I ′(tn)∆t×R(t− tn)

=

∫ t

0
I ′(t′)R(t− t′)dt′, (2.6)

which is the convolution between the time derivative of the input waveform and the response

function. Now we can invert Eq. 2.6 to solve for the waveform I(t) we need to put in given

the output waveform we want by doing Laplace transform:

I(t) = L−1{ L{B}(p)
pL{R×H}(p)

}(t), (2.7)

where L{f}(p) =
∫∞
0 f(t)e−ptdt represents the Laplace transform.

In other cases where we need sinusoidal magnetic field oscillation near the zero crossing

(see Chapter 3-5) or the resonance point (see Chapter 7) of a Feshbach resonance, the output

magnetic field can in principle be calculated based on Eq. 2.6 to figure out its the possible

phase delay. We can also confirm it using microwave spectroscopy to measure the actual

oscillating magnetic field and compare it to the input waveform to extract the phase delay,

see Fig. 2.9.
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Figure 2.9: Sinusoidally oscillating magnetic field at the location of atoms mea-
sured by microwave spectroscopy. The solid line is a sinusoidal fit to data at 2.173 kHz,
which has a phase delay of 0.73(18) rad compared to the dashed line representing current
modulation in the coils.

With precise knowledge of magnetic field control in our system, we measure the s-wave

scattering length that characterizes atomic interaction at different magnetic fields near a

narrow g-wave Feshbach resonance around 19.8 G. Here the scattering length is inferred from

the expansion of the quasi-2D BEC, where the mean field interaction energy is converted into

kinetic energy during the expansion. We first prepare the BEC at an initial magnetic field

Bi above or below the resonance where the scattering is ai. The column density distribution

in the Thomas-Fermi regime is:

n(x, y) = [µ− 1

2
mω2x(0)x

2 − 1

2
mω2y(0)y

2]/g2D, (2.8)

where the coupling strength g2D = (ℏ2/m)
√
8πai/lz , the harmonic oscillator length in

vertical direction is lz =
√

ℏ/mωz and the chemical potential µ =
√
g2DNmωx(0)ωy(0)/π

is determined by g2D, the total atom number N and the initial trap frequencies ωx(0) and

ωy(0) in horizontal plane.

Then we quench the magnetic field to different values Bf where the scattering length is
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Figure 2.10: Scattering length measurement near a narrow g-wave Feshbach res-
onance around 19.8 G by time-of-flight at different magnetic fields. a, Atomic
density distribution after 20 ms time-of-flight at magnetic field indicated at the top left
corner of each image. The left (right) column corresponds to initial BEC prepared below
(above) the Feshbach resonance. b, The scattering length (black) and total particle number
(red) extracted from time-of-flight images as shown in a. The solid line is a fit to solid black
data points based on Eq. 2.11. The trap frequencies used are (ωx, ωy, ωz) = 2π×(11, 13, 895)
Hz. The inset shows scattering length over a wider range from 15 to 25 G from Ref. [16].

af and switch off the harmonic trap in the horizontal plane at the same time. According to

Ref. [23], the dynamics of BEC after release follows a simple dilation with scaling parameters

λx(t) and λy(t). The density distribution of the BEC at time t is thus:

n(x, y, t) =
µ− 1

2mω
2
x(0)x

2/λ2x(t)− 1
2mω

2
y(0)y

2/λ2y(t)

g2Dλx(t)λy(t)
, (2.9)

where the scaling parameters evolve as:

λ̈x(t) =
af
ai

ω2x(0)

λ2x(t)λy(t)

λ̈y(t) =
af
ai

ω2y(0)

λ2y(t)λx(t)
. (2.10)
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One example of the time evolution of the Thomas-Fermi radii Rj =
√

2µλ2j (t)/mωj(0)
2

where j = x, y at the initial magnetic field is shown in Fig. 2.5. Then we fix the time-of-flight

to be 20 ms and scan the magnetic field where the BEC expands starting from Bi = 20.481

G or 19.498 G, to measure the Thomas-Fermi radii after the expansion. Eventually we

extract af based on its one-to-one correspondence to the Thomas-Fermi radii in Eq. 2.10.

The results are summarized in Fig. 2.10 and the scattering length as a function of magnetic

field from the fit is given by:

a(B) = abg[1 + α(B −B0)](1−
∆B

B −B0
), (2.11)

where the resonance position B0 = 19.861(1) G, resonance width ∆B = 8.3(5) mG, abg =

163(1)a0 and α = 0.31(2)/G. The background scattering length abg on resonance and slope

α are consistent with the measurements in Ref. [16], which is also shown in the inset of

Fig. 2.10b.

We can also perform spectroscopy of various molecular states below the scattering con-

tinuum by coupling free atoms to these bound states with a modulated magnetic field. This

method is already used for determining the position of the narrow g-wave Feshbach reso-

nance in Sec. 7.3.2 where the measured molecular state is only tens of kilohertz below the

continuum. To probe deeper energy structure of Cs2 molecules, here we modulate the inten-

sity of a 858 nm laser that is close to D2 line of Cs such that the effective magnetic field is

modulated due to the vector light shift [36]. This optical Feshbach resonance (OFR) beam

with σ+ polarization is sent from bottom of the vacuum chamber to illuminate the atoms

(see Fig. 2.3). Since the light intensity modulation using an acousto-optic modulator (AOM)

has a bandwidth of 11 MHz, which is 3 orders of magnitude larger than the bandwidth of

the coils, deep molecular states can be probed (see Fig. 2.11).

Here we observe an avoided crossing between two molecular states |f = 6,mf = 6; l =
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Figure 2.11: Avoided crossing between two molecular states measured by fast
modulation of light intensity. (Upper) Number of remaining atoms after 30 ms light
intensity modulation with effective modulation amplitude of tens of milligauss as a function
of modulation frequency at different magnetic fields. Solid lines are fits based on sum of two
Gaussian functions. (Lower) Resonant peak positions at different magnetic fields extracted
as shown in the upper panel. Solid line is a fit based on Eq. 2.12.

0,ml = 0⟩ (6s) and |f = 6,mf = 6; l = 4,ml = 0⟩ (6g(6)), with their energy consistent with

E1,2 =
E1 + E2 ±

√
(E1 − E2)2 + 4Ω2

2
, (2.12)

where the coupling strength Ω = h × 31 kHz, see Fig. 2.11. Here the two molecular states
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coupled to an atomic scattering state form a coupled three level system, which can be used to

realize a matter wave analogue of the celebrated electromagnetically induced transparancy

(EIT).

22



CHAPTER 3

DRIVEN ATOMIC BECS AND TRANSITION FROM ATOMIC

TO MOLECULAR CONDENSATES

3.1 Atomic BECs with periodic interaction modulation

3.1.1 Evolution and observables of condensates with modulated interactions

We start with the second-quantization form of the Hamiltonian

H =

∫
d3rΨ†(r, τ)

p2

2m
Ψ(r, τ) +

g̃(τ)

2

∫
d3rΨ†(r, τ)Ψ†(r, τ)Ψ(r, τ)Ψ(r, τ), (3.1)

where g̃(τ) = 4πℏ2a(τ)/m is the coupling strength and is proportional to the scattering

length a(τ). In our ”Bose fireworks” experiment, the scattering length is modulated as a(τ) =

adc+aac sinωτ , where ω is the modulation frequency and adc ≪ aac in our experiments. By

applying the Fourier transformation of the field operator

Ψ(r, τ) =
1√
V

∑
k

eikrak, (3.2)

where V is the volume of the condensate, we obtain the Hamiltonian in momentum space as

H =
∑
k

ϵka
†
kak +

g̃(τ)

2V

∑
k1,k2,∆k

a
†
k1+∆ka

†
k2−∆kak1ak2 . (3.3)

We eliminate the kinetic energy term H0 =
∑

k ϵka
†
kak by transferring the operators

for atoms into a rotating frame with ak → ake
iϵkτ/ℏ and ignore the fast varying terms.

We further simplify the Hamiltonian under Bogoliubov approximation a0 ≈
√
N0 (ground

state occupation N0 >> 1), and apply energy-momentum conservation ℏω = ℏ2k2f/m. The
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resulting Hamiltonian reduces to

H = iℏg
∑

|k|=kf

(a
†
ka

†
−k − aka−k), (3.4)

where g = πℏN0aac/mV is the coupling constant.

The Heisenberg equations of motion of ak and a
†
−k are:

ȧk = ga
†
−k

ȧ
†
−k = gak (3.5)

from which we get the solution as

ak(τ) = cosh (gτ)ak(0) + sinh (gτ)a
†
−k(0)

a
†
−k(τ) = cosh (gτ)a

†
−k(0) + sinh (gτ)ak(0), (3.6)

which is of the same form as the transformation of quantum fields from Minkowski space to

an accelerating frame and thus allows us to simulate the celebrated Unruh radiation using

the time evolution of our system [70].

We typically start from a quasi-2D uniform BEC with negligible excitations Nk ≈ 0

for |k| > 0. After the scattering length modulation begins, the mean population in one of

the resonant modes increases as n̄ = ⟨a†−k(τ)a−k(τ)⟩ = sinh2(gτ) starting from quantum

fluctuations until the depletion of condensate population becomes significant.

Next let’s consider the evolution of the wave function. In the perturbation regime, inde-

pendent pairs of counter-propagating momentum modes k and −k are populated from the

modulation and we can rewrite the Hamiltonian as H =
∑
k>0 hk, where hk = iℏg(a†ka

†
−k−

aka−k) determines evolution in a single pair of modes. In the following we only consider

the evolution of one hk. To simplify the notation without loss of the generality, we use h to
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replace hk. The solution of the wave function is [141]

|ψ(τ)⟩ = e−ihτ/ℏ |0, 0⟩ = 1

cosh(gτ)

∞∑
n=0

tanhn(gτ) |n, n⟩ , (3.7)

where |0, 0⟩ is the vacuum state at τ = 0, and the ket |n, n⟩ indicates that there are both n

particles in the modes with momenta k and −k, respectively. The reduced density matrix

of one single mode such as k can be determined by tracing out the other mode −k, which

yields

ρ̂(t) = Tr−k|ψ(τ)⟩ ⟨ψ(τ)| =
∞∑
n=0

pn |n⟩k ⟨n|k (3.8)

where pn = tanh2n(gτ)/ cosh2(gτ) is the probability of n particles in the mode. By compar-

ing it with a thermal distribution of bosons in a quantum state

pth(n) = e
− nℏω

2kBT (1− e
− ℏω

2kBT ), (3.9)

we see that the reduced density matrix ρ̂(τ) describes a thermal state with temperature

given by

T =
E

2kB ln coth(gτ)
(3.10)

=
E

kB ln(1 + 1/n̄)
−−−→
n̄≫1

E

kB
n̄, (3.11)

where E = ℏω/2 is the kinetic energy of the mode and the mean population

n̄ =
∞∑
n=0

npn =
1

eE/kBT − 1
(3.12)

follows the Bose-Einstein distribution. We also evaluate the entropy of atoms in a mode.

The von Neumann entropy S = −kBTr (ρ̂k ln ρ̂k) can be directly calculated as

25



S =2kB[ln cosh(gτ) + sinh2(gτ) ln coth(gτ)] (3.13)

=kB[ln(n̄+ 1) + n̄ ln
n̄+ 1

n̄
] −−−→
n̄≫1

kB ln(en̄), (3.14)

where e = 2.718... is Euler’s number.

3.1.2 Determination of mode width and effective temperature

In Ref. [35], the measurement of density-density correlation function g(2)(θ) of Bose fireworks

emission was reported. From the definition we have g(2)(0) = ⟨n2⟩/⟨n⟩2, which is equivalent

to ∆n2 = [g(2)(0)− 1]⟨n⟩2, where ⟨n⟩ and ∆n2 are the mean and variance of atom number

in the mode.

Figure 3.1: An example of Bose fireworks emission pattern. We cut the images into
180 slices and count excited atom number in each slice to build the histogram P (n).

Experimentally we cut our emission patterns into 180 slices and count the atom number

in each slice, see Fig. 3.1. Based on the histogram of atom number counting from the

measurements, we build the probability distribution function P (n) and calculate ⟨n⟩ =∫
nP (n)dn and ∆n2 = ⟨n2⟩−⟨n⟩2−∆n2noise. Here ∆n

2
noise is the variance contributed from
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the detection noise which is statistically independent with the signal from excited atoms.

From that, we find a linear dependence between the mean atom number squared and the

variance in the experiment as (see Fig. 3.2),

⟨n⟩2 = ξ∆n2. (3.15)

Here ξ = ∆θS/∆θJ = 1.49(7) is determined from the fit and is insensitive to the atom

number calibration. This ratio also characterizes the ratio between the mode width ∆θJ

and the width of the slice ∆θS = 2◦. Therefore, we obtain ∆θJ = 1.30◦. Alternatively, we

can do an independent calculation using the formula ∆θJ = 1.62/(Rkf ) in Ref. [35], which

comes from the half width at half maximum of the peak at ϕ = 0 in the g(2) correlation

function and we obtain a consistent result of ∆θJ = 1.33◦.

To test and verify that the emitted atom number in each mode follows a thermal distri-

bution, we derive a more general formula for the probability distribution p(n, ξ) in a slice

with any width ∆θS = ξ∆θJ . Because the mean population per mode ⟨nM ⟩ is always larger

than 1 in our measurements, we treat the distribution p(n, ξ) as a continuous function where

the summation
∑∞
n=0 p(n, ξ) = 1 is replaced by an integral

∫∞
0 dnp(n, ξ) = 1.

Here we would like to list a few properties of the function p(n, ξ). First, p(n, ξ) must

equal to 0 when n is a negative number. Second, if the angular slice only contains one

momentum mode (i.e. ξ = 1), p(n, 1) should be a thermal distribution, where p(n, 1) equals

βe−βn with β = E/kBT . Third, p(n, ξ) have to satisfy the addition rule that combining two

slices of ξ1 and ξ2 will create a new slice of ξ1+ ξ2. We can write the third requirement more

explicitly as a mathematical equation

p(n, ξ1 + ξ2) =

∫ ∞

−∞
p(n′, ξ1)p(n− n′, ξ2)dn

′. (3.16)
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Figure 3.2: Determination of the mode width and the fitting of the measured
probability distribution P(n). a shows the linear dependence of mean square n2 and
variance ∆n2 of atom number distribution in the slice with an angular width ∆θS = 2◦,
from which we have subtracted the contribution from the detection noise. b shows the
background atom number distribution G(n, 1.5) (black line), ideal emitted atom number
distribution p(n, 1.5) (blue line) and the convolution between both of them P (n, 1.5) (red
line) which fits the measured probability distribution P (n) (red circles) at the modulation
time τ = 4.8 ms.

From all the above conditions, we solve the probability distribution p(n, ξ) analytically as

p(n, ξ) =


βξnξ−1e−βn/Γ(ξ) n ≥ 0

0 n < 0,

(3.17)

where Γ(ξ) is the gamma function.

In addition to signal from excited atoms, detection noise contributes to the measured

probability distribution of the atom number as well. Experimentally we characterize this

noise distribution G(n, ξ) by inspecting the images without any radiation of atoms. Once

we get G(n, ξ), we convolve it with p(n, ξ) to get a full distribution function

P (n, ξ) =

∫ ∞

−∞
dn′p(n′, ξ)G(n− n′, ξ). (3.18)

Then we use this function to fit our data extracting out the temperature T under the con-

dition of ξ = 1.5 (see Fig. 3.2b).
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3.1.3 Characterization of entropy from population distribution

We define the entropy in one slice with the width of ξ∆θJ as S(ξ). First we use the probability

distribution p(n, ξ) derived in the previous section to evaluate S(ξ), which gives

S(ξ)/kB = −
∫ ∞

−∞
dnp(n, ξ) ln p(n, ξ) = − ln β + ξ + lnΓ(ξ)− (ξ − 1)Γ′(ξ)/Γ(ξ). (3.19)

In our data analysis, we divide the emission pattern into 180 slices and determine the

probability distribution P (n). Thus, the entropy directly measured by the experiment is

S(1.5) = −kB
∑
n

P (n) lnP (n). (3.20)

We show that the entropy in a single mode S(1) is given by

S(1) = S(1.5)− S0 = −kB
∑
n

P (n) lnP (n)− S0 (3.21)
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based on Eq. (3.58) where S0 = kB
[
ξ − 1 + ln Γ(ξ)− (ξ − 1)Γ′(ξ)/Γ(ξ)

]
|ξ=1.5 = 0.37kB.
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Figure 3.4: Effective temperature T and entropy per mode S versus the mean
population per mode. The red solid line is a linear fit without offset. The blue solid
line is the prediction that includes the detection noise while the purple line is the prediction
excluding the noise. The inset shows time evolution of T and S. The dashed lines are guides
to the eye. Here the condensate’s radius is 13 µm. The scattering length is modulated at
frequency ω/2π = 2.1 kHz with a small offset of adc = 3a0 and an amplitude of aac = 50a0,
where a0 is the Bohr radius. All error bars correspond to one standard deviation of the mean
values.

For the theoretical curve with noise plotted in Fig. 3.4b (blue solid line), we character-

ize the detection noise per mode G(n, 1) and then evaluate the theoretical distribution by

convolving G(n, 1) with p(n, 1) as

P̃ (n, 1) =

∫ ∞

−∞
dn′p(n′, 1)G(n− n′, 1). (3.22)

And we calculate the entropy as

S = −kB
∫
dnP̃ (n, 1) ln P̃ (n, 1), (3.23)

which matches our experimental data very well. The purple line shows the calculation in the

absence of detection noise.
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3.1.4 Phase correlations of atomic radiation field

Here we calculate the phase correlations between interference fringes, which directly relate

to that between emitted jets. We consider two sets of independent jets which are generated

by two pulses of scattering length modulation with certain phase. In the interaction picture,

the wave function can be written as |ψ⟩I = |ψ(1)⟩I ⊗ |ψ(2)⟩I . Each |ψ(j)⟩I follows

|ψ(j)⟩I =
1

cosh(γj)

∞∑
n=0

[
e
i(ϕMj

−π/2)
tanh(γj)

]n
|n, n⟩kj ,−kj (3.24)

under the Hamiltonian

H
(i)
I = gje

iϕMj a
†
kj
a
†
−kj + gje

−iϕMj akja−kj (3.25)

where ϕMj
is given by the phase of external driving field, γj = gjτj and τi is the modulation

duration of the pulse.

To take the dynamical phase into account, we convert the wave function back to Schrödinger’s

picture, and the wave function is written as

|ψ⟩S = |ψ(1)⟩S ⊗ |ψ(2)⟩S , (3.26)

where |ψ(j)⟩S is given by

|ψ(j)⟩S = e−iH
(j)
0 t/ℏ|ψ(j)⟩I

=
1

cosh(γj)

∞∑
n=0

[
e
i(ϕMj

−ωjt−π/2) tanh(γj)
]n

|n, n⟩kj ,−kj . (3.27)

Here H
(i)
0 = ℏωi(a

†
kj
akj + a

†
−kj

a−kj )/2 is energy term which was previously eliminated in

the interaction picture.

We perform a matter-wave interference experiment by applying two independent pulses

31



of modulation on the scattering length; the first pulse has a lower frequency compared to the

second one (see Fig. 3.5a). The two frequencies are incommensurate to avoid influence from

nonlinear wave mixing, see Chapter 4. The pulses are arranged such that the atoms created

by the second pulse leave the condensate later, but with a greater velocity than the atoms

from the first pulse. When the two emitted waves overlap, they interfere and produce fringes

(see Fig. 3.5b). The phase of the fringes ϕ is given by the relative phase of the interfering

matterwaves, and varies across different emission angle θ.
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Figure 3.5: Matter-wave jet interference from a double pulse scheme. a illustrates
the application of two pulses of scattering length modulation with frequencies ω1/2π = 3 and
ω2/2π = 5.63 kHz, and modulation amplitudes aac = 56 and 72a0. The relative phase of the
pulses is δ. The matter-wave jet created by the latter pulse propagates at a greater speed
v2 > v1 and interferes with atoms from the first pulse when they overlap. Here the matter-
wave speeds are vi =

√
ℏωi/m for the i−th pulse. The interference is characterized by the

wavenumber difference ∆k = k2 − k1, and the phase ϕ. b shows an example interference
pattern of the two radiation fields. The phase of the interference fringes ϕθ is recorded as
a function of the emission angle θ. c shows the radial cut of the interference pattern, from
which we determine the phase of the fringes based on Fourier transformation. Dotted lines
show guides to the eye.

The interference operators between the two sets of jets are Îf = ak1a
†
k2

and Îb =

a−k1a
†
−k2

which correspond to the forward and backward directions. We introduce four

more interference operators as Îj+ = akja−kj and Îj− = akja
†
−kj

with j = 1 or 2. The
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mean value for the interference operator Îj± is evaluated as

⟨Îj+⟩ = ⟨ψ(j)|S
(
akja−kj

)
|ψ(j)⟩S

=
√

⟨nj⟩(⟨nj⟩+ 1)e
i(ϕMj

−ωjt−π/2) (3.28)

⟨Îj−⟩ = ⟨ψ(j)|S
(
akja

†
−kj

)
|ψ(j)⟩S

= 0, (3.29)

where ⟨nj⟩ is the mean atom number in each set of jets.

Phase correlation between interference fringes shown in Fig. 3.6 can be directly decom-

posed into the interference operators in each set of jets. The phase correlation g+(π) =

|⟨eiϕθ+iϕθ+π⟩| is proportional to the correlation between Îf and Îb , together with Eq. (3.28)

we get

⟨ei(ϕθ+ϕθ+π)⟩ ∝ ⟨Îf Îb⟩ = ⟨ψ(1)|S ⊗ ⟨ψ(2)|S
(
ak1a

†
k2
a−k1a

†
−k2

)
|ψ(1)⟩S ⊗ |ψ(2)⟩S

= ⟨ψ(1)|S
(
ak1a−k1

)
|ψ(1)⟩S⟨ψ|

(2)
S

(
a
†
k2
a
†
−k2

)
|ψ⟩(2)S

= ⟨Î1+⟩⟨Î
†
2+⟩

=
√

⟨n1⟩(⟨n1⟩+ 1)
√
⟨n2⟩(⟨n2⟩+ 1)e

i
[
(ϕM1

−ϕM2
)−(ω1−ω2)t

]
(3.30)

Therefore, the sum of the phases of the forward and backward interference fringes only

depends on the phase of the driving and the dynamical phase. Thus we have the phase

constant ϕs = ϕθ + ϕθ+π = (ϕM1
− ϕM2

)− (ω1 − ω2)t and g+(π) = 1.

Meanwhile, phase correlation g−(π) = |⟨eiϕθ−iϕθ+π⟩| is proportional to the mean value
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of Îf Î
†
b , together with Eq. (3.29) we have

⟨ei(ϕθ−ϕθ+π)⟩ ∝ ⟨Îf Î
†
b ⟩ = ⟨ψ(1)|S ⊗ ⟨ψ(2)|S

(
ak1a

†
k2
a
†
−k1

a−k2

)
|ψ(1)⟩S ⊗ |ψ(2)⟩S

= ⟨ψ(1)|S
(
ak1a

†
−k1

)
|ψ(1)⟩S⟨ψ(2)|S

(
a
†
k2
a−k2

)
|ψ(2)⟩S

= ⟨Î1−⟩⟨Î
†
2−⟩

= 0 (3.31)

therefore we have g (π) = 0, indicating that phases in each pair of jets are totally random

although their sum is fixed. The results from Eqs. (3.30, 3.31) are consistent with our

measurement shown in Fig. 3.6c.

We also derive analytic formulas for the phase correlation functions g±(φ) = |⟨eiϕθ±iϕθ+φ⟩|

between interference fringes at two arbitrary angular directions, in addition to that between

the counter-propagating directions in Eqs. (3.30, 3.31), as follows,

g+(φ) =

∣∣∣∣∣∣
⟨ak1a

†
k2
ak′1

a
†
k′2
⟩

⟨a†k1ak1⟩a
†
k2
ak2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
⟨ak1ak′1⟩⟨a

†
k2
a
†
k′2
⟩

⟨a†k1ak1⟩a
†
k2
ak2

∣∣∣∣∣∣ ,
g−(φ) =

∣∣∣∣∣∣
⟨ak1a

†
k2
a
†
k′1
ak′2

⟩

⟨a†k1ak1⟩a
†
k2
ak2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
⟨ak1a

†
k′1
⟩⟨a†k2ak′2⟩

⟨a†k1ak1⟩a
†
k2
ak2

∣∣∣∣∣∣ . (3.32)

Here k1 and k2 are the momenta of jets created from different modulation pulses which prop-

agate along the same direction, while k′1 and k′2 represent another pair of such co-propagating

jets along the direction with a relative angle of θ to that of k1 and k2. Following the same

spirit as that in Ref. [35] and taking the finite size of the condensate into consideration, we

obtained

akjak′j
= e

i(ϕMj
−ωjτ−π/2) ρ̃(kj + k′j)

2π
cosh(γj) sinh(γj), (3.33)

a
†
kj
ak′j

=
ρ̃(kj − k′j)

2π
sinh2(γj), (3.34)
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where ρ̃(k) is defined as the Fourier transformation of a uniform disk-shape density ρ(r),

ρ(r) =
1

2π

∫
d2keik·rρ̃(k), (3.35)

and ρ(r) is the density distribution function of the condensate as

ρ(r) =


1 |r| ≤ R

0 |r| > R

(3.36)

with R the condensate radius. Therefore, the analytic formulas for g±(φ) when γj ≫ 1 and

|ki|R ≫ 1 are

g+(φ) =

∣∣∣∣4ρ̃(k1 + k′1)ρ̃
∗(k2 + k′2)

R̃4

∣∣∣∣
=

∣∣∣∣4J1(|k1|R(φ− π))J1(|k2|R(φ− π))

|k1||k2|R2(φ− π)2

∣∣∣∣ , (3.37)

and

g−(φ) =

∣∣∣∣4ρ̃(k1 − k′1)ρ̃
∗(k2 − k′2)

R̃4

∣∣∣∣
=

∣∣∣∣4J1(|k1|Rφ)J1(|k2|Rφ)|k1||k2|R2φ2

∣∣∣∣ , (3.38)

where J1(x) is the first order Bessel function of the first kind.

To experimentally extract the interference fringe phase ϕθ at a particular emission di-

rection θ, we average over an angular span from θ − 0.12 to θ + 0.12 to obtain the radial

density distribution ρ(r, θ) in order to achieve the best signal to noise ratio (see Fig. 3.5c).

We then perform Fourier transformation on the radial density to get the complex density

amplitude of the interference fringes in momentum space ρ(k, θ). The phase ϕθ at kf is

then evaluated from this complex amplitude. Although our jet width is small, that is 2◦ for
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ω/2π = 3 kHz and 1.5◦ for ω/2π = 5.63 kHz, this average results in a significantly broad-

ened phase correlation shown in Fig. 3.6b. To experimentally extract the phase constant

ϕs, we fit the histogram of ϕθ + ϕθ+π to get the peak position and find that ϕs = 0.79(3).

We also calculate the expected phase shift based on our experimental sequence with a time

of 18.5 ms from the start of the modulation to the start of imaging. The first sinusoidal

modulation pulse lasts for 6 periods while the second lasts for 17 periods. Meanwhile we

take into account the time delay of the modulation pulse of 0.041 ms due to system response.

Therefore the phase constant estimated from our experimental sequence is 0.9(2) where the

uncertainty arises from the duration of our 20 µs imaging pulse.
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Figure 3.6: Spatial phase correlations in matter-wave jet interference fringes.a and
b show the concurrence of the extracted phases in the opposite directions, ϕθ and ϕθ+π for
all emission angle θ from a collection of 200 images. A strong correlation of the two phases is
described by ϕθ+ϕθ+π = ϕs, where ϕs = 0.79(3) is obtained from fitting the data; ϕθ−ϕθ+π
appears to be random. c shows phase correlations g+ (blue) and g− (red) between fringes
separated by an angular distance φ, see Eq. 3.32. Dots represent experimental data while
dashed curves are guides to the eye.

36



3.1.5 Going beyond perturbation regime with time-dependent parametric

approximation

Here we discuss the situation where BEC depletion is not negligible when significant popu-

lation is excited into finite momentum modes due to the interaction modulation. So instead

of using the Bogoliubov approximation where the field operator of condensate mode as a

constant c-number, here we treat it as a dynamical variable.

1. Consider one pair of ±k modes and BEC

When we only consider one pair of opposite momentum modes and BEC, the Hamiltonian

in the interaction picture is,

Hint = iA0(a
†
0a

†
0aka−k − a0a0a

†
ka

†
−k), (3.39)

where we set ℏ = 1, A0 is a real number without loss of generality. a and a† are annihilation

and creation operators for a certain mode.

The Heisenberg equation of motion for each mode is given by,

ȧ0 = 2A0a
†
0aka−k

ȧk = −A0a
2
0a

†
−k

ȧ−k = −A0a
2
0a

†
k. (3.40)

Let’s define the operators as N̂0 = a
†
0a0, Â = a

†
0a0+2a

†
kak and B̂ = a

†
0a0+2a

†
−ka−k. Using

the commutators, [a
†
0a0, Hint] = 2iA0(a

†
0a

†
0aka−k+a0a0a

†
ka

†
−k), [a

†
kak, Hint] = [a

†
−ka−k, Hint]

= −iA0(a
†
0a

†
0aka−k + a0a0a

†
ka

†
−k), we have,

[Â,Hint] = [B̂,Hint] = 0, (3.41)
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which means Â and B̂ are conserved and ⟨Â⟩ = ⟨B̂⟩ = N , if we start with a pure BEC of N

particles.

We first evaluate the first derivative of N̂0,

dN̂0

dt
= ȧ

†
0a0 + a

†
0ȧ0 = 2A0(a

2
0a

†
ka

†
−k + (a

†
0)

2aka−k). (3.42)

Since we still don’t get a equation with only a0,a
†
0 and conserved quantity Â and B̂, let’s go

to the second derivative of N̂0,

d2N̂0

dt2
= 4A2

0

[
(2a

†
0a0 + 1)[(a

†
kak + 1)(a

†
−ka−k + 1) + a

†
kaka

†
−ka−k]− [(a

†
0a0)

2 + a
†
0a0 + 1]

× (a
†
−ka−k + a

†
kak + 1)

]
, (3.43)

which can be written in terms of Â, B̂ and N̂0 as,

d2N̂0

dt2
= 8A2

0

[
(2N̂0+1)[(Â−N̂0)(B̂−N̂0)+Â+B̂−2N̂0+2]−(N̂2

0+N̂0+1)(B̂+Â−2N̂0+2)

]
(3.44)

Now let’s use the time-dependent parametric approximation a0 ≈ a
†
0 ≈

√
N0(t) ≫ 1 [13]

and replace the conserved quantities Â and B̂ by the total particle number N, which enable

us to get a second differential equation for the particle number N0(t) in BEC,

d2N0(t)

dt2
= 4A2

0

[
2N3

0 (t)− 3(N +
1

2
)N2

0 (t) + (N2 + 1)N0(t) +
1

2
N2

]
. (3.45)

Multiply the integration factor 2dN0(t)/dt on both sides of (3.45) and integrate once, we can

reduce it to a first order ODE with the intial conditionN0(t = 0) = N and dN0(t)/dt|t=0 = 0,

(
dN0(t)

dt

)2

= 4A2
0(N0(t)−N)

[
N3
0 (t)− (N + 1)N2

0 (t)− (N − 1)N0(t) +N

]
. (3.46)
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Then integrating (3.46) once again, we can get the following formal solution,

t = −
∫ N0(t)

N

dN ′
0(t)

2A0

√
(N ′

0(t)−N)[N ′
0
3(t)− (N + 1)N ′

0
2(t)− (N − 1)N ′

0(t) +N ]
. (3.47)

The elliptic integral in Eq. (3.47) can be represented by Jacobi elliptic functions.

Now let’s solve (3.45) numerically and see how it works. Starting from a BEC of 14k

atoms and set A0 = 0.04 ms−1 , the solution is shown in Fig. 3.7.
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Figure 3.7: Time evolution with BEC depletion and a single pair of opposite
momentum modes. The green curve shows BEC is depleted as time evolves and the red
curve represents the population growth in ±k modes. The black curve is the total population
in 0,±k modes, which is supposed to be conserved during the evolution. As population in
BEC is comparable to that in ±k modes, this time-dependent parametric approximation is
not valid anymore and the total atom number increased by around 0.5%.

After doing the time-dependent parametric approximation, the Hamiltonian becomes,

H ′
int = iA0N0(t)(aka−k − a

†
ka

†
−k). (3.48)
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Figure 3.8: As time evolves, the BEC first becomes depleted and then recovers, because the
population coherently oscillates between the 0 and ±k modes.

The solution of (3.48) is,

ak(t) = cosh(

∫ t

0
g(t′)dt′)ak(0)− sinh(

∫ t

0
g(t′)dt′)a†−k(0)

a
†
−k(t) = cosh(

∫ t

0
g(t′)dt′)a†−k(0)− sinh(

∫ t

0
g(t′)dt′)ak(0), (3.49)

where the time-dependent coupling constant g(t) = A0N0(t). The population in mode k is

thus,

n̄k = ⟨a†k(t)ak(t)⟩ = sinh2(

∫ t

0
g(t′)dt′) (3.50)

The two-mode squeezing state at time t is given by,

|ψ(t)⟩I = e−i
∫ t
0 H

′
intdt

′
|0⟩ = 1

cosh(
∫ t
0 g(t

′)dt′)

+∞∑
n=0

tanhn(

∫ t

0
g(t′)dt′) |n, n⟩ . (3.51)
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Then the density matrix of mode k is obtained by tracing out mode -k,

ρ̂k = Tr−k |ψ(t)⟩I ⟨ψ(t)|I =
∞∑
n=0

pn |n⟩k ⟨n|k (3.52)

where the probability pn = tanh2n(
∫ t
0 g(t

′)dt′)/ cosh2(
∫ t
0 g(t

′)dt′) and the effective Temper-

ature is obtained,

T =
Ekf

2kB ln coth(
∫ t
0 g(t

′)dt′)

=
Ekf

kB ln(1 + 1/n̄k)
−−−→
n̄≫1

Ekf
kB

n̄k. (3.53)

where Ekf = ℏω/2 is the kinetic energy of atoms in mode ±k.

It can be seen that under the time-dependent parametric approximation, although the

mean population in excited modes and effective temperature as a function of modulation

time when BEC depletion is taken into account is different from that under Bogoliubov

approximation, the scaling between the effective temperature T and mean population n̄k in

mode k is still linear.

2. Consider multi-pairs of modes |k| and BEC

Since under our typical experimental conditions there are hundreds of momentum modes

excited, we need to take multiple pairs of ±k modes into consideration.

However, the way of dealing with single pair of modes above cannot be directly extended

to multiple pairs. Different pairs are not completely independent with each other anymore,

which is different from the case under Bogoliubov approximation with a fixed population

in BEC and thus a constant growth rate in excited mode population. Here since we’re

considering BEC depletion, if one pair of modes consume BEC atoms, the growth rate for

other pairs of jets will become smaller and thus affecting their population.
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Let’s start with the Hamiltonian of multiple pairs of ±k modes,

Hint = iA0

Nm∑
k

a
†
0a

†
0aka−k − a0a0a

†
ka

†
−k, (3.54)

Nm is total number of pairs of ±k modes. Similarly, the Heisenberg equations of motion for

each mode are given by,

ȧ0 = 2A0a
†
0

Nm∑
k

aka−k

ȧk = −A0a0a0a
†
−k

ȧ−k = −A0a0a0a
†
k (3.55)

Also, the operators are defined as N̂0 = a
†
0a0, Â = a

†
0a0 + 2

∑Nm
k a

†
kak and B̂ = a

†
0a0 +

2
∑Nm
k a

†
−ka−k. Using the commutators [a

†
0a0, Hint] = 2iA0

∑Nm
k (a

†
0)

2aka−k + a20a
†
ka

†
−k,

[a
†
kak, Hint] = [a

†
−ka−k, Hint] = −iA0((a

†
0)

2aka−k + a20a
†
ka

†
−k), we have

[Â,Hint] = [B̂,Hint] = 0. (3.56)

Then Â and B̂ are conserved quantities and ⟨A⟩ = ⟨B⟩ = N if we start with a pure BEC of

N particles.

The first order derivative of N̂0 is,

dN̂0

dt
= ȧ

†
0a0 + a

†
0ȧ0 = 2A0

Nm∑
k

a0a0a
†
ka

†
−k + a

†
0a

†
0aka−k, (3.57)
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which cannot be completely represented by a0,a
†
0 and Â,B̂, so we go to the second derivative,

d2N̂0

dt2
= 4A2

0(a
†
0a0 + a0a

†
0)

Nm∑
k′
ak′a−k′

Nm∑
k

a
†
ka

†
−k − 2A2

0a
2
0(a

†
0)

2
Nm∑
k

a−ka
†
−k + a

†
kak

+ 4A2
0(a0a

†
0 + a

†
0a0)

Nm∑
k′
a
†
k′a

†
−k′

Nm∑
k

aka−k − 2A2
0(a

†
0)

2a20

Nm∑
k

a
†
−ka−k + aka

†
k. (3.58)

Here terms like
∑Nm
k′ ak′a−k′

∑Nm
k a

†
ka

†
−k cannot be directly written in terms of the popu-

lation of ±k modes a
†
kak and a

†
−ka−k anymore because there are more than one pair of ±k

modes here, and thus cannot be written using N̂0, Â and B̂ as before.

By observing that ȧ0ȧ
†
0 = 4A2

0a
†
0a0

∑Nm
k′ ak′a−k′

∑Nm
k a

†
ka

†
−k and ȧ

†
0ȧ0 = 4A2

0a0a
†
0×∑Nm

k′ a
†
k′a

†
−k′

∑Nm
k aka−k, and also using the commutator [

∑Nm
k′ ak′a−k′ ,

∑Nm
k a

†
ka

†
−k] =∑Nm

k aka
†
k + a

†
−ka−k, Eq. (3.58) can be rewritten as,

d2N̂0

dt2
= 2(ȧ0ȧ

†
0 + ȧ

†
0ȧ0) + 4A2

0

Nm∑
k

aka
†
k + a

†
−ka−k − 2A2

0[a
2
0(a

†
0)

2

×
Nm∑
k

(a−ka
†
−k + a

†
kak) + (a

†
0)

2a20

Nm∑
k

(a
†
−ka−k + aka

†
k)]. (3.59)

With
∑Nm
k a

†
kak = 1

2(Â− N̂0),
∑Nm
k a

†
−ka−k = 1

2(B̂− N̂0) and (a
†
0)

2a20 = (a
†
0a0)

2− a
†
0a0 =

N̂2
0 − N̂0, a

2
0(a

†
0)

2 = (a
†
0a0)

2 + 3a
†
0a0 + 2 = N̂2

0 + 3N̂0 + 2, d2N̂0/dt
2 can be written only in

terms of a0, a
†
0, Â and B̂,

d2N̂0

dt2
= 2(ȧ0ȧ

†
0 + ȧ

†
0ȧ0)− 4A2

0N̂0(N̂0 + 1)[−N̂0 +Nm +
1

2
(Â+ B̂)]. (3.60)

Now we can do the time-dependent parametric approximation as in section I, i.e. a0 ≈

a
†
0 ≈

√
N0(t) ≫ 1 and Â = B̂ = N . Then ȧ0 ≈ ȧ

†
0 ≈ (1/(2

√
N0(t))dN0(t)/dt), and the
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Figure 3.9: Check the consistency between the multi-pair solution with Nm = 1 and
single-pair solution. The black, red and green points are calculated by setting Nm = 1,
which matches the corresponding solid lines calculated by only considering a single pair of
±k modes.

following second order differential equation for N0(t) is obtained,

d2N0(t)

dt2
=

1

N0(t)

(
dN0(t)

dt

)2

− 4A2
0N0(t)[N0(t) + 1][−N0(t) +Nm +N ]. (3.61)

After solving the BEC population N0(t) as a function of modulation time, we plug it into

the Hamiltonian in Eq. 3.54 and get a two-mode squeezing Hamiltonian with time-dependent

squeezing parameter similar to that in Eq. 3.48,

H ′
int = iA0N0(t)

Nm∑
k

aka−k − a
†
ka

†
−k, (3.62)
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Figure 3.10: Solution for 131 pairs of momentum modes and BEC. The orange curve
is the decrease of population in BEC versus modulation time by considering 131 pairs of ±k
modes using total particle number N = 13976 and A0 = 0.0406. These two parameters are
the same as in Fig. 3.7. The BEC population drops close to 0 within 8 ms by considering
131 pairs of ±k modes compared to 12 ms in Fig. 3.7 considering single pair of ±k mode.

from which we get the solutions

ak(t) = cosh(

∫ t

0
g(t′)dt′)ak(0)− sinh(

∫ t

0
g(t′)dt′)a†−k(0)

a
†
−k(t) = cosh(

∫ t

0
g(t′)dt′)a†−k(0)− sinh(

∫ t

0
g(t′)dt′)ak(0), (3.63)

where the interaction strength g(t) = A0N0(t), which is similar to the results in Eq. (3.49)

but the BEC population N0(t) is obtained in a different way with multiple pairs of ±k modes.

Similarly, the mean atom number in mode k is given by,

n̄k = ⟨a†k(t)ak(t)⟩ = sinh2(

∫ t

0
g(t′)dt′). (3.64)

On the other hand, the effective temperature is given by,
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T =
Ekf

2kB ln coth(
∫ t
0 g(t

′)dt′)

=
Ekf

kB ln(1 + 1/n̄k)
−−−→
n̄≫1

Ekf
kB

n̄k. (3.65)

So the the effective temperature T still scales linearly with mean population n̄k, although

both of them are different from being obtained from Bogoliubov appromixition because of

the BEC depletion.

In order to check if Eq. (3.61) is correct or not, we can simply set the number of pairs of

modes Nm = 1 and use the same value of N and A0 to see if the solution of Eq. (3.61) can

be reduced to Eq (3.45). Figure 3.9 proves these two results are consistent, which implies

Eq. (3.61)’s correctness and enables us to fit the data in Fig. 3.4.

Here we consider Nm = 131 pairs of ±k modes and total particle number N = 13976,

coupling constant A0 = 0.0406. Figure 3.10 shows the solution to Eq. (3.61). The BEC

population drops close to 0 quickly within 8 ms with hundreds of pairs of excited modes

compared to BEC depletion within 12 ms in Fig. 3.7 where only single pair of ±k mode is

considered. This makes sense because with the same initial BEC population and coupling

constant A0, multiple excited modes will enhance the decay rate of BEC.

In order to fit our experiment data of mean atom number in mode k versus modulation

time, the total particle number and coupling constant are optimized to be N = 13976± 837

and A0 = 0.0406 ± 0.0036. The calculation matches well with the data in Fig. 3.11. Then

using the same N and A0, the corresponding effective temperature is calculated which is

shown in Fig. 3.12 together with corresponding data.

Put the data and fitting results together into Fig. 3.13 we get the relation of effective

temperature with mean population in mode k, which is linear as discussed above from two-

mode squeezed modes with time-dependent squeezing parameter in Eq. 3.65.

Thus, within the frame of four-wave mixing Hamiltonian in Eq. 3.54 using the time-

dependent parametric approximation instead of the Bogoliubov approximation, the BEC
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Figure 3.11: Excited atom number in each mode versus modulation time. Blue dots
are the experimental data of mean population in mode k versus the modulation time. The
solid blue line is the fitting to data using time-dependent parametric approximation. The
two fitting parameters are N = 14000(800) and A0 = 0.041(4).
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Figure 3.12: Effective temperature veresus modulation time. Red dots are the ex-
perimental data of effective temperature in mode k versus modulation time. The red line is
a theory curve using the same parameters of N and A0 as in Fig. 3.11.
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depletion is calculated and the corresponding excited mode population matches well with

the experiment. But the linear relation between the effective temperature T and mean

population n̄k in mode k is still valid when n̄k ≫ 1. So the deviation of experimental data

for n > 40 in Fig. 3.13 from the linear relation doesn’t come from BEC depletion as one may

intuitively conjecture, but possibly comes from secondary collision processes as demonstrated

in Ref. [54] when the interaction modulation amplitude used is large.

0 10 20 30 40 50 60

Mean atom number per mode n

0

0.5

1

1.5

2

2.5

3

E
ff

e
c
ti
v
e

 t
e

m
p

e
ra

tu
re

 (
K

)

Figure 3.13: Effective temperature versus mean excited atom number per mode.
The red dots and red solid line are the data of effective temperature versus mean atom
number in mode k and its linear fitting,respectively, as shown in Fig. 3.4. The slope of
the black dotted line corresponds to κ = ℏ/2πkB = 1.22pK · s, which matches the slope
of the green line plotted using the calculated effective temperature and mean atom number
in mode k in Fig. 3.11 and Fig. 3.12 obtained by using the time-dependent parametric
approximation, which predicts the linear scaling.

3. Effect of secondary collision processes

When population in the ±k modes becomes large, two atoms in +k (or−k) mode can also

scatter with each other and get population transferred back to BEC and +2k (or −2k)

modes, conserving total momentum and energy by absorbing another energy quantum from
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Figure 3.14: Variance versus mean population squared in an excited mode with
(orange) or without (black) considering secondary collision processes. The circles
are from numerical calculation based on Eq. 3.67 with ϵ = 0 (black) and ϵ = 0.01 (orange).
ξ is fixed to be 1.49 and the inverse effective temperature β is varied to obtain the data
points. Solid lines are linear fits and the dashed line is a quadratic fit to orange circles.

the modulation field (see Ref. [54] for more details). Thus the atom number n that satisfies

the probability distribution p(n, ξ) in Eq. 3.17 is the sum of remaining population in mode

k and the population leaking out to other modes:

n = n1 + ϵn21, (3.66)

where the second term ϵn21 on right hand side of the above equation represents the pop-

ulation transferred from mode k to other modes and the reason it is quadratic is because

the secondary collision involves two atoms in mode k. The parameter ϵ ∼ 1/N ≪ 1, see

Ref. [54]. Then we can obtain the probability distribution for n1, which is what we really

measure in the experiments, from the relation p(n, ξ)dn = p(n1, ξ)dn1:

p(n1, ξ) = p(n, ξ)
dn

dn1
= p(n1 + ϵn21, ξ)(1 + 2ϵn1). (3.67)
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When ϵ = 0 and thus pair production in mode ±k is the only process, the variance is

proportional to the mean population squared in mode k, see Eq. 3.15 and black data points

in Fig. 3.14 from numerical calculation based on Eq. 3.67. However, if secondary collision

process happens, the variance of population in mode k is reduced and seems to depend on

the mean population squared quadratically, see Fig. 3.14. This behaviour is consistent with

deviation of the measurements in Fig. 3.2 from the linear fit and may also contribute to

the slight deviation of the measurements of effective temperature versus mean population in

Fig. 3.4 from being linear.

3.2 Analytical and numerical results for dynamics and phase

transition in a coupled atom-molecule BEC system

In this section we solve the model for coherent conversion between atomic BEC and molecular

BEC. Two cases with either a static magnetic field or a magnetic field ramp are considered.

The full model with atom-atom, atom-molecule and molecule-molecule interaction is solved

numerically. In particular, a phase transition from a pure molecular BEC to atomic BEC is

obtained by adiabatically sweeping the magnetic field from below the Feshbach resonance.

The reverse ramp from atomic BEC to molecular BEC is also studied, where we find the

saturated molecule number as a function of the ramp speed more consistent with the recent

analytic result in Ref. [98] than the Landau-Zener formula. Analytical results for the growth

of molecule number or atom number at a fixed magnetic field in the perturbation regime are

obtained, which show different growth behaviour in early time.

3.2.1 Hamiltonian of the system and the mean field equations

We start from the Hamiltonian for the coupled atom-molecule system[123]:
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Ĥ =

∫
dx⃗ψ̂

†
m(x⃗, t)[−ℏ2∇2

4m
+ δ(B)]ψ̂m(x⃗, t) +

∫
dx⃗ψ̂

†
a(x⃗, t)[−

ℏ2∇2

2m
+
Tbg
2
ψ̂
†
a(x⃗, t)ψ̂a(x⃗, t)]

× ψ̂a(x⃗, t) +

∫
dx⃗g[ψ̂

†
m(x⃗, t)ψ̂a(x⃗, t)ψ̂a(x⃗, t) + ψ̂

†
a(x⃗, t)ψ̂

†
a(x⃗, t)ψ̂m(x⃗, t)] +

∫
dx⃗
Tmm
2

× ψ̂
†
m(x⃗, t)ψ̂

†
m(x⃗, t)ψ̂m(x⃗, t)ψ̂m(x⃗, t) +

∫
dx⃗Tamψ̂

†
m(x⃗, t)ψ̂m(x⃗, t)ψ̂

†
a(x⃗, t)ψ̂a(x⃗, t), (3.68)

where ψ̂
†
m(x⃗, t) and ψ̂

†
a(x⃗, t) are creation operators for a bare molecule and an atom respec-

tively, m is the atomic mass, the detuning δ(B) = ∆µ(B − B0) and B0 is the pole of the

Feshbach resonance, ∆µ is the difference between magnetic moments of two free atoms and

one molecule. The coupling strength g = ℏ
√

2πabg∆B∆µ/m is determined by the back-

ground scattering length abg between atoms and the resonance width ∆B. The T matrices

are Tbg = 4πℏ2abg/m, Tmm = 4πℏ2amm/2m and Tam = 3πℏ2aam/m.

Let’s assume both atoms and molecules are in the ground state of a harmonic trap in z

direction as ψa(z) = (mωzπℏ )1/4e−z
2/2l2z and ψm(z) = (2mωzπℏ )1/4e−z

2/l2z , where the harmonic

oscillator length lz =
√

ℏ/mωz. Also, the wave functions are uniform in horizontal plane,

which is equivalent to considering only the momentum mode at k = 0:

ψ̂a(x⃗, t) =
1√
A
b̂a(t)ψa(z), ψ̂m(x⃗, t) =

1√
A
b̂m(t)ψm(z), (3.69)

where A is the area of the sample in horizontal plane, b̂a(t) are b̂m(t) are annihilation

operators of an atom and a molecule, respectively. Substituting Eq. 3.69 into Eq. 3.68, we

get:

Ĥ = ϵmb̂
†
mb̂m + ϵab̂

†
ab̂a + g′(b̂†mb̂ab̂a + b̂mb̂

†
ab̂

†
a) + T ′

bg b̂
†
ab̂

†
ab̂ab̂a + T ′

mmb̂
†
mb̂

†
mb̂mb̂m

+T ′
amb̂

†
mb̂mb̂

†
ab̂a, (3.70)
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where ϵm = ℏωz/2+δ(B), ϵa = ℏωz/2, g′ = g/((2π)1/4
√
Alz), T

′
bg = Tbg/(2

√
2πAlz), T

′
mm =

Tmm/(2
√
πAlz) and T ′

am =
√
2/3πTam/(Alz). Plugging in the experimental parameters

for Cs atoms in hyperfine ground state near the g-wave Feshbach resonance at 19.87 G

abg = 160a0, ∆B = 11mG, ∆µ = 0.57µB and the trap parameters R = 15µm, A = πR2,

ωz = 2π × 400 Hz and using the theoretical results amm = 4abg, aam = 32abg/3 from

Ref.[123], we get g′ = h× 7 Hz, T ′
bg = h× 5.2 mHz, T ′

mm = h× 14.8 mHz and T ′
am = h× 97

mHz, which we will use for the numerical calculations presented below.

The Heisenberg equations of motion for the annihilation operators based on the Hamil-

tonian in Eq.3.70 are:

db̂a
dt

= −i(ϵab̂a + 2g′b̂mb̂
†
a + 2T ′

bg b̂
†
ab̂

2
a + T ′

amb̂
†
mb̂mb̂a)

db̂m
dt

= −i(ϵmb̂m + g′b̂2a + 2T ′
mmb̂

†
mb̂

2
m + T ′

amb̂mb̂
†
ab̂a), (3.71)

Then the first derivative of the occupation operator N̂m = b̂
†
mb̂m can be obtained as:

dN̂m
dt

= ig′[(b̂†a)
2b̂m − b̂

†
mb̂

2
a] (3.72)

The occupation operator for atoms is related to N̂m by N̂a + 2N̂m = N̂ , where the total

occupation operator N̂ is a conserved quantity since [N̂ , Ĥ] = 0.

In order to get a closed equation for N̂m, we take the second derivative [90]:

d2N̂m
dt2

= 2g′2(12N̂2
m − 8N̂N̂m + N̂2 − N̂)− 1

2
({Â, B̂}+ i[Â,

dN̂m
dt

]), (3.73)
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where the operators Â and B̂ are given by:

Â = 2ϵa − ϵm + 2T ′
bg(2N̂ − 4N̂m + 1)− 2T ′

mm(N̂m − 1) + T ′
am(4N̂m − 2− N̂) (3.74)

B̂ = Ĥ − ϵmN̂m − ϵa(N̂ − 2N̂m)− T ′
bg[4N̂

2
m − (4N̂ − 2)N̂m + N̂2 − N̂ ]− T ′

mm(N̂2
m − N̂m)

− T ′
am(N̂N̂m − 2N̂2

m) (3.75)

Now we do the approximation by replacing the operators in Eq. 3.73-3.75 by real numbers:

d2Nm
dt2

= 2g′2(12N2
m − 8NNm +N2 −N)− AB (3.76)

3.2.2 Stationary magnetic field near the resonance

Starting from atomic BEC

If the initial state is taken to be the fock state |Na = N,Nm = 0⟩ and the magnetic field is

fixed at a particular value, the total energy is conserved to be H = ϵaN + T ′
bg(N

2 − N).

Then Eq. 3.76 is solved numerically with initial conditions Nm|t=0 = dNm/dt|t=0 = 0 and

total particle number N = 60, 000, see Fig. 3.15.

In the perturbation regime where Nm ≪ N :

d2Nm
dt2

≈ 2g′2N2 − PNm, (3.77)

where P = 16g′2N + [2ϵa − ϵm + 2(2N + 1)T ′
bg + 2T ′

mm − (N + 2)T ′
am][2ϵa − ϵm + 2(2N −

1)T ′
bg + T ′

mm −NT ′
am]. The solution of Eq. 3.77 is:

Nm =
2g′2N2

P
[1− cos (

√
Pt)] ≈ g′2N2t2. (3.78)
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Figure 3.15: Molecule production from atomic BEC at fixed magnetic fields with
different detunings δ(B). Positive (negative) detuning means the molecular state is above
(below) the atomic scattering state, see text. The dashed lines are results when T ′

bg = T ′
mm =

T ′
am = 0.

So molecule number grows quadratically at early time independent of the detuning.

Starting from molecular BEC

If the initial state is |0, N/2⟩ instead, H = ϵmN/2 + T ′
mm(N2/4 − N/2) and the initial

conditions are Na|t=0 = 0 and dNa/dt|t=0 = 0 with the corresponding equation of motion

for atomic population Na:

d2Na
dt2

= 4g′2(N + 2NNa − 3N2
a ) + 2AB, (3.79)
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Figure 3.16: Early time dynamics of the number of molecules produced from
atomic BEC at different detunings. The data points are from numerical calculation
considering the interaction terms corresponding to the solid curves in Fig. 3.15. The solid
red line is a quadratic fit in the low molecule number regime.

where A = 2ϵa − ϵm + 2T ′
bg + (N − 2)(T ′

am − T ′
mm) + (4T ′

bg + T ′
mm − 2T ′

am)Na and B =

H − ϵmN/2− (N2 − 2N)T ′
mm/4 + [ϵm− 2ϵa + 2T ′

bg + (N − 1)T ′
mm− T ′

amN ]Na/2 + (T ′
am−

T ′
mm/2− 2T ′

bg)N
2
a/2.

Using the particle number conservation relation Na + 2Nm = N and working in the

perturbation regime where Na ≪ N , we get

d2Na
dt2

≈ 4g′2N +QNa, (3.80)

where Q = 8g′2N + 4T ′2
bg − [N(T ′

am − T ′
mm) + 2ϵa − ϵm]2. The solution of Eq. 3.80 is:

Na =
8g′2N
Q

sinh2 (

√
Qt

2
). (3.81)

If the factor Q > 0, atom number will increase exponentially in the beginning (see Fig. 3.17
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Figure 3.17: Dissociation of molecular BEC at fixed magnetic fields with different
detunings δ(B) at early time. The data points are numerical results considering the
interaction terms with nonzero T ′

bg, T
′
mm and T ′

am. The solid lines are fits using Eq.3.81.

and Fig. 3.18), while if Q < 0, the atom number will oscillate sinusoidally with the oscillation

frequency ℏω =
√

|Q| =
√

(ℏωz/2− δ(B))2 − 8g′2N if the interactions between atoms and

molecules are neglected, see Fig. 3.19. The transition point between these two distinct

behaviors is given by Q = 0, i.e. B − B0 = (−4g′
√
2N + ℏωz)/2∆µ = −5.8 mG, which is

consistent with the transition point for an adiabatic ramp in Fig. 3.22.

We emphasize that if we do mean field approximation starting from Eq. 3.71 by replacing

the operators b̂a and b̂m with c-numbers, there would be no dynamics happening for atoms

starting from pure molecules and no atoms with ba = 0. So our formalism here captures

quantum fluctuation of the atomic field and reproduces the correct perturbative behaviour

shown in Eq. 3.81, consistent with the perturbative fully quantum mechanical solution in

Ref. [140].
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Figure 3.19: The oscillation frequency of atom number at different magnetic field
for negative Q factor starting from a pure molecular BEC. Here we set T ′

bg = T ′
am =

T ′
mm = 0.
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3.2.3 Magnetic field ramp across the resonance

Starting from atomic BEC

Molecule can also be created from an atomic BEC by ramping the magnetic field from

Bi down across the resonance point at B0 as B(t) = Bi − Ḃt. In this way, the detuning

δ(B) = ∆µ(Bi−Ḃt−B0) is time-dependent and the total energy H becomes time-dependent

too, which obeys the equation of motion:

dH

dt
=
∂H

∂t
= −∆µḂNm. (3.82)

Together with Eq. 3.76 and the initial conditions Nm|t=0 = dNm/dt|t=0 = 0, H|t=0 =

ϵaN + T ′
bg(N

2 −N), the dynamics of molecule number is solved as shown in Fig. 3.20.
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Figure 3.20: Dynamics of molecule number starting from an atomic BEC through
magnetic field ramps from high fields with different speeds. The solid lines are
solutions considering all the interaction terms and the dashed lines corresponds to setting
T ′
bg = T ′

am = T ′
mm = 0.

According to Ref. [86], the probability of pairing atoms in BEC into Feshbach molecules
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is given by:

p = 1− e−2πδBEC
LZ , (3.83)

where the Landau-Zener parameter is given by:

δBECLZ = n̄
4πℏ
m

|
abg∆B

Ḃ
|. (3.84)

The average atomic density in our case is n̄ =
∫
n2(r)dr/

∫
n(r)dr = N/(

√
2πlzπR

2).

Substituting the parameters we used for the above numerical calculations, we get n̄ =

7.8 × 1013 cm−3. Setting the resonance width ∆B as a fitting parameter, we use the for-

mula p = 1− exp(−2πC0∆B/Ḃ) to fit the numerical data presented in Fig. 3.21, where the

constant C0 = 3.9 kHz. The fit gives an effective resonance width of 2 mG.

On the other hand, according to the recent analytical result from Ref. [98],

Nm = N +
ln(2− xN )

ln(x)
, (3.85)

where x = exp(−g2/∆µḂ). Eq. 3.85 fits the numetical data in Fig. 3.21 perfectly, with the

coupling strength g = h× 33 Hz.

Starting from molecular BEC

According to Ref. [123], a phase transition occurs when the magnetic field is ramped adia-

batically from below the resonance starting from a pure molecular BEC. Here we use a small

ramp rate in our numerical simulation starting from the initial state |ψ0⟩ = |0, N/2⟩ to find

out the phase transition point.

Figure 3.22 shows the result of an adiabatic ramp from low field to high field values
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Figure 3.21: Saturated molecule fraction at the end of the magnetic field ramp
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molecule number at low field e.g. see Fig. 3.20 and the magenta solid line is a fit to the part
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Ref. [98].

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
B - B

0
 (G)

0

1

2

3

4

5

6

P
a
rt

ic
le

 n
u
m

b
e
r

10
4

N
a

2N
m

Figure 3.22: Population of atoms and molecules for adiabatic ramp from low field
to high field values starting from a pure molecular BEC. The ramp speed is chosen to
be 0.05 G/s. The result already converges for 0.1 G/s. Here we set T ′

bg = T ′
am = T ′

mm = 0.

60



starting from a pure molecular BEC. The transition to atomic BEC happens at 6 mG below

the resonance, consistent with the prediction of the transition point in Ref .[123].

3.2.4 Exact numerical solutions

Here we solve the following Hamiltonian exactly in the Fock basis |M,N − 2M⟩, where N is

the total particle number and M = 0, 1, 2, ..., N/2 (when N is even) is the molecule number:

Ĥ = ∆b̂
†
mb̂m + g′(b̂†mb̂ab̂a + b̂mb̂

†
ab̂

†
a), (3.86)

where ∆ = ϵm − ϵa is the molecular energy relative to the free atom scattering threshold.
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Figure 3.23: Mean atom number of the ground state at different magnetic field for total
particle number N = 10,000.

To look at the ground state property, we diagonalize the Hamiltonian exactly for 10,000

particles and calculate the mean atom number associated with the ground state wavefunction

(see Fig. 3.23). The result is consistent with that from the adiabatic ramp in the mean field

approximation (see Fig. 3.22), where the mixture of atomic and molecular BECs suddenly

appear at a magnetic field value below the resonance.

When the magnetic field is on resonance and the initial state is a pure atomic BEC,
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Figure 3.24: Evolution of mean molecule number on resonance ∆ = 0 starting from atomic
BEC |0, N⟩ with different total particle number.

coherent oscillation between atoms and molecules occurs as shown in Fig. 3.24. It can

be seen that the oscillation damps out after several cycles and saturates to some constant

value, unlike the mean field calculation results in Fig. 3.15. We perform Fourier transform to

extract the main oscillation frequency as a function of total particle number, which follows

the scaling
√
N/ lnN , see Fig. 3.25(left) [140]. The final saturated conversion efficiency

2M/N is close to 75% at large total particle number, see Fig. 3.25(right).
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Figure 3.25: (left) Main oscillation frequencies (open circles) extracted from the Fourier
transform of the numerical data in Fig. 3.24 compared to the scaling

√
N/ lnN (solid line).

(right) Saturated conversion efficiency 2M/N at late time in Fig. 3.24.
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CHAPTER 4

PATTERN FORMATION IN A DRIVEN BOSE-EINSTEIN

CONDENSATE

Pattern formation is ubiquitous in nature at all scales, from morphogenesis and cloud forma-

tion to galaxy filamentation. How patterns emerge in a homogeneous system is a fundamental

question across interdisciplinary research including hydrodynamics [42], condensed matter

physics [108], nonlinear optics [10], cosmology [94] and bio-chemistry [139, 82]. Paradigmatic

examples such as Rayleigh-Bénard convection rolls and Faraday waves [19, 106] have been

extensively studied and found numerous applications [50, 95, 8]. How such knowledge applies

to quantum systems and whether the patterns in a quantum system can be controlled re-

main intriguing questions. Here we show that the density patterns with two- (D2), four- (D4)

and six-fold (D6) symmetries can emerge in Bose-Einstein condensates on demand when the

atomic interactions are modulated at multiple frequencies. The D6 pattern, in particular,

arises from a resonant wave mixing process which establishes phase coherence of the excita-

tions that respect the symmetry. Our experiments explore a novel class of non-equilibrium

phenomena in quantum gases, as well as a new route to prepare quantum states with desired

correlations.

4.1 Introduction

In classical systems, the onset of pattern formation can be understood from the dynamics and

interaction of the excitations in the momentum space, described by the nonlinear amplitude

equation [69, 133, 116, 124],

dui
dt

= αiui +
∑
j,k

βijkujuk +O(u3), (4.1)
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where ui is the amplitude of the i-th excitation mode. Starting from small amplitudes, the

modes grow exponentially at the rate αi. The quadratic term becomes important as the mode

grows, and the tensor βijk describes the mixing of the modes and determines the resulting

pattern. The explicit form of βijk is given by the underlying physics, e.g. Navier-Stokes

equation for the hydrodynamic systems [91, 135].

In quantum systems, patterns, often characterized by correlation functions, frequently

arise from long-range interactions or dynamics far from equilibrium. In polaritonic quantum

fluids, hexagonal patterns emerge due to scattering between polaritons [9]. In cold atoms,

Faraday waves induced by modulation of trap frequency [52, 61] or interactions [110, 115]

occur in 1D Bose-Einstein condensates (BECs). BECs also develop spin [88] or density wave

patterns [73] by quenches of atomic interaction. Droplets in a dipolar BEC form a hexagonal

pattern due to Rosensweig instability [83]. Recently, supersolid order, for which a superfluid

exhibits spatial correlations, emerges in condensates with spin-orbit coupling [93] or dipolar

interactions [21, 134, 31].

We report formation of various 2D density wave patterns in a uniform BEC by mod-

ulating the atomic interactions at two frequencies in the vicinity of a Feshbach resonance

(Fig. 4.1a). The interaction modulation is realized by applying an oscillating magnetic field

to the sample [35, 56]. The magnetic field is in the z−direction perpendicular to the sample,

while the pattern forms in the horizontal x − y plane (Fig. 4.1b). By changing the ratio

of the two modulation frequencies, density patterns with D2, D4 and D6 symmetries are

observed in situ and analyzed. The D6 density wave pattern, in particular, results from a

novel coherent process that resonantly couples six momentum modes.

To understand the pattern formation process in a driven condensate, we derive the asso-

ciated quantum nonlinear amplitude equation as (see Sec. 4.2)

dâk
dt

= γ1â
†
−k + γ2

∑
k1

â
†
k1−kâk1 − γ∗2

∑
k2

âk2 âk−k2 , (4.2)
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Figure 4.1: Pattern formation in a BEC with interaction modulation at two fre-
quencies. a, A BEC (green) of 133Cs atoms is trapped in a 2D circular potential well (blue).
An oscillating magnetic field B(t) in the z direction modulates the scattering length. The
atomic density is recorded by a camera. b, An example image of the driven BEC displays
density waves. c, Scattering processes that generate D4 and D6 density waves are illustrated
in momentum space in two stages. In the seeding stage, BEC (black dot) at k = 0 produces
atom pairs with opposite momentum (blue arrows). In the pattern forming stage, collisions
between the atom pairs and the BEC generate four or six modes with k = kf (orange arrows)
with equal angular spacing, which we study in this work. For the creation of D4 and D6
patterns, the modulation frequencies are ω/2 followed by ω, and ω followed by ω/2, respec-
tively. Cyan circles indicate other modes populated during the scattering processes.

where âk and â
†
k are the bosonic annihilation and creation operators with momentum ℏk,

respectively, ℏ = h/2π is the reduced Planck constant, the summations include all resonant

scattering processes, and the rate constants γ1 and γ2 are given by the modulation strengths.

This equation is reminiscent of the classical amplitude equation Eq. 4.1.

The wave mixing processes leading to D4 and D6 patterns can be described in two stages

(Fig. 4.1c). In the seeding stage, atom pairs with opposite momentum are generated from

the condensate by a single-frequency modulation. Such a process, given by the first term in

Eq. 4.2, seeds and amplifies the primary excitations that spontaneously break the rotational
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symmetry of the system. In the pattern forming stage, the same or a different frequency

component is introduced to the modulation, which stimulates scatterings into a particular

pattern with the desired symmetry (see Sec. 4.2). This process is described by the nonlinear

terms in Eq. 4.2. Finally, the excitation modes interfere with the BEC to form the density

wave n(r), which we observe. The density wave relates to the excitations âk as n̂(r) =

n0[1̂+N
−1/2
0

∑
k
(âk+ â

†
−k)e

ik·r], where n0 is the condensate density and N0 ≫ 1 is the atom

number in the condensate. We emphasize that the spatial symmetry of the patterns is only

controlled by the ratio of the modulation frequencies, and the sample is colllisionally thin.

These contrast the former Faraday wave experiments [50, 95, 52, 61, 110, 115], where patterns

rely on the strength of the modulation amplitudes, and relaxation in the hydrodynamic

regime.

4.2 Quantum dynamics of pattern formation

We start from the general form of Hamiltonian of driven BECs,

H =

∫
d3rΨ†(r, t)

p2

2m
Ψ(r, t) +

∫
d3rΨ†(r, t)V (r)Ψ(r, t)

+
g(t)

2

∫
d3rΨ†(r, t)Ψ†(r, t)Ψ(r, t)Ψ(r, t),

(4.3)

where the interaction strength is modulated as g(t) = 4πℏ2
m [adc+a1(t) sinω1t+a2(t) sin(ω2t+

ϕ)]. Here adc is a small offset scattering length to keep the condensate stable, a1,2 are

amplitudes of scattering length modulation and ϕ is the relative phase between the two

frequency components ω1 and ω2.

The external potential V (r) is neglected later because it only serves to determine the

initial wavefunction of BECs and doesn’t affect the dynamics. After doing the Fourier

transform Ψ(r) = 1√
V

∑
k âke

ik·r, we obtain the Hamiltonian in momentum space as

66



H =
∑
k

ϵkâ
†
kak +

g(t)

2V

∑
k1,k2,∆k

â
†
k1+∆kâ

†
k2−∆kâk1 âk2 , (4.4)

where V is the volume of condensate and the dispersion is ϵk = ℏ2k2/2m.

After transferring to the rotating frame with âk → âke
−iϵkt/ℏ and using the rotating

wave approximation to eliminate the fast oscillating terms, the Hamiltonian becomes time-

independent:

HI =
i

4V
(
∑
k

g1â
†
kâ

†
−kâ0â0 +

∑
k′
g2â

†
k′ â

†
−k′ â0â0 +

∑
k1,k2

g2e
−iϕâ†k2 â

†
k1−k2

âk1 â0) + h.c.,

(4.5)

where g1 = 4πℏ2a1/m and g2 = 4πℏ2a2/m and the summations go over the processes that

satisfy the following energy conservation conditions:

ϵk + ϵ−k = ℏω1,

ϵk′ + ϵ−k′ = ℏω2,

ϵk2 + ϵk1−k2 = ϵk1 + ℏω2. (4.6)

Here the left/right hand side is the total energy after/before the collision.

Then the equation of motion for âk is obtained to second order in the Bogoliubov ap-

proximation â0 ≈ â
†
0 ≈

√
N0 as

67



dâk
dt

= γ1â
†
−k + γ2

∑
k1

â
†
k1−kâk1 − γ∗2

∑
k2

âk2 âk−k2 , (4.7)

where the growth rates are given by γ1 = N0πℏa1
mV , γ2 =

√
N0πℏa2
mV e−iϕ. Here all the momenta

are restricted to the horizontal plane and the magnitude of k is |k| = kf =
√
mω1/ℏ. We

have been using ω1 = ω = 2π × 450 Hz and ω2 = ω/2 = 2π × 225 Hz in our experiments.

The formation of density wave patterns originates from the momentum and energy con-

servation of underlying bosonic stimulated scattering processes (see Fig. 4.1c). For the D4

pattern formation under Scheme III described in Sec. 4.4.2 , during the first modulation of

frequency ω/2, a pair of BEC atoms absorb a quantum of energy ℏω/2 and scatter into a

pair of atoms with opposite momenta ±k1 at |k1| = kf/
√
2 and energy ϵk1 = ℏω/4. Then

one atom with k1 collides with one BEC atom absorbing another quantum of ℏω/2. One of

them scatters into k with magnitude kf and energy ϵk = ℏω/2 at 45◦(or −45◦) relative to

k1. The other one is scattered into k1−k with magnitude kf/
√
2 and energy ϵk1−k = ℏω/4

at −90◦ (or 90◦) relative to k1. This process is described by the second term on the right

hand side (RHS) of Eq. 4.7. However, here the third term is zero because they don’t satisfy

both momentum and energy conservation by releasing an energy quantum of ℏω/2 into the

driving field. On the other hand, one atom with −k1 can collide with one BEC atom and

one of the scattered atoms has momentum kf at 45◦ or −45◦ relative to −k1. Thus, seeds

of 4 momentum modes at kf with 90◦ relative angular spacing are generated. Later, when

another modulation of frequency ω is applied, those 4 modes get amplified with pairs of BEC

atoms scattering into them. This corresponds to the first term on the RHS of Eq. 4.7. Finally

the those 4 momentum modes with 90◦ angular spacing interfere with the BEC to form the

D4 density wave pattern. Note that the D4 pattern emerges regardless of the presence of the

modulation at ω/2 in the pattern-forming stage, so only modulation at ω is applied there.
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On the other hand, for D6 pattern formation under Scheme II, a modulation of frequency

ω is first applied to generate pairs of opposite momentum modes ±k at kf and energy

ϵk = ℏω/2. Then when the second frequency component ω/2 is added, an atom with k

collides with a BEC atom absorbing one energy quantum ℏω/2 and scattering into atoms

with k2 and k − k2 with the same magnitude kf and energy ϵk2 = ϵk−k2 = ℏω/2 at ±60◦

relative to k. This corresponds to hermitian conjugate of the third term on the RHS of

Eq. 4.7. Also, atoms with momentum k2 or k − k2 can collide with one BEC atom into

atoms with k, corresponding to the second term on the RHS of Eq. 4.7. In the meantime,

one atom with −k can collide with one BEC atom and scatter into −k2 or −(k−k2) at ±60◦

relative to −k. Thus, 6 momentum modes with 60◦ relative angular spacing are generated

and are amplified by the ω frequency component at the same time. Eventually they interfere

with the condensate and form the D6 density wave pattern.

To form a general n-fold symmetric pattern in momentum space, it is required to have

three different modulation frequencies: two of them stimulate population into two mo-

mentum rings and another one creates coupling between these two momentum rings, see

Sec. 8.1. Eventually N momentums will be distributed uniformly on each ring and form

a N-fold symmetric pattern in real space by interfering with BEC. The D4 and D6 pat-

terns are the only special cases we know that require less than 3 modulation frequencies.

Moreover, the excitation modes associated with these patterns are expected to be squeezed

and entangled due to the underlying pair production scattering processes. For example,

counter-propagating momentum modes in the D2 pattern are in a two-mode squeezed state

|Ψ(τ)⟩ = 1
cosh(gτ)

∑∞
n=0 tanh

n(gτ) |n, n⟩±k [36], where τ is interaction modulation time and

g is the coupling constant proportional to modulation amplitude. The populations n in

counter-propagating modes are always equal and thus maximally squeezed. Similarly, for

D6 patterns, the three pairs of modes with opposite momentum are also squeezed and with

additional coupling between different pairs due to the second modulation frequency. We
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expect them to be in a state with general form as

|Ψ(τ)⟩ =
∞∑

α,β,γ,δ=0

Cα,β,γ,δ(τ) |α, β, γ + δ − β, α + β − γ, γ, δ⟩k1,k2,k3,−k1,−k2,−k3
, (4.8)

where α, β, γ, δ = 0, 1, 2... with constraints γ + δ ≥ β and α + β ≥ γ. Cα,β,γ,δ(τ) is a

complex amplitude of the fock state at evolution time t = τ . Due to the conservation of total

momentum, the population difference nki − n−ki for a pair of opposite momentum modes

±ki is always equal to that of another pair n−kj − nkj . The squeezing and entanglement

properties of this state is to be studied in our future experiments.

4.3 Experimental setup

We start with BECs of 60,000 cesium atoms loaded into a disk-shaped dipole trap with a

radius of 14.5 µm in the horizontal direction. The horizontal confinement is provided by a

blue-detuned laser at 780 nm. We shape the laser beam profile using a digital micromirror

device and project it to the atom plane through a high-resolution objective. The resulting

circular potential well has a barrier height of h × 140 Hz. The uniformity of the potential

well is reflected by the atomic density profile at the beginning of the modulation as shown

in Fig. 4.2b, where the variation is approximately 10% of the mean density. Atoms are

tightly confined in the vertical direction with a 1/e2 radius of 0.78 µm and a harmonic trap

frequency of 259 Hz.

After preparing the sample, we modulate the magnetic field near a Feshbach reso-

nance, which causes the s-wave scattering length a of the atoms to oscillate as a(t) =

adc + a1(t) sinω1t + a2(t) sin (ω2t+ ϕ). We use an arbitrary waveform generator to con-

trol the current modulation in the coils, which leads to the magnetic field being modulated

according to a designed waveform. A small positive offset scattering length adc = 2a0 is
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maintained throughout the experiment to keep the condensate stable. Since the chemical

potential is much smaller than the vertical trapping frequency, the BEC is in the quasi-2D

regime [113]. For generating the D2 density wave pattern, we keep modulating the scattering

length at frequency 450 Hz with amplitude 45 a0 for 23.8 ms. For D4 pattern, we first mod-

ulate at 225 Hz for 3 cycles with amplitude 45 a0 and then switch to 450 Hz with the same

amplitude for 24 ms. To generate D6 pattern, the first 10 cycles of modulation is at 450 Hz

with amplitude 30 a0, which is then mixed with another frequency component at 225 Hz and

amplitude 25 a0 for 22.8 ms. The relative phase ϕ between these two frequency components

is 0. The modulation frequencies we employ do not match the vertical trap frequency, and

thus the atomic motion in the vertical direction is not excited. This distinguishes our ex-

periment from the previous Faraday wave experiments on BECs [52, 115, 1]. In addition, it

is only important that the two modulation frequencies have the proper ratio of 1:2 or 2:1 to

ensure the phase matching condition. Specific value of any single frequency is unimportant.

We finally perform in situ absorption imaging to observe the resulting density waves in

condensates using the high-resolution objective and a CCD camera. Our imaging system is

sensitive to density fluctuations of spatial frequency ranging from 0 up to 3.44 µm−1 [76],

which covers the density waves we observe at kf = 2.43 µm−1.

In order to extract the population of excited modes from their interference with the con-

densate, we first Fourier transform the images including density waves. Then in the Fourier

space we focus on the ring at |k − kf | ≤ 0.1kf and cut it using angular slices of 3◦ to count

the average Fourier magnitude Aθ in the direction at angle θ. In general, the sensitivity of

our imaging system varies for signals with different wavenumber. We measure the modu-

lation transfer function M(k) of thermal atoms and find that the proportional constant of

measured strength of density fluctuations at kf to its corresponding real strength is M(k =

kf ) = 0.45 [76]. The relation between density wave amplitude Aθ and population |ak|2 is

|Aθ|2 = 4N0 cos
2 (ωt/2)|ak|2, where the phase ωt/2 ≈ 0.57 rad at the time we perform the
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imaging. Finally the population is evaluated as |ak|2 = |Aθ|2/[M2(k = kf )4N0 cos
2(ωt/2)].

Also, we observe the density waves stroboscopically every 4.4 ms.

4.4 Results

4.4.1 Formation of density waves with D6 symmetry

We first describe the experimental procedure for the formation of the density waves with

D6 symmetry. In the seeding stage, we apply a single-frequency modulation as a(t) =

adc + a1 sinωt, where ω/2π = 450 Hz, a1 = 30 a0, adc = 2 a0 and a0 is the Bohr radius.

After t = 22.2 ms, in the pattern forming stage, we add a second frequency component to

the modulation as a(t) = adc + a1 sinωt+ a2 sinωt/2, where a2 = 25 a0 (see Fig. 4.2a).

We analyze the symmetry of the density wave patterns based on Fourier analysis. In

the seeding stage, only stripe patterns appear. In the pattern forming stage, hexagonal

lattice patterns with D6 symmetry emerge, signified by six distinct modes in the Fourier

space. The modes are equally spaced by π/3 in their directions with the same wavenumber

kf =
√
mω/ℏ = 2.43 µm−1 [35] (see Fig. 4.2b), where m is the atomic mass.

The presence of the D6 pattern can be further confirmed with a pattern recognition

algorithm [54] (see Fig. 4.2c). To quantify the strength of the patterns, we evaluate the

density correlation function g(2)(θ) ≡ ⟨|Aφ|2|Aφ+θ|2⟩/⟨|Aφ|2⟩2, where Aθ =
∫
n(r)e−ikθ·rdr

is the Fourier amplitude evaluated at kθ with magnitude |kθ| = kf and angle θ. The angle

brackets denote averaging over both the angle φ from 0 to 2π and the images. The evolution

of g(2) confirms the growth of different patterns in the seeding and pattern forming stages

(Fig. 4.2d).
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Figure 4.2: Formation of density waves with D6 symmetry. a, The scattering length
is modulated in two stages. The modulation frequency is 450 Hz in the first ten cycles,
which is then superposed with a second modulation of 225 Hz (see text). b, Examples
of in situ images at times t = 0, 22.6 and 45 ms (top row) and the corresponding Fourier
transforms (bottom row). At 45 ms, the Fourier transform displays 6 peaks with π/3 angular
spacing that break the rotation symmetry. The 6-peak patterns orient randomly in repeated
experiments. c, Pattern recognition based on 185 Fourier transformed images yields six
strong peaks (red circles) on the vertices of a hexagon (yellow). Two weaker ones come from
patterns with D4 symmetry. We remove the contribution from the BECs using principal
component analysis. d, Correlations g(2) of the Fourier modes with angular spacing θ. The
peaks at π/3, π/2 and π indicate the strength of the patterns with D6, D4 and D2 symmetry
respectively.

Principal component analysis (PCA)

In order to remove the background of Fourier space in Fig. 4.2c, we collect 100 images of

pure BECs and apply PCA algorithm to construct the bases and subtract the projection

onto these bases from the Fourier transform of BECs with density waves.
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We first get the Fourier amplitude’s magnitude ni(k) of the ith image of pure BEC

atomic density ni(r). Each p× p square matrix ni(k) is rearranged into a 1× p2 row vector.

Then all the row vectors are arranged to form a rectangular matrix Mij , where j ranges

from 1 to p2 = 1212. The mean value of each column is shifted to zero by subtracting the

average of experimental realizations, resulting in the data matrix X = M − M̄ . Our goal

is to diagonalize the covariance matrix XTX to find its eigenvectors wj and eigenvalues λj ,

which corresponds to statistical independent bases (principal components) and variance of

X’s projection Xijwj onto each basis, respectively. We use singular value decomposition

(SVD) to perform this diagonalization.

The first 99 principal components are kept and the corresponding variances are shown in

Fig. 4.3a. The average of ni(k) is counted as an additional basis w0. In Fig. 4.3b, we plot the

average of ni(k) and the two principal components that have the largest and second largest

variances. Next, we use those constructed bases to remove the background in the Fourier

space nd(k) of the atomic densities of BECs with density waves nd(r). As an example,

in Fig. 4.3c, we project one nd(k) to all the principal components wj to reconstruct the

background. Finally the background is subtracted from the original Fourier space and only

the signals from density waves are left.

4.4.2 Density wave patterns in real space

We tailor the modulation waveform to create different patterns. Here three modulation

schemes that lead to patterns with D2, D4 and D6 symmetries are reported. Scheme I: we

apply the modulation at a single frequency ω. Scheme II: we modulate at frequency ω in the

seeding stage and superpose a second frequency ω/2 in the pattern forming stage (Fig. 4.2a).

Scheme III: we modulate at frequency ω/2 and then switch to frequency ω.

To reveal the density patterns in real space, we employ a 2D pattern recognition algo-

rithm. Since the pattern in each image appears with random orientation and displacement,
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the algorithm is developed to rotate and align the patterns (Fig. 4.4a).

We determine the orientation of each image as illustrated in Fig. 4.2c, and align all of

them in the same direction. We then translate each of the images independently to maximize

the spatial variance of their average. Finally we extract the underlying pattern by averaging

all aligned images. To eliminate long wavelength variations that are uncorrelated with the

pattern and to only focus on patterns formed at the wavelength corresponding to kf , we

filter the density fluctuations at |k| ≤ 0.75kf from the images to get the density waves ñ(r).

The results of the 2D pattern recognition algorithm are shown in Fig. 4.4b. Single

frequency modulation (Scheme I) produces D2 stripe patterns. Scheme II (ω → ω/2) results

in a hexagonal lattice pattern, consistent with Fig. 4.2. Scheme III (ω/2 → ω) results in a

square lattice pattern. We further determine the strengths of different symmetry components

in each image P based on the fit: P = c2P2+c4P4+c6P6, where Pn are normalized patterns

with Dn symmetry, and cn are the fitting parameters. The results, shown in the bar diagrams

of Fig. 4.4b, suggest that different schemes are effective in generating patterns with different

symmetries.

Remarkably, all three patterns extend throughout the entire sample. The spatial ex-

tent of the patterns can be evaluated from their real space correlation functions g̃(2)(r) ≡∫
ñ(r0)ñ(r0+r)dr0/

∫
ñ2(r0)dr0. Correlations along principle directions, shown in Fig. 4.4c,

extend across the entire sample of diameter 25 µm. We note that the finite correlations of

2D superfluid might limit the correlation length we report here. Comparing the patterns,

we observe that the D6 pattern is a factor of 5 more pronounced than D4 even though these

two schemes employ similar modulation strengths.

Real space pattern recognition algorithm

We consider each individual in situ absorption image as a combination of several common

patterns with random orientations and displacements which contribute to the image with
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Figure 4.4: Density wave patterns in real space. a, In our pattern recognition algo-
rithm, each of the in situ images is first rotated and then translated to overlap the density
waves. The translation maximizes the variance of the averaged image. b, Resulting density
waves from the algorithm for Scheme I (stripes): single modulation frequency ω, Scheme
II (hexagonal lattice): ω followed by ω/2, and Scheme III (square lattice): ω/2 followed
by ω. The green lines are guides to the eye to highlight the corresponding pattern. The
green arrows show the direction along which the real space correlation is evaluated in panel
c. The bar diagrams show the relative weights of D2, D4 and D6 symmetry components
from fitting the patterns. c, Real space correlation functions evaluated from the patterns.
The oscillations have periods of 2.63(1), 3.05(1) and 2.65(1) µm for schemes I, II and III,
respectively. The ratio of the periods is 1.156(2), consistent with theory value 2/

√
3 ≈ 1.155.

The solid lines are guides to the eye.
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different weights. To reveal the common pattern, we align the strongest components from

repeated experimental realizations and the weaker ones are averaged to zero. This alignment

can be achieved from our real space pattern recognition algorithm.

Here we describe the details of the 2D pattern recognition algorithm (Fig. 4.4a). We

first filter out the low frequency noise at |k| < 0.75kf from the in situ absorption images to

get a set of N = 185 filtered images of atomic density fluctuations, ñi(x, y), i = 1, · · · , N

(see Fig. 4.7a). Let Tθi,ri(ñi) denote the result of rotating ñi by θi and then translating by

ri, where we impose the constraint |ri| < 2π/kf . The objective function L is the spatial

variance of the average image n̄ after rotating and translating individual images:

n̄({θi}, {ri}) =
1

N

∑
i

Tθi,ri(ñi), (4.9)

L({θi}, {ri}) =
1

S

∫
n̄2dxdy −

(
1

S

∫
n̄dxdy

)2

, (4.10)

where S is the total area of the atomic density fluctuations. The optimal rotation angles and

translation displacements {θi}, {ri} are found by maximizing L, and the pattern recognized

is n̄ with the optimal parameters.

Since the rotation angle θi and displacement ri are independent degrees of freedom, we

perform the optimization of the objective function L in two separate steps. We first find

the orientation of each image from the angular distributions of density wave amplitudes Fθ

obtained from fitting (see Fig. 4.7b). The rotation angles θi are changed for individual images

in order to maximize the variance of the averaged angular distribution [54]. Then the angles

are fixed to be the ones after the above optimization before we optimize the displacement

of each image. Finally, we translate each image ñi by ri to maximize the spatial variance

of resulting averaged density fluctuation n̄. The recognized common patterns for different

modulation schemes are shown in Fig. 4.4b.
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Symmetry decomposition of density patterns

We consider each recognized pattern P shown in Fig. 4.4b as a superposition of normalized

two-, four- and six-fold symmetry components P2,4,6 with amplitudes c2,4,6 and a small offset

c0. In order to find the contribution of each symmetry component, we fit the patterns using

the following function:

P = c2P2 + c4P4 + c6P6 + c0, (4.11)

where

P2 = Rθ2 cos(kfx+ ϕ2), (4.12)

P4 =
1√
2
Rθ4

[
cos(kfx+ ϕ4,1) + cos(kfy + ϕ4,2)

]
, (4.13)

P6 =
1√
3
Rθ6

[
cos(kfx+ ϕ6,1)

+ cos(−1

2
kfx+

√
3

2
kfy −

1

2
ϕ6,1 +

√
3

2
ϕ6,2)

+ cos(−1

2
kfx−

√
3

2
kfy −

1

2
ϕ6,1 −

√
3

2
ϕ6,2)

]
.

(4.14)

HereRθ[·] denotes rotation by angle θ. There are 12 fitting parameters in total: {c2, c4, c6}

determine the strengths of the symmetry components, c0 determines the overall offset,

{θ2, θ4, θ6} determine the orientations, and {ϕ2, ϕ4,1, ϕ4,2, ϕ6,1, ϕ6,2} determine the displace-

ments. The optimal fitting parameters are shown in Table S1. One example of the symmetry

decomposition results for the D6 density pattern under Scheme II is shown in Fig. 4.5.
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Parameters units Scheme I Scheme II Scheme III

c2 µm−2 0.302(8) -1.49(4) -0.32(1)

c4 µm−2 -0.080(8) -0.41(3) -0.26(1)

c6 µm−2 0.070(6) 1.55(4) 0.072(8)

c0 µm−2 -0.009(3) 0.02(2) 0.005(4)
θ2 rad 1.594(2) -0.497(2) 0.274(2)
θ4 rad 1.537(6) -0.608(6) 0.206(2)
θ6 rad 1.455(6) -0.547(1) 0.008(7)
ϕ2 rad 0.96(3) 5.96(3) 4.93(3)
ϕ4,1 rad 4.4(2) 6.2(1) -1.72(5)
ϕ4,2 rad 5.6(1) 2.5(1) 3.84(4)
ϕ6,1 rad 1.2(1) 3.43(4) 2.6(2)
ϕ6,2 rad 2.7(1) 5.64(3) 3.8(2)

Table 4.1: Optimal fitting parameters for symmetry decomposition
.

-6 60
5 ¹m c6P6 c4P4 c2P2 PresP

Figure 4.5: Symmetry decomposition of the recognized D6 density pattern under
Scheme II. The pattern P = c6P6+c4P4+c2P2+Pres is projected onto the bases P6, P4 and
P2 with weights c6, c4 and c2. The residual Pres is dominated by the spatial inhomogeneity
of the sample.

4.4.3 Coherent properties of D4 and D6 density waves

The clear difference between the strength of the D4 and D6 patterns comes from the coher-

ence of the underlying scattering processes. For D4 patterns, phase coherence only exists

between counter-propagating modes. The orthogonal modes are generated from independent

scattering processes and are phase independent, illustrated in Fig. 4.6a. We evaluate the

two-point phase correlation function of the density waves as g(1)(θ) ≡ ⟨AφAφ+θ⟩/⟨|Aφ|2⟩,
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where Aθ = |Aθ|eiϕθ is the Fourier amplitude of the mode with wavenumber kf at angle θ

and ϕθ is its phase. The result, see Fig. 4.6b, shows a single peak at θ = π, simply due to

the realness of density. The absence of other features, particularly at θ = π/2, shows that

the density waves in orthogonal directions are incoherent. Close inspection of the phases of

orthogonal modes, see inset of Fig. 4.6b, confirms the absence of correlation.

The D6 pattern, on the other hand, displays a novel phase coherence in triplets of modes

angularly spaced by 2π/3, see Fig. 4.6c. Here we evaluate the three-point phase correlation

function as

g(3/2)(θ, θ′) ≡
⟨AφAφ+θAφ+θ′⟩√

⟨|Aφ|2⟩⟨|Aφ+θ|2⟩⟨|Aφ+θ′|2⟩
. (4.15)

The correlation shows two peaks at (θ, θ′) = (2π/3, 4π/3) and (4π/3, 2π/3) (see Fig. 4.6d),

where θ and θ′ are the relative angles between the three modes. This indicates phase coher-

ence of any three modes angularly separated by 2π/3. From repeated measurements, we find

that the phases of the triplets are statistically constrained to ϕ0+ϕ2π/3+ϕ4π/3 = 0 modulo

2π with a small standard deviation of δϕ = 1.1, see Fig. 4.6e and f. The phase differences,

e.g. ϕ0 − ϕ2π/3 − ϕ4π/3, as well as other permutations, are uniformly distributed and thus

uncorrelated.

The three-point phase correlation is an essential element to understanding the growth

and the origin of D6 patterns in our system. Based on Eq. 4.2, we show that the strength of

the D6 pattern satisfies the equation of motion (see Sec. 4.4.4 )

dArms
dt

= γ1Arms + γ2g
(3/2)A2

rms, (4.16)

where Arms is the root-mean-square of the six Fourier amplitudes that constitute the D6

pattern and g(3/2) ≡ g(3/2)(2π/3, 4π/3). A positive g(3/2) suggests that beyond small am-

plitudes, the nonlinear wave mixing term dominates and leads to a faster-than-exponential
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Figure 4.6: Coherent properties of D4 and D6 density waves. a, Pairs of modes with
opposite momenta (blue and yellow) are phase correlated in the D4 density wave pattern. b,

Phase correlation function g(1) between Fourier components of the density wave is evaluated
based on 123 images obtained with Scheme III. Strong correlations appear between modes
moving in opposite directions θ = π, but not perpendicular modes θ = π/2. The inset is the
histogram of the phase of perpendicular modes π/2, which shows no discernable correlation.
c, Three-point phase coherence appears in triplet modes (green and red) of the D6 density

wave pattern. d, Phase correlation function g(3/2) of three Fourier amplitudes separated
by angles θ and θ′, evaluated based on 185 images with Scheme III, shows two peaks at
(θ = 2π/3, θ′ = 4π/3) and (4π/3, 2π/3), supporting phase correlations of the triplets. e,
Phases of three modes separated by 2π/3 and 4π/3 show higher probability near the planes
ϕ0 + ϕ2π/3 + ϕ4π/3 = 0,±2π (blue planes). f, The probability distribution (red) of the
phase ϕ0+ϕ2π/3+ϕ4π/3 weighted by the atom number of the triplet modes displays a peak

at 0 (red bars). An Alternative combination of the phases, ϕ0 − ϕ2π/3 − ϕ4π/3, is evenly

distributed (blue bars). The green curve is from the numerical calculation.
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(hyperbolic) growth of the D6 density waves. The large measured value of g(3/2) = 0.58

explains the strong D6 pattern that we observe.

How does the three-point phase correlation emerge in a driven condensate? Starting

from a condensate seeded by the single-frequency modulation, we see that g(3/2) increases

quickly from zero after the two-frequency modulation starts (see Sec. 4.4.4). Theoretically

the growth of the correlation is linked to the resonant nonlinear coupling of excitation modes

that respect the symmetry and is described by dg(3/2)/dt = 3γ2Arms for small amplitudes

Arms << N
1/2
0 . Our measurement is in good agreement with the theory. Given the above,

the three-point phase relation ϕ0 + ϕ2π/3 + ϕ4π/3 = 0 (see Fig. 4.6f) can be understood

as the phase matching condition that maximizes the correlator g(3/2), which explains the

dominance of the D6 pattern in our experiment.

Our experiments thus provide insights into the origin of pattern formation from the co-

herent mixing of excitations in a homogeneous system. The pattern formation represents

a new form of quantum dynamics in which spatial symmetries are determined by the tem-

poral modulation. Moreover, the excitation modes associated with the patterns are phase

correlated in a unique way and the modes are expected to be entangled. These patterns can

thus serve as resource of multi-mode entanglement for applications in quantum control and

quantum information processing.

Phases and amplitudes of density waves

In order to precisely determine the spatial phase of the density waves at different directions,

we develop the following fitting procedure. Since the length scale of the density wave we

care about is only around kf , we first filter out the strong low frequency noise below 0.75kf

in the Fourier transform of in situ density profile n(x, y) and inversely transform it back to

obtain the filtered atomic density ñ(x, y) as shown in Fig. 4.7a. ñ(x, y) is the superposition

of plane waves at different directions confined in a finite sized BEC, thus the precision of
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Figure 4.7: Extraction of the phases and amplitudes of density waves at different
directions. a, The low frequency part at k < 0.75kf of the raw in situ atomic density and
its Fourier transform (upper row) is filtered and the density fluctuations at k ≥ 0.75kf and
its Fourier transform are obtained (lower row). b, The angular distribution of the Fourier
transform magnitude of original atomic density before the filtering (blue open circles) and the
corresponding amplitude from fitting the 1D mean density fluctuation nθ(x) of the filtered
atomic density (orange solid line). The scale of the left and right y axis differ by a factor of
331, which is one half of the area where density waves exist in unit of µm2. c, Three examples
of fitting the 1D mean density fluctuation nθ(x) at different directions with various Fourier
magnitudes (indicated by arrows in b.)

extracting the phase from its Fourier transform is limited by the small number of density

wave periods. In order to avoid this limitation, we first integrate the filtered atomic density

along a certain direction θ normalized by the corresponding integrated circular BEC area

to get the averaged 1D density oscillation nθ(x) =
∫
dyn(x, y)/

√
R2 − x2. Then the central
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part |x| ≤ 10 µm of nθ(x) is fitted using fit function f(x) = Fθ cos (kfx+ ϕθ), where Fθ and

ϕθ are the amplitude and phase of the density wave at kf and angle θ. Here the step size

of angle θ is chosen to be 1◦ for better resolution compared to the Fourier transform. The

amplitude Fθ and phase ϕθ are unaffected by density waves in other directions, which only

contribute noise at spatial frequency smaller than kf or are completely integrated out.

Figure 4.7b shows the angular distribution of density wave amplitudes from Fourier

transform compared with that from fitting. It can be seen that the results obtained from

these two methods are consistent with each other. At the angles indicated by the black

arrows in Fig. 4.7b, three examples of the fitting results are shown in Fig. 4.7c. The density

oscillation is fit very well when its Fourier amplitude is significant.

4.4.4 Hyperbolic growth and evolution of the phase relation of excited

modes in resonant nonlinear wave mixing

Hyperbolic growth of D6 pattern

As will be shown in Fig. 4.6, for D6 pattern, only the Fourier modes separated by 2π/3 are

coupled together. Since each Fourier mode Aθ =
√
N0(âke

−iωt + â
†
−ke

iωt) consists of two

opposite momentum modes, six momentum modes separated by π/3 are coupled together.

Let’s first consider a simple model where there are only six modes âi, i = 1, 2, · · · , 6,

separated by π/3 with momentum |ki| = kf . Under driving Scheme II, the equation of

motion reads,

dâi
dt

= γ1â
†
i+3 + γ2(â

†
i+2âi+1 + â

†
i−2âi−1)− γ∗2 âi+1âi−1, (4.17)

where the addition of indices is modulo 6, e.g. 4 + 3 = 1.

Here we consider the case where the relative phase ϕ = 0 between the two frequency

components and thus γ2 becomes real. After the first 10 cycles of single frequency modula-
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tion, the population of each mode is amplified to be larger than the quantum fluctuation.

Thus we approximate the operators âi by complex numbers ãi. The equation of motion of

amplitude for each mode becomes,

dãi
dt

= γ1ã
∗
i+3 + γ2(ã

∗
i+2ãi+1 + ã∗i−2ãi−1 − ãi+1ãi−1). (4.18)

At the beginning of the two-frequency modulation, we set the population of each mode

ni(0) = |ãi(0)|2 to satisfy a thermal distribution p(n) = e−n/n̄/n̄ with the mean population

n̄ and ãi(0) = ã∗i+3(0) with its phase randomly distributed from 0 to 2π [70]. Because the

growth rates γ1 and γ2 are real, at any later time t, we always have

ãi = ã∗i+3. (4.19)

Then the Fourier amplitude Aθi =
√
N0(ãie

−iωt + ã∗i+3e
iωt) = 2

√
N0ãi cosωt and Eq. 4.18

reduces to

dãi
dt

= γ1ãi + γ2ãi+1ãi−1. (4.20)

Multiplying ã∗i on both sides of Eq. 4.20 and summing their complex conjugates, we get

d|ãi|2

dt
= 2γ1|ãi|2 + 2γ2ℜ[ã∗i ãi+1ãi−1], (4.21)

where ℜ[·] means taking the real part. Similarly,
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d|ãi−1|2

dt
= 2γ1|ãi−1|2 + 2γ2ℜ[ã∗i−1ãiãi−2], (4.22)

d|ãi+1|2

dt
= 2γ1|ãi+1|2 + 2γ2ℜ[ã∗i+1ãi+2ãi]. (4.23)

Using Eq. 4.19, it can be seen,

ℜ[ã∗i ãi+1ãi−1] = ℜ[ãi+3ãi+1ãi−1]

=ℜ[ã∗i−1ãiãi−2] = ℜ[ã∗i+1ãi+2ãi]. (4.24)

Thus by subtracting two of the equations out of Eqs. (4.21) to (4.23) and taking the average

value on both sides of the equations, we have

dni,i−1

dt
= 2γ1ni,i−1, (4.25)

where the population difference ni,i−1 = ⟨|ãi|2⟩ − ⟨|ãi−1|2⟩. ni,i+1 and ni−1,i+1 also satisfy

Eq. 4.25. Since at the beginning |ãi|2, |ãi−1|2 and |ãi+1|2 satisfy the same distribution p(n),

they have equal average values ⟨|ãi(0)|2⟩ = ⟨|ãi−1(0)|2⟩ = ⟨|ãi+1(0)|2⟩, which means the

population differences ni,i−1(0) = ni,i+1(0) = ni−1,i+1(0) = 0. Thus according to Eq. 4.25,

at any later time t, the population differences ni,i−1 = ni,i+1 = ni−1,i+1 = 0, i.e.

⟨|ãi|2⟩ = ⟨|ãi−1|2⟩ = ⟨|ãi+1|2⟩. (4.26)

As is defined in Eq. 4.15 of Sec. 4.4.3, the three point correlation function at (θ, θ′) =
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(2π/3, 4π/3) is,

g(3/2) ≡ g(3/2)(
2π

3
,
4π

3
) =

⟨AφAφ+2π/3Aφ+4π/3⟩√
⟨|Aφ|2⟩⟨|Aφ+2π/3|2⟩⟨|Aφ+4π/3|2⟩

=
ℜ[⟨ãi+3ãi+1ãi−1⟩]√

⟨|ãi+3|2⟩⟨|ãi+1|2⟩⟨|ãi−1|2⟩
. (4.27)

Since the average of the product AφAφ+θAφ+θ′ is performed over all the angles with 0≤

φ ≤ 2π, it always comes in pair with its complex conjugate, which guarantees that the three

point phase correlation function is real. Also, the other possible definitions with one or more

of the Fourier amplitudes in AφAφ+θAφ+θ′ are equivalent to Eq. 4.15 with angular shifts

in θ and θ′, which doesn’t show more information. Then we take the average value on both

sides of Eq. 4.21 and plug in Eqs. (4.19), (4.26) and (4.27) to get

d⟨|ãi|2⟩
dt

= 2γ1⟨|ãi|2⟩+ 2γ2g
(3/2)⟨|ãi|2⟩

3
2 . (4.28)

Let’s define the root mean square (RMS) of ãi as Arms =
√
⟨|ãi|2⟩ and plug it into Eq. 4.28,

we finally arrive at the equation of motion,

dArms
dt

= γ1Arms + γ2g
(3/2)A2

rms. (4.29)

Insert the initial value Arms(0), we obtain the solution of Eq. 4.29,

Arms(t) =
eγ1t

1/Arms(0)− γ2
∫ t
0 g

(3/2)(t′)eγ1t′dt′
. (4.30)
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This solution exhibits hyperbolic growth that hits a finite time singularity at tc which sat-

isfies,

∫ tc

0
g(3/2)(t′)eγ1t

′
dt′ =

1

γ2Arms(0)
. (4.31)

As long as g(3/2)(t) decays slower than e−γ1t, a finite time singularity exists.

However, in our experiment, if we look at the mean population nm of the modes at all

directions and images, it doesn’t show clear deviation from simple exponential growth. Thus

we choose the observable as the mean population ns = (nπ/3 + n−π/3)/2 at ±π/3 relative

to the strongest mode in each image. Because the nonlinear coupling between these three

adjacent modes, ns grows faster than nm and can deviate from exponential growth. If only

modulation of single frequency ω1 is applied, ns = nm, because they are independent and

share the same statistics.

Let’s say we always choose ãi as the strongest mode among all sets of coupled six modes,

which have larger fluctuation to begin with. The other two modes ãi−1 and ãi+1 at ±π/3

relative to it begin with the same mean population as all the other modes with ⟨|ãi+1|2⟩ =

⟨|ãi−1|2⟩. We model the effect of the strongest sets of modes as an enhancement of γ2 by a

factor of α. Thus the solution of ns is,

n
1/2
s =

eγ1t

1/Arms(0)− αγ2
∫ t
0 g

(3/2)(t′)eγ1t′dt′
. (4.32)

Because the nonlinear term is relatively weak for mean population nm of all modes, it grows

approximately exponentially as

nm = A2
rms(t) ≈ A2

rms(0)e
2γ1t. (4.33)
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Then ns as a function of the mean population nm of all modes is

ns =
nm(

1− 1
2αϵ

∫ nm(t)
nm(0)

g(3/2)(n′m)/
√
n′mdn′m

)2
, (4.34)

where ϵ = γ2/γ1 is the ratio of the two rate constants.

In order to know how ns grows as a function of nm, we need to determine the evolution of

the three point correlation g(3/2) as a function of nm. Combining Eqs. (4.20), (4.21), (4.26)

and (4.27), we have

dg(3/2)

dt
= 3γ2Arms[g

(2) − (g(3/2))2], (4.35)

where g(2) is the two point correlation function at θ = π/3, i.e., g(2) = ⟨|Aφ|2|Aφ+π/3|2⟩

/⟨|Aφ|2⟩2 = (⟨|ãi+1|2|ãi|2⟩+ ⟨|ãi|2|ãi−1|2⟩+ ⟨|ãi+1|2|ãi−1|2⟩)/3⟨|ãi|2⟩2. In the perturbation

regime where the population of modes in directions separated by π/3 are almost uncorre-

lated, i.e. g(2) ≈ 1, the three point phase correlation is given by

g(3/2) = 1− 2

1 + exp[6ϵ(
√
nm − Arms(0))]

. (4.36)

Inserting the above result into Eq. 4.34, we arrive at

ns = nm[1− αϵ(Arms(0)−
√
nm) +

α

3
ln (1− g(3/2))]−2. (4.37)

Since our model only considered 6 excited modes, here the mean population nm of a single
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Figure 4.8: The evolution of three point correlation g(3/2) and the mean population
at ±π/3 relative to the strongest modes during the D6 pattern formation process.

a, The growth of three point correlation g(3/2) as a function of mean population nm of modes
at all directions in all images. Solid line is the theory curve from fitting using Eq. 4.36. b, The
growth of mean population ns of modes at ±π/3 relative to the strongest modes versus the
mean population per mode nm under scattering length modulation Scheme II (red squares)
compared with that under Scheme I (blue circles). Both the x and y axis are in log scale.
The red and blue solid lines are theory curves from fitting. The vertical dashed line is the
theory prediction of when the population ns diverges during D6 pattern formation.

mode is 1/6 of the total mean population. In our experiment, the total number of excited

modes at |k| = kf is Nmod = 1.62/Rkf ≈ 136 [35]. In order to generalize Eq. 4.36 and

Eq. 4.37 for multiple sets of 6 modes with π/3 angular spacing, we need to do the replace-

ments: nm → Nmod
6 nm, Arms(0) →

√
Nmod
6 Arms(0) and ns → Nmod

6 ns. This is equivalent
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to replace ϵ by

√
Nmod
6 ϵ =

√
Nmod
6

γ2
γ1
.

Using Eq. 4.36 to fit the data with ϵ and Arms(0) as fitting parameters as shown in

Fig. 4.8a, we get ϵ = 0.08 and Arms(0) = 0.98. Thus γ2/γ1 = 0.01, which is close to the

experimental value 0.003. The discrepancy is attributed to the exclusion of other collision

processes that are also involved in the experiment, such as the pair generation from BEC

at |k| = kf/
√
2 and secondary collision processes that lead to D4 pattern. Then we use the

value of ϵ and Arms(0) from fitting the three point correlation function g(3/2) and set α as

another fitting parameter to fit ns versus nm as shown by the red solid line in Fig. 4.8b,

which gives α = 2.78. On the other hand, for single frequency modulation under Scheme I,

we use the fit function y = ax and the best fit is obtained with a = 0.98 as shown by the

blue solid line in Fig. 4.8b, which is consistent with our expectation for the case without

nonlinear wave mixing.

Evolution of the phase relation of modes forming D6 density wave pattern

In order to study how the phase relation of modes that form hexagonal lattices evolve from

completely uncorrelated to concentrated around the plane ϕ0+ϕ2π/3+ϕ4π/3 = 0, we perform

numerical calculation based on Eq. 4.18. Here we consider BEC with depletion, which couple

to multiple sets of 6 modes with π/3 angular spacing at the same time. The corresponding

equations of motion are:

dãi
dt

= [γ′1N0(t)− γe]ã
†
i+3 + γ′2

√
N0(t)(ã

†
i+2ãi+1 + ã

†
i−2ãi−1 − ãi+1ãi−1) (4.38)

N0(t) = N0 −
Nmod∑
i=1

|ãi|2, (4.39)

where the growth rates γ′1 = γ1/N0 and γ′2 = γ2/
√
N0. The decay rate due to modes flying

out of the condensate is γe ∼ v/R, where the velocity of the modes v = ℏkf/m and R is the
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radius of the condensate.
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Figure 4.9: Evolution of the phase distribution of ϕ0 + ϕ2π/3 + ϕ4π/3 during D6
density wave pattern formation process. The upper panel is from the experiment under
Scheme II where we perform in situ imaging of the condensate at different times. The peak
position of the phase distribution oscillates between 0 and π and gets more concentrated
as time evolves. The lower panel is from the numerical calculation with the modulation
amplitudes a1 = 22.5 a0 and a2 = 63.5 a0 for frequency components of 450 Hz and 225 Hz,
respectively. The escaping rate of momentum modes is 39 Hz. Other parameters are the
same as the experiment.

The simulation starts from the beginning of the second pattern forming stage. At the

end of the first seeding stage, the population n in each mode ãi is thermally distributed

according to the probability distribution p(n) = e−n/n̄/n̄ with the mean population n̄ = 2.

The phase of each mode ãi is uniformly distributed from 0 to 2π and the modes in opposite

directions are correlated as ãi = ã∗i+3. The simulation is repeated for 5000 times and each

time the initial conditions of the phase and amplitude are independently sampled from their

distributions. We finally take the phase of ãie
−iωt + ã∗i+3e

iωt as the phase of Fourier modes

in the lab frame. The amplitude of scattering length modulation a1 and a2 and the escape

rate γe are chosen as fitting parameters while all the other parameters are the same as our

experiment for Scheme II. The green line in Fig. 4.6f is the result after 22.4 ms evolution

time, using the initial condition of mean population at 22.6 ms in our experiment. The
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corresponding amplitudes of modulation are a1 = 24 a0, a2 = 68.5 a0 and γe = 39 Hz.

The evolution of the phase distribution of ϕ0 + ϕ2π/3 + ϕ4π/3 within individual Floquet

periods is also calculated as shown in the lower panel of Fig. 4.9, which is consistent with

the experimental result in the upper panel. The peak position ϕpeak of the phase distribution

oscillates between 0 and π, due to the standing wave nature of the density waves. This also

means the real space pattern changes back and forth between hexagonal lattice (ϕpeak = 0)

and honeycomb lattice (ϕpeak = π). However, in the rotating frame, the phase distribution

is always centered at 0, thus the three point correlation g(3/2) is always positve. This ensures

the hyperbolic growth since the second term in Eq. 4.29 is positive.

4.5 Discussion
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Figure 4.10: Evolution of density wave amplitude characterized by the sum of
power spectrum around k = kf with shallow (blue) and deep (red) box traps
using scheme II as shown in Fig. 4.2a. The box trap depth is 0.14 kHz for blue data
and 1.16 kHz for red data.

We attempted to stabilize the density waves by raising the box trap depth, such that the
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excited atoms don’t escape out of the BEC. It turns out with a deep trap where the kinetic

energy of atoms is much smaller than the potential barrier of the trap, we observe that the

density waves are much weaker at later time compared to the case with a shallow trap, see

Fig. 4.10. In the beginning of the evolution before density waves reach the boundary of the

trap, density wave amplitudes also grows similarly within the deep trap as in the shallow

trap. Presumably the reflection of density waves at the boundary of the trap leads to the

fast damping of their amplitudes. The underlying mechanism requires further investigation.
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CHAPTER 5

TOMOGRAPHY OF BEC WAVE FUNCTIONS USING JET

SUBSTRUCTURE IN BOSE FIREWORKS EMISSION

We show that jet emission from a Bose condensate with periodically driven interactions, a.k.a.

“Bose fireworks”, contains essential information on the condensate wavefunction, which is

difficult to obtain using standard detection methods. We illustrate the underlying physics

with two examples. When condensates acquire phase patterns from external potentials or

from vortices, the jets display novel sub-structure, such as oscillations or spirals, in their

correlations. Through a comparison of theory, numerical simulations and experiments, we

show how one can quantitatively extract the phase and the helicity of a condensate from

the emission pattern. Our work demonstrating the strong link between jet emission and the

underlying quantum system, bears on the recent emphasis on jet sub-structure in particle

physics [85, 39].

5.1 Introduction

Cold atom systems are emerging as an important platform for quantum simulations in con-

densed matter [25] and in high energy physics [11]. In this context the application of tempo-

ral periodic drive has led to novel phenomena [49, 40] including topological phases [59, 81]

and dynamical gauge fields for simulation of high energy physics models [34, 126, 57]. With

driven Bose-Einstein condensates (BECs), a new regime of quantum scattering has appeared

[35, 33, 104] where periodic variations of the atomic interactions excite pairs of atoms prop-

agating in opposite directions. With sufficiently strong modulations, thin jets of atoms are

expelled from the condensate in all directions. This Bose stimulation (Bose fireworks) reveals

complex correlations [54, 145, 26, 27], and allows simulation of Unruh radiation [70], and

density wave formation [56, 148].
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In this chapter we show how this jet emission pattern can enable extraction of the con-

densate wavefunction. Such studies of jet substructure are reminiscent of current scattering

experiments in particle physics performed at both the Large Hadron [85] and the Relativistic

Heavy Ion [39] Colliders. It should be pointed out in this regard, that vorticity (a topic of

interest here) is an active sub-field in particle physics [3]. Quark-gluon plasmas exhibiting

anomalously high vorticity have been reported based on the structure of the particle emis-

sion. To illustrate this capability with cold atoms, a set of emission patterns from numerical

simulations are shown in Fig. 5.1, which exhibit distinct structures for condensates with

different non-uniform phase configurations.

We present two cases of study in our experiment. In the first, we consider condensates

split into two halves with different phases. The relative phase emerges in the correlations

of counter-propagating jets, and can be understood based on the double-slit interference of

matterwaves. In the second case, we study condensates with vortices. Here the emission

pattern exhibits a novel spiral sub-structure as seen in Fig. 5.1b. We show that one can di-

rectly extract the phase winding number of the vortices from the spirals based on comparison

between experimental data and numerical simulations.

Our study shows jet emission as a new tool to probe the phase distribution of a con-

densate. We take vortex detection as an example. Time of flight [2] or in-situ imaging

[143] does not reveal the helicity (the phase winding) of the vortex while the interference

experiments do reveal the helicity but require preparation of two samples [102, 79, 41]. Our

method uses only a single condensate (like Ref. [127]) to reveal the BEC phase distribution

from the emitted atoms, and can in principle be implemented with little disturbance of the

condensate.

In our simulations, we describe the evolution of the condensates with the Gross-Pitaevskii

(GP) equation, including terms that simulate quantum fluctuations [56]. For a uniform BEC,

periodic modulation of the interaction strength with frequency ω leads to pair production of
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Figure 5.1: Simulated emission patterns of BECs with interaction modulations. a
Jet emission from condensates with a soliton. The lower half is phase shifted relative to the
upper half by θs = π. b Jet emission from condensates with a vortex-antivortex pair, where
the reduced Planck constant ℏ corresponds to the angular momentum of the vortex. The
atomic density n is normalized to the initial density of the condensate n0.

matterwave jets with random but opposite momenta (ℏkf ,−ℏkf ), where kf =
√
mω/ℏ and

m is the atomic mass. For non-uniform condensates, jets form in pairs of modes which are

determined by the condensate wavefunction and driving frequency. When observed in the

plane wave basis, the jets can show intricate correlations. The goal here is to demonstrate

what we can learn about the condensate from the strength and correlations of the emitted

jets.

5.2 Nonuniform BECs with period interaction modulation

Microscopically, the system under the periodic drive is excited from an initial state ψ0 to

ψ(t) ≡ ψ0+δψ, where the wavefunction increment δψ can be seeded by quantum fluctuations

and amplified by the drive. With short interaction times as in our experiment, the deviation

can be treated perturbatively, and the evolution of the system is governed by the Hamiltonian

H ≈
∑
i

Eia
†
iai +

U(t)

2

∑
i,i′

[
F (i, i′)a†ia

†
i′ + h.c.

]
, (5.1)
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where U(t) = U0 + U1 sinωt is the oscillating interaction strength,
∑
i sums over the single

particle modes φi that are initially unoccupied, the pair function F (i, i′) is described below,

Ei is the kinetic energy of the i−th mode, and ai and a
†
i are the annihilation and creation

operators of the modes. Here we work in the regime where the modulation amplitude is

much larger than the offset, and the driving energy is much greater than the energy of the

initial state, i.e. U0n0 ≪ U1n0 ≪ ℏω, where n0 is the average density of the condensate 1.

The pair function F (i, i′) in Eq. (1) determines the strength as well as the correlations

of the two modes i and i′ in the emission. It is given by the overlap of the condensate wave

function ψ0 and the wave functions of the modes φi and φi′ , namely,

F (i, i′) =
∫
drφ∗i (r)φ

∗
i′(r)ψ

2
0(r). (5.2)

This equation shows that, in principle we can determine the square of the condensate

wavefunction directly from the pair function F . As an example, if we choose a plane wave

basis, F (k,k′) is the k+k′ Fourier component of ψ20. When the condensate contains multiple

excitations, those with larger amplitudes of F (k,k′) will lead to stronger emission of the

matterwave jets with momenta k and k′, providing they satisfy momentum conservation.

The detailed mathematics needed to extract the pair function F and the experimental scheme

to implement it is provided in Sec. 5.2.1. To validate these ideas and offer a physical picture,

we study two examples of non-uniform BECs in our experiment. These cases involve BECs

with two different phases and with vortices; both of which illustrate the links between the

jet substructure and condensate wave functions.

1. In the high frequency limit, additional terms like U(t)
∫
dxdy|ψ0(x, y)|2φ∗

i (x, y)φi′(x, y) is negligible,
see Ref. [33].
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5.2.1 Extraction of the pair function F using complete correlation

functions for general initial BEC wave functions

Here we first show that if one has full knowledge of all the two-operator correlation functions:

⟨aiaj⟩, ⟨aia
†
j⟩, ⟨a

†
iaj⟩, ⟨a

†
ia

†
j⟩ at a given time t, one can recover the initial wavefunction.

Then, we present a proposal for possible experimental measurement of these correlators.

In the interaction picture and dropping the far off-resonant terms, we obtain an effective

Hamiltonian as

H =
1

2

∑
i,j

Pijaiaj + h.c. (5.3)

where Pij ≈ U1F
∗(i, j)/2i. Assuming we haveN bosonic modes a1, a2, . . . , aN , we define the

vector A = (a1, a
†
1, . . . , aN , a

†
N )T = (A1, A2, . . . , A2N−1, A2N )T . Then any matrix operating

on A that has 2N × 2N dimension can be reduced to a tensor product between a N × N

matrix and a 2× 2 matrix. From Eq. (5.3), we arrive at

iℏ
dA

dt
= [A,H] = i(Re P ⊗ σy − Im P ⊗ σx)A = iKA (5.4)

where Re P and Im P are respectively the real and imaginary parts of the matrix P and σi

are Pauli matrices. Then, we have A(t) = eKt/ℏA(0). If we define the matrix γ as

γij = ⟨AiA
†
j + A

†
jAi⟩, (5.5)

we then find γ(t) = eKt/ℏγ(0)eKt/ℏ = e2Kt/ℏ where γ(0) can be easily derived to be the

identity matrix as we start from vacuum. γ(t) here is simply composed of all the two-operator

correlation functions at t. Therefore, from the correlation functions, we can extract γ(t) and
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characterize P as

K =
ℏ
2t

ln γ(t)

Re P =
1

2
Trσ

[
K × (I ⊗ σy)

]
Im P =− 1

2
Trσ [K × (I ⊗ σx)] .

(5.6)

where I is the N ×N identity matrix, Trσ[. . .] involves the trace over the 2× 2 dimension.

Since F (i, i′) can be obtained from the P matrix, and the original wavefunction ψ0 can be

derived from F (i, i′) according to Eq. (5.2) up to a sign uncertainty, we then can recover

the wavefunction, ψ0.

Our studies of jet emission from condensates associated with split BECs or vortices lay

the foundation for a general experimental procedure which we outline below. As previously

known [56], the emission can consist of interference of different modes overlapping at a spot

r:

n(r) =
1

VN
a
†
rar, ar =

∑
k

ake
ik·r, (5.7)

where n(r) is the local density that is experimentally measurable, VN is the normalization

constant. In the near field, the interference term in the density, ∝ ak
†ak′ exp

[
i
(
k′ − k

)
· r
]
+

h.c., contains information on the relative phases between ak and ak′ . In the far field where

jets do not overlap anymore, we can directly measure the occupation of each jet a
†
kak through

n(r). With all the information, we in principle can obtain the full knowledge of the two-

operator correlators by averaging over many shots. In the limit where there is large oc-

cupation in each mode, we can regard the operator ak as a classical complex number and

obtain all the correlators mentioned above based on a
†
kak′ and a

†
kak. The structure and

angular width of modes can be determined from the condensate size and the modulation

frequency [35].

To implement this scheme experimentally, one should perform analysis for both the near-

and far-field emission to determine the phase and density correlations of all pairs of modes

i and j. There are two major challenges. First, the accuracy of the extracted correlators
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would be primarily limited by statistics and signal to noise ratio. Sufficient repetitions are

needed to suppress uncertainties due to relative phase fluctuations. Second, higher spatial

resolution of the emission pattern is needed in order to extract correlations of more distant

modes.

5.3 Experimental setup

We start with 3D BECs of 60,000 cesium atoms loaded into an elliptical crossed dipole trap.

For the experiments where the initial state is a split BEC with two phases, 40,000 atoms are

adiabatically transferred within 760 ms into a disk-shaped dipole trap with a diameter of

18 µm in the horizontal direction and a 6-µm wide central barrier along the diameter that

splits the BEC into two halves. There is no central barrier applied for the other case where

we start from a BEC with vortices, which arise non-deterministically from the finite cooling

time in transition to condensation [32, 109, 17] with about 5% probability in our experiment.

The potential barriers are provided by a blue-detuned laser at 788 nm. The laser beam profile

is shaped by a digital micromirror device (DMD) and projected to the atom plane through a

high-resolution objective (of 1 micron resolution). The resulting circular potential well and

the central barrier have barrier height of h × 140 Hz and h × 42 Hz, respectively. Atoms

are tightly confined in the vertical direction with a 1/e2 radius of 0.8 µm and a harmonic

trap frequency of 259 Hz. The phase coherence of the two half BECs is maintained, which

is revealed by the interference fringes formed during time-of-flight.

Then we use a DMD to project a 788 nm light pulse of duration τ = 0.4 ms on one

half of the BEC to induce a relative phase shift. The imprinted phase θs = −Vsτ/ℏ is

tuned by changing the light pulse intensity that determines the light shift Vs. The potential

gradient in the imprinting process applies force to the imprinted half. Atoms emitted from

the transition regime where the phase jumps gain an additional small velocity. This, to

the leading order, has no influence on the magnitude of the jet momenta but bends their
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direction. Therefore in the π-peak of the connected correlation g
(2)
conn(ϕ) shown in Fig. 5.3c,

the envelope is shifted while the interference fringes are not offset.

About 1 ms after the phase imprinting, we apply an oscillating magnetic field in the

vicinity of a Feshbach resonance to the BECs, which modulates the atomic s-wave scattering

length as a(t) = adc + aac sin(ωt) with a small offset adc = 9a0 and a large amplitude aac =

47a0, at frequency ω/2π = 2.1 kHz. After modulating the interaction for 34 ms, we perform

in situ absorption imaging through the same high-resolution objective and a CCD camera

to observe the structure of ejected atomic jets. For measuring the connected correlation

g
(2)
conn(ϕ), we wait for an additional 10 ms after the 34 ms interaction modulation before

performing imaging. We do this because when the jets fly to the far field, the oscillation of

the π−peak in the correlation function becomes more prominent.

In order to measure how much phase is imprinted onto one half of the BECs through

the short light pulse, we let the two half BECs expand freely for 30 ms right after the phase

imprinting. The two parts of the condensate acquire momentum ±kt after being released

and form interference fringes when they overlap in space. In this way, the phase shift of

the fringes as shown in Fig. 5.2a for different light pulse intensity can reflect the value of

θs. In Fig. 5.2b, the corresponding mean atomic density distributions along the x direction

n(x) = A(x)[cos(ktx + θs) + C] are shown (the origin of coordinates is set according to the

no-phase-imprinting case where θs = 0.). We identify the positions of density peaks and

valleys on the left of the highest peak and assign a phase of either even or odd multiple of π

as shown in Fig. 5.2c. The data are fit linearly and the change of y-intercept corresponds to

the change of imprinted phase. The black curve is when no light pulse is applied and serves

as a reference at θs = 0. By comparing the y-intercept to it, the orange and purple curves

yield the values of θs that are near −π/2 and −π as in Fig. 5.3d.
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Figure 5.2: Calibration of the imprinted relative phase between two halves of the
BEC through TOF imaging. a, Single-shot 30-ms TOF imaging of the interference fringes
for imprinted phase θs around 0 (top), −π/2 (middle) and −π (bottom). b, Mean atomic
density along x direction corresponding to single shot images in a for imprinted phase θs
around 0 (black), -π/2 (orange) and -π (purple). c, Peak and valley positions corresponding
to the mean atomic density distributions in b with the same color scheme versus their phase.
The phases are assigned according to whether they correspond to a peak (even multiples of
π) or a valley (odd multiples of π).

5.4 Results

5.4.1 Jet substructure in emissions from Bose condensates split into two

halves with and without a relative phase θs

A split BEC with two phases is our first, pedagogical example. A soliton-like structure arises

where the phase jump occurs, and the condensate density is suppressed at the boundary.

The advantage of considering a split BEC is that we are able to disentangle density and

phase information which are strongly intertwined in the soliton case. We assume that at

time t = 0 the phase of the lower half is θs and that of the upper half is zero, and the phase

slip boundary is along the horizontal direction.
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Figure 5.3: Emissions from Bose condensates split into two halves with and with-
out a relative phase θs. a, Emission pattern for θs = 0 from simulations (left) and
experiments (right). The density is normalized by the initial average density n0. b, Physical
picture for the jet emission from two halves of the condensate. c, Connected correlations

g
(2)
conn(ϕ) for different relative angle ϕ (left: simulation, right: experiment) for θs = 0 (black),
−π/2 (green), and −π (red). Solid lines are fits using the product of a sinc envelope and
a sinusoidal function, borrowed from the double-slit interference model. The insets show
jet-substructure of the π-peaks. The phase shift δθ of the oscillations are indicated by the
arrows. d, Phase associated with π-peak shift δθ as a function of imprinted phase θs (plotted
against −θs). Dots with error bars are experimental data. The blue solid line is a linear
fit without intercept and the red dashed line is the theory expectation δθ = −2θs, which is
identical to results from GP simulation. Here, the data used in panel c are marked out with
the same color codes. Error bars represent 1-σ standard deviation.
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Emission patterns are obtained after the procedures described in Sec. 5.3, which are

consistent with those from GP simulation based on identical parameters, see Fig. 5.3a. The

emission pattern in Fig. 5.3a shows clear anisotropy: it’s strong in the horizontal direction

where the central potential barrier in oriented but is weak vertically. Since there is no phase

imprinting in this case, the anisotropy is caused by density depletion in the region of central

barrier of the trap. For excitations propagating in the vertical direction, there are fewer

condensate atoms along their path, which gives rise to less stimulation in their populations.

To see the relative phase, one needs to address the correlations.

We show below how this phase information can be quantitatively extracted. The phase

difference between the two halves θs is revealed in the correlation between counter-propagating

jets. We first calculate the connected correlation function g
(2)
conn, defined as

g
(2)
conn(ϕ) =

⟨
∫ π
0 dϕ1∆nϕ1∆nϕ1+ϕ⟩

πn̄2
, (5.8)

where ∆x = x− ⟨x⟩ represents the fluctuation around the mean value, nϕ is the density of

the emitted atoms at angle ϕ, ⟨·⟩ denotes the average over all images and n̄ is the average

density over all directions and images. The correlation function displays a clear peak at

ϕ ≈ π, called the π-peak, which indicates that jets form in pairs in counter-propagating

directions.

Close examination shows that the π-peak contains fine oscillations (jet sub-structure)

that depend on the condensate phase, see Fig. 5.3c. The phase of the oscillations is found

to be proportional to the relative phase between the two halves θs. Comparing the phase δθ

of the fine oscillations to the phase difference θs, we find a linear dependence with a slope

-2.2(2) (see Fig. 5.3d), which is consistent with the theoretical prediction:

δθ = −2θs. (5.9)
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We provide an intuitive picture to understand this phase relation. In far field, emission

from the upper BEC with probability amplitude ei(θ1+k·r1) propagating to the right overlaps

with the emission from the lower half with amplitude ei(θs+θ2+k·r2), where θ1 and θ2 are

random phases determined by quantum fluctuations, k is the jet wavevector and r1 (r2) is

the displacement vector toward the measurement point, see Fig. 5.3b. The two matterwaves

interfere and produce a density wave of cos(∆θ − θs + k · ∆r), where ∆θ = θ1 − θ2 and

∆r = r1 − r2. Similarly, the left-propagating emissions of amplitudes ei(−θ1−k·r′1) and

ei(θs−θ2−k·r′2) overlap and result in a density wave cos(∆θ + θs + k · ∆r), where we have

made use of the fact that the phases of jets emitted from the same half of BEC sum to be

twice the phase of that part of the BEC [70]. Comparing the two density waves, we see that

the counter-propagating emissions are correlated with a relative phase shift of δθ = −2θs.

Details of extracting phase δθ from fitting correlation functions near ϕ = π

To understand the interference pattern of split BECs, we refer to the double-slit interference

model and make an approximate analogy between the split BEC and a conventional double

slit problem. In this model the far field (Fraunhofer) diffraction intensity is proportional to

sinc2
(
πW sinα

λ

)
cos2

(
πD sinα

λ
− θr/2

)
,

where α is the diffraction angle, λ is the light wavelength, D is the distance between the slit

centers, W is the width of each slit, and θr is the relative phase between the light beams

that pass the two slits.

We fit the oscillatory correlation function g
(2)
conn(ϕ) near ϕ = π with the following function

to extract its phase δθ, see Fig. 5.3c:

f(ϕ) = A sinc2[b(ϕ− π − c)]

[
cos2

(
kϕ− kπ + δθ

2

)
+ d

]
+ f0,
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where the sinc envelope captures the finite size of each half BEC, the cosine term describes

the matterwave interference fringes, b describes the envelope oscillation frequency, c accounts

for the small center of mass motion, k depends on the separation between the two half BECs,

and the parameters d and f0 describe the offset of the fringes and the envelope function,

respectively. By fitting the π peaks using this functional form, we extract the phases δθ

shown in Fig. 5.3d.

In our experiments we determine k by fitting the correlation function g
(2)
conn(ϕ) for con-

densates with no phase imprinting. The fitted value of k is then fixed for other situations

with nonzero imprinted phase. Since our samples form 2 semi-circles instead of 2 slits, we do

not expect the sinc function to precisely describe the measured envelope function near the

π peaks. We have verified that the phase shifts δθ we extracted have negligible dependence

on the form of the envelope function and offsets.

We finally want to note that the deviations in our experimental and simulation data

are partly due to the strong fluctuations of the firework emission. Since the emission from

split BECs is concentrated near the horizontal (x) direction, the number of modes that

contribute to the data is much lower than those from uniform BECs. Fluctuations are thus

relatively high. These effects are more important near the wing of the π-peak, but they do

not systematically shift the center fringe.

5.4.2 Spiral emissions from vortex-embedded BECs

The second case study involves vortex-embedded BECs, where the resulting emission pat-

terns display exotic spirals. In our system the initial condensate wave function is character-

ized by an integer winding number l0 = ±1, ±2, . . . as

ψ0(r, ϕ) =
√
n0(r)e

il0ϕ (5.10)
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in polar coordinates (r, ϕ). Since the healing length ξ (set by the chemical potential µ as

ℏ2/2mξ2 = µ) is much smaller than the trap radius R, the condensate wavefunction is

uniform outside the vortex core. Jet emission dynamics from a driven BEC with a vortex is

simulated in Fig. 5.4a.

In our experiment, about 5% of condensates form with a vortex, arising from the finite

cooling time in transition to condensation [32, 109, 17]. When the system reaches equilibrium,

the vortex is expected to settle at the trap center. BECs with and without a vortex can be

distinguished from the emission pattern, see Fig. 5.4b for emission from BECs with different

vorticity.

Figure 5.4: Spiral emissions from vortex-embedded BECs. a, Evolution of the fire-
works emission for ω/2π = 2 kHz and l0 = 1 from GP simulation. The red arrow indicates
the direction of the phase winding with l0 = 1. b, Experimental images for ω/2π = 3 kHz
at t = 25 ms from BECs with different vortex winding numbers l0 = −1, 0, 1 from left to
right. The red dashed lines are guides to the eye, the curvature of which is calculated from
the correlation function.
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Our simulations and experiments show a consistent picture that the jet emission displays

a spiral pattern in the presence of vorticity in the BEC. When the winding number is positive,

the spirals are clockwise. The spiral emission pattern is the key observable that determines

the winding number of the condensate.

This spiral pattern can be understood based on a semi-classical picture. Considering

atoms inside the rotating condensate as independent emitters, an atom has a unique mo-

mentum k of magnitude l0/r along the transverse direction. When two such atoms collide

inelastically, they are excited to new momenta k± kf , where |kf | = kf . For an observation

point outside the sample, jets emitted from different parts (“sources”) of the condensate

overlap and interfere, and the observed spirals are the resulting interference fringes.

To see the connection between the direction of the spiral and the angular momentum, we

note that when the observer moves away from the condensate, the phase of the matterwave

with relatively large momentum accumulates faster. Thus the fringe curves toward the jet

with the higher momentum, namely, k+kf , to maintain the same interference condition, see

Fig. 5.5a. Theoretical analysis suggests dϕ/dr = −ηl0/(kfR2) with η being a dimensionless

constant. This equation describes the observed spirals.

To test these predictions, we evaluate the correlation function between two points with

radial distance r and angular distance ϕ, namely,

g
(2)
t =

∫
dϕ′dr′⟨n(r′, ϕ′)n(r′ + r, ϕ′ + ϕ)⟩

2πL0ñ2
, (5.11)

where the integration of r′ covers the interval L0 that jets manifest 2 and ñ is the mean

density in the interval.

The spiral pattern associated with the jet substructure can be understood as representing

a linear relation between the radial and angular distances in the emission, see Fig. 5.5b,

2. Assuming jets appear within rmin < r < rmax, we integrate r
′ in the range such that both measurement

points at r′ and r′ + r are within this ring area.
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Figure 5.5: Correlation analysis of spiral emission patterns. a, A physical picture to
explain the origin of the spiral patterns from a rotating BEC as interference fringes from

matterwave emitters with different momenta, see text. b, Correlation functions g
(2)
t in polar

coordinates (r, ϕ) for t = 40 ms image in Fig. 5.4(a). Red dashed lines show linear fits to the
correlations between r and ϕ. c, Effective angular velocity ωe, expressed in units of ℏ/mR2,
for condensates with different winding number l0. Blue circles are from simulations and red
circles are from experiments. Error bars represent 1-σ standard deviation.

where the red dashed lines show linear fits to the correlations involving r and ϕ. This

linear dependence suggests that the emission emerges with an effective angular velocity

ωe = −(ℏkf/m)dϕ/dr, which can be compared with the winding number of the condensate

according to

ωe = η
l0ℏ
mR2

, (5.12)

see Fig. 4c. From simulations, we determine η = 2.90 for l0 = ±1 and η = 2.19 for l0 = ±2.

We speculate that the decrease of η for larger |l0| is a result of the instability of a vortex-

containing-BEC with l0 = ±2. A vortex with l0 = 2 will quickly decay into two vortices

with l0 = 1, and the finite spatial separation between them reduces the effective angular

velocity. For a classical, rigid uniform disk with the same radius R, we expect that the
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angular velocity is ωe = ηcll0ℏ/(mR2) with ηcl = 2.

The same analysis on the experimental data also yields a linear relationship between r

and ϕ in the correlation function. Based on multiple repeated experiments, we find that ηl0

takes on quantized values of ηl0 = −3.07(3), −0.10(6) and 3.0(1), which are in very good

agreement with the simulation results for l0 = −1, 0 and 1, see Fig. 5.5c. The agreement

between experiments and simulations confirms our scheme to reveal the helicity of a BEC

directly from the jet emission pattern.

Analysis for the experimental data of jet emission from vortex-embedded

BECs

Here we provide detailed analysis of vortex features observed in the jet emission pattern. We

can observe the vortex cores by time-of-flight which, however, does not reveal the helicity.

The spontaneously created vortices can appear in arbitrary positions. However, for those

close to the trap edge, they easily escape or are readily annihilated. In addition there is a

small non-uniformity of the trap potential of about 0.3 nK, which makes the energy lower if

the vortices locate at the center. Since we have a long cooling time of 760 ms in the circular

trap and short equilibration time scale of 32 ms, before we start the experiments, we expect

the vortices, if any, have already come to equilibrium at the center of the trap. That the

vortex is located near the trap center in equilibration is already observed in literature, see

for example, Ref. [144].

Now let’s discuss how to extract the vortex winding number from emission patterns of

vortex-embedded BECs in our experiments. To do so, we first calculate the auto-correlation

of atomic density in emitted jets g
(2)
t (ϕ, r) as a function of azimuthal and radial displacements

ϕ and r, as given by Eq. (5.11).

g
(2)
t (ϕ, r) =

⟨n(r1, ϕ1)n(r1 + r, ϕ1 + ϕ)⟩
⟨n(r1, ϕ1)⟩⟨n(r1 + r, ϕ1 + ϕ)⟩

, (5.13)
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Figure 5.6: Determination of vortex winding number from emission patterns of
vortex-embedded BECs. a, Example emission pattern from a vortex-embedded BEC. b,
Auto-correlation of atomic density of emitted jets in a as a function of relative displacement
r and ϕ in radial and azimuthal directions, respectively. c, Distribution of mean correlation
averaged over different directions in b for the lower half with positive r. The values for the
central 50 pixels are shown here. The white dashed line indicates the direction where the
variance of mean correlation reaches maximum. d, The data points are variance of the mean
correlation distribution averaged from different directions in b. The solid line is a Gaussian
fit for the central 13 data points around the maximum, which determines the peak position
precisely. The direction where the maximum variance occurs corresponds to the slope dϕ/dr
of the fringes around ϕ = 0 in b, which then corresponds to the curvature of spirals in
a. d, Angular velocity ωe = dϕ/dr × kfR

2 calculated from the slope dϕ/dr following the

procedure in a-d (corresponding to the 1st experimental realization). The calculation is
based on unsorted experimental realizations. The orange arrows indicate the data points
identified as l0 = ±1 with small error bars < 0.2. Other data points with error bars less
than 0.2 are averaged and are identified as l0 = 0. Data points with larger error bars are
ignored. The results are shown as red circles in Fig. 5.5c. The error bars are 1-σ standard
deviation.
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where ⟨·⟩means averaging over all possible positions (r1, ϕ1) in the region of atomic jets. One

example of the correlation function g
(2)
t (r, ϕ) is shown in Fig. 5.6b for the emission pattern

from experiment in Fig. 5.6a. It can be seen that there are fringes near ϕ = 0 in the auto-

correlation with non-zero slope dϕ/dr, which is proportional to the vortex winding number.

Next, we quantitatively extract the slope from the pattern of fringes in Fig. 5.6b using the

pattern recognition algorithm which is described in the next paragraph, thus enabling us to

extract the winding number.

To recognize the fringes, we can average the 2D correlation function g
(2)
t (r, ϕ) along

different directions. The direction along which the mean correlation shows the oscillation

structure most clearly, corresponds to the slope of those fringes. The mean correlation

distribution in the central region of 50 pixels at different directions with angle α is shown

in Fig. 5.6c, where α = 0 is along the negative r axis in Fig. 5.6b and α = π/2 is along

the positive ϕ axis. We use the variance of the mean correlation distribution in certain

directions to characterize its contrast, which is shown in Fig. 5.6d. There is a clear peak in

the variance and we use a Gaussian function to fit the 13 data points around the maximum

to find the peak position αp = 0.184 rad and use the uncertainty of the fit as error bars.

Then the slope dϕ/dr = χ tan(αp) is determined, where χ = 0.0216 rad/µm is the ratio

between the resolution in angular and radial direction in Fig. 5.6b. Finally, the angular

velocity ωe = dϕ/dr × kfR
2 in units of ℏ/mR2 is obtained.

We apply the same procedure as above for images from 79 repetitive experimental real-

izations and obtain their angular velocity ωe as shown in Fig. 5.6e. The emission pattern in

a corresponds to the first data point in e and the data points indicated by the orange arrows

are the experimental data points shown in Fig. 5.5c. We determine the vortex winding

number l0 by comparing the measured angular velocity ωe to the corresponding simulation

results. In addition, we see that most of the measurements have zero winding number, since

the vortices are non-deterministically generated.
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Geometric analysis of the multiple-slit interference

Lastly, we present the geometric argument behind the intuitive multiple-slit interference

picture.

As mentioned above, each point in the trap functions as an individual source emitting

different modes, whose wavenumbers are kf+(mv/ℏ) cos(ϕr) dependent on the relative angle

ϕr between final and initial velocities. For an observation point at distance r ≫ R from the

trap center, there are jets emitted from different “sources” overlapping at this point, see Fig.

5.7. If the jet comes from a point at angular position ϕ (ϕ is measured with respect to the

axis perpendicular to the line connecting the trap center and the measurement point), the

jet wavenumber is then kf −(mv/ℏ) cosϕ for each source. Therefore, when the measurement

point shifts by a radial distance dr, the optical paths for the jets from different sources would

all increase as ∼ dr but have different phase accumulations due to different k values. To

keep the relative phases between different modes unchanged, the observation point needs to

shift an angle of dϕ so that the modes with larger k values would have shorter optical paths

(see Fig. 5.7). In this way, the optical path changes by dx which can be easily derived from

geometric analysis:

dx ≈ rdϕ sinα,

where

α ≈ β, r sin β = R cosϕ.

Therefore, the total phase accumulation for each mode is approximately

(
kf − mv

ℏ
cosϕ

)
dr + kfR cosϕdϕ,

which is a constant for all modes only when

mv

ℏ
dr = kfRdϕ.
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Figure 5.7: Schematic of spiral trajectories resulting from interference between emission from
different parts of a vortex-embedded BEC.

Since the interference fringe is along fixed relative phases, we then obtain the trajectory as

dr

dϕ
≈
kfR

2

l0
,

where mv/ℏ ∼ l0/R. This spiral winds in the opposite direction to that of the original

vortex, as seen from Fig. 5.7.

In conclusion, we present a methodology for extracting the phase distribution of a BEC

based on jet emission. From the jet substructure of a driven BEC, one can determine the

density and phase correlations and in principle reconstruct the pair function F of the con-

densate. The two illustrative examples discussed here show how one can recover the wave-

function phase information from the far-field (split BECs) or near-field (vortex-imbedded

BECs) emission. In the far field, density-density correlators of jets can be directly obtained.

In the near field, interference between adjacent jets reveals the relative phases of the jets.

Our experiments show excellent agreement with the theory and simulations. Remarkably,

the jet sub-structure is an important observable in particle physics [85, 39] to understand

the dense systems formed in high energy scattering experiments. Our analysis may offer a
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convenient testbed to determine the properties of a many-body sample with its attendant

jet emission pattern.
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CHAPTER 6

TRANSITION FROM AN ATOMIC TO A MOLECULAR

BOSE-EINSTEIN CONDENSATE

Preparation of molecular quantum gas promises novel applications including quantum control

of chemical reactions, precision measurements, quantum simulation and quantum informa-

tion processing [20, 22, 119]. Obtaining colder and denser molecular samples, however, is

frequently hindered by fast inelastic collisions that heat and deplete the population [103, 78].

Here we report the formation of 2D Bose-Einstein condensates (BECs) of spinning molecules

by inducing pairing interactions in an atomic condensate near a g−wave Feshbach reso-

nance [86]. The trap geometry and the low temperature of the molecules help reducing

inelastic loss to ensure thermal equilibrium. From the equation of state measurement, we

determine the molecular scattering length to be +220(30) Bohr. We also investigate the

unpairing dynamics in the strong coupling regime and find that near the resonance the dy-

namical time scale is consistent with the unitarity limit. Our work confirms the long-sought

transition between atomic and molecular condensates, the bosonic analog of the BEC-BCS

(Bardeen-Cooper-Schrieffer superfluid) crossover in a Fermi gas [123, 120, 48]. In addition,

our experiment may shed light on condensed pairs with orbital angular momentum, where

novel anisotropic superfluid with non-zero surface current is predicted for, e.g. 3He-A [5, 67].

6.1 Introduction

Because of their rich energy structure, cold molecules hold promises to advance quantum

engineering and quantum chemistry [20, 22, 119]; a wide variety of platforms are developed

to trap and cool cold molecules [22]. The same rich energy structure, however, also causes

complex reactive collisions that obstruct experimental attempts to cool molecules toward

quantum degeneracy.
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One successful strategy to prepare molecular quantum gas is to begin with an atomic

quantum gas, and then pair the atoms into molecules [86]. A prominent example is the

pairing of atoms in a two-component Fermi gas, which opens the door to exciting research

on the BEC-BCS crossover [24, 58, 137]. Recently, degenerate Fermi gas of ground state

KRb molecules is observed based on quantum mixtures of Rb and K atoms [43]. In these

examples, molecules gain collisional stability from Fermi statistics and the preparation of

molecules in the lowest rovibrational state, respectively.

For more generic molecules with many open inelastic channels, inelastic collision rates

are difficult to predict and experiments frequently report rates near the unitarity limit,

which means that all possible scatterings result in loss [103, 78]. The short lifetime hinders

evaporative cooling toward quantum degeneracy.

Here we report the observation of BECs of Cs2 molecules in a high vibrational and

rotational state, see Fig. 6.1. The molecules are produced by pairing Bose-condensed cesium

atoms in a 2D, flat-bottomed trap near a narrow g−wave Feshbach resonance [30]. The trap

geometry allows molecules to form with very low temperature and low collision loss such that

they emerge in the Berezinskii-Kosterlitz-Thouless (BKT) superfluid regime [89, 138, 75].

Our experiment opens exciting possibilities to investigate pairing and unpairing dynamics

in a bosonic many-body system, described by the interaction Hamiltonian [123, 120, 48]

Hint = g(â
†
mââ+ âmâ

†â†),

where âm and â are the annihilation operators of a molecule and an atom, respectively, and

g is the coupling constant. Pairing of bosons is expected on both sides of the Feshbach

resonance and can lead to an Ising-like quantum phase transition [123, 120, 48]. Interest-

ingly, in the molecular BEC phase, atoms and molecules are predicted to have BCS-like

correlations [120].
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Figure 6.1: Production of g−wave molecular condensate. A uniform Cs BEC (gray) is
initially confined in a 2D optical potential (blue). Cesium atoms (red circles) are paired into
molecules through a narrow g−wave Feshbach resonance at magnetic field B0 = 19.87 G.
The molecules occupy a rotational state with orbital angular momentum l = 4ℏ and its
projection in the z−direction lz = 2ℏ. The molecules form a molecular BEC (green) in the
same optical trap, while the remaining atoms are expelled from the trap.

6.2 Experimental setup

The starting point of our experiment is a BEC of 6× 104 cesium atoms prepared in a disk-

shaped dipole trap with a radius of 18 µm in the x−y horizontal plane[35]. The disk-shaped

potential is provided by a digital micromirror device (DMD) which projects 788 nm blue-

detuned laser light on the plane with 1 µm resolution. The sample is vertically confined with

1/e radius of 0.4 µm to a single site of an optical lattice with trap frequency ωz = 2π×400 Hz.

A magnetic field gradient of 31 G/cm is applied to levitate the atoms. The atomic scattering

length is 127 a0 at B = 19.2 G and the global chemical potential is µ = h× 365 Hz, where

h = 2πℏ is the Planck constant and a0 is the Bohr radius. The initial state of the atoms is

a BEC in the 2D-3D crossover regime at temperature T = 11(2) nK, well below the BEC
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critical temperature of 85 nK.

We create Cs2 molecules by ramping the magnetic field across a closed-channel dominated

Feshbach resonance at B0 = 19.87 G starting from 20.03 G, based on a procedure similar

to Ref. [65]. Since atoms and molecules have different magnetic moments, they tend to

separate vertically in the presence of a magnetic field gradient. To better confine both atoms

and molecules in the molecular formation phase, we increase the magnetic field gradient to

41.9 G/cm in 2 ms before ramping the magnetic field to 19.79 G in 2 ms which creates

molecules. After the formation of molecules, the magnetic field gradient is increased to

50 G/cm in 0.5 ms, which levitates the molecules and overlevitates the atoms. The resonance

has a small width ∆B = 11 mG [100] and couples two scattering atoms into a weakly-bound

molecule with a large orbital angular momentum l = 4ℏ and projection along the magnetic

field direction lz = 2ℏ. The molecules are closed-channel dominated and chemically bound

with the size given by the van der Waals length RvdW = 5.3 nm for Cs [30]. This resonance is

chosen due to the superior collisional stability between the molecules. The molecules can be

brought into other rotational states or superposition of rotational states by a time-dependent

magnetic field [99].

The ramp is optimized to pair up to 15% of the atoms into molecules with the lowest

achievable temperature. To remove residual atoms after the molecular formation phase, a

resonant light pulse of 20 µs illuminates and pushes atoms away from the imaging area in

4 ms. Molecules are detected by reversely ramping the magnetic field which dissociates the

molecules back to atoms, and the atoms are detected by in situ absorption imaging, see

Fig. 6.4a. The final value of the magnetic field and the hold time are selected to give a

reliable image that reflects the distribution of the molecules. In our experiments, we set the

final magnetic field to be 20.19 G and do the detection in 0.1 ms after the reverse ramp. We

estimate that the atoms expand by 1 µm during the dissociation process, which is comparable

with the imaging resolution of our experimental system.
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The produced molecules thus occupy the same trap volume as the atomic cloud. Slightly

lower molecular density is observed at the trap center due to a weak magnetic field curvature

of 21.5 G/cm2 on the x− y plane. The field curvature leads to a slightly deeper potential in

the rim than the center by 1.1 nK for the molecules. The appearance of the ring structure

in the molecular density profile, see Fig. 6.4a, suggests that the molecules are prepared at

a temperature or chemical potential on the order of few nK. The ring structure forms soon

after passing the Feshbach resonance during the magnetic field ramp, which suggests that the

equilibrium of molecules is reached by their fast interactions with atoms near the resonance

(see Sec. 6.3.1). This supports our following equation of state measurements of the molecular

samples from their density profiles.

6.2.1 Characterization of external potential from atomic density profile

The strong magnetic field gradient for levitating the molecules leads to an additional mag-

netic anti-trapping potential on the horizontal plane. We also apply a central potential

barrier projected from a DMD to measure the density response of the molecules. A precise

knowledge of both the magnetic anti-trapping potential and the optical potential barrier are

needed in order to extract the equation of state of the molecular gas presented in Sec. 6.3.1.

We load atomic BEC into the same trap as for molecules to calibrate the external po-

tential. Since the magnetic moment and polarizability of the g-wave molecule are accurately

known, the trapping potential for molecules can thus be obtained from the trapping potential

for atoms.

The magnetic anti-trap frequency on the horizontal plane is given by

ω2i =
µm

4mB0
(B′2 − 4ϵiB

2
0), (6.1)

where i = x, y, µm is magnetic moment, B0 and B′ are magnetic field and magnetic field
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Figure 6.2: Calibration of magnetic anti-trap potential from atomic density dis-
tribution. a, Fit of the in situ atomic density profile for determination of the magnetic
anti-trap frequencies ωx and ωy using Eq. 6.2. The top and right panels show line cuts of the
2D atomic density in x and y directions crossing at the center of the anti-trap. We choose
the region within the red dashed circle for fit and extraction of the equation of state. b,
Equation of state of atomic BEC shown in a. Each data point represents averaged density
within a bin size δµ/h = 0.25 Hz and error bars represent 1-σ standard deviation. The black
solid line is a linear fit to the data while the black dashed line is an extrapolation of the fit
toward origin.

gradient, respectively, at the location of particles and ϵi is determined from the coil ge-

ometry [72]. We determine the offset field value B0 with an accuracy of 2 mG using mi-

crowave spectroscopy. We prepare atomic BEC at 17.2 G where the s−wave scattering length

aS = 4 a0. Because of the low chemical potential, the atomic density distribution is sensitive

to the magnetic anti-trap and shows lower density at the center and higher density in the

rim, see Fig. 6.2a. Since the vertical trap frequency ωz/2π = 400 Hz is much larger than

the chemical potential µ0/h ≈ 10 Hz, the BEC is in the quasi-2D regime and the column

density under Thomas-Fermi approximation is given by

n(x, y) =
m

ℏ2g2D
[µ0 − Vmag(x, y)], (6.2)

where the 2D coupling strength g2D =
√
8πaS/

√
ℏ/mωz, the magnetic anti-trap potential

123



Vmag(x, y) is parametrized by the trap frequencies ωx and ωy as Vmag(x, y) = mω2x(x −

x0)
2/2 +mω2y(y − y0)

2/2 and (x0, y0) is the center position of the anti-trap. To determine

the trap frequencies and the global chemical potential, we fit the in situ atomic density

distribution using Eq. 6.2, see Fig. 6.1a. From the fit we get ωx/2π = 1.94(9) Hz, ωy/2π =

2.24(9) Hz and µ0 = h × 9.19(7) Hz. In this way, we calibrate the geometric parameters

to be ϵx = 0.54(3) cm−2 and ϵy = 0.45(3) cm−2, which we use to calculate the anti-

trap frequencies for molecules based on Eq. 6.1, which gives ωmol
x /2π = 3.35(4) Hz and

ωmol
y /2π = 3.48(4) Hz. For consistency check, we plot out the atomic density nA versus the

local chemical potential µ = µ0 − Vmag(x, y), which agrees with the equation of state of a

pure 2D BEC µ = (ℏ2g2D/m)n(x, y) (see Fig. 6.2b).

We calibrate the optical potential barrier projected by DMD using atomic BEC prepared

at 19.2 G, where the atomic scattering length is aS = 127 a0 and the vertical trap frequency

is ωz/2π = 409 Hz. The intensity of the optical barrier is ramped up within 10 ms. After

waiting for another 2 ms, absorption imaging is performed in the vertical direction to record

the atomic column density, see Fig. 6.3a. Here the barrier height is controlled by the fraction

of micromirrors fDMD that are turned on. The fraction determines the intensity of the light

projected onto the atom plane. In the region with higher light intensity, the atomic density

is suppressed more, which in turn allows us to determine the light intensity. Because of the

higher chemical potential of BEC in this case, the density depletion has a larger dynamical

range that helps to calibrate larger range of barrier height. Since the chemical potential is

comparable to the vertical trap frequency, the BEC is in 3D regime and the column density

under Thomas-Fermi approximation is given by

n(x, y) = α[µ0 − Vopt(x, y)]
3/2 (6.3)

where α = 4
√
2/(3g

√
mωz), the 3D coupling strength g = 4πℏ2aS/m and the local optical
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Figure 6.3: Calibration of the optical potential barrier projected by DMD from
the density response measurement of atomic BEC. a, Images of in situ atomic column
density with different central barrier height determined by different fraction of micromirrors
fDMD that are turned on in DMD. b, Example measurements of the proportionality p(x, y)
for 6 pixels at different locations. The solid lines are linear fits to the linear part of the data
points, the slope of which gives p(x, y). c, Spatial dependence of the proportionality p(x, y).
The upper and right panels are line cuts in x and y directions crossing the peak value.

potential Vopt(x, y) is proportional to the micromirror fraction as Vopt(x, y) = p(x, y)fDMD.

Thus for each pixel located at (x,y), we have n2/3(x, y) = α2/3[µ0−p(x, y)fDMD], from which

the proportionality p(x, y) can be extracted from a series of measurements with different

fDMD, see Extended Data Fig. 2b. Repeating the same procedure for all the pixels within

the region of optical barrier, we can map out the spatial dependence of the proportionality

p(x, y), see Fig. 6.3c. The polarizability of weakly bound molecules is approximately twice

as large as that of a free atom, thus the corresponding proportionality for the molecules is

2p(x, y).

After calibrating both the magnetic potential Vmag(x, y) and the optical potential Vopt(x, y)

for molecules, we can get the local molecular density as a function of the total external po-
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tential V (x, y) = Vmag(x, y) + Vopt(x, y) and follow the fitting procedure in Sec. 6.3.1 to

extract the global chemical potential µ0. Then we obtain the corresponding local chemical

potential µ and average the density in a certain spatial area with a proper range of local

chemical potential to get the equation of state for molecules from the density profile and

optical barrier measurements in Fig. 6.4. In addition, with the knowledge of the optical

potential profile, we get the equation of state for the BEC in 3D regime, see the inset of

Fig. 6.4c.

6.3 Results

6.3.1 Equation of state of molecular gases.

To determine the molecular temperature, we find the conventional time-of-flight method

impractical as the molecules expand very slowly within their lifetime. Instead we measure

the density profile by slowly raising a potential barrier at the trap center over 10 ms and

recording the density response, see Fig. 6.4b. With a high potential barrier, the molecules

at the center becomes thermal with the density response ∂n/∂µ = n/kBT , where kB is the

Boltzmann constant. From fitting the data, we determine the molecular temperature to be

10(3) nK. The low temperature kBT < ℏωz also suggests that the molecules form a 2D gas.

To probe the phase of the molecules at high densities, we measure the equation of

state n(µ, T ) from their in situ density distribution [68]. Precise knowledge of the mag-

netic anti-trap potential is obtained from identical measurements with atomic condensates

shown in Sec. 6.2.1. The molecular density is found to linearly increase with the local

chemical potential, consistent with the mean-field expectation µ = ℏ2g2DnM/2m, where

g2D = 4πaM
√
2mωz/h is the 2D coupling constant [114], nM is the 2D molecular density

and aM is the molecular scattering length. Fitting the data with the theoretical predic-

tion including finite temperature contribution [118], we obtain a temperature of 11(1) nK,
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Figure 6.4: Equation of state of molecular gases. a, In situ images of atomic BEC
(left) and molecular BEC (right) density profiles, both at B = 19.2 G, in the dipole trap.
Atoms are paired into molecules near the g−wave Feshbach resonance, see text. b, Molecular
density response to optical potential. A circular repulsive barrier with a radius of 4 µm is
raised at the center of the trap with a barrier height of h× 83 (left), h× 165 (middle) and
h × 330 Hz (right). Molecular density response determines the equation of state for small
and negative chemical potential. The total external potential is sketched below. c, Equation
of state of atomic and molecular BEC. 2D phase space density nϕ = nMλ

2
dB of molecules are

derived from the optical barrier (red) and density profile (blue) measurements (see Methods),
where λdB is the molecular de-Broglie wavelength. Background color shows the 2D gas in the
thermal (nϕ ≤ 2, blue), fluctuation (2 < nϕ < nc, grey) and BKT superfluid (nϕ > nc, red)
regimes, where the superfluid critical phase space density is nc = 6.5 (exp.) and 7.5 (theo.),
see text. Green and blue lines are fits in the thermal and superfluid regimes for a 2D Bose
gas [118], respectively. The red line is a fit based on classical gas. Inset shows identical
measurement on atomic condensates with fits in the thermal (red) and BEC (blue) regimes.
Error bars represent 1-σ standard deviation.

consistent with the optical barrier measurement.

We combine both measurements to determine the equation of state n(µ, T ) of the molec-

ular gas. In Fig. 6.4c, we present the 2D density nM as a function of the local chemical

potential µ. Notably, the transition from exponential to linear dependence on µ is the

hallmark of the thermal gas to superfluid phase transition. A global fit to the data shows ex-

cellent agreement with the theory in the thermal and superfluid limits (see Sec. 6.3.1). From
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the fit, we determine the 2D coupling constant g2D = 0.19(3), molecular scattering length

aM = +220(30) a0, the peak phase space density nϕ ≈ 9 and the global chemical potential

µ0 = h×61(7) Hz. Repeated experiments in the range of 18.2 G < B < 19.5 G show that aM

is approximately constant. The peak phase space density exceeds the critical value for the

BKT superfluid transition of nc = 6.5 (exp.) [75] and 7.5 (theo.) [117] at g2D = 0.19. Based

on our trap geometry and the interaction strength, we expect that molecules condense in the

superfluid regime [63], and estimate that 30% to 50% of the molecules are in the superfluid

phase.

Density profiles of atomic and molecular BECs

Starting from a flat-top atomic density profile, we prepare a molecular condensate in the 2D

box trap after the magnetic field is ramped across the Feshbach resonance. It is clear that

the molecules do not inherit the density profile from the atoms, see Fig. 6.4a and Fig. 6.5.

The molecular density profile sensitively depends on the curvature of the magnetic field and

the optical barrier potential, which we introduce immediately after the ramp.

Figure 6.5: Azimuthally averaged density profiles of the atomic (left) and molec-
ular (right) clouds shown in Fig. 6.4a. The atomic density profile is flat-top while the
molecular density profile has a dip in the middle.

To understand the fast change of the molecular density profile, we note that there is a
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drastic difference between the interaction energy scale near the Feshbach resonance where

the molecules are created and far away from the resonance where we observe the molecular

BEC. On resonance, the interaction energy scale is h× 8, 000 Hz, determined by the ”Fermi

energy” [66] in our system, and is also orders of magnitude higher than the molecular chemical

potential of h × 61 Hz measured far from the resonance. Thus, near the resonance the

molecules can form and establish equilibrium with the other particles fast. In Fig. 6.6, it

is clear that molecules are created from the atoms in 200 µs for various ramp speeds and

develop the ring structure in their density profiles near the resonance.

Figure 6.6: Fast equilibration of molecules with atoms during the ramp across the
Feshbach resonance. a, Dynamics of the number of molecules during the magnetic field
ramp across the Feshbach resonance at 19.87 G with different ramp speeds of 161 (red), 80
(blue) and 54 mG/ms (green). b, In situ images of molecular density profiles during the
magnetic field ramp at 80 mG/ms.

Finally, after the formation of the molecules, the molecular density profile persists for

15 ms hold time or longer, see Fig. 6.7. In the presence of the optical barrier potential,

the central molecular density is suppressed to < 25% of the peak density and the molecular

lifetime is expected to be longer than 100 ms. In this case, we expect that the particle loss

during the 10-ms ramp does not significantly influence the compressibility measurement.
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Figure 6.7: Dynamics of molecular density profiles in the 2D box trap with mag-
netic anti-trap potential. The azimuthally averaged molecular density profiles are shown
as a function of the hold time after the formation of molecules. The dips in the middle result
from the magnetic anti-trap potential and persist during the first 15 ms after the formation.

Fitting the equation of state for 2D and 3D Bose gases

For a nondegenerate 2D ideal Bose gas, the phase space density is given by nϕ = − ln(1−ζ),

where ζ = exp(βµ) is the fugacity, β = 1/kBT and µ = µ0 − V (x, y) is the local chemical

potential. If the gas is interacting, a mean field potential 2(ℏ2g2D/2m)n(x, y) is added to

the external potential based on the Hartree-Fock approximation [63]. Then the equation of

state for interacting 2D Bose gas becomes:

n(x, y) = − 1

λ2dB
ln[1− eβµ−g2Dn(x,y)λ

2
dB/π], (6.4)

On the other hand, the density of 2D superfluid outside the fluctuation region is [117]:

n(x, y) =
2πβ

g2Dλ
2
dB

µ+
1

λ2dB
ln[2n(x, y)λ2dBg2D/π − 2βµ], (6.5)
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We apply the above models for 2D Bose gas to describe the equation of state of the

molecules, shown in Fig. 6.4c. We perform a global fit to the data points within the range

nM < 1 µm−2 and nM > 4 µm−2 using Eqs. 6.4 and 6.5, respectively, with temperature

T, global chemical potential µ0 and 2D coupling constant g2D as fitting parameters. Since

the experimental condition drifted, the global chemical potential between the optical barrier

and density profile measurements are different, and the chemical potential difference δµ is

also set as an free parameter in the global fit. The fit gives T = 11(1) nK, g2D = 0.19(3)

and the global chemical potential for the optical barrier and density profile measurements as

h× 45(7) Hz and h× 61(7) Hz, respectively. We also performed independent fits to the data

at low density nM < 1 µm−2 and high density nM > 4 µm−2. The resulting temperatures

are 10(3) nK and 11(1) nK, in agreement with each other and with the global fit.

With the extracted 2D coupling constant g2D, the critical phase space density for BKT

superfluid transition is evaluated as ln(ξ/g2D) ≈ 7.5, where the coefficient ξ = 380(3) [117].

On the other hand, the BEC transition in our 2D box potential occurs at critical phase space

density of ln(4πR2/λ2dB) ≈ 7.5 [63], which coincides with the BKT transition.

For BECs in 3D regime as shown in the inset of Fig. 6.4c, the low density part where

the column density nA < 10 µm−2 is fitted using the classical gas formula n(x, y) =

(2πl2z/λ
4
dB) exp(βµ), where the harmonic oscillator length lz =

√
ℏ/mωz. The high den-

sity part is fitted based on Eq. 6.3.

6.3.2 Stability of a g−wave molecular condensate.

We further investigate the lifetime of the molecules. By holding the molecular BEC in the

dipole trap with the initial mean density of n3D ≈ 1 × 1013 cm−3, the sample survives

for more than 30 ms. Comparing samples with different densities and in different traps, we

conclude that the decays are dominated by two-body collision loss, see Fig. 6.8a. The average

loss coefficient of L2 = 4× 10−12 cm3/s for molecules in the 2D trap with ωz/2π = 400 Hz
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is significantly lower than previous measurements [55, 28], see Fig. 6.8b. It is also a factor

of 500 below the unitarity limit U2 = (4h/2m)⟨k−1⟩ = 2 × 10−9cm3/s, where ⟨k−1⟩ is the

thermal average of the reciprocal molecular scattering wavenumber k−1 [78], and a factor of

10 below the interaction scale µ0/ℏn3D, see Fig. 6.8b.
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Figure 6.8: Stability of g−wave molecular condensate. a, Decay of total particle num-
ber for molecules with vertical trap frequency ωz/2π = 400 (red and blue) and 167 Hz (black)
at 19.5 G. The solid lines are fits based on the two-body loss rate equation. b, The extracted
loss coefficients L2 in this work (right panel) are compared with former measurements on
3D thermal gases of Cs2 molecules in the 6s, 4d and 4g states (left panel) [55, 28]. The data
points in right panel share the same color code as in panel a. The dashed lines indicate the
unitarity limits of the two-body loss coefficients. The dotted line shows the interaction en-
ergy scale µ0/ℏn3D for the red data point at 10 ms in panel a with global chemical potential
µ0 = h × 61 Hz and mean 3D density n3D = 1.1 × 1013 cm−3. Error bars represent 1-σ
standard deviation.

The large suppression of inelastic collisions between the highly-excited g−wave molecules

is remarkable. The comparison in Fig. 6.8b suggests that the collision loss is suppressed at

low temperatures and possibly in the 2D regime [77, 105]. Since the unitarity limited

loss scales as T−1/2, smaller loss at lower temperature suggests that a larger suppression

relative to the unitarity limit can be obtained by reaching down to even lower temperatures.

At 10 nK, the loss coefficient we observe is already at the same level as the ground state

fermionic molecules reported in Refs. [44, 129].

The observed lifetime of 30 ms is sufficient for many elastic scattering between molecules,
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which occur at the time scale of ℏ/µ0 = 2.7 ms. While the lifetime is insufficient to re-

distribute molecules over the entire sample, thermal equilibrium in a (nearly) homogeneous

system does not require global transport and can form by local interactions near the Fes-

hbach resonance where fast collisions between atoms and molecules occur (see Sec. 6.3.1).

It is remarkable that the measured temperatures at the trap center and in the rim are in

good agreement with the atomic BEC at 11(2) nK. Our observation suggests that molecules

produced at all locations in the trap are in thermal equilibrium with the atoms. Since the

atoms are in thermal equilibrium, the molecules thus prepared are in thermal equilibrium

with each other.

Extraction of the two-body inelastic loss coefficients

In order to study the lifetime of g-wave molecules, we hold the molecules in different traps

and monitor the decay of total particle number as a function of the hold time. The two

traps we used have horizontal radius R1 = 12.5 µm, R2 = 9 µm and vertical trap frequency

ωz1/2π = 400 Hz, ωz2/2π = 167 Hz, respectively. The molecular density distribution

in these traps are approximately uniform in the horizontal direction and Gaussian in the

vertical direction, given by

n(r⃗) =
NM

π3/2R2
i lzi

e−z
2/l2ziθ(Ri − ρ), (6.6)

where i = 1,2, ρ =
√
x2 + y2 and θ(x) is the Heaviside step function.

Even though the 1064 nm light intensity in the vertical direction of the two traps differ

by a factor of ω2z1/ω
2
z2 ≈ 6, the decay rate of molecular number are similar, see Fig. 6.8a.

This suggests that the one-body loss process due to the off-resonant laser light is negligible.

In fact, since the g-wave molecules are in a highly-excited rovibrational state, two-body loss
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process dominates which is modelled by ∂tn(r⃗, t) = −L2n2(r⃗, t). The molecular number

decay corresponding to the density profile in Eq. 6.6 is thus given by

NM(t) =
NM(0)

1 + L′2NM(0)t
, (6.7)

where L′2 = L2/
√
2π3/2R2

i lzi. We use Eq. 6.7 to fit the data of molecular number decay and

extract the inelastic loss coefficient L2 in Fig. 6.8b.

The unitarity limit of the two-body loss coefficient is U2(k) = 4h/2mk, where k is the

magnitude of the relative wavevector k⃗ between two colliding molecules, associated with the

relative kinetic energy E = ℏ2k2/2m [30]. Due to the finite temperature in our experiment,

the relative kinetic energy obeys Boltzmann distribution as p(E) = A exp(−E/kBT ), where

the coefficient A = (1/4)(ℏ2/πmkBT )3/2. The distribution of the wavenumber k is then

given by

p(k) = 4πAk2e−ℏ2k2/2mkBT . (6.8)

The unitarity limit that we evaluate in Fig. 6.8b is U2 =
∫∞
0 U2(k)p(k)dk = (4h/2m)⟨k−1⟩,

where the thermal average of k−1 with respect to the distribution p(k) is ⟨k−1⟩ =
√

ℏ2/πmkBT .

For comparison with the loss coefficients, we evaluate the interaction scale as µ0/ℏn3D, where

the 3D mean density n3D =
∫ +∞
−∞ n2(r⃗)d3r⃗/

∫ +∞
−∞ n(r⃗)d3r⃗ = NM/

√
2π3/2R2

1lz1.

6.3.3 Unpairing dynamics in a molecular condensate near the g−wave

Feshbach resonance

The molecular superfluid opens a new door to investigate pairing and unpairing in a Bose

condensate. A phase transition is expected when unpairing occurs in a molecular BEC
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[123, 120]. Figure 6.9 presents our investigation into the unpairing dynamics. After forming

the molecular condensate at B = 19.4 G, we ramp the magnetic field in 0.3 ms near and

above the Feshbach resonance with a precision of 2 mG. We monitor the dissociation process

by imaging the emerging atoms.

When the field is ramped high above the resonance, the molecules quickly and entirely

dissociate. In particular, the dissociation rate follows Fermi’s golden rule Γ ∝ E1/2, where

E = ∆µ(B −B0) is the molecular energy above the continuum and ∆µ = h× 770 kHz/G is

the relative magnetic moment [28].

Near the Feshbach resonance the system enters the strong coupling regime and the

measurement deviates from Fermi’s golden rule. Here the measured dissociation energy

ℏγ = ℏ × 8 ms−1 = kB× 61 nK, see Fig. 6.9b, is much greater than µ and T of the BEC

and much smaller than the Feshbach resonance width ∆µ∆B = kB × 410 nK. The en-

ergy is, however, comparable to the universal Fermi energy scale for the molecules EF =

(ℏ2/4m)(6π2n3D)
2/3 = kB × 63 nK. This result suggests that the dissociation dynamics

near the Feshbach resonance is unitarity-limited [66, 51]. Finally, we observe about 40% of

the molecules converted back to atoms, and attribute the missing 60% to inelastic collisions

between atoms and molecules in the strong coupling regime.

Empirical fits to dissociation rate and dissociated molecular fraction

After preparing a pure molecular BEC below the Feshbach resonance, if the magnetic

field is then switched to a value high above the resonance, the molecules quickly disso-

ciate into a continuum of free atoms. The dissociation rate follows Fermi’s golden rule

as Γ = (2π/ℏ)|VMA|2ρ(E) = 2m1/2abg∆µ∆BE
1/2/ℏ2, where VMA is the coupling matrix

element between molecular and atomic states and is independent of the energy E above

the continuum to leading order, the density of state ρ(E) ∝ E1/2 and abg is the back-

ground scattering length. In this high field limit, our measured dissociation rate is con-
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Figure 6.9: Unpairing dynamics in a molecular condensate near the g−wave Fes-
hbach resonance at B0 = 19.874 G. a, 5 ms after the formation of molecular BEC with
mean 3D density n3D = 9.7 × 1012 cm−3, we ramp the magnetic field back to 19.87 (red),
19.90 (brown), 19.92 (yellow), 19.95 (green) and 20.0 G (blue) and image the atoms from
the dissociated molecules. The inset illustrates the unpairing process. b, The unpairing rate
(upper panel), unpaired fraction (middle panel) extracted from the solid line fits in panel
a are compared with the atomic s-wave scattering length a (lower panel). The magenta
and blue lines are empirical fits based on Fermi’s golden rule with the bare and effective
density of states, respectively. The red line is an empirical fit (see Methods). The grey
shaded area represents the width of the g−wave Feshbach resonance. c, In situ images of
unpaired molecules at B = 19.870(2) G near the Feshbach resonance. Error bars represent
1-σ standard deviation.

sistent with Fermi’s golden rule γ = αΓ, where the coefficient α = 0.4(1). The fact that

α is less than 1 may be because the resonance width ∆B from the measurement of Inns-

bruck group [100] we used in evaluating Γ is larger than actual resonance width. The

dissociation rate in Fig. 6.9b is extracted by fitting the data in Fig. 6.9a using the formula

NM(t) = NM(t0){1−exp[−γ(t− t0)]}θ(t− t0), where t0 is the time when the molecules start

to dissociate.

On the other hand, when the magnetic field is ramped to near the resonance where
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ρ(E) ≈ 0, we still observe a finite dissociation rate of 8 ms−1. This is because the molecular

state can couple to a band of scattering states that are Lorentzian distributed [53]. We thus

define an effective density of state ρeff to be a convolution between ρ(E) and a Lorentzian

distribution. Thus the effective dissociation rate becomes

Γeff = Γ

√
(
√

1 + Ω2/4E2 + 1)/2, (6.9)

where Ω is the full width of the Lorentzian distribution. We use Eq. 6.9 to fit the dissociation

rate as a function of the magnetic field we measured, shown as the blue solid line in the upper

panel of Fig. 6.9b.

The dissociated molecular fraction drops when the magnetic field is ramped back closer to

the resonance, which we attribute to the inelastic collision loss between atoms and molecules

near the resonance. The data of the fraction in Fig. 6.9b is fitted using a sigmoid function

f = Ns{1/2 + (1/π) arctan[∆µ(B −B0)/Vs]}, where Ns and Vs are set as free parameters.

To conclude, we realize BEC of highly-excited, rotating molecules near a narrow Fesh-

bach resonance. The molecules are sufficiently stable at low temperatures to ensure local

thermal equilibrium. Unpairing dynamics in molecular condensates is consistent with the

universality hypothesis. Our system offers a new platform to study the long-sought atomic

BEC−molecular BEC transition, and highlights the fundamental difference between Cooper

pairing in a degenerate Fermi gas and bosonic pairing in a BEC.

6.3.4 Molecule formation with different ramp speed across the resonance

As the ramp speed across the Feshbach resonance for molecule formation varies, a dynamical

phase transition from an atomic to a molecular BEC happens where the reaction efficiency is

predicted to have a nonexponential denpendence on the ramp speed based on an analytical
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solution found in a recent study in Ref. [98]. Here we tune the ramp speed by changing the

time of the magnetic field ramp from 19.92 G to 19.79 G, starting from an atomic BEC as

described in Sec. 6.2. The resulting total number of molecules created from the ramp as

a function of the ramp speed is summarized in Fig. 6.10. Our data agrees very well with

the analytical solution in Eq. 3.85, which suggests stimulated conversion from atoms in a

condensate to molecules.
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Figure 6.10: Total number of molecules created after a ramp from 19.92 G to 19.79
G with different speed across the narrow Feshbach resonance. Solid line is a fit to
the data based on Eq. 3.85 with N = 3.4(3)× 103 and g/2π = h× 30(4) Hz.
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CHAPTER 7

COHERENT REACTION DYNAMICS IN QUANTUM

DEGENERACY REGIME

Chemical reactions in the quantum degenerate regime can be drastically different from those

in a normal thermal gas. Quantum statistics and collective behavior can dominate the

reaction kinetics once the reactants are prepared close to their many-body ground state.

Here we report coherent reaction dynamics in atomic Bose-Einstein condensates (BECs)

near a g-wave Feshbach resonance. Molecules are produced rapidly from atomic samples

after a quench close to the resonance. As a function of the atomic sample temperature, the

initial molecule formation rates sharply transition from the values determined by thermal

collisions between atoms in normal gas phase to those in the degeneracy regime where the

wave nature of atoms dominates. Following the initial proliferation, the molecules reach

quasi-equilibrium with the atoms and the number of molecules shows coherent oscillatory

evolution with the oscillation frequency determined by both the molecular binding energy and

the atomic density. We further enhance the amplitude of the molecule number oscillation

by periodically modulating the molecular binding energy. Our observation demonstrates

collective chemical reactions in a strongly interacting atomic BEC. We also prepare pure

ultracold molecules from atomic BEC and demonstrate the molecule-atom coherence by a

Ramsey-like pulse sequence near the Feshbach resonance.

7.1 Introduction

Chemical reactions, typically happening at hundreds of kelvin, are driven by thermal fluctua-

tions that allow a small fraction of particles in the reactants to have high enough momentum

to overcome a potential barrier before reaching the final products. The rate constant de-

scribing how fast the reaction proceeds follows the celebrated Arrhenius law and strongly
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depends on temperature. Nevertheless, chemical reaction can still proceeds at a consider-

able rate in the zero temperature limit [12], where the wave nature of particles dominates.

Thus, quantum statistics, coherence, quantum fluctuations and entanglement can play an

important role in the reaction kinetics [122, 22].

Molecules can be prepared in the cold (1K to 1mK) and ultracold regimes (below 1mK)

by various techniques [112, 142, 15, 80, 86]. In the cold regime where only a few scattering

partial waves dominate, the molecular interaction potentials can be precisely mapped out

from measurements of differential scattering cross sections [7] and chemistry can be controlled

by external magnetic fields [87] or the geometry of confinement [44]. At ultralow temperature,

reactants start to occupy a single external and internal quantum state and the reaction rate

can be drastically modified by simply controlling the initial quantum state of reactants [111,

71]. With the addition of external static and oscillating fields, reactants can be tuned to

be strongly repulsive at short range [130, 101, 4] and the elastic collision rate can be much

larger than the loss rate, which allows efficient evaporative cooling of molecules to quantum

degeneracy [125].

Deep in the quantum degeneracy regime where the system is close to its many-body

ground state, collective effects can have fundamental influence on chemical reactions. A

suppression of reaction rate in a degenerate Fermi gas of KRb molecules is obserseved due

to an anti-bunching effect [43]. Recently, the creation of a molecular BEC from an atomic

BEC is demonstrated by us, see Chapter 6. In a molecular Bose-Einstein condensate, novel

Bose-enhanced chemistry is proposed to modify the branching ratio in photodissociation,

which can lead to exponential buildup of the macroscopic population in the selected product

states [107]. On the other hand, starting from an atomic BEC, molecules created from a

coherent Raman transition can show collective oscillation in its population due to the bosonic

stimulated emission of atoms or molecules into their condensed phases [64].

In zero temperature limit, the reaction dynamics originate from coupling between the

140



Reaction

Figure 7.1: Reactive coupling between atomic and molecular fields. Cs atoms form
a condensate in a 3D harmonic trap where each atom is described by a wave function ψa
(blue). Near a Feshbach resonance where the atomic scattering state has an energy close to
the molecular bound state, atoms are collectively paired into molecules described by wave

function ψm (red) through the process ψ2aψ
†
m. Molecules can also coherently dissociate back

to atoms through the reverse process (ψ
†
a)

2ψm. Both atoms and molecules can decay to
other channels through inelastic collisions between each other.

quantum fields of reactants and products. For a synthesis reaction, one of the simplest

possible reactions in nature, the dynamics are induced by reactive coupling between atomic

and molecular fields ψa and ψm, respectively (see Fig. 7.1). ψa and ψm evolve cooperatively

according to the following equations of motion

iψ̇m = δ(B)ψm + Ωψ2a

iψ̇a = 2Ωψmψ
†
a, (7.1)

where Ω is the Feshbach coupling strength and δ(B) is the energy detuning between two free

atoms and one molecule. Rich and interesting dynamics can be derived from Eq. 7.1, see

Sec. 3.2 [140, 122]. Starting from a pure atomic BEC, coherent oscillation is predicted to

happen between the atomic and molecular BEC population, which damps due to entangle-

ment between them. The oscillation frequency depends strongly on atomic and molecular

141



densities, signifying collective behaviour of the reaction.

Here we report the observation of novel coherent synthesis reaction dynamics in con-

densates of Cs atoms near a narrow g-wave Feshbach resonance [30]. After quench close

to the resonance, the number of Cs2 molecules first grows monotonically from zero. By

preparing the initial atomic sample at different temperature regimes, we can tune the ini-

tial molecule formation rate from the value determined by thermal collisions between atoms

in normal phase to that in the quantum degenerate regime where the wave nature of par-

ticles dominates. The molecules then reach quasi-equilibrium with atoms after the first

monotonic increase stage [97, 29] and develop coherent oscillations in their population [47].

The frequency f of the molecule number oscillation follows the generalized Rabi frequency

f =
√
δ(B)2 + Ω2, with Ω depending on the atomic BEC density [140]. By adding a res-

onant AC modulation to the magnetic field, in the spirit of Shapiro resonances [121], we

further amplify the oscillation of molecular population.

7.2 Experimental setup

Our experiment starts with an ultracold Bose gas of 1.6 × 104 to 4.7 × 105 cesium atoms

near a Feshbach resoance. The atoms can be cooled to BEC in a 3D harmonic trap or 2D

box potential [147]. We tune the temperature and total atom number by controlling the

optical trap depth at the end of forced evaporation [74]. We induce the reaction between

atoms by quenching the magnetic field to a value below or above a closed channel dominated

g-wave Feshbach resonance at B0 = 19.849(1) G from our molecular binding energy mea-

surements. This resonance has a narrow width ∆B = 8.3(3) mG from our scattering length

measurements and couples two free atoms into a chemically bound spinning molecule with

its size given by the van der Waals length RvdW = 5.3 nm [30], see Fig. 7.1. After some

reaction time, we decouple the atoms and molecules by quickly tuning the magnetic field

off resonance. Then we either image the remaining atoms at the same field or image the
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produced molecules by first dissociating them above resonance at 20.48 G before imaging

the atoms from dissociation [147].

7.3 Results

7.3.1 Molecule formation rate in classical and quantum degenerate regimes.

To demonstrate that chemical reaction follows a different rule in degeneracy regime from

the thermal regime, we study the molecule production rate when the initial atomic sample

is cooled below BEC transition temperature. In a thermal gas of ultracold atoms above

the critical temperature, the production rate is determined by collisions between pairs of

atoms, which is proportional to the atomic density na, collision cross section σ and relative

velocity v. The branching ratio bn for creating the molecules is usually imperfect and thus

less than 1. Therefore, the rate equation that determines the molecular density nm is given

by ṅm(r⃗, t) = βnn
2
a(r⃗, t), where the rate coefficient

βn = bnσv. (7.2)

We measure the molecular formation rate in a thermal atomic gas at 19.852(1) G in

the unitary regime where the s-wave scattering length diverges [97] and the cross section

σ ∝ 1/v2 [30]. In this regime, the rate coefficient averaged over thermal distribution is

⟨βn⟩ ∝ bn/
√
T . Right after magnetic field reaches the target value, the molecule number

grows linearly (see Fig. 7.2a) and from the slope Ṅm we extract the rate coefficient as

β = Ṅm/Nan̄a (see Fig. 7.2b), where Na and n̄a are initial total atom number and average

3D atomic density, respectively. We find the rate coefficient we measure in the thermal

regime is consistent with the 1/
√
T scaling, from which we extract the probability bn = 6.5%

for each collision between two atoms to create a molecule. The fact that this branching ratio
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is much less than 1 suggests that atoms decay into other channels which we cannot detect.
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Figure 7.2: Molecule formation rate in classical and quantum degeneracy regimes.
a, Time evolution of molecule creation efficiency after quench to 19.852(1) G for initial
atomic temperature at T/Tc = 1.8 (red), 0.5 (magenta), 0.14 (blue). The solid lines are
piecewise linear fits for extracting molecule formation rate ṄM. b, The molecule formation
rate coefficient β is extracted from measurements similar to those shown in a. The red line
is a fit to the data at T/Tc > 1.3 using βcl ∝ 1/

√
T , with the branching ratio bn = 6.5%

for creating molecules from collisions between atoms in the normal gas. The blue line fits
the data at T/Tc < 0.7, representing rate coefficient ∝ 1/

√
En in zero temperature limit

with branching ratio bB = 0.6%, where En is the Fermi energy determined by inter particle
spacing in atomic BEC; see text. The inset shows the rate coefficient normalized by βcl in
log-linear scale. Data values in a represent the average and error bars represent one standard
deviation of the mean, estimated from the statistical errors of 4-8 measurements. The error
bars in b represents 95% confidence interval from fitting time traces of molecule number.

On the other hand, in the quantum degeneracy regime where all the atoms condense, ther-

mal effect is absent and quantum fluctuation plays an important role. In the unitary regime,

the energy scale of temperature kBT is replaced by the Fermi energy En = ℏ2(6π2n̄a)2/3/2m

that is determined by the only length scale — interparticle spacing (1/n̄a)
1/3 — remaining

in the system (apart from the finite sample size), where kB is the Boltzmann constant, ℏ is

the reduced Planck constant and m is atomic mass. Thus the corresponding rate coefficient

in atomic BEC is
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βB = bB
32ℏ2

√
π

m3/2
√
En

(7.3)

in which bB the effective probability of associating two atoms in BEC into a molecule.

Indeed, as we cool down atomic samples to below the critical temperature where conden-

sate starts to form, we find the rate coefficient sharply transitions from βT into the value that

is consistent with βB (see Fig. 7.2), with the branching ratio bB = 0.6%, much lower than bn

in the thermal regime. This sharp transition is well captured by our two-component model

in which the rate coefficient is a weighted sum of βT and βB with the weights determined

by atomic density distributions of BEC and thermal fractions, respectively.

Derivation of molecular formation rate coefficients

Let’s first consider collisions in a classical atomic gas, where the probability for each collision

between two atoms to create a molecule is bn. Within time ∆t, the average number of atoms

colliding with an atom moving with relative velocity v and collision cross section σ is (see

Fig. 7.3)

q̄ = n(r, t)σv∆t, (7.4)

where n(r, t) is the local atomic density. However, the number of collision events has some

fluctuation around the average value q̄ and here we assume it is a random variable q that

follows the Poisson distribution P (q) = e−q̄ q̄q/q!, where q = 0, 1, 2, .... Then the proba-

bility for the atom to survive all the collisions within ∆t is PN =
∑∞
q=0(1 − bn)

qP (q) =

exp [−bnn(r, t)σv∆t], which means the probability for the atom to be associated into a
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Figure 7.3: Diagram for illustration of collisions in a classical atomic gas. The
collision happens within time ∆t for an atom moving with relative velocity v and collision
cross section σ.

molecule is:

PA = 1− PN = 1− e−bnn(r,t)σv∆t ≈ bnn(r, t)σv∆t. (7.5)

Therefore, the change of local molecular densitym(r, t) is ∆m(r, t) = n(r, t)pA = bnn
2(r, t)σv∆t,

i.e.,

ṁ(r, t) = βnn
2(r, t), (7.6)

in which the molecular formation rate coefficient is

βn = bnσv. (7.7)

In our experiment at finite temperature, the relative kinetic energy Ek = ℏ2k2/m is

Boltzmann distributed with probability density p(Ek) =
2√
π
(kBT )

−3/2e−Ek/kBT
√
Ek, from
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which we obtain the probability density for relative momentum k as

p(k) = p(Ek)
dEk
dk

=
4ℏ3k2

√
π(mkBT )

3/2
e−ℏ2k2/mkBT . (7.8)

On Feshbach resonance, the unitarity-limited cross section is σ = 8π/k2 [30]. We eventually

get the thermally averaged rate coefficient as

βn = bn⟨σv⟩T = bn

∫ ∞

0

8π

k2
ℏk
m/2

p(k)dk = bn
32ℏ2

√
π

m3/2
√
kBT

. (7.9)

In the limit where thermal energy vanishes, after quench to the unitary regime on Fes-

hbach resonance, universality suggests we should replace the thermal energy by the Fermi

energy En that is determined by the only length scale—interparticle spacing—that remains

in the system [97],

βB = bB
32ℏ2

√
π

m3/2
√
En

, (7.10)

where bB is the branching ratio in zero temperature limit.

In our experiment, we measure the initial formation rate of total molecule number (see

Fig. 7.2a), which is an integration of local molecular density over space. Integrating over

r on both sides of Eq. 7.6, we get Ṁ |t=0 = βN0n̄0 with the initial average atomic density

n̄0 =
∫
n2(r, t)d3r/

∫
n(r, t)d3r and total atom number N0. The rate coefficient is thus

obtained from

β =
Ṁ |t=0

N0n̄0
. (7.11)
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Molecule formation in an atomic mixture of thermal and BEC fractions

To capture the sharp transition of the rate coefficient around critical temperature Tc shown

in Fig. 7.2b, here we develop the following two-component model including both the thermal

and BEC fractions. There are three possible collision processes:

1. Collision between atoms in BEC:

ṁB(r, t) = βBn
2
B(r, t). (7.12)

2. Collision between atoms in normal gas:

ṁn(r, t) = βnn
2
n(r, t). (7.13)

3. Collision between one atom in BEC and one atom in normal gas:

ṁnB(r, t) = 2βnBnB(r, t)nn(r, t) = 2βnnB(r, t)nn(r, t), (7.14)

where we assume βnB = βn.

Substituting Eq. 7.12-7.14 into Eq. 7.11, we get the molecular formation rate coefficient

in the mixture to be

β =

∫
d3rβBn

2
B(r, t) + βn[n

2
n(r, t) + 2nB(r, t)nn(r, t)]∫

d3r[nB(r, t) + nn(r, t)]2

= wBβB + wnβn, (7.15)

where the weights of BEC and normal components are given by:

wB =

∫
n2B(r, t)d

3r∫
[nB(r, t) + nn(r, t)]2d3r

, wn =

∫
[n2n(r, t) + 2nB(r, t)nn(r, t)]d

3r∫
[nB(r, t) + nn(r, t)]2d3r

. (7.16)

148



1

2

3

Temperature T/Tc

0 1 2

M
ol

e.
 fo

rm
at

io
n 

ra
te

 ¯
   /1

0-1
0  (c

m
3 /s

)

Figure 7.4: Comparison between molecular formation rate coefficient calculated
based on the two-component model and experimental data in Fig. 7.2b. The
magenta band is calculated based on Eq. 7.15 using the fit results shown by the red and blue
lines and the weights wB and wn of BEC and normal fractions from measurements.

Note that the weights in Eq. 7.16 are different from BEC fraction squared and one minus

BEC fraction squared due to the non-uniform density in the harmonic trap used for the rate

coefficient measurements shown in Fig. 7.2. The two-component model captures the sharp

transition of our measured rate coefficients around T/Tc = 1 very well, see Fig. 7.4.

Evaluation of the initial 3D average atomic density

To evaluate the initial 3D average atomic density, we model the atomic density distribution

for the general case where both normal and BEC components exist as [84]

n(r) = nng3/2(
3∏
i=1

e−r
2
i /σ

2
i ) + nBmax(1−

3∑
i=1

r2i
R2
i

, 0), (7.17)

where (r1, r2, r3) = (x, y, z) are spatial coordinates and g3/2(x) =
∑∞
k=1 x

k/k3/2 is the

polylogarithm function. Our vertical absorption imaging integrate over z axis and obtains
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the 2D column density as

n(x, y) =

∫ ∞

−∞
n(r)dz =

√
πnnσzg2(

2∏
i=1

e−r
2
i /σ

2
i ) +

4

3
nBRz(1−

x2

R2
x
− y2

R2
y
)3/2. (7.18)
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Figure 7.5: Initial 3D average atomic density as a function of temperature, eval-
uated based on Eq. 7.20. The solid line is an empirical fit to the data.

We use Eq. 7.18 to fit 2D column density distributions from our experiments and extract

the widths σx, σy, Rx and Ry and total particle number Nn and NB in normal and BEC

fractions, respectively. We use the scaling to calculate cloud widths in z direction as σz =

(ωy/ωz)σy and Rz = (ωy/ωz)Ry based our independent measurements of trap frequencies

ωy and ωz. Then the 3D peak densities are given by

nn =
Nn

g3(1)π
3/2σ̄3

, nB =
15NB

8πR̄3
, (7.19)

where σ̄ = (σxσyσz)
1/3 and R̄ = (RxRyRz)

1/3. Eventually, with all the parameters deter-
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mined in Eq. 7.17, we evaluate the 3D average density as

n̄ =

∫
n2(r)d3r∫
n(r)d3r

, (7.20)

as shown in Fig. 7.5.

7.3.2 Dynamics of the molecular formation process after a quench close to

the g-wave Feshbach resonance in atomic BECs.

The initial rapid production of molecules is accompanied by fast loss of atoms (see Fig. 7.6a).

To reveal the underlying reaction mechanisms, we measure the atom loss rate γa over a wide

range of 192 times the resonance width ∆B and observe a variation of γa over about 5

orders of magnitude (see Fig. 7.6c). For γ < 10−2 ms−1, the line shape agrees well with a

symmetric Lorentzian profile. Since the molecule fraction in a coupled atomic and molecular

two-level system also has a Lorentzian line shape as a function of the energy detuning δ(B),

this suggests the loss is induced by coherent coupling between atoms and molecules and

atoms are lost likely due to their inelastic collision with molecules [30].

Near and below the resonance (19.80 to 19.86 G), however, the loss rates are larger than

the background values of the Lorentzian profile and are fitted well by a Gaussian function.

We conjecture that the assymmetric enhancement of loss rate near the resonance comes from

three-body recombination process where two hyperfine ground state atoms relax into a lower

lying molecular state and release the binding energy into kinetic energy of the molecule and

a third atom [30]. This is evidenced by the heating of atoms during their initial fast loss (see

Fig. 7.6b). We also measured the corresponding molecule formation rate within a similar

range near the resonance, and find the formation rate is also asymmetric about the center of

the Lorentzian profile, see the inset of Fig. 7.6. This suggests that the molecules we detect

near and below the resonance are partially coming from the enhanced atom loss process,
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apart from the direct coupling from two atoms into a molecule.
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Figure 7.6: Dynamics of molecular formation process after quench close to the
g-wave Feshbach resonance in atomic BEC. a, Evolution of atomic (NA, black) and
molecular population (2NM, blue) as a function of time staying at 19.847 G. Solid lines are
fits to the data. b, Evolution of atomic (TA, black) and molecular effective temperature (TM,
blue) as a function of time staying at 19.847 G. Solid lines are guides to the eye. Insets are
example averaged images of atomic and molecular density distributions in momentum space.
c, Loss rate of atomic population at different magnetic field near the Feshbach resonance.
Solid and empty circles are data taken by approaching the target magnetic field from below
and above the resonance, respectively. Green and magenta regions show Lorentzian and
Gaussian fits. Blue and red dashed lines are unitarity limits for atom loss rate evaluated
based on Eq. 7.9 and Eq. 7.10 with the branching ratios set as 1. Inset is a zoom in
view for atom loss (black) and molecular formation (orange) rates around the resonance.
d, Oscillation frequency of molecular population after quench to different magnetic fields
close to the resonance (grey shaded region), starting from atomic BEC with mean densities
2.62 × 1013 (red) and 2.39 × 1013 cm−3 (purple), respectively. Solid lines are fits based

on the generalized Rabi frequency formula f =
√
[∆µ(B −Bm)]2 + Ω2, where Bm is the

minimum position and Ω is the Feshbach coupling strength. Dashed lines correspond to
f = |δµ(B −Bm)|.
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The molecule formation and atom loss quickly saturate after the first hundreds of mi-

croseconds and atoms and molecules reach a quasi-equilibrium with similar temperature (see

Fig. 7.6a,b). Interestingly, the atomic and molecular population are not saturated to con-

stant values, but they show small amplitude oscillations instead. The frequencies of molecule

number oscillation at different magnetic fields agree well with generalized Rabi frequency for-

mula f =
√
δ(B)2 + Ω2, which suggests coherent coupling between atoms and molecules at

later time of the reaction (see Fig. 7.6d). Away from the resonance, the relative phase wind-

ing between atomic and molecular states is mostly determined by the molecular binding

energy |δ(B)| [47]. On the other hand, the oscillation frequency on resonance is predicted to

be the Feshbach coupling strength Ω, which has a dependence on square root of the atomic

density
√
n̄a [140]. For two different atomic samples with average density of 2.39 × 1013

and 2.62× 1013 cm−3, we measured different Ω that are 0.6 and 2.6 kHz, respectively. It is

remarkable that a small increase of atomic density by ∼ 10% leads to enhancement of the

oscillation frequency by ∼4 times and it requires further investigation into the discrepancy

between our measurements and the theory prediction.

Determination of Feshbach resonance position from molecular binding energy

measurements

To determine the position of the narrow g-wave Feshbach resonance in our system, we per-

form measurements of molecular binding energy at different offset magnetic fields using the

magnetic field modulation spectroscopy [136, 92] and find the field value where the binding

energy reaches zero.

We start with atomic BEC at 23 nK prepared at ∼19.5 G. Then we quench the field to

an offset value Bdc near the resonance and simultaneously modulate the field sinusoidally

with peak-to-zero amplitude Bac = 5 mG for 5 ms. We scan the modulation frequency

and measure the number of remaining atoms or created molecules, see Fig. 7.7a. We have
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Figure 7.7: Molecular binding energy measurement using magnetic field modula-
tion spectroscopy for atomic BECs at different offset magnetic fields. a, Atom loss
(black) and molecule creation (blue) at different modulation frequencies for offset magnetic
field Bdc = 19.828 G and peak-to-zero modulation amplitude Bac = 5 mG applying for 5
ms. b, Molecular binding energy Eb extracted from peak positions of the spectra of atom
(blck) and molecule (blue) number for similar measurements as shown in a. The red line is
a linear fit to black data points and reaches 0 at B0 = 19.849(1) G.

confirmed that the resulting peak position of the spectrum is not sensitive to the modulation

amplitude and modulation time. The spectra are fitted using the asymmetric line shape

function [128]

N(f) = N0 −∆N
a(f − f0 − b)2

(f − f0)2 + a(f − f0 − b)2
, (7.21)

where N0 is off resonant background value, ∆N is the signal on resonance. Parameters a

and b control asymmetry of the line shape. The peak positions corresponding to molecular

binding energies are extracted from the fit for different offset magnetic fields, see Fig. 7.7b.

A linear fit to the data points from atoms in Fig. 7.7b gives resonance position to be B0 =

19.849(1) G where the binding energy goes to zero. The slope of the linear fit gives magnetic

moment different between two free atoms and a molecule to be ∆µ = 0.54(2)µB, which is

consistent with the measurements in Ref. [28].
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Extraction of molecule number oscillation frequency

To extract the oscillation frequency of molecule number at late time of the evolution af-

ter quenching close to the resonance, we fit the data after 1 ms using the function (see

Fig. 7.8a) [37]

y(t) = A−B(t− tdelay) + C exp[−γ(t− tdelay)] sin[2πf(t− tdelay) + ϕ], (7.22)

where tdelay = 0.15 ms is the time for magnetic field to reach the target value. The first

two terms describes overall decay of molecule number and the third term represents damped

oscillation at frequency f .
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Figure 7.8: Fitting time trace of molecule number for extraction of its oscillation
frequency. a, Fit of data (the same as that in Fig. 7.6a) at t > 1 ms using Eq. 7.22. b, The
root mean squared error of fit results obtained from different initial guess of the frequency
f in Eq. 7.22, see text.

Since the fit can easily fall into a local optimum, we tried different initial guess of the

frequency f for the fit within the range of 0.75 kHz to 4.75 kHz with a stepsize of 0.05

kHz. The initial guess for rest of the parameters are fixed as: B =
N(t=1 ms)−N(t=3 ms)

3 ms−1 ms ,

A = N(t = 1 ms)+B× (1 ms− tdelay), C = 500, γ = 0.25 ms−1, ϕ = 0, which the fit result

is not sensitive to. For each fit result, we evaluate the corresponding difference between fit
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and data by calculating the root mean squared error (RMSE)

RMSE =

√√√√[
1

ν

n∑
i=1

wi(yi − ŷi)2], (7.23)

where yi − ŷi is residual, wi is the weight given by one over errorbar squared, ν is residual

degrees of freedom given by the number of data points n minus the number of fitted coeffi-

cients m (m = 6 for this fit). Eventually, we pick the fit result that has minimum RMSE,

see Fig. 7.8b.

7.3.3 Amplification of the molecule number oscillation through the

magnetic field modulation.

To further steer the reaction process, we apply additional external driving to atomic samples

near the Feshbach resonance. The coupled atomic and molecular BECs in our system is

effectively a bosonic Josephson junction [96], in close analogy to Cooper-pair Josephson

junction in superconducting devices [14]. Inspired by the Shapiro resonance effect where

adding a small resonant ac component to an applied voltage enhances dc tunneling current in

the superconducting Josephson junction, here we modulate the magnetic field at a frequency

close to the free molecule number oscillation frequency at a static field, with the hope to

facilitate the reaction. At 19.847 G, the molecule number oscillates around 4,000 at 1.4 kHz,

with a contrast of ∼10% (see Fig. 7.9b). After the application of magnetic field modulation

with a peak-to-zero amplitude of 4 mG around 19.847 G, we find the oscillation contrast

increases by a factor of 3 to 4, see Fig. 7.9c and e. We also see clear damping of the molecule

number oscillation with the driving field, likely due to additional heating introduced by the

driving.
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Figure 7.9: Amplification of coherent oscillation of molecular population through
magnetic field modulation. a, Schematic diagram of molecular formation near Feshbach
resonance with additional sinusoidal magnetic field modulation. b, Evolution of molecular
population after quench to a static magnetic field at 19.847(1) G. c, Time traces of molecule
number with magnetic field modulation at 0.85 (red), 1.71 (green) and 3.42 kHz (magenta)
with peak-to-zero modulation amplitude Bac ≈ 4 mG at an offset field Bdc = 19.847(1) G.
d and e, Frequency and contrast of molecule number oscillation extracted from the fits in b
and c (the solid lines) based on Eq. 7.22. Blue solid line is a linear fit without offset to data
points with nonzero modulation frequencies, with a slope 0.97(3).

Subharmonic Shapiro-like resonance

As is predicted in Ref. [96], Shapiro resonances occur in ultracold molecule production from

atoms when the molecular binding energy matches integer multiples of the magnetic field

modulation frequency in vicinity of a Feshbach resonance. Previously in Sec. 7.3.2 we did

the modulation spectroscopy for precisely measuring the molecular binding energy and thus
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the resonance position in perturbation regime with small modulation amplitude, such that

only a single resonance occurs that corresponds to the molecular binding energy, see Fig. 7.7.

Here we double the modulation amplitude used in Sec. 7.3.2 and set the offset field to be

Bdc = 19.833 G where the binding energy is Eb = 12 kHz, clear double peaks appear

in both the atom and molecule number spectra at ∼ 12 and 6 kHz, see Fig. 7.10. Further

investigation are need to see if there is any many-body effect in these Shapiro-like resonances.
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Figure 7.10: Shapiro-like resonances in atomic BEC when the frequency of external
magnetic field modulation is scanned with fixed modulation amplitude Bac = 10
mG at an offset field Bdc = 19.833 G for 5 ms. The solid lines are guides to the eye.

7.3.4 Coherence in the molecule dissociation revealed by a Ramsey-like

pulse sequence

Here we prepare pure ultracold molecules as our starting point, instead of pure atoms as in

previous sections, and bring the molecules to the resonance point and investigate molecule

dissociation process. As is shown in Sec. 3.2.2, non-trivial dynamics can occur after quench

close to the resonance starting from a molecular BEC, e.g. the population in atomic BEC can

grow exponentially from quantum fluctuation. As a first attempt to investigate into molecule
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Figure 7.11: Choosing length of the first and second pulses of magnetic field at
Feshbach resonance. a, Molecules are quenched to resonance and held for variable time
before atoms from dissociation are imaged. The red arrow indicates the time when about
half of the molecules are dissociated into atoms, which we choose as the duration τ1 = 0.31
ms of the first pulse. Red solid line is guide to the eye. b, After applying the first pulse
with duration τ1 and staying at Bt = 19.838 G for 0.2 ms, we scan the length of the second
pulse and measure the resulting variation of atom number. We choose the time τ2 = 0.23
ms as duration of the second pulse when second maximum in the atom number occurs, as
indicated by the red arrow. Red solid line is a sinusoidal fit.

dissociation process at Feshbach resonance, here we show that a coherent superposition of

atomic and molecular states forms.

We first create ∼1700 molecules by associating atoms in a pure atomic BEC at B0 =

19.849(1) G for 0.4 ms and blowing away residual atoms using a resonant light pulse below

the resonance. The molecular samples we prepare have a temperature of 26 nK from focused

time-of-flight measurement (see Sec. 2.2). Then we bring the molecules close to resonance for

dissociation. To demonstrate coherence in the dissociation process, we apply the Ramsey-

like pulse sequence which is first used to show atom-molecule coherence in an atomic BEC

in Ref. [47], see Fig. 7.12a. The duration of the two pulses approaching resonance point at

B0 is chosen such that each pulse dissociates half of the molecules, see Fig. 7.11. We scan

the time t holding at Bt between the two pulses and measure the resulting number of atoms

from dissociation. The atom number shows oscillation at a frequency close to the molecular
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Figure 7.12: Coherence in dissociation of ultracold molecules. a, Schematic diagram
of the Ramsey-like pulse sequence. Pure molecular sample is prepared at ∼19.5 G. Then
two magnetic field pulses at resonance B0 with their duration determined in Fig. 7.11 and a
variable hold time t in between at Bt are applied before atoms from dissociation are imaged
at 19.5 G. b, Number of atoms from dissociation as the time t holding at Bt = 19.838 G
between the two pulses in a is scanned. Red solid line is a fit using a damped sinusoidal
function, which gives oscillation frequency to be 6.4(7) kHz.

binding energy at Bt, see Fig. 7.12b.

We summarize our measurements of atom number oscillation frequencies at three different

values of Bt in Fig. 7.13, which is consistent with our binding energy measurements in

Sec. 7.3.2. This suggests that molecules turn into equal superposition of atomic and molecular

states after the first pulse, and the two state components develop relative phase difference

according to the molecular binding energy at Bt before the second pulse turn the phase

accumulation into the variation of atom number.

To conclude, we have observed novel and rich dynamics of chemical reactions in a quan-

tum degenerate Bose gas near a narrow g-wave Feshbach resonance. The molecule formation

rate is drastically different in an atomic BEC from that in a normal thermal gas. By monitor-

ing the population and temperature of both the reactants and products, we identified both

two-body and three-body processes. After the initial monotonic production of molecules,

their population shows coherent small amplitude oscillation, at a frequency consistent with
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Figure 7.13: Frequencies of atom number oscillation at different magnetic fields
Bt between the two pulses. Red solid line is from the binding energy measurements in
Sec. 7.3.2.

the generalized Rabi frequency. We further steer the reaction dynamics by applying mod-

ulation of molecular binding energy, which greatly enhances the oscillation of molecular

population. In addition, coherence is shown in the dissociation starting from pure ultra-

cold molecular samples. Our experiments pave the way to further explore how quantum

coherence, entanglement and many-body effect play a role in ultracold chemistry.
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CHAPTER 8

OUTLOOK

8.1 N-fold symmetric pattern formation using three-frequency

interaction modulation

As discussed in Sec. 4.2, in order to create patterns with higher symmetries beyond D2, D4

and D6 patterns starting from a uniform BEC, three frequency components are required in

the interaction modulation. Here we derive the conditions for the frequencies and phases of

these three frequency components for n-fold symmetric pattern formation.

We start from the general form of the Hamiltonian of driven BECs:

H =

∫
d3rΨ†(r, t)

p2

2m
Ψ(r, t) +

∫
d3rΨ†(r, t)V (r)Ψ(r, t)

+
g(t)

2

∫
d3rΨ†(r, t)Ψ†(r, t)Ψ(r, t)Ψ(r, t), (8.1)

where the interaction strength is modulated as g(t) = 4πℏ2/m[adc +
∑3
i=1 ai sin(ωit+ βi)].

Here, adc is a small offset scattering length to keep the condensate stable and will be neglected

in the calculation. ai is the amplitude of the modulation at frequency ωi with phase βi. m

is the atomic mass and the momentum operator p̂ = −iℏ∇. The external flat-bottomed

potential V (r) is neglected later because it only serves to determine the initial wavefunction

of the BECs and does not affect the dynamics (the potential barrier is set to be lower than

the modulation frequencies).

After doing the Fourier transform Ψ(r, t) =
∑

k b̂ke
ik·r, we obtain the Hamiltonian in

momentum space as:
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H =
∑
k

ϵkb̂
†
kb̂k +

g(t)

2V

∑
k,k′,∆k

b̂
†
k+∆kb̂

†
k′−∆k

b̂kb̂k′ , (8.2)

where V is the volume of condensate and ϵk = ℏ2k2/2m is the free particle dispersion.

Then we go to the rotating frame with b̂k → b̂ke
−iϵkt/ℏ and use the rotating wave approx-

imation to eliminate the fast oscillating terms. The Hamiltonian becomes time-independent

as:

HI ≈
i

4V
(
∑
k1

g1b̂
†
k1
b̂
†
−k1

b̂0b̂0 +
∑
k2

g2b̂
†
k2
b̂
†
−k2

b̂0b̂0 +
∑
k,∆k

b̂
†
k+∆kb̂

†
−∆kb̂kb̂0) + h.c. (8.3)

Here we keep it to the first order of the condensate operator b̂0 and gi = e−iβi4πℏ2ai/m.

The first two terms represent pair production of opposite momentum modes on the rings

at |k1| =
√
mω1/ℏ and |k2| =

√
mω2/ℏ determined by the corresponding modulation

frequencies ω1 and ω2 [35]. We should first apply modulation only at those two frequencies

such that the two momentum rings are macroscopically occupied. The third term is the

coupling between momentum modes on those two rings provided by the third frequency

component ω3 and is dominated by the terms in the summation that involve the modes on

the two rings and one BEC mode.

Now let’s consider the following scattering process where ω3 is involved (see Fig.8.1a),

0 + k1
ω3−−→ k2 + k′1. (8.4)

Due to momentum and energy conservation, we have:
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Figure 8.1: Three-frequency modulation scheme for creating arbitrary angular
correlation of pairs of modes with the same magnitude of momentum. a, The
two frequency components ω1 and ω2 generate two momentum rings at k1 =

√
mω1/ℏ and

k2 =
√
mω2/ℏ. The third frequency ω3 helps to couple the modes on these two rings together

at particular directions, determined by the values of the frequencies. b, Due to ω1 and ω2,
the momentum modes in a are generated in pairs with the other one in the opposite direction.
In this way, the correlation at relative angle 2θ is established on the inner momentum ring.

k1 = k2 cos θ + k′1x

0 = k2 sin θ + k′1y
1

2
ω1 + ω3 =

1

2
ω2 +

1

2
ω1, (8.5)

where k′1 = (k′1x, k
′
1y), |k

′
1| = k1 =

√
mω1/ℏ and k2 =

√
mω2/ℏ. From Eq.8.5, we can

derive the relation between the three modulation frequencies:

ω2 = 4 cos2 θ × ω1 = 2ω3, (8.6)

in which n× 2θ = 2π, i.e., θ = π/n and n ∈ N.

Supported further by the pair production processes by ω1 and ω2, the above three modes

are accompanied by modes in the opposite directions, see Fig.8.1b. In this way, we obtain

angular correlation at relative angle 2θ on the momentum ring 1, which in turn can lead to

n-fold symmetric patterns in momentum space because of the rotational symmetry of the

system.
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With the general formula of Eq.8.6, now let’s check if it can be reduced to the schemes for

generating the patterns studied in Chapter 4 with lower symmetries. When n = 3, θ = π/3.

Thus we have ω2 = ω1 = 2ω3, which is consistent with the scheme for D6 pattern formation.

When n = 4, θ = π/4. Then we have ω2 = 2ω1 = 2ω3 and this is consistent with the scheme

for D4 pattern formation.
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Figure 8.2: Examples of the formation of n-fold symmetric patterns from the
angular correlation at 2θ = 2π/n established by the three-frequency modulation
scheme in Fig. 8.1. a, when n = 5 is an odd number, due to the inversion symmetry about
the vertical direction, correlations at angle θ is created and the pattern is eventually 2n-fold
symmetric. b, when n = 6 is an even number, the adjacent modes are coupled at angle 2θ
and the pattern is n-fold symmetric.

Now let’s move on to study the patterns with higher symmetries of n > 4. Since the

case is different depending on whether n is an odd or even number, we should discuss it

separately. For example, if n = 5, when the adjacent modes are coupled together according

to Fig.8.1b at angle 2θ, we can find there would be modes coupled at angle θ as shown

in Fig.8.2a. Eventually, the modes are evenly distributed with 2n-fold symmetry. This is

understandable because whenever there is a pattern with odd symmetry, the pair production

processes would make it reflectively symmetric and then it becomes even symmetry. When n
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is even, for example n = 6 in Fig.8.2b, there is no such problem and the neighboring modes

are separated by angle 2θ on the momentum ring 1.

It suffices to consider only the modes that are coupled to each other on the two momentum

rings and label them by 1,2,3...,2n, see Fig.8.2a. The corresponding Hamiltonian is (here

we’re considering the case when n is odd, similar Hamiltonian can be written down when n

is even):

H ′ =
i

4V
(
2n∑
i=1

g1b̂
†
ki1
b̂
†
ki−n
1

b̂0b̂0 + g2b̂
†
ki2
b̂
†
ki−n
2

b̂0b̂0

+
2n∑
i=1

g3b̂
†
ki+1
2

b̂
†
ki−n+2
1

b̂ki1
b̂0 + g3b̂

†
ki−1
2

b̂
†
ki+n−2
1

b̂ki1
b̂0) + h.c. (8.7)

Here the addition of indices is modulo 2n, e.g. 1-5+2 = 8 for n = 5.

Since the phases of the modulation at different frequencies are important if we want to

resonantly enhance the strength of the pattern, such as that in the D6 pattern formation,

we discuss in the following the condition that the phases satisfy for resonantly enhancing

the n-fold symmetric pattern.

The phase matching conditions for the four-wave mixing processes corresponding to the

four terms in Eq.8.7 are (the same relation between βi’s holds when n is even):

−θi − θi−n = β1 (8.8)

−ϕi − ϕi−n = β2 (8.9)

θi − θi−n+2 − ϕi+1 = β3 (8.10)

θi − θi+n−2 − ϕi−1 = β3 (8.11)

where we’ve treated the creation and annihilation operators as c-numbers b̂ki1
→ |bki1|e

iθi ,

b̂ki2
→ |bki2|e

iϕi and b̂0 → |b0|.
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After inserting Eq.8.8-8.9 into Eq.8.10 and then substitute i by i+ n, we obtain

θi − θi−n+2 − ϕi+1 = β2 − β3. (8.12)

Comparing Eq.8.10 and Eq.8.12, we get the relation between the phases β2 and β3:

β3 = β2/2. (8.13)

The phase β1 at modulation frequency ω1 seems irrelevant and can simply be set as 0.

On the other hand, the phases θi and ϕi of the modes on the two momentum rings,

however, are not uniquely determined. At least I’ve tried to solve θi’s and ϕi’s for n = 5 and

find out that there are many solutions. Thus, the pattern in real space where the momentum

modes interfere with BEC is not unique, unless we impose some boundary conditions to the

initial condensate wavefunction, such as punching a hole at the center of the circular BEC

to select out the pattern that has low density at the center.

8.2 Atom-optical elements built from DMD projected dipole

trap potential

As is confirmed in Ref. [35] where the phenomenon of ”Bose fireworks” is first observed,

the stimulated emission of atoms happens only when the interaction modulation amplitude

exceeds a threshold value, determined by the escape rate of the excited atoms. This is

very similar to lasing of light from a gain medium. As is known, laser light typically has

very large spatial and temporal coherence length and in our case the spatial and temporal

coherence of the emitted matter waves are confirmed by the spatial interference and time
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reversal experiments presented in Sec. 3.1 and Ref. [70]. With this close analogy between

”Bose fireworks” and laser, here we develop various kinds of atom-optical elements based

on potential profiles projected by DMD, the functions of which are demonstrated with our

coherent matter waves acting on them.
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Figure 8.3: Collimation of emitted matter wave from driven elongated BEC using
harmonic potential projected by DMD. a (b), Matter wave emission from a elongated
BEC under interaction modulation without (with) harmonic potential projected by DMD
on one side of the trap shown at the top right corner of the images. c, Angular distribution
of atom number within 2o slices centerred around the bottom of the upper emissions with
(red) or without (black) the collimation. Solid lines are Gaussian fits with 1-σ width 16o

(black) and 7o (red), respectively.

To make a good matter wave source where many atoms directionally emit into a single

pair of modes, we shape the BEC into a elongated geometry before applying the interaction

modulation, see Sec. 2.3. In Fig. 8.3a, we can see that the emission is mostly along the long

axis of BEC, even though the atoms become diffusive as they propagate away from BEC. To

collimate the matter wave, we use DMD to project a harmonic potential profile transverse

to the matter wave propagation direction, see Fig. 8.3b. As is illustrated in Sec. 2.2.3,

atoms with the same momentum are focused to the same location after a quarter period in a

harmonic trap and their momentum are converted to be proportional to their initial position

(see Eq. 2.4), which has small spread at the location of our projected harmonic potential.
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Here we carefully adjust the trap frequency and width of the harmonic potential, such that

the matter waves are collimated, see Fig. 8.3c.
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Figure 8.4: Reflection and splitting of matter waves using a tilted square potential
barrier projected by DMD. a (b), Reflection (splitting) of matter wave emission by a
higher (lower) square potential oriented 30o relative to horizontal direction. c, Angular dis-
tribution of atom number within 2o slices centered around the middle of the square potential
with larger (blue) and lower (magenta) height.

Another two important elements in optics are mirror and beam splitter, which enable us

to build interferometers, e.g. Mach Zehnder interferometer. To reflect and split matter waves,

we project a square potential barrier with different height positioned with an angle relative

to the matter wave propagation direction. When the potential barrier is very high compared

to kinetic energy of the atoms, they are mostly reflected (see Fig. 8.4a), whereas when the

barrier height is reduced to a proper value, the atom beam can be half transmitted and half

reflected (see Fig. 8.4b). In principle, we can build a Mach Zehnder interferometer for the

matter waves emitted from BEC using two ”mirrors” and two ”50%-50% beam splitters” we

engineered here.

To explore quantum effects in matter waves scattering through a potential barrier, we

project a square potential barrier with atom beam incident normally onto it. The situation

here is similar to a quantum mechanical wave packet scattering off a 1D potential barrier
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discussed in Ref. [38]. The transmission probability for a wave packet with momentum

peaked around k incident onto a square potential barrier with height V0 and width L is

given by

T (k) =


1

cosh2 (ρL)+[k
2−ρ2

2kρ sinh2 (ρL)]2
k < k0

1

cos2 (k′L)+[k
2+k′2
2kk′ sin2 (k′L)]2

k ≥ k0

, (8.14)

where k0 =
√

2mV0/ℏ, ρ =
√
k20 − k2 and k′ =

√
k2 − k20.
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Figure 8.5: Transmission probability through a square potential barrier as a func-
tion of the momentum of emitted matter waves. Solid line is a fit to the data based
on Eq. 8.14.

We first scan the momentum of matter waves by scanning the modulation frequency and

monitor the fraction of atoms in matter wave that are transmitted through the barrier, see

Fig. 8.5. From the fit based on Eq. 8.14, we get k0 = 6.8(1)µm−1 and L = 0.80(5)µm. The

width of the squared potential barrier designed in the pattern we sent to DMD is supposed

to be 2.4 µm on atom plane, the shape of which is presumably changed due to our finite

imaging resolution (see Sec. 2.2.1). It turns out that the designed barrier width is a factor

of 3 larger than the effective width extracted from the fit.
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Figure 8.6: Transmission of matter waves created at interaction modulation fre-
quency of 4.5 kHz through a square potential barrier with variable width pro-
jected by DMD. a, Transmission of matter waves emitting upwards through a square
potential barrier with width L = 0, 2, 2.8 µm. b, Transmission probability as as function of
width L of the potential barrier, as indicated by the pattern at bottom left corner which is
sent to DMD for projection. Solid line is calculation based on Eq. 8.14 where k0 = 6.8 µm−1

and the effective width used for calculation is converted into the designed barrier width in
the horizontal axis. Dashed line is a guide to the eye.

Next we scan the width of the barrier while keeping its height to be similar to that in

Fig. 8.5 and use an interaction modulation at 4.5 kHz that corresponds to k = 7.7 µm−1. The

transmission probability shows oscillatory behaviour as a function of the barrier width (see

Fig. 8.6), in qualitative agreement with quantum reflection based on Eq. 8.14. Quantitatively,

our data shows larger contrast at small barrier width and damping kicks in for wider barrier.

It requires further investigation to figure out the discrepancy between our data and the

simple model of a wave packet scattering off a 1D square potential barrier.
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Goulven Quéméner, and Jun Ye. Resonant collisional shielding of reactive molecules
using electric fields. Science, 370(6522):1324–1327, 2020.

[102] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A.
Cornell. Vortices in a bose-einstein condensate. Phys. Rev. Lett., 83:2498–2501, Sep
1999.
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