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ABSTRACT

In this thesis we explore the use of categorical methods in Algebraic Geometry. The notion

of dualizable objects and traces in symmetric monoidal categories provide a good framework

to study trace formulas for different sheaf theories. These techniques allow us to give a novel

proof of the Lefschetz trace formula in Stable Motivic Homotopy theory. Moreover, following

ideas of Beilinson and Lu, Zheng, we provide a general definition of Singular Support for

any sheaf theory satisfying a six-functor formalism.
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CHAPTER 1

INTRODUCTION

The process of categorification involves, broadly speaking, working at different levels of

abstraction: the zeroth level is numerical in nature, the first level is given by objects (which

live inside of a 1-category), the second level is given by categories (which live in the world

of 2-categories), and so on. For example, we can recover a number from a vector space by

looking at its dimension. In general, the theory of traces in symmetric monoidal categories

allows us to move between these categorical levels. For a symmetric monoidal (∞, 1)-category

(C,⊗,1), the set of endomorphisms ΩC of the unit object 1 ∈ C will allow us to go down

one categorical level. Indeed, we obtain a functorial construction taking values in ΩC,

(X, f : X → X) 7→ ev ◦ (f × id) ◦ coev =: tr(f)

where X ∈ C is a dualizable object with dual X∨ and

ev : X∨ ⊗X → 1, coev : 1→ X ⊗X∨

are the evaluation and coevaluation maps respectively. This construction can be extended

to any (∞, n)-category, where traces will now take values in an (∞, n−1)-category, allowing

us effectively to move from the n-th categorical level to the (n − 1)-th one (see [HSS17]).

When applied to the world of 2-categories, we recover Hochschild homology as the trace of

the identity endofunctor (i.e., as the Euler characteristic of the category). A fundamental

property of traces is that they are localizing invariants.

Characteristic classes are prone to categorification. Categories of sheaves on a smooth and

proper varietyX over k contain a lot of cohomological information aboutX. The Hochschild-

Kostant-Rosenberg theorem (assuming that k is a field of characteristic 0) provides us with
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this link. Indeed, the Euler characteristic of the category IndCoh(X) is

χ(IndCoh(X)) = RΓ(LX,ωLX) ≃
⊕
r

⊕
q−p=r

Hp(X,Ω
q
X)

where LX is the derived loop space of X. Moreover, we can think of a compact object

F ∈ IndCoh(X) (i.e., a perfect complex) as a continuous functor Vectk → IndCoh(X)

mapping k to F . The functoriality of traces yields a map

k →
⊕
r

⊕
q−p=r

Hp(X,Ω
q
X), 1 7→ ch(F)

sending 1 to the Chern character of F . Notice that derived algebraic geometry comes very

naturally into the scene, since the calculation of traces leaves the world of classical schemes,

involving the derived loop space.

The goal of this work is to understand these categorical principles in the context of

algebraic geometry, and apply them to different sheaf theories. In Chapter 2, we recall

some necessary definitions on ∞-categories, symmetric monoidal categories and dualizable

objects. In Chapter 3, we give a concrete definition of what we mean by a sheaf theory

with a six-functor formalism in terms of the category of correspondences, and we explain

how to calculate traces for such sheaf theories using the ideas from [BZN19]. We give a

description of residues in local cohomology via a local version of the Hochschild-Kostant-

Rosenberg theorem. We also explain how to prove Lefschetz theorems for sheaf theories

satisfying six-functor formalism, and in particular we give an alternate proof of a quadratic

refinement of the Grothendieck-Lefschetz formula in stable motivic homotopy theory (see

[Hoy14]). Finally, in Chapter 4 we explain how to define a notion of singular support for

any sheaf theory satisfying a six-functor formalism. Following ideas of Beilinson [Bei16],

the singular support controls the directions in which a sheaf is not locally constant. To

define this in a more general context, we need a notion of universal local acyclicity, which
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is obtained via duality in the category of cohomological correspondences following Lu and

Zheng [LZ20]. We compare our notion of singular support with previously known notions for

different sheaf theories, such as étale sheaves (see [Bei16]), Ind-coherent sheaves (see [AG15])

and sheaves of categories (see [Fio19]).

Our main contribution is the use of categorical methods for three different purposes.

First, to identify the residue map via local Hochschild-Kostant-Rosenberg theorem (3.4.2).

Secondly, to give a new proof of the Lefschetz Theorem in Stable Motivic Homotopy The-

ory (3.6.3). Finally, to prove the existence theorem (4.6.3) for the general definition of

Singular Support for any sheaf theory with a six functor formalism, together with the com-

parison between our notion and previously defined notions for some sheaf theories.
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CHAPTER 2

CATEGORICAL PRELIMINARIES

2.1 Reminder on ∞-categories

In this thesis, every time we mention ∞-categories, we mean (∞, 1)-categories, and we will

not make a particular choice of model. We will denote by S the∞-category of∞-groupoids

(or spaces) and we will take for granted that the category of ∞-categories is enriched in S.

Definition 2.1.1. We say that an ∞-category is stable if it has finite limits and colimits,

and pushout and pullback squares coincide. We denote by Catex the (pointed) ∞-category

of small stable ∞-categories and exact functors (that is, functors that preserve finite limits

and colimits).

Although the categories we will be dealing with will be large, they will be determined by

some small categories. Roughly speaking, presentable ∞-categories are large ∞-categories

that are generated under sufficiently large filtered colimits by some small ∞-category. To

make this discussion precise, we need to introduce the Ind-category.

Given any small ∞-category C, we can form the the ∞-category Pre(C) of presheaves

of simplicial sets on C. We can think of the presheaf category as the formal closure of C

under colimits via the Yoneda embedding C → Pre(C). For any regular cardinal κ, we can

define the Ind-category Indκ(C) as the formal closure under κ-filtered colimits of C, and as

such it will be a subcategory of Pre(C). This category is characterized by the property that

it has κ-small filtered colimits, admits a functor C → Indκ(C), and this functor induces an

equivalence

Funκ(Indκ(C,D))→ Fun(C,D)

for any D which admits κ-filtered colimits and Funκ(·, ·) denotes the∞-category of functors

that preserve κ-small filtered colimits.
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Definition 2.1.2. We say that an∞-category C is presentable if it arises as Indκ(D) where D

is a small∞-category that admits κ-small colimits. We denote the∞-category of presentable

∞-categories and colimit-preserving functors by PrL .

Note that the adjoint functor theorem implies that a functor between presentable ∞-

categories is a left adjoint if and only if it preserves colimits.

We will restrict ourselves to the case κ is the first infinite ordinal ω. Recall that an object

c of an ∞-category C is compact if the functor

Cop → S, x 7→ HomC(c, x)

preserves filtered colimits. We will denote by Cω the full subcategory of C consisting of

compact objects. We say that a presentable ∞-category C is compactly generated if the

natural functor

Ind(Cω)→ C

sending a filtered diagram in Cω to its colimit in C, is an equivalence.

Notice that many examples of a geometric nature are compactly generated, such as the

category of quasi-coherent sheaves or D-modules on sufficiently nice stacks. However many

other important objects, also of geometric nature, are not compactly generated but merely

dualizable. We will discuss this notion at length in the following section.

We say that a category C is idempotent complete if the image of C under the Yoneda

embedding is closed under retracts. Let us denote Catperf the ∞-category of small, stable,

and idempotent complete ∞-categories and exact functors, and by PrLSt the ∞-category of

stable, presentable ∞-categories and left adjoint functors.

The ind-completion functor Ind : Catperf → PrLSt induces an equivalence between Catperf

and the subcategory of PrLSt whose objects are the compactly generated stable∞-categories

and whose morphisms are the left adjoint functors preserving compact objects. The idem-
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potent completion functor Idem : Catex → Catperf arises as the left adjoint to the inclusion

of categories. One can also prove that Idem(C) ≃ Ind(C)ω, since compact objects of the

ind-completion are given by retracts of objects in C.

For any ∞-category C with finite limits, we can form the stabilization Stab(C), together

with a pair of adjoint functors called looping and suspension functors

Ω∞ : Stab(C)→ C, Σ∞+ : C → Stab(C).

We can describe the stabilization explicitly via spectra. A spectrum object of a pointed

∞-category C consists of a functor N(Z × Z) → C, or in other words, a family of objects

Ai,j together with maps Ai,j → Ai+1,j and Ai,j → Ai,j+1 such that Ai,j is the zero object

whenever i ̸= j and the square

Ai,i Ai,i+1

Ai+1,i Ai+1,i+1

is Cartesian for all i.

2.2 Traces in Symmetric Monoidal Categories

Let C be a symmetric monoidal∞-category with unit object 1. We say that an object X ∈ C

is dualizable if there is an object X∨ ∈ C together with maps

coev : 1→ X ⊗X∨, ev : X∨ ⊗X → 1

such that the compositions

X 1⊗X X ⊗X∨ ⊗X X ⊗ 1 X

X∨ X∨ ⊗ 1 X∨ ⊗X ⊗X∨ 1⊗X∨ X∨

∼ coev⊗id id⊗ev ∼

∼ id⊗ coev ev⊗ id ∼
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are both identity morphisms.

Recall that an internal hom in C is a functor

Hom : Cop × C → C

such that for every object X ∈ C we have a pair of adjoint functors

(·)⊗X : C ←−−→ C : Hom(X, ·).

Whenever the internal hom exists, we can describe the evaluation map

evX,Y : Hom(X, Y )⊗X → Y

as the map that corresponds to id ∈ Hom(Hom(X, Y ),Hom(X, Y )) under the adjunction.

Moreover, we can give the following well-known description of dualizable objects.

Lemma 2.2.1. An object X is dualizable if and only if the internal hom objects Hom(X,1)

and Hom(X,X) exist and the morphism X ⊗ Hom(X,1)→ Hom(X,X) adjoint to

X ⊗ Hom(X,1)⊗X id⊗ev−→ X

is a split epimorphism.

Proof. Suppose that X is dualizable and X∨ is its dual. The coevaluation and evaluation

maps give an adjunction between the functors (·) ⊗X∨ and (·) ⊗X. This means that, for

any object Y ∈ C, the internal hom Hom(X, Y ) exists and is equal to Y ⊗X∨. In particular,

when Y = 1 is the unit object we obtain the desired conclusion.

For the reverse implication, we can exhibit Hom(X,1) as the dual of X by defining

the coevaluation map coevX : 1 → X ⊗ Hom(X,1) as the composition of a section of
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X ⊗Hom(X,1)→ Hom(X,X) and the map 1→ Hom(X,X) corresponding to the identity

morphism.

Let C be a symmetric monoidal ∞-category and X ∈ C a dualizable object. The trace

trC(f) of a morphism f : X → X is defined as the composition

1 X ⊗X∨ X ⊗X∨ X∨ ⊗X 1.
f⊗idX∨ ∼

One can verify that whenever we have morphisms f : X → Y and g : Y → X, the trace

satisfies the cyclic property :

trC(fg) = trC(gf).

Whenever we are dealing with a symmetric monoidal (∞, 2)-category C, we have very

nice functorial properties. A morphism between endomorphisms f : X → X, g : Y → Y

consists of a morphism φ : X → Y together with natural transformation α : f → g

X X

Y Y.

f

φ φ
α

g

We can consider an (∞, 1)-category of arrows Arr(C) in which objects are arrows f : X → Y

and morphisms between arrows are natural transformations. It is straightforward to see

that an object in the arrow category φ : X → Y ∈ Arr(C) is dualizable if and only if X

and Y are dualizable and φ admits a right adjoint ψ. More explicitly, the dual is given by

ψ∨ : X∨ → Y ∨ the dual of the right adjoint of φ.

Let φ : X → Y be dualizable. Then, a triple (f, g, α) as before gives us an endomorphism

of φ in the arrow category Arr(C). More importantly, the trace in the arrow category

trArr(C)(F,G, α) gives us a map

tr(φ, α) : trC(F )→ trC(G)

which is functorial, and can be described by the following diagram
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1 X ⊗X∨ X ⊗X∨ 1

1 Y ⊗ Y ∨ Y ⊗ Y ∨ 1.

coevX f⊗idX∨

φ⊗ψ∨

evX

α⊗ψ∨ φ⊗ψ∨

coevY g⊗idY ∨ evY

Example 2.2.2. When C = Vectk the category of vector spaces over k, V is dualizable if

and only if it has finite-dimensional cohomology spaces nonzero in finitely many degrees.

For f : V → V , we see that

trVectk(f) =
∑
i

(−1)itr(f∗ : Hi(V )→ Hi(V )).

Indeed, it suffices to verify this for complexes concentrated in degree 0. Pick a basis

v1, . . . , vn of V and v∗1, . . . , v
∗
n dual basis of V ∗. The coevaluation map is then given by

coev : k → V ⊗k V ∗, 1 7→
∑
i

vi ⊗ v∗i ,

and so the composition

k V ⊗ V ∗ V ⊗ V ∗ V ∗ ⊗ V k
f⊗id ∼

is given by

1 7→
∑
i

vi ⊗ v∗i →
∑
i

f(vi)⊗ v∗i 7→
∑
i

v∗i (f(vi)) = tr(f).

Example 2.2.3. When C = Sp is the category of spectra, the sphere spectrum S is the unit

object with respect to smash product. Given X compact CW complex, the suspension Σ∞+X

is a dualizable object whose dual is the Spanier-Whitehead dual DX.

S Σ∞+X ∧DX Σ∞+X ∧DX DX ∧ Σ∞+X Sf∧id ∼

gives the Lefschetz number of f in EndSp(S) = π0S = Z.

Even considering the identity map of an object yields interesting information. In the set-

ting of vector spaces we obtain the dimension (or more generally, the Euler characteristic for
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a complex) and in the case of spectra, the identity on Σ∞+X gives us the Euler characteristic

of X. In the following section we will see that (topological) Hochschild homology also arises

in this way.

2.3 The Lurie tensor product

Recall that PrL admits a symmetric monoidal structure, which is characterized by the

following universal property.

Proposition 2.3.1 ([Lur17, Section 4.8]). Let C,D, E be presentable ∞-categories, then any

functor C × D → E preserving small colimits separately in each variable factors uniquely

through C ⊗ D. Moreover, we have a canonical equivalence

C ⊗ D ≃ RFun(Cop,D)

where RFun(·, ·) are functors that admit a left adjoint. The unit object of PrL is given by

the category of spaces S.

We will say that a stable presentable ∞-category is dualizable if it is a dualizable with

respect to such monoidal structure on PrL. One of the advantages of dealing with compactly

generated categories is that they are dualizable for the symmetric monoidal structure of PrL,

and the dual can be found explicitly.

Proposition 2.3.2. If C is compactly generated, then it is dualizable as an object of PrL.

In particular, if C = Ind(Cω), then C∨ = Ind(Cω,op), and the evaluation map is given by

ind-completion via universal properties of the Yoneda pairing MapC(·, ·) : Cω,op × C → S.

Furthermore, we have isomorphisms

LFun(C, C) ≃ LFun(C,S)⊗ C ≃ C∨ ⊗ C.

10



Many times, it will be convenient to study objects which are linear over an E∞-ring R. An

R-linear ∞-category is a presentable ∞-category C which is tensored over the monoidal ∞-

category LModk of left k-vector spaces, such that⊗ : LModk⊗C → C preserves small colimits

separately in each variable. The category LModR can be identified with an associative

algebra object of PrL, and we can think of CatR = LModLModR(Pr
L) as the ∞-category

of R-linear ∞-categories. As in Proposition 2.3.2, we can see that compactly generated

R-linear ∞-categories are dualizable as objects of CatR.

When k is a field, we can describe a down-to-earth way to compute of traces in Catk.

We notice that for A,B ∈ CAlgk we have

A-mod⊗B-mod = (A⊗B)-mod.

The unit object of this category is Vectk. A continuous functor F : Vectk → Vectk is

determined by the image F (k). From this, it is clear that we have an identification

EndCatk(Vectk) ≃ Vectk, F 7→ F (k).

In a similar fashion, a functor F : A-mod → B-mod is determined by F (A). Indeed,

this follows since A-mod is the free cocompletion of BAop, which tells us that F (A) is an

(A,B)-bimodule. Therefore, any such functor F looks like

F (X) =M ⊗A X, for M ∈ (A,B)-bimod.

For such objects A-mod ∈ Catk we can verify that the dual is given by Aop-mod, where

the evaluation and coevaluation maps are given as follows:

11



• The coevaluation map is defined as

Vectk → A-mod⊗ Aop-mod = (A⊗ Aop)-mod

given by k 7→ A, that is, V 7→ V ⊗k A.

• The evaluation map is defined as

(A⊗ Aop)-mod→ Vectk

given by the bimodule A, that is,

M 7→M ⊗A⊗Aop A

Putting these things together shows that the trace of the endofunctor F given by the

(A,B)-bimodule M on A-mod in Catk is the composition

k 7→M 7→M ⊗A⊗Aop A

which is the usual Hochschild homology HH•(A,M) of A with coefficients in M . This

motivates the following definition.

Definition 2.3.3. Given a k-linear presentable ∞-category C we define its Hochschild ho-

mology as

HH(C) = trCatk(id : C → C).

If we work with an arbitrary presentable ∞-category C, its Topological Hochschild ho-

mology is

THH(C) = trPrL(id : C → C).
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When C is a small dg-category, we have the cyclic bar complex, that is, the simplicial set

C•(C) whose n-simplices are given by

Cn(C) =
⊔

X0,...,Xn∈Ob(C)
HomC(X0, Xn)⊗ HomC(Xn, Xn−1)⊗ · · · ⊗ HomC(X1, X0)

and the face maps are given by composition and the degeneracy maps by the identity homo-

morphism. Notice that our definition as a categorical trace recovers the cyclic bar complex.

Moreover if C is a k-linear presentable monoidal ∞-category, the Hochschild homology

acquires extra structure. Indeed, the tensor product functor

C ⊗ C → C

is continuous in each factor and preserves compact objects. This yields a lax monoidal

structure

HH(C)⊗ HH(C)→ HH(C)

which gives an algebra structure on HH(C).

2.4 Localizing invariants and K-theory

Suppose that B is a presentable stable ∞-category, and C ⊂ B is a full presentable subcate-

gory, closed under direct sums. If the inclusion functor admits a left adjoint ℓ : B → C, called

a localization functor, we can consider the full subcategory A of C consisting of objects X ∈ C

for which ℓ(X) ≃ 0. Because of the adjunction, we can think of A as the left orthogonal of

C, that is, the full subcategory consisting of objects X ∈ C such that if HomB(X,C) = 0 for

any C ∈ C implies that X ≃ 0. Notice that the inclusion A ⊂ B is continuous, and hence

admits a right adjoint functor c : B → A which is moreover continuous. In such a situation,

13



we say that

A ↪→ B ℓ−→ C

is a short exact sequence of categories, or a localization sequence. In the case when we are

dealing with small, stable, idempotent complete ∞-categories, we say that a sequence is

exact if the ind-completion is exact.

Moreover, we say that a short exact sequence is split if we have right adjoint splittings. In

other words, if we can realize A as a subcategory of objects X ∈ B for which r(X) ≃ 0 where

r : C → B is the right adjoint of the localization functor ℓ : B → C. Similarly, whenever

we deal with small, stable, idempotent complete ∞-categories, the notion of a split exact

sequence is obtained by taking the ind-completion.

Definition 2.4.1. We say that a functor E : Catperf → Sp or E : PrLSt → Sp is an additive

invariant if it sends split exact sequences to cofiber sequences. We say that E is a localizing

invariant if it sends exact sequences to cofiber sequences.

Remark 2.4.2. In the previous definition, we can add R-linear structure to the categories

under consideration, and changing the target of E to be Mod(R), to obtain similar notions.

The main theorem of [BGT13] tells us that we can think of K-theory as a functor

K : Catperf → Sp

which is the universal additive invariant.

Consider the symmetric monoidal (∞, 2)-category PrLSt. Consider X, Y ∈ Pr
L
St together

with endofunctors f : X → X, g : Y → Y . We say that (φ, α) : (X, f) → (Y, g) is

right adjointable if φ has a right adjoint ψ and the associated push-pull transformation

α♭ : f ◦ψ → ψ ◦ g is an equivalence. We care about such maps since they induce morphisms

on traces, as seen in Section 2.2.

14



For each dualizable object X ∈ PrLSt we can look at the restricted trace functor

tr : EndPrLSt
(X)→ EndPrLSt

(Sp) = Sp

preserves cofiber sequences. Indeed, we can write it as the composite

EndPrLSt
(X) EndPrLSt

(X ⊗X∨) LFun(Sp, X ⊗X∨) Sp
(·)⊗idX∨ (·)◦coev ev◦(·)

where each functor in that composition is exact. In particular, this means that the restricted

trace preserves cofiber sequences. Using this fact, and the functoriality of traces we can prove

the following.

Theorem 2.4.3 ([HSS17, Theorem 3.4]). Consider a localization sequence

(X, f)
(ι,α)
−→ (Y, g)

(π,β)
−→ (Z, h).

Then

tr(f)→ tr(g)→ tr(h)

is a cofiber sequence in Sp.

Proof. The idea is to construct a cofiber sequence

tr(f ′)→ tr(g)→ tr(h′)

that is homotopy equivalent to the sequence

tr(f)→ tr(g)→ tr(h)

and the functors f ′, h′ are endofunctors of Y . To do this, consider f ′ = ιιrg and h′ = πrπg
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and consider the natural transformations

α′ : f ′ = ιιrg
ϵ−→ g, β′ : g

η−→ πrπg = h′,

α : ιf
η−→ ιfιrι

α♭−→ ιιrgι = f ′ι, β : πh′ = ππrπg
ϵ−→ πg

β−→ hπ.

These maps fit together into the following diagram

(X, f) (Y, g) (Z, h)

(Y, f ′) (Y, g) (Y, h′)

(ι,α)

(ι,α)

(π,β)

(id,α′) (id,β′)

(π,β)

Moreover, since X
ι−→ Y

π−→ Z is a localization sequence, we know that

ιιr → idX → πrπ

is a cofiber sequence, from which

f ′ → g → h′

is itself a cofiber sequence. Therefore, since the relative trace preserves cofiber sequences we

see that

tr(f ′)→ tr(g)→ tr(h′)

is a cofiber sequence. Finally, we only need to verify that the maps induced on traces by

(ι, α) and (π, β) are equivalences. For the first one, since (ι, α) is right adjointable, α is

an equivalence and η : idX → ιrι is also an equivalence because it is part of a localizing

sequence. For the second one, ϵ : ππr → idZ is an equivalence because it is part of a

localizing sequence, and β
♭
is an equivalence because (π, β) is right-adjointable, so it boils

down to proving that the 2-morphism

tr(h′) = evY (h
′ ⊗ id) coevY

η−→ evY (h
′ ⊗ id)(πrπ ⊗ id)coevY = tr(h′πrπ)
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is an equivalence, which is true because ηh′ is an equivalence and the cyclic property of

traces.

A very important corollary, which follows by applying the previous theorem in the case

of the identity endofunctors, is the following.

Corollary 2.4.4. Given a fully faithful inclusion A ↪→ B of stable categories with Verdier

quotient B/A, there is a cofiber sequence of spectra

THH(A)→ THH(B)→ THH(B/A).

Moreover, the same results hold true, with the same proofs, if instead of working over

PrLSt we work over Catk for some field k, replacing THH by HH in the last corollary.

2.5 Dualizable categories

We saw that compactly generated categories are dualizable for the symmetric monoidal

structure on PrL. However, we can give a complete characterization of dualizable categories,

following Lurie [Lur18, D.7.0.7].

Proposition 2.5.1. Let R be an E∞-ring and C a stable R-linear ∞-category. Then C is

dualizable if and only if it is a retract of a compactly generated category.

Another equivalent condition for C to be dualizable is that the colimit functor Ind(C)→ C

admits a left adjoint ŷ : C → Ind(C). Since the colimit functor is left adjoint to the Yoneda

embedding y : C → Ind(C), this exhibits C as a retract of a compactly generated category. In

the case that C is compactly generated, ŷ becomes the Ind-extension of the inclusion Cω ⊂ C.

We could also introduce the notion of a small, stable, idempotent complete ∞-category

being dualizable, since Catperf is a symmetric monoidal category as well. Notice that for

any C ∈ Catperf , the ind-completion is a compactly generated presentable category and so
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Ind(C) is dualizable in the above sense. Dualizability in Catperf is related to two geometric

notions. We say that C ∈ Catperf is proper if the evaluation functor

Ind(Cop)⊗ Ind(C)→ Sp

preserves compact objects. On the other hand, we say that C is smooth if the coevaluation

functor

Sp→ Ind(C)⊗ Ind(Cop)

preserves compact objects.

Proposition 2.5.2 ([Toe09]). A small, stable, idempotent complete ∞-category C is dualiz-

able if and only if it is smooth and proper.

Suppose that we write C as a retract of a compactly generated category A, and consider

the quotient B = A/C. Then B is also compactly generated and we have a localization

sequence

C −→ A −→ B.

Following Efimov, we define the continuous K-theory of C as

Kcont(C) := hofib(K(Aω)→ K(Bω)).

This is independent of the category A we choose to write C as a retract of, as a consequence

of the excision theorem in [Tam18, Theorem 18]. Notice that when C is compactly generated

itself, we have that Kcont(C) ≃ K(Cω). However, it is not evident how to construct the class

of a non-compact object X ∈ C in continuous K-theory, and interesting examples have no

compact objects. We do not know if there is a class (resembling Wall’s finiteness obstruction)

in K-theory whose vanishing determines if a dualizable category is compactly generated.

18



2.6 Determinant functors and the trace formalism

A Picard groupoid is a symmetric monoidal category in which every object is invertible

(together with certain commutativity and associativity constraints).

There is an equivalence of categories between the category of Picard groupoids and the

category of [0, 1]-connected spectra. Let us briefly recall how the equivalence is constructed.

If MonE∞ is the category of E∞-monoids and Mon
gp
E∞

is the full subcategory of group-like

E∞-monoids (that is, X ∈ MonE∞ such that π0(X) is a group). The category of group-like

E∞-monoids is equivalent to the category of connective spectra. The equivalence is given

by the infinite loop-space machine, that is, the functor Mon
gp
E∞
→ Sp≥0 defined by taking

X to the connective spectrum X,BX,B2X, . . .. One can see that a symmetric monoidal

groupoid C is a Picard groupoid if and only if the E∞-monoid given by the nerve N(C) is

group-like. Notice that in such situation, N(C) is 1-truncated, and therefore this establishes

the equivalence between Picard groupoids and 1-truncated connective spectra.

In particular, if C is a small, stable, idempotent complete ∞-category, we can associate

to it a Picard groupoid Pic(C) by taking τ≤1K(C), or if C is a dualizable category, we can

instead take Pic(C) = τ≤1Kcont(C). We would be interested in having a notion of a universal

determinant functor det : C → Pic(C) as in [Del87].

Example 2.6.1. Consider the Picard groupoid PicZ(X) whose objects are graded lines,

that is, (L, α) for L a line bundle on X and α : X → Z a continuous function. The set of

morphisms from (L, α) to (L′, α′) is defined to be the set of isomorphisms L → L′ if α = α′

and the empty set otherwise. Given any vector bundle V on X, we can define an object

det(V ) ∈ PicZ(X).

When X = Spec(k) and V is a finite dimensional vector space over k, an automorphism

f : V → V yields a map det(f) : (det(V ), dim(V )) → (det(V ), dim(V )) in PicZ(Spec(k)),

whose categorical trace is given by the usual determinant of f .

One could possibly play the same game as in the previous example, provided we have a
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determinant functor C → Pic(C). Indeed, to get a notion of the determinant of an automor-

phism f : V → V in C we can apply the universal determinant det(f) : det(V ) → det(V )

to obtain an endomorphism of det(V ) ∈ Pic(C), and we can look at trPic(C)(det(V )) which

lives in K1(C).
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CHAPTER 3

TRACE METHODS IN ALGEBRAIC GEOMETRY

3.1 Categories of correspondences

In this section we will deal with the (∞, 2)-category of correspondences, which will allow us

to encode the six functor formalism in various theories in a conceptual manner. This idea,

due to Lurie, is explained by Gaitsgory and Rozenblyum in [GR17], and we follow their

exposition closely.

Let us first give a brief summary of what the six functor formalism usually entails.

Suppose that C is a category of geometric objects, and for each geometric object X we can

associate a stable, presentable (∞, 1)-category of sheaves

X 7→ Sh(X) ∈ PrLSt.

For instance, when C = Schaft is the (∞, 1)-category of schemes of almost finite type, we can

think of ind-coherent sheaves IndCoh(X) or D-modules D-mod(X). This assignment comes

with the following additional data:

• Functoriality For every map f : X → Y ∈ C, there are functors

f ! : Sh(Y )→ Sh(X), f∗ : Sh(X)→ Sh(Y ).

• Proper adjunction Given f : X → Y ∈ C, there is a natural transformation

id→ f ! ◦ f∗

which is the unit of an adjunction when f is proper.
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• Open adjunction If f : X → Y ∈ C is an open immersion, there is a natural

isomorphism

f ! ◦ f∗ ≃ id,

which is the counit of an adjunction.

• Proper base change For a Cartesian square

X ′ X

Y ′ Y

g′

f ′ f

g

in C, there is a natural base change isomorphism

f ′∗ ◦ g′! ≃ g! ◦ f∗.

In the case that f is proper (resp. open), this isomorphism is given by the natural

transformation arising from the proper (resp. open) adjunction above.

• Tensor structure For each X, Y ∈ C we have a functor

⊠ : Sh(X)⊗ Sh(Y )→ Sh(X × Y ),

natural in X and Y . Moreover, we have a tensor structure on Sh(X) which is given

by F
!
⊗ G = ∆!(F ⊠ G) where ∆ is the diagonal embedding and requiring that

f ! : Sh(Y )→ Sh(X) is symmetric monoidal with respect to this tensor structure.

• Projection formula Let f : X → Y be a morphism in C. Since f ! is a tensor functor

with respect to the
!
⊗-product, we have that Sh(X) is a module category over the tensor

category Sh(Y ). We require that the functor f∗ is a functor of module categories over

Sh(Y ) with respect to the tensor structure
!
⊗. In particular, we have the projection
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formula

f∗(F
!
⊗ f !G) ≃ f∗F

!
⊗ G.

When f∗ and f ! have left adjoints (denoted f∗ and f! respectively) we say that we have the

full six functor formalism. The six functors that the name refers to are f∗, f∗, f!, f
!,⊗,Hom.

Not every sheaf theory as described before has left adjoints f! and f
∗, for example, in the

cases of Ind-coherent sheaves or D-modules we only have functors f∗ and f !. In the case of

constructible ℓ-adic sheaves or stable motivic homotopy theory we have the full six functors.

If the left adjoints exist, we can give slightly more familiar expressions for the previous

properties. The proper adjunction can be understood as a natural transformation f! → f∗

which is natural in f and is an isomorphism when f is proper. The open adjunction can be

understood as an isomorphism f ! ≃ f∗ when f is an open immersion. We can define a dual

tensor structure by ∗-pullback as F ⊗ G ≃ ∆∗(F ⊠ G) along the diagonal ∆ : X → X ×X

which gives a closed symmetric monoidal structure on Sh(X) and f∗ is a symmetric monoidal

functor for that tensor structure. This means that Sh(X) comes equipped with an internal

hom functor HomSh(X). Finally, we have a projection formula for this tensor structure

defined by ∗-pullback. This amounts to f! being a functor of module categories, which gives

the projection formula

f!(F ⊗ f∗G) ≃ f!F ⊗ G.

We also have an interesting interplay with the self-duality of the category of sheaves Sh(X):

the functors f ! and f! are dual to f∗ and f∗ respectively.

The (∞, 2)-category of correspondences allows us to provide a very clean set-up for the

six functor formalism. Indeed, all such properties of a sheaf theory Sh will be encoded in

the form of a symmetric monoidal functor of (∞, 2)-categories

Sh : Corr→ 2-Cat.
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We will explain how the categories of correspondences look like, leaving the details of the

(∞, 2)-categorical constructions via Segal spaces to [GR17, Chapter 7].

Suppose that C is an (∞, 1)-category together with three distinguished classes of hor-

izontal, vertical and admissible morphisms. We shall denote by Cver, Chor and Cadm the

corresponding full subcategories of C. These classes need to be closed under composition

and verify the following properties:

1. The identity maps of objects of C belong to all three classes.

2. If a morphism belongs to a given class, then so do all isomorphic morphisms.

3. Suppose that α1 : c1,1 → c1,0 is a horizontal morphism and β0 : c0,0 → c1,0 is a vertical

morphism, then the Cartesian square

c0,1 c0,0

c1,1 c1,0

α0

β1 β0

α1

exists, α0 is horizontal and β1 is vertical. Moreover, if α1 (resp. β0) is admissible, then

so is α0 (resp. β1).

4. The class of admissible morphisms satisfies the ‘2 out of 3’ property: if

c1
α−→ c2

β−→ c3

are maps such that β and β ◦ α are admissible, then α is also admissible.

In the case that C has fiber products for all morphisms, we can take the classes of hori-

zontal, vertical and admissible morphisms to simply be all morphisms. Another important

example comes when C is the (∞, 1)-category of schemes of almost finite type, the admissible

morphisms are proper maps, and the horizontal and vertical morphisms are any maps.
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The category of correspondences Corr(C)admvert,hor can be described as follows. Its objects

are the objects of C, the 1-morphisms are diagrams

c0,1 c0

c1

where the vertical arrow is in Cver and the horizontal arrow is in Chor. The composition of

such diagrams is given by taking the fibered product

c1,2 ×c1 c0,1 c0,1 c0

c1,2 c1

c2.

The 2-morphisms between a pair of correspondences (c0,1, α, β) and (c′0,1, α
′, β′) are given

by diagrams of the form

c0,1

c′0,1 c0

c1

γ
α′

β′
α

β

where γ is an admissible map.

In the case where C is a category of geometric objects like C = Schaft, we can see that

functoriality and proper base change in a sheaf theory is equivalent to the data of a functor

of (∞, 1)-categories

Sh : Corr(C)properall,all → Pr
L
St.

In other words, an object X ∈ Corr(C)properall,all maps to Sh(X) and a morphism

Z X

Y

f

g
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gets mapped to g∗ ◦ f ! : Sh(X)→ Sh(Y ).

Let us see how to recover the proper and open adjunctions from the (∞, 2)-categorical

point of view. Suppose that f : X → Y ∈ C is proper. The functor f∗ ◦ f ! : Sh(Y )→ Sh(Y )

is the image under Sh of the morphism

X Y

Y

in Corr(C)properall,all . Similarly, f ! ◦ f∗ : Sh(X)→ Sh(X) is given by the image of the composite

X ×Y X X X

X Y

X

If the diagonal morphism X → X ×Y X is proper, we obtain the desired natural transfor-

mation

id→ f ! ◦ f∗.

Furthermore, if the map f : X → Y is proper, we also obtain a natural transformation

f∗ ◦ f ! → id, and it’s easy to see that the two natural transformations give the unit and

counit of an adjunction.

For the case where f : X → Y is an open embedding, we have that

X ×Y X ≃ X

and therefore we obtain the desired isomorphism

f ! ◦ f∗ ≃ id .

The assertion that this isomorphism gives a counit of an adjunction is an additional condition.
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As for duality, a key feature of the symmetric monoidal category Corr(C)properall,all is that

every object X is self-dual. In particular, it is easy to see that the morphisms

X ∗ X X ×X

X ×X ∗
∆

∆

give the unit and counit maps, respectively. Applying the symmetric monoidal functor Sh,

we obtain that the spectral category Sh(X) is self-dual. Even more so, we can check that

for f : X → Y ∈ C, the morphisms

X Y X X

X Y

f

f

are dual to each other in Corr(C)properall,all . This implies that the functors f ! and f∗ are dual to

each other.

The symmetric monoidal structure on the functor Sh gives a natural isomorphism

⊠ : Sh(X)⊗ Sh(Y )
∼−→ Sh(X × Y ).

When Sh is only right-lax symmetric monoidal, we would only have a functor in that direc-

tion.

Moreover, the construction of the symmetric monoidal structure on Corr(C)properall,all gives

us a functor

Cop → Corr(C)properall,all

by horizontal morphisms, which is symmetric monoidal (and the symmetric monoidal struc-

ture on Cop is given by the coproduct). In particular, for every object X ∈ Cop, the diagonal

map provides us with a commutative algebra structure and so Sh(X) carries naturally a

symmetric monoidal structure
!
⊗ by !-restriction along the diagonal.
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As for the projection formula, suppose that we have an object Y ∈ C. Then, as we

have seen, Y has a commutative algebra object structure in Corr(C)properall,all . Furthermore, if

f : X → Y is a morphism in Y , we have that X has a canonical structure of a module over

Y . It is straightforward to see that in this case, the morphism

X X

Y

f

has the structure of a morphism of Y -modules in Corr(C)properall,all . In particular, applying the

symmetric monoidal functor Sh shows that the functor

f∗ : Sh(X)→ Sh(Y )

is a morphism of Sh(Y )-modules. This concludes the proof of the projection formula.

3.2 Calculations of traces via correspondences

In this section we are going to use the category of correspondences to calculate certain traces

of endofunctors in geometric categories. In order to do so, we first need to discuss calculations

of traces in the categories of correspondences.

If we have classes of horizontal, vertical and admissible morphisms as in the previous

section, we can notice that all the objects c ∈ C for which c → ∗ is both horizontal and

vertical are self-dual for the symmetric monoidal structure on Corr(C)admvert,hor. Indeed, it is

easy to see that if c→ ∗ is both horizontal and vertical, then the diagonal map ∆ : c→ c× c

is also both horizontal and vertical. Then, it is easy to verify that the evaluation and

coevaluation maps given by

c c× c c ∗

∗ c× c

∆

∆
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exhibit c as a self-dual object of Corr(C)admvert,hor. Moreover, we can see that in that case the

trace of the identity morphism idc is given by the free loop space of c,

Lc := c×c×c c.

More generally, for any 1-endomorphism of c in correspondences

d c

c

f

g

we can see that the trace is given by the object cf=g that is defined by the pullback diagram

cf=g d

c c× c.
(f,g)

∆

Indeed, this follows by looking at the diagram associated to the composition

cf=g d c ∗

d d× c c× c

c c× c

∗

f

(id,f) ∆(3)

(id,g)
g

(1)

f×id
g×id(2)

∆

where the squares (1) and (2) are readily seen to be pullback squares and (3) is a pullback

square by the definition of cf=g and simply noticing that the composition of the vertical

arrows in the second column is (f, g) : d→ c× c.

The category of correspondences allows us to encode bivariant functors Φ : C → D where

D is some fixed (∞, 1)-category. This means that for each c ∈ C we have an object Φ(c),

and for each 1-morphism γ : c1 → c2 in C we have a 1-morphism

Φ(γ) : Φ(c1)→ Φ(c2)
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if γ is a vertical morphism, and a 1-morphism

Φ!(γ) : Φ(c2)→ Φ(c1)

if γ is a horizontal morphism, together with compatibility of Φ(·) and Φ!(·) with compositions

of 1-morphisms in C, and for any Cartesian square

c0,1 c0,0

c1,1 c1,0

α0

β1 β0

α1

where α0, α1 are in the class of horizontal arrows and β0, β1 are in the class of vertical arrows,

we have a base-change morphism

Φ(β1) ◦ Φ!(α0) ≃ Φ!(α0) ◦ Φ(β0).

Moreover, this data must satisfy a homotopy-coherent system of compatibilities. All of this

information is conveniently encoded by the category Corr(C)admvert,hor in the form of a functor

Φ : Corr(C)admvert,hor → D.

In particular, if D has a symmetric monoidal structure and Φ is a monoidal functor, we

can compute traces in Φ by first computing the trace in the category of correspondences and

then applying Φ. That is, if we have a correspondence (c
g← d

f→ c) and c is a dualizable

object as in the previous discussion, the trace of

Φ∗(g)Φ!(f) : Φ(c)→ Φ(c)
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is given by the composition

Φ∗(p)Φ!(p) : Φ(∗) −→ Φ(cf=g) −→ Φ(∗).

Example 3.2.1. These techniques allow us to calculate the Euler characteristic of IndCoh(X)

for some smooth projective variety over a field of characteristic 0. Indeed, applying the pre-

vious discussion to the ind-coherent sheaves as a functor from correspondences, we have

that

trCatk(id : IndCoh(X)→ IndCoh(X)) = RΓ(LX,ωLX).

Since we can identify OLX ≃ ωLX , the Hochschild-Kostant-Rosenberg theorem tells us that

HHr(IndCoh(X)) ≃
⊕
q−p=r

Hq(X,Ω
p
X).

Moreover, the functoriality of this construction shows that RΓ : IndCoh(X)→ Vect induces

the usual integration map in Hochschild homology

∫
: HH(IndCoh)(X) ≃

⊕
r

⊕
q−p=r

Hq(X,Ω
p
X)→ k.

Remark 3.2.2. Even though the more familiar category of quasi-coherent sheaves QCoh(X)

is isomorphic to the category of ind-coherent sheaves IndCoh(X) when X is a smooth variety,

we prefer the use of ind-coherent sheaves. There is a certain trade-off between using QCoh(X)

or IndCoh(X). On the side of QCoh(X), the identification of the induced morphism on

Hochschild homology by pullback f∗ : QCoh(Y ) → QCoh(X) with the classical pullback

of global sections is simple whereas the induced map by the pushforward is not easy to

understand. On the side of IndCoh(X) the identification on Hochschild homology of the

pushforward f∗ : IndCoh(X)→ IndCoh(Y ) with the classical pushforward is simple whereas

the induced map by the pullback is not easy to understand. It is important to notice
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that the identification IndCoh(X) → QCoh(X) does not respect the monoidal structure.

Therefore, even though we can identify both HH(QCoh(X)) and HH(IndCoh(X)) with Hodge

cohomology as described in the previous example, the isomorphism between HH(QCoh(X))

and HH(IndCoh(X)) is not trivial: it is given by multiplication by the Todd class tdX (see

[KP19, Corollary 4.4.4.])

3.3 Chern character via categorical traces

Let C be a k-linear (∞, 1)-category. We know that functors φ : Vect → C in Catk are

classified by the image of k. Moreover, one can verify that such a morphism is dualizable if

and only if the image of k is a compact object of C. Suppose that we have an endofunctor

F : C → C, a functor φ : Vect→ C classified by a compact object φ(k) = E and a 2-morphism

Vect Vect

C C,

φ
α

φ

F

which simply boils down to some morphism α ∈ HomC(E,F (E)). In this setting, we can

apply the functoriality of traces to define a morphism

tr(φ, α) : k = trCatk(Vect) −→ trCatk(F : C → C).

We call the image of 1 ∈ k under this map the Chern character ch(E,α). When α = id and

F = id we simply write the corresponding Chern character as ch(E) ∈ HH(C) and lives in

the Hochschild homology of C. Furthermore, a proper functor F : C → D (that is, it maps

compact objects to compact objects) induces a morphism F∗ := tr(F, id) : HH(C)→ HH(D)

and by the functoriality of traces, we can see that

F∗(ch(E)) = ch(F (E)).
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Example 3.3.1. When C = Vect and F is the identity endofunctor, φ corresponds to a

finite dimensional vector space V and α corresponds to a map α : V → V . In this case,

ch(V, α) = trk(α : V → V ).

Example 3.3.2. Let X be a smooth, proper variety over an algebraically closed field k of

characteristic 0. For a dualizable E ∈ QCoh(X) (i.e., a perfect complex of sheaves on X),

the Chern character we just described ch(E , idE ) agrees with the classical Chern character in

Hodge cohomology. Under the identification between QCoh(X) and IndCoh(X) explained

in Remark 3.2.2, we see that the categorical Chern character in IndCoh(X) is ch(E)tdX .

Example 3.3.3 ([KP19, Proposition 6.1.6.]). Consider X as in the previous example, and

suppose that E is a perfect complex of sheaves on X. Then, by the functoriality of traces, the

description of the Chern character and the identification of Hochschild-Kostant-Rosenberg

together with the diagram

Vect IndCoh(X) Vect

k E RΓ(X, E),

yield the Hirzebruch-Riemann-Roch formula

∫
X
ch(E)tdX = χ(RΓ(X, E)).

3.4 Residues via Local Cohomology

Suppose that X is a smooth variety and let Z ↪→ X be a closed subscheme which is proper as

a k-scheme. The functor ΓZ of sections with support in Z is left exact. The derived functors

are called the local cohomology groups. In the affine case, that is when X = Spec(A) and
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Z = V (I), we can calculate

RpΓZ(M) = colim
r

Ext
p
A(A/I

r,M).

There is an exact triangle

0 −→ RΓZ(·) −→ RΓ(·) −→ RΓ( ·|U ) −→ 0.

The notion of residue goes back to [Har66]. Suppose that Z consists of isolated (maybe

non-reduced) points. Take a coordinate patch x1, . . . , xn centered at one of those points and

suppose that Z is given by equations a1, . . . , an forming a regular sequence. Elements in the

top local cohomology groups RnΓZ(Ω
n
X) can be written as generalized fractions

(
f dx1 ∧ · · · ∧ xn
xe11 , . . . , x

en
n

)
.

For a generalized fraction we define the residue symbol as

Res

(
f dx1 ∧ · · · ∧ dxn
xe11 , . . . , x

en
n

)
= be1−1,...,en−1

where f =
∑

bi1,...,inx
i1
1 · · ·x

in
n . Because of the Nullstellensatz, we can write

xmi
i =

∑
j

cijaj .

Therefore,

Res

(
f dx1 ∧ · · · ∧ dxn

a1, . . . , an

)
= Res

(
det(cij)f dx1 ∧ · · · ∧ dxn

xm1
1 , . . . , xmn

n

)
.
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Using this formula, we see that

Res

(
dx1 ∧ · · · ∧ dxn

x1 − f1, · · · , xn − fn

)
=

1

det(id− dxf)

in the case that the fixed point is the transversal intersection of the diagonal and the graph

of f . The previous discussion yields a map Res : RnΓZ(Ω
n
X)→ C called the residue map.

Theorem 3.4.1 ([Lip84, Theorem 10.2]). Let X be a smooth projective complex variety and

Z ↪→ X a closed immersion. The following diagram commutes

RnΓZ(Ω
n
X) Hn(X,ΩnX)

C
Res

∫
X

In our setting, if U = X∖Z is the open complement of the closed subscheme Z, we have

a localizing sequence given by

IndCoh(X)Z −→ IndCoh(X) −→ IndCoh(U).

We can understand IndCoh(X)Z as the ind-completion of the category of coherent sheaves

on X with support on Z, or equivalently, as the category of ind-coherent sheaves on the

formal completion X∧Z of X along Z.

Theorem 3.4.2. We have an identification

HH(IndCoh(X∧Z)) ≃
⊕
r

⊕
q−p=r

RqΓZ(Ω
p
X).

Moreover, the induced map on Hochschild homology by the global sections functor RΓ iden-

tifies with the residue map in local cohomology.

Proof. Since HH is a localizing invariant (see Theorem 2.4.3), we get the desired identification

thanks to the exact triangle that arises in local cohomology. Moreover, the theorem by
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Lipman and our calculation of the induced map on traces by RΓ : IndCoh(X) → Vect,

together with the functoriality of traces, yield the identification with the residue map.

3.5 Kernel construction

In many interesting examples, our sheaf theory viewed as a functor

Sh : Corr(C)→ PrLSt

is only lax symmetric monoidal. This is the case of the category of ind-constructible ℓ-adic

sheaves and the stable motivic homotopy category. Even in those cases, we can calculate

traces in the same way as before by using the following construction (communicated to us

by N. Rozenblyum).

Construction 3.5.1. Let Φ : Corr(C)admvert,hor → D be a lax symmetric monoidal functor.

Consider the category kerΦ whose objects are the same as those for C and the morphisms

between two objects X and Y are given by Φ(X × Y ). This category carries a natural

symmetric monoidal structure and its formal closure under colimits KerΦ = Pre(kerΦ) also

carries a natural symmetric monoidal structure via the Day convolution. The functor Φ

factors through kerΦ since given a correspondence (f, g) : C → X × Y we get a map

Φ(C)→ Φ(X × Y ) and the image of the unit of Φ(C) is our desired kernel.

The upshot of such a factorization of Φ, is that Φ : Corr(C)admvert,hor → KerΦ is now a

symmetric monoidal functor. Hence, we can calculate traces in the exact same way as we

did before. Moreover, the trace we calculate will live in the endomorphisms of the unit of

KerΦ, which is given by Φ(Spec k). In other words, the trace lives in the place we expect it

to, and even when Φ is just lax symmetric monoidal we can carry out the same procedure

as in Section 3.2.
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3.6 Archetypical Lefschetz theorems

Using the formalism of categorical traces, we can obtain various Lefschetz theorems in dif-

ferent situations. Suppose that we have a commutative diagram of the form

C C

C C,

g

f

g

f

and assume that f and g both admit continuous right adjoints. Then we have induced maps

on traces g∗ : tr(f) → tr(f) and f∗ : tr(g) → tr(g). The main theorem in [CP19] tells us

that tr(f∗) = tr(g∗).

Example 3.6.1. When C = IndCoh(X) and f : X → X, we can consider the commutative

square

IndCoh(X) IndCoh(X)

IndCoh(X) IndCoh(X).

id

f∗

id

f∗

The previous discussion, together with the ideas from Section 3.2, tells us that

tr(f∗ : HH(X)→ HH(X)) = χ(RΓ(Xf ,OXf )).

Example 3.6.2. When X is a compact topological space and f : X → X a continuous map,

we can apply this to the category of parametrized spectra C = SpX = Fun(CSing(X), Sp) to

obtain the usual Lefschetz formula.

The kernel construction (Section 3.5) provides a general way of (de)categorifying in any

geometric context. In particular, we can apply this philosophy to the context of stable

motivic homotopy theory. Indeed, the Euler characteristic of the category SH(X) is an

object of SH(k). Moreover, a theorem of Morel shows that EndSH(k)(1) ≃ GW(k), which

means that taking traces again will yield an element in GW(k). We can use these ideas to
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give an alternative proof of a refinement of the Grothendieck-Lefschetz-Verdier trace formula

in stable motivic homotopy theory.

Before doing so, let us recall some basic constructions from stable motivic homotopy the-

ory. If ω is an endomorphism of 1X in SH(X) the integral is defined as the endomorphism∫
X ω dχ = tr(p#ω) ∈ EndSH(S)(1S) where p# is the left adjoint to p∗. For a vector bundle

V over X with projection π : V → X and zero section s : X → V , we have the Thom endo-

morphisms ΣV = s∗π! and Σ−V = s!p∗ of SH(X). We can associate to each automorphism

ϕ : V → V an automorphism ⟨ϕ⟩ of the identity functor on SH(X). If Ni is the conormal

bundle of a closed immersion i : Z ↪→ X and p : X → S, q : Z → S are smooth, the purity

isomorphism gives us an equivalence between p#s∗ ≃ q#ΣNi . The purity isomorphism is

natural.

Theorem 3.6.3 ([Hoy14, Theorem 1.3]). Let X be a smooth and proper S-scheme and

f : X → X an S-morphism with regular fixed points. Then

tr(Σ∞+ f) =
∫
Xf
⟨ϕ⟩ dχ,

where ϕ is the automorphism of the conormal sheaf of the immersion Xf ↪→ X induced by

id−i∗(df).

Proof. Just like in the previous examples, we obtain an identification

tr (f∗ : χ(SH(X))→ χ(SH(X))) = χ (tr(f∗ : SH(X)→ SH(X))) .

The calculations of traces via correspondences, now taking place in the kernel construction,

show that χ(SH(X)) = Σ∞+X ∈ SH(S) and tr (f∗ : SH(X)→ SH(X)) = Σ∞+X
f ∈ SH(S).

Taking traces again we obtain in EndSH(S)(1S), an equality

tr
(
Σ∞+ f : Σ∞+X → Σ∞+X

)
= χ

(
Σ∞+X

f
)
.
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The only remaining point is to identify χ
(
Σ∞+X

f
)
with

∫
Xf ⟨ϕ⟩ dχ. The automorphism ⟨ϕ⟩

on q#ΣNi becomes the identity on p#i∗1Xf under the naturality of the purity isomorphism,

concluding the proof.
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CHAPTER 4

SINGULAR SUPPORT

4.1 Grothendieck’s Construction

In this section we imitate the construction of cohomological correspondences in [LZ20] in

the general setting of a lax symmetric monoidal sheaf theory

Sh : Corr(SchS)
proper
all,all → Pr

L
St

where SchS is the category of schemes over S. The Grothendieck construction provides us

with a category CSh whose objects are pairs (X,F) with X a scheme over S and F ∈ Sh(X),

and a morphism (X,F) → (Y,G) in the category CSh is a pair ((f, g), u) consisting of a

correspondence (f, g) : C → X ×S Y over S and a morphism u : F → Sh((f, g))(G) = f∗g!G

in Sh(X). When we have the full six functors, we favor the more symmetrical point of view

of associating the map u : f∗F → g!G in Sh(C) via the adjunction (f∗, f∗). The composition

of morphisms

(X,F) (Y,G) (Z,H)
((f,g),u) ((f ′,g′),u′)

is obtained by the correspondence composition C ×Y C ′ → X ×S Z and the morphism

is obtained by pre and post-composition with u,u′ and the base-change morphism on the

diagram

C ×Y C ′ C ′

C Y.

f ′

g

Moreover, a 2-morphism ((f, g), u) → ((f ′, g′), u′) in CSh can be described using the 2-

structure of Sh. When we have the full six functors, we can describe it more explicitly as a
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proper map p : C → C ′ satisfying f ′ ◦ p = f and g′ ◦ p = g and such that u′ is equal to the

composition

(f ′)∗F adj−→ p∗p∗(f ′)∗F ≃ p!f
∗F u−→ p!g

!G ≃ p!p
!(g′)!G adj−→ g!G,

where we used the fact that p! ≃ p∗ since p is a proper map.

The 2-category CSh just described admits a symmetric monoidal structure since Sh is a

lax symmetric monoidal functor. When we have the full six functors, it is described explicitly

by setting the tensor product as (X,F)⊗ (X ′,F ′) = (X×SX ′,F⊠SF ′), and on morphisms

((f, g), u)⊗ ((f ′, g′), u′) is defined as ((f ′′, g′′), u′′) where f ′′ = f ×S f ′, g′′ = g×S g′ and u′′

is given as the composition

(f ′′)∗(F ⊠S F ′) ≃ f∗F ⊠S (f ′)∗F ′ u⊠Su
′

−→ g!G ⊠S (g′)!G′ −→ (g′′)!(G ⊠S G′),

where the last map is given by the adjoint to the Kunneth map.

The monoidal unit of CSh is given by the pair (S,1) where 1 ∈ Sh(S) is the monoidal

unit. We can describe the endomorphisms EndCSh(S,1S), where 1S ∈ Sh(S) is the unit

object. Indeed, it consists of pairs (X,α) where X is an S-scheme and α is an element of

the set p∗p!(1S) where p : X → S is the structure map. If we denote the dualizing sheaf by

KX = p!1S , we see that α is an element of p∗KX .

Suppose that (X,F) is a dualizable object. We define the characteristic class ccX/S(F)

to be the element in p∗KX corresponding to the Euler characteristic of (X,F) in CSh. If

f : X → Y is a proper morphism, we can show that f∗ccX/S(F) = ccY/S(f∗F).

We introduced two different ways of talking about traces for sheaf theories equipped

with a six-functor formalism, and as such, understanding the relation between the notion of

dualizable objects in those categories is fundamental. The following theorem connects both

points of view.
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Theorem 4.1.1. An object (X,F) ∈ CSh is dualizable if and only if F ∈ HomKerSh(S,X)

is a right adjoint.

Proof. Consider F ∈ Sh(X) as an object of HomkerSh/S
(S,X). If (X,F) is dualizable in CSh,

then the dual is an object (X,F∨) and we can identify F∨ with a functor HomkerSh(X,S).

The dualizability of (X,F) provides us with evaluation and coevaluation maps that can be

used to define unit and counit maps that exhibit F as the right adjoint of F∨. Conversely,

if G ∈ HomkerSh(X,S) is the left adjoint of F , the unit and counit maps of the adjunction

provide us with evaluation and coevaluation maps that exhibit (X,G) as the dual of (X,F).

Notice that for both descriptions we only need the two functors f∗ and f ! and not the

full six functors. This is useful when we deal with sheaf theories like IndCoh and D-mod

where f! and f
∗ are not always defined.

Remark 4.1.2. When Sh : Corr(SchS)
proper
all,all → P

L
St is symmetric monoidal, we can further

characterize dualizable objects (X,F) by looking at the corresponding Sh(S)-linear functor

Sh(S) → Sh(X) given by the integral transform. By the equivalence with the kernel con-

struction, we see that this functor is a right adjoint if and only if (X,F) is dualizable. In

general it is not easy to describe when such functors are right adjoints. However, in the case

where p : X → S is proper and Sh is QCoh, such kernels must be F ∈ Perf(X) by [BZNP17,

Theorem 1.2.4.].

However, to give an explicit description of the internal hom in CSh we need to assume

that we have the full six functors. This will be the case when Sh is the category of ℓ-adic

constructible sheaves or the motivic stable homotopy category SH(X).

Lemma 4.1.3. The symmetric monoidal structure ⊗ on CSh is closed, with internal mapping

object

Hom((X,F), (Y,G)) =
(
X ×S Y,HomSh(X×SY )(p

∗
XF , p

!
Y G)

)
.
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Proof. Let c : C → X ×S Y ×S Z and denote the composition of c with the corresponding

projection p? by c?. Notice that the internal hom adjunction for Sh(C) provides us with an

isomorphism

HomSh(C)(c
∗
XF ⊗ c

∗
Y G, c

!
ZH)

∼−→ Hom(c∗XF ,HomSh(C)(c
∗
Y G, c

!
ZH)).

We need to construct an isomorphism of categories between

Hom((X,F)⊗ (Y,G), (Z,H)) and Hom
(
(X,F), (Y ×S Z,HomSh(Y×SZ)

(p∗Y G, p
!
ZH))

)
.

An object of Hom((X,F) ⊗ (Y,G), (Z,H)) is a pair (c : C → X ×S Y ×S Z, u) where c

is a correspondence and u is a morphism u : c∗XF ⊗ c
∗
Y G → c!ZH.

Similarly, an object of Hom((X,F), (Y ×S Z,HomSh(Y×SZ)
(p∗Y G, p

!
ZH))) amounts to a

correspondence c : C → X×SY×SZ and a morphism u′ : c∗XF → c!Y×SZ
HomSh(Y×SZ)

(p∗Y G, p
!
ZH).

Composing u with the adjunction map yields a morphism c∗XF → HomSh(C)(c
∗
Y G, c

!
ZH).

Notice that compatibility of the internal hom with shriek pullback gives us

c!Y×SZ
HomSh(Y×SZ)

(p∗Y G, p
!
ZH) = HomSh(C)(c

∗
Y G, c

!
ZH).

These identifications yield the desired isomorphism.

4.2 Universal local acyclicity

In [LZ20, Theorem 2.16] it is shown that when Sh(X) is the category of ℓ-adic sheaves over

X, an object (X,F) is dualizable in CSh precisely when F is universally locally acyclic over

S. It is therefore reasonable to consider the following.

Definition 4.2.1. Suppose that Sh : Corr(Sch/S) → PrLSt is a sheaf theory admitting six-

functor formalism. A sheaf F ∈ Sh(X) is universally locally acyclic over S if (X,F) ∈ CSh
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is a dualizable object.

Remark 4.2.2. Notice that in the case where X = S, a sheaf F ∈ Sh(S) is universally locally

acyclic over S if and only if F ∈ Sh(S) is a dualizable object.

Remark 4.2.3. Remark 4.1.2 can be rephrased as saying that when Sh is symmetric monoidal,

F is universally locally acyclic with respect to f : X → S if and only if the associated Sh(S)-

linear functor Sh(S)→ Sh(X) is a right adjoint.

From now on, unless explicitly mentioned, we will assume that we have the full six

functors. This means that we have a characterization of the internal hom in the category

of cohomological correspondences, which allows us to see that if an object (X,F) ∈ CSh is

dualizable, then its dual must be

(X,F)∨ = Hom((X,F), (S,1S))

=
(
X ×S S,HomSh(X×SS)

(p∗XF , p
!
S1S)

)
≃ (X,HomSh(X)(F , KX)).

For this reason, we denote HomSh(X)(F , KX) as DX/S(F).

Dualizable objects in the category of cohomological correspondences are well-behaved

with respect to the operations of the six-functor formalism. For an object (X,F) ∈ CSh and

a morphism f : X → Y of separated schemes of finite type over S, we consider the map

(X,F)→ (Y, f!F) where the correspondence is given by (id, f) and the morphism F → f !f!F

is the adjuntion map. Notice that this morphism admits a right adjoint (Y, f∗F)→ (X,F)

where the correspondence is given by (f, id) and the morphism f∗f∗F → F is the adjunction

map.

This allows us to prove that the notion of universal local acyclicity is well-behaved with

respect to functorial properties.

44



Proposition 4.2.4. Suppose that f : X → Y is a morphism of schemes separated of finite

type over S. Then,

1. If F ∈ Sh(X) is universally locally acyclic over S, then f∗F is also universally locally

acyclic over S if f is proper.

2. If G ∈ Sh(Y ) is universally locally acyclic over S, then f∗G is also universally locally

acyclic over S if f is smooth.

Proof. For part (1), suppose that (X,F) is a dualizable object of CSh. This implies that for

any object (Z,H) we have an isomorphism

DX/SF ⊠S H ≃ HomSh(X×SZ)
(p∗XF , p

!
ZH),

where pX , pZ are the projection maps. We want to show that we have an isomorphism

DY/S(f!F)⊠S H ≃ HomSh(Y×SZ)
(q∗Y F , q

!
ZH),

where qY , qZ are the projection maps. Applying the functor (f ×S id)∗ we obtain an

isomorphism

(f ×S id)∗
(
DX/SF ⊠S H

)
≃ (f ×S id)∗

(
HomSh(X×SZ)

(p∗XF , p
!
ZH)

)
.

By the six-functor formalism, we can identify

DY/S(f!F)⊠S H ≃ (f ×S id)∗(DX/SF ⊠H).

Similarly, the six-functor formalism implies that

(f ×S id)∗Hom(p∗XF , p
!
ZH) ≃ Hom((f ×S id)!p

∗
XF , q

!
ZH),
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and by proper base change we have that q∗Y f!F ≃ (f ×S id)!p
∗
XF . This yields the desired

isomorphism. The proof of part (2) is analogous.

Remark 4.2.5. In the case where f is a closed immersion, f∗ is a conservative functor.

Inspecting the proof of the previous proposition, we can see that this implies that if f∗F is

universally locally acyclic over S, then F must be universally locally acyclic over S.

The notion of universally locally acyclic sheaves is also well-behaved with respect to

functorial properties on the base. More precisely, for a morphism g : S → T we can construct

a symmetric monoidal functor g∗ : CSh/T → CSh/S taking an object (X,F) ∈ CSh/T to

(X ×T S, g∗XF) ∈ CSh/S where gX : X ×T S → X is the projection map. Since symmetric

monoidal functors preserve dualizable objects, this proves the following.

Proposition 4.2.6. Suppose that X is a scheme of finite type over T and g : S → T is a

morphism of schemes. If F ∈ Sh(X) is universally locally acyclic over T , then the pullback

g∗XF ∈ Sh(X ×S T ) is universally locally acyclic over S, where gX : X ×S T → X is the

projection map.

The following properties will be important for us in the upcoming sections.

Proposition 4.2.7. Let X be a scheme separated of finite type over S. If F ∈ Sh(X) is

universally locally acyclic over S, then F is a compact object of Sh(X) provided that the unit

object 1X ∈ Sh(X) is compact.

Proof. If (X,F) ∈ CSh is dualizable, then Lemma 2.2.1 implies that

(X,F)∨ ⊗ (Y,G) ≃ HomCSh((X,F), (Y,G))

for any (Y,G) ∈ CSh. Unraveling the definitions, this simply means that

(
X ×S Y, π∗XDX/SF ⊗ π

∗
Y G

)
≃

(
X ×S Y,HomSh(X×SY )(π

∗
XF , π

!
Y G)

)
.
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In particular, setting Y = X, we obtain

π∗XDX/SF ⊗ π
∗
XG ≃ HomSh(X×SX)(π

∗
XF , π

!
XG).

Therefore, we see that if ∆ : X → X ×S X is the diagonal embedding, then

∆!
(
π∗XDX/S(F)⊗ π

∗
XG

)
≃ HomSh(X)(F ,G).

Notice that

HomSh(X)(F ,G) = HomSh(X)(1X ,HomSh(X)(F ,G))

= HomSh(X)(1X ,∆
!(π∗XDX/SF ⊗ π

∗
XG))

= HomSh(X)(∆∗1X , π
∗
XDX/SF ⊗ π

∗
XG).

Finally, since ∆∗ = ∆! for X is separated over S, we see that ∆∗1X is compact and colimits

in G are preserved. This shows that F is compact as desired.

Proposition 4.2.8. Let X be a scheme separated of finite type over S. The property of

being universally locally acyclic over S is local in the Zariski topology on X.

Proof. Suppose that j : U ↪→ X is an open embedding and i : Z = X ∖ U ↪→ X is the

complement. Notice that if two out of the three objects in a cofiber sequence are dualizable,

then the third is dualizable as well. The localization sequence

i∗i! −→ id −→ j∗j!

and Proposition 4.2.4 yield the desired result.
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4.3 Generic Local Acyclicity

In this section we prove the following theorem, imitating the proof by Deligne on [Del77,

Th. finitude 2.11]. We are going to assume that any sheaf F ∈ Sh(X) is dualizable when

restricted to some open subset U ⊆ X.

Theorem 4.3.1. Let X be a scheme separated of finite type over S. Then, for any sheaf

F ∈ Sh(X), there exists some open subset U ⊆ S so that F|XU
is universally locally acyclic

over U , where XU = X ×S U .

The proof starts by reducing to S being integral with generic point η, and proceeds by

induction on dimXη. We can deduce in this way that, up to shrinking S, there exists a

closed embedding Z ⊆ X finite over S such that F|X∖Z is universally locally acyclic over

S. This follows from the local nature of universal local acyclicity (see 4.2.8) and factoring

X → S through A1
S . The inductive hypothesis applies for the map X → A1

S and we can use

the following lemma.

Lemma 4.3.2. Let f : X → S be separated of finite type. If g : S → T is smooth and

F ∈ Sh(X) is universally locally acyclic over S, then it is also universally locally acyclic

over T .

Proof. We want to prove that (X,F) is a dualizable object of CSh/T . This is equivalent to

showing that

π∗XDX/T (F)⊗ π
∗
Y G ≃ HomSh(X×TY)(π

∗
XF , π

!
Y G)

for any (Y,G) ∈ CSh/T . Notice that DX/T (F) = HomSh(X)(F , f !g!1T ), and the smoothness

of g provides us with an isomorphism g!1T ≃ 1S , which in turn gives an isomorphism

DX/S(F) ≃ DX/T (F). We know that (X,F) is dualizable as an object of CSh/S , and in

particular, if p : YS = Y ×T S → Y is the canonical projection, we have an isomorphism

π∗XDX/S(F)⊗ π
∗
YT

(p∗G) ≃ HomSh(X×SYT)
(π∗XF , π

!
YT

(p∗G)).
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These are sheaves on X ×S YT = X ×T Y . The smoothness of p yields an isomorphism

p∗G ≃ p!(G) which gives exactly what we want.

Shrinking S so that f∗F becomes dualizable, combining the previous lemma with the

following lemma concludes the proof of the main theorem in this section.

Lemma 4.3.3. Let f : X → S be a proper map. If F ∈ Sh(X) is such that F|X∖Z is

universally locally acyclic over S for some closed subscheme Z ⊆ X that is finite over S,

and f∗F is dualizable in Sh(S), then F is universally locally acyclic over S.

Proof. It suffices to see that the map

π∗XDX/S(F)⊗ π
∗
XF → HomSh(X×SX)(π

∗
XF , π

!
XF)

is an isomorphism. Restricting to (X ∖ Z) ×S X and X ×S (X ∖ Z), the dualizability

of (X ∖ Z, F|X∖Z) implies that the map we want is an isomorphism outside of Z ×S Z.

Therefore it suffices to show that restricted to Z ×S Z the map is an isomorphism, which

follows from the dualizability of f∗F and the fact that pushforward via Z ×S Z → S is a

conservative functor.

4.4 Geometric properties of conical subsets

Suppose that f : X → S is a smooth morphism. In this section we will study some geometric

properties of subsets of the relative cotangent bundle T∗(X/S).

We say that a constructible subset C ⊆ T∗(X/S) is conical if it is invariant under the

canonical Gm-action on the relative cotangent bundle. For a closed conical subset, its projec-

tivization P(C) is a closed subset of the projectivized relative cotangent bundle P(T∗(X/S)).

We say that a closed conical subset C is strict if none of its irreducible components lies in

the zero section T∗X(X/S). The map C 7→ P(C) is a bijective correspondence between strict
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closed conical subsets of T∗(X/S) and closed subsets of P(T∗(X/S)). For a closed conical

subset C ⊆ T∗(X/S), we denote by C+ the union of C and the zero section of the cotangent

bundle.

Definition 4.4.1. Suppose that X is smooth over S and C is a closed conical subset in

T∗(X/S).

1. If U is smooth over S, we say that an S-morphism h : U → X is C-transversal at a

geometric point u ∈ U if ker(duh) ∩ Ch(u) ∖ {0} is empty.

2. If Y is smooth over S, we say that an S-morphism f : X → Y is C-transversal at a

geometric point x ∈ X if (dxf)
−1 (Cx)∖ {0} is empty.

We say that f or h are C-transversal if they are C-transversal at every geometric point.

Let X be smooth over S, and C be a closed conical subset of T∗(X/S). Given an S-

morphism h : U → X or f : X → Y , the set of points x ∈ X such that f is C-transversal

and the set of points u ∈ U such that h is C-transversal are open subsets. In other words,

C-transversality is an open property.

If h : U → X is C-transversal and CU = C ×X U , the image im
(
dh|CU

)
is denoted by

h◦C. This is a closed conical subset of T∗(U/S).

The idea behind the proof of the following lemma is going to be helpful to understand

the relationship between smoothness and C-transversality.

Lemma 4.4.2. Let U be smooth S-schemes of finite type. If h : U → X is a smooth

morphism, then h is C-transversal for any closed conical subset C of T∗(X/S). Moreover,

in this case we have h◦C = C ×X U .

Proof. The smoothness of h is equivalent to the injectivity of h∗Ω1
X/S

→ Ω1
U/S

, because it

is in turn equivalent to the vanishing of the cotangent bundle. The injectivity of dh implies

that ker(duh) = {0} for any closed point u, and so it implies that h is C-transversal for any

conical subset C.
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Definition 4.4.3. The base of a conical subset C ⊆ T∗(X/S) is the scheme-theoretic image

of C under the projection map T∗(X/S)→ X. We will denote it as B(C).

Suppose that C is a conical subset of T∗(X/S) and f : X → Y is a C-transversal

morphism. We can see that the induced map df : T∗
f(x)

(Y/S) → T∗x(X/S) is injective for

any closed point x ∈ B(C). Since smoothness is a local property, this implies that f must

be smooth on a Zariski neighborhood of x. Hence, any C-transversal morphism f : X → Y

must be smooth on a Zariski neighborhood of B(C).

Definition 4.4.4. A test pair (h, f) is a pair of S-morphisms h : U → X and f : U → Y

where U, Y are smooth over S. We say that a test pair (h, f) is C-transversal at u ∈ U if h

is C-transversal at u and f is h◦C-transversal at u.

Lemma 4.4.5. Let X be smooth over S.

1. A test pair (h, f) is T∗X(X/S)-transversal if and only if f is smooth.

2. A test pair (h, f) is T∗(X/S)-transversal if and only if h×f : U → X×S Y is smooth.

Proof. For the first part, notice that if h : U → X is T∗X(X/S)-transversal then h◦T∗X(X/S)

is the zero-section T∗U (U/S). Now, f : U → Y is T∗U (U/S)-transversal precisely when the

induced map df on cotangent bundles is injective, which amounts to the injectivity of the

morphism f∗Ω1
Y/S
→ Ω1

U/S
. This is equivalent to the vanishing of the cotangent complex

and holds precisely when f : U → Y is smooth (see the proof of Lemma 4.4.2).

For the second part, if h× f is smooth, then both f and h are smooth and Lemma 4.4.2

tells us that h◦T∗(X/S) = T∗(X/S) ×X U . As in the previous part, the smoothness of

h × f amounts to the injectivity of the induced morphism d(h × f) on cotangent bundles.

Composing with the induced maps on cotangent bundles by the projections X ×S Y → X

and X ×S Y → Y , we see that the intersection of the images of dh and df is contained

in the zero section, which is precisely the h◦T∗(X/S)-transversality of f . The converse is

similar.

51



If r : X → Z is an S-morphism between smooth schemes and C is a conical subset of

T∗(X/S). The map r induces a morphism dr : T∗(Z/S) ×Z X → T∗(X/S) and we define

r◦C as the image through the projection T∗(Z/S) ×Z X → T∗(Z/S) of the conical subset

given by (dr)−1(C).

For projective spaces, we can give a useful characterization of transversality of test pairs.

Recall that the universal hyperplane Q ⊆ PnS × PnS
∨ is the hypersurface defined by the inci-

dence correspondence with projections p : Q→ PnS and p∨ : Q→ PnS
∨. The projectivization

of the contangent bundle P(T∗(PnS/S)) can be identified with the universal hyperplane Q.

Indeed, a point (x, x∨) ∈ Q can be identified with the conormal line to the hyperplane Qx∨

at x. Analogously, we can also identify Q with P(T∗(PnS
∨/S)). Such identifications are

known as the Legendre transforms.

Suppose that C ⊆ T∗(PnS/S) is a strict conical subset. A test pair (h, f) fits in the

following commutative diagram

QU = U ×PnS Q Q PnS
∨

U PnS

Y.

hU

pU

p∨

p

h

f

In this way, we obtain a test pair (p∨hU , fpU ) on PnS
∨. Let E be the image of P(C) in Q

by the Legendre transform. We can give a criterion to decide if the given test pair (h, f) is

C-transversal in terms of the test pair for the dual projective space.

Lemma 4.4.6. Let (h, f) be a test pair on PnS. Then, the test pair (h, f) is C-transversal if

and only if (p∨hU , fpU ) : QU → PnS
∨ × Y is smooth at EU = E ×PnS U .

Proof. It is enough to prove the claim when S = Spec(k) by looking at the fibers above

the points of S. The Legendre transform identifies the projectivization of the cotangent

52



spaces of Pn and Pn∨ with Q. For a point (x, x∨) ∈ Q, the point (λx∨x) ∈ P(T∗Pn)x that

corresponds to the conormal line λx∨x ⊂ T∗xPn gets mapped to the hyperplane Qx∨ at x.

Suppose that u ∈ U is a geometric point and x = h(u), y = f(u). The C-transversality of

(h, f) implies that for every (x, x∨) ∈ Ex the differential map duh+duf : λx∨x⊕T∗yY → T∗uU

is injective, or equivalently, the map d(u,e)(p
∨hU ) + d(u,e)(fpU ) : T

∗
x∨ ⊕T∗yY → T∗

(u,e)
QU

is injective. Indeed, the cotangent space T∗
(u,e)

QU can be described as the pushout

T∗xPn T∗eQ

T∗uU T∗
(u,e)

QU ,

dh

dp

and the Legendre transform allows us to identify T∗eQ as the direct sum T∗xPn and T∗x∨P
n∨

with the lines λx∨x and λxx∨ identified. This shows that the map (p∨hU , fpU ) must be

smooth at (u, e) ∈ EU .

4.5 Singular Support

Using ideas of Beilinson [Bei16] and [HY18] in the relative setting, we can give a definition

of singular support for any sheaf theory having a six-functor formalism.

The main idea is to consider, at each closed point x ∈ X, the directions ξ ∈ T∗x(X/S) in

which F is not universally locally acyclic. More precisely, we can consider test pairs (h, f)

where h : U → X is an open immersion around x and f : U → A1
S is such that dxf = ξ.

Such a test pair is called a weak test pair.

Definition 4.5.1. Let X be smooth over S and C a closed conical subset of T∗(X/S). We

say that F is weakly micro-supported on a conical subset C if F|U is universally locally

acyclic with respect to f for any C-transversal weak test pair (h, f). We denote by

MSwS (F) = {C ⊆ T∗(X/S) : C is closed conical and F is weakly micro-supported on C}.
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This notion is well-defined for any sheaf theory coming from the point of view of the

category of correspondences since we only need a notion of universal local acyclicity and the

restriction to an open subset (i.e., upper shriek pullback via the open inclusion). However,

if our sheaf theory has the full six functors, we can give a stronger notion.

Definition 4.5.2. Let X be smooth over S and C a closed conical subset of T∗(X/S). We

say that a sheaf F ∈ Sh(X) is micro-supported on C if, for every C-transversal test pair

(h, f), the sheaf h∗F is universally locally acyclic with respect to f . We denote by

MSS(F) = {C ⊆ T∗(X/S) : C is closed conical and F is micro-supported on C}.

Remark 4.5.3. Suppose that X is smooth over S and F ∈ Sh(X) is universally locally acyclic

over S. Then MSS(F) is not empty. More precisely, F is micro-supported on T∗(X/S). To

prove this, notice that by Lemma 4.4.5, any test pair (h, f) which is T∗(X/S)-transversal

we must have that h × f is smooth. Composing with (h × f)∗, it suffices to show that

p∗X(F) ∈ Sh(X ×S Y ) is universally locally acyclic with respect to pY : X ×S Y → Y due

to Proposition 4.2.4. This is precisely the content of Proposition 4.2.6.

Remark 4.5.4. By Lemma 4.4.5 and Remark 4.2.2, we see that F ∈ Sh(X) is micro-supported

on the zero section T∗X(X/S) if and only if F is a dualizable object of Sh(X).

Definition 4.5.5. The singular support of F ∈ Sh(X) is the unique smallest element of

MSS(F). We denote it by SS(F).

The remainder of this section will be devoted to the proof that the notion of singular

support is actually well-defined.

Remark 4.5.6. An advantage of dealing with the notion of weak micro-support is that if we

have conical subsets C1, C2 ∈ MSwS (F) then C1 ∩C2 ∈ MSwS (F). Indeed, if a weak test pair

(h, f) is C1∩C2 is transversal, locally on U it must be either C1-transversal or C2-transversal

(this need not be true if the codomain of f has dimension higher than 1). This implies that,
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as long as MSwS (F) is not empty, it must have a minimal element that we denote SSw(F).

In the case that we have the full six functors, we know that MSS(F) ⊆ MSwS (F), and so, if

the singular support of F exists, then SSw(F) ⊆ SS(F).

Lemma 4.5.7. If F ∈ Sh(X) is universally locally acyclic over S, then the base of SSw(F)

is equal to the support of F .

Proof. It’s straightforward to see that the support of F contains the base of SSw(F). For

the converse, since the base B = B(SSw(F)) is a closed subset, it is enough to show that for

F ̸= 0 we have that SSw(F) is not empty, up to replacing X by X∖B. Proceeding similarly

as in Remark 4.5.3, the conclusion follows.

The conical sets on which a sheaf is micro-supported enjoy good functorial properties.

In particular, we show in the following lemmas, that they behave well with respect to push-

forward, pullbacks, and possess additivity properties.

Lemma 4.5.8. Suppose that U is a smooth S-scheme and h : U → X an S-morphism. If h

is C-transversal and F is micro-supported on C, then h∗F is micro-supported on h◦C.

Proof. If (g, f) is a h◦C-transversal test pair, then (g, h ◦ f) is a C-transversal test pair.

Since F is micro-supported on C, it follows that (h ◦ f)∗F is universally locally acyclic with

respect to g. This is equivalent to f∗(h∗F) is universally locally acyclic with respect to g.

This means that h∗F is micro-supported on h◦C as desired.

Lemma 4.5.9. Suppose that Z is a smooth S-scheme and r : X → Z an S-morphism. If

F ∈ Sh(X) is micro-supported on C and B(C) is proper over Z then r∗F is micro-supported

on r◦C.

Proof. Let h′ : V → Z, f ′ : V → Y be a r◦C-transversal test pair. We want to see that

h′∗r∗F is universally locally acyclic with respect to f ′. Consider r′ : XV := X ×Z V → V

and h : XV → X the projections. Since SSw(F) ⊆ C, the image of the support of F by
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the zero section is contained in C by Lemma 4.5.7. Hence, by Lemma 4.4.2, XV is smooth

on some neighborhood U of the support of h∗F . We know that h∗F is universally locally

acyclic with respect to f ′r′ because the test pair (h|U , f ′r′
∣∣
U ) is C-transversal. Because

of Proposition 4.2.6 we obtain that r′∗h
∗F is universally locally acyclic with respect to f ′.

Applying proper base change, we see that h′∗r∗F = r′∗h
∗F since r′ is proper on the support

of h∗F . This concludes the proof.

Lemma 4.5.10. Suppose that F ′ → F → F ′′ is a distinguished triangle in Sh(X). If C ′

and C ′′ are conical subsets in T∗(X/S) such that F ′ is micro-supported on C ′ and F ′′ is

micro-supported on C ′′, then F is micro-supported on C ′ ∪ C ′′.

Proof. Consider a (C ′ ∪ C ′′)-transversal test pair (h, f). In particular, it must be both C ′

and C ′′-transversal. Therefore, h∗F ′ and h∗F ′′ are universally locally acyclic with respect

to f . Since dualizable objects satisfy a two-out-of-three property on distinguished triangles,

we see that h∗F must be universally locally acyclic with respect to g, as desired.

Consider the set MSmin
S (F) of minimal elements of MSS(F). Assuming our schemes are

Noetherian, we see that any C ∈ MSS(F) must contain some minimal element C ′ ⊆ C,

C ′ ∈ MSmin
S (F).

Lemma 4.5.11. Suppose that h : U → X is a smooth and surjective morphism of S-schemes.

If C is a closed conical subset of T∗(X/S) and h◦C ∈ MSmin
S (h∗F), then C ∈ MSmin

S (F).

Proof. Let C ′ be a minimal element of MSS(F) that is contained in C. Then, by Lemma 4.5.8,

we see that h∗F is micro-supported on h◦C ′. Since h◦C is a minimal element, the natural in-

clusion h◦C ′ ⊆ h◦C must be an isomorphism. Moreover, given that h is smooth, Lemma 4.4.2

implies that we have an isomorphism C ′ ×X U ≃ C ×X U . Finally, the surjectivity of h

implies that C = C ′.

The following result will be key in showing the existence of singular support.
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Lemma 4.5.12. Suppose that i : X ↪→ P is a closed embedding of smooth varieties over S.

If i∗F has singular support over P , then F must have singular support over X.

Proof. First, let us explore the situation for weak singular support. By Remark 4.2.5 we

know that i∗F is universally locally acyclic with respect to g for some g : P → Y if and only

if F is universally locally acyclic with respect to g|X . Now, if we have a weak test pair on X,

we can always extend it to a weak test pair on P . In other words, for any f : X → A1
S , any

closed point x ∈ X and any covector ξ ∈ T∗x(P/S) such that dxf = ξ, we can find Zariski

locally a function g : P → A1
S such that g|X = f and dxg = ξ. Combining these two pieces

of information it follows that SSw(i∗F) = i◦SSw(F).

The claim is Zariski local. We can assume that P is affine and we have an étale map where

we can view X ↪→ P as the inclusion AnS ↪→ AmS . This yields s : T∗(X/S)→ T∗(P/S)×P X

a splitting of di : T∗(P/S) ×P X → T∗(X/S). If ϕ : P̃ → P is such an étale map and

ρ : P̃ → X is a retraction for which dρ|X = s. We know that the base of SS(i∗F) lies in

X, from which we have a closed conical subset C = ρ◦ϕ◦SS(i∗F) = s−1SS(i∗F) inside of

T∗(X/S). This C just constructed is precisely SS(F). Indeed, we know that F is micro-

supported on C since ρ∗ϕ∗(i∗F) = F and it must be the smallest element of MSS(F) since

for any C ′ ∈ MSS(F) we have that i∗F is micro-supported on i◦C ′ and Lemma 4.5.11

implies that i◦C ′ contains SS(i∗F) and so C ′ = ρ◦ϕ◦(i◦C ′) contains C.

Remark 4.5.13. In some special circumstances we can show that SS(i∗F) = i◦SS(F), but we

only care about the existence of singular support in this section.

4.6 Radon Transform

The results from the previous section show that it is enough to prove that singular support

exists and is unique in the case of X = PnS . In this section we apply the Radon transform

to do so.
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The Radon transform functor is defined as

R : Sh(PnS)→ Sh(PnS
∨), R(F) = p∨∗ p

∗F .

Similarly, the dual Radon transform is defined as R∨ = p∗p∨
∗
. It is easy to see that R and

R∨ are adjoint to each other, both left and right.

Lemma 4.6.1. Let F ∈ Sh(PnS) and C be a closed conical subset of T∗(PnS/S). If F is micro-

supported on C+ then the Radon transform R(F) is micro-supported on C∨+. Conversely,

if R(F) is micro-supported on C∨+ then F is micro-supported on C, possibly after replacing

S by a Zariski open subset.

Proof. By the functoriality properties of Lemma 4.5.8 and Lemma 4.5.9, we see that R(F)

is micro-supported on p∨◦ p
◦(C+) = C∨+. Conversely, if R(F) is micro-supported on C∨+,

then R∨(R(F)) is micro-supported on p◦p∨
◦
(C∨+) = C+. Shrinking S we may assume that

the cone of the adjunction F → R∨(R(F)) is dualizable. By Lemma 4.5.10, F must also be

micro-supported on C+.

We are now in conditions of showing the main theorem.

Theorem 4.6.2. Suppose that F ∈ Sh(PnS). The singular support SS(F) exists and is unique

up to possibly replacing S by a Zariski open subset.

Proof. Replacing S by a Zariski open subset, we may assume that F = R∨(G) for some

G ∈ Sh(PnS
∨). Let E be the smallest closed subset in PnS such that p∨∗G is universally

locally acyclic with respect to p over PnS ∖ E. It’s enough to show that C+ = C ′+ for any

minimal element C ′ ∈ MSS(F).

Let E′ ⊆ Q be the Legendre transform of P(C ′). We have a C ′∨+-transversal test pair

on P∨ defined by the projections (p|Q∖E′ , p∨
∣∣
Q∖E′) due to Lemma 4.4.6. Since G is micro-

supported on C ′∨+ by Lemma 4.6.1, it follows that p∨∗G is universally locally acyclic with
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respect to p|Q∖E′ . This implies that E ⊆ E′, or equivalently, C+ ⊆ C ′+. Therefore, we

only need to show that F is micro-supported on C+.

In order to do so, let (h, f) be a C+-transversal test pair on PnS . We need to check

that h∗F is universally locally acyclic with respect to f . By Lemma 4.4.6, we know that

(p∨hU )
∗G

∣∣
EU

is universally locally acyclic with respect to fpU . Therefore, it must also

be true for a Zariski neighborhood of EU . By definition, p∨∗G
∣∣
Q∖E is universally locally

acyclic with respect to p, and so (p∨hU )
∗G

∣∣
QU∖EU

is universally locally acyclic with respect

to pU . Since C
+ contains the zero section, f must be smooth and so by Lemma 4.3.2 we see

that (p∨hU )
∗G

∣∣
QU∖EU

is universally locally acyclic with respect to fpU . This implies that

(p∨hU )
∗G is universally locally acyclic with respect to fpU . By Proposition 4.2.4, it follows

that (p∨hU )∗(p
∨hU )

∗G = h∗F is universally locally acyclic with respect to f , which is what

we wanted.

Corollary 4.6.3. For any smooth variety X over S and F ∈ Sh(X), up to possibly replacing

S by a Zariski open subset, the singular support SS(F) exists and is well-defined.

4.7 Singular Support of Sheaves of Categories

In this section, we show that our notion of singular support for sheaves of categories agree

with the one defined by di Fiore and Stefanich. Let us recall the definition of sheaves of

categories.

Definition 4.7.1. Given a scheme X, a quasi-coherent sheaf of categories is a small idempo-

tent complete stable category with a monoidal action of Perf(X). Moreover, a quasi-coherent

sheaf of categories is perfect if it is proper and smooth over Perf(X) and coherent if it is

proper over Perf(X) and smooth over Perf(k).

The theory of quasi-coherent sheaves of categories has enough functoriality so that we

can define singular support using our general methods. The only caveat is that we do not
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know whether a sheaf of categories can be restricted to an open subset where it is dualizable,

although we suspect it is true under reasonable hypothesis. Notice that by Proposition 2.5.2,

a sheaf of categories is dualizable if and only if it is smooth and proper. In particular, for a

proper and smooth quasi-coherent sheaf of categories, we can see that its singular support

must be contained in the zero section.

As in the previous section, the definition of singular support for sheaves of categories is

cohomological in nature. Fortunately, we also have a description of microlocal nature. For

a proper map p : Y → X with finite tor-dimension and a quasi-coherent sheaf of categories

F on X, the category MFp(F) of matrix factorizations of F with respect to p is defined as

the cofiber of p∗F → p!F . When X is smooth and F is Perf(X) = Coh(X), the category

of matrix factorizations MFp(F) is equal to the singularity category Sing(Y ). If we have

f : X → A1 and if : X0 → X is the inclusion of the closed fiber, we interpret MFif (F) as

a categorical version of vanishing cycles.

Theorem 4.7.2 ([Fio19, Proposition 10.7]). Let X be a smooth variety, and (x, ξ) a covector.

Suppose that we have a coherent sheaf of categories F and a function f : X → A1 with

f(x) = 0 and dxf = ξ. If the fiber i∗x,X0
(MFif (F)) is non-trivial, then (x, ξ) is in SS(F). If

i!x,X0
(F) has a compact generator, the converse holds.

Our description of weak singular support tells us that a point (x, ξ) is in SSw(F) if for

any function f : X → A1 with f(x) = 0 and dxf = ξ, the sheaf F|U is not universally

locally acyclic with respect to f on a Zariski neighborhood of x. To show that our notion

agrees, we would like to see that if i∗x,X0
(MFif (F)) is non-trivial, then there is an open set

U containing x for which F|U is not universally locally acyclic with respect to f . At the

present moment we do not know how to prove this.
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SGA 412 .
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