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ABSTRACT

This dissertation is primarily about improving the criminal justice system, focusing on pre-

trial detention. Chapter 1 attempts to leverage detainees’ (and their attorneys’) utility over

different detention locations in conjunction with traditional operational improvements to

save costs, reduce turnarounds (people whose pretrial detention is longer than their eventual

sentence), and improve efficiency. Chapter 2 develops a model to identify turnarounds before

they occur so their cases can be intervened upon. Chapter 3 is an experiment which studies

people’s utility over time, attempting to ascertain what people care about when evaluating

potential waits, and how those waits’ presentations impact people’s utility.

In Chapter 1, we consider excessive pretrial detention, which is often caused by inefficient

case processing. Pretrial detention is expensive for both the taxpayer in terms of housing

costs and for detainees in terms of perceived costs. In the extreme, detainees can be incarcer-

ated longer pretrial than their sentence requires. Using data from the Cook County Sheriff’s

Office, we explore the drivers of delays in case processing and policies which can reduce the

consequences of excessive pretrial detention. We develop a model of detainee behavior that

affects their case lengths, and hence, the duration of their pretrial duration. Taking it to

the data obtained from the Cook County Sheriff’s Office, we estimate detainees’ perceived

costs of being detained in jail, prison, and on EM. We find that prison is perceived as the

most costly housing location, followed by jail, and then EM. Costly housing locations may

induce unnecessary delays in case processing. We consider four counterfactual interventions

and study their impact. First, we consider operational improvements to court processes that

may lower the number of court visits by the detainees. Removing one court visit from de-

tainees’ cases can save the jail over $20 million annually and reduce turnarounds by 10.9%.

Second, we consider paying the bonds of detainees with lower level charges. Simple fund-

allocation policies can reduce the pretrial jail population by 2% and can save taxpayers four

times what is paid toward bail. Third, we consider split sentencing: in which sentences are

split between incarceration and supervision or probation. We estimate that the jail could
xiii



save save $8.5 million and the courts 2,900 visits annually. Finally, we consider the impact

of reducing the perceived costs of being detained in prison. We find that this can shorten

case lengths by 193 years annually, remove 2,523 court visits each year, and cut turnarounds

by over 40%.

In chapter 2, we consider targeted intervention to reduce the incidence of turnarounds.

But because turnarounds account for less than 5% of the detainee population, detainees

who receive this intervention would need to be selected carefully. This paper attempts to

score detainees using data available to jails to predict turnarounds before they happen and

prioritize intervention. We develop a scoring method that predicts turnarounds before they

occur, using data about the detainee, their case, and their current case length. We also extend

this scoring method to prioritize detainees whose cases are predicted to end after a lead time

of up to 28 days. These scoring methods rely on two tools: First, a classification algorithm

which determines detainees’ probability of being a turnaround given their attributes and

case length. Second, a proportional hazards model which predicts detainees’ probability of

their case ending at a certain case length given their current case length. Testing this scoring

method with immediate intervention on 100 detainees each month for four months in 2016

results in 58 turnarounds identified per month, 10.1 years of dead days removed each month,

and an associated excess housing cost of over $525,000 per month. Incorporating a 28 day

lead time for the intervention to be effective results in 52 turnarounds identified per month,

8.2 years of dead days removed each month, and an associated excess housing cost of over

$429,000 per month.

Finally, in Chapter 3, in a conjoint analysis study, we analyze the relative import of

mean duration, variability, line length, and reward for “everyday” waits: those of moderate

duration (less than twenty minutes) and modest reward (approximately five dollars). We find

that mean duration and variability are the key drivers of people’s disutility over waits. The

latter suggests that customers are risk averse with their time, a phenomenon rarely included

in queueing models. We also find that the information about a wait—how it is presented

xiv



and customers’ beliefs about it—strongly influences customer utility. We identify three

primary information effects: (1) Mean duration appears twice as costly when wait times are

presented in aggregate (like ride sharing apps) than when presented per-person (like grocery

store lines). (2) People familiar with a wait defer to their prior beliefs in lieu of posted

statistical information. And as a corollary to the previous item, (3) posting information

about a wait’s duration or variability does little to induce more sensitivity to that feature

for customers familiar with the wait. The interaction of information and fundamentals can

connect people’s utility over waits to their behavior in queueing systems. We capture these

interactions in a utility function for modelers desiring an empirically grounded specification

of people’s utility. Finally, we provide a series of managerial insights for practical use by

managers and researchers alike.
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CHAPTER 1

UNINTENDED CONSEQUENCES OF PRETRIAL

DETENTION

1.1 Introduction

In his award-winning book Courtroom 302, Bogira (2005) documents the bleak, everyday

events of a Chicago courthouse. Illustrating the overburdened court system, he tells the

story of Amy Campanelli:

Amy Campanelli loves criminal defense work, but she’s burned out by the

caseload of a courtroom public defender. So early in 1998 the ten-year veteran

decides to quit.

Fifty cases would be manageable, she says in her office on a February after-

noon, as she packs boxes on her final day at work, but she had more than a

hundred... So she had to repeatedly ask for continuances. (p. 124)

At any given time, there are about 7,000 people detained in the Cook County Jail and 2,500

people on Electronic Monitoring (EM). The vast majority are detained pretrial, presumed

innocent of their charges. But as with Amy Campanelli’s clients, these defendants’ cases

are repeatedly continued; tabled month-by-month while an overloaded court system slowly

processes them.

Cases begin when a person is first detained and continue while the courts work to de-

termine their guilt or innocence. This can be time consuming: evidence must be discovered

and shared between the prosecution and defense, administrative motions must be filed and

processed, and arguments must be developed by both sides regarding the disposition of the

detainee. When a court visit is scheduled but adjudication isn’t complete, the case is con-

tinued until a future date. Ostensibly, cases end with a trial when this fact-finding portion

of the case is complete. But in practice, over 95% of cases end in plea bargains (Foxx, 2018).
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By accepting a plea, detainees waive their right to trial in return for negotiated concessions

from the prosecutor. If the defendant is found guilty, any time they spent detained in jail

or on EM counts toward their sentence duration. If they are found not guilty, they are let

free; any time incarcerated pretrial was wasted. Of course, regardless of the verdict, locking

up defendants cost the tax payers. The Board of Commissioners of Cook County (2021)

estimate that it costs $143 per day on average to hold a detainee in jail.

It isn’t uncommon for cases to endure longer than a year (see Figure 1.1a). In the extreme,

cases can take so long that the detainee is locked up in the jail longer pretrial than their

sentence eventually requires. Deemed “turnarounds,” these detainees are brought to prison,

are photographed, fingerprinted, and booked, and are immediately released. Compensated

with one-way bus fare, they “turn around” from the state prison in Joliet, Illinois back to the

city.1 Within our data, in 2016, there were approximately 2,000 turnarounds released from

the Cook County Jail to the state prison (the Illinois Department of Corrections (IDOC)).

The excess time they spent incarcerated—their “dead days”—amounted to over 675 years,

and cost Cook County over $35 million in housing costs.

(a) All Detainees (b) Class 4 Felons Sentenced to Prison

Figure 1.1: Histograms of Case Lengths. Case lengths are restricted to be longer than
30 days and less than 2 years for visual clarity.

In this paper, we consider policies designed to alleviate the delays that keep people

detained pretrial. But to do so, we need to understand detainee behavior and the drivers

1. https://www.chicagotribune.com/investigations/ct-jail-prison-turnaround-met-20150412-story.
html. Accessed on 10/16/2021.
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of case lengths. Generally, longer cases become less likely as time goes on. But in some

cases, such as in Figure 1.1b, there are conspicuous “spikes” in the detainees’ case length

distribution which occur at common sentence durations. Is it possible that there is more to

it than a simple congestion story? Perhaps some detainees are intentionally delaying their

cases to spend less time at undesirable sentencing locations. For example, consider a detainee

awaiting trial on EM: at home, able to work, and getting credit against an eventual prison

sentence. It may be preferable for their case to continue while they are on EM so they spend

less time in prison. Detainees have loose control over the balance of their time they spend in

their pretrial location vs. their post-sentencing location. Because most detainees plea, they

have a good signal of the sentence they will receive, and can accept the plea to end their case

when they desire. Roughly speaking, by continuing their case, they reduce the time they

spend in their post-sentencing location in favor of their current pretrial housing location.

For example, the highlighted spikes in the case-length histograms in the bottom-right panel

of Figure A.3 in Appendix A.3.3 for detainees on EM, who have class 3 or 4 felony charges

or mesdemeanor charges, are consistent with such behavior.

In Section 1.5, we develop a model of detainee behavior when detained pretrial, and

use it to estimate the perceived costs of being detained on EM, in jail, and in prison. We

then apply these cost estimates alongside data provided by the Cook County Sheriff’s Office

(CCSO) to study the effects of four different sets of counterfactual changes: straightfor-

ward improvements to the case processing at the Cook County Courts, paying the bonds of

detainees with low-level charges, split sentencing, and reducing the perceived cost of prison.

Straightforward improvements to the Cook County Court system could curtail unneces-

sary administrative court visits for detainees. We model these style of improvements as a

reduction in the number of court visits required to resolve detainees’ cases. We show that

reducing the required number of court visits by one can reduce annual Cook County Jail

housing costs by $20.1 million, turnarounds by 10.9%, and total case lengths by over 515

years each year. The reduction in case length also helps ameliorate some of the load of the
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Cook County courts system.

Detainees are held in jail pretrial if they can’t meet their bond conditions. Many people’s

bonds are small—one or two hundred dollars—and yet they are detained pretrial for months.

We show that for a wide range of bonds, it is less expensive to pay the detainees’ bonds than

house them during their trial. We suggest a prioritization method for detainees who don’t

pose a threat to society. This method is easy to implement and results in housing cost savings

that are more than four times what it spends on paying for bonds. A yearly million-dollar

investment, for example, could reduce the jail population by approximately 1.7%, and save

Cook County roughly $4.5 million in annual housing costs.

Split sentencing divides detainees’ sentenced time between incarceration and release. It

reduces the jail population by directly reducing sentence durations and reducing detainees’

incentives to delay. This results in significant reductions in EM, jail, and prison populations,

saves money, and reduces the load on the courts. For example, splitting sentences by half

would save 870 years of detainee sentence time each year, reduce annual housing costs from

the jail by $8.5 million, and reduce number of court visits by 2903. This policy also impacts

the turnaround population. Measured against their original sentences, splitting sentences by

one half would reduce the turnarounds population by 12.6%. But precisely because detention

time in detainees’ sentences is reduced, there would be an increase in “new turnarounds”:

detainees whose case length is longer than their split sentence. We find that splitting sen-

tences in half would nearly double new turnarounds, causing a new 946.7 years of dead days,

when measured against the detainees new, shorter detention portion of their sentences. This

suggests that while the policy would make both the jail and detainees better off, it should

be paired with polices which reduce case lengths to avoid the creation of new turnarounds.

Finally, we study the impact of reducing detainees’ perceived cost of prison. By reducing

its perceived cost to be equal to that of jail, case lengths would be reduced by 193 years each

year, there would be 2523 fewer court visits each year. Turnarounds would be reduced by

41.5%, and the detainees would have 63 fewer years worth of dead days each year. In addition

4



to the reduced housing and court administration costs, the disutility borne by detainees in

prison would be reduced. By observing payouts from the state for wrongful imprisonment,

we associate a dollar cost with time detained in prison: $14,285 per year at the lowest, and

$400,000 per year at the highest. The associated reduction in disutility each year for reducing

the cost of prison to jail would range from nearly $12 million at the lowest and $335 million

at the highest, just for detainees in prison which originated from the Cook County Sheriff’s

Office.

1.2 Literature Review

This paper is at the intersection of the criminology and operations management literatures;

see Berger et al. (2005) for an introduction to criminology. The criminology literature on

incarceration is vast as the history of incarceration goes as far back as that of human civi-

lization; see for example, Morris and Rothman (1995) for a history of prisons. Elsner (2006)

provides an account of the correctional system in the U.S. circa 2005. It also highlights

various important challenges it faces. Clear (2009) documents the vicious generational cycle

of imprisonment that affects the disadvantaged neighborhoods of large U.S. cities through

ethnographic studies. We refer readers to BJS (2021) and Myers and Lough (2014) for

further background.

The operations management literature that focuses on criminal justice is thin. Maltz

(1994) and Maltz (1996) provide overviews circa 1990; also see Blumstein (2007) for an

overview of his and his collaborators’ contributions to this field. Early work in the field

attempted to broadly model the criminal justice system, see Blumstein and Larson (1969),

Reich (1973), Nagel and Neef (1976), Brantingham (1977), Harris and Moitra (1978), Cas-

sidy (1985). More recently, Dabbaghian et al. (2014) model the criminal justice system of

British Columbia at a high-level. Zooming in, some work has been devoted to police staffing,

patrolling, and dispatch, see Freeman (1992), Swersey (1994), and Green and Kolesar (2004).

Seepma (2020) and Hancock and Raeside (2010) analyze communication processes within
5



the criminal justice space. Bray et al. (2016) study the optimal scheduling of court visits.

Combining criminal justice, healthcare, and operations, Ayer et al. (2019) study hepatitis C

treatment in U.S. prisons and propose effective policies.

Within the intersection operations and criminal justice, a few papers are concerned with

detention, as with our paper. Usta and Wein (2015) is the most relevant. They study

the effectiveness of the pretrial release and split sentencing policies by estimating the flows

between various segments of the criminal justice system. They then evaluate how these

policies would trade off reductions in the jail population with increased recidivism risk for

the population. They show that split sentencing is more effective for Los Angeles’ estimated

process flow. Their work influenced our counterfactual study in Section 1.7.3. Master et al.

(2018) extends this work, assuming that jails may not exceed their population cap by renting

space from neighboring precincts, and characterize approximate performance measures for

policies which offer pretrial release and split sentencing to detainees. Finally, Korporaal

et al. (2000) analyze prison capacity in the Netherlands.

Mathematics is often used in criminology, and because the field of criminal justice can

be so tethered to issues of operations, operations and non-operations problems in the field

can be difficult to separate. We list some reviews as well as some individual papers which

are focused on criminal justice, are quantitative, and are operations-esque for the interested

reader. Avi-Itzhak and Shinnar (1973) reviews quantitative models in crime control circa

1970. More recently, Weisburd (2017) reviews quantitative methods in criminology. Pratt

(2014) collects several papers which expemplify the contribution quantitative methods can

have on criminal justice. Risk assessment is common throughout the criminal justice space,

and has become more quantitative over time; see Yang et al. (2010) for a review of nine

risk assessment tools. Wang and Wein (2018) and Wang et al. (2020) study and propose

policies to reduce the backlog of untested sexual assault kits in the USA. Wang et al. (2017)

and Wang et al. (2018) analyze ballistic imaging systems, and propose policies which pair

firearms and cartridge cases from crime scenes and test fires more efficiently.
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Methodologically, our model of detainee costs resembles those seen in the structural

estimation literature. The seminal papers Rust (1987) and Berry et al. (1995) are among

the first in this area, also see Nevo (2000). In particular, the market share constraints in our

model are analogous to those of Berry et al. (1995) and Nevo (2000). More recently, structural

estimation has been used for a wide range of applications in operations management. Olivares

et al. (2008) study the structural estimation of a newsvendor model and apply it to operating

room scheduling, also see Musalem et al. (2010) for structural estimation of stock-outs.

Similarly, Akşin et al. (2013, 2017) and Ata et al. (2017) study structural estimation of the

delay sensitivity of call center customers and surrounding theoretical questions. Li et al.

(2014) study the behavior of customers in the air-travel industry, making use of a structural

estimation model to impute the fraction of strategic customers in the population. Moon et al.

(2018) empirically study markdown pricing using structural estimation; also see Bimpikis

et al. (2020). Bray et al. (2019) explores consequences of the bullwhip effect using structural

estimation. Buchholz (2018) and Ata et al. (2019) use structural estimation to study the

behavior of taxi drivers in New York City using ride data. Dong et al. (2020) stududy

mobile money markets. Shen et al. (2020) studies a healthcare application. The authors

use a structural model to demonstrate differences in emergency departments’ admission

behavior during peak periods, and suggest policies to alleviate the inefficiencies caused by

this behavior. Also in the healthcare domain, Agarwal et al. (2021) and Ata et al. (2020) use

structural estimation to study the deceased-donor kidney allocation system in the U.S. We

refer the reader to Musalem et al. (2017) for a recent, more detailed review of this stream of

literature.

Finally, our structural model relies on estimating delaying detainees’ case length distri-

butions from a set of positive and unlabeled data. We refer to Bekker and Davis (2020) for

a comprehensive review on this subject.
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1.3 The Criminal Justice System Through an Operations

Management Lens

In this section, we provide an operations-focused summary of how detainees move through

the (often complex) criminal justice system. Following the convention of the Bureau of

Justice Statistics (BJS) (BJS, 2021), a detainee’s case can be thought of in three parts:

prosecution and pretrial services, adjudication, and sentencing, which roughly translate to

the beginning, middle, and end of their case, see Figure 1.2. We refer to “pretrial” as the

entire duration before sentencing, and “post-sentencing” as everything afterward. We focus

on the processes and outcomes which are most common and are relevant to the analysis

in this paper. For more detailed descriptions, we refer readers to (BJS, 2021) and (Myers

and Lough, 2014). We use the terms “person,” “defendant,” and “detainee” to refer to the

accused individual as appropriate during their case.

1. Arrest

2. Charges levied

3. Bond set

4. Pretrial detention  
   determined

1. Arraignment

2. Recurring court visits 

3. Disposition
Prison   
Jail   
Probation
Supervision

Home
Guilty Not guilty

Prosecution &
Pretrial Services Adjudication Sentencing

Figure 1.2: A Three Step Process Through the Criminal Justice System.

Prosecution and Pretrial Services. A person’s case typically begins after an arrest or

grand-jury indictment. Within a few days, the courts move through pretrial administrative

procedures which allow the case to proceed. First, the prosecutor files charges against the

defendant, enumerating the laws they are accused of breaking. The defendant is assigned

a defense attorney, i.e. public defender, if needed. Then, the charges are reviewed in a

preliminary hearing to ensure that there is probable cause for the case to continue—otherwise

charges are dropped or dismissed. During this time, “pretrial services” collect relevant data
8



about the defendant, such as their criminal history, residence, and drug use.

If the case continues, the defendant is quickly brought to bond court. This will determine

the defendant’s pretrial detention status. They can either be released, detained on Electronic

Monitoring (EM), or detained in jail. The bond court judge evaluates the defendant and

their case on two metrics: their likelihood to return for trial and their likelihood of being a

danger to the community. The judge then assigns a bond, which stipulates the defendant’s

conditions for pretrial release, if any. These conditions are typically monetary, but can

incorporate special qualifications such as EM, home visits from police, or surrendering of

passports.

The most common bonds are monetary bail bonds. The three primary types are I, D,

and cash. Each lists a dollar amount, such as $50,000-D, which indicates the penalty for

not appearing for court. The three differ by what fraction of the listed amount the detainee

must post (pay) up front for release. I-bonds (individual recognizance bonds) require no up

front payment. D-bonds (deposit bonds) require 10% up front. Cash bonds require 100%. If

the defendant is present for court, any up front payments are returned, although court fees

are sometimes taken from the posted bond. If they cannot pay the required amount for a D

or cash bond, defendants are detained in jail pretrial.

As mentioned above, another condition which can be imposed on detainees is EM. On

EM, defendants may return home pretrial but are monitored by a GPS device. Depending on

the circumstances of the case, defendants may be allowed to move between approved areas,

such as home and work. Leaving the approved areas or removing the GPS device violates

their bond conditions and can lead to more severe charges.

The judge may also decide to detain the defendant until their case is complete. This is

referred to as “no bail.” In this case, there are no conditions the defendant can meet to be

released pretrial.2

2. In accordance with the severity of this bond, when no bail is set, the judge reads a script which
outlines the test that they use to determine that no bail is appropriate. It reads: “The proof is evident
and the presumption great that the defendant is guilty of the alleged crimes. It is clear that the defendant
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Adjudication. Adjudication is the portion of the case devoted to determining the guilt

or innocence of the detainee. It takes place after the bond hearing, and begins with an

arraignment hearing. It ends when the detainee receives a verdict of guilty or not guilty.

This is generally the longest part of the case (see Section 1.4 for more detailed information

about case lengths).

The defendant initially pleads guilty or not guilty to their alleged charges during the

arraignment hearing. A plea of not guilty is most common during arraignment. However,

defendants frequently switch their plea to guilty when accepting plea bargains later in their

case.3

After the arraignment hearing, defendants visit court multiple times before their case

ends. These visits span a wide range of purposes, such as administrative motions in the

case, discovery of evidence, coordination of witnesses, and communication between attorneys.

The defendant’s case persists during this time because of “continuances”—motions by the

attorneys that table the case to a future date to ensure it is properly adjudicated. The

prosecution and judge are limited in this capacity because defendants have a right to a

speedy trial, see Appendix A.2. Thus, most continuances come from the defense. The

recurring court visits that arise due to these continuances are typically spaced 3-5 weeks

apart. It is not uncommon for cases to extend longer than a year during this time.

Adjudication ends when the defendant is found guilty or not guilty. Defendants are

guaranteed the right to a trial by jury. They may also forgo the jury and instead opt for a

bench trial, where the judge serves the jury’s role. However, the vast majority (over 95%)

of cases conclude because of a plea bargain. In these cases, the defendant admits guilt for

a set of charges in exchange for a known sentence negotiated with the prosecution. If the

defendant is found not guilty, no sentence is imposed. If they are found guilty, the judge

represents a clear and present danger to the community, and there are no conditions which can reasonably
ensure the defendant’s return.”

3. At any stage, a guilty plea must be evaluated by the judge to ensure the defendant was not coerced
and understands the implications of the plea. If accepted, the judge may then determine the defendant’s
sentence.
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hands down a sentence during their sentencing hearing.

Sentencing. The judge administers a sentence for any detainee found guilty. They are

composed of two parts: a location and a duration. Prison is the most common location,

followed by jail. Jail sentences are typically reserved for misdemeanors or short felony sen-

tences. In both cases, any time the detainee spent incarcerated in jail or on EM pretrial

counts toward their sentence duration. These sentences are also subject to sentence credit,

which allows detainees to serve as little as half of their sentence duration if found guilty of

low-level crimes, see Appendix A.1 for further details.

Supervision and probation are less severe sentences. They do not require detention

post-sentencing, but still restrict detainees following a guilty verdict. Supervision typically

stipulates that the detainee not reoffend during a set period. If successful, their charges are

often eligible for removal from their criminal record. Probation is more severe. In addition

to not reoffending, detainees are typically required to meet with a probation officer and pass

regular drug tests. Charges which result in probation are usually not eligible for removal

from the detainee’s criminal record.

1.4 Data

Our dataset primarily consists of data retrieved from the Cook County Office Offender Man-

agement System (CCOMS) via the Cook County Sheriff’s Office (CCSO). We also make

use of data from the Illinois Department of Corrections (IDOC), the state’s prison system.

We use five data files which collectively provide the data fields listed in Table 2.1. Each

contributes the following information: the beds file lists the detainees’ pretrial housing lo-

cation, the bonds file lists the detainees’ bond type and amount, the courts file lists the

detainees’ court dates, the IDOC file has data about people detained in prison, which we

use to determine sentence durations for detainees sentenced to prison, and he main CCOMS

file provides all remaining data fields in Table 2.1.

In summary, our dataset provides information about detainees’ cases from booking through
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sentencing. We focus attention on detainees booked in 2015 and 2016 and who remained

under the CCSO’s purview either on EM or in jail. They correspond to 98,882 rows in our

dataset, each row representing one detainee’s booking. This allows us to follow them through

the completion of their detention in jail on on EM under CCSO custody. We use different

portions of this data for various elements of this paper. We describe each data field in detail

in Appendix A.3.

Detainee Housing Case Sentencing
Inmate ID Booking ID Docket number Sentence location
Criminal history Booking date Crime class Sentence duration
Prison history Pretrial housing location Case length Turnaround status

Security classification Court dates
Bond type
Bond amount

Table 1.1: Data Fields.

Our classification and estimation procedures in Appendix A.4, 1.5, and 1.6 focus on

intentional delay behavior and the relative perceived cost of EM, jail, and prison. To estimate

these relative costs, we concentrate on detainees who plead guilty, were detained in jail or

on EM, whose case lengths were greater than 60 days, and were sentenced to prison. We

use turnarounds as signals for delaying behavior for developing a classifier in Appendix A.4.

We also restrict our focus to detainees whose primary charges are classes 1, 2, 3, 4, and A;

removing classes X and M because they are too severe and classes B and C because they

rarely result in pretrial detention. Finally, we remove detainees whose sentence was greater

than 4 years pre-sentence credit because of the implied severity of the crime. In combination,

these restrictions allow us to focus on detainees who potentially delayed.

Our counterfactual analysis in Section 1.7 focuses on detainees who entered CCSO cus-

tody during 2015-2016 and uses the whole dataset corresponding to those years to calculate

the jail population. If delaying behavior is analyzed, as done in counterfactuals 1, 3, and 4,

we simulate delaying behavior for the subset of detainees for whom we have the case length
12



distributions and perceived housing costs. Namely, detainees who are housed in jail or on

EM, were sentenced to jail or prison, whose crime classes are 1, 2, 3, 4, or A, whose sentence

was less than 4 years pre-sentence credit, and whose case length was greater than 60 days.

The rest of the detainees either remain in the CCSO’s custody for a short duration if at all,

e.g., crime classes B, C, or their charges are too severe, e.g. crime classes X, M, and hence

the nature and the evolution of their cases is very different. The latter group of detainees

constitute a negligible portion of the jail population.

1.5 Structural Estimation of Detainees’ Location Costs

In this section, we develop a structural estimation model to estimate detainees’ relative

perceived costs of being detained in EM, jail, and prison. We assume a detainee’s cost is linear

in their length of stay, but his cost rate can differ across different locations. Because pre-trial

detention time counts against sentence duration, detainees can loosely balance the amount

of time they spend at different housing locations by either intentionally delaying their case

or letting it follow its natural course. This choice results in different case length distributions

for each detainee. Such variation in the data allows us to identify the cost parameters. In

doing so, we allow (unobserved) heterogeneity among detainees’ cost rates and estimate the

distribution of the cost rate per time unit for each location. To be more specific, we seek

the cost parameters that maximize the likelihood of detainees’ case lengths observed in the

data. In doing so, we restrict attention to detainees who are sentenced to prison and were

either on EM or held in jail pretrial. The results of this Maximum Likelihood Estimation

are presented in Section 1.6 and are used in our counterfactual analysis in Section 1.7.

Detainees have two phases in which they can be incarcerated and thus accrue housing

costs: pre-sentencing (or phase 1) and post-sentencing (or phase 2). During phase 1, de-

tainees can be held in jail (J) or electronic monitoring (EM). During phase 2, detainees are

incarcerated in prison (P ).

Let li ∈ {EM, J} denote detainee i’s phase 1 location and P denote his phase 2 location
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of prison. He incurs a linear cost of ci(l) in location l per unit of time he is incarcerated there.

We denote his case length by Wi and his sentence duration by Si.4 Because the detainees

we focus on plea guilty, they know their sentence duration in phase 1. As mentioned earlier,

the time detainees spend incarcerated pre-trial counts toward their sentence duration. Thus,

detainee i spends wi in location li ∈ {EM, J} and (si−wi)+ in prison. If the detainee’s case

length exceeds their sentence, he is immediately released upon sentencing. In particular, he

is a turnaround.

Detainee i chooses an action ai ∈ {D, N}, representing intentionally delaying or not,

respectively. These actions result in different case length distributions, Wi, with cdfs (pdfs)

Fai(wi) (fai(wi)) from which each detainee’s case length is drawn.

Cost Structure and Probability of Delaying. Let Ci(A) denote the expected cost

of incarceration for detainee i, who chooses action ai = A, with phase 1 housing location li

and sentence duration si:

Ci(A) = ci(li)EA[Wi] + ci(P )EA[(si −Wi)+], (1.1)

where the expectation is taken over Wi under FA for A ∈ {D, N}.

Detainees are heterogeneous in their perceived costs of detention. We assume that each

detainee draws his cost parameters from a Gaussian distribution whose mean and standard

deviation depend on the detention location. To be specific, we assume that

ci(l) ∼ N (µl, σ2
l ), l ∈ {EM, J, P}. (1.2)

The following proposition is immediate from Equations (1.1)-(1.2).

Proposition 1 Detainee i’s expected cost associated with action A has a Gaussian distribu-

4. We use lower case wi and si to denote the realized case length and sentence duration.
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tion with mean µ̃A(i) and variance σ̃2
A(i) for A ∈ {D, N}, where

µ̃A(i) = µliEA[Wi] + µPEA[(si −Wi)+],

σ̃2
A(i) = (σliEA[Wi])2 + (σPEA[(si −Wi)+])2,

and EA is taken over case length Wi with respect to the cdf FA.

Detainees seek to minimize their expected costs by choosing between intentionally de-

laying their case (D) or not (N). We let pi denote the probability that detainee i (with

pre-sentencing location li and sentence duration si) choose to intentionally delay his case.

We have that

pi = P (Ci(D) ≤ Ci(N)) .

The following proposition characterizes pi.

Proposition 2 Detainee i’s probability of intentionally delaying is given by

pi = Φ
 µ̃N (i)− µ̃D(i)√

σ̃2
N (i) + σ̃2

D(i)

 ,

or equivalently, in terms of the location cost parameters:

pi = Φ

 µli (EN [Wi]− ED[Wi]) + µP

(
EN [(si −Wi)+]− ED[(si −Wi)+]

)
√

σ2
li

(
EN [Wi]2 + ED[Wi]2

)
+ σ2

P

(
EN [(si −Wi)+]2 + ED[(si −Wi)+]2

)
 .

(1.3)

Estimation Formulation. We maximize the likelihood of the observed detainee case

lengths given the cost structure outlined above. Detainee i’s case length wi is drawn from

cdf FD if he intentionally delays his case, which occurs with probability pi. Otherwise, wi

is drawn from cdf FN . Letting Li(wi) denote the likelihood of detainee i’s case length wi,
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we have that

Li(wi|µEM , µJ , µP , σEM , σJ , σP ) = pifD(wi) + (1− pi)fN (wi), (1.4)

where fD and fN are the pdfs associated with FD and FN , respectively.

The likelihood of observing case lengths w1, ..., wI , denoted by L (µEM , µJ , µP , , σEM , σJ , σP ),

is then given by

L (µEM , µJ , µP , , σEM , σJ , σP ) =
I∏

i=1
Li(wi|µEM , µJ , µP , , σEM , σJ , σP ) (1.5)

We also require that

1
|Nl|

∑
i∈Nl

Φ
 µ̃N (i)− µ̃D(i)√

σ̃2
N (i) + σ̃2

D(i)

 = 1
|Nl|

∑
i∈Nl

ŷi, l ∈ {EM, J} (1.6)

where the left-hand side is the average probability of intentional delay predicted by our model,

whereas the right-hand side is the average predicted probability of delaying derived from the

SAR-EM method, see Appendix A.4. We impose this for each pre-trial housing location;

Nl denoting the set of detainees housed in those locations pre-trial. Conceptually, this

ensures that the proportion of delaying detainees are consistent between our two estimation

methods. This constraint can be thought of as similar to the market share constraints in the

formulations of Berry et al. (1995) and Nevo (2000).

Moreover, as can be seen from Equation (1.3), the probability of intentionally delaying

is left unchanged if we scale all cost parameters proportionally. Therefore, for identification

purposes, we restrict the sum of σ’s across each location to be one. That is,

σEM + σJ + σP = 1. (1.7)
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Then the resulting MLE formulation is given as follows:

max
µEM , µJ , µP , σEM ,σJ , σP

log (L (µEM , µJ , µP , σEM , σJ , σP ))

subject to (1.6)− (1.7).
(1.8)

Identification. The structural parameters in our model drive changes in pi, the de-

tainee’s probability of delaying. This, in turn, drives changes in the likelihood function,

as long as fD ̸= fN for most case lengths observed in the data. Simple inspection of the

histograms of estimated case lengths in Figure A.7 show that this condition holds. Thus,

changes in the likelihood function are driven by pi.

(a) EN [Wi]− ED[Wi] (b) EN [(si −Wi)+]− ED[(si −Wi)+]

(c) EN [Wi]2 + ED[Wi]2 (d) EN [(si −Wi)+]2 + ED[(si −Wi)+]2

Figure 1.3: Histograms of Coefficients of µ and σ. Figures 1.3a and 1.3c plot the
coefficients of µl and σl for jail and EM. Similarly, Figure 1.3b and Figure 1.3d plot the
coefficients of µP and σP for prison.

As previously mentioned, pi remains unchanged if all cost parameters are scaled propor-

tionally. After restricting the sum of σ’s across location to be one, variation in the coefficients
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of the cost parameters drives their identification, see Equation (1.3). Specifically, variation

in the expectations in the numerator drive the identification of µ’s, and variation in the

expectations in the denominator drive the identification of σ’s. We plot histograms of the

calculated values of the four coefficients in Figure 1.3. They exhibit significant variation to

identify the parameters. The coefficients of the pretrial housing locations have 10 possible

realizations based on the five crime classes and two pretrial housing locations used to develop

FD and FN . Recall that the case length distributions depend on both the crime class (1, 2,

3, 4, A) and the housing location (EM or jail). The coefficients of the prison cost parameters

are even more varied, as they incorporate sentencing data in addition to crime class and

housing location.

Intuitively, these coefficients represent the difference in time detainees are incarcerated

at the three detention locations. For our model to identify detainee costs, there must be

significant variation in this time depending on the detainee’s choices. Because our estimated

delaying and non-delaying distributions are quite different from each other, and differ be-

tween crime classes and pretrial housing locations, our model can identify the parameters of

detainees’ location costs.
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1.6 Estimation Results

Location Estimated µ Estimated σ

EM 0.370 0.241

(0.091) (0.110)

Jail 1.378 0.446

(0.274) (0.091)

Prison 1.835 0.313

(0.360) (0.188)

Table 1.2: Estimated Location Cost Parameters. Estimates are truncated at three
decimal places for readability. Standard errors are listed in parentheses below
the estimates.

Figure 1.4: Estimated Location Cost pdfs. The plotted densities, from left to right,
represent the estimated distribution of location costs for EM, jail, and prison.
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We maximize the log-likelihood formulation of Equation 1.8 using the nonlinear optimization

solver KNITRO (Byrd et al., 2006) via the AMPLpy interface (Brandão, 2021).5 The re-

sulting parameters of the location cost distributions are given in Table 1.2 and the resulting

pdfs are plotted in Figure 1.4. To compute each parameter’s standard error, we perform the

non-parametric bootstrap method (Horowitz, 2001). We generate 500 simulated datasets

with the same size as our dataset by drawing from ours with replacement. We then estimate

parameters of the simulated datasets and compute their standard errors, which are listed

in parentheses in Table 1.2. Appendix A.6 describes a Monte Carlo simulation study to

illustrate the identification of our model; we are able to recover the true parameters when

using our estimation procedure on simulated data resulting from those parameters.

1.7 Counterfactual Analysis

This section studies four counterfactuals designed to reduce pretrial detention and save

costs. They each address this issue by tackling one of the following: case lengths, bonds,

split sentencing, and improving prison conditions. When calculating housing costs for jail,

we use $143 per inmate per day in jail (Board of Commissioners of Cook County, 2021).

The counterfactual studies in Sections 1.7.1, 1.7.3, and 1.7.4 involve simulating the de-

tainees’ intentional delaying behavior. Whenever this is needed, we simulate their behavior

using 50 replications and report the average.

1.7.1 Straightforward Operational Improvements

Straightforward improvements to the Cook County court system could curtail unnecessary

administrative court visits for detainees. Many continuances result from the court’s outdated,

non-digital adjudicatory practices. In their review of the Cook County courts’ pre-trial

detention, (Staudt, 2020) Chicago Appleseed noted:

5. To assist in finding a locally feasible point, and to improve the robustness of our results, we consider
40 multistart points.
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“In the federal courts, and most other major state court systems, pieces of evi-

dence are exchanged electronically as soon as they are received by the prosecutor.

The Cook County Circuit Court continues to adhere to the outdated practice of

physically exchanging paper copies of documents and CDs and DVDs of audio

and video recordings only in court, not between court dates. As the amount of

digital evidence in cases rapidly increases, this process is even more cumbersome

than it was a decade ago.”

In addition to exchanging evidence electronically, automatically delivering common pieces

of evidence, such as body camera footage, can speed up discovery by weeks. Centralizing

where various types of court visits take place make scheduling more efficient.

In a 2019 audit of the courts, the National Center for State Courts identify the benefits

Cook County could reap from these style of improvements (National Center for State Courts,

2019). These benefits include the following: a reduction in case continuances and postpone-

ments, quicker and more case resolutions prior to trial, reductions in needless delays in case

processing, integrated online information sharing (e.g. e-discovery exchange), multi-party

access to digital files at the same time.

We model these style of improvements as a reduction in the number of court visits required

to resolve detainees’ cases. Specifically, we say that improvements reduce the number of court

visits by n. Detainees’ court visits are reduced by the interarrival time of their removed

court visits, ξj , j = 1, ..., n down to a minimum of 30 days (we do not suppose that these

improvements can shorten a case to less than a month). That is, we delete their first n court

visits. If a case was already shorter than 30 days, their case length is unaffected.

These improvements to the court system will be effective if detainees choose to not

delay, so we modify their non-delaying case length distribution in the following manner:

w̃ = max(30, w − ∑n
j=1 ξj) for all case lengths w. We refer to this new distribution as

F̃N . Their delaying case length distribution, FD remains unaffected. Note that this is a

conservative analysis: improvements to the court system may have some impact on detainees’
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ability to delay. As such our analysis provides a lower bound on the effects of reducing case

lengths. We simulate detainee’s choice to delay or not, drawing their location costs from our

estimates in Section 1.6. Depending on their choice, we draw their case length from F̃N or

FD.

For the non-delaying detainees, we simply reduce their case length by ∑n
j=1 ξj , down to

a minimum of 30 days. If their case length was less than 30 days, it remains unaffected.

(a) Jail Population Over Time (b) EM Population Over Time

Figure 1.5: Reductions in Jail and EM Populations Over Time via Reduced Court
Visits. Focusing attention on detainees who entered CCSO custody during 2015-2016, Fig-
ures 1.5a and 1.5b display the average predicted detainee populations over time. We restrict
our attention between between September 2015 and December 2016 when the simulated
population achieves steady state.

The plots in Figure 1.5 show the resultant drop in jail and EM populations from removing

detainees’ first n court visits. Figure 1.6 displays the overall reduction as well as that for each

crime class both for jail and EM populations. It shows that even a moderate reduction in the

number of court visits results in significant reductions in both the jail and EM populations.

At only one court visit reduced, the jail population is reduced by 4.84% on average in steady

state, and 5.22% for EM.6

These improvements are impactful for reducing the turnarounds population. Table 1.3

displays the benefits of reducing the number of court visits for the turnarounds population.

6. Note that the magnitude of the change for EM is larger, despite people on EM having slightly longer
cases if crime class is fixed. This is because the interarrival times of court visits can be slightly longer for
detainees on EM, and that the proportion of less-severe cases is larger for detainees who are qualified to be
released on EM. The more severe, longer cases tend to be for detainees who are detained in jail.
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(a) Average Reductions in Jail Population (b) Average Reductions in EM Population

Figure 1.6: Average Reductions in Detainee Populations in Steady State via Re-
duced Court Visits. These plot the average reduction in jail (Figure 1.6a) and EM
(Figure 1.6b) populations due to reduced court visits during the steady state period be-
tween September 2015 and December 2016. “Overall” provides statistics for all data. The
remaining provide statistics by crime class.

Removing one court visit per detainee would cut turnarounds by 10.9%. This benefit would

be associated with 29.8 years worth of reduced dead days each year, saving the jail $1.6

million in excess housing costs per year.

Yearly Reductions in:

# Removed Turnarounds
(Net)

Turnarounds
(Percent)

Excess Housing
Time “Dead Days”

(Years)

Excess Jail Housing Costs
Due to Turnarounds
(Millions of Dollars)

1 244.0 10.9% 29.8 $1.6
2 347.4 15.5% 62.9 $3.3
3 437.5 19.5% 92.9 $4.9
4 517.9 23.1% 125.5 $6.6
5 575.0 25.6% 145.8 $7.6

Table 1.3: Reduction in Turnarounds due to Reduced Court Visits.

These reductions come with significant cost savings. Housing detainees in jail pretrial

is expensive: $143 per inmate per day (Board of Commissioners of Cook County, 2021).

Thus, the aforementioned reductions in jail populations also substantially reduces costs. For
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Yearly Reductions in:

# Removed
Case Length

EM
(Years)

Case Lengths
Jail

(Years)

Total Jail Time Served
(Years)

Jail Housing Costs
(Millions of Dollars)

1 92.9 413.5 385.6 $20.1
2 198.7 826.7 785.8 $41.0
3 311.0 1252.8 1202.1 $62.7
4 409.6 1624.9 1566.9 $81.7
5 500.7 1940.0 1876.0 $97.9

Table 1.4: Yearly Case Length, Incarceration Time, and Cost Reductions due to
Reduced Court Visits.

a single court visit removed from detainees’ cases, Cook County would see a reduction of

413.5 years of total jail time served. This would achieve a cost savings of $20.1 million from

housing costs every year (see Table 1.4 for estimated housing cost savings for 1-5 court visits

removed). And, because the courts are overloaded, even modest reductions in the detainee’s

number of court visits could have major operational improvements and cost savings there as

well.

Our analysis is conservative in that we assume these improvements do not affect the de-

tainees’ ability to delay. That is, we draw their case lengths from the original FD distribution

estimated in Appendix A.4 if they choose to delay. This underestimates the reductions as-

sociated with this policy. And because turnarounds often arise from delaying behavior, this

underestimation is particularly acute for that population. To see how changes in incentive

structure affect both the turnarounds population and the detained population at-large, see

the counterfactual analysis in Sections 1.7.3 and 1.7.4.

1.7.2 Paying Bonds of Lower Level Detainees

The cost of pretrial detention in jail far exceeds the cost of paying for detainee’s bonds.

Figure 1.7 displays CDFs of detainee detention costs grouped by the twelve most common

“effective bonds,” the amount necessary for the detainee to be released. Nearly all detainees
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Figure 1.7: Empirical CDFs of Pretrial Detention Costs by the Twelve Most Com-
mon Effective Bond Amounts. The black dashed line on each CDF represents the ef-
fective bond—the amount needed for detainee’s of that group to be released. The orange
dash-dotted line on each represents the groups’ mean costs to detain pretrial. The x-axis is
truncated at $21,000 for readability.

with small (yet common) bonds, such as $100 or $200, are more expensive to house than

their bond. But even for groups of detainees with large effective bonds of $5,000 or $7,000,

40%-50% are more expensive to detain than their effective bonds. In every case, the mean

cost to detain pretrial for the group is greater than the detainees’ effective bonds.

In this section, we consider how to pay bonds to reduce the number of detainees held

in jail pretrial and analyze the associated cost savings.This policy considers all detainees

held in jail, and is applied to subsets of those detainees if they meet the conditions of the

policies described below. Suppose a third party (an NGO, Cook County, etc.) had a yearly

budget of d dollars with which to pay detainee’s bonds. This yearly budget can be thought

of as renewing, a-la a county’s budget, or revolving due to people returning bails, a-la a
25



revolving bail fund. In a more seasonal vein, charitable parties often pay some detainees’

bails near Christmas.7 If the party knew detainee’s case lengths a-priori, they could maximize

case length mitigated per dollar by prioritizing detainees by their “efficiency”: case length

divided by effective bond. Unfortunately case lengths are not known a-priori. A suitable

proxy for efficiency is to divide a detainee’s expected case length based on crime class (given

in Table 1.5) by their effective bond. We deem this metric “approximate efficiency,” and

make use of it in the policies below.

Crime Class Mean Case Length in Days
M 512
X 201
1 117
2 126
3 88
4 47
A 19
B 13
C 12

Table 1.5: Mean Case Length in Days by Crime Class.

We display the results of two policies using these metrics in Figure 1.8. In both, we rank

all detainees which enter the jail in a year by the associated metric: the “Oracle” policy

ranks by efficiency, and the “Approximation” policy ranks by approximate efficiency. Then,

detainees’ bonds are paid up to a budget d according to this ranking, the most efficient being

paid first. In Figure 1.8a, we show that for a one million dollar yearly budget, the pretrial

jail population would be reduced by 6.8% (Oracle) and 2.5% (Approximation). Figure 1.8b

displays the associated cost savings.8. A one million dollar per year budget would save Cook

7. https://chicago.suntimes.com/news/2019/12/25/21037383/messages-of-hope-resonate-in-cook-county-jail
-on-christmas. Accessed on 12/1/2021.

8. Note that $143 per day per inmate is a lower bound on the cost of detaining people in the Cook
County Jail. Special accommodations, mental disability, and more can increase the cost of detention in the
jail (Board of Commissioners of Cook County, 2021).
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(a) Reduction in Pretrial Jail Population (b) Mean Yearly Housing Cost Savings

Figure 1.8: Jail Reductions with $d Yearly Budget. In each Figure, “Oracle” represents
the policy priortizing efficiency, while “Approximation” represents the policy prioritizing
approximate efficiency. Figure 1.8a displays the average reduction in jail population in
steady state. Figure 1.8b shows the mean yearly housing cost savings in steady state. For
housing cost calculations, etainees who are released pretrial but are sentenced to jail are
presumed to begin their sentence when their case ended before this counterfactual analysis.

County an estimated $26 million under the Oracle policy and $10 million in the Approximate

policy. Regardless of budget, reductions in the pretrial jail population and the associated

savings are significant.

However, solely focusing on efficiency may release detainees deemed too severe. Detainees

accused of class M felonies—first degree murders—rank highest in efficiency by nearly six

times the other classes! It is necessary to consider policies which are implementable given

information known at the outset of a case, and carefully weigh which detainees are eligible

for release.

To that end, we consider five bond payment policies. For each, we consider all detainees

who are detained in the jail in a year, but rank them differently. Their rankings are as

follows: “Lowest Class First”: Pay bonds prioritizing lowest crime class first, then approxi-

mate efficiency. And max-severity prioritizations, such as “Approximation Class 1 or Less”:

Prioritize approximate efficiency, focus only on class 1 or less. We implement the latter for

classes 1, 2, 3, and 4. Once ranked, detainees’ bonds are paid up to the budget d. This style

of policy establishes a threshold of approximate efficiency above which people’s bonds are
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paid if they meet the restrictions of the policy. We plot the threshold in Figure 1.9b. Mak-

ing use of this threshold allows for a straightforward heuristic to implement these policies in

practice.

(a) Reduction in Pretrial Jail Population (b) Approximate Efficiency Threshold over d.

Figure 1.9: Results of Bond Payment Policies with $d Yearly Budget. Figure 1.9a
displays the average reduction in jail population in steady state. Figure 1.9b shows the
associated minimum approximate efficiency threshold used by each policy for each value of
d.

As seen in Figure 1.9a all three policies are effective at reducing the pretrial detention

population. Using the “Approximation Class 3 or Less” policy with a budget of one million

dollars results in a near 2% reduction in the pretrial jail population in steady state. At 2.5

million dollars, this reduction exceeds 3%. That is equivalent to a total of 320 years of time

detainees would have been detained pretrial per year.

The savings in housing costs resulting from these policies is significant. Figure 1.10a

displays these savings for the jail. For all policies and all budgets the savings in housing

costs exceed the cost of paying bail. For all policies, a yearly budget of 1 million dollars

would result in over 4 million dollars in savings for the Cook County jail. For the the policies

which restrict based on maximum crime class, the cost savings are nearly linear in the range

we study. Thus, a dollar invested in paying bails under this policy results in a four- to six-

fold savings in terms of housing costs. And this is a conservative estimate, as these policies

focus on lower-level detainees.

Some detainees would have been sentenced to prison or jail following their trial, incurring
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housing costs during those periods. However, for detainees sentenced to supervision, or

sentenced to probation, their post-sentencing cost to society is much lower. For detainees

found not guilty, their costs are nonexistent. In Figure 1.10b, we show housing cost savings,

presuming that detention costs in prison are equal to that of jail, and that supervision,

probation, and “Charge Dropped or Finding of Not Guilty” have a cost of zero. Bond

payments policies are highly effective on returns to society, returning nearly $4 million in

housing costs for $1 million in paid bonds.

(a) Yearly Housing Cost Savings for Jail (b) Yearly Housing Cost Savings for Society

Figure 1.10: Cost Savings with $d Yearly Budget. Figure 1.10a shows the mean yearly
housing cost savings in steady state for the jail. Figure 1.10b displays the reduction in housing
costs to the taxpayer, presuming prison housing costs are equal to jail, and supervision and
probation cost zero.

Pretrial release is studied by Usta and Wein (2015) within the Los Angeles criminal

justice system. They create a model of the jail and courts system, and estimate the flows

into, between, and from each element of that system. They find that pretrial release is not

as efficient as split sentencing policy when evaluated on a metric of mitigated time served

pretrial vs. risk of recidivism when calibrated to the data of Los Angeles. We do not have

the necessary data available, namely an equivalent to the California Static Risk Assessment

tool, to repeat their analysis and judge its appropriateness for the Chicago setting. However,

we find that pretrial release can be an effective cost saving measure. And, the policies we

suggest prioritize small bonds and low-level crimes first, which reduces recidivism risk. Our

analysis of split sentencing, the policy Usta and Wein (2015) deem more effective for Los
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Angeles, is given in Section 1.7.3. We find it to be a powerful cost-saving tool, in line with

Usta and Wein (2015).

1.7.3 Split Sentencing

An “x-split sentence” divides a detainee’s total sentence duration s between incarceration (in

jail or prison) and release (on supervision and/or probation). The parameter x represents the

fraction of the detainees’ sentence which is dismissed. Thus, a detainee with a split sentence

first spends their case length w in their pretrial housing location. Then, they spend any

remaining jail or prison time, ((1− x)s− w)+, in that location.9 Finally, they are released

to supervision or probation.

As with our model of detainee costs in Equation (1.1), with split sentences, detainees may

choose to delay or not. We assume detainees don’t incur any costs after they are released.

That is, the cost associated with supervision and probation are zero. Thus, for an x-split

sentence, detainee i’s costs are given by:

Ci(A) = ci(l1i )EA[Wi] + ci(l2i )EA[((1− x)si −Wi)+],

where expectations are taken under FN and FD as before and l1i and l2i are their phase 1

and 2 housing locations.

Because detainee’s sentences are released for part of their sentence, federal sentencing

guidelines restrict eligibility for split sentencing to detainee’s whose charge and criminal

history are not too severe. Specifically, split sentencing is only available to detainees who

fall into Zone C or below of the Federal Sentencing Table (U.S. Sentencing Comm’n, 2018),

which is reproduced in Appendix A.7, Figure A.8. Detainees in this zone have a maximum

sentence of 18 months (prior to the application of any credit time). We use this threshold

9. The detainee’s credit time for pretrial detention counts toward their sentence duration, first reducing
any time they must spend incarcerated, then reducing any remaining time they would be monitored on
release.
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to determine whether detainees are eligible for split sentencing when evaluating its effects.

We evaluate how offering various levels of split sentences to the eligible detainee popula-

tion affects the EM and jail population.10 The detainees eligible for this sentencing policy

are detainees whose sentence includes incarceration (jail and prison) and whose original sen-

tence duration is 18 months or less. We draw detainees’ location costs using the structural

parameters estimated in Section 1.6, and calculate their costs for delaying and not delaying.

They choose the option which has the lowest cost. If they choose to delay, their case length

is drawn from FD. Otherwise, it is drawn from FN .11

Total Yearly Reductions in:

x
Case Length

EM
(Years)

Case Length
Jail

(Years)

Court
Visits

Jail
Sentences
(Years)

Prison
Sentences
(Years)

Detention Costs
in Jail

(Millions of Dollars)
0.1 34.7 23.9 764 25.2 144.3 $2.6
0.2 72.0 42.3 1490 46.2 285.1 $4.6
0.3 106.9 52.9 2084 65.1 421.6 $6.2
0.4 137.3 62.1 2600 82.4 547.5 $7.5
0.5 158.0 64.7 2903 97.5 661.7 $8.5
0.6 170.4 64.4 3061 110.5 760.1 $9.1
0.7 174.3 67.0 3146 120.8 838.4 $9.8
0.8 173.8 65.8 3124 128.4 895.6 $10.1
0.9 173.4 66.0 3121 133.0 932.9 $10.4

Table 1.6: Yearly Benefits from Split Sentencing. Case length is the yearly total of
time people are detained in jail or on EM pretrial. Court visits are assumed
to be spaced 28 days apart during the detainees’ pretrail detention. Jail and
prison sentence time represent the yearly reduced total time people would be
incarcerated in those locations due to their sentence being split. Finally, housing
costs in jail incorporate reductions in both pretrial case length and reduced jail
time.

Post-Sentencing Effects. Split sentencing reduces detainees’ sentence durations by a

10. The Sentencing Guidelines suggest that no more than half of the sentence be split to release (U.S.
Sentencing Comm’n, 2018) (i.e. x should be less than 0.5). We will vary x more broadly, across the full
range of (0,1), to more completely evaluate split sentencing’s impact.

11. We assume that cases which resolved in 60 days or less are not likely to have delayed, and consequently
their case lengths do not change. However, their sentence is still split according to x.
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factor of x. These post-sentencing reductions, parameterized by x, are given in the columns

“Jail Sentences” and “Prison Sentences” of Table 1.6. The reductions are presented yearly,

so for x = 0.5, 97.5 detainee post-sentencing detention years would be removed from the

jail each year. For the same x, 661.7 detainee years would be removed from the prison each

year.12 The associated housing cost savings for the prison, if similar to that of jail, would

be approximately $34.5 million annually. The entirety of the reduction for prison is due to

this post-sentencing effect. For jail, post-sentencing effects account for about 60% of the

reduction in jail detention time.

Pretrial Effects. Detainees delay less often when offered split sentences, which reduces

aggregate pretrial detention time. Yearly pretrial case length reductions for EM and jail are

given in the columns “Case Length EM” and “Case Length Jail” in Table 1.6. For x = 0.5,

EM and Jail detention time would be reduced by 158.0 and 64.7 detainee years each year.

Pretrial effects account for all of the reduction in EM incarceration time and approximately

40% of the reduction in jail time. In total, these pretrial reductions can reduce the load on

the courts system significantly. For x = 0.5, court visits would be reduced by 2903 each

year.

Outcomes on the Detained Populations. The plots in Figure 1.11 show the resultant drop

in jail and EM populations from offering split sentencing to eligible detainees for various

values of x13. The average reduction in jail and EM populations during the steady state

period are plotted in Figures 1.12a and 1.12b.

Offering split sentencing significantly reduces the jail and EM populations. At x = 0.5,

the jail population is reduced by 2.73% and EM is reduced by 5.68%, see Figures 1.12a

and 1.12b. The reductions in the jail and EM populations are most significant for low level

crimes—classes 4, 3, and A. This targeted effect is due to the restrictions on split sentencing,

12. While we do not study the prison population, its population would also be reduced due to this decrease
in total post-sentencing incarceration time.

13. As before, because we consider detainees who enter CCSO custody in 2015-2016, these appear non-
stationary, but the detained population achieves a steady state in the period shown in Figures 1.11a and
1.11b. Implementation of this policy would resemble this steady state period.
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(a) Jail Population Over Time (b) EM Population Over Time

Figure 1.11: Reductions in Jail and EM Populations Over Time via Split Sen-
tencing. Focusing attention on detainees who entered CCSO custody during 2015-2016,
Figures 1.11a and 1.11b display the average predicted detainee populations over time. In
these figures, we restrict our attention between September 2015 and December 2016, where
steady state is achieved.

(a) Average Reductions in Jail Population (b) Average Reductions in EM Population

Figure 1.12: Average Reductions in Detainee Populations in Steady State via Split
Sentencing. These plot the average reduction in jail (Figure 1.12a) and EM (Figure 1.12b)
populations due to reduced court visits during the steady state period between September
2015 and December 2016. “Overall” provides statistics for all data. The remaining provide
statistics by crime class. Classes X and M are excluded because they are unaffected by the
policy. Classes B and C are excluded from the figure as they represent very few detainees in
the data.

not affecting detainees whose sentence represents a crime which is too severe. Reductions in

the jail population directly reduce housing costs. At x = 0.5, the Cook County Jail could

save $8.5 million per year.

These benefits are substantial across a wide range of x values. However, most of the

effects are seen once the detainees’ sentences are mitigated by half (x = 0.5), and generally
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have diminishing returns after this point. This suggests that feasible applications of split

sentencing which are well within the U.S. Sentencing Guidelines can realize most of its

benefits.

Yearly Reductions in:

x Turnarounds
(Net)

Turnarounds
(Percent)

Excess Housing Time
“Dead Days”

(Years)

Excess Jail Housing Costs
Due to Turnarounds
(Millions of Dollars)

0.1 72.0 3.5% 33.8 $1.8
0.2 136.3 6.7% 67.1 $3.5
0.3 189.8 9.3% 92.4 $4.8
0.4 233.7 11.5% 112.8 $5.9
0.5 257.9 12.6% 124.9 $6.5
0.6 272.9 13.4% 129.9 $6.8
0.7 275.7 13.5% 133.7 $7.0
0.8 277.1 13.6% 133.1 $6.9
0.9 276.8 13.6% 132.7 $6.9

Table 1.7: Reduction in Turnarounds due to Split Sentencing Using Old Sentences
as Metric. Here, to determine whether or not someone is a turnaround, we
use their original sentence duration, pre split-sentence.

The Impact of Split Sentencing on Turnarounds. Split sentencing reduces delaying be-

havior and thus detainees’ case lengths. When measured against their original sentences,

this reduces turnarounds; see Table 1.7. For example, for x = 0.5, turnarounds would be re-

duced by 12.6%, with an annual reduction of 124.9 years worth of dead days and $6.5 million

of housing costs during that time. But split sentencing reduces the incarceration portion

of detainees’ sentences. Measured against this new sentence duration, (1 − x)s, this policy

creates “new turnarounds,” those who are incarcerated in jail longer than their split sentence

would require. Table 1.8 reports these increases. Splitting sentences by half, x = 0.5, would

create 2006.3 additional new turnarounds each year, a 98.4% increase. Measured against the

detention portion of their sentences, this would make 946.7 years worth of new dead days

per year. The cost associated with that time would be $49.4 million.

Detainees, in general, would be better off with this policy because of shorter case lengths
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Yearly Increases in:

x
New

Turnarounds
(Net)

New
Turnarounds

(Percent)

Excess Housing
Time “Dead Days”

(Years)

Excess Jail Housing Costs
Due to New Turnarounds

(Millions of Dollars)
0.1 263.0 12.9% 114.2 $6.0
0.2 576.7 28.3% 251.8 $13.1
0.3 961.0 47.1% 429.2 $22.4
0.4 1451.7 71.2% 656.3 $34.3
0.5 2006.3 98.4% 946.7 $49.4
0.6 2691.0 132.0% 1317.6 $68.8
0.7 3457.2 169.6% 1787.2 $93.3
0.8 4269.3 209.4% 2390.6 $124.8
0.9 5034.8 247.0% 3156.9 $164.8

Table 1.8: Increases in New Turnarounds due to Split Sentencing Using New
Split Sentences as Metric. Here, to determine whether or not someone is a
turnaround, we use the detainees’ new sentence durations post-split-sentence.

and less costly sentences. The jail would also save money. But it would increase instances

that people are detained longer than their required detention time, precisely because their

required detention time is reduced. To avoid this, split sentencing should be applied in

tandem with operational improvements which reduce case lengths.

1.7.4 Reducing the Relative Cost of Imprisonment

As discussed above, delaying behavior is largely driven by the high cost of prison relative

to jail. To reduce it and increase social welfare, we consider policies which may reduce

the relative cost of prison to jail, and explore how that may effect pretrial detention. To

compare dollars-to-dollars, we estimate society’s cost for being housed in prison using payouts

for wrongful imprisonment from the state.

Prison’s perceived cost per unit time could be lowered relative to jail in quite a few ways.

For example:

1. Subsidize family visits to prison. Some defendants may prefer jail to prison because
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the Cook County Jail is located within the city, while prison is located far outside of

the city. Consequently, family visits are possible in jail but not as easily in prison. If

this changed, people may be more willing to serve their time in prison.

2. Ensure quality living conditions in prison. Living conditions in prison may need

to be improved. As a result, fewer people would avoid it.

3. Promote prison-oriented educational/remedial opportunities which aren’t

available in jail. If there are educational opportunities in prison rather than jail

(or more in prison than in jail), some people who suspect that they will get a prison

sentence will opt to serve it there so they can get the benefit of the opportunities there.

This has the additional benefit that prison sentences have definite beginning and end

dates, allowing for more structured educational programs.14

To assign a dollar cost to prison, we consider payments from the state for wrongful

imprisonment. As a conservative estimate, Illinois law stipulates that people wrongfully

detained in prison for 5 years or less can be awarded up to $85,350, fourteen years or less can

be awarded $170,000, and more than fourteen years can be awarded $199,150.15 These adjust

with cost of living increases, and include some additional funds for attorney fees, education,

and job placement assistance. Federal guidelines suggest a higher rate of pay of $63,000 per

year imprisoned, with an additional $63,000 for each year on death row.16 Awarded amounts

can be higher. For example, in 2020, three men were awarded approximately $280,000 per

year of wrongful imprisonment.17 In 2011, DNA tests exonerated five men who were awarded

approximately $400,000 per year for nearly 20 years of wrongful imprisonment, totaling $40

14. Educational programs exist within prisons at the moment and detainees can earn credit against their
sentence for participating in them.

15. https://www.ilga.gov/legislation/ilcs/fulltext.asp?DocName=070505050K8 Accessed on
11/5/2021.

16. https://www.law.umich.edu/special/exoneration/Documents/CompensationByState_
InnocenceProject.pdf Accessed on 11/15/2021.

17. https://www.chicagotribune.com/news/breaking/chi-40m-wrongful-conviction-settlement
-the-money-is-almost-beside-the-point-20140625-story.html Accessed on 11/5/2021.
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million in their joint-wrongful conviction settlement.18

To model the social welfare gained from reducing the relative cost of prison, we make

use of the costs listed above. We consider three different dollar-equivalent costs for time in

prison: $14,285 per year (“Low”—Illinois’ payout rate), $63,000 per year (“Medium”—the

Federal payout rate), and $400,000 per year (“High”—a representative large payout awarded

to wrongfully imprisoned detainees). Costs for other housing location are scaled at the same

proportion as the mean estimated costs in Section 1.6. That is, EM is 0.370/1.835 times

less costly than prison, and jail is 1.378/1.835 times less costly than prison. We model the

effect of the policies as reducing the mean cost of prison either halfway to that of jail, or

entirely to that of jail. Then, in light of these reduced costs, we simulate detainee behavior

to evaluate the effect on the criminal justice system.

Total Yearly Reductions in:

Cost Reduced to Case Lengths
(Years) Court Visits Jail Case Length

(Years)
EM Case Length

(Years)
Jail 193.5 2523 155.4 38.1

Halfway to Jail 96.6 1260 81.0 15.6

Table 1.9: Yearly Detention Time Reductions due to Prison Cost Reduction. Case
length is the yearly total of time people are detained in jail or on EM pretrial.
Court visits are assumed to be spaced 28 days apart during the detainees’ pre-
trail detention. Jail and prison sentence time represent the yearly reduced total
time people would be incarcerated in those locations. Note that a negative value
indicates an increase in that statistic.

Reducing the perceived cost of prison reduces delaying behavior. This shortens case

lengths, as seen in Table 1.9. By reducing the cost of prison to be (on average) equal

to the cost of jail, case lengths would be reduced by 193.5 years annually, and the total

number of annual court visits by approximately 2523. The majority of this contribution

comes from people detained in jail pretrial whose incentive to delay was reduced. These case

18. https://www.chicagotribune.com/news/breaking/chi-40m-wrongful-conviction-settlement
-the-money-is-almost-beside-the-point-20140625-story.html Accessed on 11/5/2021.
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length reductions pair with significant reductions in the overall jail and EM populations.

By reducing the cost of prison to jail (halfway to jail), in steady state the jail population

would be reduced by 2.00% (1.05%) and the EM population by 1.51% (0.65%). Note that

for people sentenced to prison, a reduction in case length results in a commensurate increase

in prison time. We find that this increase in time would be 129 years and 64 years annually

for a reduction in prison cost all the way to jail and halfway to jail respectively.

Total Yearly Reductions in:

Cost Reduced to Turnarounds
(# People)

Percent of
Turnarounds Dead Years

Dead Years
Housing Costs

(Millions of Dollars)
Jail 932 41.5% 63.6 $3.3

Halfway to Jail 859 38.2% 32.5 $1.7

Table 1.10: Yearly Turnaround Reductions due to Prison Cost Reduction.

The reduced delaying behavior also significantly reduces turnarounds. Turnarounds

would be reduced by 38.2% by reducing prison costs halfway to that of jail, and 41.5%

by reducing them to be equal to that of jail. Their associated dead days would be also

reduced. By reducing the cost of prison to that of jail, there would be an associated annual

savings of $3.3 million in housing costs from dead days, and 63.6 years of dead days annually.

These reductions in (perceived) housing costs also increase social welfare. We display the

change in perceived costs for people detained by the Cook County Sheriff’s Office Table 1.11.

As shown in the table, reducing the cost of prison to be equal to that of jail could, with

a conservative estimate, reduce annual perceived detention costs by $11.9 million across

detainees. At the high end, this could amount to over $335.5 million. Note that while we

do not have data on people in prison who were not detained by the CCSO, these changes

would effect them as well, and so these benefits are a conservative estimate.

Our results suggest that changes to prisons which lower their perceived detention cost

could have significant positive effects for society. In the practical sense, delaying behavior
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Total Yearly Reductions in:

Cost Reduced to
Disutility

$14,285/year
(Millions of Dollars)

Disutility
$63,000/year

(Millions of Dollars)

Disutility
$400,000/year

(Millions of Dollars)
Jail $11.9 $52.4 $335.5

Halfway to Jail $6.0 $26.6 $169.0

Table 1.11: Yearly Dollar-Equivalent Disutility Reductions due to Prison Cost
Reduction. Note that these estimates are only for people detained by the
CCSO.

and pretrial case lengths could be decreased, and as a result, housing costs and court cost

would be decreased. Additionally, by incorporating detainee preferences, social welfare could

be increased.

1.8 Concluding Remarks

This paper is concerned with delays that cause excessively long pretrial detention, using data

from the Cook County Jail to study this issue. This detention wastes detainees’ time, costs

taxpayers money, and needlessly burdens the courts system. In Section 1.5 we introduce a

model of detainee behavior in which they can delay their cases to loosely control the balance

of time they spend in their pretrial housing location and post sentencing location. Using

this model, we estimate the structural parameters of detainees’ location costs. We find that

prison is most costly, followed by jail, then EM. In a series of four counterfactual analysis, we

find that improving the operations of the courts and changing incentives to reduce delaying

behavior, in tandem, can be effective tools to improve pretrial operations, save costs, and

curb turnarounds.
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CHAPTER 2

IDENTIFYING TURNAROUNDS BEFORE THEY OCCUR

2.1 Introduction

Turnarounds are detainees whose pretrial detention is longer than their sentence duration at

prison. That is, while detained pretrial, their case lasts longer than the sentence they receive

when it concludes. Time served pretrial counts toward time post-sentencing, so turnarounds

have no remaining time to serve in prison. Nevertheless, these detainees are brought to

prison, are booked, and are then immediately released. They “turn around” from the prison

in Joliet, Illinois back to Chicago. These detainees are not compensated for the excess time

they spent incarcerated.

People are held in jail pretrial if they can’t meet their bond conditions. At the conclusion

of their case they receive a disposition: either guilty or not-guilty. If guilty, they receive a

sentence in the form of a location they must spend time, and the duration of time they must

spend there. For more details, an operational view of the criminal justice system is outlined

in Appendix 1.3.

Individualized intervention may be an effective tool for curbing turnarounds, resolving

cases earlier than they might resolve naturally. In Cook County, the Sheriff’s office has

established the Justice Institute, a team “charged with enhancing the delivery of justice

across every aspect of the Sheriff’s office (jail, police, courts).”1 This institute, or other

parties like it, are able to address individual cases within the criminal justice system on a

limited basis due to manpower constraints. Supplying this group with a list of detainees

who have a high likelihood of being valuable to intervene allows them to bring stakeholders

together, such as prosecutors, defenders, and judges, to help cases resolve before the detainee

becomes a turnaround.

This paper is concerned with providing the Cook County Sheriff’s Office (CCSO) a tool

1. https://www.cookcountysheriff.org/hardship-project/ Accessed on 3/30/2022.
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to score detainees under their purview on the likelihood that they will eventually become a

turnaround. We develop a model which is composed of two parts: a classification algorithm

which takes detainees’ attributes and case lengths into account to determine their probability

of being a turnaround, and a Cox regression to determine the likelihood that a detainee’s

case will endure to a certain case length. In tandem, these two are used to identify detainees

whose cases would be valuable to intervene upon.

We consider two intervention and scoring approaches. Both evaluate all detainees under

the CCSO’s purview on the first of each month. The first method considers the case that

intervention happens immediately upon evaluating detainees, thus terminating their cases.

This shows an ideal situation applying this tool. The second method adds a lead time to the

intervention, to account for the time necessary to intervene on these cases. Implementing this

model on sample data shows that targeted intervention using these models may successfully

reduce turnarounds, their associated dead days, and the housing costs arising from that

excess detention time. Without any lead time (and thus immediate intervention) we estimate

this would reduce dead days by 10.1 years, saving $525,000 in housing costs for detainees

identified each month. With a lead time of 2 weeks, these figures would be 6.8 years, saving

$353,000 of housing costs each month. And with a lead time of 4 weeks, these figures would

be 8.2 years, saving $429,000 of housing costs each month.

2.2 Data

Our dataset primarily consists of data retrieved from the Cook County Office Offender Man-

agement System (CCOMS) via the Cook County Sheriff’s Office (CCSO). We also make

use of data from the Illinois Department of Corrections (IDOC), the state’s prison system.

We use five data files which collectively provide the data fields listed in Table 2.1. Each

contributes the following information: the beds file lists the detainees’ pretrial housing lo-

cation, the bonds file lists the detainees’ bond type and amount, the courts file lists the

detainees’ court dates, the IDOC file has data about people detained in prison, which we use
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to determine sentence durations for detainees sentenced to prison, and the main CCOMS

file provides all remaining data fields in Table 2.1.

In summary, our dataset provides information about detainees’ cases from booking through

sentencing. We focus attention on detainees booked in 2015 and 2016 and who remained

under the CCSO’s purview either on EM or in jail. They correspond to 98,882 rows in our

dataset, each row representing one detainee’s booking. This allows us to follow them through

the completion of their detention in jail or on EM under CCSO custody. We use different

portions of this data for various elements of this paper. We describe each data field in detail

in Appendix A.3.

Detainee Housing Case Sentencing
Inmate ID Booking ID Docket number Sentence location
Criminal history Booking date Crime class Sentence duration
Prison history Pretrial housing location Case length Turnaround status

Security classification Court dates
Bond type
Bond amount

Table 2.1: Data Fields.

In this application, we use k-fold cross validation to ensure our results are robust. Because

our analysis is emulating the effect of the CCSO observing its current jail population, we

slightly modify the traditional cross validation methodology to test our method on snapshots

of the jail population. Within our dataset, the jail population reaches steady state after 5

months (May 2015). After it reaches steady state, we consider the first day of each month

for the remainder of the dataset (i.e. June 2015 - December 2016). The jail population on

that day constitutes the testing data for that day’s cross-validation fold. The remaining

detainees in the dataset constitute the training data. In each fold, we train the classification

algorithm (see Section 2.3.1) and Cox regression (see Section 2.3.2) on the training data

of that fold. We then test the models on the testing data. The results are recorded, the

models are discarded, and the process is repeated on the next fold. The results reported in
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Section 2.4 are the mean (and associated 95% confidence intervals2) of these 19 folds.

The classification algorithm, referred to as f in Section 2.3.1, makes use of the average

interarrival times of detainees first five court visits, sentence duration, case length, pretrial

housing location, crime class, security classification, criminal history, sentence duration, and

sentence location. This resembles a case where available plea bargains are known by the

intervention team. The Cox regression outlined in Section 2.3.2 uses the same data fields,

excluding case length.

2.3 Model

In this section, we develop a model that identifies turnarounds before their case ends. If

a detainee becomes a turnaround, we say τ = 1, otherwise τ = 0. This model makes use

of the detainees’ attributes, x, which are described in detail in Section 2.2, and include

information like crime class, security classification, and EM status. It also makes use of

the detainees’ current time incarcerated, t, so that agents who are looking at the current

detainee population (and thus cannot know the detainees’ case lengths) can still identify

detainees who are likely to be turnarounds.

Using these data, we model the detainee’s probability of being a turnaround given their

current case length and attributes, P (τ = 1 |x, t). We begin by decomposing this probability

into two parts:

P (τ = 1 |x, t) =
∞∑
l=t

pr(τ = 1 |x, l)pr(l |x, t).

That is, given the detainee’s current case length, we look forward to each subsequent time

period, determine the probability that their case terminates in that period, and if it did, the

likelihood of being a turnaround given that case length.

We model these component probabilities in the following way. First, for any terminal

case length, l, we use a classification procedure f to model the probability a detainee will

2. These 95% confidence intervals represent the mean plus and minus 1.96 standard deviations of the 19
folds.
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be a turnaround given their attributes. That is f(τ = 1 |x, l) = pr(τ = 1 |x, l). Because

this uses terminal case lengths, this classifier can be trained on historical data. Second,

we will use a Cox proportional hazards model, g, to model the probability the detainee’s

case will terminate at time l given their attributes x and current time in jail t. That is,

g(l |x, t) = pr(l |x, t). Given f and g, P (τ = 1 |x, t) is modeled by:

P (τ = 1 |x, t) =
∞∑
l=t

f(τ = 1 |x, l)g(l |x, t). (2.1)

We describe the estimation of f and g in the subsequent Sections 2.3.1 and 2.3.2. We

outline an extension of this model which incorporates a lead time to detection in Section 2.3.3.

2.3.1 Estimation of f

To estimate f , we train a classification algorithm on the data as described in Section 2.2, with

the goal of classifying turnarounds. This classification algorithm makes use of x, and l as

data, with turnaround status, τ as the target variable. This data is described in Section 2.2.

The resulting model outputs a score for each detainee as a function of x and l which we will

use to model their probability of being a detainee given those characteristics, f(τ = 1 |x, l).

To determine suitable hyperparameters, we partitioned all detainees into a train and

test set, which represent 80% and 20% of the data, respectively, as in (Lee and Liu, 2003).

Within this split, we ensure that the same proportion of detainees were labeled positively in

the train and test sets.3 We begin by training the models on the train set. Then, to evaluate

the models, we use the trained models to classify the test set. The models are ranked by

their AUC score. The list of candidate models and hyperparameters are given in Table 2.2.

The best performing model and hyperparameter combination is used to model f . Logistic

regression with a regularization parameter of 1 performed best with an AUC of .91, and is

“known to predict well-calibrated probabilities” (Niculescu-Mizil and Caruana, 2005). The

3. That is, we seperate positive and negative samples, then select 20% from each group to create the test
set.
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ROC curve associated with this classifier is given in Figure 2.1. What’s especially important

about this ROC curve is that the true positive rate is quite high for the most highly-scored

detainees; this accuracy will contribute to good performance in Section 2.4. We fix the choice

of classifier and hyperparameters, and use those when training our models in each fold of our

k-fold cross validation (see Section 2.2 for a description of our cross validation methodology).

Model Hyperparameter Range
Logistic Regression Regularization [0.001, 1000]
Random Forest # Estimators [50, 200]

Max Features sqrt(# features), log2(# features)
Max Depth [50, 110]
Min Samples per Split {2, 5}
Min Samples per Leaf {1, 2, 4}
Bootstrap {True, False}

Deep Neural Net Hidden Layers {5, 10, 50}
Nodes per Layer {10, 50, 100}
Dropout Percentage {.1, .3, .5}
Loss Function Binary Crossentropy
Activation Function relu
Epochs 1, 5, 10
Batch Size {32, 64, 500, 1000}

Table 2.2: Tested Models and Hyperparameters for f . Logistic Regression and Ran-
dom Forest classifiers are implemented in Scikit Learn. The Deep Neural Net
classifier was implemented in TensorFlow’s Keras. 100 combinations of the
above hyperparameters were tested for each model.

2.3.2 Estimation of g

In each fold, we use the training detainees to model g(l|x, t) (see Section 2.2 for a description

of our cross validation methodology). To do so, we will estimate a survival function, S(l|x) =

1−F (l|x) where F is the CDF of the detainee’s case length given x. Discretizing the survival

function, g(l |x, t) is given by

g(l|x, t) = S(l|x)− S(l + 1|x)
S(t|x) .
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Figure 2.1: ROC Curve of Fit Classification Function. The AUC associated with this
ROC curve is .911.

In this application, each period will represent one day.

The survival function can be constructed from the outputs of a Cox regression, which are

h(l|x) = h0(l)e
∑p

j=1 βjxj .

Namely, we will use the estimated parameters β and the cumulative baseline hazard function,

H0(t) =
∫ t
0 h0(u)du. Given these, and noting that S(t|x) = e−H(t|x) (Rodŕıguez, 2007), we

can decompose g into two interpretable parts: the baseline cumulative hazard function,

which gives an understanding of any case’s likelihood of ending at time t, and β’s, which

give an understanding of how the detainees’ characteristics effect this baseline hazard. This

decomposition is given in Proposition 3.

Proposition 3 The function g(l|x, t) can be expressed as a function of the baseline cumu-

lative hazard function and estimated β’s from the Cox regression in the following manner:

g(l|x, t) = e−eβx[H0(l)−H0(t)] − e−eβx[H0(l+1)−H0(t)].
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Where the baseline hazard function is given by H0(t) =
∫ t
0 h0(u)du.

Proof. Begin by observing that the β’s can be pulled out of the integral in the cumulative

hazard rate function in the following manner:

H(t|x) =
∫ t

0
h(u|x)du

H(t|x) =
∫ t

0
h0(u)eβxdu

H(t|x) = eβx
∫ t

0
h0(u)du

H(t|x) = eβxH0(t)

Then, also noting that S(t|x) = e−H(t|xi), we can substitute this into our definition of

g(l|x, t). Rearranging like terms gives the result.

g(l|x, t) = S(l|x)− S(l + 1|x)
S(t|x)

g(l|x, t) = e−eβxH0(l) − e−eβxH0(l+1)

e−eβxH0(t)

g(l|x, t) = e−eβxH0(l)+eβxH0(t) − e−eβxH0(l+1)+eβxH0(t)

g(l|x, t) = e−eβxH0(l)+eβxH0(t) − e−eβxH0(l+1)+eβxH0(t)

g(l|x, t) = e−eβx[H0(l)−H0(t)] − e−eβx[H0(l+1)−H0(t)]

■

We implement the Cox proportional hazards regression model using the statsmodels

package in Python (Seabold and Perktold, 2010). In each fold, it is fit on the training

detainees’ data, as described in Section 2.2. For ease of interpretability, a sample baseline

cumulative hazard for time in days t is given in Figure 2.2 (these functions differ little

across folds). Detainees’ case lengths are approximately exponentially distributed, and thus

have an approximately constant hazard rate. As a result, the cumulative hazard function is
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approximately linear.

Figure 2.2: Fit Baseline Cumulative Hazard Function. Gaps in the domain of the
estimated baseline cumulative hazard function, which are more common for long case lengths,
are interpolated linearly. This represents one fit baseline cumulative hazard function from
one fold.

The baseline cumulative hazard function is modified as a function of the detainees’ at-

tributes, x, and the fit parameters, β, from the Cox regression. A set of sample βs from one

of the folds are given in the column “HR” in Table 2.3. They can be more easily interpreted

via the first numerical column, “log HR”, which gives the log hazard ratio. A positive num-

ber indicates that the increasing the associated variable, or the incidence of the categorical

variable increases the hazard. A negative number indicates that the hazard decreases. As

observed in the data, we note that increased sentence duration extends cases, as does being

on EM, having a more severe crime class, and more severe security classification. Crimi-

nal history does not have a large effect on hazard. Larger average interarrival time of the

detainees’ first five court visits also increases hazard.
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log HR log HR SE HR t P> |t| [0.025 0.975]
Average Interarrival Times 0.31 0.05 1.37 6.12 0.00 1.24 1.52

Sentence Duration -12.75 1.05 0.00 -12.15 0.00 0.00 0.00
On EM -0.57 0.02 0.56 -32.94 0.00 0.54 0.58
Class 2 -0.03 0.03 0.97 -1.01 0.31 0.92 1.03
Class 3 0.07 0.03 1.07 2.51 0.01 1.02 1.13
Class 4 0.38 0.02 1.46 15.52 0.00 1.39 1.53
Class A 0.73 0.03 2.07 27.65 0.00 1.97 2.18

Medium Security 0.47 0.04 1.60 10.69 0.00 1.47 1.75
Minimum Security 0.67 0.04 1.96 14.98 0.00 1.79 2.14

Low Criminal History 0.08 0.02 1.09 5.09 0.00 1.05 1.12
Medium Criminal History -0.04 0.02 0.96 -2.06 0.04 0.93 1.00

High Criminal History -0.04 0.03 0.96 -1.44 0.15 0.91 1.01
Supervision 0.88 0.04 2.41 19.91 0.00 2.21 2.63
Probation 0.30 0.03 1.35 8.93 0.00 1.26 1.44

Jail 0.05 0.02 1.05 2.17 0.03 1.01 1.10
Prison -0.39 0.02 0.68 -16.90 0.00 0.65 0.71

Table 2.3: Results of Cox Regression. Categorical variables are one-hot-encoded, and
the first category is dropped. For visual clarity, this is a sample set of fit parameters from
one fold of the crossvalidation.

2.3.3 Incorporating Lead Time

In practice, intervening in cases may take some time. We extend our model to identify

turnarounds before they occur, while focusing on detainees whose cases will end at least N

days away. That way, when implemented, practitioners may be more confident that their

efforts will have maximum effect.

We change our scoring metric to reduce the weight given to detainees who are predicted

to have their cases end within N days. Denoted P̂ (x, t, N), it is given by:

P̂ (x, t, N) =
t+N∑
l=t

f(τ = 1 |x, l)(1− g(l |x, t)) +
∞∑

l=t+N+1
f(τ = 1 |x, l)g(l |x, t). (2.2)

As a result, this will highlight detainees who are predicted to be turnarounds, but whose

cases are more likely to end after N days. We will use this formulation for scoring detainees

for intervention with a lead time in Section 2.4.2.
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2.4 Results.

The model outlined in Section 2.3 and extended in Section 2.3.3 allows us to determine

detainees’ probability of being a turnaround (or being a turnaround after some lead time

N). We test our method using k-fold cross validation, as described in Section 2.2. The

reported results are the means (and associated 95% confidence intervals) of each statistic

across the 19 folds. Within each fold, we score each detainee in the test set. For Section 2.4.1,

we use their probability of being a turnaround. In Section 2.4.2 we use their probability of

being a turnaround with a lead of 7, 14, 21, and 28 days. Then, we evaluate the impact of

intervening and resolving the top 10, 20,..., 100 highest scoring cases.4

2.4.1 Scoring Probability of being a Turnaround Without Lead Time

We score detainees by their probability of being a turnaround, which is given in Equation 2.1.

In this case, we assume that intervention occurs immediately, resolving the cases when the

intervention occurs.

The results of this scoring method given this intervention are given in Table 2.4. With

100 intervened cases, 58.3% of the intervened cases would be turnarounds, and intervention

on a monthly basis would save 10.1 years of dead days per month, and save over $525,000 due

to excess housing costs per month. The success rate of identifying turnarounds is relatively

consistent across different values of intervened cases, so if resources were limited to only

intervening on a fraction of 100 cases, the resulting benefits are approximately proportional

to that fraction.

4. Notice that as the number of intervened cases increases, the number of those cases which would have
been turnarounds must also increase monotonically. However, the the average % of detainees who would
eventually become turnarounds does not necessarily increase monotonically, as each group of 10 marginal
detainees maybe identified with more or less accuracy than their proceeding groups. For example, consider
a group of 10 detainees in which only one would eventually become a turnaround; this would increase the
number of turnarounds intervened, but would likely decrease the average % of turnarounds, as 9 of the group
would have “missed”.
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Intervened
Cases

Would-be
Turnarounds

Intervened Upon

% of Interventions
Which Would-be

Turnarounds

Dead Days
Reduced

(In Years)

Reduced Dead Days
Housing Costs

($1,000s of Dollars)
10 5.3 [4.3, 6.2] 52.6 [43.4, 61.9] 1.0 [0.8, 1.3] 54.4 [40.5, 68.4]
20 10.7 [9.4, 12.1] 53.7 [47.0, 60.3] 2.2 [2.0, 2.4] 113.7 [103.3, 124.2]
30 17.6 [15.8, 19.5] 58.8 [52.6, 64.9] 3.3 [3.1, 3.6] 174.7 [160.9, 188.5]
40 23.7 [21.4, 25.9] 59.2 [53.6, 64.8] 4.4 [4.0, 4.9] 232.1 [209.7, 254.5]
50 29.4 [27.0, 31.8] 58.7 [54.0, 63.5] 5.5 [4.9, 6.2] 288.9 [256.6, 321.3]
60 34.9 [32.1, 37.8] 58.2 [53.4, 63.1] 6.7 [5.8, 7.6] 351.0 [304.4, 397.6]
70 41.0 [37.6, 44.4] 58.6 [53.7, 63.4] 7.8 [6.7, 8.8] 405.0 [350.8, 459.2]
80 46.5 [42.8, 50.1] 58.1 [53.5, 62.7] 8.3 [7.2, 9.4] 433.0 [374.2, 491.8]
90 52.1 [47.9, 56.2] 57.8 [53.2, 62.4] 9.2 [8.0, 10.4] 479.1 [415.2, 543.1]
100 58.3 [53.5, 63.0] 58.3 [53.5, 63.0] 10.1 [8.8, 11.4] 525.7 [457.3, 594.0]

Table 2.4: Monthly Reductions from Intervention Without Lead Time. Averages
are taken across 19 folds. Figures in brackets represent 95% confidence intervals. Housing
costs during dead days are assumed to be $143 per day. (Board of Commissioners of Cook
County, 2021)

2.4.2 Scoring by Probability of being a Turnaround With Lead Time

Intervened
Cases

Would-be
Turnarounds

Intervened Upon

% of Interventions
Which Would-be

Turnarounds

Dead Days
Reduced

(In Years)

Reduced Dead Days
Housing Costs

($1,000s of Dollars)
10 4.6 [3.8, 5.3] 45.8 [38.1, 53.5] 0.5 [0.3, 0.7] 26.4 [16.4, 36.4]
20 9.1 [7.7, 10.5] 45.5 [38.7, 52.3] 1.1 [0.8, 1.3] 56.9 [44.2, 69.7]
30 13.2 [11.3, 15.2] 44.0 [37.5, 50.6] 1.7 [1.3, 2.0] 87.1 [69.1, 105.1]
40 18.7 [16.4, 21.1] 46.8 [40.9, 52.8] 2.3 [2.0, 2.6] 120.3 [104.6, 136.1]
50 24.1 [21.3, 26.9] 48.2 [42.6, 53.8] 3.0 [2.6, 3.4] 157.0 [135.7, 178.4]
60 29.2 [25.7, 32.6] 48.6 [42.8, 54.4] 3.5 [3.0, 4.0] 182.8 [155.6, 210.0]
70 33.9 [30.2, 37.7] 48.5 [43.1, 53.9] 4.1 [3.6, 4.7] 215.9 [188.6, 243.3]
80 38.6 [34.3, 43.0] 48.3 [42.9, 53.7] 4.6 [4.1, 5.2] 242.6 [213.5, 271.8]
90 42.9 [38.4, 47.4] 47.7 [42.7, 52.7] 5.2 [4.6, 5.9] 273.9 [241.9, 305.8]
100 47.4 [42.7, 52.1] 47.4 [42.7, 52.1] 5.8 [5.1, 6.5] 300.5 [264.2, 336.8]

Table 2.5: Results from Scoring with 7 Day Lead. AAverages are taken across 19 folds.
Figures in brackets represent 95% confidence intervals. Housing costs during dead days are
assumed to be $143 per day. (Board of Commissioners of Cook County, 2021)

We score detainees by their probability of being a turnaround after a lead of N days, as

given in Equation 2.3.3. We also assume that intervention occurs after N days, resolving the
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Intervened
Cases

Would-be
Turnarounds

Intervened Upon

% of Interventions
Which Would-be

Turnarounds

Dead Days
Reduced

(In Years)

Reduced Dead Days
Housing Costs

($1,000s of Dollars)
10 4.6 [3.7, 5.4] 45.8 [37.4, 54.2] 0.6 [0.4, 0.8] 29.0 [18.8, 39.3]
20 9.3 [8.1, 10.5] 46.6 [40.6, 52.5] 1.2 [1.0, 1.4] 62.5 [51.0, 74.0]
30 14.1 [12.1, 16.0] 46.8 [40.4, 53.2] 1.8 [1.5, 2.0] 92.3 [77.7, 106.9]
40 19.4 [16.8, 22.0] 48.6 [42.1, 55.0] 2.5 [2.1, 2.8] 128.5 [110.4, 146.5]
50 24.6 [21.7, 27.5] 49.2 [43.4, 54.9] 3.2 [2.8, 3.7] 169.0 [145.2, 192.9]
60 29.8 [26.4, 33.1] 49.6 [44.1, 55.2] 3.8 [3.3, 4.3] 199.6 [174.4, 224.8]
70 35.0 [31.1, 38.9] 50.0 [44.4, 55.6] 4.6 [3.9, 5.2] 237.5 [205.4, 269.5]
80 39.7 [35.1, 44.3] 49.7 [43.9, 55.4] 5.4 [4.5, 6.2] 280.7 [236.5, 324.9]
90 45.2 [40.1, 50.3] 50.2 [44.6, 55.9] 6.2 [5.3, 7.1] 324.4 [278.1, 370.7]
100 50.2 [44.7, 55.7] 50.2 [44.7, 55.7] 6.8 [5.8, 7.7] 353.6 [305.0, 402.2]

Table 2.6: Results from Scoring with 14 Day Lead. Averages are taken across 19 folds.
Figures in brackets represent 95% confidence intervals. Housing costs during dead days are
assumed to be $143 per day. (Board of Commissioners of Cook County, 2021)

Intervened
Cases

Would-be
Turnarounds

Intervened Upon

% of Interventions
Which Would-be

Turnarounds

Dead Days
Reduced

(In Years)

Reduced Dead Days
Housing Costs

($1,000s of Dollars)
10 4.7 [3.9, 5.6] 47.4 [39.2, 55.6] 0.5 [0.3, 0.7] 27.4 [16.4, 38.4]
20 9.6 [8.3, 10.9] 47.9 [41.4, 54.4] 1.2 [1.0, 1.5] 63.5 [50.3, 76.6]
30 14.4 [12.5, 16.2] 47.9 [41.6, 54.2] 2.0 [1.6, 2.3] 103.1 [85.9, 120.2]
40 19.6 [17.1, 22.1] 49.1 [42.8, 55.4] 2.8 [2.4, 3.2] 147.2 [125.5, 169.0]
50 24.9 [21.9, 28.0] 49.9 [43.8, 55.9] 3.6 [3.1, 4.1] 189.2 [162.4, 215.9]
60 30.6 [27.2, 34.0] 51.1 [45.4, 56.7] 4.6 [4.0, 5.3] 242.3 [206.9, 277.6]
70 36.2 [32.1, 40.3] 51.7 [45.9, 57.6] 5.4 [4.6, 6.1] 281.4 [242.3, 320.5]
80 41.2 [36.5, 45.9] 51.5 [45.6, 57.4] 6.0 [5.2, 6.9] 315.8 [271.2, 360.3]
90 46.3 [41.2, 51.3] 51.4 [45.8, 57.0] 6.9 [5.9, 7.9] 360.0 [310.2, 409.8]
100 51.7 [46.4, 57.1] 51.7 [46.4, 57.1] 7.6 [6.7, 8.6] 397.6 [348.3, 447.0]

Table 2.7: Results from Scoring with 21 Day Lead. Averages are taken across 19 folds.
Figures in brackets represent 95% confidence intervals. Housing costs during dead days are
assumed to be $143 per day. (Board of Commissioners of Cook County, 2021)

cases when the intervention occurs.

The results of this scoring method given this intervention are given in Table 2.5-Classification

Results 4. In general, classifying turnarounds with lead time does not perform as well as

classifying without lead time. However, the performance remains strong, allowing for sig-
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Intervened
Cases

Would-be
Turnarounds

Intervened Upon

% of Interventions
Which Would-be

Turnarounds

Dead Days
Reduced

(In Years)

Reduced Dead Days
Housing Costs

($1,000s of Dollars)
10 4.7 [3.8, 5.5] 46.8 [38.2, 55.5] 0.5 [0.3, 0.7] 26.6 [16.8, 36.4]
20 9.8 [8.4, 11.2] 48.9 [42.0, 55.9] 1.3 [1.0, 1.6] 69.5 [54.6, 84.3]
30 14.9 [13.0, 16.8] 49.6 [43.4, 55.9] 2.3 [1.9, 2.7] 120.5 [98.9, 142.1]
40 20.3 [17.7, 22.8] 50.7 [44.3, 57.0] 3.2 [2.7, 3.6] 165.2 [141.0, 189.3]
50 25.6 [22.6, 28.7] 51.3 [45.1, 57.4] 4.3 [3.6, 4.9] 222.2 [188.4, 256.1]
60 31.4 [28.0, 34.9] 52.4 [46.6, 58.1] 5.2 [4.5, 5.9] 270.1 [234.2, 306.0]
70 36.4 [32.2, 40.6] 52.0 [46.0, 58.0] 5.8 [5.0, 6.7] 304.2 [261.1, 347.2]
80 41.9 [37.2, 46.6] 52.4 [46.4, 58.3] 6.6 [5.8, 7.5] 346.4 [302.0, 390.9]
90 47.4 [42.3, 52.5] 52.7 [47.0, 58.4] 7.5 [6.6, 8.4] 390.3 [342.9, 437.7]
100 52.5 [47.0, 57.9] 52.5 [47.0, 57.9] 8.2 [7.2, 9.2] 429.7 [377.1, 482.4]

Table 2.8: Results from Scoring with 28 Day Lead. Averages are taken across 19 folds.
Figures in brackets represent 95% confidence intervals. Housing costs during dead days are
assumed to be $143 per day. (Board of Commissioners of Cook County, 2021)

nificant amounts of turnarounds to be identified in advance, saving unnecessary dead days

and housing costs. And, the magnitude of the reductions increases as lead time is increased,

which suggests that implementing this policy with the delays associated with intervention

is feasible. To give a sense of results, we summarize the consequence of intervening on 100

cases each month after 7 days (28 days). Of these, 47.4% (52.5%) would be turnarounds, re-

sulting in 5.8 (8.2) years of reduced dead days. As a result, the taxpayer would save $300,000

($429,000) in excess housing costs during those dead days each month.

2.5 Concluding Remarks

Turnarounds are costly for the taxpayer: they are detained pretrial longer than the total

sum of time their sentence would require them to be detained at all. At $143 per day, these

excess housing costs can become large. Targeted intervention to help resolve the cases of

detainees likely to become turnarounds can help curb these costs, reducing unnecessary dead

days for those defendants in the process.

In this paper, we develop a model which can identify turnarounds before they occur,
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leveraging both their attributes and their current case length. We extend this model to

incorporate a lead time, to account for the time it would take to intervene on the cases

and help them get resolved. Implementing this model on sample data shows that targeted

intervention using these models may successfully reduce turnarounds, their associated dead

days, and the housing costs arising from that excess detention time. Without any lead time

(and thus immediate intervention) we estimate this would reduce dead days by 10.1 years,

saving $525,000 in housing costs for detainees identified each month. With a lead time of 2

weeks, these figures would be 6.8 years, saving $353,000 of housing costs each month.

Individualized intervention on cases for applications beyond turnarounds is an interesting

avenue for future research. For this application, alternative scoring metrics could be useful,

including some which attempt to predict the magnitude of predicted turnarounds’ dead days

ahead of time, to prioritize those cases and save on housing costs. Additionally, this could

be approached from a utility standpoint, attempting to reduce the disutility of excess time

incurred by the detainees due to dead days.
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CHAPTER 3

ON PEOPLE’S UTILITY OVER WAIT FUNDAMENTALS

AND INFORMATION

3.1 Introduction

“Waiting in line sucks,” reviewed one participant after completing our experiment. We all

know the feeling. But despite decades of queueing research, we don’t have a good explanation

of why. Modeled in the traditional ways, our participant’s response is a bit puzzling. They

reported a compensation of $20/hour, more than triple their average wage on MTurk (Hara

et al., 2018). Shouldn’t this wait have been an unmitigated success? What aspects of people’s

disutility are we missing? This paper explores the connection between a prospective wait’s

fundamentals and people’s perceived disutility. Further, it demonstrates that the way a wait

is presented also significantly affects utility.

The literature contains little empirical research on how people assess prospective waits.

Life experience provides some intuition, of course—people dislike long waits, variable waits,

and long lines. To invoke such preferences, scholars often reference David Maister’s The

Psychology of Waiting Lines (1985). While the article contains many keen observations, it

provides no formal evidence: no data or statistical tests; no analytical model; no attempt to

measure the relative importance of the phenomena described. And the subsequent decades

have brought almost no progress on this front. “Evidently, it exceeds the scope of most

individual research papers to identify individual-level behavioral (ir)regularities, explain their

underlying drivers, and establish their implications for system-level behavior,” concede Allon

and Kremer (2018, p. 325) in a recent chapter on queueing.

In this paper, we estimate a series of utility functions from individual-level preferences

over candidate waits. We explore the space of wait fundamentals, simultaneously manipu-

lating reward amount, mean wait time, wait variance, and line length. To do so, we adopt

conjoint analysis, a straightforward yet powerful technique from the marketing literature
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that is rarely used in behavioral operations. We also manipulate the way in which we de-

scribe wait fundamentals (e.g., as a queue with 6 people vs. an aggregate wait of about 10

minutes) and find that this “information layer” moderates the relationship between funda-

mentals and utility in consistent and meaningful ways. Our resulting utility functions can

be incorporated directly into more complex models of service systems. Doing so could add

nuance and credibility to analytical queueing models.

Our results stem from a simple experiment: Participants see a panel of waiting scenarios

from which they choose their favorite. The scenarios are meant to represent “everyday”

waits—those with moderate duration (less than 20 minutes) for a modest reward (worth

about five dollars). We achieve incentive-compatibility—an elusive gold standard for conjoint

studies (Ding, 2007)—by conditioning participants’ rewards on enduring one of their chosen

waits in real time.

The fitted utility functions confirm the intuitive—people like larger rewards, and shorter,

less-variable waits. But they go further by revealing how people trade off these competing

interests. In most queues, wait time variance is just as consequential as mean duration. This

implies that people are risk averse with their time. And while risk aversion is frequently

incorporated into models throughout operations (Davis, 2018), economics (Pratt, 1964), and

finance (Markowitz, 1959), it “has been ignored in most of the past studies on queueing

models” (Wang and Zhang, 2018, p. 1198). Some studies have provided support for the

existence of wait-induced risk aversion (Leclerc et al., 1995; Pazgal and Radas, 2008). Our

utility estimates measure its magnitude relative to mean wait time and reward—a critical step

that makes our results accessible to modelers. That said, we understand that incorporating

risk aversion will be infeasible in many models due to mathematical intractability. But this

is no reason to eschew study of risk aversion over waits altogether.

We find that different presentation schemes influence people’s utility, independent of wait

fundamentals. This is important because waits have no “plain” or “default” presentation. A

busy restaurateur could tell arriving guests their estimated wait time or, alternatively, their
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position in the queue. Both schemes are reasonable, yet customers may evaluate the two

prospects (or rather, the two presentations of the same prospect) quite differently. We study

several such schemes in our eight experimental treatments. They have identical fundamental

characteristics but differ in how they are presented. We find substantial differences between

two common regimes: per-person lines (as in grocery stores and banks) and aggregate count-

down timers (as in ridesharing apps and pizza delivery). People are about twice as sensitive

to a wait’s duration in the latter. To mimic the fact that real world waits often have no posted

numerical information about wait duration, we induce non-quantitative beliefs about wait

time in some treatments by posting sample draws from the wait’s distribution. People defer

to this non-quantitative “sense” of a wait—to their detriment—even when they have precise

numerical information available. And we find that when precise numerical information is

available, it does little to prime subjects to be more sensitive to the posted characteristics.

Finally, we distill our results into a set of managerial insights in the spirit of Maister

(1985). We hope that our paper will be the first of many data-driven refinements to his

influential work. And for researchers and practitioners who wish to adopt a utility model

which incorporates these insights, we provide a simple, parsimonious version that organizes

all of our results.

The remainder of this paper is organized as follows: Section 3.2 introduces our framework

for understanding wait fundamentals, wait information, and people’s utility over the two.

Section 3.3 reviews relevant literature. Section 3.4 details our experiment. Section 3.5 covers

the implementation of our experiment and the benefits of hosting it on Amazon’s MTurk.

Section 3.6 briefly outlines our methods for maximum likelihood estimation. Section 3.7

reviews our estimation results and describes the impact of our eight informational treatments.

Section 3.8 illustrates the managerial insights to be gained from our work. Finally, we offer

concluding remarks in Section 3.9.
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3.2 A Waiting Framework

A wait has three fundamental elements: a duration, a reward, and a context. Each is an

established area of research in its own right. Queueing theorists study how systems dictate

a wait’s duration. Marketers and economists study how rewards like products and services

influence a customers’ utility. And psychologists study how various waiting contexts (e.g.,

priority boarding at the airport) affect people’s emotions and behavior. Given the attention

they’ve received individually, these fundamentals—together—may seem sufficient to describe

people’s utility over waits. But they aren’t. Our experiments demonstrate that information

about a wait—its presentation and people’s prior beliefs about it—influences people’s utility,

independent of wait fundamentals.

Wait fundamentals are just incomprehensible for most people. Consider the seemingly

simple example of a coffee shop. Would you wait in a five-person queue with i.i.d. inverted

beta service times and parameters (10.7, 3.2)? If you only have 10 minutes to spare, will you

get your drink in time? Does the menu item reading K. Yirgacheffe (2,150m) AA; V60, 20s

bloom provide any objective information about its value as a reward? No, you wait because

the shop has a nice atmosphere.

People depend on intermediary information to make sense of these complex wait fun-

damentals. We are well aware of this signaling game over reward fundamentals: we call it

marketing or advertising. A process of similar complexity sits atop the communication of

waits. We dub this the information layer (shown in Figure 3.1). Firms choose a (necessarily

incomplete) presentation scheme, and customers fill in the blanks with their prior beliefs.

People make informed decisions about whether they will join a wait or balk by estimating—

non-quantitatively—the wait duration, the reward value, and the impact of the context.

Customers do not compute the convolution of five i.i.d. inverted beta distributions; they

just consider the five-person line and conclude that a fancy coffee at an inviting shop is worth

a few minutes. We aim to study this decision.

Our results provide evidence that information about a wait influences people’s utility,
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Figure 3.1: A Framework for Organizing People’s Utility Over Waits.

independent of the wait’s fundamentals. Holding fundamentals constant, we conduct a

panel of experiments that differ only in presentation scheme and induced prior beliefs. Each

treatment specifies wait fundamentals completely and accurately. Yet participants behave

differently when the same wait is presented in different ways. Practitioners can use these

patterns to influence behavior and system dynamics. For theorists, our results provide

an empirically tuned utility specification. And finally, behavioral researchers can use the

framework presented in Figure 3.1 to organize future work.

To reinforce the importance of wait information, we close this section with two short

examples that demonstrate its impact intuitively.

A presentation scheme must be chosen, and it matters.

When customers call an Uber, they receive a single estimate of total trip duration. Uber

chooses this simple presentation because it’s useful for their customers. The underlying wait

fundamentals are too complex: They arise from a constantly updating array of customer and

driver locations underneath a complex matching and pricing algorithm. Even if Uber could

communicate all this information to customers, it would be useless. People aren’t characters

in The Matrix—they need clear presentation schemes, not waterfalls of data.
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Prior beliefs matter because posted information is rare.

Imagine finding a kid’s lemonade stand on a hot day. Their sign reads: “Fresh Lemunade

♡ Squezed Wile You Wait.” Neither you nor the kid knows anything about your service

time distribution. Regardless, you choose to join the queue—it is a hot day, after all. Prior

beliefs provide enough distributional knowledge of quality, price, and production time to let

you assess the wait. To illustrate the power of these beliefs, imagine coming upon another,

nearly identical child-run food stand advertising “Raw Sooshi ♡ Rolled Wile You Wait.” You

would be wise to balk at this offer. Once again, it’s a hot day.

3.3 Related Work

The matter of how people assess waits is important for practitioners and scholars, alike.

After all, “in many service systems customers behave strategically” (Ata and Peng, 2018,

p. 163). Strategic customers make decisions in pursuit of their own objectives. But what do

people “want” when it comes to waiting? Our study attempts to systematically explore this

question.

Theorists’ efforts to incorporate strategic customers into queuing models began a half-

century ago (e.g., Naor 1969) and continue to this day—see Ward (2012) for a survey. Early

work connected balking behavior to features that “characterize the queue, such as queue

length and waiting time”(Haight, 1957, p. 360). Decades on, these two features are still the

most common to appear in behavioral descriptions of waiting (Allon and Kremer, 2018).

We build on this literature by incorporating people’s preferences over the space of wait

fundamentals and information structures.

Our paper contributes to a sparse literature on people’s evaluation of prospective waits.

“This is an area that needs to be explored further via different experimental designs” (Akşin

et al., 2019, p. 25). More is known about people’s behavior during waits. Experimental

studies have linked waiting experience to reneging (Akşin et al., 2019; Ülkü et al., 2020); field
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studies, in turn, have linked reneging to long-run firm profitability (De Vries et al., 2018).

The most established context for empirical queueing work—telephone call centers (Gans

et al., 2003; Jouini et al., 2011; Akşin et al., 2017; Yu et al., 2017)—tends to focus more

on aggregate customer behavior than on individual microeconomic decisions. Associated

research considers the equilibrium behavior of customers who strategically time their arrivals

to a congested system (Rapoport et al., 2004; Seale et al., 2005). And the behavior of

customers with private information about wait fundamentals can serve as a signal to others

(Veeraraghavan and Debo, 2009; Kremer and Debo, 2016).

3.3.1 Risk Aversion

Though risk sensitivity is a foundational principle of financial (Markowitz, 1959) and eco-

nomic (Pratt, 1964) theory, it is often left out of queueing models, typically as a matter

of mathematical tractability. There are few papers devoted to modeling risk-sensitive cus-

tomers in queueing systems. In one, Wang and Zhang (2018) argue that “customer risk

attitude can be one of the most critical factors affecting the performance of a stochastic

service system” (p. 1198). However, most “existing models do not consider how customers

include uncertainty... to decide which [queues] to join” (Delgado et al., 2011, p. 1720). Our

results suggest that people are risk averse with their time and that this risk aversion has a

substantial influence on customer behavior.

Kumar et al. (1997) conduct an experimental study of wait time guarantees using a risk-

sensitive theoretical framework much like our own. They assume that when a “customer

arrives at a service facility, he or she has some prior beliefs about the distribution of service

times...” (p. 298). We induce prior beliefs explicitly in several of our treatments. Their

model, like ours, involves normally distributed service times. Under negative exponential

utility, they find that the “expected utility from waiting time reduces to a modified mean–

variance model” (p. 300). We also adopt a mean–variance specification when modeling utility

but focus on a different stage of the waiting process: They investigate the impact of wait time
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guarantees on customer satisfaction during the wait. We study the impact of fundamentals

and information on customers’ utility before the wait.

Current evidence of people’s risk preferences over wait duration points toward risk aver-

sion. Leclerc et al. (1995) and Weber and Milliman (1997) find that survey respondents

avoid risky options when asked to choose among hypothetical travel delays. Furthermore,

de Palma and Picard (2005) find that about sixty percent of travelers are risk averse while

a third are “risk lovers.” Leclerc et al. (1995) go on to offer a plausible explanation for risk

aversion in waiting (i.e., lost time) contrary to the phenomenon of risk-seeking behavior re-

garding lost money (Kahneman and Tversky, 1979): The inability to store or transfer time

induces risk aversion when considering prospective waits.

3.3.2 Wait Presentation and Bounded Rationality

Queues are going virtual. Google now provides real-time expected wait durations in its

search results. Yelp lets customers “join a restaurant’s waitlist from the comfort of [their]

own home” (Yang, 2019).

Customers today often encounter online descriptions of queues rather than the queues

themselves. But there is little research linking a wait’s presentation to its appeal. Hui

and Tse (1996) insert a 5–15 minute lag in software that participants are “evaluating” and

present it as either a delay of about X minutes or as a queue with Y customers. They

find that “duration information may not be the most effective tool to minimize consumer

dissatisfaction” (p. 89). While their results are based on post-wait satisfaction measures,

our estimates of prospective wait preferences would agree: We find that the per-minute

wait penalty is roughly twice as high when people have duration (as opposed to queue)

information. Similarly, Batt and Terwiesch (2015) argue that customers facing a queue-

framed wait “might naively estimate the waiting time to be short and thus join a queue

that they would not otherwise join if they were informed about the expected waiting time”

(p. 39).
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The literature on bounded rationality offers some explanation for why people might eval-

uate a queue-framed wait differently than its duration-framed analog. Huang et al. (2013)

interpret “bounded rationality as the incapability of estimating expected waiting time in a

service setting” (p. 264). Customers may form inaccurate beliefs about a wait’s expected

duration from a small sample of past experiences (Tong and Feiler, 2017) or based on anec-

dotes from others (Huang and Chen, 2015). Of course, bounded rationality primarily affects

queue-framed waits; no computation is required when the expected duration is explicitly

posted. This explains our finding that the preferences we measure in duration-framed waits

are more consistent with the typical behavior of MTurk workers (as reported in other studies)

while preferences in queue-framed waits appear to be distorted.

3.3.3 Implementing Waits in Controlled Experiments

To study waiting in the lab, researchers might want to subject participants to a large number

of waits. But this approach is too slow. One solution is to have participants respond to

“realistic hypothetical scenarios” (Leclerc et al., 1995, p. 111). Allon and Kremer (2018)

warn, however, that “hypothetical snapshots . . . may not capture well the dynamics of real

wait time experiences” (p. 330). A second solution is to simulate waits (i.e., to resolve them

instantly with a waiting cost assessed per unit of “time”). This transforms waiting problems

into optimization problems: “One alternative is often better than the other. However, it

requires cognitive abilities to correctly evaluate” them (Conte et al., 2016, p. 2). Some

studies use a “hybrid” approach where participants actually wait but are also assessed a

monetary waiting “fee” (Pazgal and Radas, 2008; Akşin et al., 2019, Studies 1 and 2). But

by conflating time and money, hybrid waits make it difficult to identify preferences between

the two.

“Real waits” allow for the most direct study of people’s preferences by avoiding induced

waiting costs. Instead, they make people wait in real time imposing no costs other than

their natural distaste for waiting. Ülkü et al. (2020) achieve this standard across many
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contexts, using the real wait as a moderator to understand the relationship of waiting time

and purchase intentions. In Study 3, Akşin et al. (2019) eliminate induced waiting costs so

that participants can “make their own tradeoff between the monetary cash reward...and their

own waiting cost” (p. 14). Our study uses a real wait to achieve incentive compatibility.

3.3.4 Conjoint Analysis

Conjoint analysis may be the “most significant development in marketing research over

the last 30 years” (Rao, 2014, p. 1). The choice-based version works by describing many

potential variants of a product (called profiles), arranging these profiles into choice sets, and

then asking participants to select their favorite profile from each set. Maximum likelihood

estimation allows researchers to impute the participant’s utility as a function of product

features (called attributes). With this imputed utility function, researchers can model the

participant’s response to any product variant.

The strength of conjoint analysis is its ability to generate a utility model over fundamental

product attributes without having to ask contrived questions about the attributes directly.

A researcher might be interested in the product features that drive apple sales. But asking

about these drivers explicitly—“How important is the height of an apple, independent of its

circumference, roundness, and color?”—is unlikely to prove illuminating. Conjoint analysis

provides an elegant solution: the researcher can present participants with a set of apples, let

them choose their favorite, and then mathematically impute the importance of an apple’s

stature.

The technique, however, has a substantial limitation: establishing incentive compatibil-

ity is difficult because the number of potential profiles is typically large. It is unrealistic for

researchers to have an apple of every shape, size, and color available to incentivize choices

(and even more so when each Apple is a $1,000 phone). “Almost without exception,” Ding

(2007) writes, “conjoint data have been collected in hypothetical settings that offer no conse-

quences for participants’ decisions” (p. 214). Proper incentivization, however, improves the
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reliability of results (Katok, 2018). We achieve incentive-alignment by making participants

experience one of their selected profiles as a real wait.

Many questions of interest to the operations community are amenable to straightforward

conjoint incentive-alignment using a technique like ours. Whereas marketing research ex-

plores preferences over products and services (which are hard to realistically emulate or bring

into the lab), experiments in operations focus on decision making and trade-offs (which can

more easily be linked to meaningful consequences). Furthermore, the optimal design (Sauré

and Vielma, 2019) and analysis (Chen and Hausman, 2000) of conjoint studies provide prob-

lems of theoretical interest. As such, we see broader adoption of conjoint methods as a

fruitful direction for operations researchers.

3.4 Experiment

Our experiment is a simple conjoint analysis study designed to measure how people evaluate

prospective waits. Participants see a set of three potential waiting scenarios and choose

their most preferred. This process repeats twenty times, and we call this elicitation our

“questionnaire.” We use these choices to estimate a utility model as a function of the wait

fundamentals (see Section 3.6). Our scenarios represent “everyday” waits: participants

exchange a moderate amount of time for a modest amount of money. To incentivize truth-

telling, participants must endure one of their chosen waits in real time to earn its associated

reward. Our experiment is comprised of eight treatments—all using the same underlying

waits—that only differ in how we inform participants about the waits. This design allows

us to understand people’s utility over fundamental wait characteristics and the impact of

information on that utility.

The waits are elemental. They specify a wait time distribution and a fixed monetary

reward for enduring it. To isolate people’s utility over reward and duration, there is no

cover story (i.e. context) outside of the experiment itself. Rewards vary from $4 to $5. The

wait durations are normally distributed with means varying between 4m 36s and 13m 38s
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and variances of 0, .25, or 1m2. Some treatments present waits as queues with associated

line lengths of 2, 5, or 8 people. Other treatments present waits as clocks (i.e., countdown

timers) with participants receiving updates on their remaining wait time 2, 5, or 8 times (for

symmetry). These attributes are fully listed in Figure 3.2.

$4.00 $4.25 $4.50 $4.75 $5.00

4m 36s 6m 54s 9m 12s 11m 30s 13m 48s

Zero 0.25 minutes2 1.00 minute2

2 people/updates 5 people/updates 8 people/updates

Pay

Mean 
Wait

Wait 
Variance

# People/
# Updates

Queue

Clock

W
ithin-subjects
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mean and variance 

displayed

Total 
mean and variance 
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Mean Only

No Numerical
Information
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Figure 3.2: Overview of Experimental Design.

In total, there are 5 × 5 × 3 × 3 = 225 distinct waits (“profiles”) created from these

attributes that could be arranged into roughly 2253 (over 11 million) choice sets. The

careful selection of attributes, profiles, and choice sets—called the study’s “design”—is a

well-studied problem in the marketing literature (Rao, 2014). The goal is to achieve high

statistical power with few questions to avoid participant fatigue. Each question should

compare waits that are meaningfully different. The waits must also span the attribute space

in a balanced manner. Our design (detailed in Appendix B.1) has a relative D-efficiency of

86%. We randomize the question sequence and the profile A/B/C labels to control for order

and presentation effects.

Participants begin our study by reading instructions that describe how to interpret each

wait profile, how their choices influence the selection of their real wait, and how their payment

will be determined. We make clear that the majority of their potential earnings depends on

successful completion of the real wait. We check understanding of these mechanisms with

a four-question quiz. Participants must correctly answer at least three of these questions

to continue with the experiment (see Table 3.1). For the interested reader, a sample set

of instructions and quizzes for both the Queue and Clock treatments is available in the
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Queue Clock
Information At-

tempted
Quiz

Passed
Quiz

Completed
Real Wait

At-
tempted

Quiz

Passed
Quiz

Completed
Real Wait

Full-NoPrior 153 127 111 87% 131 104 97 93%
Full+Prior 111 75 63 84% 111 82 65 79%
Mean+Prior 109 75 66 88% 103 73 59 81%
None+Prior 126 85 70 82% 108 77 61 79%

Table 3.1: Participants by Treatment. Passing the comprehension quiz was an inclusion
criteria. Participants who failed the quiz were not included in any analysis.

Appendix.

[58s] [1m 31s] [1m 40s] [1m 8s] [1m 14s]

(a) Queue Treatment

[58s] [1m 31s] [1m 40s] [1m 8s] [1m 14s]
Success

Remaining:

1m 14s
Remaining:

2m 22s
Remaining:

4m 2s
Remaining:

5m 33s
Total wait time:

6m 31s

(b) Clock Treatment

Figure 3.3: Example Incentivized Real Waits (Representing the Same Underlying
Wait).

After the questionnaire, we randomly select one of the participant’s preferred waits for

them to experience in real time (illustrated in Figure 3.3). While waiting, participants must

complete regular attention checks (a button click every 15–30 seconds). If they complete the

wait without missing an attention check, they earn the wait’s associated reward. 80–90% of

participants who begin a real wait complete it successfully (see Table 3.1). Participants earn

a $.50 fixed wage for participation, $.25 for each correct answer on the comprehension quiz,

and $4–5 for successfully completing the real wait.
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3.4.1 Treatments

Our study design operates within the space of everyday wait fundamentals. Our treatments

operate in the information space. They arise from three manipulations which represent

common information structures. They are (1) Queues vs. Clocks, (2) Prior vs. No Prior, and

(3) the posted information about wait time. We discuss these manipulations in detail below.

Within this framework, we impose the restriction that we must fully inform participants

about the true wait time distribution, either quantitatively or non-quantitatively. This

results in the eight treatments listed in Figure 3.4.

Q:Full+Prior

Q:Mean+Prior

Q:None+Prior

C:Full+Prior

C:Mean+Prior

C:None+Prior

Mean & Variance

Mean Only

None

 

Queue
 

Clock
 

Posted Information

Mean & Variance

Mean Only

None

 

Queue
 

Clock
 

Posted Information

Omitted: 
Information insu�ceint
to fully characterize wait

�����������������������������  

���
 

��

Q:Full-NoPrior C:Full-NoPrior

Figure 3.4: An Illustration of all Experimental Manipulations and Resulting Treat-
ments.

Queues vs. Clocks emulates two common presentation schemes for everyday waits:

those presented as lines and those presented as aggregate timers. Queues are like grocery

store and bank teller lines where the line length is visible, and customers typically join at

the end. Clocks are like ridesharing apps and pizza deliveries where wait times are presented

in aggregate, and firms often report an estimated duration or end time.

In our experiment, the way we inform participants about the fundamentals of each wait

differs between Queues and Clocks. Queues have the feature “line length” (i.e., the number

of people in line). All information posted about the wait time refers to individual service

times and thus is presented on a per-person basis (see Figures 3.5a–3.5d). Clocks have the

feature “number of updates,” and we present total wait time information in aggregate (see

Figures 3.5e–3.5h). “Number of updates” tells participants how many times they will be
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informed about their remaining wait time during the real wait.

(a) Q:Full–NoPrior (b) Q:Full+Prior (c) Q:Mean+Prior (d) Q:None+Prior

(e) C:Full–NoPrior (f) C:Full+Prior (g) C:Mean+Prior (h) C:None+Prior

Figure 3.5: A Sample Wait as Presented in Every Treatment. Ranges for variance
are a 90% confidence interval around the mean. To convert this range from aggregate (as in
the Clock treatments) to per-person (as in the Queue treatments), divide the radius of the
aggregate range by the square root of the line length.

The Queues vs. Clocks manipulation also dictates how we present the real wait. In

Queues, we place participants in the back of a simulated first-come, first-served line with

line length serving as the only indication of progress (see Figure 3.3a). We don’t tell partic-

ipants how much time they have remaining. Interservice times are drawn according to the

distribution represented by the profile selected for their real wait. In Clocks, a timer displays

the total amount of time that the participant must wait. It refreshes periodically according

to the number of updates in the participant’s selected wait profile (see Figure 3.3b). We

draw the interarrival times of these updates from the same distribution as the interservice

times in Queues. In other words, each Clock wait is goverend by an unobservable queue.

Prior vs. No Prior Given manipulates whether we provide a non-quantitative (yet

accurate and informative) signal about the wait’s duration. To do so, we plot 400 sample
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draws from the wait time distribution (see Figures 3.5b–3.5d and 3.5f–3.5h).

Of course, this does not perfectly match how people’s priors operate in practice. Real

priors are much more complex. The two are similar, however, in that they contain wait time

information but are not based on explicit statistics. In our study, providing sample draws

from the wait time distribution allows us to quickly induce an accurate yet non-quantitative

“sense” about wait time just as priors can do for waits in everyday settings.

Posted Information About Wait Time varies the statistics we use to describe each

wait. We provide either: (1) no information, (2) mean wait time only, or (3) mean and a

90% confidence interval (which we refer to as “full” information). This emulates information

provided about everyday waits. Some, like grocery store checkout lines, provide customers

with no information. Others, like ridesharing apps, provide an estimate of mean wait time

only. And uncertainty, if acknowledged at all, is presented as a range (e.g., 10 to 15 minutes).

We mimic this presentation scheme when providing variance information. People have little

intuitive understanding of variance; a range is a more interpretable way to communicate

variability.

In Clocks, this posted information speaks directly to the aggregate wait time. But to

have the same in Queues requires difficult arithmetic. Participants must multiply the per-

person wait time statistics (given in minutes and seconds) by the line length, then somehow

transmogrify the result back into something comprehensible using modulo arithmetic. This

isn’t trivial. And we don’t adopt the minute/second notation as an obstruction—it’s simply

the way people describe time at this scale. Most people could not parse the easier-to-multiply

range “0.833–1.167 minutes.” It is much more natural to describe this range as “50s to 1m

10s.” Further, understanding aggregate uncertainty requires additional difficult calculation.

The per-person ranges we give for uncertainty are proportional to the standard deviation of

wait time. To convert these to aggregate ranges, participants must multiply them by the

square root of line length. To see these conversions of wait time statistics concretely, refer

to Figure 3.5 which presents a single underlying wait presented as both Queue and Clock.
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3.5 Experimental Setting

We ran our experiment on Amazon’s Mechanical Turk (MTurk) using SoPHIE software (Hen-

driks, 2012). 952 participants entered into our study. 698 (73%) passed the comprehension

quiz and are included in all of our analyses. 592 (85%) of these participants completed their

real wait. Table 3.1 gives these statistics by treatment.

Running our study on MTurk provides the validity of a field experiment while avoiding

potential issues from observational or laboratory studies in this setting:

Most observational data is too censored to study people’s utility over wait fundamentals.

First, people’s priors are almost completely inaccessible—it wouldn’t even help to ask about

them. To understand people’s preferences given their beliefs about a wait, these beliefs must

be precisely induced. Second, in the field, people’s decisions are obscured from the researcher.

Consider balking. Many customers balk before they even approach a wait because they

believe it will be too long. It would be difficult for a researcher to observe this decision. A

controlled setting like ours allows us to completely observe people’s actions and control their

choice sets, giving us a clearer picture of their utility than would be available otherwise.

The traditional laboratory setting allows for more control but introduces a large fixed

time cost to participants. Days in advance of their session, students must commit to a

defined block of time and then travel to and from the lab. This dilutes the effect of the

relatively short waits feasible within the experiment. It would be difficult to differentiate the

subjects’ preferences over the experiment’s wait time and the time involved in the experiment

overall. Because MTurk workers are already on the platform, implementing our experiment

only requires some short instructions. The majority of time spent is tied to the real wait.

Our setting provides the precision of a laboratory while being minimally invasive to

subjects’ behavior. MTurk workers are constantly choosing among various options (HITs)

to trade a little of their time for some money. Our experiment just asks them to do this

same thing twenty times. Because our questionnaire is a scaled-down version of the MTurk

platform itself and workers make their choices based only on their natural preferences and
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distaste for waiting, the study can be seen as a framed field experiment (Harrison and

List, 2004) of how MTurk workers evaluate prospective waiting tasks. The average MTurk

worker completes hundreds of HITs per month (Hara et al., 2018)—with such a diversified

portfolio, workers would be wise to pursue a risk-neutral, wage-maximizing strategy. Thus,

any behavioral deviations from this approach (e.g., risk aversion) that we observe among

MTurk workers are likely to be even stronger in the general population.

3.6 Maximum Likelihood Estimation

We use maximum likelihood estimation (MLE) to tune the parameters of a model of people’s

utility over prospective waits. We will briefly outline this procedure—see Rao (2014) or Ben-

Akiva and Lerman (1985) for a deeper discussion. Our proof sketch draws heavily from the

former. For visual clarity, we refer to the symmetric attributes line length and number of

updates as “#” in this section.

We begin by assuming that each participant, i, has a deterministic utility function, vik,

over the pay, wait characteristics, and line length or number of updates of each profile, k.

Here, pay refers to a profile’s reward, wait refers to the mean aggregate wait time, and var

refers to its aggregate variance. The deterministic utility functions we use for our estimation

have the following form:

vik = βpay (pay)ik + βwait (wait)ik + βvar (var)ik + β# (#)ik (3.1)

Using the form βwait (wait) + βvar (var) to model people’s utility over wait time is a

“mean–variance” utility specification, which dates back to Markowitz (1952, 1959). It is

useful for its interpretability for both scholars and practitioners. Titans of economics and

finance have argued about the appropriateness of mean–variance utility because it requires

a strong assumption: normally distributed returns (Borch, 1969; Liu, 2004; Johnstone et al.,

2013). If this assumption is satisfied, mean–variance utility arises from the common expo-

72



nential utility specification (Kumar et al., 1997; Johnstone et al., 2013). Critically, our waits

are normally distributed—this is key to the symmetry of our Queue and Clock treatments.

Conjoint analysis requires the ability to independently vary attributes (e.g., mean and vari-

ance) when generating profiles. This imposes a slight distributional constraint in Clocks.

But in Queues, the aggregate wait time must be presented as the sum of i.i.d. service times.

Maintaining the same underlying wait distributions across all treatments requires normal-

ity. Given any aggregate mean and variance, normally distributed aggregate waits can be

deconvolved into an arbitrary number of i.i.d. normal random variables (i.e., service times).

And, as an additional benefit, this allows the use of a mean–variance specification for our

utility function.

We add a random shock, ϵik, to the deterministic utility function vik to account for

unobserved factors such as idiosyncratic preferences. We assume these shocks follow i.i.d.

Type-1 Extreme Value distributions. Participant i’s total (random) utility is then given by

uik ≡ vik + ϵik.

We show participants choice sets, s ∈ {1, 2, . . . , 20}, composed of three waits each. Par-

ticipants choose the wait which has the greatest utility, uik, k ∈ {1, 2, 3}. We denote

participant i’s choice in set s as yis ∈ {1, 2, 3}. The probability that the participant will

choose option 1 (the same arguments hold for options 2 and 3) is the probability that option

1 has the maximum utility in the choice set. That is, the sum of option 1’s deterministic

utility, vi1, and its random shock, ϵi1, is greater than the total utility of both of the other

options. Formally,

P (yis = 1) = P
(
(ui1 ≥ ui2) ∧ (ui1 ≥ ui3)

)
. (3.2)

Ben-Akiva and Lerman (1985) show that this choice probability is a function of only the

deterministic part of the participant’s utility and has the following form:

P (yis = 1) = evi1∑3
k=1 evik

(3.3)
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This is the well-known multinomial logit choice model. We use these choice probabilities

to tune the β’s in the participants’ deterministic utility functions. The likelihood, li, of

seeing participant i’s history of chosen waits, {yi1, yi2, ..., yi20}, is equal to the product of

the probability of choosing those waits: li = ∏20
s=1 P (yis). The likelihood of seeing the

history of chosen waits for all participants is the product of their individual likelihoods:

L = ∏N
i=1 li. These L’s are functions of the attribute parameters (i.e., the corresponding

β’s). We maximize the likelihood of observing the participants’ choices by maximizing L

over the parameters βpay, βwait, βvar, and β# for each treatment separately.

3.7 Experimental Results

We use the data from our experiment and the estimation methodology described in Sec-

tion 3.6 to calibrate our utility functions (see Equation 3.1). The resulting coefficients

appear in Appendix B.2. Dividing each parameter by its corresponding βpay normalizes it

to the dollar scale. Doing so makes treatments easier to compare—the value of a dollar is

universal. The resulting pay elasticities, listed in in Table 3.2, represent the marginal pay-

ment required to offset a unit increase in each attribute. For ease of exposition, we will refer

to these scaled coefficients for the remainder of this section.

Queue Clock
Information Pay Mean Variance # People Pay Mean Variance # Updates
Full–NoPrior 1.00∗∗∗ −.063∗∗∗ −.224∗∗∗ −.021∗∗∗ 1.00∗∗∗ −.105∗∗∗ −.084∗∗∗ −.006
Full+Prior 1.00∗∗∗ −.051∗∗∗ −.104∗∗∗ .001 1.00∗∗∗ −.093∗∗∗ −.086∗∗ −.010
Mean+Prior 1.00∗∗∗ −.056∗∗∗ −.101∗∗∗ .013∗∗∗ 1.00∗∗∗ −.121∗∗∗ −.091∗∗∗ −.011∗
None+Prior 1.00∗∗∗ −.053∗∗∗ −.111∗∗ .000 1.00∗∗∗ −.110∗∗∗ −.072∗∗∗ −.012∗∗∗

***p < 0.001, **p < 0.01, *p < 0.05

Table 3.2: Model Estimates Converted to Dollar Scale.

We believe our estimated utility models provide the clearest evidence for our results,

but we will corroborate our claims by referencing participants’ choices. Table 3.3 lists the

average value of participants’ chosen profiles for each attribute as well as these average values
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for all 60 profiles in our design. Recall that each treatment presented waits with the same

underlying fundamentals.

Queue Clock
Information Pay Mean Variance # People Pay Mean Variance # Updates
All Profiles 4.50 9.23 .417 5.00 4.50 9.23 .417 5.00

Full–NoPrior 4.69 8.22 .305 4.66 4.67 7.40 .358 4.85
Full+Prior 4.68 8.47 .365 4.97 4.66 7.88 .370 4.83
Mean+Prior 4.67 8.36 .380 5.20 4.61 7.34 .379 4.81
None+Prior 4.68 8.52 .351 4.73 4.66 7.86 .380 4.80

Table 3.3: Average Attribute Values of Chosen Profiles by Treatment.

The remainder of this section is structured as follows. In Section 3.7.1 we discuss the

commonalities among our treatments’ different presentation schemes. These suggest some

universal characteristics of people’s utility over wait fundamentals. In Sections 3.7.2–3.7.4,

we discuss the effects of our three manipulations: Queues vs. Clocks, posted wait time

information, and Prior vs. No-Prior.

3.7.1 People’s Utility Over Wait Fundamentals

Each of our eight treatments presents the same wait fundamentals under a different presenta-

tion scheme (see Figure 3.4). And across all eight we find commonalities: Participants choose

waits with higher than average pay, shorter than average duration, and lower than average

variance (Wilcoxon signed-rank test, p < 0.0001 for each attribute in each treatment; the

participant is the unit of analysis for all direct comparisons of choices in this paper). These

are not surprising. Of course people prefer larger monetary rewards. Of course they avoid

long and uncertain waits. But these commonsense results lay a useful foundation: Prefer-

ences are qualitatively and directionally consistent across an array of information schemes.

And people are risk averse with their time in all of them.

Our utility models confirm the consistent main effects described above. Pay has a positive

coefficient in all treatments (p < 0.001, see Table 3.2). Mean wait time and wait variance
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both have negative coefficients in all treatments (p < 0.01). The penalty on mean wait ranges

from $0.05–0.12/minute while the penalty on variance ranges from $0.07–0.22/minute2.

We will close this section with discussion of our fourth (and heretofore ignored) attribute:

line length (Queues)/number of updates (Clocks). Its impact on participants’ choices is

inconsistent (see Table 3.3): Participants choose profiles with a mean value significantly

below 5 (the average of all profiles) in some treatments but indistinguishable from 5 in

others. This is to be expected in our study because line length is, by construction, divorced

from wait time. Accordingly, our estimated coefficients for this attribute are small and not

statistically different from zero in most treatments, though two estimates are significantly

negative and one is significantly positive (p < 0.001, see Table 3.2). Given this inconsistency,

we refrain from drawing conclusions about this attribute.

3.7.2 Queues vs. Clocks

Our participants choose different waits depending on the presentation scheme (Queues vs.

Clocks). Specifically, they behave as if their per-minute waiting cost is nearly twice as high

when facing Clocks. And this difference is robust—the pattern holds across each of our four

informational conditions.

The differential influence of Queues vs. Clocks has practical implications for service

systems. These two formats are ubiquitous: Checkout lines are like Queues. Ridesharing

apps are like Clocks. But often, system designers must choose a presentation scheme. A

busy restaurateur could tell an arriving customer (1) to expect a forty-minute wait or (2)

that they are the ninth party in line. Both approaches are perfectly reasonable. Yet our

results suggest that this decision will have a dramatic impact on how customers evaluate the

prospect of waiting.

Participants are more sensitive to mean wait time when evaluating Clocks and less sensi-

tive when evaluating Queues, independent of fundamentals. Mean wait imparts a penalty of

roughly $0.10/minute in Clocks but only $0.05/minute in Queues (see Table 3.2). Converting
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these elasticities from minutes to hours yields estimates of our participants’ reservation wages:

the compensation required to offset an hour-long wait. Among the four Clock treatments, we

find reservations wages of about $5.50–7.25/hour; for Queues, the range is $3.00–3.75/hour.

Hara et al. (2018) report an actual mean wage of $6.19/hour for MTurk workers while on

task. Again, participants’ choices in Clocks are more consistent with behavior observed

outside of our experiment.

Looking at choices directly provides additional detail. Participants choose mean wait

times that are about 10% longer when facing Queues compared to Clocks (see Table 3.3).

This is significant in each of the four information conditions (Wilcoxon rank-sum test,

p < 0.05). These longer waits, however, are not offset by substantially higher pay. In

only one condition (Mean+Prior) is chosen pay different at the 0.05 significance level: In

this condition, pay is 1.3% higher for Queues. Pay trends higher for Queues in the other

three conditions, but the relative differences is only about 0.5%. Together, these results in-

dicate that participants earn lower hourly wages in Queues. This is true in each of our four

information conditions: The average wage for those assigned to Queues is $2.33–4.17/hour

lower than for Clocks. And earning a high wage is the primary objective for MTurk work-

ers (Kaufmann et al., 2011; Savage et al., 2020). Participants’ choices in Clocks are more

consistent with the preferences they display in other HITs.

A natural question is: What accounts for these differences between Queues and Clocks?

Our experiment is designed to measure preferences, not explain them. We have no objective

benchmark for “correctness” or “optimality.” But the literature on bounded rationality offers

a compelling explanation for the behavior we observe. Huang et al. (2013) interpret bounded

rationality as customers’ “incapability of estimating expected waiting time in a service set-

ting” (p. 264). In Clocks, expected waiting time is easy to estimate—it is explicitly posted

in three of four conditions and visually represented in the fourth. In Queues, participants

must compute the product of mean service time and line length. And the way that humans

demarcate time—demanding arithmetic in modulus 60 for seconds and minutes—makes this
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particularly difficult. It follows that our participants should appear more “rational” in Clocks

and less so in Queues. And if we operationalize “rationality” as consistency with preferences

and behavior exhibited in other settings, this is exactly what we find.

3.7.3 Posted Information About Wait Time

One might expect the choice of which statistics to report about a wait to have a substantial

impact on how people evaluate it. People may appear averse to long wait durations when

only the mean wait time is posted (making it more salient) and averse to uncertain waits

when the variance is posted. We find some evidence of this, but the magnitude of this

“priming” effect is small. Only a few of the observed differences are statistically significant.

3.7.4 Prior vs. No Prior Given

Prior beliefs are central to the way that humans assess waiting prospects. We find that

people rely on their non-quantitative “sense” of a wait—even to their detriment—despite

being provided accurate wait time statistics. This effect is small in Clocks: decision making

is quite consistent across all information conditions. In contrast, the effect is substantial in

Queues: behavior is consistent among the three conditions with non-quantitative information

but notably different in the fourth. Participants choose profiles with slightly higher pay (n.s.)

and shorter mean wait time (n.s.) but much lower variance (highly significant) when they

lack induced prior beliefs. Computing the aggregate wait time from individual service time

statistics (as required in Queues) is laborious—and avoided when possible—yet effective at

identifying objectively good (lucrative, short, low-variance) waits.

A key feature of the non-quantitative prior is that it allows us to fully inform partic-

ipants about expected wait times and uncertainty (concepts inherent to everyday waits)

without having to explicitly post wait time statistics (rare in everyday waits, especially for

uncertainty). The None+Prior condition provides participants with no numerical wait time

information, yet the mean values of chosen profiles (see Table 3.3) are indistinguishable from
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those in Full+Prior (no significant difference for any attribute at the 0.05 level in either

Queues or Clocks) despite the availability of a full numerical characterization of the wait

time distribution in the latter. When participants have non-quantitative priors, there ap-

pears to be no marginal value of getting full posted information. When priors are taken

away (Full–NoPriors), however, participants tend to choose objectively better waits. Rela-

tive to Q:Full+Prior, the average chosen profile in Q:Full–NoPrior pays $0.01 more (n.s.), is

about 15 seconds shorter (n.s.), and has nearly 20% less variance (Wilcoxon rank-sum test,

p < 0.0001). And relative to C:Full+Prior, the average profile in C:Full–NoPrior pays $0.01

more (n.s.), is about a half-minute shorter (p < .05), and has about 4% less variance (n.s.).

Again, the posted information in these two treatments is identical; Full+Prior just illustrates

the same information in pictorial format as well. But this provision of non-quantitative in-

formation causes participants to choose waits that tend to be lower-paying, longer, and more

variable.

An exaggerated impact of non-quantitative priors on Queues (as opposed to Clocks) is

clear from our scaled model estimates (see Table 3.2). In Clocks, the Full–NoPrior condition

has elasticities that are similar to the other conditions: Its pay elasticity of mean wait time

ranks second out of the four treatments. Its elasticity of wait variance ranks third. Within

the Queue treatments, however, Full–NoPrior is an outlier: It has the largest elasticity of

mean wait time (12.5% larger than the next-largest) and the largest elasticity of wait variance

(more than twice that of the next-largest). These extreme elasticities have several ramifi-

cations: Participants in Q:Full–NoPrior are particularly discerning in their choices (hence

the objectively good chosen waits). Further, for any Queue wait (irrespective of fundamen-

tals), the imputed waiting cost (mean wait penalty plus variance penalty) will be largest in

the Full–NoPrior condition. Finally, the extreme elasticity of variance ($0.22/minute2, the

largest penalty we report) indicates particularly acute risk aversion.

This pattern of results suggests that people select waits based on their non-quantitative

sense unless forced to do otherwise. In practice, customers may rely on their prior beliefs
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except in the most novel of waiting situations. Perhaps this is why posted information

(especially information about uncertainty) is rare in everyday waits—most customers would

just ignore it, anyway.

3.8 Managerial Insights

We will model this section on David Maister’s essay, The Psychology of Waiting Lines (1985).

Its high citation count (currently over 1,200 on Google Scholar) suggests that many find the

style useful. Additionally, this section will demonstrate some simple applications of our

utility functions.

3.8.1 Illustrative Examples

Consider a single-server system with n = 5 customers and an exponentially distributed ser-

vice rate of µ = 1/2. An arriving customer’s wait time, T , follows an Erlang distribution with

E[T ] = n/µ = 10 minutes and Var[T ] = n/µ2 = 20 minutes2. The customer’s deterministic

utility, therefore, is

v = r+E[T ] βwait +Var[T ] βvar = r+n

(
1
µ

βwait + 1
µ2 βvar

)
= r+10 βwait +20 βvar (3.4)

where r is the dollar-value of the service received. We omit the term corresponding to line

length/number of updates because its effect is small and not significantly different than zero

in many treatments (see discussion in Section 3.7.1). Here, the β coefficients refer to the

dollar-scaled versions shown in Table 3.2, which change according to the setting.

We will now describe three brief vignettes based on the system described above. The

fundamentals remain constant across all three, but the information available to the customer

changes. We use the scaled coefficients from our most applicable experimental treatment to

compute the dollar-value cost of the wait as appraised by the customer upon encountering

it.
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Call Center.

The system models a busy call center. A customer familiar with the system calls and

immediately receives a message stating that the expected wait time is 10 minutes. From

prior experience, the customer knows that (even conditional on this message), actual waiting

times are highly variable. This is like our Clock:Mean+Prior treatment.

vcall center = r + 10× (−$.12) + 20× (−$.09) = R− $3.00 (3.5)

Coffee Shop.

The system models a local coffee shop. The shop does not report any wait time statistics.

An arriving customer who visits the shop frequently observes the queue length and evaluates

the waiting prospect based on prior beliefs. This is like our Queue:None+Prior treatment.

vcoffee shop = r + 10× (−$.05) + 20× (−$.11) = R− $2.70 (3.6)

Gondola Ride.

The system models a physical queue in an unfamiliar setting: the line to board a gondola

in Venice. A newly arrived tourist encountering the line reads from a travel guide: “It may

take up to six minutes for a Gondola to arrive. On average they come every two minutes.”

This is like our Queue:Full–Prior treatment.

vgondola ride = r + 10× (−$.06) + 20× (−$.22) = R− $5.00 (3.7)

3.8.2 Maister’s Original Observations

First, we will use our utility functions to add nuance to two of Maister’s original observations.
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Uncertain waits are longer than known, finite waits,

Maister (1985) writes, and we agree. Wait variance imparts significant disutility in every

treatment we tested. Our estimates expound upon Maister’s sentiment by describing how

much worse those uncertain waits are.

At the call center, the variance of wait time accounts for 60% of total disutility (see

Equation 3.5). This figure is 80% at the coffee shop (see Equation 3.6). Not knowing when

the wait will end is a greater source of disutility than the (mean) duration of the wait itself.

The more valuable the service, the longer the customer will wait,

states Maister (1985). Of course this is true, though a more precise observation might be:

“Increasing the value of service makes customers willing to endure a more costly wait.”

Will customers wait twice as long for twice the reward? Our utility functions show that

this depends on the source of the delay. Doubling the length of the coffee shop line to n = 10

would double both its mean duration and disutility. In contrast, doubling the mean service

time (i.e., cutting µ to 1/4) would nearly quadruple disutility while still only doubling mean

duration. Why? Utility is linear in n but quadratic in 1/µ (see Equation 3.4).

Management should keep this in mind when tackling increased customer wait times. If

longer waits are due to an influx of new customers creating longer lines, then a relatively

small increase in the reward (e.g., a free tote bag or a modest discount) may offset the

marginal disutility of waiting. But overcoming this disutility will be much more difficult

in response to a drop in service rate. Managers should be cautious about adding time-

consuming administrative tasks (e.g., having checkout clerks describe the benefits of the

company’s credit card to each customer).
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3.8.3 Novel Observations

Clock waits are intimidating.

Clocks are are easier to parse than queues because they present the aggregate wait time

explicitly, and this allows customers to make objectively better choices. For example, partic-

ipants choose higher-wage waits in our Clock treatments relative to Queues (see Section 3.7.2

for full discussion). But the accessibility of clock waits also makes them intimidating: Cus-

tomers can envision the entire (painful) waiting experience, right up front. The disutility per

minute of mean wait time is twice as high for clock waits compared to queues. Total disutility

in the clock-like call center is “only” 10% higher than in the coffee shop queue because the

high variance of exponential service times dominates (see the first point in Section 3.8.2). In

a lower-variance setting, a clock wait could induce up to twice the disutility of an analogous

queue.

Everything is going digital these days, and that includes waiting “lines.” Clock-like Uber

waits are replacing physical taxi queues. Restaurant patrons receive predicted wait times

with their Google and Yelp search results and can join wait lists virtually. Management

must consider how this migration will change customer behavior. Intimidating clock waits

may lead to higher balking rates. Reporting instead the length of a virtual queue may be

better at getting customers “through the door.”

Queues are more disappointing.

This is a corollary to the previous observation. Queues are relatively difficult to parse. Our

results suggest that queue-like presentations cause people to underestimate the duration or

pain of long waits (see Section 3.7.2). Customers are therefore more likely to join long waits

when they are presented as queues. In this sense, queues may “trick” customers into joining

a wait that would have made them balk had it been described more accessibly, like a clock.

But this trick may leave customers disappointed. In the course of waiting, tricked customers
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will eventually realize the true nature of a painful wait, at which point they may renege or

grow resentful. Perhaps this is why our participant complained that “waiting in line sucks.”

But a firm that can turn a wait into a pleasant experience (e.g., a restaurant with live music

that serves drinks to waiting customers) can make use of this trick: queues can get people

in the door despite a long or variable wait.

It’s the variance that kills in service systems.

This stems from two facts: (1) people are quite sensitive to wait variance and (2) most

queueing models involve high wait variance. As for (1), a minute2 of variance imparts two to

four times the disutility of a minute of mean wait time for queues. The import of the two is

roughly equal in clocks. As for (2), exponential service times—probably the most common

model used for service—result in variance which is the square of the mean. In tandem, it is

straightforward to see why variance accounts for the majority of people’s disutility.

Managers should aim to reduce customers’ perceptions of wait time variance. This can be

achieved via operational improvements to standardize service times, though it may require

many interactions for customers to perceive any difference. Policies that are more visible

to customers such as wait time guarantees (e.g., pizza delivered in 30 minutes or it’s free)

may provide a more immediate approach to alleviate concerns over uncertainty. Note that

these the two methods are complimentary. Guarantees can draw in wary customers who are

risk averse with their time, and their experience with predictable wait times will keep them

coming back.

Beliefs dictate customer behavior.

People rely heavily on prior beliefs when evaluating queues. They appear to defer to their

non-quantitative “sense” of a queue—to their detriment—even when given precise service

time statistics (see Section 3.7.4). Thus, improving queue fundamentals is only the first step

in changing customer behavior.
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Consider an institution famous for long and variable queues: state Departments of Motor

Vehicles or DMVs. Imagine that a major system overhaul resulted in short and predictable

wait times at all DMVs. How long would it take to update the DMV’s reputation in the

minds of its customers? Probably many years, during which time customers may make

decisions based on outdated beliefs.

So how should a firm communicate improved queuing fundamentals to customers? Our

results suggest that communicating wait time statistics (e.g., 90% of customers now wait less

than 45 minutes) is unlikely to work. Instead, management should aim to give customers

experiences that force them to update their priors. As discussed above, a wait time guarantee

(e.g., if you have to wait more than 20 minutes, you will get a $20 voucher) might help draw

in skeptical customers.

People are more risk averse in unfamiliar settings.

This final insight is closely related to the previous one—that people rely on prior beliefs to

evaluate queues. When people encounter a queue for which they don’t have relevant prior

beliefs (i.e., when they are in an unfamiliar setting), we find that they become highly risk

averse with their time. The disutility of the gondola queue is nearly twice that of the coffee

queue despite the fact that they model nearly identical physical queues. This is because the

disutility of a minute2 of variance in our queue treatment with no priors is more than twice

as high as that measured in any of the other seven treatments.

Firms bringing novel services to market should consider communicating their waits as

clocks rather than queues to avoid inducing extreme risk aversion. And companies that do

present their waits as queues should avoid measures that might “alienate” customers. For

example, the new owners of a restaurant might be inclined to post a sign reading “Now under

new management!” in the hopes of signaling better operations (e.g., better food, shorter wait

times). This sign, however, may make customers feel that they can no longer rely on their

prior beliefs. If so, it might induce severe risk aversion which could, in turn, lead to increased

85



balking—just the opposite of its intended purpose.

3.8.4 A Model of Waiting Utility

We close this section by offering a single, parameterized utility specification for queueing

theorists interested in incorporating the behaviors described above into their models. It is

intended to capture the first-order features our eight fitted utility functions without relying

on precisely tuned parameters. As far as we know, this is the only empirically grounded

utility model of waiting available. We understand that it will not be appropriate in all

settings. We hope that it will prove useful for some.

As with the examples in Section 3.8.1, our generalized model (see Equation 3.8) describes

the utility of a customer encountering a wait with total duration distributed according to

a random variable T . They receive a dollar-equivalent reward of r for completing the wait

and have a prevailing wage rate of w (e.g., the rate of pay for some outside option). The two

key features that contribute to the customer’s appraised disutility of the wait are expected

wait time, E[T ], and variance of wait time, Var[T ]. Often, customers are modeled as only

minimizing waiting costs in systems. We provide a reward-less cost function (Equation 3.9),

which varies the relative import of E[T ] and Var[T ] according to the wait’s information

scheme.

We define two parameters which model the information given to customers about a wait

(and thus change the relative import of its fundamentals). These parameters allow modelers

to match their model to the nearest treatment in our study, thus capturing their setting’s

information effects on customer utility. First, we define α: a measure of the cognitive demand

required to compute the wait time distribution T . If T is described explicitly (as in our Clock

treatments), α = 0. If T must be computed (as in our Queue treatments), α = 1. Future

research may explore other settings which vary this parameter more granularly. Second, we

define γ: the gap between prior beliefs about T and T itself. If a customer has prior beliefs

that perfectly characterize T (as in our treatments with induced non-quantitative priors),
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γ = 0. This models a customer in a very familiar setting. If a customer has prior beliefs

that differ from T or has no prior beliefs at all (as in our treatments with no induced priors),

γ > 0. We assign our No Prior treatments γ = 1. This models a customer encountering a

novel wait. As with α, this parameter may be explored in more detail in future research. We

provide the following empirically grounded utility function which balances wait fundamentals

(via a wait’s mean and variance) and information (via α and γ).

v(T ; r, w, α, γ) = r − w

(
E[T ]
1 + α

+ (1 + αγ) Var[T ]
)
≡ r − w c(T ; α, γ) (3.8)

c(T ; α, γ) = E[T ]
1 + α

+ (1 + αγ) Var[T ] (3.9)

Our general utility model in Equation 3.8 connects individual-level behavior to system-

level operations. It is a parsimonious function of the first two moments of T , fundamentals

that are well-defined in nearly all queueing systems. And the parameters governing infor-

mation easily map onto many waits of practical importance: To model the call center (see

Section 3.8.1), use (α = 0, γ = 0). To model the coffee shop, use (α = 1, γ = 0). And to

model the gondola ride, use (α = 1, γ = 1).

When a utility model is needed, Equation 3.8 provides a flexible and descriptive candi-

date. It approximates the estimates from our eight experimental treatments without overly

specific coefficients (see Figure 3.6). Instead, it models the relative import of mean du-

ration and variability as a function of the modeled wait’s information. In some settings,

a function of mean wait time without a variance term may be required for mathematical

tractability. We provide one in Equation 3.10. It gives an empirically grounded estimate of

a customer’s linear waiting cost as a function of their prevailing wage. For MTurk workers,

we use w ≈ $6.00 (Hara et al., 2018). For retail workers, scholars could instead use use

minimum wage (e.g., w = $15.00 in New York City) or another measure of typical wages.

v(T ; r, w, α) = r − w

1 + α
E[T ] (3.10)
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Figure 3.6: Plot of the Penalty per Minute of Mean Wait over Penalty per Minute2

of Variance. A plot of the estimated pay elasticities of mean and variance for all eight
experimental treatments and their relationship to the general utility model of Equation 3.8.

3.9 Conclusion

In this paper, we address the open research question of how wait fundamentals affect people’s

utility. Because there is no “regular” or “default” presentation scheme for waits, this pursuit

required us to define and study the mediating effect of an information layer. We find some

behavioral commonalities across all presentation schemes and information conditions: People

dislike waiting and enjoy rewards. People are risk averse with their time—an effect that is

intuitive yet rarely modeled. And, controlling for wait duration and uncertainty, people tend

to be indifferent to line length.

The differences among our treatments show how information influences people’s utility.

There are two primary effects: (1) Mean wait time is twice as costly when times are pre-

sented in aggregate (like ride sharing apps; our Clocks) than when presented per-person (like

grocery store lines; our Queues). Perhaps this is due to bounded rationality. Customers have

difficulty translating per-person statistics into an aggregate wait time. Their tendency to un-
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derestimate the duration or pain of waiting makes them appear unusually patient. (2) People

familiar with a wait rely on their prior beliefs rather than posted statistical information. And

(3), posting information about a wait’s duration or variability does not induce significantly

more sensitivity to that feature for customers familiar with the wait. We summarize the

effects of all of our treatments into a utility function which is ready to use for modelers who

desire an empirically grounded specification for how customers evaluate waiting.

Perhaps the most cited work in this area is Maister (1985), whose pithy comments on

people’s psychology in waiting lines have helped researchers and managers alike. To that end,

in Section 3.8 we add empirically grounded nuance to two of his observations: uncertain waits

are longer than known, finite waits and the more valuable the service, the longer the customer

will wait. And we supply five novel observations in Maister’s style drawing from observed

participant behavior: (1) clock waits are intimidating (2) queues are more disappointing, (3)

it’s the variance that kills in service systems, (4) beliefs dictate customer behavior, and (5)

people are more risk averse in unfamiliar settings. We hope that these managerial insights

can also be useful for both researchers and practitioners.

The goal of our study is to describe the links among customer utility, wait fundamentals,

and information. Further work could give deeper insights into the cognitive and psychological

drivers of customer behavior. We study people’s utility for “everyday” waits under some

common presentation schemes. There is room for much broader exploration. We test waits

where variance fluctuates independently from mean wait time. Future studies may focus on

alternative concepts of variability, such as the ratio of variance to mean wait time. More

complex reward structures should be incorporated, and other common waiting regimes and

contexts should be studied. Important waits occur on many timescales: a few minutes for

a checkout line; several hours for a grocery delivery; and many days for a package delivery.

All merit attention. Our study keeps the context as neutral as possible. We suspect that

more colorful contexts and presentation schemes would influence behavior.

We see this paper as just a first step in understanding people’s utility over waits. We
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look forward to more research unpacking the seemingly simple feeling that “waiting in line

sucks.”
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APPENDIX A

APPENDICES FOR CHAPTERS 1 AND 2

A.1 Credit Days

Detainees in jail or on EM accumulate credit time which counts against their sentence dura-

tion. There are three main ways of getting credit time, Statutory Sentence Credit, Program

Sentence Credit, and Supplemental Sentence Credit.1

Statutory Sentence Credit reduces the percentage of their sentence detainees must serve

based on the severity of the crime. Common percentages are 50%, 75%, 85%, or 100%. These

percentages are determined by statute and by judge: different crimes have their minimum

percentage of time served enumerated in law, and judges can increase the required percentage

on a case-by-case basis. Detainees may lose this credit due to negative behavior while in

custody.

Program Sentence Credit is credit for participating in certain programs while in jail or

prison. Common programs are for education, drug rehab, life skills courses, behavioral mod-

ification, re-entry planning, and Illinois correctional industries. If an detainee participates,

they earn a half of a day per day in program, conditional on completing the program. Not

everyone is eligible for this program, and detainees can lose this credit due to bad behavior.

Finally, Supplemental Sentence Credit gives up to 180 days of credit for good behavior

in prison, and is the sole discretion of the Director of Department of Corrections.

A.2 Appendix: Speedy Trial Act

Defendants’ rights to a speedy trial are ensconced in the sixth amendment: “In all criminal

prosecutions, the accused shall enjoy the right to a speedy and public trial.” And in Illinois,

the legislature has also guaranteed this right by statute with the “Speedy Trial Act” (725

1. https://www2.illinois.gov/idoc/aboutus/Pages/faq.aspx#qst1 Accessed on 10/18/2021.
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ILCS 5/103-5). This act establishes a time limit for cases. After that time is expired,

defendants may call for an immediate trial.

For defendants who are released on bail the limit is 160 days. For detainees on CCSO

custody, the limit is 120 days. However, “Delays occasioned by the defendant” do not

contribute to the 120- or 160-day speedy trial act clock. Any pretrial motion filed by the

defendant (such as requests for information) is a delay occasioned by the defendant. The

time the motion takes to resolve does not contribute to the speedy trial clock. “Agreement

continuances” also count as delays occasioned by the defendant. Most often, these come

from pretrial negotiations between the prosecution and defense. They may involve plea

negotiations, witness availability, trial stipulations, and other things which take time. During

these negotiations, the prosecution and defense meet with a judge to update them about the

case and continue the case to complete these negotiations.

A.3 Detailed Data Description

A.3.1 Detainee Information

Inmate ID. Each detainee is assigned a unique identifier which does not change between

cases or bookings.

Criminal History. We score defendants’ criminal history with a metric that approxi-

mates the United States Sentencing Commission’s (USSC) criminal history metric (USSC,

2019). Our metric is approximate because we only have access to criminal data from Illinois,

while the USSC Criminal History metric incorporates national data.

In our metric, each detainee is given a criminal history score. They are assigned 3 points

for each prior prison sentence, 2 points for each prior jail sentence, and 1 point for each

prior probation or supervision sentence. We bucket these criminal history scores into four

descriptive bins: “None”, “Low”, “Medium”, and “High”, each accounting for about 25% of

the data.
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Prison History. This data field indicates if the detainee has been sentenced to an

Illinois prison in the past.

A.3.2 Housing Information

Booking ID. The CCSO assigns detainees a unique booking ID distinguishing each time

they are booked in jail or on EM.

Booking Date. This is the date the detainee is placed under the responsibility of the

CCSO for each booking. We use this date as the beginning of both the detainee’s case and

detention.

Pretrial Housing Location. There are two pretrial housing locations under the

CCSO’s purview: EM and jail. In our data, 13.8% of detainees are on EM pre-trial and

86.1% are in jail pre-trial.

Security Classification. The CCSO classifies each detainee as either minimum, medium,

or maximum security while under their purview.

Bond Type. As mentioned in Section 1.3, detainees are assigned a bond during their

bond hearing, which outlines conditions they must meet for release from jail. The relative

frequency of bond types is given in Table A.1.

Bond Type Percent
D Bond 70.3%
No Bond 18.2%
I Bond 5.8%
I Bond with EM 3.7%
D Bond with EM 1.0%
Cash Bond 0.9%

Table A.1: Bond Types. Bond types listed in decreasing order of frequency for detainees
housed in jail. “I Bond with EM” and “Deposit Bond with EM” indicate that
the detainee will be released onto EM if bond is posted.

Bond Amount. As mentioned in Section 1.3, I, D, and cash bonds are associated
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with dollar amounts. Figure A.1 displays histograms of these amounts for the bonds in our

dataset. Recall that for these bonds, detainees must pay 0%, 10%, and 100% for release,

respectively, but are responsible for the full amount if they violate their bond by not arriving

for court or re-offending during release. Histograms of bond amounts are given in Figure A.1.

Note that the masses near zero are not exactly zero—bonds are often listed for values less

than $1,000.

(a) Bond Amounts Less Than $500,000

(b) Bond Amounts Less Than $100,000

Figure A.1: Histograms of Bond Amounts by Bond Type. (A.1a) displays histograms
of bond amounts less than $500,000 in the dataset. (A.1b) displays histograms of bond
amounts less than $100,000 for easier readability of smaller bond amounts. Both are grouped
by I, D, and Cash Bonds. I and D bonds include those with EM conditions. In all cases,
these amounts are as listed on the bond; bond type determines the amount a detainee would
need to play for release.

A.3.3 Case Information

Docket Number. The docket number is a unique ID number assigned by the courts

for each case.

Crime Class. At the outset of a case, the prosecution levies charges which enumerate
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the laws the defendant is accused of breaking. Charges are bucketed into different “crime

classes,” which represent the severity of the crime. This class incorporates a combination

of the alleged illegal act(s), details about the case, and the defendant’s criminal history.

During sentencing, crime class often determines the minimum and maximum sentence the

judge can assign. There are nine primary crime classes in Illinois: six for felonies (M, X, 1,

2, 3, and 4) and three for misdemeanors (A, B, and C) (Divito, 2001). Table A.2 lists each

with their frequency in the data and example charges. In the data, 12% of charges fall into

other miscellaneous categories, such as petty crimes.

Class Frequency Classification Example Charge Sentence Duration
M 0.6 % Felony First-degree murder 20-60 Years
X 0.6% Felony Aggravated criminal sexual assault 6-30 Years
1 5.5% Felony Second-degree murder 4-15 Years
2 8.0% Felony Kidnapping, arson 3-7 Years
3 7.7% Felony Perjury 2-5 Years
4 25.4 % Felony Stalking 1-3 Years
A 30.1% Misdemeanor Criminal trespass <1 Year
B 2.5 % Misdemeanor Aggravated speeding <.5 Years
C 1.6 % Misdemeanor Disorderly conduct <30 Days

Table A.2: Crime Classes in Illinois. Crime classes in Illinois in descending order of
severity. Example charges are listed for each crime class. Sentence duration is
given as a range of the typical minimum and maximum possible sentence for
that crime class (Divito, 2001).

Case Length. A detainee’s case length represents their time between booking (at the

outset of their case) and release from pretrial detention (at their time of disposition and

sentencing, if applicable). Figure A.2a displays a histogram of all case lengths within the

dataset. Figures A.2b and A.2c display case length grouped by pretrial housing location.

Cases in which detainees are on EM tend to be longer, and also have a characteristically

different shape.

Notice the “spike” in frequency of cases that ended at half a year for detainees on EM.

These correspond to one of the most common prison sentences: half a year. This spiking
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(a) All Detainees (b) Detainees in Jail (c) Detainees on EM

Figure A.2: Histograms of Case Lengths. Histograms are grouped in the following
manner: on the left (in red) (A.2a) displays a histogram of all detainees in the data. The
two histograms on the right (in black) partition the data into detainees in jail (A.2b) and
detainees on EM (A.2c). Bins for these histograms are one week wide. Case lengths are
truncated at two years for readability.

behavior is most stark on EM, but can also be seen for detainees in jail convicted of class 4

felonies and sentenced to prison. We highlight some of these spikes in Figure A.3.

Figure A.3: Case Lengths of Detainees Sentenced to Prison by Crime Class and
Pretrial Housing Location. Histograms are grouped by crime class (decreasing in severity
from left to right, focusing on classes 1, 2, 3, 4, and A) and pretrial housing location (in
jail on top in red, on em on bottom in black). We’ve added orange ovals to highlight
prominent spikes at common sentence durations for prison. Case lengths are truncated at 2
for readability.

Detainees with different sentence locations, crime classes, and housing locations have

characteristically different case length distributions. More severe crime classes tend to have

longer cases. Prison sentences are associated with the longest cases. Cases where detainees

are housed in jail tend to end earlier than cases where detainees are housed on EM. Also,
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detainees on EM have larger probability masses for case lengths near common sentence

locations.

Court Dates. The dataset lists each detainee’s court dates. From these, we compute

the number of court visits each detainee had, and the court visits’ interarrival times. We

also use consecutive court visits at the end of a case to impute which detainees went to trial

and which detainees accepted plea bargains.

Number of Court Visits. Defendants in the dataset visit the courts 4.9 times on average

per case. As the severity of the crime increases, so do the average number of court visits.

Table A.3 shows descriptive statistics regarding the number of court visits for each crime

class.

Class Mean Median Std. Dev.
M 25.6 7 13.3
X 11.4 19 26.5
1 8.6 5 10.1
2 8.5 5 11.2
3 6.8 4 7.7
4 4.1 2 5.0
A 2.2 1 4.1
B 1.8 1 2.9
C 1.6 1 2.0

Table A.3: Descriptive Statistics of Court Visits by Crime Class.

Court Visit Interarrival Times. The interarrival times of detainee’s court visits are typi-

cally an integer multiple of a week. We plot histograms of the interarrival times of detainees’

first five court visits in Figure A.4.

Plea Bargains. The majority of cases end in plea bargains, otherwise, they end in a

trial. We do not observe this data directly, but can impute it from the detainees’ court

visits. Trials are often multi-day events, followed by a not guilty verdict or a sentencing

hearing. We detect trials by looking at the interarrival times of the final court visits for

detainees found guilty. We say that two or more court visits on consecutive weekdays within
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Figure A.4: Interarrival Times of Court Visits. Histograms truncated at 7 weeks for
readability.

a detainee’s final three court visits indicates a trial. Otherwise, we say the detainee plead

guilty. 4% of cases in the data is detected to have gone to trial using this method, which is

similar to reported statistics by the State’s Attorney Office (Foxx, 2018).

A.3.4 Sentencing Information

Sentence Location. Sentence location refers to the location the detainees must spend

the remainder of their sentence durations following the conclusion of their cases. Table A.4

displays the frequency of different sentence locations by crime class in our dataset. More

severe crime classes are associated with more restrictive sentence locations.

Class Charge Dropped or Finding of Not Guilty Jail Prison Probation Supervision
All 29% 17% 29% 18% 4%
M 25% 3% 67% 4% 0%
X 15% 2% 67% 17% 0%
1 13% 5% 54% 27% 1%
2 11% 6% 53% 29% 1%
3 17% 8% 46% 27% 2%
4 36% 8% 31% 23% 2%
A 39% 34% 7% 9% 11%
B 44% 36% 2% 4% 14%
C 52% 30% 4% 4% 10%

Table A.4: Sentence Locations by Crime Class. Percentages are based on crime class,
i.e. rows sum to one.

Sentence Duration. Sentence duration is the amount of time the detainee is incarcer-
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ated as a result of a guilty sentence. As mentioned above, time incarcerated in jail or on EM

counts toward sentence duration. Additionally, sentences to jail and prison are subject to

sentence credit—various programs which reduce the portion of the sentence that the defen-

dant must serve. The most significant is statutory sentence credit, which allows detainees to

serve a fraction of their sentence duration, see Appendix A.1 for further details. We present

sentences net of their sentence credits—that is, the time the detainee would actually serve.

Histograms of jail and prison sentence durations for the most common classes (1, 2, 3,

4, and A) are given in Figure A.5. Prison sentence durations are longer and have large

probability masses on the year, half-year, and quarter-year marks. Jail sentence durations

are shorter, but can take on many different values. We do not make use of sentence durations

for probation and supervision in our analysis. A sentence location of “Charge Dropped or

Finding of Not Guilty” indicates that the detainee has no sentence duration, i.e. they will

no longer be detained.

Figure A.5: Sentence Durations in Years by Sentence Location and Crime Class.
Histrograms of prison sentence durations given on top in red, and jail sentences are given
in bottom in black. Histogram bins are 1 week. Sentences are truncated at 2 years for
readability.

Turnaround Status. A detainee is a “turnaround” if they are sentenced to prison and

their sentence duration (including credit time) is less than their case length. That is, if they

spent more time incarcerated pretrial than they were required to spend incarcerated due to

their sentence.
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A.4 Case Length Distributions

In our model, each detainee decides to either intentionally delay or not. Our analysis of

intentional delay behavior requires an understanding of detainees’ case length distributions

when they intentionally delay (D) or not (N). In this section, we describe how we use the

SAR-EM method to estimate those distributions.

The intentional delaying behavior is unobserved in the data. Instead, we receive a signal,

τ , which partially labels the delaying detainees. That is, if the detainee delayed, y = 1,

then there is a chance they are labeled as such: τ = 1. But the remainder of the delaying

detainees and all of the non-delaying detainees are unlabeled, τ = 0. In other words, if a

detainee is labeled, i.e. τ = 1, then he delayed intentionally, i.e. y = 1. This exemplifies a

Positive and Unlabeled (PU) dataset.

Recall that some detainees’ case lengths may exceed their sentence duration, who are

referred to as turnarounds. We adopt turnaround status as a signal of intentionally delaying

within our dataset. That is, if the detainee is a turnaround, τ = 1.

We calculate an expected probability of intentionally delaying for each detainee, ŷ, using

an Expectation Maximization algorithm developed by Bekker and Davis (2018) called SAR-

EM. As a preliminary to describing the algorithm, we first review the underlying probabilistic

primitives. We consider our data described by a tuple (x, y, τ) whose distribution is governed

by Pr(x, y, τ) = Pr(x)Pr(y|x)Pr(τ |x, y).

Our implementation of the SAR-EM algorithm uses two machine learning models: the

expected classification model f(x|θ) and the propensity score model e(x|ϕ). The expected

classification model is used to approximate Pr(y|x). The propensity score model is used

to approximate Pr(τ |x, y). Both models f and e are selected from a list of classification

models. They are parameterized by vectors θ and ϕ, respectively. Given the models f , e,

the SAR-EM procedure starts with initial values for these parameters and updates them

iteratively through the expectation and maximization steps. Each iteration starts with the

current parameters, denoted by θold and ϕold. Then the expectation step calculates ŷ for
100



each detainee, i.e. their expected probability of intentionally delaying, using θold, ϕold.

Next, given ŷ for each detainee, the maximization step reoptimizes the parameters yielding

θnew and ϕnew, which replace θold and ϕold as the current parameters. These two steps are

performed iteratively until the algorithm converges.2

Next, we describe the expectation and maximization steps formally.

Expectation Step. In this step, we find ŷ for each detainee given our current models

f and e. These models are fit with the current parameters θold and ϕold. For a detainee i,

we set

ŷnew
i = Pr(yi = 1|τi, xi, θold, ϕold) = τi + (1− τi)

f(xi|θold)(1− e(xi|ϕold))
1− f(xi|θold)e(xi|ϕold)

.

In practice, the propensity score e is “decayed” by a parameter d ∈ [0, 1] to avoid local

maxima where f returns 1 for any input. So, ŷ is given by:

ŷnew
i = Pr(yi = 1|τi, xi, θold, ϕold, d) = τi + (1− τi)

f(xi|θold)(1− d e(xi|ϕold))
1− f(xi|θold) d e(xi|ϕold)

.

Maximization Step. Given the updated ŷnew, we find the model parameters which

maximize the log-likelihood of observing x and τ . Bekker and Davis (2018) show that the

models f and e which achieve this maximum satisfy the following two equations:

θnew = arg max
θ

I∑
i=1

[ŷnew
i ln f(xi|θ) + (1− ŷnew

i )ln(1− f(xi|θ))]

ϕnew = arg max
ϕ

I∑
i=1

ŷnew
i [τiln e(xi|ϕ) + (1− τi)ln(1− e(xi|ϕ))]

Then we update the parameters: (θold, ϕold)← (θnew, ϕnew), and iterate until convergence.

Convergence occurs when the change of outputs between iterations of e is smaller than some

ϵ. Once the algorithm converges, letting θ∗, ϕ∗ denote the final parameter values, we set

2. At the outset of the algorithm, f and e are initialized with a short procedure training them directly
on the labels τ .
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the probability of delaying for detainee i as ŷi = f(xi|θ∗). After doing this for all detainees,

we use those probabilities to create binary predictions of delaying behavior by comparing

them with a threshold α. Predicted probabilities greater than or equal to α are said to be

delaying, ỹ = 1, otherwise they are not, ỹ = 0. Formally, we have

ỹ =


0 if ŷ < α,

1 if ŷ ≥ α.

For further details of the implementation, see Bekker and Davis (2020).

In order to choose the threshold α, we follow Lee and Liu (2003), who developed a metric

for our setting (positive and unlabeled data) that approximates the traditional F1 metric3

and is often used in the literature. It relies on a modified recall r̂ = Pr(ỹ = 1|τ = 1), and is

given by:

F1 = r̂2

Pr(ỹ = 1)

The term r̂ is the fraction of detainees labeled as intentionally delaying by the SAR-EM

algorithm among those who were positively labeled in the data, i.e. τ = 1. The denomi-

nator represents the fraction of detainees which SAR-EM labels positively. This metric has

qualitative features that are similar to the traditional F1 metric—for it to be high, precision

and recall must be high. The higher this metric the better the classifier performs.

This modified F1 score is a function of binary predictions, ỹ, thus it is dependent on the

threshold used to determine classification, α. The α∗ which maximizes this metric is used

to classify detainees for our estimation procedure.

Implementation and Resulting Case Length Distributions. We implemented the

SAR-EM algorithm using Python, building on the code developed by Bekker and Davis

3. The traditional F1 metric, F1 = 2pr/(p + r), is the harmonic mean of precision (p = Pr(y = 1|ỹ = 1))
and recall (r = Pr(ỹ = 1|y = 1)). Where ỹ are the binary predicted classifications from f . Notice that for
a high F1 score, precision and recall must be high. However, in the PU setting that information on y is
obscured, so this metric cannot be used. Thus a similar metric is necessary for PU settings.
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(2020). The data used is briefly summarized in Table A.5 and is discussed in detail in

Section 1.4. In particular, we restrict our attention to detainees with prison sentences, as

turnarounds are used as a signal for classification purposes.

Features
Phase 1 Housing Location
Crime Class
Case Length
Sentence Duration
The Ratio of Case Length and Sentence Duration
The Average of the First Five Court Visit Interarrival Times
Number of Court Visits
Security Classification
Z-score of Case Length Grouped by Crime Class

Table A.5: Features Used in SAR-EM Classification. The listed features are used as
data in SAR-EM. We also include polynomial transformations of all features up
to quadratic terms. That is, linear terms for each, interaction terms between
each, and quadratic terms for each. The resulting dataset has 8,346 rows and
209 features.

We discuss the selection of models and hyperparameters in Appendix A.5. Logistic

regression performed best for both models.4 The threshold α∗ = 0.556 achieves the maximum

modified F1 score with these parameters. The fraction of detainees labeled delaying and the

performance of the classification, both over α are given in Figures A.6a and A.6b.

We classify each detainee in the dataset using our threshold α∗. After classification,

43.4% of detainees are predicted to have delayed. We group their case length distributions

by both crime class and pre-trial housing location so they depend on detainee characteris-

tics.5 Histograms of the resulting 20 case length distributions for delaying and non-delaying

4. For f , the classification model, the regularization parameter is 2.15. For e, the propensity score model,
the regularization parameter is 100. The propensity decay score is 0.8.

5. These two covariates provide the most information about detainees’ case length distributions while
keeping the sample size of each group large enough for the empirical distribution to be reliable. We discuss
their effects on the case length distributions in Section 1.4. To adapt the empirical distributions into FD and
FN , we bucket case lengths into month-wide bins. This mimics the accuracy of detainees’ ability to control
their case lengths—average interarrival times of court dates are nearly a month—and helps ensure that the
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(a) Fraction Delaying over α. (b) Modified F1 Score Over α.

Figure A.6: Results of SAR-EM Classification. SAR-EM produces a predicted probabil-
ity of delaying for each detainee. As α changes, so does the performance of the classification
and fraction of detainees labeled positively. The maximal modified F1 score of 2.267 is
achieved at α∗ = 0.556.

detainees are given in Figure A.7. These are used as FD and FN in our estimation described

in Section 1.5. Notice that non-delaying distributions are smaller than delaying distribu-

tions, and tend to decrease monotonically as case length increases. Case lengths for delaying

detainees tend to be longer and have increased probability densities near common sentence

durations.

A.5 Hyperparameter Selection for SAR-EM Algorithm

We tested the panel of models and hyperparameters outlined in Table A.6. We also varied

the propensity score decay parameter d in {.5, .6, .7, .9, 1}. To do so, we split our data

into a training set and a test set, following (Lee and Liu, 2003), accounting for 80% and

20% of the overall data, respectively. Within this split, we ensure that the same proportion

of detainees were labeled positively in the train and test sets.6 We begin by training the

cdf of the distribution has robust support along its domain.

6. That is, we seperate positive and negative samples, then select 20% from each group to create the test
set.
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models on the train set. Then, to evaluate the models, we use the trained models to classify

the test set. The models are ranked by the maximum modified F1 score they achieve on

the test set, where a larger modified F1 score indicates better performance. Once the best

performing model and hyperparameter combination is selected, we train the best performing

model on the entire dataset to classify the data for use in our model. Logistic regression

performed best. Logistic regression is also used by Bekker and Davis (2018), as it is “known

to predicted well-calibrated probabilities (Niculescu-Mizil and Caruana, 2005)”.

Model Hyperparameter Range
Logistic Regression Regularization [0.001, 1000]
Random Forest # Estimators [50, 200]

Max Features sqrt(# features), log2(# features)
Max Depth [50, 110]
Min Samples per Split {2, 5}
Min Samples per Leaf {1, 2, 4}
Bootstrap {True, False}

Deep Neural Net Hidden Layers {5, 10, 50}
Nodes per Layer {10, 50, 100}
Dropout Percentage {.1, .3, .5}
Loss Function Binary Crossentropy
Activation Function relu
Epochs 1, 5, 10
Batch Size {32, 64, 500, 1000}

Table A.6: Tested Models and Hyperparameters for f and e in SAR-EM. Logis-
tic Regression and Random Forest classifiers are implemented in Scikit Learn.
The Deep Neural Net classifier was implemented in TensorFlow’s Keras. 100
combinations of the above hyperparameters were tested for each model.

A.6 Monte Carlo Experiments

This section uses Monte Carlo experiments to evaluate the maximum likelihood estimation

procedure described in Section 1.5 to identify true location cost parameters. We generate 100

datasets assuming the parameters listed in Table 1.2 are true, then estimate new parameters
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from the simulated data. We confirm that the true parameters fall within a 95% confidence

interval of these estimates.

To simulate our data, we independently draw each detainee’s location costs assuming the

true µ and σ parameters for each location. Then, holding our estimates of the case length

distributions FD and FN constant, we determine each detainee’s cost for delaying and not

delaying using their cost function (Equation (1.1)). They choose the action with the lower

cost. Using their housing location, crime class, and action, we draw their case length w (with

replacement) from the appropriate F . Finally, we re-estimate their location cost parameters,

µ̂ and σ̂, as before. We construct a 95% confidence interval by removing the upper and lower

2.5% of the re-estimated parameters. The true parameters and 95% confidence interval of

the re-estimated parameters are listed in Table A.7.

Location True µ 95% CI True σ 95% CI

EM 0.370 [0.211, 0.457] 0.241 [0.138, 0.333]

Jail 1.378 [1.034, 1.614] 0.446 [0.365, 0.631]

Prison 1.835 [1.325, 2.024] 0.313 [0.107, 0.470]

Table A.7: Results of Monte Carlo Experiments. The true parameters are the location
cost parameters listed in Table 1.2. Each is presented alongside the associated
95% confidence interval of the re-estimated parameters from simulated data
assuming these true parameters.

We observe that the true estimated parameters fall within the confidence interval for

each location. This demonstrates that our estimation procedure can successfully recover the

true structural parameters from the data.

A.7 Federal Sentencing Guidelines

Figure A.8 is a reproduction of the Sentencing Table set forth in the U.S. Sentencing Guide-

lines §5A (U.S. Sentencing Comm’n, 2018). These guidelines use “offense level”, which are a
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similar, but more granular classification of charges’ severity to Illinois’ crime classes. Higher

offense levels indicate more serious charges.
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(a) Delaying Case Lengths: FD (b) Non-Delaying Case Lengths: FN

Figure A.7: Histograms of Estimated Case Lengths. Histograms of FD and FN fol-
lowing the SAR-EM classification. In this classification procedure, we restrict our attention
to detainees with prison sentences.
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Figure A.8: United States Sentencing Table.
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APPENDIX B

APPENDICES FOR CHAPTER 3

B.1 Experimental Design for All Treatments
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Set Pay Wait Var # Set Pay Wait Var #

$4.75 4.6 0.25 5 $5.00 4.6 0.00 2
1 5.00 6.9 1.00 8 11 4.75 11.5 0.25 8

4.25 13.8 0.00 2 4.25 6.9 1.00 5

4.50 9.2 0.00 5 4.75 4.6 0.00 5
2 4.25 11.5 1.00 2 12 5.00 9.2 1.00 2

4.00 13.8 0.25 8 4.00 6.9 0.25 8

4.75 9.2 0.00 8 4.75 9.2 0.25 2
3 5.00 13.8 1.00 5 13 4.50 4.6 1.00 8

4.50 11.5 0.25 2 4.00 13.8 0.00 5

5.00 9.2 0.25 2 4.50 6.9 0.25 5
4 4.75 4.6 1.00 5 14 4.75 11.5 1.00 8

4.25 13.8 0.00 8 4.00 9.2 0.00 2

5.00 11.5 0.00 5 5.00 6.9 0.00 5
5 4.25 6.9 0.25 8 15 4.50 4.6 0.25 8

4.50 13.8 1.00 2 4.25 13.8 1.00 2

5.00 13.8 0.25 8 4.50 11.5 0.00 2
6 4.25 6.9 0.00 2 16 4.25 9.2 0.25 8

4.00 9.2 1.00 5 4.00 6.9 1.00 5

4.75 13.8 0.00 5 4.75 6.9 0.00 2
7 4.25 4.6 1.00 8 17 4.50 9.2 1.00 5

4.00 11.5 0.25 2 4.00 11.5 0.25 8

5.00 11.5 1.00 8 5.00 4.6 0.00 8
8 4.50 9.2 0.25 5 18 4.75 13.8 0.25 2

4.00 4.6 0.00 2 4.00 11.5 1.00 5

4.50 6.9 0.00 2 4.50 11.5 0.00 8
9 4.25 4.6 0.25 5 19 4.25 9.2 0.25 5

4.75 9.2 1.00 8 4.00 4.6 1.00 2

4.75 6.9 1.00 2 5.00 4.6 0.25 2
10 5.00 13.8 0.25 5 20 4.25 11.5 0.00 5

4.00 9.2 0.00 8 4.50 13.8 1.00 8

Table B.1: Experimental Design for All Treatments. Wait and Var refer to aggregate
mean wait time and wait variance, respectively
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B.2 Raw Model Estimates by Treatment

Queue Clock
Information Pay Mean Variance # People Pay Mean Variance # Updates
Full–NoPrior 2.74∗∗∗ −.173∗∗∗ −.615∗∗∗ −.056∗∗∗ 3.71∗∗∗ −.389∗∗∗ −.313∗∗∗ −.021

(.052) (.009) (.058) (.010) (.178) (.018) (.064) (.013)
Full+Prior 2.32∗∗∗ −.117∗∗∗ −.241∗∗∗ .003 2.24∗∗∗ −.208∗∗∗ −.193∗∗ −.023

(.107) (.010) (.068) (.012) (.111) (.011) (.067) (.012)
Mean+Prior 2.22∗∗∗ −.125∗∗∗ −.224∗∗∗ .028∗∗∗ 2.00∗∗∗ −.241∗∗∗ −.181∗∗∗ −.022∗

(.014) (.007) (.047) (.009) (.017) (.008) (.029) (.009)
None+Prior 2.21∗∗∗ −.117∗∗∗ −.244∗∗ .001 2.12∗∗∗ −.232∗∗∗ −.153∗∗∗ −.026∗∗∗

(.097) (.007) (.094) (.009) (.069) (.007) (.040) (.007)

***p < 0.001, **p < 0.01, *p < 0.05

Table B.2: Raw Model Estimates by Treatment.

B.3 Sample Choice Sets by Treatment

Table B.3 shows the attribute levels for three example waits of our experiment. The full

details for all 20 choice sets appears in Table B.1 of the main paper. Table B.4 lists the same

attribute levels, and, where appropriate, converts them to per-person levels, as is used in

the Queue treatments in our experiment. Table B.5 lists the attribute levels and associated

average wait time and uncertainty range as used in the Clock treatments in our experiment.

Pictorial examples of how these three profiles would be presented in our experiment are

shown in the following pages.
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Set Pay Wait Var #

$4.75 4.6 0.25 5
1 5.00 6.9 1.00 8

4.25 13.8 0.00 2

4.50 9.2 0.00 5
2 4.25 11.5 1.00 2

4.00 13.8 0.25 8

4.75 9.2 0.00 8
3 5.00 13.8 1.00 5

4.50 11.5 0.25 2

Table B.3: Attribute Levels for Three Example Choice Sets.

Set Pay Wait/# Var/# # Avg Service Time/# Uncertainty Range/#

$4.75 0.92 0.05 5 55s ±22s
1 5.00 0.86 0.13 8 51s ±34s

4.25 6.90 0.00 2 6m 53s n/a

4.50 1.84 0.00 5 1m 50s n/a
2 4.25 5.75 0.50 2 5m 45s ±1m 9s

$4.00 1.73 0.03 8 1m 43s ±17s

4.75 1.15 0.00 8 1m 9s n/a
3 5.00 2.76 0.20 5 2m 45s ±44s

$4.50 5.75 0.13 2 5m 45s ±34s

Table B.4: Three Example Choice Sets with Per-Person Wait Statistics as Used
in Queues.
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Set Pay Wait Var # Avg Wait Time Uncertainty Range

$4.75 4.60 0.25 5 4m 36s ±49s
1 5.00 6.90 1.00 8 6m 53s ±1m 38s

4.25 13.80 0.00 2 13m 47s n/a

4.50 9.20 0.00 5 9m 12s n/a
2 4.25 11.50 1.00 2 11m 30s ±1m 38s

4.00 13.80 0.25 8 13m 47s ±49s

4.75 9.20 0.00 8 9m 12s n/a
3 5.00 13.80 1.00 5 13m 47s ±1m 38s

4.50 11.50 0.25 2 11m 30s ±49s

Table B.5: Three Example Choice Sets with Aggregate Wait Statistics as Used in
Clocks.
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Choice Set 1, Queues

Figure B.1

Q:Full–NoPrior

Q:Full+Prior

Q:Mean+Prior
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Q:None+Prior
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Choice Set 1, Clocks

C:Full–NoPrior

C:Full+Prior

C:Mean+Prior
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C:None+Prior

Choice Set 2, Queues

Q:Full–NoPrior

Q:Full+Prior
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Q:Mean+Prior

Q:None+Prior
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Choice Set 2, Clocks

C:Full–NoPrior

C:Full+Prior

C:Mean+Prior
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C:None+Prior

Choice Set 3, Queues

Q:Full–NoPrior

Q:Full+Prior
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Q:Mean+Prior

Q:None+Prior
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Choice Set 3, Clocks

C:Full–NoPrior

C:Full+Prior

C:Mean+Prior
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C:None+Prior
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B.4 Instructions

Here we provide comprehensive instructions for two treatments: Queue:Full+Prior and

Clock:Full+Prior. The figures and descriptions were adjusted to accurately reflect the infor-

mation provided in the other treatments.

Figure B.2

Study Overview
This study is designed to assess your preferences about different types of waiting situations. The task is split into
three sections:

1. Section 1 gives instructions to teach you about Sections 2 and 3. A quiz will be given at the end of Section
1 to check your understanding of the instructions. If you miss more than one quiz question, you will not be
able to participate in the remainder of the study. Please read each instruction screen carefully.

2. Section 2 requires you to make 20 decisions based on your own preferences. There are no right or wrong
answers. Each decision will consist of three potential waiting scenarios, and you will be asked to select the
scenario you would prefer.

3. In Section 3, you will be asked to experience one of the waiting scenarios you selected in Section 2. During
this time, there will be regular attention checks. Upon completion of the assigned wait, you will receive your
reward.

In total, this HIT should take about 30 minutes.
Your total pay (reward plus bonus) will be determined in the following manner:

• $0.50 reward for completing the HIT

• Up to $1.00 bonus (depending on the number of correct answers) for Section 1 quiz

• Up to $5.00 bonus (depending on the randomly selected waiting scenario) for successful completion of the
Section 3 wait

You will receive all earned pay within 24 hours of completing this HIT.
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Queue:Full+Prior Instructions

Section 2: Introduction

In section 2, you will be faced with a choice like the one below in each of 20 rounds. Your job is to decide whether
you most prefer Option A, Option B or Option C.

Section 2: Why your choices matter

The choices you make in Section 2 will influence the waiting scenario that you will actually face in Section 3. The
Section 3 wait gives you an opportunity to earn a large bonus (up to $5.00), so please consider each choice in Section
2 carefully.
After you complete Section 2, the computer will select one of the 20 rounds at random (each round is equally likely
to be selected). The waiting scenario that you chose (Option A, Option B or Option C) in that randomly selected
round will become the Section 3 real wait scenario.

You should treat every choice you make in Section 2 as if it will decide the Section 3 wait.

126



Section 2: Detailed look waiting scenarios
Each of the waiting scenarios will require you (represented by the red figure) to join at the back of a line. Every
person in line (including you) requires service (some amount of time in the booth). When the booth is empty, the
person at the front of the line enters. During your wait, you will always know how many people are in front of you.
However, you will never be told how much time remains in your wait.
How long will the wait take?
The total duration of a wait depends on the number of people (including
you) in line and how long each person spends in the service booth. You will
always know the number of people in line. In the scenario at right, there are
5 people in line (you plus 4 others).
Information about how long each person will take in the service booth is
provided in two ways.
First, information about service durations appears beneath the image of the
waiting line (“1m 50s ± 22s per person” in the example at right). This tells
you that service takes 1m 50s on average, but that each person will take
a little longer or a little shorter than this time. The “± 22s” range means
that there is a 90% chance that each person’s service time will be within 22
seconds of the average. In other words, 90% of the people in line will have
service times between 1m 38s and 2m 12s.
Second, information about service durations is given visually in the plot with
the blue dots. Each dot represents a possible service time. You can see that
most dots are slightly below 2m (because the average service time is 1m 50s),
and that nearly all fall within the range of about 1.5m to just over 2m. Each
person in line will have a service duration chosen at random from these dots.
How do I successfully complete a wait?
A wait is considered a success when you finish receiving service. When you
successfully complete the wait, you will earn a bonus equal to the Pay listed
($4.00 in the scenario at right).

Section 2: Making your selection
In each of the 20 rounds in Section 2, you will be presented with three waiting scenarios. Your job is to carefully
consider which wait you would most prefer to actually experience in Section 3.
To indicate the option (A, B or C) that you prefer, simply click anywhere inside of its box (see 1 below). Text will
appear at the bottom of the screen indicating which option you have indicated. You may change your selection by
clicking on another box. To finalize your choice, click the “Submit” button (see 2 below). You will then move on to
the next round.

127



Section 3: Actual wait
After you complete Section 2, the computer will select one of the 20 rounds at
random (each round is equally likely to be selected). The waiting scenario that
you chose (Option A, B or C) in that randomly selected round will become the
Section 3 real wait scenario.
You can think of this random selection process in another way. You can imagine
that each time you choose a waiting scenario as your more preferred option in
Section 2, it goes into a “bin” of preferred waits. The real wait in Section 3 will
be chosen at random out of this “bin.”
Since your choices in Section 2 directly affect the Section 3 real wait selection,
you should carefully consider each decision you make.
Section 3 attention checks
To successfully complete a wait, you must wait until you complete your service.
During this time, there will be regular attention checks. Periodically, the screen
will begin to flash yellow and a button will appear that says “Click here to
continue waiting.” You have 15 seconds to click the button. When 5 seconds
remain, the screen will turn solid red.
To successfully complete the wait and earn the Section 3 pay, you
must pass all attention checks.
You may exit the Section 3 wait at any time by clicking on the Quit wait now!
button (see below). Clicking this button means that you will not earn any pay
from Section 3. However, whether you successfully complete the Section 3 wait
or not, you are still entitled to the HIT reward and your earnings from the quiz
on Section 1.

Section 3: Examples of actual waits

On the next screens you will see examples of two waiting scenarios. On each screen, you will see a description of a
short waiting scenario in the way it would appear in Section 2. Additionally, a short animation (about 10 seconds)
will illustrate what the wait would look like if it were chosen as the real wait in Section 3.
The duration of each of these example waits is much shorter than those you will really be considering in Section 2.
However, these animations will give you a good feel for how real waits will proceed, both with and without uncertainty.
Please pay close attention to each animation. The animations will automatically repeat, so you may watch as many
times as you like.
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Example 1

If you saw this description in Section 2 ...

... the wait would look like this in Section 3 if it was picked.
[Animated GIF showing evolution of this wait]

Example 2

If you saw this description in Section 2 ...

... the wait would look like this in Section 3 if it was picked.
[Animated GIF showing evolution of this wait]
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Comprehension quiz, Queue treatments

Quiz question 1

Which of the following is true about the real wait you will experience in Section 3?

◦ There will be frequent attention checks. If you miss one, you will earn no pay for Section 3.

◦ There will be a Quit wait now! button. If you press it, you will earn no pay for Section 3.

◦ You will will know exactly how many people are in front of you at all times.

• All of the above are true

Quiz question 2

Consider the wait above. Imagine you just started this waiting scenario in Section 3. Which of the following is true
about what you would know about the precise duration of your wait once you started experiencing it in Section 3?

◦ You will be told the precise duration of the wait at the very beginning of Section 3.

• There is variability in the amount of time each person takes, so there is no way for you to calculate the precise
wait duration.

◦ Each person will take the exact same amount of time in service, so you can compute the precise wait duration.
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Quiz question 3

Based on the waiting scenario described above, which of the following is most likely to be the time it will take for
one person to complete service?

◦ 1 minute
• 2 minutes
◦ 3 minutes
◦ 4 minutes

Quiz question 4

In Section 3 you will experience one waiting scenario. How is this waiting scenario picked?

◦ The Section 3 real wait is the same for everyone; it is not influenced by my decisions in Section 2.
◦ The Section 3 real wait is completely random; it is not influenced by my decisions in Section 2.

• The Section 3 real wait is selected from among the scenarios that I chose in Section 2.
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Clock:Full+Prior Instructions

Section 2: Introduction

In section 2, you will be faced with a choice like the one below in each of 20 rounds. Your job is to decide whether
you most prefer Option A, Option B or Option C.

Section 2: Why your choices matter

The choices you make in Section 2 will influence the waiting scenario that you will actually face in Section 3. The
Section 3 wait gives you an opportunity to earn a large bonus (up to $5.00), so please consider each choice in Section
2 carefully.
After you complete Section 2, the computer will select one of the 20 rounds at random (each round is equally likely
to be selected). The waiting scenario that you chose (Option A, Option B or Option C) in that randomly selected
round will become the Section 3 real wait scenario.

You should treat every choice you make in Section 2 as if it will decide the Section 3 wait.
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Section 2: Detailed look waiting scenarios
Each of the waiting scenarios will require you to wait for a certain amount
of time. When presented in Section 2, you may know the exact waiting time
or you may only know a range from which the exact time will be selected.
Regardless, when you begin the actual wait in Section 3, you will always be
told the precise duration of your wait. Throughout the wait, you will receive
updates on the amount of time remaining. The number of such updates is
given (“5 updates including the initial wait time reveal” in the scenario at
right).
How long will the wait take?
Information about how long the wait will take is provided in two ways.
First, information about the wait duration appears beneath the image of the
clock (“9m 12s ± 49s total wait” in the example at right). This tells you that
wait takes 9m 12s on average, but that your wait will take a little longer or
a little shorter than this time. The “± 49s” range means that there is a 90%
chance that your total wait time will be within 49 seconds of the average. In
other words, 90% of the time, your wait will take between 8m 23s and 10m
1s.
Second, information about the wait duration is given visually in the plot
with the blue dots. Each dot represents a possible wait time. You can see
that most dots are slightly above 9m (because the average wait time is 9m
12s), and that nearly all fall within the range of about 8m to 10m. Your
total wait time will be chosen at random from these dots.
How do I successfully complete a wait?
A wait is considered a success after the actual wait time has elapsed. You will earn a bonus equal to the Pay listed
($4.00 in the scenario at right).

Section 2: Making your selection
In each of the 20 rounds in Section 2, you will be presented with three waiting scenarios. Your job is to carefully
consider which wait you would most prefer to actually experience in Section 3.
To indicate the option (A, B or C) that you prefer, simply click anywhere inside of its box (see 1 below). Text will
appear at the bottom of the screen indicating which option you have indicated. You may change your selection by
clicking on another box. To finalize your choice, click the ”Submit” button (see 2 below). You will then move on to
the next round.
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Section 3: Actual wait
After you complete Section 2, the computer will select one of the 20 rounds at
random (each round is equally likely to be selected). The waiting scenario that
you chose (Option A, B or C) in that randomly selected round will become the
Section 3 real wait scenario.
You can think of this random selection process in another way. You can imagine
that each time you choose a waiting scenario as your more preferred option in
Section 2, it goes into a “bin” of preferred waits. The real wait in Section 3 will
be chosen at random out of this “bin.”
Since your choices in Section 2 directly affect the Section 3 real wait selection,
you should carefully consider each decision you make.
Section 3 attention checks
To successfully complete a wait, you must wait until you complete your service.
During this time, there will be regular attention checks. Periodically, the screen
will begin to flash yellow and a button will appear that says “Click here to
continue waiting.” You have 15 seconds to click the button. When 5 seconds
remain, the screen will turn solid red.
To successfully complete the wait and earn the Section 3 pay, you
must pass all attention checks.
You may exit the Section 3 wait at any time by clicking on the Quit wait now!
button (see below). Clicking this button means that you will not earn any pay
from Section 3. However, whether you successfully complete the Section 3 wait
or not, you are still entitled to the HIT reward and your earnings from the quiz
on Section 1.

Section 3: Examples of actual waits

On the next screens you will see examples of two waiting scenarios. On each screen, you will see a description of a
short waiting scenario in the way it would appear in Section 2. Additionally, a short animation (about 10 seconds)
will illustrate what the wait would look like if it were chosen as the real wait in Section 3.
The duration of each of these example waits is much shorter than those you will really be considering in Section 2.
However, these animations will give you a good feel for how real waits will proceed, both with and without uncertainty.
Please pay close attention to each animation. The animations will automatically repeat, so you may watch as many
times as you like.
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Example 1

If you saw this description in Section 2 ...

... the wait would look like this in Section 3 if it was picked.
[Animated GIF showing evolution of this wait]

Example 2

If you saw this description in Section 2 ...

... the wait would look like this in Section 3 if it was picked.
[Animated GIF showing evolution of this wait]
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Quiz questions, Clock treatment

Quiz question 1

Which of the following is true about the real wait you will experience in Section 3?

◦ There will be frequent attention checks. If you miss one, you will earn no pay for Section 3.

◦ There will be a Quit wait now! button. If you press it, you will earn no pay for Section 3.

◦ You will receive periodic wait time updates that tell you exactly how much longer your wait will last.

• All of the above are true

Quiz question 2

Consider the wait above. Imagine that you just started this waiting scenario in Section 3. Which of the following is
true about what you would know about the precise duration of your wait once you started it in Section 3?

◦ There is variability in the wait time, so you would never know the precise duration in Section 3.

• You would learn the precise duration of the wait at the very beginning of Section 3.

◦ You would learn the precise duration of the wait, but not until the end of Section 3 (after waiting).
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Quiz question 3

Based on the waiting scenario described above, which of the following is most likely to be the actual wait time?

◦ 3 minutes
◦ 6 minutes

• 9 minutes
◦ 12 minutes

Quiz question 4

In Section 3 you will experience one waiting scenario. How is this waiting scenario picked?

◦ The Section 3 real wait is the same for everyone; it is not influenced by my decisions in Section 2.

◦ The Section 3 real wait is completely random; it is not influenced by my decisions in Section 2.

• The Section 3 real wait is selected from among the scenarios that I chose in Section 2.
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