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ABSTRACT

An increasing number of software applications adopt machine learning (ML) components to

solve real-world problems. The offering of ML cloud APIs further ease developers’ burden

of incorporating ML solutions, typically deep neural networks (DNNs). However, to achieve

a correct, fast, and energy-efficient ML application, developers still need to carefully design

its three crucial components: ML algorithm, system environment, and software context.

To improve correctness, performance, and energy-efficiency of ML applications, this

dissertation works on these components and makes the following contributions:

First, to enhance the flexibility of neural networks, this dissertation proposes a novel

neural network architecture and a customized optimizer that support anytime prediction.

This design allows one neural network to generate a series of increasingly accurate outputs

over time without sacrificing accuracy for flexibility.

Second, this dissertation designs a run-time scheduler ALERT, which further manages

system resources. ALERT holistically configures neural networks and system resources

together to meet application-specific accuracy, performance, and energy-consumption constraints.

It uses a probabilistic model to detect environmental volatility and makes use of the full

potential of the DNN candidate set to optimize performance and satisfy constraints.

Third, to understand the challenges of developing ML software, this dissertation conducts

the first comprehensive study about how real-world applications are using machine learning

cloud APIs. We generalize 8 anti-patterns that degrade functional, performance, or economical

quality of the software.

Fourth, guided by this study, we propose Keeper, a new testing framework for software

systems that use machine learning APIs. Keeper automatically generates many test cases

to thoroughly test every branch in the specified function and its callees. It analyzes the test

runs and reports many failures, as well as potential patches, to developers.

xii



CHAPTER 1

INTRODUCTION

1.1 Motivation

Machine learning (ML) provides efficient solutions for a number of problems that were

difficult to solve with traditional computing techniques, e.g., object detection and language

translation. Deep neural networks (DNNs), the most popular ML technique, have become

a key workload for many computing systems due to their high inference accuracy. The

offering of ML Cloud APIs from all major cloud service providers [13, 51, 69, 117] further

makes it easy for software developers to use machine learning components in their software

projects without the need to design, train, or run deep neural networks themselves [14]. With

such convenience, an increasing number of open-source applications adopt ML techniques,

targeting a wide variety of real-world problems [166].

A successful ML application need to meet the requirements of correctness, latency and

energy-efficiency in unpredictable and dynamic environments, where it may compete for

resources against co-located jobs. Correctness is fundamental to the application functionality.

For an ML application, correctness not only refers to the neural network providing accurate

results during execution, but also refer to the application correctly interpreting and using

the network’s results. Latency constraints naturally arise when application interacts with

the real world as a consumer, like processing data streamed from a sensor, or a producer,

like returning a series of answers to a human. Missing latency deadlines will cause drop

of critical sensor data, delay in user interaction, and severely hurt user experience. Energy

requirement is also common, especially in mobile and edge devices where neural network

inference dominates the total system energy consumption. It is beneficial to minimize energy

usage in order to extend mobile-battery time and reduce server-operation cost.

Making things more complicated, the optimization of correctness, latency, and energy-
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efficiency often conflict with each other in the context of ML applications, which we elaborate

below. In practice, the deployment of ML applications typically face dynamic and constrained

optimization requirements. For example, in robotic vision systems, the latency requirement

changes based on the robot’s speed and distance from perceived pedestrians. Meanwhile,

the accuracy should be maximized, with the energy consumption constrained by the battery

capacity.

Whether an ML application can successfully meet the above requirements depends on how

well each of its three crucial components works: (1) the ML algorithm, which is typically in

the form of the inference computation of a deep neural network; (2) the system environment,

which allocates resources to a ML application and carries out the ML application’s execution;

and (3) the application software context and usage of the ML algorithm, which decides how

other parts of the application interact with the ML component.

Machine learning algorithm. Comparing with the dynamic correctness-performance-

energy goal of ML application and unpredictable execution environment, conventional neural

networks are not flexible enough. The accuracy of deep neural networks is affected by both

their architecture and overall size. The higher accuracy of larger networks comes at the cost

of increased computation requirements and longer inference latency. However, it is hard to

achieve the optimal accuracy-latency trade-off in run-time. Neural networks cannot easily

adapt itself, having to complete all the pre-defined computation to produce one inference

result. General approaches to achieve adaption and flexibility include ensembling [34] multiple

independent predictors and reorganizing a standard prediction pipeline into a cascade [191],

both of which are exploited to build variants of deep networks in recent studies [67, 98,

115, 158, 170]. Their design and training procedures sacrifice considerable accuracy and/or

require significant extra computation to support adaptation.

Machine learning system. Even for a perfect ML algorithm, it still requires system-

level resource management to achieve the correctness-performance-energy goal. A holistic
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solution is needed to automatically select a proper network and system resource to meet

the dynamic constraints of correctness, as they might make conflict decisions. For example,

when the latency budget is sufficient, the network adaptation technique would switch to a

higher-accuracy network to make best use of time. Meanwhile, the resource management

technique would use a lower power setting to save energy. Stacking up their impacts, it’s

very likely to violate the latency requirement.

Offering such holistic solution is non-trivial. The combination of network and system-

resource adaptation creates a huge configuration space, making it difficult to dynamically

and efficiently predict which combination of network and system settings will meet all the

requirements optimally. Existing system resource management techniques [18, 97, 130, 134,

152, 64, 71, 81, 82, 119, 146, 189] fail to solve this problem, as they only focus on assigning

system resource and neglect the adaptation opportunity of neural networks.

Machine learning software. In addition to effort on network computation itself,

another problem arises: how network is used in the real applications? While ML Cloud

APIs make it easy for non-experts to incorporate networks into software systems, developers

still have to make a number of decisions: which API to select? how to pre-process its input?

how to interpret its output? These are crucial problems, as the misuse of network would

cause correctness, performance, and energy problems, even when the other two components

of ML algorithm and ML system work perfectly. For example, if an application wrongly

uses a French speech recognition network to transcribe an English audio, the software would

behave incorrectly, no matter how accurate the network is. Similarly, if an application

computes the network on a fixed input in a loop, its performance would drop significantly

even when the network inference is highly accelerated.

However, these decisions are hard to make due to the statistical nature of machine learning

algorithm. Unlike traditional APIs that are coded to perform a well-defined algorithm, ML

APIs are trained with large amounts of data. As a result, ML API lacks a contract that
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precisely describes its input specification and expected behavior. Without a clear definition,

it is hard for developers to discover the proper way of using these APIs.

Making things worse, once ML APIs are used, software testing becomes challenging.

Traditional test-input generation techniques, like fuzzing, cannot effectively generate realistic

inputs that are relevant to the ML software under test from the huge input space of ML

APIs (i.e., photos, natural language text, audio, etc.). For example, it’s impossible for a fuzz

technique to generate a real dog image for a dog breed application, by applying perturbation

on its limited input seed. Furthermore, judging the output correctness becomes extremely

difficult, as ML algorithms are designed to statistically mimic human understanding, and

hence are inherently difficult to automate. Recent work on testing [23, 40, 35, 100, 148] and

fixing [180, 101, 155, 73] machine learning algorithms focus on the neural networks, but do

not work for testing the ML software.

1.2 Contributions

ML Algorithm

ML System 

ML Software ML API 
Misuse Study

Management System ALERT

Anytime Neural Network

Automated 
Testing Tool

M
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Figure 1.1: Dissertation overview

In this dissertation, we aim to create a robust method to incorporate ML components

into software systems meeting the requirements of correctness, latency and energy-efficiency.

As shown in Figure 1.1, this dissertation works on the three components of ML application

to address this problem. In ML algorithm component, we propose a new design of anytime
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network that supports adaptive inference tasks. In ML system component, we design a

management system for run-time scheduling neural network inference. In ML software

component, we conduct an empirical study of ML API misuse and propose a novel testing

tool for software that uses ML APIs. These contributions interact and complement each

other to achieve accurate, fast, and energy-efficient ML applications.

Anytime network. Aiming adaptive and efficient neural network, we offer a new design

of anytime network, which produces a fast and crude initial prediction and continues to refine

it as latency budget allows. We propose a novel neural network architecture that consists

of a sequence of fully nested subnetworks. Complementary to our architectural innovations,

we propose a novel optimizer, Orthogonalized SGD, for training anytime neural networks.

Our experiments demonstrate synergy between our architecture and optimizer: our anytime

neural networks perform almost as well as independent non-anytime neural networks of the

same size. This work has been published at ICML 2020 [165].

Management system for network inference. Anytime network allows the ML

algorithm to adapt at run time for different accuracy–performance tradeoffs. However,

it does not solve all the problems—it has to coordinate with system resource manager,

as discussed earlier. In this thesis, we design a runtime scheduler ALERT, a cross-stack

runtime system for neural network inference to meet user goals by simultaneously adapting

both neural network models and system-resource settings. It uses a probabilistic model to

detect environmental volatility and adopts a random variable, global slow-down factor, to

relate the current runtime environment to a nominal profiling environment. Across various

experimental settings, ALERT meets constraints while achieving within 93–99% of optimal

energy saving or accuracy optimization. This work has been published at USENIX ATC

2020 [168].

Empirical study of ML API misuse. To understand the challenges of developing

ML software, we conduct the first comprehensive study about how real-world applications
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are using ML APIs. We have found that misuses of ML APIs are widespread and severe:

249 out of the 360 applications (69%) contain misuses in their latest versions, more than

half of which contain multiple misuses. These misuses lead to various types of problems,

including reduced correctness (64%), degraded performance (34%), and wasted resources

(2%). We also design several static checkers to automatically detect some of the common

misuse patterns generalized by our study. These checkers identified hundreds of previously

unknown bugs and further confirmed that these misuses are widespread problems in ML

applications. This work has been published at ICSE 2021 [166].

Automated testing tool for ML software. Guided by this study, we propose

Keeper, a new testing tool for software that uses cognitive ML APIs. Keeper designs a

pseudo-inverse function for each ML API that reverses the corresponding cognitive task

in an empirical way (e.g., an image search engine pseudo-reverses the image-classification

API), and incorporates these pseudo-inverse functions into a symbolic execution engine to

automatically generate relevant image/text/audio inputs and judge output correctness. Once

misbehavior is exposed, Keeper attempts to change how ML APIs are used in software to

alleviate the misbehavior. Our evaluation on a variety of open-source applications shows that

Keeper greatly improves the branch coverage, while identifying many previously unknown

bugs. This work has been published at ICSE 2022 [167].

1.3 Dissertation Organization.

The remainder of this dissertation is organized as follows. Chapter 2 introduces background

and related work. Chapter 3 introduces our work of OSGD and nested architecture. Chapter

4 presents our runtime scheduler ALERT. Chapter 5 introduces our comprehensive study

about how real-world applications are using ML APIs. Chapter 6 presents our testing tool

Keeper. Chapter 7 concludes this dissertation and discusses future work.
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CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 Anytime Neural Network

Anytime neural network (ANN) is a type of network that supports anytime prediction [191],

which is a promising approach to generating accurate inference results under dynamic latency

and resource constraints. For each test sample, an anytime predictor produces a fast and

crude initial prediction and continues to refine it as budget allows, so that at any test-time

budget, the anytime predictor has a valid result for the sample, and the more budget is

spent, the better the prediction.

Adaptive Inference. One branch of investigation has focused on reducing inference time

in a dynamic, input-dependent manner [43, 115, 142, 162, 174]. These adaptive inference

methods skip execution of parts of a network, based on an estimate of relevance computed for

each input; their goal is to minimize computation required for accurate prediction on a per-

example basis. Here, the inference procedure changes dynamically in response a network’s

input data. However, these approaches do not provide any mechanism for responding to

environmental conditions that might introduce transient resource constraints to the system.

Anytime Deep Networks. Anytime methods provide means of addressing such environ-

mental variability. Specifically, they aim to introduce a degree of robustness to dynamic

environmental effects, at the possible cost of moderately increased computation. For example,

a recent anytime network [170] develops a prediction pipeline specifically for stereo depth

estimation, outputting images with increasing spatial resolution, an approach that may not

generalize to other domains. Recent generic anytime approaches include several cascade

designs [66, 67, 96, 158], which grow subnetworks by depth, and a recent proposal [98] that

grows by width.
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Multitask Training. Multitask training is a non-trivial problem. Previous work solve

this problem by clustering methods [106, 120], separating general and task-specific features

[177], training all tasks with the same base network and a few task-specific layers [91, 95],

and building joint losses with adaptive weights [66, 85]. Some work also targeted changes

to optimizers to improve multitask network training. This includes NormSGD [95], which

computes a parameter gradient per task, in separate backpropagation passes. These gradient

vectors are then normalized before summation, ensuring that each task exerts equal influence

on network parameters at every training iteration. Another work [85] dynamically balances

task influence, allowing some slack in relative task importance, provided it is justified by

outsized gains in accuracy across the task spectrum as a whole.

2.2 Resource Management System

Dynamic decision. Past resource management systems have used machine learning [18,

97, 130, 134, 152] or control theory [64, 71, 81, 82, 119, 146, 189] to make dynamic decisions

and adapt to changing environments or application needs. Some also use Kalman filter

because it has optimal error properties [71, 81, 82, 119]. They use the Kalman filter to

estimate physical quantities such as CPU utilization [82] or job latency [71].

Approximate application. Past work designed resource managers explicitly to coordinate

approximate applications with system resource usage [39, 64, 63, 83]. Although related, they

manage applications separately from system resources, which is fundamentally different from

our ALERT’s holistic design. When an environmental change occurs, prior approaches first

adjust the application and then the system serially (or vice versa) so that the change’s effects

on each can be established independently [63, 64]. That is, coordination is established by

forcing one level to lag behind the other. In practice this design forces each level to keep its

own independent model and delays response to environmental changes.
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Real-time guarantee. Some research supports hard real-time guarantees for neural networks

[188], providing 100% timing guarantees while assuming that the neural network model gives

the desired accuracy, the environment is completely predictable, and energy consumption is

not a concern.

2.3 Machine Learning Software

ML-based software. Prior work looked at how to test specific software that contains

ML components [75, 79, 76, 153]. Unfortunately, their solutions do not apply to general

ML software. For example, one work trained a SVM classifier to judge the correctness

of an image dilation program, leveraging the fact that the input image and the output

image should contain the same objects [75]. To test a blood-vessel image categorizer,

previous work [79] generates blood-vessel images with certain density, branches, and other

features, and use these features to generate output ground truth. Previous work [153, 76]

uses metamorphic approaches to test entity detection and image region growth programs.

They require application-specific rules about inputs and outputs relationship (e.g., after we

concatenate inputs of entity detection, the output becomes the concatenation of individual

outputs [153]).

Some previous work studies the different phases and different developer roles in large-

scale development and deployment of ML-based applications [14, 62, 88, 89]. These studies

do not provide an automated testing technique.

Testing ML-based solutions. Some research studies common mistakes in programs that

design and train neural networks [74, 184, 186, 187] or other types of machine learning models

(e.g., SVM and decision tree) [157]. Some works focus on testing [129, 159, 175, 125, 110,

109, 26, 9, 108, 182, 36, 46, 17, 15, 176, 179, 59, 143, 47, 127, 185, 23, 40, 35, 100, 148] and

fixing [73, 101, 155, 180] neural networks. All of these studies consider building machine
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learning models, instead of using them.

Testing ML APIs. Prior work studies automatic testing and bug detection of machine

learning APIs, including machine learning frameworks for implementing neural networks

[21, 27, 57, 121, 132, 151, 160] and REST APIs for providing machine learning solutions

[50, 54, 131]. These works focuses on the implementation inside ML APIs, neglecting how

they interact with other software components.

Testing FaaS APIs. Past works studied testing and fixing FaaS (Functions as a Service)

platforms, in terms of accuracy [147, 164], performance [56, 86, 105, 111, 116], and security

[41, 48, 87]. These works focusing on general FaaS APIs, but do not address the unique

challenges raised by machine learning solution.
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CHAPTER 3

ORTHOGONALIZED SGD AND NESTED ARCHITECTURES

FOR ANYTIME NEURAL NETWORKS

3.1 Overview

In this chapter, we aim to solve the problem of flexible neural networks that support anytime

prediction.

On the architectural aspect, we propose new structures for anytime neural networks

according to a principle of maximizing the potential for re-use of intermediate state between

successive stages. A small network should not only produce a quick output, but should also

produce internal representations that serve as valuable input to larger networks in subsequent

stages. We thus design architectures so that connections between subnetworks in different

stages are aligned: they directly link corresponding pairs of layers across stages, so as to

allow subsequent subnetworks to refine previously computed internal representations.

Complementary to our architectural innovations, we propose a novel optimizer, Orthogonalized

SGD (OSGD), for training anytime neural networks. Motivating OSGD is a view of anytime

networks as a special-case of multitask networks, combined with a desire to facilitate synergy

between those tasks. In addition to synergistic architectures, we want another type of

synergy: synergy in the optimization dynamics when training those multitask architectures.

OSGD provides a methodology for re-balancing task interactions as they simultaneously pull

on network parameters over the course of training.

While OSGD is general, with potential application to any multitask training scenario,

we restrict focus to anytime networks. We observe dramatic improvements in generalization

accuracy when training anytime networks with OSGD: a result that holds across the full

spectrum of anytime network architectures. Training our fully-nested anytime networks with

Orthogonalized SGD sufficiently improves accuracy to the point of making such networks
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Figure 3.1: Width-wise nesting of deep networks. Compared to a standard network, each
layer is sliced into multiple layers (colored blocks, stacked vertically). Each successive
subnetwork includes another set of layer slices across the entire depth of the network.
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Figure 3.2: Cascade with branching outputs. Networks are nested in depth, sharing a
common trunk to which output branches attach. (Box colors indicate in which inference
stage a layer is introduced, as in Figure 3.1).

competitive with standard designs lacking anytime flexibility. Together, the techniques

we develop here provide a pathway toward endowing deep neural networks with anytime

flexibility at minimal overhead cost.

3.2 Anytime Network Architecture

3.2.1 Baselines

Equal-width nested networks split a neural network into n equal-width horizontal stripes

[98], as Figure 3.1 illustrates. Each stripe executes sequentially. Compared to branched

cascades, this configuration offers more intermediate state reuse opportunities across subnetworks.

Compared to a regular network of similar size, some connections are removed, as one cannot

have edges from latter stripes to earlier stripes (gray edges in Figure 3.1). Furthermore,

although increasing network width increases accuracy, benefits do not typically scale linearly

with network size. Consequently, the design in Figure 3.1 may produce intermediate results

with suboptimal accuracy-latency trade-offs.
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Cascade networks add early exit branches from the main network pipeline [67, 115,

158, 66]. As illustrated in Figure 3.2, early outputs are generated without traversing later

pipeline stages—which tend to capture high-level input features—leading to large accuracy

loss for early outputs. Cascading also requires extra computation on every early output path

to convert the intermediate representation of that layer to a suitable output. Training such

cascades puts conflicting pressure on layers that serve heterogeneous branches (e.g., a block

can be connected to both an output layer and another intermediate layer in Figure 3.2).

3.2.2 Design Principles

Three observations guide our anytime architecture designs:

Grow both width and depth. Accuracy improves with both deeper (more layers) [60,

150, 156] and wider (more neurons per layer) [33, 178] designs. Consequently, we develop

freely composable recipes for nesting networks in width and depth.

Grow fast. Although accuracy typically improves with network size, this improvement

usually falls off as size increases; logarithmic scaling of improvements are a common result.

Consequently, we increase network size exponentially from one stage to the next. This

places output predictions at useful discrete accuracy steps along a trade-off curve and also

minimizes cut connections when transforming a standard network into an anytime version.

Reuse intermediate state. We improve efficiency by fully reusing internal activation

states of earlier subnetworks to bootstrap later subnetworks. By aligning layers of different

subnetworks trained for the same task, according to the relative depth in their own subnetwork,

we might jump-start computation in larger subnetworks.

3.2.3 Nested Anytime Network Architectures

Our design consists of a sequence of fully nested subnetworks: the first, D1, is completely

contained within the second, D2, which is a subpart of D3, etc. Going from Di to Di+1,
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our scheme permits growing the network in width, depth, or both. Our anytime networks

also have the following properties: (1) pipeline structure: Every subnetwork Di follows

the usual pipeline structure of a traditional neural network (as opposed to the branching

present in cascade networks); (2) aligned feed forward : Outputs of internal layers of a smaller

subnetwork are forwarded to deeper layers of the same subnetwork, as well as internal layers

of the larger network most appropriate for consuming their signals, maximizing data reuse

(i.e., connections are purely feed-forward in depth or nesting level); (3) exponential size

scaling : The sizes of subnetworks increases exponentially so later outputs offer meaningful

accuracy improvements over earlier ones.

Depth Nesting

We interlace layers following the same pipeline structure as the original network. As

illustrated in Figure 3.3, we partition a traditional network into odd and even layers. We

create a shallower subnetwork consisting of only the odd numbered layers to produce the

first intermediate result, and nest it within the full network, which has double the depth.

Recursively applying this process, we create a sequence of interlaced networks that repeatedly

double in depth.

This depth-nesting strategy applies only to networks satisfying an additional architectural

requirement. Notice, in Figure 3.3, the presence of additional skip connections between

layers, even in the basic, non-nested network. Indeed, within any network in the sequence,

we must have that each layer connects directly to any other layer separated in depth by a

power of 2. Fortunately, this power-of-2 skip-connection design is exactly the SparseNet

architecture [190], which is a state-of-the-art variant of ResNet [60] (or DenseNet [68])

convolutional networks.
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Figure 3.3: Our depth-wise nesting of subnetworks.

Width Nesting

Our width-nesting strategy divides a network into M horizontal stripes, with the i-th

subnetwork including all the neurons inside the first i stripes. Different from this prior

work, we use a power-of-2 sequence for stripe widths, as Figure 3.4 depicts.

If the first subnetwork D1 contains w neurons in one layer, Di contains w×2i−1 neurons

in the corresponding layer. This choice creates a good trade-off curve for accuracy and

latency. All the connections from a later-stripe neuron to an earlier-stripe neuron need to

be pruned.
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Figure 3.4: Our width-wise nesting of subnetworks.

Combining Depth and Width Nesting

Our width and depth nesting designs can be easily combined in arbitrary order: depth then

width, width then depth, or combinations thereof. When growing depth, interlaced layers are

added. When growing width, all layers double their filter count. Figure 3.5 illustrates growth
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by alternating width and depth: subnetwork-1 (dark blue layers) grows to subnetwork-2 by

extending its width (light blue layers), then grows to subnetwork-3 by extending depth (green

layers), and then to subnetwork-4 by extending width again (light green layers). Figure 3.6

illustrates an alternative of simultaneous growth in width and depth.
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Figure 3.5: Our width-depth nesting that alternates growing width and depth.
Connections across intermediate layers are hidden.
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Figure 3.6: Our width-depth nesting that grows width and depth simultaneously.
Connections across intermediate layers are hidden.

3.3 Optimization Strategies

Every anytime network (using our architecture or others) faces a multitask training challenge:

simultaneous optimization of losses attached to outputs of multiple subnetworks. In this

section, we propose Orthogonalized SGD (OSGD), a new optimizer for training multitask

deep networks, which is particularly effective when applied to anytime networks.

3.3.1 Definitions and Preliminaries

Training a nested anytime network is an instance of multitask learning, where the tasks are

solving the same problem with different network components.
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Let w1 ∈ Rd1 , w2 ∈ Rd2 , · · · , wn ∈ Rdn be the weights of the nested networks, where

d1 < d2 < · · · < dn and w1 ⊊ w2 ⊊ · · · ⊊ wn. We define other symbols as follows:

• W : weight for the whole network, equivalent to wn

• Li: the loss of subnetwork Di (Di has weights wi)

• gi: the gradient of weights wi from loss Li.

• g
j
i : the gradient of weights wj \ wj−1 from loss Li, where j ≤ i; g

j
i is a subset of gi.

• C: a constant value for normalization

3.3.2 Orthogonalized SGD (OSGD)

Our novel optimizer, Orthogonalized SGD, dynamically re-balances task-specific gradients

in a manner that prioritizes the influence of some losses over others. Given loss-specific

gradient vectors g1, g2, . . . , gn, Orthogonalized SGD projects gradients from later outputs

onto the parameter subspace that is orthogonal to that spanned by the gradients of earlier

outputs. As a result, subsequent outputs do not interfere with how earlier outputs desire to

move parameters. For example, the retained component of the gradient of weight w2 is

g′2 = g2 − projg1g2, (3.1)

where projAB refers to projecting vector B onto A. g′2 is orthogonal to g1, and thus updating

w1 in the direction of g′2 minimizes interference with the optimization of loss L1.

Algorithm 1 provides a complete presentation of both Orthognolized SGD and an orthogonalized

variant of NormSGD. Note that for anytime networks, per-task gradient vectors are padded

with zero entries for any parameters not contained in the corresponding subnetwork. For

example, g1 pads zeros to w2 \ w1, so the part of g2 specific to the second subnetwork will

be unaffected by Equation 3.1.
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Algorithm 1 Orthogonalized SGD: A multitask variant of SGD with optional dynamic
normalization of task influence.

1: Initialize weights W
2: for t = 0 to max train steps do
3: Compute Li(t) ∀i, s.t. 1 ≤ i ≤ n [forward pass]
4: g(t) ⇐ 0
5: for i = 1 to n do
6: gi(t) ⇐ ∇wiLi(t)
7: if normalizing then
8: gi(t) ⇐ gi(t)/ ∥gi(t)∥ ·

√
di · C

9: end if
10: end for
11: for i = 1 to n do
12: hi(t) ⇐

∑i−1
j=1 projgj(t)gi(t)

13: gi(t) ⇐ gi(t)− hi(t)
14: g(t) ⇐ g(t) + gi(t)
15: end for
16: Update W (t) 7→ W (t+ 1) using g(t)
17: end for

More generally, OSGD can be used with any priority ordering of tasks; the priority

order need not correspond to the order in which outputs are generated by an anytime

network. Algorithm 1 is valid for any shuffling of losses, regardless of the underlying network

architecture. Choosing a priority order determines the sequencing of gradient projection

steps, thereby changing which tasks are given preferential influence over network parameters.

3.4 Evaluation

3.4.1 Methodology

We begin with evaluation using the CIFAR-10 dataset [92]. All networks are trained for 200

epochs, with learning rate decreasing from 0.1 to 0.0008. We train every network 3 times,

and report the average and standard deviation of its validation error.

We evaluate all five optimization strategies from Section 3.3: Greedy stage-wise training,

SGD, OSGD, and the normalized variants of both SGD and OSGD. We set C = 1/2 and
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use a constant loss importance for SGD and NormSGD, as these settings provide the best

results.

We evaluate six different anytime network architectures: four novel designs of our own

and two prior designs. Our designs include: (1) depth-nesting applied to Sparse ResNet-98

[190] (Figure 3.3), (2) width-nesting applied to ResNet-42 [60] (Figure 3.4), (3) alternating

width-depth nesting (Figure 3.5), and (4) simultaneous width-depth nesting (Figure 3.6),

with the latter two applied to Sparse ResNet-98 [190].

The two previous designs represent the state-of-the-art depth-growing anytime design,

referred to as EANN) and width-growing anytime design, referred to as Even-width. In

EANN, we apply the cascade-based approach [66] to Sparse ResNet-98, which grows depth

exponentially and assembles an output branch every k · 2i(i = 1, 2, ...) layers. In Even-

width, we apply the idea of recently proposed even-sized width-nested architecture [98] to

ResNet-42.

3.4.2 Evaluation of Optimization Strategies

Tables 3.1 and 3.2 show the validation error rates of applying five different optimizers to

different anytime networks. Overall, our Orthogonalized SGD and its normalized variant

perform the best, capable of achieving high accuracy for later outputs of an anytime network

without significantly reducing the accuracy for earlier outputs.

Compared with SGD, OSGD consistently achieves higher accuracy for the last two

subnetworks across all six anytime designs, while maintaining similar or better accuracy for

early subnetworks. Switching from SGD to OSGD drops the last-stage error rates from 7.2,

9.8, 8.8 and 8.5 down to 6.6, 7.3, 6.8 and 6.8 across the four anytime networks in Table 3.1.

While the greedy training strategy offers the highest accuracy for the first intermediate result

of all anytime networks, it falls far behind OSGD for later-stage results.

The improvement offered by OSGD is striking, yet somewhat counterintuitive. These

19



Stagesize Greedy SGD OSGD SGDNorm OSGDNorm

Our Depth Nested Sparse ResNet-98

1d1 9.6 (0.2) 9.8 (0.1) 10.0 (0.3) 10.0 (0.2) 10.7 (0.2)
2d2 9.3 (0.3) 8.3 (0.3) 8.4 (0.1) 8.6 (0.4) 8.5 (0.3)
3d4 9.2 (0.3) 7.7 (0.3) 7.4 (0.1) 8.1 (0.3) 7.6 (0.1)
4d8 9.1 (0.2) 7.2 (0.4) 6.6 (0.1) 8.0 (0.2) 6.9 (0.1)

Our Width Nested ResNet-42

1w1 10.2 (0.1) 12.2 (0.2) 12.3 (0.1) 12.3 (0.3) 12.7 (0.1)
2w2 9.9 (0.2) 10.1 (0.1) 8.9 (0.2) 10.1 (0.2) 9.6 (0.4)

- - - - -
3w4 9.2 (0.2) 9.8 (0.3) 7.3 (0.3) 10.1 (0.2) 7.4 (0.2)

Our (Alternating) Width-Depth Nested Sparse ResNet-98

1w1d1 18.5 (0.1) 31.4 (0.6) 28.3 (0.4) 30.7 (0.4) 28.1 (0.5)
2w2d1 16.5 (0.1) 15.6 (0.2) 14.8 (0.2) 15.5 (0.3) 14.7 (0.4)
3w2d2 15.9 (0.2) 15.5 (0.2) 13.4 (0.3) 15.4 (0.2) 14.1 (0.2)
4w4d2 15.7 (0.4) 10.4 (0.4) 8.6 (0.3) 10.4 (0.2) 9.4 (0.2)
5w4d4 15.6 (0.3) 8.8 (0.3) 6.8 (0.2) 8.9 (0.3) 7.4 (0.2)

Our (Simultaneous) Width-Depth Nested Sparse ResNet-98

1w1d1 18.5 (0.1) 28.0 (0.2) 26.2 (0.1) 29.1 (0.5) 26.7 (0.5)
2w2d2 11.4 (0.1) 15.0 (0.3) 13.1 (0.1) 15.6 (0.5) 14.5 (0.4)
3w4d4 8.6 (0.4) 8.5 (0.3) 6.8 (0.3) 9.0 (0.2) 7.4 (0.1)

Table 3.1: CIFAR-10 error rates, the lower the better, of our anytime networks with different
optimization strategies. Numbers in parentheses are standard deviations. Size subscripts
indicate the subnetwork width or depth normalized to that of the first-stage subnetwork.
OSGD consistently improves over SGD and, compared to both SGD and Greedy stage-wise
training, achieves dramatically lower error for later outputs.

Stagesize Greedy SGD OSGD SGDNorm OSGDNorm

EANN Cascade Sparse ResNet-98

1d1 9.3 (0.1) 11.7 (0.3) 11.6 (0.3) 12.4 (0.1) 12.1 (0.4)
2d2 9.2 (0.3) 11.1 (0.1) 10.9 (0.2) 12.0 (0.1) 11.2 (0.1)
3d4 8.8 (0.3) 8.5 (0.2) 8.0 (0.1) 9.2 (0.2) 9.0 (0.2)
4d8 8.5 (0.3) 6.5 (0.2) 6.4 (0.2) 8.0 (0.1) 7.6 (0.1)

Even-Width Nested ResNet-42

1w1 10.2 (0.04) 12.7 (0.2) 13.9 (0.1) 12.6 (0.1) 13.5 (0.2)
2w2 9.9 (0.3) 10.2 (0.3)) 10.7 (0.2) 10.6 (0.1 10.8 (0.1)
3w3 9.9 (0.4) 10.0 (0.1) 8.3 (0.02) 10.5 (0.1) 8.3 (0.01)
4w4 9.8 (0.2) 9.9 (0.1) 8.3 (0.1) 10.4 (0.1) 8.3 (0.1)

Table 3.2: CIFAR-10 error rates of previous anytime networks with different optimization
strategies. As in Table 3.1, OSGD offers benefits compared to other optimizers.
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experiments give earlier outputs high priority than later outputs. OSGD is prioritizing the

influence that gradients of smaller subnetworks have on the training dynamics, but it is the

outputs of larger subnetworks that most improve in accuracy.

A possible explanation for this curious behavior stems from the fact that the multiple

tasks in anytime networks are highly related. In particular, in a well-architected anytime

network, different output tasks might exert a beneficial regularization effect on one another.

OSGD, by prioritizing task X over task Y in such a network then triggers two effects:

• It allocates parameters to task X instead of task Y.

• It decreases the regularization influence of task Y on task X, while simultaneously

increasing the regularization influence of task X on task Y.

Individually, these effects move the relative accuracy of task X and Y in opposite directions.

As they are coupled, we observe only the net result. Regularization interaction being the

stronger effect would explain the behavior of anytime networks trained with OSGD. But,

further investigation is required before confidently adopting this explanation.

3.4.3 Evaluation of Nested Architectures.

We compare our nested architectures to an infeasible Oracle—a collection of independently-

trained single-task networks with sizes matching our subnetwork stages. Perfectly deploying

this collection of independent networks as an anytime system would require oracle knowledge

of impending deadlines to select which network to run. The Oracle thus represents an

impossible scenario in which anytime prediction capability is granted for free. Figure 3.7

shows the accuracy-FLOPs trade-off curves achieved by our nested network designs (green),

the Oracle (blue), and the EANN and Even-width baselines (red). Here, each network

is trained using the strategy that offers the most accurate results (i.e., OSGD for all

anytime networks and SGD for all independent networks except for the largest setting of
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Figure 3.7: Accuracy-FLOP trade-offs (lower is better). Our nested architectures offer trade-
offs close to the infeasible Oracle.

SparseResNet-98, which uses NormSGD).

From Figure 3.7a and 3.7b, our depth and width nesting anytime networks both offer

much better accuracy-FLOPs trade-offs than previous work, and come close to the infeasible

Oracle. Figure 3.7c shows our width-depth nested Sparse ResNet-98 offers almost as good

a trade-off as the Oracle, and covers a much wider trade-off spectrum than depth-only or

width-only nesting.

3.4.4 Run-time Simulation.

We further compare four schemes for maximizing inference accuracy under various inference

deadlines: (1) Baseline anytime schemes (Even-width and EANN); (2) Our Nested anytime

schemes (width, depth, and width-depth nesting). (3) OracleAll, which picks the most

accurate independent network that finishes before the deadline for all inputs; (4)OracleEach,

which picks the most accurate independent network for each input that finishes before the

deadline (i.e., the network may vary across inputs). When no inference result is generated

by the deadline, a random guess is output. We report the average error rates across all

inputs in Figure 3.8 (vertical axis, lower is better) under 7 deadlines and then no deadline

(horizontal axis); the 7 deadlines are set to be 0.5x-1x of the average latency under the
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Figure 3.8: Error rates at different deadlines (lower is better). Our nested designs perform
better than baselines and the static Oracle.

biggest ResNet-42 or Sparse ResNet across all inputs.

The accuracy advantage of Nest (the second bar in each group) over Base (the first bar),

and OracleAll (the third bar) is apparent in Figure 3.8. For example, for ResNet-42, Nest

has 7%-24% lower error rate than Base for all deadlines. Nest has lower accuracy than

OracleEach in most cases, because the anytime network usually has slightly lower accuracy

than an independent network with same size. Note that OracleEach is impractical, as it

assumes impossible latency prediction and no-overhead in swapping networks across inputs.

These accuracy-under-deadline results are consistent with the accuracy-latency curves in

Figure 3.7.

3.4.5 Evaluation on ImageNet.

Finally, we train a width-nested ResNet-50 and depth-nested Sparse ResNet-66 on the large-

scale ImageNet (ILSVRC 2012) dataset [32], using both SGD and OSGD. All networks are

trained for 90 epochs, with learning rate decreasing from 0.1 to 0.0001. Table 3.3 reports

top-1 and top-5 validation error rates. OSGD significantly improves the accuracy of later

stages (larger subnetworks) compared to standard SGD.
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SGD OSGD
Top-1 Error Top-5 Error Top-1 Error Top-5 Error

Our Width Nested ResNet-50

1w1 36.7 14.7 36.7 14.8
2w2 31.5 11.7 31.7 11.7
3w4 29.2 10.2 28.3 9.4

Our Depth Nested Sparse ResNet-66

1d1 31.3 11.3 32.9 12.4
2d2 28.4 9.7 29.2 10.1
3d4 28.0 9.3 27.1 8.9

Table 3.3: Validation error of anytime networks trained with SGD and OSGD on the
ImageNet dataset.

3.5 Conclusion

Anytime neural network is a promising approach to generating accurate inference results

under dynamic latency and resource constraints. In this work, we propose a new class of

anytime neural network architectures and a novel variant of SGD customized for training such

architectures. Our experiments demonstrate synergy between our architecture and optimizer:

our anytime networks perform almost as well as independent non-anytime networks of the

same size.
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CHAPTER 4

ALERT: ACCURATE LEARNING FOR ENERGY AND

TIMELINESS

4.1 Overview

In this chapter, we propose ALERT, a cross-stack runtime system for DNN inference.

ALERT dynamically selects and adapts a DNN and a system-resource setting together

to handle changing system environments and meet dynamic energy, latency, and accuracy

requirements1.

ALERT is a feedback-based run-time. It measures inference accuracy, latency, and energy

consumption; it checks whether the requirements on these goals are met; and, it then

outputs both system and DNN-level configurations adjusted to the current requirements

and operating conditions. ALERT focuses on meeting constraints in any two dimensions

while optimizing the third, e.g., minimizing energy given accuracy and latency requirements

or maximizing accuracy given latency and energy budgets.

ALERT uses a random variable relating the current runtime environment to a nominal

profiling environment. After each inference task, ALERT estimates the global slow-down

factor using a Kalman filter. The global slow-down factor’s mean represents the expected

change compared to the profile, while the variance represents the current volatility. The

mean provides a single scalar that modifies the predicted latency/accuracy/energy for every

DNN/system configuration—a simple mechanism that leverages commonality among DNN

architectures to allow prediction for even rarely used configurations, while incorporating

variance into predictions naturally makes ALERT conservative in volatile environments and

aggressive in quiescent ones. The global slow-down factor and Kalman filter are efficient

1. ALERT provides probabilistic, not hard guarantees, as the latter requires much more conservative
configurations, often hurting both energy and accuracy.
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ID Task DNN Models Datasets
IMG1 Image VGG16 [150] ILSVRC2012
IMG2 Classification ResNet50 [60] (ImageNet)
NLP1 Sentence Prediction RNN Penn Treebank [113]
NLP2 Question Bert [33] Stanford Q&A

Answering Dataset (SQuAD) [138]

Table 4.1: ML tasks and benchmark datasets in our experiments

Embedded CPU1 CPU2 GPU

CPU
ARM

Cortex A-15
@2.0 GHz

Core-i7
@2.2 GHz

Xeon(R)
Gold 6126
@2.60GHz

Core-i7
@2.2 GHz

GPU none none none RTX 2080
Memory DDR3 2G DDR4 16G DDR4 16G*12 DDR4 16G
LLC 2MB 9MB 19.25MB 9MB

Table 4.2: Hardware platforms used in our experiments

to implement and low-overhead. Thus, ALERT combines the global slow-down factor with

latency, power, and accuracy measurements to select the DNN and system configuration

with the highest likelihood of meeting the constraints optimally.

We evaluate ALERT using various DNNs and ML domains on different (CPU and GPU)

machines under various constraints. Our evaluation shows that ALERT overcomes dynamic

variability efficiently. Across various experimental settings, ALERT meets constraints while

achieving within 93–99% of optimal energy saving or accuracy optimization. Compared to

approaches that adapt at DNN-level or system-level only ALERT achieves more than 13%

energy reduction, and 27% error reduction.

4.2 Understanding Deployment Challenges

We conduct an empirical study to examine the large trade-off space offered by different DNN

designs and system settings (Sec. 4.2.1), and the timing variability of inference (Sec. 4.2.2).

We use two canonical machine learning tasks, with state-of-the-art networks and common

data-sets (see Table 4.1) on a diverse set of hardware platforms, representing embedded

systems, laptops (CPU1), CPU servers (CPU2), and GPU platforms (see Table 4.2). The
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Figure 4.1: Tradeoffs for 42 DNNs (CPU2).

two tasks, image classification and natural language processing (NLP), are often deployed

with deadlines—e.g., for motion tracking [77] and simultaneous interpretation [107]—and

both have received wide attention leading to a diverse set of DNN models.

4.2.1 Understanding the Tradeoffs

Tradeoffs from DNNsWe run all 42 image classification models provided by the Tensorflow

website [149] on the 50000 images from ImageNet [32], and measure their average latency,

accuracy (error rate), and energy consumption. The results from CPU2 are shown in Figure

4.1. We can clearly see two trends from the figure, which hold on other machines.

First, different DNN models offer a wide spectrum of accuracy (error rate in figure),

latency, and energy. As shown in the figure, the fastest model runs almost 18× faster than

the slowest one and the most accurate model has about 7.8× lower error rate than the least

accurate. These models also consume a wide range—more than 20×—of energy usage.

Second, there is no magic DNN that offers both the best accuracy and the lowest latency,

confirming the intuition that there exists a tradeoff between DNN accuracy and resource

usage. Of course, some DNNs offer better tradeoffs than others. In Figure 4.1, all the

networks sitting above the lower-convex-hull curve represent sub-optimal tradeoffs.

Tradeoffs from system settings We run ResNet50 under 31 power settings from 40–
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100W on CPU2. We consider a sensor processing scenario with periodic inputs, setting the

period to the latency under 40W cap. We then plot the average energy consumed for the

whole period (run-time plus idle energy) and the average inference latency in Figure 4.2.

The results reflect two trends, which hold on other machines. First, a large latency/energy

space is available by changing system settings. The fastest setting (100W) is more than 2×

faster than the slowest setting (40W). The most energy-hungry setting (64W) uses 1.3×

more energy than the least (40W). Second, there is no easy way to choose the best setting.

For example, 40W offers the lowest energy, but highest latency. Furthermore, most of these

points are sub-optimal in terms of energy and latency tradeoffs. For example, 84W should

be chosen for extremely low latency deadlines, but all other nearby points (from 52–100) will

harm latency, energy or both. Additionally, when deadlines change or when there is resource

contention, the energy-latency curve also changes and different points become optimal.

Summary: DNN models and system-resource settings offer a huge trade-off space.The

energy/latency tradeoff space is not smooth (when accounting for deadlines and idle power)

and optimal operating points cannot be found with simple gradient-based heuristics. Thus,

there is a great opportunity and also a great challenge in picking different DNN models and

system-resource settings to satisfy inference latency, accuracy, and energy requirements.
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boxplot for Embedded; other tasks run out of memory on Embedded; every box shows the
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4.2.2 Understanding Variability

To understand how DNN-inference varies across inputs, platforms, and run-time environment

and hence how (not) helpful is off-line profiling, we run a set of experiments below, where

we feed the network one input at a time and use 1/10 of the total data for warm up, to

emulate real-world scenarios. We plot the inference latency without and with co-located

jobs in Figure 4.3 and 4.4, and we see several trends.

First, deadline violation is a realistic concern. Image classification on video has deadlines

ranging from 1 second to the camera latency (e.g., 1/60 seconds) [77]; the two NLP tasks,

have deadlines around 1 second [122]. There is clearly no single inference task that meets

all deadlines on all hardware.

Second, the inference variation among inputs is relatively small particularly when there

are no co-located jobs (Fig. 4.3), except for that in NLP1, where this large variance is mainly

caused by different input lengths. For other tasks, outlier inputs exist but are rare.

Third, the latency and its variation across inputs are both greatly affected by resource
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Figure 4.4: Latency variance with co-located jobs (the memory-intensive STREAM
benchmark [114] co-located on Embedded, CPU1-2; GPU-intensive Backprop [30] co-located
on GPU)

contention. Comparing Figure 4.4 with Figure 4.3, we can see that the co-located job has

increased both the median latency, the tail inference, and the difference between these two

for all tasks on all platforms. This trend also applies to other contention cases.

While the discussion above is about latency, similar conclusions apply to inference accuracy

and energy: the accuracy typically drops to close to 0 when the inference time exceeds the

latency requirement, and the energy consumption naturally changes with inference time.

Summary: Deadline violations are realistic concerns and inference latency varies greatly

across platforms, under contention, and sometimes across inputs. Clearly, sticking to one

static DNN design across platforms and workloads leads to an unpleasant trade-off: always

meeting the deadline by sacrificing accuracy or energy in most settings, or achieving a high

accuracy some times but exceeding the deadline in others. Furthermore, it is also sub-optimal

to make run-time decisions based solely on off-line profiling, considering the variation caused

by run-time contention.
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4.2.3 Understanding Potential Solutions

We now show how confining adaptation to a single layer (just DNN or system) is insufficient.

We run the ImageNet classification on CPU1. We examine a range of latency (0.1s-0.7s) and

accuracy constraints (85%-95%), and try meeting those constraints while minimizing energy

by either (1) configuring just the DNN (selecting a DNN from a family, like that in Figure 4.1)

or (2) configuring just the system (by selecting resources to control energy–latency tradeoffs

as in Figure 4.2). We compare these single-layer approaches to one that simultaneously

picks the DNN and system configuration. As we are concerned with the ideal case, we create

oracles by running 90 inputs in all possible DNN and system configurations, from which we

find the best configuration for each input. The DNN-level oracle uses the default system

setting. The Sys-level oracle uses the default (highest accuracy) DNN.

Figure 4.5 shows the results. As we have a three dimensional problem—meeting accuracy

and latency constraints with minimal energy—we linearize the constraints and show them on

the x-axis (accuracy is faster changing, with latency slower, so each latency bin contains all

accuracy goals). There are several important conclusions here. First, the DNN-only approach

meets all possible accuracy and latency constraints, while the Sys-only approach cannot meet

any constraints below 0.3s. Second, across the entire constraint range, DNN-only consumes

significantly more energy than Combined (60% more on average). The intuition behind
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Combined’s superiority is that there are discrete choices for DNNs; so when one is selected,

there are almost always energy saving opportunities by tailoring resource usage to that

DNN’s needs.

Summary: Combining DNN and system level approaches achieves better outcomes. If

left solely to the DNN, energy will be wasted. If left solely to the system, many achievable

constraints will not be met.

4.3 ALERT Run-time Inference Management

Deadline
Accuracy Constraint
Energy Budget
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Resource
Selection
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Input 
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Figure 4.6: ALERT inference system

4.3.1 Inputs & Outputs of ALERT

ALERT’s inputs are specifications about (1) the adaption options, including a set of DNN

models D = {di | i = 1 · · ·K} and a set of system-resource settings, expressed as different

power-caps P = {Pj | j = 1 · · ·L}; and (2) the user-specified requirements on latency,

accuracy, and energy usage, which can take the form of meeting constraints in any two

of these three dimensions while optimizing the third. ALERT’s output is the DNN model

di ∈ D and the system-resource setting pj ∈ P for the next inference-task input.

Formally, ALERT selects a DNN di and a system-resource setting pj to fulfill either of
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these user-specified goals.

1. Maximizing inference accuracy q (minimizing error) for an energy budget Egoal and

inference deadline Tgoal:

argmax
i,j

qi,j s.t. ei,j ≤ Egoal ∧ ti,j ≤ Tgoal (4.1)

2. Minimizing the energy use e for an accuracy goal Qgoal and inference deadline Tgoal:

argmin
i,j

ei,j s.t. qi,j ≥ Qgoal ∧ ti,j ≤ Tgoal (4.2)

4.3.2 ALERT Workflow

ALERT works as a feedback controller. It follows four steps to pick the DNN and resource

settings for each input n:

1) Measurement. ALERT records the processing time, energy usage, and computes

inference accuracy for n− 1.

2) Goal adjustment. ALERT updates the time goal Tgoal if necessary, considering the

potential latency-requirement variation across inputs. In some inference tasks, a set of inputs

share one combined requirement and hence delays in previous input processing could greatly

shorten the available time for the next input [10, 84]. Additionally, ALERT sets the goal

latency to compensate for its own, worst-case overhead so that ALERT itself will not cause

violations.

3) Feedback-based estimation. ALERT computes the expected latency, accuracy, and

energy consumption for every combination of DNN model and power setting.

4) Picking a configuration. ALERT feeds all the updated estimations of latency, accuracy,

and energy into Eqs. 4.1 and 4.2, and gets the desired DNN model and power-cap setting

for n.

The key task is step 3: the estimation needs to be accurate and fast. In the remainder of
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this section, we discuss key ideas and the exact algorithm of our feedback-based estimation.

4.3.3 ALERT Estimation Algorithm

Global Slow-down Factor ξ. ALERT uses ξ to reflect how the run-time environment

differs from the profiling environment. Conceptually, if the inference task under model di and

power-cap pj took time ti,j at run time and took t
prof
i,j on average to finish during profiling, the

corresponding ξ would be ti,j/t
prof
i,j . ALERT estimates ξ using recent execution history under

any model or power setting. Specifically, after an input n−1, ALERT computes ξ(n−1) as the

ratio of the observed time t
(n−1)
i,j to the profiled time t

prof
i,j , and then uses a Kalman Filter2

to estimate the mean µ(n) and variance (σ(n))2 of ξ(n) at input n. ALERT’s formulation is

defined in Eq. 4.3, where K(n) is the Kalman gain variable; R is a constant reflecting the

measurement noise; Q(n) is the process noise capped with Q(0). We set a forgetting factor

of process variance α = 0.3 [12]. ALERT initially sets K(0) = 0.5, R = 0.001, Q(0) = 0.1,

µ(0) = 1, (σ(0))2 = 0.1, following the standard convention [103].



Q(n) = max{Q(0), αQ(n−1) + (1-α)(K(n−1)y(n−1))2}

K(n) =
(1−K(n−1))(σ(n−1))2 +Q(n)

(1−K(n−1))(σ(n−1))2 +Q(n) +R

y(n) = t
(n−1)
i,j /t

prof
i,j − µ(n−1)

µ(n) = µ(n−1) +K(n)y(n)

(σ(n))2 = (1−K(n−1))(σ(n−1))2 +Q(n)

(4.3)

Then, using ξ(n), ALERT estimates the inference time of input n under any model di

and power cap pj : t
(n)
i,j = ξ(n) ∗ tprofi,j .

Accuracy. ALERT computes the estimated inference accuracy q̂i,j [Tgoal] by considering

2. A Kalman Filter is an optimal estimator that assumes a normal distribution and estimates a varying
quantity based on multiple potentially noisy observations [103].
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ti,j as a random variable that follows normal distribution with its mean and variance

computed based on that of ξ. Here qi,j represents the inference accuracy when the DNN

inference finishes before the deadline, and qfail is the accuracy of a random guess:

qi,j [Tgoal] =


qi , if ti,j ≤ Tgoal

qfail , otherwise

(4.4)

q̂i,j [Tgoal] =E(qi,j [Tgoal] | t
(n)
i,j )

=E(qi,j [Tgoal] | ξ(n)· t
prof
i,j )

=Pri,j · qi,j + (1− Pri,j)· qfail

ξ(n) ∼N (µ(n), (σ(n))2)

(4.5)

Energy. As discussed in Idea-3, ALERT predicts energy consumption by separately

estimating energy during (1) DNN execution: estimated by multiplying the power limit by

the estimated latency and (2) between inference inputs: estimated based on the recent history

of inference idle power using the Kalman Filter in Eq. 4.6. ϕ(n) is the predicted DNN-idle

power ratio, M (n) is process variance, S is process noise, V is measurement noise, and W (n)

is the Kalman Filter gain. ALERT initially sets M (0) = 0.01, S = 0.0001, V = 0.001.


W (n) =

M (n−1) + S

M (n−1) + S + V

M (n) = (1−W (n))(M (n−1) + S)

ϕ(n) = ϕ(n−1) +W (n)(pidle/p
(n−1)
i,j − ϕ(n−1))

(4.6)

ALERT then predicts the energy by Eq. 4.7. Unlike Eq. 4.5 that uses probabilistic

estimates, energy estimation is calculated without the notion of probability. The inference

power is the same no matter the inference misses or meets the deadline, as ALERT sets

power limits. Therefore it is safe to estimate the energy by its mean without considering the

distribution of its possible latency.
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e
(n)
i,j = pi,j · ξ(n)· t

prof
i,j + ϕ(n)· pi,j · (Tgoal − (ξ(n)· tprofi,j )) (4.7)

4.3.4 Integrating ALERT with Anytime DNNs

An anytime DNN is an inference model that outputs a series of increasingly accurate inference

results—o1, o2, ... ok, with ot more reliable than ot−1 (Section 3). ALERT easily works with

not only traditional DNNs but also Anytime DNNs. The only change is that qfail in Eq. 4.4

no longer corresponds to a random guess. That is, when the inference could not generate

its final result ok by the deadline Tgoal, an earlier result ox can be used with a much better

accuracy than that of a random guess. The updated accuracy equation is below:

q.,j =



qk , if tk,j ≤ tgoal

qk−1 , if tk−1,j ≤ tgoal < tk,j

· · ·

qfail , otherwise

(4.8)

Existing anytime DNNs consider latency but not energy constraints—an anytime DNN

will keep running until the latency deadline arrives and the last output will be delivered to

the user. ALERT naturally improves anytime DNN energy efficiency, stopping the inference

sometimes before the deadline based on its estimation to meet not only latency and accuracy,

but also energy requirements.

Furthermore, ALERT can work with a set of traditional DNNs and an Anytime DNN

together to achieve the best combined result. The reason is that Anytime DNNs generally

sacrifice accuracy for flexibility. When we feed a group of traditional DNNs and one Anytime

DNN to construct the candidacy set D, with Eq. 4.5, ALERT naturally selects the Anytime

DNN when the environment is changing rapidly (because the expected accuracy of an

anytime DNN will be higher given that variance), and the regular DNN, which has slightly
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higher accuracy with similar computation, when it is stable, getting the best of both worlds.

4.4 Limitations and Discussions

Assumptions of the Kalman Filter. ALERT’s prediction, particularly the Kalman

Filter, relies on the feedback from recent input processing. Consequently, it requires at least

one input to react to sudden changes. Additionally, the Kalman filter formulations assume

that the underlying distributions are normal, which may not hold in practice. If the behavior

is not Gaussian, the Kalman filter will produce bad estimations for the mean of ξ for some

amount of time.

ALERT is specifically designed to handle data that is not drawn from a normal distribution,

using the Kalman Filter’s covariance estimation to measure system volatility and accounting

for that in the accuracy/energy estimations. Consequently, after just 2–3 such bad predictions

of means, the estimated variance will increase, which will then trigger ALERT to pick anytime

DNN over traditional DNNs or pick a low-latency traditional DNN over high-latency ones,

because the former has a higher expected accuracy under high variance. So—worst case—

ALERT will choose a DNN with slightly less accuracy than what could have been used with

the right model. Users can also compensate for extremely aberrant latency distributions by

increasing the value of Q(0) in Eq. 4.3. As shown in the experiments, ALERT performs well

even when the distribution is not normal.

Probabilistic guarantees. ALERT provides probabilistic, not hard, guarantees. As

ALERT estimates not just average timing, but the distributions of possible timings, it can

provide arbitrarily many nines of assurance that it will meet latency or accuracy goals but

cannot provide 100% guarantee. Providing 100% guarantees requires the worst case execution

time (WCET), an upper bound on the highest possible latency. ALERT does not assume

the availability of such information and hence cannot provide hard guarantees [28].

Safety guarantees. While ALERT does not explicitly model safety requirements, it can
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be configured to prioritize accuracy over other dimensions. When users particularly value

safety (e.g., auto-driving), they could set a high accuracy requirement or even remove the

energy constraints.

Concurrent inference jobs. ALERT is currently designed to support one inference

job at a time. To support multiple concurrent inference jobs, future work needs to extend

ALERT to coordinate across these concurrent jobs. We expect the main idea of ALERT,

such as using a global slowdown factor to estimate system variation, to still apply.

4.5 Implementation

We implement ALERT for both CPUs and GPUs. On CPUs, ALERT adjusts power through

Intel’s RAPL interface [31], which allows software to set a hardware power limit. On GPUs,

ALERT uses PyNVML to control frequency and builds a power-frequency lookup table.

ALERT can also be applied to other approaches that translate power limits into settings for

combinations of resources [65, 70, 141, 181].

In our experiments, ALERT considers a series of power settings within the feasible range

with 2.5W interval on our test laptop and a 5W interval on our test CPU server and GPU

platform, as the latter has a wider power range than the former. The number of power

buckets is configurable.

ALERT incurs small overhead in both scheduler computation and switching from one

DNN/power-setting to another, just 0.6–1.7% of an input inference time. We explicitly

account for overhead by subtracting it from the user-specified goal.

Users may set goals that are not achievable. If ALERT cannot meet all constraints, it

prioritizes latency highest, then accuracy, then power. This hierarchy is configurable.

38



Run-time environment setting
Default Inference task has no co-running process

Memory
Co-locate with memory-hungry STREAM [114] (@CPU)
Co-locate with Backprop from Rodinia-3.1 [30] (@GPU)

Compute
Co-locate with Bodytrack from PARSEC-3.0 [24] (@CPU)
Co-locate with the forward pass of Backprop [30] (@GPU)
Ranges of constraint setting

Latency 0.4x–2x mean latency* of the largest Anytime DNN
Accuracy Whole range achievable by trad. and Anytime DNN
Energy Whole feasible power-cap ranges on the machine
Task Trad. DNN Anytime [165] Fixed deadline?
Image Classifi. Sparse ResNet Depth-Nest Yes
Sentence Pred. RNN Width-Nest No
Scheme ID DNN selection Power selection
Oracle Dynamic optimal Dynamic optimal
OracleStatic Static optimal Static optimal
DNN-only One Anytime DNN System Default
Sys-only Fastest traditional DNN State-of-Art[71]
No-coord Anytime DNN w/o coord. with Power State-of-Art[71]
ALERT ALERT default ALERT default
ALERTAny ALERT w/o traditional DNNs ALERT default
ALERTTrad ALERT w/o Anytime DNNs ALERT default

Table 4.3: Settings and schemes under evaluation (* measured under default setting without
resource contention)

4.6 Evaluation

We apply ALERT to different inference tasks on both CPU and GPU with and without

resource contention from co-located jobs. We set ALERT to (1) reduce energy while satisfying

latency and accuracy requirements and (2) reduce error rates while satisfying latency and

energy requirements. We compare ALERT with both oracle and state-of-the-art schemes

and evaluate detailed design decisions.

4.6.1 Methodology

Experimental setup. We use the three platforms listed in Table 4.2: CPU1, CPU2, and

GPU. On each, we run inference tasks3, image classification and sentence prediction, under

three different resource-contention scenarios:

3. For GPU, we only run image classification task there, as the RNN-based sentence prediction task is
better suited for CPU [183].
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• No contention: the inference task is the only job running, referred to as “Default”;

• Memory dynamic: the inference task runs together with a memory-intensive job that

repeatedly stops and restarts, representing dynamic memory resource contention, referred

to as “Memory”;

• Computation dynamic: the inference task runs together with a computation-intensive

job that repeatedly stops and restarts, representing dynamic computation resource

contention, referred to as “Compute”.

Schemes in evaluation. We give ALERT three different DNN sets, traditional DNN

models (ALERTTrad), an Anytime DNN (ALERTAny), and both (ALERT), and compare

it with two oracle and three state-of-the-art schemes (Table 4.3).

The twoOracle∗ schemes have perfect predictions for every input under every DNN/power

setting (i.e., impractical). Specifically, the “Oracle” allows DNN/power settings to change

across inputs, representing the best possible results; the “OracleStatic” has one fixed setting

across inputs, representing the best results without dynamic adaptation.

The three state-of-the-art approaches include the following:

• “DNN-only” conducts adaptation only at the DNN level through an Anytime DNN

[165];

• “Sys-only”adapts only at the system level following an existing resource-management

system that minimizes energy under soft real-time constraints [119]4 and uses the

fastest candidate DNN to avoid latency violations;

• “No-coord” uses both the Anytime DNN for DNN adaptation and the power-management

scheme [119] to adapt power, but with these two working independently.

4. Specifically, this adaptation uses a feedback scheduler that predicts inference latency based on Kalman
Filter.
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Figure 4.7: Average performance normalized to OracleStatic (Smaller is better).
Violations% is %-of-constraint-settings under which a scheme incurs >10% violation of all inputs.

4.6.2 Overall Results

Table 4.4 shows the results for all schemes for different tasks on different platforms and

environments. Each cell shows the average energy or accuracy under 35–40 combinations

of latency, accuracy, and energy constraints, normalized to the OracleStatic result. Figure

4.7 compares these results, where lower bars represent better results and lower *s represent

fewer constraint violations.ALERT and ALERTAny both work very well for all settings.

They outperform state-of-the-art approaches, which have a significant number of constraint

violations, as visualized by the many superscripts in Table 4.4 and the high * positions

in Figure 4.7. ALERT outperforms OracleStatic because it adapts to dynamic variations.

ALERT also comes very close to the theoretically optimal Oracle.

Plat. DNN Work. ALERT
ALERT-
Any

Sys-
only

DNN-
only

No-
coord

Oracle ALERT
ALERT-
Any

Sys-
only

DNN-
only

No-
coord

Oracle

Energy in Minimizing Energy Task Error Rate in Minimizing Error Task

CPU1

Sparse
Resnet

Idle 0.64 0.68 1.0819 1.19 0.941 0.64 0.91 0.92 1.35 1.023 0.913 0.89
Comp. 0.57 0.58 0.8019 1.30 1.391 0.57 0.38 0.39 0.51 1.3524 0.396 0.36
Mem. 0.53 0.55 0.7619 1.43 1.372 0.53 0.34 0.34 0.46 1.4728 0.392 0.33

RNN
Idle 0.61 0.65 1.0130 1.34 0.952 0.61 0.87 0.87 0.87 0.8721 0.8714 0.86

Comp. 0.60 0.57 0.9330 1.21 1.265 0.60 0.42 0.44 0.50 0.4628 0.4623 0.42
Mem. 0.54 0.56 0.9531 1.45 1.249 0.54 0.45 0.45 0.50 0.5728 0.5427 0.44

CPU2

Sparse
Resnet

Idle 0.93 0.88 0.9620 0.99 1.18 0.91 0.68 0.68 0.97 0.792 0.7124 0.66
Comp. 0.59 0.57 0.6023 1.00 1.01 0.58 0.58 0.57 0.85 0.7416 0.7129 0.55
Mem. 0.38 0.37 0.3919 0.65 0.6313 0.38 0.24 0.82 0.32 0.3317 0.7531 0.21

RNN
Idle 0.87 0.99 0.8034 1.04 1.006 0.83 0.84 0.85 0.99 0.8914 0.891 0.84

Comp. 0.60 0.60 0.5534 0.99 0.867 0.60 0.51 0.52 0.60 0.5321 0.5417 0.52
Mem. 0.52 0.51 0.4333 0.70 0.8514 0.52 0.26 0.27 0.31 0.2821 0.2717 0.26

GPU
Sparse
Resnet

Idle 0.97 0.99 0.9220 1.36 1.37 0.92 0.90 0.92 1.22 1.092 1.7412 0.86
Comp. 0.96 0.97 0.9420 1.66 1.77 0.89 0.32 0.34 1.28 1.2123 2.5018 0.30
Mem. 0.97 1.01 0.9120 1.39 1.43 0.91 0.89 0.92 1.22 1.112 1.8114 0.86

Harmonic mean 0.64 0.64 0.7327 1.11 1.084 0.62 0.46 0.47 0.63 0.6716 0.6315 0.45

Table 4.4: Average energy consumption and error rate normalized to OracleStatic.
(Smaller is better; Each cell is averaged over 35–40 constraint settings; superscript: # of constraint settings

violated for >10% inputs and hence excluded from energy average.)
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Plat. Work.
ALERT Any Trad ALERT Any Trad
Minimize Energy Task Minimize Error Task

CPU1
Idle 0.64 0.68 0.651 0.91 0.92 0.93

Comp. 0.57 0.58 0.656 0.38 0.39 0.41
Mem. 0.53 0.55 0.533 0.34 0.34 0.35

CPU2
Idle 0.93 0.88 0.951 0.68 0.68 0.69

Comp. 0.59 0.57 0.604 0.58 0.57 0.59
Mem. 0.38 0.37 0.408 0.23 0.24 0.32

GPU
Idle 0.97 0.99 0.95 0.90 0.92 0.89

Comp. 0.97 1.01 0.96 0.89 0.92 0.89
Mem. 0.96 0.97 0.95 0.32 0.34 0.32

Harmonic mean 0.66 0.66 0.673 0.47 0.48 0.50

Table 4.5: ALERT normalized average energy consumption and error rate to OracleStatic @
Sparse ResNet (Smaller is better)

4.6.3 Detailed Results and Sensitivity

Different DNN candidate sets. Table 4.5 compares the performance of ALERT working

with an Anytime DNN (Any), a set of traditional DNN models (Trad), and both. At a high

level, ALERT works well with all three DNN sets. Under close comparison, ALERTTrad

violates more accuracy constraints than the others, particularly under resource contention

on CPUs, because a traditional DNN has a much larger accuracy drop than an anytime

DNN when missing a latency deadline. Consequently, when the system variation is large,

ALERTTrad selects a faster DNN to meet latency and thus may not meet accuracy goals.

Of course, ALERTAny is not always the best. As discussed in Section 3.2.3, Anytime DNNs

sometimes have lower accuracy then a traditional DNN with similar execution time. This

difference leads to the slightly better results for ALERT over ALERTAny.

Figure 4.8 visualizes the different dynamic behavior of ALERT (blue curve) and ALERTTrad

(orange curve) when the environment changes from Default to Memory-intensive and back.

At the beginning, due to a loose latency constraint, ALERT and ALERTTrad both select

the biggest traditional DNN, which provides the highest accuracy within the energy budget.

When the memory contention suddenly starts, this DNN choice leads to a deadline miss and

an energy-budget violation (as the idle period disappeared), which causes an accuracy dip.

Fortunately, both quickly detect this problem and sense the high variability in the expected

42



L
a
te
n
cy

(s
)

0

0.05

0.1 ALERT-Trad
ALERT
Constraint

P
ow

er
(W

)
20

30

40

A
cc
u
ra
cy

(%
)

90

92

94

Image Classification Time (Input Number)
0 20 40 60 80 100 120 140 160

D
N
N

Trad

Any
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latency. ALERT switches to use an anytime DNN and a lower power cap. This switch is

effective: although the environment is still unstable, the inference accuracy remains high,

with slight ups and downs depending on which anytime output finished before the deadline.

Only able to choose from traditional DNNs, ALERTTrad conservatively switches to much

simpler and hence lower-accuracy DNNs to avoid deadline misses. This switch does eliminate

deadline misses under the highly dynamic environment, but many of the conservatively

chosen DNNs finish before the deadline (see the Latency panel), wasting the opportunity

to produce more accurate results and causing ALERTTrad to have a lower accuracy than

ALERT. When the system quiesces, both schemes quickly shift back to the highest-accuracy,

traditional DNN.

Overall, these results demonstrate how ALERT always makes use of the full potential of

the DNN candidate set to optimize performance and satisfy constraints.
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Figure 4.9: Minimize error for sentence prediction@ CPU1 (Lower is better). (whisker: whole
range; circle: mean)

ALERT probabilistic design. A key feature of ALERT is its use of not just mean

estimations, but also their variance. To evaluate the impact of this design, we compare

ALERT to an alternative design ALERTAlter, which only uses the estimated mean to select

configurations.

Figure 4.9 shows the performance of ALERT and ALERTAlter in the minimize error

task for sentence prediction. Here, ALERT (blue circles) always performs better than

ALERTAlter. Its advantage is the biggest when the DNN candidates include both traditional

and Anytime DNNs (i.e., the “Standard” in Figure 4.9). The reason is that traditional DNNs

and Anytime DNN have different accuracy/latency curves, Eq. 4.4 for the former and Eq.

4.8 for the latter. ALERTAlter is much worse in distinguishing these two by simply using the

mean of estimated latency to predict accuracy. ALERT also clearly outperforms ALERTAlter

under memory contention with traditional DNN candidates, as ALERT’s estimation better

captures dynamic system variation. Overall, these results show ALERT’s probabilistic design

is effective.

Sensitivity to latency distribution. ALERT assumes a Gaussian distribution, but is

designed to work for other distributions (see Section 4.4). As shown in Figure 4.10, the

observed ξs (red bars) are indeed not a perfect fit for Gaussian distribution (blue lines),

which confirms ALERT’s robustness.
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4.7 Conclusion

This work tackles the important problem of ensuring timely, accurate, and energy efficient

neural network inference with dynamic input, contention, and requirement variation. ALERT

achieves these goals through dynamic and coordinated DNN model selection and power

management based on feedback control. We evaluate ALERT with a variety of workloads

and DNN models and achieve high performance and energy efficiency.
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CHAPTER 5

ARE MACHINE LEARNING CLOUD APIS USED

CORRECTLY?

5.1 Overview

In this chapter, we present a comprehensive empirical study on a set of open-source applications

that use Google or AWS cloud-based ML APIs. We manually studied the latest versions—as

of August 1, 2020—of 360 applications that include non-trivial use of ML APIs and cover

all the three ML domains offered by them: vision, speech, and language.

Our study faces the challenge of lacking existing issue-tracking system records about ML

API misuses, given the short history of ML APIs. Consequently, we carefully study these

360 projects and discover previously unknown misuses in their latest versions by ourselves.

Our study found that misuses of ML APIs are widespread and severe: 247 out of these

360 applications (69 %) contain misuses in their latest versions, more than half of which

contain more than one type of misuse.

These misuses lead to various types of problems, including 1) reduced functionality, such

as a crash or a quality-reduced output; or 2) degraded performance, like an unnecessarily

extended interaction latency; or 3) increased cost, in terms of payment for cloud services.

Their root causes are all related to unique challenges for ML APIs: complicated data

requirements, complicated cognitive semantics, and complicated input-accuracy-performance-

cost tradeoffs.

Our study reveals common misuse patterns that are found in many different applications,

often with simple fixes that avoid failures, improve performance, and reduce cost. Therefore,

as a final contribution, we design several checkers and small API changes (in the form of

wrapper functions) that both check for and handle common errors. Many more misuses are

found by our checkers, beyond the 360 projects in the initial study.
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Google Cloud AI AWS AI IBM Cloud Watson Microsoft Azure Cognitive Services

Vision
Image Vision AI

Rekognition
Visual RecognitionS Computer Vision, Face

Video Video AI - Video IndexerA

Language
NLP Cloud Natural LanguageS Comprehend Natural Language UnderstandingS Text Analytics

Translation Cloud TranslationS TranslateS Language Translator Translator

Speech
Recognition Speech-to-Text TranscribeA Speech to Text Speech to Text
Synthesis Text-to-SpeechS Polly Text to SpeechS Text to Speech

Table 5.1: ML tasks supported by four popular ML cloud services. Subscript S: only a
synchronous API is offered for this task; subscript A: only an asynchronous API is offered;
no subscript: both synchronous and asynchronous APIs are offered.

All Apps New Apps
Google AWS Google AWS

Vision
Image 7916

8818
4221

2951
Video 674 231

Language
NLP 4632 4291 2341 1969

Translation 1192 7681 476 2865

Speech
Recognition 9439 5155 3291 2222
Synthesis 2190 6375 1037 1986

Total (w/o duplicates) 35376 14049

Table 5.2: # of applications using different types of ML APIs on GitHub. New Apps refer
to those created after 08-01-2019.

5.2 Methodology

5.2.1 Application selection

Our work looks at applications that use Google Cloud AI and Amazon AI, the two most

popular cloud AI services on Github, with thousands of applications using each type of their

AI services, as shown in Table 5.2. Our work will target the following two sets of applications

(all latest versions as of Aug. 1st, 2020 ), one for all our manual studies and one for our

automated checking.

For automated checking, we use all the 12666 Python applications on GitHub that use

Google or AWS AI service.

For manual studies, we collect a suite of 360 non-trivial applications that use Google/Amazon

ML APIs, including 120 applications for each of the three major ML domains. They cover

different programming languages, Python(80%), JS (13%), Java (3%), and others (4%).

Around 80% of these applications use Google Cloud AI and around 20% use AWS AI, with
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1% using both. The sizes of these applications range from 46 to 3 millions lines of code,

with 2228 lines of code being the median size and around 40% of them having more than

10 thousand lines of code. Most of these applications are young, created after 2018 (98%

of them). They have a median age of around 18 months at the time of our study. This

relatively young age distribution reflects the fact that the power of deep learning has only

been recently recognized, and yet is being adopted with unprecedented pace and breadth.

Since there are many toy applications on GitHub, we manually checked about 1200

randomly selected applications, which use Google/Amazon ML APIs, to obtain these 360

non-trivial applications. We manually confirmed they each target a concrete real-world

problem, integrate the ML API(s) in their workflow, and conduct some processing for the

input or the output of the ML API, instead of simply feeding an external file into the ML

API and directly printing out the API result.

5.2.2 Anti-pattern identification methodology

Because of the young ages of ML API services and hence the applications under study, we

could not rely on known API misuses in their issue-tracking systems, which are very rare.

Instead, we must discover API misuses unknown to the developers by ourselves.

Since there is no prior study on ML API misuses, our misuse discovery can not rely on

any existing list of anti-patterns. Instead, our team, including ML experts, carefully studies

API manuals, intensively profiles the API functionality and performance, and then manually

examines every use of an ML API in each of the 360 applications for potential misuses. For

every suspected misuse, we design test cases and run the corresponding application or its

component to see if the misuse truly leads to reduced functionality, degraded performance,

or increased cost comparing with an alternative way of using ML APIs, which we designed.

When one misuse is identified, we generalize it and check if there are similar misuses in

other applications. We repeat this process for many rounds until we converge to the
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results presented in this paper. During this process, we report representative misuses to

corresponding application developers, receiving confirmation for many cases. All the manual

checking is conducted by two of the authors, with their results discussed and checked by all

the co-authors.

We identify a wide variety of applications as containing ML API misuses including those

both: small and large, young and old, AWS and Google-API based. This variety of misuses

indicates that they are not rare mistakes by individual programmers and do not appear to

diminish with software growth, age, or API provider.

5.2.3 Profiling methodology

We profile several projects to evaluate their performance before and after optimization. We

use real-world vision, audio, or text data that fits the scenario of corresponding software.

We profile the end-to-end latency for each related module and also the whole process: from

user input to final output. By default, we run each application under profiling five times for

each input and reported the average latency.

All experiments were done on the same machine, which contains a 16-core Intel Xeon E5-

2667 v4 CPU (3.20GHz), 25MB L3 Cache, 64GB RAM, and 6×512GB SSD (RAID 5). It has

a 1000Mbps network connection, with twisted pair port. Note that all the machine-learning

inference is done by cloud APIs remotely, instead of on the machine locally.

5.3 Functionality-related API Misuses

Through manual checking, we identified three main types of API misuses that commonly

affect the functional correctness of applications, as listed in Table 5.3 (white-background

rows). They are typically caused by developers’ misunderstanding of the semantics or

the input data requirements of machine learning APIs, and can lead to unexpected loss

of accuracy and hence software misbehavior that is difficult to diagnose.
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What challenges Related APIs and Inputs Service Impact # (%) of Problematic Apps.
did developers encounter? Provider Manual Auto

Should Have Called a Different API

Complicated cognitive semantic
overlap across APIs

text-detection vs. document-text-detection G Low Accuracy 6 ( 11%) -
image-classification vs. object-detection AG Low Accuracy 5 ( 9%) -
sentiment-detection vs. entity-sentiment-detection G Low Accuracy 4 ( 5%) -
ASync vs. Sync Language-NLP A Slower - 3 (43%)

Complicated tradeoffs:
Input-Accuracy-Performance

ASync vs. Sync Speech Recognition G Slower 7 ( 78%) 203 (83%)

ASync vs. Sync Speech Synthesis A Slower - 2 (22%)
Vision-Image API vs. annotate-image AG Slower 7 ( 78%) -
Language-NLP API vs. annotate-text AG Slower 11 (100%) -Unaware of parallelism APIs
Regular API vs Batch API AG Slower Workload dependent

Should Have Skipped the API call
Complicated tradeoffs:
Input-Performance

Speech Synthesis APIs with constant inputs AG Slower, More Cost 15 ( 25%) 279 (17%)

Complicated tradeoffs:
Accuracy-Performance

Vision-Image APIs with high call frequency AG Slower, More Cost 3 ( 3%) -

Should Have Converted the Input Format
Complicated data requirements all APIs without input validation, transformation AG Exceptions 206 ( 57%) -
Complicated tradeoffs:
Input-Accuracy-Performance

Vision-Image APIs with high resolution inputs AG Slower 106 ( 88%) -

Language-NLP APIs with short text inputs AG More Cost 4 ( 3%) -
Complicated tradeoffs:
Input-Accuracy-Cost

Speech recognition APIs with short audio inputs AG More Cost 1 ( 2%) -

Speech synthesis APIs with short audio inputs AG More Cost 1 ( 2%) -
Should Have Used the Output in Another Way

Complicated outputsemantics sentiment-detection G Low Accuracy 24 ( 39%) 360 (37%)

Total number of benchmark applications with at least one API misuse AG 249 (69%)

Table 5.3: ML API misuses identified by our Manual checking and Automated checkers.
(“A” is for AWS and “G” for Google. The %s of problematic apps are based on the total # of apps using
corresponding APIs in respective benchmark suite. Note that, 133 apps contain more than one type of API

misuses; the average number of API misuses in each application is 1.3.)

Note that, although the high-level patterns of these misuses, such as calling the wrong

API and misinterpreting the outputs, naturally occur in general APIs, the exact root causes,

code anti-patterns, and tackling/fixing strategies are all unique to ML APIs.

5.3.1 Calling the wrong API

Unlike traditional APIs that are programmed to each conduct a clearly coded task, ML APIs

are trained to perform tasks emulating human behaviors, with functional overlap among

some of them. Without a good understanding of these APIs, developers may call the wrong

API, which could lead to severely degraded prediction accuracy or even a completely wrong

prediction result and software failures. We discuss three pairs of APIs that are often misused.

Text-detection and document-text-detection are both vision APIs designed to extract

text from images, with the former trained for extracting short text and the latter for long

articles. Mixing these two APIs up will lead to huge accuracy loss. Our experiments using the

IAM-OnDB dataset [104] show that text-detection has about 18% error rate in extracting
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hand-written paragraphs, and can only extract individual sentences—not complete paragraphs—

when processing multi-column PDF files; yet, document-text-detection makes almost no

mistakes for these long-text workloads. This huge accuracy difference unfortunately is not

clearly explained in the API documentation and is understandably not known by many

developers. In our benchmark suite, 52 applications used at least one of these two APIs,

among which 6 applications (11%) use the wrong API. For example, PDF-to-text[128] uses

text-detection to process document scans, which is clearly the wrong choice and makes

the software almost unusable for scans with multiple columns.

Image-classification and object-detection are both vision APIs that offer description

tag(s) for the input image. The former offers one tag for the whole image, while the latter

outputs one tag for every object in the image. Incorrectly using image-classification in

place of object-detection can cause the software to miss important objects and misbehave;

an incorrect use along the other direction could produce a wrong image tag. In our benchmark

suite, 57 applications use at least one of these two APIs, among which 5 applications (9%)

pick the wrong API to use. For example, Whats-In-Your-Fridge [173] is expected to

leverage the in-fridge camera to tell a user what products are currently inside the fridge.

However, since it incorrectly applies image-classification, instead of object-detection,

to in-fridge photos, it is doomed to miss most items in the fridge—a severe bug that makes

this software unusable.

Similar problems also exist in language APIs. For example, sentiment-detection and

entity-sentiment -detection can both detect emotions from an input article. However,

the former judges the overall emotion of the whole article, while the latter infers the emotion

towards every entity in the input article. Mis-use between these two APIs can lead to not only

inaccurate but sometimes completely opposite results, severely hurting the user experience.

In our benchmark suite, 86 applications used these APIs, among which 4 applications (5%)

use the wrong one.
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Summary Above API mis-uses form an important and new type of semantic bugs: the

machine-learning component of software suffers unnecessary accuracy losses due to simple

API-use mistakes, which we refer to as accuracy bugs. Accuracy bugs in general are difficult

to debug, as they are difficult to manifest under traditional testing and developers may easily

blame the underlying DNN design without realizing their own, easily fixable, mistakes. The

particular accuracy bugs discussed here involve some of the most popular APIs, used by

more than half of the applications in our suite, and hence are particularly dangerous.

One may tackle this problem through a combination of program analysis, testing, and

DNN design support. Some of these misuses may be statically detected by checking how

the API results are used. Mutation testing that targets these misuse patterns could also

help—we can check whether the software behaves better when replacing one API with the

other. Finally, it is also conceivable to extend the DNN or add a simple input classifier to

check if the input differs too much from the training inputs of the underlying DNN, similar

to the problem of identifying out-of-distribution samples tackled by recent ML work [99].

5.3.2 Misinterpreting outputs

Related to the probabilistic nature of cognitive tasks, DNNmodels operate on high-dimensional

continuous representations, yet often ultimately produce a small discrete set of outputs.

Consequently, ML APIs’ outputs can contain complicated, easily misinterpretable semantics,

leading to bugs.

A particularly common mistake concerns the sentiment detection API from Google’s

NLP service. This API returns two floating point numbers, score and magnitude. Among

them, score ranges from −1 to 1 and indicates whether the input text’s overall emotion is

positive or negative; magnitude ranges from 0 to +∞ and indicates how strong the emotion

is. According to Google’s documentation [52], these two numbers should be used together

to judge the sentiment of the input text: when the absolute value of either of them is small
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response = client.analyze_sentiment(document=document,

encoding_type=encoding_type)

···

sentiment = response.document_sentiment.score

···

if avg_sentiment < 0:

message = '''Your posts show that you might not be '

going through the best of time. '''

Figure 5.1: Misinterpreting outputs in JournalBot [78]

(e.g., Score < 0.15), the sentiment should be considered neutral; otherwise, the sentiment is

positive when score is positive and negative when score is negative. In our benchmark suite,

62 applications have used this API, among which 24 have used the API results incorrectly.

Summary Incorrectly using ML API results can again lead to accuracy bugs that are

difficult to debug. This problem about sentiment detection can be alleviated by automatically

detecting result misuse through static program analysis, which we discuss in Section 5.6.

5.3.3 Missing input validation

Inputs to ML APIs are typically real-world audio, image, or video content. These inputs

can take many different forms, with different resolutions, encoding schemes, and lengths.

Unfortunately, developers sometimes do not realize that not all forms are accepted by ML

APIs, nor do they realize that such input incompatibility can be easily solved through format

conversion, input down-sampling, or chunking. As a result, lack of input validation and

incompatibility handling are very common, and can easily cause software crashes.

Many ML APIs have input requirements and an exception is thrown at an incompatible

input. For example, the Google speech recognition APIs have formatting requirements (i.e.,

single channel, using 16 bit samples for LINEAR PCM) and size requirements (< 1 minute

for synchronous APIs) for audio inputs; vision APIs have size requirements (i.e., < 5 MB

for AWS and < 10 MB for Google) for image inputs.
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Among the 360 benchmark applications, 11% choose to use APIs that do not require

input validation, about one third make the effort to guarantee their input validity through

input checking and transformation, and yet more than half of the applications made no

effort to guarantee input compatibility (206 applications). Furthermore, none of these 206

applications handle exceptions thrown by API calls, and hence can easily encounter software

crashes due to incompatible inputs. For example, Automatic-Door [20] takes input camera

images and decides to open or close a door using face verification through the AWS API

compare-faces. Since compare-faces requires the input image to be smaller than 5 MB,

without any input checking and transformation, this software could be completely unusable

if it happens to be deployed with a high resolution camera.

Summary Input checking and transformation is particularly important for ML APIs,

considering the wide variety of real-world audio and visual content, and is unfortunately

ignored by developers at an alarming rate—206 out of 360 applications, severely threatening

software robustness. This problem can be alleviated by automatically detecting and warning

developers of the lack of input validation or exception handling. Even better, we can design

a wrapper API that automatically conducts input checking and transformation (e.g., image

down-sampling and audio chunking), which we will present in Section 5.6.

5.4 Performance-related API Misuses

Through manual checking, we identify and categorize 4 main types of ML API mis-uses

that can lead to huge performance loss and user experience damage (see Table 5.3, blue-

background rows). They are typically related to ML APIs’ complicated tradeoffs among

input-transformation effort, performance, and accuracy.
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5.4.1 How important are performance anti-patterns?

To motivate the study below, we first check whether the performance of ML APIs matters

for software user experience.

First, the latency of ML APIs are significant, ranging from close to one second to several

minutes for typical inputs. Based on our profiling, in vision tasks, most APIs takes 0.2-0.6

seconds to process a low-resolution image with 550×400 pixels, and almost one full second to

process a high-resolution image. In language tasks, a 5000-character input takes 0.60 (± 0.05)

seconds for synchronous APIs and as many as 413 (± 58) seconds for asynchronous APIs.1

In speech tasks, a 30-second short audio clip takes 7.1 (± 1.5) seconds with synchronous

APIs and 13.6 (± 4.9) seconds with asynchronous APIs.2

Second, we find that more than one third of the benchmark applications have (soft)

latency deadlines of a couple of seconds or less, with their service quality directly affected by

ML APIs. Many of them (114 out of 360) involve ML APIs in their critical user-interactive

workflow and hence need the API result to return within a couple of seconds to maintain

good software interactivity[11, 107]; in addition, some applications (11 out of 360) process

streaming data, audio, video, and others, from a sensor, and hence have to finish each API

call in less than one second[77] to avoid data loss. Even for those applications that do

not have tight deadlines, typically one would still hope an output to be generated in a few

minutes, which could still be challenging, as these applications typically feed a large amount

of data to ML APIs.

Clearly, inefficient use of ML APIs can cause severe damage to user experience, as we

will see in real examples below.

1. Profiled with AWS Comprehend on three types of inputs: a philosophy text, a novel with conversations,
and a CNN news article.

2. Profiled with Google Speech-to-Text on three different inputs: a news broadcast, an online lecture,
and a WSJ audio. Data format: avg (± std)
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(a) Google Speech-to-Text (b) AWS Comprehend

Figure 5.2: Latency profiling for three different APIs of Google Speech-to-Text (synchronous,
asynchronous, and streaming) and AWS Comprehend (synchronous one file, synchronous
multi-file, and asynchronous). Each point in the figure corresponds to the mean and the
error bar corresponds to the standard deviation of five experiments. Note that, in (b) the
y-axis is broken into two parts with different value ranges.

5.4.2 Misuse of asynchronous APIs

The same ML task can often be performed with multiple APIs, a synchronous version,

an asynchronous version, and sometimes a streaming version. The different versions have

complicated and sometimes counter-intuitive tradeoffs between input transformation, performance,

and accuracy that often confuse developers and lead to surprisingly wide-spread and severe

misuses based on our study.

A common problem is related to asynchronous ML APIs. In many concurrent programs,

asynchronous functions are used to gain performance through improved concurrency at the

cost of extra development effort. In most ML applications, the tradeoff is the opposite:

asynchronous ML APIs are called without improved concurrency and huge performance loss

in exchange for less effort in input transformation.

The benefit of asynchronous ML APIs is clearly documented: they allow much longer

audio/text inputs than synchronous APIs. For example, in Google speech recognition service,

the synchronous API takes audio up to 1-minute long, while the asynchronous API can take

up to 480 minutes [53].
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The performance downside of asynchronous APIs is unfortunately not quantitatively

specified in the documentation. In our profiling, synchronous and streaming APIs are about

twice as fast as asynchronous APIs in Google Speech-to-Text service, as shown in Figure

5.2.a. The difference is even bigger for AWS Comprehend service (i.e., NLP). Since its

multi-file synchronous API has built in parallelism, the speed up over asynchronous API can

be as many as 400X (Figure 5.2.b).

Making things worse, most applications call asynchronous ML APIs synchronously, with

the caller blocking itself until the API returns and no other concurrent execution on going,

and hence has no way to compensate for the poor performance. Among the 44 benchmark

applications using Google speech recognition APIs, 9 use the asynchronous API. 7 out of

9 make the asynchronous call in a synchronous way. Our automated checker confirms this

trend: 203 out of 246 GitHub applications call this asynchronous API in a synchronous way.

Clearly, many of these asynchronous APIs could be replaced with synchronous or streaming

APIs, with a huge performance improvement (up to 400X as profiling shows).

Summary: The complicated tradeoff among synchronous, asynchronous, and streaming

APIs has clearly confused many developers. This leads to a broad misuse of asynchronous

APIs, as quantified in Table 5.3, and severe performance loss and user experience damage.

We could create a wrapper API that makes the choice for developers (Section 5.6).

5.4.3 Forgetting parallel APIs

Some ML APIs are offered to ease task and data parallelism, but are rarely used even when

doing so would require only a simple change to the application.

Forgetting task parallelism. Both Google and AWS offer task-parallelism through

easy-to-use APIs, annotate-image and annotate-text. Multiple vision or NLP services

can be specified as parameters of these two APIs, and then each service is applied to the

same input in parallel. Unfortunately, among the 20 benchmark applications that apply
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multiple vision (NLP) APIs towards the same input image (text), only 2 of them use

the annotate-image or annotate-text API. The majority of them completely miss this

easy parallelism opportunity. For example, Okuninushi[126], a website for Japanese wine

database, applies ImageClassification and TextDetection to every input image sequentially.

An easy refactoring to use annotate-image offers 2X speedup.

Forgetting data parallelism. Google and AWS both offer data-parallelism through

easy-to-use batching APIs, which take multiple input files and process them at once. This

offers optimization opportunities for those applications with large inputs: the large input

can be chunked into multiple smaller pieces and get processed using a batching API.

Of course, this optimization depends on the specific workload and task. First, the

workload should be large enough to amortize the extra input and output processing cost.

Second, the ML task needs to make sure that the aggregated results from input chunks are

(mostly) the same as the original result from processing one big file. This works for speech

synthesis, speech recognition, entity detection, and syntax analysis tasks, as long as the input

audio or text is carefully chunked, like at the boundaries of pauses, sentences, or paragraphs.

For example, EmailClassifier [37] downloads all the emails saved in a database and

then applies the AWS NLP API to detect sentiments and extract entities from every email.

We can easily chunk long emails by paragraph and then process all paragraphs in parallel

using the batching API. Particularly, chunking by paragraph typically has no effect to the

accuracy of keyword extraction and entity recognition tasks [171, 172]. The results produced

by the synchronous one file API and the synchronous multiple files API only have very minor

word difference, with the latter offering a 1.5X speedup for a 4500-character sample email

(0.44 seconds vs. 0.66 seconds). The total time saving for all the emails will be significant.

Summary: The mentioned parallelism APIs are rarely used in our benchmark suite,

appearing in only 1 out of the 360 applications. Static analysis can be used to identify ML

APIs sequentially applied to the same input data, and suggest or automate an optimization
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that uses annotate* APIs. By dynamically checking the input size to some ML APIs like

speech recognition and entity detection, data-parallel optimization can be done by calling

batch APIs, which we have implemented as API wrappers (Section 5.6).

5.4.4 Making skippable API calls

Sometimes, an API call can be skipped at the cost of slightly higher engineering effort or

slight, but often indiscernible by human, functionality difference. Lack of understanding of

these tradeoffs leads to some unnecessary API calls. It is typically related to API calls with

constant inputs and API calls with excessive frequency.

API calls with constant inputs. Among the 60 benchmark applications that use the

speech synthesis API, 15 (25%) of them call this API with a constant string input and thus

could have replaced the API call with a pre-recorded audio. As we will see in Section 5.6, our

automated checker found that this is indeed a prevalent problem in hundreds of applications.

An example is Sounds-Of-Runeterra [145] (Figure 5.3), a card game extension that

improves game accessibility to visually impaired users. It contains multiple unnecessary calls

to Google speech synthesis API, each generating an audio clip for one constant string, e.g.,

“You won”, “Exiting application”, etc. Replacing each of them with a pre-recorded audio

clip can save 0.9 seconds and associated monetary cost for each API call.

API calls with excessive frequency. Sometimes, a program repeatedly invokes an

image-processing API at high frequency. Reducing the invocation frequency can lead to

huge performance improvement with little to no perceivable output difference to human

users. Among 120 vision benchmarks, 3 of them fall into this anti-pattern.

For example, Ns-Tool [124] is a game screen monitoring application. Every second, it

takes a screenshot of the game and applies the text-detection API to check whether the

screen is locked; if so, it sends a message through the internet to the user. Clearly, this

causes unnecessary waste of computation resources, because the auto-sleep duration is at
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def _stop(self):

audio = self.transform_text_to_audio_as_bytes_io(

"Exiting application.")

···

def transform_text_to_audio_as_bytes_io(self, string,

language_code = DEFAULT_LANGUAGE_CODE):

voice_request = build_voice_request(string, language_code)

response = self.client.synthesize_speech(

voice_request.synthesis_input,

voice_request.voice_config,

voice_request.audio_config)

···

Figure 5.3: Skippable call@ Sounds-Of-Runeterra[145]

least several minutes and a couple of seconds’ delay in sending out the reminder message

would not matter to users.

Summary: These problems also occur with other APIs as well, although not as common

as that for speech synthesis and vision-image APIs. We have built a static checker to

automatically identify speech synthesis API call with a constant input (Section 5.6); future

research could design a dynamic controller to adjust API call frequency, balancing functionality

and performance.

5.4.5 Unnecessarily high-resolution inputs

Vision APIs accept inputs with a range of resolutions and impose a complicated tradeoff

among input, performance, and accuracy that is often ignored by developers—with higher

input resolution, the performance degrades greatly, while the inference accuracy increases

and then saturates quickly.

This tradeoff is not explained clearly in the tutorial: AWS tutorial did not offer any

resolution suggestion; Google vision APIs did suggest image resolution to be 640 x 480,

which is ignored by most developers. To better understand this tradeoff, we conducted

an experiment with 100 randomly collected high resolution images in four categories (Dog,
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Figure 5.4: Accuracy and latency with different input resolutions.

Bufferfly, Scooper, and Wardrobe). We down-sampled each image to create 6 more images

with different resolutions as shown in Figure 5.4, and then feed them each into the Google

image classification API. As shown in the figure, the round-trip API time increases greatly

with resolution and yet the accuracy saturates at 640 x 480. A likely reason is that most

vision datasets [32, 102, 92, 144, 16, 93], on which vision DNNs are trained, contain images

with similar resolutions ranging from 32 x 32 to 1100 x 700. Consequently, higher resolutions

do not lead to higher accuracy. Note that, down-sampling an image takes only 0.03 seconds

on average, negligible comparing with the API latency. Due to space constraints, we omit

the AWS results here, which have a similar trend.

Given this tradeoff, developers really should follow the tutorial suggestion in feeding

relatively low resolution images (e.g., 640 x 480) into vision APIs. However, among the

120 applications in our benchmark suite that use Vision-Image APIs, only 9 of them stick

to this guideline by down-sampling every high-resolution user input. The remaining 106

applications all waste performance without accuracy benefit for any input that has higher

than 640 x 480 resolution, which unfortunately is the majority today.
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Pricing Unit Price ($)

Vision
Image 1 image 1.5-3.5 per 1000 unit
Video 1 minute 0.05-0.15 per unit

Language
NLP 1000 characters 0.25-1 per 1000 unit

Translation 1 character 20 per million character

Speech
Recognition 15 seconds 6-9 per 1000 unit
Synthesis 1 character 4-16 per million character

Table 5.4: Cost of Google cloud AI services.

5.5 Cost-related API Misuses

Every ML API call costs money. Naturally, some performance problems, particularly all of

those skippable calls in Section 5.4, also waste money. In addition, the round-up charging

policy leads to a unique anti-pattern: since every API call is charged based on the input size

rounded-up, calls with very small inputs may be economically sub-optimal. The possibility

of combining multiple calls with small inputs creates a complicated tradeoff problem among

input transformation, accuracy, performance, and cost.

Without knowing the exact input distribution, it is difficult to identify applications that

fall into this anti-pattern. Nevertheless, our benchmark suite contains some examples.

Audio-Sentence-Split [19] takes any input audio, slices it into 1- to 2- second audio

clips based on silence in the audio, feeds the clips one by one to the Google speech recognition

API, and finally stores the resulting pairs of clip–transcript into a database. Since every API

call is charged based on the audio length rounded up to multiple of 15 seconds, chunking into

1- or 2- second snippets wastes money and likely hurts inference accuracy, as well. A more

cost-efficient implementation is to feed the whole audio into one API call and then slice

the returned transcript and audio, in whatever way the application sees fit (the returned

transcript contains information about the exact audio position matched to each word, which

makes chunking easy). For example, a 60-second audio could cost around $0.5 in the original

implementation, and would cost only around $0.03 after applying the proposed fix.

Summary. The round-up manner of ML API charging policy creates yet another
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dimension into the already complicated trade-off space. Future work can extend program

checkers and run-time controllers to consider economical effect as well.

5.6 Solutions

We have implemented checkers and wrappers to automatically detect and fix some of the

anti-patterns introduced in Section 5.3-5.5. The auto-detection tools are implemented with

Jedi[58], AST[136] and PyGitHub[135] library. They include:

Output Misinterpretation Checker. We have built a static checker to automatically

detect mis-uses of the sentiment- detectionAPI’s output, a type of accuracy bugs discussed

in Section 5.3. Our checker first identifies every call site of the API, and then examines the

data-flow graph to see whether both the score field and the magnitude field of the API

result are used in later execution. Our analysis is inter-procedural and path sensitive. If the

result is used as a parameter of a function call, we continue to check how/whether the result

fields are used inside the callee function; if the result is returned by the current function,

we continue to check how/whether the result fields are used in every caller function. The

tracking ends either when we have confirmed that both fields, score and magnitude, have

been used, or when we cannot see both of them being used after checking a threshold number

of caller and callee functions. A bug is reported in the latter case.

Among the 975 GitHub Python applications that use this API, our checker finds 360 of

them interpreting the API output incorrectly.

Asynchronous API call checker. As discussed in Section 5.4.2, many applications in our

benchmark suite call asynchronous APIs in a synchronous, blocking way, and hence suffer

reduced performance for no benefit. To automatically identify this problem, our checker

first identifies all the places where an asynchronous API is called and then the application

immediately waits on the result, following the common API usage patterns shown in Figure
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transcribe.start_transcription_job(...)

while True:

status = transcribe.get_transcription_job(...)

if status[...] in ['COMPLETED', 'FAILED']:

break

time.sleep(···)

operation = client.long_running_recognize(config, audio)

result = operation.result()

Google Cloud Speech-to-Text

AWS Transcribe

Figure 5.5: Using asynchronous API in synchronously (Blue lines contain key code structures
used by our checker)

5.5. The checker then looks for other concurrent execution. If not, this pattern is tagged as

a place for performance optimization.

Our checker automatically reports 313 minuses from 523 Python applications using

asynchronous ML APIs.

Constant-parameter API call checker. We have implemented a static checker to auto-

matically identify speech synthesis API calls that use constant inputs, a type of performance

mis-use discussed in Section 5.4.4. Our checker starts with every call site and tracks backward

along the data dependency graph to see how the parameter of the API call is generated.

Specifically, the checker keeps a working set that is initialized with the parameter itself p. It

first identifies all the p assignments that can reach the API call site, and replaces p in the

working set with all the non-constant variables at the right-hand side of those assignments.

This back tracking continues until either (1) the working set becomes empty, in which case

a constant-parameter API call problem is reported, or (2) our tracking has reached our

inter-procedural checking threshold, configured as 5 levels of function calls, in which case we

consider this API call as having a variable parameter.

Applied to Python GibHub 686 (943) applications on using Google’s (AWS’s) speech

synthesis API, our checker finds 202 (196) problematic applications.
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API wrappers. We design API wrappers for all three domains of APIs. In vision tasks,

our wrapper down-samples large images to the suggested size of 640×480 pixels. It tackles

the anti-patterns of missing input validation (Section 5.3.3) and unnecessarily high-resolution

inputs (Section 5.4.5). In language tasks, the wrapper focuses on entity detection and syntax

analysis, which allow input chunking with little impact to result accuracy. Our wrapper API

takes in one or multiple text strings. It first concatenates all input strings together, which

avoid the money wasting problem in Section 5.5. If the combined string is not too long, a

synchronous API is called; if it is too long, it will be chunked and get processed through

batching API, avoiding the anti-patterns of forgetting parallel APIs (Section 5.4.3) and

misuse of asynchronous APIs (Section 5.4.2) . The wrapper for speech tasks is similar, but

only takes one audio as input. The wrapper uses the synchronous API when the input size

allows or streaming API otherwise. All these wrappers conduct an input validation and, in

some cases, also transformation.

5.7 Threats to Validity

Internal threats to validity. The inputs used in our performance profiling and inference-

accuracy measurement may not represent the exact workload used by real-world users. Our

static checkers can have false positives and false negatives.

External threats to validity. We only studied ML APIs offered by Google and AWS

in this work, but not those offered by other service providers. Our study only covers cloud

APIs with pre-trained DNNs designed for general purpose use, and excludes user-defined

DNNs based on their specific needs. We only study open-source projects on GitHub, with

no access to those closed-source commercial projects. The 360 applications in our manual

study benchmark suite may not represent all real-world applications. Our static analysis

tool currently only covers python applications.
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5.8 Conclusion

This work presents the first in-depth study of real-world applications using machine learning

cloud APIs. By investigating the latest versions of 360 open-source applications using Google

and AWS ML Cloud APIs, we found 8 types of common API misuses that cause functionality,

performance, and service cost problems. It provides guidance to help prevent errors while

improving the functionality, performance, and cost of these applications. We also develop

static checkers to automatically detect some of these problems in a larger set of applications.

The wide presence of these problems motivates future research to further tackle ML API

misuses.
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CHAPTER 6

AUTOMATED TESTING OF SOFTWARE THAT USES

MACHINE LEARNING APIS

6.1 Overview

In this chapter, we propose Keeper, a testing tool designed for software application that uses

cognitive machine learning APIs (ML software).

Keeper designs a set of pseudo-inverse functions for cognitive ML APIs1. For an API

f that maps inputs from domain I to outputs in domain O, its pseudo-inverse function f ′

reverses this mapping at the semantic level. We make sure that the mapping by f ′ has been

confirmed by many people to have high accuracy. For example, the Bing image search engine

is a pseudo-inverse function of Google’s image classification API.

Keeper then integrates the pseudo-inverse functions with symbolic execution to reach the

sparse program-relevant input space. Specifically, Keeper first uses symbolic execution to

figure out what values an ML-API output can take to fulfill branch coverage. Keeper then

automatically generates realistic inputs that are expected to produce the desired ML-API

outputs, leveraging pseudo-inverse functions.

Keeper also makes pseudo-inverse functions a proxy of human judgement and automatically

judges the correctness of software outputs that are related to cognitive tasks. Since our

pseudo-inverse functions are not analytically inverting ML APIs (i.e., f ′(f(i)) ̸= i is possible),

a test input generated by Keeper may not cover the targeted software branch. At the

same time, since these pseudo-inverse functions have been approved by many human beings,

Keeper reports an accuracy failure when over a threshold portion of inputs fail to cover a

particular target branch.

1. The current implementation of Keeper supports Google Cloud AI APIs and can be easily extended to
support similar APIs from other service providers.
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Of course, Keeper also monitors generic failure symptoms like crashes during test runs,

and helps expose bugs in code regions that require specific ML inputs to exercise.

Finally, to help developers understand the root cause of an accuracy failure, Keeper

explores alternative ways of using ML APIs and informs the developers of any code changes

that can alleviate the accuracy failure.

Putting these all together, we have implemented Keeper that can be used either through a

command-line script or a plug-in inside the VScode IDE [118]. Given a software application,

Keeper first highlights all the functions that directly or indirectly call ML APIs. For any

function that developers want to test, Keeper automatically generates many test cases to

thoroughly test every branch in the specified function and its callees. Keeper analyzes the

test runs and reports any failures, as well as potential patches for accuracy failures, to

developers.

We evaluate Keeper on the latest version of 63 open-source Python applications that cover

different problem domains and ML APIs. Keeper achieves 91% branch coverage on average

for these applications. In total, Keeper covers 21–38% more branches than alternative

techniques that directly use machine learning training data set or random fuzzing. Keeper

exposes 35 unique accuracy and crash failures from 25 out of these 63 applications.

6.2 Test input generation

Keeper is a testing tool for software whose control flow is influenced by ML APIs. As

shown in Figure 6.1, Keeper includes two major components: test-input generation, which

we present in this section, and test-output processing, which we present in Section 6.3.

Keeper’s input generation is built upon an existing symbolic execution engine, DSE [72].

Given a function F to test2 and all the function parameters represented as symbolic variables,

a symbolic path constraint is generated for every branch; solving all the path constraints

2. Users of Keeper can choose any function to test, including the main function.
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Figure 6.1: An overview of Keeper.

produces a test suite that offers full branch coverage.

Keeper decomposes the problem of generating inputs for ML APIs into two parts: first,

it identifies the ML-API outputs that are needed to satisfy path constraints using symbolic

execution (Section 6.2.1); and then synthesizes the ML-API inputs that are expected to

produce those outputs using carefully designed pseudo-inverse functions (Section 6.2.2). As

we will see, this decomposition not only avoids the complexity of directly applying symbolic

execution to DNNs, but also help judge the execution correctness (Section 6.3).

6.2.1 Identifying relevant ML outputs

To identify the desired ML-API outputs, Keeper makes its symbolic execution skip any

statement that calls a ML API and instead marks API output that is used by following code

as symbolic. This way, the output, instead of input, of ML APIs will be part of the path

constraints, and by solving the constraints, Keeper obtains the API-output values that are

needed to exercise corresponding branches.

The only tweak Keeper makes here is to have the symbolic execution engine sometimes

generating one path constraint for each branch sub-condition, instead of the whole branch.

In our implementation, this is accomplished by enabling a corresponding feature of the
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underlying symbolic execution engine. For example, for a branch condition “A or B or C”,

four constraints will be formed representing (1) A is True, (2) B is True, (3) C is True, and

(4) none of A, B, C is True. Solving these constraints leads to four inputs or input sets that

satisfy these constraints separately.

ML Task Main Output Constraint Example Pseudo-inverse Function

Vision

Image classification image class class==”fire” [133] Search on internet, keyword: [image class]
Object detection object name object==”tableware” [140] Search on internet, keyword: [object name]
Face detection face emotion emotion ==”joy” [38] Search on internet, keyword: [emotion] + ”human face”
Text detection extracted text text==”3923-6625” [124] Print [extracted text] on an image

Lang.
Document classification document class class==”food” [123] Search on internet, keyword: [document class]
Sentiment detection score, magnitude score< 0 [154] Select tweets from Sentiment140 dataset [49]
Entity detection entity name, type type==”Person” [90] Use text generation technique, seed: [name] or [type]

Speech Speech recognition transcript text==”turn on the light” [161] Use speech synthesize technique on [transcript]

Table 6.1: Different ML APIs handled by Keeper and their pseudo-inverse functions.

6.2.2 Identifying ML API inputs

Given a ML API f and an output o, Keeper aims to automatically generate a set of inputs

I so that f(i), i ∈ I is expected to produce o according to common human judgement. To

achieve this, Keeper designs a pseudo-inverse function f ′ for every API f , so that f ′(o) will

produce the input set I for f . We want f ′ to have the following properties.

First, f ′ is not an analytical inversion of f . Ideally, f ′ should be built independently

from f (e.g., not based on the same training data set), so that f ′ can help not only input

generation but also failure identification in a way similar to N-version programming.

Second, f ′ should be a semantic inverse of f , reversing the cognitive task performed by

f in a way that is consistent with most human beings. This way, test inputs generated by

Keeper can expect to cover most of the software branches, unless the ML API is unsuitable

for the software or is used incorrectly.

Third, f ′ should produce more than one output for each input it takes in. This will

allow Keeper to generate multiple inputs for f to exercise a corresponding branch, and get

a statistically meaningful test result given the probabilistic nature of ML APIs.

With these goals in mind, we have designed three types of pseudo-inverse functions as

summarized in Table 6.1.
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Search-based pseudo inversion

For many vision and language APIs, search engines offer effective pseudo inversion: they

take in a key word and return a set of realistic images/texts that reflect the keyword. Search

engines have several properties that serve Keeper’s testing purposes. First, they offer great

semantic inversion, as there are multiple search engines that have been used by hundreds of

millions of users for many years with high satisfaction [29]. Their top search results typically

match the common human judgement. Second, they are not an analytical inversion of ML

APIs, and we will use non-Google engines to minimize potential correlations. Third, they

accept a wide range of search words and produce many ranked results, which means a large

number of high-quality test inputs for Keeper. Specifically, Keeper uses different engines

and search keywords for different ML APIs:

Vision tasks. Image-classification and object-detection APIs return string labels that

describe the image and the objects inside the image, respectively. For both APIs, Keeper

uses the Bing [25] image search engine and uses the desired label description or object name

as the search keyword.

The face-detection API detects human faces in an image. Some ML software uses the

returned emotion string associated with each face (e.g., “joy”, “sorrow”, etc.) to decide

execution path. To generate corresponding images, Keeper uses “[emotion] human face” as

a keyword to search the Bing image.

Language tasks. Document-classification APIs process a document and return categories

based on the document content, like “pets”, “health”, “sports”, and others. Keeper uses

the desired category name as keyword and searches it at (1) knowledge graph websites,

Wikipedia [7] and Britannica [2]; and (2) Bing web search engines. Keeper then uses the

text extracted out from each returned web page as the ML API input.
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Synthesis-based pseudo inversion

The semantic inversion of some ML APIs does not match the functionality of search engines.

Fortunately, we find ways to synthesize inputs for them.

The text-detectionAPI extracts printed or handwritten text from an image. Unfortunately,

image search engines tend to return images whose content reflects the search keyword, instead

of images that contain the keyword as text within the image. Therefore, given a text string,

Keeper prints it on a background image using the Python pillow library [3]. Keeper adopts

both printed and hand-writing fonts; different font settings produce different test images. To

decide the background image, Keeper checks whether the text-detection API shares its

input image with another vision API. If so, the test images Keeper generated for the other

API will be used as the background; otherwise, a blank image and some random images will

be used. Figure 6.2 shows some of the test images that Keeper generates for application

wanderStub [169], which has a branch checking if the input image contains ”Total”.

Figure 6.2: Test inputs generated for wanderStub [169].

The entity-detection API inspects the input sentence for known entities—there are in

total 13 entities, such as ADDRESS, DATE, etc. Since the search engines usually return

long documents, Keeper instead uses a popular language model GPT-2 [137] to synthesize

any number of sentences that start with a pre-defined word/phrase that corresponds to the

desired entity type.

The speech-recognitionAPI transcribes the input audio clip and outputs the transcript.

Keeper uses speech synthesis tools, particularly the pyttsx3 [5] Python library, to generate
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the desired audio clips based on a given transcript. Keeper generates multiple audio clips

using different voice settings supported by this library.

ML benchmarks for pseudo inversion

The sentiment detection API presents two challenges. First, although this API aims

to identify the prevailing emotional opinion within the text, it does not directly output a

categorical result. Instead, it returns two floating-point numbers, score and magnitude, for

developers to derive emotion categories from. There is no perceivable way to generate text

that can offer the exact score or magnitude. Second, even if we just hope to generate text

that contains positive or negative emotion, no search engine or synthesizer can accomplish

this.

Facing these challenges, Keeper resorts to the Sentiment140 dataset [49], which contains

1,600,000 tweets, manually labelled as positive, negative, and neutral. Keeper randomly

samples the same number of positive, negative, and neutral tweets as test inputs for any

sentiment-detection API called inside a ML software, with the expectation that these tweets

will help cover different branches in the software that are designed for different emotions.

Note that, we treat ML benchmarks as the last resort for multiple reasons. First, the

labels associated with data inside ML benchmarks either have few categories or have limited

quality. For example, ImageNet [32] contains 1000 manually labeled image categories, which

is too few compared with the 20,000 labels of Google Vision AI. On the contrary, OpenImage

has 9 million images with 20,000 labels. However 89% of the labels are generated by DNNs,

and 53% of the human-verified ones are incorrect [94]. Second, ML benchmarks are built

with pre-processed real-world data. Such ”clean” data has less variety, as they share similar

size, resolution, and encoding format. Third, some benchmarks may be part of the training

data set of Google ML APIs, which makes the test inputs biased towards the ones APIs can

perform well on and hence less likely to reveal problems. Finally, Generative Adversarial
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Network synthesizes new data following the distribution of the training set [55]. It covers

different domains, including generating images from text [139]. We do not use it, as this

approach requires much training data and ends up generating non-real-world data that has

similar distribution with the training set, whose limitations we discussed earlier.

6.3 Test output processing

Once all the test inputs are generated and executed, Keeper works on failure identification

and attribution.

6.3.1 Failure identification

Keeper looks for three types of failure symptoms: (1) low accuracy, (2) dead code, and (3)

generic failures like crashes.

Low-accuracy failures.

When software incorporates cognitive ML APIs in its computation, judging the output’s

correctness becomes challenging: (1) by definition of cognitive tasks, this output needs to

be checked with many people to see if it matches with common human judgement; (2) due

to the probabilistic nature of ML APIs, an occasional mismatch is expected. Of course,

frequent mismatches are un-acceptable and severely hurt user experience.

To tackle the first challenge, Keeper uses pseudo-inverse functions as an approximation

of common human judgement; to tackle the second challenge, Keeper considers the software

to suffer from a low-accuracy failure, or an accuracy failure for short, only when over a

threshold portion of inputs of a particular type have produced outputs that are inconsistent

with common human judgement.

Specifically, for all the inputs Ib that are generated to cover a branch b, Keeper checks
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which of them exercise b at run time, denoted as Isuccb and calculates the recall of b (i.e.,

|Isuccb |
|Ib|

). If the recall drops below a threshold α, 75% by default. Keeper reports an accuracy

failure associated with b. The setting of α can be adjusted, but should not be 100%, as ML

APIs are probabilisticand pseudo-inverse functions cannot guarantee to be correct all the

time.

For a branch b that depends on the output of a sentiment-detection API, Keeper identifies

failures slightly differently as inputs are generated for sentiment-detection API differently

as discussed in Section 6.2.2. During test runs, Keeper checks all the inputs that exercise

b to see what portion of them are labeled as having positive emotion and what portion are

labeled as negative. If both go above a threshold, indicating that branch b is not accurately

differentiating inputs with different emotions, Keeper reports an accuracy failure.

Root causes of accuracy failures. Note that, these accuracy failures are not equivalent

with low precision or low recall of the ML API itself. The latter is just one of the possible

root causes of the former. Keeper intentionally does not calculate the precision or recall of

any ML API, but instead focuses on the overall software.

One possible cause is that developers missed some related labels in a branch condition,

which we refer to as an incomplete label problem. For example, the label detection API

does not return “fire” as a top-3 label for many top fire images returned by the Bing image

search. This by itself is not considered a failure by Keeper. If the software uses the API

properly, like raising a fire alarm upon not only a “fire” label but also a “flame” label and an

“ash” label, no accuracy failure would be reported, as the recall of the alarm-related branch

is as high as 85% and the precision is 100% in our experiments.

Another possible cause is that developers used a non-existing label, which does not exist

in the API’s label set and can never be the output. This is not a surprise as the labels that

can be output by Google Vision API are too many (19,985) for developers to memorize. For

example, an application compares the label detection output with “clothes” and “pants”
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[61], which are non-existing labels. Instead, “clothing” and “trousers” are valid labels.

Dead-code failures

These occur when a branch is not covered after all the testing runs. They happen under two

scenarios.

One scenario is that Keeper generates a set of test inputs Ib expected to cover a branch

b, and yet b is not exercised by any input in Ib. Such an extreme case of low branch recall

(i.e., 0) is often caused by the branch comparing a ML API output with a non-existing

label. If this comparison is one of multiple branch sub-conditions, an accuracy failure would

likely occurr (i.e., a low but non-zero recall); if it is the only condition clause, a deadcode

failure occurs. For example, a smart photo application FESMKMITL [42] checks the output

of label detection against the string “face”. Unfortunately, among the 20,000 category

labels that could be output by this API, none of them is “face”. Instead, “human face” is

one of the valid labels for this API, which the developers should have used.

The other scenario is that Keeper fails to generate any inputs to cover a branch, which

triggers a dead-code failure report before any test runs. Sometimes, this is caused by a typo in

the branch condition. For example, Keeper exposes such a failure in Verlan [163]. Verlan uses

object-detection to judge whether an image contains an animal or not. Unfortunately,

it wrongly uses "animal" instead of obj.name == ‘‘animal’’ in its branch condition,

making the if-statement always True. It will regard every image that contains at least one

object as an animal image!

1 object = client.object_detection(image=img)

2 for obj in objects:

3 if obj.name=="dog" or "animal":

4 do_A()

Figure 6.3: Dead-code bugs in Verlan [163]
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Generic failures

These have symptoms like crashes that do not require special techniques to observe. Comparing

with traditional testing techniques, Keeper offers extra benefit two scenarios. (1) The failures

are caused by bugs located on a path that requires specific ML API inputs to trigger. Keeper

contributes by generating the needed ML API inputs to exercise the path. (2) The failures

are directly related to the corner cases of ML API inputs, such as blank images that cause

label detection to return no labels. An example of such a bug exposed by Keeper is

illustrated in Figure 6.4.

1 text = client.text_detection(image=img)

2 labels = text [0]. description.split(’\n’)

3 for label in labels:

4 do_something ()

Figure 6.4: Crash failure in FortniteKillfeed [44]: a blank image returns an empty array
text and trigger an index-out-of-range.

6.3.2 Failure attribution

To help developers understand and tackle accuracy failures, Keeper attempts to automatically

patch the software by changing how ML APIs’ output is used. Keeper suggests the change to

developers and if all attempts failed, Keeper suggests developers to consider using a different,

more accurate ML API, or adding extra input screening or pre-processing. Specifically,

Keeper attempts two types of changes to the branch b where the failure is associated with.

Label changes. When branch b compares a ML API output with a set of labels, Keeper

tries to expand the set of labels with three goals in mind. (1) Recall goal: more test inputs

that are expected to exercise b can now satisfy b’s condition; (2) Precision goal: most inputs

that are not expected to exercise b should continue to fail the condition of b; (3) Semantic

goal: the added labels are related to the original label(s) in b in terms of natural language

semantics.
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Without loss of generality, imagine that b takes the form of if o == label0, with o

being the output of an ML API f . Keeper first collects the set of labels L output by f for

every input in Ifailb , the set of inputs that are expected to exercise b but fail to do so.

Then, considering the semantic goal, Keeper filters out every label in L that is neither

adjacent to nor sharing a common neighbor with label0 in the wikidata knowledge graph

[8].

Next, Keeper uses a greedy algorithm to iteratively expand the set of labels compared

with o in b. Every time, Keeper adds to the set a label l ∈ L so that l offers the biggest

improvement in b’s recall without reducing b’s F1-score (i.e., the harmonic mean of the

precision and the recall). Here, the precision of branch b is computed as
|Isuccb |
|Isuc| : among all

the inputs that exercise b, how many of them are expected to do so. This procedure continues

until the recall of b goes above the accuracy failure threshold or when there is no eligible

candidate label remaining in L.

Threshold changes. As discussed earlier, an accuracy failure is reported when a branch

b, which checks the score and/or magnitude output of a sentiment-detection API, gets

exercised by many inputs labeled as having positive emotions and also many inputs labeled

as having negative emotions. Keeper applies logistic regression to these input texts, with the

{score, magnitude} output of each input as feature vectors and the labeled emotion as a

class. Keeper then suggests the linear formula of logistic regression as a new branch checking

threshold to developers, letting them know that this new formula can better differentiate

text inputs with different emotions.

6.4 Implementation

We have implemented Keeper for Python applications that use Google Cloud AI APIs [51],

the most popular cloud AI services on Github [166]. The core algorithm of Keeper is general

to other languages and ML Cloud APIs. Keeper uses dynamic symbolic execution framework
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PyExZ3 [72], which implements the DSE algorithm, and uses CVC4 [22] for constraint

solving. Keeper uses Python built-in trace back tool [4] to check branch coverage, and Pyan

[112] and Jedi [58] for call graph and program dependency analysis. Keeper uses Python

scikit-learn[6] library for linear regression models.

Figure 6.5: Keeper IDE plugin interface

6.5 Evaluation

Our evaluation aims to answer several questions:

1. Does Keeper help improve the branch coverage in testing?

2. Is Keeper able to find bugs during its testing?

3. Is Keeper able to suggest fixes for accuracy failures?
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6.5.1 Methodology

Applications

We evaluate Keeper using 63 Python applications that are from two sources. 1) From the

360 open-source applications assembled by a previous study of ML APIs [166], we found

45 Python applications that use ML APIs in a non-trivial way (i.e., the API output affects

control flow). 2) We additionally checked about 100 random Python applications on GitHub

that use ML APIs and found 18 applications that use ML APIs in a non-trivial way.

These 63 applications use a range of ML APIs, including Vision (32 apps), Language (23

apps), and Speech (8). Their sizes range from 54 lines of code to more than 100,000 lines of

code, with 582 lines of code being the median3. They have a median age of 18 months at

the time of our study (Apr. 1st, 2021 ).

Despite our best effort in application collection, unfortunately, most of these 63 applications

seem to be research projects, hackathon products, or demo programs, based on their limited

popularity in Github. This is probably due to the young age of ML APIs. Consequently,

our evaluation results may not generalize to mature software that has a solid user base.

For more than half of the applications (35), we simply specify main as the function to

test. In other cases, the function under test is the entry function to the software feature

related to ML APIs. The average number of branches in these functions-to-test is 13.

Baselines

We compare Keeper with 3 other techniques. Each technique generates 100 test inputs for

each function under test.

(1) Random Real : we randomly pick inputs from well established data sets, including

ImageNet [32] that contains 14 million images, Twitter US Airline Sentiment [80] that

3. Files from templates, frameworks, and libraries are not included in the LoC counting.
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Vision App. Language App. Speech App.

Keeper 91.9% 91.5% 89.7%
Random-Real 74.5% 85.0% 54.3%
Random-Real-Noise 73.0% 65.2% 54.3%
Fuzzing 44.4% 74.0% 24.9%

Table 6.2: Average branch coverage across 63 applications.

contains 15,000 tweets, and a set of audio clips synthesized for 115 daily sentences [1].

(2) Random Real + Noise: we add random noise to inputs picked by Random Real. For

an image, we randomly added noises following Gaussian distribution; for an text input, we

randomly decide whether to add noise and if so, randomly changed the word orders. For

audio input, we do not add noise here, as we found that adding small noises does not affect

ML API and yet adding big noises would turn the audio clip into what the third approach

will generate.

(3) Fuzzing : we use a coverage-based fuzzing tool pythonfuzz [45] to generate images,

text, and audio. For every image input, we use an integer list to fill its RGB matrix in a

repeated way. For every text inputs, we generates ASCII character sequences. For audio

inputs, we directly generates the audio data.

6.5.2 Software testing evaluation

Branch coverage

For each of the 63 functions specified to test, each from one application in our benchmark

suite, we compute the accumulative branch coverage achieved by the 100 inputs generated

by each testing technique. Table 6.2 shows the overall results.

Across different types of applications, Keeper consistently achieves high branch coverage,

around 90% on average. The uncovered branches are either related to dead-code failures that

Keeper discovers, or related to code that our underlying symbolic execution engine cannot

handle. In comparison, the fuzzing technique performed the worst, covering less than 50% of
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Failure type Root Cause Related ML Task Keeper RReal RReal+Noise Fuzz.

Crash failures
Out-of-bound accesses Text detection, entity detection 6 5 5 4
Missing input validation* Document classification 1 - - -
Missing type conversion - 1 1 1 1

Accuracy failures
Improper labels Image classi., object detect., document classi. 9 - - -
API limitations Image classification, object detection 6 - - -
Improper threshold Sentiment detection 9 - - -

Dead-code failures
Typos Image classification, text detection 2 - - -
Non-existing label Image classification 1 - - -

Table 6.3: Unique failures exposed by Keeper. (*: This crash disappeared later with the
most recent version of Google API.)

the branches for vision and speech applications, confirming our intuition that it is important

to use realistic inputs to test ML APIs.

Random Real performs better than fuzzing, but still fails to cover about a quarter of

branches in vision applications and half of the branches in speech applications. Adding

random noises to random realistic inputs does not help. Keeper covers 23% and 59%

more branches than Random-Real for vision and speech applications, respectively, as Keeper

leverages symbolic execution and pseudo-inverse functions to generate inputs targeting different

branches.

Applications that use language APIs appear to be the easiest to cover—even fuzzing

achieves 74% coverage. This is probably because language APIs’ output, like document type

or entity name, has much less variation than that of vision and speech APIs.

As we can see, Keeper offers the highest branch coverage for all 63 applications.

Failure exposing and attribution

As shown in Table 6.3, Keeper exposed many failures by running those 100 test inputs it

generated: 35 failures from the latest version of 25 applications. These failures cover a range

of symptoms and root causes. Except for one failure caused by missing type conversion, the

others are all related to different types of cognitive ML tasks, as shown in the table.

In comparison, alternative testing techniques missed 2–3 crash failures caught by Keeper.

Furthermore, unlike Keeper, they cannot automatically recognize accuracy failures and dead-
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code failures.

Accuracy failures. Among the 24 accuracy failures exposed by Keeper, 15 of them are

related to label checking for vision APIs and document-classification API, and 9 are related

to threshold checking for the sentiment detection API.

For all of the 9 failures related to sentiment detection, Keeper manages to suggest better

checking threshold that fixes the failure.

There are 9 accuracy failures that Keeper manages to fix by making the failure branch

check for 1–3 extra labels. As an example, one application checks if the output of label detection

contains either “building” or “estate” or “mansion”. This branch’s recall is very low: 33%.

Keeper suggests adding “house”, “architecture”, and “window” to the label set, which would

improve the recall to be above 75%.

For the remaining 6 vision-related accuracy failures, code changes by Keeper can alleviate

the problem but cannot push the recall of the related branch to be above 75%, suggesting

fundamental API limitations. Two of these cases actually involve non-existing labels. For

example, the “aluminum” in Heap-Sort-Cypher [61] is actually a non-existing label. Keeper

suggests checking “metal” instead, which increases the branch’s recall to close to 40%, but

still below 75%.

Deadcode failures occurred in 3 applications. One of them is due to non-existing labels.

Two are because of typos in branches that process ML API output, like the one in Figure

6.3.

Crash failures are mainly caused by out-of-bound accesses to lists returned by ML

APIs, as shown in Figure 6.4. One crash is caused by buggy code inside a branch body that

handles images with coins inside. This failure cannot be exposed by other testing techniques,

as they did not produce images with coins inside.

False positives. Keeper has two false positives in total (they are not included in Table

6.3). One application tries to detect sensitive document by checking if any output of the
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document-classification API contains a “ensitive” sub-string. Keeper feeds its pseudo-inverse

function with “ensitive” and fails to get any test inputs, and hence incorrectly reports a

dead-code failure. The other application has a branch that gets covered only when an ML

API generates a specific output with low confidence. Keeper is not effective at generating

low-confidence inputs and wrongly reports an accuracy failure.

Threshold setting. As discussed in Section 6.3.1, the recall threshold α is set to 0.75 by

default when detecting accuracy failures. Naturally, more failures would be reported when

α is larger. Increasing α to 0.95, which is unreasonably high, would creates 5 more failure

reports; decreasing α to 0.6 would have 2 fewer failure reports.

6.5.3 User studies

Study with users

To better evaluate the accuracy failures and the code changes suggested by Keeper, we

recruited 100 participants on Amazon Mechanical Turk (Mturk) for a software-user survey.

The survey includes 4 applications from our benchmark suites: 2 image-related applications

and 2 text-related applications. On each survey page, a brief description is given for an

application and user-study participants are told to review how two versions of this application

perform on a set of inputs. Then, the web page displays a number of input images/text and

the corresponding outputs of application version-1 and application version-2. These two

versions are the original application and the application with suggested code changes from

Keeper (referred to as fixed in Figure 6.6); we randomly decide which one of them is version-

1 and which is version-2 on each survey page to reduce potential bias. Each participant

is asked to answer questions about (1) for each input, which version’s output they prefer;

and (2) which version they think is better with everything considered. Participants were

compensated $5 after the survey.

A summary of the user study results is shown in Figure 6.6. As we can see, in all cases,
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Figure 6.6: End-user preference: Original vs. Keeper version.

Figure 6.7: Developer preference of Keeper failure reports.

a dominate portion of end-users prefer the version with changes suggested by Keeper over

the original version, supporting Keeper’s judgement about accuracy failures and Keeper’s

attempt in fixing the accuracy problems. At the same time, we also noticed that there are

20–26% of user-study participants who prefer the original software and 12–27% who feel the

two versions are about the same. These results confirm the fact that cognitive tasks are

inherently subjective—even human beings often do not agree with each other on these tasks.

Study on developers

We recruited 10 participants who have Python programming experience. Half of them are

software engineers from industry and half are college students. Given ML API official
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Question Answer #

Do you think
Keeper is helpful?

Yes, it is useful. 9
It would be helpful if becomes faster. 1

Do you like the
interface of Keeper?

I like it. 6
Need guidance to use/read it. 3
Hope it could show more info. 1

Table 6.4: Developer overall preference of Keeper.

documents, they are asked to implement two functions, one for image analysis and one

for text analysis, with the code skeleton provided by us. They then use Keeper to test their

implementation. For any failures reported by Keeper, they are asked about whether they

think the failure indeed reflects a software bug; how they would fix the code; whether they

think Keeper is helpful; and others. This whole process is conducted through Zoom, with

two researchers remotely interacting with the participant. Participants were compensated

$10 after the interview. At the end of all interviews, three researchers coded the interview

data independently and then met to resolve disagreements.

It took 20–60 minutes for the participants to read ML API documents and program; the

whole session took 40–90 minutes.

In total Keeper reported 12 accuracy failures, 3 generic failure, and 6 dead-code failures

for the 20 implemented functions from 10 participants. Keeper suggested code changes for

all the 12 accuracy failures. Only one participant (P3) managed to program both functions

correctly. The other 9 participants each has 1–4 failures exposed by Keeper from their code.

Figure 6.7 and Table 6.4 summarized the developer interview results. As we can see,

almost all accuracy-failure reports (18 out of 21) are regarded as helpful. For most of

the accuracy failure reports (9 out of 12), participants said they would definitely adopt

the patch suggested by Keeper. Participants were not sure about the suggested patch in 3

reports, because they wanted to inspect Keeper-generated test cases before making decisions.

Participants strongly agreed that most failure reports (15 out of 21) pointed out bugs in

their programs, including 7 out of 12 accuracy failures. There were only two cases, both
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about accuracy failures, where participants felt the failures do not mean their code is buggy,

although in both cases they were willing to adopt the code changes suggested by Keeper.

We believe this reflects the subjective nature of cognitive tasks.

Near the end of each user study session, we asked the participants “Do you think Keeper

is helpful?”. Overwhelmingly, they answered “Yes” (9 out of 10). They told us that “I don’t

know much about machine learning, but this tool helps a lot” (P1); “I like it tell me how

accurate my code is.” (P4); “It’s cool. I have no idea how it finds these more optimized

solutions.” (P5); “Hope my team could adopt similar testing tool.” (P7); “Showing failure

cases help me to troubleshoot.” (P8). Many of them like the user interface after learning

how to use it with no help from us (6 out of 10). They told us that “The tool is intuitive. I

like the little symbols.” (P1); “The UI interface is quite clear to use. It is even better than

some old industry products.” (P3); “I like the sidebar display.” (P7).

6.6 Threats to Validity

Internal threats to validity. Keeper assumes that search engines’ top results are mostly

consistent with human judgement, which could be incorrect. The failure identification and

fixing attempts in Keeper are inherently probabilistic. The recall that Keeper calculated

for each branch could vary depending on the test inputs. More test inputs would make the

testing procedure more robust.

Some inputs generated by Keeper may not be the inputs that the software aims to handle,

like the image being a photo taken indoor and yet the software meant to be used outdoor.

When Keeper expands a branch’s comparison label set, the increase of the recall sometimes

comes with the decrease of the precision (i.e., more inputs not expected to exercise the

branch does exercise). Although Keeper uses the F1-score to balance precision and recall,

ultimately developers need to make the code change decision. We implemented Keeper IDE

plug-in, aiming to help developers make informed decision about how their software uses ML
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APIs.

When an input expected by Keeper to cover a branch b fails to do so, this input may

cover another branch b′ whose body conducts the same computation as b. This would confuse

Keeper’s failure identification, although we have not observed such situations.

External threats to validity. Most of applications in our benchmark suite, including

those used as examples in the paper, are research applications, hackathon projects, or demo

programs. Consequently, observations and results obtained from them might not generalize

to more widely used, real-world applications. Our tool is only tested with python applications

using Google AI, not other ML Cloud API services.

6.7 Conclusion

This work present Keeper, an automated coverage-guided testing framework that helps

developers to detect bugs and provide fixing suggestions for their software implementation.

Keeper automatically generates test cases via a novel two-stage symbolic execution and

Keeper-designed ML inverse functions. We evaluate Keeper with a variety of open-source

machine learning applications and achieve high code coverage with a small set of test cases.

It identifies bugs that leads to software crash, lower inference accuracy, or dead code.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Contributions

In conclusion, this dissertation aims to create a robust method to incorporate ML components

into software systems meeting requirements of correctness, latency and energy-efficiency. It

makes the following four contributions.

1. Propose a new design of flexible neural networks that support anytime prediction.

Specifically, we propose a novel variant of SGD customized for training network architectures

that support anytime behavior. Efficient architectural designs for these networks focus

on re-using internal state; subnetworks must produce representations relevant for both

immediate prediction as well as refinement by subsequent network stages. To train

such network, we propose a new optimizer, Orthogonalized SGD, that dynamically

re-balances task-specific gradients when training a multitask network. In the context

of anytime architectures, this optimizer projects gradients from later outputs onto a

parameter subspace that does not interfere with those from earlier outputs.

2. Propose a run-time network scheduler called ALERT, that dynamically selects and

adapts a DNN and a system-resource setting together to handle changing system

environments and meet dynamic energy, latency, and accuracy requirements. Specifically,

it uses a probabilistic model to detect environmental volatility and then simultaneously

select both a DNN and a system resource configuration to meet requirements. We

evaluate ALERT on CPU and GPU platforms for image and speech tasks in dynamic

environments. ALERT meets constraints while achieving within 93–99% of optimal

energy saving or accuracy optimization. Furthermore, it makes use of the flexibility

provided by our anytime design to achieve better performance.
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3. Conduct a thorough empirical study about Machine Learning cloud API misuses. We

manually study 360 representative open-source applications that use Google or AWS

cloud-based ML APIs, and find 70% of these applications contain API misuses in

their latest versions that degrade functional, performance, or economical quality of

the software. We have generalized 8 anti-patterns based on our manual study and

developed automated checkers that identify hundreds of more applications that contain

ML API misuses.

4. Build a new testing tool Keeper for software that uses cognitive ML APIs. Keeper

designs a set of pseudo-inverse functions for cognitive ML APIs and integrates them

with symbolic execution to reach the sparse program-relevant input space. Keeper also

makes them a proxy of human judgement and automatically judges the correctness of

software outputs that are related to cognitive tasks. To help developers understand the

root cause of an accuracy failure, Keeper explores alternative ways of using ML APIs

and informs the developers of any code changes that can alleviate the accuracy failure.

Our evaluation on a variety of open-source applications shows that Keeper greatly

improves the branch coverage, while identifying many previously unknown bugs.

7.2 Limitation and Future Work

My future research goal is to continue improving software systems with machine learning

components. I believe achieving this requires inter-disciplinary solutions: machine learning,

software engineering, and self-adaptive (or autonomic) software design.

Failure diagnoses and recovery of machine learning software My previous work

focus on tackling bugs at development and testing phase. In software runtime, there also

exists opportunity to diagnose failure and recover from it. I believe that machine learning

software will greatly benefit from such process by (1) switching to an alternative solution;

(2) configuration adjustment; (3) asking end-user for feedback; (4) logging failure cases for
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offline fixing. I plan to build a run-time diagnosis tool to help developers to integrate failure

recovery in machine learning software.

Software-aware network design and adaptation Software context greatly affects

the expectation of neural network capability. Taking object detection as an example, a

recipe recommendation application expects the network to precisely detect the ingredients

in user input image, while a smart door application only needs to know whether there is

human in the camera video. Such difference also appears in different iterations of software

development, as the requirement might change. Therefore, it is important to efficiently

design/adapt a neural network to a new software context. I believe there is still a long way

to go to achieve awareness between software and network. I will first conduct an empirical

study to investigate the problem in real-world application. Then I’ll design a flexible network

that could be easily adapted to the software context.

Composing multiple ML component My past research has focused on managing

single neural network and software module. In many large machine learning software system,

multiple neural networks cooperate with each other. If two neural networks have control or

data dependency, then local adaptation decisions clearly affect the global program outcome.

It also brings up new challenges for software testing and maintenance. I plan to build a tool

to systematically help users to compose multiple ML component.

Testing machine learning system with hardware-software cooperation Machine

learning techniques have been widely adopted on many problem domains. Some of them

require hardware-software cooperation, e.g. robot waiter, auto-driving. Testing such systems

brings up unique challenges: replaying the failure, locating the bug, patching the software,

and etc. I will employ my experience in detecting bugs in ML software to improve the

correctness of machine learning system.
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Eva Zurek, Jesús Carrete, Natalio Mingo, Alexander Tropsha, et al. Aflow-ml: A

restful api for machine-learning predictions of materials properties. Computational

Materials Science, 2018.

[55] Jie Gui, Zhenan Sun, Yonggang Wen, Dacheng Tao, and Jieping Ye. A review on

generative adversarial networks: Algorithms, theory, and applications. arXiv preprint

arXiv:2001.06937, 2020.

[56] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Mahmut Taylan Kandemir,

Bhuvan Urgaonkar, George Kesidis, and Chita Das. Spock: Exploiting serverless

functions for slo and cost aware resource procurement in public cloud. In CLOUD,

2019.

97

 https://cloud.google.com/products/ai
 https://cloud.google.com/products/ai
 https://cloud.google.com/natural-language/docs/basics
 https://cloud.google.com/natural-language/docs/basics
 https://cloud.google.com/speech-to-text/docs/basics
 https://cloud.google.com/speech-to-text/docs/basics


[57] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Li Xiaohong, and Chao

Shen. Audee: Automated testing for deep learning frameworks. In FSE, 2020.

[58] Dave Halter. Jedi: an awesome auto-completion, static analysis and refactoring library

for python. Online document https://jedi.readthedocs.io.

[59] Fabrice Harel-Canada, Lingxiao Wang, Muhammad Ali Gulzar, Quanquan Gu, and

Miryung Kim. Is neuron coverage a meaningful measure for testing deep neural

networks? In ESEC/FSE, 2020.

[60] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In CVPR, 2016.

[61] HeapSortCypher. A garbage classification application. https://github.com/

matthew-chu/heapsortcypher.

[62] Charles Hill, Rachel Bellamy, Thomas Erickson, and Margaret Burnett. Trials and

tribulations of developers of intelligent systems: A field study. In VL/HCC, 2016.

[63] Henry Hoffmann. Coadapt: Predictable behavior for accuracy-aware applications

running on power-aware systems. In ECRTS, pages 223–232, 2014.

[64] Henry Hoffmann. Jouleguard: energy guarantees for approximate applications. In

SOSP, 2015.

[65] Henry Hoffmann and Martina Maggio. PCP: A generalized approach to optimizing

performance under power constraints through resource management. In ICAC, 2014.

[66] Hanzhang Hu, Debadeepta Dey, Martial Hebert, and J Andrew Bagnell. Learning

anytime predictions in neural networks via adaptive loss balancing. In AAAI, 2019.

98

https://jedi.readthedocs.io
https://github.com/matthew-chu/heapsortcypher
https://github.com/matthew-chu/heapsortcypher


[67] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and

Kilian Q. Weinberger. Multi-scale dense convolutional networks for efficient prediction.

In CoRR, 2017.

[68] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely

connected convolutional networks. In CVPR, 2017.

[69] IBM. Ibm watson. Online document https://www.ibm.com/watson, 2020.

[70] C. Imes and H. Hoffmann. Bard: A unified framework for managing soft timing and

power constraints. In SAMOS, pages 31–38, 2016.

[71] C. Imes, D. H. K. Kim, M. Maggio, and H. Hoffmann. Poet: a portable approach to

minimizing energy under soft real-time constraints. In RTAS, pages 75–86, April 2015.

[72] M Irlbeck et al. Deconstructing dynamic symbolic execution. Dependable Software

Systems Engineering, 40:26, 2015.

[73] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. Repairing deep

neural networks: Fix patterns and challenges. In ICSE, 2020.

[74] Gunel Jahangirova, Nargiz Humbatova, Gabriele Bavota, Vincenzo Riccio, Andrea

Stocco, and Paolo Tonella. Taxonomy of real faults in deep learning systems. In ICSE,

2020.

[75] Tahir Jameel, Lin Mengxiang, and Liu Chao. Automatic test oracle for image

processing applications using support vector machines. In 2015 6th IEEE International

Conference on Software Engineering and Service Science (ICSESS), pages 1110–1113.

IEEE, 2015.

[76] C. Jiang, S. Huang, and Z. Hui. Metamorphic testing of image region growth programs

99

 https://www.ibm.com/watson


in image processing applications. In 2018 IEEE International Conference on Software

Quality, Reliability and Security Companion (QRS-C), pages 70–72, 2018.

[77] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion

Stoica. Chameleon: scalable adaptation of video analytics. In ACM SIGCOMM,

pages 253–266, 2018.

[78] JournalBot. A journal application. https://github.com/beekarthik/JournalBot.

[79] Misael C Júnior, Rafael AP Oliveira, Miguel AG Valverde, Marcel P Jackowski,
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[147] Sergio Segura, José A Parejo, Javier Troya, and Antonio Ruiz-Cortés. Metamorphic

testing of restful web apis. IEEE Transactions on Software Engineering, 44(11):1083–

1099, 2017.

[148] Arnab Sharma and Heike Wehrheim. Higher income, larger loan? monotonicity testing

of machine learning models. In ISSTA, 2020.

[149] N Silberman and Guadarrama. S. Tensorflow-slim image classification model

library. Online document, https://github.com/tensorflow/models/tree/master/

research/slim, 2016.

[150] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. In ICLR, 2015.

[151] Evan R Sparks, Ameet Talwalkar, Virginia Smith, Jey Kottalam, Xinghao Pan, Joseph

Gonzalez, Michael J Franklin, Michael I Jordan, and Tim Kraska. Mli: An api for

distributed machine learning. In ICDM, 2013.

[152] Srinath Sridharan, Gagan Gupta, and Gurindar S Sohi. Holistic run-time parallelism

management for time and energy efficiency. In ICS, 2013.

107

 https://github.com/AlejandroCabeza/sounds_of_runeterra
 https://github.com/AlejandroCabeza/sounds_of_runeterra
https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim


[153] Madhusudan Srinivasan, Morteza Pourreza Shahri, Indika Kahanda, and Upulee

Kanewala. Quality assurance of bioinformatics software: a case study of testing a

biomedical text processing tool using metamorphic testing. In Proceedings of the 3rd

International Workshop on Metamorphic Testing, pages 26–33, 2018.

[154] stockmine. A stock prediction application. https://github.com/nicholasadamou/

stockmine.

[155] Zeyu Sun, Jie M Zhang, Mark Harman, Mike Papadakis, and Lu Zhang. Automatic

testing and improvement of machine translation. In ICSE, 2020.

[156] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper

with convolutions. In CVPR, 2015.

[157] Yida Tao, Shan Tang, Yepang Liu, Zhiwu Xu, and Shengchao Qin. How do api

selections affect the runtime performance of data analytics tasks? In ASE, 2019.

[158] Surat Teerapittayanon, Bradley McDanel, and H.T. Kung. BranchyNet: Fast inference

via early exiting from deep neural networks. In ICPR, 2016.

[159] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing

of deep-neural-network-driven autonomous cars. In ICSE, 2018.
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