THE UNIVERSITY OF CHICAGO

CORRECTNESS, PERFORMANCE, AND ENERGY-EFFICIENCY: IMPROVING
SOFTWARE SYSTEMS THAT USE MACHINE LEARNING COMPONENTS

A DISSERTATION SUBMITTED TO
THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY
CHENGCHENG WAN

CHICAGO, ILLINOIS
JUNE 2022

Copyright () 2022 by Chengcheng Wan
All Rights Reserved

Dedicated to my beloved family.

“Computers do not solve problems. They execute solutions.” - Laurent Gasser

TABLE OF CONTENTS

LIST OF FIGURES viii
LIST OF TABLES e X
ACKNOWLEDGMENTS e xi
ABSTRACT . . . e xii
1 INTRODUCTION e e e 1
1.1 Motivationo 1
1.2 Contributions 4
1.3 Dissertation Organization. 6
2 BACKGROUND AND RELATED WORK 7
2.1 Anytime Neural Network L. 7
2.2 Resource Management System 8
2.3 Machine Learning Software oL 9

3 ORTHOGONALIZED SGD AND NESTED ARCHITECTURES FOR ANYTIME

NEURAL NETWORKS 11
3.1 Overview 11
3.2 Anytime Network Architecture. 12
3.2.1 Baselines. 12

3.2.2 Design Principleso oo 13
3.2.3 Nested Anytime Network Architectures 13

3.3 Optimization Strategies L 16
3.3.1 Definitions and Preliminaries 16
3.3.2 Orthogonalized SGD (OSGD) 17

3.4 Evaluationo o 18
3.4.1 Methodology 18
3.4.2 Evaluation of Optimization Strategies 19
3.4.3 Evaluation of Nested Architectures. 21
3.4.4 Run-time Simulation.o 22
3.4.5 Evaluation on ImageNet. 23

3.5 Conclusion 24
4 ALERT: ACCURATE LEARNING FOR ENERGY AND TIMELINESS 25
4.1 OVerview e 25
4.2 Understanding Deployment Challenges 26
4.2.1 Understanding the Tradeoffs 27
4.2.2 Understanding Variability 0. 29
4.2.3 Understanding Potential Solutions 31

v

4.3 ALERT Run-time Inference Management 32

4.3.1 Inputs & Outputs of ALERT 32
4.3.2 ALERT Workflow 33
4.3.3 ALERT Estimation Algorithm 34
4.3.4 Integrating ALERT with Anytime DNNs 36
4.4 Limitations and Discussions 37
4.5 Implementation 38
4.6 Evaluationo 39
4.6.1 Methodology 39
4.6.2 Overall Results 41
4.6.3 Detailed Results and Sensitivity 42
4.7 Conclusion e 45
ARE MACHINE LEARNING CLOUD APIS USED CORRECTLY? 46
5.1 OVErview e 46
5.2 Methodology 47
5.2.1 Application selection 47
5.2.2 Anti-pattern identification methodology 48
5.2.3 Profiling methodology 49
5.3 Functionality-related API Misuses 49
5.3.1 Calling the wrong APT, 50
5.3.2 Misinterpreting outputso oo L 52
5.3.3 Missing input validationo 53
5.4 Performance-related API Misuses 54
5.4.1 How important are performance anti-patterns? 55
5.4.2 Misuse of asynchronous APIs 56
5.4.3 Forgetting parallel APIs L. 57
5.4.4 Making skippable APl calls 59
5.4.5 Unnecessarily high-resolution inputs. 60
5.5 Cost-related API Misuses. 62
5.6 Solutions L 63
5.7 Threats to Validity 65
5.8 Conclusion 66
AUTOMATED TESTING OF SOFTWARE THAT USES MACHINE LEARNING
APIS . o o e 67
6.1 Overview e 67
6.2 Test input generation Lo 68
6.2.1 Identifying relevant ML outputs 69
6.2.2 Identifying ML APl inputs 70
6.3 Test output processing 74
6.3.1 Failure identification oL 74
6.3.2 Failure attribution 7
6.4 Implementation 78

6.5 Evaluation 79

6.5.1 Methodology 80

6.5.2 Software testing evaluation 81

6.5.3 Userstudies 84

6.6 Threats to Validity o 87
6.7 Conclusion 88

7 CONCLUSIONS AND FUTURE WORK 89
7.1 Contributions 89
7.2 Limitation and Future Work 90
REFERENCES s, 92

vil

1.1

3.1

3.2

3.3
3.4
3.5
3.6
3.7

3.8

4.1
4.2

4.3

4.4

4.5

4.6
4.7
4.8

LIST OF FIGURES

Dissertation overview L 4

Width-wise nesting of deep networks. Compared to a standard network, each
layer is sliced into multiple layers (colored blocks, stacked vertically). FEach
successive subnetwork includes another set of layer slices across the entire depth
of the network. 12
Cascade with branching outputs. Networks are nested in depth, sharing a common
trunk to which output branches attach. (Box colors indicate in which inference

stage a layer is introduced, as in Figure 3.1). 12
Our depth-wise nesting of subnetworks. 15
Our width-wise nesting of subnetworks. 15
Our width-depth nesting that alternates growing width and depth. 16
Our width-depth nesting that grows width and depth simultaneously. 16
Accuracy-FLOP trade-offs (lower is better). Our nested architectures offer trade-

offs close to the infeasible Oracle. 22
Error rates at different deadlines (lower is better). Our nested designs perform

better than baselines and the static Oracle. 23
Tradeoffs for 42 DNNs (CPU2). 27
Tradeoffs for ResNet50 at different power settings (CPU2). (Numbers inside

circles are power limit settings.) Lo oL 28

Latency variance across inputs for different tasks and hardware (Most tasks have

3 boxplots for 3 hardware platforms, CPU1-2, GPU from left to right; NLP1 has

an extra boxplot for Embedded; other tasks run out of memory on Embedded;
every box shows the 25th—75th percentile; points beyond the whiskers are ;90th

or j10th). 29
Latency variance with co-located jobs (the memory-intensive STREAM benchmark
[114] co-located on Embedded, CPU1-2; GPU-intensive Backprop [30] co-located

on GPU) . . . 30
Minimize energy task with latency and accuracy constraint @ CPU1L. (co means

unable to meet the constraints) Lo Lo 31
ALERT inference system 32
Average performance normalized to Oraclegiatje (Smaller is better). 41

Minimize error rates w/ latency, energy constraints on CPU1. (Memory contention
occurs from about input 46 to 119; Deadline: 1.25x mean latency of largest

Anytime DNN in Default; power limit: 35W.) 43
4.9 Minimize error for sentence prediction@ CPU1 (Lower is better). (whisker: whole

range; circle: mean)o 44
4.10 Distribution of £ for image class. on CPUL1. 45
5.1 Misinterpreting outputs in JournalBot [78] L. 53

viil

5.2

9.3
5.4
9.5

6.1
6.2
6.3
6.4

6.5
6.6
6.7

Latency profiling for three different APIs of Google Speech-to-Text (synchronous,
asynchronous, and streaming) and AWS Comprehend (synchronous one file, synchronous
multi-file, and asynchronous). Each point in the figure corresponds to the mean
and the error bar corresponds to the standard deviation of five experiments. Note

that, in (b) the y-axis is broken into two parts with different value ranges. . . . 56
Skippable call@ Sounds-Of-Runeterra[145] 60
Accuracy and latency with different input resolutions. 61
Using asynchronous APT in synchronously (Blue lines contain key code structures

used by our checker) 64
An overview of Keeper. 69
Test inputs generated for wanderStub [169]. 72
Dead-code bugs in Verlan [163] L. 76
Crash failure in FortniteKillfeed [44]: a blank image returns an empty array

text and trigger an index-out-of-range.o 7
Keeper IDE plugin interface oo 79
End-user preference: Original vs. Keeper version. 85
Developer preference of Keeper failure reports. 85

1X

3.1

3.2

3.3

4.1
4.2
4.3

4.4
4.5

5.1

5.2

9.3
5.4

6.1
6.2
6.3

6.4

LIST OF TABLES

CIFAR-10 error rates, the lower the better, of our anytime networks with different
optimization strategies. Numbers in parentheses are standard deviations. Size
subscripts indicate the subnetwork width or depth normalized to that of the first-

stage subnetwork. OSGD consistently improves over SGD and, compared to both

SGD and Greedy stage-wise training, achieves dramatically lower error for later
outputs. L. e e e 20
CIFAR-10 error rates of previous anytime networks with different optimization
strategies. As in Table 3.1, OSGD offers benefits compared to other optimizers. 20
Validation error of anytime networks trained with SGD and OSGD on the ImageNet

dataset. L 24
ML tasks and benchmark datasets in our experiments 26
Hardware platforms used in our experiments 26
Settings and schemes under evaluation (* measured under default setting without

resource contention) 39
Average energy consumption and error rate normalized to Oraclegiatic- - - - - - 41
ALERT normalized average energy consumption and error rate to Oraclegiatic @

Sparse ResNet (Smaller is better) 42

ML tasks supported by four popular ML cloud services. Subscript q: only a
synchronous API is offered for this task; subscript p: only an asynchronous API

is offered; no subscript: both synchronous and asynchronous APIs are offered. . 47
of applications using different types of MLL APIs on GitHub. New Apps refer

to those created after 08-01-2019. 47
ML API misuses identified by our Manual checking and Automated checkers. . . 50
Cost of Google cloud Al services. 62
Different ML APIs handled by Keeper and their pseudo-inverse functions. 70
Average branch coverage across 63 applications. 81
Unique failures exposed by Keeper. (*: This crash disappeared later with the

most recent version of Google APL.)o oL 82
Developer overall preference of Keeper. 86

ACKNOWLEDGMENTS

The past five years had been a wonderful time at the University of Chicago. I would like to
express my most sincere gratitude to so many people who have helped me through the years.

Foremost, I would like to thank my advisor, Prof. Shan Lu, for her continuous guidance
and support in Ph.D. study and research. Besides all the praise on her professional skills, she
is an excellent mentor on both research and life. Her great enthusiasm and patient advising
helps me gradually get prepared to become an independent researcher: by imitating her way
of doing research, managing time, leading team, communicating with people, and etc. It’s
my great honor to have become Shan’s Ph.D. student at UChicago. And I hope I could
become a researcher or adviser as her in the future.

I am also sincerely grateful to the other members of my committee: Prof. Henry Hoffmann
and Prof. Michael Maire. Their invaluable suggestions and comments helped me shape the
research direction and improve my thesis. They are kind and helpful whenever I encounter
research challenges. Their invaluable suggestions guided me through this cross-domain thesis
work. I am really honored to have them on my committee.

It is my truly fortunate to work with many excellent colleagues. I would like to thank all
members of Shan’s research group: Haopeng Liu, Yuxi Chen, Shu Wang, Chi Li, Guangpu
Li, Chengcheng Wan, Lefan Zhang, Bogdan Stoica, Utsav Sethi, Yuhan Liu, Haochen Pan,
Wei Yuan, and Yu Gao for the opportunity of research collaborations and emotional support.
Thanks to my collaborators: Muhammad Santriaji, Shicheng Liu, Sophie Xie, and Yifan Liu
for their great effort in research projects.

Besides, I would like to thank my fantastic friends: Weijia He, Ying He, Zhiyu Chen,
Xiaojie Wu, Xinyi Zhang, Hao Shen, and many more that I cannot list them all here for the
happy time we spent together.

Finally, specially thanks to my family for their unconditional and greatest love. Thanks
for your support and company. Thank you, Dad and Mom!

x1

ABSTRACT

An increasing number of software applications adopt machine learning (ML) components to
solve real-world problems. The offering of ML cloud APIs further ease developers’ burden
of incorporating ML solutions, typically deep neural networks (DNNs). However, to achieve
a correct, fast, and energy-efficient ML application, developers still need to carefully design
its three crucial components: ML algorithm, system environment, and software context.

To improve correctness, performance, and energy-efficiency of ML applications, this
dissertation works on these components and makes the following contributions:

First, to enhance the flexibility of neural networks, this dissertation proposes a novel
neural network architecture and a customized optimizer that support anytime prediction.
This design allows one neural network to generate a series of increasingly accurate outputs
over time without sacrificing accuracy for flexibility.

Second, this dissertation designs a run-time scheduler ALERT, which further manages
system resources. ALERT holistically configures neural networks and system resources
together to meet application-specific accuracy, performance, and energy-consumption constraints.
It uses a probabilistic model to detect environmental volatility and makes use of the full
potential of the DNN candidate set to optimize performance and satisfy constraints.

Third, to understand the challenges of developing ML software, this dissertation conducts
the first comprehensive study about how real-world applications are using machine learning
cloud APIs. We generalize 8 anti-patterns that degrade functional, performance, or economical
quality of the software.

Fourth, guided by this study, we propose Keeper, a new testing framework for software
systems that use machine learning APIs. Keeper automatically generates many test cases
to thoroughly test every branch in the specified function and its callees. It analyzes the test

runs and reports many failures, as well as potential patches, to developers.

xii

CHAPTER 1
INTRODUCTION

1.1 Motivation

Machine learning (ML) provides efficient solutions for a number of problems that were
difficult to solve with traditional computing techniques, e.g., object detection and language
translation. Deep neural networks (DNNs), the most popular ML technique, have become
a key workload for many computing systems due to their high inference accuracy. The
offering of ML Cloud APIs from all major cloud service providers [13, 51, 69, 117] further
makes it easy for software developers to use machine learning components in their software
projects without the need to design, train, or run deep neural networks themselves [14]. With
such convenience, an increasing number of open-source applications adopt ML techniques,
targeting a wide variety of real-world problems [166].

A successful ML application need to meet the requirements of correctness, latency and
energy-efficiency in unpredictable and dynamic environments, where it may compete for
resources against co-located jobs. Correctness is fundamental to the application functionality.
For an ML application, correctness not only refers to the neural network providing accurate
results during execution, but also refer to the application correctly interpreting and using
the network’s results. Latency constraints naturally arise when application interacts with
the real world as a consumer, like processing data streamed from a sensor, or a producer,
like returning a series of answers to a human. Missing latency deadlines will cause drop
of critical sensor data, delay in user interaction, and severely hurt user experience. Energy
requirement is also common, especially in mobile and edge devices where neural network
inference dominates the total system energy consumption. It is beneficial to minimize energy
usage in order to extend mobile-battery time and reduce server-operation cost.

Making things more complicated, the optimization of correctness, latency, and energy-

1

efficiency often conflict with each other in the context of ML applications, which we elaborate
below. In practice, the deployment of ML applications typically face dynamic and constrained
optimization requirements. For example, in robotic vision systems, the latency requirement
changes based on the robot’s speed and distance from perceived pedestrians. Meanwhile,
the accuracy should be maximized, with the energy consumption constrained by the battery
capacity.

Whether an ML application can successfully meet the above requirements depends on how
well each of its three crucial components works: (1) the ML algorithm, which is typically in
the form of the inference computation of a deep neural network; (2) the system environment,
which allocates resources to a ML application and carries out the ML application’s execution;
and (3) the application software context and usage of the ML algorithm, which decides how
other parts of the application interact with the ML component.

Machine learning algorithm. Comparing with the dynamic correctness-performance-
energy goal of ML application and unpredictable execution environment, conventional neural
networks are not flexible enough. The accuracy of deep neural networks is affected by both
their architecture and overall size. The higher accuracy of larger networks comes at the cost
of increased computation requirements and longer inference latency. However, it is hard to
achieve the optimal accuracy-latency trade-off in run-time. Neural networks cannot easily
adapt itself, having to complete all the pre-defined computation to produce one inference
result. General approaches to achieve adaption and flexibility include ensembling [34] multiple
independent predictors and reorganizing a standard prediction pipeline into a cascade [191],
both of which are exploited to build variants of deep networks in recent studies [67, 98,
115, 158, 170]. Their design and training procedures sacrifice considerable accuracy and/or
require significant extra computation to support adaptation.

Machine learning system. Even for a perfect ML algorithm, it still requires system-

level resource management to achieve the correctness-performance-energy goal. A holistic

solution is needed to automatically select a proper network and system resource to meet
the dynamic constraints of correctness, as they might make conflict decisions. For example,
when the latency budget is sufficient, the network adaptation technique would switch to a
higher-accuracy network to make best use of time. Meanwhile, the resource management
technique would use a lower power setting to save energy. Stacking up their impacts, it’s
very likely to violate the latency requirement.

Offering such holistic solution is non-trivial. The combination of network and system-
resource adaptation creates a huge configuration space, making it difficult to dynamically
and efficiently predict which combination of network and system settings will meet all the
requirements optimally. Existing system resource management techniques [18, 97, 130, 134,
152, 64, 71, 81, 82, 119, 146, 189] fail to solve this problem, as they only focus on assigning
system resource and neglect the adaptation opportunity of neural networks.

Machine learning software. In addition to effort on network computation itself,
another problem arises: how network is used in the real applications? While ML Cloud
APIs make it easy for non-experts to incorporate networks into software systems, developers
still have to make a number of decisions: which API to select? how to pre-process its input?
how to interpret its output? These are crucial problems, as the misuse of network would
cause correctness, performance, and energy problems, even when the other two components
of ML algorithm and ML system work perfectly. For example, if an application wrongly
uses a French speech recognition network to transcribe an English audio, the software would
behave incorrectly, no matter how accurate the network is. Similarly, if an application
computes the network on a fixed input in a loop, its performance would drop significantly
even when the network inference is highly accelerated.

However, these decisions are hard to make due to the statistical nature of machine learning
algorithm. Unlike traditional APIs that are coded to perform a well-defined algorithm, ML

APIs are trained with large amounts of data. As a result, ML API lacks a contract that

precisely describes its input specification and expected behavior. Without a clear definition,
it is hard for developers to discover the proper way of using these APIs.

Making things worse, once ML APIs are used, software testing becomes challenging.
Traditional test-input generation techniques, like fuzzing, cannot effectively generate realistic
inputs that are relevant to the ML software under test from the huge input space of ML
APIs (i.e., photos, natural language text, audio, etc.). For example, it’s impossible for a fuzz
technique to generate a real dog image for a dog breed application, by applying perturbation
on its limited input seed. Furthermore, judging the output correctness becomes extremely
difficult, as ML algorithms are designed to statistically mimic human understanding, and
hence are inherently difficult to automate. Recent work on testing [23, 40, 35, 100, 148] and
fixing [180, 101, 155, 73] machine learning algorithms focus on the neural networks, but do

not work for testing the ML software.

1.2 Contributions

Anytime Neural Network

ML Algorithm

L ML System Management System ALERT
| ML API Automated
ML Software Misuse Study Testing Tool

Figure 1.1: Dissertation overview

c
o
e
©
=
=
Q.
<
—
=

In this dissertation, we aim to create a robust method to incorporate ML components
into software systems meeting the requirements of correctness, latency and energy-efficiency.
As shown in Figure 1.1, this dissertation works on the three components of ML application

to address this problem. In ML algorithm component, we propose a new design of anytime

4

network that supports adaptive inference tasks. In ML system component, we design a
management system for run-time scheduling neural network inference. In ML software
component, we conduct an empirical study of ML API misuse and propose a novel testing
tool for software that uses ML APIs. These contributions interact and complement each
other to achieve accurate, fast, and energy-efficient ML applications.

Anytime network. Aiming adaptive and efficient neural network, we offer a new design
of anytime network, which produces a fast and crude initial prediction and continues to refine
it as latency budget allows. We propose a novel neural network architecture that consists
of a sequence of fully nested subnetworks. Complementary to our architectural innovations,
we propose a novel optimizer, Orthogonalized SGD, for training anytime neural networks.
Our experiments demonstrate synergy between our architecture and optimizer: our anytime
neural networks perform almost as well as independent non-anytime neural networks of the
same size. This work has been published at ICML 2020 [165].

Management system for network inference. Anytime network allows the ML
algorithm to adapt at run time for different accuracy—performance tradeoffs. However,
it does not solve all the problems—it has to coordinate with system resource manager,
as discussed earlier. In this thesis, we design a runtime scheduler ALERT, a cross-stack
runtime system for neural network inference to meet user goals by simultaneously adapting
both neural network models and system-resource settings. It uses a probabilistic model to
detect environmental volatility and adopts a random variable, global slow-down factor, to
relate the current runtime environment to a nominal profiling environment. Across various
experimental settings, ALERT meets constraints while achieving within 93-99% of optimal
energy saving or accuracy optimization. This work has been published at USENIX ATC
2020 [168].

Empirical study of ML API misuse. To understand the challenges of developing

ML software, we conduct the first comprehensive study about how real-world applications

are using MLL APIs. We have found that misuses of MLL APIs are widespread and severe:
249 out of the 360 applications (69%) contain misuses in their latest versions, more than
half of which contain multiple misuses. These misuses lead to various types of problems,
including reduced correctness (64%), degraded performance (34%), and wasted resources
(2%). We also design several static checkers to automatically detect some of the common
misuse patterns generalized by our study. These checkers identified hundreds of previously
unknown bugs and further confirmed that these misuses are widespread problems in ML
applications. This work has been published at ICSE 2021 [166].

Automated testing tool for ML software. Guided by this study, we propose
Keeper, a new testing tool for software that uses cognitive ML APIs. Keeper designs a
pseudo-inverse function for each ML API that reverses the corresponding cognitive task
in an empirical way (e.g., an image search engine pseudo-reverses the image-classification
API), and incorporates these pseudo-inverse functions into a symbolic execution engine to
automatically generate relevant image /text/audio inputs and judge output correctness. Once
misbehavior is exposed, Keeper attempts to change how ML APIs are used in software to
alleviate the misbehavior. Our evaluation on a variety of open-source applications shows that

Keeper greatly improves the branch coverage, while identifying many previously unknown

bugs. This work has been published at ICSE 2022 [167].

1.3 Dissertation Organization.

The remainder of this dissertation is organized as follows. Chapter 2 introduces background
and related work. Chapter 3 introduces our work of OSGD and nested architecture. Chapter
4 presents our runtime scheduler ALERT. Chapter 5 introduces our comprehensive study
about how real-world applications are using ML APIs. Chapter 6 presents our testing tool

Keeper. Chapter 7 concludes this dissertation and discusses future work.

CHAPTER 2
BACKGROUND AND RELATED WORK

2.1 Anytime Neural Network

Anytime neural network (ANN) is a type of network that supports anytime prediction [191],
which is a promising approach to generating accurate inference results under dynamic latency
and resource constraints. For each test sample, an anytime predictor produces a fast and
crude initial prediction and continues to refine it as budget allows, so that at any test-time
budget, the anytime predictor has a valid result for the sample, and the more budget is

spent, the better the prediction.

Adaptive Inference. One branch of investigation has focused on reducing inference time
in a dynamic, input-dependent manner [43, 115, 142, 162, 174]. These adaptive inference
methods skip execution of parts of a network, based on an estimate of relevance computed for
each input; their goal is to minimize computation required for accurate prediction on a per-
example basis. Here, the inference procedure changes dynamically in response a network’s
input data. However, these approaches do not provide any mechanism for responding to

environmental conditions that might introduce transient resource constraints to the system.

Anytime Deep Networks. Anytime methods provide means of addressing such environ-
mental variability. Specifically, they aim to introduce a degree of robustness to dynamic
environmental effects, at the possible cost of moderately increased computation. For example,
a recent anytime network [170] develops a prediction pipeline specifically for stereo depth
estimation, outputting images with increasing spatial resolution, an approach that may not
generalize to other domains. Recent generic anytime approaches include several cascade
designs [66, 67, 96, 158], which grow subnetworks by depth, and a recent proposal [98] that

grows by width.

Multitask Training. Multitask training is a non-trivial problem. Previous work solve
this problem by clustering methods [106, 120], separating general and task-specific features
[177], training all tasks with the same base network and a few task-specific layers [91, 95],
and building joint losses with adaptive weights [66, 85]. Some work also targeted changes
to optimizers to improve multitask network training. This includes NormSGD [95], which
computes a parameter gradient per task, in separate backpropagation passes. These gradient
vectors are then normalized before summation, ensuring that each task exerts equal influence
on network parameters at every training iteration. Another work [85] dynamically balances
task influence, allowing some slack in relative task importance, provided it is justified by

outsized gains in accuracy across the task spectrum as a whole.

2.2 Resource Management System

Dynamic decision. Past resource management systems have used machine learning [18,
97, 130, 134, 152] or control theory [64, 71, 81, 82, 119, 146, 189] to make dynamic decisions
and adapt to changing environments or application needs. Some also use Kalman filter
because it has optimal error properties [71, 81, 82, 119]. They use the Kalman filter to

estimate physical quantities such as CPU utilization [82] or job latency [71].

Approximate application. Past work designed resource managers explicitly to coordinate
approximate applications with system resource usage [39, 64, 63, 83]. Although related, they
manage applications separately from system resources, which is fundamentally different from
our ALERT’s holistic design. When an environmental change occurs, prior approaches first
adjust the application and then the system serially (or vice versa) so that the change’s effects
on each can be established independently [63, 64]. That is, coordination is established by
forcing one level to lag behind the other. In practice this design forces each level to keep its

own independent model and delays response to environmental changes.

Real-time guarantee. Some research supports hard real-time guarantees for neural networks
[188], providing 100% timing guarantees while assuming that the neural network model gives
the desired accuracy, the environment is completely predictable, and energy consumption is

not a concern.

2.3 Machine Learning Software

ML-based software. Prior work looked at how to test specific software that contains
ML components [75, 79, 76, 153]. Unfortunately, their solutions do not apply to general
ML software. For example, one work trained a SVM classifier to judge the correctness
of an image dilation program, leveraging the fact that the input image and the output
image should contain the same objects [75]. To test a blood-vessel image categorizer,
previous work [79] generates blood-vessel images with certain density, branches, and other
features, and use these features to generate output ground truth. Previous work [153, 76]
uses metamorphic approaches to test entity detection and image region growth programs.
They require application-specific rules about inputs and outputs relationship (e.g., after we
concatenate inputs of entity detection, the output becomes the concatenation of individual
outputs [153]).

Some previous work studies the different phases and different developer roles in large-
scale development and deployment of MIL-based applications [14, 62, 83, 89]. These studies

do not provide an automated testing technique.

Testing ML-based solutions. Some research studies common mistakes in programs that
design and train neural networks [74, 184, 186, 187] or other types of machine learning models
(e.g., SVM and decision tree) [157]. Some works focus on testing [129, 159, 175, 125, 110,
109, 26, 9, 108, 182, 36, 46, 17, 15, 176, 179, 59, 143, 47, 127, 185, 23, 40, 35, 100, 148] and

fixing [73, 101, 155, 180] neural networks. All of these studies consider building machine

learning models, instead of using them.

Testing ML APIs. Prior work studies automatic testing and bug detection of machine
learning APIs, including machine learning frameworks for implementing neural networks
21, 27, 57, 121, 132, 151, 160] and REST APIs for providing machine learning solutions
[50, 54, 131]. These works focuses on the implementation inside ML APIs, neglecting how

they interact with other software components.

Testing FaaS APIs. Past works studied testing and fixing FaaS (Functions as a Service)
platforms, in terms of accuracy [147, 164], performance [56, 86, 105, 111, 116], and security
[41, 48, 87]. These works focusing on general FaaS APIs, but do not address the unique

challenges raised by machine learning solution.

10

CHAPTER 3
ORTHOGONALIZED SGD AND NESTED ARCHITECTURES
FOR ANYTIME NEURAL NETWORKS

3.1 Overview

In this chapter, we aim to solve the problem of flexible neural networks that support anytime
prediction.

On the architectural aspect, we propose new structures for anytime neural networks
according to a principle of maximizing the potential for re-use of intermediate state between
successive stages. A small network should not only produce a quick output, but should also
produce internal representations that serve as valuable input to larger networks in subsequent
stages. We thus design architectures so that connections between subnetworks in different
stages are aligned: they directly link corresponding pairs of layers across stages, so as to
allow subsequent subnetworks to refine previously computed internal representations.

Complementary to our architectural innovations, we propose a novel optimizer, Orthogonalized
SGD (OSGD), for training anytime neural networks. Motivating OSGD is a view of anytime
networks as a special-case of multitask networks, combined with a desire to facilitate synergy
between those tasks. In addition to synergistic architectures, we want another type of
synergy: synergy in the optimization dynamics when training those multitask architectures.
OSGD provides a methodology for re-balancing task interactions as they simultaneously pull
on network parameters over the course of training.

While OSGD is general, with potential application to any multitask training scenario,
we restrict focus to anytime networks. We observe dramatic improvements in generalization
accuracy when training anytime networks with OSGD: a result that holds across the full
spectrum of anytime network architectures. Training our fully-nested anytime networks with

Orthogonalized SGD sufficiently improves accuracy to the point of making such networks

11

01

Input
02

Pruned Connection
<
o

[Layer for O1

[Extra layer for 02

I Extra layer for 03

[Jextra layer for 04
P -== Connection

Figure 3.1: Width-wise nesting of deep networks. Compared to a standard network, each
layer is sliced into multiple layers (colored blocks, stacked vertically). Each successive
subnetwork includes another set of layer slices across the entire depth of the network.

. o
O
o~
(o]

Figure 3.2: Cascade with branching outputs. Networks are nested in depth, sharing a
common trunk to which output branches attach. (Box colors indicate in which inference
stage a layer is introduced, as in Figure 3.1).

Input

competitive with standard designs lacking anytime flexibility. Together, the techniques
we develop here provide a pathway toward endowing deep neural networks with anytime

flexibility at minimal overhead cost.

3.2 Anytime Network Architecture

3.2.1 Baselines

Equal-width nested networks split a neural network into n equal-width horizontal stripes
(98], as Figure 3.1 illustrates. Each stripe executes sequentially. Compared to branched
cascades, this configuration offers more intermediate state reuse opportunities across subnetworks.
Compared to a regular network of similar size, some connections are removed, as one cannot
have edges from latter stripes to earlier stripes (gray edges in Figure 3.1). Furthermore,
although increasing network width increases accuracy, benefits do not typically scale linearly
with network size. Consequently, the design in Figure 3.1 may produce intermediate results

with suboptimal accuracy-latency trade-offs.

12

Cascade networks add early exit branches from the main network pipeline [67, 115,
158, 66]. As illustrated in Figure 3.2, early outputs are generated without traversing later
pipeline stages—which tend to capture high-level input features—leading to large accuracy
loss for early outputs. Cascading also requires extra computation on every early output path
to convert the intermediate representation of that layer to a suitable output. Training such
cascades puts conflicting pressure on layers that serve heterogeneous branches (e.g., a block

can be connected to both an output layer and another intermediate layer in Figure 3.2).

3.2.2 Design Principles

Three observations guide our anytime architecture designs:

Grow both width and depth. Accuracy improves with both deeper (more layers) [60,
150, 156] and wider (more neurons per layer) [33, 178] designs. Consequently, we develop
freely composable recipes for nesting networks in width and depth.

Grow fast. Although accuracy typically improves with network size, this improvement
usually falls off as size increases; logarithmic scaling of improvements are a common result.
Consequently, we increase network size exponentially from one stage to the next. This
places output predictions at useful discrete accuracy steps along a trade-off curve and also
minimizes cut connections when transforming a standard network into an anytime version.

Reuse intermediate state. We improve efficiency by fully reusing internal activation
states of earlier subnetworks to bootstrap later subnetworks. By aligning layers of different
subnetworks trained for the same task, according to the relative depth in their own subnetwork,

we might jump-start computation in larger subnetworks.

3.2.8 Nested Anytime Network Architectures

Our design consists of a sequence of fully nested subnetworks: the first, D1, is completely

contained within the second, Dy, which is a subpart of D3, etc. Going from D; to D;1,

13

our scheme permits growing the network in width, depth, or both. Our anytime networks
also have the following properties: (1) pipeline structure: Every subnetwork D; follows
the usual pipeline structure of a traditional neural network (as opposed to the branching
present in cascade networks); (2) aligned feed forward: Outputs of internal layers of a smaller
subnetwork are forwarded to deeper layers of the same subnetwork, as well as internal layers
of the larger network most appropriate for consuming their signals, maximizing data reuse
(i.e., connections are purely feed-forward in depth or nesting level); (3) exponential size
scaling: The sizes of subnetworks increases exponentially so later outputs offer meaningful

accuracy improvements over earlier ones.

Depth Nesting

We interlace layers following the same pipeline structure as the original network. As
illustrated in Figure 3.3, we partition a traditional network into odd and even layers. We
create a shallower subnetwork consisting of only the odd numbered layers to produce the
first intermediate result, and nest it within the full network, which has double the depth.
Recursively applying this process, we create a sequence of interlaced networks that repeatedly
double in depth.

This depth-nesting strategy applies only to networks satisfying an additional architectural
requirement. Notice, in Figure 3.3, the presence of additional skip connections between
layers, even in the basic, non-nested network. Indeed, within any network in the sequence,
we must have that each layer connects directly to any other layer separated in depth by a
power of 2. Fortunately, this power-of-2 skip-connection design is exactly the SparseNet
architecture [190], which is a state-of-the-art variant of ResNet [60] (or DenseNet [68])

convolutional networks.

14

— -

o
o
S
<%
<

N

— o
o
S

<% =

02

(b) An alternative display of (a)
Figure 3.3: Our depth-wise nesting of subnetworks.

Width Nesting

Our width-nesting strategy divides a network into M horizontal stripes, with the i-th
subnetwork including all the neurons inside the first ¢ stripes. Different from this prior
work, we use a power-of-2 sequence for stripe widths, as Figure 3.4 depicts.

If the first subnetwork Dy contains w neurons in one layer, D; contains w x 2¢~! neurons
in the corresponding layer. This choice creates a good trade-off curve for accuracy and

latency. All the connections from a later-stripe neuron to an earlier-stripe neuron need to

be pruned.

[Layer for O1
[Extra layer for 02

[Extra layer for O3

-~ Connection

01

Input
02

Pruned Connection

03

Figure 3.4: Our width-wise nesting of subnetworks.

Combining Depth and Width Nesting

Our width and depth nesting designs can be easily combined in arbitrary order: depth then
width, width then depth, or combinations thereof. When growing depth, interlaced layers are

added. When growing width, all layers double their filter count. Figure 3.5 illustrates growth
15

by alternating width and depth: subnetwork-1 (dark blue layers) grows to subnetwork-2 by
extending its width (light blue layers), then grows to subnetwork-3 by extending depth (green
layers), and then to subnetwork-4 by extending width again (light green layers). Figure 3.6

illustrates an alternative of simultaneous growth in width and depth.

[Layer for O1
I [Extra layer for 02
|:| |:| I Extra layer for 03

[Jextra layer for 04

-== Connection
Pruned Connection

Figure 3.5: Our width-depth nesting that alternates growing width and depth.

Connections across intermediate layers are hidden.

[Layer for 01
l l [Extra layer for 02
|:| |:| |:| I Extra layer for O3
-~ Connection
I I I I Pruned Connection

Figure 3.6: Our width-depth nesting that grows width and depth simultaneously.

Connections across intermediate layers are hidden.

Input
02 o1

03

04

01

Input
02

03

3.3 Optimization Strategies

Every anytime network (using our architecture or others) faces a multitask training challenge:
simultaneous optimization of losses attached to outputs of multiple subnetworks. In this
section, we propose Orthogonalized SGD (OSGD), a new optimizer for training multitask

deep networks, which is particularly effective when applied to anytime networks.

3.3.1 Definitions and Preliminaries

Training a nested anytime network is an instance of multitask learning, where the tasks are

solving the same problem with different network components.

16

Let wy € Rdl,wg € RdQ, cee Wy € R be the weights of the nested networks, where

di <do <---<dpand wy Cwy C -+ C wy. We define other symbols as follows:

e IW: weight for the whole network, equivalent to wy,

L;: the loss of subnetwork D; (D; has weights w;)

g;: the gradient of weights w; from loss L;.

gzj : the gradient of weights w; \ w;_1 from loss L;, where j < i; gg is a subset of g;.

e (: a constant value for normalization

3.3.2 Orthogonalized SGD (OSGD)

Our novel optimizer, Orthogonalized SGD, dynamically re-balances task-specific gradients
in a manner that prioritizes the influence of some losses over others. Given loss-specific
gradient vectors g1, g9, ..., gn, Orthogonalized SGD projects gradients from later outputs
onto the parameter subspace that is orthogonal to that spanned by the gradients of earlier
outputs. As a result, subsequent outputs do not interfere with how earlier outputs desire to

move parameters. For example, the retained component of the gradient of weight w9 is

g5 = g2 — Projg, 92, (3.1)

where projy B refers to projecting vector B onto A. gé is orthogonal to g1, and thus updating

wq in the direction of gé minimizes interference with the optimization of loss L.

Algorithm 1 provides a complete presentation of both Orthognolized SGD and an orthogonalized

variant of NormSGD. Note that for anytime networks, per-task gradient vectors are padded
with zero entries for any parameters not contained in the corresponding subnetwork. For
example, g1 pads zeros to wo \ wy, so the part of go specific to the second subnetwork will

be unaffected by Equation 3.1.

17

Algorithm 1 Orthogonalized SGD: A multitask variant of SGD with optional dynamic
normalization of task influence.

1: Initialize weights W
2: for t = 0 to max_train_steps do
Compute L;(t) Vi, st. 1 <i<mn [forward pass|
g(t) <=0
for 1 =1 ton do
6:(t) < YV, Li()
if normalizing then
9i(t) <= gi()/ (VI - Vd; - C
end if
10: end for
11: fori=1tondo

@

120 hit) < Y52 projyei(t)
13: gi(t) <= gi(t) — hy(t)
14: g(t) <= g(t) + gi(t)

15: end for
16: Update W(t) — W(t+ 1) using g(t)
17: end for

More generally, OSGD can be used with any priority ordering of tasks; the priority
order need not correspond to the order in which outputs are generated by an anytime
network. Algorithm 1 is valid for any shuffling of losses, regardless of the underlying network
architecture. Choosing a priority order determines the sequencing of gradient projection

steps, thereby changing which tasks are given preferential influence over network parameters.

3.4 Evaluation

3.4.1 Methodology

We begin with evaluation using the CIFAR-10 dataset [92]. All networks are trained for 200
epochs, with learning rate decreasing from 0.1 to 0.0008. We train every network 3 times,
and report the average and standard deviation of its validation error.

We evaluate all five optimization strategies from Section 3.3: Greedy stage-wise training,
SGD, OSGD, and the normalized variants of both SGD and OSGD. We set C' = 1/2 and

18

use a constant loss importance for SGD and NormSGD, as these settings provide the best
results.

We evaluate six different anytime network architectures: four novel designs of our own
and two prior designs. Our designs include: (1) depth-nesting applied to Sparse ResNet-98
[190] (Figure 3.3), (2) width-nesting applied to ResNet-42 [60] (Figure 3.4), (3) alternating
width-depth nesting (Figure 3.5), and (4) simultaneous width-depth nesting (Figure 3.6),
with the latter two applied to Sparse ResNet-98 [190].

The two previous designs represent the state-of-the-art depth-growing anytime design,
referred to as FANN) and width-growing anytime design, referred to as Even-width. In
EANN, we apply the cascade-based approach [66] to Sparse ResNet-98, which grows depth
exponentially and assembles an output branch every k - 2i(i = 1,2,...) layers. In FEven-
width, we apply the idea of recently proposed even-sized width-nested architecture [98] to
ResNet-42.

3.4.2 FEvaluation of Optimization Strategies

Tables 3.1 and 3.2 show the validation error rates of applying five different optimizers to
different anytime networks. Overall, our Orthogonalized SGD and its normalized variant
perform the best, capable of achieving high accuracy for later outputs of an anytime network
without significantly reducing the accuracy for earlier outputs.

Compared with SGD, OSGD consistently achieves higher accuracy for the last two
subnetworks across all six anytime designs, while maintaining similar or better accuracy for
early subnetworks. Switching from SGD to OSGD drops the last-stage error rates from 7.2,
9.8, 8.8 and 8.5 down to 6.6, 7.3, 6.8 and 6.8 across the four anytime networks in Table 3.1.
While the greedy training strategy offers the highest accuracy for the first intermediate result
of all anytime networks, it falls far behind OSGD for later-stage results.

The improvement offered by OSGD is striking, yet somewhat counterintuitive. These

19

Stagesize‘ Greedy SGD OSGD SGDyNorm OSGDNorm

Our Depth Nested Sparse ResNet-98

la1
242
3a4
448

9.6 (0.2) 9.8 (0.1) 10.0 (0.3) 10.0 (0.2) 107(0 2)

(0.3) 8.3(0.3) 8.4 (0.1) 8.6 (0.4) (03)
2 (0.3) 7.7(0.3) 7.4 (0.1) 81(0.3) 7.6(0.1)
(0.2) 7.2 (0.4) 6.6 (0.1) 8.0 (0.2) 6.9 (0.1)

Our Width Nested ResNet-42

1w1

w2

3w4

10.2 (0.1) 12.2 (0.2) 12:3 (0.1) 12:3 (0.3) 12.7 (0.1)
9.9 (0.2) 10.1 (0.1) 8.9 (0.2) 10.1 (0.2) 0.4)

9.6 (
9.2 Eo.z) 9.8 £0.3) 7.3 £0.3) 10.1 (0.2) 7.4 E0.2)

Our (Alternating) Width-Depth Nested Sparse ResNet-98

1wlcll
2w2d1
3w2d2
4yad2
Ow4d4

185 (0.1) 31.4 (0.6) 28.3 (0.4) 30.7 (0.4) 28.1 (0.5)
16.5 (0.1) 15.6 (0.2) 14.8 (0.2) 15.5 (0.3) 14.7 (0.4)
15.9 (0.2) 15.5 (0.)134(3) 15.4 (0.2) 14.1 (0.2)
15.7 (0.4) 10.4 (0.4) 8.6 (0.3) 10.4 (0.2) 9.4 (0.2)

15.6 (0.3) 8.8 (0.3) 6.8 (0.2) 89 (0.3) 7.4(0.2)

Our (Simultaneous) Width-Depth Nested Sparse ResNet-98

Lwidl
2242
3w4d4

18.5 (0.1) 28.0 (0.2) 26.2 (0.1) 29.1 (0.5) 26.7 (0.5)
11.4 (0.1) 15.0 (0.3) 13.1 (0.1) 15.6 (0.5) 14.5 (0.4)
8.6 (0.4) 85 (0.3) 6.8(0.3) 9.0(0.2) 7.4(0.1)

Table 3.1: CIFAR-10 error rates, the lower the better, of our anytime networks with different

optimization strategies.

Numbers in parentheses are standard deviations. Size subscripts

indicate the subnetwork width or depth normalized to that of the first-stage subnetwork.
OSGD consistently improves over SGD and, compared to both SGD and Greedy stage-wise
training, achieves dramatically lower error for later outputs.

Stagesize‘ Greedy SGD OSGD SGDynorm OSGDyNorm

EANN Cascade Sparse ResNet-98

9.3
9.2
8.8
8.5

0.1) 11.7 (0.3) 11.6 (0.3) 12.4 (0.1) 12.1 (0.4)
0.3) 11.1 (0.1) 10.9 (0.2) 12.0 (0.1) 11.2 (0.1)
0.3) 85(0.2) 80 (0.1) 9.2(0.2) 9.0 (0.2)
0.3) 6.5(0.2) 6.4(0.2) 8.0 (0.1) 7.6 (0.1)

N N N N

Even-Width Nested ResNet-42

3) 10.2 (0.3)) 10.7 (0.2) 10.6 (0.1 10.8 (0.1)
4) 10.0 (0.1) 8.3 (0.02) 10.5 (0.1) 8.3 (0.01)
98(02) 9.9 (0.1) 8.3 (0.1) 10.4 (0.1) 8.3 (0.1)

102 (0.04) 12.7 (0.2) 13.9 (0.1) 12.6 (0.1) 13.5 (0.2)
9 (0.
(

Table 3.2: CIFAR-10 error rates of previous anytime networks with different optimization
strategies. As in Table 3.1, OSGD offers benefits compared to other optimizers.

20

experiments give earlier outputs high priority than later outputs. OSGD is prioritizing the
influence that gradients of smaller subnetworks have on the training dynamics, but it is the
outputs of larger subnetworks that most improve in accuracy.

A possible explanation for this curious behavior stems from the fact that the multiple
tasks in anytime networks are highly related. In particular, in a well-architected anytime
network, different output tasks might exert a beneficial regularization effect on one another.

OSGD, by prioritizing task X over task Y in such a network then triggers two effects:
e [t allocates parameters to task X instead of task Y.

e [t decreases the regularization influence of task Y on task X, while simultaneously

increasing the regularization influence of task X on task Y.

Individually, these effects move the relative accuracy of task X and Y in opposite directions.
As they are coupled, we observe only the net result. Regularization interaction being the
stronger effect would explain the behavior of anytime networks trained with OSGD. But,

further investigation is required before confidently adopting this explanation.

3.4.83 FEvaluation of Nested Architectures.

We compare our nested architectures to an infeasible Oracle—a collection of independently-
trained single-task networks with sizes matching our subnetwork stages. Perfectly deploying
this collection of independent networks as an anytime system would require oracle knowledge
of impending deadlines to select which network to run. The Oracle thus represents an
impossible scenario in which anytime prediction capability is granted for free. Figure 3.7
shows the accuracy-FLOPs trade-off curves achieved by our nested network designs (green),
the Oracle (blue), and the EANN and Even-width baselines (red). Here, each network
is trained using the strategy that offers the most accurate results (i.e., OSGD for all

anytime networks and SGD for all independent networks except for the largest setting of

21

29 w w 29 : : 29 ‘ : : :
—=EANN —&—-Even-width ﬁ Nested (Simultaneous)
26 —4-Nested (Ours) |/ 26— |—4—Nested (Ours) || 2 -A-Nested (Alternating) |
- —#=Oracle - |=Oracle [] . —=#-Oracle
ISRty S8k S8
Fl 3 3
3 3 2
14 Zab 2 14f
e S 5
= E E
= =
10F = 10F 10F
6 L L L 6 ! ! L 6 ! ! L
0 1 2 3 4 5 0 2 4 6 8 0 1 2 3 4 5
of Floating Operations 10® # of Floating Operations 10® # of Floating Operations . 10®
(a) Depth-nested; (b) Width-nested; (¢) Width-depth;
Sparse ResNet-98 ResNet-42 Sparse ResNet-98

Figure 3.7: Accuracy-FLOP trade-offs (lower is better). Our nested architectures offer trade-
offs close to the infeasible Oracle.

SparseResNet-98, which uses NormSGD).

From Figure 3.7a and 3.7b, our depth and width nesting anytime networks both offer
much better accuracy-FLOPs trade-offs than previous work, and come close to the infeasible
Oracle. Figure 3.7c¢ shows our width-depth nested Sparse ResNet-98 offers almost as good
a trade-off as the Oracle, and covers a much wider trade-off spectrum than depth-only or

width-only nesting.

3.4.4 Run-time Simulation.

We further compare four schemes for maximizing inference accuracy under various inference
deadlines: (1) Baseline anytime schemes (Even-width and EANN); (2) Our Nested anytime
schemes (width, depth, and width-depth nesting). (3) Oraclepy;, which picks the most
accurate independent network that finishes before the deadline for all inputs; (4) Oraclegach,
which picks the most accurate independent network for each input that finishes before the
deadline (i.e., the network may vary across inputs). When no inference result is generated
by the deadline, a random guess is output. We report the average error rates across all
inputs in Figure 3.8 (vertical axis, lower is better) under 7 deadlines and then no deadline

(horizontal axis); the 7 deadlines are set to be 0.5x-1x of the average latency under the

22

14 T T T T T T T 14 T T T T T T T 14

I Base lBase [Nest (Simultaneous)
13 EINest (Ours)] 13p Bl Nest (Ours)] 13r I Nest (Alternating) |
12k Bl Oracle-All | " [Oracle-All nh Bl Oracle-All]

[CIoracle-Each [1Oracle-Each [JOracle-Each

Average Error Rate (%)
=]

Average Error Rate (%)
=

Average Error Rate (%)
o =

=

6
278 333 389 444 5 556 oo 0 177 2.12 2.48 2.83 3.18 3.54 oo 129 1.55 1.8 2.06 232 2.58 oo
Time Budget of One Image (x1072% s) Time Budget of One Image (x107?% s) Time Budget of One Image (x107?% s)
(a) Depth-nested; (b) Width-nested; (¢) Width-depth;
Sparse ResNet-98 ResNet-42 Sparse ResNet-98

Figure 3.8: Error rates at different deadlines (lower is better). Our nested designs perform
better than baselines and the static Oracle.

biggest ResNet-42 or Sparse ResNet across all inputs.

The accuracy advantage of Nest (the second bar in each group) over Base (the first bar),
and Oracleyy (the third bar) is apparent in Figure 3.8. For example, for ResNet-42, Nest
has 7%-24% lower error rate than Base for all deadlines. Nest has lower accuracy than
Oracleg,}, in most cases, because the anytime network usually has slightly lower accuracy
than an independent network with same size. Note that Oraclep,., is impractical, as it
assumes impossible latency prediction and no-overhead in swapping networks across inputs.

These accuracy-under-deadline results are consistent with the accuracy-latency curves in

Figure 3.7.

3.4.5 Evaluation on ImageNet.

Finally, we train a width-nested ResNet-50 and depth-nested Sparse ResNet-66 on the large-
scale ImageNet (ILSVRC 2012) dataset [32], using both SGD and OSGD. All networks are
trained for 90 epochs, with learning rate decreasing from 0.1 to 0.0001. Table 3.3 reports
top-1 and top-5 validation error rates. OSGD significantly improves the accuracy of later
stages (larger subnetworks) compared to standard SGD.

23

SGD OSGD
Top-1 Error Top-5 Error Top-1 Error Top-5 Error
Our Width Nested ResNet-50
11 36.7 14.7 36.7 14.8
202 31.5 11.7 31.7 11.7
w4 29.2 10.2 28.3 9.4
Our Depth Nested Sparse ResNet-66
1q1 31.3 11.3 32.9 12.4
242 28.4 9.7 29.2 10.1
3a4 28.0 9.3 27.1 8.9

Table 3.3: Validation error of anytime networks trained with SGD and OSGD on the
ImageNet dataset.

3.5 Conclusion

Anytime neural network is a promising approach to generating accurate inference results
under dynamic latency and resource constraints. In this work, we propose a new class of
anytime neural network architectures and a novel variant of SGD customized for training such
architectures. Our experiments demonstrate synergy between our architecture and optimizer:
our anytime networks perform almost as well as independent non-anytime networks of the

same size.

24

CHAPTER 4
ALERT: ACCURATE LEARNING FOR ENERGY AND

TIMELINESS

4.1 Overview

In this chapter, we propose ALERT, a cross-stack runtime system for DNN inference.
ALERT dynamically selects and adapts a DNN and a system-resource setting together
to handle changing system environments and meet dynamic energy, latency, and accuracy
requiremen’cs1 .

ALERT is a feedback-based run-time. It measures inference accuracy, latency, and energy
consumption; it checks whether the requirements on these goals are met; and, it then
outputs both system and DNN-level configurations adjusted to the current requirements
and operating conditions. ALERT focuses on meeting constraints in any two dimensions
while optimizing the third, e.g., minimizing energy given accuracy and latency requirements
or maximizing accuracy given latency and energy budgets.

ALERT uses a random variable relating the current runtime environment to a nominal
profiling environment. After each inference task, ALERT estimates the global slow-down
factor using a Kalman filter. The global slow-down factor’s mean represents the expected
change compared to the profile, while the variance represents the current volatility. The
mean provides a single scalar that modifies the predicted latency/accuracy/energy for every
DNN/system configuration—a simple mechanism that leverages commonality among DNN
architectures to allow prediction for even rarely used configurations, while incorporating
variance into predictions naturally makes ALERT conservative in volatile environments and

aggressive in quiescent ones. The global slow-down factor and Kalman filter are efficient

1. ALERT provides probabilistic, not hard guarantees, as the latter requires much more conservative
configurations, often hurting both energy and accuracy.

25

1D Task DNN Models Datasets
IMG1 | Image VGG16 [150] | ILSVRC2012
IMG2 | Classification ResNet50 [60] | (ImageNet)
NLP1 | Sentence Prediction | RNN Penn Treebank [113]
NLP2 | Question Bert [33] Stanford Q&A
Answering Dataset (SQuAD) [138]

Table 4.1: ML tasks and benchmark datasets in our experiments

Embedded CPU1 CPU2 GPU
ARM . Xeon(R) .
CPU | Cortex A-15 @g(g‘azz Gold 6126 @g‘;r‘ggz
@2.0 GHz ’ @2.60GHz ’
GPU none none none RTX 2080
Memory | DDR3 2G | DDR4 16G | DDR4 16G*12 | DDR4 16G
LLC 2MB 9IMB 19.25MB 9MB

Table 4.2: Hardware platforms used in our experiments

to implement and low-overhead. Thus, ALERT combines the global slow-down factor with
latency, power, and accuracy measurements to select the DNN and system configuration
with the highest likelihood of meeting the constraints optimally.

We evaluate ALERT using various DNNs and ML domains on different (CPU and GPU)
machines under various constraints. Our evaluation shows that ALERT overcomes dynamic
variability efficiently. Across various experimental settings, ALERT meets constraints while
achieving within 93-99% of optimal energy saving or accuracy optimization. Compared to
approaches that adapt at DNN-level or system-level only ALERT achieves more than 13%

energy reduction, and 27% error reduction.

4.2 Understanding Deployment Challenges

We conduct an empirical study to examine the large trade-off space offered by different DNN
designs and system settings (Sec. 4.2.1), and the timing variability of inference (Sec. 4.2.2).

We use two canonical machine learning tasks, with state-of-the-art networks and common
data-sets (see Table 4.1) on a diverse set of hardware platforms, representing embedded

systems, laptops (CPU1), CPU servers (CPU2), and GPU platforms (see Table 4.2). The

26

ImageNet Classification Networks

3 O T T
o Topb Error-latency
30+ Lower bound of top5 error-latency|-
s 25
E 20+
w 15+
£
£ 101 QO
D 00
5+ @)
S
O L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3

Inference Time of One Image (s)

Figure 4.1: Tradeoffs for 42 DNNs (CPU2).

two tasks, image classification and natural language processing (NLP), are often deployed
with deadlines—e.g., for motion tracking [77] and simultaneous interpretation [107]—and

both have received wide attention leading to a diverse set of DNN models.

4.2.1 Understanding the Tradeoffs

Tradeoffs from DNNs We run all 42 image classification models provided by the Tensorflow
website [149] on the 50000 images from ImageNet [32], and measure their average latency,
accuracy (error rate), and energy consumption. The results from CPU2 are shown in Figure
4.1. We can clearly see two trends from the figure, which hold on other machines.

First, different DNN models offer a wide spectrum of accuracy (error rate in figure),
latency, and energy. As shown in the figure, the fastest model runs almost 18 x faster than
the slowest one and the most accurate model has about 7.8 lower error rate than the least
accurate. These models also consume a wide range—more than 20x—of energy usage.

Second, there is no magic DNN that offers both the best accuracy and the lowest latency,
confirming the intuition that there exists a tradeoff between DNN accuracy and resource
usage. Of course, some DNNs offer better tradeoffs than others. In Figure 4.1, all the
networks sitting above the lower-convex-hull curve represent sub-optimal tradeoffs.

Tradeoffs from system settings We run ResNet50 under 31 power settings from 40—

27

ResNet50 @ Different Power Limit

16l ’ O Power limit setting (W)‘ &
&e)
@
@
@@
® @

0.06 0.08 0.1 0.12 0.14 0.16 0.18
Inference Time of One Image (s)

Figure 4.2: Tradeoffs for ResNet50 at different power settings (CPU2). (Numbers inside
circles are power limit settings.)

_.
- o
o O
n <

Average Energy (J)
N
SO

100W on CPU2. We consider a sensor processing scenario with periodic inputs, setting the
period to the latency under 40W cap. We then plot the average energy consumed for the
whole period (run-time plus idle energy) and the average inference latency in Figure 4.2.
The results reflect two trends, which hold on other machines. First, a large latency /energy
space is available by changing system settings. The fastest setting (100W) is more than 2x
faster than the slowest setting (40W). The most energy-hungry setting (64W) uses 1.3x
more energy than the least (40W). Second, there is no easy way to choose the best setting.
For example, 40W offers the lowest energy, but highest latency. Furthermore, most of these
points are sub-optimal in terms of energy and latency tradeoffs. For example, 84W should
be chosen for extremely low latency deadlines, but all other nearby points (from 52-100) will
harm latency, energy or both. Additionally, when deadlines change or when there is resource
contention, the energy-latency curve also changes and different points become optimal.
Summary: DNN models and system-resource settings offer a huge trade-off space.The
energy/latency tradeoff space is not smooth (when accounting for deadlines and idle power)
and optimal operating points cannot be found with simple gradient-based heuristics. Thus,
there is a great opportunity and also a great challenge in picking different DNN models and

system-resource settings to satisfy inference latency, accuracy, and energy requirements.

28

Time Variance on Different Inputs and Hardwar

~ T + T
2l B Embedded |
g 10 . [_ICPU1
2, EECPU2
£ . EmGPU
5]
= | ?
O 100 Lo 3
S | +
=] | -
@ [
E ., - 1.0)
= - 1
1 107 ; E : ¥ 1
= o +
-5 | |
S | |
2 B 8
iEl 2l + [: |
' + : o
1 |
< 1

IMGH IMG2 NLPA NLP2
Settings (explained in Table 2)

Figure 4.3: Latency variance across inputs for different tasks and hardware (Most tasks have
3 boxplots for 3 hardware platforms, CPU1-2, GPU from left to right; NLP1 has an extra
boxplot for Embedded; other tasks run out of memory on Embedded; every box shows the
25th-75th percentile; points beyond the whiskers are ;90th or j10th).

4.2.2 Understanding Variability

To understand how DNN-inference varies across inputs, platforms, and run-time environment
and hence how (not) helpful is off-line profiling, we run a set of experiments below, where
we feed the network one input at a time and use 1/10 of the total data for warm up, to
emulate real-world scenarios. We plot the inference latency without and with co-located
jobs in Figure 4.3 and 4.4, and we see several trends.

First, deadline violation is a realistic concern. Image classification on video has deadlines
ranging from 1 second to the camera latency (e.g., 1/60 seconds) [77]; the two NLP tasks,
have deadlines around 1 second [122]. There is clearly no single inference task that meets
all deadlines on all hardware.

Second, the inference variation among inputs is relatively small particularly when there
are no co-located jobs (Fig. 4.3), except for that in NLP1, where this large variance is mainly
caused by different input lengths. For other tasks, outlier inputs exist but are rare.

Third, the latency and its variation across inputs are both greatly affected by resource

29

Time Variance with Co-located Jobs

~ T T + T T
=l EEEmbedded| |
-] T _ICPU1
2 . |EECPU2
g . . |EEGPU
-5} + !
§10°F L2 & i b1 . ?? 3
S % i 1 i : E +
o o i ! I : '
) ML 1!
E) * ; * | :
= 10 10 | 1+ +4
i ! | +
g g
I
I

: * il *
<) 2L | 4
g . £
o
. I
o0 |
< !

IMG1 IMG2 NLP1 NLP2

Settings (explained in Table 2)
Figure 4.4: Latency variance with co-located jobs (the memory-intensive STREAM
benchmark [114] co-located on Embedded, CPU1-2; GPU-intensive Backprop [30] co-located
on GPU)

contention. Comparing Figure 4.4 with Figure 4.3, we can see that the co-located job has
increased both the median latency, the tail inference, and the difference between these two
for all tasks on all platforms. This trend also applies to other contention cases.

While the discussion above is about latency, similar conclusions apply to inference accuracy
and energy: the accuracy typically drops to close to 0 when the inference time exceeds the
latency requirement, and the energy consumption naturally changes with inference time.

Summary: Deadline violations are realistic concerns and inference latency varies greatly
across platforms, under contention, and sometimes across inputs. Clearly, sticking to one
static DNN design across platforms and workloads leads to an unpleasant trade-off: always
meeting the deadline by sacrificing accuracy or energy in most settings, or achieving a high
accuracy some times but exceeding the deadline in others. Furthermore, it is also sub-optimal
to make run-time decisions based solely on off-line profiling, considering the variation caused

by run-time contention.

30

OO T T T T T T T
=80 —Sys-level |
. —DNN-level
?60 L —Combined| -
é > 7
o 40 | — \
=)
g
o 20 -
<«

I I I I I I I I

deadline 0.1s 0.2s 0.3s 0.4s 0.5s 0.6s 0.7s
Constraint Settings (deadline x accuracy_goal)

Figure 4.5: Minimize energy task with latency and accuracy constraint @ CPUL. (co means
unable to meet the constraints)

4.2.83 Understanding Potential Solutions

We now show how confining adaptation to a single layer (just DNN or system) is insufficient.
We run the ImageNet classification on CPUI. We examine a range of latency (0.1s-0.7s) and
accuracy constraints (85%-95%), and try meeting those constraints while minimizing energy
by either (1) configuring just the DNN (selecting a DNN from a family, like that in Figure 4.1)
or (2) configuring just the system (by selecting resources to control energy—latency tradeoffs
as in Figure 4.2). We compare these single-layer approaches to one that simultaneously
picks the DNN and system configuration. As we are concerned with the ideal case, we create
oracles by running 90 inputs in all possible DNN and system configurations, from which we
find the best configuration for each input. The DNN-level oracle uses the default system
setting. The Sys-level oracle uses the default (highest accuracy) DNN.

Figure 4.5 shows the results. As we have a three dimensional problem—meeting accuracy
and latency constraints with minimal energy—we linearize the constraints and show them on
the x-axis (accuracy is faster changing, with latency slower, so each latency bin contains all
accuracy goals). There are several important conclusions here. First, the DNN-only approach
meets all possible accuracy and latency constraints, while the Sys-only approach cannot meet
any constraints below 0.3s. Second, across the entire constraint range, DNN-only consumes

significantly more energy than Combined (60% more on average). The intuition behind

31

Combined’s superiority is that there are discrete choices for DNNs; so when one is selected,
there are almost always energy saving opportunities by tailoring resource usage to that
DNN’s needs.

Summary: Combining DNN and system level approaches achieves better outcomes. If
left solely to the DNN, energy will be wasted. If left solely to the system, many achievable

constraints will not be met.

DNN family
With Accuracy &
Latency Information

Deadline
Accuracy Constraint

Energy Budget

4.3 ALERT Run-time Inference Management
DNN-Model

II Input
Stream
Selection l

Inference Outputs
Predicted nf > §
Inference Time Computation

Resource
Selection

Inference

(Inference Time,
Accuracy, and Energy
L Measurement

Figure 4.6: ALERT inference system

4.8.1 Inputs & Outputs of ALERT

ALERT’s inputs are specifications about (1) the adaption options, including a set of DNN
models D = {d; | i = 1--- K} and a set of system-resource settings, expressed as different
power-caps P = {P; | j = 1---L}; and (2) the user-specified requirements on latency,
accuracy, and energy usage, which can take the form of meeting constraints in any two
of these three dimensions while optimizing the third. ALERT’s output is the DNN model
d; € D and the system-resource setting p; € P for the next inference-task input.

Formally, ALERT selects a DNN d; and a system-resource setting p; to fulfill either of

32

these user-specified goals.
1. Maximizing inference accuracy ¢ (minimizing error) for an energy budget Egoa and

inference deadline Ty,

arg HZIEJLX 4. j S.t. €. < Egoal A tiaj < Tgoal (4.1)

2. Minimizing the energy use e for an accuracy goal Qg1 and inference deadline Ty

argmine; j s.t. g, > Qgoal Aij < Tyour (4.2)

]

4.3.2 ALERT Workflow

ALERT works as a feedback controller. It follows four steps to pick the DNN and resource
settings for each input n:

1) Measurement. ALERT records the processing time, energy usage, and computes
inference accuracy for n — 1.

2) Goal adjustment. ALERT updates the time goal T, soal If necessary, considering the
potential latency-requirement variation across inputs. In some inference tasks, a set of inputs
share one combined requirement and hence delays in previous input processing could greatly
shorten the available time for the next input [10, 84]. Additionally, ALERT sets the goal
latency to compensate for its own, worst-case overhead so that ALERT itself will not cause
violations.

3) Feedback-based estimation. ALERT computes the expected latency, accuracy, and
energy consumption for every combination of DNN model and power setting.

4) Picking a configuration. ALERT feeds all the updated estimations of latency, accuracy,
and energy into Eqs. 4.1 and 4.2, and gets the desired DNN model and power-cap setting
for n.

The key task is step 3: the estimation needs to be accurate and fast. In the remainder of

33

this section, we discuss key ideas and the exact algorithm of our feedback-based estimation.

4.8.8 ALERT Estimation Algorithm

Global Slow-down Factor £. ALERT uses & to reflect how the run-time environment
differs from the profiling environment. Conceptually, if the inference task under model d; and
power-cap p; took time ¢; ; at run time and took tE;Of on average to finish during profiling, the
corresponding £ would be t; ; / tf) ;-Of . ALERT estimates £ using recent execution history under

any model or power setting. Specifically, after an input n—1, ALERT computes & (n=1) as the
(n—1)

ratio of the observed time tizb-_ , and then uses a Kalman Filter?

to the profiled time tlz;()f
to estimate the mean u(") and variance (¢(™)2 of £ at input n. ALERT’s formulation is
defined in Eq. 4.3, where K (") i the Kalman gain variable; R is a constant reflecting the
measurement noise; Q(") is the process noise capped with Q(O). We set a forgetting factor

of process variance o = 0.3 [12]. ALERT initially sets K(©) = 0.5, R = 0.001, Q(©) = 0.1,

10 =1, (602 = 0.1, following the standard convention [103].

Q™ = max{Q", aQ Y + (1-a) (K —Yyn=1)2y
) (- K1) (o=1)2 4 @)
= (1 _ K(n_l))(d(n_l))2 +Q(n) +R
y(m — tl(g—l)/tirpf _ n=1) (4.3)

) 1)), ()

(0?2 = (1 — K=y (gn=1))2 4 o)

\

Then, using & (”), ALERT estimates the inference time of input n under any model d;

and power cap p;: t(n) = 5(”) * tf;Of.

i,J

Accuracy. ALERT computes the estimated inference accuracy ¢; ; [Tgoal] by considering

2. A Kalman Filter is an optimal estimator that assumes a normal distribution and estimates a varying
quantity based on multiple potentially noisy observations [103].

34

tjj as a random variable that follows normal distribution with its mean and variance
computed based on that of {. Here ¢; ; represents the inference accuracy when the DNN

inference finishes before the deadline, and gy, is the accuracy of a random guess:

q 5 if ti,j < Tgoal

43,5 [Tgoal] = (4.4)

Qfail > otherwise

(ij [Tgoal] :E(Qi,j [Tgoal] ‘ tgz))

=F(q; j|T 404 (n)'tpr'Of
(4,51 Tgoat] | €715 57) (4.5)

=Prij q;j+ (1= Prij) dfa
¢ N (™ (6())2)

Energy. As discussed in Idea-3, ALERT predicts energy consumption by separately
estimating energy during (1) DNN execution: estimated by multiplying the power limit by
the estimated latency and (2) between inference inputs: estimated based on the recent history
of inference idle power using the Kalman Filter in Eq. 4.6. qﬁ(”) is the predicted DNN-idle

power ratio, M (n) i process variance, S is process noise, V' is measurement noise, and w(n)

is the Kalman Filter gain. ALERT initially sets M©O) = 0.01, S = 0.0001, V"= 0.001.

(W(n) _ M(n=1) +9
Mn=1) 4 g4y
MM = (1 - wmyr= 4 g) (4.6)
n) _ 4 (n—1 n (n—1) n—1
¢() = ¢()+ wl)<pidle/pi7j - ¢())

\

ALERT then predicts the energy by Eq. 4.7. Unlike Eq. 4.5 that uses probabilistic
estimates, energy estimation is calculated without the notion of probability. The inference
power is the same no matter the inference misses or meets the deadline, as ALERT sets
power limits. Therefore it is safe to estimate the energy by its mean without considering the

distribution of its possible latency.

35

o) = i 00y (T — (60250 o

4.3.4 Integrating ALERT with Anytime DNNs

An anytime DNN is an inference model that outputs a series of increasingly accurate inference
results—or, 09, ... 0, with o; more reliable than oy (Section 3). ALERT easily works with
not only traditional DNNs but also Anytime DNNs. The only change is that gg,; in Eq. 4.4
no longer corresponds to a random guess. That is, when the inference could not generate
its final result o}, by the deadline Ty, an earlier result o, can be used with a much better

accuracy than that of a random guess. The updated accuracy equation is below:

qr 5 if tkj < tgoal

Q-1 it g5 < tgoal < g

\ fail , otherwise

Existing anytime DNNs consider latency but not energy constraints—an anytime DNN
will keep running until the latency deadline arrives and the last output will be delivered to
the user. ALERT naturally improves anytime DNN energy efficiency, stopping the inference
sometimes before the deadline based on its estimation to meet not only latency and accuracy,
but also energy requirements.

Furthermore, ALERT can work with a set of traditional DNNs and an Anytime DNN
together to achieve the best combined result. The reason is that Anytime DNNs generally
sacrifice accuracy for flexibility. When we feed a group of traditional DNNs and one Anytime
DNN to construct the candidacy set D, with Eq. 4.5, ALERT naturally selects the Anytime
DNN when the environment is changing rapidly (because the expected accuracy of an

anytime DNN will be higher given that variance), and the regular DNN, which has slightly
36

higher accuracy with similar computation, when it is stable, getting the best of both worlds.

4.4 Limitations and Discussions

Assumptions of the Kalman Filter. ALERT’s prediction, particularly the Kalman
Filter, relies on the feedback from recent input processing. Consequently, it requires at least
one input to react to sudden changes. Additionally, the Kalman filter formulations assume
that the underlying distributions are normal, which may not hold in practice. If the behavior
is not Gaussian, the Kalman filter will produce bad estimations for the mean of £ for some
amount of time.

ALERT is specifically designed to handle data that is not drawn from a normal distribution,
using the Kalman Filter’s covariance estimation to measure system volatility and accounting
for that in the accuracy/energy estimations. Consequently, after just 2-3 such bad predictions
of means, the estimated variance will increase, which will then trigger ALERT to pick anytime
DNN over traditional DNNs or pick a low-latency traditional DNN over high-latency ones,
because the former has a higher expected accuracy under high variance. So—worst case—
ALERT will choose a DNN with slightly less accuracy than what could have been used with
the right model. Users can also compensate for extremely aberrant latency distributions by
increasing the value of Q(O) in Eq. 4.3. As shown in the experiments, ALERT performs well
even when the distribution is not normal.

Probabilistic guarantees. ALERT provides probabilistic, not hard, guarantees. As
ALERT estimates not just average timing, but the distributions of possible timings, it can
provide arbitrarily many nines of assurance that it will meet latency or accuracy goals but
cannot provide 100% guarantee. Providing 100% guarantees requires the worst case execution
time (WCET), an upper bound on the highest possible latency. ALERT does not assume
the availability of such information and hence cannot provide hard guarantees [28].

Safety guarantees. While ALERT does not explicitly model safety requirements, it can

37

be configured to prioritize accuracy over other dimensions. When users particularly value
safety (e.g., auto-driving), they could set a high accuracy requirement or even remove the
energy constraints.

Concurrent inference jobs. ALERT is currently designed to support one inference
job at a time. To support multiple concurrent inference jobs, future work needs to extend
ALERT to coordinate across these concurrent jobs. We expect the main idea of ALERT,

such as using a global slowdown factor to estimate system variation, to still apply.

4.5 Implementation

We implement ALERT for both CPUs and GPUs. On CPUs, ALERT adjusts power through
Intel’s RAPL interface [31], which allows software to set a hardware power limit. On GPUs,
ALERT uses PyNVML to control frequency and builds a power-frequency lookup table.
ALERT can also be applied to other approaches that translate power limits into settings for
combinations of resources [65, 70, 141, 181].

In our experiments, ALERT considers a series of power settings within the feasible range
with 2.5W interval on our test laptop and a 5W interval on our test CPU server and GPU
platform, as the latter has a wider power range than the former. The number of power
buckets is configurable.

ALERT incurs small overhead in both scheduler computation and switching from one
DNN /power-setting to another, just 0.6-1.7% of an input inference time. We explicitly
account for overhead by subtracting it from the user-specified goal.

Users may set goals that are not achievable. If ALERT cannot meet all constraints, it

prioritizes latency highest, then accuracy, then power. This hierarchy is configurable.

38

Run-time environment setting
Default Inference task has no co-running process
Memory Co-locate with memory-hungry STREAM [114] (QCPU)
Co-locate with Backprop from Rodinia-3.1 [30] (@GPU)
Compute Co-locate with Bodytrack from PARSEC-3.0 [24] (@CPU)
Co-locate with the forward pass of Backprop [30] (QGPU)
Ranges of constraint setting
Latency 0.4x—2x mean latency™ of the largest Anytime DNN
Accuracy Whole range achievable by trad. and Anytime DNN
Energy Whole feasible power-cap ranges on the machine
Task Trad. DNN Anytime [165] Fixed deadline?
Image Classifi. | Sparse ResNet | Depth-Nest Yes
Sentence Pred. | RNN Width-Nest No
Scheme ID DNN selection Power selection
Oracle Dynamic optimal Dynamic optimal
Oraclesiatic Static optimal Static optimal
DNN-only One Anytime DNN System Default
Sys-only Fastest traditional DNN State-of-Art[71]
No-coord Anytime DNN w/o coord. with Power | State-of-Art[71]
ALERT ALERT default ALERT default
ALERTAny ALERT w/o traditional DNNs ALERT default
ALERTTrad ALERT w/o Anytime DNNs ALERT default

Table 4.3: Settings and schemes under evaluation (* measured under default setting without
resource contention)

4.6 FEvaluation

We apply ALERT to different inference tasks on both CPU and GPU with and without
resource contention from co-located jobs. We set ALERT to (1) reduce energy while satisfying
latency and accuracy requirements and (2) reduce error rates while satisfying latency and
energy requirements. We compare ALERT with both oracle and state-of-the-art schemes

and evaluate detailed design decisions.

4.6.1 Methodology

Experimental setup. We use the three platforms listed in Table 4.2: CPUI1, CPU2, and
GPU. On each, we run inference tasks®, image classification and sentence prediction, under

three different resource-contention scenarios:

3. For GPU, we only run image classification task there, as the RNN-based sentence prediction task is
better suited for CPU [183].

39

e No contention: the inference task is the only job running, referred to as “Default”;

e Memory dynamic: the inference task runs together with a memory-intensive job that
repeatedly stops and restarts, representing dynamic memory resource contention, referred

to as “Memory”;

e Computation dynamic: the inference task runs together with a computation-intensive
job that repeatedly stops and restarts, representing dynamic computation resource

contention, referred to as “Compute”.

Schemes in evaluation. We give ALERT three different DNN sets, traditional DNN
models (ALERTTrad), an Anytime DNN (ALERTAny), and both (ALERT), and compare
it with two oracle and three state-of-the-art schemes (Table 4.3).

The two Oracley schemes have perfect predictions for every input under every DNN /power
setting (i.e., impractical). Specifically, the “Oracle” allows DNN/power settings to change
across inputs, representing the best possible results; the “Oraclegt,tic.” has one fixed setting
across inputs, representing the best results without dynamic adaptation.

The three state-of-the-art approaches include the following:

e “DNN-only” conducts adaptation only at the DNN level through an Anytime DNN

[165];

e “Sys-only”adapts only at the system level following an existing resource-management
system that minimizes energy under soft real-time constraints [119]4 and uses the

fastest candidate DNN to avoid latency violations;

e “No-coord” uses both the Anytime DNN for DNN adaptation and the power-management

scheme [119] to adapt power, but with these two working independently.

4. Specifically, this adaptation uses a feedback scheduler that predicts inference latency based on Kalman
Filter.

40

=
— o

S o o 9o

Norm Performance
S N B N

Minimize Energy Minimize Error

72 * Violations

60 7o [IDNN-only

48 % [Sys-only
& |CINo-coord

36 .8 -DNN+Sys

4 § (ALERT-Any)
'S [MOracle

125

o

Figure 4.7: Average performance normalized to Oraclegiaiie (Smaller is better).

Violations% is %-of-constraint-settings under which a scheme incurs >10% violation of all inputs.

4.6.2 Qwverall Results

Table 4.4 shows the results for all schemes for different tasks on different platforms and

environments. Each cell shows the average energy or accuracy under 35-40 combinations

of latency, accuracy, and energy constraints, normalized to the Oracleg,ti. result. Figure

4.7 compares these results, where lower bars represent better results and lower *s represent

fewer constraint violations. ALERT and ALERT,,, both w