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ABSTRACT

The principal theme of this thesis is the interplay between symmetry and regularity in

discrete structures. The most general class of structures we consider are coherent configura-

tions, certain highly regular colorings of complete graphs. This class includes such diverse

structures as the orbital configurations of permutation groups and association schemes orig-

inating from the design of experiments in statistics. Metric schemes, a subclass of associa-

tion schemes, are derived from distance-regular graphs. Johnson, Hamming, and Grassman

schemes are special classes of great importance among metric schemes. We study structural

and spectral properties of coherent configurations with special attention to the subclasses

mentioned. As a culmination of this analysis, we confirm Babai’s conjecture on the minimal

degree of the automorphism group for distance-regular graphs of bounded diameter and for

primitive coherent configurations of rank 4.

The minimal degree of a permutation group G is the minimum number of points not fixed

by non-identity elements of G. Lower bounds on the minimal degree have strong structural

consequences on G. Babai conjectured that for some constant c > 0 the automorphism group

of a primitive coherent configuration on n vertices has minimal degree ≥ cn with known

exceptions1. If confirmed, this conjecture gives a CFSG2-free proof of the Liebeck-Saxl

classification of primitive groups with sublinear minimal degree. Moreover, if confirmed, this

conjecture would point to potential simplification of some steps in Babai’s quasipolynomial-

time algorithm for the Graph Isomorphism problem.

In this thesis we confirm Babai’s conjecture for distance-regular graphs (metric schemes)

of bounded diameter and for primitive coherent configurations of rank 4.

Central to our approach is the study of spectral parameters of distance-regular graphs,

1. Recent work by Sean Eberhard expanded the class of known exceptions, but (i) it does not affect the
implication in the next sentence about CFSG-free proof of the Liebeck-Saxl classification; (ii) the conjecture
for distance-regular graphs is not affected.

2. Classification of Finite Simple Groups

ix



such as spectral gap and smallest eigenvalue.

The spectral gap of a graph is known to be tightly related to expansion properties of

the graph. Hence, lower bounds on the spectral gap are widely applicable in various areas

of mathematics and theoretical computer science. In this thesis we prove that a distance-

regular graph with a dominant distance is a spectral expander. Our lower bound on the

spectral gap depends only on the diameter of the graph. The key ingredient of the proof is

a new inequality on the intersection numbers.

At the same time, graphs of which the smallest eigenvalue has small absolute value are

known to enjoy a rich geometric structure (see, e.g., celebrated results of Hoffman, Seidel,

Neumaier, and Cameron et al.).

In this thesis we characterize Hamming graphs as distance-regular graphs of diameter d

with smallest eigenvalue −d and3 µ ≤ 3, under mild additional assumptions.

We also characterize Johnson and Hamming graphs as geometric distance-regular graphs

satisfying certain inequality constraints on the spectral gap and the smallest eigenvalue.

Classical characterizations of Hamming graphsH(d, q) assume equality constraints on certain

parameters such as the assumption θ1 = b1 − 1 on the second largest eigenvalue or the

assumption n = (λ + 2)d on the number of vertices (see, e.g., results of Enomoto and

Egawa). The principal novelty of our result is that we make no such tight assumptions.

Finally, in this thesis we study robustness properties of certain classes of coherent config-

urations. For instance, we show that the family of Johnson schemes is robust in the following

sense. If a homogeneous coherent configuration X on n vertices or its fission contains a John-

son scheme J(s, d) as a subconfiguration on at least 5n/6 vertices and s > 250d4, then X

itself is a Johnson scheme. This result strengthen a 1972 theorem of Kaluzhnin and Klin

that corresponds to the case where the subconfiguration itself has n vertices.

Our result is also related to Babai’s “Split-or-Johnson lemma” and in particular to the

3. Here µ denotes the number of common neighbours of (every) pair of vertices at distance 2.

x



philosophy in the theory of Graph Isomorphism testing that we can either find structure

or find efficiently verifiable asymmetry. The result represents a step in the direction of

simplifying the conclusion of the “Split-or-Johnson” lemma.

We also show that similar robustness results hold for Hamming and Grassmann schemes.

xi



CHAPTER 1

INTRODUCTION

1.1 Symmetry vs. Regularity

A central theme of this thesis is the interplay between symmetry and regularity in combinato-

rial structures, a subject that has been studied for several decades. The “Symmetry vs. Reg-

ularity” framework builds bridges between Group Theory and Combinatorics. Additionally,

the framework is related to multiple developments in Theoretical Computer Science, includ-

ing Babai’s quasipolynomial-time Graph Isomorphism test (Babai [2016a,b]) and the study

of the complexity of the matrix multiplication (Cohn and Umans [2003, 2013]). Families of

coherent configurations which naturally arise in the “Symmetry vs. Regularity” framework,

such as the Johnson schemes or the Hamming schemes, due to their nice properties, also

arise in numerous other contexts. For instance, Meka et al. [2015] used the eigenspaces of

the Johnson schemes in the context of the planted clique problem and the “Sum-of-Squares”

hierarchy. Recent progress on the Unique Games conjecture is closely related to the study

of the expansion properties of Johnson and Grassmann schemes (Khot et al. [2018], Bafna

et al. [2020], Hopkins et al. [2020], Dinur et al. [2021]).

In the “Symmetry vs. Regularity” framework one aims to transition from studying sym-

metry conditions, such as distance-transitivity, to regularity conditions, such as distance-

regularity. This transition is desirable as symmetry is a global, hard-to-detect property of

an object, while regularity is local and is usually easy to test. In the opposite direction, one

may hope to apply Group Theory to algorithmic and combinatorial problems. For instance,

the central piece of Babai’s Graph Isomorphism test is a group-theoretic “Unaffected Stabi-

lizer Theorem” which relies on the Classification of Finite Simple Groups (CFSG) through

Schreier’s Hypothesis.

The vehicle for this transition is Coherent Configurations (CCs) which are highly regular

1



colorings of the edges of the complete directed graphs. They were first introduced by I. Schur

[1933] who used them to study permutation groups through their orbital configurations.

Later, Bose and Shimamoto [1952] studied a special class of coherent configurations, called

association schemes, in connection with combinatorial designs. Coherent configurations in

their full generality were independently introduced by Weisfeiler and Leman [1968] (see

Weisfeiler [1976]), and D. Higman [1967, 1970]. Higman developed the representation theory

of coherent configurations and applied it to permutation groups. At the same time, a related

algebraic theory of coherent configurations, called “cellular algebras,” was introduced by

Weisfeiler and Leman, motivated by the algorithmic problems of Graph Isomorphism and

Graph Canonization. Special classes of association schemes such as strongly regular graphs

and, more generally, distance-regular graphs have been the subject of intensive study in

algebraic combinatorics.

A combinatorial study of coherent configurations was initiated by Babai [1981]. Coherent

configurations play an important role in the study of the Graph Isomorphism problem, adding

combinatorial divide-and-conquer tools to the arsenal. This approach was used by Babai

[2016a,b]. Also, recently, the representation theory of coherent configurations found appli-

cations to the complexity of matrix multiplication in the work of Cohn and Umans [2013].

Let Ω be a finite set. A permutation group G ≤ Sym(Ω) defines an equivalence relation

on Ω × Ω by (x, y) ∼ (gx, gy) for x, y ∈ Ω and g ∈ G. This relation can be viewed as a

coloring c of the pairs (x, y) ∈ Ω in which two pairs have the same color if and only if they

belong to the same orbit of the induced action of G on Ω × Ω. It is not hard to see that c

has several simple combinatorial properties; these have been abstracted by Schur to define

a purely combinatorial object.

Definition 1.1.1. Let Ω be a finite set. A pair X = (Ω, c) is called a coherent configuration

(CC) if the coloring c : Ω× Ω → {colors} has the following properties.

(i) c(x, y) ̸= c(z, z) for all x, y, z ∈ Ω with x ̸= y (“edge-colors”̸=“vertex-colors”).

2



(ii) The color of the pair (x, y) uniquely defines the color of (y, x), for all (x, y) ∈ Ω× Ω.

(iii) for all colors i, j, t there is an intersection number pti,j such that, for all u, v ∈ Ω, if

c(u, v) = t, then there exist exactly pti,j vertices w ∈ Ω with c(u,w) = i and c(w, v) = j.

The rank of a CC is the number of (non-empty) color classes defining it.

The coherent configurations defined by the group action of G ≤ Sym(Ω) on Ω × Ω, as

described above, are called Schurian configurations. We note that not all coherent config-

urations are Schurian, i.e., a coloring c satisfying (i)-(iii) may not have any group action

defining it.

A coherent configuration X = (Ω, c) is called homogeneous if c(x) = c(y) for all x, y ∈ Ω,

and it is called an association scheme if c(x, y) = c(y, x) for all x, y ∈ Ω. A coherent config-

uration is called primitive if the digraph defined by every edge color is weakly connected.

We will be especially interested in a special well-studied case of coherent configurations,

(Ω, c), in which c(x, y) = i if x and y are at distance i in the graph defined by edges of color

1. Such coherent configurations are called metric schemes and the corresponding color-1

graph is called a distance-regular graph (DRG).

We say that a coherent configuration of rank 2 is trivial.

1.2 Babai’s conjectures on primitive coherent configurations

1.2.1 Cameron’s classification of primitive permutation groups

Many questions on permutation groups reduce to the case of primitive permutation groups.

Definition 1.2.1. A permutation group G ≤ Sym(Ω) is called transitive if for all x, y ∈ Ω

there exists an element g ∈ G that maps x to y.

Definition 1.2.2. A primitive permutation group is a non-trivial transitive permutation

3



group whose only invariant partitions are trivial (the entire set, and the partition into sin-

gletons).

Relying on the Classification of Finite Simple Groups (CFSG), Cameron [1981] clas-

sified all primitive permutation groups whose order is at least nc log n for some c > 0

(see Chapter 4). He showed that such groups G act on
([k]
t

)ℓ
for some t, k, ℓ and satisfy(

A
(t)
k

)ℓ
≤ G ≤ S

(t)
k ≀ Sℓ (with the product action). Here, A

(t)
k and S

(t)
k are the alternating

group Ak and the symmetric group Sk acting on
([k]
t

)
. Such primitive groups G are called

Cameron groups.

In the wake of Cameron’s classification, Babai initiated several projects with the aim of

finding combinatorial relaxations of Cameron’s results. Babai conjectured several such relax-

ations in terms of key parameters of permutation groups: order, minimal degree, thickness.

1.2.2 Minimal degree of a permutation group. Liebeck-Saxl’s classification

One of the key contributions of this thesis confirms Babai’s conjecture on the minimal degree

for metric schemes of bounded rank (corresponding to distance-regular graphs of bounded

diameter) and for coherent configurations of rank 4. (Babai settled the rank-3 case which

corresponds to strongly regular graphs.)

Let σ be a permutation of a set Ω. The number of points not fixed by σ is called the

degree of the permutation σ. Let G be a permutation group on the set Ω. The minimum of

the degrees of non-identity elements in G is called the minimal degree1 of G and is denoted by

mindeg(G). One of the classical problems in the theory of permutation groups is to classify

the primitive permutation groups whose minimal degree is small (see Wielandt [1964]). The

study of minimal degree goes back to works of Jordan [1871] and Bochert [1892] in 19th

century. In particular, Bochert [1892] proved that a doubly transitive permutation group of

1. For the identity permutation group on the set Ω, we define its minimal degree to be ∞, i.e., the
minimum of the empty set.

4



degree n has minimal degree ≥ n/4− 1 with trivial exceptions.

Lower bounds on the minimal degree of a group imply strong constraints on the structure

of the group. A result of Wielandt [1934] shows that a linear (in |Ω|) lower bound on

mindeg(G) implies a logarithmic upper bound on the degree of every alternating group

involved in G as a quotient of a subgroup (see Theorem 4.3.1).

Similarly to Cameron’s classification of large primitive permutation groups, using CFSG,

Liebeck [1984], Liebeck and Saxl [1991] characterized primitive permutation groups of degree

n with minimal degree < n/3 (see Theorem 4.2.2). In fact, they showed that those are

Cameron groups.

1.2.3 Babai’s combinatorial relaxations of Liebeck-Saxl’s and Cameron’s

classifications

We define Cameron schemes as Schurian configurations obtained from Cameron groups.

Below we discuss the combinatorial relaxation of the Liebeck-Saxl classification conjectured

by Babai.

Definition 1.2.3. Following Russell and Sundaram [1998], for a combinatorial structure X

we use term motion to refer to the minimal degree of the automorphism group Aut(X ):

motion(X ) = mindeg(Aut(X )). (1.1)

For distance-regular graphs Babai conjectured the following relaxation of the Liebeck-

Saxl classification.

Conjecture 1.2.4 (Babai). There exists γ > 0 such that for every primitive distance-regular

graph X of diameter d on n vertices either

motion(X) ≥ γn,
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or X is a Johnson graph, or a Hamming graph, or their complement.

Babai confirmed this conjecture for distance-regular graphs of diameter ≤ 2 (i.e., for

connected strongly regular graphs).

Theorem 1.2.5 (Babai [2014, 2015]). For every primitive distance-regular graph X of di-

ameter 2 on n ≥ 29 vertices either

motion(X) ≥ n/8,

or X, or its complement, is a Johnson graph J(s, 2) or a Hamming graph H(2, s).

In this thesis we confirm this conjecture for distance-regular graphs of bounded diameter.

Theorem 1.2.6 (Main I). For every d ≥ 3 there exists γd > 0, such that for every primitive

distance-regular graph X of diameter d on n vertices either

motion(X) ≥ γdn,

or X is a Johnson graph, or a Hamming graph.

We prove this theorem in Chapter 8. Additionally, we show that if the primitivity

assumption is dropped then one more family of exceptions arises, the family of crown graphs

(see Theorem 8.4.1).

In the general case, Babai made the following conjecture.

Conjecture 1.2.7 (Babai). There exists γ > 0 such that for every primitive coherent con-

figuration X on n vertices either

motion(X) ≥ γn,

or X is a Cameron scheme.
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For primitive coherent configurations of rank 3 this conjecture follows from Theorem 1.2.5

and Babai [1981]. In this thesis we confirm this conjecture for rank-4 primitive coherent con-

figurations. However, as we discuss below, recently Eberhard [2022] found a counterexample

of rank 28 and suggested a slightly modified version of Conjecture 1.2.7 (see Conj. 1.2.13).

Theorem 1.2.8 (Main II). There exists an absolute constant γ4 > 0 such that for every

primitive coherent configuration X of rank 4 on n vertices either

motion(X) ≥ γ4n,

or X is a Johnson scheme, or a Hamming scheme.

This theorem is proved in Chapter 9 (see Theorem 9.5.1).

A version of Conjecture 1.2.7 in terms of the order of a group says that Cameron schemes

are the only primitive coherent configurations with more than quasipolynomial number of

automorphisms. A slightly weaker version has the following form.

Conjecture 1.2.9 (Babai). Let ε > 0. Primitive coherent configurations, other than

Cameron schemes, have at most exp(O(nε)) automorphisms.

The first step towards this conjecture was made by Babai [1981]. He proved that a

non-trivial primitive coherent configuration on n vertices has at most exp(O(n1/2 log2 n))

automorphisms. As a byproduct, he solved a then 100-year-old problem on primitive, but

not doubly transitive groups, giving a nearly tight bound on their order. After more than

30 years, Sun and Wilmes [2015a,b] made the second step, proving that the only non-trivial

primitive coherent configurations on n vertices that have more than exp(O(n1/3 log7/3 n))

automorphisms are Johnson and Hamming schemes.
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1.2.4 Eberhard’s version of Babai’s conjectures

In a recent surprising result, Eberhard showed that in fact Conjectures 1.2.9 and 1.2.7 do not

hold as stated. His result does not affect Conjecture 1.2.4, Conjecture 1.2.7 for configurations

of rank at most 7, and Conjecture 1.2.9 for ε > 1/8.

Theorem 1.2.10 (Eberhard [2022]). For each m ≥ 3, there is a non-schurian primitive

association scheme X of rank 28 on n = m8 vertices, such that Aut(X) is imprimitive and

|Aut(X)| ≥ exp(n1/8).

However, Eberhard [2022] proposed a variant of Conjectures 1.2.9 and 1.2.7 that may

still hold.

Definition 1.2.11. We say that a configuration Y = (Ω, cY) is a fusion of a configuration

X = (Ω, cX) if there is a map η : Range(cX) → Range(cY) such that cY(u, v) = η(cX(u, v))

for all u, v ∈ Ω. In this case, X is called a fission of Y.

For configurations X and X′ on Ω, define a partial order by writing X ⪯ X′ if X is a

fission of X′.

Definition 1.2.12. A primitive coherent configuration Y defined on
([m]
k

)d
is called a

Cameron sandwich if

X

((
A
(k)
m

)d)
⪯ Y ⪯ X

(
S
(k)
m ≀ Sd

)
.

Conjecture 1.2.13 (Eberhard’s version of Babai’s conjecture). There exist c, γ > 0, such

that for every primitive coherent configuration X on n vertices either

|Aut(X)| ≤ exp(logc n) and motion(X) ≥ γn, (1.2)

or X is a Cameron sandwich.

Remark 1.2.14. If confirmed, Conjecture 1.2.13 would still provide a CFSG-free proof of

the Cameron classification and the Liebeck-Saxl classification. Additionally, if confirmed, it
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would point to potential simplification of Babai’s quasipolynomial Graph Isomorphism test

as mentioned in [Babai, 2016b, Remark 6.1.3].

1.3 Robustness of coherent configurations

1.3.1 Individualization and refinement

In algorithmic applications, the interplay between symmetry and regularity frequently arises

in the context of individualization/refinement technique. This is a standard and widely used

practical technique for solving tasks related to symmetry computations of graphs and other

combinatorial objects, which include computing automorphism groups, isomorphism tests,

canonical labeling tools. In particular, individualization/refinement is central to Babai’s

Graph Isomorphism test (Babai [2016a,b]).

In this technique, one breaks the symmetry of, say, a graph by assigning unique colors to

a small subset of its vertices (individualization). After that, one propagates the asymmetry,

created by individualizing these vertices, using a refinement step.

A classical example of a refinement was introduced by Weisfeiler and Leman [1968]. The

Weisfeiler-Leman refinement proceeds in rounds. In each round it takes a configuration

X = (Ω, c) of rank r and for each pair (x, y) ∈ Ω × Ω it encodes in a new color c′(x, y)

the following information: the color c(x, y), and for every i, j ≤ r the number of vertices z

with c(x, z) = i, c(z, y) = j. It is easy to see that for the refined coloring c′, the structure

X′ = (Ω, c′) is a configuration as well. The refinement process applied to a configuration X

takes X as an input on the first round, and on every subsequent round in takes as an input

the output of the previous round. The refinement process stops when it reaches a stable

configuration (i.e, Y′ = Y). It is easy to see that the process will always stop. Moreover,

one can check that the configurations that are stable under this refinement process are

precisely the coherent configurations. Therefore, the Weisfeiler-Leman refinement process
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takes any configuration and refines it to a coherent configuration.

Clearly, the result of a (non-trivial) individualization and theWeisfeiler-Leman refinement

is a (non-homogeneous) fission of the original configuration.

Importantly, the Weisfeiler-Leman refinement is canonical in the following sense. Let X,

Y be configurations and let X∗, Y∗ be the corresponding outputs of the Weisfeiler-Leman

refinement simultaneously applied to X and Y. Then the sets of isomorphisms for X, Y and

for X∗, Y∗ are the same

Iso(X,Y) = Iso(X∗,Y∗) (1.3)

1.3.2 Babai’s “Split-or-Johnson” Lemma. Robustness of Johnson schemes

The key combinatorial partitioning tool of the Graph Isomorphism algorithm of Babai

[2016a,b], the “Split-or-Johnson” lemma, states that one can either find a specific struc-

ture or significantly break the symmetry of a coherent configuration after individualizing a

logarithmic number of points and applying the Weisfeiler-Leman refinement.

Theorem 1.3.1 (Babai [2016b], “Split-or-Johnson”). Let X = (Ω, c) be a primitive coherent

configuration of rank ≥ 3 on n vertices and let 2/3 ≤ γ < 1 be a threshold parameter. Then

by individualizing O(log n) vertices of X and by applying the Weisfeiler-Leman refinement

process one can get a coherent configuration Y = (Ω, cY) that satisfies one of the following.

1. No color is assigned by cY to ≥ γ|Ω| vertices.

2. cY induces a non-trivial equipartition of the vertex color class of size ≥ γ|Ω|.

3. Y contains a homogeneous fission of a Johnson scheme on ≥ γ|Ω| vertices as a sub-

configuration.

Babai conjectured that for a sufficiently large γ in the latter case X is either a Johnson

scheme itself, or X has a quasipolynomial number of automorphisms. In this thesis we make

10



a step towards confirming this conjecture. This is also a step in the direction of simplifying

the conclusion of the “Split-or-Johnson” lemma.

Theorem 1.3.2 (Main III, Babai and Kivva [2022]). Let Y′ be a homogeneous coherent

configuration of rank ≥ 3 on Ω′. Assume that Y′ is a fusion of a configuration X′. Let

Ω ⊆ Ω′, with n′ ≤ (6/5)n. Suppose that X = X′[Ω] is the Johnson scheme J(s, d) with

s ≥ 250d4. Then Y′ is a Johnson scheme itself, of the same rank as X.

We present the proof of this Theorem in Section 11.4.2.

1.3.3 Robustness of Hamming and Grassmann schemes

Theorem 1.3.2 can also be seen as an answer to a special case of the following question.

Question 1.3.3. Let α ≥ 0 and Ω ⊆ Ω′ be finite sets, such that |Ω′| ≤ (1 + α)|Ω|. Assume

that X′ = (Ω′, c′) and X = (Ω, c) are homogeneous coherent configurations. Suppose that X

is “nicely embedded” in X′ and, moreover, X belongs to some class of configurations A.

For which α and A can we deduce that X′ also belongs to A?

In Chapters 10 and 11 we study this question in the following interpretations of “nicely

embedded” for various properties A.

(A) X is a subconfiguration of X′.

(B) X is a subconfiguration of a fission of X′.

In particular, we show that analogs of Theorem 1.3.2 hold for Hamming and Grassmann

schemes, another two families of schemes that are of interest to several areas of mathematics

and theoretical computer science.

Theorem 1.3.4. Let Y′ be a homogeneous coherent configuration of rank ≥ 3 on Ω′. Assume

that Y′ is a fusion of a configuration X′. Let Ω ⊆ Ω′, with |Ω′| ≤ (6/5)|Ω|. Suppose that
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X = X′[Ω] is the Hamming scheme H(d, s) with s ≥ 200d4 ln(d). Then Y′ is a Hamming

scheme, of the same rank as X.

Theorem 1.3.5. Let Y′ be a homogeneous coherent configuration of rank ≥ 4 on Ω′. Assume

that Y′ is a fusion of a configuration X′. Let Ω ⊆ Ω′, with |Ω′| ≤ (5/4)|Ω|. Suppose that

X = X′[Ω] is the Grassmann scheme Jq(s, d) with s ≥ 6d + 5. Then Y′ is a Grassmann

scheme, of the same rank as X, and for the same prime power q.

For Question 1.3.3 in interpretation (A) we prove the following.

Theorem 1.3.6. Let X′ = (Ω′, c′) be a homogeneous coherent configuration. Let Ω ⊆ Ω′

with |Ω′| < (3/2)|Ω|. Assume that X = X′[Ω] is

• (Babai and Kivva [2022]) the Johnson scheme J(d, s) with d ≥ 2, s ≥ 288d2 + d; or

• the Hamming scheme H(d, s) with d ≥ 2, s ≥ 200d4 ln d; or

• the Grassmann scheme Jq(s, d) with d ≥ 3 and s ≥ 3d+ 7.

Then X′ is a Johnson scheme, or a Hamming scheme, or a Grassmann scheme, respectively.

These three theorems are proved in Sections 11.4.3, 11.4.4, and 10.4-10.6.

1.3.4 Group theory view on Question 1.3.3: Galois correspondence

Question 1.3.3 has been studied in the following version of “nicely embedded”.

(C) Ω = Ω′ and X is a fission of X′.

For this interpretation of “nicely embedded”, the question takes the following form.

Question 1.3.7. Assume that X′ = (Ω, c′) and X = (Ω, c) are homogeneous coherent con-

figurations and X is a fission of X′. Suppose that X belongs to some class of configurations

A. For which A can we deduce that X′ also belongs to A?
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For a finite permutation group G ≤ Sym(Ω) let X(G) be the corresponding Schurian

configuration. Note that several groups may define the same Schurian configuration X(G).

Such groups are called 2-equivalent. The 2-closure of the group G is defined as Aut(X(G)),

which is the maximal element of the 2-equivalence class of G. The group is called 2-closed

if it coincides with its 2-closure.

It is easy to see that if G ≤ G′ ≤ Sym(Ω), then X(G) is a fission of X(G′). And vice

versa, if X is a fission of X′, then Aut(X) ≤ Aut(X′). Recall, that for configurations X and

X′ on Ω, we define a partial order by writing X ⪯ X′, if X is a fission of X′. One can check

that there is a Galois correspondence between the coherent configurations on Ω with the ⪯

relation and the 2-closed permutation groups on Ω with the subgroup relation.

In view of this Galois correspondence, results on the fission/fusion of coherent config-

urations (Question 1.3.3 in interpretation (C)) can be translated into results on the sub-

groups/supergroups of 2-closed permutation groups.

Recall that S
(d)
t ≤ Sym

((
[t]

d

))
is the permutation group defined by the induced action

of St on d-element subsets of [t]. Kaluzhnin and Klin [1972] showed that the Johnson

group is a maximal 2-closed subgroup of the symmetric group Sym

((
[t]

d

))
when t ≥ c(d)

for a sufficiently large c(d). They proved this by showing that the corresponding Johnson

scheme has no nontrivial fusion. In his PhD thesis, Klin [1974] showed that one can take

c(d) = O(d4). Later, Muzychuk [1992a] improved bound to c(d) = 3d+4 and Uchida [1992]

made another slight improvement to c(d) = 2d+
√
(d− 7/2)2 + 6 + 3/2.

Our Theorem 1.3.2 generalizes Kaluzhnin-Klin’s theorem.

Similarly, Muzychuk [1992b] proved that the Hamming scheme H(d, s) with s > 4 does

not admit a non-trivial fusion that is a coherent configuration, and he classified the fusion

schemes for s = 4. The case of s = 2 was studied in Muzychuk [1995]. Our Theorem 1.3.4

is as a generalization of Muzychuk [1992b] for s ≥ 200d4 ln(d).
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1.4 Spectral gap and classifications of distance-regular graphs

In order to prove Theorems 1.2.6, 1.2.8 and 1.3.6 which we discussed in Sections 1.2 and 1.3.3,

we study spectral and combinatorial properties of distance-regular graphs and coherent con-

figurations. Along the way, we prove several results for distance-regular graphs which fit into

several other well-studied frameworks. In particular, we study the spectral gap of distance-

regular graphs, the parameter that is closely related to the expansion properties of the graph,

and which plays an important role in various applications in combinatorics and theoretical

computer science. Additionally, we provide new characterizations of Johnson and Hamming

graphs in terms of their smallest eigenvalue and spectral gap. These characterizations can

be seen as a contribution to the program that aims to classify sufficiently regular graphs

based on their smallest eigenvalue (see, e.g., Hoffman [1970b, 1977], Seidel [1968], Neumaier

[1979], Cameron et al. [1991], Bang and Koolen [2014]).

1.4.1 Spectral gap of distance-regular graphs

We say that a k-regular graph is a spectral η-expander for η > 0, if every non-principal

eigenvalue ξi of its adjacency matrix satisfies |ξi| ≤ k(1 − η). We say that a graph on n

vertices has (1− ε)-dominant distance t, if among the
(n
2

)
pairs of distinct vertices at least

(1− ε)
(n
2

)
are at distance t.

In our main result on spectral expansion we show that distance-regular graphs of bounded

diameter are spectral expanders if they have (1− ε)-dominant distance for sufficiently small

ε > 0, depending only on the diameter. This result is one of the key components in the proof

of Theorem 1.2.6.

Theorem 1.4.1. For every d ≥ 2 there exist ϵ = ϵ(d) > 0 and η = η(d) > 0 such that the

following holds. If a distance-regular graph X of diameter d has a (1− ϵ)-dominant distance,

then X is a spectral η-expander.
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The key ingredient in the proof of Theorem 1.4.1 is the following new inequality on the

intersection numbers of the distance-regular graphs. Essentially, this inequality claims that,

if for some j, bj is large (and therefore, by monotonicity, so are bi for i ≤ j) and cj+1 is

small, then bj+1 and cj+2 cannot be small simultaneously. In particular, if cd is sufficiently

small, then this inequality shows that bi do not decrease too fast.

Theorem 1.4.2 (Growth-induced tradeoff). Let X be a distance-regular graph of diameter

d ≥ 2. Let 0 ≤ j ≤ d − 2. Assume bj > cj+1 and let C = bj/cj+1. Then for every

1 ≤ s ≤ j + 1 we have

bj+1

 s∑
t=1

1

bt−1
+

j+2−s∑
t=1

1

bt−1

+ cj+2

j+1∑
t=1

1

bt−1
≥ 1− 4

C − 1
. (1.4)

We prove this inequality in Section 7.2.

In a distance-regular graph, denote by λ and µ the number of common neighbours of a

pair of adjacent vertices, and a pair of vertices at distance 2, respectively. We mention, that

a result of Terwilliger [1986], as strengthened in [Brouwer et al., 1989, Theorem 4.3.3], shows

that every non-principal eigenvalue of a k-regular distance-regular graph X has absolute

value at most k − λ if µ > 1 and X is not the icosahedron. This result assures that X

is a spectral η-expander, if λ ≥ ηk. We note that while both our result and Terwilliger’s

result provide simple sufficient combinatorial conditions for being spectral expanders, they

are incomparable. In fact, our primary motivation for a spectral gap bound is an application

of Lemma 4.5.11, where Terwilliger’s gap is not sufficient.

Additionally, we note that in Theorem 1.4.1 we do not exclude the elusive case µ = 1, for

which almost no classification results are known, and which is known to be a difficult case in

various circumstances. A remarkable example is the Bannai-Ito conjecture, where the case

µ = 1 was the only obstacle for 30 years, and was resolved only recently in the breakthrough

paper by Bang et al. [2015].

Combining Theorem 1.4.1 with the Metsch characterization of geometric graphs (The-
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orem 3.1.3), and Babai’s Spectral tool for motion lower bounds (Theorem 4.5.11), in The-

orem 8.1.7 we reduce Theorem 1.2.6 to the case of geometric graphs. By exploiting rich

structure of geometric graphs, we show that the only such graphs with sublinear motion

are Johnson and Hamming graphs. This step relies on the new characterizations of these

families of graphs that we discuss below.

1.4.2 New characterizations of Johnson and Hamming graphs

A result of Terwilliger [1986] (see [Brouwer et al., 1989, Theorem 4.4.3]) implies that the

icosahedron is the only distance-regular graph, for which the second largest eigenvalue θ1

(of the adjacency matrix) satisfies θ1 > b1 − 1 and a pair of vertices at distance 2 has µ ≥ 2

common neighbors. Another classical result gives the classification of distance-regular graphs

with µ ≥ 2 and θ1 = b1 − 1.

Theorem 1.4.3 ([Brouwer et al., 1989, Theorem 4.4.11]). Let X be a distance-regular graph

of diameter d ≥ 3 with second largest eigenvalue θ1 = b1 − 1. Assume µ ≥ 2. Then one of

the following holds:

1. µ = 2 and X is a Hamming graph, a Doob graph, or a locally Petersen graph (and all

such graphs are known).

2. µ = 4 and X is a Johnson graph.

3. µ = 6 and X is a half cube.

4. µ = 10 and X is a Gosset graph E7(1).

We consider the case θ1 ≥ (1 − ε)b1 for a sufficiently small ε > 0. The relaxation of

the assumption on the second largest eigenvalue comes at the cost of requiring additional

structural constraints. Our main structural assumption is that X is a geometric distance-

regular graph, meaning that there exists a collection of Delsarte cliques (see Sec. 3.1) C
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such that every edge of X belongs to a unique clique in C. Additional technical structural

assumptions depend on whether the neighborhood graphs of X are connected. We note that

for a geometric distance-regular graph X either the neighborhood graph X(v) is connected

for every vertex v, or X(v) is disconnected for every vertex v (see Lemma 3.2.4). We give

the following characterizations.

Theorem 1.4.4 (Main IV). There exists an absolute constant ε∗ > 0.0065 such that the

following is true. Let X be a geometric distance-regular graph of diameter d ≥ 2 with smallest

eigenvalue −m. Suppose that µ ≥ 2 and θ1 + 1 > (1 − ε∗)b1. Moreover, assume that the

vertex degree satisfies k ≥ max(m3, 29) and the neighborhood graph X(v) is connected for

some vertex v of X.

Then X is a Johnson graph J(s, d) with s = (k/d) + d.

Theorem 1.4.5 (Main V). Let X be a geometric distance-regular graph of diameter d ≥ 2

with smallest eigenvalue −m. Consider an arbitrary 0 < ε < 1/(6m4d). Suppose that µ ≥ 2

and θ1 ≥ (1 − ε)b1. Moreover, assume ct ≤ εk and bt ≤ εk for some t ≤ d, and the

neighborhood graph X(v) is disconnected for some vertex v of X.

Then X is a Hamming graph H(d, s) with s = 1 + k/d.

Remark 1.4.6. If s > 6d5 + 1, then the Hamming graph H(d, s) satisfies the assumptions

of this theorem with 1/(s− 1) ≤ ε < 1/(6d5) and t = d.

We present the proof of these theorems in Sections 6.2 and 6.3. These characterizations

will be used in Section 8.1 to prove Theorem 1.2.6.

The assumption that a distance-regular graph is geometric excludes only finitely many

graphs with µ ≥ 2, if the smallest eigenvalue of the graph is assumed to be bounded, as

proved by Koolen and Bang [2010].

Theorem 1.4.7 (Koolen and Bang [2010]). Fix an integer m ≥ 2. There are only finitely

many non-geometric distance-regular graphs of diameter ≥ 3 with µ ≥ 2 and smallest eigen-

value at least −m.
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However, in the context of Theorem 1.2.6 we do not have a bound on the smallest

eigenvalue in the non-geometric case, so we do not use the above theorem in the proof.

1.4.3 A characterization of Hamming schemes by smallest eigenvalue

A number of classification results is known under the assumption of bounded smallest eigen-

value.

For strongly regular graphs, Neumaier [1979] showed that if the smallest eigenvalue is

−m (for m ≥ 2), then it is a Latin square graph LSm(n), a Steiner graph Sm(n), a complete

multipartite graph or one of finitely many other graphs. A classification of the strongly

regular graphs with smallest eigenvalue −2 was known earlier (Seidel [1968]) . Moreover,

Cameron et al. [1991] gave a complete classification of all graphs with smallest eigenvalue

−2. They proved that all but finitely many of such graphs have rich geometric structure

(they are generalized line graphs).

Koolen and Bang [2010] proved that all but finitely many distance-regular graphs with

smallest eigenvalue −m and µ ≥ 2 are geometric. For geometric distance-regular graphs

with smallest eigenvalue ≥ −3 and µ ≥ 2 Bang [2013] and Bang and Koolen [2014] gave

a complete classification. Moreover, they conjectured [Koolen and Bang, 2010, Conjecture

7.4] that for every integer m all but finitely many geometric distance-regular graphs with

smallest eigenvalue −m and µ ≥ 2 are known.

Conjecture 1.4.8 (Koolen and Bang [2010]). For a fixed integer m ≥ 2, every geometric

distance-regular graph with smallest eigenvalue −m, diameter ≥ 3 and µ ≥ 2 is either a

Johnson graph, or a Hamming graph, or a Grassmann graph, or a bilinear forms graph, or

the number of vertices is bounded above by a function of m.

In this thesis we show that distance-regular graphs of diameter d with smallest eigenvalue

−d, µ ≤ 3, an induced quadrangle, and sufficiently large degree k are Hamming graphs.
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Theorem 1.4.9 (Main VI). Let X be a distance-regular graph of diameter d ≥ 2 with

smallest eigenvalue −d. Suppose that X contains an induced quadrangle, µ ≤ 3, and k ≥(
100d3 ln d

)
· cd. Then X is the Hamming graph H(d, k/d+ 1).

The proof of this theorem is discussed in Section 5.2. This characterization also plays

a crucial role in our proof of the robustness under extension for Hamming schemes (Theo-

rem 1.3.6, see Section 10.5).

1.5 Acknowledgement of collaborations

Some of the results of this thesis originally appeared in joint papers with László Babai.

In particular, Theorem 1.3.2 and most of the results of Chapters 10 and 11 are a result
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schemes from these chapters are not a part of this work by Babai and Kivva [2022].

Additionally, the discussion in Section 4.4 is a part of Babai and Kivva [2020].

Most of other original results of this thesis appeared in Kivva [2021a,b,c, 2022].

More precisely, Theorems 1.4.1 and the results of Chapter 7, Section 8.1.3 and 8.4 ap-

peared in Kivva [2021b]. Theorems 1.4.4, 1.4.5 and 1.2.6 and the results of Chapter 6, Sec-

tion 8.1 and 8.2 first appeared in Kivva [2021c]. The results of Chapter 9 and Theorem 1.2.8

were proved in Kivva [2021a]. Finally, Theorem 1.4.9 and the results of Chapters 10 and 11

related to Hamming and Grassmann schemes are from Kivva [2022].

1.6 Organization of the thesis

We now outline the structure of this thesis. In Chapter 2 we give definitions and discuss

basic properties of graphs, groups, coherent configurations and distance-regular graphs. In

Chapter 3 we outline preliminaries on geometric distance-regular graphs, a class of a great

interest to our analysis.
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In Chapter 4 we discuss the classification of large primitive groups by Cameron [1981]

and the classification of primitive group with sublinear minimal degree by Liebeck and Saxl

[1991]. Additionally, in this chapter, we outline the combinatorial and spectral tools for

bounding the order and the minimal degree of primitive permutation groups developed by

Babai.

In Chapters 5 and 6 we prove our characterizations of Johnson and Hamming graphs,

which are used in the proof of Theorem 1.2.6. In this chapter, we also briefly discuss how these

results are related to the study of regular graphs with bounded eigenvalue and representation

theory of distance-regular graphs.

We prove Theorem 1.4.1 in Chapter 7.

We study motion of distance-regular graphs in Chapter 8 and of primitive coherent con-

figurations of rank-4 in Chapter 9.

Finally, we present our results on robustness of Johnson, Hamming and Grassmann

schemes in Chapters 10 and 11.
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CHAPTER 2

PRELIMINARIES: COHERENT CONFIGURATIONS AND

DISTANCE-REGULAR GRAPHS

2.1 Graphs and digraphs

Denote [m] = {1, 2, ...,m}. For a set S and a positive integer k,
(S
k

)
denotes the set of the

subsets of S of size k.

Definition 2.1.1. In this thesis, by a graph we mean a pair X = (V,E), where E ⊆
(V
2

)
.

The set V = V (X) is called the set of vertices of X and E = E(X) is called the set of edges

of X. That is, we do not allow loops or repeated edges.

Definition 2.1.2. In this thesis by a digraph we mean a pair X = (V,E), where E ⊆ V ×V .

A pair (u, v) ∈ E is called a directed edge (from u to v). Note, that we allow loops for

digraphs.

We think of every graph as also being a digraph by replacing every edge {u, v} by a pair

of directed edges (u, v) and (v, u).

Definition 2.1.3. In a digraph X a walk is a sequence of vertices u0, u1, . . . , ut, such that

(ui−1, ui) ∈ E(X) for every i ∈ [t]. A path is a walk that consists of distinct vertices.

For vertices v, w ∈ V (X) we define the distance dist(v, w) from v to w to be the length

of the shortest path from v to w. If no such path exists, we define dist(v, w) = ∞. For a

non-empty subset C ⊆ V (X) and a vertex v ∈ V (X) we define dist(v, C) = min
u∈C

dist(v, u).

Definition 2.1.4. For a digraph X, we define the diameter to be the largest distance

between a pair of distinct vertices of X.

Let X be a graph. We always denote by n the number of vertices of X and for a regular

graph X we denote by k its degree. The diameter of a graph is the largest distance between a
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pair of vertices of the graph. We denote the diameter of X by d. If the graph is disconnected,

then its diameter is defined to be ∞.

Definition 2.1.5. A regular graph is called edge-regular if every pair of adjacent vertices

has the same number λ = λ(X) of common neighbors.

Definition 2.1.6. A regular graph is called co-edge-regular if every pair of non-adjacent

vertices has the same number µ = µ(X) of common neighbors.

Definition 2.1.7. An edge-regular graph is called amply regular if every pair of vertices at

distance 2 has the same number µ = µ(X) of common neighbors.

Definition 2.1.8. A graph is called strongly regular if it is edge-regular and co-edge regular.

Denote by q(X) the maximum number of common neighbors of two distinct vertices in X.

Definition 2.1.9. For a graph X = (V,E) and a subset of vertices S ⊆ V , the induced

subgraph on S is the graph X[S] = (S,ES), where ES = E ∩
(S
2

)
.

Let N(v) denote the set of neighbors of vertex v and Ni(v) = {w ∈ V (X)| dist(v, w) = i}

the set of vertices at distance i from v in X. By X(v) we denote the neighborhood graph of

v, i.e., the graph induced by X on N(v).

Definition 2.1.10. Let X be a graph. The line graph of X is the graph L(X) with E(X)

as its set of vertices, where distinct e1, e2 ∈ E(X) are adjacent if they (as edges of X) share

a vertex.

For a digraph X on n vertices the adjacency matrix is the n × n matrix A indexed by

the set V (X), in which Auv = 1 if (u, v) ∈ E(X) and Auv = 1 otherwise. In particular, if X

is a graph, then A is symmetric and all the diagonal entries are 0.

By the eigenvalues of a graph we mean the eigenvalues of its adjacency matrix.

Let A be the adjacency matrix of the graph X. Suppose that X is k-regular. Then the

all-ones vector is an eigenvector of A with eigenvalue k. We call them the trivial eigenvector
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and the trivial eigenvalue. All other eigenvalues of A have absolute value not greater than

k. We call them non-trivial eigenvalues.

Definition 2.1.11. A crown graph is a graph that is obtained from a complete bipartite

graph by deleting one perfect matching.

Definition 2.1.12. A complete multipartite graph Ka1,a2,...,at is defined to be the graph

whose set of vertices is V = V1 ⊔ V2 ⊔ . . . ⊔ Vt, with |Vi| = ai, in which there is an edge

between x ∈ Vi and y ∈ Vj if and only if i ̸= j. We use notation Kt×a to denote the complete

multipartite graph Ka1,a2,...,at in which ai = a for all i.

Definition 2.1.13. We say that a graph has an induced quadrangle if this graph has an

induced 4-cycle C4.

2.2 Groups

For a pair of groups G and H we use notation H ≤ G to say that H is a subgroup of G.

For a finite set Ω we use Sym(Ω) to denote the symmetric permutation group on the set Ω.

We use Sn and An to denote the symmetric group and the alternating group on n elements,

respectively.

Definition 2.2.1. A group G ≤ Sym(Ω) is called a permutation group on Ω.

For a permutation group G ≤ Sym(Ω) we say that |Ω| is the degree of G.

Definition 2.2.2. A permutation group G ≤ Sym(Ω) is called transitive if for every x, y ∈ Ω

there exists an element g ∈ G that maps x to y.

Let G be a transitive permutation group on the set Ω. A G-invariant partition Ω =

B1 ⊔ B2 ⊔ . . . ⊔ Bt is called a system of imprimitivity of G. Every permutation group

G ≤ Sym(Ω) admits two trivial G-invariant partitions: the partition consisting of Ω only,

and the partition of Ω into singletons.

23



Definition 2.2.3. A non-trivial transitive permutation group is called primitive if it does

not admit any non-trivial system of imprimitivity.

Definition 2.2.4. For a group G define the socle to be the product of its minimal normal

subgroups.

2.3 Coherent configurations

Our terminology follows Babai [2016b].

Let V be a finite set, elements of which will be called vertices of a configuration.

Definition 2.3.1. A configuration X of rank r on the set V is a pair (V, c), where c is a

surjective map c : V × V → {0, 1, ..., r − 1} such that

(i) c(v, v) ̸= c(u,w), for every v, u, w ∈ V with u ̸= w,

(ii) for every i < r, there is i∗ < r, such that c(u, v) = i implies c(v, u) = i∗, for all

u, v ∈ V .

The value c(u, v) is called the color of a pair (u, v). The color c(u, v) is a vertex color if

u = v, and is an edge color if u ̸= v. Then condition (i) says that edge colors are different

from vertex colors, and condition (ii) says that the color of a pair (u, v) determines the color

of (v, u).

Definition 2.3.2. For every i < r consider the set Ri = {(u, v) : c(u, v) = i} of pairs of

color i and consider the digraph Xi = (V,Ri). We refer to both Ri and Xi as the color-i

constituent of X.

There are two possibilities: if i = i∗, then color i and the corresponding constituent Xi

are called undirected ; if i ̸= i∗, then (i∗)∗ = i and color i together with the corresponding

constituent Xi are called oriented.
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Clearly, {Ri}i<r forms a partition of V × V .

We denote the adjacency matrix of the digraph Xi by Ai. The adjacency matrices of the

constituents satisfy
r−1∑
i=0

Ai = J|V | = J, (2.1)

where J denotes the all-ones matrix.

Note that conditions (i) and (ii) of Definition 2.3.1 in the matrix language mean the

following. There exists a set D of colors, such that the identity matrix can be represented

as a sum
∑
i∈D

Ai = I. And for every color i, ATi = Ai∗ .

For a set of colors I we denote by XI the digraph on the set of vertices V , where an arc

(x, y) is in XI if and only if c(x, y) ∈ I. For small sets we omit braces, for example, X1,2

will be written in place of X{1,2}.

Definition 2.3.3. A configuration X is homogeneous if c(u, u) = c(v, v) for every u, v ∈ V .

Unless specified otherwise, we always assume that 0 is the vertex color of a homogeneous

configuration. The constituent which corresponds to the vertex color is also referred as the

diagonal constituent.

Definition 2.3.4. A configuration X = (V, c) is called symmetric if c(u, v) = c(v, u) for all

u, v ∈ V .

Definition 2.3.5. We say that a homogeneous symmetric configuration X is regular if every

off-diagonal constituent is a regular graph.

Definition 2.3.6. A configuration X is coherent if

(iii) for every i, j, t < r, there is an intersection number pti,j such that, for all u, v ∈ V , if

c(u, v) = t, then there exist exactly pti,j vertices w ∈ V with c(u,w) = i and c(w, v) = j.

The definition of a coherent configuration has several simple, but important, conse-

quences.
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Observation 2.3.7. Let X be a coherent configuration. Then every edge color is aware of

the colors of its tail and head. That is, for every edge color i, there exist vertex colors i−

and i+ such that if c(u, v) = i, then c(u, u) = i− and c(v, v) = i+.

Proof. Indeed, they are the only colors for which pii,i+ and pii−,i are non-zero.

Observation 2.3.8. For every color i its in-degree and out-degree are well-defined as k−i =

p
i+
i∗,i and k

+
i = p

i−
i,i∗ , respectively.

In a homogeneous coherent configuration we have k+i = k−i for every color i. We denote

this common value by ki.

Definition 2.3.9. Let Ai denote the adjacency matrix of the color i constituent of the

coherent configuration X. Define the Bose-Mesner algebra of X to be to be the algebra

generated by Ai.

Observe that the existence of the intersection numbers is equivalent to the following

conditions on the adjacency matrices of the constituent digraphs.

AiAj =
r−1∑
t=0

pti,jAt for all i, j < r. (2.2)

Hence, the following observation follows.

Observation 2.3.10. {Ai : 0 ≤ i ≤ r − 1} form a basis of the Bose-Mesner algebra of X

with structure constants pti,j . In particular, this algebra is r-dimensional and every Ai has

minimal polynomial of degree at most r.

Observation 2.3.11. The intersection numbers of a homogeneous coherent configuration

satisfy the following relations.

r−1∑
j=0

ptij = ki and psi,jks = pis,j∗ki. (2.3)
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Let i, j < r be edge colors.

Definition 2.3.12. Take u, v ∈ V with c(u, v) = j. Define disti(u, v) to be the length ℓ of

a shortest walk u0 = u, u1, ..., uℓ = v such that c(ut−1, ut) = i for every t ∈ [ℓ].

Observation 2.3.13. disti(j) = disti(u, v) is well defined, i.e., does not depend on the

choice of u, v, but only on the colors j and i.

Proof. Let c(u, v) = c(u′, v′) = j and suppose there exist a walk u0 = u, u1, ..., uℓ = v of

length ℓ, such that c(ut−1, ut) = i. Denote by et = c(ut, v). Then we know that p
et−1
i,et

̸= 0

for t ∈ [ℓ − 1]. Let u′0 = u′. Then, as p
et−1
i,et

̸= 0, by induction, there exists a u′t such that

c(u′t−1, u
′
t) = i and c(ut, v) = et for all t ∈ [ℓ − 1]. Hence, dist(u′, v′) ≤ dist(u, v) and

similarly dist(u, v) ≤ dist(u′, v′). Therefore, disti(j) is well-defined.

Observation 2.3.14. If disti(j) is finite, then disti(j) ≤ r − 1.

Proof. Suppose that disti(j) is finite, then for c(u, v) = j there exists a shortest walk u0 =

u, u1, ..., uℓ = v with c(ut−1, ut) = i. Denote by et = c(ut, v) for 0 ≤ t ≤ ℓ− 1. Then, all et

are distinct edge colors, or the walk can be shortened. Thus ℓ ≤ r − 1.

Definition 2.3.15. A coherent configuration is called an association scheme if c(u, v) =

c(v, u) for all u, v ∈ V .

Corollary 2.3.16. Every association scheme is a homogeneous configuration.

Proof. Since in a coherent configuration color of every edge is aware of the colors of its head

and tail vertices, these vertices have the same color for every edge.

Note, for an association scheme every constituent digraph is a graph. Thus, for an

association scheme and i ̸= 0, the i-th constituent Xi is a ki-regular graph with λ(Xi) = pii,i.

Moreover, it is clear that psi,j = psj,i for association schemes.

Definition 2.3.17. A homogeneous coherent configuration is called primitive if every non-

diagonal constituent is weakly connected.

27



It is not hard to check that every non-diagonal constituent of a homogeneous coherent

configuration is weakly connected if and only if it is strongly connected.

Note, that by Observation 2.3.14, we have disti(j) ≤ r − 1 for all edge colors i, j of a

primitive coherent configuration.

The following definition will be useful.

Definition 2.3.18. We say that an association scheme has diameter d if every non-diagonal

constituent has diameter at most d and there exists a non-diagonal constituent of diameter d.

Note, that if an association scheme has a finite diameter, then, in particular, it is primi-

tive. Moreover, every primitive association scheme of rank r has diameter ≤ r − 1.

Observe, that for every undirected color i the constituent Xi is an edge-regular graph.

We also introduce the following definition.

Definition 2.3.19. We say that a homogeneous coherent configuration X of rank r has

constituents ordered by degree, if color 0 corresponds to the diagonal constituent and the

degrees of non-diagonal constituents satisfy k1 ≤ k2 ≤ ... ≤ kr−1.

2.4 Distance-regular graphs

Definition 2.4.1. A connected graph X is called distance-transitive is for every four vertices

x1, x2, y1, y2 ∈ V (X) if dist(x1, y1) = dist(x2, y2), then there exists an automorphism σ ∈

Aut(X), such that σ(x1) = x2 and σ(y1) = y2.

Definition 2.4.2. A connected graph X of diameter d is called distance-regular if for every

0 ≤ i ≤ d there exist integers ai, bi, ci such that for all v ∈ V (X) and all w ∈ Ni(v) the

number of edges between w and Ni(v) is ai, between w and Ni−1(v) is ci, and between w

and Ni+1(v) is bi. The sequence

ι(X) = {b0, b1, . . . , bd−1; c1, c2, . . . , cd}
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is called the intersection array of X.

Clearly, every distance-transitive graph is distance-regular. Also, note that every distance-

regular graph is amply regular with λ = a1 and µ = c2.

By simple counting, the following relations hold among the parameters of distance-regular

graphs.

(E1) ai + bi + ci = k for every 0 ≤ i ≤ d,

(E2) bi+1 ≤ bi and ci+1 ≥ ci for 0 ≤ i ≤ d− 1.

(E3) |Ni(v)|bi = |Ni+1(v)|ci+1, for 0 ≤ i ≤ d− 1 and every vertex v.

Thus, in particular, (E3) implies that the numbers ki = |Ni(v)| do not depend on the vertex

v ∈ V (X), and we can rewrite the last property as

(E3’) kibi = ki+1ci+1, for 0 ≤ i ≤ d− 1.

With every graph of diameter d we can naturally associate matrices Ai, where rows

and columns are indexed by vertices, with (Ai)u,v = 1 if and only if dist(u, v) = i, and

(Ai)u,v = 0, otherwise. That is, Ai is the adjacency matrix of the distance-i graph Xi of X.

For a distance-regular graph these matrices satisfy the following relations

A0 = I, A1 =: A,
d∑
i=0

Ai = J, (2.4)

AAi = ci+1Ai+1 + aiAi + bi−1Ai−1 for 0 ≤ i ≤ d, (2.5)

where cd+1 = b−1 = 0 and A−1 = Ad+1 = 0. Clearly, Eq. (2.5) implies that for every

0 ≤ i ≤ d there exists a polynomial νi of degree exactly i, such that Ai = νi(A). Moreover,

the minimal polynomial of A has degree exactly d + 1. Hence, since A is symmetric, A has

exactly d+1 distinct real eigenvalues. Additionally, we conclude that for every 0 ≤ i, j, s ≤ d
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there exist intersection numbers psi,j , such that

AiAj =
d∑
s=0

psi,jAs. (2.6)

With this notation, ai = pii,1, bi = pii+1,1 and ci = pii−1,1.

Recalling the definition of Ai, this implies that for all u, v ∈ V (X) with dist(u, v) = s

there exist exactly psi,j vertices at distance i from u and distance j from v, i.e.,

|Ni(u) ∩Nj(v)| = psi,j . (2.7)

Therefore, every distance-regular graph X of diameter d induces an association scheme X of

rank d+ 1, where vertices are connected by an edge of color i in X if and only if they are at

distance i in X, for 0 ≤ i ≤ d. Hence, we get the following statement.

Lemma 2.4.3. If a graph X is distance-regular of diameter d, then the distance-i graphs

Xi form constituents of an association scheme X of rank d+ 1. Moreover, if X is primitive,

then it has diameter d. In the opposite direction, if an association scheme of rank d+ 1 has

a constituent of diameter d, then this constituent is distance-regular.

Lemma 2.4.4. Let X be a distance-regular graph of diameter d ≥ 2. Then 2λ ≤ k + µ.

Proof. Denote N(x, y) = N(x)∩N(y) for vertices x and y of X. The inequality above follows

from the two obvious inclusions below, applied to vertices v and w at distance 2 in X, and

their common neighbor u.

N(u, v) ∪N(u,w) ⊆ N(u), N(u, v) ∩N(u,w) ⊆ N(v, w).

In Section 5.2 we will need the following inequality by Terwilliger [1985]. Recall that a

graph has an induced quadrangle if it has an induced 4-cycle.
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Theorem 2.4.5 (Terwilliger [1985], see [Brouwer et al., 1989, Theorem 5.2.1]). Let X be a

distance-regular graph. If X contains an induced quadrangle, then

ci − bi ≥ ci−1 − bi−1 + λ+ 2, for i = 1, 2, . . . , d.

Remark 2.4.6. A distance-regular graph that does not contain an induced quadrangle is

called a Terwilliger graph. Such distance-regular graphs were studied, e.g., in Terwilliger

[1985], Gavrilyuk et al. [2008], Gavrilyuk [2010].

We also need the following bound on the difference ci − ci−1 for i = 3.

Theorem 2.4.7 ([Brouwer et al., 1989, Theorem 5.4.1]). Let X be a distance-regular graph

of diameter d ≥ 3. If µ ≥ 2, then either c3 ≥ 3µ/2, or c3 ≥ µ+ b2 and d = 3.

Corollary 2.4.8. Let X be a distance-regular graph of diameter d ≥ 3. If µ ≥ 2, then

c3 > µ.

A distance-regular graph X of diameter d has precisely d+1 distinct eigenvalues. Denote

these eigenvalues by θ0 = k > θ1 > . . . > θd. They are the eigenvalues of the tridiagonal

intersection matrix

L1 =



a0 b0 0 0 ...

c1 a1 b1 0 ...

0 c2 a2 b2 ...

...
... ...

... 0 cd ad


.

For an eigenvalue θ, consider the sequence (ui(θ))
d
i=0 defined by the relations

u0(θ) = 1, u1(θ) =
θ

k
,

ciui−1(θ) + aiui(θ) + biui+1(θ) = θui(θ), for i = 1, 2, ..., d− 1,
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cdud−1(θ) + adud(θ) = θud(θ).

The vector u = (u0(θ), u1(θ), ..., ud(θ))
T is an eigenvector of L1 corresponding to θ.

Definition 2.4.9. The sequence (ui(θ))
d
i=0 is called the standard sequence of X correspond-

ing to the eigenvalue θ.

We denote by fi the multiplicity of the eigenvalue θi of X. Since X is a connected graph,

f0 = 1. In general, the multiplicities fi can be computed using the Biggs formula.

Theorem 2.4.10 (Biggs [1971], see [Brouwer et al., 1989, Theorem 4.1.4]). The multiplicity

of the eigenvalue θ of the distance-regular graph X can be expressed as

f(θ) =
n

d∑
i=0

kiui(θ)2
.

2.5 Imprimitive distance-regular graphs

Here we briefly describe some basic properties of imprimitive distance-regular graphs that

we will need later (in Section 8.4). Recall that a distance-regular graph X is imprimitive

if for some 1 ≤ i ≤ d the distance-i graph Xi is disconnected. Smith’s theorem states that

there are only two types of imprimitive distance-regular graphs.

Definition 2.5.1. A distance-regular graph X of diameter d is called antipodal if being at

distance d in X is an equivalence relation, that is, if Xd is a disjoint union of cliques.

Theorem 2.5.2 (D. H. Smith [1971]). An imprimitive distance-regular graph of degree k > 2

is bipartite or antipodal (or both).

If X is a bipartite graph, then X2 has two connected components X+ and X−, which

are called the halved graphs of X and are denoted 1
2X.
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For an antipodal graph X of diameter d, define the graph X̃ which has the equivalence

classes of Xd as vertices and two equivalence classes are adjacent if there is an edge between

them in X. The graph X̃ is called the folded graph of X.

In the next proposition we state some properties of the intersection numbers of halved

and folded graphs, which we will need later (in Section 8.4).

Proposition 2.5.3 (Biggs and Gardiner [1974], see [Brouwer et al., 1989, Proposition 4.2.2]).

Let X be a distance-regular graph with intersection array ι(X) = {b0, b1, . . . , bd−1; c1, c2, . . . , cd}

and diameter d ∈ {2t, 2t+ 1}.

1. The graph X is bipartite if and only if bi + ci = k for i = 0, 1, . . . , d. In this case the

halved graphs are distance-regular of diameter t with intersection array

ι(X±) =
{
b0b1
µ
,
b2b3
µ
, . . . ,

b2t−2b2t−1

µ
;
c1c2
µ

,
c3c4
µ

, . . . ,
c2t−1c2t

µ

}
.

2. The graph X is antipodal if and only if bi = cd−i for i ̸= t. In this case X is an

antipodal r-cover of its folded graph X̃, where r = 1 + bt/cd−t. If d > 2, then X̃ is

distance-regular of diameter t with intersection array

ι(X̃) = {b0, b1, . . . bt−1; c1, c2, . . . , ct−1, γct},

where γ = r, if d = 2t; and γ = 1, if d = 2t+ 1.

It is not hard to show that given a distance-regular graph of degree k > 2 one may obtain

a primitive distance-regular graph after halving at most once and folding at most once. More

precisely, the following is true.

Proposition 2.5.4 (see [Brouwer et al., 1989, Sec. 4.2.A]). Let X be a distance-regular

graph of degree k > 2.

1. If X is a bipartite graph, then its halved graph is not bipartite.
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2. If X is bipartite and either has an odd diameter or is not antipodal, then its halved

graph is primitive.

3. If X is antipodal and either has an odd diameter or is not bipartite, then its folded

graph is primitive.

4. If X has an even diameter and is both antipodal and bipartite, then the halved graphs

1
2X are antipodal, the folded graph X̃ is bipartite and the graphs 1̃

2X
∼= 1

2X̃ are primi-

tive.
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CHAPTER 3

PRELIMINARIES: CLIQUE GEOMETRIES, GEOMETRIC

DISTANCE-REGULAR GRAPHS

3.1 Definition and Metsch’s sufficient condition

Let X be a distance-regular graph, and θmin be its smallest eigenvalue. Delsarte [1973]

proved that every clique C in X satisfies |C| ≤ 1− k

θmin
. A clique in X of size 1− k

θmin
is

called a Delsarte clique.

Definition 3.1.1. A clique geometry C0 for a graph X is a set of maximal cliques of X such

that every edge of X is contained in exactly one member of C0.

Definition 3.1.2. A distance-regular graph X is called geometric if it admits a clique

geometry consisting of Delsarte cliques.

Metsch proved that, under simple assumptions, a graph admits a clique geometry.

Theorem 3.1.3 ([Metsch, 1995, Result 2.2]). Let µ ≥ 1, λ(1), λ(2) ≥ 0 and m ≥ 1 be

integers. Assume that X is a connected graph with the following properties.

1. Every pair of adjacent vertices has at least λ(1) and at most λ(2) common neighbors.

2. Every pair of distinct non-adjacent vertices has at most µ common neighbors.

3. 2λ(1) − λ(2) > (2m− 1)(µ− 1)− 1.

4. Every vertex has degree less than (m+ 1)(λ(1) + 1)− 1
2m(m+ 1)(µ− 1).

Define a line to be a maximal clique C of size |C| ≥ λ(1)+2−(m−1)(µ−1). Then every

vertex belongs to at most m lines, and every pair of adjacent vertices belongs to a unique

line. Therefore, the lines form a clique geometry for X.
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The following lemma shows that the existence of a clique geometry in a graph imposes

strong lower bound on the smallest eigenvalue of the graph.

Lemma 3.1.4 ([van Dam et al., 2016, Prop. 9.8]). Suppose that X satisfies the conditions

of the previous theorem. Then the smallest eigenvalue of X is at least −m.

Proof. Let C be the collection of lines of X. Consider |V |×|C| vertex-clique incidence matrix

N . That is, (N)v,C = 1 if and only if v ∈ C for v ∈ X and C ∈ C. Since every edge belongs

to exactly one line, we get NNT = A+D, where A is the adjacency matrix of X and D is

a diagonal matrix. Moreover, (D)v,v equals to the number of lines that contain v. By the

previous theorem, Dv,v ≤ m for every v ∈ X. Thus,

A+mI = NNT + (mI −D)

is positive semidefinite, so all eigenvalues of A are at least −m.

The following sufficient condition for being geometric is a slightly reformulated version

of a result from van Dam et al. [2016].

Proposition 3.1.5 ([van Dam et al., 2016, Proposition 9.8]). Let X be a distance-regular

graph of diameter d ≥ 2. Assume there exist a positive integer m and a clique geometry C

of X such that every vertex u is contained in exactly m cliques of C. If k ≥ m2, then X is

geometric with smallest eigenvalue −m.

Corollary 3.1.6 ([van Dam et al., 2016, Proposition 9.9]). Let m ≥ 2 be an integer, and let

X be a distance-regular graph with (m − 1)(λ + 1) < k ≤ m(λ + 1) and diameter d ≥ 2. If

λ ≥ 1
2m(m+ 1)µ, then X is geometric with smallest eigenvalue −m.

Proof. Directly follows from Theorem 3.1.3 and Proposition 3.1.5.
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We note that Corollary 3.1.6 will be used several times throughout the thesis. In par-

ticular, it is used in Chapter 8 in the proof of Theorem 8.1.7 to reduce the general case of

Theorem 1.2.6 to geometric case, and in Chapter 10 in the proof of Theorem 10.3.3.

The converse holds without the k ≥ m2 assumption.

Lemma 3.1.7 (Godsil [1993b]). Let X be a geometric distance-regular graph of diameter

d ≥ 2 with smallest eigenvalue −m. Let C be a Delsarte clique geometry. Then m is an

integer and every vertex belongs to precisely m Delsarte cliques in C.

Proof. By the definition of a Delsarte clique, its size is 1 + k/m. Let C1, C2, . . . , Ct be the

cliques in C which contain a vertex v. Since C is a clique geometry, all distinct Ci and Cj

for i, j ∈ [t] have only v in their intersection, and every vertex adjacent to v belongs to one

of the cliques C1, C2, . . . , Ct. Therefore, k = t(|Ci| − 1) = tk/m.

In the case, when the smallest eigenvalue of a geometric distance-regular graph is −2,

it is easy to deduce that the graph is a line graph. This also follows from a more general

statement, Theorem 5.1.10, by Cameron, Goethals, Seidel and Shult Cameron et al. [1991].

Lemma 3.1.8. Let X be a geometric distance-regular graph with smallest eigenvalue −2.

Then X is the line graph L(Y ) for some graph Y .

Proof. Let C be a Delsarte clique geometry of X. Define the graph Y with the set of vertices

V (Y ) = C, in which a pair of distinct vertices C1, C2 ∈ C in Y is adjacent if and only if

C1 ∩ C2 ̸= ∅. We claim that L(Y ) ∼= X. Indeed, since every edge of X is in exactly one

clique from C, |C1 ∩ C2| ≤ 1 for all distinct C1, C2 ∈ C. So there is a well-defined map

f : E(Y ) → V (X). Moreover, by Lemma 3.1.7, every vertex of X is in exactly two cliques

from C, so f is bijective. Additionally, a pair of edges in Y share a vertex if and only if there

is an edge between the corresponding vertices in X. Hence, L(Y ) ∼= X.

Existance of a clique geometry provides the following useful bound on the number of

common neighbors for a pair of vertices at distance 2, which will be used in Chapters 5-10.
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Lemma 3.1.9 (see Sun and Wilmes [2015a]). Let X be a graph. Let C be a collection of

cliques in X, such that every edge lies in a unique clique from C and every vertex is in at

most m cliques from C. Then every pair of vertices at distance 2 has at most m2 common

neighbors.

Proof. Let u, v ∈ V (X) be a pair of vertices at distance 2. By the assumptions of the lemma

we can write N(u) =
mu⋃
i=1

Cui and N(v) =
mv⋃
i=1

Cvi , where C
u
i , C

v
j ∈ C. Since dist(u, v) = 2, all

cliques are distinct. Observe, that every pair of distinct cliques in C intersect each other in

at most one vertex. Hence, N(u) ∩N(v) ≤ mumv ≤ m2.

3.2 Vertex-clique intersection parameters

Suppose that X is a geometric distance-regular graph with a Delsarte clique geometry C.

Consider a Delsarte clique C ∈ C. Assume x ∈ V (X) satisfies dist(x,C) = i. Define

ψi(C, x) := |{y ∈ C | d(x, y) = i}|. (3.1)

By Bang et al. [2007], the numbers ψi(C, x) do not depend on C and x, but only on the

distance dist(x,C) = i. Thus, we may define ψi := ψ(C, x).

For x, y ∈ V (X) with dist(x, y) = i define

τi(x, y; C) = |{C ∈ C | x ∈ C, d(y, C) = i− 1}|. (3.2)

Again, in Bang et al. [2007] it is shown that for a geometric distance-regular graph X the

number τi(x, y; C) does not depend on the pair x, y, but only on the distance dist(x, y) = i.

Therefore, we may define τi := τi(x, y; C).

Lemma 3.2.1 ([Bang et al., 2007, Proposition 4.2]). Let X be a geometric distance-regular

graph of diameter d, with smallest eigenvalue −m. Then
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1. ci = τiψi−1, for 1 ≤ i ≤ d;

2. bi = (m− τi)

(
k

m
+ 1− ψi

)
, for 1 ≤ i ≤ d− 1.

Lemma 3.2.1 is of great importance to our analysis of geometric distance-regular graphs,

as it gives a nice control of the intersection numbers in terms of τi and ψi. More specifically,

we use this lemma in the proof of our characterizations of Hamming graphs in Sections 5.2

and 6.3. We also use vertex-clique intersection numbers τi and ψi in Chapter 10.

Lemma 3.2.2 (Koolen and Bang [2010]). Let X be a geometric distance-regular graph of

diameter d ≥ 2. Then τ2 ≥ ψ1.

Proof. Let C ∈ C be a Delsarte clique of X and let v be a vertex with dist(v, C) = 1. Since

C is a maximal clique, there exists a vertex y ∈ C non-adjacent to v. Then dist(v, y) = 2.

Let u1, u2, . . . , uψ1 be the neighbors of v in C. Denote by Ci ∈ C a Delsarte clique that

contains v and ui for i ∈ [ψ1]. Note that since C intersects each of Ci in at most one vertex,

all Ci are distinct. Moreover, dist(y, Ci) = 1, while dist(v, y) = 2. Therefore, τ2 ≥ ψ1.

Corollary 3.2.3. Let X be a geometric distance-regular graph of diameter d ≥ 2, with

smallest eigenvalue −m. Then µ ≤ m2.

Proof. µ = τ2ψ1 ≤ τ22 ≤ m2.

Lemma 3.2.4 ([Bang et al., 2007, Theorem 5.3]). Let X be a geometric distance-regular

graph of diameter d ≥ 2.

1. If ψ1 = 1, then for each vertex v ∈ V (X) its neighborhood graph X(v) is a disjoint

union of m cliques, where −m is the smallest eigenvalue of X.

2. If ψ1 ≥ 2, then for each vertex v ∈ X its neighborhood graph X(v) is connected.

Thus, in particular, either each neighborhood graph of X is connected, or each neighborhood

graph of X is disconnected.
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Proof. Fix a Delsarte clique geometry C of X. Let C1, C2, . . . , Cm ∈ C be the cliques which

contain v. Take w ∈ N(v) and let Ci be the clique which contains w. If ψ1 = 1, then v is

the only neighbor of w in Cj for j ̸= i. Thus X(v) is a disjoint union of m cliques, where

by Lemma 3.1.7, −m is the smallest eigenvalue of X. If ψ1 ≥ 2, then w is adjacent with at

least one vertex in Cj distinct from u for every j ̸= i. Thus, in this case, X(v) is a connected

graph.

Theorem 3.2.5 (Bang et al. [2007]). Let X be a geometric distance-regular graph of diameter

d ≥ 2. Assume ψ1 > 1. Then 1 < ψ1 < ψ2 < . . . < ψd−1.

3.3 Dual graphs

Let X be a distance-regular graph which has a clique geometry C.

Definition 3.3.1. By a dual graph of X (that corresponds to C) we mean the graph X̃ with

the vertex set C, in which Ci and Cj are adjacent if and only if |Ci ∩ Cj | = 1.

We will use dual graphs in the analysis of the elusive case µ = 1 for geometric graphs in

Section 8.2.

Lemma 3.3.2. Let X be a geometric distance-regular graph of diameter d ≥ 2 with smallest

eigenvalue −m. Then its dual graph X̃ is an edge-regular graph of diameter d − 1 with the

vertex degree k̃ = (m− 1)

(
k

m
+ 1

)
and λ̃ = (m− 2) + (ψ1 − 1)

k

m
.

Proof. It is known that every Delsarte clique is completely regular, with covering radius

d − 1, see [Godsil, 1993a, Lemma 7.2]. In particular, this implies that the diameter of X̃

is d − 1. Every clique in the Delsarte clique geometry C of X has size 1 + k/m and, by

Lemma 3.1.7, every vertex is in precisely m cliques from C. Since every pair of non-disjoint

cliques intersects in precisely one vertex, we get k̃ = (m− 1)(1 + k/m).

Now, assume that C1 and C2 are distinct cliques in C that share a vertex v. Let u ∈ C1

be a vertex distinct from v. Then u has ψ1 neighbors in C2. Let u
′ be one of such neighbors
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distinct from v. Then the edge {u, u′} belongs to a clique C which is distinct from C1 and

C2 and intersects both of them. Thus, C is a common neighbor of C1 and C2. Note, that a

common neighbor C ∈ C of C1 and C2, which does not contain v, is uniquely determined by

u ∈ C1 and its neighbor u′ in C2. Finally, note that every clique from C which contains v and

is distinct from C1 and C2 is their common neighbor. Hence, λ̃ = (m−2)+(ψ1−1)k/m.

Let A and Ã be the adjacency matrices of X and X̃. Denote by spec(X) and spec(X̃)

the sets of eigenvalues of A and Ã, respectively.

Lemma 3.3.3. Let X be a geometric distance-regular graph with smallest eigenvalue −m.

If k ≥ m2, then spec(X̃) ⊆ {θ − k

m
+m− 1 | θ ∈ spec(X)}.

Proof. Let C be a Delsarte clique geometry of X. Note that, by Lemma 3.1.7, every vertex

of X belongs to precisely m cliques of C. Define N to be an n× |C| vertex-clique incidence

matrix, i.e, Ni,j = 1 if the vertex vi belongs to the clique Cj , and Ni,j = 0 otherwise. Then

A = NNT −mI and Ã = NTN −
(
k

m
+ 1

)
I. (3.3)

From linear algebra it is known that non-zero eigenvalues of NNT and NTN coincide.

Since |C|(1 + k/m) = nm, we get |C| < n, so 0 is an eigenvalue of NNT . Therefore,

spec(NTN) ⊆ spec(NNT ) and the statement of the lemma follows from Eq. (3.3).

3.4 Johnson graphs

Definition 3.4.1. Let d ≥ 2 and Ω be a set of s ≥ 2d points. The Johnson graph J(s, d) is

a graph on the set V (J(s, d)) =
(Ω
d

)
of n =

(s
d

)
vertices, where a pair of distinct vertices is

adjacent if and only if the corresponding subsets U1, U2 ⊆ Ω differ by exactly one element,

i.e., |U1 \ U2| = |U2 \ U1| = 1.
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It is not hard to check that J(s, d) is a distance-regular graph of diameter d with inter-

section numbers

bi = (d− i)(s− d− i) and ci+1 = (i+ 1)2, for 0 ≤ i < d. (3.4)

In particular, J(s, d) is regular of degree k = d(s − d) with λ = s − 2 and µ = 4. The

eigenvalues of J(s, d) are

ξj = (d− j)(s− d− j)− j with multiplicity

(
s

j

)
−
(

s

j − 1

)
, for 0 ≤ j ≤ d. (3.5)

Using Lemma 3.2.1, it is easy to see that for the Johnson graph J(s, d)

τi = i and ψi−1 = i, for 1 ≤ i ≤ d.

For s ≥ 2d + 1, the automorphism group of J(s, d) is the induced symmetric group

S
(d)
s , which acts on

(Ω
d

)
via the induced action of Ss on Ω. Indeed, it is clear, that S

(d)
s ≤

Aut(J(s, d)). The opposite inclusion can be derived from the Erdős-Ko-Rado theorem.

Thus, for a fixed d and s ≥ 2d + 1, the order is |Aut(J(s, d)| = s! = Ω(exp(n1/d)), the

thickness satisfies θ(Aut(J(s, d))) = s = Ω(n1/d) and

motion(J(s, t)) = O(n1−1/d). (3.6)

Theorem 3.4.2 (see [Brouwer et al., 1989, Theorem 9.1.3]). Let X be a connected graph s.t.

1. for each vertex v of X the graph X(v) is the line graph of Ks,t;

2. if dist(x, y) = 2, then x and y have at most 4 common neighbors.

Then X is a Johnson graph or is doubly covered by a Johnson graph. More precisely, in the

latter case X is the quotient of the Johnson graph J(2d, d) by an automorphism of the form

42



τω, where τ is the automorphism sending each d-set to its complement, and ω is an element

of order at most 2 in Aut(X) with at least 8 fixed points.

3.5 Hamming graphs

Definition 3.5.1. Let Ω be a set of s ≥ 2 points. The Hamming graph H(d, s) is a graph

on the set V (H(d, s)) = Ωd of n = sd vertices, for which a pair of vertices is adjacent if and

only if the corresponding d-tuples v1, v2 differ in precisely one position. In other words, v1

and v2 are adjacent if the Hamming distance dH(v1, v2) equals 1.

Again, it is not hard to check that H(d, s) is a distance-regular graph of diameter d with

intersection numbers

bi = (d− i)(s− 1) and ci+1 = i+ 1 for 0 ≤ i ≤ d− 1. (3.7)

In particular, H(d, s) is regular of degree k = d(s − 1) with λ = s − 2 and µ = 2. The

eigenvalues of H(d, s) are

ξj = d(s− 1)− js with multiplicity

(
d

j

)
(s− 1)j , for 0 ≤ j ≤ d. (3.8)

Using Lemma 3.2.1 it is easy to see that for the Hamming graph H(d, s)

τi = i and ψi−1 = 1, for 1 ≤ i ≤ d.

The automorphism group of H(d, s) is isomorphic to the wreath product Ss ≀ Sd. Hence,

its order is |Aut(H(d, s))| = (s!)dd!, the thickness satisfies θ(H(d, s)) ≥ s = n1/d and

motion(H(d, s)) ≤ 2sd−1 = 2n1−1/d. (3.9)
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In Section 5.2 we use the classification of distance-regular graphs with the same intersec-

tion array as Hamming graphs. In the case of diameter 2, the unique non-Hamming graph

that has the intersection array of the Hamming graph is the Shrikande graph. It has 16

vertices and has the same parameters as H(2, 4).

Definition 3.5.2. The direct product of the Hamming graph H(t, 4) with ℓ ≥ 1 copies of

the Shrikande graph is called a Doob graph.

One can check that the Doob graphs are distance-regular and have the same intersection

numbers as the Hamming graph H(t + 2ℓ, 4). Yoshimi Egawa [1981] proved that the Doob

graphs are the only graphs with this property.

Theorem 3.5.3 (Egawa [1981], see [Brouwer et al., 1989, Corollary 9.2.5]). A distance-

regular graph of diameter d with intersection numbers given by Eq. (3.7) is a Hamming

graph or a Doob graph.

3.6 Grassmann graphs

Definition 3.6.1. Let Fq be a finite field. For 2 ≤ d ≤ 2s we define a graph Jq(s, d) whose

vertices are d-dimensional subspaces of Fsq over Fq, such that a pair of vertices is adjacent if

and only if the intersection of the corresponding subspaces is a subspace of dimension d− 1.

The graph Jq(s, d) is called the Grassmann graph.

Define

(
n

d

)
q
=

(qn − 1)(qn−1 − 1) . . . (qn−d+1 − 1)

(qd − 1)(qd−1 − 1) . . . (q − 1)
and [n]q =

(
n

1

)
q
= qn−1 . . .+ 1. (3.10)

The parameters of the Grassmann graph are:

bi = q2i+1[d− i]q[s− d− i]q =
(
[d]q − [i]q

) (
q[s− d]q + 1− [i+ 1]q

)
, and

ci =
(
[i]q
)2 (3.11)
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This implies,

k = q[d]q[s− d]q and kj = qj
2
(
d

i

)
q

(
s− d

i

)
q
,

µ = (q + 1)2, λ = q[s− d]q + q[d]q + q,

(3.12)

Using Lemma 3.2.1 it is easy to see that for the Grassmann graph Jq(s, d)

m = [d]q, τi = [i]q and ψi−1 = [i]q, for 1 ≤ i ≤ d.

Theorem 3.6.2 (Ray-Chaudhuri and Sprague [1976], see also [Brouwer et al., 1989, Thm.

9.3.9]). Let X be a geometric distance-regular graph with the smallest eigenvalue −m. As-

sume that

(i) each clique has at least q2 + q + 1 vertices, i.e., k/m+ 1 ≥ q2 + q + 1,

(ii) each vertex belongs to > q + 1 cliques, i.e., m > q + 1,

(iii) ψ1 = τ2 = q + 1.

Then X is a Grassmann graph Jq(s, d) for some s.
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CHAPTER 4

CAMERON’S CLASSIFICATION AND COMBINATORIAL

APPROACH

4.1 O’Nan-Scott theorem. Cameron classification

Let Ω be a finite set of points, and let G ≤ Sym(Ω) be a permutation group on Ω.

We start by stating the O‘Nan-Scott theorem, one of the central results in the theory of

primitive permutation groups, as it brings the Classification of Finite Simple Groups into

play.

Definition 4.1.1. Let G,G1, . . . , Gt be isomorphic groups and ϕi : G → Gi be isomor-

phisms for i ∈ [t]. The diagonal subgroup of S1 × S2 × . . . × Sd is the group D =

{(ϕ1(s), ϕ2(s), . . . , ϕt(s)) | s ∈ S}.

Theorem 4.1.2 (Scott [1980], Aschbacher and Scott [1985], see [Cameron, 1981, Thm. 4.1]).

Let G be a primitive permutation group on the set Ω. Let n denote the degree of G and N

denote its socle (see Def. 2.2.4). Then one of the following holds:

1. N is elementary abelian of order pd, where p is prime and d ≥ 1.

2. N = T1 × T2 × . . .× Tm, where T1, T2, . . . , Tm are isomorphic to a fixed simple group

T . Moreover, either

(a) T is a socle of a primitive group G0 of degree n0, and G ≤ G0 ≀ Sm (with the

product action), where n = nm0 ; or

(b) N ∩Gα = D1×D2× . . .×Dℓ, where Gα is a stabilizer of a point α ∈ Ω, m = kℓ

for some k, Di is the diagonal supgroup of T(i−1)k+1×. . .×Tik and n = |T |(k−1)ℓ.

Relying on the O’Nan-Scott theorem, and on the CFSG through “Schreier’s Hypothesis”

Cameron [1981] gave a classification of primitive permutation groups of large order.
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Theorem 4.1.3 (“Shreier’s Hypothesis”, depends on CFSG). A non-abelian finite simple

group is an alternating group, a group of Lie type, or one of finitely many sporadic groups.

Theorem 4.1.4 (Cameron [1981]). There exists a constant c > 0 such that for every prim-

itive permutation group G of degree n one of the following holds.

1. G has an elementary abelian regular normal subgroup.

2. T ℓ ≤ G ≤ Aut(T ) ≀ Sℓ, where T is either an alternating group acting on k-element

subsets, or a classical simple group acting on an orbit of subspaces or pairs of subspaces

of complementary dimension (in the case PSL(d, q)), and the wreath product has the

product action.

3. |G| ≤ nc log log n.

Remark 4.1.5 (Cameron [1981]). Groups under 1 and those under 2 for which T is not an

alternating group satisfy |G| ≤ nc
′ log n for some c′ > 0.

Hence, one can immediately get the following corollary.

Theorem 4.1.6 (Cameron [1981]). There exists a constant c > 0 such that for every prim-

itive permutation group G of degree n either

1.
(
A
(t)
k

)ℓ
≤ G ≤ S

(t)
k ≀ Sℓ (with the product action), for k ≥ 7, n =

(k
t

)ℓ
, or

2. |G| ≤ nc log n.

Definition 4.1.7. We say that a permutation group G in a Cameron group, if

(
A
(t)
k

)ℓ
≤ G ≤ S

(t)
k ≀ Sℓ (with the product action) for some k, t, ℓ. (4.1)
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4.2 Permutation groups with small minimal degree

As we discussed in Introduction, the minimal degree is one of the key parameters of per-

mutation groups, study of which goes back to Jordan [1871]. Furthermore, as we discuss

below, by Wielandt’s result, lower bounds on the minimal degree imply strong structural

constraints on the group.

Using the Classification of Finite Simple Groups, Liebeck and Saxl [1991] gave the fol-

lowing classification of primitive permutation groups based on their minimal degree.

Theorem 4.2.1 (Liebeck and Saxl [1991]). Let G be a primitive permutation group on a set

Ω of size n. Then one of the following holds.

1. mindeg(G) ≥ n/2.

2. Arm ◁ G ≤ Sm ≀ Sr, where m ≥ 5 and the wreath product acts on Ω = ∆r and Sm acts

on ∆. Moreover, either ∆ =
([m]
k

)
is the set of k-subsets of [m] and n =

(m
k

)
, for

k < m/2, or m = |∆| = 6 and n = 6r.

3. Lr ◁G ≤ L1 ≀Sr, where L is a simple group of Lie type over F2, L is a socle of L1 and

Ω = ∆r for some set ∆ on which L1 acts primitively. In this case, mindeg(G) ≥ n/3.

As an immediate corollary one gets the following claim.

Theorem 4.2.2 (Liebeck and Saxl [1991]). If G is a primitive permutation group of degree

n, then one of the following is true.

1. G is a Cameron group.

2. mindeg(G) ≥ n/3.

The next lemma shows that in a certain range of parameters Cameron groups have

sublinear minimal degree.
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Lemma 4.2.3. Let G be a Cameron group with (A
(k)
m )d ≤ G ≤ S

(k)
m ≀ Sd which acts on

n =
(m
k

)d
points, where k ≤ m/2. Then as m → ∞, the following holds uniformly in d: we

have mindeg(G) = o(n) if and only if k = o(m).

Proof. It is not hard to see that the minimal degree of G is realized by the induced action

of a cycle of length 2 or 3 (in Sm or Am, respectively) on k-subsets in just one of the d

coordinates. If there is a 2-cycle action in a coordinate, then the minimal degree of G is

((
m

k

)
−
(
m− 2

k

)
−
(
m− 2

k − 2

))(
m

k

)d−1

,

otherwise, the minimal degree of G is

((
m

k

)
−
(
m− 3

k

)
−
(
m− 3

k − 3

))(
m

k

)d−1

.

As m→ ∞ these expressions are equal to

n ·
(
1− (m− k)2 + k2

m2
+ o(1)

)
and n ·

(
1− (m− k)3 + k3

m3
+ o(1)

)
,

respectively. Clearly, each of these expressions is o(n) if and only if k = o(m).

4.3 Wielandt’s upper bound for thickness

The thickness θ(G) of a group G is the greatest t for which the alternating group At is

involved as a quotient group of a subgroup of G (the term was coined in Babai [2014]).

Babai et al. [1982] proved that primitive permutation groups with bounded thickness have

polynomially bounded order.

Wielandt [1934] proved that a linear lower bound for the minimal degree of a permutation

group implies a logarithmic upper bound for the thickness of the group.
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Theorem 4.3.1 (Wielandt [1934], see [Babai, 1982, Theorem 6.1]). Let n > k > ℓ be positive

integers, k ≥ 7, and let 0 < α < 1. Suppose that G is a permutation group of degree n and

minimal degree at least αn. If

ℓ(ℓ− 1)(ℓ− 2) ≥ (1− α)k(k − 1)(k − 2),

and θ(G) ≥ k, then n ≥
(k
ℓ

)
.

Corollary 4.3.2. Let G be a permutation group of degree n. Suppose mindeg(G) ≥ αn.

Then the thickness θ(G) of G satisfies θ(G) ≤ 3

α
ln(n).

4.4 Motion of distance-transitive graphs

As an application of the Liebeck-Saxl classification, in this section we prove the following

result on motion of distance-transitive graphs.

Theorem 4.4.1 (Babai and Kivva [2020]). Let X be a primitive distance-transitive graph.

Assume that G ≤ Aut(X) acts on X distance-transitively. Then

mindeg(G) ≥ n/3,

or X is a Johnson graph, a Hamming graph, a complement to J(m, 2), a complement to

H(2,m), the Sylvester graph or the line graph of Tutte’s 8-cage.

It is easy to see that a group acting distance-transitively on a primitive distance-regular

graph is primitive.

Definition 4.4.2. Let X = (V, c) be a coherent configuration. We say that G acts color-

transitively on X if for every x, y, x′, y′ ∈ V with c(x, y) = c(x′, y′) there exists g ∈ G such

that g(x) = x′ and g(y) = y′.
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Lemma 4.4.3 (D. Higman). Let X = (V, c) be a primitive coherent configuration. Assume

that group G ≤ Aut(X) acts color-transitively. Then, G is a primitive group.

Proof. Let R be a non-diagonal orbital of G and let (u, v) ∈ R. Let i = c(u, v). Since X is

primitive, between every pair of vertices x, y ∈ V there is a path in Xi. The group G acts

color-transitively, so each edge of such path is in R. Therefore, G is primitive.

Corollary 4.4.4. Let X be a primitive distance-regular graph. Assume that group G ≤

Aut(X) acts distance-transitively. Then, G is a primitive group.

Therefore, by the Liebeck-Saxl classification, if the group G acts distance-transitively on

a primitive distance-regular graph and has mindeg(G) < n/3, then G should be one of the

groups described in case 2 of Theorem 4.2.1.

The distance-transitive graphs with the automorphism group described in case 2 of the

Liebeck-Saxl theorem are known via the following results of Praeger et al. [1987] and Liebeck

et al. [1987].

Definition 4.4.5. A group G is called almost simple if there exists a simple non-abelian

group such that S ≤ G ≤ Aut(S).

Theorem 4.4.6 (Praeger, Saxl, Yokoyama [1987]). Let X be a primitive distance-transitive

graph with d ≥ 2 and k ≥ 3. Assume that G acts on X distance-transitively. Then one of

the following is true.

1. X is a Hamming graph H(d,m), or a complement to H(2,m).

2. G is almost simple.

3. G is affine.

Theorem 4.4.7 (Liebeck, Praeger, Saxl [1987]). Let X be a distance-transitive graph with

G = Aut(X). Assume that Am ◁ G ≤ Aut(Am), for m ≥ 5. Then G = Sm and X is a
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Johnson graph J(m, k), a complement to J(m, 2), an Odd graph, a folded Johnson graph

J(2k, k) or G = Aut(A6) and X is a Sylvester graph or a line graph of Tutte’s 8-cage.

Lemma 4.4.8. If X is an Odd graph O(k) or a folded Johnson graph J(2k, k), then

motion(X) ≥ |V (X)|/3.

Proof. If X is an Odd graph O(k), it has n =

(
2k − 1

k − 1

)
vertices. It is not hard to check that

every non-identity automorphism of O(k) moves at least 2

(
2k − 3

k − 2

)
vertices. Therefore,

motion(X) ≥ 2
k(k − 1)

(2k − 1)(2k − 2)
n =

k

2k − 1
n ≥ 1

2
n.

If X is a folded Johnson graph J(2k, k), then it has n =
1

2

(
2k

k

)
vertices. It is not hard to

check that every non-identity automorphism of J(2k, k) moves at least

(
2k − 2

k − 1

)
vertices.

Therefore,

motion(X) ≥ 2k2

2k(2k − 1)
n =

k

2k − 1
n ≥ 1

2
n.

Before, giving a proof of Theorem 4.4.1 we make the following simple observation.

Observation 4.4.9. Let H ≤ G ≤ Sym(Ω). Then mindeg(H) ≥ mindeg(G).

Proof of Theorem 4.4.1. Assume that X is not complete. By Observation 4.4.9, it is suffi-

cient to prove the theorem for G = Aut(X). By Corollary 4.4.4, the group G is primitive.

Assume, mindeg(G) < n/3. Then G is one of the groups described in case 2 of Theorem 4.2.1.

Therefore, by Theorem 4.4.6, either X is a Hamming graph, or a complement to H(2,m), or

Am ◁ Aut(X) ≤ Aut(Am). Hence, in the view of Lemma 4.4.8, Theorem 4.4.7 implies that

X is a Johnson graph, or a complemet to J(m, 2), or the Sylvester graph or the line graph

of Tutte’s 8-cage.
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4.5 Combinatorial tools to bound the order and the minimal

degree of automorphism groups

4.5.1 Distinguishing numbers

In a seminal paper, Babai [1981] introduced a combinatorial technique to bound the order

of primitive permutation groups.

Definition 4.5.1 (Babai [1981]). In a configuration X = (Ω, c) a pair of vertices u, v ∈ Ω is

distinguished by a vertex x ∈ Ω if the colors c(x, u) and c(x, v) are distinct. Define

D(u, v) = |{x | u, v are distinguished by x}| .

It is easy to see that for a homogeneous coherent configuration X, the number D(u, v) of

vertices which distinguish u and v depends only on the color i between u and v. So one can

define D(i) = D(u, v). Babai [1981] showed the following relation for distinguishing numbers

of two different colors.

Lemma 4.5.2 ([Babai, 1981, Proposition 6.4]). Let X be a homogeneous coherent configu-

ration of rank r. Then for all colors 1 ≤ i, j ≤ r − 1 the inequality D(j) ≤ disti(j)D(i)

holds.

Proof. Note that for all vertices u, v, w we have D(u, v) ≤ D(v, w) + D(w, u). If disti(j)

is finite, then the statement follows from this triangle inequality. If disti(j) is infinite, the

statement is trivial.

Definition 4.5.3. Define the minimal distinguishing number Dmin(X) of the configuration

X = (V, c) to be

Dmin(X) = min
u̸=v∈V

D(u, v).
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4.5.2 Order

Babai showed that the minimal distinguishing number of X can be used to bound the order

of the automorphism group of X.

Definition 4.5.4. A set S of vertices of a configuration X is distinguishing if every pair of

distinct vertices in X is distinguished by at least one element of S.

Note that the pointwise stabilizer of a distinguishing set is trivial. Thus, if S is a distin-

guishing set of X = (V, c), then |Aut(X)| ≤ n|S|, where |V | = n.

Lemma 4.5.5 ([Babai, 1981, Lemma 5.4] ). Let X be a primitive coherent configuration.

Then there exists a distinguishing set of size at most (2n log n/Dmin(X)) + 1. Moreover, we

have |Aut(X)| ≤ n3+2n(log(n)−5/9)/Dmin(X).

In the same paper, he proved that for non-trivial primitive coherent configurations the

minimal distinguishing number is at least Ω (
√
n).

Theorem 4.5.6 (Babai [1981]). Let X be a non-trivial primitive coherent configuration on

n vertices. Then Dmin(X) > (
√
n− 1)/2.

Combining these two results, one immediately gets the following corollary.

Theorem 4.5.7 (Babai [1981]). Let X be a non-trivial primitive coherent configuration on

n vertices. Then |Aut(X)| ≤ n4
√
n log n.

As a byproduct, Babai resolved a then 100-year-old problem on primitive but not doubly

transitive permutation groups.

Theorem 4.5.8 (Babai [1981]). Let G be a primitive but not doubly transitive permutation

group of degree n. Then |G| ≤ n4
√
n log n.

Note that Theorems 4.5.7, 4.5.8 are tight up to a logarithmic factor, as automorphism

groups of the Johnson schemes J(s, 2) and Hamming schemes H(2, s) show.
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After more than 30 years, Sun and Wilmes [2015a] overcame the first layer of exceptions

and proved the following result, which again is tight up to a logarithmic factor.

Theorem 4.5.9 (Sun and Wilmes [2015a]). Let X be a non-trivial primitive coherent config-

uration on n vertices. If X is not a Johnson scheme J(s, 2) or a Hamming schemes H(2, s)

for some s, then |Aut(X)| ≤ exp
(
O
(
n1/3 log7/3 n

))
.

4.5.3 Minimal degree. Spectral tool

Babai [2014] developed a combination of combinatorial and spectral tool to prove lower

bounds on the motion of coherent configurations. The combinatorial tool uses the minimal

distinguishing number.

Observation 4.5.10. Let X be a configuration with n vertices. Then

motion(X) ≥ Dmin(X).

Proof. Indeed, let σ ∈ Aut(X) be any non-trivial automorphism of X. Let u be a vertex

not fixed by σ. No fixed point of σ distinguishes u and σ(u), so the degree of σ is at least

D(u, σ(u)) ≥ Dmin(X).

For a k-regular graph X, let k = ξ1 ≥ ξ2 ≥ ... ≥ ξn denote the eigenvalues of the

adjacency matrix of X. We call ξ = ξ(X) = max{|ξi| : 2 ≤ i ≤ n} the zero-weight spectral

radius of X. The second tool is based on the Expander Mixing Lemma.

Lemma 4.5.11 ([Babai, 2014, Proposition 12]). Let X be a regular graph of degree k on n

vertices with the zero-weight spectral radius ξ. Suppose every pair of distinct vertices in X

has at most q common neighbors. Then

motion(X) ≥ n · (k − ξ − q)

k
.
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Note that this spectral tool gives a trivial bound for bipartite graphs, as ξ(X) = k for a

k-regular bipartite graph X. We prove a bipartite version of this lemma in Theorem 8.4.3.

Using this pair of tools Babai proved a linear lower bound on the minimal degree of

strongly regular graphs with known exceptions (see Theorem 1.2.5). Using the same pair of

tools we extended his result to primitive coherent configurations of rank 4 (Theorem 1.2.8)

and distance-regular graphs of bounded diameter (Theorem 1.2.6).
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CHAPTER 5

CLASSIFICATION OF GRAPHS WITH BOUNDED

SMALLEST EIGENVALUE

5.1 Prior work and our contribution

Hoffman [1967] observed that there is a relation between conbinatorial properties of a graph

and spectral properties of its adjacency matrix. He initiated the program of classifying graphs

and graph properties that can be characterized by spectrum. A particularly interesting

direction that received a lot of attention is the program of classifying graphs by the least

eigenvalue of their adjacency matrix.

Many interesting graphs with certain degree of regularity are constructed from geometric

objects or using geometric intuition. These include incidence graphs of partial linear spaces,

line graphs, Grassmann graphs, Hamming graphs, Johnson graphs, etc. Vaguely speaking,

the absolute value of the smallest eigenvalue for many of these families is ”small.” Moreover,

a long line of work, which we briefly discuss in this chapter, essentially shows that if a

“sufficiently regular” graph has the smallest eigenvalue of a “sufficiently small” absolute

value, then it comes from a certain “geometric family”.

For instance, if a connected graph is regular and the smallest eigenvalue θmin is greater

than −2, one gets the following complete characterization.

Theorem 5.1.1 (Doob and Cvetković [1979], see [Brouwer et al., 1989, Corollary 3.12.3]).

Let X be a connected regular graph with smallest eigenvalue > −2. Then X is a complete

graph, or X is an odd polygon.

Remark 5.1.2. Doob and Cvetković [1979] gave complete characterization of all graphs

(not necessarily regular) with smallest eigenvalue > −2.
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Remark 5.1.3. Note that the complete graph Kn is the line graph of the complete bipartite

graph Kn,1, and the cycle Cn is the line graph of itself.

5.1.1 Classification of graphs with smallest eigenvalue −2

If one allows the smallest eigenvalue to be ≥ −2, even within regular graphs there are much

more examples than in Theorem 5.1.1. In particular, for every graph, its line graph has

smallest eigenvalue ≥ −2.

Seidel [1968] classified strongly regular graphs with smallest eigenvalue −2.

Theorem 5.1.4 (Seidel [1968]). Let X be a strongly regular graph with smallest eigenvalue

−2. Then X is either the Johnson graph J(s, 2) for s ≥ 4, the Hamming graph H(2, s) for

s ≥ 2, a complete multipartite graph Kn×2, or a X has at most 28 vertices.

Remark 5.1.5. We note that the Johnson graph J(s, 2) is the line graph of Ks. J(s, 2) is

also known as the triangular graph T (s); and the Hamming graph H(2, s) is the line graph

of Ks,s, and is also known as the lattice graph L2(s).

Remark 5.1.6. Seidel [1968] also showed that the graphs with ≤ 28 vertices that are not

explicitly mentioned in Theorem 5.1.4 are the Peterson, Clebsch, Schläfli, Shrikande, or

Chang graphs.

Hoffman [1970b, 1977] gave a characterization of graphs whose least eigenvalue is ≥ −2

dropping all regularity assumptions.

Definition 5.1.7. For an integer a ≥ 2, a cocktail-party graph CP (a) is a complete graph

on 2a vertices with one perfect matching deleted.

Definition 5.1.8. Let Y be a graph whose vertex set is [v], and let a1, a2, . . . , av be

a set of non-negative integers. A generalized line graph L(Y ; a1, a2, . . . , av) is a graph

obtained from the disjoint union of the line graph L(Y ) and the cocktail-party graphs

58



CP (a1), CP (a2), . . . , CP (an) by adding edges between vertex {i, j} in L(Y ) and vertices

of CP (ai) and CP (aj) for every distinct i, j ∈ [v].

Theorem 5.1.9 (Hoffman [1970b, 1977]). Let X be a connected graph with n ≥ 37 vertices

and smallest eigenvalue ≥ −2. Then X is a generalized line graph.

Alternative simplified proof of this result was given by Cameron et al. [1991], see [Brouwer

et al., 1989, Theorem 3.12.2]. Their results also imply the following refined classification in

the case of regular graphs.

Theorem 5.1.10 (Cameron et al. [1991], see [Brouwer et al., 1989, Theorem 3.12.2]). Let

X be a connected regular graph with n vertices of degree k and smallest eigenvalue ≥ −2.

Then one of the following holds.

1. X is the line graph of a regular or a bipartite semiregular connected graph.

2. n = 2(k + 2) ≤ 28 and X is a subgraph of E7(1).

3. n = (3/2)(k + 2) ≤ 27 and X is a subgraph of the Schläfli graph.

4. n = (4/3)(k + 2) ≤ 16 and X is a subgraph os the Clebsch graph.

5. n = k + 2 and X is a complete s-partite graph Ks×2 for some s ≥ 3

We also note the following generalization of Seidel’s classification for edge-regular and

co-edge-regular graphs.

Theorem 5.1.11 ([Brouwer et al., 1989, Theorem 3.12.4]). Let X be a connected regular

graph on n vertices with smallest eigenvalue −2.

(i) If X is edge-regular, then X is strongly regular or the line graph of a regular triangle-

free graph.

(ii) If X is co-edge-regular, then X is strongly regular, an m1×m2-grid, or one of the two

regular subgraphs of the Clebsh graph with 8 and 12 vertices, respectively.
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5.1.2 Gap in possible values of the smallest eigenvalue

Another important discovery made by Hoffman [1977] is that in fact one can also say a lot

about graphs whose least eigenvalue is in the range (−1−
√
2,−2).

Definition 5.1.12. Define ϑk to be the supremum of the smallest eigenvalues of graphs with

minimal degree k and smallest eigenvalue < −2.

Theorem 5.1.13 (Hoffman [1970a], see [Brouwer et al., 1989, Theorem 3.12.5]). The se-

quence (ϑk)k forms a monotone decreasing sequence with limit −1−
√
2.

Theorem 5.1.14 (Bussemaker and Neumaier [1992], see [Brouwer et al., 1989, Theorem

3.12.5]). ϑ1 (≈ −2.006594) is the smallest root of the equation

θ2(θ2 − 1)2(θ2 − 3)(θ2 − 4) = 1.

These results immediately imply that for δ ≈ −0.006594 the smallest eigenvalue of a

graph is never in the interval (−2 − δ,−2). This will be a crucial ingredient in our charac-

terization of Johnson graphs (see Sec 6.2).

5.1.3 Strongly regular graphs with fixed smallest eigenvalue

Much less is known about general graphs whose least eigenvalue is < −1 −
√
2. However,

strong classifications were established for special classes of graphs, such as strongly regular

and distance-regular graphs.

Extending Seidel’s classification, Neumaier classified strongly regular graphs with fixed

smallest eigenvalue −m (which was also established in an unplushid work of Sims [1968]).

Prior to stating Neumaier’s classification we define the families of graphs that appear in

his classification.
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Definition 5.1.15. A Steiner system S(2,m, v) is a collection of m-element subsets of [v],

called blocks, such that every pair of distinct elements from [v] is contained in exactly one

block.

Definition 5.1.16. For a Steiner system S(2,m, v) define a graph whose vertices are blocks

of the Steiner system and two blocks are adjacent if they share an element. Such a graph is

called a Steiner graph.

It is not hard to verify that the Steiner graph constructed from S(2,m, v) is a geometric

strongly regular graph with smallest eigenvalue −m.

Definition 5.1.17. An orthogonal array OA(v,m) with parameters m and v is an array of

size m×v2 with entries from [v], such that the v2 ordered pairs in every pair of distinct rows

are all different.

Definition 5.1.18. For an orthogonal array OA(v,m) define a graph whose vertices are

columns of the array and two columns are adjacent if they have the same entry in exactly

one position. We call such a graph a Latin square graph.

It is not hard to verify that the Latin square graph constructed from OA(v,m) is a

geometric strongly regular graph with smallest eigenvalue −m.

Theorem 5.1.19 (Neumaier [1979]). Let m ≥ 0. Let X be a strongly regular graph with

smallest eigenvalue −m, then X is one of the following

1. a Steiner graph defined by S(2,m, s);

2. a Latin square graph defined by OA(s,m);

3. a complete multipartite graph Ks×m

4. a conference graph;

5. a union of disjoint cliques;

6. one of finitely many exceptions.
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5.1.4 Case of distance-regular graphs

In the case of distance-regular graphs, all but finitely many graphs with bounded smallest

eigenvalue are geometric (see Sec. 3).

Theorem 5.1.20 (Koolen and Bang [2010]). Fix an integer m ≥ 2. Then there are only

finitely many coconnected non-geometric distance-regular graphs with smallest eigenvalue at

least −m, and intersection number µ ≥ 2.

As pointed out in the survey by [van Dam et al., 2016, below Thm. 9.10], one can remove

condition µ ≥ 2 if one imposes k ≥ 3 and d ≥ 3 instead. This follows from the Bannai-Ito

conjecture, confirmed by Bang et al. [2015].

Theorem 5.1.21 (Bannai-Ito conjecture, Bang et al. [2015]). For every fixed k ≥ 3 there

are finitely many connected distance-regular graphs with degree k.

Indeed, when µ = 1, k ≥ 3, d ≥ 3 and graph is not geometric, the degree is bounded by

O(m4), see [van Dam et al., 2016, below Thm. 9.10]. So there are only finitely many such

graphs for a fixed m.

Moreover, Koolen and Bang conjectured that in fact all but finitely many geometric

distance-regular graphs with bounded smallest eigenvalue are known.

Conjecture 5.1.22 (Koolen and Bang [2010]). For a fixed integer m ≥ 2, every geometric

distance-regular graph with smallest eigenvalue −m, diameter ≥ 3 and µ ≥ 2 is a Johnson

graph, or a Hamming graph, or a Grassmann graph, or a bilinear forms graph, or the number

of vertices is bounded by a function of m.

If confirmed, this conjecture combined with Theorem 5.1.20, classifies all infinite families

of distance-regular graphs with bounded smallest eigenvalue and can be seen as an extension

of Neumaier’s classification (Theorem 5.1.19). Bang and Koolen confirmed their conjecture

in the case m = 3.
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Theorem 5.1.23 (Bang [2013], Bang and Koolen [2014]). Let X be a geometric distance-

regular graph of diameter d ≥ 3 with smallest eigenvalue −3 and µ ≥ 2. Then X is one of

the following:

• The Hamming graph H(3, s) for s ≥ 3.

• The Johnson graph J(s, 3) for s ≥ 6.

• The collinearity graph of the generalized quadrangle of order (s, 3) deleting the edges

in a spread, where s ∈ {3, 5}.

We also note that in fact, for geometric distance-regular graphs of diameter d under mild

assumptions the diameter and the smallest eigenvalue −m satisfy d ≤ m.

Theorem 5.1.24 (Bang [2018]). Suppose that X is a geometric distance-regular graph with

diameter d ≥ 3 and smallest eigenvalue −m. If X contains an induced K2,1,1, then d ≤ m.

Moreover, if d ≥ max(3,m− 1), then X is a Johnson graph.

5.1.5 Our contribution

We characterize Hamming graphs as distance-regular graphs of diameter d with smallest

eigenvalue −d, 2 ≤ µ ≤ 3 and sufficiently large degree k.

Theorem 5.1.25. Let X be a distance-regular graph of diameter d ≥ 2 with smallest eigen-

value −d. Suppose that 2 ≤ µ ≤ 3 and k ≥
(
100d3 ln d

)
· cd.

Then X is the Hamming graph H(d, k/d+ 1).

This characterization also plays a crucial role in our proof of the robustness under exten-

sion for Hamming schemes (part 2 of Theorem 1.3.6, see Section 10.5).

5.2 Characterization of Hamming graphs by smallest eigenvalue

We note that if k ≥ 3d3cd ≥ 3d3µ and smallest eigenvalue of X is −d, then X is geometric.
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Lemma 5.2.1 ([Koolen and Bang, 2010, Lemma 3.2]). Let X be a distance-regular graph of

diameter d with smallest eigenvalue ≥ −m. Then k < m(λ+m).

Observation 5.2.2. Let X be a distance-regular graph of diameter d ≥ 2 with smallest

eigenvalue −m, where m ≥ 2. If k ≥ 3m3µ, then X is geometric.

Proof. Lemma 5.2.1 implies that λ+m ≥ k/m. Therefore, the inequality k ≥ 3m3µ implies

2m(λ+ 1) ≥ k and λ ≥ m(2m+ 1)µ. Hence, by Corollary 3.1.6, X is geometric.

Hence, Theorem 5.1.25 may be reformulated in the following equivalent way.

Theorem 5.2.3. Let X be a geometric distance-regular graph of diameter d ≥ 2 with smallest

eigenvalue −d. Suppose that 2 ≤ µ ≤ 3, and k ≥
(
100d3 ln d

)
· cd.

Then X is the Hamming graph H(d, k/d+ 1).

The proof of Theorem 5.2.3 (and of Theorem 1.4.5 in Sec. 6) uses the following result of

Terwilliger.

Theorem 5.2.4 (Terwilliger [1986]). Let X be a distance-regular graph of diameter d ≥ 2.

Assume that the second largest eigenvalue θ1 has multiplicity f1 < k. Then each local graph

X(v) has eigenvalue −1− b+ with multiplicity at least k − f1, where b
+ =

b1
θ1 + 1

.

We prove that ifX is not a Hamming graph, then the assumptions of Theorem 5.2.3 imply

that the second largest eigenvalue has multiplicity at most k− 1. Therefore, by the theorem

above, each neighborhood graph of X has an eigenvalue less than −1. This contradicts the

fact that each neighborhood graph is a disjoint union of cliques.

5.2.1 A bound on the second eigenvalue of geometric DRGs

In this section we prove a bound on the eigenvalues of geometric distance-regular graphs.

64



Lemma 5.2.5 ([Brouwer et al., 1989, p.130]). Let X be a (k-regular) distance-regular graph

of diameter d. The eigenvalues of X, distinct from k, are equal to the eigenvalues of the

following matrix

T =



−c1 b1 0 0 ...

c1 k − b1 − c2 b2 0 ...

0 c2 k − b2 − c3 b3 ...

...
... ...

... 0 cd−1 k − bd−1 − cd


. (5.1)

To get a bound on the second largest eigenvalue of a distance-regular graph we also need

the Perron-Frobenius theorem in the following form.

Theorem 5.2.6 (Perron, Frobenius). Let A be a non-negative matrix. Then there exists a

non-negative number θ and a non-negative vector v, such that Av = θv. Moreover, every

other eigenvalue θi of A satisfies |θi| ≤ θ.

As a simple corollary we can deduce the following claim.

Lemma 5.2.7. Let X be a distance-regular graph of diameter d. Then the second largest

eigenvalue θ1 of X satisfies

min
i∈[d]

(k − bi−1 + bi + ci−1 − ci) ≤ θ1 ≤ max
i∈[d]

(k − bi−1 + bi + ci−1 − ci)

Proof. Let T be the matrix defined in Lemma 5.2.5. Then, the matrix T ′ = T + cdId is

a non-negative matrix. Clearly, θ1 + cd is the largest eigenvalue of T ′, and by the Perron-

Frobenius theorem, there exists a corresponding eigenvector v with non-negative entries.

Since all entries with indices (i, i+1) and (i+1, i) are positive, it is easy to see that v must
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have only strictly positive entries. Hence, the desired bounds follow from the inequality

(
min
j∈[n]

vj

)
·

max
i∈[n]

n∑
j=1

T ′
i,j

 ≤ (θ1 + cd)vi =
n∑
j=1

T ′
i,jvj ≤

(
max
j∈[n]

vj

)
·

max
i∈[n]

n∑
j=1

T ′
i,j

 ,

by picking i that minimizes (respectively, maximizes) the entry vi. (Note that b0 = k.)

In particular, in the case of geometric-distance regular graphs we get the following.

Theorem 5.2.8. Let X be a geometric distance-regular graph of diameter d with smallest

eigenvalue −m. Let τ∆ = mini(τi − τi−1) and τ
∆ = maxi(τi − τi−1). Then

k − τ∆

m
k −mcd ≤ θ1 ≤ k − τ∆

m
k +mcd.

Proof. Recall that, by Lemma 3.2.1, for geometric distance-regular graphs we have

ci+1 = τi+1ψi and bi = (m− τi)

(
k

m
+ 1− ψi

)
for i = 0, 1, . . . d− 1. (5.2)

Therefore,

(m− τi)

(
k

m
− cd

)
≤ bi ≤ (m− τi)

k

m
, (5.3)

and so, for i ∈ [d],

−(τi−τi−1)
k

m
−(m−τi+1)cd ≤ −bi−1+bi+ci−1−ci ≤ −(τi−τi−1)

k

m
+(m−τi−1)cd. (5.4)

Hence, the desired inequality follows from Lemma 5.2.7.

5.2.2 Bounds on parameters of geometric DRGs

Recall that Theorem 3.2.5 shows that under mild assumptions the vertex-clique intersection

parameters ψi form an increasing sequence. Below we prove that under mild assumptions τi
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also form an increasing sequence.

Lemma 5.2.9. Let X be a geometric distance-regular graph of diameter d, with smallest

eigenvalue −m. Assume that µ ≥ 2, and k ≥ m2cd. Then

τi < τi+1, for all i = 1, 2, . . . , d− 1.

Proof. Recall, by Lemma 3.2.1,

ci = τiψi−1, bi = (m− τi)

(
k

m
+ 1− ψi

)
.

Hence, in particular, ψi−1 ≤ ci ≤ cd, for i ≤ d. So for i ≤ d− 1

(m− τi)

(
k

m
− cd

)
< bi ≤

m− τi
m

k. (5.5)

A geometric distance-regular graph with µ ≥ 2 contains an induced quadrangle. Thus, by

the Terwilliger inequality (see Theorem 2.4.5) we have

bi ≥ bi+1 + λ+ 2 + ci − ci+1, for i = 0, 1, . . . , d− 1.

Therefore, for i ≤ d− 2, using Eq. (5.5),

m− τi
m

k > (m− τi+1)

(
k

m
− cd

)
+ λ+ 2− cd.

Since λ ≥ k/m− 1, for i ≤ d− 2, we get

(m− τi) > (m− τi+1)−m2cd/k + 1 ⇒ τi+1 > τi + 1−m2cd/k.

Therefore, τi+1 > τi, for i = 0, 1, . . . , d − 2. Moreover, τd−1 < m and τd = m. Hence, the
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claim of the lemma follows.

Corollary 5.2.10. Let X be a geometric distance-regular graph of diameter d with smallest

eigenvalue −d. If k ≥ d2cd and µ ≥ 2, then τi = i for every i ∈ [d].

Corollary 5.2.11. Let δ = k/(dcd). If the assumptions of Lemma 5.2.9 hold for m = d,

then

(1− δ)
d− i

d
k ≤ bi ≤

d− i

d
k, for 1 ≤ i ≤ d− 1.

Proof. By Corollary 5.2.10, we have τi = i for i ≤ d − 1. So the desired inequality directly

follows from Eq. (5.5).

5.2.3 A lower bound on the standard sequence of geometric DRGs

Next, for a geometric distance-regular graph, we prove a lower bound on the standard se-

quence of its second largest eigenvalue.

Lemma 5.2.12. Let X be a geometric distance-regular graph of diameter d ≥ 2 with smallest

eigenvalue −d. Let θ1 be its second largest eigenvalue and (ui)
d
i=0 be the corresponding

standard sequence. Let δ < 1/30. Assume that µ ≥ 2 and k ≥ cd · δ−1d2.

Then, for 1 ≤ j ≤ d− 1

uj ≥
θ1
k

·
(
d− j

d− 1

)
d−10δ.

Proof. Recall that the standard sequence corresponding to the eigenvalue θ1 satisfies

u0 = 1, u1 =
θ1
k
, ciui−1 + aiui + biui+1 = θ1ui, for i = 1, . . . , d− 1.

We can rewrite this as

ui+1 = ui
(θ1 + bi + ci − k)

bi
− ui−1

ci
bi

≥ ui

(
1− k − θ1

bi

)
− ui−1

ci
bi
. (5.6)
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By the assumptions of the lemma,

ψi−1 ≤ ci ≤ cd ≤ δ
k

d2
≤ δ

k

2d
. (5.7)

Additionally, since d2cd < k, by Corollary 5.2.10, τi = i for i ∈ [d].

So, using Lemma 3.2.1, Theorem 5.2.8 and Eq. (5.7), we get the following bounds

k − θ1 ≤ k

d
+ dcd ≤ (1 + δ)

k

d
. (5.8)

bi ≥ (d− i)

(
k

d
− cd

)
≥ (1− δ)

(d− i)

d
k, for i ≤ d− 1. (5.9)

For the convenience of the future computations we first show that for 1 ≤ i ≤ d − 2, the

inequality 3ui+1 ≥ ui ≥ 0 holds. Indeed, by Eq. (5.8), u1 ≥ u0/3. For i ≤ d−2, by Eq. (5.8)

and Eq. (5.9),

1− k − θ1
bi

≥ 1− 1 + δ

2− 2δ
≥ 1

2
− 2δ. (5.10)

Additionally, using Eq. (5.7) and Eq. (5.9), we get

ci
bi

≤ dcd
(1− δ)k

≤ 2dcd
k

≤ δ. (5.11)

Thus, by induction, for δ < 1/30, Eq. (5.6), Eq. (5.10) and Eq. (5.11) yield

ui+1 ≥
(
1

2
− 2δ

)
ui − δui−1 ≥

(
1

2
− 5δ

)
ui ≥

1

3
ui.

Hence, for i ≤ d− 2, we can rewrite Eq. (5.6)

ui+1 ≥ ui
(θ1 + bi + ci − k)

bi
− 3ui

ci
bi

≥ ui

(
1− k − θ1 + 2cd

bi

)
.
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Thus, using Eq. (5.7), Eq. (5.8) and Eq. (5.9), for i ≤ d− 2,

ui+1 ≥ ui

(
1− (1 + δ)k + 2dcd

(1− δ)(d− i)k

)
≥ ui

(
1− 1

(d− i)

(1 + 2δ)

(1− δ)

)
≥

≥ ui

(
1− 1

(d− i)
(1 + 4δ)

)
= ui

(
d− i− 1

d− i

)(
1− 4δ

d− i− 1

)
.

(5.12)

We note that for 0 < x < 1/3 we have (1− x) ≥ e−(5/4)x. Thus, for j ≤ d− 1,

j−1∏
i=1

(
1− 4δ

d− i− 1

)
≥
d−2∏
i=1

(
1− 4δ

i

)
≥ exp

−5δ
d−2∑
i=1

1

i

 ≥ exp (−10δ ln d) . (5.13)

Therefore, for all 1 ≤ j ≤ d− 1,

uj ≥ u1

j−1∏
i=1

d− i− 1

d− i

j−1∏
i=1

(
1− 4δ

d− i− 1

)
≥ θ1

k
·
(
d− j

d− 1

)
d−10δ.

5.2.4 Proof of Theorem 5.2.3

Proof of Theorem 5.2.3. Assumptions of the theorem, and Corollary 5.2.11, imply that

ci
bi−1

≤ cd
bd−1

≤ 2dcd
k

≤ 1

50d2
for every 1 ≤ i ≤ d. (5.14)

This means that 50d2 · ki−1 ≤ ki for every 1 ≤ i ≤ d. Thus

kd ≥ n

(
1− 1

50d2

)
. (5.15)

Define δ = 1/(100d ln d) < 1/30. Then k ≥ cd · δ−1d2.
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Using Lemma 5.2.12 for j = d− 1, Eq. (5.8) and Corollary 5.2.11

kd−1u
2
d−1 ≥ kd

cd
bd−1

·
(
θ1
k

)2

·
(

1

d− 1

)2

d−20δ ≥

≥ kd ·
dcd
k

·
(
d− 1− δ

d

)2( 1

d− 1

)2

· d−20δ ≥

≥ n

(
1− 1

50d2

)
· 1
k
· cd
d

·
(
d− 1− δ

d− 1

)2

· d−20δ ≥

≥ n

k
· cd
d

·

((
1− 1

50d2

)
·
(
1− 2δ

d

)2

· d−20δ

)
.

(5.16)

Now, for δ = 1/(100d ln d),

(
d+ 1

d

)
·
(
1− 1

50d2

)
·
(
1− 2δ

d

)2

· d−20δ ≥

≥ exp

(
1

2d
− 40δ ln d− 8δ

d
− 1

50d2

)
> 1

(5.17)

where we use the inequalities ex/2 ≤ 1 + x and e−2x ≤ 1− x for 0 < x ≤ 1/2.

Therefore, if cd ≥ d+1, then kd−1u
2
d−1 > n/k. Using the Biggs formula, this immediately

implies that the second largest eigenvalue θ1 has multiplicity f1 ≤ k − 1. Therefore, −1 −
b1

θ1 + 1
< −1 is an eigenvalue of every neighborhood graph of X. This implies that ψ1 > 1

(as for ψ1 = 1, every neighborhood graph is a union of disjoint cliques). So, by Lemma 3.2.2,

µ ≥ 4. We get a contradiction with the assumptions of the theorem.

Hence, cd ≤ d. At the same time, τi = i, for every 1 ≤ i ≤ d, so ψi−1 = 1 and ci = i

for every 1 ≤ i ≤ d. Therefore, X has the same intersection array as the Hamming graph

H(d, 1+ k/d). Therefore, by Theorem 3.5.3, X is a Hamming graph or a Doob graph. Note

that X may be a Doob graph, only if 1 + k/d = 4, which is not possible. Therefore, X is a

Hamming graph.
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CHAPTER 6

CHARACTERIZATION OF DISTANCE-REGULAR GRAPHS

WITH BOUNDED SMALLEST EIGENVALUE AND LARGE

SPECTRAL GAP

6.1 Prior work and our contributions

In Chapter 5, we discussed characterization of graphs based on their least eigenvalue. An-

other direction that received a lot of attention is the problem of characterizing graphs using

their second largest eigenvalue (of the adjacency matrix). Here we focus on such characteri-

zations for distance-regular graphs of diameter at least 3 and µ ≥ 2.

These characterizations will be used in Section 8.1 to prove Theorem 1.2.6.

6.1.1 Prior work

A result of Terwilliger [1986] (see [Brouwer et al., 1989, Theorem 4.4.3]) implies that the

icosahedron is the only distance-regular graph, for which the second largest eigenvalue θ1

satisfies θ1 > b1 − 1 and µ ≥ 2. One of the central results in representation theory of

distance-regular graphs gives the classification of distance-regular graphs with µ ≥ 2 and

θ1 = b1 − 1.

Theorem 6.1.1 ([Brouwer et al., 1989, Theorem 4.4.11]). Let X be a distance-regular graph

of diameter d ≥ 3 with second largest eigenvalue θ1 = b1 − 1. Assume µ ≥ 2. Then one of

the following holds:

1. µ = 2 and X is a Hamming graph, a Doob graph, or a locally Petersen graph (and all

such graphs are known).

2. µ = 4 and X is a Johnson graph.
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3. µ = 6 and X is a half cube.

4. µ = 10 and X is a Gosset graph E7(1).

6.1.2 Our contribution

We consider the case θ1 ≥ (1 − ε)b1 for a sufficiently small ε > 0. The relaxation of the

assumption on the second largest eigenvalue comes at the cost of requiring additional struc-

tural constraints. Our main structural assumption is that X is a geometric distance-regular

graph. Additional technical structural assumptions depend on whether the neighborhood

graphs of X are connected. We note that for a geometric distance-regular graph X either

the neighborhood graph X(v) is connected for every vertex v, or X(v) is disconnected for

every vertex v (see Lemma 3.2.4). We give the following characterizations.

Theorem 6.1.2. There exists an absolute constant ε∗ > 0.0065 such that the following is

true. Let X be a geometric distance-regular graph of diameter d ≥ 2 with smallest eigenvalue

−m. Suppose that µ ≥ 2 and θ1 + 1 > (1− ε∗)b1. Moreover, assume that the vertex degree

satisfies k ≥ max(m3, 29) and the neighborhood graph X(v) is connected for some vertex v

of X.

Then X is a Johnson graph J(s, d) with s = (k/d) + d.

Remark 6.1.3. We give the exact definition of ε∗ in Lemma 6.2.2 (see also Def. 5.1.12 and

Theorem 5.1.14). We note that ε∗ can be set to be as large as 2/7, if we additionally assume

k to be sufficiently large (see Remark 6.2.9).

Theorem 6.1.4. Let X be a geometric distance-regular graph of diameter d ≥ 2 with smallest

eigenvalue −m. Consider an arbitrary 0 < ε < 1/(6m4d). Suppose that µ ≥ 2 and θ1 ≥

(1 − ε)b1. Moreover, assume ct ≤ εk and bt ≤ εk for some t ≤ d, and the neighborhood

graph X(v) is disconnected for some vertex v of X.

Then X is a Hamming graph H(d, s) with s = 1 + k/d.
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Remark 6.1.5. Theorem 6.1.4 is closely related to our characterization of Hamming graphs

by smallest eigenvalue (Theorem 5.2.3). Theorem 6.1.4 makes much weaker assumption on

the smallest eigenvalue of the graph, however, in return it requires a bound on the second

largest eigenvalue and mild additional assumptions on the intersection numbers. We believe

that it should be possible to prove the characterization that has weaker assumption on

the smallest eigenvalue than Theorem 5.2.3, and at the same time which makes weaker

assumption on the second largest eigenvalue than Theorem 6.1.4.

As we discuss in Section 5.1.4 (see Theorem 5.1.20), the assumption that a distance-

regular graph is geometric excludes only finitely many graphs with µ ≥ 2, if the smallest

eigenvalue of the graph is assumed to be bounded.

Even though the assumptions of Theorem 6.1.2 seem weaker than those of Theorem 6.1.4

(for instance, ε is absolute), we believe that, in comparison with known results, Theorem 6.1.4

brings more novelty. The known characterization of Johnson graphs in terms of the local

structure (Theorem 3.4.2) seems to be more easily applicable than the known characteriza-

tions of Hamming graphs. All characterizations of Hamming graphs known to the author,

in terms of intersection numbers, eigenvalues or local structure, make strong equality con-

straints either on the number of vertices, or on the eigenvalues. In contrast, Theorem 6.1.4

makes no assumptions of such flavor and therefore might be more broadly applicable.

Finally, we note that our characterizations confirm Conjecture 5.1.22 in rather special

cases.

6.2 Characterization of Johnson graphs via spectral gap

In this section, we prove Theorem 1.4.4, our characterization of Johnson graphs. Specifically,

we prove that a distance-regular graph with θ1+1 > (1−ε∗)b1 and connected neighborhood

graphs is a Johnson graph (for a sufficiently large k). We also show that the inequality

θ1 + 1 > (1 − ε∗)b1 can hold for a distance-regular graph with disconnected neighborhood
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graphs only if µ ≤ 2 (see Proposition 6.2.7).

The main idea of the proofs is to use the fact that for b+ =
b1

θ1 + 1
the expression −1−b+

is a lower bound on the smallest eigenvalue of a neighborhood graph X(v). More precisely,

we use the following result of Terwilliger [1986].

Theorem 6.2.1 (Terwilliger [1986], see [Brouwer et al., 1989, Theorem 4.4.3]). Let X be a

distance-regular graph of diameter d ≥ 2 with distinct eigenvalues k = θ0 > θ1 > . . . > θd,

and let b+ =
b1

θ1 + 1
, b− =

b1
θd + 1

. Then each neighborhood graph X(v) has the smallest

eigenvalue ≥ −1− b+, and the second largest eigenvalue ≤ −1− b−.

Recall, we assume that the second largest eigenvalue of X satisfies θ1 + 1 ≥ (1 − ε)b1.

In this case the smallest eigenvalue of the neighborhood graph X(v) is at least −2 − δ, for

δ = ε/(1 − ε). We also observe that if X is an edge-regular graph, its neighborhood graph

X(v) is regular for every vertex v ∈ X.

First, we note that if the diameter d of a distance-regular graph X is at least 2, λ > 2

and the neighborhood graph X(v) is connected, then the smallest eigenvalue of X(v) is at

most −2. Indeed, if a regular connected graph has the smallest eigenvalue > −2, then, by

Theorem 5.1.1, it is a complete graph or an odd polygon. The neighborhood graph X(v)

cannot be complete as d ≥ 2, and X(v) cannot be an odd polygon as λ > 2.

The graphs for which the smallest eigenvalue is precisely −2 were classified by Cameron

et al. [1991]. We use their classification in the case of connected regular graphs (Theo-

rem 5.1.10).

Combining the above discussion with results of Section 5.1.2 (Theorem 5.1.14) we get

the following claim. Recall, that in Theorem 5.1.14 we use ϑ1 (≈ −2.006594) to denote the

smallest root of the equation θ2(θ2 − 1)2(θ2 − 3)(θ2 − 4) = 1.

Lemma 6.2.2. Let X be a distance-regular graph of diameter d ≥ 2. Assume that the second

largest eigenvalue of X satisfies θ1 + 1 > (1− ε∗)b1, for 0 < ε∗ =
−2− ϑ1
−1− ϑ1

. Then for every
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vertex v of X, the neighborhood graph X(v) is a regular graph with smallest eigenvalue at

least −2.

Moreover, if X(v) is connected, λ > 2, and the vertex degree of X is at least 29, then

X(v) is the line graph of a regular or of a bipartite semiregular connected graph.

Remark 6.2.3. One can compute that ε∗ ≈ 0.0065504. Observe that, the neighborhood

graph X(v) is regular of degree λ, and by Theorem 5.1.13, lim
λ→∞

ϑλ = −1 −
√
2. Thus,

we can replace ε∗ with an arbitrary number which is less than 1 − 1/
√
2 ≈ 0.29289, if we

additionally require λ to be sufficiently large.

Next we analyze the structure of the local graph X(v) in the case when X is geometric.

Lemma 6.2.4. Let X be a geometric distance distance-regular graph with smallest eigenvalue

−m. Suppose that X(v) is the line graph of a regular or a bipartite semiregular connected

graph. Assume that the vertex degree k ≥ max(m3, 3). Then, X(v) is the line graph of a

complete bipartite graph Ks,t for each vertex v of X, where {s, t} = {m, k/m}.

Proof. Fix a Delsarte clique geometry C of X. Let C1, C2, . . . , Cm ∈ C be the cliques that

contain a vertex v. Since every edge of X is contained in precisely one clique, every vertex

of N(v) is contained in precisely one of C1, C2, . . . , Cm. Let u ∈ C1 \ {v}, by the definition

of ψi (see Section 3.2), u is adjacent with precisely ψ1 vertices of Ci for all i = 2, 3, . . . ,m.

Therefore, the degree of every vertex u in X(v) equals k/m− 1 + (ψ1 − 1)(m− 1).

Assume that Y is the line graph of a regular graph Z with vertex degree t. Then the

degree of a vertex in Y is equal 2(t− 1). Moreover, the size of a maximal clique in Y is t, if

t ≥ 3. Since Y contains a clique of size k/m, we get t ≥ k/m. Therefore, if k/m ≥ 3 and

(k/m− 1) > (ψ1− 1)(m− 1), then X(v) is not a line graph of a regular graph. In particular

this is true, if k ≥ max(m3, 3), as ψ1 ≤ τ2 ≤ m by the definition of τ2 and Lemma 3.2.2.

Hence, for every v, the neighborhood graph X(v) is the line graph of a complete bipartite

graph Ks,t. The size of the maximal clique in the line graph of Ks,t is max(s, t). Thus,
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max(s, t) = k/m. There are k vertices in X(v) and st vertices in the line graph of Ks,t, so

{s, t} = {m, k/m}.

In the case when X(v) is the line graph of a complete bipartite graph Ks,t and 1 + θ1 ≥

(1− ε)b1, we show that X is a Johnson graph. Our goal is to use the characterization of the

Johnson graphs by local structure stated in Theorem 3.4.2. The only condition we still need

to verify is µ ≤ 4. We prove that if µ > 4, then X contains an induced subgraph K3,2 and

so we can use the inequality provided by the theorem below.

Theorem 6.2.5 ([Brouwer et al., 1989, Theorem 4.4.6]). Let X be a distance-regular graph

of diameter d ≥ 2 with eigenvalues k = θ0 > θ1 > . . . > θd and put b+ = b1/(θ1 + 1). If X

contains a non-empty induced complete bipartite subgraph Ks,t, then

2st

s+ t
≤ b+ + 1.

Lemma 6.2.6. Let X be a geometric distance-regular graph of diameter d ≥ 2.

1. Assume that ψ1 = 1, then X contains an induced Kτ2,2.

2. Assume that µ ≥ 2, then X contains an induced K2,2 (a quadrangle).

Proof. Let u and v be two vertices at distance 2 in X. By the definition of τ2 there exist

distinct cliques C1, C2, . . . , Cτ2 which contain u and have non-trivial intersection with N(v).

1. Each Ci has precisely ψ1 = 1 common vertices with N(v). Denote wi = Ci ∩ N(v).

Note that wi is at distance 1 from Cj for i ̸= j, moreover, wi is adjacent to u, while

u ∈ Cj and u ̸= wj . Thus wj is not adjacent to wi for i ̸= j. Therefore, X contains

an induced Kτ2,2 (on vertices {w1, w2, . . . , wτ2 , u, v}).

2. By Lemma 3.2.2, τ2 ≥ 2, if µ ≥ 2. Take w ∈ N(v)∩C1. Assume there are no induced

K2,2 in X. Then w is adjacent to each vertex in T = C2 ∩N(v). Note that |T | = ψ1,
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u /∈ T and w is adjacent to u, so w has at least ψ1 + 1 neighbors in C2. This gives a

contradiction with the definition of ψ1.

Using the lemma above we obtain the following corollary to the Theorem 6.2.5.

Proposition 6.2.7. Let X be a geometric distance-regular graph of diameter d ≥ 2. Assume

that the neighborhood graphs of X are disconnected. If µ ≥ 3, then the second largest

eigenvalue of X satisfies θ1 + 1 ≤ 5

7
b1.

Proof. Since X is geometric and X(v) is disconnected, by Lemma 3.2.4, ψ1 = 1. Moreover,

if µ ≥ 3, by Lemma 6.2.6, there is an induced K3,2. Therefore, by Theorem 6.2.5,

b1
θ1 + 1

≥ 12

5
− 1 =

7

5
.

In the next lemma we show the existence of an induced complete bipartite subgraph

Kτ2,2 in the case when a neighborhood graph is the line graph of a triangle-free graph.

Lemma 6.2.8. Let X be a geometric distance-regular graph. Assume that for each vertex v

of X the induced subgraph X(v) is the line graph of a triangle-free graph. Then ψ1 = 2 and

X contains induced Kτ2,2.

Proof. Observe that if the line graph Y of a triangle-free graph Y ′ contains a triangle, then

the three corresponding edges of the base graph Y ′ are incident to the same vertex of Y ′.

Fix a Delsarte clique geometry C of X . Let v be a vertex of X, and C ∈ C be a Delsarte

clique which contains v, and let w ∈ N(v) \ C. By Lemma 6.2.6, since X(v) is connected,

ψ1 ≥ 2. Assume that ψ1 ≥ 3. Then w is adjacent to at least two vertices v1 and v2 in C

distinct from v. Since w, v1, v2 form a triangle in X(v), the corresponding edges in the base

graph are incident to the same vertex. Similarly, for every vertex x ∈ C \ {v}, the edges of

the base graph that correspond to x, v1 and v2 are incident to the same vertex. Therefore,

{w} ∪ C is a clique in X, which contradicts maximality of C. Therefore, ψ1 = 2.
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Let u and v be a pair of vertices at distance 2 in X. There exist distinct cliques

C1, C2, . . . , Cτ2 which contain u and have non-trivial intersection with N(v), and distinct

cliques C ′
1, C

′
2, . . . , C

′
τ2 which contain v and have non-trivial intersection with N(u).

Let T = N(u)∩N(v). Assume that w1, w2 ∈ T are adjacent, but {w1, w2} is not a subset

of Ci or C
′
i for every i ∈ [τ2]. Since ψ1 = 2 there exists a vertex w ∈ T such that {w,w1} is

a subset of some Ci. Similarly there is w′ ∈ T with {w′, w1} ⊆ C ′
j for some j. Assume that

X(v) is the line graph of a triangle-free graph Y . Assume that edges of Y that correspond

to w1, w
′ are incident with a vertex x of Y . If corresponding to w2 edge is incident with

x, then by the argument similar to the one above, w2 ∈ C ′
j . This contradicts the choice of

w2. Let y be the vertex of Y incident to the edges in Y corresponding to w2 and w1. Since

|Ci ∩ C ′
j | ≤ 1, we have w /∈ C ′

j , so w is not incident to x. Thus, w is incident to y. Hence,

w, w1 and w2 form a triangle.

Since {w,w1} ⊆ Ci, and X(u) is the line graph of a triangle-free graph, we similarly get

that w2 ∈ Ci. This gives a contradiction with the choice of w1, w2. Therefore, every pair of

distinct vertices in T are adjacent if and only if they share the same clique Ci or C
′
i.

We obtain that an edge between a pair of vertices in T is between vertices in T ∩ Ci

or between vertices in T ∩ C ′
j for some i, j. We refer to them as edges of type 1 and edges

of type 2, respectively. Since |T ∩ Ci| = |T ∩ C ′
i| = ψ1 = 2, every vertex in T is incident

with precisely one edge of type 1 and precisely one edge of type 2. Therefore, the subgraph

induced on T is a union of even cycles. Hence, we may choose an independent set S ⊆ T of

size 1
2 |T | =

1
2ψ1τ2 = τ2 in X. The graph induced on S ∪ {u, v} is K2,τ2 .

Now we are ready to combine the arguments above into a proof of Theorem 1.4.4.

Proof of Theorem 1.4.4. Denote b+ =
b1

θ1 + 1
. Since ε∗ =

−2− ϑ1
−1− ϑ1

, the assumptions of the

theorem imply that b+ < −1− ϑ1. Since X is not complete, by Lemma 3.1.7, m ≥ 2. Thus

the inequalities k ≥ m3 and λ ≥ k/m− 1 imply λ ≥ 3. Hence, by Lemma 6.2.2 and Lemma

6.2.4, either X(v) is a disconnected graph for some vertex v, or X(v) is the line graph of the
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complete bipartite graph Ks,t for every vertex v of X.

In the latter case, by Lemma 6.2.8, X contains Kτ2,2 and ψ1 = 2. Since we assumed

that b+ ≤ −1 − ϑ1 < 7/5, by Theorem 6.2.5, we get that τ2 ≤ 2 (as otherwise there is an

induced K2,3 subgraph). Hence, µ ≤ 4. By Theorem 3.4.2, we get that X is the Johnson

graph J(s, d), or a graph which can be double covered by J(2d, d). The latter case is not

possible because k ≥ m3.

Remark 6.2.9. We note that in the light of Remark 6.2.3, if we additionally assume that k is

large enough, then we can replace ε∗ with 2/7 in Theorem 1.4.4. Indeed, since λ ≥ (k/m)−1

and k ≥ m3, the assumption that k is large enough guarantees that λ is large enough. Hence,

the proof above will work since the inequality ε∗ < 2/7 implies that b+ < 7/5.

6.3 Characterization of Hamming graphs via spectral gap

In this section, we prove a characterization of Hamming graphs in terms of the spectral

gap and local parameters. As in the previous section, we assume that the second largest

eigenvalue of X satisfies θ1 ≥ (1 − ε)b1. We show that if additionally for each vertex the

neighborhood graph is a disjoint union of cliques, µ = 2, and there is a dominant distance,

then X is a Hamming graph.

We start by showing that for a geometric distance-regular graph the sequence (τi)
t−1
i=1 is

increasing if µ ≥ 2 and ct is sufficiently small. This can be seen as a version of Lemma 5.2.9

Lemma 6.3.1. Let X be a geometric distance-regular graph of diameter d, with smallest

eigenvalue −m. Assume that µ ≥ 2 and ct ≤ εk, where t ≤ d and 0 < ε < 1/m2. Then

τi < τi+1, for all i = 1, 2, . . . , t− 2.
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Proof. Recall, by Lemma 3.2.1,

ci = τiψi−1, bi = (m− τi)

(
k

m
+ 1− ψi

)
.

Hence, in particular, ψi−1 ≤ ci ≤ ct ≤ εk, for i ≤ t. So for i ≤ t− 1

(m− τi)

(
1

m
− ε

)
k ≤ bi ≤

m− τi
m

k. (6.1)

By Lemma 6.2.6, a geometric distance-regular graph with µ ≥ 2 contains an induced quad-

rangle. Thus, by the Terwilliger inequality (see Theorem 2.4.5) we have

bi ≥ bi+1 + λ+ 2 + ci − ci+1, for i = 0, 1, . . . , d− 1.

Therefore, for i ≤ t− 2, using Eq. (6.1),

m− τi
m

k ≥ (m− τi+1)

(
1

m
− ε

)
k + λ+ 2− εk.

Since λ ≥ k/m− 1, for i ≤ t− 2, we get

(m− τi) ≥ (m− τi+1)−m2ε+ 1 ⇒ τi+1 ≥ τi + 1−m2ε.

Corollary 6.3.2. If the assumptions of Lemma 6.3.1 hold for t = d, then τi < τi+1 for

i ≤ d− 1.

Proof. By Lemma 6.3.1, τi < τi+1 for i ≤ d − 2. Observe, that by the definition of τi, we

have τd = m and τi ≤ m− 1 for all i ≤ d− 1.

Corollary 6.3.3. If the assumptions of Lemma 6.3.1 hold for t = d, then

(d− i)

(
1

m
− ε

)
k ≤ bi ≤

m− i

m
k, for 1 ≤ i ≤ d− 1.
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Proof. Since τ1 = 1 and τd−1 ≤ m − 1, by Lemma 6.3.1, we have i ≤ τi ≤ m − d + i for

i ≤ d− 1. So the desired inequality directly follows from Eq. (6.1).

To get a bound on the multiplicity of the second largest eigenvalue θ1 of X we first prove

lower bounds on the elements of the standard sequence corresponding to θ1 (see Sec. 2.4).

Lemma 6.3.4. Let X be a geometric distance-regular graph of diameter d ≥ 2 with smallest

eigenvalue −m. Let θ1 be its second largest eigenvalue and (ui)
d
i=0 be the corresponding

standard sequence. Assume that µ ≥ 2, θ1 ≥ (1 − ε)b1, and ct ≤ εk for some 2 ≤ t ≤ d,

where 0 < ε < 1/(24m2).

Then, for 1 ≤ j ≤ t− 1

uj ≥ (1− 3m2ε)j−1
(

m− τj
m− τj + j − 1

)
θ1
k
.

Proof. Recall that the standard sequence corresponding to the eigenvalue θ1 satisfies

u0 = 1, u1 =
θ1
k
, ciui−1 + aiui + biui+1 = θ1ui, for i = 1, . . . , d− 1.

We can rewrite this as

ui+1 = ui
(θ1 + bi + ci − k)

bi
− ui−1

ci
bi

≥ ui

(
1− k − θ1

bi

)
− ui−1

ci
bi
. (6.2)

For 2 ≤ i ≤ t, by the assumptions of the lemma, ψi−1 ≤ ci ≤ ct ≤ εk. So, by Lemma 3.2.1,

k − θ1 ≤ k − (1− ε)b1 ≤ (k − b1) + εk ≤ k

m
+ (m− 1)ψ1 + εk ≤ k

m
+mεk; (6.3)

(m− τi)

(
1

m
− ε

)
k ≤ bi, for i ≤ t− 1. (6.4)

For the convenience of the future computations we first show that for 1 ≤ i ≤ t − 2,

the inequality 3ui+1 ≥ ui ≥ 0 holds. Indeed, by Eq. (6.3), u1 ≥ u0/3. Moreover, by
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Lemma 6.3.1, τi ≤ τt−1 − 1 ≤ m− 2, so by Eq. (6.3) and Eq. (6.4),

1− k − θ1
bi

≥ 1− 1 +m2ε

2− 2mε
≥ 1

2
−m2ε.

Thus, using that τi ≤ m− 2 for i ≤ t− 2, by induction, we get from Eq. (6.2) and Eq. (6.4)

ui+1 ≥
(
1

2
−m2ε

)
ui −mεui−1 ≥

(
1

2
− 4m2ε

)
ui ≥

1

3
ui.

Hence, for i ≤ t− 2, we can rewrite Eq. (6.2)

ui+1 ≥ ui
(θ1 + bi + ci − k)

bi
− 3ui

ci
bi

≥ ui

(
1− k − θ1 + 2εk

bi

)
.

Thus, using Eq. (6.3) and Eq. (6.4), for i ≤ t− 2,

ui+1 ≥ ui

(
1− k + (m2 + 2m)εk

mbi

)
≥ ui

(
1− 1

(m− τi)

(1 + 2m2ε)

(1−mε)

)
≥ ui

(
1− (1 + 3m2ε)

m− τi

)
.

By Lemma 6.3.1, τi ≤ τj− (j− i) for i ≤ j ≤ t−1. Thus, for δ = 3m2ε and i+1 ≤ j ≤ t−1,

ui+1 ≥ (1− δ)

(
1− 1

m− τi

)
ui ≥ (1− δ)

m− τj + j − i− 1

m− τj + j − i
ui.

Therefore, for every 1 ≤ j ≤ t− 1,

uj ≥ (1− δ)j−1
j−1∏
i=1

m− τj + j − i− 1

m− τj + j − i
u1 = (1− δ)j−1

(
m− τj

m− τj + j − 1

)
θ1
k
.

Theorem 6.3.5. Let X be a geometric distance-regular graph of diameter d ≥ 2 with smallest

eigenvalue −m. Take an arbitrary 0 < ε < 1/(6m4d). Suppose that µ ≥ 2, ct ≤ εk and

bt ≤ εk for some 2 ≤ t ≤ d. Assume, moreover, that the second largest eigenvalue of X

satisfies θ1 ≥ (1− ε)b1.
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Then either the multiplicity f1 of θ1 satisfies f1 ≤ k − 1, or m = d, t = d and cd = d.

Proof. Let (ui)
d
i=0 be the standard sequence of X corresponding to θ1. Then, by the Biggs

formula, the multiplicity of θ1 can be computed as

f1 =
n(

d∑
i=0

kiu
2
i

) .

Note, as in Eq. (6.1), bi−1 ≥ bt−1 ≥
(

1

m
− ε

)
k ≥ 1

2m
k and ci ≤ ct for all 1 ≤ i ≤ t. So

ki−1 =
ci
bi−1

ki ≤
ct
bt−1

ki ≤ 2mεki, for i ≤ t. (6.5)

For d− 1 ≥ i ≥ t, by Lemma 3.2.1, the inequality bi ≤ bt ≤ εk implies

ψi ≥
(

1

m
− ε

)
k ≥ 1

2m
k, so ci+1 = τi+1ψi ≥

1

2m
k.

Hence, for t ≤ i ≤ d− 1 we deduce,

ki+1 =
bi
ci+1

ki ≤
εk

k/(2m)
ki = 2mεki. (6.6)

Combining Eq. (6.5) and Eq. (6.6) we obtain

n =
d∑
i=0

ki ≤ kt

 t∑
i=0

(2mε)i +
d−t∑
i=1

(2mε)i

 ≤ 1

1− 4mε
kt ⇒ kt ≥ (1− 4mε)n.

As in Eq. (6.3), θ1/k ≥ (m− 1)/m−mε. So, by Lemma 6.3.4 and Eq.(6.1), for t ≥ 2,

kt−1u
2
t−1 ≥ kt

ct
bt−1

(1− 3m2ε)2t−4
(

m− τt−1

m− τt−1 + t− 2

)2(θ1
k

)2

≥
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≥ kt
ct
bt−1

(1− 3m2ε)2t−4
(

m− τt−1

m− τt−1 + t− 2

)2

(1− 2mε)2
(
m− 1

m

)2

≥

≥ (1− 4mε)n · mct
(m− τt−1)k

· (1− 3m2ε)2d−1
(

m− τt−1

m− τt−1 + t− 2

)2(m− 1

m

)2

≥

≥ n

k
· (1− 3m2ε)2d · ct

m
· (m− τt−1)(m− 1)2

(m− τt−1 + t− 2)2
.

Our goal is to deduce from this inequality that kt−1u
2
t−1 > n/k, unless ct = t = m = d.

We start by giving a bound on ct. Observe that ψt−2 ≥ 1, and τt−1 ≥ t−1, by Lemma 6.3.1.

So, we obtain

ct ≥ ct−1 ≥ τt−1ψt−2 ≥ t− 1. (6.7)

Case 1. First, assume that ct = t− 1.

Then, Eq. (6.7) implies τt−1 = t− 1 and ct = ct−1. Thus, in particular, we can simplify

ct
m

· (m− τt−1)(m− 1)2

(m− τt−1 + t− 2)2
=
t− 1

m
· (m− t+ 1)(m− 1)2

(m− 1)2
=

(t− 1)(m− t+ 1)

m
.

Also, observe that the constraint ct = ct−1 implies t > 2 as 1 = c1 < 2 ≤ µ = c2.

Moreover, by Corollary 2.4.8, c3 > c2 for µ ≥ 2, so we should have t ≥ 4 in this case.

At the same time, ct = ct−1, using Terwilliger’s inequality (see Theorem 2.4.5), implies

bt−1 ≥ ct−1 − ct + bt + λ+ 2 ≥ λ+ 2 ≥ k

m
+ 1.

Recall that

bt−1 = (m− τt−1)

(
k

m
+ 1− ψt−1

)
≤ (m− τt−1)

k

m
,

which yields τt−1 ≤ m− 2. So, t ≤ m− 1, as τt−1 = t− 1.

Thus, we have 4 ≤ t ≤ m− 1, which implies m ≥ 5, and we get

ct
m

· (m− τt−1)(m− 1)2

(m− τt−1 + t− 2)2
=

(t− 1)(m− t+ 1)

m
≥ 2(m− 2)

m
≥ 2− 4

m
≥ 6

5
.
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Since, 3m2ε < 1, by Bernoulli’s inequality

(1− 3m2ε)2d ≥ (1− 6dm2ε) >
5

6
.

Therefore, in this case,

kt−1u
2
t−1 >

n

k
⇒ f1 ≤ n

kt−1u
2
t−1

< k ⇒ f1 ≤ k − 1.

Case 2. Else, we have ct ≥ t.

Lemma 6.3.1 implies t ≤ τt−1 + 1 ≤ m. It is not hard to check (see Appendix 6.A), that

(m− τt−1)(m− 1)2

(m− τt−1 + t− 2)2
≥ m− 1

t− 1
. (6.8)

Hence, applying the inequality from Eq. (6.8),

kt−1u
2
t−1 ≥ n

k
(1− 3m2ε)2d

ct
m

(
m− 1

t− 1

)
≥ n

k
(1− 3m2ε)2d

(
t

t− 1

)(
m− 1

m

)
.

If 2 ≤ t < m, then

(
t

t− 1

)(
m− 1

m

)
≥
(
m− 1

m− 2

)(
m− 1

m

)
= 1 +

1

m2 − 2m
≥ 1 +

1

m2 − 1
.

If 2 ≤ t = m, and ct > t, then

(
ct

t− 1

)(
m− 1

m

)
≥
(
t+ 1

t− 1

)(
m− 1

m

)
=
m+ 1

m
≥ 1 +

1

m2 − 1
.

In each of these two cases, we get

kt−1u
2
t−1 ≥ n

k
· (1− 3m2ε)2d

(
1 +

1

m2 − 1

)
.
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By Bernoulli’s inequality, since 3m2ε < 1,

(1− 3m2ε)2d ≥ (1− 6dm2ε) > 1− 1

m2
=

(
1 +

1

m2 − 1

)−1

.

Therefore, if ct > t or m > t, then kt−1u
2
t−1 > n/k and so

f1 ≤ n

kt−1u
2
t−1

< k ⇒ f1 ≤ k − 1.

Finally, assume τtψt−1 = ct = t and m = t. We know from Lemma 6.3.1 that τt−1 ≥ t− 1.

If t < d, then bt ≥ 1. So, by Terwilliger’s inequality and Lemma 3.2.1,

k

m
≥ (m− τt−1)

(
k

m
+ 1− ψt−1

)
= bt−1 ≥ ct−1 − ct + bt + λ+ 2 ≥ λ+ 2 ≥ k

m
+ 1,

which gives a contradiction with the assumption t < d. Therefore, t = d and cd = d,

m = d.

Now we are ready to prove Theorem 1.4.5 in the following equivalent form (see Lemma 3.2.4).

Theorem 6.3.6. Let X be a distance-regular graph of diameter d ≥ 2. Suppose that every

neighborhood graph X(v) is a disjoint union of m cliques. Moreover, assume µ ≥ 2, ct ≤ εk

and bt ≤ εk for some t ≤ d and θ1 ≥ (1− ε)b1, where 0 < ε < 1/(6m4d).

Then X is a Hamming graph H(d, s), for s = 1 + k/d.

Proof. Pick some vertex v and let X(v) =
⋃m
i=1Ci, where Ci is a clique for every i. Since X

is distance-regular, all Ci are of the same size λ+1. Note that {v} ∪Ci is a maximal clique

in X of the size k/m + 1. Since k ≥ 1/ε > m2, by Proposition 3.1.5, X is geometric with

smallest eigenvalue −m.

Hence, by Theorem 6.3.5, either we have f1 ≤ k − 1, or cd = m = d. If f1 ≤ k − 1, by

Theorem 5.2.4, −1− b1
θ1 + 1

is an eigenvalue of X(v). However, b1 > 0 and θ1 > 0, so X(v)
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has an eigenvalue less than −1. This gives a contradiction with the assumption that X(v)

is a disjoint union of cliques.

Therefore, cd = m = d. By Lemma 6.3.1, we get τi ≥ i for all i ∈ [d]. At the same time,

d = cd = τdψd−1, so τd = d and ψd−1 = 1. We immediately deduce τi = i for all i ∈ [d].

Assume that ψi−1 ≥ 2, while ψi = 1 for some 2 ≤ i ≤ d − 1. Then, we get a contradiction

with

i+ 1 = ψiτi+1 = ci+1 ≥ ci = ψi−1τi ≥ 2i.

Thus, ψi = 1 for every i. This means, that the intersection array of X coincides with the

intersection array of the Hamming graph H(d, 1 + k/d),

ci = i and bi = (d− i)
k

d
.

Using the characterization of Hamming graphs by their intersection array (Theorem 3.5.3),

X is a Hamming graph or a Doob graph. Note that X may be a Doob graph, only if

1 + k/d = 4, which is not possible as k ≥ 1/ε ≥ 6d. Therefore, X is a Hamming graph.

Corollary 6.3.7. Let X be a geometric distance-regular graph of diameter d ≥ 2. Suppose

that X has µ = 2 and smallest eigenvalue −m. Take 0 < ε < 1/(6m4d). Assume, ct ≤ εk

and bt ≤ εk for some t ∈ [d], and θ1 ≥ (1− ε)b1. Then X is a Hamming graph H(d, s).

Proof. By Lemma 3.2.1, µ = τ2ψ1, and by Lemma 3.2.2, τ2 ≥ ψ1, so µ = 2 implies τ2 = 2 and

ψ1 = 1. This means that the neighborhood graph of every vertex of X is a disjoint union

of −θd = m cliques (Lemma 3.2.4). Therefore, the statement follows from the theorem

above.

6.A Appendix: Proof of inequality (6.8)

Below we prove the inequality used in the proof of Theorem 6.3.5.
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Lemma 6.A.1. Let 2 ≤ t ≤ x+ 1 ≤ m be integers, then

(m− x)(m− 1)2

(m− x+ t− 2)2
≥ m− 1

t− 1
. (6.9)

Proof. Note that when x = m− 1 the inequality is true, as m− 1 ≥ t− 1. We can rewrite

inequality (6.9) as

(m− x)(m− 1)(t− 1) ≥ (m− x+ t− 2)2,

m(m− 1)(t− 1)− x(m− 1)(t− 1) ≥ x2 − 2x(m+ t− 2) + (m+ t− 2)2,

m(m− 1)(t− 1)− (m+ t− 2)2 ≥ x(x+m(t− 3)− 3t+ 5). (6.10)

If t ≥ 4, then x ≥ 3t− 5−m(t− 3). Indeed, for t ≥ 5 this is true as

x ≥ t− 1 ≥ 3t− 5− 2m ≥ 3t− 5−m(t− 3),

and for t = 4 this holds as x ≥ t− 1 = 3 ≥ 7−m. Thus, for t ≥ 4 the maximal value of the

RHS of inequality (6.10) is achieved at maximal value of x, i.e., when x = m − 1. But as

noted above, inequality (6.9) holds for x = m− 1, and inequality (6.10) is equivalent to it.

The statement of the lemma is obvious if t = 2. Therefore, the only case we still need to

check is t = 3. Since the desired inequality holds for x = m− 1, we can assume x ≤ m− 2.

In this case inequality (6.10) follows from

2m(m− 1)− (m+ 1)2 = m2 − 4m+ 1 > (m− 2)2 − 4 ≥ x2 − 4 ≥ x2 − 4x.
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CHAPTER 7

SPECTRAL GAP OF A DISTANCE-REGULAR GRAPH

In this section we give a bound on the spectral gap of a distance-regular graph in terms of

its intersection numbers. The spectral gap bound will be used in Sections 8.1 and 8.4 to

achieve motion lower bounds through Lemma 4.5.11 (the Spectral tool).

7.1 Approximation of the spectrum by the intersection numbers

Note, that if bi and ci are simultaneously small, then by monotonicity, bj for j ≥ i and ct

for t ≤ i are small. Hence, the intersection matrix L1

L1 =



a0 b0 0 0 ...

c1 a1 b1 0 ...

0 c2 a2 b2 ...

...
... ...

... 0 cd ad


. (7.1)

is a small perturbation of a block diagonal matrix N , where one block is upper triangular

and the other block is lower triangular. So the eigenvalues of N are just the diagonal entries.

To relate the eigenvalues of N to eigenvalues of L1 we rely on the following result.

Theorem 7.1.1 ([Ostrowski, 1967, Appendix K]). Let A,B ∈ Mn(C). Let λ1, λ2, ..., λn be

the roots of the characteristic polynomial of A and µ1, µ2, ..., µn be the roots of the charac-

teristic polynomial of B. Consider

M = max{|(A)ij |, |(B)ij | : 1 ≤ i, j ≤ n}, δ =
1

nM

n∑
i=1

n∑
j=1

|(A)ij − (B)ij |.
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Then, there exists a permutation σ ∈ Sn such that

|λi − µσ(i)| ≤ 2(n+ 1)2Mδ1/n, for all 1 ≤ i ≤ n.

Lemma 7.1.2. Let X be a distance-regular graph of diameter d. Denote by θ0 > θ1 > . . . >

θd all distinct eigenvalues of X. Suppose that bi ≤ εk and ci ≤ εk for some i ≤ d and ε > 0.

Then

|θi − ai| ≤ 2(d+ 2)2ε
1

d+1k.

In particular, if furthermore bi−1 ≥ αk and ci+1 ≥ αk, for some α > 0 (here we define

cd+1 = k), then the zero-weight spectral radius ξ of X satisfies

ξ ≤ k(1− α + 2(d+ 2)2ε
1

d+1 ). (7.2)

Proof. Let N be a matrix obtained from L1 (see Eq. (7.1)) by replacing all bs and ct with 0

for s ≥ i and t ≤ i. As in Theorem 7.1.1, consider

M = max{|(T )sj |, |(N)sj | : 1 ≤ s, j ≤ d} = k,

δ =
1

(d+ 1)M

d+1∑
s=1

d+1∑
j=1

|(T )sj − (N)sj | ≤
(d+ 1)εk

(d+ 1)M
= ε.

Observe, that the diagonal entry ai is the only non-zero entry in the i-th row of N .

Furthermore, the upper-left i× i submatrix is upper triangular and (d− i)× (d− i) lower-

right submatrix is lower triangular. Then the eigenvalues of N are equal to aj for 0 ≤ j ≤ d.

Thus, the first part of the statement follows from Theorem 7.1.1.

The inequalities bi−1 ≥ αk and ci+1 ≥ αk imply that aj ≤ k(1 − α) for j ̸= i, while

ai ≥ (1−2ε)k. Hence, since k is an eigenvalue of multiplicity 1 of X, the zero-weight spectral

radius of X satisfies Eq. (7.2).
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We are going to use this result in Section 7.3 to prove Theorem 7.3.8.

7.2 A growth-induced tradeoff for the intersection numbers

Observation 7.2.1. Let X be a graph. Denote by deg(v) the degree of a vertex v in X,

and denote by N(u, v) the set of common neighbors of vertices u and v in X. Then for all

vertices u, v, w we have

|N(u, v)|+ |N(u,w)| ≤ deg(u) + |N(v, w)|.

Proof. The inequality above follows from the two obvious inclusions below

N(u, v) ∪N(u,w) ⊆ N(u), N(u, v) ∩N(u,w) ⊆ N(v, w).

Next, we prove the growth-induced tradeoff for the intersection numbers. Essentially, the

theorem below claims that, if for some j, bj is large (and therefore, by monotonicity, so are

bi for i ≤ j) and cj+1 is small, then bj+1 and cj+2 cannot be small simultaneously. We use

this inequality in Proposition 7.3.5 (and later in Theorem 7.3.8) to establish a lower bound

on the spectral gap of a distance-regular graph under mild assumptions.

Theorem 7.2.2 (Growth-induced tradeoff). Let X be a distance-regular graph of diameter

d ≥ 2. Let 0 ≤ j ≤ d−2. Assume bj > cj+1 and let C = bj/cj+1. Then for all 1 ≤ s ≤ j+1

we have

bj+1

 s∑
t=1

1

bt−1
+

j+2−s∑
t=1

1

bt−1

+ cj+2

j+1∑
t=1

1

bt−1
≥ 1− 4

C − 1
. (7.3)

Remark 7.2.3. In applications we require the right-hand side to be bounded away from

zero, i.e., C to be greater than some constant > 5. In the case when bj ≥ αk for some

constant α > 0, each reciprocal 1/bt for t ≤ j is at most 1/(αk). Thus, if the RHS is

92



bounded away from zero and d is bounded, we get a lower bound on bj+1 or cj+2 that is

linear in k. We also note that bj/cj+1 = kj+1/kj , where kj is the size of the sphere of radius

j in X. So the assumption says that significant growth occurs from radius j to radius j +1.

Remark 7.2.4. Graphs for which the lemma above gives a trivial bound, i.e., when the

fraction bj/cj+1 is bounded from above by a (small) constant, were studied in Park et al.

[2013]. In particular, in this case one can prove upper bounds for the diameter of a graph.

Proof of Theorem 7.2.2. Consider the graph Y with the set of vertices V (Y ) = V (X), where

a pair of distinct vertices u, v is adjacent if they are at distance dist(u, v) ≤ j + 1 in X. We

want to find the restriction on the parameters of X implied by Observation 7.2.1 applied to

graph Y and vertices w, v at distance j + 2 in X. Let λYi denote the number of common

neighbors in Y for a pair of vertices u, v at distance i in X for i ≤ j + 1. Let µYj+2 denote

the number of common neighbors in Y for a pair of vertices u, v at distance j+2 in X. The

monotonicity of sequences (bi) and (ci) implies ki+1 ≥ Cki for i ≤ j. Thus, the degree of

every vertex in Y satisfies

kY =

j+1∑
i=1

ki ≤ kj+1

j∑
i=0

C−i ≤ kj+1
C

C − 1
.

Note, that
d∑
t=0

pis,t = ks. Hence, we have

µYj+2 =
∑

1≤s,t≤j+1

p
j+2
s,t ≤ 2

j∑
i=1

ki + p
j+2
j+1,j+1 ≤ 2

C − 1
kj+1 + p

j+2
j+1,j+1,

λYi =
∑

1≤s,r≤j+1

pir,s ≥
∑

1≤s≤j+1

pij+1,s = kj+1 −
∑

j+2≤s≤d
pij+1,s − pij+1,0.

Now we are going to get some bounds on
∑

j+2≤s≤d
pij+1,s. We use the following observation.
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Suppose, that x, y are two vertices at distance i. Then there are exactly
i∏
t=1

ct paths of

length i between x and y. Thus,

(
i∏
t=1

ct

)
d∑

s=j+2

p
j+1
i,s equals the number of paths of length

i starting at v and ending at distance at least j + 2 from u and at distance i from v, where

dist(u, v) = j + 1 in X. We count such paths by considering possible choices of edges for a

path at every step. At step t every such path should go from Nt−1(v) to Nt(v), hence there

are at most bt−1 possible choices for a path at step t for 1 ≤ t ≤ i. Moreover, since path

should end up at distance at least j+2 from u, then for some 1 ≤ t ≤ i path should go from

Nj+1(u) to Nj+2(u). Therefore, the number of paths that go from Nj+1(u) to Nj+2(u) at

step t is at most

(
i∏

s=1

bs−1

)
bj+1

bt−1
. Hence,

d∑
s=j+2

pij+1,s =
kj+1

ki

d∑
s=j+2

p
j+1
i,s ≤

kj+1

ki

i∑
t=1

(
i∏

s=1

bs−1

)
bj+1

bt−1

(
i∏
t=1

ct

)−1

= kj+1

i∑
t=1

bj+1

bt−1
.

Thus, in particular,

λYi ≥ kj+1

(
1−

i∑
t=1

bj+1

bt−1

)
− pij+1,0. (7.4)

Similarly,

p
j+2
j+1,j+1 ≤ kj+1

j+1∑
t=1

cj+2

bt−1
.

Hence,

µYj+2 ≤ kj+1

 2

C − 1
+

j+1∑
t=1

cj+2

bt−1

 . (7.5)

By applying Observation 7.2.1 to vertices u, v, and w in Y , that satisfy dist(v, w) = j + 2,

dist(u, v) = s and dist(w, u) = j + 2− s in X, we get

kj+1 + µYj+2 ≥ λYs + λYj+2−s. (7.6)
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The desired inequality (7.3) follows from Eq. (7.4), (7.5) and (7.6), as pij+1,0 ≤ 1 ≤ kj+1/C.

7.3 Spectral gap bound

In this section we prove a lower bound on the spectral gap of distance-regular graphs of fixed

diameter d with a dominant distance. We prove Theorem 1.4.1 in the equivalent formulation

as Theorem 7.3.10.

Our key tool is the growth-induced tradeoff proven in the previous section, which will be

applied in the following setup. Assume we know lower bounds of the form bi ≥ αik for the

intersection numbers bi with i ≤ j. Our goal is to get a lower bound of the similar form either

for bj+1, or for cj+2. We will argue, that if either cj+2 ≤ εk, or bj+1 ≤ εk, for a sufficiently

small ε > 0, then either the second or the first summand of the LHS in inequality (7.3) is at

most a δ-fraction of the LHS. Hence, the other summand is at least (1 − δ)-fraction of the

LHS and we get a linear in k lower bound on either bj+1, or cj+2. The two sequences we

define below are the coefficients in front of k in the bounds we get from inequality (7.3).

Definition 7.3.1. Let 0 ≤ δ < 1. We say that (αi)
∞
i=0 is the FE(δ) sequence, if α0 = 1 and

for j ≥ 1 the element αj is defined by the recurrence

αj+1 = (1− δ)


⌈
j+2
2

⌉∑
t=1

1

αt−1
+

⌊
j+2
2

⌋∑
t=1

1

αt−1


−1

. (7.7)

Let α̂ = (αi)
s
i=0 be a sequence. We say that β̂ = (βi)

s+2
i=2 is the BE(δ, α̂) sequence, if for

j ≥ 2 the element βj is defined as

βj = (1− δ)

j−2∑
t=0

1

αt

−1

. (7.8)
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If additionally, α̂ is a prefix of FE(δ) sequence, then we will say that β̂ is the BE(δ) sequence.

Remark 7.3.2. FE stands for “forward expansion” and BE stands for “backward expan-

sion”.

Now we specify how small we expect ε to be in the argument above, so that one of the

summands in the LHS of (7.3) is at most a δ-fraction of the LHS.

Definition 7.3.3. Let α̂ = (α)si=0 be a decreasing sequence of positive real numbers with

α0 = 1. Let 0 < δ < 1, and β̂ = (βi)
s+2
i=2 be the corresponding BE(δ, α̂) sequence. We say

that ε > 0 is (δ, j, α̂, d)-compatible for j ≤ s ≤ d− 2, if ε satisfies

αj − 5ε

αj − ε
− 2ε

j+1∑
t=1

1

αt−1

 > (1− δ) and 2(d+ 2)2ε
1

d+1 ≤ βj+2δ. (7.9)

Note that if ε is (δ, j, α̂, d)-compatible for j ≥ 1, then it is (δ, (j − 1), α̂, d)-compatible as

well. Note also that the second condition on ε implies that δ > ε and βj+2 > ε, αj > ε.

Definition 7.3.4. We say that ε > 0 is (δ, d)-compatible, if it is (δ, d − 2, α̂, d)-compatible

for FE(δ) sequence α̂. We introduce notation

EPSδ(d) = sup{ε | ε is (δ, d)-compatible}.

In the proposition below we provide a formal version of the discussion at the beginning

of this subsection.

Proposition 7.3.5. Let X be a distance-regular graph of diameter d ≥ 2. Fix an arbitrary

0 < δ < 1. Let 0 ≤ j ≤ d − 2 and α̂ = (αi)
j
i=0 be a decreasing sequence of positive

real numbers. Consider corresponding BE(δ, α̂) sequence β̂ and (δ, j, α̂, d)-compatible ε > 0.

Assume that the intersection numbers of X satisfy cj+1 ≤ εk and bi ≥ αik for all 0 ≤ i ≤ j.

Then one of the following is true.
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1. bj+1 ≥ εk and cj+2 ≥ εk.

2. The zero-weight spectral radius ξ of X satisfies

ξ ≤ k(1− (1− δ)βj+2), and cj+2 ≥ εk.

3. Let αj+1 = (1− δ)


⌈
j+2
2

⌉∑
t=1

1

αt−1
+

⌊
j+2
2

⌋∑
t=1

1

αt−1


−1

, then bj+1 ≥ αj+1k and cj+2 ≤

εk.

Proof. Case 1. Assume that cj+2 ≥ βj+2k.

If bj+1 ≥ εk, then statement 1 holds. Thus, suppose that bj+1 ≤ εk. Then we fall into

the assumptions of Lemma 7.1.2 with i = j + 1. Hence, the zero-weight spectral radius ξ of

X satisfies

ξ ≤ k(1−min(αj , βj+2) + 2(d+ 2)2ε
1

d+1 ) ≤ k(1− (1− δ)βj+2).

Note, that by definition, βj+2 < αj , so min(αj , βj+2) = βj+2.

Case 2. Assume εk ≤ cj+2 ≤ βj+2k. Then, by Eq. (7.8) and Eq. (7.9),

βj+2 ≤
(
αj − 5ε

αj − ε

)j+1∑
t=1

1

αt−1

−1

− 2ε.

Then, by Lemma 7.2.2 for C = αj/ε, we get bj+1 ≥ εk.

Case 3. Finally, assume that cj+2 ≤ εk. Then, since by Eq. (7.9),

0 < αj+1 ≤

αj − 5ε

αj − ε
− ε

j+1∑
t=1

1

αt−1



⌈
j+2
2

⌉∑
t=1

1

αt−1
+

⌊
j+2
2

⌋∑
t=1

1

αt−1


−1

,
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Lemma 7.2.2 for C ≥ αj/ε implies bj+1 ≥ αj+1k.

As an immediate corollary we get a lower bound on bi for i ≤ t if ct ≤ εk is small. In

the Appendix (Sec. 7.A) we give explicit lower bounds for elements of BE(δ) and FE(δ)

sequences. Another corollary states that we can bound each eigenvalue of X if cd is small.

Corollary 7.3.6. Let X be a distance-regular graph of diameter d ≥ 2. Fix an arbitrary

0 < δ < 1. Let α̂ = (αi)
∞
i=0 be the FE(δ) sequence and ε be (δ, d)-compatible.

Assume that ct ≤ εk for some t ≤ d, then bi ≥ αik for all 0 ≤ i ≤ t− 1.

Corollary 7.3.7. Fix any 0 < δ < 1. Let X be a distance-regular graph of diameter d ≥ 2.

Denote by θ0 > θ1 > . . . > θd all distinct eigenvalues of X. Let α̂ = (αi)
∞
i=0 be the FE(δ)

sequence and ε be (δ, d)-compatible.

Assume that cd ≤ εk, then θi ≤ (1− (1− δ)αd−i)k for all 1 ≤ i ≤ d.

Proof. Follows from Corollary 7.3.6 and Lemma 7.1.2.

The next theorem is one of the key ingredients of the proof of our main result on the

motion of distance-regular graphs (Theorem 8.3.1). It says that for a primitive distance-

regular graph either the minimal distinguishing number is linear, or the spectral gap is

large.

Theorem 7.3.8. For every d ≥ 2 there exist ε = ε(d) > 0 and η = η(d) > 0 such that for

every distance-regular graph X of diameter d one of the following is true.

1. For some 0 ≤ i ≤ d− 1, we have bi ≥ εk and ci+1 ≥ εk.

2. The zero-weight spectral radius of X satisfies ξ ≤ k(1− η).

Proof. Fix δ ∈ (0, 1). Let α̂ = (αi)
∞
i=0 be the FE(δ) sequence and β̂ = (βi)

∞
i=2 be the BE(δ)

sequence and ε be (δ, d)-compatible. Set η = (1− δ)min(αd−1, βd).
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Define cd+1 = k. Let i be the unique index such that ci+1 > εk, while ci ≤ εk. If

bi ≥ εk, then first statement is true. So assume that bi ≤ εk. By Corollary 7.3.6, for every

j ≤ i− 1 we have bj ≥ αjk. Thus, by Proposition 7.3.5, if i ≤ d− 1, then

ξ ≤ k(1− (1− δ)βi+1) ≤ k (1− (1− δ)βd) ≤ k(1− η).

If i = d, using that bj ≥ αjk ≥ αd−1k for j ≤ d− 1, we get

ξ ≤ k(1− (1− δ)αd−1) ≤ k(1− η).

Remark 7.3.9. In the theorem above one can set

η =
1

4
d−(1+log2 d) and ε = 200−(d+1)d−(d+1)(log2(d)+3).

Proof. The proof is based on the explicit bound on the elements of FE(δ), BE(δ) and EPSδ

sequences given in the Appendix (Lemmas 7.A.1 and 7.A.2). Note that in Theorem 7.3.8 η

is chosen as η = (1− δ)min(αd−1, βd). Fix δ = 1/9. Using Lemma 7.A.1 we get

αd−1 ≥ (1− δ)2

2
(d− 1)− log2(d−1) and βd ≥

(1− δ)3

2(d− 1)
(d− 2)− log2(d−2).

Hence, we obtain η ≥ 1

4
d−(1+log2 d). Moreover, by Lemma 7.A.2, ε = 200−(d+1)d−(d+1)(log2(d)+3)

is (δ, d)-compatible.

Finally, we prove our main theorem on spectral expansion.

Theorem 7.3.10. For every d ≥ 2 there exist ϵ = ϵ(d) > 0 and η = η(d) > 0 such that the

following holds. Let X be a distance-regular graph of diameter d. If kt ≥ (1− ϵ)n for some

t ∈ [d], then the zero-weight spectral radius of X satisfies ξ ≤ k(1− η).

Proof. Let ε = ε(d) and η = η(d) be constants provided by Theorem 7.3.8. Assume that for
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some i we have bi ≥ εk and ci+1 ≥ εk. Let j be the smallest index for which cj+1 ≥ εk,

then by monotonicity bj ≥ εk.

If t ≤ j−1, then kt+1 =
bt
ct+1

kt ≥
bj−1

cj
kt >

εk

εk
kt = kt. Therefore, if ks is maximal, then

s ≥ j. Observe that kj+1 ≥ bjkj/cj+1 ≥ εkkj/k = εkj . Moreover, if t ≥ j, then

kt+1 =
bt
ct+1

kt ≤
k

εk
kt =

kt
ε
. (7.10)

Let ks be the maximal distance degree. Note that j < d as bj ≥ εk. Thus, if s = j, then

ks+1 ≥ εks, else s > j and ks−1 ≥ εks, by Eq. (7.10). Define ϵ = ϵ(d) = ε/(1 + ε). Hence,

ks = n−
∑
t ̸=s

kt < n− εks ⇒ ks <

(
1− ε

1 + ε

)
n = (1− ϵ)n.

Therefore, if ks ≥ (1 − ϵ)n for some s, then there is no i such that bi ≥ εk and ci+1 ≥ εk.

Hence, by Theorem 7.3.8, ξ ≤ k(1− η).

We note that we do not exclude the elusive case µ = 1, for which almost no classification

results are known, and which is known to be a difficult case in various circumstances. We

use this theorem to handle µ = 1 case in the proof of Theorem 1.2.6.

Remark 7.3.11. Note that the conclusion of the theorem above is that X is a spectral η-

expander. Recall that a combinatorial edge expansion of a graph is measured by the Cheeger

constant, which for a graph X = (V,E) is defined as

h(X) = min

{
E(S, V \ S)

|S|
| for S ⊂ V, 2|S| ≤ |V |

}
,

where E(S, T ) denotes the number of edges between the sets of vertices S and T in X.

For a k-regular graph the Cheeger inequality shows that the Cheeger constant is controlled
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by the second largest eigenvalue

(k − ξ2)/2 ≤ h(X) ≤
√

2k(k − ξ2).

Thus, if X is a spectral η-expander, then h(X) ≥ ηk, and so X is a good edge expander.

Note also that in the case when the difference (k− ξ2) is o(k) the lower and upper bound

given by the Cheeger inequality asymptotically differ by more than a constant. Recently,

Qiao et al. [2020] conjectured that for distance-regular graphs the lower bound is always

tight up to a constant. More precisely, they conjectured that

(k − ξ2)/2 ≤ h(X) ≤ (k − ξ2)

for all distance-regular graphs. They verified this claim for the known infinite families of

distance-regular graphs, for strongly regular graphs and many other special cases.

7.A Appendix: Explicit bounds for FE(δ) and BE(δ)

In this section we compute expilicit lower bounds for BE(δ), FE(δ) and EPSδ sequences.

Lemma 7.A.1. Fix 0 < δ ≤ 1
9 . Let (αi)

∞
i=0 be the FE(δ) sequence and the corresponding

BE(δ) sequence (βi)
∞
i=2. Then for j ≥ 1

αj ≥
(1− δ)2

2
j− log2(j) and βj+2 ≥ (1− δ)3

2(j + 1)
j− log2(j).

Proof. We prove the statement of the lemma by induction. Indeed, for j = 1, 2 we have

α1 = 1−δ
2 and α2 ≥ (1−δ)2

4 , so the inequality is true. For j ≥ 2, we have

αj+1 = (1− δ)

⌈ j+2
2 ⌉∑
t=1

1

αt−1
+

⌊ j+2
2 ⌋∑
t=1

1

αt−1


−1

≥ (1− δ)

j + 2
α⌈ j2⌉

≥
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≥ (1− δ)3

2(j + 2)

(
j + 1

2

)− log2

(
j+1
2

)
=

(1− δ)32
log2

(
j+1
2

)
2(j + 2)

(j + 1)− log2(j+1)+1 =

=
(1− δ)(j + 1)2

2(j + 2)

(1− δ)2

2
(j + 1)− log2(j+1) ≥ (1− δ)2

2
(j + 1)− log2(j+1).

Thus,

βj+2 = (1− δ)

 j∑
t=0

1

αt

−1

≥ 1− δ

j + 1
αj ≥

(1− δ)3

2(j + 1)
j− log2(j).

Lemma 7.A.2. Let 0 < δ ≤ 1/9 and d ≥ 3. Then

EPSδ(d) ≥
(
δ

22

)(d+1)

d−(d+1)(3+log2 d).

Proof. Note that for the inequality 2(d+ 2)2ε
1

d+1 ≤ βd+2δ to be satisfied it is enough to

have

ε ≤

(
27δd− log2 d

93(d+ 1)(d+ 2)2

)d+1

≤
(

δβd+2

2(d+ 2)2

)d+1

.

In particular, this is true if

0 < ε ≤
(
δ

22

)(d+1)

d−(d+1)(3+log2 d).

To check that the other condition on ε is satisfied, note that such choice of ε satisfies

ε < αd−2/2. Thus we have

αd−2 − 5ε

αd−2 − ε
− 2ε

d−1∑
t=1

1

αt−1

 ≥ 1− 10α−1
d−2ε− 2dα−1

d−2ε ≥

≥ 1− 2ε

(1− δ)2
(2d+ 10)dlog2 d ≥ 1− 22d1+log2 dε > (1− δ).
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CHAPTER 8

MOTION OF DISTANCE-REGULAR GRAPHS

In this chapter we confirm the following conjecture on motion of distance-regular graphs of

bounded diameter (the metric case of the motion part of Conjecture 1.2.13).

Conjecture 8.0.1 (Babai). For every d ≥ 3 there exists γd > 0 such that for every primitive

distance-regular graphs X of diameter d on n vertices either

motion(X) ≥ γdn,

or X is a Johnson graph, or a Hamming graph.

8.1 Motion of primitive non-geometric distance-regular graphs

Prior to proving our main result on motion of primitive distance-regular graphs (Theo-

rem 8.3.1) in Section 8.3, we study the minimal distinguishing number of distance-regular

graphs. In the cases, when either there is no dominant distance (Proposition 8.1.6), or when

the degree of a vertex is linear in the number of vertices (Proposition 8.1.4), we show a lower

bound on the minimal distinguishing number that is linear in the number of vertices.

8.1.1 Case of a large vertex degree

In this section we study distance-regular graphs with a large vertex degree.

Lemma 8.1.1. Let X be a distance-regular graph of diameter d ≥ 2.

1. The parameters of X satisfy k − µ ≤ 2(k − λ).

2. If a2 ̸= 0, then they also satisfy k − λ ≤ 2(k − µ).
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Proof. The first statement follows from Observation 7.2.1 applied to vertices v and w at

distance 2 in X and their common neighbor u.

Suppose, that a2 ̸= 0, then for a vertex u there exist two adjacent vertices v and w at

distance 2 from u. So, the second statement follows from Observation 7.2.1 as well.

Every pair of distinct vertices in a distance-regular graph has λ, or µ, or 0 common neigh-

bors, if distance between them is 1, 2, or at least 3, correspondingly. Therefore, every pair

of distinct vertices in a distance-regular graph is distinguished by at least 2(k −max(λ, µ))

vertices. Combining this with the previous lemma we get the following bound.

Lemma 8.1.2. Let X be a distance-regular graph of diameter d ≥ 2. Then every pair of

distinct vertices is distinguished by at least k − µ vertices.

Proof. Every pair of vertices u, v ∈ X is distinguished by at least |N(u) △ N(v)| = 2(k −

|N(u) ∩N(v)|) vertices. Thus, by Lemma 8.1.1, we get 2(k −max(λ, µ)) ≥ k − µ.

Next, we bound µ and λ away from k.

Lemma 8.1.3 ([Brouwer and Koolen, 2009, Lemmas 3.1, 3.14]). Let X be a distance-regular

graph of diameter d ≥ 3. Then λ ≤ 2k/3. Additionally, if X is primitive or d ≥ 4, then

µ ≤ k

2
.

Proposition 8.1.4. Let X be a distance-regular graph of diameter d ≥ 3. Suppose k >

nγ > 2 for some γ > 0. If X is not a bipartite graph, then motion(X) is at least γn/3.

Proof. Suppose, that X is primitive, or d ≥ 4. Then, by Lemma 8.1.3, µ ≤ k/2, and

the result follows from Lemma 8.1.2. If d = 3 and X is antipodal not bipartite, then

a2 ̸= 0 (see e.g. [Brouwer et al., 1989, p. 431], so the result follows from Lemma 8.1.1 and

Lemma 8.1.3.

Finally, we show that if k is small compared to n, then µ is small compared to k.
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Lemma 8.1.5. The parameters of a distance-regular graph of diameter d ≥ 2 satisfy

µ < k ·max

(
d− 1

r − 1
,

(
d

r

) 1
d−1

)
,

where r =
n− 1

k
.

Proof. Recall that the sequences (bi) and (ci) are monotone, so bi ≤ b1 = k − λ − 1 and

ci+1 ≥ µ for 1 ≤ i ≤ d− 1. Thus, ki+1 ≤ ki
k − λ− 1

µ
. Hence,

n =
d∑
i=0

ki ≤ 1 +
d−1∑
i=0

k

(
k − λ− 1

µ

)i
.

If k − λ− 1 ≤ µ, then n ≤ 1 + k + (d− 1)k
k − λ− 1

µ
, so µ <

d− 1

r − 1
k.

Otherwise, we have n ≤ 1 + dk

(
k − λ− 1

µ

)d−1

, so µ <

(
d

r

) 1
d−1

k.

8.1.2 Motion of primitive distance-regular graphs

Recall that a distance-regular graph X is primitive if the distance-i graph Xi is connected

for every 1 ≤ i ≤ d. Recall also that by Definition 4.5.3,

Dmin(X) = min
u̸=v∈V

D(u, v),

where D(u, v) denotes the number of vertices that distinguish u and v.

Proposition 8.1.6. Let X be a primitive distance-regular graph of diameter d ≥ 2 on n

vertices. Fix some positive real number α > 0. Suppose that for some 1 ≤ j ≤ d − 1

inequalities bj ≥ αk and cj+1 ≥ αk hold. Then

Dmin(X) ≥ α

d
n.
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Proof. Since the sequence (bi) is non-increasing, if t ≤ j, then at = k − bt − ct ≤ (1 − α)k.

Similarly, the sequence (ci) is non-decreasing, so if t > j, then at = k − bt − ct ≤ (1− α)k.

Consider any pair of adjacent vertices u, v ∈ X. If vertex x does not distinguish u and

v, then dist(u, x) = dist(v, x) = t for some 1 ≤ t ≤ d. Note, that for a given t there are p1t,t

such vertices x and

p1t,t = ptt,1
kt
k

= kt
at
k

≤ (1− α)kt.

Clearly,
d∑
i=1

ki = n− 1. Hence, every pair of adjacent vertices is distinguished by at least

n−
d∑
t=1

(1− α)kt ≥ n− (1− α)n = αn

vertices. Finally, the result follows from Lemma 4.5.2.

8.1.3 Reduction to geometric graphs

In the theorem below we prove our main result on the motion of non-geometric distance-

regular graphs.

Theorem 8.1.7. For any d ≥ 3 there exist γd > 0 and a positive integer md, such that for

every primitive distance-regular graph X of diameter d with n vertices either

motion(X) ≥ γdn,

or X is geometric with smallest eigenvalue at least −md.

Furthermore, one can set md =
⌊
5dlog2 d+1

⌋
.

Proof. By Theorem 7.3.8, there exist constants ε > 0 and η > 0, which depend only on d,

such that

• either bi ≥ εk and ci+1 ≥ εk,
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• or the zero-weight spectral radius of X satisfies ξ ≤ k(1− η).

In the first case, by Proposition 8.1.6, we obtain

motion(X) ≥ ε

d
n.

Hence, assume that ξ ≤ k(1− η). For convenience, we additionally assume η ≤ 1/7.

Case 1. Suppose that µ > η3k. Then, by Lemma 8.1.5, n ≤ max
(
d, 2

(
η−3d

)d−1
)
k + 1.

Therefore, by Proposition 8.1.4,

motion(X) ≥ 1

7

(
η3d−1

)d−1
n.

Case 2. Suppose that λ <
9

10
ηk and µ ≤ η3k. Then every pair of distinct vertices in X has

at most q(X) = max(λ, µ) ≤ 9ηk/10 common neighbors. Therefore, by Lemma 4.5.11,

motion(X) ≥ η

10
n.

Case 3. Suppose that λ ≥ 9

10
ηk and µ ≤ η3k. Let m be the integer that satisfies

(m− 1)(λ+ 1) < k ≤ m(λ+ 1).

The assumption on λ implies m− 1 ≤ 10

9
η−1. We additionally assumed η ≤ 1/7, so

1

2
m(m+ 1)µ ≤ 1

2

(
10

9
η−1 + 1

)(
10

9
η−1 + 2

)
µ ≤ 9

10
η−2µ ≤ 9

10
ηk ≤ λ.

Thus, by Corollary 3.1.6, the graph X is a geometric distance-regular graph with smallest

eigenvalue −m.
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Finally, we note that we can take md =

⌊
10

9
η−1 + 1

⌋
and

γd = min

(
ε

d
,
1

7

(
η3d−1

)d−1
,
η

10

)
.

Furthermore, by Remark 7.3.9, md can be taken as md =
⌊
5dlog2 d+1

⌋
.

Remark 8.1.8. A bit more careful computations show that one can in fact set

md = ⌈max
(
2(d− 1)(d− 2)log2(d−2), 2(d− 1)log2(d−1)

)
⌉.

In particular, for d = 3 this estimate gives upper bound md ≤ 4.

8.2 Geometric distance-regular graphs with µ = 1

In this section we discuss the motion of geometric distance-regular graphs with µ = 1.

8.2.1 Case of m ≥ 3

In the case of µ = 1 our strategy is to show that the dual graph X̃ of X has motion linear

in the number of vertices of X̃. After this we deduce that X itself has motion linear in the

number of its vertices.

Let X be a geometric distance-regular graph with µ = 1 and let X̃ be its dual graph. By

Lemma 3.3.2, every vertex of X̃ has degree k̃ = k
m− 1

m
+ (m− 1) and every pair of adjacent

vertices of X̃ has λ̃ = m − 2 common neighbors. Every pair of vertices at distance two in

X̃ has µ̃ = 1 common neighbours. Indeed, if there are at least two edges between a pair

of cliques C1 and C2, that do not share a vertex, then either ψ1 ≥ 2 for X, or there is an

induced quadrangle. In both cases, we get µ ≥ 2, and we reach a contradiction.

Since q(X̃) := max(µ̃, λ̃) is small, we are going to show that Lemma 4.5.11 can be applied

efficiently. For this, it is sufficient to show that X̃ has a linear in k̃ spectral gap k̃ − ξ(X̃).
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First, we bound the zero-weight spectral radius of a geometric distance-regular graph using

Theorem 7.3.8.

Using the relationship between the spectrum of the geometric graph X and its dual graph

X̃ we get the following corollary.

Lemma 8.2.1. Let X be a geometric distance-regular graph of diameter d ≥ 2 with smallest

eigenvalue −m, where m ≥ 3. Let X̃ be its dual graph. Let ε = ε(d) and η = η(d) ≤ 1/2 be

constants provided by Theorem 7.3.8. Assume k ≥ m2, ct ≤ εk and bt ≤ εk for some t ∈ [d].

Then the zero-weight spectral radius of X̃ satisfies

ξ(X̃) ≤ k̃(1− η).

Proof. The assumption k ≥ m2 implies k̃ < k. Let θ̃1 and θ̃min denote the second largest and

the smallest eigenvalues of X̃. Then the statement of the lemma follows from the following

two inequalities implied by Theorem 7.3.8 and Lemma 3.3.3,

θ̃1 ≤ (1− η)k − k

m
+m− 1 = k̃ − ηk ≤ k̃(1− η),

θ̃min ≥ −m− k

m
+m− 1 = − k

m
− 1 = − k̃

m− 1
≥ −k̃(1− η).

Thus, using Lemma 4.5.11 we get a linear in |V (X̃)| lower bound on the motion of X̃.

Proposition 8.2.2. Let X be a geometric distance-regular graph of diameter d ≥ 2 with

µ = 1 and smallest eigenvalue −m, where m ≥ 3. Let ε = ε(d) and η = η(d) ≤ 1/2 be

constants provided by Theorem 7.3.8. Assume ct ≤ εk and bt ≤ εk for some t ∈ [d], and

k ≥ max(4m/η,m2). Let X̃ be the dual graph of X. Then

motion(X̃) ≥ η

2
|V (X̃)|.
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Proof. Since µ = 1, by the discussion after Lemma 4.5.11, the maximal number of common

neighbors of a pair of distinct vertices of X̃ is equal q(X̃) = max(λ̃, µ̃) = max(m − 2, 1).

Note that k̃ ≥ m− 1

m
k ≥ k

2
. So ηk̃ ≥ 2m ≥ 2q(X̃). Hence,

ξ(X̃) + q(X̃) ≤ (1− η)k̃ +
η

2
k̃ =

(
1− η

2

)
k̃.

Therefore, the statement of the proposition follows from Lemma 4.5.11.

We show that this implies that motion(X) is linear in n = |V (X)|.

Lemma 8.2.3. Let F be a collection of size-s subsets of a set Ω such that every element of Ω

is in m sets from F and every pair of distinct sets in F intersects in at most one element of

Ω. Let σ be a permutation of Ω which respects F , i.e., for every C ∈ F its image σ(C) is in

F , too. Assume that at most α|F| sets C ∈ F are fixed by σ, then at most

(
α +

1− α

s

)
|Ω|

elements of Ω are fixed by σ.

Proof. Note that if C ∈ F is not fixed as a set by σ, then |σ(C) ∩C| ≤ 1, as σ(C) ∈ F too.

Hence, at most one element x ∈ Ω of C is fixed by σ.

Now let us count the number of pairs (C, v), such that v ∈ C and σ(v) ̸= v. We just

argued that each of at least (1 − α)|F| sets in F has at least (s − 1) elements that are not

fixed by σ. Therefore, the desired number of pairs is at least (1 − α)|F|(s − 1). Note that

every element of Ω belongs to m sets in F . Therefore, the number of elements of Ω not fixed

by σ is at least (1− α)|F|(s− 1)/m.

Using that every set in F has s elements and every element belongs to m sets in F , we

deduce that s|F| = m|Ω|. Therefore, the number of elements of Ω not fixed by σ is at least

(1− α)
(s− 1)

s
|Ω|.

Corollary 8.2.4. Let X be a non-complete geometric distance-regular graph on n vertices

and let X̃ be its dual graph on ñ vertices. Assume that motion(X̃) ≥ γñ, then motion(X) ≥ γ

2
n.
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Proof. Let σ be a non-identity element of Aut(X). Then σ maps Delsarte cliques to Delsarte

cliques. Thus σ induces an automorphism σ̃ of X̃. Note that if X is non-complete and

geometric, then every vertex in X is uniquely determined by the set of Delsarte cliques that

contain it. Hence, if σ is non-identity, then σ̃ is non-identity as well. So by assumptions of

the corollary, σ̃ fixes at most (1 − γ)ñ vertices of X̃. Using that every Delsarte clique is of

size at least 2, by the previous lemma, we get that σ fixes at most (1− γ/2)n vertices.

We summarize the discussion of this section in the following theorem.

Theorem 8.2.5. Let X be a geometric distance-regular graph of diameter d ≥ 2 on n

vertices. Suppose µ = 1 and the smallest eigenvalue of X is −m, where m ≥ 3. Let ε = ε(d)

and η = η(d) < 1/2 be constants provided by Theorem 7.3.8. Assume ct ≤ εk and bt ≤ εk

for some t ∈ [d], and k ≥ max(4m/η,m2). Then

motion(X) ≥ η

4
n.

Proof. Let X̃ be a dual graph ofX on ñ vertices. Then, Proposition 8.2.2 implies motion(X̃) ≥

(η/2) · ñ. Therefore, the statement of the theorem follows from Corollary 8.2.4.

8.2.2 Distance-regular line graphs with µ = 1

Note that, by Lemma 3.1.8, geometric distance-regular graphs with smallest eigenvalue −2

are line graphs. Thus, we can use the following result of Mohar and Shawe-Taylor [1985].

Definition 8.2.6. A distance-regular graph of diameter d with parameters

k = s(t+ 1), λ = s− 1, ci = 1 and bi = k − s (for i = 1, . . . , d− 1), cd = t+ 1

is called a generalized 2d-gon of order (s, t).
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Theorem 8.2.7 ([Mohar and Shawe-Taylor, 1985, Theorem 3.4]). Suppose the line graph

L(Y ) of a graph Y is distance-regular. Then, either Y is a Moore graph, or Y is a generalized

2d-gon of order (1, s) for some s ≥ 1, or Y = K1,s for s ≥ 1.

By the Hoffman-Singleton theorem, it is known that a Moore graph is either a complete

graph, a polygon, or it is the Petersen graph (k = 3), the Hoffman-Singleton graph (k = 7),

or it has degree k = 57 and diameter d = 2.

Note that a generalized 2d-gon of order (1, s) has intersection numbers ai = 0 for all

i ∈ [d]. Thus it is bipartite. Recall, that each of two connected components of the distance-2

graph X2 of a bipartite distance-regular graph X is called a halved graph.

Fact 8.2.8 (see [Brouwer et al., 1989, Theorem. 6.5.1]). If X is a generalized 2d-gon of

order (1, s), then d is even and its halved graph is a generalized d-gon of order (s, s).

A celebrated theorem of Feit and Higman [1964] asserts that apart from polygons, gen-

eralized 2d-gons exist only for 2d ∈ {4, 6, 8, 12}.

Theorem 8.2.9 (Feit and Higman [1964]). A generalized 2d-gon of order (s, t) exists only

for 2d ∈ {4, 6, 8, 12} unless s = t = 1. If s > 1, then 2d ̸= 12.

Finally, we use the following bound on the zero-weight spectral radius of generalized

2d-gon of order (s, s) for 2d ≤ 6.

Fact 8.2.10 ([Brouwer et al., 1989, Table 6.4]). Let X be a generalized 2d-gon of order (s, s)

for 2d ≤ 6, s > 1. Then the zero-weight spectral radius of X satisfies ξ(X) ≤ 2s.

Proposition 8.2.11. Let X be a geometric distance-regular graph of diameter d ≥ 2 on n

vertices. Suppose µ = 1, k > 4 and the smallest eigenvalue of X is −2. Then

motion(X) ≥ 1

16
n.

112



Proof. By Lemma 3.1.8, X is a line graph. Let X̃ be the dual graph of X. By Theorem 8.2.7,

X̃ is a Moore graph or a generalized 2d-gon of order (1, s) for s = k/2 > 2.

If X̃ is a Moore graph, then µ = 1 implies that X̃ is not complete, and k > 4 implies

X̃ is not a polygon. Thus X̃ is a strongly regular graph in this case. Hence, Theorem 1.2.5

implies that motion(X̃) ≥ n/8 and the desired bound on the motion of X follows from

Corollary 8.2.4.

Therefore, we may assume that X̃ is a generalized 2d-gon of order (1, s) for s > 2.

Then, by Fact 8.2.8, a halved graph Y of X̃ is a generalized d-gon of order (s, s) (and d is

even). Moreover, by Theorem 8.2.9, d ≤ 6 and by Fact 8.2.10, ξ(Y ) ≤ 2s. Note that every

pair of distinct vertices of Y has at most q(Y ) = s − 1 common neighbors. Therefore, by

Lemma 4.5.11,

motion(Y ) ≥ s(s+ 1)− 3s

s(s+ 1)
|V (Y )| ≥ s− 2

s+ 1
|V (Y )| ≥ 1

4
|V (Y )|.

We note that |V (X̃)| = 2|V (Y )| and motion(X̃) ≥ motion(Y ). Therefore, the statement

of the proposition follows from Corollary 8.2.4.

Remark 8.2.12. We note that one can show a linear lower bound (with a worse constant)

on motion in this case without using the Feit-Higman classification theorem. Since a dual

graph X̃ is bipartite or of diameter 2, one can use Theorem 1.2.5 and the bounds on the

motion of bipartite graphs, which we prove in Section 8.4.

8.3 Combining all pieces together: Proof of Babai’s conjecture

Finally, we combine the above results to prove Babai’s conjecture on motion of distance-

regular graphs (Conjecture 8.0.1).

Theorem 8.3.1 (Confirming Conj. 8.0.1). For every d ≥ 3 there exists γd > 0, such that
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for every primitive distance-regular graph X of diameter d on n vertices either

motion(X) ≥ γdn,

or X is the Hamming graph H(d, s) or the Johnson graph J(s, d).

Proof. Recall, Theorem 8.1.7 implies that either motion(X) ≥ γ′dn for some γ′d > 0, or X is

geometric with smallest eigenvalue ≥ −md, for some md ≥ 3.

Let 0 < ε′ = ε(d) and 0 < ηd = η(d) < 1/2 be the constants given by Theorem 7.3.8. Set

0 < ε =
1

2
min

(
1

6m4
dd
, ε′,

1

200

)
.

Case A. X is not geometric or the smallest eigenvalue of X is less than −md.

Then, by Theorem 8.1.7, motion(X) ≥ γ′dn.

Case B. There exists t ∈ [d] such that ct+1 ≥ εk and bt ≥ εk.

Then, by Proposition 8.1.6, motion(X) ≥ εn/d.

Case C. X is geometric with smallest eigenvalue at least −md and there exists t ∈ [d] such

that ct < εk and bt < εk.

By Theorem 7.3.8, the zero-weight spectral radius of X satisfies ξ(X) ≤ (1− ηd)k.

Case C.1. k < max(29, 2m3
d, 4md/ηd).

Then X has at most Nd = max(29, 2m3
d, 4md/ηd)

d + 1 vertices. Moreover, every

non-trivial automorphism moves at least 2 points, so motion(X) ≥ 2

Nd
n.

Case C.2. k ≥ max(2m3
d, 29) and µ ≥ 2.

Case C.2.i. θ1 < (1− ε)b1.

Using Corollary 3.2.3 we obtain, λ ≥ k

md
− 1 ≥ m2

d ≥ µ. By Lemma 2.4.4, we
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have 2λ ≤ µ+ k, so b1 ≥ (k − µ− 2)/2 ≥ k/4. Thus, for q(X) = max(λ, µ),

ξ(X) + q(X) ≤ k − εb1 ≤
(
1− ε

4

)
k.

Hence, by Lemma 4.5.11, motion(X) ≥ ε

4
n.

Case C.2.ii. θ1 ≥ (1− ε)b1 and µ ≥ 3.

Since ε < 1
200 < ε∗, by Theorem 1.4.4 and Proposition 6.2.7, X is a Johnson

graph.

Case C.2.iii. θ1 ≥ (1− ε)b1 and µ = 2.

By Corollary 6.3.7, X is a Hamming graph.

Case C.3. µ = 1 and k ≥ max(4md/ηd,m
2
d).

Case C.3.i. The smallest eigenvalue −m of X satisfies −m ≤ −3.

Then by Theorem 8.2.5, motion(X) ≥ ηd
4
n.

Case C.3.ii. The smallest eigenvalue −m of X satisfies −m > −3.

Since, by Lemma 3.1.7, m is an integer, we get that m ≤ 2. Hence, m = 2, and

by Proposition 8.2.11 motion(X) ≥ n/16.

Therefore, the statement of the theorem holds with γd = min

(
ηd
4
,
ε

d
,
2

Nd
, γ′d,

1

16

)
.

8.4 Extending the motion result to imprimitive graphs

In this section we analyze the motion of imprimitive distance-regular graphs. Our main

result is the following.

Theorem 8.4.1. For every d ≥ 3 there exists γd > 0, such that for every distance-regular

graph X of diameter d on n vertices either

motion(X) ≥ γdn,
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or X is a Johnson graph, or a Hamming graph, or a crown graph.

We start by establishing a version of the Spectral tool (see Lemma 4.5.11) in the bipartite

case. Later we show that the motion of the antipodal graphs is controlled by the motion

of their folded graphs. After that we prove motion lower bounds for bipartite graphs and

for imprimitive graphs of diameter 3 and 4. A separate analysis for an imprimitive graph of

diameter 3 and 4 is needed due to the fact that its folded or halved graph may be a complete

graph, and in this case different arguments are required.

8.4.1 Spectral tool for bipartite graphs

To prove an analog of the Spectral tool (Lemma 4.5.11) for the case of bipartite graphs we

need a version of the Expander Mixing Lemma for regular bipartite graphs.

Theorem 8.4.2 (Expander Mixing Lemma: bipartite version, [Haemers, 1995, Thm 5.1]).

Let X be a biregular bipartite graph with parts U and W of sizes nU and nW . Denote, by

dU and dW the degrees of the vertices in parts U and W , respectively. Let λ2 be the second

largest eigenvalue of the adjacency matrix A of X. Then for every S ⊆ U , T ⊆ W

(
E(S, T )

nU
|S|

− |T |dW
)(

E(S, T )
nW
|T |

− |S|dU
)

≤ λ22(nU − |S|)(nW − |T |),

which, using dUnU = dWnW = E(U,W ), implies

∣∣∣∣|E(S, T )| − dW |S||T |
nU

∣∣∣∣ ≤ |λ2|
√
|S||T |,

where E(S, T ) is the set of edges between S and T in X.

Next lemma is an analog of Lemma 4.5.11 for bipartite graphs.

Lemma 8.4.3. Let X be a k-regular bipartite graph with parts U and W of size n/2 each.

Let λ2 be the second largest eigenvalue of A. Moreover, suppose that every pair of distinct
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vertices in X have at most q common neighbors. Then

motion(X) ≥ k − |λ2| − q

2k
n.

Proof. Take any non-trivial automorphism σ of X. Consider S1 ⊆ U and S2 ⊆ W , such

that S1 ∪ S2 = supp(σ) = {x ∈ X|xσ ̸= x} be the support of σ. Without lost of generality,

we may assume that |S1| ≥ |S2|. Denote S = S1 and let T ⊂ W be a set which satisfies

S2 ⊆ T and |T | = |S|. By the Expander Mixing Lemma we get

|E(S, T )|
|S|

≤ |λ2|+ k
2|S|
n
.

Hence, there exists a vertex x in S which has at most |λ2|+ k
2|S|
n

neighbors in T . Thus, x has

at least k −
(
|λ2|+ k

2|S|
n

)
neighbors in W \T , and they all are fixed by σ. Therefore, they

all are common neighbors of x and xσ ̸= x. We get the inequality q ≥ k −
(
|λ2|+ k

2|S|
n

)
,

which is equivalent to

(
|λ2|+ q

k

)
n

2
≥ n

2
− |S|. By the definition of S and T the number of

fixed points of σ is at most

n− |S1| − |S2| ≤ n− |S| ≤
(
1

2
+

|λ2|+ q

2k

)
n.

8.4.2 Reduction results

We show that the motion of an imprimitive distance-regular graph is controlled by the motion

of its folded or halved graph.

Proposition 8.4.4. Let X be an antipodal distance-regular graph of diameter d ≥ 3 on

n vertices and X̃ be its folded graph on ñ vertices. Suppose motion(X̃) ≥ αñ. Then

motion(X) ≥ αn.

Proof. Assume that X is an r-cover of X̃ and let ϕ : X → X̃ be a cover map. Let σ be an
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automorphism of X. Note that by the definition of antipodal and folded graphs, vertices of

X̃ are maximal cliques (connected components) of Xd. Since σ is an automorphism of X, it

preserves the relation of being at distance d, so σ respects preimages of ϕ. Hence, it induces

an automorphism σ̃ of X̃ defined as σ̃(x) = ϕ(σ(ϕ−1(x))).

If σ̃ is non-identity, then by the assumptions of the lemma, the degree of σ̃ is at least αñ.

Suppose that x ∈ V (X̃) is not fixed by σ̃, then ϕ−1(x) is disjoint from σ(ϕ−1(x)). Thus, all

vertices in ϕ−1(x) are not fixed by σ. Therefore, the degree of σ is at least r · αñ = αn.

Assume that σ̃ is the identity map. Suppose that σ is a non-identity map. Let x be a

vertex such that σ(x) ̸= x and let y be adjacent to x. Note that σ(x) is at distance d from

x as σ̃ is the identity map. Thus σ(y) ̸= y, as otherwise y is adjacent to σ(x) and we get a

contradiction with the assumption d ≥ 3. Therefore, every vertex of X which is adjacent to

a vertex not fixed by σ is itself not fixed by σ. Since X is connected, we get that the degree

of σ is n in this case.

Remark 8.4.5. If X is antipodal of diameter d = 2, then X is a complete multipartite graph

and its folded graph is a complete graph. The motion of X is 2 in this case, so statement of

the proposition above does not hold.

Definition 8.4.6. A pair of distinct vertices u and v in a graph X is called twins if the

transposition (u, v) is an automorphism of X, i.e., N(u) ∪ {u, v} = N(v) ∪ {u, v}.

Lemma 8.4.7. Let X be a distance-regular graph. Assume that X is not a complete graph

or a complete multipartite graph. Then X has no twins.

Proof. Assume that u and v are twins in X. Then dist(u, v) ≤ 2. If u and v are adjacent,

then λ = k−1, so X is a complete graph. If u and v are not adjacent, then N(u) = N(v), so

we obtain µ = k. Thus, the diameter of X is 2 and every pair of distinct vertices at distance

2 are twins. This implies that X is complete multipartite.
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Proposition 8.4.8. Let X be a bipartite distance-regular graph of diameter d ≥ 3. Let X+

and X− be the halved graphs of X. Then

motion(X) ≥ motion(X+) + motion(X−).

Proof. Let σ be an automorphism of X. If σ(X+) = X−, then the degree of σ is |V (X)| = n.

Otherwise, σ induces σ+ ∈ Aut(X+) and σ− ∈ Aut(X−).

Assume, that σ+ is trivial, while σ− is non-trivial. And let σ(v) = u ̸= v, for u, v ∈ X−.

All neighbors of u and v are in X+, and X+ is fixed, so u and v are twins. We get a

contradiction with Lemma 8.4.7.

Therefore, if σ is non-trivial, then both σ+ and σ− are non-trivial. Hence, the statement

of the proposition follows.

8.4.3 Bipartite graphs of diameter at least 4

Theorem 8.4.9. Let X be a bipartite graph of diameter d ≥ 4 on n vertices. If a halved

graph of X is primitive, then

motion(X) ≥ γ′dn, where γ′d = (2d)−2d−5.

Proof. Let ι(X) = {b0, b1, . . . , bd−1; c1, c2, . . . , cd} be the intersection array of X. Denote by

Y a halved graph of X. By Proposition 2.5.3, the intersection array of Y is

ι(Y ) =

{
b0b1
µ
,
b2b3
µ
, . . . ,

b2t−2b2t−1

µ
;
c1c2
µ

,
c3c4
µ

, . . . ,
c2t−1c2t

µ

}
,

where d ∈ {2t, 2t+1}. Note that since X is bipartite, bi+ ci = k, so in particular the degree

of Y is equal to

k̂ =
b0b1
µ

=
k(k − c1)

µ
=
k(k − 1)

µ
.

119



For convenience, define ci = k for every i > d. Take 1 ≤ j ≤ t such that c2j−1 ≤ εk and

c2j+1 ≥ εk, where ε = (2d)−d−2. Then for all i ≤ j

c2i−1c2i
µ

≤
c2j−1c2j

µ
≤ 2εk̂ and

b2i−2b2i−1

µ
≥
b22j−1

µ
=

(k − c2t−1)
2

µ
≥ (1− ε)2k̂. (8.1)

Case 1. Assume that j = 1 and b2j+1 ≤ εk. Then

λ(Y ) = k̂ − b2b3
µ

− 1 ≥ k̂ − 2εk̂.

By Lemma 8.1.1 we obtain that µ(Y ) ≥ k̂ − 4εk̂ > k̂/2. By Lemma 8.1.5, we get |V (Y )| <

t2tk. Therefore, as halved graph is not bipartite, by Proposition 8.1.4, we obtain

motion(Y ) ≥ 1

3t2t
|V (Y )|.

Case 2. Assume that j ≥ 2 and b2j+1 ≤ εk. Then, for every i ≥ j + 1

c2i−1c2i
µ

≥
c22j+1

µ
=

(k − b2j+1)
2

µ
≥ (1− ε)2k̂. (8.2)

Hence, combining Eq. (8.1) and Eq. (8.2), by Lemma 7.1.2, the zero-weight spectral

radius of Y satisfies

ξ(Y ) ≤
(
1− (1− ε)2 + 2(t+ 2)2ε

1
t+1

)
k̂.

Since j ≥ 2, using Eq. (8.1), we can estimate

λ(Y ) ≤ k̂ − b2b3
µ

≤ k̂ − (1− ε)2k̂ ≤ 2εk̂ and µ(Y ) =
c3c4
µ

≤ 2εk̂.
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Therefore, by Lemma 4.5.11 and the choice of ε,

motion(Y ) ≥
(
(1− ε)2 − 2(t+ 2)2ε

1
t+1 − 2ε

)
|V (Y )| ≥ 1

3
|V (Y )|.

Case 3. Assume that b2j+1 > εk. Then

c2j+1c2j+2

µ
≥
c22j+1

µ
≥ ε2k̂ and

b2jb2j+1

µ
≥
b22j+1

µ
≥ ε2k̂.

Since Y is primitive, by Proposition 8.1.6,

motion(Y ) ≥ ε2

t
|V (Y )|.

Finally, since |V (Y )| = n/2, the inequality motion(X) ≥ γn follows from Proposi-

tion 8.4.8 for γ = min

(
1

3t2t
,
1

3
,
(2d)−2d−4

t

)
≥ (2d)−2d−5.

8.4.4 Bipartite antipodal graphs of diameter 4

Fact 8.4.10 (Brouwer et al. [1989], p. 425). Let X be a bipartite antipodal distance-regular

graph of diameter d = 4. Then there exist µ and m such that the number of vertices is

n = 2m2µ, the degree is k = mµ, and the intersection array is

ι(X) = {mµ,mµ− 1, (m− 1)µ, 1; 1, µ,mµ− 1,mµ}.

Moreover, the spectrum of X consists of k and −k of multiplicity 1,
√
k and −

√
k of multi-

plicity (m− 1)k, and 0 of multiplicity (2k − 2).

Proposition 8.4.11. Let X be a bipartite antipodal distance-regular graph of diameter d = 4

on n vertices. Then

motion(X) ≥ 0.15n.
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Proof. Consider a pair of distinct vertices u, v of X. If dist(u, v) > 2, then they are dis-

tinguished by at least D(u, v) ≥ 2k vertices. Since X is bipartite, if dist(u, v) = 1, then

D(u, v) ≥ 2k as well. Clearly, for u, v at distance 2, we have D(u, v) ≥ 2(k − µ). Thus

Dmin(X) ≥ 2(k − µ).

By Fact 8.4.10, k = mµ and n = 2m2µ for some integer m ≥ 2. Therefore, by

Lemma 4.5.10,

motion(X) ≥ Dmin(X) ≥ m− 1

m2
n. (8.3)

At the same time, by Fact 8.4.10, we know that the second largest eigenvalue of X equals
√
k. Then, by Lemma 8.4.3,

motion(X) ≥ k −
√
k − µ

2k
n =

mµ−√
mµ− µ

2mµ
n ≥ m−

√
m− 1

2m
n. (8.4)

Using the bound given by Eq. (8.3) for m ≤ 4, and the bound given by Eq. (8.4) for m > 4,

we get the desired inequality.

8.4.5 Bipartite graphs of diameter 3

Fact 8.4.12 (Brouwer et al. [1989], p. 432). Let X be a bipartite distance-regular graph

of diameter 3. Then the number of vertices of X is n = 2 + 2k(k − 1)/µ and X has the

intersection array

ι(X) = {k, k − 1, k − µ; 1, µ, k}.

The eigenvalues of X are k, −k with multiplicity 1, and ±
√
k − µ with multiplicity n

2 − 1.

Proposition 8.4.13. Let X be a bipartite distance-regular graph of diameter 3. If X is not

a crown graph, then

motion(X) ≥ 1

6
n.

Proof. Denote the parts of the bipartite graph X by U and W . Let Y = X3 be a distance-3
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graph of X. We consider 2 cases.

Case 1. Suppose that Y is disconnected. Then there exists a pair of vertices u, v in one of

the parts, so that u and v lie in different connected components of Y . Clearly, dist(u, v) = 2,

so p23,3 = 0. Hence, k3 = 1, and the pairs of vertices at distance 3 form a perfect matching.

Therefore, X is a regular complete bipartite graph with one perfect matching deleted.

Case 2. Y is connected and so is itself a distance-regular graph of diameter 3. Note,

that k + k3 = n/2, so if necessary, by passing to Y , we may assume that the degree of X

satisfies k ≤ n/4. Fact 8.4.12 implies µ ≤ k/2. The graph X is bipartite, so λ = 0 and by

Lemma 4.5.10,

motion(X) ≥ Dmin(X) ≥ 2(k − µ) ≥ k. (8.5)

If µ ≥ k/3, then by Fact 8.4.12, n ≤ 6k, so motion(X) ≥ n/6. If k/4 ≤ µ < k/3, then

n ≤ 8k, and Eq. (8.5) implies

motion(X) ≥ 2(k − µ) ≥ 4

3
k ≥ n

6
.

Finally, assume µ < k/4. By Fact 8.4.12, the second largest eigenvalue is λ2 =
√
k − µ.

Using that k > 4µ ≥ 4 and the function x−
√
x is increasing for x ≥ 1, by Lemma 8.4.3,

motion(X) ≥ k − µ−
√
k − µ

2k
n ≥ 3k − 2

√
3k

8k
n ≥ 15− 2

√
15

40
n ≥ n

6
.

8.4.6 Antipodal graphs of diameter 3

Fact 8.4.14 (see [Brouwer et al., 1989, p. 431]). Let X be an antipodal distance-regular

graph of diameter d = 3 on n vertices. There exist integers m ≥ 2, r ≥ 2 and t ≥ 1 such

that the following holds.

• If λ ̸= µ, then n = r(k + 1), k = mt, µ = (m − 1)(t + 1)/r, λ = µ + t − m.

Moreover, the distinct eigenvalues of X are k, t, −1 and −m, with multiplicities 1,
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m(r − 1)(k + 1)/(m+ t), k, t(r − 1)(k + 1)/(m+ t), respectively.

• If λ = µ, then n = r(k + 1), k = rµ+ 1. The distinct eigenvalues of X are k,
√
k, −1

and −
√
k.

Proposition 8.4.15. Let X be an antipodal distance-regular graph of diameter d = 3 on n

vertices. If X is not a crown graph, then

motion(X) ≥ 1

13
n.

Proof. Case 1. Suppose that λ ̸= µ and t > m. Then λ > µ and so

k − q(X)− ξ(X) = tm− (m− 1)(t+ 1)

r
− t+m− t ≥ t

(
m− 2− m− 1

r

)
.

If m ≥ 3 and r ≥ 3, then

k − q(X)− ξ(X) ≥ t

(
m− 2− m− 1

3

)
= t

(
2

3
m− 5

3

)
≥ 1

9
tm =

k

9
.

If r = 2 and m ≥ 4, then

k − q(X)− ξ(X) ≥ t

(
m− 2− m− 1

2

)
= t

(
1

2
m− 3

2

)
≥ 1

8
tm =

k

8
.

Therefore, in both of these situations, by Lemma 4.5.11,

motion(X) ≥ n

9
.

If r = 2 and m = 3, then n = 6t + 2, k = 3t, µ = t + 1 and λ = 2t − 2. Note that by

Lemma 4.5.10, in this case

motion(X) ≥ Dmin(X) ≥ min(2(k − λ), 2(k − µ)) = 2(t+ 2) ≥ n

3
.
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Finally, if m = 2, then k = 2t, µ = (t + 1)/r is integer, and the multiplicity of t as an

eigenvalue is an integer number equal to 2(r−1)(2t+1)/(t+2). Thus we may conclude that

(t+ 2) | 2(r − 1)(2t+ 4− 3) ⇒ (t+ 2) | 6(r − 1) ⇒

⇒ (t+ 2) | 6
(
t+ 1

µ
− 1

)
⇒ (t+ 2) | 6(t+ 1− µ) ⇒ (t+ 2) | 6(µ+ 1).

Hence, in particular,

(t+ 2) ≤ 6

(
t+ 1

r
+ 1

)
, so (t− 4)r ≤ 6t+ 6.

If t ≥ 10, we get r ≤ 11. If t < 10, then r = (t + 1)/µ ≤ t + 1 < 11. Therefore, by

Lemma 4.5.10,

motion(X) ≥ Dmin(X) ≥ 2(k − λ) = 2

(
t+ 2− t+ 1

r

)
≥ r − 1

r2
n ≥ n

13
.

Case 2. Suppose that λ ̸= µ and m > t. Then λ < µ and so

k − q(X)− ξ(X) = tm− (m− 1)(t+ 1)

r
−m ≥ m

(
t− 1− t+ 1

r

)
.

If r ≥ 4 and t ≥ 2, we get

k − q(X)− ξ(X) ≥ m

(
t− 1− t+ 1

4

)
= m

(
3

4
t− 5

4

)
≥ 1

8
mt =

k

8
.

Therefore, by Lemma 4.5.11,

motion(X) ≥ n

8
.
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If r ≤ 4 and t ≥ 2, then n ≤ 4(k + 1), and by Lemma 4.5.10,

motion(X) ≥ Dmin(X) ≥ min(2(k − λ), 2(k − µ)) ≥

≥ 2

(
mt− (m− 1)(t+ 1)

2

)
≥ 2

(
mt− m(t+ 1)

2

)
≥ 2

(
mt− 3mt

4

)
=
k

2
≥ n

12
.

Finally, if t = 1, then λ ≥ 0 implies r = 2. Hence, we obtain n = 2(k + 1), µ = k − 1 and

λ = 0. It follows that X is a crown graph in this case.

Case 3. Assume λ = µ. Then by Fact 8.4.14, n = r(k+1), k = rµ+1 and ξ(X) =
√
k. By

Lemma 4.5.11, for r ≥ 4

motion(X) ≥ k − µ−
√
k

k
n ≥ (r − 1)µ+ 1− µ

√
r + 1

rµ+ 1
n ≥ r −

√
r + 1− 1

r
n ≥ n

6
.

At the same time, since λ = µ, for 2 ≤ r ≤ 3, by Lemma 4.5.10,

motion(X) ≥ Dmin(X) ≥ 2(k − µ) ≥ r − 1

r
k ≥ 2(r − 1)

3r2
n ≥ 4

27
n.

8.4.7 Collecting together the analysis for imprimitive graphs

In this section we collect analysis of the imprimitive case into Theorem 8.4.1. In the proof

we use the following result about antipodal covers proved by van Bon and Brouwer [1988].

Theorem 8.4.16 (van Bon and Brouwer [1988]).

1. The Hamming graph H(d, s) has no distance-regular antipodal covers, except for H(2, 2),

the quadrangle, which is covered by the octagon.

2. The Johnson graph J(s, d) has no distance-regular antipodal covers for d ≥ 2.

3. The complement J(s, 2) has no distance-regular antipodal covers for s ≥ 8.

4. The complement H(2, s) has no distance-regular antipodal covers for s ≥ 4.
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Now we are ready to extend Theorem 8.3.1 to imprimitive distance-regular graphs.

Proof of Theorem 8.4.1. If X is primitive, by Theorem 8.3.1, there exists γd > 0 such that

the claim holds. If X is bipartite and not antipodal of diameter d ≥ 4, then by Theorem 8.4.9

motion(X) ≥ γ′dn. If X is bipartite (possibly antipodal) graph of diameter d = 3, then by

Theorem 8.4.13, X is either a crown graph, or motion(X) ≥ n/6.

If X is bipartite and antipodal of even diameter d ≥ 6, then by Proposition 2.5.4, folded

graph X̃ is bipartite (and not antipodal) of diameter d/2. So

motion(X̃) ≥ min

(
γ′d/2,

1

6

)
|V (X̃)|

(we use that crown graph is antipodal). Therefore, by Proposition 8.4.4,

motion(X) ≥ min

(
γ′d/2,

1

6

)
n.

In the case when X is bipartite and antipodal of diameter d = 4, by Proposition 8.4.11,

motion(X) ≥ 0.15n.

We still need to analyze the cases when X is antipodal, but not bipartite, or when

X is antipodal of odd diameter. By Proposition 2.5.4, in these cases, folded graph of X

is primitive. If diameter of X is 3, then by Proposition 8.4.15, motion(X) ≥ n/13. If

diameter of X is d ≥ 4, then by Proposition 2.5.4, folded graph X̃ is primitive of diameter

d̃ = ⌊d/2⌋ ≥ 2. Since X̃ is primitive, X̃ is not the complement to a disjoint union of cliques.

If X̃ has at least 29 vertices, and X is not a Johnson graph J(s, d), the Hamming graph

H(d, s), or the complement of J(s, 2) or H(2, s), then by Theorem 1.2.5 and Theorem 8.3.1,

motion(X̃) ≥ min

(
γ
d̃
,
1

8

)
|V (X̃)|.
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Therefore, in this case, by Theorem 8.4.4,

motion(X) ≥ min

(
γ
d̃
,
1

8

)
n.

Finally we note, that by Theorem 8.4.16, if Y is the Johnson graph J(s, d), the Hamming

graph H(d, s), or the complement of J(s, 2) or H(2, s) and Y has at least 29 vertices, then

Y has no antipodal covers. In the case when Y has at most 28 vertex, motion(Y ) ≥ |Y |/14.

So by Proposition 8.4.4, if the graph X on n vertices is a distance-regular antipodal cover of

such Y , then motion(X) ≥ n/14.

Taking γ̃ = min

(
γd, γ

′
d, γ

′
d/2, γ⌊d/2⌋,

1

14

)
we get the desired statement.
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CHAPTER 9

MOTION OF RANK-4 PRIMITIVE COHERENT

CONFIGURATIONS

In this chapter we prove Babai’s conjecture on motion of primitive coherent configurations

in the case when rank equals 4.

9.1 Outline of the proof of Theorem 1.2.8

Primitive coherent configurations of rank 4 naturally split into three classes: configurations

induced by a primitive distance-regular graph of diameter 3, association schemes of diameter

2 (see Definition 2.3.18), and primitive coherent configurations with one undirected color

and two oriented colors. The case of distance-regular graphs of diameter 3 follows from

Theorem 8.3.1 we proved in Chapter 8.

So we need to deal with the other two classes. It is not hard to see that in the case of

two oriented colors, the undirected constituent is strongly regular. Thus, by Babai’s result

on motion of strongly regular graphs (Theorem 1.2.5), if the number of vertices n ≥ 29, the

only possibility for X to have motion less than n/8 is when the undirected constituent is the

triagular graph T (s), or the lattice graph L2(s), or their complement. In the latter case, we

prove that the motion is linear in n using the generalization of an argument appearing in

the proof of [Sun and Wilmes, 2015a, Lemma 3.5] (see Lemma 9.4.1 in this thesis).

Hence, we need to concentrate on the case of primitive association schemes of rank 4

with constituents of diameter 2. As the first step, we show that either we have a constituent

with a (1− δ)-dominant degree, or every pair of vertices can be distinguished by εn vertices

(see Lemma 9.3.1). The latter directly implies that the motion is at least εn. On the other

hand, the fact that one of the constituents, say X3, has large degree implies that some

intersection numbers are quite small (see Proposition 9.3.3). This allows us to approximate
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the eigenvalues of the constituents X1 and X2, and so to approximate their zero-weight

spectral radii with simple expressions involving the intersection numbers (see Lemma 9.2.3).

We aim to apply Lemma 4.5.11 to the constituents X1 and X2. Considering cases how their

degrees k1 and k2 can differ, we obtain that either the motion of X is linear in n, or one of the

graphs XJ is a line graph, where J ∈ {1, 2, {1, 2}}. By definition, X1,2 is the complement

of X3. Since X1 and X2 are edge-regular, we use the classification of edge-regular and co-

edge-regular graphs with smallest eigenvalue −2 (see Theorem 5.1.11). The classification

tells us that either Xi is strongly regular with smallest eigenvalue −2, or it is the line graph

of a triangle-free regular graph (see Theorem 9.3.10 for a more precise statement). If XJ is

strongly regular with smallest eigenvalue −2, then XJ is a triangular graph T (s), or a lattice

graph L2(s), or has at most 28 vertices.

If one of the constituents is a line graph, this allows us to obtain more precise bounds

on the intersection numbers. In particular, we approximate the zero-weight spectral radius

of the graph X1,2 with a relatively simple expression as well. At this point, our main

goal becomes to get constraints on the intersection numbers, that will allow us to apply

Lemma 4.5.11 effectively to one of the graphs X1, X2 or X1,2. We consider four cases.

Three of them are defined by which of the graphs X1, X2 or X1,2 is strongly regular. In the

fourth case, one of the constituents is the line graph of a triangle-free regular graph. For the

ranges of the parameters when Lemma 4.5.11 cannot be used effectively we use Lemma 9.4.1.

Roughly speaking, it says that if a triangular graph T (s) is a union of several constituents

of a coherent configuration X, then Aut(X) is small if the following holds for every Delsarte

clique: if we look on the configuration induced on the Delsarte clique, then each pair of

vertices is distinguished by a constant fraction of the vertices of the clique. The hardest case

in the analysis is the case when the constituent of the smallest degree, X1, is strongly regular.

This case is settled in Theorem 9.4.8 and requires preparatory work with several new ideas.

In particular, we use an analog of the argument from the proof of Metsch’s criteria to get a
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constant upper bound on the fraction k2/k1 in a certain range of parameters.

9.2 Approximation of the eigenvalues of the constituents

First, we provide technical lemmas that allow us to approximate the zero-weight spectral

radius of constituents X1, X2 and X1,2 under quite modest assumptions.

Lemma 9.2.1. Let X be an association scheme of rank 4. Let η be a non-trivial eigenvalue

of A1. Then η satisfies cubic polynomial equation η3 + a1η
2 + a2η + a3 = 0, where

a1 = −(p11,1 + p21,2 − p31,1 − p31,2) a3 =
(
(p21,2 − p31,2)(k1 − p31,1) + (p21,1 − p31,1)p

3
1,2

)

a2 =
(
(p21,2 − p31,2)(p

1
1,1 − p31,1)− (p21,1 − p31,1)(p

1
1,2 − p31,2)− (k1 − p31,1)

)
Proof. By Eq. (2.2) for intersection numbers we have

A2
1 = p11,1A1 + p21,1A2 + p31,1A3 + k1I.

We can eliminate A3 using Eq. (2.1).

A2
1 = (p11,1 − p31,1)A1 + (p21,1 − p31,1)A2 + (k1 − p31,1)I + p31,1J. (9.1)

Let us multiply previous equation by A1 and use Eq. (2.2).

A3
1 = (p11,1 − p31,1)A

2
1 + (k1 − p31,1)A1 + p31,1k1J+

+(p21,1 − p31,1)((p
1
1,2 − p31,2)A1 + (p21,2 − p31,2)A2 + p31,2J − p31,2I).

(9.2)

Combining Eq. (9.1) and (9.2) we eliminate A2 as well.

A3
1 − (p21,2 − p31,2)A

2
1 = (p11,1 − p31,1)A

2
1 + (k1 − p31,1)A1 + p31,1k1J−
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−(p21,2 − p31,2)(p
1
1,1 − p31,1)A1 − (p21,2 − p31,2)((k1 − p31,1)I + p31,1J)+

+(p21,1 − p31,1)(p
1
1,2 − p31,2)A1 + (p21,1 − p31,1)(p

3
1,2J − p31,2I).

Suppose that v is an eigenvector of A1, which is different from the all-ones vector, and let η

be the corresponding eigenvalue. Then Jv = 0 and A1v = ηv, so the non-trivial eigenvalue

η is a root of the polynomial η3 + a1η
2 + a2η + a3.

We use the following result from the approximation theory which allows us to estimate

the roots of a perturbed polynomial.

Theorem 9.2.2 ([Ostrowski, 1967, Appendix A]). Let n ≥ 1 be an integer. Consider a pair

of polynomials of degree n

f(x) = a0x
n + ...+ an−1x+ an, g(x) = b0x

n + ...+ bn−1x+ bn,

where a0 = b0 = 1. Denote M = max{|ai|1/i, |bi|1/i : 0 ≤ i ≤ n} and

ε = 2n

(
n∑
i=1

|bi − ai|(2M)n−i
)1/n

.

Let x1, x2, ..., xn denote the roots of f and y1, y2, ..., yn denote the roots of g. Then, there

exists a permutation σ ∈ Sn such that for every 1 ≤ i ≤ n

|xi − yσ(i)| ≤ ε.

Proposition 9.2.3. Fix ε > 0. Let X be an association scheme of rank 4. Suppose that the

parameters of X satisfy 1/ε ≤ k1 and p31,i ≤ εk1 for i = 1, 2. Then the zero-weight spectral

radius ξ(X1) of X1 satisfies

ξ(X1) ≤
p11,1 + p21,2 +

√
(p11,1 − p21,2)

2 + 4p21,1p
1
1,2

2
+ 25ε1/3k1.
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Proof. By Lemma 9.2.1, every non-trivial eigenvalue of X1 is a root of the polynomial

η3 + a1η
2 + a2η + a3,

where a1, a2 and a3 are as in Lemma 9.2.1. Observe, that for

b1 = −(p11,1 + p21,2), b2 = p21,2p
1
1,1 − p21,1p

1
1,2, b3 = 0,

the following inequalities are true

|a1 − b1| ≤ 2εk1, |a2 − b2| ≤
(
4ε+ 2ε2 +

1

k1

)
k21, |a3 − b3| ≤ 2k21 ≤ 2εk31.

Denote by ν1, ν2, ν3 the non-trivial eigenvalues of A1. By Theorem 9.2.2, we can arrange

the roots x1, x2, x3 of x3 + b1x
2 + b2x+ b3 so that |νi − xi| ≤ δ, where

δ = 6
(
2εk1(4k1)

2 + 6εk21(4k1) + 2εk31

)1/3
≤ 25ε1/3k1.

Proposition 9.2.4. Fix ε > 0. Let X be an association scheme of rank 4. Suppose that

the intersection numbers of X satisfy 1/ε ≤ k1, p
2
1,1 ≤ εk1 and p3i,j ≤ εmin(ki, kj) for

{i, j} = {1, 2}. Then the zero-weight spectral radius of X1,2 satisfies

ξ(X1,2) ≤
p11,1 + p21,2 + p22,2 +

√
(p22,2 + p21,2 − p11,1)

2 + 4p21,2p
1
2,2

2
+ 25ε1/3(k1 + k2).

Notation 9.2.5. We use the non-asymptotic notation y = □(x) to say that |y| ≤ x.

Proof. The proof is similar to the proofs of Proposition 9.2.3 and Lemma 9.2.1. Denote

k = k1 + k2. By Eq. (2.2) we have

(A1+A2)
2 = (p11,1+2p11,2+p

1
2,2)A1+(p21,1+2p21,2+p

2
2,2)A2+(p31,1+2p31,2+p

3
2,2)A3+kI. (9.3)
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Note that, by assumptions of this proposition

0 ≤ p31,1 + 2p31,2 + p32,2 ≤ 2εk and 0 ≤ p11,2 =
k2
k1
p21,1 ≤ εk.

Using Eq. (2.1), we eliminate A3.

(A1 + A2)
2 = (p11,1 + p12,2 + 2□(εk))A1 + (2p21,2 + p22,2 + 2□(εk))A2+

+ (k + 2□(εk))I + 2□(εk)J =

= (p11,1 + p12,2 + 2□(εk))(A1 + A2) + 2□(εk2)I + 2□(εk)J+

+
(
2p21,2 + p22,2 − p11,1 − p12,2 + 4□(εk)

)
A2.

(9.4)

Denote by R = 2p21,2+p
2
2,2−p

1
1,1−p

1
2,2+4□(εk) the last coefficient in Eq. (9.4). Multiplying

Eq. (9.4) by (A1 + A2) we get

(A1 + A2)
3 = (p11,1 + p12,2 + 2□(εk))(A1 + A2)

2 + 2□(εk2)(A1 + A2) + 2□(εk2)J+

+R
(
(p11,2 + p12,2 +□(εk))(A1 + A2) + (k2 +□(εk))I +□(εk)J

)
+

+R(p21,2 + p22,2 − p11,2 + p12,2)A2 =

= (p11,1 + p12,2 + 2□(εk))(A1 + A2)
2 + 9□(εk2)(A1 + A2) + 5□(εk2)J+

+ (2p21,2 + p22,2 − p11,1 − p12,2)p
1
2,2(A1 + A2) + 3□(εk2)I

+R(p21,2 + p22,2 − p11,2 − p12,2)A2.

(9.5)

Let us multiply Eq. (9.4) by p21,2 + p22,2 − p11,2 − p12,2 = p21,2 + p22,2 − p12,2 + □(εk) to

eliminate A2 from Eq. (9.5). Observe first, that

(2p21,2+p
2
2,2−p

1
1,1−p

1
2,2)p

1
2,2− (p11,1+p

1
2,2)(p

2
1,2+p

2
2,2−p

1
2,2) = p21,2p

1
2,2−p

1
1,1p

2
1,2−p

1
1,1p

2
2,2.
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Thus,

(A1 + A2)
3 − (p11,1 + p22,2 + p21,2)(A1 + A2)

2−

− (p21,2p
1
2,2 − p11,1p

2
1,2 − p11,1p

2
2,2)(A1 + A2)+

+ 3□(εk)(A1 + A2)
2 + 13□(εk2)(A1 + A2) + 5□(εk3)I + 8□(εk2)J = 0.

(9.6)

Consider

b1 = −(p11,1 + p22,2 + p21,2), b2 = p11,1(p
2
1,2 + p22,2)− p21,2p

1
2,2, b3 = 0.

Then, Eq. (9.6) implies that every non-trivial eigenvalue η of X1,2 satisfies the polynomial

equation η3 + a1η
2 + a2η + a3 = 0, where

|a1 − b1| ≤ 3εk, |a2 − b2| ≤ 13εk2, |a3 − b3| ≤ 5εk3.

Denote by ν1, ν2, ν3 the non-trivial eigenvalues of A1 + A2. By Theorem 9.2.2, we can

permute the roots x1, x2, x3 of x3 + b1x
2 + b2x+ b3 so that |νi − xi| ≤ δ, where

δ = 6
(
3εk(2k)2 + 13εk2(2k) + 5εk3

)1/3
≤ 25ε1/3k.

Here we use that the inequalities b1 = p11,1 + (p22,1 + p22,2) ≤ k and b2 ≤ k2 hold, by Eq.

(2.3).

9.3 Reduction to the case of a constituent with a clique geometry

In this section we show that the motion of a rank-4 association scheme of diameter 2 is

linear in the number of vertices, unless one of its constituents, or its complement, has a

clique geometry.

First, we show that one can assume that some intersection numbers are small.
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Lemma 9.3.1. Let X be an association scheme of rank 4 and diameter 2 with the constituents

ordered by degree. If k2 ≥ γk3, then every pair of distinct vertices is distinguished by at least

γn/6 vertices.

Proof. Since X has diameter 2 it is enough to show that some pair of vertices is distinguished

by at least γn/3 vertices, as then result follows by Lemma 4.5.2. Observe that vertices u, v,

connected by an edge of color i, are distiguished by at least |N2(u)△N2(v)| = 2(k2 − pi2,2)

vertices. At the same time, we have

k2(k2 − 1) =
3∑
i=1

kip
i
2,2 ≥ k2p

2
2,2 + k3p

3
2,2.

Thus, k3 ≥ k2 implies k2 − 1 ≥ p22,2 + p32,2. So min(p22,2, p
3
2,2) ≤ (k2 − 1)/2. Hence, a pair of

vertices connected by an edge of color i, which minimizes pi2,2, is distinguished by at least

k2 + 1 ≥ γk3 + 1 ≥ γn/3 vertices.

Remark 9.3.2. Note that the result of the lemma can also be derived directly from Propo-

sition 6.3 proven by Babai [1981].

Lemma 9.3.3. Let X be an association scheme of rank 4 and diameter 2 with the largest

degree equal k3. Fix some ε > 0. Assume max(k1, k2) ≤ εk3/2. Then

p31,2 ≤ εk1, p31,1 ≤ εk1, p32,2 ≤ εk2, and (9.7)

p13,3 ≥ k3(1− ε), p23,3 ≥ k3(1− ε). (9.8)

Proof. Note that for i = 1, 2,

ki(ki − pii,i − 1) ≥ k3p
3
i,i, so p3i,i ≤ εki/2.

Additionally, p12,3 ≤ k2 ≤ εk3/2. Thus, by Eq. (2.3), p31,2 = k1p
1
2,3/k3 ≤ εk1/2.
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Finally, by Eq. (2.3), for j ∈ {1, 2}, we have

pi3,3 + pi3,2 + pi3,1 = k3 and pi3,j ≤ kj ≤ εk3/2.

Therefore, ki3,3 ≥ (1− ε)k3.

Remark 9.3.4. Note that the inequalities (9.7) are still true if we replace ε by ε/2.

We need the following lemma, corollaries of which will be used several times.

Lemma 9.3.5. Let X be an association scheme. Suppose that there exists a triangle with

sides of colors (s, r, t). Then

psi,j + prj,l ≤ kj + pti,l.

Proof. Apply the inclusion

Ni(u) \Nl(w) ⊆ (Ni(u) \Nj(v)) ∪ (Nj(v) \Nl(w)),

to vertices u, v, w, where c(u, v) = s, c(v, w) = r, and c(u,w) = t.

Corollary 9.3.6. Suppose that an association scheme X of rank 4 satisfies max(k1, k2) ≤

εk3/2. Suppose also that there exists a triangle with sides (s, t, 3). Then, psi,j ≤ pti,3 + εkj,

where i, j ∈ {1, 2}.

Proof. Take r = l = 3 in Lemma 9.3.5, then by Lemma 9.3.3,

p3j,3 = kjp
j
3,3/k3 ≥ (1− ε)kj .

Corollary 9.3.7. Suppose that an association scheme X has rank 4 and diameter 2. More-

over, assume max(k1, k2) ≤ εk3/2. Then, p
s
i,j ≤ psi,3 + εkj, where i, j, s ∈ {1, 2}.

Proof. Take r = l = 3 and s = t in Lemma 9.3.5. Observe, that a triangle with sides of

colors (s, s, 3) exists, as diameter of X is 2 and s ̸= 3.
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Corollary 9.3.8. Suppose an association scheme X has rank 4 and diameter 2. Assume

max(k1, k2) ≤ εk3/2. Then, 2psi,j ≤ kj + εki, where i, j, s ∈ {1, 2}. Moreover, if k1 ≤ k2,

then 2p21,2 ≤ (1 + ε)k1.

Proof. Take t = 3, s = r and l = i in Lemma 9.3.5 and we use Lemma 9.3.3. Take s = 1

and i = j = 2, then 2p12,2 ≤ (1 + ε)k2, so 2p21,2 ≤ k1
k2

(1 + ε)k2 = (1 + ε)k1.

We state the following simple corollary of Metsch’s criteria (Theorem 3.1.3) and of the

classification of graphs with the smallest eigenvalue ≥ −2 (Theorems 5.1.1 and 5.1.11), which

will be used in the proof of Theorem 9.3.10.

Lemma 9.3.9. Let X be an association scheme of rank r ≥ 4 and diameter 2 on n vertices.

1. Assume that for some i the constituent Xi satisfies the assumptions of Theorem 3.1.3

for m = 2. Then Xi is a strongly regular graph with smallest eigenvalue −2, or is the

line graph of a regular triangle-free graph.

Furthermore, Xi satisfies the assumptions of Theorem 3.1.3 for m = 2, if we have one

of the following

(a) λ(Xi) = pii,i ≥
2

5
ki and µ(Xi) = max{pji,i : 0 < j ̸= i} ≤ 1

30
ki, or

(b) λ(Xi) = pii,i ≥
(
1

2
− 1

20

)
ki and µ(Xi) = max{pji,i : 0 < j ̸= i} ≤ 1

11

(
1 +

1

100

)
ki.

2. Assume for some i the complement Xi of Xi satisfies the assumptions of Theorem 3.1.3

for m = 2. If n ≥ 12, then graph Xi is strongly regular with smallest eigenvalue −2.

Proof. 1. First, we check that Xi satisfies the conditions of Theorem 3.1.3 for m = 2. It

is sufficient to verify that λ(Xi) > 3µ(Xi) and 3λ(Xi)− 3µ(Xi) > ki.

(a) We compute

λ(Xi) ≥
2

5
ki >

3

30
ki ≥ 3µ(Xi) and 3λ(Xi)− 3µ(Xi) ≥

(
6

5
− 1

10

)
ki > ki.
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(b) We compute

λ(Xi)− 3µ(Xi) ≥
(
1

2
− 1

20
− 3

11

(
1 +

1

100

))
ki =

48

275
ki > 0,

3λ(Xi)− 3µ(Xi) ≥ ki +

(
1

2
− 3

20
− 3

11

(
1 +

1

100

))
ki = ki +

41

550
ki > ki.

Now, if Xi satisfies the conditions of Theorem 3.1.3 for m = 2, by Lemma 3.1.8, it is a

line graph, and, by Lemma 3.1.4, the smallest eigenvalue ofXi is at least −2. Moreover,

recall that Xi is edge-regular. If the smallest eigenvalue is > −2, by Theorem 5.1.1,

Xi is a complete graph or an odd polygon. This is impossible, since X has diameter

2 and at least three non-empty constituents. If the smallest eigenvalue is −2, then by

Theorem 5.1.11, we get that Xi is a strongly regular graph, or is the line graph of a

regular triangle-free graph.

2. Since Xi satisfies the conditions of Theorem 3.1.3, by Lemmas 3.1.8 and 3.1.4, graph

Xi is a line graph and its smallest eigenvalue is at least −2. Note also that Xi is

co-edge-regular. If the smallest eigenvalue is > −2, by Theorem 5.1.1, Xi is complete

graph or an odd polygon. This is impossible, since X has diameter 2 and at least three

non-empty constituents. If the smallest eigenvalue is −2, then by Theorem 5.1.11, we

get that Xi is strongly regular, an m1 ×m2-grid or one of the two regular subgraphs

of the Clebsh graph with 8 or 12 vertices.

Assume Xi is a m1 × m2-grid with m1 ̸= m2 and m1,m2 > 1. That is, Xi is the

line graph of Km1,m2 . Denote the parts of Km1,m2 by U1 and U2 with |Ui| = mi. By

symmetry, we can assume m1 < m2. We compute n = m1m2, k1 + k2 = m1 +m2 − 2

and µ = 2. Observe that, two edges of Km1,m2 that share a vertex in Ui have mi − 2

common neighbors. Sincem1 ̸= m2, two pairs of edges inKm1,m2 that share a vertex in

U1 and U2, respectively, cannot be colored in the same color in X. Thus, in particular,
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X is not primitive.

Therefore, Xi is strongly regular.

Theorem 9.3.10. Let X be an association scheme of rank 4 on n vertices with diameter 2

and with constituents ordered by degree. Recall that q(Xi) = max{pji,i : j ∈ [3]} is the

maximal number of common neighbours of two distinct vertices in Xi. Fix ε = 10−16. Then

one of the following is true.

1. Every pair of distinct vertices is distinguished by at least εn/12 vertices.

2. The zero-weight spectral radius ξ(Xi) of Xi satisfies q(Xi)+ξ(Xi) ≤ (1−ε)ki for i = 1

or i = 2.

3. The graph X1 is either strongly regular with smallest eigenvalue −2, or the line graph

of a connected regular triangle-free graph.

4. The graph X2 is either strongly regular with smallest eigenvalue −2, or the line graph

of a connected regular triangle-free graph. Moreover, k2 ≤ 101
100k1.

5. If n ≥ 12, then the graph X1,2 is strongly regular with smallest eigenvalue −2 and

k2 ≤ 101
100k1.

Proof. We may assume that parameters of X satisfy max(k1, k2) ≤ εk3/2, as otherwise,

by Lemma 9.3.1 every pair of distinct vertices is distinguished by at least εn/12 vertices.

Therefore, all the inequalities provided by Lemma 9.3.3 hold.

Thus, by Proposition 9.2.3,

ξ(X1) ≤
p11,1 + p21,2 +

√
(p11,1 − p21,2)

2 + 4p21,1p
1
1,2

2
+ ε1k1, so

ξ(X1) ≤ max(p11,1, p
2
1,2) +

√
p21,1p

1
1,2 + ε1k1, (9.9)
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where ε1 = 25ε1/3. Similarly,

ξ(X2) ≤ max(p22,2, p
1
2,1) +

√
p12,2p

2
1,2 + ε1k2. (9.10)

We note that k1 ≥ p31,1/ε ≥ 1/ε, by Eq. (9.7).

Case 1. Assume γk2 > k1, where γ = 1
900 . Then, using Lemma 9.3.3,

p21,1 =
k1
k2
p11,2 ≤ γp11,2, so µ(X1) ≤ max(γ, ε)k1 =

1

900
k1.

Note that, by Corollary 9.3.8, inequality max(p11,1, p
2
1,2) ≤

1 + ε

2
k1 holds. Hence, by Eq. (9.9),

q(X1) + ξ(X1) ≤ ((ε+ γ)k1 + p11,1) +

(
1 + ε

2
k1 +

√
γk1 + ε1k1

)
. (9.11)

If p11,1 <
2

5
k1, then Eq. (9.11) implies q(X1)+ξ(X1) ≤ (1−ε)k1. Otherwise, if p11,1 ≥ 2

5
k1,

by Lemma 9.3.9, the graph X1 satisfies the statement 3 of this proposition.

Case 2. Assume k1 = γk2, where (1 + ε3)
−1 ≥ γ ≥ 1

900 , for ε3 = 1
100 .

We consider two subcases.

Case 2.1. Suppose p12,3 = 0.

So, by Corollary 9.3.7,

p12,2 ≤ εk2 + p12,3 =
ε

γ
k1, p21,2 =

k1
k2
p12,2 ≤ εk1, (9.12)

p11,2 ≤ εk1 + p12,3 = εk1, p21,1 =
k1
k2
p11,2 ≤ εk1. (9.13)

Then,

max
i∈[3]

(pi1,1) + max(p11,1, p
2
1,2) +

√
p21,1p

1
1,2 ≤ 3εk1 + 2p11,1. (9.14)

Thus, by Eq. (9.14), q(X1) + ξ(X1) < (1− ε)k1 if p11,1 <
2

5
k1. Alternatively, if p

1
1,1 ≥ 2

5
k1,
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by Lemma 9.3.9, graph X1 satisfies the statement 3 of this proposition, as µ(X1) ≤ εk1 by

Eq. (9.13).

Case 2.2. Suppose p12,3 ̸= 0.

Case 2.2.1. Assume that p11,1 ≥ p21,1.

By Corollary 9.3.6,

p21,2 ≤ p11,3 + εk2 = p11,3 +
ε

γ
k1 and p11,1 ≤ p11,3 + εk1.

Then

max
i∈[3]

(pi1,1) + p21,2 +
√
γp11,2 ≤ p11,1 + p11,3 + p11,2 − (1−√

γ)p11,2 +

(
ε+

ε

γ

)
k1, (9.15)

max
i∈[3]

(pi1,1) + p11,1 +
√
γp11,2 ≤ p11,3 + p11,1 + p11,2 − (1−√

γ)p11,2 +

(
ε+

ε

γ

)
k1. (9.16)

Case 2.2.2. Assume that p21,1 ≥ p11,1.

By Corollary 9.3.7,

p21,1 = γp11,2 ≤ γ(p11,3 + εk2) ≤ γp11,3 + εk1.

This implies

max
i∈[3]

(pi1,1) + p11,1 +
√
γp11,2 ≤ γp11,3 + p11,1 +

√
γp11,2 + εk1, (9.17)

max
i∈[3]

(pi1,1) + p21,2 +
√
γp11,2 ≤ p21,1 + p21,2 + p21,3 − (1−√

γ)p11,2 +

(
ε+

ε

γ

)
k1, (9.18)

where in Eq. (9.18) we use the inequality p11,2 ≤ p21,3 + εk2 given by Corollary 9.3.6.
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Therefore, using Eq. (2.3), in both subcases by Eq. (9.15) - (9.18) we get

max
i∈[3]

(pi1,1) +
(
max(p11,1, p

2
1,2) +

√
p21,1p

1
1,2

)
≤ k1 − (1−√

γ)p11,2 +

(
ε+

ε

γ

)
k1, so

q(X1) + ξ(X1) ≤ k1 − (1−√
γ)p11,2 +

(
ε+

ε

γ

)
k1 + ε1k1. (9.19)

We again consider two subcases.

Case 2.2.a. Suppose p11,2 > ε2k1 for ε2 = 1
30 .

Observe that

ε2(1−
√
γ)− ε

(
2 +

1

γ

)
− ε1 ≥ 10−4 − 902ε− 25ε1/3 > 0,

so by Eq. (9.19),

q(X1) + ξ(X1) ≤ (1− ε)k1. (9.20)

Case 2.2.b. Suppose p11,2 ≤ ε2k1.

This implies p21,1 ≤ ε2k1, so µ(X1) ≤ 1
30k1. Recall, that by Corollary 9.3.8, the

inequality max(p21,2, p
1
1,1) ≤

1 + ε

2
k1 holds. Then, by Eq (9.9), we have

q(X1) + ξ(X1) ≤ (ε+ ε2)k1 + p11,1 +
1 + ε

2
k1 + ε2k1 + ε1k1. (9.21)

Thus, either Eq. (9.21) implies the inequality q(X1)+ξ(X1) < (1−ε)k1, or p11,1 ≥ 2

5
k1.

In the latter case, by Lemma 9.3.9, the statement 3 of this proposition holds for X1.

Case 3. Suppose that k2 ≤ (1 + ε3)k1, where ε3 = 1
100 .

In this case, we work with both X1 and X2 in the same way. Additionally, we need to

consider the graph X1,2 with the set of vertices V (X1,2) = V (X1) = V (X2) and set of edges

E(X1,2) = E(X1) ∪ E(X2). The graph X1,2 is regular of degree k1 + k2, and every pair of
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non-adjacent vertices has

µ(X1,2) = p31,1 + 2p31,2 + p32,2 ≤ 2ε(k1 + k2) ≤ 4ε(1 + ε3)k1 (9.22)

common neighbors. Every pair of vertices connected by an edge of color i has

λi = pi1,1 + 2pi1,2 + pi2,2 (9.23)

common neighbors, for i = 1, 2. We apply the inequality

|N(u) ∩N(v)|+ |N(v) ∩N(w)| ≤ |N(v)|+ |N(u) ∩N(w)| (9.24)

to the graph X1,2 and vertices u, v, w with c(u, v) = c(v, w) = i and c(u,w) = 3, where

i ∈ {1, 2}. We get 2λi ≤ k1 + k2 + µ(X1,2), so by Eq. (9.22),

λi = pi1,1 + 2pi1,2 + pi2,2 ≤ 1 + 2ε

2
(k1 + k2) ≤ k1(1 + ε3 + 2ε). (9.25)

Let {i, j} = {1, 2}, then by Eq. (9.9)-(9.10),

q(Xi) + ξ(Xi) ≤ q(Xi) + max(pii,i, p
j
i,j) +

√
pii,jp

j
i,i + ε1ki ≤

≤
(
max(pii,i, p

j
i,i) + εki

)
+max(pii,i, p

j
i,j) + pii,j(1 + ε3) + ε1ki.

(9.26)

Consider all possible ways of opening the maximums in Eq. (9.26) (we only write terms

without epsilons).

1. 2pii,i + pii,j ,

2. pii,i + p
j
i,i + pii,j ≤ (1 + ε3)(p

i
i,i + 2pii,j) = (1 + ε3)(λi − pij,j) ≤ (1 + ε3)λi,

3. p
j
i,j + pii,i + pii,j ≤ (1 + ε3)(p

i
j,j + pii,i + pii,j) = (1 + ε3)(λi − pii,j) ≤ (1 + ε3)λi,
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4. p
j
i,j + p

j
i,i + pii,j ≤ (1 + ε3)(p

i
j,j + 2pii,j) = (1 + ε3)(λi − pii,i) ≤ (1 + ε3)λi.

Hence, by Corollary 9.3.8 applied to pii,j , Eq. (9.26) implies

q(Xi) + ξ(Xi) ≤ max(2pii,i + pii,j , (1 + ε3)λi) + ki

(
ε1 +

2

3
ε3 + ε

)
. (9.27)

Case 3.1 Suppose λt ≥ (2/3 + 1
300)kt for both t = 1, 2.

Then in notation of Theorem 3.1.3

λ(1) ≥
(
2

3
+

1

300

)
k1, and by Eq. (9.25), λ(2) ≤ 11

10
k1.

We check that

2λ(1) − λ(2) ≥ 20ε(1 + ε3)k1 ≥ 5µ, and 3λ(1) − 3µ ≥ 2k1 +
1

100
k1 ≥ k1 + k2.

Thus, X1,2 satisfies conditions of Theorem 3.1.3 for m = 2, so the statement 5 of this

proposition holds by Lemma 9.3.9.

Case 3.1 Suppose that λi ≤ (2/3 + 1
300)ki for some i ∈ {1, 2}.

If 2pii,i + pii,j ≤ ki − ki(ε3 + 2ε+ ε1), then Eq. (9.27) implies

q(Xi) + ξ(Xi) ≤ (1− ε)ki.

Hence, we can assume 2pii,i + pii,j ≥ ki − ki(ε3 + 2ε+ ε1). Recall, that

2pii,i + pii,j = λi + (pii,i − pii,j − pij,j) ≤ λi +
1 + ε

2
ki − (pii,j + pij,j).

Thus,

pii,j + pij,j ≤ λi +
1 + ε

2
ki − ki(1− ε3 − 2ε− ε1) ≤ ki

51

300
+ ki(ε3 + 3ε+ ε1) ≤

2

11
ki. (9.28)
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This implies,

min(pij,j , p
j
i,i) ≤ (1 + ε3)min(pii,j , p

i
j,j) ≤

1 + ε3
11

k1. (9.29)

Take {s, t} = {1, 2}, so that pts,s ≤
1 + ε3
11

k1. Then

µ(Xs) ≤ max

(
εks,

1 + ε3
11

k1

)
=

1 + ε3
11

k1.

We consider two possibilities. First, assume that pss,s ≥
(
1

2
− 1

20

)
ks. Then, by

Lemma 9.3.9 graph Xs satisfies the statement 3 or 4 of this proposition.

Assume now that pss,s ≤
(
1

2
− 1

20

)
ks, then

2pss,s + pss,t ≤ ks −
1

10
ks +

(1 + ε3)
2

11
ks ≤

(
1− 2ε− 2

3
ε3 − ε1

)
ks, (9.30)

and by Eq. (9.28),

(1 + ε3)λs ≤ pss,s + 2pss,t + 2pst,t + 2ε3ks ≤

≤
(
1

2
− 1

20
+

4 + 4ε3
11

+ 2ε3

)
ks <

(
1− 2ε− 2

3
ε3 − ε1

)
ks.

(9.31)

Thus, by Eq. (9.27), equations (9.30) and (9.31) imply

q(Xs) + ξ(Xs) ≤ max(2pss,s + pss,t, (1 + ε3)λs) +

(
ε+

2

3
ε3 + ε1

)
ks ≤ (1− ε)ks.

9.4 Case of a constituent with a clique geometry

In the previous subsection, Theorem 9.3.10 reduces the diameter 2 case of Theorem 1.2.8 to

the case when one of the constituents is a strongly regular graph with smallest eigenvalue

−2, or is the line graph of a triangle-free regular graph. In this subsection we resolve the
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remaining cases.

In the case when the dominant constituent X3 is strongly regular we introduce an addi-

tional tool (Lemma 9.4.1), which allows us to bound the order of the group and its minimal

degree, when vertices inside a clique are well-distinguished.

In the cases when the constituent X1 or X2 is strongly regular, we prove upper bounds

on the quantity q(XJ ) + ξ(XJ ) for J ∈ {1, 2, {1, 2}} with the consequence that the spectral

tool (Lemma 4.5.11) can be applied effectively.

The hardest case in our analysis is the case when the constituent with the smallest degree,

X1 , is strongly regular. This case is settled in Theorem 9.4.8 (Sec. 9.4.4) and it requires

considerable preparatory work to establish a constant upper bound on the quotient k2/k1 in

certain range of parameters.

9.4.1 Triangular graph with well-distinguished cliques

In the case when the union of some constituents of a homogeneous coherent configuration

is a triangular graph we prove the following statement inspired by Lemma 3.5 in Sun and

Wilmes [2015a].

Lemma 9.4.1. Let X be a homogeneous coherent configuration on n vertices. Let I be a

set of colors, such that if i ∈ I, then i∗ ∈ I. Suppose that graph XI is the triangular graph

T (s) for some s. Let C be a Delsarte clique geometry in XI . Assume there exists a constant

0 < α < 1
2 , such that for every clique C ∈ C and every pair of distinct vertices x, y ∈ C there

exist at least α|C| elements z ∈ C which distinguish x and y, i.e., c(z, x) ̸= c(z, y). Then

1. There exists a set of vertices of size O(log(n)) that completely splits X. Hence, |Aut(X)| =

nO(log(n)),

2. motion(X) ≥ αn/2.
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Proof. Consider a clique C ∈ C. Since every pair of distinct vertices x, y ∈ C is distinguished

by at least α|C| vertices of C, by Lemma 4.5.5, there is a set of size at most
2

α
log(|C|) + 1

that splits C completely.

Take any vertex x ∈ X. By the assumptions of the lemma, {x} ∪ NI(x) = C1 ∪ C2 for

some C1, C2 ∈ C. Then there exists a set S of size
4

α
log(|C|) + 2 ≤ 4

α
log(n) + 2, that

splits both C1 and C2 completely. Note that every clique C ∈ C, distinct from C1 and C2,

intersects each of them in exactly one vertex, and is uniquely determined by C ∩ C1 and

C ∩ C2. Therefore, the pointwise stabilizer Aut(X)(S) fixes every clique C ∈ C as a set.

At the same time, every vertex v is uniquely defined by the collection of cliques in C that

contain v. Therefore, S splits X completely.

Suppose σ ∈ Aut(X) and | supp(σ)| < α

2
n. Then, by the pigeonhole principle, there exists

a vertex x, such that σ fixes at least
⌈(

1− α

2

)
(|NI(x)|+ 1)

⌉
vertices in NI(x)∪{x}. Since

XI = T (s), we have {x}∪NI(x) = C1∪C2 for some C1, C2 ∈ C and |C1| = |C2| = 1+
|NI |
2

.

Thus σ fixes more than (1−α)|Ci| vertices in Ci for every i ∈ {1, 2}. This means that every

pair of vertices x, y ∈ Ci is distinguished by at least one vertex fixed by σ. Hence, σ(x) ̸= y.

At the same time, since (1 − α)|Ci| > 1, σ(x) ∈ Ci for every x ∈ Ci. Therefore, σ fixes

poinwise both C1 and C2. Finally, by the argument in the previous paragraph, we get that

σ fixes every vertex, so σ is the identity.

9.4.2 Constituent X3 is strongly regular

In the following theorem we consider the case when the constituent X3 is a strongly regular

graph (case of the statement 5 in Theorem 9.3.10).

Theorem 9.4.2. Let X be an association scheme of rank 4 and diameter 2 on n ≥ 29

vertices. Assume that the constituents of X are ordered by degree and k2 ≤ εk3/2 holds for

ε < 1
100 . Suppose that k2 ≤ 11

10k1 and X1,2 is strongly regular with smallest eigenvalue −2.

Then neither X1, nor X2 is strongly regular with smallest eigenvalue −2, and one of the
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following is true.

1. The association scheme X satisfies the assumptions of Lemma 9.4.1 for I = {1, 2} and

α = 1/16.

2. X1 or X2 is the line graph of a regular triangle-free graph.

Proof. By the assumptions of the theorem, all inequalities from Lemma 9.3.3 hold.

Since X1,2 is strongly regular with smallest eigenvalue −2, by Seidel’s classification (see

Theorem 5.1.11), X1,2 = T (s) or X1,2 = L2(s) for some s. Suppose that X1,2 is L2(s), then

n = s2, k1 + k2 = 2(s − 1), so k1 ≤ (s − 1). At the same time, since X1 has diameter 2,

degree k1 should satisfy k21 ≥ n− 1, which gives us a contradiction. Therefore, X1,2 = T (s).

Consider 2 cases.

Case 1. Assume p21,1 ≥ k1/30 and p12,2 ≥ k2/30.

We can rewrite the assumptions of this case in the form p11,2 = p21,1
k2
k1

≥ k2
30

and p21,2 ≥
k1
30

. We know that X1,2 = T (s) for some s. Let C be a Delsarte clique geometry of X1,2.

Then every clique C ∈ C has size

1 + pi1,1 + pi2,2 + 2pi1,2 = 1 + λi(X1,2) =
k1 + k2

2
+ 1 ≤ 21

20
k1 + 1

for i ∈ {1, 2}. Every pair of distinct vertices x, y ∈ C with c(x, y) = i ∈ {1, 2} is distinguished

by at least |C| − pi1,1 − pi2,2 = 2pi1,2 + 1 ≥ k1/15 + 1 ≥ |C|/16 vertices in C.

Case 2. Assume p
j
i,i < ki/30 for {i, j} = {1, 2}.

Using Corollary 9.3.8 and the inequality k1 ≤ k2 ≤ 11
10k1, we get

ki + kj
2

= λi(X1,2) = pii,i + 2pii,j + pij,j ≤ pii,i + 2
11

10

ki
30

+
(1 + ε)

2
kj .

Thus,

2

5
ki ≤

(
1

2
− 11

150
− 11ε

20

)
ki ≤ pii,i.
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Therefore, by Lemma 9.3.9, the graph Xi is strongly regular with smallest eigenvalue −2,

or Xi is the line graph of a regular triangle-free graph.

Assume that for some i ∈ {1, 2} the graph Xi is strongly regular with smallest eigen-

value −2, then Xi, as well as X1,2, is either T (s) or L2(s). Since Xi and X1,2 have the

same number of vertices, the only possibility is X1,2 = T (s1) and Xi = L2(s2). Then

s1(s1 − 1)/2 = s22, so
√
2s2 > (s1 − 1). This implies

ki + kj = 2(s1 − 2) ≤ 2
√
2(s2 − 1) + 1 =

√
2ki + 1,

so kj ≤ (
√
2− 1)ki+1 and we get a contradiction with ki ≤ 11

10kj and ki ≥
√
n− 1 > 3.

Remark 9.4.3. Observe that the argument in the last paragraph of the proof shows that

X1 and X1,2 cannot be simultaneously strongly regular with smallest eigenvalue −2 even if

the assumption that k2 ≤ 11
10k1 does not hold (we assume that all other assumptions of the

theorem are satisfied).

9.4.3 Constituent X2 is strongly regular

Next, we consider the case when X2 is strongly regular, i.e., we assume that the assumptions

of the statement 4 of Theorem 9.3.10 hold.

Theorem 9.4.4. Let X be an association scheme of rank 4 and diameter 2 on n ≥ 29

vertices. Assume additionally, that the constituents of X are ordered by degree and the

inequality k2 ≤ εk3/2 holds for some ε < 10−11. Suppose that k2 ≤ 101
100k1 and X2 is

strongly regular with smallest eigenvalue −2. Then

q(X1,2) + ξ(X1,2) ≤
99

100
(k1 + k2).

Proof. The assumptions of the theorem imply that the inequalities from Lemma 9.3.3 hold.
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Since X2 is strongly regular with smallest eigenvalue −2 and n ≥ 29, by Seidel’s classifi-

cation (Theorem 5.1.11), by Lemma 9.3.3, we conclude that

k2/2 ≥ p22,2 ≥ k2/2− 1 and p12,2 = p32,2 ≤ εk2. (9.32)

By Proposition 9.2.4, for ε1 = 25ε1/3, we have

ξ(X1,2) ≤
p22,2 + p12,1 + p11,1 +

√
(p12,1 + p11,1 − p22,2)

2 + 4p21,1p
1
2,1

2
+ ε1(k1 + k2), so (9.33)

ξ(X1,2) ≤ max(p22,2, p
1
2,1 + p11,1) +

√
p21,1p

1
1,2 + ε1(k1 + k2) ≤

≤ max(p22,2 + p12,1, 2p
1
2,1 + p11,1) + ε1(k1 + k2) ≤

≤ max(p22,2 + p12,1, λ1(X1,2)) + ε1(k1 + k2).

(9.34)

Recall also, that similarly as in Eq. (9.22) and Eq. (9.25), we have

µ(X1,2) ≤ 2ε(k1 + k2) and max(λ1(X1,2), λ2(X1,2)) ≤
1 + 2ε

2
(k1 + k2). (9.35)

Case 1. Assume p11,2 > 2k1/5.

Then, using that k2 ≤ 101
100k1 ≤ 11

10k1, and using Eq. (9.32),

λ1(X1,2) = p11,1 + 2p11,2 + p12,2 ≥ 4

5
k1 ≥ 4

11
(k1 + k2), and

λ2(X1,2) = p22,2 + 2p21,2 + p21,1 ≥ k2
2

+
2

5

10

11
k1 ≥ 4

11
(k1 + k2).

Since Eq. (9.35) holds, X1,2 satisfies the assumptions of Theorem 3.1.3 for m = 2. So, by

Lemma 9.3.9, it is strongly regular with smallest eigenvalue −2. However, by Theorem 9.4.2,

under the assumptions of this proposition X1,2 and X2 cannot be strongly regular with

smallest eigenvalue −2 simultaneously. Hence, this case is impossible.
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Case 2. Assume 2k1/5 ≥ p11,2 ≥ k1/8.

Case 2.a Suppose λ2(X1,2) ≥ λ1(X1,2).

Then, since k2 ≤ 11
10k1, using Eq. (9.32), the inequality

q(X1,2) ≤ λ2(X1,2) = p22,2 + 2p21,2 + p21,1 ≤ k2
2

+ 2εk1 +
2

5
k1 ≤ 49

100
(k1 + k2)

holds. At the same time, by Eq. (9.34), we get

ξ(X1,2) ≤ max

(
1

2
k2 +

2

5
k1, λ1(X1,2)

)
+ ε1(k1 + k2) ≤

≤ max

(
49

100
(k1 + k2), λ2(X1,2)

)
+ ε1(k1 + k2) ≤

1

2
(k1 + k2).

Therefore, q(X1,2) + ξ(X1,2) ≤ 99
100(k1 + k2).

Case 2.b Suppose λ1(X1,2) ≥ λ2(X1,2).

We may assume that λ1(X1,2) ≥ 49
100(k1 + k2). Otherwise, by Eq. (9.34),

q(X1,2) + ξ(X1,2) ≤ λ1(X1,2) + max

(
k2
2

+
2k1
5
, λ1(X1,2)

)
+ ε1(k1 + k2) ≤

99

100
(k1 + k2).

Let p11,2 = αk1, then 1/8 ≤ α ≤ 2/5. The inequality

p11,1 + p12,2 + 2p11,2 = λ1(X1,2) ≥
49

100
(k1 + k2)

and Eq. (9.32) imply that

p11,1+ p11,2 ≥ 49

100
(k1+ k2)− εk2−αk1 ≥

(
49

50
− 2ε− α

)
k1 ≥ 28

50
k1 ≥ 28

55
k2 > p22,2. (9.36)
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On the other hand, Eq. (9.35) implies

p11,1 + p11,2 ≤ λ1(X1,2)− p11,2 ≤
(
1

2
+ ε

)
(k1 + k2)− αk1 ≤

(
101

100
− α

)
k1. (9.37)

Hence, as p22,2 ≥ (1/2− ε)k2 ≥ (1/2− ε)k1, Eq. (9.36) and (9.37) imply that

∣∣∣p11,1 + p11,2 − p22,2

∣∣∣ ≤ (101

100
− α

)
k1 −

(
1

2
− ε

)
k1 ≤

(
52

100
− α

)
k1.

Therefore, using Eq. (9.33), Eq. (9.37) and p22,2 ≤ k2/2 ≤ 101
200k1, we get for 1/8 ≤ α ≤ 2/5

ξ(X1,2) ≤
101
200 +

(
101
100 − α

)
+

√(
52
100 − α

)2
+ 4α2

2
k1 +

201

100
ε1k1 ≤ 195

200
k1, (9.38)

Thus,

q(X1,2) + ξ(X1,2) ≤
1 + 2ε

2
(k1 + k2) +

195

200
k1 ≤ 99

100
(k1 + k2).

Case 3. Assume p11,2 < k1/8.

Then, using Eq. (9.34), Corollary 9.3.8 and inequality k2 ≤ 101
100k1,

ξ(X1,2) ≤ max(p22,2 + p12,1, 2p
1
2,1 + p11,1) + ε1(k1 + k2) ≤

≤ max

(
1

2
k2 +

1

8
k1,

1

4
k1 +

1 + ε

2
k1

)
+ ε1(k1 + k2) ≤

2

5
(k1 + k2).

Combining this with Eq. (9.35) we get q(X1,2) + ξ(X1,2) ≤ 99
100(k1 + k2).

9.4.4 Constituent X1 is strongly regular

The common strategy of our proofs is to prove a good spectral gap for a certain union of

the constituents, or to apply Metsch’s criteria (Theorem 3.1.3) to a certain union of the

constituents. The next lemma covers the range of parameters for which spectral gap is hard
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to achieve, and the conditions of Metsch’s criteria are not satisfied forX2 andX1,2. However,

in this range of parameters, we are still able to use the idea of Metsch’s proof to show that

k2 does not differ much from k1. This will suffice for our purposes.

Definition 9.4.5. For a homogeneous configuration X and disjoint non-empty sets of edge

colors I and J we say that vertices x, y1, y2, ..., yt form a t-claw (claw of size t) in colors

(I, J) if c(x, yi) ∈ I and c(yi, yj) ∈ J for all distinct 1 ≤ i, j ≤ t.

Lemma 9.4.6. Let X be an association scheme of rank 4 and diameter 2 with constituents

ordered by degree. Suppose that the inequality k2 ≤ εk3/2 holds for some 0 < ε ≤ 1
100 .

Assume additionally, that for some 0 < δ ≤ 1
100 we have

p22,2 ≥ 1− δ

2
k2 and

1

8
k2 ≤ p12,2 ≤ 1

3
k2.

Then k2 ≤ 20k1.

Proof. The assumptions of the lemma ensure that the inequalities from Lemma 9.3.3 hold.

First, we show that under the assumptions of the lemma there are no 3-claw in colors

(2, 3) in X. That is, for x, y1, y2, y3 ∈ X it is not possible that c(x, yi) = 2 and c(yi, yj) = 3

for all distinct i, j ∈ [3]. Indeed, suppose such x, yi exist. Let Ui = N2(x) ∩N2(yi). Then

|Ui| = p22,2 ≥ 1− δ

2
k2, |Ui ∩ Uj | ≤ |N2(yi) ∩N2(yj)| = p32,2 ≤ εk2 and

|U1 ∪ U2 ∪ U3| ≤ |N2(x)| = k2.

Therefore, we should have k2 ≥ 3
(1− δ)

2
k2 − 3εk2, a contradiction. Hence, the size of a

maximal claw in colors (2, 3) is 2.

Now, we claim that every edge of color 2 lies inside a clique of size at least p22,2−p
3
2,2−p

3
2,1

in X1,2. Consider any edge {x, y} of color 2. Let z be a vertex which satisfies c(x, z) = 2
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and c(y, z) = 3. Define

C(x, y) = {x, y} ∪ {w : c(z, w) = 3 and c(x,w) = 2, c(y, w) = 2}. (9.39)

Observe that

|C(x, y)| ≥ 2 + p22,2 − p32,2 − p32,1. (9.40)

At the same time, if z1, z2 ∈ C(x, y) satisfy c(z1, z2) = 3, then x, z, z1, z2 form a 3-claw

in colors (2, 3), which contradicts our claim above. Hence, C(x, y) is a clique in X1,2.

Assume that there is an edge {y1, y2} in C(x, y) of color 1 for some x, y. Then

2k1 +
1

3
k2 ≥ 2

3∑
i=1

p11,i + p12,2 ≥ p11,1 + 2p11,2 + p12,2 ≥ |C(x, y)| − 2 ≥ 1− δ − 2ε

2
k2 − k1.

Therefore, k2 ≤ 20k1.

Assume now that all edges in C(x, y) are of color 2 for all x, y, that is, C(x, y) is a clique

in X2. Let C be the set of all maximal cliques in X2 of size at least p22,2 − p32,2 − p32,1. Then

we have proved that every edge of color 2 is covered by at least one clique in C. Consider,

two distinct cliques C1, C2 ∈ C. There is a pair of vertices v ∈ C1 \C2 and u ∈ C2 \C1 with

c(v, u) ̸= 2. Thus,

|C1 ∩ C2| ≤ max(p12,2, p
3
2,2) ≤ k2/3. (9.41)

Suppose first that some pair of distinct cliques C1, C2 ∈ C satisfies |C1 ∩C2| ≥ 2 and let

{x, y} ⊆ C1 ∩C2. Then c(x, y) = 2 and every vertex in C1 ∪C2 is adjacent to both x and y

by an edge of color 2. Thus,

p22,2 ≥ |C1 ∪ C2| − 2 = |C1|+ |C2| − |C1 ∩ C2| − 2 ≥ 2(p22,2 − p32,2 − k1)−
1

3
k2,
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so, using Lemma 9.3.3,

(
1

3
+ 2ε

)
k2 + 2k1 ≥ p22,2 ≥ 1− δ

2
k2.

Hence, k2 ≤ 20k1.

Finally, if for every pair of distinct cliques C1, C2 ∈ C we have |C1 ∩C2| ≤ 1, then every

edge of color 2 lies in at most one clique of C. Above we proved that every edge of color 2

lies in at least one clique of C, so it lies in exactly one.

Therefore, since p22,2 ≥ 1− δ

2
k2, we get that either p32,1 ≥ k2/10, and so k2 ≤ 10k1;

or, by Eq. (9.40), |C| > k2/3 + 1 for every C ∈ C, and so every vertex lies in at most 2

cliques from C. In the latter case, by Lemma 3.1.9, we get that p12,2 ≤ 4, which contradicts

p12,2 ≥ k2/8, since k2 ≥ p32,2/ε ≥ 1/ε by Lemma 9.3.3.

Furthermore, we can get a linear inequality between k1 and k2 if we know that X1,2 has

a clique geometry.

Lemma 9.4.7. Let X be an association scheme of rank 4 on n ≥ 29 vertices, with diameter 2

and constituents ordered by degree. Assume the inequality k2 ≤ εk3/2 holds for some ε < 1
10 .

Suppose X1,2 has a clique geometry such that every vertex belongs to at most m cliques. Then

p12,3 ≤ m2 − 2

2
k1 and k2 ≤ 3

2− 4ε
(m2 − 2)k1.

If, additionally, X1 is a strongly regular graph with smallest eigenvalue −2, then

p12,3 ≤ m2 − 4

8
k1 and k2 ≤ 3

8(1− 2ε)
(m2 − 4)k1.

Proof. By Lemma 3.1.9 applied to X1,2, we know

p31,1 + 2p31,2 + p32,2 = µ(X1,2) ≤ m2. (9.42)
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Since X is of diameter 2, we have that p31,1 ≥ 1 and p32,2 ≥ 1, and k1(k1 − 1) ≥ k3. Thus

p31,2 ≤ m2 − 2

2
, so p12,3 ≤ m2 − 2

2

k3
k1

≤ m2 − 2

2
k1. (9.43)

By Eq. (2.3), p12,1 + p12,2 + p12,3 = k2, and Corollary 9.3.7 implies that p12,3 + εk2 ≥

max(p12,2, p
1
2,1). Thus, combining with Eq. (9.43), we get

1− 2ε

3
k2 ≤ p12,3 ≤ m2 − 2

2
k1.

If X1 is strongly regular with smallest eigenvalue −2, we can get better estimates. By

Seidel’s classification, X1 is either T (s) or L2(s) for some s. Thus, either n = s(s− 1)/2

and k1 = 2(s − 2), or n = s2 and k1 = 2(s − 1). In any case, 4k3 ≤ k21. Observe that

Corollary 9.3.7 implies p22,3 + εk2 ≥ max(p22,2, p
2
2,1). Hence, p

2
2,3 ≥ 1− 2ε

3
k2, so

p32,2 ≥ (1− 2ε)(k2)
2

3k3
≥ 4(1− 2ε)

3
.

At the same time, p31,1 = µ(X1) ≥ 2 for X1 = T (s), or X1 = L2(s). Thus, p
3
i,i ≥ 2 for i = 1

and i = 2. Therefore, as in Eq. (9.43), by Eq. (9.42),

p12,3 ≤ m2 − 4

2
· k3
k1

≤ m2 − 4

8
k1.

Again, p12,3 ≥ 1− 2ε

3
k2 implies the desired inequality between k1 and k2.

Now, we are ready to consider the case when the constituent X1 is strongly regular (case

of statement 3 of Theorem 9.3.10).

Theorem 9.4.8. Let X be an association scheme of rank 4 on n ≥ 29 vertices with diameter 2

and constituents ordered by degree. Assume additionally, that the parameters of X satisfy

k2 ≤ εk3/2 for ε = 10−26. Suppose that X1 is a strongly regular graph with smallest
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eigenvalue −2. Then

q(Y ) + ξ(Y ) ≤ (1− ε)kY , (9.44)

where either Y = X2 and kY = k2, or Y = X1,2 and kY = k1 + k2.

Proof. The assumptions of the lemma ensure that the inequalities from Lemma 9.3.3 hold.

Since X1 is strongly regular with smallest eigenvalue −2, Seidel’s classification and

Lemma 9.3.3 implies that

1

2
k1 ≥ p11,1 ≥ 1

2
k1 − 1 ≥

(
1

2
− ε

)
k1 and p21,1 = p31,1 ≤ εk1. (9.45)

By Lemma 9.2.4, for ε1 = 25ε1/3 ≤ 2
310

−7 we have

ξ(X1,2) ≤
p11,1 + p21,2 + p22,2 +

√
(p21,2 + p22,2 − p11,1)

2 + 4p12,2p
2
1,2

2
+ ε1(k1 + k2). (9.46)

Since
√
x+ y ≤

√
x+

√
y,

ξ(X1,2) ≤ max(p11,1, p
2
2,2 + p22,1) +

√
p12,2p

2
2,1 + ε1(k1 + k2). (9.47)

Using that λ2(X1,2) ≥ p22,2 + p22,1 (see Eq. (9.23)) and p22,1 = p12,2k1/k2 ≤ p12,2, we can

simplify it even more

ξ(X1,2) ≤ max

(
k1
2
, λ2(X1,2)

)
+ p12,2 + ε1(k1 + k2). (9.48)

Recall that as in Eq. (9.22) and Eq. (9.25), we have

µ(X1,2) ≤ 2ε(k1 + k2) and max(λ1(X1,2), λ2(X1,2)) ≤
1 + 2ε

2
(k1 + k2). (9.49)

Case A. Suppose p22,2 ≥ (2− 2δ)p12,2 for δ = 10−7.
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Using Corollary 9.3.8 for p22,2, we get

p12,2 ≤ 1 + ε

4(1− δ)
k2 and p22,1 =

k1
k2
p12,2 ≤ 1 + ε

4(1− δ)
k1. (9.50)

Note, by Corollary 9.3.7 and Eq. (9.45), εk1 + p11,3 ≥ p11,1 ≥ (1/2− ε) k1. So, Eq. (2.3)

implies p11,2 ≤ 3εk1. Therefore, by Eq. (9.45),

λ1(X1,2) = p11,1 + p12,2 + 2p11,2 ≤ 1

2
k1 + p12,2 + 6εk1. (9.51)

Assume that Eq. (9.44) is not satisfied, then

(1− ε)(k1 + k2) ≤ q(X1,2) + ξ(X1,2) ≤

≤ max

(
λ2(X1,2),

1

2
k1 + p12,2 + 6εk1

)
+max

(
λ2(X1,2),

k1
2

)
+ p12,2 + ε1(k1 + k2)

(9.52)

Observe, that if λ2(X1,2) ≤ k1/2+ p12,2+6εk1, then using Eq. (9.50) we get a contradiction

(1− ε)(k1 + k2) ≤ k1 + 3
1 + ε

4(1− δ)
k2 + ε1(k1 + k2) + 6εk1.

Otherwise, Eq. (9.52) implies

(1− ε− ε1)(k1 + k2) ≤ 2λ2(X1,2) +
1 + ε

4(1− δ)
k2, so λ2(X1,2) ≥

5

6
k1.

We estimate the expression under the root sign in Eq. (9.46), using that λ2(X1,2) ≥
5

6
k1,

using Eq. (9.50), Eq. (9.45), and inequality
1 + ε

4(1− δ)2
≤ 1 + ε

4
+ δ for 0 ≤ ε, δ ≤ 1

2
.

(p21,2 + p22,2 − p11,1)
2 + 4p12,2p

2
1,2 = (p21,2 + p22,2)

2 − 2p11,1(p
2
1,2 + p22,2) + (p11,1)

2 + 4p12,2p
2
1,2 ≤
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≤ (p21,2 + p22,2)
2 − 2p11,1p

2
1,2 − (1− 2ε)k1p

2
2,2 +

(k1)
2

4
+

1 + ε

2(1− δ)2
k1p

2
2,2 ≤

≤ (p21,2 + p22,2)
2 − k1p

2
1,2 +

(
(k1)

2

4
− 1

2
k1p

2
2,2

)
+ (3ε+ 2δ)k1k2 ≤

≤ (p21,2 + p22,2)
2 − k1

2

(
λ2(X1,2)− εk1 −

k1
2

)
+ (3ε+ 2δ)k1k2 ≤

≤ (p21,2 + p22,2)
2 − 1

6
(k1)

2 + (4ε+ 2δ)k1k2.

Thus, since
√
x is concave, using Eq. (9.49), and inequalities

√
y2 − x2 ≤ y − x2/(2y) and

p22,1 + p22,2 ≤ λ2(X1,2), we obtain

√
(p21,2 + p22,2 − p11,1)

2 + 4p12,2p
2
1,2 ≤ p21,2 + p22,2 −

2(k1)
2

13(k1 + k2)
+
√

(4ε+ 2δ)k1k2. (9.53)

Denote ε4 =
√
4ε+ 2δ < 2−1 · 10−3. Hence, by Eq. (9.45), Eq. (9.46) and Eq. (9.53),

ξ(X1,2) ≤
k1
4

+ (p21,2 + p22,2)−
(k1)

2

13(k1 + k2)
+

(
1

2
ε4
√
k1k2 + ε1(k1 + k2)

)
.

Using Corollary 9.3.8 for p22,2 and Eq. (9.50), we get

ξ(X1,2) ≤
k1
4

+

(
(1 + ε)

4(1− δ)
k1 +

(1 + ε)

2
k2

)
− (k1)

2

13(k1 + k2)
+
(ε4
4

+ ε1

)
(k1 + k2) ≤

≤ 1

2
(k1 + k2)−

(k1)
2

13(k1 + k2)2
(k1 + k2) + ε5(k1 + k2),

(9.54)

where ε5 = ε1+
1
4ε4+ δ+ ε < 6−1 · 10−3. Thus, we want either q(X1,2) to be bounded away

from (k1 + k2)/2, or to have k1 ≤ ck2 for some absolute constant c.
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Observe, by Eq. (9.50), Eq. (9.51) and Eq. (9.54),

λ1(X1,2) + ξ(X1,2) ≤
(
k1
2

+ p12,2 + 2εk1

)
+
k1 + k2

2
+ ε5(k1 + k2) ≤

≤ k1 +
3

4
k2 + (3ε+ δ)(k1 + k2) + ε5k2 ≤ (1− ε)(k1 + k2),

(9.55)

λ2(X1,2) + ξ(X1,2) ≤ λ2(X1,2) +
k1 + k2

2
+ ε5(k1 + k2). (9.56)

Clearly,

µ(X1,2) + ξ(X1,2) ≤ 2ε(k1 + k2) + ξ(X1,2) ≤ (1− ε)(k1 + k2).

Thus, either we have q(X1,2)+ξ(X1,2) ≤ (1−ε)(k1+k2), or λ2(X1,2) ≥ (1/2−ε5−ε)(k1+k2).

Suppose that λ2(X1,2) ≥ (1/2 − ε5 − ε)(k1 + k2). By the assumption of Case A, we have

p22,2 ≥ (2− 2δ)p21,2k2/k1, so Eq (9.45) implies

λ2(X1,2) = p22,2 + 2p21,2 + p21,1 ≤ p22,2 +
1

1− δ

k1
k2
p22,2 + εk1 ≤

(
1

1− δ

p22,2
k2

+ ε

)
(k1 + k2).

Hence, in this case

p22,2 ≥
(
1

2
− ε5 − 2ε

)
(1− δ)k2. (9.57)

Case A.1 Assume p12,2 < k2/8.

Then µ(X2) ≤ k2/8 and λ(X2) = p22,2. Therefore, X2 satisfies the assumptions of

Theorem 3.1.3 for m = 2. Thus, by Lemma 3.1.9 for graph X2, we get p32,2 ≤ m2 = 4.

At the same time, by Crorllary 9.3.7 and Eq. (2.3) we have p22,3 ≥ 1− 2ε

3
k2. Therefore,

4k3 ≥ p32,2k3 = p22,3k2 ≥ k2
(1− 2ε)

3
k2 ≥ 1

4
(k2)

2.

Combining with (k1)
2 ≥ k3, we obtain k2 ≤ 4k1.

Case A.2 Assume p12,2 ≥ k2/8.
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Then, since Eq. (9.50) and Eq. (9.57) hold, by Lemma 9.4.6, we get that k2 ≤ 20k1.

Hence, Eq. (9.54) and Eq. (9.49) imply

λ2(X1,2) + ξ(X1,2) ≤ (1− ε)(k1 + k2).

Therefore, using bound on µ(X1,2) and Eq. (9.55), we get q(X1,2)+ξ(X1,2) ≤ (1−ε)(k1+k2).

Case B. Suppose p22,2 ≤ (2− 2δ)p12,2.

In this case, in several ranges of parameters we will show that X1,2 has a clique geometry.

We first establish the following bounds.

By Corollary 9.3.8, 2p22,1 ≤ (1 + ε)k1. Assume p12,2 ≥ k2/5 and m ≤ 5, then Eq. (9.49)

and Eq. (9.45) implies

2λ1(X1,2)− λ2(X1,2) ≥ k1 + 2p12,2 − p22,2 − 2p221 − 3εk1 ≥ 2δp12,2 − 4εk1 ≥ (2m− 1)µ(X1,2).

(9.58)

Suppose that λ2(X1,2) ≥ (1/4 + 2mε)(k1 + k2), then Eq. (9.49) implies

2λ2(X1,2)− λ1(X1,2) ≥ (2m− 1)µ(X1,2). (9.59)

Case B.1. Assume p12,2 ≥ k2/3.

Then, by Eq. (9.45),

λ1(X1,2) ≥ p11,1 + p12,2 ≥
(
1

2
− ε

)
k1 +

1

3
k2 ≥ 1

3
(k1 + k2). (9.60)

Case B.1.a. Suppose p22,2 ≥ k2/3.

Then λ2(X1,2) ≥ (k1+k2)/3. Thus, in notations of Theorem 3.1.3 we get for X1,2 that

4λ(1)−6µ(X1,2) ≥ k1+k2, and by Eq. (9.58)-(9.59), inequality 2λ(1)−λ(2) ≥ 5µ(X1,2)

holds. Hence, by Theorem 3.1.3, the graph X1,2 has a clique geometry with m = 3.
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Thus, by Lemma 9.4.7, we have k2 ≤ 15

8(1− 2ε)
k1 ≤ 2k1. Therefore,

λ1(X1,2) ≥ p11,1 + p12,2 ≥
(
1

2
− ε

)
k1 +

1

3
k2 >

(
1

3
+ 4ε

)
(k1 + k2),

λ2(X1,2) ≥ p22,2 + 2p21,2 ≥ k2
3

+
2k1
3

>

(
1

3
+ 4ε

)
(k1 + k2).

Therefore, X1,2 satisfies Theorem 3.1.3 form = 2, and so by Lemma 9.3.9, it is strongly

regular with smallest eigenvalue −2. However, by Theorem 9.4.2 and Remark 9.4.3, un-

der the assumptions of this theorem the graphs X1 and X1,2 cannot be simultaneously

strongly regular with smallest eigenvalue −2.

Case B.1.b. Suppose p22,2 < k2/3.

Then, in particular, p12,2 ≥ p22,2, so q(X2) = p12,2. Take 0 ≤ α ≤ 1 + ε

2
≤ 51

100
, and

0 ≤ γ ≤ 1, so that p12,2 = αk2 and k1 = γk2. Using Eq. (9.10) and Eq. (9.45), compute

q(X2)+ξ(X2) ≤ p12,2+p
2
2,2+εk2+

√
p12,2p

2
1,2+ε1k2 = p22,2+(α+α

√
γ+ε+ε1)k2 (9.61)

If p22,2 ≤ (1−α(1 +
√
γ)− ε1− 2ε)k2, then q(X2) + ξ(X2) ≤ (1− ε)k2 and we reached

our goal. So, assume that p22,2 ≥ (1− α(1 +
√
γ)− ε1 − 2ε)k2. We compute

λ2(X1,2) = p22,2 + 2p21,2 + p21,1 ≥ (1− α(1 +
√
γ)− ε1 − 2ε)k2 + 2αγk2 ≥

≥
(
1− α(1 +

√
γ − 2γ)− ε1 − 2ε

1 + γ

)
(k1 + k2) ≥

3

10
(k1 + k2),

(9.62)

where we use that 1 +
√
γ − 2γ ≥ 0 for 0 ≤ γ ≤ 1, so expression is minimized for

α = (1+ε)/2 and after that we compute the minimum of the expression for 0 ≤ γ ≤ 1.

Thus, by Eq. (9.58)-(9.60), the graph X1,2 has a clique geometry for m = 3. Hence,
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by Lemma 9.4.7, we have k2 ≤ 2k1. This implies that 1
2 ≤ γ ≤ 1. We compute,

min
1/2≤γ≤1

min
0≤α≤ 51

100

(
1− α(1 +

√
γ − 2γ)− ε1 − 2ε

1 + γ

)
=

= min
1/2≤γ≤1

(
1− 51

100(1 +
√
γ − 2γ)− ε1 − 2ε

1 + γ

)
≥ 9

25
>

1

3
+ 2ε.

(9.63)

Therefore, using also Eq. (9.58)-(9.60), we get that X1,2 satisfies conditions of Theo-

rem 3.1.3 form = 2, so by Lemma 9.3.9, the graphX1,2 is strongly regular with smallest

eigenvalue −2. However, by Theorem 9.4.2 and Remark 9.4.3, this is impossible, since

X1 is also strongly regular with smallest eigenvalue −2.

Case B.2. Assume k2/3 ≥ p12,2 ≥ k2/5.

Then

λ1(X1,2) ≥ p11,1 + p12,2 ≥
(
1

2
− ε

)
k1 +

1

5
k2. (9.64)

If p22,2 ≤ (1/3− ε− ε1)k2, then by Eq. (9.10),

q(X2) + ξ(X2) ≤ max(p22,2, p
1
2,2) + p22,2 +

√
p12,2p

2
1,2 + ε1k2 ≤

≤ k2
3

+

(
1

3
− ε− ε1

)
k2 +

k2
3

+ ε1k2 ≤ (1− ε)k2.
(9.65)

Else, p22,2 ≥ (1/3− ε− ε1)k2 ≥ (1/4 + 10ε)k2, so

λ2(X1,2) ≥ p22,2 + 2p21,2 ≥
(
1

4
+ 10ε

)
k2 +

2

5
k1. (9.66)

Thus, Eq. (9.58)-(9.59) and Eq. (9.64)-(9.66) imply, using Theorem 3.1.3, that the graph

X1,2 has a clique geometry withm = 5. Therefore, using Eq. (9.45) and Eq. (2.3), by Lemma

9.4.7, (
2

3
− ε

)
k2 ≤ (1− ε)k2 − p12,2 ≤ p12,3 ≤ m2 − 4

8
k1, so k2 ≤ 4k1.
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Hence, in fact, Eq. (9.64) implies

λ1(X1,2) ≥
1

5
k2 +

(
1

2
− ε

)
k1 ≥

(
1

4
+ 6ε

)
(k1 + k2).

Thus, using Eq. (9.66) and Eq. (9.58) - (9.59), by Theorem 3.1.3, we get that X1,2 has a

clique geometry for m = 3. Thus, we can get a better estimate, as

(
2

3
− ε

)
k2 ≤ m2 − 4

8
k1, implies k2 ≤ 15

16(1− 2ε)
k1 < k1.

However, this contradicts our assumption that k2 ≥ k1, so p
2
2,2 ≥ (1/3 − ε − ε1)k2 is

impossible in this case.

Case B.3. Assume p12,2 ≤ k2/5.

Then, by the assumption of Case B, p22,2 ≤ (2− 2δ)p12,2 ≤ (2− 2δ)k2/5, so

q(X2) + ξ(X2) ≤ max(p22,2, p
1
2,2, p

3
2,2) + p22,2 +

√
p12,2p

2
1,2 + ε1k2 ≤

≤ 2(2− 2δ)
k2
5

+
k2
5

+ ε1k2 ≤
(
1− 4

5
δ + ε1

)
k2 ≤ (1− ε)k2.

(9.67)

9.4.5 Constituent that is the line graph of a triangle-free regular graph

Finally, we consider the case of the last possible outcome provided by Theorem 9.3.10, the

case when one of the constituents is the line graph of a regular triangle-free graph and is not

strongly regular.

First recall the following classical result due to Whitney.

Theorem 9.4.9 (Corollary to Whitney [1992]). Let X be a connected graph on n ≥ 5

vertices. Then the natural homomorphism ϕ : Aut(X) → Aut(L(X)) is an isomorphism

Aut(L(X)) ∼= Aut(X).

Observe, that the restriction on the diameter of the line graph gives quite strong bound

on the degree of the base graph, as stated in the following lemma.
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Lemma 9.4.10. Let X be a k-regular graph on n vertices. If the line graph L(X) has

diameter 2, then k ≥ n/8.

Proof. Recall that L(X) has kn/2 vertices and degree 2(k− 1). Since L(X) has diameter 2,

the degree of the graph satisfies 4k2 ≥ 4(k − 1)2 + 2(k − 1) + 1 ≥ kn/2, i.e., k ≥ n/8.

Theorem 9.4.11. Let X be a connected k-regular triangle-free graph on n ≥ 5 vertices,

where k ≥ 3. Suppose X is an association scheme of rank 4 and diameter 2 on V (L(X)) =

E(X), such that one of the constituents is equal to L(X) and is not strongly regular. Then

every pair of vertices u, v ∈ X is distinguished by at least n/8 vertices. Therefore, Aut(L(X))

has order nO(log(n)) and the motion of L(X) is at least |V (L(X))|/16.

Proof. Denote the constituents of X by Yi, 0 ≤ i ≤ 3, where Y0 is the diagonal constituent

and Y1 = L(X).

Since Y1 has diameter 2, every induced cycle of X has length at most 5. The graph X is

triangle-free, so every induced cycle in X has length 4 or 5, and every cycle of length 4 or 5

is induced.

Case 1. Suppose that there are no cycle of length 5 in X, i.e., it is bipartite.

Then for v ∈ X there are no edges between vertices in N2(v). The graph X is regular,

and every induced cycle has length 4, so for every vertex w ∈ N2(v) the neighborhoods

N(w) and N(v) coincide. Hence, as X is connected, X is a complete regular bipartite graph.

However, in this case, L(X) is strongly regular.

Case 2. Suppose there is a cycle of length 5.

Let v1v2v3v4v5 be any cycle of length 5. Take u different from v2, v5 and adjacent to v1.

Since the constituent Y1 has diameter 2, the edges v1u and v3v4 are at distance 2 in L(X),

thus there is one of the edges uv3 or uv4 in X. Again, X is triangle free, so exactly one of

them is in X. Without loss of generality, assume that uv3 is in X. In particular, we get that

there is a cycle of length 4 uv1v2v3. Denote by ri,j the number of common neighbors of vi
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and vj . Then, our argument shows that ri,i+2 + ri,i+3 = k for every i, where indices are

taken modulo 5. Thus, ri,i+2 = k/2 for every 1 ≤ i ≤ 5.

Observe, that v1v2 and v3v4 have exactly one common neighbor in L(X). At the same

time, for every cycle u1u2u3u4 edges u1u2 and u3u4 have exactly two common neighbors in

L(X). Thus, the pairs (u1u2, u3u4) and (v1v2, v3v4) belong to different constituents of the

association scheme, say Y2 and Y3, respectively. Note, that the triple of edges v1v2, v2v3, v3v4

shows that p11,3 is non-zero.

Take any v ∈ X and u ∈ N2(v). Suppose that there is no w ∈ N2(v) adjacent to u. Then

by regularity of X we get N(v) = N(u). For every x, y ∈ N(v) the triple vx, xu, uy form a

triangle with side colors (1, 1, 2) and we get a contradiction with p11,3 ̸= 0.

Hence, for every u ∈ N2(v) there exists w ∈ N2(v) adjacent to u. Take x ∈ N(v)∩N(u)

and y ∈ N(v)∩N(w). Consider the cycle vxuwy, then as shown above, vertices v and u have

exactly k/2 common neighbors. Thus, they are distinguished by at least |N(u)△N(v)| =

2(k − k/2) = k vertices.

Every pair of adjacent vertices has no common neighbors, so they are distinguished by at

least 2k vertices. Thus, every pair of distinct vertices is distinguished by at least k vertices.

Therefore, by Lemma 9.4.10, every pair of distinct vertices is distinguished by at least n/8

vertices.

By Lemma 9.4.9, Aut(X) ∼= Aut(L(X)) via natural inclusion ϕ. Thus, bound on the order

of Aut(L(X)) follows from Lemma 4.5.5. LetW be the support of σ ∈ Aut(X) ∼= Aut(L(X)).

We show that every vertex in W is incident to at most one edge fixed by σ. Consider an

edge e with ends w1, w2, where w1 ∈ W . Since σ(w1) ̸= w1 the only possibility for e to be

fixed is σ(w1) = w2 and σ(w2) = w1. This, in particular implies that w2 ∈ W as well. Every

edge incident with w1 and different from e is sent by σ to an edge incident with w2, so is
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not fixed. Therefore, the support of ϕ(σ) ∈ Aut(L(X)) is at least

|W |(k − 1)

2
≥ n

8
· (k − 1)

2
≥ nk

32
=

|V (L(X))|
16

.

9.5 Putting it all together

Finally, we are ready to combine the preceding results into our main theorem on the motion

of rank-4 primitive coherent configurations.

Theorem 9.5.1. There exists an absolute constant γ4 > 0 such that for every primitive

coherent configuration X of rank 4 on n vertices either

motion(X) ≥ γ4n,

or X is a Cameron scheme.

Proof. By taking γ4 < 1/100 we may assume that n > 100.

First, assume that there is an oriented color. Since the rank of X is 4, the only possibility

is to have two oriented colors i, j = i∗ and one undirected color t. It is easy to see that Xt is a

strongly regular graph. For n ≥ 29, by Babai’s theorem (Theorem 1.2.5), motion(Xt) ≥ n/8,

or Xt is a triangular graph T (s), a lattice graph L2(s), for some s, or their complement.

The constituent Xt cannot be the complement of L2(s), since the oriented diameter of

Xi should be 2, which contradicts k2i ≥ n− 1. Indeed, in this case, 2ki = ki+ k∗i = 2(s− 1),

while n = s2.

Now, observe that pii,i∗ = pii∗,i = pii,i. Moreover, by Eq. (2.3),

ki + ki∗ =
(
pii,i + pii,i∗ + pii,t + pii,0

)
+
(
pii∗,i + pii∗,i∗ + pii∗,t

)
.

Thus, using Eq. (2.3) again, pii,i+p
i
i∗,i∗ ≥ (2ki−kt−1)/3. If Xt is either T (s) or L2(s), then
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ki = ki∗ > n/3 and kt < n/3 for n > 100. Thus every pair of vertices connected by an edge

of color i is distinguished by at least ki/3 ≥ n/9 vertices. Hence, by primitivity of X and

Lemma 4.5.2, the motion of X is at least n/18. In the last case, when Xt is a complement

of T (s), the result follows from Lemma 9.4.1 and the inequality pii,i + pii∗,i∗ ≥ ki/3.

Next, assume that all colors in X are undirected, i.e., X is an association scheme. Every

constituent of X has diameter at most 3, as rank of X is 4. Moreover, as discussed in

Lemma 2.4.3, if there is a constituent of diameter 3, then X is induced by a distance-regular

graph. In this case the statement follows from Theorem 8.3.1. None of the components can

have diameter 1 as the rank is not 2.

Finally, if X is an association scheme of rank 4 and diameter 2, then the statement of the

theorem follows from Lemma 9.3.1, Theorems 9.3.10, 9.4.2, 9.4.4, 9.4.8 and Theorem 9.4.11,

Observation 4.5.10 and Lemma 4.5.11.

9.6 Open questions

A significant obstacle for our approach, in the case of general primitive coherent configura-

tions of rank r ≥ 5, is the difficulty of spectral analysis for the constituents of the coherent

configuration. Namely, for configurations of rank 4 we analyzed the spectral gap “by hand”

through Propositions 9.2.3 and 9.2.4. For coherent configurations of higher rank we need

more general techniques.

Problem 9.6.1. Do there exist ε, δ > 0 such that the following statement holds? If the

minimal distinguishing number Dmin(X) of a primitive coherent configuration X satisfies

Dmin(X) < εn, then the spectral gap for the symmetrization of one of the constituents Xi of

X is ≥ δki. What δ can be achieved?

We would like to point out, that even δki spectral gap for one of the constituents is not

sufficient for an efficient application of the spectral tool (Lemma 4.5.11). However, we expect

that a result of this flavor would introduce important techniques to the analysis.
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We also would like to mention that there should be a reasonable hope to prove Conjec-

ture 1.2.13 for the case when no color is overwhelmingly dominant. The following result

easily follows from minimal distinguishing number analysis. In particular, in the case of

bounded rank it gives an Ω(n) bound on the motion.

Proposition 9.6.2. Fix 0 < δ < 1 and an integer r ≥ 3. Let X be a primitive coherent

configuration of rank r on n vertices. Assume that each constituent Xi has degree ki ≤ δn.

Then

motion(X) ≥ Dmin(X) ≥
min(δ, 1− δ)

6(r − 1)
n.

Proof. The condition ki ≤ δn, for all i, implies that there exists a set I of colors such that∑
i∈I

ki = αn for some min(δ, 1 − δ)/2 ≤ α ≤ 1/2. Fix any vertex u of X. We want to show

that for some vertex v the inequality D(u, v) ≥ αn/3 holds.

Assume this is not true. Denote NI(u) = {z| c(u, z) ∈ I}. Let us count the number of

pairs (v, z) with c(u, z) ∈ I and c(v, z) ∈ I in two different ways. Since
∑
i∗∈I

ki = αn and

z ∈ NI(u), there are α
2n2 such pairs. On the other hand, for every v we haveD(u, v) ≤ αn/3,

so at least 2αn/3 vertices z ∈ NI(u) are paired with v. Therefore, the number of pairs in

question is at least n · 2α
3
n. This contradicts the condition 0 < α ≤ 1

2
.

Therefore, there exists a pair of vertices with D(u, v) ≥ αn/3. Finally, the configuration

X is primitive, so by Lemma 4.5.2 we get that motion(X) ≥ Dmin(X) ≥
α

3(r − 1)
n.

However, when the rank is unbounded, this seemingly simple case of Conjecture 1.2.13

(every constituent has degree≤ δn) is still open. To avoid exceptions we relax the conjectured

lower bound to Ω(n/ log(n)).

Conjecture 9.6.3. Fix 0 < δ < 1. Let X be a primitive coherent configuration on n vertices.

Assume that every constituent has degree ≤ δn. Then motion(X) = Ω(n/ log(n)).

Next, we observe that Cameron schemes satisfy Conjecture 9.6.3.
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Proposition 9.6.4. Fix 0 < δ < 1. Consider a Cameron group (A
(k)
m )d ≤ G ≤ Sm ≀ Sd

acting on n =
(m
k

)d
points and let X = X(G) be the corresponding Cameron scheme. Assume

that every constituent of X has degree ≤ δn. Then motion(X) = Ω(n/ log(n)).

Proof. We can assume k ≤ m/2. Note that then the rank of X is equal to kd+ 1.

Case 1. Suppose that k ≤ m/3. Then

n =

(
m

k

)d
≥
(
m− k

k

)kd
≥
(
2k

k

)kd
= 2kd

Thus, kd ≤ log(n) in this case, and the statement follows from Proposition 9.6.2.

Case 2. Suppose that m/3 < k ≤ m/2. By Lemma 4.2.3, we have that as m → ∞

the inequality motion(X) ≥ αn holds for some α > 0. At the same time, by the proof of

Lemma 4.2.3 we know that the motion of X does not depend on d. Thus as motion(X) ≥ αn

is violated just by finite number of pairs (m, k), we still have motion(X) = Ω(n) in this

case.

We observe that the bound in Conjecture 9.6.3, if true, is nearly tight, for δ ∈ (1/e, 1),

as the example of Hamming schemes H(tm,m) with t = −⌊log(δ)m⌋/m shows. Note that

for m ≥ 3 the Hamming scheme H(k,m) is primitive.

Proposition 9.6.5. Consider Hamming scheme H(tm,m) with t = −⌊log(δ)m⌋
m

on n =

mtm points, for δ ∈ (1/e, 1). Then its maximum constituent degree satisfies kmax ≤ δn and

the motion satisfies

motion(H(tm,m)) = O

(
n log log(n)

log(n)

)
.

Proof. Note that since tm < m the maximum degree is kmax = (m− 1)tm. Then

kmax =

(
m− 1

m

)mt
n ≤ e−tn ≤ δn.

The motion of H(tm,m) is realized by a 2-cycle in the first coordinate, and is equal to
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2n/m. The number of vertices is n = mmt = etm log(m), so m log(m) = log(n)/t. Thus

m > log(n)/(t log log(n)). Hence,

motion(H(tm,m)) ≤ 2n log log(n)t

log(n)
= O

(
n log log(n)

log(n)

)
.
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CHAPTER 10

ROBUSTNESS UNDER EXTENSION

10.1 Introduction

The material of this Chapter (except for Sections 10.5 and 10.6) is a result of a joint work

by Babai and Kivva [2022].

Throughout this chapter we use the following notation.

We use Ω and Ω′ to denote sets of vertices of configurations and we always assume Ω ⊆ Ω′.

We denote n = |Ω|, n′ = |Ω′|. If X is a regular configuration on Ω, we use ki to denote

the degree of the i-th constituent Xi. If X is a coherent configuration, pti,j stands for an

intersection number. Whenever we have a configuration on Ω′ we add ′ to our standard

notation.

We remind that if the graph is regular, we use k to denote its degree. If the graph is

edge-regular, λ stands for the number of the common neighbors of a pair of adjacent vertices.

If the graph is co-edge-regular, µ denotes the number of the common neighbors of a pair of

non-adjacent vertices.

For a metric scheme X, we use k, λ, µ and other notation introduced for distance-regular

graphs to refer to the corresponding parameters of the color-1 constituent of X.

Definition 10.1.1. We say that a metric scheme is geometric, if its underlying distance-

regular graph (color-1 constituent) is geometric.

In this chapter we study the following version of Question 1.3.3.

Question 10.1.2. Assume that X′ = (Ω′, c′) is a homogeneous coherent configuration and

X = (Ω, c) is its coherent subconfiguration with |Ω′| ≤ (1 + α)|Ω| for some α > 0. Assume

that X belongs to a certain “nice” class of configurations A.

For which α > 0, can we deduce that X′ also belongs to A?
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Definition 10.1.3. We say that the property A is robust under extension with parameter

α > 0 if in Question 10.1.2 for this α we can deduce that X′ ∈ A.

In this chapter we show that the following classes are robust under extension:

(i) for every r ≥ 2, A = {X | X is of rank r} for α < 1.

(ii) A = {X | X is symmetric} for α < 1.

(iii) A = {X | X is primitive} for α < 1.

(iv) A = {X | X is metric} for α < 1/2.

(v) A = {X | X is geometric, k ≥ (5/2)(λ+ 1), and k ≥ 100µ|θmin|3} for α < 1/2.

(vi) A = {X | X is the Johnson scheme, J(s, d) with s ≥ 300d2} for α < 1/2.

(vii) A = {X | X is the Hamming scheme, H(d, s) with s ≥ 200d4 ln d} for α < 1/2.

(viii) A = {X | X is the Grassmann scheme, Jq(s, d) with s ≥ 3d+ 7, d ≥ 3} for α < 1/2.

10.2 Basic properties preserved under extension

Lemma 10.2.1. Let X′ = (Ω′, c′) be a homogeneous coherent configuration. Let Ω ⊆ Ω′ be

a subset of size |Ω| > |Ω′|/2 and assume that the subconfiguration X = X′[Ω] = (Ω, c) is

coherent. Then rk(X) = rk(X′). In particular, if X is an association scheme then so is X′.

Moreover, if X is primitive then so is X′.

Proof. Let |Ω′| = n′ and |Ω| = n. If rk(X) < rk(X′) then there is a color i ∈ Range(c′) \

Range(c), and so i∗ ∈ Range(c′) \Range(c) as well (see Def. 2.3.1). Denote R̃′
i = R′

i ∪ (R′
i∗).

Let d be the degree of the regular graph (Ω′, R̃′
i). Then Ω emits dn edges from R̃′

i and

Ω′ \Ω absorbs at most (n′−n)d of these edges, so n ≤ n′−n, contrary the assumption that

n > n′/2. This proves the first statement.
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Now assume X is an association scheme, i.e., every constituent of X is undirected. But,

by the first statement, every constitutent of X′ has an edge in X; therefore every constituent

of X is also undirected.

Now let X ′
j = (Ω′, R′

j) be an off-diagonal constituent of X′. If X ′
j were disconnected,

its connected components (being of equal size) would have size ≤ n′/2. But Ω induces a

connected subdigraph of X ′
j of order n > n′/2, a contradiction proving the last statement.

Hence, if X is an association scheme and |Ω| > |Ω′|/2, we will assume that X′ is an

association scheme.

Lemma 10.2.2. Assume that both X′ = (Ω′, c′) and X = X′[Ω] are regular configurations

(see Def. 2.3.5). Let ki and k
′
i be the degrees of color i in X and X′, respectively. Then

k′i(2n− n′) ≤ nki.

Proof. Every vertex x ∈ Ω is incident with (k′i−ki) edges of color i with the second endpoint

within Ω′ \Ω. At the same time, each vertex in Ω′ \Ω is incident with only k′i edges. Hence,

(k′i − ki)n ≤ (n′ − n)k′i, so

k′i(2n− n′) ≤ nki.

Lemma 10.2.3. Let Ω ⊆ Ω′. Assume that X′ = (Ω′, c′) and X = X′[Ω] are association

schemes. Suppose that |Ω′| < 3|Ω|/2 and X is a metric scheme. Then X′ is metric as well

of rank rk(X) = rk(X′). Moreover, if the color-1 constituent X1 of X is a distance-regular

graph, then X ′
1 is distance-regular too.

Proof. We prove that if in X′ there exists a triangle with sides of colors (i, j, t), then a triangle

with sides of the same colors exists in X. Since X′ is a coherent configuration there exists a
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constant Cv = pti,j such that for a given pair (u, v) of color t there exists precisely Cv vertices

w such that c′(u,w) = i and c′(w, v) = j. Similarly, there exists a constant Ce, such that for

every vertex w there exists precisely Ce pairs (u, v) such that c′(u, v) = t, c′(u,w) = i and

c′(w, v) = j. Trivial double counting yields

n′k′tCv = n′Ce ⇒ k′tCv = Ce.

For every pair u, v ∈ Ω there are Cv verices w, such that (v, u, w) is a triangle with side

colors (i, j, t). Assume that X does not contain a triangle with sides of colors (i, j, t). Then

w ∈ Ω′ \Ω. Therefore, the total number of such triangles with u, v ∈ Ω is at most (n′−n)Ce.

There are nkt pairs (u, v) ∈ Ω× Ω with c(u, v) = t. Hence

nkt
Ce
k′t

= nktCv ≤ (n′ − n)Ce.

At the same time, Lemma 10.2.2 gives k′t(2n− n′) ≤ nkt. Thus,

k′t(2n− n′)/k′t ≤ n′ − n ⇒ 3n ≤ 2n′.

We get a contradiction with the assumption n′ < 3n/2. Therefore, if X′ contains a

triangle with sides of colors (i, j, t), then X contains such triangle as well.

Now, assume that Ω is a metric scheme. Then by Lemma 2.4.3, there exist colors i and j

such that disti(j) = r − 1. What we proved above shows that disti in X′ does not decrease,

as otherwise in X′ there is a triangle, that is not in X. Moreover, as shown in Lemma 10.2.1,

rk(X) = rk(X′) = r, thus, by Lemma 2.4.3, X′ is metric as well.
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10.3 Extension of geometric metric schemes

Recall that for a metric scheme X, we use k, λ, µ and other notation introduced for distance-

regular graphs to refer to the corresponding parameters of the color-1 constituent of X.

Lemma 10.3.1. Let X′ = (Ω′, c′) be an association scheme. Let Ω ⊆ Ω′ with |Ω′| =

|Ω| (1 + α) for α < 1/2. Assume that X = X′[Ω] is a metric scheme and X = X1 be the

underlying distance-regular graph. Assume that (5/2)(λ+ 1) ≤ k in X. Then

µ ≤ µ′ ≤ µ

(1− α)(1− 5α/3)
< 12µ.

(Note that, by Lemma 10.2.3, X ′ is distance-regular, so µ′ is well-defined).

Proof. By Lemma 10.2.3, X′ is a metric scheme as well. Let X ′ be the corresponding

underlying distance-regular graph of X′, that is, the constituent of the same color, as X.

Recall that we add ′ to denote the parameters of X ′.

Clearly, λ′ ≥ λ and Lemma 10.2.2 gives (1− α)k′ ≤ k. Denote, b1 = k − (λ+ 1), and

b′1 := k′ − (λ′ + 1) ≤ k′ − (λ+ 1).

Then,

(1− 5α/3)b′1 ≤ (1− 5α/3)(k′ − (λ+ 1)) =

= (1− α)k′ − (λ+ 1)− (2α/3)(k′ − (5/2)(λ+ 1)) ≤ k − (λ+ 1) = b1.

Note, that

k′b′1
µ′

= k′2 ≥ k2 =
kb1
µ
.

This implies

k′b′1
µ′

≥
(1− α)(1− 5α/3)k′b′1

µ
.

Therefore, µ ≤ µ′ ≤ µ

(1− α)(1− 5α/3)
< 12µ.
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Remark 10.3.2. The Johnson scheme J(s, d) with d = 3 and s ≥ 23, or d ≥ 4 and s ≥ 12

satisfies (5/2)(λ+ 1) ≤ k.

Theorem 10.3.3. Let X′ = (Ω′, c′) be an association scheme. Let Ω ⊆ Ω′ with |Ω′| =

|Ω|(1 + α) for 0 < α < 1/2. Assume that X = X′[Ω] is a geometric metric scheme of

diameter d ≥ 2 with smallest eigenvalue −m. Assume additionally that

k ≥
(
µ′ − 1

2

)
m ·
⌈

m

1− α

⌉(⌈
m

1− α

⌉
+ 1

)
+m. (10.1)

Then X′ is a geometric metric scheme with smallest eigenvalue ≥ −⌈m/(1− α)⌉.

Proof. Since X is a metric scheme and α < 1/2, by Lemma 10.2.3, X′ is also a metric scheme.

Let X and X ′ be color-1 constituents of X and X′, respectively. We need to prove that X ′

is geometric.

By Corollary 3.1.6, it suffices to show that there exists an integer m′ such that

m′(λ′ + 1) ≥ k′ and λ′ ≥
(
µ′ − 1

2

)
m′(m′ + 1).

Recall that λ′ ≥ λ, λ ≥ k/m− 1, and so by Lemma 10.2.2,

k′ ≤ 1

1− α
k =

1

1− α
m(λ+ 1) ≤ 1

1− α
m(λ′ + 1).

Thus, it is sufficient to have

m′ ≥
(

1

1− α

)
m and k ≥

(
µ′ − 1

2

)
m ·m′(m′ + 1) +m.

Note that m′ = ⌈m/(1− α)⌉ satisfies both the inequalities above, since Eq.(10.1) holds.

Remark 10.3.4. Eq. (10.1) is satisfied if k ≥ (5/2)(λ+ 1) and k ≥ 3µm3

2(1− α)3(1− 5α/3)
.
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Proof. Observe that for m ≥ 2 we have m3/4 ≥ m and (m+ 1)(m+ 2) ≤ 3m2. Thus

(
µ′ − 1

2

)
m ·
⌈

m

1− α

⌉(⌈
m

1− α

⌉
+ 1

)
+m ≤

(
µ′ − 1

2

)
· 3m3

(1− α)2
+m3/4 ≤ 3µ′m3

2(1− α)2
.

Therefore, it is sufficient to have k ≥ 3µ′m3

2(1− α)2
. Finally, we can apply Lemma 10.3.1.

Lemma 10.3.5. Let X = X ′[Ω] be an induced subgraph of a geometric distance-regular graph

X ′ with smallest eigenvalue −m′. Assume that X is a geometric distance-regular graph with

smallest eigenvalue −m. If n′ ≤ (1 + α)n for α < 1/2 and k ≥ 2m(m′)2, then m = m′ and

every Delsarte clique of X is a subclique of a Delsarte clique of X ′.

Proof. Fix Delsarte clique geometries C and C′ in X and X ′, respectively. Let C ′ ∈ C′ and

C ∈ C be cliques that have a common edge. Then

λ′ ≥ |C ′|+ |C| − |C ∩ C ′| − 2 = k′/m′ + k/m− |C ∩ C ′|. (10.2)

If C is not a subset of C ′, then µ′ ≥ |C ∩ C ′|. Recall that,

λ′ =
k′

m′ + (m′ − 1)(ψ′1 − 1)− 1.

Combining this with Eq. (10.2), we get

µ′ + (m′ − 1)(ψ′1 − 1)− 1 ≥ k/m.

By Lemma 3.1.9, µ′ ≤ m′2 and ψ′1 ≤ τ ′2 ≤ m′. Hence, we get a contradiction with k ≥

2m(m′)2. So C ⊆ C ′.

Now, assume that m′ > m, then for every vertex x ∈ Ω = V (X) there is a Delsarte

clique C ′ ∈ C′ such that (C ′ \ {x}) ⊆ (Ω′ \ Ω). Moreover, since C′ is a clique geometry, by

definition, every edge of X ′ belongs to precisely one clique in C′. All cliques in the Delsarte
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clique geometry C′ are of the same size. Hence there are at least

n · (|C ′| − 1)(|C ′| − 2)/2 ≥ n
(k′)2

4(m′)2

edges between vertices in (Ω′ \ Ω). In total, there are (n′k′/2 − nk/2 − n(k′ − k)) edges

between vertices in (Ω′ \ Ω). Hence,

n′k′/2− nk′ + nk/2 ≥ n
(k′)2

4(m′)2
⇒ (1 + α)− 2 + 1 ≥ 2k′

4(m′)2
,

which gives a contradiction with k ≥ 2m(m′)2 and α < 1/2. Therefore, m′ = m.

Corollary 10.3.6. Let X and X′ be association schemes such that X = X′[Ω]. Assume

X ′
1 and X1 are geometric distance-regular graph with smallest eigenvalue −m′, and −m,

respectively. If n′ ≤ (1 + α)n for α < 1/2 and k ≥ 2m(m′)2, then

τi = τ ′i and ψi ≤ ψ′i for all i ∈ [d− 1].

Proof. Let C and C′ be Delsarte clique geometries of X1 and X ′
1, respectively.

Let C ∈ C be a Delsarte clique of X1 and v ∈ V (X1) be a vertex at distance i ∈ [d− 1]

from C. Since i ≤ d− 1 there exists w ∈ C with dist(v, w) = i+1 in X1. By Lemma 10.3.5,

there exists a Delsarte clique in X ′
1 such that C ⊆ C ′ ∈ C′.

Let T ⊂ C be the set of vertices at distance i from v. By Lemmas 10.2.1 and 10.2.3, they

are still at distance i from v in X ′
1. Additionally, by Lemmas 10.2.1 and 10.2.3, dist(v, w) =

i+ 1 in X ′
1, so C

′ is at distance i from C ′ in X ′
1. Therefore, ψi ≤ ψ′i.

Let dist(u, v) = i in X1. Now, let C1, C2, . . . , Cτi ∈ C be Delsarte cliques in X1 which

contain u and which are at distance i − 1 from v. By Lemma 10.3.5, there exist Delsarte

cliques C ′
1, C

′
2, . . . , C

′
τi ∈ C′ in X ′

1 such that Cj ⊆ C ′
j for every j ∈ [τi]. Moreover, since

every Cj is a maximal clique in X1, all C
′
k are distinct for k ∈ [τi]. An argument as above
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shows that every C ′
j is at distance i− 1 from v. Therefore, τi ≤ τ ′i .

At the same time, if C ∈ C is a Delsarte clique in X1 which is not at distance i−1 from v

with u ∈ C, then C is at distance i from u. By Lemma 10.3.5, there exists a Delsarte clique

C ′ ∈ C′ in X ′
1 such that C ⊆ C ′. If i < d, there is a vertex w ∈ C with dist(v, w) = i+ 1 in

X1. By Lemmas 10.2.1 and 10.2.3, dist(v, w) = i+ 1 in X ′
1, so C

′ does not contain vertices

at distance i− 1 from v. Thus, τi = τ ′i .

Corollary 10.3.6 shows that ψi ≤ ψ′i. Next we show how to upper bound ψ′1 in terms of

ψ1.

Lemma 10.3.7. Let X and X′ be association schemes such that X = X′[Ω]. Assume X ′
1 and

X1 are geometric distance-regular graph with smallest eigenvalue −m′, and −m, respectively.

If n′ < (1 + α)n for α < 1/2 and k ≥ 2m(m′)2, then ψ′1 ≤ 1 +

(
1− α

1− 2α

)
(ψ1 − 1).

Proof. Let C1 and C2 be Delsarte cliques of X containing a vertex v. Let C ′
1 and C ′

2

be the corresponding cliques of X ′ that contain C1 and C2, respectively, guaranteed by

Corollary 10.3.6. Then

|C1| = |C2| = k/m+ 1, |C ′
1| = |C ′

2| = k′/m+ 1, and (1− α)k′ ≤ k.

For vertex w distinct from v in C1 there is a vertex u ∈ C2 non-adjacent with it, since C2 is

a maximal clique. Clearly dist(u,w) = 2. Thus, there are exactly ψ1− 1 vertices in C2 \ {v}

adjacent with w in X. Similarly, every vertex in C1 ⊆ C ′
1 is adjacent with exactly ψ′1 − 1

vertices in C ′
2 \ {v} in X ′

1. Therefore,

(ψ′1 − 1) · (k/m) ≤ (ψ1 − 1) · (k/m) + (ψ′1 − 1) · (k′ − k)/m ⇔

(ψ′1 − 1)(2k − k′) ≤ (ψ1 − 1)k, so ψ′1 ≤ 1 +

(
1− α

1− 2α

)
(ψ1 − 1).

(10.3)
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Corollary 10.3.8. If the assumptions of Lemma 10.3.7 hold and ψ1 = 1, then ψ′1 = 1. In

this case also µ = µ′.

Proof. The first part follows from Lemma 10.3.7. By Corollary 10.3.6, τ2 = τ ′2, so µ = µ′.

10.4 Robustness of the Johnson schemes under extension

Theorem 10.4.1. Let X′ = (Ω′, c′) be an association scheme. Let Ω ⊆ Ω′ with |Ω′| ≤

|Ω|(1 + α), for 0 < α < 1/2. Assume that X = X′[Ω] is the Johnson scheme J(s, d), with

d ≥ 3 and k ≥ 6d3

(1− α)3(1− 5α/3)
. Then X′ is a Johnson scheme as well.

Proof. We want to apply the classification result stated in Theorem 3.4.2.

To do this, we first verify that X ′ is geometric. Recall, that in the Johnson scheme J(s, d)

we have µ = 4, and by Remark 10.3.2, (5/2)(λ+1) ≤ k for d ≥ 3 and s ≥ 23. The inequality

s ≥ 23 follows from the assumptions of the theorem, as s ≥ k/d ≥ 6d2 ≥ 54. Then, by

Theorem 10.3.3 and Remark 10.3.4, X ′ is geometric.

The smallest eigenvalue of the Johnson graph J(s, d) is −m = −d.

Note that by Theorem 10.3.3, the smallest eigenvalue of X ′ is at least −m′ for an integer

m′ ≤ m/(1− α) + 1. In particular, (m′)2 < 3m2/(1− α)2. Thus, k > 2m(m′)2.

By Corollary 10.3.6, τ ′2 = τ2 = 2. Thus, by Lemma 3.2.2, 4 = µ ≤ µ′ ≤ τ22 = 4. Hence,

ψ′1 = 2. Therefore, the assumptions of Theorem 3.4.2 hold.

Remark 10.4.2. The inequality k ≥ 6d3

(1− α)3(1− 5α/3)
holds for the Johnson scheme

J(s, d) when s ≥ 6d2

(1− α)3(1− 5α/3)
+d. In particular, for α = 1/2, it holds if s ≥ 288d2+d;

and for α = 1/3 and d ≥ 3, it holds if s ≥ 46d2.

In the case of strongly regular graphs, i.e., primitive coherent configurations of rank 3,

we prove that a weaker assumption on the constant c is sufficient.

Theorem 10.4.3. If X ′ is a SRG with n′ < v(v − 2) vertices for some v and n′ ≥ 29 and

X ′ has an induced subgraph X which is a J(v, 2) then X ′ is a J(v′, 2) for some v′.
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Proof. The parameters of X are n =
(v
2

)
vertices, degree k = 2(v− 2), λ = v− 2, and µ = 4.

The eigenvalues of X are k, r = v − 4, and s = −2, with respective multiplicities m0 = 1,

m1 = v − 1, and m2 =
(v
2

)
− v = v(v − 3)/2. Let θ1 ≥ θ2 ≥ · · · ≥ θn denote the eigenvalues

of X and θ′1 ≥ θ′2 ≥ · · · ≥ θ′n′ the eigenvalues of X ′. Then by interlacing we have, for every

0 ≤ t ≤ n− 1,

θn′−t ≤ θ′n′−t ≤ θn−t (10.4)

Setting t = n − v − 1 we have θn−t = θv+1 = −2. We also have n − t ≤ n′ − t ≤ n and

therefore θn′−t = −2. It follows by Eq. (10.4) that θ′n′−t = −2, so −2 is one of the eigenvalues

of X ′. By interlacing, we have θ′2 ≥ θ2 = v − 4 > 0, so −2 is the smallest eigenvalue of

X ′. Therefore, by Seidel, X ′ is a SR line graph and therefore a Johnson graph J(v′, 2) or a

Hamming graph H(2, v′) for some v′. But for H(2, v′), the number of common neighbors of

a non-adjacent pair of vertices is µ′ = 2 < µ, which is impossible for a supergraph of X. So

X ′ is a Johnson graph.

Corollary 10.4.4. Question 10.1.2 has positive answer for α ∈ (0, 1) when X = J(v, 2) and

v ≥ max

(
2

1− α
, 8

)
.

Proof. By Lemma 10.2.1, one of the constituents of X′ is a (primitive) SRG X ′ of which the

Johnson graph X = J(v, 2) is an induced subgraph for some v ≥ 8. Note that for v ≥ 8 we

have n ≥ 28. Then the claim follows from Theorem 10.4.3 as

v(v − 2) >

(
v

2

)
(1 + c) ⇔ 2(v − 2) > (v − 1)(1 + c) ⇔ (1− c)v > 3− c.

Corollary 10.4.5. Question 10.1.2 has positive answer for α = 1/2 when X = J(v, 2) and

v ≥ 8.

Proof of part 1 of Theorem 1.3.6. follows from Theorem 10.4.1, Remark 10.4.2 and Corol-

lary 10.4.5.
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10.5 Robustness of the Hamming schemes under extension

Lemma 10.5.1. Let X′ = (Ω′, c′) be an association scheme. Let 0 < α < 1/2 and Ω ⊆ Ω′

with |Ω′| ≤ (1 + α)|Ω|. Assume that X = X′[Ω] is a Hamming scheme H(d, s). Then, for all

i ∈ [d],

c′i ≤ ci ·
1

(1− α)2

(
1 + α

i− 1

d− i+ 1

)
.

In particular,

µ′ ≤ 2(1 + α)(1− α)−2 < 12 and c′d ≤ d+ 3αd2 ≤ d+ 3d2/2.

Proof.

k′ = a′i + b′i + c′i ≥ b′i + ci + ai = b′i + k − bi (10.5)

By Lemma 10.2.2, (1− α)k′ ≤ k and for the Hamming graph bi =
d− i

d
k, so

b′i ≤ bi + (k′ − k) ≤ bi +
α

1− α

(
d

d− i

)
bi = bi

(
(d− i) + αi

(1− α)(d− i)

)
(10.6)

Next we deduce

c′i+1 =
b′ik

′
i

k′i+1

≤ biki
ki+1

· (d− i+ αi)

(1− α)(d− i)
· 1

(1− α)
= ci+1 ·

1

(1− α)2

(
1 + α

i

d− i

)
(10.7)

Finally, we can deduce c′d ≤ (1 + (d+ 3)α)cd ≤ d+ 3αd2.

Now we are ready to prove the extension theorem for Hamming schemes.

Theorem 10.5.2. Let X′ = (Ω′, c′) be an association scheme. Let Ω ⊆ Ω′ with |Ω′| ≤

|Ω|(1 + α) for 0 < α < 1/2. Assume that X = X′[Ω] is a Hamming scheme H(d, s) and

k ≥ 100d3
(
3d2/2 + d

)
ln d.
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Then X′ is a Hamming scheme itself.

Proof. By Lemma 10.5.1, µ′ ≤ 11. The Hamming graph H(d, s) is geometric with smallest

eigenvalue −m = −d, and k ≥ 10m2(2m + 1) +m, so by Theorem 10.3.3, the scheme X′ is

geometric metric scheme with smallest eigenvalue −m′ ≥ −2d.

Since k ≥ 8d3, by Lemma 10.3.5 and Corollary 10.3.6, for X′ we get m′ = d, τ ′i = τi = i

for i ≤ d− 1. Moreover, by Corollary 10.3.8, we get that µ′ = 2.

By Lemma 10.5.1, c′d ≤ d+ (3/2)d2, and by assumptions of the theorem,

k′ ≥ k ≥
(
100d3 ln d

)
· c′d.

Therefore, since µ′ = 2, by Theorem 5.2.3, X′ is a Hamming scheme.

Remark 10.5.3. In the Hamming graph H(d, s) we have k = d(s − 1), so the desired

inequlity on k is satisfied if s ≥ 100d2
(
3d2/2 + d

)
ln d+ 1 = Ω(d4 ln d).

Hence, we can state the extension theorem for Hamming schemes in the following form

(confirming part 2 of Theorem 1.3.6).

Theorem 10.5.4. Let X′ = (Ω′, c′) be an association scheme. Let Ω ⊆ Ω′ with |Ω′| <

(3/2)|Ω|. Assume that X = X′[Ω] is the Hamming scheme H(d, s) with s ≥ 200d4 ln d.

Then X′ is the Hamming scheme H(d, s′) for some s′ ≥ s.

Proof. Immediately follows from Theorem 10.5.2 and Remark 10.5.3.

10.6 Robustness of the Grassmann schemes under extension

We rely on the characterization of Grassmann graphs by Ray-Chaudhuri and Sprague [1976]

stated in a weaker form in Theorem 3.6.2.
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Theorem 10.6.1. Let X′ = (Ω′, c′) be an association scheme. Let Ω ⊆ Ω′ with |Ω′| ≤

|Ω|(1 + α) for 0 < α < 1/2. Assume that X = X′[Ω] is a Grassmann scheme Jq(s, d) with

d ≥ 3 and

k ≥ 26µm3. (10.8)

Then X′ is a Grassmann scheme Jq(s
′, d) for some s′ ≥ s.

Proof. By Lemma 10.2.3, X′ is a metric scheme.

In a Grassmann scheme Jq(s, d) we have k = q[d]q[s− d]q and λ = q[s− d]q + q[d]q + q.

Since [s− d]q ≥ [d]q > 4 we have k ≥ (5/2)(λ+ 1). Hence, by Lemma 10.3.1, µ′ ≤ 12µ.

For d ≥ 3, we have m ≥ q2 + q + 1 ≥ 7, so 26m3 ≥ 24m3 + 12m2

k ≥ 26µm3 ≥ (12µ− 1)m2(2m+ 1) +m. (10.9)

Since X1 is a geometric distance-regular graph and Eq. (10.9) holds, by Theorem 10.3.3,

X ′
1 is also a geometric distance-regular graph with smallest eigenvalue −m′ ≥ −2m. By

Lemma 10.3.5 and Corollary 10.3.6, m = m′ and τ ′i = τi and ψ′i ≥ ψi. Moreover, by

Lemma 3.2.2, τ ′2 ≥ ψ′1. In a Grassmann graph τ2 = ψ1 = q + 1. Therefore, τ ′2 = ψ′1 = q + 1.

Since d ≥ 3 and m′ = m = [d]q we get m′ > q + 1. Finally, k′/m′ + 1 = k′/m + 1 ≥

k/m+ 1 ≥ q[s− d]q + 1 ≥ q2 + q + 1.

Hence, by Theorem 3.6.2, X ′
1 is the Grassmann graph Jq(s

′, d) for some s′.

Remark 10.6.2. The inequality (10.8) holds for Jq(s, d) if s ≥ 3d+ 7.

Proof. Recall that for Jq(s, d) we have m = [d]q, µ = (q + 1)2 and k = q[d]q[s − d]q.

Hence (10.8) is equivalent to

q

(
qs−d − 1

q − 1

)
≥ 26(q + 1)2

(
qd − 1

q − 1

)2

(10.10)

Finally, note that q2d− 1 ≥ (qd− 1)2 and q8(q− 1) ≥ 27q(q− 1) ≥ 26(q+1)2 for q ≥ 2.
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Hence, we can state the extension theorem for Grassmann schemes in the following form

(confirming part 3 of Theorem 1.3.6).

Theorem 10.6.3. Let X′ = (Ω′, c′) be an association scheme. Let Ω ⊆ Ω′ with |Ω′| <

(3/2)|Ω|. Assume that X = X′[Ω] is the Grassmann scheme Jq(s, d) with d ≥ 3 and s ≥

3d+ 7. Then X′ is the Grassmann scheme Jq(s
′, d) for some s′ ≥ s.

Proof. Immediately follows from Theorem 10.6.1 and Remark 10.6.2.

10.7 A universality result

In this section we prove the following result.

Theorem 10.7.1 (Affine superconfigurations). Every symmetric configuration of rank r on

n vertices is a subconfiguration of some primitive 2-dimensional affine association scheme

of rank r on O(n4) vertices.

(See the relevant definitions below.)

10.7.1 2-dimensional affine association schemes

We define the 2-dimensional affine association schemes. For simplicity we shall refer to them

as affine schemes.

Let Fq be a finite field. Consider the affine plane F2q . For every pair of distinct points

p1 = (x1, y1) and p2 = (x2, y2) in the plane there exists a unique (affine) line passing through

these points. The slope of this line is

slope(p1, p2) =


∞ if x1 = x2 and

y2 − y1
x2 − x1

∈ Fq if x1 ̸= x2

(10.11)
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Definition 10.7.2 (Affine configurations). Let c∗ : Fq ∪ {∞} → [r − 1] be a surjection.

Consider the configuration X(Fq, c∗) := (Ω, c) defined as follows:

• Ω := Fq × Fq

• for u ∈ Ω set c(u, u) = 0

• for u, v ∈ Ω, u ̸= v, set c(u, v) = c∗(slope(u, v))

Lemma 10.7.3. The affine configuration X := X(Fq, c∗) = (Ω, c) based on the surjection

c∗ : Fq ∪ {∞} → [r− 1] is an association scheme of rank r. Moreover, X is primitive if and

only if |(c∗)−1(s)| ≥ 2 for every s ∈ [r − 1].

Proof. Take any u, v ∈ F2q and any pair of distinct slopes s1 ̸= s2. Then the line through u

with slope s1 intersects the line through v with slope s2 in precisely one point. The lemma

easily follows from this observation. For for i, j, k ∈ {1, . . . , r− 1}, the intersection numbers

are

pij,k = |(c∗)−1(j)| · |(c∗)−1(k)| . (10.12)

For i = 0 and j = k we have p0j,j = (q − 1)|(c∗)−1(j)|. For j = 0 or k = 0 we have

pi0,i = pii,0 = 1. In all other cases we have p0j,k = 0.

Remark 10.7.4. Affine configurations are a special case of “translation association schemes”

discussed in [Brouwer et al., 1989, Section 2.10].

10.7.2 Sidon sets in finite fields

Motivated by Simon Sidon’s results on lacunary Fourier series (Sidon [1932]), Erdős and

Turán [1941] defined a subset S ⊂ N to be a Sidon set if for every four elements x, y, z, w ∈ S,

if x+ y = z +w then {x, y} = {z, w}. This concept was generalized to groups in Babai and

Sós [1985]. We need the definition in the special case when the group is Abelian.
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Definition 10.7.5 ([Babai and Sós, 1985, Def. 1.1.]). We call a subset S of an Abelian

group G a Sidon set if for every x, y, z, w ∈ S, of which at least three are distinct, we have

x+ y ̸= z + w . (10.13)

(For groups of odd order, we could just have taken the Erdős–Turán definition. However,

if a ∈ G has order 2 then the identity x + x = (x + a) + (x + a) would kill any reasonable

theory.)

We need the following observation from Babai and Sós [1985]. Finite elementary Abelian

groups are the additive groups of finite fields.

Proposition 10.7.6 ([Babai and Sós, 1985, Prop. 5.1]). Let q be a prime power and G an

elementary Abelian group of order q2. Then G contains a Sidon set of size q.

(This result is best possible for odd q.) The proof is a simple adaptation of the method

of Erdős and Turán [1941] who studied the maximum size of a Sidon set in the interval [n].

10.7.3 Proof of the universality result

In this section we prove Theorem 10.7.1.

Lemma 10.7.7. Let q = p2e be an even power of a prime number. Then there exists a

subset of points, X ⊂ F2q, of size |X| ≥ √
q, such that all slopes slope(x, y) for x ̸= y ∈ X

are distinct.

Proof. Let S be a Sidon set of size
√
q in Fq (such a set exists by by Prop. 10.7.6). Let

X = {(x, x2) | x ∈ S}. So we have |X| = |S| = √
q. We claim that all slopes among pairs of

points in X are distinct.

Indeed, for x, y ∈ X, x ̸= y, we have

slope((x, x2), (y, y2)) =
x2 − y2

x− y
= x+ y , (10.14)

189



and these numbers are all distinct by the definition of S.

Theorem 10.7.8. Every symmetric configuration X with n vertices and rank r is a sub-

configuration of some primitive affine scheme X′ of rank r derived from the affine plane F2q

where q is any even power of a prime satisfying q ≥ n2. So n′ = q2. In particular, there

exists such X′ with n′ ≤ 16n4 vertices for every n, and asymptotically, n′ ≤ n4(1 + o(1))

vertices suffice.

Proof. Assume q is an even power of a prime and q ≥ n2. Take a subset X ⊂ F2q of size

|X| = n with all slopes distinct (Lemma 10.7.7). Consider any bijection from vertices of X

to X. This bijection defines colors of slope(x, y) for all x ̸= y ∈ X. Since all these n(n−1)/2

slopes are distinct, their colors are well defined. We define the colors of the other slopes

arbitrarily from [r− 1], subject to the condition that every color in [r− 1] must be the color

of at least two distinct slopes. Since the number of remaining slopes to which we need to

assign colors is q+1−n(n−1)/2 > n(n+1)/2, we have room to duplicate all colors occurring

among the points in X.

The affine scheme so constructed is primitive of rank r. By construction, X = X′[X].

Now taking q to be an even power of 2, we can achieve q < 4n2. Alternatively, taking p

to be the smallest prime p ≥ n and setting q = p2 we have q = n2(1 + o(1)).

Corollary 10.7.9. The Johnson scheme J(s, d) on n vertices is a subconfiguration of a

non-Johnson primitive association scheme X′ of the same rank d+ 1 on ≤ 16n4 vertices.

Proof. We claim that affine schemes are never Johnson. The result below says that they

cannot even have the same number of vertices.

The following result is certainly well known, but we could not find a convenient reference.

Proposition 10.7.10. Let 2 ≤ k ≤ n− 2. Then
(n
k

)
is not a prime power.
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Rather than deriving this fact from considerably deeper results such as the fact that bi-

nomial coefficients are almost never full powers, we give a straightforward and self-contained

proof.

Proof. Assume for a contradiction that
(n
k

)
= pℓ where p is a prime and ℓ ≥ 1.

It is an easy exercise that if a prime power pℓ divides the binomial coefficient
(n
k

)
then

pℓ ≤ n. (This is implicit in the proof of Bertrand’s postulate by Erdős [1932] and follows

from the well-known formula for the exponent of p in n!.) So in our case
(n
k

)
≤ n, a

contradiction.
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CHAPTER 11

ROBUSTNESS UNDER FUSION AND EXTENSION

11.1 Introduction

The material of this Chapter (except for Sections 11.4.3 and 11.4.4) is a result of a joint

work by Babai and Kivva [2022].

In this Chapter we consider the following setup. Let Y′ = (Ω′, c′) be the fusion of a

configuration X′ = (Ω′, c′0) via a color map η0. Let Ω ⊆ Ω′. Assume, that Y′ and X = X′[Ω]

are homogeneous coherent configurations.

We follow the notation of Chapter 10.

We prove the following result.

Theorem 11.1.1. If a homogeneous coherent configuration X on n vertices or its fission

contains as a subscheme

• a Johnson scheme J(s, d) with s ≥ 250d4, d ≥ 2, on ≥ (5/6)n vertices, or

• a Hamming scheme H(d, s) with s ≥ 200d4 ln d, d ≥ 2, on ≥ (5/6)n vertices, or

• a Grassmann scheme Jq(s, d) with s ≥ 6d+ 5, d ≥ 3, on ≥ (4/5)n vertices,

then X is itself a Johnson, or a Hamming, or a Grassman scheme, respectively.

11.2 Kaluzhnin-Klin’s approach to show non-existence of a

non-trivial fusion of a Johnson scheme

An important question in the study of the Johnson schemes is whether they admit a non-

trivial fusion or fission. The only infinite families of examples of non-trivial fusion are known

for J(2d, d) and J(2d + 1, d). The only other known examples are “sporadic” examples for

J(10, 3), J(11, 4) and J(13, 6) found by Klin.
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Kaluzhnin and Klin [1972] proved the following theorem.

Theorem 11.2.1 (Kaluzhnin and Klin [1972]). There exists a function c(d) such that for

every s > c(d) there is no non-trivial fusion of the Johnson scheme J(s, d).

In his PhD thesis Klin [1974] showed that one can take c(d) = O(d4). Later, Muzy-

chuk [1992a] improved bound to c(d) = 3d + 4 and Uchida [1992] proved another slight

improvement to c(d) = 2d+
√

(d− 7/2)2 + 6 + 3/2.

About fission of J(s, d) almost nothing is known. In particular, to the authors knowledge

it is even open if there exists a rank-4 fission of J(s, 2) for sufficiently large s. Non-existence

of such fission, for instance, will substantially simplify some proofs in Kivva [2021a].

In this section we briefly outline the ideas of the proof by Kaluzhnin and Klin. Their

proof consists of several important observations. We denote by pti,j and p̃ℓh,g intersection

numbers of X and Y respectively, whenever they are well defined.

Observation 11.2.2. Assume that a coherent configuration Y is a fusion of X via a color

map η. For colors i, j, t, ℓ of X, if

p̃
η(t)
η(i),η(j)

=
∑

a∈η−1(i)

∑
b∈η−1(j)

pta,b ̸=
∑

a∈η−1(i)

∑
b∈η−1(j)

pℓa,b = p̃
η(ℓ)
η(i),η(j)

,

then η(t) ̸= η(ℓ).

In our case, intersection numbers of a fission configuration X are well-known, as by

assumption it is a Johnson scheme. So to make use of the observation above note that the

following inequality holds.

Observation 11.2.3. Assume that a coherent configuration Y is a fusion of coherent con-

figuration X via a color map η. Then the following inequality holds.

pti,j ≤ p̃
η(t)
η(i),η(j)

=
∑

a∈η−1(i)

∑
b∈η−1(j)

pta,b.
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The main technical observation of Kaluzhnin and Klin [1972] can be reformulated as

follows. For sufficiently large c(d) and s > c(d) intersection numbers of the Johnson scheme

J(s, d) satisfy the next lemma.

Lemma 11.2.4. Let s > c(d). Then for every 1 ≤ j ≤ d, intersection numbers of J(s, d)

satisfy

1. pij,j ≥
∑
ℓ,t≤j

p
j+1
ℓ,t for all 1 ≤ i ≤ j.

2. p
j+1
j,j ≥

∑
i,t≤j

pℓi,t for all j + 2 ≤ ℓ ≤ d.

Remark 11.2.5. There exists suitable c(d) = O(d4) by parts 5, 7 and 8 of Prop. 11.A.3.

These inequalities, combined with the two observations above immediately give the main

lemma of Kaluzhnin-Klin’s proof.

Lemma 11.2.6 (Kaluzhnin and Klin [1972]). Assume that s > c(d). Let Y be a fusion of

J(s, d) via map η. Let I = η−1(h) for some color h of Y and let t be the largest element of

I. Assume that t < d. Then η−1(η(t + 1)) = {t + 1}, that is, t + 1 is not merged with any

other color.

Proof. By Observation 11.2.2 it is enough to show that p̃
η(t+1)
η(t),η(t)

is distinct from p̃
η(i)
η(t),η(t)

for

every i ̸= t+ 1. This is straightforward from Observation 11.2.3 and Lemma 11.2.4.

To finish the proof Theorem 11.2.1 one needs to observe that if color d of J(s, d) is not

merged with any other color, then no colors are merged. This again follows from Observa-

tion 11.2.2 and the fact that pid,d are all distinct for the Johnson scheme J(s, d).

11.3 A generalization of Kaluzhnin-Klin’s approach

Let Y′ = (Ω′, c′) be the fusion of a configuration X′ = (Ω′, c′0) via a color map η0. Let

Ω ⊆ Ω′. Assume, that Y′ and X = X′[Ω] are homogeneous coherent configurations.
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Notation 11.3.1. Let c′ : Ω′ × Ω′ → S′ be a coloring. Let c = c′|Ω×Ω. For η : S′ → S′0 we

denote η|Ω := η|Range(c).

Observation 11.3.2. Let Y′ = (Ω′, c′y) be the fusion of a configuration X′ = (Ω′, c′x) via a

color map η. Let Ω ⊆ Ω′. Then the subconfiguration Y[Ω] is the fusion of X[Ω] via the color

map η|Ω, defined as above.

First, we make the following observation that allows us to focus on association schemes.

Observation 11.3.3. It is sufficient to prove Theorem 11.1.1 under the assumption that Y′

is an association scheme.

Proof. Notice, since X′[Ω] is a homogeneous coherent configuration, its fusion Y′[Ω] is a

regular configuration. Thus, by Lemma 10.2.2, for |Ω′| < 2|Ω|, rank of Y′ is equal to

the rank of Y′[Ω]. In particular, if Y′[Ω] is a symmetric configuration, so is Y′. So, in

Theorem 11.1.1 we only need to consider the case when Y′ is an association scheme.

We are going to use the following strategy:

1. First, we show that ifY′ is an association scheme and X′[Ω] is a Johnson, or a Hamming,

or a Grassmann scheme, then under mild assumptions Y′[Ω] ≡ X′[Ω].

2. Next, using Theorems 10.5.2 and 10.6.1, we can deduce that Y′ is itself a Johnson, or

a Hamming or a Grassmann scheme, respectively.

To prove the first claim we follow the strategy, which can be seen as a generalization

of approach of Kaluzhnin and Klin [1972]. In this section we develop technical tools to

implement this approach.

This approach can be applied to association schemes that satisfy the following simple

inequalities.

Definition 11.3.4. We say that an association scheme is fusion-robust with parameter γ > 0

if it satisfies the following properties.
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1. For every j ≤ d, kj−1 ≤ γkj .

2. For every 2 ≤ j + 1 ≤ t ≤ d− 1, pt+1
j,j ≤ γptj,j .

3. For every 2 ≤ j + 1 ≤ t ≤ d,
j∑

i,h=1
pti,h ≤ (1 + γ)ptj,j .

4. For 1 ≤ t ≤ j ≤ d− 1, p
j+1
j,j ≤ γptj,j .

We observe that in a wide range of parameters Johnson, Hamming and Grassmann

schemes are fusion-robust.

Lemma 11.3.5. Let 0 < γ < 1/2.

1. The Johnson scheme J(s, d) is fusion-robust with parameter γ if s ≥ 6d4/γ + 3d.

2. The Hamming scheme H(d, s) is fusion-robust with parameter γ if s ≥ 10d3/γ.

3. The Grassmann scheme Jq(s, d) is fusion-robust with par. γ if s ≥ 6d−2+logq(32/γ).

Proof. Follows from Propositions 11.A.3, 11.B.3 and 11.C.3, respectively, in Sections 11.A, 11.B

and 11.C.

We show that for fusion-robust schemes, the intersection numbers of an association

scheme X can be used to bound some intersection numbers of a fusion of its extension.

The next pair of lemmas are the main technical lemmas of this section.

Lemma 11.3.6. Assume that an association scheme Y′ = (Ω′, c′) is the fusion of a config-

uration X′ via the color map η0. Let Ω ⊆ Ω′, with n′ < 2n. Denote η = η0|Ω. Moreover,

assume that X = X′[Ω] is an association scheme. Let h and g be colors of Y′ and I ⊆ η−1(h).

Then

n

∑
i∈I

ki

 (p′)hg,g ≤ (n′ − n)k′h(p
′)hg,g + n

∑
i∈I

ki
∑

m,ℓ∈η−1(g)

piℓ,m.
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Proof. We count the number M of ordered triples (u, v, w) with u, v ∈ Ω, w ∈ Ω′ such that

c(u, v) ∈ I, c′(u,w) = c′(w, v) = g. On one hand, we have n

(∑
i∈I

ki

)
ways to choose a

pair (u, v) and for every such pair there are (p′)hg,g ways to pick w. Here, we used that

I ⊆ η−1(h). Therefore,

M = n

∑
i∈I

ki

 (p′)hg,g.

On the other hand, we may first pick vertex w and then count the number of pairs (u, v)

which form a desired triple with w. We distinguish 2 cases: w ∈ Ω and w /∈ Ω.

Since I ⊆ η−1(h), for every w ∈ Ω′ the number of desired pairs (u, v) is at most the

number of pairs (u′, v′) such that c′(u′, v′) = h and c′(u′, w) = c′(v′, w) = g. This number of

pairs is equal k′g(p
′)gg,h = k′h(p

′)hg,g. We use this estimate when w /∈ Ω.

When w ∈ Ω the number M0 of desired pairs (u, v) for w does not depend on w, and can

be expressed in terms of the intersection numbers of X. Indeed,

M0 =
∑
i∈I

∑
m,ℓ∈η−1(g)

kℓp
ℓ
i,m =

∑
i∈I

∑
m,ℓ∈η−1(g)

kip
i
ℓ,m =

∑
i∈I

ki
∑

m,ℓ∈η−1(g)

piℓ,m.

Therefore, we get an inequality

n

∑
i∈I

ki

 (p′)hg,g =M ≤ (n′ − n)k′h(p
′)hg,g + nM0. (11.1)

Lemma 11.3.7. Suppose that X satisfies assumptions of Lemma 11.3.6. Additionally, sup-

pose that for 0 < γ ≤ ε, X satisfies inequalities 1-3 of Def. 11.3.4. Let t ∈ η−1(h) and let j

be the maximal element of the set η−1(g). Suppose that j < t. Then

(
3n− 2n′ − γ(n′ − n)

2n− n′

)
(p′)hg,g ≤ (1 + γ)p

j
t,t.
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In particular, for n′ ≤
(
3

2
− ε

)
n and γ ≤ ε < 1, we have (p′)hg,g ≤

1 + γ

γ
p
j
t,t.

Proof. Define I = {i ∈ η−1(h) | i ≥ j}. By Lemma 10.2.2,

k′h(2n− n′) ≤ n
∑

i∈η−1(h)

ki.

By the definition of the set I, and by inequality 1 of Def. 11.3.4, we have

∑
i∈η−1(h)

ki ≤
j−1∑
i=1

ki +
∑
i∈I

ki ≤ γkj +
∑
i∈I

ki ≤ (1 + γ)
∑
i∈I

ki.

Since, for every i ∈ I and every ℓ ∈ η−1(g) the inequality i > t ≥ ℓ holds, by inequality 3 of

Def. 11.3.4, we obtain ∑
m,ℓ∈η−1(g)

piℓ,m ≤ (1 + γ)pit,t.

Now, since t < j ≤ i for all i ∈ I, inequality 2 of Def. 11.3.4 implies pit,t ≤ p
j
t,t. Hence

M0 ≤ (1 + γ)p
j
t,t

∑
i∈I

ki.

Combining all together, inequality (11.1) becomes

n(p′)hg,g

∑
i∈I

ki

 ≤ (n′ − n)
n

2n− n′
(p′)hg,g(1 + γ)

∑
i∈I

ki

+ n(1 + γ)p
j
t,t

∑
i∈I

ki

 , so

(
3n− 2n′ − γ(n′ − n)

2n− n′

)
(p′)hg,g ≤ (1 + γ)p

j
t,t.

Using this bound on the intersection numbers, we get the following lemma for fusion-

robust configurations.

Lemma 11.3.8. Let Y′ be an association scheme on Ω′. Assume that Y′ is the fusion of a
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configuration X′ via a color map η0. Let Ω ⊆ Ω′, with n′ ≤ (3/2− ε)n, where 0 < ε < 1/2.

Denote η = η0|Ω. Suppose that X′[Ω] is fusion-robust for γ = ε/3. Let h be a color of Y′

and t be the maximal element of η−1(h). Assume t < d. Then η−1(η(t+ 1)) = {t+ 1}, i.e.,

color t+ 1 is not merged with any other color of X′[Ω].

In particular, the colors of Y′ can be renamed, so that for some 1 ≤ x ≤ d, we have

η−1(1) = {1, 2, . . . , x} and η−1(i) = {i+ x− 1} for all 2 ≤ i ≤ d− x+ 1.

Proof. To prove the claim of the lemma it is enough to show that (p′)η(t+1)
h,h is distinct from

all (p′)η(i)h,h , for i ̸= t+ 1.

Since X′[Ω] is fusion-robust for γ = ε/3, by Lemma 11.3.7, for j ≥ t + 1, (p′)η(j)h,h <

(2/ε)p
j
t,t.

Using part 3 of Def. 11.3.4 , we get

(p′)η(j)h,h ≤ 2

ε
p
j
t,t ≤ γ · 2

ε
pt+1
t,t < pt+1

t,t .

Since, (p′)η(t+1)
h,h ≥ pt+1

t,t , we immediately obtain η(t+ 1) ̸= η(j), for all j ≥ t+ 2.

The inclusion t ∈ η−1(h), implies (p′)η(j)h,h ≥ p
j
t,t. Combining this with Lemma 11.3.7 and

part 4 of Def. 11.3.4, for j ≤ t, we get

(p′)η(t+1)
h,h < (2/ε)pt+1

t,t ≤ p
j
t,t ≤ (p′)η(j)h,h .

Thus, η(t+ 1) ̸= η(j) for all j ̸= t+ 1.

11.4 Robustness of Johnson, Hamming and Grassmann schemes

Now our goal is to show that in Lemma 11.3.8 under mild assumptions for Johnson, Hamming

and Grassmann schemes x must be 1. In order to do this, we will need the following

inequality.
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11.4.1 Technical lemmas

Lemma 11.4.1. Let Y′ be an association scheme on Ω′ of rank ≥ 3. Assume that Y′ is

a fusion of a configuration X′ via a color map η0. Let Ω ⊆ Ω′, with n′ ≤ (3/2 − α)n,

where 0 < α < 1/2. Let η = η0|Ω. Suppose X = X′[Ω] is an association scheme and

η−1(1) = {1, 2, . . . , t}. Then

t∑
i=1

ki

t∑
ℓ,j=1

piℓ,j ≥ 2αktp
1
t,t

Proof. To prove this, we count the number of triangles with all sides being of color 1 in

Y′[Ω].

Let Y ′
1 be the color-1 constituent ofY

′ and let Y1 = Y ′
1[Ω] be the induced on Ω graph. The

total number of triangles in Y ′
1 equals n′k′1(p

′)11,1/6 and there are at most (n′−n)k′1(p
′)11,1/2

triangles in Y1 with at least one vertex in Ω′ \ Ω. Therefore, there are at least

M ′ =
1

6
n′k′1(p

′)11,1 −
1

2
(n′ − n)k′1(p

′)11,1 =

(
n

2
− n′

3

)
k′1(p

′)11,1

triangles in Y1.

Clearly, k′1 ≥ kt, and

(p′)11,1 ≥
t∑

ℓ,j=1

p1ℓ,j ≥ p1t,t, so 6M ′ ≥ 2αnktp
1
t,t. (11.2)

At the same time, we can count the number of triangles in Y1 precisely. Recall that

η−1(1) = {1, 2, . . . t}, i.e., each edge in Y1 is an edge with color in [t] in X. There are nki

ways to choose an ordered pair of vertices (u, v) joined by an edge of color i in X and there

are
t∑

ℓ,j=1

piℓ,j ways to pick a vertex w with c(u,w) ∈ [t] and c(w, v) ∈ [t]. Therefore, the
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number of triangles in Y1 is

M =
n

6

t∑
i=1

ki

t∑
ℓ,j=1

piℓ,j .

Thus, the desired inequality is implied by M ≥M ′.

Finally, before proving that Y′[Ω] ≡ X′[Ω] for Hamming or Grassmann schemes, we need

the following inequality.

Lemma 11.4.2. Let 0 < γ < 1/2. Let 1 ≤ t ≤ ℓ ≤ j and 2 ≤ j ≤ d− 1 be integers.

1. For the Johnson scheme J(s, d) with s ≥ 2d4/γ + 3d, we have

pℓj,j ≤ (1 + γ)ptj,j , and (d− 1)p
j
j,j ≤ (1 + γ)p1j,j . (11.3)

2. For the Hamming scheme H(d, s) with s ≥ 10γ−1d3 we have

pℓj,j ≤ (1 + γ)ptj,j , and (d− 1)p
j
j,j ≤ (1 + γ)p1j,j . (11.4)

3. For the Grassmann scheme Jq(s, d) with s ≥ 6d− 4 + logq(32/γ) we have

pℓj,j ≤ (1 + γ)ptj,j , and [d− 1]q · pjj,j ≤ (1 + γ)p1j,j . (11.5)

Proof. See part 9 of Prop. 11.A.3, part 8 of Prop. 11.B.3 and part 8 of Prop. 11.C.3 in

Appendices 11.A, 11.B and 11.C.

11.4.2 Robustness of Johnson schemes

Theorem 11.4.3. Let Y′ be an association scheme on Ω′ of rank ≥ 3. Assume that Y′ is

a fusion of a configuration X′ via a color map η0. Let Ω ⊆ Ω′, with n′ ≤ (3/2− α)n, where
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0 < α < 1/2. Suppose that X = X′[Ω] is the Johnson scheme J(s, d), with s > 2d4/(εα)+3d,

for 0 < ε ≤ 1/18. If α ≥ (1 + 6ε)/(2d− 2), then Y′[Ω] = J(s, d).

Proof. Let η = η0|Ω. By Lemma 11.3.8, we may assume that η−1(1) = {1, 2, . . . t} and

η−1(i) = {i + t − 1} for all 2 ≤ i ≤ d − t + 1. We are going to prove that t = 1. By

Lemma 11.4.1,
t∑
i=1

ki

t∑
ℓ,j=1

piℓ,j ≥ 2αktp
1
t,t (11.6)

We are going to bound the expression in the left-hand side of the inequality.

Using parts 2 (for γ = 1/2) and 3 of Proposition 11.A.3, for s > 2d4/ε+ 3d,

t∑
ℓ,j=1

piℓ,j ≤ pit,t + 2
t−1∑
j=1

kj ≤ (1 + ε)

(
d− i

d− t

)(
s− d− i

t

)
+ 4kt−1. (11.7)

Note also that for 1 ≤ i ≤ t− 1 part 4 of Proposition 11.A.3 implies

(
d− i

d− t

)(
s− d− i

t

)
≤
(
d− 1

d− t

)(
s− d− 1

t

)
≤ p1t,t, and

ptt,t ≤ (1 + ε)

(
s− d− t

t

)
≤ (1 + ε)

(
d− 1

d− t

)−1

p1t,t.

(11.8)

In particular, if 2 ≤ t ≤ d− 1, the last inequality implies

ptt,t ≤ (1 + ε)p1t,t/(d− 1).

Combining Eq. (11.7) and (11.8), we get

t∑
ℓ,j=1

piℓ,j ≤ (1 + ε)p1tt + 4kt−1 and
t∑

ℓ,j=1

ptℓ,j ≤ pttt + 4kt−1. (11.9)
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Hence, using part 2 (with γ = 1/2) of Proposition 11.A.3,

kt

t∑
ℓ,j=1

ptℓ,j +
t−1∑
i=1

ki

t∑
ℓ,j=1

piℓ,j ≤ ktp
t
t,t + 4ktkt−1 + 2kt−1((1 + ε)p1t,t + 4kt−1) (11.10)

Recall that p1t,t ≥ kt/(2d) by Eq. (11.22) and Eq.(11.8) and kt−1 ≤ εkt/(2d
2), by part 2

of Prop. 11.A.3 for s ≥ 2d4/ε+ 3d. So, εp11,1/d ≥ kt−1 Thus, for t ≥ 2,

ktp
t
t,t + 4ktkt−1 + 8k2t−1 + 3kt−1p

1
t,t ≤

(
1 + ε

d− 1

)
ktp

1
t,t +

(
5ε

d

)
ktp

1
t,t <

(
1 + 6ε

d− 1

)
ktp

1
t,t,

This gives a contradiction with Eq. (11.6) for t ≥ 2 and α ≥ (1 + 6ε)/(2d− 2).

Therefore, t = 1 and so Y′[Ω] = J(s, d).

Finally, we prove Theorem 1.3.2

Proof of Theorem 1.3.2. If d = 2, clearly Y′[Ω] = J(s, d). For d ≥ 3, we apply Theo-

rem 11.4.3 with ε = 1/30, α = 3/10. Hence, the result follows from Theorem 10.4.1.

11.4.3 Robustness of Hamming schemes

Next, we prove similar robustness results for Hamming schemes.

Theorem 11.4.4. Let Y′ be an association scheme on Ω′ of rank ≥ 3. Assume that Y′ is

a fusion of a configuration X′ via a color map η0. Let Ω ⊆ Ω′, with n′ ≤ (3/2− α)n, where

0 < α < 1/2. Suppose that X = X′[Ω] is the Hamming scheme H(d, s), with s ≥ 30d3/α, for

0 < ε ≤ 1/18. If α ≥ (1 + 2ε)/(2d− 2), then Y′[Ω] = X = H(d, s).

Proof. Let η = η0|Ω. By Lemma 11.3.8, we may assume that η−1(1) = {1, 2, . . . t} and

η−1(i) = {i + t − 1} for all 2 ≤ i ≤ d − t + 1. We are going to prove that t = 1. By

Lemma 11.4.1,
t∑
i=1

ki

t∑
ℓ,j=1

piℓ,j ≥ 2αktp
1
t,t (11.11)
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We are going to bound the expression in the left-hand side of the inequality.

Recall, that by part 1 of Prop. 11.B.3, for 2 ≤ t ≤ d−1, we have kt ≥ (s/d)kt−1 ≥ 2kt−1.

Using Eq. (2.3),
t∑

ℓ,j=1

piℓ,j ≤ pit,t + 2
t−1∑
j=1

kj ≤ pit,t + 4kt−1. (11.12)

By Lemma 11.4.2, for 2 ≤ i+ 1 ≤ t ≤ d− 1, we have

pit,t ≤ (1 + ε)p1t,t and ptt,t ≤ (1 + ε)p1t,t/(d− 1). (11.13)

Combining Eq. (11.12) and Eq. (11.13), we get, for 1 ≤ i ≤ t− 1,

t∑
ℓ,j=1

piℓ,j ≤ (1 + ε)p1t,t + 4kt−1 and
t∑

ℓ,j=1

ptℓ,j ≤
(1 + ε)

(d− 1)
p1t,t + 4kt−1. (11.14)

Hence,

t∑
i=1

ki

t∑
ℓ,j=1

piℓ,j ≤

(
t−1∑
i=1

ki

)(
(1 + ε)p1t,t + 4kt−1

)
+ kt

(
(1 + ε)

(d− 1)
p1t,t + 4kt−1

)
≤

≤ (1 + ε)

(d− 1)
ktp

1
t,t + 3kt−1p

1
t,t + 4ktkt−1 + 8k2t−1 ≤

≤ ktp
1
t,t

(
(1 + ε)

(d− 1)
+

ε

2d2
+

ε

2d2

)
<

(1 + 2ε)

(d− 1)
ktp

1
t,t.

(11.15)

Therefore, we get a contradiction with the inequality (11.11) for α ≥ 1 + 2ε

2d− 2
.

Proof of Thm. 1.3.4. If Y is of rank 3, the claim follows from Theorem 10.5.2. If rk(Y′) ≥ 4,

the claim follows from Theorem 11.4.4 applied with ε = 1/10 and α = 3/10 and Theo-

rem 10.5.2.

11.4.4 Robustness of Grassmann schemes

Finally, we establish similar claims for the Grassmann schemes.
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Theorem 11.4.5. Let Y′ be an association scheme on Ω′ of rank ≥ 4. Assume that Y′

is a fusion of a configuration X′ via a color map η0. Let Ω ⊆ Ω′, with n′ ≤ (3/2 − α)n,

where 0 < α < 1/2. Suppose that X = X′[Ω] is the Grassmann scheme Jq(s, d), with s ≥

6d− 2+ logq(32/ε), for 0 < ε < 1/2. If α ≥ (1+ 2ε)/(2[d− 1]q), then Y′[Ω] = X = Jq(s, d).

Proof. Let η = η0|Ω. By Lemma 11.3.8, we may assume that η−1(1) = {1, 2, . . . t} and

η−1(i) = {i + t − 1} for all 2 ≤ i ≤ d − t + 1. We are going to prove that t = 1. By

Lemma 11.4.1,
t∑
i=1

ki

t∑
ℓ,j=1

piℓ,j ≥ 2αktp
1
t,t (11.16)

We are going to bound the expression in the left-hand side of the inequality.

By part 1 of Prop. 11.C.3, for 2 ≤ t ≤ d− 1, we have kt ≥ (qs−2d/2)kt−1 ≥ 2kt−1.

Using Eq. (2.3),
t∑

ℓ,j=1

piℓ,j ≤ pit,t + 2
t−1∑
j=1

kj ≤ pit,t + 4kt−1. (11.17)

By Lemma 11.4.2, for 2 ≤ i+ 1 ≤ t ≤ d− 1, we have

pit,t ≤ (1 + ε)p1t,t and ptt,t ≤ (1 + ε)p1t,t/[d− 1]q. (11.18)

Combining Eq. (11.17) and Eq. (11.18), we get, for 1 ≤ i ≤ t− 1,

t∑
ℓ,j=1

piℓ,j ≤ (1 + ε)p1t,t + 4kt−1 and
t∑

ℓ,j=1

ptℓ,j ≤
(1 + ε)

[d− 1]q
p1t,t + 4kt−1. (11.19)
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Hence,

t∑
i=1

ki

t∑
ℓ,j=1

piℓ,j ≤

(
t−1∑
i=1

ki

)(
(1 + ε)p1t,t + 4kt−1

)
+ kt

(
(1 + ε)

[d− 1]q
p1t,t + 4kt−1

)
≤

≤ (1 + ε)

[d− 1]q
ktp

1
t,t + 3kt−1p

1
t,t + 4ktkt−1 + 8k2t−1 ≤

≤ ktp
1
t,t

(
(1 + ε)

[d− 1]q
+

ε

[2d]q
+

ε

[2d]q

)
<

(1 + 2ε)

[d− 1]q
ktp

1
t,t.

(11.20)

Therefore, we get a contradiction with the inequality (11.16) for α ≥ 1 + 2ε

2[d− 1]q
.

Proof of Theorem 1.3.5. If rk(Y′) ≥ 4, the claim follows from Theorem 11.4.5 applied with

ε = 1/4 and α = 1/4 and Theorem 10.6.1.

11.A Appendix: Inequalities on the intersection numbers of the

Johnson schemes

In this section we derive inequalities for the intersection numbers of the Johnson schemes.

We use these inequalities in Section 11.4.2.

Fact 11.A.1. The intersection numbers of the Johnson scheme J(s, d) can be computed as

p
j
i,t =

t2∑
a=t1

(
d− j

a

)(
j

d− a− i

)(
j

d− a− t

)(
s− d− j

i+ t+ a− d

)
, for t1 ≤ t2, (11.21)

and p
j
i,t = 0, for t1 > t2,

where t1 = max{d−i−t, d−j−t, d−i−j, 0} and t2 = min{d−t, d−i, d−j, s−j−i−t}.

The degree of the j-th constituent is

kj =

(
d

j

)(
s− d

j

)
. (11.22)
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Before we prove the desired inequalities for the intersection numbers it is convenient to

make the following observation.

Observation 11.A.2. Let d ≥ 1 and 0 ≤ i ≤ d− 1. Then

1

d

(
d

i

)
≤
(

d

i+ 1

)
≤ d

(
d

i

)
and

(
d− 1

i

)
≤
(

d

i+ 1

)
≤ d

(
d− 1

i

)
.

Proposition 11.A.3. Let J(s, d) be a Johnson scheme, s ≥ 2d + 1, d ≥ 2. The following

inequalities hold.

1.

(
d

j

)
(s− 2d)j

j!
≤ kj ≤

(
d

j

)
(s− d)j

j!
, for 1 ≤ j ≤ d.

2. If s > (d2/γ) + 2d, for γ > 0, then

kj−1 ≤ γkj . (11.23)

3. For γ ∈ (0, 1), 1 ≤ j ≤ t ≤ d and s ≥ 2d4/γ + 3d

(
d− j

d− t

)(
s− d− j

t

)
≤ p

j
t,t ≤ (1 + γ)

(
d− j

d− t

)(
s− d− j

t

)
. (11.24)

4. For 2 ≤ t+ 1 ≤ j ≤ d and s > 2d4 + 3d.

(
j

j − t

)2(s− d− j

2t− j

)
≤ p

j
t,t ≤ 2

(
j

j − t

)2(s− d− j

2t− j

)
. (11.25)

5. Let γ > 0. Then for 2 ≤ t+ 1 ≤ j ≤ d− 1 and s ≥ (d3/γ) + 2d

p
j+1
t,t ≤ γp

j
t,t. (11.26)
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6. Let γ > 0. Then for 1 ≤ max(i, h) ≤ j < min(i+ h, d), and s > (d2/γ) + 3d

p
j
i−1,h ≤ γp

j
i,h. (11.27)

7. Let γ ∈ (0, 1). Then for 2 ≤ t+ 1 ≤ j ≤ d and s >
(2 + 2γ)

γ
d2 + 3d

t∑
a,b=1

p
j
a,b ≤ (1 + γ)p

j
t,t. (11.28)

8. Let γ > 0. For s > max{(6d4/γ) + 3d, d2} and 1 ≤ j ≤ t ≤ d− 1

pt+1
t,t ≤ γp

j
t,t. (11.29)

9. Let 0 < γ < 1/2. Let 1 ≤ t ≤ ℓ ≤ j and 2 ≤ j ≤ d− 1 be integers

pℓj,j ≤ (1 + γ)ptj,j , and (d− 1)p
j
j,j ≤ (1 + γ)p1j,j . (11.30)

Proof. 1. Follows from Eq. (11.22).

2. kj−1 =
j2

(d− j + 1)(s− d− j + 1)
kj ≤

d2

s− 2d
kj ≤ γkj .

Denote the summand with an index a in the sum (11.21) for p
j
i,t by

zai,t,j :=

(
d− j

a

)(
j

d− a− i

)(
j

d− a− t

)(
s− d− j

i+ t+ a− d

)
.

Clearly, zai,t,j ≥ 0. Also, for convenience, we write down Eq. (11.21) for i = t

p
j
t,t =

t2∑
a=t1

(
d− j

a

)(
j

d− t− a

)2( s− d− j

2t+ a− d

)
, (11.31)
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where t1 and t2 are defined as in Fact 11.A.1.

3. For j ≤ t, in the sum (11.31) for p
j
t,t, we have t1 = max{d− t− j, 0}, t2 = d− t. Since

all zat,t,j ≥ 0,

p
j
t,t =

d−t∑
a=t1

zat,t,j ≥ zd−tt,t,j =

(
d− j

d− t

)(
s− d− j

t

)
.

To prove the upper bound, it is enough to show that γzat,t,j ≥ 2za−1
t,t,j for 0 < a ≤ d− t.

Note that 2t+ a− d ≤ d, so

(
s− d− j

2t+ a− d

)
≥ s− 3d

d

(
s− d− j

2t+ a− 1− d

)
.

Thus, using Observation 11.A.2,

(
d− j

a

)(
j

d− a− t

)2( s− d− j

2t+ a− d

)
≥ s− 3d

d4

(
d− j

a− 1

)(
j

d− a+ 1− t

)2( s− d− j

2t+ a− 1− d

)
,

which implies

zat,t,j ≥
s− 3d

d4
za−1
t,t,j ≥ 2za−1

t,t,j .

4. For j ≥ t+ 1, in the sum (11.31) for p
j
t,t we have t1 = d− 2t, t2 = d− j. Thus

p
j
t,t =

d−j∑
a=d−2t

zat,t,j ≥ z
d−j
t,t,j =

(
j

j − t

)2(s− d− j

2t− j

)
.

Similarly, as in the previous part, one can verify that s > 2d4+3d implies zat,t,j ≥ 2za−1
t,t,j

for d− 2t+ 1 ≤ a ≤ d− j. Hence, the desired upper bound follows.

5. We need to show that

γ

d−j∑
a=d−2t

zat,t,j = γp
j
t,t ≥ p

j+1
t,t =

d−j−1∑
a=d−2t

zat,t,j+1.
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It is enough to show that γzat,t,j ≥ za−1
t,t,j+1, i.e., we need to prove

γ

(
d− j

a

)(
j

d− t− a

)2( s− d− j

2t+ a− d

)
≥
(
d− j − 1

a− 1

)(
j + 1

d− t− a+ 1

)2( s− d− j − 1

2t+ a− 1− d

)
.

By Observation 11.A.2, it is enough to have

γ
1

(j + 1)2
s− d− j

2t+ a− d
≥ 1,

which is true for s ≥ d3/γ + 2d.

6. Since max(i, h) ≤ j ≤ i+ h− 1 we need to verify

d−j∑
a=d−h−i+1

zai−1,h,j ≤ γ

d−j∑
a=d−h−i

zai,h,j .

It is enough to check that zai−1,h,j ≤ γzai,h,j , which is equivalent to

γ

(
j

d− a− i

)(
s− d− j

i+ h+ a− d

)
≥
(

j

d− a− i+ 1

)(
s− d− j

i+ h+ a− d− 1

)
,

which follows from Observation 11.A.2 for γ(s− 3d) ≥ d2.

7. Denote by Ih = {(a, b) : 1 ≤ a ≤ t, 1 ≤ b ≤ t, a+ b = h}. We can write

t∑
a,b=1

p
j
a,b =

2t∑
h=j

∑
(a,b)∈Ih

p
j
a,b.

Denote γ0 = γ/(2 + 2γ). Since s > d2/γ0 + 3d, using previous part, we deduce that

∑
(a,b)∈Ih−1

p
j
a,b ≤ 2γ

∑
(a,b)∈Ih

p
j
a,b.
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Therefore,

t∑
a,b=1

p
j
a,b ≤

2t−j∑
h=0

(2γ0)
h

∑
(a,b)∈I2t

p
j
a,b ≤

∞∑
h=0

(2γ0)
hp
j
t,t =

1

1− 2γ0
p
j
t,t = (1 + γ)p

j
t,t.

8. By part 3, for j ≤ t,

p
j
t,t ≥

(s− 2d)t

t!
.

Part 4 implies

pt+1
t,t ≤ 2(t+ 1)2

(
s− d− t− 1

t− 1

)
≤ 2d3

(s− d)t−1

t!
.

Therefore, for s > 6d4/γ + 3d we get

1

γ
pt+1
t,t ≤ 2

γ
d3

(s− d)t−1

t!
<

2e

γ
d3

(s− 2d)t−1

t!
<

(s− 2d)t

t!
≤ p

j
t,t.

9. Using parts 2 (for γ = 1/2) and 3 of Proposition 11.A.3, for s > 2d4/ε+ 3d,

t∑
ℓ,j=1

piℓ,j ≤ pit,t + 2
t−1∑
j=1

kj ≤ (1 + ε)

(
d− i

d− t

)(
s− d− i

t

)
+ 4kt−1. (11.32)

Note also that for 1 ≤ i ≤ t− 1 part 4 of Proposition 11.A.3 implies

(
d− i

d− t

)(
s− d− i

t

)
≤
(
d− 1

d− t

)(
s− d− 1

t

)
≤ p1t,t, and

ptt,t ≤ (1 + ε)

(
s− d− t

t

)
≤ (1 + ε)

(
d− 1

d− t

)−1

p1t,t.

(11.33)

In particular, if 2 ≤ t ≤ d− 1, the last inequality implies

ptt,t ≤ (1 + ε)p1t,t/(d− 1).
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11.B Appendix: Inequalities on the intersection numbers of the

Hamming schemes

In this section we derive inequalities for the intersection numbers of the Hamming schemes.

We use these inequalities in Section 11.4.3.

Fact 11.B.1. The intersection numbers of the Hamming graph H(d, s) are

pti,j =

a2∑
a=a1

(s− 1)a(s− 2)i+j−t−2a
(
d− t

a

)(
t

i+ j − t− 2a

)(
2t− i− j + 2a

t− j + a

)
, (11.34)

where a1 = max(0, j − t, i− t) and a2 = min

(⌊
i+ j − t

2

⌋
, d− t

)
.

Observation 11.B.2. The following inequalities hold for all 0 ≤ i ≤ d− 1

1

d

(
d

i

)
≤
(

d

i+ 1

)
≤ d

(
d

i

)
and

(
2d+ 2

d+ 1

)
≤ 4

(
2d

d

)
.

Proposition 11.B.3. The intersection numbers of the Hamming scheme H(d, s) satisfy

1. ki =

(
d

i

)
(s− 1)i for every i ∈ [d].

2. For s > 10γ−1d3 and j + 1 ≤ t ≤ d we have

(s−2)2j−t
(
2t− 2j

t− j

)(
t

2j − t

)
≤ ptj,j ≤ (1+γ)(s−2)2j−t

(
2t− 2j

t− j

)(
t

2j − t

)
. (11.35)

3. For s > 10γ−1d3 and 1 ≤ t ≤ j we have

(s− 1)j−t(s− 2)t
(
d− t

j − t

)
≤ ptj,j ≤ (1 + γ)(s− 1)j−t(s− 2)t

(
d− t

j − t

)
. (11.36)
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4. For s > 10γ−1d3 for 2 ≤ j + 1 ≤ t ≤ d− 1,

pt+1
j,j ≤ γptj,j . (11.37)

5. Let γ > 0. Then for 1 ≤ max(i, h) ≤ t ≤ min(i+ h, d) and s > γ−1d2 + 2,

pti−1,h ≤ γpti,h. (11.38)

6. Let γ ∈ (0, 1/2). Then for 2 ≤ j + 1 ≤ t ≤ d and s ≥ 3γ−1d2 + 2,

j∑
i,h=1

pti,h ≤ (1 + γ)ptj,j . (11.39)

7. Let γ > 0. For 1 ≤ t ≤ j ≤ d− 1 and s ≥ 10γ−1d3

p
j+1
j,j ≤ γptj,j . (11.40)

8. For s > 10γ−1d3 and 1 ≤ t ≤ ℓ ≤ j

pℓj,j ≤ (1 + γ)ptj,j , and (d− 1)p
j
j,j ≤ (1 + γ)p1j,j , if 2 ≤ j ≤ d− 1. (11.41)

Proof. Define

zaj,j,t = (s− 1)a(s− 2)2j−t−2a
(
d− t

a

)(
t

2j − t− 2a

)(
2t− 2j + 2a

t− j + a

)
. (11.42)

We can compute

za+1
j,j,t ≤ zaj,j,t ·

s− 1

(s− 2)2
· d · d2 · 4 ≤ zaj,j,t

5d3

s
. (11.43)
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2-3. By Eq. (11.43) for s > 10d3/γ we have za+1
j,j,t ≤ (γ/2) · zaj,j,t. Therefore,

za1j,j,t ≤ ptj,j ≤ (1 + γ)za1j,j,t.

In the part 2, a1 = 0 and in the part 3 a1 = j − t.

4. By part 2, we have

ptj,j/p
t+1
j,j ≥ (s− 2) · 1

4(1 + γ)
· (2t− 2j + 1)(2t− 2j + 2)

(t+ 1)(2j − t)
≥ s

5d2
≥ 1

γ
. (11.44)

5. In the expression (11.34) for pti−1,h the bounds are a1 = 0 and

a2 = min

(⌊
i+ h− t− 1

2

⌋
, d− t

)
,

and for pti,h the bounds are a′1 = 0 and

a′2 = min

(⌊
i+ h− t

2

⌋
, d− t

)
.

Therefore, it is sufficient to check that for every a ≤ a2,

γ(s− 2)

(
t

i+ h− t− 2a

)(
2t− i− h+ 2a

t− h+ a

)
≥

≥
(

t

(i− 1) + h− t− 2a

)(
2t− (i− 1)− h+ 2a

t− h+ a

)
.

(11.45)

Since 2t − (i − 1) − h + 2a ≤ d, by Observation 11.B.2, this inequality is satisfied if

s ≥ γ−1d2 + 2.

6. Denote by Iℓ = {(i, h) : 1 ≤ i, h ≤ j, i+ h = ℓ}. Then,

j∑
i,h=1

pti,h =

2j∑
ℓ=t

∑
(i,h)∈Iℓ

pti,h.
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Let γ′ = γ/3 < 1/6. Using part 5,

∑
(i,h)∈Iℓ−1

pti,h ≤ 2γ′
∑

(i,h)∈Iℓ

pti,h (11.46)

Therefore,

j∑
i,h=1

pti,h ≤
2j−t∑
ℓ=0

(2γ′)ℓ
∑

(i,h)∈I2j

pti,h =

2j−t∑
ℓ=0

(2γ′)ℓ

 ptj,j ≤
1

1− 2γ′
ptj,j ≤ (1 + 3γ′)ptj,j .

7. By parts 2 and 3, we have

p
j+1
j,j ≤ (1 + γ)(s− 2)j−1

(
2

1

)(
j + 1

j − 1

)
≤ (1 + γ)(s− 2)j−1d2, and

ptj,j ≥ (s− 1)j−t(s− 2)t
(
d− t

j − t

)
≥ (s− 2)j .

Hence, the desired inequality holds since s− 2 ≥ 2d2.

8. For 1 ≤ t ≤ ℓ ≤ j ≤ d,

pℓj,j ≤ (1 + γ)(s− 1)j−ℓ(s− 2)ℓ
(
d− ℓ

d− j

)
and (s− 1)j−t(s− 2)t

(
d− t

d− j

)
≤ ptj,j ,

Note that for t ≤ ℓ ≤ j we have
(d−ℓ
d−j
)
≤
(d−t
d−j
)
, so pℓj,j ≤ (1 + γ)ptj,j . Moreover, if

2 ≤ j ≤ d− 1, then (d− 1)p
j
j,j ≤ (1 + γ)p1j,j , as

(d−1
d−j
)
≥ d− 1.

11.C Appendix: Inequalities on the intersection numbers of the

Grassmann schemes

In this section we derive inequalities for the intersection numbers of the Grassmann schemes.

We use these inequalities in Section 11.4.4.
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Fact 11.C.1. The intersection numbers of the Grassmann scheme Jq(s, d) are

pti,j =

t2∑
a=t1

(
d− t

a

)
q

(
t

d− a− i

)
q

(
t

d− a− j

)
q

(
s− d− t

i+ j + a− d

)
q
, for t1 ≤ t2, (11.47)

and p
j
i,t = 0, for t1 > t2,

where t1 = max{d−i−t, d−j−t, d−i−j, 0} and t2 = min{d−t, d−i, d−j, s−t−i−j}.

The degree of the j-th constituent is

kj = qj
2
(
d

j

)
q

(
s− d

j

)
q
. (11.48)

Before we prove the desired inequalities for the intersection numbers it is convenient to

make the following observation.

Observation 11.C.2. Let q ≥ 2, 1 ≤ k ≤ n be integers. Then

1

2
qn−2k+1

(
n

k − 1

)
q
≤
(
n

k

)
q
≤ 2qn−2k+1

(
n

k − 1

)
q
, and

1

2
qn−k

(
n− 1

k − 1

)
q
≤
(
n

k

)
q
≤ 2qn−k

(
n− 1

k − 1

)
q
.

Proof. The proof follows from the fact that

(
n

k

)
q
=

(
n

k − 1

)
q

(
qn−k+1 − 1

qk − 1

)
and

(
n

k

)
q
=

(
n− 1

k − 1

)
q

(
qn − 1

qk − 1

)
.

Proposition 11.C.3. Consider the Grassmann scheme Jq(s, d), for d ≥ 2. Then the fol-

lowing inequalities hold.

1. If s ≥ 2d+ x, then kj−1 ≤ (q − 1)(qx+1 − 1)

q
· kj.
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2. For γ ∈ (0, 1), 1 ≤ t ≤ j ≤ d and s ≥ 6d− 4 + logq(32/γ)

(
d− t

d− j

)
q

(
s− d− t

j

)
q
≤ ptj,j ≤ (1 + γ)

(
d− t

d− j

)
q

(
s− d− t

j

)
q
.

3. For γ ∈ (0, 1), 2 ≤ j + 1 ≤ t ≤ d and s ≥ 6d− 4 + logq(32).

(
t

t− j

)2

q

(
s− d− t

2j − t

)
q
≤ ptj,j ≤ (1 + γ)

(
t

t− j

)2

q

(
s− d− t

2j − t

)
q
.

4. Let γ > 0. Then for 2 ≤ t+ 1 ≤ j ≤ d− 1 and s ≥ 5d+ logq(16/γ)

p
j+1
t,t ≤ γp

j
t,t.

5. Let γ > 0. Then for 1 ≤ max(i, h) ≤ t < min(i+ h, d), and s ≥ d+ logq(1/γ)

pti−1,h ≤ γpti,h.

6. Let γ ∈ (0, 1). Then for 2 ≤ j + 1 ≤ t ≤ d and s ≥ d+ logq(4/γ)

j∑
a,b=1

pta,b ≤ (1 + γ)ptj,j .

7. Let γ > 0. For s ≥ 6d− 2 + logq(32/γ) and 1 ≤ t ≤ j ≤ d− 1

p
j+1
j,j ≤ γptj,j .

8. Let γ > 0. For s ≥ 6d− 4 + logq(32/γ) and 1 ≤ t ≤ ℓ ≤ j

pℓj,j ≤ (1 + γ)ptj,j , and [d− 1]q · pjj,j ≤ (1 + γ)p1j,j , if 2 ≤ j ≤ d− 1.
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Proof. Denote the summand with an index a in the sum (11.47) for pti,j by

zai,j,t :=

(
d− t

a

)
q

(
t

d− a− i

)
q

(
t

d− a− j

)
q

(
s− d− t

i+ j + a− d

)
q
. (11.49)

Clearly, zai,j,t ≥ 0. By Observation 11.C.2, for a ≤ d−max(j, t), for

y = (d− t− 2a+ 1)− 2(t− 2d+ 2a+ 2j − 1) + (s− d− t− 4j − 2a+ 2d+ 1) =

= s+ 6d− 4t− 8j − 8a+ 4 ≥ s− 2d+ 8max(j, t)− 4t− 8j + 4 ≥ s− 6d+ 4

we have

zaj,j,t ≥ (qy/16) · za−1
j,j,t = (qs−6d+4/16) · za−1

j,j,t . (11.50)

Additionally, by Observation 11.C.2, for a ≤ d−max(j, t), for

w = (d− t− a)− 2(t− d+ a+ j) + (s− d− t− 2j − a+ d) =

= s+ 3d− 4a− 4t− 4j ≥ s− d− 4min(j, t) ≥ s− 5d

we have

zaj,j,t ≥ (qw/16) · za−1
j,j,t+1 = (qs−5d/16) · za−1

j,j,t . (11.51)

Also, for convenience, we write down Eq. (11.47) for i = t

ptj,j =

t2∑
a=t1

(
d− t

a

)
q

(
t

d− j − a

)2

q

(
s− d− t

2j + a− d

)
q
, (11.52)

where t1 and t2 are defined as in Fact 11.C.1.

1. For s ≥ 2d+ x, we have

bi = q2i+1[d− i]q[s− d− i]q ≥ q2i+1[x]q and ci =
(
[i]q
)2 ≤ q2i/(q − 1)2.

218



Hence

kj =
bj−1

cj
kj−1 ≥ q2j−1 (q

x+1 − 1)

(q − 1)

(q − 1)2

q2j
kj−1 =

(qx+1 + 1)(q − 1)

q
kj−1 (11.53)

2. For t ≤ j, in the sum (11.52) for ptj,j , we have t1 = max{d− t− j, 0}, t2 = d− j. Since

all zaj,j,t ≥ 0,

ptj,j =

d−j∑
a=d−t−j

zaj,j,t ≥ z
d−j
j,j,t =

(
d− t

d− j

)
q

(
s− d− t

j

)
q
. (11.54)

Observe that for s ≥ 6d − 4 + logq(32/γ), γz
a
j,j,t ≥ 2za−1

j,j,t for 0 < a ≤ d − j. Hence,

the desired upper bound follows.

3. For t ≥ j+1, in the sum (11.52) for ptj,j we have t1 = max{d−2j, 0}, t2 = d− t. Thus

ptj,j =
d−t∑
a=t1

zaj,j,t ≥ z
d−j
j,j,t =

(
t

t− j

)2

q

(
s− d− t

2j − t

)
q
.

Eq. (11.50) implies that for s ≥ 6d− 4+ logq(32/γ), γz
a
j,j,t ≥ 2za−1

j,j,t for 0 ≤ a ≤ d− t.

Hence, the desired upper bound follows.

4. We need to show that for t1 = max{d− 2j, 0}

γ

d−t∑
a=t1

zaj,j,t = γptj,j ≥ pt+1
j,j =

d−t−1∑
a=t1

zaj,j,t+1.

It is enough to show that γzaj,j,t ≥ za−1
j,j,t+1. This inequality follows from Eq. (11.51)

for s ≥ 5d+ logq(16/γ).
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5. Since max(i, h) ≤ t ≤ i+ h− 1 we need to verify

d−t∑
a=d−h−i+1

zai−1,h,t ≤ γ

d−t∑
a=d−h−i

zai,h,t.

It is enough to check that zai−1,h,t ≤ γzai,h,t. By Obs. 11.C.2, for a ≤ d −max(i, h, t),

for

y = (s− d− t− 2(i+ h+ a− d) + 1)− (t− 2(d− a− i)− 1) =

= s+ 3d− 2t− 2h− 4i− 4a+ 2 ≥ s− d+ 2

we have

zai,h,t ≥ (qy/4) zai−1,h,t ≥
(
qs−d+2/4

)
zai−1,h,t. (11.55)

Thus, zai−1,h,t ≤ γzai,h,t holds for s ≥ d+ logq(1/γ).

6. Denote by Ih = {(a, b) : 1 ≤ a ≤ j, 1 ≤ b ≤ j, a+ b = h}. We can write

j∑
a,b=1

pta,b =

2j∑
h=t

∑
(a,b)∈Ih

pta,b.

Denote γ0 = γ/(2 + 2γ). Since s ≥ d+ logq(1/γ0), using previous part, we deduce

∑
(a,b)∈Ih−1

pta,b ≤ 2γ
∑

(a,b)∈Ih

pta,b.

Therefore,

j∑
a,b=1

pta,b ≤
2j−t∑
h=0

(2γ0)
h

∑
(a,b)∈I2j

pta,b ≤
∞∑
h=0

(2γ0)
hptj,j =

1

1− 2γ0
ptj,j = (1 + γ)ptj,j .
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7. By part 2, for t ≤ j, and by Observation 11.C.2,

ptj,j ≥
(
s− d− t

j

)
q
≥
(
s− d− j

j

)
q
≥ 1

2
qs−d−2j

(
s− d− j − 1

j − 1

)
q
.

Part 3 implies

p
j+1
j,j ≤ 2

(
j + 1

1

)2

q

(
s− d− j − 1

j − 1

)
q
≤ 8q2j

(
s− d− j − 1

j − 1

)
q
.

Therefore, since s ≥ 5d+ logq(16/γ) we get p
j+1
j,j ≤ γptj,j .

8. By part 2,

pℓj,j ≤ (1 + γ)

(
d− ℓ

d− j

)
q

(
s− d− ℓ

j

)
q

and

(
d− t

d− j

)
q

(
s− d− t

j

)
q
≤ ptj,j .

Thus, for t ≤ ℓ we get pℓj,j ≤ (1 + γ)ptj,j . Moreover, for d− 1 ≥ j ≥ 2 we have

(
d− 1

d− j

)
q
≥
(
d− 1

1

)
q
= [d− 1]q = qd−2 + . . .+ q + 1. (11.56)

Thus, for d− 1 ≥ j ≥ 2, we obtain [d− 1]q · pjj,j ≤ (1 + γ)p1j,j .
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