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3.5 The ordering Õ(e) of the paths in Q′e in Se. . . . . . . . . . . . . . . . . . . . . 98
3.6 Input to ProcDraw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.7 Illustration for Step 1 of ProcDraw. . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.8 Drawing along edges of E(C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.1 Vertices u and u′ are joined at level i; the path Q is shown in red; the edges of
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ABSTRACT

Graphs are among the objects that have been studied in Mathematics and Computer Science

for decades. Two prominent areas that are dedicated to the study of graphs are Graph

Theory, which studies the structural properties of graphs, and Graph Algorithms, which

studies computational aspects of combinatorial optimization problems on graphs. Since

graphs arise in many areas within Mathematics, Computer Science and beyond, results and

techniques from Graph Theory and Graph Algorithms also had a great impact on a wide

variety of areas.

In this thesis, we study two fundamental problems that are of importance to both Graph

Theory and Graph Algorithms: Graph Crossing Number and Packing Low-Diameter Span-

ning Trees.

In the Graph Crossing Number problem, we are given a graph and are asked to find a

drawing of it in the plane that minimizes the number of crossings. For low-degree graphs,

almost all previous algorithms followed the same framework, and the best of them achieved

an Õ(
√
n)-approximation, which was also proved to be optimal in this framework. We

propose a new framework that overcomes this barrier and reduces the problem to another

related problem called Crossing Number with Rotation System. The reduction relies on an

algorithm for decomposing a graph into subgraphs with specific structural properties.

For the Packing of Low-Diameter Spanning Trees problem, the celebrated tree-packing

theorem due to Tutte and Nash-Williams states that every 2k-edge-connected graph contains

k edge-disjoint spanning trees. We extend the Tutte-Nash-Williams Theorem to packing

low-diameter trees into low-diameter graphs, as the low diameter property of trees/graphs

is preferrable in many settings (e.g., distributed algorithms). Specifically, we design a ran-

domized algorithm to show that every 2k-edge-connected graph with diameter D contains

k spanning trees with diameter kO(D) each, that cause edge-congestion at most 2. We also

show that the same algorithmic techniques can be applied to improve Karger’s edge-sampling

theorem.

viii



In the above results, we exploit insights into the structure of graphs to design algorithms

for Graph Crossing Number, and use algorithmic techniques to prove graph-theoretic re-

sults regarding packing low-diameter spanning trees, thereby strengthening the connection

between Graph Theory and Graph Algorithms.
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CHAPTER 1

INTRODUCTION

Graphs are among the objects that have been studied in Mathematics and Computer Science

for decades. Two prominent areas that are dedicated to the study of graphs are Graph The-

ory, a major area in Discrete Mathematics that studies the structural properties of graphs,

and Graph Algorithms, a major area in Computer Science that studies computational as-

pects of combinatorial optimization problems on graphs. The results and techniques from

both areas have had a great impact on a wide variety of areas within Mathematics, Com-

puter Science and beyond, including Physics, Chemistry, Electronic Engineering, Operation

Research, Biology, Linguistics, and Social Sciences.

Graph Theory has had profound influence on Graph Algorithms, as structural properties of

graphs could often be leveraged for the design of algorithms. One famous example is the

Graph Minor Theory by Robertson and Seymour. Besides providing a forbidden-minor char-

acterization for every minor-closed family of graphs, it also introduced notions like treewidth,

pathwidth, and cliquewidth, which had a great impact on algorithm design. Another ex-

ample is Szemerédi’s Regularity Lemma, which proved to be a powerful tool in algorithm

design. On the other hand, tools and insights developed in Graph Algorithms can also help

prove structural theorems, for example, the maximum-flow minimum-cut theorem.

In this thesis, we study fundamental problems that are of importance to both Graph Theory

and Graph Algorithms: Graph Crossing Number and Packing Low-Diameter Spanning Trees.

Our algorithmic results on Graph Crossing Number exploit structural properties of graphs (in

particular, the notion of well-linkedness), and our proofs of structural theorems on Packing

Low-Diameter Spanning Trees rely on the design and analysis of randomized algorithms.

Graph Crossing Number

The crossing number of a graph is defined to be the minimum number of edge crossings in any
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drawing of the graph in the plane. The notion of crossing number was initially introduced

and studied by Turán [34], who considered the question of computing the crossing number of

complete bipartite graphs, and since then it has been a subject of extensive studies in both

Mathematics and Computer Science (see, e.g., [34, 9, 13, 8, 7, 23, 24], and also [32, 30, 28, 36]

for surveys on this topic). Despite extensive work, our understanding of crossing number is

still poor: even the crossing number of the complete graph on 13 vertices remains unknown.

But there are also beautiful results on crossing number that have found many applications.

For example, the famous Crossing Number Inequality [1, 25] shows that, for every graph G

with |E(G)| ≥ 4n, the crossing number of G is Ω(|E(G)|3/n2). This inequality has been

widely used in Incidence Geometry.

The computational aspects of crossing number have also attracted much interest of re-

searchers in Theoretical Computer Science. In the optimization version of the graph crossing

number problem, we are given a graph and are asked to find a drawing of it in the plane

that minimizes the number of crossings between its edges. From the approximation per-

spective, Graph Crossing Number is known to be NP-hard and APX-hard, even on cubic

graphs [18, 20, 5], while no non-trivial approximation algorithms are known for graphs with

arbitrary vertex degrees. Even in the special case where the maximum vertex-degree of

the input graph is bounded by a constant, for a long time, the best algorithms achieve an

Õ(n)-approximation [26, 17, 3], while the best inapproximability result, to this day, only

rules out the existence of a PTAS, unless NP has randomized subexponential time algo-

rithms [18, 2]. Recently, a sequence of papers [13, 9] made a breakthrough by providing

an Õ(n0.9)-approximation algorithm on bounded-degree graphs; and more recently, another

breakthrough sequence of works [23, 24] has led to an improved Õ(n0.5)-approximation. All

these algorithmic results followed the same framework, and it was shown in [11] that this

framework is unlikely to yield a better than O(n0.5)-approximation.

We propose a new framework that overcomes this barrier and reduces the problem to another

related problem called Crossing Number with Rotation System. The reduction was later used

2



in [15] to obtain an no(1)-approximation for the Crossing Number problem on low-degree

graphs.

One of the central graph-theoretic notions that we use in the reduction is that of well-

linkedness. We say that a subset S of vertices of a graph G is well-linked, iff for every pair

S′, S′′ of disjoint equal-cardinality subsets of S, there is a collection P of vertex-disjoint paths

connecting every vertex of S′ to a distinct vertex of S′′ in G. The notion of well-linkedness

is of great importance to graph algorithms, since a well-linked set of vertices possesses good

routing properties. It is also closely related to the notion of treewidth in Graph Minor

Theory, since for every graph, the size of the largest (in cardinality) well-linked subset of its

vertices is within a constant factor from its treewidth [31].

Our algorithm recursively decomposes the input graph into smaller subgraphs with certain

well-linkedness properties. The well-linkedness properties of the resulting subgraphs ensure

that there exists a near-optimal drawing of the input graph, in which the induced drawings

of the subgraphs are well-behaved. Eventually, we contract these resulting subgraphs and

obtain an instance of Crossing Number with Rotation System.

Packing Low-Diameter Spanning Trees

Edge connectivity of a graph is one of the most basic graph-theoretic parameters, with various

applications to network reliability and information dissemination. A key tool for leveraging

high edge connectivity of a graph is tree packing : a large collection of (nearly) edge-disjoint

spanning trees. A celebrated result of Tutte [35] and Nash-Williams [29] shows that for every

k-edge connected graph, there is a tree packing T containing bk/2c edge-disjoint trees. This

beautiful theorem has found numerous algorithmic applications since it was first proved.

As the diameter of a graph is a central graph measure, it is important to obtain a tree packing

where each tree has a small diameter. For example, the round complexity of distributed

algorithms for various central graph problems is determined by the diameter of the input

graph, so if we implement these distributed algorithms on the trees in T , then the smaller the

3



diameter of the trees in T is, the more efficient the distributed algorithms are. Unfortunately,

the Tutte-Nash-Williams Theorem provides no guarantee on the diameter of the trees in T .

We extend the Tutte-Nash-Williams Theorem to packing low-diameter trees into low-diameter

graphs. Instead of using graph-theoretic techniques, we prove structural theorems via ran-

domized algorithms. Specifically, we design a simple randomized algorithm, that, given any

k-edge connected graph G with diameter D, with high probability outputs a collection of

k spanning trees of G with diameter kO(D) each, that cause edge congestion at most 2.

We also prove a corresponding lower bound, showing that the diameter upper bound in the

above result is near-optimal when D is small. We then show that, if G is a k-edge connected

n-vertex graph with diameter D, and G′ is a graph obtained from G by sampling each edge

of G into G′ independently with probability O( log n
k ), then with high probability G′ has

diameter kO(D2). This is an improvement of Karger’s edge sampling theorem, which only

shows that with high probability G′ is connected.

The above results compare the largest diameter of a tree in the packing to the diameter

of the original graph. While every pair u, v of vertices in G is guaranteed to be connected

by k edge-disjoint paths (as G is k-edge connected), it is not guaranteed that the length of

each such u-v path is bounded. If there do not exist k short edge-disjoint u-v paths, then

low-diameter tree packing in G is obviously impossible. A more natural reference point is

the following. We say that a graph G is (k,D)-connected, iff for every pair of its vertices,

there are k edge-disjoint paths connecting them in G, such that the length of each path is

bounded by D. Clearly, if there is a tree packing of edge-disjoint trees of diameter at most

D into G, then G must be (k,D)-connected. We show that the reverse is also true with

a small congestion and a small slack in the diameter. Specifically, we provide an efficient

algorithm, that, given a (k,D)-connected graph G, computes a collection of k spanning trees

of diameter at most O(D log n) each, that cause edge-congestion at most O(log n).

The results on Graph Crossing Number presented in this thesis are from the joint work

4



with Julia Chuzhoy and Sepideh Mahabadi [12], and the results on Packing Low-Diameter

Spanning Trees presented in this thesis are from the joint work with Julia Chuzhoy and

Merav Parter [14].

1.1 Organization

We start with some basic definitions and notations in Chapter 2. We present our results on

Graph Crossing Number in Chapter 3, and then present our results on Packing Low-Diameter

Spanning Trees in Chapter 4.
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CHAPTER 2

PRELIMINARIES

All logarithms are to the base of 2. All graphs are finite and undirected.

We follow standard graph-theoretic notation. Assume that we are given a graph G = (V,E).

We denote by n the number of vertices and by ∆ the maximum vertex degree in the graph.

For a vertex v ∈ V , we denote by δG(v) the set of all edges of G that are incident to v. For

two disjoint subsets A,B of vertices of G, we denote by EG(A,B) the set of all edges with

one endpoint in A and another in B. For a subset S ⊆ V of vertices, we denote by EG(S)

the set of all edges with both endpoints in S, and we denote by outG(S) the subset of edges

of E with exactly one endpoint in S, namely outG(S) = EG(S, V \S). We denote by G[S]

the subgraph of G induced by S. We sometimes omit the subscript G if it is clear from the

context.

Let P, P ′ be two paths in graph G. We say that P and P ′ are edge-disjoint, iff E(P )∩E(P ′) =

∅. We say that two paths P , P ′ are internally disjoint, iff for every vertex v ∈ V (P )∩V (P ′),

v is an endpoint of both paths. Given a set P = {P1, . . . , Pr} of paths of G, we say that

the paths of P are edge-disjoint iff every edge of G belongs to at most one path of P , and

we say that the paths of P are internally disjoint iff every pair of paths in P are internally

disjoint. We say that the set P of paths causes congestion η iff every edge e ∈ E(G) belongs

to at most η paths in P . We say that a graph G is `-connected for some integer ` > 0, if

there are ` internally-disjoint paths between every pair of vertices in G.

6



CHAPTER 3

REDUCTION FROM CROSSING NUMBER TO CROSSING

NUMBER WITH ROTATION SYSTEMS

3.1 Introduction

Given a graph G, a drawing of G is an embedding of the graph into the plane, that maps

every vertex to a point in the plane, and every edge to a continuous curve connecting the

images of its endpoints. We require that the image of an edge may not contain images of

vertices of G other than its two endpoints, and no three curves representing drawings of

edges of G may intersect at a single point, unless that point is the image of their shared

endpoint. A crossing in a drawing of G is a point that belongs to the images of two edges of

G, and is not their common endpoint. In the Minimum Crossing Number problem, the goal

is to compute a drawing of the input n-vertex graph G with minimum number of crossings.

We denote the value of the optimal solution to this problem, also called the crossing number

of G, by OPTcr(G).

The Minimum Crossing Number problem naturally arises in several areas of Computer Science

and Mathematics. The problem was initially introduced by Turán [34], who considered the

question of computing the crossing number of complete bipartite graphs, and since then it has

been extensively studied (see, e.g., [34, 9, 13, 8, 7, 23, 24], and also [32, 30, 28, 36] for surveys

on this topic). The problem is known to be APX-hard, and it remains APX-hard on cubic

graphs [18, 20, 5]. The Minimum Crossing Number problem appears to be notoriously difficult

from the approximation perspective. All currently known algorithms achieve approximation

factors that depend polynomially on ∆ – the maximum vertex degree of the input graph, and,

to the best of our knowlgedge, no non-trivial approximation algorithms are known for graphs

with arbitrary vertex degrees. We note that the famous Crossing Number Inequality [1, 25]

shows that, for every graph G with |E(G)| ≥ 4n, the crossing number of G is Ω(|E(G)|3/n2).
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Since the problem is most interesting when the crossing number of the input graph is low,

and since our understanding of the problem is still extremely poor, it is reasonable to focus

on designing algorithms for low-degree graphs. Throughout, we denote by ∆ the maximum

vertex degree of the input graph. While we do not make this assumption explicitly, it may be

convenient to think of ∆ as being bounded by a constant or by some slowly-growing function

of n like poly log n.

The first non-trivial algorithm for the Minimum Crossing Number problem, due to Leighton

and Rao [26], combined their algorithm for balanced separators with the framework of [4],

to compute a drawing of input graph G with O
(
(n + OPTcr(G)) ·∆O(1) · log4 n

)
crossings.

This bound was later improved to O
(
(n + OPTcr(G)) ·∆O(1) · log3 n

)
by [17], and then to

O
(
(n + OPTcr(G)) · ∆O(1) · log2 n

)
as a consequence of the improved algorithm of [3] for

Balanced Cut. All these results provide an O(n · poly(∆ log n))-approximation for Minimum

Crossing Number (but perform much better when OPTcr(G) is high). For a long time, this

remained the best approximation algorithm for Minimum Crossing Number, while the best

inapproximability result, to this day, only rules out the existence of a PTAS, unless NP has

randomized subexponential time algorithms [18, 2].

A sequence of two papers [13, 9] was the first to break the barrier of Θ̃(n)-approximation,

providing a Õ
(
n9/10 ·∆O(1)

)
-approximation algorithm. Recently, a breakthrough sequence

of works [23, 24] has led to an improved Õ
(√

n ·∆O(1)
)

-approximation for Minimum Crossing

Number. All the above-mentioned algorithms exploit the same algorithmic paradigm, that

builds on the connection of the Minimum Crossing Number problem to a related problem

called Minimum Planarization. However, it was shown by Chuzhoy, Madan and Mahabadi

[11] that this paradigm is unlikely to yield a better than O(
√
n)-approximation for Minimum

Crossing Number.

The main result in the first part of this thesis is a reduction from the Minimum Crossing

Number problem to a related problem, called Minimun Crossing Number with Rotation System
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(MCNwRS). In MCNwRS, the input consists of a multigraph G, and, for every vertex v ∈

V (G), a circular ordering Ov of edges that are incident to v, that we call a rotation for vertex

v. The set Σ = {Ov}v∈V (G) of all such rotations is called a rotation system for graph G.

We say that a drawing ϕ of G obeys the rotation system Σ, if, for every vertex v ∈ V (G),

the images of the edges in δG(v) enter the image of v in the order Ov (but the orientation of

the ordering can be either clock-wise or counter-clock-wise). In the MCNwRS problem, given

a graph G and a rotation system Σ for G, the goal is to compute a drawing ϕ of G that

obeys the rotation system Σ and minimizes the number of edge crossings. We show that,

intuitively, an approximation algorithm for MCNwRS immediately gives an approximation

algorithm for Minimum Crossing Number with a similar approximation ratio. This result

was later used in [15] to obtain an no(1)-approximation for Minimum Crossing Number on

low-degree graphs.

3.1.1 Our Results

Given an instance (G,Σ) of MCNwRS, we denote by OPTcnwrs(G,Σ) the number of crossings

in an optimal solution to instance (G,Σ). Our main result is a reduction from Minimum

Crossing Number to MCNwRS, which is summarized in the following theorem.

Theorem 3.1.1. There is an efficient algorithm, that, given an n-vertex graph G with max-

imum vertex degree ∆, computes an instance (G′,Σ) of the MCNwRS problem, such that

the number of edges in G′ is at most O (OPTcr(G) · poly(∆ log n)), and OPTcnwrs(G
′,Σ) ≤

O (OPTcr(G) · poly(∆ log n)). Moreover, there is an efficient algorithm that, given any so-

lution to instance (G′,Σ) of MCNwRS of value X, computes a drawing of G with at most

O ((X + OPTcr(G)) · poly(∆ log n)) crossings.

We note that Theorem 3.1.1 was later used in [15] to obtain a subpolynomial approximation

algorithm for Graph Crossing Number on low-degree graphs.
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3.1.2 Organization

We start with some basic definitions and notations in Section 3.2. We then provide a high-

level overview of the proof of Theorem 3.1.1 and state the main theorems used in the proof

of Theorem 3.1.1 in Section 3.3. In Section 3.4 we present some definitions and general

results regarding block decompositions of graphs (mostly from previous work). The proof of

Theorem 3.1.1 is completed in Sections 3.5–3.8.

3.2 Preliminaries

By default, all graphs in Chapter 3 are simple, and graphs with parallel edges are explicitly

referred to as multi-graphs.

Graph drawings and graph crossing number. Given a graph G = (V,E), a drawing

ϕ of G is an embedding of the graph into the plane, that maps every vertex to a point and

every edge to a continuous curve that connects the images of its endpoints. We require that

the interiors of the curves representing the edges do not contain the images of any of the

vertices. We say that two edges cross at a point p, if the images of both edges contain p,

and p is not the image of a shared endpoint of these edges. A crossing in a drawing of G is a

point that belongs to the images of two edges of G, and is not their common endpoint. We

require that no three edges cross at the same point in a drawing of ϕ. We say that ϕ is a

planar drawing of G iff no pair of edges of G crosses in ϕ. For a vertex v ∈ V (G), we denote

by ϕ(v) the image of v, and for an edge e ∈ E(G), we denote by ϕ(e) the image of e in ϕ.

For any subgraph C of G, we denote by ϕ(C) the union of images of all vertices and edges

of C in ϕ. For a path P ⊆ G, we sometimes refer to ϕ(P ) as the image of P in ϕ. Note that

a drawing of G in the plane naturally defines a drawing of G on the sphere and vice versa;

we use both types of drawings. Given a graph G and a drawing ϕ of G in the plane, we use

cr(ϕ) to denote the number of crossings in ϕ. Whitney [37] proved that every 3-connected
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planar graph has a unique planar drawing. Throughout, for a 3-connected planar graph G,

we denote by ρG the unique planar drawing of G.

Minimum Planarization. In the Minimum Planarization problem, the input is an n-vertex

graph G = (V,E), and the goal is to compute a minimum-cardinality subset E∗ of its edges

(called a planarizing set), such that graph G\E∗ is planar. A simple application of the Planar

Separator Theorem of [27] was shown to give an O(
√
n log n ·∆)-approximation algorithm for

both problems [13]. Further, [7] provided an O(k15 ·poly(∆ log n))-approximation algorithm

for Minimum Planarization, where k is the value of the optimal solution. The more recent

breakthrough result of Kawarabayashi and Sidiropoulus [23, 24] provided an O(∆4 · log3.5 n)-

approximation algorithm for Minimum Planarization.

Faces and Face Boundaries. Suppose we are given a planar graph G and a drawing ϕ

of G in the plane. The set of faces of ϕ is the set of all connected regions of R2 \ ϕ(G). We

designate a single face of ϕ as the “outer”, or the “infinite” face. The boundary δ(F ) of a

face F is a subgraph of G consisting of all vertices and edges of G whose image is incident

to F . Notice that, if graph G is not connected, then boundary of a face may also be not

connected. Unless ϕ has a single face, the boundary δ(F ) of every face F of ϕ must contain

a simple cycle δ′(F ) that separates F from the outer face. We sometimes refer to graph

δ(F ) \ δ′(F ) as the inner boundary of F . Lastly, observe that, if G is 2-connected, then the

boundary of every face of ϕ is a simple cycle.

Bridges and Extensions of Subgraphs. Let G be a graph, and let C ⊆ G be a subgraph

of G. A bridge for C in graph G is either (i) an edge e = (u, v) ∈ E(G) with u, v ∈ V (C)

and e 6∈ E(C); or (ii) a connected component of G \ V (C). We denote by RG(C) the set

of all bridges for C in graph G. For each bridge R ∈ RG(C), we define the set of vertices

L(R) ⊆ V (C), called the legs of R, as follows. If R consists of a single edge e, then L(R)
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contains the endpoints of e. Otherwise, L(R) contains all vertices v ∈ V (C), such that v has

a neighbor that belongs to R.

Next, we define an extension of the subgraph C ⊆ G, denoted by XG(C). The extension

contains, for every bridge R ∈ RG(C), a tree TR, that is defined as follows. If R is a

bridge consisting of a single edge e, then the corresponding tree TR only contains the edge

e. Otherwise, let R′ be the subgraph of G consisting of the graph R, the vertices of L(R),

and all edges of G connecting vertices of R to vertices of L(R). We let TR ⊆ R′ be a

tree, whose leaves are precisely the vertices of L(R). Note that such a tree exists because

graph R is connected, and it can be found efficiently. We let the extension of C in G be

XG(C) = {TR | R ∈ RG(C)}.

Sparsest Cut and Well-Linkedness. Suppose we are given a graph G = (V,E), and a

subset Γ ⊆ V of its vertices. We say that a cut (X, Y ) in G is a valid Γ-cut iff X∩Γ, Y ∩Γ 6= ∅.

The sparsity of a valid Γ-cut (X, Y ) is
|E(X,Y )|

min{|X∩Γ|,|Y ∩Γ|} . In the Sparsest Cut problem, given

a graph G and a subset Γ of its vertices, the goal is to compute a valid Γ-cut of minimum

sparsity. Arora, Rao and Vazirani [3] have shown an O(
√

log n)-approximation algorithm for

the sparsest cut problem. We denote this algorithm by AARV, and its approximation factor

by αARV(n) = O(
√

log n). We say that a set Γ of vertices of G is α-well-linked in G, iff the

value of the sparsest cut in G with respect to Γ is at least α.

3.3 High-Level Overview

In this section we provide a high-level overview of the proof of Theorem 3.1.1, and state the

main theorems from which the proof is derived. As in previous work, we start by considering

a special case of Minimum Crossing Number, where the input graph G is 3-connected. This

special case captures the main technical challenges of the whole problem, and the extension

to non-3-connected graphs is relatively easy and follows the same framework as in previous
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work [13]. We start by defining several central notions that our proof uses.

3.3.1 Acceptable Clusters and Decomposition into Acceptable Clusters

In this section we define acceptable clusters and decomposition into acceptable clusters.

These definitions are central to all our results. Let G be an input graph on n vertices of

maximum degree at most ∆; we assume that G is 3-connected. Let Ê be any planarizing

set of edges for G, and let H = G \ Ê. Let Γ ⊆ V (G) be the set of all vertices that serve as

endpoints of edges in Ê; we call the vertices of Γ terminals. We will define a set A of fake

edges ; for every fake edge e ∈ A, both endpoints of e must lie in Γ. We emphasize that the

edges of A do not necessarily lie in H or in G; in fact we will use these edges in order to

augment the graph H.

We denote by C the set of all connected components of graph H ∪A, and we call elements of

C clusters. For every cluster C ∈ C, we denote by Γ(C) = Γ ∩ V (C) the set of all terminals

that lie in C. We also denote by AC = A ∩ C the set of all fake edges that lie in C.

Definition 1. We say that a cluster C ∈ C is a type-1 acceptable cluster iff:

• AC = ∅; and

• |Γ(C)| ≤ µ for µ = 512∆αARV(n) log3/2 n = O(∆ log1.5 n) (recall that αARV(n) =

O(
√

log n) is the approximation factor of the algorithm AARV for the sparsest cut

problem).

Consider now some cluster C ∈ C, and assume that it is 2-connected. For a pair (u, v)

of vertices of C, we say that (u, v) is a 2-separator for C iff the graph C \ {u, v} is not

connected. We denote by S2(C) the set of all vertices of C that participate in 2-separators,

that is, a vertex v ∈ C belongs to S2(C) iff there is another vertex u ∈ C such that (v, u) is

a 2-separator for C. Next, we define type-2 acceptable clusters.
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Definition 2. We say that a cluster C ∈ C is a type-2 acceptable cluster with respect to its

drawing ψ′C on the sphere if the following conditions hold:

• (Connectivity): C is a simple 2-connected graph, and |S2(C)| ≤ O(∆|Γ(C)|). Addi-

tionally, graph C \ AC is a 2-connected graph.

• (Planarity): C is a planar graph, and the drawing ψ′C is planar. We denote by ψC\AC

the drawing of C \ AC is induced by ψ′C .

• (Bridge Consistency Property): for every bridge R ∈ RG(C \AC), there is a face

F in the drawing ψC\AC
of C \AC , such that all vertices of L(R) lie on the boundary

of F ; and

• (Well-Linkedness of Terminals): the set Γ(C) of terminals is α-well-linked in C \

AC , for α = 1
128∆αARV(n) log3/2 n

= Θ
(

1
∆ log1.5 n

)
.

Let C1 ⊆ C denote the set of all type-1 acceptable clusters. For a fake edge e = (x, y) ∈ A,

an embedding of e is a path P (e) ⊆ G connecting x to y. We will compute an embedding of

all fake edges in A that has additional useful properties summarized below.

Definition 3. A legal embedding of the set A of fake edges is a collection P(A) = {P (e) | e ∈ A}

of paths in G, such that the following hold.

• For every edge e = (x, y) ∈ A, path P (e) has endpoints x and y, and moreover, there

is a type-1 acceptable cluster C(e) ∈ C1 such that P (e) \ {x, y} is contained in C(e);

and

• For any pair e, e′ ∈ A of distinct edges, C(e) 6= C(e′);

Note that from the definition of the legal embedding, all paths in P(A) must be mutually

internally disjoint. Finally, we define a decomposition of a graph G into acceptable clusters;

this definition is central for the proof of our main result.
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Definition 4. A decomposition of a graph G into acceptable clusters consists of:

• a planarizing set Ê ⊆ E(G) of edges of G;

• a set A of fake edges (where the endpoints of each fake edge are terminals with respect

to Ê);

• a partition (C1, C2) of all connected components (called clusters) of the resulting graph

(G \ Ê) ∪ A into two subsets, such that every cluster C ∈ C1 is a type-1 acceptable

cluster;

• for every cluster C ∈ C2, a planar drawing ψ′C of C on the sphere, such that C is a

type-2 acceptable cluster with respect to ψ′C ; and

• a legal embedding P(A) of all fake edges.

We denote such a decomposition by D =
(
Ê, A, C1, C2,

{
ψ′C
}
C∈C2 ,P(A)

)
.

Our first result is the following theorem, whose proof appears in Section 3.5, that allows us

to compute a decomposition of the input graph G into acceptable clusters. This result is

one of the main technical contributions of our work.

Theorem 3.3.1. There is an efficient algorithm, that, given a 3-connected n-vertex graph

G with maximum vertex degree at most ∆ and a planarizing set E′ of edges for G, computes

a decomposition D =
(
E′′, A, C1, C2,

{
ψ′C
}
C∈C2 ,P(A)

)
of G into acceptable clusters, such

that E′ ⊆ E′′ and |E′′| ≤ O((|E′|+ OPTcr(G)) · poly(∆ log n)).

3.3.2 Canonical Drawings

In this subsection, we assume that we are given a 3-connected n-vertex graph G with maxi-

mum vertex degree at most ∆, and a decomposition D =
(
E′′, A, C1, C2,

{
ψ′C
}
C∈C2 ,P(A)

)
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of G into acceptable clusters. Next, we define drawings of G that are “canonical” with re-

spect to the clusters in the decomposition. For brevity of notation, we refer to type-1 and

type-2 acceptable clusters as type-1 and type-2 clusters, respectively.

Intuitively, in each such canonical drawing, we require that, for every type-2 cluster C ∈ C2,

the edges of C\AC do not participate in any crossings, and for every type-1 acceptable cluster

C ∈ C1, the edges of C only participate in a small number of crossings (more specifically, we

will define a subset E∗∗(C) of edges for each cluster C ∈ C1 that are allowed to participate

in crossings).

We will define, for every type-1 cluster C ∈ C1, a fixed drawing ψC , and we will require

that, in the final drawing of G, the induced drawing of each such cluster C is precisely ψC .

For every type-2 cluster C ∈ C2, we have already defined a drawing ψC\AC
of C \AC – the

drawing of C \AC that is induced by the drawing ψ′C of C. We will require that the drawing

of C \ AC that is induced by the final drawing of G is precisely ψC\AC
. Additionally, for

each cluster C ∈ C1, and for each bridge R ∈ RG(C), we will define a disc D(R) in the

drawing ψC of C, and we will require that all vertices and edges of R are drawn inside D(R)

in the final drawing of G. Similarly, for each type-2 acceptable cluster C ∈ C2, for every

bridge R ∈ RG(C \ AC), we define a disc D(R) in the drawing ψC\AC
of C \ AC , and we

will require that all vertices and edges of R are drawn inside D(R) in the final drawing of G.

This will allow us to fix the locations of the components of C1∪C2 with respect to each other

(that is, for each pair C,C ′ ∈ C1 ∪ C2 of clusters, we will identify a face F in the drawing

ψC\AC
of C \AC , and a face F ′ in the drawing ψC ′\AC′

of C ′ \AC ′ , such that, in the final

drawing ϕ of the graph G, graph C ′ \AC ′ is drawn inside the face F (of the drawing of C \A

induced by ϕ, which is identical to ψC\AC
), and similarly graph C \AC is drawn inside the

face F ′).

Before we continue, it would be convenient for us to ensure that, for every type-1 cluster

C ∈ C1, the vertices of Γ(C) have degree 1 in C, and degree 2 in G; it would also be
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convenient for us to ensure that no edge of E′′ connects two vertices that lie in the same

cluster. In order to ensure these properties, we subdivide some edges of G. Specifically, if

e = (u, v) ∈ E′′ is an edge with u, v ∈ C, for some cluster C ∈ C1 ∪ C2, then we subdivide

the edge (u, v) with two vertices, replacing it with a path (u, u′, v′, v). The edges (u, u′) and

(v′, v) are then added to set E′′ instead of the edge (u, v), and we add a new cluster to C1,

that consists of the vertices u′, v′, and the edge (u′, v′). This transformation ensures that

no edge of E′′ connects two vertices that lie in the same cluster. Consider now any type-1

cluster C ∈ C1. For every edge e = (u, v) ∈ E′′ with u ∈ V (C) and v 6∈ V (C), we subdivide

the edge with a new vertex u′, thereby replacing the edge with the path (u, u′, v). Vertex

u′ and edge (u, u′) are added to the cluster C, while edge (u′, v) replaces the edge (u, v) in

set E′′. Note that u′ now becomes a terminal, and, once all edges of E′′ that are incident

to the vertices of C are processed, u will no longer be a terminal. Abusing the notation,

the final cluster that is obtained after processing all edges of E′′ incident to V (C) is still

denoted by C. Notice that now the number of terminals that lie in C may have grown by

at most a factor ∆, and so |Γ(C)| ≤ µ∆ must hold. Abusing the notation, we will still refer

to C as a type-1 acceptable cluster, and we will continue to denote by C1 the set of all such

clusters in the decomposition. Observe that this transformation ensures that every vertex

of Γ(C) has degree 1 in C and degree 2 in G. Once every cluster C ∈ C1 is processed in this

manner, we obtain the final graph G′. Observe that |E′′| may have increased by at most

a constant factor. Notice also that, for every fake edge e = (x, y) ∈ A, the endpoints of e

remain terminals in Γ, and the path P (e) ∈ P that was used as a legal embedding of the

edge e can be converted into a path P ′(e) embedding e in the new graph G′, by possibly

subdividing the first and the last edge of P (e) if needed. If C(e) ∈ C1 is the type-1 cluster

with P (e) \ {x, y} ⊆ C(e), then the new vertices that (possibly) subdivide the first and the

last edge of P (e) lie in the new cluster C ′(e) corresponding to C(e), so P ′(e)\{x, y} ⊆ C ′(e)

continues to hold. The resulting path set P ′ =
{
P ′(e) | e ∈ A

}
is a legal embedding of the

set of fake edges into G′. Lastly, observe that any drawing of G′ on the sphere immediately
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gives a drawing of G with the same number of crossings. Therefore, to simplify the notation,

we will denote the graph G′ by G and P ′ by P and we will assume that the decomposition

D of G into acceptable clusters has the following two additional properties:

P1. For every edge e ∈ E′′, the endpoints of e lie in different clusters of C1 ∪ C2; and

P2. For every type-1 cluster C ∈ C1, for every terminal t ∈ Γ(C), the degree of t in C is 1,

and its degree in G is 2.

We now proceed to define canonical drawings of the graph G with respect to the clusters of

C1 ∪ C2.

Canonical Drawings for Type-2 Acceptable Clusters

Consider any type-2 cluster C ∈ C2. Recall that the decomposition D into acceptable clusters

defines a planar drawing ψ′C of C on the sphere, that induces a planar drawing ψC\AC
of

C \ AC on the sphere. Recall that the Bridge Consistency Property of type-2 acceptable

clusters ensures that, for every bridge R ∈ RG(C \ AC), there is a face F of the drawing

ψC\AC
, such that the vertices of L(R) lie on the boundary of F (we note that face F is not

uniquely defined; we break ties arbitrarily). Since graph C\AC is 2-connected, the boundary

of face F is a simple cycle, whose image is a simple closed curve. We denote by D(R) the

disc corresponding to the face F , so the boundary of D(R) is the simple closed curve that

serves as the boundary of the face F . Notice that the resulting set {D(R)}R∈RG(C\AC) of

discs has the following properties:

D1. If R 6= R′ are two distinct bridges in RG(C \ AC), then either D(R) = D(R′), or

D(R) ∩D(R′) only contains points on the boundaries of the two discs; and

D2. For every bridge R ∈ RG(C \ AC), the vertices of L(R) lie on the boundary of D(R)

in the drawing ψC\AC
.
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We are now ready to define canonical drawings with respect to type-2 clusters.

Definition 5. Let ϕ be any drawing of the graph G on the sphere. We say that the drawing

ϕ is canonical with respect to a type-2 cluster C ∈ C2 iff:

• the drawing of C \ AC induced by ϕ is identical to ψC\AC
(but its orientation may be

different);

• the edges of C \ AC do not participate in any crossings in ϕ; and

• for every bridge R ∈ RG(C \AC), all vertices and edges of R are drawn in the interior

of the disc D(R) (that is defined with respect to the drawing ψC\AC
of C \ AC).

Canonical Drawings for Type-1 Acceptable Clusters

For convenience, we denote C1 =
{
C1, . . . , Cq

}
. We fix an arbitrary optimal drawing ϕ∗ of

the graph G. For each 1 ≤ i ≤ q, we denote by χi the set of all crossings (e, e′) such that

either e or e′ (or both) are edges of E(Ci). The following observation is immediate.

Observation 3.3.2.
∑q
i=1 |χi| ≤ 2 · cr(ϕ∗) = 2 · OPTcr(G).

We use the following theorem in order to fix a drawing of each type-1 acceptable cluster Ci;

the proof appears in Section 3.6.

Theorem 3.3.3. There is an efficient algorithm that, given a type-1 cluster Ci ∈ C1, com-

putes a drawing ψCi
of Ci on the sphere with O ((|χi|+ 1) · poly(∆ log n)) crossings, together

with a set E∗(Ci) ⊆ E(Ci) of at most O ((|χi|+ 1) · poly(∆ log n)) edges, such that graph

Ci \ E∗(Ci) is connected, and the drawing of Ci \ E∗(Ci) induced by ψCi
is planar. Addi-

tionally, the algorithm computes, for every bridge R ∈ RG(Ci), a closed disc D(R), such

that:

• the vertices of L(R) are drawn on the boundary of D(R) in ψCi
;
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• the interior of D(R) is disjoint from the drawing ψCi
; and

• for every pair R,R′ ∈ RG(Ci) of bridges, either D(R) = D(R′), or D(R)∩D(R′) = ∅.

Note that in particular, Properties (D1) and (D2) also hold for the discs in {D(R)}R∈RG(C).

For each type-1 cluster Ci ∈ C1, let E∗∗(Ci) ⊆ E(Ci) be the set of all edges of Ci that

participate in crossings in ψCi
. Clearly, |E∗∗(Ci)| ≤ O(cr(ψCi

)) ≤ O((|χi|+1) poly(∆ log n)).

Let E∗ =
⋃
Ci∈C1 E

∗∗(Ci). Then, from Observation 3.3.2 and Theorem 3.3.1:

|E∗| ≤
∑
Ci∈C1

O((|χi|+ 1) · poly(∆ log n))

≤ O
(
(OPTcr(G) + |E′′|) poly(∆ log n)

)
≤ O

(
(OPTcr(G) + |E′|) poly(∆ log n)

)
.

We now define canonical drawings with respect to type-1 clusters.

Definition 6. Let ϕ be any drawing of the graph G on the sphere, and let Ci ∈ C1 be a

type-1 cluster. We say that ϕ is a canonical drawing with respect to Ci, iff:

• the drawing of Ci induced by ϕ is identical to ψCi
(but orientation of the two drawings

may be different); and

• for every bridge R ∈ RG(Ci), all vertices and edges of R are drawn in the interior of

the disc D(R) (that is defined with respect to the drawing ψCi
of Ci).

Notice that the definition implies that the only edges of Ci that participate in crossings of

ϕ are the edges of E∗∗(Ci).

Obtaining a Canonical Drawing

Our next result shows that there exists a near-optimal drawing of the graph G that is

canonical with respect to all clusters. The proof of the following theorem appears in Section
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3.7.

Theorem 3.3.4. There is an efficient algorithm, that, given, as input:

• an n-vertex graph G of maximum vertex degree at most ∆;

• an arbitrary drawing ϕ of G;

• a decomposition D =
(
E′′, A, C1, C2, {ψC}C∈C2 ,P(A)

)
of G into acceptable clusters

for which Properties (P1) and (P2) hold;

• a drawing ψCi
and an edge set E∗(Ci) for each cluster Ci ∈ C1 as defined above; and

• for each cluster C ∈ C1 ∪ C2, a collection {D(R)}R∈RG(C\AC) of discs on the sphere

with Properties (D1) and (D2);

computes a drawing ϕ′ of G on the sphere with O
(
(|E′′|+ cr(ϕ)) · poly(∆ log n)

)
crossings,

such that ϕ′ is canonical with respect to every cluster C ∈ C1 ∪ C2.

We note that for our purposes, an existential variant of the above theorem, that shows that

a drawing ϕ′ with the required properties exists, is sufficient. We provide the proof of the

stronger constructive result in case it may be useful for future work on the problem.

3.3.3 Reduction to Crossing Number with Rotation System – Proof of

Theorem 3.1.1 for 3-Connected Graphs

In this section we provide a reduction from Minimum Crossing Number in 3-connected graphs

to MCNwRS, completing the proof of Theorem 3.1.1 in the case where the input graph G is 3-

connected. We extend this proof to general graphs in Section 3.8. Recall that Kawarabayashi

and Sidiropoulos [24] provide an efficient O(poly(∆ log n))-approximation algorithm for the

Minimum Planarization problem. Since, for every graph G, there is a planarizing set E∗

containing at most OPTcr(G) edges, we can use their algorithm in order to compute, for the
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input graph G, a planarizing edge set E′ of cardinality O(OPTcr(G) · poly(∆ log n)). We

then use Theorems 3.3.1 and 3.3.3 to compute another planarizing edge set E′′ of cardinality

O(OPTcr(G) · poly(∆ log n)) for G, the collection C = C1 ∪ C2 of clusters, together with

their drawings ψC , and we use families {D(R)}R∈RG(C) of discs for all C ∈ C that we have

computed. We will not need fake edges anymore, so for every type-2 cluster C ∈ C2, we let

C ′ = C \AC , and we let ψC ′ be the planar drawing of C ′ that was used in the definition of

the canonical drawing. For a type-1 cluster C ∈ C1, consider the drawing ψC of C given by

Theorem 3.3.3. We let C ′ be a graph obtained from C, by placing a vertex on every crossing

of a pair of edges in ψC . Therefore, graph C ′ is planar, and we denote by ψC ′ its planar

drawing that is induced by ψC . We still denote by Γ(C ′) the set of all vertices of C ′ that

serve as endpoints of the edges of E′′. Consider the graph G′, that is obtained by taking the

union of all clusters in
{
C ′ | C ∈ C

}
and the edges in E′′. Suppose we compute a drawing

ϕ of G′ with z crossings, such that the only edges that participate in the crossings are the

edges of E′′, and for every cluster C ∈ C, the drawing of C ′ induced by ϕ is identical to ψC ′ .

Then we can immediately obtain a drawing ϕ′ of G with O(z + OPTcr(G) poly(∆ log n))

crossings, where the additional crossings arise because we replace, for every type-1 cluster

C ∈ C1, the planar drawing ψC ′ of C ′ with the (possibly non-planar) drawing ψC of C. Let

C′1 =
{
C ′ | C ∈ C1

}
, C′2 =

{
C ′ | C ∈ C2

}
, and C′ = C′1 ∪ C

′
2. Since we do not use the original

clusters in C in the remainder of this subsection, for simplicity of notation, we denote C′1, C
′
2

and C′ by C1, C2 and C, and we will use notation C ∈ C instead of C ′. Recall that for every

cluster C ∈ C we are now given a fixed planar drawing ψC . In order to reduce the problem

to MCNwRS, we use the Cluster Placement problem, that we define next, as an intermediate

problem.

Cluster Placement Problem. In the Cluster Placement problem, we are given a collection

Ĉ of disjoint connected planar graphs (that we call clusters). For every cluster Ĉ ∈ Ĉ, we

are also given a planar drawing ψ
Ĉ

of Ĉ on the sphere. We denote by F
Ĉ

the set of all faces
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of this drawing. Additionally, for every ordered pair (Ĉ1, Ĉ2) ∈ Ĉ of clusters, we are given a

face F
Ĉ1

(Ĉ2) ∈ F
Ĉ1

. The goal is to compute a planar drawing ϕ of
⋃
Ĉ∈Ĉ Ĉ on the sphere

such that, for every cluster Ĉ1 ∈ Ĉ, the drawing of Ĉ1 induced by ϕ is identical to ψ
Ĉ1

, and

moreover, for every cluster Ĉ2 ∈ Ĉ \
{
Ĉ1

}
, the drawing of Ĉ2 in ϕ is contained in the face

F
Ĉ1

(Ĉ2) of the drawing of Ĉ1 in ϕ.

We use the simple following theorem.

Theorem 3.3.5. There is an efficient algorithm, that, given an instance of the Cluster

Placement problem, finds a feasible solution for the problem, if such a solution exists.

Proof. In order to simplify the notation, we denote the set Ĉ of clusters by C. Consider some

cluster C ∈ C. For every face F ∈ FC of the drawing ψC of C, we let HC(F ) ⊆ C \ {C}

contain all clusters C ′ such that FC(C ′) = F . We denote by F ′C ⊆ FC the set of all faces F

with HC(F ) 6= ∅.

The proof of the theorem a recursive algorithm. The base case is when, for every cluster

C ∈ C, |F ′C | = 1. For each cluster C, let FC be the unique face in F ′C . Consider a drawing

of the clusters in
⋃
C∈C C in the plane, such that the drawing of each cluster C is identical

to ψC , with the face FC serving as the outer face of the drawing of C, and the images of all

clusters are disjoint. Let ϕ′ denote the resulting drawing of
⋃
C∈C C in the plane, and let ϕ

be the corresponding drawing on the sphere. Then it is easy to see that ϕ′ defines a feasible

solution for the input instance of the Cluster Placement problem.

Assume now that there is at least one cluster C ∈ C, with |F ′(C)| > 1. For every face F ∈

F ′(C), we define a new sub-instance of the current instance of the Cluster Placement problem,

that only includes the clusters of HC(F )∪{C}; the faces FC1
(C2) for pairs C1, C2 ∈ HC(F )

of clusters are defined exactly as before. Notice that, if the original instance of the Cluster

Placement problem had a feasible solution, then each resulting sub-problem must also have

a feasible solution. We solve each such sub-problem recursively, and obtain, for every face

F ∈ F ′(C), a drawing ϕF of
⋃
C ′∈HC(F )∪C C

′ on the sphere. We let DF denote a disc in
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this drawing that contains the images of all clusters if HC(F ) but is disjoint form the image

of C. In order to obtain a solution to the original instance of the problem, we start with the

drawing ψC of the cluster C on the sphere. For every face F ∈ F ′(C), we copy the contents

of the disc DF in the drawing ϕF to the interior of the face F . Once we process every face

F ∈ F ′(C), we obtain a drawing of
⋃
C ′∈C C

′. Moreover, it is easy to verify that, if the

original instance of the Cluster Placement problem had a feasible solution, then we obtain a

feasible solution for this instance.

We note that the current collection C = C1 ∪C2 of clusters that we obtained for the instance

G of the Minimum Crossing Number problem naturally defines an instance of the Cluster

Placement problem. For every cluster C ∈ C, we have already defined a fixed planar drawing

ψC of C on the sphere. Consider now some ordered pair (C1, C2) ∈ C of clusters. Then there

must be some bridge R ∈ RG′(C1), such that C2 ⊆ R. Recall that we have defined a disc

D(R) corresponding to the bridge R in the drawing ψC1
of C1, and that the images of the

edges and vertices of C1 in ψC1
are disjoint from the interior of the disc D(R). Therefore,

there is some face F in the drawing ψC1
of C1 with D(R) ⊆ F . We then set FC1

(C2) to be

this face F . This defines a valid instance of the Cluster Placement problem. Moreover, since

Theorem 3.3.4 guarantees the existence of a canonical drawing of the graph G, this problem

has a feasible solution. In fact Theorem 3.3.4 provides the following stronger guarantees:

Observation 3.3.6. There is a drawing ϕ of graph G′ with O(OPTcr(G) poly(∆ log n))

crossings, such that for every cluster C ∈ C, the edges of C do not participate in any

crossings, and the drawing of C induced by ϕ is identical to ψC (but the orientation may be

arbitrary). Moreover, for any ordered pair (C1, C2) ∈ C of clusters, the image of C2 in ϕ is

contained in the interior of the face FC1
(C2) of the drawing of C1 in ϕ.

We use the algorithm from Theorem 3.3.5 in order to compute a feasible solution to this

instance of the Cluster Placement problem, obtaining a drawing ϕ̃ of
⋃
C∈C C on the sphere.
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In order to compute a final drawing of G′ (and hence of G), it is enough to add the drawings

of the edges of E′′ into ϕ̃. We do so by defining an instance of the MCNwRS problem.

Defining Instances of MCNwRS. Let F be the set of all faces in the drawing ϕ̃ of the

graph
⋃
C∈C C. For every face F ∈ F , let H(F ) ⊆ C be the set of all clusters C ∈ C, such

that at least one terminal of Γ(C) (that is, endpoint of an edge of E′′ that lies in C) lies on

the boundary of the face F .

We associate, with each face F ∈ F , an instance (GF ,ΣF ) of the MCNwRS problem, as

follows. Let EF ⊆ E′′ be the set of all edges whose both endpoints lie on the boundary

of the face F in ϕ̃. In order to construct the graph GF , we start with the union of the

clusters C ∈ H(F ), and add the edges of EF to the resulting graph. Then we contract

every cluster C ∈ H(F ) into a vertex v(C), keeping parallel edges and deleting self-loops.

This concludes the definition of the graph GF . We now define a rotation system for GF .

Consider any vertex v = v(C) ∈ V (GF ), and let δ(v) be the set of all edges that are incident

to v(C) in GF . If C ∈ C1, then |δ(v)| ≤ |Γ(C)| ≤ poly(∆ log n). We define Ov to be an

arbitrary ordering of the edges in δ(v). Assume now that C ∈ C2. Recall that graph C must

be 2-connected, so the intersection of the boundary of F with C is a simple cycle, that we

denote by KF (C). We denote by ΓF (C) the set of all vertices of Γ(C) that lie on the cycle

KF (C). From Observation 3.3.6, the vertices of Γ(C) that serve as endpoints of the edges

of δ(v) must belong to ΓF (C). We let ÕF (C) denote the circular ordering of the vertices of

ΓF (C) along the cycle KF (C). The ordering Ov of the edges of δ(v) is determined by the

ordering of their endpoints in ÕF (C): edges that are incident to the same vertex of KF (C)

appear consecutively in Ov in an arbitrary order. The ordering of the edges that are incident

to different vertices of ΓF (C) follows the ordering ÕF (C). We then let ΣF = {Ov}v∈V (GF ).

This completes the definition of instance (GF ,ΣF ) of MCNwRS. Since Theorem 3.1.1 calls

for a single instance of MCNwRS, we let G′′ be the disjoint union of the graphs in
{
GF
}
F∈F

,

and we let Σ =
⋃
F∈F ΣF . This defines the final instance (G′′,Σ) of the MCNwRS prob-
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lem. Notice that E(G′′) ⊆ E′′ and so |E(G′′)| ≤ O(OPTcr(G) poly(∆ log n)). We need the

following observation.

Observation 3.3.7. E′′ =
⋃
F∈F E

F .

Proof. From the definition of edge sets EF ,
⋃
F∈F E

F ⊆ E′′, so it is enough to show that

E′′ ⊆
⋃
F∈F E

F . Assume for contradiction that this is not the case. Then there is some

edge e = (u, v) ∈ E′′, such that no face of F contains both u and v on its boundary. Let C ′

be the cluster containing u and C ′′ the cluster containing v; recall that C ′ 6= C ′′ must hold.

Then there must be some cluster C and a cycle K in C, such that u, v 6∈ K, and the image of

K in ϕ̃ separates the images of u and v. If C = C ′, then we let F1 be any face in the drawing

of C that is incident to u; otherwise, we let F1 = FC(C ′). Similarly, if C = C ′′, then we

let F2 be any face in the drawing of C that is incident to v; otherwise, we let F2 = FC(C ′).

Notice that F1 6= F2, and moreover, since K separates u from v, if C = C ′ then u does not

lie on the boundary of F2 (and similarly, if C = C ′′, then v does not lie on the boundary of

F1). But that means that, in the drawing ϕ of graph G′ that is given by Observation 3.3.6,

there is some cycle K ′ ⊆ C that separates the image of u from the image of v in ϕ. But then

the image of edge e must cross the image of some edge of C in ϕ, which is impossible.

Next, we show that the final instance (G′,Σ) of MCNwRS has a sufficiently cheap solution.

The proof of the next lemma appears in Section 3.9.

Lemma 3.3.8. There is a solution to instance (G′′,Σ) of MCNwRS of value O(OPTcr(G) ·

poly(∆ log n)).

Lastly, in order to complete the proof of Theorem 3.1.1, it is enough to show an efficient

algorithm, that, given any solution to instance (G′′,Σ) of MCNwRS of value X, computes a

drawing of G′ with O ((X + OPTcr(G)) · poly(∆ log n)) crossings.
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Obtaining the Final Drawing of G′. We assume that we are given a solution ϕ̂ to

instance (G′′,Σ) of MCNwRS, whose value is denoted by X. Since graph G′′ is the disjoint

union of graphs
{
GF
}
F∈F

, we can use ϕ̂ to obtain, for each face F ∈ F , a solution ϕ̂F to

instance (GF ,ΣF ) of MCNwRS, of value XF , such that
∑
F∈F X

F ≤ X. Intuitively, ideally,

we would like to start with the drawing ϕ̃ of
⋃
C∈C C given by the solution to the Cluster

Placement problem, and then consider the faces F ∈ F one-by-one. For each such face, we

would like to use the drawing ϕ̂F of graph GF in order to insert the images of the edges of

EF into the face F . Since, from Observation 3.3.7, E′′ =
⋃
F∈F E

F , once every face of F is

processed, all the edges of E′′ are inserted into the drawing, and we obtain a valid drawing

of graph G′. There is one difficulty with using this approach. Recall that, a solution ϕ̂F to

instance (GF ,ΣF ) guarantees that for every vertex v ∈ V (GF ), the images of the edges of

δ(v) enter v in an ordering identical to Ov. However, the orientation of this ordering may be

arbitrary. In other words, in order to insert the edges of EF into the face F of the drawing

of ϕ′, by copying their drawings in ϕ̂F , we may need to flip the drawings of some clusters

C ∈ H(F ). Since each cluster may belong to several sets H(F ), we need to do this carefully.

Consider the drawing ϕ̃ of
⋃
C∈C C. Consider any cluster C ∈ C and any face F ∈ F , such

that C ∈ H(F ). As before, we let ΓF (C) ⊆ Γ(C) be the set of terminals that belong to

C and lie on the boundary of the face F . Next, we define a disc DF (C), as follows. If

C ∈ C1, then let γF (C) be a simple closed curve that contains every terminal in ΓF (C), and

separates the drawing of C \ ΓF (C) from the drawing of every cluster C ′ ∈ H(F ) \ {C}. If

C ∈ C2, then we let γF (C) be the image of the cycle KF (C) in ϕ̃. We then let DF (C) be a

disc, whose boundary is γF (C), that contains the drawing of C in ϕ̃. Notice that for every

cluster C ′ ∈ H(F ) \ {C}, the drawing of C ′ in ϕ̃ is disjoint from DF (C). Notice also that, if

C ∈ C2, then the ordering of the terminals in ΓF (C) on the boundary of DF (C) is identical

to ÕF (C).

We now proceed as follows. First, we describe a procedure ProcessFace, that, intuitively,

will allow us to insert, for a given face F ∈ F , all edges of EF into the drawing; this may
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require flipping drawings in some discs DF (C), for C ∈ H(F ). We then show an algorithm

that builds on this procedure in order to compute a drawing of G′.

Procedure ProcessFace. The input to procedure ProcessFace is a face F ∈ F , and a

collection
{
DF (C)

}
C∈H(F )

of disjoint discs (intuitively, disc DF (C) already contains a

drawing of some parts of the graph G, as defined above, but in this procedure we do not

modify parts of the graph drawn inside the disc, and consider these parts as being fixed;

we may however flip the drawing that is contained in D(C)). Additionally, for every cluster

C ∈ H(F ), we are given a drawing of the terminals in ΓF (C) on the boundary of the disc

DF (C). We require that, if C ∈ C2, then the circular ordering of the terminals in ΓF (C)

on the boundary of the disc DF (C) is identical to ÕF (C). We are also given a cluster

C∗ ∈ H(F ), whose orientation is fixed (that is, we are not allowed to flip the disc DF (C∗)).

The procedure inserts the edges of EF into this drawing, while possibly flipping some discs

DF (C).

In order to execute the procedure, we start with the solution ϕ̂F to instance (GF ,ΣF ). For

every vertex v ∈ V (GF ), we consider a small disc η(v) around the drawing of v in ϕ̂F . We

also define a smaller disc η′(v) ⊆ η(v) that is contained in the interior of η(v) and contains

the image of v. For every edge e = (v, v′), we truncate the image of e, so that it originates

at some point pv(e) on the boundary of η(v) and terminates at some point pv′(e) on the

boundary of η(v′).

Consider now some vertex v(C) ∈ V (GF ), whose corresponding cluster C lies in C2. Recall

that for every terminal t ∈ ΓF (C), there must be a contiguous segment σ(t) on the boundary

of η(v) that contains all points
{
pv(C)(e)

}
, where e ∈ δ(v) is an edge that is incident to

t, so that all resulting segments in
{
σt | t ∈ ΓF (C)

}
are disjoint. The circular ordering

of these segments along the boundary of η(v) is identical to ÕF (C). We place images of

the terminals in ΓF (C) on the boundary of η′(v), in the circular order that is identical to

ÕF (C), whose orientation is the same as the orientation of the ordering of the segments in
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{
σt | t ∈ ΓF (C)

}
. If the orientation of this ordering is identical to the orientation of the

ordering of terminals of ΓF (C) on the boundary of the disc DF (C), then we say that cluster

C agrees with the orientation of ϕ̂F , and otherwise we say that it disagrees with it. We can

assume without loss of generality that, if cluster C∗ ∈ C2, then it agrees with the orientation

of ϕ̂F , since otherwise we can flip the drawing ϕ̂F .

In order to insert the edges of EF into the current drawing, we will do the opposite: we will

“insert” the discs DF (C) into the discs η′(v(C)) in the drawing ϕ̂F . Specifically, for every

cluster C ∈ C, if C agrees with the orientation of ϕ̂F , then we insert the disc DF (C) into

the disc η′(v(C)) in the current drawing ϕ̂F , so that the images of the terminals of ΓF (C)

coincide (it may be convenient to think of the disc DF (C) as containing a drawing of C and

maybe some additional subgraphs of G′). If C disagrees with the orientation of ϕ̂F , then we

first create a mirror image of the disc DF (C) (that will result in flipping whatever drawing

currently appears in DF (C)), and then insert the resulting disc into the disc η(v(C)) in the

current drawing ϕ̂F , so that the images of the terminals of ΓF (C) coincide. In either case,

we can extend the drawings of the edges of δ(v(C)) inside η(v(C)) \ η′(v(C)), so that for

every terminal t ∈ ΓF (C), the drawing of every edge e that is incident to t terminates at

the image of t, without introducing any crossings. Lastly, if C ∈ C1, then we simply insert

the disc DF (C) into the disc η′(C). We extend the drawings of the edges of δ(v(C)) inside

η(v(C)) \ η′(v(C)), so that for every terminal t ∈ ΓF (C), the drawing of every edge e that is

incident to t terminates at the image of t, while introducing at most |ΓF (C)|2 new crossings.

This completes the description of Procedure ProcessFace.

We are now ready to complete the drawing of the graph G′. Our algorithm performs a

number of iterations. In each iteration i we will fix an orientation of some subset Ci ⊆ C of

clusters. We maintain the invariant that for every cluster C ∈ Ci, if F ∈ F is any face with

C ∈ H(F ) that has not been processed yet, then no cluster of (C1 ∪ C2 ∪ · · · ∪ Ci) \ {C} lies

in H(F ). We let C0 consist of a single arbitrary cluster C0 ∈ C.
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In order to execute the first iteration, we let F ∈ F be any face with C0 ∈ H(F ). We

run Procedure ProcessFace on face F , with cluster C∗ = C0. Notice that the outcome of

this procedure can be used in order to insert the edges of EF into the current drawing ϕ̃

of
⋃
C∈C C, after possibly flipping the images inside some discs in {D(C)}C∈H(F )\{C0}. We

then let C1 contain all clusters in H(F ). Notice that the invariant holds for this definition

of set C1. For each cluster C ∈ C1, its orientation is fixed from now on, and the drawing of

C will never be modified again.

In order to execute the ith iteration, we start with Ci = ∅. We consider each cluster C ∈ Ci−1,

one-by-one. For each such cluster C, for every face F ∈ F with C ∈ H(F ), that has not

been processed yet, we apply Procedure ProcessFace to face F , with C = C∗. As before,

this procedure can be used in order to insert all edges of EF into the current drawing,

after, possibly, flipping the images contained in some discs DF (C ′), for C ′ ∈ H(F ) \ {C}.

Notice, however, that from our invariant, none of the clusters corresponding to these discs

may belong to C1 ∪ · · · ∪ Ci−1. We then add, to set Ci, all clusters of H(F ) \ {C}. It is easy

to verify that the invariant continues to hold. Once every face in F is processed, we have

inserted all edges of E′′ into ϕ′, and obtain a final drawing ϕ′′ of the graph G′.

We now bound the number of crossings in G′. In addition to the crossings that were present

in the drawings ϕ̂F , for F ∈ F , we may have added, for every cluster C ∈ C1, at most

O(∆2|Γ(C)|2) new crossings of edges that are incident to the terminals of C (this bound

follows the same reasonings as those in the proof of Lemma 3.3.8). Since, for every cluster

C ∈ C1, |Γ(C)| ≤ O(poly(∆ log n)), we get that the total number of crossings in the drawing

ϕ′′ of G′ is at most:

X +O
( ∑
C∈C1

∆|Γ(C)|2
)
≤ X +O(|Γ| poly(∆ log n))

≤ X +O(|E′′| poly(∆ log n))

≤ X +O(OPTcr(G) poly(∆ log n)).
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Note that drawing ϕ′′ of G′ immediately induces a drawing of the original graph G, where the

number of crossings is bounded by cr(ϕ′′) plus the sum, over all original type-1 clusters C ∈

C1, of the number of crossings in the original drawing ψC of C (recall that we have replaced all

such crossings with vertices inG′). However, the total number of all such additional crossings,

as shown already, is bounded by O(OPTcr(G) poly(∆ log n)), and so overall, the total number

of crossings in the final drawing of G is bounded by X + O(OPTcr(G) poly(∆ log n)). This

completes the proof of Theorem 3.1.1 for the special case where the input graph G is 3-

connected. We extend the proof to general graphs in Section 3.8.

The rest of Chapter 3 is organized as follows. In Section 3.4, we present some definitions

and general results regarding block decompositions of graphs (mostly from previous work),

that will be used in Sections 3.5–3.8. In Section 3.5, we provide the proof of Theorem 3.3.1.

In Section 3.6, we provide the proof of Theorem 3.3.3. In Section 3.7, we provide the proof

of Theorem 3.3.4. In Section 3.8 we complete the proof of Theorem 3.1.1 by generalizing the

proof in Section 3.3.3 to general graphs.

3.4 Block Decompositions and Embedding of Fake Edges

In this section we provide some definitions and results on Block Decompositions, that will

be later used in Sections 3.5–3.8. Most definitions in this section are from [13]. Let G be a

2-connected graph. A 2-separator for G is a pair (u, v) of vertices, such that graph G\{u, v}

is not connected.

Definition 7. Let G = (V,E) be a 2-connected graph. A subgraph B = (V ′, E′) of G is

called a block iff:

• V \ V ′ 6= ∅ and |V ′| ≥ 3;

• There are two distinct vertices u, v ∈ V ′, called block endpoints and denoted by I(B) =

(u, v), such that there are no edges from V \ V ′ to V ′ \ {u, v} in G. All other vertices
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of B are called inner vertices;

• B is the subgraph of G induced by V ′, except that it does not contain the edge (u, v)

even if it is present in G.

Notice that, if G is a 2-connected graph, then every 2-separator (u, v) of G defines at least two

internally disjoint blocks B′, B′′ with I(B′), I(B′′) = (u, v). If B is a block with endpoints

u and v, then the complement of B, denoted by Bc, is the subgraph of G induced by the

vertices of (V (G) \ V (B)) ∪ {u, v}. Notice that Bc is itself a block, unless edge e = (u, v)

belongs to Bc; in the latter case, Bc \ {e} is a block.

3.4.1 Block Decomposition of 2-Connected Graphs

Let L be a collection of subgraphs of G. We say that L is laminar iff for every pair H,H ′ ∈ L

of subgraphs, either H∩H ′ = ∅, or H ⊆ H ′, or H ′ ⊆ H hold. Given a laminar collection L of

subgraphs of G with G ∈ L, we can associate a tree τ = τ(L) with it, called a decomposition

tree, as follows. For every graph H ∈ L, there is a vertex v(H) in τ . The tree is rooted at

the vertex v(G). For every pair H,H ′ ∈ L of subgraphs, such that H ( H ′, and there is no

other graph H ′′ ∈ L \
{
H,H ′

}
with H ( H ′′ ( H ′, there is an edge (v(H), v(H ′)) in the

tree, and v(H ′) is the parent of v(H) in τ .

Let G be a 2-connected graph, and assume that we are given a laminar family of subgraphs

of G with G ∈ L. Let τ = τ(L) be the decomposition tree associated with L. Assume

further that every graph B ∈ L \ {G} is a block. For each such graph B ∈ L, we define a

new graph, B̃; this definition is used throughout the paper. The edges of B̃ will be classified

into “fake” edges and “real” edges, where every real edge of B̃ is an edge of B. In order to

obtain graph B̃, we start with the graph B. We then consider every child vertex v(B′) of

v(B) in τ(L) one-by-one. For each such child vertex v(B′), we delete all edges and vertices

of B′ from B, except for the endpoints I(B′). If the current graph B̃ does not contain an
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edge connecting the endpoints of B′, then we add such an edge as a fake edge. Consider now

the graph B̃ obtained after processing every child vertex of v(B) in tree τ(L). If B 6= G,

then we add a fake edge connecting endpoints of B to B̃ (notice that, from the definition

of a block, B̃ may not contain a real edge connecting the endpoints of B). This completes

the definition of the graph B̃. Observe that by our construction, B̃ has no parallel edges.

The definition of B̃ depends on the family L, so when using it we will always fix some such

family. We denote by A
B̃

the set of all fake edges in B̃. We also denote by e∗
B̃

the unique

fake edge connecting the endpoints of B; if no such edge exists, then e∗
B̃

is undefined. We

refer to e∗
B̃

as the fake parent-edge of B̃.

We let N (B) be a collection of subgraphs of G that contains the graph Bc – the complement

of the block B, and additionally, for every child vertex v(B′) of v(B) in the tree τ , the

block B′. Observe that every fake edge e = (u, v) of B̃ is associated with a distinct graph

Be ∈ N (B), where I(Be) = (u, v). We are now ready to define a block decomposition.

Definition 8. Let G be a 2-connected graph, let L be a laminar family of subgraphs of G

with G ∈ L, and let τ = τ(L) be the decomposition tree associated with L. We say that L is

a block decomposition of G, iff:

• every graph B ∈ L \ {G} is a block;

• for each graph B ∈ L, either B̃ is 3-connected, or B̃ is isomorphic to K3 – a clique

graph on 3 vertices; and

• if a vertex v(B) ∈ V (τ) has exactly one child vertex v(B′), then I(B) 6= I(B′).

For convenience, if L is a block decomposition of G, then we call the elements of L pseudo-

blocks. Note that each pseudo-block is either a block of G, or it is G itself. The following

theorem was proved in [13].

Theorem 3.4.1. [Theorem 12 in the arxiv version of [13]] There is an efficient algorithm,

that, given a 2-connected graph G = (V,E) with |V | ≥ 3, computes a block decomposition
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L of G, such that, for each vertex v ∈ V that participates in some 2-separator (u, v) of G,

either (i) v is an endpoint of a block B ∈ L, or (ii) v has exactly two neighbors in G, and

there is an edge (u′, v) ∈ E, such that u′ is an endpoint of a block B ∈ L.

We need the following two simple observations, whose proofs are straightforward and are

omitted.

Observation 3.4.2. Let G be a 2-connected graph, let L be a block decomposition of G,

and let B ∈ L be a pseudo-block in the decomposition. Consider the corresponding graph

B̃. Then, for every fake edge e ∈ A
B̃

, there is a path P (e) in G, connecting its endpoints,

that is internally disjoint from V (B̃) and is completely contained in some graph Be ∈ N (B).

Moreover, if e 6= e′ are two distinct fake edges in A
B̃

, then Be 6= Be′, and so paths P (e) and

P (e′) are internally disjoint.

Observation 3.4.3. Let G be a 2-connected planar graph, let L be a block decomposition of

G, and let B ∈ L be a pseudo-block. Then B̃ is a planar graph, and it has a unique planar

drawing.

3.4.2 Block Decomposition of General Graphs

So far we have defined block decompositions for 2-connected graphs. We now extend this

notion to general graphs, that may not even be connected, and introduce some useful nota-

tion. Let G be any graph. We denote by C(G) the set of all connected components of G.

Consider now some connected component C ∈ C(G). Let Z(C) denote the collection of all

maximal 2-connected subgraphs of C (that is, Z ⊆ C belongs to Z(C) iff Z is 2-connected,

and it is not strictly contained in any other 2-connected subgraph of C). It is easy to verify

that Z(C) is uniquely defined and can be computed efficiently. For convenience, we call the

elements in Z(C) super-blocks. We also denote by Z(G) =
⋃
C∈C(G)Z(C) the collection of

all resulting super-blocks.
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Finally, for every super-block Z ∈ Z(G), we let L(Z) be the block decomposition of Z given

by Theorem 3.4.1. Recall that L(Z) contains the graph Z, and all other graphs in L(Z) are

blocks of Z. We denote by B(C) =
⋃
Z∈Z(C) L(Z) the collection of all pseudo-blocks in the

block decompositions of the subgraphs Z ∈ Z(C), and we denote B(G) =
⋃
C∈C(G) B(C).

We will refer to the collection B(G) of pseudo-blocks a block decomposition of G. Observe

that this generalizes the definition of block decompositions of 2-connected graphs to general

graphs.

Consider now some super-block Z ∈ Z(G), and some pseudo-block B ∈ L(Z). If B = Z,

then the complement block Bc is empty. Otherwise, the complement block Bc is defined

exactly as before, with respect to the graph Z. In other words, Bc is the subgraph of Z

induced by the set (V (Z) \ V (B)) ∪ I(B) of vertices. We define the set N (B) of graphs as

before: we add Bc to N (B), and additionally, for every child vertex v(B′) of v(B), we add

the block B′ to N (B).

Embedding of Fake Edges

We will repeatedly use the following lemma, whose proof appears in Section 3.10.

Lemma 3.4.4. Let G be a graph, and let B(G) be its block decomposition. Denote B̃(G) ={
B̃ | B ∈ B(G)

}
, and let B̃∗(G) ⊆ B̃(G) contain all graphs B̃ that are not isomorphic

to K3. Then we can efficiently compute, for each graph B̃ ∈ B̃∗(G), a collection P
B̃

={
P
B̃

(e) | e ∈ A
B̃

}
of paths in G, such that:

• for each fake edge e = (u, v) ∈ A
B̃

, the path P
B̃

(e) connects u to v in G and it is

internally disjoint from B̃;

• all paths in P
B̃

are mutually internally disjoint; and

• if we denote P =
⋃
B̃∈B̃∗(G)

(
P
B̃
\
{
P
B̃

(e∗
B̃

)
})

, then every edge of G participates in

at most 6 paths in P.
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3.5 Computing a Decomposition into Acceptable Clusters: Proof

of Theorem 3.3.1

This section is dedicated to the proof of Theorem 3.3.1. We start by introducing some

notation and defining the notions of good pseudo-blocks.

3.5.1 Good Pseudo-Blocks

Throughout this subsection, we assume that we are given some planarizing set Ê of edges

for the input graph G, that is, G \ Ê is planar. We note that Ê is not necessarily the same

as the original planarizing set E′, since, as the algorithm progresses, we may add edges to

the planarizing set. The definitions in this subsection refer to any planarizing set Ê that

may arise over the course of the algorithm.

Given a planarizing set Ê of edges for G, let H = G \ Ê. Recall that we say that a vertex

v of H is a terminal iff it is incident to some edge in Ê, and we denote the set of terminals

by Γ.

Recall that we have defined a block decomposition of a graph H as follows. We denoted

by C = C(H) the set of all connected components of H, and we refer to the elements of

C as clusters. For each cluster C ∈ C, we have defined a collection Z(C) of super-blocks

(maximal 2-connected subgraphs) of C, and we denoted Z(H) =
⋃
C∈C Z(C). Lastly, for

each superblock Z ∈ Z(H), we let L(Z) be the block decomposition of Z given by Theorem

3.4.1, and we denoted by B(C) =
⋃
Z∈Z(C) L(Z) the resulting collection of pseudo-blocks

for cluster C. The final block decomposition of H is defined to be B(H) =
⋃
C∈C B(C).

Consider some pseudo-block B ∈ B(H), and let B̃ be the corresponding graph that is either

a 3-connected graph or isomorphic to K3. Recall that B̃ has a unique planar drawing, that

we denote by ρ
B̃

. Throughout this section, for any pseudo-block B, we denote by B̃′ ⊆ B̃ the

graph obtained from B̃ by deleting all its fake edges. Note that B̃′ may be not 3-connected,
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and it may not even be connected. The drawing ρ
B̃

of B̃ naturally induces a drawing of B̃′,

that we denote by ρ′
B̃′

.

Definition 9. We say that a pseudo-block B ∈ B(H) is a good pseudo-block iff there is

a planar drawing ψ̂B of B, that we call the associated drawing, such that, for each bridge

R ∈ RG(B), there is a face F in ψ̂B, whose boundary contains all vertices of L(R). If B is

not a good pseudo-block, then it is called a bad pseudo-block.

Note that, if B is a bad pseudo-block, then for every planar drawing ψ̂B of B, there is some

bridge R ∈ RG(B), such that no face of ψ̂B contains all vertices of L(R). We call such a

bridge R a witness for B and ψ̂B . We note that for each bridge R ∈ RG(B) and for every

vertex v ∈ L(R), either v is a terminal of Γ, or it is a separator vertex for the connected

component C of H that contains B.

The remainder of the proof of Theorem 3.3.1 consists of two stages. In the first stage, we

augment the initial planarizing set E′ of edges to a new edge set E1, such that for every

connected component C of G \E1, either C is a type-1 acceptable cluster, or every pseudo-

block in the block decomposition of C is good. In the second stage, we further augment E1

in order to obtain the final edge set E′′ and a decomposition of G into acceptable clusters.

We now describe each of the two stages in turn.

3.5.2 Stage 1: Obtaining Type-1 Acceptable Clusters and Good

Pseudo-Blocks

The main result of this stage is summarized in the following theorem.

Theorem 3.5.1. There is an efficient algorithm, that, given a 3-connected n-vertex graph

G with maximum vertex degree ∆ and a planarizing set E′ of edges for G, computes a pla-

narizing edge set E1 with E′ ⊆ E1, such that |E1| ≤ O
(
(|E′|+ OPTcr(G)) · poly(∆ log n)

)
,

and, if we denote H1 = G\E1, and let Γ1 be the set of all endpoints of edges in E1, then for
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every connected component C of H1, either |V (C) ∩ Γ1| ≤ µ, or every pseudo-block in the

block decomposition B(C) of C is a good pseudo-block. Moreover, for each connected compo-

nent C of the latter type, for each pseudo-block B in B(C), the algorithm also computes its

associated planar drawing ψ̂B.

The remainder of this subsection is dedicated to proving Theorem 3.5.1. We start with a

high-level intuition in order to motivate the next steps in this stage. Consider any pseudo-

block B ∈ B(H) in the block decomposition of the graph H. We would like to construct

a small set E∗(B) of edges of B̃′, such that, for every bridge R ∈ RG(B̃′), all vertices of

L(R) lie on the boundary of a single face in the drawing of B̃′ \ E∗(B) induced by ρ
B̃

. In

general, we are able to find such an edge set E∗(B), while ensuring that its size is small,

compared with the following two quantities. The first quantity is the size of the vertex set

Γ′(B), that is defined to be the union of (i) all terminals (that is, endpoints of edges in E′)

lying in B̃; (ii) all endpoints of the fake edges of B̃; and (iii) all separator vertices of C

that lie in B̃, where C ∈ C is the component of H that contains B. The second quantity

is, informally, the number of crossings in which the edges of B̃′ participate in the optimal

drawing ϕ∗ of G (we need a slightly more involved definition of the second quantity that we

provide later). We would like to augment E′ with the edges of
⋃
B∈B(H)E

∗(B) to obtain the

desired set E1. Unfortunately, we cannot easily bound the size of |E1|, as we cannot directly

bound
∑
B∈B(H) |Γ′(B)|. For example, consider a situation where the decomposition tree τZ

associated with some maximal 2-connected subgraph Z of H contains a long induced path

P . Then for every vertex v(B) on path P , graph B̃ contains exactly two fake edges, one

corresponding to its parent, and the other corresponding to its unique child. Note that, it is

possible that many of the graphs B̃ with v(B) ∈ P do not contain any terminals or separator

vertices of the component of H that contains B, so
∑
v(B)∈P |Γ′(B)| is very large, and it may

be much larger than OPTcr(G) + |E′|. To vercome this difficulty, we carefully decompose

all such paths P , such that, after we delete a small number of edges from the graph, we

obtain a collection of type-1 acceptable clusters, and for each block B with v(B) ∈ P , graph
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B̃ is contained in one of these clusters. Our proof proceeds as follows. First, we bound the

cardinality of the set U of the separator vertices of H by comparing it to the size of Γ. Then

we mark some blocks B in the block decomposition B(H) of H. We will ensure that, on the

one hand, we can suitably bound the total cardinality of the vertex sets Γ′(B) for all marked

blocks B, while on the other hand, in the forest associated with the block decomposition

B(H) of H, if we delete all vertices corresponding to the marked blocks in B(H), we obtain

a collection of paths, each of which can be partitioned into subpaths, which we use in order

to define type-1 acceptable clusters. Let B′ denote the set of all marked blocks. For each

block B ∈ B′, we define a collection χ(B) of crossings in the optimal drawing ϕ∗ of G, such

that
∑
B∈B′ |χ(B)| can be suitably bounded. We then process each such block B ∈ B′ one

by one, computing the edge set E∗(B) of B̃, such that, for every bridge R ∈ RG(B̃′), all

vertices of L(R) lie on the boundary of a single face in the drawing of B̃′ \E∗(B) induced by

ρ
B̃

. The cardinality of E∗(B) will be suitably bounded by comparing it to |Γ′(B)|+ |χ(B)|.

We now proceed with the formal proof. Throughout the proof, we denote H = G \ E′

and denote by C the set of connected components of H that we call clusters. The set Γ

of terminals contains all vertices that are endpoints of the edges of E′. For every cluster

C ∈ C, we denote by U(C) the set of all separator vertices of C; that is, vertex v ∈ U(C)

iff graph C \ {v} is not connected. Let U =
⋃
C∈C U(C). We start by proving the following

observation.

Observation 3.5.2. |U | ≤ O(|Γ|).

Proof. It suffices to show that, for every cluster C ∈ C, |U(C)| ≤ O(|Γ ∩ V (C)|). From now

on we fix a cluster C ∈ C. Let Z(C) be the decomposition of C into super-blocks. We can

associate a graph T with this decomposition as follows. The set V (T ) of vertices is defined

to be the union of (i) the set U(C) of separator vertices, that we also refer to as regular

vertices; and (ii) the set U ′ = {vZ | Z ∈ Z(C)} of vertices called supernodes, representing

the super-blocks of the decomposition. For every super-block Z ∈ Z(C) and every separator
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vertex u ∈ U(C) such that u ∈ V (Z), we add the edge (u, vZ) to the graph. For every pair of

distinct separator vertices u, u′ ∈ U(C), such that (u, u′) ∈ E(C) and there is no super-block

Z ∈ Z(C) that contains both u and u′, we add the edge (u, u′) to the graph. It is easy to

verify that graph T is a tree.

We partition the set V (T ) of vertices into the following three subsets: (i) the set V1 contains

all vertices that have degree 1 in T , namely V1 is the set of all leaf vertices of T ; (ii) the set

V2 contains all vertices that have degree 2 in T ; and (iii) the set V≥3 contains all vertices

that have degree at least 3 in T . We further partition the set V2 into three subsets: the

set U ′2 = U ′ ∩ V2 containing all supernodes of V2; the set Û2 containing all regular vertices

u ∈ V2, such that both neighbors of u are regular vertices; and the set Ũ2 = (U(C)∩V2)\ Û2

containing all remaining vertices. We use the following observation.

Observation 3.5.3. |V1| ≤ |Γ ∩ V (C)|, |U ′2| ≤ |Γ ∩ V (C)|, and |Û2| ≤ |Γ ∩ V (C)|.

Proof. Observe that V1 ⊆ U ′, and moreover, if some node vZ ∈ V1 corresponds to the super-

block Z ∈ Z(C), then there must be at least one terminal vertex in Γ∩ V (Z) that does not

belong to U(C). This follows from the fact that G is 3-connected, and |V (Z) ∩ U(C)| = 1.

Therefore, |V1| ≤ |Γ ∩ V (C)|. Similarly, we can deduce that, for each vertex vZ ∈ U ′2, its

corresponding block Z must contain a terminal in Γ ∩ V (Z) that does not belong to U(C).

Therefore, |U ′2| ≤ |Γ∩V (C)|. From the definition of Û2 and the fact that G is 3-connected, we

get that every node in Û2 has to be a terminal in Γ∩V (C). Therefore, |Û2| ≤ |Γ∩V (C)|.

From the definition of the sets V1 and V≥3, |V≥3| ≤ |V1| ≤ |Γ ∩ V (C)|. Moreover, if we

denote by E∗ the set of all edges of the tree T that are incident to a vertex of V≥3, then

|E∗| ≤ O(|V1|).

Consider a vertex u ∈ Ũ2. Recall that u has exactly two neighbors in T , that we denote by x

and y, and x and y are not both regular vertices. If x ∈ V≥3 or y ∈ V≥3, then u is an endpoint

of an edge in E∗. If either of the vertices x or y lies in V1, then u is the unique neighbor of
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that vertex in T . Assume now that neither of the two vertices lies in V1 ∪ V≥3, that is, both

vertices lie in V2. Assume w.l.o.g. that x 6∈ U , so x is a supernode. Then u is one of the two

neighbors of a supernode x ∈ U ′2. To summarize, if u ∈ Ũ2, then either (i) u is an endpoint of

an edge of E∗; or (ii) u is a unique neighbor of a vertex of V1; or (iii) one of the two neighbors

of a vertex of U ′2. Therefore, |Ũ2| ≤ O(|E∗|+ |V1|+ |U ′2|) ≤ O(|V1|+ |U ′2|) ≤ O(|Γ∩ V (C)|).

Altogether:

|U(C)| = |U(C)∩V1|+ |U(C)∩V2|+ |U(C)∩V≥3| ≤ 0+ |Û2|+ |Ũ2|+ |V≥3| ≤ O(|Γ∩V (C)|).

Summing over all clusters C ∈ C, we get that |U | ≤ O(|Γ|).

Let C ∈ C be any cluster of H, and let Z(C) be the set of all super-blocks of C. For each

super-block Z ∈ Z(C), we let L(Z) be the block decomposition of Z, given by Theorem

3.4.1. Recall that this block decomposition is associated with a decomposition tree, that

we denote for brevity by τZ . As before, we denote by B(C) =
⋃
Z∈Z(C) L(Z) and by

B(H) =
⋃
C∈C B(C) the block decompositions of C and H, respectively. Let T be the forest

that consists of the trees τZ for all Z ∈
⋃
C∈C Z(C). Recall that every vertex v(B) ∈ T

corresponds to a pseudo-block B ∈ B(H) and vice versa.

Consider now some tree τZ ∈ T . We mark a vertex v(B) of τZ iff, either (i) vertex v(B) has

at least two children in the tree τZ , or (ii) graph B̃ contains at least one vertex of Γ∪U that

is not an endpoint of a fake edge of B̃. We denote by B′ ⊆ B(H) the set of all pseudo-blocks

B whose corresponding vertex v(B) was marked. For each pseudo-block B ∈ B′, let Γ′(B)

be the set of vertices of B̃ that contains all terminals of Γ that lie in B̃, the vertices of U

that lie in B̃, and all endpoints of the fake edges that belong to B̃. We need the following

simple observation.

Observation 3.5.4.
∑
B∈B′ |Γ′(B)| ≤ O(∆ · |Γ|).

Proof. Consider a pseudo-block B ∈ B′. We partition the set Γ′(B) of vertices into three
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subsets: set Γ′1(B) contains all endpoints of fake edges of B̃; set Γ′2(B) contains all vertices

of Γ \ U that lie in B̃ and do not serve as endpoints of fake edges, and set Γ′3(B) contains

all vertices of U that lie in B̃ and do not serve as endpoints of fake edges.

Notice that the sets
{

Γ′2(B)
}
B∈B′ are mutually disjoint, since for any pair B1, B2 ∈ B(H)

of pseudo-blocks in the decomposition, the only vertices of B̃1 that may possibly lie in

B̃2 are vertices of U and vertices that serve as endpoints of fake edges in B̃1. Therefore,∑
B∈B′ |Γ′2(B)| ≤ |Γ|.

Notice that a vertex u ∈ U may belong to at most ∆ super-blocks in Z(H). For each super-

block Z ∈ Z(H), there is at most one pseudo-block B ∈ L(Z), such that u belongs to B̃

but is not an endpoint of a fake edge of B̃. This is because for any pair B1, B2 of blocks of

L(Z), the only vertices of B̃1 that may possibly lie in B̃2 are endpoints of fake edges of B̃1.

Therefore,
∑
B∈B′ |Γ′3(B)| ≤ ∆ · |U | ≤ O(∆ · |Γ|), from Observation 3.5.2.

In order to bound
∑
B∈B′ |Γ′1(B)|, we partition the set B′ of pseudo-blocks into two subsets:

set B′1 contains all pseudo-blocks B such that v(B) has at least two children in the forest

T , and B′2 contains all remaining pseudo-blocks. Let B∗ ⊆ B(H) be the set of all pseudo-

blocks whose corresponding vertex v(B) has degree 1 in T . Since the original graph G is

3-connected, and since for each pseudo-block B ∈ B∗, B̃ contains at most one fake edge, for

each pseudo-block B ∈ B∗, the corresponding graph B̃ must contain a terminal t ∈ Γ that

is not one of its endpoints. If t 6∈ U , then B is the only pseudo-block in B∗ such that t ∈ B̃

and t is not one of the endpoints of B. Otherwise, there are at most ∆ such pseudo-blocks

in B∗. Therefore, |B∗| ≤ |Γ| + ∆ · |U | ≤ O(∆ · |Γ|). From the definition of the set B′1, it is

immediate to see that the total number of fake edges in all pseudo-blocks of B′1 is at most

O(|B∗|) ≤ O(∆ · |Γ|). Therefore,
∑
B∈B′1

|Γ′1(B)| ≤ O(∆ · |Γ|). Consider now a pseudo-block

B ∈ B′2. Then B̃ contains at most two fake edges and at least one vertex of Γ ∪ U , that is

not an endpoint of a fake edge. Therefore, for each pseudo-block B ∈ B′2, |Γ′1(B)| ≤ 4, and∑
B∈B′2

|Γ′1(B)| ≤ 4
∑
B∈B′2

(|Γ′2(B)| + |Γ′3(B)|) ≤ O(∆ · |Γ|). Altogether, we conclude that
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∑
B∈B′ |Γ′(B)| ≤ O(∆ · |Γ|).

The final set E1 of edges that is the outcome of Theorem 3.5.1 is the union of the input set

E′ of edges and four other edge sets, Ẽ1, Ẽ2, Ẽ3 and Ẽ4, that we define next.

Sets Ẽ1 and Ẽ2. We let set Ẽ1 contain, for every pseudo-block B ∈ B′ and for every fake

edge e = (x, y) of B̃, all edges of G that are incident to x or y. From Observation 3.5.4 and the

definition of the set Γ′(B), it is immediate that |Ẽ1| ≤
∑
B∈B′ ∆·|Γ′(B)| ≤ O(∆2·|Γ|). We let

set Ẽ2 contain all edges incident to vertices of U . From Observation 3.5.2, |Ẽ2| ≤ O(∆ · |Γ|).

Set Ẽ3. We now define the set Ẽ3 of edges and identify a set C′1 of connected components

of H \ (Ẽ1 ∪ Ẽ2 ∪ Ẽ3), each of which contains at most µ vertices that serve as endpoints of

edges in E′ ∪ Ẽ1 ∪ Ẽ2 ∪ Ẽ3.

Consider the graph obtained from the forest T by deleting all marked vertices in it. It is

easy to verify that the resulting graph is a collection of disjoint paths, that we denote by Q.

Observe that the total number of paths in Q is bounded by the total number of fake edges in

graphs of
{
B̃ | B ∈ B′

}
, so |Q| ≤ O(∆ · |Γ|) from Observation 3.5.4. Next, we will process

the paths in Q one-by-one.

Consider now a path Q ∈ Q. Notice that, from the definition of marked vertices, for every

vertex v(B) ∈ Q, graph B̃ may contain at most two fake edges and at most four vertices

of Γ ∪ U , and all such vertices must be endpoints of the fake edges of B̃. For any sub-path

Q′ ⊆ Q, we define the graph H(Q′) as the union of all graphs B̃′, for all pseudo-blocks

B ∈ B(H) with v(B) ∈ V (Q′) (recall that graph B̃′ is obtained from graph B̃ by removing

all fake edges from it). The weight w(Q′) of the path Q′ is defined to be the total number

of vertices of H(Q′) that belong to Γ ∪ U . We need the following simple observation.

Observation 3.5.5. There is an efficient algorithm that computes, for every path Q ∈ Q, a

partition Σ(Q) of Q into disjoint sub-paths Q1, . . . , Qz, such that for all Qi ∈ Σ(Q), w(Qi) ≤
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µ/(2∆), and all but at most one path of Σ(Q) have weight at least µ/(4∆). Moreover, every

vertex of Q lies on exactly least one path of Σ(Q).

Proof. We start with Σ(Q) = ∅ and then iterate as long as w(Q) > µ/(2∆). In an iteration,

we let Q′ be the shortest sub-path of Q that contains one endpoint of Q and has weight at

least µ/(4∆). Since for every pseudo-block B with v(B) ∈ Q, |(Γ ∪ U) ∩ V (B̃)| ≤ 4 and

µ > 16∆, we get that w(Q′) ≤ µ/(2∆). We add Q′ to Σ(Q), delete all vertices of Q′ from

Q, and terminate the iteration. Once w(Q) ≤ µ/(2∆) holds, we add the current path Q to

Σ(Q) and terminate the algorithm.

Consider a sub-path Qi ∈ Σ(Q) and let Qi = (v(B1), . . . , v(Bx)). We assume that v(B1) is

an ancestor of v(Bx) in the forest T , and we denote by v(Bx+1) the unique child of v(Bx)

in the forest, if it exists. We denote by η(Qi) the set that consists of the endpoints of B1

and the endpoints of Bx+1 (if Bx+1 exists). Note that the only vertices that H(Qi) may

share with other graphs H(Qj) (for i 6= j) are the vertices of η(Qi). Moreover, for any path

Q′ 6= Q in Q and any sub-path Q′j ∈ Σ(Q′), the only vertices of H(Qi) that may possibly

belong to H(Q′j) are the vertices of η(Qi) and U ∩H(Qi). On the other hand, note that a

vertex u ∈ U may belong to at most ∆ super-blocks of Z(H). Therefore, for each u ∈ U ,

the number of graphs in {H(Qi) | Q ∈ Q, Qi ∈ Σ(Q)} such that u ∈ V (H(Qi)) \ η(Qi) is at

most ∆. Denote Σ =
⋃
Q∈QΣ(Q) and η =

⋃
Qi∈Σ η(Qi). We let Ẽ3 contain all edges of G

that are incident to the vertices of η. The following observation bounds the cardinality of

Ẽ3.

Observation 3.5.6. |Ẽ3| ≤ O(∆2 · |Γ|).

Proof. Consider any path Q ∈ Q and the corresponding subset Σ(Q) of its sub-paths. From

Observation 3.5.5, there is at most one path Qi ∈ Σ(Q) with w(Qi) < µ/(4∆). Denote

Σ′(Q) = Σ(Q) \ {Qi} and Σ′ =
⋃
Q∈QΣ′(Q). Observe that |Σ \ Σ′| ≤ |Q| ≤ O(∆ · |Γ|). We

claim that |Σ′| ≤ O(∆ · |Γ|). Note that this implies Observation 3.5.6, since every path in Σ
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contributes at most four vertices to set η, and the maximum vertex degree of a vertex in η

is at most ∆.

It remains to show |Σ′| ≤ O(∆ · |Γ|). Consider again some path Q ∈ Q. Each sub-path

Qi ∈ Σ′(Q) has weight w(Qi) ≥ µ/(4∆). Since µ > 16∆ and |η(Qi)| ≤ 4, there are at least

µ/(8∆) vertices of H(Qi) \ η(Qi) that belong to Γ ∪ U . Let S(Qi) be the set of all these

vertices. Note that every terminal vertex t ∈ Γ may belong to at most one set S(Qi) for

all paths Qi ∈ Σ′, and every vertex u ∈ U may belong to at most ∆ such sets. Therefore,

|Σ′| ≤ |Γ|+∆|U |
µ/(8∆)

≤ O(∆2 · |Γ|), since µ = Θ(∆ · log1.5 n).

Consider now the graph H ′ = H \ (Ẽ1 ∪ Ẽ2 ∪ Ẽ3). From the definition of Ẽ1, Ẽ2, Ẽ3, it is

immediate that, for every path Qi ∈ Σ, outG(V (H(Qi))) ⊆ E′∪Ẽ1∪Ẽ2∪Ẽ3. Therefore, for

every connected component C of H ′, either V (C) ⊆ V (H(Qi)), or V (C) ∩ V (H(Qi)) = ∅.

We let C′1 contain all connected components C of H ′, such that V (C) ⊆ V (H(Qi)) for some

path Qi ∈ Σ.

Observation 3.5.7. Each connected component C′1 contains at most µ vertices that are

endpoints of edges in E′ ∪ Ẽ1 ∪ Ẽ2 ∪ Ẽ3.

Proof. Let C ∈ C′1 be any component, and let Qi ∈ Σ be the path such that V (C) ⊆

V (H(Qi)). Let S(Qi) be the set of all vertices v ∈ V (Qi), such that v ∈ U ∪Γ∪η(Qi). From

the construction of the pathQi and the definition of w(Qi), |S(Qi)| ≤ w(Qi)+4 ≤ µ/(2∆)+4.

Notice that a vertex v of H(Qi) may be an endpoint of an edge in E′ ∪ Ẽ1 ∪ Ẽ2 ∪ Ẽ3 iff

v ∈ S(Qi), or v has a neighbor that lies in S(Qi). Therefore, the total number of vertices

of C that may be incident to edges of E′ ∪ Ẽ1 ∪ Ẽ2 ∪ Ẽ3 is at most (∆ + 1)|S(Qi)| ≤

(∆ + 1) · (µ/(2∆) + 4) ≤ µ.

Set Ẽ4. We now define the set Ẽ4 of edges. Let B′′ ⊆ B′ be the set of pseudo-blocks with

|V (B̃)| > 3. Recall that, for every pseudo-block B ∈ B′′, B̃′ is the graph obtained from B̃ by

deleting all its fake edges. We will define, for each pseudo-block B ∈ B′′, a set E∗(B) of edges
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of B̃′, that have the following useful property: for every bridge R ∈ RG(B̃′), all vertices of

L(R) lie on the boundary of a single face in the drawing of B̃′\E∗(B) induced by ρ
B̃

. (Notice

that this property already holds for all pseudo-blocks in B′ \B′′, since for each pseudo-block

B ∈ B′ \ B′′, graph B̃ is isomorphic to K3). We will then set Ẽ4 =
⋃
B∈B′′ E

∗(B).

In order to be able to bound |Ẽ4|, we start by setting up an accounting scheme. We use

Lemma 3.4.4 to compute, for each pseudo-blockB ∈ B′′, an embedding P
B̃

=
{
P
B̃

(e) | e ∈ A
B̃

}
of the set A

B̃
of fake edges of B̃ into paths that are internally disjoint from B̃ and are mu-

tually internally disjoint. Recall that all paths in P =
⋃
B∈B′′

(
P
B̃
\
{
P
B̃

(e∗
B̃

)
})

cause

edge-congestion at most 6 in G, where e∗
B̃

is the fake parent-edge for B, that connects the

endpoints of B (it is possible that e∗
B̃

is undefined).

Consider now some pseudo-block B ∈ B′′. Recall that ϕ∗ is some fixed optimal drawing of

G. We define a set χ(B) of crossings to be the union of (i) all crossings (e, e′) in ϕ∗, such

that either e or e′ (or both) are real edges of B̃; and (ii) all crossings (e, e′) in ϕ∗, such that

e, e′ lie on two distinct paths of P
B̃

(that is, e ∈ P
B̃

(e1), e′ ∈ P
B̃

(e2) and e1 6= e2 are two

distinct fake edges of B̃). We need the following simple observation.

Observation 3.5.8.
∑
B∈B′′ |χ(B)| ≤ O(OPTcr(G)).

Proof. Consider any crossing (e, e′) in the optimal drawing ϕ∗ of G. Recall that e, e′ may

belong to χ(B) in one of two cases: either at least one of e, e′ is a real edge of B̃; or e, e′ lie

on two distinct paths in P
B̃

. In particular, in the latter case, one of the two edges e, e′ must

lie on a path P
B̃

(ê), where ê 6= e∗
B̃

(that is, ê is not the fake parent-edge of B). Note that

there may be at most one pseudo-block B ∈ B′′ for which e is a real edge, and the same is

true for e′. Moreover, there are at most O(1) pseudo-blocks B ∈ B′′, such that edge e lies

on a path of P
B̃
\
{
P
B̃

(e∗
B̃

)
}

, and the same holds for e′. Therefore, there are at most O(1)

pseudo-blocks B ∈ B′′ with (e, e′) ∈ χ(B).

In order to construct the sets {E∗(B)}B∈B′′ , we process the pseudo-blocks in B′′ one by one,
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using the following lemma.

Lemma 3.5.9. There is an efficient algorithm, that, given a pseudo-block B ∈ B′′, computes

a subset E∗(B) ⊆ E(B̃′) of edges, such that, if ρ′ is the drawing of the graph B̃′ \ E∗(B)

induced by the unique planar drawing ρ
B̃

of graph B̃, then for every bridge R ∈ RG(B̃′), all

vertices of L(R) lie on the boundary of a single face in ρ′. Moreover, |E∗(B)| ≤ O((|χ(B)|+

|Γ′(B)|) · poly(∆ log n)).

Notice that Lemma 3.5.9 only considers bridges that are defined with respect to graph B̃′,

namely bridges in RG(B̃′). Graph B̃′ \ E∗(B) may not even be connected, and its bridges

in G can be completely different. However, this weaker property turns out to be sufficient

for us. We defer the proof of Lemma 3.5.9 to the end of Section 3.5.2. Now we complete the

proof of Theorem 3.5.1 using it.

We let Ẽ4 =
⋃
B∈B′′ E

∗(B). From Observations 3.5.4 and 3.5.8,

|Ẽ4| =
∑
B∈B′′

|E∗(B)| ≤
∑
B∈B′′

O
(
(|χ(B)|+ |Γ′(B)|) · poly(∆ log n)

)
≤ O((|Γ|+ OPTcr(G)) · poly(∆ log n)) ≤ O((|E′|+ OPTcr(G)) · poly(∆ log n)).

Lastly, we define the edge set E1 to be the union of edge sets E′, Ẽ1, Ẽ2, Ẽ3 and Ẽ4. From

the above discussion, |E1| ≤ O((|E′|+ OPTcr(G)) · poly(∆ log n)).

Recall that, in graph G \ (E′∪ Ẽ1∪ Ẽ2∪ Ẽ3), all vertices in the set Γ∪U are isolated. From

the definition of C′1, it is immediate that for any cluster C ∈ C′1, if a vertex of C is incident

to an edge in Ẽ4, then this vertex must lie in Γ∪U , and therefore C contains a single vertex.

Therefore, every cluster C ∈ C′1 remains a connected component of G \ E1, and it contains

at most µ vertices that are endpoints of edges in E1.

Denote H1 = G \ E1. Consider now a connected component C of H1 with C /∈ C′1, and a

block B in the block decomposition B(C) of C. Clearly, there is a block B0 ∈ B′ such that

B̃′0 contains B as a subgraph (this is because we have deleted all edges incident to vertices
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that serve as endoints of fake edges of every graph B̃a, for Ba ∈ B′). We then let ψ̂B be the

drawing of B induced by ρ
B̃0

, the unique planar drawing of B̃0. It is now enough to prove

the following claim.

Claim 3.5.10. For every connected component C of H1 with C 6∈ C′1, every pseudo-block B

in the block decomposition B(C) of C is good, with ψ̂B being its associated drawing.

Proof. Assume for contradiction that the claim is false. Let B ∈ B(C) be a bad pseudo-

block, and let R ∈ RG(B) be a bridge that is a witness for B and drawing ψ̂B . Recall that

there is a block B0 ∈ B with B ⊆ B̃′0. For brevity, we denote ρ = ρ
B̃0

, ρ′ = ρ′
B̃′0

, and denote

by ψ = ψ̂B the drawing of B induced by ρ′.

Let F be the set of faces in the drawing ψ of B. From Lemma 3.5.9, for every bridge

R′ ∈ RG(B̃′0), if L(R′) ∩ V (B) 6= ∅, then there is some face F ∈ F , such that all vertices of

L(R′)∩V (B) lie on the boundary of F in the drawing ψ. (If B0 ∈ B′\B′′, so B̃0 is isomorphic

to K3, this property must also hold). On the other hand, for every vertex v ∈ V (B̃0)\V (B),

there is a unique face F (v) ∈ F , such that the image of vertex v in ρ lies in the interior of

the face F (v).

Consider now the witness bridge R for B. Recall that TR ⊆ R is a tree whose leaves are

precisely the vertices of L(R). Assume first that V (TR)∩V (B̃0) = L(R). In this case, there

is some bridge R′ ∈ RG(B̃′0) that contains the tree TR, so L(R) ⊆ L(R′). However, from

Lemma 3.5.9, all vertices of L(R′) lie on the boundary of the same face in the drawing ρ′,

and therefore they also lie on the boundary of the same face in the drawing ψ. This leads

to a contradiction to R being a witness bridge for B and ψ.

Assume now that there is some vertex v ∈ V (TR) ∩ V (B̃0) that does not lie in L(R). We

will show that all vertices of L(R) must lie on the boundary of F (v), again leading to a

contradiction. Let u be an arbitrary vertex of L(R). Let P ⊆ TR be the unique path

connecting v to u in TR. Since the leaves of tree TR are precisely the vertices of L(R),

except for v, every vertex x of P lies outside V (B), and, if x ∈ V (B̃0), then the image of x
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in ρ lies in the interior of some face in F . Let v = v1, v2, . . . , vr = u be all vertices of P that

belong to V (B̃0), and assume that they appear on P in this order. It remains to prove the

following observation.

Observation 3.5.11. For all 1 ≤ i < r − 1, F (vi) = F (vi+1). Moreover, vertex vr lies on

the boundary of face F (vr−1).

Proof. Fix some index 1 ≤ i ≤ r − 1. Assume for contradiction that the observation is

false. Then there is some face F ′ ∈ F , such that vi lies in the interior of F ′, but vi+1

does not lie in the interior or on the boundary of F ′ (the latter case is only relevant for

i = r−1). Since the boundary of F ′ separates vi from vi+1, they cannot lie on the boundary

of the same face in the drawing ρ′ of B̃′0. Let σi be the subpath of P between vi and vi+1.

If σi consists of a single edge (vi, vi+1), then it is either a bridge in RG(B̃′0), or it is an

edge of B̃′0. In the former case, Lemma 3.5.9 ensures that the endpoints of σi may not be

separated by the boundary of a face of drawing ψ. In the latter case, the same holds since

the drawing ψ is planar. In either case, we reach a contradiction. Otherwise, there exists

a bridge R′ ∈ RG(B̃′2) containing σ′i, with vi, vi+1 ∈ L(R′). However, from Lemma 3.5.9,

it is impossible that the boundary of a face in the drawing ψ separates the two vertices, a

contradiction.

Proof of Lemma 3.5.9

In this section we provide the proof of Lemma 3.5.9. We fix a pseudo-block B ∈ B′′ through-

out the proof. For brevity, we denote Γ′ = Γ′(B) and we denote by ρ = ρ
B̃

the unique

planar drawing of B̃. Recall that vertex set Γ′ contains all terminals of Γ (that is, endpoints

of edges of E′) lying in B̃, all endpoints of all fake edges of B̃, and all separator vertices

in U ∩ V (B̃). The set Γ′ of vertices remains fixed throughout the algorithm. Abusing the
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notation, we call the vertices of Γ′ terminals throughout the proof.

Throughout the algorithm, we maintain a subgraph J of B̃ and gradually construct the set

E∗(B). Initially, we set E∗(B) = ∅ and J = B̃′, the graph obtained from B̃ by deleting all

its fake edges. Over the course of the algorithm, we will remove some edges from J and add

them to the set E∗(B). We will always use ρ′ to denote the drawing of the current graph J

induced by the drawing ρ of B̃.

Notice that a terminal of Γ′ may belong to the boundaries of several faces in the drawing

ρ′, which is somewhat inconvenient for us. As our first step, we remove all edges that are

incident to the terminals in Γ′ from J , and add them to E∗(B). Notice that now each

terminal of Γ′ becomes an isolated vertex and lies on the (inner) boundary of exactly one

face of the current drawing ρ′. Clearly, |E∗(B)| ≤ ∆ · |Γ′|.

From now on, we denote by F the set of all faces in the drawing ρ′ of the current graph J .

For every terminal t ∈ Γ′, there is a unique face F (t) ∈ F , such that t lies on the (inner)

boundary of F (t). For a face F ∈ F , we denote by Γ(F ) ⊆ Γ′ the set of all terminals t with

F (t) = F .

Bad Faces. We denote by R = RG(B̃′) the set of bridges for the graph B̃′ in G. For each

bridgeR ∈ R, all vertices in L(R) must be terminals. Let F(R) = {F ∈ F | L(R) ∩ Γ(F ) 6= ∅}

be the set of all faces in the drawing ρ′ of the current graph J , whose inner boundaries con-

tain terminals of L(R). We say that a bridge R ∈ R is bad for J iff |F(R)| > 1, namely,

not all vertices of L(R) lie on the boundary of the same face of F . In such a case, we say

that every face in F(R) is a bad face, and for each face F ∈ F(R), we say that bridge R is

responsible for F being bad. As the algorithm progresses and the graph J changes, so does

the set F . The set R of bridges does not change over the course of the algorithm, and the

definitions of the sets F(R) of faces for R ∈ R and of bad faces are always with respect to

the current graph J and its drawing. The main subroutine that we use in our algorithm is
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summarized in the following lemma.

Lemma 3.5.12. There is an efficient algorithm, that, given the current graph J and its

drawing ρ′, computes a subset Ê of at most O
(
(|χ(B)|+ |Γ′|) · poly(∆ log n)

)
edges, such

that, if n1 is the number of bad faces in the drawing ρ′ of J , and n2 is the number of bad

faces in the drawing of J \ Ê induced by ρ′, then n2 ≤ n1/2.

It is easy to complete the proof of Lemma 3.5.9 using Lemma 3.5.12. As long as the drawing

ρ′ of the current graph J contains bad faces (note that the number of bad faces is always

either 0 or at least 2), we apply the algorithm from Lemma 3.5.12 to graph J to compute

a set Ê of edges, then delete the edges of Ê from J and add them to E∗(B), and continue

to the next iteration. Once the drawing ρ′ of the current graph J contains no bad faces,

the algorithm terminates. It is easy to see that the number of iterations in the algorithm

is O(log n). Therefore, at the end, |E∗(B)| ≤ O
(
(|χ(B)|+ |Γ′|) · poly(∆ log n)

)
. Consider

now the graph J obtained at the end of the algorithm. Since the drawing ρ′ of J contains

no bad faces, for every bridge R ∈ R, there is a single face of ρ′ whose boundary contains all

vertices of L(R) (we emphasize that the graph J is not connected, and the vertices of L(R)

are isolated since they are terminals; but the drawing of each such vertex and the face to

whose boundary it belongs are fixed by the original drawing of B̃′ induced by ρ). In order

to complete the proof of Lemma 3.5.9, it suffices to prove Lemma 3.5.12.

From now on we focus on the proof of Lemma 3.5.12. Throughout the proof, we fix the

drawing ρ′ of the current graph J . Consider a pair F, F ′ of faces in F . Let P be the

shortest path connecting F to F ′ in the dual graph of J with respect to ρ′. This path

defines a curve γ(F, F ′), that starts at the interior of F , terminates at the interior of F ′, and

intersects the image of J only at edges. Let E(γ(F, F ′)) be the set of all edges whose image

intersects γ(F, F ′). Equivalently, γ(F, F ′) can viewed as the curve that, among all curves γ

connecting a point in the interior of F to a point in the interior of F ′ that only intersects

the image of J at its edges, minimizes |E(γ)|. We define the distance between F and F ′ to
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be dist(F, F ′) = |E(γ(F, F ′))|. Equivalently, dist(F, F ′) is the minimum cardinality of a set

Ẽ ⊆ E(J) of edges, such that, in the drawing of J \ Ẽ induced by ρ′, the faces F and F ′ are

merged into a single face.

Let F ′ ⊆ F be the set of bad faces. For each F ∈ F ′, denote F̂ = arg minF ′∈F ′
{
dist(F, F ′)

}
.

We also denote Π =
{

(F, F̂ ) | F ∈ F ′
}

. We define Ê =
⋃
F∈F ′ E(γ(F, F̂ )). In other words,

set Ê contains, for every pair (F, F̂ ) ∈ Π, the set E(γ(F, F̂ )) of edges. Notice that, since a

bad face may participate in several pairs in Π, it is possible that more than two faces may

be merged into a single face. We remove the edges of Ê from J . Note that no new bad

faces may be created, since the bad faces are only defined with respect to the original set

RG(B̃′) of bridges. Therefore, the number of bad faces decreases by at least a factor of 2. It

now remains to show that |Ê| ≤ O
(
(|Γ′|+ |χ(B)|) · poly(∆ log n)

)
. This is done in the next

claim, whose proof completes the proof of Lemma 3.5.12.

Claim 3.5.13. |Ê| ≤ O
(
(|Γ′|+ |χ(B)|) ·∆ log n

)
.

Proof. For each F ∈ F ′, we denote c(F ) = dist(F, F̂ ). To prove Claim 3.5.13, it is sufficient

to show that
∑
F∈F ′ c(F ) ≤ O

(
(|Γ′|+ |χ(B)|) ·∆ log n

)
. We partition the set F ′ of bad

faces into O(log n) classes F ′1, . . . ,F
′
z, for z ≤ O(log n) as follows. For each 1 ≤ i ≤ z, face

F ∈ F ′ lies in class F ′i iff 2i ≤ c(F ) < 2i+1. Clearly, there must be an index i∗, such that∑
F∈F ′

i∗
c(F ) ≥

∑
F ′∈F ′ c(F

′)/O(log n). We denote F ′i∗ = F∗ and c∗ = 2i
∗
. Therefore, for

every face F ∈ F∗, c∗ ≤ c(F ) < 2c∗. Since each bad face contains at least one terminal of

Γ′ on its inner boundary, |F ∗| ≤ |Γ′|. Therefore, if c∗ is upper bounded by a constant, then∑
F ′∈F ′ c(F

′) ≤ O(c∗ · |F∗| · log n) ≤ O(|Γ′| log n). We will assume from now on that c∗ is

greater than some large constant. We use the following claim.

Claim 3.5.14. |F∗| ≤ O(|χ(B)| ·∆/c∗).
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Note that Claim 3.5.14 completes the proof of Claim 3.5.13, since

∑
F ′∈F ′

c(F ′) ≤ O(log n) ·
∑
F∈F∗

c(F ) ≤ O(|F∗| · c∗ · log n) ≤ O(|χ(B)|∆ log n).

From now on we focus on the proof of Claim 3.5.14. The main idea of the proof is to associate,

with each face F ∈ F∗, a collection χF ⊆ χ(B) of Ω(c∗/∆) crossings of χ(B), such that

each crossing in χ(B) appears in at most O(1) sets of {χF }F∈F∗ . Clearly, this implies that

|F∗| ≤ O(|χ(B)|∆/c∗). In order to define the sets χF of crossings, we carefully construct

a witness graph W (F ) ⊆ B̃ for each face F ∈ F∗, such that, for every pair F, F ′ ∈ F∗ of

distinct faces, graphs W (F ) and W (F ′) are disjoint. We define the set χF of crossings for

the face F by carefully considering the crossings in which the edges of W (F ) participate in

the optimal drawing ϕ∗ of G. The remainder of the proof consists of three steps. In the first

step, we define a “shell” around each face F . In the second step, we use the shells in order to

define the witness graphs {W (F )}F∈F∗ . In the third and the last step, we use the witness

graphs in order to define the collections χF ⊆ χ(B) of crossings associated with each face

F ∈ F∗.

Step 1: Defining the Shells. We denote z = bc∗/(16∆)c. In this step we define, for

every face F ∈ F∗, a shell H(F ) = {L1(F ), . . . , Lz(F )}, which is a collection of z disjoint

subgraphs L1(F ), . . . , Lz(F ) of J , that we refer to as layers.

We now fix a face F ∈ F∗ and define its shell H(F ) inductively, as follows. We consider

the drawing ρ′ of the graph J , and we view the face F as the outer face of the drawing. We

let L1(F ) be the boundary of the face F (note that this boundary may not be connected).

Assume now that we have defined layers L1(F ), . . . , Li−1(F ). In order to define Li(F ), we

again consider the drawing ρ′ of J , with F being its outer face, and we delete from this

drawing the images of all vertices of L1(F ), . . . , Li−1(F ), and of all edges that are incident

to these vertices. We then let Li(F ) be the boundary of the outer face in the resulting plane
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graph. This completes the definition of the shell H(F ) = {L1(F ), . . . , Lz(F )}. We denote

Λ(F ) =
⋃z
i=1 Li(F ).

In order to analyze the properties of the shells, we need the following notion of J-normal

curves.

Definition 10. Given a plane graph Ĵ and a curve γ, we say that γ is a Ĵ-normal curve iff

it intersects the image of Ĵ only at the images of its vertices.

We state some simple properties of the shells in the next observation and its two corollaries.

Observation 3.5.15. Let H(F ) = {L1(F ), . . . , Lz(F )} be a shell for some face F ∈ F∗.

Then for each 1 ≤ i ≤ z, for every vertex v ∈ Li(F ), there is a J-normal curve γ connecting

v to a point in the interior of F , such that γ intersects exactly i vertices of J – one vertex

from each graph L1(F ), . . . , Li(F ).

Proof. It suffices to show that, for each 1 < j ≤ z and for every vertex v′ ∈ Lj(F ), there

is a vertex v′′ ∈ Lj−1(F ) and a curve γj connecting v′ to v′′, intersecting J only at its

endpoints. The existence of the curve γj follows immediately from the definition of Lj(F ).

Indeed, consider the drawing obtained from ρ′ after we delete the images all vertices of

L1(F ), . . . , Lj−2(F ) together with all incident edges from it. Then there must be a face F ′

in the resulting drawing, that contains v′ on its boundary, and also contains, on its boundary,

another vertex v′′ ∈ Lj−1(F ). This is because v′ does not lie on the boundary of the outer

face in the current drawing, but it lies on the boundary of the outer face in the drawing

obtained from the current one by deleting all vertices of Lj−1(F ) and all incident edges from

it. Therefore, there must be a curve γj connecting v′ to v′′, that is contained in F ′ and

intersects J only at its endpoints.

Corollary 3.5.16. Let F ∈ F∗ and let F ′ 6= F be any other bad face in F ′. Then graph

Λ(F ) contains no vertex that lies on the boundary of F ′.
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Proof. Assume for contradiction that the claim is false, and let v ∈ Λ(F ) be a vertex that

lies on the boundary of F ′. Then from Observation 3.5.15, there is a J-normal curve γ in the

drawing ρ′ of J , connecting v to a point in the interior of F , such that γ intersects at most

z ≤ c∗/(16∆) vertices of J . Let U ⊆ V (J) be the set of these vertices. By slightly adjusting

γ we can ensure that it originates in the interior of F ′, terminates in the interior of F , does

not intersect any vertices of J , and only intersects those edges of J that are incident to the

vertices of U . But then dist(F, F ′) ≤ |U | ·∆ < c∗ ≤ c(F ), a contradiction to the definition

of c(F ).

Notice that, since |F ′| ≥ 2, Corollary 3.5.16 implies, that for every face F ∈ F∗, Lz(F ) is

non-empty.

Corollary 3.5.17. Let F, F ′ ∈ F∗ be two distinct faces. Then Λ(F ) ∩ Λ(F ′) = ∅.

Proof. Assume for contradiction that the claim is false, and let v be a vertex that lies in

both Λ(F ) and Λ(F ′). Then from Observation 3.5.15, there is a J-normal curve γ1 in the

drawing ρ′ of J , connecting v to a point in the interior of F , such that γ1 contains images of

at most z ≤ c∗/(16∆) vertices of J . Similarly, there is a J-normal curve γ2, connecting v to

a point in the interior of F ′, such that γ2 contains images of at most c∗/(16∆) vertices of J .

Let U be the set of all vertices of J whose images lie on either γ1 or γ2. By concatenating the

two curves and slightly adjusting the resulting curve, we can obtain a curve that originates

in the interior of F , terminates in the interior of F ′, does not intersect any vertices of

J , and only intersects those edges of J that are incident to the vertices of U . But then

dist(F, F ′) ≤ |U | ·∆ < c∗ ≤ c(F ), a contradiction to the definition of c(F ).

Step 2: Computing the Witness Graphs. In this step we compute, for every face

F ∈ F∗, its witness graph W (F ). The witness graph W (F ) consists of two parts. The

first part is a collection Y(F ) = {Y1(F ), . . . , Yz−3(F )} of z − 3 vertex-disjoint cycles. We

will ensure that Yi(F ) ⊆ Li(F ) for all 1 ≤ i ≤ z − 3. The second part is a collection
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Q(F ) = {Q1(F ), Q2(F ), Q3(F )} of three vertex-disjoint paths in graph B̃, each of which

has a non-empty intersection with each cycle in Y(F ). Graph W (F ) is defined to be the

union of the cycles in Y(F ) and the paths in Q(F ). The main challenge in this part is to

define the path sets {Q(F )}F∈F∗ so that the resulting witness graphs are disjoint.

We now fix a face F ∈ F∗, and we start by defining the collection Y(F ) = {Y1(F ), . . . , Yz−3(F )}

of cycles for it. Let R ∈ R be the bad bridge that is responsible for F being a bad face.

Then there must be a bad face F ∈ F ′, such that F 6= F , and at least one vertex of L(R) lies

on the (inner) boundary of F . Let P ∗(F ) be any path that is contained in R and connects a

vertex of L(R) on the boundary of F to a vertex of L(R) on the boundary of F . Note that

path P ∗(F ) is internally disjoint from B̃′.

From Corollary 3.5.16, no vertex of F may lie in Λ(F ). Therefore, for all 1 ≤ i ≤ z, there

is a simple cycle Yi(F ) ⊆ Li(F ) that separates F from F . In other words, if we denote by

D(Yi(F )) the unique disc in the drawing ρ′ with F as the outer face of the drawing, whose

boundary is Yi(F ), then F ⊆ D(Yi(F )), and F is disjoint from the interior of D(Yi(F )).

Clearly, the boundary of F is contained in D(Yz(F )), and D(Yz(F )) ( D(Yz−1(F )) (

· · · ( D(Y1(F )), while the boundary of F is disjoint from the interior of D(Y1(F )). We let

Y(F ) = {Y1(F ), . . . , Yz−3(F )} be the collection of disjoint cycles associated with F (we note

that we exclude that last three cycles Yz−2(F ), . . . , Yz(F ) on purpose).

It remains to define a collection Q(F ) of three disjoint paths in graph B̃, each of which

connects a vertex of Y1(F ) to a vertex of Yz−3(F ). We emphasize that, while the cycles

in Y(F ) are all contained in the current graph J ⊆ B̃′ that only contains real edges of B̃

that have not been deleted yet, the paths in Q(F ) are defined in graph B̃ and are allowed

to contain fake edges. Since graph B̃ is 3-connected, it is not hard to see that such a

collection Q(F ) of paths must exist. However, we would like to ensure that all paths in the

set
⋃
F ′∈F∗ Q(F ′) are mutually vertex-disjoint. In order to achieve this, we show in the next

claim that there exist a desired set Q(F ) of paths that only uses vertices in Λ(F ). Since all
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graphs in
{

Λ(F ′)
}
F ′∈F∗ are mutually vertex-disjoint, the path sets

{
Q(F ′)

}
F ′∈F∗ are also

mutually vertex-disjoint. The proof uses the fact that we have left the “padding” of three

layers Lz−2(F ), Lz−1(F ), Lz(F ) between the cycles in Y(F ) and J \ Λ.

Claim 3.5.18. For every face F ∈ F∗, there is a collection Q(F ) of three vertex-disjoint

paths in graph B̃, where each path connects a vertex of Y1(F ) to a vertex of Yz−3(F ), and

only contains vertices of Λ(F ).

Proof. Fix some face F ∈ F∗. Since B̃ is 3-connected, there must be a collection Q of three

vertex-disjoint paths in graph B̃, each of which connects a vertex of Y1(F ) to a vertex of

Yz−3(F ). Among all such sets Q of paths we select the one that minimizes the number of

vertices of V (B̃) \ V (Λ(F )) that belong to the paths in Q. We now claim that no vertex of

V (B̃) \ V (Λ(F )) may lie on a path in Q.

Assume that this is false, and let v ∈ V (B̃)\V (Λ(F )) be any vertex that lies on some path in

Q. Let graph K be the union of graph Λ(F ) and the paths in Q. From the definition of the

paths in Q, graph K \ {v} does not contain three vertex-disjoint paths that connect vertices

of Y1(F ) to vertices of Yz−3(F ). In particular, there are two vertices x, y ∈ V (K) \ {v},

such that in graph K \ {v, x, y}, there is no path connecting a vertex of Y1(F ) to a vertex of

Yz−3(F ). We will prove that this is false, reaching a contradiction. Notice that each of the

vertices v, x, y must lie on a distinct path in Q. We let Q ∈ Q be the path that contains v, so

Q does not contain x or y. Notice that, from the definition of shells, for each z − 3 < j ≤ z,

graph Lj(F ) must contain a simple cycle Xj that separates v from every cycle in Y(F ) in

the drawing ρ′ of J . At least one of these three cycles X ∈ {Xz−2, Xz−1, Xz} is disjoint

from x and y. Notice that path Q must intersect the cycle X (this is since the drawing ρ′

of J is the drawing induced by the unique planar drawing ρ
B̃

of B̃, and so X separates the

cycles of Y(F ) from v in ρ
B̃

as well). We view the path Q as originating at some vertex

a ∈ V (Y1(F )) and terminating at some vertex b ∈ V (Yz−3(F )). Let v1 be the first vertex of

Q that lies on X, and let v2 be the last vertex of Q that lies on X. Then we can use the
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segment of Q from a to v1, the cycle X, and the segment of Q from v2 to b to construct a

path connecting a to b in graph K. Moreover, neither of these three graphs may contain a

vertex of {x, y, v}, and so K \ {x, y, v} contains a path connecting a vertex of Y1(F ) to a

vertex of Yz−3(F ), a contradiction.

The witness graph W (F ) is defined to be the union of all cycles in Y(F ) and the three

paths in Q(F ). Note that, from Corollary 3.5.17, all witness graphs in {W (F ) | F ∈ F∗}

are mutually vertex-disjoint. We emphasize that the cycles of Y(F ) only contain real edges

of B̃ (that belong to J), while the paths in Q(F ) may contain fake edges of B̃.

Step 3: Defining the Sets of Crossings. The goal of this step is to define, for each face

F ∈ F∗, a set χF ⊆ χ(B) of Ω(c∗/∆) crossings, such that each crossing in χ(B) appears in at

most two sets of {χF }F∈F∗ . This will imply that |F∗| ≤ O(|χ(B)| ·∆/c∗), thus concluding

the proof of Claim 3.5.14.

We now fix a face F ∈ F∗ and define the set χF of crossings. We will first partition the

graph W (F ) into z′ = b(z − 3)/3c disjoint subgraphs W1(F ), . . . ,Wz′(F ), each of which

consists of three consecutive cycles in Y(F ), and a set of three paths connecting them. Each

such new graph will contribute exactly one crossing to χF . Recall that z = Θ(c∗/∆), so

z′ = Θ(c∗/∆).

We now fix an index 1 ≤ i ≤ z′, and define the corresponding graph Wi(F ). We start

with the set Yi(F ) = {Y3i−2(F ), Y3i−1(F ), Y3i(F )} of three cycles. Additionally, we define

a collection Qi(F ) of three disjoint paths, connecting vertices of Y3i−2(F ) to vertices of

Y3i(F ), as follows. Consider any of the three paths Q ∈ Q(F ). We view Q as originating

at a vertex a ∈ Y1(F ) and terminating at a vertex b ∈ Yz−3(F ). From the definition of

the cycles, path Q must intersect every cycle in Y(F ). We let v be the last vertex of Q

that lies on Y3i−2(F ), and we let v′ be the first vertex that appears on Q after v and lies

on Y3i(F ). We let Qi be the segment of Q between v and v′. Notice that Qi originates
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at a vertex of Y3i−2(F ), terminates at a vertex of Y3i(F ), and the inner vertices of Qi are

disjoint from all cycles in Y(F ) except for Y3i−1 (that Qi must intersect). Moreover, in the

drawing ρ′ of J where F is viewed as the outer face of the drawing, the interior of the image

of Qi is contained in D(Y3i−2(F )) \ D(Y3i(F )). We let Qi(F ) =
{
Qi | Q ∈ Q(F )

}
be the

resulting set of three paths, containing one segment from each path in Q(F ). Initially, we

let the graph Wi(F ) be the union of the cycles in Yi(F ) and the paths in Qi(F ). Notice

that for all 1 ≤ i < i′ ≤ z′, Wi(F ) ∩Wi′(F ) = ∅. For convenience, we rename the three

cycles Y3i−2(F ), Y3i−1(F ), Y3i(F ) in Yi by Y 1
i (F ), Y 2

i (F ) and Y 3
i (F ), respectively. Next, we

slightly modify the graph Wi(F ), as follows. We let Q′i(F ) be a set of 3 vertex-disjoint paths

in Wi(F ) that connect vertices of Y 1
i (F ) to vertices of Y 3

i (F ) and are internally disjoint

from V (Y 1
i (F ))∪V (Y 3

i (F )), and among all such paths, we choose those that contain fewest

vertices of V (Wi(F )) \
(⋃3

j=1 V (Y
j
i (F ))

)
in total, and, subject to this, contain fewest edges

of E(Wi(F )) \
(⋃3

j=1E(Yi(F ))
)

. Clearly, set Q′i(F ) of paths is well defined, since we can

use the set Qi(F ) of paths. We discard from Wi(F ) all vertices and edges except for those

lying on the cycles in Yi(F ) and on the paths in Qi(F ). This finishes the definition of the

graph Wi(F ).

To recap, graph Wi(F ) is the union of (i) three cycles Y 1
i (F ), Y 2

i (F ) and Y 3
i (F ); each of

the three cycles is contained in graph J and only contains real edges of graph B̃, and (ii)

a set Q′i(F ) of three disjoint paths, each of which connects a distinct vertex of Y 1
i (F ) to a

distinct vertex of Y 3
i (F ), and is internally disjoint from V (Y 1

i (F )) ∪ V (Y 3
i (F )). Set Q′i(F )

of paths is chosen to minimize the number of vertices of V (Wi(F )) \
(⋃3

j=1 V (Y
j
i (F ))

)
that

lie on the paths. The paths in Q′i(F ) are contained in graph B̃ and may contain fake edges.

All resulting graphs Wi(F ) for all F ∈ F∗ and 1 ≤ i ≤ z′ are disjoint from each other. Note

that each such graph Wi(F ) ⊆ B̃ is a planar graph. We need the following claim.

Claim 3.5.19. For each F ∈ F∗ and 1 ≤ i ≤ z′, if ψ is any planar drawing of Wi(F )

on the sphere, and D,D′ are the two discs whose boundary is the image of Y 2
i (F ), then the

images of Y 1
i (F ), Y 3

i (F ) cannot lie in the same disc in
{
D,D′

}
(in other words, the image
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of Y 2
i (F ) separates the images of Y 1

i (F ) and Y 3
i (F )).

Proof. Let W be the graph obtained from Wi(F ) after all degree-2 vertices are suppressed.

We denote by Y 1, Y 2 and Y 3 the cycles corresponding to Y 1
i (F ), Y 2

i (F ) and Y 3
i (F ) in W

respectively, and we denote by Q1, Q3 and Q3 the paths corresponding to the paths in Q′i(F )

in W . Notice that every vertex of W must lie on one of the cycles Y 1, Y 2, Y 3, and on one of

the paths Q1, Q2, Q3. Moreover, graph W may not have parallel edges (due to the minimality

of the set Q′i(F ) of paths).

Observe that, from the definition of the cycles in Y(F ), in the unique planar drawing ρ
B̃

of

B̃ on the sphere, the image of Y 2 separates the images of Y 1 and Y 3. Therefore, there exists

a planar drawing of W on the sphere, such that, if D,D′ are the two discs whose boundary

is the image of Y 2, then the images of Y 1 and Y 3 do not lie in the same disc in
{
D,D′

}
.

Therefore, it suffices to show that W is a 3-connected graph.

Assume for contradiction that this is not the case, and let {x, y} be a pair of vertices of

W , such that there is a partition (X,X ′) of V (W ) \ {x, y}, with X,X ′ 6= ∅, and no edge

of W connects a vertex of X to a vertex of X ′. For brevity, we denote Y =
{
Y 1, Y 2, Y 3

}
,

Q = {Q1, Q2, Q3}, and we will sometimes say that a cycle Y ∈ Y is contained in X (or in

X ′) if V (Y ) ⊆ X (or V (Y ) ⊆ X ′, respectively). We will use a similar convention for paths

in Q.

We first claim that both x, y must belong to the same cycle of Y . Indeed, assume for

contradiction that they belong to different cycles. Then there must be a path Q ∈ Q that

is disjoint from x, y, with all vertices of Q lying in one of the two sets X,X ′ (say X). But,

since Q intersects every cycle in Y , for each cycle Y ∈ Y , all vertices of V (Y ) \ {x, y} lie in

X (as Y \ {x, y} is either a cycle or a connected path). Therefore, X ′ = ∅, an contradiction.

We denote by Y the cycle in Y that contain vertices x, y. Note that each of the remaining

cycles must be contained in X or contained in X ′. We now consider two cases.
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The first case is when there is some path Q ∈ Q that contains both vertices x and y; assume

w.l.o.g. that it is Q1. Since path Q2 is disjoint from x and from y, it must be contained

in one of the two sets X,X ′; assume w.l.o.g. that it is X. Since Q2 intersects every cycle

in
{
Y 1, Y 2, Y 3

}
, and two of these cycles are disjoint from x, y, we get that both cycles in{

Y 1, Y 2, Y 3
}
\ {Y } lie in X. Since path Q3 is disjoint from x, y but intersects each cycle

in
{
Y 1, Y 2, Y 3

}
, it must be contained in X as well. Therefore, every vertex of X ′ ∪ {x, y}

must belong to Y ∩Q1. But then all vertices of X ′ must have degree 2, a contradiction.

It remains to consider the case where x and y lie on two different paths of {Q1, Q2, Q3}, say

Q1 and Q2. Then path Q3 is disjoint from x, y, and is contained in one of the sets X,X ′;

assume without loss of generality that it is X. Notice that path Q3 contains vertices from

all three cycles in Y , therefore, each of the two cycles in Y \ {Y } is also contained in X. Set

X ′ then contains vertices of a single cycle in Y – the cycle Y (that contains the vertices x

and y). Since the paths Q1 and Q2 connect vertices of Y 1 to vertices of Y 3, and each of

them has one endpoint in X and another in X ′, Y 6= Y 2 must hold. We assume without

loss of generality that Y = Y 1 (the case where Y = Y 3 is symmetric). Therefore, every

vertex of X ′ ∪{x, y} lies on cycle Y 1, and on either path Q1 or path Q2. However, from our

construction of set Q′i(F ), each path of Q contains exactly one vertex of Y1 (which serves as

its endpoint). Since each of the paths Q1, Q2 contains one vertex of {x, y} that lies on Y1,

it follows that X ′ = ∅, a contradiction.

We conclude that graph W is 3-connected and therefore has a unique planar drawing – the

drawing induced by the drawing ρ
B̃

of B̃. In that drawing (on the sphere), the image of

cycle Y 2 separates the images of cycles Y 1 and Y 3. Therefore, in every planar drawing of

W on the sphere, the image of Y 2 separates the images of Y 1 and Y 3. Since graph Wi(F )

is obtained from W by subdividing some of its edges, in every planar drawing of Wi(F ) on

the sphere, the image of Y 2
i (F ) separates the images of Y 1

i (F ) and Y 3
i (F ).

Lastly, we use the following claim to associate a crossing of χ(B) with the graph Wi(F ).
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Claim 3.5.20. Consider some face F ∈ F∗ and index 1 ≤ i ≤ z′. Let ϕ∗ be the fixed

optimal drawing of the graph G. Then there is a crossing (e, e′) in this drawing, such that:

• either at least one of the edges e, e′ is a real edge of B̃ that lies in Wi(F ); or

• there are two distinct fake edges e1, e2 ∈ E(B̃), that belong to Wi(F ), such that e ∈

P (e1) and e′ ∈ P (e2), where P (e1), P (e2) ∈ P
B̃

are the embeddings of the fake edges

e1, e2, respectively.

Assuming that the claim is correct, the crossing (e, e′) must lie in χ(B). We denote by χFi

the crossing (e, e′) obtained by applying Claim 3.5.20 to graph Wi(F ). We then set χF ={
χFi | 1 ≤ i ≤ z′

}
. It is easy to verify that χF ⊆ χ(B), and that it contains z′ = Ω(c∗/∆)

distinct crossings. Moreover, since all witness graphs in {W (F ) | F ∈ F∗} are disjoint from

each other, each crossing in χ(B) appears in at most two sets of {χF }F∈F∗ . It remains to

prove Claim 3.5.20.

Proof of Claim 3.5.20. We fix a face F ∈ F∗ and an index 1 ≤ i ≤ z′. Consider the fixed

optimal drawing ϕ∗ of graph G on the sphere. If this drawing contains a crossing (e, e′),

where at least one of the edges e, e′ is a real edge of B̃ that lies in Wi(F ), then we are done.

Therefore, we assume from now on that this is not the case. In particular, we can assume

that the edges of the cycles Yi(F ) do not participate in any crossings in ϕ∗ (recall that all

edges of these cycles are real edges of B̃.)

Therefore, the image of cycle Y 2
i (F ) in ϕ∗ is a simple closed curve. Let D,D′ be the two

discs whose boundaries are Y 2
i (F ). We claim that the images of both remaining cycles,

Y 1
i (F ), Y 3

i (F ) must lie inside a single disc in
{
D,D′

}
.

Recall that we have defined a path P ∗(F ), that is contained in some bridge R ∈ R, and

connects some vertex v on the boundary of F to some vertex v′ on the boundary of F . Since

both v, v′ lie in B̃, and since graph B̃ is connected, there is a path P in B̃ that connects v to

v′; we view path P as originating from v and terminating at v′. Since each cycle Y ∈ Yi(F )
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separates the boundary of F from the boundary of F in the drawing ρ′ of J , and since

J ⊆ B̃ and ρ′ is the drawing of J induced by the planar drawing ρ
B̃

of B̃, path P must

intersect every cycle in Yi(F ). We let x be the first vertex of P that lies on cycle Y 1
i (F ),

and y the last vertex on P that lies on cycle Y 3
i (F ). Let P ′ be the sub-path of P connecting

v to x, and let P ′′ be the sub-path of P connecting y to v′. Notice that both paths are

internally disjoint from the cycles in Yi(F ). Next, we denote by P̂ the path that is obtained

by concatenating the paths P ′, P ∗ and P ′′. Therefore, path P̂ connects a vertex x ∈ Y 1
i (F )

to a vertex y ∈ Y 3
i (F ), and it is internally disjoint from the cycles in Yi(F ). Note however

that path P̂ may contain fake edges of B̃. For every fake edge e ∈ A
B̃

that lies on P̂ , we

replace e with its embedding P (e) ∈ P
B̃

given by using Lemma 3.4.4. Recall that the lemma

guarantees that the path P (e) is internally disjoint from the vertices of B̃, and that all paths

in P
B̃

=
{
P
B̃

(e′) | e′ ∈ A
B̃

}
are mutually internally disjoint. Let P̂ ′ be the path obtained

from P̂ after we replace every fake edge on P̂ with its corresponding embedding path. Notice

that P̂ ′ still connects x to y and it is still internally disjoint from all cycles in Yi(F ) (that are

also present in G, as they only contain real edges). If the images of the cycles Y 1
i (F ), Y 3

i (F )

are contained in distinct discs in
{
D,D′

}
, then the endpoints of the path P̂ ′ lie on opposite

sides of the image of Y 2
i (F ). Since path P̂ ′ is disjoint from cycle Y 2

i (F ), at least one edge of

Y 2
i (F ) must participate in a crossing in ϕ∗, a contradiction. Therefore, we can assume from

now on that the images of both cycles Y 1
i (F ), Y 3

i (F ) lie inside a single disc in
{
D,D′

}
(say

D).

Next, we use the drawing ϕ∗ of G on the sphere in order to define a corresponding drawing

ϕ of graph Wi(F ), as follows. Recall that every vertex and every real edge of Wi(F ) belong

to G, so their images remain unchanged. Consider now some fake edge e ∈ E(Wi(F )). Let

P (e) be the path in G into which this edge was embedded, and let γ(e) be the image of this

path in ϕ∗ (obtained by concatenating the images of its edges). If curve γ(e) crosses itself

then we delete loops from it, until it becomes a simple open curve, and we draw the edge e

along the resulting curve. Recall that all paths that are used to embed the fake edges of B̃
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are internally disjoint from V (B̃) and internally disjoint from each other.

Consider now the resulting drawing ϕ of Wi(F ). As before, the edges of the cycles in Yi(F )

do not participate in crossings in ϕ, and, if we define the discs D,D′ as before (the discs

whose boundary is Y 2
i (F )), then the images of Y 1

i (F ), Y 2
i (F ) lie in the same disc D. From

Claim 3.5.19, the drawing ϕ of Wi(F ) is not planar. Let (e1, e2) be any crossing in this

drawing. It is impossible that e1 or e2 are real edges of Wi(F ), since we have assumed that

no real edges of Wi(F ) participate in crossings in ϕ∗. Therefore, e1, e2 must be two distinct

fake edges of Wi(F ), such that there are edges e ∈ P (e1), e′ ∈ P (e2) whose images in ϕ∗

cross. �

3.5.3 Stage 2: Obtaining a Decomposition into Acceptable Clusters

In this subsection we complete the proof of Theorem 3.3.1. We start with a 3-connected

graph G with maximum vertex degree ∆, and a planarizing set E′ of edges of G. We then

use Theorem 3.5.1 to compute a subset E1 of edges of G, with E′ ⊆ E1, such that |E1| ≤

O
(
(|E′|+ OPTcr(G)) · poly(∆ log n)

)
, and a set C′1 of connected components of G\E1, each

of which contains at most µ vertices that are incident to edges of E1.

The remainder of the algorithm is iterative. We use a parameter α′ = 8∆α = 1
16αARV(n) log3/2 n

.

Recall that α = 1
128∆αARV(n) log3/2 n

is the well-linkedness parameter from the definition of

type-2 acceptable clusters. Throughout the algorithm, we maintain a set Ê of edges of G,

starting with Ê = E1, and then gradually adding edges to Ê. We also maintain a set A

of fake edges, initializing A = ∅. We denote Ĥ = G \ Ê with respect to the current set

Ê, and we let Ĉ be the set of connected components of Ĥ ∪ A, that we refer to as clusters.

We call the endpoints of the edges of Ê terminals, and denote by Γ̂ the set of terminals.

We will ensure that edges of A only connect pairs of terminals. We will also maintain an
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embedding P = {P (e) | e ∈ A} of the fake edges, where for each edge e = (u, v) ∈ A, path

P (e) is contained in graph G, and it connects u to v. We will ensure that all paths in P

are mutually internally disjoint. We also maintain a partition of Ĉ into two subsets: set

CA of active clusters, and set CI of inactive clusters. Set CI of inactive clusters is in turn

partitioned into two subsets, CI1 and CI2 . We will ensure that every cluster C ∈ CI1 is a type-1

acceptable cluster. In particular, no edges of A are incident to vertices of clusters in CI1 . For

every cluster C ∈ CI2 , we denote by AC ⊆ A ∩ E(C) the set of fake edges contained in C.

We will maintain, together with cluster C, a planar drawing ψC of C on the sphere, such

that C is a type-2 acceptable cluster with respect to ψC . Additionally, for every fake edge

e = (x, y) ∈ AC , its embedding P (e) is internally disjoint from C. Moreover, we will ensure

that there is some cluster C(e) ∈ CI1 containing P (e) \ {x, y}, and for every pair e, e′ ∈ A of

distinct edges, C(e) 6= C(e′). Lastly, we ensure that no fake edges are contained in an active

cluster of CA.

Vertex Budgets. For the sake of accounting, we assign a budget b(v) to every vertex v

in G. The budgets are defined as follows. If v /∈ Γ̂, then b(v) = 0. Assume now that v ∈ Γ̂,

and let C ∈ Ĉ be the unique cluster containing v. If C ∈ CI , then b(v) = 1. Otherwise,

b(v) = 8∆ · log3/2(|Γ̂ ∩ V (C)|). At the beginning of the algorithm, the total budget of all

vertices is
∑
t∈Γ̂

b(t) ≤ O(|Γ̂| · ∆ log n) ≤ O(|E1| · ∆ log n). Note that, as the algorithm

progresses, the sets CI and CA evolve, and the budgets may change. We will ensure that,

over the course of the algorithm, the total budget of all vertices does not increase. Since the

budget of every terminal in Γ̂ is always at least 1, the total budget of all vertices is at least |Γ̂|

throughout the algorithm, and this will ensure that the total number of terminals at the end

of the algorithm is bounded by O(|E1| · ∆ log n) ≤ O
(
(|E′|+ OPTcr(G)) · poly(∆ log n)

)
,

and therefore |Ê| is also bounded by the same amount.
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Initialization. At the beginning, we let Ê = E1, and we let Ĉ be the set of all connected

components of the graph Ĥ ∪ A, where Ĥ = G \ Ê, and A = ∅. The set Γ̂ of terminals

contains all endpoints of edges in Ê. Recall that we have identified a subset C′1 of clusters

of Ĥ, each of which contains at most µ terminals. We set CI = CI1 = C′1, CI2 = ∅, and

CA = Ĉ \ CI . The algorithm proceeds in iterations, as long as CA 6= ∅.

Description of an Iteration

We now describe a single iteration. Let C ∈ CA be any active cluster. If |Γ̂ ∩ V (C)| ≤ µ,

then we move C from CA to CI1 (and to CI), and continue to the next iteration. Clearly, in

this case C is a type-1 acceptable cluster, and the budgets of vertices may only decrease.

We assume from now on that |Γ̂ ∩ V (C)| > µ and denote Γ̃ = Γ̂ ∩ V (C). We then apply

the algorithm AARV for computing the (approximate) sparsest cut in the graph C, with

respect to the set Γ̃ of terminals. Let (X, Y ) denote the cut that the algorithm returns,

and assume w.l.o.g. that |X ∩ Γ̃| ≤ |Y ∩ Γ̃|. Denote E∗ = EC(X, Y ). Assume first that

|E∗| < α′ · αARV(n)|X ∩ Γ̃|. Then we delete the edges of E∗ from Ĥ and add them to the

set Ê. We then replace the cluster C in CA by all connected components of C \ E∗ and

continue to the next iteration. Note that we may have added new terminals to Γ̂ in this

iteration: the endpoints of the edges in E∗. Denote by Γ∗ the set of endpoints of these

edges. The changes in the budgets of vertices are as follows. On the one hand, for every

new terminal t ∈ Γ∗, the budget b(t) may have grown from 0 to at most 8∆ · log3/2 n. Since

|Γ∗| ≤ 2|E∗| ≤ 2α′ · αARV(n)|X ∩ Γ̃|, the total increase in the budget of new terminals is at

most 16α′ ·αARV(n)|X ∩ Γ̃| ·∆ log3/2 n. Note that for terminals in Γ̃∩ Y , their budgets can

only decrease. On the other hand, since |Γ̃ ∩X| ≤ |Γ̃ ∩ Y | and the cut (X, Y ) is sufficiently

sparse, the total number of terminals that lie in X at the end of the current iteration is at

most 2|Γ̃|/3. Therefore, the budget of every terminal in Γ̃∩X decreases by at least 8∆, and

the total decrease in the budget is therefore at least 8∆·|X∩Γ̃|. Since α′ = 1
16αARV(n) log3/2 n

,
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the total budget of all terminals does not increase.

We assume from now on that algorithm AARV returned a cut of sparsity at least α′ ·αARV(n).

Then we are guaranteed that the set Γ̃ of terminals is α′-well-linked in C. We use the

following standard definition of vertex cuts:

Definition 11. Given a graph Ĝ, a vertex cut in Ĝ is a partition (W,X, Y ) of V (Ĝ) into

three disjoint subsets, with W,Y 6= ∅, such that no edge of Ĝ connects a vertex of W to a

vertex of Y . We say that the cut is a 1-vertex cut if |X| = 1, and we say that it is a 2-vertex

cut if |X| = 2.

In the remainder of the proof we consider three cases. The first case is when graph C has a

1-vertex cut (W,X, Y ), with W and Y containing at least two terminals of Γ̃ each. In this

case, we delete some edges from C, decomposing it into smaller clusters, and continue to

the next iteration. The second case is when C has a 2-vertex cut (W,X, Y ), where both W

and Y contain at least three terminals of Γ̃. In this case, we also delete some edges from C,

decomposing it into smaller connected components, and continue to the next iteration. The

third case is when neither of the first two cases happens. In this case, we decompose C into

a single type-2 acceptable cluster, and a collection of type-1 acceptable clusters. We now

proceed to describe each of the cases in turn.

Case 1. We say that Case 1 happens if there is a 1-vertex cut (W,X, Y ) of C, with

|W ∩ Γ̃|, |Y ∩ Γ̃| ≥ 2. Set X contains a single vertex, that we denote by v. Assume w.l.o.g.

that |W ∩ Γ̃| ≤ |Y ∩ Γ̃|. We start with the following simple claim.

Claim 3.5.21. |W ∩ Γ̃| < µ/4.

Proof. Assume for contradiction that the claim is false. Consider a bi-partition (W ′, Y ′) of

V (C), where W ′ = W∪{v} and Y ′ = Y . We denote by E∗ the set of all edges of C incident to

the separator vertex v, so |E∗| ≤ ∆. Since EC(W ′, Y ′) ⊆ E∗, |EC(W ′, Y ′)| ≤ ∆. However,
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since vertices of Γ̃ are α′-well-linked in C, we have |EC(W ′, Y ′)| ≥ α′ ·|W ′∩Γ̃| ≥ α′ ·µ/4 > ∆,

(as µ = 512∆αARV(n) log3/2 n, while α′ = 1
16αARV(n) log3/2 n

), a contradiction.

Let E0 be the set of all edges that connect the separator vertex v to the vertices of W . We

add to Ê the edges of E0. Consider now the graph C \ E0. Note that for every connected

component of C \ E0, either V (C ′) ⊆ W , or V (C ′) = Y ∪ {v}. We let S contain all

components C ′ with V (C ′) ⊆ W . Note that every component C ′ ∈ S is a type-1 acceptable

cluster. This is because |Γ̃ ∩ V (C ′)| ≤ |Γ̃ ∩W | ≤ µ/4, and we have created at most ∆ new

terminals in C ′: the endpoints of the edges in E0. As µ > 4∆, every component C ′ ∈ S

now contains at most µ terminals. We add all components in S to the set CI1 of inactive

components (and also to the set CI1 ). Additionally, we replace the cluster C in CA by the

subgraph of C induced by vertices of Y ∪ {v}.

It remains to prove that the total budget of all vertices does not grow. Recall that |Γ̃∩W | ≥ 2,

and the budget of each terminal t ∈ Γ̃∩W has decreased from 8∆·log3/2(|Γ̃|) to 1. Therefore,

the total budget decrease of these terminals is at least 16∆ · log3/2(|Γ̃|)−2. We have created

at most ∆ new terminals in set W . For each new terminal, its new budget is 1 since at

the end of this iteration it belongs to an inactive cluster. We have created at most one new

terminal in set X ∪ Y – the vertex v. Since |Γ̃ ∩W | ≥ 2, the total number of terminals in

X ∪ Y at the end of the iteration is at most |Γ̃| − 1. Therefore, the budgets of terminals in

Γ̃ ∩ Y do not increase, and the budget of v is at most 8∆ · log3/2(|Γ̃|). Altogether, the total

budget increase is at most 8∆ · log3/2(|Γ̃|) + ∆, which is less than 16∆ · log3/2(|Γ̃|)− 2, the

total budget decrease of vertices of Γ̃∩W . We conclude that the total budget of all vertices

does not increase.

From now on we assume that Case 1 does not happen. We need the following simple

observation.

Observation 3.5.22. Assume that Case 1 does not happen. Let (W,X, Y ) be any 1-vertex

cut in C, then either |W | = 1, or |Y | = 1.
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Proof. Assume for contradiction that |W |, |Y | > 1. Since Case 1 does not happen, either

|W ∩ Γ̃| ≤ 1, or |Y ∩ Γ̃| ≤ 1. Assume w.l.o.g. that |W ∩ Γ̃| ≤ 1. Let t ∈ W ∩ Γ̃ be the unique

terminal that lies in W (if it exists; otherwise t is undefined), and let u be any vertex that

lies in W \ Γ̃ (since |W | > 1 ≥ |W \ Γ̃|, such a vertex always exists). Note that the removal

of v and t (if it exists) from G separates u from vertices of Y in G, causing a contradiction

to the fact that G is 3-connected.

Let U be the set of separator vertices of C. From the above observation, for every separator

vertex u ∈ U , there is a unique vertex u′ ∈ V (C) that is a neighbor of u, such that u′ has

degree 1 in C. Since graph G is 3-connected, u′ must belong to Γ̃. Let U ′ be the set of all

such vertices. It is easy to verify that graph C \ U ′ is 2-connected.

Case 2. We say that Case 2 happens if Case 1 does not happen, and there is a 2-vertex

cut (W,X, Y ) of C, with |W ∩ Γ̃|, |Y ∩ Γ̃| ≥ 3. Set X contains exactly two vertices, that we

denote by x, y. Assume w.l.o.g. that |W ∩ Γ̃| ≤ |Y ∩ Γ̃|. The algorithm for Case 2 is very

similar to the algorithm for Case 1. We start with the following simple claim, that is similar

to Claim 3.5.21, and its proof is almost identical.

Claim 3.5.23. |W ∩ Γ̃| < µ/4.

Proof. Assume for contradiction that the claim is false. Consider a bi-partition (W ′, Y ′) of

V (C), where W ′ = W ∪ {x, y} and Y ′ = Y . Let E∗ be the set of all edges of C incident to

vertices x or y, so |E∗| ≤ 2∆. Since EC(W ′, Y ′) ⊆ E∗, |EC(W ′, Y ′)| ≤ 2∆. However, since

vertices of Γ̃ are α′-well-linked in C, we have |EC(W ′, Y ′)| ≥ α′ · |W ′ ∩ Γ̃| ≥ α′ · µ/4 > 2∆,

(as µ = 512∆αARV(n) log3/2 n, while α′ = 1
16αARV(n) log3/2 n

), a contradiction.

Let E0 be the set of all edges that connect the vertices x, y to the vertices of W . We

add to Ê the edges of E0. Consider now the graph C \ E0 and let S be the set of its

connected components. Note that, for every component of C ′ ∈ S, either V (C ′) ⊆ W or
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V (C ′) ⊆ Y ∪ {x, y}. We let S1 ⊆ S contain all components C ′ with V (C ′) ⊆ W , and we

let S2 contain all remaining connected components. Note that every component C ′ ∈ S1

is a type-1 acceptable cluster. This is because |Γ̃ ∩ V (C ′)| ≤ |Γ̃ ∩W | ≤ µ/4, and we have

created at most 2∆ new terminals in C ′: the endpoints of edges in E0. As µ > 8∆, every

component in S1 now contains at most µ terminals. We add all components in S1 to the set

CI1 (and also to CI1 ). Additionally, we replace the cluster C in CA by all components in S2.

It remains to prove that the total budget of all vertices does not grow. The proof again is

very similar to the proof in Case 1. Recall that |Γ̃∩W | ≥ 3, and the budget of each terminal

in Γ̃ ∩ W has decreased from 8∆ · log3/2(|Γ̃|) to 1. Therefore, the decrease of their total

budgets is at least 24∆ · log3/2(|Γ̃|)−3. We have created at most 2∆ new terminals in set W

– the neighbors of x and y, and each such new terminal has new budget 1 since it belongs to

an inactive cluster at the end of this iteration. We have created at most two new terminals

in set X ∪ Y – terminals x and y. Since |Γ̃ ∩W | ≥ 3, the total number of terminals that

belong to set X ∪ Y at the end of the current iteration is at most |Γ̃| − 1. Therefore, the

budgets of terminals in Γ̃∩Y do not increase, and the budgets of the vertices x and y are at

most 8∆ · log3/2(|Γ̃|). Altogether, the total budget increase is at most 16∆ · log3/2(|Γ̃|)+2∆,

which is less than 24∆ · log3/2(|Γ̃|)− 3, the total budget decrease of vertices of Γ̃ ∩W . We

conclude that the total budget of all vertices does not increase. From now on, we can assume

that Case 1 and Case 2 did not happen.

Case 3. The third case happens if neither Case 1 nor Case 2 happen. Recall that we have

denoted by U the set of all separator vertices of the cluster C. We have defined U ′ to be

the set of all vertices u′, such that u′ has degree 1 in C, and it has a neighbor in U . We

have also shown that U ′ ⊆ Γ̃. Our first step is to add to the edge set Ê every edge of E(C)

that connects a vertex of U to a vertex of U ′, and let C ′ = C \ U ′. Every vertex u′ ∈ U ′ is

now an isolated vertex in G \ Ê. For each such vertex u′ ∈ U ′, we add the cluster
{
u′
}

to

the set CI1 of inactivate type-1 acceptable clusters (and also to CI). Notice that every vertex

70



u ∈ U now becomes a terminal. We denote by Γ̃′ = (Γ̃ ∪ U) \ U ′ the set of terminals in the

current cluster C ′. From the above discussion, |Γ̃′| ≤ |Γ̃|, and cluster C ′ is 2-connected. If

|Γ̃′| ≤ µ, then C ′ is a type-1 acceptable cluster. We then add it to the sets CI1 (and also

to CI), and terminate the current iteration. Note that the total budget of all vertices does

not increase. This is because, before the current iteration, |Γ̃| ≥ µ held, and every vertex in

Γ̃ had budget at least 8∆ log µ; while at the end of the current iteration, every terminal in

Γ̃′ ∪ U ′ has budget 1, and |Γ̃′ ∪ U ′| ≤ 2µ. Therefore, we assume from now on that |Γ̃′| > µ,

and we refer to the vertices of Γ̃′ as terminals. In the remainder of this iteration, we will split

the cluster C ′ into a single type-2 acceptable cluster, and a collection of type-1 acceptable

clusters, and we will prove that the total budget of all vertices does not increase. Before we

proceed further, we first prove the the following observations about the graph C ′ that we

will use later.

Observation 3.5.24. The set Γ̃′ of terminals is α′-well-linked in C ′.

Proof. Consider any partition (X, Y ) of V (C ′). Then we can augment (X, Y ) to a partition

(X ′, Y ′) of V (C) as follows. Start with X ′ = X and Y ′ = Y . For every vertex u ∈ U , if

u ∈ X, then we add its unique neighbor in U ′ to X ′, otherwise we add it to Y ′. Note that

|Γ̃∩X ′| ≥ |Γ̃′∩X|. This is because Γ̃′ = (Γ̃∪U)\U ′, and for every vertex u ∈ U ∩X, while u

may or may not belong to Γ̃, it always has a neighbor in U ′∩ Γ̃. Similarly, |Γ̃∩Y ′| ≥ |Γ̃′∩Y |.

Since the set Γ̃ of terminals is α′-well-linked in C, we get that |EC ′(X, Y )| = |EC(X ′, Y ′)| ≥

α′ ·min
{
|Γ̃ ∩X ′|, |Γ̃ ∩ Y ′|

}
≥ α′ ·min

{
|Γ̃′ ∩X|, |Γ̃′ ∩ Y |

}
. Therefore, the set Γ̃′ of terminals

is α′-well-linked in C ′.

Observation 3.5.25. For every 2-vertex cut (W,X, Y ) of C ′ with |W ∩ Γ̃′| ≤ |Y ∩ Γ̃′|,

|W ∩ Γ̃′| ≤ 2.

Proof. Let (W,X, Y ) be a 2-vertex cut of C ′ with |W ∩ Γ̃′| ≤ |Y ∩ Γ̃′|. We augment it to

a 2-vertex cut (W ′, X, Y ′) of C as follows. Start with W ′ = W and Y ′ = Y . For every
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vertex u ∈ U , if u ∈ W , then we add its unique neighbor in U ′ to W , otherwise we add it

to Y ′. It is immediate to verify that (W ′, X ′, Y ′) is indeed a 2-vertex cut in C, and that

|W ′∩ Γ̃| ≥ |W ∩ Γ̃′| and |Y ′∩ Γ̃′| ≥ |Y ∩ Γ̃′|. Since we assumed that Case 2 does not happen,

|W ′ ∩ Γ̃| ≤ 2 must hold, and so |W ∩ Γ̃′| ≤ 2.

The next observation gives us a planar drawing of C ′.

Observation 3.5.26. There is a pseudo-block B0 in the block decomposition of G \E1 that

is not contained in a component of C′1, such that C ′ ⊆ B0. In particular, the associated

drawing ψ̂B0
of B0 naturally induces a planar drawing ψC ′ of the cluster C ′.

Proof. Let H1 = G \ E1 and H2 = G \ Ê. Clearly E1 ⊆ Ê. Denote by B(H1) the block

decomposition of the graph H1. Since C ′ is a connected graph, there is a pseudo-block in

B(H1) that contains C ′ a subgraph. We denote this block by B0. Note that it is impossible

that V (B0) ⊆ V (Ĉ) for a component Ĉ ∈ C′1, since initially all clusters in C′1 belong to CI1
and will not be processed.

We now proceed to split the cluster C ′ into one type-2 acceptable cluster and a collection of

type-1 clusters. Recall that C ′ is 2-connected. We use the algorithm from Theorem 3.4.1,

to obtain a block decomposition L of C ′, and let τ = τ(L) be the decomposition tree

associated with the decomposition L. We let B ∈ L be a pseudo-block that contains at least

µ/4 terminals of Γ̃′, and among all pseudo-blocks with this property, maximizes the distance

in τ between its corresponding vertex v(B) and the root of τ , breaking ties arbitrarily. Notice

that such a pseudo-block always exists, since C ′ belongs to L as a pseudo-block and contains

at least µ terminals of Γ̃′. Let v(B1), . . . , v(Bq) denote the child vertices of v(B) in τ , and

let Bc denote the complement block of B. We denote the endpoints of B by (x, y), and, for

all 1 ≤ i ≤ q, the endpoints of Bi by (xi, yi). Recall that N (B) =
{
Bc, B1, . . . , Bq

}
. We

use the following simple observations and their corollaries.
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Observation 3.5.27. Let B̂ be a pseudo-block in L such that v(B̂) is a leaf of the tree τ .

Then B̂ contains terminal of Γ̃′ that is not an endpoint of B̂. Moreover, if Bc is defined,

then it contains a terminal of Γ̃′, that is not one of its endpoints.

Proof. Let x, y be the endpoints of B̂. Assume that B̂ does not contain a terminal that does

not belong to {x, y}, then the removal of {x, y} separates V (B̂) \ {x, y} from V (G) \ V (B̂),

contradicting the fact that G is 3-connected. The proof for Bc is similar.

We obtain the following immediate corollary.

Corollary 3.5.28. |N (B)| ≤ |Γ̃′|.

Observation 3.5.29. For all 1 ≤ i ≤ q, at most two vertices of V (Bi) \ {xi, yi} belong to

Γ̃′. Similarly, at most two vertices of V (Bc) \ {x, y} belong to Γ̃′.

Proof. Fix some 1 ≤ i ≤ q, and consider a 2-vertex cut (W,X, Y ) of C ′, where W =

V (Bi) \ {xi, yi}, X = {xi, yi}, and Y = V (C ′) \ (X ∪W ). From the definition of the block

B, |W ∩ Γ̃′| < µ/4. Since |Γ̃′| > µ, |Y ∩ Γ̃′| ≥ 3µ/4− 2 > µ/4 > |W ∩ Γ̃′|. From Observation

3.5.25, |W ∩ Γ̃′| ≤ 2. Therefore, V (Bi) \ {xi, yi} contains at most two terminals of Γ̃′. The

proof that V (Bc) \ {x, y} contains at most two terminals of Γ̃′ is similar.

We obtain the following immediate corollary of Observations 3.5.27 and 3.5.29.

Corollary 3.5.30. There are at most two leaves in tree τ that are not descendants of v(B).

Moreover, for all 1 ≤ i ≤ q, there are at most two leaves in the subtree of τ rooted at v(Bi).

We now describe the next steps for processing cluster C ′, starting with a high-level intuitive

overview. From Observation 3.5.26, the associated drawing ψ̂B0
of B0 naturally induces

a planar drawing ψC ′ of C ′. One can show that C ′ is a type-2 acceptable cluster with

respect to the drawing ψC ′ , except that we cannot ensure that the size of set S2(C ′) – the

set of all vertices that participate in 2-separators in C ′, is sufficiently small (recall that the
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requirement in the definition of type-2 acceptable clusters is that |S2(C ′)| ≤ O(∆|Γ̃′|)). To

see this, consider the situation where the sub-tree of τ rooted at the child vertex v(Bi) of

v(B), that we denote by τi, is a long path. The cardinality of set S2(C ′) may be as large as

the length of the path, while there are only at most two terminals in Bi.

In order to overcome this difficulty, we need to “prune” the sub-tree τi. From Observa-

tion 3.5.29, tree τi may contain at most two leaves. Assume first for simplicity that τi

contains exactly one leaf, so τi is a path. If we denote by v(B1
i ), v(B2

i ), . . . , v(Bri ) the ver-

tices that appear on path τi in this order, with B1
i = Bi. We simply add to Ê all edges

of B2
i incident to its endpoints, and replace B2

i with a fake edge connecting its endpoints

in C ′. The block B2
i then decomposes into a number of type-1 acceptable clusters. Notice

that now the total number of vertices of S2(C ′) that block Bi contributes is O(1). If tree τi

has two leaves, then the pruning process for τi is slightly more complicated but similar. We

treat the complement block Bc similarly as blocks in
{
B1, . . . , Bq

}
.

We now provide a formal proof. We start with the cluster Ĉ = C ′ and the set A
Ĉ

= ∅ of

fake edges, and then we iterate. In every iteration, we process a distinct block of N (B), and

modify the cluster Ĉ by deleting some edges and vertices and adding some fake edges to A
Ĉ

and to Ĉ. Throughout the algorithm, we will maintain the following invariants:

I1. Ĉ is a simple graph;

I2. each 2-separator of Ĉ is also a 2-separator of C ′; and

I3. graph Ĉ \ A
Ĉ

is 2-connected.

We now describe an iteration. Consider a child block Bi of block B (the block Bc will be

processed similarly), and let τi be the sub-tree of τ rooted at v(Bi). We say that a node

v(B∗) ∈ V (τi) is bad iff (i) the degree of v(B∗) in τi is 2 (so block B∗ has exactly one child

block); (ii) graph B̃∗ is isomorphic to K3; and (iii) the edge in B̃∗ connecting the endpoints

of the child block of B∗ is a fake edge. If a vertex v(B∗) ∈ V (τi) is not bad, then we say it
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is good. As our first step, we construct a set Vi of nodes in τi that we will use in order to

“prune” block Bi, using the following observation.

Observation 3.5.31. There is an efficient algorithm, that constructs a subset Vi ⊆ V (τi)

containing at most two vertices (where possibly Vi = ∅), that satisfies the following properties:

• for each vertex v(B∗) ∈ Vi, v(B∗) is good, and there is some ancestor vertex v(Bp) of

v(B∗) in τi, that is not v(Bi), such that v(Bp) is good, and every vertex on the unique

path in tree τ connecting v(B∗) to v(Bp) has degree exactly 2;

• if |Vi| = 2 then neither vertex is a descendant of the other in τi; and

• if we let τ ′i be the sub-tree obtained from τi after we delete, for every vertex v(B∗) ∈ Vi,

the sub-tree rooted at the child vertex of v(B∗), then |V (τ ′i)| ≤ 500.

Proof. We fix a child block Bi of B and show how to construct vertex set Vi. We say that

a path P ⊆ τi is bad iff every vertex of P is a bad vertex.

Observation 3.5.32. If P is a bad path in τi, then P contains at most 20 vertices.

Proof. Let P be a bad path in τi, and assume for contradiction that it contains 21 vertices.

We claim that block B contains two paths Q,Q′, such that all internal vertices of Q and Q′

have degree exactly 2 in B, and |E(Q)| + |E(Q′)| ≥ 20. Note that, if this is true, then one

of Q,Q′ contains at least 5 internal vertices. Let u1, u2, u3 be three such vertices that are

neither xi nor yi (recall that xi, yi are the endpoints of block Bi). Since G is 3-connected,

every vertex in G has degree at least 3. Therefore, for each vertex of u1, u2, u3, at least one

of its incident edges belongs to Ê, and so vertices u1, u2, u3 all belong to Γ̂. But then there

are at least three vertices of V (Bi) \ {xi, yi} that lie in Γ̃′, contradicting Observation 3.5.29.

We now prove our claim above. We denote P = (v(B1), v(B2), . . . , v(B`)) (with ` ≥ 21),

where v(B1) is the node of P that is closest to v(Bi) in τi. For each 1 ≤ j ≤ `, we denote

by xj , yj the endpoints of block Bj . Fix any 1 ≤ j ≤ `− 1 and consider the block Bj . Since
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v(Bj) is bad, graph B̃j is isomorphic to K3, and the edge in B̃j connecting the endpoints

of block Bj+1 is a fake edge. Therefore, the edge (xj+1, yj+1) does not exist in B. By the

definition of block decompositions,
{
xj , yj

}
6=
{
xj+1, yj+1

}
. Therefore, either xj = xj+1,

yj 6= yj+1, and block B contains the edge (yj , yj+1); or yj = yj+1, xj 6= xj+1, and block B

contains the edge (xj , xj+1).

We now consider the sequence σx = (x1, . . . , x`) of vertices. From the above discussion,

for each 1 ≤ j ≤ ` − 1, either xj = xj+1, or (xj , xj+1) is an edge in B. Therefore, if

we keep only one copy of every vertex that appears in σx, then we obtain a path, that we

denote by Q. Similarly, we can obtain a path Q′ from the sequence σy = (y1, . . . , y`) of

vertices. Moreover, since for each 1 ≤ j ≤ `− 1, either xj 6= xj+1 or yj 6= yj+1, we get that

|E(Q)|+ |E(Q′)| ≥ (`− 1) ≥ 20.

It remains to show that all internal vertices of Q and Q′ have degree exactly 2 in B. We

show that this is true for Q, and the proof for Q′ is similar. Let xj be an internal vertex of

Q. Let j1 be the largest index such that j1 ≤ j and xj 6= xj1 ; and let j2 be the smallest

index such that j ≤ j2 and xj 6= xj2 . From the above discussion and the definitions of j1, j2,

xj1+1 = · · · = xj = · · · = xj2−1, and yj1+1, . . . , yj2−1 are all distinct vertices. Assume for

contradiction that B contains an edge (xj , v) where v 6= xj1 , xj2 . Then either v = yj
′

for

some j1 < j′ < j2, or v belongs to block Bj2 , or v belongs to Bi \Bj1+1. We consider each

of these cases in turn.

Case 1: v = yj
′

for some j1 < j′ < j2. Note that xj
′

= xj . This means the edge (xj
′
, yj
′
)

belongs to B, a contradiction.

Case 2: v belongs to block Bj2. Since xj does not belong to block Bj2 , v must be an

endpoint of block Bj2 , so v = yj2 . However, since xj = xj2−1 6= xj2 , yj2 = yj2−1 must hold,

and so (xj , yj2) = (xj2−1, yj2−1), a contradiction.

Case 3: v does not belong to block Bj1+1. Since xj is an inner vertex of Bj1 , v must

belong to Bj1 . However, the only vertex in Bj1 \Bj1+1 is xj1 , a contradiction.
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This completes the proof of Observation 3.5.32.

From Corollary 3.5.30, τi contains at most two leaves. Therefore, τi contains at most one

degree-3 node, and all other nodes have degree 1 or 2. We consider the following cases:

1. if τi contains no degree-3 node (so τi is a path), and |V (τi)| ≤ 50, then we set Vi = ∅;

2. if τi contains no degree-3 node (so τi is a path), and |V (τi)| > 50, then we let Vi consist

of a single vertex v(B∗), that is at distance at least 23 and at most 46 from the root

v(Bi), and is a good node; from Observation 3.5.32, such a vertex must exist, and

moreover, from Observation 3.5.32, there exists an internal node v(Bp) in the unique

path in τi connecting v(B∗) to v(Bi), such that v(Bp) is good;

3. if τi contains a degree-3 node v′, and the distance between v′ and v(Bi) is at least 51

in τi, then we let Vi consist of a single vertex that is defined in the same way as Case

2;

4. if τi contains a degree-3 node v′, and the distance between v′ and v(Bi) is at most 51

in τi, then the subtree of τi rooted at v′ can be viewed as the union of two paths that

share a common endpoint v′; we denote by τ1
i and τ2

i the two paths. We then find at

most one vertex on each of the two paths in the same way as Cases 1 and 2, and let

Vi be the union of them.

It is easy to see that the set Vi contains most two vertices, and satisfies the properties in

Observation 3.5.31.

We consider the vertices in Vi one-by-one. Let v(B∗∗) ∈ Vi be a vertex of Vi. Let v(B∗)

be the unique child vertex of v(B∗∗) in τi, and let (x∗, y∗) be the endpoints of block B∗.

Note that block B∗ contains a path P connecting x∗ to y∗. Let Ẽ be the set of all edges of

B∗ that are incident to x∗ or to y∗. We add the edges of Ẽ to Ê. Consider now the graph

Ĉ \ Ẽ. It is immediate to verify that there is one component C̃ of this graph, containing
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all vertices of (Ĉ \ B∗) ∪ {x∗, y∗}, and all remaining components are a type-1 acceptable

clusters that are contained in B∗. We add the components of the latter type to CI1 (and also

to CI). If the edge (x∗, y∗) does not lie in C̃, then we add the edge e′ = (x∗, y∗) to the set

A
Ĉ

of fake edges, and let P (e′) = P be its embedding. It is immediate to verify that there

is some type-1 acceptable cluster in Ĉ \ Ẽ that contains the path P (e′) \ {x∗, y∗}. Finally,

we update the cluster Ĉ by first removing all vertices and edges of B∗ \ {x∗, y∗} from it,

and then adding the edge (x∗, y∗) if it does not belong to Ĉ. We say that the block B∗ is

eliminated when processing Bi.

The processing of the block Bc is very similar to the processing of the blocks B1, . . . , Bq,

though the details are somewhat more tedious and are omitted here.

Claim 3.5.33. After each vertex v(B∗∗) ∈ Vi is processed, the invariants continue to hold.

Proof. We denote by C1 and C2 the cluster Ĉ before and after vertex v(B∗∗) was processed,

respectively. Similarly, we denote by A1 and A2 the set A
Ĉ

of edges before and after vertex

v(B∗∗) was processed, respectively. We assume that all invariants held before vertex v(B∗∗)

was processed. It is immediate to verify that C2 is a simple graph, since we add a fake edge

to Ĉ only if Ĉ did not contain it. Therefore, Invariant I1 continues to hold.

Next, we show that C2 \ A2 is 2-connected. Assume for contradiction that this is not the

case, and let (W,X, Y ) be a 1-vertex cut of C2 \ A2. Let B∗ be the child block of B∗∗, and

let x∗, y∗ be its endpoints. We claim that either (i) x∗ ∈ W , y∗ ∈ Y , or (ii) x∗ ∈ Y , y∗ ∈ W

must hold. Indeed, if neither of these holds, then can assume w.l.o.g. that x∗, y∗ ∈ W ∪X.

Then, by adding to W all vertices of B∗ \ {x∗, y∗}, we obtain a 1-vertex cut in C1 \ A1,

contradicting the assumption that Invariant I3 held for C1. We now assume without loss of

generality that x∗ ∈ W and y∗ ∈ Y .

Recall that v(B∗∗) is a good node in τi. If B̃∗∗ is isomorphic to K3, then B∗∗ contains a

real edge connecting x∗ to y∗, a contradiction to the assumption that x∗ ∈ W and y∗ ∈ Y .

Therefore, we assume from now on that graph B̃∗∗ is not isomorphic to K3. In this case,
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B̃∗∗ must be 3-connected. Therefore, graph B̃∗∗ contains three internally disjoint paths

connecting x∗ to y∗. Two of these paths, that we denote by P1, P2, do not contain the fake

edge (x∗, y∗). If we denote by (x∗∗, y∗∗) the endpoints of the block B∗∗, then at least one of

these two paths (say P1) is disjoint from the fake parent-edge (x∗∗, y∗∗) of block B∗∗. Path

P2 may contain the fake edge (x∗∗, y∗∗), but all other edges of P2 must be real edges of B̃∗∗,

as vertex v(B∗∗) only has one child in τi. We prove the following observation.

Observation 3.5.34. There must be a path P ′ ⊆ C2 that connects x∗∗ to y∗∗, and is

internally disjoint from B∗∗.

Proof. We denote by v(Bp) the ancestor of v(B∗∗) that is closest to v(B∗∗), such that v(Bp)

is good (the existence of such an ancestor is guaranteed by Observation 3.5.31). Let xp, yp

be the endpoints of block Bp. By definition of a good node, either Bp contains a real edge

(xp, yp), or graph B̃p is 3-connected, and so it contains a path connecting xp to yp consisting

of only real edges (as B̃p contains at most 2 fake edges).

Note that all nodes lying on the path in τi connecting v(Bp) to v(B∗∗) are bad. Using similar

arguments in the proof of Observation 3.5.32, we can show that there are two node-disjoint

paths Q,Q′ in Bp that are internally disjoint from B∗∗, such that Q connects x∗∗ to xp and

y∗∗ to yp. By concatenating paths Q,Q′ and the path/edge in B̃p connecting xp to yp, we

obtain a path P ′ ⊆ C2 that connects x∗∗ to y∗∗, and is internally disjoint from B∗∗.

By combining path P2 with P ′ (namely, replacing the fake edge (x∗∗, y∗∗) of P2 with the path

P ′, if P2 contains such an edge), we obtain a path P3 connecting x∗ to y∗, that is disjoint

from P1, and contains no fake edges. Note that both paths P1, P3 are contained in C2. But

then both paths P1, P3 must contain the separator vertex that lies in X, a contradiction.

Therefore, Invariant I3 continues to hold.

In order to show that Invariant I2 continues to hold, it suffices to show that every 2-separator

in C2 is also a 2-separator in C1. Consider any 2-vertex cut (W,X, Y ) in C2, and assume
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w.l.o.g. that x∗, y∗ ∈ W ∪ X (since the fake edge (x∗, y∗) belongs to C2, the two vertices

cannot lie in sets W and Y respectively). By adding all vertices of B∗ \ {x∗, y∗} to set W ,

we obtain a 2-vertex cut in C1. Therefore, X is also a 2-separator in C1.

Let Ĉ be the cluster we obtain after all blocks in N (B) are processed. Recall that from

Observation 3.5.26, there is a pseudo-block B0 in the block decomposition of graph G \ E1,

such that B0 is not contained in a cluster of C′1, and C ′ ⊆ B0. The associated drawing ψ̂B0

of B0 induces a planar drawing ψ
Ĉ

of Ĉ, where for each fake edge e ∈ A
Ĉ

, the edge e is

drawn along the drawing of the path P (e) in ψ̂B0
. We prove the following Lemma at the

end of Section 3.5.3.

Lemma 3.5.35. Cluster Ĉ is a type-2 acceptable cluster with respect to the drawing ψ
Ĉ

.

In order to complete the proof of Theorem 3.3.1, it remains to show that if Case 3 happens,

then the total budget of all vertices does not increase after the cluster C is processed. Recall

that Γ̃ denotes the set of terminals in C before C was processed, and |Γ̃| ≥ µ. Let Γ̃new be

the set of all new terminals that were added to Γ̃ over the course of processing C. Notice

that every vertex in Γ̃ had a budget of at least 8∆ before C was processed. After C was

processed, the budget of every terminal in Γ̃ ∪ Γ̃new became 1. Therefore, in order to show

that the total budget of all vertices did not grow, it is sufficient to show that |Γ̃new| ≤ 7∆|Γ̃|.

Recall that we have created a set U of at most |Γ̃| terminals, and, whenever a block B∗ was

eliminated, we created at most 2∆ new terminals (neighbors of endpoints of B∗). Since each

such block B∗ contained at least one terminal of Γ̃′ = (Γ̃∪U) \U ′, the total number of new

terminals that we have created is bounded by |Γ̃| · 4∆. Therefore, the total budget of all

vertices does not grow.

In order to complete the proof of Theorem 3.3.1, it remains to prove Lemma 3.5.35, which

we do next.
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Proof of Lemma 3.5.35

Recall that Γ̃ denotes the set of all terminals that belonged to cluster C before it was

processed. We denote by Γ∗ the final set of terminals that lie in Ĉ after C is processed.

Recall that we have already established that graph Ĉ is planar, and defined its planar drawing

ψ
Ĉ

. From the invariants, Ĉ is a simple graph, and Ĉ \ A
Ĉ

is 2-connected.

Next, we bound the cardinality of the set S2(Ĉ). Recall that the invariants ensure that a

2-separator in Ĉ is also a 2-separator in C ′, so S2(Ĉ) ⊆ S2(C ′). Moreover, Theorem 3.4.1

ensures that for every vertex x ∈ S2(C ′), either x is an endpoint of a block of L, or there is

a vertex x′ that is a neighbor of x in C ′, and it is an endpoint of a block of L. In the former

case, we denote by B(x) the largest (with respect to |V (B(x))|) block of L such that x is

an endpoint of B(x), and in the latter case, we denote by B(x) the largest block of L, such

that x′ is an endpoint of B(x). Notice that, if B∗ is a block that was eliminated, and x lies

in B∗ but is not an endpoint of B∗, then x is not a vertex of Ĉ, and it does not belong to

S2(Ĉ). Our algorithm ensures that, for every child block Bi of B, there are at most O(1)

vertices x, such that x ∈ V (Ĉ), and x serves as an endpoint of a block that is a descendant

of Bi in τi. Therefore, at most O(∆) vertices of S2(Ĉ) may lie in Bi ∩ Ĉ. On the other

hand, at least one terminal of Γ∗ lies in Bi ∩ Ĉ. We charge these separator vertices to that

terminal. Similarly, if Bc is defined, then at most O(∆) vertices of S2(Ĉ) may lie in Bc ∩ Ĉ,

and at least one terminal of Γ∗ lies in Ĉ ∩ Bc. Therefore, altogether, |S2(Ĉ)| ≤ O(∆|Γ∗|),

as required.

Next, we show that cluster Ĉ has the well-linkedness property.

Claim 3.5.36. The set Γ∗ of terminals is α-well-linked in Ĉ \ A
Ĉ

.

Proof. We start by showing that the set Γ∗ of terminals is 2α-well-linked in Ĉ. Let (X, Y )

be any partition of V (Ĉ). Denote ΓX = Γ∗ ∩X and ΓY = Γ∗ ∩ Y . It suffices to show that

|E
Ĉ

(X, Y )| ≥ 2α ·min {|ΓX |, |ΓY |}.
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Let M be the set of all blocks B∗ that our algorithm eliminated, and let V ∗ be the set of

all vertices that serve as endpoints of the blocks in M.

Recall that, in addition to the terminals of Γ̃′ = Γ̃ ∪ U , the sets ΓX ,ΓY of terminals may

also contain vertices of V ∗. We call such terminals new terminals.

We further partition sets ΓX and ΓY as follows. Let Γ1
X ⊆ ΓX contain all terminals t, such

that there is some block B∗ ∈ M with t being one of its endpoints, and the other endpoint

t′ of B∗ lies in Y . We let Γ2
X = ΓX \Γ1

X . The partition (Γ1
Y ,Γ

2
Y ) of ΓY is defined similarly.

Since the endpoints of every block in M are connected by a fake edge in Ĉ, it is immediate

to verify that

|E
Ĉ

(X, Y )| ≥ |Γ1
X | and |E

Ĉ
(X, Y )| ≥ |Γ1

Y |. (3.1)

Next, we construct a cut (X ′, Y ′) in graph C ′ based on the cut (X, Y ) of Ĉ, and then use

the well-linkedness of the terminals in Γ̃′ in graph C ′ (from Observation 3.5.24) to bound

|E
Ĉ

(X, Y )|. We start with X ′ = X and Y ′ = Y , and then consider the blocks B∗ ∈ M

one-by-one. Denote the endpoints of B∗ by (x∗, y∗).

Note that x∗, y∗ may not belong to the terminal set Γ̃′ = Γ̃ ∪ U . However, since we have

assumed that graph G is 3-connected, vertex set V (B∗)\{x∗, y∗} must contain a terminal of

Γ̃′. We denote this terminal by tB∗ , and we will view this terminal as “paying” for x∗ and y∗

(if x∗, y∗ ∈ Γ2
X ∪Γ2

Y ). If both x∗, y∗ ∈ X, then we add all vertices of V (B∗) \ {x∗, y∗} to X,

and otherwise we add them to Y . Notice that, if both x∗, y∗ lie in the same set in {X, Y },

then we do not increase the number of edges in the cut (X, Y ). Assume now that x∗ ∈ X

and y∗ ∈ Y (the other case is symmetric). In this case, we have increased the number of

edges in the cut (X, Y ) by at most ∆, by adding all edges that are incident to x∗ to this

cut. Note however that the edge (x∗, y∗) already belonged to this cut (possibly as a fake

edge), so we charge this increase in the cut size to this edge. Once all blocks B∗ ∈ M are
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processed in this way, we obtain a cut (X ′, Y ′) in graph C ′. From the above discussion:

|EC ′(X ′, Y ′)| ≤ ∆ · |E
Ĉ

(X, Y )|. (3.2)

Consider now the terminals of ΓX . Clearly ΓX ∩ Γ̃′ ⊆ X ′. For each terminal in Γ2
X , we

have added a terminal of Γ̃′ to X ′ that pays for it, while each newly added terminal of

X ′ ∩ Γ̃′ pays for at most two terminals in Γ2
X . Therefore, |Γ2

X | ≤ 2|Γ̃′ ∩X ′|, and similarly

|Γ2
Y | ≤ 2|Γ̃′ ∩ Y ′|. Since the set Γ̃′ of terminals was α′-well-linked in C ′, |EC ′(X ′, Y ′)| ≥

α′ · min
{
|Γ̃′ ∩X ′|, |Γ̃′ ∩ Y ′|

}
≥ α′

2 · min
{
|Γ2
X |, |Γ

2
Y |
}

. Combining this with Equation 3.2,

we get that |E
Ĉ

(X, Y )| ≥ α′
2∆ · min

{
|Γ2
X |, |Γ

2
Y |
}

. Combining this latter equation with

Equation 3.1, and using α′ = 8∆α, we conclude that |E
Ĉ

(X, Y )| ≥ α′
4∆ ·min {|ΓX |, |ΓY |} ≥

2α ·min {|ΓX |, |ΓY |}. Therefore, the set Γ∗ of terminals is 2α-well-linked in Ĉ.

We are now ready to complete the proof of Claim 3.5.36. Consider any fake edge e =

(x∗, y∗) ∈ A
Ĉ

. Then x∗, y∗ are endpoints of some block B∗ that we have eliminated. Recall

that, if vertex v(B∗∗) is the parent of v(B∗) in the corresponding decomposition tree τi (or

the tree associated with Bc), then v(B∗∗) has degree 2 in the tree, and moreover, either

graph B̃∗∗ is 3-connected, or B̃∗∗ is isomorphic to K3 and the edge (x∗, y∗) in B̃∗∗ is a real

edge. Either way, graph B̃∗∗ contains a path connecting x∗ to y∗, that does not contain

any fake edges. We denote this path by P ′(e). It is immediate to verify that the paths in{
P ′(e) | e ∈ A

Ĉ

}
are mutually disjoint. Consider now some cut (X, Y ) in Ĉ\A

Ĉ
. Recall that

|E
Ĉ

(X, Y )| ≥ 2α·min {|Γ∗ ∩X|, |Γ∗ ∩ Y |}. Let A′ ⊆ E
Ĉ

(X, Y ) be the set of all fake edges in

E
Ĉ

(X, Y ). Since, for each fake edge e ∈ A′, path P ′(e) must contain a real edge in E
Ĉ

(X, Y ),

we get that |E
Ĉ\A

Ĉ
(X, Y )| = |E

Ĉ
(X, Y )\A′| ≥ |E

Ĉ
(X, Y )|/2 ≥ α·min {|Γ∗ ∩X|, |Γ∗ ∩ Y |}.

We conclude that the set Γ∗ of terminals is α-well-linked in Ĉ \ A
Ĉ

.

Lastly, the next claim will complete the proof of Lemma 3.5.35.

Claim 3.5.37. Cluster Ĉ has the bridge consistency property.
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Proof. We denote by ρ the drawing of Ĉ \ A
Ĉ

induced by the drawing ψ
Ĉ

. We now show

that, for each bridge R ∈ RG(Ĉ \ A
Ĉ

), there is a face in the drawing ρ, whose boundary

contains all vertices of L(R). Recall that, from Observation 3.5.26, all vertices of V (Ĉ)

belong to some block B0 in the block decomposition of G \ E1 that is not contained in a

component of C′1, and the drawing ψ
Ĉ

of Ĉ is induced by the associated drawing ψ̂B0
of B0.

In particular, block B0 is a good block.

Assume for contradiction that Ĉ does not have the bridge property, and let R ∈ RG(Ĉ \A
Ĉ

)

be a witness bridge for Ĉ and ρ, so no face of the drawing ρ contains all vertices of L(R) on its

boundary. Let F be the set of all faces of the drawing ρ. For every vertex v ∈ V (B0)\V (Ĉ),

there is a unique face F (v) ∈ F , such that the image of vertex v in ψ̂B0
lies in the interior of

the face F . Recall that TR is a tree whose leaves are the vertices of L(R), and TR\L(R) ⊆ R.

Assume first that V (TR)∩V (B0) = L(R). In other words, no vertex of TR \L(R) is a vertex

of B0. In this case, there is some bridge R′ ∈ RG(B0) of B0 that contains TR \L(R), and so

L(R) ⊆ L(R′). Since B0 is a good pseudo-block, there must be a face in the drawing ψ̂B0
,

the associated drawing of B0, whose boundary contains all vertices of L(R). Therefore, for

some face F ∈ F , all vertices of L(R) must lie on the boundary of F . Assume now that there

is some vertex v ∈ V (TR)∩V (B0) that does not lie in L(R). Let F (v) be the face of F whose

interior contain the image of v in ψ̂B0
(recall that v 6∈ V (Ĉ), so it may not lie on a boundary

of a face in F). We will show that all vertices of L(R) must lie on the boundary of F (v),

leading to a contradiction. Let u be an arbitrary vertex of L(R). It suffices to show that u

must lie on the boundary of the face F (v). Let P ⊆ TR be the unique path connecting v to

u in TR. Let v = v1, v2, . . . , vr = u be all vertices of P that belong to V (B0), and assume

that they appear on P in this order. It remains to prove the following observation.

Observation 3.5.38. F (v1) = F (v2) = · · · = F (vr−1). Moreover, vr lies on the boundary

of F (vr−1).

Proof. Fix some 1 ≤ i ≤ r − 1. Assume that the observation is false for some vi and vi+1.
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Then there is some face F ′ ∈ F , such that vi lies in the interior of F ′, but vi+1 does not lie

in the interior or on the boundary of F ′ (the latter case is only relevant for i = r− 1). Since

the boundary of F ′ separates vi from vi+1, these two vertices cannot lie on the boundary of

the same face in the drawing ψ̂B0
of B0.

Let σi be the subpath of P between vi and vi+1. If σi consists of a single edge connecting

vi and vi+1, then either it is a bridge in RG(B0), or it is an edge of B0. In either case, the

endpoints of σi must lie on the boundary of a single face of the drawing ψ̂B0
, a contradiction

(we have used the fact that B0 is a good pseudo-block and is therefore a planar graph).

Otherwise, let σ′i be obtained from σi by deleting the two endpoints from it. Then there

must be a bridge R′ ∈ RG(B0) containing σ′i, with vi, vi+1 ∈ L(R′). But then, since B0 is a

good pseudo-block, there must be a face in the drawing ψ̂B0
of B0, whose boundary contains

vi and vi+1, leading to a contradiction.

3.6 Computing Drawings of Type-1 Acceptable Clusters – Proof

of Theorem 3.3.3

In this section we prove Theorem 3.3.3. We fix a cluster Ci ∈ C1. For convenience of

notation, we omit the subscript i in the remainder of this section, so in particular χi will

be denoted by χ. Recall from Property P2 that we have assumed, every terminal t ∈ Γ(C)

has degree 1 in C, and degree 2 in G. In particular, for each terminal t ∈ Γ(C), there

is exactly one bridge R ∈ RG(C) with t ∈ L(R). We start by defining a new graph C+,

that is obtained from graph C, as follows. For every bridge R ∈ RC(G), we consider an

arbitrary ordering
{
t1(R), t2(R), . . . , t|L(R)|(R)

}
of the vertices of L(R), and we add a set

E′(R) of |L(R)| edges, connecting these vertices into a cycle according to this ordering.

In other words, E′(R) = {(ti(R), ti+1(R)) | 1 ≤ i ≤ |L(R)|}, where the indexing is modulo
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|L(R)|. We denote the cycle defined by the edges of E′(R) and vertices of L(R) by JR.

Let E′ =
⋃
R∈RG(C)E

′(R). Then C+ = C ∪ E′. We start with the following two useful

observations regarding the new graph C+.

Observation 3.6.1. Graph C+ is 3-connected.

Proof. Assume otherwise, and let {x, y} be a 2-separator for graph C+. Recall that graph

C is connected, and, since every vertex t ∈ Γ(C) has degree 1 in C, it cannot be the case

that both x and y are terminals in Γ(C). Therefore, at least one of the two vertices x, y lies

in V (C) \ Γ(C); we assume w.l.o.g. that it is x. Note that, since {x, y} is a 2-separator for

C+, there must be at least two connected components in C+ \{x, y}. We let X be the set of

vertices of one such connected component, and we let Y = V (C+) \ (X ∪ {x, y}). Consider

now any bridge R ∈ RG(C). If y 6∈ L(R), then, due to the edges of E′(R) that connect all

vertices of L(R) to each other via a cycle, either all vertices of R lie in X, or all vertices of

R lie in Y . In the former case, we say that bridge R belongs to X, and in the latter we say

that it belongs to Y . If y ∈ L(R), then, since JR \ {y} remains a connected graph, either all

vertices of L(R) \ {y} lie in X (in which case we say that bridge R belongs to X), or they

all lie in Y (in which case we say that bridge R belongs to Y ). Consider now a partition

(X ′, Y ′) of V (G) \ {x, y}, that is defined as follows. For every vertex v ∈ V (C), if v ∈ X,

then we add v to X ′, and otherwise we add it to Y ′. For every bridge R ∈ RG(C), if R

belongs to X, then we add all vertices of V (R) to X ′, and otherwise we add them to Y ′. It

is easy to verify that (X ′, Y ′) is indeed a partition of V (G) \ {x, y}, and moreover, no edge

connects a vertex of X ′ to a vertex of Y ′ in G. Therefore, {x, y} is a 2-separator in G, a

contradiction to the fact that G is 3-connected.

Observation 3.6.2. OPTcr(C
+) ≤ O((|χ|+ 1) · poly(∆ log n)).

Proof. Since every terminal t ∈ Γ(C) belongs to exactly one set in {L(R) | R ∈ RG(C)},

we get that |RG(C)| ≤ |Γ(C)| ≤ ∆µ ≤ O(poly(∆ log n)). Recall that we have defined the
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extension XG(C) of cluster C, that is a collection of trees, that contains, for every bridge

R ∈ RG(C), a tree TR, whose leaves are the vertices of L(R), and whose inner vertices lie in

R. For each such tree TR, let T ′R be the tree obtained from TR by suppressing all degree-2

vertices. Since |L(R)| ≤ |Γ(C)| ≤ O(poly(∆ log n)), |E(T ′R)| ≤ O(poly(∆ log n)). Let C1 be

the graph obtained from the union of the cluster C, and all trees in
{
T ′R | R ∈ RG(C)

}
. Let

Ẽ =
⋃
T∈T ′R

E(T ′R). From the above discussion, |Ẽ| ≤ O(poly(∆ log n)).

Consider now the optimal drawing ϕ of G. We delete from this drawing the images of all

edges and vertices, except those lying in C and in
⋃
R∈RG(C) TR. By suppressing all degree-2

vertices lying in trees in {TR | R ∈ RG(C)} (or, equivalently, by concatenating the images of

the pair of edges incident to each such vertex), we obtain a drawing ϕ1 of graph C1. In this

drawing, the total number of crossings in which edges of C participate is bounded by |χ|, as

in the drawing ϕ. However, images of edges in Ẽ may cross each other many times. For each

edge e ∈ Ẽ, we first modify its image so it does not cross itself, by removing self-loops as

necessary. Additionally, as long as there is a pair e, e′ ∈ Ẽ of edges whose images cross more

than once, we can modify the images of e and e′ to reduce the number of crossings between

them, by using a standard uncrossing operation (see Figure 3.1); this operation does not

create any new additional crossings, and does not increase the number of crossings in which

the edges of E(C) participate. Let ϕ1 be the final drawing of graph C1 that we obtain at

the end of this procedure. Then, since |Ẽ| ≤ O(poly(∆ log n)), the number of crossings in

ϕ1 is bounded by O(|χ|+ poly(∆ log n)).

We perform one additional modification to graph C1, to obtain a multigraph C2 as follows.

Consider any bridge R ∈ RG(C), and the corresponding tree T ′R. For every edge e ∈ E(T ′R),

we then create 2∆µ parallel copies of the edge e. Let T ′′R denote the resulting multi-graph

that we obtain from tree T ′R. Once every bridge R ∈ RG(C) is processed in this manner, we

obtain the final graph C2. We can obtain a drawing ϕ2 of the graph C2 from drawing ϕ1 of

C1 in a natural way: for every tree T ′R, for every edge e ∈ E(T ′R), we draw the 2∆µ copies

of the edge e in parallel to the drawing of e, very close to it. Since µ ≤ poly(∆ log n), every
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(a) Before: Image of edge e (red) and image of
edge e′ (blue) cross twice at p and q.

(b) After: New image of edge e (red) and
new image of edge e′ (blue) no longer cross
at p or q.

Figure 3.1: An illustration of uncrossing of the images of a pair of edges that cross more
than once.

crossing in drawing ϕ1 may give rise to at most poly(∆ log n) crossings in ϕ2, so the total

number of crossings in ϕ2 is bounded by O((|χ|+ 1) poly(∆ log n)).

We are now ready to define the drawing of the graph C+. We start with the drawing ϕ2

of graph C2, which already contains the images of the edges and the vertices of C. It now

remains to add the images of the edges of Ẽ to this drawing. In order to do so, we consider

each bridge R ∈ RG(C) one by one. Fix any such bridge R ∈ RG(C), and consider the

corresponding vertex set L(R) =
{
t1(R), t2(R), . . . , t|L(R)|(R)

}
. For all 1 ≤ i ≤ |L(R)|,

we let Qi(R) be a simple path in graph T ′′R connecting ti(R) to ti+1(R), that corresponds

to the unique path connecting ti(R) to ti+1(R) in the tree T ′R. Since graph C2 contains

2∆µ copies of every edge of T ′R, while |L(R)| ≤ ∆µ, we can ensure that the resulting paths

Q1(R), . . . , Q|L(R)|(R) are mutually edge-disjoint. For all 1 ≤ i ≤ |L(R)|, we let γi(R) denote

the curve obtained by concatenating the images of all edges lying on path Qi(R) in drawing

ϕ2. Intuitively, we would like to map, for all 1 ≤ i ≤ |L(R)|, the edge (ti(R), ti+1(R)) to the

curve γi(R). One difficulty with this approach is that several curves in the set {γi(R)}|L(R)|
i=1
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may cross in a single point. This is because several paths in {Qi(R)}|L(R)|
i=1 may pass through

a single vertex v. Obseve however that |V (T ′(R))| ≤ |L(R)| ≤ poly(∆µ). For each non-leaf

vertex v ∈ V (T ′(R)), consider a small disc η(v) containing v in its interior, in the current

drawing. We slightly modify all curves in {γi(R)}|L(R)|
i=1 that contain the image of v inside the

disc η(v) to ensure that every pair of such curves cross at most once inside η(v), and no point

of η(v) is contained in more than two curves. Since the total number of vertices in all graphs

in
{
T ′(R)

}
R∈RG(C) is bounded by O(poly(∆ log n)), and since |Ẽ| ≤ O(poly(∆ log n)), this

modification introduces at most O(poly(∆ log n)) additional crossings. We then obtain a

valid drawing of graph C+ with at most O ((|χ|+ 1) poly(∆ log n)) crossings.

We now use the following theorem from [13]:

Theorem 3.6.3 (Theorem 8 in full version of [13]). There is an efficient algorithm, that,

given a 3-connected graph G with maximum vertex degree ∆ and a planarizing set E′ of its

edges, computes a drawing ψ of G in the plane with O
(
(|E′|2 + |E′| · OPTcr(G)) poly(∆)

)
crossings. Moreover, the drawing of G \ E′ induced by ψ is planar.

We note that the statement of Theorem 8 in [13] does not include the claim that the drawing

of G \ E′ induced by ψ is planar. However, it is easy to verify that their algorithm ensures

this property, as the algorithm first selects a planar drawing of G \ E′ and then adds edges

of E′ to this drawing.

Observe that the set E′ of edges is a planarizing set for C+, as C+ \ E′ = C is a planar

graph. Therefore, we can use the algorithm from Theorem 3.6.3 to compute a drawing ψ of

graph C+, such that the drawing of C induced by ψ is planar. The number of crossings in

ψ is bounded by:

O
(

(|E′|2 + |E′| · OPTcr(G)) poly(∆)
)
≤ O ((|χ|+ 1) poly(∆ log n)) .

Note that the drawing ψ of graph C+ naturally induces a planar drawing ψ′ of graph C.
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Since every terminal t ∈ Γ(C) has degree 1 in C, for every terminal t ∈ Γ(C), there is

a unique face F (t) in the drawing ψ′, such that t lies on the (inner) boundary of F (t).

Unfortunately, it is possible that two terminals t, t′ lie in the set L(R) of legs for some bridge

R ∈ RG(C), but F (t) 6= F (t′). This situation is undesirable as it precludes us from defining

the discs D(R) for bridges R ∈ RG(C) with the required properties. In order to overcome

this difficulty, we start with E∗ = ∅, and then gradually add edges of E(C) to E∗. We will

ensure that, throughout, graph C \E∗ remains connected. Eventually, our goal is to ensure

that, in the drawing of C \ E∗ induced by ψ′, for every bridge R ∈ RG(C), all vertices of

L(R) lie on the boundary of the single face. Once we achieve this, we will slightly modify

the images of the edges incident to the terminals of C in a way that will allow us to define

the desired set of discs {D(R)}R∈RG(C).

Before we proceed, we define the notion of distances between faces of the current drawing ψ′.

Intuitively, the distance between a pair F, F ′ of faces in drawing ψ′ is the smallest number

of edges that need to be deleted from the current drawing, so that faces F and F ′ merge

into a single face. Equivalently, it is the distance between F and F ′ in the dual graph. A

third equivalent definition is the following: let γ(F, F ′) be a curve originating at a point of

F and terminating at a point of F ′ that intersects the current drawing ψ′ at images of edges

only (and avoids images of vertices). Among all such curves, choose the one minimizing

the number of edges whose images it intersects. Denote by E(F, F ′) the set of all edges

that γ(F, F ′) intersects. Then the distance between F and F ′ is |E(F, F ′)|. We need the

following simple claim.

Claim 3.6.4. For every bridge R ∈ RG(C), and every index 1 ≤ i ≤ |L(R)|, the distance

between faces F (ti(R)) and F (ti+1(R)) is at most O ((|χ|+ 1) poly(∆ log n)).

Proof. Recall that edge (ti(R), ti+1(R)) lies in graph C+, and its image in ψ is a curve con-

necting a point in F (ti(R)) to a point in F (ti+1(R)), that intersects the image of C+ at edges

only. Since the total number of crossings in drawing ψ is at most O ((|χ|+ 1) poly(∆ log n)),
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we get that the distance between the two faces is also bounded by O ((|χ|+ 1) poly(∆ log n)).

We now gradually modify the set E∗ of edges, by processing the bridges R ∈ RG(C) one

by one. When a bridge R ∈ RG(C) is processed, we consider each index 1 ≤ i ≤ |L(R)| in

turn. We now describe an iteration where index i is processed. Let F and F ′ be the faces

in the drawing of graph C \E∗ induced by ψ′, containing the images of terminals ti(R) and

ti+1(R), respectively. If F = F ′, then we do nothing. Otherwise, we are guaranteed that

the distance between the two faces is at most O ((|χ|+ 1) poly(∆ log n)). Then there is a set

E∗i (R) of at most O ((|χ|+ 1) poly(∆ log n)) edges of C \ E∗, such that, in the drawing of

the graph C \ (E∗ ∪E∗i (R)) induced by ψ, the two faces are merged, and so both terminals

ti(R) and ti+1(R) lie on the boundary of a single face. Moreover, it is easy to verify that, if

graph C \E∗ is connected, and E∗i (R) is a minimum-cardinality set of edges with the above

properties, then graph C \ (E∗ ∪ E∗i (R)) is also connected. We add the edges of E∗i (R) to

E∗, and continue to the next iteration. Once every bridge R is processed, we are guaranteed

that, in the drawing of C \ E∗ induced by ψ, for every bridge R ∈ R, there is a single face

F (R), whose boundary contains images of all vertices in L(R). We are also guaranteed that

graph C \ E∗ is connected. Since we add at most O ((|χ|+ 1) poly(∆ log n)) edges to E∗ in

each iteration, and the number of iterations is bounded by |Γ(C)| ≤ poly(∆ log n), we get

that at the end of the algorithm |E∗| ≤ O ((|χ|+ 1) poly(∆ log n)).

Consider now the drawing of graph C \ E∗ induced by ψ. Recall that for every bridge

R ∈ RG(C), we have denoted by F (R) the face in this drawing whose boundary contains

all vertices of L(R). We denote by F = {F (R) | R ∈ RG(C)}. Next, we consider each face

F ∈ F one by one. Let R(F ) ⊆ RG(C) be the set of all bridges R with F (R) = F . We

select one arbitrary disc D in the interior of the face F , and set, for every bridge R ∈ R(F ),

D(F ) = D. For every terminal t ∈
⋃
R∈R(F ) L(R), we consider the unique edge et that

is incident to t in C. We extend the image of this edge, so that its endpoint t lies on disc
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D, but the interior of the edge remains disjoint from D. This is done by appending, to the

current drawing of the edge et, a curve γt, connecting the image of t to a point on the disc

D. The set Γ(F ) =
{
γt | t ∈

⋃
R∈R(F ) L(R)

}
of curves is defined as follows. Consider a

terminal t ∈
⋃
R∈R(F ) L(R). We start by letting γt be a curve connecting the image of t to

a point on the boundary of the disc D, so that γt is disjoint from the images of the edges in

E(C) \ E∗, and crosses the image of each edge in E∗ at most once. It is easy to verify that

such a curve can be constructed, for example, by following the curves γ(F, F ′) that we used

in order to merge pairs of faces by adding edges to set E∗. Next, we use standard uncrossing

procedure to ensure that the resulting curves in Γ(F ) =
{
γt | t ∈

⋃
R∈R(F ) L(R)

}
do not

cross each other. This step only modifies the curves in Γ(F ) and does not introduce any new

crossings.

Once we process every face F ∈ F , we obtain the final drawing ψ∗ of the cluster C. Notice

that the only difference between ψ∗ and the planar drawing of C induced by ψ is that

we have modified the images of the edges in set {et | t ∈ Γ(C)}, by appending a curve

γt to the image of each such edge et. The total number of crossings in ψ∗ is bounded

by |E∗| · |Γ(C)| ≤ O ((|χ|+ 1) poly(∆ log n)). From our construction, we also guarantee

that graph C \ E∗ is connected, and that the drawing of C \ E∗ induced by ψ∗ is planar.

Additionally, for every bridge R ∈ RG(C), we have defined a disc D(R), such that the

images of all vertices in L(R) are drawn on the boundary of D(R), the interior of D(R) is

disjoint from the drawing ψ∗ of C, and the image of every edge of C is disjoint from D(R),

except possibly for its endpoint that lies on D(R). For every pair R 6= R′ of bridges, either

D(R) = D(R′), or D(R) ∩ D(R′) = ∅ must hold. This completes the proof of Theorem

3.3.3.
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3.7 Obtaining a Canonical Drawing: Proof of Theorem 3.3.4

In this section we provide the proof of Theorem 3.3.4. For brevity, we will refer to type-1 and

type-2 acceptable clusters of C1 ∪C2 as type-1 and type-2 clusters, respectively. Throughout

this section, we assume that we are given a n-vertex graph G with maximum vertex degree

at most ∆, and a decomposition D =
(
E′′, A, C1, C2, {ψC}C∈C2 ,P(A)

)
of G into acceptable

clusters. Recall that E′′ is a planarizing set of edges for G; the endpoints of the edges in E′′

are called terminals, and we denote the set of all terminals by Γ. Set A contains fake edges,

whose endpoints must be in Γ. The set of all connected components of (G\E′′)∪A is C1∪C2,

and we refer to the elements of C1∪C2 as clusters. Additionally, we are given, for each cluster

C ∈ C1 ∪ C2, a drawing ψC of C on the sphere, and, for every bridge R ∈ RG(C \ AC),

a disc D(R) on the sphere. We are guaranteed that every cluster in C1 is a type-1 cluster,

and every cluster in C2 is a type-2 cluster with respect to the drawing ψC . Lastly, the set

P(A) of paths defines a legal embedding of the fake edges. We also assume that we are

given some drawing ϕ of G, and our goal is to transform this drawing, so that it becomes

canonical with respect to all clusters in C1∪C2, such that the total number of crossings only

increases slightly. At a high level, the algorithm processes all clusters in C1 ∪ C2 one-by-one.

In each iteration, we will modify the current drawing of G so that it will become canonical

with respect to the cluster C that is processed in that iteration. The main tool that we use

in order to iteratively modify the graph is procedure ProcDraw that is described in Section

3.7.3. Before we describe the procedure, we need two additional tools: the notion of non-

interfering paths, and the notion of irregular vertices and edges that was introduced in [13].

We describe these two tools in Sections 3.7.1 and 3.7.2 respectively.

3.7.1 Non-Interfering Paths

In this subsection we define the notion of non-interfering paths and prove a lemma that

allows us to find such paths. The notion of the non-interfering paths is defined with respect
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to any given graph H ′, and will eventually be applied to various subgraphs of G ∪ A.

We assume that we are given any graph H ′ and a drawing ψ of H ′ on the sphere. For

every vertex v ∈ V (H ′), we let η(v) be a small closed disc that contains v in its interior. In

particular, no image of the vertices of V (H ′) \ {v} appears in the disc; if ψ(e) ∩ η(v) 6= ∅

for any edge e, then e must be incident to the vertex v, and ψ(e) ∩ η(v) must be a simple

curve (a curve that does not cross itself) that intersects the boundary of η(v) at exactly one

point. The discs η(v) that correspond to distinct vertices must be disjoint.

We now fix some vertex v ∈ V (H ′). Let δ(v) = {e1, . . . , er} be the set of all edges that are

incident to vertex v in H ′. For each such edge ei, let pi be the unique point on the image of

edge ei that lies on the boundary of the disc η(v). Notice that the circular ordering of the

points p1, . . . , pr on the boundary of η(v) defines a circular ordering Õ(v) of the edges in

δ(v). We call this ordering the ordering of the edges of δ(v) in ψ, as they enter vertex v. For

each edge ei ∈ δ(v), we let σei(v) be a small closed segment of the boundary of the disc η(v),

that contains the point pi in its interior, such that all segments in {σei(v)}ri=1 are mutually

disjoint (see Figure 3.2). Next, we define the notion of a thin strip around a path in H ′.

e1

e2

e3

e4

e5

v

η(v)

σe1(v)
σe2(v)

Figure 3.2: Disc η(v) and segments σei(v).

Thin strip around a path. Let P be any path in H ′. We denote the endpoints of P by

u and v, we denote by ev the unique edge on path P that is incident to vertex v, and we

denote by eu the unique edge of P that is incident to vertex u. Recall that the image ψ(P )

of path P in ψ is a curve obtained by concatenating the images of its edges in ψ. We define

a thin strip SP around the image of P in ψ, by adding two curves, γL and γR, immediately
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to the left and to the right of the image of P respectively, that follow the image of P . The

two curves originate at the two endpoints of the segment σev(v), and terminate at the two

endpoints of the segment σeu(u). They do not cross each other except when the image of P

crosses itself, and do not intersect the interiors of the discs η(v) and η(u). The two curves

are extremely close to the image of P in ψ. The region of the sphere, whose boundary is

the concatenation of σev(v), γL, σeu(u) and γR, and that contains the image of P (except for

ψ(P ) ∩ η(u) and ψ(P ) ∩ η(v)), defines the thin strip SP around P . We draw the curves γL

and γR so that the resulting strip SP contains images of vertices of P \ {u, v}, and no other

vertices of H ′. Additionally, the only edges of G whose images have a non-empty intersection

with SP are (i) edges that are incident to vertices of P \ {u, v}; and (ii) edges whose images

cross the edges of P ; see Figure 3.3 for an illustration. For each such edge e, ψ(e) ∩ SP is

a collection of disjoint open curves, where each curve contains a point that belongs to the

image of P (the corresponding point is either an image of a vertex of P , or a crossing point

of e with an edge of P ). We can similarly define a thin strip Se′ around the image of an edge

e′ in ψ, by considering a path that only consists of the edge e′.

Figure 3.3: A thin strip SP around path P = (u,w, v). The segments σev(v) and σeu(u) are
shown in red and the curves γL and γR are dashed orange lines.

Definition 12 (Non-interfering Paths). Let H ′ be a planar graph and let ψ be a planar

drawing of H ′. Let P be a set of paths in H ′, where for each path P ∈ P, we denote the

endpoints of P by uP and vP . We say the paths of P are non-interfering with respect to ψ

(see Figure 3.4), iff there exists a collection {γP }P∈P of curves, such that:
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1. for each path P ∈ P, the curve γP connects ψ(uP ) to ψ(vP ), and is contained in

η(uP ) ∪ η(vp) ∪ SP , where SP is the thin strip around P in ψ; and

2. for every pair P, P ′ ∈ P of distinct paths, the curves γP and γP ′ are disjoint.

The set {γP }P∈P of curves with the above properties is called a non-interfering representation

of P with respect to ψ.

Note that the curve γP in the above definition may cross ψ(P ) (the image of the path P in

drawing ψ) arbitrarily many times. Also note that, as shown in Figure 3.4, non-interfering

paths may share vertices and edges. We also use the following two definitions.

(a) In this figure we consider a collection of paths
connecting every leaf of the tree to its root. These
paths are non-interfering, and the curves that are
shown in red are their non-interfering representa-
tion with respect to this drawing of the tree.

(b) The red path and the green path in this
figure are not non-interfering with respect
to this drawing.

Figure 3.4: Non-interfering paths and non-interfering representations.

Definition 13. Given a graph H ′, a set Γ of its vertices, together with another vertex u

(that may belong to Γ), a routing of the vertices of Γ to u is a set Q = {Qv | v ∈ Γ} of

paths, where for each vertex v ∈ Γ, path Qv connects v to u. We sometimes say that set Q

of paths routes vertices of Γ to u.

Definition 14. Given a set Q of paths in a graph H ′, for each edge e ∈ E(H ′), we denote

by congQ(e) the congestion of the paths in Q on edge e – the number of paths in Q that

contain e. We denote by congH ′(Q) = maxe∈E(H ′)
{

congQ(e)
}

the total congestion caused

by the set Q of paths in H ′.
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Assume now that we are given a set Γ of vertices of H ′, a vertex u ∈ V (H ′), and a routing

Q of the vertices of Γ to u in H ′. Let O be any ordering of the vertices of H ′. We say that

O is consistent with the set Q of paths if, for every path Qv ∈ Q, for every pair x, y of

distinct vertices of Q, where y lies closer to u than x on Q, vertex x appears before vertex

y in O. The following lemma allows us to transform any routing of a set Γ of vertices to

a given vertex u into a collection of non-interfering paths, and to compute an ordering of

vertices of H ′ that is consistent with the resulting set of paths. The sets of paths produced

by this lemma will be used as guiding paths by procedure ProcDraw in order to modify the

drawing of G. The proof of the lemma is deferred to Section 3.11.

Lemma 3.7.1. There is an efficient algorithm, that, given a planar graph H ′ with a planar

drawing ψ of H ′, a collection Γ of vertices of H ′ and another vertex u ∈ V (H ′) (where

possibly u ∈ Γ), together with a set Q of paths routing Γ to u in H ′, computes another set

Q′ of paths routing Γ to u, such that the set Q′ of paths is non-interfering with respect to ψ,

and for every edge e ∈ E(H ′), congQ′(e) ≤ congQ(e). Additionally, the algorithm computes

a non-interfering representation
{
γQ | Q ∈ Q′

}
of Q′ and an ordering O of the vertices of

H ′ that is consistent with the set Q′ of paths.

Consider the set Q′ of paths given by Lemma 3.7.1. Even though the paths in Q′ are

undirected, it may be convenient to think of them as being directed towards u. Let e =

(x, y) ∈ E(H ′) be an edge, and assume that x appears before y in the ordering O. Let

P(e) ⊆ Q′ be the subset of all paths Q with e ∈ E(Q). Notice that all paths in P(e) must

traverse the edge e in the direction from x to y, since the ordering O of V (H ′) is consistent

with respect to Q′. Moreover, if we consider the intersections of the curves
{
γQ | Q ∈ P(e)

}
with the thin strip Se around the image of the edge e = (u, v) in ψ, then the order in which

these curves traverse Se (e.g. the order in which they intersect the segment σe(u)) naturally

defines an ordering of the paths in P(e). We denote this ordering by Õ(e), and we refer to

it as the ordering of the paths in P(e) in the strip Se; see Figure 3.5 for an illustration.
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Figure 3.5: The ordering Õ(e) of the paths in Q′e in Se.

3.7.2 Irregular Vertices and Edges

In this subsection, we provide the definitions of irregular vertices and edges from [13], and

then state a lemma from [13] about them. Let H ′ = (V,E) be a connected graph and let ϕ

and ψ be a pair of drawings of H ′ in the plane.

As before, we denote by S2(H ′) the set of all vertices that participate in 2-separators in H ′,

that is, vertex v ∈ S2(H ′) iff there is another vertex u ∈ V , such that graph H ′ \ {u, v} is

not connected. We denote by E2(H ′) the set of all edges that have both endpoints in set

S2(H ′).

Definition 15 (Irregular Vertices). We say that a vertex v of H ′ is irregular (with respect to

ϕ and ψ) iff (i) its degree in H ′ is greater than 2; and (ii) the circular ordering of the edges

incident on it, as their images enter v, is different in ϕ and ψ (ignoring the orientation).

We denote the set of all vertices that are irregular with respect to ϕ and ψ by IRGV (ϕ, ψ),

and we call all other vertices regular.

Definition 16 (Irregular Paths and Edges). We say that a path P with endpoints x and y

in H ′ is irregular iff x and y both have degree at least 3 in H ′, all other vertices of P have

degree 2 in H ′, vertices x and y are regular, but their orientations differ in ϕ and ψ. In other

words, the orderings of the edges adjacent to x and to y are identical in both drawings, but the

pairwise orientations are different: for one of the two vertices, the orientations are identical
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in both drawings (say clock-wise), while for the other vertex, the orientations are opposite

(one is clock-wise, and the other is counter-clock-wise). An edge e is an irregular edge with

respect to ϕ and ψ iff it is the first or the last edge on an irregular path. In particular, if the

irregular path only consists of a single edge e, then e is an irregular edge.

We denote the set of all edges that are irregular with respect to ϕ and ψ by IRGE(ϕ, ψ),

and we call all other edges regular. The following lemma is a re-statement of Lemma 2

from Section B from the arxiv version of [13] for the special case where the graph H ′ is

2-connected.

Lemma 3.7.2. ([13]) Let H ′ be a 2-connected planar graph, let ϕ be an arbitrary drawing

of H ′ in the plane, and let ρ be a planar drawing of H ′. Then

|IRGV (ϕ, ρ) \ S2(H ′)|+ |IRGE(ϕ, ρ) \ E2(H ′)| ≤ O(cr(ϕ)).

3.7.3 Main Subroutine: Procedure ProcDraw

In this subsection we describe and analyze procedure ProcDraw, that is central to the proof

of Theorem 3.3.4. We note that a similar procedure was introduced in [9] (see Section D

of the full version). The procedure will be applied repeatedly to every cluster C ∈ C1 ∪ C2

(and more precisely, to several faces in the drawing ψC of the cluster C), with the goal

of transforming the current drawing of the graph G into a drawing that is canonical with

respect to C.

Intuitively, the input to the procedure consists of two disjoint graphs: graph C (that we can

think of as a cluster of C1 ∪ C2), and graph X (that we can think of, somewhat imprecisely,

as the rest of the graph G, or as some bridge in RG(C)). Additionally, we are given a set Ê

of edges that connect some vertices of X to some vertices of C. We denote by Γ̂ and by Γ̂′

the sets of endpoints of the edges in Ê lying in C and X, respectively. Abusing the notation,

in this subsection, we denote by G the graph that is the union of X,C, and the set Ê of
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edges (see Figure 3.6(a)).

We assume that we are given some drawing ϕ of G on the sphere (which represents, in-

tuitively, the current drawing of the whole graph G), and another drawing ψ of C on the

sphere (which will eventually be the canonical drawing ψC of C). Furthermore, we are given

a closed disc D on the sphere, such that, in the drawing ψ, the images of all edges of C are

internally disjoint from D, and the images of all vertices of C are disjoint from D, except

that the images of vertices of Γ̂ lie on the boundary of D (see Figure 3.6(b)). This disc D

will correspond to the discs D(R) that we have defined for the various bridges R ∈ RG(C).

C X

Ê
!Γ !Γ′

(a) Schematic view of graph G.

C

D

(b) Drawing ψ of C and the disc
D. The vertices of Γ are shown in
red.

Figure 3.6: Input to ProcDraw

Lastly, we are given some vertex u∗ ∈ V (C), and a set Q =
{
Qv | v ∈ Γ̂

}
of paths in C that

route Γ̂ to u∗. Intuitively, we will use the images of the paths in Q (after slightly modifying

them) in the drawing ϕ as guiding lines in order to modify the drawing ϕ. We let J ⊆ G

be the graph containing all vertices and edges that participate in the paths in Q, and we

assume that the drawing of J induced by ψ is planar.

The goal of ProcDraw is to compute a new drawing ϕ′ of G, such that the drawing of C

induced by ϕ′ is identical to ψ (but the orientation may be arbitrary), and all vertices and

edges of X are drawn in the interior of the disc D, that is defined with respect to ψ. We

would also like to ensure that the number of crossings in ϕ′ is not much larger than the

number of crossings in ϕ. We now formally summarize the input and the output of the

procedure ProcDraw.
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Input. The input to procedure ProcDraw consists of:

• Two disjoint graphs C,X, subsets Γ̂ ⊆ V (C), Γ̂′ ⊆ V (X) of vertices, and a set Ê of

edges that connect vertices of Γ̂ to vertices of Γ̂′, such that every vertex in Γ̂ ∪ Γ̂′ is

an endpoint of at least one edge of Ê (see Figure 3.6(a)). We denote G = C ∪X ∪ Ê,

and we denote the maximum vertex degree in G by ∆;

• A vertex u∗ ∈ V (C), and a set Q =
{
Qv | v ∈ Γ̂

}
of paths in C that route Γ̂ to u∗.

We refer to the paths in Q as the guiding paths for the procedure, and we let J ⊆ G

be the graph containing all vertices and edges that participate in the paths in Q;

• An arbitrary drawing ϕ of graph G on the sphere; and

• A drawing ψ of graph C on the sphere, such that the drawing of J induced by ψ is

planar, and additionally a closed disc D on the sphere, such that, in drawing ψ, the

images of vertices of V (C) are disjoint from the disc D, except for the vertices of Γ̂

whose images lie on the boundary of D, and the images of the edges of E(C) are

disjoint from the disc D, except for their endpoints that belong to Γ̂.

Output. The output of the procedure ProcDraw is a drawing ϕ′ of G on the sphere, that

has the following properties:

• The drawing of C induced by ϕ′ is identical to ψ (but the orientation may be different);

• All vertices and edges of X are drawn in the interior of the disc D in ϕ′ (the disc D is

defined with respect to ψ); and

• The edges of Ê are drawn inside the disc D, and they only intersect the boundary of

D at their endpoints that belong to Γ̂.

We now describe the execution of the procedure ProcDraw. We start from the drawing

ϕ of the graph G, and then modify it to obtain the desired drawing ϕ′. For simplicity
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of exposition, in the remainder of this subsection, we use the following notation. For any

drawing ϕ̂ of any graph Ĝ, and for any subgraph Ĥ ⊆ Ĝ, we denote by ϕ̂
Ĥ

the unique

drawing of Ĥ induced by the drawing ϕ̂ of Ĝ. The procedure consists of two steps.

Step 1. In this step, we consider the drawing ϕ of G on the sphere, and the disc η(u∗)

around the vertex u∗. We denote the boundary of this disc by λ, and we let D′ be the disc

whose boundary is λ, that is disjoint from η(u∗) except for sharing the boundary with it.

By shrinking the disc η(u∗) a little, we obtain another disc η′(u∗) ⊆ η(u∗), whose boundary

is denoted by λ′, such that λ′ is disjoint from λ (see Figure 3.7(a)).

u*

λ

η’(u*)

λ’

η(u*)

(a) Discs η(u∗) and
η′(u∗), and their
boundaries λ and λ′,
respectively.

λ
λ’

η’(u*)

η(u*)

(b) After Step 1. Graph C is now drawn inside disc
η′(u∗), using the drawing ψ, with the vertices of Γ̂
(shown in red) appearing on λ′. Graph X is drawn
outside η(u∗), preserving the original drawing ϕ.
The vertices of Γ̂′ are shown in red, and the images
of the edges of Ê in ϕ are shown in green. We also
show, in dashed green curves, the images of the
paths in Q in the original drawing ϕ.

Figure 3.7: Illustration for Step 1 of ProcDraw.

We then erase, from ϕ, the images of the vertices and the edges of C (but we keep the images

of the edges of Ê), and instead place the drawing ψ of C inside the disc η′(u∗). Recall that

we are given a disc D in the drawing ψ of C, such that the images of the vertices of C

are disjoint from the disc D, except that the images of the vertices in Γ̂, that lie on the

boundary of D, and the images of the edges of C are disjoint from the disc D, except for

their endpoints that belong to Γ̂ and lie on the boundary of D. We plant the drawing ψ

inside the disc η′(u∗) in such a way that the boundary of the disc D coincides with λ′ (see
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Figure 3.7(b)). Therefore, all vertices of Γ̂ are now drawn on the curve λ′, and the image of

C now appears inside the disc η′(u∗). Note that the drawing of X ∪ Ê remains unchanged

and its image still lies in the interior of the disc D′. We denote the drawing that we obtained

after the first step by ϕ̂. In order to obtain the final drawing of the graph G, we need to

extend the drawings (in ϕ̂) of the edges in Ê, so that they connect the original images of the

vertices in Γ̂′ to the new images of the vertices in Γ̂.

Step 2. The goal of this step is to extend the images of the edges e ∈ Ê in the current

drawing, so that they terminate at the new images of the vertices of Γ̂. We do so by exploiting

the images of the paths in Q in the original drawing ϕ of G, after slightly modifying them.

Specifically, consider the set Q =
{
Qv | v ∈ Γ̂

}
of paths. Recall that J ⊆ G is the graph

containing all vertices and edges that participate in the paths in Q. We say that a vertex

v ∈ V (J) is irregular if it is irregular with respect to the drawings ϕJ and ψJ of J (that are

induced by the drawings ϕ of G and ψ of C, respectively, where ϕ is the original drawing of

the graph G). We define irregular edges and paths in graph J similarly.

Recall that for every edge e′ ∈ E(C), we have denoted by congQ(e′) the congestion of the set

Q of edges on e′ – that is, the total number of paths in Q that contain the edge e′. Consider

now some edge e = (u, v) ∈ Ê, with u ∈ Γ̂ and v ∈ Γ̂′. We subdivide the edge e with a

new vertex te, and we denote by Γ∗ =
{
te | e ∈ Ê

}
this new set of vertices. We let set Ê′

of edges contain, for each edge e = (u, v) ∈ Ê with u ∈ Γ̂, the edge (u, te). Consider the

current drawing ϕ̂. Once we subdivide each edge e ∈ Ê with the vertex te, this new drawing

(that we still denote by ϕ̂) now contains the images of the edges in Ê′. Similarly, we add

the vertices of Γ∗ to the original drawing ϕ of G, and we still denote this new drawing by ϕ.

We denote by ϕ(C) the drawing of C induced by ϕ, and we similarly denote by ϕ(C ∪ Ê′)

the drawing of C ∪ Ê′ induced by ϕ. Lastly, we denote by J ′ the graph J ∪ Ê′.

Notice that graph J ′ is planar, since J is planar. We let ψ′J ′ be a drawing of J ′, obtained

from the drawing ψJ of J induced by ψ, by adding the drawings of the edges in Ê′ to it,
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without introducing any new crossings (recall that each such edge connects a vertex of Γ̂ to

a vertex of Γ∗, and that the latter has degree 1 in J ′). Consider any edge (u, te) ∈ Ê′. If

vertex u is a regular vertex (recall that this is defined with respect to the drawings ϕJ and

ψJ of J), then we add the drawing of the edge (u, te) to ψ so that u remains a regular vertex

with respect to the drawings ϕJ ′ and ψ′J ′ of J ′. In other words, the drawing of the edges in

Ê′ is added to ψJ in such a way that every vertex v ∈ Γ̂ that was regular with respect to ψJ

and ϕJ , remains regular with respect to ψ′J ′ and ϕJ ′ . Similarly, we can ensure that every

edge of E(J) that was regular with respect to ψJ and ϕJ remains regular with respect to

ψ′J ′ and ϕJ ′ .

Consider now some edge e = (u, v) ∈ Ê, with u ∈ Γ̂. We denote the corresponding new edge

(u, te) ∈ Ê′ by ê. By concatenating the path Qu ∈ Q with the edge (u, te), we obtain a new

path, that we denote by Q′e, connecting te to u∗, such that every vertex of Q′e except for te

lies in J . Let Q′ =
{
Q′e | e ∈ Ê

}
be the resulting set of paths. It is easy to verify that, for

every edge ê ∈ Ê′, congQ′(ê) = 1, and for every edge e′ ∈ E(J), congQ′(e
′) ≤ ∆ · congQ(e′).

Next, we apply Lemma 3.7.1 to graph J ′, its planar drawing ψ′J ′ , and the set Q′ of paths, to

obtain a new set Q′′ of paths, routing Γ∗ to u∗ in J ′, that are non-interfering with respect

to ψ′J ′ . The lemma ensures that, for every edge ê ∈ Ê′, congQ′′(ê) = 1, and for every edge

e′ ∈ E(J), congQ′′(e
′) ≤ congQ′(e

′) ≤ ∆ · congQ(e′). We denote, for each edge e ∈ Ê, by

Q′′e ∈ Q′′ the unique path originating at the vertex te. Additionally, the lemma provides

a non-interfering representation
{
γQ′′e | e ∈ Ê

}
of the paths in Q′′, and an ordering O of

the vertices of V (J) ∪ Γ∗ that is consistent with the paths in Q′′. Notice that every vertex

te ∈ Γ∗ has degree 1 in C ∪ Ê′, so the first edge on path Q′′e must be the edge ê ∈ Ê′.

Consider some edge e = (u, u′) ∈ Ê, with u ∈ Γ̂. We will define a curve ζe that connects the

image of u in the current drawing ϕ̂ to the image of u′, and is contained in the thin strip SQ′′e

around the drawing of path Q′′e in ϕ, as follows. Denote Q′′e = (te = v1, v2, . . . , vr = u∗).

For all 1 ≤ i < r, we denote by ei = (vi, vi+1) the ith edge on this path. In order to define
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the curve ζe, we will define, for every edge ei ∈ E(Q′′e) with i > 1, a curve ζe(ei), that is

contained in the thin strip Sei around the image of ei in the original drawing ϕ of G, and

connects some point p′e(vi) on the boundary of the disc η(vi) to some point pe(vi+1) on

the boundary of the disc η(vi+1). We also define a curve ζe(e1), connecting the image of

vertex v1 = te to some point pe(v2) on the boundary of the disc η(v2). Additionally, for all

2 ≤ i < r, we define a curve ζe(vi), that is contained in η(vi), and connects the point pe(vi)

to the point p′e(vi). Lastly, we define a curve ζe(vr), that is contained in η(u∗) \ η′(u∗), and

connects the point pe(vr) that lies on λ to the image of the vertex u ∈ Γ̂, that lies on λ′.

The final drawing of the edge e = (u, u′) is obtained by concatenating the image of the edge

(u′, te) in the current drawing ϕ̂, and the curves ζe(e1), ζe(v2), ζe(e2), . . . , ζe(er), ζe(vr). The

resulting curve connects the image of the vertex u′ to the image of the vertex u, as required.

It now remains to define each of these curves.

Drawing around the vertices. Consider some vertex v ∈ V (J). Let P(v) ⊆ Q′′ be the

set of all paths Q′′e ∈ Q′′ that contain the vertex v. We assume first that v 6= u∗. For

each path Q′′e ∈ P(v), consider the corresponding curve γQ′′e that was defined as part of the

non-interfering representation of the paths in Q′′ in the drawing ψ′J ′ . We think of this curve

as being directed towards the vertex u∗. Note that the curve γQ′′e intersects the boundary

of η(v) in ψ in exactly two points; we denote the first point by qe(v) and the second point

by q′e(v). If we denote by ei, ei+1 the edges of Q′′e that appear immediately before and

immediately after v on path Q′′e , then point qe(v) must lie on the segment σei(v), and point

q′e(v) must lie on the segment σei+1(v) of the boundary of η(v) in the drawing ψ (see Figure

3.2).

Assume first that vertex v is a regular vertex with respect to the drawings ψ′J ′ and ϕJ ′ . Then

the set
{
qe(v), q′e(v)

}
Q′′e∈P(v) of points on the boundary of η(v) in the drawing ψ naturally

defines the corresponding set
{
pe(v), p′e(v)

}
Q′′e∈P(v) of points on the boundary of η(v) in

the drawing ϕ (if the orientation of the vertex v is different in the two drawings, then we
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flip the sets of points accordingly). Moreover, for every path Q′′e ∈ P(v), the intersection

of the curve γQ′′e with the disc η(v) in the drawing ψ′J ′ naturally defines a curve ζe(v) in

the drawing ϕ, that is contained in the disc η(v), and connects point pe(v) to point p′e(v).

Notice that the resulting curves in {ζe(v)}Q′′e∈P(v) are all mutually disjoint.

Assume now that vertex v is irregular with respect to ψ′J ′ and ϕJ ′ . Consider any path Q′′e ∈

P(v), and let ei, ei+1 be the edges of Q′′e that appear immediately before and immediately

after v on path Q′′e . In this case, we let pe(v) be a point on the segment σei(v) of the

boundary of the disc η(v) in ϕ, and similarly we let p′e(v) be a point on the segment σei+1(v)

of the boundary of the disc η(v) in ϕ. We ensure that all points that are added to each

segment σe′(v), for all e′ ∈ δ(v) are distinct, and their ordering within each segment σe′(v)

is the same as the ordering of the corresponding points of
{
qe(v), q′e(v)

}
Q′′e∈P(v) ∩ σe′(v) in

ψ′J ′ . For every path Q′′e ∈ P(v), we let ζe(v) be an arbitrary curve in ϕ, that is contained in

the disc η(v), and connects point pe(v) to point p′e(v); we ensure that every pair of curves

in {ζe(v)}Q′′e∈P(v) intersect at most once.

Lastly, we consider the case where v = u∗. In this case, for each path Q′′e ∈ Q′′, the

intersection of the curve γQ′′e with the boundary of the disc η(u∗) in ψ is exactly one point,

that is denoted by qe(u
∗). We use the set {qe(v)}Q′′e∈Q′′ of points on the boundary of η(u∗)

in the drawing ψ′J ′ to define the corresponding set {pe(v)}Q′′e∈Q′′ of points on the boundary

λ of the disc η(u∗) exactly as before (where we again consider the cases where u∗ is regular

or irregular separately). It now remains to define the curves ζe(u
∗) for all paths Q′′e ∈ Q′′.

Assume first that vertex u∗ is irregular with respect to the drawings ψ′J ′ and ϕJ ′ . Then

for every edge e = (u, u′) ∈ Ê with u ∈ Γ̂, we let ζe(u
∗) be any curve that is contained

in η(u∗) \ η′(u∗), that connects point pe(u
∗) to the image of the vertex u (that lies on the

boundary λ′ of η(u∗)), such that each pair of such curves cross at most once.

Lastly, we assume that vertex u∗ is regular with respect to ψ′J ′ and ϕJ ′ . For every vertex

u ∈ Γ̂, let S(u) ⊆ Q′′ be the set of paths whose second vertex is u. In other words, a path
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Q′′e ∈ S(u) iff u is an endpoint of the edge e ∈ Ê. Since the curves in
{
γQ′′e

}
Q′′e∈Q′′

are a

non-interfering representation of the paths in Q′′ in the drawing ψ, for all u ∈ Γ̂, there is a

contiguous segment σ′(u) of the boundary λ of η(u∗) in the current drawing ϕ̂, such that for

every path Q′′e ∈ S(u), the point pe(u
∗) lies on segment σ′(u). Moreover, we can ensure that

the segments
{
σ′(u) | u ∈ Γ̂

}
are disjoint from each other. Since the curves in

{
γQ′′e

}
Q′′e∈Q′′

are non-interfering, the circular ordering of the segments
{
σ′(u) | u ∈ Γ̂

}
along λ is identical

to the circular ordering of the images of the vertices in Γ̂ on λ′. If the orientations of the

two orderings are different, then we flip the current drawing of C, by replacing the current

drawing contained in disc η′(u∗) with its mirror image. Therefore, we can define, for every

vertex u ∈ Γ̂, for every path Q′′e ∈ S(u), a curve ζe(u
∗), that is contained in η(u∗) \ η′(u∗) in

the drawing ϕ̂, and connects point pe(u
∗) to the image of the vertex u, while ensuring that

all resulting curves in
{
ζe(u

∗) | e ∈ Ê
}

are mutually disjoint from each other.

Drawing along the first edge on each path. Consider again an edge e = (u, u′) ∈ Ê,

with u ∈ Γ̂, and denote by e1 = (v1, v2) the first edge on path Q′′e , where v1 = te. Recall

that the current drawing ϕ̂ contains the drawing of the edge (te, v2) = (v1, v2). We slightly

shorten the corresponding curve, so it still originates at the image of te, but now it terminates

at the point pe(v2) on the boundary of η(v2). This defines the curve ζe(e1).

Drawing along the edges. Lastly, we define, for every edge e ∈ Ê, the curves ζe(ei),

where ei is an edge on the path Q′′e , that is not the first edge on the path. In order to do so,

we consider any edge e′ ∈ E(C), denoting e′ = (x, y). Recall that we are given an ordering

O of the vertices of J that is consistent with the paths in Q′′. We assume that x appears

before y in this ordering, so every path in Q′′ that contains the edge e′, traverses it in the

direction from x to y. We denote by P(e′) ⊆ Q′′ the set of paths that contain the edge e′.

Recall that for each such path Q′′e ∈ P(e′), we have defined a point p′e(x) on the segment

σe(x) of the boundary of the disc η(x) in ϕ, and a point pe(y) on the segment σe(y) on the
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boundary of the disc η(y) in ϕ. We now consider two cases.

The first case is when either (i) edge e′ is a regular edge (with respect to ϕJ ′ and ψ′J ′), or (ii)

e′ is an irregular edge, but it is not the last edge on the corresponding irregular path (since

we can view the paths in Q′′ as directed towards u∗, and since we are given an ordering O of

the vertices of V (J) that is consistent with the paths in Q′′, the notion of the last edge on

a path is well defined). In this case, the ordering of the points in
{
p′e(x) | Q′′e ∈ P(e′)

}
on

segment σe(x) is identical to the ordering of the points in
{
pe(y) | Q′′e ∈ P(e′)

}
on segment

σe(y). We can then define, for each path Q′′e ∈ P(e′), a curve ζe(e
′) connecting points p′e(x)

and pe(y) that is contained in the thin strip Se′ around e′ in ϕ, such that all resulting curves

are mutually disjoint, in a straightforward way (see Figure 3.8(a)).

The second case is when edge e′ is an irregular edge with respect to ϕJ ′ and ψ′J ′ , and it is the

last edge on an irregular path. In this case, the ordering of the points in
{
p′e(x) | Q′′e ∈ P(e′)

}
on segment σe(x) and the ordering of the points in

{
pe(y) | Q′′e ∈ P(e′)

}
on segment σe(y)

are reversed. We can then define, for each path Q′′e ∈ P(e′), a curve ζe(e
′) connecting points

p′e(x) and pe(y) that is contained in the thin strip Se′ around e′ in ϕ, such that every pair

of the resulting curves intersect exactly once (see Figure 3.8(b)).

This completes the definition of the images ζe of the edges e ∈ Ê, and completes the definition

of the new drawing ϕ′ of G. It is immediate to verify that drawing ϕ′ has all required

properties. It now remains to analyze the number of crossings in this drawing. This analysis

will be used later in order to bound the number of crossings in the modified drawing of the

input graph G that our algorithm constructs.

x

η(x)

y

η(y)Se’

(a) Drawing along a regular edge e′.

x

η(x)

y

η(y)Se’

(b) Drawing along an edge e′ that is the last
irregular edge of an irregular path.

Figure 3.8: Drawing along edges of E(C).
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Analysis of the Number of Crossings. We now analyze the number of crossings in the

final drawing ϕ′ of the graph G. First, the images of the edges of E(C) may cross each

other in the new drawing ϕ′, and the number of such crossings is bounded by cr(ψ). The

edges of E(X) may also cross each other, and the number of such crossings is bounded by

cr(ϕ). The crossings caused by pairs of edges in E(C) or pairs of edges in E(X) are called

old crossings. From the above discussion, the total number of old crossings is bounded by

cr(ϕ)+cr(ψ). We now bound the number of additional crossings, that we call new crossings.

Note that, the edges of E(C) may only cross the edges of E(C), as the edges of E(C) are

drawn inside the disc η′(u∗), while all other edges are drawn outside this disc. Therefore,

all new crossings are those in which at least one edge of Ê participates, and it remains to

bound (i) the number of crossings of the edges of Ê with each other, and (ii) the number of

crossings between the edges of Ê and the edges of E(X).

We assume without loss of generality that, in both ϕ and ψ, and every pair of edges cross

at most once. This assumption is only made for the ease of notation; the analysis below

works even if the images of pairs of edges are allowed to cross multiple times. We denote by

(e1, e2) the crossing caused by the pair e1, e2 of edges. Consider the original drawing ϕ of

G. We denote by χ̂1 the set of all crossings (e1, e2) in ϕ, where e1, e2 ∈ E(J). We denote

by χ̂2 the set of all crossings (e1, e2) in ϕ, where e1 ∈ E(J) and e2 6∈ E(C).

Consider some crossing (e1, e2) ∈ χ̂1. For every pair e, e′ ∈ Ê of edges such that e1 ∈ E(Q′′e)

and e2 ∈ E(Q′′e′), the new images of the edges e and e′ in ϕ′ must cross. Therefore, each

crossing (e1, e2) ∈ χ̂1 contributes congQ′′(e1) · congQ′′(e2) = O(congQ(e1) · congQ(e2) ·∆2)

crossings to crϕ′(G). Consider some crossing (e1, e2) ∈ χ̂2, where e1 ∈ E(J) and e2 6∈ E(C).

For every edge e ∈ Ê such that the path Q′′e contains e1, the new drawing of e must

intersect the new drawing of e2 in ϕ′. Therefore, each crossing (e1, e2) ∈ χ̂2 contributes

congQ′′(e1) = O(congQ(e1) ·∆) crossings to crϕ′(G).

The only additional crossings in ϕ′ are crossings between the images of the edges of Ê due
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to the re-ordering of the corresponding curves along irregular vertices and irregular edges. If

an edge e′ ∈ E(J) is irregular with respect to ψ′J ′ and ϕJ ′ , then the paths in set P(e′) ⊆ Q′′

may incur up to (congQ′′(e
′))2 ≤ (congQ(e′) · ∆)2 crossings as they are drawn along the

edge e′. Assume now that a vertex v ∈ V (J) is irregular with respect to ψ′J ′ and ϕJ ′ , and

let nv = |P(v)| be the total number of all paths in Q′′ that contain the vertex v. Then the

number of crossings due to the drawing of these paths in the disc η(v) is at most n2
v. If

e′ ∈ δ(v) is the edge with maximum congestion congQ′′(e
′), then this number of crossings

is bounded by (∆ · congQ′′(e
′))2 ≤ ∆4(congQ(e))2. Recall that we have ensured that, if a

vertex v ∈ V (J) is irregular with respect to ψ′J ′ and ϕJ ′ , then it is irregular with respect to

ψJ and ϕJ . Similarly, if an edge e ∈ E(J) is irregular with respect to ψ′J ′ and ϕJ ′ , then it

is irregular with respect to ψJ and ϕJ .

Denote by E∗ the set of all edges e ∈ E(J), such that either e is an irregular edge with

respect to ψJ and ϕJ , or at least one endpoint of e is an irregular vertex with respect to ψJ

and ϕJ . Then the total number of new crossings in ϕ′ is bounded by:

O

 ∑
(e1,e2)∈χ̂1

∆2 congQ(e1) congQ(e2) +
∑

(e1,e2)∈χ̂2

∆ congQ(e1) +
∑
e∈E∗

∆4(congQ(e))2

 .

Finally, the total number of crossings in ϕ′ is bounded by:

cr(ϕ) + cr(ψ)+

O

 ∑
(e1,e2)∈χ̂1

∆2 congQ(e1) congQ(e2) +
∑

(e1,e2)∈χ̂2

∆ congQ(e1) +
∑
e∈E∗

∆4(congQ(e))2

 .

The following observation is immediate from the analysis above and will be useful in bounding

the total number of crossings in our algorithm.

Observation 3.7.3. Let (e1, e2) be a new crossing in ϕ′ (that is, edges e1 and e2 cross in

ϕ′ but do not cross in ϕ or in ψ). Then either e1, e2 ∈ Ê, or one of these edges belongs to Ê
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and the other to X. Moreover, if e ∈ E(X), and Ke is the set of all edges of J whose image

in ϕ crosses the image of e, then the total number of new crossings in ϕ′ in which edge e

participates is at most
∑
e′∈Ke

∆ · congQ(e′).

3.7.4 Completing the Proof of Theorem 3.3.4

We now provide the proof of Theorem 3.3.4, by showing an algorithm that produces the

desired drawing ϕ′ of the graph G. The algorithm processes all clusters in C1 ∪ C2 one-by-

one, with clusters in C1 processed before clusters in C2. When a cluster C is processed, we

modify the current drawing of the graph G, so that it becomes canonical with respect to C.

For convenience, we denote C = C1 ∪ C2, and we denote the clusters in C by C1, . . . , Cr. We

assume that the type-1 clusters appear before the type-2 clusters in this ordering.

Our algorithm proceeds by repeatedly invoking procedure ProcDraw. As part of input, the

procedure requires a collection Q of guiding paths. We start by defining, for every cluster

Ci ∈ C, a collection Qi of paths that are contained in Ci, and connect every vertex of

Γ(Ci) = Γ ∩ V (Ci) to some fixed vertex u∗i of Ci.

Defining the Guiding Paths

In this subsection, we define, for every cluster Ci ∈ C, a collection Qi of paths that are

contained in Ci, and connect every vertex of Γ(Ci) = Γ ∩ V (Ci) to some fixed vertex u∗i

of Ci. These paths will eventually be used by procedure ProcDraw as guiding paths. The

definition of the set Qi of paths is different depending on whether Ci is a type-1 or a type-2

cluster.

Type-1 clusters. Let Ci ∈ C1 be a type-1 cluster. Recall that the number of terminals in

Γ(Ci) is at most µ∆. We let u∗i be an arbitrary vertex of Ci. Recall that we have defined,

in Theorem 3.3.3, a set E∗(Ci) of edges, such that graph Ci \ E∗(Ci) is connected, and
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the drawing of Ci \ E∗(Ci) induced by ψCi
is planar. Consider now any spanning tree of

Ci \E∗(Ci), rooted at the vertex u∗i . For every terminal t ∈ Γ(Ci), let Qt be the unique path

connecting t to u∗i in this tree. We then set Qi = {Qt | t ∈ Γ(Ci)} be the set of the guiding

paths for the cluster Ci. Since |Qi| ≤ µ∆, for every edge e ∈ E(Ci), congQi
(e) ≤ µ∆.

Let Ji ⊆ Ci be the graph obtained from the union of the paths in Qi. Then Ji is a tree with

at most O(µ∆) leaves, and so it has O(µ∆) vertices of degree greater than 2. We denote by

ψJi the planar drawing of Ji induced by the drawing ψCi
of Ci, and we denote by ϕJi the

drawing of Ji induced by the original drawing ϕ of G. Clearly, drawing ψJi of Ji is planar,

and the number of vertices and of edges of Ji that are irregular with respect to ψJi and ϕJi

is at most O(µ∆). Let IRGi ⊆ E(Ji) be the set of all edges e ∈ E(Ji), such that either e

is irregular with respect to the drawings ψJi and ϕJi of Ji, or at least one endpoint of e is

irregular with respect to these drawings. The following observation is immediate from the

above discussion.

Observation 3.7.4. If Ci ∈ C is a type-1 cluster then |IRGi| ≤ O(µ∆).

For every edge e ∈ E(Ci), we define its weight w(e) as follows. We start with w(e) being

the number of crossings in the drawing ϕ of G, in which edge e participates. Additionally, if

e ∈ IRGi, then we increase w(e) by 1. From the above discussion, we get that the following

inequality that will be useful for us later:

∑
e∈E(Ci)

w(e) · (congQi
(e))2 ≤ O(µ2∆2) ·

∑
e∈E(Ci)

w(e). (3.3)

Type-2 clusters. Let Ci ∈ C2 be a type-2 cluster. For convenience, we denote C ′i =

Ci \ACi
. In order to define the set Qi of guiding paths for Ci, we use the following lemma,

that generalizes Lemma D.10 from [9]. For completeness, we provide the proof of the lemma

in Section 3.12.

Lemma 3.7.5. There is an efficient algorithm, that, given an n-vertex planar graph H,
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non-negative weights {w(e)}e∈E(H) on its edges, and a subset S ⊆ V (H) of vertices of H

that is α′-well-linked in H, for any parameter 0 < α′ < 1, computes a vertex u∗ ∈ V (H)

together with a set Q of |S| paths in H routing the vertices of S to u∗, such that:

∑
e∈E(H)

w(e) · (congQ(e))2 = O

 log n

(α′)4
·
∑

e∈E(H)

w(e)

 .

For every edge e ∈ E(C ′i), we define its weight w′(e) as follows. We start with w′(e) being

the number of crossings in the drawing ϕ of G, in which edge e participates. Additionally,

if e is an irregular vertex with respect to the drawing ψC ′i
of C ′i, and the drawing ϕC ′i

of C ′i

induced by ϕ, then we increase w′(e) by 1. Also, for every endpoint of e that is irregular

with respect to these two drawings, we increase w′(e) by 1.

We apply Lemma 3.7.5 to graph C ′i with the edge weights w′(e) that we have defined, and

the set S = Γ(Ci) of its vertices; recall that from the well-linkedness property of type-2

clusters, set Γ(Ci) of vertices is α-well-linked in C ′i. The algorithm from the lemma then

returns a vertex u∗i ∈ V (Ci), and a set Qi = {Qt | t ∈ Γ(Ci)} of paths in graph C ′i, where

each path Qt connects t to u∗i , and moreover:

∑
e∈E(C ′i)

w′(e) · (congQi
(e))2 ≤ O

 log n

α4
·

 ∑
e∈E(C ′i)

w′(e) + 1


 . (3.4)

As before, we let Ji be the graph obtained from the union of the paths in Qi. Note that

Ji may no longer be a tree. As before, we denote by ψJi the drawing of Ji induced by the

drawing ψC ′i
of C ′i (which must be planar), and we denote by ϕJi the drawing of Ji induced

by the drawing ϕ of G.

Let IRGi ⊆ E(Ji) be the set of all edges e ∈ E(Ji), such that either e is irregular with

respect to the drawings ψJi and ϕJi of Ji, or at least one endpoint of e is irregular with

respect to these drawings. For every edge e ∈ E(C ′i), we let its new weight w(e) be defined
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as follows. Initially, we let w(e) be the number of crossings in the drawing ϕ of G in which

edge e participates. If e ∈ IRGi, then we increase w(e) by 1. Clearly, w(e) ≤ w′(e), and so:

∑
e∈E(C ′i)

w(e) · (congQ(e))2 ≤ O

 log n

α4
·

 ∑
e∈E(C ′i)

w′(e) + 1


 . (3.5)

In the remainder of the algorithm, we perform r iterations. The input to the ith iteration is

a drawing ϕi−1 of the graph G, that is canonical with respect to the clusters C1, . . . , Ci−1.

The output of the ith iteration is a drawing ϕi of G, that is canonical with respect to clusters

C1, . . . , Ci. Initially, we set ϕ0 = ϕ. We now focus on the description of the ith iteration,

when cluster Ci is processed.

Processing a Cluster

We now describe an iteration when cluster Ci ∈ C is processed. Recall that, if Ci is a type-2

cluster, then we have denoted C ′i = Ci \ ACi
. In order to simplify the notation, if Ci is a

type-1 cluster, we will denote C ′i = Ci. Let Di be the set of all discs D(R) for the bridges

R ∈ RG(C ′i). For every disc D ∈ Di, we let RDi ⊆ RG(C ′i) be the set of all the bridges

R ∈ RG(C ′i) with D(R) = D. We also let XD
i be the graph obtained by the union of all

bridges in RDi , and ÊDi be the set of all edges of G connecting vertices of C ′i to vertices of

XD
i . Lastly, we let Γ̂Di be the set of all terminals in

⋃
R∈RD

i
L(R), and we let QDi ⊆ Qi be

the set of all paths originating at the vertices of Γ̂Di . Observe that, in the drawing ψC ′i
of

C ′i, all vertices of Γ̂Di lie on the boundary of the disc D. Let JDi be the graph obtained from

the union of the paths in QDi . Note that every path Qt ∈ Qi may participate in at most ∆

different path sets in
{
QDi
}
D∈Di

.

Let GDi ⊆ G be the subgraph of G consisting of the union of the graphs C ′i, X
D
i , and the

edges of ÊDi . Let ϕD be the drawing of GDi that is induced by the current drawing ϕi−1

of G. We apply ProcDraw to graph GDi , with the subgraphs C = C ′i, X = XD
i , together
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with the vertex u∗i , and the set QDi of paths routing the vertices of Γ̂Di to u∗i in C ′i. Recall

that the corresponding graph JDi (which is obtained from the union of the paths in QDi )

is guaranteed to be planar, and its drawing induced by ψC ′i
is also planar. We denote the

drawing of the graph GDi produced by ProcDraw by ϕ̂Di . Recall that the drawing of C ′i

induced by ϕ̂Di is identical to ψC ′i
, and that all vertices of XD

i are drawn inside the disc D,

with the vertices of Γ̂Di drawn on the boundary of D.

Once every disc D ∈ Di is processed, we combine the resulting drawings ϕ̂D together, in

order to obtain the final drawing ϕi of the graph G. In order to do so, we start by placing

the drawing ψC ′i
on the sphere. Next, for every disc D ∈ Di, we copy the drawing of graph

XD
i ∪ Ê

D
i in ϕ̂Di to this new drawing, so that the two copies of the disc D coincide with

each other, and the images of the vertices of Γ̂Di in both drawings coincide. It is immediate

to verify that the resulting drawing ϕi of G is canonical with respect to Ci. We next claim

that, if drawing ϕi−1 was canonical with respect to some cluster C ∈ C, then so is drawing

ϕi.

Claim 3.7.6. Let Cj ∈ C be a cluster, such that drawing ϕi−1 was canonical with respect to

Cj. Then drawing ϕi remains canonical with respect to Cj.

Proof. Observe that there must be some bridge R ∈ RG(C ′j) that contains the graph C ′i.

Consider the corresponding disc D(R) in the drawing ψC ′j
of C ′j , and the corresponding disc,

that we also denote by D(R), in the drawing ϕi−1 of G. Recall that in the drawing ϕi−1,

all vertices and edges of R are drawn in the disc D(R). Let D∗ be the disc on the sphere

that is the complement of D(R), so the two discs share their boundaries but are otherwise

disjoint.

Note that similarly, there must be some bridge R′ ∈ RG(C ′i) that contains the graph C ′j .

We let D(R′) be the corresponding disc in the drawing ψC ′i
of C ′i. Note that the cluster

C ′j was unaffected when discs D ∈ Di \
{
D(R′)

}
were processed, as C ′j is disjoint from the

corresponding graphs GDi . When disc D(R′) was processed, we have deleted the images
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of vertices and edges of C ′i, and modified the images of the edges of Ê
D(R′)
i accordingly.

However, since graph C ′i is drawn outside disc D∗ in ϕi−1, this did not change the part of

the drawing that lies in D∗. When we computed the final drawing ϕi of G, we have copied

the drawing inside the disc D(R′) in ϕ̂Di to the same disc in ϕi. Since D∗ ⊆ D(R′), this

again did not affect the drawing in D∗. Therefore, the part of the drawing ϕi−1 of the graph

G that appeared in disc D∗ remains unchanged in the drawing ϕi. It is then easy to verify

that drawing ϕi remains canonical with respect to Cj .

We let ϕ′ = ϕr be the drawing of G that we obtain after all clusters of C are processed. It

now remains to analyze the number of crossings in ϕ′.

Analyzing the Number of Crossings

Consider some cluster Ci ∈ C. Our goal is to bound the increase in the number of crossings

due to iteration i, that is, cr(ϕi) − cr(ϕi−1). Let χi be the set of all crossings (e1, e2) in

the original drawing ϕ of G, with e1, e2 ∈ E(Ji). Notice that the drawings of C ′i in ϕ and

ϕi−1 are identical. Let χ′i be the set of all crossings (e1, e2) in the drawing ϕi−1 of G with

e1 ∈ E(Ji) and e2 6∈ E(C ′i). Recall that we have denoted by IRGi ⊆ E(Ji) the set of all

edges e ∈ E(Ji), such that either e is irregular with respect to the drawings ψJi and ϕJi of

Ji, or at least one endpoint of e is irregular with respect to these drawings.

Consider now some disc D ∈ Di. Let χi(D) be the set of all crossings (e1, e2) in the original

drawing ϕ of G, with e1, e2 ∈ E(JDi ), and let χ′i(D) be the set of all crossings (e1, e2) in the

drawing ϕi−1 of G with e1 ∈ E(JDi ) and e2 6∈ E(C ′i). We also denote by IRGi(D) ⊆ E(JDi )

the set of all edges e ∈ E(JDi ), such that either e is irregular with respect to the drawings

ψJDi
and ϕJDi

of JDi induced by the drawing ψCi
of Ci and ϕ of G, respectively, or at least

one endpoint of e is irregular with respect to these drawings. It is easy to verify that, if

e ∈ IRGi(D), then e ∈ IRGi must hold.
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From the analysis of ProcDraw, we get that the number zi(D) of new crossings in the drawing

ϕ̂Di is at most:

O

( ∑
(e1,e2)∈χi(D)

∆2 congQD
i

(e1) congQD
i

(e2)+

∑
(e1,e2)∈χ′i(D)

∆ congQD
i

(e1) +
∑

e∈IRGD
i

∆4(congQD
i

(e))2
)
.

Consider some crossing (e1, e2) ∈ χi(D). We view this crossing as contributing congQD
i

(e1) ·

congQD
i

(e2) · ∆2 crossings to the first term of zi(D). If congQD
i

(e1) ≥ congQD
i

(e2), then

we let the edge e1 “pay”
(

congQD
i

(e1) ·∆
)2
≥ congQD

i
(e1) · congQD

i
(e2) · ∆2 units for

these crossings, and otherwise we let the edge e2 pay
(

congQD
i

(e2) ·∆
)2
≥ congQD

i
(e1) ·

congQD
i

(e2) ·∆2 units for these crossings. Therefore, we obtain the following bound:

zi(D) ≤ O

( ∑
e1∈E(JDi )

∑
e2:(e1,e2)∈χi(D)

(
congQD

i
(e1) ·∆

)2

+
∑

e∈IRGD
i

∆4(congQD
i

(e))2 +
∑

(e1,e2)∈χ′i(D)

congQD
i

(e1) ·∆
)
.

Summing up over all discsD ∈ Di, and noting that, for every e ∈ E(Ji),
∑
D∈Di

congQD
i

(e) ≤

O(∆ congQi
(e)), we get that the total increase cr(ϕi)− cr(ϕi−1) in the number of crossings

is bounded by:

O

( ∑
e1∈E(Ji)

∑
e2:(e1,e2)∈χi

∆4 ·
(

congQi
(e1)

)2
+
∑

e∈IRGi

∆6(congQi
(e))2 +

∑
(e1,e2)∈χ′i

∆2 · congQi
(e1)

)
.

Recall that for every edge e ∈ E(C ′i), we defined its weight w(e) as follows. First, we let

w(e) be the number of crossings in ϕ in which edge e participates. Then, if e ∈ IRGi, we
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increased w(e) by 1. Therefore, we get that:

cr(ϕi)− cr(ϕi−1) ≤ O

 ∑
e∈E(Ji)

∆6 · w(e)
(
congQi

(e)
)2+O

 ∑
(e1,e2)∈χ′i

∆2 congQi
(e1)

 .

We denote by Υi the first term in the RHS of the above inequality, and denote by Υ′i the

first term in the RHS of the above inequality. We analyze these terms separately.

Bounding
∑
i Υ′i. Consider a cluster Ci ∈ C, and let e ∈ E(G \ (C ′i ∪ δG(C ′i))) be an edge

of G that does not lie in C ′i ∪ δG(C ′i). Denote by Ke the set of all edges of Ji whose image

in ϕi−1 crosses the image of e. From Observation 3.7.3, the total number of crossings (e′, e)

in ϕi that do not belong to ϕi−1, over all edges e′ ∈ E(G) is at most:

∑
e′∈Ke

∑
D∈Di

∆ · congQD
i

(e′) ≤
∑
e′∈Ke

∆2 · congQi
(e′).

Observe that for each such new crossing (e′′, e), edge e′′ must lie in E′′. For every edge

e′ ∈ Ke, we say that the crossing (e′, e) in ϕi−1 is responsible for ∆2 congQi
(e′) new crossings

in ϕi. We also say that crossing (e′, e) contributes ∆2 congQi
(e′) crossings to Υ′i. If (e′, e) is a

crossing of ϕi−1 with e ∈ δG(C ′i) and e′ ∈ Ji, then we say that it contriburtes ∆2 congQi
(e′)

crossings to Υ′i, but it is not responsible for any new crossings. Observe that the sum of the

contributions of all crossings (e′, e) of ϕi−1 with e ∈ E(G \C ′i) and e′ ∈ Ji is at least Ω(Υ′i).

Consider now some crossing (e1, e2) in the original drawing ϕ of G, and assume that e1 ∈ Ci

and e2 ∈ Cj , where i < j. The crossing (e1, e2) contributes congQi
(e1) · ∆2 crossings to

Υ′i. It is also responsible for congQi
(e1) · ∆2 new crossings of the edge e2. When cluster

Cj is processed, each one of these new crossings contributes congQj
(e2) · ∆2 crossings to

Υ′j . Therefore, altogether, crossing (e1, e2) is responsible for congQi
(e1) · congQj

(e2) · ∆4

crossings in
∑r
i′=1 Υ′i′ . If congQi

(e1) ≤ congQj
(e2), then we make edge e2 responsible

for all these crossings and charge it (congQj
(e2))2 · ∆4 ≥ congQi

(e1) · congQj
(e2) · ∆4
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for them, and otherwise, we make edge e1 responsible for these crossings, and charge it

(congQj
(e1))2 ·∆4 ≥ congQi

(e1) · congQj
(e2) ·∆4 for them.

If (e1, e2) is a crossing in ϕ where exactly one of the two edges e1, e2 lies in some cluster

Ci and the other edge lies in E′′, then the analysis is similar except that this crossing only

contributes to Υ′i and is charged to the corresponding edge. If both e1, e2 lie in the same

cluster Ci, then crossing (e1, e2) does not contribute to
∑r
i′=1 Υ′i′ . Recall that for every

cluster Ci ∈ C, for every edge e ∈ E(C ′i), we have defined weight w(e), which is at least the

number of crossings in the drawing ϕ of G in which edge e participates. To summarize, from

the above discussion, we get that:

r∑
i=1

Υ′i ≤ O

 r∑
i=1

∑
e∈C ′i

∆4 · w(e)
(
congQi

(e)
)2 .

Altogether, we then get that:

cr(ϕ′)− cr(ϕ) ≤
r∑
i=1

O

∆6 ·
∑
e∈C ′i

w(e)
(
congQi

(e)
)2 .

Final Accounting. Recall that we have denoted, for every cluster Ci ∈ C, by IRGi ⊆

E(Ji) the set of all edges e ∈ E(Ji), such that either e is irregular with respect to the

drawings ψJi and ϕJi of Ji, or at least one endpoint of e is irregular with respect to these

drawings. We also denote by xi the total number of crossings in the drawing ϕ of G in

which the edges of C ′i participate. It is then easy to verify that for every cluster Ci ∈ C,∑
e∈E(C ′i)

w(e) ≤ xi + |IRGi|.
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Consider now some cluster Ci ∈ C, and assume first that Ci ∈ C1. From Equation 3.3:

∑
e∈E(Ci)

w(e) · (congQi
(e))2 ≤ O(µ2∆2) ·

∑
e∈E(Ci)

w(e)

≤ O(µ2∆2)(xi + |IRGi|)

≤ O(µ3∆3(xi + 1))

≤ O(poly(∆ log n)(xi + 1)).

(We have used the fact that, if Ci is a type-1 cluster then |IRGi| ≤ O(µ∆), and that µ =

O(poly(∆ log n).)

Assume now that Ci is a type-2 cluster. From Equation 3.5, we get that:

∑
e∈E(C ′i)

w(e) · (congQ(e))2 ≤ O

 log n

α4
·

 ∑
e∈E(Ci)

w′(e) + 1

 .

Let IRG′i ⊆ E(C ′i) denote the set of all edges e ∈ E(C ′i), such that either e is an irregular edge

with respect to the drawing ψC ′i
of C ′i, and the drawing ϕC ′i

of C ′i induced by ϕ, or at least

one endpoint of e is irregular with respect to these drawings. Recall that
∑
e∈E(C ′i)

w′(e) =

O(xi + |IRG′i|). Therefore, we get that:

∑
e∈E(C ′i)

w(e) · (congQ(e))2 ≤ O

(
log n · (xi + |IRG′i|+ 1)

α4

)

≤ O
(
poly(∆ log n) · (xi + |IRG′i|+ 1)

)
,

since α = Θ(1/ poly(∆ log n)). Altogether, the number of crossings in the new drawing ϕ′
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of ϕ can now be bounded as:

cr(ϕ′) ≤ cr(ϕ) +O (poly(∆ log n)) ·

 r∑
i=1

xi +
∑
Ci∈C2

|IRG′i|+ |C|


≤ O

(
poly(∆ log n)(cr(ϕ) + |E′′|)

)
+O (poly(∆ log n)) ·

∑
Ci∈C2

|IRG′i|.

The next claim will then finish the proof of Theorem 3.3.4.

Claim 3.7.7.
∑
Ci∈C2 |IRG

′
i| ≤ O

(
∆2(|E′′|+ cr(ϕ))

)
.

Proof. Consider some cluster Ci ∈ C2. Recall that set IRG′i ⊆ E(C ′i) contains all edges

e ∈ E(C ′i), such that either e is an irregular edge with respect to the drawing ψC ′i
of C ′i, and

the drawing ϕC ′i
of C ′i induced by ϕ, or at least one endpoint of e is irregular with respect to

these drawings. In other words, |IRG′i| ≤ ∆ · |IRGV (ϕC ′i
, ψC ′i

)| + |IRGE(ϕC ′i
, ψC ′i

)|. Lemma

3.7.2 guarantees that:

|IRGV (ϕC ′i
, ψC ′i

) \ S2(C ′i)|+ |IRGE(ϕC ′i
, ψC ′i

) \ E2(C ′i)| ≤ O(cr(ϕC ′i
)) ≤ O(xi),

where S2(C ′i) is the set of all vertices that participate in 2-separators in C ′i, and E2(C ′i) is

the set of all edges of C ′i that have both endpoints in S2(C ′i). Unfortunately, the definition of

type-2 acceptable clusters does not provide any bound on the cardinality of the set S2(C ′i).

It does, however, ensure that |S2(Ci)| ≤ O(∆|Γ(Ci)|), where Ci is the original cluster, that

may contain artificial edges. Unfortunately, the original drawing ϕ of G does not include the

drawings of the artificial edges. However, using the embeddings of these edges, we can easily

transform drawing ϕ of G into a drawing ϕ̃ of
⋃
Ci∈C2 Ci, without increasing the number

of crossings. Applying Lemma 3.7.2 to the resulting drawings of graphs Ci ∈ C2 will then

finish the proof. We now turn to provide a more detailed proof.

Consider the original drawing ϕ of graph G. We transform it into a drawing ϕ̃ of
⋃
Ci∈C2 Ci,

as follows. Recall that the decomposition D of G into acceptable clusters contains an em-
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bedding P = {P (e) | e ∈ A} of all artificial edges via paths that are internally disjoint.

Moreover, for every edge e = (x, y) ∈ A, there is a type-1 cluster C(e) ∈ C1, such that

P (e) \ {x, y} is contained in C(e), and the clusters C(e) are distinct for all edges e ∈ A. We

delete from ϕ all vertices and edges except those participating in graphs C ′i for Ci ∈ C2, and

in paths in P . By suppressing all inner vertices on the paths in P , we obtain a drawing ϕ̃ of⋃
Ci∈C2 Ci, that contains at most cr(ϕ) crossings. Consider now some cluster Ci ∈ C2. Let

ϕ̃i be the drawing of Ci that is induced by ϕ̃. Observe that, if a vertex v ∈ V (Ci) is irregular

with respect to ϕC ′i
, ψC ′i

, then it must be irregular with respect to ϕ̃i and ψ′Ci
. Similarly,

if an edge e ∈ E(C ′i) is irregular with respect to ϕC ′i
, ψC ′i

, then it must be irregular with

respect to ϕ̃i and ψ′Ci
. Therefore, if we denote by IRG′′i the set of all edges e ∈ Ci, such that

either e is irregular with respect to ϕ̃i and ψ′Ci
, or at least one endpoint of e is irregular with

respect to these two drawings, then |IRG′′i | ≥ |IRG
′
i|. Let x′i be the total number of crossings

in ϕ̃i. Let Ei2 ⊆ E(Ci) be the set of all edges that are incident to vertices of S2(Ci) (vertices

that participate in 2-separators in Ci). Then, from Lemma 3.7.2:

|IRG′′i \ E
i
2| ≤ O(∆ · x′i).

Moreover, from the definition of type-2 acceptable clusters, |S2(Ci)| ≤ O(∆|Γ(Ci)|), and so

|Ei2| ≤ O(∆2|Γ(Ci)|). Overall, we conclude that:

|IRG′i| ≤ |IRG
′′
i | ≤ O(∆2(x′i + |Γ(Ci)|)).

Summing up over all clusters Ci ∈ C2, we get that:

∑
Ci∈C2

|IRG′i| ≤ O(∆2)
∑
Ci∈C2

x′i +O(∆2)
∑
Ci∈C2

|Γ(Ci)|

≤ O
(

∆2 · (cr(ϕ̃) + |E′′|)
)

≤ O
(

∆2 · (cr(ϕ) + |E′′|)
)
.
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3.8 Handling Non 3-Connected Graphs

So far we have provided the proof of Theorem 3.1.1 for the special case where the input

graph G is 3-connected. In this section we extend the proof to arbitrary graphs.

We first compute the block decomposition B = B(G) of the input graph G, and denote

B̃ =
{
B̃ | B ∈ B

}
. We then use the algorithm from Section 3.3.3 to compute, for each graph

B̃ ∈ B̃ that is not isomorphic to K3 (note that such a graph B̃ must be 3-connected), an

instance (G
B̃
,Σ

B̃
) of the MCNwRS problem, such that the number of edges in G

B̃
is at most

O
(
OPTcr(B̃) · poly(∆ log n)

)
, and OPTcnwrs(GB̃ ,ΣB̃) ≤ O

(
OPTcr(B̃) · poly(∆ log n)

)
. For

those graphs B̃ that is isomorphic to B̃, we simply set G
B̃

= B̃ (note that in this case the

rotation system Σ
B̃

is trivial, as all vertices in G
B̃

have degree 2). We use the following

lemma, whose proof is provided in Section 3.8.1.

Lemma 3.8.1.
∑
B∈B OPTcr(B̃) ≤ O(OPTcr(G)).

From Lemma 3.8.1, the total number of edges in all graphs in
{
G
B̃

}
B̃∈B̃

is at most

O (OPTcr(G) · poly(∆ log n)), and
∑
B̃∈B̃ OPTcnwrs(GB̃ ,ΣB̃) ≤ O (OPTcr(G) · poly(∆ log n)).

We obtain a final instance (G′,Σ) of the MCNwRS problem by letting G′ be the dis-

joint union of all graphs in
{
G
B̃

}
B̃∈B̃

, and letting Σ =
⋃
B̃∈B̃ Σ

B̃
. From the above

discussion, |E(G′)| ≤ O (OPTcr(G) · poly(∆ log n)), and, since solutions to all instances

(G
B̃
,Σ

B̃
) can be combined together to obtain a solution to instance (G′,Σ), we get that

OPTcnwrs(G
′,Σ) ≤ O (OPTcr(G) · poly(∆ log n)). Assume now that we are given a solution

to instance (G′,Σ) of MCNwRS of value X. This solution immediately provides solutions ϕ
B̃

to all instances in
{

(G
B̃
,Σ

B̃
)
}
B̃∈B̃

, such that, if we denote by X
B̃

the value of the solution

ϕ
B̃

, then
∑
B̃∈B̃XB̃ ≤ X. Using the algorithm from Section 3.3.3, we can compute, for

each graph B̃ ∈ B̃, a drawing ϕ
B̃

of B̃ with at most O
(
X
B̃

+ OPTcr(B̃)
)
· poly(∆ log n)
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crossings.

We obtain the final drawing of G by “gluing” together the drawings
{
ϕ
B̃

}
B̃∈B

(this part

is similar to the algorithm of [13]). In order to describe this step in more detail, we set

up some notation. For each pseudo-block B0 ∈ B, we denote by Desc(B0) the collection

of all pseudo-blocks B1 ∈ B, such that vertex v(B1) is the descendant of vertex v(B0) in

the decomposition tree τ . We note that B0 ∈ Desc(B0). Consider now some pseudo-block

B0 ∈ B and the drawing ϕ
B̃0

of graph B̃0 that we defined above. For simplicity of notation,

we denote by N(B̃0) the total number of crossings in the drawing ϕ
B̃0

. We also denote by

N0(B̃0) the total number of crossings in the drawing ϕ
B̃0

in which the fake parent-edge e∗
B̃0

participates, and we denote by N1(B̃0) = N(B̃0) − N0(B̃0) the total number of all other

crossings in ϕ
B̃0

. The following lemma allows us to “glue” the drawings
{
ϕ
B̃

}
B̃∈B̃

together.

Its proof is provided in Section 3.8.2.

Lemma 3.8.2. There is an efficient algorithm, that, given a pseudo-block B0 ∈ B, and

drawings
{
ϕ
B̃

}
B∈Desc(B0)

, computes a drawing ϕ̂B0
of graph B0 ∪

{
e∗
B̃0

}
(if B0 = G and

edge e∗
B̃0

is undefined, then ϕ̂B0
is a drawing of B0), such that the following hold:

• edges of E′′ ∩ E(B0) do not participate in any crossings in ϕ̂B0
;

• the total number of crossings in ϕ̂B0
in which the fake edge e∗

B̃0
participates is at most

4∆N0(B̃0); and

• the total number of all other crossings in ϕ̂B0
is at most 16∆2

(∑
B∈Desc(B0)N(B̃)−N0(B̃0)

)
.

By combining the drawings in
{
ϕ
B̃

}
B̃∈B̃

using Lemma 3.8.2, we obtain a drawing of G,

whose number of crossings is bounded by:

O(∆2) ·
∑
B̃∈B̃

(
X
B̃

+ OPTcr(B̃)
)
· poly(∆ log n) ≤ O

(
(X + OPTcr(G)) · poly(∆ log n)

)
.
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3.8.1 Proof of Lemma 3.8.1

Let ϕ∗ be the optimal drawing of G, so cr(ϕ∗) = OPTcr(G). We assume w.l.o.g. that every

pair of edges crosses at most once in ϕ∗, and for every edge, its image does not cross itself

in ϕ∗. We now define, for each graph B̃ ∈ B̃, a drawing ψ
B̃

in the plane, using the drawing

ϕ∗. Consider any graph B̃ ∈ B̃. Note that, if B̃ is isomorphic to K3, then it has a planar

drawing, so we let ψ
B̃

be that planar drawing. Assume now that B̃ is not isomorphic to K3,

so B̃ ∈ B̃∗.

In order to obtain the drawing ψ
B̃

of B̃, we start from the drawing ϕ∗ of G, and delete from

it all edges and vertices, except for the vertices and the real edges of B̃, and all vertices and

edges participating in the paths in P
B̃

. We partition all crossings of the resulting drawing

into five sets. Set χ1(B̃) contains all crossings (e1, e2), where both e1 and e2 are real edges

of B̃. Set χ2(B̃) contains all crossings (e1, e2), where e1 is a real edge of B̃, and e2 lies on

some path P
B̃

(e), where e is a fake edge of B̃. Set χ3(B̃) contains all crossings (e1, e2),

where e1 ∈ PB̃(e), e2 ∈ PB̃(e′); both e and e′ are fake edges of B̃ (where possibly e = e′);

and neither of these edges is the parent-edge e∗
B̃

. Set χ4(B̃) contains all crossings (e1, e2),

where e1 ∈ P
B̃

(e), e2 ∈ P
B̃

(e′), such that e, e′ are both fake edges of B̃, and exactly one

of these edges is the parent-edge e∗
B̃

. Lastly, set χ5(B̃) contains all crossings (e1, e2), where

both e1, e2 ∈ PB̃(e∗
B̃

). We obtain the final drawing ψ
B̃

of B̃ from the current drawing, by

suppressing all inner vertices on the paths of P̃
B̃

. Additionally, if the image of the edge

e∗
B̃

crosses itself, then we remove all loops to ensure that this does not happen. Clearly,

cr(ψ
B̃

) ≤
∑4
i=1 |χi(B̃)|.

We denote, for all 1 ≤ i ≤ 4, χi =
⋃
B̃∈B̃∗ χi(B̃) (we view χi as a multiset, so a crossing

(e1, e2) that belongs to several sets χi(B̃) is added several times to χi). It is now enough to

show that
∑4
i=1 |χi| ≤ O(cr(ϕ∗)).

Consider some crossing (e1, e2) in ϕ∗. Observe that this crossing may lie in set χ1(B̃) for

a graph B̃ ∈ B̃∗ only if both e1 and e2 are real edges of B̃. Since each edge of G may
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belong to at most one graph in B̃ as a real edge, crossing (e1, e2) appears at most once in

χ1. Therefore, |χ1| ≤ cr(ϕ∗). Notice that crossing (e1, e2) may lie in set χ2(B̃) for a graph

B̃ ∈ B̃∗ only if either e1 or e2 are real edges of B̃. Therefore, using the same reasoning as

before, crossing (e1, e2) may appear at most twice in χ2, and so |χ2| ≤ 2 cr(ϕ∗). Assume

now that (e1, e2) ∈ χ3(B̃), for some graph B̃ ∈ B̃∗. Then there are fake edges e, e′ in B̃,

neither of which is the parent-edge e∗
B̃

, such that e1 ∈ PB̃(e) and e2 ∈ PB̃(e′) (where it is

possible that e = e′). Since each edge of G may belong to at most 6 paths in P , we get that

crossing (e1, e2) may appear at most 6 times in χ3, so |χ3| ≤ 6 cr(ϕ∗). Lastly, assume that

(e1, e2) ∈ χ4(B̃), for some graph B̃ ∈ B̃∗. Then there are fake edges e, e′ in B̃, exactly one

of which is the parent-edge e∗
B̃

, such that e1 ∈ PB̃(e) and e2 ∈ PB̃(e′). Since each edge of

G may belong to at most 6 paths in P , we get that crossing (e1, e2) may appear at most 12

times in χ4, so |χ4| ≤ 12 cr(ϕ∗).

Overall, we get that
∑
B̃∈B̃ OPTcr(B̃) ≤

∑
B̃∈B̃ cr(ψ

B̃
) ≤

∑4
i=1 |χi| ≤ O(OPTcr(G)).

3.8.2 Proof of Lemma 3.8.2

The proof is by induction on the length of the longest path from vertex v(B0) to a leaf vertex

of τ that is a descendant of v(B0) in τ . The base case is when v(B0) is a leaf vertex of τ . In

this case, graph B̃0 is exactly B0 ∪
{
e∗
B̃0

}
, and we set ϕ̂B0

= ϕ
B̃0

. From the definition of

the set E′′ of edges, no edges of E′′∩E(B0) participate in crossings in the resulting drawing;

the number of crossings in which edge e∗
B̃0

participates is N0(B̃0), and the total number

of all other crossings in ϕ̂B0
is N(B̃0) − N0(B̃0). Therefore, drawing ϕ̂B0

has all required

properties.

Next, we consider an arbitrary pseudo-block B0 ∈ B, where v(B0) is not a leaf of τ . Let

B1, . . . , Br be pseudo-blocks whose corresponding vertices v(Bi) are the children of v(B0)

in tree τ . We denote, for all 1 ≤ i ≤ r, the endpoints of the block Bi by (xi, yi), so that

the edge e∗
B̃i

(the fake parent-edge of B̃i) connects xi to yi. Note that graph B̃0 must also
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contain an edge ei = (xi, yi). Since parallel edges are not allowed in graph B̃0, edge ei may

be a real or a fake edge of B̃0, and moreover, it is possible that for 1 ≤ i < j ≤ r, ei = ej .

We use the induction hypothesis in order to compute, for all 1 ≤ i ≤ r, a drawing ϕ̂Bi
of

Bi ∪
{
e∗
B̃i

}
with the required properties.

We denote, for all 1 ≤ i ≤ r, by Gi the multi-graph B̃0 ∪
(⋃i−1

i′=1Bi′
)

. We start with the

drawing ϕ0 = ϕ
B̃0

of B̃0, and then perform r iterations. The input to the ith iteration is a

drawing ϕi−1 of graph Gi−1, and the output is a drawing ϕi of Gi.

We now describe the execution of the ith iteration. Our starting point is the input drawing

ϕi−1 of graph Gi−1 on the sphere, and the drawing ϕ̂Bi
of Bi∪e∗B̃i

. Recall that xi, yi are the

endpoints of the block Bi, and graph Gi−1 contains the edge ei = (xi, yi). For convenience

of notation, we denote the fake parent-edge of B̃i, whose endpoints are also xi, yi by e′i. Note

that there must be some point t′i on the image of the edge e′i in ϕ̂Bi
, such that the segment

σ′ of the image of e′i between xi and t′i lies on the boundary of a single face in the drawing

ϕ̂Bi
. Let F ′ denote this face. We view ϕ̂Bi

as a drawing on the plane, whose outer face is

F ′. Similarly, there is a point ti on the image of the edge ei in the drawing ϕi−1 such that

the segment σ of the image of ei between xi and ti lies on the boundary of a single face in

ϕi−1; we denote that face by F . We view ϕi−1 as a drawing in the plane, where face F is

the outer face. Next, we superimpose the drawings ϕi−1 and ϕ̂Bi
in the plane, such that the

two resulting drawings are disjoint, except that the image of the vertex xi is unified in both

drawings, and the faces F and F ′ of the two drawings correspond to the outer face of this

new drawing, that we denote by F ∗. We add a curve γ to this new drawing, connecting the

images of ti and t′i, such that γ does not intersects any parts of the current drawing, except

for its endpoints. The image of the vertex yi in the new drawing becomes the image of yi in

ϕi−1. Let Ei be the set of all edges of E(Bi) that are incident to yi. In order to complete

the drawing ϕi of Gi, we need to define the drawings of the edges in Ei. Consider any such

edge e = (a, yi). In order to obtain a new drawing of e, we start with the drawing of e in

ϕ̂Bi
, that connects the image of a to the original image of yi in ϕ̂Bi

. Next, we follow along
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the image of the edge e′i in ϕ̂Bi
, until the point t′i. Next, we follow the curve γ, connecting

point t′i to point ti, and lastly, we follow the image of the edge ei in the drawing ϕi−1, from

point ti to the image of the vertex yi. We can do so in a way that ensures that the images

of the edges in Ei do not cross each other. This defines the final drawing ϕi of the graph

Gi. We now analyze its crossings.

Consider any crossing (e, e′) in ϕi. We say that it is an old crossing iff: (i) crossing (e, e′) is

present in the drawing ϕi−1; or (ii) crossing (e, e′) is present in the drawing ϕ̂Bi
, and neither

of the edges e, e′ is e′i. All other crossings in ϕi are called new crossings. Note that each such

new crossing must involve exactly one edge from Ei. Specifically, for every crossing (e′i, ê) in

ϕ̂Bi
, in which the edge e′i participates, we introduce |Ei| new crossings of ê with edges of Ei.

Notice that, if e′i participates in any crossings in ϕ̂Bi
, then Ei ⊆ E′′. The number of such new

crossings is then bounded, from the induction hypothesis, by 4∆N0(B̃i) · |Ei| ≤ 4∆2N0(B̃i).

Additionally, for every crossing (ei, ê) in ϕi−1, in which the edge ei participates, we introduce

|Ei| new crossings of ê. We say that crossing (ei, ê) is responsible for these new crossings.

Our algorithm ensures that crossing (ei, ê) may only be present in the drawing ϕi−1 if edge ei

participated in crossings in ϕ
B̃0

. In this case, we are guaranteed that Ei ⊆ E′′. Therefore, we

ensure that all real edges that participate in the new crossings belong to E′′. This completes

the description of the ith iteration.

Let ϕ̂ = ϕr be the final drawing of the graph Gr that we obtain. We now bound the number

of crossings in ϕ̂. We partition the crossings of ϕ̂ into three sets: set χ1 contains all crossings

(e, e′), where, for some 1 ≤ i ≤ r, e, e′ ∈ E(Bi). Set χ2 contains all crossings (e, e′), where

e = e∗
B̃0

; and set χ3 contains all other crossings.

For all 1 ≤ i ≤ r, let χi1 ⊆ χ1 be the set of all crossings (e, e′), where e, e′ ∈ E(Bi).

From the above discussion, if (e, e′) is a crossing in χi1, then either it was present in ϕ̂Bi
,

or it is one of the new crossings. The number of crossings of the former type is bounded,

from the induction hypothesis, by 16∆2
(∑

B∈Desc(Bi)
N(B̃)−N0(B̃i)

)
, while the number
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of crossings of the latter type is bounded by 4∆2N0(B̃i). Therefore, altogether, |χi1| ≤

16∆2
(∑

B∈Desc(Bi)
N(B̃)

)
.

We now proceed to bound the number of crossings in χ2. Consider any crossing (e, e′) in the

drawing ϕ
B̃0

of B̃0, where e = e∗
B̃0

. If e′ is a real edge of B̃0, then this crossing is present in

χ2. Otherwise, e′ = ei for some 1 ≤ i ≤ r. Then crossing (e, e′) is responsible for |Ei| new

crossings in χ2. It is then easy to verify that every crossing (e, e′) of ϕ
B̃0

with e = e∗
B̃0

may

be responsible for at most ∆ crossings in χ2, and so |χ2| ≤ ∆N0(B̃0).

Lastly, we need to bound |χ3|. We partition set χ3 of crossings into three subsets: set

χ′3 contains all crossings (e, e′), where both e, e′ are real edges of B̃0. It is easy to verify

that |χ′3| ≤ N1(B̃0). Set χ′′3 contains all crossings (e, e′), where e is a real edge of B̃0, and

e′ ∈ E(Bi), for some 1 ≤ i ≤ r. In this case, drawing ϕi−1 of Gi−1 contained a crossing

(e, ei), that was charged for this new crossing, and the total charge to each such crossing

(e, ei) was at most |Ei|. It is then easy to verify that |χ′′3| ≤ ∆N1(B̃0). Lastly, set χ′′′3

contains all remaining crossings (e, e′), where e ∈ Bi, e′ ∈ Bj , for some 1 ≤ i 6= j ≤ r. In

this case, it is easy to verify that crossing (ei, ej) must have been present in drawing ϕ̂
B̃0

of B̃0. Moreover, each such crossing (ei, ej) may be responsible for at most ∆2 crossings in

χ′′′3 , and so, overall |χ′′′3 | ≤ ∆2N1(B̃0). We conclude that |χ3| ≤ 2∆2N1(B̃0).

We obtain the final drawing ϕ̂B0
of B0∪

{
e∗
B̃0

}
by deleting, from the drawing ϕ̂, the images

of all fake edges of B̃0, except for the edge e∗
B̃0

. From the above discussion, the total number

of crossings in ϕ̂B0
in which the fake edge e∗

B̃0
participates is at most 4∆N0(B̃0); and the

total number of all other crossings in ϕ̂B0
is at most 16∆2

(∑
B∈Desc(B0)N(B̃)−N0(B̃0)

)
.

Moreover, from the discussion above, if edge e ∈ E(B0) participates in a crossing in ϕ̂B0
,

then e ∈ E′′ must hold.
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3.9 Proof of Lemma 3.3.8

It is enough to show that, for every face F ∈ F , there is a solution ϕF to instance (GF ,ΣF )

of MCNwRS, such that, if we denote by χF the set of all crossings of edges in ϕF , then∑
F∈F |χF | ≤ O(OPTcr(G) · poly(∆ log n)).

We now fix a face F ∈ F and construct a solution ϕF to instance (GF ,ΣF ) of MCNwRS.

Our starting point is the drawing ϕ of graph G′ given by Observation 3.3.6. We delete from

ϕ the images of all vertices and edges, except for the vertices and edges of the clusters in

H(F ), and the images of the edges in EF . Recall that, in the resulting drawing, no edge of⋃
C∈H(F )E(C) may participate in crossings. Since, for every ordered pair (C,C ′) ∈ H(C)

of clusters, the image of C ′ in the resulting drawing must be contained in the face FC(C ′),

there must be a face F ′ in the resulting drawing that contains the images of every edge in

EF . Viewing face F ′ as the outer face of a planar drawing of the resulting graph, we can

contract the image of each cluster C ∈ H(F ) into a single point, that we view as the image

of the corresponding vertex v(C), without increasing the number of crossings. Therefore, we

obtain a drawing ϕ̃F of the graph GF on the sphere, and moreover:

∑
F∈F

cr(ϕ̃F ) ≤ cr(ϕ) ≤ O(OPTcr(G) · poly(∆ log n)).

Consider again some face F ∈ F . Notice that the drawing ϕ̃F of GF is not necessarily

consistent with the rotation system ΣF . Next, we modify the drawing ϕ̃F in order to make

it consistent with ΣF , while only introducing a small number of crossings. Recall that we

have defined a set Γ ⊆ V (G′) of vertices called terminals – the set of all vertices that serve

as endpoints of the edges in E′′.

We process the vertices v ∈ V (GF ) one-by-one. For every vertex v ∈ V (GF ), we let η(v) be

a small disc around the drawing of v in ϕ̃F . When vertex v is processed, we slightly modify

the images of the edges of δ(v) in disc η(v), so that the circular order in which the edges of
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δ(v) enter v becomes identical to Ov.

Consider now some vertex v = v(C) ∈ V (GF ). Assume first that C ∈ C1. In this case,

|δ(v)| ≤ poly(∆ log n). For every edge e ∈ δ(v), we replace the segment of the drawing of

e in disc η(v), so that all resulting curves enter the image of the vertex v in the order Ov,

and every pair of curves intersects at most once. This introduces at most poly(∆ log n) new

crossings.

Assume now that C ∈ C2. Let O′v be the order in which the images of edges of δ(v) enter

v in the current drawing ϕ̃F . Recall that we have defined a cycle KF (C) ⊆ C, which is

the intersection of the cluster C and the boundary of the face F , and ΓF (C) ⊆ Γ(C) is the

set of terminals that appear on KF (C). Recall that we have defined an ordering ÕF (C) of

the terminals in ΓF (C) to be the circular order of the terminals of ΓF (C) along the cycle

KF (C), and the ordering Ov of δ(v) was defined based on ÕF (C). Since the edges of C

may not participate in crossings in ϕ, and since the drawing of C in ϕ is identical to ψC ,

for every terminal t ∈ ΓF (C), the edges of δ(v) that are incident to t appear consecutively

in the ordering O′v (and from the definition, they also appear consecutively in the ordering

Ov). The orderings of edges of δ(v) that are incident to different terminals in Ov and O′v

must both be consistent with Õv. Therefore, the only difference between the orderings Ov

and O′v is that for every terminal t ∈ ΓF (C), the edges of δ(v) that are incident to t may

appear in different orders in Ov and O′v. Consider the small disc η(v) around the vertex

v in the current drawing ϕ̃F of GF . We can assume that this disc is small enough so it

does not contain any crossings. For every edge e ∈ δ(v), let pe be the point that is the

intersection of the current image of e and the boundary of the disc η(v) in ϕ̃F . Then for

every terminal t ∈ ΓF (C), the points pe corresponding to the edges of δ(v) that are incident

to t appear consecutively on the boundary of η(v). We rearrange the images of all edges

of δ(v) that are incident to t inside η(v), so that they enter v in the order consistent with

Ov. This introduces, for every terminal t ∈ ΓF (C), at most O(∆2) new crossings. Once we

process all vertices of GF , we obtain the final drawing ϕF of GF that is consistent with the
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rotation system ΣF . We now bound the total number of new crossings that this procedure

has introduced.

Consider a cluster C. Note that for every terminal t ∈ Γ(C), there can be at most ∆ faces

F ∈ F , such that t lies on the boundary of F in drawing ϕ̃ of
⋃
C∈C C. Therefore, there are

at most ∆|Γ(C)| pairs (t, F ), where t ∈ Γ(C) and F ∈ F , such that t lies on the boundary

of F . We denote the set of all such pairs for cluster C by Π(C).

If C is a type-1 cluster, then the total increase in the number of crossings due to rear-

ranging edges entering vertex v(C) in all graphs
{
GF
}
F∈F

is at most O(|Π(C)|2∆2) ≤

O(∆4|Γ(C)|2) ≤ O(poly(∆ log n)).

If C is a type-2 cluster, then every pair (t, F ) ∈ Π(C) contributes at most ∆2 crossings (by

rearranging the images of edges of δ(v) in ϕ̃F that are incident to t).

Altogether, the number of new crossings is bounded by:

O(|Γ|∆3) +O(|C1| poly(∆ log n)) ≤ O(|Γ| poly(∆ log n))

≤ O(|E′′| poly(∆ log n))

≤ O(OPTcr(G) poly(∆ log n),

and so the total number of crossings in all drawings in
{
ϕF
}
F∈F

isO(OPTcr(G) poly(∆ log n)).

3.10 Proof of Lemma 3.4.4

We assume w.l.o.g. that graph G is 2-connected, as otherwise we can prove the theorem

for each of its super-blocks Z ∈ Z(G) separately. We denote by B = B(G) the block

decomposition of G, B̃ =
{
B̃ | B ∈ B

}
, and we let B̃∗ ⊆ B̃ contain all graphs B̃ ∈ B̃ that

are not isomorphic to K3. We denote by τ = τ(B) the decomposition tree corresponding to

the block decomposition B of G. If vertex v(B1) is a child of vertex v(B2) in tree τ , then we
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say that B1 is a child block of B2. For a block B ∈ B, we also denote by Desc(B) the set

of all descendant blocks of B. The set Desc(B) contains all blocks B1 where vertex v(B1) is

a descendant of vertex v(B) in the tree τ . We note that the set Desc(B) also contains the

block B.

Consider a block B ∈ B. For convenience, we call the fake edge e∗
B̃

connecting the endpoints

of B (if it exists) a bad fake edge, and all other fake edges of B̃ are called good fake edges. We

define a set A′
B̃

of fake edges as follows: if B is isomorphic toK3, then A′
B̃

= ∅, and otherwise,

A′
B̃

contains all good fake edges of B̃. Consider now some good fake edge e = (u, v) ∈ A′
B̃

.

Then there is some child block B1 of B with endpoints u, v. A valid embedding of the fake

edge e = (u, v) ∈ A′
B̃

is a path P (e) that connects u to v, is internally disjoint from B̃, and

is contained in a block B1 that is a child block of B, whose endpoints are (u, v). A valid

embedding of the set A′
B̃

of fake edges is a collection Q(B) =
{
P (e) | e ∈ A′

B̃

}
of paths, were

for each edge e ∈ A′
B̃

, path P (e) is a valid embedding of e. Note that from the definition,

we are guaranteed that the paths in Q(B) are internally disjoint. The following lemma is

central to the proof of Lemma 3.4.4.

Lemma 3.10.1. There is an efficient algorithm, that, given a block B ∈ B \{G}, computes,

for every descendant-block B1 ∈ Desc(B), a valid embedding Q(B1) of the set A′
B̃1

of fake

edges, and additionally a collection P1(B) of 6 paths in B, connecting the endpoints of B,

such that, if we denote by P2(B) =
⋃
B1∈Desc(B)Q(B1), then the paths in P1(B) ∪ P2(B)

cause congestion at most 6 in B.

We note that, from the definition of valid embeddings, all paths in P2(B) must be contained

in B.

We prove Lemma 3.10.1 below, after we complete the proof of Lemma 3.4.4 using it. Recall

that graph G itself is a block in the decomposition B. Let B1, . . . , Br be the child blocks of

G. We apply the algorithm from Lemma 3.10.1 to each such block Bi separately, obtaining

the sets P1(Bi),P2(Bi) of paths. Let Q∗ =
⋃r
i=1P2(Bi). Then set Q∗ contains, for every
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block B ∈ B \ {G}, a set Q(B) of paths that defines a valid embedding of the set A′
B̃

of fake edges of B̃. For all 1 ≤ i ≤ r, let (xi, yi) be the endpoints of the block Bi. We

embed the fake edge (xi, yi) of A′
G̃

into any of the 6 paths P (xi, yi) ∈ P1(Bi). We then set

Q(G) = {P (xi, yi) | 1 ≤ i ≤ r}. Note that Q(G) is a valid embedding of the good fake edges

of G. Adding the paths in Q(G) to the set Q∗, we obtain a set of paths in G, that cause

edge-congestion at most 6, and contain, for every pseudo-block B ∈ B, a valid embedding of

the set A′
B̃

of fake edges. Lastly, consider any block B ∈ B\{G}. Let (x, y) be the endpoints

of B, and let Bc be its complement block. Then Bc contains a path connecting x to y. We

let the embedding P (e∗
B̃

) of the bad fake edge e∗
B̃

be any path in Bc that connects x to y.

We then set P
B̃

= Q(B)∪
{
P (e∗

B̃
)
}

. Observe that, from the definition of valid embeddings

of bad fake edges, all paths in P
B̃

are mutually internally disjoint, and they are internally

disjoint from B̃. As discussed above, the paths in set P =
⋃
B̃∈B̃∗(G)

(
P
B̃
\
{
P
B̃

(e∗
B̃

)
})

cause congestion at most 6 in G. Therefore, in order to complete the proof of Lemma 3.4.4,

it is now enough to prove Lemma 3.10.1.

Proof of Lemma 3.10.1. The proof is by induction on the length of the longest path from

v(B) to a leaf vertex of τ that is a descendant of v(B) in τ . The base case is when v(B)

is a leaf vertex of τ . Let (x, y) denote the endpoints of B. Observe that in this case, B̃ is

obtained from block B by adding the bad fake edge e∗
B̃

to it, and this is the only fake edge

in B̃. In particular, A′
B̃

= ∅, so we can set Q(B) = ∅. Block B must contain at least one

path P connecting x to y. We let P1(B) contain 6 copies of this path. Setting P2(B) = ∅,

we get valid sets P1(B),P2(B) of paths for B, with P1(B)∪P2(B) causing edge-congestion

at most 6 in B.

Consider now an arbitrary block B ∈ B \ {G}, such that v(B) is not a leaf of τ , and let

B1, . . . , Br be its child blocks. Using the induction hypothesis, we compute, for all 1 ≤ i ≤ r,

the sets P1(Bi),P2(Bi) of paths that are contained in Bi, such that P1(Bi) ∪ P2(Bi) cause

edge-congestion at most 6 in Bi. We now consider three cases.
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Case 1. B̃ = K3. In this case, A′
B̃

= ∅, and so Q(B) = ∅ is a valid embedding of the

edges in A′
B̃

. We set P2(B) =
⋃r
i=1P2(Bi). Clearly, set P2(B) contains, for each block

B∗ ∈ Desc(B), a valid embedding Q(B∗) of the edges of A′
B̃∗

. It now remains to define a

set P1(B) of 6 paths connecting the endpoints of B. Let (x, y) denote the endpoints of B.

Then there is a path P in B̃, that is disjoint from the bad fake edge e∗
B̃

, connecting x to y.

This path contains two edges, that we denote by e1 and e2. Initially, we let P1(B) contain

six copies of the path P , that we denote by P1, . . . , P6. Assume first that e1 = (x1, y1) is a

fake edge, and assume w.l.o.g. that the child block B1 of B has endpoints x1 and y1. Then

we replace, for all 1 ≤ i ≤ 6, the edge e1 on path Pi by the ith path in set P1(B1) (recall

that this path connects x1 to y1 in B1). If e2 is a fake edge, then we proceed similarly. As

a result, set P1(B) now contains 6 paths that are contained in B, each of which connects x

to y. Moreover, it is easy to verify that the paths in P1(B) ∪ P2(B) cause edge-congestion

at most 6 in B.

Case 2. B̃ 6= K3, and block B has a single child-block. We denote by B1 the child

block of B. Let (x, y) be the endpoints of B, and let (x1, y1) be the endpoints of B1. Let

e1 = (x1, y1) be the unique fake edge in A′
B̃

. We let the embedding of this edge P (e1) be

any of the 6 paths in P1(B1). We then let Q(B) = {P (e1)} be a valid embedding of the

edges of A′
B̃

, and P2(B) = Q(B) ∪ P2(B1). Clearly, set P2(B) contains, for each block

B∗ ∈ Desc(B), a valid embedding Q(B∗) of the edges of A′
B̃∗

. It now remains to define a set

P1(B) of 6 paths connecting the endpoints of B. Since graph B̃ is 3-connected, there are at

least three internally disjoint paths connecting x to y in B̃. Since graph B̃ contains only two

fake edges, at least one of these paths, that we denote by P , does not contain fake edges. We

then let P1(B) contain 6 copies of the path P . Clearly, the paths in P1(B) ∪ P2(B) cause

edge-congestion at most 6 in B.
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Case 3. B̃ 6= K3, and block B has at least two child-blocks. Let (x, y) be the

endpoints of B, and, for all 1 ≤ i ≤ r, let (xi, yi) be the endpoints of the child block

Bi. We also denote by ei = (xi, yi) the fake edge in A′
B̃

connecting the endpoints of ei

(if it exists). For each block Bi, we let P ∗i ∈ P1(Bi) be an arbitrary path in P1(Bi), and

we let the embedding P (ei) of fake edge ei (if it exists) be P ∗i . We then define Q(B) ={
P (ei) | ei ∈ A′B̃

}
. It is immediate to verify that Q(B) is a valid embedding of the fake

edges in A′
B̃

. We then set P2(B) = Q(B) ∪ (
⋃r
i=1P2(Bi)), so set P2(B) contains, for each

block B∗ ∈ Desc(B), a valid embedding Q(B∗) of the edges of A′
B̃∗

. It now remains to define

a set P1(B) of 6 paths connecting the endpoints of B.

Since graph B̃ is 3-connected, it contains at least three internally disjoint paths connecting

x to y. At least two of these paths, that we denote by P and P ′, are disjoint from the bad

fake edge e∗
B̃

. We let P1(B) =
{
P1, P2, P3, P

′
1, P
′
2, P
′
3

}
, where initially, paths P1, P2, P3 are

copies of P , and paths P ′1, P
′
2, P
′
3 are copies of P ′. Next, we consider every fake edge of P

and P ′ one-by-one. Let ei ∈ P be a fake edge on path P , so ei = (xi, yi), and the child block

Bi of B has endpoints xi, yi. Recall that P1(Bi) contains 6 paths connecting xi to yi; one of

these paths has been used as P ∗i , and the remaining five paths have not been used yet. For

each 1 ≤ j ≤ 3, we replace, on path Pj , the edge ei, with the jth path in P1(Bi) \
{
P ∗i
}

.

Once we process every fake edge on path P and on path P ′ in this fashion, we obtain a final

set P1 of 6 paths connecting x to y in graph B. Moreover, it is easy to verify that the paths

in P1(B) ∪ P2(B) cause edge-congestion at most 6. �

3.11 Proof of Lemma 3.7.1

In order to simplify the notation, we denote H ′ by H.

Let Ĥ be a graph that is obtained from H, by adding a new vertex s to it, and connecting

it to every vertex v ∈ Γ. We set edge capacities in graph Ĥ as follows. Each edge in
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{(s, v) | v ∈ Γ} has capacity 1, and each edge e ∈ E(H) has capacity congQ(e). Next, we

compute maximum flow F from s to u in graph Ĥ. Since all edge capacities are integral,

we can ensure that the flow F is integral as well. It is immediate to verify that the value of

the maximum s-u flow in Ĥ is |Γ|. Moreover, we can ensure that for every edge e = (u′, v′),

the flow is only sent in one direction (either from u′ to v′ or from v′ to u′, but not both).

We can also ensure that the flow is acyclic. Using the standard flow-path decomposition

of the flow F , and deleting the first edge from each resulting flow-path, we obtain a set

Q̃ =
{
Q̃v | v ∈ Γ

}
of directed paths in graph Ĥ, where each path Q̃v connects v to u.

Moreover, for every edge e ∈ E(Ĥ), congQ̃(e) ≤ congQ(e).

Let H∗ be the directed graph that is obtained by taking the union of the paths in Q̃, whose

edges are directed towards the edge u; for every edge e ∈ E(H), we add congQ̃(e) copies of

e to this graph. Notice that H∗ is a Directed Acyclic Graph, and so there is an ordering

O of its vertices, such that, for every pair x, y ∈ V (H∗) of vertices, if there is a path from

x to y in H∗, then x appears before y in this ordering. In particular, ordering O must be

consistent with the paths in Q̃. Notice that we can use the drawing ψ of H in order to obtain

a drawing of graph H∗, as follows. First, we delete from ψ all edges and vertices that do

not participate in the paths in Q̃. Next, every edge e = (u, v) that remains in the current

drawing, we create congQ̃(e) copies of the edge e, each of which is drawn along the original

drawing of e, with the copies being drawn close to each other. For each such edge e, we

will view the different copies of e as different edges, and we think of each of these copies as

belonging to a distinct path in Q̃. We denote this new drawing of graph H∗ by ψ∗. Note

that ψ∗ is a planar drawing.

For every vertex v ∈ V (H∗), we let η(v) be a small disc around the image of v in ψ∗. We

denote by δ+(v) the set of all edges that are leaving v in H∗, by δ−(v) the set of all edges

entering v, and by δ(v) = δ+(v) ∪ δ−(v). For every edge e ∈ δ(v), we denote by pe(v)

the unique point on the boundary of η(v) that the image of e in ψ∗ contains. We use the

following simple observation.
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Observation 3.11.1. There is an efficient algorithm to compute, for every vertex v ∈

V (H∗), a perfect matching M(v) ⊆ δ−(v) × δ+(v) between the edges of δ−(v) and δ+(v),

and, for every pair (e, e′) ∈ M(v) of edges, a curve ζ(e, e′) that is contained in η(v) and

connects pe(v) to pe′(v), such that all curves in
{
ζ(e, e′) | (e, e′) ∈M(v)

}
are disjoint from

each other.

Proof. Observe first that the paths in Q̃ define a perfect matching between edges of δ−(v)

and edges of δ+(v), as each path Q ∈ Q̃ that contains v must contain exactly one edge from

δ−(v) and exactly one edge from δ+(v).

We maintain a disc η in the plane; originally, η = η(v), and we gradually delete some areas

of η, making it smaller. We also start with M(v) = ∅, and we perform |δ−(v)| iterations.

In every iteration, we select a pair e ∈ δ−(v), e′ ∈ δ+(v) of edges that appear consecutively

in the current drawing. We add (e, e′) to M(v), and we delete both of these edges from the

current drawing. Additionally, we select a curve ζ(e, e′), that is contained in the current disc

η, connecting pe(v) to pe′(v), such that curve ζ(e, e′) is disjoint from the images of all edges

that remain in the drawing, and is close to the boundary of the disc η. Curve ζ(e, e′) splits

the disc η into two discs, η′ and η′′, where exactly one of the discs (we assume that it is η′)

contains the image of v, while the other disc is disjoint from the images of all edges that

remain in the drawing. We set η = η′ and continue to the next iteration. It is immediate to

see that, when the algorithm terminates, we obtain the desired matching M(v), and a set{
ζ(e, e′) | (e, e′) ∈M(v)

}
of curves with the desired properties.

We now gradually transform the paths in Q̃ in order to turn them into a set of non-interfering

paths, as follows. We process all vertices in V (H∗) one-by-one, according to the ordering

O. We now describe an iteration when vertex v is processed. Let P(v) ⊆ Q̃ be the set of

paths containing the vertex v. For every path Q̃t ∈ P(v), we delete the unique edge of δ+(v)

that lies on this path, thereby decomposing Q̃t into two sub-paths: path P 1
t connecting

t to v, and path P 2
t connecting some vertex v′ that is incident to an edge of δ+(v) to u.
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Let P1(v) =
{
P 1
t | Q̃t ∈ P(v)

}
, and let P2(v) =

{
P 2
t | Q̃t ∈ P(v)

}
. We will now “glue”

these paths together using the matching M(v). Specifically, we construct a new set Q̃′ ={
Q̃′t | t ∈ Γ

}
of paths as follows. Consider any vertex t ∈ Γ. If the original path Q̃t ∈ Q̃

does not lie in P(v), then we let Q̃′t = Q̃t. Otherwise, consider the unique path P 1
t in P1(v)

that originates at t, and let e be the last edge on this path. Let e′ be the unique edge of

δ+(v) that is matched to the edge e by the matching M(v), and let Q̃t′ ∈ P(v) be the unique

path that contained e′. We then let the new path Q̃′t be the concatenation of the path P1(t)

and the path P2(t), thereby making e and e′ consecutive on this path.

Once we process every vertex of H∗, we obtain the final collection Q′ of paths, routing Γ to

u. Clearly, for every edge e ∈ E(H), congQ′(e) ≤ congQ(e). It is also easy to verify that

the ordering O of the vertices of V (H∗) is consistent with the paths in Q′, since every path

in Q′ is a directed path in the directed acyclic graph H∗. We extend O to an ordering that

includes all vertices of H arbitrarily. We next show that the paths in Q′ are non-interfering,

by providing a non-interfering representation of these paths. This representation exploits the

drawing ψ∗ of the graph H∗, and the curves
{
ζe,e′(v)

}
v∈V (H∗),(e,e′)∈M(v)

that we defined.

Consider any path Q ∈ Q̃′, and let Q = (v1, v2, . . . , vr = u). For all 1 ≤ i < r, we denote

ei = (vi, vi+1). The corresponding curve γ(Q) is a concatenation of the following curves

from the drawing ψ∗:

• The image of edge e1, from the image of v1, to the point pe1(v2) on the boundary of

the disc η(v2);

• For all 1 ≤ i < r, curve ζei,ei+1 , connecting the point pei(vi+1) to the point pei+1(vi+1)

in η(vi+1);

• For all 1 < i < r, the image of the edge ei, between points pei(vi) and pei(vi+1); and

• Image of edge er−1, from per−1(vr−1) to the image of vr.

It is immediate to verify that we can draw all segments of γ(Q), such that all resulting curves
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in
{
γ(Q′)

}
Q′∈Q′ are disjoint from each other, and each of them is drawn in the thin strip SQ

around the image of Q′ in ψ∗. From the definition of the drawing ψ∗, the resulting curves are

a valid non-interfering representation of the paths in Q′ with respect to the original drawing

ψ of H.

3.12 Proof of Lemma 3.7.5

Throughout the section, we use R to denote the (r × r) grid, for some parameter r that is

an integral power of 2, and we use I to denote the set of vertices in its last row.

We use the following lemma.

Lemma 3.12.1. There is an efficient algorithm, that, given an n-vertex planar graph H and

a subset S of |S| = r vertices of V (H) that are α′-well-linked in H, for some 0 < α′ < 1,

computes a distribution D over pairs (u∗,Q), where u∗ is a vertex of H, and Q is a collection

of paths in H routing vertices of S to u∗, such that the distribution D has support size at

most O(r2), and for each edge e ∈ E(H),

E(u∗,Q)∈D[(congQ(e))2] = O

(
log r

(α′)4

)
.

We provide the proof of Lemma 3.12.1 later, after we complete the proof of Lemma 3.7.5

using it. Let D be the distribution we get from the algorithm in Lemma 3.12.1 applied to

graph H, set S and parameter α′. From linearity of expectation, E(u∗,Q)∈D[
∑
e∈E(H)w(e) ·

(congQ(e))2] = O
(

log r
(α′)4

·
∑
e∈E(H)w(e)

)
. Clearly, there exists a pair (û∗, Q̂) with non-zero

probability in D, such that
∑
e∈E(H)w(e) · (congQ̂(e))2 = O

(
log r
(α′)4

·
∑
e∈E(H)w(e)

)
. Since

the distribution D has support size O(r2), such a pair can be found by checking all pairs

(u∗,Q) with non-zero probability in D.

The remainder of this section is dedicated to the proof of Lemma 3.12.1.
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We use the following claim from [9] and its corollary. We note that the claim appearing in

[9] is somewhat weaker, but their proof immediately implies the stronger result that we state

below.

Claim 3.12.2 (Claim D.11 from [9]). There is a distribution D over pairs (u∗,Q), where

u∗ is a vertex of R, and Q is a collection of paths in R connecting every vertex of I to u∗,

such that, for each edge e ∈ E(R), E(u∗,Q)∈D[(congQ(e))2] = O(log r). Moreover, such a

distribution with support size at most O(r2) can be computed efficiently.

We say that a graph J is a minor of a graph G, iff there is a function h, mapping each

vertex v ∈ V (J) to a connected subgraph h(v) ⊆ G, and each edge e = (u, v) ∈ E(J)

to a path h(e) in G connecting a vertex of h(u) to a vertex of h(v), such that: (i) for all

u, v ∈ V (J), if u 6= v, then h(u)∩h(v) = ∅; and (ii) the paths in the set {h(e) | e ∈ E(J)} are

mutually internally disjoint, and they are internally disjoint from
⋃
v∈V (J) h(v). A function

h satisfying these conditions is called a model of J in G. We use the following corollary of

Claim 3.12.3.

Corollary 3.12.3. There is an efficient deterministic algorithm, that, given a graph G

that contains R as a minor, together with the model h of R in G, and for each vertex

x ∈ V (R), a vertex vx ∈ h(x), computes a distribution D̃ on pairs (ũ∗, Q̃), where ũ∗ is a

vertex in G, and Q̃ is a collection of paths in G connecting every vertex of {vx | x ∈ I} to

ũ∗, such that the distribution has support size at most O(r2), and for each edge e ∈ E(G),

E
(ũ∗,Q̃)∈D̃[(congQ̃(e))2] = O(log r).

Proof. For each vertex x ∈ V (R), we let δ(x) be the set of edges incident to x in R, so

|δ(x)| ≤ 4. For each edge e ∈ δ(x), we denote by bx(e) the vertex in h(x) that serves as

the endpoint of the path h(e). We denote B(x) = {bx(e) | e ∈ δ(x)}. We now select: (i) for

each pair bx(e), bx(e′) of distinct vertices of B(x), a path Pxe,e′ in h(x) that connects bx(e)

to bx(e′); and (ii) for each vertex bx(e) ∈ B(x), a path Wx
e connecting vx to bx(e). We call

these paths auxiliary paths in h(x).
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We now apply Claim 3.12.2 to R. Let D be the distribution over pairs (u∗,Q) that we get,

where u∗ is a vertex of R, and Q is a collection of paths in R connecting every vertex of I to

u∗. We now use the model h of R in G, and the auxiliary paths to transform the distribution

D into another distribution D̃ over pairs (ũ∗, Q̃), where ũ∗ is a vertex in {h(x) | x ∈ V (R)},

and Q̃ is a collection of paths in G connecting every vertex of {vx | x ∈ I} to ũ∗, as follows.

For each pair (u∗,Q) with non-zero probability in D, we define a corresponding pair (ũ∗, Q̃)

as follows. We set ũ∗ = vu∗ . Let Q = (x1, . . . , xr−1, xr = u∗) be a path in Q, where we

denote ei = (xi, xi+1) for each 1 ≤ i ≤ r−1. We let Q̃ be the path obtained by concatenating

the paths Wx1
e1 , h(e1), Px2e1,e2 , h(e2), Px3e2,e3 , . . . , h(er−1),Wxr

er−1 . It is easy to verify that the

path Q̃ is a path in G that connects vx1 to vu∗ . We then let Q̃ =
{
Q̃ | Q ∈ Q

}
. Therefore,

Q̃ is a collection of paths in G connecting every vertex of {vx | x ∈ I} to ũ∗. To define D̃,

we simply assign, for every pair (u∗,Q) with non-zero probability in D, the same probability

to the pair (ũ∗, Q̃).

It remains to show that, for each edge ẽ ∈ E(G), E
(ũ∗,Q̃)∈D̃[(congQ̃(ẽ))2] = O(log r). We

first consider an edge ẽ that does not belong to any subgraph of {h(x) | x ∈ V (R)}. Clearly

either ẽ belongs to a unique path h(e) in {h(e) | e ∈ R}, or it does not belong to any path

in {h(e) | e ∈ R}. If the latter case happens, then E
(ũ∗,Q̃)∈D̃[(congQ̃(ẽ))2] = 0. If the

former case happens, then E
(ũ∗,Q̃)∈D̃[(congQ̃(ẽ))2] ≤ E(u∗,Q)∈D[(congQ(e))2] = O(log r).

Consider now an edge ẽ in h(x) for some vertex x ∈ V (R). Note that, from the construction

of D̃, whenever the edge ẽ is contained in some path Q̃, the corresponding path Q in R

has to contain at least one edge of δ(x). Therefore, for each pair (u∗,Q) with non-zero

probability in D, congQ̃(ẽ) ≤
∑
e∈δ(x) congQ(e). As a result, E

(ũ∗,Q̃)∈D̃[(congQ̃(ẽ))2] ≤

E(u∗,Q)∈D[(4 ·maxe∈δ(x)

{
congQ(e)

}
)2] = O(log r).

We use the following lemma, whose proof is deferred to Section 3.12.

Lemma 3.12.4. There exists an efficient algorithm that, given a planar graph G with maxi-

mum vertex degree ∆ and a set S of r vertices that is α′-well-linked in G for some 0 < α′ < 1,
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computes (i) an R-minor in G, where R is the (k × k) grid and k = Ω(α′r/ poly(∆)) and k

is an integral power of 2, together with a model h of R in G; (ii) for each vertex x ∈ V (R), a

vertex vx ∈ h(x) in G; and (iii) k edge-disjoint paths in G, each connecting a distinct vertex

of S to a distinct vertex of {vx | x ∈ I}.

We now prove Lemma 3.12.1 using Corollary 3.12.3 and Lemma 3.12.4. Recall that we are

given a planar graph H and a set S ⊆ V (H) of vertices that are α′-well-linked for some

0 < α′ < 1. Let ϕ be a planar drawing of H. Since the maximum vertex-degree in H could

be as large as n, the size of the grid minor obtained by directly applying Lemma 3.12.4 to

H may be too small for us. We therefore construct a graph H ′ from H, that has constant

maximum vertex-degree. We start from H, and process every vertex of V (H) as follows.

Let v be a vertex of V (H), let d = degH(v) and let e1, . . . , ed be the edges incident to v

in H, indexed according to the circular ordering in which they enter the image of v in the

drawing ϕ. We let Rv be the (d × d)-grid, and we denote the vertices of its first row by

x1(v), . . . , xd(v). We then replace the vertex v by the graph Rv, and let, for each 1 ≤ i ≤ d,

the edge ei be now incident to vertex xi(v). Let H ′ be the graph obtained after all vertices

in V (H) are processed. It is easy to see that the max vertex-degree of H ′ is 4, and H can

be simply obtained from H ′ by contracting each cluster in {Rv | v ∈ V (H)} back into the

vertex v, so each edge of H is also an edge of H ′. We use the following simple observations

whose proofs are straightforward and are omitted here.

Observation 3.12.5. Let Q′ be a set of paths in H ′. For each path Q′ ∈ Q′, let Q be the

path obtained from Q′ by contracting, for each vertex v ∈ V (H), every edge of Rv that lies on

path Q′. Define Q =
{
Q | Q′ ∈ Q′

}
. Then for each edge e ∈ E(H), congQ(e) ≤ congQ′(e).

Observation 3.12.6. The set S′ = {x1(v) | v ∈ S} of vertices is α′-well-linked in H ′.

For a set Q′ of paths in H, we denote cong(Q′) = maxe∈E(H)

{
congQ′(e)

}
.

First, we apply the algorithm in Lemma 3.12.4 to graph H ′ and the input vertex set S, to

compute a model h of an R-minor in H ′, where R is the (k × k)-grid with k = Ω(α′r). We
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also obtain, for each vertex x ∈ V (R), a vertex vx ∈ h(x) in H ′; and a set of k edge-disjoint

paths in H ′, each connecting a distinct vertex of S′ to a distinct vertex of {x1(z) | z ∈ I}.

We denote this set of paths by Q1, and for each vertex v ∈ S, we denote the path in Q1

that contains v as one of its endpoints by Q1
v if such a path exists.

Let S′1 ⊆ S′ be the set of endpoints of paths in Q1 that lie in S, so |S1| = k = Ω(α′r).

We arbitrarily partition the set S′ \ S′1 of vertices into groups S′2, . . . , S
′
t, where each group

of S′2, . . . , S
′
t−1 contains exactly |S′1| vertices, and the last group S′t contains at most |S′1|

vertices, so t = O(1/α′). Since the set S′ of vertices is α′-well-linked in H ′, for each 2 ≤ i ≤ t,

there exists a set Pi of paths in H ′, each connecting a distinct vertex of S′i to a distinct vertex

of S′1, such that cong(Pi) = O(1/α′). Additionally, let the set P1 contain, for each vertex

v ∈ S′1, a path that only contains the single vertex v. Denote Q2 =
⋃

1≤i≤tPi. Then set Q2

contains, for each vertex v ∈ S′, a path connecting v to a vertex in S′1, such that each vertex

u ∈ S′1 serves as the endpoint of at most O(1/α′) paths in Q2, and cong(Q2) ≤ O(1/(α′)2).

For each path Q ∈ Q2, let s(Q) ∈ S′1 be the endpoint of Q in S′1.

Next, we use the algorithm from Corollary 3.12.3 to compute a distribution D̃ on pairs

(ũ∗, Q̃), where ũ∗ is a vertex in H ′, and Q̃ is a collection of paths in H ′ routing vertices of

{x1(z) | z ∈ I} to ũ∗, such that distribution with support size at most O(r2), for each edge

e ∈ E(H ′), E
(ũ∗,Q̃)∈D̃[(congQ̃(e))2] = O(log k) = O(log r).

We now construct a distribution D̂ on pairs (û∗, Q̂), where û∗ is a vertex in H ′ and Q̂ is a

collection of paths in H ′ routing S′ to û∗, as follows. Consider a pair (ũ∗, Q̃) in distribution

D̃ with non-zero probability. We let the set Q̂ contain, for each path Q ∈ Q2, a path formed

by the concatenation of (i) the path Q ∈ Q2; (ii) the path Q1
s(Q)

∈ Q1 (the path in Q1

whose endpoint in S is s(Q)); and (iii) the path in Q̃ that connects s(Q) to ũ∗. It is clear

that the set Q̂ contains, for each v ∈ S′, a path that connects v to ũ∗. We add the pair

(ũ∗, Q̂) to distribution D̂ with the same probability as the pair (ũ∗, Q̃) in distribution D̃.

From the definition of the set Q̂ of paths, and the property that each vertex in S′1 serves
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as the endpoint of at most O(1/α′) paths in Q2, we get that each path in Q1 serves as a

subpath of at most O(1/α′) paths in Q̂, and the same holds for Q̃. Therefore, for each edge

e ∈ H ′,

congQ̂(e) = O(1/α′) · congQ1
(e) + congQ2

(e) +O(1/α′) · congQ̃(e)

= O(1/(α′)2) +O(1/α′) · congQ̃(e).

Therefore, for each edge e ∈ H ′,

E
(û∗,Q̂)∈D̂[(congQ̂(e))2] = O(1/(α′)4) +O(1/(α′)3) · E

(ũ∗,Q̃)∈D̃[congQ̃(e)]

+ O(1/(α′)2) · E
(ũ∗,Q̃)∈D̃[(congQ̃(e))2] = O(log r/(α′)4).

Finally, we define the distribution D on pairs (u∗,Q) where u∗ is a vertex in H and Q is a

collection of paths in H routing S to u∗, as follows. Consider a pair (û∗, Q̂) in D̂ with non-

zero probability. We let Q contain, for every path Q̂ ∈ Q̂ connecting a vertex of x1(v1) to

a vertex of x1(v2) for a pair v1, v2 of vertices of S, the corresponding path in H connecting

vertex v1 to vertex v2 (obtained from Q′ by contracting each cluster in {Rv | v ∈ V (H)}

back into the vertex v). From Lemma 3.12.5, for each edge in E(H), congQ(e) ≤ congQ̂(e).

Therefore, it follows immediately that E(u∗,Q)∈D[(congQ(e))2] = O(log r/(α′)4). In order to

complete the proof of Lemma 3.12.1, it now remains to prove Lemma 3.12.4, which we do

next.

Proof of Lemma 3.12.4

We now provide the proof of Lemma 3.12.4. Our proof uses techniques similar to those used

in the proof of Theorem 3.1 of [6].

We assume that we are given some fixed drawing of G on the sphere. We fix a point ν on

the sphere that does not belong to the image of G. A contour λ with respect to this drawing
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is a simple closed curve that does not contain point ν, and only intersects the drawing at

the vertices of G. We denote by Vλ the set of vertices of G whose image lies on λ, and

we refer to |Vλ| as the length of λ. We say that a subset A ⊆ Vλ of vertices is contiguous

iff A contains all vertices of G that lie on a contiguous subcurve of λ. Clearly, a contour λ

separates the sphere into two open regions. We define the interior ins(λ) of λ to be the region

not containing the point ν, and define the graph Gλ to be the subgraph of G consisting of

all edges and vertices whose image lies in λ ∪ ins(λ).

The proof consists of two steps. Throughout the proof, we set β = dα′r/(100∆)e. In the

first step, we will construct a contour λ such that at least half of vertices of S lie in ins(λ),

and the following additional properties hold:

P1. |Vλ| = β;

P2. for each pair A,B ⊆ Vλ of disjoint equal-cardinality contiguous subsets of vertices,

there exists |A| node-disjoint paths in Gλ connecting vertices of A to vertices of B;

and

P3. there exist a set of bβ/2c edge-disjoint paths in G, each connecting a distinct vertex

of S that lies inside the interior of λ to a distinct vertex of Vλ.

In the second step, we will use the contour constructed in the first step in order to compute

a grid minor and the edge-disjoint paths connecting vertices of S to it. Before we describe

each step in details, we state and prove the following observation.

Observation 3.12.7. If λ is a contour such that |Vλ| ≤ β, then the number of vertices of

S that lie in the interior of λ is either at most r/10 or at least 9r/10.

Proof. Let r′ be the number of vertices of S that lie in the interior of the contour λ, and let

r′′ be the number of vertices of S that lie in the exterior of the contour λ. Assume first that

r′ ≤ r′′. Since the vertices of S are α′-well-linked in G, | outG(V (Gλ)\Vλ)| ≥ α′r′. Note that
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every edge in outG(V (Gλ)\Vλ) must be incident to a vertex of Vλ, so α′r′ ≤ ∆|Vλ| ≤ α′r/25.

Therefore, r′ ≤ r/25. Assume now that r′ > r′′. It is easy to see that we can derive that

r′′ ≤ r/25 similarly. Therefore, r′ ≥ r − r′′ − |Vλ| ≥ 9r/10.

We say that a contour λ is short iff |Vλ| ≤ β, and we say that a contour λ is fat iff the

number of vertices of S that lie in ins(λ) is at least 9r/10. We use the following claim that

appears in the (first paragraph of) proof of Theorem 3.1 of [6].

Claim 3.12.8. There is an efficient algorithm that, given a short and fat contour λ of

length less than β, computes another short and fat contour λ′ of length exactly β, such that

Gλ′ ( Gλ.

Step 1. Computing a Contour

We now describe the algorithm for the first step. The algorithm maintains a contour λ̂, that

is initialized to be the small circle around the point ν that does not intersect any vertices

of G. The algorithm will iteratively update λ̂, and will continue to be executed as long as

not all properties P1, P2, P3 are satisfied by λ̂. Note that each of these properties can be

checked efficiently. Clearly, λ̂ is short and fat initially. We will ensure that this is true for

all curves λ̂ that are considered over the course of the algorithm. Moreover, as we will see in

the description, graph Gλ will become smaller after each iteration. Therefore, the algorithm

will eventually terminate and output a desired contour. We now describe an iteration. We

distinguish between the following three cases.

Case 1. Property P1 is not satisfied. In this case we simply apply the algorithm in

Claim 3.12.8 to λ̂, update λ̂ to be the contour λ̂′ that we obtain, and then continue to the

next iteration. From Claim 3.12.8 and Observation 3.12.7, the new contour is short, fat, and

satisfies that G
λ̂′ ( G

λ̂
.
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Case 2. Property P2 is not satisfied. In this case we let A,B be a pair of disjoint

contiguous subsets of Vλ such that |A| = |B|, and there does not exist a set of |A| node-

disjoint paths connecting vertices of A to vertices of B. From among all such pairs of subsets,

we choose one where |A| is minimized. We use the following claim, which is an immediate

corollary of Theorem 3.6 in [33].

Claim 3.12.9. There is a simple non-closed curve J , such that:

• J is entirely contained in λ̂ ∪ ins(λ̂);

• J only intersects the drawing of G
λ̂

at its vertices, and only intersects with λ̂ at the

endpoints a, b of J (and a, b are not vertices of G);

• if we denote by U1 and U2 the two subcurves of λ̂ connecting a and b, then either all

vertices of A lie on U1 and all vertices of B lie on U2, or all vertices of A lie on U2

and all vertices of B lie on U1; and

• the number of vertices lying on J is at most |A| − 1.

Moreover, such a curve J can be found efficiently.

We compute such a curve J , and assume without loss of generality that vertices of A lie on

U1 and vertices of B lie on U2. We define the new contour λ1 to be the concatenation of

U1 and J , and the new contour λ2 to be the concatenation of U2 and J . Clearly, at least

one of λ1 and λ2 contains at least r/3 vertices of S in its interior. Assume without loss of

generality that it is λ1. Then |Vλ1| ≤ |Vλ̂| − |B| + |J | ≤ β − 1. From Observation 3.12.7,

the interior of λ1 contains at least 9r/10 vertices of S. We update λ̂ to be λ1 and continue

to the next iteration. From the above discussion, λ1 is a short and fat contour, and satisfies

that Gλ1 ( G
λ̂
.

Case 3. Property P3 is not satisfied. Let G̃
λ̂

be a graph that is obtained from G
λ̂

by adding to it (i) two new vertices s, t; (ii) for each vertex v of S that lies in the interior
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of λ̂, an edge (s, v); and (iii) for each vertex v′ in V
λ̂
, an edge (t, v′). We assign capacity 1

to each edge of G̃
λ̂
, and then compute the minimum cut separating s from t in G̃

λ̂
. Since

the property P3 is not satisfied, the minimun cut has value at most bβ/2c − 1. Denote by

E′ the set of edges in the cut. Let E′1 ⊆ E′ contain all edges in E′ that are incident to s,

so |E′1| ≤ bβ/2c. Let S′ ⊆ S be the set of vertices in S that lie in the interior of λ̂, and

are not an endpoint of an edge in E′1, so |S′| ≥ 4r/5. Let E′2 = E′ \ E′1, so |E′2| ≤ bβ/2c.

Note that, in the dual graph of G
λ̂

with respect to its drawing, the edges corresponding

to the edges of E′2 form a set of cycles that separate the faces corresponding to vertices of

S′ from the faces corresponding to vertices of V
λ̂
, and these cycles naturally form a set of

disjoint closed curves in the drawing of G, such that each vertex of S′ lies in the interior of

one of the curves, and all vertices of V
λ̂

lie in the exterior of each of these curves. It is not

hard to see that, each of these closed curves can be further transformed into a contour, by

shifting every intersection between the curve and an edge of G to an endpoint of the edge,

such that (i) the resulting contour contains the same set of vertices and edges in its interior

as the closed curve; and (ii) the length of the contour is at most the number of intersections

between the curve and the drawing of G
λ̂
. Let λ1, . . . , λl be the contours that we obtain.

From the above discussion, the total length of λ1, . . . , λl is at most bβ/2c. Using reasoning

similar to that in the proof of Observation 3.12.7, one of these contours contains at least

9r/10 vertices of S′ (otherwise, the removal of all vertices lying on the countours separates

the graph into connected components, each of which contains fewer than 9r/10 vertices of

S′, contradicting the well-linkedness of S). Assume without loss of generality that it is λ1.

We then update λ̂ to λ1 and continue to the next iteration. Clearly, λ1 is short and fat, and

satisfies that Gλ1 ( G
λ̂
.
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Step 2. Constructing the Grid Minor

Let λ be the contour that is obtained from the first step. We denote V (λ) =
{
v1, . . . , vβ

}
,

where the vertices in V (λ) are indexed in the clockwise order of their appearance on λ.

Denote γ = bβ/4c. We partition the vertices on λ into 4 consecutive subsets of cardinality γ

each: for each 0 ≤ i ≤ 3, Bi =
{
vj | iγ + 1 ≤ h ≤ (i+ 1)γ

}
. From property P2, we can find

a set P0 of γ node-disjoint paths connecting vertices of B0 to vertices of B2, and another set

P1 of γ node-disjoint paths connecting vertices of B1 to vertices of B3. We now compute a

grid minor in Gλ from the sets P0 and P1 of paths.

Let H be the graph consisting of all paths in P0 and P1. We first iteratively modify H as

follows. If there is an edge e in H, such that in the graph H \ {e}, there is a set of γ node-

disjoint paths connecting vertices of B0 to vertices of B2, and another set of γ node-disjoint

paths connecting vertices of B1 to vertices of B3, then we delete e from H and continue

to the next iteration. We call such an edge e an irrelevant edge. We iteratively remove

irrelevant edges from H in this way until we are not able to do so. Let Ĥ be the remaining

graph, so Ĥ does not contain any irrelevant edge. Let P̂0 be a set of γ node-disjoint paths

connecting vertices of B0 to vertices of B2 in Ĥ, and let P̂1 be a set of γ node-disjoint paths

connecting vertices of B1 to vertices of B3 in Ĥ.

We claim that, for each path P ∈ P̂0 and each path P ′ ∈ P̂1, P ∩P ′ is a path. Note that this

implies that combining the sets P̂0 and P̂1 of paths yields a (γ × γ)-grid minor in Gλ. We

now prove the claim. We call the paths in P̂0 vertical paths and view them as being directed

from vertices of B0 to vertices of B2. We call the paths in P̂1 horizontal paths, and view

them as being directed from vertices of B1 to vertices of B3. Denote P̂0 =
{
P1, P2, . . . , Pγ

}
,

where for each 1 ≤ i ≤ γ, the endpoint in B0 of path Pi is vi. Denote P̂1 =
{
P ′1, P

′
2, . . . , P

′
γ

}
,

where for each 1 ≤ j ≤ γ, the endpoint in B1 of path P ′j is vγ+j . Note that the planar

drawing of G induces a planar drawing of Ĥ. Since all vertices of B0, B1, B2, B3 lie on the

contour γ, the image of each path Pi ∈ P̂0 separates the interior of λ into two regions,
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that we call the left region of Pi and right region of Pi, respectively. In particular, the left

region of Pi contains the image of P1, . . . , Pi−1, and right region of Pi contains the image of

Pi+1, . . . , Pγ . We define the left and right regions for each path P ′j ∈ P̂1 similarly.

Assume the claim is false, and assume without loss of generality that some vertical path P

visits some horizontal path P ′ more than once. Therefore, either there is a subpath of P

whose image lies in the right region of P ′ and does not contain any vertex of P ′ as its inner

vertex, that we call a bump, or there is a subpath of P whose image lies in the left region of

P ′ and does not contain any vertex of P ′ as its inner vertex, that we call a pit. We show that

neither bumps nor pits may exist, thus completing the proof of the claim. We now show that

bumps do not exist. The arguments for pits are symmetric. Assume for contradiction that

there is a bump. Consider a bump that is created by a path P ∈ P̂0 and a path P ′ ∈ P̂1,

and let u,w be two vertices shared by P and P ′. We say that a bump is aligned iff u appears

before w on both paths P, P ′, or w appears before u on both paths P, P ′. Since we can

reverse the direction of the paths in P̂0, P̂1, we can assume without loss of generality that

there exists an aligned bump.

We now take the aligned bump that, among all pairs Pi ∈ P̂0, P
′
j ∈ P̂1 of paths that form

an aligned bump that minimizes j, minimizes i, namely

j = min
{
j′ | ∃i′, s.t. Pi′ , P

′
j′ form an aligned bump

}
, and

i = min
{
i | Pi, P ′j form an aligned bump

}
.

Let u,w be the vertices shared by Pi and P ′j , with u appearing before w on both Pi and P ′j .

Let Q be the subpath of Pi between u and w, and let Q′ be the subpath of P ′j between u and

w. We now distinguish between the following two cases, depending on whether or not Q′

contains a vertex of some other path Pi′ ∈ P̂0 with i′ 6= i as an inner vertex. We first assume

that Q′ does not contain such a vertex, then we claim that the first edge e of Q is irrelevant.

To see this, observe first that no path of P̂1 may contain e, since otherwise the paths in P̂1
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are not node-disjoint. Therefore, if we modify the path Pi in P̂0 by replacing the segment

Q by Q′, then we obtain a new pair P̂ ′0, P̂1 of sets of node-disjoint paths in Ĥ \ e, where

P̂ ′0 routes B0 to B2 and P̂1 routes B1 to B3. This contradicts the fact that Ĥ contains no

irrelevant edges. We now consider the case where Q′ does contain a vertex u′ from a path

Pi′ ∈ P̂0 with i′ 6= i. From the definition of an aligned bump, u′ lies in the left region of

Pi, and therefore i′ < i. Since we view the path Pi′ as being directed from a vertex of B0

to a vertex of B2, it is easy to see that the subpath of Pi′ between u′ and its endpoint in

B2 must contain another vertex of P ′j . Let w′ be the first such vertex on the subpath of Pi′

between u′ and its endpoint in B2, and we denote by Q′′ the subpath of Pi′ between u′ and

w′. We claim that Q′′ does not contain any vertex of another path P ′j′ with j′ 6= j. To see

this, observe first that the image of Q′′ lies in the left region of P ′j , since otherwise the pair

Pi′ , P
′
j of paths also creates an aligned bump, contradicting to the choice of i. Observe next

that Q′′ cannot contain any vertex of another path P ′j′ with j′ < j, since otherwise the pair

Pi′ , P
′
j′ of paths also creates an aligned bump, contradicting to the choice of j. Therefore,

Q′′ does not contain any vertex of another path P ′j′ with j′ 6= j. We now show that the edge

of P ′j going out of u′ (that we denote by e′) is irrelevant. First, since u′ ∈ Pi′ ∩ P ′j , no other

path of P̂0 ∪ P̂1 may contain u′, and therefore no other path of P̂0 ∪ P̂1 may contain the

edge e′. We can then modify the path P ′j in P̂2 by replacing its segment between u′ and w′

by Q′. Clearly, we obtain a new pair P̂0, P̂ ′1 of sets of node-disjoint paths in Ĥ \ e, where

P̂0 routes B0 to B2 and P̂ ′1 routes B1 to B3. This contradicts the fact that Ĥ contains no

irrelevant edges. Therefore, no bumps may exists.

Let h′ be the model that embeds the (γ × γ)-grid into Gλ.

Since the property P3 is satisfied, we can efficiently find a set P̂ of at least bβ/2c edge-

disjoint paths, each connecting a distinct vertex of S to a distinct vertex of Vλ. Let V ′ ⊆ Vλ

be the set of endpoints of these paths lying in Vλ. Recall that vertex set Vλ is partitioned

into four contiguous subsets B0, B1, B2, B3. Therefore, at least one of these four vertex sets

(say B0) contains at least bβ/2c/4 vertices of V ′. We view the paths connecting vertices of
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B0 to vertices of B2 as forming the columns of the grid, and we view the paths connecting

vertices of B1 to vertices of B3 as forming the rows of the grid. Therefore, each column of

R′ corresponds to a vertex in B0. We let V ′0 = B0 ∩ V ′, and let P ′ ⊆ P̂ contain all paths

with an endpoint in V ′0. Lastly, we delete from R′ all columns that do not correspond to

vertices of V ′0 and delete arbitrary γ − |V ′0| columns. Let R be the resulting |V ′0| × |V
′
0| grid

and let h be the model induced by h′. From the discussion, |V ′0| = Θ(β) = Θ(α′r/∆). For

each vertex x ∈ V (R), we select an arbitrary vertex of h(x) as vx. Denoting by I the set

of vertices in last row of R, it is easy to see that each path of P ′ that connects a vertex of

S to a vertex of B0 can be extended to a path that connects a vertex of S to a vertex of

{vx | x ∈ I}, by concatenating it with a subpath of P̂0. We denote by P the resulting paths

obtained from P ′ and P̂0. It is clear that the paths in P are edge-disjoint. This completes

the construction of the grid minor R and the set P of edge-disjoint paths connecting S to

the vertices of {vx | x ∈ I}, thus completing the proof of Lemma 3.12.4.
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CHAPTER 4

PACKING LOW-DIAMETER SPANNING TREES

4.1 Introduction

Edge connectivity of a graph is one of the most basic graph theoretic parameters, with various

applications to network reliability and information dissemination. A key tool for leveraging

high edge connectivity of a graph is tree packing : a large collection of (nearly) edge-disjoint

spanning trees. A celebrated result of Tutte [35] and Nash-Williams [29] shows that for every

k-edge connected graph, there is a tree packing T containing bk/2c edge-disjoint trees. This

beautiful theorem has found numerous algorithmic applications since it was first proved.

As the diameter of a graph is a central graph measure (for example, it determines the round

complexity of distributed algorithms for various central graph problems, including minimum

spanning tree, global minimum cut, shortest s-t path, and so on), it is important to obtain a

tree packing where each tree has a small diameter. Unfortunately, the Tutte-Nash-Williams

Theorem provides no guarantee on the diameter of the individual trees in T . In the worst

case, trees in T may have diameter that is as large as Ω(|V (G)|), even if the diameter of

the original graph G is very small. A recent work of Ghaffari and Kuhn [19] shows that for

any large enough n and any k ≥ 1, there is a k-edge-connected n-vertex graph of diameter

Θ(log n), such that, in any partitioning of the graph into spanning subgraphs, all but O(log n)

of the subgraphs have diameter Ω(n/k). In light of this result, it is natural to consider the

following key question:

Is it possible to compute a tree packing whose diameter is sublinear in n, provided

that the diameter of the input graph is sublogarithmic in n?

Our second key question aims at crystallizing the main challenge to computing low-diameter

tree packing. So far, we have compared the diameter of the tree packing to the diameter of
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the original graph. However, as observed above, the results of [19] indicate that there may be

a large gap between these two measures, even for graphs whose diameter is logarithmic in n.

A more natural reference point is the following. We say that a graph G is (k,D)-connected, iff

for every pair u, v ∈ V (G) of distinct vertices, there are k edge-disjoint paths connecting u to

v in G, such that the length of each path is bounded by D. Clearly, if there is a tree packing

of edge-disjoint trees of diameter at most D into G, then G must be (k,D)-connected. The

question is whether the reverse is also true, if we allow a small congestion and a small slack

in the diameter of the trees. The celebrated result of Tutte and Nash-Williams shows that,

if every pair of vertices in G has k edge-disjoint paths connecting them, then there are bk/2c

edge-disjoint spanning trees in G. However, this result is not length-preserving, in the sense

that the tree paths may be much longer than the original paths connecting pairs of vertices.

Our goal is then to provide such a length-preserving transformation from collections of short

edge-disjoint paths connecting pairs of nodes in G to a low-diameter tree packing.

Given a (k,D)-connected graph G, can one obtain a tree packing of Ω̃(k) trees of

diameter Õ(D) into G, with small edge-congestion?

In the second part of this thesis, we answer both questions in the affirmative. For the first

question, we show two efficient algorithms, that, given a k-edge connected n-vertex graph G

of diameter at most D, construct a low-diameter tree packing. We complement this result by

an almost matching lower bound. We address the second question by providing an efficient

algorithm, that, given a (k,D)-connected graph G, computes a collection of k spanning trees

of diameter at most O(D log n) each, that cause edge-congestion of O(log n).

4.1.1 Our Results

Our results consider two settings: in the first setting, the input graph is k-edge connected,

and has diameter at most D; in the second setting, the input graph is (k,D)-connected.
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Packing Trees into Low-Diameter Graphs. We prove the following two theorems that

allow us to pack low-diameter trees into low-diameter graphs.

Theorem 4.1.1. There is an efficient randomized algorithm, that, given any positive inte-

gers D,n, k, and an n-vertex k-edge-connected graph G of diameter at most D, computes

a collection T ′ = {T ′1, . . . , T
′
bk/2c} of bk/2c spanning trees of G, such that each edge of G

appears in at most two of the trees in T ′, and, with high probability, each tree T ′i ∈ T
′ has

diameter O((101k lnn)D).

As we show later, the diameter bound of Theorem 4.1.1 is nearly the best possible. Un-

fortunately, the trees in the packing given by Theorem 4.1.1 may share edges. Next, we

generalize the classical result of Karger [22] to obtain a packing of completely edge-disjoint

trees of small diameter, in the following theorem.

Theorem 4.1.2. There is an efficient randomized algorithm that, given an n-vertex k-edge-

connected graph G of diameter at most D, such that k > 1000 lnn, computes a collection

{T1, . . . , Tr} of r = Ω(k/ lnn) edge-disjoint spanning trees of G, such that with probability

1− 1/ poly(n), each resulting tree Ti has diameter O(kD(D+1)/2).

We note that while the diameter bound in Theorem 4.1.2 is slightly weaker than that obtained

in Theorem 4.1.1, and the number of the spanning trees is somewhat lower, its advantage

is that the resulting trees are guaranteed to be edge-disjoint. Moreover, the algorithm in

Theorem 4.1.2 is very simple: we construct r graphs G1, . . . , Gr with V (Gi) = V (G) for all

i, by sampling every edge of G into one of these graphs independently. We then compute a

spanning tree Ti in each such graph Gi, and show that its diameter is suitably bounded.

Lastly, we show that our upper bounds are close to the best possible if k � D, by proving

the following lower bound.

Theorem 4.1.3. For all positive integers n, k,D, η, α such that k/(4Dαη) is an integer and

n ≥ 3k ·
(

k
2Dαη

)D
, there exists a k-edge connected simple graph G on n vertices of diameter
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at most 2D+ 2, such that, for any collection T = {T1, . . . , Tk/α} of k/α spanning trees of G

that causes edge-congestion at most η, some tree Ti ∈ T has diameter at least 1
4 ·
(

k
2Dαη

)D
.

Note that, in particular, any collection T of Ω(k) trees that are either edge-disjoint, or

cause a constant edge-congestion, must contain a tree of diameter Ω

((
k
cD

)D)
for some

constant c. Even if we are willing to allow a polylogarithmic edge-congestion, and to settle

for Θ(k/ poly log n) trees, at least one of the trees must have diameter Ω

((
k

D poly log n

)D)
.

Packing Trees into (k,D)-connected Graphs. We next consider (k,D)-connected graphs

and show an algorithm that computes a tree packing, that is near-optimal in both the number

of trees and in the diameter.

Theorem 4.1.4. There is an efficient randomized algorithm, that, given any positive integers

D, k, n with k ≤ n, and a (k,D)-connected n-vertex graph G, computes a collection T =

{T1, . . . , Tk} of k spanning trees of G, such that, for each 1 ≤ ` ≤ k, tree T` has diameter

at most O(D log n), and with probability at least 1 − 1/ poly(n), each edge of G appears in

O(log n) trees of T .

4.1.2 Organization

We start with some basic definitions and notations in Section 4.2. We provide the proof of

Theorem 4.1.1 in Section 4.3, the proof of Theorem 4.1.2 in Section 4.4, the proof of Theorem

4.1.3 in Section 4.5, and the proof of Theorem 4.1.4 in Section 4.6.

4.2 Preliminaries

By default, all graphs in Chapter 4 are multi-graphs (that is, they may have parallel edges).

Let G be a graph. For a pair u, v ∈ V (G) of vertices of G, we denote by distG(u, v) the

length (number of edges) of the shortest path connecting u to v in G, and we denote by
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diam(G) the diameter of G, namely diam(G) = maxu,v∈V distG(u, v). For a path P in G,

we denote by |P | its length, that is, the number of edges in P .

Let G be a graph and let p ∈ [0, 1] be a real number. We denote by D(G, p) the distribution

of graphs, where the vertex set of the graph is V (G), and each edge of G is included in the

graph with probability p independently from other edges.

Let T be a tree rooted at vertex r. For each integer i ≥ 0, we say that a node v ∈ V (T )

is at the ith level of T if the length of the unique path connecting v to r in T is i. We

let Vi(T ) be the set of all nodes that lie on the ith level of the tree T , and we denote

V≤i(T ) =
⋃i
t=0 Vt(T ). Therefore, the root lies at level 0, the children of the root are at level

1 and so on. For a collection T = {T1, . . . , Tk} of spanning trees of G, we say that the trees

of T are edge-disjoint if every edge of G belongs to at most one tree of T . We say that the

set T of trees causes congestion η iff every edge e ∈ E(G) belongs to at most η trees in T .

Flows and cuts. Let P be the set of all paths in G. A flow f in G is defined to be an

assignment of non-negative values {f(P )}P∈P to all paths P ∈ P . A path P ∈ P is called

a flow-path of F iff f(P ) > 0. The value of the flow f is
∑
P∈P f(P ). Let P be a flow-path

that originates at u ∈ V (G) and terminates at u′ ∈ V (G). We say that the node u sends

f(P ) units of flow to u′ along the path P . For each edge e ∈ E(G), we define the congestion

of the flow f on the edge e to be
∑
P∈P:e∈P f(P ), namely the total amount of flow of f

through e. The total congestion of flow f is the maximum congestion of f on any edge of G.

A cut in a graph G is a bipartition of its vertex set V into non-empty subsets. The value of

a cut (S, V \ S) is |EG(S, V \ S)|.

4.3 Low-Diameter Tree Packing with Small Edge-Congestion:

Proof of Theorem 4.1.1

In this section we provide the proof of Theorem 4.1.1.
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We start by showing that, if we are given a graph G, and a collection {T1, . . . , Tk} of

edge-disjoint spanning trees of G, such that the diameter of the tree Tk is at most 2D (but

other trees may have arbitrary diameters), then we can efficiently compute another collection{
T ′1, . . . , T

′
k−1

}
of edge-disjoint spanning trees of G, such that the diameter of each resulting

tree T ′i is bounded by O((101k lnn)D) with high probability.

Theorem 4.3.1. There is an efficient randomized algorithm, that, given any positive integers

D, k, n, an n-vertex graph G, and a collection {T1, . . . , Tk} of k spanning trees of G, such

that the trees T1, . . . , Tk−1 are edge-disjoint, and the diameter of Tk is at most 2D, computes

a collection {T ′1, . . . , T
′
k−1} of edge-disjoint spanning trees of G, such that, with probability

at least 1 − 1/ poly(n), for each 1 ≤ i ≤ k − 1, the diameter of tree T ′i is bounded by

O((101k lnn)D).

Theorem 4.1.1 easily follows by combining Theorem 4.3.1 with the results of Kaiser [21],

who gave a short elementary proof of the tree-packing theorem of Tutte [35] and Nash-

Williams [29]. His proof directly translates into an efficient algorithm, that, given a k-edge

connected graph G, computes a collection of bk/2c edge-disjoint spanning trees of G. In order

to complete the proof of Theorem 4.1.1, we use the algorithm of Kaiser [21] to compute an

arbitrary collection T =
{
T1, . . . , Tbk/2c

}
of edge-disjoint spanning trees of G, and compute

another arbitrary BFS tree T ∗ of G. Since the diameter of G is at most D, the diameter of

T ∗ is at most 2D. We then apply Theorem 4.3.1 to the collection
{
T1, . . . , Tbk/2c, T

∗
}

of

spanning trees, to obtain another collection T ′ =
{
T ′1, . . . , T

′
bk/2c

}
of spanning trees, such

that each edge of G belongs to at most 2 trees of T ′, and with high probability, the diameter

of each tree in T ′ is at most O((101k lnn)D). We note that, since we allow parallel edges,

the trees in the set
{
T1, . . . , Tbk/2c, T

∗
}

are edge-disjoint in graph G ∪ E(T ∗).

The main technical tool that we use in order to prove of Theorem 4.3.1 is the following

theorem, that allows one to “fix” a diameter of a connected graph using a low-diameter tree.

Theorem 4.3.2. Let H be a connected graph with |V (H)| ≤ n, and let T be a rooted tree of
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depth D, such that V (T ) = V (H). For a real number 0 < p < 1, let R be a random subset

of the edges of T , where each edge e ∈ E(T ) is added to R independently with probability p.

Then with probability at least 1− D
n48

, the diameter of the graph H ∪R is at most (101 lnn
p )D.

Theorem 4.3.1 easily follows from Theorem 4.3.2: For each 1 ≤ i < k, we construct a

graph Gi as follows. Start with Gi = Ti for all 1 ≤ i ≤ k. Compute a random partition

E1, . . . , Ek−1 of the edges of E(Tk), by adding each edge e ∈ E(Tk) to a set Ei chosen

uniformly at random from {E1, . . . , Ek−1} independently from other edges. Using Theorem

4.3.2 with p = 1/(k − 1), it is immediate to see that with high probability, the diameter of

each resulting graph Gi is bounded by O((101k lnn)D). We then let T ′i be a BFS tree of

graph Gi, rooted at an arbitrary vertex. In order to complete the proof of Theorem 4.1.1, it

is now enough to prove Theorem 4.3.2.

Proof of Theorem 4.3.2. Recall that we are given a connected graph H with |V (H)| ≤ n,

and a rooted tree T of depth D, such that V (T ) = V (H), together with a parameter

0 < p < 1. We let R be a random subset of E(T ), where each edge e ∈ E(T ) is added to R

independently with probability p. Our goal is to show that the diameter of the graph H ∪R

is at most
(

101 lnn
p

)D
with probability at least 1 − D

n48
. Denote V = V (H) = V (T ). For

each 0 ≤ i ≤ D, let Vi be the set of nodes lying at level i of the tree T (that is, at distance

i from the tree root), and denote V≤i =
⋃i
t=0 Vt. Let H ′ = H ∪R.

We say that a node x ∈ V is good if either (i) x ∈ V≤D−1; or (ii) x ∈ VD, and there is an

edge in R connecting x to a node in VD−1. We assume that V = {v1, . . . , vn′}, where the

vertices are indexed in an arbitrary order. Given an ordered pair (x, x′) of vertices in H,

and a path P connecting x to x′, let σ(P ) be a sequence of vertices that lists all the vertices

appearing on P in their natural order, starting from vertex x (so in a sense, we think of P

as a directed path). For an ordered pair (x, x′) ∈ V of vertices, let Px,x′ be shortest path

connecting x to x′ in H, and among all such paths P , choose the one whose sequence σ(P )

is smallest lexicographically. Observe that Px,x′ is unique, and, moreover, if some pair u, u′
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of vertices lie on Px,x′ , with u lying closer to x than u′ on Px,x′ , then the sub-path of Px,x′

from u to u′ is precisely Pu,u′ .

Let M = 50 lnn
p . For a pair x, x′ of vertices of V , we let B(x, x′) be the bad event that

length of Px,x′ is greater than M and there is no good internal node on Px,x′ . Notice

that event B(x, x′) may only happen if every inner vertex on Px,x′ lies in VD, and for each

such vertex, the unique edge of T that is incident to it was not added to R. Therefore,

the probability that event B(x, x′) happens for a fixed pair x, x′ of vertices is at most

(1−p)M = (1−p)(50 lnn)/p ≤ n−50. Let B be the bad event that B(x, x′) happens for some

pair x, x′ ∈ V of nodes. From the union bound over all pairs of nodes in V , the probability

of B is bounded by n−48.

Recall that H is a subgraph of H ′ and distH(·, ·) is the shortest-path distance metric on H.

We use the following immediate observation.

Observation 4.3.3. If the event B does not happen, then for every node x ∈ V , there is a

good node x′ ∈ V such that distH(x, x′) ≤M .

We prove Theorem 4.3.2 by induction on D. The base of the induction is when D = 1.

In this case, T is a star graph. Let c denote the vertex that serves as the center of the

star. For any pair x1, x2 ∈ V of vertices, we denote by x′1 the good node that is closest

to x1 in H, and we define x′2 similarly for x2. Notice that, from the definition of good

vertices, either x′1 = c, or it is connected to c by an edge of R, and the same holds for

x′2. Therefore, distH ′(x
′
1, x
′
2) ≤ 2 must hold. If the event B does not happen, then, since

H is a subgraph of H ′, distH ′(x1, x2) ≤ distH ′(x1, x
′
1) + distH ′(x

′
1, x
′
2) + distH ′(x2, x

′
2) ≤

distH(x1, x
′
1)+distH ′(x

′
1, x
′
2)+distH(x2, x

′
2) ≤ 2M+2 ≤ 101 lnn

p . Therefore, with probability

at least 1− n−48, distH ′(x1, x2) ≤ 101 lnn
p .

Assume now that Theorem 4.3.2 holds for every connected graph H and every tree T of

depth at most D − 1, with V (T ) = V (H). Consider now some connected graph H, and a

rooted tree T of depth D, with V (T ) = V (H). We partition the edges of E(T ) into two

161



subsets: set E1 contains all edges incident to the vertices of VD, and set E2 contains all

remaining edges. Let E′1 = E1 ∩R, and let E′2 = E2 ∩R. Notice that the definition of good

vertices only depends on the edges of E′1, and so the event B only depends on the random

choices made in selecting the edges of E′1, and is independent from the random choices made

in selecting the edges of E′2.

Let L be a subgraph of H ′, obtained by starting with L = H, and then adding all edges of

E′1 to the graph. Finally, we define a new graph Ĥ, whose vertex set is V≤D−1, and there

is an edge between a pair of nodes w,w′ in Ĥ iff the distance between w and w′ in L is at

most M + 2. We also let T̂ be the tree obtained from T , by discarding from it all vertices

of VD and all edges incident to vertices of VD. Observe that V (Ĥ) = V (T̂ ) = V≤D−1. The

idea is to use the induction hypothesis on the graph Ĥ, together with the tree T̂ . In order

to do so, we need to prove that Ĥ is a connected graph, which we do next.

Observation 4.3.4. If the event B does not happen, then graph Ĥ is connected.

Proof. Assume that the event B does not happen, and assume for contradiction that graph

Ĥ is not connected. Let C = {C1, . . . , Cr} be the set of all connected components of

graph Ĥ. For every pair Ci, Cj of distinct components of C, consider the set Pi,j ={
Px,x′ | x ∈ V (Ci), x

′ ∈ V (Cj)
}

of paths (recall that Px,x′ is the shortest path connect-

ing x to x′ in H with σ(Px,x′) lexicographically smallest among all such paths). We let Pi,j

be a shortest path in Pi,j . Choose two distinct components Ci, Cj ∈ C, whose path Pi,j has

the shortest length, breaking ties arbitrarily. Assume that Pi,j connects a vertex v ∈ Ci to a

vertex u ∈ Cj , so Pi,j = Pv,u. Recall that H ⊆ L, and so the path Pi,j is contained in graph

L. Since we did not add edge (u, v) to Ĥ, the length of Pi,j is greater than M + 2. Since

we have assumed that event B does not happen, there is at least one good inner vertex on

path Pi,j . Let X be the set of all good vertices that serve as inner vertices of Pi,j .

We first show that for each x ∈ X, x 6∈ V (Ĥ) must hold. Indeed, assume for contradiction

that x ∈ V (Ĥ), so x belongs to some connected component of V (Ĥ). Assume first that

162



x ∈ V (Ci). Recall that the sub-path of Pi,j from x to u is precisely Px,u, so this path lies in

Pi,j . But its length is less than the length of Pi,j , contradicting the choice of Pi,j . Otherwise,

x belongs to some connected component C` of C with ` 6= i. The sub-path of Pi,j from v to

x is precisely Pv,x, so this path must lie in Pi,`. Since its length is less than the length of

Pi,j , this contradicts the choice of the components Ci, Cj . We conclude that x 6∈ V (Ĥ).

Since V (Ĥ) contains all vertices of V≤D−1, and every vertex in X is a good vertex, it must

be the case that X ⊆ VD. Consider again some vertex x ∈ X. Since x is a good vertex and

x ∈ VD, there must be an edge ex = (x, x′) ∈ E′1, connecting x to some vertex x′ ∈ V≤D−1.

In particular, x′ must belong to some connected component of C, and the edge ex lies in

graph L. Assume that X =
{
x1, x2, . . . , xq

}
, where the vertices are indexed in the order

of their appearance on Pi,j , from v to u. Consider the sequence σ̃ = (v, x′1, x
′
2, . . . , x

′
q, u) of

vertices. All these vertices belong to V (Ĥ), and v ∈ Ci, while u ∈ Cj . For convenience,

denote v = x′0 = x0 and u = x′q+1 = xq+1. Then there must be an index 1 ≤ a ≤ q, such

that x′a and x′a+1 belong to distinct connected components of C. Note that the sub-path of

Pi,j between xa and xa+1 is precisely Pxa,xa+1 – the shortest path connecting xa to xa+1 in

H. Since no good vertices lie between xa and xa+1 on this path, and since we have assumed

that event B does not happen, the length of this path is at most M . Therefore, there is a

path in graph L, connecting x′a to x′a+1, whose length is at most M + 2. This path connects

a pair of vertices that belong to different connected components of Ĥ, contradicting the

construction of Ĥ.

Consider now the tree T̂ and the graph Ĥ. Recall that T̂ is a rooted tree of depth D − 1,

V (T̂ ) = V (Ĥ), |V (Ĥ)| ≤ |V (H)| ≤ n, and, assuming the event B did not happen, Ĥ is a

connected graph. Moreover, set E′2 of edges is a subset of E(T̂ ) = E2, obtained by adding

every edge of E(T̂ ) to E′2 with probability p, independently from other edges. Therefore,

assuming that event B did not happen, we can use the induction hypothesis on the graph

Ĥ, the tree T̂ , and the set E′2 of edges as R. Let B′ be the bad event that the diameter of
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Ĥ ∪ E′2 is greater than (101 lnn
p )D−1. Note that the event B′ only depends on the random

choices made in selecting the edges of E′2. From the induction hypothesis, the probability

that B′ happens is at most D−1
n48

.

Lastly, we show that, if neither of the events B,B′ happens, then diam(H ′) ≤ (101 lnn
p )D.

Observation 4.3.5. If neither of the events B,B′ happens, then diam(H ′) ≤ (101 lnn
p )D.

Proof. Consider any pair x1, x2 ∈ V of vertices. It is sufficient to show that, if events B,B′

do not happen, then distH ′(x1, x2) ≤ (101 lnn
p )D.

Let x′1 be a good node in V (H) that is closest to x1, and define x′2 similarly for x2. From

Observation 4.3.3, distH(x1, x
′
1) ≤ M . If x′1 ∈ V≤D−1, then we define x′′1 = x′1, otherwise

we let x′′1 be the node of VD−1 that is connected to x′1 by an edge of E′1, and we define

x′′2 similarly for x2. Therefore, x′′1 , x
′′
2 ∈ V≤D−1 = V (Ĥ), and, assuming event B does not

happen, distH ′(x1, x
′′
1) ≤ M + 1, and distH ′(x2, x

′′
2) ≤ M + 1. Since we have assumed that

the bad event B′ does not happen, dist
Ĥ∪E′2

(x′′1 , x
′′
2) ≤ (101 lnn

p )D−1. Recall that for every

edge e = (u, v) ∈ Ĥ ∪ E′2, if e ∈ E′2 then e ∈ E(H ′); otherwise, e ∈ E(Ĥ), and there

is a path in graph H ∪ E′1 of length at most M + 2 connecting u to v in H. Therefore,

distH ′(x
′′
1 , x
′′
2) ≤ (M + 2) · dist

Ĥ
(x′′1 , x

′′
2) ≤ (101 lnn

p )D−1 · (M + 2).

Altogether, since M = (50 lnn)/p,

distH ′(x1, x2) ≤ distH ′(x1, x
′′
1) + distH ′(x

′′
1 , x
′′
2) + distH ′(x2, x

′′
2)

≤
(

101 lnn

p

)D−1

· (M + 2) + (2M + 2)

≤
(

101 lnn

p

)D
.

The probability that either B or B′ happen is bounded by D
n48

. Therefore, with probability

at least 1− D
n48

, neither of the events happens, and diam(H ′) ≤ (101 lnn
p )D. This concludes
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the proof of Theorem 4.3.2. �

4.4 Low-Diameter Packing of Edge-Disjoint Trees: Proof of

Theorem 4.1.2

In this section we provide the proof of Theorem 4.1.2. The main tool in the proof of Theorem

4.1.2 is the following theorem.

Theorem 4.4.1. Let k,D, n be any positive integers with k > 1000 lnn, let 707 lnn
k ≤ p ≤ 1

be a real number, and let G be an n-vertex k-edge-connected graph of diameter D. Let G′

be a subgraph of G with V (G′) = V (G), where every edge e ∈ E(G) is added to G′ with

probability p independently from other edges. Then, with probability at least 1− 1/ poly(n),

G′ is a connected graph, and its diameter is bounded by kD(D+1)/2.

Karger [22] has shown that, if G is a k-connected graph, and G′ is obtained by sub-sampling

the edges of G with probability Ω(log n/k), then G′ is a connected graph with high probabil-

ity. Theorem 4.4.1 further shows that the diameter of G′ is with high probability bounded

by kD(D+1)/2, where D is the diameter of G.

Theorem 4.1.2 easily follows from Theorem 4.4.1: Let r = bk/(707 lnn)c. We partition E(G)

into subsets E1, . . . , Er by choosing, for each edge e ∈ E(G), an index i independently and

uniformly at random from {1, 2, . . . , r} and then adding e to Ei. For each 1 ≤ i ≤ r, we

define a graph Gi by setting V (Gi) = V (G) and E(Gi) = Ei. Finally, for each graph Gi, we

compute an arbitrary BFS tree Ti, and return the resulting collection T = {T1, . . . , Tr} of

trees. It is immediate to verify that the graphs G1, . . . , Gr are edge-disjoint, and so are the

trees of T . Moreover, applying Theorem 4.4.1 to each graph Gi with p = 1/r, we get that

with probability 1 − 1/ poly(n), diam(Ti) ≤ 2 diam(Gi) ≤ O(kD(D+1)/2). Using the union

bound over all 1 ≤ i ≤ r completes the proof of Theorem 4.1.2. It now remains to prove

Theorem 4.4.1.
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4.4.1 Bounding the Diameter of a Random Subgraph: Proof of Theorem

4.4.1

This subsection is dedicated to proving Theorem 4.4.1. We assume that we are given an

n-vertex k-edge connected graph G = (V,E), with k > 1000 lnn, and a parameter 707 lnn
k ≤

p ≤ 1. Our goal is to show that a random graph G′, obtained by independently sub-sampling

every edge of G with probability p, has diameter at most kD(D+1)/2 with probability at least

1− 1/ poly(n).

Let B be the bad event that the graph G′ is not connected. We start by establishing that

B only happens with low probability, using a well known result of Karger [22].

Claim 4.4.2. The probability that the event B happens is at most O(1/n10).

Proof. Recall that we have denoted by D(G, p) the distribution of graphs, where the vertex

set is V (G), and each edge of G is included in the graph with probability p independently

from other edges. We use the following result of Karger [22].

Theorem 4.4.3 (Adaptation of Theorem 2.1 from [22]). Let k, n be any positive integers,

and let d, p be any positive real numbers such that 0 < p < 1. Let G be an n-vertex k-edge

connected graph. Let G′ ∼ D(G, p) be a random subgraph of G and let ε =
√

3(d+2) lnn
kp . If

ε < 1 then, with probability 1−O(1/nd), every cut in G′ has value between (1+ε) and (1−ε)

times its expected value.

We apply Theorem 4.4.3 to the graph G, with the parameter p and d = 10. Since G is k-edge

connected and p ≥ (707 lnn)/k, we get that:

ε =

√
3(d+ 2) lnn

kp
≤

√
36 lnn

k · (707 lnn)/k
≤
√

36

707
< 0.3 < 1.

Therefore, with probability 1 − O(1/n10), for every cut (S, V \ S) in G′, |EG′(S, V \ S)| ≥

(1− ε) · p · |EG(S, V \S)| ≥ 0.7 · pk > 0. Therefore, with probability 1−O(1/n10), graph G′
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is connected, and event B happens with probability O(1/n10).

We now proceed to bound the diameter of G′. Denote G = (V,E), and let T be a BFS tree

of G, rooted at an arbitrary node of G. Since G has diameter at most D, the depth of T

is at most D. For each integer 0 ≤ i ≤ D, we denote by Vi the set of nodes that lie at the

ith level of T (recall that the root lies at level 0), and we denote V≤i =
⋃i
j=0 Vj . For each

0 ≤ i ≤ D − 1, let Ei be the set of edges of T connecting vertices of Vi to vertices of Vi+1.

We also let Eout = E \ E(T ), so E = Eout ∪
(⋃D−1

i=0 Ei

)
.

Recall that G′ ∼ D(G, p). We first define a different (but equivalent) sampling algorithm for

generating a random graph G′ from the distribution D(G, p). We will then use this algorithm

to bound the diameter of G′. The algorithm consists of D+1 phases. For each 0 ≤ i ≤ D, we

compute a random subgraph G′i of G, with V (G′i) = V (G), such that G′0 ⊆ G′1 ⊆ · · · ⊆ G′D.

The final graph G′D is denoted by G′. For all 0 ≤ i ≤ D, we denote by Ci the set of all

connected components of the graph G′i. Throughout the algorithm, we maintain a set Ê of

edges, that is initialized to ∅.

In order to execute the 0th phase, we consider the edges of Eout. Each such edge is added

to the set Ê with probability p independently from other edges. Let E′out ⊆ Eout be the set

of edges that are added to Ê in this phase. We then set G′0 = (V,E′out). Observe that G′0

may not be a connected graph. We denote by C0 the set of all connected components of G′0.

We refer to the connected components of C0 as phase-0 clusters.

For each 1 ≤ i ≤ D, in order to execute the ith phase, we consider the set ED−i of edges.

Each such edge is added to Ê with probability p independently from other edges. We denote

by E′D−i ⊆ ED−i the set of edges that are added to Ê at phase i. Graph G′i is obtained

from the graph G′i−1 by adding all edges of E′D−i to it. As before, we denote by Ci the set

of all connected components of G′i, and we call them phase-i clusters.

Let E′ be the set Ê at the end of this algorithm. We denote by G′ = (V,E′) the final graph

that we obtain. Clearly, G′ = G′D, and it is generated from the distribution D(G, p), since
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E = Eout ∪
(⋃D−1

i=0 Ei

)
, and the edge sets Eout, E0, . . . , ED−1 are mutually disjoint. We

denote by T ′ the subgraph of T with V (T ′) = V (T ) and E(T ′) =
⋃D−1
i=0 E′i. Observe that

T ′ ∼ D(T, p).

Consider a pair u, u′ ∈ V of distinct vertices. We say that u and u′ are joined at phase 0, if

they belong to the same connected component of G′0. We say that they are joined at phase

i for 1 ≤ i ≤ D, if u and u′ belong to the same connected component of G′i but they lie in

different connected components of G′i−1. For all 0 ≤ i ≤ D, let Πi denote the set of all pairs

of vertices that joined at phase i. Note that, if the event B does not happen, then every pair

(u, u′) of distinct vertices of V lies in a unique set Πi, for some 0 ≤ i ≤ D.

In order to bound the distances between pairs of nodes in G′, we need the following theorem,

that slightly generalizes Theorem 4.3.2. The proof is similar to that of Theorem 4.3.2 and

is deferred to Section 4.4.2.

Theorem 4.4.4. Let T be a rooted tree of depth D with |V (T )| ≤ n, and let H be a connected

graph with V (H) ⊆ V (T ). For a real number 0 < p < 1, let R ∼ D(T, p) be a random

subgraph of T , so V (R) = V (T ), and every edge of E(T ) is added to E(R) independently

with probability p. Then with probability at least 1− D
n48

, for every pair u, v of vertices of H,

distR∪H(u, v) ≤ (101 lnn
p )D.

We use a parameter N = (101 lnn)/p. Since p ≥ (707 lnn)/k, we get that 7N ≤ k. For each

0 ≤ i ≤ D, we define a distance threshold Mi, as follows. We let M0 = ND, and for all

1 ≤ i ≤ D, we let Mi = 7ND−i ·Mi−1. It is easy to verify that, for all 0 ≤ i ≤ D:

Mi ≤ 7iND+(D−1)+···+D−i ≤ (7N)D(D+1)/2 ≤ kD(D+1)/2.

For each 0 ≤ i ≤ D, we say that a bad event Bi happens, if for some pair (u, u′) ∈ Π0∪· · ·∪Πi

of distinct vertices, the distance between u and u′ in G′ is greater than Mi. The following

lemma is central to the proof of Theorem 4.4.1.
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Lemma 4.4.5. For each 0 ≤ i ≤ D, the probability of event Bi is at most i/n43.

Observe that, if none of the events B,B0, . . . , BD happen, then G′ is a connected graph,

and in particular, every pair (u, u′) of distinct vertices of G belongs to some set Πi, for some

0 ≤ i ≤ D, so distG′(u, u
′) ≤ kD(D+1)/2. Using the union bound, the probability that at

least one of the events B,B0, . . . , BD happens is bounded by O(1/n10). Therefore, with

probability at least 1 − O(1/n10), graph G′ is connected, and diam(G′) ≤ kD(D+1)/2. In

order to complete the proof of Theorem 4.4.1, it is now enough to prove Lemma 4.4.5.

Proof of Lemma 4.4.5: The proof is by induction on i. The base case is when i = 0. Let

(u, u′) ∈ Π0 be any pair of vertices of G′ that are joined at phase 0. Let B0(u, u′) be the

bad event that the distance from u to u′ in G′ is greater than M0 = ND. Clearly, event B0

may only happen if event B0(u, u′) happens for some pair (u, u′) ∈ Π0 of vertices. We now

bound the probability of each such event separately.

Let (u, u′) ∈ Π0 be any pair of vertices joined at phase 0. Recall that u, u′ lie in the same

connected component of G′0, and so there is some path Q connecting u to u′ in G′0. Consider

now the graph Q, and the tree T that we have defined before, whose depth is bounded by

D. Recall that T ′ ⊆ T is obtained from T by sub-sampling each of its edges independently

with probability p. Using Theorem 4.4.4 with graph H = Q, the tree T , and the sampling

probability p, we conclude that the probability that the distance from u to u′ in Q ∪ T ′

is greater than
(

101 lnn
p

)D
= ND is bounded by D/n46. Recall that Q ⊆ G′0 and so

Q ∪ T ′ ⊆ G′. Therefore, distG′(u, u
′) ≤ distQ∪T ′(u, u

′), and so the probability that event

B0(u, u′) happens is bounded by D/n46. Using the union bound over all pairs (u, u′) ∈ Π0

and the fact that D ≤ n, we conclude that Pr [B0] ≤ 1/n43.

We now assume that the claim is true for all indices 0, . . . , (i − 1), and prove it for index

i. As before, let (u, u′) ∈ Πi be any pair of vertices of G′ that are joined at phase i. Let

Bi(u, u
′) be the bad event that the distance from u to u′ in G′ is greater than Mi. Clearly,

event Bi may only happen if event Bi(u, u
′) happens for some pair (u, u′) ∈ Πi of vertices, or

169



one of the events B0, . . . , Bi−1 happens. We now bound the probability of each such event

Bi(u, u
′) separately.

Recall that G′i is the graph that we have obtained at the end of phase i of the sampling

algorithm. Note that G′i is determined completely by the random choices made in phases

0, 1, . . . , i. Let (u, u′) ∈ Πi be a pair of vertices that are joined at phase i. By the definition,

u and u′ belong to different phase-(i − 1) clusters but the same phase-i cluster. Therefore,

there is some simple path Q in graph G′i that connects u to u′. Recall that graph G′i is

obtained from the graph G′i−1 by adding the edges of E′D−i to it – the edges that we have

sampled in phase i. The edges of E′D−i are sampled from the set ED−i of edges, connecting

vertices of VD−i to vertices of VD−i+1. For convenience, we denote the edges of E′D−i by Ẽ.

Let Q1, Q2, . . . , Qt be the set of segments of Q, obtained by deleting all edges of Ẽ from Q.

Note that each such segment Qj is contained in some phase-(i− 1) cluster, and t ≥ 2, since

u and u′ lie in different phase-(i − 1) clusters. We assume that the segments are indexed

by their natural order on path Q, and that u ∈ Q1, while u′ ∈ Qt. For each 1 ≤ j < t, we

let Lj be the sub-path of Q, connecting the last vertex of Qj to the first vertex of Qj+1.

Notice that all edges in Lj belong to the set Ẽ, and so each such segment Lj is either a

single edge of Ẽ, or it consists of two such edges, that share a common vertex in VD−i (see

Figure 4.1). In either case, each such segment Lj must contain a single vertex that belongs

to VD−i, which we denote by wj .

We denote W = {w1, . . . , wt−1}, so W ⊆ VD−i, and we define a new graph H, whose vertex

set is W , and, for each 1 ≤ j ≤ t− 2, there is an edge between vertex wj and vertex wj+1.

Observe that H is a path, connecting the vertices of W in their natural order. Note that

H is guaranteed to be a connected graph, and that it only depends on the random choices

made in phases 0, . . . , i.

Let T̂ be the sub-tree of T that is induced by the vertices of V≤D−i, and let T̂ ′ be the sub-

tree of T̂ with V (T̂ ′) = V (T̂ ), and E(T̂ ′) containing all edges of E′D−i−1∪ · · · ∪E
′
0. In other
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Figure 4.1: Vertices u and u′ are joined at level i; the path Q is shown in red; the edges of
Ẽ \E(Q) are shown in blue; the phase-(i− 1) clusters that share vertices with Q are shown
in green.

words, the edges of T̂ ′ are all edges that were sampled in phases (i+1), . . . , D of the sampling

algorithm. Observe that T̂ ′ ∼ D(T̂ , p). Finally, let H ′ = H ∪ T̂ ′. We let B′i(u, u
′) be the bad

event that the distance from w1 to wt−1 in the graph H ′ is greater than ND−i. Observe that

the event B′i(u, u
′) only depends on random choices made in phases (i + 1), . . . , D. Using

Theorem 4.4.4 with the graph H, the tree T̂ , and the sampling probability p, together with

the fact that N = (101 lnn)/p, we conclude that, the probability that the event B′i(u, u
′)

happens is bounded by D/n46. Lastly, we need the following claim.

Claim 4.4.6. If neither of the events Bi−1, B
′
i(u, u

′) happens, then neither does event

Bi(u, u
′).

Proof. Assume that neither of the events Bi−1, B
′
i(u, u

′) happens. We show that the distance

between u and u′ in G′ is bounded by Mi, that is, event Bi(u, u
′) does not happen.

Let P be the shortest path connecting w1 to wt−1 in graph H ′. Since we have assumed that

event B′i(u, u
′) does not happen, |P | ≤ ND−i. We would like to turn the path P into a path

P ′ connecting u to u′ in graph G′, without increasing its length by too much. Observe first

that an edge e = (v, v′) ∈ E(P ) must be of one of two types: either it is an edge of T̂ ′, and
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hence it is also an edge of G′; or it is an edge of the form (wj , wj+1), in which case it may

not be an edge of G′. In order to complete the proof, we show that each such edge can be

replaced by a short path in G′, and we show that u and u′ can be connected by short paths

to w1 and wt−1, respectively, in graph G′.

Observation 4.4.7. Assume that event Bi−1 does not happen. Then for each 1 ≤ j < t−1,

there is a path Pj of length at most 2 + Mi−1 in graph G′, connecting vertex wj to vertex

wj+1. Moreover, there is a path P0 of length at most 1 +Mi−1 in graph G′ connecting u to

w1, and there is a path Pt−1 of length at most 1 +Mi−1 in graph G′ connecting wt−1 to u′.

Proof. From the way we have partitioned the path Q into segments, either u and w1 lie in the

same phase-(i−1) cluster, or there is an edge (v, w1) ∈ Ẽ, such that v lies in the same phase-

(i− 1) cluster as u. In the former case, we also denote w1 by v for convenience. Therefore,

u and v where joined before phase i, and so distG′(u, v) ≤ Mi−1, by our assumption that

event Bi−1 does not happen. Therefore, there is a path in G′ of length at most Mi−1 + 1

that connects u to w1. Similarly, there is a path of length at most Mi−1 + 1 in graph G′

connecting wt−1 to u′.

Consider now some index 1 ≤ j < t − 1. From the definition of segments of Q, there

is some phase-(i − 1) cluster C, and vertices v, v′ ∈ C, such that: (i) either wj = v,

or edge (wj , v) ∈ Ẽ; and (ii) either wj+1 = v′, or edge (wj+1, v
′) ∈ Ẽ. In either case,

v, v′ ∈ Πi′ for some i′ < i, and, since we have assumed that event Bi−1 does not happen,

distG′(v, v
′) ≤Mi−1. Since Ẽ ⊆ E(G′), distG′(wj , wj+1) ≤ 2 + distG′(v, v

′) ≤ 2 +Mi−1.

In order to obtain the desired path P ′, we replace each edge of the form (wj , wj+1) on path

P with the corresponding path Pj , and we append P1 and Pt−1 to the beginning and to the

end of the resulting path. It is easy to verify that |P ′| ≤ |P | · (Mi−1 + 2) + 2Mi−1 + 2 ≤

|P | · 7Mi−1 ≤ 7ND−iMi−1 = Mi.

So far we have shown that, if the events Bi−1, B′i(u, u
′) do not happen, then neither
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does event Bi(u, u
′). Recall that event Bi may only happen if some event in {Bi−1} ∪{

Bi(u, u
′) | (u, u′) ∈ Πi

}
happens. Therefore, event Bi may only happen if some event in

{Bi−1} ∪
{
B′i(u, u

′) | (u, u′) ∈ Πi
}

happens.

From the induction hypothesis, the probability of event Bi−1 happening is bounded by

(i − 1)/n43, and, from the previous discussion, for each (u, u′) ∈ Πi, the probability of the

event B′i(u, u
′) is bounded by D/n46. Taking the union bound over all these events, and

using the facts that |Πi| ≤ n2 and D ≤ n, we conclude that the probability that any event

in {Bi−1}∪
{
B′i(u, u

′) | (u, u′) ∈ Πi
}

happens is bounded by i/n43, and this also bounds the

probability of the event Bi.

4.4.2 Proof of Theorem 4.4.4

Recall that we are given a connected graph H and a rooted tree T of depth D with |V (T )| ≤ n

and V (H) ⊆ V (T ), together with a parameter p. We let R be a random subgraph of T with

V (R) = V (T ), where every edge of E(T ) is added to E(R) with probability p independently

from other edges; in other words, R ∼ D(T, p). Our goal is to show with probability at least

1− D
n48

, for every pair u, v of vertices of H, distR∪H(u, v) ≤ (101 lnn
p )D. The proof is a slight

modification of the proof of Theorem 4.3.2. Note that the main difference between Theorem

4.4.4 and Theorem 4.3.2 is that now the tree T may contain vertices in addition to V (H).

We denote V = V (T ). As before, for each 0 ≤ i ≤ D, we let Vi be the set of nodes lying at

level i of the tree T , and denote V≤i =
⋃i
t=0 Vt. We also denote H ′ = H ∪R.

We say that a node x ∈ V (H) is good if either (i) x ∈ V≤D−1∩V (H); or (ii) x ∈ VD∩V (H),

and there is an edge in R connecting x to a node in VD−1. Let M = 50 lnn
p . As before,

we assume that V (H) = {v1, . . . , vn′}, where the vertices are indexed in an arbitrary order.

Given an ordered pair (x, x′) of vertices in H, and a path P of H connecting x to x′, let

σ(P ) be a sequence of vertices that lists all the vertices appearing on P in their natural

order, starting from vertex x. For an ordered pair (x, x′) ∈ V (H) of vertices, let Px,x′ be
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shortest path connecting x to x′ in H, and among all such paths P , choose the one whose

sequence σ(P ) is smallest lexicographically. Observe that Px,x′ is unique, and, moreover, if

some pair u, u′ ∈ V (H) of vertices lie on Px,x′ , with u lying closer to x than u′ on Px,x′ ,

then the sub-path of Px,x′ from u to u′ is precisely Pu,u′ .

For a pair x, x′ ∈ V (H) of vertices of H, we let B(x, x′) be the bad event that length of

Px,x′ is greater than M and there is no good internal node on Px,x′ . Exactly as before,

the probability that event B(x, x′) happens for a fixed pair x, x′ of vertices is at most

(1− p)M = (1− p)(50 lnn)/p < n−50.

Let B be the bad event that B(x, x′) happens for some pair x, x′ ∈ V (H) of nodes. From

the union bound over all pairs of distinct nodes in V (H), the probability of B is bounded

by n−48. The following observation is an analogue of Observation 4.3.3, and its proof is

identical.

Observation 4.4.8. If the event B does not happen, then for every node x ∈ V (H), there

is a good node x′ ∈ V such that distH(x, x′) ≤M .

As before, we prove Theorem 4.4.4 by induction on D. The base of the induction is when

D = 1. In this case, T is a star graph. Let c denote the vertex that serves as the center

of the star. For any pair x1, x2 ∈ V (H) of vertices, we denote by x′1 the good node that

is closest to x1 in H, and we define x′2 similarly for x2. Notice that, from the definition

of good vertices, either x′1 = c, or it is connected to c by an edge of R, and the same

holds for x′2. Therefore, distH ′(x
′
1, x
′
2) ≤ 2 must hold. If the event B does not happen, then,

since H is a subgraph of H ′, distH ′(x1, x2) ≤ distH ′(x1, x
′
1)+distH ′(x

′
1, x
′
2)+distH ′(x2, x

′
2) ≤

distH(x1, x
′
1)+distH ′(x

′
1, x
′
2)+distH(x2, x

′
2) ≤ 2M+2 ≤ 101 lnn

p . Therefore, with probability

at least 1− n−48, distH ′(x1, x2) ≤ 101 lnn
p .

Assume now that Theorem 4.4.4 holds for every connected graph H and every tree T of

depth at most D − 1, with V (H) ⊆ V (T ). Consider now some connected graph H, and a

rooted tree T of depth D, with V (H) ⊆ V (T ) and |V (T )| ≤ n. We can assume without
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loss of generality that every vertex of VD lies in V (H), since all other vertices of VD can

be discarded from T . We partition the edges of E(T ) into two subsets: set E1 contains all

edges incident to the vertices of VD, and set E2 contains all remaining edges. Let R1 ⊆ R

be the subgraph of R containing only the edges of E1 ∩ E(R) and their endpoints, and let

R2 ⊆ R be obtained from R by discarding all vertices of VD and their incident edges. Notice

that the definition of good vertices only depends on the edges of R1, and so the event B

only depends on the random choices made in selecting the edges of R1, and is independent

of the random choices made in selecting the edges of R2.

Let L be a subgraph of H ′, obtained by starting with L = H, and then adding every edge

of R1 together with their endpoints to the graph. Equivalently, L = H ∪R1.

Finally, we define a new graph Ĥ, whose vertex set consists of two subsets: set U1 =

V≤D−1 ∩ V (H), and set U2, containing all vertices v ∈ VD−1, such that v is connected with

an edge of R1 to some vertex of VD ∩ V (H) = VD. We set V (Ĥ) = U1 ∪ U2. Observe

that V (Ĥ) ⊆ V (L). In order to define the edge set E(Ĥ), we add an edge between a pair

of nodes w,w′ in Ĥ iff the distance between w and w′ in L is at most M + 4. We also

let T̂ be the tree obtained from T , by discarding all vertices of VD from it. Observe that

V (Ĥ) ⊆ V (T̂ ) = V≤D−1. As before, the idea is to use the induction hypothesis on the graph

Ĥ, together with the tree T̂ . In order to do so, we need to prove that Ĥ is a connected

graph, which we do next.

Observation 4.4.9. If the event B does not happen, then graph Ĥ is connected.

Proof. Assume that the event B does not happen, and assume for contradiction that graph

Ĥ is not connected. Let C = {C1, . . . , Cr} be the set of all connected components of graph

Ĥ.

For every vertex v ∈ V (Ĥ), we define a set Γ(v) ⊆ V (H) of vertices, as follows. If v ∈ V (H),

then Γ(v) contains a single vertex – the vertex v. Otherwise, v ∈ VD−1 \ V (H) must hold,

and it must be connected by at least one edge of R1 to some vertex in VD ∩ V (H) = VD.
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We then let Γ(v) contain every vertex of VD that is connected to v by an edge of R1.

For an ordered pair (u, v) of vertices of V (Ĥ), we define a set P(u, v) of paths as follows:

P(u, v) =
{
Px,y | x ∈ Γ(u), y ∈ Γ(v)

}
(recall that Px,y is the shortest path that starts at x

and ends at y in H, with the lexicographically smallest sequence σ(Px,y).) Observe that

every path Px,y ∈ P(u, v) can be augmented to a path connecting u to v in graph L, by

appending the edge (u, x) to the beginning of the path (if u 6= x), and appending the edge

(y, v) to the end of the path (if y 6= v).

For every ordered pair (Ci, Cj) of distinct components of C, consider the set Pi,j =
⋃
u∈Ci,v∈Cj

P(u, v)

of paths. We let Pi,j be a shortest path in Pi,j . We choose two distinct components

Ci, Cj ∈ C with Pi,j having the shortest length, breaking ties arbitrarily. Assume that

Pi,j ∈ P(u, v), for u ∈ Ci and v ∈ Cj . Let x ∈ Γ(u) and y ∈ Γ(v) be the endpoints of Pi,j ,

so Pi,j = Px,y. Let P ′ be the augmented path obtained from Px,y, by appending the edge

(u, x) to the beginning of the path (if u 6= x), and appending the edge (y, v) to the end of

the path (if y 6= v), so P ′ now connects u to v. Recall that L = H ∪R1, and so the path P ′

is contained in graph L. Since we did not add edge (u, v) to Ĥ, the length of P ′ is greater

than M + 4. Therefore, the length of the path Px,y in graph H is at least M + 2. Since we

have assumed that event B does not happen, there is at least one good inner vertex on path

Px,y. Let X be the set of all good vertices that serve as inner vertices of Px,y.

We first show that for each z ∈ X, z 6∈ V (Ĥ) must hold. Indeed, assume otherwise, that

is, z ∈ V (Ĥ) for some z ∈ X. Then z must belong to some connected component C` ∈ C.

Since z is a good vertex, z ∈ V (H), and so Γ(z) = {z}. Therefore, the sub-path of Px,y

from x to z lies in P(u, z), and the sub-path of Px,y from z to y lies in P(z, v). We denote

the former path by P1 and the latter path by P2. The length of each of these paths is less

than the length of Px,y.

Assume first that ` = i, that is, z ∈ V (Ci). Then P2 ∈ Pi,j , and its length is less than the

length of Px,y, a contradiction. Otherwise, ` 6= i. But then P1 ∈ Pi,`, and its length is less
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than the length of Pi,j , a contradiction. We conclude that for each z ∈ X, z 6∈ V (Ĥ).

Since V (Ĥ) contains all vertices of V≤D−1 ∩ V (H), and every vertex in X is a good vertex,

it must be the case that X ⊆ VD. Consider again some vertex z ∈ X. Since z is a good

vertex and z ∈ VD, there must be an edge ez = (z, z′) ∈ E(R1), connecting z to some

vertex z′ ∈ V≤D−1. From the definition of graph Ĥ, z′ ∈ V (Ĥ), and in particular, z′ must

belong to some connected component of C, while the edge ez lies in graph L. Assume that

X =
{
z1, z2, . . . , zq

}
, where the vertices are indexed in the order of their appearance on Pi,j ,

from x to y. Consider the sequence σ′ = (u, z′1, z
′
2, . . . , z

′
q, v) of vertices. All these vertices

belong to V (Ĥ), and u ∈ Ci, while v ∈ Cj . For convenience, denote x = z′0 and y = z′q+1.

Then there must be an index 1 ≤ a ≤ q, such that z′a and z′a+1 belong to distinct connected

components of C. Note that the sub-path of Pi,j between za and za+1 is precisely Pza,za+1

– the shortest path connecting za to za+1 in H. Since no good vertices lie between za and

za+1 on this path, and since we have assumed that event B does not happen, the length

of this path is at most M . Therefore, there is a path in graph L, connecting z′a to z′a+1,

whose length is at most M + 2. This path connects a pair of vertices that belong to different

connected components of Ĥ, contradicting the definition of Ĥ.

Consider now the tree T̂ and the graph Ĥ. Recall that T̂ is a rooted tree of depth D −

1, V (T̂ ) = V (Ĥ), and, assuming the event B did not happen, Ĥ is a connected graph.

Moreover, R2 ∼ D(T̂ , p). Therefore, assuming that event B did not happen, we can use

the induction hypothesis on the graph Ĥ, the tree T̂ , and the random subgraph R2 of T̂ .

Let B′ be the bad event that for some pair x1, x2 ∈ V (Ĥ) of vertices, dist
Ĥ∪R2

(x1, x2) >

(101 lnn
p )D−1. From the induction hypothesis, the probability that B′ happens is at most

D−1
n48

.

Lastly, we show that, if neither of the events B,B′ happen, then for every pair x1, x2 ∈ V (H)

of vertices, distH ′(x1, x2) ≤ (101 lnn
p )D.

Observation 4.4.10. If neither of the events B,B′ happen, then for every pair x1, x2 ∈
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V (H) of vertices of H, distH ′(x1, x2) ≤ (101 lnn
p )D.

Proof. Consider any pair x1, x2 ∈ V (H) of vertices. Let x′1 be a good node in V (H) that is

closest to x1 in H, and define x′2 similarly for x2. From Observation 4.4.8, distH(x1, x
′
1) ≤M .

If x′1 ∈ V≤D−1, then we define x′′1 = x′1, otherwise we let x′′1 be the node of VD−1 that is

connected to x′1 by an edge of E′1, and we define x′′2 similarly for x2. Therefore, x′′1 , x
′′
2 ∈

V (Ĥ), and, assuming event B does not happen, distH ′(x1, x
′′
1) ≤M+1, and distH ′(x2, x

′′
2) ≤

M + 1. Since we have assumed that the bad event B′ does not happen, dist
Ĥ∪R2

(x′′1 , x
′′
2) ≤

(101 lnn
p )D−1. Recall that for every edge e = (u, v) ∈ Ĥ ∪R2, if e ∈ E(R2), then e ∈ E(H ′);

otherwise, e ∈ E(Ĥ), and there is a path in graph H∪R1 of length at most M+4 connecting

u to v in H. Therefore, distH(x′′1 , x
′′
2) ≤ (M + 4) · dist

Ĥ
(x′′1 , x

′′
2) ≤ (101 lnn

p )D−1 · (M + 4).

Altogether, distH ′(x1, x2) ≤ distH ′(x1, x
′′
1) + distH ′(x

′′
1 , x
′′
2) + distH ′(x2, x

′′
2) ≤ (101 lnn

p )D−1 ·

(M + 4) + (2M + 2) ≤ (101 lnn
p )D, since M = (50 lnn)/p.

The probability that either B or B′ happen is bounded by D
n48

. Therefore, with probability

at least 1 − D
n48

, neither of the events happens, for every pair x1, x2 ∈ V (H) of vertices of

H, distH ′(x1, x2) ≤ (101 lnn
p )D.

4.5 Lower Bound: Proof of Theorem 4.1.3

In this section we provide the proof of Theorem 4.1.3. We start by proving the following

slightly weaker theorem; we then extend it to obtain the proof of Theorem 4.1.3.

Theorem 4.5.1. For all positive integers k,D, η, α such that k/(4Dαη) is an integer, there

exists a k-edge connected graph G with |V (G)| = O

((
k

2Dαη

)D)
and diameter at most 2D,

such that, for any collection T = {T1, . . . , Tk/α} of k/α spanning trees of G that causes

edge-congestion at most η, some tree Ti ∈ T has diameter at least 1
4 ·
(

k
2Dαη

)D
.

Notice that the main difference from Theorem 4.1.3 is that the graph G is no longer required
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to be simple; the number of vertices of V (G) is no longer fixed to be a prescribed value; and

the diameter of G is 2D instead of 2D + 2.

Proof. For a pair of integers w > 1, D ≥ 1, we let Tw,D be a tree of depth D, such that every

vertex lying at levels 0, . . . , D − 1 of Tw,D has exactly w children. In other words, Tw,D is

the full w-ary tree of depth D. We denote Nw,D = |V (Tw,D)| = 1 + w + w2 + · · · + wD ≤

wD+1/(w − 1). We assume that for every inner vertex v ∈ V (Tw,D), we have fixed an

arbitrary ordering of the children of v, denoted by a1(v), . . . , aw(v).

A traversal of a tree T is an ordering of the vertices of T . A post-order traversal on a tree

T , π(T ), is defined as follows. If the tree consists of a single node v, then π(T ) = (v).

Otherwise, let r be the root of the tree and consider the sequence (a1(r), . . . , aw(r)) of its

children. For each 1 ≤ i ≤ w, let Ti be the sub-tree of T rooted at the vertex ai(r). We

then let π(T ) be the concatenation of π(T1), π(T2), . . . , π(Tw), with the vertex r appearing

at the end of the sequence; see Figure 4.2 for an illustration. For simplicity, we assume

that V (Tw,D) =
{
v1, v2, . . . , vNw,D

}
, where the vertices are indexed in the order of their

appearance in π(Tw,D), so the traversal visits these vertices in this order.

Next, we define a graph Gw,D, as follows. The vertex set of Gw,D is the same as the vertex

set of Tw,D, namely V (Gw,D) = V (Tw,D). The edge set of Gw,D consists of two subsets:

E1 = E(Tw,D), and another set E2 of edges that contains, for each 1 ≤ i < Nw,D, k parallel

copies of the edge (vi, vi+1). We then set E(Gw,D) = E1 ∪E2. For convenience, we call the

edges of E1 blue edges, and the edges of E2 red edges ; see Figures 4.2 and 4.3.

It is easy to verify that graph Gw,D must be k-edge connected, since for any partition of

V (Gw,D), there is some index 1 ≤ i < Nw,D with vi, vi+1 separated by the partition, and

so k parallel edges connecting vi to vi+1 must cross the partition.

We now fix an integer w = k/(2Dαη) (note that w ≥ 2), and we let T = Tw,D be the

corresponding tree and G = Gw,D the corresponding graph. For convenience, we denote
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Figure 4.2: Tree T4,2 with vertices indexed
according to post-order traversal.

Figure 4.3: The edge set E2 in G4,2 (only
a single copy of each edge is shown).

Nw,D by N . Recall that N ≤ wD+1/(w − 1) = O

((
k

2Dαη

)D)
. As observed before, G is

k-edge connected. Since the depth of T is D, and T ⊆ G, it is easy to see that the diameter

of G is at most 2D.

We now consider any collection T = {T1, . . . , Tk/α} of k/α spanning trees of G that causes

edge-congestion at most η. Our goal is to show that some tree Ti ∈ T has diameter at least

1
4 ·
(

k
2Dαη

)D
.

For convenience, we denote V (G) = V (T ) = V . We say that a vertex x ∈ V is an ancestor

of a vertex y ∈ V if x is an ancestor of y in the tree T , that is, x 6= y, and x lies on the

unique path connecting y to the root of T .

Let L ⊆ V be the set of vertices that serve as leaves of the tree T . We denote by u = v1 a

vertex of L that has the lowest index, and by u′ the vertex of L with the largest index. It

is easy to see that u′ = vN−D, as every vertex whose index is greater than that of u′ is an

ancestor of u′. For each 1 ≤ j ≤ k/α, we denote by Pj the unique path that connects u to

u′ in tree Tj . Let P =
{
Pj | 1 ≤ j ≤ k/α

}
. It is enough to show that at least one of the

paths Pj has length at least 1
4 ·
(

k
2Dαη

)D
. In order to do so, we show that

∑k/α
j=1 |E(Pj)| is

sufficiently large. At a high level, we consider the red edges (vi, vi+1) (the edges of E2), and

show that many of the paths in P must contain copies of each such edge. This in turn will

imply that
∑
Pj∈P |E(Pj)| is large, and that some path in P is long enough.

For each vertex vi ∈ L such that vi 6= u′, we let Si = {v1, . . . , vi}, and we let Si =
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{vi+1, . . . , vN}. Notice that, since u ∈ Si and u′ ∈ Si, every path in P must contain an

edge of EG(Si, Si). Note that the only red edges in EG(Si, Si) are the k parallel copies

of the edge (vi, vi+1). In the next observation, we show that the number of blue edges in

EG(Si, Si) is bounded by Dw.

Observation 4.5.2. For each vertex vi ∈ L such that vi 6= u′, for every blue edge e ∈

EG(Si, Si), at least one endpoint of e must be an ancestor of vi.

Proof. We consider a natural layout of the tree T , where for every inner vertex x of the tree,

its children a1(x), . . . , aw(x) are drawn in this left-to-right order (see Figure 4.4). Consider

the path Q connecting the root of T to vi, so every vertex on Q (except for vi) is an ancestor

of vi. All vertices lying to the left of Q in the layout are visited before vi by π(T ). All

vertices lying to the right of Q, and on Q itself (excluding vi) are visited after vi. It is easy

to see that the vertices of Q separate the two sets in T , and so the only blue edges connecting

Si to Si are edges incident to the vertices of V (Q) \ {vi}.

Figure 4.4: A layout of the tree T . Vertex vi is shown in green and path Q in red. All
vertices lying to the left of Q in this layout appear before vi in π(T ), and all vertices lying
to the right of Q or on Q (except for vi) appear after vi in π(T ).

Since every vertex of the tree T has at most w children, and since the depth of the tree is

D, we obtain the following corollary of Observation 4.5.2.

Corollary 4.5.3. For each vertex vi ∈ L such that vi 6= u′, at most Dw blue edges lie in

EG(Si, Si).
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Since the trees in T cause edge-congestion η, at most Dwη trees of T may contain blue

edges in EG(Si, Si). Each of the remaining k
α −Dwη ≥

k
2α trees contains a copy of the red

edge (ei, ei+1) (recall that w = k/(2Dαη).) Therefore,
∑
Pj∈P |E(Pj)| ≥ |L| · k2α ≥

Nk
4α ,

since |L| ≥ |N |/2. We conclude that at least one path Pj ∈ P must have length at least

Nk
4α /

k
α ≥

N
4 , and so the diameter of Tj is at least N

4 . Since N ≥ wD ≥
(

k
2Dαη

)D
, the

diameter of Tj is at least 1
4 ·
(

k
2Dαη

)D
.

We are now ready to complete the proof of Theorem 4.1.3. First, we show that we can turn

the graph G into a simple graph, and ensure that |V (G)| = n, if n ≥ 3k ·
(

k
2Dαη

)D
. Let G′w,D

be the graph obtained from Gw,D as follows. For each 1 ≤ i ≤ N , we replace the vertex vi

with a set Xi = {x1
i , x

2
i . . . , x

k
i } of k vertices that form a clique. For each 1 ≤ i < N , the

k red edges connecting vi to vi+1 are replaced by the perfect matching {(xti, x
t
i+1)}1≤t≤k

between vertices of Xi and vertices of Xi+1. Each blue edge (vi, vj) is replaced by a new

edge (x1
i , x

1
j ). Since n ≥ 3k ·

(
k

2Dαη

)D
> k|V (G)|+ k, we add n− k|V (G)| > k new vertices

that form a clique, and for each newly-added vertex, we add an edge connecting it to x1
N

(recall that the vertex vN is the root of T ). We denote G′ = G′w,D for simplicity. It is not

hard to see that G′ has n vertices and it is k-edge connected. Moreover, G′ has diameter

at most 2D+ 2, since its subgraph induced by vertices of {x1
i }1≤i≤N has diameter 2D, and

every other vertex of G′ is a neighbor of one of the vertices in {x1
i }1≤i≤N . The tree T ′ is

defined exactly as before, except that every original vertex vj is now replaced with its copy

x1
j . Let L denote the set of all leaf vertices in T ′.

Assume that we are given a collection T = {T1, . . . , Tk/α} of k/α spanning trees of G′ that

causes edge-congestion at most η. For each 1 ≤ i ≤ k/α, we denote by Qi the unique path

that connects x1
1 to x1

N−D in Ti and denote Q = {Qi | 1 ≤ i ≤ k/α}. For each every leaf

vertex x1
j ∈ L, we define a cut (Wj ,W j) as follows: Wj =

⋃
1≤s≤j Xs and Wj = V (G′)\Wj .

Using reasoning similar to that in Corollary 4.5.3, it is easy to see that for every leaf vertex

x1
j ∈ L, the set EG′(Wj ,Wj) of edges contains at most Dw blue edges – the edges of the
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tree T ′. Since the trees in T cause edge-congestion at most η, at most Dwη trees of T may

contain blue edges in EG′(Wj ,Wj). Therefore, for each of the remaining k
α − Dwη ≥ k

2α

trees Ti, path Qi must contain a red edge from {(xtj , x
t
j+1)}1≤t≤k. Therefore, the sum of

lengths of all paths of Q is at least Nk
4α , and so at least one path Qi ∈ Q must have length

at least N
4 . We conclude that some tree Ti ∈ T has diameter at least 1

4 ·
(

k
2Dαη

)D
.

Lastly, we extend our results to edge-independent trees. We use the same simple graph

G′ and the same tree T ′ as before, setting the congestion parameter η = 2. Assume that

we are given a collection T ′ = {T ′1, . . . , T
′
k/α
} of k/α edge-independent spanning trees of

G′ and let x ∈ V (G′) be their common root vertex. For each 1 ≤ i ≤ k/α, we denote

by Q′i the unique path that connects vertex x1
1 to vertex x1

N−D in tree T ′i , and we denote

Q′ = {Q′i | 1 ≤ i ≤ k/α}. Note that, for each 1 ≤ i ≤ k/α, the path Q′i is a sub-path of

the path obtained by concatenating the path Q′′i , connecting x1
1 to x in T ′i , with the path

Q′′′i , connecting x1
N−D to x in T ′i . Since the trees in T ′ are edge-independent, the paths in

{Q′′i }1≤i≤k/α are edge-disjoint and so are the paths in {Q′′′i }1≤i≤k/α. Therefore, the paths

of Q′ cause edge-congestion at most 2. The remainder of the proof is the same as before and

is omitted here.

4.6 Tree Packing for (k,D)-Connected Graphs: Proof of

Theorem 4.1.4

In this section we provide the proof of Theorem 4.1.4. Recall that we are given a (k,D)-

connected n-vertex graph G. Our goal is to design an efficient randomized algorithm that

computes a collection T = {T1, . . . , Tk} of k spanning trees of G, such that, for each 1 ≤

` ≤ k, the tree T` has diameter at most O(D log n), and with high probability each edge

of G appears in O(log n) trees of T . Note that we allow the graph G to have parallel

edges. However, we can assume w.l.o.g. that for every pair (u, v) of vertices of G, there

are at most k parallel edges (u, v); all remaining edges can be deleted without violating the
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(k,D)-connectivity property of G.

The main tool that we use in our proof is the following theorem and its corollary.

Theorem 4.6.1. There is an efficient algorithm, that, given a (k,D)-connected graph G, a

subset U ( V (G) of its vertices, and an additional vertex s ∈ V (G) \ U , computes a flow f

in G with the following properties:

• the endpoints of every flow-path lie in U ∪ {s};

• for each vertex u ∈ U , the total flow on all paths that originate or terminate at u is at

least k;

• the total amount of flow through any edge is at most 2; and

• each flow-path has length at most 2D.

Notice that a flow-path is allowed to contain vertices of U ∪ {s} as inner vertices. We defer

the proof of Theorem 4.6.1 to Section 4.6.1, after we complete the proof of Theorem 4.1.4

using it. We obtain the following useful corollary of the theorem.

Corollary 4.6.2. There is an efficient algorithm, that, given a (k,D)-connected graph G

and a subset S ⊆ V (G) of its vertices, computes a bi-partition (S′, S′′) of S, and a flow f

from vertices of S′′ to vertices of S′, such that the following hold:

• every vertex of S′′ sends at least k/2 flow units;

• every flow-path has length at most 2D;

• the total amount of flow through any edge is at most 3; and

• |S′| ≤ |S|2 + 1.
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Proof. Let s ∈ S be an arbitrary vertex, and set U = S \ {s}. We apply Theorem 4.6.1 to

graph G, vertex set U and the vertex s, to obtain a flow f . Recall that every vertex of U

sends or receives at least k flow units, and all flow-paths have length at most 2D. Let P ′

be the set of all paths in G on which a non-zero amount of flow is sent. Since the algorithm

in Theorem 4.6.1 is efficient, we are guaranteed that |P ′| ≤ nc for some constant c, where

n = |V (G)|. It will be convenient for us to ensure that for every path P ∈ P ′, f(P ) is an

integral multiple of 1/nc. In order to achieve this, for every flow-path P ∈ P ′, we round

f(P ) up to the next integral multiple of 1/nc. Note that this increases the total amount of

flow by at most 1, so the total amount of flow through any edge is at most 3.

We now compute a bi-partition (S′, S′′) of S, as follows. We start from an arbitrary partition

(S′, S′′). Consider any vertex v ∈ S. For convenience, we direct all flow-paths of P ′ for which

v serves as an endpoint away from v. Let q′(v) be the total amount of flow that originates

at v and terminates at vertices of S′, and define q′′(v) similarly for the total amount of flow

between v and S′′.

If v ∈ S′, but q′(v) > q′′(v), then we move v from S′ to S′′. Similarly, if v ∈ S′′, but q′′(v) >

q′(v), then we move v from S′′ to S′. Notice that in either case, the total amount of flow

between vertices of S′ and vertices of S′′ increases by at least 1/nc. We continue performing

these modifications, until for every vertex v ∈ S′, q′(v) ≤ q′′(v), and for every vertex v ∈ S′′,

q′′(v) ≤ q′(v). Since the total amount of flow between S′ and S′′ grows by at least 1/nc in

every iteration, the number of such iterations is bounded by O(|E(G)| · nc) = O(poly(n)).

Consider the partition (S′, S′′) of S obtained at the end of this algorithm. Assume w.l.o.g.

that |S′| ≤ |S′′|; otherwise we switch S′ and S′′. If the vertex s lies in S′′, then we move it

to S′. Notice that we are now guaranteed that for every vertex u ∈ S′′, q′(u) ≥ q′′(u), and

so at least k/2 flow units are sent between u and the vertices of S′. In order to obtain the

final flow f ′, we discard from f all flow-paths except those connecting the vertices of S′′ to

the vertices of S′, and we direct these flow paths towards the vertices of S′. It is easy to
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verify that |S′| ≤ |S|/2 + 1.

Our algorithm consists of two phases. In the first phase, we define a partition of the vertices

of G into layers L1, . . . , Lh, where h = O(log n). Additionally, for each 1 ≤ i ≤ h, we define

a flow fi in graph G between vertices of Li and vertices of L1 ∪ · · · ∪ Li−1. In the second

phase, we use the layers and the flows in order to construct the desired set of spanning trees.

Phase 1: partitioning into layers. We use a parameter h = Θ(log n), whose exact value

will be set later. We now define the layers Lh, . . . , L1 in this order, and the corresponding

flows fh, . . . , f1. In order to define the layer Lh, we let S = V (G), and we apply Corollary

4.6.2 to the graph G and the set S of its vertices, to obtain a partition (S′, S′′) of S, with

|S′| ≤ |S|/2 + 1, and the flow f between the vertices of S′′ and the vertices of S′, where

every vertex of S′′ sends at least k/2 units of flow, each flow-path has length at most 2D,

and the edge-congestion caused by f is at most 3. We then set Lh = S′′ and fh = f , and

continue to the next iteration.

Assume now that we have constructed Lh, . . . , Li, we now show how to construct Li−1. Let

S = V (G) \ (Lh ∪ · · · ∪ Li). We apply Corollary 4.6.2 to the graph G and the set S of its

vertices, to obtain a partition (S′, S′′) of S, with |S′| ≤ |S|/2 + 1, and the corresponding

flow f . We then set Li−1 = S′′, fi−1 = f , and continue to the next iteration. If we reach an

iteration where |S| ≤ 2, we arbitrarily designate one of the two vertices as s, and we let U

be a set of vertices containing the other vertex. We then use Theorem 4.6.1 in order to find

a flow of value at least k between the two vertices, such that the edge-congestion of the flow

is at most 2, and every flow-path has length at most 2D. We then add the vertex that lies in

U to the current layer, and the vertex s to the final layer L1. If we reach an iteration where

|S| = 1, then we add the vertex of S to the final layer L1 and terminate the algorithm. The

number h of layers is chosen to be exactly the number of iterations in this algorithm. Notice

that h ≤ 2 log n must hold. Observe also that, for all 1 < i ≤ h, flow fi originates at vertices
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of Li, terminates at vertices of L1 ∪ · · · ∪ Li−1, uses flow-paths of length at most 2D, and

causes edge-congestion at most 3.

Phase 2: constructing the trees. In order to construct the spanning trees T1, . . . , Tk,

we start with letting each tree contain all vertices of G and no edges. We then process

every vertex v ∈ V (G) one-by-one. Assume that v ∈ Li, for some 1 ≤ i ≤ h. Consider the

following experiment. Let Q(v) be the set of all flow-paths that carry non-zero flow in fi,

and connect v to vertices of L1 ∪ · · · ∪ Li−1. Let F (v) be the total amount of flow fi on all

paths P ∈ Q(v); recall that F (v) ≥ k/2 must hold. We choose a path P ∈ Q(v) at random,

where the probability to choose a path P is precisely fi(P )/F (v). We repeat this experiment

k times, obtaining paths P1(v), . . . , Pk(v). For each 1 ≤ j ≤ k, we add all edges of Pj(v) to

Tj . Consider the graphs T1, . . . , Tk at the end of this process. Notice that each such graph

Tj may not be a tree. We show first that the diameter of each such graph is bounded by

O(D log n).

Claim 4.6.3. For all 1 ≤ j ≤ k, diam(Tj) ≤ O(D log n).

Proof. Fix an index 1 ≤ j ≤ k. Let r be the unique vertex lying in L1. We prove that for

all 1 ≤ i ≤ h, for every vertex v ∈ Li, there is a path connecting v to r in Tj , of length at

most 2D(i− 1) by induction on i.

The base of the induction is when i = 1 and the claim is trivially true. Assume now that

the claim holds for layers L1, . . . , Li−1. Let v be any vertex in layer Li. Consider the path

Pj(v) that we have selected. Recall that this path has length at most 2D, and it connect v

to some vertex u ∈ L1 ∪ · · · ∪ Li−1. By the induction hypothesis, there is a path P in Tj of

length at most 2D(i− 2), that connects u to r. Since all edges of Pj(v) are added to Tj , the

path Pj(v) is contained in Tj . By concatenating path Pj(v) with path P , we obtain a path

connecting v to r, of length at most 2D(i− 1).

Lastly, we prove that with high probability, every edge of G belongs to O(log n) graphs
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T1, . . . , Tk.

Claim 4.6.4. With probability at least (1 − 1/ poly(n)), every edge of G lies in at most

O(log n) graphs T1, . . . , Tk.

The proof follows the standard analysis of the Randomized Rounding technique and is de-

layed to Section 4.6.2.

For each 1 ≤ j ≤ k, we can now let T ′j be a BFS tree of the graph Tj , rooted at the vertex

r. From Claim 4.6.3, each tree T ′j has diameter at most O(D log n), and from Claim 4.6.4,

the resulting set of trees cause edge-congestion O(log n).

4.6.1 Proof of Theorem 4.6.1

For every vertex u ∈ U , let P(u) be the set of all paths in graph G of length at most 2D, that

connect u to vertices of (U ∪ {s}) \ {u}. Notice that for a pair u, u′ ∈ U of distinct vertices,

each path connecting u to u′ belongs to both P(u) and P(u′). Let P∗ =
⋃
u∈U P(u). We

use the following linear program, that has no objective function; our goal will be to find a

feasible solution satisfying all constraints.

(LP-1)
∑
P∈P(u) f(P ) ≥ k ∀u ∈ U∑
P∈P∗:
e∈P

f(P ) ≤ 2 ∀e ∈ E(G)

f(P ) ≥ 0 ∀P ∈ P∗

Note that, if f is a feasible solution to (LP-1), then it satisfies all requirements of Theorem

4.6.1. The following claim provides an efficient algorithm for solving (LP-1); its proof uses

standard techniques and is deferred to Section 4.6.3.

Claim 4.6.5. There is an efficient algorithm that computes a feasible solution to (LP-1), if

such a solution exists.
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It now remains to prove that there is a feasible solution to (LP-1). We do so using the

following lemma, that proves a stronger claim, namely that there is an integral solution to

(LP-1).

Lemma 4.6.6. Let G be a (k,D)-connected graph, let U ( V (G) be any subset of its vertices,

and let s 6∈ U be any additional vertex. Then there exists a set P of paths in G, such that:

• each path P ∈ P connects a pair of distinct vertices in U ∪ {s};

• each node in U is the endpoint of at least k paths in P (but s may serve as an endpoint

on fewer paths);

• each path P ∈ P has length at most 2D; and

• each edge of G appears on at most two paths in P.

Notice that the lemma immediately implies that there is a feasible solution to (LP-1), as we

can simply send one unit of flow on each path of P . We now turn to prove Lemma 4.6.6.

Proof of Lemma 4.6.6. The proof relies on a theorem from [10], that needs the following

definitions.

Definition 17. (Canonical Spider) Let M be any collection of simple paths, such that

each path P ∈ M has a distinguished endpoint t(P ), and the other endpoint is denoted by

v(P ). We say that the paths in M form a canonical spider iff |M| > 1 and there is a vertex

v, such that for every path P ∈ M, v(P ) = v. Moreover, the only vertex that appears on

more than one path of M is v (see Figure 4.5). We refer to v as the head of the spider, and

the paths of M are called the legs of the spider.

Definition 18. (Canonical Cycle) Let M = {Q1, . . . , Qh} be any collection of simple

paths, where each path Qi has a distinguished endpoint t(Qi) that does not appear on any

other path of M, and the other endpoint is denoted by v(Qi). We say that paths of M form

a canonical cycle, iff:
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• h is an odd integer;

• for each 1 ≤ i ≤ h, there is a vertex v′(Qi) 6= v(Qi) on path Qi, such that v′(Qi) =

v(Qi−1) (here we use the convention that Q0 = Qh); and

• for each 1 ≤ i ≤ h, no vertex of Qi appears on any other path of M, except for v′(Qi)

that belongs to Qi−1 only and v(Qi) that belongs to Qi+1 only (see Figure 4.5).

Note that the definition of a canonical cycle here is slightly stronger than definition of a

canonical cycle in [10], since we additionally require that, for each 1 ≤ i ≤ h, the vertex

v′(Qi) 6= v(Qi).

Figure 4.5: A canonical spider (left) and a canonical cycle (right).

We use the following result of Chuzhoy and Khanna (Theorem 4 in [10]). We note that the

theorem appearing in [10] is slightly weaker since they used a weaker definition of a canonical

cycle, but their proof immediately implies the stronger result that we state below.

Theorem 4.6.7. There is an efficient algorithm, that, given any collection Q of paths, where

every path P ∈ Q has a distinguished endpoint t(P ) that does not appear on any other path

of Q, computes, for each path P ∈ Q, a prefix (i.e. a sub-path of P that contains t(P )) q(P ),
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such that, in the graph induced by {q(P ) | P ∈ Q}, the prefixes appearing in each connected

component either form a canonical spider, a canonical cycle, or the connected component

contains exactly one prefix q(P ), where q(P ) = P for some P ∈ Q.

Recall that we are given a (k,D)-connected graph G, together with a subset U ( V (G) of

its vertices, that we call terminals, and an additional vertex s 6∈ U . From the definition of

(k,D)-connectivity, we are guaranteed that every vertex u ∈ U , there is a set R(u) of k edge-

disjoint simple paths in G, of length at most D each, connecting u to s. LetR =
⋃
u∈U R(u).

Intuitively, we would like to apply Theorem 4.6.7 to the set R of paths, where for each vertex

u ∈ U , and for each path R ∈ R(u), the distinguished endpoint t(R) is u. The idea is then

to use the resulting canonical cycle and canonical spider structures in order to connect the

vertices of U to each other and to s via short paths that are disjoint in their edges, thus

constructing the collection P of paths. For example, if a set M of prefixes of the paths in

R form a canonical spider, we can partition the legs of the spider into pairs, and each pair

then defines a path connecting two vertices of U to each other, which is then added to P .

There are two problems with this approach. The first problem is that Theorem 4.6.7 requires

that the distinguished endpoints t(P ) of the paths P ∈ R are distinct from each other, and

moreover that t(P ) does not lie on any other path of R. This difficulty is easy to overcome

by making k copies of every terminal u ∈ U and then modifying the paths in R(u) so that

each of them starts from a different copy. The second difficulty is that it is possible that

some resulting setM of prefixes that forms a canonical spider consists entirely of paths that

belong to a single set R(u), and so the spider cannot be used to connect distinct vertices

of U to each other. The reason that this may happen is that the paths in R(u) are only

guaranteed to be edge-disjoint, and so they may share vertices. If, in contrast, they were

internally vertex-disjoint, then such a problem would not arise. In order to overcome these

difficulties, we slightly modify the graph G, first by replacing it with its line graph, so that

any set of edge-disjoint paths in G corresponds to a set of internally node-disjoint paths in

the line graph, and then creating k copies of each terminal u ∈ U . We now describe the
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construction of the modified graph H, in two steps.

In the first step, we construct the line graph L of G, as follows: the vertex set V (L) contains

a vertex ve for each edge e ∈ E(G). Given a pair ve, ve′ of vertices of L, we connect them

with an edge iff e and e′ share an endpoint in G.

Let H be the graph obtained from graph L by adding, for each terminal u ∈ U , a collection

{u1, . . . , uk} of k vertices, that we call the copies of u. For each such new vertex ui, and for

every edge e that is incident to u in G, we add the edge (ui, ve) to the graph. Additionally,

we add the vertex s to the graph, and connect it to every vertex ve where e is an edge

incident to s in G.

Recall that we have defined, for every vertex u ∈ U , a collectionR(u) of k edge-disjoint simple

paths in G of length at most D each, connecting u to s. Denote R(u) = {R1(u), . . . , Rk(u)}.

We transform the setR(u) of paths into a setR′(u) of k paths in graph H, that are internally

vertex-disjoint, and each path connects a distinct copy of u to s. In order to do so, fix some

1 ≤ i ≤ k, and consider the path Ri(u). Let ei1, e
i
2, . . . , e

i
r be the sequence of edges on the

path Ri(u), with ei1 incident to u and eir incident to s. Consider the following sequence of

vertices in graph H: (ui, vei1
, vei2

, . . . , veir
, s). It is easy to verify that this vertex sequence

defines a path in graph H, that we denote by R′i(u). Let R′(u) =
{
R′i(u) | 1 ≤ i ≤ k

}
be

the resulting set of paths. Since the paths in R(u) are edge-disjoint, it is immediate to verify

that the paths in R′(u) are internally node-disjoint; in fact the only vertex that these paths

share is the vertex s. The number of inner vertices on each such path is at most D. For

each path R′i(u), we let its distinguished endpoint t(R′i(u)) be the vertex ui. Lastly, we let

Q =
⋃
u∈U R′(u). Observe that for every path R ∈ Q, the distinguished endpoint t(R) does

not lie on any other paths of Q.

We apply Theorem 4.6.7 to the resulting set Q of paths and obtain, for each path P ∈ Q,

a prefix q(P ). Let Ĥ be the subgraph of H that is induced by all edges and vertices that

appear on the paths in {q(P ) | P ∈ Q}. Let C be the set of all connected components of
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Ĥ. For every component C ∈ C, we denote by Q(C) ⊆ Q the set of paths whose prefixes

are contained in C, and we denote by Q̃(C) = {q(P ) | P ∈ Q(C)} the corresponding set of

prefixes, so C =
⋃
P ′∈Q̃(C)

P ′.

Next, for every component C ∈ C, we define a collection P(C) of paths in the original graph

G, with the following properties:

P1. an edge of G may lie on at most two paths in P(C);

P2. the paths in P(C) only contain edges e ∈ E(G) with ve ∈ V (C);

P3. for every terminal u ∈ U , the number of paths of P(C) for which u serves as an

endpoint is at least as large as the number of paths of R′(u) that lie in Q(C); and

P4. every path in P(C) has length at most 2D;

Assume first that we have computed, for every component C ∈ C, a set P(C) of paths in

graph G with the above properties. We then set P =
⋃
C∈C P(C). It is easy to verify that

set P has all required properties. Indeed, since the components of C are disjoint in their

vertices, Properties P1 and P2 ensure that every edge of G belongs to at most two paths of

P . Since, for every terminal u ∈ U , |R′(u)| = k, Property P3 ensures that u serves as an

endpoint of at least k paths in P . Lastly, Property P4 ensures that the length of every path

in P is at most 2D.

From now on we fix a component C ∈ C. It is now sufficient to show an efficient algorithm

for constructing the set P(C) of paths in graph G with Properties P1—P4. Recall that

Theorem 4.6.7 guarantees that the prefixes in Q̃(C) either form a canonical spider, or they

form a canonical cycle, or Q̃(C) consists of a single path q(P ) = P for some path P ∈ Q.

We consider each of these different cases in turn; for the case of canonical spider we need to

consider two sub-cases, depending on whether the head of the spider is s or not.
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Case 1: This case happens if Q̃(C) contains a single path, or if the paths of Q̃(C) form

a canonical spider, whose head is s. In either case, from the construction of the paths

in Q, it is easy to verify that for every path P ∈ Q(C), the prefix q(P ) is the path P

itself. For each path P ∈ Q̃(C), we define a path P ′ in graph G, as follows. Assume

that P = (ui, ve1 , ve2 , . . . , ver , s). We then let P ′ be a path in graph G, that starts at the

terminal u, traverses the edges e1, . . . , er in this order, and terminates at s. Let P(C) ={
P ′ | P ∈ Q̃(C)

}
. Since the paths in Q̃(C) are vertex-disjoint except for sharing the vertex

s, the paths in P(C) are all edge-disjoint. It is easy to verify that Properties P1—P4 hold

for P(C).

Case 2: This case happens if the paths in Q̃(C) form a canonical spider, whose head is

not s. Note that, from the definition of the paths in Q, the head of the spider must be

some vertex ve∗ with e∗ ∈ E(G). We denote e∗ = (x, y). Note that every path P ∈ Q(C)

contains the vertex ve∗ . Therefore, each such path must belong to a different set R′(u), and

no two paths in Q(C) may originate from two copies of the same terminal. For every path

P ∈ Q̃(C), we define a new path P ′ in graph G, as follows. Assume that the sequence of

vertices on P is (ui, ve1 , ve2 , . . . , ver , ve∗), then we let path P ′ start at the terminal u, and

then traverse the edges e1, e2, . . . , er in this order. Note that path P ′ has to terminate at

a vertex that serves as an endpoint of e∗. We define two sets of paths: set Sx contains all

paths P ′ for P ∈ Q̃(C) that terminate at x, and set Sy is defined similarly for y. Therefore,

|Sx| + |Sy| = |Q̃(C)|. From the above discussion, every path in Sx ∪ Sy originates at a

distinct terminal.

Assume first that |Sx| > 1 and |Sy| > 1. Consider the set Sx of paths. We construct a set

Πx of pairs of paths from Sx as follows. If |Sx| is even, then we simply partition all paths

in Sx into |Sx|/2 disjoint pairs. Otherwise, if |Sx| is odd, then we construct (|Sx| + 1)/2

pairs, such that every path of Sx belongs to exactly one pair in Πx, except for one arbitrary

path that belongs to two pairs. Consider now any pair (P ′1, P
′
2) of paths in Πx. As observed
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before, the two paths must originate at distinct terminals. We construct a new path by

concatenating P ′1 with P ′2, and add this path to P(C). We process the paths of Sy similarly.

Notice that every prefix in Q̃(C) is now a sub-path of either one or two paths in P(C). Since

the paths in Q̃(C) are internally vertex disjoint, and since the edge e∗ is not included in any

of the paths in Sx ∪ Sy, every edge of G may belong to at most two paths of P(C). It is

immediate to verify that Properties P1—P4 hold in P(C).

Assume now that |Sx| = 1 or |Sy| = 1 (or both). We assume w.l.o.g. that |Sy| = 1. We

construct the set Πx of pairs of paths in Sx exactly as before (if |Sx| = 1 then Πx = ∅). For

every pair (P ′1, P
′
2) of paths in Πx, we construct a new path that is added to P(C) exactly

as before. Additionally, we choose an arbitrary path P ′i ∈ Sx that participates in at most

one pair in Πx (notice that such a path has to exist). Let P ′ be the unique path in Sy.

As observed before, the two paths must originate from distinct terminals. We construct a

new path in graph G, by concatenating the path P ′i , the edge e∗, and the path P ′. We add

the resulting path to P(C). It is easy to verify that the resulting set P(C) of paths satisfy

Properties P1—P4.

Case 3: This case happens if the paths in Q̃(C) form a canonical cycle. We denote the

paths of Q̃(C) by Q1, . . . , Qh in the order of their appearance on the cycle. We define the fol-

lowing set of pairs of these paths: Π = {(Q1, Q2), (Q3, Q4), . . . , (Qh−2, Qh−1), (Qh−1, Qh)}

(recall that h is an odd integer). Notice that every path appears in exactly one pair of Π,

except for the path Qh−1, that appears in two pairs.

Consider now some pair (Qi, Qi+1) ∈ Π. We construct a two-legged spider Si, that consists

of the path Qi, and the sub-path of Qi+1, from t(Qi+1) to v′(Qi+1) = v(Qi). In the resulting

collection S1, S3, . . . , Sh−2, Sh−1 of spiders, every pair of spiders are mutually vertex-disjoint,

except for the vertices of Qh−1 that may appear in two spiders. We process each one of these

spiders as in Case 2, to obtain a collection P(C) of (h + 1)/2 paths in graph G that cause

edge-congestion at most 2, and that satisfy Properties P1—P4.
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4.6.2 Proof of Claim 4.6.4

Let f be the flow obtained by taking the union of the flows f1, . . . , fh. It is easy to verify

that flow f causes edge-congestion at most 4h ≤ 8 log n. For every edge e ∈ E(G), we

say that a bad event B(e) happens if e lies in more than 120 log n graphs T1, . . . , Tk. It is

enough to show that for each edge e ∈ E(G), the probability of the event B(e) is bounded

by 1/n6; from the union bound over all edges e, it then follows that with probability at least

(1−1/n3), the graphs in {T1, . . . , Tk} cause edge-congestion at most 120 log n (we have used

the fact that for every pair (u, v) of vertices of G, there are at most k parallel edges (u, v)

in G, and that k ≤ n).

For the remainder of the proof, we fix an edge e ∈ E(G), and we prove that the probability

of event B(e) is at most 1/n6.

For every vertex v ∈ V (G), and index 1 ≤ j ≤ k, we let X(v, j) be a random variable whose

value is 1 if the path Pj(v) contains the edge e, and it is 0 otherwise. Notice that, if we

denote S =
∑
v∈V (G)

∑k
j=1X(v, j), then the number of graphs T1, . . . , Tk to which edge e

belongs is exactly S. Moreover, the random variables in {X(v, j) | v ∈ V (G), 1 ≤ j ≤ k} are

independent from each other. Consider some vertex v ∈ V (G), and let F (v, e) be the total

amount of flow that f sends on all flow-paths that originate from v and contain the edge e.

Notice that for each 1 ≤ j ≤ k, the probability that X(v, j) = 1 is F (v, e)/F (v). There-

fore, the expectation of
∑

1≤j≤kX(v, j) = k · F (v, e)/F (v) ≤ 2F (v, e), since F (v) ≥ k/2.

Altogether, the expectation of S =
∑
v∈V (G)

∑
1≤j≤kX(v, j) is at most 2

∑
v∈V (G) F (v, e),

which is precisely the total amount of flow traversing e in f times 2, and is bounded by

8h ≤ 16 log n. To summarize, we are given a collection {X(v, j) | v ∈ V (G), 1 ≤ j ≤ k} of

independent 0/1 random variables. The expectation of their sum is at most 16 log n. We

need to bound the probability that S > 120 log n.

We use the following standard Chernoff bound (see e.g. [16]).

Theorem 4.6.8. Let {Y1, . . . , Yr} be a collection of independent random variables taking
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values in [0, 1], and let Y =
∑
i Yi. Assume that E [Y ] ≤ µ for some value µ. Then for all

0 < ε < 1:

Pr [Y > (1 + ε)µ] ≤ e−ε
2µ/3.

Using the above bound with ε = 1/2 and µ = 80 log n, we get that the probability that

S > 120 log n is bounded by e−80 log n/12 < 1/n6.

4.6.3 Proof of Claim 4.6.5

We rename (LP-1) by (LP-Primal-1). Consider the following LP.

(LP-Primal-2) maximize 0

s.t. ∑
P∈P(u) f(P ) ≥ k ∀u ∈ U∑
P∈P∗:
e∈P

f(P ) ≤ 2 ∀e ∈ E(G)

f(P ) ≥ 0 ∀P ∈ P∗

It is clear that any feasible solution to (LP-Primal-1) is also a feasible solution to (LP-

Primal-2), and vice versa. It is therefore sufficient to show that (LP-Primal-2) can be solved

efficiently, if it has a feasible solution. Below is the Dual LP for (LP-Primal-2).

(LP-Dual-1) minimize 2 ·
∑
e∈E(G) `e − k ·

∑
u∈U zu

s.t. ∑
e∈P `e ≥ zu + zu′ ∀u, u′ ∈ U : u 6= u′,∀P ∈ P(u) ∩ P(u′)∑

e∈P `e ≥ zu ∀u ∈ U,∀P ∈ P(u) ∩ P(s)

zu ≥ 0 ∀u ∈ U

`e ≥ 0 ∀e ∈ E(G)
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Recall that the number of vertices in G is n. Note that for (LP-Primal-2), the number of

variables is exponential in n and the number of constraints is polynomial in n, while for

(LP-Dual-1), the number of variables is polynomial in n and the number of constraints can

be exponential in n. From the strong duality, the optimal objective value of (LP-Dual-1) is

0 if (LP-Primal-2) is feasible. We make a change to (LP-Dual-1) by replacing the objective

function with a constraint that 2 ·
∑
e∈E(G) `e − k ·

∑
u∈U zu = 0 to get the following LP.

(LP-Dual-2)

2 ·
∑
e∈E(G) `e − k ·

∑
u∈U zu = 0∑

e∈P `e ≥ zu + zu′ ∀u, u′ ∈ U : u 6= u′, ∀P ∈ P(u) ∩ P(u′)∑
e∈P `e ≥ zu ∀u ∈ U,∀P ∈ P(u) ∩ P(s)

zu ≥ 0 ∀u ∈ U

`e ≥ 0 ∀e ∈ E(G)

Claim 4.6.9. There exists an efficient separation oracle to (LP-Dual-2).

We provide the proof of Claim 4.6.9 below, after we show that there is an efficient algorithm

that solves (LP-Primal-2) using it. We run the Ellipsoid Algorithm on (LP-Dual-2) using

the separation oracle, and let C be the set of all violated constraints that the oracle returns.

Note that, since the running time of the Ellipsoid Algorithm is polynomial in the number of

variables, when we run the Ellipsoid Algorithm on (LP-Dual-2), the size of C, which is the

number of violated constraints returned by the separation oracle, is at most polynomial in n.

Let (LP-Dual-3) be a linear program whose set of constraints is precisely C. Note that the

linear program (LP-Dual-3) is feasible iff the linear program (LP-Dual-2) is feasible. This is

because, if we run the Ellipsoid Algorithm on (LP-Dual-3), then the separation oracle will

return the same set of constraints and the algorithm will return the same solution or report

infeasible (if it reports infeasible on (LP-Dual-2)). We now compute the dual of (LP-Dual-3)
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and obtain a linear program that we denote by (LP-Primal-3). It is not hard to see that (LP-

Primal-3) contains a subset (whose size is polynomial in n) of variables of (LP-Primal-2),

and that for every constraint of (LP-Primal-2), there is a constraint in (LP-Primal-3), with

the variables which are not in that subset omitted. From the strong duality, (LP-Primal-3)

is feasible if (LP-Primal-2) is feasible. We can now solve (LP-Primal-3) efficiently, and the

resulting solution is a feasible solution to (LP-Primal-2), as this is the same as setting all

variables that do not correspond to the constraints in C to 0. This finishes the proof of

Claim 4.6.5.

Proof of Claim 4.6.9: We now show that there exists a separation oracle to (LP-Dual-2).

Given a suggested solution to (LP-Dual-2), the separation oracle needs to check if it satisfies

all the constraints of (LP-Dual-2), and if not, return a violated constraint.

Let {zu}u∈U , {`e}e∈E(G) be the suggested solution in an iteration. It is immediate to check

whether the constraints zu ≥ 0 ∀u ∈ U , the constraints `e ≥ 0 ∀e ∈ E(G) and the constraint

2 ·
∑
e∈E(G) `e− k ·

∑
u∈U zu = 0 are satisfied. We will now show an efficient algorithm that

checks whether the suggested solution satisfies the constraints
∑
e∈P `e ≥ zu + zu′ ∀u, u′ ∈

U : u 6= u′,∀P ∈ P(u)∩P(u′) and the constraints
∑
e∈P `e ≥ zu ∀u ∈ U,∀P ∈ P(u)∩P(s)

efficiently.

We assign each edge e ∈ E(G) length `e. For any path P of G, we denote `(P ) =∑
e∈P `e. Note that U ⊆ V (G). We show an algorithm, that, given the suggested solu-

tion {zu}u∈U , {`e}e∈E(G), either claims (correctly) that all constraints
∑
e∈P `e ≥ zu +

zu′ ∀u, u′ ∈ U : u 6= u′,∀P ∈ P(u) ∩ P(u′) and all constraints
∑
e∈P `e ≥ zu ∀u ∈

U,∀P ∈ P(u) ∩ P(s) are satisfied, or returns a pair u, u′ of distinct vertices of U and a

path P̂u,u′ ∈ P(u) ∩ P(u′), such that `(P̂u,u′) < zu + zu′ (which means that the constraint∑
e∈P̂u,u′

`e ≥ zu + zu′ is not satisfied by the suggested solution), or returns a vertex u ∈ U

and a path P̂u,s ∈ P(u) ∩ P(s), such that `(P̂u,s) < zu (which means that the constraint∑
e∈P̂u,s

`e ≥ zu is not satisfied by the suggested solution).
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Claim 4.6.10. There is an efficient algorithm, that, given any pair v, v′ of vertices of G,

computes the shortest path (with respect to edge lengths {`e}e∈E(G)) connecting v to v′ that

contains at most 2D edges.

We will prove Claim 4.6.10 below, after we complete the proof of Claim 4.6.9 using it.

For every pair u, u′ ∈ U of distinct vertices of U , let P̂u,u′ be the path returned by the

algorithm in Claim 4.6.10, we check if `(P̂u,u′) < zu + zu′ . For every vertex u ∈ U , let

P̂u,s be the path returned by the algorithm in Claim 4.6.10, we check if `(P̂u,s) < zu. If

there exists a pair u, u′ ∈ U of distinct vertices of U such that `(P̂u,u′) < zu + zu′ , by

definition,
∑
e∈P̂u,u′

`e = `(P̂u,u′) < zu + zu′ . In this case, we claim that the constraint∑
e∈P̂u,u′

`e ≥ zu + zu′ is violated, and return this constraint as a violated constraint. If

there does not exist a pair u, u′ ∈ U of distinct vertices of U such that `(P̂u,u′) < zu+zu′ , then

from Claim 4.6.10, for any pair u, u′ of distinct vertices of U , for any path P ∈ P(u)∩P(u′),

we have
∑
e∈P `e ≥ zu + zu′ . In this case, we know that all constraints

∑
e∈P `e ≥ zu +

zu′ ∀u, u′ ∈ U : u 6= u′, ∀P ∈ P(u) ∩ P(u′) are satisfied, so we then proceed to check if

there exists a vertex u ∈ U such that `(P̂u,s) < zu. If there does exists such a vertex

u, by definition,
∑
e∈P̂u,s

`e = `(P̂u,s) < zu. In this case, we claim that the constraint∑
e∈P̂u,s

`e ≥ zu is violated, and return this constraint as a violated constraint. If there

does not exist a vertex u ∈ U such that `(P̂u,s) < zu, then from Claim 4.6.10, for vertex

u ∈ U , for any path P ∈ P(u) ∩ P(s), we have
∑
e∈P `e ≥ zu. We then claim that all

constraints
∑
e∈P `e ≥ zu + zu′ ∀u, u′ ∈ U : u 6= u′,∀P ∈ P(u) ∩ P(u′) and all constraints∑

e∈P `e ≥ zu ∀u ∈ U,∀P ∈ P(u) ∩ P(s) are satisfied.

This finishes the description of the separation oracle to (LP-Dual-2). Since it is clear that the

running time of the separation oracle is polynomial in n, this finishes the proof of Claim 4.6.9.

Proof of Claim 4.6.10: The algorithm employs dynamic programming. It is convenient to

view the algorithm as constructing 2D + 1 dynamic programming tables {Πi}0≤i≤2D. For

each 0 ≤ i ≤ 2D and each pair v, v′ of vertices of G, the table Πi contains an entry Πi(v, v
′),
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that stores the shortest path P iv,v′ (with respect to edge lengths {`e}e∈E(G)) among all paths

in G that connects v to v′ and contains at most i edges, together with its length `(P iv,v′).

So each entry Πi(v, v
′) has the form Πi(v, v

′) = (P iv,v′ , L
i
v,v′) where Liv,v′ = `(P iv,v′). When

such a path does not exist, we set P iv,v′ to be a default value ⊥ and set Liv,v′ = +∞.

We now describe how to compute the entries of dynamic programming tables. First we

initialize the entries in Π0. For each vertex v, we set P 0
v,v to be the path that contains a

single node v, and we set L0
v,v = 0. For each pair v, v′ of distinct vertices of G, we set

P 0
v,v =⊥ and L0

v,v′ = +∞. For each 1 ≤ i ≤ 2D, the table Πi is computed based on G and

the table Πi−1 as follows. For each vertex v ∈ V (G), we denote N(v) ⊆ V (G) to be the set

of neighbors of v in G. For each pair v, v′ ∈ V (G), we set

Liv,v′ = min{Li−1
v,v′ , min

w∈N(v)
{`(v,w) + Li−1

w,v′}}.

For P iv,v′ , we set it to be ⊥ if Liv,v′ = +∞; we set it to be the same path as P i−1
v,v′ if

Li−1
v,v′ ≤ minw∈N(v){`(v,w) + Li−1

w,v′}; and if w′ = arg min{Li−1
v,v′ ,minw∈N(v){`(v,w) + Li−1

w,v′}}

and `(v,w′) + Li−1
w′,v′ < Li−1

v,v′ , we set it to be the concatenation of the edge (v, w′) and the

path P i−1(w′, v′).

Finally, given a pair v, v′ of vertices of G, we return the path P 2D
v,v′ if P 2D

v,v′ 6=⊥, and we claim

that such a path does not exist if P 2D
v,v′ =⊥.
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