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ABSTRACT 

Children’s math achievement is related to various factors, including foundational math 

skills, math attitudes, and parent math attitudes and behaviors. In this dissertation, I focus on 

children’s early math achievement and aim to improve our understanding of the math 

achievement-attitude relation, and the role of parent math attitudes and parent talk.  

In Study 1, findings suggest that by 1st grade, math anxiety negatively predicts math 

achievement, over and above foundational math skills, and is particularly detrimental for 

performance on math tasks at the cusp of children’s math skills. Thus, math anxiety may be 

particularly harmful in school settings, where children are continuously exposed to new math 

skills at the cusp of their learning levels. In Study 2, I focus on young children from low SES 

backgrounds, to improve our understanding of factors that might contribute to their low math 

achievement. Findings suggest that at the start of formal schooling, math achievement plays a 

role in the development of positive or negative math attitudes regardless of SES backgrounds. 

Further, parent math expectancy-value is an important predictor of child math achievement, 

regardless of SES backgrounds. In Study 3, using inverse probability of treatment weighting 

(IPTW), I found that parent number talk and other talk to toddlers causally affected math 

achievement in the preschool and elementary school years.  

Taken together, findings from this dissertation suggest that interventions focused on 

increasing parent math expectancy-value and parent talk, hold promise for increasing children’s 

math achievement and potentially for narrowing SES-related math achievement gaps.  
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INTRODUCTION 

 Early math skills are essential for the development of later math skills (Geary et al., 

2018). Further, math skills are important for later life outcomes, such as health and income 

(Murnane et al., 1995; Rose & Betts, 2004). Children from lower SES backgrounds have lower 

math achievement than their peers from higher SES backgrounds, and this SES math 

achievement gap has widened by about 25% in recent years (Reardon 2011, 2021). Therefore, it 

is important to examine math achievement and factors that may influence it in children from 

diverse SES backgrounds. Understanding what factors may influence early math achievement in 

children from diverse SES backgrounds, is essential to improving our knowledge of how to 

ensure young children’s success in math. In this dissertation, I focus on factors that have been 

shown to be important predictors of young children’s math achievement: foundational math 

skills, self-relevant math attitudes (i.e., attitudes about one’s own relationship with math), key 

socializers’ math attitudes, and key socializers’ behaviors (Berkowitz et al., 2015; Levine & 

Pantoja, 2021; Levine et al., 2010; Schaeffer et al., 2018).  

Levine and Pantoja (2021) proposed the Early Math Achievement-Attitude (EMAA) 

model (see Figure 1) to explain links between child math achievement, child math attitudes, key 

socializers’ behaviors, and key socializers’ math attitudes. The EMAA model is based on a 

comprehensive review of the literature and raises important questions that should be addressed 

by further research. For example, how impactful are math attitudes at young ages? What do 

relations that have been examined in families from higher SES backgrounds look like in children 

from diverse SES backgrounds? Do parent behaviors have a causal effect on their children? With 

three studies, this dissertation aims to improve our understanding of the links described in the 
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EMAA model. In the following sections, I elaborate on the specific components and links 

described in the EMAA model, that this dissertation examines.  

 

Figure 1. This figure was adapted from Levine and Pantoja (2021) 1. The Early Math 

Achievement-Attitude (EMAA) model focuses on the emergence of the relation between math 

attitudes and math achievement and includes the role of key socializers (e.g., parents). For 

bidirectional relations, solid lines represent the earlier emerging relation and dotted lines 

represent the later emerging relation. I have made three small modifications to better show how 

this dissertation expands on the EMAA model: 1) I included a hollow arrow from key 

socializers’ math attitudes to child math achievement, as this is a relation I examine; and 2) I 

expand the box for child math achievement and include a link from foundational math skills to 

math achievement, as this is a relation I examine. Blue arrows and boxes indicate components 

and links that this dissertation examines. 

 

Self-Relevant Math Attitudes Have Long-Term Impacts on Math Achievement  

 Math attitudes generally fall under two categories: general math attitudes (i.e., general 

attitudes about math ability, such as stereotypes and motivational frameworks) and self-relevant 

math attitudes (i.e., attitudes about one’s own relationship with math, such as math anxiety and 

math self-concept). In this dissertation, I focus on self-relevant math attitudes, as prior research 

suggests that self-relevant math attitudes become more negative over time (Hembree, 1990; 

Jacobs et al., 2002; Wigfield et al., 1997), and can significantly undermine math achievement in 

adolescents and adults (Beilock et al., 2017; Foley et al., 2017; Hembree, 1990; Wigfield & 

 
1 This figure is from an Accepted Manuscript of an article published by Elsevier in Developmental Review on Oct 

26, 2021, available online: https://doi.org/10.1016/j.dr.2021.100997 

https://doi.org/10.1016/j.dr.2021.100997
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Eccles, 2000). Additionally, in the long-term, positive or negative self-relevant math attitudes 

can influence career choices (Wigfield & Eccles, 2020). Recently, research has begun to show 

that math anxiety and math self-concept negatively predict math achievement in young children 

as early as 1st grade (Dapp & Roebers, 2018; Dowker et al., 2019; Gunderson et al., 2018; 

Jameson, 2013; Ramirez et al., 2013, 2016; Vukovic et al., 2013; Valeski & Stipek, 2001; Wu et 

al., 2012, 2014). However, studies with young children typically examine cross-sectional data. In 

sum, we have a good understanding of how impactful self-relevant math attitudes are for 

adolescents and adults, yet we know little about how impactful self-relevant math attitudes might 

be for young children.  

In Study 1, I focus on how impactful a self-relevant math attitude—math anxiety—is for 

the math achievement of young children from diverse SES backgrounds up to two years later. I 

control for a foundational math skill—number line estimation—that has been shown to be 

important for later math achievement, such as math problem solving and arithmetic (Booth & 

Siegler, 2008; Gunderson et al., 2012; Lyons et al., 2014; Schneider et al., 2018; Siegler & 

Booth, 2004). By integrating these two lines of research (the math anxiety literature and the 

number line estimation literature), I provide a more complete picture of child math development.  

Further, in Study 1, I examine how math task difficulty can influence how impactful math 

anxiety might be for young children. Prior research has shown that math anxiety is more 

predictive of complex math tasks, such as complex calculations in adults and children, and less 

predictive of simpler math tasks, such as arithmetic problems that can be solved by memory 

retrieval in adults and geometric reasoning in children (Ashcraft & Faust, 1994; Faust et al., 

1996; Vukovic et al., 2013). However, the math tasks that have been examined have differed in 

multiple ways, making it difficult to determine whether differences in the math anxiety to math 
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performance relation were truly due to math task difficulty, or were instead due to the specific 

math skill assessed. In Study 1, I examine how the relation of math anxiety to math performance 

changes based on math task difficulty, by using the same math task and making it easier or more 

difficult for children. Thus, this study improves our understanding of the circumstances under 

which math anxiety might be most impactful for young children, by providing a more stringent 

test of how the relation of math anxiety to math performance differs based on math task 

difficulty. 

The Emergence of the Math Achievement-Attitude Relation 

After improving our understanding of how impactful a self-relevant math attitude might 

be for young children from diverse SES backgrounds in Study 1, I examine how this relation 

emerges in Study 2, focusing on children from low SES backgrounds. While much research 

suggests that the relation between self-relevant math attitudes and math achievement becomes 

bidirectional over time (Eccles & Wigfield, 2020; Namkung et al., 2019), it is important to 

understand how this relation emerges at the start of elementary school. One step toward 

understanding how the relation between self-relevant math attitudes and math achievement 

emerges, is to examine whether the relation is stronger from self-relevant math attitudes to math 

achievement, or from math achievement to self-relevant math attitudes in young children. This 

information can improve our understanding of how to break the vicious link between negative 

self-relevant math attitudes and low math achievement before this link becomes bidirectional and 

math achievement has been compromised over many years.  

Recent research suggests that in young children, math achievement might initially predict 

self-relevant math attitudes (Arens et al., 2016; Ching et al., 2020; Ganley & Lubienski, 2016; 

Helmke & van Aken, 1995; Supekar et al., 2015). These findings suggest that math achievement-



 5 

related experiences may play an important role not only in math learning, but also in the 

development of positive or negative self-relevant math attitudes, which as mentioned earlier, can 

have long-lasting impacts on future career choices. However, prior research has focused on one 

self-relevant math attitude at a time, making it difficult to determine whether apparent relations 

persist accounting for other math attitudes, and whether math achievement-attitude relations 

emerge together or over different time frames. By integrating two lines of research (the math 

anxiety literature and the math self-concept literature), I provide a more complete picture of how 

the link between self-relevant math attitudes and math achievement emerges in young children.  

The Role of Parent Math Attitudes 

In Study 2, I examine the role of key socializers’ math attitudes in predicting children’s 

math achievement and math attitudes. While key socializers include parents and teachers, in this 

dissertation I focus on parents, as during toddlerhood and at the start of formal schooling 

children have been around their parents for much longer than they have been around their 

teachers, with whom they typically don’t spend more than one school year. Additionally, 

evidence suggests that non-school factors, such as socioeconomic status are an important source 

of SES-related math achievement gaps, as these gaps increase during the summer, when children 

are not in school (Downey et al., 2004). I focus on parent math anxiety and math expectancy-

value, two parent math attitudes that predict child math achievement as early as 1st grade 

(Berkowitz et al., 2015; Fredricks & Eccles, 2002; Schaeffer et al., 2018; Wigfield et al., 1997). 

Parent math anxiety is a self-relevant math attitude for reasons described earlier. Parent math 

expectancy-value is a child-specific math attitude and refers to parents’ expectations of their 

child’s future math achievement and how valuable they think math is for their child’s future. 
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Situated Expectancy-Value Theory posits that parent math expectancy-value influences child 

math self-concept and math achievement (Eccles & Wigfield, 2020; Wigfield et al., 2006, 2015).  

These two lines of research (the parent math anxiety literature and the parent math 

expectancy-value literature) have not been well integrated, and studies that have examined the 

relation of these parent math attitudes to child math achievement have typically focused on 

adolescents or samples from higher SES backgrounds. Thus, it is difficult to determine whether 

apparent relations persist after accounting for other factors, and whether they are present in 

young children. In Study 2, I take a more comprehensive approach to understanding the role of 

parent math attitudes, by examining both the role of parent math anxiety and math expectancy-

value on young children’s math achievement and self-relevant math attitudes, while accounting 

for prior child math achievement and self-relevant math attitudes.  

The mechanism through which these parent math attitudes predict child math 

achievement is likely parent behaviors. Parent math anxiety predicts the quantity and quality of 

number talk they provide to their toddlers and preschoolers (Berkowitz et al., 2021; del Río et al., 

2017). In turn, parent behaviors, such as the quantity and quality of their number talk, predict 

child math achievement (Gunderson et al., 2011; Levine et al., 2010). For this reason, Study 3 

examines the role of parent behaviors on child math achievement. 

The Role of Parent Behaviors 

After improving our understanding of the role of parent math attitudes in Study 2, in 

Study 3, I examine the role of parent behaviors, which have been shown to be predicted by 

parent math attitudes. Parent number talk has been shown to predict child math achievement 

across various stages of child math development, with studies typically focusing on the preschool 

and elementary school years (Casey et al., 2018; Elliott et al., 2017; Glenn et al., 2018; 
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Gunderson & Levine, 2011; Levine et al., 2010; Ramani et al., 2015; Susperreguy & Davis-

Kean, 2016; Thippana et al., 2020). Further, providing families with math tools that likely 

increase parent number talk improve child math skills (Berkowitz et al., 2015; Eason et al., 2018; 

Gibson et al., 2021), although, the effects of short-term interventions often fadeout (Bailey et al., 

2016; Espinas & Fuchs, 2022). Thus, there is good reason to expect that parent number talk 

would affect child math achievement. There is also good reason to expect that other types of 

parent language input, such as overall talk, would affect child math achievement, as parent 

syntax and vocabulary input affect child syntax and vocabulary skills (Silvey et al., 2021), both 

of which are linked to child math skills (Espinas & Fuchs, 2022). Therefore, Study 3 examines 

both the effect of parent number talk and the effect of parent other talk (i.e., overall talk that 

excludes number talk) on child math achievement.  

In Study 3, I examine the causal effect of naturalistic parent number talk and parent other 

talk, provided when toddlers were 14 and 38 months old, on cardinal number knowledge at 46 

months and calculation skills in 3rd grade. Cardinal number knowledge is a foundational math 

skill necessary for more complex math skills (Geary et al., 2018), and calculation is an important 

numerical skill that predicts children’s future use of advanced math strategies (Throndsen et al., 

2011). I use inverse probability of treatment weighting (IPTW), a statistical approach that allows 

us to treat observational data of parent talk provided at different time points as if they came from 

a randomized experiment. This statistical approach improves our understanding of the causal 

effects of naturalistic parent talk on child math achievement and the optimal timing of parent talk 

for math skills assessed years later.  

IPTW has been used to examine causal effects of time-varying parent language input on 

child language outcomes (Silvey et al., 2021). While parent vocabulary input both earlier at 14 
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months and later at 30 months were key for vocabulary outcomes in kindergarten, syntax input 

later was key for syntax outcomes. Thus, it is possible that the optimal timing of parent talk may 

differ for different types of parent talk (i.e., number talk or other talk) and different types of math 

skills (i.e., cardinal number knowledge at 46 months or calculation skills in 3rd grade).  

In addition, in Study 3, I examine what parent and child characteristics, such as 

household income and child gender, predict different types of parent talk (e.g., parent number 

talk and other talk provided at 14 months and 38 months). This information enhances our 

understanding of why children receive differing levels of parent talk. One factor that has been 

shown to be predictive of parent talk to their children, is family SES (Dailey & Bergelson, 2021; 

Dearing et al., in prep; Levine et al., 2010; Silvey et al., 2021). A meta-analysis showed that 

parent education and household income accounted for 12% and 14% of the variation in parent 

number talk (Dearing et al., in prep). Additionally, family SES may interact with parent math 

attitudes in predicting their behaviors. For example, Berkowitz et al. (2021) showed that parents 

with high math anxiety from higher SES backgrounds provide less number talk to their toddlers, 

but parents from lower SES backgrounds, provide infrequent number talk regardless of their 

math anxiety. Thus, it is essential to examine factors important for child math development in 

families from diverse SES backgrounds.  

Social Context 

Children from lower SES backgrounds perform lower in math compared to their peers 

from higher SES backgrounds, and this SES math achievement gap has widened in recent years, 

at least between cohorts assessed in 1970 and those assessed in 2000 (Reardon, 2011, 2021). A 

widening math achievement gap suggests that children’s math experiences and opportunities at 

home and in school have become more unequal in recent years (Reardon, 2011, 2021). In other 
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words, social contexts or settings, such as the school environment, may differ between children 

from lower and higher SES backgrounds.  

Much of the prior research that motivated the research questions examined in this 

dissertation focused on families from higher SES backgrounds and non-minority backgrounds, 

yet there is reason to expect different findings in families from lower SES backgrounds and/or 

minority backgrounds. For example, for adolescents from lower SES backgrounds and 

adolescents with lower math achievement, self-relevant math attitudes are less predictive of math 

achievement (OECD, 2013). Further, correlations between self-esteem and achievement are 

weaker in African American adolescent males compared to other groups (Osborne, 1995; 1997). 

Yet, we know little about these relations in young children from low SES backgrounds and/or 

minority backgrounds. Understanding whether these patterns of weaker relations between self-

relevant math attitudes and math achievement hold for children in early elementary school is 

important, because the math achievement-math attitude relation is likely emerging around then, 

and it may be easier to break the link at younger ages.  

Due to the importance of taking social contexts or settings into consideration, the studies 

in this dissertation focus on families from diverse racial, ethnic, and SES backgrounds, for whom 

the home and school environment may differ. In Study 1, most families reported annual 

household incomes of over $100,000, but about one third of families reported annual household 

incomes of less than $50,000. Most students were white, about one third were Hispanic, and 

about 10% were African American or Black. In Study 2, most families were from low SES 

backgrounds, with an average household income of $29,800, and about 85% of students were 

African American or Black. We used the same math achievement measure in Studies 1 and 2, 

and child math achievement was much lower in Study 2, compared to Study 1. In Study 3, 
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families were selected to be representative of the Chicago area in terms of income, race, and 

ethnicity. Average annual household income was about $62,000. In sum, across three studies, 

this dissertation represents families from diverse backgrounds. 

Study 2 will provide information on the strength of the relations between parent math 

attitudes, child self-relevant math attitudes and child math achievement in African American or 

Black children from low SES backgrounds. Children from Study 2 attended schools that 

predominantly served students with free or reduced-price lunch and classroom math achievement 

was low, which is important to point out, due to the big-fish-little-pond effect (i.e., equally 

achieving students have a lower self-concept when attending higher-performing schools than 

lower-performing schools; Marsh, 1987). It is important to consider that findings from Study 2 

may differ in studies where young children from low SES backgrounds attend schools where 

classroom math achievement or SES are higher on average, as social context (i.e., school 

experiences) may differ in important ways.  

Overview of The Current Research 

Together, Studies 1, 2, and 3 address important research questions raised by the EMAA 

model, improving our understanding of a) how impactful self-relevant math attitudes are at 

young ages, b) how relations between self-relevant math attitudes and math achievement emerge, 

c) the role of parent math attitudes and behaviors, and d) what these relations look like in 

families from diverse SES backgrounds.  

In Study 1, I examine the role of a self-relevant math attitude on 1st grade children’s math 

achievement through 3rd grade, controlling for a foundational math skill, thus integrating two 

lines of research (the math anxiety literature and the number line estimation literature). I also 

examine how the relation of math anxiety to math performance changes based on math task 
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difficulty. Thus, I aim to improve our understanding of how impactful self-relevant math 

attitudes are for young children and for math skills of varying difficulty.  

In Study 2, I examine the relation of self-relevant math attitudes to math achievement, 

and the relation of math achievement to self-relevant math attitudes in 1st grade children from 

low SES backgrounds. Thus, I aim to improve our understanding of how this relation emerges in 

young children. Further, I examine the role of parent math attitudes on child math achievement. 

This study integrates different lines of research (the literatures on math anxiety, math self-

concept, and parent math expectancy-value) to provide a more complete understanding of child 

math development for families from diverse backgrounds.  

In Study 3, I examine the causal effect of naturalistic parent number talk and parent other 

talk during two distinct stages of development (at 14 months and at 38 months) on cardinal 

number knowledge at 46 months and calculation skills in 3rd grade. By using IPTW, I aim to 

improve our understanding of the causal effect of naturalistic parent number talk and overall talk 

on child math achievement, and the optimal timing of parent talk. Further, in Study 3, I examine 

parent and child characteristics that are important predictors of parent talk, improving our 

understanding of why some children receive more parent talk than others.  

Together, the three studies in this dissertation aim to broaden our understanding of factors 

important for child math development in families from diverse backgrounds.  
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STUDY 1: CHILDREN’S MATH ANXIETY PREDICTS THEIR MATH 

ACHIEVEMENT OVER AND ABOVE A KEY FOUNDATIONAL MATH SKILL2 

The cognitive underpinnings of mathematics development have been extensively 

examined. One well-known line of research has implicated children’s understanding of 

numerical magnitudes, commonly measured through number line estimation tasks, in their math 

competence (e.g., Berteletti et al., 2010; Booth & Siegler, 2008; Case & Okamoto, 1996; Fazio et 

al., 2014; Gunderson et al., 2012; Hoffmann et al., 2013; Lyons et al., 2014; Siegler & Booth, 

2004). Another line of research has shown that children’s math competence is associated with 

factors beyond foundational cognitive skills. Notably, children’s math anxiety negatively relates 

to their math achievement as early as 1st grade (Gunderson et al., 2018; Ramirez et al., 2013, 

2016).  

To date, these two lines of research have not been well integrated, and there are many 

open questions about how foundational math skills, as well as math anxiety relate to future math 

achievement. Here we begin to address such questions by asking whether children’s early math 

anxiety (in the fall of 1st grade) predicts their future math achievement (through 3rd grade), 

controlling for the linearity of their early number line representations (in the fall of 1st grade). 

One possibility is that math anxiety and number line estimation account for the same variance in 

future math achievement. However, we hypothesized that math anxiety would matter for 

children’s math achievement, over and above their number line estimation, and that these two 

factors together would account for significantly more variation in future math performance than 

number line estimation alone.  

 
2 This is an Accepted Manuscript with minor modifications of an article published by Taylor & Francis in Journal of 

Cognition on Nov 3, 2020, available online: https://www.tandfonline.com/doi/full/10.1080/15248372.2020.1832098  

https://www.tandfonline.com/doi/full/10.1080/15248372.2020.1832098
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The Relation of Math Anxiety and Math Achievement 

Math anxiety, a common phenomenon across the globe (Foley et al., 2017), is defined as 

the fear or apprehension people experience when doing, or even thinking about, math related 

activities (Lyons & Beilock, 2012; Richardson & Suinn, 1972). Math anxiety has been shown to 

interfere with adults’ ability to solve math problems both in daily life and in academic situations 

(Ashcraft, 2002; Beilock et al., 2017; Hembree, 1990; Richardson & Suinn, 1972). Moreover, the 

negative relation between math anxiety and math performance arises early, affecting children as 

early as 1st grade (Gunderson et al., 2018; Ramirez et al., 2013, 2016; Wu et al., 2012). 

Some researchers have argued that math anxiety may stem from poor math ability (Carey 

et al., 2016; Fennema, 1989; Ramirez et al., 2018). For example, Ma & Xu (2004) reported that 

early math performance consistently predicted later math anxiety in 7th through 12th graders, 

while the reverse relation—that early math anxiety predicted later math performance—was 

hardly present. In young elementary school students, Gunderson et al. (2018) found that the 

relation between fall math performance and spring math anxiety was stronger than the reverse 

relation, but both of these links were significant, suggesting a bidirectional relation. 

Also suggesting that math anxiety may stem from weak math skills, adults’ math anxiety 

is related to basic numerical processing skills, such as counting objects (Maloney et al., 2010) 

and identifying the larger of two single digit numbers (Dietrich et al., 2015; Maloney et al., 

2011). Additionally, math anxiety has been found to mediate the relation between adults’ 

magnitude comparison (a skill further discussed below) and their math performance (Lindskog et 

al., 2017), at least in high math anxious adults (Moscoso et al., 2020), suggesting that math 

anxiety may play a central role in the relation between ANS and math performance. However, 

these findings are not consistent as other studies have found no relation between math anxiety 
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and ANS in children and adolescents (Hart et al., 2016; Wang et al., 2015), as well as in adults 

(Braham & Libertus, 2018; Dietrich et al., 2015). Thus, there are discrepant results that need to 

be resolved regarding the relation of math anxiety, ANS, and math performance.  

In contrast to the view that math anxiety may stem from poor math skills, research with 

both adults and children suggests that math anxiety can cause poor math performance. For 

instance, math anxiety has been found to negatively relate to math performance because it takes 

up working memory resources (e.g., Ashcraft & Kirk, 2001; Ramirez et al., 2013). Further, some 

studies have found that math anxiety is most detrimental to individuals with high working 

memory capacities (Beilock & DeCaro, 2007; Ramirez et al., 2013). Math anxiety may lead 

individuals with high working memory to adopt less efficient strategies when they solve math 

problems. For example, children with high working memory capacity who were math anxious 

adopted less efficient, error-prone finger counting strategies, which are typically used by children 

with lower working memory (Ramirez et al., 2016).  

Regardless of the causal connection between math anxiety and math performance, an 

important question is whether both math anxiety and foundational math skills uniquely 

contribute to variance in children’s math performance. Here we hypothesized that children’s 

math anxiety would explain variance in their math achievement, over and above a foundational 

math skill. We tested this hypothesis by examining whether math anxiety predicts children’s 

math achievement over and above a foundational math skill that has been found to be predictive 

of their math achievement: the linearity of children’s number line estimation.  

The Relation of Number Line Estimation and Math Achievement 

The existence of numerical magnitude representations in humans has been extensively 

examined. Humans and other species have an approximate number system (ANS) through which 
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they represent number magnitudes in an analog and continuous form (Dehaene, 1997; Gallistel & 

Gelman, 1992). Supporting this view, it is easier for people to distinguish between quantities that 

are farther apart than those that are closer together (known as the numerical distance effect; 

Moyer & Landauer, 1967). Additionally, people—at least those in cultures with left to right 

writing systems—respond to small numbers more quickly with their left hand and large numbers 

more quickly with their right hand, reflecting a spatial representation of numerical magnitudes, 

known as the spatial numerical association of response codes (SNARC effect; Dehaene & 

Changeux, 1993). A recent meta-analysis reported a positive relation between children’s ANS 

acuity and their math achievement (Chen & Li, 2014; but see Leibovich & Ansari, 2016). 

Children’s ability to represent numerical magnitudes is often measured with a number line 

estimation task.  

In a typical number line task, participants indicate the position of a given number on a 

line that is anchored at both ends, usually with 0 on the left side and a multiple of 10 on the right. 

Initially, even for number lines that are relatively small in scale, young children place smaller 

numbers too far apart and larger numbers too close together, which has been characterized as a 

logarithmic representation of numbers on a number line (Siegler & Braithwaite, 2017; Siegler & 

Opfer, 2003; Siegler et al., 2011; but see Barth & Paladiño, 2011). Over time and with formal 

schooling children are able to succeed on number line tasks, placing numbers along the number 

line in a linear manner. Importantly, they are able to do this successfully for number lines with 

smaller more familiar right anchors prior to succeeding on placing numbers in a linear manner on 

number line tasks with larger, less familiar right anchors. The shift to a linear representation of 

numbers has been found to occur before kindergarten on a 0-10 scale, from kindergarten to 2nd 
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grade on a 0-100 scale, and from 2nd grade to 4th grade on a 0-1000 scale (Berteletti et al., 2010; 

Booth & Siegler, 2006; Siegler & Booth, 2004; Siegler & Opfer, 2003).  

Number line estimation predicts later performance on math problem solving, arithmetic, 

calculation, and math achievement more broadly (Booth & Siegler, 2008; Gunderson et al., 

2012; Lyons et al., 2014; Siegler & Booth, 2004). Additionally, number line estimation 

correlates with other measures of estimation such as measurement, knowledge of symbolic 

numbers and numerical order, counting ability, and number comparison (Berteletti et al., 2010; 

Booth & Siegler, 2006; Fazio, et al., 2014; Hoffmann et al., 2013); and engaging in number line 

estimation activates brain regions associated with numerical magnitude and spatial processes 

(Berteletti et al., 2015). Further, number line performance mediates the relation between ANS 

acuity in kindergarten and arithmetic skill in 1st grade (Wong et al., 2016), and is more strongly 

related to broad mathematical competence than numerical magnitude comparison or working 

memory (Schneider et al., 2018). The relation between number line estimation and math 

competence is robust, as it is found using various accuracy measures of number line estimation 

and various measures of math performance, suggesting that number line estimation taps into a 

foundational understanding of number that is broadly important for mathematical thinking 

(Gross et al., 2018; Schneider et al., 2018). In a meta-analysis, Schneider et al. (2018) reported a 

strong association between number line estimation and math competence (r=0.441), with 19.6% 

of the variance in math competence being explained by number line estimation.  

While number line estimation explains some of the variance in children’s math 

performance (19.6%; Schneider et al., 2018), there is considerable variation that is not explained 

by this foundational skill. To gain a better understanding of how children’s math achievement 

develops, we need to consider cognitive factors that have consistently been found to be important 
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(e.g., number line estimation), while also examining the role of non-cognitive factors, 

particularly children’s math anxiety, which have also been associated with math performance. In 

this study, we strive to provide a more complete picture of children’s math development by 

examining whether math anxiety predicts children’s math achievement, controlling for their 

number line estimation. If math anxiety does not explain additional variance in children’s math 

achievement over and above their number line estimation, that would suggest that math anxiety 

may reflect the strength of children’s foundational math skills. However, if math anxiety 

accounts for additional variance in math achievement over and above their number line 

estimation, this would suggest that both foundational math skills and positive emotions about 

math contribute to math achievement.  

The Relation of Math Anxiety to Math Tasks of Varying Complexity 

In addition to examining whether math anxiety plays an important role in children’s math 

achievement, it is also important to examine whether children’s math anxiety matters for 

performance on all math tasks, or whether it matters more for particular math tasks. Existing 

findings suggest that math anxiety is more detrimental to performance on complex math tasks, 

compared to simple math tasks, and that this is the case for adults and children. For example, 

adults’ math anxiety has been found to matter more for complex arithmetic problems involving 

calculations, and less for simple arithmetic problems involving memory retrieval (Ashcraft & 

Faust, 1994; Faust et al., 1996). Similarly, 2nd and 3rd grade children’s math anxiety has been 

found to negatively predict performance on calculations, but not geometric reasoning (as 

assessed by a simple task in which children described, compared and classified shapes; Vukovic 

et al., 2013). Additionally, in a meta-analysis Namkung et al. (2019) found that math anxiety is 

more strongly related to children’s performance on advanced math tasks that require multiple 
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steps to complete than simpler math tasks. However, in these studies the math tasks children 

completed differed not only in their complexity, but also in their format, making it difficult to 

rule out the possibility that the format of the math tasks, rather than task complexity plays a role 

in how math anxiety relates to math performance. To address this issue, it is important to use a 

particular math task and systematically manipulate its complexity.  

One study has examined the relation between math anxiety and math performance on a 

task that can be adjusted to be simpler or more complex, while remaining the same in structure. 

In a study of adults, Núñez-Peña et al. (2018) found that math anxiety negatively predicted 

performance on a number line task with less familiar anchors, but not performance on a number 

line task with more familiar anchors. Similarly, adults’ math anxiety has been found to predict 

fraction number line estimation (Sidney et al., 2019), which could be considered a complex 

number line estimation task. However, this approach of manipulating math task complexity 

while keeping the structure of the task the same—as opposed to changing the format of the math 

task entirely—to examine how the relation between math anxiety and math performance depends 

on task complexity has not been used in studies of children.  

In the current study, we address this question by examining the relation of children’s 

math anxiety to performance on number line tasks that vary the magnitude of the rightmost 

anchor, which changes the range over which children must estimate their number placements. 

Additionally, we assessed children longitudinally from 1st grade through 3rd grade, an age range 

that has been shown to perform differently on number line tasks involving different scales 

(Booth & Siegler, 2006; Siegler & Booth, 2004; Siegler & Opfer, 2003). Importantly, because 

the structure of number line tasks remains constant as the task difficulty changes, number line 
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estimation is an ideal task to use to examine how math anxiety relates to math performance over 

a developmental period when the difficulty of particular number line tasks changes.  

We predicted that children’s math anxiety would be particularly harmful for performance 

on challenging math tasks because math anxiety takes up working memory resources that are 

necessary for solving complex math problems (e.g., Ashcraft & Kirk, 2001; Ramirez et al., 

2013). For very easy tasks, it is possible that the ruminations that math anxious children have 

about their math performance may not interfere with performance because children still have 

adequate working memory resources to succeed at these tasks. For very difficult tasks on which 

even low math anxious children do not place numbers in a linear manner, (e.g., a 0-1000 number 

line task for a 1st grader), math anxiety is also unlikely to contribute to performance because 

working memory resources are not a determinative factor in predicting their performance. Thus, 

it is possible that the relation between math anxiety and number line performance will be most 

marked for the scale that is at the cusp of children’s skill at each grade level (i.e., is neither too 

easy nor too difficult). 

We hypothesized that math anxiety would relate to performance on number line tasks 

with smaller scales in earlier grades and number line tasks with larger scales in later grades, in 

line with the idea that math anxiety is most detrimental to performance on math tasks at 

particular levels of difficulty. Such a finding would indicate that the relation between math 

anxiety and math performance may have reverberating negative effects on math learning, 

interfering with the learning of new skills and concepts at successive grade levels.  

The Current Study 

We assessed children’s math anxiety, number line estimation on a 0-100 and a 0-1000 

scale, and math achievement across five time points (1st grade fall and spring; 2nd grade fall and 
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spring; 3rd grade fall) to better understand how these variables relate to each other and change 

over time. We address the following two questions. First, does math anxiety predict future math 

achievement, controlling for number line estimation? Second, does the relation between early 

math anxiety and number line estimation on different number line scales change over time?  

Regarding our first question, we hypothesized that 1st grade math anxiety would remain a 

significant predictor of future math achievement, controlling for number line estimation, which 

would support the theory that math anxiety does not simply stem from poor math ability, but 

rather negatively contributes to math achievement over and above a foundational math skill. 

Regarding our second question, we hypothesized that 1st grade math anxiety would negatively 

predict number line estimation on a 0-100 scale when children are younger (in 1st grade), and on 

a 0-1000 scale later, when children are older (in 3rd and perhaps 2nd grade) reflecting the fact that 

these number line tasks are appropriately complex at these grade levels (i.e., not too simple and 

not too difficult). 

Method 

Participants 

The data analyzed in the current study were collected as part of a larger longitudinal 

randomized control trial, examining the effectiveness of a math app that parents and children 

engaged with to support children’s math learning (Berkowitz et al., 2015; Schaeffer et al., 2018). 

A demographically diverse sample of 1st graders and their primary caregivers were recruited and 

followed longitudinally. Families were randomly assigned to an intervention (math) or control 

(reading) condition. In the current study, our analyses examined participants in the control 

condition, from the fall of 1st grade through the fall of 3rd grade, as the intervention condition 

could possibly alter the relations we focus on. The control condition included 176 children from 
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Chicago area schools. Fourteen children were excluded due to missing data, leaving us with 162 

participants (81 girls) at our first time point. At subsequent time points, we had data for 104 to 

150 participants, due to sample attrition over time (see Table 1). Caregiver reports of 

race/ethnicity (N=155) indicated that students were 51% White, 32% Hispanic, 9% African 

American, 6% Asian or Asian American, and 1% American Indian or Alaskan Native. Annual 

household income was reported by 138 caregivers with 7% earning less than $15,000, 15% 

earning $15,000-$34,999, 9% earning $35,000-$49,999, 8% earning $50,000-$74,999, 9% 

earning $75,000-$99,999, and 53% earning more than $100,000. 

Measures and Procedure 

In the current study, we focus on a subset of the measures given at each time point. 

Children completed tasks in their school in a one-on-one session with an experimenter during fall 

and spring of 1st and 2nd grade and fall of 3rd grade. At each time point, achievement measures 

were administered during one session, and emotion measures were administered during a session 

the following school day.3 

Math Anxiety. Children completed a modified version of the revised Child Math 

Anxiety Questionnaire (CMAQ-R: Ramirez et al., 2016), which was designed to be appropriate 

for 1st graders. The 16-item measure asked children how nervous they would feel during various 

math-related situations. Eight math problems were modified for children in 3rd grade to reflect 

the type of math knowledge expected of older students. For example, 1st and 2nd graders were 

asked “How do you feel when you have to solve 34-7?”, while 3rd graders were asked “How do 

 
3 Although subjects were supposed to receive the same number line order throughout all five time points, this was 

not the case for six subjects due to experimenter error. These six subjects received one of the following orders over 

the five time points: AAABA, ABBBB, BBABB, BBBAB. Additionally, one child only completed five out of the 

six trials on the 0-1000 scale due to experimenter error during 1st grade fall, and that child’s number line estimation 

was measured based on those five trials.  
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you feel when you have to solve 35 divided by 7?” To respond, children pointed to one of five 

smiley faces displaying an emotional gradient from “not nervous at all” to “very very nervous”. 

Math anxiety was scored on a scale of one (low math anxiety) to five (high math anxiety). 

Because the math anxiety questionnaire involved specific math problems which changed for 

older children, we did not compare changes in math anxiety scores. 

Number Line Estimation. Children were shown a horizontal line anchored with 0 on the 

left and 100 or 1000 on the right. To respond, children drew a hatch mark through the number 

line indicating their estimate of the position of each requested number. Our measure—including 

the counterbalancing of the two number line tasks and the numbers requested—mirrored the 

measure developed and used by Siegler and Opfer (2003). Children were randomly assigned to 

receive Order A or B at all time points4. Order A included a 0-1000 scale first (230, 71, 4, 780, 

18, 6) and a 0-100 scale second (42, 6, 71, 18, 2, 4). Order B included a 0-100 scale first (3, 25, 

86, 6, 2, 67) and a 0-1000 scale second (390, 2, 810, 86, 6, 25). Children received a new blank 

number line for each trial. Number line estimation was scored by converting children’s estimates 

to the equivalent numerical values and finding the percentage of variance explained (R2) by the 

best fitting linear model that related their estimates to the requested numbers (linear R2). We 

focused on linear R2—as opposed to other measures such as percent absolute error (PAE)—in 

our analyses because this index captures internally consistent placements of children’s responses. 

In other words, linear R2 captures the linearity of children’s estimation of the location of the 

numbers requested in relation to each other, even if these estimations were not necessarily 

 
4 In the achievement session, students were randomly assigned to either complete the number line task first 

followed by measures of academic performance including the Applied Problems subtest and a Vocabulary subtest, 

or to complete measures of academic performance first followed by the number line task. Students were equally 

likely to receive the 0-100 or 0-1000 number line tasks first, regardless of whether they started the session by 

completing the number line task. In the emotion session, students first completed measures of emotions towards a 

variety of academic subjects, including Theories of Intelligence. Students then completed measures of domain-

specific anxiety (math, reading, and spatial), with the order of the domain randomized across students.  



 23 

mapped onto the number line in an accurate manner (Mix et al., 2016). However, we also ran 

analyses using PAE, which was scored using the following formula: |Participant estimate – 

number requested| / scale of estimates, with scale of estimates being 100 or 1000. 

Mathematical Achievement. Children completed the Applied Problems subtest of the 

Woodcock-Johnson III (Woodcock, McGrew, and Mather, 2001). This subtest requires children 

to answer math word problems of increasing difficulty. Subsequent analyses examined students’ 

W scores, a transformation of raw scores into a Rasch-scaled score of equal interval 

measurements that represents the child’ ability and the task difficulty, which is recommended to 

measure individual growth. A one-point W score increase roughly represents approximately a 

half month of learning during a school year. A score of 500 is the approximate average 

performance of a 10-year-old.  

Results 

Descriptive Statistics 

There was variability in children’s performance on all tasks at all time points (see Table 

1). During 1st grade fall, math anxiety on average was intermediate, about half-way between low 

math anxiety and high math anxiety (M=2.55, SD=0.72) and ranged from about 2 standard 

deviations below to 3 standard deviations above the mean. Performance on Applied Problems 

(M=457.87, SD=17.47) ranged from about 4 standard deviations below to 3 standard deviations 

above the mean. Performance on the 0-100 number line task, as assessed by linear R2 (M=0.74, 

SD=0.21) was significantly higher than performance on the 0-1000 number line task (M=0.58, 

SD=0.19); t(161)=8.6, p=<0.001. The linearity of children’s number line estimation on the two 

scales at various time points is similar to that reported in other studies (e.g., Booth & Siegler, 

2006; Opfer & Siegler, 2007; Siegler & Booth, 2004; Siegler & Opfer, 2003).  
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Children who completed the 0-100 number line task first performed better on that scale 

(M=0.81, SD=0.14) than children who completed the 0-1000 number line task first (M=0.68, 

SD=0.024); t(160)=-4.31, p=<0.001). Similarly, children who completed the 0-1000 number line 

task first performed marginally better on that scale (M=0.61, SD=0.17) than children who 

completed the 0-100 number line task first (M=0.55, SD=0.21); t(160)=1.97, p=0.051).  

Table 1. Descriptive statistics for variables at all time points.  

 1st fall         1st spring  2nd fall         2nd spring               3rd fall 

Measures  M (SD), Range (N)        M (SD), Range (N) M (SD), Range (N)        M (SD), Range (N)            M (SD), Range (N) 

MA 2.6 (0.7), 1-4.8 (162)        2.3 (.78), 1.-4.4 (150) 2.2 (.8), 1-4.3(132)        1.9 (.8), 1-5 (126)                2.1 (.8), 1.1-5 (104) 

0-100 .7 (0.21), .1-1 (162)       .9 (.16), .1-1 (150)  .9 (.2), .2-1 (132)        .9 (.1), .2-1 (127)                .9 (.1), .7-1 (105) 
0-1000  .6 (0.19), .02-1 (162)       .7 (.16), .2-1 (150)  .7 (.2), .02-1 (132)        .8 (.2), .5-1 (127)                .8 (.2), .3-1 (105) 

AP  458 (17), 393-507 (162)   473 (21), 428-526 (149) 477 (18), 427-526 (128)    493 (19), 435-534 (125)      494 (21), 436-539 (104) 

MA=math anxiety, 0-100=Linear R2 (0-100), 0-100=Linear R2 (0-1000), AP=Applied Problems (W Score)  

 

Correlations 

Correlations between measures during 1st grade fall are reported in Table 2. Math anxiety 

was negatively correlated with performance on the 0-100 number line task but not the 0-1000 

number line task. Performance on Applied Problems was correlated with performance on both 

number line tasks, and the scores on the two number line tasks were correlated.  

As shown in Table 3, math anxiety in 1st grade fall was positively correlated with math 

anxiety at all later time points. Similarly, number line estimation on the 0-100 scale in 1st grade 

fall was positively correlated with number line estimation on both the 0-100 and 0-1000 scales at 

all later time point. In contrast, 0-1000 number line estimation in the fall of 1st grade was not 

correlated with later 0-100 number line estimation except at one time point (2nd grade spring) but 

was correlated with 0-1000 number line estimation at all later time points. Of note, within each 

time point, linearity and PAE were highly correlated on both the 0-100 scale (r=-0.695 to -0.79), 

and the 0-1000 scale (r=-0.774 to -0.872). 

 

Table 2. Pearson correlations for variables in 1st grade fall (N=162). 
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1st grade fall measures    1.   2.   3.   

1. Math anxiety      

2. Lin R2 (0-100)    -.163* 

3. Lin R2 (0-1000)     -.049  .249**  

4. AP (W Score)     -.355** .316**  .327**    

*p < 0.05    **p < 0.01     

AP=Applied Problems (W Score) 

 

Table 3. Pearson correlations between variables at initial time point (1st fall) and later time 

points (1st spring through 3rd fall).  

1st fall measure     1st spring   2nd fall  2nd spring  3rd fall  

Math anxiety     .489**  .449**  .311**  .491** 

Lin R2 (0-100) correlation with Lin R2 (0-100)  .220**  .358**  242**  .338** 

Lin R2 (0-100) correlation with Lin R2 (0-1000)  .324**  .203**  .345**  .360** 

Lin R2 (0-1000) correlation with Lin R2 (0-100)  .145  .072  .212*  .149 

Lin R2 (0-1000) correlation with Lin R2 (0-1000)  .336**  .206*  .207*  .247* 

*p < 0.05    **p < 0.01 

Does 1st Grade Fall Math Anxiety Predict Future Math Achievement, Controlling for 

Number Line Estimation?  

In these subsequent analyses examining whether fall math anxiety predicts later math 

achievement controlling for number line estimation, we used the Hierarchical Linear Modeling 

(HLM) program (Raudenbush et al., 2013) to account for the nested nature of the data (i.e., time 

within children) and the maximum likelihood methods in the program to account for missing 

data. Math anxiety and number line estimation were z-scored and kept as continuous variables. 

Order of administration of the two number line tasks was analyzed as a centered contrast and 

coded -1 for order A (0-1000 scale was first) and +1 for order B (0-100 scale was first). Time 

was coded as 0-4 with 0 being the first time point (1st grade fall) and 4 being the last time point 

(3rd grade fall).  
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We also wanted to control for initial performance on the Applied Problems subtest, to 

ensure that any observed association between initial math anxiety and future Applied Problems 

would not be explained by the association between initial math anxiety and initial Applied 

Problems. Because initial performance on the Applied Problems subtest was highly correlated 

with initial math anxiety and initial number line estimation (0-100 and 0-1000, see Table 2), we 

controlled for shared variance by regressing Applied Problems on math anxiety and number line 

estimation (0-100 and 0-100) and saved the residuals. This approach has been used to deal with 

overlapping variance issues (Durik et al., 2015). These Applied Problems residuals capture the 

variance in Applied Problems that does not overlap with math anxiety or number line estimation 

in 1st grade fall. Applied Problems residuals were z-scored and used as a continuous variable.  

In model 1, we examined whether math anxiety in 1st grade fall predicted future Applied 

Problems scores, controlling for number line estimation (0-100 and 0-1000 scale) in 1st grade 

fall, and Applied Problems residuals in 1st grade fall. Because the order in which children 

completed the number line tasks influenced their number line estimation (i.e., 0-100 or 0-1000 

scale first), we also controlled for order of the number line tasks in model 2. In model 3, we 

examined whether there was a time x math anxiety interaction effect, a time x number line 

estimation interaction effect, and a time x Applied Problems residuals effect on future Applied 

Problems, to test whether these relations changed over time. The results for models 1-3 are 

reported in Table 4. 

In models 1-3, math anxiety negatively predicted future Applied Problems, controlling 

for number line estimation on the 0-100 scale, number line estimation on the 0-1000 scale, time, 

and Applied Problems residuals, which were also significant predictors. In models 2-3, the order 

in which students completed the number line tasks (0-100 or 0-1000 first) did not predict future 
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Applied Problems performance. In model 3, time x math anxiety, time x number line estimation 

on the 0-100 scale, time x number line estimation on the 0-1000 scale did not significantly 

predict future Applied Problems.  

In sum, children with higher math anxiety in 1st grade fall had lower scores on future 

Applied Problems, compared to children with lower math anxiety (see Figure 2). Additionally, 

children with more linear number line representations in 1st grade fall had higher scores on future 

Applied Problems, compared to children with less linear number representations (see Figure 3).  

Table 4. Hierarchical linear models predicting future Applied Problems (AP) W score over four 

time points from 1st spring through 3rd fall (N=162). 

 
Predictors  

Model 1   Model 2   Model 3 

ß (S.E. ß), p  ß (S.E. ß), p  ß (S.E. ß), p 

Math anxiety 1st fall (z-score)  -5.50*** (0.84), <0.001 -5.51*** (0.83), <0.001 -5.79*** (0.93), <0.001  

Lin R2 (0-100) 1st fall (z-score)  4.90 ** (0.79), <0.001  4.93*** (0.86), <0.001 3.38** (1.24), 0.007 

Lin R2 (0-1000) 1st fall (z-score)  4.32 *** (0.88), <0.001 4.30*** (0.91), <0.001 5.32*** (0.96), <0.001  

AP standardized residuals 1st fall (z-score) 11.06*** (0.79), <0.001 11.06*** (0.79), <0.001 11.62*** (0.99), <0.001 

Time (4 time points)    7.86*** (0.43), <0.001 7.86*** (0.43), <0.001 7.85*** (0.42), <0.001  

Order 1st fall (100s or 1000s first)     -0.07 (0.90), 0.934  -0.07 (0.91), 0.931 

Time x math anxiety 1st fall        0.21 (0.47), 0.652 

Time x Lin R2 (0-100) 1st fall        1.25 (0.88), 0.155 

Time x Lin R2 (0-1000) 1st fall         -0.80 (0.46), 0.086 

Time x AP standardized residuals 1st fall        -0.35 (0.40), 0.380 

*p < 0.05    **p < 0.01    ***p < 0.001 

AP=Applied Problems (W Score)  
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Figure 2. Math anxiety from 1st grade fall predicting Applied Problems W-Score over time. 

Math anxiety is plotted at 1 SD below the mean and 1 SD above the mean for visual purposes. 

This relation remained significant controlling for 1st grade number line estimation (0-100 and 0-

100) as well as other factors (see Table 2). 

 
 

 

a.        b.  

Figure 3. Number line estimation in 1st grade fall predicting Applied Problems W-Score over 

time. Number line estimation is plotted at 1 SD below the mean and 1 SD above the mean for 

visual purposes. 

 

We also examined whether math anxiety in 1st grade fall explained variation in future 

Applied Problems performance, over and above number line estimation (0-100, 0-1000) in 1st 

grade fall, after covarying out Applied Problems residuals from 1st grade fall. We ran three sets 

of four regression models with Applied Problems residuals predicting future Applied Problems at 

each of the four future time points (see Table 5). Initial Applied Problems residuals accounted 

for 30.1% to 35.1% of the variation in future Applied Problems performance. Next, we added 

initial number line estimation (0-100 and 0-1000) as predictors to each regression model. After 

430

450

470

490

510

530

1st Fall 1st Spring 2nd Fall 2nd Spring 3rd Fall

A
p

p
lie

d
 P

ro
b

le
m

s 
W

 S
co

re

Low MA High MA

430

450

470

490

510

530

1st Fall 1st Spring 2nd Fall 2nd Spring 3rd Fall

A
p

p
lie

d
 P

ro
b

le
m

s 
W

 S
co

re

Low NL 100 High NL 100

430

450

470

490

510

530

1st Fall 1st Spring 2nd Fall 2nd Spring 3rd Fall

A
p

p
lie

d
 P

ro
b

le
m

s 
W

 S
co

re

Low NL 1000 High NL 1000



 29 

covarying out Applied Problems residuals, number line estimation accounted for an additional 

13.2% to 23.2% of the variation in future Applied Problems. Finally, we added math anxiety as a 

predictor to each regression model, which accounted for an additional 7.1% to 8.9% of the 

variation in future Applied Problems performance.  

Table 5. Adding (a) number line estimation (0-100 and 0-1000) from 1st grade fall, and then (b) 

math anxiety from 1st grade fall to regression models with Applied Problems residuals from 1st 

grade fall predicting future Applied Problems W-scores.  

 
Future AP  AP standardized residuals  Lin R2 (0-100 & 0-1000)           Math Anxiety 

W Score  1st fall   1st fall    1st fall  

                              R2   R2 change  Sig. F. change R2 change  Sig. F. change  

1st spring  0.351   0.162***  <0.001  0.082***  <0.001  

2nd fall  0.337   0.154***  <0.001  0.089***  <0.001  

2nd spring  0.313   0.132***  <0.001  0.079***  <0.001  

3rd fall  0.301   0.232***  <0.001  0.071***  <0.001 

***p < 0.001 

AP=Applied Problems (W Score)  

 

Does the Relation of Math Anxiety to Number Line Estimation Change Over Time, 

Depending on the Scale?  

Similar to our previous analyses, in these subsequent analyses, we used the HLM 

program (Raudenbush et al., 2013) and the maximum likelihood methods in the program. Math 

anxiety was z-scored and kept as a continuous variable. Number line scale was analyzed as a 

centered contrast and coded -1 for the 0-100 scale and +1 for the 0-1000 scale. Similarly, order 

of administration of the number line tasks was analyzed as a centered contrast and coded -1 for 

order A (0-1000 scale was first) and +1 for order B (0-100 scale was first). Time was coded as 0-

4 with 0 being the first time point (1st grade fall) and 4 being the last time point (3rd grade fall). 

Since possible scores for our outcome measure of linear R2 range from 0-1, for ease of 

interpretation Beta and standard error values were multiplied by 100. 
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In model 1, we examined whether math anxiety in 1st grade fall predicted number line 

estimation over time and tested the following interactions: math anxiety x time, math anxiety x 

scale, time x scale, and math anxiety x time x scale. In model 2, we controlled for number line 

order. The results for models 1-2 are reported in Table 6. In models 1-2, there was a significant 

math anxiety x time x scale interaction effect on number line estimation, such that the relation 

between math anxiety and number line estimation changed over time depending on the scale. 

Additionally, math anxiety, time, and number line scale significantly predicted number line 

estimation. Math anxiety x time, math anxiety x scale, and time x scale did not predict number 

line estimation. In model 2, number line order significantly predicted number line estimation.  

Table 6. Hierarchical Linear Models predicting number line estimation over time (N=162). 

 
Predictors of number line estimation  

Model 1    Model 2    

ß (S.E. ß), p   ß (S.E. ß), p    

Math anxiety 1st fall (z-score)  -2.7007* (1.1361), 0.019  -2.4559* (1.1245), 0.030  

Time (5 time points)    4.9974*** (0.2861), <0.001 4.9982*** (0.2856), <0.001 

Scale (0-100 or 0-1000)   -9.4063*** (0.7463), <0.001 -9.4063*** (0.7463), <0.001 

Math anxiety x time   -0.0017 (0.2901), 0.995  0.0022 (0.2902), 0.994 

Math anxiety x scale   1.0698 (0.7832), 0.172  0.1967 (0.7832), 0.172 

Time x scale    0.1967 (0.2904), 0.498  0.1967 (0.2904), 0.498 

Math anxiety x time x scale  -0.8491** (0.3089), 0.006  -0.8491** (0.3089), 0.006 

Order 1st fall (100s or 1000s first)      1.9143* (0.7759), 0.015  

*p < .05    **p < .01    ***p < .001 

Note: ß and S.E. values were multiplied by 100 (since linear R2 scores range from 0-1) for ease of interpretation. 

 

To unpack the three-way interaction, we examined how math anxiety related to number 

line estimation on the 0-100 scale specifically and on the 0-1000 scale specifically (see Tables 7 

and 8). Overall, math anxiety significantly predicted number line estimation on the 0-100 scale, 

but not the 0-1000 scale. However, there was a significant effect of time on number line 

estimation for both the 0-100 scale and the 0-1000 scale, and importantly, there was a significant 
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math anxiety x time interaction effect on number line estimation for both the 0-100 scale and the 

0-1000 scale. For a visual representation of the relation between math anxiety and number line 

estimation (0-100 and 0-1000) over time see Figure 4. 

Table 7. Hierarchical Linear Models predicting number line estimation (0-100) over time 

(N=162). 

 
Predictors of number line estimation  

Model 1     Model 2    

ß (S.E. ß), p    ß (S.E. ß), p    

Math anxiety 1st fall (z-score) -3.7803* (1.5460), 0.016   -3.3215* (1.4569), 0.024 

Time (5 time points)   4.7817*** (0.3466), <0.001  4.7902*** (0.3468), <0.001  

Math anxiety x time  0.8510* (0.4178), 0.042   0.8546* (0.4205), 0.043 

Order 1st fall (100s or 1000s first)      3.5091*** (0.7533), <0.001  

*p < .05    **p < .01    ***p < .001 

Note: ß and S.E. values were multiplied by 100 (since linear R2 scores range from 0-1) for ease of interpretation.  

 

Table 8. Hierarchical Linear Models predicting number line estimation (0-1000) over time 

(N=162). 

 
Predictors of Math Achievement (from 1st fall)  

Model 1     Model 2    

ß (S.E. ß), p    ß (S.E. ß), p    

Math anxiety 1st fall (z-score) -1.5996 (1.2002), 0.185   -1.5742 (1.2061), 0.194 

Time (5 time points)   5.2479*** (0.4669), <0.001  5.2479*** (0.4668), <0.001 

Math anxiety x time  -0.8822* (0.4398), 0.045   -0.8815* (0.4400), 0.046 

Order 1st fall (100s or 1000s first)      0.1997 (1.0031), 0.842 

*p < .05    **p < .01    ***p < .001 

Note: ß and S.E. values were multiplied by 100 (since linear R2 scores range from 0-1) for ease of interpretation. 
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a.        b.  

Figure 4. Math anxiety from 1st grade fall predicting number line estimation on the 0-100 scale 

(Figure 3a) and 0-1000 scale (Figure 3b) over time. Math anxiety is plotted at 1 SD below the 

mean and 1 SD above the mean for visual purposes, but it is analyzed as a continuous variable in 

our HLM analyses. *Significant relation (p<.05) between children’s math anxiety and their 

number line estimation on a 0-100 or 0-1000 scale at a particular time point 

 

To further test our hypothesis about math anxiety being most detrimental to math tasks at 

the cusp of the child’s ability, we examined the relation between math anxiety and number line 

estimation on both scales (0-100 and 0-1000) during each of the five time points (see Table 9). 

Math anxiety in 1st grade fall negatively related to 0-100 number line estimation at the earlier 

time points (from 1st grade fall through 2nd grade spring, with the exception of 2nd grade fall) but 

not during the last time point (3rd grade fall). In contrast, math anxiety in 1st grade fall did not 

relate to 0-1000 number line estimation linearity at the fall 1st grade time point but did at all the 

later time points.5  

Although not the focus of this study, exploratory analyses showed no gender differences 

in math anxiety, math achievement, or number line estimation, and no gender differences in the 

relation of math anxiety to math achievement or to number line estimation. 

 
5 Results were similar with PAE as the index of number line estimation, with a few exceptions. First, in model 3 of 

Table 4 PAE on the 0-100 scale marginally predicted (p=-0.051) future Applied Problems. Second, although the 

critical three-way interaction effect of math anxiety x time x scale on PAE was significant in Table 6, in models 1-2 

of Table 8 math anxiety significantly predicted PAE on the 0-1000 scale, and there was not a significant math 

anxiety x time interaction effect on PAE on the 0-1000 scale (p=0.160 to 0.175). Third, in table 9 math anxiety 

marginally predicted PAE on a 0-100 scale in 1st grade spring (p=0.056) and did not significantly predict PAE on a 

0-100 scale in 2nd grade spring. 
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Table 9. Pearson correlations between 1st grade math anxiety and number line estimation at all 

time points. 

 
    1st fall  1st spring  2nd fall  2nd spring 3rd fall  

Linear R2 (0-100)  -.163*   -.224**  -.123  -.174*  -.045 

Linear R2 (0-1000)  -.049  -.186*  -.217*  -.270**  -.216*  

*p < .05    **p < .01 

 

Discussion 

Regarding our first question, children’s early math anxiety from 1st grade fall predicted 

their future math achievement up to two years later when they were in the fall of 3rd grade, and 

this relation remained significant controlling for their early number line estimation—a 

foundational cognitive math skill. To our knowledge, the present study is the first to control for a 

foundational numerical representation in examining the relation between children’s early math 

anxiety and their future math achievement over the course of the early elementary school years. 

Our findings contradict those of Skagerlund et al. (2019), in which adults’ math anxiety 

indirectly related to arithmetic through symbolic number comparison. Further, regardless of 

whether math anxiety stems from poor math skills, math anxiety leads to low math skills, or this 

relation is bidirectional, our findings suggest that it is important to consider both foundational 

math skills and emotional factors—in particular, math anxiety—in supporting children’s math 

learning and achievement. In other words, there is more to children’s math learning than their 

math skills alone; and fostering positive emotions toward math, in addition to math skills, is 

likely to be an effective approach to promoting strong math achievement.  

Regarding our second question, math anxiety was more predictive of number line 

performance when the number line task was appropriately complex (i.e., not too easy or too 

difficult) as shown by the significant three-way interaction between math anxiety, time, and scale 

on number line estimation. In particular, math anxiety in 1st grade was associated with number 
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line estimation on the 0-100 scale in 1st and 2nd grade, but as this task became easy for children in 

3rd grade, math anxiety no longer predicted performance. In contrast, math anxiety in 1st grade 

was associated with number line estimation on the 0-1000 scale from 1st grade spring through 3rd 

grade fall when this task was challenging but not too difficult, but not during 1st grade fall when 

the task was likely too difficult regardless of children’s math anxiety. Number line estimation 

was an ideal task to capture this developmental trajectory, as the structure of the task remained 

the same but the complexity of the task changed when the rightmost anchor was larger. Our 

results suggest that math anxiety was particularly harmful when the number line estimation task 

was not too easy and not too difficult. This finding suggests that perhaps math anxiety plays a 

reverberating role in children’s math learning in school—a place where children are consistently 

introduced to new concepts and skills that are at the cusp of their learning level.  

One limitation of the current study is that we did not test whether the relation of math 

anxiety to number line estimation varied based on individual children’s math skills. For example, 

while number line estimation on the 0-1000 task is generally very difficult for 1st graders, for 

some 1st graders it may have been easier, and for others it may have been especially difficult. 

Choe et al. (2019) showed that math anxiety positively predicted adults’ avoidance of difficult 

math tasks, and these tasks were calibrated to individuals’ own math skills. Future research could 

use a similar method with young children to test whether the relation of math anxiety to math 

performance differs based on how difficult the math task is based on children’s own math skills. 

Another limitation of our study is its correlational design, which impedes us from making 

causal claims. Further, we show that math anxiety is a significant predictor of future math 

achievement controlling for an important foundational number representation (linearity of 

number line estimation), but we do not know what the relation between math anxiety and later 
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math achievement would be controlling for additional foundational math skills (e.g., magnitude 

comparison). Nonetheless, the robust relation between number line estimation and math 

competence provides evidence that math anxiety matters for children’s math achievement, over 

and above this important foundational numerical representation.  

Further research should examine whether intervening on math anxiety alone, 

foundational math skills alone, or both math anxiety and foundational math skills simultaneously 

would most positively influence children’s short-term and long-term math achievement. While 

some interventions have focused on improving number line estimation (Siegler & Ramani, 

2009), and others have targeted the negative effects of anxiety on math performance (Ramirez & 

Beilock, 2011; Rozek et al., 2019), intervening on both of these predictors simultaneously might 

have a greater impact on math achievement. Further, having educators, as opposed to researchers 

administer these interventions might prove most fruitful and be a more sustainable way to foster 

children’s positive feelings about math. Future research should examine whether there is a 

particular age at which math anxiety interventions might be most beneficial, and whether 

administering these interventions at one time point or administering them across multiple time 

points might differentially impact math performance.  

In conclusion, our findings support the theory that math anxiety does not simply stem 

from poor math ability, but rather is separable from math ability as it predicts math achievement 

over and above a foundational math skill—number line performance. Furthermore, math anxiety 

appears to be most predictive of math performance on tasks that are appropriately complex (i.e., 

tasks that are at the cusp of children’s knowledge), suggesting that math anxiety can have 

reverberating effects as children encounter new and challenging math tasks. Taken together, our 
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findings suggest that children’s math achievement depends not only on fostering foundational 

cognitive skills, but also on fostering their positive emotions toward math. 

Because findings from this study suggest that math anxiety can be harmful for math 

achievement as early as 1st grade, in the next study I focus on how the math achievement- 

attitude relation emerges at the start of formal schooling, focusing on both math anxiety and 

math self-concept. I also examine the role of key socializers (parents), as young children spend a 

lot of time with their parents, who have been shown to play an important role in children’s early 

math skills (Levine & Pantoja, 2021; Levine et al., 2010; Berkowitz et al., 2015). Further, I focus 

on families from low SES backgrounds, who on average have lower math achievement than their 

peers from higher SES backgrounds as early as the start of kindergarten (Dearing et al., in prep; 

Jordan & Levine, 2009; Reardon, 2011, 2021). It is important to improve our understanding of 

the factors that relate to children’s early math skills, as this information can inform the 

development of interventions that aim to improve early math achievement and math attitudes. 
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STUDY 2: CHILD MATH ACHIEVEMENT: RELATION TO CHILD AND PARENT 

MATH ATTITUDES IN FAMILIES FROM LOW SES BACKGROUNDS 

Negative self-relevant math attitudes—attitudes that reflect how one thinks and feels 

about their own relationship with math—can have long-term consequences, as they predict 

adolescents’ and adults’ career choices (Wigfield & Eccles, 2020). Negative parent math 

attitudes can also have long-term consequences, as they predict adolescents’ future high school 

courses and career choices (Bleeker & Jacobs, 2004; Wigfield et al., 2015). Self-relevant math 

attitudes and parent math attitudes are predictive of math achievement among children and 

adolescents (Eccles & Wigfield; Levine & Pantoja, 2021). Thus, improving our understanding of 

how robust these relations are and how they emerge is essential. The current study is unique, as 

we focus on three important features: 1) multiple child and parent math attitudes, 2) bidirectional 

child math achievement-attitude relations, and 3) families from low SES backgrounds. We 

elaborate on these three features below.  

First, prior studies examining parent and child math attitudes typically focus on one math 

attitude at a time, making it difficult to determine whether their relation to math achievement 

holds controlling for other math attitudes. We focus on child math anxiety and math self-concept, 

two self-relevant math attitudes that have been consistently shown to predict math achievement 

by 1st grade (Ching et al., 2020; Dapp & Roebers, 2018; Dowker et al., 2019; Jameson, 2013; 

Pantoja et al., 2020; Ramirez et al., 2013, 2016; Vukovic et al., 2013; Valeski & Stipek, 2001; 

Wu et al., 2012, 2014). We focus on parent math anxiety (a self-relevant math attitude) and 

parent math expectancy-value (i.e., parents’ expectations and value of their child’s math 

achievement; a child-specific math attitude). These parent math attitudes also predict child math 

achievement by 1st grade (Berkowitz et al., 2015; Fredricks & Eccles, 2002; Schaeffer et al., 
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2018; Wigfield et al., 1997), and predict important parent math behaviors that have been shown 

to predict child math achievement (Berkowitz et al., 2021; Simpkins et al., 2012; Wigfield et al., 

2006, 2015).  

Second, prior studies with children have typically examined how math attitudes predict 

math achievement, and not the reverse. Because self-relevant math attitudes become more 

negative over time (Hembree, 1990; Jacobs et al., 2002; Wigfield et al., 1997), it is important to 

understand how the math achievement-attitude relation emerges. For example, does math anxiety 

initially undermine math achievement, or does low math achievement—likely linked to negative 

math experiences—initially lead to math anxiety? Math achievement-related experiences might 

include the classroom learning environment (e.g., an emphasis on performance and comparisons 

to peers) and messages conveyed by parents and teachers. Early elementary school is an 

important time to examine the emergence of math achievement-attitude relations, as children are 

likely beginning to develop positive or negative math attitudes at the start of formal schooling. 

Further, it may be easier to break the math achievement-attitude link when children are younger, 

and their math achievement has not been compromised over many years.  

Third, prior research has focused on families from middle to higher SES backgrounds. 

We focus on children from lower SES backgrounds, who compared to their peers from higher 

SES backgrounds, tend to have lower math achievement (Jordan et al., 2009; Larson et al., 2015; 

Reardon, 2011). The SES math achievement gap has widened by about 25%, at least between 

cohorts assessed in 1970 and those assessed in 2000, suggesting that children’s math experiences 

and opportunities at home and in school have become more unequal in recent years (Reardon, 

2011, 2021). Children from low SES backgrounds have the most to gain from information on 

how to improve their math achievement. Yet, we know little about the role of young children’s 
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own and their parents’ math attitudes in their math achievement. Among adolescents from lower 

SES backgrounds, math anxiety and math self-concept are less predictive of math achievement 

(OECD, 2013). Whether this is the case for young children is unclear. If child and parent math 

attitudes are less predictive of child math achievement in families from lower SES backgrounds, 

that would suggest that focusing on these attitudes will not help narrow the SES math 

achievement gap. If child and parent math attitudes predict child math achievement across SES 

backgrounds, that would suggest that fostering positive child and parent math attitudes, could be 

one way to narrow the SES math achievement gap.  

In sum, by examining longitudinal relations among child and parent math attitudes and 

child math achievement in families from low SES backgrounds, the current study addresses 

important unanswered research questions. Findings from the current study hold potential for 

informing interventions aimed at enhancing math outcomes among this underserved and 

understudied population. 

Math Anxiety 

Math anxiety is a feeling of fear or nervousness when one does or anticipates doing math 

(Hembree, 1990; Lyons & Beilock, 2012; Richardson & Suinn, 1972; Young et al., 2012). The 

negative relation between math anxiety and math achievement is present by 1st grade and persists 

over and above foundational math skills (Ching et al., 2020; Erturan & Jansen, 2015; Gunderson 

et al., 2018; Harari et al., 2013; Jameson, 2013; Ramirez et al., 2013, 2016; Vukovic et al., 2013; 

Wu et al., 2012, 2014; see Chapter 1 of this dissertation). Examining the direction of the relation 

between math anxiety and math achievement in young children will enhance our understanding 

of how the relation emerges. Below, we describe the three theories on the direction of the 

relation of math anxiety with math achievement.  
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Reciprocal Theory posits that math anxiety and math achievement influence each other, 

such that math anxiety results from poor math skills, and in turn cause poor math achievement 

through math avoidance and working memory depletion (Ashcraft et al., 2007; Carey et al., 

2016). Supporting this theory, in a meta-analysis, the relation of math anxiety to later math 

achievement was as strong as the reverse relation in students from 1st grade to high school 

(Namkung et al., 2019). However, studies that have shown a reciprocal relation between math 

anxiety and math achievement in young children have found math achievement to predict math 

anxiety more strongly than the reverse (Cargnelutti et al., 2017; Gunderson et al., 2018), 

suggesting that negative math achievement-related experiences may initially lead to high math 

anxiety.  

Cognitive Interference Theory posits that math anxiety influences math achievement 

through anticipation and avoidance of math, and disruption of working memory resources (Carey 

et al., 2016). Evidence supporting this theory comes from intervention studies with adolescents 

and adults, in which writing about worries before a math test reduces the negative effect of math 

anxiety on math achievement (Jamieson et al., 2010, 2016; Park et al., 2014; Ramirez & Beilock, 

2011). Given that math anxiety eventually has a detrimental effect on math achievement, 

understanding how to break this link before math anxiety compromises math achievement over 

many years is essential.  

Deficit Theory posits that poor math achievement and negative memories of math lead to 

higher math anxiety (e.g., Carey et al., 2016; Ramirez et al., 2018). Evidence supporting this 

theory comes from correlational studies of adolescents and young children. For example, in a 

longitudinal study of 7th through 12th graders, early math achievement consistently predicted later 

math anxiety, while the reverse relation was much weaker (Ma & Xu, 2004). Similar findings are 
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reported in studies across one school year with adolescents (Geary et al., 2019; Wang et al., 

2020) and 1st grade children (Ching et al., 2020). Additional evidence comes from experiments, 

in which young children receive math tutoring. For example, for 3rd grade children with high 

math anxiety, intensive math tutoring improved math learning and reduced math anxiety 

(Supekar et al., 2015). Thus, existing evidence suggests that in young children, math 

achievement or related experiences initially influence math anxiety.  

These theories were developed to explain the relation of math anxiety and math 

achievement over time. Levine and Pantoja (2021) posit that when the relation between math 

attitudes and math achievement emerges in young children, math achievement-related 

experiences influence math anxiety. They emphasize that additional research should test this 

theory and should examine these relations in families from diverse backgrounds. Levine and 

Pantoja (2021) also emphasize that research should account for more than one math attitude at a 

time, which is why we examine another self-relevant math attitude: math self-concept.  

Math Self-Concept 

Math self-concept refers to one’s self-perception or beliefs about their current 

competence in math (Eccles et al., 1993; Eccles & Wigfield, 2002). Measures of self-concept 

typically also assess one’s expectations of future math achievement and their perception of math 

task difficulty, as these constructs are empirically indistinguishable from one’s perception of their 

current math competence (see Levine & Pantoja, 2021). The relation of math self-concept with 

math achievement is present as early as 1st grade (Dapp & Roebers, 2018; Dowker et al., 2019; 

Herbert & Stipek, 2005; Valeski & Stipek, 2001), and as early as 6 years old in German children, 

before the start of formal schooling (Arens et al., 2016; Marsh et al., 2002). Similar to math 

anxiety, there are three theories on the direction of the relation between math self-concept and 
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math achievement: the relation is reciprocal, math self-concept influences math achievement, 

and math achievement influences math self-concept (Eccles & Wigfield, 2020).  

Findings from a meta-analysis show that the relation between math self-concept and math 

achievement becomes stronger from elementary to high school (Ma & Kishor, 1997). Thus, we 

need to understand how this relation emerges in young children, before it has become much 

stronger in adolescence. Studies of adolescents suggest a reciprocal relation, as math self-concept 

predicts math achievement as strongly or more strongly than the reverse (Arens et al., 2017; 

Marsh et al., 2005; Möller et al., 2011; Pinxten et al., 2014; Sewasew et al., 2018).  

Situated Expectancy-Value Theory posits that previous math achievement-related 

experiences influence one’s interpretation of these experiences, which influence affective 

reactions and memories of math, which then influence math self-concept (Eccles & Wigfield, 

2020). Indeed, findings from studies of young children suggest that math achievement may 

initially influence math self-concept. Studies of preschool, elementary, and middle school 

students find that math achievement predicts math self-concept more strongly than the reverse 

(Arens et al., 2016; Ganley & Lubienski, 2016; Helmke & van Aken, 1995). For example, in a 

study of elementary and middle school students, math achievement predicted math self-concept, 

while the reverse relation was much weaker (Ganley & Lubienski, 2016). A study of 5- to 6-

year-olds in Germany found similar results of math achievement predicting math self-concept 

more strongly than the reverse (Arens et al., 2016). Thus, similar to findings of math anxiety, 

there is some suggestion that when the relation emerges, math achievement-related experiences 

first influence math self-concept. Next, we discuss what is known about how math self-concept 

and math anxiety relate to each other.  
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Math Anxiety and Math Self-Concept 

Self-relevant math attitudes are likely linked. One possibility is that high math anxiety 

could initially leads to lower math self-concept. A second possibility is that lower math self-

concept initially leads to higher math anxiety. A third possibility is that when the relation 

emerges, math anxiety and math self-concept influence each other. Studies with adolescents find 

a reciprocal relation, with math self-concept predicting math anxiety more strongly than the 

reverse (Ahmed et al., 2012; Wang et al., 2020). Thus, at least eventually, self-relevant math 

attitudes likely influence each other.  

Studies of young children show that math anxiety and math self-concept are concurrently 

related by 2nd grade (Jameson, 2014; Justicia-Galiano et al., 2017; Kaskens et al., 2020). 

However, to our knowledge, research has not examined this relation longitudinally in young 

children. Understanding whether one of these self-relevant math attitudes influences the other, 

could inform decisions on whether interventions should focus on one or both of these attitudes in 

young children. The current study is the first, to our knowledge, to examine the longitudinal 

relation of math anxiety and math self-concept in young children from low SES backgrounds.  

Parent Math Anxiety 

Parent math anxiety predicts adolescents’ math achievement and math anxiety (Casad et 

al., 2015; Soni & Kumari, 2017), as well as young children’s math achievement (Berkowitz et 

al., 2015; Schaeffer et al., 2018). The link between parent math anxiety and child math 

achievement can be broken if parents with high levels of math anxiety are provided with tools 

that encourage positive math interactions with their children (Berkowitz et al., 2015; Schaffer et 

al., 2018). These findings suggest that the relation of parent math anxiety to child math 

achievement is likely connected to differences in parent math behaviors.  
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Adult math anxiety predicts their math avoidance (Choe et al., 2019). Findings from 

recent studies suggest that the math anxiety and math avoidance link extends to the quantity and 

quality of parent math engagement with their toddlers and preschoolers (Berkowitz et al., 2021; 

del Río et al., 2017). In turn, parent math engagement, including the quantity and quality of 

number talk, predicts child math achievement (Casey et al., 2018; Elliott et al., 2017; Gunderson 

& Levine, 2011; Levine et al., 2010; Ramani et al., 2015; Susperreguy & Davis-Kean, 2016; 

Thippana et al., 2020). However, these relations may vary for families from different SES 

backgrounds. For example, Berkowitz et al. (2021) found an interaction effect between parent 

SES and math anxiety on parent number talk. Parents with high math anxiety from higher SES 

backgrounds provided less number talk, but parents from lower SES backgrounds, provided 

infrequent number talk regardless of their math anxiety. These findings highlight the importance 

of examining the role of parent math attitudes in families from diverse SES backgrounds.  

Parent Math Expectancy-Value 

Parent math expectancy-value is a child-specific math attitude, as it involves parents’ 

expectations of how well their children will do in math, and how valuable they think math is for 

their child’s future. Parent math expectancy-value is thought to be influenced by personal 

characteristics (e.g., aptitude and temperament), cultural milieu (e.g., family demographics and 

stereotypes about math), and children’s math achievement (Eccles & Wigfield, 2020). Situated 

Expectancy-Value Theory posits that child math self-concept and math achievement are 

influenced by parent child-specific math attitudes (Eccles & Wigfield, 2020; Wigfield et al., 

2006, 2015). The relation of parent math expectancies to child math self-concept and math 

achievement has been shown as early as 1st grade in families from middle to high SES 

backgrounds, and this relation is stronger in older children (Fredricks & Eccles, 2002; Wigfield 
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et al., 1997). Parent math expectancies can have long-term effects, as in studies of families from 

middle to higher SES backgrounds, they predict future high school courses and career choices 

(Bleeker & Jacobs, 2004; Wigfield et al., 2015). Given findings, discussed above, suggesting that 

there are SES differences in the role of parent math anxiety, it is important to examine the role of 

parent math expectancy-value in young children from low SES backgrounds.  

The Current Study 

Our study is the first, to our knowledge, to examine longitudinal relations between parent 

math attitudes, child math attitudes and child math achievement in families from low SES 

backgrounds. We assessed child math anxiety, math self-concept, and math achievement at the 

beginning (fall) and end (spring) of 1st grade to better understand how relations between these 

variables emerge. We assessed parent math expectancy-value and math anxiety at the beginning 

(fall) of 1st grade to better understand how these parent math attitudes relate to each other, and 

how they predict child self-relevant math attitudes and math achievement.  

The current study examines longitudinal relations between child self-relevant math 

attitudes, child math achievement, and parent math attitudes in 1st grade children from low SES 

backgrounds. Specifically, we ask: 1) Do children’s early self-relevant math attitudes predict 

later math achievement? 2) Does children’s early math achievement predict later self-relevant 

math attitudes? 3) Do parent math attitudes predict child math achievement and self-relevant 

math attitudes? Our primary hypothesis was that child math achievement would predict child 

self-relevant math attitudes more strongly than the reverse relation. Our secondary hypothesis 

was that parent math expectancy-value would predict child math achievement and self-relevant 

math attitudes. Additionally, we expected a longitudinal relation between child math anxiety and 

math self-concept but were agnostic about the direction of the relation. As an exploratory 
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question, we also compare child and parent math attitudes between participants from this study 

(from low SES backgrounds), and participants from Study 1 (from higher SES backgrounds). 

Method 

Participants 

The data analyzed in the current study were collected as part of a large longitudinal 

randomized control trial, examining the effectiveness of a math app that parents and children 

engaged with to support children’s math learning. Primary caregivers and their 1st graders were 

recruited and randomly assigned to an intervention (math) or control (reading) condition. 

Because there were no condition effects on any of the measures analyzed in the current study 

(see Table 10), we examined data from participants across conditions, and controlled for 

condition as a precaution. Our study included 484 1st grade children (232 girls; 238 in the control 

condition) from Chicago schools. Primary caregivers (415 mothers, 37 fathers, 13 grandparents 

and 8 other), referred to as parents for simplicity, reported an average household income of 

$29,800 (SD=$27,364), and reported that 83.6% of children were African American or Black, 

3.7% were Hispanic or Latino/a, 0.6% were White, and 11.9% were another race or two or more 

races. Note that on average, families were just above the poverty line for a family of four in 

Chicago ($24,858, U.S. Fontenot et al., 2018). 

An additional seven children and their primary caregivers were initially assessed but were 

excluded because children had a sibling participating in the study and only one of them was 

randomly chosen to be included in analyses. Children and parents were included in all analyses 

for which they had relevant data. Missing data occurred due to parents not completing individual 

questionnaires, children having problems completing individual tasks, experimenter error, or 

because children transferred schools between fall and spring (see sample sizes in Table 1). Our 
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path analyses used full information maximum likelihood estimation, which includes all available 

data to estimate model parameters, an unbiased and efficient method to deal with missing data 

(Enders & Bandolos, 2001; Muthén & Muthén, 1998-2017).  

Procedure 

We contacted schools in the Chicago area that predominantly served children that 

qualified for free or reduced-price lunch. Parents of 1st graders from participating schools who 

were interested in participating, signed permission forms and completed questionnaires at the 

beginning of the school year. Child measures were administered one-on-one by an experimenter 

at the beginning (fall) and end (spring) of 1st grade. Below we describe the subset of measures 

analyzed in the current study.6  

Child Measures 

Math Anxiety. Children completed the revised Child Math Anxiety Questionnaire 

(CMAQ-R: Ramirez et al., 2016). The 16-item measure asked children how nervous they would 

feel during various math-related situations, such as solving 34-7, or taking a math test. To 

respond, children pointed to one of five smiley faces displaying an emotional gradient from “not 

nervous at all” to “very very nervous”. Math anxiety was scored on a scale of one (low math 

anxiety) to five (high math anxiety). Cronbach’s Alpha was .76 in fall and .79 in spring.  

Math Self-Concept. Children completed a commonly used math self-concept measure 

developed by Eccles et al. (1993), which included the following items: 1) How good at math are 

you; 2) If you were to list all the students in your class from the worst to the best in math, where 

 
6 We included several other child and parent measures that were not analyzed for the current study. Child measures 

not analyzed in the current study include: WJ Math Fluency, WJ Picture-Vocabulary, Number Line, Forward and 

Backward Letter Span, Visuo-Spatial Working Memory, Theories of Intelligence, School Subject Preference, 

Reading and Spatial Anxiety, Self-Efficacy, and Stereotype Drawing Task. Parent measures not analyzed in the 

current study include: Theories of Intelligence, Homework Help Frequency and Confidence, Engagement in Math 

Activities, Reading Anxiety, and School Subject Enjoyment.  
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would you put yourself; 3) Some kids are better in one subject than in another. For example, you 

might be better in math than in reading. Compared to most of your other school subjects, how 

good are you in math; 4) How well do you think you will do in math this year; 5) How good 

would you be at learning something new in math; 6) In general, how hard is math for you? 

Children responded on scale from one (low math self-concept) to seven (high math self-concept). 

Cronbach’s Alpha for math self-concept was .51 in fall and .56 in spring, which is lower than 

that reported by Eccles et al. (1993) in a sample of 1st graders from middle-SES backgrounds 

(0.71). Although this is below the suggested level of .70 (Cronbach, 1951), studies with young 

children commonly report a lower alpha level (Giles & Heyman, 2003; Erdley et al., 1997; 

Gunderson et al., 2013; Ramirez et al., 2013). While low internal consistency does not indicate 

poor validity (McCrae, et al., 2011), our analysis approach accounts for measurement error, as 

described in the Results section. 

Math Achievement. Children completed the Applied Problems subtest of the 

Woodcock-Johnson IV (Schrank et al., 2014). This subtest requires children to answer math 

word problems that increase in difficulty. We examined students’ W scores, a transformation of 

raw scores into a Rasch-scaled score of equal interval measurements that represents ability and 

task difficulty. A one-point W score increase roughly represents approximately a half month of 

learning during a school year. The average W score of a 6-year-old and 7-year-old is 448 and 

465 (McGrew et al., 2014).  

Reading Achievement. As a divergent measure, children completed the Letter-Word 

Identification subtest of the Woodcock Johnson IV (Schrank et al., 2014). This subtest requires 

children to read letters and words out loud. We examined students’ W scores, a transformation of 

raw scores into a Rasch-scaled score of equal interval measurements that represents ability and 
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task difficulty. A one-point W score increase roughly represents approximately a quarter month 

of learning during a school year. The average W score of a 6-year-old and 7-year-old is 419 and 

455 (McGrew et al., 2014).  

Parent Measures 

Math Expectancy-Value. Parents completed a questionnaire on their expectations and 

value of math for their child (Schaeffer et al., 2018), in which they responded to the following 

questions: 1) How is your child doing in math; 2) How much natural talent does your child have 

in math; 3) How important do you think math is for your child; 4) How well do you think your 

child will do in math in the future. Parents responded on a scale of one (low math expectancy-

value) to five (high math expectancy-value). Cronbach’s alpha was .69.  

Math Anxiety. Parents’ math anxiety was measured using the short-Mathematical 

Anxiety Rating Scale (Alexander & Martray, 1989). Parents responded to this 25-item measure 

on a scale of one (low math anxiety) to five (high math anxiety). Cronbach’s alpha was .98.  

Control Variables 

 In our analyses, we controlled for variables that could potentially confound relations 

between our variables of interest. We did not control for SES, as our sample was already a very 

low SES sample (see Participants section). We controlled for gender, as boys have been shown 

to have more positive math attitudes than girls (see Levine & Pantoja, 2021). While there were 

no significant differences between conditions for any of our variables (see Table 10), we 

controlled for condition as a precaution. We also controlled for parent math education, as a proxy 

for parent math knowledge. Parents with more math knowledge could potentially have lower 

math anxiety and higher math expectancy-value, given the math achievement-attitude link, and 
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could potentially be more equipped to provide math support to their children. We describe our 

measure of parent math education below.  

Math Education. Parents reported the math classes they took in high school and college 

if applicable. Parent math education was coded based on the highest-level of math completed: no 

math classes=0, high school algebra=1, high school geometry=2, high school algebra 2=3, high 

school calculus=4, college algebra, geometry, or algebra 2=5, college calculus=6.  

Results 

Descriptive Statistics 

Descriptive statistics of all measures for the full sample, within condition and within 

gender are shown in Table 10. There were no significant differences between conditions. Girls 

reported higher math anxiety than boys at the end of 1st grade, t(439)=-2.66, p=.008, and there 

were no other statistically significant gender differences. Preliminary path analyses within 

condition and within gender showed similar relations among math achievement, math anxiety 

and math self-concept. Therefore, in our analyses, we included the full sample and treated 

condition and gender as covariates.  

Compared to studies of children from higher SES backgrounds, children in our sample 

had very low math achievement but had similar math attitude levels. Child math self-concept 

was high, in line with findings from studies of 1st graders from higher SES backgrounds (Eccles 

et al., 1993), and findings that the average American regards themselves as above average, 

regardless of SES (Baumeister et al., 2003). While the focus of Study 1, which included children 

from diverse (but mostly higher) SES backgrounds, was not on parents, parent math expectancy-

value and math anxiety were assessed as part of a large longitudinal study (see Berkowitz et al., 

2015; Schaeffer et al., 2018). Thus, we compared parent math attitudes in Study 1 and Study 2. 
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Parents in Study 2 (from lower SES backgrounds) had lower math expectancy-value (M=4.12, 

SD=.59) than parents in Study 1 (from higher SES backgrounds; M=4.28, SD=.56; t=2.93; 

p=.004, d=.28). Similarly, parents in Study 2 had higher math anxiety (M=2.40, SD=1.10) than 

parents in Study 1 (M=2.12, SD=.76; t=3.24; p=.001, d=.26).  

Table 10. Descriptive statistics for the full sample, within conditions and within gender 

 
 Full Sample 

Control 

Condition 

Intervention 

Condition 
Boys Girls 

  N Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Child Applied Problems (fall) 469 441.45 (16.16) 442.42 (15.33) 440.50 (16.91) 441.51 (16.55) 441.38 (15.80) 

Child Letter-Word Identification (fall) 469 415.28 (36.36) 418.06 (35.06) 412.53 (37.46) 413.29 (37.62) 417.27 (35.01) 

Child math anxiety (fall) 469 2.64 (0.76) 2.66 (0.74) 2.62 (0.79) 2.59 (0.78) 2.68 (0.75) 

Child math self-concept (fall) 470 5.89 (0.98) 5.86 (0.95) 5.92 (1.00) 5.84 (1.07) 5.94 (0.87) 

Child Applied Problems (spring) 440 448.25 (15.73) 448.30 (15.74) 448.20 (15.76) 448.81 (16.97) 447.7 (14.40) 

Child Letter-Word Identification (spring) 441 437.76 (34.77) 440.31 (33.82) 435.12 (35.61) 436.39 (37.03) 439.14 (32.38) 

Child math anxiety (spring) 441 2.43 (0.78) 2.45 (0.79) 2.41 (0.77) 2.34*** (0.79) 2.53*** (0.76) 

Child math self-concept (spring) 442 6.03 (0.97) 6.04 (0.97) 6.01 (0.97) 6.04 (0.97) 6.01 (0.98) 

Parent math expectancy-value (fall) 476 4.12 (0.59) 4.14 (0.60) 4.1 (0.58) 4.1 (0.61) 4.14 (0.57) 

Parent math anxiety (fall) 482 2.40 (1.10) 2.38 (1.11) 2.41 (1.09) 2.31 (1.05) 2.48 (1.14) 

Parent math education 466 4.15 (1.61) 4.15 (1.62) 4.16 (1.59) 4.12 (1.57) 4.18 (1.64) 

 

Raw Correlations 

Correlations among all measures are shown in Table 11. While raw correlations are 

ambiguous since we do not account for any other variables, we discuss raw relations between 

key variables below.  

In the fall, all child variables were significantly correlated with each other, except math 

anxiety was not significantly correlated to math achievement or reading achievement. In the 

spring, all child variables were significantly correlated with each other. In addition, fall math 

achievement, reading achievement and math self-concept were significantly correlated with all 

child variables in the spring, except fall reading achievement was marginally correlated to spring 

math anxiety. Fall math anxiety was significantly correlated to spring math anxiety and math 
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self-concept, but there was no evidence of a correlation to spring math achievement or reading 

achievement.  

Parent math expectancy-value was significantly correlated with fall and spring child math 

achievement, reading achievement, and math self-concept. Parent math anxiety was significantly 

correlated with spring child math achievement and math self-concept, and marginally correlated 

with fall child math achievement, but was not significantly correlated to any other child 

variables. Parent math expectancy-value and math anxiety were not significantly correlated with 

each other. Parent math education was significantly correlated with parent math expectancy-

value and parent math anxiety. Parent math education was also correlated with fall and spring 

child math achievement and reading achievement.  

Table 11. Correlations among all measures 
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Main Analyses 

 One purpose of our path analyses was to examine whether apparent correlations that are 

commonly reported between child math achievement, math anxiety and math self-concept hold 

for young children from low SES backgrounds. Further, we wanted to examine whether these 

relations hold longitudinally in one model with these three variables (assessed in spring of 1st 

grade) as outcomes and controlling for these three variables from fall of 1st grade. We conducted 

cross-lagged path analyses in MPlus (Muthén & Muthén, 1998-2017). We used ESTIMATOR = 

MLR, maximum likelihood parameter estimates with standard errors that are robust to non-

normality and non-independence of observations to account for the non-normal distribution of 

child math self-concept (see Table 1), and TYPE = COMPLEX to account for shared student-

level variance within classrooms. Child math anxiety and math self-concept, and parent math 

expectancy-value and math anxiety were modelled as latent variables to account for 

measurement error. Math achievement and reading achievement were modelled as manifest 

variables (i.e., variables that can be directly measured or observed) in line with previous studies 

that have included child achievement in a cross-lagged path analysis (Gunderson et al., 2018).  

Child Math Achievement and Self-Relevant Math Attitudes. Model 1, shown in 

Figure 5, examined bidirectional relations between child math achievement, math anxiety and 

math self-concept. The model had good fit: root mean square error of approximation (RMSEA) = 

.030, Comparative Fit Index (CFI) = .828, Tucker-Lewis Index (TLI) = .816, and standardized 

root mean square residual (SRMR) = .051.  

 Fall math achievement significantly negatively predicted spring math anxiety (ß=-.20, 

p<.001) more strongly than the reverse (ß=.03, p=.508.; see Figure 6 for a visual representation). 

In other words, a one unit increase in the standard deviation of fall math achievement is expected 
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to result in a 20% decrease in the standard deviation of spring math anxiety. Longitudinal 

relations between math achievement and math self-concept were not statistically significant.  

Concurrently, math anxiety and math self-concept were significantly negatively related in 

fall (ß=-.31, p<.001) and spring (ß=-.42, p<.001). Further, fall math achievement and math self-

concept were significantly positively related (ß=.27, p<.001). Each key variable significantly 

predicted itself from fall to spring. Gender predicted spring math anxiety, such that girls 

(M=2.53, SD=0.76) had higher math anxiety than boys (M=2.34, SD=0.79). Gender also 

predicted fall math self-concept, such that girls (M=5.94, SD=0.75) had higher math self-concept 

than boys (M=5.84, SD=0.78). Condition did not predict any of our key variables.  

 

Figure 5. Cross-lagged path analysis for Model 1, showing concurrent and longitudinal relations between 

math achievement, math anxiety and math self-concept. Significant relations at the p<.05 level are 

represented with solid lines. Nonsignificant paths are represented with dotted lines. Nonsignificant 

relations with control variables are not shown. 
*p < 0.05    **p < 0.01    ***p < 0.001 
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a.       b.  

Figure 6. Scatter plot of fall Applied Problems with spring math anxiety (a) and fall math 

anxiety with spring Applied Problems (b).  

 

Parent Math Attitudes, Child Self-Relevant Math Attitudes and Math Achievement. 

In Model 2, shown in Figure 7, we built on Model 1, by adding parent math expectancy-value 

and parent math anxiety as predictors. Parent math education was included as a control variable 

to account for parent math knowledge. The model had good fit: RMSEA = .057, CFI = .734, TLI 

= .723, and SRMR = .053. Paths that were significant in Model 1, remained significant in Model 

2. Below we discuss the new paths that were tested in Model 2.  

Parent math expectancy-value significantly positively predicted child fall math 

achievement (ß=.39, p<.001) and math self-concept (ß=.24, p<.001), and child spring math 

achievement (ß=.18, p<.001; see Figure 8 for a visual representation). In other words, a one unit 

increase in the standard deviation of parent math expectancy-value is expected to result in a .18 

increase in the standard deviation of child spring math achievement. Parent math anxiety did not 

significantly predict any child variables. Parent math education, a control variable, significantly 

positively predicted parent math expectancy-value and significantly negatively predicted parent 

math anxiety. Parent math education also significantly positively predicted child fall and spring 

math achievement.  
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Figure 7. Cross-lagged path analysis for Model 2 showing concurrent and longitudinal relations between 

math achievement, math anxiety and math self-concept, as well as parent math anxiety and math 

expectancy-value. Significant relations at the p<.05 level are represented with solid lines. Nonsignificant 

paths are represented with dotted lines. Nonsignificant relations with control variables are not shown.  
*p < 0.05    **p < 0.01    ***p < 0.001 

 

 

 
Figure 8. Scatter plot of parent math expectancy-value with child spring math achievement.  

 

Divergent Validity 

 In Model 3, shown in Figure 9, we examined the divergent validity of our results. The 

model had good fit: RMSEA = .057, CFI = .734, TLI = .722, and SRMR = .053. Our two key 
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findings reported in Model 1 and Model 2, were that child fall math achievement negatively 

predicted child spring math anxiety, and parent math expectancy-value positively predicted child 

spring math achievement. We wanted to examine whether these two key findings held for 

reading achievement. In Model 3, we included child reading achievement instead of child math 

achievement. Our key relations were not statistically significant in this parallel model. We see no 

evidence that child fall reading achievement predicted child spring math anxiety, or that parent 

math expectancy-value predicted child spring reading achievement.  

Figure 9. Cross-lagged path analysis for Model 3 showing concurrent and longitudinal relations between 

reading achievement, math anxiety and math self-concept, as well as parent math anxiety and math 

expectancy-value. Significant relations at the p<.05 level are represented with solid lines. Nonsignificant 

paths are represented with dotted lines. Nonsignificant relations with control variables are not shown.  
*p < 0.05    **p < 0.01    ***p < 0.001 

Discussion 

 The current study was the first to examine longitudinal relations among parent math 

attitudes, child self-relevant math attitudes, and child math achievement in families from low 

SES backgrounds. 1st grade is an important time to examine these relations, as children have just 
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begun formal schooling, and are likely beginning to develop positive or negative math attitudes. 

Because relations between self-relevant math attitudes and math achievement are stronger in 

high school than in elementary school (Ma & Kishor, 1997; Namkung et al., 2019), breaking the 

math achievement-attitude link may be easier when children are younger. Although the data 

reported in the current study are correlational, cross-lagged path analysis brings us one step 

closer toward improving our understanding of how these important factors are causally related. 

Nonetheless, experimental work is needed to determine whether the longitudinal relations we 

observed represent causal relations. Below, we describe conclusions based on our results.  

Descriptives 

Here, we discuss gender differences and SES differences. Girls had higher math anxiety 

than boys, in spring of 1st grade, similar to prior studies of elementary school students from 

higher SES backgrounds (Ching et al., 2020; Gunderson et al., 2018; Sorvo et al., 2017). Further 

research is needed to understand whether there are gender differences in young children’s math 

self-concept.  

In this study of children from lower SES backgrounds, children were behind by about 10 

months of math learning (Applied Problems W Score mean = 441 and 448 in fall and spring of 

1st grade) compared to Study 1 (Applied Problems W Score mean = 458 and 473 in fall and 

spring of 1st grade). However, math anxiety and math self-concept levels were very similar to 

those reported in other studies that used the same measures with 1st graders from diverse (but 

mostly higher) SES backgrounds (Eccles et al., 1993; Gunderson et al., 2018; see Study 1). Child 

math self-concept was very high, in line with findings that American children have higher self-

esteem (Baumeister et al., 2003). Relatedly, a meta-analysis showed that SES has only a small 

effect on self-esteem, and the difference is especially small for younger children (Twenge & 
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Campbell, 2002). Our findings that child math anxiety and math self-concept levels are similar 

compared to children from higher SES backgrounds may also be explained by the big-fish-little-

pond effect (i.e., equally achieving students have a lower self-concept when attending higher-

performing schools than lower-performing schools; Marsh, 1987). In other words, children in our 

sample were in classrooms where their peers’ average math achievement was low. However, 

children with low math achievement that are in classrooms where their peers’ average math 

achievement is much higher than their own, may have more negative math attitudes, as they 

might compare their math achievement to that of their higher achieving peers.  

While our results suggest that child math attitudes are similar regardless of SES 

backgrounds, in families from low SES backgrounds, parent math attitudes may be more 

negative. Future research should examine whether child math achievement plays a role in parent 

math attitudes, and whether in older children, math attitude levels differ based on SES 

backgrounds. In this study, there was not strong evidence of a relation between parent math 

anxiety and parent math expectancy-value, in contrast to findings from studies of families from 

higher SES backgrounds (Schaeffer et al., 2018). Thus, relations among parent math attitudes 

may differ depending on SES backgrounds.  

Child Math Achievement and Self-Relevant Math Attitudes 

Math Achievement and Math Anxiety. Our primary hypothesis—that math 

achievement would predict self-relevant math attitudes more strongly than the reverse—was 

supported for math anxiety. Fall math achievement significantly negatively predicted spring 

math anxiety, while the reverse relation was much weaker and not statistically significant. Our 

results are in line with those from studies of 1st and 2nd grade children from higher SES 

backgrounds, in which the relation from math achievement to math anxiety was also stronger 
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than the reverse (Cargnelutti et al., 2017; Ching et al., 2020; Gunderson et al., 2018). We 

compare our findings to those of Gunderson et al. (2018), who used a statistical approach similar 

to ours, with a sample of 1st and 2nd grade children from homes where the average annual family 

income was nearly twice as high as that from the current study, and well above the poverty line. 

The strength of the relation between fall math achievement and spring math anxiety was similar 

in both studies (ß=-.20 in both studies). While Gunderson et al. (2018) showed a weaker, but 

significant, relation from fall math anxiety to spring math achievement, the current study showed 

a very weak relation that was not near statistical significance or in the expected direction. One 

possibility is that differences in findings can be explained by the children in our sample having 

lower math achievement and coming from lower SES backgrounds. In sum, math achievement-

related experiences likely play an important role in the development of high or low math anxiety 

in young children, regardless of SES backgrounds. Further research is needed to determine if 

there are SES differences in the relation of math anxiety to later math achievement in young 

children.  

Math Achievement and Math Self-Concept. We did not observe a significant 

longitudinal relation between child math achievement and math self-concept. Understanding 

when and how the relation of math achievement with math self-concept emerges for children 

from low SES backgrounds is an important question for future research.  

Math Anxiety and Math Self-Concept. To our knowledge, our study was the first to 

examine the longitudinal relation between child math anxiety and math self-concept. We 

expected that math self-concept and math anxiety would be longitudinally related and were 

agnostic about the direction of the relation. We did not observe a statistically significant 

longitudinal relation in our path analysis, but the relation was in the expected direction (negative) 
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and was significant in raw correlations. We did observe a significant concurrent negative relation 

between math anxiety and math self-concept in the fall and spring, in line with studies showing a 

concurrent relation in elementary school students from higher SES backgrounds (Jameson et al., 

2014; Justicia-Galiano, 2017; Kaskens et al., 2020), suggesting that these self-relevant math 

attitudes may develop together. Eventually, these two self-relevant variables are likely 

longitudinally related, and further research should examine when this relation emerges and in 

what direction.  

Parent Math Attitudes, Child Self-Relevant Math Attitudes and Math Achievement 

Our second hypothesis—that parent math attitudes would predict child math achievement 

and child math attitudes—was partially supported. Parent math expectancy-value predicted child 

spring math achievement, controlling for fall math achievement and self-relevant math attitudes. 

Our results suggest that parent math expectancy-value is a strong predictor of children’s success 

in math, in line with findings from studies of families from higher SES background (Schaeffer et 

al., 2018). To our knowledge, this is the first study to control for prior child math achievement, 

when examining the relation of parent math expectancy-value to young children’s future math 

achievement. Moreover, we found that the relation of parent math expectancy-value to children’s 

future math achievement was domain specific, as parent math expectancy-value did not 

significantly predict child spring math achievement in our path analysis. Improving parent math 

expectancy-value may be one way to improve child math achievement in young children from 

low SES backgrounds.  

We did not observe a significant relation of parent math anxiety to child math 

achievement, in contrast to studies of children from higher SES backgrounds (Berkowitz et al., 

2015; Maloney et al., 2015; Schaeffer et al., 2018). These findings are somewhat consistent with 
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those of Berkowitz et al. (2021), who showed that parent math anxiety predicted number talk to 

toddlers in families from higher SES backgrounds, but not low SES backgrounds. One 

possibility is that parent math anxiety is not an important predictor of math behaviors or math 

achievement in families from low SES backgrounds. Another possibility is that in families from 

low SES backgrounds, parent math anxiety becomes more impactful when children grow older 

and work on more complex math assignments. Indeed, this is an important question for future 

research.  

Final Thoughts and Future Directions 

Social contexts or settings, such as the school and home environment, should be taken 

into consideration when examining what factors play a role in child math achievement (Eccles & 

Wigfield, 2020). Most children in our sample were from low SES backgrounds, were African 

American or Black, and had low math achievement. They attended schools where most of their 

peers were also from low SES backgrounds and had low math achievement. In contrast, other 

studies that have included children from diverse SES backgrounds, may have included children 

from low SES backgrounds that attended schools where many of their peers were from higher 

SES backgrounds and had higher math achievement (Berkowitz et al., 2015; Eccles et al., 1993; 

Gunderson et al., 2018; Schaeffer et al., 2018). Thus, the social contexts or settings of students in 

the current study may be very different from that of students in other samples that have examined 

similar research questions. It is possible that relations observed in the current study would differ 

in children from low SES backgrounds that are in different social contexts (e.g., if they attend 

schools where their peers’ math achievement and SES backgrounds are higher). Further, it is 

unclear whether our results would replicate in samples of families from non-minority 

backgrounds. Indeed, future research should take social context into consideration when 
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examining relations between parent math attitudes, child math attitudes, and child math 

achievement.  

Our findings suggest that fostering high math achievement and positive math experiences 

can lead to the development of positive self-relevant math attitudes, regardless of SES 

backgrounds. Our findings raise important questions for future research. Future research should 

examine when and to what extent math anxiety begins to predict math achievement in children 

from low SES backgrounds. More broadly, how might SES differences in the math achievement 

and math anxiety relation shown in adolescent samples (OECD, 2013) change across 

development? In addition, more research is needed to understand how children interpret their 

math achievement and related experiences. For example, how do children feel after receiving a 

low math score? What messages do parents and teachers convey about their children’s math 

achievement, and how does this make children feel? 

Further, fostering high math expectancy-value in parents may be a way to improve child 

math achievement. However, experimental work is needed to understand whether improving 

parent math expectancy-value in turn improves child math achievement, or whether providing 

families with math tools reduces the negative effect of low parent math expectancy-value on 

child math achievement, in families from low SES backgrounds. Prior research shows that 

interventions are not a one-size-fits-all, as some interventions that reduce the effect of negative 

parent math attitudes on child math achievement are not successful in families from low SES 

backgrounds (Herts, 2020).  

Given the importance of parent math expectancy-value, which has been shown to predict 

parent behaviors (Simpkins et al., 2002; Wigfield et al., 2006; 2015), in Study 3 we focus on a 

specific parent behavior: the talk that they provide to their toddlers.  
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STUDY 3: EFFECTS OF PARENT TALK DURING TODDLERHOOD ON CHILD 

CARDINALITY AND CALCULATION SKILLS 

The amount of number talk that parents provide to their children during various stages of 

development positively predicts child math achievement (Casey et al., 2018; Elliott et al., 2017; 

Glenn et al., 2018; Gunderson & Levine, 2011; Levine et al., 2010; Ramani et al., 2015; 

Susperreguy & Davis-Kean, 2016; Thippana et al., 2020). However, the causal effects of the 

quantity of both naturalistic parent number talk and other talk (i.e., overall talk that excludes 

number talk) on children’s long-term math skills are less clear. In the current study, we address 

important questions regarding the effect of parent talk: 1) Does parent number talk impact child 

math skills, 2) Does parent other talk impact child math skills, and 3) Does the impact of parent 

talk on child math skills vary based on when in development it is provided (i.e., early at 14 

months or later at 38 months)? We address these questions by examining longitudinal, dynamic 

relations between parent talk and child math skills, using inverse probability of treatment 

weighting (IPTW). This statistical approach is designed to evaluate whether observed relations 

between variables could be causal, by accounting for baseline and time-varying covariates 

(Robins et al., 2000). IPTW allows us to treat observational data of parent talk provided at 

different time points as if they came from a randomized experiment. By using IPTW with 

observational data to examine causal effects of parent talk on child math achievement, we can 

make more informed decisions when developing interventions that target the optimal types of 

parent talk at the optimal times. In addition, we examine what parent and child characteristics 

predict parent talk.  
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Parent Number Talk and Other Talk 

Young children likely acquire early math skills through exposure to informal learning 

opportunities at home (see Geary, 2022). Thus, understanding what aspects of the home 

environment are important for children’s math skills is essential. One aspect of the home 

environment that might be particularly important is the talk that parents provide to their children. 

Sociocultural theory posits that language is a tool that supports cognition (Gauvain et al., 2001, 

2011). Indeed, language is necessary for communicating math knowledge and for thinking about 

abstract math concepts (Peng et al., 2020). The current study focuses on two types of parent talk, 

which we describe below: parent number talk and parent other talk (i.e., overall talk that 

excludes number talk).  

Observational studies show that the amount of number talk parents provide to their 

toddlers and children positively predicts math skills during preschool and elementary school, 

including cardinal number knowledge and calculation skills (Casey et al., 2018; Elliott et al., 

2017; Glenn et al., 2018; Levine et al., 2010; Ramani et al., 2015; Susperreguy & Davis-Kean, 

2016; Thippana et al., 2020). Thus, there is good reason to expect that parent number talk would 

causally affect child math skills. However, the statistical approaches that have been used in 

observational studies (e.g., regressions) preclude interpreting these relations as causal. We 

cannot rule out the possibility that observed relations between parent number talk and child math 

skills were due to confounders, such as parent characteristics, child math skills, or child talk. 

Moreover, experimental studies suggest that parent number talk improves child math 

skills. For example, providing parents with math tools, such as math books or apps, to engage in 

with their children, improves child math achievement (Berkowitz et al., 2015; Gibson et al., 

2020; Purpura et al., 2021; Schaeffer et al., 2018). Providing parents with these math tools likely 
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changes their behaviors, such as the talk that they provide to their children, suggesting that 

parent talk has a causal effect on child math skills. For example, Gibson et al. (2020) showed that 

providing parents with math books to read with their 3-year-olds increased parent number talk in 

the context of book reading. Whether these math books changed other types of parent talk that 

might also be important is unclear. Moreover, these math tool interventions likely do not change 

long-term parent talk, as the effects of short-term interventions often fadeout relatively quickly 

(Bailey et al., 2016; Espinas & Fuchs, 2022).  

In addition to parent number talk, there is good reason to expect that broader (i.e., 

overall) parent talk, is also important for child math skills for at least two reasons. First, parent 

language input (e.g., vocabulary and syntax input) affects child language skills (Silvey et al., 

2021). Second, child language skills and math skills are linked. Because number skills have a 

strong language component, it makes sense that language skills would support children’s 

understanding of terminology important for number skills (Espinas & Fuchs, 2022; LeFevre et 

al., 2010; Purpura et al., 2011, 2021). For example, child language skills are important for math 

skills, such as cardinal number knowledge, arithmetic and word problem solving (Espinas & 

Fuchs, 2022; Napoli & Purpura, 2018; Schröder et al., 2018). Moreover, a recent meta-analysis 

shows that language skills predict cardinal number knowledge and calculation skills, controlling 

for initial math skills (Peng et al., 2020). Thus, given the link between parent language input and 

child language skills, and the link between child language skills and math skills, it is possible 

that parent overall talk affects child math skills. For example, children who have larger 

vocabularies may be more ready to learn the meanings of number words, which are more 

challenging than nouns, because they refer to sets rather than to objects.  
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In sum, while results from previous observational and experimental studies support the 

hypothesis that increased parent number talk and other talk (i.e., overall talk that excludes 

number words) improve child math achievement, they do not show a long-term causal effect. 

The current study provides a more stringent test of the causal effects of increased parent number 

talk and other talk on child math skills. We acknowledge that parent other talk is quite broad. 

While testing the effects of parent other talk won’t reveal if specific aspects of it are particularly 

effective for children’s math skills, we thought it important to examine the effects of parents’ 

overall talkativeness (i.e., other talk) as a first step. One possibility is that parent number talk and 

other talk have similar effects on child math skills. Another possibility is that the effects of 

parent number talk and other talk differ depending on the timing.  

Timing of Parent Talk 

The current study examines whether the effects of parent number talk and other talk 

differ based on timing. Researchers have examined the concurrent relation of parent number talk 

to child math skills (Elliott et al., 2017; Ramani et al., 2015), or the relation of parent number 

talk to children’s future math skills, without accounting for intermediate parent number talk 

(Casey et al., 2018; Levine et al., 2010; Thippana et al., 2020). Because most studies examine 

parent number talk at one time point, the extent to which talk at that particular time point matters 

is unclear. One possibility is that parent number talk or other talk provided at one time point 

could influence various other processes that could impact child math learning (e.g., exposure to 

math materials and positive parent-child math interactions) that could then make parent talk 

provided at a later time point less important. However, a second possibility is that parents who 

provide high levels of talk early continue to do so throughout development, and that it is later 

parent talk that affects child math skills. A third possibility is that the timing of parent talk does 
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not matter, but rather cumulative talk across development is what impacts child math skills. We 

test these three possibilities in the current study. We focus on parent talk provided earlier (at 14 

months) when children’s number skills and talk are limited, and later (at 38 months) when 

children begin to associate small number words with their corresponding set sizes (i.e., “one” 

through “three”; Carey & Barner, 2019). Understanding the optimal timing of parent number 

talk, as well as the optimal timing of parent other talk can inform the development of 

interventions that can aim to increase parent talk during the time points when it is most 

important.  

Predictors of Parent Talk 

Understanding what child and parent characteristics predict parent number talk and other 

talk will provide insight into why children receive differing levels of parent talk. For example, 

child behaviors such as their gestures or their own talk, could lead parents to provide more talk 

(Silvey et al., 2021). Math-gender stereotypes may lead adults to treat boys and girls differently 

(Levine & Pantoja, 2021). Child birth order could also predict parent behaviors (Keller & Zach, 

2002). Further, parent characteristics, including income and education, have been shown to 

predict number talk and other language input (Dailey & Bergelson, 2021; Dearing et al., in prep; 

Levine et al., 2010; Silvey et al., 2021).  

To our knowledge, previous research has not stringently examined how the relation of 

parent and child characteristics to parent talk may differ based on the type of parent talk (i.e., 

number talk or other talk) and when it is provided (i.e., earlier or later). For example, income and 

education have been shown to predict overall talk more strongly than number talk (Dailey & 

Bergelson, 2021; Geary et al., in prep). Determining what parent and child characteristics are 

strong predictors of parent number talk and other talk provided earlier and later, is an important 
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part of IPTW, as children who received different sequences of parent talk are up-weighted or 

down-weighted (i.e., balanced) based on these parent and child characteristics (i.e., confounders). 

Further, this information will provide insights into what influences parent talk.  

The Current Study 

The current study aims to improve our understanding of the causal effect of naturalistic 

parent talk on child math skills. Since we cannot run an experiment randomly assigning children 

to parents that provide different sequences of talk, we use inverse probability of treatment 

weighting (IPTW), which allows us to treat observational data as if they were from an 

experiment, conditional on the assumption that we have measured the covariates that confound 

the association between parent talk and child math achievement. This statistical method was 

derived from epidemiology (Naimi et al., 2014; Robins et al., 2000), and was recently used to 

address similar questions regarding parent language input and child language outcomes (Silvey 

et al., 2021). IPTW allows us to estimate the true effects of parent early, later, and cumulative 

talk on child math skills under key assumptions, which we discuss in the Analytical Procedure 

section.  

Our primary goal is to compare the impact that the timing of parent talk has on child 

math skills. We measure parent talk during two distinct stages in child development: earlier 

when children were 14 months and later when children were 38 months (see Methods for details 

on why we chose these time points). We test three hypotheses regarding the effects of parent 

number talk and other talk on child math skills: 1) early parent talk is more important than later 

parent talk, 2) later parent talk is more important than early parent talk, and 3) cumulative parent 

talk is key, and timing does not matter. Our secondary goal is to examine what parent and child 
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characteristics (e.g., parent income and child gender) predict parent number and other talk 

provided earlier and later.  

Silvey et al. (2021) examined the impact of time-varying parent language on child 

language outcomes and found differing effects for vocabulary and syntax. For vocabulary, 

increased parent talk both early (at 14 months) and later (at 30 months) were key for vocabulary 

outcomes in kindergarten. However, for syntax, parent later talk was key. Thus, it is possible that 

the optimal timing of parent talk may differ based on the type of talk (e.g., number talk or other 

talk) and based on the math skill (e.g., cardinal number knowledge at 46 months or calculation 

skills in 3rd grade).  

Like previous studies, we account for baseline covariates, such as parent income and 

education. However, examining parent talk at multiple time points introduces another 

confounder: child talk. Parent early talk is likely to impact child intermediate talk and math 

skills, which could then influence child later math skills as well as parent later talk. Child talk is 

a time-varying confounder, as it is a potential response to early parent talk that could predict 

parent later talk and child future math skills. These baseline and time-varying confounders make 

it important to use IPTW to address our research questions.  

We focus on two math outcomes: cardinal number knowledge (i.e., understanding the 

meanings of number words) at 46 months, before children have begun formal schooling; and 

calculation skills in 3rd grade, when children have been in a formal school setting for a few years. 

We focus on cardinal number knowledge, as it is a foundational math skill that is necessary to 

develop more complex math skills (Geary et al., 2018; Nguyen et al., 2016; Purpura & Lonigan, 

2013). We focus on calculation skills because it is a key numerical skill that is acquired in the 
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early elementary school years, and it predicts children's use of advanced mathematics strategies 

(Throndsen et al., 2011).  

 

Method 

Data were collected as part of a large longitudinal study of language development 

(Levine et al., 2010). The 64 children (31 girls, 36 first-borns) and their primary caregivers (56 

mothers, 1 father, 7 both mother and father) who were selected to participate in the study were 

representative of the Chicago area in terms of race, ethnicity, and income. Families were visited 

once every 4 months from age 14 to 58 months and their naturalistic interactions were 

videotaped for 90 minutes. Parents were asked to interact with their child as they normally 

would. There were no instructions about what activities to engage in. All primary caregiver and 

child speech and gesture were transcribed, and we calculated measures of baseline and time-

varying child speech and gesture, and measures of parent number talk and other talk, as 

described below.  

Time-Points 

 To examine the effects of parents’ early and later talk, we selected time points for “early” 

and “later” on a theoretical basis. The two time points are distinct stages in children’s math 

development. Early talk was measured when children’s math skills and number talk are known to 

be limited, and later talk was measured when there are changes in children’s number knowledge. 

We chose 14 months as our time point for early talk, as at this age children’s math skills and 

math talk are limited, and thus their number talk is not likely to influence parent number talk. We 

chose 38 months as our time point for later talk, as at this age, some children are beginning to 
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understand the meanings of number words (LeCorre & Carey, 2007; LeCorre et al., 2006; 

Spaepen et al., 2018; Wynn, 1990).  

 Examining parent talk at multiple time points introduces another confounding variable: 

child number talk that occurs in between parent early and later talk, which could both be 

influenced by parent early number talk, and influence parent later number talk. For this measure, 

we used child talk at 34 months, which occurs after the time point when we measured parent 

early talk at 14 months and just before we measured parent later talk at 38 months.  

 We examined two different measures of children’s math skills, which were assessed at 

different time points. First, we assessed cardinal number knowledge at 46 months, in line with 

previous analysis of this data (Gunderson & Levine, 2011; Levine et al., 2010), and to 

understand the role of parent math talk on a foundational aspect of math knowledge that is 

predictive of math achievement (Geary et al., 2018). Children also completed this assessment at 

42 and 50 months. However, because some children reached ceiling on this task at 50 months, 

and performance at 46 months was more reliably correlated with important covariates (e.g., 

parent income and education) than performance at either 42 months or 50 months, we decided to 

focus on performance at 46 months for this analysis. Second, we assessed children’s calculation 

skills when children were in 3rd grade. Children also completed this assessment in 2nd and 4th 

grade, however because there was not much growth between 3rd and 4th grade, and performance 

in 3rd grade was more reliably correlated with parent and child covariates than performance in 2nd 

or 4th grade, we decided to focus on performance in 3rd grade.  

Measures 

Parent Covariates. To account for differences in socioeconomic status (SES) we 

included annual household income and primary caregiver years of education reported at 14 
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months as covariates. To account for general intellectual similarities between parents and their 

children, we included primary caregiver IQ, a composite of the full scale of the Wechsler 

Abbreviated Scale of Intelligence (WASI-II, Wechsler, 2011), that was administered when 

children were in 5th grade. For families with joint mother and father primary caregivers, only 

mothers’ IQ was assessed, with the exception that in one joint caregiver primary family only the 

father chose to take the WASI.  

Child Covariates. To account for factors that could influence parent talk and child 

outcomes, we included child word types (i.e., the number of unique words the child spoke) at 14 

months. Additionally, we included child gesture types (i.e., the number of unique meanings the 

child produced in gesture) at 14 months. Child gesture is predictive of their numerical 

knowledge, motivating our decision to include this measure as a covariate (Gordon et al., 2021). 

Additionally, we included child gender and birth order, which we coded as either firstborn/only 

child or second/later born, in line with Silvey et al. (2021). 

Parent Number Talk. Parents’ use of number words “one” through “ten” at 14 months 

and 38 months were included. The number word “one” could have numerical or non-numerical 

uses, and we only used numerical uses in the current study. Parent number talk was divided into 

instances using the same procedure as Gunderson & Levine (2011), such that a counting 

sequence (e.g., counting from 1-10) was coded as one instance, as opposed to ten instances. All 

other types of number talk were coded as one instance. The target session length was 90 minutes, 

but the actual length slightly varied due to parent schedules or experimenter error. To account for 

small variations in session length, we pro-rated parent number talk based on actual session length 

(i.e., number instances * (90 minutes / actual minutes), in line with the procedure used by Levine 

et al., (2010). In line with previous analyses of this data (Gunderson et al., 2011; Levine et al., 



 74 

2010), we used the natural log of parent number instances to ensure a linear association between 

number instances, and covariates and outcomes. All subsequent analyses use the natural log 

transformation (after adding 1).  

Parent Other Talk. We included a measure of parents’ other talk at 14 months and 38 

months in order to run a parallel secondary analysis with parent other tokens as a predictor of 

child math achievement. Parent other word tokens consisted of all parent word tokens that did 

not include number tokens. To calculate other tokens, we subtracted numerical tokens of “one”, 

as well of tokens of any number greater than “one” from parents’ total word tokens. For this 

measure, we excluded number talk greater than 10, and excluded tokens of 0. Parent other tokens 

were pro-rated based on session length as well. To match our number talk variables, we used the 

natural log transformation of parent other tokens (after adding 1). 

Time-Varying Child Number Talk and Other Talk. Child number instances and other 

tokens at 34 months, which were coded the same way as parent number instances and parent 

other tokens, were also pro-rated to adjust for session length and were natural log transformed.  

Cardinal Number Knowledge at 46 Months. Children’s understanding of the meanings 

of number words was assessed at 46 months using the 16-item Point-to-X task (Wynn, 1992). 

For each of the 16 items, children were shown a sheet of paper with two sets of squares. Children 

were then asked to point to X, with X being a number between 2 and 6 (e.g., 3 vs. 5 or 5 vs. 6; 

for the full list of items, see Levine et al., 2010). Children responded by pointing to one of the 

two sets of squares.  

Calculation Skills in 3rd Grade. Calculation skills were assessed in 3rd grade using the 

Calculation subtest of the Woodcock Johnson III, a nationally normed measure of mathematics 

ability (Woodcock et al., 2001). This subtest requires children to apply their knowledge of 
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numbers and calculation procedures through a paper-and-pencil test. Items of increasing 

difficulty range from solving numerical operations (i.e., addition, subtraction, division, 

multiplication) to geometric and trigonometric operations if appropriate. Subsequent analyses 

examined students’ W scores, a transformation of raw scores into a Rasch-scaled score of equal 

interval measurements that represents the child’ ability and the task difficulty, after establishing 

floor and ceiling. The W score is recommended to measure individual growth. A one-point W 

score increase roughly represents a month of learning during a school year. A score of 488 is the 

approximate average performance of a 9-year-old. The correlation between our measures of 

cardinal number knowledge and calculation skills were 0.439 (p=0.001). 

Analytical Procedure 

Multiple Imputation 

 For each variable, we had data for 50 to 64 families (see Table 12). We addressed 

missing values via multiple imputation with predictive mean matching, using the mice library in 

R (van Buuren & Groothuis-Oudshoorn, 2011). Our procedure was very similar to that used by 

Silvey et al. (2021) with three exceptions, described in Section S1 of the Appendix.  

IPTW 

To examine the effect of time-varying parent talk on child math skills in an experiment, 

children would be randomly assigned to sequences of parent talk (e.g., some might be assigned 

to receive high levels of parent talk earlier, and lower levels of parent talk later). To examine this 

question in an observational study, we used IPTW. This approach involves marginal structural 

models, a class of causal models that allow us to estimate how children would perform under 

alternative sequences of parent talk (Robins et al., 2000). IPTW allows us to treat observational 

data as if they came from a randomized experiment, under key assumptions described below, by 
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accounting for baseline confounding variables (e.g., parent and child characteristics), and time-

varying confounding variables (i.e., child talk that occurs between earlier and later parent talk 

and could be influenced by and influence parent talk). In our case, weights are assigned to 

children based on the inverse of their propensity (i.e., probability) of receiving the amount of 

parent talk they received (i.e., the treatment). An essential component of IPTW involves 

achieving balance (i.e., removing the association) between parent talk and important covariates 

from the past that may have influenced parent talk. In other words, the association between 

earlier parent talk and child math achievement is adjusted for baseline covariates. Similarly, the 

association between later parent talk and child math achievement is adjusted for baseline 

covariates, earlier parent talk, and time-varying child talk. Thus, children who received 

alternative sequences of parent talk will be balanced on observable baseline and time-varying 

covariates.  

Assumptions. There are two important assumptions that need to be met. The first 

assumption is that there are no unobservable confounders once observable confounders are 

accounted for. This strong assumption needs to be at least partially tested theoretically and 

empirically through sensitivity analysis. With sensitivity analysis, we examine how large the 

unobservable confounding would need to be to qualitatively change our key findings. If such 

unobservable confounding would need to be implausibly large, our conclusions would be robust 

(i.e., they would be insensitive to unobserved confounders). However, if unobservable 

confounding would be plausible, our conclusions would not be robust (i.e., they would be 

sensitive to unobserved confounders). We assess this plausibility and the robustness of our 

conclusions based on prior research and evidence from the current study. This approach is a very 

partial specification check and does not provide proof that our results are valid. It is impossible 
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to know the severity of bias resulting from failure to include unobserved confounders. See 

Section S4 of the Appendix for a detailed description of how we conducted the sensitivity 

analysis.  

The second assumption is that common support is present. We have common support 

when subsets of children who have a similar probability of receiving a certain amount of parent 

talk vary substantially on the amount they received (Hong, 2012). We lack common support 

when subsets of children who have a similar probability of receiving a certain amount of parent 

talk vary little on the amount they received, implying that they have no information about the 

impact of parent talk (i.e., no comparison group).  

Predicting Quantity of Parent Talk. To understand why some children received more 

parent talk than others, we ran ordinal models of parent and child characteristics predicting each 

of our four categories of parent talk: parent number talk and other talk provided at 14 months and 

at 38 months. In addition to providing insights into what factors predicts parent talk, this 

information is an important component of constructing the weights.  

Constructing the Weights. IPTW up-weights children who were unlikely to have 

received the amount of parent talk provided, and down-weights children who were highly likely 

to have received the amount of parent talk provided. Typically, IPTW is used with binary 

predictors. Since our parent talk measures are continuous, we used a quantile binning approach 

(Naimi et al., 2014), adapted by Silvey et al. (2021) to adjust for confounding in continuous 

variables. First, we divided each of our four categories of parent talk (i.e., number talk or other 

talk provided at 14 months or 38 months) into eight quantiles. We then used an ordinal model to 

predict quantile (of each parent talk category) from covariates. This allowed us to estimate each 

child’s likelihood of receiving the amount of parent talk provided.  
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Because our sample size was small, we used a stepwise procedure to determine what 

covariates to account for. For each category of parent talk, we first accounted for the covariate 

that was the strongest predictor (based on standardized betas). We then accounted for the second 

strongest covariate that remained associated with parent talk and stopped when there were no 

covariates that were associated with parent talk based on our criteria of t>|1.67| (i.e., p<.10). 

Finally, we calculated the weights to appropriately up-weight or down-weight children. For a 

very detailed explanation of the quantile binning method, as well as the method for constructing 

the weights, see Silvey et al. (2021).  

In sum, IPTW allows us to have a better sense of how naturalistic parent talk causally 

affects child math skills, as long as key assumptions are met. With this approach, we can 

examine causal effects of parent number talk and other talk provided earlier and later, on child 

math skills. 

Hypotheses to Test 

Our primary hypotheses to test regarding the effect of parent number talk and other talk 

on child math skills were about the timing of parent talk, specifically 1) earlier talk (Z1) is more 

important than later talk (Z2), 2) later talk (Z2) is more important than earlier talk (Z1), and 3) 

cumulative talk (Z1+Z2) is key and the timing does not matter. We tested these hypotheses with 

either parent number talk or other talk as predictors of our outcomes (child cardinal number 

knowledge at 46 months or calculation skills in 3rd grade). Due to the strong correlation between 

parent number talk and other talk at 14 months (r=.68, p<.001), and at 38 months (r=.72, 

p<.001), it was not possible to include them in the same model as predictors (see Section S2 of 

the Appendix for correlations among other measures of parent talk). In all four sets of models, 

we controlled for child gesture types at 14 months (Xg; for our reasoning, see the Achieving 
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Balance Between Parent Talk and Covariates section in Results). In the two sets of models 

predicting calculation skills in 3rd grade, we controlled for child age at time of test (Xa), because 

child age at test varied (see Table 12). 

 To test hypotheses 1 and 2 separately for parent number talk and other talk, we first 

examined parent earlier talk and later talk as separate predictors of child cardinal number 

knowledge or calculation skills with the following statistical model using combined weights (i.e., 

weights for both Z1 and Z2; see Silvey et al., 2021 for a detailed explanation of combined 

weights) to account for children’s propensity to receive the amount of parent talk received:  

𝑌𝑖 =  𝛼 + 𝛿1𝑍1𝑖 + 𝛿2𝑍2𝑖 + 𝛽𝑔𝑋𝑔𝑖 + 𝛽𝑎𝑋𝑎𝑖 + 𝑒𝑖,       (1) 

where 𝑌𝑖  is the math outcome (cardinality or calculation) for child i; 𝛿1 is the impact of each 

additional unit of 𝑍1𝑖 (parent earlier number talk or other talk at 14 months), holding 𝑍2𝑖 (parent 

later number talk or other talk at 38 months) and covariates constant. 𝛿2 represents the impact of 

each additional unit of 𝑍2𝑖, holding 𝑍1𝑖 and covariates constant, 𝛽𝑔 represents the impact of each 

additional unit of covariate 𝑋𝑔𝑖 (child gesture types at 14 months) holding 𝑍1𝑖, 𝑍2𝑖, and 

covariates constant, 𝛼 is the model intercept, and 𝑒𝑖 is a random error assumed to be uncorrelated 

with Z1 and Z2 after accounting for baseline covariates through weighting. To account for 

differences in child age at the time calculation skills were assessed in 3rd grade, an additional 

covariate, 𝛽𝑎, was only included where calculation was the outcome, and represents the impact 

of each additional unit of 𝑋𝑎𝑖 (child age in months when they completed the Calculation subtest), 

holding 𝑍1𝑖, 𝑍2𝑖, 𝑋𝑎𝑖, and covariates constant. 

 Under hypotheses 3, parent earlier and later talk are equally important, and cumulative 

talk is key. To test this hypothesis, we examined whether the effects of parent earlier talk 
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differed from those of parent later talk. Then, we ran the following statistical model with 

combined weights:  

𝑌𝑖 =  𝛼 + 𝛿 (𝑍1𝑖 + 𝑍2𝑖) + 𝛽𝑔𝑋𝑔𝑖 + 𝛽𝑎𝑋𝑎𝑖 + 𝑒𝑖,      (2) 

where 𝛿 represents the impact of each additional unit of 𝑍1𝑖 + 𝑍2𝑖 (cumulative parent talk), 

holding covariates constant.  

Similar to Silvey et al. (2021), we wanted an additional check of hypotheses 1 and 2, as 

our confidence in our test of differing effects between parent earlier and later talk was weak for a 

few reasons, which we describe in the Outcome Models section. Assuming that parent talk has a 

positive effect both earlier and later, if 𝛿1>0, while 𝛿2=0, this could imply that parent talk early 

is necessary and sufficient for child math skills. However, if 𝛿2>0, while 𝛿1=0, this could imply 

that later parent talk is necessary and sufficient, while early parent talk is unimportant. We tested 

each of these two hypotheses with a strong model, controlling for the appropriate covariates 

discussed above.  

Before testing hypotheses 1, 2, and 3, we estimated the effect of earlier parent talk 

without controlling for later parent talk with the following statistical model: 

𝑌𝑖 =  𝛼 + 𝛿∗𝑍1𝑖 + 𝛽𝑔𝑋𝑔𝑖 + 𝛽𝑎𝑋𝑎𝑖 + 𝑒𝑖,        (A) 

where 𝛿∗ represents the impact of each additional unit of 𝑍1𝑖. We did this to replicate prior 

studies that show a positive effect of parent number talk at one time point or across time points, 

without controlling for parent number talk at a later time point (e.g., Levine et al., 2010; Ramani 

et al., 2015). With this model, the estimated effect of earlier parent talk is ambiguous, as an 

apparent effect could result from either parent earlier talk being more important than later parent 

talk, or from parent earlier talk being correlated with parent later talk, which could either have 
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similar effects to parent earlier talk or be a more important predictor. Indeed, the ambiguity of 𝛿∗ 

in prior studies is an important motivation for the current study.  

Results 

Descriptive Statistics and Correlations 

Descriptive statistics for key variables are shown in Table 12. Correlations between 

covariates and parent talk are shown in Table 13. Correlations between other key variables are 

shown in Section S2 of the Appendix. Parent number talk and other talk were strongly correlated 

at 14 months (r=.68, p<.001), and 38 months (r=.72, p<.001; see Section S2 of the Appendix for 

correlations among other measures of parent talk), therefore we do not include them in the same 

models. Instead, we run parallel analyses with either parent number talk or other talk as 

predictors of child math skills.  
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Table 12. Descriptive statistics for key variables. 

Variable Type 

Number 

of Valid 

Cases 

Min Mean Median Max SD 

Child gesture types at 14 months X0 64 4.00 21.70 18.50 54.00 12.49 

Child word types at 14 months X0 64 0.00 14.06 8.50 59.00 14.57 

Parent IQ composite X0 51 75.00 106.92 107.00 134.00 12.86 

Household income (thousands of USD) X0 64 7.50 60.20 62.50 100.00 31.42 

Parent years of education X0 64 10.00 15.66 16.00 18.00 2.24 

Child number instances at 34 months (natural log) 

 

Child number instances at 34 months (raw) X1N 62 

0.00 

 

0.00 

1.58 

 

6.97 

1.61 

 

4.01 

3.26 

 

25.00 

1.05 

 

6.98 

Child other tokens at 34 months (natural log) 

 

Child other tokens at 34 months (raw) X1O 62 

5.60 

 

270.41 

7.39 

 

1795.65 

7.46 

 

1709.24 

8.24 

 

3792.58 

0.54 

 

833.98 

Parent number instances at 14 months (natural log) 

 
Parent number instances at 14 months (raw) Z1N 64 

0.00 

 
0.00 

2.06 

 
 10.56 

2.21 

 
8.08 

3.96 

 
51.29 

0.97 

 
10.07 

Parent number instances at 38 months (natural log) 

 

Parent number instances at 38 months (raw) Z2N 61 

0.00 

 

0.00 

2.75 

 

23.13 

2.80 

 

15.00 

4.98 

 

144.92 

0.97 

 

26.28 

Parent number instances cumulative (natural log) 
 

Parent number instances cumulative (raw) Z1N+Z2N 61 

0.70 
 

1.01 

4.81 
 

33.74 

5.14 
 

26.34 

7.62 
 

154.30 

1.64 
 

30.06 

Parent other tokens at 14 months (natural log)  

 

Parent other tokens at 14 months (raw) Z1O 64 

5.27 

 

194.17 

8.04 

 

3643.11 

8.23 

 

3760.16 

9.06 

 

8641.41 

0.66 

 

1725.94 

Parent other tokens at 38 months (natural log) 

 

Parent other tokens at 38 months (raw) Z2O 61 

6.78 

 

876.51 

8.20 

 

4122.89 

8.35 

 

4153.00 

9.17 

 

9573.94 

0.60 

 

2004.06 

Parent other tokens cumulative (natural log) 

 
Parent other tokens cumulative (raw) Z1O+Z2O 61 

12.13 

 
1144.17 

16.24 

 
7783.24 

16.68 

 
8431.53 

18.23 

 
18215.34 

1.14 

 
3439.86 

Point-to-X at 46 months YP 59 4.00 12.29 13.00 16.00 3.16 

Calculation W Score in 3rd grade YC 50 477.00 504.08 502.50 533.00 14.54 

Child Calculation in 3rd grade age at test X2 64 102.00 112.06 114.00 119.00 4.55 
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Table 13. Correlations between covariates (first column) and parent talk (first row). 

    

Z1 parent 

number 

instances 

Z2 parent 

number 

instances 

Z1 parent 

other tokens 

Z2 parent 

other tokens 

Cumulative 

parent 

number 

instances 

Cumulative 

parent  

other tokens 

Child gender 

(girl) 

Pearson Correl. -0.193 -.257* -0.233† -0.249† -.277* .261* 

Sig. 0.127 0.046 0.064 0.053 .030 .042 

N 64 61 64 61 61 61 

Child birth 

order 

(first-born) 

Pearson Correl. -0.14 -0.005 -0.085 -0.096 -.132 -.107 

Sig. 0.269 0.97 0.503 0.463 .312 .414 

N 64 61 64 61 61 61 

Child gesture 

types at 14 

months 

Pearson Correl. 0.115 .277* .274* 0.238† .213 .288* 

Sig. 0.366 0.031 0.029 0.065 .100 .025 

N 64 61 64 61 61 61 

Child word 

types at 14 

months 

Pearson Correl. 0.131 0.084 -0.01 0.01 .077 .011 

Sig. 0.304 0.521 0.938 0.942 .554 .932 

N 64 61 64 61 61 61 

Parent 

income 

Pearson Correl. .319* .309* .386** .447** .356** .451*** 

Sig. 0.01 0.015 0.002 <0.001 .005 <.001 

N 64 61 64 61 61 61 

Parent 

education 

Pearson Correl. 0.232† .272* .414** .307* .353** .404*** 

Sig. 0.065 0.034 0.001 0.016 .005 .001 

N 64 61 64 61 61 61 

Parent IQ  

Pearson Correl. 0.064 0.155 .367** 0.243† .186 .335* 

Sig. 0.653 0.277 0.008 0.085 .192 .016 

N 51 51 51 51 51 51 

X1 child 

number 

instances 

Pearson Correl. 0.148 0.119 0.158 0.202 .189 .192 

Sig. 0.25 0.36 0.219 0.119 .146 .137 

N 62 61 62 61 61 61 

X1 child other 

tokens 

Pearson Correl. 0.058 0.067 0.104 0.208 .084 .170 

Sig. 0.656 0.61 0.423 0.108 .518 .190 

N 62 61 62 61 61 61 

Child age at 

time of 

Calculation in 

3rd grade 

Pearson Correl. 0.128 0.184 0.197 0.182 .246† .198 

Sig. 0.313 0.156 0.119 0.160 .055 .125 

N 64 61 64 61 61 61 

†p<0.1    *p < 0.05    **p < 0.01    ***p < 0.001 

Achieving Balance Between Parent Talk and Covariates 

 To understand what parent and child characteristics in our analyses are the strongest 

predictors of parent talk, it is important to first explain how we achieved balance between 

covariates and each category of parent talk. We first used ordinal models with covariates as 

predictors of each of our four categories of parent talk: earlier number talk (Z1N), later number 

talk (Z2N), earlier other talk (Z1O), and later other talk (Z2O). We used this information to 

determine what covariates to adjust for when constructing the weights to achieve balance 
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between each category of parent talk and each covariate. As stated in our Analytical Procedure 

section, our stepwise procedure involved adjusting for covariates, until no covariate was 

significantly related to parent talk based on our cutoff criteria of t>|1.67| (i.e., p<.10). To 

construct the weights, we followed the very detailed procedure described by Silvey et al. (2021), 

with two exceptions.  

First, because it was not possible to achieve balance between child gesture types at 14 

months (Xg) and Z2N or Z1O, perhaps due to our small sample size, we controlled for Xg in our 

outcome models. Therefore, in addition to weighting for Xg, it was necessary to ensure balance 

was achieved between each category of parent talk and other covariates controlling for Xg. Thus, 

we controlled for Xg in all ordinal models predicting parent talk. Because we controlled for Xg, 

we did not check balance between parent talk and Xg. 

Second, because child age slightly differed when the Calculation subtest was 

administered in 3rd grade (see Table 2), we controlled for child age (in months) at time of test 

(Xa) in our outcome models predicting calculation skills. Therefore, it was necessary to run an 

additional set of ordinal models predicting parent talk from covariates, in which we controlled 

for Xa. After controlling for Xa in our ordinal models, we still had balance between parent talk 

and covariates, therefore it was not necessary to make any changes to the weights. See Section 

S3 of the Appendix for standardized coefficients and t-ratios of covariates before and after 

weighting.  

Determining What Covariates Most Strongly Predict Parent Talk 

Below, we describe the covariates that most strongly predicted parent talk, and which we 

used to construct the weights to achieve balance between parent talk and all covariates, for each 

of our four categories of parent talk (parent number talk or other talk provided at 14 months or at 
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38 months). We describe these as the strongest covariates, because adjusting for the covariates 

discussed below was sufficient to achieve balance between each category of parent talk and all 

other covariates.  

Number Talk. The strongest predictors of parent early number talk (Z1N) were child 

gender and household income. In addition, it was necessary to adjust for child gesture types (Xg; 

see Analytical Procedure section for our reasoning). Adjusting (i.e., weighting) for these three 

covariates was sufficient to achieve balance between Z1N and baseline covariates. The strongest 

predictors of parent later number talk (Z2N) were parent earlier number talk (Z1N), child gesture 

types (Xg), child gender, and household income. Adjusting for these four covariates was 

sufficient to achieve balance between Z2N and baseline covariates. 

Other Talk. The strongest predictors of parent early other talk (Z1O) were child gesture 

types (Xg), child word types at 14 months, child gender, and parent education. Adjusting for 

these four covariates was sufficient to achieve balance between Z1O and baseline covariates. The 

strongest predictors of Z2O, were Z1O, household income and parent education. In addition, it was 

necessary to adjust for child gesture types (Xg; see Analytical Procedure section for our 

reasoning). Adjusting for these four covariates was sufficient to achieve balance between Z2O 

and baseline covariates. 

Outcome Models for Cardinal Number Knowledge at 46 Months 

 Number Talk as a Predictor. The results of the models described in the Analytical 

Procedure section, with parent number talk predicting cardinal number knowledge at 46 months, 

are reported in Table 14. First, we estimated Model A (control model) to replicate previous 

findings showing a relation between parent early number talk and child cardinal number 

knowledge. Results showed that for each one unit increase in the standard deviation (0.97) of our 
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measure of parent earlier number talk (a natural log transformation of parent number instances at 

14 months), we expect a 0.810 point (S.E=0.391, p=0.043) increase (i.e., an increase of about 

5%) in our measure of cardinal number knowledge (Point-to-X at 46 months), in which scores 

ranged from 4 to 13 out of 16, M=12.29; SD=3.16). This result replicates previous findings, but 

as discussed earlier, the ambiguity of results from this model which does not account for later 

parent or child number talk, is an important motivation for the current study.  

Therefore, we estimated Model 1 (separate predictors model), to test the impact of 

possible sequences of earlier and later parent talk in a regression that includes weights for parent 

number talk both earlier and later. As shown in Table 14, results showed that for each one unit 

increase in the standard deviation of our measure of parent earlier number talk (0.97) and later 

number talk (0.97; a natural log transformation of parent number instances at 38 months), we 

expect a 0.582 point (S.E=0.420, p=0.171) and 0.556 point (S.E=0.346, p=0.179) increase in our 

measure of cardinal number knowledge (i.e., an increase of about 4% and 3%). While we did not 

observe significant differences between the effects of early and later number talk (p=0.965), our 

confidence in this result was weak for a few reasons: wide confidence intervals in our test of 

differing effects [-1.388, 1.336], a small sample size (n=64), and the medium correlation between 

earlier and later number talk (r=0.418).  

As shown in Table 14, Model 2 (constant effects model) shows that for each one unit 

increase in the standard deviation of our measure of parent cumulative number talk (1.64; parent 

number talk at 14 months + parent number talk at 38 months), we expect a 0.957 point 

(S.E.=0.379, p=0.014) increase in our measure of cardinal number knowledge (i.e., an increase 

of about 6%). Interestingly, the coefficient for cumulative number talk is nearly double that of 

either earlier or later number talk on their own (see Table 14), suggesting that constant parent 
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number talk across time is key and the timing does not matter for children’s cardinal number 

knowledge at 46 months.  

As an additional check of differing effects between earlier and later number talk, we ran 

two extreme models: Models 3 and 4. In Model 3, we assume that earlier number talk is greater 

than 0 and later number talk is set to 0. In Model 4, we assume that later number talk is greater 

than 0 and earlier number talk is set to 0. As shown in Table 14, in these models, the coefficient 

for earlier number talk (0.806) was similar to that of later number talk (0.776). Based on the 

standard Akaike information criterion (AIC) method of model comparison, in which a lower AIC 

suggests a stronger model, neither of these two strong models fit the data as well as the constant 

effects model (Model 2).  

We conclude that high levels of parent number talk both earlier at 14 months and later at 

38 months (i.e., constant number talk) have a positive impact on children’s cardinal number 

knowledge at 46 months. Sensitivity analysis, reported in Section S4 of the Appendix, suggests 

that our conclusions are robust. Common support is reported in Section S5 of the Appendix. 

Table 14. Results of weighted outcome models estimating the effect of earlier and later parent 

number talk on child cardinal number knowledge at 46 months.       
              
    Standardized 

coefficient      Nominal 

Model and predictor  Effect estimate  95% CI  SE t-ratio p  AICc  
                     

A. Control model                    

     Early talk  𝛿1 0.810  [0.028, 1.591] 0.391 2.074 0.043          
                     

1. Separate predictors                 329.5 

    Early talk  𝛿1 0.582  [-0.258, 1.422] 0.420 1.387 0.171         
    Later talk  𝛿2 0.556  [-0.262, 1.374] 0.346 1.362 0.179         

        𝛿2 - 𝛿1 -0.031  [-1.388, 1.336] 0.695 -0.045 0.965   
                     

2. Constant effects           327.1 

    Cumulative talk  𝜹 0.957  [0.198, 1.716] 0.379 2.525 0.014          
                     

3. Later talk=0, Early talk>0          329.1 

    Early talk  𝛿1 0.806  [0.031, 1.581] 0.387 2.081 0.042         
                     

4. Early talk=0, Later talk>0          329.2 

    Later talk  𝛿2 0.776  [0.029, 1.532] 0.378 2.054 0.044  
                     

 

Other Talk as a Predictor. The results of the models with parent other talk predicting 

cardinal number knowledge at 46 months are reported in Table 15. In Model A (control model), 
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the coefficient for our measure of parent earlier other talk at 14 months was not statistically 

significant (estimate=0.557, S.E=0.373, p=0.142). In Model 1 (separate predictors model), the 

effects between earlier other talk at 14 months (estimate=0.291, S.E=0.0.485, p=0.551) and later 

other talk at 38 months (estimate=0.757, S.E=0.462, p=0.142) did not significantly differ 

(p=0.107). Our confidence in this result was weak, for reasons similar to those discussed earlier.  

As shown in Table 15, Model 2 (constant effects model) shows that for each one unit 

increase in the standard deviation of our measure of parent cumulative other talk (1.14; parent 

other talk earlier at 14 months + later at 38 months), we expect a 0.965 point increase in our 

measure of cardinal number knowledge at 46 months (i.e., an improvement of about 6%). Our 

AICc for this model is 315.90. 

As an additional check of differing effects between earlier and later other talk, we ran two 

extreme models: Models 3 and 4. In Model 4, where earlier other talk is set to 0 and later other 

talk is greater than 0, the coefficient for later talk (0.930) is similar to that of cumulative other 

talk from Model 2 (constant effects model); and the AICc is 315.88, which is about the same as 

that of Model 2. We cannot rule out the possibility that other talk provided later at 38 months is 

more important than other talk provided earlier at 14 months for a few reasons: in Model 1 

(separate predictors model) the coefficient for later number talk (0.757) is more than double that 

of earlier number talk (0.291), our test of differing effects shows a wide confidence interval [-

1.201, 2.134], we have a small sample size, and the AICc in Model 2 (constant effects model) 

and Model 4 (an extreme model where parent talk earlier is set to 0 and parent talk later is 

greater than 0) are similar.  

We conclude that high levels of constant parent other talk (i.e., other talk both earlier at 

14 months and later at 38 months) positively impacts cardinal number knowledge at 46 months. 
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However, we cannot rule out the possibility that parent other talk provided later at 38 months is 

more important than parent other talk provided earlier at 14 months. Sensitivity analysis is 

reported in Section S4 of the Appendix. Common support is reported in Section S5 of the 

Appendix. 

Table 15. Results of weighted outcome models estimating the effect of earlier and later parent 

other talk on children’s cardinal number knowledge at 46 months.       
              

    Standardized 
    coefficient      Nominal 

Model and predictor  Effect estimate  95% CI  SE t-ratio p         AICc  

A. Control model 

     Early talk  𝛿1 0.557  [-0.191, 1.304] 0.373 1.490 0.142           
                     

1. Separate predictors          317.8 

    Early talk  𝛿1 0.291  [-0.680, 1.262] 0.485 0.600 0.551         
    Later talk   𝛿2 0.757  [-0.168, 1.683] 0.462 1.640 0.107         

        𝛿2 - 𝛿1 0.492  [-1.201, 2.134] 0.817 0.603 0.549   
                     

2. Constant effects           315.90 

    Cumulative talk  𝜹  0.965  [0.229, 1.700] 0.367 2.627 0.011          
                     

3. Later talk=0, Early talk>0           318.4  

     Early talk  𝛿1 0.787  [0.026, 1.548] 0.380 2.072 0.043         
                     

4. Early talk=0, Later talk>0          315.88 

     Later talk  𝜹2 0.930  [0.220, 1.641] 0.355 2.621 0.011          
              

 

Outcome Models for Calculation Skills in 3rd Grade 

Number Talk as a Predictor. The results of the models with parent number talk 

predicting calculation skills in 3rd grade are reported in Table 16. Because number talk did not 

significantly predict calculation in Models 1 to 4, we ran a simple model, Model 5, where only 

our control variables— child gesture types at 14 months (Xg) and child age at time of test (Xa)—

were entered as predictors of calculation. Based on the AIC method of model comparison, Model 

5 was the best fitting model. 

We caution against strong conclusions of no effect of number talk on calculation skills 

for a few reasons: the coefficients for number talk—especially cumulative number talk 

(estimate=2.292, which represents about 2 months of learning during a school year)—are quite 

large, the confidence intervals are mostly on the positive side—especially for cumulative number 

talk [-1.345, 5.929]—and we have a small sample. If it were the case that there is a true effect of 
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parent number talk, for each one unit increase in the standard deviation of our measure of 

cumulative parent number talk, we would expect a 2.292 point increase (S.E.=1.813, p=0.212) in 

our measure of calculation skills in 3rd grade (i.e., about 2 months of learning during a school 

year). 

While the effects between earlier number talk at 14 months and later number talk at 38 

months on calculation skills did not significantly differ, we caution against strong conclusions of 

no differing effects for a few reasons: in Model 1 the coefficient for earlier number talk (1.802; 

S.E.=1.997, p=0.371) is nearly twice as large as that of later number talk (0.941; S.E.=1.933, 

p=0.628), wide confidence intervals in our test of differing effects [-7.151, 5.429], our small 

sample size, and the medium correlation between earlier and later number talk (r=0.418). 

We conclude that although we do not see significant effects of parent number talk on 

calculation skills in 3rd grade, it is possible that number talk—especially constant number talk—

has a positive effect on calculation skills. Additionally, we see some suggestion that parent 

number talk earlier at 14 months is more important than parent number talk later at 38 months 

for calculation skills in 3rd grade. Common support is reported in Section S5 of the Appendix.  

Table 16. Results of weighted outcome models estimating the effect of earlier and later parent 

number talk on child calculation skills in 3rd grade.       
              

    Standardized 

    coefficient      Nominal 
Model and predictor  Effect estimate  95% CI  SE t-ratio p         AICc 
                     

A. Control model 

     Early talk  𝛿1 1.846  [-1.878, 5.571] 1.858 0.994 0.325           
                     

1. Separate predictors               526.6 

     Early talk  𝛿1 1.802  [-2.205, 5.809] 1.997 0.902 0.371         
     Later talk  𝛿2 0.941  [-2.938, 4.820] 1.933 0.487 0.628         

   𝛿2 - 𝛿1  -0.878  [-7.151, 5.429] 3.291 -0.267 0.120   
                     

2. Constant effects           524.3 

    Cumulative talk  𝛿 2.292  [-1.345, 5.929] 1.813 1.264 0.212          
                     

3. Later talk=0, Early talk>0          524.5 

     Early talk  𝛿1 2.181  [-1.488, 5.850] 1.829 1.193 0.238         
                     

4. Early talk=0, Later talk>0          525.1 

    Later talk  𝛿2 1.617  [-1.959, 5.193] 1.783 0.907 0.369          
                     

5. Simple model                  523.8  
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Other Talk as a Predictor. The results of the models with parent other talk predicting 

calculation skills in 3rd grade are reported in Table 17. In Model A (control model), the 

coefficient for our measure of parent earlier other talk at 14 months was statistically significant 

(estimate=6.187, S.E=2.046, p=0.004). Model 1 (separate predictors model) shows that the 

effects between parent earlier other talk at 14 months (estimate=2.378, S.E.=2.633, p=0.371) and 

later talk at 38 months (estimate=4.051, S.E.=2.428, p=0.102) do not significantly differ 

(p=0.665). Our confidence in this result is weak for reasons similar to those discussed earlier. 

Model 2 (constant effects model) shows that for each a one unit increase in the standard 

deviation of our measure of cumulative parent other talk (1.14), we expect a 5.933 point increase 

in our measure of calculation skills in 3rd grade, which represents about 6 months of learning 

during a school year. The AICc for this model is 525.1. 

As an additional check of differing effects between parent earlier and later other talk, we 

ran two extreme models: Models 3 and 4. In Model 4, where earlier other talk is set to 0 and later 

other talk is greater than 0, the coefficient for later talk is 5.360 (i.e., about 5 months of learning 

during a school year) and the AICc is 525.9. We cannot rule out the possibility that other talk 

later is more important than earlier for a few reasons: in Model 1 (separate predictors model) the 

coefficient for later number talk (4.051) is nearly double that of earlier number talk (2.378), our 

test of differing effects shows a wide confidence interval [-6.873, 10.220], we have a small 

sample size, and the AICc in Models 2 (constant effects model) and 4 (an extreme model where 

parent talk earlier is set to 0 and parent talk later is greater than 0) are similar.  

We conclude that high levels of constant parent other talk (i.e., other talk both earlier at 

14 months and later at 38 months) positively impacts child calculation skills in 3rd grade. 

However, similar to our conclusions for the effect of parent other talk on cardinal number 
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knowledge at 46 months, we cannot rule out the possibility that parent other talk provided later at 

38 months is more important than parent other talk provided earlier at 14 months for calculation 

skills in 3rd grade. Sensitivity analysis is reported in Section S4 of the Appendix. Common 

support is reported in Section S5 of the Appendix. 

Table 17. Results of weighted outcome models estimating the effect of earlier and later parent 

other talk on children’s calculation skills in 3rd grade.       
              

    Standardized 
    coefficient      Nominal 

Model and predictor  Effect estimate  95% CI  SE t-ratio p         AICc 
                     

A. Control model 

     Early talk  𝛿1 6.187  [2.083, 10.291] 2.046 3.023 0.004          
                     

1. Separate predictors                 527.2 

    Early talk  𝛿1 2.378  [-2.913, 7.668] 2.633 0.903 0.371         
    Later talk  𝛿2 4.051  [-0.827, 8.929] 2.428 1.668 0.102         

        𝛿2 - 𝛿1 1.885  [-6.873, 10.220] 4.332 0.435 0.665   
                     

2. Constant effects           525.1 

    Cumulative talk  𝜹 5.933  [1.867, 10.000] 2.027 2.927 0.005          
                     

3. Earlier talk is sufficient          528.2 

    Early talk  𝛿1 4.996  [0.743, 9.250] 2.120 2.356 0.022         
                     

4. Later talk is sufficient          525.9  

    Later talk  𝛿2 5.360  [1.503, 9.217] 1.923 2.788 0.007       

              

   

Comparing Number and Other Talk Effects. In four sets of models, we tested the 

effects of parent number talk or other talk on child cardinal number knowledge at 46 months or 

calculation skills in 3rd grade. In all four sets of models, the constant effects model was either the 

best fitting or one of the best fitting models. Figures 10 and 11 show a visual representation of 

the effects of cumulative parent number and other talk on child math skills. Notice how the effect 

of cumulative number talk and cumulative other talk on cardinal number knowledge appear 

similar. However, the effect of cumulative other talk on calculation skills appears stronger than 

that of cumulative number talk. As mentioned earlier, we caution against strong conclusions 

against of no effect of parent number talk on calculation skills. 
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a.        b.  

Figure 10. Scatter plots with Y axes showing predicted values of child cardinal number 

knowledge at 46 months from weighted regressions of Model 2 (constant effects model) reported 

in Tables 14 and 15. X axes show the Z-score of the natural log transformation of (a) parent 

cumulative number talk and b) parent cumulative other talk. 

 

 

  

a.        b.  

Figure 11. Scatter plots with Y axes showing predicted values of child calculation skills in 3rd 

grade from weighted regressions of Model 2 (constant effects model) reported in Tables 16 and 

17. X axes show the Z-score of the natural log transformation of (a) parent cumulative number 

talk and b) parent cumulative other talk. 

 

Discussion 

For the first time, we show that the quantity of parent talk provided to toddlers causally 

impacts math skills years later, emphasizing the critical importance of parent talk provided 

during the first years of life for future math development. Specifically, our findings show a 

causal effect of both parent number talk and parent other talk on child cardinal number 

knowledge at 46 months. Further, our findings show a causal effect of parent other talk on child 
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calculation skills in 3rd grade. Our results provide some suggestion that the optimal timing of 

parent talk may differ based on the type of parent talk (number talk or other talk) and based on 

the math skill assessed (cardinal number knowledge at 46 months or calculation skills in 3rd 

grade).  

Effects of Parent Talk on Cardinal Number Knowledge 

Our results provide evidence that the quantity of parent number talk and parent other talk 

provided both earlier at 14 months and later at 38 months positively impact child cardinal 

number knowledge at 46 months.  

There was not strong evidence of differing effects between parent number talk provided 

earlier and later. Children learn the meanings of number words in a series of lengthy stages—

starting with reciting the count list around age 2, followed by learning the meanings of number 

words “one” through “three” around age 3, and finally understanding the meanings of larger 

numbers, thus understanding the cardinal principle around age 4 (Carey & Barner, 2019; 

Sarnecka & Carey, 2008; Sarnecka & Lee, 2009; Wynn, 1990, 1992). Thus, it is possible that 

parent number talk provided earlier at 14 months supports children with the early stages, while 

parent number talk provided later at 38 months supports children with the later stages of cardinal 

number knowledge. It is also possible that the type of parent number talk provided earlier and 

later may differ. For example, parents might focus on smaller number words earlier and on larger 

number words later.  

There was some suggestion that parent other talk provided later at 38 months, might be 

more important than parent other talk provided earlier at 14 months. This suggests that parents’ 

overall talk, especially when provided later at 38 months, also helps children understand the 

meanings of number words. Whether certain aspects of parents’ overall talk (e.g., a diverse 
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vocabulary or the use of certain math terms) are particularly important is an open question for 

future research. Further, the type of parent other talk provided earlier and later may differ.  

Effects of Parent Talk on Calculation Skills in 3rd grade 

Our results provide evidence that parent other talk provided both earlier at 14 months and 

later at 38 months impacts child calculation skills in 3rd grade. While we did not see a 

statistically significant effect of parent number talk on calculation skills, we caution against 

strong conclusions of no effect, as our confidence in this result is weak, for reasons described in 

our Results section.  

One possibility is that parent number talk, at 14 months and 38 months, is less impactful 

for child calculation skills in 3rd grade, than it is for child cardinal number knowledge at 46 

months. Calculation is a more advanced math skill that is more formally taught in school, and 

children know the meanings of number words well before 3rd grade. Thus, parent number talk 

may no longer be important, but instead other language input captured by our measure of parent 

other talk, such as their explanation of what needs to be done to solve calculations might be more 

important.  

A second possibility is that we simply did not have a large enough sample to show 

significant effects of parent number talk on child calculation skills in 3rd grade. A third 

possibility is that our measure of parent number talk was too broad, and that in fact certain types 

of parent number talk are particularly important for child calculation skills in 3rd grade, such as 

number words greater than 10 (which we did not include in our analyses) or number words used 

to describe complex math concepts. In sum, we cannot rule out the possibility that parent number 

talk, or specific types of parent number talk, provided at 14 and 38 months, is important for 

calculation skills in 3rd grade.  
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While our results provide evidence that parent other talk impacts child calculation skills 

in 3rd grade, it is possible that our measure of parent other talk is correlated with a more specific 

type of parent other talk that is particularly key. For example, parents’ overall talkativeness 

might be linked to vocabulary input, syntax input, or the use of math terms. Indeed, future 

research should further breakdown parent other talk to determine whether parents’ overall 

talkativeness is key, or whether certain aspects of parent other talk are key.  

In terms of the timing of parent talk, for both number talk and other talk, our test of 

differing effects did not show significant differences between talk provided earlier at 14 months 

and later at 38 months. However, we see some suggestion that parent number talk provided 

earlier at 14 months may be more important than parent number talk provided later at 38 months. 

In contrast, we see some suggestion that parent other talk provided later may be more important 

than parent other talk provided earlier. At 38 months, parent other talk is likely more complex, 

and may be qualitatively different and more important than parent other talk at 14 months. 

Findings by Silvey et al. (2021) support this possibility, as parent syntax input was more 

important at 30 months than at 14 months for children’s syntax skills in kindergarten. Moreover, 

child syntax skills are important for math skills, such as for understanding the operations 

involved in calculations (Espinas & Fuchs, 2022). Thus, for children’s calculation skills, parent 

number talk may be more optimal when provided earlier at 14 months, while parent other talk 

may be more optimal when provided later at 38 months, and these two types of parent talk 

(number talk and other talk) may be supporting children through different stages important for 

their calculation skills.  
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Predictors of Parent Talk 

Our findings contribute to our understanding of why some children receive more talk 

from their parents. We determined what parent and child characteristics were the most robust 

predictors of parent talk, based on the covariates that we weighted for to achieve balance 

between each of our four categories of parent talk (parent number talk and other talk at 14 

months and 38 months) and each covariate. We described our stepwise procedure for this process 

in our Analytical Procedure section. The most robust predictors of parent number talk and other 

talk were household income, child gender, and child gesture types at 14 months. For parent other 

talk, child word types at 14 months and parent education were also important.  

Household income positively predicted all four categories of parent talk, in line with 

findings from previous meta-analyses, suggesting that toddlers from higher SES backgrounds 

receive more talk than their peers from lower SES backgrounds. Boys received more number talk 

at 14 months and 38 months, and more other talk at 14 months, suggesting that perhaps gender 

stereotypes influence parents talk to their toddlers. Toddlers that produced more gesture types at 

14 months received more parent other talk at 14 months and more number talk at 38 months. 

These findings suggest that toddlers’ gestures encourage parents to provide more talk. Indeed, 

gesture is thought to be a mechanism through which children share thoughts they cannot yet 

express verbally to parents, and parents can in turn use this information to tailor their behaviors 

(see Goldin-Meadow, 2009). For example, parents have been shown to translate child gestures 

into words (Goldin-Meadow et al., 2007).  

In addition, child word types at 14 months and parent education positively predicted 

parent other talk at 14 months and at 38 months, respectively. This further suggests that toddlers’ 
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early behaviors encourage parents to provide more talk, and children from higher SES 

backgrounds receive more parent talk than their peers from lower SES backgrounds.  

In sum, as early as 14 months and 38 months, differences in the amount of parent talk 

provided are already present. Household income, child gender, and child gesture are particularly 

predictive of the amount of talk parents provide to their toddlers.  

Limitations and Future Directions 

Our findings are not without limitations. First, we could not include parent number talk 

and parent other talk in the same models due to their strong correlation in our data, which 

prevented us from directly comparing effects of parent number talk and parent other talk. In 

other words, our outcome models with parent number talk predicting child math skills did not 

account for parent other talk, and our outcome models with parent other talk predicting child 

math skills did not account for parent number talk. Second, our sample size was small, which 

may have limited our ability to detect true effects of parent number talk on calculation skills in 

3rd grade, as well as differing effects between earlier and later parent number talk and other talk 

on math skills. Third, while we accounted for important confounders, and our sensitivity analysis 

increases our confidence that our results are robust, with observational data, it is impossible to 

know the severity of bias resulting from failure to include unobserved confounders, such as 

executive functioning.  

We encourage researchers to examine the effects of parent number talk and other talk 

provided at other time points. Our decision of examining parent talk at 14 months and 38 months 

was based on theoretical reasoning. However, examining parent talk that occurs after 38 months, 

during the preschool or elementary school years for example, is important. It is possible that for 

math skills assessed in elementary school, parent talk that occurs when children have begun 
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formal schooling is more important than parent talk that occurs during the toddler years. We 

cannot rule out the possibility that parent talk that occurs at 38 months predicts parent talk that 

occurs even later, sometime before 3rd grade, and that it is talk that occurs after 38 months which 

affects calculation skills in 3rd grade. Under key assumptions, IPTW provides a way to tackle 

these questions, and improves our understanding of the optimal timing of parent talk.  

While we examined effects of the quantity of parent talk, we did not examine effects of 

the quality of parent talk. We encourage researchers to use IPTW to further examine the types of 

parent number talk and other talk that are most beneficial for children’s math learning. Evidence 

suggests that parent number talk that includes larger numbers or more advanced number 

functions (e.g., cardinality, ordinality) is more predictive of child math skills, such as cardinal 

number knowledge, numerical magnitude knowledge and word problem solving in preschool 

(Casey et al., 2018; Gunderson & Levine, 2011; Ramani et al., 2015). Because our measure of 

parent number talk did not include number words greater than 10, we may be obscuring a larger 

effect of parent number talk on child math skills, which may be particularly important for 

complex math skills, such as calculation. Our measure of parent other talk (overall talk excluding 

number talk) may have been too broad. Examining whether specific aspects of parent overall talk 

are particularly impactful (e.g., complex vocabulary) is important. 

Our findings suggests that interventions that aim to improve child math achievement may 

be particularly effective if they focus in increasing naturalistic talk that parents provide to their 

toddlers. However, it is essential to ensure that interventions are culturally appropriate, as they 

are not a one-size-fits all. For instance, while a math app intervention improved the math 

achievement of children from higher SES backgrounds (Berkowitz et al., 2015; Schaeffer et al., 

2018), it did not improve the math achievement of children from lower SES backgrounds, likely 
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because families rarely used the app (Herts, 2020). Thus, it is essential to develop interventions 

that support parent math engagement in culturally appropriate ways that fit into the lives of 

families from diverse backgrounds. As Hunter and Civil (2021) suggest, strength-based 

approaches that build on parents’ practices are important in this endeavor. 

In sum, our findings suggest that there is a need to apply novel statistical approaches, 

such as IPTW to examine the effects of parent talk on child math skills, as these statistical 

approaches may improve our understanding of causal effects of parent talk and the optimal 

timing of parent talk, which could lead to the development of more effective interventions. Our 

study makes a unique contribution to the literature on child math development, as we applied a 

statistical method from epidemiology to show a causal effect of parent number talk and parent 

other talk to their toddlers on their math skills years later. 
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GENERAL DISCUSSION 

General Summary 

Together, the three studies in this dissertation expanded on links represented in the 

EMAA model in important ways.  

In Study 1, results showed that child math anxiety from 1st grade predicted math 

achievement through 3rd grade, controlling for a foundational math skill (number line 

estimation). This finding suggests that math self-relevant math attitudes relate to math 

achievement starting at a young age. Thus, fostering positive math attitudes, in addition to 

ensuring children have the foundational math skills necessary for more complex math, is 

important for children’s math achievement, at least in children from middle and higher SES 

backgrounds. Further, math anxiety was most predictive of math performance when math task 

difficulty was at the cusp of children’s learning level. This finding has important implications for 

math achievement in school, as children typically work on math skills that are at the cusp of their 

math ability. Thus, math anxiety may be particularly impactful in school settings when children 

are learning and working on math that is at the cusp of their learning level. Because results from 

Study 1 provided some evidence that math anxiety may be quite impactful starting at a young 

age, it is important to understand how the link between self-relevant math attitudes and math 

achievement emerges to begin with.  

In Study 2, we focused on families from low SES backgrounds and examined 

longitudinal relations among 1st grade children’s self-relevant math attitudes, math achievement, 

and their parents’ math attitudes. Results showed that child math achievement was a stronger 

predictor of math anxiety, than the reverse, in line with findings from other studies of elementary 

school children from middle and higher SES backgrounds (Cargnelutti et al., 2017; Ching et al., 
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2020; Gunderson et al., 2018). Thus, math achievement-related experiences may influence the 

development of positive or negative self-relevant math attitudes in young children, regardless of 

SES backgrounds. There was some suggestion that math anxiety might be less predictive of math 

achievement for young children from lower SES backgrounds, compared to children from higher 

SES backgrounds, however future research should test this more carefully in samples of children 

from a wide range of SES backgrounds. In addition, while average math achievement was very 

low for children in Study 2, math anxiety and math self-concept levels were similar to those 

reported in studies of 1st graders from higher SES backgrounds (Eccles et al., 1993; Gunderson et 

al., 2018; Pantoja et al., 2020). The big-fish-little-pond effect (i.e., equally achieving students 

have a lower self-concept when attending higher-performing schools than lower-performing 

schools; Marsh, 1987) could potentially explain why math attitude levels were similar.  

Because young children spend a lot of time at home, in Study 2, we also examined the 

role of parent math attitudes. We observed a significant positive relation from parent math 

expectancy-value to child math achievement, even after accounting for prior child math 

achievement and self-relevant math attitudes. To our knowledge, this was the first study to 

control for prior child math achievement, when examining the relation of parent math 

expectancy-value to child future math achievement. Thus, fostering positive child-specific math 

attitudes in parents, may be one way to improve math achievement in children, regardless of SES 

backgrounds. Parent math anxiety did not significantly predict child math achievement, which is 

contrary to prior research showing that parent math anxiety predicts child math achievement in 

families from higher SES backgrounds (Berkowitz et al., 2015; Maloney et al., 2015; Schaeffer 

et al., 2018). However, this finding is in line with a study showing that parent math anxiety is 

less predictive of math behaviors in families from lower SES backgrounds (Berkowitz et al., 
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2021). In sum, our findings suggest that parent self-relevant math attitudes may be less 

consequential for children’s math achievement in families from lower SES backgrounds, while 

parent child-specific math attitudes may be important predictors of child math achievement, 

regardless of SES backgrounds.  

Given that Study 2 showed the importance of parents’ math expectancy-value, which has 

been shown to predict parent behaviors (Simpkins et al., 2012; Wigfield et al., 2006, 2015), in 

Study 3, we focus on a specific parent behavior: the talk that they provide to their toddlers. We 

focused on families from diverse SES backgrounds and used inverse probability of treatment 

weighting (IPTW) to examine whether there were causal effects of parent number talk and parent 

other talk on two different math skills. We examined parent number talk and other talk earlier 

when toddlers were 14 months old, and later when toddlers were 38 months old. Results 

suggested that both parent number talk and other talk impact child cardinal number knowledge at 

46 months. While parent number talk both earlier and later appeared to be of equal importance, 

there was some suggestion that parent other talk provided later at 38 months might be more 

important than parent other talk provide earlier at 14 months. Results also suggest that parent 

other talk impacts child calculation skills in 3rd grade, with some suggestion that parent other talk 

provided later might be more important than parent other talk provided earlier. While parent 

number talk did not significantly impact child calculation skills in 3rd grade, our confidence in 

this result is weak and we caution against strong conclusions of no effect. Further, there was 

some suggestion that for calculation skills in 3rd grade, parent number talk provided earlier may 

be more important than parent number talk provided later. In sum, parent talk causally effects 

child math achievement, but the optimal timing of parent talk may differ based on the type of 
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parent talk provided (e.g., number talk or other talk) and based on the child math skill (e.g., 

cardinal number knowledge at 46 months or calculation skills in 3rd grade) assessed.  

Future Directions 

Findings from the three studies in this dissertation raise important questions for future 

research. For example, future research should further examine how the links examined in this 

dissertation differ based on a) social contexts or settings, such as the home and school 

environment, b) different types of parent talk (e.g., certain types of number talk) provided at 

different times (e.g., after 38 months), c) a broad range of SES backgrounds and d) change across 

development.  

Study 1 suggests that math anxiety may be impactful as early as 1st grade, at in children 

from middle and higher SES backgrounds. However, research shows that self-relevant math 

attitudes may be less consequential for math achievement in adolescents from lower SES 

backgrounds and adolescents with lower math achievement (OECD, 2013). Consistent with 

findings from OECD (2013), in Study 2 there is some suggestion that math anxiety may be less 

consequential for young children from lower SES backgrounds. It will be important for future 

research to examine when math anxiety becomes at least somewhat impactful for children from a 

broad range of SES backgrounds, and when this relationship becomes more bidirectional. 

Further, additional research is needed to determine whether these relations differ depending on 

social context (e.g., home and school settings). Further, in Study 2, we did not observe a 

significant longitudinal relation between math self-concept and math achievement, and future 

research should examine when and how this relation emerges for children from diverse SES 

backgrounds, and how it changes across development.  
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Study 3 suggests that, taking parent and child characteristics into account (e.g., household 

income, child gender, and child gesture) the effects of parent talk may differ based on the type of 

parent talk provided and the type of child math skill assessed. For instance, there was some 

suggestion that parent other talk was more impactful than parent number talk for child 

calculation skills. Future work can further examine whether certain types of parent number talk 

(e.g., more complex number talk) or parent other talk (e.g., spatial talk, quantifiers, complex 

math conversations) are particularly important for children’s math achievement, as well as the 

optimal timing of different types of parent talk. In other words, we examined the quantity of two 

broad categories of parent talk (number talk and other talk) but did not examine the quality of 

parent talk. Further, our findings are limited to two types of child math skills: cardinal number 

knowledge at 46 months and calculation skills in 3rd grade. Examining effects of parent talk on 

other math skills, such as word problem solving is also important.  

We chose the timing of parent earlier talk and later talk based on theory. Specifically, 

parent talk earlier, was measured at a time when child talk and math skills are limited (14 

months) and parent talk later was measured at a time when some children are beginning to 

understand the meanings of number words (38 months). Examining the effect of parent talk after 

38 months on math skills assessed years later, is important. For calculation skills in 3rd grade, it 

is possible that parent talk provided when children have begun formal schooling is more 

important than parent talk provided during the toddler years. Future research can use IPTW to 

examine how the effects of parent talk observed in Study 3 may differ when provided during 

other stages of child math development.  

The studies in this dissertation focused on parents, because toddlers and young children 

spend a lot of time with their parents. However, we did not examine the role of teachers. Future 
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research should examine how both the home and school environment together play a role in early 

child math achievement. While evidence suggests that non-school factors (e.g., socioeconomic 

status) widens SES math achievement gaps, schools are thought to serve as important equalizers 

(Downey et al., 2004). One important question that future research could address regarding the 

role of parents and teachers is: if one key socializer (e.g., a parent or a teacher) has positive math 

attitudes, and the other has negative math attitudes, how does that predict child math 

achievement? If children receive high quality math instruction in school would this counteract 

the effect of decreased levels of parent talk at home?  

Conclusions 

 In conclusion, the three studies in this dissertation expand on links represented in the 

EMAA model in important ways. We now have a better understanding of how impactful math 

anxiety might be for young children’s math performance on tasks at the cusp of their math 

ability. However, future research should examine how the relation of math anxiety to math 

achievement may differ for young children from diverse, particularly low, SES backgrounds. 

Further, we have a better understanding of the emergence of the math achievement-attitude link, 

particularly in children from low SES background, whose math achievement is typically lower 

than that of their peers from higher SES backgrounds. Early math achievement likely plays an 

important role in the development of positive or negative math attitudes across SES levels. 

Parents’ child-specific math attitudes likely play an important role in young children’s math 

achievement across SES levels. Finally, the amount of parent talk provided to toddlers causally 

affects child math achievement years later. Children’s early math achievement may provide 

insights into their future math attitudes, and their early experiences, such as their parents’ math 

attitudes and behaviors. An important area for future research involves examining how links 
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observed in this dissertation may differ based on social context (e.g., differences in the home and 

school environment). Another critical direction for future research is testing our findings in 

intervention studies, to determine whether changing factors such as child math attitudes or parent 

number talk can in turn change child math achievement.  
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APPENDIX: SUPPLEMENTARY MATERIALS FOR STUDY 3 

Section S1. Multiple Imputation 

 We addressed missing values via multiple imputation with predictive mean matching, 

using the mice library in R (van Buuren & Groothuis-Oudshoorn, 2011). Our procedure was very 

similar to that used by Silvey et al. (2021) with three exceptions. 1) We did not use auxiliary 

variables, which are used when there is a need to increase the robustness of imputation, as we 

had many variables in our dataset (see Table 12 in Study 3) and knew from previous research 

that the variables in our dataset with missing values were correlated with other variables in our 

dataset that were not missing those values (Dailey & Bergelson, 2021; Dearing et al., in prep; 

Silvey et al., 2021). 2) We used 20 datasets (i.e., iterations) as opposed to 5 datasets. While just 

5-10 iterations can yield satisfactory performance (Brand 1999; van Buuren et al. 2006), it does 

not hurt to calculate extra iterations (Van Buuren & Groothuis-Oudshoorn, 2011). Using 20 

iterations for less than 10–15% missing data is ample (van Buuren et al., 2006). 3) Because we 

wanted all missing data to be predicted based on all existing data, we did not use the “quickpred” 

function in R, in which missing data is predicted only based on existing data from variables with 

a correlation of p<.10.  
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Section S2. Correlations Among Key Variables 

Table S1. Correlations among predictors    
Z1 

Number 

Instances 

Z2 

Number 

Instances 

Z1 

Other Tokens 

Z2 

Other Tokens 

Cumulative 

Number 

Instances 

Z2 Number 

Instances 

Pearson Correl. .418**       

Sig. 0.001       

N 61       

Z1 Other 

Tokens 

Pearson Correl. .678** .334**     

Sig. <0.001 0.009     

N 64 61     

Z2 Other 

Tokens 

Pearson Correl. .554** .717** .672**   

Sig. <0.001 <0.001 <0.001   

N 61 61 61   

Cumulative 

Number 

Instances  

Pearson Correl.    .599** .761***  

Sig.    <0.001 <0.001  

N   61 61  

Cumulative 

Other 

Instances 

Pearson Correl.  .678*** .549***   .735*** 

Sig.  <0.001 <0.001   <.001 

N 61 61   61 

†p<0.1    *p < 0.05    **p < 0.01    ***p < 0.001 
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Table S2. Correlations among covariates 

  

Child 

gender 

(girl) 

Child 

birth 

order 

Child 

gesture 

types 

14 

months 

Child 

word 

types 14 

months 

Parent 

income 

Parent 

education 

Parent 

IQ  

X1 child 

number 

instances 

X1 

child 

other 

tokens 

Child 

birth 

order 

Pearson Correl. -0.217†                

Sig. 0.086                

N 64               
 

Child 

gesture 

types 14 

months 

Pearson Correl. 0.026 0.131             
 

Sig. 0.84 0.301             
 

N 64 64             
 

Child 

word 

types 14 

months 

Pearson Correl. 0.145 0.163 0.579**           
 

Sig. 0.253 0.198 <0.001           
 

N 64 64 64           
 

Parent 

income 

Pearson Correl. -0.049 -0.068 0.161 0.041         
 

Sig. 0.702 0.595 0.203 0.749         
 

N 64 64 64 64         
 

Parent 

education 

Pearson Correl. -0.216 0.09 0.305* 0.028 0.493**       
 

Sig. 0.087 0.478 0.014 0.827 <0.001       
 

N 64 64 64 64 64       
 

Parent IQ  

Pearson Correl. -0.001 0.066 0.12 -0.224 0.241 .492**     
 

Sig. 0.997 0.645 0.402 0.113 0.089 <0.001     
 

N 51 51 51 51 51 51     
 

X1 child 

number 

instances 

Pearson Correl. -0.06 -0.09 0.161 0.029 0.404** 0.273* 0.084   
 

Sig. 0.641 0.487 0.211 0.825 0.001 0.032 0.556   
 

N 62 63 62 62 62 62 51   
 

X1 child 

other 

tokens 

Pearson Correl. 0.121 0.127 0.154 0.216 0.355** 0.15 0.004 0.549** 
 

Sig. 0.351 0.327 0.233 0.092 0.005 0.245 0.975 <0.001 
 

N 62 62 62 62 62 62 51 62 
 

Child age 

at time of 

3rd grade 

calculation 

Pearson Correl. 

-

0.284* 0.005 0.033 -0.137 0.030 0.133 0.138 -0.034 

-

0.216† 

Sig. 0.023 0.967 0.794 0.281 0.815 0.295 0.335 0.791 
0.091 

N 64 64 64 64 64 64 51 62 
62 

†p<0.1    *p < 0.05    **p < 0.01    ***p < 0.001 
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Table S3. Correlations between covariates and outcomes. 

    
Point-to-X 

(46 months) 

WJ 

Calculation 

W-Score  

(3rd grade) 

Child gender 

(girl) 

Pearson Correl. -0.022 -0.364** 

Sig. 0.866 0.009 

N 59 50 

Child birth 

order 

Pearson Correl. 0.123 0.171 

Sig. 0.355 0.236 

N 59 50 

Child gesture 

types at 14 

months 

Pearson Correl. 0.319* 0.222 

Sig. 0.014 0.121 

N 59 50 

Child word 

types at 14 

months 

Pearson Correl. 0.186 0.17 

Sig. 0.158 0.238 

N 59 50 

Parent 

income 

Pearson Correl. 0.423** 0.411** 

Sig. 0.001 0.003 

N 59 50 

Parent 

education 

Pearson Correl. 0.380** 0.179 

Sig. 0.003 0.214 

N 59 50 

Parent IQ  

Pearson Correl. 0.335* 0.184 

Sig. 0.016 0.214 

N 51 47 

X1 child 

number 

instances 

Pearson Correl. 0.537** 0.440** 

Sig. <0.001 0.001 

N 59 50 

X1 child other 

tokens 

Pearson Correl. 0.365** 0.258† 

Sig. 0.004 0.071 

N 59 50 

Child age at 

time of 

Calculation in 

3rd grade 

Pearson Correl. -0.016 -0.051 

Sig. 0.903 0.723 

N 59 50 

†p<0.1    *p < 0.05    **p < 0.01    ***p < 0.001 

Section S3. Checking Balance 

Our procedure for checking balance was described in the Analytical Procedure section 

(Constructing the Weights section), and Results section (Achieving Balance Between Parent 

Talk and Covariates Section) of Study 3. The tables below show standardized coefficients and t-

ratios of covariates before and after weighting.  
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Table S4. Bivariate relations between parent earlier number talk at 14 months(Z1N) and baseline 

covariates (X0), before and after weighting.a, b 

Variable 

Before weighting (controlling 

for child gesture types at 14 

months) 

After weighting for child gesture 

types at 14 months, household 

income, and child gender 

(controlling for child gesture 

types at 14 months) 

After weighting for child gesture 

types at 14 months, household 

income, and child gender 

(controlling for child gesture 

types at 14 months and age at 

administration of Calculation in 

3rd grade) 

  

Standardized 

coefficient t-ratio 

Standardized 

coefficient t-ratio 

Standardized 

coefficient t-ratio 

X0, Child birth order -0.157 -1.22 -0.114 -0.768 -0.122 -0.839 

X0, Child gender -0.199 -1.712 -0.092 -0.664 -0.054 -0.446 

X0, Child word types 

at 14 months 0.065 -0.587 0.120 1.070 0.138 1.197 

X0, Parent IQ 0.039 0.300 0.012 0.093 -0.033 -0.233 

X0, Parent education 0.2 1.372 0.011 0.080 -0.002 -0.016 

X0, Household income 0.304 2.417 0.021 0.143 0.018 0.124 
a. Standardized coefficients and t-ratios are reported from regressions predicting each covariate X0 from Z1N 

controlling for gesture, without weighting (columns 2 and 3) and with weighting (for gesture, household income, and 

child gender; columns 4, 5, 6, and 7). 
b. Standardized coefficients and t-ratios are reported not controlling for age at administration of Calculation in 3rd 

grade (columns 2, 3, 4, and 5) and controlling for age at administration of Calculation in 3rd grade (columns 6 and 

7) 

 

Table S5. Bivariate relations between parent later number talk at 38 months (Z2N), baseline 

covariates (X0), and time-varying covariate (X1N) before and after weighting.a, b 

Variable 

Before weighting (controlling 

for Z1N and child gesture 

types at 14 months) 

After weighting for Z1N, child 

gesture types at 14 months, 

child gender, and household 

income (controlling for Z1N 

and child gesture types at 14 

months) 

After weighting for Z1N, child 

gesture types at 14 months, 

child gender, and household 

income (controlling for Z1N, 

child gesture types at 14 

months, and age at 

administration of Calculation 

in 3rd grade) 

  

Standardized 

coefficient t-ratio 

Standardized 

coefficient t-ratio 

Standardized 

coefficient t-ratio 

X1N, Child number 

instances at 34 months 0.032 0.183 -0.180 -1.038 -0.173 -0.984 

X0, Child birth order 1.546 0.113 -0.091 -0.592 -0.100 -0.672 

X0, Child gender -0.251 -1.898 0.009 0.051 0.028 0.174 

X0, Child word types  

at 14 months -0.135 -1.133 0.011 0.089 0.023 0.185 

X0, Parent IQ 0.060 0.358 -0.041 -0.216 -0.057 -0.315 

X0, Parent education 0.140 1.107 -0.003 -0.022 -0.010 -0.071 

X0, Household income 0.188 1.440 0.028 0.189 0.028 0.187 
a. Standardized coefficients and t-ratios are reported from regressions predicting each covariate X0 from Z2N 

controlling for Z1N and gesture, without weighting (columns 2 and 3) and with weighting (for Z1N, gesture, and 

household income; columns 4, 5, 6, and 7).  
b. Standardized coefficients and t-ratios are reported not controlling for age at administration of Calculation in 3rd 

grade (columns 2, 3, 4, and 5) and controlling for age at administration of Calculation in 3rd grade (columns 6 and 

7). 
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Table S6. Bivariate relations between parent earlier other talk at 14 months (Z1O) and baseline 

covariates (X0), before and after weighting.a, b 

Variable 

Before weighting (controlling 

for child gesture types at 14 

months) 

After weighting for child 

gesture types at 14 months, 

child word types at 14 months, 

child gender, and parent 

education (controlling for child 

gesture types at 14 months) 

After weighting for child 

gesture types at 14 months, 

child word types at 14 months, 

child gender, and parent 

education (controlling for child 

gesture types at 14 months and 

age at administration of 

Calculation in 3rd grade) 

  

Standardized 

coefficient t-ratio 

Standardized 

coefficient t-ratio 

Standardized 

coefficient t-ratio 

X0, Child birth order -0.131 -1.115 -0.012 -0.074 0.006 0.032 

X0, Child gender -0.259 -2.782 -0.205 -1.471 -0.123 -0.880 

X0, Child word types  

at 14 months -0.182 -2.183 -0.059 -0.812 -0.019 -0.224 

X0, Parent IQ 0.331 2.432 0.224 1.404 0.193 1.163 

X0, Parent education 0.358 2.693 -0.135 -0.727 -0.178 -0.882 

X0, Household income 0.370 2.923 0.220 0.976 0.227 0.968 
a. Standardized coefficients and t-ratios are reported from regressions predicting each covariate X0 from Z1O, without 

weighting (columns 2 and 3) and with weighting (for parent education, child gender, and child gesture types at 14 

months; columns 4, 5, 6, and 7). 
b. Standardized coefficients and t-ratios are reported not controlling for age at administration of Calculation in 3rd 

grade (columns 2, 3, 4, and 5) and controlling for age at administration of Calculation in 3rd grade (columns 6 and 

7). 

 

Table S7. Bivariate relations between parent later other talk at 38 months (Z2O), baseline 

covariates (X0), and time-varying covariate (X1O) before and after weighting.a, b 

Variable 

Before weighting (controlling 

for Z1O and child gesture 

types at 14 months) 

After weighting for Z1O, child 

gesture types at 14 months, 

household income and parent 

education (controlling for Z1O 

and child gesture types at 14 

months) 

After weighting for Z1O, child 

gesture types at 14 months, 

household income and parent 

education (controlling for 

Z1O, child gesture types at 14 

months and age at 

administration of Calculation 

in 3rd grade) 

  

Standardized 

coefficient t-ratio 

Standardized 

coefficient t-ratio 

Standardized 

coefficient t-ratio 

X1O, Child other tokens 

(34 months) 0.232 1.490 0.106 0.623 0.117 0.805 

X0, Child birth order -0.094 -0.550 -0.132 -0.700 -0.129 -0.695 

X0, Child gender -0.190 -1.257 0.028 0.174 0.028 0.174 

X0, Child word types  

at 14 months -0.054 -0.457 -0.002 -0.018 -0.001 -0.006 

X0, Parent IQ -0.014 -0.087 -0.140 -0.701 -0.145 -0.698 

X0, Parent education 0.036 0.192 -0.103 -0.515 -0.107 -0.530 

X0, Household income 0.349 2.371 0.129 0.628 0.130 0.634 
a. Standardized coefficients and t-ratios are reported from regressions predicting each covariate X0 from Z2N 

controlling for Z1N, without weighting (columns 2 and 3) and with weighting (for Z1O and household income; 

columns 4, 5, 6, and 7).  
b. Standardized coefficients and t-ratios are reported not controlling for age at administration of Calculation in 3rd 

grade (columns 2, 3, 4, and 5) and controlling for age at administration of Calculation in 3rd grade (columns 6 and 

7). 
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Section S4. Sensitivity Analysis 

To assess the sensitivity of our results, we checked the level of bias we would expect if 

there were confounders we did not measure, in line with Silvey et al. (2021). As described in our 

Analytical Procedure section, we emphasize that this approach is a very partial specification 

check and does not provide proof that our results are valid. It is impossible to know the severity 

of bias resulting from failure to include unobserved confounders. 

The most important confounders for parent talk and child math skills that have been 

reported are confounders we observe: parent income and education (Dailey & Bergelson, 2021; 

Dearing et al., in prep; Levine et al., 2010). While we do not expect to have unobserved 

confounders stronger than parent income and education, there may be weaker unobserved 

confounders. Would failing to control for covariates that prior research has not controlled for 

disguise the fact that our results may not be robust to unobserved confounding? The goal of the 

sensitivity analysis is to understand whether our results are robust (i.e., insensitive), or whether 

they are not robust (i.e., sensitive) to failure of including unobserved covariates.  

Sensitivity analysis in observational studies is important. In an experiment, all 

confounding would be controlled for through random assignment. There likely are unobserved 

confounders that we did not control for in the current study (e.g., executive functioning), 

therefore it is important to understand whether failure to control for these unobserved 

confounders would qualitatively change our conclusions. We want to know how robust (i.e., 

insensitive) our results are to the failure of including unobserved confounders. Rather than using 

simulated covariates variables, we use existing baseline covariates in our dataset (parent income, 

education and IQ, and child gender, birth order, word types and gesture types). Based on the 

literature, it is unlikely that there are covariates stronger than these that we did not observe, as 
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these covariates have been found to be strong predictors of parent talk (Dailey & Bergelson, 

2021; Dearing et al., in prep; Levine et al., 2010; Silvey et al., 2021).  

We examined the range of possible biases that would stem from the existence of 

unobserved covariates with confounding effects similar to those of the covariates we did observe, 

once the effects of parent income and education are accounted for. If controlling for income and 

education alone is enough to remove confounding, then we consider our results to be robust (i.e., 

insensitive to unobservable confounders). Of note, our approach is a partial specification test of 

sensitivity and does not serve as proof that our results are valid, as we cannot know the severity 

of bias resulting from excluding unobserved covariates.  

For our sensitivity analysis, we assume our best-fitting model—the constant effects 

model—in each of the three cases where we observed a statistically significant effect of parent 

talk: the effect of number talk cardinality, the effect of other talk on cardinality and the effect of 

other talk on calculation.  

First, we want to know the level of expected bias from unobserved confounders. We 

calculate the estimated bias of each of our observed covariates—which we are treating as 

unobserved covariates—except parent income and education. For details on how to derive this 

information, see Silvey et al. (2021). Then, we look at the unobserved confounder with the 

largest bias. For the effects of both cumulative number talk and cumulative other talk on 

cardinality, this was child gesture types at 14 months. For the effect of cumulative other talk on 

calculation, this was child gender.  

Second, we want to see whether the effect of parent talk adjusted for bias, is smaller than 

the original effect in our constant effects models. To examine this, we simply take the original 

coefficient from our best-fitting outcome models and divide it by the coefficient corrected for the 
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bias of the strongest unobserved confounder. For details on how to derive the coefficient 

corrected for the bias, see Silvey et al. (2021).  

For the effect of number talk on cardinal number knowledge at 46 months, the original 

coefficient of constant number talk is 0.957 (see Table 14), while the estimate corrected for the 

bias of child gesture types at 14 months is 0.904. Excluding a confounder with bias similar to 

child gesture types would not exaggerate the estimate of the effect of number talk by more than 

about 6%. This would not qualitatively change our conclusions, and the effect of number talk on 

cardinality would still be statistically significant.  

For the effect of parent other talk on cardinal number knowledge at 46 months, the 

original coefficient of constant other talk is 0.965 (see Table 15), while the estimate corrected for 

the bias of child gesture types at 14 months is 0.859. Excluding a confounder with bias similar to 

child gesture types would not exaggerate the estimate of the effect of other talk by more than 

about 12%. This would not qualitatively change our conclusions, and the effect of other talk on 

cardinality would still be statistically significant.  

Finally, for the effect of parent other talk on calculation skills in 3rd grade, the original 

coefficient of constant other talk is 5.933 (see Table 17), while the estimate corrected for the bias 

of child gender is 5.076. Excluding a confounder with bias similar to child gender would 

exaggerate the estimate of the effect of other talk by more than about 17%. This would not 

qualitatively change our conclusions, and the effect of other talk on calculation would still be 

statistically significant.  

In sum, based on our sensitivity analyses, our conclusions appear to be robust (i.e., 

insensitive to unobserved confounders), and increase our confidence in our results. To reiterate, 
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we cannot know with certainty the true effect of unobserved confounders, as it is impossible to 

measure this.  

Section S5. Common Support 

For this analysis, we chose 1 dataset at random to graph results. The procedure described 

here was done for each of our four categories of parent talk: parent number talk and other talk 

provided earlier at 14 months and later at 38 months. Figures S2 (a and b) and S3 (a and b; a 

figure for each category of parent talk) show the distribution of observed parent talk (8 quantiles) 

for each of four categories of children: those predicted, based on their covariates to have a) low 

talk (quantiles 1-2 predicted), b) low-mid talk (quantiles 3-4 predicted), high-mid talk (quantiles 

5-6 predicted), and high talk (quantiles 7-8 predicted). We have common support when there is 

variability in the range of observed talk for children in each category of predicted talk. In other 

words, when subsets of children who have a similar probability of a certain amount of talk, vary 

in their observed talk (see Hong, 2012; Silvey et al., 2021). Lack of common support would 

mean that some subsets of children have no information about the impact of different types of 

talk. For example, those with low talk might have no comparison group.  

Figure S1. Common support for estimating the effect of a. earlier number talk Z1N (parent 

number talk at 14 months), and b. later number talk Z2N (parent number talk at 38 months). 

 

 
a.            b.  
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Figure S2. Common support for estimating the effect of a. earlier other talk Z1O (parent other 

talk at 14 months), and b. later other talk Z2O (parent other talk at 38 months). 

 
a.             b.  
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