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ABSTRACT

In the thesis, we study the problems regarding robustness and model adaptivity with stochas-

tic optimization.

First, we formally address two robust concerns. 1. Finite sample cannot well represents

the entire population. 2. Data modeling assumptions can be wrong (misspecified). For

the first robust concern, we propose an alternative of the popular regularization method

based on distributionally robust optimization and clarify their connection and derive finite

dimensional computational formulation based on that. For the second robust concern we

study Huber’s loss within a modern non-asymptotic setting. We further study the second

robust concern with the stochastic gradient descent algorithm and purpose how to amend

SGD to defense possibly maliciously outlier attack (which can consider as a stronger version

of second robust concern) and justify the statistical optimality.

We then study the model adaptivity of training neural network by gradient flow via a

dynamic reproducing kernel Hilbert space (RKHS) approach. We show that when reaching

any local stationarity, gradient flow learns an adaptive RKHS representation and performs

the global least-squares projection onto the adaptive RKHS simultaneously. This approach

gives intuition of the benefits of training neural network over only viewing the neural network

as a neural tangent kernel.
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CHAPTER 1

INTRODUCTION

In this thesis, we study the problem of data-driven approaches to solving the following

stochastic programming (SP)[157] problem,

(sp) : min
θ∈Θ

F (θ) = EX∼P [f(θ,X)] := 〈f(θ,X), P (X)〉. (1.0.1)

Here f is some functional we want to minimize on a population level. We will call it a loss

for this chapter, and θ is our decision/action/estimation, and X is data-driven from specific

data generating process P . This model has many applications in statistics (e.g., maximum

likelihood estimation, M -estimator) and machine learning (e.g., training linear model, kernel

method, deep neural network).

Many works are studying this problem with known distribution P , see, e.g., [22, 157],

whereas the probability distribution is inferred from history, expert advice, or modeling (e.g.,

physics, mechanics, economics, etc.). This line of work assumes we have full knowledge of

the distribution P to solve (1.0.1).

In another extreme case, we do not have any knowledge about the distribution P other

than the support X . Many works in (traditional) robust optimization [18, 15, 14] suggest that

we make the decision w.r.t. the worst case scenario within the support of the distribution

min
θ∈Θ

Frobust(θ) = max
X∈X

f(θ,X). (1.0.2)

However, in many real-world applications, we encounter neither the optimistic case when

we have the full knowledge of the distribution (1.0.1) nor the pessimistic case when we have

essentially no knowledge about the distribution (1.0.2). A more common and realistic setting

is that we only have ’data’ collected, preferably, i.i.d X1, X2, · · · , Xn from distribution P

and aim to infer some properties of the distribution and try to give a reasonable solution

1



based on the properties.

Perhaps the most naive way to handle this problem is to substitute the population dis-

tribution P by the empirical distribution Pn =
∑n
i=1 δXi . Therefore, this simple approach

gives us a finite approximation of the stochastic programming problem (1.0.1), which is often

called sample average approximation (SSA) or empirical risk minimization (ERM),

(saa) : min
θ∈Θ

F̂ (θ) = EX∼Pn [f(θ,X)] =
1

n

n∑
i=1

f(θ,Xi) = 〈f(θ,X), Pn(X)〉 ≈ F (θ). (1.0.3)

However, a sufficient condition (and arguably the most successful one of the very few theo-

retical understandings we have) to guarantee this approach to work is that F̂ (θ) is a good

approximation of F (θ) for all θ ∈ Θ (or, in other words, empirical process theory [177]),

which is often not the case, especially when we have limited data sample, or, when the Θ

space is huge, e.g., deep neural network. Because of this issue, simple SAA can suffer from

the problem of overfitting [195], i.e. the in-sample loss 〈f(θ,X), Pn〉 cannot well represent

the out-sample (population) loss 〈f(θ,X), P 〉 and thereby we select a sub-optimal θ̂ based

on SAA. This raises our first robust concern, which is putting too much faith on Pn as

an approximation of P .

Arguably the most successful and commonly used approach to resolve the overfitting

problem is regularization, e.g. we penalize θ based on its ’complexity’, which yields the

regularized version of SAA,

(soft) : min
θ∈Θ

F̃λ(θ) =
1

n

n∑
i=1

f(θ,Xi) + λp(θ) = F̂ (θ) + λp(θ), (1.0.4)

and theoretically, we also study the closely related constrained version of the problem (the

2



above (1.0.4) can be seen as a ‘soft’ version of the ‘hard’ constraint version below),

(hard) : min
θ∈Θ

F̃ (θ) =
1

n

n∑
i=1

f(θ,Xi)

s.t. p(θ) ≤ R.

(1.0.5)

Here the penalty function p is some complexity measure of θ, e.g. L2-norm ‖θ‖22, Reproducing

Kernel Hilbert Space (RKHS) norm ‖θ‖2H (where the parameter θ represents a functional

in the RKHS space), sparsity ‖θ‖0 = {i | oi 6= 0}, etc. Here we briefly go through the

reasoning of regularization from a learning theoretic point of view [119, 151]. When the loss

function f satisfies certain condition e.g. Lipchitz, boundness, we have the following uniform

convergence guarantee,

∀R > 0, θ ∈ Θ s.t. p(θ) = R, |〈f(θ,X), P (X)〉 − 〈f(θ,X), Pn(X)〉| ≤ λ ·R = λ · p(θ).

(1.0.6)

The second inequality holds either in expectation or in high probability. In other words,

λ · p(θ) is an upper bound of the in-sample out-sample difference

λp(θ) ≥ supθ′≤p(θ)〈f(θ′, X), P − Pn〉 (in expectation or with high probability). Therefore

the target of (1.0.4) can be understood as follows,

F (θ) = 〈f(θ,X), P 〉 = 〈f(θ,X), Pn〉︸ ︷︷ ︸
F̂ (θ) in-sample loss

+ 〈f(θ,X), P − Pn〉︸ ︷︷ ︸
≤λp(θ) excess loss

≤ F̂ (θ) + λp(θ) = Fλ(θ).

(1.0.7)

Here we call the in-sample and out-sample difference excess loss or generalization. Thereby,

the regularization method can be understood as optimizing our decision θ w.r.t. an upper

bound surrogate of the population loss. However, for many decision spaces Θ, there is no

obvious complexity measure p(θ), also, both the complexity measure p(θ) and the general-
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ization estimate λ · p(θ) can be too loose. To make the matter worse, the derivation of λ

needs certain properties of f , e.g. (higher-order) smoothness, which cannot always be easily

calculated for real-world problems. We, therefore, do not aim to derive an upper bound of

the population loss based on a complexity measure of the functional space Θ, but rather

characterize the in-sample out-sample distribution difference, i.e., P − Pn differently.

Suppose we have a characterization of the difference of P and Pn with certain metric on

distribution space d(P, Pn) ≤ ε1. Then following the same procedure as in (1.0.7), we can

derive the following robust decision making approach

F (θ) = 〈f(θ,X), P 〉 = 〈f(θ,X), Pn〉︸ ︷︷ ︸
F̂ (θ) in-sample loss

+ 〈f(θ,X), P ′ − Pn〉︸ ︷︷ ︸
d(P,Pn)≤ε1 excess loss

(1.0.8)

≤ 〈f(θ,X), Pn〉︸ ︷︷ ︸
F̂ (θ) in-sample loss

+ 〈f(θ,X), P ′ − Pn〉︸ ︷︷ ︸
d(P ′,Pn)≤ε1 excess loss upper bound

= max
d(P ′,Pn)≤ε1

EP ′ [f(θ,X)] . (1.0.9)

Putting the minimization over decision variable back into the formulation (1.0.8), we have

the following distributionally robust optimization (DRO)

min
θ∈Θ

max
d(P,Pn)≤ε1

EP [f(θ,X)] . (1.0.10)

Here, SAA (1.0.3) can be seen as the case ε1 = 0, RO (1.0.2) can be seen as the case ε1 =∞.

We note that, the inner target function 〈f(θ,X), P 〉 is always linear in P . Hence, even if

it is an infinite dimensional problem, it is still a linear programming problem w.r.t. P , and

roughly speaking, by duality [155] (exchanging the infinity from target to constraints), we

can transform a infinite dimensional minimization linear programming into a semi-infinite

programming problem, [59, 201]. Also, with further concave-convex assumption on the target

function f , the problem with d as Wasserstein-distance, can further be reduced into a finite

dimensional convex-concave tractable problem [47, 66, 59]

In real-world applications, we often have the following specific form, where X takes the

4



form of a data pair (x, y) and we know that x has predictive power of y, and our ultimate

goal is to optimize the following stochastic program with conditional distribution target

min
θ∈Θ

F (θ, x) = Ey∼Py|x [f(θ, y)] . (1.0.11)

Estimating the transition kernel Py|x can be very hard. To simplify the task, we borrow

wisdom from the statistical model,

y = m∗(x) + ξ. (1.0.12)

Here m(x) is a function of the conditional mean of y given x, and the random vector ξ

includes the remaining uncertain. Note that in this general model, the distribution of ξ

actually depends on x. To further simplify the model, we assume the noise ξ ∼ Pξ is

homogeneous, i.e., the distribution of ξ is independent of x. Suppose we have data pair

D = {(xi, yi)}ni=1, we propose the following joint model estimation and DRO formulation.

1. We have the estimation m̂ obtained from estimation from data D with confidence

region m∗ ∈ {d1(m, m̂) ≤ ε1}, with some (possibly functional) measure d1.

2. Given any feasible m, we have empirical residuals ξ̂i = yi −m(xi).

3. Let Pn(m) = 1
n

∑n
i=1 δyi−m(xi)

be the empirical distribution of the residual. Then we

have a confidence interval of actual distribution Pξ characterized by d2(P, Pn(β∗)) ≤ ε2,

with some distributional metric d2.

4. By 1) and 3), we have a joint ambiguity set C, which has the form d1(m, m̂) ≤ ε1 and

d2(Pn(m), P )) ≤ ε2, and with high probability will include the actual (m∗, Pξ).

Therefore, we have the following distributionally robust optimization with a new observation

5



xn+1.

min
θ∈Θ

max
m,P

Eξ∼P [f(θ,m(xn+1) + ξ)] (1.0.13)

s.t. d1(m, m̂) ≤ ε1 (1.0.14)

d2 (P, Pn(m)) ≤ ε2. (1.0.15)

The second robust concern we want to address is that the sampled dataX1, X2, · · · , Xn

may not all be collected from our desired distribution P , but rather, some small portion of

the data are outliers. This is a common phenomenon in statistics in practice [147], especially

in time series [115]. In the statistics literature, [92], arguably the best model for the outlier

issue is the Huber’s contamination model [91, 89]. In this model, we have the following

characterization of the actual data generating process for the data we gathered,

Xi ∼ (1− α)P + αQ. (1.0.16)

The model states that each data point Xi is drawn from our desired distribution P with

probability 1−α, but with a small probability α, it is drawn from other arbitrary distribution

Q. A closely related adversarial contamination model recently received a lot of attention due

to its success in machine learning applications [79, 168] and as a theoretical interest in the

theoretical computer science community. In this model, similar to Huber’s contamination,

with probability 1 − α, we get a sample from P , but with probability α, we get a sample

that can be possibly maliciously designed (based on the actual model, previous data given or

even our specific algorithm). Under those two types of contamination models, two natural

questions to answer are a) what type of outlier can we detect? and b) after screening out the

detectable outliers, how well can we learn P based on the remaining possibly contaminated

sample?

Still we work on problem (1.0.11), with the modelling assumption (1.0.12). The first prob-
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lem we are going to address about the second robust concern is robust linear regression,

namely, we model

yi = β∗xi︸︷︷︸
m∗(xi)

+ξi + oi, (1.0.17)

where ξi is some generic well-behaved noise (zero-mean, light-tail and independent of x),

and oi is the contamination, i.e. the majority of oi = 0. In the classical statistics literature,

there are many classical works that study this problem. Their focus are mainly on 1. break-

down point of the estimator [46], i.e., the minimal portion of oi 6= 0 to make the estimator

arbitrarily bad, and 2. the efficiency of the estimator [46], which is, the performance of the

estimator under no contamination oi = 0. Under Huber’s contamination model (1.0.16),

the estimators in include M -estimator [90], GM -estimators [114], S-estimators [145] and

MM -estimator [196], among others. In our work, we study the modern finite sample non-

asymptotic performance [186] of Huber’s loss induced M -estimator under the adversarial

contamination model. After obtaining β̂, we need to build Pn in step 3 to characterize a

feasible set including Pξ, and it naturally leads to the questions a) what undetectable adver-

sarial sample could mislead us and b) what property does the trustworthy data pair (xi, yi)

have so that we can characterized the closeness of the empirical residual distribution Pn and

Pξ.

The previous approach can be considered as a ‘batch’ way to solve the data-driven

problem of (1.0.1) (using all n samples in one shot). We also study another alternative

‘streaming’ approach (sequentially sampling new data Dt and updating our decision variable

θt+1 = ft(θt, Dt) at each iteration) for (1.0.1), also known as stochastic approximation (SA)

[143], under the second robust concern. Stochastic gradient descent (SGD) as a special-

ized SA is arguably the most successful algorithmic building block for modern data science

and machine learning [26]. Previous works studying this problem [136] rely on a relatively
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straightforward analysis, which plug in a robust estimator of the gradient at each step of

SGD and perform inexact gradient descent analysis with adversarial oracle [42]. However,

this approach overlooks the concentration effect of uncontaminated samples and cannot be

generalized to the streaming case. By carefully studying the sample that can be kept from

robust outlier removal, we refined the analysis and proposed an algorithm that achieves

optimality in the statistical sense.

Moving from the robustness concern with data-driven stochastic optimization, we are

going to study the adaptivity of training dynamics on a neural network with target (1.0.1).

The traditional statistical and empirical process-based learning theory understanding failed

to successfully explain the success of neural networks with a huge number of parameters

[121]. The traditional understanding of model generalization, as mentioned in (1.0.7), is

based on the upper bound of the following quantity

max
θ∈Θ

∣∣EP [f(θ,X)]− EPn [f(θ,X)]
∣∣ ≤√Complexity(Θ)

n
, (1.0.18)

where Θ denotes the neural network space. However, this failed to explain the large neu-

ral network because the large Complexity(Θ) and the bound above always give a vacuous

bound. Recently, there has been a line of works that establish the connection between the

training dynamics of overparametrizatized neural networks and a fixed RKHS [93, 52, 50].

An intuitive way of understanding this connection is as follows. The kernel function gives

an ‘inner product’ structure with implicit feature mapping of the data-data pair, i.e.

K(x, y) = 〈φ(x), φ(y)〉, (1.0.19)

where φ(·) is the implicit feature mapping, and the RKHS functional space is f(θ, x) =

b + 〈φ(x), θ〉. Here, overparametrized neural network with proper random initialization can
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be approximated by

f(θ, x) ≈ f(θ0, x) + 〈∇θf(θ0, x), θ − θ0〉 = b0 + 〈∇θf(θ0, x), θ〉. (1.0.20)

This is by taking the Taylor expansion around its initialization. If we can justify that along

the entire training trajectory, θ will always stay close to initialization θ0, then this linear

approximation with feature mapping x → ∇θf(θ0, x) is a valid approximation. However,

the natural question is that if the success of neural networks can all be explained by RKHS,

why not directly use the Kernel method? Another relation of the kernel method and the

two-layer neural network is simply viewing first layer as a feature mapping (each neuron as

a feature), ψ(x, θ1) =
(
ψ1(x, θ1,1), ψ2(x, θ1,2), · · · , ψm(x, θ1,m)

)
, and the second layer as a

linear activation function of the features

f(θ, x) = 〈θ2, ψ(x)〉. (1.0.21)

Here, θi denotes the weights on the i-th layer, and θ1,i denotes the weights of neuron i on

the first (hidden) layer. The relation is a more generic way to understand neural networks

as kernel machines and yields another RKHS. In this line of work, we can study the two

spaces (mainly their difference to show the benefit of using a neural network), namely, the

RKHS found by the training neural network (1.0.21) and the linear approximation RKHS

at initialization (1.0.20).

This thesis contains material from two published papers by the author [47, 49]. In

particular, Chapter 2 is based on [47], coauthored with Mihai Anitescu; and Chapter 5 is

based on [49], coauthored with Tengyuan Liang.
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1.1 Contributions of This Thesis

1.1.1 DRO with Dependent Data

In this work, we first study the problem (1.0.11)

min
θ∈Θ

F (θ, x) = Ey∼Py|x [f(θ, y)] , (1.1.1)

with modeling assumption (1.0.12)

y = m∗(x) + ξ. (1.1.2)

Here we assume that ξ ∼ Pξ homogeneously. Also, we make linear model assumption

m∗(x) = A∗x. Following the (1.0.13), we have the following DRO formulation.

min
θ∈Θ

max
A,P

Eξ∼P [f(θ, Axn+1 + ξ)] (1.1.3)

s.t. ‖A− Â‖ ≤ ε1 (1.1.4)

W
p
p (P, Pn(A)) ≤ ε2. (1.1.5)

HereW is the p-Wasserstein distance. By duality arguments, when function f is convex in the

first argument and convex in the second argument, we show that this problem has a convex-

concave finite-dimensional tractable formulation, which can be efficiently solved. We also

applied this technique to the case when we observe a time series from vector autoregression

(VAR), zt+1 = Azt + ξt [173].

1.1.2 DRO with Contamination

With the same target (conditional stochastic programming) and model as the work before,

here we consider that case when we have contaminated data pair (xi, yi). We investigate
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the performance of Huber’s loss with finite sample for non-asymptotic guarantees. We also,

design a data screening rule based on Huber’s loss regression and study what type of con-

tamination can be hidden from our screening rule and the distributional influence of such

undetectable contamination on estimating Pξ. On the DRO formulation side, we study the

following problem

min
θ∈Θ

max
A,P

Eξ∼P [f(θ, Axn+1 + ξ)] (1.1.6)

s.t. ‖A− Â‖ ≤ ε1 (1.1.7)

W
p
p (P, Pn(A)) ≤ ε2. (1.1.8)

Based on the optimal transport theory, we show that for general continuous f , we can always

approximate (1.1.6) with a finite-dimensional min-max optimization problem with a solution

difference guarantee.

We also generalize this approach to time series setting with innovative outliers. The

difficult part is that zn+1 = xn+1 can be contaminated as well. Therefore, the formulation

(1.1.6) needs to be adjusted to the last trust worth point zlast, but that will incur the noise

residual to be the form ξn+1 + Aξn + · · · + Acξlast. We propose two relaxations to handle

this issue.

1.1.3 Making SGD Robust against Outlier Attack

In this work, we consider solving the stochastic programming problem (1.0.1) by SGD, i.e.,

at each step t, we get a (potentially contaminated) sample Xt, and get the noise gradient

gt = ∇f(θt, Xt) and try to perform gradient descent,

θt+1 = arg min
θ∈Θ

[
〈gt, θ − θt〉+

1

2ηt
‖θ − θt‖2

]
:=
∏
θ∈Θ

[θt − ηtgt] . (1.1.9)
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Here we use
∏

as a projection operator. We develop a simple, robust screening rule based

on the historical data. Using historical data, we develop an estimator of µ(θt) ≈ ∇F (θ),

with confidence radius V and we rule out gt if it doesn’t fail into the confidence region. Note

that the reuse of data will make the future trajectory dependent on the historical data, and

this dependency can make certain martingale properties fail, which is crucial in analyzing

the convergence of Vanilla SGD in the contamination-free setting. This dependency can also

make the confidence radius V vacuously large, which will make the convergence rate sub-

optimal. We handle both issues by studying this empirical process and proving this simple

screening approach can be amended to achieve statistical optimality.

1.1.4 NN as Adaptive Kernel

Consider the problem: given data pair (x, y) drawn from a population with f∗(x′) = E[y|x =

x′], specify a neural network model and run gradient flow on the weights over time until

reaching any stationarity. How does ft, the function computed by the neural network at

time t, relate to f∗ in terms of approximation and representation? What are the provable

benefits of the adaptive representation by neural networks compared to the pre-specified

fixed basis representation in the classical nonparametric literature? We answer the above

questions via a dynamic reproducing kernel Hilbert space (RKHS) approach indexed by the

training process of neural networks. We show that when reaching any local stationarity,

gradient flow learns an adaptive RKHS representation and performs the global least-squares

projection onto the adaptive RKHS simultaneously. Besides, we prove that as the RKHS

is data-adaptive and task-specific, the residual for f∗ lies in a subspace that is potentially

much smaller than the orthogonal complement of the RKHS, formalizing the representation

and approximation benefits of neural networks. To further substantiate the adaptive theory,

we show that in the limit of vanishing regularization, the neural network function computed

by gradient flow converges to the kernel ridgeless regression with the adaptive kernel.
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CHAPTER 2

DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH

CORRELATED DATA FROM VECTOR AUTOREGRESSIVE

PROCESSES

2.1 Introduction

A common formulation of optimization under uncertainty is the following stochastic program:

[156]

min
x∈D

Ey∼F [h(x,y)].

Here the decision variable x has a convex feasible domain D, h is a convex function in x,

and y is data from an underlying generating process.

Much of the work in stochastic programming is carried out under the assumption that

the distribution F is known [22, 156]. In many problems, however, other than some basic

properties, we do not have the exact description of F . Using the empirical distribution Fn

as a surrogate for F would overfit the data, especially with very few samples.

One way to overcome the uncertainty attached to the probability density F itself is to

investigate distributionally robust stochastic optimization (DRSO). This problem is

min
x∈D

max
F∈U

Ey∼F [h(x,y)],

where the distribution F is from a set U . Significant research recently has been carried out

concerning the choice of ambiguity set U by trying to balance out-of-sample performance

and computational complexity. In [41], the authors proposed to specify the ambiguity set by

the first and one-sided second moment constraints in order to preserve the convexity of the

formulation. As mentioned in [67], however, the one-sided second-moment constraint may

have no effect on the problem.
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Other approaches identify the ambiguity set by considering distributions that are close to

the empirical distribution in an appropriate measure. Different metrics include the Kullback-

Leibler divergence [95], Burg entropy [187], total variation [167], χ2-distance [102], and more

generally φ-divergence [16] [9]. A drawback of φ-divergence formulations is that they may

not be rich enough to capture distributions of interest [66].

Recent work has introduced DRSO formulations based on the Wasserstein distance

[58, 66], which has both out-of-sample performance guarantees and computational efficient

reformulations.

Most of the cited references study the problem in a setting where the data consists of

copies of independent and identically distributed (i.i.d) random variables. However, in many

applications, particularly when the data is formed by sequential entries in a time series, the

i.i.d. assumption is not realistic. In this work, we study the case when we have times series

data from a vector autoregression (VAR) process

yt+1 = Ayt + ξt, t = 1, . . . , n− 1. (2.1.1)

Here ξ1, . . . , ξn−1 ∈ Rd are i.i.d random variables with a zero-mean residual. Realizations

y1, . . . , yn ∈ Rd are our observations, and the conditional expectation satisfies

Et−1[yt] = Ayt−1. For a more concise way to represent the model, let Y+ = [y2, . . . , yn] ∈

Rd×(n−1), Y− = [y1, . . . , yn−1] ∈ Rd×(n−1) and E = [ξ1, . . . , ξn−1] ∈ Rd×(n−1). Thus, we

have

Y+ = AY− + E. (2.1.2)

The VAR model is widespread. It occurs in econometrics [160], control theory [105], and re-

cent brain image analysis [64]. The ubiquity of times series models motivates us to generalize

the DRSO to the VAR-dependent data setting.

Our contribution is to propose a DRSO formulation using Wasserstein distance techniques
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for VAR data and to prove that if the original problem has the needed convexity features,

then our DRSO formulation is a finite-dimensional convex-concave saddle point problem.

2.2 Model and Robust Formulation

Suppose we have data y1, y2, · · · , yn ∈ Rd from a time series and we need to make a decision

that will be affected by the next outcome yn+1. We assume that the time series is generated

by a vector autoregression process (VAR(1)),

yt+1 = β + Ayt + ξt.

Here A is a fixed transition matrix, and the noise terms ξt ∈ Ξ ⊆ Rd, t = 1, . . . , n− 1 are

i.i.d with zero mean. For notational simplicity, let ỹt = [1,yt]
T , ξ̃t = [0, ξt]

T , and

Ã =

 1 0

β A

 .
Therefore, the data model becomes

ỹt+1 = Ãỹt + ξ̃t, t = 1, 2, . . . , n− 1.

To simplify notation, we will use, without loss of generality, yt and A in the previous equation

for the rest of the article; in other words, we will refer to the algebraic formalism of (2.1.1)

and (2.1.2).

Consider the stochastic programming problem

min
x

Eyn+1∼F [h(x,yn+1)]

subject to x ∈ D.
(2.2.1)
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Here F is the true conditional distribution of yt+1 given yt within the model. For problems

with real data, both A and F need to be estimated from the data. We can build confidence

intervals of A and F under common regularity assumptions about the noise term ξt, which

lead to our robust formulation. We consider the DRSO problem with decision variable x

informed by incoming data from process (2.1.1):

min
x

max
A,F

Eξn∼F [h(x,Ayn + ξn)]

subject to d1(A, Â) ≤ ε2

F ∈ U

x ∈ D.

(2.2.2)

Here Â is a fixed matrix obtained by regression based on the matrix formulation (2.1.2):

Â = arg min
B
‖Y+ −BY−‖2F + λ‖B‖2F .

Here ‖ · ‖F is the Frobenius norm of the matrix. Concerning the structural matrix A,

we impose an estimation accuracy constraint on Â, whereby A and Â have to be relatively

close. It is well known that the accuracy of the regression matrix Â depends on the condition

number of the design matrix Y− [107, 77].

Later we will specify the choice of ε2 such that, with high probability, the true matrix

A satisfies that constraint. For each choice of A, we get the residual ξ̂i = yi+1 − Ayi, i =

1, . . . , n−1. Let Fn be the empirical distribution of ξ̂i; that is, Fn = 1
n−1

∑n−1
t=1 δξ̂i

(ξ). Note

that Fn depends on A, which is itself a variable in (2.2.2), but for simplicity of notation, we

do not explicitly indicate that. The family of the distribution, U , is specified by constraining

the distribution F relative to the empirical distribution Fn by means of a specially chosen
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distance function

U =

 F F (ξ ∈ Ξ) = 1

dw(F, Fn) ≤ ε1

 . (2.2.3)

The ambiguity set U is a subset of the distributions on the measurable space (Rd,B), where

B is the σ-algebra of the Borel sets. The first condition constrains the support of the

distribution to a known set Ξ, and the second constraint regulates the behavior of the noise

term. In the following, we will assume this set to be bounded. The existence of a known set

that contains the support of the distribution is a common assumption with other approaches

[41, 66], at least when aiming for results comparable to ours, as well as a reasonable approach

for most physical and economical processes.

Wasserstein Distance

The quantity dw is the Wasserstein distance, which can be defined as follows.

Definition 2.2.1. Let P,Q be two distributions on a metric space (X, d). The 2-Wasserstein

distance can be defined by

dw(P,Q) = inf
π∈Π(P,Q)

√∫
X×X

d2(x, x′)π(dx, dx′).

Here Π(P,Q) is the family of distributions on X ×X with marginal distributions P and Q

[183].

This definition can be viewed as finding an optimal transport between two distributions,

while the cost of moving probability mass is encoded by the distance d(x, x′) on the metric

space X. Although this definition appears daunting, the key observation, also used in [58],

is that when Q is the empirical distribution Fn = 1
n−1

∑n−1
i=1 δξ̂i

(ξ), we can compute dw(·, ·)

relatively easily since we can always break P down to the sum of n−1 conditional distributions
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Pi. Subsequently, by utilizing duality, we will convert the resulting infinite-dimensional

optimization problem (2.2.2) into a computable finite convex problem.

2.3 Problem Formulation and Dual Representation

We now formally state our DRSO version of (2.2.2):

min
x

max
A,F

Eξn∼Fh(x,yn+1)

subject to d2
w(F, Fn) ≤ ε1

A ∈ Ω(ε2)

x ∈ D,

(2.3.1)

where Fn = 1
n−1

∑n−1
i=1 δξ̃i

(ξ) is the empirical distribution of ξ̃i = yi+1−Ayi, i = 1, . . . n−1,

and Ω defines the uncertainty set of the matrix A,

Ω(ε2)
.
=
{
A ∈ Rd×d

∣∣∣∥∥∥Ai − Âi∥∥∥ ≤ ε2,i , for i ∈ [d]
}
. (2.3.2)

The second constraint in (2.3.1) is the confidence interval of A for which we can choose ε2,i

based on regression analysis [62] (see also the end of §2.4). Specifically, we denote here and

in the following by Ai the i-th row of matrix A ∈ Rd×d and by Âi the i-th row of matrix Â.
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Reformulation

Writing now expectations in integral form and recalling our specification of the choice of

support ξ in (2.2.3) and of the objects in Definition 2.2.1, we have the following.

min
x∈D

max
A∈Ω(ε2),F,π∈Π(F,Fn)

∫
Ξ
h(x,Ayn + ξ) dF (ξ)

subject to

∫
Ξ

dF (ξ) = 1∫
Ξ×Ξ
‖ξ − ξ′‖2dπ(ξ, ξ′) ≤ ε1

(2.3.3)

Here the second constraint is a rewrite of the Wasserstein distance constraint using Defini-

tion 2.2.1. From the definition of Π(F, Fn), the joint distribution π ∈ Π(F, Fn) has marginal

distributions F and Fn. Since Fn is the empirical distribution, by the rules of conditional

distributions we have that π(ξ, ξ′) = 1
n−1

∑n−1
i=1 π(ξ|ξ′ = ξ̂i)δξ̂i

(ξ′), where Fi
.
= π(ξ|ξ′ = ξ̂i)

is the conditional distribution of ξ given that ξ′ takes the value ξ̂i.

Then we have F =
∑n−1
i=1 P(ξ′ = ξ̂i)Fi = 1

n−1

∑n−1
i=1 Fi.

We note that, as a conditional distribution, Fi is constrained at this stage only by having

the same support as F . Also note that since π(F, Fn) can be used to define F (as one of

its marginals), we substitute F as above and reformulate the optimization problem with the

conditional probabilities as the variables (similar to [58] ).

We obtain

min
x∈D

max
A∈Ω(ε2),{Fi}i=n−1i=1

1

n− 1

n−1∑
i=1

∫
Ξ
h(x,Ayn + ξ) dFi(ξ)

subject to

∫
Ξ

dFi(ξ) = 1, i = 1, 2, . . . , n− 1

1

n− 1

n−1∑
i=1

∫
Ξ
‖ξ − ξ̂′i‖

2dFi(ξ) ≤ ε1.

(2.3.4)

Now, we reduce the above distributional optimization problem into a finite-dimensional
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problem.

Theorem 2.3.1. Let Φ(x,A) denote the solution of the inner maximizing problem with fixed

x and A in (2.3.4). When h(x, y) is differentiable, convex in the first argument and concave

in the second argument, we have the following identity:

Φ(x,A) = min
u≥0

uε1 + max
ξi∈Ξ,i∈[n−1]

{
1

n− 1

n−1∑
i=1

[
h(x,Ayn + ξi)−

u · ‖ξi − (yi+1 − Ayi)‖2
]}

.

Proof. From Lagrangian duality, we get that Φ(x,A) equals

max
Fi,i∈[n−1]

inf
u≥0

u

[
ε1 −

1

n− 1

n−1∑
i=1

∫
Ξ
‖ξi − ξ̃′i‖

2Fi(dξ)

]
1

n− 1
+
n−1∑
i=1

∫
Ξ
h(x,Ayn + ξ)dFi(ξ)

= inf
u≥0

uε1 + max
Fi,i∈[n−1]

{
1

n− 1

n−1∑
i=1

∫
Ξ
h(x,Ayn + ξi)

−u‖ξi − ξ̃i‖2Fi(dξi)

}

= inf
u≥0

uε1 + max
ξi∈Ξ,i∈[n−1]

{
1

n− 1

n−1∑
i=1

[h(x,Ayn + ξi)

−u‖ξi − (yi+1 − Ayi)‖2
]}

.

The second equality occurs from exchanging min and max, which is valid by strong

duality. This can be proved by an extended version of a well-known strong duality result for
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moment problems [155], similar to the argument in [58, Theorem 4.2].

The third equality stems from the fact that the maximum over distributions Fi with

respect to the integral is equal to the maximum point of the integrand.

From Theorem 2.3.1 our DRSO formulation (2.3.1) is equivalent to

inf
x∈D

max
A∈Ω(ε2)

inf
u≥0

max
ξi∈Ξ,i∈[n−1]

uε1+{
1

n− 1

n−1∑
i=1

[
h(x,Ayn + ξi)− u‖ξi − (yi+1 − Ayi)‖2

]}
.

(2.3.5)

We can now state our main result.

Theorem 2.3.2. Problems (2.3.1) and (2.3.5) are equivalent to the convex-concave minimax

problem:

inf
x∈D

max
A,ξi∈Ξ,i∈[n−1]

1

n− 1

n−1∑
i=1

h(x,Ayn + ξi) (2.3.6)

s.t.
1

n− 1

n−1∑
i=1

‖ξi − (yi+1 − Ayi)‖ ≤ ε1,∥∥∥Ai − Âi∥∥∥ ≤ ε2,i, for i ∈ [d].

Proof.

Ψ(x, u,A)
.
= max
ξi∈Ξ,i∈[n−1]

uε1+ (2.3.7){
1

n− 1

n−1∑
i=1

[
h(x,Ayn + ξi)− u‖ξi − (yi+1 − Ayi)‖2

]}

is both a maximum of affine functions in u and a maximum of functions jointly concave

in (A, {ξi}). Therefore, it is convex in u and concave in A. Since the feasible set of A is

21



bounded, by Sion’s minimax theorem [161, Thm.3.4], Equation (2.3.5) becomes

inf
x∈D

max
A∈Ω(ε2)

inf
u≥0

Ψ(x, u,A)

[161, Thm.3.4]
= inf

x∈D
inf
u≥0

max
A∈Ω(ε2)

Ψ(x, u,A)

= inf
x∈D

inf
u≥0

max
A∈Ω(ε2),ξi∈Ξ,i∈[n−1]

uε1 +
1

n− 1

n−1∑
i=1

[
h(x,Ayn + ξi)− u‖ξi − (yi+1 − Ayi)‖2

]
[161, Thm.3.4]

= inf
x∈D

max
A∈Ω(ε2),ξi∈Ξ,i∈[n−1]

inf
u≥0

uε1 +
1

n− 1

n−1∑
i=1

[
h(x,Ayn + ξi)− u‖ξi − (yi+1 − Ayi)‖2

]
.

By strong duality applied to the innermost problem, the conclusion follows, after unfolding

the definition of Ω(ε2) (2.3.2).

The important consequence of Theorem 2.3.2 is that (2.3.1) can be solved efficiently by

solving the equivalent problem (2.3.6) techniques such as [123].

2.4 Concentration Inequalities

We now aim to connect the relaxation parameters ε1 and ε2 to the probability of the true

probability distribution satisfying the relaxed constraints. We assume that a bound for the

support is known, similar to [41].

Assumption 2.4.1. There exists an R > 0 such that for the noise term ξ, we have ‖ξ‖ ≤ R.

We note that the boundedness assumption can be relaxed by requiring square-exponential

integrability. This would require techniques for unbounded distributions that involve the

Wasserstein distance concentration, as presented in [58], and consistency of the transition
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matrix estimation (A) (see, e.g., [27]). For brevity, we will focus on the bounded support

case only. We also need the following boundness assumption on A.

Assumption 2.4.2. There exists an K > 0 such that for the transition matrix A, we have

‖A‖2 ≤ K.

Note that this assumption also ensures the norm of each row of A satisfies,

‖Ai‖ = ‖eTi A‖ ≤ K. (2.4.1)

Lemma 2.4.3. (Wasserstein metric concentration, specification of ε1)

Suppose ξ1, ξ2, · · · , ξn ∈ Rd are i.i.d samples from a distribution F with zero mean and that

satisfy Assumption 1. Then, for the empirical distribution Fn, the following inequality holds:

P(d2
w(F, Fn) ≥ ε) ≤ C0 exp

(
−C1Nε

d/2
)
. (2.4.2)

Here C0, C1 depend only on R and d.

Proof. The result is an immediate consequence of [58, Theorem 3.4], where we chose a = 2

and used Assumption 1 for bounding A from that statement.

We also note that C0, C1 are explicitly computable by using techniques such as in [66,

Appendix B]. Now, we can select the right-hand side of (2.4.2) to the confidence level, for

example, 0.05. This will be a conservative estimate, however, and we will use cross-validation

in practice to compute a suitable ε1, as we will discuss in §2.5. The important feature of

Lemma 2.4.3, however, is the exponential decay of the failure probability with N and ε2.

Lemma 2.4.4. (self-normalized process [1, Theorem 1])

Let {Ft}∞t=0 be a filtration. Let ηt be a real-valued stochastic process such that ηt is Ft-
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measurable and ηt is conditionally R-sub-Gaussian i.e.

∀λ E
[
eληt | Ft−1

]
≤ exp

(
λ2R2/2

)
. (2.4.3)

Let Xt be an Rd-valued stochastic process such that Xt is Ft−1 measurable. Assume that V

is a d× d positive definite matrix. For any t ≥ 0, define

V̄t = V +
t∑

s=1

XsX
T
s St =

t∑
s=1

ηsXs. (2.4.4)

Then, for any δ > 0, with probability greater than 1− δ, for all t ≥ 0, we have

‖V̄ −1/2
t St‖22 ≤ 2R2 log

(
det(V̄t)

1/2 det(V )−1/2

δ

)
(2.4.5)

Specification of ε2,i Recall Â is obtained by solving the following ridge regression

problem,

Â = arg min
B
‖Y+ −BY−‖2F + λ‖B‖2F .

Due to the separable properties of the formulation, we have the following solution according

to each row of Â,

Âi = arg min
Bi

n−1∑
t=1

‖yt+1,i − yTt Bi‖2F + λ‖Bi‖2F . (2.4.6)

Recall that Âi denotes the i-th row of Â (as a column vector). By the normal equation, note
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that yt+1,i = yTt Ai + ξt,i, we have

Âi =

(
λI +

n−1∑
t=1

yty
T
t

)−1(n−1∑
t=1

ytyt+1,i

)
(2.4.7)

=

(
λI +

n−1∑
t=1

yty
T
t

)−1(n−1∑
t=1

yt(y
T
t Ai + ξt,i)

)
(2.4.8)

= Ai − λ

(
λI +

n−1∑
t=1

yty
T
t

)−1

Ai︸ ︷︷ ︸
(I)

(2.4.9)

+

(
λI +

n−1∑
t=1

yty
T
t

)−1/2(
λI +

n−1∑
t=1

yty
T
t

)−1/2

︸ ︷︷ ︸
V̄
−1/2
n−1

(
n−1∑
t=1

ytξt,i

)
︸ ︷︷ ︸

Sn−1

(2.4.10)

By Assumption 1 and Hoeffding’s lemma [86], we know that ξt,i is bounded by R, therefore

is R-sub-Gaussian, and by Assumption 2 and (2.4.1) applying on (I), with Lemma 2.4.4

applying on the last term, we have the following data-dependent bound on ‖Âi − Ai‖,

‖Âi − Ai‖ ≤
λK

λmin
+

√√√√2R2 log
(

det(Vn−1)1/2 det(λ)−1/2/δ
)

λmin
(2.4.11)

Here λmin is the minimal eigen-value of V̄n−1. With this bound, we can now specify the

choice of ε2,i.

Applying Lemma 2.4.4 to each column of Â for confidence level 1− δ
d , and using Boole’s

inequality to the complements,

we have, with probability greater than 1− δ = 1− d δd , that ‖Ai − Âi‖ ≤ ε2,i with

ε2,i ≤
λK

λmin
+

√√√√2R2 log
(
d det(Vn−1)1/2 det(λ)−1/2/δ

)
λmin

.
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2.5 Experiments

We apply the DRSO approach (2.3.1) in the variant outlined in Theorem 2.3.2 to a portfolio

optimization problem.

The decision variable x is constrained to the (d− 1)-dimensional standard simplex D =

{x ∈ Rd|x1 + · · · + xd = 1, xi ≥ 0, i = 1, . . . , d}. The variable x represents the portions

of investment in different stocks. Here the data yt ∈ Rd is the price of d different stocks at

time t. In the framework of (2.2.1), the objective function is the (negative) return

h(x, y) = −〈x, y〉.

We subsequently solve the distributionally robust problem (2.3.6) that is derived from our

main result, Theorem 2.3.2, with the convex, spherical Ξ from Assumption 1. We report on

those results in the rest of this section and label them as ”DRO.”

The DRSO problem (2.3.6) was solved with the saddle point algorithm from [123] imple-

mented in Julia and run on a MacBook Pro, 2.4 GHz Intel Core i5, 8 GB 1600 MHz DDR3.

The computation time of 100 experiments for either synthetic or real data cases below for

n = 21, d = 8 (20 time periods) did not exceed 300 seconds.

2.5.1 Synthetic Data

For our experiment with synthetic data, the feasible set D is the (d−1)-dimensional standard

simplex, and we set d = 8. The objective function is the inner product −〈x, y〉. Here yi

is from the VAR(1) times series, with the transition matrix entrywise drawn from uniform

distribution over [0, 1], then scaled so that ‖A‖ = 0.8 and ξt is fromN(0, R2I), then truncated

to 2-norm no greater than a preset radius R. The metric we use in the Wasserstein distance

constraint is the 2-norm in Euclidian space (Rd, ‖ · ‖). The radii of confidence intervals from

§2.4 are conservative. For better performance, we shrink the parameters ε1, ε2 by factors

26



Setup Median 75th Perc. 90th Perc.

8-4-5 0.49/0.59/0.52 0.91/0.74/0.78 1.27/0.92/1.09
8-16-5 0.42/0.55/0.47 0.81/0.72/0.75 1.14/0.86/1.05
16-4-5 0.34/0.57/0.41 0.72/0.72/0.64 1.08/0.86/0.86
16-16-5 0.38/0.57/0.43 0.76/0.70/0.68 1.03/0.82/0.92
16-4-8 0.43/0.53/0.48 0.75/0.66/0.66 0.99/0.76/0.80
16-16-8 0.43/0.54/0.46 0.73/0.65/0.68 1.00/0.77/0.83

Table 2.1: Comparison of MLE, SAA, and DRO for several standard percentiles, synthetic
data. Setup is ”sample size-(n − 1)-noise radius-(R)-dimension(d).” Different statistics are
normalized by noise radius R and given by ”MLE/DRO/SAA.” Lowest regret among meth-
ods is boldfaced.

1, 0.5 on the first 40 data points and choose the combination with the best outcome. In

[58], the authors tried different confidence levels δ, which fundamentally resulted in the same

effect. We compare the solution of DRO xd and the solution of sample average approximation

(SAA) xs with the empirical residuals.

Here our SAA solution is obtained by

min
x

max
A

n−1∑
i=1

h(x,Ayn + ξ̂i)

s.t.‖Ai − Âi‖ ≤ ε2,i, i ∈ [d].

(2.5.1)

We also calculate the solution of the deterministic version of (2.3.1) obtained by plugging

in the maximum likelihood estimator (MLE) of yn, Âyn−1. Let x∗ = arg minh(x, yn+1)

(solution with perfect information). We report the ”regret” h(x, yn+1) − h(x∗, yn+1) for

x given by the different approaches. Some empirical quantiles are given in Table 2.1, and

two histograms are given in Figures 2.1 and 2.2. As we can see from the results, with

more training samples or lower noise levels, the estimated transition matrix Â becomes more

accurate, so regression results in a decision closer to the perfect one most of the time. In all

scenarios, however, DRSO has a lighter tail (see also Figures 2.1 and 2.2), which demonstrates

the robustness of our decision. In particular, in Table 2.1, DRSO exhibits the smallest regret

for all experiments at the 90th quantile.

27



Figure 2.1: Comparison of DRO and SAA, synthetic data. All data are normalized by noise
radius R. Noise radius is 16. Sample size is 8. Problem dimension is 5.

Figure 2.2: Comparison of DRO and MLE, synthetic data. All data are normalized by noise
radius R. Noise radius is 16. Sample size is 8. Problem dimension is 5.
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Mean Median 25th Perc. 10th Perc.

DRO 0.822 0.987 -3.888 -9.758
SAA 0.955 1.032 -3.896 -10.013
MLE 1.433 0.733 -6.032 -13.704

Independent 0.819 0.988 -3.889 -9.891
DRO

Table 2.2: Comparison of statistics of daily return for real stock data.

2.5.2 Real Data

We perform our real data analysis with the asset price of nine tech companies from the S&P

500 (INTC, AMZN, FB, MSFT, GOOGL, IBM, ORCL, ADBE, AAPL) from January 2013

to January 2018 with our model on the log price yt = log(pi) at the end of each day and

the objective function the approximated return
∑d
i=1 xi(

pi+1
pi
− 1) ≈ 〈x, yT − yT−1〉 (where

one uses the approximation er ≈ 1 + r, which is very accurate in the range of successive

daily price ratios) [149]. We again compare the DRO and SAA models. In addition, we

run the algorithm assuming independence between the samples (which we call ”Independent

DRO”). For each day, the algorithms are allowed to use data from the previous 15 days.

The parameters are chosen by experimenting on the first three months of the dataset with,

in reference to Theorem 2.3.2 and §2.4, δ = 0.05, 0.1, and R = 1%, 4%, 10% and selecting

the combination with the best accumulated return.

The results are shown in Table 2.2 for some quantiles of actual returns if we invest

10, 000 dollars each day, 10000
∑d
i=1 xi(

pi+1
pi
− 1), where x is, in turn, the solution for the

four approaches. We see that both robust methods have a significantly lighter tail than does

either the SAA or MLE approach, that our AR-based DRO on performs better than the

independent DRO (except only slightly for the median), and that ignoring the uncertainty

results in a significant degradation (MLE).
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2.6 Conclusion

We present a distributionally robust formulation of a stochastic optimization problem for

non-i.i.d vector autoregressive data. We use the Wasserstein distance to define robustness

in the space of distributions. The resulting optimization problem is a finite concave-convex

saddle point problem that can be solved efficiently. On a portfolio problem whose objective

contains a linear term, we demonstrate that the approach results in lighter tails compared

with an MLE or an SAA formulation for both synthetic and real data and that DRO problems

ignoring sample dependence perform worse.

30



CHAPTER 3

OUTLIER-ROBUST, DATA-DRIVEN, DISTRIBUTIONALLY

ROBUST OPTIMIZATION

3.1 Introduction

In this paper, we consider a robust framework for stochastic programming (SP) problem

[157]:

min
a∈A

H(a) = Ex∼F [h(a, x)] . (3.1.1)

Here a is our decision to make within some decision set A. This model has a lot applications

in statistics [31], machine learning [119], and operations research [191].

In a lot of studies, the distribution F is assumed to be known [22]. However, in real-world ap-

plications, we do not often have the data generating process F or only have some knowledge

that F belongs to the certain distribution family. Often case, we have data x1, x2, · · · , xn

i.i.d sampled from F . One simple approach is to replace F by the empirical distribution

Fn =
∑n
i=1 δxi . However, this simple approach may raise the issue of overfitting the data

set [84].

To resolve the issue of overfitting, we consider a distributionally robust optimization (DRO)

approach [41]. Whereas, given sample empirical distribution Fn we have certain characteriza-

tion of the actual distribution F being relatively close to Fn with certain uncertainty quantifi-

cation F ∈ U(Fn). In some cases the uncertainty set has the form U(Fn) = {F |d(F, Fn) ≤

ε(n)}. Here d is some metric of distributions. Then DRO propose to solve the following

minmax robust optimization programming problem,

min
a∈A

max
F∈U(Fn)

Ey∼F [h(a, y)] . (3.1.2)
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In other words, we are making our decision w.r.t. to the worst-case scenario within the

distributional uncertainty set.

Some choices of specifying the uncertainty set U include. 1) moment characterization [41,

203], which suffers from lack of consistency. e.g., given infinite sample size, the uncertainty

set doesn’t converge to a singleton of true distribution {F}. This can be easily seen because

finite moments (or even infinite moments) are not sufficient to characterize a distribution.

2) statistical divergence [95, 187, 167, 102, 16, 9], which suffers from the fact that the

distributions within U(Fn) always has the same support as Fn, therefore U is not rich enough

to capture the true distribution. 3) Kernel-based maximum mean discrepancy (MMD) [164,

201], which results in semi-infinite programming and by far doesn’t have a finite-dimensional

approximation with theoretical guarantees. We choose 4) Optimal transport/Wasserstein

distance-based metric [66, 58], which resolves all of the concerns aforementioned, and in

some settings, it yields a convex tractable optimization formulation [58].

In this work we consider the following regression based problem, which is more general and

practical. In a lot of data-driven problems, we often encounter the following form of problem.

Given some observation x which has predictive power for the upcoming y. We want to solving

the following decision making problem,

min
a∈A

H(a | x) = Ey∼Fy|x [h(a, y)] . (3.1.3)

Here Fy|x is the conditional distribution of y given x. Conditional distribution Fy|x can be

quite hard to estimate without any model assumption. Here, we pose a linear model with

homogeneous noise assumption, where

y = f(x) + ξ = Ax+ ξ. (3.1.4)
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We assume f(x) can be parameterized by a linear model f(x) = Ax and ξ ∼ G homoge-

neously (not depending on x) and independently. Then purpose a regression-dro framework

to robustly solve the problem (3.1.3).

Another common problem in the real-world application is data contamination [2], where the

majority of the data are actually from the underlying data generating process, but a few

of the samples are not. A popular model in statistics literature for modeling this issue is

Huber’s contamination model [89, 91],

(1− α)F + αQ, (3.1.5)

where a large portion (1 − α) of data are sampled from F , while a small portion α of data

are from arbitrary distribution, we call this small portion of data contamination. It is also

worth mentioning in modern statistics and machine learning literature, we study a stronger

contamination model, whereas the contamination can be adaptive to your algorithm design

or previous data generated [198].

For the linear regression case with contamination concern, there are methods include M-

estimator [91], and many other trimmed/weighted loss-based estimators, see, e.g., [159, 145,

146]. The properties of the minimizer are studied, but in practice, only Huber’s loss can be

computed efficiently and in scale. Recently, there has been a resurgence of research study

on Huber’s loss from a sparsity induced `1 penalty angle [172, 108, 158]. From this point of

view, many generalizations using `0 based algorithm, e.g., Iterative Hard Thresholding [23],

can be applied for outlier robust regression [19]. In our case, we still use Huber’s loss because

of its simple form and scalability. We also study Huber’s loss’s finite sample non-asymptotic

performance and the performance under stronger adaptive contamination (not necessarily

draw random sample totally independent of the actual data, so-called ’oblivious’).

We further extend our study to time-dependent data, in which we study the data generating

from vector autoregressive model (VAR) [80].
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3.2 Problem Set-up

Suppose we have data pair {(xi, yi)}ni=1 from a linear model with contamination,

yi = β∗Txi + ξi + oi. (3.2.1)

Here ξi is the generic noise from observation. We assume that ξi are i.i.d from distribution

F with zero mean and supports on B with radius B1. Here the outlier is oi. We assume

that the outliers are oblivious. Here ’oblivious’ means that the choice of the corruption o is

independent with x and ξ. We also assume sparse contamination namely, {i|oi 6= 0} = k =

nα with α < 1/8. It is worth noting that there are regression algorithms and frameworks

with stronger outlier models (for example, outlier models dependent on x and ξ). Our

DRO-after-regression approach can be extended to those cases; however, for simplicity of

exposition on this first endeavor, we only proceed with the oblivious model.

Our goal is to make robust decision w.r.t. to the upcoming yn+1 given observation

xn+1. To be specific, let a be our action variable, we aim to solve the following stochastic

programming problem,

min
a

Eξ∼F [h(a, β∗Txn+1 + ξ)]. (3.2.2)

Since we do not have distribution F and parameter β∗, we can only estimate them from data.

The nature of distributionally robust optimization (DRO) is to make decisions while taking

the uncertainty of our estimation F̂ and β̂ into account. Namely, we have an ambiguity

characterization of what we have learned from data, and normally, the set is a confidence

interval,

(β, F ) ∈ C. (3.2.3)
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Here the ambiguity set C with high probability will include true (β∗, F ). Then we optimize

our decision based on the worst case scenario in the ambiguity set,

min
a

max
(β,F )∈C

Eξ∼F [h(a, β∗Txn+1 + ξ)]. (3.2.4)

We further consider the problem in a Vector Autoregression (VAR) setting, where

z̃t+1 = A∗z̃t + ξt, t = 0, 1, · · · , n− 1, (3.2.5)

but we observe a contaminated sequence zt, where zt = z̃t + ot. In this case still still write

(xi, yi) = (zi, zi+1) for i = 0, 2, · · · , n − 1. Similarly, we assume ξi are sampled i.i.d from

distribution F with zero mean supports on set B with radius B1. We further assume the

true time series is bounded ‖z̃t‖ ≤ B2, we will justify that this is a direct results from

mixing condition of time series and bounded support assumption on F . For the ease of

presentation, here we assume oi = 0 with at least (1− α)n number of data point. Also the

choice of contaminated i is independent of time series z̃, but once index set {i | oi 6= 0} is

chosen, with |{i | oi 6= 0}| = k = nα, the choice of oi can be adaptive to data set z̃ and

generic noise ξ. We note that this is already stronger than the ’oblivious’ assumption. We

also assume that the ratio of contaminated sample α < 1/8.

3.3 Huber DRO Framework

3.3.1 A Two-step Computational Formulation

We first consider the regression Problem (3.2.1). The basic idea is to reduce this robust

optimization to the type of problem studied in [47]. Note that, even though [47] is studying

a problem in a time series setting, all of the techniques also apply to regression and robust

decision marking based on prediction as we are considering here. The strategy in this work
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with the un-contaminated model (o = 0) is as follows.

• 1. We have the estimation β̂ obtained from regression with confidence region β∗ ∈

{‖β − β̂‖ ≤ ε1}.

• 2. Given any feasible β, we have empirical residual ξ̂i = yi − βTxi.

• 3. Let Fn(β) = 1
n

∑n
i=1 δyi−βTxi be the empirical distribution of the residual. Then we

have a confidence interval of actual distribution F characterized by d(F, Fn(β∗)) ≤ ε2,

with some distributional metric d.

• 4. By 1) and 3), we have a joint ambiguity set C, which has the form ‖β − β̂‖ ≤ ε1

and d(F (β), F )) ≤ ε2, and with high probability will include the actual (β∗, F ).

Therefore, we have the following robust optimization.

min
a

max
β,F

Eξ∼F
[
h(a, βTxn+1 + ξ)

]
(3.3.1)

s.t. ‖β − β̂‖ ≤ ε1 (3.3.2)

d (F, Fn(β)) ≤ ε2. (3.3.3)

We will use Wasserstein distance as our distribution space metric d(F,G). The p-Wasserstein

distance can be defined as follows.

Definition 3.3.1. Let X ∈ Rd with metric d, and F and G be two distributions support on

X , then the p-th power of p-Wasserstein distance (p ≥ 1) is,

Wp
p(F,G) = min

π∈Π(F,G)

∫
π
dp(x1, x2) dπ(x1, x2), (3.3.4)

= E(X,Y )[d
p(X, Y )], where the marginal distribution of X is F and Y is G.

(3.3.5)

Here Π(F,G) denotes the distribution on X × X with marginal F and G.
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We also need the following convex property of Wp.

Proposition 3.3.2. The p-th power of p-Wasserstein distance Wp
p(F,G) is convex (jointly

in F,G).

Proof. For any ε > 0. We have π1 ∈ Π(F1, G1) and π2 ∈ Π(F2, G2) such that, for i = 1, 2,

Eπi [dp(x1, x2)] ≤ Wp
p(Fi, Gi) + ε. (3.3.6)

Then for any 0 ≤ λ ≤ 1, π3 = λπ1 + (1−λ)π2 ∈ Π(λF1 + (1−λ)F2, λG1 + (1−λ)G2). Then

we have

Wp
p(λF1 + (1− λ)F2, λG1 + (1− λ)G2) (3.3.7)

≤ Eπ3 [dp(x1, x2)] ≤ λWp
p(F1, G1) + (1− λ)Wp

p(F2, G2) + ε. (3.3.8)

Let ε→ 0; we get the desired result.

3.4 Independent Setting

3.4.1 Robust Regression

Under the oblivious contamination model, we have a convex formulation [172] for performing

regression and outlier sample detection. Here we explain the idea for the formulation of the

convex programming, and how it can be reduced to the well-known Huber’s loss. It is known

that the `1 penalty can encourage solution sparsity, and we assume that the outlier vector o is

sparse. Therefore, we formulate the problem as a quadratic loss on the residual yi−βTxi−oi,

along with a `1 penalty on the outlier vector o,

min
β,o

∑
i

(yi − xTi β − oi)
2 + λ‖o‖1. (3.4.1)

37



By solving the above regression problem, we can screen out the outlier by throwing away the

sample corresponding to i : oi 6= 0, and then use the distributionally regression framework

[47]. If we partially solve (3.4.1), that is solve it first with respect to o with fixed β, then β

is a solution for the following equivalent regression formulation with Huber’s loss function

with some r [65]

min
β

∑
i

hr(yi − xTi β). (3.4.2)

Here the Huber’s loss function is,

hr(x) =

 x2/2 if |x| ≤ r,

r (|x| − r/2) o.w.

To simplify our presentation, we assume design covariate xi are sampled i.i.d. from a dis-

tribution with zero mean, identity covariance matrix with bounded radius B2, though our

approach can be easily extended to the general subGaussian case (with subGaussian noise).

Then we derive the characterization of true parameter ‖β∗ − β̂‖ ≤ ε1 as in (3.3.1).

Theorem 3.4.1. Let β̂ denote the minimizer of the convex program (3.4.2) with r = 2B1,

with the assumptions of design distribution on xi and noise distribution ξi mentioned before.

When n is large enough, with probability geater than 1− δ, we have the following,

‖β̂ − β∗‖ ≤
(

16C0B1B2

√
log(1/δ)

)
/
√
n := K0B1B2/

√
n.

Here K0 is some constant independent of n.

Proof. For the robust regression problem,

min
β

L(β) =
n∑
i=1

hr(yi − xTi β). (3.4.3)
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The assumptions guarantee that ‖ξi‖ ≤ B1, ‖xi‖ ≤ B2. Let Sgood denote the set of indexes

corresponding to uncontaminated samples, and Sbad vice versa. Let β∗ be the true parameter

and β̂ be the local minimizer of the above function within radius around β∗,

R := (r −B1)/B2 = B1/B2, (3.4.4)

that is, β̂ := arg min‖β−β∗‖≤R L(β). Note that ‖β − β∗‖ ≤ R guarantees that all of the good

samples y = βTx+ ξ are falling in the quadratic (smooth) part of the Huber’s loss function.

We will later verify that, with high probability, the β̂ is also the global minimizer of L(β).

Note that to justify this, we only need to show that β̂ lies in the interior of the ball (3.4.4)

since this is a convex program. By the convexity of Huber’s loss function, we have

L(β̂) ≤ L(β∗) , by the optimality of β̂, (3.4.5)

L(β∗) ≥ L(β̂) ≥ L(β∗) + 〈∇L(β∗), β̂ − β∗〉+
∑

i∈Sgood

1

2
(β̂ − β∗)TH(hr,i)(β̂ − β∗) (3.4.6)

≥ L(β∗)− ‖∇L(β∗)‖‖β̂ − β∗‖+
λmin(XgoodX

T
good)

2
‖β̂ − β∗‖2. (3.4.7)

Here H(f) denotes the Hession matrix of function f w.r.t. β, also hr,i := h(yi − βTxi).

Inequality (3.4.6) follows from the fact that the tangent approximation to hr,i is an under-

estimator due to convexity for all i, and since for i ∈ Sgood, hr,i(β) is a quadratic function

for ‖β − β∗‖ ≤ R. In the latter case H(hr,i) = xix
T
i . We use λmin as a abbreviation of

λmin

(
XgoodX

T
good

)
. From (3.4.6) and (3.4.7), subtracting L(β∗) from all sides we get

−‖∇L(β∗)‖‖β̂ − β∗‖+
λmin

2
‖β̂ − β∗‖2 ≤ 0 =⇒ ‖β − β∗‖ ≤ 2‖∇L(β∗)‖

λmin
. (3.4.8)
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Next, we derive a upper bound of ‖∇L‖ and a lower bound for λmin. The upper bound

is based on concentration of good sample and boundness of the derivative of the Huber’s loss

on contaminated samples,

‖∇L(β∗)‖ =

∥∥∥∥∥∥
∑

i∈Sgood

ξixi +
∑
i∈Sbad

h′r(ξi + oi)xi

∥∥∥∥∥∥ . (3.4.9)

Notice that by the oblivious condition, ξi, oi are independent of xi. Note that ‖ξi‖ ≤ B1 ≤ r

and ‖h′r‖ ≤ r. This implies that all random variables appearing to the right of (3.4.6) are

bounded and each term is less than rB2. Then by Hoeffding’s inequality for the bounded

vector [133, Theorem 3.5] we have, with probability greater than 1− δ,

‖∇L(β∗)‖ ≤ C0rB2

√
n log(1/δ). (3.4.10)

Then from (3.4.8) we have

‖β − β∗‖ ≤
2C0rB2

√
n log(1/δ)

λmin
. (3.4.11)

It remains to show the lower bound of λmin is scale as Ω(n). Let |Sgood| = m. By [182,

Remark 5.40], we have with probability greater than 1− δ, we have

1

m
λmin ≥ 1− CB2

2 max
(√

(d+ log(1/δ)) /m, (d+ log(1/δ)) /m
)
. (3.4.12)

We know that m = n− k = (1−α)n (see §3.2 for definitions), and when n large enough, we

have λmin ≥ n/2. Then for large enough n, such that
(

16C0rB2

√
log(1/δ)

)
/
√
n < B1/B2,

then (3.4.4) and (3.4.11) hold simultaneously, which verifies that the constrained minimizer

β̂ actually lies strictly in the interior of the ball (3.4.4). Since β̂ is a strict local minimizer
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of a convex program, it is also the global minimizer.

Remark 3.4.2. From the proof, we know that the global minimizer β̂ satisfies ‖β∗ − β̂‖ ≤ R

with probability greater than 1−2δ. When that occurs, the proof states that all of the good

samples will fall in the quadratic part of h2B1
(yi− β̂xi). Moreover, for any (xi, yi) that falls

in the quadratic part we know |yi − β∗Txi| = |ξi + oi| ≤ |yi − β̂Txi| + |(β∗ − β̂)Txi| ≤

r +B2R = 2B1 +B2 · B1
B2

= 3B1, where the second term bound comes from (3.4.4).

3.4.2 DRO Formulation

Once we finish the robust regression, we can eliminated the samples fail outside the Huber’s

loss quadratic part. Keep the remaining m samples and let F (β) = 1
m

∑m
i=1 δyi−βTxi and

perform the distributionally robust optimization:

Vdro := min
a

max
F,β

EF
[
h(a, βTxn+1 + ξi)

]
s.t. ‖β − β̂‖ ≤ ε1

W
p
p (F, F (β)) ≤ ε2.

(3.4.13)

This is a difficult problem to solve due to the infinite dimensionality of the Wasserstein

constraint. We will try instead to solve the problem.

41



Vdron := min
a

max
β,{ξ′i}

m
i=1

m∑
i=1

h(a, βTxn+1 + ξ′i)

s.t. ‖β − β̂‖ ≤ ε1

1

m

m∑
i=1

‖ξi − ξ′i‖
p ≤ ε2

ξ′i ∈ B

ξi = yi − βTxi.

(3.4.14)

Proposition 3.4.3. When h is convex in the first argument and concave in the second argu-

ment, formulation (3.4.13) is equivalent to formulation (3.4.14), and the latter is tractable.

Proof. Follows from [47, Theorem 3.2].

For general h the convex-concave reduction no longer exists. However, we always have a

finite dimensional reformulation of the problem.

min
a

max
‖β−β̂‖≤ε1

min
λ≥0

mλε2 +
m∑
i=1

max
ξ′i∈B

[
h(a, β, ξ′i)− λ‖ξi − ξ

′
i‖
p] . (3.4.15)

Solving this multiple min/max/min/max formulation is still very hard, and we will therefore

aim to solve (3.4.14) anyways. Note that formulation (3.4.14) can be seen as replacing the

distribution F by another F̃m with m support with W
p
p (F (β), Fm) ≤ ε2 by [132, Proposition

2.1] (actually here are some subtlety, namely the best π coupling distribution has to be a

one-to-one matching, but it is known that the best Wasserstein distance coupling for n-to-

n empirical distribution is precisely the perfect matching problem presenting here by an

argument that the doubly stochastic matrix is the convex hull of permutation matrix).

We thus propose solving (3.4.14) as a finite approximation of the infinite dimensional

distributional problem. Actually, we have a finite approximation guarantee for this approach
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from [66, Corollary 2 iv)]. With our compact support assumption, we have the following

results from [66].

Proposition 3.4.4. (Corollary 2 from [66]) For the he DRO problem, suppose we have

continuous function |g(ξ)| ≤ B, and Pn = 1
n

∑n
i=1 δξi supports on compact region B, the

infinite dimensional problem,

dro : max
F

Eξ∼F [g(ξ)]

s.t. W
p
p (Pn, F ) ≤ ε

F supports on B,

(3.4.16)

can be approximated by the finite dimensional programming

dron : max
{ξ′i}

n
i=1

1

n

n∑
i=1

g(ξ′i)

s.t.
1

n

n∑
i=1

‖ξi − ξ′i‖
p ≤ ε

ξ′i ∈ B.

(3.4.17)

with guarantee that dron ≤ dro ≤ dron + 2B/n.

The proof is almost verbatim of the proof of [66, Corollary 2 iv)], which relies on Corol-

lary 2 iii), which relies on the existence of the worst-case distribution in the Wasserstein

uncertainty set. We only need to justify the existence of the worst-case distribution. First

note that Wp(B) = {µ | µ supports on B} is a compact metric space [130, Corollary 2.2.5], so

is the closed ball Wp(Pn, F ) ≤ ε1/p, then it is sequentially compact, therefore, the worst-case

distribution always exists.

With Proposition 3.4.4, we can now quantify the performance guarantee of the finite

approximation (3.4.14).
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Theorem 3.4.5. Assume our target function h(a, y) is bounded by B and continuous, let

Ψ(a, β) := max
F

EF
[
h(a, βTxn+1 + ξi)

]
s.t. W

p
p (F, F (β)) ≤ ε2

(3.4.18)

Ψn(a, β) := max
{ξ′i∈B, ξi=yi−βTxi}

m
i=1

m∑
i=1

h(a, βTxn+1 + ξ′i)

1

m

m∑
i=1

‖ξi − ξ′i‖
p ≤ ε2

(3.4.19)

Let Φ(a) := max
β,‖β−β̂‖≤ε1

Ψ(a, β) and Φn(a) := max
β,‖β−β̂‖≤ε1

Ψn(a, β). Finally, let

a∗ ∈ argminaΦ(a) and a∗n ∈ argminaΦn(a). Then we have

Φ(a∗n) ≥ Φ(a∗) ≥ Φn(a∗) ≥ Φn(a∗n) ≥ Φ(a∗n)− 2B

n
≥ Φ(a∗)− 2B

n
. (3.4.20)

Proof. By Proposition 3.4.4, we know that

Ψ(a, β) ≥ Ψn(a, β) ≥ Ψ(a, β)− 2B

n
. (3.4.21)

Let b(a) ∈ arg maxβ Ψ(a, β) and bn(a) ∈ arg maxβ Ψn(a, β) (we use ∈ for arg max since there

may be multiple solution to the respective optimization problems; the statements we obtain

here will occur for any selection of the solution). We have that

Ψ(a, b(a)) ≥ Ψ(a, bn(a)) ≥ Ψn(a, bn(a)) ≥ Ψn(a, b(a)) (3.4.22)

(3.4.21)
≥ Ψ(a, b(a))− 2B

n
≥ Ψ(a, bn(a))− 2B

n
. (3.4.23)

By definition we have Φ(a) = Ψ(a, b(a)) and Φn(a) = Ψ(a, bn(a)). Then we have from
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(3.4.22) that

Φ(a) ≥ Φn(a) ≥ Φ(a)− 2B

n
. (3.4.24)

From the definition of a∗ and a∗n, we have that

Φ(a∗n) ≥ Φ(a∗) ≥ Φn(a∗) ≥ Φn(a∗n) ≥ Φ(a∗n)− 2B

n
≥ Φ(a∗)− 2B

n
. (3.4.25)

which completes the proof

Remark 3.4.6. Since the value of the (3.4.13) is Φ(a∗) and the value of the (3.4.14) is Φn(a∗n),

this theorem guarantees that the performance of the solution of the finite approximation

problem (3.4.14) a∗n will not be degrade too much from the solution of the possibly continuous

formulation (3.4.13) a∗. In particular, we have that Φ(a∗) ≤ Φ(a∗n) ≤ Φ(a∗) + 2B/n.

ε specification

Let the index set remaining after the Huber filtering be Strust. Note that from the proof,

we know that with probability greater than 1− 2δ, all of the good samples will be included

in Strust, also we have that ‖β̂ − β∗‖ ≤ B1
B2

. We assume this event is true for the remaining

of the section. Also, for any contaminated i ∈ Strust, we know that ‖ξi + oi‖ ≤ 3B1 from

Remark 3.4.2.

Here we discuss the selection of the parameters. The choice of ε1 is based upon Theo-

rem 3.4.1. Note that α = k/n be the bad sample portion, and there are at most α′ ≤ α

portion of bad samples within the m kept samples (we keep all the good samples). There-

fore we can write F (β) = (1 − α′)Fgood(β) + α′Fbad(β). We have that W
p
p (F (β∗), F ) ≤

(1 − α′)W p
p (Fgood(β

∗), F ) + α′W p
p (Fbad(β

∗), F ), by the convexity properties of W
p
p Propo-

sition 3.3.2. For the first term as a convergence result of sample empirical distribution

converges to population distribution, we apply [61, Theorem 2], which gives
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CB
p
1n
−p/d
good for ngood = (1 − α)n large enough. For the second term we have upper bound

α(4B1)p which can be easily seen from the Definition 3.3.1, using the bound of the support

for Fbad(β
∗) in Remark 3.4.2 and F is supports on set with radius B1. Then we can select

ε2 = CB
p
1((1− α)n)−p/d + α(4B1)p.

Remark 3.4.7. The need for a decontamination approach Observe that any model, partic-

ularly least-squares can give arbitrary bad estimates under the contamination model [46],

e.g. ‖β − β∗‖ ≥ C for arbitrary large C. As an example, suppose for an uncontaminated

model that xi are taken from Unif(±1), and y = β∗ · xi. Then least square estimation is

the sample average β̂ = Mean(xi · yi). If we contaminate the model and perturb one data

point by adding oi = n · C (a contamination is made independent of the dataset), where C

extremely large, then we will clearly have ‖β̂−β∗‖ ≥ |C|2 . As C is arbitrary, a contamination

model can alter the estimates arbitrarily. Therefore an outlier resistant approach is needed

to prevent such an occurrence.

The unavoidability of a bias term

Observe that our choice of ε2 includes a bias term, α(4B1)p that does not go to zero for

increasing n if the contamination probability is fixed. That means that, while our decon-

tamination approach prevents the estimate of β being arbitrarily far away, it cannot prevent

the estimation of F from being biased, even in the limit of n large. For completeness, in

this section, we explain, using results from other references, why there will be an intrinsic

O
(
αB2

1

)
term that cannot be fundamentally improved. Our setting in this section is slightly

different in the sense that 1) we consider a subGaussian variable with variance proxy B1

variable rather than bounded noise 2) we consider Huber’s contamination model, and 3) we

use the 2-Wasserstein distance. Our argument relies on the following facts.

Proposition 3.4.8. There exists c1 > 0, such that, for any two Gaussian distributions
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P1 = N(0, B2
1) and P2 = N(0, (1 + δ)2B2

1) with 0 ≤ δ ≤ 1/2, we have that

TV (P1, P2) ≤ c1δ. (3.4.26)

Proof. By Pinsker’s inequality, [175, 2.20]

TV (P1, P2) = TV (P2, P1)
[175, 2.20]
≤

√
1

2
KL(P2‖P1) =

√
1

2

(
(1 + δ)2 − 1− 2 log(1 + δ)

)
.

The conclusion follows from the series expansion of log(1 + δ) at δ = 0 whose convergence

radius is 1 and whose first three terms are δ − 1
2δ

2 + 1
3δ

3.

Proposition 3.4.9. For two Gaussian distributions P1 = N(0, B2
1) and P2 = N(0, (1 +

δ)2B2
1) with 0 ≤ δ ≤ 1/2, the 2-Wasserstein distance between them satisfies

W 2
2 (P1, P2) = (δB1)2. (3.4.27)

Proof. From [76, Proposition 7] we have that

W 2
2 (P1, P2) = B2

1 + (1 + δ)2B2
1 − 2B2

1(1 + δ) = B2
1(1 + δ − 1)2 = B2

1δ
2

which proves the claim.

Proposition 3.4.10. For two distributions P1 and P2, if TV (P1, P2) ≤ α/(1 − α), then

there exists a pair of contamination distributions Q1, Q2, such that

(1− α)P1 + αQ1 = (1− α)P2 + αQ2 = U. (3.4.28)

Then given any data X1, · · · , Xn from the contaminated distribution, for any test function
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defined on the n-copy of the output space φ : Y n → {1, 2}, we have that

U(φ(X1, X2, . . . , Xn) = 1) + U(φ(X1, X2, . . . , Xn) = 2) = 1. (3.4.29)

Therefore, we have

max
i=1,2

U(φ = i) ≥ 1/2. (3.4.30)

Proof. Let C = (1 − α) · TV (P1, P2) ≤ α, then take Q1 = 1
α(P2 − P1)+ + α−C

α δ0, Q2 =

1
α(P1 − P2)+ + α−C

α δ0. Here δ0 is the distribution that puts all the mass at zero.

The significance of Proposition 3.4.10 is the following. Under our contamination model,

if U is the contaminated distribution then either P1 or P2 could have equally well produced

the data. Therefore if our relaxation were consistent, it must allow for both P1 and P2

to be in the feasible set with high probability. We will now show that, if we choose ε2

too aggressively (too small) at least one of these two distributions will be excluded by the

Wasserstein distance constraint W 2
2 (F, F (β)) ≤ ε2 in (3.4.13) with high probability.

Let δ = α
c1(1−α)

. Let now P1 = N(0, B2
1) and P2 = N(0, (1 + δ)2B2

1) be two normal

distributions. From Proposition 3.4.8 it follows that TV (P1, P2) ≤ c1δ = α
1−α . We can

subsequently apply Proposition 3.4.10 to identify contaminating distributions Q1 and Q2

such that U = (1−α)P1 +αQ1 = (1−α)P2 +αQ2. Assume now, that there is an algorithm

that, given any sample from contaminated distribution X1, · · · , Xn ∼ U , can output a

distribution F := F (X1, X2, . . . , Xn) such that W2(F, Pi) < δB1/2 = α
1−αB1/2c1, i = 1, 2

with probability strictly greater than 0.5 + ε > 0.5 (better than random guess). We define

φ(X1, X2, . . . , Xn) =

 1 if W2(F (X1, X2, . . . , Xn), P1) ≤ W2(F (X1, X2, . . . , Xn), P2)

2 o.w.

(3.4.31)
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Then from (3.4.30), we know,

max ([(1− α)P1 + αQ1] (φ = 2) , [(1− α)P2 + αQ2] (φ = 1)) ≥ 1/2,⇒ (3.4.32)

max

(
[(1− α)P1 + αQ1]

(
W2(F, P1) ≥ α

1− α
B1/2c1

)
, (3.4.33)

[(1− α)P2 + αQ2]

(
W2(F, P2) ≥ α

1− α
B1/2c1

))
≥ 1/2, (3.4.34)

The statement (3.4.33) follows from a triangle inequality and Proposition 3.4.9 . Indeed,

observe that

φ = 2⇒ W2(F, P2) ≤ W2(F, P1) (3.4.35)

⇒ 2W2(F, P1) ≥ W2(F, P2) +W2(F, P1)
triangle
≥ W2(P1, P2)

Proposition 3.4.9
= δB1.

(3.4.36)

Therefore, we know

φ = 2⇒ W2(F, P1) ≥ δB1/2. (3.4.37)

Therefore, when presented with an α-contaminated distribution U , we cannot find a

screening procedure that produces an empirical density approximation F from the samples

X1, X2, . . . , Xn, that satisfies W2 (P, F ) ≤ α
1−αB1/2c1 for all true distributions P that may

have produced U . Applying this rationale to our formulation (3.4.14) for our screening

residual-based distribution Pn, it follows that we cannot satisfy W2 (Pn, F ) = 1
m

∑m
i=1 ‖ξi−

ξ′i‖
p ≤ α

1−αB1/2c1 for some potentially true distribution F with probability greater than 0.5.

Therefore, for our formulation (3.4.14) to contain the true distribution with high enough

probability the parameter ε2 has to be greater than α
1−αB1/2c1. This ”bias” needs to be

large enough, and, in particular, cannot go to zero as n→∞ as we expressed in the beginning
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of §3.4.2.

3.5 Vector Autoregression

In this section, we study the problem within a time series setting. For notational simplicity,

in this section we assume,

B2 = 1⇒ ‖z̃t‖ ≤ 1 ∀t = 0, 1, . . . , T. (3.5.1)

Note that once we assume the true sequence is bounded, we can rescale it to make sure

(3.5.1) holds, so this assumption results in no loss of generality. Remember from §3.2 that

we denote (xi, yi) = (zi, zi+1). This time, we study vectorized robust regression problem.

min
A

L(A) =
∑

i∈Strust
hr(‖yi − Axi‖). (3.5.2)

Function hr is monotone and convex. Therefore the above program is convex as well. We

will specify the trust set Strust later.

3.5.1 Robust Regression

In this section, we analyze Huber’s regression with time series. A by-product of this section

is that we analyze Huber’s loss performance under an adaptive type of contamination and

the bias induced by the contamination. We still denote the data pair (xi, yi) as good, if

both xi and yi are not contaminated. Let Scon ∈ {0, 1, · · · , n − 1} = {i1, i2, · · · , ik} be

the set of index of contaminated zi’s with k = nα. Let Sbad = {i | 0 ≤ i ≤ n − 1, i ∈

Scon or i+ 1 ∈ Scon}. Since Scon is independent of z̃i, ξi, and Sbad is built using Scon, then

Sbad is independent of z̃i, ξi. Then Sgood = {0, 1, · · · , n−1}/Sbad, indicating all of the index

i with both xi = zi and yi = zi+1 uncontaminated, is still independent of z̃i, ξi. Given that
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|Scon| ≤ 2k = 2αn, we know that |Sgood| ≥ (1 − 2α)n. We first throw out the pair (xi, yi)

with ‖xi‖ > B2 = 1. We call the data set index after this screening as Strust.

Using Remark 3.4.2 we have that with probability at least 1− 2δ the screening does not

eliminates a good data pair. Therefore, Sgood ∈ Strust with probability at least 1−2δ. Then

perform the Huber regression on the remaining data (3.5.2).

We discuss how we adapt the proof to the time series setting. Our proof for Theorem 3.4.1

is relying on a) upper bound of
∥∥∥∑i∈good ξix

T
i +

∑
i∈trust/good∇hr(‖ξi + oi‖)xTi

∥∥∥
F

and b)

lower bound of the minimal eigenvalue λmin(XgoodX
T
good), which gives us,

‖Â− A∗‖F ≤
2
∥∥∥∑i∈good ξix

T
i +

∑
i∈trust/good∇hr(‖ξi + oi‖)xTi

∥∥∥
F

λmin(XgoodX
T
good)

. (3.5.3)

Here ∇hr(·) denotes the gradient of hr(‖x‖) as a function of x and

∇xhr(‖x‖) =

 x ‖x‖ ≤ r

r x
‖x‖ o.w.

(3.5.4)

We know that ‖∇hr(·)‖ ≤ r.

Lemma 3.5.1. For the regression problem, with probability greater that 1− 2δ, we have

∥∥∥∥∥∥
∑
i∈good

ξix
T
i +

∑
i∈trust/good

∇hr(‖ξi + oi‖)xTi

∥∥∥∥∥∥
F

≤ 2B1

√
2n log(2/δ) + 2αnr. (3.5.5)

Proof. To proof this, let Ii denotes the indicator of the event that the index i and i + 1

are not in the index set Scon, i.e. Ii = Ii/∈Scon · Ii+1/∈Scon . Note that we call a data pair

(xi, yi) = (zi, zi+1) good if both samples are not contaminated. By the assumption of random

contaminated, Scon is independent of z̃i and ξi, and then all of Ii are independent of data z̃i

and ξi. Then we define the filtration, F−2 is the trivial σ-field, and F−1 = σ({Ii}n−1
i=0 ) and

Ft to be the σ-field containing Ft−1 and the σ-field σ(z̃t, ξt−1). Then we have (note that
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xi = zi and xiIi = ziIi = z̃iIi),

∑
i∈good

ξix
T
i =

n−1∑
i=0

ξiz̃
T
i Ii := 0 + 0 +

n−1∑
i=0

mi. (3.5.6)

It remains to show that mi is a martingale difference sequence, i.e.

E[mi | Fi] = 0, (3.5.7)

mi ∈ Fi+1. (3.5.8)

The second condition is by construction of Ft. To see the first condition, we note that Ii ∈ Fi

(see the definition of F−1), and from its independence from z̃i and ξi we get

E[mi | Fi] = Ii · E[ξiz̃i | Fi], (3.5.9)

E[mi | Fi] =

 0 Ii = 0

E[ξiz̃i | Fi] Ii = 1.
(3.5.10)

Note that ξi ⊥ Fi, z̃i ∈ Fi,

E[ξiz̃i−1 | Fi] = E[ξi]z̃i−1 = 0 · z̃i−1 = 0. (3.5.11)

Then martingale difference condition (3.5.7) is justified. It is obvious that, with B2 = 1, we

have,

‖mi‖F = ‖ξiz̃i−1Ii‖F ≤ ‖ξi‖‖z̃i−1‖ ≤ B1. (3.5.12)

Then we have, by the bounded vector martingale concentration [133, Theorem 3.5], with
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probability greater than 1− δ,

∥∥∥∥∥∥
∑
i∈good

ξix
T
i

∥∥∥∥∥∥
F

≤ 2B1

√
2n log(2/δ), (3.5.13)

and a simple bound
∥∥∥∇hr(‖ξi + oi‖)xiT

∥∥∥
F
≤ r on the trust/good part and the fact that

|Strust/Sgood| ≤ 2αn gives the desired result.

For deriving the lower bound of the minimal eigenvalue, we provide a simplified proof

based on [197] relying on mixing conditions. We make the following two assumptions on

the time series. The first one guarantees that the time series is mixing to the stationary

distribution, the second one ensures that the stationary distribution is non-degenerate.

Assumption 3.5.2. (Mixing assumption) We assume there exits Γ and γ < 1 such that,

‖A∗k‖ ≤ Γγk.

This is a direct result of assuming the spectral radius ρ(A∗) < 1, whereas the spectral

radius is the largest absolute value of eigenvalues of A∗. For more details, we refer to [200].

With the assumptions above, we know the time series is stationary. Let D denote the

stationary distribution, i.e., the distribution of
∑∞
i=0A

∗iξi.

Remark 3.5.3. From our assumption about F , we know that ‖ξi‖ ≤ B1. With the mixing

assumption above, assuming that z−1 is drawn from the stationary distribution, we know

that ‖z̃t‖ ≤ B2 ≤ ΓB1
1−γ . Therefore boundedness of the time series follows from the mixing

assumption.

Next, we make the following non-degenerate assumption on the stationary distribution.

Assumption 3.5.4. (Boundedness assumption) Let Σ be the covariance matrix of the
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stationary distribution D, i.e. the solution of

A∗TΣA∗ − Σ + cov(ξ) = 0.

We assume that,

Σ ≥ `I :=
I

κ
.

Here we use the notation κ, because effectively, it is a proxy of the condition number of

the covariance matrix (due to the upper boundedness assumption B2 = 1 (3.5.1)). Next we

couple a subsequence (z̃0, z̃l, · · · , z̃ml) to a i.i.d sample sequence from stationary distribution.

We show that they are entry-wise exponentially close w.r.t l.

Lemma 3.5.5. Suppose z̃ = (z̃0, z̃l, z̃2l, · · · , z̃ml) is a subsequence from the uncontaminated

vector autoregression process with z̃0 ∼ D. Under the assumptions of mixing 3.5.2 and

boundedness 3.5.4, there exist the vectors of random variables z′ = (z′0, z
′
l, · · · , z

′
ml), with

each component an i.i.d. sample from the stationary distribution D, and u = (0, ul, · · · , uml)

such that

z′0 = z̃0, (3.5.14)

(z̃0, z̃l, z̃2l, · · · , z̃ml)
(d)
= z′ + u, and (3.5.15)

‖uil‖ ≤
2Γγl

1− γ
B1 := D(l). (3.5.16)

Proof. Let vlj =
∑l−1
i=0A

∗iξji and v∞j =
∑∞
i=1A

∗iξji correspondingly. Here ξ
j
i are i.i.d.

sample from F , from j = 1, 2, . . .. Then vl1, v
l
2, · · · are i.i.d. distributed and v∞1 , v∞2 , · · · are

i.i.d sample from D. By a geometric series argument, we have

‖v∞j − v
l
j‖ ≤

Γγl

1− γ
B1, ∀j. (3.5.17)
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Let

z′0 = z̃0 (3.5.18)

z′l = z̃l − (A∗lz̃0 − v∞1 + vl1)︸ ︷︷ ︸
:=ul

:= z̃l − ul =
l−1∑
i=0

A∗iξl−1−i +
∞∑
i=l

A∗iξ1
i (3.5.19)

· · · (3.5.20)

z′ml = z̃ml − (A∗lz̃(m−1)l − v
∞
m + vlm)︸ ︷︷ ︸

:=uml

:= z̃ml − uml =
l−1∑
i=0

A∗iξml−1−i +
∞∑
i=l

A∗iξmi .

(3.5.21)

Then we have (z′0, z
′
l, · · · , z

′
ml) has same distribution as i.i.d sample from D, since all of they

z′s are using different ξ′s. Then we have the following bound on u′s,

‖uil‖ ≤ ‖A∗
lz(i−1)l‖+ ‖v∞i − v

l
i‖ ≤ ΓγlB2 +

Γγl

1− γ
B1 ≤

2Γγl

1− γ
B1, (3.5.22)

where we use the fact B2 ≤ ΓB1
1−γ and (3.5.17).

Applying the lemma on shifted subsequence, we have the following corollary.

Corollary 3.5.6. Suppose z̃ = (z̃j , z̃l+j , z̃2l+j , · · · , z̃ml+j), for some 0 ≤ j < l, is a sub-

sequence from the uncontaminated vector autoregression process with some z̃j ∼ D. Un-

der the assumptions of mixing 3.5.2 and boundedness 3.5.4, there exist the random vectors

z′ = (z′j , z
′
l+j , · · · , z

′
ml+j), with each component an i.i.d. sample from the stationary distri-

bution D, and u = (0, ul+j , · · · , uml+j) such that

z′j = z̃j , (3.5.23)

(z̃j , z̃l+j , z̃2l+j , · · · , z̃ml+j)
(d)
= z′ + u, and (3.5.24)

‖uil+j‖ ≤
2Γγl

1− γ
B1 = D(l). (3.5.25)
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With the coupling (between sequences z̃ and z′ ) argument above, we obtain that a

subsequence of fixed stride of the uncontaminated process behaves close to i.i.d samples z′

from stationary distribution D, and that this behavior is closer the larger the stride.

The next proposition gives the lower bound of the minimal eigenvalue of data matrix

Z ′ = [z′1, z
′
2, · · · , z

′
m]. This is a direct result of [182, Remark 5.40].

Proposition 3.5.7. Suppose Z ′ ∈ Rd×m is the data matrix with each column i.i.d sampled

from D, with probability greater than 1− δ,

λmin(Z ′Z ′T ) ≥ m`− C1 max
(√

m (d+ log(1/δ)), d+ log(1/δ)
)
.

Since our data is contaminated randomly, we derive the bound on the lower eigenvalue

of the coupling sequence corresponding to the good index.

Proposition 3.5.8. Suppose Z ′ ∈ Rd×m is the data matrix with each column i.i.d sampled

from D, given any random index set S ∈ [m] chosen independently of Z ′, then we have that

there exists a C1 independent of m, d, δ and fixed, such that, with probability greater than

1− δ, we have

λmin(Z ′SZ
′T
S ) ≥ |S|`− C1 max

(√
m (d+ log(1/δ)), d+ log(1/δ)

)
:= le(|S|,m, δ).

Proof. The proof essentially follows [182, Remark 5.40], except that here it is extended to

subsets of variable length (and thus both sides of the inequality conclusion of the proposition

are now random variables). Let Ii denote the indicator of i ∈ S. We are going to bound the

spectral norm of the following random matrix,

∆ =
m∑
i=1

Ii ·
(
z′iz
′
i
T − Σ

)
. (3.5.26)
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Define

f := ‖∆‖ = max
v∈Sd−1

∣∣∣∣∣
m∑
i=1

vT Ii ·
(
z′iz
′
i
T − Σ

)
v

∣∣∣∣∣ = max
v∈Sd−1

∣∣∣∣∣
m∑
i=1

qi(v)

∣∣∣∣∣ ,
qi(v) := Ii · vT

(
z′iz
′
i
T − Σ

)
v, i = 1, 2, . . . ,m.

(3.5.27)

We construct a 1
4 -cover of Sd−1, N = {vi}Ci=1 [182, Def. 5.1]. That is, the points vi are

such that, for any v ∈ Sd−1 there exists an i ≤ C such that ‖v − vi‖ ≤ 1
4 . It is known that

such a cover exists with C ≤ 9d by [182, Lemma 5.2]. We assume that the cover N has this

property for the rest of the proof. We define the finite approximation of f by

fn := max
v∈N

∣∣∣vT∆v
∣∣∣ (3.5.26)

= max
v∈N

∣∣∣∣∣
m∑
i=1

vT Ii ·
(
z′iz
′
i
T − Σ

)
v

∣∣∣∣∣ (3.5.27)
= max

v∈N

∣∣∣∣∣
m∑
i=1

qi(v)

∣∣∣∣∣ . (3.5.28)

We define the mapping m : Sd−1 → N as m(v) = vj , with j := arg mini∈1,2...C ‖v − vi‖.

That is m(v) is the vector closest to v in the cover set N and in case of ties we chose the

one with the lowest index. We then have that ‖v−m(v)‖ ≤ 1
4 , ∀v ∈ Sd−1. We then obtain,

for any v ∈ Sd−1,

|vT∆v −mT (v)∆m(v)| = |vT∆(v −m(v)) + (v −m(v))T∆m(v)|

≤ ‖∆‖‖v‖‖v −m(v)‖+ ‖∆‖‖m(v)‖‖v −m(v)‖ ≤ ‖∆‖/4 + |∆‖/4

= f/2.

Subsequently, we obtain that

∣∣∣∣∣
m∑
i=1

qi(v)

∣∣∣∣∣ (3.5.27)
=

∣∣∣vT∆v
∣∣∣ ≤ ∣∣∣m(v)T∆m(v)

∣∣∣+
∣∣∣vT∆v −mT (v)∆m(v)

∣∣∣ (3.5.28)
≤ fn + f/2

(3.5.29)
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Taking maximum over v, we obtain

f ≤ fn + f/2 =⇒ f/2 ≤ fn ≤ f.

To complete our proof, we then only need to show fn ≤ C3

√
m(dC2 + log(1/δ)) for some

appropriate, constant C2, C3. Note that |vT Ii ·
(
z′iz
′
i
T − Σ

)
v| ≤ (vT z′i)

2 + vTΣv ≤ 2, given

that B2 = 1 (3.5.1).

Define F−1 to be the trival σ-field and F0 = σ({Ii}mi=1), Ft to be the σ-field contain-

ing Ft−1 and σ(z′t). Note that S is chosen independently from Z ′, by the proposition’s

hypothesis. Then we know that Ii ∈ F0 ⊆ Fi−1, z′i ⊥ Fi−1 and z′i ∈ Fi, and we have

qi(v) = Iiv
T
(
z′iz
′
i
T − Σ

)
v, E[qi(v) | Fi−1] = Ii · vTE[z′iz

′
i
T − Σ]v = 0, qi(v) ∈ Fi.

(3.5.30)

Therefore, qi(v) is a bounded martingale difference sequence w.r.t Fi. By martingale concen-

tration [133, Theorem 3.5], for any v ∈ N we have, with probability greater than 1− δ/9d,

that

∣∣∣∣∣
m∑
i=1

qi(v)

∣∣∣∣∣ ≤ C1

√
m(d log 9 + log(1/δ)).

Here C1 is a constant with respect to all stated parameters, particularly m. Using a union

bound on probability sets applied to the complement of the set on which the above is true,

and noting that |N | ≤ 9d we obtain that,

P

(∣∣∣∣∣
m∑
i=1

qi(v)

∣∣∣∣∣ ≤ C1

√
m(d log 9 + log(1/δ), ∀v ∈ N

)
≥ 1− 9d · δ/9d = 1− δ.

Then we have, using (3.5.28), that P (fn ≤ C1

√
m(d log 9 + log(1/δ)) ≥ 1− δ and thus that,
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with probability at least 1− δ, the following statement holds

f ≤ 2fn ≤ 2C1

√
m(d log 9 + log(1/δ)). (3.5.31)

Given the definition of f in (3.5.27) this implied that with probability greater than 1 − δ,

we have that

∣∣∣∣∣vTZ ′SZ ′ST v −
m∑
i=1

Iiv
TΣv

∣∣∣∣∣ ≤ 2C1

√
m(d log 9 + log(1/δ)), ∀v ∈ Sd−1

Then with probability at least 1− δ, the following sequence of inequalities holds:

∀v ∈ Sd−1 : vTZ ′SZ
′
S
T
v ≥

m∑
i=1

Iiv
TΣv − 2C1

√
m(d log 9 + log(1/δ))

∀v ∈ Sd−1 : vTZ ′SZ
′
S
T
v

A3.5.4
≥

m∑
i=1

Ii`− 2C1

√
m(d log 9 + log(1/δ))

∀v ∈ Sd−1 : vTZ ′SZ
′
S
T
v ≥ |S|`− 2C1

√
m(d log 9 + log(1/δ))

Taking the minimum over all v in the last inequality we obtain λmin

(
Z ′SZ

′
S
T
)
≥ |S|` −

2C1

√
m(d log 9 + log(1/δ)) which concludes the proof after the relabeling 2C1

√
log 9→ C1.

Combining the coupling results and the lower bound on λmin(Z ′SZ
′T
S ), we have the fol-

lowing.

Lemma 3.5.9. Let Sgood be the good index set. Let Z be the design matrix corresponding to

the good data part of the regression problem ZSgood = [xi]i∈Sgood = [zi]i∈Sgood = [z̃i]i∈Sgood.
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Then we have, with probability greater than 1− 2δ, for n is large enough, we have,

λmin(ZSgoodZ
T
Sgood

) ≥ 0.49(1− 2α)`n. (3.5.32)

Proof. For notational simplicity we assume p, n/p are integers. We first divide {0, 1, · · · , n−

1} into p blocks B0 = {0, p, 2p, · · ·n}, · · · , Bp−1 = {p− 1, 2p− 1, · · · , n− 1}, with block size

n/p. We denote the blocks’ intersection with Sgood as S1, S2, · · · , Sp, with size |Si| = mi.

Note that all the index set Si are independent of z̃i, ξi. Applying the coupling results, let

z′j , uj be the coupling correspondingly to Corollary 3.5.6 i.e. z̃j = z′j +uj on the correspond-

ing block. We then have that

∀v ∈ Sd−1 :
∑

j∈Sgood

(vT zj)
2 =

∑
j∈Sgood

(vT z̃j)
2 =

∑
j∈Sgood

[
vT (z′j + uj)

]2
≥ 1

2

∑
j∈Sgood

(vT z′j)
2 −

∑
j∈Sgood

(vTuj)
2

Corollary3.5.6
≥ 1

2

p−1∑
i=0

∑
j∈Si

(vT z′j)
2 − nD2(p)

≥ 1

2

p−1∑
i=0

λmin

(
Z ′SjZ

′T
Sj

)
− nD2(p)

The second line follows from Jensen’s inequality applied to x2 as: (a + b)2 + (−b)2 ≥
1
2(a + b − b)2 = 1

2a
2 which implies (a + b)2 ≥ 1

2a
2 − b2. We now apply Proposition 3.5.8

to each of the p terms of the outer sum of the last displayed inequality with probability

1 − δ
p , and use an union bound to have its conclusion apply simultaneously to all of them,
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to conclude that, with probability 1− pδp = 1− δ the following holds.

∀v ∈ Sd−1 :
∑

j∈Sgood

(vT zi)
2 ≥ 1

2

p−1∑
i=0

le(mi, n/p, δ/p)− nD2(p)

≥ 1

2

p−1∑
i=0

mi`−
p−1∑
i=0

[
C1 max(

√
(n/p)(d+ log(p/δ), d+ log(p/δ))

]
(3.5.33)

− nD2(p)

≥ 1

2
|Sgood|`− C1 max

(√
np(d+ log(p/δ)), p(d+ log(p/δ))

)
(3.5.34)

− nC2γ
2p. (3.5.35)

In applying proposition 3.5.8 recall that, by Corollary 3.5.6, Z ′Bi are i.i.d copy from D and

Z ′Sj plays the role of matrix Z ′S in Proposition 3.5.8 with index mapping i→ bi/pc+1 on each

block. The expression of D(p) we use to obtain the final bound originates in Corollary 3.5.6.

Next we take p = 10 log n/(1 − γ). When n → ∞, it easy to see the second term in

(3.5.35) becomes O(
√
n log(n) log log(n)). For the third term, note that, from our choice of

p we obtain

2p log(γ) = 2p log(1 + (γ − 1)) ≤ 2p(γ − 1) ≤ −5 log n.

Raising the end terms above as exponents of γ, and multiplying by n we obtain nγ2p ≤ n−4.

Therefore the third term in (3.5.35) is O(n−4) and the sum of the second and third term

in (3.5.35) is o(n), which will be negligible compared to the first term Ω(n) due to our

contamination assumption. Therefore, when n large enough we have from (3.5.35), by taking

the minimum over the left hand side and dividing by n (and, recall 0 ≤ α < 1/8), that

1

n
λmin(ZSgoodZ

T
Sgood

) ≥ 0.5(1− 2α)`− o(n)/n > 0.49(1− 2α)`. (3.5.36)
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This completes the proof.

Theorem 3.5.10. Consider the VAR model and taking the Huber’s loss with r = 2B1. If

11α/` < 1, when n is large enough, with probability greater than 1− 2δ, we have

‖Â− A∗‖F ≤
C3B1

√
log(1/δ)√
n`

+
4αB1

0.49(1− 2α)l
. (3.5.37)

Proof. The proof essentially follows from Theorem 3.4.1, other then inner product becomes

the matrix inner product and the norm becomes the matrix Frobenius norm. With similar

procedure, first, we assume that ‖Â − A∗‖2 ≤ ‖Â − A∗‖F ≤ r − B1 = B1, than all of the

good sample will be fail in the quadratic part of Huber’s loss. Note that B2 = 1. Plug our

Lemma 3.5.1 and Lemma 3.5.9 into (3.4.8), we have

‖Â− A∗‖F ≤
C2B1

√
log(1/δ)√
n`

+
2αr

0.49(1− 2α)`
. (3.5.38)

Therefore, with α < 1/8, we have ‖Â− A∗‖F < 5.34αr/` = (10.68α/`)B1 < B1 for n large

enough. It obvious with r = 2B1, Â is also in the interior of the ball ‖Â−A∗‖ < B1, which

justify the local minimizer Â is also the global minimizer of the convex program.

Remark 3.5.11. With the above lemmas, we can show that with high probability our esti-

mator Â will be close to true A, ‖A − Â‖F ≤ ε1 < B1 specified in (3.5.37). Also, with

high probability, we know that all of the good samples will fall into the quadratic part of

Huber’s loss when A takes Â. Following the exact argument as in Remark 3.4.2, we have

that for bad sample that kept from robust screening and falls into the quadratic part, the

corresponding residual ‖zi+1 −A∗zi‖ = ‖ξi + oi+1 −A∗oi‖ ≤ ‖zi+1 − Âzi + (Â−A∗)zi‖ =

‖zi+1 − Âzi‖+ ‖(Â− A∗)zi‖ ≤ 2B1 + 1 ·B1 = 3B1.
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3.5.2 DRO Formulation

For this section, we slightly change the robust screening and regression procedure. It is not

set up as follows.

1. Process time series data (z0, · · · , zn). If any ‖zt‖ ≥ B2, we substitute zt by arbitrary

v with ‖v‖ ≤ B2 and add t to Suntrust. Also, we denote (xi, yi) = (zi, zi+1).

2. Perform robust regression with Huber’s loss to get Â.

3. If the residual yi − Âxi is mapped to the linear (outlier) part of Huber’s loss, we add

i and i+ 1 into Suntrust.

4. Let Strust = {0, · · · , n}/Suntrust.

Note that, we obtain an identical bound for ‖A− Â‖ as in Theorem 3.5.10; the proof is

virtually identical for the new procedure. After the robust regression, we get the estimated

Â. We then (3) can drop the data of (xi, yi) = (zi, zi+1) that maps to the linear (outlier)

part of the Huber loss. We redefine the trust set to be the set after robust replacement

and the screening based on Huber’s loss. Observe that, from Remark 3.4.2 applied to the

autoregressive case, where a data point consists of two consecutive time series entries, we

have that with probability at least 1− 2δ that

F1: If (zi−1, zi, zi+1, zi+2) are all uncontaminated, then i, i+ 1 ∈ Strust and (zi, zi+1) will

be kept for the purpose of evaluating residuals.

F2: If (zi−1, zi, zi+1) are all uncontaminated, then i will be kept.

F3: If zi is contaminated, then i− 1, i, i+ 1 can all potentially be in Suntrust even if zi−1

and zi+1 are uncontaminated.

We define last trust in under different assumptions that belongs to Strust. Note that

zlast trust can still be contaminated. Nevertheless, we have the following deviation guarantee

for it.
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Lemma 3.5.12. Under one of these assumptions,

A1: When random contamination occurs, no consecutive two points z̃i, z̃i+1 are contami-

nated.

A2: If i is the last contaminated index, then the data at indices i− 1, i− 2, and i− 3 are

uncontaminated.

A3: The data at indices n− 1 and n are uncontaminated.

We define 1 ≤ ”last trust” ≤ to be

L1: The largest index i among 1, 2, . . . , n where both i − 1 and i are in Strust under as-

sumption A1.

L2: The largest index i among 1, 2, . . . , n in Strust under assumptions A2 or A3.

We then have the following guarantee for zlast trust,

‖zlast trust − z̃last trust‖ ≤ 4B1. (3.5.39)

Remark 3.5.13. Note that these three assumptions do not violate the independent contami-

nation assumption since the contamination index is just sampling with restrictions but still

independent of z̃i, ξi.

Proof. Recall that ot := zt− z̃t. We first state a useful result: If we have that i, i+1 ∈ Strust

and we assume at least one of them is uncontaminated, then we have,

‖zi+1 − z̃i+1‖ = ‖oi+1‖ ≤ Ioi+1=0 · 0 + Ioi+1 6=0,oi=0 (‖oi+1 + ξi − A∗ · 0‖+ ‖ξi‖) (3.5.40)

≤ ‖oi+1 + ξi − A∗oi‖+ ‖ξi‖
Remark 3.5.11

≤ 3B1 +B1 = 4B1. (3.5.41)

Next we derive (3.5.39) for the different assumptions. Under assumption A1, let

(zn−c−1, zn−c) be the last data point pair that is kept and thus, by the definition L1 of
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the ”last trust” index we get zlast trust = zn−c. Then we can apply the useful result above

to obtain from (3.5.11) that ‖z̃n−c − zn−c‖ ≤ 4B1 to prove (3.5.39) in this case. Under

assumption A3, we know that zn = zlast trust is kept and uncontaminated. Thus ‖zlast trust−

z̃last trust‖ = 0 ≤ 4B1 which proves (3.5.39) in this case as well.

The proof under Assumption A2 requires a bit more discussion. Let last trust = n − c

and thus zlast trust = zn−c. We discuss the following cases.

Case 1: If the last contamination occurs before index i ≤ n − 2 we know that zn is kept

and ‖zn − z̃n‖ = 0 ≤ 4B1, and (3.5.39) holds.

Case 2: If the last contamination occurs at index n− 1 we have two cases. (i) If zn is kept

by the screening procedure then ‖zn− z̃n‖ = 0 ≤ 4B1. (ii) If zn is not kept by the screening

procedure, then from A2 we know that zn−2, zn−3, zn−4 are uncontaminated. Then we know

at least one of zn−1, zn−2 or zn−3 will be kept using F2 and with guarantee ‖zlast trust −

z̃last trust‖ ≤ 4B1 (the difference is zero if ”last trust” is either n − 2 or n − 3, whereas if

”last trust” is n − 1 then both n − 1 and n − 2 are kept and the latter is uncontaminated

and the conclusion follows from (3.5.40)).

Case 3: If the last contamination occurs at index n, then, either (i) zn is kept, last trust = n,

and, from Assumption A2, zn−1 is uncontaminated. Therefore, using (3.5.40), we have

‖zn − z̃n‖ ≤ 4B1. Otherwise, (ii) since zn−1, zn−2, zn−3 are uncontaminated, we know,

using F3, that at least one of zn−1, zn−2 will be kept which guarantees, since they are

uncontaminated, that ‖zlast trust − z̃last trust‖ = 0 ≤ 4B1.

Remark 3.5.14. We note that some assumptions about constraining the contamination on

the tail part is needed to obtain a good behavior for the relaxation (3.4.13). Otherwise,

the contamination index can be {n− αn+ 1, · · · , n− 1, n} (the entire fraction α of the end

sequence is contaminated), which is deterministic and therefore independent of z̃i, ξi. Such

a contamination can basically ’design’ an arbitrarily undetectable tail sequence, (e.g., draw
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another independent sample sequence starting from zn−αn). Let the new independent tail

sequence starting from z̃n−αn be z′n−α+1 = A∗z̃n−αn + ξ′n−αn, · · · z′n. Then we know

z′n − (A∗)αn z̃n−αn ⊥ z̃n − (A∗)αn z̃n−αn, (3.5.42)

which is almost irrelevant to the actual (uncontaminated) tail sequence (after subtracting

an exponentially small term in k = nα, see, e.g., the proof of Lemma 3.5.5).

Note that, if last trust = n − c, we have the characterization of ‖zn−c − z̃n−c‖ ≤ 4B1

from Lemma 3.5.12. From our model, we have z̃n+1 = A∗c+1z̃n−c +
∑c
k=0A

∗kξn−k, which

will allow us to control the true objective of the original problem. Let F (A) be the empirical

distribution of the residual given transition matrix A, and Â be the regression estimation.

With p-Wasserstein distance as our distribution robustness metric, the DRO formulation is

min
a

max
A,z,F

EF ⊗ F ⊗ · · · ⊗ F︸ ︷︷ ︸
c+1

[h(a,Ac+1z +
c∑

k=0

Akξ′i)]

s.t. ‖A− Â‖F ≤ ε1

W
p
p (F, F (A)) ≤ ε2

‖z − zn−c‖ ≤ 4B1.

(3.5.43)

Since the tensor product cannot be approximated by a finite formulation, we will relax it.

We first define the p-Wasserstein distance on the product space X ×X . Suppose Wasserstein

distance Wp is defined on X with norm ‖·‖. Then we can define a distance (actually a norm)

on the product space X×X with metric d
p
p((x1,1, x1,2), (x2,1, x2,2)) = ‖x1,1−x2,1‖p+‖x1,2−

x2,2‖p. Then W
p
p on X ×X is defined using this metric. Let F ⊗F denote the (independent)

product distribution on X ×X , i.e., F ⊗F (A1×A2) = F (A1)F (A2) with Ai measurable on

X . Then we have that W
p
p (F ⊗ F,G⊗G) ≤ 2W

p
p (F,G) with equality for the case p = 2 by

[129, §2,pg.412].
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To justify this statement, we write Wasserstein distance in the expectation form

W
p
p (F,G) = inf

(X,Y )∼π,π∈Π(F,G)
E[‖X − Y ‖p]. (3.5.44)

Recall that Π(F,G) denotes the joint distribution with marginal F and G. For any ε > 0,

from (3.5.44) we can then select (X, Y ) ∼ π, where π has marginal F,G, such that

E(X,Y )∼π[‖X − Y ‖p] ≤ W
p
p (F,G) + ε. (3.5.45)

Then let (Xi, Yi)
2
i=1 be two i.i.d copies from (X, y). We have that (X1, X2) ∼ F ⊗ F and

(Y1, Y2) ∼ G⊗G, and

W
p
p (F ⊗ F,G⊗G) ≤ Eπ×π

[
‖X1 − Y1‖2 + ‖X2 − Y2‖p

]
≤ 2W

p
p (F,G) + 2ε. (3.5.46)

Let ε→ 0, we get the desired inequality.

In practice, c always takes the value 0 or 1. Since the case c = 0 is essentially equivalent

to the case from [47], we use the case c = 1 as an example to demonstrate the idea. The

problem (3.5.43) can be relaxed to

min
a

max
A,z,F2

E(ξ′1,ξ
′
2)∼F2 [h(a,A2z + ξ′1 + Aξ′2)]

s.t. ‖A− Â‖F ≤ ε1

W
p
p (F2, F (A)⊗ F (A)) ≤ 2ε2

‖z − zn−c‖ ≤ 4B1.

(3.5.47)

Here the second constraint stems from (3.5.46) W
p
p (F ⊗ F,G ⊗ G) ≤ 2W

p
p (F,G). At

this stage, we use our Proposition 3.4.4 to approximate this problem by a finite dimensional
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min-max problem:

min
a

max
A,z,{ξ′i,j,1,ξ

′
i,j,2}

1

n2

n∑
i=1

n∑
j=1

EF [h(a,A2z + ξ′i,j,1 + Aξ′i,j,2)]

s.t. ‖A− Â‖F ≤ ε1

1

m2

n∑
i=1

n∑
j=1

‖ξ′i,j,1 − ξi‖
p + ‖ξ′i,j,2 − ξj‖

p ≤ 2ε2

ξi = zi+1 − Azi

‖z − zn−c‖ ≤ 4B1.

(3.5.48)

Here, the parameter m indicates the number of empirical residuals we can access, which

after the screening, we expect it to be O(n). By Theorem 3.4.5, we know that the solution

of (3.5.48) has performance no worse than 2B/m2 compared to (3.5.47) if h is continuous

and bounded by B.

Since this approach will give O(m2) variables. We can use a simpler DRO formulation

inspired by a common approach in multi-step time series prediction [173]. We still use c = 1

as an example. Instead to estimating the distribution of ξ, we estimate the distribution of

Aξi + ξi+1. This gives the mapping G(A) =
∑

(i,i+1,i+2)∈Strust,i=0 mod 2 δzi−A2zi−2
. Then

we formulate for DRO as follows,

min
a

max
A,z,G

Eu∼G[h(a,A2z + u)]

s.t. ‖A− Â‖F ≤ ε1

W (G,G(A)) ≤ ε2

‖z − zn−c‖ ≤ 4B1.

(3.5.49)

This results in the following overall screening+DRO procedure.

1. Receive time series (z0, · · · , zn). If any ‖zt‖ ≥ B2, we substitute zt by arbitrary v with
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‖v‖ ≤ B2 and add t to Suntrust. Also, we denote (xi, yi) = (zi, zi+1).

2. Perform robust regression with Huber’s loss to get Â.

3. If yi − Âxi maps to the linear part of Huber’s loss, we add i and i+ 1 into Suntrust.

4. Let Strust = {0, · · · , n}/Suntrust, and suppose c = 1, that is, the largest index in

Strust is n− 1 .

By Proposition 3.4.4, we have the following finite approximation of the problem,

min
a

max
A,z,ξ′i

Eu∼G[h(a,A2z + ξ′i)]

s.t. ‖A− Â‖F ≤ ε1

1

m

m∑
i=1

‖ξ′i − ξi‖
p ≤ ε2

ξi = zi − A2zi−2, for i in Strust, m = |Strust|

‖z − zn−1‖ ≤ 4B1.

(3.5.50)

By Theorem 3.4.5, plugging the solution of (3.5.50) into the (3.5.49), the performance

wouldn’t be worse than 2B/m than the actual optimal solution given that h is continu-

ous and bounded by B.

ε specification

Here we note that the selection of ε1, ε2 can be chosen in a same fashion as in §3.4.2. Still the

selection of ε1 is suggested in (3.5.37). Reader may have concern that the robust screening

procedure may make the residuals dependent, we address this issue in Theorem 3.7.2 to show

that a subsequence composite of i.i.d residuals will guarantee to be kept.

We still use case c = 1 to demonstrate how to select ε2 for (3.5.49), still we know

A∗ξi + ξi+1 = zi+2 − A∗2zi is included if (i − 1, i, i + 1, i + 2, i + 3), i = 0 mod 2 are
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not contaminated. Therefore, there are ngood = n/2 − 2αn number (if there are more, we

keep the first ngood number of them) of the residual are uncontaminated and i.i.d from the

distribution of ξi+1 +A∗ξi (note that i = 0 mod 2 guarantees that they are independent), for

a more detailed discussion, see §3.7. For the contaminated zi+2−A∗2zi, since (i, i+ 1, i+ 2)

are trusted, by Remark 3.5.11, we know,

‖zi+2 − A∗
2zi‖ = ‖zi+2 − A∗zi+1 + A∗zi+1 − A∗

2zi‖ (3.5.51)

≤ ‖zi+2 − A∗zi+1‖+ ‖A∗‖‖A∗zi+1 − A∗
2zi‖ ≤ 3B1 + 3‖A∗‖B1, (3.5.52)

and ‖A∗‖ ≤ ‖A∗‖F ≤ ‖Â‖2 + ε1 := e. Then ‖zi+2 − A∗2zi‖ ≤ 3(1 + e)B1, also we

know ‖ξi+1 + A∗ξi‖ ≤ (1 + e)B1. Therefore, we can write G(A∗) = (1 − α′)Ggood(A∗) +

α′Gbad(A
∗) and 1−α′ = (n/2−2αn)/m ≥ (n/2−2αn)/(n/2) = 1−4α. Then we can select

W
p
p (G(A∗), G) ≤ (1− α′)W p

p (Ggood(A
∗), G) + α′W p

p (Gbad(A
∗), G)

≤ CB1
p
(

(n/2− 2αn)−p/d
)

+ 4α(4(1 + e)B1)p = ε2, whereas the first term is by [61], and

second is by the boundness results derived above. Then we have the following guarantee.

Theorem 3.5.15. With ε1 and ε2 select above, with probability greater than 1− 3δ, the true

transition matrix A∗ and distribution G will be feasible for DRO formulation (3.5.49).

3.6 Experiment

3.6.1 Synthetic Data

For the synthetic data experiment. We take the target function to be linear

h(a, z) = aT z, (3.6.1)
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to model invest in stock. Here our decision set a ∈ ∆d−1 = {a|
∑
i ai = 1, ai ≥ 0} is the

(d− 1)-dimensional simplex, and the data is from a d dimensional VAR(1) model.

zt+1 = Azt + ξt + ot. (3.6.2)

Here, we let ξi sampled from i.i.d Normal distribution N(0, RId) and truncation at radius R,

i.e. x = Rx/‖x‖ if ‖x‖ ≥ R, where A is sampled i.i.d entry-wise from standard Gaussian and

let A = 0.8A/‖A‖2. We generate random sample {zt}Ti=1 with different sample size T , and

let oi be 0 with probability 1−α ,or sampled i.i.d entry-wise from Cauchy distribution with

contamination probability α = 0.1. We perform regression and DRO with 2-Wasserstein

distance framework (3.5.50) on the data set to make a robust decision a given the last trust

sample zT+1−c to maximize aT zT+1.

max
a

min
A,z,{ξi}

1

m

∑
i∈trust

〈a,Acz + ξi〉 (3.6.3)

s.t. ξ̂i = zi+c − Aczi (3.6.4)

1

m

∑
‖ξi − ξ̂i‖2 ≤ ε2 (3.6.5)

‖A− Â‖F ≤ ε1 (3.6.6)

‖z − zT+1−c‖ ≤ 4R. (3.6.7)

The suggested ε1, ε2 can be too conservative, so we multiply by δ = 0.5, 0.1, 0.01 and

choosing the best using the experiments conducting on the first 200 trails. We report our

results as ’regret’ (as if we observe zT+1), max[zT+1] − aT zT+1. We also compare the

results to MLE, which is selecting the largest index using ÂczT+1−c, and sample average
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Figure 3.1: Comparison of DRO and MLE, synthetic data. All data are normalized by noise
radius R. Noise radius is 20. Sample size is 15. Problem dimension is 10.

approximation, which is optimizing

max
a

min
A,z

1

m

∑
i∈trust

〈a,Acz + ξi〉 (3.6.8)

s.t. ξ̂i = zi+c − Aczi (3.6.9)

‖A− Â‖F ≤ ε1 (3.6.10)

‖z − zT+1−c‖ ≤ 4R. (3.6.11)

We solve the original finite formulation min-max programming and other min/max formu-

lations by 1) extra gradient method [104] 2) Gradient descent ascent. The ’regret’ reported

are normalized by dividing R. The results with different settings are summary in Table 3.1.

In the lower noise and lower dimension regime, SAA/MLE performs better on average. Our

robust method outperforms other methods in the higher dimension/higher noise regime.

Across all the settings, our DRO method has the lightest tail. A sample of histogram is

displayed in Figure 3.1 and Figure 3.2.
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Figure 3.2: Comparison of DRO and SAA, synthetic data. All data are normalized by noise
radius R. Noise radius is 20. Sample size is 15. Problem dimension is 10.

Setup Mean Median 75th Perc. 90th Perc.

10-20-50 0.3493/0.3138/0.3005 0.338/0.2976/0.2775 0.4239/0.4319/0.4868 0.5114/0.5416/0.6576
5-20-50 0.2517/0.2092/0.1942 0.2371/0.1846/0.1141 0.322/0.2915/0.3208 0.4227/0.4523/0.5277
10-20-15 0.369/0.3655/0.3479 0.3549/0.3419/0.331 0.4633/0.4832/0.5153 0.5661/0.6511/0.7117
5-20-15 0.2738/0.2543/0.2537 0.2557/0.2264/0.2185 0.3563/0.3575/0.426 0.4463/0.4966/0.5935
10-5-50 0.4763/0.4532/0.4564 0.4678/0.444/0.4488 0.5728/0.6218/0.7132 0.6718/0.8094/0.9157
5-5-50 0.3749/0.3232/0.3095 0.3673/0.2522/0.1707 0.5068/0.5194/0.5518 0.6575/0.7424/0.8518
10-5-15 0.4936/0.4723/0.4629 0.4744/0.4538/0.4406 0.6255/0.6699/0.6892 0.766/0.8561/0.9453
5-5-15 0.4348/0.4019/0.405 0.4222/0.3593/0.3015 0.575/0.6386/0.6887 0.7542/0.8709/1.0291

Table 3.1: Comparison of DRO, SAA and MLE for several standard percentiles, synthetic
data. Setup is ”dimension(d)-noise radius(R)-sample size(T).” Lowest regret among methods
is boldfaced.
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3.7 Appendix

We need the following lemma which states that a random indexed subsequence of i.i.d

sequence is still a i.i.d sequence.

Lemma 3.7.1. Suppose X = (X1, · · · , Xn) is i.i.d sequence from P , and S = (s1, · · · , sm)

with |S| = m and si 6= sj is a random index sequence which is sampled independent of X,

then XS = (Xs1 , · · · , Xsm) is still a i.i.d sequence from P .

Proof. We prove the case for n = 3 and m = 2 to demonstrate the idea. It suffices to show

for any A1, A2 measurable,

P (Xs1 ∈ A1 and Xs2 ∈ A2) = P (A1)P (A2) (3.7.1)

LHS = E
[
IXs1∈A1

IXs2∈A2

]
. (3.7.2)

We build the following function,

p(i, xi) =

1−
2∑
j=1

Ii=sjIxi∈Acj

 , (3.7.3)

IXs1∈A1
IXs2∈A2

=
3∏
i=1

p(i,Xi). (3.7.4)

Let F0 = σ
(
{si}2i=1

)
, then we have

E
[
IXs1∈A1

IXs2∈A2

]
= E

[
3∏
i=1

p(i,Xi)

]
= E

(
E

[
3∏
i=1

p(i,Xi) | F0

])
. (3.7.5)

Using the fact that Xi ⊥ F0 and Ii=sj ∈ F0, we have, e.g., E[Ii=s1IXi∈Ac1 | F0] =
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Ii=s1E[IXi∈Ac1 ] = Ii=s1P (Ac1), using this property we have

E

[
3∏
i=1

p(i,Xi) | F0

]
(3.7.6)

= 1−

(
3∑
i=1

Ii=s1

)
P (Ac1)−

(
3∑
i=1

Ii=s2

)
P (Ac2) +

∑
i1 6=i2

Ii1=s1Ii2=s2

P (Ac1)P (Ac2)+

(3.7.7)

2∑
k=1

∑
i6=j

Ii=skIj=skP (Ack)2 + higher order term (3.7.8)

= 1− P (Ac1)− P (Ac2) + P (Ac1)P (Ac2) = P (A1)P (A2), (3.7.9)

Where the last line follows from the fact the only one Ii=s1 and one Ij=s2 are not zero for

different i 6= j.

Theorem 3.7.2. Out of the residuals defined in Remark 3.5.2, there are ngood number of

residuals are i.i.d sampled from the desired distribution G
(d)
= A∗ξi + ξi+1 with A = A∗.

Proof. First let ζi = A∗ξi + ξi+1 for i = 0 mod 2. To prove this, we only need to build

a random index sequence S = {s1, · · · , sngood} with value si taken within the set of kept

sample index, and independent of ξi, then the above Lemma 3.7.1 applies. Note that Scon =

{i1, i2, · · · , ik} is sampled indepadent of ξi. Let ALL = {i | i = 0 mod 2}, i ≤ n− 2. Then

eliminate i from ALL if any of (i− 1, i, i+ 1, i+ 2, i+ 3) is showing up in Scon to get ALL′.

The construction of ALL′ only depends on Scon and therefore is independent of ξi. Also the

construction of ALL′ guarantees that the indexed sample ζi will not be eliminated by our

screening and robust detection procudure, and |ALL′| ≥ ngood by the fact that |Scon| ≤ nα.

Finally we keep the ngood smallest index in ALL′ as ALL′ngood to the desired index sequence

we want to construct.
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CHAPTER 4

MAKING SGD ROBUST AGAINST OUTLIER ATTACK

4.1 Introduction

Stochastic Gradient Descent (SGD) [143] is arguably the most commonly used algorithm for

modern data-driven problem [26]. With this simple form

θt+1 = arg min
θ∈D

[
ηt〈gt, θ − θt〉+

1

2
‖θ − θt‖2

]
:=
∏
θ∈D

[θt − ηtgt] , (4.1.1)

where D is some convex bounded feasible region of the parameter to be optimized, and gt is

some noisy version of the gradient of some target function F (θ) at state θt. SGD are often

easy to implement in practice, and output θ with extraordinary performance both in-sample

and out-sample. Also, it is very flexible to be adjusted for different specific problems. There

are multiple successful SGD variants, to name a few, conditional gradient descent or Frank-

Wolfe algorithm [94, 63] to solving the sparsity related problem, dual averaging [192, 54]

and mirror descent [10, 124] for solving online decision making problem on with specific

constraint set D, adaptive gradient descent [53] as a approximated second order amend for

handling problem that are ill-conditioned, accelerated stochastic gradient descent [127, 11]

that achieves the theoretical optimality (matching problem lower bound) [126].

The study of SGD started from a more general framework; stochastic approximation [143].

From there, there are fruitful results regarding SGD in different settings. For example, 1.

SGD with different step sizes and averaging schemes achieves optimal solutions with different

convex settings. [28] 2. SGD behaves well and finds a good solution with several statistical

estimation problems with a non-convex formulation. see e.g. [96, 68, 69] 3. The study of the

SGD dynamics of extremely complicated model classes (e.g., neural network and many other

overparametrized models) helps us fundamentally understand why several models general-
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ized well [52, 163, 37], which is beyond the traditional understanding of statistical learning

theory [180] and computational learning theory [101].

Robustness has become one of the primary concerns in the modern machine learning task

[78]. Typical robust concerns include the following two topics. i) Our algorithm is relying

too much on the data points seen. This problem is always called overfitting [84]. The mea-

surement of the performance of the output of our algorithm on the entire data population

(out-of-sample) and the performance on the training dataset (in-sample) is called general-

ization [119]. ii) The second robust concern is that our algorithms of decision making and

inference rely too much on the model [92]. Still, the model can be miss-specified, which can

cause our algorithms to ‘overfit’ the model forgetting that model is always an approxima-

tion/simplification of the real-world problem. In this paper, we mainly study the second

issue.

Two significant amendments to the second issue mentioned above are i) making weak model

assumptions. In the literature, statisticians achieve this by studying the problem with only

finite (usually 2nd or 4th) moment assumption [141], rather than the specific distributional

assumption, e.g., normal distribution. ii) The second line of works focuses on Huber’s con-

tamination model [91], in which model we assume the majority of data are coming from

a distribution that is of interest, and a small portion of data is from another arbitrary

distribution, i.e.,

X ∼ (1− ε)P + εQ. (4.1.2)

A closely related model recently received much attention is the adversarial contamination

model, in which we get data Xi with probability 1−ε from P , with probability ε, the returned

data Xi can be maliciously designed (e.g., adaptive to your algorithm based on the previous

data given). This adversarial model strictly includes Huber’s contamination model. We are

going to study the first-order method within the adversarial contamination setting.
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Related work In [136], the authors consider the optimization problem in 1) Huber ε-

contamination model and 2) heavy tail distribution model. They also take the

high-dimensional issue into account. Mean estimation in high-dimension is a fundamental

technique in their proposed algorithm. While in the SGD framework, they address the issue

of efficiently obtaining a gradient estimation in each step. Moreover, they don’t assume the

homogeneous bound on the noise term on different locations in the feasible region D as we

do. Using recent statistics and probability results about robust mean estimation, leveraging

the mini-batch sample, they estimate the gradient adaptively and accurately. However, their

techniques only work for strongly convex and smoothed functions, which doesn’t apply to

all of the problems that are of interest. Also, we should mention that this plug-in estimator

approach and their analysis cannot be applied to study streaming algorithms since the study

essentially solves an independent estimation at each step using a batch of fresh samples and

applied inexact gradient descent analysis neglect the concentration effect of uncontaminated

sample.

It comes to our attention that another line of works, Byzantine tolerance optimization,

which consider a problem closely related with Huber ε-contamination model [34] [136] [118]

[193] [166] [194]. The typical setting is that a canter machine receives noisy gradient from

distributed gradient machines at each step, but the ε fraction of the gradient machines are

malicious (Byzantine workers). While in our work, in the adversarial ε-contamination model,

we only have one streaming of data. The contamination can induce an intrinsic bias into our

object [33], but in Byzantine problem, the general intuition (and technique) is that we have

multiple streamings of data. All good machines will eventually behave relatively similarly,

so we can use them as good references to rule out the bad machines, which is not the case

in our setting.

The most related work would be [178]. In this work, the authors study the online opti-

mization problem (which is closely related to stochastic Lipchitz convex optimization) with
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k number of contaminated samples. While their algorithm needs to know the number of con-

taminated samples and only applies to Lipchitz convex function with our stochastic setting,

we don’t need to know the number of contaminated samples a priori. Also, our approach

and analysis can be applied to other settings, e.g., smoothed convex optimization and several

variants of SGD, e.g., proximal gradient descent and mirror descent.

4.1.1 Problem Setup and Notation

We start by formally stating the problem. We consider a stochastic optimization problem

with potentially contaminated data. Our goal is to optimize the following object, for f :

Θ×Z → R,

min
θ∈D
{F (θ) = EZ∼P [f(θ, Z)]}. (4.1.3)

Here Z ∈ Rp, Θ ∈ Rd, and P are the data generating distribution that is of interest.

Suppose that each time we can sample a Zi from a contaminated Oracle, which is, each

round i, the oracle sample independent data from Xi ∼ P and also design a sample Yi, which

can be adversarial (i.e., design Yi based on historical Xi, Yi sampled and designed before

and the current status of our algorithm θi), the oracle then flip a biased coin ci ∈ {0, 1}

independently ∼ Ber(1− ε), with probability 1− ε, the Oracle returns the random sample

Zi = Xi, with probability ε ≤ 1/8, the Oracle returns Zi = Yi. We assume that under the

target distribution P , we have the following property.

Assumption 1 (norm-subGaussian under distribution P ). For any θ ∈ D, and λ ∈ R, we

have the following norm-subGaussian property with parameter G assumption, let X ∼ P ,

E[∇f(θ,X)] = ∇F (θ),

P (‖∇f(θ,X)−∇F (θ)‖ ≥ t) ≤ e
− t2

2G2 .

(4.1.4)
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Here ∇f(θ, Z) is the partial derivative taken with respect to θ.

Here we say a scaler random variableX and its probability distribution is subGaussian(G),

if

P (|X − EX| ≥ t) ≤ e
− t2

2G2 , (4.1.5)

and we say a random vector X and its probability distribution is norm-subGaussian(G), if

P (‖X − EX‖ ≥ t) ≤ e
− t2

2G2 . (4.1.6)

We note that here are other equivalent (up to a constant) definitions of subGaussian and

norm-subGaussian random variable. see e.g. [182, Lemma 5.5] and [97, Lemma 2]. Specifi-

cally, we are going to use the moment characterization to justify certain truncated random

vector still preserves the norm-subGaussianity. Also, by definitions above and the Cauchy-

Schwarz inequality, given θ ≤ R, x ∼ norm-subGaussian(G), we have

〈x, θ〉 ∼ subGaussian(GR). (4.1.7)

Remark 4.1.1. Note that a stronger bounded gradient deviation assumption is made in

other outlier robust first-order streaming optimization works, see e.g. [3], [178]. For which,

we can effectively take an additional logarithmic factor G = G
√

log(T/δ) to make a bounded

contaminated Oracle in T calls as in their work with chance greater than 1− δ. However, it

seems that in their work, a bounded gradient Oracle is necessary for the streaming algorithm

to get rid of a non-vanishing logarithmic factor log(T ). We will discuss this issue in detail in

the later section §16. Also, we will propose a fix of the non-vanishing log T by introducing

a truncation technique.

Remark 4.1.2. One may ask whether we can use first-order gradient Oracle to replace our
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sample Oracle, the answer is no if we want the algorithm to be in a streaming fashion. The

intuition is that we need to use historical data g(θnew, Zold) to estimate ∇F (θnew), a Lip-

chitz continuity and radius dependent additional error ‖∇F (θold)−∇F (θnew)‖ ≤MR will

show up.

Definition 1. A function f is M -smooth if the function f is differentiable and has Lipchitz

gradient

‖∇f(x)−∇f(y)‖ ≤M‖x− y‖. (4.1.8)

4.2 Main Result

The main contribution of the paper is that we prove that, for Problem 4.1.3 with Assump-

tion 1 and some further assumptions on the sample Oracle, with M−smooth target function

F , there is a streaming SGD algorithm in O(T ) sample oracle calls, outputs θ̄ achieves the

following convergence rate,

F (θ̄)− F ∗ . MR2

Tη
+GR

(√
log(T/δ)

T
+ ε
√

log(1/ε)

)
. (4.2.1)

The first term, MR2/Tη, is known very well for the optimization rate of the problem [28],

i.e., rate noiseless and contamination-free case. The term GR/
√
T is known matching the

statistical lower bound of the problem, see, e.g., [125] and [122, Proposition 14.1.1], i.e., the

contamination-free case. Finally, the term εGR is known to be unavoidable under Huber’s

contamination model; for detail, see § 4.4. Therefore, for SGD based algorithm, we know

this cannot be fundamentally improved.

81



4.3 Main Theory

4.3.1 Useful Lemmas and Tools

The next lemma is going to be useful to prove the norm-subGaussianity of random variable.

Lemma 4.3.1. (Conditional independence) Let F be the σ-field of random variable Z, i.e.

σ(Z), random variable X ∈ F , then we know X = h(Z) for some measure function h ∈ F .

If random variable Y ⊥ F , and function φ of X and Y is integrable E[|φ(X, Y )|] <∞, then

we have,

E[φ(X, Y ) | F ] = g(X), (4.3.1)

where g(x) = E[φ(x, Y )].

Proof. Denote ψ(z, y) = φ(h(z), y). Then by [55, Example 4.1.7], we know

E[ψ(Z, Y ) | F ] = j(Z) = g(h(Z)) = g(X). (4.3.2)

Here j(z) = E[ψ(z, Y )] = E[φ(h(z), Y )] = g(h(z)).

We first present two lemmas about the deviation bound on the good sample. We also

provide a useful, robust median and screening algorithm based on known noise level G, which

effectively detects outliers beyond Ω(G) and estimates the mean within O(G).

Lemma 4.3.2 (Sample radius). Under Assumption 1, for any fixed θ1, θ2, · · · , θk selected,

we sample Z1.Z2, . . . , Zm ∼ P . Then with probability at least 1− δ, we have

max
i∈[m],j∈[k]

∥∥∇f(θj , Zi)−∇F (θj)
∥∥ ≤ c1G

√
log(m) + log(k) + log(1/δ). (4.3.3)

This is the norm-subGaussian tail bound with a union bound (take δ = δ/(mk) on each

event) result.
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Lemma 4.3.3 (Sample sum). Under Assumption 1, for any fixed θ1, θ2, · · · , θk selected, we

sample Z1.Z2, . . . , Zm ∼ P . Then with probability at least 1− δ, we have

max
j∈[k]

∥∥∥∥∥
m∑
i=1

[
∇f(θj , Zi)−∇F (θj)

]∥∥∥∥∥ ≤ c2G
√
m [log(k) + log(1/δ) + log(2d)]. (4.3.4)

The proof is by [97, Corollary 7].

Remark 4.3.1. The condition of the above two lemmas can be relaxed to selecting θ1, · · · , θk

independent of Z1, · · · , Zm.

This is a simple union bound over k event with concentration results on the norm-

subGaussian random variable. For the proof, see [97, Corollary 7]. Then apply the same

argument with Lemma 4.3.1. The following two algorithms give a robust screening procedure

Algorithm 1 and a robust median as a rough estimation of the mean Algorithm 2. These

techniques appear in [3].

Algorithm 4.1: Robust screening algorithm

1 Robust-Screen;
Input : Data sample S = {Z1, Z2, · · · , Zm} , Radius G
Output: Trust set S′

2 shuffle sample set
3 i = 1
4 repeat
5 i← i+ 1

6 until
∣∣{j | ‖Zi − Zj‖ ≤ 2G

}∣∣ ≥ m/2;

7 S′ =
{
Zi ∈ S | ‖Zi − Zj‖ ≤ 4G

}

Algorithm 4.2: Robust median as robust mean estimation algorithm

1 Robust-Median;
Input : Data sample S = {Z1, Z2, · · · , Zm}, Radius G
Output: Robust Median Z

2 S′ = Robust-Screen(S,G)
3 Z = select any sample in S’
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Lemma 4.3.4 (Robust trick). When the input dataset S, has more than half of the data

satisfies ‖Zi − µ‖ ≤ G, Algorithm 1 returns S′ satisfies,

∀Z ′ ∈ S′, ‖Z ′ − µ‖ ≤ 7G,

∀Z ∈ S, such that ‖Z − µ‖ ≤ G, will be included Z ∈ S′.
(4.3.5)

Also Algorithm 2 returns Z ′ satisfies,

‖Z ′ − µ‖ ≤ 7G. (4.3.6)

Proof. For data point Z1, Z2, . . . , Zn ∈ S, if we know that at least half of the point are in

the ball B(µ,G). Given any Zi such that |{j | ‖Zi − Zj‖ ≤ 2G}| ≥ n/2, we have

‖Zi − µ‖ ≤ 3G. (4.3.7)

Otherwise, there won’t be many Z ′s satisfies the condition. Let µ2 = Zi, we have B(µ,G) ⊆

B(µ2, 4G). By the triangle inequality, we have for any point Z within B(µ2, 4G), we have

‖Z − µ‖ ≤ 7G.

4.3.2 Basic Online Algorithm

We start by studying a simple streaming SGD with a robust screening algorithm. Each time

we get a sample Z from the contaminated Oracle, we build a confidence interval based on

the historical data and drop the incoming sample if we are confident that the current sample

is contaminated. Otherwise, we perform gradient descent based on the new sample. The

algorithm can be formally stated as follows.

Hereafter, we denote k(t) be the value ofK in the algorithm at t-th round of the algorithm,

i.e. θt = θ′
k(t)

. As we will show, with appropriate V , with high probability, we can guarantee
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Algorithm 4.3: Basic version of RSGD algorithm

1 Basic-RSGD;
Input : Initial point θ1 = θ′1, maximum number of iteration T , pre-sample size m,

confidence region radius V , step-size ηt
Output: θ̄

2 K ← 1
3 Sample S = {Z1, Z2, . . . , Zm};
4 for t← 1 to T do
5 θt = θ′K
6 Compute µ(θt) = Robust-Median

({
∇f(θt, Zi)Zi∈S

})
;

7 Query a sample Z̃t fron Oracle;

8 if ‖∇f(θ′K , Z̃t)− µ(θ′K))‖ ≤ V then

9 θ′K+1 ←
∏
D[θ′K − ηK∇f(θ′K , Z̃t)];

10 S ← S
⋃
{Zm+K = Z̃t}

11 K ← K + 1

12 θ̄ = Mean
({
θ′1, · · · , θ

′
K

})
that all of the good samples will be accepted. For the rest of this manuscript, we call a step i

good if we get a sample from P , i.e., Z̃i = Xi ∼ P , and bad otherwise, and we call a sample

Z good if it is from X ∼ P , and bad otherwise. We have the following bound for the radius

of gradient spawn by good samples.

Lemma 4.3.5 (Radius of good sample). Under Assumption 1, if function f is M -smooth

in θ, suppose G/M ≤ R, for any θ ∈ D, for Z1.Z2, . . . , Zm ∼ P , with probability at least

1− δ, we have

max
i∈[m]

‖∇f(θ, Zi)−∇F (θ)‖ ≤ min
R≥τ>0

(
2Mτ + c1G

√
d log(2R/τ) + log(m/δ)

)
(4.3.8)

= min
R≥τ>0

(
2Mτ + c1G

√
log(Query1) + log(m/δ)

)
(4.3.9)

≤ G
(

2 + c1
√
d log(2RM/G) + log(m/δ)

)
.
= D1(m, δ).

(4.3.10)

(taking τ = G/M.) (4.3.11)
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Proof. The argument is based on a covering results and a union bound. First, we construct

a τ -net N(D, τ, ‖ · ‖) of the set D. By and fact that D is bounded by R and [182, Lemma

5.2], we know for τ ≤ R,

|N(D, τ, ‖ · ‖)| ≤
(

2R

τ

)d
:= Query1. (4.3.12)

Then, by a union bound onm data point and the |N(D, τ, ‖ · ‖)| along with tail Assumption 1,

using Lemma 4.3.2 we have, with probability greater than 1− δ, for any θ ∈ N(D, τ, ‖ · ‖)

max
i∈[m]

‖∇f(θ, Zi)−∇F (θ)‖ ≤ c1G
√
d log(R/τ) + logm+ log(1/δ). (4.3.13)

Suppose the above event is true. Then for any θ ∈ D, we can find θ′ ∈ N(D, τ, ‖ · ‖) such

that ‖θ − θ′‖ ≤ τ . By the Lipchitz continuity of f and F , we have

max
i∈[m]

‖∇f(θ, Zi)−∇F (θ)‖ ≤ 2Mτ + c1G
√
d log(R/τ) + logm+ log(1/δ). (4.3.14)

Next, we get statistical accuracy of µ(θt) based on empirical process theory to determine

the deviation ‖µ(θt)−∇F (θt)‖ which in turn will decide the confidence radius V in Algorithm

3 such that our algorithm will accept all of the good samples with a decent chance. The bad

sample wouldn’t mislead us too much.

A simple tail bound of Bernoulli random variable with a uniform bound along T step.

We can take the pre-sample size m greater than 16 log(T/δ) to guarantee that for each step

t, the good sample portion along the steps of the entire algorithm is always greater than 3/4,

which will make the Robust-Screen 1 and Robust-Median 2 viable.

Corollary 4.3.1. With input pre sample size m = 16 log(T/δ), V = V1 := 7D1(m +

T, δ/T ) + G
√

log(T/δ) in Algorithm 3, with probability at least 1 − 3δ the algorithm will
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accept all of the sample from P . Also, with probability greater than 1 − δ all of the good

sample satisfies
∥∥∥∇f(θ′

k(t)
, Z̃t)−∇F (θ′

k(t)
)
∥∥∥ ≤ G

√
log(T/δ).

To see this, fist with probability greater than 1− δ we know S always has more than half

of the data that are good, and with probability greater than 1− δ we known ‖µ(θt)− θt‖ ≤

7D1(m+ T, δ/T ) using Lemma 4.3.4 and the good sample radius bound Lemma 4.3.5. The

second term G
√

log(T/δ) is from the norm-subGaussian deviation together with a union

bound with at most T good samples to guarantee(
I
Z̃t is good

· ‖∇f(θ′
k(t)

, Z̃t)−∇F (θ′
k(t)

)‖
)
≤ G

√
log(T/δ), which holds with probability

greater than 1 − δ/T . Moreover, we have the deviation guarantee for the bad sample as

follows.

Remark 4.3.2. Here, using Robust-Mean Algorithm 4 wouldn’t help too much, since we

will still have a O(G
√

logQuery1/m) in V .

Remark 4.3.3. Here the first argument m+T in D1 term eventually becomes a log(m+T )

term in analyzing the algorithms (an upper bound of good sample we get from pre-sample

and SGD process sample) in our final bound of study the SGD algorithm. This seems

unreasonable since a better sample size will give us a worse result. Later in section § 16,

we will show we can eliminate these log(m+ T ) terms by a simple truncation rule and only

induce an ε
√

log(1/ε)G bias. i.e. substitute the
√

log(m+ T ) by ε
√

log(1/ε). For the latter

part of presenting the result in this section, we will write these logarithmic terms regarding

the deviation of bad samples in a Big-O term.

Corollary 4.3.2. With same setting as in the above corollary, in Algorithm 3, with proba-

bility at least 1− 3δ, the following holds for all accepted gradient ∇f(θ′
k(t)

, Zm+k(t)),

‖∇f(θ′k(t), Zm+k(t))−∇F (θ′k(t))‖ ≤ 14D1(m+ T, δ/T ) +G
√

log(T/δ) := Ṽ1. (4.3.15)

This is a simple result of triangle inequality (insert µ(θt) in).
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Remark 4.3.4. This bound is suboptimal in the sense that we need to take a union bound

over effectively Query1 number of points. It’s tempting to reduce the Query1 to just T point

along the SGD training trajectory. However, this approach is incorrect, because the point

θk(t) is actually a function of θ1 and all of the history data Z1, · · · , Zt−1, which makes the

independent or fixed condition as in Lemma 4.3.2 or Lemma 4.3.3 no longer hold. The

fact that the trajectory θk(t) is dependent on the historical data makes we need to take a

large union bound, i.e., Query1.

Optimization Convergence

In this section, we give the framework of analyzing general stochastic gradient descent based

on inexact gradient analysis [42, 28], and analyze Algorithm 3 using the framework. By

studying this algorithm, we get the important steps for bounding deviation which lead to

improvements for the algorithm. For notational simplicity, let gk = ∇f(θk, Zm+k) be the

descent step, and e′k = ∇F (θ′k)− gk.

Proposition 4.3.1. For the projection descent

θk+1 = arg miny∈D
[
ηk〈gk, y〉+ 1

2‖y − θk‖
2
]
, for any z ∈ D, the following holds,

〈gk, θk+1 − z〉 ≤
1

2ηk
(‖θk − z‖2 − ‖θk+1 − z‖2 − ‖θk − θk+1‖2).

This is a standard results from the first-order optimality condition of gradient step, for

the proof see [28].

Lemma 4.3.6 (Inexact Gradient). For Problem 4.1.3 with M -smooth function F (θ), under

Assumption 1, with input step size ηt ≤ 1/M , for each θt in the trajectory of the gradient
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descent

F (θ′k)− F ∗ ≤ 1

2ηk

(
‖θ′k − θ

∗‖2 − ‖θ′k+1 − θ
∗‖2
)

+ 〈e′k, θ
′
k − θ

∗〉+
ηk

2(1−Mηk)
‖e′k‖

2.

(4.3.16)

Proof. Suppose θ∗ ∈ arg minθ∈D F (θ). From the smoothness of function F , we have

F (θ′k+1) ≤ F (θ′k) + 〈∇F (θ′k), θ′k+1 − θ
′
k〉+

M

2
‖θ′k+1 − θ

′
k‖

2 (smoothness of F) (4.3.17)

≤ F (θ∗) + 〈∇F (θ′k), θ′k+1 − θ
∗〉+

M

2
‖θ′k+1 − θ

′
k‖

2 (convexity) (4.3.18)

= F ∗ + 〈gk, θ′k+1 − θ
∗〉+ 〈e′k, θ

′
k+1 − θ

∗〉+
M

2
‖θ′k+1 − θ

′
k‖

2 (definition of e′k)

(4.3.19)

≤ F ∗ +
1

2ηk

(
‖θ′k − θ

∗‖2 − ‖θ′k+1 − θ
∗‖2 − ‖θ′k − θ

′
k+1‖

2
)

+ 〈e′k, θ
′
k+1 − θ

∗〉

(4.3.20)

+
M

2
‖θ′k+1 − θ

′
k‖

2 (4.3.21)

≤ F ∗ +
1

2ηk

(
‖θ′k − θ

∗‖2 − ‖θ′k+1 − θ
∗‖2 − ‖θ′k − θ

′
k+1‖

2
)

+ 〈e′k, θ
′
k − θ

∗〉+

(4.3.22)

‖e′k‖ · ‖θ
′
k+1 − θ

′
k‖+

M

2
‖θ′k+1 − θ

′
k‖

2 (4.3.23)

= F ∗ +
1

2ηk

(
‖θ′k − θ

∗‖2 − ‖θ′k+1 − θ
∗‖2
)

+ 〈e′k, θ
′
k − θ

∗〉+ ‖e′k‖ · ‖θ
′
k+1 − θ

′
k‖

(4.3.24)

+
Mηk − 1

2ηk
‖θ′k+1 − θ

′
k‖

2 (4.3.25)

≤ F ∗ +
1

2ηk

(
‖θ′k − θ

∗‖2 − ‖θ′k+1 − θ
∗‖2
)

+ 〈e′k, θ
′
k − θ

∗〉 (4.3.26)

+
ηk

2(1−Mηk)
‖e′k‖

2. (4.3.27)

The inequality on the fourth line is from Proposition 4.3.1, and the last inequality follows
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from maximizing the last two terms as a quadratic function in ‖θ′k+1 − θ
′
k‖

2.

Theorem 4.3.1. For Problem 4.1.3 with M -smooth function f(·, Z) for any Z, under As-

sumption 1, running Algorithm 3 with setting step size ηt = η ≤ 1/M , pre-sample size

m = 16 log(T/δ), confidence radius Ṽ = V1 specified in Corollary 4.3.1, with probability

greater than 1− 4δ, the output θ̄ satisfies

F (θ̄)− F ∗ . 1

Kη
‖θ1 − θ∗‖2 +GR

√
T log(1/δ)

K
+
|Sbad|
K

Ṽ1R + ηG2 log(T/δ) + η
|Sbad|
K

Ṽ 2
1 .

(4.3.28)

Here we let [K] = Sgood
⋃
Sbad corresponding to the accepted sample Zm+k is an indepen-

dent sample from P or not, and Ṽ1 is defined in Corollary 4.3.2.

Proof. Let k(t) denotes the k value at t round of Algorithm 3, i.e. θt = θ′
k(t)

. Let F1 = σ(θ1)

and Ft be the filtration σ field up to t steps, i.e. Ft be the σ-field including Ft−1 and

σ(ct−1, Xt−1, Yt−1). Also, we let dt = ∇f(θk(t), X̃t) − ∇F (θk(t)), then dt = ek(t) if we

proceed at t round and t round is good, i.e., k(t+ 1) 6= k(t). For k ∈ Sbad, by Lemma 4.3.6

and Corollary 4.3.2, we have with probability greater than 1− 3δ

(η −Mη2)
[
F (θ′k+1)− F ∗

]
≤ 1−Mη

2

(
‖θ′k − θ

∗‖2 − ‖θ′k+1 − θ
∗‖2
)

(4.3.29)

+ (η −Mη2)〈e′k, θ
′
k − θ

∗〉+
η2

2
‖e′k‖

2 (4.3.30)

≤ 1−Mη

2

(
‖θ′k − θ

∗‖2 − ‖θ′k+1 − θ
∗‖2
)

(4.3.31)

+ (η −Mη2)Ṽ1R +
η2

2
‖e′k‖

2. (4.3.32)
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Now, we have the telescope sum, with probability greater than 1− 3δ

K∑
k=1

(η −Mη2)
[
F (θ′k)− F ∗

]
≤ 1−Mη

2

K∑
k=1

(
‖θ′k − θ

∗‖2 − ‖θ′k+1 − θ
∗‖2
)

︸ ︷︷ ︸
(I)

(4.3.33)

+ (η −Mη2)
∑

k∈Sgood

〈e′k, θ
′
k − θ

∗〉

︸ ︷︷ ︸
(II)

(4.3.34)

+ (η −Mη2)
∑

k∈Sbad

Ṽ1R︸ ︷︷ ︸
(III)

(4.3.35)

+
η2

2

∑
k∈Sgood

‖e′k‖
2

︸ ︷︷ ︸
(IV )

+
η2

2

∑
k∈Sbad

‖e′k‖
2

︸ ︷︷ ︸
(V )

. (4.3.36)

Obviously, we have

(I) ≤ R2, (III) ≤ |Sbad|Ṽ1R, (IV ) ≤ KG2 log(T/δ), (V ) ≤ |Sbad|Ṽ 2
1 (4.3.37)

We study the following martingale sum to bound (II). Note that we call round t is good if

the Oracle returns a good sample Z̃t = X̃t ∼ P ,

(II ′) =
T∑
t=1

〈dt · It is good, θ
′
k(t) − θ

∗〉 (4.3.38)

=
T∑
t=1

〈[∇f(θ′k(t), X̃t)−∇F (θ′k(t))] · It is good, θ
′
k(t) − θ

∗〉. (4.3.39)

Note that θ′
k(t)
− θ∗ ∈ Ft, and the Oracle’s decision of returning good sample or not is

independent of Ft, also the good sample if it returns is independent of Ft, the term will be
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zero if t is not good. Therefore, dt · It is good ⊥ Ft. Then we have

E
[
〈dtIt is good, θ

′
k(t) − θ

∗〉 | Ft
]

(4.3.40)

= 〈E
[
dtIt is good

]
, θ′k(t) − θ

∗〉 = 0. (4.3.41)

Note that E[‖dtIt is good‖k] ≤ E[‖dt‖k], then dtIt is good is also a norm-subGaussian(G) by

Assumption 1, then by (4.1.7) the term in the martingale sum above satisfies the Azuma-

Hoeffding concentration inequality [152, Theorem 2]. Then we have the bound, with proba-

bility greater than 1− δ,

(II ′) . GR
√
T · log(1/δ). (4.3.42)

Note that we accept all good samples with a probability greater than 1− 3δ. At this event,

we have,

(II) =
∑

k∈Sgood

〈e′k, θk − θ
∗〉 =

T∑
t=1

〈dt · It is good, θ
′
k(t) − θ

∗〉 = (II ′) (4.3.43)

Together with a union bound, with probability greater than 1− (3δ+ δ) = 1− 4δ, divide

both sides by K(η −Mη2), with η ≤ 1/M , we get the desired result.

Remark 4.3.5. Now, for T large enough, we know |Sbad|/T ≤ 2ε (since we always accept
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good sample). Picking ηt = η ≤ 1/M , we have

F (θ̄)− F ∗ . 1

Tη
R2 +GR

√
log(T/δ)

T
+ ηG2 log(T/δ) + εηṼ 2

1 + εṼ1R (4.3.44)

.
1

Tη
R2 +GR

(√
log(T/δ)

T
+ ε
√
d log(RM/G)

)
(4.3.45)

+ ηG2 (log(T/δ) + εd log(RM/G)) (4.3.46)

+ O (εGR log(T/δ))︸ ︷︷ ︸
can be eliminate by truncation § 16

(4.3.47)

Optimize over η ≤ min(1/M,R/G
√
T ), for T sufficient large, we have

F (θ̄)− F ∗ . MR2

Tη
+GR

(√
log(T/δ)

T
+

√
εd log(RM/G)

T
+ ε
√
d log(RM/G)

)
(4.3.48)

+ O (εGR log(T/δ))︸ ︷︷ ︸
can be eliminate by truncation § 16

(4.3.49)

4.3.3 Double Sequence Algorithm

As mentioned above, the main obstacle is that the screening rule makes data reuse, so we

need a union bound on all possible points being visited (potentially all points in D as Query1

suggests). Therefore, reducing the ‘query complexity, i.e., the concentration behavior of good

on the points that are potentially being visited, is the primary goal of our study.

Assumption 2 (Double Oracle). Suppose we have two Oracles to query from. They cannot

communicate, i.e., when they design malicious bad samples, one cannot develop based on

the data given by the other Oracle.

It is worth noting that our analysis of the query complexity should be of more general

interest. Our analysis technique can be applied to a more general streaming-based algorithm

with a robust screening step. To name a few, filtering based algorithm [100], model predictive

control [30], stochastic control [5], etc.
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Algorithm

Algorithm 4.4: Robust mean estimation

1 Robust-Mean;
Input : Data sample Z1, Z2, · · · , Zm, Radius G
Output: Robust Mean Z

2 S = Robust-Screen(Z1, Z2, · · · , Zm, G)
3 Replicate arbitrary sample in S multiple times such that |S| = m
4 Z = Mean(S)

Algorithm 4.5: RSGD with double sequences from oracles

1 Double-RSGD;
Input : Initial point θ1, maximum number of iteration T , pre-sample size m,

confidence region radius V , step-size ηt
Output: θ̄

2 Step K ← 1
3 Sample S1 = {Z ′1, Z

′
2, . . . , Z

′
m} fron Oracle 1;

4 for t← 1 to T do
5 θt = θ′K
6 Compute µ(θ′K) = Robust-Mean

({
∇f(θ′K , Z

′
i)
}m
i=1

)
;

7 Query sample Z̃t from Oracle 2;

8 if ‖∇f(θ′K , Z̃t)− µ(θ′K)‖ ≤ V then

9 θ′K+1 ←
∏
D[θ′K − ηK∇f(θ′K , Z̃t)];

10 ZK = Z̃t
11 K ← K + 1

12 θ̄ = Mean
({
θ′1, · · · , θ

′
K

})

Statistical Accuracy

Lemma 4.3.7 (Deviation of Robust-Mean). Under Assumption 1, for any fixed θ1, θ2, · · · , θk

selected, sample Z1.Z2, . . . , Zm ∼ Contaminated Oracle, let [m] = Sgood
⋃
Sbad, where Sbad

include the bad samples and the later replicated samples (the original good one is still in
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Sgood but the replicated ones are in Sbad), if the sample has m ≥ 4 log(1/δ) := s1(k), denote

RMi = Robust-Mean
(
{∇f(θi, Z1), · · · ,∇f(θi, Zm)} , c1G

√
log(mk/δ)

)
. (4.3.50)

with probability at least 1− 3δ, we have

max
j∈[k]

∥∥RMj −∇F (θj)
∥∥ ≤ c2G

√
(log k + log(1/δ) + log 2d)

m
(4.3.51)

+
7c1G|Sbad|

√
log(1/δ) + log k + logm

m/2
(4.3.52)

≤ c2G

√
(log k + log(1/δ) + log 2d)

m
(4.3.53)

+ 7c1G
√

log(1/δ) + log k + logm (4.3.54)

:= D1.5(m, k, δ). (4.3.55)

Proof. With m specified as in the Lemma, with probability greater than 1− δ, we have that

over m/2 number of Z ′i, i ≤ m are good. Then, by Lemma 4.3.2, we know for all i ∈ Sgood,

for any θj , with probability greater than 1− δ

∥∥∇f(θj , Zi)−∇F (θj)
∥∥ ≤ c1G

√
log k + logm+ log(1/δ) := Rg. (4.3.56)

By Lemma 4.3.3, we have, for ant θj , with probability greater than 1− δ

∥∥∥∥∥∥
∑

i∈Sgood

[
∇f(θj , Zi)−∇F (θj)

]∥∥∥∥∥∥ ≤ c2G
√
m [log k + log(1/δ) + log 2d]. (4.3.57)

Also, with Lemma 4.3.4, we know that Robust-Screen step will include all of the good sample,

and the bad sample Zi kept has the property,

∥∥∇f(θj , Zi)−∇F (θj)
∥∥ ≤ 7Rg, (4.3.58)
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for all θj . Then using the sum concentration bound on good and deviation bound on bad

along with the fact that all |Sgood| > m/2 number of good are kept, we have the desired

result.

Remark 4.3.6. Still, as mentioned in Remark 4.3.3, the logm term can be eliminated with

a technique in § 16.

Now let’s consider a complete tree to characterize the trajectory complexity. Let θ1 be

the root node θ1,1. We spawn new nodes by depth inductively. Each time suppose we have

nodes up to depth t, for each node θt,i we sample Zt,i from Oracle 2, we spawn two children

θt+1,2i−1, θt+1,2i, corresponding to staying at θt,i = θt+1,2i−1 and performing a projected

gradient step θt+1,2i. The reason we construct this complete tree is that our algorithm’s

trajectory θt will for sure follow a root to leaf path (actually, we need to construct a tedious

probability coupling of the Oracle 2 spawning this tree and the one we are sampling in the

algorithm, we omit the details here). Note that the construction of the tree is completely

independent of Oracle 1. Because of the independence, when we control the sample deviation

of Z ′ from Oracle 1 acting on the nodes in the tree, we can put a uniform bound by counting

the number of nodes in the tree.

Lemma 4.3.8 (Query capacity). Given a sequence of calls by Oracles 2, the number of

nodes in the tree at depth t has the following upper bound,

N(θt) = 2t := Query2(t).

Also the θ′
k(t)

= θt in our Algorithm 5 will be one of the node at depth t of the tree.

Corollary 4.3.3 (Accuracy of estimation). Under Assumption 1 and 2, for µ(θ′
k(t)

) in Al-

gorithm 5 with pre-sample set size m ≥ 16 log(1/δ), we have, with probability greater than
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1− 3δ,

‖µ(θ′k)−∇F (θ′k)‖ ≤ D1.5(m,Query2(t), δ/T ) ≤ D1.5(m,Query2(T ), δ/T ) := V1.5.

(4.3.59)

With m specified as in the above corollary, apply N(θ′
k(t)

) as k in Lemma 4.3.7, which

holds with probability greater than 1− 3δ.

Corollary 4.3.4. Under Assumption 1 and 2, if we select V = V1.5 + G
√

log(T/δ) in

Algorithm 5, then the algorithm will accept and proceed on all good sample given by Oracle

2. Also, for the accepted sample, we have

‖∇f(θ′k, Zk)−∇F (θ′k)‖ ≤ 2V1.5 +G
√

log(T/δ) := Ṽ1.5. (4.3.60)

Also, all of the good sample satisfies
∥∥∥∇f(θ′

k(t)
, Z̃t)−∇F (θ′

k(t)
)
∥∥∥ ≤ G

√
log(T/δ).

Remark 4.3.7. From the discussion and lemma above, we can see using the T number of

pre-samples from Oracle 1. The deviation of Robust-Mean is well controlled on the tree

constructed up to T depth (neglecting a log T factor). Suppose at T + 1 round of the

algorithm we reached θnew. If we gather T more samples from Oracle 1, the deviation of

the next T steps starting from θnew are well controlled (Think of θnew replacing θ0 and

restart the algorithm to run T more rounds). Notice that this collection of T new samples

from Oracle 1 doesn’t have to be done in batch when we reach θnew; it can be gathered in

a steaming fashion. Then we have the following Algorithm 6. Note that at the beginning

of new stage (new L rounds), the start point θk(Lt+1) is constructed totally independent of

the good samples in new Stest (we left Snext in the previous stage totally intact).

We have the following corresponding deviation guarantee for Algorithm 6.

Corollary 4.3.5. Under Assumption 1 and 2, for µ(θt) in Algorithm 6 with stage period
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L ≥ 16 log(T/δ), we have, with probability greater than 1− 3δ,

‖µ(θ′k)−∇F (θ′k)‖ ≤ D1.5(E · L,Query2(L), δ/T ) := V2. (4.3.61)

Also, if we select V = V2 + G
√

log(T/δ) in, then the algorithm will accept and proceed on

all good sample given by Oracle 2. Also, for the accepted sample, we have

‖∇f(θ′k, Zk)−∇F (θ′k)‖ ≤ 2V2 +G
√

log(T/δ) := Ṽ2. (4.3.62)

Algorithm 4.6: RSGD with linear sample query complexity

1 Linear-RSGD;
Input : Initial point θ1, maximum number of iteration T , period size L, estimate

size E, confidence region radius V , step-size ηt
Output: θ̄

2 Step K ← 1
3 Sample Stest = {Z ′1, Z

′
2, . . . , Z

′
EL} from Oracle 1;

4 for t← 1 to T do
5 θt = θ′K
6 Sample E samples from Oracle 1 and add in the next set:

Snext ← Snext
⋃
{Z ′t,1, · · · , Z

′
t,E}

7 Compute µ(θ′K) = Robust−Mean
(
{∇f(θ′K , Z

′) | Z ′ ∈ Stest}
)
;

8 Sample Z̃t from Oracle 2;

9 if ‖∇f(θ′K , Z̃t)− µ(θ′K)‖ ≤ V then

10 θ′K+1 ←
∏
D[θ′K − ηK∇f(θ′K , Z̃t)];

11 ZK = Z̃t
12 K ← K + 1

13 if t = 0modL then
14 Stest ← Snext
15 Snext ← ∅

16 θ̄ = Mean
({
θ′1, · · · , θ

′
K

})
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Improved Analysis by Truncation

Here we briefly discuss how to eliminate the log T term, i.e., the log(m) or log(m + T ) in

the previous Lemma 4.3.2, Lemma 4.3.5 and Lemma 4.3.7 as in the bound of good gradient

deviation radius. Since this is a pure technical trick, which is not the main focus of this

paper, we will briefly go through how to adapt the proof from previous sections.

Proposition 4.3.2. For Z ∼ norm-subGaussian(G), 0 < ε < 1/8, there exists CsG, such

that the following arguments hold:

E
[
‖Z − EZ‖ · I{‖Z−EZ‖≥CsG}

]
≤ ε

(
2 +

√
2 log(2/ε)

)
G ≤ c3ε

√
log(1/ε)G, and (4.3.63)

P (‖Z − EZ‖ ≥ CsG) ≤ ε. (4.3.64)

Here Cs =
√

2 log(2/ε).

Proof. By a scaling argument, WLOG, we assume G = 1. Denote

X = ‖Z − EZ‖I‖Z−EZ‖≥Cs . (4.3.65)

We have, for any t > 0,

P (X 6= 0) ≤ P (‖Z − EZ‖ ≥ Cs) ≤ 2e−
C2
s
2 ≤ ε, (4.3.66)

P (X > t) = min

(
ε, 2e−

t2

2

)
. (4.3.67)

Then we have the following tail 0th and 1st moment estimation,

E
[
‖Z − E[Z]‖I‖Z−EZ‖≥Cs

]
≤
∫ ∞

0
P (X ≥ t)dt ≤

∫ ∞
0

min(ε, e−t
2/2)dx (4.3.68)

≤
∫ Cs

0
εdt+

∫ ∞
Cs

t2e−
t2

2 dt = ε(2 + Cs). (4.3.69)
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Here we use the fact that Cs ≥ 1 for the second integration term. By the norm-subGaussian(G)

tail bound, we also have

P (‖Z − EZ‖ ≥ Cs) ≤ 2e−C
2
s /2 ≤ ε. (4.3.70)

Corollary 4.3.6. Suppose X is norm-subGaussian(G), WLOG, we assume that EX = 0,

and denote the truncated random variable Y = XI‖X‖<CsG, with Cs specified in Proposi-

tion 4.3.2. Then we have

E[|Y ‖k] ≤ E[‖X‖k], (4.3.71)

‖E[Y ]‖ ≤ c3ε
√

log(1/ε)G. (4.3.72)

Also Y − EY is an also norm-subGaussian(CtG), with some fixed Ct independent of ε, G.

This is by equivalent definitions of norm-subGaussian random variable (up to a constant)

[97, Lemma 2] and a proof exactly the same (substitute |X| by ‖X‖ in their proof) as

the centering argument in [182, Remark 5.18] i.e. if Y is norm-subGaussian(G) then then

centering Y − EY is also a norm-subGaussian(CtG) with a absolute constant Ct. Next, we

applied our truncation technique to our Oracle query gradient descent step.

Lemma 4.3.9 (Conditional subGaussian). Given a random variable θ, denote the corre-

sponding σ−field as Fθ. Let Z be a sample from Oracle, and denote Igood the indicator of

the sample is good, i.e., the coin c = 1, let g = ∇f(θ, Z), d = ∇F (θ)− g, then applied the

above truncation results to random variable ∇f(θ, Z), we have the following. Also when the
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Oracle returns a good sample, the sample is independent to θ, with h := d · I‖d‖<CsG · Igood,

h− E [h | Fθ] is norm-subGaussian(CtG), (4.3.73)

E [h | Fθ] := b(θ), (4.3.74)

‖b(θ)‖ ≤ c3ε
√

log(1/ε)G. (4.3.75)

Proof. To see this we take X = d , and Y = dI‖d‖≤CsG. For notational simplicity, let

Z ′ ∼ P independent of other random variable, and d′, h′, X ′, Y ′ defined correspondingly, we

have

‖b(θ)‖ =
∥∥∥(1− ε)EZ ′

[
d′I‖d′‖<CsG | Fθ

]
+ ε · 0

∥∥∥ ≤ εG, (4.3.76)

(condition on Igood = 1 or 0) (4.3.77)

E
[
‖h‖k | Fθ

]
= (1− ε)E

[
‖Y ′‖k | Fθ

]
≤ E

[
‖X ′‖k | Fθ

]
. (4.3.78)

Note that ‖X ′‖ given θ is subGaussian(G). Therefore, by the same moment and centering

argument as in Corollary 4.3.6, we have that p is norm-subGaussin(CtG).

Remark 4.3.8. Given θ, a query from Oracle can be understood as follows. With 1 − ε

chance, Oracle decides to be good, otherwise bad, given the Oracle decides to sample from

P , then with probability 1 − β(θ) ≥ 1 − ε, the Oracle sampling from Pθ, otherwise sample

from P ′θ.

We denote the truncation induced decomposition of P given θ as P = (1−β(θ))Pθ+βP ′θ,

with β = P (‖∇f(θ, Z)−∇F (θ)‖ > Cs ·G) ≤ ε ≤ 1/8. We note that
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EX∼Pθ [‖∇f(θ,X)−∇F (θ)‖k] =
1

1− β
EZ [‖Z‖kI‖Z‖<CsG] ≤ 2EZ [‖Z‖kI‖Z‖<GgG],

(4.3.79)

‖EX∼Pθ [∇f(θ,X)−∇F (θ)]‖ = ‖ 1

1− β
EZ [ZI‖Z‖>CsG]‖ ≤ 2c3ε

√
log(1/ε)G.

(4.3.80)

Here Z denotes the random variable ∇f(θ, Y ) − ∇F (θ), where Y ∼ P . By the same

argument, with a slight abuse of Ct (times 2), we know that Pθ is also subGaussian(CtG).

With the truncation technique, we can improve Lemma 4.3.7 to get the following deviation

bound. Here we say a sample Z is nice to θ if the sample is good and ‖∇f(θ, Z)−∇F (θ)‖ ≤

CsG.

Lemma 4.3.10 (Deviation of Truncate Mean). Under Assumption 1, for any fixed

θ1, θ2, · · · , θk selected, sample Z1.Z2, . . . , Zm ∼ Contaminated Oracle, if the sample size

m ≥ 48 max (log k, log(1/δ)) := s3(k, δ), denote

RMi = Robust-Mean ({∇f(θi, Z1), · · · ,∇f(θi, Zm)} , CsG) . (4.3.81)

with probability at least 1− 2δ, we have

max
i∈[k]
‖RMi −∇F (θi)‖ ≤ 2c3ε

√
log(1/ε)G+ c2CtG

√
(log k + log(1/δ) + log 2d)

m
(4.3.82)

+
7CsG|Sbad|

m/2
(4.3.83)

≤ 2c3ε
√

log(1/ε)G+ c2CtG

√
(log k + log(1/δ) + log 2d)

m
(4.3.84)

+ 7CsG (4.3.85)

:= D3(m, k, δ). (4.3.86)
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Proof. The proof essentially follows Lemma 4.3.7, but this time we consider nice other than

good. We define nicei as the sample set that is nice to θi. Note that this time, the set nicei

varies for different i. Note that each sample from Oracle has greater than 1 − 2ε ≥ 3/4 to

be nice. Therefore, by a Binomial tail bound, we have

P (|nicei| ≤ m/2) ≥ P (Bin(m, 1/4)/m ≤ 1/2) ≥ 2 exp(−2m(1/2)2) ≤ exp(log(δ/k)) ≤ δ/k.

(4.3.87)

Then with probability greater than 1− δ/k, we have

|nicei| ≥ m/2. (4.3.88)

Then by a union bound, we know, with probability greater than 1− δ, the nice sample size

|nicei| > m/2 for all i. Then following the exact proof, with an additional bias 2c3ε
√

log(1/ε)

term as in Pθi . With the statistical accuracy, we can present our deviation and confidence

radius select.

Corollary 4.3.7. Under Assumption 1 and 2, for µ(θ′
k(t)

) in Algorithm 6 with stage period

L ≥ 4max(log(T/δ), log 2d), and estimate size E ≥ 48, we have, with probability greater

than 1− 3δ,

‖µ(θ′k)−∇F (θ′k)‖ ≤ D3(E · L,Query2(L), δ/T ) := V3. (4.3.89)

Also, if we select V = V3 + CsG in, then the algorithm will accept and proceed on all nice

sample given by Oracle 2. Also, for the accepted sample, we have

‖∇f(θ′k, Zk)−∇F (θ′k)‖ ≤ 2V3 + CsG := Ṽ3. (4.3.90)
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Also, further with probability greater than 1− 4δ, all of the nice sample satisfies

∥∥∥∇f(θt, Z̃t)−∇F (θt)
∥∥∥ ≤ c1CtG

√
log(T/δ) + 2c3ε

√
log(1/ε)G := V̄3. (4.3.91)

The very last argument follows from a union bound control the deviation of norm-

subGaussian(CtG) random variable, like the argument of Corollary 4.3.1, along with the

fact that the truncation induces a ε
√

log(1/ε)G bias Lemma 4.3.9.

Optimization Convergence

Theorem 4.3.2. For Problem 4.1.3 with M -smooth function F (·), under Assumption 1

and 2, with stage period L ≥ 4max(log(T/δ), log 2d), and estimate size E = 48, step size

ηt = η ≤ 1/M , confidence radius Ṽ = V3 + CsG specified in Corollary 4.3.7, running

Algorithm 6, then with probability greater than 1− 5δ, the output θ̄ satisfies

F (θ̂)− F ∗ . 1

Kη
‖θ1 − θ∗‖2 + CtGR

√
T log(1/δ)

K
+ ε
√

log(1/ε)GR +
|Srough|
K

Ṽ3R + ηV̄ 2
3

(4.3.92)

+ η
|Srough|
K

Ṽ 2
3 . (4.3.93)

Here we let [K] = Snice
⋃
Srough corresponding to the accepted sample Zk is nice to θ′k or

not.

Proof. Here the filtration Ft is σ-field of θ1 together with all of the samples seen without

the sample in the Snext (we hold it out, and Oracle 2 cannot peek at it). Using the same

notation e′k = ∇f(θk, Zk)−∇F (θk), dt = ∇f(θk(t), Z̃t)−∇F (θk(t)). We call round t is good

if the Oracle 2 returns a good sample, we call t is nice if Oracle 2 returns a good sample and

‖dt‖ ≤ Cs. We denote ht = dt · I‖dt‖≤CsG · It is good. Following the same step in the proof
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of Theorem 4.3.1, we have the telescope sum, with probability greater than 1− 4δ

K∑
k=1

(η −Mη2) [F (θk)− F ∗] ≤ 1−Mη

2

K∑
k=1

(
‖θk − θ∗‖2 − ‖θk+1 − θ∗‖2

)
︸ ︷︷ ︸

(I)

(4.3.94)

+ (η −Mη2)
∑

k∈Snice

〈e′k, θk − θ
∗〉

︸ ︷︷ ︸
(II)

(4.3.95)

+ (η −Mη2)
∑

k∈Srough

Ṽ3R

︸ ︷︷ ︸
(III)

(4.3.96)

+
η2

2

∑
k∈Snice

‖e′k‖
2

︸ ︷︷ ︸
(IV )

+
η2

2

∑
k∈Srough

‖e′k‖
2

︸ ︷︷ ︸
(V )

. (4.3.97)

Obviously, we have

(I) ≤ R2, (III) ≤ |Srough|Ṽ3R, (IV ) ≤ KV̄ 2
3 , (V ) ≤ |Srough|Ṽ 2

3 (4.3.98)

To bound (II), we study the following martingale sum.

(II ′) =
T∑
i=1

〈ht − E [ht | Ft] , θt − θ∗〉. (4.3.99)

By Lemma 4.3.9, we have the following martingale concentration. With probability greater

than 1− δ, we have

(II ′) . CtGR
√
T log(1/δ). (4.3.100)

Note that with probability greater than 1 − 3δ, we accept all nice samples. On this event,
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we have,

(II) =
∑

k∈Snice

〈e′k, θ
′
k − θ

∗〉 =
T∑
t=1

〈ht, θk(t) − θ
∗〉 = (II ′) +

T∑
i=1

〈E [ht | Ft] , θk(t) − θ
∗〉.

(4.3.101)

Whereas, for the second term, we have the bias bound Lemma 4.3.9.

T∑
i=1

〈E [ht | Ft] , θk(t) − θ
∗〉 ≤ c3Tε

√
log(1/ε)GR. (4.3.102)

Remark 4.3.9. With settings specifies in Theorem 4.3.2, we have

D3(48L, 2L, δ/T ) .
√

log(1/ε)G. (4.3.103)

Note that Ct is a absolute constant, i.e. O(1), then we know,

Ṽ3 .
(

1 +
√

log(1/ε)
)
G, (4.3.104)

V̄3 .
(

1 + ε
√

log(1/ε)
)
G. (4.3.105)

Plug above bound into (4.3.92), for T sufficient large, we know K ≥ |Snice| ≥ (1− 3ε)T , we

have

F (θ̄)− F ∗ . 1

Tη
R2 +GR

√
log(T/δ)

T
+ ε
√

log(1/ε)GR + εṼ3R + ηV̄ 2
3 + εηṼ 2

3 (4.3.106)

.
1

Tη
R2 +GR

(√
log(T/δ)

T
+ ε
√

log(1/ε) + ε

)
+ ηG2 (1 + ε log(1/ε))

(4.3.107)
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Optimize over η ≤ min(1/M,R/G
√
T ), for T sufficient large, we have

F (θ̄)− F ∗ . MR2

Tη
+GR

(√
log(T/δ)

T
+ ε
√

log(1/ε)

)
. (4.3.108)

(4.3.109)

4.3.4 Online Mini-batch Algorithm

Algorithm

Algorithm 4.7: RSGD with mini batch query at each iteration

1 Mini-Batch-RSGD;
Input : Initial point θ1, maximum number of iteration T , mini-batch size m,

confidence region radius V , step-size ηt
Output: θ̄

2 for t← 1 to T do
3 Sample {Zt,i}mi=1;

4 gt = Robust-Mean({∇f(θt, Zt,i)}mi=1, V )

5 θt+1 ←
∏
D[θt − ηtgt];

6 θ̄ = Mean ({θ1, · · · , θT })

In this section, we study a mini-batch SGD algorithm. Each time, we sample a mini-

batch, and based on the fresh sample, we throw away the outliers to guarantee the bad

sample is within an appropriate region around the actual gradient. Because each time we

have a new sample, we don’t have to make a decision based on the historical data, which

free us from analyzing the query complexity/capacity of the current estimation µ(θt).

Statistical Accuracy

We denote St as in the Robust-Mean set at each step as S = {gt,1, · · · , gt,m} be the gradient

after Robust-Screening Algorithm 1, and nicet the index that are sample from P and nice

to θt, other indexes are denote as rought.
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Lemma 4.3.11 (nice sample size). Under Assumption 1, with probability at least 1 − δ,

the following holds for the nice set size |nicet| in Algorithm 7 with mini-batch size m >

16 · log(T/δ):

|nicet|
m

> 1/2.

Still, this is a bound of Binomial tail with chance 1 − δ/T at each step t together with

a union bound of total T step. With the above results, we can now select V such that our

algorithm with descent chance will always accept all nice samples, and the rough sample

wouldn’t mislead us too much. With almost the same argument as Corollary 4.3.7, we have

the following two guarantees.

Corollary 4.3.8. With input V = CsG in Algorithm 7, with probability at least 1− δ, the

algorithm will not reject any nice sample. With probability greater than 1 − δ, all of the

nice sample satisfies

∥∥∇f(θt, Zt,i)−∇F (θt)
∥∥ . ε

√
log(1/ε)G+ CtG

√
log(mT/δ) := V̄4. (4.3.110)

Corollary 4.3.9 (Deviation bound). Under Assumption 1, selecting V = CsG in Algorithm

7, with probability at least 1 − δ, the following holds for any Zt,i after Robust-Screen (as

part of Robust-Mean),

‖∇f(θt, Zt,i)−∇F (θt)‖ ≤ 7CsG := Ṽ4. (4.3.111)

This the from the fact that nicet is always greater than one half with the robust screen

guarantee Lemma 4.3.4.
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Optimization Convergence

We define the following terms to simplify notation. Let et,i = gt,i−∇F (θt), et = ∇F (θt)−gt,

and gt is the mean of gt,i.

Theorem 4.3.3 (Mini Batch Convergence). For Problem 4.1.3, if the objective function

F is M -smooth, under Assumption 1, with sub-sample size m ≥ 16 log(T/δ), step size

ηt = η ≤ 1/M , confidence radius Ṽ = CsG in Algorithm 7, then with probability greater

than 1− 3δ, output θ̄ satisfies

F (θ̄)− F ∗ . 1

Kη
‖θ1 − θ∗‖2 + CtGR

√
log(1/δ)

mT
+ ε
√

log(1/ε)GR (4.3.112)

+
|Sall rough|

mT
CsGR + η

[
(CtG)2 log(T/δ)

m
+ (ε

√
log(1/ε)G)2

]
(4.3.113)

+ η
|Sall rough|

mT
Ṽ 2

4 . (4.3.114)

Here Sall rough = ∪Ti=1Sroughi
.

Proof. Following the same proof for Theorem 4.3.2, we have

T∑
t=1

(η −Mη2) [F (θt+1)− F ∗] ≤ 1−Mη

2

(
‖θ0 − θ∗‖2 − ‖θt+1 − θ∗‖2

)
+ (4.3.115)

(η −Mη2)
T∑
t=1

〈et, θt − θ∗〉︸ ︷︷ ︸
I

+
η2

2

T∑
t=1

‖et‖2︸ ︷︷ ︸
II

(4.3.116)

Let’s now consider the two error terms,

I =
T∑
t=1

〈et, θt − θ∗〉, and (4.3.117)

II =
T∑
t=1

‖et‖2. (4.3.118)
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First, with probability greater than 1− δ, we have the following decomposition I,

I =
T∑
t=1

∑
i∈nicet

1

m
〈et,i, θt − θ∗〉+

T∑
t=1

∑
i∈rought

1

m
〈et,i, θt − θ∗〉 (4.3.119)

. CtGR

√
T log(1/δ)

m
+ ε
√

log(1/ε)TGR +
|Sall rough|

m
CSGR. (4.3.120)

The first term is by Azuma-Hoeffding inequality [152], which holds with probability greater

than 1 − δ, and Lemma 4.3.9. The second term is by Lemma 4.3.11 and the error bound

(4.3.111). For the second error II, we have

II .
1

m2

 T∑
t=1

∥∥∥∥∥∥
∑

i∈nicet
et,i

∥∥∥∥∥∥
2

+
T∑
t=1

∥∥∥∥∥∥
∑

i∈rought
et,i

∥∥∥∥∥∥
2
 (4.3.121)

. T

[
(CtG)2 log(T/δ)

m
+ (ε

√
log(1/ε)G)2

]
+

T∑
t=1

|Srought|
2

m2
Ṽ 2

4 (4.3.122)

. T

[
(CtG)2 log(T/δ)

m
+ (ε

√
log(1/ε)G)2

]
+
|Sall rough|

m
Ṽ 2

4 , (4.3.123)

where the first term is by concentration property of truncated subGaussian Corollary 4.3.6

and the last inequality using the fact that |Srought| ≤ m/2.

Remark 4.3.10. Now, for T large enough, we know |Sall rough|/mT ≤ 2ε (since we always

accept nice sample). Picking ηt = η ≤ 1/M , we have

F (θ̄)− F ∗ . 1

Tη
R2 +GR

√
log(T/δ)

mT
+ ε
√

log(1/ε)GR + ηG2 log(T/δ)

m
(4.3.124)

+ ηε2 log(1/ε)G2 + ηε log(1/ε)G2 (4.3.125)

.
1

Tη
R2 +GR

(√
log(T/δ)

mT
+ ε
√

log(1/ε)

)
+ ηG2

(
log(T/δ)

m
+ ε log(1/ε)

)
(4.3.126)
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Optimize over η ≤ min(1/M,R/G
√
T ), for T sufficient large, we have

F (θ̄)− F ∗ . MR2

Tη
+GR

(√
log(T/δ)

mT
+ ε
√

log(1/ε)

)
. (4.3.127)

4.4 Lower Bound

Here, we note that the i) MR2/T and ii) GR/
√
T terms corresponding to the i) (noiseless)

pure optimization rate and ii) stochasticity rate have already been studied in-depth in the

literature. Our main goal is to give a lower bound of the terms involving ε, i.e., the intrinsic

bias induced by the contamination. We reduce the optimization problem to a hypothesis

testing problem and utilize the corresponding information-theoretic lower bound for the lower

bound of the problem. First, we present a well-known lower bound result of hypothesis testing

with contaminated distributions.

Lemma 4.4.1. For any distributions P1, P2, if the their total variation distance TV(P1, P2) ≤
ε

1−ε , then their exist ε-contaminated distributions Q1, Q2, such that the contaminated dis-

tributions are same:

P ′1 = (1− ε)P1 + εQ1 = (1− ε)P2 + εQ2 = P ′2.

Proof. Let C = (1− ε)TV (P1, P2) ≤ ε. Take Q1 = 1
ε (P2 − P1)+ + ε−C

ε δ0 and Q2 = 1
ε (P1 −

P2)+ + ε−C
ε δ0, with C a normalizing factor, which makes the contaminated distributions

exactly the same.

Therefore, even given infinite number of contaminated samples, we cannot tell whether

P1 or P2 is the true model. By the information-theoretic lower bound of hypothesis testing,

we have the following impossibility result.

Corollary 4.4.1. For distributions P1, P2, with TV(P1, P2) ≤ ε
1−ε , there is no testing

111



function φ that can distinguish them (better than random guess) from arbitrary amount of

samples from the ε-contaminated distribution.

Now we reduce the optimization with smooth function to a hypothesis test function.

Taking f(θ, z) = G〈θ, z〉 with domain θ × z ∈ [0, R] × R. Consider two distributions P1 =

N(Cε, 1), and P2 = N(−Cε, 1), with C =
√

2. Then we have the following result: there is

no algorithm with output θ̂ such that with probability greater than 2/3, we have

|F (θ̂)− F ∗| ≤ CGRε

2
.

Proof. First we know

TV(P1, P2) ≤
√
KL(P1, P2)

2
≤
√

2Cε ≤ ε

1− ε
. (4.4.1)

We construct a function φ taking 1 if F (θT ) ≥ (CGRε)/2 and taking 2 otherwise. If we

have an algorithm that with probability at least 2/3, outputs an (CGRε)/2-optimal solution,

then the testing function φ with can distinguish P1 and P2 with probability greater than

1/2, which violates the impossibility result Corollary 4.4.1.
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CHAPTER 5

TRAINING NEURAL NETWORKS AS LEARNING

DATA-ADAPTIVE KERNELS: PROVABLE

REPRESENTATION AND APPROXIMATION BENEFITS

5.1 Introduction

Consider i.i.d. data pairs drawn from a joint distribution (x,y) ∼ P = Px × Py|x on the

space X × Y . At the intersection of statistical learning theory [179] and approximation

theory [39], the following approximation problem requires to be first understood before any

further statistical results to be established. For a model class F , one is interested in whether

there exists f ∈ F : X → Y such that the population squared loss is small,

L(f) = E(x,y)∼P
1

2
(y − f(x))2 = Ex∼Px

1

2
(f∗(x)− f(x))2 + E(x,y)∼P

1

2
(y − f∗(x))2 ,

(5.1.1)

with the conditional expectation (or Bayes estimator) defined as f∗(x) := E[y|x = x].

Eqn. (5.1.1) generally reads as approximating f∗ in the mean squared error sense.

Statistically, researchers approach the above question mainly in two ways. The first is

by assuming that the conditional expectation f∗ lies in the correct model class F . For

example, say F consists of linear models or splines with a particular order of smoothness or

more broadly, functions lying in a reproducing kernel Hilbert space (RKHS). Conceptually,

this “well-specification” assumption requires substantial knowledge about what model class

F might be suitable for the regression task at hand, which is often unavailable in practice.

Within each framework, minimax optimal rates and extensive study have been established in

[165, 185]. The second way, which extends the first approach further, considers all f∗ under

some mild conditions. Building upon certain universal approximation theorem, one studies a
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sequence of model classes Fε called sieves with ε changing [70], such that the class Fε contains

an ε-approximation to any f∗ under some metric. A final result usually requires a careful

balancing of the approximation and stochastic error by tuning ε. Particular cases for the

latter approach include polynomials (Stone-Weierstrass, Bernstein), radial-basis [131, 128],

and two-layer and multi-layer neural networks [39, 87, 4, 137, 40, 6, 60, 103, 134].

However, the following significant drawbacks of the above current theory make it in-

adequate to present an adaptive and realistic explanation of the practical success of neural

networks. Firstly, the function computed in practice could be very different from that claimed

in the approximation theory, either by the existence or by constructions. To see this, con-

sider the multi-layer neural networks. It is hard to conceive that the function, computed

in practice via the now-standard stochastic gradient descent (SGD) training procedure, is

close to the one asserted by the universal approximation results. Secondly, in practice, re-

searchers usually explore different model classes F to learn which representation best suits

the data. For example, using different kernels machines, random forests, or specify certain

architectures then run SGD on neural networks. In this case, strictly speaking, the choice

of the model class depends on the data in an adaptive way, without prior knowledge about

the basis. There have been substantial advances made to address the above two concerns

— for instance, [98] on the first and [88, 7] on the second — for F being a linear span of

a library of candidate functions (union of various set of basis that can be correlated), with

greedy selection rules. Nevertheless, the current theory still falls short of describing the

approximation and adaptivity for the non-convex and possibly non-smooth gradient descent

training on all-layer weights of the neural networks, as done in practice.

We take a step to bridge the above mismatch in the current theory and practice for

neural networks and to establish a theoretical framework where the model classes adapt to

the data. In particular, we answer the following algorithmic approximation question:

Given data pair (x,y) ∼ P , denote f∗(x) = E[y|x = x]. Specify a neural
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networks model, and run gradient flow until any stationarity (t → ∞). Denote

the computed function to be ft(x). How does ft(x) relate to f∗(x), in terms of

approximation and representation?

Also, we aim to formalize and shed light on the representation benefits of neural networks:

What are the provable benefits of the adaptive representation learned by training

neural networks compared to the classical nonparametric pre-specified fixed basis

representation?

The intimate connection between two-layer neural networks and reproducing kernel Hilbert

spaces (RKHS) has been studied in the literature, see [137, 38, 40, 6, 93]. However, to the

best of our knowledge, known results are mostly based on a fixed RKHS (in our notation K0

in Section 5.4.1). In that sense, random features for kernel learning [137, 138, 148] can be

viewed as neural networks with fixed random sampled first layer weights and tunable second

layer weights. From the neural networks side, [144, 117, 162] study the mean-field theory

for two-layer neural networks, and [93, 52, 36, 74] study the linearization of neural networks

around the initialization and draw connections to RKHS K0 in various over-parametrized

settings. In contrast, we will establish a general theory with the dynamic and data-adaptive

RKHS Kt obtained via training neural networks, with standard gradient flow on weights of

both layers. Connections and distinctions to the literature that motivates our study are fur-

ther discussed with details in Section 5.4. As a distinctive feature of the adaptive theory, we

emphasize that all f∗ ∈ L2(Px) is considered without pre-specified structural assumptions.
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5.1.1 Problem Formulation

In this paper, we consider the time-varying function ft to approximate f∗, parametrized by

a two-layer rectified linear unit (ReLU) neural network (NN).

ft(x) :=
m∑
j=1

wj(t)σ(xTuj(t)). (5.1.2)

The time index t corresponds to the evolution of parameters driven by the

gradient flow/descent (GD) training dynamics. Here each individual pair (wj ∈ R, uj ∈ Rd)

in the summation is associated with a neuron. Consider the gradient flow as the training

dynamics for the weights of the neurons: for the loss function `(y, f) = (y − f)2/2 and the

random variable z := (x,y), the parameters (wj , uj) evolve with time as follows

dwj(t)

dt
= −Ez

[
∂`(y, ft)

∂f
σ(xTuj(t))

]
,

duj(t)

dt
= −Ez

[
∂`(y, ft)

∂f
wj(t)1xTuj(t)≥0x

]
.

(5.1.3)

Equivalently, we can rewrite the function computed by NN at time t as

ft(x) :=

∫
σ(xTu)τt(du), (5.1.4)

where τt =
∑m
j=1wj(t)δuj(t) is a signed combination of delta measures. We will define a

careful rescaling of τt denoted as ρt (Eqn. (5.4.8)), then derive the corresponding distribution

dynamic for ρt driven by the gradient flow later in Section 5.4.2. The rescaled formulation

naturally extends to the infinite neurons case with m→∞.

In this paper, by considering various distributions of z, we study two following problems:

approximation and empirical risk minimization (ERM).

Function Approximation: The data pair z ∼ P is sampled from the population joint

distribution. We are going to answer how ft approximates f∗(x) = E[y|x = x] in function
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spaces, induced by the gradient flow on neuron weights

Ez∼P (y − ft(x))2 = ‖ft − f∗‖2L2
µ

+ Ez∼P (y − f∗(x))2 . (5.1.5)

Here we denote µ := Px and remark that all f∗ ∈ L2
µ are considered without additional

assumptions.

ERM and Interpolation: The data pair z ∼ 1
n

∑n
i=1 δx=xi,y=yi follows the empirical

distribution. We will study gradient flow for the ERM

1

2n

n∑
i=1

(yi − ft(xi))2 . (5.1.6)

In this case, the target reduces to Ê[y|x = xi] = yi with Ê as the empirical expectation.

When the minimizer of Eqn. (5.1.6) achieves the zero loss, we call it the interpolation problem

[199, 13, 112, 110, 139, 12]. Here we are interested in when and how ft(xi) interpolates yi,

for 1 ≤ i ≤ n.

Finally, we remark that in practice, extending the gradient flow results to the (1) positive

step size GD and (2) mini-batch stochastic GD are standalone interesting research topics.

The reasons are that the optimization is non-smooth for the ReLU activation and that the

interplay between the batch size and step size is less transparent in non-convex problems.

5.1.2 Notations

We use the boldface lower case x to denote a random variable or vector. The normal letter

x can either be a scaler or a vector when there is no confusion. The transpose of a matrix

A, resp. vector u is denoted by AT , resp. uT . A+ denotes the Moore–Penrose inverse.

For n ∈ N, let [n] := {1, . . . , n}. We use A[i, j] to denote the i, j-th entry of a matrix.

We denote 1D as the indicator function of set D. We call symmetric positive semidefinite

functions K(·, ·), H(·, ·) : X × X → R kernels, and use calligraphy letter
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K,H to denote Hilbert spaces. We use 〈f, g〉µ =
∫
f(x)g(x)µ(dx) to denote the inner product

in L2
µ (or L2(Px)). µ̂ denotes the empirical distribution for µ. Notation Ex is the expectation

w.r.t random variable x, and Ex,x̃h(x, x̃) =
∫ ∫

h(x, x̃)µ(dx)µ(dx̃). For a signed measure

ρ = ρ+ − ρ− with the positive and negative parts, define |ρ| = ρ+ + ρ−.

5.1.3 Preliminaries

We use the signed measure ρt, defined by the neuron weights at training time t collectively,

to construct a dynamic RKHS. The mathematical definition of ρt is deferred to Section 5.4.1

and 5.4.2 (specifically, Eqn. (5.4.8)). The stationary signed measure at t→∞ is denoted as

ρ∞. For completeness we walk through the construction of the dynamic kernel and RKHS

with ρt. Define the linear operator T : L2
µ(x)→ L2

|ρt|(Θ), such that for any f(x) ∈ L2
µ(x)

(T f)(Θ) :=

∫
f(x)‖Θ‖σ(xTΘ)µ(dx), ∀Θ ∈ supp(ρt).

One can define the adjoint operator T ? : L2
|ρt|(Θ)→ L2

µ(x), such that for p(Θ) ∈ L2
|ρt|(Θ),

(T ?p)(x) :=

∫
p(Θ)‖Θ‖σ(xTΘ)|ρt|(dΘ).

Note that both T and T ? are compact operators under the finite total variation and compact

support assumptions. For the finite neurons case (5.1.2), the operator is of finite rank. We

define the compact integral operator T ?T with the corresponding kernel

Ht(x, x̃) =

∫
‖Θ‖2σ(xTΘ)σ(x̃TΘ)|ρt|(dΘ), and (T ?T f)(x) :=

∫
Ht(x, x̃)f(x̃)µ(dx̃).

(5.1.7)

The dynamic RKHS Ht can be readily constructed via Ht. Let the eigen decomposition

of T ?T be the countable sum T ?T =
∑E
i=1 λieie

∗
i . Here E can be a nonnegative integer
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or ∞, and λi > 0. ei without confusion can represent either an eigen function or a linear

functional. Similarly, we have the singular value decomposition for T =
∑E
i=1
√
λitie

∗
i . and

T ? as well. For a detailed discussion, see e.g. [32]. Again, ti is a function in L2
|ρt|(Θ) or a

linear functional. The RKHS can be specified as follows.

Ht =

{
h | h(x) =

∑
i

hiei(x),
∑
i

h2
i

λi
<∞

}
.

We refer to H∞ as the stationary RKHS kernel and H∞ as the stationary RKHS. One can

view that the gradient flow training dynamics — on the parameters of NN — induces a

sequence of functions {ft : t ≥ 0} and dynamic RKHS {Ht : t ≥ 0}, indexed by the time t.

5.1.4 Organization and Summary

finite neurons m infinite neurons m→∞
finite sam-
ples n

Interpolation (finite rank kernel,
Thms. 5.2.1, 5.2.1 & Prop. 5.3.1)

Interpolation (finite rank kernel,
Thms. 5.2.1, 5.2.1 & Prop. 5.3.1)

infinite
samples
n→∞

Approximation (finite rank kernel,
Thms. 5.2.1 & 5.2.1)

Approximation (possibly universal kernel2,
Thms. 5.2.1 & 5.2.1)

Table 5.1: Nature of the results studied in this paper.

We will prove three results, which are summarized informally in this section (see also

Table 5.1). We remark that Theorems 5.2.1 and 5.2.1 are stated for the approximation prob-

lem. However, as done in Corollary 5.2.1, by substituting P , µ by the empirical counterparts,

one can easily state the analog for the ERM problem. Recall f∗(x) = E[y|x = x].

Gradient flow on NN converges to projection onto data-adaptive RKHS. The-

orem 5.2.1 shows that as done in practice training NN with simple gradient flow, in the

limit of any local stationarity, learns the adaptive representation, and performs the global

least squares projection simultaneously. Define f∞ = limt→∞ ft as the function computed

2. Whether the kernel is universal in the m,n→∞ case still depends on f∗ and the data distribution P .
See the simulations of [113].
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by ReLU networks (defined in (5.1.2), or more generally in (5.4.9)) until any stationarity

of the gradient flow dynamics (defined in (5.1.3), with the squared loss) for the population

distribution (x,y) ∼ P . Define the corresponding stationary RKHS

H∞ = limt→∞Ht (defined in (5.1.7)).

[Informal version of Thm. 5.2.1] Consider f∗ ∈ L2
µ, for any local stationarity of

the gradient flow dynamics (5.1.3) on the weights of neural networks (5.1.2), the

function computed by NN at stationarity f∞ satisfies

f∞ ∈ arg min
g∈H∞

‖f∗ − g‖2L2
µ
.

Representation benefits of data-adaptive RKHS. Theorem 5.2.1 illustrates the prov-

able benefits of the learned data-adaptive representation/basisH∞. We emphasize thatH∞,

as obtained by training neural networks on the data (x,y) ∼ P , depends on the data in an

implicit way such that there are advantages of representing and approximating f∗.

[Informal version of Thm. 5.2.1] Consider f∗ ∈ L2
µ and the same setup as Theo-

rem 5.2.1. Decompose f∗ into the function f∞ computed by the neural network

and the residual ∆∞

f∗ = f∞ + ∆∞.

Then there is another RKHS (defined in (5.2.4)) K∞ ⊃ H∞, such that

f∞ ∈ H∞, ∆∞ ∈ Ker(K∞) ⊂ Ker(H∞),

with a gap in the spaces H∞ ⊕Ker(K∞) 6= L2
µ.

Convergence to Ridgeless regression with adaptive kernels. Proposition 5.3.1 estab-

lishes that in the vanishing regularization λ→ 0 limit, the neural network function computed

120



by gradient flow converges to the kernel ridgeless regression with an adaptive kernel (denoted

as f̂ rkhs
∞ (x)). Consider using the gradient flow on the weights of the neural network function

ft(x) =
∑m
j=1wj(t)σ(xTuj(t)), to solve the `2-regularized ERM

1

2n

n∑
i=1

(yi − ft(xi))2 +
λ

2m

m∑
j=1

[
wj(t)

2 + ‖uj(t)‖2
]
.

Denote the function computed by NN at any local stationarity of ERM as f̂nn,λ(x), we

answer the extrapolation question at a new point x, with the generalization error discussed

in Prop. 5.3.2. The result is extendable to the infinite neurons case.

[Informal version of Prop. 5.3.1] Consider only the bounded assumption on ini-

tialization that |w2
j (0)−‖uj‖2(0)| <∞ for all 1 ≤ j ≤ m. At stationarity, denote

the corresponding adaptive kernel as Ĥλ
∞. The neural network function f̂

nn,λ
∞ (x)

has the following expression,

lim
λ→0

f̂
nn,λ
∞ (x) = Ĥ∞(x,X)Ĥ∞(X,X)+Y =: f̂ rkhs

∞ (x)

(ridgeless regression with kernel Ĥ∞).

5.2 Main Results: Benefits of Adaptive Representation

We formally state two main results of the paper, Theorem 5.2.1 and Theorem 5.2.1 below.

5.2.1 Gradient Flow, Projection and Adaptive RKHS

We study how the function ft computed from gradient flow on NN represents f∗ when reach-

ing any stationarity under the squared loss. Consider the gradient flow dynamics (5.4.12)

reaching any stationarity. Assume that the corresponding signed measure in (5.4.8) satisfies

TV(ρ∞) <∞ with a compact support. The mathematical details about ρ∞ are postponed
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to Section 5.4.2. We employ the notation ρ∞ since reaching stationarity can be viewed as

t→∞.

We would like to emphasize that this stationary signed measure ρ∞ is task adaptive: it

implicitly depends on the regression task f∗ and the data distribution P , rather than being

pre-specified by the researcher as in [6, 40, 38]. With the RKHS established in Section 5.1.3,

we are ready to state the following theorem.

Theorem 5.2.1 (Approximation). For any conditional mean f∗(x) = E[y|x = x] ∈ L2
µ,

consider solving the approximation problem (5.1.5), with the ReLU NN function ft defined

in (5.1.2) where wj(t) and θj(t) are the weights for t ≥ 0, 1 ≤ j ≤ m. For any signed measure

ρ0 with TV(ρ0) <∞, consider the infinitesimal initialization weights uj(0) = Θj/
√
m, and

wj(0) = sgn(ρ0(Θj))‖Θj‖/
√
m, with Θj ∼ ρ0 sampled independently. When the training

dynamics (5.1.3) reaches any stationarity, it defines a stationary signed measure ρ
(m)
∞ (on

the collective weights) with TV(ρ
(m)
∞ ) <∞, and a corresponding stationary RKHS H∞ with

the kernel defined in Eqn. (5.1.7), such that:

1. the function computed by neural networks at stationarity has the form

f∞(x) =

∫
‖Θ‖σ(xTΘ)ρ

(m)
∞ (dΘ) ; (5.2.1)

2. f∞ is a global minimizer of approximating f∗ within the RKHS H∞

f∞ ∈ arg min
g∈H∞

‖f∗ − g‖2L2
µ
. (5.2.2)

In addition, the same results extend to the infinite neurons case with m→∞ where the limit

for ρ
(m)
∞ can be defined in the weak sense.

Remark 5.2.1. The above theorem shows that limt→∞ ft obtained by training on two-layer

weights over time until any stationarity, is the same as projecting f∗ onto the stationary
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 =  
gradient flow dynamics

Figure 5.1: Illustration of Theorem 5.2.1. Red dotted line denotes the function ft computed along
the gradient flow dynamics on the weights of NN. Along training, one learns a sequence of dynamic
RKHS representation Ht’s. Over time, ft converges to the projection of f∗ onto H∞. We emphasize
that the initial function f0 computed by NN is very different from the projection of f∗ onto the
initial RKHS H0.

RKHS H∞. The projection is the solution to the classic nonparametric least squares, had

one known the adaptive representation H∞ beforehand. Conceptually, this is distinct from

the theoretical framework in the current statistics and learning theory literature: we do

not require the structural knowledge about f∗ (say, smoothness, sparsity, reflected in F).

Instead, we run gradient descent on neural networks to learn an adaptive representation for

f∗, and show how the computed function represents f∗ in this adaptive RKHS H∞.

In other words, as done in practice training NN with simple gradient flow, in the limit

of any local stationarity, learns the adaptive representation, and performs the global least-

squares projection simultaneously. Training NN is learning a dynamic representation (quan-

tified by Ht), at the same time updating the predicted function ft, as shown in Fig. 5.1.

A final note on the infinite neuron case: for any fixed time t, with the proper random

initialization, setting m → ∞ defines a proper distribution dynamics on the weak limit ρt

shown in Lemma 5.4.3. Then set t→∞ to obtain the stationarity RKHS H∞.

From the above, we have the following natural decomposition,

∆∞(x) = f∗(x)− f∞(x) ∈ Ker(H∞). (5.2.3)
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Surprisingly, as we show in the next section, ∆∞ actually lies in a smaller subspace of

Ker(H∞), characterized by Ker(K∞). We call this the representation and approximation

benefits of the data-adaptive RKHS learned by training neural networks.

Before moving next, we briefly discuss the above theorem when applied to the empirical

measure, to solve the ERM problem. First, as a direct corollary, the following holds.

Corollary 5.2.1 (ERM). Consider the ERM problem (5.1.6), with the other settings the

same as in Theorem 5.2.1. One can define the finite dimensional RKHS Ĥ∞ (at most rank

n) as in (5.1.7) with µ̂ = 1
n

∑n
i=1 δxi substituting µ. When reaches any stationarity, the

solution satisfies

f̂∞ ∈ arg min
g∈Ĥ∞

1

n

n∑
i=1

(yi − g(xi))
2 .

More importantly, we will show in Proposition 5.3.1 that the function computed by train-

ing neural networks with gradient descent on the empirical risk objective f̂∞(x) until any

stationarity (with vanishing `2 regularization), can be shown to be the kernel ridgeless

regression with the data-adaptive RKHS Ĥ∞. Hence, studying the out of sample per-

formance for GD on NN reduces to the generalization of kernel ridgeless regression with

adaptive kernels.

5.2.2 Representation Benefits of Adaptive RKHS

We now define another adaptive RKHS K∞ named as the GD kernel, which turns out to be

different from H∞ in (5.1.7). Interestingly, the difference in these two kernels sheds light on

the representation benefits of the adaptive RKHS. The new RKHS K∞ is motivated by the

gradient training dynamics. Recall the associated signed measure ρ∞ at the stationarity,
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The GD kernel is defined as

K∞(x, x̃) =

∫ (
‖Θ‖21xTΘ≥01x̃TΘ≥0x

T x̃+ σ(xTΘ)σ(x̃TΘ)
)
|ρ∞|(dΘ) 6= H∞(x, x̃)

(5.2.4)

which is different than the stationary RKHS kernel H∞ in (5.1.7). We use Kt : L2
µ(x) →

L2
µ(x) to denote the integral operator associated with Kt,

(Ktf)(x) :=

∫
Kt(x, x̃)f(x̃)µ(dx̃).

With a slight abuse of notation, we denote the corresponding RKHS to be Kt as well. Now

we are ready to state the main theorem on the representation benefits.

Theorem 5.2.1 (Representation Benefits). Consider f∗ ∈ L2
µ and the same setting as in

Theorem 5.2.1. Consider the approximation problem (5.1.5) with either finite or infinite neu-

rons, and the gradient flow dynamics (5.4.12) (equivalently (5.1.3)) with data pair (x,y) ∼ P

drawn from the population distribution. When reaching any stationary signed measure ρ∞,

f∗ is decomposed into the function f∞ computed by the neural network and the residual

∆∞

f∗ = f∞ + ∆∞.

Recall the RKHS H∞ in (5.1.7) and the GD RKHS K∞ in (5.2.4), all learned from the data

(x,y) ∼ P and f∗ adaptively. The following holds,

f∞ ∈ H∞, ∆∞ ∈ Ker(K∞) ⊂ Ker(H∞),

with H∞ ⊕Ker(K∞) 6= L2
µ. In other words, GD on NN decomposes f∗ into two parts, and

each lies in a space that is NOT the orthogonal complement to the other.
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Remark 5.2.2. As we can see Ker(K∞) and Ker(H∞) are not the same. Therefore, the

decomposition f∞+ ∆∞ is not a trivial orthogonal decomposition to the RKHS H∞ and its

complement.

Recall Theorem 5.2.1, projecting f∗ to the RKHS H∞ with the data-adaptive kernel

H∞(x, x̃) =

∫
σ(xTΘ)σ(x̃TΘ)|ρ∞|(dΘ)

associated with |ρ∞| is the same as the function constructed by neural networks (GD limit as

t→∞). However, the residual lies in a possibly much smaller space due to Theorem 5.2.1,

which is the null space of the RKHS K∞

K∞(x, x̃) =

∫ (
‖Θ‖21xTΘ≥01x̃TΘ≥0x

T x̃+ σ(xTΘ)σ(x̃TΘ)
)
|ρ∞|(dΘ).

In other words, as the learned adaptive basis H∞ (from GD) depends on the data distri-

bution and the task f∗ implicitly, it has the advantage of representing f∗ by squeezing the

residual into a smaller subspace in the null space of H∞. A pictural illustration can be found

in Fig. 5.2. This representation and approximation benefit helps with explaining the better

interpolation results obtained by neural networks [199, 13, 110, 12]: (1) the adaptive basis

is tailored for the task f∗, thus the residual/interpolation error lies in a smaller space; (2) in

view of the ODE in Corollary 5.4.2, the second layer of NN adds implicit regularization to

the smallest eigenvalues of Kt, thus improving the converging speed of ∆t to zero.

Before concluding this section, we remark that a similar result holds for the ERM problem

(5.1.6). As we shall discuss in the next section, the gap between H∞ and K∞ can be large,

even for the ERM problem.
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Fixed basis Adaptive basis

H0

f⋆

projection ∈fˆ0 H0

residual ∈ Ker( )Δ0 H0

residual ∈ Ker( ) ⊂ Ker( )Δ∞ K∞ H∞

f⋆

H∞

projection ∈fˆ
∞

H∞

Ker( )K∞

Figure 5.2: Illustration of 5.2.1: fixed basis vs. adaptive learned basis. In classic statistics, one
specifies the fixed function space/basis H0 then decompose f∗ into the projection f̂0 and residual
∆0 ∈ Ker(H0). However, for GD on NN, one learns the adaptive basis H∞ that depends on f∗.
Therefore, the residual ∆∞ lies in a subspace of Ker(H∞).

5.3 Implications of the Adaptive Theory

In this section, we will discuss some direct implications of the adaptive kernel theory for

neural networks established in this paper.

Example: Gap in Spaces H∞ and K∞. In Theorem 5.2.1, it is established that

Ker(K∞) ⊂ Ker(H∞). We now construct a concrete case to illustrate the potentially signifi-

cant gap in these two spaces as follows. Consider only one neuron with m = 1, solving ERM

problem (5.1.6) with n samples, and x with dimension d. In this case, ρ∞ is supported on

only one point, noted as Θ∞ ∈ Rd. Denote X ∈ Rn×d as the data matrix, one can show

that

H∞(X,X) = σ(XΘT
∞)︸ ︷︷ ︸

n×1

σ(XΘT
∞)T︸ ︷︷ ︸

1×n

has rank 1. In contrast,

K∞(X,X) � diag(1XΘT∞≥0)X︸ ︷︷ ︸
n×d

XTdiag(1XΘT∞≥0)︸ ︷︷ ︸
d×n
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can be of rank d∧ |{i : xTi Θ∞ ≥ 0}|. Hence the null space of K∞ is much smaller than that

of H∞. The gap can be large for many other settings of (n,m, d).

Connections to Min-norm Interpolation. The following result establishes the connec-

tions between the solution of gradient descent on neural networks (at local stationarity), and

the kernel ridgeless regression [13, 110, 83] with an adaptive kernel Ĥλ
∞. Empirical evidence

on the similarity between the interpolation with kernels and neural networks was discov-

ered in [13]. The following proposition provides a novel way of studying the generalization

property of neural networks via adaptive kernels.

Proposition 5.3.1 (Interpolation: Connection to Kernel Ridgeless Regression). Consider

the gradient flow dynamics on all the weights of the neural network function ft(x) =∑m
j=1wj(t)σ(xTuj(t)), to solve the `2-regularized ERM

1

2n

n∑
i=1

(yi − ft(xi))2 +
λ

2m

m∑
j=1

[
wj(t)

2 + ‖uj(t)‖2
]
.

Consider only the bounded assumption on initialization that |w2
j (0) − ‖uj‖2(0)| < ∞ for

all 1 ≤ j ≤ m. At stationarity, denote the signed measure as ρ̂λ∞ and the corresponding

adaptive kernel as Ĥλ
∞. Then the neural network function at stationarity f̂

nn,λ
∞ (x) satisfies,

f̂
nn,λ
∞ (x) = Ĥλ

∞(x,X)
[ n
m
λ · In + Ĥλ

∞(X,X)
]−1

Y .

In the vanishing regularization λ→ 0 limit, the neural network function converges to the

kernel ridgeless regression with the adaptive kernel, when Ĥ∞(X,X) := limλ→0 Ĥ
λ
∞ exists,

lim
λ→0

f̂
nn,λ
∞ (x) = Ĥ∞(x,X)Ĥ∞(X,X)+Y = f̂ rkhs

∞ (x).

Note that the generalization theory for the kernel ridgeless regression has been established
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[110, 83]. Here the kernel Ĥ∞(X,X) is data-adaptive (that adapts to f∗) learned along

training, instead of being fixed and pre-specified.

Connections to Random Kitchen Sinks. Let us introduce two function spaces, with

the base measure ρ0 (fixed representation)

Γ2(ρ0) :=

{
f(x) | f(x) =

∫
σ(xTΘ)w(Θ)ρ0(dΘ), w ∈ L2

ρ0

}

Γ1(ρ0) :=

{
f(x) | f(x) =

∫
σ(xTΘ)w(Θ)ρ0(dΘ), w ∈ L1

ρ0

}

In random kitchen sinks studied in [137, 138], by assuming f∗ ∈ Γ2(ρ0) that lies in the

RKHS, the approximation error can be controlled by the existence of the following function

with θj , j ∈ [m] i.i.d. sampled from ρ0

f̂(x) =
1

m

m∑
j=1

σ(xTΘj)w(Θj) ∈ Γ1(ρ0), but f̂(x) /∈ Γ2(ρ0) .

Note that f̂ lies in a possibly much larger space Γ1(ρ0) though the target only lies in f∗ ∈

Γ2(ρ0). Similarly for two-layer neural networks function ft(x) considered in [6, Section 2.3],

the RKHS space Γ2(ρ0) can be more restrictive compared to ft ∈ Γ1(ρ0).

In contrast, with the adaptive RKHS representation H∞, we have shown that

f∞(x) ∈ Γ1(|ρ∞|), and f∞(x) ∈ Γ2(|ρ∞|) .

The extreme case of fully adaptive function space Γ2(|ρ∗|) is defined with ρ∗ tailored for

f∗, f∗ =
∫
σ(xTΘ)ρ∗(dΘ). The adaptive representation learned by neural networks can be

viewed as in between the fixed and the fully adaptive representation.
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Adaptive Generalization Theory. Now we attempt to provide a new decomposition to

study the generalization of NN via adaptive kernels. Recall we have shown that f̂ rkhs
∞ (x) =

limλ→0 f̂
nn,λ
∞ (x) = Ĥ∞(x,X)Ĥ∞(X,X)+Y, where

Ĥ∞(x, x̃) :=

∫
σ(xTΘ)σ(x̃TΘ)ρ̂

(n,m)
∞ (dΘ).

Define the population limit ρ
(m)
∞ (dΘ) := limn→∞ ρ̂

(n,m)
∞ and

H∞(x, x̃) :=
∫
σ(xTΘ)σ(x̃TΘ)ρ

(m)
∞ (dΘ). Denote the ridgeless regression with the population

adaptive kernel H∞,

f rkhs
∞ (x) = H∞(x,X)H∞(X,X)+Y.

Assume (y−f∗(x))2 ≤ σ2 a.s. (can be relaxed). One can derive the following decomposition

for generalization.

Proposition 5.3.2 (Adaptive Generalization).

‖ lim
λ→0

f̂
nn,λ
∞ − f∗‖2µ - ‖f̂ rkhs

∞ − f rkhs
∞ ‖2µ︸ ︷︷ ︸

adaptive representation error

+ ‖f∞ − f∗‖2µ︸ ︷︷ ︸
adaptive approximation error

+ (n‖f∞ − f∗‖2µ̂ + σ2)Ex∼µ‖H∞(X,X)−1H∞(X,x)‖2︸ ︷︷ ︸
adaptive variance

+ ‖H∞(x,X)H∞(X,X)−1f∞(X)− f∞(x)‖2µ︸ ︷︷ ︸
adaptive bias

Note this result holds without requiring global optimization guarantees. The first term

is the representation error, which corresponds to the closeness of the adaptive RKHS Ĥ∞

(using empirical distribution) and H∞ (using population distribution). The second term is

the adaptive approximation error studied in the current paper. The third and fourth terms

are the variance and bias expressions studied in [110, 83, 139], as if assuming the actual
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function lies in H∞. This decomposition suggests the possibility of studying generalization

without explicit global understanding of the optimization, and providing rates that adapts

to f∗ without structural assumptions.

5.4 Time-varying Kernels and Evolution

In this section, we lay out the mathematical details on the time-varying kernels and the

evolution of the signed measure ρt supporting the main results. In the meantime, we will

discuss in depth the relevant literature motivating our proof ideas.

First, we describe the motivation behind the dynamic RKHS Kt, and the GD kernel

induced by the gradient descent dynamics. Extensions to multi-layer perceptrons is in

Sec. 5.7.2.

Lemma 5.4.1 (Dynamic kernel of finite neurons GD). Consider the approximation problem

(5.1.1) with a neural network function (5.1.2), and the training process (5.1.3) with popula-

tion distribution. Let ∆t(x) = f∗(x)− ft(x) be the residual. Define the time-varying kernel

Kt(·, ·) : X × X → R,

Kt(x, x̃) =
m∑
j=1

[
σ(xTuj(t))σ(x̃Tuj(t)) + wj(t)

21xTuj(t)≥01x̃Tuj(t)≥0x
T x̃

]
. (5.4.1)

Then the residual ∆t driven by the GD dynamics satisfies,

dEx

[
1
2∆t(x)2

]
dt

= −Ex,x̃ [∆t(x)Kt(x, x̃)∆t(x̃)] . (5.4.2)

When running GD to solve the empirical risk minimization (ERM), the dynamics of the

finite-dimensional sample residual ‖∆t‖2µ̂ has been established in [93, 52]. Here we generalize

the result to optimize the weights of both layers, and to solve the infinite-dimensional pop-

ulation approximation problem rather than the empirical risk minimization problem. For
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a general loss function `(y, f) with curvature (say, logistic loss), similar results hold under

slightly stronger conditions.

Corollary 5.4.1. Consider a general loss function `(y, f) that is α-strongly convex in the

second argument f , with Kt defined in (5.4.1). Assume in addition 1
nKt(X,X) ∈ Rn×n has

smallest eigenvalue λt > 0. Define ∆t(xi) :=
∂`(yi,ft(xi))

∂f , then we have for all f∗ : Rd → R,

dÊ [`(y, ft(x))]

dt
= −Êx,x̃ [∆t(x)Kt(x, x̃)∆t(x̃)] ≤ −2αλt · Ê [`(y, ft(x))− `(y, f∗(x))] .

5.4.1 Initialization, Rescaling and K0

Now we describe the initialization and rescaling schemes used in the main theorems. Rewrite

(5.1.1) according to the signs of the second layer weights

ft(x) :=

m+∑
j=1

w+,j(t)σ(xTu+,j(t)) +

m−∑
j=1

w−,j(t)σ(xTu−,j(t)).

Initialization. We consider the “infinitesimal” initialization drawn i.i.d. from two proba-

bility measures ρ+,0 and ρ−,0 that do not depend on m:

u+,j(0) =
1√
m

Θ+,j where Θ+,j ∼ ρ+,0 , u−,j(0) =
1√
m

Θ−,j where Θ−,j ∼ ρ−,0 . (5.4.3)

Here m = m++m− with m+ � m−. The 1/
√
m rescaling factor turns out to be crucial when

defining the infinite neurons limit for the evolution of signed measures. Remark that such

initialization is w.l.o.g., and accounts for the infinitesimal nature used in practice when the

number of neurons grows. For the second layer weights, we impose the “balanced condition”

motivated by [113],

w+,j(0) = ‖u+,j(0)‖ ≥ 0 , w−,j(0) = −‖u−,j(0)‖ ≤ 0. (5.4.4)
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It turns out that with such initialization, the balanced condition holds throughout the train-

ing process induced by gradient flow, which is useful for the main theorems. Interestingly,

in the proof of Proposition 5.3.1, we show that such balanced condition always holds at

stationarity when training neural networks with `2 regularization, even for unbalanced ini-

tialization.

Proposition 5.4.1 (Balanced condition). For u+,j(t), u−,j(t), w+,j(t) and w−,j(t), and the

initialization specified above, at any time t, we have

w+,j(t) = ‖u+,j(t)‖, w−,j(t) = −‖u−,j(t)‖.

Rescaling. To prepare for the distribution dynamic theory in the next section, we intro-

duce a parameter rescaling with the
√
m factor. Let θ+,j(t) =

√
mw+,j(t) and θ−,j(t) =

√
mw−,j(t), also define Θ+,j(t) =

√
mu+,j(t) and Θ−,j(t) =

√
mu−,j(t) sampled from ρ+,0

and ρ−,0 at t = 0. Under this representation,

ft(x) =
1

m

m+∑
j=1

θ+,j(t)σ(xTΘ+,j(t)) +
1

m

m∑
j=1

θ−,j(t)σ(xTΘ−,j(t)). (5.4.5)

By the positive homogeneity of ReLU, we have the corresponding dynamics on the rescaled

parameters,

dθ·,j
dt

=
√
m
dw·,j
dt

= −
√
mEz

[
∂`(y, f(x))

∂f
σ(xTu·,j)

]
= −Ez

[
∂`(y, f(x))

∂f
σ(xTΘ·,j)

]
,

(5.4.6)

dΘ·,j
dt

=
√
m
du·,j
dt

= −
√
mEz

[
∂`(y, f(x))

∂f
w·,j1xTu·,j≥0x

]
= −Ez

[
∂`(y, f(x))

∂f
θ·,j1xTΘ·,j≥0x

]
.

(5.4.7)
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Define at time t

ρ+,t :=
1

m

m+∑
j=1

δΘ+,j(t)
, ρ−,t :=

1

m

m−∑
j=1

δΘ−,j(t) (5.4.8)

as the empirical distribution over neurons on the parameter space Θ. The ρ+,t and ρ−,t

converge weakly to proper distributions in the infinite neurons limit m→∞, see e.g. [6, 117].

Through the balanced condition in Proposition 5.4.1 and Proposition 5.7.1, we know (by

substituting θj by ‖Θj‖ )

ft(x) =

∫
‖Θ‖σ(xTΘ)ρt(dΘ), where the signed measure ρt := ρ+,t − ρ−,t. (5.4.9)

The above motivates the study of the RKHS Ht as in Theorem 5.2.1, with the kernel

Ht(x, x̃) =

∫
‖Θ‖2σ(xTΘ)σ(x̃TΘ)|ρt|(dΘ). (5.4.10)

To conclude this section, we provide the explicit formula for the initial kernel matrix K0

under such infinitesimal random initialization. Specifically, consider the initialization with

wj being ±1/
√
m with equal chance and ui ∼ N(0, 1/m · Id) i.i.d. sampled. The initial

kernel K0 has the following expression, in the infinite neurons limit.

Lemma 5.4.2 (Fixed Kernel). With initialization specified above, consider w.l.o.g. ‖x‖ =

‖x̃‖ = 1, and denote Θ ∼ π as the isotropic Gaussian N(0, Id). By the strong law of large

number, we have almost surely,

lim
m→∞

K0(x, x̃) = EΘ∼π
[
σ(xTΘ)σ(x̃TΘ) + 1xTΘ>01x̃TΘ>0x

T x̃
]

=

[
π − arccos(t)

π
t+

√
1− t2
2π

]
, where t = xT x̃.

Much known results [17, 137, 6, 38, 40] on the connection between RKHS and two-layer
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NN focus on some fixed kernel, such as K0. To instantiate useful statistical rates, one requires

f∗ to lie in the corresponding pre-specified RKHS K0, which is non-verifiable in practice.

In contrast, the dynamic kernel is less studied. We will establish a dynamic and adaptive

kernel theory defined by GD, without making any structural assumptions on f∗ other than

f∗ ∈ L2
µ.

5.4.2 Evolution of ρt

In this section, we derive the evolution of the signed measure ρt defined by the neurons

at the training t, which in turn determines the dynamic kernel Kt defined in (5.4.1). To

generalize the result to the case of infinite neurons, we follow and borrow tools from the

mean-field characterization [117, 144, 99]. The rescaling described in the previous section

proves handy when defining such infinite neurons limit. We define the velocity field driven

by the regression task and the interaction among neurons,

V (Θ) = E[yσ(xTΘ)], U(Θ, Θ̃) = −E[σ(xTΘ)σ(xT Θ̃)]. (5.4.11)

The following theorem casts the training process as distribution dynamics on ρ+,t, ρ−,t.

Lemma 5.4.3 (Dynamic Kernel and Evolution). Consider the approximation problem

(5.1.1), and the gradient flow as the training dynamic (5.1.3). For ρ+,t, ρ−,t and ρt defined

in (5.4.8) with possibly infinite neurons, we have the following PDE characterization on

distribution dynamics of ρ+,t, ρ−,t

∂tρ+,t(Θ) = −∇Θ ·
[
ρ+,t(Θ) · ‖Θ‖

(
∇ΘV (Θ) +∇Θ

∫
U(Θ, Θ̃)‖Θ̃‖ρt(dΘ̃)

)]
,

∂tρ−,t(Θ) = ∇Θ ·
[
ρ−,t(Θ) · ‖Θ‖

(
∇ΘV (Θ) +∇Θ

∫
U(Θ, Θ̃)‖Θ̃‖ρt(dΘ̃)

)]
. (5.4.12)
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Moreover, the GD kernel Kt is defined as

Kt(x, x̃) =

∫ (
‖Θ‖21xTΘ≥01x̃TΘ≥0x

T x̃+ σ(xTΘ)σ(x̃TΘ)
)
|ρt|(dΘ). (5.4.13)

Remark 5.4.1. As in [117, 144], let’s first show that in the infinite neurons limit m→∞,

ρ+,t, ρ−,t are properly defined, with Eqn. (5.4.12) characterizing the distribution dynamics.

For simplicity, we assume the initialization ρ+,0, ρ−,0 is with bounded support. Add the

superscript m, ρ
(m)
+,t , ρ

(m)
−,t , ρ

(m)
t to (5.4.8) to indicate their dependence on m. Consider that

∇ΘV (Θ), ∇ΘU(Θ, Θ̃) in (5.4.11) are bounded and uniform Lipchitz continuous as in [117,

A3]. With the same proof as in [117, Theorem 3], one can show that with m → ∞, the

initial distribution ρ
(m)
0

d−→ ρ0 = ρ+,0 − ρ−,0 by law of large number. And by the solution’s

continuity w.r.t. the initial value, we have ρ
(m)
t

d−→ ρt as m→∞ well defined, for any fixed

t.

Note that our problem setting is slightly different from that in [117], where the authors

consider the NN with fixed second layer weights to be 1/m. We reiterate that the re-

parameterization via θ and Θ is crucial: (1) weights on both layers are optimized following

the gradient flow; (2) infinitesimal random initialization is employed in practice. In the

setting of [117, Eqn. (3)], the training process is slightly different from the vanilla GD on

weights, with an additional m factor in the velocity term. This subtlety is also mentioned

in [144]. In short, the rescaling looks at the dynamics where Θ’s are on the invariant scale

as m→∞ for any fixed effective time t (that does not depend on m). Here we analyze the

exact gradient flow on the two-layer weights, with infinitesimal random initialization as in

practice, resulting in a different velocity field (5.4.11) compared to that in [117].

The proof of Theorem 5.2.1 makes use of (5.4.9)-(5.4.10) and the stationary condition

implied by Lemma 5.4.3. The balanced condition is crucial in both Theorem 5.2.1 and

Proposition 5.3.1. The details of the proof are deferred to Section 5.6.
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5.4.3 Two RKHS: K∞ and H∞

In this section we compare the two adaptive RKHS appeared K∞ in (5.4.13), and H∞ in

(5.4.10). The comparison will lead to the proof of Theorem 5.2.1. We start with generalizing

Lemma 5.4.1 with the possibly infinite neurons case via the distribution dynamics in (5.4.12).

Corollary 5.4.2. Consider the same setting as in Lemma 5.4.1 with possibly infinite neurons

NN (5.4.9), and the training process (5.4.12). Define the time-varying kernel matrix Kt(·, ·) :

X × X → R, with the signed measure ρt follows (5.4.12)

Kt(x, x̃) =

∫ (
‖Θ‖21xTΘ≥01x̃TΘ≥0x

T x̃+ σ(xTΘ)σ(x̃TΘ)
)
|ρt|(dΘ) (5.4.14)

=: K
(0)
t (x, x̃) +K

(1)
t (x, x̃). (5.4.15)

Then we still have dEx

[
1
2∆t(x)2

]
/dt = −Ex,x̃ [∆t(x)Kt(x, x̃)∆t(x̃)] .

It turns out that the kernels K∞ and H∞, defined in (5.2.4) and (5.1.7) respectively,

satisfy the following inclusion property.

Proposition 5.4.2. Consider the training process reaches any stationarity ρ∞ = ρ+,∞ −

ρ−,∞ with compact support within radius D and finite total variation. We have

K∞ � K
(0)
∞ � K

(1)
∞ �

1

D2
H∞, (5.4.16)

with K
(0)
∞ , K

(1)
∞ defined in (5.4.14). Combining with the fact that H∞ 6= K∞ implies

Ker(K∞) ⊂ Ker(H∞).

The proof of Theorem 5.2.1 uses the following fact: when reaching stationarity, due to
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the ODE defined by GD in Lemma 5.4.1, the residual must satisfy

∆∞(x) = f∗(x)− f∞(x) ∈ Ker(K∞). (5.4.17)

The proof of Proposition 5.4.2 and Theorem 5.2.1 are deferred to Section 5.6.

5.5 Experiments

We run experiments to illustrate the spectral decay of the dynamic kernels defined in Kt

over time t. The exercise is to quantitatively showcase that during neural network training,

one does learn the data-adaptive representation, which is task-specific depending on the true

complexity of f∗. The training process is the same as the one we theoretically analyze: vanilla

gradient descent on a two-layer NN of m neurons, with infinitesimal random initialization

scales as 1/
√
m.

The first experiment is a synthetic exercise with well-specified models. We generate

{xi}50
i=1 from isotropic Gaussian in R5, and yi = f∗(xi) =

∑J
j=1w

∗
jσ(xTi u

∗
j ) with different

J . In other words, we choose different target f∗ (task complexity) by varying J . We select

m = 500 in our experiment. The top 80% of the sorted eigenvalues of the kernel matrix

Kt along the GD training process are shown in Fig. 5.3. The x-axis is the index of eigen-

values in descending order, and the y-axis is the logarithmic values of the corresponding

eigenvalues. Different color indicates the spectral decay of the Kt at different training time

t. The eigenvalue-decays stabilize over time t means that the training process approaches

stationarity. As we can see with f∗ belongs to the NN family, the eigenvalues of the kernel

matrix, in general, become larger during the training process. For a more complicated target

function, it takes longer to reach stationarity.

The second experiment is another synthetic test on fitting random labels. We generate

{xi}50
i=1 from isotropic Gaussian in R5, as yi takes ±1 with equal chance. We select m =

138



(a) J = 2 (b) J = 4

(c) J = 8 (d) J = 16

Figure 5.3: Log of the sorted top 80% eigenvalues of kernel matrix along training with different f∗

200, 500, and n = 50, 200 to investigate those parameters’ influence on the kernel Kt. We

want to point out two observations. First, fixed n, we investigate over-parametrized models

(m = 200, 500 large). Shown from Fig. 5.4 along the row, the kernels for different m’s behave

much alike. In other words, in the infinite neurons limit, the kernel will stabilize. Second,

fixed m, we vary the number of samples n, to simulate different interpolation hardness. As

seen from Fig. 5.4 along the column, the kernels and the convergence over time are distinct,

reflecting the different difficulty of the interpolation.

The third experiment (Fig. 5.5) is regression using the MNIST dataset with different

sample size n = 50, 200. We hope to investigate the influence of sample size on the kernel

matrix along the training process. For a larger sample size N , it takes longer to reach

stationarity.

5.6 Main Proofs

Proof of Theorem 5.2.1. From the definition, we have T ∗p ∈ H∞ for any p ∈ L2
|ρ∞|, and T ∗

is a surjective mapping. Suppose that ĝ ∈ H∞ is a minimizer of (5.2.2), then we claim that
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(a) N = 50,m = 200 (b) N = 50,m = 500

(c) N = 200,m = 200 (d) N = 200,m = 500

Figure 5.4: Log of the sorted top 80% eigenvalues of kernel matrix along training with random
labels.

(a) N = 50 (b) N = 200

Figure 5.5: Log of sorted top 90% eigenvalues of kernel matrix along training process for mnist

for any p ∈ L2
|ρ∞|, one must have

〈f∗ − ĝ, T ∗p〉µ = 0, ∀p ∈ L2
|ρ∞|. (5.6.1)
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This claim can be seen from the following argument. Suppose not, then for p that violates

the above, construct

ĝε = ĝ + εT ∗p ∈ H∞,

we know

‖f∗ − ĝε‖2µ = ‖f∗ − ĝ‖2µ − 2ε〈f∗ − ĝ, T ∗p〉µ + ε2‖T ∗p‖2µ. (5.6.2)

For ε with the same sign as 〈f∗−ĝ, T ∗p〉µ 6= 0 and small enough, one can see that ‖f∗−ĝε‖2µ <

‖f∗− ĝ‖2µ which validates that ĝ is a minimizer. From the same argument, one can see that

ĝ is a minimizer if and only if (5.6.1) holds, in other words,

〈T (f∗ − ĝ), p〉|ρ∞| = 〈f∗ − ĝ, T ∗p〉µ = 0 (5.6.3)

From PDE characterization (5.4.12) with ReLU activation, one knows that

V (Θ) = E[yσ(xTΘ)] = E[f∗(x)σ(xTΘ)]

U(Θ, Θ̃) = −E[σ(xTΘ)σ(xT Θ̃)],

and the expression for the velocity field

‖Θ‖
(
∇ΘV (Θ) +∇Θ

∫
U(Θ, Θ̃)‖Θ̃‖ρt(dΘ̃)

)
= ‖Θ‖

(∫
f∗(x)x1xTΘ>0µ(dx)−

∫ ∫
x1xTΘ>0σ(xT Θ̃)‖Θ̃‖ρ∞(dΘ̃)µ(dx)

)
.
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We know that any stationary point
(
ρ+,∞, ρ−,∞

)
has the following property [117]:

supp(ρ∞) ⊆
{

Θ :

∫
f∗(x)x1xTΘ>0µ(dx) =

∫ ∫
x1xTΘ>0σ(xT Θ̃)‖Θ̃‖ρ∞(dΘ̃)µ(dx)

}
.

(5.6.4)

Multiplying both sides by ‖Θ‖ΘT and recall the property of ReLU, the above condition

implies that for all Θ ∈ supp(ρ∞), we have

∫
f∗(x)‖Θ‖σ(xTΘ)µ(dx) =

∫ ∫
‖Θ‖σ(xTΘ)σ(xT Θ̃)‖Θ̃‖ρ∞(dΘ̃)µ(dx). (5.6.5)

One can see the stationary condition on ρ∞ (fixed points of the dynamics) (5.6.5) translates

to

T f∗(Θ) =

(
T T ? dρ∞

d|ρ∞|

)
(Θ), ∀Θ ∈ supp(ρ∞). (5.6.6)

Here the function dρ∞
d|ρ∞| is the Radon-Nikodym derivative. In addition, one can easily verify

that, as ρ∞ has bounded total variation

dρ∞
d|ρ∞|

∈ L2
|ρ∞|.

Therefore, combining all the above, one knows that

f∞(x) =

∫
‖Θ‖σ(xTΘ)ρ∞(dΘ) = T ? dρ∞

d|ρ∞|
∈ H∞
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and that for any p ∈ L2
|ρ∞|

〈f∗ − f∞, T ∗p〉µ = 〈T (f∗ − f∞), p〉|ρ∞| (5.6.7)

=

〈
T f∗ − T T ?

dρ∞
d|ρ∞|

, p

〉
|ρ∞|

(5.6.8)

=

∫ (
T f∗ − T T ?

dρ∞
d|ρ∞|

)
(Θ)|ρ∞|(dΘ) = 0 due to (5.6.6) (5.6.9)

We have proved that f∞ = T ? dρ∞
d|ρ∞| satisfies normal condition for being a minimizer to

(5.2.2).

Proof of Proposition 5.4.2. The first inequality in (5.4.16) is trivial. For the second inequal-

ity, it suffices to show for any c = (c1, . . . , cp)
T , x1, . . . , xp, Θ, we have

∑
i,j

cicj‖Θ‖2xTi xj1xTi Θ>01xTj Θ>0 ≥
∑
i,j

cicjσ(xTi Θ)σ(xTj Θ) (5.6.10)

The RHS equals

∑
i,j

cicjx
T
i ΘxTj Θ1xTi Θ>01xTj Θ>0 =

(∑
i

cix
T
i Θ1xTi Θ>0

)2

(5.6.11)

= 〈Θ,
∑
i

cixi1xTi Θ>0〉
2 ≤ ‖Θ‖2

∥∥∥∥∥∑
i

cixi1xTi Θ>0

∥∥∥∥∥
2

= LHS. (5.6.12)

For the last inequality, with compactness condition on ρ∞, we have

∑
i,j

cicj

∫
‖Θ‖2σ(xTi Θ)σ(xTj Θ)|ρ∞|(Θ) ≤ D2

∑
i,j

cicj

∫
σ(xTi Θ)σ(xTj Θ)|ρ∞|(Θ). (5.6.13)

Therefore, D2K
(1)
∞ � H∞.
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Proof of Theorem 5.2.1. Let us rewrite Corollary 5.4.2 into

d

dt
‖∆t‖2µ = −2〈∆t,Kt∆t〉µ = −2‖K1/2

t ∆t‖2µ, (5.6.14)

here Kt : L2
µ(x)→ L2

µ(x) denotes the integral operator associated with Kt,

(Ktf)(x) :=

∫
Kt(x, x̃)f(x̃)µ(dx̃). (5.6.15)

From (5.6.14)

d

dt
‖∆∞‖2µ = −2‖K1/2

∞ ∆∞‖2µ, (5.6.16)

we know that the RHS equals zero implies

‖K1/2
∞ ∆∞‖2µ = 0

〈K1/2
∞ g,∆∞〉µ = 〈g,K1/2

∞ ∆∞〉µ = 0, ∀g ∈ L2
µ.

This further implies ∆∞ lies in the kernel of RKHS K∞ as K∞ = {K1/2
∞ g : g ∈ L2

µ}.

Proof of Proposition 5.3.1. The gradients on the original parameters are,

dwj(t)

dt
= −Ê

[
∂`(y, ft)

∂f
σ(xTuj(t))

]
− 1

m
λwj(t),

duj(t)

dt
= −Ê

[
∂`(y, ft)

∂f
wj(t)1xTuj(t)≥0x

]
− 1

m
λuj(t).

Clearly, on the rescaled parameter, the following holds

dθj
dt

=
√
m
dwj
dt

= −Ê
[
(ft(x)− y)σ(xTΘj(t))

]
− 1

m
λθj ,

dΘj

dt
=
√
m
duj
dt

= −Ê
[
(ft(x)− y)θj1xTΘj≥0x

]
− 1

m
λΘj .
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Multiply the first equation by θj , and the second equation by θTj , take the difference, we can

verify that

d(θ2
j − ‖Θj‖2)

dt
= −λ/m(θ2

j − ‖Θj‖2) (5.6.17)

θj(t)
2 − ‖Θj(t)‖2 =

(
θj(0)2 − ‖Θj(0)‖2

)
exp(−λt/m) . (5.6.18)

Therefore the balanced condition still holds at stationarity for arbitrary bounded initializa-

tion,

θj(∞)2 − ‖Θj(∞)‖2 = 0,∀j.

Now the optimality condition for the velocity field reads the following, for any

Θj(∞) ∈ supp(ρ̂λ∞) (we abbreviate the ∞ in the following display, note θ̃(∞) corresponds

to the second layer weights w.r.t. to Θ̃(∞))

θjÊ[y1xTΘj≥0x] = θj

∫
θ̃Ê[1xTΘj≥0xσ(xT Θ̃)]|ρ̂λ∞|(dΘ̃) +

1

m
λΘj

Multiply by ΘT
j , θjÊ[yσ(xTΘj)] =

∫
θj θ̃Ê[σ(xTΘj)σ(xT Θ̃)]|ρ̂λ∞|(dΘ̃) +

λ

m
‖Θj‖2

θjÊ[yσ(xTΘj)] =

∫
θj θ̃Ê[σ(xTΘj)σ(xT Θ̃)]|ρ̂λ∞|(dΘ̃) + λ

∫
θj θ̃1Θ̃=Θj

|ρ̂λ∞|(dΘ̃)

where the last step uses the condition θ2
j (∞) = ‖Θj(∞)‖2, and the fact that

|ρ̂λ∞| = 1
m

∑m
j=1 δΘj

and

∫
θj θ̃1Θ̃=Θj

|ρ̂λ∞|(dΘ̃) =
1

m
θ2
j =

1

m
‖Θj‖2.
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In the matrix form, where ρ̂λ∞ = 1
m

∑
l∈[m] sgn(θl)δΘl

∑
l∈[m]

[
nÛ(Θj ,Θl) + nλIΘl=Θj

]
θl/m = σ(ΘT

j X)Y.

Therefore, define σ(xTΞ) := [σ(xTΘ1) . . . , σ(xTΘm)] ∈ R1×m, and

σ(XΞ) := [σ(xT1 Ξ)T , . . . , σ(xTnΞ)T ] ∈ Rm×n, we have

f̂
nn,λ
∞ (x) =

∑
l∈[m]

θlσ(xTΘl)/m = σ(xTΞ)[σ(XΞ)σ(XΞ)T + nλIm]−1σ(XΞ)Y

= σ(xTΞ)σ(XΞ)[σ(XΞ)Tσ(XΞ) + nλIn]−1Y

= Ĥλ
∞(x,X)

[
Ĥλ
∞(X,X) + n/m · λIn

]−1
Y .

The last line follows as Ĥλ(x, x̃) :=
∫
σ(xTΘ)σ(x̃TΘ)|ρ̂λ∞|(dΘ) = 1/m · σ(xTΞ)σ(x̃TΞ)T .

Proof of Proposition 5.3.2.

‖ lim
λ→0

f̂
nn,λ
∞ − f∗‖2µ - ‖f̂ rkhs

∞ − f rkhs
∞ ‖2µ + ‖f rkhs

∞ − f∗‖2µ

‖f rkhs
∞ − f∗‖2µ = ‖H∞(x,X)H∞(X,X)+[Y − f∗(X) + f∗(X)− f∞(X) + f∞(X)]

− f∗(x)‖2µ

- ‖H∞(x,X)H∞(X,X)+(Y − f∗(X))‖2µ

+ Ex∼µ〈H∞(X,X)+H∞(X,x), f∗(X)− f∞(X)〉2

+ ‖H∞(x,X)H∞(X,X)+f∞(X)− f∞(x)‖2µ

+ ‖f∞(x)− f∗(x)‖2µ .

For the first term, we can upper bound by σ2Ex∼µ‖H∞(X,X)−1H∞(X,x)‖2. The second
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term can be upper bounded by

Ex∼µ‖H∞(X,X)−1H∞(X,x)‖2 · n‖f∞(x)− f∗(x)‖2µ̂.

Proof is completed.

5.7 Appendix

5.7.1 Supporting Results

Proof of Lemma 5.4.3. Let’s first show that in the infinite neuron limit m → ∞, ρ+,t, ρ−,t

are properly defined. Therefore Eqn. (5.4.12) in the above theorem also characterize the

distribution dynamics for infinite neurons NN, induced by gradient flow training. For sim-

plicity, we assume the initialization ρ+,0, ρ−,0 with bounded support. We add the superscript

m, ρm+,t, ρ
m
−,t, ρ

m
t to (5.4.8) to indicate their dependence on m. Consider ∇ΘV , ∇ΘU(Θ, Θ̃)

in (5.4.11) are bounded and uniform Lipchitz continuous as in [117, A3]. With the same

proof as in [117, Theorem 3], one can show that with m → ∞, the initial distribution

ρm0
d−→ ρ̃0 = ρ+,0 − ρ−,0 by law of large number, and by the solution’s continuity depending

on the initial value. Therefore we have ρmt
d−→ ρt as m→∞ well defined.

The velocity of a particle Θ in the positive part as a rewrite of (5.4.6)-(5.4.7) is

V(Θ, ρt) = ‖Θ‖
(
∇ΘV (Θ) +∇Θ

∫
U(Θ, Θ̃)‖Θ̃‖ρt(dΘ̃)

)
, (5.7.1)

resp. for the negative part and (5.4.7), we have

−V(Θ, ρt) = −‖Θ‖
(
∇ΘV (Θ) +∇Θ

∫
U(Θ, Θ̃)‖Θ̃‖ρt(dΘ̃)

)
.
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Given the velocity of particle, we have the transport equation for gradient flow,

∂tρ+,t = −∇Θ ·
(
ρ+,t · V(Θ, ρt)

)
,

∂tρ−,t = −∇Θ ·
(
−ρ−,t · V(Θ, ρt)

)
.

To see this, recall the definition of weak derivative ∂tρt: for any bounded smooth function

g, ∂tρt is defined in the following sense

d ·
∫
gρt = −

∫
g∂tρt · dt. (5.7.2)

We take any bounded smooth function g(Θ), given the velocity of Θ’s , then we have

−
∫
g∂tρt · dt = d ·

∫
g(Θ)ρ+,t(Θ) =

∫
∇g(Θ) · V(Θ, ρt)ρ+,t(Θ) · dt, (5.7.3)

and ρ−,t correspondingly. By the weak derivative, we get the above PDE. We use the above

dynamic description as the training process for infinite neuron NN. Plug above equation into

ρt = ρ+,t − ρ−,t and |ρt| = ρ+,t + ρ−,t, we get

∂tρt(Θ) = −∇Θ · (|ρt|(Θ)V(Θ, ρt)) ,

∂t|ρt|(Θ) = −∇Θ · (ρt(Θ)V(Θ, ρt)) . (5.7.4)

Proof of Proposition 5.4.1. It suffices to show θ2
+,i(t) = ‖Θ+,i(t)‖22 and resp. θ2

−i(t) =
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‖Θ−,i(t)‖22. By our path dynamics, we have

dθ2
+,i

dt
= 2θ+,i

dθ+,i

dt
= −2Ez

[
∂`(y, f(x))

∂f
θ+,iσ(xTΘ+,i)

]
, (5.7.5)

d‖Θ+,i‖22
dt

= 2ΘT
+,i

dΘ+,i

dt
= −2Ez

[
∂`(y, f(x))

∂f
θ+,i1xTΘ+,i≥0xTΘ+,i

]
=
dθ2

+,i

dt
. (5.7.6)

Thus, by the initialization, we have θ+,i(t) = ‖Θ+,i(t)‖, and resp. θ−,i(t) = −‖Θ−,i(t)‖.

Proposition 5.7.1 (No sign change). For the training process (5.1.3) for problem (5.1.1)

with NN (5.1.2), once wj(t) and uj(t) hit zero at t0, for t > t0 at least there exists a solution

that can be viewed as training without the j-th neuron.

Proof of Proposition 5.7.1. Using wj(t0), uj(t0), for j 6= i, as an initial value for ODE (5.1.3)

without the i-th node. By assumption, we have a solution of this 2 · (2m − 1)-dimensional

initial value problem. Then padding the solution with ui ≡ 0 and wi ≡ 0, which can be a

solution for ODE (5.1.3) with i-th neuron included.

Proof of Lemma 5.4.1. First we write down the dynamic of prediction f(x̃) at each point x̃

based on Eqn. (5.1.3). For notational simplicity, let uj , wj be uj(t), wj(t), and let o1
j (x̃) =
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σ(uTj x̃), and with the square loss `(y, f) = 1
2(y − f)2, we have

dft(x̃)

dt
=

m∑
j=1

[
dwj
dt

o1
j (x̃) + wj

do1
j (x̃)

dt

]

=
m∑
j=1

{
Ez

[
(y − ft(x))σ(xTuj)

]
o1
j (x̃)

+ wj1x̃Tuj≥0x̃
TEz

[
(y − ft(x))wj1xTuj≥0x

]}

=
m∑
j=1

{
Ex

[
(f∗(x)− ft(x))

(
σ(x̃Tuj)σ(xTuj) + w2

j1x̃Tuj≥01xTuj≥0x̃
Tx
)]}

= Ex

{
m∑
j=1

[
σ(x̃Tuj)σ(xTuj) + w2

j1x̃Tuj≥01xTuj≥0x̃
Tx

]
(f∗(x)− ft(x))

}

= Ex [Kt(x̃,x)∆t(x)] .

Therefore, we have

dEx

[
1
2∆t(x)2

]
dt

= −Ex

[
(f∗(x)− ft(x))

dft(x)

dt

]
(5.7.7)

= −Ex [∆t(x)Ex̃ [Kt(x, x̃)∆(x̃)]]

= −Ex,x̃ [∆t(x)Kt(x, x̃)∆t(x̃)] .

Proof of Corollary 5.4.1. The first equality follows from the proof in Lemma 5.4.1. Recall

the property for strongly convex function

`(yi, ft(xi))− `(yi, f∗(xi)) ≤
1

2α

[
∂`(yi, ft(xi))

∂f

]2

=
1

2α
∆t(xi)

2. (5.7.8)
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Therefore, we have

−Ex,x̃ [∆t(x)Kt(x, x̃)∆t(x̃)] ≤ −λt
n

n∑
i=1

∆t(xi)
2 ≤ −2αλt · Ê [`(y, ft(x))− `(y, f∗(x))] .

Proof of Lemma 5.4.2. We know

Eu∼π
[
σ(uTx)σ(uT x̃)

]
= Eu∼πx̃T

[
uuT1uTx>01uT x̃>0

]
x (5.7.9)

Consider the coordinate system e1, e2, . . . ed such that e1, e2 spans the space of x, x̃, with

x = e1, x̃ = cos θ · e1 + sin θ · e2, (5.7.10)

where θ = arccos(xT x̃). Note u = [v1, v2, . . . vd] is still an isotropic Gaussian under this

coordinate system. The constraint reads

1uTx>01uT x̃>0, (5.7.11)

equivalent to v1 > 0, v1 cos θ + v2 sin θ > 0, (5.7.12)

and one can see that v2, . . . vd integrate out.

Let’s focus on the spherical coordinates of v1 = r cosφ, v2 = r sinφ, then r2 ∼ χ2(2) and
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φ ∼ U [−π, π]. W.l.o.g., we can consider the case when θ ∈ [0, π].

Eu∼π
[
uuT1uTx>01uT x̃>0

]
x

= E[r2]

(
e1 ·

1

2π

∫ π

−π
cos2 φ1φ∈[θ−π/2,π/2]dφ+ e2 ·

1

2π

∫ π

−π
cosφ sinφ1φ∈[θ−π/2,π/2]dφ

)
because the above are equivalent to e1E[v2

11uTx>01uT x̃>0] + e2E[v1v21uTx>01uT x̃>0]

= 2 · 1

2π

[
e1 ·

π − θ
2

+ (e1 cos θ + e2 sin θ) · sin θ

2

]
just evaluate

∫ π/2

θ−π/2
cos2 φdφ,

∫ π/2

θ−π/2
cosφ sinφdφ

=
π − θ

2π
x+

sin θ

2π
x̃.

Therefore, we get

Eu∼πxT
[
uuT1uTx>01uT x̃>0

]
x̃

=
π − θ

2π
cos θ +

sin θ

2π

Similarly, we have

Eu∼πx̃T
[
1uTx≥01uT x̃≥0

]
x =

π − θ
2π

cos θ. (5.7.13)

Summing them up, we get the result.

Proof of Corollary 5.4.2. Our proof essentially follows the same steps for (5.4.1). First, we

write down the dynamic of ft(x),

dft(x)

dt
=

∫
‖Θ‖σ(xTΘ)ρt(dΘ)

dt
. (5.7.14)
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Plug-in the training dynamic (5.7.4), we get

dft(x)

dt
= −

∫
−∇Θ

[
‖Θ‖σ(xTΘ)

]
· V(Θ, ρt)|ρt|(dΘ)

=

∫
∇Θ

[
‖Θ‖σ(xTΘ)

]
· ‖Θ‖{

Ex̃[f∗(x̃)1x̃TΘ≥0x̃]− Ex̃

[∫ (
‖Θ̃‖σ(x̃T Θ̃)1x̃TΘ≥0x̃

)
ρt(dΘ̃)

]}
|ρt|(dΘ)

= Ex̃

{∫
∇Θ

[
‖Θ‖σ(xTΘ)

]
· ‖Θ‖

[
∆t(x̃)1x̃TΘ≥0x̃

]
|ρt|(dΘ)

}
= Ex̃

{
∆t(x̃) ·

∫
‖Θ‖21xTΘ≥01x̃TΘ≥0x

T x̃ + σ(xTΘ)σ(x̃TΘ)|ρt|(dΘ)

}
.

Therefore, we have

dEx

[
1
2∆t(x)2

]
dt

= −Ex,x̃[∆t(x)Kt(x, x̃)∆t(x̃)]. (5.7.15)

5.7.2 Extensions

In this section, we extend the definition of the dynamic kernel in Section 5.4 to the multi-

layer neural networks case. We construct a recursive expression for the kernel defined by

the multi-layer perceptron (MLP). Let Θl
i,j , l = 0, · · · , h − 1 denote the coefficient from

the i-th node on the l-th layer to the j-th node on the (l + 1)-th layer. Let the input

(before activation) of the i-th node on l-th layer be vli(x) =
∑
j Θl−1

j,i o
l−1
j (x) and let the

output at that node be oli = σ(vli), for l /∈ {0, h}, and oli = xi, for l = 0. The final output

g(x) = (vh1 (x), vh2 (x), · · · , vhLh(x))T . Let L0 = d and Li is the number of nodes at the i-th

layer. Denote Kh
t (x, x̃; {Θl}l=0,...,h) the kernel of h layers NN. The training dynamic is still
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the gradient flow, for all Θ

dΘ

dt
= −Ez

[
∂`(y, g(x))

∂g

∂g(x)

∂Θ

]
.

Proposition 5.7.2. For a (h+ 1)-layer NN function denoted by g(x), for simplicity, let

Kh+1
t (x, x̃) = Kh+1

t (x, x̃; {Θl}l=0,...,h+1), (5.7.16)

Kh
t (z, z̃) = Kh

t (z, z̃; {Θl}l=1,...,h+1). (5.7.17)

With gradient flow training process, we have the following recursive representation of the

corresponding kernel matrix

Kh+1
t (x, x̃) = Kh

t (o1(x), o1(x̃)) +

L0,L1∑
i=1,j=1

∂g(x)

∂Θ0
i,j

∂g(x̃)

∂Θ0
i,j

.

Here the kernel matrix is always positive semidefinite.

Proof of Proposition 5.7.2. For notational simplicity, let

Kh+1
t (x, x̃) = Kh+1

t (x, x̃; {Θl}l=0,...,h+1), and

Kh
t (z, z̃) = Kh

t (z, z̃; {Θl}l=1,...,h+1).

For the proof, we calculate the dynamic of prediction g(x), by elementary calculus, we have

dg(x)

dt
= −Ex[f∗(x)− g(x)]

[ ∑
all Θ

∂g(x)

∂Θ
· ∂g(x)

∂Θ

]
. (5.7.18)

With same calculation for the dynamic of ∆t as in (5.7.7), we get

Kh+1
t (x, x′) =

∑
Θ∈Θ0

∂g(x)

∂Θ
· ∂g(x̃)

∂Θ
+

∑
other Θ

∂g(x)

∂Θ
· ∂g(x̃)

∂Θ
. (5.7.19)
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By induction, we get

Kh+1
t (x, x̃) = Kh

t (o1(x), o1(x̃)) +

L0,L1∑
i=1,j=1

∂g(x)

∂Θ0
i,j

∂g(x̃)

∂Θ0
i,j

. (5.7.20)

Now, we prove the positive semi-definiteness of the kernel. By induction, we only need

to prove that the second term above is non-negative. We construct a canonical mapping

φh+1(x) := v(x),Rd → RL0×L1 , whereas the i, j-th coordinate v(x)i,j =
∂g(x)

∂Θ0
i,j

. Then the

second term can be seen as a inner product 〈φh+1(x), φh+1(x̃)〉, which implies the non-

negativity.
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Statistics, Series A, pages 359–372, 1964.

[189] Li Wenliang, Dougal Sutherland, Heiko Strathmann, and Arthur Gretton. Learning
deep kernels for exponential family densities. arXiv preprint arXiv:1811.08357, 2018.

[190] Wolfram Wiesemann, Daniel Kuhn, and Melvyn Sim. Distributionally robust convex
optimization. Operations Research, 62(6):1358–1376, 2014.

[191] Wayne L Winston and Jeffrey B Goldberg. Operations research: applications and
algorithms, volume 3. Thomson Brooks/Cole Belmont, 2004.

[192] Lin Xiao. Dual averaging methods for regularized stochastic learning and online opti-
mization. 2010.

[193] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant
sgd. arXiv preprint arXiv:1802.10116, 2018.

168

https://arxiv.org/abs/1011.3027


[194] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. Byzantine-
robust distributed learning: Towards optimal statistical rates. arXiv preprint
arXiv:1803.01498, 2018.

[195] Xue Ying. An overview of overfitting and its solutions. In Journal of Physics: Con-
ference Series, volume 1168, page 022022. IOP Publishing, 2019.

[196] Victor J Yohai. High breakdown-point and high efficiency robust estimates for regres-
sion. The Annals of statistics, pages 642–656, 1987.

[197] Bin Yu. Rates of convergence for empirical processes of stationary mixing sequences.
The Annals of Probability, pages 94–116, 1994.

[198] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks
and defenses for deep learning. IEEE transactions on neural networks and learning
systems, 30(9):2805–2824, 2019.

[199] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

[200] Kemin Zhou, John Comstock Doyle, Keith Glover, et al. Robust and optimal control,
volume 40. Prentice hall New Jersey, 1996.

[201] Jia-Jie Zhu, Wittawat Jitkrittum, Moritz Diehl, and Bernhard Schölkopf. Kernel dis-
tributionally robust optimization. arXiv preprint arXiv:2006.06981, 2020.

[202] Georgios Zioutas and Antonios Avramidis. Deleting outliers in robust regression with
mixed integer programming. Acta Mathematicae Applicatae Sinica, 21(2):323–334,
2005.
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