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for dif-

ferent values of σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
6.2 Classification error rates for ΓXn

, ΓYn
and ΓȲn
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ABSTRACT

Matérn Gaussian fields are popular modeling choices in many aspects of Bayesian inverse

problems, spatial statistics, machine learning, and numerous other scientific applications.

In this thesis we investigate their generalizations to graphical domains, referred to as graph

Matérn fields, by addressing their construction, application and theoretical properties. Graph

Matérn fields share qualitatively similar features with the usual Matérn Gaussian fields on

Euclidean spaces that are desirable for modeling purposes and enjoy a sparsity property

that facilitates computation. Their wide applicability is demonstrated through several ap-

plications including precipitation modeling, an elliptic inverse problem, and semi-supervised

classification, bridging together, and promoting exchange of ideas between spatial statistics,

Bayesian inverse problems, and graph-based machine learning. Under an assumption that

the graph nodes are sampled from a low-dimensional manifold, we show that our graph

Matérn fields are consistent approximations of certain Matérn-type Gaussian fields defined

over the underlying manifold. Study of the approximation error leads to new insights for the

role of the unlabeled data in graph-based semi-supervised learning. Finally we complement

the graph-based methods with a denoising algorithm that provably improves the performance

when the graph nodes are noisy perturbations of manifold samples, which represents a more

realistic scenario in many applications.
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CHAPTER 1

INTRODUCTION

1.1 Matérn Gaussian Fields—Beyond the Euclidean Setting

A Gaussian field (GF) {u(x)}x∈I is a collection of random variables where the joint dis-

tribution of any finite subcollection is a multivariate Gaussian, which can be completely

specified through a mean function µ(·) and a covariance function c(·, ·). GFs play a central

role in modeling functions in many aspects of spatial statistics, Bayesian inverse problems,

machine learning, and a variety of other scientific and engineering applications [Stein, 1999a,

Williams and Rasmussen, 2006, Stuart, 2010, Sullivan, 2015]. For instance, they are used

to interpolate data through a procedure called kriging in spatial statistics, or equivalently

Gaussian process regression in the machine learning community, and they serve as standard

priors in many statistical inverse problems including remote sensing and ground prospect-

ing. A wide range of covariance functions can be adopted to reflect one’s prior belief on the

fluctuations of the functions to be modeled, and such flexibility along with the analytical

properties given by the Gaussianity makes GFs attractive and useful in practice.

Of particular interest is the family of the so-called Matérn Gaussian fields (MGFs), which

consists of GFs with the Matérn covariance function, defined as

cMatérn(x, x̃) = σ2
21−ν

Γ(ν)
(κ|x− x̃|)ν Kν (κ|x− x̃|) , x, x̃ ∈ Rd. (1.1)

Here | · | denotes the Euclidean norm on Rd, Γ is the gamma function, and Kν is the modified

Bessel function of the second kind. The three parameters σ, ν, κ control respectively the

marginal variance, sample path smoothness, and correlation lengthscale. In a more intuitive

sense, they determine respectively the overall magnitude of the sample paths, number of

times that they can be differentiated, and how oscillatory they look like. MGFs form a rich

class of random fields that are able to model a wide range of phenomena. As noted in Stein
1



[1999a], one of the key properties that make MGFs attractive is their finite smoothness: the

samples paths associated with (1.1) are (roughly speaking) ν − 1 times differentiable. In

contrast, the squared exponential covariance function cSE(x, x̃) = exp

(
− |x−x̃|2

2κ2

)
leads to

infinitely differentiable sample paths, which is less realistic for many practical applications.

Given the flexibility of MGFs, a natural question is whether one can construct similar

Matérn type GFs on domains that are not necessarily Euclidean. In this thesis, we shall focus

on graphical domains, motivated by two reasons. The first reason is that graphs are natural

approximations of manifolds (see Figure 1.1 from García Trillos et al. [2020b]), which are

important non-Euclidean domains in many applications. For instance, when interpolating

Figure 1.1: Graph approximations of the sphere. The edges encode information about
closeness on the manifold and recover the geometry as the number of nodes increases to
infinity.

spatial data along the Earth surface—such as precipitation or temperature—it is desirable to

have GFs defined over the sphere. However, simply plugging the geodesic distances into the

Euclidean covariance functions may no longer retain positive definiteness [Banerjee, 2005],

and using the Euclidean distances fails to account for the geometry of manifold data. Hence

generalizing the MGFs to manifolds is itself important and nontrivial. But in many cases

one does not have access to the whole manifold but only unstructured samples from it.

Therefore, it would be desirable to construct GFs over the graph built from the samples

as approximations of GFs over the underlying manifold. The second reason is that when

analyzing discrete objects such as social networks, the index set comes from a similarity

2



graph that is not easily embedded into a Euclidean space, limiting the use of the covariance

functions. It would then be interesting to construct discretely indexed GFs that reflect

the correlations between the nodes encoded by their pairwise similarities. Motivated by

these questions, we shall study in this thesis the construction of Matérn type GFs over

graphs, demonstrate their wide applicability in inverse problems and machine learning, and

investigate their theoretical properties. The following Sections 1.2, 1.3 and 1.4 give an

overview of these aspects.

1.2 Graph Matérn Fields

1.2.1 The Series Representation

Let’s start by briefly discussing the main ideas behind their construction, motivated by

the seminal work of Lindgren et al. [2011], which exploits the stochastic partial differential

equation (SPDE) representation of MGFs on Euclidean spaces discovered by Whittle [1963].

Roughly speaking, a MGF u on Rd is the unique stationary solution to

(κ2 −∆)ν/2+d/4u(x) = W(x), x ∈ Rd, (1.2)

where ∆ is the usual Laplacian and W is spatial white noise. Therefore, analysis and ap-

proximation of the original MGFs can be equivalently carried out on the above equation.

Furthermore, as noted in Lindgren et al. [2011] the SPDE representation sidesteps the covari-

ance function perspective and opens doors for various generalizations. In particular, one can

define Matérn type GFs beyond the Euclidean setting by adjusting accordingly the SPDE

(1.2), e.g., by lifting the equation to a manifold. Moreover, the usual MGFs are stationary

in the sense that the covariance (1.1) between two points depend only on their distance and

it is generally difficult to introduce nonstationarity by modifying the covariance function.

However, the SPDE representation further allows seamless incorporation of nonstationar-
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ity by letting the constant parameter τ depend on x and replacing the Laplacian with an

anisotropic elliptic operator such as ∇ · (H∇) for some matrix-valued function H [Fuglstad

et al., 2015a, Bolin and Kirchner, 2020]. Therefore, the SPDE representation creates a whole

range of possibilities from a modeling perspective.

Motivated by these ideas, we shall construct a nonstationary Matérn type GF over a

graph, which we refer to as a graph Matérn field in the following. Let (V,E) be an undirected

graph with n nodes. Formally, we shall consider the following graphical analog of equation

(1.2) (after redefining the parameters τ, s > 0)

(τIn +∆n)
s/2un = Wn, (1.3)

where In is the n-dimensional identity matrix, Wn ∼ N (0, In) and ∆n ∈ Rn×n is a graph

analog of −∆ to be determined. It turns out that tools from spectral graph theory are readily

applicable here and what we need for ∆n is the so-called graph-Laplacian. We shall discuss it

in more detail shortly in Section 1.2.2, but let’s take for granted for the moment that a graph-

Laplacian is a symmetric positive semidefinite matrix that shares many qualitative features

with the usual Laplacian. In particular, it admits a spectral decomposition with nonnegative

eigenvalues and the associated eigenvectors form an orthonormal basis of Rn. The discrete

equation (1.3) can then be equivalently seen as the multivariate Gaussian distribution

un ∼ N (0, (τIn +∆n)
−s), (1.4)

which has a Karhunen-Loève expansion

un =
n∑

i=1

(τ + λn,i)
−s/2ξiψn,i, ξi

i.i.d.∼ N (0, 1), (1.5)

where (λn,i, ψn,i)’s are the ordered eigenvalue-eigenvector pairs of ∆n. We shall treat (1.5)
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as our definition for the graph Matérn field and remark that it retains the qualitative features

of the MGFs on Euclidean domains. Indeed, the ordered eigenvector ψn,i’s are becoming

more oscillatory as i increases, just as their counterparts for the usual Laplacian on bounded

domains. Therefore, a larger s implies faster decay of the coefficients and a more regular

sample path, whereas a larger τ incorporates more essential frequencies and makes the sample

path more oscillatory. Figures 1.2a, 1.2b and 1.2c demonstrate this behavior for three sets of

parameters when the graph nodes are points on a unit circle. Nonstationary generalizations

can be defined similarly by replacing τIn in (1.4) with a diagonal matrix τn and coming

up with a graph analog of the elliptic operators. In this case, the different values of τn can

be interpreted as local lengthscales around each node, as shown in Figure 1.2d, where τn

increases from 1 (the left end) to 30 (the right end). More details of the construction will

be discussed in Section 2 along with several applications.

(a) τ = 1, s = 2 (b) τ = 30, s = 2 (c) τ = 30, s = 4 (d) τ varying, s = 2

Figure 1.2: Plots of samples of (1.5) for different τ ’s and s’s when the graph nodes are from
the unit circle. The second row unfolds the plots in the first to the interval [0, 2π] for better
visualization of the fluctuations.
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1.2.2 The Graph-Laplacian

We shall now introduce the key object in the above construction—the graph-Laplacian.

Let (V,E) be an undirected weighted graph with n nodes whose edge weights are given by

W ∈ Rn×n. We shall also refer to W as the similarity matrix since Wij can be interpreted as

the similarity between nodes i and j. The unnormalized graph-Laplacian is then defined as

the matrix ∆n = D−W , where D is the diagonal matrix whose entries are Dii =
∑n

j=1Wij .

Several normalized versions can also be constructed (see e.g. Von Luxburg [2007] ), but for

our purpose we shall focus on the unnormalized one. One readily sees that ∆n is positive

semidefinite by the following relation

vT∆nv =
1

2

n∑
i,j=1

Wij |v(i)− v(j)|2, v ∈ Rn. (1.6)

Moreover, (1.6) implies that if we identify v with a function over the nodes V , then those v’s

that change slowly with respect to the similarities lead to smaller values of vT∆nv. Therefore,

Gaussian distributions of the form N (0,∆−1
n ) (∆−1

n representing the pseudoinverse) would

favor these “smooth” v’s since its negative log density is proportional to (1.6) (up to an

additive constant), and our previous construction (1.4) can be seen as generalizing such

smoothness constraint.

For many of the applications that we shall consider, a typical case is that we are

given the graph nodes V , usually as a collection of data feature xi’s, and we need to

define the pairwise similarities by ourselves to reflect the structures of the specific prob-

lems. For instance when the xi’s are Euclidean vectors, common choices are the ϵ-graphs,

where Wij = 1{|xi − xj | < ϵ}, and k-nearest neighbor (k-NN) graphs, where Wij =

1{xi and xj are k-NN of each other}, among many others.

Of particular interest is the case where the xi’s are further sitting on a manifold. Besides

the modeling of the Earth surface mentioned above, such manifold assumption [Belkin and
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Niyogi, 2004] has been adopted frequently in the literature. The rationale is that one often

encounters data features that live in high dimensional ambient spaces but carry certain low

dimensional structures. An interesting example is the MNIST dataset consisting of images of

hand-written digits from 0 to 9. Each image is a 784 (28-by-28 numerical matrix) dimensional

vector, but one should expect that the intrinsic dimension of this dataset is much smaller

since the shape of the digits (say annular for the digit 0) substantially limits the degrees

of freedom they can take. Therefore, the manifold assumption is an idealization of such

low-dimensional structure.

Under the manifold assumption, one can further establish certain theoretical properties of

the graph-Laplacian. Suppose now we are given {xi}ni=1 that are sampled from a submanifold

M of Rd. Define the similarities by

Wij =
2(m+ 2)

nνmh
m+2
n

1{|xi − xj | < hn}, (1.7)

where m is the dimension of M, νm is the volume of the m−dimensional unit ball, and

hn is a user-chosen graph connectivity parameter. Under suitable assumptions, it can be

shown that the graph-Laplacian ∆n constructed using the similarities (1.7) converges to the

Laplace-Beltrami operator ∆M on M (where we take the convection that ∆M is positive

semidefinite). Here by convergence we mean both in the pointwise sense [Hein et al., 2005,

2007], meaning that ∆nf(x)
n→∞−−−−→ ∆Mf(x) for smooth enough f ’s, and in spectral sense

[Burago et al., 2015, García Trillos et al., 2020a], meaning that the eigenvalues and eigen-

functions of ∆n converge (in an appropriate sense) to those of ∆M. Recent work also shows

that for a k-NN construction of the graph, these properties are retained [Calder and Gar-

cía Trillos, 2022]. Therefore in such cases, the graph-Laplacian is indeed a discrete analog

of the usual Laplacian as we have assumed in Section 1.2. Furthermore, it can be expected

that the discretely indexed GF (1.5) will converge to a continuum GF defined over M. We

shall come back to this point later in Section 1.4.
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1.2.3 Computation

So far we have discussed the construction of our prior from a modeling perspective, by

drawing connections with the MGFs on Euclidean spaces and the regularization power of the

graph-Laplacian. We shall see now that our graph Matérn fields also facilitates computation.

This lies in the crucial observation that the graph-Laplacians are usually sparse, as the

weights matrices (e.g. the k-NN construction) usually are. In the case of manifold data,

this can be easily seen from the definition (1.7). Indeed, it can be shown that for suitable

choice of hn, the number of nonzero entries of W , and hence ∆n is O(n3/2) while retaining

an accurate approximation of ∆M. Therefore for small integer s’s in (1.4), we are left with

a sparse precision matrix for the Gaussian and numerical linear algebra methods can be

employed to speed-up computation. For general s’s, a second layer of rational approximation

proposed by Bolin and Kirchner [2020] can be adopted to retain sparsity.

In a broader sense, the graph Matérn fields constructed can be seen as an instance of

the recent trend of leveraging sparsity for computational efficiency in GF methodologies.

Despite their modeling flexibility, GFs suffer from high computational costs due to the need

of factorizing the covariance matrix, which scales in general as O(n3). Therefore, several

lines of works have been trying to alleviate this so called big-n problem, including Vecchia

approximations [Vecchia, 1988], screening effects [Stein, 2002], covariance tapering [Furrer

et al., 2006], and low-rank approximations [Banerjee et al., 2008], among many others. The

paper by Lindgren et al. [2011] shows that a finite element approximation to the SPDE (1.2)

introduces sparsity and hence leads to a sparse approximation to the original MGF. In a

similar sense, our graph Matérn fields can be seen as a sparse graph-based approximation

to an SPDE that defines a continuum GF on some underlying space. Under the manifold

assumption, our work can be seen as a generalization of theirs to the unstructured point

cloud setting where finite element methods are not directly applicable.

On the other hand, GFs over graphs is still a developing area. Previous works in the
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machine learning community mainly focus on objects like N (0, (τIn+∆n)
−1) by leveraging

the regularization power of the graph-Laplacian [Zhu et al., 2003, Bertozzi et al., 2018, Ng

et al., 2018]. Our construction generalizes these with nonstationarity and higher powers of

graph-Laplacian by establishing a connection with the usual MGFs on Euclidean spaces,

and provide an interpretation of the parameter τ as local lengthscales instead of a nugget

term to make the covariance positive definite as in most previous works. Furthermore, the

connection with usual MGFs bridges the machine learning and spatial statistics communities

and facilitates the exchange of ideas between them, as will be demonstrated through the

latent Gaussian models in Section 2.

1.3 Applications

1.3.1 The Bayesian Perspective

Having talked about the construction and qualitative properties of the graph Matérn fields,

we shall now illustrate some of their applications. Suppose we are given data pairs (xi, yi)
i.i.d.∼

Law(X, Y ) for i = 1, . . . , n. We shall refer to the xi’s as features and yi’s as labels. Common

examples of the label-generating mechanism include the regression and binary classification

problems, where for some function u


yi = u(xi) + ηi, ηi ∼ N (0, σ2) regression

P(yi = 1) = u(xi) classification.
(1.8)

We shall interpret the function u as an underlying true parameter of the system that gen-

erates the data, and a typical goal is then to infer u based on the data pairs {(xi, yi)}ni=1.

More sophisticated label-generating mechanism includes the solution operator of a partial

differential equation (PDE) that appears in inverse problems as we shall discuss shortly in

Section 1.3.2, where the function u will be the coefficient of the PDE.
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Since the support of X is rarely known ahead, the more common goal would be to infer

the vector un = (u(x1), . . . , u(xn))
T and we shall adopt a Bayesian approach to this problem.

The starting point is to construct a prior for un, which is a probability distribution over

Rn (the space of all possible realizations of un) that encodes our prior belief about how

it might look like before seeing the label yi’s. For instance we may have prior knowledge

about the smoothness properties or the lengthscales of the underlying function u. Then by

conditioning on the labels, we obtain through the Bayes formula the posterior, which is again

a probability distribution over Rn, satisfying

P(un|y1, . . . , yn)︸ ︷︷ ︸
posterior

∝ P(y1, . . . , yn|un)︸ ︷︷ ︸
likelihood

P(un)︸ ︷︷ ︸
prior

. (1.9)

Here P(y1, . . . , yn|un) is the likelihood of the labels given that they are generated from un

and factors into
∏n

i=1 P(yi|un) if independence of the yi’s are assumed. In the setting of

(1.8), the likelihoods take the form

P(yi|un) =


(2πσ2)−

1
2 e

− |yi−un(i)|2

2σ2 regression,

un(i)
yi [1− un(i)]

1−yi classification.

The posterior represents our updated belief about un that is incurred by the labels. Roughly

speaking, the posterior density will be large for those un’s that are consistent both with the

labels and with our prior beliefs. Inference of the true un is then carried out based on point

estimators such as the posterior mean or mode, and Bayesian confidence intervals computed

based on the posterior.

A closely related alternative to the Bayesian perspective is the optimization approach,
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which on a high level estimates the true un by solving the following problem

ûn = argmax
v∈Rn

[
logP(y1, . . . , yn|v) +R(v)

]
. (1.10)

Here R(·) is a regularizer to prevent overfitting, which plays a similar role as our prior.

Indeed, the maximizer of (1.10) is conceptually equivalent to the posterior mode of (1.9) if

the prior is taken to satisfy P(v) ∝ eR(v). A disadvantage of the optimization approach is

that for complicated likelihoods such as those that involve solving a PDE, (1.10) is highly

nonconvex and may be difficult to solve. However in the Bayesian perspective, Markov chain

Monte Carlo methods can be employed to estimate the posterior mean instead of finding

the mode, which alleviates such issue in certain cases, although the computational cost is

generally higher due to the need of running a long Markov chain.

It turns out that the choice of prior is crucial in the Bayesian approach and this is

where our graph Matérn fields come in. More precisely, we shall use our graph Matérn

fields constructed in the previous section as prior models for un. In the following we shall

briefly discuss two problems that are well-suited for their application, with more applications

deferred to Section 2.

1.3.2 An Elliptic Inverse Problem

The first problem that we shall consider is an elliptic inverse problem. To be more concrete,

consider the following diffusion equation

− div(eu∇p) = f, x ∈ M, (1.11)

defined over a manifold M, and we are given points {xi}ni=1 on M with noisy observations

yi = p(xi) + ηi, ηi
i.i.d.∼ N (0, σ2), i = 1, . . . , n
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of the solution p. The goal is then to recover the coefficient function u based on the data pairs

{(xi, yi)}ni=1. Possible application of the problem is in underground oil reservoir modeling,

where p represents the pressure of the oil and the goal is to recover the permeability eu of the

rocks for better exploitation purposes. The manifold setup is to account for possible nonflat

geometry underground, and because of this, a systematic representation of M may not be

available but only unstructured sample xi’s are obtained which can be thought of as the

locations of the underground sensors. Therefore, constructing a prior model for functions on

all of M may be infeasible while our graph Matérn fields then circumvent such issue with a

graph-based approximation.

The key ingredient in solving an inverse problem is a solver for the forward problem,

or in other words, given a function u, we need to solve or approximately solve the PDE

(1.11). More precisely, let F : B → L2(M) denote the forward map that maps a coefficient

function u in some Banach space B to the corresponding solution p of the PDE. Since F is

rarely known analytically, approximations are necessary for practical computations. Due to

the lack of a structured representation of M such as a triangulation, traditional numerical

solvers such as the finite element methods are not directly applicable here. Therefore in

Section 3, a new graph-based discretization of the PDE (1.11) is introduced. The idea is

based on the following simple observation that the diffusion operator can be written as

− div(eu∇p) =
√
eu
[
∆M(p

√
eu)− p∆M

√
eu
]
,

i.e., as a difference between two Laplacian-like terms. Since we know how to approximate

∆M with ∆n, the approximation for the diffusion operator follows accordingly. We shall

formalize these ideas in Section 3, together with numerical experiments to demonstrate their

effectiveness in several examples including a complicated artificial manifold surface.

The Bayesian approach to inverse problems [Kaipo and Somersalo, 2006, Stuart, 2010]

has received increasing attention over the past decades. Besides the advantage of having a
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whole posterior that allows uncertainty quantification, the Bayesian approach further leads

to a well-posed problem, meaning that a small perturbation in the data, the prior, or the

forward map incurs a small perturbation in the posterior. In Section 3 we also establish such

a result by bounding the error introduced from our approximate forward map. However,

as mentioned above, the advantages of the Bayesian perspective comes with the generally

high cost of the associated sampling algorithms. Moreover, theoretical properties such as

consistency and convergence rates of the Bayesian approach to inverse problems are still

emerging [Abraham and Nickl, 2020, Giordano and Nickl, 2020, Monard et al., 2021].

1.3.3 Semi-supervised Learning

The second line of problems that we shall consider lies in the area of semi-supervised learning

(SSL). In short, SSL shares the same goal of inferring the underlying function u as above,

but exploits further a collection of unlabeled data. In other words, we are given both la-

beled {(xi, yi)}ni=1 and unlabeled data {xi}Ni=n+1, with the goal being to estimate the vector

uN = (u(x1), . . . , u(xN ))T . SSL arises with the fact that collecting unlabeled data can be

done cheaply while assigning labels to them is a much more expensive process. For instance,

categorizing websites and texts requires the time-consuming process of going through the

contents, and labeling protein sequences would require extensive expert knowledge and ex-

perimentation. Therefore, N is usually much larger than n and the goal of SSL is to boost

the learning performance by taking advantage of the abundance of unlabeled data.

The question of whether unlabeled data can indeed help has been widely debated, and

different conclusions have been reached under different model assumptions and methodologies

adopted. For our purpose, the manifold assumption mentioned above comes up again, in

which case the graph-based Bayesian approach fits naturally. The intuition is that the

additional unlabeled data add to our understanding of the underlying geometry and allow us

to construct a more accurate model for uN . Imagine in the limiting scenario with infinitely
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many unlabeled data, we would be able to resolve the underlying manifold completely and

construct instead a continuum GF over the manifold. We shall come back to these ideas in

Section 1.4 and more rigorously in Section 4.

The graph-based methods is one of the most widely adopted approaches to SSL (see

Van Engelen and Hoos [2020] for a review of the various methods). The overall idea is

to regularize the learning problem based on the geometric information extracted from the

unlabeled data and use the similarity information to propagate the labels. In the parallel

optimization perspective, the regularizer is usually set to be R(v) = vT∆Nv, which accord-

ing to (1.6) would impose a penalty for vectors whose variation are inconsistent with the

similarity patterns. Borrowing intuitions from the usual Laplacian, this penalty term can

be further interpreted as penalizing certain discrete derivatives of the vector or equivalently

a function over the graph nodes, just as the quadratic form ⟨f,−∆f⟩ would do. As men-

tioned, the graph Matérn fields can be seen to generalize such regularization effect on the

level of the prior model for uN . Part of the novelty of our graph Matérn fields lies in the

nonstationarity, i.e., Gaussian distributions of the form N (0, (τN + ∆N )−s) where τN is a

possibly nonconstant vector representing the local lengthscales at each node, as opposed to

the usual graph-based prior N (0, (τIN + ∆N )−s) for a single uniform lengthscale τ . We

demonstrate in Section 2 that such a nonstationary modeling leads to improved performance

over the standard stationary one for a semi-supervised classification problem, which shows

their practical relevance for other potential machine learning applications.

1.4 Continuum Limits

Having discussed about the applications of our graph Matérn fields, we now turn to their

theoretical properties. We shall make the manifold assumption throughout this section and

investigate the asymptotic regime where the number of data features xi’s increases to infinity,

which we refer to as the continuum limit. In particular, we will see that the graph Matérn
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fields converge to certain Matérn type GFs defined over the underlying manifold, and such

convergence on the level of the prior in our Bayesian perspective leads to new insights about

the corresponding posteriors in a SSL problem. We remark that although the manifold

assumption facilitates the analysis, our graph Matérn fields are applicable in more general

settings as we have seen above and as will be demonstrated in Section 2.

1.4.1 Prior Level

Recall that our graph Matérn fields are constructed based on a graphical representation of

the SPDE (1.2), which characterizes the usual MGFs on Euclidean spaces. It further admits

a series representation (1.5) that we have used as the definition of our graph Matérn field.

Therefore, a natural candidate for their continuum limit would be the manifold analog of

the MGFs, which can be motivated similarly through the same SPDE by replacing the usual

Laplacian with the Laplace-Beltrami operator. In particular, we shall consider formally the

Gaussian measure N (0, (τ + ∆M)−s). If we further assume M is compact, then a similar

series representation as (1.5) can be obtained

u =
∞∑
i=1

(τ + λi)
−s/2ξiψi, ξi

i.i.d.∼ N (0, 1), (1.12)

where (λi, ψi)’s are the eigenvalue-eigenfunction pairs of ∆M. In a similar spirit as the graph

Matérn field (1.5), the random field (1.12) has exactly the same qualitative features as a MGF

defined over M, with τ and s controlling respectively the lengthscale and smoothness. In

Section 2, we will show under suitable assumptions that

E∥un ◦ Tn − u∥22
n→∞−−−−→ 0, (1.13)

where Tn : M → {x1, . . . , xn} is a sequence of transport maps. Roughly speaking, the

transport maps can be interpreted as certain interpolation maps to reconcile the fact that u
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is a random field defined over all of M while un is only defined over the xi’s. The main novelty

is a convergence result after the incorporation of nonstationarity, with the u defined (1.12)

modified accordingly. An intuitive explanation of such convergence in the stationary case can

be readily seen by comparing the series representations (1.5) and (1.12), and recalling that

the construction of graph-Laplacians guarantees spectral convergence. The key point lies

in a suitable choice of the graph connectivity parameter hn in the definition of the weights

(1.7), which needs to satisfy

(log n)cm

n1/m
≪ hn ≪ 1

n1/2s
, (1.14)

with cm = 3/4 if m = 2 and cm = 1/m otherwise and m is the dimension of M. The

rationale for the choice (1.14) is that the lower bound characterizes the resolution of the

xi’s and hn should be much larger than it to capture the local geometry, while the upper

bound ensures that the higher frequencies of ∆n do not accumulate in the large n limit

[García Trillos and Sanz-Alonso, 2018].

Our convergence result (1.13) can be seen as part of the recent line of work that studies

discrete approximations of continuum GFs. Starting with the seminal work of Lindgren et al.

[2011] that proposed a finite element approximation to the usual MGFs, several other authors

have extended the ideas to study approximations of more general Matérn type GFs [Bolin

et al., 2020, Bolin and Kirchner, 2020, Cox and Kirchner, 2020]. The sparsity structure intro-

duced by the finite element approximation then facilitates computation. Our result shares

a similar nature, but instead with a graph-based approximation, and the sparsity struc-

ture comes from that of the graph-Laplacian. Furthermore, our graph-based approximations

complement and generalize the finite element approaches in high dimensional settings where

the latter becomes less practical.
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1.4.2 Posterior Level

The previous subsection considers the approximation properties of the graph Matérn fields,

which can be see as a consistency result on the level of the prior. A natural question would

then be to understand the implications of such convergence on the corresponding posteriors

when the graph Matérn fields are applied. It turns out that in the SSL setting that we have

described above, we do obtain some new insights: the unlabeled data indeed help to improve

the learning performance.

To illustrate the main idea, let’s introduce some notations and concepts. Recall that in

the SSL problem, we are given both labeled {(xi, yi)}ni=1 and unlabeled data {xi}Nn
i=n+1, with

the goal being to estimate the conditional mean function u0(x) = E[Y |X = x]. Notice that

we have introduced a subscript for N since we are interested in understanding its dependency

with respect to n. We adopt a Bayesian perspective by putting a graph Matérn prior πNn

over u0|{x1,...,xNn} that is constructed with all the xi’s, which after conditioning on the yi’s

gives us a posterior that we denote as µyNn
. The quality of the posterior determines the

quality of various estimators that we construct, and for good estimation performance, we

would ideally want our posterior to be nearly supported around the true parameter u0. The

following concept, the so-called posterior contraction rate introduced by Ghosal et al. [2000],

gives a quantitative measure of such concentration. We say that the sequence of posteriors

µ
y
Nn

contracts around u0 with rate ϵn if, for all sufficiently large M > 0,

µ
y
Nn

(
u ∈ RNn : ∥u− u0∥n ≤Mϵn

) n→∞−−−−→ 1 (1.15)

in probability, where

∥u− u0∥2n :=
1

n

n∑
i=1

|u(xi)− u0(xi)|2.

Here again we identify a vector in RNn with a function over {xi}Nn
i=1. The convergence
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(1.15) implies that asymptotically the sequence of posteriors µyNn
will be nearly supported

on a ball of radius O(ϵn) around u0|{x1,...,xNn}. Therefore, ϵn characterizes the rate at which

the posterior “contracts” around u0 and can be intuitively interpreted as the convergence

rate of the posterior distribution towards the truth. As a consequence of the convergence

(1.15), the point estimator defined as

ûn := argmin
u∈RNn

[
µ
y
Nn

(v ∈ RNn : ∥v − u∥n ≤Mϵn)
]

converges (in probability) to u0 with the same rate ϵn. Therefore, the posterior contraction

rates can be compared with the minimax theory of statistical inference to quantify the

performance of Bayesian procedures.

In Section 4 we will show in the regression and binary classification setting that optimal

contraction rates can be achieved if Nn ≍ n2m, which suggests that unlabeled data help in

this case. To be slightly more precise, we will show that if the truth u0 belongs to a “β-regular

function class”, then the minimax optimal rate n−β/(2β+m) can be achieved, provided that N

grows sufficiently fast with n. Here by β-regular we mean a Besov-type function space with

parameter β defined over the manifold that is introduced by Coulhon et al. [2012], Castillo

et al. [2014], which roughly speaking represents functions that are β-times differentiable.

The rationale of our result lies in the connection between graph Matérn fields and their

continuum limits. First, it can be shown that optimal contraction rates can be achieved if the

continuum Matérn type GF (1.12) is used as the prior. Of course, this is an idealized setting

when the underlying manifold is known exactly, but points us to a promising direction since

the continuum limit of our graph Matérn field is a “good” prior for the learning problem.

Then it comes the second important ingredient of the analysis, which is a result from [van der

Vaart and van Zanten, 2008a, Theorem 2.2] that says if Πn is a sequence of Gaussian priors

approximating “sufficiently well” a limiting Gaussian prior Π, then the posterior contraction

rates with respect to the Πn’s will be the same as that of Π. In our context, Πn would be the
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graph Matérn prior πNn
, whose limit Π is given by (1.12), and the condition of sufficiently

good approximation translates to the requirement that

E∥uNn
◦ TNn

− u∥22 ≲ n−1 (1.16)

following the framework developed in Section 1.4.1. A refined analysis of the consistency

result (1.13) gives a rate

E∥uNn
◦ TNn

− u∥22 ≲ N
− 1

2m
n , (1.17)

and therefore the required sample size for Nn is obtained by matching (1.16) and (1.17). We

see that the convergence rate of the graph Matérn fields suffers from the curse of dimension-

ality, which is not too surprising since the resolution of the point cloud xi’s scales as N−1/m
n .

Therefore, the overall intuition is that the slow convergence rate of the graph Matérn fields

can be compensated by the abundance of the unlabeled data to still retain an accurate

approximation of the continuum GFs, which leads to optimal estimation performance.

The question of whether unlabeled data help in SSL has been studied under different

model assumptions and methodologies, leading to different conclusions [Wasserman and Laf-

ferty, 2007, Singh et al., 2008, Niyogi, 2013]. Our result then suggests the effectiveness of

unlabeled data in the specific setting of graph-based Bayesian approach under a manifold as-

sumption. As we discussed, an important step in our analysis is to understand the continuum

limits of the graph-based methods. This has been an active research area, including both

a Bayesian perspective [García Trillos and Sanz-Alonso, 2018, García Trillos et al., 2020b]

with a similar set up as ours, and an optimization perspective [Calder et al., 2020, Calder

and Slepčev, 2020, Bungert et al., 2021] that draws connection with certain limiting PDEs

over the underlying manifold. On the other hand, our analysis uses tools from the theory

Bayesian nonparametrics and complements recent works on analyzing Bayesian estimation
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approaches over graphs [Kirichenko and van Zanten, 2017] and manifolds [Castillo et al.,

2014, Yang and Dunson, 2016].

1.5 Outline and Main Contributions

We now give an outline of the following sections and summarize their main contributions.

• Chapter 2 is based on Sanz-Alonso and Yang [2022a]. We study the construction of

the graph Matérn fields and formalize a rigorous framework to study their convergence

towards certain continuum GFs. Several applications demonstrate their wide applica-

bility in spatial statistics and machine learning problems. Our construction generalizes

the finite element-based approximations of MGFs proposed by Lindgren et al. [2011]

and the Laplacian regularization in the graph-based learning literature, while at the

same time retains sparsity structure that facilitates computation in practice.

• Chapter 3 is based on Harlim et al. [2020]. We apply the graph Matérn fields to solve

an elliptic inverse problem in Bayesian perspective. A new kernel type approximate

solver of the elliptic PDE is proposed, which can be easily discretized using graph-

based techniques. A consistency result of the proposed approximate solving scheme

is established as the kernel bandwidth parameter goes to zero. Several numerical

examples demonstrate the effectiveness of our approach.

• Chapter 4 is based on Sanz-Alonso and Yang [2022b]. We study the effect of unlabeled

data in SSL problems based on the convergence framework developed in Section 2.

We show that when there are sufficiently many unlabeled data, the Bayesian approach

with graph Matérn fields as the prior can achieve optimal learning performance under

a manifold assumption, suggesting that the unlabeled data help. The analysis has a

conceptually simple interpretation in terms of the connection between graph Matérn

fields and their continuum limits and a quantitative bound on the required number of

20



unlabeled data is provided.

• Chapter 5 is based on Sanz-Alonso and Yang [2022c]. We adopt the framework de-

veloped in Section 4 to give some new insights about the related finite element-based

methods proposed by Lindgren et al. [2011]. We show that besides the computational

saving provided by the sparsity of the finite element approximations, a second layer of

speed-up is possible by reducing the dimension of the problem under mild smoothness

assumptions. Our theory is then complemented by simulation studies in a wide range

of practical scenarios that demonstrate its relevance.

• Chapter 6 is based on García Trillos et al. [2019b]. We extend the manifold assumption

that we have adopted for many parts of the thesis. We assume instead the more realistic

setting where the data features no longer lie exactly on a manifold, but are noisy

perturbations of points on a manifold. A local regularization scheme is proposed that

provably leads to a better behaved graph-Laplacian. Several numerical experiments

demonstrate improved learning performance with the regularization scheme on both

synthetic and real data, suggesting its potential practical impact.

1.6 Notations

We close this section by introducing some notation. We denote by L(Z) the law of the

random variable Z. For a, b two real numbers, we denote a ∧ b = min{a, b} and a ∨ b =

max{a, b}. The symbol ≲ will denote less than or equal to up to a universal constant.

For two real sequences (an) and (bn), we denote (i) an ≪ bn if limn(an/bn) = 0; (ii)

an = O(bn) if lim supn(an/bn) ≤ C for some positive constant C; and (iii) an ≍ bn if

c1 ≤ lim infn(an/bn) ≤ lim supn(an/bn) ≤ c2 for some positive constants c1, c2. Finally we

let γ denote the Lebesgue measure on R.
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CHAPTER 2

THE SPDE APPROACH TO MATÉRN GAUSSIAN FIELDS:

GRAPH REPRESENTATIONS

2.1 Introduction

The stochastic partial differential equation (SPDE) approach to Gaussian fields (GFs) has

been one of the key developments in spatial statistics over the last decade [Lindgren et al.,

2011]. The main idea is to represent GFs as finite element solutions to SPDEs, reducing

the computational cost of inference and sampling by invoking a Gaussian Markov random

field (GMRF) approximation [Rue and Held, 2005]. This chapter investigates graph repre-

sentations of stationary and nonstationary Matérn fields following the SPDE perspective,

contributing to and unifying the extant theoretical, computational and methodological lit-

erature on GFs in Bayesian inverse problems, spatial statistics and graph-based machine

learning. We demonstrate through transparent mathematical reasoning that, under a man-

ifold assumption, graph representations give GMRF approximations to the Matérn model

with error guarantees. In addition, we show that graph representations generalize the Matérn

model to unstructured point clouds and graphs where existing finite element representations

are not applicable.

Recall that a random function u(x), x ∈ Rd, is a GF if all finite collections {u(xi)}ni=1 have

self-consistent multivariate Gaussian distributions [Abrahamsen, 1997, Adler, 2010]. A GF

can be specified using a mean function µ(·) and a covariance function c(·, ·), so that the mean

vector and covariance matrix of the finite dimensional distributions are {µ(xi)} ∈ Rn and

Σ = {c(xi, xj)} ∈ Rn×n. GFs are natural models for spatial, temporal and spatio-temporal

data. They have desirable analytic properties, including an explicit normalizing constant

and closed formulae when conditioning on Gaussian data. However, in practice GFs have

two main caveats. First, it is crucial and non-trivial to find flexible covariance functions with
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few but interpretable parameters that can be learned from data. Second, inference of these

parameters from Gaussian data of size n —or sampling the field at n locations— involves

factorizing a kernel matrix Σ ∈ Rn×n, leading to a O(n3) computational cost and O(n2)

memory cost unless further structure is assumed or imposed on the covariance model. For

this reason, many recent works have investigated novel ways to deal with large datasets,

some of which are reviewed in Heaton et al. [2019].

The SPDE approach tackles the big n problem by replacing the GF with a GMRF

approximation. A GMRF is a discretely indexed GF un(i), i ∈ {1, . . . , n}, such that the full

conditional distribution at each site 1 ≤ i ≤ n depends only on a (small) set of neighbors ∂i

to site i. This conditional independence structure is fully encoded in the precision matrix

Q of the multivariate Gaussian distribution of un ∈ Rn: it holds that Qij ̸= 0 iff i ∈ ∂j.

Computationally, the main advantage comes from using numerical linear algebra techniques

and Markov chain Monte Carlo algorithms that exploit, respectively, the sparsity of Q and

the characterization of the GMRF in terms of its full conditionals. The speed-up can be

dramatic, with a typical computational cost O(n), O(n3/2), and O(n2) for GMRFs in time,

space, and space-time in two spatial dimensions, see Rue and Held [2005]. In addition to

alleviating the computational burden of GF methods, the SPDE approach also alleviates

the modeling challenges by suggesting nonstationary generalizations of Matérn fields and

extensions beyond Euclidean settings.

In this chapter we employ graph-based discretizations of SPDEs to represent stationary

and nonstationary Matérn models. With few exceptions e.g. García Trillos and Sanz-Alonso

[2018], Bertozzi et al. [2018], García Trillos et al. [2020b], Harlim et al. [2020], previous work

stemming from the SPDE approach considered representations based on finite element or

finite difference discretizations [Lindgren et al., 2011, Bolin and Kirchner, 2020, Bolin et al.,

2020, 2018, Roininen et al., 2019, Wiens et al., 2020, Bolin, 2014]. Graph representations

provide a way to generalize the Matérn model to discrete and unstructured point clouds, and
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thus to settings of practical interest in statistics and machine learning where only similarity

relationships between abstract features may be available. Moreover, in contrast to finite

elements, graph representations require minimal pre-processing cost: there is no need to

compute triangulations and finite element basis or to define ghost domains as in Lindgren

et al. [2011]. This is an essential advantage when interpolating manifold data living in a high

dimensional ambient space, particularly so when the underlying manifold or its dimension

are unknown. Finally, a wide range of problems in Bayesian inversion, spatial statistics and

graph-based machine learning can be formulated as latent Gaussian models, and using graph

representations of Matérn fields as priors allows us to unify and contribute to the exchange

of ideas across these disciplines.

A disadvantage of the graph-based approach is that error guarantees are weaker than

for finite element or finite difference representations. Our belief is that this is due to the

generality of the graph-based approach, and also to the underdevelopment of existing theory.

Here we provide an up-to-date perspective of spectral convergence of graph Laplacians which

overviews and generalizes some of the recent literature [Burago et al., 2015, García Trillos

et al., 2019a,b] and we further show how these results can be used to establish the convergence

of GMRFs to GFs. We view graph representations as being complementary to, rather than

a replacement for, finite element representations. If the underlying domain is known and a

suitable mesh can be obtained, then finite element representations would be recommended

on the grounds of better error guarantees and sparsity, see Section 2.3.3.1. However, graph-

based methods are more broadly applicable, and in particular generalize the Matérn model

to unstructured point clouds as will be demonstrated in our numerical examples in Sections

2.5.3 and 2.5.4.
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2.1.1 Literature Review

The ubiquity of GFs in statistics, applied mathematics and machine learning has led, unsur-

prisingly, to the reinvention and relabeling of many algorithms and ideas. GFs play a central

role in spatial statistics [Gelfand et al., 2010, Heaton et al., 2019], especially in the subfield

of geostatistics [Stein, 1999a], where they are used to interpolate data in a procedure called

kriging and as a building block of modern hierarchical spatial models [Banerjee et al., 2014].

In machine learning, GFs are called Gaussian processes and kriging is known as Gaussian

process regression [Williams and Rasmussen, 2006]. Gaussian processes are one of the main

tools in Bayesian non-parametric inference [Williams and Rasmussen, 1996, van der Vaart

and van Zanten, 2008a, García Trillos et al., 2020b] and are an alternative to neural net-

works for supervised and semi-supervised regression [MacKay, 1997, García Trillos et al.,

2020b]. They are also related to, or used within, other machine learning algorithms includ-

ing splines, support vector machines and Bayesian optimization [Sollich, 2002, Seeger, 2000b,

Brochu et al., 2010, Frazier, 2018]. GFs are standard prior models for statistical Bayesian

inverse problems [Kaipo and Somersalo, 2006, Calvetti and Somersalo, 2007, Stuart, 2010,

Sanz-Alonso et al., 2019] with applications in medical imaging, remote sensing and ground

prospecting [Bardsley and Kaipio, 2013, Dunlop et al., 2017, Somersalo et al., 1992, Dunlop

and Stuart, 2016, García Trillos and Sanz-Alonso, 2017]. Within Bayesian inversion, GFs are

also employed as surrogates for the likelihood function [Stuart and Teckentrup, 2018]. GFs

have found numerous applications, allowing for uncertainty quantification [Sullivan, 2015] in

astrophysics [Bardeen et al., 1986], biology [Taylor and Worsley, 2007, Stathopoulos et al.,

2014], calibration of computer models [Kennedy and O’Hagan, 2001, Martin and Simpson,

2005], data-driven learning of partial differential equations [Raissi et al., 2018, 2017], geo-

physics [Isaac et al., 2015, Bui-Thanh et al., 2013], hydrology [Sanchez-Vila et al., 2006],

image processing and medical imaging [Cohen et al., 1991, Somersalo et al., 1992, Roininen

et al., 2014], meteorology [Bolin and Lindgren, 2011, Lindgren et al., 2011] and probabilistic
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numerics [Hennig et al., 2015, Kersting and Hennig, 2016], among others.

The emphasis of this chapter is on Matérn models [Matérn, 2013] and generalizations

thereof. Matérn models are widely used in spatial statistics [Stein, 1999a, Gelfand et al.,

2010], machine learning [Williams and Rasmussen, 2006] and uncertainty quantification

[Sullivan, 2015], with applications in various scientific fields [Guttorp and Gneiting, 2006,

Cameletti et al., 2013]. The SPDE approach to construct GMRF approximations to GFs was

proposed in the seminal paper [Lindgren et al., 2011] and was further popularized through the

software R-INLA [Bakka et al., 2018]. GMRFs in statistics were pioneered by Besag [1974,

1975] and their computational benefits and applications are overviewed in the monograph

Rue and Held [2005].

In an independent line of work, the desire to define positive semi-definite kernels using

only similarity relationships between features motivated the introduction of diffusion kernels

[Kondor and Lafferty, 2002], which can be interpreted as limiting cases of Matérn mod-

els. The main idea underlying the construction of diffusion kernels is to exploit that graph

Laplacians [Chung, 1997, Von Luxburg, 2007] and their powers satisfy the positive semi-

definiteness requirement. This observation has permeated the construction of graph-based

regularizations in manifold learning and machine learning applications, as well as the design

of model reduction techniques e.g. [Zhu et al., 2003, Ng et al., 2018, Li et al., 2018, Liu et al.,

2014, Belkin et al., 2004, Belkin and Niyogi, 2008, 2004]. Our work aims to demonstrate that

a wide family of graph-based kernels in machine learning may be interpreted, in a rigorous

way, as discrete approximations of standard GF models in spatial statistics.

Large sample limits of graph Laplacians have been widely studied. Most results concern

either pointwise convergence [Hein et al., 2005, Belkin and Niyogi, 2008, Giné and Koltchin-

skii, 2006, Hein, 2006, Singer, 2006, Ting et al., 2010] or variational and spectral convergence

[Belkin and Niyogi, 2007, Singer and Wu, 2017, Tao and Shi, 2020, Burago et al., 2015,

García Trillos et al., 2019b], with Calder and García Trillos [2022] reconciling both perspec-
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tives to obtain improved rates. This chapter builds on and generalizes spectral convergence

theory—that is, convergence of eigenvalues and eigenfunctions of the graph-based operators

to those defined in the continuum—to study GMRF approximations of GFs. Unsurprisingly,

we shall see that optimal transport ideas are key to linking discrete and continuum objects.

2.1.2 Main Contributions and Outline

Further to providing a unified narrative of existing literature, this chapter contains some

original contributions. We introduce GMRF approximations of nonstationary GFs defined

on manifolds through graph representations of the corresponding SPDEs and generalize the

constructions to arbitrary point clouds. Our main theoretical result, Theorem 2.4.2, covers

nonstationary models and, to our knowledge, is the first to give rates of convergence of

graph-based representations of GFs. We also demonstrate through numerical examples that

the mathematical unity that comes from viewing graph-based methods as discretizations of

continuum ones facilitates the transfer of methodology and theory across Bayesian inverse

problems, spatial statistics and graph-based machine learning. In particular, we introduce

nonstationary models for graph-based classification problems, which to our best knowledge

has not been considered before, and empirically observe an improvement of performance that

deserves further research.

This chapter is organized as follows. Section 2.2 introduces the SPDE formulation of

the Matérn model and extends it to incorporate nonstationarity. Section 2.3 introduces the

graph-based approach and constructs graph approximations of the Matérn fields. Section

2.4 presents the main result on the convergence of the graph Matérn model towards its

continuum counterpart and discusses the ideas of the proof. Section 2.5 illustrates the

application of graph Matérn models in Bayesian inverse problems, spatial statistics and

graph-based machine learning. Section 2.6 discusses further research directions. Our aim is

to provide a digestible narrative and for this reason we postpone all proofs and most of the
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technical material to an appendix.

2.2 Matérn Models and the SPDE Approach

In this section we provide some background on GFs and the SPDE approach. We introduce

the Matérn family in Section 2.2.1 and a nonstationary generalization in Section 2.2.2. All

fields will be assumed to be centered and we focus our attention on their covariance structure.

2.2.1 Stationary Matérn Models

Recall that a GF in Rm belongs to the Matérn class if its covariance function can be written

in the form

cσ,ν,ℓ(x, y) = σ2
21−ν

Γ(ν)

(
|x− y|
ℓ

)ν

Kν

(
|x− y|
ℓ

)
, x, y ∈ Rm, (2.1)

where |·| is the Euclidean distance in Rm, Γ denotes the Gamma function and Kν denotes the

modified Bessel function of the second kind. The parameters σ, ν and ℓ control, respectively,

the marginal variance (magnitude), regularity and correlation length scale of the field. While

being defined in terms of three interpretable parameters, the modeling flexibility afforded

by the Matérn covariance (2.1) is limited by its stationarity (the value of the covariance

function depends only on the difference between its arguments) and isotropy (it depends

only on their Euclidean distance).

An important characterization by Whittle [1954, 1963] is that Matérn fields can be defined

as the solution to certain fractional order stochastic partial differential equation (SPDE).

Precisely, setting τ := ℓ−2, s := ν+ m
2 , a Gaussian field with covariance function (2.1) is the

unique stationary solution to the SPDE

(τI −∆)
s
2u(x) = W(x), x ∈ Rm, (2.2)
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where the marginal variance of u is

σ2 =
Γ(s− m

2 )

(4π)
m
2 Γ(s)τs−

m
2
. (2.3)

Throughout this chapter, fractional power operators such as (τI −∆)
s
2 will be defined spec-

trally [Lischke et al., 2020] and W denotes spatial Gaussian white noise with unit variance.

As discussed in Lindgren et al. [2011], the SPDE formulation of Matérn GFs has several

advantages. First, it allows to approximate the solution to (2.2) by a GMRF and thereby

to reduce the computational cost of inference and sampling [Rue and Held, 2005, Simpson

et al., 2012]. Second, it suggests natural nonstationary and anisotropic generalizations of

the Matérn model by letting τ depend on the spatial variable [Roininen et al., 2019] or by

replacing the Laplacian with an elliptic operator with spatially varying coefficients [Fuglstad

et al., 2015a,b]. Third, it allows to define Matérn models in manifolds and in bounded

spatial, temporal and spatio-temporal domains by using modifications of the SPDE (2.2),

possibly supplemented with appropriate boundary conditions [Khristenko et al., 2019]. In

order to gain theoretical understanding, in subsequent sections we will work under a manifold

assumption and analyze the convergence of graph representations of Matérn fields defined

on manifolds. This setting is motivated by manifold learning theory [Belkin et al., 2004,

García Trillos et al., 2019b] and will allow us to build on the rich literature on GFs on

manifolds [Adler, 2010].

In more mathematical terms, the SPDE characterization shifts attention from the covari-

ance function (or spectral density) description of Gaussian measures to the covariance (or

precision) operator description [Bogachev, 1998]: keeping only the τ term in the marginal

variance given by equation (2.3), we see that the law of the field u(x) defined by equation

(2.2) is —up to a scaling factor independent of τ that we drop in what follows— the Gaussian

29



measure

N (0, C), C = τs−
m
2 (τI −∆)−s, (2.4)

where the factor τs−
m
2 can be interpreted as a normalizing constant. This observation

motivates our definition of the nonstationary Matérn field in Section 2.2.2, which facilitates

the theory.

2.2.2 Nonstationary Matérn Models

In this subsection we introduce a family of nonstationary Matérn fields by modifying the

SPDE (2.2). We consider a manifold setting which does not hinder the understanding of

the modeling and will later allow us to frame the analysis in a concrete setting of applied

significance. To that end, we let M be an m-dimensional smooth, connected, compact

Riemannian manifold without boundary that is embedded in Rd. We will let τ depend on

the spatial variable and replace the Laplacian by an elliptic operator ∇ · (κ(x)∇), where

differentiation is defined on M. Formally, we consider the SPDE

[
τ(x)I −∇ · (κ(x)∇)

] s
2
u(x) = W(x), x ∈ M, (2.5)

where W is a spatial Gaussian white noise with unit variance on M. The additional κ acts

as a change of coordinate x̃ =
√
κ(x)x and introduces a factor of κ(x)−

m
2 for the marginal

variance, whence the field u(x) in equation (2.5) has marginal variance proportional to

τ(x)
m
2 −sκ(x)−

m
2 at each location. If M = Rd, the solution u to (2.5) defines a nonstationary

field, and in analogy we will use the term nonstationary for fields defined by the SPDE

(2.5), or approximations thereof, in manifold and more abstract settings. In such settings,

stationarity or “shift-invariance” is not well-defined without introducing an algebraic action,

and nonstationarity should be understood as nonhomogeneity.
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Following again the covariance operator viewpoint, we formally consider the Gaussian

measure N (0, [Lτ,κ]−s), where Lτ,κ := τI − ∇ · (κ∇), with a proper normalization to be

made precise below. Assuming sufficient regularity, Lτ,κ is self-adjoint with respect to the

L2(M) inner product and admits a spectral decomposition. Therefore we shall define our

nonstationary Matérn field through the following Karhunen-Loéve expansion,

u(x) := τ(x)
s
2−

m
4 κ(x)

m
4

∞∑
i=1

[
λ(i)
]− s

2
ξ(i)ψ(i)(x), (2.6)

where ξ(i) i.i.d.∼ N (0, 1) and {(λ(i), ψ(i))}∞i=1 are the eigenpairs of Lτ,κ := τI − ∇ · (κ∇).

The factor τ(x)
s
2−

m
4 κ(x)

m
4 serves as a normalizing constant for the marginal variance at

each point. For the theory outlined in Section 2.4 we will assume that τ is Lipschitz, κ is

continuously differentiable and both are bounded from below by a positive constant, whence

Weyl’s law [Canzani, 2013, Theorem 72] implies that λ(i) ≍ i
2
m . Therefore by setting s > m

2 ,

we have E∥u∥2
L2(M)

< ∞ and the series (2.6) converges in L2(M) almost surely. The idea

of viewing the functions τ or κ as hyperparameters and learning them from data has been

investigated in Fuglstad et al. [2015a], Roininen et al. [2019], Monterrubio-Gómez et al.

[2020], Fuglstad et al. [2015b], Wiens et al. [2020] and has motivated the need to penalize

the complexity of priors [Fuglstad et al., 2019]. We note that other approaches to introduce

nonstationarity that do not stem directly from the SPDE formulation have been considered

in the literature (e.g. Anderes and Stein [2008], Gramacy and Lee [2008], Kim et al. [2005],

Montagna and Tokdar [2016], Sampson et al. [2001]).

Remark 2.2.1. The normalizing factors τ(x)
s
2−

m
4 κ(x)

m
4 are crucial for hierarchical models

in that they balance the marginal variances at different locations. To gain more intuition on

the powers, consider the case where both τ and κ are constant. Weyl’s law then implies that

the eigenvalues of Lτ,κ satisfy

λ(i) ≍ τ + Cκi
2
m ,
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and therefore

E

∥∥∥∥∥
∞∑
i=1

[
λ(i)
]− s

2
ξ(i)ψ(i)

∥∥∥∥∥
2

L2(M)

≍
∞∑
i=1

[
τ + Cκi

2
m

]−s

≍
∑

i:τ≳κi2/m

τ−s +
∑

i:τ≲κi2/m

κ−si−
2s
m

≍ τ−s
(τ
κ

)m
2
+ κ−s

∫ ∞

( τκ)
m
2
x−

2s
m

≍ τ
m
2 −sκ−

m
2 .

We thus see that the normalizing factor above balances the expected norm.

Remark 2.2.2. Both parameters τ and κ control the local length scales of the sample paths.

To see this, note that when both τ and κ are constant (2.6) simplifies to

u =
(τ
κ

) s
2−

m
4

∞∑
i=1

[τ
κ
+ λ(i)

]− s
2
ξ(i)ψ(i),

where {(λ(i), ψ(i))}∞i=1 are eigenpairs of −∆. Therefore τ
κ acts as a threshold on the essential

frequencies of the samples, where those frequencies with corresponding eigenvalue on the same

order of τ
κ have effective contributions. Hence a large τ (or a smaller κ) incorporates higher

frequencies and gives sample paths with small length scale. Their opposite role in controlling

the local length scale can be seen in Figure 2.1, which represent two random draws from

Gaussian fields defined on the unit circle with different choices of κ and τ .

2.3 GMRF Approximation with Graph Representations of SPDEs

In this section we study GMRF approximations of the Matérn models introduced in Section

2.2. Since the work of Lindgren et al. [2011], a burgeoning literature has been devoted to

linking GFs and GMRFs, doing the modeling with the former and computations with the
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(a) (b)
Figure 2.1: Random draws from nonstationary GFs on the unit circle; (a). κ = 0.01; τ =
exp
(
cos(x)

)
; (b). κ = exp

(
cos(x)

)
, τ = 100.

latter [Bakka et al., 2018]. The main idea of Lindgren et al. [2011] is to introduce a stochastic

weak formulation of the SPDE (2.2):

⟨(τI −∆)
s
2u, ϕi⟩L2

D
= ⟨W , ϕi⟩L2 , i = 1, . . . ,M,

where {ϕi}Mi=1 is a set of test functions and D
= denotes equal in distribution. Then one

constructs a finite element (FEM) representation of the solution

u(x) =
n∑

k=1

wkφk(x),

where n is the number of vertices in the triangulation, {φk} are interpolating piecewise

linear hat functions and {wk} are Gaussian distributed weights. Importantly, these finite

dimensional representations allow to obtain a GMRF precision matrix with computational

cost O(n). The convergence of the FEM representation to the GF has been studied in

Lindgren et al. [2011] and in more generality in Bolin and Kirchner [2020], Bolin et al. [2020,

2018].

The FEM representation requires triangulation of the domain, possibly adding artificial

nodes to obtain a suitable mesh, and in practice it is rarely implementable in dimension

higher than 3. However for many applications e.g. in machine learning, interest lies in
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interpolating or classifying input data in high dimensional ambient space with moderate

but unknown intrinsic dimension, making FEM representations of GFs impractical. Graph

Laplacians, discussed next, provide a canonical way to construct GMRF approximations in

the given point cloud.

2.3.1 Graph Matérn Models

Let X = {x1, . . . , xn} be a given point cloud, over which we put a graph structure by

considering a symmetric weight matrix W ∈ Rn×n whose entries Wij ≥ 0 prescribe the

closeness between points. In applications including classification and regression, each xi will

represent either a feature or an auxiliary point used to improve the accuracy of the GMRF

approximations described in this subsection. The graph structure encodes the geometry of

the point cloud and can be exploited through the graph Laplacian.

Several definitions of graph Laplacians co-exist in the literature. DefiningD := diag(d1, ...,

dn) the degree matrix with di :=
∑n

j=1Wij , three popular choices are unnormalized ∆un
n :=

D − W, symmetric ∆
sym
n := D−1/2∆un

n D−1/2 and random-walk ∆rw
n := D−1∆un

n graph

Laplacians, see Von Luxburg [2007]. To streamline the presentation, we use ∆n ∈ Rn×n

as placeholder for a graph Laplacian with n data points; its choice will be made explicit

whenever it is relevant to the problem at hand.

To gain some intuition, let us consider the unnormalized graph Laplacian, whose positive

semi-definiteness is verified by the relation

uTn (D −W )un =
1

2

n∑
i=1

n∑
j=1

Wij |un(i)− un(j)|2 ≥ 0. (2.7)

Here un = [un(1), . . . , un(n)]
T ∈ Rn is an arbitrary vector in Rn, interpreted as a function

on X with the identification un(xi) ≡ un(i). Note that ∆un
n = D −W annihilates constant

vectors (in agreement with the intuition that the Laplacian annihilates constant functions)
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and 0 is always an eigenvalue. For a fully connected graph, one can see that the eigenvalue 0

has multiplicity 1, with the constant vectors as its only eigenspace. If we consider N (0,∆−1
n )

(with ∆−1
n representing the Moore-Penrose inverse) as a degenerate Gaussian distribution

in Rn with support on the orthogonal complement of the constant vectors, then (2.7) is the

negative log-density of this distribution (up to an additive constant), which suggests that

functions that take similar values on close nodes are favored, with closeness quantified by the

weight matrix W . Moreover, it can be shown that the second eigenvector ψ(2)n of ∆n solves

a relaxed graph cut problem [Von Luxburg, 2007], so that ψ(2)n encodes crucial information

about partition of the points xi’s. Hence N (0,∆−1
n ) naturally serves as a prior for clustering

and classification [Bertozzi et al., 2018]. Various choices of the weight matrix have been

considered in the literature, including ε-graphs and k-NN graphs, which set Wij to be zero if

d(xi, xj) > ε and if xi is not among the k-nearest neighbors of xj (or vice versa) respectively

for some distance function d. Both of them introduce sparsity in the weight matrix, which

is inherited by the graph Laplacian. Under such circumstances, the graph Laplacian can be

viewed as a sparse precision matrix, which gives rise to a GMRF.

It is important to note that the preceding discussion makes no assumption on the points xi

or how their closeness is defined. Therefore, the graph-based viewpoint allows to generalize

the Matérn model to unstructured point clouds, and thus to settings of practical interest in

statistics and machine learning where only similarity relationships between abstract features

may be available. For instance, the points may represent books and their closeness may be

based on a reader’s perception of similarity between them. However, an important example in

which we will frame our theoretical investigations arises from making a manifold assumption.

Assumption 2.3.1 (Manifold Assumption). The points xi are independently sampled from

the uniform distribution γ on an m-dimensional smooth, connected, compact manifold M

without boundary that is embedded in Euclidean space Rd, with bounded sectional curvature

and Riemannian metric inherited from Rd. Assume further that M is normalized so that
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vol(M)=1.

To emphasize the stronger structure imposed by the manifold assumption we denote

the point cloud by X ≡ Mn = {x1, . . . , xn} ⊂ M. For many applications, the manifold

assumption is an idealization of the fact that the point cloud has low dimensional structure

despite living in a high dimensional ambient space, e.g., the MNIST dataset that we will study

in Section 2.5.4. From a theoretical viewpoint, Assumption 2.3.1 allows us to establish a

precise link between graph Laplacians and their continuum counterparts, as we now describe

heuristically. Define the weight matrix W on Mn by

Wij :=
2(m+ 2)

nνmh
m+2
n

1
{
|xi − xj | < hn

}
, (2.8)

where | · | is the Euclidean distance in Rd, hn is the graph connectivity and νm is the volume

of the m-dimensional unit ball. Then the unnormalized graph Laplacian ∆un
n is a discrete

approximation of the Laplace-Beltrami operator −∆ on M.

Indeed, for a smooth function f : Rm → R we have by Taylor expansion of f around X

∫
Bhn(X)

[f(Y )− f(X)]dY ≈
∫
Bhn(X)

∇f(X)T (Y −X)dY

+
1

2

∫
Bhn(X)

(Y −X)T∇2f(X)(Y −X)dY,

where Bhn(X) is the Euclidean ball centered at X with radius hn. By symmetry, the first

integral is zero and the second integral reduces to (after a change of variable Z = Y −X)

1

2

m∑
i=1

∂2f

∂X2
i

(X)

∫
Bhn(0)

Z2
i dZ =

νmh
m+2
n

2(m+ 2)
∆f(X),
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where Xi and Zi represent the i-th coordinates of X and Z. This gives

−∆f(xi) ≈
2(m+ 2)

νmh
m+2
n

∫
Bhn(xi)

[f(xi)− f(Y )]dY ≈
n∑

j=1

Wij [f(xi)− f(xj)], (2.9)

which is exactly the way ∆n is defined. Since M is locally homeomorphic to Rm and the

geodesic distance between any two points is well approximated by the Euclidean distance,

the heuristic argument above can be formalized to show point-wise convergence of ∆n to

−∆ in the manifold case. A rigorous result on spectral convergence will be given in more

generality in Section 2.4.

The previous discussion suggests to introduce the following discrete analog to the Gaus-

sian measure (2.4)

N (0, Cn), Cn = τs−
m
2 (τIn +∆n)

−s,

whose samples admit a Karhunen-Loève expansion

un = τ
s
2−

m
4

n∑
i=1

[
τ + λ

(i)
n

]− s
2
ξ(i)ψ

(i)
n , (2.10)

where {ξ(i)}ni=1 are independent standard normal random variables and
{
(λ

(i)
n , ψ

(i)
n )
}n
i=1 are

eigenpairs of ∆n. This will be our definition of the stationary graph Matérn field.

Remark 2.3.2. We note once again that the model (2.10) can be used in wide generality:

it only presupposes that the practitioner is given a weight matrix associated with an abstract

point cloud, and it only requires to specify a graph-Laplacian. We will show that (2.10)

generalizes the stationary Matérn model in the sense that if the point cloud is sampled from

a manifold, the weights are defined through an appropriate ε-graph, and an unnormalized

graph-Laplacian is used, then the graph-based model approximates the Matérn model on the

manifold. Similar convergence results could be established with k-nearest neighbor graphs and
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other choices of graph Laplacian. Our numerical examples in Section 2.5 will illustrate the

application of graph-based Matérn models both in manifold and abstract settings, and using

a variety of graph Laplacians.

Remark 2.3.3. The above construction can be adapted when the points xi are distributed

according to a Lipschitz density q that is bounded below and above by positive constants. In

this case, (2.9) should take the form

−∆f(xi) ≈
n∑

j=1

Wij [f(xi)− f(xj)]q(xj)
−1 ≈ 1

2

n∑
j=1

Wij [f(xi)− f(xj)][q(xi)
−1 + q(xj)

−1],

where the last step follows from the Lipschitzness of q and the fact that q−1 is bounded away

from 0 and is needed to ensure symmetry of the new weights. Setting f = q in (2.9) we have

q(xi) ≈
1

νmhmn

∫
Bhn(xi)

q(y)dy − h2n∆q(xi) ≈
1

nνmhmn

n∑
j=1

1{|xi − xj | < hn} := qhn(xi)

where we have dropped h2n∆q since it is of lower order. Hence the new weights should be

adjusted as

Wij =
m+ 2

nνmh
m+2
n

1{|xi − xj | < hn}[qhn(xi)
−1 + qhn(xj)

−1].

2.3.2 Nonstationary Graph Matérn Models

Now we are ready to construct nonstationary graph Matérn fields that approximate the

nonstationary Matérn field in Section 2.2.2. In analogy with the previous subsection, the

crucial step is to obtain a graph discretization of the operator Lτ,κ = τI − ∇ · (κ∇) with
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spatially varying τ and κ. Notice that we have

∇ · (κ∇f) =
√
κ[∆(

√
κf)− f∆

√
κ].

Applying (2.9) to ∆(
√
κf) and f∆

√
κ gives

−∇ · (κ∇f) ≈
∫
Bhn(x)

√
κ(x)κ(y) [f(x)− f(y)] ≈

n∑
i=1

Wij

√
κ(xi)κ(xj) [f(xi)− f(xj)].

Hence −∇ · (κ∇·) can be approximated by ∆κ
n = D̃ − W̃ , where

W̃ij = Wij

√
κ(xi)κ(xj) =

2(m+ 2)

nνmh
m+2
n

1
{
|xi − xj | < hn

}√
κ(xi)κ(xj) , (2.11)

D̃ii =
n∑

j=1

W̃ij . (2.12)

Denoting τn = diag
(
τ(x1), . . . , τ(xn)

)
and κn = diag

(
κ(x1), . . . , κ(xn)

)
, we define —similarly

as in Section 2.2.2— the nonstationary graph Matérn field through the Karhunen-Loéve ex-

pansion

un := τ
s
2−

m
4

n κ
m
4
n

n∑
i=1

[
λ
(i)
n

]− s
2
ξ(i)ψ

(i)
n , (2.13)

where {ξ(i)}ni=1 are independent standard normal random variables and
{
(λ

(i)
n , ψ

(i)
n )
}n
i=1 are

eigenpairs of Lτ,κn := τn+∆κ
n. Equation (2.13) is a natural finite dimensional approximation

of (2.6) and one should expect that spectral convergence of ∆n towards −∆ will translate

into convergence of (2.13) towards (2.6) in the large n limit. This will be rigorously shown

in Section 2.4.

In the covariance operator view, un follows a Gaussian distribution N (0, C
τ,κ
n ) with

C
τ,κ
n := τ

s
2−

m
4

n κ
m
4
n [L

τ,κ
n ]−sκ

m
4
n τ

s
2−

m
4

n . (2.14)
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Therefore samples can be generated by solving

[L
τ,κ
n ]

s
2un = ξn, ξn ∼ N (0, In) (2.15)

and then multiplying with the diagonal matrix τ
s/2−m/4
n κ

m/4
n . For 0 < s < 2, (2.15) can

be solved with a sparse approximation as in Harizanov et al. [2018], Bolin and Kirchner

[2020] and for s ≥ 2 an iterative scheme can be employed. We remark that (2.15) can be

solved exactly by performing a spectral decomposition of Lτ,κn , which is computationally

more expensive and not recommended for large n’s.

Remark 2.3.4. As discussed in Remark 2.2.2, both τn and κn control the local length scale.

For many applications e.g. in machine learning, we shall focus on the modeling choice with

τn only, because the operator ∇ · (κ∇) is less motivated for general xi’s that do not come

from a manifold. In such cases, one can construct a nonstationary Matérn field similarly as

above, by using a graph Laplacian built with the xi’s, e.g. with a k-NN graph. Indeed, the

only key step is to normalize properly the marginal variances, which are largely determined by

the growth of the spectrum as in Remark 2.2.1. Hence one can find an integer m so that the

first several λ(i)n ’s grow roughly as i
2
m and use m as an effective dimension of the problem for

normalization. Moreover, both the k-NN and ε-graphs result in sparsity in ∆n, and numerical

linear algebra techniques for sparse systems can be employed to attain speed-up.

2.3.3 A Simulation Study

In this subsection we perform a simulation study on the unit sphere to demonstrate the

graph approximation of Matérn fields and its sparsity. Let M be the two-dimensional unit

sphere embedded in R3 and formally consider the Matérn model specified by the SPDE

(I −∆)−
s
2u(x) = W(x),
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where ∆ is the Laplace-Beltrami operator on M and W is spatial white noise with unit vari-

ance. More precisely, we consider the Matérn field defined by the Karhunen-Loève expansion

u(x) =
∞∑
i=1

[
1 + λ(i)

]− s
2
ξ(i)ψ(i), ξ(i)

i.i.d.∼ N (0, 1),

where {(λ(i), ψ(i))}∞i=1 are the eigenpairs of −∆. It is known that the eigenvalues are ℓ(ℓ−1)

with multiplicity 2ℓ− 1 for ℓ = 1, 2, . . . , and the eigenfunctions are the spherical harmonics.

The covariance function associated with this field is

c(x, y) =
∞∑
i=1

[
1 + λ(i)

]−s
ψ(i)(x)ψ(i)(y). (2.16)

We shall investigate the approximation of this covariance function by the covariance function

of a graph Matérn field. In Section 2.3.3.1 we consider the case where only unstructured sam-

ples from the sphere are available to demonstrate the generality of the graph-based method

and in Section 2.3.3.2 we restrict ourselves to triangulations of the sphere for comparison

with the FEM-based approximation.

2.3.3.1 Unstructured Grids

In this subsection we consider “pseudo-unstructured” point clouds generated as follows. The

idea is to parametize points on the sphere in polar coordinates (θ, ϕ) ∈ [0, π] × [0, 2π]. so

that the uniform distribution on the sphere can be generated with the formula

θ = arccos(1− 2U), ϕ = 2πV,

where U, V are independent unif(0, 1) random variables. Now instead of generating n i.i.d.

pairs of (U, V ), we will partition the domain [0, π]× [0, 2π] uniformly into subgirds of size π
M

by 2π
M for an integer M and then pick one point from each subgrid randomly and uniformly.
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The reason is that due to the rotational symmetry of the spherical harmonics, the computed

graph eigenfunctions may be out-of-phase versions of the true eigenfunctions and hence we

need some structure from the point cloud in order to make them well aligned. Therefore the

generated point cloud is only close to being unstructured.

Let {xi}n=M2

i=1 denote the generated point cloud. We construct an ε-graph over the xi’s

by setting the weights as in (2.8). Precisely, we define

Wij =
2(m+ 2)vol(M)

nνmhm+2
1{|xi − xj | < hn} =

32

nh4n
1{|xi − xj | < hn}, (2.17)

where m = 2 in this case and the additional factor vol(M) is needed to account for the fact

that vol(M) ̸= 1. Let ∆n = D −W be the unnormalized graph Laplacian. Then (2.16) is

approximated by

cn(xj , xk) =
n∑

i=1

[
1 + λ

(i)
n

]−s
ψ
(i)
n (xj)ψ

(i)
n (xk), (2.18)

where the ψ(i)n ’s are suitably normalized eigenfunctions of ∆n.

To demonstrate the approximation, we pick M points x1, . . . , xM with similar longitude

ranging from the north pole to the south pole. That way, the distance between x1 and xk

is increasing, with xM being the farthest and we then compare the values of cn(x1, xk) and

c(x1, xk) for k = 1, . . . ,M. We shall focus on the s = 2 case and set the connectivity as

hn = 1.5 × n−1/4, which is motivated by (2.23) below. Figure 2.2 shows three simulations

with M = 50, 60, 70 respectively in each row. The three plots in the first column show that

we get reasonable approximations except for the first entry. The reason lies in the poor

spectral approximation after certain threshold (Theorems 2.4.6 and 2.4.7) as demonstrated

in the second column. The spectrum of ∆n becomes almost flat after some threshold and

hence the tails of (2.18) have a nonnegligible contribution that worsens the approximation.

Such effect is most prominent for cn(x1, x1), since for j ̸= k the vectors {ψ(i)n (xj)}ni=1
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Figure 2.2: The three rows represent simulations for n = 2500, 3600, 4900 respectively.
Within each row, the plots represent (1) Covariances: theoretical (blue) vs. approximation
(red). (2) Spectra of −∆ (blue) and ∆n (red). (3). Covariances (truncated): theoretical
(blue) vs. approximation (red). (4). Sparsity pattern of ∆n.

and {ψ(i)n (xk)}ni=1 are less correlated (and in fact orthogonal because they are the rows of

the eigenvector matrix from singular value decomposition), so that cancellations reduce the

contribution of their tails in (2.18) even if the spectrum gets flat. In the third column of

Figure 2.2 we compute the truncated version of (2.18) by keeping only the first
√
n terms, and

we see that cn(x1, x1) is improved substantially with the rest being almost the same as before.

The truncation level
√
n is motivated by Theorem 2.4.6 so that the error hn

√
λ(

√
n) = O(1)

in this case. Finally the last column of Figure 2.2 shows the sparsity patterns of the ∆n’s,

which have decreasing percentages of nonzero entries 1.13%, 0.94% and 0.8% as n increases.

The sparsity indeed leads to computational speed-up as for instance the Matlab built-in

function chol takes in our machine 0.1713s to factorize (In +∆n)
s but 0.6082s to factorize

a random positive semi-definite n by n dense matrix when n = 4900.
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2.3.3.2 Structured Grids

The unstructured point clouds in the previous subsection do not necessarily form triangula-

tions of the sphere and FEM-based approximation would require additional nodes. Therefore

to compare the two approximations, we assume instead to be given a triangulation as shown

in the first column of Figure 2.3. The three triangulations are generated from the R-INLA

function inla.mesh.create(globe=k) with k = 17, 19, 22, which consist of n = 2892, 3612,

4842 points respectively. Graph-based approximations are constructed as in (2.17) with

hn = 2 × n−1/4 and FEM-based approximations are computed using the R-INLA package.

The second column of Figure 2.3 shows that the FEM-based approximations are almost in-

distinguishable from the truth and the truncated graph-based approximations (as in Section

2.3.3.1 with truncation level
√
n) are also reasonably accurate. The last two columns of

Figures 2.3 demonstrate the corresponding sparsity patterns of the precision matrices, i.e.

the matrices (In + ∆n)
s for the graph-based case. The comparisons suggest that FEM-

based approximations outperform the graph-based ones, which is not unexpected since the

graph-based approach does not fully exploit the structure of the triangulation. Therefore

the graph-based approximation is especially valuable when a triangulation of the domain is

unavailable and difficult to obtain, as will be demonstrated in our numerical examples in

Section 2.5.

2.4 Convergence of Graph Representations of Matérn Models

In this section we study the convergence of graph representations of GFs under the manifold

Assumption 2.3.1. The analysis will generalize existing literature to cover the nonstationary

models introduced in Section 2.3.2, obtaining new rates of convergence.
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Figure 2.3: The three rows represent simulations for n = 2892, 3612, 4842 respectively.
Within each row, the plots represent (1) Visualization of the triangulation. (2) Covariances:
theoretical (blue), FEM-based (red), and graph-based (yellow). (3). Sparsity pattern of
FEM-based precision. (4). Sparsity pattern of graph-based precision.

2.4.1 Setup and Main Result

Recall from (2.6) and (2.13) that draws from the continuum and graph Matérn fields are

defined by the series

u = τ
s
2−

m
4 κ

m
2

∞∑
i=1

[
λ(i)
] s
2
ξ(i) ψ(i), (2.19)

un = τ
s
2−

m
4

n κ
m
2
n

n∑
i=1

[
λ
(i)
n

] s
2
ξ(i) ψ

(i)
n . (2.20)

We seek to establish convergence of un towards u. But notice that un is only defined on

the point cloud Mn, while u is defined on M. Therefore a natural route is to introduce an

interpolation scheme, using ideas from optimal transport theory.
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Recall the manifold assumption 2.3.1 that {xi}∞i=1 is a sequence of independent samples

from the uniform distribution γ on M and denote bu γn = 1
n

∑n
i=1 δxi the empirical measure

of {xi}ni=1. It should be intuitively clear that for the graph Matérn fields to approximate well

their continuum counterparts, the point cloud {xi}ni=1 needs to first approximate M well.

The following result ([García Trillos et al., 2019a, Theorem 2] together with Borel-Cantelli)

measures such approximation quantitatively.

Proposition 2.4.1. There is a constant C such that, with probability one, there exists a

sequence of transport maps Tn : M → Mn so that γn = Tn♯γ and

lim sup
n→∞

n1/m supx∈M dM
(
x, Tn(x)

)
(log n)cm

≤ C, (2.21)

where cm = 3/4 if m = 2 and cm = 1/m otherwise.

Here dM denotes the geodesic distance on M and the notation γn = Tn♯γ means that

γ
(
T−1
n (U)

)
= γn(U) for all measurable U , so that Tn is a measure preserving map. Intu-

itively Tn transports the mass of M to the points {xi}ni=1, so that the preimage of each single-

ton gets 1/n of the mass, i.e., γ(T−1
n ({xi})) = 1/n. Furthermore, the sets Ui := T−1

n ({xi})

form a partition of M and by Proposition 2.4.1 we have Ui ⊂ BM(xi, εn), where

εn := sup
x∈M

dM(x, Tn(x)) ≲
(log n)cm

n1/m
(2.22)

and BM(x, r) refers to the geodesic ball centered at x with radius r. Therefore each Ui is

“centered around” xi and the function

un ◦ Tn(x) =
n∑

i=1

un(xi)1Ui
(x), x ∈ M,

can be thought of as a locally constant interpolation of un to a function on M. This motivates

us to quantify the convergence of graph Matérn fields by the expected L2 := L2(γ)-norm
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between un ◦ Tn and u. Recall that hn is the graph connectivity that is crucial in defining

un.

Theorem 2.4.2. Suppose τ is Lipschitz, κ ∈ C1(M) and both are bounded below by positive

constants. Let s > m and

(log n)cm

n1/m
≪ hn ≪ 1

n1/2s
, (2.23)

where cm = 3/4 if m = 2 and cm = 1/m otherwise. Then, with probability one,

E∥un ◦ Tn − u∥L2
n→∞−−−−→ 0,

where {Tn}∞n=1 is a sequence of transport maps as in Proposition 2.4.1. If further s >

(5m+ 1)/2 and

hn ≍

√
(log n)cm

n1/m
, (2.24)

then, with probability one,

E∥un ◦ Tn − u∥L2 = O
(√

hn

)
= O

(
(log n)cm/4

n1/4m

)
.

Remark 2.4.3. Notice that εn as defined in (2.22) represents the finest scale of variations

that the point cloud can resolve and hence hn needs to be much larger than εn to capture

local geometry, which is reflected in the lower bound of (2.23). We will see below that the

scaling (2.24) gives the optimal convergence rate. In such cases the geodesic ball of radius hn

has volume O(n−1/2) up to logarithmic factors and hence the average degree of the graph is

O(n1/2) up to logarithmic factors as the xi’s are uniformly distributed. Therefore, the number

of nonzero elements in the weight matrix (and hence the graph Laplacian) is O(n3/2) up to
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logarithmic factors.

Although not as sparse as the stiffness matrix in FEM approach which has O(n) nonzero

entries, the graph Laplacian still gives computational speed-up. Since we only assume a

random design for the point cloud xi’s, we are essentially analyzing the worst case scenario.

Therefore we expect that the convergence rate and the resulting sparsity of the graph Laplacian

can be improved if the point cloud is structured. However this will require a different analysis

which is beyond the scope of this chapter.

In previous related work, the Tn’s are taken to be the optimal transport maps, whose

computation can be quite challenging, especially in high dimensions [Peyré and Cuturi, 2019].

Therefore we consider an alternate interpolation map below that can be computed efficiently.

Consider the Voronoi cells

Vi = {x ∈ M : |x− xi| = min
j=1,...,n

|x− xj |}.

Up to a set of ambiguity of γ-measure 0, the Vi’s form a partition of M and we shall assume

they are disjoint by assigning points in their intersections to only one of them. We then

define a map Tn : M → Mn by Tn(x) = xi for x ∈ Vi and consider the nearest-neighbor

interpolation

un ◦ Tn(x) =
n∑

i=1

un(xi)1Vi(x), x ∈ M.

Note its resemblance with un ◦ Tn. Indeed, the sets Vi and Ui’s are comparable and we have

a similar result as Theorem 2.4.2.

Theorem 2.4.4. Suppose τ is Lipschitz, κ ∈ C1(M) and both are bounded below by positive
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constants. Let s > (5m+ 1)/2 and

hn ≍

√
(log n)cm

n1/m
.

Then, with probability one,

E∥un ◦ Tn − u∥L2 = O

(
(log n)(2m+1)cm/4

n1/4m

)
.

Remark 2.4.5. We see that the rate has an additional factor (log n)mcm/2, which comes

from the bound for eigenfunction approximation using the map Tn. In fact, due to this

additional logarithmic term, we were unable to show convergence for general s > m using

the same strategy as before.

2.4.2 Outline of Proof

From the Karhunen-Loève expansions (2.19) and (2.20) we can see that the fundamental

step in analyzing the convergence of the graph representations is to obtain bounds for both

the eigenvalue and eigenfunction approximations.

Since Lτ,κn and Lτ,κ are self-adjoint with respect to the L2(γn) and L2(γ) inner products,

respectively, and are both positive definite, their spectra are real and positive. Denote by

{(λ(i)n , ψ
(i)
n )}ni=1 and {(λ(i), ψ(i))}∞i=1 the eigenpairs of Lτ,κn and Lτ,κ, with the eigenvalues in

increasing order. Suppose we are in a realization where the conclusion of Proposition 2.4.1

holds, and recall the definition of εn in (2.22). We formally have the following results on

spectral approximations. (Rigorous statements can be found in Appendices 2.7.2 and 2.7.3.)

Theorem 2.4.6 (Eigenvalue Approximation cf. Theorem 2.7.8). Suppose εn ≪ hn and
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hn
√
λ(kn) ≪ 1. Then

|λ(i)n − λ(i)|
λ(i)

= O

(
εn
hn

+ hn

√
λ(i)
)
,

for i = 1, . . . , kn.

Theorem 2.4.7 (Eigenfunction Approximation cf. Theorem 2.7.12). Suppose εn ≪ hn and

hn
√
λ(kn) ≪ 1. Then there exists orthonomralized eigenfunctions {ψ(i)n }ni=1 and {ψ(i)}∞i=1

so that

∥ψ(i)n ◦ Tn − ψ(i)∥L2 = O

(
i
3
2

√
εn
hn

+ hn

√
λ(i)
)
,

∥ψ(i)n ◦ Tn − ψ(i)∥L2 = O

(
(log n)

mcm
2 i

3
2

√
εn
hn

+ hn

√
λ(i)
)
,

for i = 1, . . . , kn.

Theorems 2.4.6 and 2.4.7 generalize existing results in Burago et al. [2015], García Trillos

et al. [2019a] where τ and κ are constant. Theorem 2.4.2 and 2.4.4 are shown in Appendix

2.7.4 based on these two results.

Here we briefly illustrate the main idea for un ◦Tn. The assumption that hn
√
λ(kn) ≪ 1

in Theorems 2.4.6 and 2.4.7 is crucial in that the spectral approximations are only provably

accurate up to the kn-th eigenvalue and eigenfunction. Therefore to bound the difference

between un ◦ Tn and u, we need to consider the truncated series

uknn := τ
s
2−

m
4

n κ
m
2
n

kn∑
i=1

[
λ
(i)
n

] s
2
ξ(i) ψ

(i)
n , (2.25)

and such truncation introduces an error of order
√
nk

−s/m
n . Therefore kn needs to satisfy

nm/2s ≪ kn ≪ h−m
n and this explains the upper bound on hn in (2.23). By repeated

application of the triangle inequality, we can show that E∥un ◦ Tn − u∥L2 is dominated by
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the error coming from the truncation and eigenfunction approximation:

E∥un ◦ Tn − u∥L2 ≲
√
nk

− s
m

n +

kn∑
i=1

[
λ(i)
]− s

2 ∥ψ(i)n ◦ Tn − ψ(i)∥L2 . (2.26)

If we are only interested in showing convergence without a rate, then we can first fix an

ℓ ∈ N and use the fact that ∥ψ(i)n ◦ Tn∥2L2 = n−1∑n
i=1 ψ

(i)
n (xi)

2 = ∥ψ(i)n ∥2
L2(γn)

= 1 to get

E∥un ◦ Tn − u∥L2 ≲
√
nk

− s
m

n +
ℓ∑

i=1

[
λ(i)
]− s

2 ∥ψ(i)n ◦ Tn − ψ(i)∥L2 +

kn∑
i=ℓ+1

[
λ(i)
]− s

2
.

Then letting n→ ∞, we have ∥ψ(i)n ◦ Tn − ψ(i)∥L2 → 0 for i = 1, . . . , ℓ and

lim sup
n→∞

E∥un ◦ Tn − u∥L2 ≲
∞∑

i=ℓ+1

[
λ(i)
]− s

2
.

The last expression goes to 0 if we let ℓ→ ∞ given that s > m.

However if we want to derive a rate of convergence, then kn needs to be chosen carefully in

(2.26): kn should be small so that the spectral approximations up to level kn are sufficiently

accurate, but at the same time not be too small to leave a large truncation error. In

particular, by Theorem 2.4.7 and Weyl’s law an upper bound on the second term (2.26) is

kn[λ
(kn)]−s/2 max

i=1...,kn
∥ψ(kn)n − ψ(kn)∥L2 ≲ k

− s
m+5

2
n

√
εn
hn

+ hnk
1
m
n . (2.27)

If we only have s > m, then this does not go to zero for any choice of hn given the constraint

that nm/2s ≪ kn. Hence we need the additional assumption that s > 5
2m+ 1

2 , which allows

us to bound (2.27) by
√

εn
hn

+ hn and then

E∥un ◦ Tn − u∥L2 ≲
√
nk

− s
m

n +

√
εn
hn

+ hn.
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Therefore optimal rates are obtained by setting hn ≍ √
εn and kn correspondingly, which

together with (2.22) gives the scaling (2.24).

Remark 2.4.8. The paper García Trillos et al. [2020b] proposed to consider directly the

truncated series (2.25) as the graph field and this will allow us to obtain rates of convergence

in Theorem 2.4.2 for all s > m. But in this way the precision matrix representation as

in (2.14) no longer holds and one will need to perform spectral decomposition on L
τ,κ
n for

sampling, which generally is more costly than Cholesky factorization.

2.5 Numerical Examples

In this section we demonstrate the use of the graph Matérn models introduced in Section 2.3

by considering applications in Bayesian inverse problems, spatial statistics and graph-based

machine learning.

For the three examples we employ graph Matérn models as priors within the general

framework of latent Gaussian models, briefly overviewed in Section 2.5.1. Section 2.5.2 stud-

ies a toy Bayesian inverse problem on a manifold setting. Our aim is to compare the modeling

of length scale through τn and κn; we further show that the accuracy of the reconstruction

with the graph-based approach is satisfactory and that adding nonstationarity may help to

overcome the poor performance of more naive hierarchical approaches in large noise regimes.

In Section 2.5.3 we investigate the use of graph Matérn fields for interpolating U.S. county-

level precipitation data, assuming to only have access to pairwise distances between counties

and precipitation data for some of them. Contrary to finite element representations, the

graph-based approach is applicable in this discrete setting without the need of performing

multidimensional scaling to reconstruct the configuration of the point cloud. In addition,

the graph approach does not require to introduce any artificial nodes. We also compare the

performance of stationary and nonstationary graph Matérn models. In Section 2.5.4, a semi-

supervised classification problem in machine learning is studied, where the low dimensional
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structure of the data naturally motivates the graph-based approach; we further show that

nonstationary models may improve the classification accuracy over stationary ones.

2.5.1 A General Framework: Latent Gaussian Models

Latent Gaussian models are a flexible subclass of structured additive regression models de-

fined in terms of a likelihood function, a latent process and hyperparameters. Let {xi}ni=1 be

a collection of features that we identify with graph nodes. The observation variable y is mod-

eled as a (possibly noisy) transformation of the latent process un :=
[
un(x1), . . . , un(xn)

]T ,

which conditioned on the hyperparameters follows a Gaussian distribution. Finally, a prior

is placed on the hyperparameters. More precisely, we have

y|un, µ ∼ π(y|un, µ),

un|θ ∼ N
(
0, Q(θ)−1

)
,

(µ, θ) ∼ π(µ, θ),

whereQ(θ) is the precision matrix of the latent process and µ, θ are hyperparameters. Markov

Chain Monte Carlo inference methods are standard in Bayesian inverse problems with com-

plex likelihood functions, but less computationally expensive deterministic approximations

are often preferred in other applications. In particular, the integrated nested Laplace approx-

imations proposed by Rue et al. [2009] and the corresponding R-INLA package has greatly

facilitated inference of such models.

The sparsity of the precision matrix Q(θ) is crucial for efficient likelihood evaluations and

sampling of the latent process. For the problems that we consider, the latent process will be

modeled as a graph Matérn field, i.e.,

un|τn ∼ N
(
0, Q(τn, s)

−1
)
, Q(τn, s) = τ

m
4 −

s
2

n (τn +∆n)
sτ

m
4 −

s
2

n ,
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where ∆n is a graph Laplacian constructed with the xi’s and τn is a diagonal matrix modeling

the length scale at each node. We note that the graph Laplacian is often sparse and its

sparsity is inherited by Q(τn, s) for small or moderate integer s.

A constant length scale graph Matérn field hyperprior is then placed on log(τn):

log τn ∼ N
(
0, νs0−

m
2 (νI +∆n)

−s0
)
, (2.28)

where ν and s0 are chosen by prior belief on the length scale. However, when n is large,

learning τn as an n-dimensional vector is computationally demanding. We instead adopt a

truncated Karhunen-Loéve approximation for τn. Recall that log τn has the characterization

log τn = ν
s0
2 −m

4

n∑
i=1

[
ν + λ

(i)
n

]− s0
2
ξ(i)ψ

(i)
n ,

where ξ(i) i.i.d.∼ N (0, 1) and {(λ(i)n , ψ
(i)
n )}ni=1 are the eigenpairs of ∆n. Since the λ(i)n ’s are

increasing, the contribution of the higher frequencies is less significant. Hence we consider a

truncated expansion and model log τn as

log τn = ν
s0
2 −m

4

n0∑
i=1

[
ν + λ

(i)
n

]− s0
2
θ(i)ψ

(i)
n ,

where n0 ≪ n is chosen based on the spectral growth and prior belief on τn. Now the

hyperparameters are the θi’s, which are only n0-dimensional, and the hyperprior for each is

naturally taken to be the standard normal. Therefore a complete model of our interest in

the following subsections can be summarized as

y|u, µ ∼ π(y|u, µ),

u|θ, s ∼ N
(
0, Q(θ, s)−1

)
,

(µ, s) ∼ π(µ, s), θ ∼ N (0, In0),
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where

Q(θ, s) = [τn(θ)]
m
4 −

s
2 [τn(θ) + ∆n]

s[τn(θ)]
m
4 −

s
2 , (2.29)

log τn(θ) = ν
s0
2 −m

4

n0∑
i=1

[
ν + λ

(i)
n

]− s0
2
θ(i)ψ

(i)
n . (2.30)

Remark 2.5.1. We remark that (2.30) can be viewed as representing τn as a combination of

the first several eigenfunctions of ∆n, which are a natural basis for functions over the point

cloud. A disadvantage is that (2.30) requires knowledge of the ψ(i)n ’s. However since ∆n is

sparse and we only need to know the first n0 ≪ n eigenfunctions, the computational cost for

τn is still better than O(n3).

Remark 2.5.2. The marginal variance of the latent process un can be tuned and fixed easily

by matching the scales of un and the data y, and thus we do not include a marginal variance

parameter. Indeed, the normalizing factors τm/4−s/2
n guarantee that E|un|2 are roughly the

same for different τn’s. Hence one can for instance estimate E|un|2 by setting τn ≡ 1 and

normalize the observations y by
√

E|un|2/|y|2.

Similarly, we need to tune for the marginal variance of the hyperparameters as in (2.28).

As τn essentially acts as a cut off on the significant frequencies, this can be done by matching

the scale of τn with the eigenvalues of ∆n based on one’s prior belief.

Suppose for illustration that we are interested in the simple regression problem of infer-

ring a Matérn field u(x) based on data y comprising Gaussian measurement of u at given

locations/features x1, . . . xn. As noted in the introduction, the computation cost scales as

O(n3). However, by modeling un using a graph Matérn model we obtain a GMRF approxi-

mation, with sparse precision matrix, dramatically reducing the computational cost. Thus,

one could introduce further auxiliary nodes xn+1, . . . , xN with N ≫ n to improve the prior

GMRF approximation of the original Matérn model and still reduce the computational cost

over formulations based on GF priors. Such ideas arise naturally in semi-supervised appli-
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cations in machine learning where most features are unlabeled, but can also be of interest in

applications in spatial statistics, as discussed in [Rue and Held, 2005, Chapter 5] and grant

further investigation in Bayesian inverse problems.

2.5.2 Application in Bayesian Inverse Problems

In this subsection we investigate the use of nonstationary graph Matérn models to define

prior distributions in Bayesian inverse problems. For simplicity of exposition and to avoid

distraction from our main purpose of illustrating the modeling of the nonstationarity, we

consider a toy example taken from the inverse problem literature [Roininen et al., 2019].

The ideas presented here apply immediately to Bayesian inverse problems with more involved

likelihood functions, defined for instance in terms of the solution operator of a differential

equation [Harlim et al., 2020, Bigoni et al., 2020].

We study the reconstruction of a signal function given noisy but direct point-wise obser-

vations. The domain of the problem is taken to be the unit circle, where the hidden signal

u† is parametrized by t ∈ [0, 2π) as

u†(t) =



exp
(
4− π2

t(π−t)

)
, t ∈ (0, π),

1, t ∈ [π + 0.5, 1.5π],

−1, t ∈ (1.5π, 2π − 0.5],

0, otherwise.

Hence if x = (cos(t), sin(t)) for t ∈ [0, 2π), then u†(x) is understood as u†(t). Such signal

is considered in Roininen et al. [2019] for its varying length scale, where the domain is the

interval [0, 10] ⊂ R and a uniform grid finite difference discretization is used to define a

Matérn prior following the SPDE approach. Here we suppose instead to have only indirect

access to the domain through n = 1000 points xi’s that are drawn independently from the
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uniform distribution on the circle, and use a graph Matérn model.

We assume to be given noisy observations of the signal at J = n/2 points:

y(xi) = u†(xi) + ηi, ηi
i.i.d.∼ N (0, σ2), i = 1, . . . , J, (2.31)

where σ is set to be 0.1 and we have observations at every other node. To recover the signal

function at the nodes xi’s, we adopt a hierarchical Bayesian approach which we cast into the

framework of latent Gaussian models. More precisely, the observation equation (2.31) gives

the likelihood model

y|un ∼ N (Sun, σ
2IJ ),

where S ∈ RJ×n is a matrix of 0’s and 1’s that indicates the location of the observations.

The latent process un :=
[
u†(x1), . . . , u†(xn)

]T and the hyperparameters are modeled as in

Section 2.5.1, where the smoothness is fixed as s = 2 and the other parameters are chosen

as s0 = 1, ν = 10, n0 = 21. We note that by setting s0 = 1, the hyperprior is actually

an approximation of a zero-mean Gaussian process with exponential covariance function,

where the sample paths can undergo sudden changes. The choice n0 = 21 is motivated

by the fact that the Laplacian on the circle has eigenvalues {i2}∞i=0, where any non-zero

eigenvalue has multiplicity 2. Therefore the cutoff is at the eigenvalue 100, which is an

order of magnitude larger than ν, and higher frequencies are less consequential. The graph

Laplacian is constructed as in Section 2.3.1 with connectivity εn = 4× n−1/1.8.

We will follow a similar MCMC sampling as in Roininen et al. [2019] detailed in Algorithm

1 for inferring the signal function un together with the length scale τn. To illustrate the idea,

we notice that the observation equation and the graph Matérn model for un translate into
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Algorithm 1 Posterior sampling u, τ |y

Initialize u0n, θ0 and set step size βθ.
for i = 1, . . . ,M do

(a) Generate ξ ∼ N (0, IJ+n) and update

uin =

[
σ−1S

L(θi−1)

]†([
σ−1y
0

]
+ ξ

)
,

where L(θ) is the Cholesky factor of Q(θ) and † denotes the matrix pseudoinverse.
(b)
for j = 1, . . . , n0 do

(i) Generate ξ(j) ∼ N (0, 1) and propose θ̃i,(j) = θi−1,(j) + βθξ
(j).

(ii) Denote θi,(−j) = (θi,(1), . . . , θi,(j−1), θi−1,(j+1), . . . , θi−1,(n0)). Accept θ̃i,(j)
with probability

p = min

1,
π
(
θ̃i,(j), θi,(−j)|uin, y

)
π
(
θi−1,(j), θi,(−j)|uin, y

)
 ,

where π(θ|un, y) is given in (2.32).
end for

end for

the equations

σ−1Sun = σ−1y + ξ1,

L(θ)un = ξ2,

where L(θ) is the Cholesky factor of Q(θ) and ξ1 ∼ N (0, IJ ), ξ2 ∼ N (0, In). The above pair

of equations motivate the update for un as

σ−1S

L(θ)


†
σ−1y

0

+ ξ

 ,

where ξ ∼ N (0, IJ+n). The hyperparameters θ are updated with a Metropolis-within-Gibbs
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sampling scheme, where the full posterior θ|un, y has the form

π(θ|un, y) ∝
√

det(Q(θ)) exp

(
−1

2
uTnQ(θ)un − 1

2
|θ|2
)
. (2.32)

In Figures 2.4a and 2.4b we plot the posterior means of un and τn and 95% credible intervals

for each of their coordinates. The oscillatory paths of the reconstructions are due to the

graph approximation, where the eigenfunctions ψ(i)n of the graph Laplacian are in general

very ragged. We notice that τn varies rapidly in the region where the signal is piecewise

constant, indicating a change of length scale. Moreover, the sudden jump of the signal from

1 to -1 suggests a small local length scale which leads to a larger τn, as predicted in Remark

2.2.2.

To further understand the effect of modeling the length scale through κn, we choose a

different prior for the latent process by setting

Q(θ) = κn(θ)
−m

4 (I +∆κ
n)

sκn(θ)
−m

4 ,

log κn(θ) = ν
s0
2 −m

4

n0∑
i=1

[
ν + λ

(i)
n

]− s0
2
θ(i)ψ

(i)
n ,

so that the length scale is controlled by κn instead. Here ∆κ
n is the discrete approximation

of ∇ · (κ∇) introduced in Section 2.3.2 and we adopt the same hyperparameter modeling as

for τn. In Figures 2.5a and 2.5b, we plot the posterior means and 95% credible intervals for

each coordinate of un and κn, as a comparison with their counterparts for τn. The figures

show that the two approaches give similar reconstructions for the signal and, in agreement

with the intuition given in Remark 2.2.2, τn and κn are almost inversely proportional to

each other.

Remark 2.5.3. As noted in [Harlim et al., 2020, Section 4.5], the hierarchical approach

performs poorly if the noise in the observations is large and the latent process is modeled
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(a) (b) (c)

Figure 2.4: Posterior means and 95% credible intervals for (a) signal from nonstationary
model; (b) length scale of nonstationary model; (c) signal from stationary model (constant
τn) when length scale is modeled through τn.

(a) (b) (c)

Figure 2.5: Posterior means and 95% credible intervals for (a) signal from nonstationary
model; (b) length scale of nonstationary model; (c) signal from stationary model constant
κn), when length scale is modeled through κn.

with a constant length scale; the single length scale is blurred by the noise and the model

essentially fits the noisy observations, as can be seen from the oscillatory reconstructions in

Figures 2.4c and 2.5c. An important observation stemming from the above example is that

adding nonstationarity into the length scale may help alleviate such issue.

2.5.3 Application in Spatial Statistics

In this subsection we consider interpolation of county-level precipitation data in the U.S. for

January 1981, available from https://www.ncdc.noaa.gov/cag/county/mapping. Simi-

lar problems have been studied in Fuglstad et al. [2015b], Bolin and Kirchner [2020] using
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the SPDE formulation and finite element representations, adding nodes for triangulation

of the space. Here we shall assume, however, that only pairwise distances between coun-

ties are available. In particular, in contrast to Fuglstad et al. [2015b], Bolin and Kirch-

ner [2020] we do not assume to have access to the spatial domain or to the locations of

the observations, and we will perform inference without adding artificial nodes. The inter-

county distances are available as great circle distances from https://data.nber.org/data/

county-distance-database.html and are only recorded for each pair of counties that are

closer than a certain threshold distance apart, which naturally suggests a graph represen-

tation. Let {xi}n=3107
i=1 denote the n counties (excluding Alaska, Hawaii and several other

counties that we do not have precipitation data for). We model the precipitation y with

a latent Gaussian model, where the J observations are given as noisy perturbations of the

latent process un:

y|u, σ ∼ N (Su, σ2IJ ),

where S ∈ RJ×n is a matrix of 0’s and 1’s that specifies the observation locations. Notice

that we have included the noise size σ as a hyperparameter to be inferred. The latent process

un will be modeled in four different ways for comparison purposes as in Bolin and Kirchner

[2020]. The idea is to consider a graph Matérn prior for un, where

un|θ, s ∼ N
(
0, Q(θ, s)−1

)
, Q(θ, s) = τn(θ)

m
4 −

s
2 (τn(θ) + ∆n)

sτn(θ)
m
4 −

s
2 , m = 2,

and consider s to be possibly a hyperparameter, while at the same time allow τn to be iden-

tically equal to a constant. In other words, we will model un as a stationary/nonstationary

graph Matérn field with possibly fractional smoothness parameter. In the most general case,

the length scale parameter τn is modeled as in (2.30), where the parameters are chosen as
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s0 = 2, ν = 0.1, n0 = 10 and the hyperpriors for σ, s are chosen as

log σ ∼ N (log(0.01), 1),

log s ∼ N (log 2, 1).

The marginal variance of τn is then tuned to be on the same order as the 10th eigenvalue of

∆n. For the stationary case, the modeling for the latent process simplifies to

un|τ, s ∼ N (0, Q(τ, s)−1), Q(τ, s) = τ
m
2 −s(τIn +∆n)

s,

and a log-normal hyperprior is placed on τ .

For this problem ∆n is an unnormalized graph Laplacian D −W , with weights

Wij =


exp

(
−

d2ij
2d2

)
, if dij is recorded,

0, otherwise,

where dij is the distance between two counties and d is the mean of all the pairwise distances.

As mentioned above, the pairwise distances are only recorded for counties that are less than

100 miles apart, which implies that W is sparse (with the percentage of nonzero entries being

1.6%). Instead of using an MCMC sampling scheme, we adopt an evidence maximization

approach, where we first compute the optimal hyperparameter (σ∗, s∗, θ∗) (for the most

general case) by maximizing the marginal posterior (σ, s, θ)|y, and then compute the posterior

un|y, σ∗, s∗, θ∗. For the most general case, the marginal posterior of (σ, s, θ) is equal, up to

a constant, to

log π(σ, s, θ|y) = log π(σ, s, θ)− J log σ +
1

2σ4
yTSQ̃(σ, θ, s)−1ST y −

∥y∥22
2σ2

+
1

2
log
[
det(Q(θ, s))− det(Q̃(σ, θ, s))

]
,
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where Q̃(σ, θ, s) = σ−2STS+Q(θ, s) and the posterior un|y, σ∗, s∗, θ∗ is a Gaussian N (µ,Σ),

where

µ = [σ∗]−2Q̃(σ∗, θ∗, s∗)−1ST y, Σ = Q̃(σ∗, θ∗, s∗)−1. (2.33)

The predictive distribution is then the restriction of N (µ,Σ) to the unobserved nodes, de-

noted by πpred, and techniques for computing partial inverse of a sparse matrix can be

applied. We numerically optimize log π(σ, s, θ|y) with the fminunc function in Matlab.

RMSE CRPS LS
Stationary & s = 2 0.0394 0.0199 -578.9

Stationary & Inferred s 0.0399 0.0201 -521.7
Nonstationary & s = 2 0.0408 0.0185 -648.5

Nonstationary & Inferred s 0.0414 0.0186 -644.6

Table 2.1: Comparison of the four models through RMSE, CRPS and LS.

To perform inference, we first normalize the data y as described in Remark 2.5.2 so that

it has mean-zero and has magnitude at the same level of un from the graph Matérn field,

in which case we are only interested in the variations of un. We then adopt a pseudo-

crossvalidation by randomly selecting 90% of the data as observations and make predictions

for the remaining ones. The process is repeated 20 times and we evaluate the predictions

through the root mean square error (RMSE), the continuous rank probability score (CRPS),

and the logarithmic scoring rule (LS) as shown in Table 2.1. The three criteria are considered

in Fuglstad et al. [2015b], Bolin and Kirchner [2020] for similar comparisons, with each
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defined as

RMSE : =
∥ytest − Eπpred∥2√

ntest
,

CRPS : =
1

ntest

ntest∑
i=1

crps(π(i)pred, y
(i)
test)

=
1

ntest

ntest∑
i=1

∫ ∞

−∞

[
π
(i)
pred(y

(i)
test)− 1{y(i)test ≤ t}

]2
dt,

LS : = − log πpred(ytest),

where ytest is the test data with size ntest and π
(i)
pred is the marginal distribution for each

unobserved node. Since πpred is Gaussian (and hence its marginals), the above quantities are

computable, and the CRPS can be calculated with its representation for Gaussians Gneiting

et al. [2005] :

crps
(
N (a, b2), y

)
= b

{
y − a

b

[
2Φ

(
y − a

b

)
− 1

]
+ 2ϕ

(
y − a

b

)
− 1√

π

}
,

where Φ and ϕ are the c.d.f. and p.d.f. of the standard normal respectively.

We notice in Table 2.1 that the nonstationary model improves CRPS and LS but not

RMSE over the stationary one, as was observed in Fuglstad et al. [2015b], Bolin and Kirchner

[2020] using finite element representations of GFs. This suggests that adding nonstationarity

improves the prediction in a distribution sense. However, inferring the smoothness s from

data appears not to improve the predictions, in contrast to the results in Bolin and Kirchner

[2020]. We believe this is due to the different formulations that we are taking, where Bolin

and Kirchner [2020] adopts an SPDE approach and a rational approximation for fractional

smoothness. It is also possible that this is in general a feature of the graph representation as

similar observations are made in Section 2.5.4. We shall leave more in-depth investigations

for future studies.
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Remark 2.5.4. Prediction at new locations can be done by augmenting the graph with new

nodes and refitting the model. Interpolation is not readily applicable in this example since we

assume to only be given pairwise distances between counties and to not have a continuous

representation of the underlying manifold (here the map of the contiguous states of the U.S.).

However, in examples where the underlying manifold is known and the graph nodes form a

triangulation, we could construct a finite-element basis and carry out interpolation using the

basis.

2.5.4 Application in Machine Learning

In this subsection we illustrate the use of graph Matérn priors in a Bayesian formulation

of semi-supervised binary classification [Bertozzi et al., 2018]. We seek to classify images

{xi}ni=1 of two different digits of the MNIST dataset given J ≪ n noisy labels. Similarly as

above, the problem is cast into a latent Gaussian model, where the labels are assumed to be

a probit transform of the latent process un:

yi = sign
(
un(xi) + ηi

)
, i = 1, . . . , J,

where ηi
i.i.d.∼ N (0, σ2). The likelihood model associated with the above equation is

π(y|un, σ) =
J∑
i=1

Φ

(
yiun(xi)

σ

)
,

where Φ is the c.d.f. of the standard normal. As in Section 2.5.3, the latent process un

will be modeled as a graph Matérn field in four different ways, by considering station-

ary/nonstationary length scale and fixed/inferred smoothness s. For the most general case,

65



the latent process is modeled as

un|θ, s ∼ N (0, Q(θ, s)−1), Q(θ, s) = τn(θ)
m
4 −

s
2 (τn(θ) + ∆n)

sτn(θ)
m
4 −

s
2 ,

and τn is modeled as in (2.30):

log τn(θ) = ν
s0
2 −m

4

n0∑
i=1

[
ν + λ

(i)
n

]− s0
2
θ(i)ψ

(i)
n

with standard normal hyperprior on each of the θi’s and a log-normal prior for s. As in

Remark 2.3.4, the effective dimension m is about 4 and the other parameters are chosen as

s0 = 4, ν = 0.1, n0 = 10, with marginal variance of τn tuned empirically. For this problem

∆n is taken to be a symmetric k-nearest neighbor graph Laplacian ∆n = I−D−1/2WD−1/2,

with self-tuning weights proposed by Zelnik-Manor and Perona [2005]:

Wij = exp

(
−|xi − xj |2

2δ(i)δ(j)

)
,

where the images xi’s are viewed as vectors in R784 and δ(i) is the Euclidean distance between

xi and its k-th nearest neighbor. The sparsity of ∆n follows from the k-nearest neighbor

construction.

Similarly as in Section 2.5.3, we adopt an evidence maximization approach for inferring

the optimal hyperparameters, which are then used to find the MAP estimator for un. How-

ever, since the likelihood is non Gaussian, there is no closed form formula for the marginal

posterior of the hyperparameters π(σ, θ, s|y), and we then apply a Laplace approximation

[Rue et al., 2009]. More precisely, denoting all the hyperparameters by z, π(z|y) is approxi-

mated by

π(z|y) ∝ π(un, z, y)

π(un|z, y)

∣∣∣∣
un=u∗n

≈ π(un, z, y)

π̃(un|z, y)

∣∣∣∣
un=u∗n

, (2.34)
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where u∗n is the mode of π(un|z, y) and π̃(un|z, y) is its Laplace approximation at u∗n. The

log density for un|z, y has form

log π(un|z, y) ∝
J∑
i=1

Φ

(
yiun(xi)

σ

)
− 1

2
uTnQ(θ, s)un, (2.35)

and the mode u∗n is found numerically with the Newton’s method, where the gradient and

Hessian of (2.35) are available analytically. The logarithm of the last expression in (2.34) is

equal up to a constant to

log π(σ, θ, s)− 1

2
[u∗n]

TQ(θ, s)u∗n

+
1

2
log
[
det (Q(θ, s))− det(Q̃ (σ, θ, s))

]
+

J∑
i=1

log Φ

(
yiu

∗
n(xi)

σ

)
,

where Q̃(θ, s) = Q(σ, θ, s) +H and H is diagonal with entries

Hii =
yiu

∗
n(xi)ϕ

(
σ−1u∗n(xi)

)
σ2Φ

(
σ−1yiu∗n(xi)

) +

[
ϕ
(
σ−1u∗n(xi)

)
σΦ
(
σ−1yiu∗n(xi)

)]2 , i = 1, . . . , J,

and zero otherwise. The priors on σ and s are taken to be

log σ ∼ N (log(0.1), 1) ,

log s ∼ N (log(4), 1) .

Table 2.2 shows the classification error rates of the four different models for four pairs of

digits, with n = 1000 and J = 20, where each experiment is repeated 100 times. We see that

the nonstationary model improves slightly the performance while the model with inferred

smoothness does the opposite. We believe this may be due to the fact that s = 4 is already

a near optimal choice for this problem, or it may also be an intrinsic characteristic of the

graph representations as mentioned in Section 2.5.3. Table 2.3 shows the classification error
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rates for the inferred s case when the prior is taken to be narrower:

log s ∼ N (log 4, 0.01) ,

in which case the nonstationary model with inferred s also improves the prediction.

3&8 5&8 4&9 7&9
Stationary & s = 4 8.90% 8.64% 17.67% 10.13%

Stationary & Inferred s 9.61% 9.51% 18.33% 11.00%
Nonstationary & s = 4 8.44% 7.23% 17.38% 9.37%

Nonstationary & Inferred s 8.77% 8.12% 19.92% 10.70%

Table 2.2: Classification error rates with 2% labeled data for different pairs of digits with
hyperprior log s ∼ N (log 4, 1).

3&8 5&8 4&9 7&9
Stationary & Inferred s 8.91% 8.66% 17.69% 10.14%

Nonstationary & Inferred s 8.67% 7.06% 17.54% 9.71%

Table 2.3: Classification error rates with 2% labeled data for different pairs of digits with
hyperprior log s ∼ N (log 4, 0.01).

Remark 2.5.5. Label prediction at new images can be done by augmenting the graph with

new nodes and refitting the model, or by using a k-NN interpolation as described in Gar-

cía Trillos et al. [2020b].

2.6 Conclusions and Open Directions

This chapter introduces graph representations of Matérn fields motivated by the SPDE

approach. We have shown through rigorous analysis that graph Matérn fields approximate

the Matérn model under a manifold assumption, and we have established an explicit rate of

convergence. We have emphasized that graph Matérn models can be used in a wide range

of settings, as they generalize the Matérn model to abstract point clouds beyond Euclidean
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or manifold settings. In addition, graph Matérn fields are GMRFs and therefore numerical

linear algebra techniques can be applied to gain speed up by exploiting sparsity.

We have illustrated through numerical examples the application of graph Matérn fields

in Bayesian inverse problems, spatial statistics and graph-based machine learning, bringing

these fields together and transferring ideas among them. The graph Matérn models can

be directly implemented on the given point cloud, without any additional pre-processing

such as adding nodes for triangulation for FEM methods. We demonstrate through com-

parisons certain benefits of the nonstationary models, where in particular nonstationary

improves classification accuracy. We believe that adding nonstationarity for graph-based

learning problems had not been considered before and we hope that our empirical findings

will stimulate further research in this area.

The nonstationarity introduced through τ had been well-studied in Euclidean settings,

while comparatively less has been said about κ. We hope to investigate its modeling effects

beyond the role as a length scale described in Remark 2.2.2 and to consider graph repre-

sentations of anisotropic models where the Laplacian is replaced by ∇ · (H(x)∇). The case

where H is a constant positive definite matrix can be easily dealt with by introducing a

coordinate transformation by H−1/2. However, the general case where H is a function of

the spatial variable is more involved and further research is needed.

Another direction for further research is to investigate in more detail the case where

the points are distributed according to a non-uniform density. As noted in Remark 2.3.3,

one can normalize the weights to remove the effects of the density, aiming at recovering the

Laplacian. A more interesting question is whether the density can be incorporated as part

of the continuum operator that will lead to meaningful Matérn type field. Especially for

machine learning applications, we wonder if the density of the point cloud can be exploited

in the construction of prior distributions.
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2.7 Appendix

In this Appendix we prove the main theorems in Section 2.4. Section 2.7.1 makes precise our

setting and assumptions, defines several quantities of interest and presents other necessary

preliminaries. Sections 2.7.2 and 2.7.3 contain proofs for the spectral convergence of Lτ,κn

towards Lτ,κ. Finally, Section 2.7.4 gives the proof of Theorem 2.4.2.

2.7.1 Preliminaries

Suppose M is an m-dimensional smooth, connected, compact manifold without bound-

ary embedded in Rd, with the absolute value of sectional curvature bounded by K and

Riemannian metric inherited from Rd. Let {xn}∞n=1 be a sequence of independent sam-

ples from the uniform distribution γ on M, i.e. the normalized volume measure. Denote

Mn := {x1, . . . , xn} and let γn := 1
n

∑n
i=1 δxi be the empirical distribution of the point

cloud Mn. Throughout τ and κ will denote Lipschitz continuous functions on M with κ

being continuously differentiable. We assume that both functions are bounded from below

by positive constants, so there exist α, β > 0 with 1
β ≤ τ ≤ β, 1

α ≤ κ ≤ α. We will analyze

the following operators

Lτ,κ := τI −∇ · (κ∇),

L
τ,κ
n := τn +∆κ

n,
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where τn := diag
(
τ(x1), . . . , τ(xn)

)
and differentiation is defined on the manifold (see e.g.

Nicolaescu [2020]). Here ∆κ
n = D −W ∈ Rn×n and the entries of D and W are given by

Wij :=
2(m+ 2)

nνmh
m+2
n

1{dM(xi, xj) < hn}
√
κ(xi)κ(xj) ,

Dii :=
n∑

j=1

Wij ,

where νm is the volume of the m−dimensional unit ball and dM is the geodesic distance on

M.

Remark 2.7.1. In this appendix we consider the weights Wij to be defined through the

geodesic, rather than the Euclidean distance in (2.11). Since in small neighborhoods both

distances agree up to a correction term that is of a higher order than our interest Gar-

cía Trillos et al. [2019a], our results would also hold for the weights in (2.11). We choose to

work with the geodesic distance to streamline our presentation.

As discussed in Section 2.4, the scaling of hn will be chosen so that

(log n)cm

n1/m
≪ hn ≪ 1

n1/s
, (2.36)

where cm = 3/4 if m = 2 and cm = 1/m otherwise. We recall that the scaling of hn in

(2.36) implies that the ∞-OT distance between γn and γ satisfies εn = d∞(γn, γ) ≪ hn.

In what follows we assume that we are in a realization where the conclusion of Proposition

2.4.1 holds and we let {Tn}∞n=1 be a sequence of transport maps satisfying the bound (2.21).

We will use the following inner products and induced norms on continuum and discrete
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spaces

⟨f, g⟩L2 :=

∫
f(x)g(x)dγ(x), ⟨f, g⟩τ :=

∫
f(x)g(x)τ(x)dγ(x),

⟨f, g⟩κ :=

∫
f(x)g(x)κ(x)dγ(x), ⟨v, w⟩2 :=

1

n

n∑
i=1

v(xi)w(xi),

⟨v, w⟩τn :=
1

n

n∑
i=1

v(xi)w(xi)τ(xi), ⟨v, w⟩κn :=
1

n

n∑
i=1

v(xi)w(xi)κ(xi).

Notice that Lτ,κ : D(Lτ,κ) ⊂ L2(γ) → L2(γ), where D(Lτ,κ) is the domain of definition, is

self-adjoint with respect to the ⟨·, ·⟩L2 inner-product and has a compact resolvent; we will

denote by {λ(k)}∞k=1 and {ψ(k)}∞k=1 its eigenvalues and eigenfunctions and recall that from

standard theory

D(Lτ,κ) =
{
f ∈ L2(γ) :

∞∑
k=1

[
λ(k)

]2
⟨f, ψ(k)⟩2

L2 <∞
}
.

We refer to [Nicolaescu, 2020, Section 10.4.2] for more details. Similarly, Lτ,κn is self-adjoint

with respect to ⟨·, ·⟩2. By the minimax principle we can characterize the k-th smallest eigen-

values of Lτ,κ and Lτ,κn by

λ(k) = min
V:dim(V)=k

max
f∈V\0

⟨f,Lτ,κf⟩L2

⟨f, f⟩L2
,

λ
(k)
n = min

V :dim(V )=k
max
v∈V \0

⟨v, Lτ,κn v⟩2
⟨v, v⟩2

.

We define the continuum and the discrete Dirichlet energies

D[f ] :=⟨f,Lτ,κf⟩L2 =

∫
τ(x)f(x)2 +

∫
κ(x)|∇f |2 = ∥f∥2τ + ∥∇f∥2κ =: D0[f ] +D1[f ],

Dhn [v] :=⟨v, Lτ,κn v⟩2 =
1

n

n∑
i=1

τ(xi)v(xi)
2 +

1

n

n∑
i=1

n∑
j=1

Wij

∣∣v(xi)− v(xj)
∣∣2 =: D0

hn
[v] +D1

hn
[v].
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For the lemmas and theorems below, we shall denote by CM, CM,τ,κ etc. constants that

depend on the corresponding subscripts.

2.7.2 Convergence of Spectrum with Rate

In this subsection we prove Theorem 2.4.6 by establishing a lower and an upper bound on

the eigenvalues of Lτ,κn in terms of those of Lτ,κ. With the above definitions of the Dirichlet

energies, the eigenvalues have the characterizations

λ(k) = min
V:dim(V)=k

max
f∈V\0

D[f ]

∥f∥2
L2

, λ
(k)
n = min

V :dim(V )=k
max
v∈V \0

Dhn [v]

∥v∥22
.

In order to compare the Dirichlet energies D and Dhn , we need an intermediate quantity

defined by

Er[f ] :=

∫
M

∫
Br(x)

|f(x)− f(y)|2
√
κ(x)κ(y)dγ(y)dγ(x).

Notice that D1
hn

can be seen as a finite sample approximation of Ehn up to a multiplicative

constant. The following lemma, which can be proved with the same argument as [García Tril-

los et al., 2019a, Lemma 5], connects Ehn with D1.

Lemma 2.7.2. For f ∈ L2(γ) and r < 2hn,

Er[f ] ≤ (1 + CM,κhn)
νmr

m+2

m+ 2
D1[f ].

2.7.2.1 Upper Bound

To start with, define the projection map P : L2(γ) → L2(γn) by

Pf(xi) := n

∫
Ui

f(x)dγ(x),
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where Ui = T−1
n ({xi}) and {Tn}∞n=1 is a sequence of transportation maps as in Proposition

2.4.1. The Ui’s are called transportation cells.

Lemma 2.7.3 (Discrete Dirichlet Energy Upper Bound). Let f ∈ H1(γ).

1.
∣∣∣∥Pf∥2 − ∥f∥L2

∣∣∣ ≤ CMεn∥∇f∥L2.

2. Dhn [Pf ] ≤
[
1 + CM,τ,κ

(
hn + ϵn

hn

)]
D[f ].

Proof. The first statement is proved in [Burago et al., 2015, Lemma 4.3(1)]. The second

statement will be proved by combining upper bounds for D0
hn
[Pf ] and D1

hn
[Pf ]. First, by

Hölder’s inequality and the fact that γ(Ui) = γn({xi}) = 1/n,

D0
hn
[Pf ] =

1

n

n∑
i=1

τ(xi)Pf(xi)
2 =

1

n

n∑
i=1

τ(xi)n
2
∣∣∣∣∫

Ui

f(x)dγ(x)

∣∣∣∣2
≤

n∑
i=1

τ(xi)

∫
Ui

f(x)2dγ(x)

≤ [1 + Lip(τ)βεn]
n∑

i=1

∫
Ui

τ(x)f(x)2dγ(x)

= [1 + Lip(τ)βεn]D0[f ]. (2.37)

For the upper bound on D1
hn
[Pf ], observe that

Pf(xi)− Pf(xj) = n2
∫
Ui

∫
Uj

f(y)− f(x)dγ(y)dγ(x),

which implies

|Pf(xi)− Pf(xj)|2 ≤ n2
∫
Ui

∫
Uj

|f(y)− f(x)|2dγ(y)dγ(x).
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By Lipschitz continuity of κ,

D1
hn
[Pf ] =

m+ 2

n2νmh
m+2
n

n∑
i=1

n∑
j=1

√
κ(xi)κ(xj)1{dM(xi, xj) < hn}|Pf(xi)− Pf(xj)|2

≤ m+ 2

νmh
m+2
n

n∑
i=1

n∑
j=1

√
κ(xi)κ(xj)1{dM(xi, xj) < hn}

∫
Ui

∫
Uj

|f(y)− f(x)|2dγ(y)dγ(x)

≤ [1 + Lip(κ)αεn]
m+ 2

νmh
m+2
n

n∑
i=1

n∑
j=1

1{dM(xi, xj) < hn}

·
∫
Ui

∫
Uj

|f(y)− f(x)|2
√
κ(x)κ(y)dγ(y)dγ(x)

≤ [1 + Lip(κ)αεn]
m+ 2

νmh
m+2
n

∫
M

∫
V (x)

|f(y)− f(x)|2
√
κ(x)κ(y)dγ(y)dγ(x),

where if x ∈ Ui then V (x) =
⋃
j:j∼i Uj , with j ∼ i meaning dM(xi, xj) < hn. In the second

to last step we have used that

∣∣∣√κ(xi)κ(xj)−
√
κ(x)κ(y)

∣∣∣ ≤ ∣∣∣√κ(xi)κ(xj)−
√
κ(xi)κ(y)

∣∣∣+ ∣∣∣√κ(xi)κ(y)−
√
κ(x)κ(y)

∣∣∣
≤

√
α

|κ(xj)− κ(y)|√
κ(xj) +

√
κ(y)

+
√
α

|κ(xi)− κ(x)|√
κ(xi) +

√
κ(x)

≤ Lip(κ)αεn.

Notice that V (x) ⊂ Bhn+2ϵn(x) and hence

D1
hn
[Pf ] ≤ [1 + Lip(κ)αεn]

m+ 2

νmh
m+2
n

∫
M

∫
Bhn+2ϵn(x)

|f(y)− f(x)|2
√
κ(x)κ(y)dγ(y)dγ(x)

= [1 + Lip(κ)αεn]
m+ 2

νmh
m+2
n

Ehn+2ϵn [f ]

≤
[
1 + Lip(κ)αεn

][
1 + CM,κ(hn + 2εn)

](hn + 2ϵn
hn

)m+2

D1[f ]

≤
[
1 + CM,κ

(
hn +

ϵn
hn

)]
D1[f ], (2.38)

where we have used Lemma 2.7.2 and the assumption that εn ≪ hn. The result follows by

combining (2.37) and (2.38).
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Corollary 2.7.4 (Upper Bound). Suppose k := kn is such that εn
√
λ(kn) ≪ 1 for n large.

Then

λ
(k)
n ≤

[
1 + CM,τ,κ

(
hn +

ϵn
hn

+
√
λ(k)ϵn

)]
λ(k).

Proof. Let V be the span of eigenfunctions f1, . . . , fk of Lτ,κ associated with eigenvalues

λ(1), . . . , λ(k). For f ∈ V , we have

∥∇f∥L2 ≤
√
α∥∇f∥κ ≤

√
α
√
D[f ] ≤

√
αλ(k)∥f∥L2 .

Lemma 2.7.3 (1) then implies that

∥Pf∥2 ≥ ∥f∥L2 − CMεn∥∇f∥L2 ≥ ∥f∥L2 − CM,κεn

√
λ(k)∥f∥L2 .

Therefore, the assumption that εn
√
λ(k) ≪ 1 implies that P |V is injective and V = P (V)

has dimension k. By Lemma 2.7.3 (2) we have

λ
(k)
n ≤ max

u∈V \0

Dhn [v]

∥v∥22
= max

f∈V\0

Dhn [Pf ]

∥Pf∥22
≤ max

f∈V\0

[
1 + CM,τ,κ

(
hn + ϵn

hn

)]
D[f ](

1− CM,τ,κεn
√
λ(k)

)
∥f∥2

L2

=

[
1 + CM,τ,κ

(
hn + ϵn

hn

)]
λ(k)

1− CM,τ,κεn
√
λ(k)

≤
[
1 + CM,τ,κ

(
hn +

ϵn
hn

+
√
λ(k)ϵn

)]
λ(k).
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2.7.2.2 Lower Bound

Define P ∗ : L2(γn) → L2(γ) by

P ∗v :=
n∑

i=1

v(xi)1Ui
,

where Ui’s are the transportation cells as in the definition of P . We note that P ∗ defines

a piecewise constant interpolation map; for the subsequent analysis we need to introduce a

smoothing operator Λ so that the map I := Λ ◦ P ∗ satisfies Iv ∈ H1(γ), the Sobolev space

of order 1. We now detail the construction of the smoothing operator. Let

ψ(t) :=


m+2
2νm

(1− t2), 0 ≤ t ≤ 1,

0, t > 1.

Consider for 0 < r < 2hn the kernel

kr(x, y) := r−mψ

(
dM(x, y)

r

)

and the associated integral operator

Λ0
rf =

∫
M
kr(x, y)f(y)dγ(y).

Let θ(x) := Λ0
r1M =

∫
M kr(x, y)dγ(y) and then define

Λrf := θ−1Λ0
rf,
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so that Λr preserves constant functions. Finally we define the interpolation operator I :

L2(γn) → L2(γ) by

Iv := Λhn−2εnP
∗v.

We next present some auxiliary bounds that will be needed later.

Lemma 2.7.5 (Auxiliary Bounds). For f ∈ L2(γ), we have

∥Λrf∥2τ ≤ [1 + Lip(τ)rβ][1 + CmKr2]2∥f∥2τ , (2.39)

∥Λrf − f∥2κ ≤ [1 + Lip(κ)αr]
Cm

νmrm
Er[f ], (2.40)

∥∇(Λrf)∥2κ ≤ [1 + Lip(κ)αr][1 + Cm2Kr2]
m+ 2

νmrm+2
Er[f ]. (2.41)

Proof. The above results are proved in the same way as in [Burago et al., 2015, Lemma

5.3, 5.4, 5.5] with little adjustments and the main differences are the additional factors 1 +

Lip(τ)βr or 1+Lip(κ)αr. To illustrate the idea, we will prove (2.39) and the generalizations

for (2.40) and (2.41) are similar. First by [Burago et al., 2015, Lemma 5.1], we have for each

x ∈ M,

(1 + CmKr2)−1 ≤ θ(x) ≤ (1 + CmKr2), (2.42)

where recall that K is an upper bound on the absolute value of the sectional curvature. Then

we have

|Λrf |2 = θ−2
∣∣∣∣∫M kr(x, y)f(y)

∣∣∣∣2 ≤ θ−2
∫
M
kr(x, y)dγ(y)

∫
M
kr(x, y)|f(y)|2dγ(y)

= θ−1
∫
M
kr(x, y)|f(y)|2dγ(y)

≤ [1 + CmKr2]

∫
M
kr(x, y)|f(y)|2dγ(y).
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Noticing that kr(x, y) is zero when dM(x, y) > r and τ is Lipschitz, we have

∥Λrf∥2τ ≤ [1 + CmKr2]

∫
M

∫
M
kr(x, y)|f(y)|2τ(x)dγ(x)dγ(y)

= [1 + CmKr2]

∫
M

|f(y)|2
[∫

Br(y)
kr(x, y)τ(x)dγ(x)

]
dγ(y)

≤ [1 + Lip(τ)rβ][1 + CmKr2]

∫
M

|f(y)|2
[∫

Br(y)
kr(x, y)τ(y)dγ(x)

]
dγ(y)

= [1 + Lip(τ)rβ][1 + CmKr2]

∫
Br(y)

kr(x, y)dγ(x)

∫
M

|f(y)|2 τ(y)dγ(y)

= [1 + Lip(τ)rβ][1 + CmKr2]2∥f∥2τ .

Lemma 2.7.6 (Discrete Dirichlet Energy Lower Bound). For each v ∈ L2(γn),

1.
∣∣∣∥Iv∥L2 − ∥v∥2

∣∣∣ ≤ Cκhn
√
Dhn [v] .

2. D[Iv] ≤
[
1 + CM,τ,κ

(
hn + εn

hn

)]
Dhn [v].

Proof. 1. By equation (6.4) in the proof of [Burago et al., 2015, Lemma 6.2(1)],

∥Iv − P ∗v∥L2 ≤ Chn∥δv∥, (2.43)

where

∥δv∥2 =
m+ 2

νmn2h
m+2
n

n∑
i=1

n∑
j=1

1{dM(xi, xj) < hn}|v(xi)− v(xj)|2. (2.44)

The result follows by noticing that ∥δv∥ ≤
√
αDhn [v] and

∣∣∣∥Iv∥L2 − ∥v∥2
∣∣∣ = ∣∣∣∥Iv∥L2 − ∥P ∗v∥L2

∣∣∣ ≤ ∥Iv − P ∗v∥L2 .
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2. The second statement will be proved by combining lower bounds for D0
hn
[Iv] and

D1
hn
[Iv]. For the lower bound on D0

hn
[Iv], we have by (2.39),

D0[Iv] = ∥Λhn−2εnP
∗v(x)∥2τ

≤
[
1 + Lip(τ)β(hn − 2εn)

] [
1 + CmK(hn − 2εn)

2
]2 ∫

τ(x)|P ∗v(x)|2dγ(x).

We also have

∫
τ(x)|P ∗v(x)|2dγ(x) =

n∑
i=1

∫
Ui

τ(x)|v(xi)|2dγ(x)

≤ [1 + Lip(τ)βεn]
n∑

i=1

∫
Ui

τ(xi)v(xi)
2dγ(x) = [1 + Lip(τ)βεn]D0

hn
[v].

Therefore

D0[Iv] ≤
(
1 + CM,τhn

)
D0
hn
[v]. (2.45)
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Next we seek a lower bound for D1
hn
[Iv]. We have

D1
hn
[v] =

m+ 2

n2νmh
m+2
n

n∑
i=1

n∑
j=1

√
κ(xi)κ(xj)1{dM(xi, xj) < hn}|v(xi)− v(xj)|2

=
m+ 2

n2νmh
m+2
n

n∑
i=1

n∑
j=1

√
κ(xi)κ(xj)1{dM(xi, xj) < hn}|P ∗v(xi)− P ∗v(xj)|2

=
m+ 2

νmh
m+2
n

n∑
i=1

n∑
j=1

√
κ(xi)κ(xj)1{dM(xi, xj) < hn}

·
∫
Ui

∫
Uj

|P ∗v(x)− P ∗v(y)|2dγ(y)dγ(x)

≥ [1− Lip(κ)αεn]
m+ 2

νmh
m+2
n

n∑
i=1

n∑
j=1

1{dM(xi, xj) < hn}

·
∫
Ui

∫
Uj

|P ∗v(x)− P ∗v(y)|2
√
κ(x)κ(y)dγ(y)dγ(x)

= [1− Lip(κ)αεn]
m+ 2

νmh
m+2
n

∫
M

∫
V (x)

|P ∗v(x)− P ∗v(y)|2
√
κ(x)κ(y)dγ(y)dγ(x),

where if x ∈ Ui then V (x) =
⋃
j:j∼i Uj . Notice that V (x) ⊃ Bhn−2ϵn(x) and hence,

D1
hn
[v] ≥ [1− Lip(κ)αεn]

m+ 2

νmh
m+2
n

∫
M

∫
Bhn−2ϵn

|P ∗v(x)− P ∗v(y)|2
√
κ(x)κ(y)dγ(y)dγ(x)

= [1− Lip(κ)αεn]
m+ 2

νmh
m+2
n

Ehn−2ϵn [P
∗v]. (2.46)
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Combining inequality (2.41) with (2.46) gives

D1[Iv]

= ∥∇(Iv)∥2κ

= ∥∇(Λhn−2ϵnP
∗v)∥2κ

≤ [1 + Lip(κ)α(hn − 2ϵn)]
[
1 + Cm2K(hn − 2ϵn)

2
]2 m+ 2

νm(hn − εn)m+2
Ehn−2ϵn [P

∗v]

≤ [1 + Lip(κ)α(hn − 2ϵn)]
[
1 + Cm2K(hn − 2ϵn)

2
]2( hn

hn − 2ϵn

)m+2

[1− Lip(κ)αεn]−1D1
h[v]

≤
[
1 + CM,κ

(
hn +

ϵn
hn

)]
D1
h[v], (2.47)

where we have used Lemma 2.7.2 and the fact that εn ≪ hn. The second statement follows

by combining (2.45) and (2.47).

Corollary 2.7.7 (Lower Bound). Suppose k := kn is such that hn
√
λ(kn) ≪ 1 for n large.

Then

λ
(k)
n ≥

[
1− CM,τ,κ

(
ϵn
hn

+ hn

√
λ(k)

)]
λ(k).

Proof. Since we are interested in proving lower bounds for λ(k)n , the result is trivial if λ(k)n ≥

λ(k). Therefore we shall assume that λ(k)n < λ(k). Let V be the span of eigenvectors v1, . . . , vk

of Lτ,κn associated with eigenvalues λ(1)n , . . . , λ
(k)
n . Lemma 2.7.6(1) implies for v ∈ V

∥Iv∥L2 ≥ ∥v∥2 − CM,κhn

√
Dhn [v] ≥

[
1− CM,κhn

√
λ
(k)
n

]
∥v∥2 ≥

[
1− CM,κhn

√
λ(k)

]
∥v∥2.

Therefore, the assumption that hn
√
λ(k) ≪ 1 implies that I|V is injective and V = I(V )
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has dimension k. Lemma 2.7.6 then gives

λ(k) ≤ max
f∈V\0

D[f ]

∥f∥2
L2

= max
v∈V \0

D[Iv]
∥Iv∥2

L2

≤ max
v∈V \0

[
1 + CM,τ,κ

(
hn + εn

hn

)]
Dhn [u](

1− CM,κhn
√
λ(k)

)2
∥u∥2

= max
v∈V \0

[
1 + CM,τ,κ

(
hn + εn

hn

)]
(
1− CM,κhn

√
λ(k)

)2 λ
(k)
n

≤
[
1 + CM,τ,κ

(
ϵn
hn

+ hn

√
λ(k)

)]
λ
(k)
n .

Therefore

λ
(k)
n ≥

[
1 + CM,τ,κ

(
ϵn
hn

+ hn

√
λ(k)

)]−1

λ(k) ≥
[
1− CM,τ,κ

(
ϵn
hn

+ hn

√
λ(k)

)]
λ(k).

Combining Lemma 2.7.3 and 2.7.6 we have:

Theorem 2.7.8. Suppose k := kn is such that hn
√
λ(kn) ≪ 1 for n large. Then

|λ(k)n − λ(k)|
λ(k)

≤ CM,τ,κ

[
εn
hn

+ hn

√
λ(k)

]
,

where CM,τ,κ is a constant depending on M, τ, κ.

2.7.3 Convergence of Eigenfunctions with Rate

In this subsection we prove Theorem 2.4.7. Before we proceed, we introduce some additional

notations. For any interval J of R, denote HJ (γ) the subspace of H1(γ) that is spanned by

eigenfunctions of Lτ,κ associated with eigenvalues in J and PJ (γ) the orthogonal projection

from L2(γ) onto HJ (γ). Similarly we use the notation HJ (γn) and PJ (γn) for Lτ,κn . To ease

notation, we will denote H(−∞,λ)(γ) and H(−∞,λ)(γn) as Hλ(γ) and Hλ(γn), respectively.
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We shall also denote both projections as PJ when no confusion arises.

To start with, we need several auxiliary results.

Lemma 2.7.9. Let v ∈ Hλ(γn).

1. ∥PIv − v∥2 ≤ Cκhn
√
Dhn [v].

2. D[Iv] ≥
[
1− CM,τ,κ

(
εn
hn

+ hn
√
λ
)]
Dhn [v].

Proof. 1. By Burago et al. [2015][Lemma 6.4(2)],

∥PIv − v∥2 ≤ Chn∥δv∥, (2.48)

where ∥δv∥ is defined in (2.44) The result follows by noticing that ∥δv∥ ≤
√
αDhn [v].

2. We first bound Dhn [PIv] in terms of Dhn [v]. Denoting PIv as w, we have

Dhn [w] =
〈
w,L

τ,κ
n w

〉
2

=
〈
w − Pλw + Pλw,L

τ,κ
n (w − Pλw + Pλw)

〉
2

=
〈
w − Pλw,L

τ,κ
n (w − Pλw)

〉
2 +

〈
Pλw,L

τ,κ
n Pλw

〉
2 +

〈
w − Pλw,L

τ,κ
n Pλw

〉
2

=
〈
w − Pλw,L

τ,κ
n (w − Pλw)

〉
2 +

〈
Pλw,L

τ,κ
n Pλw

〉
2

≥
〈
Pλw,L

τ,κ
n Pλw

〉
2,

where we have used that Pλw and L
τ,κ
n Pλw ∈ Hλ(γn) are orthogonal to w − Pλw. Since

L
τ,κ
n is nonsingular, ⟨·, Lτ,κn ·⟩2 defines an inner product and the triangle inequality implies

√
Dhn [w] ≥

√〈
Pλw,L

τ,κ
n Pλw

〉
2 ≥

√〈
v, L

τ,κ
n v⟩2 −

√
⟨v − Pλw,L

τ,κ
n (v − Pλw)

〉
2.
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Now we bound the second term above. Since v ∈ Hλ, we have v = Pλv and

〈
v − Pλw,L

τ,κ
n (v − Pλw)

〉
2 =

〈
Pλ(v − w), L

τ,κ
n Pλ(v − w)

〉
2

≤ λ∥Pλ(v − w)∥22 ≤ λ∥v − w∥22 ≤ Cκλh
2
nDhn [v],

where the last step follows from (2.48). Hence

√
Dhn [PIv] ≥

[
1− Cκ

√
λhn

]√
Dhn [v],

and the result follows from Lemma 2.7.3, which says

Dhn [PIv] ≤
[
1 + CM,τ,κ

(
hn +

εn
hn

)]
D[Iv].

We fix orthonormal eigenfunctions {vk}nk=1 and {fk}∞k=1 for Lτ,κn and Lτ,κ. The following

lemma bounds the projection error when J is a half-interval.

Lemma 2.7.10. Suppose k := kn is such that hn
√
λ(kn) ≪ 1. Then, for any a > 0,

∥Ivk − Pλ(k)+aIvk∥
2
L2 ≤ CM,τ,κa

−1kλ(k)
(
εn
hn

+ hn

√
λ(k)

)
,

D[Ivk − Pλ(k)+aIvk] ≤ CM,τ,κa
−1(λ(k) + a)kλ(k)

(
εn
hn

+ hn

√
λ(k)

)
.

Proof. Let V be the span of v1, . . . , vk and V = I(V ). Since hn
√
λ(k) ≪ 1, Theorem 2.4.6

implies λ(k)n ≤ Cλ(k) and then by Lemma 2.7.6, for any v ∈ V ,

∥Iv∥L2 ≥
[
1− CM,τ,κhn

√
λ
(k)
n

]
∥v∥2 ≥

[
1− CM,τ,κhn

√
λ(k)

]
∥v∥2

D[Iv] ≤
[
1 + CM,τ,κ

(
hn +

εn
hn

)]
Dhn [v].
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The assumption hn
√
λ(k) ≪ 1 also implies that I|V is injective and V is k-dimensional. Let

λ
(1)
V , . . . , λ

(k)
V be the eigenvalues of A := Lτ,κ|V . The minimax principle implies that, for

j ≤ k,

λ
(j)
V ≤

[
1 + CM,τ,κ

(
hn + εn

hn

)]
[
1− CM,τ,κhn

√
λ(k)

] λ
(j)
n ≤ λ

(j)
n + CM,τ,κλ

(k)
(
εn
hn

+ hn

√
λ(k)

)
. (2.49)

Define another operator L̃τ,κ by

L̃τ,κf = Lτ,κPλ(k)+af + λ(k)(f − Pλ(k)+af).

Let {fi}’s be the eigenvectors of Lτ,κ associated with eigenvalues {λ(i)}. We observe that

L̃τ,κ is self-adjoint with respect to the L2(γ) inner product and shares the same eigenvectors

with corresponding eigenvalues λ(1), . . . , λ(k), λ(k), . . .. Let Ã := L̃τ,κ|V and λ̃
(1)
V , . . . , λ̃

(k)
V

be its eigenvalues. Let f ∈ V and g = f − Pλ(k)+af . Since Lτ,κPλ(k)+af = L̃τ,κPλ(k)+af ,

we have by orthogonality

⟨f,Lτ,κf⟩L2 − ⟨f, L̃τ,κf⟩L2 = ⟨g,Lτ,κg⟩L2 − ⟨g, L̃τ,κg⟩L2

= ⟨g,Lτ,κg⟩L2 − λ(k)∥g∥2
L2 ≥ a

λ(k) + a
⟨g,Lτ,κg⟩L2 , (2.50)

where the last inequality follows from the fact that ⟨g,Lτ,κg⟩L2 ≥ (λ(k) + a)∥g∥2
L2 . By the

minimax principle, we have λ̃(j)V ≥ λ(j) for j ≤ k and by Theorem 2.4.6 we have

λ̃
(j)
V ≥ λ

(j)
n − CM,τ,κλ

(k)
(
εn
hn

+ hn

√
λ(k)

)
.

Together with (2.49), we get

λ
(j)
V − λ̃

(j)
V ≤ CM,τ,κλ

(k)
(
εn
hn

+ hn

√
λ(k)

)
,

86



and by [Burago et al., 2015, Lemma 7.2], for any f ∈ V ,

⟨f,Lτ,κf⟩L2 − ⟨f, L̃τ,κf⟩L2 = ⟨f, Af⟩L2 − ⟨f, Ãf⟩L2

≤ k max
1≤j≤k

{λ(j)V − λ̃
(j)
V } ≤ CM,τ,κkλ

(k)
(
εn
hn

+ hn

√
λ(k)

)
,

where we have used the fact that A ≥ Ã from (2.50). Hence (2.50) implies

D[g] = ⟨g,Lτ,κg⟩L2 ≤ CM,τ,κa
−1(λ(k) + a)kλ(k)

(
εn
hn

+ hn

√
λ(k)

)
,

∥g∥2
L2 ≤ CM,τ,κa

−1kλ(k)
(
εn
hn

+ hn

√
λ(k)

)
.

The next lemma bounds the projection error when J is a finite interval.

Lemma 2.7.11. Suppose k := kn is such that hn
√
λ(kn) ≪ 1. Let a ≤ b ≤ c ≤ λ(k) be

constants so that the interval (λ(k) + a, λ(k) + b) does not contain any eigenvalue of Lτ,κ.

Then

∥Ivk − P(λ(k)−c,λ(k)+a]Ivk∥
2
L2 ≤ CM,τ,κc

−1b−1k
[
λ(k)

]2( εn
hn

+ hn

√
λ(k)

)
+ c−1a.

Proof. Let f = Ivk and decompose it as

f = P(λ(k)−c,λ(k)+a]f + P(−∞,λ(k)−c]f + P(λ(k)+a,∞)f =: f0 + f− + f+ .

Orthogonality implies

⟨f,Lτ,κf⟩L2 = ⟨f0,Lτ,κf0⟩L2 + ⟨f−,Lτ,κf−⟩L2 + ⟨f+,Lτ,κf+⟩L2 ,
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and we have by assumption that f+ = P[λ(k)+b,∞)f . By Lemma 2.7.10, we have

∥f+∥2L2 ≤ CM,τ,κb
−1kλ(k)

(
εn
hn

+ hn

√
λ(k)

)
, (2.51)

⟨f+,Lτ,κf+⟩L2 ≤ CM,τ,κb
−1(λ(k) + b)kλ(k)

(
εn
hn

+ hn

√
λ(k)

)
.

By Lemma 2.7.9 (2), we have

⟨f,Lτ,κf⟩L2 = D[Ivk] ≥
[
1− CM,τ,κ

(
εn
hn

+ hn

√
λ(k)

)]
Dhn [vk]

=

[
1− CM,τ,κ

(
εn
hn

+ hn

√
λ(k)

)]
λ
(k)
n .

Then

⟨f0,Lτ,κf0⟩L2 + ⟨f−,Lτ,κf−⟩L2 = ⟨f,Lτ,κf⟩L2 − ⟨f+,Lτ,κf+⟩L2

≥ λ
(k)
n − CM,τ,κb

−1(λ(k) + b)kλ(k)
(
εn
hn

+ hn

√
λ(k)

)
.

(2.52)

We also have

⟨f0,Lτ,κf0⟩L2 ≤ (λ(k) + a)∥f0∥L2 ,

⟨f−,Lτ,κf−⟩L2 ≤ (λ(k) − c)∥f−∥L2 ,

which implies

⟨f0,Lτ,κf0⟩L2 + ⟨f−,Lτ,κf−⟩L2 ≤ λ(k)(∥f0∥2L2 + ∥f−∥2L2) + a∥f0∥2L2 − c∥f−∥2L2

≤ λ(k)∥f∥2
L2 + a∥f∥2

L2 − c∥f−∥2L2 .
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By Lemma 2.7.6(1), we have

∥f∥L2 = ∥Ivk∥L2 ≤
[
1 + Cκhn

√
λ
(k)
n

]
∥vk∥2 ≤ 1 + Cκhn

√
λ(k),

which gives

⟨f0,Lτ,κf0⟩L2 + ⟨f−,Lτ,κf−⟩L2 ≤ (λ(k) + a)(1 + Cκh
2
nλ

(k))− c∥f−∥2L2 .

Combining with (2.52) we have

(λ(k) + a)(1 + Cκh
2
nλ

(k))− c∥f−∥2L2 ≥ λ
(k)
n − CM,τ,κb

−1(λ(k) + b)kλ(k)
(
εn
hn

+ hn

√
λ(k)

)
,

and then

∥f−∥2L2 ≤ CM,τ,κc
−1b−1(λ(k) + b)kλ(k)

(
εn
hn

+ hn

√
λ(k)

)
+ c−1a+ c−1

∣∣∣λ(k)n − λ(k)
∣∣∣

≤ CM,τ,κc
−1b−1k

[
λ(k)

]2( εn
hn

+ hn

√
λ(k)

)
+ c−1a, (2.53)

where the assumption b ≤ λ(k) is used in the last step. The result then follows by combining

(2.51) and (2.53) and noticing that ∥Ivk − P(λ(k)−c,λ(k)+a]Ivk∥
2
L2 = ∥f+∥2L2 + ∥f−∥2L2 .

Now we are ready to prove Theorem 2.4.7.

Theorem 2.7.12 (Eigenfunction Approximation). Let λ be an eigenvalue of Lτ,κ with mul-

tiplicity ℓ, i.e.,

λ(kn−1) < λ(kn) = λ = . . . = λ(kn+ℓ−1) < λ(kn+ℓ).

Suppose that hn
√
λ(kn) ≪ 1 and εn ≪ hn for n large. Let ψ(kn)n , . . . , ψ

(kn+ℓ−1)
n be orthonor-

mal eigenvectors of Lτ,κn associated with eigenvalues λ(kn)n , . . . , λ
(kn+ℓ−1)
n . Then there exists
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orthonormal eigenfunctions ψ(kn), . . . , ψ(kn+ℓ−1) of Lτ,κ so that for j = kn, . . . , kn + ℓ− 1

∥ψ(j)n ◦ Tn − ψ(j)∥2
L2 ≤ CM,τ,κj

3
(
εn
hn

+ hn

√
λ(j)

)
,

∥ψ(j)n ◦ Tn − ψ(j)∥2
L2 ≤ CM,τ,κ(log n)

mcmj3
(
εn
hn

+ hn

√
λ(j)

)
.

Proof. For each j = k, . . . , k + ℓ− 1, let a = (εn/hn + hn
√
λ(j)) and b = c = δλ

2 , where

δλ = min{λ(kn) − λ(kn−1), λ(kn+ℓ) − λ(kn−ℓ−1)}

so that the assumptions of Lemma 2.7.11 are satisfied. Indeed, a ≤ b ≤ c ≤ λ(k) and the

interval (λ(j) + a, λ(j) + b) does not contain any eigenvalue of Lτ,κ and P(λ(j)−c,λ(j)+a) =

P{λ(j)}. Hence we obtain

∥Iψ(j)n − ψ̃(j)∥2
L2 ≤ CM,τ,κδ

−2
λ j

[
λ(j)

]2( εn
hn

+ hn

√
λ(j)

)
,

where ψ̃(j) = P{λ}Iψ
(j)
n is a λ-eigenfunction of Lτ,κ. Lemma 2.7.6(1) implies that I is almost

an isometry on the span of ψ(k)n , . . . , ψ
(k+ℓ−1)
n and by the polarization identity we get that

the Iψ(j)n ’s are almost orthonormal up to CM,τ,κhn
√
λ(j). This implies the ψ̃(j)’s are almost

orthogonal up to CM,τ,κδ
−2
λ j[λ(j)]2(εn/hn + hn

√
λ(j)). Hence letting {ψ(j)}k+ℓ−1

j=k be the

Gram-Schmidt orthogonalization of {ψ̃(j)}k+ℓ−1
j=k , we get

∥Iψ(j)n − ψ(j)∥2
L2 ≤ CM,τ,κδ

−2
λ j

[
λ(j)

]2( εn
hn

+ hn

√
λ(j)

)
.

Using (2.43) that ∥Iv − P ∗v∥2
L2 ≤ Ch2nDhn [v] gives

∥P ∗ψ(j)n − ψ(j)∥2
L2 ≤ CM,τ,κδ

−2
λ j

[
λ(j)

]2( εn
hn

+ hn

√
λ(j)

)
.
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By Weyl’s law that λ(j) ≍ j
2
m and hence δλ ≍ j

2
m−1 ≍ j−1λ(j), we conclude that

∥P ∗ψ(j)n − ψ(j)∥2
L2 ≤ CM,τ,κj

3
(
εn
hn

+ hn

√
λ(j)

)
,

which is the first assertion of the theorem by noticing that P ∗ψ(j)n = ψ
(j)
n ◦ Tn. Now by

Lemma 17 and the proof of [García Trillos et al., 2019a, Theorem 6], we have

∥ψ(j)n ◦ Tn − ψ(j)∥L2 ≤ CM

[
λ

m+1
4

j εn + (log n)
mcm
2 ∥P ∗ψ(j)n − ψ(j)∥L2

]
≤ CM,τ,κ

[
j
m+1
2m εn + (log n)

mcm
2 j

3
2

√
εn
hn

+ hn

√
λ(j)

]
≤ CM,τ,κ(log n)

mcm
2 j

3
2

√
εn
hn

+ hn

√
λ(j),

where we have used that εn ≪ hn in the last step.

2.7.4 Convergence of Graph Matérn Field

Now we are ready to prove Theorem 2.4.2. Theorem 2.4.4 can be proved in the same fashion

using the second assertion of Theorem 2.7.12.

Theorem 2.7.13. Suppose τ is Lipschitz, κ ∈ C1(M) and both are bounded below by positive

constants. Let s > m and

(log n)cm

n1/m
≪ hn ≪ 1

n1/2s
,

where cm = 3/4 if m = 2 and cm = 1/m otherwise. Then, with probability one,

E∥un ◦ Tn − u∥L2
n→∞−−−−→ 0.
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If further s > (5m+ 1)/2 and

hn ≍

√
(log n)cm

n1/m
. (2.54)

Then, with probability one,

E∥un ◦ Tn − u∥L2 = O
(√

hn

)
= O

(
(log n)cm/4

n1/4m

)
.

Proof. Suppose we are in a realization where the conclusion of Proposition 2.4.1 holds.

Suppose kn is chosen so that nm/2s ≪ kn ≪ h−m
n . Note that this is possible given the

scaling of hn. Then by Theorem 2.7.12 we can fix orthonormal eigenfunctions {ψ(i)}∞i=1 of

Lτ,κ and {ψ(n)i }ni=1 of Lτ,κn for each n so that

∥ψ(i)n ◦ Tn − ψ(i)∥L2 ≤ CM,τ,κi
3
2

√
εn
hn

+ hn

√
λ(i), (2.55)

for i = 1, . . . , kn. Recall un and u have the following representations

un := τ
s
2−

m
4

n κ
m
2
n

n∑
i=1

[
λ
(i)
n

]− s
2
ξ(i)ψ

(i)
n ,

u = τ
s
2−

m
4 κ

m
2

∞∑
i=1

[
λ(i)
]− s

2
ξ(i)ψ(i).

Since τn is the restriction of τ to Mn, we have τn◦Tn = τ ◦Tn and similarly for κn. Therefore

un ◦ Tn has the expression

un ◦ Tn = [τ ◦ Tn]
s
2−

m
4 [κ ◦ Tn]

m
2

n∑
i=1

[
λ
(i)
n

]− s
2
ξ(i)ψ

(i)
n ◦ Tn.

To bound the expected L2 distance between un ◦ Tn and u, we introduce four intermediate
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functions.

uknn := [τ ◦ Tn]
s
2−

m
4 [κ ◦ Tn]

m
2

kn∑
i=1

[
λ
(i)
n

]− s
2
ξ(i)ψ

(i)
n ◦ Tn,

ũknn := [τ ◦ Tn]
s
2−

m
4 [κ ◦ Tn]

m
2

kn∑
i=1

[
λ(i)
]− s

2
ξ(i)ψ

(i)
n ◦ Tn,

ũkn := [τ ◦ Tn]
s
2−

m
4 [κ ◦ Tn]

m
2

kn∑
i=1

[
λ(i)
]− s

2
ξ(i)ψ(i)

ukn := τ
s
2−

m
4 κ

m
2

kn∑
i=1

[
λ(i)
]− s

2
ξ(i)ψ(i).

It then suffices to bound the difference between any two consecutive functions. By Theorem

2.4.6 and Weyl’s law we have that λ(kn)n ≳ λ(kn) ≳ k
2/m
n , which gives

E∥un ◦ Tn − uknn ∥L2 ≤ β
s
2−

m
4 α

m
2

 n∑
i=kn+1

[
λ
(i)
n

]−s

1
2

≲

(
n
[
λ
(kn)
n

]−s
)1

2

≲
√
nk

− s
m

n .

(2.56)

Similarly,

E∥ukn − u∥L2 ≲

 ∞∑
i=kn+1

[
λ(i)
]−s

1
2

≲

 ∞∑
i=kn+1

i−
2s
m

1
2

≲

(∫ ∞

kn
x−

2s
m

)1
2

≲ k
1
2−

s
m

n .

(2.57)

Both (2.56) and (2.57) converges to 0 by the choice of kn.

Next, since both λ
(i)
n and λ(i) are bounded below by min τ > 0, by Lipschitz continuity

of x−s/2 away from 0 we have, for i = 1, . . . , kn,

∣∣∣∣[λ(i)n ]− s
2 −

[
λ(i)
]− s

2

∣∣∣∣ ≲ ([λ(i)n ] ∧ [λ(i)])− s
2−1 ∣∣∣λ(i)n − λ(i)

∣∣∣ ≲ [λ(i)]− s
2

(
εn
hn

+ hn

√
λ(i)
)
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Hence

E∥uknn − ũknn ∥L2 ≲

 kn∑
i=1

([
λ
(i)
n

]− s
2 −

[
λ(i)
]− s

2

)2
1

2

≲

 kn∑
i=1

[
λ(i)
]−s

(
εn
hn

+ hn

√
λ(i)
)2
1

2

(2.58)

≲

(
εn
hn

+ hnk
1
m
n

) kn∑
i=1

i−
2s
m

1
2

.

The last expression goes to 0 since s > m, εn ≪ hn and kn ≪ h−m
n .

Now by Lipschitz continuity of τ and κ, and Proposition 2.4.1 that d(x, Tn(x)) ≤ εn, we

have for all x ∈ M

∣∣∣τ(Tn(x)) s2−m
2 κ(Tn(x))

m
2 − τ(x)

s
2−

m
2 κ(x)

m
2

∣∣∣ ≲ εn.

Therefore

E∥ũkn − ukn∥L2 ≲
∥∥∥(τ ◦ Tn) s2−m

4 (κ ◦ Tn)
m
2 − τ

s
2−

m
4 κ

m
2

∥∥∥
∞

 kn∑
i=1

[
λ(i)
]−s

 ≲ εn, (2.59)

which converges to zero.

Finally, for fixed ℓ ∈ N, we have by using the fact that ∥ψ(i)n ◦ Tn∥L2 = ∥ψ(i)n ∥2 = 1

E∥ũknn − ũkn∥L2 ≲
kn∑
i=1

[
λ(i)
]− s

2 ∥ψ(i)n ◦ Tn − ψ(i)∥L2 (2.60)

≲
ℓ∑

i=1

[
λ(i)
]− s

2 ∥ψ(i)n ◦ Tn − ψ(i)∥L2 +

kn∑
i=ℓ+1

[
λ(i)
]− s

2
.

By (2.55) we have ∥ψ(i)n ◦ Tn − ψ(i)∥L2
n→∞−−−−→ 0 for i = 1, . . . , ℓ since ℓ is fixed. Therefore
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we have

lim sup
n→∞

E∥ũknn − ũkn∥L2 ≲
∞∑

i=ℓ+1

[
λ(i)
]− s

2
.

Since ℓ is arbitrary, the last expression goes to 0 as ℓ → ∞ under the assumption s > m.

Hence by combining all the pieces we get E∥un ◦ Tn − u∥L2
n→∞−−−−→ 0.

Now in order to obtain rates of convergence, we need the additional assumption that

s > 5
2m+ 1

2 and to refine in particular the estimates for E∥uknn − ũknn ∥L2 and E∥ũknn − ũkn∥L2 .

By (2.58), we have

E∥uknn − ũknn ∥L2 ≲

(
εn
hn

+ hn

) kn∑
i=1

[
λ(i)
]−s+1

1
2

≲

(
εn
hn

+ hn

)
, (2.61)

where the last step follows by the assumption s > 5
2m+ 1

2 . By (2.55), we can further bound

(2.60) by

E∥ũknn − ũkn∥L2 ≲
kn∑
i=1

[
λ(i)
]− s

2
i
3
2

√
εn
hn

+ hn

√
λ(i)

≲

√
εn
hn

+ hn

kn∑
i=1

i
3
2

[
λ(i)
]− s

2+
1
4

≲

√
εn
hn

+ hn

kn∑
i=1

i
3
2−

s
m+ 1

2m ≲

√
εn
hn

+ hn, (2.62)

where the last step follows from that s > 5
2m + 1

2 . Now combining (2.56), (2.57), (2.59),

(2.61), (2.62), we see that the error is dominated by

E∥un ◦ Tn − u∥L2 ≲
√
nk

− s
m

n +

√
εn
hn

+ hn.
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Therefore by setting

hn ≍ (log n)
cm
2 n−

1
2m , kn ≍ n

2m+1
4s

we have

E∥un ◦ Tn − u∥L2 ≲ (log n)
cm
4 n−

1
4m .

We end this subsection with a remark that Theorem 2.7.13 can be stated in terms of the

TL2 metric proposed in García Trillos and Slepčev [2016b]. Let P(M) be the space of Borel

probability measures on M. Define the TL2 space as

TL2 :=
{
(µ, f) : µ ∈ P(M), f ∈ L2(µ)

}
,

endowed with the metric

dTL2

(
(µ1, f1), (µ2, f2)

)
:= inf

ω∈C (µ1,µ2)

[∫
M

∫
M

(
dM(x, y)2 + |f1(x)− f2(y)|2

)
dω(x, y)

]1
2

,

where C is the set of couplings between µ1 and µ2 and dM is the geodesic distance on

M. The dTL2 metric is a natural generalization of L2 convergence of functions and weak

convergence of measures [García Trillos and Slepčev, 2016b], which allows comparison of

functions defined over the point cloud with functions defined on M. It bypasses the need to

consider a specific transport map and thus may be of independent interest.

The assertions of Theorem 2.7.13 continue to hold if E∥un ◦ Tn − u∥L2 is replaced by

E
[
dTL2

(
(γn, un), (γ, u)

)]
. The proof follows immediately from the definition since the

transport maps Tn induce a coupling defined as ωTn := (I × Tn)♯γ, the push-forward of γ
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under I × Tn : M → M×Mn, where (I × Tn)(x) =
(
x, Tn(x)

)
. Hence we see that

dTL2

(
(γn, un), (γ, u)

)
≤
[∫

M

(
dM
(
x, Tn(x)

)2
+ |un

(
Tn(x)

)
− u(x)|2

)
dγ(x)

]1
2

≲ εn + ∥un ◦ Tn − u∥L2 .

97



CHAPTER 3

KERNEL METHODS FOR BAYESIAN ELLIPTIC INVERSE

PROBLEMS ON MANIFOLDS

3.1 Introduction

Partial Differential Equations (PDEs) on manifolds are used to model a variety of physical

and biological phenomena including pattern formation on biological surfaces, phase separa-

tion in bio-membranes, tumor growth, and surfactants on fluid interfaces [Eilks and Elliott,

2008, Elliott and Stinner, 2010, Chaplain et al., 2003, Xu et al., 2006]. In this chapter we

focus on the inversion of elliptic PDEs for two main reasons. First, elliptic PDEs are ubiqui-

tous in applications and they are used, for instance, as simplified models for groundwaterflow

and oil reservoir simulation. The need to specify uncertain input parameters of these models

leads naturally to the inverse problem of determining the permeability from the pressure un-

der a Darcy model of flow in a porous medium [McLaughlin and Townley, 1996, Lorentzen

et al., 2012, Iglesias and Dawson, 2007, Ping and Zhang, 2014]. Second, elliptic models are

widely used to test algorithms for forward propagation of uncertainty [Frauenfelder et al.,

2005, Cohen and Schwab, 2011, Babuska et al., 2004] and Bayesian inversion [Stuart, 2010,

Cotter et al., 2010b, García Trillos and Sanz-Alonso, 2017]. Despite the applied impor-

tance of elliptic inversion, the manifold setting that we consider is largely unexplored and

may allow for more realistic modelling in applications. For example, the variables of inter-

est in the groundwaterflow problem may not be confined to a flat two-dimensional domain

and knowledge of the underlying flow surface may be limited to a point cloud of landmark

locations.

The aim of this chapter is to study the formulation and implementation of Bayesian

inverse problems to learn input parameters of PDEs defined on manifolds. Specifically, we

study the inverse problem of recovering the diffusion coefficient of a second-order, divergence-
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form elliptic equation, given noisy measurements of the solution. While our interest lies in

solving the inverse problem, most of our efforts are devoted to studying the approximation of

the forward map (the operator that takes the input parameter to the solution of the PDE).

Several techniques to approximate the forward map have been proposed in the extensive lit-

erature on numerical methods for PDEs on manifolds. For example, finite element methods

[Dziuk and Elliott, 2013, Camacho and Demlow, 2015, Bonito et al., 2016], level-set methods

[Bertalmío et al., 2001, Mémoli et al., 2004], closest point methods [Ruuth and Merriman,

2008], or mesh-free radial basis function methods [Piret, 2012]. The implementation detail

of each of the existing methods is different, but a unifying theme is the need to have a rep-

resentation of the manifold in order to approximate the differential operator. Unfortunately,

these approaches are difficult to implement when one only has access to an unstructured

point cloud of manifold samples and meshing is challenging, or when the dimension of the

ambient space is large but the manifold dimension is moderate.

In this chapter, we avoid the problems associated with the representation of the manifold

by directly approximating the differential operator in the forward map with an appropriate

kernel integral operator. With a consistent kernel approximation to the differential operator

on the manifold, the numerical implementation can be performed naturally by discretizing

the corresponding integral operator on a point cloud of manifold samples without further

knowledge of the underlying manifold or its Riemannian metric. Building on this construc-

tion, we propose a fully discrete, mesh-free approach to the numerical solution of Bayesian

inverse problems on point clouds. The idea of facilitating the discretization of PDEs on man-

ifolds by an integral equation approximation can also be found in the recent papers [Li and

Shi, 2016, Li et al., 2017, Gilani and Harlim, 2019], all of which build on manifold learning

techniques and analyses. Our perspective in this chapter and in Gilani and Harlim [2019],

Berry and Sauer [2016] is in contrast to the one taken in Belkin and Niyogi [2004, 2008],

Coifman et al. [2005], Coifman and Lafon [2006], Berry and Harlim [2016]. Rather than iden-
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tifying the limiting continuum operator of different normalizations of graph-Laplacians, our

interest is to define a suitable kernel to approximate a given anisotropic diffusion operator

on the underlying manifold.

We adopt a Bayesian approach to the inverse problem [Kaipo and Somersalo, 2006,

Calvetti and Somersalo, 2007, Stuart, 2010, Sanz-Alonso et al., 2019], where we set a prior

distribution on the unknown PDE input parameter, and condition on observed data to

find its posterior distribution. The Bayesian approach is largely motivated by the following

advantages. First, the posterior covariance and posterior confidence intervals may be used to

quantify the uncertainty in the parameter reconstruction. Second, the Bayesian formulation

leads to a well-posed inverse problem [Marzouk and Xiu, 2009, Stuart, 2010, Sanz-Alonso

et al., 2019] by which a small perturbation on the data, the prior distribution, or the forward

map leads to a small perturbation in the posterior solution. Our main theoretical result is

an example of the well-posedness of the Bayesian formulation: we deduce a total variation

error bound between the true posterior distribution and its kernel-based approximation from

a new error bound between the forward map and its kernel approximation. The new forward

map error bound, with a dependence on the diffusion coefficient, builds on existing results on

the point-wise convergence kernel approximations to elliptic operators [Coifman and Lafon,

2006, Berry and Harlim, 2016].

The advantages of the Bayesian approach outlined above come with a cost: the need to

specify a prior distribution on the unknown. The choice of prior is crucial as it determines

the support of the posterior, but unfortunately this choice is often only guided by ad-hoc

and computational considerations. In this chapter we consider a two-parameter family of

log-Gaussian field priors on manifolds, defining the covariance through the Laplace Beltrami

operator on the manifold [Lindgren et al., 2011, Dunlop et al., 2017]. The two prior parame-

ters allow the specification of the smoothness and lengthscale of prior (and hence posterior)

draws, and the lengthscale may be learned from data using a hierarchical approach as de-
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tailed in our numerical experiments. In addition to their flexibility, a further advantage

of our choice of priors is that they allow the infusion of geometric information from the

manifold on the reconstructed input by expressing it as a random combination of the first

eigenfunctions of the Laplacian. Moreover, in the absence of a full representation of the

manifold, these priors can be consistently discretized using a graph-Laplacian [Von Luxburg,

2007, García Trillos and Sanz-Alonso, 2018]. We refer to Bertozzi et al. [2018], Gao et al.

[2019], García Trillos and Sanz-Alonso [2018], García Trillos et al. [2020b] for recent applica-

tions and references on Gaussian processes on manifolds. From a computational viewpoint,

the use of log-Gaussian priors and the existence of a continuum limit facilitate the design

of MCMC algorithms that scale well with the size of the point cloud, as shown in a linear

inverse problem in García Trillos et al. [2020b]. In this regard, a simple but powerful idea

is to use a proposal kernel that satisfies detailed balance with respect to the prior [Cotter

et al., 2010a].

Outline and Main Contributions We close this introduction with an outline of the rest

of the chapter, summarizing the main contributions of each section.

• In Section 3.2 we give a brief introduction to the Bayesian formulation of inverse

problems, and formulate the problem on a manifold. The main novel contributions of

this section are: i) to introduce a kernel-based approximation to the forward map and

an associated approximation to the posterior in the continuum (Section 3.2.2); and ii)

to employ the kernel approximations to formulate a Bayesian solution to the inverse

problems on point clouds (Section 3.2.3). These kernel and point cloud approximations

are inspired by manifold learning and data analysis techniques.

• Section 3.3 contains the main theoretical contributions of this chapter. Theorem 3.3.1

gives an error bound between the true and kernel-based forward maps, and Theorem

3.3.6 establishes a bound on the total variation distance between the posterior and
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its kernel-based approximation. The main novelty of Theorem 3.3.1 is to generalize

the analysis in Coifman and Lafon [2006] to account for anisotropic diffusion and,

more importantly, to explicitly track the dependence of the diffusion coefficient in the

error bounds. Understanding this dependency is necessary in order to guarantee the

closeness of the true and approximate posterior distributions shown in Theorem 3.3.6.

• In Section 3.4 we discuss the practical implementation of the methods, provide guide-

lines for the choice of tuning parameters and for the posterior sampling, and conduct

three numerical experiments of increasing difficulty to illustrate the applicability of our

approach. We also consider in Section 3.4.5 a hierarchical formulation of the inverse

problem, where the prior lengthscale is learned from the data, when in absence of such

knowledge.

• We close in Section 3.5 with conclusions and open directions for research that stem

from our work.

Notation and Setting Throughout this chapter M will denote an m-dimensional smooth

Riemannian manifold embedded in Rd. We will denote by Ck := Ck(M) the space of k-times

differentiable functions on M and by Ck,α := Ck,α(M) the space of k-times differentiable

functions whose k-th partial derivatives are Hölder continuous with exponent α. We will

assume that the manifold M is compact and has no boundary, thus avoiding the technicalities

necessary to deal with boundary conditions. The theoretical and computational investigation

of point cloud approximation to PDEs supplemented with boundary conditions is a topic of

current research Li and Shi [2016], Li et al. [2017], Gilani and Harlim [2019]. Due to the lack

of boundary conditions, the elliptic problem that we consider is unique up to a constant. We

will enforce uniqueness by working on the space L20 := L20(M) of mean-zero square integrable

functions on M.
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3.2 Bayesian Inverse Problems on Manifolds and Point Clouds

We start in Section 3.2.1 by recalling the Bayesian formulation of elliptic inverse problems

in a given manifold. We then introduce in Section 3.2.2 a kernel-based approximation to the

forward map and a corresponding approximation to the posterior, both of which will be ana-

lyzed in Section 3.3. Finally in Section 3.2.3 we introduce a point cloud approximation of the

kernel forward map leading to a formulation of the elliptic problem on point clouds without

reference to the underlying manifold. We will investigate numerically the implementation of

elliptic Bayesian inverse problems on point clouds in Section 3.4.

3.2.1 Bayesian Elliptic Inverse Problems on Manifolds

We consider the elliptic equation

Lκu := −div(κ∇u) = f, x ∈ M, (3.1)

where κ is a function on M. Here and throughout, the differential operators are defined

with respect to the Riemannian metric inherited by M from Rd. We are interested in the

inverse problem of determining the diffusion coefficient κ from noisy measurements of u of

the form

y = D(u) + η, (3.2)

where the observation map D : L2 → RJ will be assumed to be known. Examples of

observation maps will be discussed in Section 3.2.1.2. We adopt a Bayesian perspective to

the inverse problem, described succinctly in what follows; we refer to Kaipo and Somersalo

[2006], Stuart [2010], Sanz-Alonso et al. [2019] for a more detailed account. In short, the

Bayesian formulation of inverse problems involves specifying a prior distribution π for the

unknown PDE input κ and a distribution for the observation noise η. Once these distributions
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have been specified, the solution to the inverse problem is the posterior distribution of the

variable κ conditioned on the observed data y. For simplicity of exposition, we will assume

throughout that the observation noise is centered and Gaussian, η ∼ N (0,Γ) for given

positive definite Γ ∈ RJ×J .

Writing κ = eθ, we take a Gaussian prior for θ supported on a Banach space B. A

specific form of prior, widely used in applications, will be described in Section 3.2.1.1. Our

assumptions on κ and f in Section 3.3 will guarantee the existence of a unique solution to

equation (3.1) in the space L20 of mean-zero square intergrable functions on M. This, in

turn, allows us to define a forward map F : θ ∈ B 7→ u ∈ L20. Provided that the map

G := D ◦ F : B → RJ is measurable and that the prior is supported on B, the posterior πy

can be written as a change of measure with respect to the prior

dπy

dπ
(θ) ∝ exp

(
−1

2
|y − G(θ)|2Γ

)
, (3.3)

with | · |2Γ := ⟨·,Γ−1·⟩. Equation (3.3) shows that the posterior distribution πy is defined

by reweighting the prior, favoring unknowns θ that produce a good match with the data

y through a likelihood function (the right-hand term), implied by equation (3.2) and the

assumed Gaussian distribution of the noise η.

For our theoretical results in Section 3.3 we will take B = C4 and assume that f ∈ C3,α,

for 0 < α < 1. These assumptions guarantee [Gilbarg and Trudinger, 2015] that almost

surely with respect to the prior, the diffusion coefficient κ is uniformly elliptic, and the

unique solution of equation (3.1) in L20 lives in C5,α, allowing us to establish a stability

result for an approximation of the forward map. We believe, however, that these strong

regularity conditions can be relaxed.
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3.2.1.1 Matérn-type Prior

Here we describe a choice of prior that is widely used in applications in the geophysical

sciences and spatial statistics [Stein, 1999a]; in Section 3.2.3.1 we will introduce a point

cloud approximation to this prior used in our numerical experiments in Section 3.4. Since

equation (3.3) implies that the support of the prior determines the support of the posterior, it

should both capture the geometry of the manifold M and have enough expressivity to include

a wide class of functions. This motivates to choose the prior from a flexible two-parameter

family of Gaussian measures on L2. Precisely, we will consider priors of the form

π = N (0, Cτ,s), Cτ,s = c(τ)(τI +∆M)−s, (3.4)

where ∆M := −div(∇·) is the Laplace-Beltrami operator on M, τ > 0, s > m
2 are two free

parameters, whose intuitive interpretation will be given below, and c(τ) is a normalizing

constant. Let {(λi, ϕi)}∞i=1 be eigenvalue-eigenvector pairs for ∆M with λi’s increasing.

Then by the Karhunen-Loéve expansion, random samples of π admit a series expansion

v = c(τ)1/2
∞∑
i=1

(τ + λi)
−s/2ξiϕi, (3.5)

where ξi
i.i.d.∼ N (0, 1). The eigenfunctions of the Laplacian contain geometric information

on the underlying manifold, and therefore constitute a natural basis for functions on the

manifold. By Weyl’s law, λi ≍ i2/m and so the requirement s > m
2 is to ensure that samples

from π belong to L2 almost surely. Moreover, the parameter s controls the rate of decay of

the coefficients and hence characterizes the regularity of the samples. The role of τ is more

delicate. If we write the coefficients as vi := (τ + λi)
−s/2 = τ−s/2(1 + λi

τ )
−s/2, then we can

see that the vi’s will be small for λi’s that are much larger than τ . In particular, the only

significant vi’s are those where the corresponding λi’s are on the same order of τ and hence
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τ determines the significant basis functions in the expansion (3.5). Since the eigenfunctions

{ϕi}∞i=1 represent increasing frequencies, τ can be interpreted as a lengthscale parameter. It

can be seen from (3.5) that τ also affects the amplitude of the samples and this motivates

to choose the normalizing constant so that v has a fixed variance, which we set to be 1:

c(τ) =
1∑∞

i=1(τ + λi)−s . (3.6)

Such priors are widely used when M is a domain in a Euclidean space and are related to

the Whittle-Matérn distributions [Dunlop et al., 2017]. In Lindgren et al. [2011] the authors

also considered their extension to manifolds. It can be shown that for s large enough, samples

from π belong to Ck almost surely. And since the embedding of Ck into L2 is continuous, the

restriction of π to Ck is again a Gaussian measure [Bogachev, 1998]. Hence for our purpose,

we choose s so that π is a Gaussian measure on C4. In particular we will need later in Section

3.3 the result from Fernique’s theorem [Fernique, 1970] that there exists α > 0 such that

∫
B
exp

(
α∥θ∥2C4

)
dπ(θ) <∞.

Remark 3.2.1. Choosing a prior with parameter τ that is far from the true lengthscale of

the unknown parameter would lead to poor Bayesian inversion. This can be problematic if

such prior knowledge is not available, but may be at least partially alleviated by considering

a hierarchical formulation specifying a joint prior on both τ and θ, so that the lengthscale is

learned from data simultaneously with the unknown θ; implementation details of the hierar-

chical formulation will be given in Section 3.4.5.

3.2.1.2 Observation Maps

Here we give two examples of observation maps that we shall consider. For theoretical con-

siderations, we assume that the observation map is of the form D(u) = (ℓ1(u), . . . , ℓJ (u))
T ,
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where each ℓj is a bounded linear functional on L2. A widely used example is the smoothed

observation at a point xj : ℓj(u) =
∫
K(xj , x)u(x)dV (x), where K is a kernel such as the

Gaussian kernel [Brennan et al., 2020]; this type of observations arise in practice when the

data is gathered from a collection of spatially distributed sensors located in the vicinity of

landmark points xj . Equally common is the pointwise evaluation [García Trillos and Sanz-

Alonso, 2017, Dashti and Stuart, 2017]: ℓj = u(xj). Notice that pointwise evaluation is

not a bounded linear functional on L2 but can be approximated by smoothed observation

arbitrarily well for continuous u’s. We remark that the boundedness assumption of ℓj is

only a technical one and for the numerical experiments in Section 3.4 we will consider only

pointwise evaluations.

3.2.2 Kernel Approximation of the Forward and Inverse Problem

In this subsection we introduce a kernel approximation Lκ
ε to the operator Lκ. Instead of

directly discretizing the differential operators on M, the new kernel operator is defined by

an integral that can be discretized by Monte-Carlo integration as described in the next

subsection. Our kernel approximation is inspired by the following construction and result

found in Coifman and Lafon [2006].

Let

Gεu(x) := ε−
m
2

∫
M
h

(
|x− x̃|2

ε

)
u(x̃)dV (x̃), h(z) :=

1√
4π
e−

z
4 ,

where dV denotes the volume form inherited by M from the ambient space Rd. Then Lemma

8 in Coifman and Lafon [2006] shows that, for u sufficiently smooth,

Gεu(x) = u(x) + ε
(
ωu(x)−∆Mu(x)

)
+O(ε2), x ∈ M. (3.7)

Here, ∆M := −div(∇·), and ω is a function that depends only on the embedding of M.
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Now, note that by direct calculation

Lκu := −div(κ∇u) =
√
κ
[
∆M(u

√
κ)− u∆M

√
κ
]
, (3.8)

and that the expansion (3.7) for
√
κ and u

√
κ yields

uGε
√
κ = u

√
κ+ ε

(
ωu

√
κ− u∆M

√
κ
)
+O(ε2),

Gε(u
√
κ) = u

√
κ+ ε

(
ωu

√
κ−∆M(u

√
κ)
)
+O(ε2).

Substracting both equations and using (3.8) gives that

uGε
√
κ−Gε(u

√
κ) = ε

[
∆M(u

√
κ)− u∆M

√
κ
]
+O(ε2) =

ε√
κ
Lκu+O(ε2).

This equation motivates the following definition of the integral operator Lκ
ε

Lκ
εu(x) :=

√
κ(x)

ε

[
u(x)Gε

√
κ(x)−Gε(u(x)

√
κ(x))

]
=

1
√
4πε

m
2 +1

∫
M

exp

(
−|x− x̃|2

4ε

)√
κ(x)κ(x̃)[u(x)− u(x̃)]dV (x̃),

which satisfies

Lκ
εu(x) = Lκu(x) +O(ε), x ∈ M.

We will make rigorous this formal derivation in Section 3.3.

We next consider the following analogue to equation (3.1), defined by replacing the

differential operator Lκ with the kernel approximation Lκ
ε :

Lκ
εuε = f, x ∈ M. (3.9)

Lemma 3.3.2 below guarantees the existence of a unique weak solution uε ∈ L20 to equation
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(3.9) provided that f ∈ L2 and that the original PDE is uniformly elliptic. In other words,

the solution uε satisfies

∫
M

Lκ
εuεv =

∫
M
fv, ∀v ∈ L20. (3.10)

We define Fε as the map that associates θ = log(κ) to the solution uε to (3.9). Denoting

Gε = D ◦ Fε, the approximate posterior πyε has the following form

dπ
y
ε

dπ
(θ) ∝ exp

(
−1

2
|y − Gε(θ)|2Γ

)
. (3.11)

In Section 3.3 we will establish a bound on the total variation distance between the posterior

distribution πy defined in equation (3.3) and its approximation π
y
ε . We note, however, that

the sample-based discretization of the kernel operator Lκ
ε —that we will introduce in the next

subsection— will involve another layer of approximation not accounted for by the theory in

Section 3.3, but necessary in practice.

Remark 3.2.2. As will be seen in Section 3.3, a weak solution to equation (3.9) is sufficient

for all the results to hold. We remark that one can show, using Fredholm alternative, the

existence of a unique mean zero strong solution with the additional condition that f has mean

zero.

3.2.3 Kernel-Based Elliptic Inverse Problem on a Point Cloud

In this subsection we assume that we are given a point cloud X = {x1, . . . , xn}, sampled

independently according to an unknown density q on M, but that M is otherwise unknown.

In applications, xi may represent landmarks on the underlying manifold, that may correspond

to sensor locations. We consider the inverse problem of determining the value of the unknown

input parameter κ at the points xi ∈ M given the observed data y. Again we will follow a

Bayesian perspective, defining a suitable prior πn over functions on the point cloud, as well
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as a sample-based approximation to the composition map Gε = D◦Fε. We discuss the priors

in Section 3.2.3.1 and the approximation to Gε in Section 3.2.3.2.

3.2.3.1 Prior on Point Cloud Functions

We now present the choice of priors that we will use for our numerical experiments in Section

3.4. These will be defined in analogy to (3.4), replacing ∆M by a graph Laplacian. More

explicitly, given n points x1, . . . , xn, we set the prior to be

πn = N (0, Cn
τ,s), Cn

τ,s = cn(τ)(τI +∆n)
−s, (3.12)

where ∆n ∈ Rn×n is a graph Laplacian constructed with x1, . . . , xn and cn(τ) is a normaliz-

ing constant. We refer to Von Luxburg [2007] for a detailed account of graph Laplacians and

to Sanz-Alonso and Yang [2022a] for extensive theoretical and computational motivation for

our choice of priors. Note that draws from πn are functions defined intrinsically in the point

cloud Mn rather than on the (unknown) manifold M. The two paremeters τ and s play the

same role as discussed above in equation (3.5). Again samples from πn can be expressed by

Karhunen-Loéve expansion,

vn = cn(τ)
1/2

n∑
i=1

(τ + λ
(n)
i )−sξiϕ

(n)
i ,

where {(λ(n)i , ϕ
(n)
i )}ni=1 are the eigenvalue-eigenvector pairs for ∆n and ξi

i.i.d.∼ N (0, 1).

Similarly as in equation (3.6), we normalize the draws so that the variance per node is 1:

cn(τ) =
n∑n

i=1(τ + λ
(n)
i )−s

.

For practical considerations, we advocate to set ∆n as the self-tuning graph Laplacian

proposed in Zelnik-Manor and Perona [2005]. To illustrate the idea, let X = {x1, . . . , xn}
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be the given point cloud. Then the symmetric graph Laplacian is constructed as the matrix

∆n = I − A−1/2SA−1/2, (3.13)

where S ∈ Rn×n is a similarity matrix and A is a diagonal matrix with entries Aii =∑n
j=1 Sij . We set the entries of the similarity matrix S to be

Sij = exp

(
−
|xi − xj |2

2d(i)d(j)

)
,

where d(i) is the distance from xi to its k-th nearest neighbor, and k is a tunable parameter.

The idea is similar to the standard Gaussian similarities except that the local bandwidth

parameter is allowed to change adaptively based on the density of points xi’s. Moreover, the

bandwidth parameter is specified through k, a positive integer, which can be easily tuned

empirically.

3.2.3.2 Posterior on Point Cloud Functions

In this subsection we discuss how to discretize the posterior by constructing a point cloud

approximation of Gε. We first approximate Lκ
ε by discretizing the integral

Iu(x) :=
∫
M

exp

(
−|x− x̃|2

4ε

)√
κ(x̃)u(x̃)dV (x̃)

by a Monte-Carlo sum with a reweighting which employs a kernel density estimation. Pre-

cisely, we have

Iu(xi) ≈
1

n

n∑
j=1

exp

(
−
|xi − xj |2

4ε

)√
κ(xj)u(xj)qε(xj)

−1, (3.14)
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where the approximate density, applying (3.7) that Gεq ≈ q up to an error of order ε, is

given by

qε(xj) =
1

√
4πnε

m
2

n∑
k=1

exp

(
−
|xj − xk|2

4ε

)
.

The approximation in (3.14) can be interpreted as combining a kernel density estimation

[Wasserman, 2006] with importance sampling [Agapiou et al., 2017, Sanz-Alonso, 2018]. In

Section 3.4 we will use this observation, where the point clouds come from uniform grids.

Then Lκ
εu evaluated at the point cloud is approximated by

Lκ
εu(xi) ≈

1
√
4πnε

m
2 +1

n∑
j=1

exp

(
−
|xi − xj |2

4ε

)√
κ(xi)κ(xj)qε(xj)

−1[u(xi)− u(xj)]

:= Lκε,nu(xi). (3.15)

More concisely, we can write Lκε,n in matrix form in a series of steps. Define P to be the

kernel matrix with entries Pij = exp
(
−|xi − xj |2/4ε

)
. Let Q be a vector with entries

Qi =
∑n

j=1 Pij and define W to be the matrix with entries Wij = Pij

√
κ(xi)κ(xj)Q

−1
j .

Then we have

Lκε,n =
1

ε
(D −W ), (3.16)

whereD is a diagonal matrix with entryDii =
∑n

j=1Wij . Notice that the above construction

resembles that of the unnormalized graph Laplacian. Indeed, if κ ≡ 1, then (3.16) is exactly

the unnormalized graph Laplacian up to a factor of the density [Coifman and Lafon, 2006].

Given the above discretization, we consider the following analogue to equation (3.9), by

replacing Lκ
ε with Lκε,n and restricting f to the point cloud:

Lκε,nun = fn, (3.17)
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where fn is the n-dimensional vector with entries f(xi), or an approximation thereof when

f is not smooth. One can see from (3.16) that Lκε,n is self-adjoint and positive semi-definite

under the weighted inner product ⟨u, v⟩q := 1
n

∑n
j=1 u(xi)v(xi)qε(xi)

−1. Hence Lκε,n admits

a nonnegative spectrum {λi}ni=1 with λ1 = 0 and an orthonormal basis of eigenfunctions

{vi}ni=1 wih respect to ⟨·, ·⟩q, with v1 ≡ 1. We then set the solution to be

un =
n∑

i=2

f in
λi
vi, (3.18)

where the fn =
∑n

i=1 f
i
nvi. Notice that the mean zero condition of u translates into ⟨u, 1⟩q =

0, taking into account the density. By the orthogonality of the vi’s, we see that the solution

un in (3.18) satisfies ⟨un, 1⟩q = 0 and moreover, {v2, . . . , vn} forms a basis for ℓ20 = {v :

⟨v, 1⟩q = 0}, which is the discrete analogue of L20. One can also check that un satisifies

⟨Lκε,nun, v⟩q = ⟨f, v⟩q for all v ∈ ℓ20, is consistent with equation (3.10). We remark that if in

addition ⟨f, 1⟩q = 0, then un given by equation (3.18) is a strong solution of equation (3.17),

in analogy to Remark 3.2.2.

Hence we can now define the discrete forward map Fε,n : Rn 7→ Rn as the map that

associates θn = log(κn) :=
(
log(κ(x1)), . . . , log(κ(xn))

)
to the solution un. Approximating

the pointwise observation map is straightforward. We may also approximate the smoothed

observation map introduced in Section 3.2.1.2 by Monte-Carlo as follows:

ℓ
(n)
j (un) =

1

n

n∑
k=1

K(xj , xk)un(xk)qε(xk)
−1.

In either case, denoting Dn(un) =
(
ℓ
(n)
1 (un), . . . , ℓ

(n)
J (un)

)T and Gε,n = Dn◦Fε,n, the graph

posterior has the following form

dπ
y
ε,n

dπn
(θn) ∝ exp

(
−1

2
|y −Gε,n(θn)|2Γ

)
. (3.19)
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A full analysis of the convergence of the sample-based posteriors πyε,n to the ground-truth

posterior πy is beyond the scope of this chapter. For a linear regression problem, the

convergence of such graph-based posteriors has been established in García Trillos et al.

[2020b] and García Trillos and Sanz-Alonso [2018] using spectral graph theory and variational

techniques.

3.3 Analysis of Kernel Approximation to the Forward and Inverse

Problem

In this section we study the error incurred by replacing the differential operator in the forward

map by its kernel approximation, and the effect of such error in the posterior solution to

the Bayesian inverse problem. The approximation of the forward map is analyzed in Section

3.3.1 and the approximation of the posterior in Section 3.3.2.

3.3.1 Forward Map Approximation

The main result of this subsection is the following theorem which bounds the difference

between the solution to the PDE (3.1) and the solution to the kernel-based equation (3.9).

Theorem 3.3.1 (Forward map approximation). Suppose that f ∈ C3,α and κ ∈ C4, with

κ bounded below by κmin > 0. Let u solve Lκu = f , and uε solve Lκ
εuε = f weakly in L20.

Then for 1
4 < β < 1

2 and ε small enough depending on β,

∥u− uε∥L2 ≤ CA(κ)∥f∥H3ε4β−1,

where C is a constant depending only on M and

A(κ) =
√
κ−5

min + κ−6
min

(
∥κ∥2C3 + ∥κ∥C3

)
+ κ−7

min

(
∥κ∥2C3 + ∥κ∥C3

)2
+ κ−8

min

(
∥κ∥2C3 + ∥κ∥C3

)3∥√κ∥2C4 .
114



The novelty is to generalize previous analysis in Coifman and Lafon [2006], Gilani and

Harlim [2019] to the case of anisotropic diffusions and, more importantly, to keep track of the

dependence A(κ) of the error bound on the diffusion coefficient κ. As we will show in Section

3.3.2, understanding this dependence is a crucial ingredient in establishing an approximation

result for the inverse problem.

The proof of Theorem 3.3.1 follows the classical numerical analysis argument of combining

stability and consistency, coupled with an H4 norm estimate for solutions to PDE (3.1).

Lemma 3.3.2 below establishes the stability of solutions to the kernel-based equation (3.9),

Lemma 3.3.3 shows consistency, and Lemma 3.3.5 shows an H4 norm bound on solutions to

(3.1). The proof of Theorem 3.3.1 will be given at the end of this subsection by combining

these three lemmas. To streamline the presentation we postpone the proofs of the lemmas

to the Appendix.

Lemma 3.3.2 (Stability). The equation Lκ
εuε = f, with f ∈ L2 and κ ∈ L2 satisfying

κ(x) ≥ κmin for a.e. x ∈ M has a unique weak solution uε ∈ L20. Moreover, there is C > 0

independent of ε and κ such that

∥uε∥L2 ≤ Cκ−1
min∥f∥L2 . (3.20)

The next lemma makes rigorous the argument in Section 3.2.2 and characterizes the error

between Lκ and Lκ
ε by accounting for its dependence on κ.

Lemma 3.3.3 (Consistency). Let u ∈ C4 and κ ∈ C4. Then, for 1
4 < β < 1

2 and ε sufficiently

small depending on β, we have

∥(Lκ
ε − Lκ)u∥L2 ≤ C∥u∥H4∥

√
κ∥2C4ε

4β−1.

Remark 3.3.4. In the proof of Lemma 3.3.3, found in the Appendix, we cannot set β = 1
2 .

However we can choose β arbitrarily close to 1
2 so that the rate is essentially O(ε). We
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remark that the proof of Lemma 3.3.3 suggests that the C3 assumption in Coifman and Lafon

[2006] may not be sufficient.

The last lemma bounds the H4 norm of the solution to equation (3.1) in terms of the

diffusion coefficient κ.

Lemma 3.3.5 (H4-norm bound). Suppose that κ ∈ C4 and f ∈ C3,α with 0 < α < 1. Let

u ∈ C5 be the zero-mean solution to the equation Lκu = f . Then

∥u∥2
H4 ≤ C∥f∥2

H3

[
κ−5

min + κ−6
min

(
∥κ∥2C3 + ∥κ∥C3

)
+ κ−7

min

(
∥κ∥2C3 + ∥κ∥C3

)2
+ κ−8

min

(
∥κ∥2C3 + ∥κ∥C3

)3]
,

where C is a constant that depends only on M.

We are now ready to prove Theorem 3.3.1.

Proof of Theorem 3.3.1. Recall that we need to show that

∥u− uε∥L2 ≤ CA(κ)∥f∥H3ε4β−1,

where u solves Lκu = f and uε solves Lκuε = f weakly, and A(κ) is defined in the statement

of Theorem 3.3.1. Notice that in the weak sense

Lκ
ε (u− uε) = Lκ

εu− f = Lκ
εu− Lκu.

Hence using Lemma 3.3.2 for the first inequality, and Lemma 3.3.3 for the second one noting

that f ∈ C3,α implies that u ∈ C5 Gilbarg and Trudinger [2015], we have

∥u− uε∥L2 ≤ Cκ−1
min∥(Lκ

ε − Lκ)u∥L2 ≤ Cκ−1
min∥u∥H4∥

√
κ∥2C4ε

4β−1.

The result follows by combining this inequality with the bound on ∥u∥H4 derived in Lemma

3.3.5.
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3.3.2 Posterior Approximation

In this subsection we characterize the total variation distance between the two posteriors:

dπy

dπ
(θ) =

1

Z
exp

(
−1

2
|y − G(θ)|2Γ

)
, Z :=

∫
exp

(
−1

2
|y − G(θ)|2Γ

)
dπ(θ),

dπ
y
ε

dπ
(θ) =

1

Zε
exp

(
−1

2
|y − Gε(θ)|2Γ

)
, Zε :=

∫
exp

(
−1

2
|y − Gε(θ)|2Γ

)
dπ(θ),

where Z and Zε are normalizing constants and recall that G(θ) = (ℓ1(u), . . . , ℓJ (u))
T and

Gε(θ) = (ℓ1(uε), . . . , ℓJ (uε))
T where ℓj ’s are bounded linear functionals on L2.

The main result is Theorem 3.3.6 below. Its proof relies on Theorem 3.3.1 and a standard

argument [Stuart, 2010, García Trillos and Sanz-Alonso, 2017, Sanz-Alonso et al., 2019] for

the analysis of approximations of Bayesian inverse problems. In particular, the proof makes

use of the integrability of the function A(κ) defined in Theorem 3.3.1 with respect to the

prior π, guaranteed by Fernique’s theorem [Fernique, 1970].

Theorem 3.3.6 (Posterior approximation). Let π be a Gaussian measure on C4, and suppose

that f ∈ C3,α for 0 < α < 1. Then for any 1
4 < β < 1

2 and ε sufficiently small depending on

β,

dTV(π
y, π

y
ε ) ≤ Cε4β−1,

where C is constant depending only on M.

The proof of Theorem 3.3.6 relies on the following lemma, whose proof can be found in

the Appendix by making use of the integrability of A(κ) with respect to the prior.

Lemma 3.3.7. For 1
4 < β < 1

2 and ε small enough depending on β, we have

∫ ∣∣∣∣exp(−1

2
|y − Gε(θ)|2Γ

)
− exp

(
−1

2
|y − G(θ)|2Γ

)∣∣∣∣ dπ(θ) ≤ Cε4β−1,
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where C is independent of ε.

Proof of Theorem 3.3.6. We have

dTV(π
y, π

y
ε ) =

∫ ∣∣∣∣ 1Zε exp
(
−1

2
|y − Gε(θ)|2Γ

)
− 1

Z
exp

(
−1

2
|y − G(θ)|2Γ

)∣∣∣∣ dπ(θ)
≤
∫ ∣∣∣∣ 1Zε − 1

Z

∣∣∣∣ exp(−1

2
|y − Gε(θ)|2Γ

)
dπ(θ)

+

∫
1

Z

∣∣∣∣exp(−1

2
|y − Gε(θ)|2Γ

)
− exp

(
−1

2
|y − G(θ)|2Γ

)∣∣∣∣ dπ(θ)
=

|Z − Zε|
Z

+

∫
1

Z

∣∣∣∣exp(−1

2
|y − Gε(θ)|2Γ

)
− exp

(
−1

2
|y − G(θ)|2Γ

)∣∣∣∣ dπ(θ)
≤ 2

Z

∫ ∣∣∣ exp(−1

2
|y − Gε(θ)|2Γ

)
− exp

(
−1

2
|y − G(θ)|2Γ

) ∣∣∣dπ(θ).
Then using Lemma 3.3.7 it follows that

dTV(π
y, π

y
ε ) ≤ Cε4β−1,

where C is independent of ε.

Remark 3.3.8. Similarly as for Lemma 3.3.3 our proof fails when β = 1
2 . However one can

choose β arbitrarily close to 1
2 so that the rate in 3.3.6 is essentially O(ε).

3.4 Numerical Experiments

In this section we investigate numerically the point cloud formulation of the inverse prob-

lem introduced in Section 3.2.3. We start in Section 3.4.1 by considering some aspects of

the implementation. Then in Sections 3.4.2, 3.4.3, and 3.4.4 we give three numerical exam-

ples, where the underlying manifold is chosen to be an ellipse, the torus, and a cow-shaped

manifold. In Section 3.4.5, we study a hierarchical approach where the prior lengthscale

parameter is learned from data.
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3.4.1 Implementation

When it comes to practical applications, care must be taken when one chooses the parame-

ters. Central in our kernel method is the parameter ε. While Theorem 3.3.1 characterizes the

error in approximating Lκ with Lκ
ε and suggests the consistency of the estimator as ε goes

to 0, in practice one cannot take ε too small as we explain now. One can indeed establish the

consistency of Lκε,n with Lκ
ε , using the same discrete estimation technique as in Berry and

Harlim [2016], Berry and Sauer [2016], Gilani and Harlim [2019]. We should point out that

while the resulting discrete error bound in Berry and Harlim [2016], Berry and Sauer [2016],

Gilani and Harlim [2019] does not show any dependence on κ, which is needed for proving

the convergence of the discrete posterior density estimate in (3.19) to (3.11), this result is

sufficient for understanding the consistency of Lκε,n with Lκ
ε . Specifically, for point cloud with

distribution characterized by density q(x), defined with respect to the volume form inherited

by M ⊂ Rd, the discrete estimate for fixed-bandwidth Gaussian kernel (e.g., see Corollary 1

of Berry and Harlim [2016] with α = 1/2, β = 0 in their setup) states that the sampling error

for obtaining an order-ε2 of the density q with qε is of order O(q(xi)
1/2n−1/2ε−(2+m/4)) and

the error between Lκε,n and Lκ
ε is of order n−1/2ε−(1/2+m/4). The fact that ε appears in the

denominator of these estimates suggests that one cannot take ε too small in practice and it

also implies that ε should be adequately scaled with the size of the data, n. Since a direct

use of these estimates requires knowing the constants that depend on the volume of M that

are difficult to estimate, we instead adopt an automated empirical method for choosing ε.

Precisely, we follow Coifman et al. [2008] and plot

T (ε) :=
∑
i,j

exp

(
−
|xi − xj |2

4ε

)

as a function of ε and choose ε to be in the region where log
(
T (ε)

)
is approximately linear.

In the following three subsections we demonstrate the local kernel method for solving

119



inverse problems through three numerical examples. In the first two examples, the embed-

dings are known and we set the model analytically, i.e., we first choose the ground truth κ†

and u†, and then compute the corresponding f as

f = div(eθ∇u) = 1√
detg

∂i

(
eθgij

√
detg∂ju

)
, (3.21)

where g is the Riemannian metric on M. The third example will be an artificial surface

where the embedding is unknown. We will then generate the truth using our kernel method.

We will use the pCN algorithm to sample from the posterior [Cotter et al., 2010b, Bertozzi

et al., 2018, García Trillos et al., 2020b]. This is a Metropolis-Hastings algorithm with

proposal mechanism to move from un to u∗n given by

u⋆n ∼
(
1− c2

)1/2
un + cξ(n), ξ ∼ πn = N (0, Cn

τ,s), (3.22)

where c ∈ (0, 1) is a tuning parameter. Note that if un ∼ πn then u∗n ∼ πn showing that

the prior is invariant for this kernel. Moreover, it is not difficult to see that detailed balance

holds, and as a consequence the Metropolis-Hastings accept/reject mechanism involves only

evaluation of the likelihood function. The advantage of pCN in our setting over a standard

random walk or Langevin algorithm is that the rate of convergence of pCN does not deterio-

rate with n; this has been established rigorously for a linear inverse problem in García Trillos

et al. [2020b].

Remark 3.4.1. At each iteration of the MCMC algorithm, the forward map involves an

eigenvalue decomposition of a different matrix for different θ’s as shown in Section 3.2.3.2.

Hence large n’s are not favored for computational purposes and this can be an issue for high

dimensional M’s where the number of points grow as nm if one discretizes each dimension

by n.
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3.4.2 One-Dimensional Elliptic Problem on an Unknown Ellipse

In this subsection we take M to be an ellipse with semi-major and semi-minor axis of length

a = 3 and 1, embedded through

ι(ω) = (cosω, a sinω)T , ω ∈ [0, 2π], (3.23)

and the Riemannian metric is

g11(ω) = sin2 ω + a2 cos2 ω.

The truth is set to be

κ† = 2 + cosω, u† = cosω,

and right-hand side f in equation (3.1) is defined through equation (3.21). One can check

that both u† and f have mean zero, i.e.,
∫ 2π
0 u†(ω)

√
g11(ω)dω =

∫ 2π
0 f(ω)

√
g11(ω)dω = 0.

We generate the point cloud {x1, . . . , xn} according to (3.23) from a uniform grid of ω of

size n = 400. The observations are given as noisy pointwise evaluations at subsets of the

point cloud:

ℓj = u(xj) + ηj , j = 1, . . . , J,

where ηj ∼ N (0, σ2) are assumed to be independent. We will take J = 100, 200, 400

respectively with noise size varying as σ = 0.01, 005, 0.1. As discussed in Section 3.2.3.1,

we construct the prior with a self-tuning graph Laplacian, using k = 2 neighbors. We

empirically discover that such choice of k gives the best spectral approximation towards the

Laplace-Beltrami operator on the ellipse, which has spectrum {i2}∞i=0 with eigenfunctions
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{sin(iω), cos(iω)}∞i=0. We also tune empirically the parameters in (3.12) as τ = 0.05 and

s = 4.

In Figure 3.1, we plot the posterior means as functions of ω ∈ [0, 2π] and the 95%

credible intervals for different σ and J ’s. While the point cloud Bayesian solution is only

defined at the discrete point cloud, to ease the visualization we represent the outcome as

continuous functions defined on ω ∈ [0, 2π]. We see that the truth is mostly captured in

the Bayesian confidence intervals. To quantify the error of reconstruction, we compute the

relative ℓ2 distances between the posterior mean κ̄ and the truth κ†. Moreover, we compute

the solution ū of (3.17) with κ̄ and its relative ℓ2 distance to the true solution u†. As shown

in Table 3.1, the reconstruction error for u† is much smaller than the relative noise level

defined as
√
nσ/∥u†∥2.

σ 0.01 0.05 0.1
J 100 200 400 100 200 400 100 200 400

∥κ̄−κ†∥2
∥κ†∥2

0.60% 0.80% 0.62% 2.85% 1.96% 2.18% 5.46% 3.90% 3.45%
∥ū−u†∥2
∥u†∥2

0.26% 0.23% 0.23% 1.08% 0.83% 0.90% 1.70% 1.37% 1.70%
√
nσ

∥u†∥2
1.41% 7.07% 14.14%

Table 3.1: Relative error of κ̄ and ū for different noise level, σ’s and number of observations,
J , where κ̄ and ū are the posteriors means for κ and u respectively. In the last row, the
relative noise level for each σ is reported for diagnostic purposes. Particularly, note that the
reconstruction error for u† is much smaller than the relative noise level.

Remark 3.4.2. Since our prior is on θ = log(κ), we are actually approximating log(2+cosω)

with trigonometric functions and hence the truth κ† is not simply the combination of the first

two eigenfunctions in the prior. In other words, although the truth κ† is in the support of the

prior, the fact that its coordinates in the eigenbasis do not decay like that in the expansion

(3.5) makes it difficult to reconstruct.

Regarding Remark 3.4.2, we consider another prior with self-tuning graph constructed

with k = 0.2n points. This new graph Laplacian gives a worse spectral approximation to
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σ = 0.01, J = 100. σ = 0.01, J = 200. σ = 0.01, J = 400.

σ = 0.05, J = 100. σ = 0.05, J = 200. σ = 0.05, J = 400.

σ = 0.1, J = 100. σ = 0.1, J = 200. σ = 0.1, J = 400.

Figure 3.1: Posterior means and 95% credible intervals for different σ’s and J ’s. Here κ̄, κ0.025
and κ0.975 represent the posterior mean, 2.5% and 97.5% posterior quantiles respectively.

the Laplace Beltrami operator in the underlying manifold, as its spectrum saturates instead

of growing at the appropriate rate. In other words, the basis functions associated with the

high frequencies will be given more weight in the expansion (3.5). This can be beneficial in

practical applications since it effectively enlarges the support of the prior. Below in Figure

3.2, we solve the inverse problem using this new prior in the case σ = 0.1. The parameters

are tuned empirically: τ = 0.75, s = 8. It can be seen that although the reconstructions

are rougher than those in Figure 3.1, they capture better the shape of κ†, with the help of

the higher frequencies. Essentially, larger τ (corresponds to more nontrivial modes in the
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representation in (3.5)) gives less bias but larger variance, which is consistent with the theory

of nonparameteric statistical estimation (e.g, Section 1.7 of Tsybakov [2008]).

σ = 0.1, J = 100. σ = 0.1, J = 200. σ = 0.1, J = 400.

Figure 3.2: Posterior means and 95% credible intervals for σ = 0.1 and different J ’s. Here
κ0.025 and κ0.975 represent the 2.5% and 97.5% posterior quantiles respectively.

Remark 3.4.3. We note that the inexact reconstruction is partially due to the ill-posedness

of the elliptic inverse problem [Mueller and Siltanen, 2012]. As can be seen in Table 3.1, the

reconstruction error for κ̄ is much larger than that for ū: a wide range of κ’s around κ† give

solutions u which are “close enough” to u† (within a range of order σ) that the algorithm

cannot distinguish. When σ is large, such tolerance is larger and the inverse problem becomes

more difficult. This issue, together with Remark 3.4.2, explains why one cannot expect exact

recovery of κ† as seen in Figure 3.1.

3.4.3 Two-Dimensional Elliptic Problem on an Unknown Torus

In this subsection we take M to be T2 embedded in R3 through

ι(ω1, ω2) =
(
(2 + cosω1) cosω2, (2 + cosω1) sinω2, sinω1

)T
, ω1, ω2 ∈ [0, 2π], (3.24)

and the Riemannian metric is

g(ω1, ω2) =

1 0

0 (2 + cosω1)
2

 .
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The truth is set to be

κ†(ω1, ω2) = 2 + sinω1 sinω2, u† = sinω1 sinω2,

and f is again specified through (3.21). One can check that both u† and f have mean

zero, i.e.,
∫
u†
√

detg =
∫
f
√

detg = 0. For computational reasons as in Remark 3.4.1, we

generate the point cloud according to (3.24) from a 20×20 uniform grid on [0, 2π] × [0, 2π]

and the observations are given as noisy pointwise evaluations at all points. The graph

Laplacian for the prior is constructed with k = 16 neighbors and again we empirically tune

the parameters: τ = 0.08 and s = 6. Unlike the ellipse case, we cannot get almost exact

spectral approximation given that we are only discretizing each dimension by 20 points. The

eigenfunctions of the graph Laplacian are wiggly in this case, for which reason we need a large

s to ensure sufficient decay of the spectrum to obstain relatively smooth reconstructions.

In Figure 3.3, we plot the posterior means and the standard deviations as functions on

[0, 2π]× [0, 2π]; we note that the uncertainty is large when the function sinω1 sinω2 crosses

0. Table 3.2 quantifies the reconstruction error as usual and the reconstruction error for u† is

again much smaller than the noise level, which are 2%, 10%, and 20% respectively. However,

the reconstruction error for u† decreases with σ decreasing while the error for κ† does the

opposite, a manifestation of the ill-posedness.

σ 0.01 0.05 0.1
∥κ̄−κ†∥2
∥κ†∥2

8.56% 8.34% 6.94%
∥ū−u†∥2
∥u†∥2

1.8% 2.8% 4.8%
√
nσ

∥u†∥2
2% 10% 20%

Table 3.2: Relative error of κ† and ū for different noise level, σ’s. In the last row, the relative
noise level is reported for diagnostic purpose. Particularly, note that the reconstruction error
for u† is much smaller than the relative noise level.

Remark 3.4.4. For this example we solved equation (3.17) by taking the pseudoinverse ûn =
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σ = 0.01 (mean) σ = 0.05 (mean) σ = 0.1 (mean)

σ = 0.01 (std) σ = 0.05 (std) σ = 0.1 (std)

Figure 3.3: Posterior means (first row) and standard deviations (second row) of posteriors
for different σ’s. horizontally. We have extended by interpolation the point cloud solution
in order to ease visualization.

(Lκε,n)
†fn instead, as this is numerically more stable than taking the eigenvalue decomposition

of the asymmetric matrix Lκε,n. Moreover, ûn is consistent with u† for this specific problem

as explained below. We have that ûn solves the following problem:

ûn = min
{
∥u∥2 : u ∈ argmin ∥Lκε,nu− fn∥2

}
. (3.25)

The fact that f has zero mean implies ⟨fn, 1⟩q = 0 in the large n limit. Then equation (3.17)

has a strong solution as mentioned in Section 3.2.3.2 and so the characterization (3.25)

implies that ûn is also a strong solution, with
∑n

i=1 û
i
n = 0. Notice that the truth u† also

satisfies
∫
u† = 0 and hence makes ûn consistent.
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Posterior mean κ̄. Truth κ†|X .

Error
∣∣∣κ̄− κ†|X

∣∣∣. Standard deviation.

Figure 3.4: Reconstruction for the cow-shaped manifold.

3.4.4 Two-Dimensional Elliptic Problem on an Unknown Artificial Surface

In this subsection we consider an artificial dataset from Keenan Crane’s 3D repository

[Crane]. The dataset is made of 2930 points sampled from a cow-shaped surface homeo-

morphic to the two-dimensional sphere. The purpose of this subsection is to demonstrate

that our kernel method can be applied to more complicated manifolds. To avoid an inverse

crime [Kaipo and Somersalo, 2006], we generate the truth using all 2930 points but solve the

inverse problem on a subset of size n = 1000.

To be more precise, we generate κ† from the Gaussian measure N (0, (τI + ∆2930))
−s,

where ∆2930 is the self-tuning graph Laplacian constructed with k = 100 neighbors and

τ = 0.7, s = 6. We then set u† to be 10(ϕ2− c), where ϕ2 is the second eigenvector of ∆2930

and c is a constant chosen below. The factor 10 in the definition of u is only to match the
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order of magnitude with κ†. We then set f = Lκ
†

ε,2930u
†. This would serve as our ground

truth, and now we solve the inverse problem on a random subset X of n = 1000 points.

On the point cloud X, the truth becomes κ†|X and u†|X . As mentioned above, the

solution u†|X needs to have zero mean to be consistent with our theory. Since we do not

have access to the Riemannian metric as in the previous two examples, we instead require

⟨u†|X , 1⟩q = 0, which gives the choice of c above. Again we consider noisy pointwise obser-

vations at all 1000 points. The inputs of the problem are now f |X and noisy u†|X . The

noise level is 10%, which gives σ = 0.0186. The prior that we use has the same parameter τ

as used to obtain our synthetic truth, but is defined using a graph Laplacian on X. Namely,

we consider

πn = N (0, (0.7I +∆1000)
−6),

where ∆1000 is constructed with k = 80 neighbors. Figure 3.4 shows the plots of the

posterior mean, the truth, the error, and the standard deviation. The reconstruction errors

are ∥κ̄ − κ†|X∥2/∥κ†|X∥2 = 9.73% and ∥ū − u†|X∥2/∥u†|X∥2 = 16.24%. We remark that

the large relative error for u† is partly due to the fact that the point cloud of size 1000 does

not approximate the original one well and in particular

L
κ†|X
ε,1000u

†|X ̸= f |X . (3.26)

When we solve for û in equation (3.26), i.e., solving

L
κ†|X
ε,1000û = f |X ,

we get ∥û − u†|X∥2/∥u†|X∥2 = 17.01% and this is the best one can hope for in terms of

reconstructing u†|X . Hence we see that the above relative error has already reached the

128



limit of the method.

3.4.5 Hierarchical Bayesian Formulation

As mentioned in Section 3.2.1.1, the choice of τ is crucial and would require some prior

knowledge of the lengthscale of the function to be reconstructed. In this section, we demon-

strate how one can learn the parameter τ together with κ through a hierarchical Bayesian

approach proposed in Dunlop et al. [2017]. We emphasize that the hierarchical approach

may not be able to find the precise lengthscale of the parameter to be reconstructed, and

hence should only be applied when little prior knowledge on the lengthscale is available. We

will only focus on the point-cloud inverse problem as in Section 3.2.3.

We remark that our choice of priors in (3.4) and (3.12) differ from the ones used in Dunlop

et al. [2017] by the scaling constants. In the continuum space, the familiy of measures defined

by equation (3.4) are mutually singular, which leads to technical difficulties when designing

hierarchical methods. However, in the point cloud setting, the family of measures as in (3.12)

are simply multivariate normal and are equivalent. The formulation in Dunlop et al. [2017]

then carries over.

The idea is to consider a joint prior on (θn, τ) that takes the form

Π(θn, τ) = π0(τ)π(θn|τ) := π0(τ)πτ (θn),

where π0 is a distribution on R+ and the conditional distribution πτ is taken as in (3.12).

Recall that πτ has the form

πτ = N (0, Cn
τ,s), Cn

τ,s = cn(τ)(τI +∆n)
−s,

where cn(τ) normalizes the draws so that u ∼ πn satisfies E|un|2 = n. Now we can define the

forward map Fn : Rn × R+ → Rn that associates a pair (θn, τ) with the unique mean-zero
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solution un of equation (3.17). We notice that Fn is essentially the same as before except

the additional τ that does not play a role in the definition. Denoting Gn = Dn ◦ Fn, the

joint posterior Πy can be written as a change of measure with respect to the prior,

dΠy

dΠ
(θn, τ) ∝ exp

(
−1

2
|y −Gn(θn, τ)|2Γ

)
. (3.27)

3.4.5.1 Sampling

To sample from the joint posterior θn, τ |y, we will use a Metropolis within Gibbs sampling

scheme by updating of θn|τ, y and τ |θn, y alternatingly. Sampling of θn|τ, y reduces to

the non-hierarchical setting, where we use the pCN algorithm. Sampling of τ |θn, y is more

delicate since one needs first to make sense of this conditional distribution. Instead of making

the presentation too involved, we will only present the algorithm and refer to Dunlop et al.

[2017] for more details. The idea is to use symmetric random-walk Metropolis-Hastings, with

acceptance probability to accept the proposal τ , given the current chain value γ as,

a(τ, γ) = exp

(
−1

2
[H(τ)−H(γ)]

)
π0(τ)

π0(γ)
∧ 1, (3.28)

where,

H(τ) =
n∑

i=1

log λi(τ) +
⟨θ, ϕi⟩2

λi(τ)
.

Here, {(λi(τ), ϕi)}ni=1 are the eigenvalue-eigenfunction pairs of Cn
τ,s.

From (3.28), we see that the algorithm favors lengthscales τ ’s that give small values of

H(τ). As τ approaches 0, the first eigenvalue of (τI + ∆n)
−s goes to infinity and so the

normalizing constant cn(τ) approaches 0. However, the eigenvalues of (τI +∆n)
−s, except

the first one, do not change much since τ is now a much smaller quantity. Hence when

multiplied by cn(τ), they converge to 0. In other words λi(τ) approaches 0 as τ goes to 0 for
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i ≥ 2, which then implies that
∑n

i=1 log λi(τ) → −∞. So the first term in H is minimized

at τ = 0, while the second term ⟨θ, ϕi⟩2/λi(τ) favors large τ by a similar argument as above.

Then the minimum of H is attained by balancing the two sums, using the coefficients ⟨θ, ϕi⟩.

Hence the algorithm will give a τ that is consistent with these coefficients, reflecting the

lengthscale of θ.

3.4.5.2 Numerical Experiments

Figure 3.5: Posterior means and 95% credible intervals for different truths. Figure are ar-
ranged so that the first two rows correspond to non-hierarchical and hierarchical respectively,
and the third row shows the sample paths for τ . The three columns represent the truths
ecos(ω), ecos(5ω), ecos(8ω) respectively.

To demonstrate the hierarchical approach, we focus on the ellipse case with three truths
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of different lengthscales: κ† = ecos(ω), ecos(5ω), ecos(8ω) with a fixed f = 1
5 sinω. We fix f

so that we are solving the same inverse problem, with different underlying truth κ†’s. In

this case we no longer have analytic solutions for u and we use the MATLAB PDE toolbox

. The point cloud is generated as in Section 3.4.2 with n = 100, with pointwise observations

with noise level σ = 0.01 at all points. We take π0 = N (2, 1) and s = 4. In the hierarchical

setting, it takes longer for the chains to mix, where we run the chain for 3×107 iterations

and use the last 5 × 106 samples for computations. We compare the hierarchical approach

with the non-hierarchical one, where we use a same τ to reconstruct the three κ†’s. Figure

3.5 below shows the corresponding reconstructions.

The first row corresponds to the non-hierarchical approach where we fix τ = 2, which is

finely tuned to match the lengthscale of ecos(5ω), for all three problems. The reconstruction

is then acceptable for ecos(5ω) but is poorer for the other two. For ecos(ω), the reconstruction

still fits the shape of the truth, but since the prior now has a lengthscale much larger than that

of ecos(ω), the reconstruction is oscillatory. On the other hand, the reconstruction of ecos(8ω)

fails to capture the shape of the truth. This is because the prior now has a smaller lengthscale

than that of ecos(8ω), so that frequencies high as cos(8ω) barely belongs to the prior. The

second and third row corresponds to the reconstructions of the hierarchical approach and

the corresponding sample paths for τ . We see that the credible intervals capture most of

the truths and the reconstructions are much better for ecos(ω) and ecos(8ω) than with the

non-hierarchical approach. Table 3.3 quantifies the reconstruction error. We notice that

the hierarchical approach performs worse than the non-hierarchical one for ecos(5θ); this is

because we have chosen τ = 2 agrees with the lengthscale of the true diffusion coefficient.

This fact suggests that the hierarchical approach only improves the performance when little

prior knowledge on the lengthscale is known. From the sample paths for τ ’s, we see that

the chains have large variance and do not concentrate on a particular value. This is due to

the ill-posedness of the inverse problem where κ’s of different lengthscales give equally good
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reconstruction of u, and hence the algorithm cannot distinguish between them. So in general

the algorithm may not give the precise lengthscale but a possible range of it.

κ† ecos(ω) ecos(5ω) ecos(8ω)

Method NH H NH H NH H
∥κ̄−κ†∥2
∥κ†∥2

9.07% 3.69% 11.17% 17.41% 39.38% 28.82%
∥ū−u†∥2
∥u†∥2

0.84% 0.72% 0.73% 0.69% 0.87% 0.83%
√
nσ

∥u†∥2
1.87% 1.26% 1.27%

Table 3.3: Relative error of κ̄ and ū for different truths. Here “N” and “H" stand for non-
hierarchical and hierarchical respectively. In the last row, the relative noise level for each σ
is reported for diagnostic purposes.

Remark 3.4.5. Notice that in the above the noise level has been set to be small. When the

noise level σ is large, the performance of the hierarchical approach may be worse, as shown

in Figure 3.6. The reason is that the algorithm sees only the noisy data, which is the truth

u† perturbed by noise. In other words, the lengthscale of the data is corrupted by the noise,

which has lengthscale converging to 0 (τ → ∞) in the large n and J limit if the noise is

independent, i.e., Γ = I. As shown in Figure 3.6, the chain for τ oscillates in a wide range

of values, suggesting that the data contains little information on this parameter.

Figure 3.6: Reconsturction of ecos(ω) and sample path for τ when σ = 0.1.
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3.5 Conclusions and Future Work

• This chapter introduced kernel-based methods for the solution of inverse problems on

manifolds. We have shown through rigorous analysis that the forward map can be

replaced by a kernel approximation while keeping small the total variation distance to

the true posterior. Through numerical experiments we have shown that a point cloud

discretization to the kernel approximation may allow to implement the inverse problem

on point clouds, without reference to the underlying manifold.

• An important question of theoretical interest when solving the inverse problem on the

point cloud is how to choose optimally the kernel bandwith ε in terms of the number

n of manifold samples. We conjecture that the convergence of the graph posteriors to

the ground truth posterior, and guidelines on the choice of kernel bandwith, may be

established by generalizing the spectral graph theory results in Burago et al. [2015],

García Trillos et al. [2019a] to anisotropic diffusion, and using the variational techniques

introduced in García Trillos and Sanz-Alonso [2018], García Trillos et al. [2020b]. The

analysis of these questions will be the subject of future work.

• We streamlined the presentation by working on a closed manifold with no boundary.

We expect that the numerical and theoretical results may be extended to Neumann,

Robin, and Dirichlet boundary conditions using the results and ideas in Gilani and

Harlim [2019], Li and Shi [2016], Shi and Sun [2016], Thiede et al. [2019].

• The practical success of the Bayesian approach is heavily dependent on the choice of

prior. Here, we have used Matern-type priors that are flexible models widely used in

spatial statistics and the geophysical sciences [Stein, 1999a]. While the hierarchical

approach to the inverse problem [Dunlop et al., 2017, Geoga et al., 2019] is effective

for learning the prior lengthscale from data in certain regimes as we have numeri-
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cally shown, a more robust algorithm is needed and this merits an extensive further

investigation.

• A topic of further research will be the extension of the kernel-based approximation

to PDEs and inverse problems to other PDEs and ODEs beyond the elliptic model

considered here.

3.6 Appendix

3.6.1 Proof of Lemma 3.3.2

The proof proceeds by a standard Lax-Milgram argument. Throughout, C > 0 denotes a

constant independent of ε and κ that may change from line to line. Consider the bilinear

and linear functionals

B : L20 × L20 → R, F : L20 → R,

(u, v) 7→ ⟨u,Lκ
εv⟩, v 7→ ⟨v, f⟩.

Clearly, B and F are bounded. To show that B is coercive, note that by [Shi and Sun, 2016,

Theorem 7.2] there exists C > 0 such that, for all ε > 0 v ∈ L20(M),

⟨v,Lεv⟩ ≥ C∥v∥L2 , (3.29)

where

Lεv :=
1

√
4πε

m
2 +1

∫
exp

(
−|x− x̃|2

4ε

)
[v(x)− v(x̃)]dV (x̃).
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It follows that, for v ∈ L20,

⟨v,Lκ
εv⟩ =

1
√
4πε

m
2 +1

∫ ∫
exp

(
−|x− x̃|2

4ε

)√
κ(x)κ(x̃)v(x)[v(x)− v(x̃)]dV (x̃)dV (x)

=
1

√
4πε

m
2 +1

∫ ∫
exp

(
−|x− x̃|2

4ε

)√
κ(x)κ(x̃)v(x̃)[v(x̃)− v(x)]dV (x̃)dV (x)

=
1

2
√
4πε

m
2 +1

∫ ∫
exp

(
−|x− x̃|2

4ε

)√
κ(x)κ(x̃)|v(x)− v(x̃)|2dV (x̃)dV (x)

≥ κmin

1

2
√
4πε

m
2 +1

∫ ∫
exp

(
−|x− x̃|2

4ε

)
|v(x)− v(x̃)|2dV (x̃)dV (x)

= κmin⟨v,Lεv⟩ ≥ Cκmin∥v∥2L2 ,

establishing the coercivity of B. The existence and uniqueness of a weak solution, as well as

the bound (3.20) follow from the Lax Milgram theorem.

3.6.2 Proof of Lemma 3.3.3

Our proof follows the same argument as [Coifman and Lafon, 2006, Lemma 8] but keeps

track of the coefficients of the higher order terms. Let

Gεu(x) = ε−
m
2

∫
h

(
|x− x̃|2

ε

)
u(x̃)dV (x̃), h(z) =

1√
4π
e−

z
4 .
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Let 0 < β < 1
2 . We can localize the integration near x due to the exponential decay of e−x2 :

∣∣∣∣∣ε−m
2

∫
x̃∈M:|x̃−x|>εβ

exp

(
−|x− x̃|2

4ε

)
u(x̃)dV (x̃)

∣∣∣∣∣
≤ε−

m
4 ∥u∥L2

√
ε−

m
2

∫
x̃∈M:|x̃−x|>εβ

exp

(
−|x− x̃|2

2ε

)
dV (x̃)

≤ε−
m
4 ∥u∥L2

√∫
x+

√
εx̃∈M:|x̃|>εβ−1/2

exp

(
−1

2
|x̃|2
)
dV (x̃)

≤Cε−
m
4 ∥u∥L2

√
P{N (0, 1) > εβ−1/2}

≤Cε−
m
4 ∥u∥L2 exp

(
−cε2β−1

)
≤ C∥u∥L2ε2,

where in the last inequality since 2β < 1, exp(−cε2β−1) decays faster than any polynomial

in ε and in particular for ε small enough it decays faster than ε2+
m
4 . Therefore,

Gεu(x) = ε−
m
2

∫
x̃∈M:|x̃−x|<εβ

h

(
|x− x̃|2

ε

)
u(x̃)dV (x̃) +O(∥u∥L2ε2).

Now we Taylor expand u near x. Let (s1, . . . , sm) be the geodesic coordinates at x and

u(x̃) = u(x̃(s1, . . . , sm)) = ũ(s1, . . . , sm) = ũ(s). Then

u(x̃)− u(x) = ũ(s)− ũ(0) =
m∑
i=1

si
∂ũ

∂si
(0) +

1

2

m∑
i=1

m∑
j=1

sisj
∂2ũ

∂si∂sj
(0)

+
1

6

m∑
i=1

m∑
j=1

m∑
k=1

sisjsk
∂3ũ

∂si∂sj∂sk
(0) + δ(s),

where

δ(s) =
1

24

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

m∑
i=1

m∑
j=1

m∑
k=1

m∑
ℓ=1

sisjsksℓ
∂4ũ

∂si∂sj∂sk∂sℓ
(t1t2t3t4s)dt1dt2dt3dt4.
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Then expanding the 4-th order term in Gεu, we have

|Tu(x)| :=

∣∣∣∣∣ε−m
2

∫
|s|<εβ

h

(
|s|2

ε

)
δ(s)ds

∣∣∣∣∣
≤ m4ε4β

24

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫
|s|<εβ

ε−
m
2 h

(
|s2|
ε

)
∥∇4ũ(t1t2t3t4s)∥dsdt1dt2dt3dt4

=
m4ε4β

24

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫
|r|<t1t2t3εβ

(t1t2t3t4)
−dε−

d
2h

(
|r|2

t21t
2
2t
2
3t
2
4ε

)
∥∇4ũ(r)∥drdt1dt2dt3dt4

:=
m4ε4β

24

∫ 1

0

∫ 1

0

∫ 1

0

∫
0

∫
|r|<t1t2t3t4εβ

K(r, τ)∥∇4ũ(r)∥drdτ,

where we have used the notation τ := (t1, t2, t3, t4) and dτ := dt1dt2dt3dt4. By interchanging

the order of integration and noticing that ∇4ũ(r) = ∇4u(x + ξ) where ξ’s are directional

vectors that are independent of x, we have

∥Tu∥2L2 ≤

(
m4ε4β

24

)2 ∫
M

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

[∫
|r|<t1t2t3t4εβ

K(r, τ)∥∇4ũ(r)∥dr

]2
dτdV (x)

≤

(
m4ε4β

24

)2 ∫
M

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

[∫
|r|<t1t2t3t4εβ

K(r, τ)dr

]
[∫

|r|<t1t2t3t4εβ
K(r, τ)∥∇4ũ(r)∥2dr

]
dτdV (x)

=

(
m4ε4β

24

)2 ∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

[∫
|r|<t1t2t3t4εβ

K(r, τ)dr

]
[∫

|r|<t1t2t3t4εβ
K(r, τ)

∫
M

∥∇4u(x+ ξ)∥2dV (x)dr

]
dτ

=

(
m4ε4β

24

)2

∥∇4u∥2
L2

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

[∫
|r|<t1t2t3t4εβ

K(r, τ)dr

]2
dτ.

By a change of variable r = t1t2t3t4
√
εs, we notice that

∫
|r|<t1t2t3t4εβ

K(r, τ)dr =

∫
|r|<t1t2t3t4εβ

(t1t2t3t4)
−dε−

d
2h

(
|r|2

t21t
2
2t
2
3t
2
4ε

)
dr =

∫
|z|<εβ−1/2

h(|z|2),
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which can be bounded by a constant independent of ε by the Gaussianity of h(|z|2). Hence

∥Tu∥L2 ≤ C∥∇4u∥L2ε4β , (3.30)

where C is a constant that does not depend on u or ε. Now following the same argument as

in Coifman and Lafon [2006] and keeping track of the derivatives of u, we have

Gεu(x) = u(x) + ε [ω(x)u(x) + ∆u(x)] +Ru(x),

where

Ru(x) = Tu(x) +O
([

∥u∥L2 + ∥∇u(x)∥+ ∥∇2u(x)∥+ ∥∇3u(x)∥
]
ε2
)
.

Applying Gε to u
√
κ, we have

Gε(u
√
κ) = u

√
κ+ ε

[
ωu

√
κ+∆(u

√
κ)
]
+Ru

√
κ. (3.31)

By expanding the derivatives of u
√
κ and bounding them by the ∞-norms of κ and its

derivatives, we have

Ru
√
κ(x) = Tu

√
κ(x) +O

(
∥
√
κ∥C4

[
∥u∥L2 + |u(x)|+ ∥∇u(x)∥+ ∥∇2u(x)∥+ ∥∇3u(x)∥

]
ε2
)
,

where

∥Tu√κ∥L2 ≤ C∥
√
κ∥C4∥∇

4u∥L2ε4β .
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By setting u = 1, we have

Gε
√
κ =

√
κ+ ε

[
ω
√
κ+∆

√
κ
]
+O

(
∥
√
κ∥C4ε

2
)
. (3.32)

By combining (3.31) and (3.32), we have

Lκ
εu =

√
κ

ε

[
uGε

√
κ−Gε(u

√
κ)
]
= Lκu+O

(√
κu∥

√
κ∥C4ε

)
+

√
κRu

√
κ

ε
.

Hence it follows that

∥(Lκ
ε − Lκ)u∥L2 ≤ C∥u∥H4∥

√
κ∥2C4ε

4β−1.

3.6.3 Proof of Lemma 3.3.5

First we multiply the equation by u and integrate over M. Integrating by parts, we get

∫
fu = −

∫
div(κ∇u)u =

∫
κ|∇u|2 ≥ κmin∥∇u∥2L2 .

By Hölder and Poincaré inequalities, there is a constant C that depends only on M so that

∥∇u∥L2 ≤ Cκ−1
min∥f∥L2 ≤ Cκ−1

min∥f∥H3 , (3.33)

∥u∥L2 ≤ Cκ−1
min∥f∥L2 ≤ Cκ−1

min∥f∥H3 . (3.34)

Now differentiating the equation with respect to xk and testing against uxk , we get

∫
fxkuxk = −

∫
div
(

∂

∂xk
(κ∇u)

)
uxk =

∫
∂

∂xk
(κ∇u) · ∇uxk

=

∫
κxk∇u · ∇uxk + κ∇uxk · ∇uxk .
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Using Young’s inequality that |ab| ≤ εa2 + 1
4εb

2 we get

∫
fxkuxk ≥ −∥κxk∥∞

(
ε∥∇uxk∥

2
L2 +

1

4ε
∥∇u∥2

L2

)
+ κmin∥∇uxk∥

2
L2

=
(
κmin − ε∥κxk∥∞

)
∥∇uxk∥

2
L2 −

∥κxk∥∞
4ε

∥∇u∥2
L2 .

Choosing ε = κmin
2(∥κxk∥∞+1)

and rearranging terms, we get

∥∇uxk∥
2
L2 ≤ κ−2

min∥κxk∥∞
(
∥κxk∥∞ + 1

)
∥∇u∥2

L2 + 2κ−1
min

∫
fxkuxk

≤ κ−2
min∥κxk∥∞

(
∥κxk∥∞ + 1

)
∥∇u∥2

L2 + κ−1
min∥fxk∥

2
L2 + κ−1

min∥uxk∥
2
L2 .

Then we have

∥∇2u∥2
L2 =

m∑
k=1

∥∇uxk∥
2
L2 ≤ mκ−2

min

(
∥∇κ∥2∞ + ∥∇κ∥∞

)
∥∇u∥2

L2 + κ−1
min∥∇f∥2L2 + κ−1

min∥∇u∥2L2

≤ C∥f∥2
H3

[
κ−3

min + κ−4
min

(
∥κ∥2C3 + ∥κ∥C3

)]
, (3.35)

where we have used (3.33) and C only depends on M. Moreover, we have used the fact that

κmin ≥ e−∥u∥∞ , which implies κ−n1
min ≤ κ−n2

min if n1 ≤ n2. Now we bound the norm of the

third derivatives by further differentiating the equation with respect to xj and integrating
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against uxkxj . We have again by Cauchy’s inequality

∫
fxkxjuxkxj =−

∫
div
(

∂2

∂xj∂xk
(κ∇u)

)
uxkxj

=

∫
∂2

∂xj∂xk
(κ∇u) · ∇uxkxj

=

∫ [
κxkxj∇u+ κxk∇uxj + κxj∇uxk + κ∇uxkxj

]
· ∇uxkxj

≥κmin∥∇uxkxj∥
2
L2 − ∥κxkxj∥∞

(
ε1∥∇uxkxj∥

2
L2 +

1

4ε1
∥∇u∥2

L2

)
−∥κxk∥∞

(
ε2∥∇uxkxj∥

2
L2 +

1

4ε2
∥∇uxj∥

2
L2

)
− ∥κxj∥∞

(
ε3∥∇uxkxj∥

2
L2 +

1

4ε3
∥∇uxk∥

2
L2

)
= ∥∇uxkxj∥

2
L2

(
κmin − ε1∥κxkxj∥∞ − ε2∥κxk∥∞ − ε3∥κxj∥∞

)
− 1

4ε1
∥κxkxj∥∞∥∇u∥2

L2 −
1

4ε2
∥κxk∥∞∥∇uxj∥

2
L2 −

1

4ε3
∥κxj∥∞∥∇uxk∥

2
L2 .

Now choosing

ε1 =
κmin

4(∥κxkxj∥∞ + 1)
, ε2 =

κmin

4(∥κxk∥∞ + 1)
, ε3 =

κmin

4(∥κxj∥∞ + 1)

and rearranging terms, we get

∥∇uxkxj∥
2
L2 ≤ 2κ−1

min

(
∥fxkxj∥

2
L2 + ∥uxkxj∥

2
L2

)
+ 4κ−2

min∥κxkxj∥∞
(
∥κxkxj∥∞ + 1

)
∥∇u∥2

L2

+ 4κ−2
min∥κxk∥∞

(
∥κxk∥∞ + 1

)
∥∇uxj∥

2
L2 + 4κ−2

min∥κxj∥∞
(
∥κxj∥∞ + 1

)
∥∇uxk∥

2
L2 .
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Then we have

∥∇3u∥2
L2 =

m∑
j=1

m∑
k=1

∥∇uxkxj∥
2
L2 (3.36)

≤ 2κ−1
min

(
∥∇2f∥2

L2 + ∥∇2u∥2
L2

)
+ 4m2κ−2

min

(
∥∇2κ∥2∞ + ∥∇2κ∥∞

)
∥∇u∥2

L2

+ 8mκ−2
min

(
∥∇κ∥2∞ + ∥∇κ∥∞

)
∥∇2u∥2

L2

≤ C∥f∥2
H3

[
κ−4

min + κ−5
min

(
∥κ∥2C3 + ∥κ∥C3

)
+ κ−6

min

(
∥κ∥2C3 + ∥κ∥C3

)2]
, (3.37)

where again we only keep the highest order in κmin. Differentiating further and applying a

similar argument, gives that

∥∇4u∥2
L2 ≤ 4κ−1

min

(
∥∇3f∥2

L2 + ∥∇3u∥2
L2

)
+ 16m3κ−2

min∥∇u∥2L2

(
∥∇3κ∥2∞ + ∥∇3κ∥∞

)
+ 48m2κ−2

min∥∇2u∥2
L2

(
∥∇2κ∥2∞ + ∥∇2κ∥∞

)
+ 48mκ−2

min∥∇3u∥2
L2

(
∥∇κ∥2∞ + ∥∇κ∥∞

)
≤ C∥f∥2

H3

[
κ−5

min + κ−6
min

(
∥κ∥2C3 + ∥κ∥C3

)
+ κ−7

min

(
∥κ∥2C3 + ∥κ∥C3

)2
+ κ−8

min

(
∥κ∥2C3 + ∥κ∥C3

)3]
.

(3.38)

The desired result follows by combining equations (3.34), (3.33), (3.35), (3.37) and (3.38).

3.6.4 Proof of Lemma 3.3.7

By Lipschitz continuity of e−x when x > 0, we have,

∣∣∣∣exp(−1

2
|y − Gε(θ)|2Γ

)
− exp

(
−1

2
|y − G(θ)|2Γ

)∣∣∣∣
≤
∣∣∣∣12 |y − Gε(θ)|2Γ − 1

2
|y − G(θ)|2Γ

∣∣∣∣
=

1

2

∣∣∣(G(θ)T + Gε(θ)T )Γ−1(G(θ)− Gε(θ)) + 2yTΓ−1(G(θ)− Gε(θ))
∣∣∣

≤ 1

2
∥Γ−1∥2

(
|G(θ)|+ |Gε(θ)|

)
|G(θ)− Gε(θ)|+ ∥Γ−1∥2|y||G(θ)− Gε(θ)|,
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where ∥Γ−1∥2 is the operator 2-norm of Γ−1. By Theorem 3.3.1, Lemma 3.3.2 and (3.34),

|G(θ)− Gε(θ)| ≤
√∑

∥ℓj∥2∥u− uε∥L2 ≤ C
√∑

∥ℓj∥2A(θ)∥f∥H3ε4β−1

|G(θ)|+ |Gε(θ)| ≤
√∑

∥ℓj∥2
(
∥u∥L2 + ∥uε∥L2

)
≤ C

√∑
∥ℓj∥2e∥θ∥∞∥f∥L2 ,

where u and uε are the zero-mean solutions associated with θ, and ∥ℓj∥ is the operator norm

of ℓj . Here we have written A as a function of θ and use the fact that κmin ≥ e−∥θ∥∞ . So

∫ ∣∣∣∣exp(−1

2
|y − Gε(θ)|2Γ

)
− exp

(
−1

2
|y − G(θ)|2Γ

)∣∣∣∣ dπ(θ)
≤ C∥Γ−1∥2ε4β−1

[∑
∥ℓj∥2∥f∥2H3

∫
e∥θ∥∞A(θ)dπ(θ) +

√∑
∥ℓj∥2∥y∥∥f∥H3

∫
A(θ)dπ(θ)

]
.

It now suffices to show
∫ (

e∥θ∥∞ ∨ 1
)
A(θ)dπ(θ) <∞. Since κ = eθ, we have

∥κ∥C4 ≤ Ce∥θ∥∞
(
∥θ∥C4 + ∥θ∥2C4 + ∥θ∥3C4 + ∥θ∥4C4

)
,

where C is a constant depending on the dimension m and a similar relation is true for

∥
√
κ∥C4 . Keeping only the highest order term in e∥θ∥∞ , we have

A(θ) ≤ C

√
P1(∥θ∥C4)e14∥θ∥∞P2(∥θ∥C4)e

∥θ∥∞

≤ C

√
P1(∥θ∥C4)e

14∥θ∥C4P2(∥θ∥C4)e
∥θ∥C4 ,

where P1 and P2 are polynomials. Since π is a Gaussian measure on C4, by Fernique’s

theorem [Fernique, 1970],

∫ (
e∥θ∥∞ ∨ 1

)
A(θ)dπ(θ) <∞.
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It follows that

∫ ∣∣∣∣exp(−1

2
|y − Gε(θ)|2Γ

)
− exp

(
−1

2
|y − G(θ)|2Γ

)∣∣∣∣ dπ(θ) ≤ Cε4β−1,

where C depends on Γ, y, f and the ℓj ’s, but is independent of ε.

145



CHAPTER 4

UNLABELED DATA HELP IN GRAPH-BASED

SEMI-SUPERVISED LEARNING: A BAYESIAN

NONPARAMETRICS PERSPECTIVE

4.1 Introduction

Semi-supervised learning (SSL) refers to machine learning techniques that combine during

training a small amount of labeled data with a large amount of unlabeled data. SSL has

received increasing attention over the past decades because in many recent applications

labeled data are expensive to collect while unlabeled data are abundant. Examples include

analysis of body-worn videos and video surveillance [Qiao et al., 2019], text categorization

and translation [Shi et al., 2010], image classification [Zhu, 2005] and protein structure

prediction [Weston et al., 2005]. The aim of this chapter is to investigate whether unlabeled

data can enhance learning performance. The answer to such question necessarily depends

on the model assumptions and the methodology employed. Our main contribution is to

show that under a standard manifold assumption, unlabeled data are helpful when using

graph-based methods in a Bayesian setting. We do so by establishing that the optimal

posterior contraction rate is achieved (up to a logarithmic factor) provided that the size of

the unlabeled dataset grows sufficiently fast with the size of the labeled dataset.

The SSL problem of interest can be informally described as follows. Given labeled data

{(X1, Y1), . . . , (Xn, Yn)} and unlabeled data {Xn+1, . . . , XNn
}, the goal is to predict Y from

X. More precisely, we are interested in the SSL problem of inferring the regression function

f0(x) := E(Y |X = x) at the given features XNn
:= {X1, . . . , XNn

} in either of these two

settings:

1. Regression: Y = f0(X) + η, where η ∼ N (0, σ2) with σ2 known.
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2. Binary classification: P(Y = 1|X) = f0(X).

We analyze graph-based methods applied to this inference task under the manifold as-

sumption that X takes values on a hidden manifold M. This assumption is natural when

the features XNn
live in a high-dimensional ambient space but admit a low-dimensional

representation [Bickel and Li, 2007, Niyogi, 2013, García Trillos et al., 2019b, 2020b]. For

instance, Hein and Audibert [2005] and Costa and Hero [2006] demonstrate the low intrinsic

dimension of standard datasets for image classification. Graph-based methods are well-suited

under the manifold assumption as they allow to uncover the geometry of the hidden mani-

fold and promote smoothness of the inferred f0 along it. Indeed, graph-based methods are

among the most powerful classification techniques for SSL problems where similar features

are expected to belong to the same class [Belkin et al., 2004, Belkin and Niyogi, 2004, Zhu,

2005]. The central idea behind traditional graph-based methods is to infer f0 by minimizing

an objective function comprising at least two terms: (i) a regularization term constructed

with a graph-Laplacian of the features XNn
, which leverages the ability of unsupervised

graph-based techniques to extract geometric information from M; and (ii) a data-fidelity

term that incorporates the labeled data. We adopt an analogous Bayesian perspective where:

(i) the prior distribution Πn(· | XNn
) will be defined using a graph-Laplacian of the features

XNn
(hence the notation “given XNn

”) to extract geometric information from M; and (ii) the

likelihood function promotes matching the labeled data. Assuming the data are independent

so that the likelihood factorizes, the posterior takes the form

Πn(B | XNn
,Yn) ∝

∫
B

n∏
i=1

LYi|Xi
(f) dΠn(f | XNn

), B ∈ B, (4.1)

where Yn := {Y1, . . . , Yn} and B is the Borel σ-algebra on RNn (here we are identifying
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functions over XNn
with RNn). The conditional likelihood of Yi|Xi is given by

LYi|Xi
(f) =

1√
2πσ2

exp

(
−|Yi − f(Xi)|2

2σ2

)
(4.2)

in the regression setting and

LYi|Xi
(f) = f(Xi)

Yi [1− f(Xi)]
1−Yi (4.3)

in the classification setting.

We shall analyze our Bayesian approach in a frequentist perspective by assuming the

data is generated from a fixed truth f0 and studying the contraction rate of the posterior

around f0, defined as the sequence of real numbers εn such that

EXEf0Πn
(
f : dn(f, f0) ≥Mnεn | XNn

,Yn
) n→∞−−−−→ 0,

for any sequence Mn → ∞ and some suitable semi-metric dn. Here the double expectation

EXEf0 is taken first with respect to the conditional data distribution of Yn|X1, . . . , Xn spec-

ified by f0 and then with respect to the marginal of XNn
. The idea of posterior contraction

rate was formally introduced in Ghosal et al. [2000] and Shen and Wasserman [2001] and

has since then become a popular criterion for analyzing Bayesian methods. In particular,

contraction of the posterior with rate εn gives a point estimator defined as

f̂n = argmax
g

[
Πn(f : dn(f, g) ≤Mnεn | XNn

,Yn)
]

that converges to f0 with the same rate εn, which together with the minimax theory for

statistical estimation quantifies the performance of our Bayesian SSL procedure.

Our main result, Theorem 4.2.1, shows that the posterior (4.1) contracts around f0 at

the minimax optimal rate (up to logarithmic factors), provided that the prior distribution
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Πn(· | XNn
) is carefully designed and that Nn grows at a certain polynomial rate with n.

More broadly, our theory suggests that graph-based methods require abundant unlabeled

data in order to effectively extract geometric information to regularize SSL problems.

4.1.1 Related Work

The question of whether unlabeled data enhance SSL performance has been widely studied.

Positive and negative conclusions have been reached depending on the assumptions made

on the relationship between the target function and the marginal data distribution, and also

on the methodology employed [Cozman and Cohen, 2006, Bickel and Li, 2007, Liang et al.,

2007, Wasserman and Lafferty, 2008, Niyogi, 2013, Singh et al., 2008]. Two standard model

assumptions are the clustering assumption [Seeger, 2000a], which states that the target

function is smooth over high density regions, and the manifold assumption that we have

introduced. The latter has been extensively used in the statistical learning literature, and

specifically in SSL, e.g. Bickel and Li [2007], Wasserman and Lafferty [2008], Castillo et al.

[2014], Yang and Dunson [2016], García Trillos et al. [2019b, 2020b].

Several methodologies for SSL have been developed based on generative modeling, sup-

port vector machines, semi-definite programming, graph-based methods, etc. (see the overview

in Zhu [2005] and Chapelle et al. [2006]). Our focus is on graph-based approaches that

combine label information with geometric information extracted from the unlabeled data

employing graphical unsupervised techniques [Von Luxburg, 2007]. This heuristic has moti-

vated the use of graph-based regularizations in a wide number of applications, but a rigorous

analysis of the mechanisms by which unlabeled data enhance the performance of graph-

based SSL methods is only starting to emerge. The recent papers Bertozzi et al. [2021]

and Hoffmann et al. [2020] studied posterior consistency (the asymptotics of the posterior

probability Πn(f : dn(f, f0) ≥ ε | data) for a fixed small number ε) for a fixed sample size in

the small noise limit, whereas we consider the large n limit and further establish posterior
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contraction rates. Rates of convergence for optimization rather than Bayesian formulations

of graph-based SSL have been recently established in Calder et al. [2020]. In a Bayesian

framework, García Trillos and Sanz-Alonso [2018] and García Trillos et al. [2020b] show the

continuum limit of posterior distributions as the size of the unlabeled dataset grows, with-

out increasing the size of the labeled dataset. These papers did not investigate whether the

posteriors contract around the truth, and they did not demonstrate the value of unlabeled

data in boosting learning performance. The work Kirichenko and van Zanten [2017] studies

fully-supervised function estimation on large graphs assuming that the truth changes with

the size of the graph. In contrast, we investigate posterior contraction in a SSL setting with

a fixed truth f0 defined on the underlying manifold M.

Our analysis uses tools from Bayesian nonparametrics and spectral analysis of graph-

Laplacians. We will provide the necessary background on posterior contraction in Section 4.3,

and we refer to [Ghosal and Van der Vaart, 2017, Chapters 6, 8 and 11] for a comprehensive

introduction to this subject. While numerous results on spectral convergence of graph-

Laplacians can be found in the literature, our analysis of posterior contraction requires

bounds in L∞-metric with rates, recently developed in Dunson et al. [2021] and Calder et al.

[2022].

4.1.2 Main Contributions and Scope

Our main result, Theorem 4.2.1, is to our knowledge the first to establish posterior contrac-

tion rates for graph-based SSL. In doing so, we provide novel understanding on the relative

value of labeled and unlabeled data, and we set forth a rigorous quantitative framework in

which to analyze this question. We point out, however, two caveats. First, our theory is

non-adaptive in the sense that the Bayesian methodology we analyze only achieves optimal

contraction rates when a priori information on the smoothness of the truth is available. Our

analysis is motivated by existing graph-based techniques, and the development and analy-
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sis of adaptive graph-based methods for SSL is an important research direction stemming

from our work, but beyond the scope of this chapter. Second, our results build on existing

spectral convergence rates of graph-Laplacians that may be suboptimal; as a consequence,

the required sample size of the unlabeled data that we establish may not be sharp. Due

to the plug-in nature of our analysis, improved spectral convergence rates will automati-

cally translate into a sharper bound on the sample complexity. Despite these caveats, our

theory provides evidence that letting the unlabeled dataset grow polynomially with the la-

beled dataset, as suggested by Theorem 4.2.1, is a fundamental requirement for standard

graph-based methods to achieve optimal contraction.

A central part of our proof is devoted to analyzing the convergence of a discretely indexed

Gauss-Markov random field in an unstructured data cloud to a Matérn-type Gaussian field on

M. This is formalized in Theorem 4.4.6, a result that we believe to be of independent interest.

Finally, our work contributes to the Bayesian nonparametrics literature on manifolds [Castillo

et al., 2014].

Outline The rest of this chapter is organized as follows. Section 4.2 introduces the con-

struction of the graph-based prior and states our main result. Section 4.3 provides the

necessary background on posterior contraction and outlines our analysis. Section 4.4 proves

our main result, and we close in Section 4.5.

4.2 Prior Construction and Main Result

In this section we introduce the graph-based prior Πn(· | XNn
) and we state the main result of

this chapter. Before doing so, we formalize our setting. We assume to be given labeled data

(X1, Y1), . . . , (Xn, Yn)
i.i.d.∼ L(X, Y ) and unlabeled data Xn+1, . . . , XNn

i.i.d.∼ L(X), where

{Xi}Nn
i=n+1 are independent from {Xi}ni=1. Recall that the goal is to estimate the regression
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function

f0(x) = E(Y |X = x)

at the given features XNn
= {X1, . . . , XNn

}. We suppose that µ := L(X) is supported on

an m-dimensional smooth, connected, compact manifold M without boundary embedded in

Rd, with the absolute value of the sectional curvature bounded and with Riemannian metric

inherited from the embedding. For technical reasons, we further assume that m ≥ 2 and

that M is a homogeneous manifold (the group of isometries acts transitively on M, e.g.

spheres and tori) normalized so that its volume is 1. We assume for simplicity that µ is the

uniform distribution on M. As discussed in Section 4.5, our results can be generalized to

nonuniform marginal density.

4.2.1 Graph-based Prior

We now describe the construction of the graph-based prior Πn(· | XNn
) on f0 restricted to

the given features XNn
. The priors we consider have the general form

Πn(· | XNn
) = L(Φ(Wn) | XNn

), (4.4)

where Wn is a Gauss-Markov random field in RNn whose covariance will be defined in terms

of a graph-Laplacian [Von Luxburg, 2007] of XNn
. For the regression problem, Φ is taken to

be the identity. For the classification problem, where f0 takes values in (0, 1), Φ : R → (0, 1)

is a link function, which we assume throughout to be invertible and twice differentiable

with Φ′/(Φ(1 − Φ)) uniformly bounded and
∫
(Φ′′)2/Φ′ dγ < ∞. The logistic function, for

instance, satisfies all these standard requirements.

In the remainder of this subsection we introduce and motivate our construction of the

Gauss-Markov random field Wn. The starting point is to define a similarity matrix H ∈
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RNn×Nn whose entries Hij ≥ 0 represent the closeness between features Xi and Xj . For

reasons discussed in Section 4.2.1.1 below, we set

Hij :=
2(m+ 2)

Nnνmζ
m+2
Nn

1
{
|Xi −Xj | < ζNn

}
, (4.5)

where | · | is the Euclidean distance in Rd, νm is the volume of the m−dimensional unit ball,

and ζNn
is the connectivity of the graph, a user-specified parameter. Recall that a graph-

Laplacian is a positive semi-definite matrix obtained by suitably transforming a similarity

matrix. For concreteness, we work with the unnormalized graph-Laplacian matrix ∆Nn
:=

D−H, where D is the diagonal matrix with entries Dii =
∑Nn

j=1Hij . For a vector v ∈ RNn ,

naturally identified with a function on the data cloud XNn
, we have

vT∆Nn
v =

1

2

Nn∑
i=1

Hij |v(Xi)− v(Xj)|2. (4.6)

We see that indeed ∆Nn
is positive semi-definite and that functions v that change slowly with

respect to the similarityH have a small value of vT∆Nn
v. This naturally suggests considering

the Gaussian distribution N (0, (INn
+∆Nn

)−s) since the likelihood for the samples will then

have a term similar to (4.6). Based on this idea we shall define the Gauss-Markov random

field Wn as the principal components of it. Precisely, let {(λ(Nn)
i , ψ

(Nn)
i )}Nn

i=1 be the ordered

eigenpairs of ∆Nn
and define

Wn =

kNn∑
i=1

[
1 + λ

(Nn)
i

]− s
2
ξiψ

(Nn)
i , ξi

i.i.d.∼ N (0, 1), (4.7)

where kNn
≪ Nn is to be determined. Notice that Wn as in (4.7) is a truncation of the

Karhunen-Loève expansion of samples from N (0, (INn
+∆Nn

)−s) and therefore the termi-

nology “principal components”.

The law ofWn depends on three parameters: the graph connectivity ζNn
used to define the

153



similarity matrix H, the smoothness parameter s, and the principal components truncation

parameter kNn
. The connectivity ζNn

determines the sparsity of the precision matrix of Wn,

and it should be taken to decrease with Nn to better resolve the geometry of M as more

unlabeled data are available. The smoothness s controls the level of regularization. Larger

s leads to faster decay of the coefficients in (4.7) and smoother samples. The truncation

parameter kNn
≪ Nn allows us to keep only the components of the graph-Laplacian that

contain useful geometric information on M. Suitable choices and scalings of these three

parameters, as well as further insights on their interpretation, will be given as we develop

our theory. Importantly, the construction does not require knowledge of the underlying

manifold M, but only of its dimension. These data-driven Gauss-Markov fields have been

used within various intrinsic approaches to Bayesian learning, see e.g. García Trillos and

Sanz-Alonso [2018], García Trillos et al. [2019b, 2020b], Harlim et al. [2020].

4.2.1.1 Interpretation as a Discretely Indexed Matérn Field

The Gauss-Markov field Wn can be interpreted as a discretely indexed Matérn Gaussian field

[Sanz-Alonso and Yang, 2022a]. Consider the Gaussian measure N (0, (I − ∆)−s)), where

−∆ denotes the Laplace-Beltrami operator on M and the fractional order operator is defined

spectrally. Then, draws from N (0, (I −∆)−s)) admit a representation

WM =
∞∑
i=1

(1 + λi)
− s

2 ξiψi, ξi
i.i.d.∼ N (0, 1), (4.8)

where (λi, ψi)’s are the ordered eigenpairs of the Laplace-Beltrami operator. Note the anal-

ogy with (4.7). The field WM is a generalization of the Matérn model to compact manifolds

[Lindgren et al., 2011, Sanz-Alonso and Yang, 2022a]. An important step in our analysis

of posterior contraction will be to show the convergence of Wn towards WM, in a sense to

be made precise in Section 4.4.3, provided that the connectivity, smoothness and truncation
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parameters of Wn are suitably chosen. The similarity matrix defined in (4.5) enables this

convergence result, but other choices (e.g. K-nearest neighbors) are possible. Key to show-

ing convergence of Wn to WM is the spectral convergence of ∆Nn
to −∆. The truncation

parameter kNn
is motivated by the fact that only the first eigenpairs of ∆Nn

accurately

approximate those of −∆; see Proposition 4.4.9 below for a precise statement.

4.2.1.2 Reconciling Optimization and Bayesian Perspectives

To further motivate the definition of Wn, we relate our prior construction to the optimization

literature. To streamline the discussion, let us focus on the regression problem where the

link function Φ in (4.4) is the identity map. Classical graph-based optimization recovers f0

at XNn
using fT∆Nn

f as a regularizer and an appropriate data-fidelity term to match the

labeled data, for instance,

f̂0 := argmin
f∈RNn

n∑
i=1

|Yi − f(Xi)|2 + λfT∆Nn
f, (4.9)

where λ controls the level of regularization. The solution to (4.9) is conceptually equivalent

to the maximum a posteriori estimator in the Bayesian approach when the prior is chosen to

be N (0,∆−1
Nn

), where ∆−1
Nn

denotes the pseudo-inverse of ∆Nn
. The paper Nadler et al. [2009]

shows that (4.9) is not well-posed when m ≥ 2, in the sense that as the number of unlabeled

data points increases the solution degenerates to a noninformative function. The authors

suggest that this issue can be alleviated by defining the regularization term as λfT∆s
Nn
f

with s > m
2 , so that higher order “derivatives” of f are controlled. Similar behavior has

been observed with p-Laplacian regularizations [El Alaoui et al., 2016]. The parameter s in

(4.7) plays the exact same role, and we shall see that suitably scaling s with m is needed to

warrant consistent learning in the limit of large unlabeled datasets.
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4.2.2 Main Result

Now we are ready to state our main result. Let δ > 0 be arbitrary. Let pm = 3
4 if m = 2

and pm = 1
m otherwise. Let αs = 6m+6

2s−3m+1 if s ≤ 9
2m+ 5

2 and αs = 1 otherwise.

Theorem 4.2.1. Suppose Φ−1(f0) ∈ B
β
∞,∞. Let Πn be the prior defined by (4.4) and (4.7)

with s > 3
2m− 1

2 . Consider the following scaling for ζNn
, kNn

and Nn.

1. m ≤ 4: ζNn
≍ N

− 1
m+4+δ

n (logNn)
pm
2 , kNn

≍ N
m

(m+4+δ)(2s−3m+1)αs
n (logNn)

− mpm
(4s−6m+2)αs

with

Nn ≍ n(m+4+δ)αs(log n)
(m+4+δ)pm

2 . (4.10)

2. m ≥ 5: ζNn
≍ N

− 1
2m

n (logN)
pm
2 , kNn

≍ N
1

(4s−6m+2)αs
n (logNn)

− mpm
(4s−6m+2)αs with

Nn ≍ n2mαs(log n)mpm . (4.11)

Then, for εn a multiple of n−
(s−m

2 )∧β
2s (log n)

(s−m
2 )∧β

4s−2m and all Mn → ∞,

EXEf0Πn
(
f ∈ L∞(µNn

) : ∥f − f0∥n ≥Mnεn | XNn
,Yn

) n→∞−−−−→ 0, (4.12)

where µNn
is the empirical measure of XNn

and ∥f − f0∥2n := 1
n

∑n
i=1 |f(Xi) − f0(Xi)|2.

Here Ef0 denotes expectation with respect to the conditional distribution of Yn|X1, . . . , Xn

determined by f0 and EX denotes expectation with respect to the marginal distribution of

XNn
.

Theorem 4.2.1 presents the posterior contraction rates with respect to the priors con-

structed in Section 4.2.1 under suitable choices of the parameters. Several remarks are in

order.
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The truth f0 is assumed to belong to a Besov-type space Bβ
∞,∞ on manifolds, defined in

Section 4.4.2 in analogy to the usual Besov space Bβ
∞,∞(Rm) on Euclidean space. We recall

that Bβ
∞,∞(Rm) coincides with the Hölder space Cβ(Rm) (the space of functions with ⌊β⌋

continuous derivatives whose ⌊β⌋-th derivative is β − ⌊β⌋-Hölder continuous) when β /∈ N

and contains Cβ(Rm) when β ∈ N (see e.g. Triebel [1992][Theorem 1.3.4]). Therefore, Bβ
∞,∞

can be interpreted as an analog of the Hölder space with parameter β on manifolds, and in

particular represents a space of β-regular functions.

The key implication of Theorem 4.2.1 is that when s − m
2 = β, we recover the rate

n−β/(2β+m)(log n)1/4, which is minimax optimal up to a logarithmic factor for β-regular

functions. The assumption s > 3
2m − 1

2 then requires β > m − 1
2 , so optimal contraction

rates can only be attained if f0 is not too rough. Theorem 4.2.1 can be extended to hold

for all s > m if the eigenfunctions of the Laplace-Beltrami operator on M are uniformly

bounded, which holds for the family of flat manifolds [Toth and Zelditch, 2002] that include

for instance the tori. As mentioned in Section 4.1.2, the above choice of s requires knowing

the regularity of f0 and is not adaptive.

Another key ingredient of the result is the scaling for Nn as in (4.10) and (4.11), which

are both larger than a multiple of n2m since αs ≥ 1 in all cases. In other words, the required

sample size of the unlabeled data should grow polynomially with respect to the sample size

of the labeled data in order to achieve the near optimal contraction rates described above,

thereby justifying the claim that unlabeled data help.

We further remark that Theorem 4.2.1 only gives an upper bound for the required sample

size Nn, whose proof (see Section 4.4) in fact has a plug-in nature. Suppose the sequence

of Gaussian-Markov fields Wn in (4.7) converges in some semimetric dn towards WM in

(4.8) with rate Eξdn(Wn,W
M) = R(Nn) for some function R. The required sample size

is then obtained by matching R(Nn) with n−1. In particular, any improvement of the rate

R(Nn) shown in Section 4.4.3 will lead to a reduction of the required sample size. However,
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the spectral convergence rate in Proposition 4.4.9 and hence R(Nn) should not be faster

than the resolution of the point cloud, which is shown to scale like N−1/m
n in Proposition

4.4.5. Therefore by matching N−1/m
n with n−1 we expect a polynomial dependence of Nn

on n to be necessary to achieve optimal contraction rate, further demonstrating the need of

unlabeled data in our specific setting.

4.3 Posterior Contraction: Background and Set-up

In this section we present necessary background on posterior contraction rates. In Section

4.3.1 we review the main results on posterior contraction that our theory builds on, and in

Section 4.3.2 we explain how these general results are used in our proof.

It will be important to note that our prior is constructed with the Xi’s, and we shall view

our observations as the Yi’s only, as the notation in (4.1) suggests. In particular, the Yi’s

are independent but non-identically distributed (i.n.i.d.) and hence we will apply general

results from Ghosal and Van Der Vaart [2007]. This also explains the double expectation in

(4.12), where the randomness of the Xi’s is treated separately.

4.3.1 General Principles

Here we review general posterior contraction theory for the problem of estimating f0 at

the continuum level from i.n.i.d data, following Ghosal and Van Der Vaart [2007]. Suppose

the data {Yi}ni=1 are generated according to a density P
(n)
f0

=
∏n

i=1 pf0,i for some ground

truth parameter f0, where pf0,i is the individual density for each observation. Let Πn be a

sequence of priors over f0 that is supported on some parameter space F equipped with a

semimetric dn. Theorem 4 of Ghosal and Van Der Vaart [2007] states that

Ef0Πn (f ∈ F : dn(f, f0) ≥Mnεn | Yn)
n→∞−−−−→ 0, (4.13)
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provided that there exists sets Fn ⊂ F and positive real numbers εn, K so that

logN(εn,Fn, dn) ≤ nε2n, (4.14)

Πn(Fc
n) ≤ e−(K+4)nε2n , (4.15)

Πn(B
∗
n(f0, εn)) ≥ e−Knε2n , (4.16)

where N(εn,Fn, dn) is the minimum number of dn-balls of radius εn needed to cover Fn.

Here

B∗
n(f0, εn) :=

{
f ∈ F :

1

n

n∑
i=1

dKL(pf,i, pf0,i) ≤ ε2n,
1

n

n∑
i=1

vKL(pf,i, pf0,i) ≤ Cε2n

}
, (4.17)

where C is a universal constant, dKL(p, q) =
∫
p log(p/q)dγ is the Kullback-Leibler divergence

and vKL(p, q) =
∫
p| log(p/q) − dKL(p, q)|2dγ. Conditions (4.15) and (4.14) roughly state

that there are approximating sieves Fn which capture most of the prior probability while

not being too large. Condition (4.16) requires sufficient prior mass near the truth f0 and

together with (4.14) further indicates that the priors should be “uniformly spread”. In fact

the three conditions are stronger than those in [Ghosal and Van Der Vaart, 2007, Theorem

4] but will suffice in our case for Gaussian process priors to be discussed shortly below. We

shall refer to [Ghosal et al., 2000, Section 2] and [Ghosal and Van Der Vaart, 2007, Section

2] for further discussion on the interpretation and relaxation of these conditions.

The general theory can be used to analyze a wide range of statistical models but does

not give a recipe for constructing the sieves Fn and εn. However, when the priors are

Gaussian there exists a simple relation between εn and the priors. Suppose in addition that

Πn = L(wn) are Gaussian measures on some Banach space (B, ∥ · ∥B) that converge to a

fixed Gaussian measure Π = L(w) on the same Banach space with 10E∥wn − w∥2B ≤ n−1.

Theorem 2.2 in van der Vaart and van Zanten [2008a] then states that the contraction rate
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εn can be obtained by studying the concentration function of the limit prior Π, defined as

ϕf0(ε) := inf
h∈H:∥h−f0∥B<ε

∥h∥2H − logP(∥w∥B < ε),

where (H, ∥ ·∥H) is the reproducing kernel Hilbert space (RKHS) of Π (see e.g. van der Vaart

and van Zanten [2008b] for more details on Gaussian measures and the associated RKHSs).

More precisely, if εn satisfies ϕf0(εn) ≤ nε2n, then for the same εn and some Fn, the three

conditions (4.14), (4.15) and (4.16) are satisfied (possibly for different proportion constants

in front of nε2n) with dn and B∗
n(f0, εn) replaced by ∥ · ∥B and {f : ∥f − f0∥B < εn},

respectively.

4.3.2 Application to Our Setting

In this subsection we discuss how we utilize the general theory outlined above, and provide

a road map for the proof of Theorem 4.2.1. Notice that in (4.12) the sequence of posteriors

are supported on the discrete space L∞(µNn
), whose size changes with n. To alleviate this

issue we will reduce the analysis to a sequence of posteriors ΠM
n (· | XNn

,Yn) supported on

the same continuum space L∞(µ) in Section 4.4.1. The corresponding sequence of priors

will turn out to have the form ΠM
n (· |XNn

) = L(Φ(IWn)), with Wn defined in (4.7) and I a

suitable interpolation map so that IWn is a Gaussian process on M that approximates WM.

Our analysis will then consist of the following steps. We will establish the three conditions

(4.14), (4.15), (4.16) for WM in Section 4.4.2, followed by a convergence rate analysis of

IWn towards WM in Section 4.4.3, so that the three conditions are inherited by IWn. The

assumptions on the link function Φ will then allow us to conclude similar conditions for

Φ(IWn).

The discrepancy measure dn can be taken as the empirical L2-norm ∥·∥n in the regression

case (see e.g. [Ghosal and Van der Vaart, 2017, Section 8.3.2]) and the root average square
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Hellinger distance in the classification setting [Ghosal and Van Der Vaart, 2007, Section 3],

defined as

d2n,H(f, f ′) =
1

n

n∑
i=1

∫ (√
pf,i −

√
pf ′,i

)2
dγ. (4.18)

In the latter case, one can show that dn,H is equivalent to ∥ · ∥n. Indeed, since the densities

are uniformly bounded, ∥f − f ′∥n is bounded above by a multiple of (4.18). Furthermore

(4.18) is upper bounded by a multiple of ∥f − f ′∥n by [Ghosal and Van der Vaart, 2017,

Lemma 2.8(ii)] given our assumption on Φ. Hence this explains the choice of ∥ · ∥n in (4.12).

A natural choice for the Banach space in our setting is then B = L∞(µ) since (i) dn =

∥ · ∥n ≤ ∥ · ∥L∞(µ); and (ii) B∗
n(f0, εn) ⊃ {f ∈ F : ∥f − f0∥L∞(µ) ≤ C̃εn} for some universal

constant C̃. The first point is clear and an upper bound on the metric entropy (4.14) in

∥ · ∥L∞(µ) will automatically yield an upper bound in ∥ · ∥n. The second point follows from

the fact that one can upper bound the two quantities in (4.17) by ∥f − f0∥n and hence

∥f − f0∥L∞(µ) in both the regression and classification setting. Therefore the prior mass

condition (4.16) for WM in L∞(µ) balls is sufficient to give the corresponding condition for

B∗(f0, εn). This motivates us to consider the continuum Gaussian field defined in (4.8) as

an element in L∞(µ) in Section 4.4.2 and the L∞(µ) convergence rate in Section 4.4.3.

4.4 Proof of the Main Result

In this section we prove Theorem 4.2.1. An important part of the proof is to formalize the

convergence of the Gauss-Markov random field Wn in (4.7), defined in the data cloud XNn
,

to the Matérn field WM in (4.8), defined in M. To that end, we introduce an interpolation
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of Wn into M

WM
n :=

kNn∑
i=1

[
1 + λ

(Nn)
i

]− s
2
ξiψ

(Nn)
i ◦ TNn

, ξi
i.i.d.∼ N (0, 1), (4.19)

where TNn
: M → {X1, . . . , XNn

} are transport maps to be specified in Proposition 4.4.5

below. In Section 4.4.1 we show that it suffices to establish posterior contraction with respect

to the prior

ΠM
n (· | XNn

) := L(Φ(WM
n ) | XNn

). (4.20)

In Section 4.4.2 we show concentration properties of the limiting Gaussian field WM. In

Section 4.4.3 we establish the L∞(µ)-convergence rate of WM
n towards WM. Combining

the facts that WM
n is close to WM with the contraction properties of WM, we deduce that

L(WM
n | XNn

) satisfies the three conditions (4.14), (4.15), (4.16). We complete the proof

in Section 4.4.4 by lifting these conditions to L(Φ(WM
n ) | XNn

) in both the regression and

classification problems.

4.4.1 Reduction via Interpolation

Here we show that in order to establish Theorem 4.2.1 it suffices to prove posterior con-

traction with respect to the continuum prior ΠM
n (· | XNn

) defined in (4.20). Let I := INn
:

L∞(µNn
) → L∞(µ) be the interpolation map defined by Iu := u ◦ TNn

. Specifically, we

claim that, in order to establish Theorem 4.2.1, it suffices to show that

EXEf0Π
M
n

(
f ∈ I(L∞(µNn

)) : ∥f − f0∥n ≥Mnεn | XNn
,Yn

) n→∞−−−−→ 0.

The only property of the maps TNn
in (4.19) that we will use in this subsection is that

TNn
(Xi) = Xi. In order to establish the claim, let An = {f ∈ L∞(µNn

) : ∥f−f0∥n ≥Mnεn}.
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Since An ⊂ I−1(I(An)) we have

Πn(An | XNn
,Yn) ≤ Πn(I−1(I(An)) | XNn

,Yn) = I♯[Πn(· | XNn
,Yn)](I(An)),

where I♯ denotes push-forward through the map I. (Recall that the push-forward of a mea-

sure ν through the map I is defined by the relationship (I♯ν)(B) := ν(I−1(B)).) Therefore,

it follows from Lemma 4.4.1 below that

Πn(An | XNn
,Yn) ≤ ΠM

n (I(An)|XNn
,Yn), (4.21)

and hence it suffices to bound the right-hand side of (4.21). Since TNn
(Xi) = Xi, we have

I(An) = {f ◦ TNn
: ∥f − f0∥n ≥Mnεn} = {f ◦ TNn

: ∥f ◦ TNn
− f0∥n ≥Mnεn}

= {f ∈ I(L∞(µNn
)) : ∥f − f0∥n ≥Mnεn},

and the claim is established.

Lemma 4.4.1. It holds that ΠM
n (· | XNn

,Yn) = I♯[Πn(· | XNn
,Yn)].

Proof. Step 1: First we show that ΠM
n (· |XNn

) = I♯[Πn(· |XNn
)]. Since I is linear, we have

that WM
n = IWn. Then observe that I

(
Φ(Wn)

)
= Φ

(
I(Wn)

)
. Indeed, for x ∈ T−1

Nn
({Xi}),

we have

I
(
Φ(Wn)

)
(x) = Φ(Wn)(Xi) = Φ

(
Wn(Xi)

)
= Φ

(
I(Wn)(x)

)
= Φ

(
I(Wn)

)
(x).

Therefore, we have that

ΠM
n (· |XNn

) = L
(
Φ(WM

n )|XNn

)
= L

(
I
(
Φ(Wn)

)
|XNn

)
.
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Finally, note that I♯[Πn(· |XNn
)] = L

(
I
(
Φ(Wn)

)
|XNn

)
, since

I♯Πn(B|XNn
) = Πn

(
I−1(B)|XNn

)
= P

(
Φ(Wn) ∈ I−1(B)|XNn

)
= P

(
I(Φ(Wn)) ∈ B|XNn

)
.

Step 2: Now we show that ΠM
n (· | XNn

,Yn) = I♯[Πn(· | XNn
,Yn)]. By definition of pushfor-

ward measure, it suffices to show that, for any measurable B,

ΠM
n (B | XNn

,Yn) = Πn(I−1(B) | XNn
,Yn).

Using Step 1, the left-hand side equals

ΠM
n (B | XNn

,Yn) =

∫
B

∏n
i=1 LYi|Xi

(f) dI♯[Πn(f | XNn
)]∫

I(L∞(µNn))

∏n
i=1 LYi|Xi

(f) dI♯[Πn(f | XNn
)]
, (4.22)

where LYi|Xi
(f) is given in (4.2) and (4.3). Note that pointwise values of f are well-defined

since I♯Πn is supported on I(L∞(µNn
)). By the change-of-variable formula for pushforward

measures,

(4.22) =

∫
I−1(B)

∏n
i=1 LYi|Xi

◦ I(fn) dΠn(fn | XNn
)∫

L∞(µNn)

∏n
i=1 LYi|Xi

◦ I(fn) dΠn(fn | XNn
)
,

which equals (4.1) with B replaced by I−1(B), by noticing that LYi|Xi
◦I(fn) is exactly the

same as in (4.2) and (4.3). The result follows.

4.4.2 Regularity and Contraction Properties of the Limiting Field

In this subection we study the limit Gaussian measure π = N (0, (I − ∆)−s) = L(WM).

Recall that the samples admit Karhunen-Loève expansion

WM =
∞∑
i=1

(1 + λi)
− s

2 ξiψi, ξi
i.i.d.∼ N (0, 1), (4.23)
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where (λi, ψi)’s are the eigenpairs of the Laplace-Beltrami operator −∆ on M. Notice that

a larger s leads to a faster decay of the coefficients and hence more regular sample paths.

From Weyl’s law that λi ≍ i
2
m (see e.g. [Canzani, 2013, Theorem 72]), setting s > m

2 makes

π a well-defined measure on L2(µ). To ensure almost sure continuity of the samples, so

that point evaluations are well-defined and π is supported over L∞(µ), we need the stronger

assumption that s > m− 1
2 .

Lemma 4.4.2. If s > m− 1
2 , then samples of π are almost surely continuous.

Proof. By [Lang et al., 2016, Corollary 4.5], it suffices to show that

Eξ|WM(x)−WM(y)|2 ≤ CdM(x, y)η,

for some η > 0. We have

Eξ|WM(x)−WM(y)|2 = Eξ

( ∞∑
i=1

(1 + λi)
− s

2 ξi(ψi(x)− ψi(y))

)2

=
∞∑
i=1

(1 + λi)
−s|ψi(x)− ψi(y)|2,

since Eξξiξj = 0 for i ̸= j. By Proposition 4.4.12,

|ψi(x)− ψi(y)| ≤ Cλ
m−1
4

i ,

|ψi(x)− ψi(y)| ≤ ∥∇ψi∥L∞(µ)dM(x, y) ≤ Cλ
m+1
2

i dM(x, y).
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Using Weyl’s law, we have

Eξ|WM(x)−WM(y)|2 ≲
∞∑
i=1

(1 + λi)
−smin

{
λm+1
i dM(x, y)2, λ

m−1
2

i

}

≲
∞∑
i=1

i−
2s
m min

{
i
2m+2
m dM(x, y)2, i

m−1
m

}
≲ dM(x, y)2

∫ K

1
z
−2s+2m+2

m dz +

∫ ∞

K
z
−2s+m−1

m dz.

Setting K = dM(x, y)−
2m
m+3 , we have

Eξ|WM(x)−WM(y)|2 ≲ dM(x, y)
4s−4m+2

m+3 .

The result follows since s > m− 1
2 .

Remark 4.4.3. The argument above relies on the worst case L∞(µ) bound on the eigenfunc-

tions of −∆ given in Proposition 4.4.12. If the eigenfunctions are uniformly bounded (which

holds for the family of flat manifolds [Toth and Zelditch, 2002] that includes, for instance,

the torus), then continuity can be guaranteed for s > m
2 .

From now on, we shall consider π as a measure over L∞(µ) with continuous sample

paths, where pointwise evaluation is well-defined. Using the series representation (4.23), the

reproducing kernel Hilbert space H associated with π has the following characterization

H =

{
h =

∞∑
i=1

hiψi : ∥h∥2H :=
∞∑
i=1

h2i (1 + λi)
s <∞

}
. (4.24)

From the general theory in van der Vaart and van Zanten [2008a], the concentration prop-

erties of W can be characterized by the concentration function

ϕw0(ε) := inf
h∈H:∥h−w0∥L∞(µ)<ε

∥h∥2H − logP(∥W∥L∞(µ) < ε), (4.25)
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where w0 belongs to the support of π. For our purpose, w0 will be set as Φ−1(f0). The three

conditions (4.14), (4.15) and (4.16) hold for the εn that satisfies ϕw0(εn) ≤ nε2n.

Before stating our main result in this subsection, we follow Castillo et al. [2014] and

Coulhon et al. [2012] to define a Besov space which will be needed to characterize the

regularity of w0. Let Ψ be an even function in the Schwartz space S(R) with

0 ≤ Ψ ≤ 1, Ψ ≡ 1 on [−1

2
,
1

2
], supp(Ψ) ⊂ [−1, 1].

Define the Besov space

B
β
∞,∞ :=

{
w : ∥w∥βB∞,∞

:= sup
j∈N

2βj∥Ψj(
√
∆)w(·)− w(·)∥L∞(µ) <∞

}
,

where Ψj(·) = Ψ(2−j ·) and, for w =
∑∞

i=1wiψi,

Ψj(
√
∆)w :=

∞∑
i=1

Ψj(
√
λi)wiψi.

It was shown in [Coulhon et al., 2012, Proposition 6.2] that the definition is independent of

the choice of Ψ.

Theorem 4.4.4. Suppose w0 ∈ B
β
∞,∞. Consider the prior π = N (0, (I − ∆)−s) with

s > β ∧m− 1
2 . Then there exists sets Bn ⊂ L∞(µ) so that

logN(3εn, Bn, ∥ · ∥L∞(µ)) ≤ 6Cnε2n,

π(Bc
n) ≤ e−Cnε2n ,

π(∥w − w0∥L∞(µ) < 2εn) ≥ e−nε2n ,

where εn is a multiple of n−
(s−m

2 )∧β
2s (log n)

(s−m
2 )∧β

4s−2m and C > 1 is a constant satisfying

e−Cnε2n < 1
2 .
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Proof. As noted above, it suffices to show that the above εn satisfies ϕw0(εn) ≤ nε2n, where

ϕw0 is defined in (4.25). To bound the small ball probability, it suffices by general results

from Li and Linde [1999] to bound the metric entropy of H1, the unit ball in H. Notice that

(4.24) has the form of a Sobolev ball of regularity s. Classical results for Sobolev spaces

on Rm such as [Edmunds and Triebel, 1996, Theorem 3.3.2] have shown that the entropy

in the L∞ metric is bounded by a multiple of ε−m/s. The manifold case has been treated

in [Kushpel and Levesley, 2015, Theorem 3.12] assuming homogeneity, which includes an

additional logarithmic factor, i.e.,

logN(ε,H1, ∥ · ∥L∞(µ)) ≲ ε−
m
s

(
log

1

ε

)1
2

. (4.26)

The original theorem was about entropy numbers but can be translated to the above state-

ment on metric entropy and its proof suggested that when p = 2 the theorem holds with

s > m
2 . In particular their Sobolev class is defined as

IsU2 :=

{
h = h1 +

∞∑
i=2

λ
− s

2
i hiψi :

∞∑
i=1

h2i ≤ 1

}
,

which is compatible with our H. (We remark that although Kushpel and Levesley [2015]

defined their Sobolev class with a further mean-zero condition, their proof actually applied

to the general case.) Now by (4.26) and [Li and Linde, 1999, Theorem 1.2] we have

− logP(∥w∥L∞(µ) < ε) ≲ ε−
2m

2s−m

(
log

1

ε

) s
2s−m

. (4.27)

For the decentering function, let C0 = ∥w0∥Bβ
∞,∞

and consider h = ΨJ (
√
∆)w0 with J

large enough so that C02
−βJ ≤ ε. Since w0 ∈ B

β
∞,∞, we have

∥Ψj(
√
∆)w0 − w0∥L∞(µ) ≤ C02

−βj , j ∈ N. (4.28)
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In particular ∥h − w0∥L∞(µ) ≤ C02
−βJ ≤ ε. Suppose w0 has the representation w0 =∑∞

i=1wiψi. We then have h =
∑

ΨJ (
√
λi)wiψi ∈ H since ΨJ (

√
λi) = 0 for

√
λi > 2J .

Moreover, since ΨJ ≤ 1,

∥h∥2H ≤
∑

√
λi≤2J

w2
i (1 + λi)

s ≤
∑

√
λi≤1

2sw2
i +

J∑
j=1

∑
2j−1<

√
λi≤2j

w2
i (1 + λi)

s. (4.29)

By (4.28), we have

∑
2j−1<

√
λi≤2j

w2
i (1 + λi)

s ≲ 22js
∑

2j−1<
√
λi

w2
i ≤ 22js∥Ψj−1(

√
∆)w0 − w0∥22

≲ 22js∥Ψj−1(
√
∆)w0 − w0∥2∞ ≲ 22(s−β)j .

Therefore recalling that C02
−βJ ≤ ε,

(4.29) ≲
∑

√
λi≤1

2sw2
i +

J∑
j=1

22(s−β)j ≲ 22(s−β)J ≲ ε
−2(s−β)

β ,

since the first sum remains bounded as J → ∞. Combining the above with (4.27), we get

ϕw0(ε) ≲ ε−
2m

2s−m

(
log

1

ε

) s
2s−m

+ ε
−2(s−β)

β ,

which implies

ϕw0(ε)

ε2
≲ ε

− 2s
s−m

2

(
log

1

ε

) s
2s−m

+ ε
−2s

β .

Therefore by choosing

εn = Cn−
(s−m

2 ∧β)
2s (log n)

(s−m
2 )∧β

4s−2m
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for a large enough constant C, the condition ϕw0(εn) ≤ nε2n is satisfied. The three assertions

then follow from [van der Vaart and van Zanten, 2008a, Theorem 2.1].

4.4.3 Convergence of Gaussian Fields in L∞(µ)

In this subsection we establish L∞(µ) convergence ofWM
n toWM.We shall denote N := Nn

throughout the rest of this subsection to simplify our notation. Recall that

WM
n =

kN∑
i=1

[
1 + λ

(N)
i

]− s
2
ξiψ

(N)
i ◦ TN , ξi

i.i.d.∼ N (0, 1),

WM =
∞∑
i=1

(1 + λi)
− s

2 ξiψi, ξi
i.i.d.∼ N (0, 1),

(4.30)

In order to show the convergence, the transportation maps TN will be assumed to be close

to the identity in the sense made precise in the following proposition from [García Trillos

et al., 2019a, Theorem 2].

Proposition 4.4.5. For γ > 1, there exists a transportation map TN : M → {X1, . . . , XN}

satisfying TNn
(Xi) = Xi so that, with probability 1−O(N−γ),

ρN := sup
x∈M

dM(x, TN (x)) ≲
(logN)pm

N1/m
, (4.31)

where pm = 3
4 if m = 2 and pm = 1

m otherwise.

The transport map TNn
is a measure-preserving transformation in the sense that µ(T−1

Nn
(U))

= µNn
(U) for all U ⊂ M measurable. The additional requirement TN (Xi) = Xi that was

absent in [García Trillos et al., 2019a, Theorem 2] is valid here since modifying TN on a

set of µ-measure 0 does not affect the measure preserving property and (4.31) still holds in

this case. The scaling in (4.31) can be thought as the resolution of the point cloud, and is

important in suitably defining the choice of connectivity ζN , as we shall see.

The main result of this subsection is the following.
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Theorem 4.4.6. Let δ > 0 be arbitrary.

1. 3
2m− 1

2 < s ≤ 9
2m+ 5

2 . Set


ζN ≍ N− 1

m+4+δ (logN)
pm
2 , kN ≍ N

1

(m+4+δ)(6+ 6
m ) (logN)−

mpm
12m+12 , m ≤ 4,

ζN ≍ N− 1
2m (logN)

pm
2 , kN ≍ N

1
12m+12 (logN)−

mpm
12m+12 , m ≥ 5.

Then, with probability tending to 1,

Eξ∥WM
n −WM∥2L∞(µ) ≲


N

− 2s−3m+1
(m+4+δ)(6m+6) (logN)

pm(2s−3m+1)
12m+12 , m ≤ 4,

N
− 2s−3m+1

m(12m+12) (logN)
pm(2s−3m+1)

12m+12 , m ≥ 5.

2. s > 9
2m+ 5

2 . Set


ζN ≍ N− 1

m+4+δ (logN)
pm
2 , kN ≍ N

m
(m+4+δ)(2s−3m+1) (logN)−

mpm
4s−6m+2 , m ≤ 4,

ζN ≍ N− 1
2m (logN)

pm
2 , kN ≍ N

1
4s−6m+2 (logN)−

mpm
4s−6m+2 , m ≥ 5.

Then, with probability tending to 1,

Eξ∥WM
n −WM∥2L∞(µ) ≲


N− 1

m+4+δ (logN)
pm
2 , m ≤ 4,

N− 1
2m (logN)

pm
2 , m ≥ 5.

We remark that the statement “with probability tending to 1” refers to the randomness

coming from the Xi’s. By solving for N so that the rate matches n−1, we get the following.

Corollary 4.4.7. Let δ > 0 be arbitrary. Let

N ≍ nα1(log n)α2 ,
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where

α1 =
(m+4+δ)(6m+6)

2s−3m+1 , α2 =
pm(m+4+δ)

2 , if m ≤ 4 , 3
2m− 1

2 < s ≤ 9
2m+ 5

2 ,

α1 =
m(12m+12)
2s−3m+1 , α2 = mpm, if m ≥ 5 , 3

2m− 1
2 < s ≤ 9

2m+ 5
2 ,

α1 = m+ 4 + δ, α2 =
pm(m+4+δ)

2 , if m ≤ 4 , s > 9
2m+ 5

2 ,

α1 = 2m, α2 = mpm, if m ≥ 5 , s > 9
2m+ 5

2 .

Let ζN and kN have the same scaling as in Theorem 4.4.6. Then, with probability tending

to 1,

Eξ∥WM
n −WM∥2L∞(µ) ≲ n−1.

Remark 4.4.8. For flat manifolds the results of Theorem 4.4.6 and Corollary 4.4.7 can be

shown to hold for s > m with corresponding modifications in the scaling of the parameters.

The key to show the above results is to derive convergence rates for

|λ(N)
i − λi|, and ∥ψ(N)

i ◦ TN − ψi∥L∞(µ).

We shall build our analysis on the existing results from the literature. Recall that ζN is the

connectivity of the graph and the resolution ρN defined in (4.31). Assuming we are in the

event that (4.31) holds, the following results from [Sanz-Alonso and Yang, 2022a, Theorem

4.6 & 4.7] bound the spectral approximations.

Proposition 4.4.9 (Spectral Approximation). Suppose ρN ≪ ζN and ζN
√
λkN ≪ 1 for N

large. Then there exists orthonormalized eigenfunctions {ψ(N)
i }Ni=1 and {ψi}∞i=1 so that, for
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i = 1, . . . , kN ,

|λ(N)
i − λi| ≲ λi

(
ρN
ζN

+ ζN
√
λi

)
, (4.32)

∥ψ(N)
i ◦ TN − ψi∥2L2(µ)

≲ i3
(
ρN
ζN

+ ζN
√
λi

)
. (4.33)

Remark 4.4.10. Proposition 4.4.9 bounds the eigenfunction approximation in L2(µ) norm

and we need to lift such result to the L∞(µN ) norm. We remark that L∞(µN ) convergence

rates have already been established in the literature (see e.g. Dunson et al. [2021] and Calder

et al. [2022]). However these results do not contain an explicit proportion constant in terms

of the index i as in (4.33). Instead of going through their details to find the explicit constants,

which would make our presentation much more involved, we directly show L∞(µN ) bounds

based on Proposition 4.4.9, by following the same idea as in Calder et al. [2022]. Since we

build our results from (4.33), which is not the sharpest bound in the literature, our results in

Theorem 4.4.6 and Corollary 4.4.7 suffer the same drawback. Nevertheless, the goal of this

chapter is to demonstrate the idea that unlabeled data helps and hence the finding sharpest

scaling of Nn is less essential.

Below we record four results from [Calder and García Trillos, 2022, Theorem 3.3], [Don-

nelly, 2006, Theorem 1.2] and [Xu, 2006, Equation (2.10)], [Calder et al., 2020, Corollary

2.5] that will be needed.

Proposition 4.4.11 (Pointwise Error of ∆N ). Let f ∈ C3(M). Then with probability

1− 2n exp(−cNζm+4
N ),

∥∆Nf(x)−∆f(x)∥L∞(µN ) ≤ C(1 + ∥f∥C3(M))ζN .

Proposition 4.4.12 (Bounds on Eigenfunctions and Their Gradients). Let ψ be an L2(µ)-
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normalized eigenfunction of −∆ associated with eigenvalue λ ̸= 0. Then, for k ∈ N,

∥ψ∥L∞(µ) ≤ Cλ
m−1
4 ,

∥∇kψ∥L∞(µ) ≤ Cλk+
m−1
2 .

Proposition 4.4.13 (L∞ Bound In Terms of L1 Bound). Suppose ζN ≤ c
Λ+1 where c is a

sufficiently small constant depending only on M. Then with probability 1−Cζ−6m
N exp(−cN

ζm+4
N )− 2N exp(−cN(Λ + 1)−m)

∥u∥L∞(µN ) ≤ C(Λ + 1)m+1∥u∥L1(µN )

for all u ∈ L2(µN ) with λu < Λ, where

λu :=
∥∆Nu∥L∞(µN )

∥u∥L∞(µN )
. (4.34)

Notice that the high probability condition is satisfied only if

ζ−6m
N exp(−cNζm+4

N )− 2N exp(−cN(Λ + 1)−m) → 0

and this requires some care in setting the scaling of ζN and kN . In particular a sufficient

condition for ζN is ζN ≳ N− 1
m+4+δ for an arbitrarily small δ > 0. On the other hand

the condition for Λ reduces to the scaling of kN . Indeed if u = ψ
(N)
i , then λu = λ

(N)
i

and therefore Λ can be chosen as a multiple of λi given the spectral approximation in

Proposition 4.4.9. We will show that the same choice of Λ suffices when u = ψ
(N)
i − ψi.

Since we are interested in bounding the first kN eigenfunctions, we can set Λ to be multiple

of λKN
. Therefore in order to make 2N exp (−cN(Λ + 1)−m) ≪ 1, it is sufficient to have

λkN ≲ N
1−δ
m , i.e., if kN ≲ N

1−δ
2 by Weyl’s law. Therefore we should keep the following in
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mind when we set the scaling later

N− 1
m+4+δ ≲ ζN , kN ≲ N

1−δ
m , ζNk

2
m
N ≲ 1, (4.35)

where the third requirement corresponds to the condition that ζN (Λ + 1) ≤ c.

Now we are ready to show the L∞(µN ) bound of eigenfunction approximations.

Lemma 4.4.14. Under the same conditions and the intersection of the high probability

events as in Propositions 4.4.9 and 4.4.13 we have, for i = 1, . . . , kN ,

∥ψ(N)
i ◦ TN − ψi∥L∞(µ) ≲ λm+1

i i
3
2

√
ρN
ζN

+ ζN
√
λi.

Proof. We will first modify the L2(µ)-bound (4.33) to an L2(µN )-bound using the regularity

of eigenfunctions of −∆, which is then lifted to an L∞(µN )-bound using Proposition 4.4.11

and 4.4.13. Finally we use regularity of the eigenfuctions again to transfer the L∞(µN )-

bound to an L∞(µ)-bound. To start, we notice that the transport TN induces a partition of

M by the sets {Ui = T−1
N ({Xi})}Ni=1. Furthermore, the measure preserving property gives

µ(Ui) =
1
N and Proposition 4.4.5 implies that Ui ⊂ BM(Xi, ρN ). We then have

∥ψ(N)
i − ψi∥2L2(µN )

=
1

N

N∑
i=1

|ψ(N)
i (Xi)− ψi(Xi)|2 =

N∑
i=1

∫
Ui

|ψ(N)
i (Xi)− ψi(Xi)|2dµ(x)

≤
N∑
i=1

∫
Ui

2|ψ(N)
i (Xi)− ψi(x)|2 + 2|ψi(x)− ψi(Xi)|2dµ(x),

where

∫
Ui

|ψi(x)− ψi(Xi)|2dµ(x) ≤
1

N
∥∇ψi∥2∞ ρ2N .
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Hence by Proposition 4.4.12 and Weyl’s law

∥ψ(N)
i − ψi∥2L2(µN )

≤ 2∥ψ(N)
i ◦ TN − ψi∥2L2(µ)

+ Ci
m+1
m ρ2N .

Since i
m

m+1ρ2N is of higher order than (4.33), we conclude that

∥ψ(N)
i − ψi∥2L2(µN )

≲ i3
(
ρN
ζN

+ ζN
√
λi

)
. (4.36)

Now let g = ψ
(N)
i − ψ̃i with ψ̃i = ψi|{X1,...,XN}. We have by Proposition 4.4.11

∥∆Ng∥L∞(µN ) ≤ ∥∆Nψ
(N)
i −∆ψi∥L∞(µN ) + ∥∆ψi −∆N ψ̃i∥L∞(µN )

≤ ∥λ(N)
i ψ

(N)
i − λiψi∥L∞(µN ) + C(1 + ∥ψi∥C3(M))ζN

≤ λ
(N)
i ∥ψ(N)

i − ψi∥L∞(µN ) + |λ(N)
i − λi|∥ψi∥L∞(µN ) + C(1 + ∥ψi∥C3(M))ζN

≤ λ
(N)
i ∥g∥L∞(µN ) + Cλ

m+5
2

i

(
ρN
ζN

+ ζN

)
,

where we have used (4.32) and Proposition 4.4.12 in the last step. Therefore recalling the

definition in (4.34), we have

λg ≤ λ
(N)
i + C∥g∥−1

L∞(µN )
λ

m+5
2

i

(
ρN
ζN

+ ζN

)
.

If λg ≥ λ
(N)
i + 1, then we have

∥g∥L∞(µN ) ≤ Cλ
m+5
2

i

(
ρN
ζN

+ ζN

)
. (4.37)
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Otherwise if λg ≤ λ
(N)
i + 1, then Proposition 4.4.13 and (4.36) implies

∥g∥L∞(µN ) ≤ C
[
λ
(N)
i + 1

]m+1
∥g∥L1(µN ) ≤ Cλm+1

i ∥g∥L2(µN ) ≤ Cλm+1
i i

3
2

√
ρN
ζN

+ ζN
√
λi,

(4.38)

where we have used the fact that λ(N)
i ≤ Cλi and ∥g∥L1(µN ) ≤ ∥g∥L2(µN ). Comparing

(4.38) with (4.37), we see that the error in (4.38) dominates. To finish, we need again to lift

the L∞(µN )-bound to a L∞(µ)-bound using regularity of the ψi’s. Notice that

∥ψ(N)
i ◦ TN − ψi∥L∞(µ) = max

1≤j≤N
sup
x∈Uj

|ψ(N)
i ◦ TN (x)− ψi(x)|

≤ max
1≤j≤N

sup
x∈Uj

(
|ψ(N)

i (Xj)− ψi(Xj)|+ |ψi(Xj)− ψi(x)|
)

≤ ∥ψ(N)
i − ψi∥L∞(µN ) + ∥∇ψi∥L∞(µ)ρN

≲ λm+1
i i

3
2

√
ρN
ζN

+ ζN
√
λi,

where in the last step ∥∇ψi∥L∞(µ)ρN is a higher order term that we drop.

Now we are finally ready to show the L∞(µ) convergence of WM
n towards WM.

Proof of Theorem 4.4.6. Recall that

WM
n =

kN∑
i=1

[
1 + λ

(N)
i

]− s
2
ξiψ

(N)
i ◦ TN ,

WM =
∞∑
i=1

(1 + λi)
− s

2 ξiψi.
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Consider two intermediate quantities:

W̃M
n =

kN∑
i=1

(1 + λi)
− s

2 ξiψ
(N)
i ◦ TN ,

ŴM
n =

kN∑
i=1

(1 + λi)
− s

2 ξiψi.

By the triangle inequality,

Eξ∥WM
n −WM∥2L∞(µ)

≤ Eξ

(
∥WM

n − W̃M
n ∥L∞(µ) + ∥W̃M

n − ŴM
n ∥L∞(µ) + ∥ŴM

n −WM∥L∞(µ)

)2
≤ 3
(
Eξ∥WM

n − W̃M
n ∥2L∞(µ) + Eξ∥W̃M

n − ŴM
n ∥2L∞(µ) + Eξ∥ŴM

n −WM∥2L∞(µ)

)
,

so it suffices to bound each term. First, by Proposition 4.4.12 and Weyl’s law,

Eξ∥ŴM
n −WM∥2L∞(µ)

≤ Eξ

 ∞∑
i=kN+1

∞∑
j=kN+1

(1 + λi)
− s

2 (1 + λj)
− s

2 |ξi||ξj |∥ψi∥L∞(µ)∥ψj∥L∞(µ)


≲

∞∑
i=kN+1

∞∑
j=kN+1

(1 + λi)
− s

2 (1 + λj)
− s

2λ
m−1
4

i λ
m−1
4

j

=

 ∞∑
i=kN+1

(1 + λi)
− s

2λ
m−1
4

i

2 ≲

[∫ ∞

kN

x
−2s+m−1

2m dx

]2
≲ k

−2s+3m−1
m

N . (4.39)

Similarly,

Eξ∥WM
n − W̃M

n ∥2L∞(µ) ≲

 kN∑
i=1

∣∣∣∣[1 + λ
(N)
i

]− s
2 −

[
1 + λi

]− s
2

∣∣∣∣ ∥ψ(N)
i ◦ TN∥L∞(µ)

2 .
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By Lipschitz continuity of x−s/2 on [1,∞) and (4.32), for i = 1, . . . , kN ,

∣∣∣∣[1 + λ
(N)
i

]− s
2 −

[
1 + λi

]− s
2

∣∣∣∣ ≤ [(1 + λ
(N)
i ) ∧ (1 + λi)

]− s
2−1 ∣∣∣λ(N)

i − λi

∣∣∣
≲
[
(1 + λ

(N)
i ) ∧ (1 + λi)

]− s
2−1

λi

(
ρN
ζN

+ ζN
√
λi

)
≲ λ

− s
2

i

(
ρN
ζN

+ ζN
√
λi

)
.

By (4.33), if we choose kN so that

k3N

(
ρN
ζN

+ ζN

√
λkN

)
≪ 1, (4.40)

then we have, for i = 1, . . . , kN ,

∥ψ(N)
i ◦ TN∥L∞(µ) ≤ ∥ψ(N)

i ◦ TN − ψi∥L∞(µ) + ∥ψi∥L∞(µ) ≲ λ
m−1
4

i .

Therefore

Eξ∥WM
n − W̃M

n ∥2L∞(µ) ≲

 kN∑
i=1

λ
− s

2
i

(
ρN
ζN

+ ζN
√
λi

)
λ

m−1
4

i

2 ≲

(
ρN
ζN

+ ζN

√
λkN

)2

,

(4.41)

where we have used that λ
−2s+m−1

4
i is summable for s > 3

2m− 1
2 . Lastly, by Lemma 4.4.14,

Eξ∥W̃M
n − ŴM

n ∥2L∞(µ) ≲

 kN∑
i=1

(1 + λi)
− s

2∥ψ(N)
i ◦ TN − ψi∥L∞(µ)

2

≲

 kN∑
i=1

(1 + λi)
− s

2λm+1
i i

3
2

√
ρN
ζN

+ ζN
√
λi

2

≲

[
1 ∨ k

−2s+9m+5
m

N

](
ρN
ζN

+ ζN

)
. (4.42)
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Combining (4.39), (4.41), (4.42), we have

Eξ∥WM
n −WM∥2L∞(µ) ≲ k

−2s+3m−1
m

N +

[
1 ∨ k

−2s+9m+5
m

N

](
ρN
ζN

+ ζN

)
. (4.43)

Now we will set ζN and kN based on the dimension m and the smoothness parameter s.

Case 1: s ≤ 9
2m+ 5

2 . Let δ > 0 be arbitrary and set


ζN ≍ N− 1

m+4+δ (logN)
pm
2 , kN ≍ N

1

(m+4+δ)(6+ 6
m ) (logN)−

mpm
12m+12 , m ≤ 4,

ζN ≍ N− 1
2m (logN)

pm
2 , kN ≍ N

1
12m+12 (logN)−

mpm
12m+12 , m ≥ 5.

One can check that the conditions in (4.35) and (4.40) are satisfied and we get

Eξ∥WM
n −WM∥2L∞(µ) ≲


N

− 2s−3m+1
(m+4+δ)(6m+6) (logN)

pm(2s−3m+1)
12m+12 , m ≤ 4,

N
− 2s−3m+1

m(12m+12) (logN)
pm(2s−3m+1)

12m+12 , m ≥ 5.

Case 2: s > 9
2m+ 5

2 . Now (4.43) simplifies to

Eξ∥WM
n −WM∥2L∞(µ) ≲ k

−2s+3m−1
m

N +

(
ρN
ζN

+ ζN

)
.

Therefore by setting


ζN ≍ N− 1

m+4+δ (logN)
pm
2 , kN ≍ N

m
(m+4+δ)(2s−3m+1) (logN)−

mpm
4s−6m+2 , m ≤ 4,

ζN ≍ N− 1
2m (logN)

pm
2 , kN ≍ N

1
4s−6m+2 (logN)−

mpm
4s−6m+2 , m ≥ 5,

we have

Eξ∥WM
n −WM∥2L∞(µ) ≲


N− 1

m+4+δ (logN)
pm
2 , m ≤ 4,

N− 1
2m (logN)

pm
2 , m ≥ 5.
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Again one can check that the conditions in (4.35) and (4.40) are satisfied. This finishes the

proof.

4.4.4 Putting Everything Together

Now we are ready to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. By Section 4.4.1, it suffices to show that

EXEf0Π
M
n

(
f ∈ I(L∞(µNn

)) : ∥f − f0∥n ≥Mnεn | XNn
,Yn

) n→∞−−−−→ 0,

with the said εn. LetAn be the high probability event in Corollary 4.4.7. Denote Fn(XNn
,Yn) :=

ΠM
n (f ∈ I(L∞(µNn

)) : ∥f − f0∥n ≥Mnεn | Yn). We have

EXEf0Fn(XNn
,Yn) = EX [Ef0Fn(XNn

,Yn)]1An
+ EX [Ef0Fn(XNn

,Yn)]1Ac
n
.

Since Fn(XNn
,Yn) ≤ 1, the second term is upper bounded by PX(Ac

n) → 0. It then

suffices to show Ef0Fn(XNn
,Yn) → 0 in the event of An. By Corollary 4.4.7 we can have

10Eξ∥WM
n −WM∥2

L∞(µ)
≤ n−1 if we set a large enough proportion constant for Nn. This

together with Theorem 4.4.4 and [van der Vaart and van Zanten, 2008a, Theorem 2.2] implies

that there exists setsBn ⊂ I(L∞(µNn
)) (by taking the intersection of the setsBn in Theorem

4.4.4 and I(L∞(µNn
))) so that, for the same εn in the theorem statement,

logN(6εn, Bn, ∥ · ∥L∞(µ)) ≤ 24Cnε2n,

πMn (Bc
n) ≤ e−4Cnε2n ,

πMn (∥w − Φ−1(f0)∥L∞(µ) < 4εn) ≥ e−4nε2n ,

where πMn = L(WM
n ).
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Case 1: Regression. In the regression case, since Φ is the identity, we have ΠM
n = πMn

and the above three conditions are true with πMn replaced by ΠM
n . Furthermore, since ∥ · ∥n

is upper bounded by ∥ · ∥L∞(µ), the above conditions remain true for the empirical norm.

This together with the general results in [Ghosal and Van der Vaart, 2017, Section 8.3.2]

proves the assertion.

Case 2: Classification. In the classification setting, by [Ghosal and Van der Vaart,

2017, Lemma 2.8] the average Kullback-Leibler divergence and variance in (4.17) between

the densities after applying the link function Φ are upper bounded by a multiple of the

empirical norm. In particular if we set Bn = Φ(Bn), then the conditions in (4.14), (4.15)

and (4.16) hold, for a possibly different proportion constant for εn. Moreover, as discussed

before, the root average square Hellinger distance dn in (4.18) is equivalent to the empirical

norm. Hence the result follows by [Ghosal and Van Der Vaart, 2007, Theorem 4].

4.5 Discussion

In this chapter we have analyzed graph-based SSL using recent results on spectral conver-

gence of graph Laplacians and standard Bayesian nonparametrics techniques. We show that,

for a suitable choice of prior constructed with sufficiently many unlabeled data, the posterior

contracts around the truth at a rate that is minimax optimal up to logarithmic factor. Our

theory applies to both regression and classification.

We have assumed throughout that the Xi’s are uniformly distributed on M. Our results

can be generalized to nonuniform positive density q with respect to the volume form. In

such a case, the continuum field is the Gaussian measure N (0, (I −∆q))
−s where −∆q :=

−1
qdiv(q2∇) is a weighted Laplacian-Beltrami operator, for which spectral convergence re-

sults can be found in García Trillos et al. [2019a]. Since we do not have an explicit dependence

of the proportion constant on the index i as in Proposition 4.4.9, we have chosen to present

our result in the uniform case. However, similar conclusions should be expected to hold in
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the general case.

The Bayesian methodology we analyzed is inspired by popular existing graph-based op-

timization methods for SSL [Belkin et al., 2004, Zhu, 2005]. In order to achieve optimal

contraction, the prior smoothness parameter needs to match the regularity of the truth,

which is rarely available in applications. An important research direction stemming from

our work is the development and analysis of adaptive Bayesian SSL methodologies that can

achieve optimal contraction without a priori smoothness information. We expect that the

existing results on adaptive estimation on manifolds [Castillo et al., 2014] and on large graphs

[Kirichenko and van Zanten, 2017] will be an important stepping stone in this direction.
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CHAPTER 5

FINITE ELEMENT REPRESENTATIONS OF GAUSSIAN

PROCESSES: BALANCING NUMERICAL AND STATISTICAL

ACCURACY

5.1 Introduction

Gaussian processes (GPs) are an important model for prior distributions over functions,

and play a central role in spatial statistics, machine learning, Bayesian inverse problems,

and a variety of other scientific and engineering applications [Stein, 1999a, Williams and

Rasmussen, 2006, Stuart, 2010, Sullivan, 2015, Owhadi and Scovel, 2019]. However, GP

methodology often suffers from the big N problem: conditioning a GP to N observations

requires to factorize an N ×N covariance matrix, with a general cost of O(N3). Numerous

approaches to address this challenge have been developed [Heaton et al., 2019]. The aim of

this chapter is to provide novel understanding of the popular stochastic partial differential

equation (SPDE) approach [Lindgren et al., 2011, 2022] for GP regression and classification

with large datasets.

Let u(x) be a Matérn-type GP (see e.g. Bolin et al. [2020] or Section 5.2.1 below) on a

bounded domain D ⊂ RD. The SPDE approach approximates u with a GP uh of the form

uh(x) =

nh∑
i=1

wiei(x), x ∈ D, (5.1)

where ei : D → R are finite element (FE) basis functions and w := (w1, . . . , wnh)
⊤ ∼

N (0,Q−1) with sparse precision matrix Q ∈ Rnh×nh . The dimension nh of the basis {ei}
nh
i=1

is determined by a mesh-size parameter h > 0. Previous work sets h so that nh ≈ N, and the

O(N3) computational cost is reduced by exploiting the local support of the FE basis functions

ei and the sparsity of Q, see e.g. Lindgren et al. [2011], Bolin and Lindgren [2013], Bolin
184



and Kirchner [2020] or Section 5.2.3. However, the choice nh ≈ N has not been theoretically

or empirically investigated. In particular, it is not clear if the computational gain achieved

with nh ≈ N comes at the price of larger estimation error. In this chapter we shall introduce

a framework for selecting nh based on the posterior estimation performance achieved when

using GP prior uh. Our theory implies that, under certain smoothness assumptions, choosing

nh ≪ N can indeed be sufficient in the large N asymptotics, as otherwise the statistical

errors inherent to the regression or classification tasks dominate the numerical error in the

approximation uh ≈ u. Therefore, in addition to the computational gain facilitated by

sparsity, there is a second computational and memory gain: the dimension of the matrices

that need to be factorized can be reduced in largeN regimes without hindering the estimation

accuracy. Numerical experiments will illustrate the applicability of our theory and the effect

of the prior lengthscale in the pre-asymptotic regime.

The SPDE approach is part of a trend in GP methodology that seeks to leverage spar-

sity for computational efficiency [Quinonero-Candela and Rasmussen, 2005]. In this spirit,

one can construct sparse approximations of the covariance matrix of the observations (a

procedure known as tapering or localization [Gaspari and Cohn, 1999, Furrer et al., 2006]),

or of the precision matrix [Datta et al., 2016] and its Cholesky factor [Schäfer et al., 2021,

Kang and Katzfuss, 2021]. Other approaches exploiting sparsity include Vecchia approxi-

mations [Vecchia, 1988, Katzfuss and Guinness, 2021] and methods based on the screening

effect [Stein, 2002]. These techniques are well established in several applications and are

essential, for example, in the practical implementation of data assimilation algorithms for

numerical weather forecasting [Houtekamer and Mitchell, 2001]. A complementary line of

work relies on smoothness rather than sparsity for computational expediency. For instance,

truncated Karhunen-Loève expansions in Bayesian inverse problems rely on a representation

of the form (5.1) with small dimension n, spectral basis functions, and stochastic weights

with diagonal covariance [Stuart, 2010]. These low-rank representations [Solin and Särkkä,
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2020, Greengard and O’Neil, 2021] have been claimed to remove fine-scale variations of the

process [Bolin and Kirchner, 2020], but can be accurate if the underlying process is smooth.

Our work blends sparsity and smoothness demonstrating that, for regression and classifica-

tion with large data-sets, sparse methods can benefit from a significant dimension reduction

under mild smoothness assumptions.

To propose a criterion for choosing nh with respect to N , we will exploit the concept of

posterior contraction rates [Ghosal et al., 2000], which is discussed in Section 5.2.4. Roughly

speaking, we consider a scaling sufficient if the posterior constructed with GP prior uh

contracts at the same rate as the posterior constructed with the true GP prior u. The

Bayesian nonparametrics framework in van der Vaart and van Zanten [2008a] guarantees

that if the rate of convergence of the GP prior approximation uh ≈ u is fast enough, then

the corresponding posteriors contract at the same rate. Establishing convergence rates for

approximations uh ≈ u is an active research area on numerical analysis of FE solution of

fractional SPDEs [Bolin et al., 2020, Bolin and Kirchner, 2020, Cox and Kirchner, 2020].

As part of our analysis, we derive a crude estimate of the approximation error E∥uh − u∥2∞

for a particular FE discretization when D is a hyperrectangle. The result holds for general

dimension D while being less sharp than the one-dimensional result in Cox and Kirchner

[2020], which also allows for more general domains. However, our main objective is to

illustrate that the plug-in character of the framework [van der Vaart and van Zanten, 2008a]

allows to seamlessly translate L∞ and L2 error bounds for the approximation uh ≈ u into

sufficient choices of nh in terms of N in regression and classification settings. As we shall see,

even crude error bounds suggest that, in the large N asymptotics, nh ≪ N can be sufficient

under mild smoothness assumptions.

Numerical simulations in the regression setting will complement our theoretical analysis.

Our experiments illustrate that (i) the qualitative theoretical behavior suggested by our large

N asymptotic analysis is in agreement with the behavior observed with moderate sample-
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size; (ii) if the truth is not smooth and has a short lengthscale, choosing nh ≫ N may indeed

be necessary for the SPDE approach to match the estimation accuracy of the ground truth

prior model; and (iii) outside the large N asymptotic regime, the prior lengthscale plays

an important role in determining appropriate choice of nh in terms of N. This last point

is also partly explained by our theory, where the lengthscale appears as a prefactor in the

error bound for the FE prior representations. We believe these findings together with our

theoretical results provide useful insights for calibrating the FE approach in practice.

The study of fixed-domain, large N asymptotics [Stein, 1999a, 1990b,a, 1999b, Du et al.,

2009, Wang and Loh, 2011] is motivated by applications in environmental science, ecology,

climate, and hydrology, where N is often in the order of hundreds of thousands or larger.

At a high level, our criterion resembles the in-fill asymptotic analysis of tapered covariance

functions in Furrer et al. [2006], where the authors give conditions on the taper function

that guarantee large-data asymptotic equivalence of the mean-squared prediction error of

the true and tapered covariance models. As in Furrer et al. [2006], we may interpret uh

as defining a misspecified covariance model and then, similar to Furrer et al. [2006], Stein

[1993], our criterion guarantees that the misspecification is inconsequential in a large-data

regime. On the other hand, even if the Matérn-type GP u is not interpreted as a ground

truth prior model, our analysis suggests that over-discretizing the FE representations uh

should be avoided, as there is a threshold beyond which further discretizing increases the

computational cost without improving the estimation accuracy. Similar ideas permeate the

study of the value of unlabeled data in semi-supervised learning [Sanz-Alonso and Yang,

2022b] with graph representations of Matérn GPs [Sanz-Alonso and Yang, 2022a].

The rest of this chapter is organized as follows. We provide all necessary background

and formalize our problem setting in Section 5.2. Our main results are in Section 5.3 and

complementary numerical experiments in Section 5.4. We close in Section 5.5 with possible

extensions of our main results and open directions that stem from our work. All the proofs
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are deferred to Section 5.6.

5.2 Background and Problem Setting

To make our presentation self-contained, we introduce in this section all necessary back-

ground and formalize our problem setting. Matérn-type GPs and their connection with the

classical Matérn covariance function are discussed in Section 5.2.1. Section 5.2.2 reviews FE

representations of Matérn-type GPs. Our regression and classification problem settings are

formalized in Section 5.2.3, where we also summarize how FE representations of Matérn-

type GPs allow to speed up computations. Finally, Section 5.2.4 overviews the Bayesian

nonparametrics framework that we employ as our criterion to identify sufficient scalings of

nh with respect to N.

5.2.1 The Matérn Covariance Function and SPDE Representations

Recall that the Matérn covariance function is defined by

cMat(x,x
′) = σ2

21−ν

Γ(ν)

(
κ|x− x′|

)ν
Kν
(
κ|x− x′|

)
, x,x′ ∈ RD, (5.2)

where | · | is the Euclidean distance on RD, Γ is the gamma function and Kν is the modified

Bessel function of the second kind. The parameters σ, ν, κ control, respectively, the marginal

variance, smoothness of the sample paths, and correlation lengthscale. Due to its flexibility,

the Matérn model is widely used in spatial statistics [Stein, 1999a, Gelfand et al., 2010],

machine learning [Williams and Rasmussen, 2006], and uncertainty quantification [Sullivan,

2015], with applications in various scientific fields [Guttorp and Gneiting, 2006, Cameletti

et al., 2013]. The connection between the Matérn covariance and SPDEs has long been
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noticed [Whittle, 1954]. Consider formally the equation

(κ2 −∆)s/2u = κs−D/2W in D, (5.3)

where s = ν +D/2, ∆ is a Laplacian and W is a spatial white noise. (Here and below we

will ignore the marginal variance which acts only as a scaling factor.) If D := RD, then

the unique stationary solution to (5.3), suitably interpreted [Whittle, 1954], has covariance

function (5.2).

Following Lindgren et al. [2011], we will define Matérn-type GPs by solution of (5.3) in a

bounded domain D ⊂ RD, interpreting the SPDE (5.3) as in Bolin et al. [2020]. We outline

here the main ideas and refer to Bolin et al. [2020] for further details. Let L := κ2 −∆ be

equipped with homogeneous Dirichlet or Neumann boundary condition. The eigenfunctions

{ψi}∞i=1 of the Dirichlet (or Neumann) Laplacian form an orthonormal basis of L2(D), where

the associated ordered eigenvalues {λi}∞i=1 satisfy λi ≍ i2/D by Weyl’s law (see e.g. [Davies,

1996, Theorem 6.3.1]). The fractional power operator Ls/2 in (5.3) is then defined by

Ls/2u :=
∞∑
i=1

(κ2 + λi)
s/2⟨u, ψi⟩ψi

with domain
{
u ∈ L2(D) :

∑∞
i=1(κ

2 + λi)
s⟨u, ψi⟩2 <∞

}
, where ⟨·, ·⟩ denotes the L2(D)-

inner product. The white noise in (5.3) is formally defined by the series W =
∑∞

i=1 ξiψi, with

ξi
i.i.d.∼ N (0, 1) set on a complete probability space (Ω,A,P). As rigorously shown in [Bolin

et al., 2020, Lemma 2.1], existence and uniqueness of solutions to (5.3) in L2(Ω;L2(D)) is

guaranteed for s > D/2. Moreover, the solution can be represented as a series expansion

u(x) = κs−D/2
∞∑
i=1

(κ2 + λi)
−s/2ξiψi(x), ξi

i.i.d.∼ N (0, 1), x ∈ D, (5.4)

where the assumption s > D/2 together with Weyl’s law guarantees that u ∈ L2(D) almost
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surely. We refer to u defined by (5.4) as a Matérn-type GP. The covariance function of

Matérn-type GPs no longer agrees with the classical Matérn covariance model (5.2), but

approximates it well away from the boundary —see for instance Proposition 5.3.1 below.

5.2.2 Finite Element Representations of Matérn-type Gaussian Processes

Let D ⊂ RD be a bounded domain and let {Vh}h∈(0,1) be a family of subspaces of H1(D)

(the space of functions whose weak derivatives belong to L2(D)) with finite dimensions

nh := dim(Vh) < ∞. In subsequent developments h will play the role of a mesh-size

parameter and nh ≍ h−D. Consider the Galerkin discretization −∆h : Vh → Vh of −∆

defined as

⟨−∆huh, vh⟩ = ⟨−∆uh, vh⟩ ∀uh, vh ∈ Vh.

Let {(λh,i, ψh,i)}
nh
i=1 be the eigenpairs of −∆h satisfying

⟨−∆hψh,i, vh⟩ = λh,i⟨ψh,i, vh⟩ ∀vh ∈ Vh,

where we assume the λh,i’s are in increasing order and the ψh,i’s are orthonormal. We then

define a discretization of the SPDE (5.3) by

Ls/2
h uh := (κ2 −∆h)

s/2uh = κs−D/2Wh, Wh :=

nh∑
i=1

ξiψh,i, ξi
i.i.d.∼ N (0, 1). (5.5)

We refer to the solution uh as a FE representation of the Matérn-type GP u. Note that

uh(x) = κs−D/2
nh∑
i=1

(κ2 + λh,i)
−s/2ξiψh,i(x), ξi

i.i.d.∼ N (0, 1), x ∈ D. (5.6)
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Inspection of (5.4) and (5.6) suggests that the error in the approximation uh ≈ u is largely

determined by the FE error in the approximations λh,i ≈ λi and ψh,i ≈ ψi. We will pursue

this idea in our error analysis in Section 5.3. However, the Karhunen-Loève representation

(5.6) is not in general useful for practical implementation, as the eigenpairs {(λh,i, ψh,i)}
nh
i=1

can be expensive to compute and the eigenfunctions do not have compact support. The fol-

lowing result from Lindgren et al. [2011] shows that the solution to (5.5) admits an equivalent

representation in terms of a FE basis, as foreshadowed in (5.1).

Proposition 5.2.1. Let {eh,i}
nh
i=1 be a FE basis of Vh, and denote by M and G the mass and

stiffness matrices with entries Mij = ⟨eh,i, eh,j⟩ and Gij = ⟨∇eh,i,∇eh,j⟩. For 0 ̸= s ∈ N,

the FE representation uh of the Matérn-type GP u admits the characterization

uh(x) =

nh∑
i=1

wieh,i(x), w ∼ N (0,Q−1), (5.7)

where Q = (κ2M+G)
[
M−1(κ2M+G)

]s−1
.

Notice that (5.7) does not involve the eigenpairs. Moreover, the matrices M and G are

sparse for standard FE basis eh,i, e.g. tent functions. Lumping the mass matrix M ensures

sparsity of Q and gives a Gauss-Markov approximation to the Matérn-type GP u [Lindgren

et al., 2011]. For s /∈ N, the rational SPDE approach can be adopted [Bolin and Kirchner,

2020].

5.2.3 Gaussian Process Regression and Classification: Finite Element

Representations

Here we introduce the regression and classification models we consider, and describe briefly

how FE representations of Matérn-type GPs can alleviate the computational burden of these

tasks. Given N pairs of data {(Xi, Yi)}Ni=1 we are interested in inferring f0(x) = E[Y |X = x]

under the following data-generating mechanisms:
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• Fixed design regression: Yi = f0(Xi) + ηi, where the Xi’s are fixed (and distinct)

covariates and ηi
i.i.d.∼ N (0, τ2) with τ known.

• Binary classification: P(Yi = 1|Xi) = f0(Xi), where Xi
i.i.d.∼ µ for some distribution µ

over D.

For simplicity we shall assume for the rest of this chapter that µ is the uniform distribution

over D, but we note that it suffices to assume that µ admits a Lebesgue density bounded

above and below by positive constants.

For fixed design regression, we set a FE Matérn-type GP prior uh on f0. The posterior

of the weights w is given by

w|{(Xi, Yi)}Ni=1 ∼ N
(
(S⊤S+ τ2Q)−1S⊤y, (τ−2S⊤S+Q)−1),

where S ∈ RN×nh has entries Sij = ej(Xi) and y = (Y1, . . . , YN )⊤. The main computational

cost for posterior inference is in factorizing the nh×nh matrix S⊤S+τ2Q. This factorization

can be efficiently computed since the local support of standard FE basis functions ensures

sparsity of S, and Q can be made sparse as discussed in Section 5.2.2.

For binary classification, let Φ be the logistic function and consider a wrapped GP prior

Φ ◦ uh over f0. The posterior log-density is given by

logP(w|{(Xi, Yi)}Ni=1) =
N∑
i=1

Yi log Φ((Sw)i) + (1− Yi) log(1− Φ((Sw)i)) (5.8)

− 1

2
w⊤Qw + const,

where (Sw)i denotes the i-th entry of Sw. Two standard procedures for posterior inference

are maximum a posteriori (MAP) estimation and Markov chain Monte Carlo (MCMC)

sampling. To compute the MAP estimate, (5.8) is optimized to recover the weights with

highest posterior density. This optimization problem can be efficiently solved using the
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Hessian of the objective function, which takes the form S⊤DS −Q, where D is a diagonal

matrix with

Dii = Φ′′((Sw)i)

[
Yi

Φ((Sw)i)
− 1− Yi

1− Φ((Sw)i)

]
− [Φ′((Sw)i)]

2
[

Yi
Φ((Sw)i)2

+
1− Yi

(1− Φ((Sw)i))2

]
.

Therefore, the computational cost is largely determined by the sparsity of the matrix S⊤DS−

Q, which in turn depends on the sparsity of S and Q. On the other hand, MCMC algorithms

for posterior inference with GP priors have been widely studied [Neal, 1998, Cotter et al.,

2010b, Cui et al., 2016, García Trillos et al., 2020b, Sanz-Alonso et al., 2019], and a key idea

behind these methods is to employ a proposal mechanism w 7→ w′ of the form

w′ = θw + (1− θ)1/2γ, γ ∼ N (0,Q−1), (5.9)

which leaves the prior distribution N (0,Q−1) of the weights invariant. In order to sample

γ ∼ N (0,Q−1) with large nh it is important to leverage sparsity of Q [Rue and Held, 2005].

5.2.4 Our Criterion: Matching Posterior Contraction Rates

The FE approach outlined above involves a user-chosen hyperparameter h that affects both

the estimation performance and computational cost. Smaller h leads to better approximation

of the Matérn-type GP u by uh and possibly enhanced inference, but renders a larger nh

that increases the computational cost. Since uh is supposed to approximate the Matérn-type

GP u, a natural choice for h is so that the estimation performance of using uh as the prior is

“comparable” to that of u. In this section we shall formalize such intuition with the notion

of posterior contraction rates.

To begin with, recall that the goal is to infer the conditional expectation f0(x) = E[Y |X =

x] from data {(Xi, Yi)}Ni=1. We shall adopt a frequentist Bayesian perspective by putting

a sequence of priors ΠN over f0 and assuming that the data are indeed generated from a
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fixed f0 which we interpret as the ground truth. Following Ghosal et al. [2000], we say that

the sequence of posteriors with respect to ΠN contracts around f0 with rate εN if, for any

sufficiently large M > 0,

Ef0ΠN

(
f : dN (f, f0) ≤MεN | {(Xi, Yi)}Ni=1

)
N→∞−−−−→ 1. (5.10)

Here the expectation is taken with respect to the data distribution of {(Xi, Yi)}Ni=1 deter-

mined by f0 and the marginal of the Xi’s, and dN is a suitable discrepancy measure. Roughly

speaking, εN is the rate at which one can shrink the radius of a ball centered around the

truth while at the same time capturing almost all the posterior mass. The condition (5.10)

implies that asymptotically the sequence of posteriors will be nearly supported on a ball of

radius O(εN ) around f0. Therefore, εN can be loosely interpreted as the convergence rate of

the posteriors towards the truth. An important consequence [Ghosal et al., 2000, Theorem

2.5] is that the point estimator defined as

f̂N = argmax
g

[
ΠN

(
f : dN (f, g) ≤MεN | {(Xi, Yi)}Ni=1

) ]
,

converges (in probability) to f0 with the same rate εN . Therefore the contraction rate serves

as a natural criterion for quantifying the estimation performance of the posteriors.

Following Section 5.2.3, the sequence of priors is taken as ΠN = Law(uhN ) (resp.

Law(Φ(uhN ))) for fixed design regression (resp. binary classification). The selection cri-

terion for hN that we propose is to choose hN so that the sequence of posteriors with

respect to ΠN contracts at the same rate as if ΠN ≡ Π := Law(u) (resp. Law(Φ(u))), where

u is the Matérn-type GP that uhN is approximating. It turns out that there is a simple

condition on the approximation accuracy of uhN towards u that guarantees this matching of

posterior contraction rates, which we make precise below.

We start by reviewing the key ingredients of the theory when a single prior is adopted, i.e.,
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when ΠN ≡ Π in the above. Consider now u as a GP taking values in (L∞(D), ∥ · ∥∞) (see

e.g. Lemma 5.3.6 below for conditions under which this is valid) for fixed design regression

and in (L2(D), ∥ · ∥2) for binary classification. By [van der Vaart and van Zanten, 2008a,

Theorems 3.2 and 3.3], the contraction rate with respect to Π in the fixed design regression

(resp. binary classification) setting can be characterized as the sequence εN that satisfies

ϕf0(εN ;u, ∥ · ∥∞) ≤ Nε2N (resp. ϕΦ−1(f0)
(εN ;u, ∥ · ∥2) ≤ Nε2N ), where

ϕω0(ε;u, ∥ · ∥B) := inf
g∈H:∥g−ω0∥B<ε

∥g∥2H − logP(∥u∥B < ε), (5.11)

and (H, ∥ · ∥H) denotes the reproducing kernel Hilbert space (RKHS) of Π (see e.g. van der

Vaart and van Zanten [2008b] for more details). Under such circumstances, the sequence of

posteriors with respect to Π contracts around f0 with rate εN in the sense of (5.10) with

dN = ∥ · ∥N the empirical norm defined as ∥f∥2N = N−1∑N
i=1 |f(Xi)|2 for fixed design

regression and dN = ∥ · ∥2 for binary classification. In other words, the posterior contraction

rate can be determined by analyzing the so-called concentration function (5.11) of the prior.

Now when a sequence of priors ΠN is used instead, it is reasonable to expect that if ΠN

approximates Π sufficiently well, the concentration functions of ΠN will be close to that of Π

so that the same contraction rate can be achieved. Indeed this is implied by [van der Vaart

and van Zanten, 2008a, Theorems 2.2, 3.2 and 3.3], which we record as a proposition.

Proposition 5.2.2. 1. Fixed design regression: Let ΠN = Law(uhN ). Suppose εN is a

sequence of real numbers satisfying ϕf0(εN ;u, ∥ · ∥∞) ≤ Nε2N and

10E∥uhN − u∥2∞ ≤ N−1. (5.12)

Then, for any sufficiently large M > 0,

Ef0ΠN

(
f : ∥f − f0∥N ≤MεN | {(Xi, Yi)}Ni=1

)
N→∞−−−−→ 1.
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2. Binary classification: Let ΠN = Law(Φ(uhN )). Suppose εN is a sequence of real

numbers satisfying ϕΦ−1(f0)
(εN ;u, ∥ · ∥2) ≤ Nε2N and

10E∥uhN − u∥22 ≤ N−1. (5.13)

Then, for any sufficiently large M > 0,

Ef0ΠN

(
f : ∥f − f0∥2 ≤MεN | {(Xi, Yi)}Ni=1

)
N→∞−−−−→ 1.

Proposition 5.2.2 shows that the posteriors constructed with prior ΠN and with prior

Π contract at the same rate, provided that the prior approximation is sufficiently accurate.

Therefore it suffices to choose hN so that (5.12) or (5.13) is satisfied, giving a simple criterion

for setting hN . In particular, if the error E∥uhN −u∥2∞ or E∥uhN −u∥22 decreases sufficiently

fast, then a slowly decaying hN is enough and leads to nhN ≍ h−D
N ≪ N . We will show in

Section 5.3 for a simple linear FE method in a concrete setting that this is indeed the case

under certain smoothness assumptions, and demonstrate such behavior through simulation

studies in Section 5.4. Several possible extensions will be discussed in Section 5.5, build-

ing on the key idea of using Proposition 5.2.2 to balance the numerical error in the prior

approximation with the statistical errors in regression and classification tasks.

5.3 Main Results

In this section we obtain sufficient scalings of nh with respect to N using spectral error

analysis for FE eigenvalue problems and our criterion outlined in Section 5.2.4. We assume

throughout that D = (0, L1) × · · · × (0, LD) is a hyperrectangle and that the Laplacian

in (5.3) is supplemented with Neumann boundary condition, so that we have the following
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explicit expressions for its eigenvalues and eigenfunctions

Λi =
D∑
d=1

idπ

Ld
, Ψi(x) = Ci

D∏
d=1

cos

(
idπxd
Ld

)
, (5.14)

where i = (i1, . . . , iD) ∈ ND is a multi-index and Ci’s are constants so that the Ψi’s are

L2(D)-normalized. The Matérn-type GP (5.3) can then be written as

u = κs−D/2
∑
i∈ND

(κ2 + Λi)
−s/2ξiΨi, ξi

i.i.d.∼ N (0, 1). (5.15)

The explicit expressions for the eigenpairs in (5.14) allow us to establish the following result

[Khristenko et al., 2019, Theorem 2.1], which shows that the covariance function of (5.15) is

nearly indistinguishable from the classical Matérn covariance function (5.2) away from the

boundary.

Proposition 5.3.1. Let c(x,x′) denote the covariance function of the Matérn-type GP (5.15)

and let cMat(x,x
′) be the Matérn covariance function (5.2) with

σ2 =
Γ(s− D

2 )

(4π)D/2Γ(s)
. (5.16)

Then

c(x,x′) =
∑
k∈ZD

∑
T∈T

cMat(Tx,x′ − 2kL), x,x′ ∈ (0, L1)× · · · × (0, LD), (5.17)

where T is the collection of all D×D diagonal matrices whose diagonal entries are either 1

or −1, Tx denotes matrix-vector multiplication and kL denotes (k1L1, . . . , kDLD).

Note that if the correlation range ρ =
√
8ν/κ (where, recall, ν = s − D/2) is much

smaller than mind Ld, and in addition x,x′ are at a distance larger than 2ρ from each side of

the hyperrectangle, the only significant term that remains in (5.17) is cMat(x,x
′). Therefore,
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(5.15) gives a good approximation of the classical Matérn model away from the boundary.

In practice one can choose a larger hyperrectangle than the domain of interest to reduce

the boundary effect [Lindgren et al., 2011], see also Khristenko et al. [2019]. Our focus on

hyperrectangles also facilitates the concrete FE construction and error analysis in the next

subsection.

5.3.1 FEM Construction and Spectral Error Bounds

We shall construct the FE space on [0, L1]×· · ·× [0, LD] as the tensor product of FE spaces

on each interval [0, Ld]. To begin with, let P be a uniform partition of [0, Ld] into K + 1

points with width h = L/K and let Vh be the space of continuous piecewise linear functions

with respect to P . To simplify the notation we drop the dependence on d below. Precisely,

a basis of Vh consists of

eh,k =


h−1x− k + 1 x ∈ [(k − 1)h, kh]

−h−1x+ k + 1 x ∈ [kh, (k + 1)h]

0 otherwise

, k = 1, . . . , K − 1,

with eh,0 = (−h−1x + 1)1[0,h] and eK,h = (h−1x − K + 1)1[(K−1)h,Kh]. Let Jh be the

Galerkin discretization of κ2 − d2

dx2
over Vh. The eigenvalues {λh,i}Ki=0 and eigenfunctions

{ψh,i}Ki=0 of Jh can be found by solving the generalized eigenvalue problem

Gz = λMz,
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where z represents the coordinates of ψh,i in terms of the eh,k’s and G,M ∈ R(K+1)×(K+1)

are matrices with entries

Gij =
1

h
·



2 i = j /∈ {1, K + 1}

1 i = j ∈ {1, K + 1}

−1 |i− j| = 1

0 otherwise

, Mij = h ·



2/3 i = j /∈ {1, K + 1}

1/3 i = j ∈ {1, K + 1}

1/6 |i− j| = 1

0 otherwise

.

One can check that

λh,i =
6

h2
1− cos (iπh/L)

2 + cos (iπh/L)
, ψh,i = ci

K∑
k=0

cos

(
kiπh

L

)
eh,k, i, k ∈ [K], (5.18)

where ci’s are normalizing constants so that ψh,i has L2(D) norm one, and [K] = {0, . . . , K}.

We then have the following error estimates:

Lemma 5.3.2. Let {(λi, ψi)}∞i=1 be the eigenvalues and L2(D)-orthonormal eigenfunctions

of κ2 − d2

dx2
over (0, L) with Neumann boundary condition. There is a constant C so that,

for i ∈ [K],

|λh,i − λi| ≤ Cλ2i h
2, ∥ψh,i − ψi∥∞ ≤ Cλih

2.

Furthermore the ψh,i’s are also L2(D)-orthonormal.

Remark 5.3.3. Eigenvalue estimates and eigenfunction estimates in L2 norm can be found

for instance in [Strang and Fix, 1973, Theorems 6.1 and 6.2], where more general elliptic

operators and domains are considered. However, for our subsequent developments we need

eigenfunction estimates in L∞ norm, and for this reason we include an elementary proof of

Lemma 5.3.2 in Section 5.6.
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For Galerkin discretization of κ2−∆ on [0, L1]× · · · × [0, LD], let P be the uniform grid

constructed by uniformly partitioning each interval with Kd + 1 nodes so that hd = Ld/Kd

in each dimension. Define for h = (h1, . . . , hD) the FE space

Vh = Vh1 ⊗ · · · ⊗ Vhd :=

v(x) =
D∏
d=1

vhd(xd) : vhd ∈ Vhd

 ,

where Vhd is the FE space on [0, Ld] constructed above. It can be shown that the eigenvalues

Λh,i and eigenfunctions Ψh,i of Lh (the Galerkin discretization of κ2 −∆) are

Λh,i =
D∑
d=1

λhd,id , Ψh,i(x) =
D∏
d=1

ψhd,id(xd), i ∈ [K1]× · · · × [KD],

where the λhd,id ’s and ψhd,id ’s are as in (5.18). Indeed for vh(x) =
∏D

d=1 vhd(xd) ∈ Vh we

have that

⟨∇Ψh,i,∇vh⟩ =
∫
D

D∑
d=1

(
ψ′hd,idv

′
hd

∏
ℓ̸=d

ψhℓ,iℓvhℓ

)
dx

=
D∑
d=1

⟨ψ′hd,id , v
′
hd
⟩
∏
ℓ̸=d

⟨ψhℓ,iℓ , vhℓ⟩

=
D∑
d=1

λhd,id

D∏
ℓ=1

⟨ψhℓ,iℓ , vhℓ⟩ =
D∑
d=1

λhd,id⟨Ψh,i, vh⟩,

where the primes denote weak derivatives. Moreover the Ψh,i’s are orthonormal since the

ψh,i’s are and hence they form a complete set of eigenbasis for Lh. The following error

estimates are immediate, where we recall that the true eigenpairs are given in (5.14):

Lemma 5.3.4. For i ∈ [K1]× · · · × [KD] we have

|Λh,i − Λi| ≤ CΛ2
i h

2, ∥Ψh,i −Ψi∥∞ ≤ CΛih
2,
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where h = maxd hd and C is a constant depending only on D and the Ld’s.

Remark 5.3.5. Since D is a bounded domain, we obtain also the L2(D) bound ∥Ψh,i −

Ψi∥2 ≤ CΛih
2.

Since the approximation error in Lemma 5.3.4 depends on h = maxd hd, we shall from now

on assume that the hd’s are chosen so that they are of the same order, i.e., maxj ̸=k
hj
hk

= O(1)

as h → 0, and treat only h as the mesh size. As a consequence the total number of grid

points satisfies the following scaling

nh =
D∏
d=1

(Ld/hd + 1) ≍ h−D. (5.19)

5.3.2 Balancing Numerical and Statistical Errors

Now we use the spectral error bounds in Lemma 5.3.4 to obtain L2(D) and L∞(D) error

bounds for FE representations of Matérn-type GP priors (Lemma 5.3.6). These prior bounds,

combined with Proposition 5.2.2, will yield our main result (Theorem 5.3.8). Let

uh = κs−D/2
∑

i∈[K1]×···×[KD]

(κ2 + Λh,i)
−s/2ξiΨh,i, ξi

i.i.d.∼ N (0, 1),

be the FE representation of the Matérn-type GP u in (5.15). Recall that we are interested

in estimating the function f0(x) = E[Y |X = x] based on i.i.d. samples {(Xi, Yi)}Ni=1 with

prior ΠN = Law
(
uhN

)
for the fixed design regression setting and ΠN = Law

(
Φ(uhN

)
)

for

the binary classification setting, where hN = (hN,1, . . . , hN,D) is to be determined. Based

on the discussion in Section 5.2.4, it suffices to quantify the approximation error of u defined

in (5.15) by uhN
.
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Lemma 5.3.6. Recall that h = maxd hd. Suppose s > D/2. It holds that

E∥uh − u∥22 ≤ Cκ2s−Dh(2s−D)∧4,

where C is a constant independent of κ and h. Furthermore the Matérn-type GP u defined

in (5.15) belongs almost surely to Cβ(D) for 0 < β < 1 ∧ (s−D/2). Moreover, for s > D it

holds that

E∥uh − u∥2∞ ≤ Cκ2s−Dh(2s−2D)∧4,

where C is a constant independent of κ and h.

Remark 5.3.7. The L2 error bound has been shown to hold in greater generality, see e.g.

[Bolin et al., 2020, Theorem 2.10] and [Cox and Kirchner, 2020, Theorem 2]. A sharper

L∞ error bound was shown in [Cox and Kirchner, 2020, Theorem 3] when D = 1, while our

result holds for general dimension D.

As a corollary of Proposition 5.2.2 we have the following main result, presented in terms

of the scaling of hN = maxd hN,d. Notice that the concentration function defined in (5.11)

depends implicitly on s through u.

Theorem 5.3.8. 1. Fixed design regression: Consider the Matérn-type GP u defined by

(5.4) with s > D. Suppose εN satisfies ϕf0(εN ;u, ∥ · ∥∞) ≤ Nε2N . Set

hN ≍ N
− 1

(2s−2D)∧4 (5.20)

with a large enough proportion constant. Then, for any sufficiently large M > 0,

Ef0ΠN

(
f : ∥f − f0∥N ≤MεN | {(Xi, Yi)}Ni=1

)
N→∞−−−−→ 1,
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where we recall ∥f∥2N = N−1∑N
i=1 |f(Xi)|2.

2. Binary classification: Consider the Matérn-type GP u defined by (5.4) with s > D/2.

Suppose εN satisfies ϕΦ−1(f0)
(εN ;u, ∥ · ∥2) ≤ Nε2N . Set

hN ≍ N
− 1

(2s−D)∧4 (5.21)

with a large enough proportion constant. Then, for any sufficiently large M > 0,

Ef0ΠN

(
f : ∥f − f0∥2 ≤MεN | {(Xi, Yi)}Ni=1

)
N→∞−−−−→ 1.

Remark 5.3.9. Theorem 5.3.8 provides a scaling of hN so that the sequence of posteriors

with respect to the FE prior ΠN achieves the same contraction rate as if the Matérn-type prior

Π was used. We remark that a refined analysis of the rate at which the posterior probabilities

go to 1 could be used to obtain similar conclusions for the posterior means under suitable

assumptions, i.e.

Ef0dN (f̂ , f0)
2 ≲ ε2N , f̂ =

∫
f dΠ

(
f |{(Xi, Yi)}Ni=1

)
,

Ef0dN (f̂N , f0)
2 ≲ ε2N , f̂N =

∫
f dΠN

(
f |{(Xi, Yi)}Ni=1

)
.

In other words, the sequence of posterior means with respect to ΠN converges to f0 at the

same rate as those with respect to Π, thereby giving a more interpretable conclusion. For

fixed design regression, this follows from [van der Vaart and van Zanten, 2011, Theorem 1]

and Jensen’s inequality with dN = ∥ · ∥N . For binary classification, using again Jensen’s
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inequality and the fact that |f | ≤ 1 we have

∥f̂ − f0∥22 ≤
∫

∥f − f0∥22 dΠ
(
f |{(Xi, Yi)}Ni=1

)
≤M2ε2N + 4|D|Π

(
f : ∥f − f0∥2 ≥MεN |{(Xi, Yi)}Ni=1

)
,

where |D| is the Lebesgue measure of D. Therefore a rate faster than ε2N on the decay of the

posterior probability suffices, which is satisfied under mild assumptions [Ghosal et al., 2000,

Theorems 2.2 and 2.3].

Remark 5.3.10. For the regression setting, (5.20) together with (5.19) gives the scaling for

the total number of grid points needed,

nhN
≍ N

D
(2s−2D)∧4 .

In particular when s > 3D/2, D = 1, 2, 3, the exponent for N is less than one and we have

nhN
≪ N asymptotically. For classification, s > D suffices. However, we remark that the

proportion constant depends implicitly on κ and the Ld’s as can be seen from (5.19) and

Lemma 5.3.6. In particular, if both κ and the Ld’s are large, which reflects the case of a

rapidly changing field over a large spatial domain, then N may need to be large enough in

order for nhN
to be smaller than N . We shall demonstrate through simulation studies in

Section 5.4 that for moderate κ and Ld’s one can achieve nh < N when N = O(102) for

a one-dimensional example and N = O(103) for a two-dimensional one, thereby suggesting

that Theorem 5.3.8 has some practical implication.

The scaling of hN in Theorem 5.3.8 ensures that the numerical errors in the FE repre-

sentations of a true Matérn-type GPs u do not impact the corresponding contraction rates.

In the remainder of this section we give an example where the rates εN with respect to the

true Matérn-type GP u can be explicitly computed under a smoothness assumption on the
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truth f0. For this purpose we introduce a notion of regularity of f0 based on the orthonormal

basis {Ψi}i∈ND . Let S be an even function in the Schwartz space S(R) satisfying

0 ≤ S ≤ 1, S ≡ 1 on
[
−1

2
,
1

2

]
, supp(S) ⊂ [−1, 1].

Define the space

B
β
∞,∞ =

f =
∑
i∈ND

fiΨi : ∥f∥Bβ
∞,∞

= sup
j∈N

2βj∥Sj(
√
∆)f(·)− f(·)∥∞ <∞

 ,

where Sj(·) = S(2−j ·) and

Sj(
√
∆)f =

∑
i∈ND

Sj(
√
Λi)fiΨi.

Proposition 5.3.11. Suppose f0 ∈ B
β
∞,∞ and set s = β + D

2 in the definition of u. Then

for εN a large enough multiple of N−β/(2β+D), we have ϕf0(εN ;u, ∥ · ∥2) ≤ Nε2N and

ϕf0(εN ;u, ∥ · ∥∞) ≤ Nε2N .

The space Bβ
∞,∞ can be seen as a Besov-type space tailored to our specific setting, where

the prior support associated with the Matérn-type GP u consists of functions defined as series

expansions in terms of the Ψi’s. Similar function spaces have been considered in Castillo

et al. [2014]. As the usual Besov spaces, functions in B
β
∞,∞ should be understood to have

regularity of order β, in which case the contraction rate N−β/(2β+D) matches the usual

minimax optimal rate for estimating β-regular functions.

5.4 Simulation Study

The aim of this section is to complement the understanding given by Theorem 5.3.8 through

numerical simulations in the regression setting. We consider one and two-dimensional ex-
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amples in Sections 5.4.1 and 5.4.2, respectively.

The general set up is as follows. Let {Xi}Ni=1 be fixed design points in the domain D

and {Yi}Ni=1 be noisy observations generated from

Yi = f0(Xi) + ηi, ηi
i.i.d.∼ N (0, τ2),

where f0 is the ground truth and τ is known. We compare two approaches for inferring f0,

namely the covariance function (CF) approach and the finite element (FE) approach with

mass lumping. They can be summarized as follows:

y ∼ N (fN, τ
2IN ), fN ∼ N (0,Σ) =⇒ f̂CF = Σ(Σ+ τ2IN)−1y,

where Σ = {cMat(Xi,Xj)}; and

y ∼ N (Sw, τ2IN ), w ∼ N (0,Q−1) =⇒ f̂FE = S(S⊤S+ τ2Q)−1S⊤y,

where Sij = ej(Xi) is as in Section 5.2.3 and Q = (κ2M +G)
[
M̃−1(κ2M +G)

]s−1 as in

Proposition 5.2.1 but with the lumped mass matrix M̃ instead. As noted in Remark 5.3.9,

we shall compare the error ∥f̂CF − f0∥N and ∥f̂FE − f0∥N when an increasing number of grid

points (nh) is used in the FE approach, where f0 = (f0(X1), . . . , f0(XN ))⊤ and ∥ · ∥N is the

vector 2-norm normalized by 1/
√
N . Note that the CF and FE approaches studied here are

not exactly those analyzed in Theorem 5.3.8, i.e., the error of going from the CF approach

to the Matérn-type prior (expected to be small by Proposition 5.3.1) and that of the lumped

mass procedure were not accounted for. However, we remark that both errors do not lead

to a significant difference in the numerical results and we will only focus on the CF and FE

approaches, which are used in practice.
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(a) s0 = 2, κ0 = 1 (b) s0 = 2, κ0 = 5 (c) s0 = 2, κ0 = 25

Figure 5.1: The three columns represent simulations for κ0 = 1, 5 and 25 respectively with
s0 = 2 in all cases. The upper row shows plots of f0. The lower row compares the estimation
error ∥f̂ − f0∥N between the covariance function (CF) approach and the finite element (FE)
approach as nh increases, for three levels of data N = 50, 500 and 5000.

5.4.1 The One-dimensional Case

To start with, let {Xi}Ni=1 be fixed design points generated from the uniform distribution

over [0, L]. We shall consider f0’s generated from the following series expansion (with a

sufficiently high truncation)

f0(x) ∼
κ
−1/2
0 ξ0√
L

+

√
2κ

s0−1/2
0√
L

∞∑
i=1

[
κ20 +

(
iπ

L

)2
]−s0/2 [

ξi cos

(
iπx

L

)
+ ζi sin

(
iπx

L

)]
,

(5.22)

where ξi, ζi
i.i.d.∼ N (0, 1). Notice that (5.22) is defined in the same spirit as (5.4) except that

the full trigonometric basis is used, so that the random field (5.22) does not have a prescribed

boundary condition. Our motivation to not consider here a Neumann boundary condition
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is to illustrate that similar conclusions as those suggested by our theory can be expected in

more general settings. Notice again that there are two parameters s0 and κ0, which control

the smoothness and correlation lengthscale respectively. We will vary both s0 and κ0 in the

following simulations.

For both the CF and FE approaches, we use the same parameters s0 and κ0 that are used

to generate f0. In other words, we consider the Matérn covariance (5.2) with parameters

ν = s0 − 1/2, κ = κ0 and σ2 given in (5.16), and FE approximation (5.6) with s = s0

and κ = κ0. For the FE approach, we construct the approximation over the larger interval

[−ρ, L+ ρ] where ρ =
√
8ν/κ to reduce the boundary effects suggested in Proposition 5.3.1.

Three levels of data N = 50, 500 and 5000 are considered and, for each N , we study the

performance for the FE approach as the number nh of grid points increases. Finally we let

L = 5 and τ = 0.1 · ∥f0∥2/
√
N , which amounts to about 10% error.

Figure 5.1 shows the results when we fix the smoothness s0 = 2 and vary κ0 = 1, 5

and 25. We see that the estimation error for the FE approach decreases to that of the CF

approach after certain threshold n∗h. In other words, discretization at the level of n∗h for the

FE approach is sufficient to yield the same estimation performance as the CF approach. The

value of n∗h is seen to be smaller than the sample size when N = 500 and is of an order of

magnitude smaller when N = 5000, in the same spirit as the scaling suggested in Theorem

5.3.8. The fact that n∗h is larger than the sample size when N = 50 can be explained by the

large proportion constant in Remark 5.3.10. Furthermore such proportion constant increases

with κ, as suggested by the larger n∗h for a larger κ.

To further understand the effect of the smoothness s0, we perform two more simulations

for (a) s0 = 1, κ0 = 1 and (b) s0 = 3, κ0 = 25. For (a) we see in Figure 5.2a that the n∗h’s in

this case are much larger than the s0 = 2 cases. This is due to the roughness of the truth and

the prior used and hence a large number of grid points are needed for accurate approximation

even if κ is small. On the other hand when s0 = 3, Figure 5.2b shows qualitatively similar
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results as in Figure 5.1 in the sense that n∗h is asymptotically much smaller than N . Moreover

the n∗h’s are seen to be smaller than those when s0 = 2, κ0 = 25, as the underlying field is

smoother and the required scaling suggested by Theorem 5.3.8 is smaller.

(a) s0 = 1, κ = 1. (b) s0 = 3, κ = 25.

Figure 5.2: Comparison of estimation error ∥f̂ − f0∥N between the covariance function (CF)
approach and the finite element (FE) approach on three data levels N = 50, 500, 5000 for
(a) s0 = 1, κ0 = 1 and (b) s0 = 3, κ0 = 25.

5.4.2 The Two-dimensional Case

Now we move on to the more practically relevant two-dimensional case following a similar

set up as above. Let {Xi}Ni=1 be fixed design points generated from the uniform distribution

over the square [0, L]2 and f0 be generated similarly as (5.4) with ψi’s the full trigonometric

basis (i.e. elements of the form sin(10πx1/L) sin(5πx2/L), cos(3πx1/L) sin(9πx2/L), etc.)

so that there is no prescribed boundary condition for f0. We shall again compare the CF

and FE approaches when f0 is generated with different values of s0 and κ0.

The exact procedure for the CF and FE approaches will be completely analogous to the 1D

case. In particular, the same parameters s0 and κ0 that generate f0 are used and furthermore

the FE approach is carried out over the larger domain [−ρ, L+ρ]2 with ρ =
√
8ν/κ to reduce

boundary effects. However we remark that in the 2D case extending the domain has a larger

impact on the performance of the FE approach than the 1D case. The reason is that to

achieve the same mesh size within the domain [0, L]2, the FE approach over [−ρ, L+ρ]2 will
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(a) s0 = 2, κ0 = 1. (b) s0 = 2, κ0 = 5. (c) s0 = 2, κ0 = 25.

(d) s0 = 3, κ0 = 1. (e) s0 = 3, κ0 = 5. (f) s0 = 3, κ0 = 25.

(g) s0 = 4, κ0 = 1. (h) s0 = 4, κ0 = 5. (i) s0 = 4, κ0 = 25.

Figure 5.3: Comparison of the estimation error ∥f̂ − f0∥N as nh increases between the
covariance function (CF) approach and two finite element approaches where FE1 is computed
over [−ρ, L+ρ]2 and FE2 is computed over [−0.1ρ, L+0.1ρ]2. Simulation results for different
combinations of s0 and κ0 are shown.

require many more grid points than over [0, L]2. In particular if a uniform partition of mesh

size h as in Section 5.3.1 is adopted, then the overall increment of number of grid points is

(L+ 2ρ

h

)2
−
(L
h

)2
=
(2ρ
h

)(2L
h

)
+
(ρ
h

)2
. (5.23)
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The factor 2L/h makes (5.23) much larger than the increment 2ρ/h in each dimension and

leads to a much larger saturation threshold n∗h (that we have introduced in Section 5.4.1).

For this reason we consider an alternate FE approach carried out over the smaller domain

[−0.1ρ, L+0.1ρ]2 and compare its performance with the other FE approach over [−ρ, L+ρ]2.

For the simulations that we are going to present, we fix N = 5000, L = 5, τ = 0.1 ·∥f0∥2/
√
N

and vary s0 ∈ {2, 3, 4}, κ0 ∈ {1, 5, 25}, where we recall f0 = (f0(X1), . . . , f0(XN ))⊤. Similar

parameter settings were considered in Bolin and Lindgren [2013].

Figure 5.3 shows qualitatively similar results as those in Section 5.4.1, where the estima-

tion error of both FE approaches decreases to that of the CF approach after certain threshold

n∗h. Although Theorem 5.3.8 suggests a smaller asymptotic scaling for n∗h only when s > 3,

the simulation results suggest that this is true for s = 3 and even for s = 2 when the FE

approach is computed over [−0.1ρ, L + 0.1ρ]2. Furthermore, no estimation accuracy is lost

when this smaller domain is used and a smaller n∗h suffices so that it is more favorable, espe-

cially when κ is small or equivalently when ρ is large. Finally we remark that s0 = 2, κ0 = 25

corresponds to a very rapidly changing field and even in this case we have n∗h < N when

N = 5000, which is also a realistic amount of data relative to the domain size. Following the

same intuition as provided in Figure 5.1, it is reasonable to expect that one can take nh an

order of magnitude smaller than N when e.g. N = 50000. Therefore we believe the results

in Theorem 5.3.8 have practical implications for a wide range of moderate nonasymptotic

regimes and can provide some meaningful insights for real world applications.

5.5 Discussion and Open Directions

In this chapter we have employed a Bayesian nonparametrics framework to provide new

understanding on the choice of the dimension nh in FE approaches to GP regression and

classification. Our theory and simulation studies demonstrate that under mild smoothness

assumptions one can take nh ≪ N for a wide range of practical scenarios without hindering
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the estimation accuracy, leading to a second layer of computational gain on top of the well-

celebrated sparsity provided by the FE approach.

One of the key elements in our analysis is the framework of van der Vaart and van

Zanten [2008a] which allows to translate prior approximation guarantees to the posteriors.

In the context of GP regression and classification, this boils down to controlling, respectively,

the error E∥uhN − u∥2∞ and E∥uhN − u∥22 as in Proposition 5.2.2. In Sections 5.3 and

5.4 we have used this framework to analyze the Matérn covariance approach and linear

FE approximations thereof on a hyperrectangle. We remark that the applicability of our

framework goes beyond this simple setting with the following possible extensions.

General Elliptic Operators. One can define a nonstationary Matérn-type GP similarly

as in (5.3) by replacing the operator κ2−∆ with a more general elliptic operator κ2−∇·(H∇)

on a general domain, where κ and H are smooth functions taking values in real numbers

and matrices, respectively. The error analysis in Bolin et al. [2020], Cox and Kirchner [2020]

on FE approximations of these random fields together with Proposition 5.2.2 would give a

sufficient scaling of the mesh size hN . We remark that in this case there would not be an

easily computable covariance function approach to compare with, but one can still arrive at

the conclusion that there is no need to discretize beyond the threshold implied by Proposition

5.2.2.

Higher Order FEM. Higher order finite elements may be employed when the smoothness

parameter s is large. In particular, results from Bolin et al. [2020], Cox and Kirchner [2020]

show that the L2 approximation rate in Lemma 5.3.6 can be improved to h(2s−D)∧(2p+2)

when polynomials of order p are used. As a result, the scaling for hN in Theorem 5.3.8 can

be improved accordingly. The L∞ approximation rate for p > 1 remains an interesting open

question.
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Rational Approximation. When the smoothness parameter s is not an integer, the fa-

vorable sparsity of the FE approximation is lost. For this reason, Bolin and Kirchner [2020]

proposed a rational approximation of the fractional operator which retains sparsity. The

resulting approximate field is shown to satisfy a similar L2 approximation error bound as in

Lemma 5.3.6, with an additional term coming from the rational approximation which can

be made as small as desired. Following a similar argument as in Bolin and Kirchner [2020],

our proof for the L∞ bound can also be extended to the rational approximate field. These

prior approximation rates can again be combined with Proposition 5.2.2 to yield a sufficient

scaling of the mesh size.

Learning the Lengthscale. A novel aspect of our error bounds for FE prior representa-

tions is that we keep track of the (inverse) lengthscale parameter κ. Our theory and numerical

experiments help explain the need of finer discretization when the lengthscale is shorter. An

interesting direction for further research is the design of algorithms for the simultaneous

learning of (i) adaptive FE meshes for GP representations; and (ii) spatially-variable length-

scale parameters κ(x) in nonstationary Matérn-type models.

Beyond Regression and Classification. Lastly, we also envision that the framework we

have introduced can be adopted in other problems such as density estimation [Ghosal et al.,

2000] and nonlinear Bayesian inverse problems [Stuart, 2010]. The results from van der Vaart

and van Zanten [2008a] readily extend our framework to density estimation problems and it

is an interesting direction to extend Proposition 5.2.2 to Bayesian inverse problem settings

building, for instance, on Nickl et al. [2020], Giordano and Nickl [2020].
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5.6 Proof of Main Results

Proof of Proposition 5.2.1. It suffices to find the coordinates of (5.6) in terms of the finite

element basis eh,i’s. Taking inner product of (5.6) with eh,j , we get

nh∑
i=1

(κ2 + λh,i)
−s/2ξi⟨ψh,i, eh,j⟩ =

nh∑
i=1

wi⟨eh,i, eh,j⟩ j = 1, . . . , nh,

and the system

R(κ2Inh +Λ)−s/2ξ = Mw, (5.24)

where Rij = ⟨eh,i, ψh,j⟩ and Λ is the diagonal matrix with entries Λii = λh,i. It now remains

to relate Λ with the matrices R,M,G. Since the ψh,i’s form an orthonormal basis, we have

eh,i =
∑nh

j=1⟨eh,i, ψh,j⟩ψh,j =
∑nh

j=1Rijψh,j , which implies that ψh,i =
∑nh

j=1(R
−1)ijeh,j .

The fact that ψh,i’s are (variational) eigenvectors of −∆h with corresponding eigenvalues λh,i

gives GR−⊤ = MR−⊤Λ, which together with the fact that RR⊤ = M further implies Λ =

R−1GR−⊤. The result then follows by plugging such representation for Λ into (5.24).

Proof of Lemma 5.3.2. First note that we have λ0 = 0, ψ0 ≡ 1/L and

λi =

(
iπ

L

)2

, ψi =
2

L
cos

(
iπx

L

)
, i = 1, 2, . . .

We then have

|λh,i − λi| ≤
1

2 + cos(iπh/L)

∣∣∣∣∣ 6h2
(
1− cos

iπh

L

)
−
(
iπ

L

)2(
2 + cos

iπh

L

)∣∣∣∣∣
≤

∣∣∣∣∣ 6h2
(
1− cos

iπh

L

)
−
(
iπ

L

)2(
2 + cos

iπh

L

)∣∣∣∣∣ .
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Expanding the last expression based on the Taylor series of cosx we obtain

|λh,i − λi| ≤

∣∣∣∣∣ 3h2
(
iπh

L

)2

+
1

h2
O

(
iπh

L

)4

− 3

(
iπ

L

)2

+

(
iπ

L

)2

O

(
iπh

L

)2
∣∣∣∣∣ ≤ Cλ2i h

2.

For the approximation error of the eigenfunctions, we first compute the normalizing constants

ci’s. For i = 0 we notice that ψh,0 is constant and hence c0 = 1/L. For general i’s, we denote

ψh,i =
∑K

k=0 zh,i,keh,k and compute

⟨ψh,i, ψh,j⟩ =
K∑
k=0

K∑
ℓ=0

zh,i,kzh,j,ℓ⟨eh,k, eh,ℓ⟩

= zh,i,0

K∑
ℓ=0

zh,j,ℓ⟨eh,0, eh,ℓ⟩+ zh,i,K

K∑
ℓ=0

zh,j,ℓ⟨eh,K , eh,ℓ⟩

+
K−1∑
k=1

zh,i,k

K∑
ℓ=0

zh,j,ℓ⟨eh,k, eh,ℓ⟩

= zh,i,0

(zh,j,0
3

+
zh,j,1
6

)
h+ zh,i,K

(zh,j,K
3

+
zh,j,K−1

6

)
h

+
K−1∑
k=1

zh,i,k

(
zh,j,k−1

6
+

2zh,j,k
3

+
zh,j,k+1

6

)
h

= cicjh

(
1

6
cos

jπh

L
+

1

3

)1 + (−1)i+j + 2
K−1∑
k=1

cos

(
kiπh

L

)
cos

(
kjπh

L

) ,
where we have used that cos(a− t)+ cos(a+ t) = 2 cos(a) cos(t). Using further the fact that

2 cos(a) cos(b) = cos(a+ b) + cos(a− b), we have

2
K−1∑
k=1

cos

(
kiπh

L

)
cos

(
kjπh

L

)
=

K−1∑
k=1

cos

(
k(i+ j)πh

L

)
+ cos

(
k(i− j)πh

L

)
.
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Now letting t = (i+ j)πh/L and denoting ι as the imaginary unit, we have

K−1∑
k=1

cos(kt) =
1

2

K−1∑
k=1

eιkt + e−ιkt =
1

2

[
eιt(1− eι(K−1)t)

1− eιt
+
e−ιt(1− e−ι(K−1)t)

1− e−ιt

]

= −1

2

[
1 + (−1)i+j

]
,

where we have used that Kt = (i+ j)π. Similarly, we have

K−1∑
k=1

cos

(
k(i− j)πh

L

)
=


−1

2

[
1 + (−1)i−j

]
i ̸= j

K − 1 i = j

.

Therefore we have

⟨ψh,i, ψh,j⟩ = cicjL

(
1

6
cos

jπh

L
+

1

3

)
δij ,

where δij denotes the Kronecker delta. Therefore the ψh,i’s are orthonormal with

ci =

[
L

(
1

6
cos

iπh

L
+

1

3

)]−1/2

.

Now to bound the eigenfunction approximation error, we have

∥ψh,i − ψi∥∞ ≤ ∥ψh,i − ψ̃h,i∥∞ + ∥ψ̃h,i − ψi∥∞,

where ψ̃h,i = 1
ci

√
2
Lψh,i. Since ∥ψh,i∥∞ ≤ 1, we have

∥ψh,i − ψ̃h,i∥∞ ≤

∣∣∣∣∣1− 1

ci

√
2

L

∣∣∣∣∣ ≤ C

∣∣∣∣L(1

6
cos

iπh

L
+

1

3

)
− L

2

∣∣∣∣ ≤ C

(
iπh

L

)2

= Cλih
2,

where C is constant depending only on L. To bound ∥ψ̃h,i − ψi∥∞, notice that after the
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rescaling, ψ̃h,i is a linear interpolant of ψi over the nodes. In particular, denoting xk = kh

we have

ψ̃h,i(x) = ψi(xk) +
x− xk

xk+1 − xk
[ψi(xk+1)− ψi(xk)] on [xk, xk+1].

Taylor expanding at x we have

ψi(xk+1) = ψi(x) + ψ′i(x)(xk+1 − x) +
ψ′′i (η1)

2
(xk+1 − x)2 x < η1 < xk+1

ψi(xk) = ψi(x) + ψ′i(x)(xk − x) +
ψ′′i (η2)

2
(xk − x)2 xk < η2 < x.

Therefore

ψ̃h,i(x) = ψi(x) +
ψ′′i (η2)

2
(xk − x)2 +

x− xk
xk+1 − xk

[
ψ′′i (η1)

2
(xk+1 − x)2 +

ψ′′i (η2)
2

(xk − x)2
]

and since ∥ψ′′i ∥∞ ≤ λi we have

sup
x∈[xk,xk+1]

|ψ̃h,i(x)− ψi(x)| ≤ Cλih
2.

Therefore ∥ψ̃h,i − ψi∥∞ ≤ Cλih
2 and the result follows.

Proof of Lemma 5.3.4. Notice that

|Λh,i − Λi| ≤
D∑
d=1

|λhd,id − λid|
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and

|Ψh,i(x)−Ψi(x)| =

∣∣∣∣∣∣
D∏
d=1

ψhd,id(xd)−
D∏
d=1

ψid(xd)

∣∣∣∣∣∣
≤

D∑
d=1

(
|ψhd,id(xd)− ψid(xd)|

d−1∏
ℓ=1

∣∣ψiℓ(xℓ)∣∣ D∏
ℓ=d+1

|ψhℓ,iℓ(xℓ)|
)
.

Therefore the result follows from the one-dimensional estimates in Lemma 5.3.2.

Proof of Lemma 5.3.6. We shall abuse the notation and order the multi index i ∈ ND as a

single sequence i ∈ N so that

u = κs−D/2
∞∑
i=1

(κ2 + Λi)
− s

2 ξiΨi ,

uh = κs−D/2
nh∑
i=1

(κ2 + Λh,i)
− s

2 ξiΨh,i .

Bound for E∥uh − u∥22. This can be proven using the techniques in [Bolin et al., 2020,

Theorem 2.10] and in the L∞ bound that we will establish below.

Hölder continuity. We have

E|u(x+ h)− u(x)|2 ≲
∞∑
i=1

(κ2 + Λi)
−s|Ψi(x+ h)−Ψi(x)|2

≲
∞∑
i=1

(κ2 + Λi)
−smin{∥∇Ψi∥2∞h2, 1}

≲
∞∑
i=1

i−
2s
D min{i

2
Dh2, 1}

≲
∫
x≥1

x−
2s
D min{x

2
Dh2, 1}dx

≲

[∫
1≤x≤h−D

h2x−
2
D−2s

D dx+

∫
x>h−D

x−
2s
D dx

]
≲ h2s−D,
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where we have used that ∥∇Ψi∥∞ ≤
√
Λi and Weyl’s law Λi ≍ i2/D. Then by [Stuart, 2010,

Corollary 6.8] we have

E|u(x)− u(x′)|2p ≤ Cp|x− x′|(2s−D)p

for all p ∈ N. Kolmogorov continuity theorem [Stuart, 2010, Theorem 6.24] implies that u

is β-Hölder for β < (2s−D)p−2D
2p . Letting p→ ∞ gives the desired result.

Bound for E∥uh − u∥2∞. Consider two intermediate quantities

ũ = κs−D/2
nh∑
i=1

(κ2 + Λi)
− s

2 ξiΨi , (5.25)

ũh = κs−D/2
nh∑
i=1

(κ2 + Λi)
− s

2 ξiΨh,i . (5.26)

We have

E∥u− uh∥2∞ ≤ E (∥u− ũ∥∞ + ∥ũ− ũh∥∞ + ∥ũh − uh∥∞)2

≤ 2
(
E∥u− ũ∥2∞ + E∥ũ− ũh∥2∞ + E∥ũh − uh∥2∞

)

and it suffices to bound each term. Since the Ψi’s are uniformly bounded and that ξ has

bounded first moment, we have

E∥u− ũ∥2∞ ≤ κ2s−DE

 ∞∑
i=nh+1

(κ2 + Λi)
− s

2 |ξi|∥Ψi∥∞

2

≲ κ2s−D

 ∞∑
i=nh+1

(κ2 + Λi)
− s

2

2

≲ κ2s−D

 ∞∑
i=nh+1

i−
s
D

2

≲ κ2s−Dn
2−2s

D
h ≍ κ2s−Dh2s−2D. (5.27)
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Similarly, by Lemma 5.3.4

E∥ũ− ũh∥2∞ ≲ κ2s−D

[ nh∑
i=1

(κ2 + Λi)
− s

2∥Ψi −Ψh,i∥∞

]2

≲ κ2s−Dh4

( nh∑
i=1

Λ
1− s

2
i

)2

≲ κ2s−Dh4
[
1 ∨ n2+

4
d(1−

s
2)

h

]
≍ κ2s−Dh(2s−2s)∧4.

(5.28)

For the last term we have by Lemma 5.3.4

E∥ũh − uh∥2∞ ≲ κ2s−D

[ nh∑
i=1

∣∣∣(κ2 + Λi)
− s

2 − (κ2 + Λh,i)
− s

2

∣∣∣]2

≲ κ2s−D

[ nh∑
i=1

Λ
− s

2−1
i |Λi − Λh,i|

]2

≲ κ2s−Dh4

( nh∑
i=1

Λ
1− s

2
i

)2

≲ κ2s−Dh(2s−2d)∧4. (5.29)

The result follows by combining (5.27), (5.28), (5.29).

Proof of Proposition 5.3.11. Again we shall abuse the notation and write

u = κs−D/2
∞∑
i=1

(κ2 + Λi)
−s/2ξiΨi.

L∞ case. Recall that

ϕf0(ε;u, ∥ · ∥∞) = inf
g∈H:∥g−f0∥∞<ε

∥g∥2H − logP(∥u∥∞ < ε).
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By [Li and Linde, 1999, Theorem 1.2], the second term can be bounded by analyzing the

L∞(D) metric entropy of H1, the unit ball of H. Notice that H1 takes the form

H1 =

{ ∞∑
i=1

giΨi :
∞∑
i=1

g2i (κ
2 + Λi)

s ≤ 1

}

and is contained in a Sobolev ball of order s, whose L∞(D) metric entropy is bounded by a

constant times ε−
D
s (see e.g. [Edmunds and Triebel, 1996, Theorem 3.3.2]). Then [Li and

Linde, 1999, Theorem 1.2] implies that

− logP(∥u∥∞ < ε) ≲ ε−
2D

2s−D = ε
−D

β , (5.30)

where we used the assumption that s = β + D
2 . For the first term, let C0 = ∥f0∥Bβ

∞,∞
and

consider g = SJ (
√
∆)f0 with J the smallest integer such that C02

−βJ < ε. Since f0 ∈ B
β
∞,∞

we have

∥Sj(
√
∆)f0 − f0∥∞ ≤ C02

−βj (5.31)

for all j. In particular, ∥g−f0∥∞ ≤ C02
−βJ ≤ ε. Moreover we have g =

∑∞
i=1 SJ (

√
Λi)fiΨi

as a finite series since SJ (
√
Λi) = 0 if

√
Λi > 2J and hence g ∈ H. Now since Sj ≤ 1,

∥g∥2H ≤
∑

√
Λi≤2J

f2i (κ
2 + Λi)

s =
∑

√
Λi≤1

f2i (κ
2 + Λi)

s +
J∑

j=1

∑
2j−1<

√
Λi≤2j

f2i (κ
2 + Λi)

s.

By (5.31) we have

∑
2j−1<

√
Λi≤2j

f2i (κ
2 + Λi)

s ≲ 22js
∑

2j−1<
√
Λi

f2i ≲ 22js∥Sj(
√
∆)f0 − f0∥22

≲ 22js∥Sj(
√
∆)f0 − f0∥2∞ ≲ 22(s−β)j .
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Since J is the smallest integer such that C02
−βJ < ε, we have 2−βJ ≳ ε and hence

∥g∥2H ≲
∑

√
Λi≤1

f2i +
J∑

j=1

22(s−β)j ≲ 22(s−β)J ≲ ε
−2(s−β)

β = ε
−D

β . (5.32)

Combining (5.30) and (5.32) we deduce that

ϕf0(ε) ≲ ε
−D

β

and setting εn = Cn
− β

2β+D for a large enough constant C gives the result.

L2 case. We have

ϕf0(ε;u, ∥ · ∥2) = inf
g∈H:∥g−f0∥2<ε

∥g∥2H − logP(∥u∥2 < ε). (5.33)

For the second term, recall that u = κs−D/2∑∞
i=1(κ

2 + Λi)
−s/2ξiΨi. We then have

logP(∥u∥2 < ε) = logP

(
κ2s−D

∞∑
i=1

(κ2 + Λi)
−sξ2i < ε

)

≥ logP

( ∞∑
i=1

i−
2s
D ξ2i < Cε

)
≳ ε

− 2
2s
D

−1 = ε
−D

β , (5.34)

where the last step follows from [Dunker et al., 1998, Corollary 6] and the assumption that

s = β + D
2 . For the first term in (5.33), let C0 = ∥f0∥Bβ

∞,∞
and consider g = SJ (

√
∆)f0

with J the smallest integer so that C0

√
|D|2−βJ < ε, where |D| is the Lebesgue measure of

D. Since f0 ∈ B
β
∞,∞ we have

∥Sj(
√
∆)f0 − f0∥∞ ≤ C02

−βj
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for all j. In particular, ∥g − SJ (
√
∆)f0∥2 ≤

√
|D|∥g − SJ (

√
∆)f0∥∞ ≤ C0

√
|D|2−βJ ≤ ε.

Now proceeding in the same way as the argument in the L∞ case we obtain

∥g∥2H ≲
∑

√
λi≤1

f2i +
J∑

j=1

22(s−β)j ≲ 22(s−β)J ≲ ε
−2(s−β)

β = ε
−D

β , (5.35)

where we have used the fact that 2−βJ ≳ ε since J is the smallest integer such that

C0

√
|D|2−βJ < ε. Combining (5.34) and (5.35) we deduce that

ϕf0(ε) ≲ ε
−D

β ,

and setting εn = Cn
− β

2β+D for a large enough constant C gives the result.
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CHAPTER 6

LOCAL REGULARIZATION OF NOISY POINT CLOUDS:

IMPROVED GLOBAL GEOMETRIC ESTIMATES AND DATA

ANALYSIS

6.1 Introduction

Several techniques for the analysis of high dimensional data build on the observation that

data-generating mechanisms can often be described by few degrees of freedom. In this

chapter we study graph-based methods that employ similarity relationships between data

points to uncover the low intrinsic dimension and geometric structure of datasets. Graph-

based learning provides a well-balanced compromise between accuracy and interpretability

[Coifman and Lafon, 2006], and is popular in a variety of unsupervised and semi-supervised

tasks [Zhu, 2005, Von Luxburg, 2007]. These methods have been extensively analyzed in the

idealized setting where the data is sampled from a low-dimensional manifold and similarities

are computed using the ambient Euclidean distance or the geodesic distance, see e.g. Coifman

and Lafon [2006], Singer [2006], Burago et al. [2015], García Trillos et al. [2019a]. The

manifold setting is truthful in spirit to the presupposition that data arising from structured

systems may be described by few degrees of freedom, but it is not so in that the data are

typically noisy. The aim of this chapter is to provide new mathematical theory under the

more general and realistic model assumption that the data consist of random perturbations

of low-dimensional features lying on a manifold.

By relaxing the manifold assumption we bring forward two fundamental questions that

are at the heart of graph-based learning but have not been accounted for by previous theory.

First, how to define the inter-point similarities between noisy data points in order to approx-

imate the Euclidean distances between unperturbed data-points? Second, is it possible to

recover global geometric features of the manifold from suitably-defined similarities between
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noisy data points? We will show by rigorous mathematical reasoning that:

(i) Denoising inter-point distances leads to an improved approximation of the hidden Eu-

clidean distance between unperturbed points. We illustrate this general idea by ana-

lyzing a simple, easily-computable similarity defined in terms of a local-regularization

of the noisy dataset.

(ii) Graph-based objects defined via locally regularized similarities can be guaranteed to

satisfy improved error bounds in the recovery of global geometric properties. We il-

lustrate this general idea by showing the spectral approximation of an unnormalized

ε-graph Laplacian to a Laplace operator defined on the underlying manifold.

In addition to giving theoretical support for the denoising of point clouds, we study the

practical use of local regularization in classification problems. Our analytically tractable

local-regularization depends on a parameter that modulates the amount of localization, and

our analysis suggests the appropriate scaling of said parameter with the level noise level.

In our numerical experiments we show that in semi-supervised classification problems this

parameter may be chosen by cross-validation, ultimately producing classification rules with

improved accuracy. Finally, we propose two alternative denoising methods with similar em-

pirical performance that are sometimes easier to implement. In short, the improved recovery

of the geometric structure of the underlying point cloud facilitated by (local) regularization

translates into improved graph-based data analysis, and the results seem to be robust to the

choice of methodology.

6.1.1 Framework

We assume a data model

yi = xi + zi, (6.1)
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where the unobserved points xi are sampled from an unknown m-dimensional manifold M,

the vectors zi ∈ Rd represent noise, and Yn = {y1, . . . , yn} ⊆ Rd is the observed data.

Further geometric and probabilistic structure will be imposed to prove our main results—see

Assumptions 6.1.1 and 6.1.2 below. Our analysis is motivated by the case, often found in

applications, where the number n of data points and the ambient space dimension d are large,

but the underlying intrinsic dimension m is small or moderate. Thus, the data-generating

mechanism is described (up to a noisy perturbation) by m≪ d degrees of freedom. We aim

to uncover geometric properties of the underlying manifold M from the observed data Yn

by using similarity graphs. The set of vertices of these graphs will be identified with the set

[n] := {1, . . . , n}—so that the i-th node corresponds to the i-th data point—and the weight

W (i, j) between the i-th and j-th data-point will be defined in terms of a similarity function

δ : [n]× [n] → [0,∞).

The first question that we consider is how to choose the similarity function so that

δ(i, j) approximates the hidden Euclidean distance δXn
(i, j) := |xi − xj |. Full knowledge of

the Euclidean distance between the latent variables xi would allow to recover, in the large

n limit, global geometric features of the underlying manifold. This motivates the idea of

denoising the observed point cloud Yn to approximate the hidden similarity function δXn
.

Here we will study a family of similarity functions based on the Euclidean distance between

local averages of points in Yn, i.e. averages of the local measures. We define a denoised

dataset Ȳn = {y1, . . . , yn} by locally averaging the original dataset, and we then define an

associated similarity function

δȲn
(i, j) := |yi − yj |.

In its simplest form, yi is defined by averaging all points in Yn that are inside the ball of

radius r > 0 centered around yi, that is,

yi :=
1

Ni

∑
j∈Ai

yj , (6.2)
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where Ni is the cardinality of Ai := {j ∈ [n] : yj ∈ B(yi, r)}. As discussed in Section

6.1.3, this corresponds to one step of the mean-shift algorithm [Fukunaga and Hostetler,

1975]. Note that Ȳn (and the associated similarity function δȲn
) depends on r, but we do

not include said dependence in our notation for simplicity. Other possible local and non-local

averaging approaches may be considered. We will only analyze the choice made in (6.2) and

we will explore other constructions numerically. Introducing the notation

δXn
(i, j) = |xi − xj |, δYn

(i, j) = |yi − yj |,

the first question that we study may be formalized as understanding when, and to what

extent, the similarity function δȲn
is a better approximation than δYn

(the standard choice)

to the hidden similarity function δXn
. An answer is given in Theorem 6.1.4 below.

The second question that we investigate is how an improvement in the approximation

of the hidden similarity function affects the approximation of the Laplace Beltrami opera-

tor on the underlying manifold M. Specifically, we study how the spectral convergence of

graph-Laplacians constructed with noisy data may be improved by local regularization of

the point cloud. For concreteness, our theoretical analysis is focused on ε-graphs and un-

normalized graph-Laplacians, but we expect our results to generalize to other graphs and

graph-Laplacians—evidence to support this claim will be given through numerical exper-

iments. We now summarize the necessary background to formalize this question. For a

given similarity δ : [n] × [n] → [0,∞) and a parameter ε > 0, we define a weighted graph

Γδ,ε = ([n],W ) by setting the weight between the i-th and j-th node to be

W (i, j) :=
2(m+ 2)

αmεm+2n
1{δ(i, j) < ε}, (6.3)

where αm is the volume of the m-dimensional Euclidean unit ball. Associated to the graph
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Γδ,ε we define the unnormalized graph Laplacian matrix

∆δ,ε := D −W ∈ Rn×n, (6.4)

where D is a diagonal matrix with diagonal entries

D(i, i) :=
n∑

j=1

W (i, j).

The motivation for the scaling in (6.3) is so that ∆δ,ϵ matches the scale of the Laplace-

Beltrami operator (see for example Burago et al. [2015]). For the rest of the chapter we

shall denote ΓXn,ε := ΓδXn ,ε
and ∆Xn,ε := ∆δXn ,ε

. We use analogous notation for Yn and

Ȳn. The second question that we consider may be formalized as understanding when, and

to what extent, ∆Ȳn
provides a better approximation (in the spectral sense) than ∆Yn

to a

Laplace operator on the manifold M. An answer is given in Theorem 6.1.6 below.

6.1.2 Main results

In this subsection we state our main theoretical results. We first impose some geometric

conditions on the underlying manifold M.

Assumption 6.1.1. M is a smooth, oriented, compact manifold with no boundary and

intrinsic dimension m, embedded in Rd. Moreover, M has injectivity radius ≥ i0, maximum

of the absolute value of sectional curvature ≤ K, and reach ≥ R. Finally, we assume that

M’s total volume is normalized and equal to one.

Loosely speaking, the injectivity radius determines the range of the exponential map

(which will be an important tool in our analysis and will be reviewed in the next section)

and the sectional curvature controls the metric distortion induced by the exponential map,

and thereby its Jacobian. The reach R can be thought of as an (inverse) conditioning number
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of the manifold and controls its second fundamental form; it can also be interpreted as a

measure of extrinsic curvature—see, e.g. Aamari et al. [2019], Federer [1959] for technical

background. The significance of these geometric quantities and their role in our analysis will

be further discussed in Section 6.2.

Next we impose further probabilistic structure into the data model (6.1). We assume

that the pairs (xi, zi) are i.i.d. samples of the random vector (X,Z) ∼ µ ∈ P(M×Rd). Let

µ and µx be, respectively, the marginal distribution of X and the conditional distribution of

Z given X = x. We assume that µ is absolutely continuous with respect to the Riemannian

volume form of M with density p(x), i.e.,

dµ(x) = p(x)dvolM(x). (6.5)

Furthermore, we assume that µx is supported on TxM⊥ (the orthogonal complement of

the tangent space TxM) and that it is absolutely continuous with respect to the (d −m)-

dimensional Hausdorff measure Hd−m restricted to TxM⊥ with density p(z|x), i.e.,

dµx(z) = p(z|x)dHd−m(z).

To ease the notation we will write dz instead of Hd−m(dz). We make the following assump-

tions on these densities.

Assumption 6.1.2. It holds that:

(i) The density p(x) is of class C2(M) and is bounded above and below by positive con-

stants:

0 < pmin ≤ p(x) ≤ pmax, ∀x ∈ M.

(ii) For all x ∈ M, ∫
zp(z|x)dz = 0.
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Moreover, there is σ < R such that p(z|x) = 0 for all z with |z| ≥ σ.

Note that the assumption on p(z|x) ensures that the noise is centered and bounded by a

constant σ. While the assumption that the noise is bounded and orthogonal to the manifold

can be relaxed, we choose not to do so here to streamline our results and proofs.

In our first main theorem we study the approximation of the similarity function δXn

by δȲn
. We consider points xi and xj that are close with respect to the geodesic distance

dM on the manifold, and show that local regularization improves the approximation of the

hidden similarity provided that n is large and the noise level σ is small. The local regularity

parameter r needs to be suitably scaled with σ. We make the following standing assumption

linking both parameters; we refer to Remark 6.1.5 below for a discussion on the optimal

scaling of r with σ, and to our numerical experiments for practical guidelines.

Assumption 6.1.3. The localization parameter r and the noise level σ satisfy

σ ≤ R

16m
, r ≤ min

{
i0,

1√
K
,

√
αm

2CmK
,

√
R

32

}
, and σ ≤ 1

3
r, (6.6)

where C is a universal constant, αm denotes the volume of the Euclidean unit ball in Rm,

and i0, R, and K are as in Assumption 6.1.1.

In words, Assumption 6.1.3 requires both r and σ to be sufficiently small, and r to be

larger than σ.

Now we are ready to state the first main result.

Theorem 6.1.4. Under Assumptions 6.1.1, 6.1.2 and 6.1.3, with probability at least 1 −

4ne−cnrmax{2m,m+4}
, for all xi and xj with dM(xi, xj) ≤ r we have

∣∣δXn
(i, j)− δȲn

(i, j)
∣∣ ≤ CM

(
r3 + rσ +

σ2

r

)
, (6.7)
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where c = min

{
α2
mp2min
4m+2 , 1

16

}
and CM is a constant depending on m,K,R, a uniform bound

on the change in second fundamental form of M, and on the regularity of the density p.

Remark 6.1.5. Theorem 6.1.4 gives concrete evidence of the importance of the choice of

similarity function. For the usual Euclidean distance between observed data, δYn
, one can

only guarantee that ∣∣δXn
(i, j)− δYn

(i, j)
∣∣ ≤ 2σ,

which follows from ∣∣|xi − xj | − |yi − yj |
∣∣ ≤ |zi − zj | ≤ 2σ.

However, if we choose r ∝ σ1/2, then the error in (6.7) is of order σ3/2, which is a consid-

erably smaller quantity in the small noise limit.

Our second main result translates the local similarity bound from Theorem 6.1.4 into a

global geometric result concerning the spectral convergence of the graph Laplacian to the

Laplace operator formally defined by

∆Mf = −1

p
div
(
p2∇f

)
, (6.8)

where div and ∇ denote the divergence and gradient operators on the manifold and p is

the sampling density of the hidden point cloud Xn, as introduced in Equation (6.5). It

is intuitively clear that the spectral approximation of the discrete graph-Laplacian to the

continuum operator ∆M necessarily rests upon having a sufficient number of samples from µ

(defined in (6.5)). In other words, the empirical measure µn = 1
n

∑n
i=1 δxi needs to be close

to µ, the sampling density of the hidden dataset. We characterize the closeness between µn

and µ by the ∞-OT transport distance, defined as

d∞(µn, µ) := min
T :T♯µ=µn

esssup
x∈M

dM
(
x, T (x)

)
,
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where T♯µ denotes the push-forward of µ by T , that is, T♯µ = µ
(
T−1(U)

)
for any Borel

subset U of M. Theorem 2 in García Trillos et al. [2019a] shows that for every β > 1, with

probability at least 1− Cβ,Mn−β ,

d∞(µn, µ) ≤ CM
log(n)pm

n1/m
,

where pm = 3/4 if m = 2 and pm = 1/m for m ≥ 3. This is the high probability scaling of

d∞(µn, µ) in terms of n.

We introduce some notation before stating our second main result. Let λℓ(Γδ,ε) be the

ℓ-th smallest eigenvalue of the unnormalized graph-Laplacian ∆δ,ε defined in Equation (6.4),

and let λℓ(M) be the ℓ-th smallest eigenvalue of the continuum Laplace operator defined in

Equation (6.8).

Theorem 6.1.6. Suppose that Assumptions 6.1.1, 6.1.2, and 6.1.3 hold. Suppose further

that ε is small enough (but not too small) so that

max
{
(m+ 5)d∞(µn, µ), 2Cmη

}
< ε < min

{
1,
i0
10
,

1√
mK

,
R√
27m

}
,

(√
λℓ(M) + 1

)
ε+

d∞(µn, µ)

ε
< c̃p,

(6.9)

where c̃p is a constant that only depends on m and the regularity of the density p, C is a

universal constant, and

η = CM

(
r3 + rσ +

σ2

r

)
is the bound in (6.7). Then, with probability at least 1 − 4ne−cnrmax{2m,m+4}

, for all ℓ =

1, 2, 3, . . .,

|λℓ(ΓȲn,ε
)− λℓ(M)|

λℓ(M)
≤ C̃

(
η

ε
+
d∞(µn, µ)

ε
+
(
1 +

√
λℓ(M)

)
ε+

(
K +

1

R2

)
ε2
)
,
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where C̃ only depends on m and the regularity of p, and c = min

{
α2
mp2min
4m+2 , 1

16

}
.

Remark 6.1.7. We will see in Section 6.3 that Theorem 6.1.6 follows by plugging the prob-

abilitstic estimate (6.7) into a modification of a deterministic result from [García Trillos

et al., 2019a, Corollary 2], which we present for the convenience of the reader in Theorem

6.3.3. We remark that any improvement of Theorem 6.3.3 would immediately translate into

an improvement of our Theorem 6.1.6. As discussed in Remark 6.1.5, local regularization

enables a smaller η than if no regularization is performed. This in turn allows one to choose,

for a given error tolerance, a smaller connectivity ε, leading to a sparser graph that is com-

putationally more efficient. Note also that the bound in Theorem 6.1.6 does not depend on

the ambient space dimension d, but only on the intrinsic dimension m of the data.

Remark 6.1.8. Theorem 6.1.6 concretely shows how an improvement in metric approxima-

tion translates into an improved estimation of global geometric quantities. We have restricted

our attention to analyzing eigenvalues of a Laplacian operator, but we remark that the idea

goes beyond this particular choice. For example, one can conduct an asymptotic analysis

illustrating the effect of changing the similarity function in the approximation of other ge-

ometric quantities of interest like Cheeger cuts. Such analysis could be carried out using

the variational convergence approach from García Trillos and Slepčev [2016a]. Finally, we

remark that it is possible to study convergence of eigenvectors of graph Laplacians following

the results in García Trillos et al. [2019a].

6.1.3 Related and Future Work

Graph-based learning algorithms include spectral clustering, total variation clustering, graph-

Laplacian regularization for semi-supervised learning, graph based Bayesian semi-supervised

learning. A brief and incomplete summary of methodological and review papers is Shi and

Malik [2000], Ng et al. [2002], Belkin and Niyogi [2004], Zhou and Schölkopf [2005], Spielman
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and Teng [2007], Von Luxburg [2007], Zhu [2005], Bertozzi et al. [2018]. These algorithms

involve either a graph Laplacian, the graph total variation, or Sobolev norms involving the

graph structure. The large sample n → ∞ theory studying the behavior of some of the

above methodologies has been analyzed without reference to the intrinsic dimension of the

data [Von Luxburg et al., 2008] and in the case of points laying on a low dimensional mani-

fold, see e.g. Belkin et al. [2006], García Trillos and Sanz-Alonso [2018], García Trillos et al.

[2020b] and references therein. Some papers that account for both the noisy and low intrinsic

dimensional structure of data are Niyogi et al. [2008], Little and Maggioni [2017], Agapiou

et al. [2017], Weed and Bach [2019], Genovese et al. [2012], Aamari and Levrard [2019]. For

example, Niyogi et al. [2008] studies the recovery of the homology groups of submanifolds

from noisy samples. We use the techniques for the analysis of spectral convergence of graph-

Laplacians introduced in Burago et al. [2015] and further developed in García Trillos et al.

[2019a]. The results in the latter reference would allow to extend our analysis to other graph

Laplacians, but we do not pursue this here for conciseness.

We highlight that the denoising by local regularization occurs at the level of the dataset.

That is, rather than denoising each of the observed features individually, we analyze denoising

by averaging different data points. In practice combining both forms of denoising may be

advantageous. For instance, when each of the data points corresponds to an image, one

can first denoise each image at the pixel level and then do regularization at the level of the

dataset as proposed here. In this regard, our regularization at the level of the data-set is

similar to applying a filter at the level of individual pixels [Tukey and Tukey, 1988]. The

success of non-local filter image denoising algorithms suggests that non-local methods may

be also of interest at the level of the dataset, but we expect this to be application-dependent.

Finally, while in this chapter we only consider first-order regularization based on averages,

a topic for further research is the analysis of local PCA regularization [Little and Maggioni,

2017], incorporating covariance information.
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With the same motivation for our work, in Memoli et al. [2019] a general construction

of metrics on noisy datasets was proposed. The so called Wasserstein transform associates

to each of the data points a “local" probability distribution, and defines a new metric on

the data by computing the Wasserstein distance between the corresponding local measures.

A particular construction of local measures closely related to the metric we study here

assigns to each observation the empirical measure of the observations restricted to a ball of

certain radius around the given data point. The authors of Memoli et al. [2019] propose the

Wasserstein transform as a way to generalize the mean-shift algorithm and they study how

it alleviates the so called chaining effect in single linkage clustering. The aim of our work

is to provide quantitative evidence of the effect that changing the metric on noisy datasets

has on graph-based spectral clustering algorithms. The success of these algorithms hinges

on their ability to capture the geometry of the underlying data generating model.

It is worth noting the parallel between the local regularization that we study here and

mean-shift and mode seeking methods [Chen et al., 2016, Fukunaga and Hostetler, 1975]. As

a matter of fact the points xi that we construct here correspond to one step in the standard

mean shift algorithm. However, we notice that our goal is not to run mean shift for mode

seeking, but rather, as a way to construct a metric that better captures the underlying “true"

geometric structure of the data that was blurred by noise. This paralellism with mean-shift

techniques (or the more general Wasserstein transform in Memoli et al. [2019]) suggests the

idea of doing local averaging iteratively. Of course, it is important to notice that unless one

prevents points to move tangentially to M (as discussed in Wang and Carreira-Perpinán

[2010]), a large number of iterations would result in points collapsing to a finite number of

local modes.

Local regularization may be also interpreted as a form of dictionary learning, where

each data-point is represented in terms of its neighbors. For specific applications it may be

of interest to restrict (or extend) the dictionary used to represent each data point [Haddad
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et al., 2014]. Finally we refer to Hein and Maier [2006] for alternative techniques on manifold

denoising.

6.1.4 Outline

The chapter is organized as follows. In Section 6.2 we formalize the geometric setup and

prove Theorem 6.1.4. Section 6.3 contains the proof of Theorem 6.1.6 and a lemma that may

be of independent interest. Finally, Section 6.4 includes several numerical experiments. In

the Appendix we prove a technical lemma that serves as a key ingredient in proving Theorem

6.1.4.

6.2 Distance Approximation

In this section we prove Theorem 6.1.4. We start with Section 6.2.1 by giving some intuition

on the geometric conditions imposed in Assumption 6.1.1 and introducing the main geometric

tools in our analysis. In Section 6.2.2 we decompose the approximation error between the

similarity functions δȲn
and δXn

into three terms, which are bounded in Sections 6.2.3, 6.2.4,

and 6.2.5.

6.2.1 Geometric Preliminaries

In this subsection we set our notation and provide some background on geometric concepts

used in the remainder of this chapter.

6.2.1.1 Basic Notation

For each x ∈ M we let TxM be the tangent plane of M at x centered at the origin. In

particular, TxM is a m-dimensional subspace of Rd, and we denote by TxM⊥ its orthogonal

complement. We will use volM to denote the Riemannian volume form of M. We will denote
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by |x− x̃| the Euclidean distance between arbitrary points in Rd and denote by dM(x, x̃) the

geodesic distance between points in M. We denote by Bx balls in TxM and by BM balls in

the manifold M (with respect to the geodesic distance). Also, unless otherwise specified B,

without subscripts will be used to denote balls in Rd. We denote by αm the volume of the

unit Euclidean ball in Rm. Throughout the rest of the chapter we use R, i0 and K to denote

the reach, injectivity radius, and maximum absolute curvature of M, as in Assumption 6.1.1.

We now describe at an intuitive level the role that these quantities play in our analysis.

6.2.1.2 The Reach

The reach of a closed submanifold M is the largest value t ∈ [0,∞] such that the projection

map onto M is well defined on {x ∈ Rd : infx̃∈M|x̃−x| < t}, i.e., every point in the tubular

neighborhood around M of width t has a unique closest point in M. Our assumption that

the noise level satisfies σ < R guarantees that xi is the (well-defined) projection of yi onto the

manifold. The reach can be thought of as an inverse conditioning number for the manifold

[Niyogi et al., 2008]. We will use that the inverse of the reach provides a uniform upper

bound on the second fundamental form (see Lemma 6.2.7).

6.2.1.3 Exponential Map, Injectivity Radius and Sectional Curvature

We will make use of the exponential map exp, which for every x ∈ M is a map

expx : Bx(0, i0) → BM(x, i0)

where i0 is the injectivity radius for the manifold M. We recall that the exponential map

expx takes a vector v ∈ TxM and maps it to the point expx(v) ∈ M that is at geodesic

distance |v| from x along the unit speed geodesic that at time t = 0 passes through x with

velocity v/|v|. The injectivity radius i0 is precisely the maximum radius of a ball in TxM
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centered at the origin for which the exponential map is a well defined diffeomorphism for

every x. We denote by Jx the Jacobian of the exponential map expx. Integrals with respect

to dvolM can then be written in terms of integrals on TxM weighted by the function Jx.

More precisely, for an arbitrary test function φ : M → R,

∫
BM(x,i0)

φ(x̃)dvolM(x̃) =

∫
Bx(0,i0)

φ
(
expx(v)

)
Jx(v)dv.

For fixed 0 < r ≤ min{i0, 1/
√
K} one can obtain bounds on the metric distortion by

the exponential map expx : Bx(0, r) ⊆ TxM → M ([Do Carmo and Flaherty Francis, 1992,

Chapter 10] and [Burago et al., 2015, Section 2.2]), and thereby guarantee the existence of

a universal constant C such that, for |v| ≤ r,

(1 + CmK|v|2)−1 ≤ Jx(v) ≤ (1 + CmK|v|2). (6.10)

An immediate consequence of the previous inequalities is

|vol(BM(x, r))− αmr
m| ≤ CmKrm+2, (6.11)

where we recall αm is the volume of the unit ball in Rm. Equations (6.10) and (6.11) will

be used in our geometric and probabilistic arguments and motivate our assumptions on the

choice of local regularization parameter r in terms of the injectivity radius and the sectional

curvature.

6.2.2 Local Distributions

Next we study the local behavior of (X,Z). To characterize its local distribution, it will be

convenient to introduce the following family of probability measures.

Definition 6.2.1. Let y be a vector in Rd whose distance to M is less than R. Let x be
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the projection of y onto M. We say that the random variable (X̃, Z̃) has the distribution µy

provided that

P
(
(X̃, Z̃) ∈ A1 × A2

)
:= P

(
(X,Z) ∈ A1 × A2|X + Z ∈ B(y, r)

)
,

for all Borel sets A1 ⊆ M A2 ⊆ Rd, where in the above (X,Z) is distributed according to µ.

In the remainder we use µi as shorthand notation for µyi . As for the original measure

µ, we characterize µi in terms of a marginal and conditional distribution. We introduce the

density p̃i : M → R given by

p̃i(x) :=
Pi
(
X + Z ∈ B(yi, r)|X = x

)
Pi
(
X + Z ∈ B(yi, r)

) · p(x), (6.12)

and define

p̃i(z|x) =
1x+z∈B(yi,r)

Pi
(
X + Z ∈ B(yi, r)|X = x

) · p(z|x), (6.13)

where in the above and in the remainder we use Ei and Pi to denote conditional expectation

and conditional probability given (xi, zi). It can be easily shown that these functions corre-

spond to the marginal density of X̃i and the conditional density of Z̃i given X̃i = x, where

(X̃i, Z̃i) ∼ µi. The distribution µi is of relevance because by definition of yi one has

Ei[yi] = Ei[X̃i + Z̃i].

Now we are ready to introduce the main decomposition of the error between the similarity
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functions δȲn
and δXn

. Using the triangle inequality we can write

∣∣|xi − xj | − |ȳi − ȳj |
∣∣ ≤ ∣∣Ei[X̃i]− xi − (Ej [X̃j ]− xj)

∣∣ (6.14)

+
∣∣Ej [Z̃j ]

∣∣+ ∣∣Ei[Z̃i]
∣∣ (6.15)

+
∣∣Ei[ȳi]− ȳi

∣∣+ ∣∣Ej [ȳj ]− ȳj
∣∣. (6.16)

In the next subsections we bound each of the terms (6.15) (expected conditional noise), (6.14)

(difference in geometric bias), and (6.16) (sampling error). As we will see in Section 6.2.5

we can control both terms in (6.16) with very high probability using standard concentration

inequalities. The other three terms are deterministic quantities that can be written in terms

of integrals with respect to the distributions µ̃i and µ̃j . To study these integrals it will be

convenient to introduce two quantities r− < r < r+ (independent of i = 1, . . . , n) satisfying:

1. For all x ∈ M with dM(x, xi) > r+ we have

Pi
(
X + Z ∈ B(yi, r)|X = x

)
= 0.

Equivalently, the density p̃i(x) is supported in BM(xi, r+).

2. For all x with dM(x, xi) < r− we have

Pi
(
X + Z ∈ B(yi, r)|X = x

)
= 1.

It should be noted that the choice of both r− and r+ depends on r. In Appendix 6.5 we

present the proof of the following lemma giving estimates for r+ and r−.
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Lemma 6.2.2 (Bounds for r+ and r−). Under Assumption 6.1.3, the quantities

r− := r

√1 +
4σ

R
+

16σ2

r2
+
mσ

R

−1

,

r+ := r

(√
1− 8r2

R
− 4σ

R
− mσ

R

)−1

,

satisfy properties i) and ii). Furthermore,

r+ − r− ≤ Cm,R

(
r3 + rσ +

σ2

r

)
, Cm,R := max

{
8m+ 32

R
, 64

}

and
1

2
r+ ≤ r ≤ 2r−. (6.17)

6.2.3 Bounding Expected Conditional Noise

Proposition 6.2.3. Suppose that Assumptions 6.1.1 and 6.1.2 hold. Then,

∣∣Ei[Z̃i]
∣∣ ≤ Cm,p

σ

r
(r+ − r−), Cm,p :=

4m+1pmax

mpmin
.

Proof. Using the definition of r+,

Ei[Z̃i] =

∫
BM(xi,r+)

∫
zp̃i(z|x)dz p̃i(x) dvolM(x)

=

∫
BM(xi,r−)

∫
zp̃i(z|x)dz p̃i(x) dvolM(x)

+

∫
BM(xi,r+)\BM(xi,r−)

∫
zp̃i(z|x)dz p̃i(x)dvolM(x).

The first integral is the zero vector because for x ∈ BM(xi, r−), we have p̃(z|x) ∝ p(z|x)

241



and p(z|x) is assumed to be centered. Therefore,

∣∣Ei[Z̃i]
∣∣ ≤ σ

∫
BM(xi,r+)\BM(xi,r−)

p̃i(x)dvolM(x)

=
σ

Pi
(
X + Z ∈ B(yi, r)

) ∫
BM(xi,r+)\BM(xi,r−)

p(x)dvolM(x)

≤ σpmax

Pi
(
X + Z ∈ B(yi, r)

) ∫
BM(xi,r+)\BM(xi,r−)

dvolM(x)

≤ σpmax

Pi
(
X + Z ∈ B(yi, r)

) ∫
Bxi

(0,r+)\Bxi
(0,r−)

Jxi(v)dv

≤ 2αmσpmax

Pi
(
X + Z ∈ B(yi, r)

)(rm+ − rm− )

≤ 2αmσpmax

mPi
(
X + Z ∈ B(yi, r)

)(r+ − r−)rm−1
+ ,

where we have used (6.10) and the assumptions on r to say (in particular) that Jxi(v) ≤ 2,

and also the fact that, for t > s > 0,

tm − sm =

∫ t

s

um−1

m
du ≤ (t− s)

tm−1

m
.

Finally, notice that

Pi
(
X+Z ∈ B(yi, r)

)
≥ Pi

(
X ∈ BM(xi, r−)

)
=

∫
Bxi

(0,r−)
p
(
expxi(v)

)
Jxi(v)dv ≥ 1

2
pminαmr

m
− ,

where again we have used (6.10) to conclude (in particular) that Jxi(v) ≥ 1/2. The result

now follows by (6.17).
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6.2.4 Bounding Difference in Geometric Bias

In terms of r+ and r−, the difference Ei[X̃i]− xi (and likewise Ej [X̃j ]− xj) can be written

as:

Ei[X̃i]− xi =

∫
BM(xi,r+)

(x− xi)p̃i(x)dvolM(x)

=

∫
Bxi

(0,r+)

(
expxi(v)− xi

)
p̃i
(
expx(v)

)
Jxi(v)dv

=

∫
Bxi

(0,r+)

(
expxi(v)− xi

)
p̃i
(
expx(v)

)
dv+∫

Bxi
(0,r+)

(
expxi(v)− xi

)
p̃i
(
expx(v)

)(
Jxi(v)− 1

)
dv

=
1

Pi
(
X + Z ∈ B(yi, r)

) ∫
Bxi

(0,r−)

(
expxi(v)− xi

)
p
(
expx(v)

)
dv+∫

Bxi
(0,r+)\Bxi

(0,r−)

(
expxi(v)− xi

)
p̃i
(
expx(v)

)
dv+∫

Bxi
(0,r+)

(
expxi(v)− xi

)
p̃i
(
expx(v)

)(
Jxi(v)− 1

)
dv

:=
1

Pi
(
X + Z ∈ B(yi, r)

) ∫
Bxi

(0,r−)

(
expxi(v)− xi

)
p
(
expx(v)

)
dv + ξi,

where the second to last equality follows from (6.12). To further simplify the expression for

xi − Ei[X̃i] let us define

bi :=

∫
Bxi

(0,r−)

(
expxi(v)− xi

)
p
(
expx(v)

)
dv.

It follows that

∣∣Ei[X̃i]− xi − (Ej [X̃j ]− xj)
∣∣ ≤ ∣∣∣ bi

Pi
−
bj
Pj

∣∣∣+ ∣∣ξi∣∣+ ∣∣ξj∣∣
≤
∣∣∣ 1
Pi

− 1

Pj

∣∣∣∣∣bi∣∣+ 1

Pj

∣∣bi − bj
∣∣+ ∣∣ξi∣∣+ ∣∣ξj∣∣, (6.18)
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where in the above

Pi := Pi
(
X + Z ∈ B(yi, r)

)
, Pj := Pj

(
X + Z ∈ B(yj , r)

)
.

Lemma 6.2.4. The following hold.

1. The terms Pi satisfy
1

2
pminαmr

m
− ≤ Pi.

2. The terms ξi satisfy:

∣∣ξi∣∣ ≤ C1(r+ − r−) + C2r
3,

where, up to universal multiplicative constants,

C1 =
4m+1pmax

mpmin
, C2 = 4m+3mK

pmax

pmin
.

3. Suppose that dM(xi, xj) ≤ r. Then,

|Pi − Pj | ≤ C3r
m+1 + C4(r+ − r−)rm−1 + C5r

m+2,

where, up to universal multiplicative constants,

C3 = Cpαm, C4 =
2m−1αmpmax

m
, C5 = mKpmaxαm.

and Cp only depends on bounds on the first derivatives of the density p.

Proof. The first inequality was already obtained at the end of the proof of Proposition 6.2.3.
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For the second inequality recall that

ξi =

∫
Bxi

(0,r+)\Bxi
(0,r−)

(
xi − expxi(v)

)
p̃i
(
expxi(v)

)
dv+∫

Bxi
(0,r+)

(
xi − expxi(v)

)
p̃i
(
expxi(v)

)
[Jxi(v)− 1]dv := I1 + I2.

For the first term we notice that |xi− expxi(v)| ≤ dM(xi, expxi(v)) ≤ r+. Thus using i) and

the definition of p̃i we have

|I1| ≤
r+pmaxαm

Pi
(
X + Z ∈ B(yi, r)

)(rm+ − rm− ) ≤ 4m+1pmax

mpmin
(r+ − r−).

For the second term we use i) and (6.10) to see that

|I2| ≤
CmKpmaxαm

Pi
(
X + Z ∈ B(yi, r)

)rm+3
+ ≤ C4m+3mK

pmax

pmin
r3.

For iii) we notice that by definition of r− and r+ we can write

Pi
(
X ∈ Bxi(0, r−)

)
−Pj

(
X ∈ Bxj (0, r+)

)
≤ Pi−Pj ≤ Pi

(
X ∈ Bxi(0, r+)

)
−Pj

(
X ∈ Bxj (0, r−)

)
,

and in particular it is enough to boundHij :=
∣∣Pi(X ∈ BM(xi, r+)

)
−Pj

(
X ∈ BM(xj , r−)

)∣∣.
We can expand Hij as follows.

Hij =

∫
Bxi

(0,r−)
p
(
expxi(v)

)
dv −

∫
Bxj

(0,r−)
p
(
expxj (ṽ)

)
dṽ

+

∫
Bxi

(0,r+)\Bxi
(0,r−)

p
(
expxi(v)

)
dv

+

∫
Bxi

(0,r−)
p
(
expxi(v)

)(
Jxi(v)− 1

)
dv −

∫
Bxj

(0,r−)
p
(
expxj (ṽ)

)(
Jxj (ṽ)− 1

)
dṽ

:= I1 + I2 + I3.
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By a similar argument as above, we can bound I2 and I3 by

|I2| ≤ pmaxαm(rm+ − rm− ) ≤ 2m−1

m
αmpmax(r+ − r−)rm−1,

|I3| ≤ 2CmKpmaxαmr
m+2
− ≤ 2CmKpmaxαmr

m+2.

Finally, we notice that we can identify Bxi(0, r−) with Bxj (0, r−). From the assumed

smoothness on p (which in particular is C1) we see that for any v ∈ Bxi(0, r−) we have

∣∣p( expxi(v))− p
(
expxj (v)

)∣∣ ≤ CpdM
(
expxi(v), expxj (v)

)
≤ 3Cpr.

Then it follows that |I1| ≤ 3Cpαmr
m+1 and we get the desired result.

We now bound the difference
∣∣bi − bj

∣∣ for nearby points xi, xj , where we recall that

bi :=

∫
Bxi

(0,r−)

(
expxi(v)− xi

)
p
(
expxi(v)

)
dv.

Proposition 6.2.5. Suppose that xi and xj are such that dM(xi, xj) ≤ r. Then,

∣∣bi − bj
∣∣ ≤ Crm+3,

where the constant C can be written as

C = pmaxαm

(
6
√
m

R2
+
(
1 +

4

R

)
CM

)
+
Cp

R
αm,

where Cp is a constant that depends on bounds on first and second derivatives of the density

p, and CM is a constant that depends only on the change in second fundamental form along

M (a third order term).

As we will see Proposition 6.2.5 can be proved combining several ideas from differen-
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tial geometry. We present the required auxiliary results as we develop the proof of the

proposition.

We start by conveniently writing bi and bj in a way that facilitates their direct comparison.

Indeed, for any given v ∈ Bxi(0, r−) let us consider the curves

γv,i(t) := expxi

(
t
v

|v|

)
, t ∈ [0, |v|],

and

t ∈ [0, |v|] 7→ xi + t ∈ [0, |v|].

Thus, γv,i is an arc-length parameterized geodesic on M that starts at the point xi and at

time |v| passes though the point expxi(v). Its initial velocity γ̇v,i(0) is the vector v/|v|. On

the other hand, while the second curve does not stay in M for t > 0, it does have the same

starting point and velocity as γv,i. We can use the fundamental theorem of calculus to write:

expxi(v)− (xi + v) =

∫ |v|

0

(
γ̇v,i −

v

|v|

)
dt,

as well as

γ̇v,i(t)−
v

|v|
=

∫ t

0
γ̈v,i(s)ds, ∀t ∈ [0, |v|]. (6.19)

In particular, we have the second order representation

expxi(v)− xi = v +

∫ |v|

0

∫ t

0
γ̈v,i(s)dsdt. (6.20)

As a consequence of the previous formula we can rewrite bi as

bi =

∫
Bxi

(0,r−)

(
expxi(v)− xi

)
p
(
expxi(v)

)
dv

=

∫
Bxi

(0,r−)
p
(
expxi(v)

) ∫ |v|

0

∫ t

0
γ̈v,i(s)dsdtdv +

∫
Bxi

(0,r−)
vp
(
expxi(v)

)
dv.

(6.21)
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Completely analogous definitions and statements can be introduced to represent bj .

With the objective of using the formula (6.21) to compare bi and bj we relate vectors

in TxiM with vectors in TxjM by a convenient linear isometry Fij : TxiM 7→ TxjM

constructed using parallel transport.

Lemma 6.2.6. Suppose that xi and xj are such that dM(xi, xj) ≤ r. Let ϕ : t ∈ [0, dM(xi, xj)]

7→ ϕ(t) ∈ M, be the arc-length parameterized geodesic starting at xi at time zero and passing

through xj at time t = dM(xi, xj). For an arbitrary vector v ∈ TxiM let Vv be the (unique)

vector field along ϕ that solves the ODE


D
dtVv(t) = 0, t ∈

(
0, dM(xi, xj)

)
,

Vv(0) = v,

,

where D
dt denotes the covariant derivative (on M) along the curve ϕ. Then, the map Fij

defined by

Fij : v 7−→ ṽ := Vv
(
dM(xi, xj)

)
is a linear isometry. Moreover,

|v − ṽ| ≤ 1

R
|v|dM(xi, xj), ∀v ∈ TxiM. (6.22)

Proof. First note that Fij is a linear isometry since the ODE defining Vv is linear and the

vector fields Vv are parallel to the curve ϕ by definition. To get the estimate (6.22) we can

use the fundamental theorem of calculus and write

ṽ = v +

∫ t

0
V̇v(s)ds,

where t := dM(xi, xj). The fact that Vv is parallel along the curve ϕ implies that V̇v(s) ∈
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Tϕ(s)M⊥ and furthermore that for arbitrary unit norm η with η ∈ Tϕ(s)M⊥ we have

|⟨V̇v(s), η⟩| = |⟨Sη(Vv(s)), ϕ̇(s)⟩| ≤ ∥Sη∥|Vv(s)||ϕ̇(s)| = ∥Sη∥|v|,

where Sη is the so called shape operator representing the second fundamental form (see

Proposition 2.3 Chapter 6 in Do Carmo and Flaherty Francis [1992]). The relevance of the

previous inequality is that when combined with Proposition 6.1 in Niyogi et al. [2008] (which

shows that the operator norm of the second fundamental form is bounded by 1/R) it implies

that

|V̇v(s)| ≤
|v|
R
, ∀s ∈ [0, t].

Therefore,

|ṽ − v| ≤
∫ t

0
|V̇v(s)|ds ≤

|v|
R
dM(xi, xj),

establishing in this way the desired bound.

From now on, for a given v ∈ Bxi(0, r−) we let ṽ ∈ Bxj (0, r−) be its image under Fij .

We consider the curve

γṽ,j(t) := expxj

(
t
ṽ

|ṽ|

)
, t ∈ [0, |ṽ|],

where we recall that |v| = |ṽ| because Fij is a linear isometry. We can then make a change

of variables and write bj as

bj =

∫
Bxi

(0,r−)
p
(
expxj (ṽ)

) ∫ |v|

0

∫ t

0
γ̈ṽ,j(s)dsdtdv +

∫
Bxi

(0,r−)
ṽp
(
expxj (ṽ)

)
dv. (6.23)

In the next lemma we find bounds for the norms of accelerations.

Lemma 6.2.7. Let v ∈ Bxi(0, r−) and let ṽ be as in Lemma 6.2.6. Then, for all t ∈ [0, |v|]

we have

|γ̈v,i(t)| ≤
1

R
,
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and

|γ̇v,i(t)− γ̇ṽ,j(t)| ≤ 2
|v|
R

+
dM(xi, xj)

R
.

Proof. The first inequality appears in the proof of Proposition 2 in Niyogi et al. [2008] and

is obtained in a completely analogous way as we obtained the bound for V̇v in the proof of

Lemma 6.2.6 (given that unit speed geodesics are auto parallel).

To prove the second estimate, we notice that from the first bound and (6.19) it follows

that ∣∣∣∣γ̇v,i(t)− v

|v|

∣∣∣∣ ≤ |v|
R
, ∀t ∈ [0, |v|].

Naturally, a similar inequality holds for γṽ,j . Using Lemma 6.2.6 we conclude that for all

t ∈ [0, |v|] (recall that |v| = |ṽ|)

|γ̇v,i(t)− γ̇ṽ,j(t)| ≤
∣∣∣∣ v|v| − ṽ

|ṽ|

∣∣∣∣+ ∣∣∣∣γ̇v,i(t)− v

|v|

∣∣∣∣+ ∣∣∣∣γ̇ṽ,i(t)− ṽ

|ṽ|

∣∣∣∣
≤ 1

|v|
|v − ṽ|+ 2

|v|
R

≤
dM(xi, xj)

R
+ 2

|v|
R
.

From our assumption that the density p was in C2(M) it follows that

p
(
expxi(v)

)
= p(xi) + ⟨∇p(xi), v⟩+Ri(v),

p
(
expxj (ṽ)

)
= p(xj) + ⟨∇p(xj), ṽ⟩+Rj(ṽ),

where ∇p(xi) is the gradient (in M) of p at the point xi, and the remainder terms satisfy

max{|Ri(v)|, |Rj(ṽ)|} ≤ Cp|v|2,
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for a constant Cp that depends on a uniform bound on second derivatives of p. Likewise,

max{|p(xi)− p(xj)|, |∇p(xi)−∇p(xj)|} ≤ CpdM(xi, xj).

Plugging the previous identities in the expressions (6.21) and (6.23), using

∫
Bxi

(0,r−)
p(xi)vdv = 0,

∫
Bxi

(0,r−)
p(xj)ṽdṽ = 0,

inequality (6.22), the bound on accelerations from Lemma 6.2.7, and finally Assumption

6.1.2, we can conclude that

∣∣bi − bj
∣∣ ≤ ∫

Bxi
(0,r−)

∫ |v|

0

∫ t

0

∣∣p(xj)γ̈ṽ,j(s)− p(xi)γ̈v,i(s)
∣∣dsdtdv + Cp

R
αmr

m+2(r + dM(xi, xj)
)

≤ pmax ·
∫
Bxi

(0,r−)

∫ |v|

0

∫ t

0

∣∣γ̈ṽ,j(s)− γ̈v,i(s)
∣∣dsdtdv

+

∫
Bxi

(0,r−)

∫ |v|

0

∫ t

0

∣∣p(xj)− p(xi)
∣∣∣∣γ̈v,i(s)∣∣dsdtdv + Cp

R
αmr

m+2(r + dM(xi, xj)
)

≤ pmax ·
∫
Bxi

(0,r−)

∫ |v|

0

∫ t

0

∣∣γ̈ṽ,j(s)− γ̈v,i(s)
∣∣dsdtdv + Cp

R
αmr

m+2(r + dM(xi, xj)
)
.

(6.24)

In the above, Cp is a constant that depends on derivatives of p of order 1 and order 2 (and

in particular is equal to zero when p is constant) and αm is the volume of the m-dimensional

unit ball.

Proposition 6.2.5 now follows from the next lemma where we bound the difference of

accelerations.

Lemma 6.2.8. Let v ∈ Bxi(0, r−) and let ṽ be as in Lemma 6.2.6. Then, for all t ∈ [0, |v|]
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we have

∣∣γ̈v,i(t)− γ̈ṽ,j(t)
∣∣ ≤ (2√m

R2
+ CM

)(
2|v|+ dM(xi, xj)

)
+ 2CM

(
|v|
R

+
dM(xi, xj)

R

)
,

where CM is a constant that depends on M (a third order term).

Proof. For a fixed t ∈ [0, |v|] we let

x := γv,i(t), x̃ := γṽ,j(t).

We start by constructing a convenient linear map

η ∈ TxM⊥ 7→ η̃ ∈ Tx̃M⊥.

For this purpose we use an orthonormal frame E1, . . . , Em on a neighborhood (in M)

of x containing the geodesic connecting x and x̃ . The frame is constructed by parallel

transporting an orthonormal basis E1(x), . . . , Em(x) of TxM along geodesics emanating

from x. Now, associated to η ∈ TxM⊥ we define the (normal) vector field Nη by

Nη := η −
m∑
l=1

⟨El, η⟩El.

Equivalently, Nη can be written as

Nη(z) = Πz(η),

where for a point z ∈ M, Πz denotes the projection onto TzM⊥ (the orthogonal complement

of the tangent plane at z).

Let ϕxx̃ be the arc-length parameterized geodesic with ϕxx̃(0) = x and ϕxx̃(t̃) = x̃. We

restrict the vector field Nη to the curve ϕxx̃ and abuse notation slightly to write Nη(s) and
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Ej(s) for the value of the vector fields at the point ϕxx̃(s). We let η̃ := Nη(t̃) and notice

that

|η − η̃| =

(
m∑
l=1

⟨El(t̃), η⟩2
)1/2

=

(
m∑
l=1

⟨El(t̃)− El(0), η⟩2
)1/2

≤
√
mdM(x, x̃)|η|

R
, (6.25)

where in the last line we have used that |El(t̃)−El(0)| ≤ t̃
R (proved in the exact same way

as (6.22)).

Let η ∈ TxM⊥ be a unit norm vector and let η̃ be as constructed before. Since Nη is a

normal vector field which locally extends η we can follow the characterization for the shape

operator in Proposition 2.3 Chapter 6 in Do Carmo and Flaherty Francis [1992] and deduce

that:

⟨γ̈v,i(t), η⟩ = ⟨Sη(γ̇v,i), γ̇v,i(t)⟩ = ⟨ d
dt
Nη(γv,i(t)), γ̇v,i(t)⟩.

Moreover, the smoothness of the manifold M allows us to extend Nη smoothly to a neigh-

borhood in Rd of x and x̃ (we also use Nη to represent the extension). Indeed, for any point

z in a tubular neighborhood of M of width smaller than R we can define

Nη(z) := Nη(ProjM(z)),

where ProjM is the projection onto M (which is well defined for points within distance R

from M). The smoothness of Nη in particular implies that

∥DNη(x)−DNη(x̃)∥ ≤ CM|x− x̃| ≤ CMdM(x, x̃),

∥DNη(x̃)∥ ≤ CM,

whereDNη is the matrix of derivatives of the vector fieldNη, and where CM is some constant

that only depends on M. With this extension at hand, we can then use the chain rule and
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write:

⟨γ̈v,i(t), η⟩ = ⟨DN(x)γ̇v,i(t), γ̇v,i(t)⟩,

and in a similar fashion

⟨γ̈ṽ,j(t), η⟩ = ⟨γ̈ṽ,j(t), η − η̃⟩+ ⟨γ̈ṽ,j(t), η̃⟩ = ⟨γ̈ṽ,j(t), η − η̃⟩+ ⟨−DN(x̃)γ̇ṽ,j(t), γ̇ṽ,j(t)⟩.

Using the triangle and Cauchy-Schwarz inequalities we obtain

|⟨γ̈v,i(t)− γ̈ṽ,j(t), η⟩| ≤|γ̈ṽ,j ||η − η̃|+ ∥DN(x)−DN(x̃)∥|γ̇v,i|2+

∥DN(x̃)∥|γ̇v,i − γ̇ṽ,j |(|γ̇ṽ,j |+ |γ̇v,i|)

≤
√
m

R2
dM(x, x̃) + CMdM(x, x̃) + 2CM

(
|v|
R

+
dM(xi, xj)

R

)
.

Since the above inequality holds for all η ∈ TxM⊥ with norm one, we conclude that

|Πx(γ̈v,i(t))− Πx(γ̈ṽ,j(t))| ≤
√
m

R2
dM(x, x̃) + CMdM(x, x̃) + 2CM

(
|v|
R

+
dM(xi, xj)

R

)
,

where we recall Πx represents the projection onto TxM⊥. Moreover, since γ̈v,i(t) is the

acceleration of a unit speed geodesic passing through x, we know that γ̈v,i(t) ∈ TxM⊥, so

that Πx(γ̈v,i) = γ̈v,i. Similarly we have Πx̃(γ̈ṽ,j) = γ̈ṽ,j (where Πx̃ represents projection

onto Tx̃M⊥ ) . Hence

|γ̈v,i(t)− γ̈ṽ,j(t)| ≤ |Πxγ̈v,i(t)− Πxγ̈ṽ,j(t)|+ |Πxγ̈ṽ,j(t)− γ̈ṽ,j(t)|, (6.26)

and so it remains to find a bound for |Πxγ̈ṽ,j(t)− γ̈ṽ,j(t)|. We can write

Πxγ̈ṽ,j = γ̈ṽ,j −
m∑
l=1

⟨γ̈ṽ,j , El(0)⟩El(0).
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Therefore,

|γ̈ṽ,j−Πxγ̈ṽ,j | =

(
m∑
l=1

⟨γ̈ṽ,j , El(0)⟩2
)1/2

=

(
m∑
l=1

⟨γ̈ṽ,j , El(0)− El(t̃)⟩2
)1/2

≤
√
m
dM(x, x̃)

R2
.

Putting everything together we deduce that

|γ̈v,i − γ̈ṽ,j | ≤ (2

√
m

R2
+ CM)dM(x, x̃) + 2CM

(
|v|
R

+
dM(xi, xj)

R

)
≤ (2

√
m

R2
+ CM)(2|v|+ dM(xi, xj)) + 2CM

(
|v|
R

+
dM(xi, xj)

R

)
,

where in the last step we have used the triangle inequality

dM(x, x̃) ≤ dM(x, xi) + dM(xi, xj) + dM(xj , x̃) ≤ 2|v|+ dM(xi, xj).

Remark 6.2.9. Notice that the computations in the proof of Proposition 6.2.5 also show

that

|bi| ≤ Crm+2, i = 1, . . . , n.

Indeed, this can be seen directly from (6.21), Lemma 6.2.7 (which bounds the acceleration

term), and the fact that the first term on the right-hand side of the following expression drops

by symmetry:

∫
Bxi

(0,r−)
p(expxi(v))vdv = p(xi)

∫
Bxi

(0,r−)
vdv +

∫
Bxi

(0,r−)
(⟨∇p(xi), v⟩+Ri(v))vdv.
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6.2.5 Bounding Sampling Error

We will make use of two concentration inequalities to bound the sampling error. We first

recall Hoeffding’s inequality.

Lemma 6.2.10 (Hoeffding’s inequality). Let w1, . . . , wn be i.i.d samples from a random

variable w taking values in the interval [0,1] and let w be the sample average. Then,

P (|w − E[w]| > t) ≤ 2e−2nt2 .

The next is a generalization for random vectors that follows directly from the simple and

elegant work Pinelis [1992] (more precisely, Theorem 3).

Lemma 6.2.11. Let W1, . . . ,Wn be i.i.d samples from a random vector W such that |W | ≤

M for some constant M , and E[W ] = 0. Let W be the sample average. Then,

P
(∣∣∣W − E

[
W
]∣∣∣ >√M2

n
t

)
≤ 2e−t2/16.

Proposition 6.2.12. Suppose Assumption 6.1.3 holds. Then,

P

∣∣yi − Ei[yi]
∣∣ >√ 2m+4

αmpmin
r3

 ≤ 4e−cnrmax{2m,m+4}
, where c = min

{
α2mp

2
min

4m+2
,
1

16

}
.

In particular, if nrmax{2m,m+4} ≫ 1, then
∣∣yi −Ei[yi]

∣∣ ≤√ 2m+4

αmpmin
r3 with high probability.

Proof. Let Ni be the number of points in B(yi, r). Notice that x̃i + z̃i − Ei[X̃i + Z̃i] is

centered and bounded by 2r in norm, and yi = x̃i + z̃i. Then Lemma 6.2.11 implies

Pi

∣∣yi − Ei[yi]
∣∣ >√4r2

Ni
t

∣∣∣∣∣Ni

 ≤ 2e−t2/16.
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By the law of iterated expectations it follows that

P

∣∣yi − Ei[yi]
∣∣ >√4r2

Ni
t

 ≤ 2e−t2/16.

Next note that Ni, the number of points yj in B(yi, r), can be bounded below by Ñi, the

number of points xj that lie in the ball BM(xi, r−). Thus,

P
(∣∣ȳi − Ei[ȳi]

∣∣ >√4r2

Ñi

t

)
≤ 2e−t2/16. (6.27)

Now we find probabilistic bound for Ñi. Let wj = 1{xj ∈ B(xi, r−)}. Then given xi, the

wj are i.i.d samples from Bernoulli(qi), where qi = µ
(
BM(xi, r−)

)
. Lemma 6.2.10 implies

Pi
(∣∣Ñi − nqi

∣∣ > nt
∣∣xi) ≤ 2e−2nt2 .

Again by the law of iterated expectation and rearranging terms, we have

P
(
Ñi < n(qi − t)

)
≤ 2e−2nt2 . (6.28)

Combining (6.27) and (6.28), we obtain

P

∣∣yi − Ei[yi]
∣∣ >√ 4r2

n(qi − s)
t

 = P

∣∣yi − Ei[yi]
∣∣ >√ 4r2

n(qi − s)
t, Ñi < n(qi − s)


+ P

∣∣yi − Ei[yi]
∣∣ >√ 4r2

n(qi − s)
t, Ñi ≥ n(qi − s)


≤ P

(
Ñi < n(qi − s)

)
+ P

(∣∣yi − Ei[yi]
∣∣ >√4r2

Ñi

t

)

≤ 2e−2ns2 + 2e−t2/16.
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Under Assumption 6.1.3, (6.11) implies qi ≥ αmpmin
2m+1 rm. Taking s = αmpmin

2m+2 rm and t =
√
nrm+4, we see that

P

∣∣yi − Ei[yi]
∣∣ >√ 2m+4

αmpmin
r3

 ≤ 2e
−

α2mp2min
4m+2 nr2m

+ 2e−nrm+4/16 ≤ 4e−cnrmax{2m,m+4}
,

where c = min

{
α2
mp2min
4m+2 , 1

16

}
. The result then follows.

Theorem 6.1.4 now follows by combining Lemma 6.2.4, Propositions 6.2.3, 6.2.5, and

Proposition 6.2.12 together with a union bound.

6.3 From Local Regularization to Global Estimates

In this section we use the local estimates (6.7) to show spectral convergence of ∆Ȳn,ε
towards

the continuum Laplace-Beltrami operator. We first make some definitions. Recall that the

graph Γδ,ε = ([n],W ) has weights

W (i, j) =
2(m+ 2)

αmεm+2n
1{δ(i, j) < ε},

where m is the dimension of M and αm is the volume of the m−dimensional Euclidean unit

ball. For a function u : [n] → R, we denote its value on the i-th node as u(i). We then define

the discrete Dirichlet energy of u as

Eδ,ε[u] =
m+ 2

αmεm+2n

n∑
i=1

n∑
j=1

1{δ(i, j) < ε}|u(i)− u(j)|2

and the L2 norm of u as

∥u∥2 =
1

n

n∑
i=1

|u(i)|2.

258



Given that ∆δ,ε is a positive semi-definite operator, we can use the minimax principle (see

for example Lieb and Loss [2001]) to write

λℓ(Γδ,ε) = min
L

max
u∈L\{0}

Eδ,ε[u]

∥u∥2
,

where λℓ(Γδ,ε) is the ℓ-th smallest eigenvalue of ∆Γδ,ε
and the minimum is taken over all

subspaces L of dimension ℓ. The following lemma compares the eigenvalues of the discrete

graphs constructed using δXn
and δȲn

.

Lemma 6.3.1. Let η be the bound in (6.7) so that for all i, j with dM(xi, xj) ≤ r we have

∣∣δXn
(i, j)− δȲn

(i, j)
∣∣ ≤ η.

Suppose that ε is chosen so that ε ≥ 2Cmη, for some universal constant C. Then,

(
1− Cm

η

ε

)
λℓ(ΓXn,ε−η) ≤ λℓ(ΓȲn,ε

) ≤
(
1 + Cm

η

ε

)
λℓ(ΓXn,ε+η). (6.29)

Proof. We first compare the Dirichlet energies. Since δXn
(i, j) < δȲn

(i, j) + η, we have

EȲn,ε
[u] =

m+ 2

αmεm+2n

∑
i

∑
j

1{δȲn
(i, j) < ε}|ui − uj |2

≤ m+ 2

αmεm+2n

∑
i

∑
j

1{δXn
(i, j) < ε+ η}|ui − uj |2

=
(ε+ η

ε

)m+2
EXn,ε+η[u]

≤
(
1 + Cm

η

ε

)
EXn,ε+η[u]. (6.30)

Now we use the minimax principle to show the upper-bound on (6.29). Let u1, . . . , uℓ be the

first l eigenvectors of ∆Xn,ε+η and let L = span{u1, . . . , uℓ}. Then dimL = ℓ and for any
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u ∈ L, EXn,ε+η[u] ≤ λℓ(ΓXn,ε+η)∥u∥2. Then by (6.30), we have

λℓ(ΓȲn,ε
) ≤ max

L\0

EȲn,ε
[u]

∥u∥2
≤
(
1 + Cm

η

ε

)
max
L\0

EXn,ε+η[u]

∥u∥2
=
(
1 + Cm

η

ε

)
λℓ(ΓXn,ε+η).

By a similar argument applied to ΓXn,ε−η and ΓȲn,ε
, we get the lower-bound in (6.29).

Remark 6.3.2. With the convergence of eigenvalues and the relationship between the Dirich-

let energies it is also possible to make statements about convergence of eigenvectors (or better

yet, spectral projections).

The spectral convergence towards the continuum (Theorem 6.1.6) is a consequence of the

following theorem, proved in [García Trillos et al., 2019a, Corollary 2].

Theorem 6.3.3. Let d∞ be the ∞-OT distance between µn and µ. Suppose ε satisfies the

conditions in Equation (6.9) and that Assumptions 6.1.1 and 6.1.2 hold. Then

|λℓ(ΓXn,ε)− λℓ(M)|
λℓ(M)

≤ C̃

(
d∞
ε

+
(
1 +

√
λℓ(M)

)
ε+

(
K +

1

R2

)
ε2
)
,

where C̃ only depends on m and the regularity of p.

Combining Lemma 6.3.1 and Theorem 6.3.3 gives Theorem 6.1.6.

6.4 Numerical Experiments

In this section we present a series of numerical experiments where we conduct local regular-

ization on three different datasets. In Section 6.4.1 we consider a toy example with artifi-

cial data generated by perturbing points sampled uniformly from the unit, two-dimensional

sphere embedded in Rd with d = 100. We show that the approximation of the hidden

Euclidean distances between unperturbed points is significantly improved by locally regu-

larizing the data, and that this improvement translates into better spectral approximation
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of the spherical Laplacian. Our numerical findings corroborate the theory developed in the

previous two sections. In Section 6.4.2 we consider the two-moon and MNIST datasets

and show that graphs constructed with locally regularized data can be used to improve the

performance of a simple graph-based optimization method for semi-supervised classification.

6.4.1 Distance & Spectrum

Here we study the effect of local regularization on distance approximation and spectral con-

vergence, as an illustration of the results from Sections 6.2 and 6.3. In our toy model we

consider uniform samples from the unit two-dimensional sphere M = S embedded in Rd,

with d = 100. The motivation for such a choice is that the eigenvalues of the associated

Laplace-Beltrami operator on S are known explicitly (see for example Olver). Indeed, af-

ter appropriate normalization, ∆S admits eigenvalues ℓ(ℓ + 1), ℓ ∈ N, with corresponding

multiplicity 2ℓ+ 1.

The dataset is generated by sampling n = 3000 points xi uniformly from the sphere and

adding uniform noise zi normal to the tangent plane, and bounded by σ in norm. To be

more precise, the noise is normal to the sphere for the first three dimensions and uniform in

all directions for the rest dimensions. Local regularization is performed by taking r ∝
√
σ

and the graph is constructed with ε = 2n−1/4. The optimal proportion constant in r is not

obvious from our theory and in the experiments below we choose r =
√
σ/3 for σ = 0.1 and

r =
√
σ for the rest of the σ’s. We first show that the ȳi give a better approximation of

the pairwise distances of the xi than the yi do. We only consider those nodes i, j such that

δXn
(i, j) < ε (i.e. the nodes that are relevant for the construction of the graph Laplacians).

More precisely, letDXn
be the matrix whose ijth entry is δXn

(i, j)1{δXn
(i, j) < ε}. Similarly,

we define [DYn
]ij = δYn

(i, j)1{δXn
(i, j) < ε} and [DȲn

]ij = δȲn
(i, j)1{δXn

(i, j) < ε}. In

Table 6.1 we compare the entrywise ∞-norm of the DXn
−DYn

and DXn
−DȲn

for different

values of σ. We see that the improvement is substantial.
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σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9
∥DXn

−DYn
∥∞ 0.095 0.298 0.505 0.723 0.937

∥DXn
−DȲn

∥∞ 0.084 0.090 0.087 0.093 0.144

Table 6.1: Entrywise ∞-norm of DXn
−DYn

and DXn
−DȲn

on S for several σ’s.

Next we study the spectral approximation of Laplacians by comparing the spectra of

∆Xn,ε, ∆Yn,ε with that of ∆Ȳn,ε
. Note that since the xi are uniformly distributed, the

density p on S that they are sampled from is constant and equal to 1
volM . So for the spectra

of the graph Laplacians to match in scale with that of ∆S , the weights should be rescaled

according to

W (i, j) =
2(m+ 2)vol(M)

αmεm+2n
,

where vol(M) is the volume of the manifold and equals 4π in this case. In Figure 6.1 we

compare the first 100 eigenvalues of ∆Xn,ε, ∆Yn,ε, and ∆Ȳn,ε
with the continuum spectrum.

We see that when the noise size is large, the Euclidean graph Laplacian ∆Yn,ε does not give a

meaningful approximation of the continuum spectrum, while the locally regularized version

∆Ȳn,ε
still performs well.

Remark 6.4.1. While our theory in Section 6.2 suggests the choice r ∝
√
σ in the small r

and large n limit, for practical purposes some other scalings may give better results. Indeed

for the above σ’s, choosing r = σ seems to give better spectral approximation. The choice of

the local-regularization parameter will be further investigated in Section 6.4.2.2 in the context

of a semi-supervised classification task, where a data-driven (cross-validation) approach can

be used.
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(a) σ = 0.1 (b) σ = 0.2 (c) σ = 0.3

(d) σ = 0.4 (e) σ = 0.5 (f) σ = 0.6

(g) σ = 0.7 (h) σ = 0.8 (i) σ = 0.9

Figure 6.1: Comparison of spectra of continuum Laplacian, ∆Xn,ε, ∆Yn,ε and ∆Ȳn,ε
for

different values of σ.

6.4.2 Classification

In this subsection we demonstrate the practical use of local regularization by applying it

to classification problems. To show the potential benefits, we consider synthetic and real

datasets, namely the two moons and MNIST datasets. Since in one of our experiments we

study a real dataset, where in general the connectivity parameter in an ε graph is hard to

tune, we instead consider fully connected graphs with self-tuning weights. Precisely, given

a similarity δ : [n]× [n] → [0,∞) we define, following Zelnik-Manor and Perona [2005], the
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weights by

W (i, j) = exp

(
− δ(i, j)2

2τ(i)τ(j)

)
, (6.31)

where τ(i) is the similarity between the i-th data point and its K-th nearest neighbor with

respect to the distance δ. As before, we denote by ΓXn
, ΓYn

and ΓȲn
the graphs constructed

with similarities δXn
, δYn

, and δȲn
. Instead of specifying a universal ε representing the

connectivity length-scale, the neighborhood for each point is selected from using the local

geometry which varies in space. It amounts to choosing different values of ε adaptively

depending on the local scale, as proposed in Zelnik-Manor and Perona [2005]. Since the τ(i)

are defined by consideringK-nearest neighbors, a natural variant of the above fully connected

graph is to set the weights to be 0 whenever xi and xj are not among the K-nearest neighbors

of each other. In other words, we can construct a (symmetrized) K-NN graph with the same

K as in the definition of τ(i) and the nonzero weights are the same as above. It turns out that

empirically this K-NN version can improve the classification performance substantially, but

to illustrate the local regularization idea, we will present results for both graph constructions.

We shall denote these two types of graphs as fully-connected and K-NN variants for brevity,

or fully and K-NN for short.

In the following, we focus on the semi-supervised learning setting where we are given n

data points with the first J being labeled. The classification is done by minimizing a probit

functional as explained below. Let ∆δ be a normalized graph Laplacian constructed on the

dataset, which will be constructed using Xn, Yn and Ȳn and ∆δ = I − D−1/2WD−1/2 as

compared with (6.4). Let (λi, qi), i = 1, . . . , n be the associated eigenvalue-eigenvector pairs,

and let U = span{q2, . . . , qn}. The classifier is set to be the sign of the minimizer u of the
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functional

J (u) :=
1

2c
⟨u,∆δu⟩ −

J∑
j=1

log
(
Φ(y(j)u(j); γ)

)
, with c := n

( n∑
i=2

λ−1
i

)−1
,

where {y(j)}Jj=1 is the vector of labels and Φ is the cdf of N (0, γ2). The functional J can

be interpreted as the negative log posterior in a Bayesian setting, as discussed in Bertozzi

et al. [2018]. Throughout our experiments we set γ = 0.1.

6.4.2.1 Two Moons

We first study the two moons dataset (Bühler and Hein [2009]), which is generated by

sampling points uniformly from two semi-circles of unit radius centered at (0, 0) and (1, 0.5)

and then embedding the dataset in Rd, with d = 100. We then perturb the data by adding

uniform noise with norm bounded by σ. As before, the noise in the first two dimensions

are normal to the semicirlces; the noise is taken to be uniform in the ambient space in

the remaining dimensions. In addition to the semi-supervised setting, we also examine the

unsupervised case.

We consider n = 1000 points 1% of which have labels and we set K = 10. As pointed out

in Remark 6.4.1, we choose the regularization parameter r to be equal to σ. We compare

the approximation of distance matrix and classification performance on Xn,Yn, and Ȳn’s,

as in Table 6.2 and Figure 6.4. Instead of comparing nodes that are within δXn
-distance

ε, we consider nodes that are K-nearest neighbors of each other with respect to δXn
. As

before, the regularized points Ȳn approximate the pairwise distances better and moreover,

they improve the classification performance. Especially for the fully-connected case, we see

that Ȳn is able to capture the exact correct labeling as the clean data does for moderate σ’s,

while the noisy data Yn is making mistakes even when σ is as small as 0.3.

For further understanding, in Figure 6.3 we plot the first two coordinates of the points
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σ = 0.1 σ = 0.3 σ = 0.5 σ = 0.7 σ = 0.9
∥DXn

−DYn
∥∞ 0.109 0.344 0.589 0.795 0.996

∥DXn
−DȲn

∥∞ 0.064 0.164 0.240 0.372 0.431

Table 6.2: Entrywise ∞-norm of DXn
− DYn

and DXn
− DȲn

on two moons for different
values of σ.

(a) Fully-connected. (b) K-NN variant.

Figure 6.2: Classification error rates for ΓXn
, ΓYn

and ΓȲn
on two moons for different values

of σ.

in Xn, Yn and Ȳn for large values of σ. We see that after local regularization, the first

two coordinates of Ȳn lie almost on the underlying manifold. The denoising effect of local

regularization is apparent. Furthermore, we observe that the semicircles for Ȳn are “shorter"

than those of Xn. In other words, points near the ends are pulled away from the boundaries.

Moreover, if one looks carefully at the plots for Ȳn, points are denser near the top and

bottom. This illustrates that local regularization not only reduces noise, but also moves

points to regions of high probability. We refer to Chen et al. [2016], Fukunaga and Hostetler

[1975] and the references therein for some discussion on mean-shift and mode-seeking type

algorithms.

Remark 6.4.2. The two moons dataset is sampled from a manifold with boundaries, and so

our theory does not directly apply. However, the numerical results seem to suggest that our

theory continues to hold in this setting.
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(a) σ = 0.1.

(b) σ = 0.5.

(c) σ = 0.9.

Figure 6.3: Visualization of the point clouds Xn, Yn, and Ȳn. Each row contains scatter
plots of the first two coordinates of the points in the datasets Xn, Yn, and Ȳn.

Remark 6.4.3. Additional numerical experiments not shown here suggest that applying local

regularization within unsupervised spectral clustering gives qualitatively similar results to

those shown in Figure 6.2 for a semi-supervised setting.

6.4.2.2 MNIST

In this subsection we apply local regularization on the MNIST data-set of hand-written

digits (LeCun [1998]). Each digit is described by a 784-dimensional vector, but the number
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of degrees of freedom of the data-generating mechanism is much smaller. For instance, in

Hein and Audibert [2005] the authors estimate the intrinsic dimension of the digits 1 from

MNIST to be 8. However, unlike in the previous examples, here there is no explicitly available

underlying manifold from which the digits are sampled. Instead of adding additional noise

to the dataset, we directly apply local regularization to the digits and show that doing

so improves their binary classification. Since the level of noise is unknown choosing the

localization parameter r cannot be guided by the theory and in our experiments, we tune it by

performing 2-fold cross validation on the label sets. When there are few labels, we repeatedly

generate holdout sets and compare the overall error. Due to this practical difficulty of tuning

r, we propose two variants of ΓȲn
that can serve as alternatives in practice.

We study the classification performance of ΓȲn
for different pairs of digits. We consider

a semi-supervised learning problem with n = 1000 images and K = 20 for the K-nearest

neighbor variant. Table 6.3 shows the classification error percentage for four different pairs

of digits when 4% of the digits are labeled. Table 6.4 shows the decrease on the classification

error on the pair 4&9 as the percentage of labeled digits is increased.

Fully 3&8 5&8 4&9 7&9 K-NN 3&8 5&8 4&9 7&9
ΓYn

27.7% 48.0% 48.0% 48.0% ΓYn
7.6% 5.5% 13.3% 7.3%

ΓȲn
13.4% 17.4% 30.0% 15.3% ΓȲn

6.0% 3.6% 9.6% 5.4%

Table 6.3: Classification error for different pairs of digits 3&8, 5&8, 4&9, and 7&9.

Fully 4% 8% 12% 16% K-NN 4% 8% 12% 16%
ΓYn

48.0% 42.7% 38.8% 29.4% ΓYn
13.3% 10.9% 7.6% 5.1%

ΓȲn
30.0% 26.1% 21.9% 18.2% ΓȲn

9.6% 6.4% 6.0% 4.5%

Table 6.4: Classification error for 4&9 with different number of labels.

Again the K-NN variant performs much better than the fully-connected graph. As in

Table 6.3, we see that except for the pair 3&8, the classification error for the other three pairs

with ΓYn
is 480: after respecting the 40 labels, the other 960 images are classified as part

of the same group. However, after regularization, the classification error is greatly reduced
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(a) Threes in MNIST. (b) Eights in MNIST.

Figure 6.4: Visualization of the regularization effects. The second row is the regularized
version of the corresponding image in the first row. While arguably more blurred, the digits
in the second row are more homogeneous within each group, making classification easier.

with ΓȲn
. The same is true when we use the K-NN variant, but the improvement is smaller.

Similarly as in Table 6.4, the improvement for local regularization becomes less dramatic as

we go from the fully-connect graph to its K-NN variant and as the number of labels increases.

This implies that there is certainly a limit for the improvement that local regularization can

provide. Moreover, such improvement is most effective when label information is limited and

one has to extract information from the geometry. Our theory and our experiments show

that local regularization improves the recovery of geometric information and thereby boosts

the classification performance in that scenario. We present a visualization of the effect of

local regularization in Figure 6.3. The two rows represent the image before and after local

regularization respectively. We can see that especially for the eights, many of the images

get “fixed" after regularization. Moreover, at a high level, images within each group in the

second row look more similar among themselves than those in the first row. Because of this

we expect the classification to be better.

Remark 6.4.4. The four chosen pairs of digits are the hardest pairs to classify but local

regularization can improve the performance for other pairs too. For unsupervised spectral

clustering, local regularization still gives improvement, but using cross validation to choose

r is no longer possible.

6.4.3 Future Directions

As mentioned above, the practical choice of r can be challenging. We propose two alternatives

that may be easier to work with and investigate their competence on the MNIST dataset.
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6.4.3.1 k-NN regularization

This is a natural variant of ΓȲn
based on k-nearest neighbor regularization. Instead of

specifying a neighborhood of yi of radius r, we simply regress the data by averaging over

its k nearest neighbors. Here k is not necessarily the same as K (the number of neighbors

used to construct a similarity graph). Conceptually, choosing k amounts to setting different

values of r at different points in such a way that the resulting neighborhoods contain roughly

the same number of points. This construction is easier to work with since k is in general

easier to tune than r.

6.4.3.2 Self-tuning regularization

This is a global regularization variant that does not require hyper parameters. Instead of

averaging over a neighborhood of radius r, we take a global weighted average of the whole

point cloud, where the weights are proportional to the similarities between the yi. More

specifically, we define a new distance in terms of the points ŷi, where

ŷi =
n∑

j=1

W (i, j)yj ,

and W (i, j) is the defined as in (6.31). We see that points far from yi have small contribution

in the definition of ŷi and so essentially one ends up summing over points in a neighborhood

that is implicitly specified by the similarities. For points close to yi, the weights are roughly

on the same order. Hence ŷi can be seen approximately as ȳi plus a small contribution

from points that are far from yi. We expect this construction to behave a little worse

than the ΓȲn
with optimal r. However, the fact that this construction does not require

the tuning of any hyper-parameter makes it an appealing choice. Table 6 compares the

classification performance of all graphs mentioned above (with the four different choices of

distance function, and the two alternatives to build similarity graphs).
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Fully 3&8 5&8 4&9 7&9 K-NN 3&8 5&8 4&9 7&9
ΓYn

27.7% 48.0% 48.0% 48.0% ΓYn
7.6% 5.5% 12.8% 7.3%

ΓȲn
13.4% 17.4% 36.9% 15.3% ΓȲn

6.9% 3.6% 9.7% 5.4%
k-NN 11.5% 7.4% 43.1% 18.3% k-NN 5.3% 5.9% 9.6% 6.1%

self-tuning 16.1% 13.9% 33.4% 26.3% self-tuning 7.6% 3.1% 8.8% 5.6%

Table 6.5: Comparison of classification errors with 4% labeled data.

Remark 6.4.5. The idea of using labels to learn r (or k) can be understood as a specific

instance of a more general idea: to use labels to better inform the learning of the underlying

geometry of a dataset. What is more, one can try to simultaneously learn the geometry of the

input space with the learning of the labeling function, instead of looking at these two problems

in sequential form. This will be the topic of future research.

6.5 Appendix: Estimating r− and r+

6.5.1 Estimating r−

We want to find values of t > r
2 for which for all v ∈ TxiM with |v| ≤ t, and for all

η ∈ Texpxi(v)
M⊥ with |η| ≤ σ we have

|expxi(v) + η − yi| < r.

We will later take the maximum value of t for which this holds and set r− to be this maximum

value.

Let x = expxi(v). First, with the parallel transport map used in the proof of the geometric

bias estimates (as in (6.25)) we can associate a vector η̃ ∈ TxiM⊥ to a vector η ∈ TxM⊥

with norm less than σ, for which

|η − η̃| ≤ m

R
σt.
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Now,

|x+ η − yi| ≤ |x− xi + η̂ − zi|+ |η − η̂|

=
(
|x− xi|2 + 2⟨x− xi, η̂ − zi⟩+ |η̂ − zi|2|

)1/2
+ |η − η̂|

≤
(
|x− xi|2 + 2⟨x− xi, η̂ − zi⟩+ |η̂ − zi|2|

)1/2
+
m

R
σt.

We have

|x− xi| ≤ dM(x, xi) = |v| ≤ t,

and also

⟨x− xi, η̂ − zi⟩ = ⟨x− (xi + v), η̂ − zi⟩,

as it follows from the fact that η, zi ∈ TxiM⊥ and v ∈ TxiM. Using this, Cauchy-Schwartz,

and (6.20) we conclude that

|⟨x− (xi + v), η̂ − zi⟩| ≤ 2σ|x− (xi + v)| ≤ 2σ
|v|2

R
,

and hence

|x+ η − yi| ≤
(
t2 +

4

R
σt2 + 4σ2

)1/2

+
mσt

R

= t

√1 +
4σ

R
+

4σ2

t2
+
mσ

R


≤ t

√1 +
4σ

R
+

16σ2

r2
+
mσ

R

 .

From the above it follows that r− defined as

r− := r

√1 +
4σ

R
+

16σ2

r2
+
mσ

R

−1

, (6.32)
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satisfies the desired properties and moreover

r − r− ≤ r

1−

√1 +
4

R
σ +

16σ2

r2
+
mσ

R

−1
 . (6.33)

6.5.2 Estimating r+

To estimate r+, we need the following lemma proved in García Trillos et al. [2019a].

Lemma 6.5.1. Suppose x, x̃ ∈ M are such that |x− x̃| ≤ R/2. Then

|x− x̃| ≤ dM(x, x̃) ≤ |x− x̃|+ 8

R
|x− x̃|3. (6.34)

To construct r+ we find values of t with 2r ≥ r + σ > t > 0 such that if |v| > t then

| expxi(v) + ση − yi| ≥ r

for all η ∈ Texpxi(v)
M⊥ of norm no larger than σ. As in the construction of r− we let
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x := expxi(v). Similar computations give

|x+ η − yi| ≥ |x− xi + η̂ − zi| − |η − η̂|

=
(
|x− xi|2 + 2⟨x− xi, η̂ − zi⟩+ |η̂ − zi|2|

)1/2
− |η − η̂|

≥
(
|x− xi|2 + 2⟨x− xi, η̂ − zi⟩+ |η̂ − zi|2|

)1/2
− m

R
σ|v|

≥
((

|v| − 1

R
|v|3
)2

− 4

R
σ|v|2

)1/2

− m

R
σ|v|

≥ |v|

(√
1− 2|v|2

R
− 4σ

R
− mσ

R

)

≥ |v|

(√
1− 8r2

R
− 4σ

R
− mσ

R

)

≥ t

(√
1− 8r2

R
− 4σ

R
− mσ

R

)
,

where in the third inequality we have used (6.34) to conclude that

| expxi(v)− xi| ≥ dM(x, xi)− C(dM(x, xi))
3 = |v| − C|v|3.

We can then take t to be such that the right hand side of (6.33) is equal to r. That is, we

can take

r+ := r

(√
1− 8r2

R
− 4σ

R
− mσ

R

)−1

.

From these estimates we see that

r+ − r− ≤ c

(
r3 + rσ +

σ2

r

)
.
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