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ABSTRACT

This dissertation aims to provide new methods of interrogating the nature of electronic

dynamics in chiral materials. The superiority of photosynthetic light harvesting over any

man-made solar light harvesting devices motivates the study of how chirality affects light

harvesting.

A two-dimensional ultrafast chiral spectroscopy is designed and built. This new instru-

mentation has the capability to provide vital and unique insight into ‘handed’ electronic

dynamics. The theory behind the cancellation of achiral background is described. Great

care is taken in the engineering of this instrument to optimize a very small signal against a

large background.

A novel approach to two-dimensional electronic spectroscopy in the pump-probe geometry

is described. The ability to combine the background-free nature of the BOXCARS geometry

with the inherent phase stability of the pump-probe geometry and a temporally separated

LO results in a ‘best of both worlds’ spectrometer.

A new model for the extraction of energy transfer time constants from two-dimensional

electronic spectra is described. This method is further extended to the interpretation of two-

dimensional circular dichroism spectroscopy. The result is the ability to extract ’handed’

energy transfer time constants from a simple three level model.

Lastly, several future direction projects are proposed. First, the study of chiral memory

in chiral aggregates of achiral porphyrin monomers. Then, the study of chiral dynamics in

quantum dots capped with chiral ligands in the hopes of elucidating more about the origin

of the QD’s CD signal. Then, an experiment to confirm a theoretically surface specific 2DES

technique is proposed. And finally, a novel mixed electronic-Raman experiment is proposed

to track the effect of groundstate vibrations on the outcome of photochemical reactions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Efficiently harvesting the sun’s energy has been goal towards which human kind has been

working for decades. Many different routes have been taken to realize this goal, from

biomimetic organic structures, to solid state semiconductors. Across the board, it is rec-

ognized that photosynthesis is still the most efficient light harvesting mechanism we know

of, by almost an order of magnitude. Therefore, it makes sense to start with biology as our

teacher when it comes to efficiently harvesting sunlight. There are many physical explana-

tions for how evolution has honed this skill so impressively including utlizing downhill energy

transfer to drive the movement of an excitation across space [1, 2]. But, this thesis focuses

on the fact that all of biology is chiral as a point of interest.

All proteins are made up of amino acid building blocks and amino acids are chiral. If

something is chiral, this means that it cannot be superimposed on its own mirror image [3].

It stands to reason that chirality may play a part in how photosynthesis became so efficient.

It has even been shown that enantiopure organic photovoltaic devices can show improved

conversion efficiencies [4]. Additionally, chiral nanomaterials are of great interest for biomed-

ical, optoelectronic and enantioselective applications [5–8]. The goal of this research is to

provide experimental insight into chiral electronic dynamics to aid in the advancement of

solar light harvesting technologies.

1.2 Introduction to Spectroscopy

Spectroscopy is the study of light-matter interactions [9]. A light-matter interaction happens

when a photon is absorbed or emitted by a material. All of the colors that we can see are a

direct consequence of the fact that light absorption is quantized, meaning that only discrete
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amounts of energy can be absorbed. This comes from the fact that electrons can only exist in

quantized energy levels. So when a photon is absorbed, an electron is promoted a level due

to conservation of energy. Therefore, only photons of particular energies will be absorbed

by a given material [10].

Not only can the energy from the photons be transferred to and from a material, but it

can also be transferred between states on the same molecule, as well as between neighboring

molecules. The movement of this energy is generally categorized as coherent or incoherent.

Coherent energy transfer is characterized as ‘wave-like’ and maintains phase across the trans-

fer process [2]. Incoherent energy transfer is characterized as ‘hopping’ and is generally a

somewhat random process governed by probabilities and random walks [11]. Spectroscopists

have developed a multitude of different spectroscopies to understand the structure and func-

tion of materials based on how light interacts with them. These more complex experiments

and their founding theory is described in Chapter 2.

1.3 Circular Dichroism Spectroscopy

Circular dichroism spectroscopy is a steady state measurement which records a spectrum

that is the difference between absorption of left hand circularly polarized light (LCP) and

right hand circularly polarized light (RCP). The polarization of light is the direction in

which the electric field oscillates. For circularly polarized light, this electric field vector

actually rotates around the axis of propagation of the wave. This method is one of the

main ways we have to understand chiral electronic structure. This signal is only nonzero

for molecules which are chiral. This comes from the fact that chiral molecules are circularly

birefringent. A birefringent material has a polarization-dependent index of refraction. Thus

chiral molecules have a different index of refraction for LCP and RCP. Then as a consequence

of the Kramers-Kronig relation [12] they also have a different absorption spectrum for LCP

and RCP and thus their difference is nonzero. Achiral molecules, on the other hand, have
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no polarization-dependent response when it comes to LCP or RCP. Because chirality is a

consequence of molecular arrangement, circular dichroism is widely used as a very sensitive

probe of structure. This tool becomes even more impactful when time resolution is added

to follow chiral dynamics. An instrument which does just that is described in Chapter 3.

Another well-known characteristic of chiral molecules is their ability to rotate linearly

polarized light. This effect is known as Optical Rotatry Dispersion (ORD) and is the dis-

persive counterpart to CD and therefore contains the same information as CD [13]. The

polarization rotation resultant from ORD also can be explained by the circular birefringence

of chiral molecules. Because linearly polarized light can be expressed as a superposition of

RCP and LCP, these different components will travel at different speeds through a chiral

medium due to the differences in their index of refraction. When expressed in the linear

polarization basis this delay results in an overall rotation of the linear polarization.

1.3.1 Time-Resolved Chiral Spectroscopy

The steady state measurements of absorptive CD and dispersive ORD are extremely useful

techniques but due to the relative small strength of these signals, enhancing the sensitivity of

these techniques was vital before time-resolved measurements could be achieved [14]. In order

to achieve millisecond time resolution the first Pockels cell was developed for fast switching

between LCP and RCP [14]. Briefly, a Pockels cell is an electrically controlled birefringent

material that can be triggered to delay orthogonal components of linearly polarized light by

+λ
4 or −λ

4 , which when expressed in the circular polarization basis results in LCP and RCP.

This electronic control of polarization allowed millisecond time-resolved CD to be achieved.

One approach to increasing the sensitivity of these experiments was to choose to measure

the changing polarization characteristics of an incident light source, rather than the direct

measurement of the intensity of the small chiral signal [13, 14]. If a beam of elliptical

polarization is incident on a chiral medium, the circular dichroism of that medium will

3



result in the RCP component of that beam being absorbed a different amount than the

LCP component. Thus, if a linear polarizer oriented at the minor axis of the ellipse is

placed after the sample, how that intensity differs from a reference beam can be mapped

onto the circular dichroism [14]. Small changes in the circular dichroism of the sample

will result in significantly larger changes in this measured intensity, making this a more

sensitive measurement [14]. Alternatively, the CD and ORD can both be measured through

polarization monitoring in an experiment developed by Rhee et al [13]. Briefly, when a

linearly polarized coherent femtosecond pulse is incident on a chiral sample its polarization

undergoes changes that are caused both by the circular dichroism and circular birefringence

of the material. The circular dichroism results in the linear beeam becoming elliptically

polarized due to the differential absorption of its RCP and LCP components. The circular

birefringence causes the LCP and RCP components to travel at different speeds resulting in

an overall rotation of the beam’s polarization, a direct result of ORD. By measuring the fields

which are parallel and perpendicular to the incident field and heterodyning with a reference

pulse, one is able to directly obtain the complex optical activity susceptibility which contains

both CD and ORD [13].

Other advances in the picosecond regime have involved pump-probe experiments where

the pump is depolarized, and the probe alternates elecronically between RCP and LCP

[14–16]. The depolarized pump here is a vital component as a linearly polarized pump at

short enough times could cause the experiment to be dominated by linear dichroism signals

due to the excited states having memory of the orientation of the first interaction [14].

Advancements in ultrafast laser light sources allowed for these experiments to be performed

with picosecond to femtosecond time resolution.
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Polarization Gratings

Another way to achieve ultrafast chiral information was to introduce polarization grat-

ings [17–19].This idea stems from transient grating spectoscopy in which two ultrafast laser

pulses of the same polarization are incident on a sample at the same time but with different

wavevectors such that they have a defined crossing angle. This causes the beams to interfere

spatially at the sample, resulting in an intensity grating. A third pulse, called the probe is

then able to diffract off this grating, carrying molecular information [19]. Now, when those

two initial fields are polarized orthogonal to one another what results is what is called a po-

larization grating [17]. This grating is a sinusoidal oscillation between RCP and LCP across

the sample in space. This grating then only exists for a sample in which there is differential

absorption between RCP and LCP. This results in a thermal grating due to nonradiative

relaxation, which in turn modulates the index of refraction of the sample which allows the

probe to scatter off this dispersive grating in a unique, phase-matched direction [19]. The use

of polarization gratings then results in an ultrafast chiral experiment that is background-free.

Two-Dimensional Techniques

All ultrafast chiral techniques discussed up to this point have been only one-dimensional

techniques, meaning they have only one axis of frequency resolution. More recent advances in

experiment and theory have resulted in opening the door to chiral correlation spectroscopies

[3, 20–24]. Correlation spectroscopies allow for two axes of frequency resolution which can

be vital in congested spectra. They also allow for the direct monitoring of energy transfer

processes. One major theoretical advance was the isolation of the third order chiral signal

through linear polarization control of the four fields in four wave mixing (4WM) and three

wave mixing (3WM) spectroscopies, both of which allow for two-dimensional experiments [3].

The two-dimensional 4WM experiment has been realized once by Engel and coworkers [21].

This experiment was achieved in a background-free geometry and resulted in a unique insight
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in to dynamic exciton delocalization. But there are practical reasons why this experiment

has only ever been successful once. This will be discussed in the next section.

1.4 Challenges of Two-Dimensional Circular Dichroism

Spectroscopy

There are many reasons why two-dimensional chiral spectroscopy has only been experimen-

tally realized once, one main reason being the small signal strength. The chiral signal is

typically orders of magnitude weaker than then its achiral counterpart [14]. When attempt-

ing to measure a third-order nonlinear chiral signal, this issue is multiplied. The work in this

thesis combats that small signal by performing this experiment in a pump-probe geometry

which excites more molecules than a typical BOXCARS geometry. Choosing the pump-probe

geometry the presents issues of its own including not being background-free. Attempting to

measure a signal as small as the chiral signal on the large background of the probe pulse

presents a major challenge. Another issue for small signals is shot-to-shot laser fluctuations

which can often dominate pump-probe experiments where consecutive laser shots are used

to subtract the probe background. Additionally, any contamination from scatter can over-

whelm this small signal. Because the chiral signal is dwarfed by any achiral impurities, the

imperfections in commercially available linear polarizers create a major barrier [20]. And

lastly, physical interpretation of these complex signals can be extremely difficult without

extensive theoretical modeling. The work in this thesis has resulted in viable solutions to

each of the many issues presented here. More detailed theoretical descriptions can be found

in Chapters 2 and 3. Experimental design and data processing solutions can be found in

Chapters 3 and 4. Modeling and data interpretation can be found in Chapter 5.
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CHAPTER 2

THEORY OF NONLINEAR SPECTROSCOPY

Nonlinear spectroscopy is an important tool in understanding chemical dynamics. It has been

developed over the years into many different ordered experiments including the third-order

experiments which are the focus of this dissertation. All the many ordered spectroscopies

stem from the same basic theoretical origin developed by Mukamel [1], the basics of which will

be explained in this chapter. This serves as the theoretical basis on which our spectroscopies

are built. This unifying theory has helped spectroscopists communicate the meaning of their

findings in a more consistent way [2, 3].

2.1 Density Matrix Formalism

Nonlinear spectroscopy aims to interrogate energetic landscapes and their dynamics. The

most obvious place to start when one wants to know about the energetics of a quantum

mechanical system is the Schrödinger equation:

Ĥ|ψ⟩ = E|ψ⟩ (2.1)

where Ĥ is the Hamiltonian operator, ψ is the wavefunction which fully describes the state

of the system, and E is the eigenvalue which describes the energetics of the system

But, because we want to know about quantum dynamics, we want to add time dependence

to equation 2.1:

d

dt
|ψ(t)⟩ = − i

ℏ
Ĥ(t)|ψ(t)⟩ (2.2)

It is convenient to separate the time-dependent portion of the Hamiltonian out such that:

Ĥ(t) = Ĥ0 + V̂ (t) (2.3)
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where Ĥ0 is time-independent and describes the material, and V̂ (t) contains the time-

dependence in the electric field:

V̂ (t) = −E(t) · µ̂ (2.4)

where µ̂ is the transition dipole operator which is what couples the material to the electric

field.

In the semiclassical approximation where the light source is treated classically and the

material is treated quantum mechanically, then we say E(t) = E0 cos(ωt) [2].

In our spectroscopy, and in most nonlinear spectroscopies, the sample being studied is

an ensemble, not a single quantum mechanical object. Therefore, the wavefunction, ψ is not

sufficient to describe the system. We then need to introduce the density matrix which is

able to describe statistical mixtures in a way the wavefunction is unable to do.

The density matrix is defined as:

ρ ≡ |ψ⟩⟨ψ| (2.5)

where |ψ⟩ is the wavefunction ket and ⟨ψ| is its conjugate transpose, the bra. Thus the

density matrix is the outer product of the wavefunction with itself.

There are a few rules that govern how the density matrix may behave [4]:

1. When properly normalized, tr(ρ) = 1.

2. It is always true that tr(ρ2) ≤ 1.

3. For a pure state, tr(ρ2) = 1.

4. The density matrix is always Hermitian, or ρij∗ = ρij .

5. For the expectation value of some observable, A, ⟨A⟩ = tr(Aρ).
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Here a pure state refers to one which can be completely described by a wavefunction [5].

A mixed state is then a mixture of pure states, or a statistical mixture [5]. The density

matrix is able to describe statistical mixtures because it can also be written as

ρ =
∑
s

ps|ψs⟩⟨ψs| (2.6)

When the density matrix is written this way, it can describe both populations and coher-

ences within the same ensemble. Populations occur when both sides of the density matrix

are the same state, |ψi⟩⟨ψi|. Coherences indicate that the material is in a coherent superpo-

sition of two states, |ψi⟩⟨ψj |. The time evolution of populations usually can be represented

by exponential decay functions. Signals which originate from coherences oscillate at the

frequency of the energy difference between the two states in superposition.

If one was to write the wavefunction as a sum of multiple wavefunctions, the physical

meaning becomes a coherent superposition (a pure state), which is physically distinct from

a statistical mixture (a mixed state). Therefore, we want to write equation 2.2 in terms of

the density matrix instead of the wavefunction.

d

dt
ρ = − i

ℏ
[Ĥ, ρ] (2.7)

Equation 2.7 is also referred to as the Louiville-von Neumann equation.

When the density matrix is expanded perturbatively we get equation 2.8 for a density

matrix of order n. The details of this expansion can be found in reference [2].

ρ(n)(t) = −
(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1E(τn)E(τn−1) . . . E(τ1) (2.8)

·e−
i
ℏĤ0(t−t0)[µ̂(τn), [µ̂(τn−1), . . . [µ̂(τ1), ρ(t0)] . . . ]]e

+ i
ℏĤ0(t−t0)
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where

µ̂(t) = e+
i
ℏĤ0(t−t0)µ̂e−

i
ℏĤo(t−t0)

The density matrix is what contains the information about the system. Unfortunately,

we cannot directly measure the density matrix, we can only indirectly measure the material

response to our electric field in the form of the macroscopic polarization, which will be

described in the next section.

2.2 Macroscopic Polarization

The observable that we measure in nonlinear spectroscopy is the macroscopic polarization.

This polarization occurs when an oscillation of charges in the material is driven by the

oscillating electric field of the light interacting with it. The polarization, P (t), is the expec-

tation value of the dipole operator, µ̂, which in terms of the density matrix is written as

P (t) = tr(µ̂ρ(t). Then the nth-order polarization is:

P (n)(t) = tr(µ̂ρ(n)(t)) (2.9)

= −
(
− i

ℏ

)n ∫ t

t0

dτn

∫ τn

t0

dτn−1 . . .

∫ τ2

t0

dτ1E(τn)E(τn−1) . . . E(τ1)

⟨µ̂(t)[µ̂(τn), [µ̂(τn−1), . . . [µ̂(τ1), ρ(t0)] . . . ]]⟩

Then changing our time variables from absolute times to time intervals, we get

P (n)(t) =

∫ ∞

0
dtn

∫ ∞

0
dtn−1 . . .

∫ ∞

0
dt1 (2.10)
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E(t− tn)E(t− tn − tn−1 . . . E(t− tn − . . .− t1)R
(n)(tn, . . . , t1)

Where R(n) is the nth-order nonlinear response function:

R(n)(tn, . . . , t1) = −
(
− i

ℏ

)n

⟨µ̂(tn+. . .+t1)[µ̂(tn−1+. . .+t1), . . . [µ̂(0), ρ(−∞)] . . . ]⟩ (2.11)

which is what contains the information about the dynamics of the system we are interested

in. The response function describes how the quantum mechanical material responds to the

classical electric field pulses pushing it out of equilibrium. The time delays, t1 through tn

are what enforce time ordering on the system.

The nonlinear spectroscopy experiments described here are all third-order experiments.

The third-order nonlinear polarization is then written as

P (3)(t) ∝
∫ ∞

0
dt3

∫ ∞

0
dt2

∫ ∞

0
dt1E3(t− t3)E2(t− t3 − t2) (2.12)

·E1(t− t3 − t2 − t1)R
(3)(t3, t2, t1)

with

R(3)(t3, t2, t1) ∝ −i⟨µ̂(t3 + t2 + t1)[µ̂(t2 + t1), [µ̂(t1), [µ̂(0), ρ(−∞)]]]⟩ (2.13)

2.2.1 Double Sided Feynman Diagrams

As shown in the previous section the response function can get quite convoluted and long

even just for third-order. This is why Feynman diagrams are an elegant way to represent

the nonlinear response function diagramatically. Here we describe what the rules are that
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govern double sided Feynman diagrams [1, 2].

1. Time moves vertically, increasing from bottom to top.

2. The two vertical lines represent sides of the density matrix. The left side being the

bra, and the right side being the ket.

3. Arrows indicate light-matter interactions. An arrow pointing in indicates an excitation,

and an arrow pointing out indicates a dexcitation.

4. The sign of the diagram, or pathway, is determined by (−1)n where n is the number

of light-matter interactions on the right (bra) side of the diagram.

5. Because the real part of the electric field contains both positive and negative frequen-

cies, an arrow pointing to the right contributes Eje
−iωjt+ikj ·r to the polarization, and

an arrow pointing to the left contributes E∗
j e

iωjt−ikj ·r.

6. The frequency and wavevector of the emitted signal must be the sum of the frequencies

and wavevectors of the input electric fields with their appropriate signs.

7. The last interaction, the emission of the signal, must result in a population state. By

convention, the signal arrow is on the left (ket) side and pointing outward.

Double sided Feynman pathways provide a great way to describe features on a transient

absorption or 2DES spectrum. An example of a Feynman pathway describing a positive

ground state bleach (GSB) pathway can be found in figure 2.1.

2.3 Two-Dimensional Electronic Spectroscopy

Two-dimensional Electronic Spectroscopy (2DES) is a nonlinear optical technique aimed at

measuring the dynamics of electronic excited states and their couplings [1, 3, 6, 7]. This
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section aims to describe the theoretical origin of the 2DES signal as well as the basics of

interpreting a 2DES correlation map.

2.3.1 The Third-order Nonlinear Optical Signal

The 2DES signal is a third-order signal typically measured as intensity (I) and integrated

over t3. The 2DES signal homodyne is shown in equation 2.14.

S(t1, t2) =

∫ ∞

0
|E(3)

sig(t3; t1, t2)|
2dt3 (2.14)

Typically the signal electric field, E
(3)
sig , is heterodyned with a local oscillator field, ELO,

in which case equation 2.14 becomes equation 2.15.

S(tLO; t1, t2) ∝
∫ ∞

0
|ELO(t3 − tLO) + E

(3)
sig(t3; t2, t1)|

2dt3 (2.15)

≈ ILO + 2ℜ
∫ ∞

0

{
ELO(t3 − tLO) · E

(3)
sig(t3; t1, t2)

}
dt3

In the semi-impulsive limit, the envelopes of the femtosecond pulses used to create this

signal are considered to be Dirac delta functions [2]. In this case, the signal becomes pro-

portional to the third-order material response:

S(t1, t2, t3) ∝ ELO · E(3)
sig ∝ ei(∓ϕ1±ϕ2+ϕ3−ϕLO)

∑
n

iRn(t1, , t2, t3) (2.16)

where eiϕ is a phase factor.

Typically the information from the 2DEs signal is Fourier transformed over the t1 and t3

dimensions so the material response can be looked at as coherence frequency (ω1), rephasing

frequency (ω3) correlation maps as a function of the waiting time (t2). After this Fourier

transform (and phase acquired is set to zero) equation 2.16 becomes equation 2.17.
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S(ω3, t2, ω1) =

∫ ∞

0

∫ ∞

0

∑
n

iRn(t3, t2, t1)e
iω1t1eiω3t3dt1dt3 (2.17)

2.3.2 Phase-Matching and the Third-Order Signal

Conservation of momentum requires that the wavevector of the signal must be the sum of

the wavevectors of the input pulses. The sign of each wavevector depends on which side

of the density matrix the light-matter interaction happens on, as well as whether the even

results in emission or absorption [8]. Generally, when using double sided Feynman diagrams,

an arrow pointing to the right has a positive wavevector, and an arrow pointing to the

left has a negative wavevector. As an example, take the double sided Feynman diagram

in Figure 2.1. For this material response pathway, the signal would emit in the direction

k1−k2+k3. Another example is given in Figure 2.2. This pathway is very similar to Figure

2.1, except that the coherence during t1 is evolving phase in the opposite direction. We

call the pathway in Figure 2.1 nonrephasing and the pathway in Figure 2.2 rephasing. The

rephasing pathway has a different phase-matched direction than the nonrephasing pathway

because the wavevectors of the first two interactions change sign: −k1 + k2 + k3.

As a consequence of this phase-matching requirement, one can design a 2DES experiment

where the signal is emitted in a unique direction and thus can be measured with no back-

ground. A beam geometry referred to as BOXCARS accomplishes this [3]. A BOXCARS

experiment has the three input beams and the local oscillator oriented on 4 corners of a

square box before and after the sample, as shown in Figure 2.3. The nonrephasing signal

naturally emits in the direction of the local oscillator but the rephasing signal will go in a

different direction [8]. But, one can take advantage of the fact that but switching the order of

pulses 1 and 2 one can flip the directions of the rephasing and nonrephasing signals, making

a second detector unnecessary [8]. When measuring these signals at separate times, it is then

necessary to recombine them to recover the purely absorptive signal using equation 2.18 [2].

18



Rabs = ℜ(Rrephasing(−ω1, ω3) +Rnonrephasing(ω,ω3)) (2.18)

Another common geometry for 2DES is the pump probe geometry. This experiment only

consists of 2 beams and so is much simpler than the boxcars geometry. Figure 2.4 shows

a pump-probe beam geometry 2DES experiment. Because in the pump-probe geometry

the wavevectors of the first two pulses are parallel, the rephasing and nonrephasing signals

travel in the same direction. This, along with the inherent phase stabilization effect of having

collinear pulses means that the signal obtained in pump-probe geometry 2DES is naturally

purely absorptive [1, 2, 8]. On the other hand, pump-probe geometry 2DES is unable to

separate rephasing and nonrephasing components (without phase cycling capabilities) which

can be useful in data interpretation. BOXCARS geometry 2DES is able to separate these

but at the cost of phase stability. Because all four beams must interact with different optics

at some point in the setup, the phase relationship between the pulses is easily lost to path

length fluctuations from vibrations. This means a second experiment is necessary to recover

that phase information in order to obtain a purely absorptive spectrum [9].

2.3.3 The 2DES Measurement and Interpretation

When the third-order signal is measured in 2DES, it is done so as a function of the precise

timing of three broadband, femtosecond, visible light pulses [3, 9]. The first and third time

delays are then Fourier transformed to create a frequency-frequency correlation map. A

diagram showing the timing of these pulses and their relationship to the 2D map is found

in Figure 2.5. The ω3 axis is generated by an optical Fourier transform through dispersion

off a grating and measurement on an array detector [6]. This domain of the signal is later

converted from wavelength to frequency and then Fourier interpolated to be linearly spaced

in frequency. The ω1 axis is Fourier transformed in post-processing.
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The ω1 axis can be interpreted as an excitation frequency axis. This comes from the fact

that in the 2DES signal, the ensemble is in a coherence during t1. Thus, the signal will be

oscillating at the frequency of the energy gap between the two electronic states in coherence.

This results in the Fourier transform of that signal being interpreted as an excitation fre-

quency spectrum. Similarly, the ensemble is in a coherence during t3 such that the Fourier

transform of the signal during t3 can be interpreted as a detection spectrum. In other words,

ω1 tells us about where the ensemble started, and ω3 tells us about where it ended up after

some time (t2) has passed.

On these correlation maps, there are spectral features that are present on the diagonal

(where ω1 = ω3) and some that are located off the diagonal (where ω1 ̸= ω3) and are called

cross peaks. The double-sided Feynman diagram in Figure 2.1 is an example of a diagonal

peak. The corresponding response function for that pathway is equation 2.19.

R1(t1, t2, t3) ∝ iµ4gee
+iωget1e−t1/T2e−t2/T1e−iωget3e−t3/T2 (2.19)

One can see from equation 2.19 that the function is oscillatory and decaying during t1

and t3 and simply decaying during t2. This is consistent with being in a coherence which

is dephasing during t1 and t3 and in a population state during t2. Because this function is

oscillating at the same frequency (ωge) in both t1 and t3, the feature will lie on the diagonal

of the correlation map.

2.4 Conclusions

We have presented an abridged version of the theory developed by Mukamel [1] which

describes the origin of two-dimensional optical spectroscopy signals. Starting from time-

dependent quantum mechanics and integrating density matrix formalism, we have built up a
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theoretically robust way to predict the overall signal from a superposition of many different

subensembles, coherent and incoherent. This formalism is extremely useful in understand-

ing how to design and interpret third-order nonlinear techniques, and it provides necessary

context for the rest of this thesis.
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t1

t2

t3

Figure 2.1: Example of a double-sided Feynman diagram. This particular diagram represents
a positive ground state bleach response function.
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t1

t2

t3

Figure 2.2: An example of a rephasing double sided Feynman diagram. This pathway has a
positive sign and physically corresponds to ground state bleach.
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Figure 2.3: Depiction of a BOXCAR geometry 2DES experiment. The three input beams
and the local oscillator beam are arranged in a square before and after the sample and overlap
in the sample. The measured signal then travels parallel to the local oscillator beam.
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Figure 2.4: Depiction of a pump-probe geometry 2DES experiment. Only two beams are
required. One beam contains pulses 1 and 2 collinearly, and the other contains pulse 3 and
the signal.
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Figure 2.5: Diagram of the 2DES pulse sequence and its relationship with the correlation
maps. A series of precisely timed pulses interrogates the sample producing a third-order
signal. This signal is dispersed in wavelength off of a grating and then measured on an array
detector. This acts as an optical Fourier transform over t3. The t1 delay is then Fourier
transformed in post-processing, resulting in coherence frequency (ω1) - rephasing frequency
(ω3) correlation maps at several waiting time (t2) delays.
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CHAPTER 3

TWO-DIMENSIONAL CIRCULAR DICHROISM

SPECTROSCOPY

Ultrafast spectroscopy techniques give insight into chemical processes by monitoring quan-

tum dynamics in real time [1–4]. The multitude of information contained in the nonlinear

response can result in vital knowledge being lost in the background of spectra. Utilizing

polarization control to select for specific tensors of this nonlinear molecular response has

been extensively applied to parse the plethora of information contained in multidimensional

spectroscopy [5–9]. One such signal that is often lost, and often assumed to be negligible, is

the chirality-induced signal [10]. These signals have been shown to be extremely sensitive to

structural changes as well as exciton delocalization [11–13].

The difficulty with these experiments lies in the fact that the chirality-induced signal is

several orders of magnitude weaker than the electric dipolar signal. Fortunately, the chiral

signal can be isolated through precise polarization control, though slight polarization errors

can quickly overwhelm the small chiral signal [11, 13]. We have designed two-dimensional

circular dichroism spectroscopy to overcome these issues and isolate the chiral signal robustly.

3.1 Theory of the Elimination of the Electric Dipole

Contribution

Abramavicius and Mukamel [10, 12, 14] have worked out an elegant way to classify nonlinear

signals as chiral or achiral. To determine which signals contain chiral information one needs

to use the parity operator, P. This operator performs a space inversion which negates the

coordinates of the object such that x→ −x, y → −y, and z → −z. For chiral molecules this

effectively results in interconversion between enantiomers. Linear circular dichroism spec-

troscopy is considered parity-odd because it changes sign for ensembles of opposite chirality.
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Signals which change sign upon inversion are classified as parity-odd and therefore vanish for

achiral samples and racemates, and signals which do not change upon inversion are classified

as parity-even. If the molecular response is written in terms of the transition current density,

j, we can see which terms contain chiral information:

jma(−k) = −iωµma − ω(k · rm)µma − ωQma · k+ ick×mma (3.1)

where k is the wavevector, µ is the electric transition dipole density, Q is the electric

transition quadrupole density, and m is the magnetic transition dipole density.

Within the dipole approximation all terms of the third-order response higher than zeroth

order in the wavevector, k, are neglected. This results in exclusively electric dipolar terms

(first term of equation 3.1) contributing to the signal. Since the electric transition dipole is

parity-even, these signals are also parity-even and therefore contain no chiral information.

When going beyond the dipole approximation, the molecular response is expanded to include

terms which are first order in wavevector (second through fourth terms of equation 3.1).

These additional terms are all parity-odd and therefore contain chiral information. The

chiral signals can be measured separately from the achiral terms by careful configuration

of the wavevector and polarizations of the incident pulses. The next step in developing a

chiral third-order experiment is determining the linearly independent tensors of the signal.

In order to do this, one must take into account the fact that the sample is isotropic. This

is accomplished by applying steps to rotationally average in three dimensions. A procedure

developed by Andrews and Thirunamachandran [15] and applied to third-order chiral signals

by Abramavicius and Mukamel [10, 12, 14] simplifies this problem to a straightforward matrix

formalism. Because the chiral third-order signals are linear in the wavevector, they are three-

dimensional tensors of rank five, corresponding to the polarizations of the four fields and the

direction of the wavevector. Therefore, we need to use equation 3.2.
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T (5) =
1

30



ϵv5v4v3δv2v1

ϵv5v4v2δv3v1

ϵv5v4v1δv3v2

ϵv5v3v2δv4v1

ϵv5v3v1δv4v2

ϵv5v2v1δv4v3





3 −1 −1 1 1 0

−1 3 −1 −1 0 1

−1 −1 3 0 −1 −1

1 −1 0 3 −1 1

1 0 −1 −1 3 −1

0 1 −1 1 −1 3





ϵα5α4α3δα2α1

ϵα5α4α2δα3α1

ϵα5α4α1δα3α2

ϵα5α3α2δα4α1

ϵα5α3α1δα4α2

ϵα5α2α1δα4α3


(3.2)

where ϵ is the Levi-Civita antisymmetric tensor, δ is the Kronecker delta, vi is a unit vector

in the lab frame, and αi is a unit vector in the molecular frame.

The left-most vector in equation 3.2 contains information about the field configuration in

the lab frame, the square matrix is system independent, and the rightmost vector contains

system information in the molecular frame. The lab frame field configuration vector can

be rewritten in terms of the four light-matter interactions and the dependent wavevector

as shown in equation 3.3. The wavevector is designated as ‘dependent’ in the case of a

noncollinear geometry because the field configuration is only dependent on one wavevector.

Seeing as equation 3.3 is a six element column vector, there must be six linearly independent

field configurations that satisfy it.

F
(5)
{v} =

1
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

v4 · (v3 × v2)(v1 · v′)

v4 · (v3 × v1)(v2 · v′)

v4 · (v3 × v′)(v2 · v1)

v4 · (v2 × v1)(v3 · v′)

v4 · (v2 × v′)(v3 · v1)

v4 · (v1 × v′)(v3 · v2)


(3.3)

where vi describe the polarizations of the fields, v′ is the dependent wavevector and

v = ex, ey, or ez are unit vectors in the lab frame.

When restrictions that the electric fields being considered are transverse and that the
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signal is x polarized and traveling the z direction are applied, six linearly independent vectors

result:

yxxx(z) →



0

0

0

0

0

1


, xyxx(z) →



0

0

0

0

1

0


, xxyx(z) →



0

0

1

0

0

0


(3.4)

zyxx(x) →



0

0

0

1

0

0


, xzyx(x) →



1

0

0

0

0

0


, zxyx(x) →



0

1

0

0

0

0


The notation for the field configuration begins with the polarizations of the fields in the order

of their interactions increasing from left to right, followed by the wavevector in parenthesis.

For example, the field configuration yxxx(z) signifies that the first field to interact with the

sample is polarized in the y direction, while the following two fields and the signal are all

polarized in the x direction, and the wavevector is oriented along the z direction.

The second row of tensors then vanish when considering only collinear experiments.

When following the pattern of one field being orthogonal to the other three, there is one

more tensor which can be expressed as a linear combination of the other three:
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yyyx(z) →



0

0

−1

0

−1

−1


= −yxxx(z)− xyxx(z)− xxyx(z) (3.5)

From here on, the dependent wavevector designation will be neglected as we assume the

experiment to be performed colinearly.

The yyyx and xxyx (yxxx and xyxx) tensors are considered “chiral probe” (“chiral

pump”) experiments as the chiral resolution is found on the detection (excitation) axis of

the spectrum. This chiral resolution can be interpreted as circular dichroism, or LCP-RCP

excitation or detection. The tensors’ linear independence along with equation 3.5 imply that

each of the two pumps or probes contain different physical information.

It is useful to think about the chiral pump sequence as a transient grating experiment.

Figure 3.1 depicts how orthogonally polarized fields crossing at an angle can produce a “chiral

grating” [16–18]. This comes from the fact that portions of the sample will experience LCP

or RCP depending on whether the x or y polarized beam is incident on the sample first. In

reality, the picture in Figure 3.1 is a bit simplified. The spatial phase variation across the

sample will actually cause a continuous sinusoidal transition betwen RCP and LCP passing

through 45 degree linearly polarized light [17]. Work by Fourkas et al [17] has shown that

this polarization grating can be broken down into four different intensity gratings: RCP and

LCP intensity gratings which are exactly out of phase with one another, and +45 and −45

degree linearly polarized intensity gratings that are exactly out of phase with one another

and just π
2 shifted from the RCP and LCP gratings. Because the linearly polarized gratings

are out of phase with one another, the only way that signal could arise from them is if there
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is differential absorption between the +45 and −45 degree polarized light, in other words,

if linear dichroism present in the sample. Because the sample is isotropic, there can be no

linear dichroism. Similarly, because the RCP and LCP gratings are our of phase with one

another, there can only be a signal if there is differential absorption between RCP and LCP,

which is circular dichroism. Thus, the only signal that can result from this field configuration

with an isotropic sample is a circular dichroism signal.

One potential issue that arises with this picture is the fact that this is a volume grating,

and so our two-dimensional picture is not fully accurate. In fact, due to ORD, the linear

polarizations of the beams will rotate as they go through the chiral sample, which could

scramble the polarization purity and result in artifacts [19]. The instrument described here,

along with most nonlinear spectroscopic instruments that are built in a transmissive geom-

etry, use a very short pathlength of 200µm and low optical density samples to minimize

reabsorption of the signal, which in turn helps to minimize these polarization impurities as

well.

In this picture of the chiral signal, one might conclude that the difference between the

two possible chiral pump sequences might just be a 180 degree phase shift (a sign change).

This statement is true, but only at t1 = 0 because that is the only time at which this chiral

grating picture is accurate. The physical interpretation of the uniqueness of these signals

at t1 ̸= 0 is a natural question. In some cases, it is more useful to describe the signal in

the x, y basis instead of the RCP,LCP basis. Take the chiral pumps for example: in yxxx,

the first interaction with the sample selects for transitions that project onto the y axis, then

the second interaction projects everything onto the x axis. In xyxx, the reverse is true and

intuitively the first two interactions interrogate the same physics just rotated 90 degrees. It

is when the third and fourth pulses enter the picture that the difference becomes apparent.

For yxxx, the third interaction is parallel to the second, while in xyxx, the third interaction

is orthogonal to the second. It is then reasonable to assume that given the same sample, a
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pulse sequence with two π
2 rotations will select for a different sub-ensemble than one with

only one π
2 rotation. The exact physical consequences of the differences between these signals

merits further investigation.

3.2 Optical design of instrumentation

3.2.1 Production of Ultrafast Pulses

Ultrafast laser pulses are produced with Coherent Micra oscillator seeded Legend Elite re-

generative amplifier. The output pulses of this system are centered at 800nm with a 30nm

bandwidth and a 35fs temporal profile at a repetition rate of 5kHz. These pulses are then

focused into a tube filled with argon gas for the nonlinear generation of broadband white

light in the visible range. An example of the spectrum after white light generation is pre-

sented in Figure 3.2. An image of the white beam is presented in Figure 3.3. This light

is then compressed to near the transform limit by using a combination of chirped mirrors

and a BioPhotonics Inc. Femtojock multiphoton intrapulse interference phase scan (MIIPS)

compression system.

3.2.2 Generation of Time Delays

The pulse is then split into the two arms of the spectrometer, pump and probe. An optical

layout of the instrument is provided in Figure 3.4. The pump arm is sent down a retroreflec-

tive translation stage (Aerotech Inc.) and the NIREOS Gemini 2D delay stage to encode the

waiting time (T) and coherence (τ) dimensions of the data, respectively. The Gemini 2D is

a birefringent wedge delay system that is able to produce a collinear and phase-locked pulse

pair from one input pulse [20]. A schematic of the Gemini 2D system, as shown in Figure

3.5, depicts how a time delay can be manipulated by projecting a pulse onto orthogonal axes

of a trio of birefringent crystals. The input pulse is polarized at 45 degrees. It is then pro-
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jected onto the orthogonal axes of the first crystal. This first crystal has its optical fast axis

oriented at 0 degrees (y axis) meaning the component of the pulse projected onto the y axis

will travel faster than the component on the x axis, creating a pulse pair. The next crystal

is cut into a pair of wedges and has its optical fast axis at 90 degrees (x axis). This results

in the opposite effect of the first block such that the x polarized components travel faster

than the y polarized components. The time between these orthogonally polarized pulses can

then be controlled with great precision by the thickness of the second crystal block. The

third crystal has its fast axis along the direction of propagation (z axis) meaning that it has

no effect on the time delay between the x and y polarized components. This block serves to

maintain a constant dispersion over the measurement, as well as a constant time between

pulses 2 and 3 (the waiting time) [20].

In the original design of the Gemini 2D, a polarizer was added to the end of the delay

line to project the two pulses back onto the 45 degree axis to create a parallel pulse pair [20].

The version used in this experiment was specifically ordered with this polarizer omitted.

The reason for this is that in order to measure the yxxx and xyxx tensors of the signal, one

needs the first two pulses to be orthogonally polarized. Measuring these tensors of the chiral

signal is often hindered by the polarization impurities introduced by standard polarizers and

waveplates [19]. But, by modifying this instrument one can generate an orthogonal pulse

pair with virtually no polarization impurities by taking advantage of the natural axes of a

birefringent crystal.

3.2.3 Background-Free Detection

When measuring the xxyx and yyyx tensors of the chiral signal, one can utilize the fact

that the signal is orthogonally polarized to the probe to create a background-free detection

scheme. A version of this was designed by Ogilvie and coworkers [8] in order to reduce the

often large probe background in a pump probe geometry 2DES setup. Briefly, the two pump
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pulses were polarized at 45 degrees to the probe, and a polarizer was placed after the sample

to remove most of the probe and measure the signal in a pseudo-background-free geometry.

This way the amplitude of the probe self-hetererodyne could be controlled without affecting

the probe power on the sample. Because some of the probe was allowed through for the

heterodyne, some of the all parallel (xxxx) signal was still measured.

Our setup modifies that design for a chiral pulse sequence as well as the addition of a

temporally separated local oscillator as shown in Figure 3.6. In the chiral probe sequences,

xxyx and yyyx, the probe is orthogonal to the signal allowing for background-free detection.

In our case we want to completely remove the probe using a Wollaston Prism polarizer

purchased from Thorlabs Inc. which has a 100,000:1 extinction ratio [21]. In the probe path

before the sample, a thin crystal of /alpha-BBO purchased from Union Optic Inc. is placed

such that the polarization of the probe is oriented slight off orthogonal to the optical fast

axis. This allows most of the probe to be delayed about 1.3ps behind a small orthogonally

polarized pulse which is used as a local oscillator. This local oscillator is then allowed

to pass through the Wollaston prism polarizer with the chiral signal. The local oscillator

then interferes with the signal on the camera allowing for retrieval of the signal phase, and

therefore dispersive components of the signal, that is not typically possible in pump probe

geometry 2DES. Additionally, when measuring the yyyx component of the signal, all scatter

from the pump and probe, as well as all transient absorption background should be removed

by the Wollaston prism polarizer before the sample.

3.3 Data Acquisition Referencing Protocol

When acquiring data for the yxxx and xyxx pulse sequences, the data cannot be recorded in

the background-free geometry as described above. This makes laser shot noise all the more

important as a large probe background must be subtracted from each spectrum. Typically,

in pump probe geometry 2DES, a chopper is used to block the pump arm every other laser
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shot so that a background of probe only can be acquired. Then this probe only spectrum is

subtracted from the pump-probe spectrum taken with the next laser shot. Therefore, any

shot-to-shot fluctuations in the laser spectrum will result in subtraction errors introducing

noise into the data. Single shot referencing has been often utilized in transient absorption

spectroscopy to remove this shot correlated noise. In a paper by Dobryakov and coworkers

[22], a single shot referencing protocol was developed for transient absorption spectroscopy

which we have modified for 2DES. In our protocol a beam splitter is used to take a small

portion of the probe before the sample and send it to a reference spectrometer, as shown in

Figure 3.7. Then for each laser shot a reference spectrum of just the probe is recorded for

the same laser shot that induces the signal. Each cycle then produced four spectra: reference

pump on, data pump on, reference pump off, and data pump off. A schematic describing the

basic program can be found in Figure 3.8. For each τ and T point, N cycles are recorded.

Then for one pixel, pi, at a time, the intensities on the reference and data cameras for the

pump on (pump off) shots for all N cycles are plotted against each other and the slope of

their least squares fit is recorded and called the quotient or q∗ (q0). The raw data is then

saved as those two quotients as a function of camera pixel, τ and T. Then the processed

data can be reconstructed using equation 3.6.

Esig =
q∗ − q0√

q0
(3.6)

Because q∗ contains the referenced signal-probe heterodyne as well as the probe intensity

and q0 contains just the referenced probe intensity, equation 3.6 isolates the signal electric

field.

This referencing protocol compensates quite well for intensity fluctuations which are

uniform across frequency. A potential issue arises that is not apparent in transient absorption

due to the frequency correlated nature of 2DES. In the case of a cross peak, a spectral

fluctuation that occurs at the excitation frequency will not be properly compensated for at

37



the detection frequency. This could potentially introduce additional noise or artifacts to the

cross peaks. Fortunately, most shot-correlated noise is a uniform intensity fluctuation across

frequency. A simple experiment correlating intensity fluctuations between random pixels can

determine if this method is reasonable to apply. If the noise is found to be correlated across

many different pixels, then this referencing protocol can be safely applied.

3.4 Data processing: scatter removal

The raw data acquired by the experiment is the intensity on the camera as a function of

pixel, coherence time (τ), and waiting time (T). As the cameras are calibrated with atomic

emission lamps filled with neon gas, a file is saved that maps camera pixel onto wavelength.

In a typical 2DES experiment done in the pump-probe geometry, the intensity on the camera

can be expressed in terms of all the electric fields which contribute, as shown in equation

3.7.

Icam = |E1 + E2 + Epr + Esig2D + EsigPP1 + EsigPP2|2 (3.7)

Where E1 and E2 are the two pump pulses, Epr is the probe pulse, Esig2D is the 2D

signal, and EsigPP1 and EsigPP2 are pump probe signals generated by the two pump pulses.

3.4.1 Chiral Pump Sequences

This equation changes a little bit depending on which chiral signal we are measuring. We can

utilize the fact that orthogonally polarized electric fields cannot interfere to remove some of

the scatter contributions. Let’s start with our chiral pump sequence yxxx. For this signal,

there is no temporally separated LO so we can just expand equation 3.7 as is.
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Icam = E2
1 +E2

2 +E2
pr +E2

sig2D +E2
sigPP1 +E2

sigPP2 +E1E2 +E1Epr +E1Esig2D (3.8)

+E1EsigPP1 + E1EsigPP2 + E2Epr + E2Esig2D + E2EsigPP1 + E2EsigPP2 + EprEsig2D

+EprEsigPP1 +EprEsigPP2 +Esig2DEsigPP1 +Esig2DEsigPP2 +EsigPP1EsigPP2 + C.C

In this equation the element we want to preserve while removing all others is EprEsig2D

which is the signal heterodyne with the probe. The reason we want this and not the signal

homodyne (E2
sig2D) is that the heterodyne will be much stronger and still contains the

information we want in the signal electric field. The first thing we notice is that a few of

these signals go away due to the field configuration. For example, E1E2 cannot exist because

E1 and E2 are orthogonally polarized and therefore cannot interfere. When we remove all

similar terms, including those which will be removed by a polarizer after the sample oriented

to only allow x polarized contributions, we obtain the equation:

Icam = E2
2 + E2

pr + E2
sig2D + E2

sigPP1 + E2
sigPP2 + E2Epr + E2Esig2D (3.9)

+E2EsigPP1 + E2EsigPP2 + EprEsig2D + EprEsigPP1 + EprEsigPP2

+Esig2DEsigPP1 + Esig2DEsigPP2 + EsigPP1EsigPP2 + C.C

We assume both of the pump-probe signal electric fields to be x polarized because those

are the electric dipolar contributions and therefore the dominant signals.

The rest of these scatter contributions can be removed in a Fourier domain filtering

method similar to Dalberg [23]. Each of these electric fields will behave differently from the
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signal in at least one of the three domains of coherence frequency, waiting frequency and

rephasing time and therefore can be removed by apodization of the signal.

Because the signal will oscillate in coherence time, due to the fact that it is in a coherence

in this domain, we can remove all contributions that do not oscillate in this domain. The

raw data can be Fourier transformed over the coherence time domain where a window can

be applied that removes all contributions near the zero component in coherence frequency.

Once this window is applied we are left with:

Icam = E2
sig2D+E2Esig2D+EprEsig2D+Esig2DEsigPP1+Esig2DEsigPP2+C.C. (3.10)

Similarly, the signal heterodyne should not oscillate in waiting time. Thus we can remove

contributions that do oscillate in waiting time by Fourier transforming and apodizing around

the zero component in frequency so all nonzero frequencies are removed. When we remove

the terms in equation 3.10 that oscillate in waiting time we get equation 3.11.

Icam = E2
sig2D + EprEsig2D + Esig2DEsigPP1 + Esig2DEsigPP2 + C.C. (3.11)

We can also remove terms that are far from zero in rephasing time. Because the probe

is not temporally separated from the signal, the signal heterodyne should show up at time

zero in rephasing time. Therefore, we can remove any contributions that are far from zero

in rephasing time. It turns out that in this case, all of the terms that would be removed by

this step have already been removed by other apodization steps. So, if we neglect the weak

signal homodyne and heterodynes of signal fields we are left with our 2D signal homodyne

as shown in equation 3.12.

Icam = EprEsig2D (3.12)
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3.4.2 Chiral Probe Sequences

The major difference between the scatter removal process for the chiral probe sequences is

the replacement of the probe field, which is removed by a Wollaston prism polarizer before

the camera, with a temporally separated LO field. We start with an equation very similar

to Equation 3.7 but we have removed the probe field and added the LO field.

Icam = |E1 + E2 + ELO + Esig2D + EsigPP1 + EsigPP2|2 (3.13)

Now we can remove fields that don’t interfere or survive a polarizer that removes anything

not x polarized. For the yyyx sequence this is trivial as all fields except the signal and LO

are removed before the camera resulting in Equation 3.14 when the weak signal homodyne

is neglected:

Icam = ELOEsig2D (3.14)

For the other chiral probe sequence (xxyx), the scatter contributions can be removed in

the τ and T domains using the same methods described in the chiral probe sequences section.

Scatter removal in rephasing time though is different because the signal heterodyne is no

longer at zero time because the LO is now temporally separated from the signal. This gives

us the additional ability of removing scatter which does not oscillate, or oscillates slowly in

rephasing frequency. For example, in the xxyx sequence, the E1E2 term cannot be removed

via apodization in τ or T, but it can be removed in t because τ only needs to be scanned

out to less than 100fs and so this interference will oscillate much slower than the signal

heterodyne because the LO is separated from the signal by about 1200fs. Thus, temporally

separating the LO allows for more robust scatter removal in the Fourier domain.
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3.5 Conclusions

We have designed and built a dedicated spectrometer for the study of ultrafast chiral dy-

namics. The design of this instrument allows the more robust measurement of these often-

neglected signals and their dynamics. By utilizing the natural polarization purity of bire-

fringent crystals, we can achieve purely chiral signals with no achiral background. We can

also achieve background-free detection in the pump probe geometry when selecting for chiral

probe signals. Again by utilizing birefringent crystals we can create a temporally separated

local oscillator to improve our signal strength and our scatter removal procedures. We have

applied a single shot referencing technique, that when used correctly can compensate for

laser shot correlated noise often found in pump-probe geometry experiments. All of these

design elements together allow for Two-dimensional Circular Dichroism spectroscopy to give

unprecedented insight into chiral electronic dynamics.
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Figure 3.1: Depiction of a chiral grating. Orthogonally polarized fields crossing at an angle
result in the sample experiencing a grating of LCP and RCP.

43



Figure 3.2: White light spectrum after self phase modulation in argon gas and filtering of
the fundamental with a sputtered edge shortpass filter.

44



Figure 3.3: Image of broadband laser light after self phase modulation in argon gas.
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Figure 3.4: Optical layout of the two-dimensional circular dichroism instrument.
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Figure 3.5: Depiction of birefringent wedge system utilized in NIREOS Gemini 2D. Arrows
depict the optical fast axis of each crystal.
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Figure 3.6: Detection scheme for background-free pump probe geometry two-dimensional
spectroscopy with a temporally separated local oscillator. By placing a thin piece of bire-
fringent material (α-BBO) in the probe path such that its optical fast axis is oriented a few
degrees off of orthogonal to the probe polarization, most of the probe is delayed about 1.3ps
but a small portion travels along the orthogonal optical fast axis. This creates a temporally
separated, orthogonally polarized local oscillator.
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Spectrometer

Probe
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Figure 3.7: Optical setup of single shot referencing protocol. A portion of the probe is sent
to a reference spectrometer with a beamsplitter before the sample in order to record shot-
to-shot fluctuations in the laser light source.
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Figure 3.8: Simplified diagram describing the basics of the referencing protocol data acquisi-
tion program. Red boxes indicate the original data aquisition program, blue boxes indicated
additions to incorporate the referencing protocol, and pink boxes are the referenced raw
data.
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CHAPTER 4

TWO-DIMENSIONAL ELECTRONIC SPECTROSCOPY IN

THE PUMP-PROBE GEOMETRY WITH A TEMPORALLY

SEPARATED LOCAL OSCILLATOR

Advances in ultrafast spectroscopy have been paramount to understanding dynamical sys-

tems in the past several decades [1–5]. The ability to resolve both frequency and time allow

for mapping of energy transfer pathways [6], as well as unique observation of spectral broad-

ening mechanisms [7]. The pump-probe geometry provides an opportunity to develop simple

and robust instrumentation for the acquisition of 2DES spectra [1, 2, 8–11].

4.1 Methods

Two-dimensional Fourier transform spectroscopy (2DFT) consists of three ultrafast, broad-

band pulses interacting with a sample to produce a third-order polarization which generates

a signal that can be imaged on a camera [12]. The three pulses and the signal naturally de-

fine three time domains, the first and third of which can be Fourier transformed to produce

a frequency-frequency correlation map. The second time domain is typically used to provide

the dynamical information about the system. The signal is generated in a phase-matched

direction which is determined by the wavevectors of the excitation pulses [13]. Typically, the

two main geometries used are the pump-probe geometry and the BOXCARS geometry. In

the pump-probe geometry the first two interactions are collinear and the third pulse, or the

probe, enters the sample at a small angle relative to the pump beam. The resulting signal

must then travel collinearly with the probe. This geometry results in a very phase stable

measurement but with a large background from the probe. The BOXCARS geometry, on the

other hand, has the three excitation pulses entering the sample at different angles, resulting

in the signal traveling in a unique phase-matched direction. In this geometry, the signal can
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be detected background-free, and an independent local oscillator can be added to heterodyne

with the signal on the camera. The downside to BOXCARS is the fact that because the

excitation pulses must all travel different paths, their phase relationship becomes unknown

and an additional experiment must be done to recover that phase information [14].

Advances in pump-probe geometry 2DFT have resulted in pseudo-background-free spec-

trometers published by Ogilvie and coworkers [1, 2] and Zanni and coworkers [15]. This

approach reduces the background by detecting some electric dipolar signals in which the sig-

nal is orthogonally polarized to the probe field such that a polarizer can be used to remove

most of the probe field. In their experiments, some of the probe field is allowed in to the

detector in order to heterodyne with the signal in a tunable way. Our approach utilizes a π
4

π
4

π
4 0 polarized pulse sequence, but introduces a fourth pulse (the local oscillator) which is

orthogonally polarized to the probe field and about 1.3 ps ahead of the probe in time. This

temporal delay allows for larger interferometric fringe contrast at the detector than simply

self-heterodyning with the probe field.

The LO is generated by placing a thin alpha-BBO crystal in the probe path, oriented

such that the optical fast axis is a tilted a few degrees off normal from the probe polarization.

This results in a small portion of the probe being projected onto the fast axis of the crystal,

creating our local oscillator. The probe field is then completely removed by the polarizer after

the sample, leaving only the signal and local oscillator to interfere on the detector. Thus,

the instrument described here is able to utilize the phase stable nature of the pump-probe

geometry while maintaining the background-free and temporal heterodyning capabilities of

BOXCARS. One must take additional care when interpreting these spectra as the tensors

of the signal being measured are xyxy + yxxy. This requires more subtle interpretation but

the suppression and enhancement of different pathways can be determined by calculating

the orientational factors for these tensors, if the angles between the transition dipoles are

known [16].
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4.1.1 Correcting for Phase Acquired During the Measurement

Though using a local oscillator has many benefits, as described above, the one problem

is that now there is an additional phase evolved between the signal and the LO which is

described by equation 4.1 [17].

S(t1, t2, t3) ∝ e−iϕLO
∑
n

iRn(t1, t2, t3) (4.1)

where ϕLO is the phase acquired during tLO.

Fortunately, we are imaging the interferogram produced between the LO and the signal

on the camera and can extract the phase from that through a Fourier transform [12, 17].

If that phase is known we can add it back in such that the e−iϕ term goes to zero and the

signal is once again proportional to the material response. The real portion of that complex

signal gives us back the purely absorptive lineshapes [17].

There is also additional phase acquired during t1 that results from the dispersion mis-

match in the birefringent delay line [18]. This phase is a function of the delay time as

described by equation 4.2

∆ϕ = ω0

[(
1

vgo
− 1

vp

)
−

(
1

vge
− 1

vp

)]
∆t1/

(
1

vge
− 1

vgo

)
(4.2)

where ω0 is the carrier frequency, vge and vgo are the group velocities for the extraordinary

and ordinary axes, respectfully, and vp is the phase velocity at the carrier frequency [18].

This phase can be either calculated by equation 4.2 or measured interferometrically by

imaging E1E2 scatter on the camera and recording the phase as a function of t1.

4.2 Conclusions

We have described here a novel approach to two-dimensional optical spectroscopy in the

pump-probe geometry. This instrument successfully combines the background-free and tem-
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poral heterodyning capabilities of BOXCARS 2DES with the phase stability and robustness

of pump-probe geometry 2DES. This instrument should open the door for the consistent and

rapid collection of purely absorptive spectra.
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CHAPTER 5

LEVERAGING DYNAMICAL SYMMETRIES IN

TWO-DIMENSIONAL ELECTRONIC SPECTRA TO

EXTRACT POPULATION TRANSFER PATHWAYS

*This chapter is adapted from Reference [1]. My primary contribution was section 5.3.2.

Two-dimensional electronic spectroscopy (2DES) is a technique used extensively over

the last two decades to study the excited state behavior of condensed phase systems [2–

5]. It has been used to study excited state dynamics in photosynthetic light harvesting

complexes [6–12], photobiological systems such as rhodopsin proteins [13, 14], synthetic

molecular systems [15–18], and materials systems [19, 20]. In 2DES, the electronic excitation

energies of a system are correlated with the detection energies, revealing how the excited

states are coupled [21, 22]. This coupling can be tracked through the waiting time with

femtosecond precision to monitor the dynamics of processes such as exciton energy transfer

(EET). 2DES is a versatile tool to unpack many aspects of excited state system and bath

interactions in molecular systems, as one can study spectral lineshapes [23–25], coherence

dynamics [4, 5], and population kinetics [26, 27] in the signal analysis. Due to the overlap

of multiple peaks and dynamic contributions to 2DES signals, it remains difficult to extract

the exact kinetic rates that govern energy transfer [27, 28]. The illumination of a sample

with an ultrafast laser source excites many different dynamical subensembles within the

system [21, 29]. These dynamics can converge onto a single lineshape when the excitation

and detection energies of the subensembles are similar, and many of these lineshapes overlap

at finite temperatures. The waiting time evolution at any given point on a 2D spectrum is

thus generated from many types of electronic or nuclear motion, such as EET, ground state

recovery, coherence, spectral diffusion, and vibrational relaxation [30]. It has been shown

that 2D spectroscopy is capable of resolving the entire energy transfer matrix of spectrally
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resolved complexes [28], and previous reports have extracted population transfer tables in

2D spectra with global fitting analyses [7] and by using a combination of decay associated

and coherence associated spectra [31]. In this paper, we extend an analysis method to fit

to the kinetic parameters for population transfer in two-dimensional spectra. This method

has been used to differentiate the kinetics of excitonic pathways in photosynthetic light

harvesting systems [32], but it can in principle be exported to other systems. The paper

is outlined as follows. In Section 5.1, we describe the theory of nonlinear spectroscopy

and how Feynman pathways allow one to calculate the relative probability that dynamical

subensembles contribute to the signal. We then enumerate the types of Feynman pathways

in excitonic systems and their relative signal strengths, spectral location, and time evolution.

We describe signal processing steps to extract time constant information and methods to

improve the accuracy. In Section 5.2, we test the method’s accuracy using simulated two-

dimensional electronic spectra in a diverse set of systems with increasing complexity and find

that the method is robust to molecular complexes with dark states and interfering resonant

vibrations. In Section 5.3, we discuss how the analysis method can be applied to other

spectroscopic experiments such as materials systems and chiral pulse polarization sequences.

We discuss the behavior of these systems and illustrate how Feynman pathways can more

rigorously describe their dynamics.

5.1 Theory and Analysis Method

5.1.1 Molecular Response Functions and Their Time Evolution

In 2DES, the nonlinear signal is generated in response to three pulses acting on the system

[21, 29]. The pulses coherently couple the molecular dipoles and generate the third order

polarization:

P (3)(t, t1, t2, t3) =

∫
dt1

∫
dt2

∫
dt3E3(t− t3)· (5.1)
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E2(t− t3 − t2)E1(t− t3 − t2 − t1)R
(3)(t1, t2, t3)

The polarization is dependent on three time variables representing the time delay between

each pulse, referred to as the coherence time t1, the waiting time t2, and the rephasing time

t3. In our semiclassical formalism, the three pulses are treated classically, and the quantum

mechanical information of the molecular system is encapsulated in the third order response

function R(3):

R(3)(t1, t2, t3) = −
(
− i

ℏ

)3

⟨µ(t3 + t2 + t1)[(t2 + t1), [µ(t1), [µ(0), ρ(−∞)]]]⟩ (5.2)

The response function describes how the ensemble of states reacts to the dipole pertur-

bation induced by the laser pulses [33]. The molecular density matrix ρ is acted on by the

dipole operator µ [22]. The nested commutators allow all possible combinations of dipole

operators to act on either side of the density matrix, and the brackets 〈 〉 depict an average

over the entire thermal ensemble. The magnitude of the transition dipole moment terms

µij = ⟨ψi|µ|ψj⟩ determine the relative probability of transitioning between states i and

j [34]. With multiple dipole interactions acting on the density matrix, many permutations

given by the nested commutators, and averaging over the thermal ensemble, there is a large

number of summed terms in the total third order response function. The terms scale rapidly

with the number of dipole-accessible electronic, vibrational, and vibronic states in the sys-

tem. Each term in the response function describes a particular subensemble that evolves in

response to the laser pulses. Each of these subensembles has a probability of contributing

to the signal depending on multiple intrinsic properties of the system, such as the transition

dipole moments and the transfer rate between the states coupled to the subensemble popu-

lation.

In this analysis, we use double-sided Feynman pathways to visualize and track the compo-

nents of the third order response function (Equation 5.2) [22, 29, 35]. Feynman pathways
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have been used in many types of physical systems to visualize the perturbative behavior of

many body systems [6]. An example Feynman pathway that undergoes waiting time dynam-

ics is shown in Figure 5.1. The diagonal lines represent pulses driving transitions on either

the bra or ket side of the density matrix. Over each time interval, the signal evolves as either

a coherence or a population. For coherences, the signal oscillates with a frequency given by

the energy difference between the two states and decays with a dephasing time τdeph:

G(t) ∝ eiωijt−t/τdeph (5.3)

Here, G(t) is the Green’s function operator that drives time evolution to time t, and

ωij = (Ei − Ej)/ℏ [21, 22]. The coherence generated in the third time interval produces

the signal, which we represent with the dashed line. For populations, the signal strength is

proportional to the population of the subensemble at time t [35]. As such, the signal will

increase or decrease with the microscopic population dynamics in the system. For example,

the pathway shown in Figure 5.1 undergoes population dynamics during the waiting time t2.

Excitation energy transfers from the excitonic state a to state b with a phenomenological time

constant τab, as shown in the simplified two excited state system adjacent to the Feynman

pathway. The signal during t2 that evolves from this pathway, shown to the right, is directly

proportional to the population of exciton b that accumulates due to energy transfer from

exciton a. The signal strength is weighted by the transition dipole moments for each laser

interaction (in this case |µa|2|µb|2, shown as the signal peak).

The population dynamics during the waiting time t2 and how the dynamics of all possible

Feynman pathway contribute to the overall signal are the principle concern of this analysis.

We consider each Feynman pathway to represent a particular dynamical subensemble of the

system. Each pathway carries its own waiting time kinetics due to the microscopic behavior

of the system. Its relative contribution to the total signal is determined by the dephasing

times of the coherences, the kinetics of the populations (typically during the waiting time),
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and the transition dipole amplitude from the four light-matter interactions. The 24 possible

pathways for a two excited state system with a shared ground state constitute a basis set

that can be used to describe the total response of a larger set of states, including vibrational

energy levels.

5.1.2 Time Constant Extraction Method

There are symmetries in the dynamical evolution of diagonal and below diagonal cross peaks

of 2D spectra that we can exploit to isolate the time constants for energy transfer. The

strongest signals in the diagonal and below diagonal peaks corresponding to the exciton

energies are the ground state bleach (GSB) and stimulated emission (SE) signals. The

goal of this analysis is to remove the contribution of the GSB signals to the waiting time

evolution of these peaks. Doing so isolates the SE signals, which evolve through the waiting

time exclusively from interexcitonic dynamics. These signals can thus be fit exactly to kinetic

equations to isolate the phenomenological time constants for energy transfer. The following

section describes the Feynman pathways (Figure 5.2), approximations, and steps that this

method entails. We first make the approximation to ignore the relative contribution of

coherence and excited state absorption pathways to the diagonal and below diagonal waiting

signals (see Figure 5.2C-D). The excited state absorption pathways can be neglected because

1) the relative transition dipole strengths from excited state absorption (µfe) are smaller

than between the ground and first excited state (µeg), 2) lifetime broadening of the short-

lived coherence in the rephasing time causes the signal to spread over a broader area on

the detection axis, which reduces the pathway’s relative contribution to each point in the

detection axis [33, 36], and 3) their position on the spectrum and thus overlap with relevant

peaks depends on the specific system and its intrinsic properties such as exciton binding

energy. The relative weakness of ESA signals can be seen in the largely positive diagonal and

below-diagonal 2DES signals of photosynthetic light harvesting complexes [7, 9, 26, 37, 38],
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demonstrating that the positive SE and GSB pathways produce stronger signals in these

regions. For coherence pathways, the exponential decay of coherences due to dephasing will

be symmetric about zero and therefore not contribute to the overall monotonic curvature of

the signals due to energy transfer. Therefore, the monotonic curvature of the signals should

be primarily due to population dynamics. We will test these two approximations and assess

their accuracy in the following section.

The Feynman pathways that contribute the most signal strength and waiting time signal

change in diagonal and below-diagonal regions are the GSB, GSB recovery pathways, and

population SE pathways. Figure 5.2A-B shows these three pathways and their subsequent

waiting time evolution for a mock exciton ea diagonal peak and exciton ea − eb below

diagonal cross peak. For the stimulated emission pathways, the waiting time dynamics

evolve differently between diagonal and below diagonal peaks. The diagonal pathway decays

with waiting time due to loss of exciton ea population as it transfers to exciton eb, the ground

state, or to other states in the system. The cross peak pathway increases with waiting time

as ea−eb energy transfer occurs but then will decrease as the population subsequently leaves

exciton eb. At both the ea diagonal and ea−eb cross peak, the ground state bleach and bleach

recovery pathways undergo the same time evolution in the waiting time with a time constant

given by the relaxation from exciton a to the ground state. The only difference between the

bleach signals of each region is the interaction of the third pulse. The diagonal pathway

produces a |ea⟩⟨g| coherence while the cross peak pathway produces a |eb⟩⟨g| coherence. We

take advantage of the symmetry of the bleach pathways to remove their contribution to the

signal evolution. At each peak, the three pathways scale with the same transition dipole

strength, but the strength is different between peaks. We correct for this difference by first

normalizing each signal:

norm(Sig(T )) =
Sig(T )− Sig(Ti)

|Sig(Tf )− Sig(Ti)|
(5.4)
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Here, Ti and Tf are the initial and final waiting times for each time interval. The nor-

malization step removes the amplitude differences between the diagonal and cross peaks but

keeps the difference curvature due exponential decay rates. We can subtract the normal-

ized diagonal signal from its corresponding normalized lower diagonal cross peak signal to

approximately remove the bleach contribution and maintain the stimulated emission path-

way kinetics. The time evolution of this signal is purely due to energy transfer between

excited state populations (Figure 5.2E), so the time constant for the subtracted signal is

a parameter that can be used to fit to energy transfer time constants. The schematic of

steps for isolating the kinetic rate constants is shown in Figure 5.3. For clarity, we use

sequential exciton numbering, where exciton 1 is the lowest energy. First, diagonal and

cross peak regions of the excitonic peaks are averaged using circular windows. Averaging

over finite regions removes the bath dynamics from the signal such as vibrational relaxation

and spectral diffusion. These dynamics affect the lineshape evolution in the spectra, and

averaging removes this effect so that the signal evolves in time exclusively from excitonic

dynamics. Then, a waiting time interval is selected for curve fitting, typically from early

waiting times between 50 and 100 fs to about half the experimental time, typically 1000 fs.

The time constant fitting procedure is then performed starting with energy transfer between

the lowest two excitonic states. The 2 diagonal and 2-1 cross peak are normalized according

to Equation 5.4 and then subtracted from one another. If necessary, the τ1L time constant

can be obtained from the exciton 1 diagonal. Because the bleach recovery signal is removed

in the subtraction and the stimulated emission signals exclusively evolve on the short time

scale due to energy transfer between excitons 2 and 1 (see above), the fit time constant for

the subtracted signal must be the energy transfer time constant τ21.

The procedure then moves to the next highest excitonic state. The time constant τ3L (‘3

loss,’ or transfer from exciton 3 to other states) is estimated as the short time constant in
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a biexponential fit to the 3 diagonal. The τ3L value must satisfy the other energy transfer

time constants τ32 and τ31 according to k3L = 1
τ3L

= 1
τ31

+ 1
τ32

. The 3 diagonal and below

diagonal cross peaks are then normalized, and one cross peak is selected to be subtracted from

the diagonal. Typically, the 3-1 cross peak is chosen to ensure a good fit to the subtracted

time constant because it monotonically increases over short experimental times, while the

3-2 cross peak often has flatter curvature because of energy transfer in and out of exciton

2. The normalized diagonal and cross peak signals are subtracted from one another, and

the remaining signal is fit to a monoexponential decay function. Solutions to differential

equations for energy transfer are then numerically calculated to fit to the diagonal and

cross peak stimulated emission signals. The numerically calculated signals are normalized,

subtracted, and fit to a monoexponential decay, and the resulting time constant value is

compared to the experimental data. The calculation is repeated for all short time values

of τ31 and τ32 under the constraint of τ3L, and the combination that best matches the

experimental subtracted time constant is selected as the best fit for energy transfer. We

should note that it is necessary to first calculate τ21 because it is used as a parameter in the

differential equation. The numerical fitting procedure is repeated for higher energy levels

as necessary. The entire analysis, starting from the normalization of the 2 diagonal and 2-1

cross peak, is then repeated using different time intervals until the time interval spans the

entire experimental time, typically 2000 fs. For each time interval, the goodness of fit for the

numerical signals is evaluated by calculating the root-mean-squared difference between the

subtracted 2D signals and the numerically calculated subtracted signals. Typically, there is

a range of time intervals that best fits the subtracted signals. The time constants over the

best fitting time intervals are averaged over this best fitting interval to result in the final time

constant values for EET. This final averaging step minimizes error due to arbitrary choice

of time interval. We demonstrate this process with data from the Fenna-Matthews-Olson

(FMO) complex from green sulfur bacteria in reducing conditions. This analysis has been
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conducted in a previous study without the final waiting time interval average [32]. Figure

5.4A shows a two-dimensional spectrum of FMO at waiting time 800 fs. The three diagonal

peaks represent excitons 4, 2, and 1, which constitute a major energy transfer pathway

through the complex [26]. The time traces are averaged using a 70 cm−1 circular window.

Figure 5.4B-E depicts the signal subtraction process using a waiting time window range

from 100 to 2000 fs. Figure 5.4B is the monoexponential fit to the normalized 2 diagonal

subtracted from the normalized 2-1 cross peak, which isolates the τ21 time constant. Figure

5.4C is the fit to the averaged exciton 4 diagonal peak, where the short time constant τ1 =225

fs is estimated as the exciton 4 loss time constant. The monoexponential fit to the normalized

4 diagonal subtracted from the normalized 4-1 cross peak (Figure 5.4D) is then reproduced

in the numerical simulation (Figure 5.4E) such that τ41 and τ42 satisfy the τ4L constraint.

After repeating this process over waiting time end points from 600 to 2000 fs, we find that

the lowest root-mean-square error falls in the range from 1700 to 2000 fs (Figure 5.4F).

After averaging over this range, we obtain the final averaged time constants τ21ave =453 fs,

τ42ave =409 fs, and τ41ave =496 fs.

5.2 Results

5.2.1 Global Response and Method Accuracy for Excitonic Systems

We simulated two-dimensional spectra of multi state systems by calculating each component

of the total response in the time domain, following the procedure laid out in Ref. [29]. We

used all combinations of Feynman pathways from a system with two excited states (Figure

S1) to form a basis set to model systems with multiple excited states, taking care not to

double count pathways. We then Fourier transformed the t1 and t3 axes of the total response

to obtain ω1 and ω3. We simulated three classes of energy transfer systems, shown in Figure

5.5, to understand the accuracy of this method under differing excited state structures. The
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first system (Figure 5.5A) is a standard excitonic model, featuring downhill energy transfer

between three electronic excited states. All states are dipole allowed from the ground state

and have a ground state recovery time τg that is at least an order of magnitude higher than

the energy transfer times. The second system (Figure 5.5B) is the dark state system, where

a fourth electronic state is added with no transition dipole moment between the state and

the ground state. Excitons are allowed to transfer between this state and the three bright

excited electronic states, however, so its presence will affect the EET kinetics of the three

bright excitons. In this analysis, we include systems with a dark state between excitons 1

and 2 and between excitons 2 and 3 and show that the dark state only affects the extracted

kinetics of adjacent excitons. In the third system (Figure 5.5C), a vibrational energy level is

added to each excited state whose energy gap is resonant with the adjacent exciton energy

gap. In this system, vibrational relaxation within one exciton will create below diagonal

cross peak signals that constructively interfere with EET signals.

To test the principle assumptions of this method that the excited state absorption and

coherence pathways can be ignored, we characterize the accuracy of the standard system

parameters when the relative contribution the signal strength of excited state absorption

and coherence pathways is increased (Figure 5.6). This is done for excited state absorption

pathways by increasing the dipole ratio
µfe
µeg

and for coherence pathways by increasing the

dephasing time. In the latter case, dephasing times in the hundreds of femtoseconds range

(which are typical dephasing times for vibrational and vibronic coherences [39–41]) will in-

terfere with the exponential pathways involving energy transfer. The presence of long-lived

coherent signals observed in multiple photosynthetic systems [6, 42, 43] might affect the time

constant extraction.

Figure 5.6A shows the error in the standard three exciton system as the
µfe
µeg

dipole ratio

ranges from zero to one. In most cases, the error falls below 15% when the dipole ratio is

less than 0.6, which is well below the bounds of most molecular systems, particularly when
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the effective ratio of signal contribution is further minimized by lifetime broadening. Figure

5.6B shows the error as the dephasing time for excited state coherences is increased from

below 100 fs to 500 fs. However, the dephasing time has little effect on the accuracy for any

of the three EET time constants. The coherence pathways modulate the signal in the waiting

time, but they do little to affect the monotonic signal kinetics and therefore the exponential

fits. This result will hold true for both excited state electronic or vibronic coherences and

ground state vibrational coherences. We conclude that the effect of interfering excited state

absorption and coherence pathways does not disrupt the accuracy of the analysis and that

our initial assumptions are valid.

We now compare the method’s accuracy for the systems shown in Figure 5.5 using multiple

kinetic schemes for energy transfer. For the standard system, we find that the method is

accurate for energy transfer systems with subpicosecond kinetics, as all but one time con-

stant is fit to within 15% accuracy. The τ31 time constants are all fit within 10% accuracy,

and the τ21 constants are all extracted within 5% accuracy. In schemes with picosecond

energy transfer constants, the method tends to inaccurately calculate the slow time constant

with errors above 20%. However, the accuracy of the subpicosecond time constants remains

within 15%. This effect is likely due to the regression more accurately fitting signals that

evolve several e-folds through the waiting time (as experimental timeframes typically range

from 0 to 2000 fs). We should note that for the standard system, averaging over multiple

time intervals does not significantly improve the accuracy of the method.

We find that dark states only affect the accuracy of the time constants for adjacent excitons

that are directly involved in energy transfer with the dark states. For each scheme, the

energy transfer to (τ2d) and from (τd1) the dark state is changed to test how the dark state

kinetics affect the method’s accuracy. All τ21 errors are greater than 15%. This error is due

to the kinetic sink effect between excitons 2 and 1. However, τ31 and τ32 remain accurate

for all schemes where energy is allowed to flow to and from the dark state, with many of
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the errors falling below 5%. This result is notable because the presence of dark states on

lower exciton manifolds does not disrupt the accuracy of the calculation for higher excitonic

states despite the fact that the fit to τ31 and τ32 relies on knowledge of τ21 (see Section 5.1).

In a model where a dark state is added between excitons 2 and 3, τ21 remains accurate for

all kinetic schemes within 5%. However, τ32 and τ31 are each off by >30% for every scheme

for the same kinetic sinking effect described above. In the method, τ31 and τ32 are simulta-

neously calculated to reproduce the time constant of the subtracted signal (see Figure 5.3,

step 7). An error in one time constant due to the kinetic trap would therefore introduce

an error in the other time constant. For both dark state systems, averaging over multiple

time intervals does not improve the method accuracy. We should note that the method is

only accurate when excitons are allowed to flow in and out of the dark state. The method is

highly inaccurate for all time constants when energy does not flow back. Thus, in systems

containing dark states that couple to the excitonic states, knowledge of the electronic states

and their couplings must be known a priori to know which calculated time constants will be

accurate.

In the final step of the analysis, multiple time intervals are averaged to minimize errors due

to arbitrary choice of waiting time intervals (Figure 5.3, step 8). This step does not improve

the accuracy of the standard and dark state systems, but it markedly improves the accuracy

of the vibrational system. For multiple kinetic schemes when the slow relaxation of resonant

vibrations interferes with below diagonal energy transfer cross peaks, the analysis method

remains accurate to 10% for all time constants after averaging over multiple waiting time

intervals. For the vibrational system, we find that the fits with the smallest least squares fit

to the subtracted signal and those which most accurately extract the energy transfer time

constants occur when shorter time intervals are averaged (e.g. from 50–1050 fs to 50 –1775

fs). This range is long enough to capture multiple energy transfer e-folds but short enough to

minimize the effect of picosecond signal changes due to vibrational relaxation. This result is
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in contrast to the purely electronic standard and dark state kinetic systems, where the small-

est least squares error and most accurate time constant fits occur over larger time intervals.

In experimental molecular spectra, there will be slow signals due to vibrational relaxation

and other nuclear motion not completely removed from the signal averaging [44, 45]. It

is necessary to average over the time intervals to most accurately extract the kinetic time

constants. The need to average over shorter time intervals could therefore show the presence

of interfering Stokes shift signals in experimental 2D measurements. For all system types,

the error in the time constant τ21 is smaller than τ31 and τ32. (Tables S7-10). This result

is due to a combination of two effects. The first is the relatively smaller number of kinetic

pathways involving 2-1 energy transfer. For the 2 diagonal and 2-1 cross peak, there are no

competing kinetic pathways that influence the signal. Conversely, exciton migration through

both the exciton 3-2-1 pathway and the direct 3-1 pathway both cause the 3 diagonal to de-

crease and the 3-1 cross peak to increase with time. The competing pathways amplify small

errors in the analysis because the τ31 and τ32 time constants because both τ31 and τ32 are

fit simultaneously, as described above. The second effect is the approximation of the exciton

3 loss pathway (Figure 5.3, step 4). The τ3L time constant is estimated as the short time

constant of the diagonal. The loss rate constrains τ32 and τ31 because the sum k32+k31 must

equal k3L, but other Feynman pathways such as the ESA pathways and the ground state

bleach recovery contribute to signal loss on the 3 diagonal. This approximation thus limits

the possibility of reproducing the subtracted signal with complete accuracy. However, we

have shown that the time constants are still fit within 15% accuracy despite these limitations.

5.3 Discussion

The current method applies to energy transfer systems using a traditional all parallel two-

dimensional electronic spectroscopy pulse sequence. We now describe how the analysis can be
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extended to solid state semiconducting materials and to isolate the chiral dynamics initiated

by novel pulse sequences.

5.3.1 Many-Body Interactions in Solid-State Materials

In solid state semiconducting materials, high carrier excitation densities generated in optical

experiments can lead to nontrivial interactions among excited state species (e.g. charge car-

riers and photoexcited excitons) that determine the optical response. These interactions lead

to excitation-induced effects that manifest in characteristic lineshapes, spectral shifts, peak

broadening, and higher-lying bound states [46, 47]. Incorporating many-body effects such

as excitation-induced shifts and dephasing can lead to non-perfect cancellation of photoin-

duced absorption (PIA) and GSB signal pathways between coupled transitions and explain

the presence of coupling cross-peaks, for example [48]. These effects can be incorporated in

model 2D spectra by modifying the transition frequency and dephasing time as a function

of excitation density to compare to experimental spectra. Feynman diagrams that explicitly

note and account for these many-body interactions are required to fully describe these effects

in such systems.

In semiconducting monolayer transition metal dichalcogenides (TMDs) such as MoS2, dy-

namic screening by photoexcited charge carriers leads to changes in the exciton binding

energy and bandgap renormalization. These competing processes result in transient exciton

energy level shifts and manifest as PIA features from the ground state to the renormalized

optical transition in transient absorption and two-dimensional spectroscopic experiments on

the sub-100 fs timescale [19, 49, 50]. A proposed ‘expanded’ Feynman pathway contributing

to these observed signals is shown in Figure 5.7. Here, the presence of photoexcited excitons

or charge carriers from the pump excitation leads to a dynamic change in its transition en-

ergy during the waiting time, and the probe pulse induces a transition from the ground state

to this newly shifted level. In the absence of many-body effects, g = g ∼ energetically, and
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the many-body PIA and GSB pathways cancel; the dynamic redshifted PIA feature is there-

fore observable due to the time-dependent spectral shift arising from the dynamic screening

leading to bandgap renormalization. In modeling or analyzing experimental 2D spectra,

expanded Feynman diagrams with specified interaction energy can be included to account

for such dynamic spectral shifts in addition to instantaneous multi-particle correlations such

as biexciton states. Electrochromic shifts in molecular systems can lead to similar transient

energetic shifts and PIA features. To account for these band-shift PIA signals in 2DES of

bacterial reaction center, Zigmantas and coworkers developed additional ‘re-excitation’ path-

ways which are expanded to include product states of two species [51]. Explicit many-body

Feynman diagrams have also been employed in fifth-order 2D experiments probing exciton-

exciton annihilation [52]. Because the signals seen in 2D spectroscopic experiments are the

interference of all possible Feynman pathways, delineating the possible many-body Feynman

pathways will aid in both interpreting, predicting, and analyzing 2D spectroscopic signals.

5.3.2 Isolation of ’Handed’ Energy Transfer Time Constants from

Two-Dimensional Circular Dichroism Spectroscopy

Manipulation of the polarization of light can be a useful tool for further isolation of particular

material response pathways in more complicated systems [53, 54]. Generally, the orienta-

tional factors for a particular pulse sequence can be calculated to predict its effect on different

pathways, as shown by Dreyer et al [55]. Because different polarization configurations will

interrogate different tensor elements of the third-order signal, Feynman pathways of interest

can be suppressed or enhanced depending on the relative polarization of the beams and the

orientations of transition dipoles of interest. Of particular interest is how this method can be

applied to the chiral response of a system. When measuring only an odd tensor of the third

order response, where one interaction is orthogonal to the other three, all electric dipolar sig-

nals go to zero, leaving only chiral signals and some much weaker multipolar signals [56–60].
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In the context of two-dimensional Fourier transform spectroscopy, one can make a correlation

map with chiral resolution on either the excitation (chiral pump) or detection (chiral probe)

axes, as shown in Figure 5.8. The so-called chiral resolution comes from the creation of a

chiral grating in the sample such that the signal is the result of the difference between left

(LCP) and right circularly polarized (RCP) light. The generated signals can be interpreted

as circular dichroism experiments with femtosecond time resolution [57, 58].

We consider a simple three level system with a shared ground state, where the J=±1

angular momentum states of each excited state are nondegenerate because of symmetry

breaking due to the chirality of the molecule. Figure 5.8B shows mock chiral pump and chiral

probe correlation maps at a positive waiting time where energy transfer has begun. In each

correlation map, there are six main features: four diagonal peaks and two cross peaks. The

diagonal peaks may look slightly off-diagonal due to the LCP-RCP subtraction inherent in

the pulse sequence. When considering all of the Feynman pathways which contribute to each

peak (while keeping the approximation to ignore ESA and coherence pathway contributions),

we find several useful dynamical symmetries emerge.

Removal of GSBR Contribution from Chiral Response

First, in the chiral probe sequence, we find that the ground state bleach recovery pathways

for both the diagonal and below diagonal cross peaks have the same waiting time dynamics

because the achiral pump cannot resolve differences between the J=±1 states (Figure 5.8C).

The bleach recovery subtraction in this pulse configuration can thus be done with any pair of

diagonal and corresponding below diagonal cross peak signals. In the chiral pump sequence,

the cancellation is not as simple. In this case, the peaks retain knowledge of the J=±1

excitation state but are agnostic to the angular momentum state of the probe. However,

symmetries still exist between the diagonal and cross peaks which lie on the same excitation

energy. That is, the bleach recovery signal can be subtracted but only between peaks with
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the same J=±1 excitation (Figure 5.8C).

Subtraction of the bleach recovery signal in chiral pulse sequences is a straightforward

extension of the cancellation in the all parallel sequence. Figure 5.9 shows the stimulated

emission, ground state bleach, and ground state bleach recovery pathways for the diagonal

and below diagonal peaks in the chiral pump (XYXX) and chiral probe (XXXY) sequences.

For the chiral probe spectra, the bleach recovery dynamics are identical for both diagonal

peaks and both cross peaks (pathways e-h). This symmetry is due to the fact that both

J=±1 angular momentum states in this scheme are accessed via the achiral pump. While

the chiral probe selectively drives transitions to angular momentum states in t3, the dynamics

of the waiting time are the same between peaks. Therefore, the bleach recovery signal can

be subtracted by normalizing and subtracting the diagonal and cross peak signals. For the

chiral pump sequence, the bleach recovery contribution can still be subtracted, but care

must be taken to subtract the proper diagonal peak from its respective cross peak. In Figure

5.9, pathways b and d both undergo ground state bleach recovery during t2 from the J=+1

angular momentum state. Similarly, pathways a and c undergo recovery from the J=–1 state.

Therefore, the normalized peak b must be subtracted from the normalized peak d and the

normalized peak a must be subtracted from the normalized peak c to properly remove the

bleach recovery signal. These symmetries are due to the chiral excitation of the pump. Once

the recovery signals are removed and the subtracted signals are fit, one can then proceed to

numerically fit the chiral rate constants.

Chiral Rate Constants

We find that four energy transfer pathways emerge between the four J=±1 angular momen-

tum states on the two excited states. When taking both the chiral pump and chiral probe

sequences together, these four pathways appear within the four cross peaks in unique pairs

(Figure 5.8D). Though their energy transfer dynamics are not immediately separable, one
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could fit the four time constants after ground state bleach recovery removal and numerically

solve for the chiral rate constants that reproduce these subtracted signals. Isolating these

chiral rates of energy transfer gives unprecedented insight into ‘handed’ energy transfer and

the role of chirality in ultrafast dynamics.

5.4 Conclusions

We develop and characterize a method to accurately fit two-dimensional spectra to ele-

mentary kinetic rates for multistate energy transfer systems. We simulated two-dimensional

spectra for standard multiexcitonic systems undergoing energy transfer, systems comprised of

dark states that act as kinetic traps for energy transfer, and systems with resonant vibrations

that undergo vibrational relaxation. The method remains accurate in the efficient energy

transfer regime even when the signals are convoluted by excited state absorption pathways,

long-lived coherence, and interfering vibrational relaxation pathways. When dark states are

present the system, the fitting is accurate for energy transfer between states that are not

adjacent to the dark state. Extracting accurate kinetic information from EET systems can

provide information on the subtle microscopic parameters that influence and system and

allow for precise comparative analyses between systems with slight differences, such as point

mutations and functional group substitutions. As such, the method is widely applicable to

excitonic systems undergoing downhill population transfer.
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Figure 5.1: Double-sided Feynman pathway representing a dynamical subensemble that
undergoes population transfer from state ea to eb during the waiting time, t2. The excitation
and detection axes ω1 and ω3 are respectively given by the bra-ket energy difference during
t1 and t3. The signal evolution through t2 is proportional to the population of excitation
probed from eb that began in ea at t2 = 0. As such, the pathway will evolve with the kinetics
of energy transfer such that its rise time will be given by τab and its decay will be given
by the loss of eb population, τbL. The signal strength is weighted by the transition dipole
magnitudes of the four laser interactions, in this case |µa|2|µb|2.

79



Figure 5.2: Excitonic Feynman pathways between diagonal peaks and corresponding below
diagonal cross peaks possess dynamical symmetries that allow for isolation of population
transfer signals. The major contributing pathways to these peaks (A, B) are stimulated
emission, ground state bleach recovery, and ground state bleach signals. The ground state
bleach recovery signals evolve with the same kinetics given by τag on both peaks, but the
stimulated emission pathways evolve according to their respective population transfer kinet-
ics. The three pathways on the diagonal and cross peak have the transition dipole strength,
given by |µa|4 for the diagonal and |µa|2|µb|2 for the cross peak. The pathways with rela-
tively smaller contribution to the waiting time kinetics (C, D) are the coherence and excited
state absorption pathways. These pathways are ignored as a principle assumption in this
analysis. E) The normalized diagonal and cross peak signals can be subtracted to remove
the bleach recovery pathway. What remains is a signal whose kinetics exclusively evolve
according to population transfer. The subtracted time constant τsub can thus be used as a
parameter to fit to energy transfer time constants. Note: for each rephasing pathway that
undergoes population evolution during t2, there is a corresponding nonrephasing pathway
that undergoes the same waiting time dynamics, not shown here for brevity.
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Figure 5.3: Scheme for extracting kinetic time constants from two-dimensional spectroscopic
signals. Time constants are calculated from lowest to highest exciton energy. The entire
procedure is repeated for multiple time intervals, and those with the best fitting subtracted
time trace are averaged to generate the most accurate time constants.
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Figure 5.4: Demonstration of the analysis method using the Fenna-Matthews-Olson complex.
A) Absorptive waiting time spectrum at t2 =800 fs. Shown are the exciton 1, 2, and 4
diagonal peaks and their corresponding below diagonal cross peaks. Each peak region is
averaged using a 70 cm−1 window. B) Fit to the normalized 2 diagonal subtracted from
the normalized 2-1 cross peak traces. The monoexponential time constant is approximately
equal to the τ21 energy transfer time constant 455 fs. C) Biexponential fit to the averaged
exciton 4 diagonal trace. The first time constant is used as the 4 loss time. D) Fit to the
normalized 4 diagonal subtracted from the normalized 4-1 cross peak traces. E) Simulated
subtracted signal reproduces the signal time constant in panel (D) using τ41 =504 fs and
τ42 =408 fs, which satisfies the constraint of τ4L. F) This process is repeated using a series
of waiting time ranges, and the root-mean-square error between the signals in (D) and (E)
are calculated. The time constants are averaged over the lowest error region to obtain the
final energy transfer time constants.
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Figure 5.5: Three types of systems are used in global response calculations. A) Standard
electronic system with three bright excitonic states allowing downhill energy transfer and
slow relaxation to the ground state. B) Dark state system, where a fourth excitonic state
is added to the standard system. This state has no oscillator strength with the ground
state but still participates in downhill energy transfer with other excitons. Shown is a dark
state between excitons 2 and 1, but the same analysis is also conducted using a dark state
between excitons 3 and 2. C) Vibrational system, where vibrational modes resonant with the
exciton energy gap are added to the standard system. Vibrational relaxation constructively
interferes with below diagonal cross peak dynamics and slows the signal evolution.
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Figure 5.6: Error analysis for interfering excited state absorption and coherence pathways
in the kinetic extraction method for a variety of time constants in the standard system. A)
Percent error for each time constant as a function of relative transition dipole magnitude
between µfe and µeg, which corresponds to the relative signal strength of the excited state
absorption and ground state bleach/stimulated emission pathways, respectively. B) Percent
error as a function of dephasing time for excited state electronic coherences. Long-lived
coherences have little effect on the accuracy of the method because they do not contribute
to monotonic signal growth or decay.

84



Figure 5.7: Dynamical effects in solid state materials can be described with Feynman path-
ways. Mock two-dimensional spectrum at t2 > 0 (A) and energy diagram (B) depicting
a bandgap renormalization mechanism observed in monolayer transition metal dichalco-
genides [19]. Here, screening by excitations generated in the first two laser interactions
dynamically alter the bandgap such that the photoinduced absorption signal imperfectly
cancels with the bleach signal. C) This process can be described by ‘expanded’ Feynman
diagrams that incorporate these many-body effects. The tilde (∼) indicates the renormal-
ization of a composite state coupled to the initial excitation.

85



Figure 5.8: The chiral response of a system can be tracked with odd pulse sequences [57].
A) Mock two-dimensional spectra depicting the chiral dynamics using chiral pump (XYXX)
and chiral probe (XXXY) sequences. B) Chirality breaks the degeneracy between angular
momentum states of a molecule. Energy transfer can occur between states of the same (τα,
τγ) or different (τβ , τδ) angular momentum. C) Feynman pathways showing how chiral
energy transfer can be either pumped or probed after the bleach recovery subtraction. Here,
the ± symbols represent the angular momentum state that is either pumped or probed.
The absence of such symbols indicates that the system is pumped/probed in both angular
momentum states. The dashed lines in pathways e and f indicate that while the system is
pumped in both angular momentum states, it is only probed from one state. Each of the four
subtracted signals is comprised of a unique pair of energy transfer time constants, allowing
for fitting procedures to isolate the chiral rate constants for energy transfer.
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Figure 5.9: Stimulated emission, ground state bleach, and ground state bleach recovery
population pathways for the chiral response. The XYXX and XXXY labels represent the
chiral pump and chiral probe spectra, respectively. (Same system as Figure 5.8, but with
additional population Feynman pathways added.)
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CHAPTER 6

FUTURE DIRECTIONS

There is much more to do in the fields of chiral dynamics and novel ultrafast spectroscopic

instrument design. Looking at the ultrafast dynamics behind chiral aggregates composed

of achiral monomers can give insight into the excitonic chirality that arises from interchro-

mophore coupling of electric transition dipoles. Chiral nanomaterials is a growing discipline

with numerous applications but their chiral dynamics are yet to be investigated. Realizing

new surface specific third order nonlinear techniques would open the door for groundbreak-

ing surface and interface science. And lastly, this section describes a new type of mixed

electronic and vibrational spectroscopy which is theoretically capable of interrogating nona-

diabatic dynamics in a new and information-rich way.

6.1 Ultrafast Chiral Dynamics of Chiral Aggregates of Achiral

Porphyrins

Chiral aggregates are of great interest as a model system for understanding light harvesting

and chiral memory [1–5]. These specific porphyrin aggregates can form either spontaneously

or by the transfer and retention of chiral information from a template. These processes

have been studied extensively but the dynamics behind their steady state circular dichroism

measurements have not been investigated to date. Understanding how geometric chiral

memory affects electronic chiral memory is one of the goals of studying this sample. The

spontaneous formation of these aggregates can happen on a timescale of hours such that we

can potentially track how their ultrafast dynamics change at different points in this process.

If we can map something as simple as aggregate length onto electronic chiral memory, then

we can begin the process of learning how to manipulate those dynamics.
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6.2 Interrogating the Origin of Circular Dichroism Signals in

Chiral Ligand Capped Quantum Dots Using

Two-Dimensional Circular Dichroism Spectroscopy

Chiral nanomaterials have been of great interest for a multitude of applications including

biosensing, enantioselective catalysis, and optoelectronics [6–9]. Quantum dots, which them-

selves are achiral, can exhibit an induced chirality when capped with chiral ligands such as

cysteines [7, 8, 10]. The origins of this induced chirality is highly debated. Theories include

mixing between the ligand HOMO and the dot valence band, as well as a surface reorga-

nization upon ligand exchange [7, 8]. As linear circular dichroism is inherently a steady

state measurement, it is probable that more information lies in the dynamics which are

behind those signals. Measuring the ultrafast chiral dynamics of these quantum dots can

lead to new insights into the origin of these signals. Along with the dynamics, frequency-

frequency correlation maps give information about the couplings between states, providing

much sought-after information about the potential electronic coupling between ligand and

dot states [11, 12]. In addition, line shape analyses can uncover the origins of inhomogeneity

in these systems [13].

6.3 Surface Specific 2DES of TIPS-Pentacene Self Assemblies

Recently, Zanni and coworkers [14] have theoretically demonstrated that the pulse sequences

used to eliminate achiral background and reveal chiral dynamics can also be used to obtain

surface specific signals in certain samples. Restrictions to the sample include that it must

be achiral, have macroscopic uniaxial and polar order at the surface, and have coupled,

nonparallel transition dipoles. The result is that electric transition dipole signals survive at

an interface that meets these requirements. Seeing as we have already built an instrument

capable of measuring these signals in 2DCD, it follows that this would be an important
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experiment to attempt.

In terms of a first sample, TIPS-pentacene makes sense as it has coupled non-parallel

transition dipoles and meets the requirement of uniaxial order when self-assembled [14, 15].

Self-assembled TIPS-pentacene should then have a dipolar signal for any pulse sequence

where one of the interactions is orthogonally polarized with respect to the other three.

Because self-assembled TIPS-pentacene exhibits this required order across many layers, this

measurement will not be surface specific, but it can stand as a proof-of-concept experiment

that you can in fact get signal from an achiral sample using these polarization sequences.

This would open the door to future studies at the frontier of surface science, including the

electronic dynamics of buried interfaces.

6.4 Vibrationally Prepared Transient Absorption and 2DES

Understanding nonadiabatic couplings is fundamental to understanding photochemistry. Be-

ing able to predict the outcome of photochemical reactions is vital to effective solar light

harvesting and clean energy generation. Several spectroscopies have been developed to try to

illuminate nonadiabatic dynamics more directly [16–18]. Here I propose we take a Raman-

based vibrational preparation, like what is used in Femtosecond Stimulated Raman Spec-

troscopy [16] (FSRS) and Two-Dimensional Electronic Raman Spectroscopy [17] (2DER) and

use that to prepare a vibrational excited state that we then interrogate with either transient

absorption (TA) or 2DES (see pulse sequence in Figure 6.1). In FSRS and 2DER, the Ra-

man portion of the experiment lacks femtosecond time resolution because of the uncertainty

involved in the arrival time of the second Raman interaction with the virtual state. This in-

teraction can happen any time during the dephasing time of the vibrational coherence which

essentially means they are measuring an average over that lifetime which for vibrations can

last several picoseconds. For the experiment I am proposing, Vibrationally Prepared TA or

2DES (VP-TA or VP-2DES), the Raman interactions happen first and therefore are explic-
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itly defined by the arrival time of the two femtosecond near infrared (NIR) Raman probes

and thus femtosecond time resolution is preserved. After the first Raman interaction, at

some point the second Raman process occurs, placing the system in a vibrational popula-

tion. Simultaneously, a bluer visible light pulse promotes the system to an electronic excited

state population. Then sometime later the system is probed by another visible light pulse

to see where the vibrationally prepared electronic wavepacket ended up. Because the period

of a vibration is on the order of hundreds of femtoseconds, having femtosecond resolution of

this vibrational coherence time means that one can correlate the vibrational phase or mo-

mentum on the ground state with the outcome of a photochemical process. Understanding

these correlations can provide vital insight into how ground state vibrational structures can

be used to manipulate the outcome of photochemical reactions.
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Figure 6.1: Possible pulse sequence for VP-TA and VP-2DES. Blue pulses are broadband,
femtosecond visible light pulses that perform electronic excitations. The lighter blue pulse
is the signal which will be in the visible light range because it will emit from an electronic
coherence. The red pulses are broadband, femtosecond near infrared pulses referred to as
the Raman probe pulses because they stimulate emission from the virtual state. The green
pulse is the narrowband, picosecond pulse centered just blue of the Raman probe pulses and
referred to as the Raman pump because it promotes the system to the virtual state. The
sequence shown is for VP-TA. For VP-2DES the first blue pulse would be split in two and
the time between them scanned.
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CHAPTER 7

CONCLUSIONS

Understanding how chiral materials are potentially uniquely positioned to efficiently harvest

solar energy is an ongoing problem. This thesis has described the development of novel

instrumentation and analysis for the study of chiral electronic dynamics to provide insight

to these issues. A number of potential barriers to achieving two-dimensional circular dichro-

ism spectroscopy that were outlined in the introduction have been addressed throughout

this dissertation. First, the extremely low signal intensity associated with circular dichroism

signals has been combatted by the design of a pump-probe geometry spectrometer, result-

ing in a larger phase matched volume and therefore the ability to excite more molecules

with each laser shot than a typical BOXCAR geometry setup. Then, issues of large back-

ground were addressed by the development of fully background-free pump-probe geometry

2D spectroscopy with a temporally separated local oscillator. Polarization impurities were

reduced by utilizin the natural polarization purity of birefringent crystals rather than polar-

izers which are imperfect. Potentially overwhelming sources of noise like shot-to-shot laser

fluctuations and scatter contamination were addressed by a single shot referencing protocol

and signal apodization in the Fourier domain. Then, the developement of a new model for

the interpretation of chiral energy transfer dynamics was developed to bring insight to these

complicated physical processes. The advances made in this work has opened new doors in

the field of time-resolved circular dichroism. With this new technique, the robust study of

ultrafast chiral energy transfer dynamics becomes possible.
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