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ABSTRACT

Systems with strongly interacting constituents can acquire macroscopic coherence and de-

velop collective excitations at new energy scales that would be difficult to foresee from the

microscopic ingredients. Bose-Einstein condensation and superconductivity are two paradig-

matic examples of this kind of emergence. In this thesis I consider how these phenomena

change in the presence of a cavity, broadly construed as some kind of field that is capable of

mediating long-range forces across the system. I focus specifically on two examples: a kind

of polariton in which strongly-interacting excitons on a lattice couple to photon field in a

physical cavity, and forms a supersolid state in which the condensate coexists with spatial

order; and superconductivity in strontium titanate, considered as a case in which the collec-

tive motions of the electron fluid and the lattice, respectively plasmons and optic phonons,

hybridize to produce superconductivity mediated by long-range forces.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to this Thesis

This thesis contains a slightly diverse collection of works that are thematically unified by

examining condensation in a few slightly peculiar models. In particular, while condensation

phenomena have long been well-understood in terms of local interaction, here I will ask what

changes in the presence of long-ranged forces. I broadly refer to this as cavity physics, since

in some cases the long-ranged forces are mediated by coupling to a physical cavity while in

others the model merely looks similar and the physical implications are similar. My aim in

this thesis is not to reproduce the techniques and concepts that may be found in standard

textbooks, but to focus on aspects of prior work that are more obscure or difficult to track

down. The work is organized as follows.

This chapter, an extended version of a chapter written for (N Proukakis and Littlewood

[2017]), introduces condensation phenomena in the context of a crossover from weak to

strong coupling, and also serves as an introduction to both polaritons and superconductors,

the systems I will deal with in later chapters. I argue here that the properties of a condensate

are best deduced from its dynamics, and in the remainder of the thesis I will follow that

philosophy.

Chapter 2 is an expanded version of a paper that twists the usual polariton problem by

introducing strong interactions that allow the system to exhibit spatial order, including in the

presence of a condensate. The model may be relevant to understanding recent experiments

on polaritons in a Moiré lattice.

Chapter 3 is an expanded version of a paper that deals with a model of SrTiO3 (STO),

an enigmatic unconventional superconductor. This model is the starting point for many

calculations of the superconducting properties of the material but I analyze its normal state
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predictions and find that they are severely at odds with what can be observed experimentally.

Chapter 4 is based on unpublished work that examines the superconducting properties of

this model, and variations, in more detail. As the philosophy in this introduction suggests,

I find that the superconducting phase diagram alone is not a good guide to the adequacy

of the theory. The work in this chapter should be regarded as laying the foundations for a

more sophisticated calculation in the future.

I conclude by returning to the philosophy of cavity physics.

1.2 Introduction to the BEC-BCS Crossover

A system of two kinds of fermion with an attraction between them will spontaneously order,

pairing off its constituents and further conspiring to keep the pairs in phase; it is phase

coherence that is characteristic of the superconductive broken symmetry. In a dilute system

pairing occurs independently of the onset of phase coherence, whereas in the conventional

weakly coupled superconductors pairing and phase coherence appear coincidently. The two

limits of weak coupling BCS and strong coupling BEC have long been discussed as limits of

a single theory (Randeria [1995]), but it is only in the last decade that there are physical

systems which can reliably span the space: conventional superconductors, cold atoms, and

exciton-polaritons.

1.3 Generic Crossover Physics

1.3.1 The Vanilla Theory

Why should a crossover occur between two states of matter with substantially different

phenomenology, and what are the universal parameters which could describe it without

recourse to detailed materials properties? We begin heuristically with a trial wave function

in the Bose or BEC limit of strong interactions or low densities, and motivate additional

2



formalism as we develop an understanding for a generic fermionic system.

The ground state of a weakly interacting Bose gas is well-described by a condensate wave

function |Ψ⟩ = N eλb
†
0|0⟩ where b†0 creates a boson in its lowest-energy state, λ is a variational

parameter that describes the condensate amplitude, |0⟩ is the vacuum for the bosons, and

N is a normalization constant. To generalise the condensate to a limit of paired fermion

states, we write the “bosonic” creation operator in terms of fermion operators c
(†)
k :

b
†
0 =



∑
k
ϕ(k)c

†
k↑c

†
−k↓, Cooper Pairs

∑
k
ϕ(k)c

†
αkcβk, Excitons

∑
k
ϕ(k)c

†
αk+Q/2

cβk−Q/2, Charge Density Waves (CDW)

. . .

(1.1)

where ϕ(k) is a so far unspecified internal wave function for the fermion pairs, |0⟩ should

now be understood as the Fermi sea, and of course the bosonic character is corrupted. For

superconductivity we have particle-particle pairing, and for excitons and CDWs one has

particle and hole paired in different electronic bands α, β. In what follows we will use the

traditional example of Cooper pairs in a superconductor, but the same analysis qualitatively

applies to any system of fermions with a pairing interaction. Expanding the condensate wave

function using (1.1) and applying the anticommutation relations we obtain

|Ψ⟩ =
∏
k

(uk + vkc
†
k↑c

†
−k↓) (1.2)

where one recovers the Bardeen-Cooper-Schrieffer (BCS) variational wave function proposed

to explain superconductivity at weak interactions and high densities, with ϕ(k) = vk/λuk

and we normalize so that |u|2 + |v|2 = 1. There is no distinction between the BCS and

BEC limits except in the form of the wavefunction; for BEC, one expects ϕ(k) to be the

3



wavefunction of a single bound pair, but in the context of this theory, it is a variational

function.

To be concrete, we follow the traditional route to minimize the free energy F = ⟨Ĥ−µN̂⟩

of a model Hamiltonian, subject to the constraint N = ⟨N̂⟩.

Ĥ − µN̂ =
∑
kσ

c
†
kσεkckσ +

∑
kk′

c
†
k↑c

†
−k↓Vkk′ck′↓c−k′↑ (1.3)

where σ, σ′ are spin indices, εk = ℏ2k2/2m is the single-particle energy, and Vkk′ is an

(attractive) interaction strength. This yields

∆k = −
∑
k′
Vkk′

∆k′

2Ek′
N =

∑
k′

(
1− ξk′

Ek′

)
(1.4)

known respectively as the gap and number equations, where Ek =
√
ξ2k +∆2

k, ξk = εk − µ

and the variational parameters in the wave function are given by vk = (1 − ξk/Ek)/2 and

the normalization condition |vk|2 + |uk|2 = 1. ∆k ≡ ∆, assumed to be uniform, is the

condensate order parameter (Alloing et al. [2014]).

It is clear from intensively rescaling (1.4) that the crossover is controlled by the particle

number density n and the interaction strength. We shall parameterize the former by the

Fermi momentum kF = (3π2n)1/3 (in 3 dimensions). Parameterizing the interaction is more

subtle, physically because an arbitrary Vkk′ can encode a great deal of structure absent

some simplifying assumptions, and technically because (1.3) must be understood as a low-

energy approximation which may contain unregularized divergences. We will remedy the

technical issue first by working within the so-called T -matrix approximation, replacing the

bare interaction with an effective two-particle vertex given by the solution of the diagrams

in Figure 1.1 (Randeria et al. [1989]). Carrying out this procedure also naturally clarifies

the physical issue, distilling the interaction to a small set of relevant parameters. (As we

4



Figure 1.1: Ladder digrams for the T -matrix approximation

shall see, there is often little hope for a detailed microscopic understanding of the pairing

interaction in a particular experimental realization, while it is possible to control aS .) For

instance, an attractive point-contact interaction of strength g is reduced to a scattering

length aS :
1).

m

4πaS
=

1

g
+

Λ∑
k

1

2εk
(1.5)

where the cutoff Λ can be taken to ∞ in a controlled fashion.

A clarification is in order: in the so-called zero-range approximation, where the interaction

potential does not vary over any length scale, it is always possible to parameterize it only

by aS , as can be seen from solving the Schrödinger equation directly, and no diagrammatic

techniques are necessary. The utility of the T -matrix technique and its extensions is in the

ability to systematically incorporate more interactions with more physical content.

The entire crossover for this vanilla theory - three dimensional, isotropic, and s-wave - will

depend only on a single dimensionless parameter η = 1/kF aS (Leggett [1980]). In Figure 1.2

we plot as a function of η the order parameter (identifiable with the gap in the excitation

spectrum) and chemical potential obtained from solving (1.4). The chemical potential’s zero

crossing between its weak-coupling asymptote at the Fermi energy and its plunge downward

as half the pair binding energy in the Bose limit is usually taken to demarcate the two

regimes. The order parameter becomes exponentially small but remains finite deep into the

1. In two dimensions and below, scattering theory is not this simple, and in particular there exists a bound
state for all purely attractive interactions. The basic principle of defining a new scale and eliminating the
bare interaction through the T -matrix nevertheless still holds (Randeria et al. [1990]). In fact the crossover
picture as a whole holds remarkably well, although additional transitions associated with the low-dimensional
order appear, and although the control parameters of the theory are quantitatively modified compared to
the 3D case (Fisher and Hohenberg [1988], Fuchs et al. [2004], Tokatly [2004]

5



Figure 1.2: µ and ∆ for the vanilla theory, as a function of the dimensionless coupling
constant η. Dotted lines show approximations in the η → ±∞ limits.

Figure 1.3: Occupancy and pair wave functions for the vanilla theory
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BCS limit.

In Figure 1.3 we illustrate the behavior of the pair wave function across the crossover. It

is important to distinguish the occupancy of states vk, which is simply Fermi step function at

weak coupling and subsequently broadens, from the interal wave function ψk ∼ vkuk which

characterizes the pairing and is restricted to a thin shell around the Fermi surface in the

BCS limit, while incorporating more momenta in the BEC limit as the pairs become more

tightly bound in real space.

1.3.2 Deviations from Vanilla

As desired, the theory so far interpolates sensibly between a weakly paired BCS state and

a Bose-Einstein condensate of tightly bound pairs. Before we develop it further it is worth

questioning the approximations we have made to render it tractable.

One assumption relevant to experimental realizations is already present in the contact-

interaction (1.5). Encoded in the cutoff Λ is a diluteness assumption: in order for the

crossover to be controlled only by the ratio of average interparticle distance to scattering

length (or equivalently pair size), neither scale can probe the short-distance behavior of the

interaction. Thus if 1/aS ≪ Λ or kF ≪ Λ are violated we must distinguish a “density-

driven” crossover controlled by kF from “interaction-driven” crossover driven by aS , which

correspond to two experimental paths toward its realization.

Cold atoms: an interaction-driven crossover

In the past two decades ultracold atomic atomic gases have opened new experimental frontiers

as physicists have gained unprecedented microscopic control over their attributes. Partic-

ularly interesting for observing crossover phenomena is a scattering property known as the

Feshbach resonance. In these systems, the pairing is between two species of atoms polar-

ized into particular angular momentum and spin states - for instance two hyperfine states

7



of Lithium - and thus scattering between them is substantially complicated by the presence

of additional channels. As shown in Figure 1.4(a), this property is exploited by magneti-

cally tuning the Zeeman energy of the “open channel” scattering atoms with energy E close

to a bound state in a “closed channel” (with internal energy exceeding E), producing a

field-dependent scattering length aS = abg(1−∆/(B −B0)) where B is the magnetic field,

B0 denotes the field at which the bound state is resonant, abg is a “background” scatter-

ing length, and ∆ is a resonance width that depends on microscopic parameters (Chin et al.

[2010]). Thus one can change η by directly varying aS at a fixed density of particles. Starting

with a BEC and moving to weak coupling, a superfluid has been observed to persist across

the crossover by the existence of a vortex lattice induced by rotating the system (Zwierlein

et al. [2005]).

Figure 1.4(b) shows the chemical potential as a function of η for fixed density and varying

scattering length, for a model Gaussian interaction potential with fixed range ⟨r⟩ (Parish

et al. [2005]). As the diluteness assumption is violated the crossover point is pushed to

stronger interactions. A finite range is not relevant for the current generation of cold atom

experiments, but the general lesson holds that corrections to the “universal” mean field the-

ory can shift the crossover point substantially. In two dimensions, mean field theory places

the crossover at ln(kF aS) = 0 (where this parameter plays the role of η owing to the per-

petual presence of a bound state), while a high-temperature strong-coupling expansion sees

signatures of Bose-like behavior well beyond this point, and in particular for the parameters

accessible to experiment (Ngampruetikorn et al. [2013], Sommer et al. [2012], Levinsen and

Parish [2014]). Roughly speaking, capturing these effects in the formalism developed in the

first section is akin to adding to the variational wave function “dimer” terms that capture

energetically favorable boson-boson correlations.

8



Figure 1.4: Left: Schematic illustration of the Feshbach resonance mechanism, from (Chin
et al. [2010]). The bound state with energy Ec is magnetically tuned close to zero energy
to resonantly couple to atoms scattering with energy E. Right: Chemical potential in an
interaction-driven crossover at fixed density, with finite-range potential, from (Parish et al.
[2005]). Notice that the zero crossing is shifted compared to the universal curve (blue) as
the zero-range approximation is violated.

Excitons: a density-driven crossover

Electronic systems have of course classically been the province of the BCS state, and a thus

natural place to look for the condensation of bosonic pairs as well. Rather than Cooper pair-

ing, we consider here the condensation of excitons, which depends on the screened Coulomb

interaction between charge carriers. A key material property is therefore the effective Bohr

radius, in analogy to the hydrogen Rydberg: aB = 4πϵϵ0ℏ2/(m∗e2) where m∗ is the effec-

tive (reduced) mass of the charge carriers in question, and ϵ is the dielectric constant. The

latter quantity can be orders of magnitude larger than unity, and in particular cause aB

to exceed the lattice spacing substantially so that an interacting gas becomes a reasonable

model (Keldysh [1995]). The other parameter relevant to crossover physics is rs ∝ 1/kF , a

dimensionless measure of interparticle distance in units of aB . It is the latter quantity that

is experimentally tunable by changing the carrier density.

We begin not with Cooper paris in superconductors, for which the BCS theory was

developed, but excitons in semiconductors. These electron-hole pairs do not exhibit the
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remarkable electromagnetic response properties of superconductors, but being bound by the

Coulomb interaction rather than a more complicated phonon-mediated coupling they are

more amenable to discussion in terms of the parameters above.

The Coulomb interaction binds the excitons constituents together while the Pauli re-

pulsion of the latter ensures the stability of the system (Keldysh and Kozlov [1968]). We

may incorporate all of these effects within the same formalism as in the first section and ask

whether the system can condense (Littlewood and Zhu [1996]).Figure 1.5 shows the chemical

potential and order parameter at various densities parameterized by rs for a one-dimensional

model that constrains the electrons and holes to opposite sides of an insulating layer. The

hallmarks of a crossover are visible in the growing gap and the chemical potential meeting

the binding energy with growing rS . Lest one worry that these results are an artifact of the

geometry, variational Monte Carlo simulations in three dimensions with unrestricted particle

positions confirm the crossover scenario, and indeed verify that a pair wave function is ener-

getically favored over a simple plasma of electrons and holes (Zhu et al. [1996]). (As before,

the improvement over the vanilla calculation comes from the explicit inclusion of additional

pair correlation terms in the variational wave function.)

Excitonic systems were early experimental candidates for observation of BEC. Excitons

are easily formed as “preformed pairs” on the BEC side of the crossover, and the experimental

challenge to observing condensation comes lies in achieving a sufficiently high density that

condensation may occur at experimentally accessible temperatures (see the next section for

a discussion of the thermodynamics of the crossover) (Hanamura and Haug [1977]). There

has been for several decades experimental work aimed at achieving excitonic BEC (recent

results include (Alloing et al. [2014], Yoshioka et al. [2013], Stolz et al. [2012], Yoshioka et al.

[2011], High et al. [2012])), although the achievement is not yet unambiguous (O’Hara and

Wolfe [2000], Jang et al. [2004], Jang and Wolfe [2006, 2005], Wolfe and Jang [2014]).

This is typically attempted by applying a Hertzian contact stress to the host crystal,
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Figure 1.5: Left: Energy per pair (solid) and chemical potential (dashed) as a function of
the electron gas parameter rS in a one-dimensional bilayer structure (see text), for electron-
hole separations d. Right: excitation spectrum (upper curve, and see section 1.3.3) and gap
function (lower) at rS = 2.66, 5.90 (dashed, solid, respectively). From (Zhu et al. [1995]).

inducing a parabolic spatial strain profile that locally lowers the band gap and thus confines

the excitons. Although achievement of exciton BEC has been claimed more than once histor-

ically, the signatures of condensation in spectra and spatial distributions that substantiated

these reports were not unambiguous, and it now appears that these early efforts were stymied

by a two-exciton Auger recombination process which of course becomes more pronounced at

higher densities, amidst other phonon-assisted exciton interconversion and decay processes

(O’Hara and Wolfe [2000], Jang et al. [2004], Jang and Wolfe [2006]). A further tendency to

bind into biexcitonic molecules (which, in contrast to the simple Auger process, is enhanced

at low temperatures) continues to limit achievable densities (Jang and Wolfe [2005], Wolfe

and Jang [2014]). Thus although recent experiments at millikelvin temperatures, both in

stress traps and separated quantum wells, have renewed hope for condensation, a debate as

to the interpretation of these results continues to rage (Alloing et al. [2014], Yoshioka et al.

[2013], Stolz et al. [2012], Yoshioka et al. [2011]).
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Anisotropic Pairing

At face value, some interactions do not admit a crossover scenario: a sufficiently strong

short-range repulsive component, for instance, might favor a BCS state with p- or d-wave

symmetry, in principle necessitating a phase transition to the isotropic BEC. These cases

have been studied in detail and it appears, remarkably, that crossover physics continues

to provide a good description (Ohashi [2005]). The key is in recognizing that the order

parameter ∆ can only be identified with the gap in excitation spectrum in the vanilla theory

(see the next section for a discussion of spectral signatures of the crossover) (Randeria et al.

[1990]). Thus the order parameter can retain the symmetry favored by the interaction while

an isotropic gap opens in the spectrum as the chemical potential is lowered below µ = 0. To

the extent that this is a phase transition, it is an unusual one, involving weak singularities

that leave first and second derivatives of the free energy continuous. It has been argued these

are associated with a change in ground-state topology (Duncan and Sá de Melo [2000]).

The Unitary Gas

It is necessary to distinguish the “universality” of the vanilla theory, which we have seen

abundantly violated above, from the area of the phase diagram near which η → 0± where

the scattering length becomes infinite (assuming that the interaction range remains small),

known as the unitarity limit. This is a strongly-interacting limit (in three dimensions) where

from dimensional analysis the physics may depend only on η (and a temperature). This

truly universal regime, in principle accessible in cold atom experiments, is fertile and active

ground for testing new theory (Bloch et al. [2012]). Some results can be interpolated from ϵ

expansions in 4 and 2 dimensions, where remarkably the unitary gas maps onto, respectively,

a non-interacting Bose gas of infinitely tightly-bound dimers, or a non-interacting Fermi gas

at precisely the threshold for the appearance of a bound state (Nishida and Son [2012]).

In three dimensions the strong-coupling physics can be described by a number of universal
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relations in terms of a quantity known as the contact, which roughly speaking is a measure of

pair density that encodes the anomalous scaling behavior induced by the strong correlations

between particles (Braaten [2012]). This fact has prompted the development of much new

theory for this regime where neither a Cooper pair nor tightly-bound dimer description is

appropriate.

1.3.3 Finite Temperature and Excitations

Thermal Physics

The natural generalization of the variational theory is to a functional integral formalism,

which is amply reviewed elsewhere (Altland and Simons [2010]). Our approach is to write

the thermodynamic partition function as a path integral over configurations of the order

parameter ∆,

Z = N
∫
D(∆, ∆̄) e−Seff[∆,∆̄] (1.6)

where Seff[∆, ∆̄] is an effective action of the complex order parameter field ∆ (and may be

obtained by a Hubbard-Stratonovich decoupling and integration over the fermion fields of

the full action (1.9)). In principle no approximations have been made at this stage, but in

practice Seff must be computed by expanding order by order in some small parameter. Our

choice of decoupling field ∆ implies that the theory will be valid only with a weak coupling

Vkk′ favoring Cooper pairing.

Expanding to lowest order, one can find a “mean field” minimum of the free energy by

solving

δS
(0)
eff [∆, ∆̄]

δ∆
= 0

∂S
(0)
eff [∆, ∆̄]

∂µ
= N

(1.7)
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which again in practice requires physically-motivated assumptions about the form of the

order parameter field. At zero temperature these equations reduce to (1.4), and indeed

the reparameterization in terms of scattering length remains necessary in this formalism as

well (Engelbrecht et al. [1997]). Note that ∆ = ∆̄ = 0 is always a solution, and above

a temperature T ∗ = 8eγ−2

π ϵF exp(−π|η|/2) (where γ is Euler’s constant), ∆ = 0 becomes

the only solution. This prediction, with the transition temperature simply proportional to

the zero-temperature gap and growing without bound, simply diagnoses an instability of the

uniform Fermi gas to pair formation, which coincides with condensation in the weak-coupling

limit. In the opposite limit of a condensing gas of bosonic pre-formed pairs, this treatment

is clearly inadequate.

The systematic approach is then to accommodate pairing fluctuations beyond mean field

by expanding Seff to second order and applying the prescription once more (Nozières and

Schmitt-Rink [1985]). Physically the additional terms incorporate the effects of pair-breaking

thermal fluctuations about the mean field; at strong coupling these dephase the condensate

into a gas of bosons at the BEC transition temperature Tc ∼ ϵF for a gas of bosons of

mass 2m, well before it becomes energetically favorable to dissociate into a Fermi liquid at

T ∗ ∼ ϵF exp(−π|η|/2) (Engelbrecht et al. [1997]). At weak coupling this distinction is lost.

The resulting phase diagram is sketched in Figure 1.6.

This theory, equivalent to the T -matrix approximation (Figure 1.1), becomes that of a

free Bose gas in the BEC limit, and an expansion to higher orders produces an effective

pair-pair repulsion of scattering length 2aS between bosons of mass 2m which stabilizes the

condensate (Sá de Melo et al. [1993]). Direct solution of the Schrödinger equation in fact finds

a dimer-dimer scattering length add ∼ .6aS , which repulsion is responsible for the maximum

in Tc near the crossover as the transition temperature is modified by ∆Tc/Tc ∼ n
1/3
b add

where nb is the boson density (Petrov et al. [2005, 2004], Burovski et al. [2008], Baym et al.

[1999], Haussmann et al. [2007]). Another important class of corrections arises from including
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exchange of spin fluctuations between fermions, which suppresses the transition temperature

in the low-density limit (Gorkov and Melikbarkhudarov [1961], Heiselberg et al. [2000]).

For mass-imbalanced fermions (relevant to cold-atom experiments where different atomic

species take the place of spins) the theory predicts an unphysical double-valued transition

temperature and vanishing superfluidity at weak coupling, which has only recently been

remedied with a self-consistent approach (Tajima et al. [2014], Hanai and Ohashi [2014]).

This calculation, then, should be taken as its original authors advised: an interpolation

scheme, albeit one which remains remarkably qualitatively correct for its simplicity.

There is a surprising maximum in the condensation temperature near the crossover point,

and one may wonder as to its physical significance and indeed the validity of this calculation.

Our expansion in fluctuations about the weak-coupling theory in fact amounts to precisely the

same choice of diagrams as the T -matrix approximation (Figure 1.1), and there is no reason

to believe these will dominate, particularly in the strong-coupling regime (section 1.3.2). The

theory is for one thing self-inconsistent in the sense of using bare fermion propagators to

compute the self-energy. This has disastrous consequences for fermions with different masses

(relevant to cold-atom experiments where different atomic species take the place of spins),

unphysically predicting a double-valued transition temperature and a vanishing superfluid

phase at weak coupling, and has only recently been remedied (Tajima et al. [2014], Hanai

and Ohashi [2014]). Another important class of corrections arises from including exchange of

spin fluctuations between fermions, which suppresses the transition temperature in the low-

density limit (Gorkov and Melikbarkhudarov [1961], Heiselberg et al. [2000]). The maximum

in Tc itself appears to be real, appearing in Monte Carlo simulations, and has its physical

origin in the repulsive interaction between dimers, which can be shown in the strong-coupling

limit to shift the transition temperature by ∆Tc/Tc ∼ n
1/3
b add where nb is the boson density

and add is the boson-boson scattering length, this correction falling off at higher η (Burovski

et al. [2008], Baym et al. [1999], Haussmann et al. [2007]). (Note that the simple fourth-order
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Figure 1.6: Schematic finite-temperature phase diagram of the crossover. Tpair is the mean-
field weak-coupling result.

expansion giving add = 2aS dramatically overestimates the scattering length, which direct

solution of the Schrödinger equation shows to be add ∼ .6aS (Petrov et al. [2005, 2004]).)

Excitations

In this section we offer two complementary methods for deriving the excitation spectrum

of the vanilla theory, for the separate fermionic (single quasiparticle) and bosonic (collec-

tive mode) sectors. Excitations in the BCS mean field theory are described by fermionic

quasiparticles defined by the Bogoliubov transformation

First, we construct a mean field theory (equivalent to the trial wave function solution of

section 1.3.1 or S
(0)
eff [∆, ∆̄] of section 1.3.3) by defining the ground-state expectation value

∆ =
∑

k⟨c−k↓ck↑⟩ and inserting it into (1.3). The mean-field approximation consists of

16



neglecting terms such as ∆−
∑

k c−k↓ck↑ under the assumption that fluctuations are small.

We obtain, after appropriately rescaling the order parameter,

(Ĥ − µN̂)M.F. =
∑
k

 c
†
k↑

c−k↓


⊺ ξk −∆

−∆̄ −ξk


 ck↑

c
†
−k↓

+ const. (1.8)

which can be diagonalized by a Bogoliubov transformation into a theory of noninteract-

ing fermionic quasiparticles (which superpose electrons and holes) with spectrum Ek =√
ξ2k +∆2.This function has appeared before in (1.4), and indeed the same equations are

obtained by optimizing (1.8) with respect to ∆ at fixed particle number.

In the limit ∆ → 0 the quasiparticles become ordinary electrons and holes, with gap 2∆

at the Fermi surface. As ∆ grows and the chemical potential crosses zero, the Fermi surface

is destroyed and the minimum quasiparticle energy is half the binding energy at k = 0 and

grows with the chemical potential.

Collective excitations are best derived from the functional integral formalism. We have

seen that the leading-order term S
(0)
eff [∆, ∆̄] sets the mean-field value of the order parameter,

and have interpreted the action to second order S
(2)
eff [∆, ∆̄] as incorporating fluctuations.

This second-order term can be thought of as a large matrix between Fourier components

δ∆k of the order parameter’s fluctuations.

The frequency- and momentum-dependent zero eigenvalues of S
(2)
eff define the excitation

spectrum of the system.2 Note that these are fluctuations in the bosonic order parame-

ter field and correspond to a collective response of the condensate rather than individual

quasiparticles.

This analysis finds two modes: as Goldstone’s theorem predicts, the existence of a macro-

scopic order parameter ∆ that breaks the symmetry of (1.3) to global U(1) phase rotations

of the fermion operators implies the existence of a sound mode with a dispersion linear in

2. This is nothing more than the statement that the excitations are the poles of the Green function.
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k at long wavelengths. This mode, with stiffness vF /
√
3 where vF is the Fermi velocity,

corresponds to modulations of the order parameter phase, while the second, massive am-

plitude mode, with spectrum ω(k) = 2∆ + v2F k
2/4α∆ where α is of order unity, reflects

modulations in condensate population (Popov [1987]). These spectra are derived without

assuming a value of η (except insofar as they come from expanding a weak-coupling the-

ory), yet their quantitative forms yield qualitatively different behavior on different sides of

the crossover. (Note, however, that inclusion of other effects, particularly the Coulomb in-

teraction for charged fermions, modifies these results (Côté and Griffin [1993], Belkhir and

Randeria [1992]).)

In the BCS limit, the sound mode is quite stiff in the sense that already at low momenta it

intersects the quasiparticle continuum (i.e. its energy exceeds 2∆) where scattering processes

are allowed that cause it to quickly decay. (This provides the connection to the BCS/Pippard

coherence length ξ = ℏvF /2∆. Hence a restatement of the BCS limit is the condition

kF ξ ≫ 1.) The amplitude mode likewise quickly decays for the same reason, though note

that the precise coincidence ω(k = 0) = 2∆ is an artifact of the level of approximation. We

conclude therefore that gapped quasiparticle excitations will dominate the observed spectra

in the BCS limit.

In the BEC limit, in contrast, where the quasiparticle gap is the binding energy and

∆ is large compared to ϵF , the superfluid sound mode is soft in comparison, and is the

dominant thermally occupied low-energy excitation. Quantitatively this limit is perhaps

better described by the Bogoliubov theory of the weakly interacting Bose gas, which predicts

a sound velocity that depends sensitively on the boson-boson interaction strength, which

can be incorporated directly as a parameter of the theory. As we have seen in section 1.3.3

this differs substantially from the values obtained in our low-order expansion. Note, though,

that at finite temperatures pair-breaking excitations that would not exist in a purely bosonic

system continue to be important (Kosztin et al. [2000]).
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Figure 1.7: Excitation spectra on the BCS (η = −1, left) and BEC (η = 1, right) sides of
the crossover. Shading below the quasiparticle spectrum Ek indicates the continuum where
he collective Higgs (short dashed) and Bogoliubov (long dashed) modes decay.

The spectra in both limits are sketched in Figure 1.7. It appears that in these dynamical

signatures we have finally obtained a quantity that differs substantially between the two

limits. The experimental implications of these results taken at face value are nevertheless

misleading - the remarkable collective response that enables superconductivity occurs in

the BCS regime, for instance, where we have claimed that the dynamics are dominated by

quasiparticles. We turn to the issue of collective mode dynamics that distinguish the two

regimes in the next section.

1.4 Collective Mode Dynamics

1.4.1 Higgs Modes and the Higgs Mechanism

We have seen above that the collective response of the broken-symmetry state consists of a

sound-like phase mode, often called the Goldstone mode, and a massive amplitude mode,

often called the Higgs mode. First let us clarify some (largely semantic) ambiguity surround-

ing these terms. In our discussion so far, the symmetry in question has been a global U(1)

phase rotation corresponding to charge conservation, c
†
kσ → eiθc

†
kσ, which is broken by the

choice of a particular phase for ∆ ∼
∑

k⟨ck↑c−k↓⟩ which introduces non-number-conserving
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∆c†c† terms. (One can explicitly compare how (1.8) and (1.3) transform.)

There is a second discussion, particularly relevant to superconductors, concerning the

Higgs mechanism and gauge symmetries, which is best illustrated by explicitly including the

electromagnetic potential Aµ = (ϕ,A) in the model:

S[Aµ, c, c̄] =

∫ β

0
dτ

∫
ddrFµνFµν

+

∫ β

0
dτ

∫
ddr c̄σ(τ, r)

(
∂τ + ieϕ+

1

2m
(−i∇− eA)2 − µ

)
cσ(τ, r)

+

∫ β

0
dτ
∑
kk′

c̄k↑(τ)c̄−k↓(τ)Vkk′ck′↓(τ)c−k′↑(τ)

(1.9)

where the field strength tensor Fµν = ∂µAν − ∂νAµ. Under gauge transformations that

take the charged fields c
†
kσ → eiθ(τ,r)c

†
kσ and the gauge field Aµ → Aµ − ∂µθ(τ, r) for an

arbitrary θ(r, τ), the theory is invariant, whether in the normal or broken-symmetry state, as

the order parameter ∆ transforms as a matter field with charge 2e. This invariance, required

for any physical theory, simply accounts for the excess degrees of freedom in the field theory

compared to physical electromagnetism, and is guaranteed by the electromagnetic coupling

in the fermion kinetic term.

Taking (1.9) as a starting point and repeating the procedure of section 1.3.3 to obtain

an effective action Seff[Aµ,∆, ∆̄], we may further decompose ∆ = |∆|eiθ to isolate the low-

energy physics of the phase fluctuations δθ. (The massive fluctuations δ|∆| are the Higgs

mode.) Two limits are useful: considering only the electric potential ϕ, one finds that

the sound mode dispersion acquires a gap Ω =
√

4πne2/m, known as the plasma frequency.

Physically, our previous analysis had only considered the attractive interaction that promotes

pairing, whereas now inclusion of the electric field that mediates the Coulomb interaction

has revealed an additional collective response of the charged fluid to density fluctuations.

We may also consider a purely magnetic field, B = ∇×A⊥, whereupon integration over the
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phase fluctuations produces

S[A⊥] =
β

2

∑
k

(ns
m

+ k2
)
A⊥

k ·A⊥
−k (1.10)

where ns is a measure of the superfluid density. Remarkably, the electromagnetic field carried

in vacuum by the massless photon with dispersion ω = ck has acquired a mass inside the

superconductor, which manifests physically as magnetic flux expulsion. This exemplifies the

Higgs mechanism: a gauge field coupled to a matter Hamiltonian acquires a mass when the

latter enters its broken-symmetry state, at the expense of the massless sound mode that

would otherwise be present. We stress the limits of this scenario: the appropriate coupling

to a gauge field requires charged particles, and the condensate order parameter must be in

the Cooper channel.

1.4.2 Higgs Modes in Charge Density Wave Systems

The physics that enables the Higgs mechanism in superconductors at once vitiates direct

observation of the Higgs mode by coupling to an electromagnetic probe. In charge density

wave (CDW) systems, in contrast, the order parameter u ∼
∑

k⟨c
†
k+Qck⟩ is simply a spatially

modulated electronic density, and may be thought of as a frozen phonon mode. As before

there is a collective phase mode, associated physically with translations of the CDW, and

a Higgs mode corresponding to modulations of |u|. Since u controls the gap, it is possible

to observe the evolution of its amplitude by time-resolved measurements of the electronic

structure. Such experiments have been performed in the rare earth tritellurides, using time-

and angle-resolved photoemission spectroscopy (trARPES) to track the evolution of the

electronic structure of the CDW material as a function of time after a powerful pump pulse

is used to transiently destroy the condensate (Schmitt et al. [2008], Rettig et al. [2014]).

Not only do the experimental spectra show oscillations of the Higgs mode, the data for two
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successive pump pulses in- or out-of-phase demonstrate that they are coherent, with the

collective motion of the electron fluid Rabi flopping like a single spin.

This “quantum quench” response with oscillations in the Higgs mode is typical of the

BCS side of the crossover. A quench in the strong-coupling limit is in contrast dominated

by interference between the sound modes that dominate the low-energy spectrum leading

to the observation of so-called Sakharov oscillations (Hung et al. [2013]). We also note that

while all the observed dynamics is damped, the damping cannot be readily interpreted in

terms of interaction between quasiparticles and collective modes as in section 1.3.3, since the

experimental systems involved in quench experiments are generally highly out of equilibrium

and coupled to external sources of dissipation (Rançon et al. [2013]).

The ease of optically coupling to the CDW order parameter also provides an opportunity

to observe Higgs mode of the superconducting order parameter in materials that exhibit both

types of order, such as NbSe2. As we have seen the order parameter ∆ depends on the density

of particles, or more carefully in the BCS limit, the density of states at the Fermi surface. But

the formation of a CDW depletes precisely this quantity, providing a coupling between the

two order parameters u and ∆. In particular there is a linear coupling between the phonon

and superconducting Higgs mode (which, owing to the phonon interaction, is pushed below

the quasiparticle continuum), so that the phonon self-energy depends on ∆ and becomes

singular in the vicinity of the superconducting gap (Littlewood and Varma [1981], Browne

and Levin [1983], Littlewood and Varma [1982]). Raman spectroscopy, which measures this

quantity by perturbing the CDW order, shows the development of a second peak in the

susceptibility as the material (already CDW ordered) is cooled below the superconducting

transition temperature, at the expense of the peak associated with the CDW (Sooryakumar

and Klein [1980], Pekker and Varma [2015], Méasson et al. [2014]). In this way, the su-

perconducting Higgs mode which we predicted above should not couple to electromagnetic

probes (to linear order) becomes visible in the Raman spectrum: shaking one condensate
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at once shakes the other. Of course, at sufficiently high orders of expansion a nonlinear

electromagnetic coupling directly to the superconductor Higgs mode appears, and seems to

be recently accessible to high-intensity THz experiments (Matsunaga et al. [2013]).

1.4.3 Polaritons

An alternate strategy for observing the dynamics of the order parameter in the Cooper

channel with an electromagnetic coupling is to pick a model system around this feature. Po-

laritons, quasiparticles hybridizing an ensemble of two-level systems with a photonic degree

of freedom, were first realized between quantum well excitons and a cavity photon confined

by a distributed Bragg reflector, although implementations in cold atoms are currently being

attempted as well.

A simple model Hamiltonian will clarify the issue:

Ĥ − µN̂ =
∑
q

ψ
†
q(ω(q)− µ)ψq

+
∑
j

 a
†
j

b
†
j


⊺ −(ϵ− µ) g

∑
q e

iq·rjψ†q

g
∑

q e
−iq·rjψq ϵ− µ


 aj

bj

 (1.11)

Here a
†
j , b

†
j are creation operators for the two states of a system at site j, such as the

ground and first excited states of an exciton, while ψ
†
q creates a photon of momentum q

with dispersion ω(q) which is assumed to have a minimum near the energy splitting ϵ of

the two-level system. (Confinement of a photon to a cavity causes its dispersion to become

quadratic.) The exciton-photon coupling simply encodes the possibility of a transition be-

tween states a and b aided by the emission or absorption of the photon, and the whole system

may be regarded as simply an ensemble of spins with a dipole coupling, although written

to emphasize the dynamics of the photon mediating the interaction. In this form, it is clear
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that a photon condensate ⟨ψ⟩ would render the Hamiltonian formally similar to and in fact

simpler than (1.8), with the two-level systems taking the place of already “preformed” pairs

and the photon a dynamic order parameter field. This simple model remarkably provides

enough ingredients to facilitate a density-driven crossover: at low excitation densities (com-

pared to the underlying density of spins n), the polaritons are essentially photonic, with a

weak repulsive effective interaction mediated by the spins, which are polarized almost com-

pletely down. Here the system supports a BEC-like photon condensate, whereas at higher

densities comparable to n the degrees of freedom are more democratically hybridized exciton-

photon quasiparticles and form a BCS-like condensate. Although by construction there is

no separation between pairing and condensation temperatures, the signatures of crossover

physics otherwise remain: the chemical potential plunges below the bottom of the band at

low densities and the transition temperature deviates from the mean-field BCS value, set

by the photon effective mass and density as in a BEC model, as fluctuations of the soften-

ing collective sound mode become more important. (There is a second BEC-like regime at

much higher density when the exciton band becomes saturated and the degrees of freedom

are again photon-like. From the perspective of crossover physics this can be viewed as an

artifact of the theory.)

The polariton has a very light mass due to the photonic component, so the Bogoliubov

sound mode is about four orders of magnitude stiffer than an excitonic condensate of the

same density. Consequently, the dynamical spectrum is dominated by the ‘Higgs’ mode, to be

identified here as the collective oscillation of exciton-polaritons close to the Rabi frequency.

1.5 Concluding Remarks

In this brief survey of the BEC-BCS crossover we began with the observation that a coherent

superposition of large and overlapping weakly interacting pairs may be described by the same

wave function as a condensate of tightly bound dimers. The simplest version of this theory
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is controlled by a single parameter - either the range of the interaction, or the scaled density.

Real physical systems can be more complex.

The reliable signatures of crossover are in the dynamics. At strong coupling when the

cost of breaking pairs is high, the only low-energy physics remaining is in the collective

sound mode. The BCS limit is in contrast the province of “more scales,” which are liable

to scramble low energies sufficiently that only amplitude mode dynamics emerge unscathed

- the only strategy is to shake the condensate and watch.
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CHAPTER 2

A POLARITON SUPERSOLID IN A MOIRÉ LATTICE

2.1 Introduction

Polaritons are bosonic quasiparticles that arise when the coupling in a systen of light and

matter is sufficiently strong to hybridize the two components. Since the observation of Bose-

Einstein condensation in a realization with quantum well excitons coupled to the cavity

photons in a distributed Bragg reflector, they have been widely studied as both a platform

for exploring condensation phenomena (including at room temperature due to the low ef-

fective mass of the cavity photon), as well as a practical photonic nonlinearity for optical

computation and quantum simulation (Kasprzak et al. [2006b], Kena-Cohen and Forrest

[2010], Su et al. [2020], Schneider et al. [2016], Suarez-Forero et al. [2021]). A recent thrust

of experimental efforts has been toward establishing the transition metal dichalcogenides

(TMDs) as a polaritonic system (Hu and Fei [2020]). Besides their attractive optical proper-

ties, the TMDs naturally exhibit strong interactions that can already realize exotic electronic

phases of matter such as Wigner crystals (Zhou et al. [2021], Smolenski et al. [2021]). Stack-

ing multiple layers of TMDs that have been twisted relative to each other generates a Moiré

superlattice potential and flattens the low-energy band structure to further exacerbate inter-

action effects, leading to the observation of more dilute electronic crystals in which charge

carriers localized on Moiré lattice sites organize into spatially ordered states (Miao et al.

[2021], Xu et al. [2020], Huang et al. [2021], Jin et al. [2021]). Excitons in such structures

exhibit strong dipolar interactions and can localize, and a recent experiment has realized

strong-coupling polaritons in a Moiré superlattice in a cavity and found evidence of strong

nonlinearities associated with the localized excitons saturating at a density of one per Moiré

lattice site (Li et al. [2020], Zhang et al. [2021]).

In this work we study a model of polaritons formed from excitons on a lattice coupled to
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a planar cavity, taking into account possible strong exciton-exciton interactions. We study

the case where the lattice spacing is small compared to the photon wavelength and blockade

effects restrict occupancy to one exciton per site; this should be contrasted with previous

studies of polariton systems with larger-scale spatial order that can be described in terms of

the modulation of some continuous density, leading to polariton band structures (Winkler

et al. [2015], Lai et al. [2007], Pickup et al. [2020]).

2.2 Model

The Hamiltonian is H = H0 +Hint, with

H0 =
∑
q

ψ
†
qωqψq + ϵ

∑
j

σzj + g
∑
jq

(eiq·rjψ†qσ
−
j + h.c.) (2.1)

and Hint =
∑
jj′ U(|rj − rj′|)P

↑
jP

↑
j′ . H0 is an extended Dicke model like that studied

by (Keeling et al. [2004]), where ψq annihilates a photon of in-plane momentum q and

the presence or absence of an exciton on site j with on-site energy ϵ is represented as the

up or down eigenstate, respectively, of the spin operator σzj . In what follows we will use

the language of spin flips interchagneably with exciton occupancy. The in-plane photon

dispersion is ωq = ω0 + q2/2m∗ where the fundamental frequency ω0 and the effective

mass m∗ are set by the geometry of the cavity. The light-matter term describes an exciton

created (annihilated) by absorption (emission) of a photon at site j, and the dipolar coupling

strength g can be inferred from the measured Rabi splitting Ω = g
√
n where n is the density

of lattice sites. P↑
j projects onto the spin-up state at site j, so that Hint describes a pairwise

interaction U between occupied sites.
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2.2.1 The Fedotov-Popov Trick

There is a standard steamroller of functional field integral techniques for fermionic systems

that will now be convenient to apply. These are nicely introduced for instance in (Altland

and Simons [2010]) or (Mahan [2000]) and I do not have any particular insight to add to

what can be found there. To apply this steamroller it, however, is necessary to fermionize

the model in 2.1, and to do so I will make use of a technique due to (Popov and Fedotov

[1988]) which remains under-appreciated, which I will explain in somewhat general terms

here.

The basic idea is to introduce fermionic annihilation operators on each site, aj and

bj , representing the ground and excited states, respectively, so that σzj = 1
2(b

†
jbj − a

†
jaj),

σ+j = b
†
jaj , and so forth. These can be shown to obey the appropriate spin commutation

relations so long as one is dealing with a state with one fermion per site. That is, the states

with neither fermion occupying a site or both a and b fermions do not correspond to anything

physical in the spin picture, and somehow the constraint N∗
j = a

†
jaj + b

†
jbj = 1 must be

imposed for each site. This could for instance be done with a lagrange multiplier λj on each

site, so effectively coupling the system to some additional external field, but this approach

is cumbersome since the constraint must be carefully enforced at each order in perturbation

theory. Instead, the Fedotov-Popov trick accomplishes this exactly and automatically.

Thanks to the fermions, we are now in a much enlarged Hilbert space H = Hphys ⊗

Hunphys. (The physical subspace is tiny compared to the unphysical one - intuitively, any

one site in an unphysical configuration spoils the whole system.) However, we have the

important property that the Hamiltonian is “number-conserving” on each site in the sense

of the fermion number N∗
j . Therefore in the enlarged Hilbert space the Hamiltonian may be

written H = Hphys⊕Hunphys in the sense of a direct sum rather than a Kronecker sum, i.e.

there are no off-diagonal elements driving transitions between the subspaces.

In everything that follows I will be ultimately deriving properties of the system from a
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representation of the partition function,

Z = tr(exp(−βH)) = tr(exp(−βHphys))) + tr(exp(−βHunphys))) = Zphys + Zunphys (2.2)

which breaks neatly apart into two terms thanks to the block-diagonal Hamiltonian. There-

fore the problem is reduced to finding a way to make Zunphys = 0 without altering Zphys.

In general we can write Zunphys =
∑

{σ∈unphys} ασ
∏
j∈σ trj(e

−βH) where σ labels some

unphysical configuration, trj(e
−βH) is a partial trace over the single-site Hilbert space of

some site j with an unphysical occupancy, and ασ is some complicated number from all of

the physics beyond single-site going on in a given configuration. So to make Zunphys = 0, it

suffices to make the single-site trace of all the unphysical configurations go to zero.

The trick of Fedotov and Popov is to accomplish this by by adding to the Hamiltonian a

term H∗ =
∑
j
iπT
2 (N∗

j − 1). Notice first that N∗
j = 1 in the physical subspace so that H∗

does not do anything. Meanwhile, the single-site trace over the |00⟩ and |11⟩ states gives

zj = exp(−β(0− iπT/2)) + exp(−β(ϵ− ϵ+ iπT/2)) = 0.

Notice also that H∗ amounts to adding a fictitious imaginary temperature-depdendent

chemical potential to the system (plus a constant that does not alter the physics). Calcula-

tionally, it amounts to a shift of the fermionic Matsubara frequencies νm = 2πT (m+ 1
2) →

2πT (m+ 1
4).

Popov and Fedotov also considered higher-spin Hamiltonians with similar results. I

want to remark briefly here that this is not automatically possible for generic many-state

Hamiltonians. A salient example is a three-level system in which the photon field only couples

to one possible transition between the levels. In this case the direct sum condition is not

automatically satisfied and additional constraints must be imposed to enforce it. Assuming

this is accomplished somehow, there is an additional inconvenience when the single-site

energy levels are not equally spaced. In that case, using the same λj(N
∗
j − 1) construction

as above, the condition for zj to vanish is generically some polynomial in λj and does not
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necessarily produce a unique solution or one that acts like a Matsubara frequency shift.

2.2.2 Other formal developments

With this fermionization trick we represent the partition function as a functional field integral

Z =

∫
D[a, b, ψ] exp(−S[a, b, ψ]) (2.3)

over coherent states of a complex field ψ for the bosons and Grassmann fields a, b for the

fermions. (The Fedotov-Popov trick requires a tweak to the boundary conditions of the

fermionic variables but otherwise does not change the rules of Grassmann integration.) The

Euclidian-time action S[a, b, ψ] is as usual obtained by going over to the Lagrangian and

swapping the operators in the Hamiltonian for fields.

Next, it will be convenient to work in Fourier space. To do that we will assume translation

invariance, U(j, j′) = U(|j − j′|), to obtain

S[ψ, a, b] =
∑
q

ψ
†
q(−iωq + ω̃q)ψq +

∑
k

(−iνk(a
†
kak + b

†
kbk) +

ϵ

2
(b
†
kbk − a

†
kak))

+ g
∑
kq

(ψ
†
−qa

†
kbk+q + ψqb

†
kak+q)

+
2

4

∑
kk′q

(b
†
k+qb

†
k′−q − a

†
k+qa

†
k′−q + 1)U(q)(bk′bk − ak′ak + 1) +N(

iπT

2
+
ϵ

2
)

(2.4)

Here ωq is a bosonic Matsubara frequency and νq is a fermionic one with an extra shift

from the Fedotov-Popov trick absorbed into it. Now to deal with the quartic terms we will

introduce a bosonic decoupling field ϕq ≡ ⟨12
1
N

∑
k(b

†
kbk+q−a

†
kak+q)⟩, and after performing

a Hubbard-Stratonovich transformation we are left with an action quadratic in the fermion

fields, which can be integrated out to finally obtain an effective action

30



Seff[ψ, ϕ] =
∑
q

ψ
†
q(−iωn + ω̃q)ψq −

∑
q

ϕqU(q)ϕ−q

− tr lnM

M−1
kk′ =

 −iνm − ξk 0

0 −iνm + ξk

 δkk′

+
∑
q

 −|U(q)|ϕ−q gψ
†
−q

gψq |U(q)|ϕq

 δk,k′−q.

(2.5)

Here ξk = (ϵ − µ)/2, µ is the chemical potential, and M lives in the space of up and

down spins × 4-momenta k = (m,k).

We will consider a number of mean-field Ansätze for ⟨ψ⟩ and ⟨ϕ⟩. Because the Moiré

lattice spacing is much smaller than the photon wavelength, for energetic reasons we only

consider the possibility of a spatially uniform photon condensate, ⟨ψ0⟩ = λ. In each case we

will minimize the free energy, then expand in fluctuations δψ and δϕ, as explained later.

2.3 Homogeneous Static Mean-field Theory

First we will study a homogeneous mean-field ansatz with finite expectation values for ψ0

and ϕ0 and (ψ, ϕ)q ̸=0 = 0, and consequently diagonal M ∝ δkk′ . The free energy of this

state is

f0 = ω̃0|ψ0|2 − U0ϕ
2
0 − T ln(cosh βE)− µ

2
(2.6)

with E =
√

(ξ + U0ϕ0)2 + g2|ψ0|2, subject to the mean-field equations ∂ϕ0f0 = ∂ψ0f0 = 0

or

ω̃0ψ
†
0 =

ψ
†
0

2E
tanh(βE) (2.7)

ϕ0 = −ξ + U0ϕ0
2E

tanh(βE).
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which must be supplemented with the occupancy constraint ϕ0 ∈ [−1
2 ,

1
2 ]. Fig. 2.1 shows the

phase boundary as computed by following the line ψ0 = 0. These plots are in some arbitrary

energy units to show the effects of turning on the interaction, and then for the rest of time

we will work in units of U0 = U(0). All plots are shown at fixed detuning ∆ = 2.5, i.e. with

the exciton below the photon. The effect of temperature on this type of plot is clearly just

to smear everything out; while it is nice that we can compute this easily, we will ignore it

for now. Above the chemical potential µ = 0 it becomes energetically favorable for |ψ0|2 to

grow without bound, and in this regime the theory is a bad model of a photon condensate.

Let us first focus on U = 0. At lower chemical potential there are two “Mott lobes” centered

around µ = −∆; it can be shown that ϕ0 = +(−)1 in the lower (upper) lobe. Along the

g = 0 axis, the physics is of spins subject to the external field of µ, which polarizes them

around µ = −∆. When U ̸= 0, the homogeneous ϕ0 field allowed by our mean-field ansatz

will attempt to interpolate between one lobe and the other.

At g ̸= 0, there is a possible energy lowering from the exciton-photon interaction, but

the photon acts as a transverse field to the spins and requires them to tilt away from full

polarization to realize this effect. Deeper into each Mott lobe, the g required to realize this

effect grows, dropping to 0 where the spins are indifferent to their orientation (and near the

special µ = 0 point).

The recipe to convert the phase diagram to a more experimentally measurable quantity

is in principle simple: the total density ρ = −∂µf0 is given by

ρ = |ψ0|2 + ϕ0 +
1

2
. (2.8)
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Figure 2.1: Condensate region against µ and g in units of U . Top panel is at T = 0, bottom
left at U = 0, bottom right at U = 1.
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2.4 Fluctuations of the Uniform States

To compute the fluctuation action to second order we consider:

(G0)kk′ =

 −iω̃k − ξ − U0ϕ0 gψ
†
0

gψ0 −iω̃k + ξ + U0ϕ0


−1

δkk′ (2.9)

∆kk′ =
∑
q

 −|U(q)|δϕ−q gδψ
†
−q

gψq |U(q)|δϕq

 δk,k′−q

T tr(G0∆G0∆) =


δψ

†
q

δψ−q

ϕq


T 

K1 K2(ψ0)
2 K3ψ0

K∗
2(ψ

†
0)

2 K∗
1 K4ψ

†
0

K3ψ
†
0 K4ψ0 Π




ψq

ψ
†
−q

ϕ−q

 (2.10)

with

K1 = g2n(iωq ξ̄ − E2 − ξ̄2)
tanh(βE)

E(ω2q + 4E2)
(2.11)

K2 = g4n
tanh(βE)

E(ω2q + 4E2)

K3 = g2n|U(q)|(iωq + 2ξ̄)
tanh(βE)

E(ω2q + 4E2)

K4 = g2n|U(q)|(−iωq + 2ξ̄)
tanh(βE)

E(ω2q + 4E2)

Π = −4g2U(q)2|ψ0|2
tanh(βE)

E(ω2q + 4E2)

with ξ̄ = ξ+U0ϕ0 and E =
√
ξ̄2 + g2|ψ0|2. Then the free energy taking into account fluctu-

ations is then f2[δψ, δϕ] = f0+
1
2

∑
q

(
δψ

†
q δψ−q δϕq

)
·Q(ωq, q) ·

(
ψq ψ

†
−q δϕ−q

)T
,
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Figure 2.2: Normal state spectrum at T = 0 with µ = −4, g = 1 (left) and µ = −1, g = .4
(right), inside the two Mott lobes.

where

Q =


−iωq + ω̃q +K1 K2(ψ0)

2 K3ψ0

K∗
2(ψ

†
0)

2 iωq + ω̃q +K∗
1 K4ψ

†
0

K3ψ
†
0 K4ψ0 −U(q) + Π

 (2.12)

The spectrum is got by analytic continuation (substitution) iωq → ω and satisfies the

condition detQ(ω, q) = 0.

2.4.1 Normal State

In the normal state where ψ0 = 0, Q becomes diagonal, Π → 0, and E → ξ̄, simplifying

matters considerably. The spectrum is plotted in Figure 2.2 and it is important to note that

the softening that it shows is an entirely mean-field effect, having nothing to do with the

form of U(q) which has not yet been specified.

An instability of the normal state can be diagnosed by the condition detQ(0, q) = 0.

This turns out to correspond to a softening of the lower polariton mode at q = 0, and can

be written

g2 = ±µ(U0ϕ0 −∆− µ) (2.13)
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Figure 2.3: Condensed state spectrum at T = 0 with µ = −2.5, g = (4, 3, 2.3, 2.2) from left
to right.

Evaluated at ϕ0 = ±1/2 this reproduces the (zero-temperature) phase boundaries of

(2.7), it being left as an exercise to the reader to determine which way is more natural or

elegant.

2.4.2 Condensed State

Here the modes will inherit some of U(q) so it is necessary to pick something. We will start

by considering nearest-neighbor interactions, U(j, j′) = U0δj±1,j′ , in a linear chain, so that

U(q) = U0 cos(qπ/a) where a is the lattice spacing. For now we will choose the saturation

density n2s = 1/a2. A few sample points are plotted in Figure 2.3, showing a goldstone mode

that develops an instability at finite q as the coupling g is lowered.

Once again we can look for instabilities when detQ(0, q) = 0. For the condensed state,

this condition turns into

U(q) =
−ω̄qE2 − µξ̄2

2ω̄q|ψ0|2µ
. (2.14)

One can consider a “mean-field” limit that the photon mass m → 0, or perhaps more

simply that the q of the instability is much greater than any q where any interesting anti-

crossing is happening, and the condition simplifies to U(q) = −E2/2µ|ψ0|2. (That is not

necessarily any more transparent - it is certainly not e.g. the energy of the lower polariton

in general, and likely reflects the fact that the density polarizability Π is modulated by the

condensate amplitude.)
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Figure 2.4: Long-wavelength instability of the condensed phase (green), and q = 0 instabili-
ties of the normal state lobes (yellow and blue).

In practice one has to make an educated guess about the place where the spectrum goes

soft. We begin by trying to reproduce the Mott lobes, which is a q = 0 gap-closing phe-

nomenon and therefore actually a little tricky to capture numerically since there are already

Goldstone modes with ω → 0 as q → 0. As a hack we look for a small but finite-momentum

instability in the lower polariton that occurs slightly beyond the true phase transition as an

artifact. That result is shown in Figure 2.4 alongside the instabilities calculated from (2.13)

and we declare the agreement good enough to move on.

Now the real treat: we make another educated guess that the nearest-neighbor interaction

will be most destabilizing at q = 1 given our choice of parameters, and that boundary is

plotted in Figure 2.5. The m = .0001 line is negligibly far from the “mean-field” limit above.
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Figure 2.5: q = 0 instabilities of the normal state lobes (yellow and blue), and q = 1
instability of the uniform condensate for m = 10 (green), m = 1 (red), and m = .0001
(purple)

2.5 Ordered Normal State(s)

2.5.1 Mean Field

I now wish to consider mean fields with some ordering wave vector Q for the matter compo-

nent. It will be convenient to rewrite the interaction terms in (2.4) as
∑
kk′ v

†
k ·Mkk′ ·vk′ with

v
†
k =

(
a
†
k b

†
k a

†
k+Q b

†
k+Q

)
so that in this large space the diagonal inverse propagator

reads

(G0)
−1
kk′ =



−iνk − ξ 0 −|U(Q)|ϕQ 0

0 −iνk + ξ 0 |U(Q)|ϕQ

−|U(Q)|ϕQ 0 −iνk − ξ 0

0 |U(Q)|ϕQ 0 −iνk + ξ


. (2.15)
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The free energy then reads

fQ = −U(Q)ϕ2Q − T

2
(ln cosh(βξ̄+) + ln cosh(βξ̄−)) +

iπT

2
− µ

2
(2.16)

where ξ̄± = −∆
2 − µ

2 ±|U(Q)|ϕQ and the occupancy constraint again restricts ϕQ ∈ [−1
2 ,

1
2 ].

Note that in this case opposite signs of ϕQ are related by a Z2 symmetry and degenerate.

2.5.2 Fluctuations

This time we will proceed directly to using the fluctuations to compute the spectrum and the

phase boundary. I’m still going to consider only the three types of fluctuations δψ
†
q, δψ−q, δϕq

so that as in (2.12) there will be a 3× 3 flucuation matrix Q. That will be computed in the

same 4× 4 space as (2.15) using

∆kk′ =
∑
q



0 gδψ
†
−q −|U(q)|δϕ−q 0

gδψq 0 0 |U(q)|δϕ−q

−|U(q)|δϕ−q 0 0 gδψ
†
−q

0 |U(q)|δϕ−q gδψq 0


δk,k′−q (2.17)

to obtain

T tr(G0∆G0∆) =


δψ

†
q

δψ−q

ϕq


T 

K−
Q 0 0

0 K+
Q 0

0 0 0




ψq

ψ
†
−q

ϕ−q

 (2.18)

where

K−
Q = g2

(
tanh(β(ξ − |U(Q)|ϕQ))
iωq − ξ + |U(Q)|ϕQ

−
tanh(β(ξ + |U(Q)|ϕQ))
−iωq + ξ + |U(Q)|ϕQ

)
(2.19)

K+
Q = g2

(
−
tanh(β(ξ − |U(Q)|ϕQ))
iωq + ξ − |U(Q)|ϕQ

+
tanh(β(ξ + |U(Q)|ϕQ))
−iωq − ξ − |U(Q)|ϕQ

)
(2.20)
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Figure 2.6: Staggered state spectrum at T = 0. Left: µ = −2.5, g = 1.55, close to the
instability to condensation in the middle of the lobe. Right: µ = −1.6, g = .5, close to the
ϕ0 = 1/2 state (via a sliver of condensate again).

and in the zero-temperature limit

K±
Q =

2g2|U(Q)|ϕQ
(iωq ± 2ξ − 2|U(Q)|ϕQ)(iωq ± 2ξ + 2|U(Q)|ϕQ)

. (2.21)

In taking the zero-temperature limit there is one small subtlety in picking the sign of

tanh(β(ξ − |U(Q)|ϕQ)). In our units |U(Q)|ϕQ = 1
2 , and from the phase diagram it is clear

that the mott lobe for this state is bounded by µ = −∆± 1.

So the normal state retains the property that the photon creation and annihilation fluctu-

ations do not mix, as the ground state photon occupancy is zero, and the matter component

continues to have no polarizability in the absence of a condensate.

Spectra for this state are shown in Figure 2.6. Now there are two lower polaritons on

different sublattices, which in the center of the lobe are nearly degenerate with an excitation

energy of U and split as the chemical potential moves. Near the edges of the lobe there is

always a q = 0 instability to a condensate.

The instability of this state can also be diagnosed by detQ(0, q) = 0 and that is used

in Figure 2.7 to fill out the phase diagram so far. The big deal is that the uniform conden-

sate and staggered normal state instability lines are most certainly different, signalling the
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Figure 2.7: Instability lines of the states ϕ0 = −1/2 (yellow), ϕQ = 1/2 (green), ϕ0 = 1/2
(blue), and the finite |ψ0| uniform condensate (red) with photon mass m = .01.

presence of a supersolid state in the middle.

2.6 Triangular Moiré Lattice

For nearest-neighbor interactions only, the lattice matters only insofar as there is some

coordination number that can be absorbed into U and some preferred directions are implicit

in the spectra above.

Now, to add in interactions beyond nearest neighbor, I will specialize to the triangular

lattice on which the Moiré excitons live. Including next-nearest neighbors, the potential in

momentum space can be written

U(k) = U
(
cos(kxa) + cos((kx +

√
3ky)a/2) + cos((kx −

√
3ky)a/2)

)
+

U ′ (cos(√3kya) + cos((3kx +
√
3ky)a/2) + cos((3kx −

√
3ky)a/2)

) . (2.22)
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Figure 2.8: Configurations on a triangular lattice with NN+NNN interactions, from Kaburagi
and Kanamori. We will be interested in 1, 2, and 5.

I will assume a dipolar exciton-exciton interaction, U ∼ 1/r3, so that U ′ = U/3
√
3 ≈

.19U . Unfortunately that just barely satisfies the criterion of Kaburagi and Kanamori that

for a lattice gas on a triangular lattice with J1 > 5J2 > 0, there are quarter-, third-, and

half-filled structures between filling zero and one, corresponding to the configurations 1, 2,

and 5 in Figure 2.8.

2.6.1 Sublattice Formalism

In the special case of half filling it was appropriate to consider the CDW-like order paramater

ϕ(Q) whose extrema coincide with lattice sites. This is in general not the case, as for instance

illustrated in Figure 2.9, which shows a CDW configuration with ordering vectors given by

Qy = 2√
3
π and its two C3 rotations. Here the empty lattice sites fall in the saddles rather

than the minima of the CDW, and higher harmonics would be required to realize the desired

state. (As the excitons are dispersionless, there is no gradient term in the CDW and therefore

no physical reason to favor longer-wavelength structures.)

Instead I will explicitly construct separate order parameters for the different sublattices

in a given configuration, with 1/n filling generally requiring n sublattices. For instance, to

recapitulate the 1D CDW result in this language we can rewrite the quadratic terms in the

decoupled Hamiltonian as
∑
k kk

′v†k · Mkk′ · v
†
k where now v

†
k =

(
a
†
k1 b

†
k1 a

†
k2 b

†
k2

)
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Figure 2.9: Red: planes of superlattice sites. Color: density of simplest 2D CDW with the
same symmetry as configuration 1.

and the second label on each operator labeling the sublattices. Then the noninteracting

propagator is

(G0)
−1
kk′ =

diag

(
−iνk − ξ − U0ϕ2 −iνk + ξ + U0ϕ2 −iνk − ξ − U0ϕ1 −iνk + ξ + U0ϕ1

)
(2.23)

where ϕi ≡ ⟨12
1
N

∑
k(b

†
kibk+q,i − a

†
kiak+q,i)⟩ is the density order parameter on sublattice i.

Compared to (2.15), the interactions become shifts of the on-site energies on each sublattice.

To compute fluctuations, I introduce separate fluctuations δϕqi for each order parameter,

while the photon fluctuations δψq appear on the off-diagonals of a single sublattice and do

not couple different sublattice sectors. The same stability analysis reproduces the phase

diagram of Figure 2.7.

43



The generalization to the more complicated states that arise in the case of the triangular

Moiré lattice with longer-range interactions is straightforward. (G0)
−1 with n sublattices

will be enlarged but will remain diagonal, with the effects of longer-range interactions simply

incorporated into an appropriate on-site energy shift. Since the photons do not couple

sublattices, the fluctuations matrix ∆kk′ will likewise be enlarged but will remain tridiagonal,

and in the normal state the contribution of the fluctuations to the free energy will be of the

from

T tr(G0∆G0∆) =


δψ

†
q

δψ−q

δΦq


T 

Kn 0 0

0 K∗
n 0

0 0 Π




ψq

ψ
†
−q

δΦ−q

 (2.24)

where δΦq is a vector of the δϕqi and in the normal state all the elements of the block Π are

zero. In the enlarged fluctuation matrix Q there will be some more complicated structure

of static interactions between the δϕ fields but as before, they will carry no dynamics in the

normal state and the stability of the normal state will be determined by Kn, which can be

written

Kn =
1

n

n∑
i

tanh(β(ξ + Ui({ϕ}))
−iωq + 2(ξ + Ui({ϕ}))

(2.25)

where Ui({ϕ}) is the on-site energy shift of sublattice i due to interactions with the other

sublattices.

With this recipe (and (2.14) recomputed to use the interaction (2.22) and an appropriate

Hartree shift for the uniform state), a phase diagram on the Moiré superlattice can be

computed and is shown in Figure 2.10. As before, the unfilled and fully filled Mott lobes give

way to a uniform condensed state through second-order transitions, while the condensed state

has an instability to supersolidity in the chemical potential region where the interaction splits

the Mott lobes. The energy-minimizing symmetry of the supersolid has not been determined
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Figure 2.10: Phase diagram for the Moiré superlattice. The solid lobes touching the g = 0
axis are, from the left, fillings of 0, 1/4, 1/2, 3/4, and 1. The dashed lobes are at fillings 1/3
and 2/3, and the gray areas mark regions where a g = 0 ground state with this symmetry is
energetically favored.

here but it is most likely that of the quarter-filled “1” state, with the occupations of the

sublattices tuned continuously. At smaller coupling g the supersolid is unstable to states

with filling n/4. Additionally, as shown with dashed lines, there are two regions of chemical

potential at small g where n/3-filled states with “2” symmetry are stable, but a transition to

these would be first-order. Compared to the other normal states these are only energetically

favored in the extremely narrow regions of chemical potential, shaded gray, where the system

is nearly indifferent between possible fillings of the other symmetry.

2.7 Discussion and Experimental Signatures

The inclusion of longer-range interactions will stabilize further normal states at intermediate

fillings, eventually forming a two-dimensional analog of the devil’s staircase (Dublenych

[2009]), although given the rapid fall-off of the dipolar interaction and the already narrow
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range of chemical potentials that favors the p/3 phases, we expect these to be difficult to

observe. As seen already with second-neighbor interactions in Figure 2.10, phases with larger

regions of stability at g = 0 penetrate deeper into the supersolid regime (up to the overall

effect of larger chemical potential favoring condensation), and we expect the supersolid to

accordingly inherit the symmetry of these phases.

The clearest spectral signature of a spatially ordered phase in our model is the splitting by

the interaction of the lower polariton into distinct modes on each sublattice. (We note that

the middle polaritons observed in (Lai et al. [2007]) come from the presence of both inter-

and intra-layer Moiré excitons, a distinct effect that we have not considered here.) Spectra

are computed relative to the chemical potential. Experimentally the density is controlled

by pumping the system, and the blue shift of the resulting emission provides a measure

of the chemical potential. At g = 0, µ(ρ) (where ρ = 1
2 + ϕ + |ψ|2 is the density) will

exhibit a series of jumps as the system transitions between states of different filling. This

effect was already predicted in (Eastham and Littlewood [2000]) for the transition between

homogeneous fully polarized states. At finite g, the transitions between normal states and

regions of the phase diagram with superfluid order will instead be marked by kinks in µ(ρ),

which will then change continuously in the presence of a superfluid.

The visibility of these effects is attenuated by noise sources including inhomogeneous

broadening of the excitons, thermal effects, and non-equilibrium physics associated with the

driven-dissipative nature of the system. The energy scale on which these signatures appear

is set by the nearest-neighbor coupling strength, which in the experiments of (Zhang et al.

[2021]) is U0 ∼ .5meV, compared to an exciton inhomogeneous broadening of ∼ 8meV and

cavity linewidth of ∼ 3meV, and on the same order as the thermal energy at 5K. To achieve

strong coupling the Rabi splitting must be larger than these, and indeed with Ω ∼ 10meV

locates the experiment in a region of the phase diagram where only a phase transition from a

completely polarized normal state to a uniform condensate is expected. From the measured
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cavity dispersion we have extracted m ∼ 10−5me, or m
∗ ∼ 10−6, firmly within the mean-

field regime. Condensation phenomena are not yet evident in the Moiré polariton system,

although they have been achieved in monolayer TMDs (Zhao et al. [2021]).

2.8 Conclusions

We have proposed a simple model that realizes a polariton supersolid phase and may be

within reach of present experiments. Our model is closely related to the lattice supersolid

phases of hard-core bosons, as realized for instance in an ultracold atomic gas in an optical

lattice or helium adsorbed on graphite (Baumann et al. [2010], Choi et al. [2021]). Our model

differs in that what would ordinarily be an off-diagonal order parameter in the matter field is

here the photon field, imbued with its own dynamics, leading to a reentrant phase diagram.

We expect that this would be substantially enriched as the Moiré lattice spacing is increased

to become comparable to the photon wavelength, as on the one hand the importance of the

exciton-exciton interaction is enhanced by diluteness, and on the other it becomes energeti-

cally possible for the light field to condense in a state with a density modulation commen-

surate with the cavity. In contrast to polariton band structures in which condensation away

from k = 0 appears as a metastable non-equilibrium effect, the constraint of a single emitter

per lattice site would make such supersolids possible in equilibrium. The model is possibly

also of relevance to self-organized lattices, for instance due to blockade effects in Rydberg

excitons (Kazimierczuk et al. [2014], Bao et al. [2019]).
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CHAPTER 3

NORMAL STATE PROPERTIES OF STRONTIUM TITANATE

3.1 Introduction

Strontium titanate, SrTiO3, is a cubic perovskite wide band gap semiconductor which at low

temperatures approaches a ferroelectric phase transition but instead saturates at a dielectric

constant ϵ0 ∼ 2 × 104, reflecting the presence of an extremely soft transverse optic (TO)

phonon (Müller and Burkard [1979], Coak et al. [2018]). Against this background of quantum

criticality, when lightly doped the material hosts a plethora of interesting phenomena, in-

cluding Fermi liquid-like resistivity above the Fermi temperature (Lin et al. [2017]), phonon

hydrodynamics (Martelli et al. [2018]), and a superconducting dome spanning electron den-

sities from 1017 to 1021cm−3 (Schooley et al. [1964], Lin et al. [2013b], Bretz-Sullivan et al.

[2019]), with a transition temperature peaking around 300mK, on the order of 1% of the

Fermi energy (EF ), comparable to the high-TC materials. The superconducting state nev-

ertheless appears to be s-wave and weakly coupled, with a BCS-like ∆/TC ratio (Thiemann

et al. [2018], Yoon et al. [2021]).

It has long been known that conventional pairing by acoustic phonons cannot explain

the observed behavior, and superconductivity in SrTiO3 has thus spurred great theoretical

creativity, both historically and very recently (Koonce et al. [1967], Gastiasoro et al. [2020],

Volkov et al. [2021], Kanasugi et al. [2020], Wölfle and Balatsky [2018], Dunnett et al.

[2017], Arce-Gamboa and Guzman-Verri [2018], Kedem et al. [2016], Marel et al. [2019]).

Here we will focus on a particular class of theories, pioneered by Takada (Takada [1980]),

which involve the electron gas coupling to a longitudinal optic (LO) phonon mode (Klimin

et al. [2016], Rowley et al. [2018], Ruhman and Lee [2016], Gastiasoro et al. [2019], Gor’kov

[2016]). These theories face the difficulty that the coupling to this mode is of the same long-

range Coulomb character as the repulsion between the electrons, and the two effects must

48



therefore be treated on an equal footing. An additional problem as that the LO frequency

Ω ≫ EF . As pointed out by (Swartz et al. [2018]), a naive calculation of the BCS coupling

constant due to the LO phonon far exceeds the value measured in the superconducting state.

Although the elecron-phonon coupling strength in the sense of the Frölich coupling constant

α ∼ 2 (Devreese et al. [2010]) is intermediate at best, both photoemission (Wang et al.

[2016]) and tunneling (Yoon et al. [2021], Swartz et al. [2018]) experiments reveal substantial

spectral weight in “replica” bands, showing phonon effects beyond a simple quasiparticle

mass renormalization.

In this work we attempt to reproduce these observations by studying the normal-state

properties of the class of theories discussed above. We treat the Coulombic electron-phonon

and electron-electron interactions on equal footing, and employ the cumulant expansion (Kas

et al. [2014]) to incorporate the effects of multiple electron-boson interactions. Our main

results are illustrated by the spectral function and density of states in Figures 3.1 and 3.2:

although our formalism generates replica bands and qualitatively matches the experimental

observation that they become weaker and more diffuse as the electron density is increased,

we find that they occur at energies corresponding to the coupled modes of the LO phonon

and the collective response of the electron gas, which evolve with density. This is in glaring

contrast to the experiments, which always find them fixed at the bare LO phonon energy.

3.2 Model

We treat the Hamiltonian H = H0 +Hint with

H0 =
∑
k

c
†
kξkck + Ω

∑
k

b
†
kbk

Hint =
∑
q

gqρq(bq + b
†
−q) +

∑
q

Vc(q)ρqρ−q.

(3.1)
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Figure 3.1: Spectral function A(k, ω) for SrTiO3 parameters with n = 5× 1019cm−3. Solid
and dashed horizontal lines are offset from the Fermi surface in multiples of the coupled
mode frequency Ω+ and bare phonon frequency Ω, respectively.

Figure 3.2: First energy derivative of the computed density of states at different carrier
densities. The vertical dashed line is the phonon energy, and the vertical dotted lines are
Ω+ at each density
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H0 describes a single band of electrons with isotropic dispersion ξk = k2/2m − µ, where µ

is the chemical potential, and an Einstein LO phonon with frequency Ω. Although SrTiO3

has between one and three occupied conduction electron bands at experimentally accessible

densities (Marel et al. [2011], Lin et al. [2015b]) and there is possibly some trace of their

sequential filling in the superconducting phase diagram, inter-band scattering is large and

superconductivity is single-gap (Thiemann et al. [2018]), so we think a single band adequate

to model the essential physics. There are likewise multiple phonons but the coupling of

electrons to the LO mode near Ω = 100meV is by far the strongest. This coupling is

captured in the first, Frölich term of Hint, where ρq =
∑

k c
†
kck+q is the electron density

operator at momentum q and the coupling g2q = Ωγλ/q2 is parameterized in terms of the

long-range Coulomb coupling constant λ = 4πe2/ϵ∞ and a dimensionless parameter γ which

characterizes the stiffness of the TOmodes that are present but do not couple to the electrons.

The second term in Hint is the repulsive electron-electron interaction, where Vc = λ/q2 is

the same long-range Coulomb coupling that appears in the Frölich term. In total this model

is controlled by three parameters. The electron gas parameter rs = (4π3 n)
−1/3/aB where n

is the density and aB = ℏ2ϵ∞
me2

is the effective Bohr radius, which we mean in the sense of the

optical dielectric constant ϵ∞ = 5.44; the large static dielectric constant from the softening

TO is an output in this formalism. SrTiO3 in this sense is quite dilute, with rs ∼ 5 at optimal

doping, n ∼ 1020cm−3 and as high as 40 at n ∼ 1017cm−3, if such low-density samples

are in fact uniform. The phonon frequency ΩLO4 = 100meV enters through an adiabaticity

parameter Ω/EF , where EF is the Fermi energy; this parameter only drops into the adiabatic

regime beyond n = 1.3 × 1017cm−3. Finally, γ ranges from 0 for an uncoupled system to

1
2 when the TO mode softens completely and can be thought of as a measure of proximity

to ferroelectricity. In an ionic crystal with a rock salt structure, γ = (1/ϵ∞ − 1/ϵ0)/2,

but it is possible to straightforwardly generalize to the multi-phonon system, where
∑
s γs

plays the same role, and γs can readily be extracted from e.g. reflectivity measurements
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for each LO mode s (Toyozawa [1972]). We choose to use γ = .4995 from the measured

values of ϵ0, as if the entirety of SrTiO3’s large permittivity and electron-phonon coupling

were attributable to a single LO-TO pair. A different choice does not qualitatively change

our conclusions. We would like to emphasize that all of these parameters are in principle

experimentally determined, and because the Fröhlich and Coulomb interactions are treated

on an equal footing, there is no way within our model to independently tune the electron-

phonon coupling strength without side-effects.

For comparison to experiments, we are interested in computing the spectral function at

momentum k and energy ω

A(k, ω) = − 1

π
ImGR(k, ω) (3.2)

where GR is the retarded Green function. We begin by obtaining the leading-order effective

electron-electron interaction,

Veff(q, ω) =
Vc(q) + Vp(q, ω)

1 + Π(q, ω)(Vc(q) + Vp(q, ω))
(3.3)

where Vp = 2g2qΩ/(ω
2 − Ω2) is the phonon-mediated interaction and Π(q, ω) is the po-

larizability within the random phase approximation (RPA) (Giuliani and Vignale [2005]).

(3.3) can equivalently be obtained by integrating out the phonons and electron density

fluctuations to Gaussian order from (3.1), performing a resummation of the bubble-type

diagrams, or assuming assuming a dielectric function ϵ(q, ω) = ϵ∞ + ϵe-ph − Vc(q)Π(q, ω)

where ϵe-ph = (ϵ0 − ϵ∞)/(1 − ω2/Ω2
TO) is the dieelctric function of a polar crystal with

TO frequency determined by the Lyddane-Sachs-Teller relation Ω2
LO/Ω

2
TO = ϵ0/ϵ∞ (Mahan

[2000], Lyddane et al. [1941]).

We next compute the one-loop “G0W0” self-energy,

Σ0(k, ω) =
∑
q

∫
dω′

2π
G0(ω + ω′,k+ q)Veff(q, ω

′) (3.4)
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where G0(k, ω) = (ω − ξk + iδ)−1 is the free electron propagator. All computations are

performed with δ = .001EF . The integrals are split up just as in (Hedin [1965]), and

properties of this model for other semiconductors were already studied at this level by (Kim

et al. [1978]). We next employ the retarded cumulant expansion of (Kas et al. [2014]) to

obtain GR(k, ω) by Fourier transforming after computing in the time domain

GR(k, t) = −iθ(t) exp(−iξ̃kt) exp(CR(k, t))

CR(k, t) =

∫
dω

π

|ImΣ0(k, ω + ϵk)|
ω2

(e−iωt − 1)
(3.5)

where ξ̃k = ϵk+ReΣ0(k, ϵk) is the modified dispersion obtained from the one-loop calculation

of Σ0. Diagrammatically the cumulant expansion can be thought of as a partial resummation

which uses the result of the one-loop self-energy to include rainbow diagrams and some

crossing diagrams (Gunnarsson [1994]). Although it is known to differ from more numerically

accurate treatments of the electron gas for system sizes where those are available (McClain

et al. [2015]), we chose this approximation for its one-shot generation of all replica bands

(with spectral weight in each replica matching exact calculations in the limit of momentum-

independent coupling to dispersionless bosons), and for its correct placement of those replicas

relative to the renormalized bands, at minimal computational effort beyond G0W0.

3.2.1 Treating multiple phonon modes

For a material such as STO with non-neglible coupling to multiple phonon modes, there is

some ambiguity as to what choices of parameter one should make to compare to a single-

phonon model. In brief, the choices I have made amount to absorbing all of the phonon

oscillator strength in the material into a single phonon, but here I wish to make slightly

more precise how I think about this problem. Much of this discussion I owe to (Toyozawa

[1972]), while the coupling to electrons I have found more convenient to do in the language
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of functional integrals.

Phonon contribution to the dielectric function

The equations of motion in momentum space for the ions in a crystal are

Mν ẍν +
N∑
µ=1

Uνµ(q)xµ = ZνE (3.6)

where Mν and Zν are respectively the effective mass and charge of ion ν, xν is its dis-

placement, Uνµ(q) is the dynamical matrix (or very nearly) at wave vector q, and E is the

(total, real) electric field in the unit cell with N ions. Taking first the (possibly fictitious)

homogeneous case E = 0 obtains eigenmodes indexed by s = 1, . . . , 3N with components

(xν)i = ξ
sq
νi e

−iΩsqt that satisfy

−MνΩ
2
sqξ

sq
ν +

N∑
µ=1

Uνµ(q)ξ
sq
ν = 0 (3.7)

which defines the eigenfrequencies Ωsq, and obey

∑
νi

Mνξ
sq
νi ξ

s′q
νi = δss′ (3.8)

and ∑
s

√
MνMµξ

sq
νi ξ

sq
µj = δνµδij (3.9)

Thus giving us a nice basis. Next we solve the real problem, for a driving field Ei =

E0ie
iq·r−iωt, and assume solutions

xνi = eiq·r−iωt
∑
s

csqωξ
sq
νi . (3.10)
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(Stepping back to count, the 3N degrees of freedom are labeled either by ion ν and direction

i or by mode index s; ξsνi is a map between the descriptions; the forced oscillation is described

by 3N coefficients c labeled by mode.) The cs then obey

(Ω2
sq − ω2)csqω =

∑
νi

Zνξ
sq
νi Ei ≡ psq · E (3.11)

where we have defined an eigenpolarization psq. The total polarization isP(q, ω) = Vcsqωpsq

where V does the appropriate counting of unit cells, so the dielectric constant defined by

D = εE = ε∞E+ 4πP is

ε(q, ω) = ε∞(q, ω) + 4πV
∑
s

psq ⊗ psq

Ω2
sq − ω2

(3.12)

which is the dielectric tensor. Taking the longitudinal component, ε∥(ω) = q · ε · q/q2 drags

out some number σ of possibly nonzero terms, and taking the limit q → 0 eliminates q:

ε∥ = ε∞∥ +
σ∑
s

αs

Ω2
sq − ω2

(3.13)

so that by simple algebra this sum can be put together as

ε∥(ω)

ε∞∥
=

σ∏
s

ω2s − ω2

Ω2
s − ω2

(3.14)

This has the obvious interpretation that the transverse modes Ωs are the fictitious field-

free solutions and the poles of the dielectric function, whereas the ωs are the true zeroes.

Furthermore the ωs are in general completely opaque roots of a high-order polynomial, and

pairing them with the Ωs is at this level of analysis completely arbitrary.

Note that this argument can be repeated at arbitrary q, and as the Ω disperse there is

no reason not to expect the eigenpolarizations and thus the ω to disperse as well.
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By taking the ω → 0 limit it is possible to obtain a Lyddane-Sachs-Teller relation,

ε0
ε∞

=
∏
s

ω2s
Ω2
s

(3.15)

Diatomic Cubic lattice There are six modes total, and immediately three are acoustic

and cannot possibly matter. Of the three remaining optic modes, by symmetry the Ωs are

degenerate, so rearranging the sum can only give

ε∥
ε∞∥

=
ω2l − ω2

Ω2
t − ω2

(3.16)

and

ε0
ε∞

=
ω2l
Ω2
t

(3.17)

STO Just as a counting exercise, there are 5 atoms per unit cell, for 15 possible phonons. 3

are acoustic, and the cubic symmetry (at room temperature) requires three-fold degeneracy

so that there remain 4 candidate LO-TO pairs. These are indeed seen experimentally so we

declare victory for the moment.

Coupling to electrons

We will derive the electron-phonon coupling from linear response theory. Consider the action

S =
∑
km

c̄km(−iνm + ξk)ckm +
∑
qn

b̄qn(−iωn + Ω)bqn +
∑
qmn

gqρq(bqn + b̄−qn) (3.18)

Integrating out the phonons generates a retarded electron-electron interaction

Vph = γ
λ

q2
2Ω2

ω2 − Ω2
(3.19)

56



from which we read off the dielectric function

ϵ(ω,q) = ϵ∞

(
1 + γ

2Ω2

ω2 − Ω2

)−1

(3.20)

As desired, this goes to ϵ∞ in the high-frequency limit and in the static limit diverges if

2γ = 1
ϵ0

− 1
ϵ∞

= 1. We can also “experimentally” extract the coupling constant from ϵ(ω)

using ∂ϵ
∂ω

∣∣∣
ω=Ω

= ϵ∞
γΩ .

In the multi-phonon case these statements generalize. The dielectric function can be

written

ϵ = ϵ∞

(
1 +

∑
i

γi
2Ω2

i

ω2 − Ω2
i

)−1

(3.21)

and the condition for ϵ0 to diverge is that
∑
i 2γi = 1. Meanwhile it is still true that

∂ϵ
∂ω

∣∣∣
ω=Ωi

= ϵ∞
γiΩi

.

The case of STO

Taking the data compiled by Devreese for x = .1% Nb-doped STO at 7K we have ΩTO =

2.27, 21.8, 67.6meV, ΩLO = 21.2, 58.4, 98.7meV and running through the fitting procedure

described above (with ϵ∞ = 5.44) produces coupling constants γi = .00191, .0906, .407

for the three modes respectively. It should be noted that according to (3.31) (and using

m∗ = .81, also after Devreese), we obtain α = .016, .457, 1.58 which are consistent with the

existing literature. Thus we have here a case in which the couplings are weak to moderate in

the sense of α but not in the sense of γ. Indeed if we define a γeff =
∑
γi as a single-mode

proxy for proximity to ferroelectricity, in keeping with the condition for a diverging static

dielectric constant above, we have γeff = .4995 or one part in a thousand away.
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3.2.2 Calculating in the RPA with phonons

Although this calculational technology has been around since the sixties and sits at the

heart of many first-principles computations today, some aspects of how to perform these

calculations take surprising effort to track down.

Units and quantities

It is difficult to find a civilized collection of these so we begin here. First the parameters to

do with the simple coulomb-interacting electron gas. The electron gas parameter is

rs = (
3

4πn
)1/3/aB (3.22)

and the Rydberg

Ry =
e2

2aB
=

ℏ2

2ma2B
(3.23)

The Fermi momentum

kF = (
9π

4
)1/3

1

rsaB
(3.24)

and Fermi energy

EF = (
9π

4
)2/3

1

r2s
Ry (3.25)

The plasmon is at

ωp =
√

4πne2/m =

√
12

(9π/4)2/3
√
rsEF (3.26)

The Thomas-Fermi wave vector is q2TF = 6πe2n
EF

, or

qTF = 3(
4

9π
)2/3

√
rskF (3.27)
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(this should actually make you panic because qTF → 0 at high densities, apparently, but

that is only in comparison to kF ). As a bonus it will be useful to know that

λkF = 8π
e2

2aB
(kF aB) = 8π(

9π

4
)1/3

Ry

rS
= 8(

2π

3
)2/3rsEF (3.28)

Next, adding the coupling to the LO phonon, its matrix element is

g2q =
1

2

4πe2

q2
Ω(

1

ε∞
− 1

ε0
) (3.29)

which we nondimensionalize as

g2q =
λ

(q/kF )
2
γ

Ω

EF
(3.30)

where γ = 1
2(1−

ϵ∞
ϵ0

) and we have assumed that λ is expressed in units of the optical dielectric

constant.

Unfortunately this is not the quantity frequently cited in the literature, which instead

considers

α =
e2

ℏ

√
m

2ℏΩ
(
1

ϵ∞
− 1

ϵ0
) =

2

ϵ∞

e2

ℏ

√
me

2meV

√
m∗

Ω/meV
γ = 42.88

√
m∗

Ω/meV
γ (3.31)

where I have used the STO value of ϵ∞ = 5.44.

The effective electron-electron interaction

At first glance it is not clear what the combined influence of the electron-electron and

electron-phonon interactions will be in the RPA. Wiser minds have pointed out that the

result must just be the Coulomb interaction divided by a dielectric function that is the sum

of the individual dielectric functions due to the phonons, the electrons in the RPA, and

high-energy processes (i.e. ϵ∞). This will indeed turn out to be the case, but I would like to

demonstrate that diagramatically for this case and then point out a limitation of this kind

59



of thinking.

Rewriting the model Hamiltonian as an action,

S =
∑
k

c̄k(−iν + ξk)ck +
∑
q

b̄q(−iω +Ω)bq +
∑
kq

gqρq(bq + b̄−q) +
∑
q

λ

q2
ρqρ−q, (3.32)

we consider diagrams to construct an effective electron-electron interaction:

1. A bare interaction line contributes just λ
q2

.

2. A phonon line contributes g2q
2Ω

ω2−Ω2 .

3. A polarization bubble contributes Π(ω,q), the Lindhard function.

Diagrams with n polarization bubbles will have n + 1 lines. The 2n+1 different ways to

arrange them correspond precisely to the expansion of ((1) + (2))n+1, so that each such

diagram contributes (3)n((1) + (2))n+1. Thus

Veff =
∑
n=0

(3)n((1) + (2))n+1 = ((1) + (2))
∑
n

((3)((1) + (2)))n =
(1) + (2)

1− (3)((1) + (2))
(3.33)

Veff(ω,q) =
λ/q2 + 2g2qΩ/(ω

2 − Ω2)

1− Π(ω,q)(λ/q2 + 2g2qΩ/(ω
2 − Ω2))

Or the dielectric function is

ϵ(ω,q) =
λ/q2

λ/q2 + 2g2qΩ/(ω
2 − Ω2)

− λ

q2
Π(ω,q) (3.34)

An intuitive but misleading transformations Particularly in numerical calculations

(but not only), one often encounters a desire to separate out the electron-electron piece

from the electron-phonon piece so that different contributions to the self-energy may be

calculated by specialized methods, or simply as a way to isolate the effects of different physical

processes. For instance, it is very common to see an electron-phonon vertex modified ad-hoc
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to incorporate a Thomas-Fermi screening length. Here I wish to remark on the limitations

of such a procedure outside of a specific approxmation like that.

One can separate out the screened electronic piece and whatever’s left as

Veff =
1

ϵRPA

λ

q2
+

g2q

ϵ2RPA
Deff (3.35)

where

Deff =
2Ω

ω2 − Ω2 − 2g2qΩΠ/ϵRPA
(3.36)

So for a self-energy, one expects something like

Σ(p) = ΣRPA + i

∫
d4q

(2π)4
g2q

ϵ2RPA
G0(p+ q)Deff(q), (3.37)

where

• ΣRPA is the self-energy from just the RPA treatment of the Coulomb interaction,

• Deff is a “bare screened” phonon propagator and does not represent any sort of self-

consistent result, and

• gq/ϵRPA is a “bare screened” electron-phonon vertex which appears twice; the division

by ϵRPA should not be interpreted as any sort of vertex correction to the bare gq.

It is important to note, however, that these two terms inevitably contain bits of different

order in e2 (which is an expansion parameter for better or worse). In practice (at least in

some analytic limits we’ve considered) this leads to unphysical results like double-counted

plasmon modes, which a consistent calculation would cancel. Therefore we do not work with

this form.
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Analytic Limits

The electron self-energy takes on some appealingly simple forms in the extremely dilute or

extremely dense limits, which serve both to illuminate the physics and as sanity checks on

the numerics.

Plasmon Pole: rs ≫ 1 The contribution of the electron gas is dominated by the plasmon

at frequency ωp, so ΠRPA → q2

λ
ω2p
ω2

. Doing out the math, one finds

Veff → λ

q2
ω2(ω2 + (2γ − 1)Ω2)

(ω2 − ω2+)(ω
2 − ω2−)

(3.38)

where the hybrid plasmon-phonon mode frequencies are

ω2± =
1

2
(Ω2 + ω2p ±

√
Ω4 + ω4p + (8γ − 2)Ω2ω2p) (3.39)

These deserve some comment. In the uncoupled limit γ → 0 these decouple as one expects.

More interestingly, in the maximally coupled limit γ → 1
2 (that is ϵ0 → ∞ while ϵ∞ = 1),

which STO almost saturates, ω2+ → Ω2 + ω2p and ω2− → 0.

We calculate in Matsubaras,

Σ(iνn,k) =
∑
q

T
∑
n

Veff(iωn,q)G0(iν + iωn,k+ q) (3.40)

For brevity describing the algebra in words:

• The Matsubara sum is done as a contour integral and just picks up the five simple

poles

• We take a zero-temperature limit immediately

• We naively continue iν → ω + iϵ and use ℑ 1
x+iϵ = −δ(x) to find ℑΣ(ω,k).
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• We perform the energy and phase space integrals without incident.

The result is

ℑΣ(ω, p) = λ

8π(ω2+ − ω2−)
(

F+(ω − ω+)(1− nF(ω − ω+))

+ F+(ω + ω+)nF(ω + ω+)

+ F−(ω − ω−)(nF(ω − ω−)− 1)

− F−(ω + ω−)nF(ω + ω−) )

(3.41)

where

F±(z) =
√
z + µω±(ω2± + (2γ − 1)Ω2) ln(

(k +
√
z)2

(k −
√
z)2

)/2k
√
z (3.42)

Thomas-Fermi: rs≪ 1 Now Π → −ν0, and one obtains

Veff → λ

q2 + q2TF

ω2 + (2γ − 1)Ω2

ω2 − ω2s
(3.43)

where

ω2s = Ω2 q
2 + (1− 2γ)q2TF

q2 + q2TF
(3.44)

We immediately set ωs = Ω. One can justify this by saying that deep in the Thomas-Fermi

limit qTF → 0 in our units of choice. This is a terrible and counterintuitive argument but

reflects physically the fact that at extreme high densities the Fermi energy by far dominates

all other scales. (At rs = 0 the effective mass is 1.)

We proceed as before.

Σ(iνn,k) =
∑
q

T
∑
n

Veff(iωn,q)G0(iν + iωn,k+ q) (3.45)

The algebra:
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• The Matsubara sum is done as a contour integral and picks up three simple poles

• We take a zero-temperature limit immediately

• We naively continue iν → ω + iϵ and use ℑ 1
x+iϵ = −δ(x) to find ℑΣ(ω,k).

• We perform the energy integral without incident.

• The phase space integral incorporates all the interesting screening effects.

The lengthy result is

ℑΣ(ω, p) = λγΩ

8πp
(Θ(µ+ω−Ω)(1−Θ(Ω−ω))F (µ+ω−Ω)+Θ(µ+ω+Ω)Θ(−ω−Ω)F (µ+ω+Ω))

(3.46)

where

F (z) = q2TF(
1

q2TF + (p+
√
z)2

− 1

q2TF + (p−
√
z)2

) + ln(
q2TF + (p+

√
z)2

q2TF + (p−
√
z)2

) (3.47)

Numerics

The one-loop self-energy is calculated by following the same transformations used for the

electron gas by (Hedin [1965]) and (Lundqvist [1968]). We have defined the self-energy of

interest on the Matsubara axis,

Σ(iνm,k) =
∑
q

T
∑
n

Veff(iωn,q)G0(iνm + iωn,k+ q) (3.48)

which in the zero-temperature limit becomes

Σ(iνm,k) → i
∑
q

∫
dω

2π
Veff(iω,q)G0(iνm + iω,k+ q). (3.49)
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We wish to obtain the retarded self-energy, Σ(iνm → ν + δ) and would prefer to compute it

directly rather than have to analytically continue after the fact. We also have the subsidiary

goal of minimizing the number of difficult function evaluations, which involves separating out

terms with no frequency dependence or that can be evaluated as lower-dimensional integrals.

To this end we rewrite

Veff(iω,q) =
V0(q)

ϵ(iω,q)
= V0(q) + V0(q)

(
1

ϵ(0,q)
− 1

)
+ V0(q)

(
1

ϵ(iω,q)
− 1

ϵ(0,q)

)
(3.50)

Statics The first two terms are independent of energy and only needs to be evaluated once

for each momentum grid point. The first term generates the usual exchange contribution

ΣX . We will retain the dynamics in the second piece and take the static limit at the end.

First we rewrite it in a spectral representation

V0(q)

(
1

ϵ(iωn,q)
− 1

)
≡
∫ ∞

−∞

dΩ

2π

B(Ω,q)

iωn − Ω
(3.51)

We perform the Matsubara sum:

ΣS(iνm,k) = ΣX +
∑
q

∫ ∞

−∞

dΩ

2π
B(Ω,q) T

∑
n

1

iωn − Ω

1

iωn + iνm − ξk+q
(3.52)

= ΣX +
∑
q

∫ ∞

−∞

dΩ

2π
B(Ω,q)

nB(Ω) + nF (ξk+q)

iνm + Ω− ξk+q

−−−−−−−−−→
iνm→ω, T→0

ΣS +
∑
q

∫ ∞

−∞

dΩ

2π
B(Ω,q)

−Θ(−Ω) + Θ(ξk+q)

ω + Ω− ξk+q + iδ

= ΣX −
∑
q

∫ 0

−∞

dΩ

2π

B(Ω,q)

ω − ξk+q + Ω+ iδ
+
∑
q

∫ ∞

−∞

dΩ

2π

B(Ω,q)

ω − ξk+q + Ω+ iδ
Θ(ξk+q)
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We use the fact that the dielectric function and therefore B is even to extend the integration

in the second term back over the full range to obtain

ΣS =
1

2

∑
q

V0(q)

(
1

ϵ(ω − ξk+q,q)
− 1

)
−
∑
q

V0(q)

(
1

ϵ(ω − ξk+q,q)
− 1

)
Θ(ξk+q) + ΣX

(3.53)

In the static limit there is no frequency dependence. We may also combine the second and

third terms to obtain

ΣS =
4π

2

∫ ∞

0
dq q2V0(q)

(
1

ϵ(0, q)
− 1

)
− 2π

∫ ∞

0
dq q2V0(q)

∫ 1

−1
d cos θ

Θ(ξk+q)

ϵ(0,q)
(3.54)

The first term is conventionally called the Coulomb Hole and the second the Screened

Exchange term, as it is analogous to ΣX .

Dynamics At zero temperature we will do the frequency sum as an integral,

ΣD(iνm,k) =
∑
q

∫
dω′

2π
Veff(iω

′,q)G0(iνm + iω′,k+ q) (3.55)

where

Veff(iω,q) = V0(q)

(
1

ϵ(iω,q)
− 1

ϵ(0,q)

)
. (3.56)

However, we want ΣD on the real axis. Formally we can obtain it as the sum of a careless

analytic continuation before integration and a piece that picks up what we missed:

ΣD(iνm → ω + iδ,k) =
∑
q

∫
dω′

2π
Veff(iω

′,q)
1

ω + iω′ − ξk+q

+
∑
q

∫
dω′

2π
Veff(iω

′,q)

(
1

ω + iω′ − ξk+q
− 1

iνm + iω′ − ξk+q

)
(3.57)
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where I have written G0 explicitly. All of the angular dependence in the first term is in G0,

which can be integrated explicitly to give

ΣD1(ω,k) = 2π

∫ ∞

0

dω′

2π

∫ ∞

0

dq

(2π)3
1

kq
Veff(iω

′,q) log

(
(ω′)2 + (ω − ϵk+q)

2

(ω′)2 + (ω − ϵk−q)
2

)
(3.58)

where we have used that the imaginary part of the integrand is odd in ω′ and the real part

is even. In particular it should be noted that Veff(iω,q) is pure real, and can be expressed

without evaluating any complex numbers.

The second term will be evaluated by closing the ω′ contour in the upper half-plane.

Suppose that Veff has just a simple pole at ωj with residue Rj . Then

∫
dω′

2π
Veff(iω

′,q)(
1

ω + iω′ − ξk+q
− 1

iνm + iω′ − ξk+q
)

=

∫
dω′

2πi

Rj
ω′ − ωj

(
1

ω′ − i(ω − ξk+q)
− 1

νm + ω′ + iξk+q

) (3.59)

= Rj

(
1

ωj − i(ω − ξk+q)
− 1

ωj + νm + iξk+q
+

Θ(−ξk+q)

ωj + νm + iξk+q
−

Θ(ω − ξk+q)

ωj − i(ω − ξk+q)

)

−−−−−→
iνm→ω

Rj
i(ω − ξk+q)− ωj

(Θ(ω − ξk+q)−Θ(ξk+q))

So that the contribution from the poles of Veff vanishes, and more generally we can write

ΣD2(ω,k) =
∑
q

Veff(ω − ξk+q,q)(Θ(ω − ξk+q)−Θ(−ξk+q))

= 2π

∫ ∞

0

dq

(2π)3

∫ 1

−1
d cos θ Veff(ω − ξk+q,q)(Θ(ω − ξk+q)−Θ(−ξk+q))

(3.60)

Finally, Σ = ΣS + ΣD1 + ΣD2 and it should be noted that the entire imaginary part of

Σ comes from ΣD2. We nondimensionalize and perform these four integrals by Monte Carlo

as implemented in (Lepage [2020]).
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3.2.3 Cumulant Expansion

The cumulant expansion is a resummation that achieves some desirable properties in the

spectral function at the same computational expense as the one-loop calculation. Assuming

one believes in perturbation theory, the formal expansion of the Green function in powers of

the coupling constant g,

G(t, t′) =
∞∑
n=0

gn

n!
Gn(t, t

′), (3.61)

can, following (Gunnarsson [1994]), formally be rewritten

G(t, t′) = G0(t, t
′) exp(

∞∑
n=1

gn

n!
Cn(t, t

′)) (3.62)

where Cn is the nth-order cumulant function. We may formally rewrite (3.62)

∞∑
n=1

gn

n!
Cn = ln(G−1

0 G) (3.63)

and use Dyson’s equation to write G in powers of Σ, which we assume to have been computed

to lowest order. Then we expand both sides to first order in g. In the case of a Hamiltonian

such that the bare coupling constant does not appear to first order, the first-order cumulant

also vanishes and the same argument goes through with relabeled n. We obtain

gC1(t, t
′) = ln(G−1

0 (G0 +G2
0Σ + . . . )) ≈ G−1

0 (t, t′)
∫
dt1

∫
dt2 G0(t, t1)Σ(t1, t2)G0(t2, t

′).

(3.64)

For our problem of interest, Σ is nothing but the one-loop function we have already computed.

The quantity on the left is the lowest-order cumulant function which we will just relabel

C(t, t′). The integral on the right is just a convolution diagonal in Fourier space. It is

68



convient to employ yet another spectral representation,

Σ(ω,k) = Σ∞ +

∫ ∞

−∞

dΩ

2π

| − 2ℑΣ(Ω,k)|
ω − Ω + iδ

(3.65)

where |− 2ℑΣ| is just the spectral function of Σ. In fact it is crucial to make this separation

Then we obtain

Ck(t, t
′) = ieiξk(t

′−t
∫
dω

2π

∫
dΩ

π

|ℑΣ(Ω)|
ω − Ω + iδ

1

(ω − ξk + iδ)2
e−iω(t−t

′) (3.66)

So that the cumulant depends only on t− t′. Closing the ω contour in the upper half-plane,

Ck(t) = eiξkt
∫
dΩ

π

|ℑΣ(Ω)|
(Ω− ξk)

2
(e−iΩt − ie−iξkt(−i+ (ξk − Ω)t)) (3.67)

=

∫
dΩ

β(Ω)

(Ω− ξk)
2
(e−i(Ω−ξk)t + i(Ω− ξk)t− 1).

It is important to note that ξk here comes from the unperturbed G0 and thus does not

reflect any self-energy effects or shifts of the chemical potential. Keeping in mind that the

cumulant is re-exponentiated, the physical effects of each term are transparent for a delta-

function spectral density |ℑΣ = δ(Ω−xik−ω): The eiωt term generates Poisson-distributed

of shake-offs at multiples of the boson frequency, the iωt shifts the entire spectrum by the

boson energy, and the −1 term reweights the spectrum. As argued in (Nery et al. [2017]), it

can also be shown using Kramers-Kronig relations to relate β to ℜΣ that in general the iωt

term produces the on-shell ℜΣ quasiparticle shift, while the −1 term produces the ∂ℜΣ/∂ω

quasiparticle weight.

In practice, we begin by constructing an interpolation of ℑΣ for each k on a frequency

grid whose spacing is an input to the calculation. We choose an initial Fourier grid size as well

and from this construct the minimal time grid corresponding to our frequency resolution, and

compute
∫
dΩ

β(Ω)
(Ω−ξk)2

(e−i(Ω−ξk)t − 1) on this grid from the interpolating function. Notice
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that the iωt term has been ommitted here. Next, we Fourier transform C(t) to frequency

space, and compute

G(ω,k) =

∫
dΩ

C(Ω)

(ω − Ω)− ξk −ℜΣ(ξk,k)
. (3.68)

In other words, we compute (3.62) in frequency space as a convolution, but using a G0 that

has been shifted by the on-shell real self energy. In this way we incorporate both the static

piece left over from (3.65) and the iωt term in the cumulant expansion in a well-controlled

way.

Finally, to check convergence we compute the spectral function A = −2ℑG. As this

function is positive, we first check that there are no excursions to negative values within a

numerical tolerance, and next that A is normalized within a tolerance. If either of these

criteria is not met, we double the Fourier transform size and rerun the calculation.

3.3 Results and Discussion

In Figure 3.1 we plot the spectral function for SrTiO3 at n = 5 × 1019cm−3. All spectral

functions are plotted on a logarithmic color scale to enhance the visibility of faint features.

Near the Fermi surface, the quasiparticle band is narrow with typical ImΣ ∼ ω2 Fermi-liquid

behavior. At a density-dependent momentum away from the Fermi surface, there is a sudden

increase in broadening which produces a characteristic kink. Below the quasiparticle band

there is a series of replica bands of similar width near the bottom of the band, and vanishing

as k → kF and more spectral weight is transferred to the quasiparticle. The replicas are

spaced by an energy Ω+ ̸= Ω, which can be understood by considering the large-rs plasmon

pole limit, when Π(q, ω) → Ω2
p(q)/(ω

2Vc(q)) where Ω2
p is the plasmon frequency. Veff then

has poles at

Ω2
± =

1

2

(
Ω2 + Ω2

p ±
√

Ω4 + Ω4
p + (8γ − 2)Ω2Ω2

p

)
. (3.69)

We plot these modes at q = 0 alongside the bare phonon and plasmon for SrTiO3 in
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(a) (b)

Figure 3.3: Coupled modes of (3.69) (solid), along with uncoupled modes (dashed) and EF
(dotted), in physical units (left) and in units of EF (right)

Figure 3.3. For small and intermediate γ the coupled modes largely follow the bare modes

except in the vicinity of the anti-crossing, but as γ approaches its maximum value of 1/2,

as in the case of SrTiO3, Ω
2
+ → Ω2 +Ω2

p while Ω− → 0. In this limit the oscillator strength

in the lower mode vanishes as Ω3
−. The lower coupled mode is therefore too weak for us to

observe with SrTiO3 parameters and we only see signatures of Ω+. This represents a major

discrepancy between the model and experimental observations such as the photoemission

experiment of (Wang et al. [2016]), which finds replica bands at the phonon frequency at all

dopings.

For comparison to the tunneling experiments of (Swartz et al. [2018]), from the spectral

function we may also compute the density of states, ν(ω) =
∑

kA(k, ω). At high densities,

ν broadly follows the
√
ω free-particle prediction, with small deviations due to the spectral

weight in the replica bands, which become increasingly prominent and eventually dominant

as the density is decreased. To focus on these features, in Figure 3.2 we plot dν/dω for

densities from 1018−2×1020cm−3. With increasing density these evolve from a sharp peak-

dip structure to a broad peak, matching what is seen in experiment, but at all densities they
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remain centered at ω = Ω+, again at odds with the experimental observation of replicas at

the phonon frequencies, independent of density.

A striking feature in the photoemission data is the disappearance of replica bands at high

densities, and the development of a quasiparticle band with a kink. Similar phenomenology

in TiO2 was recently explained in terms of Thomas-Fermi screening of the electron-phonon

matrix element (Verdi et al. [2017]). In Figure 3.4 we show a cut of A(k = kF , ω) with fre-

quencies scaled by Ω+ for three different densities. The effects of screening are most apparent

in the decreased amplitude and greater broadening of the replica peaks with increasing den-

sity. The screening wavevector qTF grows with density and enters the electron-boson matrix

element as 1/(q2 + q2TF ), increasing the range of momenta around q = 0 which contribute

significantly and thereby broadening the peak. This effect is insufficient to qualitatively

modify the spectrum, however.

A qualitative difference that does emerge at high densities is a broad feature between the

quasiparticle and the first replica band. We study this feature as a function of momentum

k > kF in the inset of Figure 3.4, and find that it is nearly non-dispersing and centered

around the bare phonon frequency, Ω. (A second feature is seen at ω = Ω+, and at all the

densities we have studied we observe non-dispersing tails of all replica bands at k > kF .

(Kas et al. [2014]) has found a similar effect in the homogeneous electron gas.) At this

density, Ω/EF < 1; this feature disappears as one moves into the anti-adiabatic regime,

although it is still faintly present in Figure 3.1, where Ω/EF ∼ 2. The origin of this feature

may be understood by examining the structure of the dielectric function ϵ(q, ω). In the q-ω

plane, it inherits from the electron gas the well-known electron-hole continuum, bounded

by ω±(q) = q2/2m + vF q where Imϵ ̸= 0 (Giuliani and Vignale [2005]). To the left of

ω−, Imϵ is nonzero along the dispersions of the coupled modes discussed above, but after

the plasmon disperses into the continuum, only a single peak at the bare phonon frequency

emerges beyond ω+. We interpret the feature, positioned in a region where ℑϵ = 0 at the
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Figure 3.4: Fermi surface spectral function A(q = kF , ω) below EF at different densities
showing the evolution of the replica bands. Inset: n = 2×1020cm−3 spectral functions from
k = kF (top) to k = 1.4kF (bottom), showing the evolution of dispersionless features at Ω+

and Ω (dahsed line).
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(a) (b)

Figure 3.5: Like Figure 3.1, but with altered parameters a) Ω/EF = .5, b) γ = .4.

one-loop level, as a multiple-scattering process involving this mode and the electron-hole

continuum.

To further explore the importance of adiabaticity within our model, in Figure 3.5 we

artificially vary Ω/EF and γ away from SrTiO3 parameters while holding the density fixed

at n = 5 × 1019cm−3. In Figure 3.5a the phonon is made adiabatic, Ω/EF = .5. The

quasiparticle and replica bands are substantially broadened, the kink in the quasiparticle

moves much closer to the Fermi surface, and the nondispersing feature Ω below EF becomes

much stronger compared to Figure 3.1. In Figure 3.5b, we instead set γ = .4, substantially

increasing the frequency and oscillator strength of Ω−; note, however, that still Ω− < EF
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at this density. In this case, an additional, narrow replica band emerges offset from the

quasiparticle band, which maintains a modest linewidth with no kinks to the bottom of the

band. (A very faint non-dispersing feature at the bare phonon frequency is still detectable,

if difficult to resolve by eye.) Here it is worth noting the theory of (Ruhman and Lee [2016]),

which suggests that a modest reduction in ϵ0 is sufficient to impart sufficient strength to the

Ω− mode to mediate pairing while remaining adiabatic. To reproduce the phenomenology

of Figure 3.5b, however, with Ω− ≈ 25meV, requires a far greater reduction of ϵ0 ≈ 30, and

we note that in this case Ω+ remains strongly shifted away from Ω.

These results collectively suggest that the transition between replica bands in the spectral

function and a broadened quasiparticle with kinks is driven by the interplay of adiabaticity

and screening by the electron-hole continuum. The latter imparts some intrinsic width to

the quasiparticle band and causes the electron-boson matrix element to deviate from the

forward-scattering limit, broadening any replica bands. If the width of the quasiparticle

band exceeds the energy difference between it and the replica, the entire structure is absorbed

into a broadened quasiparticle. At some point as the intrinsic quasiparticle width decreases

as it approaches the Fermi surface, this condition will be violated, causing a kink as the

quasiparticle band suddenly narrows. In the case of coupled modes we have studied here,

spectral weight at the Fermi surface is not exclusively distributed between the quasiparticle

and any remaining replicas, but may also accumulate in a broad feature around the bare

phonon frequency.

3.4 Conclusions

Our model neglects many experimentally significant features of SrTiO3, including the oc-

cupation of multiple electron bands and the coupling to mulitple optic phonons. While the

inclusion of accurate electron and phonon band structures is necessary to obtain quanti-

tative agreement with experiment, we do not believe it would be sufficient to resolve the
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major discrepancy we observe here, namely, that the normal-state spectral features within

our model are predicted to be unambiguously shifted away from the bare phonon frequencies

through hybridization with the plasmon. This presents a challenge to a class of theories

of superconductivity which rely on the existence of these hybrid modes, or more broadly

plasmon-mediated superconductivity theories dating back to (Grabowski and Sham [1984]).

Equivalently, our results suggest that future work investigate the nature of the plasmon

in SrTiO3, which has been indirectly observed in reflectivity data to have a width of the

same order as the plasma frequency (Gervais et al. [1993b]). Heuristically, this is consistent

with other observations that suggest the electron gas in SrTiO3 behaves as if it were directly

screened by ϵ0 (Rischau et al. [2017]), or equivalently that its diluteness in terms of rs is

unremarkable compared to other semiconductors. If such screening exists, it is a more elusive

effect than the multiple-scattering processes we have considered here.

Our theory ultimately suffers from a defect similar to that found in many of the super-

conducting theories: it is formally an expansion in rs, which is always substantially greater

than unity at the densities we have considered. Paradoxically, as the theory becomes more

poorly controlled at low densities, the phenomenology becomes simpler as the response is

totally dominated by the plasmon pole physics of (3.69). More sophisticated techniques are

needed to understand the interplay of polaron physics and the many-electron fluid.
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CHAPTER 4

SUPERCONDUCTING PROPERTIES OF STRONTIUM

TITANATE

4.1 Introduction

This chapter presents unpublished work that aims to use the results of the previous chapter

to compute superconducting properties. The conventional BCS theory of superconductivity

is amply reviewed elsewhere; see, for instance, (Mahan [2000]). By way of introduction I

will instead point out that the “BCS approximation” in fact consists of a number of distinct

approximations, thereby motivating the approach to STO I take here.

• Weak coupling, in the sense of the BEC-BCS crossover discussed in the introductory

chapter. Here it must be noted that STO is peculiar as the dilute normal state appears

to be very strongly coupled in the sense of rs, but with a gap measured at ∼ 40µeV by

tunneling and ∆/Tc values extracted from critical field or microwave measurements,

the superconducting state itself appears to be very much in the weakly-coupled BCS

limit.

• Adiabaticity, in the sense that Migdal’s theorem asserts the irrelevance of vertex correc-

tions when Ω/EF is small. STO clearly violates this condition and so the perturbative

calculations below are fraught.

• The existence of a cutoff energy scale (also provided by Ω in the conventional theory)

such that the pairing interaction is only significant in a thin shell of this scale around the

Fermi surface. The calculations below do not rely on this assumption. The inconvenient

consequence is that rather than depending only on the density of states at the Fermi

surface, the calculations must explicitly run from the bottom of the electron band out

to high energies. On the other hand, a favorable consequence is that such a calculation
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without a cutoff can naturally incorporate the full Coulomb repulsion on equal footing,

without having to employ the pseudo-potentials typically used in BCS-like calculations.

• On-shell approximation, i.e. that the gap function ∆(ω,k) ∝ δ(ω − ξk). This arises

naturally as a consequence of the other BCS approximations but when those are re-

laxed, one has the freedom to choose. In the preliminary results shown below we keep

this approximation, but the formalism is designed with the idea of being able to relax

it.

4.2 Derivation of the gap function

As before, we will be concerned with calculating a self-energy, although this time in an

elarged Nambu space where the off-diagonal “anomalous” components describe Cooper pair

correlations. This self-energy can be written

Σ(iωn, q) = −T
∑
mk

Veff(iνm + iωn, k + q)τ3G(iνm, k)τ3 (4.1)

which should be regarded as some kind of Hedin equation or self-consistency condition be-

tween Σ, Veff, and G. Here

G =

 G F

F † G†

 (4.2)

in Nambu space, and we can decompose

Σ = (1− Z)iωn +Wτ1 + χτ3 (4.3)

where the τi are Pauli matrices in Nambu space.
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Solving Dyson’s equation with these substitutions gives

G(iν, p) =
Z(iν, p)iν + ξ̃p

(Z(iν, p)iν)2 − (ξ̃2p +W 2(iν, p))
(4.4)

F (iν, p) = − W (iν, p)

(Z(iν, p)iν)2 − (ξ̃2p +W 2(iν, p))

where ξ̃p = ϵp − µ+ χ(iν, p). In the case that W = 0, we have

G =
1

Z(iν, p)iν − ξ̄(iν, p)
=

1

iν − ξ − S(iν, p)
(4.5)

where S is the normal self-energy. The development of a non-zero W signals the onset of

pairing in this formalism.

The functions Z and χ are both even in frequency, and S = χ + ω(1 − Z). W is taken

to be odd in frequency and therefore so is F .

4.2.1 s-wave approximation

We assume the pairing is isotropic, and to eliminate a further momentum integral we define

Veff(ω, ϵ, ϵ
′) ≡ 1

2π

∫ 1

−1
dxVeff(ω,

√
(ϵ+ ϵ′ + 2

√
ϵ
√
ϵ′x)) (4.6)

and integrate over the density of states N(ϵ) =
√
ϵ, which corresponds to the bare band

structure and is not modified by self-energy effects. We also use an energy variable in place

of the momentum variable, and rewrite the self-energy equation for the two components

explicitly:

S(iνm, ϵ) = −
∫

dϵ′ N(ϵ′)T
∑
n

G(iνm + iωn, ϵ
′)Veff(iωn, ϵ, ϵ

′) (4.7)

W (iνm, ϵ) = −
∫

dϵ′N(ϵ′)T
∑
n

F (iνm + iωn, ϵ
′)Veff(iωn, ϵ, ϵ

′)
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4.2.2 Spectral representation

As a warm-up we consider the contribution to the gap of the static Coulomb piece V0(ϵ, ϵ
′):

Wc(iνm, ϵ) = −
∫

dϵ′ N(ϵ′)T
∑
n

F (iνm + iωn, ϵ
′)V0(ϵ, ϵ

′) (4.8)

We employ the spectral representation

F (iνm + iωn, ϵ
′) =

∫ ∞

−∞

dη

2π

−2ℑF (η, ϵ′)
iνm + iωn − η

(4.9)

so that

Wc =

∫
dϵ′ N(ϵ′)

∫ ∞

−∞

dη

π
ℑF (η, ϵ′) T

∑
n

1

iνm + iωn − η
(4.10)

=

∫
dϵ′ N(ϵ′)

∫ ∞

−∞

dη

π
ℑF (η, ϵ′) (−nB(η − iνm))

=

∫
dϵ′ N(ϵ′)

∫ ∞

−∞

dη

π
ℑF (η, ϵ′)nF (η)

=

∫
dϵ′ N(ϵ′)

∫ ∞

0

dη

π

(
ℑF (η, ϵ′)nF (η)−ℑF (−η, ϵ′)nF (−η)

)
= −

∫
dϵ′ N(ϵ′)

∫ ∞

0

dη

π
ℑF (η, ϵ′)(1− 2nF (η))

using that F is odd in frequency. We take a similar approach for the dynamic part of the

interaction, using

V (iωn, ϵ, ϵ
′) = V0(ϵ, ϵ

′)−
∫ ∞

0

dΩ

π
ℑV (Ω, ϵ, ϵ′)

(
1

iωn − Ω
− 1

iωn + Ω

)
(4.11)

where we have defined the retarded function ℑV on the positive (real) energy axis. The

dynamic contribution to the gap then becomes

Wdyn =

∫
dϵ′ N(ϵ′) T

∑
n

F (iνm + iωn, ϵ
′)Vdyn(iωn, ϵ, ϵ

′) (4.12)
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= −
∫

dϵ′ N(ϵ′)
∫ ∞

0

dΩ

π
ℑV (Ω, ϵ, ϵ′)

∫ ∞

−∞

dη

π
ℑF (η, ϵ′)×

T
∑
n

1

iνm + iωn − η

(
1

iωn − Ω
− 1

iωn + Ω

)

= −
∫

dϵ′ N(ϵ′)
∫ ∞

0

dΩ

π
ℑV (Ω, ϵ, ϵ′)

∫ ∞

−∞

dη

π
ℑF (η, ϵ′)×(

nB(−Ω) + nF (η)

iνm − Ω− η
− nB(Ω) + nF (η)

iνm + Ω− η

)

−−−−−→
iνm→ω

−
∫

dϵ′ N(ϵ′)
∫ ∞

0

dΩ

π
ℑV (Ω, ϵ, ϵ′)

∫ ∞

−∞

dη

π
ℑF (η, ϵ′)×(

−1− nB(Ω) + nF (η)

ω − Ω− η
− nB(Ω) + nF (η)

ω + Ω− η

)
Next we use that F is even in frequency:

= · · ·
∫ ∞

0

dη

π
ℑF (η, ϵ′)

(
−1− nB(Ω) + nF (η)

ω − Ω− η
− nB(Ω) + nF (η)

ω + Ω− η
×

−−1− nB(Ω) + 1− nF (η)

ω − Ω + η
+
nB(Ω) + 1− nF (η)

ω + Ω+ η
)

= . . . (1− 2nF (η))(
1

η + Ω+ ω
+

1

η + Ω− ω
)+

(nB(Ω) + nF (η))(
1

η − Ω− ω
+

1

η − Ω + ω
+

1

η + Ω+ ω
+

1

η + Ω− ω
)

We expect to be at low temperatures, where the contributions from the second term are

immaterial. Then, adding together the dynamic and static contributions, we get

W (ω, ϵ) = −
∫

dϵ′ N(ϵ′)
∫ ∞

0

dη

π
ℑF (η, ϵ′) tanh(βη/2)×(

V0(ϵ, ϵ
′) +

∫ ∞

0

dΩ

π
ℑV (Ω, ϵ, ϵ′)(

1

η + Ω+ ω
+

1

η + Ω− ω
)

) (4.13)

4.2.3 Weak-Coupling approximations

We now follow( Kirzhnits et al. [1973]) to make progress in the case of weak coupling. Making

the quasiparticle approximation G0 = (iZω − ξk) and setting Z = 1 for now, one can write

81



the gap equation (4.13) in terms of F :

F (ω, ϵ) = − 1

ω2 − ξ2

∫
dϵ′ N(ϵ′)

∫ ∞

0

dη

π
ℑF (η, ϵ′) tanh(βη/2)×(

V0(ϵ, ϵ
′) +

∫ ∞

0

dΩ

π
ℑV (Ω, ϵ, ϵ′)(

1

η + Ω+ ω
+

1

η + Ω− ω
)

) (4.14)

Now we use ℑF = ℑ(G2
0)

−1ℜW + ℜ(G2
0)

−1ℑW with ℜ(G2
0)

−1 = 1
ω2−ξ2 , ℑ(G2

0)
−1 =

−πδ(ω2 − ξ2). ℜW is as written in (4.13), while ℑW comes from restoring the infinitesimal

imaginary part in the energy denominators to obtain

ℑW = −
∫

dϵ′ N(ϵ′)
∫ ∞

0

dη

π
ℑF (η, ϵ′) tanh(βη/2)×∫ ∞

0

dΩ

π
ℑV (Ω, ϵ, ϵ′)(−πδ(Ω + η + ω) + πδ(Ω + η − ω))

(4.15)

= −
∫

dϵ′ N(ϵ′)
∫ ∞

0

dη

π
ℑF (η, ϵ′) tanh(βη/2)ℑV (ω − η, ϵ, ϵ′)Θ(ω − η))

so that in sum,

ℑF = −
∫

dϵ′ N(ϵ′)
∫ ∞

0

dη

π
ℑF (η, ϵ′) tanh(βη/2)

[
δ(ω − |ξ|)

2|ξ|
(
V0(ϵ, ϵ

′)+∫ ∞

0

dΩ

π
ℑV (Ω, ϵ, ϵ′)(

1

η + Ω+ ω
+

1

η + Ω− ω
)

)
− 1

ω2 − ξ2
ℑV (ω − η, ϵ, ϵ′)Θ(ω − η)

]
(4.16)

Now consider the momentum-dependent gap function

∆(ϵ) ≡ 2|ξ|
∫ ∞

0
dω ℑF (ω, ϵ) (4.17)
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and apply (4.16). The 1/(η + Ω − |ξ|) term arising from ℜW cancels with a term of the

opposite sign from ℑW , while the 1/(η + Ω+ |ξ|) terms add. In this way we obtain

∆(ϵ) =

∫ ∞

0
dϵ′ N(ϵ′)

∫ ∞

0

dη

π
πℑF (η, ϵ′) tanh(βη/2)

(
V0(ϵ, ϵ

′) + 2

∫ ∞

0

dΩ

π

ℑV (Ω, ϵ, ϵ′)
η + |ξ|+ Ω

)
(4.18)

Finally we can make the on-shell approximation

ℑF (ω, ϵ) = π∆(ϵ)δ(ω − |ξ|)/2|ξ| (4.19)

to obtain

∆(ξ) =

∫ ∞

−µ
dξ′ N(ξ′ + µ)

tanh(βξ′/2)
2ξ′

K(ξ, ξ′)∆(ξ′) (4.20)

with

K(ξ, ξ′) = V0(ξ + µ, ξ′ + µ) + 2

∫ ∞

0

dΩ

π

ℑV (Ω, ξ + µ, ξ′ + µ)

|ξ′|+ |ξ|+ Ω
(4.21)

where we have changed all the momentum variables to be in terms of ξ.

4.2.4 Numerical Calculation of the Kernel

It is generally more convenient to calculate (4.21) on the imaginary frequency axis. This

is what is done by (Takada [1978]), for instance. I have insisted on remaining on the real

axis because the eventual aim of this program of calculation is to replace the one-loop self-

energies derived above with those calculated from the cumulant expansion. There are a two

principal calculation difficulties, however:

1. The Coulomb repulsion is naturally included on the imaginary axis, whereas in (4.21) it

must be explicitly added to the attractive piece, with the resulting partial cancellation

determining the shape of the kernel and the possibility of stabilizing a gap. Near the

Fermi surface, both of these terms are logarithmically diverging and must be calculated

with sufficient precision.
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2. For the STO problem of interest, the dynamical interaction has widely separated energy

scales of importance, due to narrow resonances (with widths set by the width of the

plasmon, which is very sharp in the dilute limit) at the coupled mode frequencies.

These can be close to (or absorbed into) the electron-hole continuum in the case of the

lower mode, and at tens of Fermi energies in the case of the upper mode. Physically

it is necessary to include both, even if one ends up insignificant to pairing, because

excluding any of the interaction’s spectral content constitutes a violation of the f sum

rule, and in practical terms causes the Coulomb repulsion to overwhelm it.

I will therefore briefly outline the algorithm I have settled on for obtaining adequate

results. First I generate logarithmically spaced points ξ, ξ′ around the Fermi surface at

which to calculate ℑV (Ω, ξ, ξ′). At each point,

1. Generate a uniformly spaced grid of possible angles between the momenta
√
ξ and

√
ξ′

and from these a grid of possible momentum transfer values q.

2. Calculate the frequency boundaries of the electron-hole continuum for the given mo-

menta and evenly space frequency points between them.

3. Estimate (using an interpolation formula for the plasmon) at what momenta the upper

and lower hybrid modes are expected to enter the electron-hole continuum (where they

decay) and at what momentum the phonon is expected to exit the continuum, and

check if any of these fall in the range of momentum transfer values being sampled.

4. If so, append to the list of frequency points being sampled a tightly spaced grid of

points near the possible locations of the resonance, along with logarithmically spaced

tails out in frequency.

5. Compute ℑ1/ϵ(Ω, q) on the grid.
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Figure 4.1: KernelK(ξ, 0) (green) and gap function (blue), both in arbitrary units normalized
to their values on the Fermi surface, against energy in units of the Fermi energy. Computed
for rs = 61 and γ = 0.

Finally the energy integration in (4.21) is performed by a simple trapezoid rule. Although

this procedure generally works adequately well, in many cases it still suffers from a great

deal of noise, as shown for instance for a γ = 0 (i.e. plasmon-only) calculation at rs = 61 in

Figure 4.1.

Already, however, there are some physical insights to emphasize about this type of cal-

culation. The kernel is always positive, i.e. repulsive. The gap in this case is stabilized by a

partial cancellation of the Coulomb repulsion by the dynamical attraction which is strongest

close to the Fermi surface, producing a dimpled structure. The gap must therefore suffer

a sign change some distance from the Fermi surface. This energy scale would be associ-
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ated with the Coulomb pseudopotential µ∗ in an Eliashberg-type calculation, but arises here

naturally due to long-ranged Coulomb nature of both attractive and repulsive interactions.

4.2.5 Plasmon Pole

In the plasmon-pole approximation (or more generally assuming the dynamic part of the

interaction comes from Coulomb coupling to single boson), one can write

ℑV (Ω,q) = −πΩ2
0V0(q)δ(Ω

2 − Ω̃2(q)) (4.22)

where V0 is the Coulomb interaction, Ω0 is the boson frequency and Ω̃ is its dispersion. Then

we can write

2

∫ ∞

0

dΩ

π

ℑV (Ω,q)

|ξ′|+ |ξ|+ Ω
) = −V0(q)

Ω2
0

|Ω̃(q)|
1

Ω̃(q) + |ξ′|+ |ξ|
. (4.23)

Then, in this plasmon pole limit,

K(ξ, ξ′) = V0(ξ, ξ
′)(1− σ

Ω0

Ω0 + |ξ|+ |ξ′|
) (4.24)

where σ is a numerical prefactor obtained from integrating over the boson dispersion. In

the case that the boson is dispersionless, σ = 1. This of course neatly coincides with the

formalism of Grabowski and Sham.

This form of kernel is easy to undertand. The Coulomb interaction produces a logarithmic

singularity in momentum space, and therefore in energy space on-shell at the Fermi surface.

The kernel is always repulsive, and at best the Coulomb interaction is completely cancelled

at the Fermi surface. Increasing the boson energy overall weakens the repulsive character of

the interaction and generally broadens the features of the kernel. In the case of imperfect

screening, σ ̸= 1, there is always a local maximum in the kernel at the Fermi surface due to
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Figure 4.2: Same as Figure 4.1, but smoothed (4.24) as a fitting function.

the Coulomb repulsion, and the existence and depth of a local minimum nearby determine

whether a gap forms. In this case, increasing the boson energy makes the repulsive piece

more prominent.

It is worth emphasizing that these arguments do not include any Thomas-Fermi screen-

ing, which can become important enough to change the qualitative outcome even for rS

substantially greather than unity.

It is also possible to use this plasmon-pole expression (or its natural generalization to mul-

tiple bosonic modes) as a simple technique to smooth out the flucutations in the numerically-

generated kernels simply fitting Ω0 and σ. Indeed we have also phenomenologically allowed

V0(ξ, ξ
′) to be broadened by a Thomas-Fermi-like parameter (which often just reflects nu-
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merical broadening rather than real screening). Figure 4.2 shows the results of the procedure

applied to the data in Figure 4.1.

4.3 Determining the transition temperature

This method is due to Zubarev and is reproduced by Takada. Define ϕ(x) = W (x)/W (0)

where x = ξ/ϵF . Then the gap equation can be written

ϕ(x) = −
∫ ∞

−1

dx′

2x′
tanh(x′βϵF /2)ϕ(x

′)K(x, x′) (4.25)

ϕ(0) = 1 = −
∫ ∞

−1

dx′

2x′
tanh(x′βϵF /2)ϕ(x

′)K(0, x′) (4.26)

Multiplying the latter by K(0, x)/K(0, 0) and subtracting from ϕ(x), we get

ϕ(x)−K(x, 0)/K(0, 0) = −
∫ ∞

−1

dx′

2x′
tanh(x′βϵF /2)(K(x, x′)−K(0, x′)K(x, 0)/K(0, 0))ϕ(x′)

(4.27)

In this form, the singular term at x′ = 0 is cancelled. Furthermore, provided that kT ≪ ϵF , it

becomes permissible to replace tanh(x′βϵF /2) by unity. Since we are interested in obtaining

the zero-temperature gap function anyway, we readily make this approximation, and solve the

gap equation as a matrix inversion problem. With a solution for ϕ(x), Tc can be determined

from (4.26). It is convenient, however, to break it apart into

1 = −K(0, 0)

∫ 1

−1

dx′

2x′
tanh(x′ϵF /2Tc)−

∫ 1

−1

dx′

2x′
tanh(x′ϵF /2Tc)(K(0, x′)ϕ(x′)−K(0, 0))

−
∫ ∞

1

dx′

2x′
tanh(x′ϵF /2Tc)K(0, x′)ϕ(x′)

.

(4.28)
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Figure 4.3: Transition temperature of the γ = 0 plasmon-only model, computed from the
raw (blue) and smoothed (green) kernels.

and use that kTc ≪ ϵF to again replace the tanh by unity in the last two terms and move

them to the other side. Integrating the first term analytically one obtains

Tc = 1.134ϵF exp(
1

K(0, 0)
+

∫ ∞

−1

dx′

2|x′|
(ϕ(x′)K(0, x′)/K(0, 0)−Θ(1− |x′|))) (4.29)

As an illustration of this technique, Figure 4.3 shows Tc for the model with γ = 0,

i.e. only a plasmon mediating the coupling, based both on the raw calculations and those

smoothed by fitting to the plasmon pole model. It is also possible to view the same data in
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Figure 4.4: As in Figure 4.3, but showing the dimensionless BCS coupling constant
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terms of the BCS coupling constant λ, which here is defined by

Tc = 1.134ϵF exp(−1/λ). (4.30)

Qualitatively, the dome structure in the superconducting phase diagram comes from a

competition between too few carriers (and therefore small EF ) in the dilute limit, and a van-

ishing coupling constant in the dense limit. It is important to note that this vanishing is not

associated with the onset of Thomas-Fermi screening, as it also appears in a pure plasmon-

pole calculation. Instead it is associated with the approach to the adiabatic limit, where as

Ω0 becomes comparable to the relevant ξ near the Fermi surface, the kernel loses much of

the dimpled structure that allows it to stabilize a gap. This observation (within this model

at least) is consistent with the peculiar property of STO that it loses its superconductivity

just as it becomes adiabatic.

Methodologically, these figures also provide a gauge of the efficacy of the smoothing

procedure, particularly in the intermediate-density regions where the calculation particularly

struggles.

With these considerations in mind, Figure 4.5 displays the phase diagram for STO under

various approximations. What is immediately striking is that plasmon-pole calculations, i.e.

those that do not take the RPA structure into account, universally lose their superconductiv-

ity near rs ∼ 10. As the density is lowered into the dilute limit, models where the oscillator

strength is carried in an more anti-adiabatic phonon-like mode lose superconductivity faster

than those where the plasmon remains significant, which as (Takada [1992]) has shown, even-

tually leads to Tc a constant fraction of ϵF in the low density limit. At intermediate densities

some fine-tuning appears to be possible to trade oscillator strength into the adiabatic modes

and quantitatively raise the optimal Tc somewhat, but we expect this to be an extremely

model-dependent effect. The most salient feature, however, is the extent of the full-RPA

curve to much higher densities than the plasmon-pole curves. This is most likely due to an
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Figure 4.5: Superconducting phase diagram for different models related to STO. Blue: Full
RPA calculation with STO parameters. Purple: plasmon-pole calculation with STO param-
eters. Red: “Paraelectric” γ = .3 STO, plasmon pole. Green: pure plasmon
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unequal effect of Thomas-Fermi screening on the Coulomb repulsion and the electron-ion

attraction, but frankly more work is needed to disentangle these effects.

4.4 Extracting a cumulant effective interaction

The final idea to which this work is leading is to regard (4.7) as a generic self-consistency

condition and compute it for a numerically generated Veff from the cumulant expansion.

Specifically, at Tc where the gap vanishes, the normal-state equation is equivalent to what

we have painstakingly computed in the previous chapter, while it should not be a bad

approximation to regard the same Veff entering the anomalous self-energy at this level. Nev-

ertheless it should be emphasized that these are completely uncontrolled approximations,

and are meant to provide a complementary perspective to the existing observations that the

simplest classes of vertex corrections and self-energy corrections that have been considered

for models like this tend to vanish in the dilute limit, and the conflicting intuition that it is

precisely in that limit that the leading-order calculation is not well-controlled and may be

expected to fail.

The problem at hand is then to extract a Veff from what we have already computed, i.e.

a spectral function (and therefore, formally, an associated self-energy by Dyson’s equation).

Starting from (4.7), we can similarly use the spectral decomposition of the interaction to

produce an expression for the dynamic part of the self-energy:

Sdyn(iνm, ϵ) =

∫
dϵ′ N(ϵ′)

∫ ∞

0

dΩ

π
ℑV (Ω, ϵ, ϵ′)

∫ ∞

−∞

dη

2π
A(η, ϵ′)×

T
∑
n

1

iνm + iωn − η
(

1

iωn − Ω
− 1

iωn + Ω
)

(4.31)

where A(η, ϵ) is the usual spectral function. The Matsubara sum goes the same way as before
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and after analytic continuation we have

Sdyn(ω, ϵ) =

∫
dϵ′ N(ϵ′)

∫ ∞

0

dΩ

π
ℑV (Ω, ϵ, ϵ′)

∫ ∞

−∞

dη

2π
A(η, ϵ′)×(

−1− nB(Ω) + nF (η)

ω − Ω− η + iδ
− nB(Ω) + nF (η)

ω + Ω− η + iδ

) (4.32)

Taking the imaginary part and integrating over the delta functions one obtains

ℑS(ω, ϵ) =
∫

dϵ′ N(ϵ′)
∫ ∞

0

dΩ

π
ℑV (Ω, ϵ, ϵ′)×(

Θ(−ω − Ω)A(ω + Ω, ϵ′) + Θ(ω − Ω)A(ω − Ω, ϵ′)
) (4.33)

This can be viewed as a sort of self-consistency condition from which ℑV can be deter-

mined if ℑS and the spectral function A are known. As a sanity check, using A(η, ϵ) =

2πδ(η− (ϵ−µ)) and ℑV derived from the bare V reproduces the one-loop calculation of ℑS.

In practice, this is formulated as a large linear regression problem over all available

frequency and momenta simultaneously. It turns out that using a mixed L1 and L2 norm

for the regression, with the relative weight as an adjustable parameter, seems to produce

superior results. The method nevertheless struggles to generate effective potentials that

succeed in fitting the input spectral functions. The most salient reason evident to date is

that while the spectral functions are originally computed using an integration over all energy

and momenta worth sampling, the fit can only make use of the energy and momenta at which

the spectral functions have been computed. This gives rise to sharp unphysical features in

the imputed ℑV at kF and 2kF , as well as high-energy feature to the extent that A(ω, k) is

still finite in the tails of the input data.

4.5 Conclusions

The history of superconductivity in STO is littered with incorrect theories which produce

phase diagrams that match the experimental data. Although the inclusion of physics off
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the energy shell and renormalized by the cumulant expansion will no doubt quantitatively

change the results presented above, it is already possible to draw a number of conclusions.

First, there is a seductive story sometimes told, in which thanks to the hybridization of the

phonon with the plasmon there is an adiabatic lower mode that allows for a well-controlled

calculation. Unfortunately, in bulk STO, there is simply not enough oscillator strength in

the lower mode to mediate pairing, which is in fact almost entirely due to the upper mode.

Second, once one grants the premise of doing such an anti-adiabatic calculation at one-

loop order, it turns out that a dome structure is quite generic and the details of the boson

spectrum cause only quantitative changes. This is fortunate insofar as it provides a straight-

forward recipe for extending this calculation to other models or operating on experimental

data, as it is quite easy to obtain a dielectric function, compared to for instance the α2F

and µ∗ that are relevant for an Eliashberg-style calculation. The fact that superconductivity

is so generic in these models, however, ought to give one pause in assessing the usefulness

of the model by its ability to predict Tc. As we argued at length in the introduction to this

thesis with respect to the BEC-BCS crossover, in the end Tc is just one number and far less

informative than the dynamical signatures of a state of matter.
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CHAPTER 5

CONCLUDING REMARKS

5.1 Future Directions

As is nearly always the case in any science, the work presented in this thesis has raised more

questions than it has answered. A recurring theme that has emerged in these calculations is

the paradoxical impact of diluteness: on the one hand, the generic theoretical expectation is

that dilute systems become more strongly-interacting and therefore any type of perturbative

calculation becomes less reliable. On the other hand, the calculations presented in this thesis

do not suffer from any great divergences or other obvious unphysical results in the dilute

limit. If anything, diluteness produces appealing simplifications. Of course many calculations

are already performed beginning with strong coupling in mind, and in many cases handle

this problem in a well-controlled way by regularizing the problem on some underlying lattice

(often the physical crystal lattice). In this way strong electron-electron interactions become

a Hubbard U , electron-phonon interactions become Holstein models, and so on. I would like

to point out two problems already alluded to in this thesis where this approach is made more

difficult by the importance of long-range forces.

5.1.1 Quantum Crystallization

The study of polaritons on a lattice is a first step to understanding the problem when the

lattice emerges spontaneously on a length scale set by the exciton-exciton interaction rather

than being externally imposed. One can imagine this as merely some very dilute Mott lobe

of the supersolid problem described earlier in this thesis, that is stable when interactions are

sufficiently strong, and that is somehow favored over simpler states by an interaction-induced

detuning from the photon field. This is however a very cumbersome description and misses

the details of the low-energy physics except by calculating the high-energy physics in the
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same detail. An RPA-like approach is hampered here by the extremely heavy exciton mass

and the fact that the resulting exciton dynamics are therefore carried by processes involving

photons beyond those that we have already considered.

5.1.2 The Plasmon in STO

The substantial disagreement between the cumulant calculation and the experimental facts

of STO can be broadly construed as a puzzle of a missing plasmon. The plasmon can be

broadened away to nearly nothing by a large enough quasiparticle scattering rate which

at least phenomenologically is an adequate description of some high-temperature supercon-

ducting materials. The high-temeprature phase of STO does not appear to be this kind of

marginal Fermi liquid (keeping a nearly T 2 resistivity up to room temperature) but does

exhibit “bad metallicity” in the sense of scattering rates. Whatever physics can stabilize

this high-temperature state may well persist down to low temperatures and account for the

absence of a plasmon there as well. Part of the motivation for performing the cumulant

expansion was the hope that some of the higher-order crossing diagrams would describe

some phonon-mediated mechanism for this effect. Unfortunately it appears that plasmon

pole-like coupled modes are all that emerge. An interesting avenue to investigate is some

non-perturbative agglomeration of two or more electrons into polaronic objects that may

carry the quasiparticle dynamics of the system without much collective response.

5.2 Cavity Physics

I would like to conclude this thesis by situating the calculations described here as examples

of cavity physics. In the polariton case this is quite literal, while my use of this term for STO

is motivated by the experiments of (Thomas et al. [2019]), where the Tc of a conventional

superconductor was raised by embedding it in a physical cavity. The cavity mediates long-

ranged electromagnetic interactions that would not be present in the bare material. In STO
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a similar effect is accomplished by either the plasmon or the lattice, depending on one’s

perspective. In either case, the properties of the model are then substantially modified by

the emergence of coupled modes at new energy scales.

Whether or not such models are ultimately good descriptions of physical reality, as tools

for theory they provide a way to introduce new, tunable emergent energy scales while re-

maining physically constrained in important ways. On one extreme, the new energy scales

emerge naturally (as in the problem of BCS superconductivity) are often difficult to control

and widely separated from the existing scales in a given model; this is the classic hallmark

of emergence. In a polariton condensate, in contrast, the energy scales are tunable by the

properties of the cavity and the strength of the coupling. On the other hand, a cavity is

not completely an external field of some kind that is freely tunable. The electron-plasmon-

phonon system must still be stable - the phonon coupling strength cannot be manually turned

up so high that the system is driven ferroelectric - and must still satisfy the f sum rule. In

other words a properly considered cavity forms part of the physical system and is subject to

physical constraints.
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