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ABSTRACT

What happens to mispricing when quantitative learners—asset managers who use quantita-

tive methods to make portfolio choice decisions—enter the market? Mispricing can actually

increase when these learners enter and trade against historical mispricing because estima-

tion error and model error limit their ability to properly adapt to changing prices caused by

their own asset demand. This causes some asset prices to be corrected relatively little, while

other assets that are initially underpriced (overpriced) become overpriced (underpriced). In

a model with an estimated dividend process and a Koijen and Yogo (2019) style demand sys-

tem, learner entrants who invest with some canonical quantitative methods—such as Brandt

et al. (2009), Kozak et al. (2020), and DeMiguel et al. (2009) methods—tend to increase

mispricing. When mispricing does not increase, a substantial amount of mispricing remains

even when the learners have access to a long time series of data.
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CHAPTER 1

INTRODUCTION

[M]achine learning is not all about alpha. This is important because most dis-

cussions, and certainly most anecdotes, of machine learning applied to finance

focus on the creation of alpha. Using new data and machine learning to build

alpha (i.e., to find new, unique sources of return predictability) heads straight

into the most competitive aspect of financial markets. As more investors enter

the market with similar data and similar tools, the mispricing corrects and that

alpha compresses.

Ronen Israel, Bryan Kelly and Tobias Moskowitz (2020)

The quote above from Israel et al. (2020) indicates that if enough traders have accurately

estimated machine learning models in hand, mispricing corrects. Is machine learning a cure

for mispricing?

Surprisingly, machine learning can in fact increase mispricing. Even when machine learn-

ing compresses alpha, substantial amounts of mispricing can remain. How can this be the

case?

1.1 Example with Pecunia

Imagine, for the sake of concreteness, that an asset manager has built an advanced machine

learning model to estimate the optimal mean-variance efficient weights for a large universe

of assets—say 2,000 assets. This asset manager, call her Pecunia, takes her model in hand

to the market. Pecunia is a mean-variance optimizer: she simply wants the highest Sharpe

ratio. Other quantitative asset managers have built sophisticated models as well, and their

demand is moving asset prices. Pecunia sees these price movements as she is taking long

and short positions in the various assets. How should Pecunia react?
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Pecunia needs to not only estimate the mean-variance efficient portfolio weights at the old

prices, she also needs to know how the mean-variance efficient weights change as prices move.

For instance, if the first asset’s price increases, does this affect the mean-variance weights of

the first asset? Does this price movement of the first asset affect the mean-variance weights

of the second asset? In other words, the mean-variance efficient weights at the old prices

are simply a 2,000 dimensional vector. However, understanding how to adapt investment

decisions based on changing prices potentially involves a 2,000 × 2,000 matrix of slope terms

that dictate how demand changes as prices change.

Thus Pecunia’s model must answer the following two questions, referenced throughout

the paper:

Q0: What are the mean-variance efficient weights at the original prices?

Q1: How do the mean-variance efficient weights change as prices move away from the orig-

inal prices?

Suppose that Pecunia simply decides the mean-variance efficient weights do not move

as prices move. This rather aggressive and determined trading strategy is akin to simply

placing a market order for every asset. In other words, Pecunia is insufficiently price reactive.

In fact, in this case where her demand does not change as prices change, her demand is

completely price nonreactive. If enough asset managers have similar demand, there can

easily be an overshooting effect. An overshooting effect occurs when assets that are originally

underpriced (overpriced) are demanded (sold short) by traders who fail to sufficiently react

as the prices become overpriced (underpriced). Overshooting can occur when demand is

insufficiently reactive, and does not require completely price nonreactive demand. Notice

that in this case, Pecunia’s demand strongly reacts to historical mispricing, but reacts very

little to changing prices away from historical prices. Thus, in order to avoid confusion about

reacting strongly to historical prices and failing to react sufficiently to changing prices, this
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reactivity phraseology is adopted instead of the classic elasticity phraseology when discussing

learner demand in this paper.

Suppose instead that Pecunia’s model is relatively timid and conservative in terms of price

movements. In other words, suppose Pecunia’s model indicates that positive alpha evapo-

rates with only minor price increases and negative alpha evaporates with only small drops

in prices. Pecunia’s demand in this case is overly price reactive. If the other traders trying

to trade against alpha in the market behave similarly, very little alpha will be eliminated.

Perhaps Pecunia’s model will produce demand that is overly price reactive for some assets

and insufficiently price reactive for other assets. Pecunia’s model will likely have error in the

cross-price reaction terms as well, and with 2,000 assets there are almost 4 million of these

cross-price terms. How will these errors affect alpha? Will overshooting still occur on the

assets with demand that is insufficiently reactive?

As Pecunia and other asset managers like her enter the market, their Sharpe ratio is high

relative to the market. Their portfolio returns are appealing. Investors allocate capital to

them accordingly. As prices move away from the original prices due to this new investment,

Pecunia and others make errors in responding to the changing prices. This can lead to

overshooting effects with some assets, and overall mispricing can increase. These price

movements also lower the Sharpe ratio of Pecunia’s portfolio relative to the market.

Importantly, much of the literature, including estimation methods such as Brandt et al.

(2009), Kozak et al. (2020), and DeMiguel et al. (2009), focus on Q1 above and not Q2. In

other words, these methods focus on estimating mean-variance weights at original prices—

prices contained in the data. These models are relatively elastic to perceived mispricing, but

are insufficiently reactive to new prices. These methods do not focus on how the estimated

mean-variance efficient weights adapt as a function of price movements away from the original

prices.

In this paper, the asset managers using these quantitative models move prices with their

3



own demand. These asset managers must then adapt to these price movements, and errors

in how they adapt can lead to increases in mispricing.

1.2 Antibiotic Resistant Bacteria Analogy

Since the discovery by Alexander Fleming of penicillin in 1928, antibiotics have been an

incredibly powerful and useful tool in maintaining human health against the onslaught of

bacterial infection. However, heterogeneity across bacteria means that some bacteria survive

treatments due to successful resistance mechanisms to antibiotics. While the vast majority

of the bacteria may be killed, the surviving bacteria are able to multiple and become the

dominant strain. According to the Centers for Disease Control and Prevention (2021), there

are more than 2.8 million infections and 35,000 deaths due to antibiotic-resistant bacteria in

the US each year. Humanity is in a continual arms race of adaptation against bacteria. We

are caught in an endless cycle of new antibiotic treatment attacks and antibiotic resistance

counterattacks.

This can be viewed as a machine learning analogy where the test data always changes

when the learner starts to interact with the world. In this analogy, the learners represent

the researchers who develop an antibiotic and the doctors who administer it. The current

set of bacteria is the training dataset. Once the antibiotic is used in treatment, the set of

bacteria differs from the pre-treatment set of bacteria due to adaptation. In machine learning

terminology, the training dataset is not a good representation of the testing dataset because

the learners directly impact the testing data. There is a feedback loop, an arms race, that

naturally makes the learning problem difficult.

Estimating and trading on mean-variance optimal portfolio weights with historical returns

is analogous to the constant battle between humans armed with antibiotics and antibiotic

resistant bacteria. The learners actively learn from historical returns data and trade ac-

cordingly. By trading though, the learners fundamentally change future returns, requiring
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further adaptation. Similarly, by treating bacteria with antibiotics, doctors change the set

of bacteria. It’s a constant arms race of adaptation in both situations.

In the relatively tame environment with the original prices in the data, the quantitative

portfolios appear very promising. They often have high Sharpe ratios compared to standard

benchmarks. Similarly, antibiotic treatments can do very well during trial studies before the

bacteria adapt. In both settings, deploying at scale erodes the efficacy of antibiotics and

quantitative trading tools. While it is rational for any given person to use antibiotics, using

them en masse seriously increases the risk of generating a public health crisis. Similarly,

while the market impact of any given quantitative investor may be small, many quantitative

investors acting in correlated ways can generate severe mispricing.

Thus machine learning tools often do outperform asset pricing benchmarks with prices

seen in the data. However, if prices move due to this demand, will alpha shrink as Israel

et al. (2020) argue? This model indicates that alpha does not necessarily shrink.

1.3 Approach and Main Findings

This paper uses a theoretical model in which incumbent asset managers generate both a time

series of returns and mispricing initially. These incumbents can be thought of as traditional

asset managers. Quantitative learners—which are asset managers investing according to

quantitative models and referred to as just learners throughout the paper—then enter the

market. Investors provide an endogenous mechanism to optimally allocate capital to the two

types of asset managers.

The most important finding of this paper is that quantitative learner asset managers can

increase mispricing when they enter the market. This occurs because these learners struggle

to adapt as the data generating process of returns changes due to their own demand. As

prices change, they struggle to react appropriately. In other words, these learners struggle to

understand what the true alpha is as return dynamics shift due to their own demand. The

5



following two results explain why the Israel et al. (2020) logic that learners will inevitably

eliminate mispricing does not necessarily hold.

First, adapting to changes in the data generating process of returns due to learner demand

is a fundamentally difficult problem. Many learners in the model have appealing portfolios

when they are atomistic (they have not yet captured enough investment to change asset

prices), but once their demand starts to shift prices, they struggle to adapt. Importantly,

the model highlights that adapting is a difficult large dimensional problem.

Second, many canonical portfolio optimization methods, such as Brandt et al. (2009)

and Kozak et al. (2020), struggle to adapt. These portfolio optimization methods are biased

in favor of being insufficiently price reactive, which generates overshooting and can easily

increase aggregate mispricing across assets. Also, even learners who learn from the true

dividend process but overfit the model generate demand that struggles to adapt as prices

change. They increase mispricing when they enter the market. These learners still create

appealing portfolios when they are atomistic, but struggle to adapt as prices change.

Learners often still generate mispricing increases even after trading in the market for

a relatively long period of time. Using model simulations, both learners and incumbent

asset managers trade in the market together for over two decades, where learners are using

monthly data, and many learners still increase mispricing relative to the incumbents-only

equilibrium.

In the model, mispricing often increases when learner enter even with hyper-rational in-

vestors. These investors optimally allocate investment between the traditional incumbents

and learner asset managers and know all asset managers’ fund return distributional param-

eters. The paper provides a simple example of mispricing with three assets. Incumbents

have relatively inelastic demand, and learners have demand that reacts to mispricing but is

insufficiently reactive to changing prices. The learner aggressively invests in one of the assets

in the example even as the price rises and it becomes severely overpriced. The other asset
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positions in the learners’ portfolio provide compelling risk-return trade-offs for the investors

of the learner fund, convincing them to put capital in the learner fund even as the price of

the overpriced asset is pushed far from the efficient price.

Allowing incumbent demand price elasticity to deviate from traditional asset pricing

model price elasticity is a key ingredient in generating mispricing increases. When incumbent

asset managers react to changes in prices as constant absolute risk aversion (CARA) utility

optimizers do, mispricing does not increase when learner asset managers enter. However,

when incumbent demand function elasticities are estimated from institutional holdings, using

Koijen and Yogo (2019) style methodology and data, mispricing does sometime increase when

learners enter.

Learners who estimate all the parameters in the model but use strong priors to estimate

the covariance matrix of returns (shrinking) can actually eliminate more mispricing than

Bayesian learners who know the true covariance matrix. MacKinlay and Pástor (2000)

show that shrinking the covariance matrix can actually outperform an investment strategy

that uses the true covariance matrix. This paper gives a similar result, except in terms of

mispricing instead of portfolio performance.

1.4 Additional Motivation

There is an increasing focus on machine learning and quantitative methods in the investment

management industry. Morgan Stanley polled 400 of the largest investment managers in 2019

and found that 51% of managers say that machine learning is at least a component of their

investment management strategy, up from 27% in 2016 (see Table A.1 for more details).

As the use of machine learning increases in investment management, it is unclear how this

affects price efficiency. As a result, this paper seeks to answer this question: how much

mispricing do machine learners eliminate?

There are three main reasons this research question is important. First, there is an
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increasing use and focus on machine learning tools, as discussed above.

Second, this paper weakens the argument that mispricing does not exist or is very small.

One long-standing debate in asset pricing is how much asset pricing model alpha is due to

problems with the model or mispricing. Problems with the model include inappropriately

taking into account risks, preferences, or differences between in-sample and out-of-sample

tests. A common argument in favor of mispricing being either small or nonexistent is that

sophisticated traders would have taken advantage of mispricing and by so doing prices would

have been corrected. In this paper, I introduce sophisticated learners into a model with

mispricing and show that a substantial amount of mispricing remains in the market. In

other words, this model shows that mispricing may not be eliminated by sophisticated asset

managers, even with optimal investment.

Third, mispricing can have important consequences for capital allocational efficiency and

overall welfare. For example, van Binsbergen and Opp (2019) argue that persistent alpha

can lead to capital allocational losses and negatively impact welfare. While this paper uses

an exogenous dividend process, extending the model in this paper to allow endogenous cash

flows that are a function of asset valuations could allow researchers to measure the welfare

consequences of mispricing due to increasingly quantitative asset management.

1.5 Description of the Model

The model has an exogenous dividend process, with endogenous prices. For tractability, asset

payoffs are just dividends in excess of the price of the asset. There are two kinds of asset

managers: incumbents and learners. The periods of the model are divided into two eras:

an incumbents-only era and a combined incumbents-and-learner era. In the incumbents-

only era, investors can only invest with incumbents and the risk-free asset. Incumbent asset

managers play a key role in the model by generating a time series of returns that learners

can use to make decisions and mispricing that learners have a chance to eliminate.
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I assume we live in an incumbents-only world during both eras, and thus I estimate the

parameters of this model with data using the entire sample period. I estimate a return

process at incumbents-only equilibrium prices and an exogenous measure of size. These

estimated parameters combined with observed asset prices, an exogenous risk-free rate, and

a risk aversion parameter are sufficient to obtain all parameters in the incumbents-only

model. I use these parameter values in order to make inference throughout the paper. In

order to maintain the realistic environment of changing asset characteristics through time in

the model simulations, I use actual exogenous asset characteristics. Note that the combined

era results are considered counterfactual because of the assumption that we only see the

incumbents-only world. This assumption is not violated by asset managers in the data

who actually use quantitative methods. This assumption just allows the model to use the

observed data as a baseline to compare against counterfactual mixes of traditional incumbent

and quantitative learner asset managers.

The key intuition of the model can be seen in a single equation:

x = a︸︷︷︸
Q1

+ J︸︷︷︸
Q2

(p− p̄)

where x is the demand of an asset manager for the N assets, a is an N dimensional intercept

term, J is an N×N dimensional slope (Jacobian) term, p is an N dimensional column vector

of prices, and p̄ is the N dimensional vector of original prices—prices observed in the data.

The intercept term can be thought of as the estimated mean-variance efficient weights at

the original prices 1 (p = p̄). Thus the intercept represents Q1 above. In the asset pricing

literature, hypothetical portfolios are created and examined, but it is assumed that the prices

observed in the data are not impacted by these portfolios. For example, Fama and French

(2015) looks at the returns of different portfolios sorted on various characteristics, with an

1. The units of demand are actually the share of the total value of each asset outstanding. So the intercept
is actually the mean-variance portfolio weights divided by prices and rescaled.
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implicit no-price-impact assumption. In fact, back-testing portfolios with a no-price-impact

assumption is a component of a high fraction of asset pricing research. In other words, it’s

typically assumed that these hypothetical portfolios have no impact on prices and thus p = p̄.

In this case, x = a, and the J term does not affect the portfolio returns.

In this paper, learner demand affects prices. In this case, the slope matrix J now plays

a role as p moves away from p̄. This addresses Q2 discussed above. The matrix J rep-

resents how these learners respond to changes in prices—how they adapt to the changing

environment. It represents how aggressive (insufficiently price reactive) or timid (overly price

reactive) asset managers are with respect to price changes.

The key intuition of this paper is that while estimating mean variance efficient weights at

original prices (a) is relatively possible (with some estimation error), adapting to changing

prices can be quite difficult and lead to mispricing increases or at least substantial amounts

of mispricing remaining. This is caused by overshooting effects as described above. Note

that while a is N dimensional, J is N ×N dimensional. Thus if there are 2,000 assets, a has

only 2,000 terms while J has 4,000,000 terms.

In order to simulate the model with realistic parameters, I estimate the model return

process uses a novel characteristic-based econometric model. The econometric model uses a

Koijen and Yogo (2019) functional form for the mean and covariance matrix of returns and

maximum likelihood to fit the parameters. I show using the Freyberger et al. (2020) data (also

used in Kelly et al. (2019)) that this model produces large and statistically significant out-of-

sample alphas with a monthly CAPM information ratio of 0.83. This provides some evidence

that the model is able to capture some return dynamics relatively well, even out-of-sample.

I estimate the return process at incumbent prices on a data set of exogenous characteristics

using the entire sample period. I use a maximum a posteriori (MAP) estimator in order to

shrink mispricing down to the target of 0.83 from the out-of-sample test.

Once the learners enter at the beginning of the combined incumbents-and-learners era,
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investors optimally allocate capital between the incumbent asset managers, learner asset

managers, and the risk-free asset. Investors effectively act as a simple endogenous way

for capital to be allocated between the two investment strategies. For simplicity, I assume

investors know the true distributional parameters of the two types of asset managers’ funds.

Equilibrium is found by solving a fixed-point problem that iterates back and forth between

optimal prices and optimal investor allocation between the two types of asset managers.

The learners in this model are a superset of typical agents in economic models (see

Pástor and Veronesi (2009) for a review). A typical economic agent in the literature knows

the true data generating process (DGP), and uses Bayesian learning to update their beliefs.

While this paper considers Bayesian learning, it also considers learners who take a reason-

able quantitative model that may or may not be consistent with the true DGP, estimate

the parameters, and invest accordingly. In this sense, most learners in this paper are like

empirically oriented economists in that they make assumptions, estimate a model, and use

the parameter estimates to make inferences and decisions. In this paper, I estimate mispric-

ing outcomes that result from various model assumptions and overall estimation error. I use

learners that come from the academic literature and are shown to perform well out-of-sample,

including Brandt et al. (2009), Kozak et al. (2020), and DeMiguel et al. (2009).

I interpret machine learning broadly, in line with basic machine learning courses and

textbooks. For example, Mitchell (1997) and Hastie et al. (2001) describe linear regression,

principle component analysis, penalty parameters in maximum a posteriori estimation, and

other standard methods of statistical analysis as part of the machine learning tool set.

Thus, using the term machine learners interchangeably with quantitative learner portfolio

managers, or just learners throughout the paper, is in line with the field of machine learning.

There are two variations of the model with different types of incumbent asset managers:

1) CARA utility managers and 2) estimated demand function managers using Koijen and

Yogo (2019) style estimation methods. The CARA utility managers make mistakes about
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the expected return of assets, which generates CAPM alpha. However, while these CARA

incumbents make mistakes about expected asset payoffs, their price elasticity of demand is

right in the sense that it equals the optimal CARA utility demand price elasticity. In other

words, while these asset managers make mistakes about asset payoffs, they respond appro-

priately to changes in prices. This assumption is relaxed with the second type of incumbent

asset manager—the estimated demand function incumbents—which have identical mispric-

ing in the incumbents-only equilibrium, but have demand price elasticities that are allowed to

differ from optimal CARA utility preferences. The model indicates that mispricing tends to

increase substantially when estimated demand incumbents are used as compared to CARA

incumbents. Koijen and Yogo (2019) argue that estimated asset demand price elasticities

differ from classic asset pricing model price elasticities, and thus allowing this deviation from

the classic mean-variance model is an important step in judging the effect of learner demand

on mispricing.

In order to use estimated demand functions in the model, both as learners and incum-

bents, institutional demand functions must be estimated. I follow Koijen and Yogo (2019)

to estimate these demand functions, with some model specific variations. I estimate insti-

tutional demand functions for each institution in each period. In order to obtain aggregate

market demand, I also estimate non-institutional asset demand as well. The sum of the

institutional and non-institutional demand is by definition the entire market (incumbent)

demand. While this incumbent demand results in identical mispricing at incumbents-only

prices, when prices move away from incumbents-only prices, these estimated demand func-

tions differ from the CARA incumbents’ demand.

I consider 22 variations of the model—all combinations of two types of incumbents and

eleven types of learners. The eleven learners I use in the paper are as follows: 1) market

indexer, 2) Bayesian learner, 3) learners who learn from the true exogenous dividend DGP

using maximum likelihood, 4) learners who learn from the true exogenous dividend DGP
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using maximum a posteriori (MAP), 5) learners who know the true DGP parameters referred

to as asymptotic DGP learners, 6) portfolio optimizers that use a Brandt et al. (2009)

estimator, 7) portfolio optimizers that use shrinking with a Kozak et al. (2020) estimator,

8) learners who plug in asymptotic Brandt et al. (2009) parameter values, 9) learners who

invest simply according to a DeMiguel et al. (2009) 1/N rule, 10) learners who use a random

forest method to form portfolios, and 11) learners who use a neural network.

1.6 Related Literature

There is a rich literature on rational traders destabilizing asset prices. For example, Hart

and Kreps (1986) argue that rational speculators can easily make prices less stable. In their

model, these speculators rationally increase price volatility due to potential small probabili-

ties of high returns. They show that speculators’ demand rarely “look[s] sensible ex post.”

Similarly, Stein (1987) shows a model with information asymmetries where relatively

uninformed arbitrageurs enter the market, and their actions increase the risk for other market

participants and subsequently destabilize prices and decrease welfare. Hong and Stein (1999)

also show how sophisticated investors who trade against the market’s tendency to underreact

to news can still destabilize prices.

Stein (2009) argues that sophisticated professional traders can destabilize asset prices

through two different ways. First, arbitrageurs who are unsure of both fundamental values

and how many peers are involved in a trade can end up destabilizing prices. Second, ar-

bitrageurs can cause fire-sale externalities with leverage. Stein argued that “[a]rbitrageurs

do not base their demand on an independent estimate of fundamental value. As a result,

their demand for an asset may be a nondecreasing function of the asset’s price. Strategies

of this type are common in practice, and include many in which demand is independent of

price.” Thus Stein also emphasizes how traders’ reaction to price changes can play a key role

in mispricing outcomes. DeLong et al. (1990) also argue that rational speculative strategies
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that are an increasing function of an asset’s price can increase price fluctuations. This paper

contributes to this literature in five important ways.

First, this paper shows that in a world with many assets, adapting to changes in the data

generating process of returns due to learner demand is difficult. The Israel et al. (2020) logic

above argues that since many quantitative models do well at estimating historical alpha,

they should push prices to be more efficient. This paper emphasizes that estimating alpha

even as price dynamics shift is difficult relative to just estimating historical alpha. The key

finding of this paper is that learners who can do well at estimating historical alpha, but

struggle to adapt to new price dynamics, can make mispricing worse.

Second, this paper shows that canonical portfolio optimization methods—such as Kozak

et al. (2020) and Brandt et al. (2009)—tend to struggle to adapt to changing return dynamics.

These portfolio optimization methods learn from past returns, but are insufficiently price

reactive as the data generating process of returns changes due to their own demand. In the

model, even some learners who learn from the exogenous dividend process struggle to adapt

properly to changing prices.

Third, Stein (2009) emphasizes arbitrageurs can make “unanchored” trades which exac-

erbate mispricing; however this paper shows that even relatively anchored trades—such as

investing in value stocks—can exacerbate mispricing. This occurs simply because learners

invest a fixed amount of capital into the value portfolio for example, and this amount does

not vary even as the value return premium shifts. Thus while portfolio weights of assets

within the value portfolio change, overall capital invested in the value portfolio does not

shift. This results in insufficiently price reactive learner demand, resulting in long-short

value fund underperformance.

Fourth, the learner, which plays a similar role to the arbitrageurs and speculators in

the above models, simply estimates a model and uses the model to make portfolio choice

decisions. In other words, the parameter estimates are plugged in as a demand function, and
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this replaces the unanchored trade, information asymmetries, and other economic mecha-

nisms used in the papers listed above. Thus all mispricing outcomes are driven simply by

estimation error and model error, rather than the economic mechanism discussed in these

other papers.

Fifth, these learners can only invest capital allocated to them by rational mean-variance

investors who know the true portfolio returns of the learners and incumbents. These ultra-

rational well-informed investors tend to limit increases in mispricing relative to uninformed

investors. Even with these investors, price efficiency can easily decrease.

This paper is also related to Martin and Nagel (2019), who show that in a high dimen-

sional setting where many variables predict fundamentals, in-sample alpha will remain due

to estimation error. While I similarly show that substantial amounts of alpha remain in-

sample, I also show that alpha can actually increase due to estimation error and model error.

I also highlight how the price elasticity of incumbent and learner asset managers plays an

important role in mispricing outcomes.

1.7 Dissertation Outline

The paper proceeds as follows. Chapter 2 gives an extremely simple version of the model to

describe the basic economic intuition. Chapter 3 shows the closed-form asymptotic results

of the model, where mispricing remains in equilibrium even with an infinite learning horizon.

Chapter 4 gives an overview of the full model. I outline how the dividend process is estimated

in Chapter 5. Chapter 6 outlines the demand function estimation methodology. The various

kinds of learners inserted in the model are described in Chapter 7. The model simulation

results are described in Chapter 8. Finally, Chapter 9 concludes.
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CHAPTER 2

BASIC ECONOMICS OF THE MODEL

The basic intuition that smart quantitative learners will eliminate all mispricing by trading

against it pervades the academic finance literature. This powerful result is deeply intuitive,

and has been used to argue that deviation from asset pricing models, such as the CAPM,

must be driven by risk rather than pricing errors. If the deviations are pricing errors, so the

logic goes, then these errors would be eliminated.

This paper argues that mathematically this is unlikely to be true in a world with a lot

of data but limited time series from which to learn. Fundamentally, judging deviations from

asset pricing models requires a time series of returns. This fundamentally makes it difficult to

assess the contemporaneous deviation from a model, since mispricing is only viewed primarily

from the lens of historical returns.

In this simple model, mispricing can persist due purely to estimation error and misspec-

ification error of the model that investors use. The misspecification comes from learning

from previous returns, rather than the true dividend process. While learning from the true

dividend process make sense, in reality much of the variation in asset prices is actually driven

by variation in discount rates (see Cochrane (2011)). Thus learning based on past returns

is reasonable as long as the relationship between state variables and returns is fixed. If the

investor is small and not affecting prices, and no other secular shifts are causing the rela-

tionship between returns and state variables to shift, then this is reasonable. However, if

other investors are employing similar learning strategies, then the relationship between state

variables and returns can shift due to crowded trading. If mispricing is estimated based on

historical data, the contemporaneous affects of crowded trading will likely not be priced in

appropriately.

In this model, pricing errors can persist in two ways:

1. The magnitude of historical alpha can be underestimated, causing insufficient arbi-
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trage capital deployment, which means that alpha remains and keeps its original sign

(positive or negative).

2. Historical alpha is estimated, arbitrage capital is deployed, but investors fail to un-

derstand how many other investors are deploying similar strategies. Since mispricing

is primarily viewed through the lens of historical returns, the arbitrageurs fail to be

sufficiently price responsive, and the sign of alpha flips. Thus mispricing remains, but

the sign of alpha has flipped. This can be extreme enough to even cause the total

magnitude of mispricing to increase (but with a different sign).

In this section, an extremely simplified version of model is presented to give the basic

economic intuition of the paper.

2.1 Simplified Model

There are two types of investors: incumbents and learners. In this section, there is no

learning. We simply plug in different values of perceived historical alpha and price reaction

functions to characterize the equilibrium.

There is only N = 1 asset. In this section, the model is static: there is only a single

period. There is an exogenously given mass of θL learners, and 1− θL incumbent investors.

We endogenize θ later on in the paper. All of the learners and incumbents are price takers.

We assume they have CARA utility demand with risk aversion coefficient γ = 1. The

volatility of the single asset is set to one, and the risk-free rate is set to zero. The dollar or

share return of the asset is simply r = d− p, where d is the payout of the asset, and p is the

price paid for the asset.

Following Kozak et al. (2018), we add a mistake term to incumbent demand, to induce

mispricing in an equilibrum with only incumbents (θL = 0). This mistake is a simple reduce-

form way to induce mispricing among incumbents. Kozak et al. (2018) interpret this mistake
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term, denoted as δ, as driven by sentiment. We take a more agnostic interpretation here. It

could be driven by sentiment, preferences, beliefs, or a variety of other economic mechanisms.

In summary, we insert this δ term into demand to cause mispricing, in order for the learners

to potentially have a chance to enter and eliminate mispricing.

Incumbent demand is simply

xI = E[d]− p+ δ

Supply is normalized to unity, which means that equilibrium with only incumbents, referred

to as the incumbents-only equilibrium, is given by

1 = E[d]− p+ δ

Thus the incumbents-only price is p̄ = E[d]− 1+ δ. Mispricing is α = E[d]− p− 1, and thus

incumbents-only mispricing is

ᾱ = −δ

Thus incumbents-only mispricing is nonzero if and only if the incumbent mistake term, δ, is

nonzero.

Assume learner demand is

xL = E[d]− p̄+ JL(p− p̄)

If the learner appropriately adapts to changing prices, then JL = −1. Assume, however, that

the learner insufficiently reacts to changing prices but still has downward sloping demand, i.e.

assume that −1 ≤ JL ≤ 0. Notice that the learner demand intercept term is error-free. Thus

the learner here perfectly knows the mean-variance efficient weights at the incumbents-only

prices. In other words, the learner knows the answer to Q1 above without error.
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This learner demand function can be rewritten as

xL = ᾱ + 1 + JL(p− p̄)

Written this way, the learner demand is reminiscent of the story of Pecunia above. Pecunia

estimates the historical α, and adds some adjustment for changing prices, and invests ac-

cordingly. While there is no learning in this simple example, the intuition of investing based

on historical alpha still shines through.

The combined equilibrium is described by

1 = (1− θL)(E[d]− p+ δ) + θL(E[d]− p̄+ JL(p− p̄))

Thus the combined equilibrium price is

p = E[d] + δ − 1− θLδ

1− (1 + JL)θL

and the combined equilibrium mispricing is

α =
θLδ

1− (1 + JL)θL
− δ

Thus if the incumbent mistake δ is nonzero, but learners capture the entire market (θL = 1)

and the learners perfectly adapt to changing prices (JL = −1), then the mispricing is zero.

If δ is nonzero and

JL >
2− 3θL
2θL

then ᾱ has the opposite sign of α and |α| is larger than |ᾱ|. Thus the magnitude of mispricing

actually increases when the learners enter.

For example, assume ᾱ is positive in the incumbents-only equilibrium (δ < 0), and thus
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the asset is underpriced. Then in this case, α is negative when the learners enter and the

asset becomes overpriced.

In summary, in this example, an asset that is initially underpriced (overpriced) becomes

overpriced (underpriced) to such an extent that overall mispricing actually increases. This

is due to an overshooting effect, where the learner fails to appropriately react to changing

prices.

Notice that in this case, the incumbents are CARA incumbents as discussed above. In

other words, the incumbents are not too price inelastic relatively to utility-based demand

functions. Thus if learners have downward sloping demand curves and mispricing increases,

it must be the case that θL > 2/3. In other words, for mispricing to increase, the learners

must capture a substantial amount of the market. However, with more inelastic incumbent

demand, learners can capture a smaller fraction of the market and still increase mispricing.

In other words, inelastic incumbent demand makes it much more likely for learners to increase

mispricing upon entry. To see this, assume that the incumbents-only price is the same as

above, but assume that the incumbent demand is

xI = E[d]− p̄+ δ + JI(p− p̄)

This demand function is analogous to the estimated demand function for the incumbents

used throughout the paper, in that the incumbent demand is allowed to be more inelastic

than utility-based demand. Here, of course, JI is not estimated, just allowed to differ from

−1. Assume, like the learner, that −1 ≤ JI ≤ 0.

Repeating the above analysis yields the equilibrium price

p = E[d] + δ − 1 +
θLδ

(1− θL)JI + θLJL
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and the equilibrium mispricing is

α = − θLδ

(1− θL)JI + θLJL
− δ

Thus in this case, if

JL > −2(1− θL)JI + θL
2θL

then mispricing increases when the learners enter. Thus, if incumbent demand is relatively

inelastic, then the learners can capture a smaller share of the market and still increase

mispricing even with downward sloping demand. In the extreme case where the incumbent

is perfectly price inelastic (i.e. JI = 0) and −1/2 < JL < 0, then mispricing increases for

any θL > 0. In other words, in this case, the learners can capture only a tiny share of the

market and still increase mispricing overall.

In summary, if incumbent demand is relatively inelastic, a larger range of parameters can

lead to increases in mispricing when the learners enter.

2.2 Canonical Portfolio Choice Methods Generate Price

Nonreactive Demand

In this subsection, I consider how the canonical portfolio choice generates a simple demand

function for an asset, and how price reactive this demand function is for the asset.

2.2.1 Canonical Portfolio Choice Decision

In the previous example, JL represents how the learners react to changes in prices. I showed

that if JL is sufficiently larger than −1 and the learners capture enough investment then

an asset price can overshoot the efficient price to such a degree that mispricing can worsen.

Why would JL be larger than −1? In other words, why would learner demand react so
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little to changing prices? This subsection shows how this can occur using standard portfolio

choice tools. As the above example shows, this insufficiently price reactive learner demand

is the key to the overshooting economic mechanism of this paper.

Consider, for the sake of concreteness, a learner who optimizes investment in the market

portfolio and a long-short value portfolio. I consider a single asset, which is contained in

both the market fund and the value fund. In other words, I consider a market portfolio

(composed of many assets), a long-short value portfolio (composed of many assets), and one

asset in particular that is potentially in both the market and value portfolios.

As discussed above, the number of shares outstanding has no economic significance, and

thus I assume that there is one share outstanding for the asset considered here1. Just as

above, let p denote the price of this asset, which is the same as market equity if this asset is

a stock because there is only one share outstanding.

Importantly, in this example, each learner invests a fixed fraction w of her money into

the value fund and 1− w into the market. The variable w is chosen by considering optimal

portfolio weights in the data and critically does not vary as prices change. Brandt et al.

(2009) and Kozak et al. (2020) are portfolio optimization methods where the investment

weights for each portfolio do not vary as prices change. This is the key reason that portfolio

optimization techniques lead to insufficiently price reactive demand.

The weight of the asset in the market portfolio is p/A, where A is the value of the

market—i.e. A is the sum of the prices of all assets. Assume that the learner has AL dollars

to invest. Assume that the asset’s weight in the value fund is u(p)p/A, where u(p) is a

function that equals either 1, 0, or −1 depending on whether the asset is in the long portion

of the portfolio sort (i.e. u(p) = 1), the asset has no weight in the portfolio (i.e. u(p) = 0),

or the asset is in the short portion of the portfolio sort (i.e. u(p) = −1). Notice that

this portfolio is a difference of value-weighted portfolios. In other words, this is a standard

1. Investors can invest with fractional shares.
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valued-weighted long-short portfolio.

In this case, this learner invests the following amount of dollars into the asset:

(1− w)AL
p

A
+ wAL

u(p)p

A

where the first term represents the dollar amount invested in this asset because the asset is

in the market portfolio and the second term represents the dollar amount investment in this

asset because the asset is in the value portfolio.

Demand in this paper is terms of the fraction of the share of the asset, and thus it follows

that the learner demand for this asset is

θLxL =
1

p

(
(1− w)AL

p

A
+ wAL

u(p)p

A

)
= (1− w)

AL
A

+ wAL
u(p)

A

This can be further simplified by assuming that the approximation θL = AL/A holds, which

means learner demand is

xL = (1− w) + wu(p)

Notice that except for a few portfolio sort break points where the derivative is not defined,

du
dp = 0. Thus except for these break points, dxLdp = 0. In the last section JL = dxL

dp . Thus,

except for a few break points, this demand function is completely price nonreactive.

It is important to note that if this strategy instead was a combination of investing in

the market and a profitability portfolio for example, then u(p) would not vary with prices,

because market equity does not affect profitability portfolio sorts. In other words, in this

example, this demand function is completely price nonreactive everywhere. Thus, this key

result, that the classic quantitative portfolio choice strategy results in completely price non-

reactive demand almost everywhere holds for any combination of the market portfolio and

long-short value-weight portfolios.

This result—that canonical portfolio choice methods result in completely price nonre-
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active demand almost everywhere—is striking. To re-emphasize, if w varies as p changes,

then this does not hold. However, Brandt et al. (2009) and Kozak et al. (2020), as well as

classic portfolio choice methods, assume fixed weights in portfolios. Thus even if the portfo-

lios themselves are valued-weighted, investing with fixed weights in each portfolio results in

completely price nonreactive demand almost everywhere.

2.2.2 Continuous Characteristic Weighting Instead of Discontinuous

Jumps

The above u function is characterized by a few discontinuous jumps. Suppose instead, that

this u function is linearized. Assume that p is known to fall between some small price pL—a

low price that makes the asset an extreme value stock—and some large price pU—a high

price that makes the asset an extreme growth stock. Assume pU − pL is large, which means

that the plausible range for p is large and the difference between a large growth price and a

small value price is large. Define u to be

u(p) = 2
pU − p

pU − pL
− 1

This linearized version of u represents a portfolio that is characteristic-weighted, like

Brandt et al. (2009) and Kozak et al. (2020). In other words, the asset in the portfolio is

weighted by the degree to which the asset is a value stock or a growth stock.

In this case,

dxL
dp

= − 2w

pU − pL

Since the growth price pU is much larger than the value price pL, this quantity is small.

Thus, even in this linearized case, learner demand is still relatively price nonreactive.

Thus the key intuition of this subsection is not the fact that portfolio sorts generate price

nonreactive demand. The key intuition of this subsection is that investing a fixed fraction w
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into the value portfolio based on historical data and not based on the current prices of value

and growth stocks leads to price nonreactive demand. It’s the fixed w that this example is

meant to emphasize.

2.2.3 Summary of Demand Generated from Canonical Portfolio Choice

Methods

In conclusion, canonical quantitative portfolio choice methods, which include Brandt et al.

(2009) and Kozak et al. (2020), tend to produce relatively price nonreactive demand because

these canonical methods choose constant weights on various portfolios.
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CHAPTER 3

HIGH DIMENSIONAL PROBLEM

In the very basic model above, learning about the mispricing of a single asset appears simple

and easy. Readers may understandably think that persistent mispricing cannot actually

be occurring in financial markets since learning about just a few parameters cannot take

long. In this chapter, we imagine a world with many assets, or alternatively many asset

characteristics. We show that in a world with many assets or many asset characteristics,

mispricing can remain in the model even with an infinite time horizon. These asymptotic

results are key to understanding the existence of persistent mispricing highlighted by this

paper.

We first review the basics of CARA utility demand and the resulting equilibrium when

everything is known. Then we discuss CARA utility demand with a Bayesian investors who

learn from the exogenous dividend process. In this model, if the number of assets is a similar

order of magnitude to the number of time periods to learn from, mispricing remains in the

model. Finally, we explore a learner who learns from returns instead of the true dividend

process. We show that mispricing remains in this model as well.

In this chapter, we eject the incumbents from the model and retain the learners only.

Thus we consider the learner-only equilibrium, with θL = 1. This lends tractability to

the results, giving us closed-form solutions. The amount of learners in the market, θL, is

endogenized in the next section.

3.1 Review of CARA Model with Full Knowledge of Parameters

There are N assets, and dt is the N dimensional column vector of dividends in period t.

The N dimensional column vector pt contains the prices of the assets in period t. I define

Pt = diag(pt), which in words means that Pt is the N × N dimensional matrix with zeros
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on the off-diagonal and pt on the diagonal. Share excess returns, dollar excess returns, or

excess dollar payoffs,1 are defined as rt+1 = dt+1 − (1 + rf )pt where rf is an exogenous

risk free rate. The asset payoffs are driven by the dividends, and there is no price of the

asset in the following period. This allows the covariance matrix of returns to be completely

exogenous and not a function of endogenous prices in the next period. This makes the

model much more tractable. The conditional covariance matrix of returns is denoted as

Λt = Vart[dt+1] = Vart[rt+1]. Dividends follow a multivariate normal distribution. Let ι be

an N dimensional column vector of ones. We normalize supply to be unity for each risky

asset, so that quantities are normalized to be a fraction of ownership of the entire asset.

Table B.1 gives the notation and definitions for this chapter and throughout the paper.

This table shows the definitions of variables both in terms of dollar returns and typical

returns. Many papers with methods used in this paper, such as Brandt et al. (2009), Kozak

et al. (2020), and Koijen and Yogo (2019) use asset excess returns and portfolio weights, but

canonical asset pricing models, which Kozak et al. (2018) is a variation, typically use dollar

excess returns and asset shares.

There is a unit mass of identical investors. Each is a price taker. Demand is given as

xt =
1

γ
Λ−1(Et[dt+1]− (1 + rf )pt)

Since supply is normalized to unity, equilibrium is given by solving the price pt that

solves:

ι =
1

γ
Λ−1(Et[dt+1]− (1 + rf )pt)

Thus the equilibrium price is

pt =
1

1 + rf
(Et[dt+1]− γΛι) (3.1)

1. The terms share excess returns, dollar excess returns, and excess dollar payoffs are all used in the
literature. This is standard to work with returns in this form in a model rather than percentage returns.
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As shown in Table B.1, the CAPM αt is given as

αt = Et[rt+1]︸ ︷︷ ︸
excess return

− Λι

ι′Λι︸︷︷︸
β

ι′Et[rt+1]︸ ︷︷ ︸
market excess return

=

(
I − Λιι′

ι′Λι

)
(Et[dt+1]− (1 + rf )pt) (3.2)

Plugging equation (3.1) into equation (3.2), we find that αt = 0 in this equilibrium. In

fact, we find that the only price vector that eliminates mispricing αt is a price in the form of

pt =
1

1 + rf
(Et[dt+1]− cΛι) (3.3)

for any constant c.

This is a canonical result, which we only review to outline the notation and to contrast

to the two models below.

3.2 Bayesian Learning

Assume that µ ≡ Et[dt+1] is constant. Thus we can write dt ∼ N(µ,Λ). Now our investors

in this model are Bayesian learners who knows Λ but have the prior:

µ ∼ N(µ0,Λ0)

After observing T periods of dividends, the learners have the following posterior predic-

tive:

dT+1 ∼ N
(
(Λ−1

0 + TΛ−1)−1
(
Λ−1
0 µ0 + TΛ−1d̄T

)
, (Λ−1

0 + TΛ−1)−1 + Λ
)

where

d̄T =
1

T

T∑
t=1

dt
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Thus their belief, referred to as the posterior predictive, about dollar returns are:

rT+1 ∼ N
(
(Λ−1

0 + TΛ−1)−1
(
Λ−1
0 µ0 + TΛ−1d̄T

)
− (1 + rf )pT , (Λ

−1
0 + TΛ−1)−1 + Λ

)

Thus the learner’s time T demand is

x =
1

γ

(
(Λ−1

0 + TΛ−1)−1 + Λ
)−1 (

(Λ−1
0 + TΛ−1)−1

(
Λ−1
0 µ0 + TΛ−1d̄T

)
− (1 + rf )pT

)

Since supply is unity, the equilibrium is the price that satisfies:

ι =
1

γ

(
(Λ−1

0 + TΛ−1)−1 + Λ
)−1 (

(Λ−1
0 + TΛ−1)−1

(
Λ−1
0 µ0 + TΛ−1d̄T

)
− (1 + rf )pT

)

Which means that the equilibrium price is

pT =
1

1 + rf

[
(Λ−1

0 + TΛ−1)−1
(
Λ−1
0 µ0 + TΛ−1d̄T

)
− γ

(
(Λ−1

0 + TΛ−1)−1 + Λ
)
ι
]

(3.4)

Assume for simplicity that Λ0 = κ−1Λ for some scalar κ > 0 and that µ0 = µ. That

is, we assume that investors’ prior about the mean of beliefs is proportional to the actual

covariance of returns Λ, and that their belief about the mean of returns is correct. Plugging

in these prior beliefs into equation (3.4) for the price, and then plugging this price into

equation (3.2) yields

αT =

(
I − Λιι′

ι′Λι

)(
T

κ+ T
µ− T

κ+ T
d̄T + γ

1 + κ+ T

κ+ T
Λι

)
(3.5)

Now, αT is an N dimensional column vector, but α′TΛ
−1αT is the standard measure of

alpha across all assets. This is the key component in the Gibbons et al. (1989) test statistic.

It is also the Hansen and Jagannathan (1991) distance in this setting. Finally, we have the
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classic equation:

Et[rt+1]
′Λ−1Et[rt+1]︸ ︷︷ ︸

MVE Sharpe Ratio Squared

= α′TΛ
−1αT︸ ︷︷ ︸

Information Ratio Squared

+
(ι′Et[rt+1])

2

ι′Λι︸ ︷︷ ︸
Market Sharpe Ratio Squared

Thus the total amount of mispricing, α′TΛ
−1αT , is bounded above by the highest achiev-

able Sharpe ratio squared, Et[rt+1]
′Λ−1Et[rt+1].

The proposition below shows that expected mispricing in this model is a function of both

the number of time periods the Bayesian learning has witnessed, T , as well as the number

of assets N .

Proposition 1.1

Under the assumptions of the model above, we have

E[α′TΛ
−1αT ] =

(
T

κ+ T

)2(N − 1

T

)
(3.6)

The proof is in the appendix below.

Interestingly, the mispricing grows with the number of assets. Thus, in the earlier model

with a single asset, the expected mispricing dissipates to zero quickly. However, with many

assets it takes longer.

In fact, if the number of assets is a similar order of magnitude to the number of time

periods, the expected mispricing fails to dissipate. It remains in the model asymptotically.

This is the heart of the proposition below.

Proposition 1.2

plim
N/T=c
N,T→∞

α′TΛ
−1αT = c

The proof is in the appendix below.
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In this context, there is an important alternative interpretation for N . Instead of thinking

of N as the number of assets, we can think of N as the number of characteristic-sorted

portfolios. This means that if the number of characteristics is large relative to the number

of time periods, mispricing should remain. This is similar to the findings from Martin and

Nagel (2019).

It is important to remember that in this model, the investors are entirely rational. Mis-

pricing remains simply because the problem is difficult to estimate, not because of any risk

or behavioral failure.

In the model below, we explore the idea of characteristic-weighted portfolios, used exten-

sively in the literature, such as in Brandt et al. (2009) and Kozak et al. (2020).

3.3 Learning from Portfolio Returns

In this model, it is still the case that dt ∼ N(µ,Λ), excess returns are rt+1 = dt+1−(1+rf )pt,

and supply for each asset is normalized to one.

At the heart of many asset pricing paper is the set of asset characteristics. For example,

the Fama and French (2015) five factor model uses four characteristics (market equity, book

to market ratio, profitability, and investment) to form five portfolios (market, size, and value,

profitability, and investment portfolios).

Let Zt be a N × K matrix of portfolio weights based on K asset characteristics. All

asset characteristics in Zt are known to investors at time t. For example, in the Fama and

French (2015) five factor model, K = 5. In other words, in the Fama and French (2015) five

factor model, each of the five columns of Zt represent N portfolio weights of each of the five

factors.

Portfolio excess returns are written as the K dimensional column vector:

Ft+1 = Z ′
trt+1
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Importantly, in practice, some of the columns depend on the price of the assets, while

other columns of Zt do not depend on the price of the assets. For example, the Fama and

French (2015) value and size portfolios depend on the price of the assets. If the price of

the asset changes, the asset may move to another value or size bin, changing its portfolio

weights. However, other portfolios in the Fama and French (2015) five factor model do not

change based on the price of the asset, such as profitability and investment. These portfolio

weights are formed based only on accounting variables, and not a function of the current

price.

Note that here we are still using dollar or share returns, not percentage returns. Again,

Table B.1 outlines how to convert between asset shares and portfolio weights, and between

share returns and percentage returns. One difference, for example, is that market portfolio

weights are proportional to market equity, but market portfolio shares compose a portfolio

that just holds an equal share of each asset.

For this model, consider only asset characteristics that are either not a function of price,

or a linear function of price. Now the Fama and French (2015) portfolios that depend

on price are nonlinear functions of prices. We can think of linear approximations of these

portfolio weights, as discussed in the previous chapter. We denote the portfolio weight of

asset i at time t in portfolio k to be ai,k + mi,kpi,t. It could of course be the case where

mi,k = 0 (like in the profitability and investment portfolios). For simplicity, we assume that

the intercept terms, ai,k, and the intercept terms, mi,k, are constant through time.

We can write Zt as

Zt =



a1,1 +m1,1p1,t a1,2 +m1,2p1,t . . . a1,K +m1,Kp1,t

a2,1 +m2,1p2,t a2,2 +m2,2p2,t . . . a2,K +m2,Kp2,t
...

...
. . .

...

aN,1 +mN,1pN,t aN,2 +mN,2pN,t . . . aN,K +mN,KpN,t


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We can also write “intercept” and “slope” matrices:

ZI =



a1,1 a1,2 . . . a1,K

a2,1 a2,2 . . . a2,K
...

...
. . .

...

aN,1 aN,2 . . . aN,K


, ZS =



m1,1 m1,2 . . . m1,K

m2,1 m2,2 . . . m2,K

...
...

. . .
...

mN,1 mN,2 . . . mN,K


This allows us to write

Zt = ZI + PtZS

where Pt = diag(pt).

This learner learns from returns and not dividends. In reality, with equities, learning from

just dividends misses much of the variation due to discount rate variation. Thus much of the

asset pricing literature uses historical data to learn from returns, such as Fama and French

(1993), Fama and French (2015), Kelly et al. (2019), Kozak et al. (2020), and DeMiguel

et al. (2009).

The key assumption that these investors make is that, as in Brandt et al. (2009) and

Kozak et al. (2020), mean-variance efficient portfolio weights are linear in asset characteris-

tics:

Λ−1E[rt+1|Zt] = Ztb (3.7)

where b is a constant K × 1 vector of portfolio weights of characteristic-weighted portfolios.

The learner does not know b and uses historical returns to choose b. Thus the learner updates

their view of b through time. We will replace b with bt, which is estimated from historical

returns but not a function of pt. The learner knows Λ.

It is important to note that the learner’s model is potentially misspecified. This is a key

component of this paper. Learning about historical returns often requires the relationship

between returns and some state variables to be fixed. However, if investors are making
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similar assumptions, and many of them together are moving prices, then the relationship

between the state variables and returns can shift. Thus we allow investors in this model

to pursue classic portfolio choice investment decisions implied by well-known factor models,

such as Fama and French (1993) and Fama and French (2015).

We can multiply both sides of equation (3.7) by Z ′
tΛ, which yields

Z ′
tE[rt+1|Zt] = Z ′

tΛZtb

The learner replaces Z ′
tE[rt+1|Zt] and Z ′

tΛZt with historical means. Priors can be in-

cluded, but we want to consider mispricing when the number of time periods that the learner

has experienced, T , is relatively large and the prior has a negligible impact. Thus we exclude

the prior for convenience. When replaced by historical averages, and when b is replaced with

bT (to indicate the learners’ view of b at time T ) we have

1

T

T−1∑
t=0

Z ′
trt+1 =

1

T

T−1∑
t=0

Z ′
tΛZtbT

The learner solves for bT to get:

bT =

 1

T

T−1∑
t=0

Z ′
tΛZt

−1

1

T

T−1∑
t=0

Z ′
trt+1

In the section above, all mispricing was due to estimation error. The Bayesian learner

couldn’t eliminate all mispricing when the number of assets was large just because of the high-

dimensional nature of the problem. Here, the learner will not eliminate all estimation error

because of estimation error and misspecification error. This is driven the the distribution of

bT . If the distribution of bT has a large variance, then it will be difficult for mispricing to be

eliminated, just as the variance of d̄T above caused the mispricing to remain in equilibrium.

Here we make a strong assumption, but conservative in that it reduces in the variance of bT .
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Our assumption is that the prices historically have reach a long-run steady state such that

p = pT−1 = pT−2 = ...

Thus if we denote P = diag(p) and Z̄ = ZI + PZS , then we can rewrite bT as

bT =
(
Z̄ ′ΛZ̄

)−1
Z̄ ′ 1
T

T−1∑
t=0

rt+1

We assume they have CARA utility demand, and using equation (3.7), we can write

demand as

x =
1

γ
ZT bT =

1

γ
(ZI + PTZS)bT

Thus equilibrium is given by the price that solves:

ι =
1

γ
(ZI + PTZS)bT

Recall above that prices in the form of equation (3.1) have zero alpha, and that only

prices in the form of equation (3.3) have zero alpha. It is convenient for us to use a different

wedge rather than αT when computing mispricing here, since the distribution of standard

mispricing α′TΛ
−1αT is relatively intractible mathematically. We define our pricing wedge

in the proposition below.

Proposition 2.1 Assume that ZSbT do not have any elements that equal exactly zero.

Prices equal the zero-alpha prices of equation (3.1) if and only if l′tΛlt = 0, where

lt = −(1 + rf )γι+ Z̃bt

and

Z̃ = (1 + rf )ZI + (U − γλ)ZS , U = diag(µ), λ = diag(Λι)
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The proof is in the appendix below.

We can use this wedge to determine if mispricing remains in the model in expectation,

which is the content of the proposition below:

Proposition 2.2 If the assumptions above hold, then

E[l′tΛlt] =
K

T
ϕ̄+N2(1 + rf )

2γ2χ̄+Kψ̄ + 2(1 + rf )γKω̄

where

• ϕi is the element in the ith row and ith column of Z̃ ′ΛZ̃(Z̄ ′ΛZ̄)−1.

• χi,j is the element in the ith row and jth column of Λ.

• ψi is the element in the ith row and ith column of

Z̄ ′((1 + rf )p− µ)((1 + rf )p− µ)′Z̄(Z̄ ′ΛZ̄)−1Z̃ ′ΛZ̃(Z̄ ′ΛZ̄)−1.

• ωi is the element in the ith row and ith column of Z̃ ′Λι((1 + rf )p− µ)′Z̄(Z̄ ′ΛZ̄)−1.

and

ϕ̄ =
1

K

K∑
i=1

ϕi, χ̄ =
1

N2

N∑
i=1

N∑
j=1

χi,j , ψ̄ =
1

K

K∑
i=1

ψi, ω̄ =
1

K

K∑
i=1

ωi

The proof is in the appendix below.

Thus the mispricing that remains in expectation, at least according to our measure

of mispricing, is a function of T , K, and N . The proposition below simplifies the math

considerably with an additional assumption.

Proposition 2.3 If the historical price p equals the zero alpha price of equation (3.1),

and we define

• LL′ = (Z̄ ′ΛZ̄)−1 to be the cholesky decomposition of (Z̄ ′ΛZ̄)−1

• G to be the vector G = L′Z̄ ′Λι
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• ḡ = 1
K

∑K
i=1G

2
i

then

E[l′tΛlt] =
K

T
(1 + rf )

2︸ ︷︷ ︸
estimation error

+(1 + rf )
2γ2

(
N2χ̄−Kḡ

)
︸ ︷︷ ︸

model error

The proof is in the appendix.

This equation is more transparent. Note that (1+ rf )
2 is of course positive, χ̄ is positive

since Λ is positive-definite, and ḡ is of course positive. Thus mispricing only equals zero if

Kḡ is large enough. This is unlikely if N2 >> K.

The first component, labeled estimation error above, is similar to what drives mispricing

in the model above. This term is larger if K is similar to T . The second component of

mispricing is the model error component. This is due to the fact that the set of portfolios

may not be able to completely span the mean-variance efficient frontier. If K = N , then

this component becomes zero. Thus both model error and estimation error can remain even

with quantitative investors who have a large sample size.

The below corollaries show how mispricing can remain in the model even asymptotically.

Corollary 2.4 Assume that the historical price p equals the zero alpha price of equation

(3.1). Then

lim
T→∞

E[l′tΛlt] = (1 + rf )
2γ2(N2χ̄−Kḡ)

Thus given appropriate parameter values χ̄ and ḡ and large enough N compared to K,

mispricing remains asymptotically even as the learning horizon expands even if K and N are

not large. A similar corollary can be shown even if the historical prices are different than the

zero-alpha price from equation (3.1), but of course the equation is slightly less transparent.

Corollary 2.5 Assume

• ϕ̄ = O(1) as N, T → ∞

• ψ̄ = O(1) as N, T → ∞
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• ω̄ = O(1) as N, T → ∞

• lim
N/T=c
N,T→∞

χ̄ = χ > 0

then

lim
N/T=c
N,T→∞

1

N2
E[l′tΛlt] = (1 + rf )

2γ2χ > 0

Thus even if N and T get large, our measure of mispricing divided by N2 still remains

positive in the limit.

In summary, when investing in a set of portfolios using traditional portfolio management

techniques replete throughout the academic literature, mispricing can still easily remain in

equilibrium indefinitely.
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CHAPTER 4

FULL MODEL OVERVIEW

In this chapter, I outline the full model with endogenous amounts of learners and incumbents.

We switch to thinking of the incumbents and learners to be asset managers and the investors

allocate capital between the two types of asset managers.

The incumbents-only era, also referred to the incumbents-only model, is similar to the

model in Kozak et al. (2018). Let p̄t denote the price that solves the incumbents-only equilib-

rium. There is a unit mass each of incumbent asset managers and investors. Investors are all

identical. While incumbent heterogeneity is allowed in the model under some assumptions,

as shown in Appendix C.2.1, only the aggregate incumbent demand functions play a role in

the model. Incumbents have aggregate linear demand for assets, as discussed in Appendix

C.2.1, denoted as

xI,t =
1

γ

(
aI,t + JI,t(pt − p̄t)

)
where aI,t is an N × 1 intercept term, and JI,t is an N × N slope matrix. While a linear

demand function may seem restrictive, I show below that linear demand functions arise

naturally from a CARA utility framework.

Similar to the notation for incumbent demand, aggregate learner demand is also linear:

xL,t =
1

γ

(
aL,t + JL,t(pt − p̄t)

)

4.1 Two Kinds of Incumbents

There are two kinds of incumbents used in the model. Note that both incumbents are never

in the model at the same time. The two types of incumbents are given below:

1. CARA utility incumbent demand has an intercept term that generates mispricing (writ-

ten as “mistake” below) and a slope matrix that is consistent with classic CARA utility
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demand:

xI,t =
1

γ

 aI,t︸︷︷︸
CARA utility demand + mistake

+ JI,t︸︷︷︸
CARA utility slope

(pt − p̄t)



2. Estimated demand (ED) has the intercept term identical to the CARA utility demand

intercept. Thus mispricing is the same across incumbent types when only incumbents

are in the model. However, the slope term is estimated using a Koijen and Yogo (2019)

style method:

xI,t =
1

γ

 aI,t︸︷︷︸
same intercept

+ JI,t︸︷︷︸
estimated slope

(pt − p̄t)



Each CARA incumbent, knowing investors have CARA utility, generates CARA utility

asset demand in order to deliver risk return trade-offs for their clients demand. This is de-

scribed in more detail in Appendix C.2.1. In aggregate, CARA incumbents believe expected

dollar excess returns on assets are Et[rt+1] + δt instead of just Et[rt+1]. The vector δt is

a wedge that drives the incumbents to make mistakes and generate mispricing. I assume

that the average values of δt are zero, that is 1
N ι

′δt = 0. Thus although incumbent asset

managers make mistakes, the average mistake is zero.

Incumbent heterogeneity is allowed given the assumptions in Appendix C.2.1. The ag-

gregate CARA incumbent demand, as derived in Appendix C.2.1 is

xI,t =
1

γ
Λ−1
t

(
Et[dt+1]− (1 + rf )pt + δt

)
Thus for CARA incumbents, the intercept and slope terms are

aI,t = Λ−1
t

(
Et[dt+1]− (1 + rf )p̄t + δt

)
, JI,t = −(1 + rf )Λ

−1
t
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4.2 Investor Problem

Investors provide an endogenous mechanism for capital allocation between the two types

of asset managers. Investors can only invest with incumbent asset managers, learner asset

managers, and the risk-free asset.

Investors maximize CARA utility, with the same risk aversion coefficient γ, by choosing

how much to invest with each kind of asset manager. While incumbents generate α, and do

not know about the parameters, investors know the 2 × 1 column vector of asset manager

returns and the 2 × 2 covariance matrix of asset manager returns. Note that these returns

are a function of price.

Thus this model assumes asset managers either make mistakes or are unaware of model

parameters. At the same time the model assumes individual investors know the true return

distributions of the funds, are hyper-rational, and are simply constrained to only invest with

the asset managers and the risk-free asset. While this may appear to be backwards, this

model is focused on investigating mispricing outcomes, and the assumption of hyper-rational

investors is quite conservative in terms of mispricing outcomes. A model with both investors

and asset managers that make mistakes or learn model parameters can easily generate much

higher mispricing in equilibrium. Thus the model is both conservative in terms of mispricing

outcomes and biases the model against mispricing remaining in the model.

Define qI,t(pt) = γxI,t(pt) and qL,t(pt) = γxL,t(pt). Thus these are not functions of γ.

Define Xt and Qt to be the N × 2 dimensional matrices

Xt = [xI,t(pt) xL,t(pt)] and Qt = [qI,t(pt) qL,t(pt)]

Define

Ut(θt, pt) = θ′tX
′
t(Et[dt+1]− (1 + rf,t)pt)−

γ

2
θ′tX

′
tΛtXtθt

Investors choose how much to invest with each type of asset manager, θt = (θI,t, θL,t)
′,
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in order to maximize Ut(θt, pt) such that

0 ≤ θI,t, θL,t ≤ 1

The remaining portion of investor wealth not used to finance positions with the two

different asset managers is invested in the risk-free asset.

The values of θt represent the fractions of each type of learner that each investor chooses

to invest with. For example, θt = (θI,t, θL,t)
′ = (0.3, 0.6)′ indicates that each investor chooses

to invest with 30% of incumbent asset managers and with 60% of learner asset managers.

This solution to optimizing this objective function is the same as optimizing

θ′tQ
′
t(Et[dt+1]− (1 + rf,t)p

∗
t )−

1

2
θ′tQ

′
tΛtQtθt

which is not a function of γ. Thus the assumption that learners and incumbents have the

same risk aversion coefficient γ is one of convenience, and it is ultimately the investor risk

aversion that matters. Note that the constraint that the elements of θt be between 0 and

1 is due to the assumption that there is a unit mass of each type of asset manager. More

details in are contained in Appendix C.2.1. I prove in Appendix C.2.1 that an equilibrium

exists with some regularity conditions and if θt is restricted to E = [ϵ1, 1] × [ϵ2, 1] where

either ϵ1 > 0 or ϵ2 > 0. The positive ϵ terms can be very small, and thus restrict the range

of model outcomes in very minimal ways.

4.3 Equilibria

There are two eras in the model (each encapsulating multiple periods): 1) the incumbents-

only era and the combined era (with both incumbents and learners). Thus there are two types

of equilibria defined and discussed below. First, the more general combined equilibrium, with

learners and incumbents is discussed. Then, the incumbents-only equilibrium is explained.
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4.3.1 Combined Equilibrium

Supply of each asset is normalized to unity. Equilibrium is defined as a price p∗t and in-

vestment levels θ∗t such that θ∗t solves the investor problem and prices p∗t solve the following

equation:

ι =
θI,t
γ

(
aI,t + JI,t(pt − p̄t)

)
+
θL,t
γ

(
aL,t + JL,t(pt − p̄t)

)
(4.1)

Notice that since supply is normalized to one, prices are the same as market equity if

assets are equities.

Solving for an equilibrium in this model consists of finding a solution to a fixed point

problem. For any given θt in the bounds, let gt(θt) = pt be the equilibrium price for that θt.

For any given price pt, define ht(p) = θt to be the equilibrium θt demanded by investors for

that price pt. Define ft(θt) to be f(θt) = ht(gt(θt)). Then equilibrium is found by solving for

the fixed point θ∗t such that f(θ∗t ) = θ∗t . The equilibrium price is thus p∗t = gt(θ
∗
t ). Although

prices can be easily solved for any θt and any θt can be solved for any given prices pt, no closed

form solution is available in general. Thus model simulations with estimated parameters are

employed. Additional details about this equilibrium are contained in Appendix C.2.1.

4.3.2 Incumbents-only Equilibrium

This equilibrium is identical to the one above, except that θL,t is constrained to be zero.

Appendix C.2.1 proves that in the incumbents-only equilibrium, θI,t = 1. That is,

investors fully invest with the entire unit mass of incumbent asset managers1.

1. Appendix C.2.1 actually proves that each investor may choose not to invest with some incumbent asset
managers, but the set of incumbents asset managers the investor chooses not to invest with has measure
zero.
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4.4 Example of Increasing Mispricing—Numerical Example with

Investors

This example of increasing mispricing is similar to the example above. Here, however,

investors are included. Even with mean-variance optimizing investors, mispricing can still

increase, as shown in this section. Once again, the t subscripts are dropped.

Since the investor knows all parameters and have two degrees of freedom (θI and θL),

a reasonable example of mispricing increasing when learners are introduced needs three or

more assets. If there are two assets and two types of asset managers, investors can effectively

invest in any combination of assets (ignoring the constraints on θ) by investing through the

funds themselves. Thus the investors tend to decrease mispricing in a two asset settings. In

this example, I use three assets.

In this example, incumbents-only alpha is ᾱ = (0.03,−0.18, 0.15)′ and equilibrium alpha

is α∗ = (−0.148,−0.039, 0.187)′. All details about this example are contained in Appendix

C.2.8.

Critically, there is no learning in this example. The learners have a perfect intercept

term—which means that the learners know the mean-variance efficient weights at the original

prices. In other words, the learners have an error-free answer to Q1 above. If one of these

learners back-tests the trading strategy—assuming no price impact—on similar data in the

past, the portfolio Sharpe ratio will be the highest achievable Sharpe ratio.

However, the slope terms in the learner demand function in this example are filled with

error. This slope term is chosen in order to give intuition about the model mechanisms.

While this slope term is somewhat contrived, this is done to communicate model intuition.

This learner struggles to adapt appropriately to changing prices caused by the entire group

of learners.

Mispricing increases due to an overshooting effect. Asset one is initially underpriced

(negative alpha), and asset demand for asset one is insufficiently reactive to price changes
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for both the incumbent and learner. In other words, as the price changes, demand changes

very little. The learners have appealing risk-return trade-offs, so investors start to increase

learner investment and decrease incumbent investment. As this occurs, the price of asset

one increases because the learner has a relatively high demand for this asset. However,

because demand is insufficiently price reactive for this asset, even as the price adjusts to the

mean-variance efficient price and then exceeds it, learner demand is still high. Thus the price

overshoots the mean-variance efficient price. Investors provide learners with the capital to

create these price distortions because the other two asset positions in the learner portfolio

deliver returns that are worth the cost of the position in the now-overpriced asset one. Thus

in summary, insufficiently price reactive demand for asset one and appealing returns on the

rest of the learner portfolio positions lead investors to allocate money into the learner funds,

which in turn causes the price of asset one to overshoot the mean-variance efficient price and

increase overall mispricing.

Figure A.3 gives a vector plot of f(θ)−θ for each θ. In other words, for each θ, the arrow

points in the direction of desired investor capital allocation at the given θ. If, for example,

an arrow points up and left, the investor at that θ wants to invest less with the incumbent

fund and more with learner asset managers. The size of the arrow is proportional to the

magnitude of the f(θ) − θ. The blue dot signifies the equilibrium θ, or the point where

f(θ)− θ = 0. The incumbents-only equilibrium is in the bottom right corner.

Figure A.4 gives more details about this example. Panel A shows the same vector plot,

but shows a linear path with an arrow from the incumbents-only equilibrium in the bottom

right corner to the equilibrium. The other four panels in this figure plot various quantities

along this linear path. Panel B plots mispricing as a percentage of total incumbents-only

mispricing along this path. Mispricing initially falls and then rises as asset one becomes

severely overpriced. Panel C shows the information ratio of the learner portfolio, which is

positive even as mispricing is increasing and terminates at zero, indicating the equilibrium
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has been reached. Panel D shows the overpricing of the three assets. Overpricing is defined in

Appendix C.2.9, but the sum of the absolute value of the overpricing of the three assets equals

the overall mispricing. This panel shows that while asset one is initially underpriced (below

zero), the overpricing increases and drastically overshoots the mean-variance efficient price.

Panel E shows the asset-specific components of the learner information ratio, which sum up

to the overall learner information ratio. This is defined and explained further in Appendix

C.2.9. Note that the information ratio is decreasing in part because of the overpricing of

asset one, but the other two asset components offset this, which causes the investors to

increase capital allocation to the learners.

Panel A of Figure A.5 shows that the sum of deviations from mean-variance efficient

prices also increases when learners enter in this example. Panel B shows utility along the

same path. Utility initially decreases along the path initially. Utility along the path can

be written as u(x) = U(θ(x), p(θ(x))), where θ(x) = (1 − x + xθ∗I , xθ
∗
L) and p(θ) is the

equilibrium price that solves equation (4.1) above (i.e. p(θ) = g(θ)). Thus the slope of the

curve in Panel B is

du

dx
=
∂U

∂θ

∂θ

∂x
+
∂U

∂p

∂p

∂θ︸︷︷︸
= 0 for investors

∂θ

∂x

Note that because individual investors have no impact on prices, investors perceive that

∂p/∂θ = 0. Thus while investors are choosing θ to maximize utility, utility can actually

decrease along the path if

∂U

∂p

∂p

∂θ

∂θ

∂x
< −∂U

∂θ

∂θ

∂x

Panel B also shows that in this example, utility in both the incumbents-only and combined

equilibrium is equal. Recall that

U(θ, p) = θ′X ′(E[dt+1]− (1 + rf,t)p)−
γ

2
θ′X ′ΛXθ
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However, market clearing dictates that Xθ = ι. Thus equilibrium utility is

ι′(E[d]− (1 + rf )p)−
γ

2
ι′Λι

Note that ι′(E[d]− (1+ rf )p) is the aggregate market dollar excess return. Thus if aggregate

market returns across both types of equilibria are identical—which tends to happen except

in some corner cases—then investor utility will be identical across equilibria.

The fact that investors’ utility tends to be identical across both types of equilibria is

directly caused by the fact that dividends are exogenous in this model. This model is de-

signed to examine mispricing outcomes, and the exogenous dividends assumption allows

the model to be very tractable. However, the exogenous asset dividends assumption nec-

essarily trivializes interesting welfare analysis of model investors. Relaxing the exogenous

dividends assumption would potentially allow this paper’s mispricing results to be bridged

to the mispricing and welfare literature (e.g. van Binsbergen and Opp (2019)). Dropping

this assumption however comes at the cost of reduced tractability. Despite these difficulties,

allowing dividends to vary as a function of asset prices could potentially lead to a promising

area of future research.

However, welfare analysis of atomistic investors with perfect knowledge of model pa-

rameters and the ability to invest in individual assets is possible. Panel C of Figure A.5

shows the utility of these atomistic unconstrained investors. While the model investors can

be thought of as constrained arbitrageurs, these unconstrained investors are unconstrained

arbitrageurs. In other words, this example indicates that constrained arbitrage can both

increase mispricing and increase the utility of unconstrained arbitrageurs.

In summary mispricing can increase when learners are introduced and demand is insuf-

ficiently price reactive, which leads to an overshooting effect of some assets. Other asset

positions in the learner portfolio deliver high returns in expectation, convincing investors to

optimally invest even though doing so ultimately increases mispricing overall.
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CHAPTER 5

DIVIDEND PROCESS ESTIMATION

This chapter explains how the dividend process is estimated. The dividend process param-

eters naturally pin down the CARA utility demand parameters, which is also discussed in

this chapter.

In this chapter and beyond, variables with bars over them represent variables in the

incumbents-only equilibrium. For example, p̄t is the incumbents-only equilibrium price of

assets, and r̄t is the excess dollar returns with the incumbents-only equilibrium price of

assets. Variables with tildes represent variables estimated from data or observed directly in

data. For example, p̃t represents actual asset prices, or market equity, observed in the data.

Assume dollar returns at incumbent prices, r̄t, follow

r̄t ∼ N(µ̄t,Λt)

It turns out that

ᾱt = −δt

Thus

δt = γΛtι− µ̄t

So the wedge δt is pinned down by µ̄t and Λt. I use this fact in the estimation section below.

By estimating a return process, the wedge and therefore the mispricing is pinned down in

the model. Thus like Kozak et al. (2018), the wedge generates CAPM alphas, which allows

learners the opportunity to potentially reduce mispricing in the model.

The five parameters that are sufficient to pin down everything else in the model are µ̄t,

Λt, p̄t, γ, and rf . I set γ = 1 and rf = 0.2% per month. A risk free return of 0.2% is

approximately the average t-bill rate over the sample period. In this chapter, I explain how
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the parameters µ̄t, Λt, p̄t are estimated or retrieved from data.

There are two main sources of variation in dollar returns at incumbents-only prices,

denoted as r̄i,t: 1) variation in actual returns and 2) variation in asset size. Thus I assume:

r̄i,t = si,tr̃i,t

where r̃t is normally distributed with mean µt and covariance matrix Σt, denoted as r̃t ∼

N(µt,Σt). The parameters µt and Σt are estimated from actual returns data as explained

below. The variable si,t, and its associated vector st, is an exogenous measure of size, which

accounts for the the variation in asset size. Let St = diag(st). Then

r̄t ∼ N(Stµt, StΣtSt), thus µ̄t = Stµt and Λt = StΣtSt

There are three key ingredients to the model:

1. estimates of size st

2. parameters µt and Σt estimated from excess returns

3. incumbents-only prices p̄t derived from observed market equity values

Plugging in these new variables, I rewrite asset demand as

xI,t =
1

γ
S−1
t Σ−1

t (µt − (1 + rf )S
−1
t (pt − p̄t) + S−1

t δt)

Thus the new equilibrium condition is

ι =
1

γ
S−1
t Σ−1

t (µt − (1 + rf )S
−1
t (pt − p̄t) + S−1

t δt)

where again the left-hand side is the supply of assets and the right-hand side is the demand

of incumbents. Note that because St is diagonal, S−1
t pt is just a price to size ratio, with
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similar intuition as a market equity to book value ratio. If S−1
t pt is low (high), the price is

low (high) relative to its size.

I first describe the data used for estimation, and then I describe the estimation steps

used to obtain these three ingredients.

5.1 Data

Let Zt be a N ×K matrix of K characteristics for the N assets known at time t. I assume

Zt has a column of ones for an intercept term. I use the monthly equity returns and stock

characteristics data from Freyberger et al. (2020). I use the same characteristic transforma-

tions as Kozak et al. (2020) and Kelly et al. (2019) to populate this matrix, as described in

more detail in Appendix C.2.3. For a description of the variables, see Table B.3. For more

details see Freyberger et al. (2020). The sample period I use is from 1970 to June 2014. The

dataset includes characteristics before 1970, but I do not use this sample period due to data

sparsity. Note that this dataset has been used in Kelly et al. (2019) as well.

5.2 Estimation of Size

It is important that asset size does not vary as prices move, otherwise the model becomes

intractable. In order to obtain an exogenous measure of size, I follow the procedure below.

Every period t I run the following cross sectional regression, where p̃i,t denotes observed

market equity:

log(p̃i,t) = at + b1,t log(book equityi,t−1) + b2,t log(salesi,t−1) + eit

Then observed exogenous size s̃i,t is defined as

s̃it = exp(at−1 + b1,t−1 log(book equityi,t−1) + b2,t−1 log(salesi,t−1))
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The actual size vector st is set such that st = κts̃t where the scalar κt is described below.

5.3 Estimation of Return Process

I assume a Koijen and Yogo (2019) style mean and covariance matrix:

µt = Ztπ

Σt = ΓtΓ
′
t + ζI, Γt = Ztϕ

where ζ is a scalar, π and ϕ are K×1 vectors. This a very flexible characteristics-based model. This

can accommodate non-linear functions of characteristics by plugging in transformation of Zt. In

Appendix C.2.4, I explain how this can be expanded to a neural network with an arbitrary number

of hidden layers which expands and increases the flexibility of the model further. Even with this

simple functional form, the econometric model flexibility is high, as discussed below.

I use maximum likelihood with a multivariate normal distribution to estimate these parameters.

In Appendix C.2.6 I outline how some matrix identities can be used to make maximum likelihood

calculations computationally easy and fast.

I prove in Appendix C.2.5, with some typical regularity conditions, that this estimator is con-

sistent.

Before estimating these parameters, I use a simple out-of-sample test common in the literature to

validate this econometric model. Then I explain the procedure of estimating the model parameters.

5.3.1 Out-of-Sample Test

There is a large literature on using various econometric models to estimate mean-variance efficient

portfolio weights. This paper uses some of these specifically as learners, including Brandt et al.

(2009), Kozak et al. (2020), and DeMiguel et al. (2009). Some others include Kelly et al. (2019),

Gu et al. (2020), and Pástor (2000). In all of these papers, a common test used to validate the

econometric model is to create out-of-sample portfolios, and then regress the portfolio on a common
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asset pricing factor model benchmark to see how the model performs. I do this same test with this

model.

I use a standard expanding window estimation procedure to produce a series of estimates and

portfolio weights. At the end of every calendar year, I estimate the model using only data from the

current and all prior years, and then create estimated mean-variance portfolio weights for the next

year by using Zt and the estimated parameter values. I do this procedure for years 1989 through

2013 to create an excess return series from 1990 to June 2014. The period of 1970 to the end of

1989 is used as a training period. I follow Kozak et al. (2020) and scale the return series to have

the same volatility as the market during the sample period.

I regress these excess returns on CRSP market excess returns to estimate a CAPM alpha and

beta as usual. Table B.2 shows the results. The estimated CAPM alpha is a monthly 3.65%. This

is not an annualized alpha. The t-statistic is 14.12, indicating this alpha is highly statistically

significant. The information ratio of this regression is 0.83. I use this information ratio as a target

for mispricing, as explained below.

5.3.2 Return Process Estimation

In order to estimate ζ, π, and ϕ I use the entire sample period from 1970 to June 2014. I cannot

use this Freyberger et al. (2020) dataset without modifications because the characteristics include

price ratio variables. I need a dataset of characteristics that are not a function of price. Thus I

eliminate and replace some characteristics, as explained in Table B.4. I use this new dataset of 55

exogenous characteristics to populate Zt for the rest of the paper.

If I use a simple maximum likelihood estimation as used in the previous section, I end up with

average mispricing that is much higher than the out-of-sample mispricing of 0.83 estimated above.

This large mispricing is due to the flexibility of the model, which leads to overfitting.

In order to alleviate this, I use a MAP estimator by subtracting a prior (penalty) term from

the maximum likelihood objective function: λ(π′−1π−1 + ϕ′−1ϕ−1) where π−1 and ϕ−1 are the slope

parameters of π and ϕ respectively1. This corresponds to a normal prior distribution for each

1. The notation π−1 and ϕ−1 is used because the first element of π and ϕ are intercept parameters. The
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slope parameter of π and ϕ with mean zero and precision λ. I set λ in order to target an average

mispricing of 0.83. Figure A.6 shows how mispricing varies as the penalty parameter λ varies. From

this plot, it’s apparent that λ = 13, 125 corresponds to mispricing of 0.83. I use this value of λ to

estimate the return process parameters and use these estimates for the model.

5.4 Obtaining Incumbents-Only Prices from Market Equity

Thus far, all variables have been set relative to incumbents-only prices. This intentionally fails

to pin down incumbents-only prices. I plug in incumbents-only prices p̄t to be proportional to

observed market equity, denoted as p̃t. In the full model below, incumbents-only prices are known

by asset managers and fixed.

As shown in Appendix C.2.7, the sum of prices can be written as

ι′pt =
Et[rM,t+1]

γVart[rM,t+1]

Thus either the sum of prices can be normalized or risk aversion γ can be normalized. In the

model, since Zt varies over time because I plug in observed Zt in the simulation, Et[rM,t+1]/Vart[rM,t+1]

varies slightly over time. Thus in order to maintain a constant risk aversion, I set γ = 1 and nor-

malize the sum of prices. This provides an appropriate scalar, κt, used to rescale prices

κt =
Et[rM,t+1]

(ι′p̃t)γVart[rM,t+1]

Thus I set

p̄t = κtp̃t, st = κts̃t

where the exogenous size variable requires rescaling so that price to size ratios are maintained for

model consistency.

rest of the vectors, π−1 and ϕ−1, are slope parameters
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CHAPTER 6

DEMAND FUNCTION ESTIMATION

This section lays out the reasons for using estimated demand functions for both learners and

incumbents, as well as the data and estimation methods used.

6.1 Reason for using Estimated Demand Learners

There are a number of frictions that asset managers may face by trying to implement quantative

portfolio choice methods discussed in this paper, such as trading costs, obtaining the necessary

expertise, and correlated arbitrage capital (see Cho (2020)). Instead of explicitly modeling all of

these frictions, I estimate the demand function of institutional investors from holdings data in each

period, and plug in these demand functions into the model as learners.

6.2 Reason for using Estimated Demand Incumbents

As discussed above, Koijen and Yogo (2019) argue that observed asset demand is inelastic relative

to utility-based standard asset pricing demand functions. Thus it is important to use estimated

demand in order to understand how mispricing is affected by learners if incumbent demand differs

substantially from utility based demand.

It is important to note that at incumbents-only prices, CARA incumbents and estimated de-

mand incumbents produce identical mispricing because they have the same demand. As prices move

away from the incumbents-only equilibrium, CARA incumbents respond according to the dictates

of classic mean-variance utility, while estimated demand learners have estimated price elasticty es-

timates. Thus while demand is identical at incumbents-only prices, demand differs when the prices

move away from the incumbents-only prices.
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6.3 Data

We observe long-only holdings of institutional investors in the SEC 13F filings data. See Koijen

and Yogo (2019) for more details about this data. I use only the sample period from 1990 to 2014

to keep the results comparable to the rest of the simulation results. I merge these holdings to the

exogenous characteristics from Freyberger et al. (2020) described in Table B.4.

Let xji,t be the demand of institution j of asset i in period t. To keep the same units of demand

in the model, demand is just the total number of shares held divided by total shares outstanding.

Note that xji,t is not observed, only (xji,t)
+ = max{xji,t, 0} is observed because short positions are

not in the 13F holdings data. Thus the data is censored, and I use a censored data estimation

approach.

6.4 Justification for using Linear Demand Function

The demand function for a machine learner who knows all the parameters is

xL,t =
1

γ
S−1
t Σ−1

t (µt − (1 + rf )S
−1
t (pt − p̄t))

=
1

γ
S−1
t

[
1

ζ
(µt − (1 + rf )S

−1
t (pt − p̄t)) + ctΓt

]
where

ct = −
Γ′
t(µt − (1 + rf )S

−1
t (pt − p̄t))

ζ(ζ + Γ′
tΓt)

Note that ct is a scalar. If ct is assumed to be a constant, like Koijen and Yogo (2019), then

demand can be written to be linear in augmented characteristics Ẑt. Augmented characteristics

are the set of all exogenous characteristics in addition to the price-to-size ratio (S−1
t pt) and the

incumbents-only-price-to-size ratio (S−1
t p̄t) as follows:

Ẑt =

[
S−1
t pt S−1

t p̄t Zt

]
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If the parameters Π, Φ, and bt are defined as

Π =


−(1 + rf )

1 + rf

π

 , Φ =


0

0

ϕ

 , bt =
1

ζ
Π+ ctΦ

Then machine learner demand, with perfect knowledge of the parameters, is

xL,t =
1

γ
S−1
t Ẑtbt (6.1)

6.5 Estimation of Institutional Demand for Learners

Following Koijen and Yogo (2019), I calculate the investment universe of every institution. Let

Υj
t denote the investment universe of institution j at time t, which is the subset of asset indices

{1, ..., N} that are in the investment universe of institution j according to Koijen and Yogo (2019).

Let

υji,t =


1 i ∈ Υj

t

0 otherwise

I take the above linear demand function equation and modify it in four ways, as described

below, to get the key estimation equation:

si,tx
j
i,t = βj1,t

pi,t
si,t

+ Zi,tβ
j
2,t + eji,t for all i ∈ υjt

where βj1,t is a price coefficient, βj2,t is a column vector of coefficients, Zi,t represent the i
th row of

Zt, and ϵ
j
i,t represents manager specific preferences not based on the observed characteristics. For

notational simplicity, assume the estimates below use only the assets with the investment universe

of each institution. Writing the above equation in vector form, we can write

Stx
j
t = βj1,tS

−1
t pt + Ztβ

j
2,t + ejt (6.2)
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Equation (6.1) is modified in the following four ways to yield equation (6.2):

1. both sides are multiplied by size St

2. Ẑt is replaced by Zt and S−1
t pt. Note that demand is estimated from real data, which is

assumed to be the incumbents-only world. Thus observed price-to-size ratios are the same

as incumbents-only-price-to-size ratios (i.e. S̃−1
t p̃t = S−1

t pt = S−1
t p̄t). Thus the change from

Ẑt to Zt and S
−1
t pt is simply to eliminate perfect multicollinearity.

3. I replaced bj/γj with βjt = (βj1,t, (β
j
2,t)

′)′, except for the element of bj associated with the

extra column of Ẑt.

4. I add manager specific preferences not based on the observed characteristics, denoted as ϵjt .

The most straightforward identifying assumption to estimate the parameters βjt would be

E[ejt |S
−1
t pt, Zt] = 0

Koijen and Yogo (2019) argue that correlated demand shocks violate this assumption. They

use the instrument, which I denote as mj
i,t, which is the market equity of asset i if manager j did

not exist and all other managers held an equally weighted portfolios of assets in their investment

universe. This is written as

mj
i,t = κt

∑
l ̸=i

Alt
υli,t∑
m υ

l
m,t

where Ajt represents the assets under management of institution j.

This yields the first stage regression

S−1
t pt = aj1,tS

−1
t mj

t + Zta
j
2,t + υjt

I denote ̂(S−1
t pt)j as the predicted dependent variable from this first stage regression. Note that

an intercept is not needed in this equation because Zt contains a column of ones. The coefficients
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are the scalar aj1,t and K dimensional vector aj2,t. The identifying assumption is

E[ejt |
̂(S−1
t pt)j , Zt] = 0

which yields the second stage regression equation:

Stx
j
t = βj1,t

̂(S−1
t pt)j + Ztβ

j
2,t + ejt

where βj1,t is the first element of βjt and βj2,t is the vector containing the remaining elements.

The dependent variable in the demand equation is censored. In order to identify the parameters

in a censored data setting, I assume that the error term ejt is conditionally symmetric, which means

that

median(ejt |
̂(S−1
t pt)j , Zt) = 0

This allows me to use the Censored Least Absolute Deviations (CLAD) model from Powell (1984)

in order to estimate the regression parameters from the second stage. The first and second stage

regressions are estimated for each institution in each period. Following Koijen and Yogo (2019), I

restrict the coefficient on the price-to-size ratio to be non-positive, in order to get a negative price

elasticity. Also, following Koijen and Yogo (2019), if institutions have too few strictly positive

holdings, they are grouped together by size and institution type. Koijen and Yogo (2019) use

1,000 strictly positive holdings as a minimum cutoff, while I use 500 since the Powell (1984) model

estimator does not require as large of a sample size as the Koijen and Yogo (2019) estimator.

Let

ϵ̂ji,t =


xji,t −

1
si,t

(
β̂j1,t

pi,t
si,t

+ Zi,tβ̂
j
2,t

)
if xji,t > 0

0 otherwise

Then the natural demand function for institution j at time t is

diag(υjt )S
−1
t

(
β̂j1,tS

−1
t pt + Ztβ̂

j
2,t + ϵ̂jt

)
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where υjt is a vector with its ith element equal to υji,t. The diag(υjt ) just ensures that the firm

only demands assets in its investment universe. Plugging this demand function into the model as a

learner potentially leads to issues if the institution is small, because the θL,t ≤ 1 could potentially

be quite binding. In order to avoid this by creating an estimated demand function that could

potentially become a large part of the market, let

ϱjt =

∑
lA

l
t

Ajt

Then the natural demand function is

xjL,t = ϱjtdiag(υ
j
t )S

−1
t

(
β̂j1,tS

−1
t pt + Ztβ̂

j
2,t + ϵ̂jt

)

I consider three alternatives to estimated demand function of learners to judge the affect of

manager preferences not associated with characteristics and the investment universe restriction.

The following three restrictions are listed below:

1. Plain, exactly as described above:

xjL,t = ϱjtdiag(υ
j
t )S

−1
t

(
β̂j1,tS

−1
t pt + Ztβ̂

j
2,t + ϵ̂jt

)

2. A version with no residual term:

xjL,t = ϱjtdiag(υ
j
t )S

−1
t

(
β̂j1,tS

−1
t pt + Ztβ̂

j
2,t

)

3. A version with no residual and no investment universe restriction:

xjL,t = ϱjtS
−1
t

(
β̂j1,tS

−1
t pt + Ztβ̂

j
2,t

)

The holdings data are available only every quarter, but the simulations use every month of

characteristic data. Therefore, in the two months between estimation, the same estimated param-
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eter values and ϵ̂jt from the most recent quarter are used for each institution to obtain a demand

function.

6.6 Estimation of Incumbent Asset Manager Demand

In this section, I estimate non-institutional demand, and use the sum of institutional demand and

non-institutional demand as the incumbents’ demand function. I refer to this incumbent demand

function as the estimated incumbent demand, as opposed to the CARA utility based demand

function above.

I define non-institutional demand, ηt, as just residual demand:

ηt = ι−

∑
j

diag(υjt )S
−1
t

(
β̂j1,tS

−1
t pt + Ztβ̂

j
2,t + ϵ̂jt

)
The non-institutional demand function is estimated just as the institutional demand functions

are estimated except with a slight change to the instrument and a standard two stage least squared

approach is used because there is no censoring. Note that ηt contains classic measurement error

due to the estimated institutional demand component, but because it is a dependent variable it is

inconsequential.

The first stage is

S−1
t pt = aη1S

−1
t mη

t + Zta
η
2 + υηt

where mη
t is the market equity of each asset if all institutional investors held equally weighted

portfolios of assets in their investment universe. Notice that for the calculation of the instrument

above, institution j’s demand was excluded in calculating mj
t , while in the calculation of mη

t , no

institutions are excluded. Denote ̂(S−1
t pt)η as the predicted dependent variable from this first stage

regression.

The second stage is the same as above, except no censored approach is required. However, the

coefficient on the price-to-size ratio is still constrained to be non-positive. The second stage yields
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estimated βηt for each period and residuals ϵ̂ηt . Overall incumbent demand is defined as

xI,t =

∑
j

diag(υjt )S
−1
t

(
β̂j1,tS

−1
t pt + Ztβ̂

j
2,t + ϵ̂jt

)+ S−1
t

(
β̂η1,tS

−1
t pt + Ztβ̂

η
2,t + êηt

)

By design, at incumbent prices, this is a vector of ones. Thus demand equals supply.
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CHAPTER 7

LEARNERS

This chapter describes the eleven different kinds of learners briefly, with more details in the ap-

pendix.

7.1 Market Indexer

A market indexer has portfolio weights proportional to pt. Thus a market indexer has demand

proportional to ι. I can therefore write xL,t = atι for some at > 0. Equilibrium is dictated by

ι = θI,txI,t + θL,tatι

Simplifying this equilibrium equation yields

ι =
θI,t

1− θL,tat
xI,t

This is identical to the incumbents-only equilibrium equation, except that θI,t is replaced by θI,t/(1−

θL,tat). Using the same logic from the incumbents-only equilibrium, it must be the case that

investors choose

θI,t
1− θL,tat

= 1

which implies

ι = xI,t

Thus prices are just incumbents-only prices, and mispricing does not change. Note that investors

are indifferent between incumbent and learner investment as long as θI,t = 1− θL,tat. Therefore, I

do not report the percent of investment captured by learners.
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7.2 Bayesian Learner

Assume a learner knows everything, including Σt, but does not know π. Suppose the learner has a

Bayesian prior given by:

π ∼ N(π0,Ξ
−1
0 )

The posterior is

π|Z0, ..., ZT−1, r̃1, ..., r̃T ∼ N
(
πT ,Ξ

−1
T

)
where

πT =

(
Ξ0 +

T−1∑
t=0

Z ′
tΣ

−1
t Zt

)−1(
Ξ0π0 +

T−1∑
t=0

Z ′
tΣ

−1
t r̃t+1

)

ΞT =

(
Ξ0 +

T−1∑
t=0

Z ′
tΣ

−1
t Zt

)

The posterior predictive is

r̃T+1|Z0, ..., ZT−1, ZT , r̃1, ..., r̃T ∼ N
(
ZTπT ,ΣT + ZTΞ

−1
T Z ′

T

)
Therefore, demand is

xL,T =
1

γ
S−1
T

(
ΣT + ZTΞ

−1
T Z ′

T

)−1 (
ZTπT − (1 + rf )S

−1
T (pT − p̄T )

)
In the simulations, I consider the case where the prior is consistent with the truth, i.e. π0 = π,

as well as the case where the prior π0 is a vector of zeros. I also set Ξ−1
0 = σ2I, where I consider a

range of different σ values.

7.3 True DGP Maximum Likelihood Learners

The true DGP learner estimates model parameters from the exogenous dividend process and is

thus immune to error from extrapolating based on past returns. Recall that by assumption

r̃t = S−1
t (dt+1 − (1 + rf )p̄t) ∼ N(µt,Σt)
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where p̄t is fixed. These true DGP estimators observed both size and incumbents-only prices p̄t,

and use these to estimate model variables from the process S−1
t (dt+1 − (1 + rf )p̄t). These learners

use a maximum likelihood estimator to obtain estimates ζ̂, π̂, and ϕ̂. These investors plug in these

values in to get µ̂t and Σ̂t. True DGP learners have demand

xL,t =
1

γ
S−1
t Σ̂−1

t (µ̂t − (1 + rf )S
−1
t (pt − p̄t))

where

µ̂t = Ztπ̂, Σ̂t = Γ̂tΓ̂
′
t + ζ̂I, Γ̂t = Ztϕ̂

7.4 True DGP MAP Learners

These learners are identical to the previous learners, except the learners use MAP estimators instead

of maximum likelihood. The MAP estimation specification is identical to the MAP estimation used

above in Chapter 5. I consider a range of parameter precision parameter values, and report the

results below.

7.5 True DGP Learners with Asymptotic Parameter Values

In the model simulations, there is only a finite amount of data to estimate the model for each

learner. Considering only a finite sample fails to investigate the theoretical properties of the model

when the sample period grows asymptotically.

This asymptotic learner simply uses the true parameter values. This investigates how the

mispricing behaves when estimation error is eliminated and the true data generating process is

used. To be precise, the demand function for this learner is

xL,t =
1

γ
S−1
t Σ−1

t (µt − (1 + rf )S
−1
t (pt − p̄t))

where µt and Σt are the true conditional mean and covariance matrix.
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7.6 Portfolio Optimizer

This learner’s demand function is derived from choosing portfolio weights using the Brandt et al.

(2009) method, as described below.

In both Brandt et al. (2009) and Kozak et al. (2020), the authors use excess returns rt. For

this paper, this should be replaced by scaled dollar excess returns,

rst+1 = S−1
t (dt+1 − (1 + rf )pt)

Following Kozak et al. (2020), I define the K + 2 dimensional vector of portfolio returns Ft+1

as

Ft+1 = Ẑ ′
tr
s
t+1

Let ω̂ and Ω̂ be the usual estimates of the mean and covariance of Ft+1, that is

ω̂T =
1

T

T∑
t=1

Ft (7.1)

Ω̂T =
1

T

T∑
t=1

(Ft − ω̂T )(Ft − ω̂T )
′ (7.2)

In Brandt et al. (2009), the authors assume that mean-variance efficient weights are linear in

characteristics. So mean-variance weights can be written as

wt = Ẑtb (7.3)

The empirical Sharpe ratio of this portfolio is

1
T

∑T
t=1w

′
tr
s
t+1√

1
T

∑T
t=1

(
w′
tr
s
t+1 − 1

T

∑T
τ=1w

′
τr
s
τ+1

)2 (7.4)

By choosing b to maximize this empirical Sharpe ratio yields a version of the Brandt et al. (2009)

estimator. Note for any positive scalar k, kb and b have the same empirical Sharpe ratio. Thus by
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including a constraint to the sum of the parameter b, the parameters can be pinned down.

Define the Brandt et al. (2009) estimator, denoted as b∗T to be the b that maximizes the empirical

Sharpe ratio in (7.4) above subject to equation (7.3) and

ι′b = ι′Ω̂−1
T ω̂T

which pins down the estimate as described above.

In Appendix C.2.10, I prove that this estimator has the following closed-form solution:

b∗T = Ω̂−1
T ω̂T

I show in Appendix C.2.11 that with constant characteristics Ẑt, this estimator is consistent

under the true data generating process. Plugging this estimator, b∗T , into the linear demand function

(6.1) yields the Brandt et al. (2009) learner demand:

xL,T =
1

γ
S−1
T ẐT b

∗
T

7.7 Portfolio Optimizer with Shrinking Learner

This learner uses a variation of the Kozak et al. (2020) model. The Kozak et al. (2020) estimator,

b̂T , is estimated by solving

b̂T = argminb (ω̂T − Ω̂T b)
′Ω̂−1
T (ω̂T − Ω̂T b) + λ1||b||1 + λ2||b||2

where || · ||1 and || · ||2 are the L1 and L2 norms respectively, and λ1 and λ2 are penalty parameters

that shrink the parameter values towards zero.

When the penalty parameters are set to zero, that is λ1 = λ2 = 0, this estimator yields

b̂T = b∗T = Ω̂−1
T ω̂T
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as shown in Appendix C.2.10.

For simplicity, I set λ1 = 0, which allows me to estimate b with a simple closed-form formula

as shown in Appendix C.2.10. I vary λ2 as discussed in the results below. The demand function

for this learner is

xL,T =
1

γ
S−1
T ẐT b̂T

7.8 Asymptotic Portfolio Optimizer Learner

We can compute the conditional mean and covariance of portfolio returns as follows:

Et[Ft+1] = Ẑ ′
tẐtΠ, Vart[Ft+1] = ζẐ ′

tẐt + Ẑ ′
tẐtΦΦ

′Ẑ ′
tẐt

Consider a fixed set of the augmented characteristic matrices, Ẑ0, ..., ẐT−1. Consider generating

a sample of scaled returns, each denoted as fn, using the following process:

1. Select one of the indices, 0, ..., T − 1, each with probability 1/T . Let τ(n) be the chosen

index. Let Ẑτ(n) denote the corresponding matrix.

2. Take a scaled return random portfolio draw, denoted as fn, from the distribution

fn = N
(
Ẑ ′
τ(n)Ẑτ(n)Π, ζẐ

′
τ(n)Ẑτ(n) + Ẑ ′

τ(n)Ẑτ(n)ΦΦ
′Ẑ ′
τ(n)Ẑτ(n)

)

Denote the random sample chosen using the above method as f1, ..., fn̄. Analogous to equations

(7.1) and (7.2), define

ω̂n̄,T =
1

n̄

n̄∑
n=1

fn

Ω̂n̄,T =
1

n̄

n̄∑
n=1

(fn − ω̂n̄,T )(fn − ω̂n̄,T )
′

In this case, the probability limit of these, as n̄→ ∞, denoted with the symbol as
P→

n̄→∞
, is

ω̂n̄,T
P→

n̄→∞

1

T

T−1∑
t=0

ζẐ ′
tẐt + Ẑ ′

tẐtΦΦ
′Ẑ ′
tẐt
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Ω̂n̄,T
P→

n̄→∞

1

T

T−1∑
t=0

Ẑ ′
tẐtΠ

Thus define

bn̄,T = Ω̂−1
n̄,T ω̂n̄,T

Denote the probability limit, as n̄ → ∞, of bn̄,T as b∞,T . Then by the continuous mapping

theorem, we have

b∞,T =

(
T−1∑
t=0

ζẐ ′
tẐt + Ẑ ′

tẐtΦΦ
′Ẑ ′
tẐt

)−1(T−1∑
t=0

Ẑ ′
tẐtΠ

)

Analogous to the above portfolio optimizers, the resulting demand function for this learner is

xL,T =
1

γ
S−1
T ẐT b∞,T

7.9 DeMiguel et al. (2009) 1/N Learners

DeMiguel et al. (2009) argue that a 1/N portfolio avoids estimation error and performs well in terms

of out-of-sample Sharpe ratios. Thus, if this claim is true, it gets closer to the mean-variance efficient

frontier than more complex methods. A true 1/N portfolio has portfolio weights proportional to

ι, which means that demand is proportional to P−1
t ι. This nonlinear demand is intractable, so I

use a demand function proportional to P̄−1
t ι. This means that demand invests an equal amount

of money into each asset at incumbents-only prices. Demand is scaled such that the constraint

θL,t ≤ 1 is nonbinding in the simulations below, as explained in Appendix C.2.12. In other words,

1/N demand is scaled so that there is no investor excess demand for this learner.

7.10 Random Forest Learners

The random forest learner has two estimation steps:

1. Fit a random forest using Z0, ..., ZT−1 to predict r̃1, ..., r̃T . Using this random forest, let µ̂T

be the random forest prediction of scaled incumbent returns using ZT .
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2. Fit a random forest that fits the covariance matrix, that is in the form of

Σ̂t = φtφ
′
t + ζ̂I

where φt is a column vector and a random forest function of Zt. This is described in Appendix

C.2.13.

Using the random forest predictions of the mean and covariance matrix, the random forest

learner demand is

xL,t =
1

γ
S−1
t Σ̂−1

t (µ̂t − (1 + rf )S
−1
t (pt − p̄t))

In the simulations below, the depths of the trees in the mean and covariance random forests

are two. Trees in a random forest typically only consider a random fraction of features (in this case

exogenous characteristics), and thus approximately
√
K exogenous characteristics are selected for

each tree during training to fit the target variable.

7.11 Neural Network Learner

This learner is identical to the true DGP learner above, except it uses a general neural network as

described in Appendix C.2.4. Only one hidden layer is used with 25 neurons.
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CHAPTER 8

MODEL SIMULATION RESULTS

The rest of the paper is concerned with the simulation results of the model. As discussed above, the

model cannot be solved in closed form, so I rely on parameter estimates and simulations to make

inferences. For each simulation, I assume the period 1970 to the end of 1989 as the incumbents-

only era, and 1990 to June 2014 as the combined era. I use actual exogenous characteristics Zt

from the data and parameter estimates described above to simulate actual dividends. The machine

learner estimates a model, and invests accordingly based on all available information. I use 200

simulations in each of the results below. This number is constrained by computational resources.

This may appear to be a low number of simulations, but results are averaged across simulations

and across time within the simulation, which results in a large simulated sample size. The results

across simulations are quite close to each other, indicating a high degree of reliability for these

results.

In each of the simulation results below, I report statistics averaged over the combined era

within simulation and across simulations. I report the average mispricing, ξt. I also report the

average mispricing as a ratio of incumbents-only mispricing, ξt/ξ̄t, in percentage terms, where ξ̄t

is the mispricing if investors are constrained to only invest with incumbent asset managers. Refer

to Table B.1 for definitions of these variables. I also report the maximum Sharpe ratio that can

be achieved with an atomistic investor with monthly market Sharpe ratios of 0.12 (the monthly

empirical market Sharpe ratio observed during this period). Finally, I report the percentage of all

capital invested with learners as defined in Appendix C.2.2.

The results across simulations are shown in Table B.5. I show simulations results with variations

of three of the learners—the Bayesian learner, true DGP with shrinking learner, and the portfolio

optimizer with shrinking learner. Table B.6 shows simulation results for various values of the prior

mean and prior precision matrix. Tables B.7 and B.8 shows the results, for CARA and estimated

demand incumbents respectively, across various values of λ—the prior precision parameter. Table

B.9 shows the simulation results for various λ2 shrinking parameter values. I take the learner, across

the various hyperparameter values, with the lowest mispricing to include with the main results, as
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displayed in Table B.5. The mispricing from this table, as a percent of incumbents-only mispricing,

is shown graphically as bar plots in Figure A.7.

The simulations involving estimated demand learners are quite different than the other simula-

tions. Recall from Chapter 6 that for each institutional demand function estimated in each period,

there are three types of learners used in the simulations: 1) plain learners, 2) no residual learners,

and 3) no residual and no investment universe restriction learners. The estimated demand simula-

tions are conducted as follows. Consider one of the three learner types from a given institutional

demand function estimation in a given period, and use this learner to solve for the equilibrium with

both incumbent types. Repeating this exercise for every one of the three learner types for every

institutional demand functions in every period yields mispricing outcome data for each incumbent

type, learner type, period, and institution. The mispricing simulation results are then aggregated

across institutions but within incumbent types, learner types, and periods with one of the three

following methods:

1. Average: The average mispricing across institutions is calculated.

2. Highest Share: The mispricing of the institution with the highest fraction of investor capital

is calculated.

3. Lowest Mispricing: The mispricing of the institution that achieves the lowest mispricing in

equilibrium is calculated.

Once these three measures of mispricing are calculated for both incumbent types, all three

learner types, and for all three aggregation methods in each period, the results are averaged across

periods within these bins. This yields 18 mispricing results (two incumbent types × three learner

types × three aggregation methods).

These 18 mispricing results for estimated demand learners are shown in Figure A.8. The results

with CARA incumbents are in Panel A, and these results indicate that under CARA incumbents,

mispricing is essentially unchanged. In Panel B, the results with estimated demand incumbents

are displayed. Mispricing increases relative to incumbents on average and for the incumbents who

capture the highest investment management market share. Mispricing decreases only very slightly
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relative to the incumbents-only equilibrium for the learners with the lowest possible mispricing.

Some of the main findings from these two types of simulations are discussed below.

8.1 Mispricing can Increase When Sophisticated Learner Assets

Managers Enter the Market

Machine learning can increase mispricing rather than improving price efficiency. This can be seen

in Panel B of Figure A.7. Both types of portfolio optimizer learners (with and without shrinking),

simple 1/N learners, and neural network learners all increase mispricing relative to the incumbents-

only equilibrium. While the example above explains how mispricing can increase when learners

enter, the simulation shows that under an estimated data generating process that drives returns,

reasonable investment strategies can exacerbate mispricing.

Panel B of Figure A.8 shows a similar result. Mispricing on average increases when estimated

demand learners are placed in the model. While Sharpe ratios of entrants can be appealing to

investors, these same entrants can lead to price distortions.

In academic papers, α’s and Sharpe ratios are used as a common assessment of portfolios.

However, these portfolios are only theoretical and do not actually change asset prices. This paper

shows that while these portfolios may seem appealing when they are not actually in the market, in

practice these investment strategies can actually distort prices.

8.2 Price Elasticites are Important Determinants in Mispricing

Outcomes

As discussed above, CARA incumbents have a demand function with a slope with respect to prices

that equals the typical CARA utility demand function. However, the estimated demand incumbents

have a different slope with respect to prices. Panel A of Figure A.7 shows the results with CARA

incumbents, and Panel B shows the results with estimated demand incumbents. These results

indicate that with these learners, mispricing never increases with CARA incumbents. However,
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as discussed above, with estimated demand incumbents mispricing does sometimes increase. Thus

the price elasticity of demand for incumbents plays a large role in mispricing outcomes, including

in determining whether mispricing increases or decreases. Also, in eight of the eleven learners,

mispricing is higher with estimated demand incumbents than with CARA incumbents. The mar-

ket indexer learner has identical mispricing. The mispricing point estimates are only lower with

estimated demand incumbents rather than CARA incumbents with two learners—the true DGP

with shrinking learner and the random forest learner.

Figure A.8 echoes these results. Mispricing never increases with CARA incumbents. However,

mispricing on average increases across estimated demand learners. Incumbents in this model repre-

sent actual market demand since the insertion of learners is counterfactual. Thus the way that the

market reacts to changing prices strongly influences mispricing outcomes when new players enter

the market.

8.3 Shrinking Can Eliminate More Mispricing Than Knowing

the True Covariance Matrix

As discussed above, the Bayesian learners know the true covariance matrix of returns and only learn

the conditional expectation of returns parameter π. The true DGP with shrinking learner however

does not know any of the parameters and uses a simple shrinking MAP estimator. Strikingly,

under CARA incumbents 42.5% of incumbents-only mispricing remains, while only 30.7% remains

with true DGP MAP learner incumbents. Thus the learner that does not use the true covariance

matrix but estimates the covariance matrix with a shrinking estimation strategy eliminates more

mispricing than the Bayesian learner who knows the true covariance matrix.

This relatively counter-intuitive result is analogous to MacKinlay and Pástor (2000), who show

that a shrinking estimator can outperform a strategy that uses the true covariance matrix. This

paper builds on this idea, showing that shrinking also has better mispricing outcomes as well as

portfolio performance outcomes.
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8.4 Other Interesting Results

These results show that when the mix of assets changes through time, a portfolio based approach

can struggle to eliminate all mispricing. Recall from equation (6.1) that learner demand with full

knowledge of the parameters is

xL,t =
1

γ
S−1
t Σ−1

t (µt − (1 + rf )S
−1
t (pt − p̄t)) =

1

γ
S−1
t Ẑtbt

where

bt =
1

ζ
Π+ ctΦ

where ct varies through time as a function of the augmented characteristics. This equation is

used to justify the portfolio optimizer learners. However, in Figure A.7, the asymptotic version

of this learner shows that 15.4% of mispricing remains with CARA incumbents and 18.4% of

mispricing remains under estimated demand incumbents. This occurs exactly because the true bt

depends on the mix of assets and asset characteristics, which changes through time. Thus while the

asymptotic true DGP learner eliminates all mispricing, this asymptotic portfolio optimizer learner

fails to eliminate all mispricing. Thus, the portfolio based approach fails to eliminate all mispricing

because the mix of assets and asset characteristics changes through time.

While the neural network learner estimates the true data generating process, this estimation

is done using many parameters. The true model has parameters π, ϕ, and ζ, which is a total of

2K + 1 parameters. The neural network has 25 neurons in its single hidden layer, which means

there are 50K + 53 parameters. This causes a relatively extreme overfit problem.

Panel B of Figure A.8 shows that even learners who capture a high investment management

market share can lead to large mispricing increases, even with rational optimizing investors. Al-

though intuitively, one might assume that asset managers that smart optimizing investors allocate

more money to will improve price efficiency, this model indicates that this logic is not sound. In

many cases, mispricing actually increases fairly drastically under these asset managers.
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CHAPTER 9

CONCLUSION

This paper presents a novel econometric estimator, as well as a variety of novel estimation and

theoretical innovations. The key economic results and most important details are discussed below.

The key finding of this paper is that mispricing can increase when sophisticated asset man-

agers enter the market, even with optimizing intelligent investors. This is caused by learners who

can create appealing portfolios before they move prices, but struggle to adapt as the data gen-

erating process of returns changes due to their own demand. Mispricing increases when asset

manager demand for an asset is insufficiently price reactive, leading to an overshooting effect. In

other words, the asset is initially underpriced (overpriced) and the asset becomes overpriced (un-

derpriced) through an aggressive investment position that fails to adapt quickly as prices change

(insufficiently price reactive). Other asset positions in the new entrant portfolio make the overall

portfolio appealing to investors, leading to additional capital allocation even as overall asset prices

become more distorted. In model simulations, this increasing-mispricing scenario plays out. Thus,

it is not only theoretically possible, but likely in some situations given estimated model parameters.

This paper illustrates that adapting as the data generating process of returns changes is fun-

damentally difficult. Canonical portfolio optimization methods, such as Brandt et al. (2009) and

Kozak et al. (2020), tend to be insufficiently price reactive and therefore adapt poorly. Even learn-

ers who estimate models trying to learn the fundamental exogenous dividend process in the model

adapt poorly when these learners overfit the true dividend process.

The demand function of the market without the entrant—referred to as the incumbent demand

throughout the paper—plays a key role in mispricing outcomes. If incumbent demand reacts

to changing prices just as mean-variance utility dictates, mispricing does not tend to increase.

However, by using estimated demand functions for incumbents, mispricing can easily increase.

Also, new entrant asset managers who do not know the true model parameters but use shrinking—

prior parameter restrictions—to estimate the model can actually eliminate more mispricing than

Bayesian asset managers who know the true covariance matrix of returns. While MacKinlay and
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Pástor (2000) show that forming portfolio weights with shrinking can actually outperform portfolios

using the true covariance matrix, this paper gives an analogous result for asset mispricing.

This paper presents an interesting framework to consider parameter estimation, asset manage-

ment, and mispricing outcomes. Promising areas of future research include allowing an endogenous

dividend process which would allow interesting welfare and mispricing analysis, or allowing the

relationship between dividends and characteristics to vary through time.
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APPENDIX A

APPENDIX A: FIGURES

Figure A.1: Machine Learning and Investment Management Survey

This plot shows the results from a Morgan Stanley survey of investment groups about their
use of machine learning. Source: Robin Wigglesworth, Feb 10 2020, “Stockpickers turn to
big data to arrest decline”, Financial Times.
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Figure A.2: Model Timeline

Time

0

incumbents incumbents and machine learners

T1 (1970 - 1989) T2 (1990 - 2014)

machine learners en-
ter

This diagram shows the basics dynamics of the model. The first era, with T1 periods, has
only incumbent asset managers. In the model simulations throughout the paper, I use firm
monthly exogenous firm characteristics from 1970 - 1989 for this period. Then machine
learner asset managers enter, and investors choose between investing with both incumbents
and these learners. In the simulations, I use the period 1990 - 2014 for this combined era.
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Figure A.3: Vector Plot of Equilibrium Example

This plot gives an example of a vector plot of f(θ)− θ for each θ = (θI , θL). The variable
θI (Incumbent theta) represents the incumbent asset managers investment, while θL
(Learner theta) represents the learner investment as defined in the paper. f(θ) is defined as
f(θ) = h(g(θ)), where g(θ) = p is the price that solves the equilibrium equation given fund
investment θ, and h(p) is the optimal investment θ that investors make given prices p.
Thus equilibrium is found by solving for θ∗ such that f(θ∗) = θ∗. Thus this plot can be
intuitively thought of how investors move to the equilibrium from any initial starting point,
with the arrows showing the direction. The blue dot represents the equilibrium θ∗.
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Figure A.4: Mispricing and Learner Information Ratio Along Path From Incumbents-Only
Investment to Equilibrium

Panel A: Path From Incumbents-Only
Investment to Equilibrium

Panel B: Mispricing Along Path
Panel C: Learner Information Ratio Along

Path

This figure is continued on the next page.
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Figure A.4, continued

Panel D: Overpricing of Assets Along Path
Panel E: Learner Information Ratio
Component of Assets Along Path

This plot gives an example of how mispricing can increase when learners are introduced.
Panel A shows the same vector plot shown in Figure A.3, and the green arrow shows the
linear path from incumbents-only investment, θ = (1, 0), to the equilibrium, θ∗ = (θ∗I , θ

∗
L).

The path is defined as θ = (1− x+ xθ∗I , xθ
∗
L) as x moves from 0 to 1. Panel B shows the

overall mispricing as a percent of incumbents-only mispricing along this path, while Panel
C shows the learner information ratio along this path. Panel D shows overpricing of each of
the three assets along this path, while Panel E shows learner information ratio component
of each of these three assets along this path. Overpricing and information ratio components
are defined precisely in Appendix C.2.9.
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Figure A.5: Dollar Mispricing and Utility Along Path From Incumbents-Only Investment to
Equilibrium

Panel A: Dollar Mispricing Along Path From
Incumbents-Only Investment to Equilibrium

Panel B: Investor Utility
Panel C: Atomistic Unconstrained Investor

Utility

This figure shows some additional curves along the path from the incumbents-only
investment equilibrium to the combined equilibrium as discussed in Figure A.4. Panel A
shows dollar mispricing along this path, as a percent of total dollar mispricing in the
incumbents-only equilibrium. Dollar mispricing is the sum of the absolute value of
deviations of prices from the mean-variance efficient prices. Panel B shows investor utility
along this path. Panel C shows the utility, along the path, of an atomistic investor that
invests in individual assets—not asset managers—and has perfect knowledge of model
parameters.
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Figure A.6: Mispricing Target

This plot shows how estimated average mispricing over the entire sample period, 1970 -
June 2020, changes as the penalty prior, λ, in the maximum a posteriori (MAP) estimate
changes. The target mispricing is 0.83 (see Table B.2). This target mispricing is achieved
with a penalty parameter of about 13,125.
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Figure A.7: Mispricing Results Summary

Panel A: Mispricing with CARA Incumbents

This figure is continued on the next page.
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Figure A.7, continued

Panel B: Mispricing with Estimated Demand Incumbents

These two bar charts show how mispricing, as a percentage of incumbents-only mispricing,
varies across different learner types and incumbent types. Panel A shows the results for
CARA utility incumbent asset managers, while Panel B shows mispricing with estimated
demand incumbents. The eleven learner asset managers are described in Chapter 7. Note
that the plot in Panel B is cut off at the top; mispricing with portfolio optimizer learners
and neural network learners mispricing is out of the plot region.
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Figure A.8: Mispricing Results with Estimated Demand Learners

Panel A: Mispricing with CARA Incumbents

This figure is continued on the next page.
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Figure A.8, continued

Panel B: Mispricing with Estimated Demand Incumbents

These two bar charts show how mispricing, as a percentage of incumbents-only mispricing,
varies across different learner types and incumbent types. Panel A shows the results for
CARA utility incumbent asset managers, while Panel B shows mispricing with estimated
demand incumbents. There are nine total bars in each panel, which shows every
combination of three learner types and three ways of aggregating mispricing. The three
estimated demand learner types are described in Chapter 6: 1) plain learners, 2) no
residual learners, and 3) no residual + no investment universe restriction learners. The
three aggregating methods are as follows: 1) simple average mispricing across models and
periods, 2) the average mispricing across periods with the learner that captures the highest
market share of investor funds, and 3) the average mispricing across periods with the
learner that generates the lowest possible mispricing.
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APPENDIX B

APPENDIX B: TABLES

Table B.1: Definitions and Notation

This table shows the notation and definitions of some key variables in this paper. There
are N assets, and dt is the N dimensional column vector of dividends in period t. pt is the
N dimensional vector of prices at time t, and Pt = diag(pt). In other words, Pt is the
N ×N dimensional matrix with zeros on the off-diagonal and pt on the diagonal. The top
section of this table shows the standard defintions of excess returns, covariance matrices,
market weights, market returns, market alpha, and mispricing, both in the dollar returns /
demand share space and returns / portfolio weights space. The right-most column shows
the implied relationship between the variables. The second part shows definitions of
variance, excess returns, beta, alpha, and information ratio for a specific portfolio as
described in the text in the center.

definition definition implied
name dollar returns / shares returns / portfolio weights relationship

excess returns rt+1 = dt+1 − (1 + rf,t)pt r
p
t+1 = P−1

t (dt+1 − (1 + rf,t)pt) rt+1 = Ptr
p
t+1

covariance Λt = Vart(rt+1) Λ
p
t = Vart(r

p
t+1) Λt = PtΛ

p
tPt

market weights wM,t = pt/(ι
′pt)

market returns rM,t+1 = ι′rt+1 r
p
M,t+1 = w′

M,tr
p
t+1 rM,t+1 = (ι′pt)r

p
M,t+1

beta βt =
Λtι
ι′Λtι

β
p
t =

ΛptwM,t

w′
M,tΛ

p
twM,t

βt = Ptβ
p
t /(ι

′pt)

alpha αt = Et[rt+1]− βtEt[rM,t+1] α
p
t = Et[r

p
t+1]− β

p
t Et[r

p
M,t+1] αt = Ptα

p
t

mispricing ξt =
√
α′tΛ

−1
t αt ξ

p
t =

√
(α
p
t )

′(Λpt )
−1(α

p
t ) ξt = ξ

p
t

This table is continued on the next page.
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Table B.1, continued
Let xt denote asset demand for the N assets, so each xi,t represents the fraction of the
total value of asset i held. If wt represents the portfolio weights held by this same set of
holdings, then wt = Ptxt/(ι

′Ptxt) assuming portfolio weights are rescaled so that the
weights sum to one. The following section of this table gives quantities specific to the this
portfolio, assuming this relationship between xt and wt.

definition definition implied
name dollar returns / shares returns / portfolio weights relationship

excess returns rx,t+1 = x′trt+1 r
p
x,t+1 = w′

tr
p
t+1 rx,t+1 = (ι′Ptxt)r

p
x,t+1

variance σ2x,t = Vart(rx,t) (σ
p
x,t)

2 = Vart(r
p
x,t) σ2x,t = (ι′Ptxt)2(σ

p
x,t)

2

beta βx,t = x′tβt β
p
x,t = w′

tβ
p
t βx,t =

(ι′Ptxt)β
p
t,x

ι′pt

alpha αx,t = Et[rx,t+1]− βx,tEt[rM,t+1] α
p
x,t = Et[r

p
x,t+1]− β

p
x,tEt[r

p
M,t+1] αx,t = (ι′Ptxt)α

p
x,t

Sharpe ratio SRx,t =
Et[rx,t+1]
σx,t

SR
p
x,t =

Et[rpx,t+1]

σpx,t
SRx,t = SR

p
x,t

information ratio IRx,t =
αx,t√

σ2x,t−β2x,tι′Λtι
IR
p
x,t =

αpx,t√
(σpx,t)

2−(βpx,t)
2w′

M,tΛ
p
twM,t

IRx,t = IR
p
x,t
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Table B.2: Out-of-Sample Portfolio CAPM Regression

Dependent variable:

Portfolio Return

α 3.65∗∗∗

t = 14.12

β −0.09
t = −1.60

α/σϵ 0.83

Observations 293

R2 0.01

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

This is a standard Capital Asset Pricing Model (CAPM) regression of portfolio excess
returns regressed on the market excess returns. The portfolio weights are formed using
only prior information using the estimated Data Generating Process (DGP) econometric
model outlined in the paper. I use maximum likelihood to estimate the parameters. I use
the Freyberger et al. (2020) asset characteristics data, with the Kozak et al. (2020)
characteristic transformations outlined in Appendix C.2.3. The data is divided into a
training period, 1970 - 1989, and a testing period, 1990 - June 2014. In every month in the
testing period, the entire sample period (training and testing) prior to the given month is
used to estimate the parameters, and then portfolio weights are formed. The resulting
portfolio excess returns during this testing period are then regressed on the CRSP market
excess returns in order to estimate the standard alpha, beta, and information ratio during
this period.
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Table B.3: Description of Characteristics

Category Name Desc.

Payout nop dividend and net issuance to price ra-
tio

ldp dividend price ratio
o2p alternative payout ratio

Issuance d so log change in split-adjusted shares
d shrout percentage change in shares outstand-

ing

Beta beta historical CAPM beta
beta daily alternative CAPM beta

Investment d ceq % change in book value of equity
investmentgrowth in total assets
noa net operating assets
dpi2a change in PP&E
ivc change in inventories
at total assets

Cash roc ratio of price and debt to cash
c2d cash flow to liabilities
free cf cash flow to book equity
c cash and short-term assets to assets

Profitabilitysat adj asset turnover by industry
eps earnings to shares
ipm pre-tax income to sales
roe return on equity
roa return on assets
pm profit margin
d dgm dsaleschanges in gross margin and sales
roic return on invested capital
sales g sales growth
pm adj profit margin by industry
rna return on net operating assets
ato net sales of lagged operating assets
pcm price-to-cost margin
cto capital turnover
prof profitability
s2c sales to cash
sat asset turnover

Category Name Desc.

Value e2p earnings to price
a2me assets to price
beme book-to-market
beme adj book-to-market by industry
s2p sales to price
debt2p debt to price
q Tobin’s Q

Trading std volume std. dev. of volume regression
total vol volatility
idio vol idiosyncratic volatility
lturnover turnover
ret max max daily return in previous

month
std turn std. dev. of turnover regression
rel to high price high past year price to price
dto alternative turnover measure
spread mean bid-ask spread
suv standard unexplained volume
lme market capitalization
lme adj market capitalization by industry

Intangibles oa operating accruals
aoa absolute value of operating accru-

als
tan tangibility
ol operating leverage

Past cum return 36 13 long-run reversals
Returns cum return 12 2 momentum

cum return 6 2 recent momentum
cum return 12 7 old momentum
cum return 1 0 short term reversals

This table shows the 62 characteristics used in the out-of-sample performance test (see
Table B.2). This dataset comes from Freyberger et al. (2020). See their paper for more
details.
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Table B.4: Description of Exogenous Characteristics

Category Name Desc.

Issuance d so log change in split-adjusted shares
d shrout percentage change in shares outstand-

ing

Beta beta historical CAPM beta
beta daily alternative CAPM beta

Investment d ceq % change in book value of equity
investmentgrowth in total assets
noa net operating assets
dpi2a change in PP&E
ivc change in inventories
at total assets

Cash c2d cash flow to liabilities
free cf cash flow to book equity
c cash and short-term assets to assets

Profitabilitysat adj asset turnover by industry
eps earnings to shares
ipm pre-tax income to sales
roe return on equity
roa return on assets
pm profit margin
d dgm dsaleschanges in gross margin and sales
roic return on invested capital
sales g sales growth
pm adj profit margin by industry
rna return on net operating assets
ato net sales of lagged operating assets
pcm price-to-cost margin
cto capital turnover
prof profitability
s2c sales to cash
sat asset turnover

Category Name Desc.

Trading std volume std. dev. of volume regression
total vol volatility
idio vol idiosyncratic volatility
lturnover turnover
std turn std. dev. of turnover regression
dto alternative turnover measure
spread mean bid-ask spread
suv standard unexplained volume

Intangibles oa operating accruals
aoa absolute value of operating accru-

als
tan tangibility
ol operating leverage

Basic book book equity
Accounting debt numerator of debt2p

earnings numerator of e2p
dividends numerator of ldp
net payout numerator of nop
net payout2 numerator of o2p
sale numerator of s2p

Book debt2b debt / book
Ratios e2b earnings / book

div2b dividends / book
nob net payout / book
o2b net payout2 / book
s2b sale / book

This table shows the 55 exogenous characteristics used in the simulations throughout the
paper and which all come from the Freyberger et al. (2020) dataset. Note that the
variables in the Basic Accounting and Book Ratios categories are added from Table B.3,
and the following variables in that table have been dropped because they were a function of
price: a2me, beme, beme adj, debt2p, e2p, ldp, lme, lme adj, rel to high price,
cum return 12 2, cum return 12 7, q, ret max, cum return 6 2, cum return 1 0,
cum return 36 13, nop, o2p, s2p, roc.
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Table B.5: Mispricing Summary Table

Incumbent Learner Mispricing % Mispricing
√

0.122 +Misp2 % Learner Capital

CARA Market Indexer 0.91 100 0.92
CARA Bayesian 0.39 42.47 0.40 73.81
CARA True DGP 0.45 49.58 0.47 70.29
CARA True DGP + Shrinking 0.28 30.67 0.30 97.75
CARA Asym. True DGP 0 0 0.12 100
CARA Portfolio Optimizer 0.55 60.35 0.56 59.86
CARA Portfolio Optimizer + Shrinking 0.35 38.64 0.37 61.77
CARA Asym. Portfolio Optimizer 0.14 15.39 0.18 64.02
CARA 1/N 0.90 97.82 0.90 16.01
CARA Random Forest 0.64 69.62 0.65 90.67
CARA Neural Network 0.88 95.74 0.88 33.08
ED Market Indexer 0.91 100 0.92
ED Bayesian 0.44 48.40 0.46 9.54
ED True DGP 0.54 59.17 0.55 12.10
ED True DGP + Shrinking 0.28 30.57 0.30 24.88
ED Asym. True DGP 0 0 0.12 100.00
ED Portfolio Optimizer 5.45 598.82 5.45 41.82
ED Portfolio Optimizer + Shrinking 0.93 101.14 0.93 57.12
ED Asym. Portfolio Optimizer 0.16 18.38 0.20 55.75
ED 1/N 1.31 143.27 1.32 20.98
ED Random Forest 0.57 62.00 0.58 77.02
ED Neural Network 2.73 299.85 2.73 3.54

This table shows the results across the eleven types of learner asset managers and two
types incumbent asset managers. The learner types are described in Chapter 7. The
columns show, from left to right: incumbent asset manager type (ED stands for estimated
demand); learner asset manager types; the average mispricing across time and simulations;
the average ratio of mispricing to incumbents-only mispricing—reported as a
percentage—averaged across time and simulations; the Sharpe ratio an (atomistic)
individual trader could achieve by combining a market monthly Sharpe ratio of 0.12 with
knowledge of asset mispricing; and the average percentage of capital in the market under
learner management. Note that 0.12 is the average monthly market Sharpe ratio during
the entire sample period used for these simulations.
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Table B.6: Mispricing with Bayesian Learners

Incumbent Correct Prior σ Mispricing % Mispricing
√
0.122 +Misp2 % Learner Capital

CARA No 0.01 0.40 43.55 0.41 74.06
CARA No 0.05 0.40 43.78 0.42 71.10
CARA No 0.1 0.40 44.39 0.42 73.25
CARA No 0.5 0.41 44.95 0.43 72.70
CARA Yes 0.01 0.39 42.47 0.40 73.81
CARA Yes 0.05 0.40 44.34 0.42 72.44
CARA Yes 0.1 0.41 44.68 0.42 71.95
CARA Yes 0.5 0.40 44.17 0.42 71.90
ED No 0.01 0.44 48.85 0.46 9.54
ED No 0.05 0.46 50.73 0.48 9.92
ED No 0.1 0.46 50.66 0.48 9.57
ED No 0.5 0.46 50.82 0.48 11.94
ED Yes 0.01 0.44 48.40 0.46 9.54
ED Yes 0.05 0.46 50.48 0.47 9.94
ED Yes 0.1 0.46 50.36 0.47 8.93
ED Yes 0.5 0.46 50.86 0.48 9.94

This table shows mispricing with Bayesian learners as described in Chapter 7. The
columns show, from left to right: incumbent asset manager type (ED stands for estimated
demand); whether the prior is objectively correct, i.e. π0 = π (yes) or equals a vector of
zeros (no); the value of σ in the prior precision matrix Ξ−1

0 = σ2I; the average mispricing
across time and simulations; the average ratio of mispricing to incumbents-only
mispricing—reported as a percentage—averaged across time and simulations; the Sharpe
ratio an (atomistic) individual trader could achieve by combining a market monthly Sharpe
ratio of 0.12 with knowledge of asset mispricing; and the average percentage of capital in
the market under learner management. Note that 0.12 is the average monthly market
Sharpe ratio during the entire sample period used for these simulations.
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Table B.7: Mispricing with CARA Incumbents and True DGP + Shrinking Learners

λ/100 Mispricing % Mispricing
√
0.122 +Misp2 % Learner Capital

0 0.45 49.58 0.47 70.29
0.5 0.34 37.87 0.36 88.05
1 0.33 35.96 0.35 91.17
1.5 0.32 34.82 0.34 93.24
2 0.31 34.35 0.34 94.65
2.5 0.30 32.85 0.32 94.34
3 0.30 33.36 0.33 94.95
3.5 0.30 33.19 0.33 96.23
4 0.30 32.89 0.32 96.64
4.5 0.31 33.78 0.33 96.77
5 0.28 30.67 0.30 97.75
10 0.29 31.85 0.31 98.95
15 0.31 34.28 0.33 99.43
20 0.32 35.56 0.35 99.75
25 0.35 38.26 0.37 99.81
30 0.36 39.55 0.38 99.85
35 0.37 40.36 0.39 99.86
40 0.39 42.84 0.41 99.89
45 0.40 43.26 0.41 99.91
50 0.41 44.33 0.42 99.94
75 0.45 49.45 0.47 99.92
100 0.49 53.19 0.50 99.81
125 0.51 56.22 0.53 99.52
150 0.54 59.07 0.55 98.99
175 0.56 61.53 0.58 98.34
200 0.57 62.37 0.58 98.13

This table shows mispricing with CARA incumbent managers as described in Chapter 5
and True DGP with Shrinking learners described in Chapter 7. Note that λ = 0
corresponds to the true DGP learner. The columns show, from left to right: the MAP
penalty parameter λ divided by 100; the average mispricing across time and simulations;
the average ratio of mispricing to incumbents-only mispricing—reported as a
percentage—averaged across time and simulations; the Sharpe ratio an (atomistic)
individual trader could achieve by combining a market monthly Sharpe ratio of 0.12 with
knowledge of asset mispricing; and the average percentage of capital in the market under
learner management. Note that 0.12 is the average monthly market Sharpe ratio during
the entire sample period used for these simulations.
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Table B.8: Mispricing with Estimated Demand Incumbents and True DGP + Shrinking
Learners

λ/100 Mispricing % Mispricing
√
0.122 +Misp2 % Learner Capital

0 0.54 59.17 0.55 12.10
0.01 0.52 56.77 0.53 12.12
0.02 0.50 54.98 0.51 13.21
0.03 0.49 53.66 0.50 14.89
0.04 0.48 52.83 0.49 11.97
0.05 0.48 52.34 0.49 12.12
0.06 0.47 51.25 0.48 13.64
0.07 0.46 50.78 0.48 14.45
0.08 0.45 49.75 0.47 14.68
0.09 0.45 49.59 0.47 15.35
0.10 0.45 49.23 0.46 16.26
1 0.33 36.58 0.35 22.12
2 0.30 32.92 0.32 24.25
3 0.29 31.59 0.31 26.69
4 0.28 31.12 0.31 23.73
5 0.28 30.57 0.30 24.88
6 0.28 31.03 0.31 22.84
7 0.28 31.12 0.31 20.75
8 0.29 31.81 0.31 21.53
9 0.29 32.28 0.32 21.43
10 0.30 32.63 0.32 20.79

This table shows mispricing with estimated demand incumbent managers as described in
Chapter 6 and True DGP with Shrinking learners described in Chapter 7. Note that λ = 0
corresponds to the true DGP learner. The columns show, from left to right: the MAP
penalty parameter λ divided by 100; the average mispricing across time and simulations;
the average ratio of mispricing to incumbents-only mispricing—reported as a
percentage—averaged across time and simulations; the Sharpe ratio an (atomistic)
individual trader could achieve by combining a market monthly Sharpe ratio of 0.12 with
knowledge of asset mispricing; and the average percentage of capital in the market under
learner management. Note that 0.12 is the average monthly market Sharpe ratio during
the entire sample period used for these simulations.
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Table B.9: Mispricing with Portolio Optimizer + Shrinking Learners

Incumbent λ2 Mispricing % Mispricing
√

0.122 +Misp2 % Learner Capital

CARA 0 0.55 60.35 0.56 59.86
CARA 1 0.41 45.66 0.43 60.86
CARA 2 0.39 42.63 0.40 60.02
CARA 3 0.37 41.19 0.39 62.40
CARA 4 0.36 40.34 0.38 60.45
CARA 5 0.36 40.24 0.38 63.57
CARA 6 0.36 39.33 0.38 57.19
CARA 7 0.35 39.20 0.37 61.59
CARA 8 0.35 38.85 0.37 61.16
CARA 9 0.35 39.02 0.37 61.04
CARA 10 0.35 38.64 0.37 61.77
CARA 11 0.35 38.96 0.37 63.22
CARA 12 0.36 39.92 0.38 64.26
CARA 13 0.36 39.55 0.38 59.83
CARA 14 0.36 39.50 0.38 62.26
CARA 15 0.36 40.18 0.38 59.40
CARA 16 0.36 40.06 0.38 63.26
CARA 17 0.36 39.92 0.38 63.06
CARA 18 0.36 40.16 0.38 56.37
CARA 19 0.37 41.47 0.39 59.72
CARA 20 0.38 41.94 0.40 61.36
CARA 25 0.39 42.84 0.40 64.52
CARA 30 0.41 44.97 0.42 59.59
CARA 40 0.43 47.21 0.44 62.71
CARA 50 0.45 49.85 0.47 62.21
ED 0 5.45 598.82 5.45 41.82
ED 1 3.03 338.22 3.04 55.21
ED 5 1.03 113.17 1.04 56.67
ED 25 0.95 104.08 0.96 56.57
ED 50 0.93 101.14 0.93 57.12
ED 100 0.93 101.42 0.93 65.76

This table shows mispricing with portfolio optimizer learners as described in Chapter 7.
Note that λ2 = 0 corresponds to the portfolio optimizer (Brandt et al. (2009)) learners
without shrinking. This figure caption is continued on the next page.
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Table B.9, continued
The columns show, from left to right: incumbent asset manager type (ED stands for
estimated demand); the L2 penalty parameter from Kozak et al. (2020) labeled here as λ2;
the average mispricing across time and simulations; the average ratio of mispricing to
incumbents-only mispricing—reported as a percentage—averaged across time and
simulations; the Sharpe ratio an (atomistic) individual trader could achieve by combining a
market monthly Sharpe ratio of 0.12 with knowledge of asset mispricing; and the average
percentage of capital in the market under learner management. Note that 0.12 is the
average monthly market Sharpe ratio during the entire sample period used for these
simulations.
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APPENDIX C

APPENDIX C: FURTHER DETAILS AND PROOFS

C.1 Lemmas and Proofs

C.1.1 Lemma 1

If x ∼ N(µ,Σ), ϕ and ψ are constant vectors, and A is a symmetric positive definite matrix, then

E[(x+ ϕ)′A(x+ ψ)] = tr(AΣ) + µ′A(µ+ ϕ+ ψ) + ϕ′Aψ

Var[(x+ ϕ)′A(x+ ψ)] = 2tr[(AΣ)2] + 4µ′AΣA(µ+ ϕ+ ψ) + (ϕ+ ψ)′AΣA(ϕ+ ψ)

For the proof, see Baba Yara et al. (2021).

C.1.2 Proof of Proposition 1.1

We set out to prove that

E[α′
TΛ

−1αT ] =

(
T

κ+ T

)2(N − 1

T

)

Var[α′
TΛ

−1αT ] =

(
T

κ+ T

)4(2(N − 1)

T 2

)
While the variance equation above is not stated in the text, it is useful for proposition 1.2 below.

Expected returns are

ET [rT+1] = ET [dT+1 − (1 + rf )pT ] = µ− (1 + rf )pT

= µ− (Λ−1
0 + TΛ−1)−1

(
Λ−1
0 µ0 + TΛ−1d̄T

)
+ γ

(
(Λ−1

0 + TΛ−1)−1 + Λ
)
ι

Asset β is

βT =
Λι

ι′Λι
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And the expected market return is

ET [ι′rT+1] = ι′µ− ι′(Λ−1
0 + TΛ−1)−1

(
Λ−1
0 µ0 + TΛ−1d̄T

)
+ γι′

(
(Λ−1

0 + TΛ−1)−1 + Λ
)
ι

Thus the αT is

αT = ET [rT+1]− βTET [ι′rT+1]

=

(
I − Λιι′

ι′Λι

)(
µ− (Λ−1

0 + TΛ−1)−1
(
Λ−1
0 µ0 + TΛ−1d̄T

)
+ γ

(
(Λ−1

0 + TΛ−1)−1 + Λ
)
ι
)

=

(
I − Λιι′

ι′Λι

)(
µ− (Λ−1

0 + TΛ−1)−1Λ−1
0 µ0 − (Λ−1

0 + TΛ−1)−1TΛ−1d̄T + γ
(
(Λ−1

0 + TΛ−1)−1 + Λ
)
ι
)

If we plug in Λ0 = κ−1Λ and µ0 = µ, this simplifies to

αT =

(
I − Λιι′

ι′Λι

)(
T

κ+ T
µ− T

κ+ T
d̄T + γ

1 + κ+ T

κ+ T
Λι

)

= Ad̄T + b

where

A = − T

κ+ T

(
I − Λιι′

ι′Λι

)

b =

(
I − Λιι′

ι′Λι

)(
T

κ+ T
µ+ γ

1 + κ+ T

κ+ T
Λι

)
Thus

α′
TΛ

−1αT = (Ad̄T + b)′Λ−1(Ad̄T + b)

Note that

d̄T ∼ N

(
µ,

1

T
Λ

)
Thus

Ad̄T ∼ N

(
Aµ,

1

T
AΛA′

)
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Thus, from Lemma 1 above,

E[α′
TΛ

−1αT ] =
1

T
tr
(
Λ−1AΛA′)+ µ′A′Λ−1(Aµ+ 2b) + b′Λ−1b

Var[α′
TΛ

−1αT ] =
2

T 2
tr
[(
Λ−1AΛA′)2]+ 4

T
µ′A′Λ−1AΛA′Λ−1(Aµ+ 2b) +

4

T
b′Λ−1AΛA′Λ−1b

We can calculate

AΛA′ =

(
T

κ+ T

)2(
I − Λιι′

ι′Λι

)
Λ

(
I − Λιι′

ι′Λι

)′

=

(
T

κ+ T

)2(
Λ− Λιι′Λ

ι′Λι

)(
I − ιι′Λ

ι′Λι

)

=

(
T

κ+ T

)2(
Λ− Λιι′Λ

ι′Λι

)
Thus

Λ−1AΛA′ =

(
T

κ+ T

)2(
I − ιι′Λ

ι′Λι

)
Using this, we can calculate

tr
(
Λ−1AΛA

)
=

(
T

κ+ T

)2

tr

(
I − ιι′Λ

ι′Λι

)
=

(
T

κ+ T

)2(
N − tr(ιι′Λ)

ι′Λι

)

=

(
T

κ+ T

)2(
N − ι′Λι

ι′Λι

)
=

(
T

κ+ T

)2

(N − 1)

We can also calculate

A′Λ−1 = −
(

T

κ+ T

)(
I − Λιι′

ι′Λι

)′
Λ−1 = −

(
T

κ+ T

)(
Λ−1 − ιι′

ι′Λι

)

Thus

A′Λ−1A =

(
T

κ+ T

)2(
Λ−1 − ιι′

ι′Λι

)(
I − Λιι′

ι′Λι

)

=

(
T

κ+ T

)2(
Λ−1 − ιι′

ι′Λι

)
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Thus

µ′A′Λ−1Aµ =

(
T

κ+ T

)2(
µ′Λ−1µ− (ι′µ)2

ι′Λι

)
Similarly, we can calculate

Λ−1b =

(
Λ−1 − ιι′

ι′Λι

)(
T

κ+ T
µ+ γ

1 + κ+ T

κ+ T
Λι

)

First

A′Λ−1b = − T

κ+ T

(
I − ιι′Λ

ι′Λι

)(
Λ−1 − ιι′

ι′Λι

)(
T

κ+ T
µ+ γ

1 + κ+ T

κ+ T
Λι

)

= − T

κ+ T

(
Λ−1 − ιι′

ι′Λι

)(
T

κ+ T
µ+ γ

1 + κ+ T

κ+ T
Λι

)

= −
(

T

κ+ T

)2(
Λ−1µ− ιι′µ

ι′Λι

)
Thus

µ′A′Λ−1b = −
(

T

κ+ T

)2(
µ′Λ−1µ− (ι′µ)2

ι′Λι

)
We calculate

b′Λ−1b =

(
T

κ+ T
µ′ + γ

1 + κ+ T

κ+ T
ι′Λ

)(
I − ιι′Λ

ι′Λι

)
Λ−1

(
I − Λιι′

ι′Λι

)(
T

κ+ T
µ+ γ

1 + κ+ T

κ+ T
Λι

)

=

(
T

κ+ T
µ′ + γ

1 + κ+ T

κ+ T
ι′Λ

)(
Λ−1 − ιι′

ι′Λι

)(
T

κ+ T
µ+ γ

1 + κ+ T

κ+ T
Λι

)

=

(
T

κ+ T

)(
T

κ+ T
µ′ + γ

1 + κ+ T

κ+ T
ι′Λ

)(
Λ−1µ− ιι′µ

ι′Λι

)

=

(
T

κ+ T

)2(
µ′Λ−1µ− (ι′µ)2

ι′Λι

)
Thus we have

E[α′
TΛ

−1αT ] =

(
T

κ+ T

)2(N − 1

T

)
(C.1)
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Once again calculating:

A′Λ−1AΛA′Λ−1A =

(
T

κ+ T

)4(
Λ−1 − ιι′

ι′Λι

)
Λ

(
Λ−1 − ιι′

ι′Λι

)

=

(
T

κ+ T

)4(
Λ−1 − ιι′

ι′Λι

)
Which means that

µ′A′Λ−1AΛA′Λ−1Aµ =

(
T

κ+ T

)4(
µ′Λ−1µ− (ι′µ)2

ι′Λι

)

We can also calculate:

A′Λ−1AΛA′Λ−1b = −
(

T

κ+ T

)4(
Λ−1 − ιι′

ι′Λι

)
Λ

(
Λ−1µ− ιι′µ

ι′Λι

)

= −
(

T

κ+ T

)4(
Λ−1 − ιι′

ι′Λι

)
µ

premultiplying by µ′ yields

µ′A′Λ−1AΛA′Λ−1b = −
(

T

κ+ T

)4(
µ′Λ−1µ− (ι′µ)2

ι′Λι

)

We can also calculate

b′Λ−1AΛA′Λ−1b =

(
T

κ+ T

)4(
µ′Λ−1 − µ′ιι′

ι′Λι

)
Λ

(
Λ−1µ− ιι′µ

ι′Λι

)

=

(
T

κ+ T

)4(
µ′Λ−1µ− (ι′µ)2

ι′Λι

)
This means that

Var[α′
TΛ

−1αT ] =
2

T 2
tr
[(
Λ−1AΛA′)2]
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We can calculate

(Λ−1AΛA′)2 =

(
T

κ+ T

)4(
I − ιι′Λ

ι′Λι

)(
I − ιι′Λ

ι′Λι

)

= (Λ−1AΛA′)2 =

(
T

κ+ T

)4(
I − ιι′Λ

ι′Λι

)
Thus we can calculate

tr[(Λ−1AΛA′)2] =

(
T

κ+ T

)4

(N − 1)

Thus

Var[α′
TΛ

−1αT ] =

(
T

κ+ T

)4(2(N − 1)

T 2

)

C.1.3 Proof of Proposition 1.2

We can easily see that:

lim
N/T=c
N,T→∞

E[α′
TΛ

−1αT ] = lim
N/T=c
N,T→∞

(
T

κ+ T

)2(N − 1

T

)
= c

and

lim
N/T=c
N,T→∞

Var[α′
TΛ

−1αT ] = lim
N/T=c
N,T→∞

(
T

κ+ T

)4(2(N − 1)

T 2

)
= 0

Which means that

plim
N/T=c
N,T→∞

α′
TΛ

−1αT = c

C.1.4 Proof of Proposition 2.1

From equation (3.1), we have

pt =
1

1 + rf
(Et[dt+1]− γΛι)

which means we can write

µ− (1 + rf )p = γΛι (C.2)
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Recall that equilibrium is given by

ι =
1

γ
Ztbt

This is the same as

ι =
1

γ
(ZI + PtZS)bt

which is equivalent to

γι− ZIbt = PtZSbt (C.3)

Since ZSbt does not have any elements that exactly equal zero, equation (C.2) holds if and only

if

UtZSbt − (1 + rf )PtZSbt − γλZSbt = 0

where Ut = diag(µt) and λ = diag(Λι). We can use equation (C.3) to rewrite this as:

UtZSbt − (1 + rf )γι+ (1 + rf )ZIbt − γλZSbt = 0

Define

lt = UtZSbt − (1 + rf )γι+ (1 + rf )ZIbt − γλZSbt = −(1 + rf )γι+ Z̃bt (C.4)

Thus the price equals the αt = 0 price of equation (3.1) if and only if

l′tΛlt = 0

since Λ is positive definite.

C.1.5 Proof of Proposition 2.2

Define

d̂T =
1

T

T∑
t=1

dt, p̂T−1 =
1

T

T−1∑
t=0

pt,

r̂T =
1

T

T∑
t=1

rt =
1

T

T∑
t=1

(dt − (1 + rf )pt−1) = d̂T − (1 + rf )p̂T−1
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Based on our assumption about the distribution of dividends, it must be the case that

d̂T ∼ N

(
µ,

1

T
Λ

)

Recall that

bT ∼ N

(
(Z̄ ′ΛZ̄)−1Z̄ ′(µ− (1 + rf )p),

1

T
(Z̄ ′ΛZ̄)−1

)
We can rewrite the wedge from equation (C.4) as

lt = −(1 + rf )γι+ ((1 + rf ) + ZI(Ut + γλ)ZS)bt

Define

Z̃ = (1 + rf ) + ZI(Ut + γλ)ZS

Thus we can write

lt = −(1 + rf )γι+ Z̃bt

Thus

lt ∼ N (E[lt],Var(lt))

where

E[lt] = −(1 + rf )γι− Z̃(Z̄ ′ΛZ̄)−1Z̄ ′((1 + rf )p− µ)

Var(lt) =
1

T
Z̃(Z̄ ′ΛZ̄)−1Z̃ ′

Thus by Lemma 1 above, we can write:

E[l′tΛlt] = tr

(
Λ
1

T
Z̃(Z̄ ′ΛZ̄)−1Z̃ ′

)
+ (1 + rf )

2γ2ι′Λι

+((1 + rf )p− µ)′Z̄(Z̄ ′ΛZ̄)−1Z̃ ′ΛZ̃(Z̄ ′ΛZ̄)−1Z̄ ′((1 + rf )p− µ)

+2(1 + rf )γ((1 + rf )p− µ)′Z̄(Z̄ ′ΛZ̄)−1Z̃ ′Λι
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=
1

T
tr
(
Z̃ ′ΛZ̃(Z̄ ′ΛZ̄)−1

)
+ (1 + rf )

2γ2ι′Λι

+tr
(
Z̄ ′((1 + rf )p− µ)((1 + rf )p− µ)′Z̄(Z̄ ′ΛZ̄)−1Z̃ ′ΛZ̃(Z̄ ′ΛZ̄)−1

)
+2(1 + rf )γ tr

(
Z̃ ′Λι((1 + rf )p− µ)′Z̄(Z̄ ′ΛZ̄)−1

)
=
K

T
ϕ̄+N2(1 + rf )

2γ2χ̄+Kψ̄ + 2(1 + rf )γKω̄ (C.5)

where

• ϕi is the element in the ith row and ith column of Z̃ ′ΛZ̃(Z̄ ′ΛZ̄)−1.

• χi,j is the element in the ith row and jth column of Λ.

• ψi is the element in the ith row and ith column of

Z̄ ′((1 + rf )p− µ)((1 + rf )p− µ)′Z̄(Z̄ ′ΛZ̄)−1Z̃ ′ΛZ̃(Z̄ ′ΛZ̄)−1.

• ωi is the element in the ith row and ith column of Z̃ ′Λι((1 + rf )p− µ)′Z̄(Z̄ ′ΛZ̄)−1.

and

ϕ̄ =
1

K

K∑
i=1

ϕi, χ̄ =
1

N2

N∑
i=1

N∑
j=1

χi,j , ψ̄ =
1

K

K∑
i=1

ψi, ω̄ =
1

K

K∑
i=1

ωi

C.1.6 Proof of Proposition 2.3

If the historical price equals the zero α price of equation (3.1), then (1 + rf )p = µ− γΛι. This of

course means that (1 + rf )P = U − γλ. Thus

Z̃ = (1 + rf )ZI + (U − γλ)ZS = (1 + rf )(ZI + PZS) = (1 + rf )Z̄

Plugging this into (C.5) above yields

E[l′tΛlt] =
1

T
tr
(
Z̃ ′ΛZ̃(Z̄ ′ΛZ̄)−1

)
+ (1 + rf )

2γ2ι′Λι

+tr
(
Z̄ ′((1 + rf )p− µ)((1 + rf )p− µ)′Z̄(Z̄ ′ΛZ̄)−1Z̃ ′ΛZ̃(Z̄ ′ΛZ̄)−1

)
+2(1 + rf )γ tr

(
Z̃ ′Λι((1 + rf )p− µ)′Z̄(Z̄ ′ΛZ̄)−1

)
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=
1

T
(1 + rf )

2tr
(
Z̄ ′ΛZ̄(Z̄ ′ΛZ̄)−1

)
+ (1 + rf )

2γ2ι′Λι

+(1 + rf )
2γ2tr

(
Z̄ ′Λιι′ΛZ̄(Z̄ ′ΛZ̄)−1Z̄ ′ΛZ̄(Z̄ ′ΛZ̄)−1

)
−2(1 + rf )

2γ2 tr
(
Z̄ ′Λιι′ΛZ̄(Z̄ ′ΛZ̄)−1

)
=
K

T
(1 + rf )

2 + (1 + rf )
2γ2

(
N2χ̄− tr

(
Z̄ ′Λιι′ΛZ̄(Z̄ ′ΛZ̄)−1

))
=
K

T
(1 + rf )

2 + (1 + rf )
2γ2

(
N2χ̄− tr

(
Z̄ ′Λιι′ΛZ̄LL′))

where LL′ = (Z̄ ′ΛZ̄)−1 is the cholesky decomposition of (Z̄ ′ΛZ̄)−1. Thus

E[l′tΛlt] =
K

T
(1 + rf )

2 + (1 + rf )
2γ2

(
N2χ̄− tr

(
L′Z̄ ′Λιι′ΛZ̄L

))
=
K

T
(1 + rf )

2 + (1 + rf )
2γ2

(
N2χ̄−Kḡ

)
where the vector G is defined as

G = L′Z̄ ′Λι

and

ḡ =
1

K

K∑
i=1

G2
i

C.2 Additional Details

C.2.1 Theoretical Model Details

This appendix section has four parts: 1) a derivation of CARA incumbent demand, 2) a description

of the incumbents-only equilibrium, 3) a description of demand and the combined equilibrium, and

4) a proof that a combined equilibrium exists.

CARA Incumbent Demand

Incumbent asset managers know that individual investors have CARA utility. Let xjt denote asset

manager demand for any given investor that asks for investment. Let pt be an N dimensional
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vector of prices, let rf be a risk free rate, and let dt+1 be an N dimensional vector of dividends

with a multivariate normal distribution as follows:

dt+1 ∼ N(Et[dt+1],Λt)

Dollar excess returns are dt+1−(1+rf )pt, but incumbent asset manager j believes that expected

excess dollar returns are Et[dt+1 − (1 + rf )pt + δjt ] instead of Et[dt+1 − (1 + rf )pt].

Asset managers, endeavoring to provide the best portfolio for investors, choose xjt to maximize

CARA utility demand:

xjt = argmax
xjt
Et[−e−γ

j(xjt )
′(dt+1−(1+rf )pt+(1+rf )W

j
0,t+δ

j
t )]

where W j
0,t is the initial wealth of asset manager j in period t. Note that γj is allowed to differ

from investor risk aversion coefficient γ.

Since dt+1 has a conditional multivariate normal distribution, we derive the classic CARA utility

/ mean-variance result:

xjt = argmax
xjt
(xjt )

′Et[dt+1 − (1 + rf )pt + δt]−
γj

2
(xjt )

′Λtx
j
t

The first order condition is

Et[dt+1 − (1 + rf )pt + δjt ]− γjΛtx
j
t = 0

Thus

xjt =
1

γj
(Λt)

−1 Et[dt+1 − (1 + rf )pt + δjt ]

Incumbents-only Equilibrium Details

Let incumbents be indexed by j ∈ [0, j̄], and let investors be indexed by n ∈ [0, n̄]. Incumbent asset

managers know that investors have CARA utility. Incumbent asset managers endeavor to deliver
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this return. Let xjt be the N dimensional vector of asset demand for asset manager j, as described

in Appendix C.2.1. The cost of the portfolio for an investor for asset manager j’s portfolio is (xjt )
′pt,

which is just the portfolio cost. I assume perfect competition leads incumbents to charge fees of

zero. Although there is heterogeneity of incumbent managers, for each manager j, there is enough

identical managers to j that compete away all management fees. The payouts investors receive are

just portfolio payouts: (xjt )
′dt+1.

Investors can invest with incumbent asset manager portfolios or the risk free rate. Let An be

a Lebesgue measurable subset of incumbent asset managers [0, j̄] that investor n chooses to invest

with. Define

1An(x) =


1 if x ∈ An

0 otherwise

And define xI,t, γ
J , and δt as

xI,t =
1

j̄

∫
[0,j̄]

xjtdj

γJ =

(
1

j̄

∫
[0,j̄]

1

γj
dj

)−1

δt =
1

j̄

∫
[0,j̄]

γJ

γj
δjt dj

With these previous three definitions, xI,t can be written as

xI,t =
1

γJ
(Λt)

−1 Et[dt+1 − (1 + rf )pt + δt] (C.6)

Aggregate asset demand is defined as

yt =

∫
[0,n̄]

∫
[0,j̄]

xjt1An(j)djdn (C.7)

This can be intuitively thought of as the sum of demand of the incumbent asset manager that are

chosen by investors.

With these definitions, I make the following two assumptions:
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Assumption 1: Incumbent Even Spreading

Let An by any Lebesgue measurable subset of [0, j̄] with measure un, then assume

γJ =

(
1

un

∫
[0,j̄]

1

γj
1An(j)dj

)−1

δt =
1

un

∫
[0,j̄]

γJ

γj
δjt1An(j)dj

This assumption assumes that investors are “evenly spread” such that no matter what subset

of incumbents an investor chooses, the portfolio returns will be the same. Mathematically, this

assumption yields the result that for any any Lebesgue measurable subset An of [0, j̄] with measure

un

xI,t =
1

un

∫
[0,j̄]

xjt1An(j)dj

Assumption 2: Average Belief Wedge is Zero

More formally, 1
N

∑N
i=1 δi,t = 0 where δi,t is the i

th element of δt. Let ι be an N dimensional vec-

tor of ones. This assumption is identical to assuming that ι′δt = 0. Thus while CARA incumbents

make mistakes, the average mistake is zero.

Assumption 1 gives us the result that the subset of incumbent managers that a given investor

chooses does not affect the portfolio, we can rewrite demand without loss of generality as

yt =

∫
[0,n̄]

∫
[0,θnI,t]

xjtdjdn

where 0 ≤ θnI,t ≤ j̄ is the scalar representing the mass of incumbent managers that investor n choose

to as their asset managers. Since investors are identical, we can just write θI,t instead of θnI,t, and

we can rewrite aggregate demand, using Assumption 1, as

yt = θI,tn̄xI,t (C.8)
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Investors choose θI,t to maximize their CARA utility with risk aversion coefficient γ as follows:

θ∗I,t = argmaxθI,tEt[−e
−γθI,tn̄x′I,t(dt+1−(1+rf )pt)]

such that

0 ≤ θI,t ≤ j̄

Consider the unconstrained problem (ignoring the constraint that 0 ≤ θI,t ≤ j̄). Since the

incumbent portfolio return is normally distributed, this problem is the same as

θ∗I,t = argmaxθI,tθI,tn̄x
′
I,t(Et[dt+1]− (1 + rf )pt)−

γ

2
θ2I,tn̄

2x′I,tΛtxI,t

This yields the first order condition:

n̄x′I,t(Et[dt+1]− (1 + rf )pt)− γθI,tn̄
2x′I,tΛtxI,t = 0

Solving for θI,t means that

θI,t =
x′I,t(Et[dt+1]− (1 + rf )pt)

γn̄x′I,tΛtxI,t

Plugging in xI,t from equation (C.6) yields

θI,t =
γJ(Et[dt+1]− (1 + rf )pt + δt)

′ (Λt)
−1 (Et[dt+1]− (1 + rf )pt)

γn̄(Et[dt+1]− (1 + rf )pt + δt)′ (Λt)
−1 (Et[dt+1]− (1 + rf )pt + δt)

=
(
γJ

γn̄

)
(Et[dt+1]−(1+rf )pt+δt)

′(Λt)
−1(Et[dt+1]−(1+rf )pt)

(Et[dt+1]−(1+rf )pt+δt)′(Λt)
−1(Et[dt+1]−(1+rf )pt)+(Et[dt+1]−(1+rf )pt+δt)′(Λt)

−1δt
(C.9)

As discussed in the body of the paper, supply of each asset is normalized to unity. This enables

the interpretation of prices pt to be the market equity of the asset for stocks. Thus equilibrium is

defined as

ι = yt
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Plugging in equations (C.8) and (C.6), this can be rewritten as

ι =
θI,tn̄

γJ
(Λt)

−1 Et[dt+1 − (1 + rf )pt + δt]

which implies

γJ

θI,tn̄
ι = (Λt)

−1 Et[dt+1 − (1 + rf )pt + δt]

Thus

(Et[dt+1]− (1 + rf )pt + δt)
′ (Λt)

−1 δt =
γJ

θI,tn̄
ι′δt = 0

where the assumption ι′δt = 0 is used above. Thus plugging in this result into the denominator of

equation (C.9) yields

θI,t =

(
γJ

γn̄

)
(Et[dt+1]− (1 + rf )pt + δt)

′ (Λt)
−1 (Et[dt+1]− (1 + rf )pt)

(Et[dt+1]− (1 + rf )pt + δt)′ (Λt)
−1 (Et[dt+1]− (1 + rf )pt)

=
γJ

γn̄

Recalling the constraint 0 ≤ θI,t ≤ j̄, thus the unconstrained problem has the same solution to

the constrained problem as long as γJ

γn̄ ≤ j̄. If this holds, then demand is

yt =
γJ

γ2n̄
(Λt)

−1 (Et[dt+1]− (1 + rf )pt + δt)

Thus any demand function of this form can be replicated by normalizing the variables j̄ = 1, n̄ = 1,

and γJ = γ, and changing γ appropriately. Thus in order to simplify this equation, I make the

following assumption:

Assumption 3: Parameter Normalization

Assume j̄ = 1, n̄ = 1, and γJ = γ.

Given these normalizations, we have

yt =
1

γ
(Λt)

−1 (Et[dt+1]− (1 + rf )pt + δt)

or simply

yt = xI,t
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This assumption also means that

θI,t = 1

with this normalization, θI,t can be interpreted as the fraction of asset managers that investors

choose to invest with in equilibrium. In this incumbents-only equilibrium, θI,t = 1, which means

each investor fully invests with incumbents, or other words that they invest with all incumbent

asset managers.

Thus the CARA-incumbents-only equilibrium is the price pt that solves

ι =
1

γ
(Λt)

−1 (Et[dt+1]− (1 + rf )pt + δt) (C.10)

Combined Equilibrium

In this section, the same notation and assumptions from Appendix C.2.1. are used. Here, yt is

aggregate risky asset demand with learners as well, not just incumbents.

Define learner demand for learner j to be

xjL,t =
1

γ
(ajL,t + J jL,t(pt − p̄t))

where ajL,t and J
j
L,t are N × 1 and N ×N matrices respectively. There is a unit mass of learners in

this model, so that if investors demand, there is exactly enough learner asset managers to completely

replace incumbent asset managers.

Define

aL,t =

∫
[0,1]

ajL,tdj

JL,t =

∫
[0,1]

J jL,tdj

xL,t =
1

γ
(aL,t + JL,t(pt − p̄t))
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Aggregate demand in the full model is

yt =

∫
[0,1]

∫
[0,1]

xjI,t1An(j)djdn+

∫
[0,1]

∫
[0,1]

xjL,t1Bn(j)djdn

where Bn is the Lebesgue measurable subset of the set of learners, [0, 1], that investor n chooses

to invest with in equilibrium. We assume that investors choose An and Bn to maximize CARA

utility with risk aversion coefficient γ. The N dimensional vector xjL,t is the j
th learner’s demand

function. Define

xL,t = xjL,t

The following assumption is analogous to Assumption 1 above:

Assumption 4: Learner Even Spreading

Assume that for every Lebesgue measurable set Bn, that is a subset of [0, 1], with measure un,

aL,t =
1

un

∫
[0,1]

ajL,t1Bn(j)dj

JL,t =
1

un

∫
[0,1]

J jL,t1Bn(j)dj

This assumption, along with Assumption 1, and the fact that investors are identical allows

demand to be rewritten as

yt = θI,txI,t + θL,txL,t

where θI,t and θL,t are chosen to maximize CARA utility with the constraints

0 ≤ θI,t ≤ 1, 0 ≤ θL,t ≤ 1

where the constraints are due to the fact that there is a unit mass of incumbents and learners each.

Define qI,t(pt) = γxI,t(pt) and qL,t(pt) = γxL,t(pt). Thus these are not functions of γ. Define

Xt and Qt to be the N × 2 dimensional matrices

Xt = [xI,t(pt) xL,t(pt)] and Qt = [qI,t(pt) qL,t(pt)]
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Investors choose how much to invest with each type of asset manager, θt = (θI,t, θL,t)
′, in order

to maximize CARA utility:

Et[−e−γ(θ
′X′

t(dt+1−(1+rf )pt))]

subject to

0 ≤ θI,t ≤ 1, 0 ≤ θL,t ≤ 1

This translates to solving the problem:

θ′tX
′
t(Et[dt+1]− (1 + rf,t)p

∗
t )−

γ

2
θ′tX

′
tΛtXtθt

subject to

0 ≤ θI,t ≤ 1, 0 ≤ θL,t ≤ 1

This solution to optimizing this objective function is the same as optimizing

θ′tQ
′
t(Et[dt+1]− (1 + rf,t)p

∗
t )−

1

2
θ′tQ

′
tΛtQtθt

subject to

0 ≤ θI,t ≤ 1, 0 ≤ θL,t ≤ 1

which is not a function of γ.

This problem can be easily solved numerically by checking all possible solutions given the

constraints.

Existence of an Equilibrium

This section uses the notation from Appendix C.2.1 above. Both types of incumbents, CARA and

estimated demand, have demand that is linear in prices. Thus, qI,t can be written as

qI,t = aI,t + JI,t(pt − p̄t)
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where aI,t and JI,t the relevant intercept N×1 column matrix and N×N slope matrix. As discussed

above, xI,t = qI,t/γ. Define E = [ϵ1, 1]× [ϵ2, 1] where either ϵ1 > 0 or ϵ2 > 0 but ϵ1 < 1 and ϵ2 < 1.

Equilibrium is defined as the θt = (θI,t, θL,t)
′ ∈ E that solves the above investor problem and the

price pt that solves

ι =
θI,t
γ

(aI,t + JI,t(pt − p̄t)) +
θL,t
γ

(aL,t + JL,t(pt − p̄t)) (C.11)

Note that θt is restricted to E. Assume for any price pt that aI,t + JI,t(pt − p̄t) and aL,t +

JL,t(pt− p̄t) are linearly independent, and that for any θt ∈ E, θI,tJI,t+ θL,tJL,t is invertible. Then

an equilibrium, as defined above, exists.

Proof

Define

gt(θt) = p̄t + (θI,tJI,t + θL,tJL,t)
−1 (γι− θI,taI,t − θL,taL,t)

Thus for any θt ∈ E, gt(θt) = pt is the price that solves equation (C.11). Define

ht(pt) = argmaxθt∈E θ′tQ
′
t(Et[dt+1]− (1 + rf,t)pt)−

1

2
θ′tQ

′
tΛtQtθt

Because aI,t + JI,t(pt − p̄t) and aL,t + JL,t(pt − p̄t) are linearly independent, Q has full column

rank. Thus Q′ΛtQ is positive definite. This means the above objective function is strictly concave,

which means the argument maximum above is unique. Since the objective function above is also

continuous, by Claude Berge’s maximum theorem, ht is continuous.

Define ft(θt) = ht(gt(θ)). Since ht and gt are continuous on their domains, ft is continuous on

E. If I show that there exists a θt ∈ E such that ft(θt) = θt, then an equilibrium exists. Since ft

maps from E to E and is continuous, such an equilibrium exists by Brouwer’s fixed-point theorem.

C.2.2 Learner Capital Percent

This section of the appendix shows how the learner capital percentage is calculated.
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While θL,t is the fraction of learners that investors invest with, then

θL,tx
′
L,tpt

The percentage of total market capital is

θL,t
x′L,tpt

ι′pt

Occasionally, large negative positions skew the average capital negatively with demand functions

without prior parameter restrictions (no shrinking). In order to drop these outliers, the tables report

learner capital percentage as

% Learner Capital =
1

T

T∑
t=1

θL,tmin

(
max

(
x′L,tpt

ι′pt
, 0

)
, 1

)

C.2.3 Transformation of Characteristics

Denote z̃kt as the kth characteristic of N assets at time t. Thus z̃kt is an N dimensional column

vector, which could contain, for example, the dollar book value of assets known at time t for

each asset. Let percentile(·) denote the function that converts each element of the input vector to

percentiles between 0 and 1. This papers uses the following transformation, used in both Kozak

et al. (2020) and Kelly et al. (2019):

zkt = percentile(z̃kt )− 0.5ι

Thus the resulting N ×K dimensional matrix Zt of K characteristics of the N assets is filled

with these transformed columns zkt .

For more discussion on why this transformation is important see Kozak et al. (2020) and Kelly

et al. (2019).
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C.2.4 General Neural Network

In the body of the paper, it is assumed as in Koijen and Yogo (2019) that

µt = Ztπ

Σt = ΓtΓ
′
t + ζI, Γt = Ztϕ

where ζ is a scalar, π and ϕ are K × 1 vectors.

A general neural network, with activation functions a(·) and H hidden layers can be written as

the series of equations

L1,t = a(ZtW1), L2,t = a(L1W2 + b2), L3,t = a(L2W3 + b3), ...,

LH,t = a(LH−1,tWH + bH), LH+1,t = a(LHWH+1,t + bH+1)

where Lh,t, Wh, and bh are the layers, weights, and biases respectively. Note that there is no bias

in the first equation because Zt has a column of ones, making a bias term redundant. LH+1,t is the

output layer. Assume that LH+1,t is N × (M + 1) dimensional, where M ≥ 1. Define µt to be the

first column of LH+1,t and Γt to be the last M columns of LH+1,t.

If there are zero hidden layers and M = 1, then this describes perfectly the simple linear

model used in the paper. However, this neural network generalization gives greater flexibility in

the followings ways:

1. The mean and covariance matrices can be highly nonlinear functions of the characteristics

Zt

2. Γt is allowed to be N ×M dimensional, instead of just N × 1 dimensional, which allows for

greater covariance matrix flexibility.
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C.2.5 Consistency of Main Econometric Model

Define

µt = Ztπ

Σt = ΓtΓ
′
t + ζI, Γt = Ztϕ

ψ =


π

ϕ

ζ


Assume y1, ..., yT is a sample of i.i.d. random vectors that are distributed according to a multivariate

normal distribution as follows:

yt ∼ N(µt,Σt)

Assume Zt is has full column rank for all t. Let l(ψ|yt, Zt) be the log of the multivariate normal

probability density function parameterized as shown above. Assume a compact parameter space Ψ,

such that for all (π′, ϕ′, ζ)′ ∈ Ψ, ζ > 0. Let ψ0 denote the true data generating process parameters.

Then the maximum likelihood estimator Ψ̂T is defined as

Ψ̂T = argmaxψ∈Ψ

T∑
t=1

l(ψ|yt, Zt)

Then this estimator Ψ̂T is a consistent estimator, i.e. Ψ̂T converges in probability to ψ0 as T → ∞.

proof

The parameter space is compact, and the probability density function is obviously continuous.

Since the sample is i.i.d., if parameter identification is shown, then this estimator is consistent by

the classic maximum likelihood estimator theorem.

Let ψ1 = (π′1, ϕ
′
1, ζ1)

′ ∈ Ψ and ψ2 = (π′2, ϕ
′
2, ζ2)

′ ∈ Ψ such that

l(ψ1|yt, Zt) = l(ψ2|yt, Zt)

for any yt and matrix Zt with full column rank. Multivariate normal distributions are uniquely
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identified by their mean and covariance parameter matrices. Thus the above condition holds if and

only if

Ztπ1 = Ztπ2, Ztϕ1ϕ
′
1Z

′
t + ζ1I = Ztϕ2ϕ

′
2Z

′
t + ζ2I

⇐⇒ π1 = π2, (Z ′
tZt)

−1(ζ1 − ζ2) + (ϕ1ϕ
′
1 − ϕ2ϕ

′
2) = 0

where the second equation above holds for any full column rank Zt if and only if ζ1 = ζ2 and

ϕ1 = ϕ2. Thus the parameters are identified and the estimator is consistent.

C.2.6 Matrix Identities for Econometric Method

Recall that in the paper, it is assumed

µt = Ztπ

Σt = ΓtΓ
′
t + ζIN , Γt = Ztϕ

where ζ is a scalar, π and ϕ are K × 1 vectors. Note that the identity matrix I was replaced with

IN to denote that it is an N × N identity matrix. In this section, Γt is assumed to be a more

general N ×M dimensional, rather than the simple N × 1 dimensional as assumed by Koijen and

Yogo (2019). See Appendix for C.4 for details about a more general representation.

In order to calculate the maximum likelihood fucntion, Σ−1
t and the determinant of Σt, denoted

as |Σt| need to be calculated efficiently, even with large N . This section shows formulas that can

do this.

By the Woodbury Matrix Identity,

Σ−1
t =

1

ζ

(
IN − Γt(ζIM + Γ′

tΓt)
−1Γ′

t

)
Note that ifM = 1, then ζIM +Γ′

tΓt is a scalar. IfM is much smaller than N , then (ζIM +Γ′
tΓt)

−1

is much easier to numerically calculate than Σ−1
t .
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By Sylvester’s matrix identity,

|Σt| = ζN
∣∣∣∣IM +

1

ζ
Γ′
tΓt

∣∣∣∣
Note that if M = 1, IM + 1

ζΓ
′
tΓt is a scalar. If M is much smaller than N , then the determinant of

IM + 1
ζΓ

′
tΓt is much easier to numerically calculate than the determinant of Σt.

C.2.7 Calculating the Value of the Market

In this appendix section, we prove that formula given in the paper:

ι′pt =
Et[rM,t+1]

γVart[rM,t+1]

This section uses the identities and definitions found in Table B.1 heavily. Recall from equation

(C.10) that the CARA-incumbents-only equilibrium equation is

ι =
1

γ
(Λt)

−1 (Et[dt+1]− (1 + rf )pt + δt)

Multiplying both sides by γι′Λt yields

γι′Λtι = ι′ (Et[dt+1]− (1 + rf )pt + δt)

Using the assumption that ι′δt = 0 from Appendix C.2.1, this equation can be simplified to

γι′Λtι = ι′ (Et[dt+1]− (1 + rf )pt) (C.12)

Using the simple identities from Table B.1, we can rewrite

ι′Λtι = ι′(PtΛtPt)ι = p′tΛtpt = (ι′pt)
2w′

M,tΛwM,t = (ι′pt)
2Vart(rM,t+1) (C.13)
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and

ι′ (Et[dt+1]− (1 + rf )pt) = ι′Et[rt+1] = ι′PtP
−1
t Et[rt+1] = p′tEt[rt+1]

= (ι′pt)w
′
M,tEt[rt+1] = (ι′pt)Et[rM,t+1] (C.14)

Plugging in equations (C.13) and (C.14) into equation (C.12), we get

γ(ι′pt)
2Vart(rM,t+1) = (ι′pt)Et[rM,t+1]

Solving for the total value of the asset market, ι′pt, yields

ι′pt =
Et[rM,t+1]

γVart[rM,t+1]

C.2.8 Details of Example of Increasing Mispricing

In this section I give the parameters used to generate the example that shows how mispricing can

increase in Section 4.

In this example, Γ = (0.1, 0.1, 0.1)′ and ζ = 0.01. The size vector s = (1, 2, 3)′. Like in the

paper, S = diag(s), and Λ = SΣS where Σ = ΓΓ′ + ζI. Also γ = 1 and rf = 0. Incumbent prices

are p̄ = (1, 2, 3)′ and incumbent alpha are ᾱ = (0.03,−0.18, 0.15)′. Fixing these variables pins down

expected dividends, E[d], with the equation

E[d] = γΛdι+ (1 + rf )p̄+ P̄α

where P̄ = diag(p̄).

I assume that incumbent demand and learner demand is linear in price:

xI(p) =
1

γ
(aI + diag(bI)(p− p̄)) and xL(p) =

1

γ
(aL + diag(bL)(p− p̄))

where xI and xL are incumbent and learner demand respectively, and aI , bI , aL, and bL are 3× 1

column vectors. I assume that bI = (−1,−35,−20)′ and bL = (−2,−35,−20)′.
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Fixing this slope for incumbents pins down aI with the equation aI = γι. I set the learner

intercept such that demand at incumbents-only prices is mean-variance optimal:

aL = (Λ)−1(E[d]− (1 + rf )p̄)

C.2.9 Overpricing and Information Ratio Components

In this section, I define overpricing and learner information ratio asset components as shown in

Panels D and E in Figure A.4.

For asset demand x, the information ratio of the portfolio is

IRx =
x′α√

x′Λx− (x′β)2ι′Λι

The asset specific component of this quantity, lxi , is defined as

lxi =
xiαi√

x′Λx− (x′β)2ι′Λι

thus

IRx =
N∑
i=1

lxi

Let x∗ be the (unscaled) mean-variance optimal demand:

x∗ = (Λ)−1 E[r]

where r is the vector of excess dollar returns.

Then mispricing is

ξ =
√

(α)′(Λd)−1(α) =
(x∗)′α√

(x∗)′Λ(x∗)− ((x∗)′β)2ι′Λι
=

N∑
i=1

lx
∗
i

126



Overpricing for asset i, denoted as ξi, is

ξi =
−sign(αi)

(
lx

∗
i

)2
ξ∑N

n=1 (l
x∗
n )2

Thus

ξ =

N∑
i=1

|ξi|

C.2.10 Brandt et al. (2009) and Kozak et al. (2020) Estimator

This section of the appendix defines the Brandt et al. (2009) estimator b∗T and the Kozak et al.

(2020) estimator b̂T , and shows they are equivalent given some assumptions.

In both Brandt et al. (2009) and Kozak et al. (2020), the authors use excess returns rt. For

this paper, this should be replaced by scaled dollar excess returns,

rst+1 = S−1
t (dt+1 − (1 + rf )pt)

Following Kozak et al. (2020), I define the K + 2 dimensional vector of portfolio returns as

Ft+1 = Ẑ ′
tr
s
t+1

Let ω̂ and Ω̂ be the usual estimates of the mean and covariance of Ft+1, that is

ω̂T =
1

T

T∑
t=1

Ft

Ω̂T =
1

T

T∑
t=1

(Ft − ω̂T )(Ft − ω̂T )
′

The Kozak et al. (2020) estimate b̂T is found by

b̂T = argminb (ω̂T − Ω̂T b)
′Ω̂−1
T (ω̂T − Ω̂T b) + λ1||b||1 + λ2||b||2
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For now, ignore the shrinking parameters by setting λ1 = λ2 = 0. Then

b̂T = Ω̂−1
T ω̂T (C.15)

In Brandt et al. (2009), the authors assume that mean-variance efficient weights are linear in

characteristics. So mean-variance weights can be written as

wt = Ẑtb (C.16)

The empirical Sharpe ratio of this portfolio is

1
T

∑T
t=1w

′
tr
s
t+1√

1
T

∑T
t=1

(
w′
tr
s
t+1 − 1

T

∑T
τ=1w

′
τr
s
τ+1

)2
Plugging in equation (C.16) yields

1
T

∑T
t=1 b

′Ẑ ′
tr
s
t+1√

1
T

∑T
t=1

(
b′Ẑ ′

tr
s
t+1 − 1

T

∑T
τ=1 b

′Ẑ ′
τr
s
τ+1

)2

=
b′
(

1
T

∑T
t=1 Ẑ

′
tr
s
t+1

)
√
b′
(

1
T

∑T
t=1

(
Ẑ ′
tr
s
t+1 − 1

T

∑T
τ=1 Ẑ

′
τr
s
τ+1

)(
Ẑ ′
tr
s
t+1 − 1

T

∑T
τ=1 Ẑ

′
τr
s
τ+1

)′)
b

=
b′ω̂T√
b′Ω̂T b

Brandt et al. (2009) suggest that b be selected to maximize this quantity. Note that they also

fix weights on a benchmark portfolio, and this part is ignored here. Note that if b maximizes the

above quantity kb will also maximize the above quantity for any positive scalar k. Thus, in order

to get a unique solution, we solve

maxb
b′ω̂T√
b′Ω̂T b
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subject to

ι′Ω̂−1
T ω̂T = ι′b (C.17)

where this choice of the sum of b is chosen for convenience, as will be made more clear below.

Let b∗T be the Brandt et al. (2009) vector b that is the solution to this problem. The first order

condition to this problem is

ω̂T√
(b∗T )

′Ω̂T b∗T

−
(b∗T )

′ω̂T Ω̂T b
∗
T(

(b∗T )
′Ω̂T b∗T

) 3
2

= 0

Solving for b∗T yields

b∗T =
1

(b∗T )
′ω̂T

(
(b∗T )

′Ω̂T b
∗
T

)
Ω̂−1
T ω̂T (C.18)

Premultiplying both sides with ι′ yields

1

(b∗T )
′ω̂T

(
(b∗T )

′Ω̂T b
∗
T

)
ι̂′Ω−1

T ω̂T = ι′b∗T = ι′Ω−1
T ω̂T

where the constraint in equation (C.17) is used. This implies that

1

(b∗T )
′ω̂T

(
(b∗T )

′Ω̂T b
∗
T

)
= 1

Plugging this into equation (C.18) yields

b∗T = Ω̂−1
T ω̂T

Thus the Brandt et al. (2009) estimate b∗T that maximizes the Sharpe ratio is the same as the

Kozak et al. (2020) estimate b̂T with no shrinking from the penalty parameters. That is b∗T = b̂T .
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C.2.11 Brandt et al. (2009) and Kozak et al. (2020) Estimator

Consistency Given Data Generating Process

The demand function for a machine learner who knows all the parameters is

1

γ
S−1
t Σ−1

t (µt − (1 + rf )S
−1
t (pt − p̄t))

=
1

γ
S−1
t

[
1

ζ
(µt − (1 + rf )S

−1
t (pt − p̄t)) + ctΓt

]
where

ct = −
Γ′
t(µt − (1 + rf )S

−1
t (pt − p̄t))

ζ(ζ + Γ′
tΓt)

Consider the case where ct is a constant c, like Koijen and Yogo (2019). Define the following:

Ẑt =

[
S−1
t pt S−1

t p̄t Zt

]
, Π =


−(1 + rf )

1 + rf

π

 , Φ =


0

0

ϕ

 , b =
1

ζ
Π+ cΦ

Then machine learner demand, with perfect knowledge of the parameters, is

1

γ
S−1
t Ẑtb

The purpose of this section is to prove that under some assumptions, that b̂T from Kozak

et al. (2020) and Brandt et al. (2009) described precisely the in the previous Appendix section is a

consistent estimator of b = Π/ζ + cΦ. That is, the goal is to show that

b̂T
P→ b

where
P→ is convergence in probability as T goes to infinity.

Theorem Assume that Ẑt = Ẑ is constant, denoted just as Ẑ. Assume the same data generating
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process for rst as described in the paper. Then

b̂T
P→ b

Proof:

The variable ct can be written as

ct = −
Γ′
t(µt − (1 + rf )S

−1
t (pt − p̄t))

ζ(ζ + Γ′
tΓt)

= − Φ′Ẑ ′
tẐtΠ

ζ(ζ +Φ′Ẑ ′
tẐtΦ)

= − Φ′Ẑ ′ẐΠ

ζ(ζ +Φ′Ẑ ′ẐΦ)

Thus ct is in fact constant under these assumptions. It is denoted simply as c.

Directly calculating

Et[Ft+1] = Et[Ẑ ′
tr
s
t+1] = Ẑ ′

tẐtΠ

Thus

E[Ft] = Ẑ ′ẐΠ

Vart[Ft+1] = Ẑ ′
tVart[r

s
t+1]Ẑt = Ẑ ′

tΣtẐt = Ẑ ′
t

(
ζI + ΓtΓ

′
t

)
Ẑt

= Ẑ ′
t

(
ζI + ẐtΦΦ

′Ẑ ′
t

)
Ẑt = ζẐ ′

tẐt + Ẑ ′
tẐtΦΦ

′Ẑ ′
tẐt

Thus

Var[Ft] = ζẐ ′Ẑ + Ẑ ′ẐΦΦ′Ẑ ′Ẑ

By the Woodbury Matrix Identity, we have

(Var[Ft])
−1 E[Ft] =

(
ζẐ ′Ẑ + Ẑ ′ẐΦΦ′Ẑ ′Ẑ

)−1
(Ẑ ′ẐΠ)

=

(
1

ζ
(Ẑ ′Ẑ)−1 − 1

ζ
(Ẑ ′Ẑ)−1Ẑ ′ẐΦ

(
ζ +Φ′Ẑ ′Ẑ(Ẑ ′Ẑ)−1Ẑ ′ẐΦ

)−1
Φ′Ẑ ′Ẑ(Ẑ ′Ẑ)−1

)
(Ẑ ′ẐΠ)
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=
1

ζ
Π− 1

ζ
Φ
(
ζ +Φ′Ẑ ′ẐΦ

)−1
Φ′Ẑ ′ẐΠ

=
1

ζ
Π+ cΦ = b

Thus by the weak law of large numbers and the continuous mapping theorem

b̂T
P→ b

Thus the estimators b̂T and b∗T from Kozak et al. (2020) and Brandt et al. (2009) as described

in the previous section is a consistent estimator of b under these assumptions.

C.2.12 1/N Demand Rescaling

The 1/N learner demand, as set out in the paper, is

χt
γ
P̄−1
t ι

where χt is set so to inflate 1/N learner demand to have sufficient demand to invest in the full

fraction of every asset if investors demand. Thus

χt = γmax(p̄t)

Thus the smallest value of χt

γ P̄
−1
t ι is one, which equals supply of that asset.

C.2.13 Random Forest Estimator

This section presupposed the reader is familiar with regression trees and regression tree terminology.

For a basic reference, see Hastie et al. (2001).
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Stack the data as follows

Z =



Z0

Z1

...

ZT−1


, R =



r1

r2
...

rT


In order to fit an estimate of the conditional mean, Et[rt+1], I fit a typical random forest

regression using Z to predict R, which yields µ̂t for each t.

A estimate of the covariance matrix is the other component of estimated MVE weights. In

order to do this, I set

Σ̂t =
1

S

S∑
s=1

(gs(Zt)g
s(Zt)

′ + ζsI)

where and φs(Zt) is an N ×1 dimensional output of the sth regression tree in the forest represented

by φs, and ζs is the estimate of ζ from the sth tree in the forest.

We fit the regression tree, φs, as described below. In order to simplify notation, I drop s and

simply write φ. Let φi = φi(Zt) be the element of φ(Zt) corresponding to the ith element (asset)

of φ(Zt). Let Zi,t be the ith row of Zt, and let Zi,k,t correspond to the ith row and kth column of

Zt.

Consider a given tree represented by φ, with L̄ leaves (terminal nodes), denoted as

φi(Zt) =
L̄∑
l=1

φ̂l1(Zi,t ∈ Cl)

where Cl is the partition of the data represented by leaf l, and φ̂l represented the constant scalar

associated with partition l.

I describe below how a given leaf l, can be “grown” into a decision node with subsequent left

leaf L and right leaf R. Since fitting a regression tree is the process of recursively growing leaves

into decision nodes with two subsequent leaves, the following process can be recursively applied to

fit an entire tree.

For each of theK columns of Zt, consider a range of candidate split values c
l
1(k), c

l
2(k), ..., c

l
M (k).

Consider a given split value clj(k). For each candidate split, define the N dimensional vectors φ−l,t,
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ιL,t, and ιR,t, with corresponding ith elements denoted as φi,−l,t, ιi,L,t, and ιi,R,t, as

φi,−l,t =
L∑

j=1,j ̸=l
φ̂j1(Zi,t ∈ Cj)

ιi,L,t = 1(Zi,t ∈ Cl and Zi,k,t ≤ clj(k))

ιi,R,t = 1(Zi,t ∈ Cl and Zi,k,t > clj(k))

Define

φ̄t = φ−l,t + φLιL,t + φRιR,t

where φL and φR are scalars chosen for this given candidate split. If this candidate split is chosen

among all the other candidates, then leaf l will become a decision node with left leaf L and right

leaf R. We’ll set φ̂L to the fitted value of φL as described below. Similarly, we’ll set φ̂R to the

fitted value of φR as described below. Also, for any given Zi,t, we can define CL and CR such that

Zi,t ∈ CL if and only if Zi,t ∈ Cl and Zi,k,t ≤ clj(k)

Zi,t ∈ CR if and only if Zi,t ∈ Cl and Zi,k,t > clj(k)

This occurs only if this candidate split is chosen among all candidate splits according to the

criteria below.

The covariance matrix for this candidate split is

Σt = φ̄tφ̄
′
t + ζI

Define

Σ̃t = yty
′
t

where yt = rt+1 − µ̂t.
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For each candidate split, we choose φL, φR, and ζ to minimize

∑
t

∑
i

∑
j

(Σ̃i,j,t − Σi,j,t)
2

where Σi,j,t is the element of Σt in the ith row of the jth column. Σ̃i,j,t is similar.

This is the same as minimizing ∑
t

∣∣∣∣∣∣Σ̃t − Σt

∣∣∣∣∣∣2
F

where || · ||F is the Frobenius matrix norm. Then we can write

∑
t

∣∣∣∣∣∣Σ̃t − Σt

∣∣∣∣∣∣2
F
=
∑
t

(y′tyt)
2 + (φ̄′

tφ̄t)
2 + ζ2Nt − 2(y′tφ̄t)

2 − 2ζy′tyt + 2ζ(φ̄′
tφ̄t)

After the entire tree is trained, ζ is estimated, as described below. Thus ζ is a nuisance

parameter. Notice above that the first order condition of ζ is

∑
t

2ζNt − 2y′tyt + 2φ̄′
tφ̄t = 0

Thus solving for ζ yields

ζ =
1∑
tNt

∑
t

y′tyt − φ̄′
tφ̄t (C.19)

Plugging this in eliminates the nuisance parameters, and thus φL and φR are found by mini-

mizing ∑
t

(
(y′tyt)

2 + (φ̄′
tφ̄t)

2 +

(
1∑
τ Nτ

∑
τ

x′τxτ − φ̄′
τ φ̄τ

)2

Nt

−2(y′tφ̄t)
2 + 2(φ̄′

tφ̄t − y′tyt)

(
1∑
τ Nτ

∑
τ

x′τxτ − φ̄′
τ φ̄τ

))
(C.20)

This is a relatively simple optimization problem because the function is smooth, the derivatives

are relatively simple to calculate, and it’s only a two dimensional problem. The partial derivatives

of f with respect to φL and φR, which can be used to solve this problem numerically, are found

below.

After φL and φR are chosen by the above minimization process, the values are plugged back
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into the objective in equation (C.20) for each candidate split. The candidate split which reaches

the lowest value of quantity (C.20) is selected as the new split. For example, assume that clj(k),

with its associated φL and φR values achieves the lowest value when plugged into quantity (C.20)

above. As described above, then leaf l will become a decision node with left leaf L and right leaf

R. We’ll set φ̂L = φL. Similarly, we’ll set φ̂R = φR. Just as described above, for any given Zi,t,

we can define CL and CR such that

Zi,t ∈ CL if and only if Zi,t ∈ Cl and Zi,k,t ≤ clj(k)

Zi,t ∈ CR if and only if Zi,t ∈ Cl and Zi,k,t > clj(k)

When the tree is completely trained, ζ is set for the tree, using equation (C.19), such that

ζ =
1∑
tNt

∑
t

y′tyt − φ′
tφt (C.21)

In summary, for a range of split values on different columns of Z, φL and φR are chosen by

minimizing the objective function (C.20). The candidate with the lowest fitted values of (C.20)

is selected as the new split, and the leaf l is transformed into a decision node with left leaf L—

corresponding to the fitted value φL—and right leaf R—corresponding to the fitted value φR.

Finally, when the tree is trained by repeating this process recursively to the desired depth, ζ is set

according to equation (C.21).

Random Forest Objective Function Derivatives

Let the function f below denote the objective function described above in equation (C.20):

f(φL, φR) =
∑
t

(
(y′tyt)

2 + (φ̄′
tφ̄t)

2 +

(
1∑
τ Nτ

∑
τ

x′τxτ − φ̄′
τ φ̄τ

)2

Nt

−2(y′tφ̄t)
2 + 2(φ̄′

tφ̄t − y′tyt)

(
1∑
τ Nτ

∑
τ

x′τxτ − φ̄′
τ φ̄τ

))
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Also

φ̄t = φ−l,t + φLιL,t + φRιR,t

Define NL,t = ι′L,tιL,t, which is the number of ones in ιL,t. In other words, this is the sample size

of the training data in the candidate left leaf. Similarly, let NR,t = ι′R,tιR,t. We can write

φ̄′
tφ̄t = φ′

−l,tφ−l,t + φLNL,t + φRNR,t

Using this, then we can write

∂f

∂φL
=
∑
t

(
2NL,t(φ̄

′
tφ̄t)− 2Nt

(
1∑
τ Nτ

∑
τ

NL,τ

)(
1∑
τ Nτ

∑
τ

x′τxτ − φ̄′
τ φ̄τ

)

−4(y′tφ̄t)(y
′
tιL,t) + 2NL,t

(
1∑
τ Nτ

∑
τ

x′τxτ − φ̄′
τ φ̄τ

)
− 2(φ̄′

tφ̄t − y′tyt)

(
1∑
τ Nτ

∑
τ

NL,τ

))

And similarly

∂f

∂φR
=
∑
t

(
2NR,t(φ̄

′
tφ̄t)− 2Nt

(
1∑
τ Nτ

∑
τ

NR,τ

)(
1∑
τ Nτ

∑
τ

x′τxτ − φ̄′
τ φ̄τ

)

−4(y′tφ̄t)(y
′
tιR,t) + 2NR,t

(
1∑
τ Nτ

∑
τ

x′τxτ − φ̄′
τ φ̄τ

)
− 2(φ̄′

tφ̄t − y′tyt)

(
1∑
τ Nτ

∑
τ

NR,τ

))
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