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ABSTRACT

Answering queries accurately at interactive speeds has become more challenging in modern

data systems due to the massive growth of data. Such challenges lead to an increasing

interest in Approximate Query Processing (AQP) techniques because they enable timely

query execution in scenarios that can tolerate some degree of inaccuracy. While latency and

accuracy have been the two main factors considered by many AQP systems, in our studies,

we found other dimensions like applicability, reliability, robustness and data availability, etc.

could also be the main considerations in certain scenarios and such demands call for the

design of novel AQP techniques.

In this thesis, we propose novel AQP techniques of different characteristics for different

scenarios where AQP can be useful. We first discuss PASS, a system that combines sampling

and aggregation for better accuracy while keeping the latency and storage cost at a favorable

level. As a follow-up of PASS, we present JanusAQP, a dynamic AQP system that extends

the static partition tree proposed in PASS and addresses several challenges in a dynamic

environment that make the system more practical. Thirdly, we propose PC, a novel missing-

data analysis framework that not only enables a presentation of missing data but also the

derivation of a tight hardbound for optimal reliability. Lastly, we discuss DQM, our effort

in applying machine learning to manage materialized views in a robust manner.
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CHAPTER 1

INTRODUCTION

The massive growth of data poses unprecedented challenges to efficient data system design.

The data systems that rely on an in-memory query processing engine are risking of being

eventually outpaced by the exponential growth of data and become the bottleneck of the

analytical pipeline. With the potential to be the ultimate solution of handling arbitrarily

large amount of data, approximate query processing (AQP) haven been studied for decades

to leverage the fact that a perfect answer is not always needed.

An approximate answer is good enough as long as it can lead the user to the same decision.

This is the case in many scenarios, for example, in data visualization, the number of pixels

caps the highest accuracy that can be displayed not to mention that small differences are

often indistinguishable by human eyes; in feature selection, as long as the important features

are ranked as the top ones (even in a different order), they will be selected to build the same

optimal machine learning model; in non-critical sensor analysis like thermometer measures,

users wouldn’t mind if the average temperature of the past week is reported a bit higher

than the actual value, etc. In these scenarios, good-enough but imperfect query results are

favored if they can be generated with low latency and some guarantees of the error.

However, existing AQP techniques are still of unsatisfactory [25] in a sense that there

isn’t one single AQP technique that can fit all scenarios and it is necessary for developers

to understand the trade-offs that are made by different AQP techniques in order to adopt

them to solve real-life problems.

1.1 Explicit and Implicit Trade-offs Made by AQP Techniques

Despite the explicit trade-off between accuracy and lateny, there are a couple other di-

mensions that are in play. Some of the trade-offs are made implicitly but they should be

considered when design or select an AQP technique. We summarize all the trade-offs as
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below:

• Precomputation Cost: Depending on whether a technique pays up-front computa-

tion cost before processing any query we can classify it into the online or the offline

category [84]. Online techniques does not require precomputation because they select

sample on-the-fly in query time. For offline techniques, such a precomputation can be

workload-dependent, during which the technique utilize prior knowledge that is often

derived from previous workload to compose a summary of the data that aligns with the

workload [74, 59, 31] or even to optimize the sample selection process [7]. A workload-

independent technique on the other hand does not rely on previous queries, they can

derive a summary solely from the data [4, 24], or even build a machine learning model

that learns from the data [56].

• Latency: Due to the fact that online techniques are selecting samples on-the-fly, it is

often the case that they have a higher latency than the offline technique that can take

advantage of pre-built sample and/or indices.

• Applicability: As a side-effect of being workload-dependent, techniques that relies on

previous workload often implicitly trade-off its generality or applicability. I.e., they can

only be used to solve queries that are a subset of the (combination of) previous queries.

For example, queries that are from the same template[87] or queries that are from the

same query column set (QCS) [7]. In these systems, ad-hoc queries are often handled

by falling back to other methods or an answer of large error is returned. However,

in the case of a recurring workload or if the future workload is highly correlated with

previous workload, such a workload-dependent technique can be much more accurate

and efficient.

• Storage and Memory Cost: Offline techniques usually store the synopses they pre-

compute to avoid unnecessary re-computation and load these precomputed synopses

into memory when initialize. Especially for the workload-dependent techniques, the
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storage cost could grow exponentially with the number of previous workloads (or query

columns) that are considered. Selecting the subset of synopses to store can be treated

as an optimization problem as shown in [7].

• Reliability: Many AQP techniques can compute an error estimation in posterior but

not a prior, i.e., they can compute an error estimation only after a query is processed

but not before, which could lead to a potential SLA violation. Sample+Seek [38]

propose a method to compute query-independent accuracy guarantee in terms of a

distribution error but it is still an open problem to compute accuracy guarantee in

other error models preferred by user (e.g. mean square error). As such, we argue

that reliability is also an implicit trade-off that is made by online techniques because

for highly skewed data, there is a higher chance that the online techniques would fail

with large error, while such a skewness could be identified and resolved in the offline

precomputation phase.

• Data Availability: Another implicit trade-off made by online technique is that they

assume all the data needed to process a query are readily available for online sampling,

this is not always the case if part of the data is missing or corrupted (e.g., due to file

system or network outage). Offline techniques have a better chance to study whatever

is still available and provide a better solution for missing data analysis. However,

existing techniques like m-table [125] only provides a system that can represent the

missing data, but lack the ability to do any computation.

• Maintenance and Robustness: Lastly, for (offline) techniques that stores and (re-

)use results or synopses for query answering, such synopses have to be maintained when

the underlying data or the workload changes. Maintenance of such synopses are often

non-trivial, and there are two main challenges: 1) when to perform the maintenance

to make sure the answer is still good enough, should we do it eagerly or lazily? 2) how

to perform the maintenance efficiently so that it won’t compromise the performance of
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the system? Previous works propose techniques to clean staled materialized view [76]

and to maintenance of a Count-Min sketch in a data streaming setting [97] but it is

always an problem to be solved when design a new dynamic AQP technique.

1.2 Thesis Statement

Different application scenarios ask for AQP systems of different trade-off profiles. This thesis

demonstrates 1) novel synopsis designed for missing data analysis can lead to a zero failure

rate while providing a competitive accuracy; 2) a partition-tree data structure can be used to

bridge sampling and aggregates-based AQP techniques in a static setting to provide excellent

accuracy, favorable latency and storage cost; 3) the static partition-tree data structure can

be maintained efficiently in a dynamic setting with arbitrarily large amount of offline data

and constantly changing online data; 4) synopsis (materialized views) managed by adap-

tive techniques like deep reinforcement learning models can provide more robustness than

managed by heuristic-based approaches.

1.3 Designing Synopses for Better Trade-offs

The fact that no single AQP technique can meet demands of different applications leads to

opportunities and challenges. Our efforts in designing new synopses touch every dimension

we mentioned in the previous section: 1) PASS [87] is a synopses that combines sampling

and aggregates near optimally. It sacrifice applicability and precomputation for better accu-

racy and reasonable latency and storage cost; 2) JanusAQP is a AQP system that extends

the static partition tree proposed in PASS and addresses several challenges introduced by a

dynamic environment; 3) PC [86] is a framework that can be used for missing data analysis

based on our novel synopses called a predicate-constraint set. PC is designed to compute

a tight hard bound of query results under specified constraints, therefore offers a better

trade-off between accuracy, reliability and data availability; 4) DQM [85] focus on main-
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taining materialized views with reinforcement learning to provide a better trade-off between

accuracy, maintenance and robustness of the system. We now give each system a high level

overview as following.

PASS[87]: Sample-based approximate query processing (AQP) suffers from many pitfalls

such as the inability to answer very selective queries and unreliable confidence intervals when

sample sizes are small. Recent research presented an intriguing solution of combining ma-

terialized, pre-computed aggregates with sampling for accurate and more reliable AQP. We

explore this solution in detail in this work and propose an AQP physical design called PASS,

or Precomputation-Assisted Stratified Sampling. PASS builds a tree of partial aggregates

that cover different partitions of the dataset. The leaf nodes of this tree form the strata for

stratified samples. Aggregate queries whose predicates align with the partitions (or unions

of partitions) are exactly answered with a depth-first search, and any partial overlaps are ap-

proximated with the stratified samples. We propose an algorithm for optimally partitioning

the data into such a data structure with various practical approximation techniques.

As a followup of PASS, JanusAQP propose a more efficient partitioning algorithm to

reduce the main overhead of constructing a static partition tree data structure. Also, to

overcome the limitation of the static partition tree of PASS that works only with static

data, JanusAQP propose techniques that lead to a dynamic partition tree that can handle

insertions and deletions of data. Furthermore, JanusAQP also address challenges when

adopting an AQP system into an existing data system. To work with arbitrarily large

amount of existing data, JanusAQP use a catch-up phase that let a user decide the cost to

be paid to work with existing data. JanusAQP is also integrated with Apache Kafka as a

consumer of the message queue to demonstrate how it can work with an existing system

without changing its physical design.

PC[86]: Data analysts largely rely on intuition to determine whether missing or with-

held rows of a dataset significantly affect their analyses. We propose a framework that can

produce automatic contingency analysis, i.e., the range of values an aggregate SQL query
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could take, under formal constraints describing the variation and frequency of missing data

tuples. We describe how to process SUM, COUNT, AVG, MIN, and MAX queries in these con-

ditions resulting in hard error bounds with testable constraints. We propose an optimization

algorithm based on an integer program that reconciles a set of such constraints, even if they

are overlapping, conflicting, or unsatisfiable, into such bounds. We also present a novel

formulation of the Fractional Edge Cover problem to account for cases where constraints

span multiple tables. Our experiments on 4 datasets against several statistical imputation

and inference baselines show that statistical techniques can have a deceptively high error

rate that is often unpredictable. In contrast, our framework offers hard bounds that are

guaranteed to hold if the constraints are not violated. In spite of these hard bounds, we

show competitive accuracy to statistical baselines.

DQM[85]: We study using deep reinforcement learning to learn adaptive view materi-

alization and eviction policies. Our insight is that such selection policies can be effectively

trained with an asynchronous RL algorithm, that runs paired counterfactual experiments

during system idle times to evaluate the incremental value of persisting certain views. Such

a strategy obviates the need for accurate cardinality estimation or hand-designed scoring

heuristics. We focus on views with inner-joins, predicates, aggregate functions and modeling

effects in a main-memory, OLAP system. Our research prototype system, called DQM, is

implemented in SparkSQL and we experiment on several workloads including the Join Order

Benchmark, the TPC-DS workload and a workload that is generated by a generator that

simulates real-life usage of OLAP systems. Results suggest that: (1) DQM outperforms

heuristic when their assumptions are not met by the workload or there are temporal effects

like period maintenance, (2) even with the cost of learning, DQM is more adaptive to changes

in the workload, and (3) DQM is broadly applicable to different workloads and skews.

In the rest of this thesis, we present the aforementioned new synopses designed for effi-

cient, reliable and robust AQP in Chapter 2 (PASS), 3 (JanusAQP), 4 (PC), and 5 (DQM).

Lastly, we conclude in Chapter 6.
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CHAPTER 2

COMBINING AGGREGATION AND SAMPLING (NEARLY)

OPTIMALLY FOR APPROXIMATE QUERY PROCESSING

2.1 Introduction

There are a number of applications where exact query results are unnecessary. For example,

visualizations only require precision up to screen and human perceptual resolutions [68, 89].

Similarly, in exploratory data analysis where users may be only looking for broad trends,

exact numerical results are not needed [134]. In industrial workloads, such queries are not

only highly prevalent, but they are also highly resource-intensive: Agarwal et al. found that

roughly 30% of a Facebook workload consists of aggregate queries over tables larger than

1TB [7]. Examples such as these have motivated nearly 40 years of approximate query

processing (AQP) research, where a database deliberately sacrifices accuracy for faster [32,

70] or more resource-efficient results [76] for aggregate queries.

Data sampling has been the primary approach used in AQP since the research area’s

conception [104]. To this day, there are new results in sampling techniques [130], imple-

mentation [69], and mechanisms [137]. The perennial research interest in data sampling

stems from its generality as an approximation technique and the extensive body of literature

in sampling statistics to quantify the error rate in such approximations. However, small

samples may not contain the relevant data for highly selective queries, and this can lead to

confusing or misleading results. Recent work mitigates this problem by using an anticipated

query workload to prioritize sampling certain regions of the database to support such se-

lective queries (called stratified sampling) [8, 24], or construct samples online during query

execution [70, 130].

Consequently, pure uniform sampling is rarely used on its own, and most practical sam-

pling systems leverage workload information to ensure that the system can reliably answer

selective queries [3, 24, 8, 13, 22, 23, 47, 38]. These systems often run offline optimization

7



Figure 2.1: Temperatures collected over 20 time-steps and aggregated into 4 partitions. Partitioned
aggregates can be used to decompose SUM/COUNT/AVG queries into an exact and approximate
components.

routines to materialize optimal samples to answer future queries. If we can tolerate expen-

sive, up-front sample materialization costs, there is a natural question of whether it is also

valuable to expend resources to compute helper “full dataset” query results. There have been

a number of different proposals that do exactly this [61, 44, 112, 131, 76]; where systems

leverage pre-computed exact aggregates to help estimate the result of a future query. Not

too far off from such proposals are a number of recent approaches to use machine learning

for query result estimation [56, 133].

Despite the handful of research papers on the subject, we find that the theory on how

to best leverage both pre-computed aggregates and sampling is limited. Existing work often

assumes one of the sides is fixed: Galakatos et al. optimize sampling given that they have

cached previously computed query exact results [44], or Peng et al. optimize aggregate

selection given a uniform sample of data [112]. Such piecewise optimization results in an

incomplete understanding of the worst-case error of the data structure. Systems have to

balance a number of complex, interlinked factors: (1) precomputation/optimization time,

(2) storage space, (3) query latency, and (4) query accuracy. Tuning such structures for a

desired accuracy SLO can be significantly challenging for a user.

The joint optimization, over both sampling and precomputation, is complex because one
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has to optimize over a combinatorial space of SQL aggregate queries, while accounting for

the real-valued effects of sampling. The core insight of this paper is to formalize a connection

between pre-computed aggregates and stratified sampling. We interpret pre-computed aggre-

gates as a sort of index that can guide sampling rather than a simple materialized cache of

query results. Figure 2.1 illustrates a motivating example, where temperature readings over

20 time-steps are aggregated into 4 partitions. Any new AVG query over a time range can be

decomposed into two parts: an exact part where the range fully covers intersecting partitions,

and an approximate part where the range partially covers a partition. Thus, we will show a

hierarchy of partitioned aggregates that can act as an efficient sample selector—determining

which stratified samples of data are relevant for answering a query. This formulation leads to

a simple formula extension of stratified sampling variance, and a partitioning optimization

objective that can control for the worst-case query result error from the synopsis.

We propose a new AQP data structure called PASS, or Precomputation Assisted Strati-

fied Sampling (illustrated in Figure 2.2). PASS is given a precomputation time budget and

a query latency constraint, and it generates a synopsis data structure constructed of both

samples and aggregates. The more work that PASS is allowed to do upfront, the more ac-

curate future queries are. PASS first generates a hierarchical partitioning of the dataset (a

tree). For each partition (nodes in the tree), we calculate the SUM, COUNT, MIN, and

MAX values of the partition. Associated with the leaf nodes is a uniform sample of data

from that partition (effectively a stratified sample over the leaves). The tree-like structure

acts as an index, allowing us to efficiently skip irrelevant or inconsequential partitions to the

query results. Crucially, this lends to an analytic form for query result variance for SUM,

COUNT, and AVG queries with predicates.

PASS gives the end user a stronger guarantee about the worst-case end-to-end accuracy

than any recent “hybrid” AQP work [44, 112, 110, 56]. In practice, we find that the data

structure is often empirically beneficial compared to alternatives. PASS is more general than

the work proposed in Gan et al. and supports a wider set of queries [46]. We also find that
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Figure 2.2: PASS summarizes a dataset with a tree of aggregates at different levels of resolution
(granularity of partitioning). Associated with the leaf nodes are stratified samples. We present an
algorithm to optimize over such a structure for fast and accurate approximate query processing.

PASS is empirically more accurate than AQP++ [112], and can provably scale to much larger

pre-computed sets. A secondary benefit of PASS is that aggregate hierarchy can compute

worst-case estimation error (a 100% confidence interval) for common queries since we know

the true extrema and the true cardinality of each partition (similar to [80]). To the best of

our knowledge, no other commonly used sample-based data structure offers this benefit.

Of course, the data structure is only as good as its optimization objective. We note that

PASS is sensitive to the expected workload and is more expensive to construct. However, we

contend that PASS is a step towards a comprehensive understanding of how sampling and

precomputation can be combined for fast and accurate AQP and find that if we control for

query latency and the amount of precomputation, our results are generally more accurate.

In summary, we contribute:

1. A new data structure for AQP called PASS which supports SUM, COUNT, AVG, MIN,

and MAX queries with predicates.
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2. An optimization algorithm to generate the structure from real data that finds a parti-

tioning that minimizes the maximum sampling variance of a set of possible expected

queries.

3. Experiments that show that PASS is often more accurate than uniform sampling,

stratified sampling, and AQP++.

2.2 Background and Problem Setup

We start with a simplified model: a “one-dimensional” approximate query processing prob-

lem. Consider a collection of N tuples representing numerical data P = {(ci, ai)}Ni=1, where

one collects numerical value measurements ai and attributes about those measurements ci

(e.g., a description about what the measurement represents); generically denoted as A and

C respectively, when we are not interested in a particular tuple.

For example, one could have a dataset of times (attributes) and temperature measure-

ments (values):

(00:01 , 70.1C), (00:02 , 70.4C) ,..., (15:53 , 69.9C)

Over such a collection of data, we would like to be able to answer the following “subpopulation-

aggregate” queries: SUM, COUNT, and AVG aggregations of the numeric measurements A

over subpopulations determined by filters (predicates) over the C.

However, in approximate query processing, we would like a sub-linear time (preferably

constant time) answer with a tolerable approximation error. This problem is fundamentally

a data structure question, namely, how to summarize the collection P into a synopsis that

can approximately answer the desired queries. Leading to the following more precise problem

statement: derive a data structure from the collection P that occupies no more than Õ(K)

space and can answer any subpopulation-aggregate query with approximation error provable

guarantees in Õ(K) time where K is a user-defined parameter much less than N .
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2.2.1 Uniform Sampling

The simplest such data structure is a uniform sample. From P , we can first sample a subset

S of size K uniformly; that is, every tuple is sampled with equal probability. Such uniform

samples of numbers have the property that the averages within the sample approximate

(tend towards with bounded error) the average of the population from which the sample is

derived. So, we can approximate our desired queries by first re-formulating them as different

average-value calculations. We first define some notation:

• t a tuple (c, a).

• f(·): a function representing any of the supported aggregates.

• Predicate(t): the predicate of the aggregate query, where Predicate(t) = 1 or 0 denotes

t satisfies or dissatisfies the predicate, respectively.

• K: the number of tuples in the sample.

• Kpred: the number of tuples that satisfy the predicate in the sample.

• a: the numerical value.

We can reformulate SUM, COUNT, and AVG queries as calculating an average over trans-

formed attributes:

f(S) =
1

K

∑
t∈S

φ(t) (2.1)

where φ(·) expresses all of the necessary scaling to translate the query into an average value

calculation:

• COUNT: φ(t) = Predicate(t) ·N

• SUM: φ(t) = Predicate(t) ·N · a

• AVG: φ(t) = Predicate(t) · K
Kpred

· a
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In order to represent AV G(S) in the form of Equation 2.1, we rewrite it to the following

equivalent Equation:

AV G(S) =
1

K

∑
t∈S

Predicate(t) · K

Kpred
· a. (2.2)

Therefore, we have φ(t) = Predicate(t) · K
Kpred

· a for the AVG query.

Error Rate

Let us denote the φ(P ) and φ(S) as taking the transformation functions above and applying

them to every tuple in P or S respectively. The Central Limit Theorem (CLT) states

that these empirical mean values tend towards a normal distribution centered around the

population mean:

N(mean(φ(P )),
var(φ(P ))

K
) (2.3)

Since the estimate is normally distributed, we can define a confidence interval parametrized

by λ (e.g., 95% indicates λ = 1.96)1.

mean(φ(S))± λ
√
var(φ(S))

K
. (2.4)

To understand the main pitfall of uniform sampling, notice the main scaling factor in the

AVG queries is K
Kpred

. The more selective a query is (i.e., smaller Kpred), the smaller the

effective sample size is. If your sampling rate is 10% but your predicate matches with only

1% of the tuples in a database, then your effective sample size for that query is 0.1%!

Not only do selective queries increase the error in your result estimates, but they also

make the confidence interval estimates less reliable. Accurately estimating the variance

from a very small sample is often harder than estimating the result itself since variance is a

measure of spread. Furthermore, the CLT holds asymptotically and is naturally less reliable

at small sample sizes.

1. When estimating means of finite population there is a finite population correction factor of FPC = N−K
N−1

which scales

the confidence interval.
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2.2.2 Stratified Sampling

Stratified sampling is one way to mitigate the effects of selective predicates. Instead of

directly sampling from P , we first partition P into B strata, which are mutually exclusive

partitions defined by groupings over C. Within each stratum P1, ..., PB , we uniformly sample

as before resulting in samples S1, ..., SB . So, instead of a single parameter K which controlled

the accuracy in the uniform sampling case, we have a K1, ..., KB for each stratum. The sum

of all Ki can be equated to the uniform sampling size to compare efficiencies K =
∑B
i=1Ki.

The results estimation scheme in the previous section can be applied to each of the strata

treating it as a full dataset. We combine the estimates with a simple weighted average:

B∑
i=1

est(Si) · wi

For SUM/COUNT wi = 1. For AVG wi = Ni
Nq

in strata with at least one relevant tuple to

the query and 0 otherwise; where Ni is the total number of tuples in the strata, and Nq is

the total number of tuples in all relevant strata. Using the algebraic properties of variance,

the confidence interval can be calculated as follows:

±λ ·

√√√√ B∑
i=1

w2
i · Vi(q)

where Vi(q) is
var(φ(Si))

Ki
. Stratified sampling is really powerful when the strata correlate

with predicates the user may issue. The variance Vi within the strata might be much smaller

than the variance globally.

2.2.3 Stratified Aggregation

Like we saw in the example in the introduction, partitioned aggregations can be used to

approximate a query result. Suppose, as in stratified sampling, we first partition P into B
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mutually exclusive partitions. But instead of sampling from these partitions P1, ..., PB , we

compute the SUM, MAX, MIN, and COUNT for each partition 2. This data structure, a

collection of partitioned aggregates, has O(B) values. We can use this data structure to

estimate query results for our desired subpopulation-aggregate queries.

For any predicate, there are three different sets of partitions:

• Rcover : it is known that every tuple in the partition satisfies the predicate

• Rpartial : it is possible some tuple in the partition satisfies the predicate

• Rnone : no tuple in the partition satisfies the predicate

Since each partition Pi has a SUM(Pi), MAX(Pi), MIN(Pi), and COUNT (Pi), can use

these sets to estimate the maximum possible and minimum possible value the aggregate query

of interest could take. For SUM and COUNT queries, this is easy due to their monotonic

nature. We simply fully include the partial partitions in the upper bound, and omit them

for the lower bound:

ub =
∑

Pi∈Rcover

AGG(Pi) +
∑

P∈Rpartial

AGG(Pi)

lb =
∑

Pi∈Rcover

AGG(Pi)

AVG queries are a little more complex to estimate since they are not monotonic. Let’s define

MAX(Rpartial) to be the maximum of all of the max values of the partitions with partial

overlap, and MIN(Rpartial) to similarly be the minimum value. A bound for the AVG query

is:

ub = max{
∑
Pi∈Rcover

SUM(Pi)∑
Pi∈Rcover

COUNT (P )
, MAX(Rpartial)}

lb = min{
∑
Pi∈Rcover

SUM(Pi)∑
Pi∈Rcover

COUNT (P )
, MIN(Rpartial)}

2. For technical reasons, we assume all a are positive (they can be shifted if not).
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The average is at most the maximum of the average of fully covered partitions and the

overall max of any potentially relevant partitions (and likewise for the lower bound). This

scheme is fully deterministic and it is always guaranteed that the user’s result lies within

those confidence intervals.

We can characterize the estimation error as ub − lb, and notice that in all three queries

the error is a function of Rpartial. If a query predicate “aligns” with the partitioning (no

partial overlaps), the query is answered exactly with 0 error. This property is not guaranteed

with stratified sampling, which will always have sampling error in its estimates. However,

the partial overlaps introduce ambiguity and error since we do not know how many relevant

tuples match the predicate in those partitions. In those partial overlap cases, sampling is a

far more accurate estimate because the deterministic bounds are very pessimistic.

2.2.4 Related Work

Uniform sampling, stratified sampling, and stratified aggregation have dominated the AQP

literature dating back to the 1980s [104], and we refer the readers to recent taxonomy and

critique of this work [25].

Optimizing Sampling. The pitfalls of uniform sampling are well-established, and several

approaches have been proposed to optimize sampling [3, 24, 8, 13, 22, 23, 47, 38]. Almost

all of this work relies on significant prior knowledge before query time. Either they leverage

prior knowledge of a workload [8, 13, 3] or rely on auxiliary index structures [22, 47, 38].

The consequence is a substantial offline optimization component that takes at least one

full pass through the dataset in these AQP systems. The proposal in this paper, PASS,

is similar in that it constructs a synopsis data structure offline for accurate future query

processing. While there are AQP settings where samples are constructed online or during

query processing [70, 55, 76], we believe there are a large number of data warehousing use

cases where expensive upfront creation costs can be tolerated. VerdictDB [109] is a recent

AQP system that supports approximate query processing of general ad-hoc queries. It builds
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a new index scramble by drawing samples from the original data. Given a query it uses only

the sampled items in the scramble to estimate the result. They achieve fast latency with

error provable guarantees. PASS also uses samples to construct a data structure in the

pre-processing phase, however, it combines aggregation and stratified sampling to build a

tree-based index with very low space complexity to answer aggregation queries efficiently

with minimum error. VerdictDB uses more space to answer queries with high accuracy,

however, it can handle more types of queries, like equi-joins. In Section 2.5 we compare

PASS with VerdictDB over different datasets.

Optimizing Aggregation. There are also similar studies of how to optimize “binned

aggregates” [59, 74, 60]. In particular, there is a highly related concept to pass of V-Optimal

histograms, which are histogram buckets placed in such a way to minimize the cumulative

variance [59]. In contrast, PASS is designed for cases where the goal is to aggregate one

column of data based on predicates on another set of columns. Accordingly, PASS constructs

predicate partitions over the predicate columns to control the variance of the aggregation

column. We further minimize the maximum variance (the worst-case error) unlike the V-

Optimality condition. There are also multi-dimensional binned aggregation variants such

as Lazaridis et al. [80] (essentially a data cube for approximate query processing). While

Lazardis et al. do not contribute a variance optimization, they do organize their aggregates

in a hierarchical structure like PASS.

Hybrid AQP. There are also a number of recent hybrid techniques that leverage pre-

computed “full data” aggregates to make sampling-based AQP more reliable. For example,

Galakatos et al. [44] cache previously computed results to augment previously constructed

samples. In that way, they build an interactive scheme to handle ad-hoc queries efficiently.

SampleClean materializes a full dataset aggregate over dirty data to mitigate sampling er-

ror [131]. AQP++ [112] precomputes a number of aggregate queries, determines query

subsumption relationships to coarsely match a new query with one of those previously com-

puted, and then, uses a uniform sample to approximate the gap. AQP++ runs a practical
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iterative hill-climbing heuristic to determine which aggregates to compute. We see AQP++

as the most similar proposal to PASS, but there are key differences in the two approaches.

First, we propose an efficient dynamic programming algorithm with provable guarantees to

find which aggregation queries (partitioning) to precompute so that the maximum error is

minimized. We further organize these aggregates into a tree structure for efficient pred-

icate evaluation. Second, instead of using uniform sampling to approximate the gap, we

apply stratified sampling only on the strata that are partially intersected by the query. Our

experimental results find that PASS is generally more accurate for the same sample size.

Mergeable Summaries and Partitioning. There is increasing discussion of data parti-

tioning in AQP (outside of stratified sampling). Rong et al. define the PS3 framework [121]

to optimize sampling at a data partition level to avoid loading a large number of samples.

We believe that the core tenets of the PS3 framework are complementary to PASS and

our optimization algorithm could be used as an inner routine in their framework. If our

strata align with storage partitions, we could see similar benefits. We similarly see connec-

tions with Liang et al. who study constraint-based optimization for summarizing missing

data [86]. Hierarchical aggregation is also related to the work on mergeable summaries,

which are synopses that can be exactly combined at different levels of granularity [46, 5].

Learned AQP. There are also a number of techniques that leverage machine learning for

AQP. Some of the initial work in using precomputation for AQP uses Maximum Likelihood

Estimates to extrapolate results to unseen queries [61, 62]. There also are more comprehen-

sive solutions that train from a past query workload [110] or directly build a probabilistic

model of the entire database [56, 133]. There are also middle grounds that learn weights to

direct stratified sampling [130].

2.3 Overview and Query Processing

These strengths and weaknesses of stratified sampling and stratified aggregation suggest an

intriguing middle ground. In the simplest version, one can create stratified samples and
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annotate them with precomputed partition aggregates. To answer a supported query, we

can skip all strata that are fully covered and only use the samples to estimate those par-

tially covered strata leading to our contribution, PASS: Precomputation-Assisted Stratified

Sampling.

2.3.1 Usage

PASS is a synopsis data structure used for answering aggregate queries over relational data.

The user defines an aggregation column (numerical attribute to aggregate) and a set of pred-

icate columns (columns over which filters will be applied). The system returns an optimized

data structure that can answer SUM, COUNT, AVG, MIN, and MAX aggregates over the

aggregation column filtered by the predicate columns.

SELECT SUM/COUNT/AVG/MIN/MAX(A)

FROM P

WHERE Predicate(C1 ,...,Cd)

Conceptually, this is the same problem setup as described in the previous section with a

dataset of (c, a) tuples; where the aggregation column corresponds to a and the predicate

columns correspond to c. A PASS data-structure is one-dimensional when there is a single

predicate column and is multi-dimensional when there are a set of predicate columns.

The user specifies the following parameters: (τc) a time limit for constructing the data

structure, and (τq) a time limit for querying the data structure. Then, using a cost-model,

our framework minimizes the maximum query error while satisfying those constraints. Let

T be the set of all PASS data structures that satisfy the above constraints, and Q be the

set of all relevant queries to the user. We define the following optimization problem:

T ∗ = arg min
T∈T

max
q∈Q

error(q, T ). (2.5)

The details of this optimization problem are described in the next section, but for simplicity,
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we will only consider tree structures with a fixed fanout and “rectangular” partitioning

conditions xi ≤ Ci ≤ yi for 1 ≤ i ≤ d.

2.3.2 Partition Trees and Samples

A preliminary concept to understanding PASS is an understanding of multi-resolution par-

titioning. A partition of a dataset P is a decomposition of P into disjoint parts P1, ..., PB .

Each Pi has an associated partitioning condition ψi, a predicate that when applied to the full

dataset as a filter retrieves the full partition. This definition is recursive as each partition is

itself another dataset. Partitions can be further subdivided into even more partitions, which

can then be subdivided further. This type of recursive subdivision leads to the definition of

a partition tree.

Definition 2.3.1 (Partition Tree). Let {Pi}B1 be subsets of a dataset P . A partition tree

is a tree with B nodes (one corresponding to each subset) with the following invariants: (1)

every child is contained in its parent, (2) all siblings are disjoint, and (3) the union of the

siblings equals the parent.

Given this definition, the root of this tree is necessarily the full dataset, which we can

think of as a degenerate partitioning with the condition ψ = True. Siblings’ conditions can

be combined together with a disjunction to derive the parent, and children can be derived

with a conjunction with the parent’s condition. Thus, each layer of the tree completely spans

the entire dataset, but is subdivided at finer and finer granularities.

For a target query predicate q and a corresponding subset of tuples that satisfy q denoted

by P (q), we can define the coverage frontier or a minimal set of partitioning conditions that

fully covers a query. Let {Pi}Bi=1 be nodes in a partition tree. A subset P1, ..., Pl of these

nodes covers a predicate q if P (q) ⊂
⋃l
i=1 Pi. A covering subset is minimal if it is the smallest

subset (in terms of the number of partitions) that covers q.

The nature of the invariants, where disjoint children completely span their parents, de-

scribed above allows us to find such a subset of nodes efficiently. Consider the following
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recursive algorithm:

Algorithm 1: Minimal Coverage Frontier Algorithm

1 MCF(Pi, q):
2 ifPi ⊆ P (q) or Pi is a leaf: return {Pi}
3 ifPi ∩ P (q) = ∅: return {}
4 γ = {}
5 for all children P ′i of Pi: γ = γ ∪ MCF(P ′i , q)
6 return γ

Note that there are two types of nodes returned by the MCF algorithm above. Either we

return leaf nodes or we return nodes that are fully contained by the query predicate. These

two types of nodes exactly correspond to the two scenarios we described in Section 2.2.3:

partial coverage and total coverage. The leaf nodes correspond to the partial overlap case.

Such a data structure gives us a practical algorithm to scale up stratified aggregation to

a large number of nodes. Instead of a tuple-wise containment test, the base case in line 2 can

be evaluated from the partitioning conditions ψi and a description of the query predicate.

Normally, for stratified aggregation, we would have to test each of the B partitions. However,

a tree facilitates faster evaluation time for selective queries.

Suppose, we have a partition tree of B nodes where every parent has a fixed number of

children. Let q be a query that overlaps with γ of the leaf nodes in the partition tree. In

the worst case, for computing MCF we need to visit O(γ) nodes in each level of the partition

tree. In this setting, if the partition tree is balanced the time-complexity for computing the

MCF is O(γ logB). This result can be shown by noting that the number of overlaps with

leaves bounds the number of relevant nodes in any of the layers (due to the invariants) and

there are logB such layers. For selective queries, this approach is far more efficient than a

linear search through all partitions.

For each of the partitions in the partition tree, we compute four aggregate statistics over

all the tuples within the partition: SUM, COUNT, MIN, MAX. Note, the AVG value is

implicitly calculated with SUM and COUNT. This data structure forms the backbone of

PASS: a partition tree annotated with aggregate statistics (as seen in the top half of Figure
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2.2). The MCF algorithm returns those partitions that are completely covered, within which

we can directly leverage the pre-computed aggregate, and those that are partially covered

where we will need a more sophisticated estimation scheme.

It is natural to compare PASS to existing data skipping frameworks that skip irrelevant

partitions of data (e.g., [124]). However, it is worth noting that PASS further skips partitions

that are completely covered by a query predicate. This is due to the composable structure

of SUM/COUNT/AVG/MIN/MAX aggregate queries supported, where they can be safely

computed from partial aggregates.

Sampling: The challenge with partial coverage is that we do not exactly know the selectivity

of a query within the partition. Thus, it makes sense to leverage sampling for this estimation.

Due to the partitioning invariants, partially covered nodes will only be leaf nodes and all

retrieved nodes are disjoint. We associate with each of the leaf nodes a uniform sample of

tuples within that partition. This per-partition sampling plan differs from other proposals

such as [112], which use uniform sampling. The entire structure is summarized in Figure 2.2,

where the partition tree of B nodes lies above and stratified samples associated with each of

leaf nodes lie below.

2.3.3 Query Processing

PASS leads to the following query processing algorithm. We present SUM, COUNT, AVG

for brevity, but it is also possible to get estimations for MIN and MAX.

Index Lookup. Apply the MCF algorithm above to retrieve two sets of partitions: Rcover

and Rpartial.

Partial Aggregation. For each partition in Rcover, we can compute an exact “par-

tial aggregate” for the tuples in those partitions. For a SUM/COUNT query q: agg =∑
Pi∈Rcover

Pi(q), for an AVG query, we weight the average by the relative size of the parti-

tion: agg =
∑
Pi∈Rcover

Pi(q)
Ni
Nq

, where Ni is the size of the partition Pi and Nq is the total
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size in all relevant partitions of query q.

Sample Estimation. Each partition in Rpartial is a leaf node with an associated stratified

sample. We use the formula in Section 2.2.2 to estimate their contribution. Let Si denote

the sample associated with partition Pi ∈ Rpartial: samp =
∑
Pi∈Rpartial

f(Si) · wi

Results. The results can be found by taking a sum of the two parts: result = samp+agg.

Confidence Intervals. Since the agg result is fully deterministic, the only part that needs

uncertainty quanitification is samp. We can use the formula in Section 2.2.2 to compute this

result:

±λ ·
√ ∑
Pi∈Rpartial

w2
i · Vi(q)

where Vi(q) is
var(φ(Si))

Ki
where Ki is the sample size of the sample associated with partition

Pi.

Hard Bounds. The data structure allows us to compute deterministic hard bounds on

query results using formulas in Sec. 2.2.3.

2.3.4 Other Optimizations

To summarize, PASS associates a hierarchy of aggregates with stratified samples. This allows

us to create sampling plans with a large number of strata and efficiently skip irrelevant ones.

The hierarchy further allows us to bound estimates deterministically since the extrema of

each stratum are known. The design of PASS allows for a few important optimizations

that can significantly improve performance in special cases. First, the data structure has an

important special case where we can skip processing the samples even when there is a partial

overlap.

0 Variance Rule: For AVG queries, we can add an additional base case to the MCF

algorithm: if the node in question has 0 variance (i.e., the min value is equal to the max

value), return the current node. When answering AVG queries, 0 variance nodes (where all
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numerical values are the same) are equivalent to covered nodes.

Next, the data structure can also effectively compress the samples using delta encoding.

Every sampled tuple can be expressed as a delta from its partition average. Ideally, the

variance within a partition would be smaller than the variance over the whole dataset.

2.4 Optimizing the Partitioning

This section describes how we optimize PASS to meet the desired error rate.

2.4.1 Objective and Search Space

The first step is to process the user-specified time constraints τc and τq into internal param-

eters. As before, we consider a dataset P , where there is an aggregation column A, and a

collection of predicate columns (C1, .., Cd). We calculate the maximum number of leaf nodes

k (which governs the construction time as we show later) allowable in the time limit τc. Each

leaf will define rectangular partitioning condition xi ≤ Ci ≤ yi for 1 ≤ i ≤ d. Then, we

calculate the maximum number of samples allowable in the time limit τq. The search space

T is all PASS data structures with k leaves with a fixed fanout of 2d.

Next, we have to define a class of queries Q that we care about. While in general SQL

predicates can be arbitrary, we restrict ourselves to a large class of “sensible” predicates.

Over this schema, we define Q to be AVG/SUM/COUNT queries in a “rectangular region”,

which returns the average value with respect to the attribute A among all tuples with

xi ≤ Ci ≤ yi for 1 ≤ i ≤ d. Our optimization framework can also support other definitions

for Q (hereafter called templates), but for brevity, we will focus on rectangular averages.

Given this definition of Q and T , now we describe the optimization objective. Let

T = {b1, . . . , bk} be the set of leaf nodes. For a query q ∈ Q let Tq be the set of leaf nodes
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that partially intersect with the query predicate, we get an error formula as follows:

error(q, T ) = λ

√∑
bi∈Tq

w2
i · Vi(q).

Note from the previous section, the structure of the leaf nodes governs the estimation error

of the data structure. The shape of the tree (height and fanout) only affects construction

time and query latency. Thus, it is sufficient to optimize PASS in two steps to control for

worst-case query error: first, choose an optimal partitioning of the leaf nodes, and then

construct the full tree with a bottom-up aggregation. The core of the algorithm is then to

optimize the following “flat” partitioning:

R∗ = arg min
T∈Tleaves

max
q∈Q

error(q, T ),

where Tleaves is the family of all possible k leaf nodes.

2.4.2 Partitioning Algorithm Intuition

It is worth noting that we do not have to search over all possible rectangular partitions and

queries. Consider the 1D case (where the rectangles are simply intervals): all meaningful

rectangular conditions will have predicate intervals defined by the attribute values of the tu-

ples ci (any others are equivalent), and thus, there are
( N
k−1

)
= O(Nk−1) possible partitions

and O(N2) possible query intervals.

Thus, we make the following simplifying but practical assumptions. Note that the error

in a query result is governed by the variance of items where there is partial overlap. So,

we approximate the problem to the following search condition: control the variance of every

query’s single worst partial overlap. Next, we further assume that when there is a partial

overlap, this overlap is non-trivial where at least δN tuples are relevant to the query (avoids

degenerate results that could result in empty partitions).
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Even in the 1D case, we want to avoid exhaustive enumeration of all the O(Nk−1)

partitions. In addition, we want to avoid precomputing and storing the results of all possible

O(N2) interval queries due to the quadratic space dependency; if we could simply execute

all O(N2) queries, there is no need for a synopsis structure in the first place.

Technical Details

The following contains technical details about the assumptions that can be skipped for

brevity. Let bi ∈ R be a partition of partitioning R (notice that the set of leaves T cor-

responds to a partitioning R). Let Ni be the number of items in partition (i.e. leaf) bi.

Furthermore, let Rq be the partitions of partitioning R that intersect the query q (either

fully or partially). Finally, let Pi(q) = P ∩ bi ∩ q, be the set of items in bucket i that are

contained in query q, as we had in the previous section. We assume that the valid queries

of Q with respect to a partitioning R, are the queries that intersect sufficiently many items

in each partition they intersect. Precisely, for a partition bi ∈ Rq, if Ni,q = |Pi(q)| is the

number of items in bi that are contained in q, then we assume that Ni,q ≥ δN .

Basically, the assumption states that we only care about queries that meaningfully overlap

when they do partially overlap. Accordingly, we can define the set of “meaningful” queries

with respect to a partitioning R as Q′ = {q ∈ Q | Ni,q ≥ δN,∀bi ∈ Rq}. One can think of

this set as rectangles whose boundaries are grounded with actual tuples in the dataset.

From Section 4.2 we can define the “single-partition” bi variance of AVG queries as

Vi(q) = 1
Ni
· 1
N2

i,q

[
Ni
∑
h∈Pi(q) t

2
h −

(∑
h∈Pi(q) th

)2
]
, while for SUM queries Vi(q) = 1

Ni
·[

Ni
∑
h∈Pi(q) t

2
h −

(∑
h∈Pi(q) th

)2
]
. For COUNT queries the formula for Vi(q) is identical

to the formula for SUM queries with th = 1 or th = 0.

Based on these formulas and the above assumptions, we approximate Equation 2.5 with

a simpler problem. The high-level idea is that we focus on the problem of minimizing the

maximum variance of queries that are fully contained in only one partition. We show that

solving this simpler problem leads to efficient approximations for our original problem, where
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queries intersect multiple partitions.

Let Q1
R ⊆ Q be the set of meaningful queries in Q that intersect only one partition

in partitioning R, and let iq be that partition. We define a new problem, as: R′ =

arg minR∈Rmaxq∈Q1
R
Viq(q), where R is the family of all possible valid partitionings.

Lemma 1. It holds that

max
q∈Q

error(q, R′) ≤
√
k min
R∈R

max
q∈Q

error(q, R),

for SUM and COUNT queries and

max
q∈Q

error(q, R′) = min
R∈R

max
q∈Q

error(q, R),

for AVG queries.

From Lemma 1 it follows that any α-approximation algorithm for the newly defined

problem is also a α-approximation for our original problem for AVG queries and a
√
k · α-

approximation for SUM and COUNT queries. Notice that it is much easier to handle the

newly defined problem since we can find the query with the maximum error with respect to

partitioning R by looking only on queries that are fully contained in partitions b ∈ R.

Finally, we note that the approximation ratio for SUM and COUNT queries in Lemma 1

is stated in the worst case. In particular, if we guarantee that a query can partially intersect

at most K partitions then the approximation factor is
√
K instead of

√
k. For example, in

1D a query interval can partially intersect at most 2 partitions, so the approximation factor

is
√

2.

2.4.3 Algorithm in 1D

Considering the variance function for COUNT, we can show that the optimum partitioning

for COUNT queries in 1D consists of equal size partitions and hence we can construct it in
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linear time. Next, we mostly focus on SUM and AVG queries.

First, we consider the 1-d case where we have a collection of tuples P = {(ci, ai)}Ni=1.

We have a defined query type, i.e., SUM, AVG, and we want to find the partitioning that

minimizes the maximum estimation error for that query type. In this first case, we start

by developing a strawman algorithm: one where we essentially enumerate all possible 1d

aggregate queries over the full data.

To do so, we first sort the tuples with respect to the predicate values ci. Then we define

the dynamic programming table A of N rows and k columns, where A[i, j] is the optimal

solution among the first i data items (with respect to the predicate values) with at most

j partitions. Let M be function that takes as input an interval [i1, i2] and returns the

maximum variance of a query q ∈ Q that lie completely inside [i1, i2].

M(i1, i2) :

1. µ = 0

2. For all meaningful subintervals [g, w] ⊂ [i1, i2]:

(a) Let φ be appropriately defined for the query type and the predicate g ≤ C ≤ w.

(b) µ = max{µ, var(φ(P ∩ [g, w]))}

3. return µ

Using the function M we can define the recursion

A[i, j] = min
h<i

max{A[h, j − 1],M([h+ 1, i])}.

Notice that we can easily solve the base cases A[i, 1], A[1, j] using the M function. In an

efficient implementation ofM the subquery variances are computed with pre-computed pre-

fix sums. SinceM function considers O(|Q|) queries (O(N2) assuming all possible queries).

Hence, the total running time of the basic DP algorithm is O(kN2|Q|) = O(kN4). This
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algorithm achieves an optimal partitioning for AVG queries and
√

2 approximation for SUM

queries.

Faster Algorithm With Monotonicity. The first insight ignores the query enumeration

problem but focuses on the structure of the DP itself. Suppose, we have a query q completely

inside a partition bx and let by be another partition such that bx ⊆ by. Then, we can show

that Vx(q) ≤ Vy(q). This statement is very intuitive: adding irrelevant data to a query can

only make the estimate worse.

The exact proof of this statement depends on the type of the query. For example for the

AVG query, we have that Px(q) = Py(q), Nx,q = Ny,q, and Nx < Ny. Hence,

Vx(q) = 1
N2

x,q

∑
h∈Px(q) t

2
h −

(∑
h∈Px(q) th

)2

Nx

 ≤ 1
N2

y,q

∑
h∈Py(q) t

2
h −

(∑
h∈Py(q) th

)2

Ny

 = Vy(q).

Similar arithmetic shows that the same statement holds for SUM and COUNT queries

(with a caveat in the next section).

Then, we can argue that for h1 ≤ h2 it holds that A[h1, j − 1] ≤ A[h2, j − 1] and

M([h1 + 1, i]) ≥M(h2 + 1, i). The second inequality holds because of our last observation.

The first inequality holds because we can use the partition of A[h2, j−1] in the first h1 items

as a valid partition, so A[h1, j − 1] can only be smaller. Because of this property, a binary

search over the values of h can return the value ĥ such that max{A[ĥ, j − 1],M([ĥ+ 1, i])}

is minimized. The running time of this DP algorithm is O(kN3 log(N)).

Faster Approximate Dynamic Program

Next, we want to avoid having to evaluate every possible query exactly during construction.

In this step, we can leverage a uniform sample of data to estimate the query variance;

we can take a uniform sample of m tuples P = {ci, ai}mi=1 to perform the optimization.

This approximation would create partitioning rules, which we could then resample from

to construct our stratified sampling. With sampling, the complexity of the optimization

29



algorithm would be O(kN2m log(m)). There is an interplay between sampling and the

proofs above, where we require that every query interval receives roughly the same fraction

of samples. Sampling avoids the circular logic in our strawman algorithm, and the optimal

partitions can be found with far less computation than the exact evaluation of every possible

query over the original dataset.

Next, instead of considering all possible query intervals in a partition, we consider a

subset of such intervals to improve the running time. For SUM (and COUNT) queries, given

an interval [i1, i2] that contains m′ sampled items, we consider picking only O(1) items

L ⊆ P ∩ [i1, i2] such that there exists an item x ∈ L where the intervals [i1, x] and [x, i2]

contain the same number of samples. Then we consider only the interval queries whose

endpoints are defined by the selected items L. Hence, the number of query intervals we

consider in a partition is still O(1). This change affects line (2) in the algorithm above.

Instead of considering all meaningful subintervals [g, w] ⊂ [i1, i2], we consider only the

intervals defined by the items in L leading to a new running time of O(km logm). We show

that the maximum variance we get by checking only this subset of queries is not smaller than

the maximum variance over all meaningful queries in [i1, i2] divided by 4. Our new algorithm

finds a partitioning where the maximum error of a SUM (or COUNT) query is at most 2
√

2

times the maximum error of the optimum partitioning. For AVG queries, we show that the

query with the maximum variance in a partition has length at most 2δm. We precompute

the variance of all possible length δm queries (there are only O(m) of them) and store them

in a binary search tree. Given an interval [i1, i2] we can return the length δm query with

the maximum variance in O(logm) time. Overall the algorithm runs in O(km log2m) time

and finds a partitioning where the maximum error of an AVG query is at most 2 times the

maximum error of the optimum partition.

To summarize, let N be the total size of the dataset, k be the desired number of partitions,

m be the number of samples 3:

3. ** Indicates the approximation algorithm used in the experiments.
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Naive DP O(kN4)

Faster DP O(kN3 logN)

Approx Sampling O(kN2m logm)
Sampling + Discretization (**) O(km logm)

2.4.4 Algorithm in Higher Dimensions

While the DP algorithm gives an optimum partitioning in a single dimension, it is not clear

how to extend this to multiple dimensions.

For higher dimensions, we have to consider a space of partition trees that each layer

defines rectangular partitioning. Such a space is well-parameterized by the class of balanced

k-d trees. A k-d tree is a binary tree in which leaf nodes represent d-dimensional points.

Every non-leaf node can be thought of as a partitioning plane that divides the parent space

into two parts with the same number of items. Points to the left of this hyperplane are

represented by the left subtree of that node and points to the right of the hyperplane are

represented by the right subtree. We note that we can also design k-d trees with fanout 2d

by splitting a node over all dimensions simultaneously.

1. Construct a balanced k-d tree U over {ci}Ni=1.

2. Start with an empty tree U ′ initialize as the root of U .

3. While the number of leaf nodes is less than k:

(a) For all new leaf nodes v in U ′:

i. Apply M on the items in v.

(b) For the leaf node that contained the query with the maximum variance, add its

children (from the corresponding node in U) to U ′.

The precomputation time is O(N logN) to construct U . After the precomputation, the

algorithm runs in O(kN1−1/d|Q|) time. The tree U ′ we return has O(k) space and it gives

an optimum partition with at most k leaf nodes with respect to the k-d tree U . Hence, U ′ is
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optimum with respect to AVG queries and has a
√
k-approximation for SUM and COUNT

queries.

A naive way to find the leaf that contains the query with the maximum variance is to

consider all possible rectangular queries in the leaf, O(|Q|) = O(N2d).

2.4.5 Summary

To summarize our analysis, we propose an optimization framework that returns partitions

that control the maximum query error over a workload of hypothetical queries. The key

approximation parameters in this framework avoid having to enumerate all possible queries.

Our analysis provides a synopsis data structure and an approximation framework that has

the following parameters. We summarize the effects when these parameters are increased:

Knob Effect Tradeoff
Sample Size K + Accuracy + Query La-

tency

Partitions k 4 + Accuracy;
- Query La-
tency

+ Init Time;
+ Update
Cost

Apx factors m,L - Worst-Case
Error

+ Init Time

In our experiments, we control K and k across all baselines. We ensure that the query

latency of the queries is roughly the same by budgeting the same amount of precomputation

and samples.

Extensions PASS can be extended to handle multiple predicates, group-by’s, and categor-

ical queries. To handle multiple predicate column sets, we construct different trees based on

statistics from the workload (see notes on statistics from Facebook [8]). In the full version,

we demonstrated the scenario of ‘workload-shifting’ in which PASS can use a synopsis that is

built for one query template to solve other query templates that share one or more attributes.

4. Notice that B is related to the number of leaves k.
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Furthermore, by applying any dictionary encoding we can handle queries over categorical

variables. Finally, PASS can handle group-bys over categorical columns, i.e. each group-

by condition can be rewritten as an equality predicate condition. Then we can aggregate

answers for all the selection queries to generate a final answer.

Dynamic updates PASS can easily handle new insertions (or deletions) while maintain-

ing the statistical consistency of the estimates for COUNT, SUM, and AVG queries. In

particular, we can maintain samples using Reservoir sampling [129]. Each time that a new

item ti is inserted, Reservoir sampling might choose to replace a sample tj with ti. Assume

that tj belongs in partition Pj and ti belongs in partition Pi. We remove tj from Pj and we

insert ti in Pi. Furthermore, we update all the statistics in the nodes from the leaf Pi to the

root and from the leaf Pj to the root of the partition tree. In each node, we can update the

statistics in O(1) time so the total update time depends on the height of the tree (for d = 1

we have O(log k)). However, if there are enough updates to the structure, re-optimization of

the partitioning may be needed. In that case Split and Merge technique [40, 49] might help

to get efficient update time. We leave this part as an interesting future problem.

2.5 Experiments

We evaluate PASS on a number of different datasets and workloads. We run our experiments

on a Linux machine with an Intel Core i7-8700 3.20GHz CPU and 16G RAM.

2.5.1 Experiment Setup

We follow the problem setup described in Section 3.1. Given an aggregation column and a

set of predicate columns, we construct a pass data structure with a specified construction

time (number of leaf nodes) and query time (sampling rate).
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Datasets

Intel Wireless Dataset: The Intel wireless dataset [114] is an Internet of Things dataset with

data from 54 sensors deployed in the Intel Berkeley Research lab in 2004. It contains 3

million rows, 8 columns including humidity, temperature, light, voltage as well as date and

time that are measured by different sensors. In our experiments, we use the time column

for predicates and the light column for aggregation.

Instacart Online Grocery Shopping Dataset 2017: The Instacart Online Grocery Shop-

ping dataset 2017 [58] is released by the grocery delivery service Instacart. We use the

order product table of 1.4 million entries. Each entry has 4 columns: the order id, product id,

add to cart order and reordered. We use the product id column for predicate and reordered

column for aggregation.

New York City Taxi Trip Records Dataset: The New York City Taxi Trip Records dataset

[128] is published by the NYC Taxi and Limousine Commission (TLC). The dataset con-

tains the yellow and green taxi trip records including fields capturing pick-up and drop-off

dates/times, pick-up and drop-off locations, trip distances, itemized fares, rate types, pay-

ment types, and driver-reported passenger counts. In our experiments, we use the 7.7 million

records collected in January 2019, and unless otherwise specified, we use the pickup datetime

column for predicate and the trip distance column for aggregation.

Metrics

Our primary metric is relative error which is the difference of estimated query result and

the ground truth divided by the ground truth–for fixed sample size and precomputation

budget. In all the experiments, we evaluate the median relative error over randomly selected

queries. We also measure the confidence interval ratio (CI Ratio) which is the ratio

between the half of estimated confidence interval and the ground truth. This quantifies the

accuracy of the confidence intervals found with each framework. Since one advantage of

PASS is that it enables aggressive and reliable data skipping, we measure the skip rate,
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which is the ratio of the tuples that are safely skipped during query processing.

Baselines

Every baseline gets a sampling budget of K and a query precomputation budget of B.

• Uniform Sampling (US) Sample K records from the database uniformly at random.

• Stratified Sampling (ST) Create B strata, and uniformly sample K
B records from

each one. We use equal depth partitioning to construct the strata.

• AQP++[112]. We implemented the hill-climbing algorithm described in the AQP++

paper. For the 1-D experiments, instead of using a BP-cube, we partition the dataset

with the hill-climbing algorithm then pre-compute aggregations on the partitions to

combine with the sampling results. For multi-dimensional experiments, we construct

a KD-Tree which we describe in detail in Section 2.5.4.

Unless further specified, we use a sample rate of 0.5%, λ=2.576 for a 99% confidence

interval and a precomputation budget of 64 queries. The sample size is much larger than

the precomputation size. Thus, the sample size is a good proxy for query latency.
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Figure 2.3: Median relative error of 2000 random SUM queries on the 3 real-life datasets using a
varying number of partitions and a fixed sample rate of 0.5%.
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————
Approach Mean Cost

US 0.09s
ST 0.35s

AQP++ 0.8s
PASS-ESS 23s

PASS-BSS2x 23s
PASS-BSS10x 23s

COUNT
Intel Insta NYC

0.94% 1.20% 0.50%
0.16% 0.22% 0.08
0.33% 0.37% 0.16%
0.03% 0.038% 0.02%
0.12% 0.17% 0.07%
0.06% 0.06% 0.02%

SUM
Intel Insta NYC

1.61% 1.82% 1.0%
1.0% 1.27% 0.8%
0.5% 0.47% 0.2%
0.05% 0.07% 0.044%
0.23% 0.3% 0.16%
0.1% 0.11% 0.07%

AVG
Intel Insta NYC

1.21% 1.25% 0.87%
1.0% 1.22% 0.89%
0.4% 0.31% 0.22%
0.04% 0.057% 0.04%
0.2% 0.23% 0.15%
0.08% 0.09% 0.07%

Table 2.1: Controlling for worst-case query latency (total number of tuples processed), we demon-
strate that it is possible to construct a synoposis that is highly accurate (less than .1% error) across
2000 random SUM/COUNT/AVG queries. The caveat is a high upfront optimal partitioning cost.

Comparing Baselines

In AQP, one usually evaluates accuracy for a fixed number of sample data points processed.

Since PASS couples result estimation with data skipping, controlling for the exact sample size

is less intuitive. The most straightforward way to compare sampling rates across techniques

is to use the effective sampling size (ESS) (average number of data points processed per

query divided by total data points). ESS is a good metric when the main objective is to

control for query latency because it basically measures the IO cost of answering an aggregate

query. However, solely comparing techniques w.r.t ESS can be misleading if one is concerned

about the size of the synopsis structure. Data skipping could allow one to include more

samples into the synopsis if not all of them are likely to be used for any given query. Thus,

we additionally include a bounded sampling size (BSS) comparison where techniques are

restricted to a maximum number of samples.

36



2.5.2 Accuracy Evaluation

Table 2.1 illustrates the key premise of the paper: with PASS, a user pays an upfront cost for

increased accuracy over future queries. As described in the previous section, we include both

a comparison in terms of ESS and BSS variants of PASS. In the ESS case, for three datasets

and randomly generated queries, a PASS synopsis (0.5% sampling rate and 64 partitions)

achieves less than a 0.1% median relative error. PASS is more accurate than the baselines

across datasets, but does require a larger upfront optimization cost. However, ESS is an

optimistic setting in certain environments with memory constraints. Thus, we additionally

present the BSS versions of PASS. In Table 2.1, we include PASS-BSS2x and PASS-BSS10x

which are bounded to 2 times and 10 times of the online storage of uniform sampling. Due to

the data skipping, PASS-BSS2x evaluates results about 13% faster than US/ST. Even with

bounded storage, they still outperform other baselines significantly in terms of accuracy. For

the rest of the experiments, we will focus on the ESS setting unless explicitly mentioned as

it is the most intuitive.

As a Function of Precomputation

This construction cost is controlled by the number of partitions, which is also the amount

of space allocated for aggregate precomputation. Figure 2.3 illustrates the accuracy on

these three datasets for a fixed sample size of 0.5% and a varying degree of partitions (or

strata in stratified sampling). As the number of partitions decreases the benefits of PASS

also decrease. PASS gives the user a new axis for control in AQP, where she can not only

trade-off query latency but also data structure construction time for additional accuracy.

As a Function of Sample Size

To better understand how each baseline performs, for each dataset, we first fix the partition

size to 64 and vary the sample rate from 10% to 100%. Figure 2.4 shows the median relative
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Figure 2.4: Median relative error of 2000 random SUM queries on the 3 real-life datasets using a
varying sample rate and a fixed number of partitions of 64.
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Figure 2.5: Median confidence interval ratio of 2000 random SUM queries on the 3 real-life datasets
using a varying sample rate and a fixed number of partitions of 64.

error for 2000 random SUM queries on the Intel Wireless dataset, Instacart dataset, and the

New York City Taxi Trip Records dataset. PASS outperforms other baselines starting with a

10% sample rate. PASS not only returns an accurate result it also accurately quantifies this

result with a confidence interval. Figure 2.5 shows the median confidence interval ratio on the

three real-life datasets under the same experimental setting. PASS is a reliable alternative

to pure sampling-based synopses when expensive upfront optimization times can be tolerated.
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2.5.3 Approximated Dynamic Programming Partitioning vs. Equal

Partition

In this experiment, we use different partitioning algorithms to partition the dataset, then we

build a balanced binary tree bottom-up as our partition tree. The partition is later used as

the strata for stratified sampling and is combined with the partition tree to solve a query as

described in previously in Section 2.3. We evaluate the approximated dynamic programming

partitioning algorithm (ADP) and the equal partitioning (or equal depth, equal frequency)

algorithm (EQ). We found our implementation of the hill-climbing algorithm performs very

similar to the equal partitioning algorithm, so it is omitted in this experiment.

We construct a synthetic adversarial dataset of 1 million tuples and 2 attributes. The

predicate attribute contains 1 million unique values. The first 875K tuples have 0 as the value

of their aggregate attribute and the last 125K tuples are generated by a normal distribution.

The left plot of Figure 2.6 shows the result on 2000 random queries generated on the entire

dataset and the right plot shows the result on 2000 random queries generated on the last

125K tuples. The results show that our approximated dynamic programming partitioning

algorithm outperforms the EQ on the challenging queries and performs similarly on the

trivial random queries.

Similarly, we evaluate the 3 real-life datasets by two sets of queries. For each dataset, we

first randomly generate 2000 queries, then we randomly generate another 2000 challenging

queries from the interval with the maximum variance identified using the fast discretization

method we discussed in Section 2.4.3. Figure 2.7 shows the median CI ratio on the challenging

queries generated on the Intel Wireless dataset, Instacart dataset, and the New York City

Taxi Records dataset. The results suggest that in most cases, ADP outperforms EQ on

challenging queries.
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Figure 2.6: Median confidence interval ratio of Approximated Dynamic Programing partitioning
(ADP) vs. Equal Partitioning (EQ) on a synthetic adversarial dataset.

2.5.4 Multidimensional Query Templates

In this section, we evaluate the performance of PASS on multi-dimensional queries on

the NYC Taxi dataset. Using the trip distance attribute as the aggregate attribute and

pickup time, pickup date, PULocationID, dropoff date, dropoff time as the predicates at-

tributes, we build 5 query templates of different dimensions where the ith template uses the

first i attribute(s) as predicate attribute(s).

The PASS variation used in this experiment is called KD-PASS. As described in Section

2.4.4, we build a KD-Tree that uses the fast discretization method to select the leaf node

with the maximum variance for expansion until we reach the maximum leaf count of 1024.

Also to make sure the tree is relatively balanced we limit the difference of the depth of leaf

nodes to be no more than 2. At each expansion of a node, we find the median of each

attribute so the fan-out factor is 2d. The leaf nodes of the KD-Tree forms a partition of the

dataset which is used by ST for sampling and data skipping.

The baseline in this experiment is called KD-US. KD-US also uses a KD-Tree that al-

ways expands the node with the smallest depth and breaks tie randomly until we reach the
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Figure 2.7: Median confidence interval ratio of ADP vs. EQ on challenging queries of the 3 real-life
datasets.

maximum leaf count. The baseline then constructs a set of pre-computed aggregations based

on the partition formed by the leaf nodes which is later combined with uniform sampling to

generate the final answer.

We generate 1000 queries on each query template for evaluation and results can be found

in Figure 2.8. On the left plot, we show the median CI ratio of the two approaches which

indicates KD-PASS outperforms KD-US. On the right figure, we plot the average skip rate of

KD-PASS. We note that as we increase the dimensions of the query, the skip rate decreases.

This is expected because as we increase the dimension, the partitions that are relevant to a

query (thus no skipping) increase exponentially in the worst case.

Due to the sizes of datasets, we use a maximum leaf count (i.e. number of partitions) of

1024 and a dimension of 5. Theoretically, there is no limitation in applying our framework

to higher dimensions and partition sizes with proper engineering efforts.

Workload Shift

In this experiment, we extend the previous experiment on multi-dimensional query templates

and evaluate the performance of KD-PASS and KD-US when the workload does not align

perfectly with the attributes used to generate the pre-computed aggregates. We use the

aggregates generated from Q2, i.e. the 2D query template, to solve all 5 templates. In this
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—
Approach

PASS-BSS1x
PASS-BSS2x
PASS-BSS10x

VerdictDB-10%
VerdictDB-100%

DeepDB-10%
DeepDB-100%

Mean Cost
Latency(ms) Storage(MB) Time(s)

24.8 0.5 20.7
25.7 1.4 20.9
29 5.9 21.1
31 17.8 17
842 176.8 49
21 21.2 86
22 61.5 154

Median Relative Error
Intel Insta NYC NYC-2D NYC-3D NYC-4D NYC-5D

0.34% 0.4% 0.2% 0.68% 2.9% 3.4% 3.6%
0.14% 0.29% 0.17% 0.48% 2% 2.1% 2.26%
0.09% 0.12% 0.08% 0.24% 0.97% 0.9% 1.2%
90.8% 90.8% 90.7% 90.9% 90.6% 90.7% 90.7%
0.09% 0.01% 0.07% 0.27% 0.46% 0.47% 0.48%
0.9% 65.8% 0.9% 5.2% 24.6% 24.8% 25.6%
1.1% 66.1% 1.1% 5.4% 24.7% 24.8% 25.4%

Table 2.2: We compare the median relative error of three PASS variations with VerdictDB and
DeepDB on workloads we used in previous experiments. We measure the average latency of query
processing, the storage, and the construction time (training time for DeepDB) required by each
approach.

setting, the aggregates match Q2 perfectly, but it only shares 1 common attribute with Q1,

2 common attributes with Q3, Q4, and Q5.

The results shown in Figure 2.9 is quite encouraging. In a design like AQP++ that

is without data skipping, as the dimension increases, the pre-computed aggregates will be

less effective in solving a query because more ’hyper-rectangles’ will be intersecting with

the query thus increases the area that needs to be solved by sampling, therefore, the error

(variance) will increase. However, due to the unique design of PASS, as long as the query

template shares one or more common attributes, even the pre-computed aggregates that are

not perfectly aligned with the target query can still be used for aggressive and reliable data

skipping thus increase the accuracy of the sampling and leads to an overall better result.

This can be a favorable feature in exploratory and interactive data analysis.

42



1D 2D 3D 4D 5D
Query Templates

0.00

0.05

0.10

0.15

0.20
M

ed
ia

n 
C

I R
at

io

KD-PASS
KD-US

1D 2D 3D 4D 5D
Query Templates

0.94

0.96

0.98

1.00

A
ve

ra
ge

 S
ki

p 
R

at
e

KD-PASS

Figure 2.8: Multidimensional predicates on the NYC Taxi dataset. (Left) The median confidence
interval ratio of KD-PASS vs. KD-US. (Right) The skip rate of KD-PASS.

Preprocessing Cost

Table 2.3 shows the preprocessing cost in seconds required by PASS given different numbers

of partitions (k in the table) on the NYC Taxi dataset. We use an optimization sample

rate of 0.0025% for the ADP algorithm to partition the dataset. As expected, the cost

increases as we increase k but not significantly. This is because in our implementation we

cache the results of the discretization method, therefore the partitioning cost of k=4 does

not differ a lot with k=64 and the difference in preprocessing cost is mostly due to the

partition tree construction. The cost of k=128 increases because more samples are used for

a larger partition size. The results suggest that as we increase k, the latency decreases and

the accuracy increases, this is because a fine grain partitioning can lead to more aggressive

data skipping and more efficient sampling.

2.5.5 End-to-End Comparison with Other Systems

We run extensive experiments comparing PASS to VerdictDB[109] and DeepDB[56] on the

3 real datasets. In all of these experiments, we use the BSS mode of PASS and explicitly
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Figure 2.9: We use the aggregates constructed for a 2D query template to solve query templates
of other dimensions. Left figure shows the Median confidence interval ratio of KD-PASS vs. KD-
US on the NYC Taxi dataset. Right figure shows the percentage of tuples that are skipped by
KD-PASS.

k Cost(s) Latency(ms) MaxLatency(ms) MedianRE
4 16 14.6 29.2 0.55%
8 18 13 26 0.32%
16 20 11.6 23.3 0.18%
32 22 10.7 21.4 0.11%
64 25 8.9 17.8 0.04%
128 50 6.4 12.9 0.03%

Table 2.3: Preprocessing cost, mean latency, max latency and accuracy given different number of
partitions.

bound the storage size. We record the mean cost in terms of query latency, storage and con-

struction/optimization time across different workloads, and we measure the median relative

error of each approach on different workloads. For PASS, we build three variations using

storage costs of 0.5MB, 1.4MB and 6MB; for VerdictDB, we use scrambles of a ratio of 10%

and 100%; for DeepDB, we train models using 10% and 100% samples of the datasets.

The results in Table 2.2 show that VerdictDB-100% generates overall the most accurate

results but its storage is about the same size of the original datasets, and its latency of

842ms — while 60% less than MySQL — is still much higher than PASS and DeepDB. On
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the other hand, the cost of VerdictDB-10% is more favorable but the accuracy drops a lot.

DeepDB has the lowest latency among the three, its accuracy on the Intel Wireless dataset

and the NYC 1D workload is at the same magnitude as the other two, but much worse on the

Instacart dataset and the higher dimensional queries. And we also noticed that increasing

the size of the training data and the storage cost of DeepDB does not necessarily improve

the results. The three PASS variations demonstrate a trade-off between the costs and the

accuracy: as we increase the storage, the latency increase slightly and the accuracy improves.

The overall performance of PASS is slightly worse than VerdictDB-100% but we believe it is

the most favorable approach given the accuracy and the costs.

2.6 Conclusion

While it has been proposed in previous work, we found theory around the joint use of pre-

computation and sampling in synopsis data structures to be limited. The joint optimization,

over both sampling and precomputation, is complex because one has to optimize over a

combinatorial space of SQL aggregate queries while accounting for the real-valued effects

of sampling. We propose an algorithmic framework that formalizes a connection between

pre-computed aggregates and stratified sampling and optimizes over the joint structure. Our

results are very promising, where we see clear accuracy benefits but with the cost of initial

data structure construction. We further show how to tradeoff cost for accuracy.

As future work, we believe AQP needs to be examined in terms of synopsis construction

and maintenance costs. If expensive up-front costs can be tolerated then accurate results

can be found. Such a result is related to recent interest in learned models for AQP and

cardinality estimation [56, 109, 133].
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CHAPTER 3

JANUSAQP: EFFICIENT PARTITION TREE MAINTENANCE

FOR DYNAMIC APPROXIMATE QUERY PROCESSING

3.1 Introduction

Approximate query processing (AQP) studies principled ways to sacrifice query result accu-

racy for faster or more resource-efficient execution [25, 48]. AQP systems generally employ

reduced-size summaries, or “synopses”, of large datasets that are faster to process. The sim-

plest of such synopsis structures are histograms and samples [32, 87, 8, 80], but many others

have been proposed in the literature. More complex synopses are more accurate for specific

types of queries [130], specific data settings [117], or even are learned with machine learning

models [133, 56, 93]. AQP is particularly interesting and challenging in a dynamic data

setting, where a dataset is continuously modified with insertions and deletions [48, 105, 4].

In this setting, hereafter denoted as DAQP, any synopsis data structures have to be contin-

uously maintained online.

As an example use-case, consider a database aggregating per-stock order data for the

NASDAQ exchange [1]. Suppose, that we would like to build a low-latency SQL interface for

approximate aggregate queries over the past seven days of order data. On a typical day, there

are 25M new orders that correspond to trades that are placed by brokers (up to 70,000 orders

in any given second). A decent fraction of these orders are eventually canceled or prematurely

terminated, for a variety of financial reasons. Thus, this database is highly dynamic with a

large volume of new insertions (new orders) and a small but significant number of deletions

(canceled orders). This paper explores such scenarios with similar motivating applications

in internet-of-things monitoring and enterprise stream processing.

Simple synopses like 1D histograms and uniform samples are easy to maintain dynami-

cally. However, such structures are often inaccurate in high-dimensional data and selective

query workloads. More complex synopses structures, e.g, [133, 87] can be optimized for
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Figure 3.1: JanusAQP manages a collection of DPT synopses by maintaining them online while
periodically re-optimizing partitioning and sample allocation.

a particular instance (dataset and query workload), but are generally harder to maintain

online. For example, recently proposed learned synopses require expensive retraining pro-

cedures which limit insertion/deletion throughput [133, 56, 93]. Even classical stratified

samples may have to be periodically re-optimized and re-balanced based on query and work-

load shifts [8]. These, expensive (re-)initialization procedures can significantly hurt insertion

throughput, and accordingly, almost all existing AQP systems focus on the static data ware-

housing setting1. Unfortunately, the existing techniques that are designed for dynamic data,

such as sketches and mergeable summaries [45, 5, 117], often cannot handle arbitrary dele-

tions or aggregation queries with arbitrary predicates easily. Thus, it is understood that most

synopsis data structures have at least one of the following pitfalls in our desired dynamic

setting: throughput, drift, or generality [25].

This paper explores the DAQP problem and studies ways that we can mitigate the pitfalls

of prior approaches with a flexible synopsis data structure that can continuously re-optimize

itself. We present JanusAQP, a new DAQP system, which supports SUM, COUNT, AVG,

1. A notable exception being the AQUA project [4] from 20 years ago.
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MIN, and MAX queries with predicates under arbitrary insertions and deletions to the

dataset. The main data structure in JanusAQP is a dynamic extension of our recently

published work [86, 87], which we call a Dynamic Partition Tree (DPT). DPT is a two-layer

synopsis structure that consists of a: (1) hierarchical partitioning of a dataset into a tree, and

(2) a uniform sample of data for each of the leaf partitions (effectively a stratified sample over

the leaves). An optimizer determines the best partitioning conditions and sample allocations

to meet a user’s performance goals. For each partition (nodes in the tree), we calculate the

SUM, COUNT, MIN, and MAX values of the partition. Any desired SUM, COUNT, AVG,

MIN, and MAX query can be efficiently decomposed into two parts with the structure: a

combination of the partial aggregates where the predicate fully covers a partition in the

tree, and an approximate part where the predicate partially covers a leaf node (and can

be estimated with a sample). More importantly, this structure is essentially a collection of

materialized views and samples, which can be maintained incrementally.

A core contribution of JanusAQP is online synopsis optimization. JanusAQP contin-

uously monitors the accuracy of all of its DPT synopses to account for data and workload

drift. When a synopsis is no longer accurate, it triggers a re-optimization procedure that

resamples and repartitions the data. This re-optimization problem is both a significant al-

gorithmic and systems challenge. From an algorithmic perspective, JanusAQP needs an

efficient way to determine the optimal partitioning conditions in dynamic data. We propose

an efficient algorithm based on a dynamic range tree index that finds a partitioning that

controls the minimax query error (up to an approximation factor). From a systems perspec-

tive, re-optimization poses a bit of a logistical challenge. New data will arrive as the new

synopsis data structure is being constructed. We design an efficient multi-threaded catch-up

processing algorithm that synchronizes new data and historical data without sacrificing the

statistical rigor of the estimates.

Our prototype version of JanusAQP is integrated with the message-broker framework,

Apache Kafka. Insertions, deletions, and user queries are processed as Kafka topics allowing
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for a multi-threaded DAQP server. In our experiments, we show that DPT is significantly

more accurate than other baselines and state-of-the-art systems such as, reservoir sampling,

stratified reservoir sampling, and the DeepDB system [56]. It also achieves a throughput of

processing nearly 200k records per second, while serving sub-millisecond query latencies.

3.2 Background

We first introduce the core concepts behind the synopses used in this work.

3.2.1 Dynamic Approximate Query Processing

We assume an initial database table D(0). This table D(0) is continuously modified through a

stream of insertions and deletions of tuples. As a design principle, we assume that insertions

are common but deletions are rare. With each insertion or deletion operation, the table

evolves over time with a new state at each time step i: D(0),D(1), . . . ,D(i),D(i+1), . . . A

synopsis is a data structure that summarizes the evolving table. For each D(i), there is a

corresponding synopsis Σ(i): Σ(0),Σ(1), . . . ,Σ(i),Σ(i+1), . . .

In DAQP, the problem is to answer queries as best as possible from only the Σ(i). For a

query q, the estimation error is defined as the difference between the estimated result (using

the synopsis) and the true result (using the current database state):

Error(q,Σ(i)) = |q(D(i)) − q(Σ(i))|

We further assume that there is sufficient cold/archival storage to store the current state of

the table D(i). This data can be accessed in an offline way for initialization, re-optimization,

and logging purposes but not for query processing.

There are a few notable differences from the “streaming” setting. First, most data stream-

ing models do not support arbitrary record deletion, i.e., as studied in [117]. We find that

in many use-cases limited support for deletion is needed due to records that are invalidated
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Figure 3.2: The core data structure in JanusAQP is based on the PASS data structure [87] that
summarizes a dataset with a tree of aggregates at different levels of resolution (granularity of par-
titioning). Associated with the leaf nodes are stratified samples. The two stage synopsis structure
can be optimally partitioned to minimize error.

through an out-of-band, asynchronous data process like fraud detection or financial audit-

ing. Next, most streaming settings enforce a single pass over the data with limited overall

memory. We do not make this assumption and allow for archival storage and slow access to

old data. This is a more realistic AQP setting where all data are stored, however, there is

limited working memory for a fast, approximate query answering service.

3.2.2 Related work

There is significant research in histograms and their variants that is highly relevant to this

project [59, 74, 60]. V-Optimal histograms construct buckets to minimize the cumulative
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variance [59]. There are works on multi-dimensional histograms [80], and histograms on the

streaming/dynamic setting [52, 50]. Like histograms, JanusAQP constructs partitions over

attribute domains and aggregates within the partition. However, we contribute different

partition optimization criteria than typically used in histograms and novel techniques based

on geometric data structures to scale partitioning into higher dimensions. Furthermore, our

system works in the general dynamic setting, unlike [50] where the number of total items must

remain the same. Another related area of research is into mergeable summaries that compute

a partition of the data and optimize sampling at a data partition level [121, 86, 5, 46, 117].

The DPT used in JanusAQP very much behaves like a mergeable summary but a far greater

breadth of downstream queries. Furthermore, some prior work mostly focuses on a streaming

setting without support for deletion [117]. Similarly, sketches [30, 32] have been used to find

a summary of data to answer approximately a variety of queries efficiently. However, they

also do not handle arbitrary range queries using space independent of the size of the full

database. Mergeable summaries and sketches usually focus on optimizing different types

of problems such that frequency queries, percentile queries, etc. This paper shows how

to operationalize a general DAQP system for aggregation queries with both systems and

algorithmic contributions relating to the design of dynamic synopses and their continuous

optimization. Our system can handle arbitrary updates and can estimate any arbitrary

predicate query with provable confidence intervals.

In databases, a number of tree-based indexes, such as the improved R∗ tree [67], have

been used to support range aggregation queries efficiently. The space of such indexes is

super-linear with respect to the input items so they cannot be used for high volume of data,

which is the main focus in this paper. In another line of work, tree-based data structured

are used to return a set of k uniform samples in a query range. More specifically, in [66, 132]

the authors construct indexes such that given a query range Q and a parameter k, they

return k uniform samples from the input items that lie inside Q. These samples can be

used to estimate any aggregation query in the range query Q. There are several issues with
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these indexes in our setting. First, the design of the index in [66] makes their structure

inherently static and it cannot be maintained efficiently. Furthermore, the estimation error

in both indexes is the same as the error in the simple uniform random sampling schema. In

Section 3.6, we show that the error of our new index in real data sets is always less than half

of the error in uniform random sampling, so our new index always outperforms these range

sampling indexes. Finally, the space and the query time of these indexes depend on N , i.e.,

the size of the input set, so they cannot be used on big data.

Dynamic AQP problems have been discussed in prior work [48], however, most existing

systems have focused on a static data warehousing setting [8]. The Aqua system [4] did

consider the maintenance of its synopsis data structures under updates. However, these

synopses were relatively simple and only samples and histograms. Furthermore, we discuss

systems issues such as catch-up processing that was not discussed in [4] or any subsequent

work [49].

Many new AQP techniques use machine learning. The basic ideas exist for a while,

e.g., [61, 62]. Recently, there are more comprehensive solutions that train from a past

query workload [110] or directly build a probabilistic model of the entire database [56, 133].

We show that these systems are not optimized for a dynamic setting. Even when they

can be updated efficiently with warm-start training, their throughput is much lower than

JanusAQP.

3.2.3 Partition Trees for AQP

We propose a new dynamic data synopsis and optimization strategy that is an extension

of our previous work [87]. In particular, we proposed a system called PASS (which we call

SPT for “static partition tree”). SPT synopses are related to works such as [80] in the

data cube literature and hybrid AQP techniques [112]. We showed that with appropriate

optimization of the partitioning conditions, an SPT could achieve state-of-the-art accuracy

in AQP problems.
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Construction

An SPT is a synopsis data structure used for answering aggregate queries over relational

data. To use SPT, the user defines an aggregation column (numerical attribute to aggregate)

and a set of predicate columns (columns over which filters will be applied). An SPT consists

of two pieces: (1) a hierarchical aggregation of a dataset, and (2) a uniform sample of data

for each of the leaf partitions (effectively a stratified sample over the leaves). The system

returns a synopsis that can answer SUM, COUNT, AVG, MIN, and MAX aggregates over

the aggregation column filtered by the predicate columns. Figure 3.2 illustrates a partition

tree synopsis over toy stock-order data.

To understand how this structure is useful, let us overview some of its formal properties.

A partition of a dataset D is a decomposition of D into disjoint parts D1, ...,DB . Each Di

has an associated partitioning condition, a predicate that when applied to the full dataset

as a filter retrieves the full partition. Partitions naturally form a hierarchy and can be

further subdivided into even more partitions, which can then be subdivided further. A static

partition tree T is a tree with B nodes (where each node corresponds to a partition) with

the following invariants: (1) every child is a subset of its parent, (2) all siblings are disjoint,

and (3) the union of all siblings equals the parent.

In an SPT, each node of the tree is associated with SUM, COUNT, MIN, and MAX

statistics over the items in D that lie inside the node. SPT synopses have a flexible height

to tradeoff accuracy v.s. storage. In shorter trees, the leaf nodes of an SPT can cover large

subsets of data and vice versa in deeper trees. Note how each layer of the tree in Figure 3.2

aggregates the lower layer over coarser-and-coarser aggregation conditions (first by “sector”

and then by “order type”).

This structure works well when the queries align with partition boundaries. For example,

a user aggregating total orders by “order type” in Figure 3.2 would get an exact answer with

no approximation. The challenge is to answer queries with predicates that partially intersect

partitions. Due to the tree invariants, the set of partial intersections can be fully determined
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at the leaf nodes. To estimate the contributions of these partial intersections, an SPT

associates a uniform sample of tuples within that partition for each leaf node.

Query Processing

Using an SPT, a user can estimate the result of a query as follows. Essentially, the query

processing algorithm identifies “fully covered” nodes that are contained in the query predicate

and “partially covered” ones that overlap in some way. Exact statistics from the “fully

covered” nodes can be used, while estimates can be used to determine the contribution of

“partially covered” ones. We present SUM, COUNT, AVG for brevity, but it is also possible

to get estimations for MIN and MAX.

Step 1: Frontier Lookup. Given a query predicate q, traverse the tree top-down

to retrieve two sets of nodes partitions: Rcover (nodes that fully cover the predicate) and

Rpartial (nodes that partially intersect the predicate). Nodes that do not intersect the

predicate can be ignored.

Step 2: Partial Aggregation For each partition in Rcover, we can compute an exact

“partial aggregate” for the tuples in those partitions. For a SUM/COUNT query q: agg =∑
Ri∈Rcover

SUM(Ri), for an AVG query, we weight the average by the relative size of the

partition: agg =
∑
Ri∈Rcover

SUM(Ri)
Ni
Nq

, where Ni is the size of the partition Ri, Nq is

the total size in all relevant partitions of query q, and SUM(Ri) =
∑
t∈Ri∩D t.a is the sum

of the aggregation values of all tuples in the partition Ri.

Step 3: Sample Estimation. Each partition in Rpartial is a leaf node with an associated

stratified sample. Within each stratified sample, we use standard AQP techniques to estimate

that partition’s contribution to the final query result [8]. For completeness, we include those

calculations here. Suppose a partition Ri has a set Si of mi samples and there are Ni

total tuples in Ri. We can formulate COUNT, SUM, AVG as calculating an average over

transformed attributes: f(Si) = 1
mi

∑
t∈Si φq(t), where φq(·) expresses all the necessary
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scaling to translate the samples in query q into an average query population. In particular,

if we define Predicate(t, q) = 1 if tuple t satisfies the predicate of query q, and 0 otherwise,

we have

• COUNT: φq(t) = Predicate(t, q) ·Ni

• SUM: φq(t) = Predicate(t, q) ·Ni · t.a

• AVG: φq(t) = Predicate(t, q) · mi∑
t∈Si

Predicate(t,q)
· t.a

We run such a calculation for each partition that is partially covered. These results are

combined with a weighted combination like before. For SUM/COUNT queries it is: samp =∑
Ri∈Rpartial

f(Si). And for AVG queries, it is: samp =
∑
Ri∈Rpartial

f(Si) · Ni
Nq

. Ni and Nq

can be exactly retrieved from the statistics computed for each partition.

Step 4: Final Estimate. The results can be found by taking a sum of the two parts:

result = samp + agg. For this result estimate, confidence intervals can be calculated using

standard stratified sampling formulas.

PASS and JanusAQP comparison. As we noted, JanusAQP is an extension of PASS in

the dynamic setting. However, there are key differences between the two systems, since PASS

is an inherently static index that cannot handle dynamic updates. The main differences and

novelties of our new system JanusAQP comparing to PASS are the following: i) PASS finds a

static partitioning that is not changing after insertions and deletions of items. In JanusAQP

we propose algorithms (Subsection 5.4) that automatically check if a re-partitioning is needed

after the dynamic updates. As we show empirically in Section 3.6 the re-partitioning method

is very important and leads to much lower errors comparing to PASS with a fixed partition

tree. ii) Even if re-partitioning is allowed in PASS, the algorithms we proposed in [87] do not

run efficiently in the dynamic setting. Here we propose dynamic indexes and algorithms with

theoretical guarantees that perform much faster than the algorithms in PASS. In Section 3.6

we show that our new dynamic indexes can construct a new partitioning extremely faster
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than the partitioning algorithm of PASS. iii) Even if we use our new dynamic algorithms

in PASS, there is no mechanism to compute the exact statistics of the nodes after a re-

partitioning happening and there is no mechanism handling the updates as the re-partitioning

is executed. In this paper we introduce a novel multi-thread approach called the catch-up

phase. JanusAQP can improve the estimators in the nodes of DPT after a re-partitioning,

while handling new dynamic updates and new queries.

3.3 System Architecture

In this section, we describe the JanusAQP architecture.

3.3.1 Construction and Optimization API

First, we overview how users construct synopsis data structures in JanusAQP. Unlike sys-

tems like BlinkDB [8], JanusAQP does not use a single synopsis to answer all queries. Much

like index construction in a database, users choose which attributes to include in the synopsis

structure. Each synopsis can answer query templates of the following form:

SELECT SUM/COUNT/AVG/MIN/MAX(A) FROM D

WHERE Rectangle(D.c1 ,...,D.cd)

where A is an aggregation attribute and c1, ..., cd are predicate attributes used in some

rectangular predicate region (a conjunction of >,<,= clauses). The dimensionality of a

synopsis is the number of predicate attributes d. To construct a synopsis, the user must

define the following basic inputs:

• Aggregation Attribute. An attribute A that is the primary metric for aggregation.

• Predicate Attributes. A collection of d columns c1, ..., cd that are used to filter

the data prior to aggregation.

• Memory Constraint. The maximum amount of space that the synopsis can take.
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• Query Processing Constraint. The maximum bytes of data that the system

should process in answering a query.

• Historical Data Limit. How much historical data to include in the synopsis, i.e.,

the earliest time-step of data included in the system.

JanusAQP contains an optimizer that integrates these constraints into a solver that produces

an optimized synopsis (one with low error). Beyond these basic knobs that are relevant to

most AQP systems, there are two other considerations discussed in this paper: Catch-Up

Processing. Constructing a synopsis will require some amount of computational time.

While incremental maintenance might be efficient, constructing the initial synopsis S(0) from

the initial database state D(0) might be very expensive if there is a significant amount of

initial data. However, as the initial S(0) is being constructed new data will arrive, and the

system will require additional processing to catch up. JanusAQP optimizes the catch-up

process using a multi-threaded system and approximate internal statistics for the partition

tree. This process minimizes the amount of time where the system is unable to process

new data or queries. The user decides how much processing to expend during catch up, the

quicker the system is ready, the higher the error will be.

Throughput. The maximum data throughput is the maximum rate of insertions and dele-

tions that the system can support. Throughput depends on the complexity of the synopsis

used.

3.3.2 Data and Query API

For processing queries and data, we adopt the PSoup architecture where both queries and

data are streams [21]. JanusAQP supports three types of requests: insertion of a new tuple,

deletion of an existing tuple and querying of the existing tuples. Thus, there are three Kafka

topics insert(tuple), delete(tuple), and execute(query).

The use of Kafka, with its timing and delivery guarantees, simplifies the query processing
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semantics. The system will process the incoming stream of queries in order. Each query will

have an arrival time i, which is the current database state at the time at which the query is

issued. Therefore, we define q
(i)
j as the jth query in the sequence that arrives at database

state i. Query results should reflect all of the data that has arrived until the time point i.

3.3.3 Summary and Algorithmic Contributions

To summarize, the usage of JanusAQP can be thought of as a life cycle. (1. Initialization)

The user triggers synopsis construction through an API call. (2. Catch-Up) The system will

online construct the synopsis while managing new data arriving into the system. (3. Query/-

Data Processing) Then, JanusAQP is ready to process requests of insertions, deletions, and

queries. (4. Re-Initialization) As JanusAQP processes more updates, the data or query

workload could drift requiring re-partitioning. This procedure re-enters the initialization

phase.

Throughout the rest of the paper, we present technical contributions throughout this

synopsis life cycle:

• Dynamic Partition Trees (Section 3.4) The core data structure in JanusAQP is

called a dynamic partition tree (DPT). This data structure aggregates data at multiple

levels of resolutions and associates some of the aggregates with stratified samples. The

size of the tree (i.e., depth and width) can be changed to tradeoff accuracy at the

cost of increased storage and throughput. The sampling rate at the leaf nodes can be

adjusted to tradeoff query latency with accuracy.

• Warm-Start Deployment (Section 3.4.3) Next, we present a multi-threaded tech-

nique that allows DPT synopses to be deployed in dynamic environments accounting for

new data that might arrive during their construction. This component crucially allows

for either partial or full online re-partitioning and re-balancing of the data structure.

• Minimum Variance Partitioning (Section 3.5) We describe a new, efficient al-
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Table 3.1: Table of basic notation
D Full database Hi H ∩Ri

N |D| mi |Si|
S Set of reservoir samples hi |Hi|
H Set of catch-up samples m |S|
Ri Partition/bucket/rectangle t Tuple in D
|Ri| |Ri ∩ S| t.a Aggregation value of tuple t
Ni D ∩Ri T Partition tree in DPT
Si S ∩Ri

gorithm for selecting the DPT tree structure that minimizes the worst-case estimation

error.

3.4 Dynamic Partition Trees

We discuss how Dynamic Partition Trees (DPT) are constructed, how they answer queries,

and how they are maintained under updates. Structurally, a DPT is essentially the same

data structure as an SPT; however, the way that the partition statistics and samples are

represented differ to allow for incremental maintenance. Figure 3.3 summarizes the basic

update process.

3.4.1 Incrementally Maintaining Nodes

Each node defines a partition and contains statistics (the SUM, COUNT, MIN, and MAX

aggregates) of the data contained in that partition. The key challenge is to keep these

statistics up-to-date in the presence of insertions and deletions. When an insertion or deletion

arrives, an entire path of nodes from the leaf to the root will have to be updated.

DPT Nodes: First, we discuss how we represent the statistics in a DPT node. Since the

SUM and COUNT are easy to incrementally maintain under both insertions and deletions,

we simply store a single SUM and COUNT value for each aggregation attribute. The MIN

and MAX values are harder to incrementally maintain. To store the MIN and MAX values,

we store the top-k and the bottom-k values in a MIN/MAX heap respectively. The top value

of these heaps is equal to the MIN and MAX of all the data in the node.
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Figure 3.3: The DPT update process for an insertion or deletion. (1) A set of samples is maintained
using a reservoir sampling algorithm. (2) The leaf node statistics are incrementally updated. (3)
The updated statistics from the leaf node propagate to the parents. (4) Updated statistics from
the parents propagate all the way to the root.

Insert New Record: When a new record is inserted, we first test each leaf node to see if

the record is contained in the node. Once find the appropriate leaf node, we then increment

the SUM and COUNT statistics accordingly. Finally, we push the new aggregation values

onto the heap. If the heap exceeds the size limit k, then the bottom value on the heap is

removed.

Delete Existing Record: When an existing record is deleted, we first test each leaf node

to see if the record is contained in the node. Once find the appropriate leaf node, we then

decrement the SUM and COUNT statistics accordingly. Finally, if that aggregation value is

contained in the heap it is removed from the heap.
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3.4.2 Maintaining Stratified Samples

Next, we describe how to maintain the samples associated with leaf nodes. We use a modified

version of the well-known technique of reservoir-sampling [129] under updates [49]. The

details of how we implement this are interesting. Conceptually, each leaf node is associated

with a physically disjoint sample of just that partition, i.e., a stratified sample. Instead of

physical strata, we implement virtual partitions of a single global sample. This global sample

can be maintained using a reservoir sampling algorithm and makes it easier to control the

overall size of the synopsis under insertions/deletions as well as simplifies concurrency control.

Sample Representation: The DPT maintains a “pooled” sample (all the relevant sam-

ples in a single data structure). This set of samples has a target size of 2m tuples. At

the construction time, we choose a set S of 2m uniform random samples from D. The

update procedure ensures that there are always between m ≤ |S| ≤ 2m samples. The leaf

nodes index into this “pooled” sample selecting only the relevant data to their corresponding

partitions.

Insert New Record: Suppose we insert a new tuple t. If |S| < 2m we add t in S. If

|S| = 2m, we choose t with probability
|S|
|D| . If it is selected then we replace t with a point

from S uniformly at random.

Delete Existing Record: Next, suppose that we delete a tuple t from D. If t /∈ S we

do not do anything. If t ∈ S then we check the cardinality of S. If |S| > m then we only

remove t from S. If |S| = m then we skip the set S and we re-sample 2m items from D.

As shown in [49] this procedure always maintain a set of uniform random samples. Using a

simple dynamic search binary tree of space O(m) we can update the samples S stored in T

in O(height(T )) time.
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Figure 3.4: JanusAQP synopses can be re-initialized online using a multi-threaded implementation
to minimize unavailability

3.4.3 Re-initialization and Catch-Up

As we noted before, repeated deletes on the same leaf partition can degrade the accuracy

of the synopsis. As we will see in the next section, it is also possible for repeated insertions

to degrade the accuracy as well. In such cases, re-initialization of the DPT may be needed

where the data structure is re-built and re-optimized over existing data.

Enabling periodic re-initialization is crucial for reliable long-term deployment but is chal-

lenging because new data will not simply stop arriving during the re-initialization period.

As the dataset size grows, the amount of time needed for re-initialization will grow as well.

We employ a multi-threaded approach to minimize any period unavailability for processing

new data arrival as well as new queries (Figure 3.4). When re-initialization is triggered, the

main processing thread initiates the construction of a new DPT synopsis and the following

steps are performed:

1. Optimization Phase (In Parallel)

• The partition optimization algorithm analyzes the data in the pooled reservoir

62



sample to determine the optimal new partitioning criteria. It returns a new empty

DPT with no node statistics.

• In parallel with (Step 1), the old synopsis is maintained under all insertions and

deletions that happen during the optimization algorithm. Queries can still be

answered with the old synopsis.

2. (Blocking) Approximate node statistics are populated into the new synopsis using the

pooled reservoir sample S (note, that this will reflect any data that arrived during the

optimization phase). This is the only blocking step in the re-initialization routine and

new data and queries will have to wait until completion.

3. The old synopsis is discarded.

4. The system resamples a uniform sample of data from archival storage to be the new

pooled reservoir sample. Queries and results can still be processed on the new synopsis

even without a sample.

5. Random samples of historical data are used to improve the node statistics in the

background until a user-specified “catch-up” time.

This process is the key difference between an SPT and an DPT, where after catch-up the

node statistics may be inexact. However, this old data is propagated in a random order,

which means that the SUM,COUNT,AVG values in each node will be unbiased estimates of

their full data statistics. The duration of the catch-up phase can be chosen by the user. For

example, in our experiments, the catch-up phase does not stop until we get 0.1 · |D| samples.

It is worth noting that queries close to the beginning of the catch-up phase will have a

higher error, however queries towards the middle or the end of the catch-up phase will have

a smaller error. In Section 3.5.4, we describe how to trigger re-initialization. Furthermore,

there is only one step (2) where the synopsis is unavailable to process queries and data (has

the duration of 100s of milliseconds in our experiments).
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3.4.4 Answering Queries With a DPT

The basic structure of the result estimator is the same as before, especially for the Rpartial

partitions. However, there are a few key changes due to the nature of the catch-up phase.

In SPT, for each partition in Rcover, we can compute an exact “partial aggregate” for the

tuples in those partitions and combine the partial aggregates. In a DPT, this process changes

considering the estimations we get from the catch-up samples. Overall, the estimation of

a partition Ri ∈ Rcover consists of i) estimation using the catch-up samples H and the

formulas of Section 3.2.3, ii) the exact statistics of the new inserted tuples in Ri, and iii)

the exact statistics of the deleted tuples in Ri (recall that the quantities in ii), iii) are stored

and maintained as described in the Incrementally Maintaining Statistics in Section 3.4.1).

By taking the sum of i), ii) and subtracting iii) we get the unbiased estimation in partition

Ri.

Let H be the set of catch-up samples and Hi ⊆ H be the subset of H that lie in a

partition Ri, and hi = |Hi|. All basic notations are defined in Table 3.1. The formulas for

estimating COUNT and SUM queries in both Rcover, Rpartial from Section 3.2.3 contain

the factor Ni
mi

or Ni
hi

, while the formulas for estimating the AVG contain the factor Ni
Nq

. In

DPT we do not have the exact values for Ni. Instead, we use an estimate of the size of

the partition Ri denoted by N̂i. In particular we use the catch-up samples H to estimate

N̂i = hi
h N .

Confidence Intervals

While the estimators do not significantly change from an SPT to a DPT, the confidence

intervals are calculated very differently. This is because there are now two sources of errors:

estimation errors due to the stratified samples and estimation errors in the node statistics.

Both these sources of errors have to be integrated into a single measure of uncertainty.

Assuming that all partitions are large enough, the central limit theorem can be used to

asymptotically bound the estimation error for SUM/COUNT/AVG queries. Informally, the
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central limit theorem states that this asymptomatic error is proportional to the square-root

of the ratio of estimate variance and the amount of samples used ∝
√

var(esti)
mi

. We simply

have to match terms to this formula for all sample estimates and all node estimates because

both are derived from samples.

Error in Node Estimates. First, let’s account for all the uncertainty due to catch-up.

Recall that H is the set of catch-up samples we have considered so far and Hi ⊆ H is the

samples in partition Ri with hi = |Hi|. We note that we do not store the set H or the subsets

Hi, instead we only use the new catch-up samples to continuously improve the statistics we

store in the nodes. Using the notation in the previous section, we can calculate the catch-up

variance νc:

νc(q) =
∑

Ri∈Rcover

w2
i
var(φq(Hi))

hi

where wi = N̂i

N̂q
for AVG queries and wi = 1 for SUM/COUNT queries. Calculating φq(Hi)

is straight-forward. We simply store additional information that allows us to efficiently

calculate the variance. For any node i of T we store hi,
∑
t∈Hi

t.a2,
∑
t∈Hi

t.a.

Error in Sample Estimates. For a partition Ri ∈ Rpartial, let Si ⊆ D be the set of

samples in S that lie in partition Ri and let mi = |Si|. Like the catch-up variance, we can

calculate the sample estimate variance νs:

νs(q) =
∑

Ri∈Rpartial

w2
i
var(φq(Si))

mi

We can calculate an overall confidence interval as:

±z ·
√
νc(q) + νs(q)

where z is a normal scaling factor corresponding to the desired confidence level, e.g., z = 1.96

for 95%. As before, wi = N̂i

N̂q
for AVG queries and wi = 1 for SUM/COUNT queries.
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3.5 Optimal DPT Partitioning

We next describe a new dynamic partitioning algorithm designed for the dynamic setting.

3.5.1 Preliminaries and Problem Setup

The partitioning algorithm analyzes the pooled reservoir sample of data to determine how

best to partition the dataset. The goal of the partitioning algorithm is to find a partitioning

such that the subsequent queries issued to the DPT have low-error. Surprisingly enough,

the partitioning algorithm does not need an exact query workload to perform this optimiza-

tion. It simply needs a focus aggregation function (e.g., SUM, COUNT, AVG) and finds a

partitioning that minimizes the worst-case query error for sufficiently large predicates.

Given a set of O(m) samples S, the goal is to construct a data structure that supports

the following operations. (i) Insert or delete a sample from S efficiently, and (ii) when a

partitioning request comes, it creates a near-optimum partition tree T in o(m) time.

In order to find a near-optimum partition tree we define the following optimization prob-

lem. Let Q be a set of possible aggregate queries with a predicate. And, let Θ be the set of

all DPT synopses defined by rectangular partitioning conditions over k partitions. The main

optimization objective is to minimize the maximum error over the query workload:

min
T ∈Θ

max
q∈Q

Error(q, T ) (3.1)

The error is defined as the length of the confidence interval, as defined in the previous section.

Since the catch-up variance is usually extremely smaller than the sample estimate variance,

we focus on minimizing the maximum length of the confidence interval with respect to the

sample estimate variance νs(·). For simplicity, when we say variance we always mean the

sample estimate variance.

The above problem still seems challenging because queries can intersect partitions and

cut a tree in arbitrary ways, but our recent work shows an important simplification [87]
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(under mild technical conditions about the size of partitions). Instead of looking over all

possible queries to minimize the maximum error, one only needs to focus on single partitions

to ensure they do not have “high-variance” sub-partitions. Indeed by considering only these

sub-partitions we can still get a
√
k-approximation for COUNT and SUM queries over the

optimum partition considering all queries (for k leaves). The approximation factor improves

to
√

2 for d = 1. For AVG queries the error of the optimum partition of this simplification

is the same with the maximum error considering every possible query.

The error of a query q inside a leaf node (partition) Ri is defined (expanding the equations

from the definition of νs(·)) as

N2
i

m3
i

mi

∑
t∈q

t.a2−

∑
t∈q

t.a

2
 , 1

mi|q ∩ S|2

mi

∑
t∈q

t.a2−

∑
t∈q

t.a

2
 .

for SUM/COUNT and AVG queries, respectively.

Thus, the optimization problem reduces to finding partitions that do not contain a high-

variance “rectangle” of data. Unfortunately, all algorithms in [87] are designed only for the

static case and their running is always super-linear Ω(m) with respect to the samples. Hence,

their algorithms cannot be used to satisfy the requirements in the dynamic setting.

One of the core subroutine of all our new partitioning algorithms is the following. Given a

rectangle R, the goal is to find a rectangular query within R with maximum variance among

all possible queries in R ∩ S. For now, we assume that we have a dynamic index M with

near-linear space such that given a query rectangle R, it returns a query q within R with

νs(q) ≥ 1
γV(R), for a parameter γ > 1, in O(M) time, where V(R) is the variance of the

maximum variance rectangular query in R. LetM(R) be the variance of the query returned

by the index M. We describe this index with more details in Subsection 3.5.3.
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3.5.2 Partitioning for d = 1

Now, we discuss how to solve the partitioning optimization problem in one dimension. We

present results for SUM and AVG queries. COUNT can be thought of as a special case of

SUM with binary data. The basic trick is to search over a discretized set of possible variance

values. For each value e, we try to construct a partitioning of k partitions such that in each

bucket the length of the longest confidence interval of a query is at most e. By systematically

reducing e in each iteration, we control for the worst-case error.

Bounding the Error. The first step is to calculate the bounds for the maximum length

of the largest possible confidence interval among queries that intersect one partition. We

assume that the aggregation value of any item in D is bounded by a maximum value U and

a minimum non-zero value L. We allow items to take zero values since this is often the case

in real datasets but no item with positive value less than L or larger than U exists. We

assume that U = O(poly(N)) and L = Ω(1/poly(N)). In the full version of the paper [2] we

show that the length of the longest confidence interval is also bounded by O(poly(N)) and

Ω(1/poly(N)).

Description of Algorithm. We describe the partitioning algorithm for SUM queries. The

procedure is identical for AVG queries. For a parameter ρ ∈ R with ρ > 1, let E = {ρt | t ∈

Z, L√
2
≤ ρt ≤ NU} ∪ {0}, be the discretization of the range defined by the lower and upper

bound of the longest confidence interval (as defined in the previous paragraph). We run a

binary search on the values of E. For each value e ∈ E we consider, we try to construct a

partitioning of k partitions such that in each partition the length of the longest confidence

interval of a query is at most e. If there exists such a partitioning we continue the binary

search with values e′ < e. If there is no such a partitioning we continue the binary search

with values e′ > e. In the end of the binary search we return the last partitioning that we

were able to compute.

It remains to describe how to check if a partitioning with k buckets (intervals) with max-
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imum length confidence interval at most e exists. A high level description of the algorithm

is the following.

1. For i = 1 to k

(a) Let bi be the i-th bucket with left endpoint ta

(b) Binary search on samples tj to find the maximum bucket bi with error at most e

(c) If
√
M([ta, tj ]) ≤ e

i. Continue search for values > j

ii. Else Continue search for values < j

2. If the partitioning contains all samples construct T using bi as its leaf nodes. Otherwise

T = ∅.

We start with the leftmost sample, say t1, which is the left boundary of the first bucket. In

order to find its right boundary we run a binary search on the samples S. Let tj be one of the

right boundaries we check in the binary search, and let b1 = [t1, tj ]. If
√
M(b1) ≤ e then we

continue the binary search with a sample at the right side of tj (larger bucket). Otherwise,

we continue the binary search with a sample at the left side of tj (smaller bucket). When

we find the maximal bucket with longest confidence interval at most e we continue with the

second bucket repeating the same process for at most k buckets. In the end, if all samples in

S are contained in k buckets then we return that there exists a partitioning (with k buckets)

with maximum variance at most e. If we cannot cover all samples in k buckets then we

return that there is no partitioning with k buckets and maximum variance at most e.

Correctness. In the full version [2] we use the monotonic property of the longest

confidence interval (the bigger the bucket the larger the error) and we show
√
V(b′) ≤√

γM(b′) ≤ √γe′ ≤ ρ
√
γ
√
V(b∗), where b′ is the bucket with the longest confidence interval

in the returned partitioning, e′ is the smallest value in E such that
√
V(b∗) ≤ e′, and b∗ is

the bucket of optimum partitioning with the largest confidence interval. For d = 1 we have
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that γ = 4 for SUM and AVG queries queries, so we get a partitioning where the maximum

error is within 2ρ
√

2 of the optimum error for SUM queries and within 2ρ of the optimum

error for AVG queries.

Running time. Since, L,U are polynomially bounded on N we have that |E| =

O(logρN) and it can be constructed in O(logρN) time. The binary search over E takes

at most O(log logρN) steps. We can decide if there exists a partitioning with error e in

O(kM logm) time. Overall, the running time of our algorithm is O(kM logm log logρN).

If ρ is a constant, for example ρ = 2, then the running time is O(kM logm log logN). In

the full version [2] we have that in 1-dimension M = O(logm) for SUM and AVG queries.

Notice that if we skip the log factors the running time depends only linearly on the number

of buckets k and the approximation factor is constant.

3.5.3 Partitioning in Higher Dimensions

Indexing To Find Maximum Variance

Now, we describe the core index M that we use in all our partitioning algorithms for any

dimension d ≥ 1. 2 The exact description of the index depends on the type of aggregation

queries we focus on.

For SUM and COUNT queries, we propose a simple index to find the query with the

largest variance in a query rectangle. In particular, we build a dynamic range tree on

S. Given a query rectangle R, we split it into two smaller rectangles R1, R2 such that

|R1 ∩ S| = |R2 ∩ S| = |R ∩ S|/2. Using a dynamic range tree [34] we return the rectangle

Ri (either R1 or R2) with the largest variance. We can show that νs(Ri) ≥ 1
4V(R). The

running time and the update time is O(logdm).

For AVG queries, the algorithm proposed in [87] cannot be extended to the dynamic

case. Hence we propose a new dynamic index with a better approximation factor. Similarly

2. Due to space limitations, we only provide a high-level description. All the details and technical proofs
will be shown in the full version of the paper [2].
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to [87], we assume that every valid query that is contained in a bucket of the partitioning

must contain at least 2δm samples (for a small parameter δ < 1), otherwise the estimation

is not accurate. For simplicity, we use the notation Õ(·) to hide log(m) factors. In the

full version [2] we show the following crucial observation: for any rectangle q inside a query

rectangle R with |q ∩ S| = δm that maximizes
∑
t∈q∩S t.a

2, it holds that νs(q) ≥ 1
4V(R).

Hence, we build a dynamic index so that given a query rectangle R it returns a rectangle

that contains δm samples and the sum of squares of their aggregate values is close to the

maximum sum.

We build a dynamic range tree T ′ over the samples S, storing the number of samples

in each node of the tree. Furthermore, we build another empty dynamic range tree T . We

will use T to store weighted rectangles (as points in 2d) that contain at most δm samples.

More specifically, we store in T the canonical rectangles of T ′ that contain at most δm

samples. Notice that there are Õ(m) nodes in T ′ hence T uses Õ(m) space. When we have

an insertion or deletion in T ′ there are only Õ(1) nodes/rectangles that are updated, hence

we can update both T ′ and T in Õ(1) time. Given a query rectangle R we use T to find

a rectangular query q∗ with the largest sum inside R in Õ(1) time. From the definition of

a range tree, for any rectangle there is a partitioning of logd+1m canonical rectangles from

T ′. Hence we can show that νs(q
∗) ≥ 1

4 logd+1m
V(R). The exact complexities depend on the

dynamic range tree structure we use; our data structure has roughly O(m log3dm) space,

O(log3dm) update time, and O(log2dm) query time.

Partitioning

We construct a partitioning by building a k-d tree using the dynamic procedure M as we

described above. The construction is similar to the construction in [87]. However, they

construct a near optimum k-d tree in time O(km) skipping the log factors. Here, we use

our improved index M to construct a k-d tree faster (in roughly O(k) time) with better

approximation guarantees.
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The high level description of the algorithm is the following.

1. Max Heap C containing partition R1 covering all items in D

2. For j = 2 to k

(a) Extract the partition Ri with maximum M(Ri) from C

(b) Create a partitioning of Ri of two partitions Ri1 , Ri2 by splitting on the median

of Ri

(c) Insert M(Ri1), M(Ri2) in C

(d) Set Ri1 , Ri2 as children of Ri in T

We can show that such a tree construction returns a partitioning which is near optimal

with respect to the optimum partition tree construction following the same splitting criterion:

split on the median of the leaf node with the largest maximum variance query. Overall we

construct a data structure that can be updated in O(polylogm) time. For a (re-)partition

activation over a set S of m samples, we can construct a new T with the following guarantees:

For COUNT/SUM queries, T can be constructed in O(k logdm) time with approximation

factor 2
√
k. For AVG queries, T can be constructed in O(k log2dm) time with approximation

factor 2 log(d+1)/2m. In all cases we can construct near-optimum partitions in Õ(k) time.

3.5.4 Re-Partitioning Triggers

Assume that the current partitioning is R and let M(R) be the (approximate) maximum

variance query with respect to the current set of samples S. JanusAQP first checks the

number of samples in each bucket (leaf node) of the current T . If there is a leaf node i

associated with partition Ri such that |Si| << 1
α logm (where α is the sampling rate) then

there are not enough samples in u to make robust estimators. Hence, we need to find a new

re-partitioning. Even if the number of samples in each bucket is large our system might

enable a re-partitioning: For a partition Ri in the leaf node layer of T let Mi = M(Ri)
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be the (approximate) maximum variance at the moment we constructed T . Let β > 1 be

a parameter that controls the maximum allowable change on the variance. It can either

be decided by the user or we can set it to β = 10. Assume that an update occurred in

the leaf node associated with the partition Ri. After the update we get M′i = M(Ri). If

1
βMi ≤M′i ≤ βMi then the new maximum variance in partition bi is not very different than

before so we do not trigger a re-partition. Otherwise, the maximum variance in bucket bi

changed by a factor larger than β from the initial varianceMi. In this case a re-partitioning

might find a new tree with smaller maximum error. We compute a new partitioning R′ and

hence a new tree T . If M(R′) < 1
βM(R) then we activate a re-partition restarting the

catch-up phase over the new tree T . On the other hand, if M(R′) ≥ 1
βM(R) then our

current partitioning R is good enough so we can still use it. Of course, the user can also

manually trigger re-partitioning. For example, the user can choose to re-partition once every

hour, day, or after τ insertions and deletions have occurred. In the full version [2], we also

describe how JanusAQP can execute either partial or full re-partitioning.

3.6 Experiments

We run our experiments on a Linux machine with an Intel Core i7-8700 3.2GHz CPU and

16GB RAM.

3.6.1 Setup

To set up each experiment, we select a single aggregate attribute and one or more predicate

attributes. We generate query workloads of 2000 queries by uniformly sampling from rect-

angular range queries over the predicates. We then initialize a JanusAQP instance with a

user-specified sample rate, a catch-up ratio and a number of leaf nodes of the partition tree

to compare with other baselines (these parameters directly control the Throughput, Query

Latency, and Storage Size).
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Datasets

Intel Wireless dataset. The Intel Wireless dataset [115] contains 3 million rows of sensor

data collected in the Berkeley Research lab in 2004. Each row contains measurements like

humidity, temperature, light, voltage as well as the date and time each record was collected.

New York Taxi Records dataset. The New York City Taxi Trip Records dataset [128] contains

7.7 million rows of yellow and green taxi trip records collected in January 2019. Each

record contains information about the trip including pickUpDateTime, dropOffDateTime,

tripDistance, dropOffLocation, passengerCount, etc.

NASDAQ ETF Prices dataset. The NASDAQ Exchange Traded Fund (ETF) Prices

dataset[107] contains 2166 ETFs traded in the NASDAQ exchange from April 1986 to April

2020. There are 4 million entries in the dataset and each entry contains the date, the volume

of transactions of an ETF on the date, and 4 prices: the price of an ETF when the market

opens and closes; the highest and the lowest of its daily price range.

Metrics and ground truth

In terms of performance, we report the wall-clock latency and the throughput, i.e. number of

requests (query/data) processed per second. To measure the accuracy of the system, unless

otherwise specified, we report the 95 percentile of the relative error which is the difference

between ground truth and estimated query result divided by the ground truth. We define

the ground truth to be w.r.t all the tuples available when the query arrives, i.e. the true

results reflect all insertions and deletions up to its arrival point. With this setup, the results

indeed depend on the sequence of requests that are processed by the system. To make sure

our experiments are deterministic, we fix this sequence up-front and ensure they are the

same for each baseline.
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Baselines

We evaluate the following baselines. All of these baselines are tuned to roughly control for

query latency.

Reservoir Sampling (RS) and Stratified Reservoir Sampling (SRS). We construct

a uniform sample of the entire data set which is maintained using the reservoir sampling

algorithm [129]. We use a variant of RS first designed for the AQUA system that handles

both insertions and deletions [49]3. Unless otherwise noted, we use a 1% sample of data.

For stratified seservoir sampling, the strata is constructed using a equal-depth partitioning

algorithm.

DeepDB. We also compare with a machine learning-based baseline called DeepDB[56].

DeepDB achieves state-of-the-art AQP results in the static setting, and we chose it as a

baseline since it has limited support for dynamic data. In our baseline, DeepDB trains on

10% of the data. We set this to be equivalent to the “catch-up” sampling in DPT.

Dynamic Partition Tree-Only (DPT). We compare with a baseline of only using a

single DPT synopsis without online optimization. This synopsis is constructed once and

then used for the duration of the experiment. Unless otherwise noted there are 128 leaf

nodes in a balanced binary tree, the leaf nodes are associated with 1% samples of their

respective strata, and the catch-up sampling rate 10% of the data.

JanusAQP. Finally, we evaluate the full-featured JanusAQP system. This includes a DPT

and also performs re-partitioning if needed. Unless otherwise noted there are 128 leaf nodes

in a balanced binary tree, the leaf nodes are associated with 1% samples of their respective

strata, and the catch-up sampling rate 10% of the data.

The storage costs of the baselines on the NYC Taxi dataset given the typical setting (128

leaf-nodes, 10% catch-up rate, and 1% sample rate) are the following, reservoir sampling

baseline takes about 5MB, JanusAQP and DPT takes about 6MB, a DeepDB baseline trained

3. Due to its age, a direct comparison with AQUA was not feasible.
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with 10% of the data is about 60MB.

3.6.2 Accuracy

—
Approach
JanusAQP

DeepDB
RS
SRS

Intel (%)
0.2 0.5 0.9
0.67 0.62 0.33
1.5 1.7 0.8
2.1 1.6 1.3
1.3 1.3 1.2

NYC (%)
0.2 0.5 0.9
0.48 0.22 0.2
4.7 4.7 4.7
3.4 2.1 0.94
2.4 1.2 0.95

ETF (%)
0.2 0.5 0.9
5 4.3 2.3
- - -

16 9.8 8.6
10 8.2 8

Intel (ms/query)
0.2 0.5 0.9
0.19 0.31 0.63
0.6 0.6 0.6
2.5 6.3 13.2
3.1 6 10.7

NYC (ms/query)
0.2 0.5 0.9
0.27 0.57 0.97
0.6 0.6 0.6
4.7 14.2 30.6
4.6 14.7 25.3

ETF (ms/query)
0.2 0.5 0.9
0.14 0.28 0.46
0.6 0.6 0.6
2.58 6.8 13
2.66 5.2 12.7

Table 3.2: Median relative error (%) of 2000 SUM random queries and average query latency
(ms/query) over three datasets.

We first evaluate the end-to-end performance of JanusAQP and the baselines on a 1d

problem (1 predicate attribute). For the NYC Taxi dataset, we use the pickUpTime attribute

as the predicate attribute and the tripDistance attribute as the aggregate attribute; for

the ETF dataset, we use the volume attribute as the predicate attribute and the close

attribute as the aggregate attribute; for the Intel Wireless dataset, we use the time and

light attributes as predicate and aggregate attribute respectively.

We start with 10% of the data in Kafka which is used by the baselines for initialization

(simulating historical data). We incrementally add 10% more data in increments (simulating

new data arrival). After every 10% increment, we re-train the model for DeepDB and re-

initialize the DPT used by JanusAQP. Due to space limitation, we report results when

20%, 50%, and 90% of the rows from each dataset are inserted into the system. The median

relative error and the corresponding average query latency can be found in Table 3.2.

We can see that JanusAQP has the overall best accuracy while controlling for query

latency. We note that the accuracy of DeepDB is stable as a function of progress. This is
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because as a learned model DeepDB has a roughly fixed resolution of the data (it does not

increase the number of parameters as more data is inserted).4 These findings are consistent

with results from [87]. The accuracy of RS and SRS improves at a cost of a higher query

latency.

3.6.3 Performance

Next, we evaluate the throughput and re-optimization cost of JanusAQP. We populate

Kafka with the first p percent of the NYC Taxi dataset (p varies from 10 to 90). Like before,

we initialize JanusAQP on the first 10% of data and then incrementally add increments of

10% more. In this experiment, we construct a mixed update workload of both insertions and

deletions.

On the left plot of Figure 3.5, we show the throughput of handling insertions and deletions

using a pool of 12 threads. We can see the performance of JanusAQP is quite stable and does

not change with the size of existing data or the amount of data that have been processed.

For each insertion and deletion, we simply find the target node in O(log(k)) and modify

the summary. Even though a larger reservoir size increases the overhead of manipulating

the samples for reservoir sampling, the increased overhead is unnoticeable. This is because

the stratum stored in each node is 1
k of the reservoir, and each stratum is independent with

others and race condition only happens if two workers are working on the same node.

On the right plot of Figure 3.5, we show the re-optimization time cost in seconds by

JanusAQP and DeepDB. The cost to initialize JanusAQP increases with the number of

tuples stored in Kafka but it is still much cheaper than DeepDB. It is worth noting that

the re-optimization cost of DeepDB is the cost of re-training instead of incremental training.

This is mostly due to the constraint of the API exposed by DeepDB, and we observe that re-

train a model with 2n samples is faster than train a model with n samples then incrementally

4. We omit the results of DeepDB on the ETF dataset in Table 3.2 due to very large error (> 1000%) for
SUM queries while the error of COUNT queries is reasonable.
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Figure 3.5: We evaluate the throughput of JanusAQP when handling insertions and deletions in
multi-threaded mode. We also compare the re-optimization cost with DeepDB.

train another n samples. The results suggest that complex, learned synopses are not ideal

in the dynamic setting.

3.6.4 Handle Deletion

To demonstrate how JanusAQP handles deletions of data, we construct a JanusAQP in-

stance with the 50% percent of each dataset, then we delete the last p% of data of the first

50% (p varies from 1% to 9%). After JanusAQP process all the deletions, a query workload

of 2000 random queries is evaluated and we record the median relative error of the 2000

queries. We use the data that remains in the system to compute the ground truth, e.g., for

p = 1%, the ground truth is computed with the first 49% of each dataset.

Results can be found in Figure 3.6, we notice that the relative error is relatively stable

when we vary the deletion percentage. This is because the tuples that are being deleted are

uniformly distributed over the predicate attributes of the query workloads, i.e. the deletion

would occur in each leaf node of the DPT with roughly the same probability, therefore, the

DPT without re-optimization works reasonably well. In another experiment we artificially
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Figure 3.6: Median relative error of JanusAQP varying the amount of deletions from 1% to 9%
over three datasets.

generate deletions that are skewed to demonstrate scenario where re-optimization is needed,

details can be found in Sec. 3.6.7.

3.6.5 The Catch-up Phase

In this experiment, we want to understand how the catch-up phase can impact the accuracy

and performance of the entire system.

Accuracy

We use the entire Intel wireless dataset as the existing data. We compare a set of JanusAQP

(128, c, 1%) instances where the catch-up goal c varies from 1% to 10% with a step of 1%.

When each JanusAQP instance reaches the catch-up goal, we use it to evaluate the same set

of 2000 random queries generated using the light attribute as the aggregate attribute and

the time attribute as the predicate attribute.

The results can be found in the left plot of Figure 3.7. As a reference, we also show the

accuracy of an RS baseline with 1% sample rate. We notice that JanusAQP (128,1%,1%)
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Figure 3.7: Varying the catch-up goal from 1% to 10% of the data, we evaluate the accuracy of
JanusAQP (left plot) and the time cost of the catch-up phase (right plot).

has no advantage against the RS baseline because neither the samples nor the summaries

built during catch-up could provide better accuracy. As we increase the catch-up ratio,

we can see an improvement in accuracy because the quality of the summaries built by the

catch-up phase improved. Comparing with the expensive offline pre-processing used in [87],

we believe the catch-up phase is a better alternative that provides another knob to tune the

tradeoff between accuracy and cost.

Overhead

The overhead of the catch-up phase comes from two sources: the loading and processing of the

samples. We distinguish and measure the two types of overhead in terms of their time cost.

Data loading time measures the time spent on calling the Kafka poll() API, transferring the

data, and ETL operations that are necessary to prepare the data for JanusAQP to process.

It is worth noting that the data loading cost is part of the essential cost that occurs in all

systems and is usually less relevant to the core design of the system but more relevant to

the design of interfaces. For example, with a different interface, instead of dealing with the

strings from Kafka that can be expensive to parse, the system could use Protocol Buffers[51]
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for more efficient data exchanging or even offload some of the ETL duties to the client-side

as described in [39]. On the other hand, the data processing time stands for the time taken

by JanusAQP to analyze the data then accordingly modify internal data structures that

will be used for query processing.

Results can be found in the right plot of Figure 3.7. We can see that the data processing

with a single thread takes less than 1.5 seconds for a catch-up ratio of 10%, which is equivalent

to a throughput of processing 160,000 tuples per second. Furthermore, the data loading cost

is much higher than the data processing cost and we believe the data loading cost can be

further improved by more engineering efforts and techniques such as client-assisted data

loading[39].

3.6.6 Multi-dimensional Query Templates

Next, we investigate the performance of JanusAQP with multi-dimensional queries on the

NASDAQ ETF Prices dataset. We randomly generate 2000 queries from a 5-D query tem-

plate that uses the volume attribute as the target attribute, the date attribute and the 4

price attributes as predicate attributes. We perform the same workflow as we did in Section

3.6.2. We first compare the median relative error of JanusAQP (256,10%,1%) with DeepDB

and the results can be found in the left plot of Figure 3.8. We notice that the accuracy of

JanusAQP is better than DeepDB but the relative error increases for both. This is because

multi-dimensional queries are usually more selective. Also, because the queries are generated

using the entire dataset, we notice that many of the ground truths generated using the first

20% of the data are 0s. Therefore, in the experiment, we start with 30% of the data. On

the right plot of Figure 3.8, we can find the re-optimization cost of JanusAQP is lower than

DeepDB but is more expensive than in the 1D setting. While the increase of dimensions

can indeed make it more expensive to process the samples we fetched during catch-up, we

believe the re-optimization cost can be further improved with more engineering efforts.
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Figure 3.8: We compare the median relative error and the re-optimization cost of JanusAQP with
DeepDB on multi-dimensional queries.

3.6.7 Re-partitioning

Next, we consider microbenchmarks that evaluate the re-partitioning optimizations in

JanusAQP. In the first experiment, using the NYC Taxi dataset, JanusAQP performs a

periodic re-partitioning after every 10% insertions. For comparison, the DPT baseline does

not perform any re-partitioning and we evaluate the accuracy. We deliberately skew the

insertions by sorting on pickUpDateTime so that new insertions would hit a small number of

partitions. The results are illustrated in Figure 3.9(left), we can see the relative error of DPT

increases drastically due to a partition tree that becomes more and more imbalanced with

new insertions. With periodic re-partition, JanusAQP keeps the accuracy at a controlled

level.

In the second experiment, we use the pickupTimeOfDay as the predicate attribute. Be-

cause the dataset is randomly distributed over the pickupTimeOfDay attribute, the insertions

are not skewed as in the previous setting. To demonstrate a situation where a re-partition

is triggered by deletions, we randomly choose 10% of the nodes and we randomly delete

half of the samples that belong to these nodes then we insert the next 10% data. After the
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Figure 3.9: We compare the accuracy of JanusAQP and DPT in two scenarios that cause imbal-
anced partition trees.

insertion, the re-partition will be triggered for JanusAQP. For comparison, we use a DPT

baseline that does not perform any re-partition. We perform the same operations to the

leaf nodes of the DPT baseline then we evaluate the same set of queries. The results can be

found in the right plot of Figure 3.9, we can see the relative error of DPT increases due to

the imbalanced partition tree while the error of JanusAQP drops because of re-partition.

3.6.8 A More Efficient Partitioning Algorithm

In Section 3.5, we propose a binary search-based (BS-based) partitioning algorithm for 1

dimension that is much more efficient. In this experiment, we compare the accuracy and time

cost of the BS-based algorithm with the dynamic programming-based partitioning algorithm

used by PASS on the Intel Wireless dataset. We implement the BS-based algorithm in Python

in our code base of PASS for a fair comparison. We measure the time cost in seconds of

each partitioning algorithm given different number of partitions, we also compare the median

relative error of the PASS variation over 2000 randomly generate queries.

The result can be found in Table 3.3, we vary the number of partitions from 16 to
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16 32 64 128

Partition Time (s)
DP 16 22 382 6349
BS 0.3 0.3 0.4 1.6

Median RE (CNT)
DP 0.2% 0.1% 0.05% 0.04%
BS 0.6% 0.4% 0.1% 0.1%

Median RE (SUM)
DP 0.2% 0.1% 0.07% 0.05%
BS 1% 0.9% 0.2% 0.2%

Median RE (AVG)
DP 0.2% 0.1% 0.08% 0.05%
BS 1% 0.7% 0.2% 0.15%

Table 3.3: We compare our new binary search-based (BS) partitioning algorithm with the dynamic
programming-based (DP) algorithm proposed in [87] on the Intel dataset.

128, as we increase the number of partitions, the sample size used by the algorithms also

increase. We notice that the time cost of the DP-based algorithm increase drastically5 with

the number of partitions while the time cost of the BS-based algorithm increase slightly.

On the accuracy side, the DP-based algorithm does lead to a lower error but the BS-based

algorithm also introduce good accuracy. Overall, we believe the BS-based algorithm is more

scalable than the DP-based algorithm and it provides favorable trade-off between cost and

accuracy.

5. Because we use a larger sample size than what we used in [87], the time cost of the DP algorithm
increases and the accuracy improves from what we reported in [87].
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CHAPTER 4

FAST AND RELIABLE MISSING DATA CONTINGENCY

ANALYSIS WITH PREDICATE CONSTRAINT

4.1 Introduction

The data stored in a database may differ from real-world truth in terms of both completeness

and content. Such issues can arise due to data entry errors, inexact data integration, or

software bugs [28]. As real-world data are rarely perfectly clean or complete, data scientists

have to reason how potential sources of error may affect their analyses. Communicating

these error modes and quantifying the uncertainty they introduce into a particular analysis

is arguably as important as timely execution [75].

For example, suppose a data analyst has collected data from a temperature sensor over

the span of several days. She is interested in computing the number of times that the sensor

exceeded a temperature threshold. The data are stored in 10 partitions; one of which failed

to load into the database due to parsing errors. The analyst can still run her query on the 9

available partitions, however, she needs to determine whether the loss of that partition may

affect her conclusions.

Today, analysts largely rely on intuition to reason about such scenarios. The analyst

in our example needs to make a judgment about whether the lost partition correlates with

the attributes of interest, such as temperature, in any way. Such intuitive judgments, while

commonplace, are very problematic because they are based on assumptions that are often

not formally encoded in any code or documentation. Simply reporting an extrapolated result

does not convey any measure of confidence in how (in)accurate the result might be, and could

hide the fact that some of the data were not used.

This paper defines a framework for specifying beliefs about the missing rows in a dataset

in a logical constraint language and an algorithm for computing a range of values an aggregate
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query can take under those constraints (hereafter called a result range).1 This framework,

which we call the Predicate-Constraint (PC) framework, facilitates several desirable out-

comes: (1) the constraints are efficiently testable on historical data to determine whether or

not they held true in the past, (2) the result range is calculated deterministically and guar-

anteed to bound the results if the constraints hold true in the future, (3) the framework can

reconcile interacting, overlapping, or conflicting constraints by enforcing the most restrictive

ones, and (4) the framework makes no distributional assumptions about past data resem-

bling future data other than what is specified in the constraints. With this framework, an

analyst can automatically produce a contingency analysis, i.e., the range of values the aggre-

gate could take, under formally described assumptions about the nature of the unseen data.

Since the assumptions are formally described and completely determine the result ranges,

they can be checked, versioned, and tested just like any other analysis code—ultimately

facilitating a more reproducible analysis methodology. The constraints themselves, called

Predicate-Constraints, are logical statements that constrain the range of values that a set of

rows can take and the number of such rows within a predicate. We show that deriving the

result ranges for a single “closed” predicate-constraint set can be posed as a mixed-integer

linear program (MILP). The solver itself contains a number of novel optimizations, which

we contribute such as pruning of unsatisfiable search paths.

To the best of our knowledge, a direct competitor framework does not exist. While

there is a rich history of what-if analysis [37] and how-to analysis [98], which characterize a

database’s behavior under hypothetical updates, analyzing the effects of constrained missing

rows on aggregate queries has been not been extensively studied. The closest framework is the

m-table framework [125], which has a similar expressiveness but no algorithm for computing

aggregate result ranges. Likewise, some of the work in data privacy solves a simplified version

of the problem where there are no overlapping constraints [136]. In summary, we contribute:

1. A formal framework for contingency analysis over missing or withheld rows of data,

1. We use this term to differentiate a deterministic range with probabilistic confidence intervals.
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where users specify constraints about the frequency and variation of the missing rows.

2. An optimization algorithm that reconciles a set of such constraints, even if they are

overlapping, conflicting, or unsatisfiable, into a range of possible values that SUM,

COUNT, AVG, MIN, and MAX SQL queries can take.

3. Optimization that improve accuracy and/or optimization performance such as pruning

unsatisfiable constraint paths.

4.2 Background

In this paper, we consider the following user interface. The system is asked to answer SQL

aggregate queries over a table with a number of missing rows. The user provides a set

of constraints (called predicate-constraints) that describes how many such rows could be

missing and a range of possible attribute values those missing rows could take. The system

should integrate these constraints into its query processing and compute the maximal range

of results (aggregate values) consistent with those constraints.

All of our queries are of the form:

SELECT agg(attr)

FROM R

WHERE ....

GROUP BY ....

We consider SUM, COUNT, AVG, MIN, and MAX aggregates with predicates. Because

GROUP-BY clause can be considered as a union of such queries without GROUP-BY. In

the rest of the paper, we focus on queries without GROUP-BY clause.

4.2.1 Example Application

Consider a simplified sales transaction table of just three attributes:
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Sales(utc , branch , price)

Nov -01 10:20, New York ,3.02

Nov -01 10:21, Chicago ,6.71

...

Nov -16 6:42,Trenton ,18.99

Over this dataset, a data analyst is interested in calculating the total number of sales:

SELECT SUM(price)

FROM Order

Suppose that between November 10 and November 13 there was a network outage that

caused data from the New York and Chicago branches to be lost. How can we assess the

effect of the missing data on the query result?

Simple Extrapolation: One option is to simply extrapolate the SUM for the missing days

based on the data that is available. While this solution is simple to implement, it leads to

subtle assumptions that can make the analysis very misleading. Extrapolation assumes that

the missing data comes from roughly the same distribution as the data that is present. Figure

4.1 shows an experiment on one of our experimental datasets. We vary the mount of missing

data in a way that is correlated with a SUM query. Even if the exact amount of missing data

is known, the estimate become increasingly error prone. More subtly, extrapolation returns

a single result without a good measure of uncertainty—there is no way to know how wrong

an answer might be.

Better Extrapolation: A smarter approach might be to build a probabilistic model that

identifies trends and correlations in the data (e.g., a Gaussian Mixture Model that identifies

weekly patterns) and use that model to extrapolate. If a user mis-specifies her belief in

the data distribution or sampling process, any inference would be equally fallible as simple

extrapolation. The probabilistic nature of the inference also makes potential failure models

hard to interpret—errors could arise due to modeling, sampling, or even approximation error
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Figure 4.1: Simple Extrapolation could introduce significant error when missing rows are correlated
(e.g, tend to have the highest values).

in the model fitting process.

Our Approach: In light of these issues, we propose a fully deterministic model for

quantifying the uncertainty in a query result due to missing data. Like the probabilistic

approach, we require that the user specify her belief about the distribution of missing data.

Rather than specifying these beliefs in terms of probability distributions, she specifies the

beliefs in terms of hard constraints.

For example, there are no more than 300 sales each day in Chicago. Or, the most expensive

product costs 149.99 and no more than 5 are sold each day. We collect a set of such constraints

and solve an optimization problem to find the maximal sum possible for all missing data

instances that satisfy the constraints. This formalism acts as a programming framework

that can be used to test the effects of different scenarios. It crucially enforces that there are

testable constraints that are recorded during the decision making process. We will use this

as an example throughout the paper.
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4.2.2 Related Work

The overarching challenge addressed in the PC framework is related to the concept of “reverse

data management” proposed by Meliou et al. [98, 99]. Meliou et al. argue that as data grow

in complexity, analysts will increasingly want to know not what their data currently says

but what changes have to happen to the dataset to force a certain outcome. Such how-to

analyses are useful in debugging, understanding sensitivity, as well as planning for future

data. Meliou et al. build on a long line of what-if analysis and data provenance research,

which study simulating hypothetical updates to a database and understanding how query

results might change [37, 18]. While we address similar concerns to this line of work in

spirit, our focus on aggregate queries and confidence intervals leads to a very different set of

technical contributions. The PC framework should be evaluated much more like a synopsis

data structure than a data provenance reasoning systems.

Therefore, our experiments largely focus on evaluations against other synopsis structures

and how to extract confidence intervals from them [32]. While Approximate Query Process-

ing (AQP) has been studied for decades [106], it is well-known that the confidence intervals

produced can be hard to interpret [71]. This is because estimating the spread of high di-

mensional data from a small sample is fundamentally hard, and the most commonly used

Central-Limit Theorem-based confidence intervals rely on estimated sample variance. Espe-

cially for selective queries, these estimates can be highly fallible—a 95% confidence interval

may “fail” significantly more than 5% of the time [6]. Unfortunately, as confidence intervals

become more conservative, e.g., using more general statistical bounding techniques, their

utility drops [55]. In a sense, our optimization algorithm automatically navigates this trade-

off. The algorithm optimizes the tightest bound given available information in the form of

PCs. We interpret PCs as generalized histograms with overlapping buckets and uncertain

bucket counts. Despite these differences with AQP, we do believe that the connections be-

tween uncertainty estimation and dirty data (like missing rows) are under-studied [76, 77].

We also believe that in future work mixed systems with both PCs and samples can have the
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best of both worlds, e.g., augmenting Quickr with PC estimation [70].

Deterministic alternatives to AQP have been studied in some prior work. Potti et al. pro-

pose a paradigm called DAQ [119] that does reason about hard ranges instead of confidence

intervals. DAQ models uncertainty at relation-level instead of predicate-level like in PCs

and DAQ does not handle cardinality variation. In the limited scenario of windowed queries

over time-series data, deterministic bounds have been studied [16]. The technical challenge

arises with overlapping constraints and complex query structures (like join conditions and

arbitrary predicates). Similarly, we believe that classical variance reduction techniques for

histograms could be useful for PC generation in future work [118], since histograms are a

dense 1-D special case of our work.

c-tables are one of the classical approaches for representing missing data in a relation [57].

Due to the frequency constraints in Predicate-Constraint sets, we can represent cases that go

beyond the typical closed-world assumption (CWA) is required in c-tables, where all records

are known in advance and null cells are specifically annotated. There is also recent work

that studies missing rows from databases. m-tables study variable cardinality representa-

tions to go beyond the CWA. In m-tables, cardinality constraints are specified per-relation.

We specify frequency constraints per predicate. However, Sundarmurthy et al. [125] do

not consider the problem of aggregate query processing on uncertain relations. There is

similarly related work that studies intentionally withholding partitioned data for improved

approximate query performance [126]. We believe that the novelty of our framework is the

efficient estimation of aggregate query confidence intervals. Similarly, the work by Burdik

et al. is highly related where they study databases with certain “imprecise” regions instead

of realized tuples [19]. It is important to note, that our objective is not to build the most

expressive language to represent uncertain data but rather one that we can pragmatically

use to bound aggregate queries.

The privacy literature has studied a version of this problem: bounding aggregate queries

on uncertain data [136, 65]. In fact, Zhang et al. can be seen as solving the partitioned

91



version of our problem [136]. However, they do not need to consider the overlapping case in

the way that our work does.

4.3 Predicate-Constraints

The formal problem setting is defined as follows. Let R be relation with a known “certain”

partition denoted by R∗ and unknown “missing” partition R?, where R = R∗ ∪ R?. The

user defines a set of constraints π1, ..., πn over the possible tuples that could be in R? and

their multiplicity. The computational problem is to derive a result range, namely, the min

and max value that one of the supported aggregate queries given all possible instances of

R? that are valid under the constraints. This section describes our language for expressing

constraints. Suppose, this relation is over the attributes A = {a1, ..., ap}. The domain of

each attribute ai is a set denoted by dom(ai).

4.3.1 Predicate-Constraint

If R? could be arbitrary, there is clearly no way to bound its effect on an aggregate query.

Predicate-constraints restrict the values of tuples contained in R? and the total cardinality

of such tuples. A single predicate-constraint defines a condition over the R?, for tuples that

satisfy the condition a range of attribute values, and the minimum and maximum occurrence

of this predicate. As an example predicate-constraint in the sales dataset described in the

previous section, “the most expensive product in Chicago costs 149.99 and no more than

5 are sold”. This statement has a predicate (“in Chicago”), a constraint over the values

(“cost at most 149.99”), and occurrence constraint (“no more than 5”). We will show how

to express systems of such constraints in our framework.

Predicate: A predicate ψ is a Boolean function that maps each possible rows to a True

and False value ψ : D 7→ Z2. For efficient implementation, we focus on predicates that

are conjunctions of ranges and inequalities. This restriction simplifies satisfiability testing,
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which is an important step in our algorithms introduced in Section 4.4.1.

Value Constraint: A value constraint specifies a set of ranges that each attribute can

take on. A range of the attribute ai is defined as a row of two elements (l, h) ∈ dom(ai)

where l ≤ h. A value constraint ν is a set of ranges for each of the p attributes:

ν = {(l1, h1), ..., (lp, hp)}

ν defines a Boolean function as above ν : D 7→ Z2 that checks whether a row satisfies all the

specified ranges. Since we focus on bounding aggregates it is sufficient to assume that the

attribute ranges are over numerical attributes.

Frequency Constraint: Associated with each predicate is additionally a frequency con-

straint. This bounds the number of times that rows with the predicate appear. The frequency

constraint is denoted as κ = (kl, ku). kl and ku specify a range of the frequency constraint,

i.e., there are at least kl rows and at most ku rows that satisfy the predicates in R?. Of

course, kl, ku must be non-negative numbers and kl ≤ ku.

Predicate Constraint: A predicate-constraint is a three-tuple of these constituent pieces

π = (ψ, ν, κ), a predicate, a set of value constraints, and a frequency constraint. The goal of

π is to define constraints on relations that satisfy the above schema. Essentially a predicate

constraint says if R is a relational instance that satisfies the predicate-constraint π “For all

rows that satisfy the predicate ψ, the values are bounded by ν and the number

of such rows is bounded by κ”. Formally, we get the definition below.

Definition 4.3.1 (Predicate Constraint). A predicate constraint is a three-tuple consisting

of a predicate, a value constraint, and a frequency constraint π = (ψ, ν, κ). Let R be

a relational instance over the attributes A. R satisfies a predicate constraint denoted by

R |= π if:

(∀r ∈ R : ψ(r) =⇒ ν(r)) ∧ kl ≤ |{r ∈ R : ψ(r)}| ≤ ku
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Let us now consider several examples of predicate constraints using the sales data example

in the previous section on two days worth of missing rows. For example, if we want to express

the constraint “the most expensive product in Chicago costs 149.99 and no more than 5 are

sold”:

c1 : (branch = ‘Chicago’) =⇒ (0.00 ≤ price ≤ 149.99), (0, 5)

In this example, the predicate is (branch = ‘Chicago’), the value constraint is (0.00 ≤ price ≤

149.99) and the frequency constraint is (0, 5). If the aforementioned predicate constraint

is describing a sales dataset, then it specifies that there are at most 5 tuples in the dataset

with value of the branch attribute equals to ‘Chicago’ and the range of the price attribute

of these tuples are between 0.0 and 149.99 (inclusive).

We could tweak this constraint to be “the most expensive product in ALL branches costs

149.99 and no more than 100 are sold”:

c2 : TRUE =⇒ (0.00 ≤ price ≤ 149.99), (0, 100)

Suppose one wanted to define a simple histogram over a single attribute based the number

of sales in each branch, we could express that with a tautology:

(branch = ‘Chicago’) =⇒ (branch = ‘Chicago’), (100, 100)

(branch = ‘New York’) =⇒ (branch = ‘New York’), (20, 20)

(branch = ‘Trenton’) =⇒ (branch = ‘Trenton’), (10, 10)

Observe how c1 and c2 interact with each other. Some of the missing data instances allowed

by only c2 are disallowed by c1 (Chicago cannot have more than 5 sales at 149.99). This

interaction will be the main source of difficulty in computing result ranges based on a set of

PCs.
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4.3.2 Predicate-Constraint Sets

Users specify their assumptions about missing data using a set of predicate constraints A

predicate-constraint set is defined as follows:

S = {π1, ..., πn}

S gives us enough information to bound the results of common aggregate queries when there

is closure: every possible missing row satisfies at least one of the predicates.

Definition 4.3.2 (Closure). Let S be a predicate constraint set with the elements πi =

(ψi, νi, κi) S is closed over an attribute domain D if for every t ∈ D:

∃πi ∈ S : ψi(t)

Closure is akin to the traditional closed world assumption in logical systems, namely,

the predicate constraints completely characterize the behavior of the missing rows over the

domain.

To understand closure, let us add a new constraint that says “the most expensive product

in “New York” is 100.00 and no more than 10 of them are sold:

c3 : (branch = ‘New York’) =⇒ (0.00 ≤ price ≤ 100.00), (0, 10)

Closure over c1, c3 means that all of the missing rows come from either New York or Chicago.

4.4 Calculating result ranges

This section focuses on a simplified version of the bounding problem. We consider a single

table and a single attribute aggregates. Let q denote such an aggregate query. The problem
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to calculate the upper bound is:

u = max
R

q(R) (4.1)

subject to: R |= S

We will show that our bounds are tight–meaning that the bound found by the optimization

problem is a valid relation that satisfies the constraints.

Throughout the rest of the paper, we only consider the maximal problem. Unless other-

wise noted, our approach also solves the lower bound problem:

l = min
R∈R

q(R)

subject to: R |= S

Specifically, we solve the lower bound problem in two settings. In a general setting where

there is no additional constraint, the minimal problem can be solved by maximizing the

negated problem: we first negate the value constraints, solve the maximizing problem with

negated weights, and negate the final result.

In a special but also common setting, all the frequency constraints’ lower bounds are 0

(i.e., each relation has no minimum number of missing rows) and the value constraints’ lower

bounds are 0 (i.e., all attributes are non-negative), the lower bound is easily attained by the

absent of missing row.

4.4.1 Cell Decomposition

Intuitively, we can think about the optimization problem as an allocation. We strategically

assign rows in each of the predicates to maximize the aggregate query. However, the first

challenge is that a row may fall in multiple Predicate-Constraints’ predicates, so this row

may “count towards” multiple Predicate-Constraints. As the first step of the solution, we

decompose the potential overlapping Predicate-Constraints’ predicates into disjoint cells.
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Figure 4.2: Predicates in a predicate-constraint set are possibly overlapping. The first step of the
algorithm is to decompose a set of predicate-constraints into disjoint cells.

An example that illustrates the decomposition is depicted in Figure 4.2. Each predicate

represents a sub-domain. For each subset of predicates, a cell is a domain that only belongs

to these predicates and not others. Thus, for n predicates in a predicate-constraint set

there are at most O(2n) cells. The cells take the form of conjunctions and negations of the

predicates of each of the n predicate constraints:

c0 = ψ1 ∧ ... ∧ ψn

c1 = ψ1 ∧ ... ∧ ¬ψn

c2 = ψ1 ∧ ... ∧ ¬ψn−1 ∧ ψn

...

c2n−1 = ¬ψ1 ∧ ... ∧ ¬ψn−1 ∧ ¬ψn

For each ci, we have to reconcile the active predicate constraints (not negated above). Each

cell is thus assigned the most restrictive upper and lower value bounds, and upper and lower

cardinality bounds in the set of active constraints. Not all possible cells will be satisfiable–
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where there exists a row t ∈ D that satisfies the new predicate-constraint. As in Figure 4.2,

there are 7 possible subsets, but there are only 5 satisfiable cells. We use the Z3 [35] solver

to prune all the cells that are not satisfiable.

Optimization 1. Predicate Pushdown: Cell decomposition is a costly process for two

reasons. First, there is a potentially exponential number of cells. Second, determining

whether a cell is satisfiable is not always easy (each check is on the order of 10’s of ms). One

obvious optimization is to push down the predicates of the target query into the decomposi-

tion process. When the target query has predicates, we exclude all cells that do not overlap

with the query’s predicate.

Optimization 2. DFS Pruning: The naive solution is to simply sequentially iterate

through all of the cells and test each for satisfiability. Note that for a problem with n PCs,

each logical expression describing a cell is a conjunction of n predicates. Conjunctions can be

short-circuited if any of their constituent elements evaluate to false. Therefore, the process

of evaluating the satisfiability of the cells can be improved by using a Depth First Search

that evaluates prefixes of growing length rather than a sequential evaluation. With DFS, we

can start from the root node of all expressions of length 1, add new PCs to the expression

as we traverse deeper until we reach the leaf nodes which represent expressions of length n.

As we traverse the tree, if a sub-expression is verified by Z3 to be unsatisfiable, then we can

perform pruning because any expression contains the sub-expression is unsatisfiable.

Optimization 3. Expression Re-writing: To further improve the DFS process, we can

re-write the logical expressions to have an even higher pruning rate. There is one simple

re-writing heuristic we apply:

(X ∧ ¬(X ∧ Y )) = True =⇒ X ∧ ¬Y = True

It means if we have verified a sub-expression X to be satisfiable, and we also verified that

after adding a new PC Y , the expression X∧Y becomes unsatisfiable. We can conclude that
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X ∧ ¬Y is satisfiable without calling Z3 to verify. As shown in the experiment section, the

DFS pruning technique combined with the rewriting can prune over 99.9% cells in real-world

problems.

Optimization 4. Approximate Early Stopping: With the DFS pruning technique, we

always get the correct cell decomposition result because we only prune cells that are verified

as unsatisfiable. We also propose an approximation that can trade range tightness for a

decreased run time. The idea is to introduce ‘False-Positives’, i.e., after we have used DFS

to handle the first K layers (sub-expressions of size K), we stop the verification and consider

all cells that have not been pruned as satisfiable. These cells are then admitted to the next

phase of processing where we use them to formulate a MILP problem that can be solved to

get our bound. Admitting unsatisfiable cells introduces ‘False-Positives’ that would make

our bound loose, but it will not violate the correctness of the result (i.e. the result is still

a bound) because: (1) the ‘true-problem’ with correctly verified cells is now a sub-problem

of the approximation and (2) the false-positive cells does not add new constraints to the

‘true-problem’.

4.4.2 Integer-Linear Program

We assume that the cells in C are ordered in some way and indexed by i. Based on the cell

decomposition, we denote Ci as the (sub-)set of Predicate-Constraints that cover the cell i.

Then for each cell i, we can define its maximal feasible value Ui(a) = minp∈Ci
p.ν.ha, i.e.,

the minimum of all Ci’s value constraints’ upper bounds on attribute a.

A single general optimization program can be used to bound all the aggregates of interest.

Suppose we are interested in the SUM over attribute a, we slightly abuse the terms and define

a vector U where Ui = Ui(a). Then, we can define another vector X which represents the

decision variable. Each component is an integer that represents how many rows are allocated

to the cell.
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The optimization problem is as follows. To calculate the upper bound:

max
X

UTX (4.2)

subject to: ∀j, k(j)
l ≤

∑
i:j∈Ci

X[i] ≤ k
(j)
u

∀i , X[i] is integer

As an example, the first constraint in Figure 4.2 is k1
l <= x1 + x2 <= k1

u for π1, so on and

so forth. This MILP can be solved with a commercial optimization solver such as Gurobi or

CPLEX.

Given the output of the above optimization problem, we can get bounds on the following

aggregates:

COUNT: The count of cardinality can be calculated by setting U as the unit vector (Ui = 1

for all i).

AVG: We binary search the average result: to testify whether r is a feasible average,

we disallow all rows to take values smaller than r and invoke the above solution for the

maximum SUM and the corresponding COUNT. If the overall average is above r, then we test

r′ > r, otherwise we continue testing r′ < r.

MAX/MIN: Assuming all cells are feasible, the max is the largest of all cells’ upper bound.

Min can be handled in a similar way.

Faster Algorithm in Special Cases In the case that the Predicate-Constraints have

disjoint predicates, the cell decomposition problem becomes trivial as each predicate is a cell.

The MILP problem also degenerates since all the constraints, besides each variable being

integer, do not exist at all. Thus, if we take the SUM problem as an example, the solution is

simply the sum of each Predicate-Constraints’ maximum sum, which is the product of the

maximum value and the maximum cardinality. This disjoint case is related to the work in
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data privacy by Zhang et al. [136].

4.4.3 Complexity

Next, we analyze the complexity of the predicate-constraint optimization problem. Suppose

each predicate-constraint is expressed in Disjunctive Normal Form with at most p clauses.

Suppose, we are given a set of N such predicate-constraints. The data complexity of the

predicate-constraint optimization problem is the number of computational steps required to

solve the optimization problem for a fixed p and a variable N . For p >= 2, we show that

the problem is computationally hard in N based on a reduction:

Proposition 4.4.1. Determining the maximal sum of a relation constrained by a predicate-

constraint is NP-Hard.

Sketch. We prove this proposition by reduction to the maximal independent set problem,

which is NP-Hard. An independent set is a set of vertices in a graph, no two of which are

adjacent. We can show that every independent set problem can be described as a predicate-

constraint maximal sum problem. Let G = (V,E) be a graph. We can think of this graph

as a relational table of “vertex” rows. For example: (V1, V2). For each vertex v ∈ V ,

we define a single Predicate-Constraint with a max value of 1 and a max frequency of 1

(x = v, [0, 1], [0, 1]). For each edge between v and v′, we define another predicate constraint

that is equality to either of the vertices also with a max frequency of 1:

(x = v ∨ x = v′, [0, 1], [0, 1]).

This predicate constraint exactly contains the two vertex constraints. Therefore, the cells

after the cell-decomposition step perfectly align with those vertices. The optimization prob-

lem allocates rows to each of those cells but since the edge constraint has a max frequency is

1 only one of the vertex cells can get an allocation. Since all of the vertex constraints have

the same max value, the optimization problem finds the most number of such allocations
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that are consistent along the edges (no two neighboring vertices both are allocated). This

is exactly the definition of a maximal independent set. Since the maximal sum problem is

more expressive than the maximal independent set its complexity is greater than NP-Hard

in the number of cells.

The hardness of this problem comes from the number of predicate constraints (i.e., data

complexity). While, we could analyze the problem for a fixed N and variable p (i.e., query

complexity), we find that this result would not be informative and is highly problem specific

with very large constant-factors dependent on N .

4.4.4 Numerical Example

To understand how this optimization problem works, let’s consider a few simple numerical

examples using our example dataset. Suppose, we have a query that wants to calculate the

total number of sales over a period:

SELECT SUM(price)

FROM Order

WHERE utc >= Nov -11 0:00 AND

utc <= Nov -13 0:00

For the sake of simplicity, let’s assume that all of this data was missing and the only infor-

mation we have is what is described in the PCs. Suppose, we define two PCs that describe

the price of the least/most expensive items sold on the day, and that between 50 and 100

items were sold:

t1:Nov−11<=utc<Nov−12 =⇒ 0.99<=price<=129.99, (50,100)

t2:Nov−12<=utc<Nov−13 =⇒ 0.99<=price<=149.99, (50,100)
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Since the PCs are disjoint, we can trivially compute the result range for the total sales:

[50× 0.99 + 50× 0.99, 100× 129.99 + 100× 149.99]

= [99.00, 27998.00]�

Now, suppose, we had overlapping PCs. This makes the solution much harder to manually

reason about since we have to account for the interaction between the constraints.

t1:Nov−11<=utc<Nov−12 =⇒ 0.99<=price<=129.99, (50,100)

t2:Nov−11<=utc<Nov−13 =⇒ 0.99<=price<=149.99, (75,125)

This requires a cell decomposition to solve. There are 3 possible cells:

c1:=(Nov−11<=utc<Nov−12)∧(Nov−11<=utc<Nov−13)

c2:=¬(Nov−11<=utc<Nov−12)∧(Nov−11<=utc<Nov−13)

c3:=(Nov−11<=utc<Nov−12)∧¬(Nov−11<=utc<Nov−13)

c3 is clearly not satisfiable, so we can discount this cell. Then, we need to figure out how

much to allocate to c1 and c2. The lower bound can be achieved by an allocation of 50 tuples

to c1 and 25 to c2. The upper bound can be achieved by an allocation of 50 tuples to c1 and

75 tuples to c2. Note that the optimal allocation does not maximize tuples in c1.

[50× 0.99 + 25× 0.99, 50× 129.99 + 75× 149.99] =

[74.25, 17748.75]�
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4.5 Joins Over Predicate Constraints

In the previous section, we considered converting single table predicate-constraints into result

ranges for a query result. In this section, we extend this model to consider aggregate queries

with inner join conditions, namely, there are predicate constraints describing missing data

in each of the base tables and we have to understand how these constraints combine across

tables.

4.5.1 Naive Method

One way to handle multi-relation predicate constraints is to treat a join as a Cartesian

product. Let’s consider two tables R and S, and let PR and PS denote their predicate

constraints sets respectively. For two predicate constraints from each set πs and πr, let’s

define a direct-product operation as:

πs × πr = (ψs ∧ ψr, [νsνr], κs ⊗ κr)

that takes a conjunction of their predicates, concatenates their attribute ranges, and multi-

plies their cardinalities. If we do this for all pairs of predicate constraints, we can derive a

set of constraints that account for the join:

P = {πi × πj : ∀πi, πj ∈ PR,PT }

This approach will produce a bound for all inner-joins since any satisfying tuple in the output

has to be satisfying either PR or PT .

While this approach will produce a bound, it may be very loose in certain cases. It is

particularly loose in the case of inner equality joins. Most obviously, it does not consider

the effects of equality conditions and how those may affect cardinalities and ranges. For

conditions that span more than 2 relations, we run into another interesting problem. The
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Worst-Case Optimal Join (WCOJ) results are some of the most important results in modern

database theory [43, Lemma 3.3]. Informally, they show that solving an n-way join with a

cascade of two-way joins can create exponentially more work due to very large intermediate

results. An optimal algorithm would only do work proportional to the number of output

rows and no more.

A very similar issue arises with this bounding problem. Consider the exemplary triangle

counting query:

q = |R(a, b)S(b, c)T (c, a)|

Suppose, each relation has a size of N . If we apply the naive technique to bound q for a

predicate-constraint set defined for each relation, the bound would be O(N3). However, from

WCOJ results, we know that the maximum value of q is O(N
3
2 ) [102]. We can perpetuate

this logic to the 4-clique counting query, 5-clique, and so on:

q = |R(a, b, c)S(b, c, d)T (c, d, e)U(e, a, b)|

and the gap between the theoretical bound and the one computed by our framework grows

exponentially.

4.5.2 A Better Bound For Natural Joins

We can leverage some of the theoretical machinery used to analyze WCOJ algorithms to

produce a tighter bound. We first introduce an important result for this problem, Friedgut’s

Generalized Weighted Entropy (GWE) inequality [43, Lemma 3.3].

There are r relations, indexed by i as Ri. The joined relation is R. For each row t in R,

its projection in the relation Ri is ti. For each relation Ri, this is an arbitrary non-negative

weight function wi(·) defined on all rows from Ri. Fractional edge cover (FEC) is a vector

c that assigns a non-negative value ci to each relation Ri, and also satisfies that for each
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attribute s, ∑
Ri⊕s

ci ≥ 1

Ri ⊕ s if the relation Ri contains attribute s (when multiple relations join on one attribute,

we consider the attribute indistinguishable, i.e., they all contain the same attribute).

When c is FEC, GWE states

∑
t∈R

∏
i

(
wi(t

i)
)ci ≤∏

i

( ∑
ti∈Ri

wi(ti)
)ci (*)

What GWE implies depends on the choice of weight functions wi(·). In a query with SUM(A)

aggregation, without loss of generality we assume attribute A comes from the relation Ra.

Let wa(ta) = ta.A, and wi(ti) = 1 for i 6= a. Then the left hand of (∗) becomes

∑
t∈R

wa(ta)ca =
∑
t∈R

t.Aca

and the right hand of (∗) becomes

∏
i6=a
|Ri|ci ×

( ∑
ta∈Ra

ta.A
)ca

We only consider the FEC c such that ca = 1, then (*) becomes

∑
t∈R

t.A ≤
∏
i 6=a
|Ri|ci ×

( ∑
ta∈Ra

ta.A
)

(**)

Now given a set of PC πi for each relation Ri, and we only consider those Ri that conform

to corresponding PCs. According to (∗∗), we have

SUM(A)
t1,...,tr natural join

Ri|=πi

≤ SUM(A)
Ra|=πa

×
∏
i6=a

(
COUNT(∗)
Ri|=πi

)ci
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Here the left hand side is our expected result, and the right hand side can be solved on each

relation individually using the approaches discussed in the previous section.

Note that we use the solution to the FEC problem to compute c, and this solution derives

an upper bound of the left-hand side. In order to get the tightest upper bound, we consider

an optimization problem: minimize the right-hand side subject to that c is an FEC. We take

a log of the target function (i.e., right-hand side) so both the target function and constraints

are in linear form. The optimization problem becomes a linear programming problem, which

can be solved by a standard linear programming solver. See Section 6.4 for two cases where

this solution significantly improves on the naive Cartesian product solution described above.

4.6 Experiments

Now, we evaluate the PC framework in terms of accuracy and efficiency at modeling missing

data rows.

4.6.1 Experimental Setup

We set up each experiment as follows: (1) summarize a dataset with n Predicate-Constraints,

(2) each competitor framework gets a similar amount of information about the dataset (e.g.,

a statistical model with O(n) statistical parameters), (3) we estimate a query result using

each framework with calibrated error bounds. Our comparative evaluation focuses on SUM,

COUNT queries as those are what the baselines support. We show similar results on MIN,

MAX, AVG queries, but only within our framework.

It is important to note that each of these frameworks will return a confidence interval and

not a single result. Thus, we have to measure two quantities: the failure rate (how often

the true result is outside the interval) and the tightness of the estimated ranges. We measure

tightness by the ratio between the upper bound and the result (we denote this as the over

estimation rate). A ratio closer to 1 is better on this metric, but is only meaningful if the
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failure rate is low.

Sampling

To construct a sampling baseline, we assume that the user provides actual unbiased example

missing data records. While this might be arguably much more difficult for a user than

simply describing the attribute ranges as in a predicate constraint, we still use this baseline

as a measure of accuracy. In our estimates, we use only these examples to extrapolate a

range of values that the missing rows could take.

Uniform Sampling We randomly draw n samples (US-1) and 10n samples (US-10) from

the set of missing rows.

Stratified Sampling We also use a stratified sampling method which performs a weighted

sampling from partitions defined by the PCs that we use for a given problem. Similarly, we

denote n samples as (ST-1) and 10n samples (ST-10).

The goal is to estimate the result range using a statistical confidence interval. Commonly,

approximate query processing uses the Central Limit Theorem to derive bounds. These

confidence intervals are parametric as they assume that the error in estimation is Normally

distributed. Alternatively, one could use a non-parametric method, which does not make the

Normal assumption, to estimate confidence intervals like those described in [55] (we use this

formula unless otherwise noted). We denote confidence interval schemes in the following way:

US-1p (1x sample using a parametric confidence interval), US-10n (10x sample using a non-

parametric confidence interval), ST-10p (10x stratified sample using a parametric confidence

interval), etc.

Generative Model

Another approach is to fit a generative model to the missing data. We use the whole dataset

as training data for a Gaussian Mixture Model (GMM). The trained GMM is used to generate
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the missing data. A query result that is evaluated on the generated data is returned. This

is simulating a scenario where there is a generative model that can describe what data is

missing. If we run this process several times, we can determine a range of likely values that

the query could take.

Equiwidth Histogram

We build a histogram on all of the missing data on the aggregate attribute with N buckets

and use it to answer queries. We use standard independent assumptions to handle queries

across multiple attributes.

PCs

The accuracy of the PC framework is dependent on the particular PCs that are used for a

given task. In our “macro-benchmarks”, we try to rule out the effects of overly tuned PCs.

We consider two general schemes: Corr-PC, even partitions of attributes correlated with

the aggregate of interest, and Rand-PC, randomly generated PCs.

For Corr-PC, we identify the (other than the aggregation attribute) most correlated

attributes with the aggregate to partition on. We divide the combined space into equi-

cardinality buckets where each partition contains roughly the same number of tuples. We

omit the details of this scheme for the sake of brevity. For Rand-PC, we generate random

overlapping predicate constraints over the same attributes (not necessarily equi-cardinality).

We take extra care to ensure they adequately cover the space to be able to answer the desired

queries. We see these as two extremes: the reasonably best performance one could expect out

of the PC framework and the worst performance. We envision that natural use cases where

a user is manually defining PCs will be somewhere in the middle in terms of performance.
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4.6.2 Intel Wireless Dataset

The Intel wireless dataset [114] contains data collected from 54 sensors deployed in the Intel

Berkeley Research lab in 2004. This dataset contains 3 million rows, 8 columns including

different measurements like humidity, temperature, light, voltage as well as date and time

of each record. We consider aggregation queries over the light attribute. For this dataset,

Corr-PC is defined as n = 2000 predicate constraints over the attributes device id and

time. Rand-PC defines random PCs over those same attributes. Missing rows are generated

from the dataset in a correlated way—removing those rows maximum values of the light

attribute.

We compare Corr-PC and Rand-PC with 3 baselines we mentioned in Section 4.6.1: US-

1n, ST-1n, and Histogram. We vary the fraction of missing rows r and evaluate the accuracy

and failure rate of each technique. Figure 4.3 and Figure 4.4 illustrate the experimental

results: (1) as per our formal guarantees, both Corr-PC, Rand-PC (and Histograms) do not

fail if they have accurate constraints, (2) despite the hard guarantee, the confidence intervals

are not too “loose” and are competitive or better than those produced by a 99.99% interval,

(3) informed PCs are an order of magnitude more accurate than randomly generated ones.

There are a couple of trends that are worth noting. First, the failure rate for sampling

techniques on the SUM queries is higher than the expected 1 in 10000 failures stipulated

by the confidence intervals. In this missing data setting, a small number of example rows

fail to accurately capture the “spread” of a distribution (the extremal values), which govern

failures in estimation. Queries that require values like SUM and AVG are very sensitive to

these extrema.

It is important to note that these experiments are idealized in the sense that all the

baselines get true information about the missing data and have to summarize this information

into O(n) space and measure how useful that stored information is for computing the minimal

and maximal value a workload of aggregate queries could take. There is a subtle experimental

point to note. If a query is fully covered by the missing data, we solve the query with each
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baseline and record the results; if a query is partially covered by the missing data, we solve the

part that is missing with each baseline then combine the result with a ‘partial ground truth’

that is derived from the existing data; finally, if a query is not overlapping with the missing

data then we can get an accurate answer for such a query. Such issues are common to all the

baselines, in the upcoming experiments we will only consider the accuracy of representing

the missing data (and not partially missing data) to simplify questions of correlation and

accuracy.
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Figure 4.3: Performance of baselines given different missing ratio, evaluated with 1000 COUNT(*)
query on the Intel Wireless dataset.

4.6.3 Detailed Sampling Comparison

One might argue that 99.99% is an overly conservative confidence interval. In this experi-

ment, we evaluate the performance of the uniform sampling baseline in terms of failure rate

and accuracy as function of that confidence interval setting. Our results show there is not

a clear way to calibrate the confidence intervals to either minimize failures or avoid inaccu-

racy. Results in Table 4.1 show a clear trade-off between failure rate and accuracy: when

we increase the confidence interval, the over-estimation ratio increases, and the failure rate
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Figure 4.4: Performance of baselines given different missing ratio, evaluated with 1000 SUM query
on the Intel Wireless dataset.

decreases. However, even with a 99.99% confidence interval derived from Chernoff Bound,

the failure rate is non-zero. We believe that the PC framework provides the user with a

competitive accuracy but the guarantee of no failures.

Failure Rate %
Conf (%) 80 85 90 95 99 99.9 99.99
US-1n 20.1 15.6 11.4 6.9 3.4 2.4 0.8
Corr-PC –0–

Over Estimation Rate
US-1n 1.07 1.08 1.11 1.13 1.2 1.27 3.13
Corr-PC –2.23–

Table 4.1: Trade-off between failure rate and accuracy of an uniform sampling baseline given
different confidence interval vs. Corr-PC.

Sampling More Data

In all of our experiments above, we consider a 1x random sample. Where the baseline is

given the same amount of data compared to the number of PCs. PCs are clearly a more

accurate estimate in the “small data” regime, what if the sample size was larger. In Figure
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4.5, we use the Intel Wireless dataset to demonstrate the performance of the non-parametric

bounds using different sample sizes. And the results demonstrate a clear trend of convergence

as we increase the sample size. If we consider data parity (1x), the confidence interval is

significantly less accurate than a well-designed PC. One requires 10x the amount of data to

cross over in terms of accuracy. We envision that PCs will be designed by a data analyst by

hand, and thus the key challenge is to evaluate the accuracy of the estimation with limited

information about the distribution of missing values.
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Figure 4.5: Performance of the uniform sampling baseline with different sample size.

Robustness To Noise

Of course, these results depend on receiving PCs that accurately model the missing data. We

introduce noise into the PCs to understand how incorrectly defined PCs affect the estimated

ranges. When the PCs are noisy, there are failures because the ranges could be incorrect.

We add independent noise to the minimum and maximum values for each attribute in each

PCs. Figure 4.6 plots the results for Corr-PC, a set of 10 overlapping PCs (Overlapping-PC),

and US-10n (a 10x sample from the previous experiment). We corrupt the sampling bound

by mis-estimating the spread of values (which is functionally equivalent to an inaccurate
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PC). All experiments are on the SUM query for the Intel Wireless dataset as in our previous

experiment. For corrupting noise that is drawn from a Gaussian distribution of 1, 2 and 3

standard deviation, we plot the failure rate.

Our results show that PCs are not any more sensitive than statistical baselines. In fact,

US-10n has the greatest increase in failures due to the noise. Corr-PC is significantly more

robust. This experiment illustrates the benefits of overlapping PCs. When one such overlap-

ping PC is incorrect, our framework automatically applies the most restrictive overlapping

component. This allows the framework to reject some amount of mis-specification errors.
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Figure 4.6: We investigate the sensitivity of Corr-PC, Overlapping-PC, and US-10n to different
levels of noise. The failure rate of all approaches increases as we increase the noise level, but the
PC baselines especially Overlapping-PC are more tolerable to the same level of noise.

4.6.4 Scalability

In this subsection, we evaluate the scalability of PCs and optimization techniques. As

mentioned in earlier sections, the complete process of solving a PC problem including two

parts. First, we need to perform cell decomposition to find out which cells are valid and

second, we need to formalize a MILP problem with the valid cells that can be solved to find

the optimal bound. The vanilla version described above is intractable because the number of
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Figure 4.7: Our optimizations reduce the number of cells evaluated during the cell decomposition
phase by over a 1000x.

sub-problems we need to solve in the cell decomposition phase is exponential to the number

of PCs.

We presented a number of optimizations in the paper to improve this time. We will show

that naive processing of the PCs leads to impractical running time. We generate 20 random

PCs that are very significantly overlapping. Figure 4.7 plots the number of cells evaluated as

well as the run time of the process. The naive algorithm evaluates the SAT solver on more

than 1000x more cells than our optimized approach.

Since cell decomposition is really the most expensive step We can prune and save about

99.9% of the solving time by using DFS (early termination for cell decomposition) and the

rewriting heuristic. Without these optimizations, PCs are simply impractical at large scales.

Non-Overlapping PCs Scale Effectively

PCs can be solved significantly faster in the special case of partitioned PCs (non-overlapping).

The process of answering a query with PC partitions is much simpler than using overlapping

PCs. Because partitions are disjoint with each other, we can skip the cell decomposition,

and the optimization problem can be solved by a greedy algorithm. As shown in Figure 4.8,

the average time cost to solve one query with a partition of size 2000 is 50ms, and the time

cost is linear to the partition size. We can scale up to 1000s of PCs in this case.
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Figure 4.8: The run time needed to solve one query using partition of different size.

4.6.5 Handling MIN, MAX, and AVG Queries

As mentioned in earlier sections, besides COUNT and SUM queries, PCs can also handle

MIN, MAX and AVG queries. In this experiment, we use the Intel Wireless dataset for

demonstration, we partition the dataset on DeviceID and Time. For each type of query, we

randomly generate 1000 queries and use PC to solve them. Results can be found in Figure

4.9. First, note how PC can always generate the optimal bound for MIN and MAX queries.

PCs are a very good representation of the spread of the data, more so than a sample.

We show similar performance for AVG queries to the COUNT and SUM queries studied

before. AVG queries are an interesting case that we chose not to focus on. While sampling

is a very accurate estimate of AVG queries without predicates, with predicates the story

becomes more complicated. Since averages are normalized by the number of records that

satisfy the predicate, you get a “ratio of estimators” problem and the estimate is not exactly

unbiased. So for small sample sizes, standard bounding approaches can have a high failure

rate despite seemingly accurate average-case performance.
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Figure 4.9: With PC, an optimal bound can be derived for MIN and MAX queries. PC also
generates competitive result for AVG Queries.

4.6.6 Additional Datasets

We evaluate the accuracy of the framework using two other datasets.

Airbnb at New York City Dataset

The Airbnb dataset [11] contains open data from Airbnb listings and metrics in the city

of New York, 2019. This dataset contains 50 thousand rows, 19 columns that describe

different properties of listings like location (latitude, longitude), type of room, price, number

of reviews, etc. Corr-PC and Rand-PC are defined as n = 1500 constraints over latitude

and longitude.

Figure 4.10 replicates the same experiment on a different dataset. This dataset is signifi-

cantly skewed compared to the Intel Wireless dataset, so the estimates are naturally harder

to produce. As before, we find that well-designed PCs are just as tight as sampling-based

bounds. However, randomly chosen PCs are significantly looser (more than 10x). PCs fail

conservatively, a loose bound is still a bound, it might just not be that informative. In

skewed data such as this one, we advise that users design simple PCs that are more similar
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Figure 4.10: Baseline performance on 1000 COUNT(*) and SUM queries with predicate attributes
on Latitude and Longitude using the Airbnb NYC dataset.

to histograms (partition the skewed attribute).

Border Crossing Dataset

The Border Crossing dataset [103] from The Bureau of Transportation Statistics (BTS)

summary statistics for inbound crossings at the U.S.-Canada and the U.S.-Mexico border

at the port level. This dataset contains 300 thousand rows, 8 columns that describe the

summary of border crossing (the type of vehicles and the count) that happen at a port (port

code, port location, state, etc) on a specific date. We compare the hard bound baselines with

PCs using different partitions with three groups of randomly generated queries. Corr-PC

and Rand-PC are defined as n = 1600 constraints over port and date.

Results in Figure 4.11 show results on another skewed dataset. As before, informed PCs

are very accurate (in fact more accurate than sampling). Randomly chosen PCs over-estimate

the result range by about 10x compared to the other approaches. Again, the advantage of

the PC framework is that unless the assumptions are violated, there are no random failures.

On this dataset, over 1000 queries, we observed one bound failure for the sampling approach.
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Figure 4.11: Baseline performance on 1000 COUNT(*) and SUM queries with predicate attributes
on Port and Date using the Border crossing dataset.

This failure is included in the results.

Join Datasets

We also evaluate the PC framework on a number of synthetic join examples on randomly

generated data. The statistical approaches do not generalize well to estimates for queries

with inner equal joins, and we found the bounds produced were too fallible for meaningful

comparison. To evaluate PCs on such queries, we compare to another class of bounding

techniques that have been proposed in the privacy literature. These bounds estimate how

much a query might change for a single hypothetical point update. Our insight connecting

the bounding problem to worst-case optimal join results leads to far tighter bounds in those

settings. Johnson et al. [65] proposed a technique named elastic sensitivity that can bound

the maximum difference between the query’s result on two instances of a database.

Counting Triangles. In this example, which is also studied by Johnson et al. [65], we analyze

a query that is used to count triangles in a directed graph. In Figure 4.12 (TOP), we show

the results of the two approaches on the counting triangle problem using randomly populated
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edges tables of different sizes. And the results confirm that our approach drives a bound

that is much tighter in this case—in fact by multiple orders of magnitude.
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Figure 4.12: We compare the bound derived by our approach (Corr-PC) with state of the art
baseline Elastic Sensitivity on the triangle counting problem of different table sizes (TOP) and an
acyclic join (BOTTOM).

Acyclic Joins. We also consider the following join query:

R1(x1, x2) ./ R2(x2, x3)... ./ R5(x5, x6)

We generate 5 tables, each with K rows and use the two approaches to evaluate the size of

the join results. We vary the value of K to understand how the bounds change accordingly.
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The results are shown in Figure 4.12 (BOTTOM), we can see that elastic sensitivity always

assumes the worst-case scenario thus generates the bound for a Cartesian product of the

tables that is several magnitudes looser than our approach.
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4.6.7 Probabilistic Confidence Intervals are Often Unreliable on Real Data

Table 4.6.6 presents different techniques and their “failure rate” over 1000 queries, which

is the number of queries for which the true value exceeded what was produced in a bound.

The most common technique by far is to rely on the Central Limit Theorem (US-1p, US-

10p). Estimating this standard error from a sample is often far more unreliable than one

would normally expect. We use a 99% confidence interval for a CLT bound given N samples

and 10N samples, and observe that the failure rate is far higher than 1%. In this missing

data setting, a small number of example rows fail to accurately capture the “spread” of a

distribution.

Next, we can make the sample-based confidence intervals a much more conservative non-

parametric model (US-1n, US-10n), which holds under milder assumptions. Such a bound

relies on an estimate of the min and max values and not an accurate estimate of the standard

error. Predictably, this performs much better than the CLT approach. However, as we can

see in the table, non-parametric bound baselines still fail more often than one would expect

over 1000 queries. Small samples and selective queries pose a fundamental challenge to these

approaches. Stratified samples do not solve this problem either. While, they cover the space

more evenly, for any given strata, they can have a high failure rate.

One could intuitively fix this problem by annotating the strata in a stratified sample with

metadata that accurately depicts min and max values. This is exactly the definition of PCs.

The PC technique and Histograms always generate hard bounds for queries because for the

same number of “bits” of information they capture the entire spread of values much more

accurately. For the purposes of bounding, the example tuples provided by a sample are not

as useful as the ranges.

Finally, we use the generative approach to model the joint data distribution. We draw

samples from this model and use that to produce a confidence interval. Such an approach

works very well on some datasets/queries but not others. These experiments illustrate how

important a guaranteed “0 failure rate” is for real-world decision making. Statistical confi-
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dence intervals can give a false sense of security in real-world data.

4.7 Conclusion

We proposed a framework that can produce automatic contingency analysis, i.e., the range of

values an aggregate SQL query could take, under formal constraints describing the variation

and frequency of missing data tuples. There are several interesting avenues for future work.

First, we are interested in studying these constraints in detail to model dirty or corrupted

data. Rather than considering completely missing or dirty rows, we want to consider rows

with some good and some faulty information. From a statistical inference perspective, this

new problem statement likely constitutes a middle ground between sampling and Predicate-

Constraints. Second, we would like to further understand the robustness properties of result

ranges computed by Predicate-Constraints as well as other techniques. Understanding when

result ranges are meaningful for real-world analytics will be an interesting study. Finally, we

would like to extend the Predicate-Constraint framework to be more expressive and handle

a broader set of queries.
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CHAPTER 5

OPPORTUNISTIC VIEW MATERIALIZATION WITH DEEP

REINFORCEMENT LEARNING

5.1 Introduction

It is common for a database to receive a large number of closely-related queries in a short

period of time. For example, during data exploration, a data scientist might execute a query

with several different filters to test different contingencies [81]. Or, a recent news report may

trigger a hot-spot in an e-commerce database in records relating to a featured product and

its related product recommendations [29, 88]. These bursty, short-lived events often have

a natural redundancy where successive queries may be able to reuse previously computed,

expensive subquery structures. Ideally, a database system should be able to respond to such

workload events by automatically identifying and persisting useful intermediate results for

future use without explicit intervention.

This idea motivates a framework that “opportunistically” caches useful intermediate

results. By opportunistic, we mean that while processing a query, intermediate states that

are generated as a part of its execution are selectively persisted for future reuse [82]. In

its purest form, the database starts with a “blank slate” with only the base tables and

empty extra storage space. As queries are executed, the opportunistic view materialization

(OVM) framework should identify commonly occurring subqueries and store their results

into the extra storage as materialized views that can be used by future queries. The basic

optimization problem is to determine whether materializing an intermediate result benefits

future query processing more than the future storage and maintenance costs that it might

incur. The framework may need to evict existing materialized views to free up enough space

to persist a new view. Thus, the core technical challenge is reasoning about the long term

opportunity costs of choosing to materialize a particular intermediate state.

This opportunistic nature is what differentiates such a framework from extensive prior
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work on view recommendation [113, 33, 17, 108, 10, 138, 64], since opportunism couples

view creation with query execution. This coupling leads to a complex interplay between

the database query optimizer and the materialization decisions. For example, it might be

beneficial to force a sub-optimal query plan that generates an intermediate result that is

useful for future query processing. Furthermore, this setting induces a sequential problem

where the decision is stateful; the choice of whether to persist a view depends on those

views currently persisted. There might be two different views that independently benefit a

future query, but the query cannot be rewritten to use both. While similar to the problem

of page caching, OVM brings further challenges due to overlapping intermediate results and

a non-uniform benefit and cost for persisting results.

In part due to these nuances, we find that existing heuristics cannot be applied as a

general-purpose solution. Such heuristics range from the simplest Least-Recently-Used or

Least-Frequently-Used approaches [36, 73, 122] to more sophisticated cost-model based ap-

proaches dynamic view selection approaches [113, 101]. We find that some heuristics [101]

perform well in join-dominated workloads and others [113] perform better in data-cubing

problems, but not on both. Not surprisingly, our experiments further suggest that the per-

formance of these approaches dramatically degrades if there are cardinality estimation errors

or unmodeled costs, such as the effects of background view maintenance.

A machine learning approach that incorporates feedback from observed execution times

can ameliorate this brittleness. Rather than relying on a heuristic, we can observe whether

the creation of a view has a net positive or negative impact on subsequent query latencies.

Beneficial decisions should be remembered for the future and adverse decisions should be

avoided. This broad idea is inspired by recent works that apply Reinforcement Learning (RL)

to query optimization, where actual runtimes are used to inform/optimize future plans [96,

26, 95, 78]. A working definition of RL is “learning by doing”; the algorithm takes actions

and observes feedback via a performance metric (e.g., query runtime). It assigns credit or

blame to actions based on the feedback, and can even account for delayed effects. As more
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feedback is observed, the learned behavior is increasingly informed. It does not require

a hard-coded heuristic nor does it need to explicitly generate an anticipated workload—its

predictive model is simply a “means-to-an-end” in terms of minimizing overall query latency.

The RL algorithm has to be able to assign credit or blame purely from how the queries

execute. This is the crux of the machine learning challenge in applying RL in OVM systems—

ascertaining the net benefit of a view is difficult. Any system either makes a choice to use

a view or not during query optimization, and the learning agent only observes the final

runtime of one of these choices–and does not know the marginal effect with respect to the

other choice. We lack the “paired” experiment, where we observe the same query with and

without the view, thereby quantifying the reward of creating a view [15]. If the same queries

(or similar queries) do not frequently repeat, the amount of time needed to learn an effective

and adaptive materialization policy will be prohibitive.

Our insight is that OVM systems need a new type of asynchronous RL algorithm that

runs such paired experiments in the background. For every query, the system identifies a

set of eligible views that can be opportunistically created. The scope of the current work

covers views with inner joins, predicates and aggregate functions, but the technique is more

general. The system proactively takes the decision it thinks is best at the time using its

query optimizer (possibly using no views). The counterfactual decision(s), the ones that the

system did not take, are queued into an experiment buffer. We simplify the experimentation

problem by assuming an in-memory database with no extraneous unobserved state (e.g., the

buffer pool state or caching effects). Therefore, we can independently schedule and run these

experiments during idle times producing retroactive marginal utility metrics for each view.

Our system can further model view refresh costs but is not optimized for OLTP systems

where these refresh events might be very frequent.

We implement this model in a prototype OVM system called Deep Q-Materialization

(DQM). DQM contains three main components: (1) An online query miner that analyzes a

trace of SQL queries to identify candidate views for the current query to opportunistically
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materialize, (2) an RL agent that selects from the set of candidates, and (3) an eviction policy

that selects views to delete. DQM is integrated with SparkSQL. The adaptive policy interacts

with the Spark environment through a RESTful API and can easily be ported to other SQL-

based data processing systems. Over workloads of 10000 queries, DQM is competitive with

the best of the heuristics on each workload in terms of cumulative query latency. This is

even including the time needed to learn the selection model. Further experiments find that

DQM can match or outperform standard heuristics policies across 5 different temporal query

patterns on several different workloads. DQM further maximizes utilization of available

storage for the given workload and query processing engine.

In summary, this paper makes the following contributions:

• We formalize online view selection in opportunistic materialization systems as a Markov

Decision Process (MDP).

• We propose a new asynchronous reinforcement learning algorithm, based on the Double

DQN model, to optimize this MDP objective online.

• We propose a new credit-based eviction model that can enforce a hard storage con-

straint on views created by the learned selection policy.

• We compare our approach to classical and state-of-the-art baselines to demonstrate

DQM’s adaptivity, latency, and robustness.

5.2 Background

In this section, we overview the related literature, review reinforcement learning, and moti-

vate our system DQM.

128



5.2.1 Scope

We borrow the term “opportunistic materialization” from [82], which describes automatic

persistence in large-scale data processing systems like Hive and Pig. We use the term op-

portunistic to describe any materialization that is an artifact of execution and not explicitly

defined by a human database administrator. All queries given to DQM are specified in a

standard SQL dialect. DQM identifies select, inner join, and aggregate views that can be op-

portunistically materialized for future reuse. DQM learns which of these views to materialize

completely online by making decisions. Learning from observations requires making occa-

sional suboptimal decisions (also called exploration), and all of our performance numbers

include this overhead unless otherwise noted. We optimize DQM for in-memory analytics

scenarios, and thus do not account for disk caching or buffer pool state in our learned model.

While DQM does account for maintenance costs, we assume that maintenance events are

infrequent.

5.2.2 Related Work

Classical view selection methods recommend the best views to create based on a query

workload and storage constraints [113, 33, 17, 108, 10, 138]. The downside is that one only

searches over “static” strategies, where the views are created upfront. Even if we were

to periodically run such view recommendation tools, we would have a number of difficult,

unresolved questions: how to window the workload, how to penalize view creation costs,

and how frequently to re-run a recommendation tool. An intriguing variant of these ideas

is to form a predictive model that forecasts the type and distribution of queries one may

encounter [92]. As far as we can tell, such a predictive approach has not yet been truly

applied to materialized view selection (Ma et al. only study index creation) and defer a

detailed exploration of workload forecasting for future work.

Online materialization has been less extensively studied in SQL analytics. DynaMat [73]

and WATCHMAN [122] were seminal projects in dynamic materialized view management.
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Systems in this space have to solve multiple problems: what views to materialize [94, 116],

when to evict views [36], and how to select which views to use [27]. Older systems borrowed

strategies from database paging (e.g., LRU), and state-of-the-art systems apply more so-

phisticated scoring heuristics that account for creation and usage costs. HAWC [113] scores

views based on a cost-model and maintains a table of such scores for persisted views. New

views that have a higher score than those in the table force an eviction event. The scores

in the table are windowed to consider only the latest K queries to ensure adaptivity. Recy-

cler [100] prioritizes the most expensive views (in terms of creation cost). The reasoning is

that these views are harder to re-create if they are evicted. However, all of these heuristic-

based approaches are limited. Our experiments suggest that there is no “one-size fits all”

heuristic. It is challenging to decide a priori whether a heuristic-based approach will even

work for a workload. More subtly, these heuristics can be at the mercy of the DBMS’s cost

estimation and query optimizer and actually hurt performance. We believe this is an oppor-

tunity for adaptive online approaches like DQM that use the actual observed query latencies

as feedback.

Similar problems have been studied in the context of big data analytics systems. There

are a number of other recent works that reuse computation in MapReduce jobs [42],

Spark RDDs [79], and Pig [20]. The Nectar system [53] caches important subroutines for

DryadLINQ programs. Kodiak uses an optimization algorithm to anticipate hotspots and

proactively compute certain results in their online advertising database. The CloudViews

system [64], which identifies overlapping DAG subgraphs across different jobs and persists

them as materialized views, is the most relevant to our work. CloudViews proposes and im-

plements many of the core components in DQM including online materialization and updating

cost estimates from feedback from actual executions. We replace this entire architecture with

a learned end-to-end reinforcement learning model. RL greatly simplifies the design by obvi-

ating the need for a separate cost-estimation and view selection module. This design choice

is building off a recent trend in AI-powered database systems [111, 83, 12, 135, 95, 78].
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Experiments suggest competitive performance with the CloudViews algorithm even when

CloudViews is given a perfect cost estimate. It is worth noting that the scope of DQM is

narrower and allows for a tighter coupling between the query optimizer and the material-

ization system, which we discuss later in the paper. The idea is inspired by similar tight

couplings of query optimization and data partitioning/placement in related work [72, 91].

5.2.3 Problem Statement

Every database D is a collection of base relations (tables) and derived relations (materialized

views). Let W = [q0, q1...] be a sequence of read-only queries. These queries are issued to

D in the order that they arrive. As views are materialized and deleted, the database state

si changes. The system automatically chooses to re-write queries given the views that are

materialized. Therefore, every query has a latency associated with it, given the current state

of the database, and the overall runtime of the workload is defined as:

Runtime =
∞∑
i=0

Latency(qi)

Associated with each query qi is a set of new views Vi that can be persisted opportunis-

tically (as the query is executed) for the future. Any of these views can be persisted when

processing the query:

si+1 ← v

There is a storage cost to persisting such views, which is a function of the current database

state:

Storage =
∞∑
i=0

C(si),

and there is further a cap on the amount of storage used at any given time:

C(si) ≤ Capacity
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Therefore, our system possibly needs to evict a view:

si+1 6← v

At each time-step, the state of the database increments based on the view creation and

eviction actions taken by the materialization policy (function defined by π):

si+1 = π(si, qi)

Problem 1 (Opportunistic Materialization). Given a database instance s0 and a stream of

queries Q, plan a set of view creation and eviction operations to:

min
π∈Π

∞∑
i=0

Latency(qi)

subject to: si+1 = π(si, qi)

C(si) ≤ Capacity

5.2.4 What Does DQM Learn?

Materialization is not like paging: there is a complex interplay between immediate effects

(use) and long-term effects (the opportunity cost of storing a view). Even discounting other

uncertainty in the DBMS, like errors in query optimizer cost estimation, these are effects

that are fundamentally hard to encode as fixed heuristics. Thus, we advocate for an end-

to-end machine learning approach that is grounded in real run-times. Rather than building

a separate view selection optimizer and cost model, we couple them together in a single

policy. DQM learns a scoring function that evaluates the marginal utility of materializing

and adding a new view to the set of already materialized views.

DQM learns this scoring function by observing query latencies in the database after taking
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a certain action, and this learning procedure can be cast as Reinforcement Learning (RL)

problem [127]. RL models a learning setting where an agent takes decisions to affect the state

of the system. After each decision, the system updates its state, and then, the agent observes

a “reward”, or a score of how good that decision is. The agent’s goal is to learn a strategy

that maximizes its long-term cumulative reward. Mathematically, the interaction between

the agent and the system is described by a 6-tuple 〈S,A, p0, p, R, γ〉, where S denotes the

state space (the set of all possible states), A the action space (set of all possible decisions), p0

the initial state distribution (how the system starts out), p(st+1 | st, at) the state transition

distribution (how the state changes given a decision), R(st, at) ∈ R is the reward function,

and γ ∈ [0, 1) the discount factor (a weight to discount future rewards). Many popular

RL algorithms define a Q-function, which is similar to the cost-to-go function in dynamic

programming and join-order optimization, that returns the maximum possible cumulative

reward after taking an action in a specific state:

Q(s, a) = R(s, a) + max
a′

Q(S′, a′) (5.1)

Intuitively, this function quantifies the long-term benefit of taking a specific action. These RL

algorithms learn by estimating this Q function from data, i.e., observe how the system state

evolves given actions and then pose a regression problem that relates states and actions to

the long-term outcome. The estimated Q-function acts as the desired scoring metric. In our

problem, the state is the set of all views current materialized, the action space is all feasible

views that can be opportunistically generated, and the reward is the negative latency of the

current query. The Q-function quantifies the long-term benefit of a particular materialization

action in a given database state. At each decision step, we can develop a materialization

policy by taking the highest scored action:

π(s) = arg max
a

Q(s, a) (5.2)

133



Figure 5.1: DQM runs as an independent process that issues view creation and deletion actions to
Apache SparkSQL. A thin wrapper layer around SparkSQL manages the created views and returns
any runtime results to DQM. DQM learns from these observations and issues creation and deletion
events when appropriate. It also issues potential experiments to run.

5.3 System Overview

In our initial implementation, DQM considers select, inner join, and aggregate (SJA) views.

DQM accepts general SparkSQL queries and decomposes each of the queries into Select-

Project-Inner Join-Aggregate blocks:

SELECT a1 ,...,ak [agg (...)]

FROM T1 ,...,Tn

WHERE [pred (...)]

GROUP BY [g1 ,...,gm]
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All rewriting, optimization, and materialization decisions are made at the granularity of the

query blocks, and all other blocks types are ignored and passed through. In this section, we

describe how DQM processes each block (thus, we will use query and block synonymously

henceforth). The subsequent sections will describe the learning procedure in detail, but this

section will treat it as a black box and assume we have a scoring function Q() that can

evaluate the benefit of persisting a view.

5.3.1 View Manager

Figure 5.1 illustrates the architecture of DQM. We found that it was convenient to run the

OVM system in a separate process outside of Spark that issues the creation and deletion

actions. All model training occurs in another Python process which interacts with the Spark

environment via a RESTful API.

DQM stores all materialized views in the Parquet file format on an in-memory file system.

The view manager maintains statistics about each of the views such as its size. The system

scores each of these views with the learned scoring function Q(). The view manager also

maintains logical descriptions of the views to avoid logically equivalent duplicates. The

view manager stores a log that includes view usage and the latency of the query using the

view. This log provides the training data for the learning module. The view manager is also

responsible for evicting under-utilized views, we discuss this further in Section 5.

5.3.2 View Candidate Miner

When a SQL query arrives, the view candidate miner analyzes the query for potential OVM

candidates–intermediate results that could be generated by executing the SQL query. Cru-

cially, this step happens before query optimization. These candidates are logical do not

necessarily come from a single physical query plan. In principle, any technique could be

used to mine view candidates. We describe a small set of heuristics to construct reasonable

candidates for the query types studied in this paper.
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Join Candidates: We identify join views of all subsets of relations up-to a join limit 1,

ignoring those joins that contain require a Cartesian product.

Filter Candidates: We also consider all single table filters as potential candidate views.

Aggregate Candidates: Any group by aggregate is included as a candidate view.

After identifying Join, Filter, and Aggregate candidates, the system scores each of these

view candidates with the learned scoring function Q(). This creates a ranked list of view

candidates by their score. We prune all views that are already materialized and those

views with a lower score than the lowest scored materialized view. The remaining ranked

list consists of potential views that are estimated to be more beneficial than those already

stored. If this list is empty then no new views will be materialized.

5.3.3 Query Re-Writer

The query re-writer modifies the given query block in two passes. In Pass 1, it re-writes the

query to force the materialization of the best view candidates. In Pass 2, it re-writes the

query to best leverage previously computed views.

Pass 1. Opportunistic Optimization

In the first pass, DQM ensures that the given query creates the desired intermediate results.

The view candidate miner sends the re-writer a ranked list of potential views to materialize

that are more beneficial than at least one of the currently stored views. The first pass iterates

over the ranked list in descending order. It determines whether it can rewrite the given query

using each view. 2 If it can, then it rewrites the query:

pass1(query):

for view in candidates_desc:

1. = 6 in our experiments.

2. We use standard rewriting techniques that compose join, filter, and aggregate views. We do not handle
cases of filter subsumption.
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if can_rewrite(query , view):

query = rewrite(query , view)

We have to iteratively test the validity of each rewritten query because two views might be

jointly incompatible: while the query can be rewritten to use both individually, together

they do not form a valid rewritten plan. This iterative rewriting procedure ensures that the

best view candidate is always materialized.

Pass 2. Reuse Optimization

The second pass is designed to maximize the reuse of persisted materialized views. The goal

of this pass is different from the previous one. Pass 1 is meant to generate the best possible

view candidates, Pass 2 is designed to execute the given query as efficiently as possible. In

this pass, we leverage the query optimizer’s cost model to only apply view rewriting that

improve estimated performance.

Just because a valid rewriting exists doesn’t mean it will improve query performance.

This is counter-intuitive because one might think that pre-computation is guaranteed to

save time. Consider the case of materializing a join view, and a future query that can utilize

this view but also has a filter on one of the tables. If that filter is highly selective, forcing

the query to use a join view may preclude a very effective filter push down optimization.

To deal with situations like this, assume a subroutine find best(), which finds a view in

the manager with the lowest query optimizer cost rewrite and has a lower cost than the

cost of the original query. If a valid rewrite doesn’t exist or the cost is high, then it returns

None. Then, the second pass can be written as this iterative optimization routine.

pass2(query):

view = find_best(view_mgr , query)

while view != None:
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query = rewrite(query , view)

view_mgr -= view

view = find_best(view_mgr , query)

return query

Discussion

In our implementation without much optimization effort, depends on the complexity of the

query, the rewrite() function can take less than 1ms (for queries generated by CubeLoad)

to up to 30ms (for some queries in JOB and TPC-DS) to complete. This two-pass query

rewriting strategy ensures that views that can be generated opportunistically are planned

for first before planning the query. An interesting consequence is that the system may take

an instantaneously sub-optimal query planning decision for long-term benefit.

DQM learns this behavior by observing the consequences of its actions. It initially starts

with a randomized scoring function Q(). As it materializes views, it observes rewards (the

utility of these views to future queries). It then correlates rewards with materialization

decisions. The process of learning from a randomized scoring function is called “exploration”.

We will see that it will be beneficial to explore even after observing many such view, reward

pairs. Exploration allows the system to hedge for changing, dynamic, or otherwise uncertain

environments.

5.4 Learning Materialization

In this section, we discuss the core technical contribution of the paper: a reinforcement

learning approach for adaptive view creation. In particular, this section describes how to

learn Q() described in the previous section. This section ignores concerns around eviction

and assumes that there is an automated black-box system process that garbage collects old
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views when they fall into disuse. The next section will describe how to implement eviction.

5.4.1 The One View Problem

We start with a simplified problem: consider the decision of whether to materialize a single

view candidate v. Our database has a one-bit state–whether v is currently materialized or

not. Our system must simply decide when to apply the unary action to create a view if it is

not materialized.

How do we quantify the “benefit” of this decision? For a single query q, let Improve-

ment(q,v) denote the difference in latency when using the view or not (the improvement is

0 if the view is not used):

Improvement(q, v) = Latency(q)− Latency(q(v))

Over the entire future workload Q, the total improvement is:

Total Imp(v) =
∑
q∈Q

Improvement(q, v)

Improvement(q,v) hides a potential overhead on the first query (the query during which

the view was created). Recall from the previous section, the two-pass rewriter may take a

suboptimal query plan to materialize the view in the first place. Total Imp(q,v) does not

account for this overhead because it is a relative quantity.

Therefore, we introduce another term Cost(q0,v), which is an estimate of the creation

overhead of the query (also includes any memory copy/persistence costs). The creation

overhead is the difference between the execution time of an optimal query plan and that of

the query that actually created the view:

Benefit(v) = (
∑
q∈Q

Improvement(q, v))− Cost(q0, v)
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By explicitly decomposing the problem in this way, we can account for scenarios where the

creation of a view may force an instantaneously suboptimal query plan but creates a view

that benefits the cohort of other queries in the long run.

Towards A Reward Function

The broad goal of DQM is to create those views that optimize Benefit(v). We make view

usage decisions at “time-steps” that are synchronized with the query workload. So each

query qi defines a discrete-time decision point of whether to use the view or not. To be able

to apply RL, we need a per-timestep (per-query) reward that quantifies the instantaneous

benefit or harm of this action. So, we define the instantaneous benefit as the improvement

for a given query and an amortized creation overhead over those queries that actually use

the view:

R(q, v) = Improvement(q, v)− Cost(q0, v) · δ(v, q)
Nv

,

where δ(v, q) is an indicator function determining whether q uses the view or not, and Nv

is the number of times the view was used in the past. This means that each relevant query

incurs a fractional creation cost. It can be verified that3:

Benefit(v) =
∑
q∈Q

R(q, v)

The per-query reward allows us to model the decision process as an MDP:

State: M = {0, 1} view status, Q workload until q

Action: {∅,+}: create the view or do nothing

Reward: R(q, v): improvement minus amortized creation

Policy: π(Q,M) 7→ {∅,+} decision to create view

Our objective is to find a view creation policy: given the current system state (i.e.,

3. Additionally, we can scale Cost(q0, v) by a hyperparameter to adjust unit differences.
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whether the view is materialized or not and the query workload until the current point),

decide the right time to create the view. RL is a framework that learns this policy through

trial and error (explore random creation strategies) to optimize the cumulative reward, or

R(v) in our case.

Learning from Counterfacutal Experiments

The improvement metric compares two queries one that uses the view and one that doesn’t.

The latter is a query that the system would not ordinarily run. A counterfactual scenario

is one that is contrary to what actually happened. There is a hypothetical (counterfactual)

world in which v was not created and q was answered without using v (with a counterfactual

runtime of Latency(q)). We are really interested in the marginal improvement caused by an

action we took in the system:

Improvement(q, v) = Latency(q)− Latency(q(v))

However, we cannot run both queries (with and without the view) in real-time as it would

expose additional latency to the user. Our system maintains a running buffer of paired

experiments to run. In idle times, it executes these experiments and stores the marginal

improvement for each query.

Asynchronous RL Algorithm

The typical anatomy of an RL algorithm is to start with a randomly initialized policy and

take decisions to affect the system. It observes the outcomes of its decisions. It periodically

retrains the model based on these outcomes making the policy increasingly informed.

In our toy 1-view problem, the policy is simply to create the view or not at the current

query. We now highlight the different parts of our algorithmic framework.

Rolling out (Data Collection): The core component of an RL algorithm is the “rollout”
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Figure 5.2: We diagram the “rollout”, or data collection, process used in DQM. At each time-step,
DQM decides whether to create a view or not. A reward is received if a created view is used AND
it improves a query runtime. Every time a created view is used, it queues up an experiment in (B)
to run when the system is idle. Once the experiment is run, that observation of improvement is
placed in (A) and can be used to improve the policy.
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procedure. The algorithm starts off with a random policy (randomly choose whether to create

the view), then it observes its effects by applying it to the system. These observations need

to be of the form:

(state, action, reward, new state)

As the system observes the rewards accrued by different actions, it learns to assign credit

to beneficial actions and incrementally builds a long-term strategy. As mentioned in the

previous section, DQM collects this data in an asynchronous way by maintaining two buffers:

an experience buffer and an experiment buffer. Figure 5.2 diagrams this process. At each

time-step, DQM decides whether to create a view or not. If the cache is full, DQM will first

evict a view (details of the eviction policy can be found in Section 5.6.4) before creating a

new view. Every time a created view is used, it queues up a counterfactual experiment in

(B) to run when the system is idle; run the query with and without the view. Once the

experiment is run, the observed improvement is placed in (A) and can be used to improve

the policy. In short, the experience buffer maintains a set of complete observations.

Policy Update: Our system continuously collects data and periodically updates the

policy. Our RL algorithm is based on the Deep Q Neural Networks (DQN); which as an

off-policy algorithm, is robust to asynchronous data collection. The DQN algorithm defines

a Q-function (similar to the cost-to-go function):

Q(s, a) = R(s, a) + max
a′

Q(S′, a′) (5.3)

Given the current state and action, what is the value of this action assume future optimal

behavior. Of course, this function is hypothetical since having this function would imply

having an optimal policy. If we had such a function, we would simply score each action and

take the best valid action to make a decision:

arg max
a

Q(s, a) (5.4)
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DQN iteratively approximates this function from data. LetQθ be a parametrized function

(e.g., represented by a neural network):

Qθ(fs, fa) ≈ Q(s, a)

where fs is a feature vector representing the state and fa is a feature vector representing

the creation decision. In the 1-view problem, the state is simply a single binary variable of

whether the view is materialized or not, and the action is another binary variable to create

the view. In other words, the DQN algorithm learns how to score actions in given states.

θ is the model parameters that represent this function and is randomly initialized at the

start. For each training tuple i in the experience buffer, one can calculate the following label,

or the “estimated” Q-value:

yi = Ri + min
a′

Qθ(s
′, a′)

The {yi} can then be used as labels in a regression problem. If Q were the true Q-function,

then the following recurrence would hold:

Q(s, a) = Ri + min
a′

Qθ(s
′, a′)

So, the learning process, or Q-learning, defines a loss at each iteration:

L(Q) =
∑
i

‖yi −Qθ(s, a)‖22

Then parameters of the Q-function can be optimized with gradient descent until convergence.

The description above outlines the main theory behind Q-Learning. We also applied the

tricks commonly used in practice like Experience Replay and Double DQNs [54].
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5.4.2 Generalizing to N Views

For simplicity, we introduced the algorithm with a single view to create. The multiple view

case when there is a pool of possible views to create is not that much harder. In principle,

we can think of it as N-independent versions of the above algorithm. In fact, this extension

is just a problem of featurization (how to define fa and fs).

When there is a single view featurization is trivial. There is a one-bit action variable

and a one-bit state variable. When we move to N-views, we have to define a featurization

scheme that can account for the particular views that are stored. This means that the set

of views materialized are summarized as a feature vector and the particular view that you

want to materialize is also summarized as a feature vector.

Let us start with the easier problem of describing the action (a particular view to materi-

alize). To encode an action, we take a featurization approach that is similar to [78]. For each

action, i.e a view candidate proposed by the view miner, our featurization focus on three

components of its definition: (1) the join conditions, (2) the predicates and (3) the group by

conditions.

For join conditions, to simplify our implementation without a loss of generalization, we

assume there is only one way to join any two tables. Therefore, the join conditions can be

encoded by applying one-hot encoding to encode the relations involved in the view. If there

are multiple ways to join two tables, we can simply extend the featurization to the column

level. For group by conditions, we apply one-hot encoding on the columns that are used in

the group by clause of the view. The feature vector of a view is then the concatenation of

the three vectors mentioned above. For the predicates defined in the view, we use a vector

of size m, m equals to the number of columns in the database. The vector is initialized

to be all 0s, for a predicate that is related to column c, we replace the 1 corresponding to

column c with an estimated selectivity ε of the predicate generated by the query optimizer.

Formally, for view v, let V J , V G, V P represent the encoding of its join conditions, group-by

conditions and predicates accordingly:
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V Ji =


1 if table i belongs to a join condition of v

0 otherwise

V Gi =


1 if table i belongs to a group-by condition of v

0 otherwise

V Pi =


ε if column i belongs to a predicate of v

0 otherwise

And the final encoding of the view is simply the concatenation of V J , V G, V P :

V = [V J, V G, V P ]

To encode the state which is a set of actions (i.e., views that are alive), we merge the

action feature vectors together by two steps. We first take the disjunction of each column

of the one-hot encoded features, i.e. features representing the join conditions and group-by

conditions. Secondly, for the features representing predicates, for each column we take the

maximum of the predicate selectivity estimations:

SJi =


1 if table i belongs to a join of an alive view

0 otherwise

SGi =


1 if table i belongs to a group-by of an alive view

0 otherwise

SPi = max(V Pji| j ∈ alive views, i ∈ columns)

Merging the action feature vectors results in a state feature vector of the same size as an
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action vector. An action vector and a state vector are concatenated together to represent

an action state tuple and feed to the Q function as input.

5.5 View Eviction

In a pure RL setting, it is difficult to enforce a hard constraint, such as a storage limit, with

a learned model. Therefore, we have to decouple the creation policy from the eviction policy,

which independently enforces this constraint.

5.5.1 Submissive Eviction

Our eviction policy “submissive” to the RL algorithm in the sense that it’s objective is to

allow the RL algorithm to act as optimally as possible while enforcing the storage constraint.

Whenever there’s room to materialize the desired view, it allows the RL algorithm to make

the decision. But if a certain decision exceeds the allotted space, it attempts to free up

space such that the constraint can be enforced. We need an algorithm that is an inverse of

the previous RL algorithm which maintains an estimate of the negative effects of evicting a

view.

5.5.2 Algorithm

For each created view, the observed value of keeping it materialized is:

R−1(v) =
∑
q∈Q

Improvement(q, v) + Cost(q0, v),

or the cumulative improvement so far plus the overhead cost of re-materializing the view.

Unlike during creation, where Cost amortizes over each query, there is no such amortization.

If we delete the view there is always a fixed cost of re-creating it. We maintain a running

estimate of its current value as a member of the table (Figure 5.3), each time a view is used
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Figure 5.3: DQM maintains a table to prioritize which views to delete to enforce the storage
constraint. This table is continuously updated with rewards accrued in the experience buffer.
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by a query:

CT+1(v) = CT (v) +R−1(v).

Again, as with the view creation policy, we may have to tune hyper-parameters that scale

the sum to account for different units or different preferences Improvement(q, v)+γ ∗Cost(v).

One challenge is modeling dynamic workloads. If a view was very valuable in the early

stage of a workload but then falls into disuse the credit table might have an inflated score.

In practice, we decay the credits of each view by a rate of µ ∈ (0, 1]4:

CT+1(v) = µ · CT (v) +R−1(v).

Given the credit table, our eviction policy is to simply evict the view of lowest credit until

sufficient space is freed up for the new view.

5.5.3 View Maintenance Through Eviction

We consider an OLAP setting where the materialized views are maintained infrequently.

In this problem setting, it is sufficient to treat view maintenance as an automatic eviction

event. For each view currently materialized, if one of its base tables have been updated, we

evict it from the pool. After an eviction, we additionally flush the experiment buffer of any

queued up experiments that use the view since the paired experimental results are now stale.

Since we explicitly model Cost(v) and how it amortizes, our reward function is consistent

under maintenance events, as creating a view that is repeatedly evicted will force the view

to incur high creation costs that do not amortize well. This model is sufficient to capture

maintenance through re-computation and not incremental view maintenance. We hope to

explore modeling incremental view maintenance in detail in future work.

4. In practice, it is possible for a view to cause negative improvement, we do not decay a negative credit
and the hyper-parameter we use to scale the cost will also be negative so that the cost became a penalty
instead of a reward to its credit.
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5.6 Experiments

Next, we present an experimental evaluation of DQM. All experiments are run on a cluster

of machines running Scientific Linux 7.2 each with 2 Intel E5-2680 2.40 GHz CPUs and

64G memory. We run each experiment 3 times and present the average of the 3 runs. We

experiment with three datasets and workloads: Join Order Benchmark (JOB), TPC-DS, and

CubeLoad. We run all of our microbenchmarks on JOB because it has a mix of join views

and single-table filters.

5.6.1 Join Order Benchmark

The queries and data in this experiment are derived from the Join Order Benchmark (JOB).

JOB is based on the IMDB dataset and consists of 113 aggregate queries with joins of

up-to 16 tables. The workloads contain a sequence of 10,000 such queries and the queries

are submitted and served in a sequential manner. Queries arrive at regular intervals, and

the asynchronous experiments can be run in a single time-step (we evaluate these effects

explicitly later). We normalize the storage constraint across all experiments. The available

storage for opportunistic materialization is set to 200MB (roughly 20% the size of the largest

base table in the experiments). This allows us to compare results across workloads in an

apples-to-apples way.

We generate different scenarios from these benchmarks. Our default is called rzipf in

which we draw queries randomly from the JOB benchmark based on a Zipf distribution,

some queries appear much more frequently than others.

Comparison to Optimal View Selection

First, it is natural to compare DQM to optimal view selection algorithms. Jindal et al.

formulate the problem with Integer Linear Programming (ILP) [63, 64]. They applied this

algorithm to identify reusable views in recurrent workloads.
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Figure 5.4: We evaluate overhead caused by learning and exploration by comparing DQM with a
TrainedDQM with no exploration.

Our JOB-based workload is stationary, i.e., 10000 queries are drawn from the same

distribution, therefore it is highly likely that queries repeat. We construct an idealized

setting for the ILP by collecting a perfect statistic for every (view, query) pair offline, then

we use a solver to find the set of views that maximizes the overall utility under the given

storage constraint. The ILP technique is given perfect foresight of the workload. However,

such a perfect foresight might not be available which means the statistics could be noisy.

To study how the noise affects ILP’s performance we add random noise to the statistics.

NoisyILP2 (NoisyIPL5) represents the situation where the noise is capped by a 2x (5x)

of the true statistics accordingly. Figure 5.4 shows that the performance of ILP changes

drastically as the noise level increases.

We first train DQM with 10000 queries from the workload from scratch (no prior knowl-

edge) and compare the cumulative latency over the whole workload (Figure 5.4). DQM

learns by proactively creating views (some of which are suboptimal, i.e., exploration). By

definition, there will be an overhead to this process. Even including this overhead and the

idealized ILP setting, DQM is actually competitive over the 10000 query workload. Now, if

we were to run DQM for the same 10000 queries without any learning and exploration, DQM

outperforms the ILP approach. This performance improvement is due to reasoning about
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Figure 5.5: We compare DQM to all of the baselines on the rzipf workload. Even including learning
time, DQM is competitive with the best baselines.

the opportunistic creation overheads and handling eviction. This result suggests that DQM

is able to learn a strategy that approaches an optimal allocation in a stationary workload.

Comparison to Caching Heuristics

Next, we compare DQM to different caching heuristics that range from conventional cache

algorithms, like Least Recently Used (LRU), to sophisticated heuristic-based approaches

from previous work. Unlike the previous experiment, we evaluate these algorithms online.

All of the baselines benefit from the other components of DQM such as the candidate view

miner. DQM proposes relevant views that can be opportunistically generated by the current

query and relevant to the past workload. The baselines have to select which of these views

to persist and evict existing views if necessary.

• LRU: Randomly select one of the candidates to materialize, evict the least recently

used view in the store if full.

• LFU: Randomly select one of the candidates to materialize, evict the least frequently

used view in the store if full.
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• FIFO: Randomly select one of the candidates to materialize, evict the earliest view

persisted in the store if full.

• HAWC [113]: Select the best view candidate based on the Spark query optimizer

cost model. For each materialized view, maintain a “credit table” based on subsequent

query cost that uses the view (cost difference of using vs. not using the view). The

credit table is windowed to take the latest K queries and the lowest credit view is

evicted.

• RECYCLER [100]: Select the most expensive view (in terms of creation cost).

Materialize a new view if its cost is higher than existing views. Evict the lowest cost

view otherwise. For views in the cache, the cost is scaled up when used, scaled down

when not used. Our default implementation of Recycler makes use of the true costs of

views, we further study a more practical alternative using cost model estimated view

costs in Section 5.6.1.

We evaluate DQM and the baselines on rzipf (Figure 5.5). We measure the cumulative

runtime of the entire 10000-query workload. The neural network of DQM is initialized

randomly and has to learn the creation and deletion policy online. This exploration time for

DQM is included in the overall runtime.

Recycler works well when its creation cost heuristic correlates with improvements in

runtime. Recycler speeds up query latency in JOB by about 10x. One caveat is that we

provide Recycler with an exact cardinality estimate for the size of the views. While this is

possible to know in hindsight after the views are created in order to prioritize deletions; it

is impossible to know this exactly during creation time (i.e., a join cardinality estimation

problem). Nonetheless, we are generous to Recycler as future experiments show that a faulty

cardinality estimate very significantly affects results. HAWC uses a selection policy based

on Spark’s query optimizer but it has poor performance on this workload.

DQM is competitive with all baselines even when it has to learn. By leveraging real
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Figure 5.6: We run DQM without true runtimes and an improvement metric derived from a cost
model. While this version of DQM still performs reasonably well, the use of true runtimes is a
strength of the RL-based algorithm. We also evaluate a more realistic implementation of Recycler
by using the cost model estimated view costs instead of the true costs and this change drastically
affects Recycler’s performance.

runtime observations, it is robust to cost estimation issues in the query optimizer. To us,

this is a very surprising insight. There is overhead in the exploration process as the system

has to learn from suboptimal actions. Even so, it is competitive with the best baselines

during this learning phase.

Cost Estimation Errors

In our previous results, the cost-aware baselines benefit from the exact view cardinality

estimates (DQM does not use this as it learns purely from observed runtimes). Recycler is

most sensitive to the accuracy of cardinality estimation. We implemented a more realistic

alternative of Recycler called SO Recycler. The only difference between the two is that

SO Recycler uses SparkSQL’s query optimizer to estimate the cost of a view instead of

using the true cost. As we can see in Figure 5.6, this change significantly affects Recycler’s

performance because the costs of views play an important rule in Recycler’s heuristic: it

assumes that a more expensive view will bring more benefits. Therefore, when the costs of

views are inaccurate its performance drops drastically (about 10x).
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We could do the opposite with DQM and examine the effect if we use Spark’s optimizer

for an inexpensive cost estimate rather than the counterfactual experiments. The difference

in query cost using or not using the view can be used to determine the improvement. In this

experiment, we modify DQM to use estimated reward from SparkSQL’s query optimizer to

investigate how it would affect the performance of DQM. We call the SparkSQL optimizer

based version SO DQM and results can be found in Figure 5.6. As mentioned in earlier sec-

tions, reward functions play an important role in RL systems, as it is designed to guide the

model towards the direction of the highest long term value. Therefore, it is not surprising an

RL system underperforms when its reward function is inaccurate or even wrong. SO DQM

still performs reasonably well but we believe that the power of RL is to feedback true ex-

ecution times. Directly optimizing the true reward function explains much of the power of

DQM.

Skew Considerations

We dig deeper on these baselines and consider different query skews and query distributions.

We generate different scenarios. Our default is called rzipf in which we draw queries randomly

from the JOB benchmark then apply the Zipf distribution to skew the frequency of the

queries. We go beyond rzipf and apply the power law to skew the frequency of queries as

previous work has done [41, 90]. dzipf skews towards more expensive queries with a much

higher frequency, and azipf skews towards the least expensive queries with a much higher

frequency. dablend is a 10000-query workload that starts of executing the most expensive

queries then switches to executing the least expensive queries, and adblend does the opposite.

We evaluate DQM, LFU and the two heuristic-based approaches with 5 different workloads.

Results are shown in Figure 5.7 A. We find that the results from the previous experiment

broadly hold across all of the different skews.
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Figure 5.7: (A) We compare DQM to selected baselines on all workloads. (B) We compare DQM
to selected baselines with periodic view maintenance (every 100 queries) on the JOB workloads.

Maintenance Considerations

The heuristics break down when there are costs that they do not model or anticipate. Main-

tenance costs in OLAP systems are infrequent but are significant. In this experiment, we

study how view maintenance could affect DQM and the baselines. Because Spark does not

support an incremental update of views, every time the base tables are modified we have to

re-compute and re-materialize the views that are affected. To simulate periodic maintenance,

our system will randomly select a base table of the workload and evict all views using the

table.
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Figure 5.8: We measure the performance of DQM as a function of the storage constraint on the
JOB rzipf workload. The storage constraint is presented as normalized by a fraction of candidate
views that could possibly be materialized at any time.

We perform a controlled eviction routine at every 100 queries so all approaches have the

same maintenance routine. Even with the same maintenance routine, different approaches

will introduce different maintenance cost because different views are materialized.

Results can be found in Figure 5.7B. Maintenance certainly adds overhead to all tech-

niques, but the results demonstrate that DQM is more efficient and robust to maintenance.

In the previous experiment, we found that Recycler was very effective on this workload. But

after maintenance, we found DQM now outperforms Recycler non-trivially on all 5 work-

loads because Recycler’s heuristic favors expensive views thus selecting views that incur a

higher maintenance overhead than DQM. Again, the benefit of DQM is direct optimization

of observed query latencies. Views that have to be constantly recreated because they are

maintained fall out of favor of the learning algorithm quickly.

Storage Constraints

To study how DQM reacts to changes in the storage constraint, we use the same rzipf work-

load from the previous experiments. The result is shown in Figure 5.8, where the storage

constraint is normalized by a fraction of candidate views that could possibly be materialized.
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Figure 5.9: We compare DQM and selected baselines on the CubeLoad workload.

OVM is most valuable when there is a substantial amount of spare storage in the system.

The power of OVM is trading off this spare storage for future query latency. As expected,

the performance of DQM and baselines improve as we increase the storage constraint. We

note that the most significant increase is between 40MB and 100MB5.

5.6.2 CubeLoad

CubeLoad [120] is a data-cubing workload that is designed to simulate user sessions exploring

data. It simulates drilling down, augmenting queries with filters, and aggregating along

different attributes. We use an IPUMS[123] data set that contains the census data. The

workload contains 1000 sessions, each session of 5 to 10 queries with predicates and group-by

conditions drawn from different dimensions of the data set.

We compare DQM with other baselines and the result is shown in Figure 5.9. The

result shows that HAWC slightly outperforms DQM and other baselines. This is because

the queries generated by CubeLoad are less complicated compared to the queries in the Join

Order Benchmark, therefore the query optimizer provides a reliable estimation for HAWC

to find the best views and its credit-based eviction policy also fits the workload well. On

5. For reference the 200MB datapoint is the level used for DQM and all baselines in the previous experi-
ments.
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Figure 5.10: We compare DQM to selected baselines on TPC-DS. DQM is competitive (or outper-
forms) the best heuristic on all the test scenarios.

the other hand, we can see that even with the overhead of learning and exploration DQM is

competitive to HAWC and outperforms other baselines.

5.6.3 TPC-DS

Next, we compare the selected baselines on the TPC-DS benchmark. We use a scale factor of

1 and generate queries from the TPC-DS query list. We use the same sampling distributions

described before and present cumulative performance on 10000 queries. The results are

shown in Figure 5.10. Most notably Recycler, which was the best technique on JOB, is

no longer performant. On the other hand, HAWC performs much better. But its drastic

performance shift on the two workloads indicates optimizer based selection policy is not

reliable. DQM is competitive with all baselines on both benchmarks even when it has to

learn. As before the learning overheads are included in the cumulative runtimes.

5.6.4 Micro-Benchmarks

Next, we summarize a number of important results pertaining to different parameter choices

in DQM. Unless otherwise noted, all of these experiments run on the JOB rzipf workload.
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Figure 5.11: DQM using different exploration terms on JOB with the rzipf workload.

Exploration vs. Exploitation

DQM starts with random selection to explore until there is enough experience to start train-

ing and as observations come it, it periodically re-trains its model. As we collect more

observations, we become more confident about DQM, and then we start to explore less with

random actions. The exploration parameter ε represents the exploration rate and 1 − ε

represents the probability of exploiting what we have learned. We must always have some

degree of random creation to ensure that DQM is adaptive to changes. Our system starts

from an ε = 1 (always take random actions) and decays this value to ε min. We evaluate

DQM using different ε min.

We set ε min to 0.1, 0.2, 0.3, 0.4, 0.5 and results are shown in Figure 5.116. The figure on

the left shows the trend of processing the JOB-based rzipf workload with different ε min and

we compare with LFU on the right figure. As expected, exploration is necessary for DQM to

avoid settling on a local optimal, but as we learn more we should prefer more exploitation

and a high ε min hurts the performance. The results indicate that an ε min of 0.2 is a good

compromise between exploration and exploitation. Depends on the size of the action space,

a smaller ε min would work better for a smaller action space and a larger ε min have the

6. Other experiments use a fixed ε min of 0.1.
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Figure 5.12: We study the performance of DQM with different workload size.

potential to find better views in larger action spaces.

Number of Training Queries

The performance of DQM relies on the experiences it can learn from and the number of

experiences increases as DQM process more queries. In this experiment, we demonstrate how

the performance of DQM changes with different numbers of training queries. As shown in

Figure 5.12, initially, Recycler outperforms DQM from a cold start with an empty experience

set. As DQM starts to take actions and collect feedback from the experiments, it starts to

learn and becomes better at selecting views. We can see that as the number of experiences

increases, the gap between the two shrinks. At around the 5000th query, DQM starts to

outperforms Recycler and eventually outperforms Recycler by 20% after 10,000 queries.

Delayed Rewards

In this experiment, we explore how delays in the asynchronous experimentation affect DQM.

DQM relies on system idle time to execute paired experiments, what if this idle time is

contended? We simulate this in the following way: given a delay of K, an experience that

is generated at time step T will only be available to DQM for learning at time step T + K.
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Figure 5.13: We measure the performance of DQM using different delays of reward on JOB rzipf
workload.

As an extreme example, if K equals 10000, DQM will select views completely randomly for

our 10000 query workloads.

This is a worst-case simulation of delayed reward. In practice, the system idle time

will likely be more randomly distributed and some queries might get earlier observations.

However, by pushing all the experiences to the end of the process, we are simulating the

worst case of delayed rewards, i.e. if the same amount of experiences were thrown away but

system idle time was more randomly distributed, then more experiences will be available

earlier for the agent to learn from thus benefiting the system.

We use the rzipf workload from JOB in this experiment and test a delay of 500, 1000,

2000, 3000, 4000 and 5000. The results can be found in Figure 5.13. We see that the

performance of DQM deteriorates as we increase the delay, but even with a 5000 query delay

DQM still outperforms Recycler. A further investigation shows that Recycler outperforms

DQM by 25% at query 5000, but the performance of DQM start to improve 500 queries after

the rewards are available (around query 5500), and after another 3000 queries (around query

8500) DQM outperforms Recycler.
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Figure 5.14: We combine our eviction policy with random view selection then compare its perfor-
mance with DQM and selected baselines.

Ablation Study

To understand how much the RL-based view selection and the eviction policy contribute to

the overall performance, we build another baseline which uses random view selection with

our eviction policy (called Eviction-Only). This baseline differs from DQM only in its view

selection thus the performance difference is due to different view selection policy. The results

in Figure 5.14 show that our eviction policy which takes both the benefit and the cost into

account outperforms or is competitive with LFU (which also use random view selection but

with the LFU eviction policy) on all 5 workloads. However, DQM is almost 2x more effective

than the eviction-only baseline, which indicates the RL-based view selection is the key to

our overall framework to outperform other heuristic-based approaches.

Comparison to Optimal Usage Heuristics

Belady∗ is a hypothetical baseline whose eviction policy is based on the Belady’s

algorithm[14], which is hypothetical because it relies on hindsight to evict a view that will

not be needed for the longest time in the future. Belady∗ is also hypothetical because it

uses a perfect foresight so that it always selects the most beneficial view to materialize every
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time a query arrives. Belady∗’s policy is optimal in terms of “usage”, however, views have

different costs and utility. It might evict a more beneficial view that was materialized earlier

to make room for a less beneficial one that is optimal for the current query. It could also

frequently evict and re-materialize an expensive view and cause extra overhead.

We evaluate Belady∗ on the JOB, TPC-DS, and CubeLoad workloads and found DQM

outperforms Belady∗ on all 5 JOB workloads by an average improvement of 45%. Belady∗

outperforms DQM on the TPC-DS workloads by an average improvement of 49%. DQM out-

performs Belady∗ on CubeLoad by 1%. Further investigation shows that on JOB workloads,

initially, Belady∗ works better than DQM but with more training and exploration DQM

eventually outperforms Belady∗ after a couple thousands of queries. On TPC-DS workloads,

it happens to be the case that the best views are also cheap, therefore, due to Belady∗’s

hypothetical optimal view selection policy it only takes 4% of the view creation cost of DQM

and outperforms DQM. Overall, DQM is competitive with Belady∗ and we believe this result

again testifies the robustness of DQM even when compared with a baseline using the best

hypothetical heuristics.

5.7 Conclusion

There are numerous opportunities for reusing computation and intermediate query state

in OLAP workloads, and we believe that machine learning will be an important part of

future OLAP systems. We see DQM as a first step towards a View-Oriented database,

one that aggressively anticipates future queries and materializes anything that could be

useful. Such an architecture shifts the query optimization burden from planning a query

to efficiently reusing past computation. New algorithms and theory will have to develop

to understand the new problem setting. We believe machine learning will be an important

part of this discussion. In the short-term, extending DQM to consider OLTP settings and

more complex reward functions is certainly a priority. We also want to explore dynamic or

periodic workloads.
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CHAPTER 6

DISCUSSION

The massive growth of data enables opportunities for better decision-making processes

that are data-driven instead of heuristic/experience-driven. However, efficient data-driven

decision-making should not be taken for granted: from storing to accessing and analyzing

the data, every step in the data processing pipeline has to be fast, efficient, and scalable in

order to deliver the final result.

Approximated query processing has been drawing more attention from both academia

and industry because it provides knobs to tune the trade-offs between accuracy and costs.

However, designing an efficient and reliable AQP system can be a challenging job because

there are many factors that could impact the design, and these factors heavily depends on

the application scenario.

6.1 Summary

In this thesis, we propose 4 novel AQP systems of different characteristics that are suitable

for different scenarios.

First, we propose Precomputation Assisted Stratified Sampling (PASS), a framework for

combining precomputed aggregates with stratified sampling. PASS provides a novel approach

to bridge the two main categories of AQP techniques: sampling-based and precomputation-

based techniques. PASS proposes a data structure called a static partition tree (SPT) that

makes it possible for the AQP engine to perform aggressive yet reliable sample-skipping dur-

ing query processing. Because dealing with samples is the main source of both inaccuracy

and overhead, being able to reduce the usage of samples without sacrificing accuracy dras-

tically improves both the accuracy and efficiency of the system at the cost of some offline

processing time.

PASS works great in a static setting where data stays unchanged, however, that is not
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always the case. In real life, the data we are dealing with is constantly growing, being

modified, or even getting deleted. To address this limitation of PASS, we propose JanusAQP,

a dynamic AQP system that is designed to work in a dynamic environment. JanusAQP

includes several techniques that lead to a dynamic partition tree (DPT) that can work with

the insertion and deletion of data (implicitly also modification, i.e. a deletion followed by

an insertion). A new partitioning algorithm is designed to improve the partitioning cost

which is the main overhead for building an SPT. Furthermore, a catch-up phase is used

for JanusAQP to work with an arbitrarily large amount of historical data in an existing

system and JanusAQP is integrated with Apache Kafka as a consumer of the message queue

to demonstrate how it could be used in real-life scenarios – without changing the existing

physical design of the system.

Thirdly, we explore another scenario where AQP can be useful – missing data analysis.

We propose a framework called Predicate Constraint (PC) that not only enables the formal-

ization of our beliefs on the missing data but can also be used to answer queries. As a missing

data analysis framework, PC is optimal in terms of reliability, i.e. the ability to quantify

the error, which is probably the most important metric for missing data analysis. This is

because the ability to quantify the error determines the quality of the decision that is made

based on the estimated result. By modeling the problem with integer linear programming,

PC can generate the best answer which is the optimal hard-bound that leads to a 0 failure

rate which is a clear advantage against all the baselines. It is worth mentioning that the

idea of predicate constraint also plays a role in the design of SPT and DPT.

Lastly, in the DQM project, we study the management of materialized views using deep

reinforcement learning. As our first trial to apply machine learning techniques in database

systems, we propose to use a deep reinforcement learning model to learn from the rewards

and penalties of managing the materialized views. The model gets to decide which views

to keep or get rid of under a storage constraint, and based on the consequences of the past

decisions, the model improves and adapts to potential changes (e.g. change of the workload

166



patterns, etc.) with an objective of improving the overall query processing cost. We integrate

DQM in Apache Spark and the experiment results show that DQM is more robust than other

heuristic-based techniques.

6.2 Lesson Learned

Having designed and built a couple of AQP systems during my Ph.D., the following are some

of my thoughts and lessons learned on designing and building AQP systems.

The premise of utilizing any AQP technique is “if inaccuracy can be tolerated”. And in

exchange for tolerating some inaccuracy, we are hoping to be rewarded by faster query pro-

cessing time, lower storage cost, lower resource/memory utilization, even parallel processing

that was not possible before.

In Apache Druid and some other modern analytical systems, AQP techniques are only

used to handle certain types of queries (e.g. count distinct, quantile, and top-k frequency).

This suggests that AQP techniques can be integrated with a comprehensive exact data

processing pipeline instead of working as an end-to-end solution itself. This is because 1)

many AQP techiniques are not designed for ad-hoc queries, and 2) certain tasks in the

pipeline could tolerate some inaccuracy but accurate answer is required by some other tasks.

By integrating with AQP techniques, a modern data processing pipeline could get the best

from both worlds.

When designing a novel AQP system, the applicability of the system is usually an

implicit trade-off. For example, in PASS, in order to have a closed-form error estimation

that can be efficiently calculated, the system was designed to only support aggregate SPG

queries to leverage the connection between the AVG query and the central limit theorem as

first proposed by [77]. Other techniques like count-min sketch are specifically designed to

handle a certain type(s) of query.

Some AQP systems are designed to work with ad-hoc queries. For example, VerdictDB

supports ad-hoc queries and has found its usage in the industry (used by Walmart in their
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data warehouse). However, the improved applicability is not free. As shown in [87], special-

ized synopsis like PASS could reduce the costs in query latency, storage by several orders of

magnitude while keeping accuracy at a similar level with the best VerdictDB configuration.

Not to mention VerdictDB is much more expensive to maintain in a dynamic setting because

all the ‘scrambles’ need to be rebuilt when underlying data changes.

Another AQP system that support ad-hoc query is DeepDB, which was designed to be

accurate and – unlike VerdictDB – can be efficiently updated. In the experiment results

shown in [87], we also show that PASS can be more accurate at the same cost. And in [2],

we also demonstrate that the dynamic partitioning tree can be more efficiently maintained

in a dynamic setting than DeepDB.

Applicability determines the scope of the system and implicitly affects other design deci-

sions along the way. However, I think both general AQP systems that support ad-hoc query

and specialized AQP systems that works extremely well for a few query type(s) can find

their places in a modern data platform.

The lesson I learned from designing and building PASS is that we need to understand

the trade-offs well, both the explicit ones and the implicit ones, to leverage the flexibility of

such constraints to further improve the design of the system. For example, while the unique

design of PASS enables sampling skipping when solving a query, it takes a better observation

to see that sample skipping not only leads to a lower latency but also a potential to further

boost the accuracy without violating the SLA. Making such an observation is key to building

the PASS-BSSnx variations shown in the result.

As a follow-up of PASS, JanusAQP is designed to work in a dynamic setting and is

much more challenging on the engineering side because many of the functionalities I took

for granted in a static setting like sampling become a non-trivial task in a dynamic setting.

There are many things I need to figure out to make things work as expected. Other than

addressing the challenges on the engineering side, I think there are a couple of good practices

for extending existing work in general. We should know: 1) where the existing system falls
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short; 2) what new challenges does the change of problem setting introduce, and 3) which

limitations of existing system can be improved and which limitations are intrinsic.

Asking these questions guided us to the right direction. We realized that: 1) the expensive

pre-processing cost of PASS is not an intrinsic limitation of the system because it is not due to

the design of the core data structure, which leads to the design of a new partition algorithm

that is less optimal but much more efficient to reduce the offline-processing cost. 2) The new

problem setting requires us to deal with insertions/deletions and find a way to handle large

existing data.

From the JanusAQP project, I learned to analyze the problem setting to identify which

tasks are the right ones to focus on and which ones to avoid. And most importantly, I learned

to analyze an existing approach to identify which limitations can be alleviated and which

ones are intrinsic and hard to improve.

In the predicate-constraint project. We focused on the missing-data analysis scenario.

Our PC framework not only allows logically representing one’s beliefs of data but also makes

it possible to use such encoded beliefs to derive a tight hard-bound for a query. In the case

of missing data analysis, the most important metric is the reliability of the result, i.e. the

framework’s ability to quantify the error. And PC being able to offer the optimal reliability

with a zero failure rate while providing a competitive accuracy make it more favorable than

existing approaches.

My lesson learned from the PC project is to identify and focus on the right objective,

i.e. the most important metric of the problem you are solving. And it might be necessary

to explicitly trade off an important (but not the most important) metric (e.g. accuracy) to

get better on the most important metric (e.g. failure rate).

6.3 Open Problems

There are many problems that are still open. For example, following JanusAQP: how can

we make it work in a distributed setting; how can we make it work with more complicated

169



queries (e.g. with joins) and more complicated data (e.g. categorical values); and how can

we handle high dimensions, etc.

Lastly, for AQP systems to be widely adopted, especially for general AQP systems that

are designed for ad-hoc queries to be better accepted by average users, I believe the presen-

tation of error (inaccuracy) should be more intuitive. Confidence intervals used by many

techniques make statistical sense but might be confusing to a new user of such a system. A

recent paper from Google [9] proposes to trade the ‘freshness’ of the query result instead of

‘accuracy’ for lower cost, which seems to be a more intuitive way to represent the ‘inaccu-

racy’ with regard to the most recent data. This new knob between ‘freshness’, latency and

other cost is likely be preferred by industry, as it also applies to scenarios like maintaining

materialized views. We should keep looking for intuitive ways to present the error and new

perspectives to approach the trade-off between accuracy and cost which could be key to

advancing the utilization of the AQP systems in real-life.
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