
THE UNIVERSITY OF CHICAGO

IN-FRIDGE CLASSICAL CONTROLLERS IN QUANTUM COMPUTING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

MOHAMMAD REZA JOKAR

CHICAGO, ILLINOIS

JUNE 2022

Copyright © 2022 by Mohammad Reza Jokar

All Rights Reserved

I dedicate this dissertation to my parents.

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . x

ACKNOWLEDGMENTS . xi

ABSTRACT . xii

1 INTRODUCTION . 1

2 NISQ+: BOOSTING QUANTUM COMPUTING POWER BY APPROXIMATING
QUANTUM ERROR CORRECTION . 5
2.1 Introduction . 5
2.2 Background . 8

2.2.1 Basics of Quantum Computation . 8
2.2.2 Quantum Error Correction . 9
2.2.3 The Surface Code . 10
2.2.4 Quantum Computing Systems Organization 13
2.2.5 Classical Control in Quantum Computing Systems 13

2.3 Motivation: Decoding Must be Fast . 14
2.4 Related Work . 17
2.5 Decoder Overview and Design . 18

2.5.1 Prior Decoding Algorithms and their Practical Implications 18
2.5.2 A Greedy Approach . 21
2.5.3 SFQ-Based Decoder . 21

2.6 Implementation . 25
2.6.1 SFQ Implementation of Greedy Decoding 25
2.6.2 Datapath and Subcircuit Design . 26

2.7 Methodology . 28
2.8 Evaluations . 33
2.9 Conclusion . 38

3 DIGIQ: A SCALABLE DIGITAL CONTROLLER FOR QUANTUM COMPUTERS
USING SFQ LOGIC . 39
3.1 Introduction . 39
3.2 Background and Motivation . 43

3.2.1 Quantum computing . 43
3.2.2 Superconducting qubit controllers and their limitations 45
3.2.3 Opportunities and challenges of SFQ quantum controllers 46

3.3 Related Work . 48
3.3.1 Cryo-CMOS based quantum controllers 48
3.3.2 SFQ-based quantum gates and controllers 48
3.3.3 SFQ-based accelerators . 49

iv

3.4 DigiQ quantum controller . 49
3.4.1 SFQ-based universal quantum computation 49
3.4.2 Overview of DigiQ architecture . 55

3.5 Software calibration of SIMD hardware . 56
3.5.1 Calibrating single-qubit gates . 58
3.5.2 Calibrating two-qubit gates . 60

3.6 Methodology and Results . 61
3.6.1 Hardware results of DigiQ . 61
3.6.2 Algorithmic performance results of DigiQ 66

3.7 Conclusions and Future work . 69

4 PRACTICAL IMPLICATIONS OF SFQ-BASED TWO-QUBIT GATES 72
4.1 Introduction . 72
4.2 Background and Motivation . 75

4.2.1 Physical system . 75
4.2.2 Microwave optimal control . 80
4.2.3 Fidelity functions . 81
4.2.4 SFQ control . 83
4.2.5 Prior work on SFQ-based gates and the motivation of this paper . . . 85

4.3 Detailed study of SFQ-based two-qubit gates 86
4.3.1 Methodology . 87
4.3.2 Entangling SFQ-based two-qubit gates on transmon qubit devices . . 89
4.3.3 Realizing both entangling and non-entangling SFQ-based two-qubit

gates on transmon devices . 91
4.3.4 SFQ-based two-qubit gates on fluxonium qubit devices 94
4.3.5 Comparison with microwave-based gates 95

4.4 Conclusion . 95

5 CONCLUSION . 97

REFERENCES . 99

v

LIST OF FIGURES

2.1 Boosting the quantum computation power with approximate error correction
schemes. A machine with 1024 faulty physical qubits of error rate 10−5 has
an SQV of ≈ 108. By performing fast, online, approximate decoding, we can
trade the number of computational qubits for gate fidelity and boost the SQV
by over a factor of 3,402. Moving to a higher code distance raises this increase
to a factor of 11,163. NISQ machines are severely limited by gate fidelity, and
introducing error mitigation techniques can have dramatic effects on SQV. . . . 6

2.2 Fig. (a) shows a graphical illustration of a surface code mesh. Gray circles indi-
cate data qubits, and nodes labeled X and Z indicate ancillary qubits measuring
X and Z stabilizers, respectively. Ancillary qubits are joined by colored edges
to the data qubits that they are responsible for measuring. In Fig. (b) a single
data qubit experiences a Pauli X error indicated by red coloring, causing the
neighboring Z ancillary qubits to detect an odd parity in their data qubit sets
and return +1 measurement values indicated by green coloring. In Fig. (c), the
data qubit in red experiences a Pauli Z error, causing the vertically adjacent X
ancillary qubits to return +1 measurement values. The entire error syndrome
strings for either of these two cases would include a string of 12 values, two of
which would be +1 and the remaining 10 would be 0. 10

2.3 This figure shows the errors happened in one row of the surface code grid. Fig.
(a) shows a data qubit error pattern spanning across ancillary qubits. Each data
qubit experiencing error is indicated in red, and the ancillary qubits returning +1
measurement values are indicated in green. Each ancillary qubit that is adjacent
to two erroneous data qubits does not signal the presence of any errors, as the
parity of the data qubit sets are still even. This creates an error string that runs
from the ancillary qubit on the left of the grid to the one on the right. Decoding
must map these +1 values to the corresponding set of 4 data qubit errors that
generated it. Fig. (b) and Fig. (c) show degeneracy in error syndrome generation
by surface code data qubit error patterns. The figures depict two distinct sets
of data qubit error patterns that both generate the same error syndromes. Both
patterns contain the same number of physical data errors, so these patterns are
equally likely assuming independence of errors. 12

vi

2.4 Exponential latency overhead when f = (
rgen
rproc

) > 1. X-axis shows the compute

time if there is no backlog and y-axis shows the actual wall clock time; if there
is no backlog we expect wall clock time to be the same as the compute time
(line a). Every time we encounter a T-gate we need to decode all the syndromes
up until that gate before we can continue the execution [Terhal, 2015]. When
we encounter the first T-gate at time T0, we need to finish the decoding of the
data generated during t0 (not all the data is already decoded as decoding rate is
slower than data generation rate) and it takes R0 to do that. During R0 where our
quantum system is idle, more syndromes are generated and when we encounter
the second T-gate at T1 + R0, we need to finish decoding those syndromes in
addition to the syndromes generated during t1 before continuing the program
execution. The syndrome data generated during the idle periods is the
key reason behind data backlog creation which leads to exponential
latency overhead. 15

2.5 Running times of fault tolerant quantum algorithms with decoders of varying
efficiency. The X-axis plots

rgen
rproc

. To the left of 1, data is processed as fast

as it is generated, whereas rates to the right of 1 indicate that the decoder is
slower than syndrome data is generated. The T -gates require synchronization
with the decoder in order to execute. Prior work [Chamberland and Ronagh,
2018] claims that fast neural network inference decoders can perform inference
in ∼ 800 ns, which places the decoder at approximately the 1.5 - 2 region for a
system generating syndromes in the 400-500ns range. Our decoding results show
that time to solution never exceeds 20ns, placing it below 1. Clearly computation
becomes intractable quickly for slow decoders. 16

2.6 Baseline solution to find the two closest hot syndrome modules. Step1: two de-
coder modules have “1” hot syndrome input. Step2: the hot syndrome modules
propagate grow signals. Step3: the grow signals meet at an intermediate mod-
ule. Step4: the intermediate module sends pair signals in the opposite direction.
Step5: pair signals arrive at the hot syndrome modules. Step6: decoding is com-
plete. Note that the decoder modules that receive a pair signal are considered as
part of the error chain that has occurred. 22

2.7 Scenarios where the SFQ decoder chooses the wrong chain where (a) no re-
set/boundary/equidistant mechanisms are employed, (b) no boundary/equidistant
mechanisms are employed, and (c) no equidistant mechanism is employed. . . . 23

2.8 Overview of decoder module microarchitecture. 27
2.9 Pair subcircuit after SFQ specific optimizations and mapping. Triangular shapes

at the bottom represent the primary inputs of the circuit and those at the top
of the circuit show primary outputs. DFF is SFQ DRO DFF inserted for path
balancing. Splitter (balanced) trees are also shown. Splitter is an asynchronous
SFQ gate that receives a pulse at its input and after its intrinsic delay, it produces
two almost identical output pulses. We insert splitters at the output of an SFQ
gate (or a primary input) with more than one fanout. 28

vii

2.10 Logical error rate performance of each incremental design step. The addition
of resets and boundaries each contribute heavily to the realization of pseudo-
thresholds, and have a dramatic effect on reducing the minimum achievable logical
error rates for each code distance. 30

2.11 Results for our final design, including support for reset, boundary, and equidistant
mechanisms. (a) Error rate scaling for the proposed decoder. An accuracy thresh-
old is evident at approximately 5% physical error rate, while pseudo-thresholds
span the range from ∼ 3.5% – 5%. (b) Logical error rates near the 5% physical
error rate value. (c) Truncated unnormalized estimated probability distributions
for the execution cycles required by each code distance in simulation. Window
shows up to 20 cycles for comparison across code distances. Notice that while
distances 3, 5, 7 display peaks centered at 0, 5, 9, and 14 cycles. 31

2.12 Comparison of required code distances of different decoders to execute an al-
gorithm consisting of 100 T-gates. Compared are the SFQ Decoder, MWPM
decoder [Fowler et al., 2012a], neural network decoder [Baireuther et al., 2019],
Union-Find decoder [Delfosse and Nickerson, 2017], and a theoretical MWPM
decoder with no backlog. across both code distances and physical error rates. . . 35

3.1 (a) Today’s controller design: controller at room temperature, (b) DigiQ : con-
troller close to quantum chip. 40

3.2 (a) Bloch sphere representation of a qubit; (b) SFQ driven trajectory. The blue
trajectory is driven by the periodic SFQ pulse train shown in (c), and the orange
trajectory is driven by the qubit free evolution; (c) SFQ pulse train in the time
domain. f is the qubit oscillation frequency. 44

3.3 The sequence of gates in one cycle of DigiQ opt. 53
3.4 (a) Circuit schematic of our current generator design based on SFQ/DCs; (b) The

electrical current pulse generated by our design to realize CZ gates on flux-tunable
transmons. 54

3.5 Overview of our DigiQ architecture. 55
3.6 Calibration process in (a) today’s microwave-based quantum machines; (b) DigiQ. 57
3.7 CZ gate error as a function of frequency drift, assuming 1, 2, or 3 Uqq operations

and ideal single-qubit gates. 61
3.8 Power (a), area (b), and cable count (c) results of DigiQ min and DigiQ opt

architectures. SFQ MIMD naive and SFQ MIMD decomp results are shown for
comparison. 63

3.9 DigiQ quantum circuit execution time normalized to the Impossible MIMD sys-
tem. 67

3.10 (a) Median single-qubit gate error on DigiQ opt (BS=8) and DigiQ min (BS=2)
with 1024 qubits (well representative of other configurations); (b) CZ gate error
on each qubit pair. Software can map around the outliers using the noise-adaptive
mapping techniques [Murali et al., 2019a]. 69

viii

4.1 Bit representation of SFQ pulse trains. (a) coherent pulses are applied to the
qubit (1 pulse per qubit oscillation period) to perform rotations around the y
axis. (b) a bitstream found by genetic algorithm to perform arbitrary unitary.
Bitstreams are processed one bit at a time; if the bit is “0”, no pulse is applied
to the qubit, and if the bit is “1”, one SFQ pulse is applied to the qubit. 82

4.2 Error and leakage of the best SFQ-based CZ gate with 20 ns gate time found by
the genetic algorithm on transmon qubit devices with Ωx control fields. Error
is computed using Eq. (4.14) and takes into account only the n levels on which
the gate was learned. Leakage is computed using Eq. (4.17) and considers higher
levels. Thus, low error does not necessarily translate to low leakage. 83

4.3 Error and leakage of the best SFQ-based CZ gate found by the genetic algorithm
for transmon qubit devices with Ωx control fields (plots a and b), and transmon
qubit devices with Ωz control fields (plots c and d). Error is calculated as 1 −
fidelity, and leakage is calculated using Eq. (4.17). Two different tip angles and
two fidelity functions are used in our optimal control method (see Sec. 4.2 for
the details of our fidelity functions). We run the simulations with n = 5 energy
levels, and suppress the population of higher energy levels in our optimal control
method. 87

4.4 Bit representation of SFQ bitstreams applied to qubit1 (plot a) and qubit2 (plot
b) on a transmon system with Ωx control fields and 0.003 tip angle in order to
realize a CZ gate with 20 ns gate time. Each SFQ chip clock cycle is 8 ps. . . . 88

4.5 Error of the best SFQ-based CZ gate (entangling two-qubit gate) and Ry90⊗I
gate (non-entangling two-qubit gate) found by the genetic algorithm for transmon
qubit devices with only Ωx control fields. 90

4.6 Sensitivity analysis on qubit coupling strength in transmon system with Ωx con-
trol fields. The results are shown for 0.003 tip angle and 10 ns (plot a), 20 ns
(plot b), and 40 ns (plot c) gate times. The SFQ bitstreams are learned with fid2. 92

4.7 Error and leakage of the best SFQ-based CZ gate (plots a and b) and Ry90⊗I
gate (plots c and d) found by the genetic algorithm for fluxonium qubit devices
with Ωx control fields. 93

4.8 Error comparison between microwave-based gates obtained using Grape code and
SFQ-based gates obtained using genetic algorithm (with 0.003 tip angle). The
results are reported for CZ gate (plot a) and Ry90⊗I gate (plot b). 94

ix

LIST OF TABLES

2.1 Characteristics of the simulated benchmarks. 14
2.2 The library of ERSFQ cells and corresponding characteristics used for synthe-

sizing the circuit into SFQ hardware. Josephson Junction count is listed in the
second column. 32

2.3 Experimental synthesis results for the SFQ Decoder. Shown are all gates utilized
in the synthesis, as well as submodules that comprise the main circuit. Pair Req.
and Grow subcircuits have been combined into a single subcircuit. 33

2.4 Decoder execution time in nanoseconds across each code distance studied and
across all simulated error rates. 33

2.5 Empirical parameter estimation given a model of the form PL ≈ c1(p/pth)
c2·d.

Shown are estimated c2 parameter values. 34
2.6 Comparing decoding algorithms in terms of accuracy threshold. SFQ decoder

sacrifices accuracy for speed in order to avoid exponential latency overhead and
achieve quantum advantage. 37

3.1 Design space for SFQ-based single-qubit gate controllers. 48
3.2 Optimal parking frequencies and drift tolerance for Rz(ϕ) gates with ≤ 10−4

error for N = 255. 59
3.3 The library of RSFQ cells and corresponding characteristics used for synthesis. 61
3.4 NISQ benchmark algorithms. 66

4.1 The parameters used in the genetic algorithm. 87

x

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Prof. Fred Chong, for his continuous

guidance and support during my Ph.D. study. I had many insightful discussions with Prof.

Chong during my study, in which I learned how to tackle challenging research problems.

Thanks to the opportunity to work with him, I developed invaluable hard skills and soft

skills, for which I am forever grateful.

I am thankful to Prof. Massoud Pedram and Prof. Hank Hoffman, who have been part

of my Ph.D. committee, for all their constructive comments and feedback, which improved

the quality of this dissertation.

I would like to thank my co-advisor during the first few years of my Ph.D. study, Prof.

Yanjing Li. I am grateful for the opportunity to work on many research projects on novel

optical technologies [Jokar et al., 2020, 2019b,a, 2017, Yang et al., 2021].

I would like to express my gratitude to my co-author, Rich Rines, for many insightful

meetings that we had. I really enjoyed solving complex problems with Rich. I am also

thankful to my co-author, Adam Holmes, for many insightful discussions that we had, and

for helping me learn quantum error correction and quantum optimal control.

I greatly appreciate the fruitful collaborations with my co-authors at University of Chicago,

University of Southern California, and University of Illinois at Urbana-Champaign. I am also

thankful to people in Prof. Chong’s lab who helped me learn quantum computing.

I thank the International House (I-House) at the University of Chicago, for organizing

cultural events and providing an opportunity for students and scholars from all around the

world to meet and learn together. Being an I-House fellow has been a rewarding experience

and has played a very important role in my growth in life.

Last but not least, I would like to express my deepest gratitude to my family and friends

for their continuous love and support all through my Ph.D. study, which made this journey

possible.

xi

ABSTRACT

Today’s superconducting quantum computer prototypes rely on a classical controller at room

temperature that controls the qubits inside the dilution refrigerator. This approach is simple

and straightforward, however, it introduces significant scalability challenges: (1) quantum

error correction techniques that are based on room temperature error decoding face expo-

nential latency overhead due to the data backlog caused by the slow decoding process; (2)

scalability is limited due to massive costs of generating and routing the microwave control

signals.

In this thesis, novel cryogenic controllers are proposed to address the aforementioned

challenges. First, we develop an in-fridge classical accelerator for error decoding using ultra-

fast superconducting Single Flux Quantum (SFQ) logic technology, which can expand the

compute volume of near-term quantum machines by factors between 3,402 and 11,163. Sec-

ond, we develop an in-fridge classical controller using SFQ logic to generate and route the

control signals inside the dilution refrigerator. We use state-of-the-art SFQ synthesis tools to

calculate the power and area of our in-fridge controller, and show that it can operate within

the tight power and area budget of dilution refrigerators at >42,000-qubit scales. Finally,

we investigate the practical implications of SFQ-based two-qubit gates and show that they

can achieve similar gate fidelity and gate time to that of microwave-based gates. The results

of this thesis show that cryogenic controllers play a key role in increasing the scalability and

computing power of near-term quantum machines.

xii

CHAPTER 1

INTRODUCTION

Quantum computing has the potential to revolutionize computing and have massive effects

on major industries including agriculture, energy, and materials science by solving compu-

tational problems that are intractable with conventional machines [Hastings et al., 2014,

Svore and Troyer, 2016]. Superconducting quantum computing, one of the most promising

technologies for building a quantum computer, has been studied in industry and academia

[Brink et al., 2018, Steffen et al., 2011, Fu et al., 2017, Li et al., 2020], and many prototypes

have been manufactured in the recent years [Arute et al., 2019, Kelly, 2018, Steffen et al.,

2011, Fu et al., 2017]. However, today’s prototypes rely on room temperature controllers

which present severe scalability challenges.

First, relying on room temperature controllers causes challenges for boosting the compu-

tational power of quantum machines. Quantum error correction is a classical control tech-

nique that decreases the rate of errors in qubits and expands the “Simple Quantum Volume”

(SQV). SQV can be defined as the number of computational qubits of a machine multiplied

by the number of gates we expect to be able to perform without error. Prior work has

suggested and analyzed software solutions for decoding the errors, but relying on hardware-

software communication can be slow, especially considering the cryogenic environment of

typical quantum computing systems. If decoding occurs slower than error information is

generated, the system will generate a backlog of information as it waits for decoding to

complete, introducing an exponential time overhead that will kill any quantum advantage.

Second, large-scale quantum computers are essential in running many quantum algo-

rithms and performing quantum error correction. However, today’s prototypes rely on send-

ing separate analog microwave control pulses for each qubit from a classical controller at room

temperature to the quantum chip inside the dilution refrigerator, which presents severe scala-

bility challenges due to the massive costs of generating/routing the analog microwave signals,

and significant heat dissipation at millikelvin temperatures due to using a large number of

1

high bandwidth coaxial cables [McDermott et al., 2018, Leonard et al., 2019, Li et al., 2019].

A promising approach proposed in this thesis to address the aforementioned challenges

is utilizing cryogenic classical controllers. This thesis consists of three following projects:

(1) NISQ+: Boosting quantum computing power by approximating quantum

error correction (Chapter 2). Quantum computers are growing in size, and design deci-

sions are being made now that attempt to squeeze more computation out of these machines.

In this spirit, we design a method to boost the computational power of near-term quantum

computers by adapting protocols used in quantum error correction to implement “Approxi-

mate Quantum Error Correction (AQEC).” By approximating fully-fledged error correction

mechanisms, we can increase the compute volume (qubits × gates, or “Simple Quantum Vol-

ume (SQV)”) of near-term machines. The crux of our design is a fast hardware decoder that

can approximately decode detected error syndromes rapidly. Specifically, we demonstrate a

proof-of-concept that approximate error decoding can be accomplished online in near-term

quantum systems by designing and implementing a novel algorithm in superconducting Sin-

gle Flux Quantum (SFQ) logic technology. This avoids a critical decoding backlog, hidden

in all offline decoding schemes, that leads to idle time exponential in the number of T gates

in a program [Terhal, 2015].

Under a pure dephasing error model, the proposed accelerator and AQEC solution is

able to expand SQV by factors between 3,402 and 11,163 on expected near-term machines.

The decoder achieves a 5% accuracy threshold as well as pseudo-thresholds of approximately

5%, 4.75%, 4.5%, and 3.5% physical error rates for code distances 3, 5, 7, and 9, respectively.

Decoding solutions are achieved in a maximum of ∼ 20 nanoseconds on the largest code

distances studied. By avoiding the exponential idle time in offline decoders, we achieve a 10x

reduction in required code distances to achieve the same logical performance as alternative

designs.

This project was a collaboration between scholars at University of Chicago and University

of Southern California. The outcome of the project was a research paper in ISCA 2020

2

conference [Holmes et al., 2020].

(2) DigiQ: A Scalable Digital Controller for Quantum Computers Using SFQ

Logic (Chapter 3). Researchers in industry and academia have focused on designing in-

fridge classical controllers in order to mitigate the scalability challenges of today’s quantum

computer prototypes. SFQ logic has the potential to maximize scalability thanks to its ultra-

high speed and very low power consumption. However, architecture design for SFQ logic

poses challenges due to its unconventional pulse-driven nature and lack of dense memory

and logic. Thus, research at the architecture level is essential to guide architects to design

SFQ-based classical controllers for large-scale quantum machines.

In this work, we present DigiQ, the first system-level design of a Noisy Intermediate

Scale Quantum (NISQ)-friendly SFQ-based classical controller. We perform a design space

exploration of SFQ-based controllers and co-design the quantum gate decompositions and

SFQ-based implementation of those decompositions to find an optimal SFQ-friendly design

point that trades area and power for latency and control while ensuring good quantum al-

gorithmic performance. To validate and characterize DigiQ, we first implement it using

hardware description languages and synthesize it using state-of-the-art/validated SFQ syn-

thesis tools. Our synthesis results show that DigiQ can operate within the tight power

and area budget of dilution refrigerators at >42,000-qubit scales. Second, we confirm the

effectiveness of DigiQ in running quantum algorithms by modeling the execution time and

fidelity of a variety of NISQ applications.

This project was a collaboration between scholars at University of Chicago and University

of Southern California. The outcome of the project was a research paper that will appear in

HPCA 2022 conference [Jokar et al., 2022].

(3) Practical implications of SFQ-based two-qubit gates (Chapter 4). Prior work

has demonstrated high-fidelity SFQ-based single-qubit gates. However, little research has

been done on SFQ-based multi-qubit gates, which are necessary to realize SFQ-based uni-

versal quantum computing. In this work, we present the first thorough analysis of SFQ-

3

based two-qubit gates. Our observations show that SFQ-based two-qubit gates tend to have

high leakage to qubit non-computational subspace, which presents severe design challenges.

We show that despite these challenges, we can realize gates with high fidelity by carefully

designing optimal control methods and qubit architectures. We develop optimal control

methods that suppress leakage, and also investigate various qubit architectures that reduce

the leakage. After carefully engineering our SFQ-friendly quantum system, we show that it

can achieve similar gate fidelity and gate time to microwave-based quantum systems. The

promising results of this paper show that (1) SFQ-based universal quantum computation

is both feasible and effective; and (2) SFQ is a promising approach in designing classical

controllers for quantum machines because it can increase the scalability while preserving

gate fidelity and performance.

This project was a collaboration between scholars at University of Chicago. The outcome

of the project was a research paper in QCE 2021 conference [Jokar et al., 2021].

4

CHAPTER 2

NISQ+: BOOSTING QUANTUM COMPUTING POWER BY

APPROXIMATING QUANTUM ERROR CORRECTION

2.1 Introduction

Quantum computing has the potential to revolutionize computing and have massive effects

on major industries including agriculture, energy, and materials science by solving compu-

tational problems that are intractable with conventional machines [Hastings et al., 2014,

Svore and Troyer, 2016]. As we begin to build quantum computing machines of between

50-100 qubits [Preskill, 2018] and larger, design decisions are being made to attempt to get

the most computation out of a machine, quantified in this work by expanding the “Simple

Quantum Volume” (SQV). SQV can be defined as the number of computational qubits of a

machine multiplied by the number of gates we expect to be able to perform without error,

as in Fig. 2.1. One limiting factor on SQV now is that physical quantum bits (qubits) are

extremely error-prone, which means that computation on these machines is bottlenecked by

the short lifetimes of qubits. System designers combat this by attempting to build better

physical qubits, but this effort is extremely difficult and classical systems can be used to

alleviate the burden. Specifically, quantum error correction is a classical control technique

that decreases the rate of errors in qubits and expands the SQV. Error correction proceeds by

encoding a set of logical qubits to be used for algorithms into a set of faulty physical qubits.

Information about the current state of the device, called syndromes, is extracted by a specific

quantum circuit that does not disturb the underlying computation. Decoding is the process

by which an error correcting protocol maps this information to a set of corrections that, if

chosen correctly, should return the system to the correct logical state. Fully fault tolerant

machines can expand the SQV rapidly by suppressing qubit errors exponentially with the

code distance.

While a fully fault-tolerant quantum computer may take many years to construct, it is

5

of qubits

o

f
ga

te
s

p
er

 q
u

b
it

10007840

100

4.36 x 106

2.79 x 107

NISQ target SQV = 105

NISQ+ (w/ AQEC) SQV = 3.4 x 108

NISQ+ (w/ AQEC) SQV = 1.12 x 109

Simple quantum volume (SQV) =
(# of qubits) x (# of gates per qubit)

100

NISQ target SQV = 105

1000

Figure 2.1: Boosting the quantum computation power with approximate error correction
schemes. A machine with 1024 faulty physical qubits of error rate 10−5 has an SQV of
≈ 108. By performing fast, online, approximate decoding, we can trade the number of
computational qubits for gate fidelity and boost the SQV by over a factor of 3,402. Moving
to a higher code distance raises this increase to a factor of 11,163. NISQ machines are severely
limited by gate fidelity, and introducing error mitigation techniques can have dramatic effects
on SQV.

possible to use the well-developed theory of error correction as inspiration for constructing

error mitigation protocols that still provide a strong expansion in SQV. In this paper we

present an approximate decoding solution specifically targeting execution time and show

that we can in fact perform decoding at the speed of syndrome generation for near-term

machines. Prior work has suggested and analyzed software solutions for decoding, but rely-

ing on hardware-software communication can be slow, especially considering the cryogenic

environment of typical quantum computing systems. If decoding occurs slower than error

information is generated, the system will generate a backlog of information as it waits for

decoding to complete, introducing an exponential time overhead that will kill any quantum

advantage (see Section 2.3). A hardware solution proposed here results in the ability to

perform logical gates with orders of magnitude better fidelity and at the speed of syndrome

generation, resulting in a major expansion in SQV as shown in Fig. 2.1. This relies on

6

an approximate decoding algorithm implemented in superconducting Single Flux Quantum

(SFQ) hardware. While the algorithmic design enables the accuracy of the hardware accel-

erator to be competitive at small scale with existing software implementations, the benefits

of implementing the circuitry directly in SFQ hardware are numerous. Specifically, high

clock speeds, low power dissipation, and unique gating style allows for our accelerator to

be co-located with a quantum chip inside a dilution refrigerator, avoiding otherwise high

communication costs.

This work contributes the following:

1. We design an approximate decoding algorithm for stabilizer codes based on SFQ hard-

ware, leveraging unique capabilities that the hardware offers,

2. We show that using this new error mitigation technique, we can expand the SQV of

near-term machines by factors of between 3,402 and 11,163,

3. We use Monte-Carlo simulation based benchmarking of the hardware accelerator, re-

sulting in effective accuracy and pseudo-thresholds,

4. We perform system execution time analysis, realistically benchmarking the decoder

performance in real time and showing that decoding is likely to be able to proceed

at or exceeding the speed of data generation enabling the benefits of fault tolerant

quantum computing.

5. We show that our online decoder requires 10x smaller code distance than offline de-

coders when decoding backlog accounted for.

The remainder of the paper is as follows: Section 2.2 describes the necessary background

of quantum computation and details the specifications of typical quantum computing sys-

tems stacks. Section 2.2.2 describes quantum error correction and the decoding problem

in detail. Section 2.4 describes relevant related work in the area ranging from optimized

software implementations of matching algorithms to novel descriptions of neural network

7

based decoders. Section 2.5 describes our decoding algorithm, and Section 2.6 describes

implementation details of SFQ technology, and the circuit datapaths in detail. Section 2.7

describes our methodology for evaluation, including details of the simulation environment in

which our accelerator was benchmarked, details of the metrics used to evaluate performance,

and descriptions of novel synthesis tools used to generate efficient layouts of SFQ circuitry.

Section 2.8 presents our accuracy results, a breakdown of the accelerator characterization

including area, power, and latency footprints, a timing evaluation, and analysis of the SQV

effects. Section 2.9 concludes.

2.2 Background

In this section we discuss the basics of quantum computation, quantum error correction, and

a description of the fundamental components of a quantum computing system architecture.

2.2.1 Basics of Quantum Computation

Here we provide a brief overview of quantum computation necessary to discuss quantum

error correction. For more detailed discussions see [Nielsen and Chuang, 2010]. A quantum

computing algorithm is a series of operations on two level quantum states called qubits,

which are quantum analogues to classical bits. A qubit state can be written mathematically

as a superposition of two states as |ψ⟩ = α |0⟩ + β |1⟩, where the coefficients α, β ∈ C and

|α|2 + |β|2 = 1. A measured qubit will yield a value of |0⟩ or |1⟩ with probability |α|2 or

|β|2, respectively, at which point the qubit state will be exactly |0⟩ or |1⟩. Larger quantum

systems are represented simply as |ψ⟩ =
∑

i αi |i⟩ where |i⟩ are computational basis states

of the larger quantum system.

Quantum operations (gates) transform qubit states to other qubit states. In this work

we will be making use of particular quantum operations known as Pauli gates, denoted as

{I,X, Y, Z}. These operations form a basis for all quantum operations that can occur on

8

a single qubit, and therefore any operation can be written as a linear combination of these

gates. Additionally, error correction circuits make use of the Hadamard gate H, an operation

that constructs an evenly weighted superposition of basis elements when acting on a basis

element. Two-qubit controlled operations will also be used, which can generate entanglement

between qubits and are required to perform universal computation.

2.2.2 Quantum Error Correction

Qubits are intrinsically fragile quantum systems that require isolation from environmental

interactions in order to preserve their values. Decoherence, for example the decay of a

quantum state from a general state |ψ⟩ = α |0⟩+β |1⟩ to the ground state |ψ′⟩ = |0⟩ happens

rapidly in many physical qubit types, often on the order of tens of nanoseconds [Tomita and

Svore, 2014, Tannu et al., 2017b]. This places a major constraint on algorithms: without

any modifications to the system, algorithms can only run for a small, finite time frame with

high probability of success.

To combat this, quantum error correction protocols have been developed. These consist

of encoding a small number of logical qubits used for computation in algorithms into a larger

number of physical qubits, resulting in a higher degree of reliability [Lidar and Brun, 2013,

Dennis et al., 2002, Fowler et al., 2012a, Terhal, 2015]. In general, developing quantum error

correction protocols is difficult as directly measuring the qubits that comprise a system will

result in destruction of the data. To avoid this, protocols rely upon indirectly gathering error

information via the introduction of extra qubits that interact with the primary set of qubits

and are measured. This measurement data is then used to infer the locations of erroneous

data qubits.

While many different types of protocols have been developed, this work focuses primarily

on the surface code, a topological stabilizer code [Gottesman, 1997] that is widely considered

to be the best performing code for the medium-term as it relies purely on geometrically local

interactions between physical qubits greatly facilitating its fabrication in hardware, and has

9

X

Z

X

Z

X X

XX

Z Z

X X X

Z

X

Z

X X

Z Z

(a) (b) (c)

Figure 2.2: Fig. (a) shows a graphical illustration of a surface code mesh. Gray circles
indicate data qubits, and nodes labeled X and Z indicate ancillary qubits measuring X and
Z stabilizers, respectively. Ancillary qubits are joined by colored edges to the data qubits
that they are responsible for measuring. In Fig. (b) a single data qubit experiences a Pauli
X error indicated by red coloring, causing the neighboring Z ancillary qubits to detect an
odd parity in their data qubit sets and return +1 measurement values indicated by green
coloring. In Fig. (c), the data qubit in red experiences a Pauli Z error, causing the vertically
adjacent X ancillary qubits to return +1 measurement values. The entire error syndrome
strings for either of these two cases would include a string of 12 values, two of which would
be +1 and the remaining 10 would be 0.

been shown to have very high reliability overall [Fowler et al., 2012a].

2.2.3 The Surface Code

Errors can occur on physical qubits in a continuous fashion, as each physical qubit is rep-

resented mathematically by two complex coefficients that can change values in a continuous

range. However, a characteristic of the quantum mechanics leveraged by the surface code is

that these continuous errors can be discretized into a small set of distinct errors. In partic-

ular, the action of the surface code maps these continuous errors into Pauli error operators

of the form {I,X, Y, Z} occurring on the data. This is one of the main features of the code

that allows error detection and correction to proceed.

The surface code procedure that accomplishes error discretization, detection, and cor-

rection is an error correcting code that operates upon a two-dimensional lattice of physical

qubits. The code designates a subset of the qubits as data qubits responsible for forming the

logical qubit, and others as ancillary qubits responsible for detecting the presence of errors

10

in the data. This is shown graphically in Fig. 2.2. Ancillary qubits interact with all of

their neighboring data qubits and are then measured, and the measurement outcomes form

the error syndrome. This set of operations forms the stabilizer circuit, where each ancillary

qubit measures a four-qubit operator called a stabilizer.

Error Detection

The ancillary qubits are partitioned into those denoted as X and Z ancilla qubits. These an-

cilla qubit sets are sufficient for capturing any Pauli error on the data qubits, as Y operators

can be treated as a simultaneous X and Z error. The action of the X stabilizer is two-fold:

the four neighboring data qubits are forced into a particular state that discretizes any errors

that may have occurred on them. Second, the measurement of the X ancilla qubit signals

the parity of the number of errors that have occurred on its four neighbors. For example,

it yields a +1 value if the state of the four neighboring qubits has an even number of Z

errors. The same is true of the Z stabilizers – these track the parity of X errors occurring in

the neighboring qubits. If an odd number of errors have occurred in either case, the ancilla

qubit measurement will yield a +1 value, an event known as a detection event [Fowler et al.,

2012d], otherwise these will return values of 0 or −1 depending on convention. We will refer

to the ancillary qubits returning +1 values as hot syndromes. The error syndrome of the

code is a bit string of length equal to the total number of ancilla qubits, and is composed of

all of these measurement values.

Decoding is the process of mapping a particular error syndrome string to a set of correc-

tions to be applied on the device. An example of this process is shown graphically in Fig.

2.2. In this example, the hot syndromes generated by a single data qubit error are marked

in red. Each single data qubit error causes the adjacent ancillary qubits to return +1 values.

A different situation occurs when strings of data qubit errors cross ancillary qubits, as

shown in Fig. 2.3. Here, four consecutive data qubits experience errors which generates hot

syndrome measurements on the far left and right of the grid. This is because each ancillary

11

Z ZZ Z Z Z ZZ Z ZZ ZZ Z Z

(a) (b) (c)

Figure 2.3: This figure shows the errors happened in one row of the surface code grid. Fig.
(a) shows a data qubit error pattern spanning across ancillary qubits. Each data qubit
experiencing error is indicated in red, and the ancillary qubits returning +1 measurement
values are indicated in green. Each ancillary qubit that is adjacent to two erroneous data
qubits does not signal the presence of any errors, as the parity of the data qubit sets are
still even. This creates an error string that runs from the ancillary qubit on the left of
the grid to the one on the right. Decoding must map these +1 values to the corresponding
set of 4 data qubit errors that generated it. Fig. (b) and Fig. (c) show degeneracy in
error syndrome generation by surface code data qubit error patterns. The figures depict two
distinct sets of data qubit error patterns that both generate the same error syndromes. Both
patterns contain the same number of physical data errors, so these patterns are equally likely
assuming independence of errors.

qubit along this chain detects even error parity, so they do not signal the presence of errors.

Decoding must be able to pair the two hot syndromes, applying corrections along the chain

that connects them.

Error Detection Can Fail

Notice that in Fig. 2.3 (a), if the data qubits on the left and right endpoints of the chain

had also experienced errors, none of the ancillary qubits would have detected the chain.

This represents a class of undetectable error chains in the code, and specifically occurs when

chains cross from one side of the lattice to the other. The result of these chains are physical

errors present in the code that cannot be corrected, and are known as logical errors, as they

have changed the state of the logical qubit. One important characteristic of the surface code

is the minimal number of qubits required to form a logical error. This number is referred to

as the code distance, d of a particular lattice.

12

2.2.4 Quantum Computing Systems Organization

While qubits are the foundation of a device, a quantum computer must contain many layers

of controlling devices in order to interact with qubits. Qubits themselves can be constructed

using many different technologies, some of which include superconducting circuits [Linke

et al., 2017, Fu et al., 2018, 2017, Barends et al., 2014, Kelly et al., 2015], trapped ions

[Maslov, 2017, Linke et al., 2017, Figgatt et al., 2019, Häffner et al., 2005, Lekitsch et al.,

2017], and quantum dots [Zajac et al., 2016]. Controlling these devices is often performed

by application of electrical signals at microwave frequencies [Chow et al., 2012, Yang et al.,

2003, Paraoanu, 2006, Plantenberg et al., 2007].

This work focuses on systems built around qubits that require cryogenic cooling to mil-

liKelvin temperatures [Hornibrook et al., 2015]. These systems require the use of dilution

refrigerators, and typical architectures involve classical controllers located in various tem-

perature stages of the system. Such a system is described schematically in [Tannu et al.,

2017b, Hornibrook et al., 2015], and presents many design constraints. Controllers inside

the refrigerator are subject to area and power dissipation constraints [Patra et al., 2018, Se-

bastiano et al., 2017]. Communication between stages can be costly as well. Many systems

are constructed today using control wiring that scales linearly with the number of qubits,

which will prohibit the construction of scalable machines [Franke et al., 2018].

2.2.5 Classical Control in Quantum Computing Systems

Error correction classical processing requires high bandwidth communication of the measure-

ment values of many qubits on the quantum substrate repeatedly throughout the operation of

the device, encouraging studies of engineering solutions [Ware et al., 2017], feasibility [Tannu

et al., 2017a] and controller design [Tannu et al., 2017b]. Not only are instruction streams

primarily dominated by quantum error correction operations [Levy et al., 2009, 2011], but

also the classical controller responsible for error correction processing must be tightly coupled

to the quantum substrate. If communicating between the quantum substrate and error cor-

13

qubits # total gates # T gates
takahashi adder 40 740 266
barenco half dirty toffoli 39 1224 504
cnu half borrowed 37 1156 476
cnx log depth 39 629 259
cuccaro adder 42 821 280

Table 2.1: Characteristics of the simulated benchmarks.

recting controller is subject to excessive latencies, the execution of fault tolerant algorithms

will be completely prohibited.

2.3 Motivation: Decoding Must be Fast

Decoding must be done quickly for the surface code to perform well. During actual compu-

tation on a surface code error corrected device, there exist gates called T -gates that require

knowledge of the current state of errors on the device before they can execute. 1 If decoding

is slower than the rate at which syndromes are generated, an algorithm will create a data

backlog. While the machine is waiting for decoder to process the backlog, more syndrome

data is accumulating on the device, which must be processed before executing the subsequent

T -gate. Over time, this results in latency overhead that is exponentially dependent upon

the number of such gates. Specifically, the overhead scales as (
rgen
rproc

)k = fk, where rgen is

the rate of data generation, rproc is the rate of decoder processing, each in bauds, f is the

decoding ratio, and k is the number of T gates in the quantum algorithm. An exponentially

slow quantum computer eliminates all of its usefulness.

Fig. 2.4 shows the exponential latency overhead due to data backlog. The proof of this

is summarized as follows (for more details see [Terhal, 2015]): suppose f > 1. This implies

that there will be a time t0 in the application where we encounter a T gate and must wait for

syndrome data to be decoded before continuing. Let ∆gen be the amount of time that the

machine must stall for processing this data. During this time an additional D1 = rgen×∆gen

bits of syndrome data is generated, which can be processed in time ∆proc = rgen∆gen/rproc =

1. Errors commute and can be post-corrected for other gates, but not T -gates.

14

W
al

l c
lo

ck
 t

im
e

Compute time (no backlog)
T0 T1 T2

.......

t0

R0 Idle

t1

R1
Idle

t2

R2

line a (if no backlog at all)

line b (if no backlog after R0)

line c (if no backlog after R1)

t0 = T0

tx = Tx- Tx-1 for x>0

TX : time to encounter the xth T-
gate if there is no backlog

RX : time required to decode
the backlog after we
encounter the xth T-gate

Figure 2.4: Exponential latency overhead when f = (
rgen
rproc

) > 1. X-axis shows the compute

time if there is no backlog and y-axis shows the actual wall clock time; if there is no backlog
we expect wall clock time to be the same as the compute time (line a). Every time we
encounter a T-gate we need to decode all the syndromes up until that gate before we can
continue the execution [Terhal, 2015]. When we encounter the first T-gate at time T0, we
need to finish the decoding of the data generated during t0 (not all the data is already
decoded as decoding rate is slower than data generation rate) and it takes R0 to do that.
During R0 where our quantum system is idle, more syndromes are generated and when we
encounter the second T-gate at T1 + R0, we need to finish decoding those syndromes in
addition to the syndromes generated during t1 before continuing the program execution.
The syndrome data generated during the idle periods is the key reason behind
data backlog creation which leads to exponential latency overhead.

f∆gen. The backlog problem begins to be noticeable at this point, where during processing

of the first block D1, we generate a new block D2 = rgen × ∆proc = fD1 > D1 in size.

Then, at the next T gate this process repeats, and we again generate a block of data of size

D3 = fD2 = f2D1 bits. Hence, by the k’th T gate, we generate an overhead of fkD1 bits

15

Figure 2.5: Running times of fault tolerant quantum algorithms with decoders of varying
efficiency. The X-axis plots

rgen
rproc

. To the left of 1, data is processed as fast as it is generated,

whereas rates to the right of 1 indicate that the decoder is slower than syndrome data is
generated. The T -gates require synchronization with the decoder in order to execute. Prior
work [Chamberland and Ronagh, 2018] claims that fast neural network inference decoders
can perform inference in ∼ 800 ns, which places the decoder at approximately the 1.5 - 2
region for a system generating syndromes in the 400-500ns range. Our decoding results show
that time to solution never exceeds 20ns, placing it below 1. Clearly computation becomes
intractable quickly for slow decoders.

to process, exponential in the decoder’s performance ratio.

As a specific example, consider a multiply-controlled NOT operation on 100 logical qubits

from [Holmes et al., 2018]. This algorithm contains ∼ 2356 gates, of which 686 are T -gates

after decomposition. Assuming that a syndrome generation cycle time is approximately 400

ns [Ghosh et al., 2012], and the best prior decoder requires 800 ns to execute [Chamberland

and Ronagh, 2018], the ratio (rgen/rproc) = 2, and the execution time is intractable.

Fig. 2.5 shows a simulation of real quantum subroutines each composed of a different

number of T gates as denoted in Table 2.1. The exponential overhead scaling shows that

as decoders become slower than the rate at which data is being generated (which occurs

for “syndrome data processing ratios” over 1), the overheads quickly become intractable.

Regardless of the effectiveness of the decoder, if it operates at a processing ratio higher than

1 then it will impose exponentially high latency overheads on algorithm execution. The

16

algorithms all draw inspiration from [Barenco et al., 1995]. Barenco-half-dirty-Toffoli is a

logarithmic depth multi-control Toffoli gate using O(n) ancilla bits. It performs the same

computation as the “cnx-log-depth” gate with a different circuit. The “cnu-half-borrowed”

gives an implementation of a multi-control Toffoli using O(n) dirty ancilla, meaning the

initial states of these bits does not need to be known. The Cuccaro adder is a linear depth

implementation of a reversible A + B adder, i.e. two registers of the specified length added

together. It has a carry in and a carry out bit as well. The Takahashi adder is an optimized

version of the Cuccaro adder [Takahashi et al., 2009].

This is the primary motivation for this work – the hardware decoder must be able to

execute faster than syndrome data are generated as a prerequisite for tractable fault tolerant

computation.

2.4 Related Work

Early work focused on the development of and modifications to the minimum weight per-

fect matching algorithm (MWPM) [Edmonds, 1965b,a] to adapt it to surface code decoding

[Fowler et al., 2012c,b]. This resulted in a claimed constant time algorithm after paralleliza-

tion [Fowler, 2013].

Other work has constructed maximum likelihood decoders (MLD) based on tensor net-

work contraction [Bravyi et al., 2014]. This work is computationally more expensive than

minimum-weight perfect matching, but is more accurate.

Neural networks have been explored as possible solutions to the decoding problem as

well [Varsamopoulos et al., 2019a, 2017, 2019b, 2018, Chamberland and Ronagh, 2018,

Varsamopoulos et al., 2017, 2018, Baireuther et al., 2019, Torlai and Melko, 2017]. Feed-

forward neural networks and recurrent neural networks have been explored in combination

with lookup tables to form decoders. The primary distinguishing factor in these systems is

that the networks function as high level decoders in that they predict both a sequence of

error corrections on data qubits along with the existence of a logical error. In this sense,

17

they operate at a higher level than both the MWPM and MLD decoders, seemingly at the

cost of execution time with respect to training complexity.

Lastly, more customized algorithms have been developed specifically targeting the surface

code decoding problem, including renormalization group decoders [Duclos-Cianci and Poulin,

2010b], Union-Find decoding [Delfosse and Zémor, 2017, Delfosse and Nickerson, 2017], and

others [Wootton, 2015, Duclos-Cianci and Poulin, 2010a].

The primary distinguishing factor of our work is that the decoder design is

guided by practical system performance. Accuracy has been sacrificed in order to

achieve quantum advantage. While the proposed decoder design may not achieve logical

error suppression at the same order as some other algorithms, the ability to perform the

algorithm in SFQ hardware at or exceeding the speed of syndrome generation is achieved,

as is satisfaction of system design constraints.

2.5 Decoder Overview and Design

In this section we describe prior decoding algorithms, followed by details of our approximate

decoding algorithm, and demonstrate how we make efficient use of unique features of SFQ

gates to implement the algorithm in hardware.

2.5.1 Prior Decoding Algorithms and their Practical Implications

Different error chains can cause the same error syndrome. The decoding problem requires

that the likely set of error chains be reported as a solution, given a particular error syndrome.

This can be formulated as a matching problem. Specifically, given an error syndrome, we can

construct a complete graph on vertices associated with each ancillary qubit that reported an

error, and calculate the weight of each edge in the graph based on the Manhattan distance

between its vertices on the original surface code grid, which corresponds to the shortest path

between its vertices on the grid. The goal is to find the likely pairing of the syndromes using

18

Algorithm 1: Minimum Weight Matching Decoder Algorithm

Input: List of hot syndromes and their (x, y) coordinates on the surface code grid.
Output: Set of error chains.

1 Construct a complete graph G = (V,E) on vertices associated with hot syndromes.
2 Calculate the weight wei for each ei ⊂ E that connects vi1 and vi2 vertices based on

their Manhattan distance; wei = |xi1 − xi2 |+ |yi1 − yi2|, where (xi1 , yi1) and
(xi2 , yi2) are the coordinates of vi1 and vi2 vertices, respectively.

3 Find a perfect matching M ⊂ E such that Σei∈Mwei is minimum.

4 Return M as the set of error chains.

Algorithm 2: Union-Find Decoder Algorithm

Input: List of hot syndromes and their (x, y) coordinates on the surface code grid.
Output: Set of error chains.

1 Create a cluster for each hot syndrome. These clusters are odd as each includes an
odd number of hot syndromes (i.e., 1).

2 Initialize the coordinates of each cluster’s up, down, left, and right borders on the
grid to the coordinate of the cluster’s hot syndrome.

3 While there exist an odd cluster:
(I) Grow all the odd clusters in all directions on the grid by half edge, and update
the coordinates of the borders.
(II) If odd clusters meet, merge them and update the number of hot syndromes in
the new cluster.
(III) Remove the clusters that have an even number of hot syndromes.

4 Construct a spanning forrest, and apply the peeling decoder to find the set of error
chains [Delfosse and Nickerson, 2017].

these weights, which can be done by solving the MWPM problem; given our error model,

the likelihood of a specific path between two vertices being the correct set of errors decreases

exponentially with the length of the path, thus the shortest path has the maximum likelihood.

See Algorithm 1 for the pseudocode of the MWPM decoder. This decoder is effective and

provides high accuracy threshold, but it has a worst case time complexity of O(n3) [Delfosse

and Nickerson, 2017], which is too slow for large code distances [Das et al., 2020]. Thus,

prior work proposed faster decoders.

Union-Find is an example of such decoders that uses the Union-Find data structure to

find a set of error chains. Union-Find decoder has a worst case time complexity of O(nα(n))

where α(n) ≤ 3 for all practical purposes [Delfosse and Nickerson, 2017], while it decreases

19

the accuracy threshold by 0.4% compared to MWPM decoder. See Algorithm 2 for the

pseudocode of the Union-Find decoder. Although Union-Find decoder achieves almost-linear

time complexity, the decoding time is still longer than the syndrome generation time (> 2X

longer), which leads to exponential latency overhead (see Sec. 2.3). Thus, we need to further

speed-up the decoding algorithm.

So far, we discussed that latency is one of the main criteria for the decoding algorithms.

However, for the room temperature decoders, bandwidth between the quantum chip and the

decoder is another main criteria. Such decoders may need to continuously (every syndrome

generation cycle) receive the syndrome information from the quantum chip and perform

the decoding, which leads to significant scalability challenges. Note that today’s quantum

computers (which are not fault tolerant) already have scalability challenges as they rely on a

classical controller to receive control pulses (see Chapter 3), and adding a room temperature

decoder only worsen the situation. Thus, we need to develop in-fridge decoders.

SFQ is a promising logic technology to implement in-fridge decoders due to its unique

characteristics such as very low power consumption and ultra-high speed. An SFQ-based

decoder not only reduces the aforementioned bandwidth requirements significantly but also

can perform the decoding with low latency thanks to high SFQ clock speed. The next

question is: can we implement either of MWPM or Union-Find decoders using SFQ logic? For

a quantum system with 1000 logical qubits and code distance of 11, MWPM and Union-Find

decoders requires > 1.5 MB and > 2.5 MB memory capacity, respectively [Das et al., 2020],

and the required memory capacity increases with the code distance and the number of logical

qubits. However, one limitation of SFQ technology is the lack of a dense memory (memory

density is ∼ 400 Kb/cm2 based on optimistic estimations [Tannu et al., 2017b]), which

makes the implementation of MWPM and Union-Find decoders infeasible at large scales.

This suggests that we need to modify the decoding algorithms based on the characteristics

of SFQ technology.

20

2.5.2 A Greedy Approach

Our decoding algorithm is based upon a greedy approximation to the minimum weight

matching problem. The algorithm calculates all Manhattan distances d(vi, vj) between ver-

tices and sorts them in ascending order d1, d2, ..., dk′ where k
′ =

(k
2

)
. All of the corresponding

probability weights are calculated, transforming this ordering to a descending order of like-

lihood. Then, for each edge e in descending order, add e to the solution M if it forms

a matching. This means that it adds another two distinct vertices into M that were not

already present. To account for boundary conditions, we introduce a set of external nodes

connected to the appropriate sides of the lattice, and connected to one another with weight

0. Under this formulation, the algorithm is a 2-approximation of the optimal solution [Drake

and Hougardy, 2003].

2.5.3 SFQ-Based Decoder

In this section, we introduce the functional design of our SFQ-based decoder and give some

rational for each aspect of its design. As a reminder, Single Flux Quantum is classical logic

implemented in superconducting hardware that does not perform any quantum computation.

It is a medium used to express our classical algorithm. The decoder is placed above the

quantum chip layer; it receives measurement results from ancillary qubits as input, and

returns a set of corrections as output. For scalability, our decoder design is built out of

a two dimensional array of modules implemented in SFQ logic circuits that we refer to as

decoder modules. These are connected in a rectilinear mesh topology. Modules are identical

and there is one module per each data and ancillary qubit, denoted as data qubit modules

and ancilla qubit modules, respectively. Each decoder module has one input called the hot

syndrome input that comes from the measurement outcome of the physical quantum bits and

determines if the module corresponds to a hot syndrome (note that this input can be “1”

only for ancilla qubit modules). Each module contains one output called the error output

that determines if the module is contained in the error chain (this output can be “1” for

21

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Figure 2.6: Baseline solution to find the two closest hot syndrome modules. Step1: two
decoder modules have “1” hot syndrome input. Step2: the hot syndrome modules propagate
grow signals. Step3: the grow signals meet at an intermediate module. Step4: the interme-
diate module sends pair signals in the opposite direction. Step5: pair signals arrive at the
hot syndrome modules. Step6: decoding is complete. Note that the decoder modules that
receive a pair signal are considered as part of the error chain that has occurred.

all of the decoder modules). In addition, each module has connections to adjacent modules

(left, right, up and down).

Our approximate decoder algorithm proceeds as follows. First, the algorithm finds the

two modules with “1” hot syndrome input, called hot syndrome modules, that are closest

together. Next, the algorithm reports the chain of modules connecting them as the correction

chain. Finally, it resets the hot syndrome input of the two modules and searches for the next

two closest hot syndrome modules. The decoder continues this process until no module with

“1” hot syndrome input exists. This is graphically displayed in Fig. 2.6.

Baseline Solution: Our baseline design finds the two closest hot syndrome modules as

shown in Fig. 2.6 as follows: 1) every hot syndrome module sends grow signals to all the

adjacent modules in all four directions; each adjacent module propagates the grow signal

22

X

X

X

X

X

X

X

X

X

X

X

X

(a)

Chain chosen by the decoder Correct chain

(b) (c)

Figure 2.7: Scenarios where the SFQ decoder chooses the wrong chain where (a) no re-
set/boundary/equidistant mechanisms are employed, (b) no boundary/equidistant mecha-
nisms are employed, and (c) no equidistant mechanism is employed.

in the same direction. Grow signals propagate one step at each cycle. 2) When two grow

signals intersect at an intermediate module, we generate a set of pair signals and back-

propagate these to their hot syndrome origins. All of the decoder modules that receive pair

signals are part of the error chain. Note that more than one intermediate module might

exist, however, only one of them is effective and sends the pair signals. For example, in Fig.

2.6, two intermediate modules receive the grow signals, and the decoder is hardwired to be

effective (ineffective) when it receives grow signals from up and left directions (down and

right directions). Intermediate module refers to the effective one. The baseline solution does

not show accuracy or pseudo-threshold behavior and demonstrates poor logical error rate

suppression, see the incremental results presented in Section 2.8 in Fig. 2.11.

Reset Mechanism: One flaw of the baseline system is the lack of a mechanism to reset

the decoder modules after two hot syndrome modules are paired. Grow signals of the paired

modules continue to propagate, potentially causing these modules to pair incorrectly with

other hot syndrome modules, ultimately resulting in an incorrect error chain reported. Fig.

2.7 (a) shows an incorrect matching due to this behavior. To mitigate this, we add a reset

mechanism that resets the decoder modules each time hot syndrome modules are paired and

the error chain connecting them is determined. Adding the reset mechanism to the baseline

system improves the performance somewhat, but does not yet achieve tolerable accuracy.

23

Boundary Mechanism: Another explanation for the low performance of the baseline

solution is that it never pairs hot syndrome modules with boundaries. For example, if two

hot syndrome modules are far from each other but are close to boundaries, the error chain

with the maximum likelihood is the one that connects the hot syndrome modules to the

boundaries. Fig. 2.7 (b) shows this behavior occurring on a machine. We implement a

mechanism that enables pairing the hot syndrome modules with boundaries. To do this,

we add decoder modules that surround the surface boundaries called boundary module (one

per each quantum bit located at a boundary). Our solution treats boundary modules as

hot syndrome modules but they do not grow and can pair only with non-boundary modules.

Note that when two modules are paired, the hot syndrome input of only the non-boundary

modules is reset; boundary modules are always treated as hot syndrome modules. Adding the

boundary mechanism to the baseline solution augmented with the reset mechanism further

increases the accuracy of the decoder.

Equidistant Mechanism: Finally, the last major reason for inefficiency of the baseline

is that it does not properly handle the scenarios in which multiple hot syndrome modules are

spaced within equal distances of one another, resulting in a set of pairs that are all equally

likely. The baseline solution augmented with reset and boundary mechanisms works properly

only if no non-boundary hot syndrome module has an equal distance to more than one other

hot syndrome module; otherwise the solution pairs it with all the hot syndrome modules

with equal distance. However, this is not the desired output. We need a more intelligent

solution to break the tie in the aforementioned scenario, and pair the hot syndrome module

to only one other module. This is shown in Fig. 2.7 (c).

To resolve these equidistant degenerate solution sets, we introduce a request – grant policy

that allows for the hardware to choose specific subsets of these pairs to proceed. 1) Similar

to the baseline solution, the non-boundary hot syndromes first propagate grow signals. 2)

An intermediate module receives two grow signals from two different directions, and it sends

pair request signals in the opposite directions. Pair request signals continue to propagate

24

until they arrive at a module with “1” hot syndrome input. 3) The modules with “1” hot

syndrome input send pair grant signals in the opposite direction of the received pair request

signals. Note that multiple pair request signals might arrive at a module with “1” hot

syndrome at the same time, but it gives grant to only one of them. 4) An intermediate

module receives pair grant signals from two different directions and sends pair signals in

the opposite directions. 5) Pair signals continue to propagate until they arrive at a module

with “1” hot syndrome input. Boundary modules do not send grow signals but they send

pair request signals when they receive grow signals; they also send pair signals when they

receive pair grant signals.

2.6 Implementation

2.6.1 SFQ Implementation of Greedy Decoding

SFQ is a magnetic pulse-based fabric with switching delay of 1ps and energy consumption of

10−19J per switching. In addition, availability of superconducting microstrip transmission

lines in this technology makes it possible to transmit picosecond waves with half of speed of

light and without dispersion or attenuation. The combination of these properties together

with fast two-terminal Josephson junctions, makes this technology suitable for high speed

processing of digital information [Volkmann et al., 2013, Kirichenko et al., 2011, Herr et al.,

2011, Takeuchi et al., 2013, Likharev and Semenov, 1991]. SFQ logic families are divided

into two groups: ac-biased and dc-biased; Reciprocal Quantum Logic (RQL) [Herr et al.,

2011], and Adiabatic Quantum Flux Parametron (AQFP) [Takeuchi et al., 2013] are in

the first group, and Rapid Single Flux Quantum (RSFQ) [Likharev and Semenov, 1991],

Energy-efficient RSFQ (ERSFQ) [Kirichenko et al., 2011], and energy-efficient SFQ (eSFQ)

[Volkmann et al., 2013] are examples of the second group. The dc-biased logic family with

higher operation speed (as high as 770GHz for a T-Flip Flop (TFF) [Chen et al., 1999]) and

less bias supply issues are more popular than ac-biased logic family.

25

Our algorithm requires modules to propagate signals one step at each cycle. One approach

to implement our algorithm is to use synchronous elements such as flip-flops in decoder

modules. However, standard CMOS style flip-flops are very expensive in SFQ logic (e.g.,

one D-Flip-Flop occupies 72.4× more area and consumes 117× more power compared to a

2-input AND gate). On the other hand, SFQ gates have a unique feature that we utilize

to implement our algorithm without flip-flops. Unlike CMOS gates, most of the SFQ gates

(expect for mergers, splitters, TFFs, and I/Os) require a clock signal to operate [Pasandi

et al., 2018]. Thus, we do not need to have flip-flops and signals can propagate one SFQ

gate at each cycle.

As described earlier, our decoder requires resetting the decoder modules each time two

hot syndrome modules are paired. We have a global wire that passes through all the modules

and is connected to each module using splitter gates. Thus, if we set the value of the global

wire, all of the decoder modules receive the reset signal at the same time, as the splitter

gates do not require clock signals to operate. If a module receives a reset signal, it blocks the

module inputs using 2-input AND gates (one input is module input and the other input is

¯Reset). In order to reset a decoder module completely, we need to block the module inputs

for as many cycles as the depth of our SFQ-based decoder because the SFQ gates work with

clock cycles and one level of gates is reset at each cycle. Thus, we use a simple circuit to

keep the reset signal “1” for as many cycles as the circuit depth. In each module, we pass

the reset signal that comes from the global wire to a set of m cascaded buffer gates where m

is the circuit depth, and the module inputs are blocked if the reset signal that comes from

the global wire is “1” or at least one of the buffers has “1” output.

2.6.2 Datapath and Subcircuit Design

Fig. 2.8 shows an overview of our decoder module microarchitecture. Our decoder consists

of five main subcircuits.

26

X

X

Grow In.

Pair In.

Pair_Req. In.

Pair_Grant In.

Reset In. Keep the
Reset Signal

block signal Grow
Subcircuit

Grow Out

Pair Out

Pair_Req. Out

Pair_Grant Out

Pair_Req.
Subcircuit

Pair_Grant
Subcircuit

Pair
Subcircuit

Reset OutHot Syndrome

Figure 2.8: Overview of decoder module microarchitecture.

Grow Subcircuit: this subcircuit receives hot syndrome input and 4 grow inputs (from

4 different directions), and produces 4 grow output signals. Grow outputs are “1” if the

hot syndrome input is “1” or if the module is passing a grow signal generated by another

module.

Pair Req Subcircuit: this subcircuit is responsible for setting the value of pair request

outputs which are “1” if two grow signals meet at an intermediate module or if the module

is passing a pair request signal that arrived at one of its input ports. The module does not

pass the pair request input signal if the hot syndrome input is “1”; in that case, the module

generates a pair grant signal instead.

Pair Grant Subcircuit: this module determines the value of pair grant outputs which

are “1” if the module is a hot syndrome module and gives grant to a pair request signal, or

if the module is passing a pair grant input signal to the adjacent module.

Pair Subcircuit: this subcircuit sets the value of pair outputs which are “1” if two

pair grant signals meet at an intermediate module or if a pair input signal is “1” and the

hot syndrome input is not “1”. If both the pair input and hot syndrome input are “1”, the

27

Network s t ruc tu re v i sua l i zed by ABC
Benchmark "pa i rou t " . T ime was Thu Feb 13 17 :41 :36 2020 .

The ne twork conta ins 89 logic nodes and 0 la tches .

pa i r_ou t0 pa i r_ou t1 pa i r_ou t2 pa i r_ou t3 r e m o v e s y n r e s e t _ o u t

6 2
D F F

3 4
o r 2

6 3
D F F

6 4
D F F

6 6
D F F

6 7
D F F

3 0
a n d 2

5 7
D F F

2 3
o r 2

4 0
a n d 2

4 4
o r 2

6 5
D F F

5 3
o r 2

2 2
o r 2

1 8
a n d 2

2 9
o r 2

2 6
o r 2

3 9
o r 2

3 7
o r 2

4 3
o r 2

4 1
a n d 2

5 2
o r 2

9 8
Sp l i t t e r

3 3
a n d 2

8 9
Sp l i t t e r

5 4
D F F

2 0
a n d 2

1 0 3
Sp l i t t e r

9 5
Sp l i t t e r

2 5
o r 2

2 8
a n d 2

3 2
a n d 2

1 0 4
Sp l i t t e r

9 6
Sp l i t t e r

3 5
n o t

7 4
D F F

4 2
a n d 2

5 1
o r 2

5 0
a n d 2

4 8
a n d 2

9 1
Sp l i t t e r

5 5
D F F

7 1
D F F

1 0 2
Sp l i t t e r

2 7
n o t

1 0 0
Sp l i t t e r

3 1
n o t

1 0 1
Sp l i t t e r

9 4
Sp l i t t e r

9 2
Sp l i t t e r

5 9
D F F

4 7
o r 2

6 1
D F F

4 9
o r 2

9 7
Sp l i t t e r

1 7
a n d 2

2 4
a n d 2

3 6
a n d 2

7 0
D F F

7 3
D F F

1 6
n o t

5 6
D F F

8 2
Sp l i t t e r

7 6
Sp l i t t e r

5 8
D F F

4 6
o r 2

4 5
o r 2

8 3
Sp l i t t e r

7 7
Sp l i t t e r

8 7
Sp l i t t e r

8 4
Sp l i t t e r

6 0
D F F

9 3
Sp l i t t e r

7 9
Sp l i t t e r

7 2
D F F

3 8
a n d 2

9 9
Sp l i t t e r

6 9
D F F

8 0
Sp l i t t e r

7 8
Sp l i t t e r

8 5
Sp l i t t e r

8 6
Sp l i t t e r

8 8
Sp l i t t e r

9 0
Sp l i t t e r

2 1
a n d 2

7 5
Sp l i t t e r

8 1
Sp l i t t e r

pa i r_ in0pai r_ in1pai r_ in2pai r_ in3

1 9
n o t

6 8
D F F

pa i r_g ran t_ in2 pa i r_g ran t_ in0pa i r_g ran t_ in1 pa i r_g ran t_ in3 h o t _ s y n d r o m e

Figure 2.9: Pair subcircuit after SFQ specific optimizations and mapping. Triangular shapes
at the bottom represent the primary inputs of the circuit and those at the top of the circuit
show primary outputs. DFF is SFQ DRO DFF inserted for path balancing. Splitter (bal-
anced) trees are also shown. Splitter is an asynchronous SFQ gate that receives a pulse at its
input and after its intrinsic delay, it produces two almost identical output pulses. We insert
splitters at the output of an SFQ gate (or a primary input) with more than one fanout.

module does not pass the pair signal and instead generates a global reset signal that reset all

of the decoder modules and also resets the hot syndrome input. Note that the reset signal

resets everything except the subcircuit responsible for passing the pair signals because it

is possible that the intermediate module does not have equal distance from the paired hot

syndrome modules and we do not want to stop the propagation of all the pair signals in

the system when the closer module receives a pair signal (while the farther module has not

received a pair signal yet). The SFQ implementation of this subcircuit is shown in Fig. 2.9.

Reset Subcircuit: this subcircuit is responsible to keep the reset signal “1” for as many

cycles as the depth of our circuits. The depth is 5 in our circuits, thus reset subcircuit blocks

grow, pair req and pair grant inputs for 5 cycles in order to reset the module.

2.7 Methodology

Simulation Techniques: In order to effectively benchmark the performance of a stabi-

lizer quantum error correcting code, techniques must be used to simulate the action of

28

the code over many cycles. This is referred to elsewhere in literature as lifetime simula-

tion [Varsamopoulos et al., 2018], or simply Monte Carlo benchmarking. We constructed a

simulation environment that simulates the action of the stabilizer circuits. A cycle refers to

one full iteration of the stabilizer circuit. At each step within the cycle, errors are stochas-

tically injected into the qubits and propagated through the circuits. Ancillary qubits are

measured, and the outcomes are reported in the error syndrome. This syndrome is then

communicated directly to the decoder simulator, which returns the corresponding correc-

tion. The correction is applied and the surface is checked for a logical error. The ratio of

the number of logical errors to the number of cycles run in simulation is used as the primary

performance metric.

Evaluation Performance Metrics: In our evaluations, we use the stabilizer circuits

as the primary benchmark. These circuits are replicated for every ancillary qubit present in

a surface code lattice. Many different lattices are also analyzed, ranging in size from code

distances 3 to 9.

As performance metrics, we focus on accuracy thresholds and pseudo-thresholds. The

former is the physical error rate at which the code begins to suppress errors effectively

across multiple code distances. Below this threshold, the logical error rate PL decreases as

the code distance d increases. Above threshold these relationships invert, and PL grows with

d due to decoder performance: the presence of many errors causes the decoding problem to

become too complex. In many cases, this leads to corrections that complete what would

have otherwise been short error chains, forming logical errors, a process that amplifies as

code distances increase.

Pseudo-threshold refers to the performance of a single code distance, and is the physical

error rate at which the logical error rate is equal to the physical rate, i.e. PL = p. This can

be (and often is) different across different code distances. Better error correcting codes will

have higher pseudo-threshold values, as well as higher accuracy thresholds.

Error Models: The Monte Carlo simulation environment requires a model of the errors

29

●

●

●

●
●

● ●
● ●

●

■

■
■

■
■ ■

■ ■ ■ ■

◆

◆

◆
◆ ◆ ◆

◆ ◆ ◆
◆

▲

▲
▲

▲ ▲ ▲ ▲ ▲ ▲ ▲

▼

▼

▼
▼

▼
▼

▼
▼

▼ ▼

● d=3

■ d=5

◆ d=7

▲ d=9

▼ physical

1 2 5 10

1

5

10

50

Physical Error Rate (%)

L
o
g
ic
al
E
rr
o
r
R
at
e
(%

)

Baseline design

●

●
●

●
● ●

●

● ●
●

■

■

■

■ ■
■

■ ■

■
■

◆

◆

◆

◆
◆

◆
◆

◆
◆

◆

▲

▲

▲
▲

▲ ▲
▲ ▲

▲
▲

▼

▼

▼

▼
▼

▼
▼

▼
▼ ▼

● d=3

■ d=5

◆ d=7

▲ d=9

▼ physical

1 2 5 10

1

5

10

50

Physical Error Rate (%)

L
o
g
ic
al
E
rr
o
r
R
at
e
(%

)

Adding resets

●

●

●

●

●
●

● ●
● ●

■

■

■
■

■
■

■ ■ ■
■

◆

◆

◆

◆

◆ ◆ ◆

◆ ◆
◆

▲

▲

▲
▲

▲
▲

▲
▲ ▲ ▲

▼

▼

▼
▼

▼
▼ ▼ ▼ ▼ ▼

● d=3

■ d=5

◆ d=7

▲ d=9

▼ physical

1 2 5 10

0.5

1

5

10

50

Physical Error Rate (%)

L
o
g
ic
al
E
rr
o
r
R
at
e
(%

)

Adding resets and boundaries

Figure 2.10: Logical error rate performance of each incremental design step. The addition
of resets and boundaries each contribute heavily to the realization of pseudo-thresholds, and
have a dramatic effect on reducing the minimum achievable logical error rates for each code
distance.

on the quantum system. We choose to focus on the depolarizing channel model [Nielsen and

Chuang, 2010, Fowler et al., 2012a, Lidar and Brun, 2013, Terhal, 2015], parameterized by a

single value p: Pauli X, Y, and Z errors occur on qubits with probability p/3. During simu-

lation Pauli errors are sampled i.i.d for injection on each data qubit. We present analysis of

a variation of the model, the pure dephasing channel [Delfosse and Nickerson, 2017, Delfosse

and Zémor, 2017] comprised solely of Pauli Z errors occurring on qubits with probability p.

The decoder will be operated symmetrically for both X and Z errors, allowing for simple

extrapolation from these results.

Single Flux Quantum Circuit Synthesis: An ERSFQ library of cells is used in

this paper to reduce the total power consumption (including the static and dynamic) of the

surface code decoder as much as possible. Table 2.2 lists characteristics of this library. As

30

●

● ●

●
●

●
● ●

● ●

■

■

■

■
■

■ ■
■

■ ■

◆

◆

◆

◆

◆
◆

◆
◆ ◆

◆

▲

▲

▲

▲

▲
▲

▲
▲

▲ ▲

▼

▼
▼

▼
▼ ▼ ▼ ▼ ▼ ▼

● d=3

■ d=5

◆ d=7

▲ d=9

▼ Physical Error Rate

1 2 5 10

0.05
0.10

0.50
1

5
10

Physical Error Rate p (%)

L
o
g
ic
al
E
rr
o
r
R
at
e
P
L
(%

)

(a) Final design

●

●

●

●
●

●
●

■

■ ■
■

■ ■

■

◆

◆

◆

◆
◆ ◆

◆

▲

▲

▲

▲

▲
▲

▲

● d=3

■ d=5

◆ d=7

▲ d=9

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
2

4

6

8

10

Physical Error Rate p (%)

L
o
g
ic
al
E
rr
o
r
R
at
e
P
L
(%

)

(b) Zoomed in final design

d=3

d=5

d=7

d=9

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

Cycles

P
ro
b
ab
ili
ty
D
en
si
ty

(c) Final design probability densities

Figure 2.11: Results for our final design, including support for reset, boundary, and equidis-
tant mechanisms. (a) Error rate scaling for the proposed decoder. An accuracy threshold
is evident at approximately 5% physical error rate, while pseudo-thresholds span the range
from ∼ 3.5% – 5%. (b) Logical error rates near the 5% physical error rate value. (c) Trun-
cated unnormalized estimated probability distributions for the execution cycles required by
each code distance in simulation. Window shows up to 20 cycles for comparison across code
distances. Notice that while distances 3, 5, 7 display peaks centered at 0, 5, 9, and 14 cycles.

seen, this library contains four logic gates including AND2, OR2, XOR2, and NOT, and it

has a Destructive Read-Out D-Flip-Flop (DRO DFF) cell. Area of all logic cells are the same

and it is equal to 3500 µm2. However, area of the DRO DFF is less than the area of these

gates (3000 µm2). DRO DFFs are different from standard CMOS style flip-flips: they are

specially designed for SFQ circuits and are usually used for path balancing. In Table 2.2, the

total number of Josephson junctions (as a measure of complexity and cost) used in designing

each gate together with the intrinsic delay of each cell is reported.

The decoder circuit and its sub-circuits are synthesized by employing ERSFQ specific

logic synthesis algorithms and tools [Pasandi and Pedram, 2019b, Pasandi et al., 2018,

Pasandi and Pedram, 2019d,a]. These algorithms are designed to reduce the complexity

31

Cell Area (µm2) JJ Count Delay (ps)
AND2 3500 16 8.7
OR2 3500 14 6.0
XOR2 3500 18 6.3
NOT 3500 12 13.0
DRO DFF 3000 11 6.8

Table 2.2: The library of ERSFQ cells and corresponding characteristics used for synthesizing
the circuit into SFQ hardware. Josephson Junction count is listed in the second column.

of the final synthesized and mapped circuits in terms of total area and Josephson junction

count. This is achieved by reducing the required path balancing DFF count for realizing

these circuits. Please note that for correct operation of dc-biased SFQ (including ERSFQ)

circuits, these circuits should be fully path balanced; this means that in a Directed Acyclic

Graph (DAG) that represents an SFQ circuit, length of any path from any primary input

to any primary output in terms of the gate count should be the same. In most of the SFQ

circuits this property does not hold in the beginning. Therefore, some path balancing DFFs

should be inserted into shorter paths to maintain the full path balancing property. In the

algorithms we employed for mapping these circuits, a dynamic programming approach is

used to ensure minimization of the total number of DFFs to maintain the balancing prop-

erty [Pasandi and Pedram, 2019b,d]. In addition, a depth minimization algorithm together

with path balancing is employed [Pasandi et al., 2018] to reduce the logical depth (length

of the longest path from any primary input to any primary output in terms of the gate

count) of the final mapped circuit. This helps to reduce the latency of the mapped SFQ

circuit. As mentioned before, SFQ logic gates are pulsed-based, meaning that the presence

of a pulse represents a logic-“1” and the absence of a pulse represents a logic-“0”. Each

gate is clocked, and as an example, the SFQ NOT gate behaves as follows. After the clock

pulse arrives, when there are no input pulses, a pulse is generated at the output of the

gate representing a “1”. On the other hand, when there is an input pulse, no pulses are

generated at the output, meaning a “0”. Each pulse is a single quantum of magnetic flux

(ϕ0 = h
2e = 2.07mV×ps) [Likharev and Semenov, 1991]. To simulate the SFQ circuits for

32

Circuit Logical Depth Latency (ps) Total Area (µm2) Power Consumption (µW)
AND GATE 1 8.7 3500 0.026
OR GATE 1 6.0 3500 0.026
OR GATE 7 INPUTS 3 18.0 33000 0.338
NOT GATE 1 13.0 3500 0.026
Pair Grant Subcircuit 5 115.0 293500 3.38
Pair Subcircuit 5 115.0 303500 3.53
Pair Req./Grow Subcircuit 5 115.0 406500 4.75
Full Circuit 6 168.0 1143000 13.44

Table 2.3: Experimental synthesis results for the SFQ Decoder. Shown are all gates utilized
in the synthesis, as well as submodules that comprise the main circuit. Pair Req. and Grow
subcircuits have been combined into a single subcircuit.

Code Distance Max Average Standard Deviation
3 3.86 0.29 0.59
5 9.58 0.74 1.13
7 14.7 2.06 2.05
9 19.8 3.93 3.21

Table 2.4: Decoder execution time in nanoseconds across each code distance studied and
across all simulated error rates.

verifying their correct functionality, we use the Josephson simulator (JSIM) [Delport et al.,

2019].

2.8 Evaluations

In this section we evaluate the performance of our proposed decoder design, both in terms

of circuit characteristics including power, area, and latency, as well as error correction per-

formance metrics of accuracy and pseudo-thresholds. We also analyze the execution time of

our system, relying upon described operating assumptions and circuit synthesis results.

Threshold Evaluations: To gauge the performance of our design, we use the threshold

metrics described in Section 2.7. Fig. 2.11 (a) shows the central performance result, while the

top row of Fig. 2.11 shows the effect of all of the incremental design decisions on the overall

performance. This evaluation simulates the performance of the decoder across a range of

physical error rates. A pseudo-threshold range of between 3.5% and 5% is observed, and

an accuracy threshold appears at approximately the 5% error rate. For code distance 5,

the pseudo-threshold is below the accuracy threshold. This highlights the difference between

33

Code Distance 3 5 7 9
c2 0.650 0.429 0.306 0.323

Table 2.5: Empirical parameter estimation given a model of the form PL ≈ c1(p/pth)
c2·d.

Shown are estimated c2 parameter values.

these metrics – an error correcting protocol like the surface code can perform well even though

particular code distances may still be amplifying the physical error rates (i.e. PL > p). It is

important to consider both types of thresholds when evaluating decoder performance.

An interesting behavior is observed for code distance d = 3. This lattice performs at or

surpassing the performance of all other lattices from the 3% physical error rate and above.

Below this point, the lattice begins to taper off, and ultimately it converges with the distance

5 lattice. Boundary conditions were highly prioritized in our design, causing this effect. In

particular, the decoder is designed such that error chains that terminate at the boundaries

are more likely to be correctly identified than other patterns. This choice was made as

smaller lattices are more dominated by these edge effects than larger lattices. The smallest

lattice in our simulations shows this anomalous behavior, as it contains a disproportionate

amount of boundary patterns. In larger lattices, syndromes are less likely to terminate in

boundaries, reducing this effect.

Fig. 2.11 (b) highlights the desired threshold behavior. Examining the 6% error rate,

code distance 9 is outperformed by code distance 7. Moving to the lowest physical error rate

in the window, we find that the lattices perform in the order d = 9, d = 3, d = 7, and d = 5,

ordered from lowest to highest logical error rate. Barring the anomalous d = 3 behavior

described above, this is accuracy threshold behavior indicative of successful error correction

performance.

Performance Analysis: To quantify the approximation factor of our design we com-

pare the performance to that of an ideal decoder by fitting to an exponential analytical model.

The achievable error rates by the surface code ideally can be described by PL ≈ 0.03(p/pth)
d

[Fowler et al., 2012a] when a minimum weight matching decoder is used in software. This

model is valid for the error models we consider, as [Fowler et al., 2012a] uses and fits “class-0”

34

SFQ Decoder

MWPM

NNet

Union Find

MWPMWithout Backlog

10-5 10-4 0.001 0.010 0.100

1

10

100

1000

Physical Error Rate

C
od
e
D
is
ta
nc
e
R
eq
ui
re
d

Figure 2.12: Comparison of required code distances of different decoders to execute an
algorithm consisting of 100 T-gates. Compared are the SFQ Decoder, MWPM decoder
[Fowler et al., 2012a], neural network decoder [Baireuther et al., 2019], Union-Find decoder
[Delfosse and Nickerson, 2017], and a theoretical MWPM decoder with no backlog. across
both code distances and physical error rates.

Pauli errors in the same fashion. Using a model of the form PL ≈ c1(p/pth)
c2·d, we fit values

of c1, c2 for each code distance at physical error rates below accuracy threshold, and collect

c2 values in Table 2.5. C2 coefficients describe the effective code distance for our system,

and capture the approximation factor we introduce. For code distances 3 and 5, we find

that the approximate decoder is roughly 65% and 43% of the optimal distance respectively.

This is the trade-off made by our system in order to fit the timing and physical footprint

requirements of the system.

Notice that this accuracy tradeoff results a net resource reduction for our design over

other proposed designs as shown in Fig. 2.12. The data backlog imposes delays into the

system that decrease the logical accuracy of any decoder that incurs this backlog. As the

backlog builds up, the number of required syndrome detection cycles builds up as well,

resulting in a new effective logical error rate as one logical gate now requires many more

35

syndrome detection cycles to occur. The SFQ decoder pays an accuracy price for speed, but

when the backlog is taken into consideration this tradeoff results in a significant performance

gain over alternative designs.

Synthesis Results and Circuit Characterization: Table 2.3 shows experimental

results for the surface code decoder circuit presented in this paper using the aforementioned

ERSFQ library of cells described in Section 2.7. The full circuit demonstrates a cycle latency

of 168 ps, and an area and power footprint of 1.143 mm2 and 13.44 µW, respectively. The

full decoder is comprised of a mesh of these circuit modules, requiring a single module per

individual qubit. This means that for systems of code distance 9 comprised of 289 qubits, the

decoder required will be of size 330.33 mm2 and will dissipate 3.88 mW of power. Typical

dilution refrigerators are capable of cooling up to 1 − 2 Watts of power in the 4-Kelvin

temperature region [Hornibrook et al., 2015], enabling the co-location of a decoder mesh of

size 87 × 87, which would protect a single qubit of code distance d = 44, or 100 qubits

of code distance d = 5. These values are estimations given modern day SFQ and cryogenic

dilution refrigerator technology, much of which is subject to change in the future.

Execution Time Evaluation: The most important characteristic that the SFQ decoder

aims to optimize is real-time execution speed. Previous works have described the syndrome

generation time to be between 160−800 ns for superconducting devices that we are focusing

on in this study. [Ghosh et al., 2012, Tannu et al., 2017b].

In practice the time to solution is much lower than the upper bound of O(n) on the greedy

algorithm. Table 2.4 contains the empirically observed statistics of our decoder operation.

The maximum cycles to solution is well approximated by a linear scaling with a leading

coefficient of ∼ 15.75. Estimated probability distributions describing the required cycles to

solution for each code distance are shown in Fig. 2.11 (c).

Comparison to existing approximation techniques: Trading the accuracy for de-

coding speed has been utilized in prior work. Union-Find [Delfosse and Nickerson, 2017]

achieves a significant speed-up over the minimum weight perfect matching algorithm, while

36

MWPM Union-Find SFQ decoder
Accuracy Threshold 10.3% 9.9% 5%

Table 2.6: Comparing decoding algorithms in terms of accuracy threshold. SFQ decoder
sacrifices accuracy for speed in order to avoid exponential latency overhead and achieve
quantum advantage.

the accuracy threshold decreases by only 0.4%. Despite this, the Union-Find decoding time

is still longer than the syndrome generation time (> 2X longer) thus exposing it to the ex-

ponential latency overhead caused by the data backlog. In contrast to prior approximation

techniques, decoding time in our design is faster than syndrome generation time and thus it

does not incur exponential latency overhead. However, the accuracy threshold is lower in our

design (see Table 2.6), which is the price we pay in order to enable practical implementation

of error-correcting quantum machines.

Effect on SQV: The net effect of our design is to expand the SQV achievable by

near-term machines. An example of this is a small 100 physical qubit system in which

103 gates are performed per qubit, a machine that is conjectured will exist in the near

future [Bishop et al., 2017] and shown in red in Fig. 2.1. By utilizing the scaling equation

described in Section 2.8, we see that a homogeneous system of 78 logical qubits each of code

distance 3 is capable of performing ∼ 4.36 × 106 gates per qubit. This expands SQV from

100 × 103 → 78 × (4.36 × 106) ≈ 3.4 × 108, increasing by a factor of 3402. This can be

pushed farther by going to the small qubit count limit, constructing a machine of 40 logical

qubits each of code distance 5, yielding SQV of ≈ 1.12× 109, an increase of 11, 163. These

effects are captured in Fig. 2.1. Not all applications benefit from these expansions in the

same fashion, but our techniques allow for machines to be used in ways that are tailored to

individual applications, and enable much more computation to be performed on the same

machine.

37

2.9 Conclusion

In the design of near-term quantum computers, it is vital to enable the machines to perform

as much computation as possible. By taking inspiration from quantum error correction, we

have designed an “Approximate Quantum Error Correction” error mitigation technique that

expands the “Simple Quantum Volume” of near-term machines by factors between 3,402 and

11,163. Our design focuses on the construction of an approximate surface code decoder that

can rapidly decode error syndrome, at the cost of accuracy.

Using SFQ synthesis tools, we show that the area and power are within the typical

cryogenic cooling system budget. In addition, our accelerator is based on a modular, scalable

architecture that uses one decoder module per each qubit. Most importantly, our decoder

constructs solutions in real-time, requiring a maximum of ∼20 ns to compute the solution in

simulation. This allows our decoding accelerator to achieve 10x smaller code distance when

compared to offline decoders when accounting for decoding backlog. Thus, it is a technique

that can effectively boost the Simple Quantum Volume of near-term machines.

38

CHAPTER 3

DIGIQ: A SCALABLE DIGITAL CONTROLLER FOR

QUANTUM COMPUTERS USING SFQ LOGIC

3.1 Introduction

Superconducting quantum computing is one of the promising technologies for building a

quantum computer [Brink et al., 2018, Li et al., 2020], with many prototypes having been

manufactured in the recent years [Arute et al., 2019, Kelly, 2018, Steffen et al., 2011, Fu

et al., 2017]. However, today’s prototypes rely on sending separate analog microwave control

pulses for each qubit through coaxial cables from a classical controller at room temperature

to the quantum chip inside the dilution refrigerator (see Fig. 3.1(a)). This design is sim-

ple and straightforward, however presents severe scalability challenges due to the massive

costs of generating/routing the analog microwave signals, and significant heat dissipation

at millikelvin temperatures due to using a large number of high bandwidth coaxial cables

[McDermott et al., 2018, Leonard et al., 2019, Li et al., 2019]. Thus, it is essential to build

compact controllers as close as possible to quantum chips in order to generate and route the

control signals locally and address the scalability problem of today’s systems (see Fig. 3.1(b)

for an example of such a controller).

Cryo-CMOS is an excellent near-term solution to increase the scalability of today’s quan-

tum machines, and controller prototypes based on Cryo-CMOS have been manufactured

[Van Dijk et al., 2020] which can scale to >800 qubits (see Sec. 3.3). Meanwhile, Su-

perconducting Single Flux Quantum (SFQ) logic [Kirichenko et al., 2011, Likharev and

Semenov, 1991] is an emerging classical logic family and is recognized as a promising solu-

tion to maximize the scalability of in-fridge controllers due to its unique characteristics such

as ultra-high speed and very low power [Leonard et al., 2019, McDermott et al., 2018, Li

et al., 2019, Liebermann and Wilhelm, 2016]. However, a key remaining step is designing an

SFQ-friendly controller architecture that operates within the tight power and area budget of

39

Quantum
Chip

SFQ ctrl. 4 K

20 mK

(a) (b)

Quantum-classical
co-design

Software-level
support

+

Quantum
Chip

Digital
instructions

Coaxial
cables

μstrips

Analog
μwave pulses

300 K

SFQ-friendly
hardware

+

Architecting
large-scale SFQ ctrl.

77 K

0.1 K

Figure 3.1: (a) Today’s controller design: controller at room temperature, (b) DigiQ : con-
troller close to quantum chip.

dilution refrigerators at large scales, while ensuring good quantum algorithmic performance.

Prior work has demonstrated quantum gates based on SFQ logic [Leonard et al., 2019,

Li et al., 2019, Liebermann and Wilhelm, 2016], and has outlined a vision for an SFQ-based

controller for fault-tolerant quantum computing that relies on repeated streaming of quantum

instructions that are stored in SFQ registers [McDermott et al., 2018]. These studies done

by physicists are essential in order to show the feasibility of performing SFQ-based quantum

gates, and envision the potentials of SFQ logic in controlling large-scale quantum chips.

However, the following architectural shortcomings remain to be addressed: (1) prior work

does not consider scenarios where we are no longer primarily repeating the same quantum

instructions. Thus, they are especially not suitable for running Noisy Intermediate Scale

Quantum (NISQ) algorithms; (2) there has not been a detailed synthesis of a complete SFQ-

based controller architecture in order to get an accurate estimate of power and area, and

determine the scale we can achieve with such controllers given the power and area budget

of dilution refrigerators; (3) there has not been an analysis of the implications of SFQ-based

quantum controllers on quantum algorithmic performance. This analysis is necessary to

assess the cost and effectiveness of SFQ-based controller designs; (4) there has not been

an analysis on the robustness of SFQ-based controllers to the qubit imperfections in NISQ

40

systems.

In this paper, we address the above architecture-level shortcomings and presentDigiQ, the

first system-level design of a scalable NISQ-friendly SFQ-based classical controller. Inspired

by the SuperNPU paper [Ishida et al., 2020], which demonstrates architecture design for SFQ-

based neural processing units, our paper guides architects to design SFQ-based controller

architectures for large-scale quantum computers.

Architecture design for SFQ logic is different from that of CMOS logic, due to its un-

conventional pulse-driven nature and lack of dense memory/logic. In addition, implementa-

tion of quantum gates using SFQ pulses is different from that of microwave pulses. Thus,

novel SFQ-friendly controller architecture designs are essential. We perform a design space

exploration of SFQ-based controllers and co-design the quantum gate decompositions and

SFQ-pulse implementation of those decompositions to ensure that our design both works

within the tight power and area budget of dilution refrigerators at large scales and provides

good algorithmic performance.

Quantum gate parallelism is essential to preserve good quantum algorithmic performance

in many NISQ applications [Heckey et al., 2015]. Our quantum-classical co-design demon-

strates that due to the lack of dense memory/logic in SFQ and tight power and area budget

of dilution refrigerators, we cannot afford to simultaneously send tailored quantum gates to

many qubits at large scales. The implementation of quantum algorithms with significant

gate parallelism therefore requires sharing SFQ-based quantum instructions among multiple

qubits (i.e., single instruction, multiple data (SIMD)). Getting good algorithmic perfor-

mance on a SIMD NISQ architecture is especially challenging because of qubit variations

and frequency drift, which typically require gates to be uniquely calibrated for each qubit.

We propose novel software-level solutions to address these challenges and preserve SIMD

parallelism.

To validate and characterize DigiQ, we first work out the details of quantum program

execution flow, starting from our compiler at room temperature and ending with sending the

41

control signals to qubits. Then, we implement our complete design in hardware description

languages, and synthesize it using state-of-the-art/validated SFQ synthesis tools [Fourie

et al., 2019, Pasandi and Pedram, 2019b,c, Shahsavani et al., 2017] to measure power, area,

and delay values. Our synthesis results are obtained post-layout based on accurate extraction

of the gate layouts and passive transmission lines and subsequently simulated using well-

established tools for superconductive electronic applications [Fourie et al., 2019, Whiteley

Research Inc., Fang, 1989], and are thus highly accurate and reliable. Finally, we show

the effectiveness of DigiQ in running quantum algorithms by compiling a variety of NISQ

algorithms for our system, and modeling the resulting execution time and fidelity.

We position ourselves as addressing the physical challenges in scaling up the NISQ ma-

chines. Our work is complementary to Perfect Intermediate Scale Quantum computing

(PISQ) [Bertels et al., 2021] approach, which suggests developing new quantum algorithms

assuming perfect qubits and evaluating them with classical simulators. PISQ is a great

approach since it separates the development of quantum algorithms and applications from

hardware and architectural research and allows researchers to focus on the development of

new quantum algorithms in various scientific fields.

To summarize, our key contributions are as follows:

• Architecting SFQ-based controllers: We guide architects to design large-scale

SFQ-based controllers by taking into consideration the opportunities (efficient on-chip

broadcast and ultra-fast clock) and challenges (lack of dense memory/logic) of SFQ.

• Quantum-classical co-design: By co-designing quantum gate decompositions and

SFQ-based implementation of those decompositions, we present DigiQ, an SFQ-friendly

SIMD controller architecture.

• Addressing the SIMD calibration challenges: We present software solutions to

address the quantum gate calibration challenges of SIMD hardware to make it robust

to imperfections in qubit hardware.

42

• Characterizing controller hardware: We implementDigiQ in hardware description

languages and show its feasibility in large scales in terms of power, area, and delay using

state-of-the-art/validated SFQ synthesis tools.

• Characterizing algorithmic performance: We confirm the effectiveness of DigiQ

in running quantum algorithms by compiling a variety of NISQ applications for DigiQ

and modeling their execution time and fidelity.

The rest of the paper is organized as follows. Sec. 3.2 provides a background on quan-

tum controllers, SFQ logic, and discusses the opportunities and challenges of SFQ-based

controllers. We present related work in Sec. 3.3. Sec. 3.4 demonstrates the details of DigiQ,

our scalable digital SFQ-based quantum controller architecture. Sec. 3.5 discusses the quan-

tum gate calibration challenges of DigiQ, and presents software-level solutions to address

them. Sec. 3.6 shows our methodology and thorough evaluation of DigiQ. Finally, Sec. 3.7

concludes the paper and discusses the future work.

3.2 Background and Motivation

Here we provide a background on quantum computing followed by a discussion of quantum

gates/controllers in existing systems and their limitations. We then present a background

on SFQ logic and discuss the opportunities and challenges of SFQ-based controllers.

3.2.1 Quantum computing

A quantum algorithm specifies a series of transformations on quantum systems called qubits,

which are analogous information carriers to classical bits. The state of a single qubit can be

represented as a linear combination of two states:

|ψ⟩ = α |0⟩+ β |1⟩

43

x y

z(b)

x y

z(a)

(c)

Figure 3.2: (a) Bloch sphere representation of a qubit; (b) SFQ driven trajectory. The blue
trajectory is driven by the periodic SFQ pulse train shown in (c), and the orange trajectory
is driven by the qubit free evolution; (c) SFQ pulse train in the time domain. f is the qubit
oscillation frequency.

where the amplitudes α, β ∈ C satisfy |α|2 + |β|2 = 1. It is useful to visualize the state

of a single qubit as a vector on the unit Bloch sphere as shown in Fig. 3.2(a), where

α = cos θ/2 and β = eiϕ sin θ/2. A multi-qubit state may be written as |ψ⟩ =
∑

i αi |i⟩,

where
∑

i |αi|2 = 1 and |i⟩ = |in−1⟩ . . . |i1⟩ |i0⟩ are the computational basis states of the

n-qubit quantum system.

Quantum gates are unitary operators which modify the state of the qubit system. Any

single-qubit gate can be represented as a rotation on the unit Bloch sphere (see Fig. 3.2(a)).

Rotations around any two axes can be combined to perform arbitrary single-qubit gates.

Combined with a two-qubit entangling gate (i.e., a gate which cannot be decomposed into

one-qubit gates), this is sufficient for universal quantum computation [Barenco et al., 1995].

44

3.2.2 Superconducting qubit controllers and their limitations

Superconducting qubits are nonlinear LC circuits built with Josephson junctions (JJ) that

operate at near absolute zero temperature and oscillate at microwave frequencies. Qubits are

defined using the quantized ground (|0⟩) and first excited (|1⟩) states of the oscillator, where

the qubit’s oscillation frequency is defined as the energy difference between the two levels.

Transmons are a simple form of superconducting qubit comprising a JJ and a shunt capacitor,

designed to reduce the qubit’s sensitivity to electrical charge noise [Koch et al., 2007], and

is the qubit technology in many state-of-the-art systems [Arute et al., 2019]. Flux-tunable

transmons allow tuning the qubit oscillation frequency, and are implemented by replacing

the transmon’s JJ with a pair of parallel junctions separated by a small distance. The qubit

frequency can then be shifted by driving an external magnetic flux (using a small electrical

current, ∼1 mA) through the enclosed loop [Krantz et al., 2019]. The relationship between

frequency and flux can be fine tuned by varying the parameters of each JJ individually,

creating what’s known as an asymmetric transmon [Hutchings et al., 2017].

Superconducting quantum computer prototypes perform single-qubit gates by driving

transitions between the oscillator’s |0⟩ and |1⟩ states using microwave pulses. Controllable

multi-qubit operations require a means of selectively interacting qubits through some cou-

pling architecture. Two-qubit gates such as CZ can be implemented using flux-tunable

transmons by changing the frequency of the qubits temporarily such that their quantum

states are on resonance [Krantz et al., 2019].

Superconducting quantum computers have received significant attention due to their con-

venient qubit design and configurability [Krantz et al., 2019], leading to rapid advances in

their size, coherence time, and gate fidelity [Arute et al., 2019, Kelly, 2018, Steffen et al.,

2011]. However, they also pose significant challenges which must be addressed for supercon-

ducting quantum computing to be scalable. Superconducting qubits need cooling to very

low temperatures (∼20 mK) which is expensive and complicates control hardware. Further,

unlike technologies such as trapped ion (in which qubit uniformity is guaranteed by nature

45

[Brown et al., 2016]), the characteristics of superconducting qubits are subject to variation

and drifts over time.

The controller design in today’s prototypes relies on separate cables from room temper-

ature to control individual qubits [Arute et al., 2019]. This approach has severe scalability

issues. First, there is a massive electronics cost for generating and routing the analog control

pulses from room temperature including the cost of arbitrary waveform generators (AWGs),

microwave sources, IQ mixers (which modulate the in-phase and out-of-phase components of

the drive signal [Krantz et al., 2019]), and amplifiers and attenuators that are used for ther-

mal property matching at each stage of the fridge [Leonard et al., 2019, Krantz et al., 2019,

McDermott et al., 2018]. Second, the cooling power at millikelvin stage of the fridge is very

limited (<10 µW [Hornibrook et al., 2015]) and a large number of high bandwidth coaxial

cables create a big heat load problem at this stage. Thus, alternative quantum controller

architectures are needed to realize scalable and robust quantum machines.

3.2.3 Opportunities and challenges of SFQ quantum controllers

Superconducting Single Flux Quantum (SFQ) is a magnetic-pulse based device and a single

quantum of magnetic flux, Φ0 = h/2e = 2.07 mV·ps, is used for logic bit representation.

In this representation, presence of a pulse has the meaning of “logic-1”, while absence of a

pulse is considered as a “logic-0”. Operation of SFQ logic is based on overdamped JJs [Herr

et al., 2011, Takeuchi et al., 2013, Likharev and Semenov, 1991, Kirichenko et al., 2011,

Volkmann et al., 2013]. There are two types of D-Flip-Flops (DFFs) in this technology:

Destructive Read Out (DRO) DFF and Non-Destructive Read Out (NDRO) DFFs. In the

first type the stored data will be erased after one read operation and the DFF will be reset

back to its zero state. However, in the second type, multiple read operations can be done

without erasing the content of DFF. SFQ devices with switching delay of 1 ps and switching

energy of 10−19 J are considered great candidates to provide high speed solutions post-

silicon and post-CMOS [Ishida et al., 2020]. Moreover, these Niobium-based devices are

46

extremely low power and despite their cryo-cooling overhead they still consume significantly

less power compared to the state-of-the-art silicon-based devices [Mukhanov, 2011]. These

unique properties make SFQ an attractive logic technology to implement classical controllers

with maximized scalability for quantum computers.

SFQ can be utilized not only to implement classical controller logic, but also to perform

quantum gates locally. Prior work demonstrated that SFQ pulse trains can be utilized to

perform single-qubit gates [McDermott and Vavilov, 2014, Liebermann and Wilhelm, 2016,

Leonard et al., 2019]. For example, an intuitive approach to do rotations along the y-axis,

Ry(θ), is to apply one SFQ pulse every qubit oscillation period as shown in Fig. 3.2. The

time integral of an SFQ pulse is equal to the superconducting flux quantum and determines

the energy deposited in the qubit. The result of this energy deposition is a small rotation of

δθ around the y-axis. We can perform a rotation along the y-axis by keep applying one SFQ

pulse every qubit period. An arbitrary single-qubit gate can be represented by a bitstream

(denoted as SFQ bitstream); the gate is applied by applying the SFQ bitstream to the qubit,

one bit at a time: if the bit is 1 (0), we apply (don’t apply) an SFQ pulse to the qubit at

the corresponding SFQ chip cycle.

Despite its high potentials, SFQ imposes unique constraints on the controller design.

First, limited JJ density in existing technology (100X-10,000X lower density than CMOS

[Tannu et al., 2017b]) leads to lack of dense memory/logic in SFQ. Second, SFQ design

is different from that of CMOS due to unconventional pulse-driven nature of SFQ logic.

SFQ logic gates receive clock signals and they are evaluated by arrival and consumption of

clock pulses. Therefore, balancing the circuit path by inserting extra DFFs is essential to

ensure that inputs are consumed at correct clock cycles [Pasandi and Pedram, 2019b]. The

extra DFFs further increase the logic area (and power), and might incur significant costs in

complex logic designs. Thus, we need to take these constraints into consideration and (1)

use limited SFQ storage; (2) keep the logic simple.

47

3.3 Related Work

Table 3.1: Design space for SFQ-based single-qubit gate controllers.

SFQ SIMD decomp (DigiQ)
SFQ MIMD naive SFQ MIMD decomp

DigiQ min DigiQ opt

Scalability
Limited by

power, area, and bandwidth
Limited by

power and area
High scalability

Quantum program
execution

No gate serialization No gate serialization
Long

decompositions
Potential

serialization

Pulse calibration Hardware Hardware Software

In this section we discuss prior research on in-fridge quantum gates and controllers based

on various technologies, and also SFQ-based accelerators.

3.3.1 Cryo-CMOS based quantum controllers

Due to maturity of CMOS technology, Cryo-CMOS is an attractive technology to do com-

putation at the 4 K stage of the fridge. In [Van Dijk et al., 2020], single-qubit gate operation

using a Cryo-CMOS controller prototype is demonstrated, which is done by generating mi-

crowave control signals inside the fridge using the pulse information that is stored in on-chip

SRAMs. The prototype presented in [Van Dijk et al., 2020] can scale to >800 qubits given 12

mW/qubit power consumption reported in the paper and 10 W power budget [McDermott

et al., 2018]. In comparison, SFQ logic can potentially maximize the scalability of quantum

controllers (>42,000 qubits in our SIMD design) due to its very low power consumption.

Note that SIMD can potentially increase the scalability of today’s Cryo-CMOS prototypes

as well, which we see as important future work (see Sec. 3.7).

3.3.2 SFQ-based quantum gates and controllers

In [Leonard et al., 2019], coherent control of a qubit using SFQ pulse trains is demonstrated

using a DC/SFQ converter that is fabricated on the qubit chip; the experimental results in

the paper show the feasibility of performing quantum gates using SFQ. In [Li et al., 2019],

the authors propose a method to find SFQ bitstreams for qubits with different frequencies

48

using one single SFQ clock. A genetic algorithm is used in [Liebermann and Wilhelm, 2016]

as an approach to find efficient SFQ bitstreams to reduce leakage errors (i.e., unwanted

energy transfer to states other than |0⟩ and |1⟩) and gate time. Reinforcement learning is

another approach that has been utilized to find efficient SFQ bitstreams to perform quantum

gates [Dalgaard et al., 2020]. In [McDermott et al., 2018], the authors outline a vision to

perform fault tolerant quantum computing that relies on repeated streaming of stored SFQ

bitstreams, and present a simple estimation of power by adding the power of SFQ registers.

In contrast to these works, DigiQ is the first system-level design of a scalable NISQ-friendly

SFQ-based controller.

3.3.3 SFQ-based accelerators

SFQ has been utilized to design hardware accelerators thanks to its ultra-high speed. In

[Holmes et al., 2020], the authors propose an SFQ-based error decoder to accelerate quantum

error correction. In [Ishida et al., 2020], the authors present an ultra-fast SFQ-based neural

processing unit. In contrast to these works, our focus is on designing a scalable SFQ-based

controller rather than accelerating a task.

3.4 DigiQ quantum controller

In this section we provide guidelines for designing scalable SFQ-based controller architectures

for universal quantum computation, and present DigiQ, our novel SFQ-based controller

architecture.

3.4.1 SFQ-based universal quantum computation

Design space for single-qubit gate controllers

A naive design to do arbitrary single-qubit gates is to allocate separate SFQ registers for SFQ

bitstreams per qubit (similar to [McDermott et al., 2018]) and update them as needed. This

49

design, denoted as SFQ MIMD naive, is similar in spirit to today’s microwave-based designs,

but relies on digital communication from room temperature rather than analog communi-

cation. SFQ MIMD naive is straightforward and provides quantum gate parallelism (i.e.,

multiple instruction, multiple data (MIMD) paradigm). However, it requires high communi-

cation bandwidth from room temperature in scenarios where we are not primarily repeating

the same quantum gates, and thus need to update a large number of SFQ registers on-the-

fly during the quantum program execution. In addition, SFQ MIMD naive is expensive in

terms of power and area (5.01 mW/qubit and 13.9 mm2/qubit just for 300-bit SFQ registers

based on our results obtained using detailed SFQ synthesis tools and cell libraries). Thus,

the scalability of SFQ MIMD naive, is limited by power/area/bandwidth.

In order to reduce the required bandwidth from room temperature, we can store a univer-

sal single-qubit gate set per qubit on the SFQ chip, and send the quantum gate decomposition

information from the room temperature. In the simplest case where the single-qubit gate set

includes two gates, we need to send only 1 bit per qubit at any given time from room tem-

perature to select/apply one of the two gates. This design, denoted as SFQ MIMD decomp,

reduces the bandwidth requirement significantly compared to SFQ MIMD naive. However,

it further increases the power and area as it allocates more than one SFQ register per qubit.

Thus, the scalability of SFQ MIMD decomp is still limited by power/area.

Finally, we demonstrate our scalable design. Tight power, area, and bandwidth budget

of dilution refrigerators, and lack of dense memory in SFQ (see Sec. 3.2) leads us to a design

where we share SFQ bitstreams among a group of qubits (i.e., SIMD). Grouping is static and

done at the design time, such that qubits in a group have the same nominal oscillation fre-

quency; we show that we can compensate for frequency drift in software in Section 3.5. Note

that sharing the bitstreams can be done efficiently in SFQ by broadcasting the bitstreams

(one bit per SFQ cycle) using splitter gates. This design, denoted as SFQ SIMD decomp,

is a potential candidate to realize a controller with high scalability thanks to its reduced

power, area, and bandwidth requirements compared to the other two designs. We therefore

50

base DigiQ on this design. Table 3.1 summarizes the investigated design space.

Single-qubit gate decomposition

Out of the plethora of proposed quantum gate decomposition protocols for single-qubit

gates, we must choose the ones that can be implemented efficiently using SFQ. We prefer a

decomposition protocol that relies on storing/processing a limited number of SFQ bitstreams

(see Sec. 3.2). This is important because (1) there is a lack of dense memory in SFQ, thus

we can afford to store only a limited number of SFQ bitstreams; (2) we need to keep the

SFQ logic simple, thus we can afford to process only a limited number of SFQ bitstreams

at any given time. We consider two SFQ-friendly gate decompositions and present their

corresponding SFQ-based architecture designs.

Our first architecture, denoted as DigiQ min, is based on a minimal universal single-qubit

gate set that includes only 2-4 gates (e.g., [Ry(π2), T] is sufficient for universal single-qubit

computation [Kitaev, 1997, Dawson and Nielsen, 2005]) with the goal of minimizing the

hardware cost. Our digital controller works with a clock (denoted as quantum controller

clock), and similar to classical computers, each quantum program is decomposed into a

number of quantum gates and each quantum gate is finished in a number of controller

cycles. In DigiQ min, single-qubit gates are decomposed into a sequence of the gates in the

gate set, and each gate of the sequence is executed in one controller cycle. At the beginning

of each controller cycle, the SFQ bitstreams corresponding to all the gate are broadcasted

to a group of qubit controllers. Each qubit controller uses a simple SFQ-based multiplexer

to select/apply one of the possible bitstreams using the control bits that are sent from the

room temperature in each controller cycle.

A concern is that DigiQ min needs long gate sequences to perform arbitrary single-

qubit gates. Thus, we also present DigiQ opt, in which we implement the continuous gate

set {Ry(π2), Rz(ϕ);ϕ ∈ [0, 2π)}, enabling constant-depth single-qubit gate decomposition

[McKay et al., 2017]. Ry(π2) can be implemented by storing an SFQ bitstream on the SFQ

51

chip. The next question is: how to implement Rz(ϕ) gates for arbitrary ϕ efficiently?

In microwave-based systems, Rz(ϕ) gates can be done virtually (in software) by changing

the phase of the microwave pulses of the consecutive gates [Krantz et al., 2019, McKay et al.,

2017]. But, in the SFQ case, we do not have control over the phase of the SFQ bitstream.

Thus, we need to perform the Rz(ϕ) gates in hardware. Thanks to the ultra-fast, precise

clock on the SFQ chip (in the order of ps), we can perform arbitrary Rz(ϕ) by letting the

qubits evolve freely for a precise number of SFQ chip clock cycles, which is equivalent to

applying an SFQ bitstream consisting of only “0” bits. Every qubit oscillation period, a

qubit performs a full rotation around the z-axis with a trajectory in the form of a unit circle

(see Fig. 3.2). Now, for any ϕ, there is a point on the unit circle corresponding to Rz(ϕ) and

we need to get as close as possible to that point in order to perform Rz(ϕ) with high fidelity.

By applying a “0” bit every SFQ chip cycle, we get to multiple points on the unit circle in

one qubit oscillation period, and we cover more points if we let the qubit evolve freely for

more than one qubit period. The longer we let the qubit evolve freely, the more points we

can get to on the unit circle and the more precisely we can approximate Rz(ϕ) for arbitrary

ϕ. The fidelity of these gates is analyzed in Sec. 3.5.1.

We now discuss implementation details of DigiQ opt single-qubit gates. Any one-qubit

gate can be decomposed as U(ϕ3, ϕ2, ϕ1) = Rz(ϕ3)Ry(
π
2)Rz(ϕ2)Ry(

π
2)Rz(ϕ1). InDigiQ opt,

we break the U(ϕ3, ϕ2, ϕ1) into three parts, Ry(π2)Rz(ϕ1), Ry(
π
2)Rz(ϕ2), and Rz(ϕ3). We

perform each of the first two parts in one controller cycle, and absorb the Rz(ϕ3) to the

next controller cycles. The controller cycle length is equal to the Ry(π2) gate time plus

N ∗ SFQ chip cycle length, where N is the maximum number of SFQ chip cycles that we

let the qubits evolve freely in order to perform Rz(ϕ) gates. We perform Ry(π2)Rz(ϕ) by

applying a “0” bitstream of length 0 ≤ d ≤ N followed by the Ry(π2) bitstream, which is

equivalent to delaying the Ry(π2) bitstream by d SFQ chip cycles as shown in Fig. 3.3. The

value of d depends on the angle ϕ and is sent by the compiler at room temperature every

controller cycle; the SFQ logic in DigiQ opt delays the stored Ry(π2) bitstream by d SFQ

52

.....
Time

1
0

0

SFQ Pulse

d “0”s N-d “0”s
Rz(ϕ) bitstream Rz(γ) - residual

Ry() bitstreamπ
2

Figure 3.3: The sequence of gates in one cycle of DigiQ opt.

chip cycles and broadcasts it to a group of qubit controllers. The residual Rz(γ) rotation

at the end of the controller cycle (see Fig. 3.3) can be absorbed into the next gate on that

qubit.

The next question is: how many distinct Ry(π2)Rz(ϕ) gates out of a total of N+1 possible

gates (denoted as BS) are needed every controller cycle? The answer depends on (1) the

available power and area budget inside the fridge: providing more distinct gates requires

more complex logic to delay the stored Ry(π2) bitstream by more distinct values at the same

time, and also broadcast and process more SFQ bitstreams; (2) the similarity between the

gates that qubits inside a group perform in a given instant: there will be serialization inside

a group if not enough distinct gates are available in a controller cycle. The lower the BS

value, the lower the hardware cost but the higher the chance of serialization (see Sec. 3.6).

Two-qubit gate design

In this paper, we develop SFQ circuits to generate electrical current waveforms necessary

to realize CZ gates on flux-tunable transons (see Sec. 3.2) inside the fridge. The electrical

currents are transmitted to the quantum chip using superconducting microstrip flex lines

(see Fig. 3.4(a)). We deploy an array of SFQ/DCs, which are commonly used SFQ blocks to

convert the SFQ pulsed representation to DC voltage levels [Kaplunenko et al., 1989]. When

a start signal is received by the SFQ/DC blocks, they start outputting electrical current, and

they keep doing so until they receive a stop signal (we need to turn the SFQ/DCs on (off)

53

R1
I

SFQ chip

Current generator

Superconduc�ng

out

Quantum chip

SFQ/DC

flex lineSFQ/DC

C1

R2

Load

(a)

0 10 20 30 40 50 60 70
Time (ns)

0.0

0.4

0.8

1.2

Cu
rre

nt
 (m

A)

(b)

Figure 3.4: (a) Circuit schematic of our current generator design based on SFQ/DCs; (b)
The electrical current pulse generated by our design to realize CZ gates on flux-tunable
transmons.

in the beginning (end) of the CZ gate). In order to target specific pairs of qubits on a multi-

qubit system we require current waveforms to be applied to both qubits simultaneously (we

need one current generator per qubit). The only difference between this approach and prior

flux-tunable implementation of CZ gates is that the electrical current is generated inside the

fridge. Note that we use the same two-qubit gate design for both DigiQ min and DigiQ opt.

We use JSIM which is a detailed circuit simulator for superconductive electronic applica-

tions [Fang, 1989] to simulate the Fig. 3.4(a) current generator circuit. Fig. 3.4(b) shows the

simulated current waveform, which is generated by enabling 25 SFQ/DC blocks (the values

of R1, R2, and C1 are 0.05 ohm, 0.05 ohm, and 10 nF, respectively). In Sec. 3.5.2, we use

physical simulations to show that this waveform can be combined with software calibration

techniques to realize low-error CZ gates even when qubits exhibit independent frequency

variation.

Recent studies have also suggested realizing two-qubit cross-resonance gates using only

54

Buffer for ctrl. data

Ctrl. dataGo
n

Valid

Controller
clk.

SFQ bitsteam
generators

Buffer#1

Buffer#2

qubit
ctrl.#1

...

Drive/Flux lines

Qubit controllers

.....

Group#1
bitsreams

Group#G
bitstreams

....

1q_sel. +
2q_sel. bits

BS

BS

.... qubit
ctrl.#2

qubit
ctrl.#X

...

for qubit#X

Mux.
BS

SFQ/DCs

2q_sel.1q_sel.

Drive line
(single-qubit

 gate)

Flux line
(two-qubit

gate)

G: # of qubit groups

BS: # of distinict
SFQ gates

SFQ chip

1q_sel. + 2q_sel. bits
BS_sel.

bits

Load

Figure 3.5: Overview of our DigiQ architecture.

SFQ pulses [Jokar et al., 2021, Dalgaard et al., 2020]. The design of an SFQ controller

architecture based on such gates would present a different set of challenges and opportunities,

the study of which we save for future work.

3.4.2 Overview of DigiQ architecture

Now we put it all together and demonstrate an overview of our DigiQ architecture that

is shown in Fig. 3.5. There are G groups of qubit controllers. At the beginning of each

controller cycle, BS distinct single-qubit SFQ gates per each group are broadcasted to all

the qubit controllers in the group. BS sel bits are used to select the BS distinct single-qubit

gates in DigiQ opt (DigiQ min does not need BS sel bits since its universal single-qubit

gate set includes only a few gates, which are all broadcasted). Each qubit controller uses

an SFQ-based multiplexer and the 1q sel bits to either select/apply one of the BS delayed

bitstreams, or apply none of them (e.g., in the two-qubit gate case). For two-qubit gates,

the qubit controllers of the two qubits involved use the 2q sel bits to determine whether to

start/stop performing CZ gate by sending start/stop signals to the SFQ/DCs.

55

BS sel, 1q sel, and 2q sel control bits are sent from the room temperature every controller

cycle using Ctrl. data cables; a Valid cable is used to determine the validity of control data

on data cables. A Load cable is also used to load the SFQ bitstreams through the data cables,

which is done offline (i.e., not during the program execution); each SFQ bitstream has ≤300

bits (the actual bitstream length depends on the target gate and system Hamiltonian). After

the transmission of the control bits of the first controller cycle is finished, a Go signal is sent

from room temperature to start the controller clock (which is implemented using a counter

that counts up every SFQ chip cycle and resets every controller cycle). At the beginning of

every controller cycle, the control bits that are already buffered in a buffer (Buffer#1 in Fig.

3.5) are transferred to a second buffer (Buffer#2 in Fig. 3.5) to be used by qubit controllers

and SFQ bitstream generators. While executing the current controller cycle, the control bits

of the next controller cycle are buffered in the first buffer.

3.5 Software calibration of SIMD hardware

Real superconducting qubits exhibit variations in their oscillation frequency which can drift

from day to day in experimental settings [Gokhale et al., 2020, Tannu and Qureshi, 2019].

Quantum gates are implemented using precise control signals designed using careful phys-

ical models of qubit evolution (that is, their Hamiltonian) [Krantz et al., 2019], which are

extremely sensitive to small deviations in qubit frequency. The accuracy of quantum gates

optimized for one set of qubit frequencies will therefore degrade rapidly if the same control

signals are used on qubits exhibiting slight deviations from those frequencies. State-of-the-

art quantum gates therefore require regular recalibration using experimental measurements

of each qubit [Gokhale et al., 2020]. For small systems with MIMD control, qubit-specific

gate calibration can be performed at the hardware level by precisely shaping control pulses

for each qubit. This is not possible for a SIMD architecture such as DigiQ, in which control

signals are shared among many qubits and so cannot be calibrated independently for each

qubit.

56

Monitor the
frequency drifts

Adjust the gate
decomposition

Execute the updated
decomposition w same pulses

Monitor the
frequency drifts

Adjust the shape
of microwave pulses

Execute the same
decomposition w updated pulses

(a) (b)

Figure 3.6: Calibration process in (a) today’s microwave-based quantum machines; (b)
DigiQ.

Here, we show that this challenge can be overcome by moving gate calibration to the

software level, eliding unscalable qubit-specific hardware configurability. Our approach is

summarized in Fig. 3.6. In short, basis SFQ bitstreams that are stored on SFQ chip are fixed,

and calibration is performed by adjusting the decomposition into the (frequency-dependent)

set of basis quantum operations resulting from those fixed bitstreams; note that applying the

same SFQ bitstream to multiple qubits with different qubit frequencies results in different

quantum operations. Though the focus of this section is compensation for frequency drift,

similar techniques could be employed to mitigate other sources of systematic error.

The gate errors reported through the remainder of this paper are calculated as ϵ = 1−F ,

where F is the average gate fidelity [Nielsen, 2002, Ghosh, 2011]. We calculate gate fidelities

by modeling and simulating the Hamiltonian of the quantum hardware to provide an upper

bound for the gate fidelity. This approach is also used in studies on both SFQ-based and

microwave-based systems as a precursor to experimental work [Li et al., 2019, Leung et al.,

2017]; DigiQ shows comparable gate fidelity to these studies as shown in Sec. 3.6.2. Although

we model the key dominant sources of systematic error, experimental evaluations on real

hardware (currently available only at a small scale) are subject to various sources of noise

which are not captured in the models, resulting in lower gate fidelities [Leonard et al., 2019,

Sheldon et al., 2016].

57

3.5.1 Calibrating single-qubit gates

The key idea behind gate calibration on DigiQ is that these frequency-dependent opera-

tions still constitute universal gate sets for single-qubit computation [Kitaev, 1997]. We can

therefore account for frequency drifts and hardware variation on each qubit by decomposing

single-qubit gates on each qubit using the unique set of basis operations resulting from shared

SFQ bitstreams. For both DigiQ opt and DigiQ min, the single-qubit calibration procedure

then consists of four steps: (1) find SFQ bitstreams implementing a desired set of basis gates

with high fidelity on qubits with no frequency variation, (2) characterize each qubit’s actual

oscillation frequency using experimental measurements [McDermott et al., 2018], (3) use the

learned bitstreams and measured frequencies to determine the actual basis operations imple-

mented on each qubit by the shared bitstreams, and (4) compile quantum circuits using the

actual single-qubit basis operations determined for each qubit. The (classical) complexity of

these steps scales linearly with number of qubits and circuit size.

For steps (1) and (3) we employ single-qubit physical simulations of the expected single-

qubit unitary evolution Ubs produced by an SFQ bitstream on transmon qubits (as done in [Li

et al., 2019]). To ensure we are fully accounting for state leakage, we model transmons using

six energy levels, and then compute single-qubit gate fidelities by projecting the resulting

evolution back into the two-level subspace (causing any leakage to be captured as additional

error [Ghosh, 2011]).

For DigiQ opt, calibrating gate decomposition means finding a new set of delay intervals

such that the target operation is approximated by a sequence Rz(ϕL)Ubs...Rz(ϕ1)UbsRz(ϕ0)

(where the final Rz(ϕL) is absorbed into a subsequent gate). We choose sets of delays

holistically for each gate, numerically searching for the best combination of the available

delays to implement that gate. We find that L ≤ 2 is sufficient for most gates, but a subset

of gates nearing π rotations around the x or y axis (e.g., Pauli X and Y operations) need

L = 3 to obtain high fidelity on qubits with the most significant drift (whereas in the ideal

case (i.e., Ubs = Ry(π2)), L ≤ 2 is enough for all single-qubit gates).

58

Table 3.2: Optimal parking frequencies and drift tolerance for Rz(ϕ) gates with ≤ 10−4

error for N = 255.

Parking frequency (GHz) Drift (GHz) for error ≤ 10−4

6.21286 ±0.01282
5.02978 ±0.01049
4.14238 ±0.00820

Two factors affect performance of the DigiQ opt decomposition. First, the set of available

Rz(ϕ) rotations is highly dependent on qubit frequency, which determines how well the N+1

possible delay values cover the unit circle. In the ideal case, the N + 1 phases are equally

spaced around the unit circle, and any Rz(ϕ) can be approximated to within π/(N + 1)

radians; in this case we find that N = 255 is sufficient for error ϵ ≤ 0.25 · 10−4. We choose

target frequencies with the highest tolerance for variation, as measured by the width of the

interval in which any ϕ can be approximated with < 10−4 error using one of the available

delays. These optimal parking frequencies and their drift tolerance are shown for N = 255 in

Table 3.2. Second, frequency variations can limit SIMD scheduling. For example, if a circuit

calls for the same gate to be applied to many qubits, these may still require unique delay

values when the decomposition of that gate differs for each qubit. However, we can increase

parallelism by allowing a small error margin when choosing delay values: often, multiple sets

of delays will approximate the same operation with nearly equal error, so we can choose the

one with lowest cost in terms of serialization.

For DigiQ min, we decompose arbitrary single-qubit gates into sequences of discrete,

qubit-specific basis operations. We use a brute-force search algorithm to find the optimal

decomposition of single-qubit gates for each qubit, working with the full six-level represen-

tation of the unitary basis operations so that the decomposition accounts for and mitigates

leakage resulting from each basis operation.

59

3.5.2 Calibrating two-qubit gates

The implementation of CZ gates using flux-tunable transmons requires the shape and du-

ration of each current pulse to be carefully calibrated to the precise qubit frequencies and

hardware parameters. On a small system with MIMD control, these pulses can be individ-

ually calibrated for each pair of coupled qubits to account for variation and drift. Without

this fine-grained control, we are instead left with a unique 2-qubit operation Uqq for each

coupled pair of qubits. Here, we argue that we can instead compose CZ gates for each pair of

qubits in DigiQ using pair-specific sequences of Uqq operations and single-qubit gates, again

relegating calibration to software.

We can compute the unitary evolution Uqq for a pair of qubits using physical simulations

of the empirical current waveform described in Section 3.4.1. Starting with the nominal pre-

drift frequencies of 6.21286 and 4.14238 GHz from Table 3.2, we vary each qubit’s frequency

and compare the resulting Uqq to the target CZ operation. We compute unitary evolution by

numerically integrating the Schrödinger equation using well-understood Hamiltonian models

of pairs of capacitively-coupled flux-tunable asymmetric transmons [Krantz et al., 2019]. We

assume that each transmon has an anharmonicity of 250 MHz, and the capacitive coupling

strength is 10 MHz.

In Fig. 3.7(a), we show the expected minimum error when implementing a CZ gate using

a single Uqq pulse as a function of each qubit’s drift, allowing for arbitrary single-qubit gates

before and after the pulse. At the ideal qubit frequencies, we find an expected error of

ϵ = 3 · 10−4. This error grows rapidly as the frequency difference between qubits drifts.

In Fig. 3.7(b) and (c), we show the gate error after compiling CZ gates into sequences of

2 or 3 Uqq operations and intermediary single-qubit gates, similar to the “echo” sequences

described in [Córcoles et al., 2013, Sheldon et al., 2016] but with single-qubit gates obtained

via numerical optimization. Assuming ideal single-qubit gates, we find that 3 Uqq operations

are sufficient to achieve ϵ ≤ 10−4 over a wide range of frequencies. In Section 3.6.2, we

report empirical gate errors after single-qubit gates are decomposed for either DigiQ opt or

60

(a) (b) (c)

Figure 3.7: CZ gate error as a function of frequency drift, assuming 1, 2, or 3 Uqq operations
and ideal single-qubit gates.

Table 3.3: The library of RSFQ cells and corresponding characteristics used for synthesis.

Cell Area (µm2) JJ Count Delay (ps)
AND2 3500 16 8.4
OR2 3500 14 6.1
XOR2 3500 18 5.8
NOT 3500 12 13.2
DRO DFF 3000 11 6.2
NDRO DFF 4500 18 9.3
Splitter 2000 6 7.1

DigiQ min.

3.6 Methodology and Results

In this section, we present hardware synthesis results of DigiQ, followed by an analysis of its

algorithmic performance.

3.6.1 Hardware results of DigiQ

We use detailed SFQ synthesis tools [Pasandi and Pedram, 2019a, Pasandi et al., 2018,

Pasandi and Pedram, 2019d,b,c] to synthesize, map, and finally calculate the power, area,

and delay values. The employed synthesis and technology mapping flow is as follows:

first, technology-independent optimizations including balanced factorization and rewriting

[Pasandi and Pedram, 2019a] are performed on the input circuit, then the circuit is mapped

using a path balancing technology mapping algorithm [Pasandi and Pedram, 2019b] and fully

61

path balanced [Pasandi and Pedram, 2019d]. Next, a standard retiming algorithm similar

to [Leiserson and Saxe, 1991] is employed to further reduce the total memory element count.

Finally, the memory elements (e.g., latches) are replaced with SFQ DRO DFFs, and splitters

are inserted at the output of gates with more than one fanout.

Rapid Single Flux Quantum (RSFQ) logic family [Likharev and Semenov, 1991] is used

in this paper, and the library of cells is listed in Table 3.3. For wiring, we use Josephson

Transmission Line (JTL) and Passive Transmission Line (PTL). JTL is used for short con-

nection for cells next to each other and its delay is ∼1.5-2 ps. PTL is used for transmitting

SFQ pulses from one logic gate to another.

Validity of our synthesis results

We have the physical layouts for all cells, including wires and logic cells. Our RSFQ power,

area and delay numbers are obtained post-layout based on accurate extraction of the gate

layouts and passive transmission lines and subsequently simulated using WRSpice [Whiteley

Research Inc.] and JSim [Fang, 1989]. The simulation results are thus highly accurate and

reliable. The SFQ library cells have been validated and their power/timing values calibrated

against manufactured test chips done in the MIT Lincoln lab’s SFQ5ee process node [Tolpygo

et al., 2016]. The synthesis, place&route, modeling/simulation, and formal verification tools

have been used to design and formally/simulatively verify tens of SFQ circuits ranging from

individual data path modules and register files to major building blocks of the RISC-V Sodor

core [Cong et al., 2021, Fourie et al., 2019, UC Berkeley Architecture Research]. In addition,

prior work validated comparable SFQ tools and simulators with SFQ chip fabrication [Ishida

et al., 2020].

Delay results

Our synthesis results show that the worst stage delay in DigiQ is 34.5 ps, which determines

the maximum clock frequency that our SFQ chip can work with. We choose 40 ps as our

62

0
2000
4000

G=2 G=4 G=8 G=16

To
ta

l a
re

a
p

er
1

0
2

4
 q

u
b

it

(m
m

2
)

DigiQ_min (BS=2) DigiQ_min (BS=4) DigiQ_opt (BS=2)

DigiQ_opt (BS=4) DigiQ_opt (BS=8) DigiQ_opt (BS=16)

0

0.5

1

1.5

G=2 G=4 G=8 G=16

To
ta

l p
o

w
er

 p
er

1
0

2
4

 q
u

b
it

 (
W

) SFQ_MIMD_naive: 5.9 W,
SFQ_MIMD_decomp: 10.7 W

(a)

0

1000

2000

3000

4000

G=2 G=4 G=8 G=16

To
ta

l a
re

a
p

er
1

0
2

4
 q

u
b

it
 (

m
m

2
)

SFQ_MIMD_naive: 16,197.1 mm2,
SFQ_MIMD_decomp: 29,571.09 mm2

(b)

0

20

40

60

80

G=2 G=4 G=8 G=16To
ta

l #
 c

ab
le

s
p

er
1

0
2

4
 q

u
b

it

SFQ_MIMD_naive: 2,619,
SFQ_MIMD_decomp: 161

(c)

Figure 3.8: Power (a), area (b), and cable count (c) results of DigiQ min and DigiQ opt
architectures. SFQ MIMD naive and SFQ MIMD decomp results are shown for comparison.

SFQ chip clock period (similar to [Li et al., 2019]), thus the bit period in our SFQ bitstreams

is 40 ps.

Power and area results

Fig. 3.8(a) and Fig. 3.8(b) show the total power and area of DigiQ, respectively. We present

the results for different BS and G values.

As mentioned in Sec. 3.4.1, in DigiQ opt, only BS distinct delays are available every

63

controller cycle for single-qubit gates, and that can potentially lead to quantum gate serial-

ization inside a group. One solution to mitigate this serialization is to increase the value of

BS, which would increase the hardware cost of quantum controller modules as they would

need more complex SFQ-based multiplexers to select one out of a larger number of delayed

bitstreams (see Fig. 3.5). Another solution to mitigate the serialization is to increase the

G value. This solution decreases the number of qubits per each group which means less

congestion and less serialization, while not increasing the hardware cost of gate controller

modules. Thus, at the design time, we expected that among all the designs with the same

BS ∗ G, the ones with higher G value have lower hardware cost as they need less complex

quantum controller modules. However, our synthesis results surprised us. As shown in Fig.

3.8, the hardware cost of the designs with the same BS ∗ G value does not differ signifi-

cantly. The reason is that increasing the G value also increases the overall hardware cost

due to an increase in the number of SFQ bitstream generators (see Fig. 3.5). Given our

synthesis results, we conclude that keeping the G value small and increasing the BS value

is preferred because it provides more flexibility in allocating delayed bitstreams to qubits.

Smaller G values are preferred for DigiQ min as well, as increasing the G value increases

the hardware cost with no significant algorithmic advantage. The smallest G value or the

maximum number of qubits in a group is determined by the area of one SFQ chip; if we

cannot fit a group on one chip, we need to use multiple chips and replicate the bitstreams on

each chip to avoid long distance communications, which is equivalent to dividing the qubits

into multiple groups. Our results show that for 1024-qubit scale, we can fit all the designs

with G = 2 on at most two SFQ chips (one per group), thus we use G = 2 for 1024-qubit

benchmarks in Sec. 3.6.2.

Our results show that even our largest designs can operate within the power budget

of typical dilution refrigerators at 4 K stage (i.e., a few watts [McDermott et al., 2018,

Hornibrook et al., 2015, Van Dijk et al., 2020]), and can be implemented on only a few

SFQ chips at 1,024-qubit scale; clock synchronization between the SFQ chips is done using

64

SFQ phase locked loops (PLLs) [Brock and Pambianchi, 2000]. We replicate the 1,024-

qubit design in order to scale to larger number of qubits (note that replicating the 1,024-

qubit design naturally increases the number of groups). DigiQ min(BS=2) has the lowest

hardware cost and highest scalability (>42,000 qubits given 10 W power budget [McDermott

et al., 2018]). Increasing the BS value in DigiQ min increases the hardware cost, but also

can potentially increase the algorithmic performance (we see diminishing returns after BS =

4). The scalability of DigiQ opt is also high, allowing >25,000 qubits (>17,000 qubits) for

BS = 8 (BS = 16).

SFQ storage and Cable count results

DigiQ min stores BS bitstreams per group and each bitstream has ≤300 bits. DigiQ opt

stores one bitstream with ≤300 bits per group which is delayed by BS different values at

each controller cycle (see Sec. 3.4). With both designs, for each qubit at each controller

cycle, we need enough control bits from room temperature to determine whether to apply

one of the BS distinct gates, start/stop performing two-qubit gates, or perform no operation.

For DigiQ opt, an additional BS delay values for each group at each cycle are needed; since

we have 256 possible delay values, each delay value requires log2 256 = 8 bits.

Fig. 3.8(c) shows the number of required cables to send Go, Valid, Load, BS sel, 1q sel,

and 2q sel bits from the room temperature in one controller cycle given 10 Gbps return-

to-zero (RZ) cables [Likharev and Semenov, 1991]. We calculate the number of data cables

assuming a minimum controller clock period of 9 ns for DigiQ min and 9 ns + 10.2 ns

for DigiQ opt (10.2 ns corresponds to 255 delay cycles) – we need enough data cables to

send one set of control bits from the room temperature within one controller cycle (see Sec.

3.4.2). DigiQ min(G=2,BS=2) requires only 39 cables per 1,024 qubits (52.5X less than

a microwave-based quantum computer with 2 cables per qubit, 1 drive line and 1 flux line

[Arute et al., 2019]). DigiQ opt requires just 33 cables per 1,024 qubits in G = 2, BS = 16

design. DigiQ min’s high cable count relative to most DigiQ opt configurations is due to its

65

Table 3.4: NISQ benchmark algorithms.

QGAN Quantum generative adversarial learning network [Lloyd and Weedbrook, 2018]
Ising Linear Ising model spin chain simulation [Barends et al., 2016]
BV 1024-bit Bernstein-Varzirani algorithm [Bernstein and Vazirani, 1997]

Add1 256-bit ripple-carry adder [Cuccaro et al., 2004]
Add2 256-bit parallel carry-lookahead adder [Draper et al., 2006]

Sqrt10 10-bit square root via Grover search [Javadi-Abhari, 2017, Murali et al., 2019b, Grover, 1996]

shorter controller cycle.

3.6.2 Algorithmic performance results of DigiQ

In order to study the algorithmic impacts of DigiQ, we compile a common set of NISQ

benchmarks for each design. The benchmarks chosen are described in Table 3.4, and to-

gether represent a diverse sample of common circuit formulations. Benchmark circuits are

algorithmically generated and mapped to a 32 × 32 square grid via SWAP-gate insertion

using the stochastic transpiler pass packaged with Qiskit Terra [Abraham et al., 2019]. Each

circuit is then decomposed into CZ and single-qubit gates, and a crosstalk-aware scheduling

pass [Murali et al., 2020] is used to sort and group commuting two-qubit gates which can be

executed simultaneously without interference.

To model frequency variation, each qubit is modeled as an asymmetric transmon with σ =

0.2% variability in each of its Josephson energies (sampled from a normal distribution). At

our target frequencies, this corresponds to about ±6 MHz fluctuation in oscillation frequency,

in keeping with design targets for future superconducting systems [Hertzberg et al., 2020].

Hardware variability is considered with the addition of a σ = 1% error to the output of

each current generator. As in Section 3.5, we use these sampled hardware parameters to

physically simulate each basis operation on each qubit or qubit pair (similar to prior work

[Leung et al., 2017, Li et al., 2019]). We then use the resulting unitary basis operations to

decompose each gate in the benchmark circuits. Gate errors in Section 3.6.2 are determined

by computing the overlap between the decomposed and target gates.

66

0

10

20

QGAN Ising BV Add1 Add2 Sqrt10

N
o

rm
al

iz
ed

ex
ec

u
ti

o
n

 t
im

e

DigiQ_min (BS=2) DigiQ_min (BS=4) DigiQ_opt (BS=4)

DigiQ_opt (BS=8) DigiQ_opt (BS=16)

36.9 36.8 21.0

Figure 3.9: DigiQ quantum circuit execution time normalized to the Impossible MIMD
system.

For DigiQ opt, we use a 20.32 ns controller cycle time, comprising 10.12 ns for SFQ

bitstreams and 255 delay cycles. The CZ gate time is 60 ns (determined from the analysis in

Section 3.5.2), which expands over three controller cycles. Single-qubit gates are expanded

into at most three Ubs pulses (see Sec. 3.5.1). For DigiQ min, single-qubit gate times for

the 6.21286 and 4.14238 GHz qubit frequencies are respectively 10.12 ns and 9.00 ns, again

with a 60 ns CZ gate time. We decompose single-qubit gates until the approximation error

falls below 10−4, up to a maximum depth of 28 (at which point we find that only about 1%

of gates have errors above 10−4). There is no feedback loop in our benchmarks, thus we do

not consider the communication latency from outside the fridge.

Circuit execution time

Fig. 3.9 shows the execution time results for DigiQ with 1024 qubits, normalized to an

Impossible MIMD system which is assumed to have the same gate times as DigiQ (which

are also similar to those of recent microwave-based systems [Arute et al., 2019, Gokhale

et al., 2020]) but with unlimited parallelism. We emphasize that the MIMD system is im-

possible at large scales (see Sec. 3.2); we compare our results with the Impossible MIMD

system just to quantify the serialization cost of realizing a controller design that is feasible

at large scales, and to give readers a sense of how DigiQ would compare to today’s pro-

totypes if they did not have scalability issues. Both DigiQ opt and DigiQ min have some

67

overhead in terms of execution time compared to the Impossible MIMD system (DigiQ opt

due to serialization and DigiQ min due to longer gate decompositions). The performance of

DigiQ opt increases by increasing the BS value, as expected, with BS = 16 providing the

best performance. This difference is minimal for benchmarks without significant parallelism

(BV, Add1, Sqrt10). For BS = 16, the execution time is only ≤ 2X longer than what we

would be able to achieve if DigiQ opt could be built with zero quantum gate serialization

(i.e., BS = ∞). In DigiQ min, increasing BS from 2 to 4 reduces the depth of single-

qubit gate decompositions by roughly half. However, the benefit is limited beyond BS = 4

due to the dominance of CZ gate decompositions which do not benefit substantially from

the larger single-qubit gate set. DigiQ min performs similarly to DigiQ opt(BS=8) for the

benchmarks with more parallelism (QGAN, Ising, Add2), in which DigiQ opt experiences

more gate serialization. For the remaining benchmarks, DigiQ min’s long gate decomposi-

tion leads to worse performance than any DigiQ opt configuration. Compared to Impossible

MIMD system, DigiQ opt(BS=16) is 4.7X-9.8X worse in terms of circuit execution time,

while DigiQ min(BS=4) is 11.0X-14.4X worse.

Gate/circuit error

We estimate the overall circuit error due to gate decomposition by taking the product of

the errors of each of its gates. For both designs, typical gate error varies between qubits

with different frequency drifts. Fig. 3.10(a) shows the median error of single-qubit gates

(evaluated across all gates in all benchmarks) for each qubit on DigiQ opt(BS=8) and

DigiQ min(BS=2) (the same conclusions hold for other BS values). We find that DigiQ opt

exhibits higher variability between qubits, whereas DigiQ min is generally more stable but

has a small number of especially bad outlier qubits (where the frequency drift brings the

nominal T gate very close to the identity, resulting in a poor single-qubit gate set). Sim-

ilar to microwave-based systems, we can map around these outlier cases in software using

noise-adaptive mapping techniques [Murali et al., 2019a]. The CZ gate error (Fig. 3.10(b))

68

0 200 400 600 800 1000
Qubit #

10 4

10 3

10 2

M
ed

ia
n

sin
gl

e-
qu

bi
t

 g
at

e
er

ro
r Software can map around these outliers

DigiQ_min DigiQ_opt

(a)

0 250 500 750 1000 1250 1500 1750 2000
Coupler #

10 4

10 3

10 2

CZ
 g

at
e

er
ro

r Software can map around these outliers

(b)

Figure 3.10: (a) Median single-qubit gate error on DigiQ opt (BS=8) and DigiQ min
(BS=2) with 1024 qubits (well representative of other configurations); (b) CZ gate error
on each qubit pair. Software can map around the outliers using the noise-adaptive mapping
techniques [Murali et al., 2019a].

is driven both by the decomposition of CZ into Uqq and single-qubit gates, and by the error

with which we can decompose those single-qubit gates on each architecture. The CZ error

is >0.002 for 3% and 7% of qubit pairs in DigiQ min and DigiQ opt, respectively. Note

that the CZ error would be >0.002 for 84% of qubit pairs if we did not use our software

calibration techniques. Our results show that with software calibration DigiQ can achieve

similar gate error to that of hardware-calibrated microwave-based gates [Leung et al., 2017].

3.7 Conclusions and Future work

Large-scale quantum computers are essential in order to perform many useful quantum

algorithms. However, superconducting quantum computer prototypes have severe scalability

issues due to the massive overhead of generating and routing control pulses from room

69

temperature to quantum chip inside the dilution refrigerator. In this work, we present

DigiQ, the first system-level design of a digital SFQ-based quantum controller architecture

to maximize scalability. We provide architecture guidelines to design large-scale SFQ-based

controllers by taking into consideration the opportunities (efficient on-chip broadcast and

ultra-fast clock) and challenges (lack of dense memory/logic) of SFQ. Our study shows

that we must deploy a SIMD architecture to operate within the tight power/area budget of

dilution refrigerators, however, SIMD also introduces new challenges in terms of control pulse

calibration in NISQ machines with imperfect qubits. We propose novel software-solution to

address these calibration challenges efficiently, and show that software plays a key role in

ensuring good quantum algorithmic performance at large scales. We fully characterize DigiQ

controller hardware using state-of-the-art/validated SFQ synthesis tools. We also show the

effectiveness of DigiQ in terms of quantum algorithmic performance under a variety of NISQ

algorithms. We model dominant sources of systematic error in our evaluations and show that

DigiQ has similar fidelity to microwave-based systems under the same models. Our analysis

shows that DigiQ is a realistic path forward to realize large scale quantum computers, and

we hope the promising results of this paper motivate experimentalists to further explore

SFQ-based controllers.

Going forward, the fidelity of quantum gates/circuits can further be improved by per-

forming further research at both hardware and software levels. First, the main bottleneck in

increasing the gate fidelity in DigiQ is frequency drift of imperfect qubits, thus developing

better qubits with less drift can increase the fidelity significantly. Second, decreasing the

power and area consumption of SFQ circuits would allow the realization of more complex

SFQ-based controllers that can potentially perform hardware calibration, which combined

with our software calibration can further increase the fidelity of quantum gates/circuits.

Third, further research at the software level can potentially lead to more robust decomposi-

tions with higher fidelity.

Finally, we would like to mention that the ideas proposed in this paper such as SIMD

70

design and software calibration can potentially increase the scalability of today’s Cryo-CMOS

controllers as well. However, further research on such controllers based on Cryo-CMOS

is needed. First, although SIMD can reduce the cost of on-chip storage in Cryo-CMOS,

novel approaches are needed to share/broadcast the instructions (i.e., amplitudes/phases of

microwave pulses) on the Cryo-CMOS chip with low cost to obtain overall cost reduction.

Second, Cryo-CMOS has denser memory/logic, but much higher power, which would result

in significantly different set of design tradeoffs. Third, DigiQ relies on ultra-fast clock in

SFQ (i.e., in the order of ps), and Cryo-CMOS requires different architectures and gate

implementations as it works with clocks in the order of ns.

71

CHAPTER 4

PRACTICAL IMPLICATIONS OF SFQ-BASED TWO-QUBIT

GATES

4.1 Introduction

A great milestone in quantum computing is the recent development of quantum computer

prototypes thanks to great efforts in industry and academia. Superconducting quantum

computing is one of the most promising technologies to realize a quantum computer, having

been used to realize prototypes with <100 qubits [Brink et al., 2018, Steffen et al., 2011,

Fu et al., 2017, Li et al., 2020, Arute et al., 2019, Kelly, 2018]. These prototypes rely on

sending analog microwave signals per qubit from a classical controller at room temperature

to the quantum chip inside a dilution refrigerator in order to perform quantum operations.

Unfortunately, this scheme introduces severe scalability challenges due to high costs of elec-

tronics that are used to generate the microwave signals at room temperature, as well as heat

dissipation inside the dilution refrigerator caused by routing the high-bandwidth signals to

the quantum chip [McDermott et al., 2018, Leonard et al., 2019, Li et al., 2019]. Thus, design

decisions must be made to address the scalability challenges of today’s quantum computer

prototypes and realize large-scale quantum computers, which are essential in running many

quantum algorithms and performing quantum error correction.

One active research area in industry and academia is designing in-fridge classical con-

trollers, which increase the scalability of quantum machines by generating and routing the

control signals locally. Due to maturity of CMOS logic, Cryo-CMOS is one attractive logic

technology to build in-fridge controllers. Prior work has demonstrated Cryo-CMOS con-

troller prototypes that generate microwave control pulses inside the dilution refrigerator, and

can scale to hundreds of qubits given the power budget of dilution refrigerators [Van Dijk

et al., 2020]. Meanwhile, Superconducting Single Flux Quantum (SFQ) is proposed as an

alternative logic technology in the literature. SFQ logic is less mature than CMOS but can

72

maximize the scalability of in-fridge controllers due to its very low power consumption and

ultra-high speed [Leonard et al., 2019, McDermott et al., 2018, Li et al., 2019, Liebermann

and Wilhelm, 2016].

SFQ-based controllers can perform quantum operations by generating a train of SFQ

pulses (instead of microwave control waveforms) inside the dilution refrigerator and applying

them directly to the qubits [Li et al., 2019, Liebermann and Wilhelm, 2016]. Previous work

has demonstrated high-fidelity single-qubit gates with low leakage to the non-computational

subspace using SFQ pulses [Leonard et al., 2019, Li et al., 2019]. Prior work also demon-

strated SQF-based two-qubit gates considering a model which takes into account only the

first two energy levels of the qubits (i.e., qubit computational subspace) [Dalgaard et al.,

2020]. However, there is a lack of a detailed analysis in the literature on high-fidelity SFQ-

based two-qubit gates which takes into account leakage to the non-computational subspace.

A key unanswered question is: are SFQ-based two-qubit gates with high fidelity and low

leakage feasible and effective? In this paper, we present the first thorough study on SFQ-

based two-qubit gates, and demonstrate that we can realize them with high fidelity and low

leakage by carefully designing our quantum optimal control method and qubit architecture.

We first demonstrate that it is essential to take higher energy levels of the qubits into

consideration in our optimal control method. Similar study has been done in the literature

on SFQ-based single-qubit gates [Liebermann and Wilhelm, 2016] where the authors show

that taking into account the first three lowest energy levels (i.e., the qubit computational

subspace and one higher energy level) in the optimal control method is sufficient to find

high-fidelity gates with low leakage to higher energy levels. In this paper, we show that two-

qubit gates have much higher tendency to leak to higher energy levels, thus it is challenging

to find high-fidelity gates even if we take into account up to five energy levels in our optimal

control method. Thus, we must take further steps by developing SFQ-based optimal control

methods to suppress leakage and investigating qubit architectures and configurations that

reduce leakage.

73

We first study transmon qubit devices with Ωx control fields, which are widely used in

both SFQ-based and microwave-based systems [Li et al., 2019, Dalgaard et al., 2020, Leung

et al., 2017]. We show that we can realize high-fidelity SFQ-based two-qubit gates with low

leakage to higher energy levels. We then investigate two possible extensions of this design

in order to reduce the gate time while keeping the leakage low: (1) the addition of σz SFQ

control pulses implemented via frequency-tunable split-transmon devices; and (2) the use of

SFQ control pulses in combination with high-anharmonicity fluxonium qubits.

Finally, we compare our SFQ-friendly quantum system with microwave-based quantum

systems, and show that we can achieve similar gate fidelity and gate time using SFQ. This

shows that SFQ is a promising approach to implement classical controllers for quantum

computers because it can maximize the scalability of quantum computers due to the unique

characteristics of SFQ logic, while delivering similar fidelity and performance to that of

state-of-the-art microwave-based systems.

To summarize, our key contributions are as follows:

• We present the first study of SFQ-based two-qubit gates that takes into consideration

the leakage to higher energy levels.

• We identify and discuss the main challenge in realizing high-fidelity SFQ-based two-

qubit gates, which is high leakage to non-computational qubit subspace.

• We develop optimal control methods that suppress the population of higher energy

levels in two-qubit gates.

• We study various qubit architectures and configurations in an attempt to engineer a

quantum system with low leakage.

• We engineer an SFQ-friendly quantum system, and show that it can achieve similar

gate fidelity as that of microwave-based system – a promising result.

74

The rest of the paper is organized as follows. Sec. 4.2 presents a background on qubit

architectures and configurations, quantum optimal control and SFQ-based gates, followed

by a discussion on the motivation of our paper. Sec. 4.3 presents our methodology and the

results of our detailed study on SFQ-based two-qubit gates, followed by a comparison with

microwave-based two-qubit gates. Finally, Sec. 4.4 concludes the paper.

4.2 Background and Motivation

Here we provide details of the physical systems we are targeting in order to distill the basic

toolbox of quantum operations available to us for implementing high-performance SFQ-based

quantum gates. We motivate our analysis by describing the challenges of implementing high-

fidelity gates on realistic quantum systems, the existing strategies for overcoming them on

systems with analog control, and prior work on SFQ-based gates aiming to do the same.

4.2.1 Physical system

The evolution of a quantum system is governed by its Hamiltonian. For universal quan-

tum computation, we require that the system provide (1) well-defined qubits, or separable

two-level quantum subsystems which can be independently initialized and measured; (2) a

mechanism for generating entanglement between these qubits; and (3) a method for precisely

controlling the system’s evolution [DiVincenzo, 2000]. For the purposes of this investiga-

tion, we consider pairs of statically-coupled superconducting qubits, with the overall system

Hamiltonian,

Ĥ =
∑
q

Ĥq +
∑
q

Ĥq,d(t) + Ĥqq, (4.1)

where Ĥq are the static Hamiltonian of each qubit, Ĥq,d are the contributions of the time-

dependent control signals applied to each qubit, and Ĥqq is contributed by the inter-qubit

coupling (and therefore is responsible for entanglement generation). In the following, we

express each of these terms for various hardware configurations in terms of the conjugate

75

flux and charge number quantum operators ϕ̂ and n̂, where [n̂, ϕ̂] = i.

Transmons

The superconducting transmon qubit comprises a Josephson junction (JJ) shunted to ground

with a capacitor in order to minimize its sensitivity to charge noise [Schreier et al., 2008,

Koch et al., 2007]. The transmon Hamiltonian can be written as [Krantz et al., 2019],

Ĥq = 4EC n̂
2 − EJ cos ϕ̂, (4.2)

where EC = e2/2Cq indicates the capacitive energy (with Cq including both the shunt

capacitance and that of the JJ), EJ = IcΦ0/2π is the Josephson energy of a transmon with

critical current Ic, and Φ0 is the magnetic flux quantum.

The spectrum of the single-transmon system can be found by diagonalizing Eq. (4.2).

For EC ≪ EJ the transmon Hamiltonian can be expanded in the SHO Fock state basis,

Ĥq ≈ ω01â
†â+

α

2
â†â(â†â− 1), (4.3)

where ω01 =
√
8EJEC − EC is the qubit’s oscillation frequency (that is, the energy gap

between the ground and first excited state), α = ω12−ω01 = −EC is its anharmonicity, and

we have made the substitution,

n̂ = 4
√
EJ/32EC

(
â+ â†

)
, ϕ̂ = i 4

√
2EC/EJ

(
â− â†

)
, (4.4)

using the standard creation (annihilation) operators â† (â). Typical transmon qubits are

configured with oscillation frequencies ω01/2π between 3 and 6 GHz and anharmonicity

α/2π between 100 and 300 MHz [Krantz et al., 2019]. The nonzero anharmonicity makes

it possible to isolate and address the system’s {|0⟩ , |1⟩} subspace, providing the required

well-defined two-level qubit.

76

Frequency-tunable transmons

The single-JJ transmon’s oscillation frequency is fixed by its hardware components. We can

instead construct a frequency-tunable transmon by splitting its single JJ into a pair of parallel

junctions (dc-SQUID) and driving an external magnetic flux φe through the enclosed loop.

In this case the junction energy EJ in Eq. (4.2) is replaced with the flux-dependent effective

energy [Krantz et al., 2019],

E′
J =

√
(EJ1 + EJ2)

2 cos2 φe + |EJ1 − EJ2|2 sin2 φe, (4.5)

where EJ1,2 are the Josephson energies of the respective JJs and φe is the applied flux in

units of Φ0/π. The applied flux can then be used to tune the qubit’s oscillation frequency,

or equivalently implement z-axis rotations of the qubit.

For multi-qubit systems, flux control has also been employed to implement two-qubit

gates by inducing resonant oscillations between multi-qubit states. For example, by bring-

ing the qubit frequencies together, coherent oscillations between the |01⟩ and |10⟩ state will

generate the iSWAP (or
√
iSWAP) gate, whereas a CZ gate can be implemented using the

resonance between the |11⟩ and |02⟩ (or |20⟩) states. The latter case takes advantage of the

higher energy levels of the transmon system, allowing the quantum state to temporarily leave

the two-level qubit subspace during the execution of the gate. Frequency-tunable transmons

enable fast resonant two-qubit operations while decreasing crosstalk by allowing noninter-

acting qubits to be “parked” at well-separated oscillation frequencies. This tunability comes

at the cost of added complexity and sensitivity to magnetic flux noise.

Fluxonium

Though the transmon’s nonzero anharmonicity makes it possible to target the two-level

(qubit) subspace for quantum computation, its weakness relative to the oscillation frequency

makes it prone to leakage to higher level states. Alternative qubit technologies such as

77

fluxonium [Manucharyan et al., 2009] have been shown to increase anharmonicity with min-

imal cost in terms of noise sensitivity. The fluxonium qubit is constructed similarly to the

transmon, but with an additional inductive shunt to ground implemented using an array of

Josephson junctions connected in series. The resulting Hamiltonian is written as [Krantz

et al., 2019],

Ĥq = 4EC n̂
2 + ELϕ̂

2 − EJ cos
(
ϕ̂+ φe

)
, (4.6)

where EL ≪ EJ is the inductive energy of the junction array and φe is an external magnetic

flux through the qubit loop.

Fluxonium’s sensitivity to flux noise is minimized at φe = 0 and φe = π, where symme-

try ensures that the energy dependence on φe vanishes to first order. In the latter case, the

qubit’s oscillation frequency ω01 is significantly reduced relative to that of the subsequent

transition (ω12), resulting in large, positive anharmonicity. It is less trivial to approximate

the fluxonium spectrum analytically; instead we diagonalize Eq. (4.6) numerically to de-

termine the computational basis states and energy spectrum of our system. With typical

hardware configurations, fluxonium qubits at φe = π have ω01 ∼ 1 GHz, while ω12 is 2-5

times larger. For remainder of this paper, we assume that fluxonium is operating with a

φe = π static bias flux.

Coupling

We focus on systems with static coupling between qubits, such that the interaction Hamil-

tonian Hqq is constant and uncontrollable (as opposed to, for example, tunable coupling

systems [Arute et al., 2019] which allow the interaction to be switched on and off on-demand

but which would complicate the implementation of an SFQ-based controller). For super-

conducting qubits coupled via a capacitance Cqq, the coupling Hamiltonian in Eq. (4.1)

is,

Ĥqq = gqqn̂q0n̂q1 , (4.7)

78

where gqq = 4e2Cqq/Cq0Cq1 quantifies the coupling strength. Expressing Eq. (4.9) in the

energy-basis rest frame of the undriven qubit, the dominant matrix elements of the coupling

Hamiltonian (after the rotating wave approximation) are,

Ĥ
rf
qq (t) = J

∑
k

c
(0)
k−1,kc

(1)
l,l−1e

i(ω
(0)
k,k−1−ω

(1)
l−1,l)t

×
(
|k, l − 1⟩⟨k − 1, l|+ h.c..

)
, (4.8)

where J is a normalized coupling constant, and ck,k−1 = ck−1,k ≈
√
k/2 for transmons

whereas for fluxonium can be computed numerically by diagonalizing each qubit’s Hamilto-

nian (Eq. (4.6)). Though this interaction cannot be disabled, the effective coupling strength

between qubits is inversely proportional to the separation between their oscillation frequen-

cies due to destructive interference caused by time-averaging the rotating phase in Eq. (4.8).

We can therefore preserve the independence of the qubits by designing the system such that

the parking frequencies of coupled qubits are well separated.

Drive

The most common architecture for manipulating statically-coupled qubits is to apply mi-

crowave control signals directly to the qubits via a coupling capacitor. Given a time-

dependent voltage source Vd(t), the microwave drive Hamiltonian is,

Ĥq,d = Vd(t)
2eCd

Cd + Cq
n̂, (4.9)

where Cd is the capacitance of the coupling capacitor. Expressed in the rest frame of the

qubit and assuming a microwave drive Vd(t) = Ωx(t)V0 cosωdt (where Ωx(t) is the normalized

pulse envelope and V0 absorbs the details of the qubit and drive hardware),

H
rf
d (t) = Ωx(t)

∑
k

ck+1,ke
i(ωk,k+1−ωd)t |k + 1⟩⟨k|+ h.c.. (4.10)

79

The time-dependent phases in Eq. (4.10) allow us to selectively drive a given transition

while others are suppressed by the time-dependent phase. For example, continuously driving

with ωd = ω01 will drive Rabi oscillations in the qubit subspace while the qubit’s nonzero

anharmonicity ω12 − ω01 = α will suppress the |1⟩ ↔ |2⟩ transition. However, in order to

have a finite gate time, the envelope Ωx(t) must itself contain Fourier components which

can diminish this suppression by overlapping with higher-order transitions, especially given

the transmon’s relatively small anharmonicity. Analytical pulse shaping models such as the

DRAG scheme [Motzoi et al., 2009] are therefore employed on microwave systems to precisely

minimize the overlapping frequency components in the pulse shape.

Using the cross-resonance interaction [Paraoanu, 2006, Rigetti and Devoret, 2010] it is

also possible to induce two-qubit entangling operations with precisely detuned control signals

applied to one or both qubits, making fixed-frequency transmons and microwave control

sufficient for universal quantum computation. Successful quantum computer prototypes

have been developed using this control mechanism [Brink et al., 2018]. On these systems,

the speed of cross-resonance gates is proportional to the effective coupling between the qubits,

creating a tradeoff between gate time and crosstalk.

4.2.2 Microwave optimal control

In practice, the broad control schemes outlined above are insufficient for high-precision quan-

tum gates. Analytical leakage suppression schemes are especially challenging for multi-qubit

systems due to the exponentially increasing complexity of the energy spectrum and the con-

tributions of each coupler. This complexity is especially prevalent for cross-resonance gates,

in which one transition between multi-qubit states is intentionally driven while all others

must be suppressed. Further, it is often desirable to allow the system to evolve outside the

two-level subspace during the execution of the gate, as it provides more possible paths for

realizing complicated operations within a short gate time (as in the frequency-tunable CZ

implementation described above). Typical microwave systems therefore employ search-based

80

optimal-control strategies such as the ubiquitous gradient ascent pulse engineering (GRAPE)

tool [Leung et al., 2017] to generate pulse waveforms which implement quantum gates with

high fidelity and low leakage.

4.2.3 Fidelity functions

Throughout this work, we quantify the performance of learned gates using two variants of

average gate fidelity. In its general form, the average gate fidelity of a quantum operation E

relative to a unitary target gate T is defined,

F (E , T) =
∫
dψ ⟨ψ|T †E(ψ)T |ψ⟩ , (4.11)

where the average is over the normalized Haar distribution of quantum states. Because we

are interested only in how the gate affects qubits, we would like our fidelity metric to (1) be

agnostic to the behavior of the gate when applied to states outside the qubit subspace, and

(2) penalize gate-induced leakage from within the computational subspace. We therefore

define,

E(ψ) = ΠUΠ |ψ⟩⟨ψ|ΠU†Π, (4.12)

where U is the simulated (unitary) evolution including higher level states, and,

Π = (|0⟩⟨0|+ |1⟩⟨1|)⊗n, (4.13)

projects it into the qubit subspace. The average in Eq. (4.11) is then taken over just states |ψ⟩

in the two-level subspace SU(2n), so that a subspace-averaged gate fidelity can be calculated

[Ghosh, 2011],

F1(U, T) =
tr
(
ΠUΠU†Π

)
+ tr

(
TΠU†Π

)2
22n + 2n

, (4.14)

Because of the constrained control set available with SFQ control, we would further like

to broaden our search target as much as possible. In practice, single-qubit Z rotations can

81

.....
Time

1
0

0

SFQ Pulse

.....
Time

1
0

0

SFQ Pulse

(a)

(b)

1
f

One SFQ pulse

Figure 4.1: Bit representation of SFQ pulse trains. (a) coherent pulses are applied to the
qubit (1 pulse per qubit oscillation period) to perform rotations around the y axis. (b) a
bitstream found by genetic algorithm to perform arbitrary unitary. Bitstreams are processed
one bit at a time; if the bit is “0”, no pulse is applied to the qubit, and if the bit is “1”, one
SFQ pulse is applied to the qubit.

often be commuted through subsequent gates or implemented virtually. We therefore define

the Z-independent gate fidelity, which is independent of trailing Z-rotations:

F2(U, T) = sup
α⃗
F1

(
Zα⃗Ũ , T

)
, (4.15)

Zα⃗ = Z(α1)⊗ · · · ⊗ Z(αn). (4.16)

Finally, we can explicitly quantify leakage by computing the probability of measuring a

state outside the qubit subspace after applying the gate to a state initially within that space.

Averaging over the uniform distribution of all possible two-level input states, the average

leakage can be calculated,

L(U) = 1−
tr
(
ΠUΠU†Π

)
2n

. (4.17)

From Eqs. (4.14), (4.15) and (4.17) one can show that F1(U, T) ≤ F2(U, T) ≤ 1− L(U), so

that as desired our fidelity metrics are upper-bound by the degree of leakage.

82

n=2 n=3 n=4 n=5
energy levels modeled in the optimal control code

10 4

10 3

10 2

10 1

100

Er
ro

r

Error (w/o leakage)

10 4

10 3

10 2

10 1

100

Le
ak

ag
e

Leakage

Figure 4.2: Error and leakage of the best SFQ-based CZ gate with 20 ns gate time found by
the genetic algorithm on transmon qubit devices with Ωx control fields. Error is computed
using Eq. (4.14) and takes into account only the n levels on which the gate was learned.
Leakage is computed using Eq. (4.17) and considers higher levels. Thus, low error does not
necessarily translate to low leakage.

4.2.4 SFQ control

It has been proposed that quantum gates be implemented by applying SFQ pulses to the

qubit directly in place of analog microwave control signals. The gate implementation is then

described by a binary pulse train as shown in Fig. 4.1, where in each cycle of the SFQ clock

a pulse is either applied or not applied to each qubit. For two-qubit gates, we can apply

different pulse trains to each qubit.

A single SFQ pulse is a rapid Gaussian voltage waveform,

Vd(t) =
Φ0√
2πτ2

e−t2/2τ2 , (4.18)

with a total area of exactly
∫
dtVd(t) = Φ0 and a typical pulse width of τ = 0.25 ps.

Approximating Vd(t) ≈ Φ0δ(t) and considering Eq. (4.9) in the energy-basis rest frame of

the transmon, we expect a single pulse at time t0 to implement the instantaneous gate,

U
rf
x = exp

{
− iδθ

∑
k

eiωk,k+1t0
√
k |k⟩⟨k − 1|+ h.c..

}
, (4.19)

83

where δθ is the tip angle, indicating the rotation angle induced by a single pulse in the

qubit subspace. The tip angle is typically in the range of 10−3 to 10−1 radians [Li et al.,

2019, Dalgaard et al., 2020], and is directly configurable via choices of qubit and coupling

hardware; in our analysis we find that this configuration is extremely important for achieving

high-performance SFQ gates.

In order to expand our narrow SFQ control toolset, we also consider an SFQ-based σz

operation for frequency-tunable transmons. In this case, rather applying pulses to the qubit

via a capacitive coupler, we assume that they are inductively coupled to the split transmon’s

dc-SQUID loop. Approximating a single pulse as a delta function, the resulting gate is then

simply,

Uz =
∑
k

eikδz |k⟩⟨k| , (4.20)

where δz is the z-axis tip angle determined by the hardware configuration. In this case,

achieving a non-negligible tip angle may require additional filter hardware in order to both

broaden the SFQ pulse shape and mitigate distortion caused by the mutual inductance

between the qubit and the control line (as discussed in [Koch et al., 2007]). With a rough

calculation we find that δz ∼ 0.03 should easily be achievable using existing techniques (such

as [Semenov and Averin, 2003]). Though on a single-qubit system σz control would not be

sufficient for universal quantum control, it turns out to be remarkably effective for realizing

two-qubit gates when combined with the free evolution due to the static coupler.

Unlike the microwave drive, with SFQ pulses we cannot simply select a drive frequency

in order to selectively drive a given transition while off-resonant transitions are suppressed

by the rotating phase in Eq. (4.19). Instead, we are limited to selecting discrete clock cycles

t in which to apply Ux(t). If we constrain our system to the qubit subspace (k ∈ {0, 1}),

Eq. (4.19) is simply a unitary rotation e−iδθ(cos(ωt)X+sin(ωt)Y) by angle δθ about a time-

dependent axis on the xy-plane. In this case, the problem is reduced to one of single-

qubit gate composition (taking as basis gates the set of lab-frame single-clock-cycle unitaries

generated by applying pulses to each possible subset of qubits), for which many analytic and

84

search methods have been studied. Empirically, in both prior work and our own examination

it appears that pulse trains implementing high-fidelity, low leakage single-qubit gates are still

readily discoverable when we model the system with additional energy states [Li et al., 2019,

McDermott et al., 2018, Liebermann and Wilhelm, 2016]. This is perhaps unsurprising

observing Eq. (4.19); though each pulse may result in some population transfer out of the

qubit subspace, the simple energy spectrum of a single qubit near its ground state makes

it reasonable to expect symmetries to exist in which pairs or small groups of pulses will

generate destructive interference in the non-qubit subspace (in fact, such symmetries were

employed explicitly as part of the search algorithm outlined in [Li et al., 2019]).

4.2.5 Prior work on SFQ-based gates and the motivation of this paper

There has been detailed analysis of SFQ-based single-qubit gates in the literature [McDer-

mott et al., 2018, Li et al., 2019, Liebermann and Wilhelm, 2016]. Prior work has studied

the SFQ-based coherent control of qubits, and demonstrated that we can perform rotations

around the X or Y axis by applying SFQ pulses every qubit oscillation period [McDermott

et al., 2018, Leonard et al., 2019]. However, this approach leads to leakage to higher en-

ergy levels, thus prior work utilized a genetic algorithm to find better SFQ-based gates with

low leakage and short gate time [McDermott et al., 2018, Liebermann and Wilhelm, 2016].

They show that taking into account three lowest energy levels of the qubit in their model is

sufficient to realize low-leakage gates using SFQ pulses.

In [McDermott et al., 2018], the authors envision the possibility of performing SFQ-based

two-qubit gates. In [Dalgaard et al., 2020], the authors implement a quantum optimal control

version of the AlphaZero learning algorithm [Silver et al., 2017] to optimize the quantum

dynamics, and use SFQ-based optimal control as a benchmark in their study. The authors

show that they can find SFQ pulse trains to do
√
ZX gate with high fidelity. However, their

model of a two-qubit quantum system does not take into consideration the leakage out of

the computational subspace.

85

Fig. 4.2 shows the importance of taking higher energy levels into consideration when

learning SFQ pulses to perform two-qubit gates. In each case, we report the error of the best

SFQ-based two-qubit gate we find with a genetic algorithm when modeling the quantum

system using n energy levels. We then simulate the learned bitstream using a model that

allows for evolution to higher energy levels, and report the leakage (Eq. (4.17)) of the resulting

gate.

We can easily find SFQ-based two-qubit gates with 0.999 fidelity with n = 2 (consistent

with prior work [Dalgaard et al., 2020]). However, we find that the learned SFQ pulse train

results in a gate with high leakage when allowed to evolve out of the two-level subspace.

This is an expected result—prior work has shown that we need to consider n = 3 to find

low-leakage single-qubit gates [Liebermann and Wilhelm, 2016]. What is more surprising is

that, as shown in Fig. 4.2, the genetic algorithm cannot find SFQ-based two-qubit gates

with low leakage even with n = 5. Instead, even when we learn bitstreams using n = 5, if

we simulate the same bitstreams on a system with more than n energy levels, the resulting

quantum evolution will leak into the additional levels, resulting in a gate with both poor

accuracy and high leakage. Thus, unlike the single-qubit gate case, taking the higher energy

level into consideration alone is not sufficient.

In this paper, we characterize the requirements of realizing high-fidelity SFQ-based two-

qubit gates. We develop quantum optimal control methods, and also investigate various

qubit architectures and configurations in an attempt to engineer an SFQ-friendly quantum

system that can perform high-fidelity two-qubit gates.

4.3 Detailed study of SFQ-based two-qubit gates

In this section we first discuss our methodology, followed by the results of our study on

SFQ-based two-qubit gates under various qubit architectures and configurations. Then, we

compare our results with that of microwave-based quantum systems.

86

Table 4.1: The parameters used in the genetic algorithm.

Population size 70
Selection size 60
Mutation probability 0.001
Maximum number of iterations 200,000
Target fidelity 0.999

Gen_tip0.003_fid1 Gen_tip0.03_fid1 Gen_tip0.003_fid2 Gen_tip0.03_fid2

10ns 20ns 40ns
Gate time (ns)

10 3

10 2

10 1

Er
ro

r

(a)

10ns 20ns 40ns
Gate time (ns)

10 3

10 2

10 1

Le
ak

ag
e

(b)

10ns 20ns 40ns
Gate time (ns)

10 3

10 2

10 1

Er
ro

r

(c)

10ns 20ns 40ns
Gate time (ns)

10 4

10 3

10 2

10 1
Le

ak
ag

e

(d)

Figure 4.3: Error and leakage of the best SFQ-based CZ gate found by the genetic algorithm
for transmon qubit devices with Ωx control fields (plots a and b), and transmon qubit devices
with Ωz control fields (plots c and d). Error is calculated as 1 − fidelity, and leakage is
calculated using Eq. (4.17). Two different tip angles and two fidelity functions are used in
our optimal control method (see Sec. 4.2 for the details of our fidelity functions). We run
the simulations with n = 5 energy levels, and suppress the population of higher energy levels
in our optimal control method.

4.3.1 Methodology

We model SFQ-based quantum operations by numerically integrating the relevant system

Hamiltonian (Eq. (4.1)) over a single SFQ clock cycle for each possible combination of input

pulses. The learning algorithm then searches for pulse streams corresponding to optimal

sequences of these basis operations. In order to avoid sequences which would spill into

higher levels if made available (as described in Section 4.2.5), we generate each unitary

87

0 500 1000 1500 2000 2500
0

1
SF

Q
pu

lse

(a)

0 500 1000 1500 2000 2500
SFQ chip clock cycle #

0

1

SF
Q

pu
lse

(b)

Figure 4.4: Bit representation of SFQ bitstreams applied to qubit1 (plot a) and qubit2 (plot
b) on a transmon system with Ωx control fields and 0.003 tip angle in order to realize a CZ
gate with 20 ns gate time. Each SFQ chip clock cycle is 8 ps.

evolution using extra energy levels, and then project out the extra levels after each pulse

in the sequence. The resulting non-unitarity of the evolution then gets quantified by our

fidelity metrics as additional leakage, forcing the algorithm to prioritize sequences which are

constrained to the given number of energy levels.

We use a variant of the genetic algorithm used in prior work [Dalgaard et al., 2020] to find

a train of SFQ pulses to perform quantum gates. The parameters of the genetic algorithm

is summarized in Table 4.1. The genetic algorithm starts with a population of random SFQ

pulse trains, and in each iteration, a number of parent pulse trains from the population are

selected for generating new pulse trains based on a crossover function. Finally, if the fidelity

is improved in the new SFQ pulse trains, they are replaced with the worst SFQ pulse trains

in the population.

We use a variant of the GRAPE code used in [Leung et al., 2017] to find microwave pulses

to perform quantum gates. We use the cost functions presented in [Leung et al., 2017] in

order to suppress the occupation of forbidden states. Similar to the SFQ case, we set the

target gate fidelity to 0.999.

88

4.3.2 Entangling SFQ-based two-qubit gates on transmon qubit devices

In this section, we present the results of our analysis on transmon qubit devices. Similar

to [Leung et al., 2017], we use qubit frequencies of ω
(0)
01 /2π = 3.9 and ω

(1)
01 /2π = 3.5 GHz,

anharmonicity of α/2π = −225 MHz, and n = 5 in our study on transmons. We report

the results for coupling strength of J/2π = 50 MHz in our main results and then perform

a sensitivity analysis on the coupling strength. Note that we show the results for transmon

with Ωx control fields and transmon with Ωz control fields separately in order to study the

effectiveness of each control field on realizing entangling two-qubit gates.

CZ gate on transmon qubits with Ωx control fields

Fig. 4.3(a) and 4.3(b) respectively show the error and leakage of the best SFQ pulse train

found using the genetic algorithm to perform a CZ gate on transmons with Ωx control fields.

The leakage to higher energy levels is suppressed by the physical model employed in our

optimal control method (as described in Section 4.3.1). The error numbers reported in this

plot take leakage to higher energy levels into consideration, thus, low error translates into low

leakage as shown in Fig. 4.3. We run the genetic algorithm with the two fidelity functions

described in Section 4.2.3 (denoting subspace-averaged gate fidelity as fid1 and Z-independent

gate fidelity as fid2), two tip angles of 0.003 and 0.03 (similar to the numbers reported in the

literature [Li et al., 2019, Dalgaard et al., 2020]), and three gate times of 10 ns, 20 ns, and

40 ns. Fig. 4.4 shows an example of the SFQ bitstreams that are learned using the genetic

algorithm.

Our results show that it is hard to find high-fidelity CZ gates while suppressing the

leakage to higher energy levels using the 0.03 tip angle with either fidelity function. By

decreasing the tip angle to 0.003, we are able to realize a CZ gate with 0.999 fidelity and

40 ns gate time. Decreasing the tip angle means the amount of energy deposited into the

qubit with each SFQ pulse decreases, thus, the required gate time to perform high-fidelity

quantum operations increases.

89

10ns 20ns 40ns
Gate time (ns)

10 3

10 2

10 1

Er
ro

r

CZ_tip0.003_fid2
CZ_tip0.03_fid2

Ry90 I_tip0.003_fid2
Ry90 I_tip0.03_fid2

Figure 4.5: Error of the best SFQ-based CZ gate (entangling two-qubit gate) and Ry90⊗I
gate (non-entangling two-qubit gate) found by the genetic algorithm for transmon qubit
devices with only Ωx control fields.

In general, fid2 results in better SFQ-based pulse trains than fid1, indicating that the

broader target provided by fid2 is indeed more friendly to the highly-constrained nature of

SFQ-based gate implementation.

CZ gate on transmon qubits with Ωz control fields

Fig. 4.3(c) and 4.3(d) show the error and leakage results of transmon devices with Ωz control

fields, respectively. Here, we apply a Ωz control field only to qubit2 (which is sufficient to

realize high-fidelity CZ gates). We observe a significant reduction in the amount of leakage

to higher energy levels in the case of transmon devices with Ωz control fields compared to

that of transmon devices with Ωx control fields. Since the leakage is low in this case, we can

afford to use higher tip angles in order to perform fast gates. Our results show that we can

realize high-fidelity CZ gates with <0.001 error and <0.001 leakage with 0.03 tip angle and

10 ns gate time with fid2 (longer gate time is required with fid1).

Our findings show that Ωz control field with 0.003 tip angle is not sufficient to realize

high-fidelity CZ gates. However, the gates that we find do have low leakage in some cases;

90

although low error translates to low leakage because we take into consideration the leakage

to higher energy levels in calculating the error values, the opposite is not necessarily true

(for example, the identity gate has high error if we calculate its overlap with CZ gate, but

it has low leakage to higher energy levels).

4.3.3 Realizing both entangling and non-entangling SFQ-based two-qubit

gates on transmon devices

So far, we demonstrated that we can realize high-fidelity CZ gates with low leakage and

short gate time using transmon qubit devices, which is a promising result. However, it is

essential to ensure that we can also realize high-fidelity one-qubit gates in our two-qubit

quantum system (i.e., non-entangling two-qubit gates). Next, we study the requirements of

a system that can perform both entangling and non-entangling SFQ-based two-qubit gates.

Transmon system with only Ωz control fields is suitable to realize high-fidelity entangling

two-qubit gates, but it does not provide enough control to perform arbitrary single-qubit

gates, which as expected leads to non-entangling two-qubit gates with high error (> 10−1

error). Thus, we need more than just Ωz control fields to realize both entangling and non-

entangling two-qubit gates. Next, we investigate two systems as possible candidates to

achieve this goal.

Transmon with Ωx control fields

Prior work demonstrated SFQ-based single-qubit gates with <20 ns gate time on transmon

devices with only Ωx control fields [Li et al., 2019, Liebermann and Wilhelm, 2016]. In

addition, we showed earlier that we can use transmon devices with Ωx control fields to

perform high-fidelity CZ gates with 40 ns gate time and low tip angle. A natural question

arises: can we engineer a transmon system with Ωx control fields that can perform both

entangling and non-entangling SFQ-based two-qubit gates with high fidelity? Fig. 4.5 shows

91

0.005 0.02 0.05 0.1
10 4

10 3

10 2

10 1

100

Er
ro

r

Ry90 I CZ

(a)

0.005 0.02 0.05 0.1
10 4

10 3

10 2

10 1

100

Er
ro

r

(b)

0.005 0.02 0.05 0.1
Coupling strength J/2 (GHz)

10 4

10 3

10 2

10 1

100

Er
ro

r

(c)

Figure 4.6: Sensitivity analysis on qubit coupling strength in transmon system with Ωx

control fields. The results are shown for 0.003 tip angle and 10 ns (plot a), 20 ns (plot b),
and 40 ns (plot c) gate times. The SFQ bitstreams are learned with fid2.

92

Gen_tip0.003_fid1 Gen_tip0.03_fid1 Gen_tip0.003_fid2 Gen_tip0.03_fid2

10ns 20ns 40ns
Gate time (ns)

10 3

10 2

10 1

Er
ro

r

(a)

10ns 20ns 40ns
Gate time (ns)

10 3

10 2

10 1

Le
ak

ag
e

(b)

10ns 20ns 40ns
Gate time (ns)

10 3

10 2

10 1

Er
ro

r

(c)

10ns 20ns 40ns
Gate time (ns)

10 3

10 2

10 1

Le
ak

ag
e

(d)

Figure 4.7: Error and leakage of the best SFQ-based CZ gate (plots a and b) and Ry90⊗I
gate (plots c and d) found by the genetic algorithm for fluxonium qubit devices with Ωx

control fields.

the error results of the best SFQ-based CZ gate (entangling two-qubit gate) and Ry90⊗I

gate (non-entangling two-qubit gate) found on transmon system with Ωx control fields using

the genetic algorithm. Our results show that we can realize both CZ and Ry90⊗I gates with

high fidelity with 0.003 tip angle and 40 ns gate time.

One interesting observation is that the gate time of Ry90⊗I is longer than the gate time

of the SFQ-based single qubit gates reported in prior work [Li et al., 2019, Liebermann and

Wilhelm, 2016]. In general, it is more challenging to realize precise single-qubit gates in a two-

qubit system compared to the one-qubit systems because of crosstalk with the neighbor qubit.

We can reduce crosstalk and achieve faster single-qubit gate times by reducing the coupling

strength (J), however this will in turn complicate the realization of two-qubit entangling

gates. Fig. 4.6 shows a sensitivity analysis on the coupling strength. Our results show that

realizing high-fidelity CZ gate requires higher coupling strengths and realizing high-fidelity

Ry90⊗I gate requires lower coupling strengths. A coupling strength of J/2π = 50 MHz is a

93

Microwave_transmon SFQ_transmon SFQ_fluxonium

10ns 20ns 40ns
Gate time (ns)

10 3

10 2

10 1

Er
ro

r

(a)

10ns 20ns 40ns
Gate time (ns)

10 4

10 3

10 2

10 1

Er
ro

r

(b)

Figure 4.8: Error comparison between microwave-based gates obtained using Grape code
and SFQ-based gates obtained using genetic algorithm (with 0.003 tip angle). The results
are reported for CZ gate (plot a) and Ry90⊗I gate (plot b).

sweet spot that works well for both CZ and Ry90⊗I gates in our results.

Transmon with both Ωx and Ωz control fields

One possible configuration is to dedicate both Ωx and Ωz control fields to the transmon

qubit devices, which would potentially lead to SFQ-based gates with higher fidelity and

shorter gate time. However, we note that this comes at the cost of hardware complexity and

heightened sensitivity to magnetic flux noise.

4.3.4 SFQ-based two-qubit gates on fluxonium qubit devices

In this section, we investigate fluxonium qubit devices as a possible candidate to realize both

SFQ-based entangling and non-entangling gates with low leakage and short gate time using

Ωx control fields. Our model for the fluxonium devices assumes qubit1 (qubit2) is configured

with EJ = 5.5 (5.7), EC = 1.5 (1.2) and EL = 1.0, and a static φe = π external flux. Fig.

4.7 shows the results of our study on fluxonium devices with Ωx control fields.

Fig. 4.7(a) and 4.7(b) show the error and leakage results of an SFQ-based CZ gate,

respectively. Our results show that we can realize high-fidelity CZ gates with a gate time of

20 ns thanks to the low leakage of fluxonium devices. Similar to the case of transmons with

94

Ωx control fields, better results are achieved with lower tip angle. Fig. 4.7(c) and 4.7(d)

show the error and leakage results of an SFQ-based Ry90⊗I gate, respectively. Our results

show that the genetic algorithm can find high-fidelity gates with 20 ns gate time.

The fluxonium results show the feasibility and effectiveness of both entangling and non-

entangling two-qubit gates with short gate time and low error and leakage using only Ωx

control fields.

4.3.5 Comparison with microwave-based gates

Finally, we compare our results with that of microwave-based gates obtained from the

GRAPE algorithm [Leung et al., 2017]. Fig. 4.8 shows the error results for CZ gate and

Ry90⊗I gate for three designs: (1) microwave-based design with transmon devices; (2) SFQ-

based design with transmon devices; (3) SFQ-based design with fluxonium devices. We learn

the SFQ pulse trains with the Z-independent gate fidelity function. In the microwave case,

subspace-averaged gate fidelity is sufficient to realize high-fidelity gates.

The results reported in Fig. 4.8 show that the SFQ-based design with fluxonium has

similar error to that of the microwave-based design. The SFQ-based design with transmons

has similar error to the other two systems for 40 ns gate time, and higher error than the other

two systems for 10 ns and 20 ns gate times. The comparison results show that we can perform

high-fidelity SFQ-based gates with similar gate time and gate fidelity to that of microwave-

based system. Thus, SFQ is a promising approach to implement classical controllers as they

can deliver quantum computers with both high scalability and high fidelity.

4.4 Conclusion

Superconducting Single Flux Quantum (SFQ) is a classical logic technology which is pro-

posed in the literature to implement in-fridge classical controllers in order to maximize the

scalability of quantum computers. In this paper, we demonstrate the first thorough analysis

95

of SFQ-based two-qubit gates – a key remaining step in realizing SFQ-based universal quan-

tum computing. Our results show that despite the severe challenges of realizing SFQ-based

two-qubit gates, they are both feasible and effective if we carefully design our quantum opti-

mal control method and qubit architecture. We characterize the requirements of such gates,

and carefully engineer SFQ-friendly quantum systems that can perform both two-qubit gates

and single-qubit gates with high fidelity on a system with fixed coupling (tunable coupling

would potentially provide further isolation and less crosstalk, however, further research is

required to investigate the effectiveness of such couplers on an SFQ-based system). More

importantly, we demonstrate that the fidelity and gate time of these gates are comparable

to that of microwave-based gates – these results show that SFQ approach can potentially

not only increase the scalability of quantum machines but also maintain the fidelity and

effectiveness of quantum gates, thus SFQ is a promising approach to implement classical

controllers for scalable quantum machines.

96

CHAPTER 5

CONCLUSION

Many quantum computer prototypes have been manufactured in recent years, however, these

prototypes have severe scalability challenges due to the massive costs of generating and

routing the control signals from a classical controller at room temperature to the quantum

chip inside the dilution refrigerator. In this thesis, we investigated the implications of pushing

the classical controller to the dilution refrigerator, and demonstrated that such classical

controllers can be utilized to increase the computational power and scalability of quantum

machines.

First, we utilized Superconducting Single Flux Quantum (SFQ), which is a classical

logic technology that can work inside the fridge with low power consumption and ultra-high

speed, to implement an approximate quantum error correction. We designed an SFQ-based

decoding accelerator for stabilizer codes, leveraging the unique characteristics of the SFQ

technology in order to make sure that the decoder power and area are within the cryogenic

cooling system budget. We demonstrated that our accelerator can boost the computational

power of near-term quantum machines by over a factor of 3,402.

Second, we presented DigiQ, which is the first system-level design of a Noisy Intermedi-

ate Scale Quantum (NISQ)-friendly classical controller based on SFQ logic. DigiQ receives

digital instructions from the room temperature and performs quantum gates by generating

control signals inside the fridge; DigiQ performs single-qubit gates using SFQ pulses and

two-qubit gates using electrical currents generated inside the fridge. By co-designing the

quantum gate decompositions and SFQ-based implementation of those decompositions, we

developed a SIMD architecture that can operate within the tight power and area budget of

dilution refrigerators at large scales (>42,000-qubit), while providing good quantum algorith-

mic performance. We presented software solutions to address the quantum gate calibration

challenges of SIMD hardware.

Third, we conducted research on performing two-qubit operations using only SFQ pulses.

97

We demonstrated that although SFQ-based two-qubit gates have a high tendency to leak

to qubit non-computational subspace, we can realize such gates with high-fidelity and low

leakage by carefully designing optimal control methods and qubit architectures. We show

that after engineering an SFQ-friendly quantum system, we can achieve similar gate time

and gate fidelity to microwave-based quantum gates.

The results of this thesis show that in-fridge controllers based on SFQ logic can play

an important role in the future of quantum computing by increasing the scalability and

computational power of quantum machines. The key takeaways from the results of this thesis

is that 1) we need to design SFQ-based in-fridge controllers by taking into consideration the

opportunities (efficient on-chip broadcast and ultra-fast clock) and challenges (lack of dense

memory/logic) of SFQ in order to make sure they can operate within the tight power and

area budget of dilution refrigerators; 2) quantum-classical co-design is essential to ensure

that in-fridge controllers preserve quantum algorithmic performance; 3) novel solutions at the

software/compiler level can mitigate the limitations of in-fridge controllers in the calibration

of quantum gates.

98

REFERENCES

Héctor Abraham, AduOffei, Rochisha Agarwal, Ismail Yunus Akhalwaya, Gadi Aleksandrow-
icz, Thomas Alexander, et al. Qiskit: An open-source framework for quantum computing,
2019.

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends,
Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum
supremacy using a programmable superconducting processor. Nature (London), 574(7779),
2019.

Paul Baireuther, MD Caio, B Criger, Carlo WJ Beenakker, and Thomas E O’Brien. Neural
network decoder for topological color codes with circuit level noise. New Journal of Physics,
21(1), 2019.

Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Mar-
golus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary
gates for quantum computation. Phys. Rev. A, 52:3457–3467, 1995.

Rami Barends, Julian Kelly, Anthony Megrant, Andrzej Veitia, Daniel Sank, Evan Jeffrey,
Ted C White, Josh Mutus, Austin G Fowler, Brooks Campbell, et al. Superconducting
quantum circuits at the surface code threshold for fault tolerance. Nature, 508(7497):500,
2014.

Rami Barends, Alireza Shabani, Lucas Lamata, Julian Kelly, Antonio Mezzacapo, Urtzi
Las Heras, Ryan Babbush, Austin G Fowler, Brooks Campbell, Yu Chen, et al. Digitized
adiabatic quantum computing with a superconducting circuit. Nature, 534(7606):222–226,
2016.

Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM J. Comput., 26
(5):1411–1473, 1997.

Koen Bertels, Aritra Sarkar, and Imran Ashraf. Quantum computing–from nisq to pisq.
arXiv preprint arXiv:2106.11840, 2021.

Lev S Bishop, Sergey Bravyi, Andrew Cross, Jay M Gambetta, and John Smolin. Quantum
volume. 2017.

Sergey Bravyi, Martin Suchara, and Alexander Vargo. Efficient algorithms for maximum
likelihood decoding in the surface code. Physical Review A, 90(3), 2014.

Markus Brink, Jerry M Chow, Jared Hertzberg, Easwar Magesan, and Sami Rosenblatt.
Device challenges for near term superconducting quantum processors: frequency collisions.
In 2018 IEEE International Electron Devices Meeting (IEDM), pages 6.1.1–6.1.3. IEEE,
2018.

Darren K Brock and Michael S Pambianchi. A 50 ghz monolithic rsfq digital phase
locked loop. In 2000 IEEE MTT-S International Microwave Symposium Digest (Cat.
No. 00CH37017), volume 1, pages 353–356. IEEE, 2000.

99

Kenneth R Brown, Jungsang Kim, and Christopher Monroe. Co-designing a scalable quan-
tum computer with trapped atomic ions. npj Quantum Information, 2(1):1–10, 2016.

Christopher Chamberland and Pooya Ronagh. Deep neural decoders for near term fault-
tolerant experiments. Quantum Science and Technology, 3(4), 2018.

W Chen, AV Rylyakov, Vijay Patel, JE Lukens, and KK Likharev. Rapid single flux quantum
t-flip flop operating up to 770 ghz. IEEE Transactions on Applied Superconductivity, 9
(2):3212–3215, 1999.

Jerry M Chow, Jay M Gambetta, AD Córcoles, Seth T Merkel, John A Smolin, Chad Rigetti,
S Poletto, George A Keefe, Mary B Rothwell, JR Rozen, et al. Universal quantum gate
set approaching fault-tolerant thresholds with superconducting qubits. Physical review
letters, 109(6), 2012.

Haolin Cong, Mingye Li, and Massoud Pedram. An 8-bit multiplier using single-stage full
adder cell in single flux quantum circuit technology. IEEE Transactions on Applied Su-
perconductivity, pages 1–1, 2021.

A. D. Córcoles, Jay M. Gambetta, Jerry M. Chow, John A. Smolin, Matthew Ware, Joel
Strand, B. L. T. Plourde, and M. Steffen. Process verification of two-qubit quantum gates
by randomized benchmarking. Phys. Rev. A, 87, 2013.

Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin, and David Petrie Moulton. A new
quantum ripple-carry addition circuit. arXiv, 2004.

Mogens Dalgaard, Felix Motzoi, Jens Jakob Sørensen, and Jacob Sherson. Global optimiza-
tion of quantum dynamics with alphazero deep exploration. npj Quantum Information, 6
(1):6, 2020.

Poulami Das, Christopher A Pattison, Srilatha Manne, Douglas Carmean, Krysta Svore,
Moinuddin Qureshi, and Nicolas Delfosse. A scalable decoder micro-architecture for fault-
tolerant quantum computing. arXiv preprint arXiv:2001.06598, 2020.

Christopher M. Dawson and Michael A. Nielsen. The Solovay-Kitaev algorithm. arXiv
e-prints, 2005.

Nicolas Delfosse and Naomi H Nickerson. Almost-linear time decoding algorithm for topo-
logical codes. arXiv preprint arXiv:1709.06218, 2017.

Nicolas Delfosse and Gilles Zémor. Linear-time maximum likelihood decoding of surface
codes over the quantum erasure channel. arXiv preprint arXiv:1703.01517, 2017.

Johannes Arnoldus Delport, Kyle Jackman, Paul Le Roux, and Coenrad Johann Fourie.
Josim - superconductor spice simulator. IEEE Transactions on Applied Superconductivity,
29(5):1–5, 2019.

Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quantum
memory. Journal of Mathematical Physics, 43(9):4452–4505, 2002.

100

David P. DiVincenzo. The Physical Implementation of Quantum Computation. Fortschritte
der Physik, 48(9-11):771–783, 2000.

Doratha E Drake and Stefan Hougardy. A simple approximation algorithm for the weighted
matching problem. Information Processing Letters, 85(4):211–213, 2003.

Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M. Svore. A logarithmic-
depth quantum carry-lookahead adder. Quantum Information & Computation, 6(4&5),
2006.

Guillaume Duclos-Cianci and David Poulin. Fast decoders for topological quantum codes.
Physical review letters, 104(5), 2010a.

Guillaume Duclos-Cianci and David Poulin. A renormalization group decoding algorithm
for topological quantum codes. In 2010 IEEE Information Theory Workshop, pages 1–5.
IEEE, 2010b.

Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research
of the National Bureau of Standards B, 69(125-130):55–56, 1965a.

Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467,
1965b.

Emerson S Fang. A josephson integrated circuit simulator (jsim) for superconductive elec-
tronics application. In Extended Abstracts of 1989 International Superconductivity Elec-
tronics Conf.(The Japan Society of Applied Physics, Tokyo, 1989), 1989.

Caroline Figgatt, Aaron Ostrander, Norbert M Linke, Kevin A Landsman, Daiwei Zhu,
Dmitri Maslov, and Christopher Monroe. Parallel entangling operations on a universal
ion-trap quantum computer. Nature, 572(7769):368–372, 2019.

C. J. Fourie, K. Jackman, M. M. Botha, S. Razmkhah, P. Febvre, C. L. Ayala, Q. Xu,
N. Yoshikawa, E. Patrick, M. Law, Y. Wang, M. Annavaram, P. Beerel, S. Gupta, S. Nazar-
ian, and M. Pedram. Coldflux superconducting eda and tcad tools project: Overview and
progress. IEEE Transactions on Applied Superconductivity, 29(5):1–7, 2019.

Austin G Fowler. Minimum weight perfect matching of fault-tolerant topological quantum
error correction in average o(1) parallel time. arXiv preprint arXiv:1307.1740, 2013.

Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. Surface
codes: Towards practical large-scale quantum computation. Physical Review A, 86(3),
2012a.

Austin G Fowler, Adam C Whiteside, and Lloyd CL Hollenberg. Towards practical classical
processing for the surface code: timing analysis. Physical Review A, 86(4), 2012b.

Austin G Fowler, Adam C Whiteside, and Lloyd CL Hollenberg. Towards practical classical
processing for the surface code. Physical review letters, 108(18), 2012c.

101

Austin G Fowler, Adam C Whiteside, Angus L McInnes, and Alimohammad Rabbani. Topo-
logical code autotune. Physical Review X, 2(4), 2012d.

David P Franke, James S Clarke, Lieven MK Vandersypen, and Menno Veldhorst. Rent’s
rule and extensibility in quantum computing. arXiv preprint arXiv:1806.02145, 2018.

X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L.
Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. Di-
Carlo, and K. Bertels. An experimental microarchitecture for a superconducting quantum
processor. In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-50 ’17, page 813–825, New York, NY, USA, 2017.

Xiang Fu, MA Rol, CC Bultink, J van Someren, Nader Khammassi, Imran Ashraf, RFL
Vermeulen, JC de Sterke, WJ Vlothuizen, RN Schouten, et al. A microarchitecture for a
superconducting quantum processor. IEEE Micro, 38(3):40–47, 2018.

Joydip Ghosh. A note on the measures of process fidelity for non-unitary quantum operations.
arXiv e-prints, 2011.

Joydip Ghosh, Austin G Fowler, and Michael R Geller. Surface code with decoherence: An
analysis of three superconducting architectures. Physical Review A, 86(6), 2012.

Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T Chong.
Optimized quantum compilation for near-term algorithms with openpulse. arXiv preprint
arXiv:2004.11205, 2020.

Daniel Gottesman. Stabilizer codes and quantum error correction. arXiv preprint quant-
ph/9705052, 1997.

Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, page
212–219, New York, NY, USA, 1996.

Hartmut Häffner, Wolfgang Hänsel, CF Roos, Jan Benhelm, Michael Chwalla, Timo Körber,
UD Rapol, Mark Riebe, PO Schmidt, Christoph Becher, et al. Scalable multiparticle
entanglement of trapped ions. Nature, 438(7068):643, 2005.

Matthew B Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. Improving quantum
algorithms for quantum chemistry. arXiv preprint arXiv:1403.1539, 2014.

Jeff Heckey, Shruti Patil, Ali JavadiAbhari, Adam Holmes, Daniel Kudrow, Kenneth R
Brown, Diana Franklin, Frederic T Chong, and Margaret Martonosi. Compiler manage-
ment of communication and parallelism for quantum computation. In Proceedings of the
Twentieth International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 445–456, 2015.

Quentin P Herr, Anna Y Herr, Oliver T Oberg, and Alexander G Ioannidis. Ultra-low-power
superconductor logic. Journal of applied physics, 109(10), 2011.

102

Jared B Hertzberg, Eric J Zhang, Sami Rosenblatt, Easwar Magesan, John A Smolin, Jeng-
Bang Yau, Vivek P Adiga, Martin Sandberg, Markus Brink, Jerry M Chow, and Jason S.
Orcutt. Laser-annealing josephson junctions for yielding scaled-up superconducting quan-
tum processors. arXiv preprint arXiv:2009.00781, 2020.

Adam Holmes, Sonika Johri, Gian Giacomo Guerreschi, James S Clarke, and AY Mat-
suura. Impact of qubit connectivity on quantum algorithm performance. arXiv preprint
arXiv:1811.02125, 2018.

Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan Ding, Massoud Pedram,
and Frederic T Chong. Nisq+: Boosting quantum computing power by approximating
quantum error correction. In 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), pages 556–569. IEEE, 2020.

J. M. Hornibrook, J. I. Colless, I. D. Conway Lamb, S. J. Pauka, H. Lu, A. C. Gossard,
J. D. Watson, G. C. Gardner, S. Fallahi, M. J. Manfra, and D. J. Reilly. Cryogenic control
architecture for large-scale quantum computing. Phys. Rev. Applied, 3, 2015.

M. D. Hutchings, J. B. Hertzberg, Y. Liu, N. T. Bronn, G. A. Keefe, Markus Brink, Jerry M.
Chow, and B. L. T. Plourde. Tunable superconducting qubits with flux-independent
coherence. Phys. Rev. Applied, 8, 2017.

Koki Ishida, Ilkwon Byun, Ikki Nagaoka, Kosuke Fukumitsu, Masamitsu Tanaka, Satoshi
Kawakami, Teruo Tanimoto, Takatsugu Ono, Jangwoo Kim, and Koji Inoue. Supernpu:
An extremely fast neural processing unit using superconducting logic devices. In 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
58–72. IEEE, 2020.

Ali Javadi-Abhari. Towards a Scalable Software Stack for Resource Estimation and Op-
timization in General-Purpose Quantum Computers. PhD thesis, Princeton University,
2017.

Mohammad Reza Jokar, Lunkai Zhang, Yanjing Li, and Frederic T Chong. Investigat-
ing energy-efficient technologies for next-generation optical interconnection networks. In
TECHCON, 2017.

Mohammad Reza Jokar, Junyi Qiu, Lynford L Goddard, John M Dallesasse, Milton Feng,
Yanjing Li, and Frederic T Chong. A high-performance and energy-efficient optical network
using transistor laser. In TECHCON, 2019a.

Mohammad Reza Jokar, Lunkai Zhang, John M Dallesasse, Frederic T Chong, and Yanjing
Li. Direct-modulated optical networks for interposer systems. In Proceedings of the 13th
IEEE/ACM International Symposium on Networks-on-Chip, pages 1–8, 2019b.

Mohammad Reza Jokar, Junyi Qiu, Frederic T Chong, Lynford L Goddard, John M Dalle-
sasse, Milton Feng, and Yanjing Li. Baldur: A power-efficient and scalable network using
all-optical switches. In 2020 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA), pages 153–166. IEEE, 2020.

103

Mohammad Reza Jokar, Richard Rines, and Frederic T Chong. Practical implications of sfq-
based two-qubit gates. In 2021 IEEE International Conference on Quantum Computing
and Engineering (QCE). IEEE, 2021.

Mohammad Reza Jokar, Richard Rines, Ghasem Pasandi, Haolin Cong, Adam Holmes,
Yunong Shi, Massoud Pedram, and Frederic T Chong. Digiq: A scalable digital controller
for quantum computers using sfq logic. In 2022 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2022.

VK Kaplunenko, MI Khabipov, VP Koshelets, KK Likharev, OA Mukhanov, VK Semenov,
IL Serpuchenko, and AN Vystavkin. Experimental study of the rsfq logic elements. IEEE
Transactions on Magnetics, 25(2):861–864, 1989.

J. Kelly, Rami Barends, Austin G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank,
J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, Charles
Neill, P. J. J. O’Malley, C. Quintana, Pedran Roushan, A. Vainsencher, J. Wenner, A. N.
Cleland, and John M. Martinis. State preservation by repetitive error detection in a
superconducting quantum circuit. Nature, 519(7541):66–69, 2015.

Julian Kelly. A preview of bristlecone, google’s new quantum processor. Google Research
Blog, 5, 2018.

DE Kirichenko, Saad Sarwana, and AF Kirichenko. Zero static power dissipation biasing of
rsfq circuits. IEEE Transactions on Applied Superconductivity, 21(3):776–779, 2011.

A Yu Kitaev. Quantum computations: algorithms and error correction. Russian Mathemat-
ical Surveys, 52(6):1191–1249, 1997.

Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre
Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge-insensitive qubit design
derived from the cooper pair box. Phys. Rev. A, 76, 2007.

Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson, and
William D Oliver. A quantum engineer’s guide to superconducting qubits. Applied Physics
Reviews, 6(2), 2019.

Charles E Leiserson and James B Saxe. Retiming synchronous circuitry. Algorithmica, 6(1):
5–35, 1991.

Bjoern Lekitsch, Sebastian Weidt, Austin G Fowler, Klaus Mølmer, Simon J Devitt, Christof
Wunderlich, and Winfried K Hensinger. Blueprint for a microwave trapped ion quantum
computer. Science Advances, 3(2), 2017.

E. Leonard, M. A. Beck, J. Nelson, B.G. Christensen, T. Thorbeck, C. Howington, A. Oprem-
cak, I.V. Pechenezhskiy, K. Dodge, N.P. Dupuis, M.D. Hutchings, J. Ku, F. Schlenker,
J. Suttle, C. Wilen, S. Zhu, M.G. Vavilov, B.L.T. Plourde, and R. McDermott. Digital
coherent control of a superconducting qubit. Phys. Rev. Applied, 11, 2019.

104

Nelson Leung, Mohamed Abdelhafez, Jens Koch, and David Schuster. Speedup for quantum
optimal control from automatic differentiation based on graphics processing units. Physical
Review A, 95(4), 2017.

James E Levy, Anand Ganti, Cynthia A Phillips, Benjamin R Hamlet, Andrew J Landahl,
Thomas M Gurrieri, Robert D Carr, and Malcolm S Carroll. The impact of classical elec-
tronics constraints on a solid-state logical qubit memory. arXiv preprint arXiv:0904.0003,
2009.

James E Levy, Malcolm S Carroll, Anand Ganti, Cynthia A Phillips, Andrew J Landahl,
Thomas M Gurrieri, Robert D Carr, Harold L Stalford, and Erik Nielsen. Implications of
electronics constraints for solid-state quantum error correction and quantum circuit failure
probability. New Journal of Physics, 13(8), 2011.

Gushu Li, Yufei Ding, and Yuan Xie. Towards efficient superconducting quantum processor
architecture design. In Proceedings of the Twenty-Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, pages 1031–1045,
2020.

Kangbo Li, R McDermott, and Maxim G Vavilov. Scalable hardware-efficient qubit control
with single flux quantum pulse sequences. arXiv preprint arXiv:1902.02911, 2019.

Daniel A Lidar and Todd A Brun. Quantum error correction. Cambridge university press,
2013.

Per J Liebermann and Frank K Wilhelm. Optimal qubit control using single-flux quantum
pulses. Physical Review Applied, 6(2), 2016.

Konstantin K Likharev and Vasilii K Semenov. Rsfq logic/memory family: A new josephson-
junction technology for sub-terahertz-clock-frequency digital systems. IEEE Transactions
on Applied Superconductivity, 1(1):3–28, 1991.

Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt,
Kevin A Landsman, Kenneth Wright, and Christopher Monroe. Experimental comparison
of two quantum computing architectures. Proceedings of the National Academy of Sciences,
114(13):3305–3310, 2017.

Seth Lloyd and Christian Weedbrook. Quantum generative adversarial learning. Phys. Rev.
Lett., 121, 2018.

Vladimir E. Manucharyan, Jens Koch, Leonid I. Glazman, and Michel H. Devoret. Fluxo-
nium: Single cooper-pair circuit free of charge offsets. Science, 326(5949):113–116, 2009.

Dmitri Maslov. Basic circuit compilation techniques for an ion-trap quantum machine. New
Journal of Physics, 19(2), 2017.

R. McDermott and M. G. Vavilov. Accurate qubit control with single flux quantum pulses.
Phys. Rev. Applied, 2, 2014.

105

R McDermott, MG Vavilov, BLT Plourde, FK Wilhelm, PJ Liebermann, OA Mukhanov,
and TA Ohki. Quantum–classical interface based on single flux quantum digital logic.
Quantum science and technology, 3(2), 2018.

David C McKay, Christopher J Wood, Sarah Sheldon, Jerry M Chow, and Jay M Gambetta.
Efficient z gates for quantum computing. Physical Review A, 96(2), 2017.

F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm. Simple pulses for elimination
of leakage in weakly nonlinear qubits. Phys. Rev. Lett., 103, 2009.

Oleg A Mukhanov. Energy-efficient single flux quantum technology. IEEE Transactions on
Applied Superconductivity, 21(3):760–769, 2011.

Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and Margaret
Martonosi. Noise-adaptive compiler mappings for noisy intermediate-scale quantum com-
puters. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 1015–1029, 2019a.

Prakash Murali, Ali Javadi-Abhari, Frederic T. Chong, and Margaret Martonosi. Formal
constraint-based compilation for noisy intermediate-scale quantum systems. Microproces-
sors and Microsystems, 66:102–112, 2019b.

Prakash Murali, David C. McKay, Margaret Martonosi, and Ali Javadi-Abhari. Software
Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Computers. arXiv e-prints,
2020.

Michael A Nielsen. A simple formula for the average gate fidelity of a quantum dynamical
operation. Physics Letters A, 303(4):249–252, 2002.

Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information.
Cambridge university press, 2010.

G. S. Paraoanu. Microwave-induced coupling of superconducting qubits. Phys. Rev. B, 74,
2006.

Ghasem Pasandi and Massoud Pedram. Balanced factorization and rewriting algorithms for
synthesizing single flux quantum logic circuits. In Proceedings of the 2019 on Great Lakes
Symposium on VLSI (GLSVLSI), pages 183–188, 2019a.

Ghasem Pasandi and Massoud Pedram. A dynamic programming-based path balancing
technology mapping algorithm targeting area minimization. In Proc. IEEE/ACM Int.
Conf. Comput. Aided Des. (ICCAD), 2019b.

Ghasem Pasandi and Massoud Pedram. An efficient pipelined architecture for superconduct-
ing single flux quantum logic circuits utilizing dual clocks. IEEE Transactions on Applied
Superconductivity, 30(2):1–12, 2019c.

Ghasem Pasandi and Massoud Pedram. PBMap: A path balancing technology mapping
algorithm for single flux quantum logic circuits. IEEE Transactions on Applied Supercon-
ductivity, 29(4):1–14, 2019d.

106

Ghasem Pasandi, Alireza Shafaei, and Massoud Pedram. SFQmap: A technology mapping
tool for single flux quantum logic circuits. In 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), pages 1–5. IEEE, 2018.

Bishnu Patra, Rosario M Incandela, Jeroen PG Van Dijk, Harald AR Homulle, Lin Song,
Mina Shahmohammadi, Robert Bogdan Staszewski, Andrei Vladimirescu, Masoud Babaie,
Fabio Sebastiano, et al. Cryo-cmos circuits and systems for quantum computing applica-
tions. IEEE Journal of Solid-State Circuits, 53(1):309–321, 2018.

JH Plantenberg, PC De Groot, CJPM Harmans, and JE Mooij. Demonstration of controlled-
not quantum gates on a pair of superconducting quantum bits. Nature, 447(7146):836,
2007.

John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

Chad Rigetti and Michel Devoret. Fully microwave-tunable universal gates in supercon-
ducting qubits with linear couplings and fixed transition frequencies. Phys. Rev. B, 81,
2010.

J. A. Schreier, A. A. Houck, Jens Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M.
Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf.
Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B, 77,
2008.

Fabio Sebastiano, Harald Homulle, Bishnu Patra, Rosario Incandela, Jeroen van Dijk, Lin
Song, Masoud Babaie, Andrei Vladimirescu, and Edoardo Charbon. Cryo-cmos electronic
control for scalable quantum computing. In Proceedings of the 54th Annual Design Au-
tomation Conference 2017, page 13. ACM, 2017.

V.K. Semenov and D.V. Averin. Sfq control circuits for josephson junction qubits. IEEE
Transactions on Applied Superconductivity, 13(2):960–965, 2003.

Soheil Nazar Shahsavani, Ting-Ru Lin, Alireza Shafaei, Coenrad J Fourie, and Massoud
Pedram. An integrated row-based cell placement and interconnect synthesis tool for large
sfq logic circuits. IEEE Transactions on Applied Superconductivity, 27(4):1–8, 2017.

Sarah Sheldon, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. Procedure for
systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A, 93, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy
Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis
Hassabis. Mastering the game of Go without human knowledge. nature, 550(7676):354–
359, 2017.

Matthias Steffen, David P DiVincenzo, Jerry M Chow, Thomas N Theis, and Mark B
Ketchen. Quantum computing: An ibm perspective. IBM Journal of Research and De-
velopment, 55(5), 2011.

107

Krysta M Svore and Matthias Troyer. The quantum future of computation. Computer, 49
(9):21–30, 2016.

Yasuhiro Takahashi, Seiichiro Tani, and Noboru Kunihiro. Quantum addition circuits and
unbounded fan-out. arXiv preprint arXiv:0910.2530, 2009.

Naoki Takeuchi, Dan Ozawa, Yuki Yamanashi, and Nobuyuki Yoshikawa. An adiabatic
quantum flux parametron as an ultra-low-power logic device. Superconductor Science and
Technology, 26(3), 2013.

Swamit S Tannu and Moinuddin K Qureshi. Not all qubits are created equal: a case for
variability-aware policies for nisq-era quantum computers. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 987–999, 2019.

Swamit S Tannu, Douglas M Carmean, and Moinuddin K Qureshi. Cryogenic-dram based
memory system for scalable quantum computers: a feasibility study. In Proceedings of the
International Symposium on Memory Systems, pages 189–195. ACM, 2017a.

Swamit S Tannu, Zachary A Myers, Prashant J Nair, Douglas M Carmean, and Moinuddin K
Qureshi. Taming the instruction bandwidth of quantum computers via hardware-managed
error correction. In Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 679–691, 2017b.

Barbara M Terhal. Quantum error correction for quantum memories. Reviews of Modern
Physics, 87(2):307, 2015.

Sergey K Tolpygo, Vladimir Bolkhovsky, Terence J Weir, Alex Wynn, Daniel E Oates,
Leonard M Johnson, and Mark A Gouker. Advanced fabrication processes for supercon-
ducting very large-scale integrated circuits. IEEE Transactions on Applied Superconduc-
tivity, 26(3):1–10, 2016.

Yu Tomita and Krysta M Svore. Low-distance surface codes under realistic quantum noise.
Physical Review A, 90(6), 2014.

Giacomo Torlai and Roger G Melko. Neural decoder for topological codes. Physical review
letters, 119(3), 2017.

UC Berkeley Architecture Research. The sodor processor collection. https://github.com/ucb-
bar/riscv-sodor.

Jeroen Petrus Gerardus Van Dijk, Bishnu Patra, Sushil Subramanian, Xiao Xue, Nodar
Samkharadze, Andrea Corna, Charles Jeon, Farhana Sheikh, Esdras Juarez-Hernandez,
Brando Perez Esparza, et al. A scalable cryo-cmos controller for the wideband frequency-
multiplexed control of spin qubits and transmons. IEEE Journal of Solid-State Circuits,
55(11):2930–2946, 2020.

Savvas Varsamopoulos, Ben Criger, and Koen Bertels. Decoding small surface codes with
feedforward neural networks. Quantum Science and Technology, 3(1), 2017.

108

Savvas Varsamopoulos, Koen Bertels, and Carmen G Almudever. Designing neural network
based decoders for surface codes. arXiv preprint arXiv:1811.12456, 2018.

Savvas Varsamopoulos, Koen Bertels, and Carmen G Almudever. Decoding surface code with
a distributed neural network based decoder. arXiv preprint arXiv:1901.10847, 2019a.

Savvas Varsamopoulos, Koen Bertels, and Carmen Garcia Almudever. Comparing neural
network based decoders for the surface code. IEEE Transactions on Computers, 2019b.

Mark H Volkmann, Anubhav Sahu, Coenrad J Fourie, and Oleg A Mukhanov. Experimental
investigation of energy-efficient digital circuits based on esfq logic. IEEE Transactions on
Applied Superconductivity, 23(3), 2013.

Fred Ware, Liji Gopalakrishnan, Eric Linstadt, Sally A McKee, Thomas Vogelsang, Ken-
neth L Wright, Craig Hampel, and Gary Bronner. Do superconducting processors really
need cryogenic memories?: the case for cold dram. In Proceedings of the International
Symposium on Memory Systems, pages 183–188. ACM, 2017.

Whiteley Research Inc. Wrspice circuit simulator. http://www.wrcad.com/wrspice.html.

James Wootton. A simple decoder for topological codes. Entropy, 17(4):1946–1957, 2015.

Chui-Ping Yang, Shih-I Chu, and Siyuan Han. Possible realization of entanglement, logi-
cal gates, and quantum-information transfer with superconducting-quantum-interference-
device qubits in cavity qed. Physical Review A, 67(4), 2003.

Mingdai Yang, Mohammad Reza Jokar, Junyi Qiu, Qiuwen Lou, Yuming Liu, Aditi Udupa,
Frederic T Chong, John M Dallesasse, Milton Feng, Lynford L Goddard, et al. A hybrid
optical-electrical analog deep learning accelerator using incoherent optical signals. In
Proceedings of the 2021 on Great Lakes Symposium on VLSI, pages 271–276, 2021.

DM Zajac, TM Hazard, Xiao Mi, E Nielsen, and JR Petta. Scalable gate architecture for a
one-dimensional array of semiconductor spin qubits. Physical Review Applied, 6(5), 2016.

109

