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ABSTRACT

In the past decades, computer science has developed with astonishing rapidity, and this has

been accompanied by an equally shocking explosion of big data. In response, text mining

methods have likewise made similar progress and are being applied to various areas like doc-

ument classification and spam detection. However, existing text mining methods or models

have mostly focused on a single task solution; this is no longer sufficient, as the need for

large-scale general applications continues to grow. For example, in the clinical context, there

have been many diagnosis models for specific diseases, such as cancers, but very few models

for the more general and common diseases, especially in lower-resource areas. Using the

latest text mining models, we have developed a general diagnosis assistant system, which we

will test and deploy in African countries. Additionally, we have built a simple application for

the system, which consumes negligible computing resources and is not dependent on internet

availability. Text mining can also create values in the field of chemistry. The language of

chemistry strongly affects how chemists think about chemistry. We investigated the possi-

bility of improving standard chemical structure representation using relational learning and

text mining methods. The current representation system was developed in 19th century

and it no longer fully reflects the properties of chemical compounds that were discovered or

developed later. We proposed a new representation method and proved that it does a better

job in inferring biochemical properties. At the same time, text ext mining can be further

extended to other fields like manufacturing. While the manufacturing sensor data can be

transformed into the same format as texts, we applied text mining methods to perform a

diagnostic prediction for wafers in Seagate hard drive factories. In summary, we explored

multiple text mining techniques and applied them on clinics, chemistry and manufacturing.

In the following chapters, we will discuss the details of these techniques and their applications

in more detail.
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CHAPTER 1

INTRODUCTION

The explosion of big data, in which a large portion is in the form of text, has led researchers to

begin developing computer algorithms to deal with text data: Text mining allows researchers

to mine useful information from large-scale, free texts [104, 127].

The idea of text mining was first proposed by Hans Peter Luhn in 1958 in the IBM

Journal[68]; this is also recognized as one of the earliest artificial intelligence methods. Luhn’s

paper described a method to extract words from documents and use the frequency statistics

to make document classification.

After text mining was proposed, much fruitful research followed. In 1960, Maron devel-

oped a technique for indexing literature with a mechanized library system [70]. Later, in

1995, Feldman Ronen et al. developed the first Knowledge Discovery in Text (KDT) model

at the first International Conference on Knowledge Discovery and Data Mining [26].

There have been quite a few milestones in text mining technique development in the

past decades. Bengio et al. proposed the first neural network language model in 2003 [7],

using a neural net with one hidden layer to predict the next word in a sentence. Later in

2008, Collobert and Weston demonstrated that word embedding, trained on a large corpus,

contains meaningful information and can be used on multiple downstream tasks [16]. At the

time, lack of computational power at that time hindered the speed of these developments;

but a breakthrough occurred in 2013, when Mikolov et al. proposed Word2Vec [74], which

was an extremely simplified neural network model that proved easily well-executed with con-

temporary computers of that time. Since then, Word2Vec has been proven to be surprisingly

powerful. Its success has primarily been the result of its training strategies. There are two

strategies for Word2Vec: 1) Continuous bag-of-word, which uses the surrounding context of

the target to predict the target word, with the orders of the context words ignored, and; 2)

Skip-gram, which switches the input and output of the continuous bag-of-word strategy. It
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did not take long after Word2Vec’s success for a few alternative models to surface. Released

in 2014, GloVe [83] emphasized the geometric relations between the embedded words. Fast-

text [51], developed in 2016, represented n-grams within words to include an etymological

analysis. Elmo [84], proposed in 2018, instead generated a contextualized embedding in

which the word embedding also includes information for the surrounding words.

Transformer [107], proposed in 2017, initiated a new era of deep learning and text mining

due to its ground-breaking performance in various tasks such as classification and machine

translation [63]. Transformer was first built as a sequence-to-sequence model, especially

designed for machine translation. It consisted of an encoder and a decoder module, both of

which were made of stacked layers of multi-head self-attention and feed forward networks.

Self-attention is a specific type of attention mechanism [5] which describes each word in

the input sentence’s contribution to other words in the same sentence. Transformer’s self-

attention mechanism allowed the model to process the entire sentence simultaneously. In

contrast, previous models such as recurrent neural network (RNN) and long short-term

memory (LSTM) models took the input words one by one and were constrained by parallel

training.

Given Transformer’s ground-breaking performance and influence, there have been numer-

ous attempts to build on and optimize the original model. Some variant models modify its

multi-head self-attention module to make it more efficient or allow it to deal with super long

sequences [54, 121]; some variants change the overall architecture to better fit into classifi-

cation or generation tasks [90]; for instance, BERT [18] uses segment embedding to achieve

a deeper word representation, provides large, pre-trained models, and pushes the entire text

mining a step forward. Other variants focus on applying these models to other fields, such as

audio, images, or videos [19, 101]. For example, Vision Transformer [20] is a break-through

in the field of computer vision that outperforms the previously dominant convolution neural

network models [60].
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Along with such model development, more inspiring research was performed regarding

different kinds of text mining tasks [2, 95]. The most common text mining tasks include:

1) text representation and encoding, such as text preprocessing and vector space models; 2)

text classification with naive bayes, KNN, decision tree, and SVM; 3) text clustering with

Hierarchical Clustering algorithms, k-means, Probabilistic Clustering, and Topic Models,

and; 4) information extraction with Name entity recognition (NER), Hidden Markov Mod-

els, Conditional Random Fields, and Relation Extraction. These applications are briefly

introduced in the following paragraphs.

Text preprocessing and encoding are the earliest text mining applications, while also

outlining the first steps for all kinds of advanced text mining tasks, because computational

algorithms can only further process the data when the texts are preprocessed into numer-

ical representations. Typical preprocessing methods include: tokenization, which involves

breaking a character sequence up into pieces [113], filtering such as stop-words removal [96],

Lemmatization for morphological analysis of the words [78], and stemming to obtain the

stem (root) of derived words [67]. While these methods can only handle the simplest tasks,

they formed the foundations for the entire research field of text mining and natural language

processing. Text encoding is another key in the progress towards making it possible to ac-

complish complex tasks with machine learning algorithms. The first text encoding algorithm

is Vector Space Model[94], in which documents are represented with numerical vectors and

each word is represented by a number indicating the word’s importance in the document.

Text classification is the most widely studied and implemented text mining application.

Text classification’s strategy is to assign predefined classes to text documents [77]. One

example of text classification is email spam filtering. While spam filtering is a binary classi-

fication task, there are other types of classification model with multiple labels [34]. Given the

broad applications, many algorithms have been developed and applied for text classifications.

Typical text classification methods include: Naive Bayes classifiers [71] such as Multi-variate

3



Bernoulli Model [61] and Multinomial Model [77, 72]; nearest neighbor classifiers which use

distance-based measures to perform the classifications such as k-nearest neighbor algorithm

[36]; decision tree classifiers [29], which perform the predictions by traversing a tree struc-

ture; and support vector machines [17], which maximizes the separation boundaries found

in classification tasks.

Text clustering is the task of locating groups of similar texts in a collection of texts and

is one of the main techniques used when organizing documents [46]. Clustering differs from

text representation in terms of interpretability – the clusters are meaningful and directive.

Typical text clustering methods include: hierarchical algorithms, including both top-down

and bottom-up architectures [79]; k-means clustering, which partitions documents into k

clusters [10] and its derivatives algorithms with higher efficiency [3], and; topic models which

create a probabilistic generative model for text documents, such as Probabilistic Latent

Semantic Analysis [40] and Latent Dirichlet Allocation [9].

Information extraction (or information retrieval) involves automatically extracting struc-

tured information from unstructured or semi-structured text. Information extraction is the

predecessor of natural language understanding, but its goal is more specific; information

extraction seeks to extract structured and specific target information [41]. There are two

main types of information extraction tasks: named entity recognition and relation extrac-

tion. Named entity recognition locates named entities such as organization or person names

in free texts [62].Relation extraction locates the semantic relations between entities in texts

[53]. Typical information extraction methods include: hidden Markov models, which con-

sider neighboring words’ predicted labels, comparing them by using traditional probabilistic

techniques [89][91], and conditional random fields which use probabilistic models for sequence

labeling [59].

Besides these major tasks, text mining techniques are also applied to many other fields,

such as ontologies [117] and question answering [4]. To fully utilize the power of these meth-
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ods, we applied text mining algorithms – including Word2Vec and transformer – to the field

of clinics, chemistry, and manufacturing. Solving these text mining problems requires both

the techniques and the datasets. Thanks to the support from my advisor and collaborators,

we got access to the right datasets for these problems.

In the clinical context, the problem is that lower-resource areas are suffering from severe

disease burden. Even if many of the diseases like malaria have disappeared from the United

States, they are still among the top killers in African countries. Using the text mining

techniques trained on large medical literature and clinical notes, we were trying to find a

way to ease such disease burdens – even if only a little bit – and save lives. Additionally,

we also developed an absolute breast cancer risk prediction model for Nigerian women based

on a dataset including 1,811 breast cancer cases and 2,225 control cases from the Nigerian

Breast Cancer Study.

In the chemistry field, we developed a new naming system to better represent the bio-

chemical compound properties. In collaboration with the King Laboratory at the University

of Cambridge, we extracted the most common substructures from chemical compounds with

AI, and used these substructures to name or represent the compounds. Using text mining,

we also identified how current researchers name the chemical compounds from academic lit-

erature. By comparing these two naming systems, we proved that AI method did a better

job than the current naming system.

In the manufacturing sector, we applied state-of-the-art text mining techniques, includ-

ing auto-encoder and transformer models, to soft sensor datasets from Seagate Technology,

which is one of the largest hard drive manufacturing company in the world. Seagate had

a much larger database than any other publicly available soft sensor data. we transformed

the sensor data into the same format as embedded texts. In this way, text mining tech-

niques, such as transformers, could be applied with minor modifications. This application

not only achieved great performance for soft sensor problems, but also advanced text mining
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techniques’ applicability.

The following chapters provide more in-depth details and discussion about each of the

above projects. Chapter 2 examines the process of developing the diagnosis tools for lower-

resource areas; Chapter 3 discusses the projects for chemical naming with AI, and Chapter 4

shares the results and the methods for soft sensing in Seagate. Finally, Chapter 5 summarizes

my PhD work and the possible future work it enables.
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CHAPTER 2

CLINICAL APPLICATIONS

Lower-resource areas in Africa and Asia face a unique set of healthcare challenges: the dual

high burden of communicable and non-communicable diseases; a paucity of highly trained

primary care physicians, and; a lack of reliable, inexpensive internet connections, which

makes many digital systems for recording and storing electronic medical records (EMRs)

inapplicable.

To begin to address these healthcare challenges, we determined to leverage the avail-

ability of cellular phone networks and implement an open-access, computerized diagnostic

system that would operate as a smartphone application in the absence of reliable internet

connections. We designed our system to help primary care physicians in lower-resource areas

to generate, record, and share accurate diagnoses in real-time using a centralized database.

The system would be adaptive, aiming to arrive at diagnoses with a minimum number of

questions. As a mobile application, it would be lightweight and use negligible computational

resources.

Our application would provide primary care physicians in lower-resource areas with a

tool that enabled faster and more accurate diagnoses. This same application could also be

leveraged to automatically populate local or national EMR systems.

2.1 Light-weight Diagnosis Assistant – Phase 1

2.1.1 Introduction

Diagnostic errors affect an estimated 12 million Americans each year [97]. There are multiple

reasons for this large number; one reason is physician fatigue and burnout. However, a deeper

reason lies in the heavy-tailed pattern of disease frequency distribution [52]. Most diseases

are in the very low prevalence area of overall disease distribution, thus, physicians who
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encounter too few instances of a complex pattern are less likely to recognize it. While this

problem affects all physicians, it is exacerbated in resource-poor areas, where primary care

providers function as generalists due to high demand and shortages of medical personnel.

Electronic Medical Records (EMRs) are rapidly growing in both volume and ubiquity,

and this, along with the development of high-performance computing systems, is helping

modern computers to outperform humans in many focused, diagnostic tasks. Attempts to

develop efficient, computer-aided diagnosis support systems (DSSs) have been around since

the 1960s [75, 76, 112]. While experimental DSSs that focus on single diseases have been

successful in past decades, DSSs for general disease diagnoses have not flourished. There are

a few general DSSs available commercially, like Isabel, DXplain, and GIDEON [6, 8, 106],

but their clinical use remains limited due to their poor specificity and adaptiveness [12].

EMRs are considered essential to monitor and improve patient well-being [35]. Epic

is the currently dominant clinical software company. Epic offers a clinical software suite

that includes a communication portal and a set of specific diagnosis systems. Johnson et

al. reviewed Epic’s software comprehensively [50] and concluded that Epic provides a high-

quality EMR system for collecting and managing accurate medical records. However, it

comes with substantial costs: US physicians using Epic tend to complain about the work

burdens stemming both from its module design, as well as from the data entry involved

to maximize billing, manual data coding, expensive, ongoing vendor support, and difficulty

with introducing third-party extensions. This inability of existing systems to meet the needs

of lower-resource countries calls for a free, lightweight, network-free application that can

perform documentation of patient encounters (creating EMRs) for general health problems

and the tropical diseases that are prevalent in lower-resource settings – with both speed and

accuracy.

On the other hand, to our knowledge, there is no practicable diagnosis system for most

lower-development areas, such as Nigeria. Based on the above information, there are de-
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mands, and therefore opportunities, for a universal, efficient, and adaptive diagnosis system.

Before laying out plans for designing such a system, we formulated a ”desiderata” of such a

system’s properties as following:

1. The system should help physicians arrive at diagnoses efficiently and accurately, with

a minimum number of questions/tests.

2. The system should be easing physicians’ work burdens, rather than adding to them.

For example, the system should make it easier to record and unify patient-specific data.

3. The system should be able to collect patient data and be adaptive (learning from data

overtime).

4. The system should take into account event frequencies and make use of probabilistic

data.

5. The system should be able to learn the location-specific properties of a patient popu-

lation and the accompanying disease distribution.

6. The system should be able to assist physicians with patient status follow up (for ex-

ample, checking if a patient still has a fever and alerting the physician, if required).

7. The system should be able to operate in resource-poor settings, such as Nigeria, where

internet access is limited. Thus, text messages are the most reliable main mechanism

of communication between the medical record server and physician/patient.

8. The system should provide an obvious benefit to patients such as diagnosis accuracy,

efficiency, and friendly following-up.

Our goal is to develop a system that would combine machine learning, computerized

adaptive diagnosis [32, 33], mobile application software, and EMRs, allowing physicians to

accurately and easily capture patient-specific documentation across a broad spectrum of
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diseases. The system would incorporate active-learning and functionality without internet

connectivity. Paired with a centralized server which would receive messages from mobile

terminals and dispense updated information to physicians, this system would provide a new

Decision Support System (DSS) paradigm. If successful, this open-source software could be

deployed globally.

To this end, we developed a computerized AI physician assistant system to aid primary

care physicians in recording symptoms and diagnoses of a broad range of diseases, automat-

ically recording patient encounters in a structured form. Learning from large US medical

datasets, and using adaptive learning procedures and online learning algorithms, our system

prompts primary care physicians with detailed, yet concise, suggestions of options to record

symptoms, follow-up tests, and treatment options. Our light-weight mobile application uses

negligible computational resources and is able to transfer data via text messages, as its

intended users are primary care physicians in lower-resource areas with unstable internet

connectivity.

The following sections discuss our system’s design and current operation processes in

greater detail.

2.1.2 Materials and Methods

The datasets we use come mainly from three sources: UMLS at NIH, MarketScan from

IBM, Stanford University’s DeepDive Open Datasets, and a knowledge database of disease-

symptom associations generated with data from New York Presbyterian Hospital admitted

during 2004[111]. They are three different types of data for different usage:

DeepDive Open Datasets are large text corpora containing natural medical language.

We are using one of DeepDive’s datasets called BioMed Central, which comes from an STM

(Science, Technology, and Medicine) publisher of 274 peer-reviewed open access journals. We

used this corpus to discover the correlation between natural language and unified medical
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terms, thus enabling our system to recognize the natural language inputs.

UMLS is an abbreviation for Unified Medical Language System, affiliated to the US

National Library of Medicine (NLM) — National Institutes of Health (NIH). The UMLS is

a set of files and software that brings together many health and biomedical vocabularies and

standards to enable interoperability between computer systems. The UMLS has an API that

enables us to run a query and associate between different codes, such as the International

Classification of Diseases (ICD) and the Concept Unique Identifier (CUI) codes for diseases,

as well as between codes and natural languages. Also, some medical textbooks are using

UMLS codes to record the associations between diseases and symptoms. These textbooks

provide information needed for the diagnostic process. Our database of disease-symptom

associations is based on UMLS, in which both diseases and symptoms are represented by a

unified code.

MarketScan are research databases collected by IBM. These databases include electronic

medical records for millions of patients The data are contributed by large employers, managed

care organizations, hospitals, EMR providers, as well as Medicare and Medicaid. Through

the MarketScan databases, we have patients’ age and gender information, and thus, we have

distribution information, providing a prior hypothesis for diagnosis. These electronic health

records contain not only the correlation between diseases, but also the correlation between

diseases and medication. This information can be very useful after the diagnosis process.

Multiple journal reviews have covered a number of computerized diagnosis support sys-

tems developed during the past decades [24, 57, 81, 93]. These systems implement many

machine learning methods, such as naive Bayes, decision trees, and support vector machines.

Their applications vary among different disease categories including heart diseases, diabetes,

cancers, and depression. Fatima, et al has summarized the machine learning algorithms used

in diagnosis support systems [24], including Bayes network, Support Vector Machine, Naive

Bayes, decision tree, deep learning, and others. These systems are used in different disease
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categories including heart, diabetes, liver, dengue, and hepatitis. Average accuracy is around

80 percent. Naive Bayes and Support Vector Machines appear to be the most accurate and

widely-used algorithms.

However, existing models are all trained from labeled patient data, which means that

the most accurate machine learning model is based on accurate data points from human

physicians. This places much more pressure on physicians to collect and validate the data.

Furthermore, machine learning models are constrained within a narrow spectrum due to

both the training data’s limited size and model complexity. Traditional machine learning

diagnosis methods also require a complete set of input information from patients, which is

sometimes hard to acquire and prone to errors.

We designed the system with consideration to the disease burden in low-resource areas.

Prior to the start of our system’s development, we interviewed many primary care physicians

in Nigeria, as summarized in Table 2.1. Most of the physicians still utilize hand-written

patient records and believe that a mobile application would ease their labor and improve

effectiveness. Most of our interviewees preferred the Android platform. To increase user

efficiency, our application works in an adaptive manner that requires only the minimum

number of questions or tests to give suggestions, all based on natural language processing

and decision tree algorithms.

We used Word2Vec [74] to process the medical literature and clinical notes. Word2Vec is

a natural language processing method that represents words as numerical vectors and learns

the associations between words that appear closely in the corpus. Word2Vec is a combination

of two methods: continuous-bag-of-words (CBOW) and skip-gram model.

CBOW is developed to predict the probability of a word given a context. With a shallow

neural network, CBOW is trained with a large corpus and learns a relation between words,

which are represented by a set of vectors. The input layer can be one or more words, and

the output layer is a vector representing a set of words with probabilities. The highest
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Table 2.1: Survey results from physicians in Nigeria. Most of the physicians who took our
surveys reported using hand-written recordings, which are not well-organized and sometimes
even hard to read. They indicated a preference for an Android-based application, if provided.
In the meantime, most of them think that a single mobile application would not be enough,
reporting that the entire diagnosis and treatment lifecycle requires a full software suite.

Topic Options Responses Comments

Preferred recording
method

Hand-written 43
18 doctors complained about
hand-written recording

Digital 6
Total 46

Preferred electronic
method, if provided

Android App 39 Some primary care providers
already have access to both
mobile and web apps

Digital 6
Total 46

Preference between
single mobile application
and a suite

Single app 6
This is a follow-up survey and
fewer doctors responded

Suite of apps 10
More than mobile
apps

6

Total 22

probability corresponds to the most relevant word, as shown in Figure 2.1A. CBOW takes

the average of the contexts surrounding a word (as seen above in the calculation of hidden

activation). For example, ”Apple” can be both a fruit and a company, but CBOW takes an

average of both the contexts and places ”apple” between a cluster for fruits and companies.

The skip-gram model, as shown in Figure 2.1B, takes several different target variables and

output a set of probability combinations. It allows words to learn from different contexts

(such as fruit apple and company apple) but takes more computing resources.

Figure 2.1: Plate A shows a schematic representation of the continuous-bag-of-words method.
Plate B shows a schematic representation of the skip-gram model. V represents the total
number of distinct words.

We use skip-gram to predict the relationships between natural language and medical

13



terms because it’s been shown to perform better when representing words with low frequency.

Skip-gram extracts the representing vectors to relate the natural input from patients with our

medical codes. Also, it updates the weighted disease-symptom matrix with the relationships

between diseases and symptoms.

By automatically learning relationships from large corpora, Word2Vec is able to capture

the association between words. We assumed an association between words with a distance

of less than 50 words, which is about the length of two sentences. The model remembers

and learns the quantified co-existence relationship between medical terms. The advantage

of Word2Vec is that it captures the contribution of synonyms. This is important because

the disease manifestation and symptoms can vary greatly in the corpus.

As shown in Figure 2.2, we extracted the associations between medical terms and used

them to construct a decision tree model [11, 88].

Figure 2.2: DSS development workflow. Word2Vec extracts associations between medical
terms (such as symptoms and diseases) from the medical text corpus. These associations
are then used to construct a decision tree model for adaptive diagnosis, and the model is
implemented into an Android application.

After extracting the associations between symptoms and diseases, we constructed a deci-

sion tree to mimic the healthcare visit by generating questions iteratively based on previously

collected information. Drawing from a symptom bank, it generates new questions by max-

imizing the information gain, either after the patient’s initial information input or the last
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question. The system maximizes the information gain by finding the symptom item that

separates the candidate diagnosis into two groups with similar size, which minimizes the

statistical entropy.

In practice, patients are asked to provide their most concerning symptom as a trigger,

which then corresponds to the root of the decision tree. Next, the system calculates the

expected information gain for each symptom or lab test, and then adaptively decides what

to ask in the next tree node. This process runs through several iterations and, when enough

information is gathered, the system is then able to output diagnosis suggestions. This

methodology minimizes the number of necessary questions or tests, thus expediting the

diagnosis process.

After collecting additional data, the system updates the parameters with a single-layer,

artificial neural network [73], which allows the assistant system to further improve as data

accumulates. The entire code for the model and the Android application is open-source and

can be found at https://github.com/imechaozhang/Mead-Android-App.

We developed a mobile application based on this model. Figure 2.3 shows the mo-

bile application’s workflow. The application allows physicians either to directly input both

patient-specific symptoms and their diagnosis, as well as query the application for sugges-

tions. The application automatically saves everything locally in an SQLite database, which

synchronizes with the remote server when internet connectivity is available. To optimize

data storage scalability and accessibility, the remote server uses MongoDB, an open-source,

document-based database. In order to function in lower-resource areas, where internet con-

nectivity may be unstable or non-existent, the application can communicate with a remote

database via SMS messages. When physicians choose to ask the application for diagnostic

suggestions, the application takes the patient’s basic information and their trigger symp-

toms and perform an adaptive diagnosis by asking about symptoms or tests with the largest

information gain. Within a few steps, the application provides suggestions regarding the
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diagnosis and prescriptions, as well as further, possibly necessary lab tests. Physicians only

need to click on a few buttons to complete the entire process.

Figure 2.3: The mobile diagnosis application’s architecture. The application interacts with
both patients and physicians and optimizes the diagnostic process using an adaptive process
based on a decision tree algorithm. All patient data are stored both locally and in the
Cloud, so revisiting patients do not need to re-provide basic information. The data collected
is encrypted before it’s sent to remote databases to ensure patient information security.

While our application can make recommendations to physicians from just a few clicks,

that’s all they are – suggestions. Physicians are under no obligation to accept those sugges-

tions, and indeed, a mechanism exists for them to reject the application’s suggestions and

type in their own diagnosis. We assume machine learning can never be 100 percent accurate

and – importantly – our machine learning algorithm learns from mistakes.

2.1.3 Results

Using the MarketScan datasets, which include billions of medical records from all across the

US, we were able to find some useful information. The datasets contain the age, gender,
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disease, and medication of each patient over time. We extracted information on the age and

gender distribution across different diseases and examinations.

To begin, we summarized the MarketScan datasets’ population distribution. Figure 2.4

shows the distribution of age/gender for all ICD codes, including both ICD9 and ICD10

codes for disease diagnosis and examinations. Overall, the population of female adults is

slightly larger than males; however, PopulationPyramid.net shows that, below the age of

45, the male population slightly outnumbers the female. This indicates that the MarketScan

datasets are slightly biased. There is a huge drop in the population at the age of 65. This

is also due to the bias in the data. At the age of 65, the retirement age in the US, people

usually switch their health insurance and the data becomes unavailable.

Figure 2.4: Age and gender distribution in the US in 2003-2018. A) The summary of patients
for all ICD codes. B) Age/gender distribution for ICD9-CM code V70.0, which represents
routine general health examination.

Age and gender are necessary information for diagnosis process because many diseases

differ in distribution with respect to age and gender. For example, breast cancer in female

patients is far more prevalent than in males. The same is true for age distribution. Figure 2.5

shows two common diseases that illustrate this type of difference: hypertension disease and
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influenza. We can see that hypertension more commonly effects the older population, while

influenza more commonly effects the younger. For these same diseases, gender distribution

is also different: Females are more likely to suffer from influenza than males, as opposed to

hypertension.

Figure 2.5: Age and gender distribution of hypertension/influenza in the US in 2003-2018.

Age and gender are not the only important factors in disease distribution – region also

plays an important role. MarketScan is a dataset in the US, which might not fit to other

countries like Nigeria. Based on data from the WHO, Figure 2.6 and Figure 2.7 show two

examples of the different population distributions for breast cancer and tuberculosis in both

the US and Nigeria. For breast cancer, we only show female patients because the instances

of breast cancer in male patients are too few. Both countries have similar age distributions,

but the US population is twice more likely to have breast cancer. However, for tuberculosis,

the distribution between the two countries are quite different. US patients tends to be older

than Nigerian patients, and in Nigeria, the total number is 20 times higher than in the US.

Gender differences are also more significant in Nigeria.

Given the huge difference between developed countries (like US) and lower-resource areas

(like Nigeria), we believe there is an urgent need for a specially-designed diagnosis system

for lower-resource areas. We built, deployed, and tested an Android application intended to

fulfill the need for decision-support systems to enhance physicians’ diagnostic processes in

lower-resource countries.

Figure 2.8 shows the application’s key components, accompanied by screenshots showing
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Figure 2.6: Age distribution of breast cancer in the US in 2003-2018, and in Nigeria in 2012
[47]

Figure 2.7: Age and gender distribution of tuberculosis in the US and Nigeria in 2018 (from
the World Health Organization (WHO)). the y axis is the age range, and the x axis is the
number of patients per 10 000 population. Blue stands for male, and red for female. Colored
parts stand for treatment coverage.

the application’s workflow: basic information collection, symptom input, adaptive question

generation, and diagnosis suggestion pages. There are also a few recordings, confirmation,

and orientation pages that guide the primary care physicians through the diagnosis process.

The application has a few key functionalities: (1) Primary care physicians are able to visit

and query the local database to retrieve existing patient information, eliminating the need

to input basic patient information each time; (2) The application can work as an EMR sys-

tem, allowing physicians to simply input and save all the information gathered both on the

Android device and in the Cloud (if internet is accessible); (3) The application generates

questions regarding symptoms based on the information collected during the previous steps,

after which it further generates an adaptive diagnosis suggestion (this is the application’s
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primary function), and; 4) The application automatically detects areas where internet con-

nectivity is either unstable or unavailable by enabling synchronized data via encrypted SMS

messages – an important consideration in lower-resource areas.

Figure 2.8: Example screenshots from the Android application’s prototype. 1) The basic
information collection page, including the patient’s age, gender, weight, and height. These
are the most basic properties that are likely to be associated with disease. Other important
information, such as family history or travel history, will be included in future versions. 2)
The symptom input page, in which the primary care provider can select from the drop-
down menu or manually enter patient symptoms. 3) The adaptive diagnosis page, where
the application generates related questions about symptoms/tests and then generates new
questions based on the answers. 4) The result page, which provides suggestions about
diagnoses, tests, and prescriptions.

The application’s current iteration relies on a ”one-time pad” encryption scheme to pro-

tect information transferred over SMS. ”One-time pad” is a symmetric encryption algorithm

that uses a randomly generated key, known only by both the sender and receiver, to protect

information security.

In terms of hardware, we used a Dell Optiplex 780 running Ubuntu 16.04 LTS as

the server. Our software is fairly hardware-agnostic, but we recommend that any imple-

mentations based on ours use a 64-bit processor, with at least 250GB of storage mem-

ory, and at least 8GB of RAM. To test SMS compatibility, we used a Huawei E8372 de-

vice, along with an open-source python library to communicate with the device https:

//github.com/pablo/huawei-modem-python-api-client. For application development

and testing, we used unlocked Samsung S5 smartphone models.
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We beta tested our initial Android application in Pakistan in early 2020 at Quaid-e-Azam

International Hospital and Bashir Begum Memorial Welfare Hospital. We collected 113 di-

agnosis records for 99 individual patients, with 46 males and 53 females. Most patients were

aged from 15 to 60, except for two children and two seniors. During our testing, physicians

collected information from patients using the adaptive diagnosis process, in which the appli-

cation sorted the disease list consisting of the 165 most common diseases and suggested five

diagnosis results with the highest probability, given the information collected. Regardless

of the suggestions from the application, the physicians also made their own diagnoses. We

considered the application’s prediction to be accurate when the doctor’s diagnosis lay within

the application’s top five suggestions. Figure 2.9 shows the application’s diagnostic accuracy.

The application suggested five diagnoses each time, and for 77 out of 113 cases, the doctors

agreed with the suggestions from the application, and for 27 cases, they agreed with the first

suggestion. The top-five accuracy came to 68 percent and the top-one accuracy came to 24

percent. Note that this model’s suggestions were built out of the medical literature without

any real patient data, so there is much room for improvement.

While these application testing results are preliminary, they prove that our current pro-

totype is functional and has the potential to serve a larger group of primary medical care

providers. We will update the algorithms as the application is being used by a wider pool

of doctors in lower- resource areas, based on the diagnosis data collected during usage.

2.2 Light-weight Diagnosis Assistant – Phase 2

To verify the algorithm updating policy, we collected and processed about 1000 clinical

records from Nigeria. After an optical character recognition (OCR) processing provided

by Microsoft Azure, we generated a text corpus with a size of 200kb. While this corpus

was much smaller than those previously mentioned, it came from one of the lower-resource

areas. We assumed that this corpus is more closely related to our Pakistan experiments
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Figure 2.9: Results from the application’s beta testing in Pakistani hospitals. In this chart,
the y axis is the total case count, while the x axis is the application’s accuracy index based on
physicians’ diagnosis. The accuracy index is defined as following: The application covers the
165 most common diseases in the US and in African countries. When used for diagnostics, we
calculated the probability for all 165 diseases based on information collected from patients.
The application sorted the disease lists according to the probabilities and suggested the top
five diseases with the highest probability to physicians, allowing them to choose from these
five suggestions of diagnoses or reject them to make other diagnosis.

than the corpus from the US, so we used this data to inform the updating policy to update

the application and once again calculated the accuracy on the beta testing data from the

Pakistani hospitals.

We used the new corpus to generate a new association matrix with the same methods

described above, but this new association matrix only covered ten percent of diseases and

symptoms. We added this new matrix to the original matrix after multiplying it by 0.1. We

used the new association matrix as the updated model.

Table 2.2: Performance comparison between the original and updated algorithms, from the
Pakistani testing trial

Model Accurate Close Inaccurate Wrong AUCAC

Original 77 15 5 16 0.94028
Updated 77 16 4 16 0.94035

We observed a small improvement in our applications predictive power after the update,

as shown in Table. 2.2. The result was slightly better than the original results shown in
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Figure. 2.9, by having one more ’close’ prediction. To better describe the improvement,

we introduced a new metric called ”normalized area under the cumulative accuracy curve”

(AUCAC). First, we calculated a probability prediction for each disease, and we called k

the diagnosis index if the kth prediction met with the doctor’s diagnosis. Optimally, all

the diagnosis indexes should be 1. Next, we defined the top-N cumulative accuracy as the

frequency of the diagnosis index k located between 1 to N , and we plotted the cumulative

accuracy curve as a function of N , as shown in Figure. 2.2. The AUCAC is the normalized

area under the curve, which is the area divided by the number of diseases, so that the optimal

score is 1. We observed only a tiny improvement (0.00007) in terms of AUCAC, and this is

because the new text corpus was almost 10,000 times smaller than the original corpus. The

black-dashed line in Figure. 2.2 indicates the performance of a random guess, corresponding

to a AUCAC of 0.5.

Figure 2.10: The cumulative accuracy curve. The top-N cumulative accuracy as a function
of N from 0 to the number of diseases 165. The updated curve improved slightly, compared
to the original one.

23



2.3 Side Project - Breast Cancer Prediction Application

Breast cancer is the most common cancer in women. While risk prediction models for breast

cancers are widely used, there is no breast cancer screening program generally offered in

Sub-Saharan Africa (SSA). The Huo group at the University of Chicago has developed a

model to predict the absolute breast cancer risk, especially for Nigerian woman. This work

was published on Cancer Epidemiology and Prevention Biomarkers [109].

The Huo group utilized a dataset that covers thousands of breast cancer cases and con-

trol cases. Based on nine factors such as age, parity, number of children, breast feeding,

and alcohol consumption, they developed an absolute breast cancer risk prediction model

with multi-variable logistic regression. The model, evaluated with the area under the ROC

curve, was [AUC]=0.703, outperformed any existing models for the Black population. More

importantly, this model is the first of its kind in Africa.

The Huo group’s model is accurate and has the potential to benefit all Nigerian women.

However, they lack a deployment tool. They developed a web application for their model,

but as mentioned in previous sections, internet accessibility is a challenge in Nigeria. It

turns out that an Android application would work the best in this situation. Thus, we

developed an Android application for the Huo group’s breast cancer prediction model based

on our diagnosis assistant application, outlined in Section 2.1, and shown in Fig. 2.11.

This application ran much faster than the original web application and worked perfectly in

Nigeria.

2.4 Discussion and conclusions

Lower-resource countries are suffering from severe disease burdens and lack of well-trained

physicians. Current diagnosis systems are either not accurate enough or require too many

resources, rendering them unusable in these markets. We are collaborating with the African
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Figure 2.11: Example screenshots from the breast cancer prediction model Android appli-
cation. Left: The input page for information collection, covering nine factors that influence
risk. Right: The output page, showing the predicted risk as a function of age.

Institute of Mathematical Science and the University of Ibadan to design and deploy this

electronic adaptive diagnosis system in order to help physicians in Nigeria, as well as other

parts of the world, such as Rwanda and Pakistan. This system is a lightweight, adaptive

diagnosis assistant system designed to help physicians arrive at diagnoses faster and with less

errors and to assist with efficient patient record keeping. The adaptive diagnosis assistant

system is based on online learning algorithms and will improve by itself as more patient data

accumulates.

We developed this Android application prototype for use in clinics, and beta tested it

with five doctors in Pakistan. The performance and feedback were mostly positive, with

a 68 percent diagnostic accuracy, and the doctors reported that the application was very

user-friendly, and they liked the idea that it mimics a physicians’ decision-making process.
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As to be expected, the doctor-to-patient ratio is extremely small in developing countries –

doctors in both rural and urban areas of Pakistan have huge patient loads with which they

struggle. It is therefore important to provide a tool that can help improve their diagnostic

efficiency and hasten their workflow, enabling them to potentially attend to more patients

per time unit.

Our diagnostic application is specifically designed for lower-resource settings. While

the application targets lower-resource settings, such as rural Nigeria, the US is not devoid

of lower-resource areas. In the US, annually, over 12 million adults who seek outpatient

medical care receive a misdiagnosis [100], and there nearly 30 million uninsured individuals

(ten percent of the population). Our application may be able to help these populations

as well. In lower-resource settings, particularly in countries ranking low on the Human

Development Index, obtaining accurate and timely medical data is extraordinarily difficult.

Without robust local datasets, the function and evaluation of our diagnosis system is limited

in its present form. Although we have utilized large datasets from the US and experimented

in Pakistan, it is unlikely that these data can properly represent rural African areas. We are

in the process of deploying the application to countries like Nigeria to conduct a first trial

experiment to collect more localized data, while recognizing that there is vast heterogeneity

across the African continent - and also within countries, especially between urban and rural

contexts.

In the meantime, based on the feedback of doctors who tested the assistant system, it

would be ideal if medical data could include more fields such as the duration and evolution of

symptoms or patient medical histories. These are important factors that would help doctors

arrive at better diagnoses and treatment plans. However, in our attempt to develop this ideal

system, we are restricted by both insufficient data sources and technological limitations. The

application requires a large amount of related data in order to add the requested features or

medical input fields to the system, as well as different algorithms to handle the time-series
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information. We are planning to upgrade the system in this direction after the next trial in

Nigeria.

Network accessibility may also be a problem when deploying the diagnosis system. To

the best of our knowledge, cellular networks in many African rural areas are slow and brittle,

and some rural areas have no cellular coverage at all. However, we did our best to build the

lightest and most reliable diagnostic system possible.

Consequently, the current version of the system only requires users to send SMS messages

of dozens of characters for each visit. Theoretically, this matches what we have observed in

the field thus far. However, we have not tested the system while connected to an extremely

unstable network; it is possible that data synchronization may fail. As we continue to develop

our AI assistant system, adding additional facets of patient health descriptors, the required

messages will grow larger, creating logistic difficulties in areas with low network capacity.

We are reaching out to local Nigerian universities and companies in search of testing support

for these issues.
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CHAPTER 3

CHEMICAL APPLICATIONS

3.1 AI for a Chemical Naming System

3.1.1 Introduction

The project in this chapter involved an attempt to change the linguistic structure that has

been used historically to represent organic chemical compounds. We theorized that these

linguistic taxonomies define – and therefore necessarily limit – the way researchers conceive

of, develop, and execute their research.

Have modern technological developments created a context that might enable us to im-

prove upon these conceptually based research limitations? Is it possible that AI methods

could do a better job than human scientists when identifying useful chemical sub-structures?

We undertook to answer these questions in collaboration with the University of Cam-

bridge’s King Laboratory, in their Department of Chemical Engineering and Biotechnology.

The commonly-used naming system for organic chemical compounds was developed in

19th century Germany [14], and was based on the compounds’ sub-structures. Given that the

names themselves describe related chemical properties, the language itself strongly influences

how researchers think about chemistry.

We are investing the possibility to improve on the standard way of representing chemical

structures, which would affect the way how people think about them. Specifically, we are

trying to determine whether AI methods can do a better job in identifying useful chemical

sub-structures than have human scientists.

We represented chemical compounds as labelled graphs through their atoms (graph

nodes) and bonds (graph edges), and employed relational learning and quantitative structure

activity relationship learning to extract frequent patterns of sub-structures for compounds.

The performance of the extracted patterns had outperformed the standard structures when
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comparing the performance in ML. However, the performance was optimized during the

learning process, so we needed a more objective evaluation. To achieve this evaluation, we

found a way to determine the most commonly-used chemical sub-structures with BLAST

(basic local alignment search tool), which is a biological tool used to compare DNA or

RNA sequences. BLAST’s high rate of efficiency allowed us to compare word and character

sequences in chemical literature to find the most commonly-used chemical sub-structures.

While the performance of this new chemical compound representation is still under eval-

uation, BLAST has proven effective in helping us extract the common sub-structures from

the literature. The following sections will describe the datasets and methods we used in this

project and show the results.

3.1.2 Data

We used two datasets used in this project: PubChem, the world’s largest collection of freely-

accessible chemical information and terabytes of Elsevier literature which have been collected

by the Argonne National Laboratory.

We used the PubChem data to extract the full list of chemical sub-structures, and we

searched for these sub-structures in the literature to find those most commonly-used. Due to

the vague nature of natural text, in which people can use different formats of the same words

(such as plural or connecting symbols), a fuzzy match is required to find these sub-structures’

occurrences.

3.1.3 Method – BLAST

We used BLAST to perform a fuzzy match for both the sub-structures and the literature

text. As a biotechnology tool, BLAST is usually used for DNA/RNA or protein sequence

comparison. A typical use case is to identify whether a specific gene is contained in a DNA

sequence. We found this use case to be very similar to fuzzy match for sub-structures in
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literature, so we transformed the sub-structures and literature texts to DNA sequences and

applied BLAST for the search.

The first step of the experiment was to locate all possible sub-structures. We fully tra-

versed the IUPAC names in PubChem database and enumerated the sub-structures. IUPAC

is the most widely used chemical nomenclature developed by the International Union of Pure

and Applied Chemistry. This method allowed us to identify all the sub-structures used in

the standard naming system.

The second step was to encode the sub-structures and the literature texts into the mRNA

format with nucleotide symbols ’TACG’. Because we were only concerned with the names of

the sub-structures, we encoded all the non-alphabetic characters with the single symbol ’T’

to save space. We used the other three symbols (’ACG’) to encode the 26 English letters,

and transformed all upper-case letters into lower-case. Using this encoding, a perfect match

will always get the highest score, and fuzzy matches with punctuation will get a higher score

than matches with a difference in letters.

The third step was to search for the matches between the encoded sub-structures and

literature and then identify those most commonly-used. BLAST uses statistical theory to

produce a bit score and expect value (E-value) for each alignment pair. The bit score gives

an indication of the alignment’s quality, and the E-value indicates the statistical significance

of the pairwise alignments. A lower E-value reflects a more significant alignment result. We

took each sub-structure as a query and each sentence in the literature text as a sequence,

and used BLAST to check the alignment. We regarded the high-score alignment counts as

the occurrence frequency of the sub-structures.

We calculated the BLAST scores by counting the matched and mismatched symbols in

the query and sequence segments, and we evaluated the significance based on the Gumbel

extreme value distribution. The probability (p) of observing a score (S) equal to or greater

than x is given by the following equations:

30



P (S ≥ x) = 1 − exp(−e−λ(x−µ))

µ =
log(Km′n′)

λ

in which λ and K are fitted parameters based on the distribution of alignment scores

between the query and shuffled sequence segments, and m′ and n′ are the effective lengths

of the query and encoded text sequences. The E-value is defined as the expectation of the

match assuming a fully random process:

E ≈ 1 − exp(−p(S ≥ x)D) ≈ pD

3.1.4 Results and Discussion

From the PubChem database, we obtained 240k sub-structures in total, after dropping words

shorter than three letters (mostly the element symbols). EWe encoded each of these sub-

structures into a query and searched through the Elsevier literature corpus to find matches

with BLAST. For each query (sub-structure), BLAST generated a list of matches with an

E-value. We considered only the top two E-values as high-score matches because they are

likely to be exact matches and fuzzy matches with connecting symbols, and other E-values

correspond to some mismatch in the letters.

A sub-structure’s occurrence frequency is counted as the number of sentences in which

we found a high-score match. If a sub-structure appears in the same sentence multiple times,

we counted only one. Figure 3.1 shows the results of the sub-structure frequencies in a word

cloud. The larger the word, the more frequent it has been used in literature.

As shown in Figure 3.1, while some of the sub-structure words were the obvious ones, such

as ”acid” and ”amino,” and many others provide the necessary information for our proposed
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Figure 3.1: Word cloud for chemical sub-structures. The words are extracted from PubChem
database, and the frequency is counted based on the Elsevier literature corpus.

naming system. However, there are also some sub-structure words that are biased due to the

nature of the datasets. For example, ’lead’ has different meanings in chemistry as compared

to general literature, and a large portion of the counts come from the general meaning of

”guiding”. Besides the defects, BLAST has done a great job here finding the patterns of

most commonly-used chemical sub-structures and significantly helped us to develop our new

chemical naming system.
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CHAPTER 4

MANUFACTURING APPLICATIONS

With the proliferation of Internet of Things (IoT) devices, the distributed control systems

are now capturing and processing more sensors operating at higher frequency than ever

before. These new data, due to their volume and novelty, cannot be effectively consumed

without the help of data-driven techniques. Deep learning is emerging as a promising tech-

nique to analyze these data, particularly in soft sensor modeling (or soft sensing). From

an architectural perspective, the strong representational capabilities on complex data and

the flexibility it offers from an architectural perspective make it an active topic of applied

research in industrial settings.

However, despite its apparent promise, successful applications of deep learning in soft

sensor modeling have not yet been widely integrated in factory control systems – largely due

to data-modeling limitations; soft sensing does not yet have access to large-scale industrial

data, which are typically varied, noisy, and incomplete. The results published in most

research papers are therefore not easily reproduced when applied to the variety of data

in industrial settings. In this chapter, we provide manufacturing datasets that are much

larger and more complex than any public open soft sensor data. Moreover, the datasets we

have used are from Seagate Technology factories on active service with only the necessary

anonymization, which means they reflect the complex and noisy nature of real-world data.

We introduced a variance-weighted multi-headed quality-driven autoencoder classification

model that fit well into the high-dimensional and highly imbalanced data. In addition to

the use of weighting or sampling methods to handle the highly imbalanced data, the model

also simultaneously predicts multiple outputs by exploiting output-supervised representation

learning and multi-task weighting.

There have been many studies exploring deep learning models in soft sensor area. How-

ever, the models have become more and more complex – yet, their datasets remain limited;
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researchers have been fitting million-parameter models with hundreds of data samples, which

is insufficient to exercise the effectiveness of their models. Our study has attempted to solve

this persistent problem, by providing large-scale high-dimensional time series manufacturing

sensor data from Seagate Technology to the public.

Our project aims to demonstrate the challenges and efficacy of modeling industrial big

data by using a soft sensing transformer model on these datasets. We chose to use Trans-

former because it has outperformed state-of-the-art techniques in natural language process-

ing, and since then has also performed well in the direct application to computer vision with-

out requiring the introduction of image-specific inductive biases [107, 20]. We first observed

the similarity of a sentence structure to the sensor readings and processed the multi-variable

sensor readings in a similar manner to that of sentences in natural language. We then for-

matted the high-dimensional time series data into the same shape of embedded sentences

and fed them into the transformer model. The results showed that the transformer model

outperformed the benchmark models in the soft sensing field based on autoencoder and long

short-term memory (LSTM) metrics. To the best of our knowledge, we are the first team

in academia or private industry to benchmark the performance of an original transformer

model with large-scale numerical soft sensing data. Additionally, in contrast to the natu-

ral language processing or computer vision tasks in which human-level performances have

been regarded as golden standards, our large-scale soft sensing study is an example that the

transformer is able to interpret high-dimensional numerical data which humans have been

unable to interpret.
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4.1 Autoencoder-based Model for High-dimensional Imbalanced

Industrial Data

4.1.1 Introduction

(This work has been published on International Conference on Neural Information Processing

[123]©Springer.)

Data-driven soft sensing models in the past few years have generated active research

and investment due to their efficient handling of complex data relationships and reduced

reliance on first principles. They offer reliable and economical alternatives to rule-based,

first principles-driven expensive measuring sensors, thereby enabling effective feedback, and

control strategies for process monitoring [82].

A variety of deep learning techniques have been proposed over the last few years in soft

sensor application, including stacked autoencoders[23, 118, 119, 37, 92], gated units[102], and

flavors of recurrent [120] and convolutional neural nets [42]. This interest in deep learning

techniques has been motivated by the promising empirical results of these deep learning

techniques, which show improved representation ability, the ability to exploit unlabeled data

to improve performance, and the potential for non-linear feature extraction.

While the body of research around soft sensing has been non-trivial and has contributed

substantially to the interest and increased research in data-driven soft sensing, we still see a

gap between laboratory outcomes and industrial deployments of these soft sensors [48].

One of the reasons for this gap is the lack of real-world data upon which these models

can sufficiently be exercised. For example, most of the soft sensors-related work cited in this

article use datasets such as the benchmark TE (Tennessee Eastman) and the Debutanizer

column [28]. These have relatively low volumes and dimensions (with a number of samples

of up to 30k and dimensions up to 52). On the other hand, a real, distributed control system

in an industrial plant monitors thousands of operations, generating tens of thousands of
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sensors from hundreds of pieces of equipment capturing millions of observations per day.

Additionally, there is an inherent data imbalance problem that none of these studies capture

or address. From a practical implementation perspective, we believe that there is also a need

for an architecture that can not only learn the interactions between all these sensors within

a tool, but also be able to simultaneously predict operations down the manufacturing line,

in order to establish proactive process monitoring and controls.

In this section, we describe our attempt at building a scalable soft sensor application that

is motivated by the above-mentioned current gap in the variety of process data for research

and the speed of deployment and generalizability for broad coverage in industrial process

control. We proposed a variance-weighted multi-headed classification model that simultane-

ously predicts multiple outputs by exploiting output-supervised representation learning and

multi-task weighting.

Our contributions are:

1. A generalized imbalance-weighted algorithm that uses sensor data captured from the

process tools to predict multiple outcomes measured by multiple measurement tools

2. The open release of the preprocessed real-world data to advance further research in

soft sensing using a diverse family of semiconductor process manufacturing tools.

In this section’s following subsections of this section, we describe the proposed variance-

weighted multi-headed classification model and present a case study on wafer manufacturing

data from Seagate Technology, in order to demonstrate the performance of our proposed

model.

4.1.2 Related Studies

Over the last decades, most deep learning-based soft sensor modeling has used variants of

autoencoders as a pre-training approach. This was motivated by the work done by Erhan [23],

which demonstrated – with extensive experiments – that unsupervised pre-training provides
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solid marginal distribution and captures more intricate dependencies between parameters.

In other words, unsupervised, pre-training functions similar to a pre-conditioner, providing

a more suitable runway for future supervised training.

However, the challenge has been that, even though deep learning techniques extract high-

level features from the data, these features may not always be relevant to discriminating the

specific problem at hand; for example, detecting the quality of a product or a fault in a

piece of equipment. To address this, several researchers have tried to inject relevant output

variables during pre-training to guide the training towards learning features that are more

discriminating of the classes and outputs of interest.

There have been several studies that have used artificial neural networks for feature

extraction and representation learning. Below, we discuss the related studies that have

addressed previous industrial process monitoring that employed unsupervised pre-training

approaches, or semi-supervised or supervised techniques.

An automated key feature learning method was presented by Zhang [128] for nonlinear

process monitoring, which applies the k-nearest neighbor rule to find the nearest samples in

the training set. The autoencoder is utilized to convert the input space into a feature and

residual space. Control limits are derived by kernel density estimation, so pertinent fault

detection alarms can be triggered when the appropriate thresholds are crossed.

Han et al extracted more discriminative features by proposing an autoencoder-inspired

unsupervised feature selection method that can jointly learn to reconstruct its inputs and

the importance weights of each feature by simultaneously minimizing reconstruction error

and group sparsity regularization. [37]

Sagheer et al leveraged the unsupervised stacked autoencoder to replace the random

weight initialization strategy adopted in deep LSTM recurrent networks [92]. Their proposed

LSTM-SAE used unsupervised, pre-trained LSTMs in an autoencoder fashion. Their results

show that an unsupervised, AE-based, pre-training approach improves the performance of
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deep LSTM using time series data and leads to faster convergence than other models.

Autoencoders are also implemented by Yao [115] for feature extraction of process vari-

ables. Their solution implements a semi-supervised extreme learning machine based on

manifold regularization in the last hidden layer of the deep autoencoder to obtain better

prediction of process variables. In addition to exploiting a large number of unlabeled process

data in the learning process, these extreme learning machines have the advantage of being

computationally more efficient because they do not use resource-intensive back propagation.

However, as applied research for process monitoring in the industrial space continues, it

is becoming clear that while unsupervised pre-training techniques do a good job of extracting

high-level features from the data, these features do not always represent the specific metrics

of interest such as quality of a product or fault in an equipment unit, etc. This failure

inhibits their widespread implementation in the actual process control. To address this gap

of making representations learn statistical structures of process interest, there have been

multiple efforts at making representation more relevant to outputs of interest by injecting

relevancy into the pre-training process.

Yuan et al introduced variable wise feature selection, in which process variables are

weighted by their correlations with the output variable so as to extract high-level output-

related features [118]. This technique uses the Pearson correlation, which is a linear correla-

tion measure, and the features it extracts may not fully represent the non-linear relationships.

Yuan et al also proposed a high-level feature learning by introducing an output-relevant loss

function into the pre-training process so that the network can simultaneously learn to recon-

struct input features along with the quality variable [119]. They applied this to obtain higher

performance in regression tasks. Information considered to be irrelevant was eliminated by

a relevant representation learning method [114] calculating the mutual information in each

layer between the representation and output layer to reveal high-order relationships. Their

results show that irrelevant representations are eliminated during the training of a stacked
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autoencoder’s subsequent layer.

In 2020, Sun et al exploited the idea of gated units [102] to modulate the flow of in-

formation in a stacked autoencoder where each hidden layer‘s contribution is considered to

predict the target variable. They hypothesize that there are important representations at

even shallow layers and therefore, each must be able to contribute to the final prediction.

They also use an ensemble strategy to make more effective use of unlabeled samples.

Luo et al also attempted to make the latent structure more relevant to the outcome of

interest by adding a distance penalty into the loss function [69], which enabled the autoen-

coder to extract more suitable representations by increasing the labeled data’s inter-class

separability. This model provided a mutual, information-based mathematical interpretation

to support their proposed technique’s effectiveness.

There have also been studies leveraging convolutions and sequence modeling with variants

of CNN together with LSTMs. Huang et al explore multichannel CNNs to extract the

correlations of different process variables regardless of their topological distance [42]. Yuan

et al integrate the CNN and LSTM architectures to predict particulate matter concentration

[120]. Their proposed architecture includes a CNN to extract features in both spatial and

temporal domains. IT then uses LSTM to analyze the extracted features and perform

forecasting.

As can be seen from these studies, autoencoder-based feature extraction and relevant

feature learning using a combination deep learning techniques – such as stacked autoencoders,

semi-supervised autoencoders, CNN, and LSTMs – have been widely studied with varying

levels of success in industrial data.

39



4.1.3 Methodology

Autoencoder

An autoencoder is a neural network that attempts to learn the underlying latent variables

from high-dimensional input. Raw input data x is encoded into a low dimensional latent

feature space h with an encoder function. The decoder function then reconstruct the input as

x̂ using the latent variables. The autoencoder is trained by minimizing the distance between

the original input x and its reconstructed counterpart x̂. For example, suppose x ∈ Rdx

where dx is the dimension of the input data and h ∈ Rdh where dh is the dimension of the

encoded x̂. The encoder, decoder, and the loss functions then can be expressed as follows:

h = fencoder(Wencoder · x + bencoder) (4.1)

x̂ = fdecoder(Wdecoder · h + bdecoder) (4.2)

J(θAE) =
1

N

N∑
i

|x̂i − xi|2 (4.3)

where h is the encoded feature and fencoder and fdecoder are non-linear activation func-

tions that are used in the encoding and decoding process. N is the total number of training

samples. Autoencoders can be seen as a special case of feed-forward networks and may be

trained with optimization techniques such as gradient descent, following gradients derived by

the back-propagation algorithm. Therefore, the parameters θAE = {W, b} in Equation 4.3

can be updated using gradient descent as follows:

θ∗ = argminθJ(θAE) (4.4)

Autoencoders are ideal for data which are characterized by high volume, co-linearity and

not-fully-understood non-linearity. By using a non-linear activation function such a sigmoid
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or a rectified linear unit (ReLU), the autoencoders can not only reduce the dimension space,

but they can also learn a more powerful generalization compared to principle component

analysis.

However, a shallow network may not be able to fully represent the complex statistical

structures of the input data. A common strategy is to greedily pre-train the deep autoen-

coders by training a stack of shallow autoencoders, thereby allowing the deep network to

learn more abstract features hierarchically.

The self-supervised representational capabilities of the autoencoders can be further ex-

ploited to make them more relevant towards specific tasks such as predicting a failure of

specific processes. This has been done by Yuan et al. [119] with improved experimental

results. They introduced a quality-based autoencoder (QAE) which attempts to reconstruct

both the input data x and the quality data y simultaneously, which are denoted as x̂ and ŷ.

They added a prediction error for the target variable in the loss function of the traditional

autoencoder in Equation 4.3. As shown in Equation 4.5, the loss function then jointly min-

imizes the reconstruction loss and the prediction error between the true and the predicted

label.

J(θQAE) =
1

N

N∑
i

(|x̂i − xi|2 + |ŷi − yi|2) (4.5)

The main intuition here is that a combined loss function that minimizes the gap between

true and predicted labels when added to the autoencoder reconstruction loss function, can

guide the autoencoders towards reconstructing more specialized or relevant feature space.

This idea of guiding the unsupervised learning with a target variable can then be further

developed to multi-outcome tasks. Consider a learning task that maps the relationship

between the sensors of one process machine in an industrial plant and the various outcomes

as measured by multiple measurement machines down the line.

Instead of modeling each combination of process stage and measurement outcome step
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separately, we can model that entire process, with all its measurement outcomes, to jointly

learn the outcome-relevant representation of each tool and the outcomes of a specific family

of measurement tools. At each process of stage completion, a classifier then predicts class

labels – not just for the next step – but all the subsequent steps at which the process would

be measured, thereby enabling continuous monitoring and proactive control of downstream

processes.

Variance-weighted Multi-headed Quality-driven Autoencoder

While existing autoencoder-based models have shown good performance on public datasets,

their work does not consider the imbalance in the class labels and may be prohibitive in

environments where there are a large amount of process and output quality variables. To

address these practical limitations, we propose a variance-weighted multi-headed quality-

driven autoencoder (VWMHQAE) classification architecture which learns and predicts mul-

tiple quality-relevant features simultaneously. This is a combined method that predicts all

measurement steps within the same model, and is thus much more efficient and scalable than

individual methods.

We simplified the soft sensing problem into a classification problem because our main

objective was to predict whether a wafer passes measurements. This is commonly considered

to be more easily interpreted when compared to a numerical output. At a mathematical

level, a classification model is no different from regression except that the loss function is

cross-entropy instead of mean-square-error.

In a Seagate Technology manufacturing line at any given processing step, there are a

number of sensor values being captured which can be used to monitor and analyze multi-

ple quality attributes throughout that process. Typically, these quality measurements are

performed across multiple steps. To mimic this process, we designed a model with multiple

heads, with each head denoting a measurement step. At each measurement step, specific
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Figure 4.1: A) Illustration of the multi-headed model. B) Learning the reconstruction and
target variable simultaneously. C) The multi-headed autoencoder model

properties of the wafer are measured in order to determine whether the properties pass the

specification, which corresponds to a binary classification problem. As shown in Figure 4.1,

several binary classification units are put together, to form a combined model to predict all

the measurement steps simultaneously.

To calculate the loss functions for all the binary classifications together, we added a

weight to each class for each head to handle the imbalance from the source data. The loss

function for the entire classification problem is as Equation 4.6.

Jy(W, b) =
1

N

Nh∑
j

nj∑
i

[−y0ij log(ŷ0ij) ∗ w
0
j − y1ij log(ŷ1ij) ∗ w

1
j ] (4.6)

N is the number of data points, Nh is the number of heads, nj is the number of data

points for the jth head, W , b are the model weights and bias, and w0
j , w1

j are the class

weights for negative and positive cases for the jth head. The class weights are calculated as

Equation 4.7, with t indicating the negative and positive labels.
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wt
i =

N

2Nh ∗ ntj
(4.7)

Note that the Jy in Equation 4.6 is not yet the final loss function for our model. To learn

a representation of the input data and the features relating to the target variables at the

same time, we used an autoencoder-based architecture. This required the objective function

to be modified to include loss functions for both input reconstruction and target prediction.

In our case, the reconstruction loss is an MSE loss for the input variables Jx, and the target

prediction loss is Jy as Equation 4.6. To make it more intuitive, Figure 4.1B illustrates the

workflow for the two loss functions, in which the target prediction loss is shown as multiple

heads. Figure 4.1C shows the details on the multi-headed binary classification model.

However, to combine Jx and Jy, it is not acceptable to simply add them up, because

they have different scales. Kendall et al. [55] proposed a method to minimize multi-task

loss functions simultaneously. The authors showed that maximizing a multi-task likelihood

is equivalent to minimizing a combination of individual task losses with variance-dependent

weights, with an assumption of homoscedastic uncertainty for each task. They achieved

better performance with the multi-task weightings than individual tasks trained separately.

Applying their method to our model, we have the loss function as Equation 4.8, with σ1 and

σ2 standing for trainable variance parameters for Jx and Jy:

J =
1

2σ21
Jx +

1

σ22
Jy + logσ1 + logσ2 (4.8)

The Stacked Model

We used manufacturing data from Seagate Technology, specifically sensor data captured

during the wafer processing steps within one family of deposition tools. This data has

hundreds of dimensions. To render the model powerful enough to deal with the complicated

datasets, we developed a stacked version of the variance-weighted multi-headed autoencoder-
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Figure 4.2: The stacked VWMHQAE classifier

based classifier, as shown in Figure 4.2.

As we discussed above, the autoencoder part of this model is encoding the input data

as a lower-dimension representation and reconstructing both the input layer and the target

variables. Here, the target variables include multiple heads, and each head is a binary

classification. The loss function for this model contains two parts: one is the autoencoder

loss function, and the other is the multi-binary-classification loss function, as in Equation 4.8.

The stacked model also added a multi-headed classifier to the original autoencoder, en-

abling it to learn a representation that captures those features most relevant to characterizing

and predicting a series of key wafer quality-control measurements. Given that the heads’

dimensions are much smaller than the features, this model adds negligible complexity to the

autoencoder, and thus trains just as fast as traditional autoencoders. On the other hand,

the calculation is accelerated by the multiple heads’ vectorization.

During each stage of the wafer manufacturing process, the equipment’s sensors acquire

data points, each of which may contain multiple, relevant quality properties, which can
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Table 4.1: VWMHQAE pseudo code
Training process
> Decide the structure of the model with number of layers n and each layer [l1 − ln], and
input data X0, output data y
> Loop: for k in 1 to n:
− Train a layer of the encoder-decoder with input Xk−1 and output (Xk−1, y), and get

the hidden layer Xk with dimension lk
¿ Based on the final layer of encoder-decoder, extract the hidden layer Xn, and train a
logistic regression classifier with output y, get prediction ŷ
> Evaluate the results by comparing y and the predicted ŷ:
For each output yi in y:
− Count the correctly predicted positive/negative cases and calculate the recall and

accuracy

then be measured by multiple types of measurement equipment. Our model addresses that

reality by taking a series of these single-labeled data points to learn the behavior of multiple

target variables. Our proposed model can be seen as jointly learning and solving two tasks:

reconstructing the input data, and; predicting each head’s target class.

Model Implementation

Given the high-dimensional input, we used a stacked encoder-decoder structure to reduce the

number of dimensions gradually. While the input data dimension was 632, and the output

(target) dimension was 16, we chose four layers of the stacked encoder-decoder structure,

with the layers as [400, 200, 100, 50], so that in each iteration, the dimension was effectively

reduced and little information was lost.

To further illustrate the effectiveness of the multi-heading mechanism, Figure 4.3 shows

the comparison between the multi-headed model and the single-headed model, instead taking

the heads as input categorical variables. In the original data, the feature indicating which

measurement belong to what wafer was a column that had no difference with any other

categorical variables. As far as we know, researchers have traditionally been taking these kind

of variables as categorical variables in the input. However, we found that the measurement
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Figure 4.3: Comparison for the multi-headed model with a model taking the heads as a cat-
egorical feature. A) Variance-weighted quality-driven autoencoder model, treating measure-
ment feature as an input categorical variable, B) Variance-weighted multi-headed quality-
driven autoencoder model, treating measurement features as output heads.

feature can not only be a categorical variable in the input data, but can also be an output

head – given that there are not too many distinct values (eight in this dataset). As shown

in Figure 4.3, it turns out that taking the measurement variable as output heads not only

improved the interpretability, but also helped the model converges much faster and with

less fluctuations in the loss function as in Equation 4.12. Note that the loss values went to

negative due to the formula’s variance-weighting, and further note that the absolute values

in Figure 4.3 may not linearly reflect the accuracy of the model. However, it’s shown that

the multi-headed mechanism accelerated the convergence and led to a lower loss function

value.

In our experiments, we used a four-layer stacked model to learn on a dataset with 632

dimensions which has about 0.2 million data points. We used an Adam optimizer with the

learning rate as 1e-3, the batch size as 512, and an early-stopping with a minimum delta

as 1e-5. There were eight different measurement steps, leading to 16 heads in the model.

The dimensions of the four hidden layers were [400, 200, 100, 50]. When we compared this

with a regular autoencoder model with the same layers, our VWMHQAE model had only

1.7 percent more parameters. The complexity of our model is almost the same as a stacked
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autoencoder. With a training data of 0.16 million and 632 dimensions, the training for a

four-layer VWMHQAE model took about 30 minutes on a NVIDIA Tesla V100 SXM2 GPU.

4.1.4 Data Description

The main purpose of this work was to find a generalized and computationally feasible soft

sensing technique that could be applied to a diverse family of equipment. The model also

needed to perform well in class imbalance and be able to simultaneously learn to predict the

output of multiple measurement steps that are critical to ensure the quality of a particular

point.

In complex manufacturing settings, effective process requires that we have measurements

in place for our processes that can be monitored and controlled automatically. While these

measurements are critical to assess processes quality, they also add non-trivial cycle time

into the manufacturing process. We needed to maintain an optimal trade-off to ensure the

right balance of quality and time-to-market. A soft sensing methodology that maps the

abundant process variables to quality metrics, with a high degree of recall could potentially

be exploited to reduce the time-to-ship by enabling such processes to be skipped based on

the process variable readings.

For the purpose of this work, we used one year’s worth of process variables (sensor) data,

with the corresponding measurement (quality) variables. The sampling rates of the sensors

were mostly per second. We collected the measurement data as a wafer was being physically

measured, a process which could range from minutes to hours. The data is published at

https://github.com/Seagate/softsensing_data.

The process tool generating the dataset is a vacuum tool that deposited thin film. Pro-

cesses on this tool included both etching and deposition steps. Materials were sputtered

from the target deposits on the substrate to create a film.

The tool family we considered in this study comprises 14 pieces of physical deposition
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equipment. Each piece of equipment has 130 sensors installed, which are capturing data at

a frequency of about every second.

The critical parameters we measured for this family of tools were magnetics, thickness,

composition, resistivity, density, and roughness. These parameters were critical to the wafers’

quality and were measured by a family of high precision measurement equipment that came

with high capital costs. A wafer can go through one or more measurement tools, depending

on the criticality and complexity of the required measurement process. The measurement

variable sample size is much lower than the process variables. A measurement taken by any

physical measurement tool comprises a step in the process. Therefore, in this paper, we re-

garded each measurement step as an individual task, referred to as Y1-Y8. The measurements

examine different wafer quality parameters, including thickness, magnetics, resistivity, com-

position, etc. The number of data samples varied from 2,000 to 25,000, and the imbalance

ratios ranged from two to 225.

As to be expected from most real-world data, the sensor data we used here was highly

imbalanced. In this study, we considered our data imbalance issue from two perspectives.

First, there was the class imbalance, which results from the ratio of positive versus negative

classes. Second, we referred to the difference in scale or unit between the mean squared

and the cross-entropy losses used in the combined loss function as imbalance in the task.

The class imbalance biased the learning towards the majority class due to its increased prior

probability. The task imbalance, or the difference in the combined loss function units used

in the proposed model’s two tasks, could result in imbalanced weights for the different losses,

which biased the learning towards the higher weighted loss and also possibly causes the lower

weighted loss to suffer from vanishing gradients.

In order to determine the most reasonable fit for the proposed soft sensing architecture,

we experimented with various techniques, and the results are discussed in the section below.
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4.1.5 Results and Discussion

Despite recent advances and successes of deep learning, there has not been enough empirical

work in problems where high class imbalance exists [49]. Methods for handling class im-

balance in machine learning fall into three categories: data-level techniques, algorithm-level

methods, and hybrid approaches [58].

Data level techniques address the issue of class imbalance through data sampling meth-

ods. Algorithm-level techniques are usually incorporated in the cost function, so the learner

attempts to mitigate the bias towards the majority class during learning. Hybrid approaches

combine the two.

Methods for handling the imbalance in the units or the weights of different losses in a

combined loss function involve using a näıve weighted sum of losses [22]. Kendal et al use a

Bayesian approach to learn multiple objectives in a loss function [55].

We tested both the data-level and algorithm-level techniques to address the class imbal-

ance. First, we used the synthetic minority over-sampling technique (SMOTE), as it is a

widely accepted benchmark for learning from imbalanced data [27]. The SMOTE method

utilizes the oversampling approach to rebalance the original training set. Instead of apply-

ing a simple replication of the minority class instances, it introduces synthetic examples

which are created by interpolation between several minority class instances within a defined

neighborhood.

For soft sensor modeling, however, algorithm-level approaches were shown to be more

effective. We adjusted the loss function to take weights into consideration in order to reduce

bias towards the negative class, as shown in Equation 4.6. The introduction of the weights

in the loss function allowed the minority samples to contribute more to the loss. Successful

use of class weight has been demonstrated by Wang et al [110] and Lin et al [108].

For evaluation and comparison purposes, we considered true positive rate(recall) to be

the most useful metric because, in this case, the cost of the false negative was much higher
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than the cost of false positive.

We tested the proposed architecture using several data imbalance techniques to deter-

mine what best suited the data. We tested both SMOTE and Weighted Class techniques

on models which included logistic regression (LR), neural network (NN) with three fully

connected layers, VWMHQAE+LR/NN (LR/NN using quality-based latent variables), and

Stacked VWMHQAE+LR/NN. In this case, the results showed that in the algorithm-based

approach, weighted class outperformed SMOTE, in most cases. Therefore, in our subsequent

experiments, we used class weights to handle class imbalance.

Additionally, we used two different approaches in order to handle the different scales in

the combined model loss. In the first approach, we used a näıve weighted sum of losses to

combine the reconstruction loss and the binary cross entropy loss. The second approach saw

the two loss functions as a multi-task learning problem and used a variance-based weighting

mechanism, as proposed by Rijsbergen et al [105].

As Figure 4.4 shows, autoencoder-based models consistently performed better than mod-

els without pre-trained autoencoders. The highest-performing model across all outputs was a

weighted class and variance-weighted, stacked, quality-driven autoencoder with a logistic re-

gression classifier (recall=0.75), followed very closely by a naively weighted, quality-driven,

autoencoder model (recall=0.74). F beta imb was the F beta score with β equals to the

imbalance ratio. F beta imb showed the same conclusion as recall.

4.1.6 Conclusion and Future work

In this study, we aimed to create an efficient, multi-headed autoencoder-based architecture

that learns to simultaneously classify multiple outcomes by exploiting the feature represen-

tation guided by quality relevant features. We consider this to be an important contribution

to the implementation of soft sensor modeling in manufacturing environments that involve

complex, non-linear interactions among thousands of complex operations. The capability of
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Figure 4.4: Average Output Performance for the VWMHQAE model’s variations. The
abbreviations are: AE: autoencoder; Q: short for ’VWMHQ’; S: stacked (with hidden layers
[400,200,100,50]); WC: weighted class; WL: weighted loss; VWL: variance-weighted loss;
LR: linear regression classifier; NN: fully-connected neural net classifier (with hidden layers
[100,50]).
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using sensors to characterize the impact of multiple steps’ outcome in a feed-forward manner

allows manufacturers to be more proactive about potential issues that may arise, and at

the same time, enables them to eliminate certain measurement steps, thereby saving tool

capacity and improving their time-to-ship window.

We used several techniques to address the challenge of class imbalance and the imbalance

in the scale of the different loss function and concluded with an optimal model suited for this

dataset. This architecture can also be trivially generalized to regression models or multi-class

classification models.

Future work can extend the architecture to consider the stacked autoencoder’s contribu-

tion at each layer for an ensemble model. Convolutional neural networks can also be applied

on raw time-series sensor data to exploit the data’s locality and stationarity features. We

also believe that this architecture’s generality can further be improved by exercising these

soft sensing models on a diverse set of equipment with their own function-specific sensors. In

the meantime, we’ve made Seagate Technology’s manufacturing and sensing datasets avail-

able, with the hope that it will enable the research community to develop more scalable and

applicable AI techniques.

4.2 Soft Sensing Transformer: Hundreds of Sensors Are Worth a

Single Word

4.2.1 Introduction

(This work has been published on IEEE International Conference on Big Data [126] ©20XX

IEEE.)

In the last decades, smart sensor development has attracted a lot of attention from

government, academia, and industry. In 2013, Germany proposed the concept of Industry

4.0, the main aim of which is to develop smart factories for producing smart products. In
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September 2020, the US government announced that they will be providing more than $1

billion towards establishing research and hubs for Industry 4.0 technologies. Singapore’s

current five-year SU$13.8 billion R&D is injecting more funds into expanding fields such

as advanced manufacturing. China’s ”China Manufacturing 2025” goal is also to make the

manufacturing process more intelligent. These initiatives require that we possess better

sensing technologies to understand and drive our processes. Sensors have the potential to

capture information about process variables which can be exploited by data-driven techniques

for smarter manufacturing process monitoring and control.

As the industrial process has become more complicated, and the size of available data has

increased dramatically, the body of research into deep learning methods with applications

in the soft sensing field has grown in parallel. A soft sensor is a software application or

even an algorithm that functions like a sensor to detect a product’s properties. For example,

in our experiments with the Seagate data, we used soft sensors to predict wafer quality, a

particularly difficult and expensive metric to measure. Many other factories use soft sensors

to detect various properties for their products, such as chemicals or control systems. A

recent survey on deep learning methods for soft sensors [103] has illustrated the significance

of deep learning applications and reviewed the most recent studies in this field. The deep

learning models are mostly based on autoencoders [65], the restricted Boltzmann machine

[98], convolutional neural networks [60], and recurrent neural networks [91]. The applications

for these models vary from traditional factories [119] to wearable IoT devices [85, 86].

There have been a variety of novel deep learning models, such as variational autoencoder

models, which attempts to enhance the representation ability or to augment the data [43,

44], a semi-supervised ensemble learning model that quantifies the contribution of different

hidden layers in a stacked autoencoder [102], and a gated convolutional transformer neural

network that combines several state-of-art algorithms together to deal with a time series

dataset [31]. As the deep learning models become more and more complex, their capabilities
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to handle complex processes and large datasets also increase. However, in these studies,

researchers are still using very small datasets such as data from a wastewater treatment

plant or a Debutanizer column [99, 28], both of which contain low-dimensional data with

only hundreds to thousands of data samples. These types of small datasets are not sufficient

to illustrate the effectiveness of these advanced, deep learning models, which contain millions

of parameters. As a solution to this issue, we collected gigabytes of numerical sensor data

from Seagate’s wafer manufacturing factories in the US and Ireland. These datasets contain

high-dimensional time series sensor data that is collected directly from the Seagate wafer

factories, with only the necessary anonymization, and these data are big, complex, noisy,

and impossible to interpret in their raw form by humans. In this article, we evaluate a soft

sensing transformer model against the most commonly-used methods applied to soft sensing

problems – including models based on autoencoder and LSTM [39]. We maintained the key

components of the original transformer model and modified other parts of the architecture

to fit into our datasets and tasks.

The transformer model, since proposed in 2017 [107], together with its derivatives such as

BERT[18], have been the most active research topic in the natural language processing (NLP)

field, as well as being the top performer in most NLP tasks[64]. Due to its extraordinary

representative capability, the transformer model has also shown equally high performance

in the computer vision area [38]. First proposed in 2020, vision transformer [21] and its

variants have achieved the state-of-art performances on many computer vision benchmarks

such as image classification, semantic segmentation and object detection [66, 122].

From texts in NLP, which can be regarded as categorical data, to images (two- or three-

dimensional integer values) in computer vision, a natural further extension would be sensor

data, which is time series data with continuous floating numbers. While the Bayes error rate

[30] in both NLP and computer vision tasks are usually defined as human-level performance,

our soft sensing task is impossible for a human to classify based on the hundreds of sensor

55



values. In this section, we show that Transformer architecture not only works great for

natural language and images, but also for numerical data, and it is able to represent the data

that is not interpretable by humans. As an outgrowth of this research, we have also explored

this soft sensor problem from other aspects such as spatial correlation using convolution or

graph neural networks [45, 116] and feature importance [87].

The rest of this section is organized as the following: We discuss the soft sensing trans-

former model in subsection 4.2.2, describe several industrial soft sensing datasets in sub-

section 4.2.3, show the results of the soft sensing transformer on these datasets in subsec-

tion 4.2.4, and make discussions and conclusions in subsection 4.2.4.

4.2.2 Methodology

While implementing the soft sensing model, we followed the original transformer architecture

as closely as possible. We modified the module’s input module to fit the time series sensor

data and modified the output module for multi-task classification problems. This is the first

study to use these deep learning methods to find benchmark results on these large-scale

sensor datasets, as well as the first study to apply the transformer model on large-scale

numerical sensor data.

Soft Sensing Transformer (SST)

The architecture of the soft sensing transformer model is illustrated in Figure 4.5. Given

that the format of time series sensor data is different from texts, we used a dense layer for

the embedding at the starting point, which reduced the dimension of the high-dimensional

sensor data. After this layer, the data format is the same as embedded sentences so that it

can be fed into the transformer encoder without any modifications. We added a positional

encoding using sine and cosine functions of different frequencies to cover the information

of relative positions of different time steps, as shown in Equation. 4.9 and Equation 4.10.
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Figure 4.5: Architecture of the soft sensing transformer model

PE stands for positional encoding, pos is the position of a time step, and dmodel is the

dimension of embedded vectors.

PE(pos,2i) = sin(pos/100002i/dmodel) (4.9)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (4.10)

Because the SST model requires a fixed size of input data, we added padding to those

samples with too few time steps, so that each sample has the same time length. In the raw

data, we chose the time length as 99 percentiles of the sequence lengths to cover most of the
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data and exclude outliers. We also applied the padding masks accordingly. In the encoder,

multi-head scaled dot product attention, we designed feed forward and residual connections

in the same way as in the original transformer paper [107]. The multi-head attention is

described as in Equation 4.11. The query, key and value are projected to h heads with the

weight matrices W
q
i ,W

k
i ,W

v
i . Each head has a dimension of dmodel/h, and we calculated a

scaled dot-product attention for each head. We then concatenated the heads and projected

them back to the original shape.

MHA(Q,K, V ) = Concat(softmax(
QW q

i (KWk
i )T

√
dk

)VW v
i )W

o (4.11)

The Seagate datasets contain measurement pass/fail information, so we built the SST

model as a classification model. After the encoder blocks, we attached a multi-layer percep-

tron (MLP) classifier on top, after a global average pooling. Because of the data’s intrinsic

complexity, the classifier comprises a few individual binary classifiers. These binary classi-

fiers partly share the input data and may be correlated with each other, resulting in an inter-

correlated, multi-task problem (further discussed in Subsection 4.2.3). In order to achieve

the best performance in the multi-task learning, we applied a weighting method based on

uncertainty [55], and defined the combined loss function as Equation 4.12:

J =
∑
i

(
1

σ2i
Ji + logσi) (4.12)

where J is the total loss, Ji is the loss of the ith classification task, and σi is the uncertainty

of the ith classification loss, which is trainable during the model fitting.

Optimization

In industrial settings, the data are highly imbalanced. As a classification model, we found

only one to two percent of the data samples as positive. To deal with this imbalance,

we experimented with both weighting methods and data sampling algorithms like SMOTE
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[13]. In our experiments, we found that class weighting provided the best efficiency and

performance. We calculated the weight of the jth task, label t (0 or 1) based on the number

of samples:

wt
j =

N

2m ∗ ntj
(4.13)

in which N is the total number of samples, m is the number of tasks, and ntj is the

number of samples for label t in the jth task.

Combined with the uncertainty-based multi-task learning in Equation 4.12, we defined

the final loss function of SST model as weighted cross entropy:

J =
m∑
j

1∑
t=0

[
1

σ2jt

ntj∑
i

(yijt ∗ logŷijt) + log(σjt)] (4.14)

where yijt and ŷijt are the true labels and predicted probabilities for the ith sample in

task j for label t. Note that the cross-entropy loss is calculated in a multi-label classification

manner and the loss for positive and negative cases were computed separately. We take

yij1 = 1 for positive samples, and yij0 = 1 for negative samples. The weights for the

positive and negative cases in a single binary classification task were also further tuned by

σjt, which is the uncertainty or variance of the loss for label t in task j. In this multi-task

learning setting, we have 2m ’tasks’ for the m binary classifications.

Activation Functions For the transformer encoder part, we applied a ReLU activation

function [80] in the feed forward layer, which consisted of two dense layers that project

the dmodel dimensional vector to dff dimension and project back to dmodel dimension,

respectively. The ReLu activation function was set for the first dense layer in the feed

forward layers. As for the MLP classifier, we applied sigmoid activation functions for all

three layers because we found that it produced more stable results than ReLu in this case.

59



Regularization We applied L2 regularizers to all the dense layers in SST model, with a

regularization factor of 10−4. We also applied Dropout [100] to residual layers and embedding

layers. We further applied dropout to each layer in the MLP block except for the final

prediction layer. All dropout ratios were kept the same and we performed a grid search in

[0.1, 0.3, 0.5] to find the best dropout ratio.

Optimizers We experimented with two kinds of optimizers: a default adam optimizer [56]

with a fixed learning rate, and a scheduled adam optimizer as used in the original transformer

paper [107]. The learning rate scheduled optimizer has shown a more stable result, so we’ve

continued to use it in further experiments.

For the scheduled adam optimizer, the parameters were set as β1 = 0.9, β2 = 0.98,

ϵ = 10−9. The learning rate was varied during the training process based on Equation 4.15.

d is dmodel in the SST model, step is the training step, and warmup is set as 4000. We

added an extra factor to tune the overall learning rate. We performed a grid search for the

factor in [0.1, 0.3, 0.5] to find the optimal factor.

lr = factor ∗ d−0.5 ∗min(step−0.5,
step

warmup1.5
) (4.15)

Hyper-parameter Tuning As shown in Table 4.2, we tuned seven hyper-parameters

using a grid search. These hyper-parameters included the number of the encoder block

(n layer), the size of embedding layer (dmodel), the size of feed forward layers (dff), the

dropout ratio, the learning rate factor as in Equation 4.15, the batch size, the number of

heads for the multi-head attention layer (n heads), and whether or not to use the uncertainty

based weighting as in Equation 4.12. For the grid search process, we randomly sampled a

smaller data size from the datasets, which contained 5000 samples for training and 3000 for

validation. We selected the best model based on the validation results, evaluated by the area

under a Receiver Operating Characteristic Curve (ROC-AUC) [25].
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Table 4.2: Hyper-parameter search space
Hyper-parameter Values

n layers 2, 3, 4
dff 32, 128, 512

dmodel 64, 128, 256
dropout ratio 0.1, 0.3, 0.5

learning rate factor 0.1, 0.3, 0.5
batch size 512, 1024, 2048
n heads 1, 2, 4

uncertainty based weighting on, off

Early-stopping Instead of setting an epoch number, we used an Keras early-stopping call-

back method in the training processing, with a patience of 100 epochs, and restore best weights =

True. In this way, we obtained an optimized epoch number for each experiment without

manually tuning.

Hardware All the models were trained on an AWS instance with an NVIDIA Tesla V100

SXM2 GPU. It took around 20ms for each step, and about 30 minutes for the entire training.

The grid search for hyper-parameters took about 36 hours. All the models were written with

TensorFlow [1] version 2.2 with Keras[15].

4.2.3 Data

To fill the gap of publicly available large-scale soft sensing datasets, we queried and pro-

cessed several gigabytes of datasets from Seagate manufacturing factories in both the US

and Ireland. These datasets contain high-dimensional time series sensor data coming from

different manufacturing machines.

As shown in Figure 4.6, to fabricate a slider used for hard drives, an AlTiC wafer goes

through multiple processing stages including deposition, coating, lithography, etching, and

polishing. Different products have different manufacturing lines; Figure 4.6 shows a simplified

manufacturing process. After each processing stage, the wafer is sent to metrology tools for
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Figure 4.6: High-level workflow of wafer manufacturing. Each wafer goes through multiple
processing stages, and each stage posesses corresponding metrology, in which a few quality
control measurements are performed. The measurement results are used to decide whether
the wafer is in acceptable shape to proceed to the next stage. Figure from https://github.

com/Seagate/softsensing_data.

quality control measurements. A metrology step may generate a single or multiple different

measurements, each of which could have varying degrees of importance.

These processes are highly complex and are sensitive to both incoming as well as point-

of-process effects, and they employ a significant amount of engineering and systems resources

to monitor and control the variability intrinsic to those factors known to affect a process.
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Figure 4.7: Overview of the main process categories of processes and their corresponding crit-
ical measurement variables per each category. Figure from https://github.com/Seagate/

softsensing_data.

Metrology serves a critical function in managing these complexities for early learning cycles

and quality control. However, this comes at high capital costs, increased cycle time, and

there is considerable overhead involved in setting up the correct recipes for measurements,

appropriate process control, and workflow mechanisms. In each processing tool, there are

anywhere from dozens to hundreds of on-board sensors in the processing machines that

monitor the state of the tool. These sensors collect information every few seconds, and all

these sensing values are collected and stored along with the measurement results.

As shown in Figure 4.7, one time series of sensor data are mapped to several measure-

ments, and the same measurement can be applied to multiple processing sensor data points.

Each measurement contains a few numerical values to indicate a wafer’s condition, and the

pass or fail decision is made based on these numbers. For simplicity’s sake, we only covered

the pass/fail information for each measurement, so that each time series data sample was

mapped to several binary classification labels, resulting in a multi-task classification prob-
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lem. On the other hand, some of measurements are linked to multiple processing stages, so

that the SST model can learn the representations from one stage and be applied to another

stage when it’s trained on data covering all the stages. Given this inter-correlation, train-

ing such a multi-task learning SST model leads to better performance when compared with

the method of individually training the measurement tasks. From an industrial application

perspective, the former method also allows for simpler maintenance and scalability, in that

in involves a single model instead of multiple models.

The datasets in this paper cover 92 weeks of data. We took the first 70 weeks as training

data, the following 14 weeks as validation data, and the last eight weeks as testing data.

We prepared the datasets by querying from raw data and performing some necessary pre-

processing steps. While the sensors were collecting data every few seconds, there were a

lot of redundancies, so we aggregated the data into short sequences. In each processing

stage, a wafer goes through a few modules, and we aggregate the data by the module and

get short time sequences. Other pre-processing steps on the data included a min-max scal-

ing, imputation with neighbors, one-hot encoding for categorical variables, and necessary

anonymization. The min-max scaler was fit only on training data and applied on the en-

tire datasets. Imputation was done by filling the missing values first by its neighbors (a

forward filling followed by a backward filling) if non-missing values existed in the same pro-

cessing stage, otherwise filling by the mode of all the data. Categorical variables such as

the processing stage information, the type of the wafer, the manufacturing machine in func-

tion, were one-hot encoded and concatenated to the sensor data as model input. As for the

anonymization, only confidential information like the data headers was removed.

Using data in different time frames for training and testing reflects the SST model’s

application prospect, because it is in this way that the model can be directly deployed into

factories once it performs well enough in testing data. However, this setting also makes it

harder for the model to achieve a high performance because, in ”factory reality,” there are
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Table 4.3: Summary for the datasets: The number of positive and negative samples for each
task

P1 P2 P3

Task pos neg pos neg pos neg

1 295 8328 256 6433 109 2496

2 40 12747 773 26811 335 12857

3 291 56198 2069 78844 46 1026

4 188 14697 582 27809 15 4180

5 568 40644 247 9652 300 22254

6 863 84963 884 27337 166 40811

7 2501 153970 2108 53921 875 75706

8 490 2919 2016 77473 1097 18890

9 104 29551 644 23305 537 4247

10 57 10813 270 25651 1547 129914

11 306 47219 3792 354328 - -

too many uncontrollable factors and the data distribution between the training data and the

testing data may differ from each other.

After the preprocessing, these datasets were turned into Numpy format, which only

include numerical values without any headers. Input files are rank 3 tensors with dimension

(n sample, time step, features), and outputs are rank 2 tensors with dimension (n sample,

2*n tasks). Each binary classification task has two columns in the output file: the first

column contains negative cases and the second contains positive cases.

Three datasets are covered in this paper. They are from slightly different manufacturing

tool families, and each has different processing stages and corresponding measurements.

The number of samples for each measurement is summarized in Table 4.3. More detailed

information for each tool family is described below, and all the data are available at https:

//github.com/Seagate/softsensing_data.
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Dataset P1 The sensor data were generated by a deposition tool that include both depo-

sition and etching steps. There are 90 sensors installed in the tool and they capture data at

a frequency of about every second. The critical parameters measured in this family of tools

are magnetics, thickness, composition, resistivity, density, and roughness.

After the pre-processing mentioned above, there were 194k data samples in training,

34k samples in validation, and 27k samples in testing data. Each sample had two time

steps, with 817 features. Some of the second time steps were missing and replaced with zero

padding, and the 817 features came from 90 sensors, one-hot encoded categorical variables.

The features included each wafer type, the processing stages, specific manufacturing tools,

etc., and a padding indicator as the last feature.

For the labels, there are eleven individual measurement tasks, each is a binary classifica-

tion. We set the model output dimension as 22 to have separate predictions for negative and

positive probabilities. As shown in Table 4.3, the datasets are highly imbalanced – about

1.2 percent of the samples have positive labels.

Dataset P2 This second dataset contained data generated by a family of ion milling (dry

etch) equipment, which utilizes ions in plasma to remove material from the wafers’ surfaces.

There were 57 sensors included in this dataset, and the critical parameters measured for this

family of tools were similar to those measured by the tools used in Dataset P1 tools, but the

process used slightly different machines.

There are 457k training samples, 80k validation samples, and 66k testing samples in

the dataset. For this dataset, there was no time series information, but we treated it as a

single time step to fit into the same SST model. This dataset was more complex in terms of

categorical variables, resulting in 1484 features in total.

The number of measurement tasks was eleven, with an output dimension of 22, and about

1.9 percent of the samples were positive, as shown in Table 4.3. Note that these eleven tasks

are not the same as those in P1.

66



Dataset P3 The last dataset was generated by sputter deposition equipment, which con-

tains multiple de-position chambers, each with unique targets. The number of sensors was

43, and the critical parameters measured were the same but, again, calculated using different

machines.

There were 205k training data samples, 35k for validation, and 20k for testing. The

maximum time series length was two, with outliers filtered out and short series padded. The

number of features was 498, the least among these three datasets.

The number of measurement tasks was ten, and the output dimension was 20. These

tasks were not the same as those in shown in the P1 and P2 datasets. The percentage of

positive cases was about 1.6 percent.

4.2.4 Results

We ran the SST models on the three datasets described in the last section. We tuned the

hyperparameters within the range shown in Table 4.2, and we present the best combinations

of each dataset below.

To validate the SST’s effectiveness, we compared the results with two baseline models.

The first baseline model was the variance-weighted multi-headed quality driven autoencoder

(VWMHQAE) [123], which our team developed in 2020, as described in Section 4.1. It has

been proven to work well with non-time series data in our previous experiments with similar

sensor data, and therefore serves as a good baseline model for SST. Because VWMHQAE

does not have an architecture to cover the time dimension, we flattened the data before

feeding it into the model. We also trained a second baseline model: a bidirectional LSTM

model (Bi-LSTM), which is one of the golden standard models for time series data, to obtain

a comprehensive benchmark on the performance of SST.

Due to the highly imbalanced nature of the datasets, accuracy would not make much

sense as a metric by which to evaluate the models. At Seagate, the most important metrics
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Table 4.4: Result comparison with the baseline models for the P1 dataset

Task SST VWMHQAE Bi-LSTM

1 0.70 ± 0.12 0.63 ± 0.12 0.73± 0.13

2 0.60± 0.18 0.54 ± 0.03 0.56 ± 0.01

3 0.86± 0.01 0.77 ± 0.05 0.86± 0.03

4 0.91± 0.01 0.89 ± 0.01 0.88 ± 0.01

5 0.55± 0.03 0.55± 0.02 0.51 ± 0.05

6 0.53 ± 0.05 0.57± 0.03 0.50 ± 0.03

7 0.64 ± 0.02 0.65± 0.01 0.64 ± 0.01

8 0.82± 0.03 0.78 ± 0.04 0.78 ± 0.11

9 0.71 ± 0.09 0.77± 0.01 0.77± 0.06

10 0.92± 0.03 0.82 ± 0.03 0.67 ± 0.23

11 0.89± 0.01 0.77 ± 0.03 0.88 ± 0.01

are the True Positive Rate (TPR, also called recall or sensitivity) and the False Positive

Rate (FPR, also called fall-out or false alarm ratio), because TPR implies the yield by which

FPR indicates the efficiency of the manufacturing factory. However, comparing two metrics

simultaneously is not intuitive, so we chose to use the Area Under Curve (AUC) of the

Receiver Operating Characteristic (ROC) curve as the main metric in this paper.

P1 Results For the P1 dataset, SST model was set as three layers, both the dmodel and

the dff were 128, the dropout rate was 0.5, the batch size was 2048, n heads was 1, the

learning rate factor was 0.5, and the uncertainty-based weighting was off. The VWMHQAE

model was set as three layers with hidden layer dimensions [512, 256, 128], and the Bi-LSTM

model with dimension equal to dff . All models ended with a three-layer MLP classifier with

all hidden dimensions as dff .

The results for the eleven tasks are summarized in Table 4.4. In seven of the tasks, SST

was the best performer, especially for the high performing tasks where AUC larger than 0.8.

From the results we can also see that some of the tasks returned poor results for all three
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Figure 4.8: The ROC curve for SST and the baseline models on the P1 dataset, for the 4th
task

models. For these tasks, it is difficult to get a high AUC value with any model due to the

intrinsic complex and noisy nature. Only those measurement tasks with decent results can

lead to realistic value in industry applications. This is one of the primary motivations behind

our decision to open-access these datasets: Researchers all around the world are welcome to

use and explore this data. This will not only help us to gain more understanding about the

datasets, but also enrich the research field.

To further illustrate the results, we plotted the ROC curve for the task with highest AUC

value, as shown in Figure 4.8. SST has a higher score than the two baseline models, and the

curve is smoother, indicating a more even distribution of the prediction probabilities and a

finer grid in the prediction space. The source code can be found at https://github.com/

Seagate/SoftSensingTransformer.
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Table 4.5: Result comparison with the baseline models for the P2 dataset

Task SST VWMHQAE Bi-LSTM

1 0.89± 0.01 0.87 ± 0.02 0.88 ± 0.04

2 0.64 ± 0.01 0.66± 0.02 0.59 ± 0.07

3 0.60 ± 0.06 0.62± 0.01 0.55 ± 0.01

4 0.85± 0.01 0.82 ± 0.01 0.84 ± 0.01

5 0.45 ± 0.07 0.53± 0.10 0.52 ± 0.10

6 0.64 ± 0.02 0.71 ± 0.04 0.72± 0.02

7 0.78 ± 0.01 0.81± 0.02 0.79 ± 0.01

8 0.72± 0.03 0.70 ± 0.09 0.69 ± 0.03

9 0.71 ± 0.12 0.77± 0.08 0.48± 0.14

10 0.76± 0.02 0.75 ± 0.01 0.76± 0.04

11 0.79 ± 0.01 0.80 ± 0.01 0.82± 0.01

P2 Results The SST model was set as three layers, both dmodel and dff were 128, the

dropout rate was 0.3, the batch size was 2048, n heads was 1, the learning rate factor was

0.5, and the uncertainty-based weighting was on. The baseline models were the same as

those used for the P1 dataset.

The results for the eleven tasks are summarized in Table 4.5. SST is the best performer

in four of the tasks, including the two tasks with the best prediction performance. Same as

in P1 dataset, some of the tasks have poor results for all three models due to the intrinsic

complexity and noise in the dataset, but we care about the tasks with best results. In this

dataset, there is only one time step, and – as expected – the VWMHQAE model, which is

not designed for time series data, has shown better results when compared to the P1 data,

and it performed the best in five out of the eleven tasks.

The ROC curve for the task with the highest AUC value, as shown in Figure 4.9, is very

similar to Figure 4.8, showing the SST model’s consistent performance of SST model over

different datasets. SST is slightly smoother than the baseline models, with a higher AUC.
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Figure 4.9: The ROC curve for the SST and baseline models on the P2 dataset, for the 1st
task

P3 Results The SST model was set as three layers, both dmodel and dff were 128, the

dropout rate was 0.3, the batch size was 2048, n heads was 1, the learning rate factor was

0.3, and the uncertainty-based weighting was on. The baseline models were the same as

those used for the P1 dataset.

The results for seven out of ten tasks are summarized in Table 4.6, because the other

tasks had too few testing data samples. SST was the best performer in four out of the seven

tasks, including the task with the best prediction performance. Some of the tasks have poor

results for all three models and even with an AUC lower than 0.5, meaning the result was

worse than a random guess. The main cause for this is the distribution shift, and we will

carry out further experiments when we accumulate more data from the Seagate factories.

The ROC curve for the task with highest AUC value is shown in Figure 4.10, showing the

SST model’s consistent performance of SST model over different datasets.
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Table 4.6: Result comparison with the baseline models for the P3 dataset

Task SST VWMHQAE Bi-LSTM

1 0.42± 0.08 0.23 ± 0.12 0.32 ± 0.08

2 0.94± 0.02 0.94± 0.02 0.93 ± 0.01

3 0.68± 0.08 0.53 ± 0.10 0.56 ± 0.05

4 − − −
5 0.53 ± 0.08 0.65± 0.05 0.58 ± 0.05

6 − − −
7 0.60 ± 0.05 0.56 ± 0.02 0.61± 0.07

8 0.72± 0.05 0.62 ± 0.08 0.65 ± 0.08

9 − − −
10 0.81 ± 0.01 0.81 ± 0.01 0.82± 0.01

Figure 4.10: ROC curve for the SST and baseline models on the P3 dataset, 2nd task

Discussion and Conclusion

We have explored the direct application of Transformers to soft sensing. To our knowledge,

we are the first to provide large-scale soft sensing datasets, and the first to benchmark the
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results with the transformer model in the soft sensing field. Also, this is the first time that

transformer model has gone beyond human capability in the sense that the input data is

not human-interpretable. We analogized the time series data as a sequence of sensor values,

taking each time step as a word, and processed the sentence-like data using a standard

transformer encoder exactly as in NLP tasks. This direct and intuitive strategy has shown

an exciting result for our datasets that outperformed both our previous model and Bi-LSTM

model.

We share these datasets with the excitement of advancing interest and work in soft

sensing research and applications. We invite future work into the exploration of improving

SST performance on those tasks that have proven particularly challenging in our experiments.

Another future direction might involve the examination of appropriate time sequences for

these datasets, and explorations of better ways to address missing data. We are working

on acquiring more data with longer sequences, in order to better understand the impact of

time series length in prediction quality. In the meantime, we have provided three datasets to

cover a variety of sensors, and to examine the generalizability of deep learning models, and

we believe these datasets can enrich the soft sensing research field, as well as serve as one of

the standard tools to by which future researchers can evaluate the effectiveness of their own

research.

4.3 Learning from Failures in Large-scale Soft Sensing

(This work has been published on IEEE International Conference on Big Data [124] ©20XX

IEEE.)

Scientific publications typically favor studies that show successful results. Experiments

that did not work either are relegated to footnotes, or worse, never get mentioned. This

practice is short-sighted; the publication of failures can potentially contract research learning

curves because failures are discoveries in their own right. In this section, we’ll share those
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strategies that did not work in our soft sensing deep learning experiments, in the hope

that future researchers and application engineers can find lessons and guidance from our

failures. We’ve compiled this article from our experiments using multiple deep learning

algorithms, (including autoencoder, CNN, GNN, and transformer), to predict the values of

quality control variables in the wafer manufacturing process at Seagate Technology, based

on the sensor data collected during the deposition and etching processes. We experimented

on various pre-processing and modeling methods, and what follows is a list of some of the

methods that did not return satisfactory performances: using focal loss or hinge loss to

replace cross entropy; using a standard or robust scaler to replace a min-max scaler; scaling

the data by groups; using oversampling methods such as random sampling or SMOTE,

or; selecting features based on domain knowledge. We hope that these experiments will

inspire intuition in future researchers and help save time in their experiments and research.

We acknowledge that these conclusions are drawn only from our experiments, and therefore

accept the possibility that the same experiments may work in different contexts. We welcome

all kinds of discussion or collaboration.

4.3.1 Introduction

Based on the Seagate wafer manufacturing sensor data, we have been developing models for

Seagate manufacturing lines [123]. While we found many methods – such as regularization,

multi-task learning and class weighting – contributing positively to the model performance;

we also discovered certain methods that didn’t work in our experiments. These unsuccessful

methods were just as valuable as the successful methods because both of them have guided

our subsequent experiments.

During our study, we had been focusing on a classification problem based on the Seagate

factory wafer sensor data. The details of the problem and datasets are described at https:

//github.com/Seagate/softsensing_data. The input data are high dimensional time-
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series data containing about 100 sensors and categorical variables with hundreds of values,

and the output data are the classification results for multiple measurement tasks.

While the successful methods are described and implemented in references [123, 125,

45, 116, 87], here we present those experiments that did not work, but which still provided

learning to further our aim to advance soft sensing in industrial applications.

4.3.2 Learning from Failures

In this section we list some methods that did not work well in our experiments. We tested

the following methods and compared the model performance with metrics including recall

and AUC-ROC. The following methods either decreased the performance or increased model

complexity without any performance improvement.

Hinge Loss

For a classification problem, the two most commonly-used algorithms are logistic regression

and support vector machines [17], with the key difference between them being the loss

functions: hinge loss vs. cross entropy.

Hinge loss maximizes the margin of classification boundary and ignores the correct pre-

dictions, while cross entropy penalizes heavily on the wrong predictions and also counts for

the correct predictions. Hinge loss has shown both good performance on high-dimensional

data and a reduced risk of over-fitting.

However, in our experiments using these two loss functions in our deep learning classi-

fication model, hinge loss function showed unstable results and tended to be under-fitted.

More specifically, with hinge loss, the model often predicted all the results as negative.

There are two possible reasons for this result. The first is that hinge loss has zero loss

for some of the data, so it cannot handle imbalance very well, even when class weighting

is applied. The second reason is that the hinge loss function does not have a continuous
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Figure 4.11: Comparison between cross entropy and hinge loss

gradient, so it is easy to get stuck at local minimum, where the model goes to the state

where it predicts everything as negative, and stops updating the parameters.

We also experimented with focal loss function, and it showed similar results as hinge loss.

Standard or Robust Scaler

The input sensor data is composed of hundreds of different sensors. These sensors have

different numerical value scales, so we needed to normalize them to the same range for faster

training and better convergence.

There are a few commonly-used scalers: min-max, standard, and robust scalers. We used

the Scikit-Learn package for all of these. The min-max scaler constrains all the data to the

range of [0,1], the standard scaler normalizes data based on both the average and standard

deviations, and the robust scaler normalizes data based on their median and percentiles.

Robust scaler is called ’robust’ because, in it, medians are not affected by outliers. While

standard and robust scalers consume more computing resources, they did not show any
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Figure 4.12: Comparison between robust, standard and min-max scalers

improvement in our experiments, and the results for all three scalers are identical. These

results are not as expected because the real-world sensor data had untypical distributions.

It is possible that the outliers do not contribute overmuch to the results, or the deep learn-

ing models are able to capture the information even when the normalization has not been

performed perfectly.
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Grouped Scaler

Other than the sensor data, the datasets also contained a few categorical features. Based on

these categorical features, the data can be separated into groups, each group with different

properties. Scaling the data by groups is intuitively more reasonable than scaling all the

data simultaneously.

We experimented grouping the data by several different categorical variables and per-

formed normalization within each group, respectively. However, the model’s performance

became worse when compared to normalizing the entire dataset. On the other hand, the

grouped scaler method also made the deployment a bit more complex because we then needed

to scale the new input data based on its categorical features before feeding it into the deep

learning model. Nevertheless, it is still counter-intuitive that the grouped scaler resulted

in worse model performance. We hypothesize that it this due to the imputation, in which

the data were mixed among different groups, making it difficult for the grouped scaler to

effectively scale each group. We are exploring imputation methods and will apply grouped

scaler again to further examine these results.

Oversampling

One of the biggest challenges in this classification problem is the data imbalance. Only one

to two percent of the labels are positive while the rest are negative. To obtain a reasonable

prediction on both positive and negative labels, we experimented with the most common

algorithmic and data manipulation methods: class weighting and oversampling, respectively.

Class weighting is the method in which an extra weight is applied to the loss function based on

the number of positive/negative labels, in order to achieve a balance. Oversampling methods

generate new data points in order to obtain a comparable number of positive/negative labels,

thus resolving the imbalance issue at the data level. We tested using two oversampling

methods: random oversampling, which randomly duplicates the positive data, and SMOTE
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Figure 4.13: Illustration of SMOTE

[13] which generates new data points based on a linear combination of original data. While

the oversampling methods made the dataset about twice as large and slowed the training

process, they still performed worse than class weighting.

In theory, random sampling is equivalent to class weighting because both methods count

the training loss multiple times, either by duplicating the loss itself or the data points.

SMOTE generates new data and brings a smoothing effect to the model training, but it

does not recognize the high-dimensional data’s non-linearity, the result of which is that the
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newly generated positive data are mixed with the original negative data. Given this result,

we concluded that class weighting was the optimal method to handle the data imbalance in

such classification problems. Our reasoning was that because simple oversampling methods

are not able to capture the data’s non-linearity, and complex oversampling methods are

already classifiers if they capture all the non-linear relation.

Feature Selection

The datasets contain hundreds of sensors, not all of which are informative for the classifica-

tion tasks, and some of this sensor data may be too noisy. In traditional machine learning

modeling, feature engineering would be a key step for these kinds of datasets. However,

for deep learning methods, the burden of information representation is shifted to the model

itself. Thus, feature selection was not a critical factor in our case.

To verify feature engineering’s critical importance, we experimented on a set of sensors

that were selected by manufacturing engineers, which they categorized as the key sensors

based on their domain knowledge. Our experiments with this data yielded results confirming

the hypothesis that feature selection is not helpful for deep learning models. The knowledge-

based feature selection did reduce the size of the data and accelerated the training process,

but came with a sacrifice in performance.

4.3.3 Discussion

In this section, we summarized several methods that did not work in our soft sensing deep

learning experiments. While these methods failed to improve our models, the experience we

gained was even more valuable for us because it gave us directions regarding what to do next

and may possibly save a lot of time during future experiments. We hope that sharing this

kind of experience with researchers working in similar areas and inviting them to share their

learning from failed soft sensing experiments, will hasten discoveries in the field.
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CHAPTER 5

SUMMARY AND FUTURE DIRECTIONS

The 21st century has witnessed a prosperity of text mining techniques and applications. The

success of text mining would not have been possible without the proliferation of large-scale

datasets. This paper has described various datasets from different fields, and made use

of them by applying state-of-the-art text mining techniques to further develop models and

applications, which were already shown to be efficient and effective. These models made it

possible to automate and scale up the deployment of AI technology in the medical clinical

field in lower-resource areas, in chemistry naming systems, and in traditional manufacturing.

Chapter 2 presents the results of the diagnosis assistant system which we developed based

on Word2Vec and decision tree models. The datasets used here include the medical claims

from millions of patients, gigabytes of text corpus from medical literature, and a knowledge

database from medical professionals. We also showcased the model’s application in the

format of an Android app.

Chapter 3shows the results of chemical substructures’ fuzzy frequency in terabytes of

Elsevier chemical literature and PubChem datasets which covers the names and structures

of almost all the existing chemical compounds in different formats. For this, we used the

BLAST method, which was originally used for comparing biological sequences; here, we used

it to compare sequences of words.

Chapter 4 displays the results of applying text mining techniques on semiconductor man-

ufacturing lines. We used the autoencoder and transformer techniques, and we altered both

model architectures to better fit the datasets. The data contained gigabytes of numerical

time sequence sensor data, which we gathered from the factories.

Some of the aforementioned projects are still on-going; my collaborators and I will con-

tinue to work on them. In the meantime, there is much more to explore in these fields.

In clinics, the applications we developed are in their early stages, and there are chances to
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scale them forward with new technologies and new datasets in the near future. In chemistry,

we have only covered organic compounds; in the next step, we can expand these methods

to inorganic compounds. In manufacturing, the future work could focus on more efficient

models that train and run faster to meet changing industry criteria.
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